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Preface to First Edition

The purpose of this book is to provide, in a unified form, a text covering the associated
topics of structural and stress analysis for students of civil engineering during the first
two years of their degree course. The book is also intended for students studying for
Higher National Diplomas, Higher National Certificates and related courses in civil
engineering.

Frequently, textbooks on these topics concentrate on structural analysis or stress
analysis and often they are lectured as two separate courses. There is, however, a
degree of overlap between the two subjects and, moreover, they are closely related.
In this book, therefore, they are presented in a unified form which illustrates their
interdependence. This is particularly important at the first-year level where there is a
tendency for students to ‘compartmentalize’ subjects so that an overall appreciation
of the subject is lost.

The subject matter presented here is confined to the topics students would be
expected to study in their first two years since third- and fourth-year courses in struc-
tural and/or stress analysis can be relatively highly specialized and are therefore best
served by specialist texts. Furthermore, the topics are arranged in a logical manner so
that one follows naturally on from another. Thus, for example, internal force systems
in statically determinate structures are determined before their associated stresses and
strains are considered, while complex stress and strain systems produced by the simul-
taneous application of different types of load follow the determination of stresses and
strains due to the loads acting separately.

Although in practice modern methods of analysis are largely computer based, the
methods presented in this book form, in many cases, the basis for the establishment
of the flexibility and stiffness matrices that are used in computer-based analysis. It is
therefore advantageous for these methods to be studied since, otherwise, the student
would not obtain an appreciation of structural behaviour, an essential part of the
structural designer’s background.

In recent years some students enrolling for degree courses in civil engineering,
while being perfectly qualified from the point of view of pure mathematics, lack a
knowledge of structural mechanics, an essential basis for the study of structural and
stress analysis. Therefore a chapter devoted to those principles of statics that are a
necessary preliminary has been included.

As stated above, the topics have been arranged in a logical sequence so that they
form a coherent and progressive ‘story’. Hence, in Chapter 1, structures are considered
in terms of their function, their geometries in different roles, their methods of support
and the differences between their statically determinate and indeterminate forms. Also

xi
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considered is the role of analysis in the design process and methods of idealizing struc-
tures so that they become amenable to analysis. In Chapter 2 the necessary principles
of statics are discussed and applied directly to the calculation of support reactions.
Chapters 3–6 are concerned with the determination of internal force distributions in
statically determinate beams, trusses, cables and arches, while in Chapter 7 stress
and strain are discussed and stress–strain relationships established. The relationships
between the elastic constants are then derived and the concept of strain energy in axial
tension and compression introduced. This is then applied to the determination of the
effects of impact loads, the calculation of displacements in axially loaded members
and the deflection of a simple truss. Subsequently, some simple statically indetermi-
nate systems are analysed and the compatibility of displacement condition introduced.
Finally, expressions for the stresses in thin-walled pressure vessels are derived. The
properties of the different materials used in civil engineering are investigated in Chap-
ter 8 together with an introduction to the phenomena of strain-hardening, creep and
relaxation and fatigue; a table of the properties of the more common civil engineering
materials is given at the end of the chapter. Chapters 9, 10 and 11 are respectively con-
cerned with the stresses produced by the bending, shear and torsion of beams while
Chapter 12 investigates composite beams. Deflections due to bending and shear are
determined in Chapter 13, which also includes the application of the theory to the
analysis of some statically indeterminate beams. Having determined stress distribu-
tions produced by the separate actions of different types of load, we consider, in Chap-
ter 14, the state of stress and strain at a point in a structural member when the loads
act simultaneously. This leads directly to the experimental determination of surface
strains and stresses and the theories of elastic failure for both ductile and brittle mater-
ials. Chapter 15 contains a detailed discussion of the principle of virtual work and the
various energy methods. These are applied to the determination of the displacements
of beams and trusses and to the determination of the effects of temperature gradi-
ents in beams. Finally, the reciprocal theorems are derived and their use illustrated.
Chapter 16 is concerned solely with the analysis of statically indeterminate structures.
Initially methods for determining the degree of statical and kinematic indeterminacy
of a structure are described and then the methods presented in Chapter 15 are used
to analyse statically indeterminate beams, trusses, braced beams, portal frames and
two-pinned arches. Special methods of analysis, i.e. slope–deflection and moment dis-
tribution, are then applied to continuous beams and frames. The chapter is concluded
by an introduction to matrix methods. Chapter 17 covers influence lines for beams,
trusses and continuous beams while Chapter 18 investigates the stability of columns.

Numerous worked examples are presented in the text to illustrate the theory, while
a selection of unworked problems with answers is given at the end of each chapter.

T.H.G. MEGSON
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Preface to Second Edition

Since ‘Structural and Stress Analysis’ was first published changes have taken place in
courses leading to degrees and other qualifications in civil and structural engineering.
Universities and other institutions of higher education have had to adapt to the dif-
ferent academic backgrounds of their students so that they can no longer assume a
basic knowledge of, say, mechanics with the result that courses in structural and stress
analysis must begin at a more elementary stage. The second edition of ‘Structural and
Stress Analysis’ is intended to address this issue.

Although the feedback from reviewers of the first edition was generally encouraging
there were suggestions for changes in presentation and for the inclusion of topics that
had been omitted. This now means, in fact, that while the first edition was originally
intended to cover the first two years of a degree scheme, the second edition has been
expanded so that it includes third- and fourth-year topics such as the plastic analysis
of frames, the finite element method and yield line analysis of slabs. Furthermore,
the introductions to the earlier chapters have been extended and in Chapter 1, for
example, the discussions of structural loadings, structural forms, structural elements
and materials are now more detailed. Chapter 2, which presents the principles of
statics, now begins with definitions of force and mass while in Chapter 3 a change in
axis system is introduced and the sign convention for shear force reversed.

Chapters 4, 5 and 6, in which the analysis of trusses, cables and arches is presented,
remain essentially the same although Chapter 4 has been extended to include an
illustration of a computer-based approach.

In Chapter 7, stress and strain, some of the original topics have been omitted;
these are some examples on the use of strain energy such as impact loading, suddenly
applied loads and the solutions for the deflections of simple structures and the analysis
of a statically indeterminate truss which is covered later.

The discussion of the properties of engineering materials in Chapter 8 has been
expanded as has the table of material properties given at the end of the chapter.

Chapter 9 on the bending of beams has been modified considerably. The change
in axis system and the sign convention for shear force is now included and the dis-
cussion of the mechanics of bending more descriptive than previously. The work on
the plastic bending of beams has been removed and is now contained in a completely
new chapter (18) on plastic analysis. The introduction to Chapter 10 on the shear of
beams now contains an illustration of how complementary shear stresses in beams are
produced and is also, of course, modified to allow for the change in axis system and
sign convention. Chapter 11 on the torsion of beams remains virtually unchanged as
does Chapter 12 on composite beams apart from the change in axis system and sign

xiii



Prelims 12/1/2005 12: 48 page xiv

xiv • Preface

convention. Beam deflections are considered in Chapter 13 which is also modified to
accommodate the change in axis system and sign convention.

The analysis of complex stress and strain in Chapter 14 is affected by the change
in axis system and also by the change in sign convention for shear force. Mohr’s circle
for stress and for strain are, for example, completely redrawn.

Chapters 15 and 16, energy methods and the analysis of statically indeterminate
structures, are unchanged except that the introduction to matrix methods in Chapter
16 has been expanded and is now part of Chapter 17 which is new and includes the
finite element method of analysis.

Chapter 18, as mentioned previously, is devoted to the plastic analysis of beams
and frames while Chapter 19 contains yield line theory for the ultimate load analysis
of slabs.

Chapters 20 and 21, which were Chapters 17 and 18 in the first edition, on influence
lines and structural instability respectively, are modified to allow for the change in axis
system and, where appropriate, for the change in sign convention for shear force.

Two appendices have been added. Appendix A gives a list of the properties of a
range of standard sections while Appendix B gives shear force and bending moment
distributions and deflections for standard cases of beams.

Finally, an accompanying Solutions Manual has been produced which gives
detailed solutions for all the problems set at the end of each chapter.

T.H.G. MEGSON
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C h a p t e r 1 / Introduction

In the past it was common practice to teach structural analysis and stress analysis,
or theory of structures and strength of materials as they were frequently known, as
two separate subjects where, generally, structural analysis was concerned with the
calculation of internal force systems and stress analysis involved the determination
of the corresponding internal stresses and associated strains. Inevitably a degree of
overlap occurred. For example, the calculation of shear force and bending moment
distributions in beams would be presented in both structural and stress analysis courses,
as would the determination of displacements. In fact, a knowledge of methods of
determining displacements is essential in the analysis of some statically indeterminate
structures. It seems logical, therefore, to unify the two subjects so that the ‘story’ can
be told progressively with one topic following naturally on from another.

In this chapter we shall look at the function of a structure and then the different kinds of
loads the structures carry. We shall examine some structural systems and ways in which
they are supported. We shall also discuss the difference between statically determinate
and indeterminate structures and the role of analysis in the design process. Finally, we
shall look at ways in which structures and loads can be idealized to make structures
easier to analyse.

1.1 FUNCTION OF A STRUCTURE

The basic function of any structure is to carry loads and transmit forces. These arise
in a variety of ways and depend, generally, upon the purpose for which the structure
has been built. For example, in a steel-framed multistorey building the steel frame
supports the roof and floors, the external walls or cladding and also resists the action
of wind loads. In turn, the external walls provide protection for the interior of the
building and transmit wind loads through the floor slabs to the frame while the roof
carries snow and wind loads which are also transmitted to the frame. In addition, the
floor slabs carry people, furniture, floor coverings, etc. All these loads are transmitted
by the steel frame to the foundations of the building on which the structure rests and
which form a structural system in their own right.

Other structures carry other types of load. A bridge structure supports a deck which
allows the passage of pedestrians and vehicles, dams hold back large volumes of water,

1
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retaining walls prevent the slippage of embankments and offshore structures carry
drilling rigs, accommodation for their crews, helicopter pads and resist the action
of the sea and the elements. Harbour docks and jetties carry cranes for unloading
cargo and must resist the impact of docking ships. Petroleum and gas storage tanks
must be able to resist internal pressure and, at the same time, possess the strength
and stability to carry wind and snow loads. Television transmitting masts are usually
extremely tall and placed in elevated positions where wind and snow loads are the
major factors. Other structures, such as ships, aircraft, space vehicles, cars, etc. carry
equally complex loading systems but fall outside the realm of structural engineering.
However, no matter how simple or how complex a structure may be or whether the
structure is intended to carry loads or merely act as a protective covering, there will
be one load which it will always carry, its own weight.

1.2 LOADS

Generally, loads on civil engineering structures fall into two categories. Dead loads
are loads that act on a structure all the time and include its self-weight, fixtures, such
as service ducts and light fittings, suspended ceilings, cladding and floor finishes, etc.
Interestingly, machinery and computing equipment are assumed to be movable even
though they may be fixed into position. Live or imposed loads are movable or actually
moving loads; these include vehicles crossing a bridge, snow, people, temporary par-
titions and so on. Wind loads are live loads but their effects are considered separately
because they are affected by the location, size and shape of a structure. Soil or hydro-
static pressure and dynamic effects produced, for example, by vibrating machinery,
wind gusts, wave action or even earthquake action in some parts of the world, are the
other types of load.

In most cases Codes of Practice specify values of the above loads which must be used
in design. These values, however, are usually multiplied by a factor of safety to allow
for uncertainties; generally the factors of safety used for live loads tend to be greater
than those applied to dead loads because live loads are more difficult to determine
accurately.

1.3 STRUCTURAL SYSTEMS

The decision as to which type of structural system to use rests with the structural
designer whose choice will depend on the purpose for which the structure is required,
the materials to be used and any aesthetic considerations that may apply. It is possible
that more than one structural system will satisfy the requirements of the problem; the
designer must then rely on experience and skill to choose the best solution. On the
other hand there may be scope for a new and novel structure which provides savings
in cost and improvements in appearance.
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FIGURE 1.1 Beam
as a simple bridge

FIGURE 1.2 Beam
as a structural

element

Beam

BEAMS

Structural systems are made up of a number of structural elements although it is
possible for an element of one structure to be a complete structure in its own right.
For example, a simple beam may be used to carry a footpath over a stream (Fig. 1.1) or
form part of a multistorey frame (Fig. 1.2). Beams are one of the commonest structural
elements and carry loads by developing shear forces and bending moments along their
length as we shall see in Chapter 3.

TRUSSES

As spans increase the use of beams to support bridge decks becomes uneconomical.
For moderately large spans trusses are sometimes used. These are arrangements of
straight members connected at their ends. They carry loads by developing axial forces
in their members but this is only exactly true if the ends of the members are pinned
together, the members form a triangulated system and loads are applied only at the
joints (see Section 4.2). Their depth, for the same span and load, will be greater than
that of a beam but, because of their skeletal construction, a truss will be lighter. The
Warren truss shown in Fig. 1.3 is a two-dimensional plane truss and is typical of those
used to support bridge decks; other forms are shown in Fig. 4.1.
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FIGURE 1.3 Warren truss

(a) (b)
FIGURE 1.4 Portal
frames

FIGURE 1.5 Multibay single storey
building

Trusses are not restricted to two-dimensional systems. Three-dimensional trusses, or
space trusses, are found where the use of a plane truss would be impracticable. Exam-
ples are the bridge deck support system in the Forth Road Bridge and the entrance
pyramid of the Louvre in Paris.

MOMENT FRAMES

Moment frames differ from trusses in that they derive their stability from their joints
which are rigid, not pinned. Also their members can carry loads applied along their
length which means that internal member forces will generally consist of shear forces
and bending moments (see Chapter 3) as well as axial loads although these, in some
circumstances, may be negligibly small.

Figure 1.2 shows an example of a two-bay, multistorey moment frame where the hori-
zontal members are beams and the vertical members are called columns. Figures 1.4(a)
and (b) show examples of Portal frames which are used in single storey industrial con-
struction where large, unobstructed working areas are required; for extremely large
areas several Portal frames of the type shown in Fig. 1.4(b) are combined to form a
multibay system as shown in Fig. 1.5.

Moment frames are comparatively easy to erect since their construction usually
involves the connection of steel beams and columns by bolting or welding; for example,
the Empire State Building in New York was completed in 18 months.
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(a)

(b)

Arch

Hanger
Deck

Column

Arch

Span

Abutment

Deck

FIGURE 1.6 Arches as
bridge deck supports

ARCHES

The use of trusses to support bridge decks becomes impracticable for longer than
moderate spans. In this situation arches are often used. Figure 1.6(a) shows an arch
in which the bridge deck is carried by columns supported, in turn, by the arch. Alter-
natively the bridge deck may be suspended from the arch by hangers, as shown in
Fig. 1.6(b). Arches carry most of their loads by developing compressive stresses within
the arch itself and therefore in the past were frequently constructed using materials
of high compressive strength and low tensile strength such as masonry. In addition
to bridges, arches are used to support roofs. They may be constructed in a variety of
geometries; they may be semicircular, parabolic or even linear where the members
comprising the arch are straight. The vertical loads on an arch would cause the ends
of the arch to spread, in other words the arch would flatten, if it were not for the
abutments which support its ends in both horizontal and vertical directions. We shall
see in Chapter 6 that the effect of this horizontal support is to reduce the bending
moment in the arch so that for the same loading and span the cross section of the arch
would be much smaller than that of a horizontal beam.

CABLES

For exceptionally long-span bridges, and sometimes for short spans, cables are used
to support the bridge deck. Generally, the cables pass over saddles on the tops of
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FIGURE 1.7
Suspension bridge Anchor block

Deck
Hanger

Cable

Tower

FIGURE 1.8 Cable-
stayed bridge

Anchor
block

Stays

Bridge
deck

Tower

towers and are fixed at each end within the ground by massive anchor blocks. The
cables carry hangers from which the bridge deck is suspended; a typical arrangement
is shown in Fig. 1.7.

A weakness of suspension bridges is that, unless carefully designed, the deck is very
flexible and can suffer large twisting displacements. A well-known example of this was
the Tacoma Narrows suspension bridge in the US in which twisting oscillations were
triggered by a wind speed of only 19 m/s. The oscillations increased in amplitude until
the bridge collapsed approximately 1 h after the oscillations had begun. To counteract
this tendency bridge decks are stiffened. For example, the Forth Road Bridge has its
deck stiffened by a space truss while the later Severn Bridge uses an aerodynamic,
torsionally stiff, tubular cross-section bridge deck.

An alternative method of supporting a bridge deck of moderate span is the cable-stayed
system shown in Fig. 1.8. Cable-stayed bridges were developed in Germany after World
War II when materials were in short supply and a large number of highway bridges,
destroyed by military action, had to be rebuilt. The tension in the stays is maintained
by attaching the outer ones to anchor blocks embedded in the ground. The stays can
be a single system from towers positioned along the centre of the bridge deck or a
double system where the cables are supported by twin sets of towers on both sides of
the bridge deck.

SHEAR AND CORE WALLS

Sometimes, particularly in high rise buildings, shear or core walls are used to resist the
horizontal loads produced by wind action. A typical arrangement is shown in Fig. 1.9
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Shear
wall

FIGURE 1.9 Shear wall construction

Steel framework

Three cell concrete core wall

FIGURE 1.10 Sectional
plan of core wall and
steel structure

where the frame is stiffened in a direction parallel to its shortest horizontal dimension
by a shear wall which would normally be of reinforced concrete.

Alternatively a lift shaft or service duct is used as the main horizontal load carrying
member; this is known as a core wall. An example of core wall construction in a tower
block is shown in cross section in Fig. 1.10. The three cell concrete core supports a
suspended steel framework and houses a number of ancillary services in the outer cells
while the central cell contains stairs, lifts and a central landing or hall. In this particular
case the core wall not only resists horizontal wind loads but also vertical loads due to
its self-weight and the suspended steel framework.

A shear or core wall may be analysed as a very large, vertical, cantilever beam (see
Fig. 1.15). A problem can arise, however, if there are openings in the walls, say, of a
core wall which there would be, of course, if the core was a lift shaft. In such a situation
a computer-based method of analysis would probably be used.
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CONTINUUM STRUCTURES

Examples of these are folded plate roofs, shells, floor slabs, etc. An arch dam is a
three-dimensional continuum structure as are domed roofs, aircraft fuselages and
wings. Generally, continuum structures require computer-based methods of analysis.

1.4 SUPPORT SYSTEMS

The loads applied to a structure are transferred to its foundations by its supports.
In practice supports may be rather complicated in which case they are simplified, or
idealized, into a form that is much easier to analyse. For example, the support shown
in Fig. 1.11(a) allows the beam to rotate but prevents translation both horizontally and
vertically. For the purpose of analysis it is represented by the idealized form shown in
Fig. 1.11(b); this type of support is called a pinned support.

A beam that is supported at one end by a pinned support would not necessarily be
supported in the same way at the other. One support of this type is sufficient to maintain
the horizontal equilibrium of a beam and it may be advantageous to allow horizontal
movement of the other end so that, for example, expansion and contraction caused
by temperature variations do not cause additional stresses. Such a support may take
the form of a composite steel and rubber bearing as shown in Fig. 1.12(a) or consist
of a roller sandwiched between steel plates. In an idealized form, this type of support
is represented as shown in Fig. 1.12(b) and is called a roller support. It is assumed
that such a support allows horizontal movement and rotation but prevents movement
vertically, up or down.

It is worth noting that a horizontal beam on two pinned supports would be statically
indeterminate for other than purely vertical loads since, as we shall see in Section 2.5,

FIGURE 1.11
Idealization of a
pinned support

Beam

Support

Pin or
hinge

(a)

Foundation

Bolt

(b)
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there would be two vertical and two horizontal components of support reaction but
only three independent equations of statical equilibrium.

In some instances beams are supported in such a way that both translation and rotation
are prevented. In Fig. 1.13(a) the steel I-beam is connected through brackets to the
flanges of a steel column and therefore cannot rotate or move in any direction; the
idealized form of this support is shown in Fig. 1.13(b) and is called a fixed, built-in or
encastré support. A beam that is supported by a pinned support and a roller support as
shown in Fig. 1.14(a) is called a simply supported beam; note that the supports will not
necessarily be positioned at the ends of a beam. A beam supported by combinations
of more than two pinned and roller supports (Fig. 1.14(b)) is known as a continuous
beam. A beam that is built-in at one end and free at the other (Fig. 1.15(a)) is a can-
tilever beam while a beam that is built-in at both ends (Fig. 1.15(b)) is a fixed, built-in
or encastré beam.

When loads are applied to a structure, reactions are produced in the supports and in
many structural analysis problems the first step is to calculate their values. It is impor-
tant, therefore, to identify correctly the type of reaction associated with a particular

FIGURE 1.12
Idealization of a
sliding or roller

support

Beam

Steel

Foundation

Rubber

(a) (b)

FIGURE 1.13
Idealization of a
built-in support

Beam

Bracket

Column

(a) (b)
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FIGURE 1.14 (a)
Simply supported

beam and (b)
continuous beam

(a)

(b)

FIGURE 1.15 (a)
Cantilever beam
and (b) fixed or

built-in beam (a) (b)

FIGURE 1.16
Support reactions in

a cantilever beam
subjected to an

inclined load at its
free end

W

RA,V

RA,H

MA

BA

support. Supports that prevent translation in a particular direction produce a force
reaction in that direction while supports that prevent rotation cause moment reactions.
For example, in the cantilever beam of Fig. 1.16, the applied load W has horizontal
and vertical components which cause horizontal (RA,H) and vertical (RA,V) reactions
of force at the built-in end A, while the rotational effect of W is balanced by the
moment reaction MA. We shall consider the calculation of support reactions in detail
in Section 2.5.

1.5 STATICALLY DETERMINATE AND INDETERMINATE STRUCTURES

In many structural systems the principles of statical equilibrium (Section 2.4) may be
used to determine support reactions and internal force distributions; such systems are
called statically determinate. Systems for which the principles of statical equilibrium
are insufficient to determine support reactions and/or internal force distributions, i.e.
there are a greater number of unknowns than the number of equations of statical
equilibrium, are known as statically indeterminate or hyperstatic systems. However,
it is possible that even though the support reactions are statically determinate, the
internal forces are not, and vice versa. For example, the truss in Fig. 1.17(a) is, as we
shall see in Chapter 4, statically determinate both for support reactions and forces in
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FIGURE 1.17 (a)
Statically

determinate truss
and (b) statically

indeterminate truss (a) (b)

the members whereas the truss shown in Fig. 1.17(b) is statically determinate only as
far as the calculation of support reactions is concerned.

Another type of indeterminacy, kinematic indeterminacy, is associated with the ability
to deform, or the degrees of freedom, of a structure and is discussed in detail in
Section 16.3. A degree of freedom is a possible displacement of a joint (or node as it
is often called) in a structure. For instance, a joint in a plane truss has three possible
modes of displacement or degrees of freedom, two of translation in two mutually
perpendicular directions and one of rotation, all in the plane of the truss. On the
other hand a joint in a three-dimensional space truss or frame possesses six degrees
of freedom, three of translation in three mutually perpendicular directions and three
of rotation about three mutually perpendicular axes.

1.6 ANALYSIS AND DESIGN

Some students in the early stages of their studies have only a vague idea of the differ-
ence between an analytical problem and a design problem. We shall examine the var-
ious steps in the design procedure and consider the role of analysis in that procedure.

Initially the structural designer is faced with a requirement for a structure to fulfil a
particular role. This may be a bridge of a specific span, a multistorey building of a
given floor area, a retaining wall having a required height and so on. At this stage
the designer will decide on a possible form for the structure. For example, in the case
of a bridge the designer must decide whether to use beams, trusses, arches or cables
to support the bridge deck. To some extent, as we have seen, the choice is governed
by the span required, although other factors may influence the decision. In Scotland,
the Firth of Tay is crossed by a multispan bridge supported on columns, whereas the
road bridge crossing the Firth of Forth is a suspension bridge. In the latter case a large
height clearance is required to accommodate shipping. In addition it is possible that the
designer may consider different schemes for the same requirement. Further decisions
are required as to the materials to be used: steel, reinforced concrete, timber, etc.

Having decided on a particular system the loads on the structure are calculated. We
have seen in Section 1.2 that these comprise dead and live loads. Some of these loads,
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such as a floor load in an office building, are specified in Codes of Practice while a
particular Code gives details of how wind loads should be calculated. Of course the
self-weight of the structure is calculated by the designer.

When the loads have been determined, the structure is analysed, i.e. the external and
internal forces and moments are calculated, from which are obtained the internal stress
distributions and also the strains and displacements. The structure is then checked for
safety, i.e. that it possesses sufficient strength to resist loads without danger of collapse,
and for serviceability, which determines its ability to carry loads without excessive defor-
mation or local distress; Codes of Practice are used in this procedure. It is possible that
this check may show that the structure is underdesigned (unsafe and/or unserviceable)
or overdesigned (uneconomic) so that adjustments must be made to the arrangement
and/or the sizes of the members; the analysis and design check are then repeated.

Analysis, as can be seen from the above discussion, forms only part of the complete
design process and is concerned with a given structure subjected to given loads. Gen-
erally, there is a unique solution to an analytical problem whereas there may be one,
two or more perfectly acceptable solutions to a design problem.

1.7 STRUCTURAL AND LOAD IDEALIZATION

Generally, structures are complex and must be idealized or simplified into a form that
can be analysed. This idealization depends upon factors such as the degree of accuracy
required from the analysis because, usually, the more sophisticated the method of
analysis employed the more time consuming, and therefore the more costly, it is. A
preliminary evaluation of two or more possible design solutions would not require the
same degree of accuracy as the check on the finalized design. Other factors affecting the
idealization include the type of load being applied, since it is possible that a structure
will require different idealizations under different loads.

We have seen in Section 1.4 how actual supports are idealized. An example of struc-
tural idealization is shown in Fig. 1.18 where the simple roof truss of Fig. 1.18(a) is
supported on columns and forms one of a series comprising a roof structure. The roof
cladding is attached to the truss through purlins which connect each truss, and the truss
members are connected to each other by gusset plates which may be riveted or welded
to the members forming rigid joints. This structure possesses a high degree of statical
indeterminacy and its analysis would probably require a computer-based approach.
However, the assumption of a simple support system, the replacement of the rigid
joints by pinned or hinged joints and the assumption that the forces in the members
are purely axial, result, as we shall see in Chapter 4, in a statically determinate struc-
ture (Fig. 1.18(b)). Such an idealization might appear extreme but, so long as the loads
are applied at the joints and the truss is supported at joints, the forces in the members
are predominantly axial and bending moments and shear forces are negligibly small.
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FIGURE 1.18 (a)
Actual truss and

(b) idealized truss
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At the other extreme a continuum structure, such as a folded plate roof, would be
idealized into a large number of finite elements connected at nodes and analysed using
a computer; the finite element method is, in fact, an exclusively computer-based tech-
nique. A large range of elements is available in finite element packages including
simple beam elements, plate elements, which can model both in-plane and out-of-
plane effects, and three-dimensional ‘brick’ elements for the idealization of solid
three-dimensional structures.

In addition to the idealization of the structure loads also, generally, need to be ideal-
ized. In Fig. 1.19(a) the beam AB supports two cross beams on which rests a container.
There would, of course, be a second beam parallel to AB to support the other end of
each cross beam. The flange of each cross beam applies a distributed load to the beam
AB but if the flange width is small in relation to the span of the beam they may be
regarded as concentrated loads as shown in Fig. 1.19(b). In practice there is no such
thing as a concentrated load since, apart from the practical difficulties of applying one,
a load acting on zero area means that the stress (see Chapter 7) would be infinite and
localized failure would occur.
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FIGURE 1.20
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FIGURE 1.21
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The load carried by the cross beams, i.e. the container, would probably be applied
along a considerable portion of their length as shown in Fig. 1.20(a). In this case the
load is said to be uniformly distributed over the length CD of the cross beam and is
represented as shown in Fig. 1.20(b).

Distributed loads need not necessarily be uniform but can be trapezoidal or, in more
complicated cases, be described by a mathematical function. Note that all the beams
in Figs. 1.19 and 1.20 carry a uniformly distributed load, their self-weight.

1.8 STRUCTURAL ELEMENTS

Structures are made up of structural elements. For example, in frames these are beams
and columns. The cross sections of these structural elements vary in shape and depend
on what is required in terms of the forces to which they are subjected. Some common
sections are shown in Fig. 1.21.

The solid square (or rectangular) and circular sections are not particularly efficient
structurally. Generally they would only be used in situations where they would be sub-
jected to tensile axial forces (stretching forces acting along their length). In cases where
the axial forces are compressive (shortening) then angle sections, channel sections,
Tee-sections or I-sections would be preferred.
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I-section and channel section beams are particularly efficient in carrying bending
moments and shear forces (the latter are forces applied in the plane of a beam’s
cross section) as we shall see later.

The rectangular hollow (or square) section beam is also efficient in resisting bending
and shear but is also used, as is the circular hollow section, as a column. A Universal
Column has a similar cross section to that of the Universal Beam except that the flange
width is greater in relation to the web depth.

Concrete, which is strong in compression but weak in tension, must be reinforced by
steel bars on its tension side when subjected to bending moments. In many situations
concrete beams are reinforced in both tension and compression zones and also carry
shear force reinforcement.

Other types of structural element include box girder beams which are fabricated from
steel plates to form tubular sections; the plates are stiffened along their length and
across their width to prevent them buckling under compressive loads. Plate girders,
once popular in railway bridge construction, have the same cross-sectional shape as a
Universal Beam but are made up of stiffened plates and have a much greater depth
than the largest standard Universal Beam. Reinforced concrete beams are sometimes
cast integrally with floor slabs whereas in other situations a concrete floor slab may
be attached to the flange of a Universal Beam to form a composite section. Timber
beams are used as floor joists, roof trusses and, in laminated form, in arch construction
and so on.

1.9 MATERIALS OF CONSTRUCTION

A knowledge of the properties and behaviour of the materials used in structural engi-
neering is essential if safe and long-lasting structures are to be built. Later we shall
examine in some detail the properties of the more common construction materials but
for the moment we shall review the materials available.

STEEL

Steel is one of the most commonly used materials and is manufactured from iron
ore which is first converted to molten pig iron. The impurities are then removed
and carefully controlled proportions of carbon, silicon, manganese, etc. added, the
amounts depending on the particular steel being manufactured.

Mild steel is the commonest type of steel and has a low carbon content. It is relatively
strong, cheap to produce and is widely used for the sections shown in Fig. 1.21. It
is a ductile material (see Chapter 8), is easily welded and because its composition is
carefully controlled its properties are known with reasonable accuracy. High carbon
steels possess greater strength than mild steel but are less ductile whereas high yield
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FIGURE 1.22
Examples of
cold-formed sections

steel is stronger than mild steel but has a similar stiffness. High yield steel, as well as
mild steel, is used for reinforcing bars in concrete construction and very high strength
steel is used for the wires in prestressed concrete beams.

Low carbon steels possessing sufficient ductility to be bent cold are used in the manu-
facture of cold-formed sections. In this process unheated thin steel strip passes through
a series of rolls which gradually bend it into the required section contour. Simple pro-
files, such as a channel section, may be produced in as few as six stages whereas more
complex sections may require 15 or more. Cold-formed sections are used as lightweight
roof purlins, stiffeners for the covers and sides of box beams and so on. Some typical
sections are shown in Fig. 1.22.

Other special purpose steels are produced by adding different elements. For example,
chromium is added to produce stainless steel although this is too expensive for general
structural use.

CONCRETE

Concrete is produced by mixing cement, the commonest type being ordinary Portland
cement, fine aggregate (sand), coarse aggregate (gravel, chippings) with water. A
typical mix would have the ratio of cement/sand/coarse aggregate to be 1 : 2 : 4 but this
can be varied depending on the required strength.

The tensile strength of concrete is roughly only 10% of its compressive strength and
therefore, as we have already noted, requires reinforcing in its weak tension zones and
sometimes in its compression zones.

TIMBER

Timber falls into two categories, hardwoods and softwoods. Included in hardwoods are
oak, beech, ash, mahogany, teak, etc. while softwoods come from coniferous trees,
such as spruce, pine and Douglas fir. Hardwoods generally possess a short grain and
are not necessarily hard. For example, balsa is classed as a hardwood because of its
short grain but is very soft. On the other hand some of the long-grained softwoods,
such as pitch pine, are relatively hard.

Timber is a naturally produced material and its properties can vary widely due to vary-
ing quality and significant defects. It has, though, been in use as a structural material
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Frog
Perforation

FIGURE 1.23 Types of brick

for hundreds of years as a visit to any of the many cathedrals and churches built in the
Middle Ages will confirm. Some of timber’s disadvantages, such as warping and twist-
ing, can be eliminated by using it in laminated form. Plywood is built up from several
thin sheets glued together but with adjacent sheets having their grains running at 90◦

to each other. Large span roof arches are sometimes made in laminated form from
timber strips. Its susceptibility to the fungal attacks of wet and dry rot can be prevented
by treatment as can the potential ravages of woodworm and death watch beetle.

MASONRY

Masonry in structural engineering includes bricks, concrete blocks and stone. These
are brittle materials, weak in tension, and are therefore used in situations where they
are only subjected to compressive loads.

Bricks are made from clay shale which is ground up and mixed with water to form a
stiff paste. This is pressed into moulds to form the individual bricks and then fired in
a kiln until hard. An alternative to using individual moulds is the extrusion process in
which the paste is squeezed through a rectangular-shaped die and then chopped into
brick lengths before being fired.

Figure 1.23 shows two types of brick. One has indentations, called frogs, in its larger
faces while the other, called a perforated brick, has holes passing completely through
it; both these modifications assist the bond between the brick and the mortar and help
to distribute the heat during the firing process. The holes in perforated bricks also
allow a wall, for example, to be reinforced vertically by steel bars passing through the
holes and into the foundations.

Engineering bricks are generally used as the main load bearing components in a
masonry structure and have a minimum guaranteed crushing strength whereas facing
bricks have a wide range of strengths but have, as the name implies, a better appear-
ance. In a masonry structure the individual elements are the bricks while the complete
structure, including the mortar between the joints, is known as brickwork.

Mortar commonly consists of a mixture of sand and cement the proportions of which
can vary from 3 : 1 to 8 : 1 depending on the strength required; the lower the amount of
sand the stronger the mortar. However, the strength of the mortar must not be greater
than the strength of the masonry units otherwise cracking can occur.
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Solid Hollow FIGURE 1.24 Concrete blocks

Concrete blocks, can be solid or hollow as shown in Fig. 1.24, are cheap to produce
and are made from special lightweight aggregates. They are rough in appearance when
used for, say, insulation purposes and are usually covered by plaster for interiors or
cement rendering for exteriors. Much finer facing blocks are also manufactured for
exterior use and are not covered.

Stone, like timber, is a natural material and is, therefore, liable to have the same wide,
and generally unpredictable, variation in its properties. It is expensive since it must
be quarried, transported and then, if necessary, ‘dressed’ and cut to size. However, as
with most natural materials, it can provide very attractive structures.

ALUMINIUM

Pure aluminium is obtained from bauxite, is relatively expensive to produce, and is too
soft and weak to act as a structural material. To overcome its low strength it is alloyed
with elements such as magnesium. Many different alloys exist and have found their
primary use in the aircraft industry where their relatively high strength/low weight ratio
is a marked advantage; aluminium is also a ductile material. In structural engineer-
ing aluminium sections are used for fabricating lightweight roof structures, window
frames, etc. It can be extruded into complicated sections but the sections are generally
smaller in size than the range available in steel.

CAST IRON, WROUGHT IRON

These are no longer used in modern construction although many old, existing struc-
tures contain them. Cast iron is a brittle material, strong in compression but weak
in tension and contains a number of impurities which have a significant effect on its
properties.

Wrought iron has a much less carbon content than cast iron, is more ductile but
possesses a relatively low strength.

COMPOSITE MATERIALS

Some use is now being made of fibre reinforced polymers or composites as they are
called. These are lightweight, high strength materials and have been used for a number
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of years in the aircraft, automobile and boat building industries. They are, however,
expensive to produce and their properties are not fully understood.

Strong fibres, such as glass or carbon, are set in a matrix of plastic or epoxy resin
which is then mechanically and chemically protective. The fibres may be continuous
or discontinuous and are generally arranged so that their directions match those of the
major loads. In sheet form two or more layers are sandwiched together to form a lay-up.

In the early days of composite materials glass fibres were used in a plastic matrix,
this is known as glass reinforced plastic (GRP). More modern composites are carbon
fibre reinforced plastics (CFRP). Other composites use boron and Kevlar fibres for
reinforcement.

Structural sections, as opposed to sheets, are manufactured using the pultrusion pro-
cess in which fibres are pulled through a bath of resin and then through a heated die
which causes the resin to harden; the sections, like those of aluminium alloy, are small
compared to the range of standard steel sections available.

1.10 THE USE OF COMPUTERS

In modern-day design offices most of the structural analyses are carried out using
computer programs. A wide variety of packages is available and range from rela-
tively simple plane frame (two-dimensional) programs to more complex finite element
programs which are used in the analysis of continuum structures. The algorithms on
which these programs are based are derived from fundamental structural theory writ-
ten in matrix form so that they are amenable to computer-based solutions. However,
rather than simply supplying data to the computer, structural engineers should have
an understanding of the fundamental theory for without this basic knowledge it would
be impossible for them to make an assessment of the limitations of the particular pro-
gram being used. Unfortunately there is a tendency, particularly amongst students, to
believe without question results in a computer printout. Only with an understanding
of how structures behave can the validity of these results be mentally checked.

The first few chapters of this book, therefore, concentrate on basic structural theory
although, where appropriate, computer-based applications will be discussed. In later
chapters computer methods, i.e. matrix and finite element methods, are presented in
detail.
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Statics, as the name implies, is concerned with the study of bodies at rest or, in other
words, in equilibrium, under the action of a force system. Actually, a moving body
is in equilibrium if the forces acting on it are producing neither acceleration nor
deceleration. However, in structural engineering, structural members are generally at
rest and therefore in a state of statical equilibrium.

In this chapter we shall discuss those principles of statics that are essential to structural
and stress analysis; an elementary knowledge of vectors is assumed.

2.1 FORCE

The definition of a force is derived from Newton’s First Law of Motion which states
that a body will remain in its state of rest or in its state of uniform motion in a straight
line unless compelled by an external force to change that state. Force is therefore
associated with a change in motion, i.e. it causes acceleration or deceleration.

The basic unit of force in structural and stress analysis is the Newton (N) which is
roughly a tenth of the weight of this book. This is a rather small unit for most of the loads
in structural engineering so a more convenient unit, the kilonewton (kN) is often used.

1 kN = 1000 N

All bodies possess mass which is usually measured in kilograms (kg). The mass of a
body is a measure of the quantity of matter in the body and, for a particular body,
is invariable. This means that a steel beam, for example, having a given weight (the
force due to gravity) on earth would weigh approximately six times less on the moon
although its mass would be exactly the same.

We have seen that force is associated with acceleration and Newton’s Second Law of
Motion tells us that

force = mass × acceleration

20



chap-02 12/1/2005 12: 44 page 21

2.1 Force • 21

Gravity, which is the pull of the earth on a body, is measured by the acceleration it
imparts when a body falls; this is taken as 9.81 m/s2 and is given the symbol g. It follows
that the force exerted by gravity on a mass of 1 kg is

force = 1 × 9.81

The Newton is defined as the force required to produce an acceleration of 1 m/s2 in
a mass of 1 kg which means that it would require a force of 9.81 N to produce an
acceleration of 9.81 m/s2 in a mass of 1 kg, i.e. the gravitational force exerted by a mass
of 1 kg is 9.81 N. Frequently, in everyday usage, mass is taken to mean the weight of a
body in kg.

We all have direct experience of force systems. The force of the earth’s gravitational
pull acts vertically downwards on our bodies giving us weight; wind forces, which can
vary in magnitude, tend to push us horizontally. Therefore forces possess magnitude
and direction. At the same time the effect of a force depends upon its position. For
example, a door may be opened or closed by pushing horizontally at its free edge, but
if the same force is applied at any point on the vertical line through its hinges the door
will neither open nor close. We see then that a force is described by its magnitude,
direction and position and is therefore a vector quantity. As such it must obey the laws
of vector addition, which is a fundamental concept that may be verified experimentally.

Since a force is a vector it may be represented graphically as shown in Fig. 2.1, where
the force F is considered to be acting on an infinitesimally small particle at the point A
and in a direction from left to right. The magnitude of F is represented, to a suitable
scale, by the length of the line AB and its direction by the direction of the arrow. In
vector notation the force F is written as F.

Suppose a cube of material, placed on a horizontal surface, is acted upon by a force
F1 as shown in plan in Fig. 2.2(a). If F1 is greater than the frictional force between the
surface and the cube, the cube will move in the direction of F1. Again if a force F2

FIGURE 2.1
Representation of
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FIGURE 2.2
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a cube
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is applied as shown in Fig. 2.2(b) the cube will move in the direction of F2. It follows
that if F1 and F2 were applied simultaneously, the cube would move in some inclined
direction as though it were acted on by a single inclined force R (Fig. 2.2(c)); R is
called the resultant of F1 and F2.

Note that F1 and F2 (and R) are in a horizontal plane and that their lines of action
pass through the centre of gravity of the cube, otherwise rotation as well as translation
would occur since, if F1, say, were applied at one corner of the cube as shown in
Fig. 2.2(d), the frictional force f , which may be taken as acting at the center of the
bottom face of the cube would, with F1, form a couple (see Section 2.2).

The effect of the force R on the cube would be the same whether it was applied at the
point A or at the point B (so long as the cube is rigid). Thus a force may be considered
to be applied at any point on its line of action, a principle known as the transmissibility
of a force.

PARALLELOGRAM OF FORCES

The resultant of two concurrent and coplanar forces, whose lines of action pass through
a single point and lie in the same plane (Fig. 2.3(a)), may be found using the theorem
of the parallelogram of forces which states that:

If two forces acting at a point are represented by two adjacent sides of a parallelogram
drawn from that point their resultant is represented in magnitude and direction by the
diagonal of the parallelogram drawn through the point.

Thus in Fig. 2.3(b) R is the resultant of F1 and F2. This result may be verified experi-
mentally or, alternatively, demonstrated to be true using the laws of vector addition.
In Fig. 2.3(b) the side BC of the parallelogram is equal in magnitude and direction to
the force F1 represented by the side OA. Therefore, in vector notation

R = F2 + F1

The same result would be obtained by considering the side AC of the parallelogram
which is equal in magnitude and direction to the force F2. Thus

R = F1 + F2

FIGURE 2.3
Resultant of two

concurrent forces

F1

F2 F2

F1

R

B

CA

aa u

(F2)

(F1)

(b)(a)

O O



chap-02 12/1/2005 12: 44 page 23

2.1 Force • 23

Note that vectors obey the commutative law, i.e.

F2 + F1 = F1 + F2

The actual magnitude and direction of R may be found graphically by drawing the
vectors representing F1 and F2 to the same scale (i.e. OB and BC) and then completing
the triangle OBC by drawing in the vector, along OC, representing R. Alternatively,
R and θ may be calculated using the trigonometry of triangles, i.e.

R2 = F2
1 + F2

2 + 2F1F2 cos α (2.1)

and

tan θ = F1 sin α

F2 + F1 cos α
(2.2)

In Fig. 2.3(a) both F1 and F2 are ‘pulling away’ from the particle at O. In Fig. 2.4(a) F1

is a ‘thrust’ whereas F2 remains a ‘pull’. To use the parallelogram of forces the system
must be reduced to either two ‘pulls’ as shown in Fig. 2.4(b) or two ‘thrusts’ as shown
in Fig. 2.4(c). In all three systems we see that the effect on the particle at O is the same.

As we have seen, the combined effect of the two forces F1 and F2 acting simultaneously
is the same as if they had been replaced by the single force R. Conversely, if R were to
be replaced by F1 and F2 the effect would again be the same. F1 and F2 may therefore
be regarded as the components of R in the directions OA and OB; R is then said to
have been resolved into two components, F1 and F2.

Of particular interest in structural analysis is the resolution of a force into two com-
ponents at right angles to each other. In this case the parallelogram of Fig. 2.3(b)

FIGURE 2.4
Reduction of a

force system

F1
F1

F1

F2

F2

R

R

O

O

(a) (b)

(c)

F2 (pull)
O

(thrust)
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becomes a rectangle in which α = 90◦ (Fig. 2.5) and, clearly

F2 = R cos θ F1 = R sin θ (2.3)

It follows from Fig. 2.5, or from Eqs (2.1) and (2.2), that

R2 = F2
1 + F2

2 tan θ = F1

F2
(2.4)

We note, by reference to Fig. 2.2(a) and (b), that a force does not induce motion in a
direction perpendicular to its line of action; in other words a force has no effect in a
direction perpendicular to itself. This may also be seen by setting θ = 90◦ in Eq. (2.3),
then

F1 = R F2 = 0

and the component of R in a direction perpendicular to its line of action is zero.

THE RESULTANT OF A SYSTEM OF CONCURRENT FORCES

So far we have considered the resultant of just two concurrent forces. The method used
for that case may be extended to determine the resultant of a system of any number
of concurrent coplanar forces such as that shown in Fig. 2.6(a). Thus in the vector
diagram of Fig. 2.6(b)

R12 = F1 + F2

FIGURE 2.5
Resolution of a
force into two

components at
right angles

A

B

C

O

R

F2 � R cos u

F1 � R sin u

u

a � 90°

FIGURE 2.6
Resultant of a

system of
concurrent forces

F1

F2

F3
F4

R123

R

R12

(b)

F1

F2

F3

F4

R

x

y

g

b a

u

(a)

O
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where R12 is the resultant of F1 and F2. Further

R123 = R12 + F3 = F1 + F2 + F3

so that R123 is the resultant of F1, F2 and F3. Finally

R = R123 + F4 = F1 + F2 + F3 + F4

where R is the resultant of F1, F2, F3 and F4.

The actual value and direction of R may be found graphically by constructing the vector
diagram of Fig. 2.6(b) to scale or by resolving each force into components parallel to
two directions at right angles, say the x and y directions shown in Fig. 2.6(a). Then

Fx = F1 + F2 cos α − F3 cos β − F4 cos γ

Fy = F2 sin α + F3 sin β − F4 sin γ

Then

R =
√

F2
x + F2

y

and

tan θ = Fy

Fx

The forces F1, F2, F3 and F4 in Fig. 2.6(a) do not have to be taken in any particular
order when constructing the vector diagram of Fig. 2.6(b). Identical results for the
magnitude and direction of R are obtained if the forces in the vector diagram are
taken in the order F1, F4, F3, F2 as shown in Fig. 2.7 or, in fact, are taken in any order
so long as the directions of the forces are adhered to and one force vector is drawn
from the end of the previous force vector.

EQUILIBRANT OF A SYSTEM OF CONCURRENT FORCES

In Fig. 2.3(b) the resultant R of the forces F1 and F2 represents the combined effect
of F1 and F2 on the particle at O. It follows that this effect may be eliminated by
introducing a force RE which is equal in magnitude but opposite in direction to R at

F1

R

F4

F3

F2

FIGURE 2.7 Alternative construction of force diagram
for system of Fig. 2.6(a)
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FIGURE 2.8
Equilibrant of two
concurrent forces

O
O B

C

(a) (b)

F1

F1

RE (� R )
Equilibrant of F1 and F2

RE (� R )
R

F2 F2

O, as shown in Fig. 2.8(a). RE is known at the equilibrant of F1 and F2 and the particle
at O will then be in equilibrium and remain stationary. In other words the forces F1,
F2 and RE are in equilibrium and, by reference to Fig. 2.3(b), we see that these three
forces may be represented by the triangle of vectors OBC as shown in Fig. 2.8(b). This
result leads directly to the law of the triangle of forces which states that:

If three forces acting at a point are in equilibrium they may be represented in magnitude
and direction by the sides of a triangle taken in order.

The law of the triangle of forces may be used in the analysis of a plane, pin-jointed
truss in which, say, one of three concurrent forces is known in magnitude and direction
but only the lines of action of the other two. The law enables us to find the magnitudes
of the other two forces and also the direction of their lines of action.

The above arguments may be extended to a system comprising any number of concur-
rent forces. In the force system of Fig. 2.6(a), RE, shown in Fig. 2.9(a), is the equilibrant
of the forces F1, F2, F3 and F4. Then F1, F2, F3, F4 and RE may be represented by the
force polygon OBCDE as shown in Fig. 2.9(b).

FIGURE 2.9
Equilibrant of a

number of
concurrent forces

B

C

D

(a)

E
O

O

(b)

RE (� R)

F2

F1

F1

F2

F3

F4

RE

R

F3

F4

The law of the polygon of forces follows:

If a number of forces acting at a point are in equilibrium they may be represented in
magnitude and direction by the sides of a closed polygon taken in order.
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FIGURE 2.10
Resultant of a

system of
non-concurrent

forces

C

A B

D

E

F

(a) (b)

R123
(� R)

R12

F2

F3
F3

F1

F1

I1

I2

F2

Again, the law of the polygon of forces may be used in the analysis of plane, pin-jointed
trusses where several members meet at a joint but where no more than two forces are
unknown in magnitude.

THE RESULTANT OF A SYSTEM OF NON-CONCURRENT
FORCES

In most structural problems the lines of action of the different forces acting on the
structure do not meet at a single point; such a force system is non-concurrent.

Consider the system of non-concurrent forces shown in Fig. 2.10(a); their resultant
may be found graphically using the parallelogram of forces as demonstrated in Fig.
2.10(b). Produce the lines of action of F1 and F2 to their point of intersection, I1.
Measure I1A = F1 and I1B = F2 to the same scale, then complete the parallelogram
I1ACB; the diagonal CI1 represents the resultant, R12, of F1 and F2. Now produce
the line of action of R12 backwards to intersect the line of action of F3 at I2. Measure
I2D = R12 and I2F = F3 to the same scale as before, then complete the parallelogram
I2DEF; the diagonal I2E = R123, the resultant of R12 and F3. It follows that R123 = R,
the resultant of F1, F2 and F3. Note that only the line of action and the magnitude of
R can be found, not its point of action, since the vectors F1, F2 and F3 in Fig. 2.10(a)
define the lines of action of the forces, not their points of action.

If the points of action of the forces are known, defined, say, by coordinates referred
to a convenient xy axis system, the magnitude, direction and point of action of their
resultant may be found by resolving each force into components parallel to the x and
y axes and then finding the magnitude and position of the resultants Rx and Ry of each
set of components using the method described in Section 2.3 for a system of parallel
forces. The resultant R of the force system is then given by

R =
√

R2
x + R2

y
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and its point of action is the point of intersection of Rx and Ry; finally, its inclination
θ to the x axis, say, is

θ = tan−1
(

Ry

Rx

)

2.2 MOMENT OF A FORCE

So far we have been concerned with the translational effect of a force, i.e. the tendency
of a force to move a body in a straight line from one position to another. A force may,
however, exert a rotational effect on a body so that the body tends to turn about some
given point or axis.

FIGURE 2.11
Rotational effect of

a force

F

(a)

Pivot

F

(b)
Rotational
effect of F

Figure 2.11(a) shows the cross section of, say, a door that is attached to a wall by a pivot
and bracket arrangement which allows it to rotate in a horizontal plane. A horizontal
force, F, whose line of action passes through the pivot, will have no rotational effect
on the door but when applied at some distance along the door (Fig. 2.11(b)) will cause
it to rotate about the pivot. It is common experience that the nearer the pivot the force
F is applied the greater must be its magnitude to cause rotation. At the same time its
effect will be greatest when it is applied at right angles to the door.

In Fig. 2.11(b) F is said to exert a moment on the door about the pivot. Clearly the
rotational effect of F depends upon its magnitude and also on its distance from the
pivot. We therefore define the moment of a force, F, about a given point O (Fig. 2.12)
as the product of the force and the perpendicular distance of its line of action from

FIGURE 2.12
Moment of a force

about a given point

F

O

a

Given point
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the point. Thus, in Fig. 2.12, the moment, M , of F about O is given by

M = Fa (2.5)

where ‘a’ is known as the lever arm or moment arm of F about O; note that the units
of a moment are the units of force × distance.

It can be seen from the above that a moment possesses both magnitude and a rota-
tional sense. For example, in Fig. 2.12, F exerts a clockwise moment about O. A
moment is therefore a vector (an alternative argument is that the product of a vec-
tor, F, and a scalar, a, is a vector). It is conventional to represent a moment vector
graphically by a double-headed arrow, where the direction of the arrow designates a
clockwise moment when looking in the direction of the arrow. Therefore, in Fig. 2.12,
the moment M(= Fa) would be represented by a double-headed arrow through O with
its direction into the plane of the paper.

Moments, being vectors, may be resolved into components in the same way as forces.
Consider the moment, M (Fig. 2.13(a)), in a plane inclined at an angle θ to the xz
plane. The component of M in the xz plane, Mxz, may be imagined to be produced
by rotating the plane containing M through the angle θ into the xz plane. Similarly,
the component of M in the yz plane, Myz, is obtained by rotating the plane containing
M through the angle 90 − θ . Vectorially, the situation is that shown in Fig. 2.13(b),
where the directions of the arrows represent clockwise moments when viewed in the
directions of the arrows. Then

Mxz = M cos θ Myz = M sin θ

The action of a moment on a structural member depends upon the plane in which it
acts. For example, in Fig. 2.14(a), the moment, M , which is applied in the longitu-
dinal vertical plane of symmetry, will cause the beam to bend in a vertical plane. In
Fig. 2.14(b) the moment, M , is applied in the plane of the cross section of the beam
and will therefore produce twisting; in this case M is called a torque.

FIGURE 2.13
Resolution of a

moment

y

Myz

Myz � M sin u

Mxz � M cos u

Mxz

M

(a) (b)

z

x
u

M

u
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FIGURE 2.14
Action of a
moment in

different planes

M

(a)

M

(b)

FIGURE 2.15
Moment of a

couple

O

A

B

F

F

COUPLES

Consider the two coplanar, equal and parallel forces F which act in opposite directions
as shown in Fig. 2.15. The sum of their moments, MO, about any point O in their plane is

MO = F × BO − F × AO

where OAB is perpendicular to both forces. Then

MO = F(BO − AO) = F × AB

and we see that the sum of the moments of the two forces F about any point in their
plane is equal to the product of one of the forces and the perpendicular distance
between their lines of action; this system is termed a couple and the distance AB is the
arm or lever arm of the couple.

Since a couple is, in effect, a pure moment (not to be confused with the moment of
a force about a specific point which varies with the position of the point) it may be
resolved into components in the same way as the moment M in Fig. 2.13.

EQUIVALENT FORCE SYSTEMS

In structural analysis it is often convenient to replace a force system acting at one point
by an equivalent force system acting at another. For example, in Fig. 2.16(a), the effect
on the cylinder of the force F acting at A on the arm AB may be determined as follows.

If we apply equal and opposite forces F at B as shown in Fig. 2.16(b), the overall effect
on the cylinder is unchanged. However, the force F at A and the equal and opposite
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FIGURE 2.16
Equivalent force

system

Cylinder

Arm

A

A

(a)

(b) (c)

a

a

F

F

F

F

Fa

F

B

B
B

force F at B form a couple which, as we have seen, has the same moment (Fa) about
any point in its plane. Thus the single force F at A may be replaced by a single force
F at B together with a moment equal to Fa as shown in Fig. 2.16(c). The effects of the
force F at B and the moment (actually a torque) Fa may be calculated separately and
then combined using the principle of superposition (see Section 3.7).

2.3 THE RESULTANT OF A SYSTEM OF PARALLEL FORCES

Since, as we have seen, a system of forces may be replaced by their resultant, it follows
that a particular action of a force system, say the combined moments of the forces
about a point, must be identical to the same action of their resultant. This principle
may be used to determine the magnitude and line of action of a system of parallel
forces such as that shown in Fig. 2.17(a).

The point of intersection of the lines of action of F1 and F2 is at infinity so that
the parallelogram of forces (Fig. 2.3(b)) degenerates into a straight line as shown in
Fig. 2.17(b) where, clearly

R = F1 + F2 (2.6)
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(a)

a

R R

F1

F1

F2

F2

x

(b)
FIGURE 2.17 Resultant of a
system of parallel forces

The position of the line of action of R may be found using the principle stated above,
i.e. the sum of the moments of F1 and F2 about any point must be equivalent to the
moment of R about the same point. Thus from Fig. 2.17(a) and taking moments about,
say, the line of action of F1 we have

F2a = Rx = (F1 + F2)x

Hence

x = F2

F1 + F2
a (2.7)

Note that the action of R is equivalent to that of F1 and F2, so that, in this case, we
equate clockwise to clockwise moments.

The principle of equivalence may be extended to any number of parallel forces irre-
spective of their directions and is of particular use in the calculation of the position of
centroids of area, as we shall see in Section 9.6.

EXAMPLE 2.1 Find the magnitude and position of the line of action of the resultant
of the force system shown in Fig. 2.18.

In this case the polygon of forces (Fig. 2.6(b)) degenerates into a straight line and

R = 2 − 3 + 6 + 1 = 6 kN (i)

Suppose that the line of action of R is at a distance x from the 2 kN force, then, taking
moments about the 2 kN force

Rx = −3 × 0.6 + 6 × 0.9 + 1 × 1.2

Substituting for R from Eq. (i) we have

6x = −1.8 + 5.4 + 1.2
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x
R

2 kN

0.6 m 0.3 m 0.3 m

3 kN 6 kN 1 kN

FIGURE 2.18 Force system of Ex. 2.1

which gives

x = 0.8 m

We could, in fact, take moments about any point, say now the 6 kN force. Then

R(0.9 − x) = 2 × 0.9 − 3 × 0.3 − 1 × 0.3

so that

x = 0.8 m as before

Note that in the second solution, anticlockwise moments have been selected as positive.

2.4 EQUILIBRIUM OF FORCE SYSTEMS

We have seen in Section 2.1 that, for a particle or a body to remain stationary, i.e.
in statical equilibrium, the resultant force on the particle or body must be zero. It
follows that if a body (generally in structural analysis we are concerned with bodies,
i.e. structural members, not particles) is not to move in a particular direction, the
resultant force in that direction must be zero. Furthermore, the prevention of the
movement of a body in two directions at right angles ensures that the body will not
move in any direction at all. Then, for such a body to be in equilibrium, the sum of
the components of all the forces acting on the body in any two mutually perpendicular
directions must be zero. In mathematical terms and choosing, say, the x and y directions
as the mutually perpendicular directions, the condition may be written∑

Fx = 0
∑

Fy = 0 (2.8)

However, the condition specified by Eq. (2.8) is not sufficient to guarantee the equi-
librium of a body acted on by a system of coplanar forces. For example, in Fig. 2.19 the
forces F acting on a plate resting on a horizontal surface satisfy the condition

∑
Fx = 0



chap-02 12/1/2005 12: 44 page 34

34 • Chapter 2 / Principles of Statics

Plate

y

F

F

x
a

FIGURE 2.19 Couple
produced by out-of-line forces

(there are no forces in the y direction so that
∑

Fy = 0 is automatically satisfied), but
form a couple Fa which will cause the plate to rotate in an anticlockwise sense so long
as its magnitude is sufficient to overcome the frictional resistance between the plate
and the surface. We have also seen that a couple exerts the same moment about any
point in its plane so that we may deduce a further condition for the statical equilib-
rium of a body acted upon by a system of coplanar forces, namely, that the sum of the
moments of all the forces acting on the body about any point in their plane must be
zero. Therefore, designating a moment in the xy plane about the z axis as Mz, we have

∑
Mz = 0 (2.9)

Combining Eqs (2.8) and (2.9) we obtain the necessary conditions for a system of
coplanar forces to be in equilibrium, i.e.

∑
Fx = 0

∑
Fy = 0

∑
Mz = 0 (2.10)

The above arguments may be extended to a three-dimensional force system which is,
again, referred to an xyz axis system. Thus for equilibrium

∑
Fx = 0

∑
Fy = 0

∑
Fz = 0 (2.11)

and ∑
Mx = 0

∑
My = 0

∑
Mz = 0 (2.12)

2.5 CALCULATION OF SUPPORT REACTIONS

The conditions of statical equilibrium, Eq. (2.10), are used to calculate reactions at
supports in structures so long as the support system is statically determinate (see
Section 1.5). Generally the calculation of support reactions is a necessary preliminary
to the determination of internal force and stress distributions and displacements.
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EXAMPLE 2.2 Calculate the support reactions in the simply supported beam ABCD
shown in Fig. 2.20.

The different types of support have been discussed in Section 1.4. In Fig. 2.20 the sup-
port at A is a pinned support which allows rotation but no translation in any direction,
while the support at D allows rotation and translation in a horizontal direction but
not in a vertical direction. Therefore there will be no moment reactions at A or D and
only a vertical reaction at D, RD. It follows that the horizontal component of the 5 kN
load can only be resisted by the support at A, RA,H, which, in addition, will provide a
vertical reaction, RA,V.

Since the forces acting on the beam are coplanar, Eqs. (2.10) are used. From the first
of these, i.e.

∑
Fx = 0, we have

RA,H − 5 cos 60◦ = 0

which gives

RA,H = 2.5 kN

The use of the second equation,
∑

Fy = 0, at this stage would not lead directly to either
RA,V or RD since both would be included in the single equation. A better approach is
to use the moment equation,

∑
Mz = 0, and take moments about either A or D (it is

immaterial which), thereby eliminating one of the vertical reactions. Taking moments,
say, about D, we have

RA,V × 1.2 − 3 × 0.9 − (5 sin 60◦) × 0.4 = 0 (i)

Note that in Eq. (i) the moment of the 5 kN force about D may be obtained either
by calculating the perpendicular distance of its line of action from D (0.4 sin 60◦)
or by resolving it into vertical and horizontal components (5 sin 60◦ and 5 cos 60◦,
respectively) where only the vertical component exerts a moment about D. From

FIGURE 2.20
Beam of Ex. 2.2

RA,H

y

x

RA,V RD

A B C 60° D

3 kN
5 kN

0.3 m 0.4 m0.5 m
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Eq. (i)

RA,V = 3.7 kN

The vertical reaction at D may now be found using
∑

Fy = 0 or by taking moments
about A, which would be slightly lengthier. Thus

RD + RA,V − 3 − 5 sin 60◦ = 0

so that

RD = 3.6 kN

EXAMPLE 2.3 Calculate the reactions at the support in the cantilever beam shown
in Fig. 2.21.

The beam has a fixed support at A which prevents translation in any direction and also
rotation. The loads applied to the beam will therefore induce a horizontal reaction,
RA,H, at A and a vertical reaction, RA,V, together with a moment reaction MA. Using
the first of Eqs. (2.10),

∑
Fx = 0, we obtain

RA,H − 2 cos 45◦ = 0

whence

RA,H = 1.4 kN

From the second of Eqs. (2.10),
∑

Fy = 0

RA,V − 5 − 2 sin 45◦ = 0

which gives

RA,V = 6.4 kN

FIGURE 2.21
Beam of Ex. 2.3

RA,H

y

x

RA,V

MA

A B C
45°

2 kN5 kN

0.6 m0.4 m
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Finally from the third of Eqs. (2.10),
∑

Mz = 0, and taking moments about A, thereby
eliminating RA,H and RA,V

MA − 5 × 0.4 − (2 sin 45◦) × 1.0 = 0

from which

MA = 3.4 kN m

In Exs 2.2 and 2.3, the directions or sense of the support reactions is reasonably obvious.
However, where this is not the case, a direction or sense is assumed which, if incorrect,
will result in a negative value.

Occasionally the resultant reaction at a support is of interest. In Ex. 2.2 the resultant
reaction at A is found using the first of Eqs. (2.4), i.e.

R2
A = R2

A,H + R2
A,V

which gives

R2
A = 2.52 + 3.72

so that

RA = 4.5 kN

The inclination of RA to, say, the vertical is found from the second of Eqs. (2.4). Thus

tan θ = RA,H

RA,V
= 2.5

3.7
= 0.676

from which

θ = 34.0◦

EXAMPLE 2.4 Calculate the reactions at the supports in the plane truss shown in
Fig. 2.22.

The truss is supported in the same manner as the beam in Ex. 2.2 so that there will be
horizontal and vertical reactions at A and only a vertical reaction at B.

The angle of the truss, α, is given by

α = tan−1
(

2.4
3

)
= 38.7◦

From the first of Eqs. (2.10) we have

RA,H − 5 sin 38.7◦ − 10 sin 38.7◦ = 0



chap-02 12/1/2005 12: 44 page 38

38 • Chapter 2 / Principles of Statics

FIGURE 2.22
Truss of Ex. 2.4

RA,H

RA,V RB

A
a

B

90°90°

5 kN
10 kN

2 m 2 m 2 m

2 kN3 kN

1.2 m

2.4 m

from which

RA,H = 9.4 kN

Now taking moments about B, say,
(∑

MB = 0
)

RA,V × 6 − (5 cos 38.7◦) × 4.5 + (5 sin 38.7◦) × 1.2 + (10 cos 38.7◦)

× 1.5 + (10 sin 38.7◦) × 1.2 − 3 × 4 − 2 × 2 = 0

which gives

RA,V = 1.8 kN

Note that in the moment equation it is simpler to resolve the 5 kN and 10 kN loads
into horizontal and vertical components at their points of application and then take
moments rather than calculate the perpendicular distance of each of their lines of
action from B.

The reaction at B, RB, is now most easily found by resolving vertically
(∑

Fy = 0
)
, i.e.

RB + RA,V − 5 cos 38.7◦ + 10 cos 38.7◦ − 3 − 2 = 0

which gives

RB = −0.7 kN

In this case the negative sign of RB indicates that the reaction is downward, not upward,
as initially assumed.

P R O B L E M S

P.2.1 Determine the magnitude and inclination of the resultant of the two forces acting
at the point O in Fig. P.2.1 (a) by a graphical method and (b) by calculation.

Ans. 21.8 kN, 23.4◦ to the direction of the 15 kN load.
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O
60°

15 kN

10 kN

FIGURE P.2.1

P.2.2 Determine the magnitude and inclination of the resultant of the system of
concurrent forces shown in Fig. P.2.2 (a) by a graphical method and (b) by calculation.

Ans. 8.6 kN, 23.9◦ down and to the left.

O

90° 60°

125°

12 kN 8 kN

10 kN

20 kN FIGURE P.2.2

P.2.3 Calculate the magnitude, inclination and point of action of the resultant of the
system of non-concurrent forces shown in Fig. P.2.3. The coordinates of the points of
action are given in metres.

Ans. 130.4 kN, 49.5◦ to the x direction at the point (0.81, 1.22).

0

(1.0, 1.6)

(�1.0, 1.25)

(1.25, 0.25)

(0, 0.5)
45°

30°

30°
y

x

80 kN

50 kN

60 kN

40 kN

FIGURE P.2.3

P.2.4 Calculate the support reactions in the beams shown in Fig. P.2.4(a)–(d).

Ans. (a) RA,H = 9.2 kN to left, RA,V = 6.9 kN upwards, RB = 7.9 kN upwards.
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(b) RA =65 kN, MA = 400 kN m anticlockwise.
(c) RA,H=20 kN to right, RA,V = 22.5 kN upwards, RB = 12.5 kN upwards.
(d) RA =41.8 kN upwards, RB = 54.2 kN upwards.

(b)

A B
60° 45°

3 kN 7 kN 8 kN

4 m 6 m 5 m 5 m

(a)

A B

15 kN

5 kN/m

10 m

(c)

(d)

A B

8 kN/m75 kN/m

3 m 9 m

A B

10 kN

20 kN

15 kN
5 kN/m

4 m2 m 2 m 2 m

5 m

FIGURE P.2.4
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P.2.5 Calculate the support reactions in the plane trusses shown in Fig. P.2.5(a) and (b).

Ans. (a) RA = 57 kN upwards, RB = 2 kN downwards.

(b) RA,H =3713.6 N to left, RA,V = 835.6 N downwards,
RB =4735.3 N downwards.

FIGURE P.2.5

A

(a)

B

10 kN 15 kN15 kN 5 kN 5 kN5 kN

3 � 2 m 5 � 2 m 3 � 2 m

A

(b)
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3000 N

3000 N

2000 N

4 m
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The purpose of a structure is to support the loads for which it has been designed. To
accomplish this it must be able to transmit a load from one point to another, i.e. from
the loading point to the supports. In Fig. 2.21, for example, the beam transmits the
effects of the loads at B and C to the built-in end A. It achieves this by developing an
internal force system and it is the distribution of these internal forces which must be
determined before corresponding stress distributions and displacements can be found.

A knowledge of stress is essential in structural design where the cross-sectional area of a
member must be such that stresses do not exceed values that would cause breakdown in
the crystalline structure of the material of the member; in other words, a structural fail-
ure. In addition to stresses, strains, and thereby displacements, must be calculated to
ensure that as well as strength a structural member possesses sufficient stiffness to pre-
vent excessive distortions damaging surrounding portions of the complete structure.

In this chapter we shall examine the different types of load to which a struc-
tural member may be subjected and then determine corresponding internal force
distributions.

3.1 TYPES OF LOAD

Structural members may be subjected to complex loading systems apparently com-
prised of several different types of load. However, no matter how complex such systems
appear to be, they consist of a maximum of four basic load types: axial loads, shear
loads, bending moments and torsion.

AXIAL LOAD

Axial loads are applied along the longitudinal or centroidal axis of a structural mem-
ber. If the action of the load is to increase the length of the member, the member is
said to be in tension (Fig. 3.1(a)) and the applied load is tensile. A load that tends to

42
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FIGURE 3.1
Axially loaded

members

P

(a)

(b)

P

P

P

(c)

P

FIGURE 3.2 Shear
loads applied to

beams

(a)

L

w

W

(b)

shorten a member places the member in compression and is known as a compressive load
(Fig. 3.1(b)). Members such as those shown in Fig. 3.1(a) and (b) are commonly found
in pin-jointed frameworks where a member in tension is called a tie and one in com-
pression a strut or column. More frequently, however, the name ‘column’ is associated
with a vertical member carrying a compressive load, as illustrated in Fig. 3.1(c).

SHEAR LOAD

Shear loads act perpendicularly to the axis of a structural member and have one of
the forms shown in Fig. 3.2; in this case the members are beams. Figure 3.2(a) shows a
concentrated shear load, W , applied to a cantilever beam. The shear load in Fig. 3.2(b)
is distributed over a length of the beam and is of intensity w (force units) per unit length
(see Section 1.7).
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(a)

(b)

P

BA

C

M � Ph

P

h

M

FIGURE 3.3
Moments applied
to beams

BENDING MOMENT

In practice it is difficult to apply a pure bending moment such as that shown in
Fig. 3.3(a) to a beam. Generally, pure bending moments arise through the application
of other types of load to adjacent structural members. For example, in Fig. 3.3(b), a
vertical member BC is attached to the cantilever AB and carries a horizontal shear
load, P (as far as BC is concerned). AB is therefore subjected to a pure moment,
M = Ph, at B together with an axial load, P.

TORSION

A similar situation arises in the application of a pure torque, T (Fig. 3.4(a)), to a beam.
A practical example of a torque applied to a cantilever beam is given in Fig. 3.4(b)
where the horizontal member BC supports a vertical shear load at C. The cantilever
AB is then subjected to a pure torque, T = Wh, plus a shear load, W .

All the loads illustrated in Figs 3.1–3.4 are applied to the various members by some
external agency and are therefore externally applied loads. Each of these loads induces
reactions in the support systems of the different beams; examples of the calculation of
support reactions are given in Section 2.5. Since structures are in equilibrium under
a force system of externally applied loads and support reactions, it follows that the
support reactions are themselves externally applied loads.

Now consider the cantilever beam of Fig. 3.2(a). If we were to physically cut through
the beam at some section ‘mm’ (Fig. 3.5(a)) the portion BC would no longer be able
to support the load, W . The portion AB of the beam therefore performs the same
function for the portion BC as does the wall for the complete beam. Thus at the
section mm the portion AB applies a force W and a moment M to the portion BC at
B, thereby maintaining its equilibrium (Fig. 3.5(b)); by the law of action and reaction
(Newton’s Third Law of Motion), BC exerts an equal force system on AB, but opposite
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FIGURE 3.4
Torques applied

to a beam (a) (b)
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FIGURE 3.5 Internal force system generated by an external shear load

in direction. The complete force systems acting on the two faces of the section mm
are shown in Fig. 3.5(b).

Systems of forces such as those at the section mm are known as internal forces. Gen-
erally, they vary throughout the length of a structural member as can be seen from
Fig. 3.5(b) where the internal moment, M , increases in magnitude as the built-in end is
approached due to the increasing rotational effect of W . We note that applied loads of
one type can induce internal forces of another. For example, in Fig. 3.5(b) the external
shear load, W , produces both shear and bending at the section mm.

Internal forces are distributed throughout beam sections in the form of stresses. It fol-
lows that the resultant of each individual stress distribution must be the corresponding
internal force; internal forces are therefore often known as stress resultants. However,
before an individual stress distribution can be found it is necessary to determine the
corresponding internal force. Also, in design problems, it is necessary to determine
the position and value of maximum stress and displacement. Usually, the first step
in the analysis of a structure is to calculate the distribution of each of the four basic
internal force types throughout the component structural members. We shall therefore
determine the distributions of the four internal force systems in a variety of structural
members. First, however, we shall establish a notation and sign convention for each
type of force.
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3.2 NOTATION AND SIGN CONVENTION

We shall be concerned initially with structural members having at least one longitu-
dinal plane of symmetry. Normally this will be a vertical plane and will contain the
externally applied loads. Later, however, we shall investigate the bending and shear of
beams having unsymmetrical sections so that as far as possible the notation and sign
convention we adopt now will be consistent with that required later.

The axes system we shall use is the right-handed system shown in Fig. 3.6 in which the
x axis is along the longitudinal axis of the member and the y axis is vertically upwards.
Externally applied loads W (concentrated) and w (distributed) are shown acting ver-
tically downwards since this is usually the situation in practice. In fact, choosing a
sign convention for these externally applied loads is not particularly important and
can be rather confusing since they will generate support reactions, which are exter-
nal loads themselves, in an opposite sense. An external axial load P is positive when
tensile and a torque T is positive if applied in an anticlockwise sense when viewed in
the direction xO. Later we shall be concerned with displacements in structural mem-
bers and here the vertical displacement v is positive in the positive direction of the
y axis.

We have seen that external loads generate internal force systems and for these it is
essential to adopt a sign convention since, unless their directions and senses are known,
it is impossible to calculate stress distributions.

Figure 3.7 shows a positive set of internal forces acting at two sections of a beam.

Note that the forces and moments acting on opposite faces of a section are identical
and act in opposite directions since the internal equilibrium of the beam must be

FIGURE 3.6
Notation and sign
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loads
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T x
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maintained. If this were not the case one part of the beam would part company with
the other. A difficulty now arises in that a positive internal force, say the shear force S,
acts upwards on one face of a section and downwards on the opposite face. We must
therefore specify the face of the section we are considering. We can do this by giving
signs to the different faces. In Fig. 3.7 we define a positive face as having an outward
normal in the positive direction of the x axis (faces nn and mm) and a negative face as
having an outward normal in the negative direction of the x axis (faces pp and qq). At
nn and mm positive internal forces act in positive directions on positive faces while at
pp and qq positive internal forces act in negative directions on negative faces.

A positive bending moment M , clockwise on the negative face pp and anticlockwise
on the positive face mm, will cause the upper surface of the beam to become concave
and the lower surface convex. This, for obvious reasons, is called a sagging bending
moment. A negative bending moment will produce a convex upper surface and a
concave lower one and is therefore termed a hogging bending moment.

The axial, or normal, force N is positive when tensile, i.e. it pulls away from either face
of a section, and a positive internal torque T is anticlockwise on positive internal faces.

Generally the structural engineer will need to know peak values of these internal
forces in a structural member. To determine these peak values internal force diagrams
are constructed; the methods will be illustrated by examples.

3.3 NORMAL FORCE

EXAMPLE 3.1 Construct a normal force diagram for the beam AB shown in
Fig. 3.8(a).

The first step is to calculate the support reactions using the methods described in
Section 2.5. In this case, since the beam is on a roller support at B, the horizontal load
at B is reacted at A; clearly RA,H = 10 kN acting to the left.

Generally the distribution of an internal force will change at a loading discontinuity.
In this case there is no loading discontinuity at any section of the beam so that we
can determine the complete distribution of the normal force by calculating the normal
force at any section X, a distance x from A.

Consider the length AX of the beam as shown in Fig. 3.8(b) (equally we could consider
the length XB). The internal normal force acting at X is NAB which is shown acting
in a positive (tensile) direction. The length AX of the beam is in equilibrium under
the action of RA,H (=10 kN) and NAB. Thus, from Section 2.4, for equilibrium in the
x direction

NAB − RA,H = NAB − 10 = 0
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FIGURE 3.8 Normal
force diagram for

the beam of Ex. 3.1
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(b)

(c)

B

which gives

NAB = +10 kN

NAB is positive and therefore acts in the assumed positive direction; the normal force
diagram for the complete beam is then as shown in Fig. 3.8(c).

When the equilibrium of a portion of a structure is considered as in Fig. 3.8(b) we are
using what is termed a free body diagram.

EXAMPLE 3.2 Draw a normal force diagram for the beam ABC shown in Fig. 3.9(a).

FIGURE 3.9
Normal force

diagram for the
beam of Ex. 3.2
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A B
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RA,H �10 kN

X1

L /2 L /2
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x

B C

(a)

X2

RA,H �10 kN NBC

A 10 kN

(c)

B X2
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Again by considering the overall equilibrium of the beam we see that RA,H = 10 kN
acting to the left (C is the roller support).

In this example there is a loading discontinuity at B so that the distribution of the
normal force in AB will be different to that in BC. We must therefore determine the
normal force at an arbitrary section X1 between A and B, and then at an arbitrary
section X2 between B and C.

The free body diagram for the portion of the beam AX1 is shown in Fig. 3.9(b).
(Alternatively we could consider the portion X1C). As before, we draw in a positive
normal force, NAB. Then, for equilibrium of AX1 in the x direction

NAB − 10 = 0

so that

NAB = +10 kN (tension)

Now consider the length ABX2 of the beam; again we draw in a positive normal force,
NBC. Then for equilibrium of ABX2 in the x direction

NBC + 10 − 10 = 0

which gives

NBC = 0

Note that we would have obtained the same result by considering the portion X2C of
the beam.

Finally the complete normal force diagram for the beam is drawn as shown in
Fig. 3.9(d).

EXAMPLE 3.3 Figure 3.10(a) shows a beam ABCD supporting three concentrated
loads, two of which are inclined to the longitudinal axis of the beam. Construct the
normal force diagram for the beam and determine the maximum value.

In this example we are only concerned with determining the normal force distribution
in the beam, so that it is unnecessary to calculate the vertical reactions at the supports.
Further, the horizontal components of the inclined loads can only be resisted at A
since D is a roller support. Thus, considering the horizontal equilibrium of the beam

RA,H + 6 cos 60◦ − 4 cos 60◦ = 0

which gives

RA,H = −1 kN
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FIGURE 3.10
Normal force

diagram for the
beam of Ex. 3.3
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The negative sign of RA,H indicates that the reaction acts to the right and not to the
left as originally assumed. However, rather than change the direction of RA,H in the
diagram, it is simpler to retain the assumed direction and then insert the negative
value as required.

Although there is an apparent loading discontinuity at B, the 2 kN load acts perpen-
dicularly to the longitudinal axis of the beam and will therefore not affect the normal
force. We may therefore consider the normal force at any section X1 between A and
C. The free body diagram for the portion AX1 of the beam is shown in Fig. 3.10(b);
again we draw in a positive normal force NAC. For equilibrium of AX1

NAC − RA,H = 0

so that

NAC = RA,H = −1 kN (compression)

The horizontal component of the inclined load at C produces a loading discontinuity
so that we now consider the normal force at any section X2 between C and D. Here
it is slightly simpler to consider the equilibrium of the length X2D of the beam rather
than the length AX2. Thus, from Fig. 3.10(c)

NCD − 4 cos 60◦ = 0
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which gives

NCD = +2 kN (tension)

From the completed normal force diagram in Fig. 3.10(d) we see that the maximum
normal force in the beam is 2 kN (tension) acting at all sections between C and D.

3.4 SHEAR FORCE AND BENDING MOMENT

It is convenient to consider shear force and bending moment distributions in beams
simultaneously since, as we shall see in Section 3.5, they are directly related. Again the
method of construction of shear force and bending moment diagrams will be illustrated
by examples.

EXAMPLE 3.4 Cantilever beam with a concentrated load at the free end (Fig. 3.11).

FIGURE 3.11 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.4
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Generally, as in the case of normal force distributions, we require the variation in shear
force and bending moment along the length of a beam. Again, loading discontinuities,
such as concentrated loads and/or a sudden change in the intensity of a distributed load,
cause discontinuities in the distribution of shear force and bending moment so that
it is necessary to consider a series of sections, one between each loading discontinuity.
In this example, however, there are no loading discontinuities between the built-in
end A and the free end B so that we may consider a section X at any point between
A and B.

For many beams the value of each support reaction must be calculated before the
shear force and bending moment distributions can be obtained. In Fig. 3.11(a) a con-
sideration of the overall equilibrium of the beam (see Section 2.5) gives a vertical
reaction, W , and a moment reaction, WL, at the built-in end. However, if we consider
the equilibrium of the length XB of the beam as shown in the free body diagram in
Fig. 3.11(b), this calculation is unnecessary.

As in the case of normal force distributions we assign positive directions to the shear
force, SAB, and bending moment, MAB, at the section X. Then, for vertical equilibrium
of the length XB of the beam we have

SAB + W = 0

which gives

SAB = −W

The shear force is therefore constant along the length of the beam and the shear force
diagram is rectangular in shape, as shown in Fig. 3.11(c).

The bending moment, MAB, is now found by considering the moment equilibrium of
the length XB of the beam about the section X. Alternatively we could take moments
about B, but this would involve the moment of the shear force, SAB, about B. This
approach, although valid, is not good practice since it includes a previously calculated
quantity; in some cases, however, this is unavoidable. Thus, taking moments about the
section X we have

MAB + W (L − x) = 0

so that

MAB = −W (L − x) (i)

Equation (i) shows that MAB varies linearly along the length of the beam, is negative,
i.e. hogging, at all sections and increases from zero at the free end (x = L) to −WL at
the built-in end where x = 0.

It is usual to draw the bending moment diagram on the tension side of a beam. This
procedure is particularly useful in the design of reinforced concrete beams since it
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shows directly the surface of the beam near which the major steel reinforcement should
be provided. Also, drawing the bending moment diagram on the tension side of a beam
can give an indication of the deflected shape as illustrated in Exs 3.4–3.7. This is not
always the case, however, as we shall see in Exs 3.8 and 3.9.

In this case the beam will bend as shown in Fig. 3.11(e), so that the upper surface of the
beam is in tension and the lower one in compression; the bending moment diagram
is therefore drawn on the upper surface as shown in Fig. 3.11(d). Note that negative
(hogging) bending moments applied in a vertical plane will always result in the upper
surface of a beam being in tension.

EXAMPLE 3.5 Cantilever beam carrying a uniformly distributed load of intensity w.

Again it is unnecessary to calculate the reactions at the built-in end of the cantilever;
their values are, however, shown in Fig. 3.12(a). Note that for the purpose of calculating
the moment reaction the uniformly distributed load may be replaced by a concentrated
load (=wL) acting at a distance L/2 from A.

There is no loading discontinuity between A and B so that we may consider the shear
force and bending moment at any section X between A and B. As before, we insert

FIGURE 3.12 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.5
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positive directions for the shear force, SAB, and bending moment, MAB, in the free
body diagram of Fig. 3.12(b). Then, for vertical equilibrium of the length XB of
the beam

SAB + w(L − x) = 0

so that

SAB = −w(L − x) (i)

Therefore SAB varies linearly with x and varies from zero at B to−wL at A (Fig. 3.12(c)).

Now consider the moment equilibrium of the length AB of the beam and take moments
about X

MAB + w
2

(L − x)2 = 0

which gives

MAB = −w
2

(L − x)2 (ii)

Note that the total load on the length XB of the beam is w(L − x), which we may
consider acting as a concentrated load at a distance (L − x)/2 from X. From Eq. (ii)
we see that the bending moment, MAB, is negative at all sections of the beam and
varies parabolically as shown in Fig. 3.12(d) where the bending moment diagram is
again drawn on the tension side of the beam. The actual shape of the bending moment
diagram may be found by plotting values or, more conveniently, by examining Eq. (ii).
Differentiating with respect to x we obtain

dMAB

dx
= w(L − x) (iii)

so that when x = L, dMAB/dx = 0 and the bending moment diagram is tangential to
the datum line AB at B. Furthermore it can be seen from Eq. (iii) that the gradient
(dMAB/dx) of the bending moment diagram decreases as x increases, so that its shape
is as shown in Fig. 3.12(d).

EXAMPLE 3.6 Simply supported beam carrying a central concentrated load.

In this example it is necessary to calculate the value of the support reactions, both
of which are seen, from symmetry, to be W /2 (Fig. 3.13(a)). Also, there is a loading
discontinuity at B, so that we must consider the shear force and bending moment first
at an arbitrary section X1 say, between A and B and then at an arbitrary section X2

between B and C.

From the free body diagram in Fig. 3.13(b) in which both SAB and MAB are in positive
directions we see, by considering the vertical equilibrium of the length AX1 of the
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FIGURE 3.13 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.6
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beam, that

SAB + W
2

= 0

which gives

SAB = −W
2

SAB is therefore constant at all sections of the beam between A and B, in other words,
from a section immediately to the right of A to a section immediately to the left of B.

Now consider the free body diagram of the length X2C of the beam in Fig. 3.13(c).
Note that, equally, we could have considered the length ABX2, but this would have
been slightly more complicated in terms of the number of loads acting. For vertical
equilibrium of X2C

SBC − W
2

= 0
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from which

SBC = +W
2

and we see that SBC is constant at all sections of the beam between B and C so that
the complete shear force diagram has the form shown in Fig. 3.13(d). Note that the
change in shear force from that at a section immediately to the left of B to that at a
section immediately to the right of B is +W . We shall consider the implications of this
later in the chapter.

It would also appear from Fig. 3.13(d) that there are two different values of shear
force at the same section B of the beam. This results from the assumption that W is
concentrated at a point which, practically, is impossible since there would then be an
infinite bearing pressure on the surface of the beam. In practice, the load W and the
support reactions would be distributed over a small length of beam (Fig. 3.14(a)) so
that the actual shear force distribution would be that shown in Fig. 3.14(b).

The distribution of the bending moment in AB is now found by considering the moment
equilibrium about X1 of the length AX1 of the beam in Fig. 3.13(b). Thus

MAB − W
2

x = 0

or

MAB = W
2

x (i)

Therefore MAB varies linearly from zero at A (x = 0) to +WL/4 at B (x = L/2).

(a)
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�ve
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2
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2
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2
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FIGURE 3.14 Shear force diagram in a
practical situation
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Now considering the length X2C of the beam in Fig. 3.13(c) and taking moments
about X2.

MBC − W
2

(L − x) = 0

which gives

MBC = +W
2

(L − x) (ii)

From Eq. (ii) we see that MBC varies linearly from +WL/4 at B (x = L/2) to zero at C
(x = L).

The complete bending moment diagram is shown in Fig. 3.13(e). Note that the bending
moment is positive (sagging) at all sections of the beam so that the lower surface of
the beam is in tension. In this example the deflected shape of the beam would be that
shown in Fig. 3.13(f).

EXAMPLE 3.7 Simply supported beam carrying a uniformly distributed load.

The symmetry of the beam and its load may again be used to determine the support
reactions which are each wL/2. Furthermore, there is no loading discontinuity between
the ends A and B of the beam so that it is sufficient to consider the shear force and
bending moment at just one section X, a distance x, say, from A; again we draw in
positive directions for the shear force and bending moment at the section X in the free
body diagram shown in Fig. 3.15(b).

FIGURE 3.15
Shear force and

bending moment
diagrams for the
beam of Ex. 3.7
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Considering the vertical equilibrium of the length AX of the beam gives

SAB − wx + w
L
2

= 0

i.e.

SAB = +w
(

x − L
2

)
(i)

SAB therefore varies linearly along the length of the beam from −wL/2 at A (x = 0) to
+wL/2 at B (x = L). Note that SAB = 0 at mid-span (x = L/2).

Now taking moments about X for the length AX of the beam in Fig. 3.15(b) we have

MAB + wx2

2
− wL

2
x = 0

from which

MAB = +wx
2

(L − x) (ii)

Thus MAB varies parabolically along the length of the beam and is positive (sagging)
at all sections of the beam except at the supports (x = 0 and x = L) where it is zero.

Also, differentiating Eq. (ii) with respect to x gives

dMAB

dx
= w

(
L
2

− x
)

(iii)

From Eq. (iii) we see that dMAB/dx = 0 at mid-span where x = L/2, so that the bending
moment diagram has a turning value or mathematical maximum at this section. In this
case this mathematical maximum is the maximum value of the bending moment in the
beam and is, from Eq. (ii), +wL2/8.

The bending moment diagram for the beam is shown in Fig. 3.15(d) where it is again
drawn on the tension side of the beam; the deflected shape of the beam will be identical
in form to the bending moment diagram.

Examples 3.4–3.7 may be regarded as ‘standard’ cases and it is useful to memorize the
form that the shear force and bending moment diagrams take including the principal
values.

EXAMPLE 3.8 Simply supported beam with cantilever overhang (Fig. 3.16(a)).

The support reactions are calculated using the methods described in Section 2.5. Thus,
taking moments about B in Fig. 3.16(a) we have

RA × 2 − 2 × 3 × 0.5 + 1 × 1 = 0
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FIGURE 3.16 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.8
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The support reaction at B produces a loading discontinuity at B so that we must
consider the shear force and bending moment at two arbitrary sections of the beam,
X1 in AB and X2 in BC. Free body diagrams are therefore drawn for the lengths AX1

and X2C of the beam and positive directions for the shear force and bending moment
drawn in as shown in Fig. 3.16(b) and (c). Alternatively, we could have considered
the lengths X1BC and ABX2, but this approach would have involved slightly more
complicated solutions in terms of the number of loads applied.

Now from the vertical equilibrium of the length AX1 of the beam in Fig. 3.16(b)
we have

SAB − 2x + 1 = 0

or
SAB = 2x − 1 (i)

The shear force therefore varies linearly in AB from −1 kN at A (x = 0) to +3 kN at
B (x = 2 m). Note that SAB = 0 at x = 0.5 m.

Consideration of the vertical equilibrium of the length X2C of the beam in
Fig. 3.16(c) gives

SBC + 2(3 − x) + 1 = 0

from which

SBC = 2x − 7 (ii)

Equation (ii) shows that SBC varies linearly in BC from −3 kN at B (x = 2 m) to −1 kN
at C (x = 3 m).

The complete shear force diagram for the beam is shown in Fig. 3.16(d).

The bending moment, MAB, is now obtained by considering the moment equilibrium
of the length AX1 of the beam about X1 in Fig. 3.16(b). Hence

MAB + 2x
x
2

− 1x = 0

so that

MAB = x − x2 (iii)

which is a parabolic function of x. The distribution may be plotted by selecting a series
of values of x and calculating the corresponding values of MAB. However, this would
not necessarily produce accurate estimates of either the magnitudes and positions of
the maximum values of MAB or, say, the positions of the zero values of MAB which,
as we shall see later, are important in beam design. A better approach is to examine
Eq. (iii) as follows. Clearly when x = 0, MAB = 0 as would be expected at the simple
support at A. Also at B, where x = 2 m, MAB = −2 kN so that although the support at
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B is a simple support and allows rotation of the beam, there is a moment at B; this is
produced by the loads on the cantilever overhang BC. Rewriting Eq. (iii) in the form

MAB = x(1 − x) (iv)

we see immediately that MAB = 0 at x = 0 (as demonstrated above) and that MAB = 0 at
x = 1 m, the point D in Fig. 3.16(e). We shall see later in Chapter 9 that at the point in
the beam where the bending moment changes sign the curvature of the beam is zero;
this point is known as a point of contraflexure or point of inflection. Now differentiating
Eq. (iii) with respect to x we obtain

dMAB

dx
= 1 − 2x (v)

and we see that dMAB/dx = 0 at x = 0.5 m. In other words MAB has a turning value or
mathematical maximum at x = 0.5 m at which point MAB = 0.25 kN m. Note that this is
not the greatest value of bending moment in the span AB. Also it can be seen that for
0 < x < 0.5 m, dMAB/dx decreases with x while for 0.5 m < x < 2 m, dMAB/dx increases
negatively with x.

Now we consider the moment equilibrium of the length X2C of the beam in Fig. 3.16(c)
about X2

MBC + 2
2

(3 − x)2 + 1(3 − x) = 0

so that
MBC = −12 + 7x − x2 (vi)

from which we see that dMBC/dx is not zero at any point in BC and that as x increases
dMBC/dx decreases.

The complete bending moment diagram is therefore as shown in Fig. 3.16(e). Note
that the value of zero shear force in AB coincides with the turning value of the bending
moment.

In this particular example it is not possible to deduce the displaced shape of the beam
from the bending moment diagram. Only three facts relating to the displaced shape
can be stated with certainty; these are, the deflections at A and B are zero and there is a
point of contraflexure at D, 1 m from A. However, using the method described in Sec-
tion 13.2 gives the displaced shape shown in Fig. 3.16(f). Note that, although the beam
is subjected to a sagging bending moment over the length AD, the actual deflection is
upwards; clearly this could not have been deduced from the bending moment diagram.

EXAMPLE 3.9 Simply supported beam carrying a point moment.

From a consideration of the overall equilibrium of the beam (Fig. 3.17(a)) the
support reactions are RA = M0/L acting vertically upward and RC = M0/L acting
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FIGURE 3.17 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.9
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vertically downward. Note that RA and RC are independent of the point of application
of M0.

Although there is a loading discontinuity at B it is a point moment and will not affect
the distribution of shear force. Thus, by considering the vertical equilibrium of either
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AX1 in Fig. 3.17(b) or X2C in Fig. 3.17(c) we see that

SAB = SBC = −M0

L
(i)

The shear force is therefore constant along the length of the beam as shown in
Fig. 3.17(d).

Now considering the moment equilibrium about X1 of the length AX1 of the beam in
Fig. 3.17(b)

MAB − M0

L
x = 0

or

MAB = M0

L
x (ii)

MAB therefore increases linearly from zero at A (x = 0) to +3M0/4 at B (x = 3L/4).
From Fig. 3.17(c) and taking moments about X2 we have

MBC + M0

L
(L − x) = 0

or

MBC = M0

L
(x − L) (iii)

MBC therefore decreases linearly from −M0/4 at B (x = 3L/4) to zero at C (x = L); the
complete distribution of bending moment is shown in Fig. 3.17(e). The deflected form
of the beam is shown in Fig. 3.17(f) where a point of contraflexure occurs at B, the
section at which the bending moment changes sign.

In this example, as in Ex. 3.8, the exact form of the deflected shape cannot be deduced
from the bending moment diagram without analysis. However, using the method of
singularities described in Section 13.2, it may be shown that the deflection at B is
negative and that the slope of the beam at C is positive, giving the displaced shape
shown in Fig. 3.17(f).

3.5 LOAD, SHEAR FORCE AND BENDING MOMENT RELATIONSHIPS

It is clear from Exs 3.4–3.9 that load, shear force and bending moment are related.
Thus, for example, uniformly distributed loads produce linearly varying shear forces
and maximum values of bending moment coincide with zero shear force. We shall now
examine these relationships mathematically.

The length of beam shown in Fig. 3.18(a) carries a general system of loading comprising
concentrated loads and a distributed load w(x). An elemental length δx of the beam
is subjected to the force and moment system shown in Fig. 3.18(b); since δx is very
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FIGURE 3.18
Load, shear force

and bending
moment

relationships
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small the distributed load may be regarded as constant over the length δx. For vertical
equilibrium of the element

S + w(x)δx − (S + δS) = 0

so that

+w(x)δx − δS = 0

Thus, in the limit as δx → 0

dS
dx

= +w(x) (3.1)

From Eq. (3.1) we see that the rate of change of shear force at a section of a beam,
in other words the gradient of the shear force diagram, is equal to the value of the
load intensity at that section. In Fig. 3.12(c), for example, the shear force changes
linearly from −wL at A to zero at B so that the gradient of the shear force diagram at
any section of the beam is +wL/L = +w where w is the load intensity. Equation (3.1)
also applies at beam sections subjected to concentrated loads. In Fig. 3.13(a) the load
intensity at B, theoretically, is infinite, as is the gradient of the shear force diagram at
B (Fig. 3.13(d)). In practice the shear force diagram would have a finite gradient at
this section as illustrated in Fig. 3.14.

Now integrating Eq. (3.1) with respect to x we obtain

S = +
∫

w(x) dx + C1 (3.2)

in which C1 is a constant of integration which may be determined in a particular case
from the loading boundary conditions.

If, for example, w(x) is a uniformly distributed load of intensity w, i.e., it is not a
function of x, Eq. (3.2) becomes

S = +wx + C1
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which is the equation of a straight line of gradient +w as demonstrated for the can-
tilever beam of Fig. 3.12 in the previous paragraph. Furthermore, for this particular
example, S = 0 at x = L so that C1 = −wL and S = −w(L − x) as before.

In the case of a beam carrying only concentrated loads then, in the bays between the
loads, w(x) = 0 and Eq. (3.2) reduces to

S = C1

so that the shear force is constant over the unloaded length of beam (see Figs 3.11
and 3.13).

Suppose now that Eq. (3.1) is integrated over the length of beam between the sections
X1 and X2. Then ∫ x2

x1

dS
dx

dx = +
∫ x2

x1

w(x) dx

which gives

S2 − S1 =
∫ x2

x1

w(x) dx (3.3)

where S1 and S2 are the shear forces at the sections X1 and X2 respectively. Equa-
tion (3.3) shows that the change in shear force between two sections of a beam is equal
to the area under the load distribution curve over that length of beam.

The argument may be applied to the case of a concentrated load W which may be
regarded as a uniformly distributed load acting over an extremely small elemental
length of beam, say δx. The area under the load distribution curve would then be
wδx (=W ) and the change in shear force from the section x to the section x + δx would
be +W . In other words, the change in shear force from a section immediately to the
left of a concentrated load to a section immediately to the right is equal to the value
of the load, as noted in Ex. 3.6.

Now consider the rotational equilibrium of the element δx in Fig. 3.18(b) about
B. Thus

M − Sδx − w(x)δx
δx
2

− (M + δM) = 0

The term involving the square of δx is a second-order term and may be neglected.
Hence

−Sδx − δM = 0

or, in the limit as δx → 0

dM
dx

= −S (3.4)

Equation (3.4) establishes for the general case what may be observed in particular in
the shear force and bending moment diagrams of Exs 3.4–3.9, i.e. the gradient of the
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bending moment diagram at a beam section is equal to minus the value of the shear
force at that section. For example, in Fig. 3.16(e) the bending moment in AB is a
mathematical maximum at the section where the shear force is zero.

Integrating Eq. (3.4) with respect to x we have

M = −
∫

S dx + C2 (3.5)

in which C2 is a constant of integration. Substituting for S in Eq. (3.5) from Eq. (3.2)
gives

M = −
∫ [

+
∫

w(x) dx + C1

]
dx + C2

or

M = −
∫∫

w(x) dx − C1x + C2 (3.6)

If w(x) is a uniformly distributed load of intensity w, Eq. (3.6) becomes

M = −w
x2

2
− C1x + C2

which shows that the equation of the bending moment diagram on a length of beam
carrying a uniformly distributed load is parabolic.

In the case of a beam carrying concentrated loads only, then, between the loads,
w(x) = 0 and Eq. (3.6) reduces to

M = −C1x + C2

which shows that the bending moment varies linearly between the loads and has a
gradient −C1.

The constants C1 and C2 in Eq. (3.6) may be found, for a given beam, from the loading
boundary conditions. Thus, for the cantilever beam of Fig. 3.12, we have already shown
that C1 = −wL so that M = −wx2/2 + wLx + C2. Also, when x = L, M = 0 which gives
C2 = −wL2/2 and hence M = −wx2/2 + wLx − wL2/2 as before.

Now integrating Eq. (3.4) over the length of beam between the sections X1 and X2

(Fig. 3.18(a)) ∫ x2

x1

dM
dx

dx = −
∫ x2

x1

S dx

which gives

M2 − M1 = −
∫ x2

x1

S dx (3.7)

where M1 and M2 are the bending moments at the sections X1 and X2, respectively.
Equation (3.7) shows that the change in bending moment between two sections of a
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beam is equal to minus the area of the shear force diagram between those sections.
Again, using the cantilever beam of Fig. 3.12 as an example, we see that the change in
bending moment from A to B is wL2/2 and that the area of the shear force diagram
between A and B is −wL2/2.

Finally, from Eqs (3.1) and (3.4)

d2M
dx2 = −dS

dx
= −w(x) (3.8)

The relationships established above may be used to construct shear force and bending
moment diagrams for some beams more readily than when the methods illustrated in
Exs 3.4–3.9 are employed. In addition they may be used to provide simpler solutions
in some beam problems.

EXAMPLE 3.10 Construct shear force and bending moment diagrams for the beam
shown in Fig. 3.19(a).

FIGURE 3.19 Shear
force and bending
moment diagrams

for the beam of
Ex. 3.10
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Initially the support reactions are calculated using the methods described in Sec-
tion 2.5. Then, for moment equilibrium of the beam about E

RA × 4 − 2 × 3 − 5 × 2 − 4 × 1 × 0.5 = 0

from which

RA = 4.5 kN

Now considering the vertical equilibrium of the beam

RE + RA − 2 − 5 − 4 × 1 = 0

so that

RE = 6.5 kN

In constructing the shear force diagram we can make use of the facts that, as established
above, the shear force is constant over unloaded bays of the beam, varies linearly when
the loading is uniformly distributed and changes positively as a vertically downward
concentrated load is crossed in the positive x direction by the value of the load. Thus in
Fig. 3.19(b) the shear force increases negatively by 4.5 kN as we move from the left of
A to the right of A, is constant between A and B, changes positively by 2 kN as we move
from the left of B to the right of B, and so on. Note that between D and E the shear
force changes linearly from +2.5 kN at D to +6.5 kN at a section immediately to the
left of E, in other words it changes by +4 kN, the total value of the downward-acting
uniformly distributed load.

The bending moment diagram may also be constructed using the above relation-
ships, namely, the bending moment varies linearly over unloaded lengths of beam
and parabolically over lengths of beam carrying a uniformly distributed load. Also,
the change in bending moment between two sections of a beam is equal to minus the
area of the shear force diagram between those sections. Thus in Fig. 3.19(a) we know
that the bending moment at the pinned support at A is zero and that it varies linearly
in the bay AB. The bending moment at B is then equal to minus the area of the shear
force diagram between A and B, i.e. −(−4.5 × 1) = 4.5 kN m. This represents, in fact,
the change in bending moment from the zero value at A to the value at B. At C the
area of the shear force diagram to the right or left of C is 7 kN m (note that the bending
moment at E is also zero), and so on. In the bay DE the shape of the parabolic curve
representing the distribution of bending moment over the length of the uniformly
distributed load may be found using part of Eq. (3.8), i.e.

d2M
dx2 = −w(x)

For a vertically downward uniformly distributed load this expression becomes

d2M
dx2 = −w
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which from mathematical theory shows that the curve representing the variation in
bending moment is convex in the positive direction of bending moment. This may be
observed in the bending moment diagrams in Fig. 3.12(d), 3.15(d) and 3.16(e). In this
example the bending moment diagram for the complete beam is shown in Fig. 3.19(c)
and is again drawn on the tension side of the beam.

EXAMPLE 3.11 A precast concrete beam of length L is to be lifted from the casting
bed and transported so that the maximum bending moment is as small as possible. If
the beam is lifted by two slings placed symmetrically, show that each sling should be
0.21L from the adjacent end.

The external load on the beam is comprised solely of its own weight, which is uni-
formly distributed along its length. The problem is therefore resolved into that of a
simply supported beam carrying a uniformly distributed load in which the supports
are positioned at some distance a from each end (Fig. 3.20(a)).

The shear force and bending moment diagrams may be constructed in terms of a using
the methods described above and would take the forms shown in Fig. 3.20(b) and (c).
Examination of the bending moment diagram shows that there are two possible posi-
tions for the maximum bending moment. First at B and C where the bending moment
is hogging and has equal values from symmetry; second at the mid-span point where

FIGURE 3.20
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the bending moment has a turning value and is sagging if the supports at B and C are
spaced a sufficient distance apart. Suppose that B and C are positioned such that the
value of the hogging bending moment at B and C is numerically equal to the sagging
bending moment at the mid-span point. If now B and C are moved further apart the
mid-span moment will increase while the moment at B and C decreases. Conversely, if
B and C are brought closer together, the hogging moment at B and C increases while
the mid-span moment decreases. It follows that the maximum bending moment will
be as small as possible when the hogging moment at B and C is numerically equal to
the sagging moment at mid-span.

The solution will be simplified if use is made of the relationship in Eq. (3.7). Thus,
when the supports are in the optimum position, the change in bending moment from A
to B (negative) is equal to minus half the change in the bending moment from B to the
mid-span point (positive). It follows that the area of the shear force diagram between
A and B is equal to minus half of that between B and the mid-span point. Then

+1
2

awa = −1
2

[
−1

2

(
L
2

− a
)

w
(

L
2

− a
)]

which reduces to

a2 + La − L2

4
= 0

the solution of which gives

a = 0.21L (the negative solution has no practical significance)

3.6 TORSION

The distribution of torque along a structural member may be obtained by considering
the equilibrium in free body diagrams of lengths of member in a similar manner to
that used for the determination of shear force distributions in Exs 3.4–3.9.

EXAMPLE 3.12 Construct a torsion diagram for the beam shown in Fig. 3.21(a).

There is a loading discontinuity at B so that we must consider the torque at separate
sections X1 and X2 in AB and BC, respectively. Thus, in the free body diagrams shown
in Fig. 3.21(b) and (c) we insert positive internal torques.

From Fig. 3.21(b)

TAB − 10 + 8 = 0

so that

TAB = +2 kN m
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FIGURE 3.21
Torsion diagram

for a cantilever
beam
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From Fig. 3.21(c)

TBC + 8 = 0

from which

TBC = −8 kN m

The complete torsion diagram is shown in Fig. 3.21(d).

EXAMPLE 3.13 The structural member ABC shown in Fig. 3.22 carries a distributed
torque of 2 kN m/m together with a concentrated torque of 10 kN m at mid-span. The
supports at A and C prevent rotation of the member in planes perpendicular to its
axis. Construct a torsion diagram for the member and determine the maximum value
of torque.
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of Ex. 3.13

TA � 9 kN m
2 kN m/m

2 kN m/m

10 kN m

2 m

(a)

(b) (c)

(d)

2 m

TC � 9 kN m

9 kN m

9 kN m

9 kN m

5 kN m

5 kN m

A

A

4�x

�ve

�ve

9 kN m

X1

x

x

A B

B

C

C

X2

X1

TAB TBC

X2

C

FIGURE 3.23 Torsion
diagram for the beam of
Ex. 3.13

From the rotational equilibrium of the member about its longitudinal axis and its
symmetry about the mid-span section at B, we see that the reactive torques TA and TC

are each −9 kN m, i.e. clockwise when viewed in the direction CBA. In general, as we
shall see in Chapter 11, reaction torques at supports form a statically indeterminate
system.
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In this particular problem there is a loading discontinuity at B so that we must consider
the internal torques at two arbitrary sections X1 and X2 as shown in Fig. 3.23(a).

From the free body diagram in Fig. 3.23(b)

TAB + 2x − 9 = 0

which gives

TAB = 9 − 2x (i)

From Eq. (i) we see that TAB varies linearly from +9 kN m at A (x = 0) to +5 kN m at
a section immediately to the left of B (x = 2 m). Furthermore, from Fig. 3.23(c)

TBC − 2(4 − x) + 9 = 0

so that

TBC = −2x − 1 (ii)

from which we see that TBC varies linearly from −5 kN m at a section immediately to
the right of B (x = 2 m) to −9 kN m at C (x = 4 m). The resulting torsion diagram is
shown in Fig. 3.23(d).

3.7 PRINCIPLE OF SUPERPOSITION

An extremely useful principle in the analysis of linearly elastic structures (see Chap-
ter 8) is that of superposition. The principle states that if the displacements at all
points in an elastic body are proportional to the forces producing them, that is the
body is linearly elastic, the effect (i.e. stresses and displacements) on such a body of a
number of forces acting simultaneously is the sum of the effects of the forces applied
separately.

This principle can sometimes simplify the construction of shear force and bending
moment diagrams.

EXAMPLE 3.14 Construct the bending moment diagram for the beam shown in
Fig. 3.24(a).

Figures 3.24(b), (c) and (d) show the bending moment diagrams for the cantilever
when each of the three loading systems acts separately. The bending moment diagram
for the beam when the loads act simultaneously is obtained by adding the ordinates of
the separate diagrams and is shown in Fig. 3.24(e).
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W2L
BM due to W2�ve m2

A B C

(b)

2W1L
BM due to W1�ve m1

A B C

(d)

2wL2

BM due to w�ve m3

A B C

(e)

Complete bending moment diagram

�ve

m1�m2�m3

A B C

2W1 L � W2L � 2wL2

FIGURE 3.24 Bending moment (BM) diagram using the principle of superposition

P R O B L E M S

P.3.1 A transmitting mast of height 40 m and weight 4.5 kN/m length is stayed by three
groups of four cables attached to the mast at heights of 15, 25 and 35 m. If each cable is
anchored to the ground at a distance of 20 m from the base of the mast and tensioned
to a force of 15 kN, draw a diagram of the compressive force in the mast.

Ans. Max. force = 314.9 kN.

P.3.2 Construct the normal force, shear force and bending moment diagrams for the
beam shown in Fig. P.3.2.

Ans. NAB = 9.2 kN, NBC = 9.2 kN, NCD = 5.7 kN, NDE = 0.
SAB = −6.9 kN, SBC = −3.9 kN, SCD = +2.2 kN, SDE = +7.9 kN.

MB = 27.6 kN m, MC = 51 kN m, MD = 40 kN m.
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3 kN 7 kN

30° 45°
8 kN

4 m 6 m 5 m 5 m

DCB
A E

FIGURE P.3.2

P.3.3 Draw dimensioned sketches of the diagrams of normal force, shear force and
bending moment for the beam shown in Fig. P.3.3.

Ans. NAB = NBC = NCD = 0, NDE = −6 kN.
SA = 0, SB (in AB) = +10 kN, SB (in BC) = −10 kN.

SC = −4 kN, SD (in CD) = −4 kN, SDE = +4 kN.
MB = −25 kN m, MC = −4 kN m, MD = 12 kN m.

2 kN/m

3 m5 m 4 m 3 m

C D EBA

10 kN
5 4

3

FIGURE P.3.3

P.3.4 Draw shear force and bending moment diagrams for the beam shown in Fig. P.3.4.

Ans. SAB = −W , SBC = 0, SCD = +W .
MB = MC = WL/4.

Note zero shear and constant bending moment in central span.

A B

L/4 L/4L/2

W W

C D

FIGURE P.3.4

P.3.5 The cantilever AB shown in Fig. P.3.5 carries a uniformly distributed load of
5 kN/m and a concentrated load of 15 kN at its free end. Construct the shear force and
bending moment diagrams for the beam.

Ans. SB = −15 kN, SC = −65 kN.
MB = 0, MA = −400 kN m.
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5 kN/m 15 kN

10 m 

BA

FIGURE P.3.5

P.3.6 Sketch the bending moment and shear force diagrams for the simply supported
beam shown in Fig. P.3.6 and insert the principal values.

Ans. SB (in AB) = +5 kN, SB (in BC) = −3.75 kN, SC (in BC) = +6.25 kN.
SCD = −5 kN, MB = −12.5 kN m, MC = −25 kN m.

Turning value of bending moment of −5.5 kN m in BC, 3.75 m from B.

B C D

1 kN/m 5 kN

5 m 5 m10 m

A

FIGURE P.3.6

P.3.7 Draw the shear force and bending moment diagrams for the beam shown in
Fig. P.3.7 indicating the principal values.

Ans. SAB = −5.6 kN, SB (in BC) = +4.4 kN, SC (in BC) = +7.4 kN,
SC (in CD) = −1.5 kN.

MB = 16.8 kN m, MC = −1.125 kN m.

3 m 3 m 1.5 m

10 kN
1 kN/m

B

A
C D

FIGURE P.3.7

P.3.8 Find the value of w in the beam shown in Fig. P.3.8 for which the maximum
sagging bending moment occurs at a point 10/3 m from the left-hand support and
determine the value of this moment.

Ans. w = 1.2 kN/m, 6.7 kN m.
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10 m 2 m

10 kNw kN/m

A B

FIGURE P.3.8

P.3.9 Find the value of n for the beam shown in Fig. P.3.9 such that the maximum
sagging bending moment occurs at L/3 from the right-hand support. Using this value
of n determine the position of the point of contraflexure in the beam.

Ans. n = 4/3, L/3 from left-hand support.

nw
w

L

A B

L/2
FIGURE P.3.9

P.3.10 Sketch the shear force and bending moment diagrams for the simply supported
beam shown in Fig. P.3.10 and determine the positions of maximum bending moment
and point of contraflexure. Calculate the value of the maximum moment.

Ans. SA = −45 kN, SB (in AB) = +55 kN, SBC = −20 kN.

Mmax = 202.5 kN m at 9 m from A, MB = −100 kN m.
Point of contraflexure is 18 m from A.

5 kN/m 20 kN

20 m 5 m

A
B C

FIGURE P.3.10

P.3.11 Determine the position of maximum bending moment in a simply supported
beam, 8 m span, which carries a load of 100 kN uniformly distributed over its complete
length and, in addition, a load of 120 kN uniformly distributed over 2.5 m to the right
from a point 2 m from the left support. Calculate the value of maximum bending
moment and the value of bending moment at mid-span.
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Ans. Mmax = 294 kN m at 3.6 m from left-hand support.
M (mid-span) = 289 kN m.

P.3.12 A simply supported beam AB has a span of 6 m and carries a distributed load
which varies linearly in intensity from zero at A to 2 kN/m at B. Sketch the shear force
and bending moment diagrams for the beam and insert the principal values.

Ans. SAB = −2 + x2/6, SA = −2 kN, SB = +4 kN.

MAB = 2x − x3/18, Mmax = 4.62 kN m at 3.46 m from A.

P.3.13 A precast concrete beam of length L is to be lifted by a single sling and has one
end resting on the ground. Show that the optimum position for the sling is 0.29 m from
the nearest end.

P.3.14 Construct shear force and bending moment diagrams for the framework shown
in Fig. P.3.14.

Ans. SAB = −60 kN, SBC = −10 kN, SCD = +140 kN.

MB = 480 kN m, MC = 560 kN m.

5 � 4 m

150 kN50 kN

CBA D

FIGURE P.3.14

P.3.15 Draw shear force and bending moment diagrams for the framework shown in
Fig. P.3.15.

Ans. SAB = +5 kN, SBC = +15 kN, SCD = +30 kN, SDE = −12 kN, SEF = −7 kN,
SFG = −5 kN, SGH = 0.

MB = −10 kN m, MC = −40 kN m, MD = −100 kN m, ME = −76 kN m,
MF = −20 kN m, MG = MH = 0.

FIGURE P.3.15 3 � 2 m 3 � 2 m

5 kN5 kN5 kN

A B C D E F G H

15 kN 15 kN10 kN

5 � 2 m
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P.3.16 The cranked cantilever ABC shown in Fig. P.3.16 carries a load of 3 kN at its
free end. Draw shear force, bending moment and torsion diagrams for the complete
beam.

Ans. SCB = −3 kN, SBA = −3 kN
MC = 0, MB (in CB) = −6 kN m, MB (in BA) = 0, MA = −9 kN m.

TCB = 0, TBA = 6 kN m.

3 mA

B

C

2 m

3 kN

FIGURE P.3.16

P.3.17 Construct a torsion diagram for the beam shown in Fig. P.3.17.

Ans. TCB = −300 N m, TBA = −400 N m.

A

B

C

2 m

1 m

100 N m

300 N m

FIGURE P.3.17

P.3.18 The beam ABC shown in Fig. P.3.18 carries a distributed torque of 1 N m/mm
over its outer half BC and a concentrated torque of 500 N m at B. Sketch the torsion
diagram for the beam inserting the principal values.

Ans. TC = 0, TB (in BC) = 1000 N m, TB (in AB) = 1500 N m.
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A

B

C1 m

1 m

500 N m 1 N m/mm

FIGURE P.3.18

P.3.19 The cylindrical bar ABCD shown in Fig. P.3.19 is supported symmetrically at
B and C by supports that prevent rotation of the bar about its longitudinal axis. The
bar carries a uniformly distributed torque of 2 N m/mm together with concentrated
torques of 400 N m at each end. Draw the torsion diagram for the bar and determine
the maximum value of torque.

Ans. TDC = 400 + 2x, TCB = 2x − 2000, TBA = 2x − 4400 (T in N m when x is in mm).
Tmax = 1400 N m at C and B.

400 N m

400 N m

2 N m/mm

A

B

0.5 m

0.5 m

1.0 m

C

D
x

FIGURE P.3.19
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In Chapter 1 we discussed various structural forms and saw that for moderately large
spans, simple beams become uneconomical and may be replaced by trusses. These
structures comprise members connected at their ends and are constructed in a variety
of arrangements. In general, trusses are lighter, stronger and stiffer than solid beams
of the same span; they do, however, take up more room and are more expensive to
fabricate.

Initially in this chapter we shall discuss types of truss, their function and the idealiza-
tion of a truss into a form amenable to analysis. Subsequently, we shall investigate the
criterion which indicates the degree of their statical determinacy, examine the action
of the members of a truss in supporting loads and, finally, examine methods of analysis
of both plane and space trusses.

4.1 TYPES OF TRUSS

Generally the form selected for a truss depends upon the purpose for which it is
required. Examples of different types of truss are shown in Fig. 4.1(a)–(f); some are
named after the railway engineers who invented them.

For example, the Pratt, Howe, Warren and K trusses would be used to support bridge
decks and large-span roofing systems (the Howe truss is no longer used for reasons we
shall discuss in Section 4.5) whereas the Fink truss would be used to support gable-
ended roofs. The Bowstring truss is somewhat of a special case in that if the upper
chord members are arranged such that the joints lie on a parabola and the loads, all of
equal magnitude, are applied at the upper joints, the internal members carry no load.
This result derives from arch theory (Chapter 6) but is rarely of practical significance
since, generally, the loads would be applied to the lower chord joints as in the case of
the truss being used to support a bridge deck.

Frequently, plane trusses are connected together to form a three-dimensional struc-
ture. For example, in the overhead crane shown in Fig. 4.2, the tower would usually

81
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(a) Pratt

(b) Howe

(c) Fink

(d) Warren

(e) K truss

(f ) Bowstring FIGURE 4.1 Types of plane truss

comprise four plane trusses joined together to form a ‘box’ while the jibs would be con-
structed by connecting three plane trusses together to form a triangular cross section.

4.2 ASSUMPTIONS IN TRUSS ANALYSIS

It can be seen from Fig. 4.1 that plane trusses consist of a series of triangular units.
The triangle, even when its members are connected together by hinges or pins as in
Fig. 4.3(a), is an inherently stable structure, i.e. it will not collapse under any arrange-
ment of loads applied in its own plane. On the other hand, the rectangular structure
shown in Fig. 4.3(b) would be unstable if vertical loads were applied at the joints and
would collapse under the loading system shown; in other words it is a mechanism.
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Jib

Tower

FIGURE 4.2 Overhead crane
structure

(a)

(b)

A

B

C

Collapse

FIGURE 4.3 Basic unit of a truss

Further properties of a pin-jointed triangular structure are that the forces in the mem-
bers are purely axial and that it is statically determinate (see Section 4.4) so long as
the structure is loaded and supported at the joints. The forces in the members can
then be found using the equations of statical equilibrium (Eq. (2.10)). It follows that a
truss comprising pin-jointed triangular units is also statically determinate if the above
loading and support conditions are satisfied. In Section 4.4 we shall derive a simple
test for determining whether or not a pin-jointed truss is statically determinate; this
test, although applicable in most cases is not, as we shall see, foolproof.

The assumptions on which the analysis of trusses is based are as follows:

(1) The members of the truss are connected at their ends by frictionless pins or
hinges.
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(2) The truss is loaded and supported only at its joints.
(3) The forces in the members of the truss are purely axial.

Assumptions (2) and (3) are interdependent since the application of a load at some
point along a truss member would, in effect, convert the member into a simply
supported beam and, as we have seen in Chapter 3, generate, in addition to axial
loads, shear forces and bending moments; the truss would then become statically
indeterminate.

4.3 IDEALIZATION OF A TRUSS

In practice trusses are not pin-jointed but are constructed, in the case of steel
trusses, by bolting, riveting or welding the ends of the members to gusset plates
as shown in Fig. 4.4. In a timber roof truss the members are connected using
spiked plates driven into their vertical surfaces on each side of a joint. The joints
in trusses are therefore semi-rigid and can transmit moments, unlike a friction-
less pinned joint. Furthermore, if the loads are applied at points on a member
away from its ends, that member behaves as a fixed or built-in beam with unknown
moments and shear forces as well as axial loads at its ends. Such a truss would pos-
sess a high degree of statical indeterminacy and would require a computer-based
analysis.

However, if such a truss is built up using the basic triangular unit and the loads and
support points coincide with the member joints then, even assuming rigid joints, a
computer-based analysis would show that the shear forces and bending moments
in the members are extremely small compared to the axial forces which, themselves,
would be very close in magnitude to those obtained from an analysis based on the
assumption of pinned joints.

Rivets

Single
angle

Gusset
plate

Centroidal axes

Two angle sections
back to back

FIGURE 4.4
Actual truss
construction
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A further condition in employing a pin-jointed idealization of an actual truss is that the
centroidal axes of the members in the actual truss are concurrent, as shown in Fig. 4.4.
We shall see in Section 9.2 that a load parallel to, but offset from, the centroidal axis of
a member induces a bending moment in the cross-section of the member; this situation
is minimized in an actual truss if the centroidal axes of all members meeting at a joint
are concurrent.

4.4 STATICAL DETERMINACY

It was stated in Section 4.2 that the basic triangular pin-jointed unit is statically deter-
minate and the forces in the members are purely axial so long as the loads and support
points coincide with the joints. The justification for this is as follows. Consider the
joint B in the triangle in Fig. 4.3(a). The forces acting on the actual pin or hinge are
the externally applied load and the axial forces in the members AB and BC; the system
is shown in the free body diagram in Fig. 4.5. The internal axial forces in the members
BA and BC, FBA and FBC, are drawn to show them pulling away from the joint B;
this indicates that the members are in tension. Actually, we can see by inspection that
both members will be in compression since their combined vertical components are
required to equilibrate the applied vertical load. The assumption of tension, however,
would only result in negative values in the calculation of FBA and FBC and is therefore
a valid approach. In fact we shall adopt the method of initially assuming tension in all
members of a truss when we consider methods of analysis, since a negative value for a
member force will then always signify compression and will be in agreement with the
sign convention adopted in Section 3.2.

Since the pin or hinge at the joint B is in equilibrium and the forces acting on the
pin are coplanar, Eq. (2.10) apply. Therefore the sum of the components of all the
forces acting on the pin in any two directions at right angles must be zero. The moment
equation, �M = 0, is automatically satisfied since the pin cannot transmit a moment
and the lines of action of all the forces acting on the pin must therefore be concurrent.
For the joint B, we can write down two equations of force equilibrium which are
sufficient to solve for the unknown member forces FBA and FBC. The same argument
may then be applied to either joint A or C to solve for the remaining unknown internal
force FAC (=FCA). We see then that the basic triangular unit is statically determinate.

B

FBA FBC FIGURE 4.5 Joint equilibrium in a triangular structure
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A

B

C

D

E
FIGURE 4.6 Construction of a Warren
truss

Now consider the construction of a simple pin-jointed truss. Initially we start with a
single triangular unit ABC as shown in Fig. 4.6. A further triangle BCD is created by
adding the two members BD and CD and the single joint D. The third triangle CDE
is then formed by the addition of the two members CE and DE and the single joint
E and so on for as many triangular units as required. Thus, after the initial triangle
is formed, each additional triangle requires two members and a single joint. In other
words the number of additional members is equal to twice the number of additional
joints. This relationship may be expressed qualitatively as follows.

Suppose that m is the total number of members in a truss and j the total number of
joints. Then, noting that initially there are three members and three joints, the above
relationship may be written

m − 3 = 2( j − 3)

so that

m = 2j − 3 (4.1)

If Eq. (4.1) is satisfied, the truss is constructed from a series of statically determi-
nate triangles and the truss itself is statically determinate. Furthermore, if m< 2j − 3
the structure is unstable (see Fig. 4.3(b)) or if m > 2j − 3, the structure is statically
indeterminate. Note that Eq. (4.1) applies only to the internal forces in a truss; the
support system must also be statically determinate to enable the analysis to be carried
out using simple statics.

EXAMPLE 4.1 Test the statical determinacy of the pin-jointed trusses shown in
Fig. 4.7.

In Fig. 4.7(a) the truss has five members and four joints so that m = 5 and j = 4. Then

2j − 3 = 5 = m

and Eq. (4.1) is satisfied. The truss in Fig. 4.7(b) has an additional member so that
m = 6 and j = 4. Therefore

m > 2j − 3

and the truss is statically indeterminate.
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FIGURE 4.7 Statical
determinacy of

trusses (a) (b) (c)

The truss in Fig. 4.7(c) comprises a series of triangular units which suggests that it is
statically determinate. However, in this case, m = 8 and j = 5. Thus

2j − 3 = 7

so that
m > 2j − 3

and the truss is statically indeterminate. In fact any single member may be removed
and the truss would retain its stability under any loading system in its own plane.

Unfortunately, in some cases, Eq. (4.1) is satisfied but the truss may be statically
indeterminate or a mechanism. For example, the truss in Fig. 4.8 has nine members
and six joints so that Eq. (4.1) is satisfied. However, clearly the left-hand half is a
mechanism and the right-hand half is statically indeterminate. Theoretically, assuming
that the truss members are weightless, the truss could support vertical loads applied
to the left- and/or right-hand vertical members; this would, of course, be an unstable
condition. Any other form of loading would cause a collapse of the left hand half of
the truss and consequently of the truss itself.

FIGURE 4.8
Applicability of
test for statical

determinacy

The presence of a rectangular region in a truss such as that in the truss in Fig. 4.8
does not necessarily result in collapse. The truss in Fig. 4.9 has nine members and six
joints so that Eq. (4.1) is satisfied. This does not, as we have seen, guarantee either a
stable or statically determinate truss. If, therefore, there is some doubt we can return
to the procedure of building up a truss from a single triangular unit as demonstrated
in Fig. 4.6. Then, remembering that each additional triangle is created by adding two
members and one joint and that the resulting truss is stable and statically determinate,
we can examine the truss in Fig. 4.9 as follows.
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FIGURE 4.9 Investigation into truss stability

Suppose that ACD is the initial triangle. The additional triangle ACB is formed by
adding the two members AB and BC and the single joint B. The triangle DCE follows
by adding the two members CE and DE and the joint E. Finally, the two members BF
and EF and the joint F are added to form the rectangular portion CBFE. We therefore
conclude that the truss in Fig. 4.9 is stable and statically determinate. Compare the
construction of this truss with that of the statically indeterminate truss in Fig. 4.7(c).

A condition, similar to Eq. (4.1), applies to space trusses; the result for a space truss
having m members and j pinned joints is

m = 3j − 6 (4.2)

4.5 RESISTANCE OF A TRUSS TO SHEAR FORCE AND BENDING MOMENT

Although the members of a truss carry only axial loads, the truss itself acts as a beam
and is subjected to shear forces and bending moments. Therefore, before we consider
methods of analysis of trusses, it will be instructive to examine the manner in which a
truss resists shear forces and bending moments.

The Pratt truss shown in Fig. 4.10(a) carries a concentrated load W applied at a joint
on the bottom chord at mid-span. Using the methods described in Section 3.4, the
shear force and bending moment diagrams for the truss are constructed as shown in
Fig. 4.10(b) and (c), respectively.

First we shall consider the shear force. In the bay ABCD the shear force is W/2 and
is negative. Thus at any section mm between A and B (Fig. 4.11) we see that the
internal shear force is −W/2. Since the horizontal members AB and DC are unable
to resist shear forces, the internal shear force can only be equilibrated by the vertical
component of the force FAC in the member AC. Figure 4.11 shows the direction of
the internal shear force applied at the section mm so that FAC is tensile. Then

FAC cos 45◦ = W
2
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FIGURE 4.10 Shear
forces and bending
moments in a truss
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FIGURE 4.11
Internal shear force

in a truss
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The same result applies to all the internal diagonals whether to the right or left of the
mid-span point since the shear force is constant, although reversed in sign, either side
of the load. The two outer diagonals are in compression since their vertical components
must be in equilibrium with the vertically upward support reactions. Alternatively, we
arrive at the same result by considering the internal shear force at a section just to the
right of the left-hand support and just to the left of the right-hand support.

If the diagonal AC was repositioned to span between D and B it would be subjected
to an axial compressive load. This situation would be undesirable since the longer a
compression member, the smaller the load required to cause buckling (see Chapter 21).
Therefore, the aim of truss design is to ensure that the forces in the longest members,
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the diagonals in this case, are predominantly tensile. So we can see now why the Howe
truss (Fig. 4.1(b)), whose diagonals for downward loads would be in compression, is
no longer in use.

In some situations the loading on a truss could be reversed so that a diagonal that is
usually in tension would be in compression. To counter this an extra diagonal inclined in
the opposite direction is included (spanning, say, from D to B in Fig. 4.12). This, as we
have seen, would result in the truss becoming statically indeterminate. However, if it is
assumed that the original diagonal (AC in Fig. 4.12) has buckled under the compressive
load and therefore carries no load, the truss is once again statically determinate.

We shall now consider the manner in which a truss resists bending moments. The
bending moment at a section immediately to the left of the mid-span vertical BC in
the truss in Fig. 4.10(a) is, from Fig. 4.10(c), 1.5W and is positive, as shown in Fig. 4.12.
This bending moment is equivalent to the moment resultant, about any point in their
plane, of the member forces at this section. In Fig. 4.12, analysis by the method of
sections (Section 4.7) gives FBA = 1.5W (compression), FAC = 0.707W (tension) and
FDC = 1.0W (tension). Therefore at C, FDC plus the horizontal component of FAC is
equal to 1.5W which, together with FBA, produces a couple of magnitude 1.5W × 1
which is equal to the applied bending moment. Alternatively, we could take moments
of the internal forces about B (or C). Hence

MB = FDC × 1 + FAC × 1 sin 45◦ = 1.0W × 1 + 0.707W × 1 sin 45◦ = 1.5W

as before. Note that in Fig. 4.12 the moment resultant of the internal force system is
equivalent to the applied moment, i.e. it is in the same sense as the applied moment.

Now let us consider the bending moment at, say, the mid-point of the bay AB, where its
magnitude is, from Fig. 4.10(c), 1.25W . The internal force system is shown in Fig. 4.13

FIGURE 4.12
Internal bending

moment in a truss

45°

D C

1.5W

1 m

BA

FDC

FBA

FIGURE 4.13
Resistance of a

bending moment at
a mid-bay point

1.0 m 1.0 m 0.5 m

FDC � 1.0W

FAC � 0.707W

FBA � 1.5W 1.25W
A

D
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in which FBA, FAC and FDC have the same values as before. Then, taking moments
about, say, the mid-point of the top chord member AB, we have

M = FDC × 1 + FAC × 0.5 sin 45◦ = 1.0W × 1 + 0.707W × 0.5 sin 45◦ = 1.25W

the value of the applied moment.

From the discussion above it is clear that, in trusses, shear loads are resisted by inclined
members, while all members combine to resist bending moments. Furthermore, pos-
itive (sagging) bending moments induce compression in upper chord members and
tension in lower chord members.

Finally, note that in the truss in Fig. 4.10 the forces in the members GE, BC and HF
are all zero, as can be seen by considering the vertical equilibrium of joints E, B and F.
Forces would only be induced in these members if external loads were applied directly
at the joints E, B and F. Generally, if three coplanar members meet at a joint and
two of them are collinear, the force in the third member is zero if no external force is
applied at the joint.

4.6 METHOD OF JOINTS

We have seen in Section 4.4 that the axial forces in the members of a simple pin-jointed
triangular structure may be found by examining the equilibrium of their connecting
pins or hinges in two directions at right angles (Eq. (2.10)). This approach may be
extended to plane trusses to determine the axial forces in all their members; the method
is known as the method of joints and will be illustrated by the following example.

EXAMPLE 4.2 Determine the forces in the members of the Warren truss shown in
Fig. 4.14; all members are 1 m long.

FIGURE 4.14
Analysis of a Warren

truss

2 kN

B C

D

E

A

1 kN

RD � 3.25 kNRA � 2.75 kN

3 kN
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Generally, although not always, the support reactions must be calculated first. So,
taking moments about D for the truss in Fig. 4.14 we obtain

RA × 2 − 2 × 1.5 − 1 × 1 − 3 × 0.5 = 0

which gives

RA = 2.75 kN

Then, resolving vertically

RD + RA − 2 − 1 − 3 = 0

so that

RD = 3.25 kN

Note that there will be no horizontal reaction at A (D is a roller support) since no
horizontal loads are applied.

The next step is to assign directions to the forces acting on each joint. In one approach
the truss is examined to determine whether the force in a member is tensile or com-
pressive. For some members this is straightforward. For example, in Fig. 4.14, the
vertical reaction at A, RA, can only be equilibrated by the vertical component of the
force in AB which must therefore act downwards, indicating that the member is in
compression (a compressive force in a member will push towards a joint whereas a
tensile force will pull away from a joint). In some cases, where several members meet
at a joint, the nature of the force in a particular member is difficult, if not impossible,
to determine by inspection. Then a direction must be assumed which, if incorrect, will
result in a negative value for the member force. It follows that, in the same truss, both
positive and negative values may be obtained for tensile forces and also for compressive
forces, a situation leading to possible confusion. Therefore, if every member in a truss
is initially assumed to be in tension, negative values will always indicate compression
and the solution will then agree with the sign convention adopted in Section 3.2.

We now assign tensile forces to the members of the truss in Fig. 4.14 using arrows to
indicate the action of the force in the member on the joint; then all arrows are shown to
pull away from the adjacent joint.

The analysis, as we have seen, is based on a consideration of the equilibrium of each
pin or hinge under the action of all the forces at the joint. Thus for each pin or hinge
we can write down two equations of equilibrium. It follows that a solution can only be
obtained if there are no more than two unknown forces acting at the joint. In Fig. 4.14,
therefore, we can only begin the analysis at the joints A or D, since at each of the joints
B and C there are three unknown forces while at E there are four.

Consider joint A. The forces acting on the pin at A are shown in the free body diagram
in Fig. 4.15. FAB may be determined directly by resolving forces vertically.
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RA � 2.75 kN

A

FAE

FAB

60°

FIGURE 4.15 Equilibrium of forces at joint A

Hence

FAB sin 60◦ + 2.75 = 0 (i)

so that

FAB = −3.18 kN

the negative sign indicating that AB is in compression as expected.

Referring again to Fig. 4.15 and resolving forces horizontally

FAE + FAB cos 60◦ = 0 (ii)

Substituting the negative value of FAB in Eq. (ii) we obtain

FAE − 3.18 cos 60◦ = 0

which gives

FAE = +1.59 kN

the positive sign indicating that FAB is a tensile force.

We now inspect the truss to determine the next joint at which there are no more than
two unknown forces. At joint E there remain three unknowns since only FEA (=FAE)
has yet been determined. At joint B there are now two unknowns since FBA (=FAB)
has been determined; we can therefore proceed to joint B. The forces acting at B
are shown in Fig. 4.16. Since FBA is now known we can resolve forces vertically and
therefore obtain FBE directly. Thus

FBE cos 30◦ + FBA cos 30◦ + 2 = 0 (iii)

Substituting the negative value of FBA in Eq. (iii) gives

FBE = +0.87 kN

which is positive and therefore tensile.
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60°
60°

B

2 kN

FBE

FBC

FBA FIGURE 4.16 Equilibrium of forces at joint B

Resolving forces horizontally at the joint B we have

FBC + FBE cos 60◦ − FBA cos 60◦ = 0 (iv)

Substituting the positive value of FBE and the negative value of FBA in Eq. (iv) gives

FBC = −2.03 kN

the negative sign indicating that the member BC is in compression.

We have now calculated four of the seven unknown member forces. There are in
fact just two unknown forces at each of the remaining joints C, D and E so that,
theoretically, it is immaterial which joint we consider next. From a solution viewpoint
there are three forces at D, four at C and five at E so that the arithmetic will be
slightly simpler if we next consider D to obtain FDC and FDE and then C to obtain
FCE. At C, FCE could be determined by resolving forces in the direction CE rather
than horizontally or vertically. Carrying out this procedure gives

FDC = −3.75 kN (compression)

FDE = +1.88 kN (tension)

FCE = +0.29 kN (tension)

The reader should verify these values using the method suggested above.

It may be noted that in this example we could write down 10 equations of equilibrium,
two for each of the five joints, and yet there are only seven unknown member forces.
The apparently extra three equations result from the use of overall equilibrium to
calculate the support reactions. An alternative approach would therefore be to write
down the 10 equilibrium equations which would include the three unknown support
reactions (there would be a horizontal reaction at A if horizontal as well as vertical loads
were applied) and solve the resulting 10 equations simultaneously. Overall equilibrium
could then be examined to check the accuracy of the solution. Generally, however, the
method adopted above produces a quicker solution.
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4.7 METHOD OF SECTIONS

It will be appreciated from Section 4.5 that in many trusses the maximum member
forces, particularly in horizontal members, will occur in the central region where
the applied bending moment would possibly have its maximum value. It will also be
appreciated from Ex. 4.2 that the calculation of member forces in the central region of
a multibay truss such as the Pratt truss shown in Fig. 4.1(a) would be extremely tedious
since the calculation must begin at an outside support and then proceed inwards joint
by joint. This approach may be circumvented by using the method of sections.

The method is based on the premise that if a structure is in equilibrium, any portion
or component of the structure will also be in equilibrium under the action of any
external forces and the internal forces acting between the portion or component and
the remainder of the structure. We shall illustrate the method by the following example.

EXAMPLE 4.3 Calculate the forces in the members CD, CF and EF in the Pratt
truss shown in Fig. 4.17.

FIGURE 4.17
Calculation of
member forces

using the method
of sections

RA,H � 2 kN

RA,V � 4.5 kN RB � 5.5 kN

4 kN

2 kN

A

6 kN
8 � 1 m

B

1 m

E

C D G

F H
n

n

m

m

Initially the support reactions are calculated and are readily shown to be

RA,V = 4.5 kN RA,H = 2 kN RB = 5.5 kN

We now ‘cut’ the members CD, CF and EF by a section mm, thereby dividing the truss
into two separate parts. Consider the left-hand part shown in Fig. 4.18 (equally we
could consider the right-hand part). Clearly, if we actually cut the members CD, CF
and EF, both the left- and right-hand parts would collapse. However, the equilibrium

FIGURE 4.18
Equilibrium of a
portion of a truss RA,V � 4.5 kN

RA,H � 2 kN

2 kN

4 kN

E
A

C FCD

FCF

FEF

m

m
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of the left-hand part, say, could be maintained by applying the forces FCD, FCF and FEF

to the cut ends of the members. Therefore, in Fig. 4.18, the left-hand part of the truss
is in equilibrium under the action of the externally applied loads, the support reactions
and the forces FCD, FCF and FEF which are, as in the method of joints, initially assumed
to be tensile; Eq. (2.10) are then used to calculate the three unknown forces.

Resolving vertically gives

FCF cos 45◦ + 4 − 4.5 = 0 (i)

so that

FCF = +0.71 kN

and is tensile.

Now taking moments about the point of intersection of FCF and FEF we have

FCD × 1 + 2 × 1 + 4.5 × 4 − 4 × 1 = 0 (ii)

so that

FCD = −16 kN

and is compressive.

Finally FEF is obtained by taking moments about C, thereby eliminating FCF and
FCD from the equation. Alternatively, we could resolve forces horizontally since FCF

and FCD are now known; however, this approach would involve a slightly lengthier
calculation. Hence

FEF × 1 − 4.5 × 3 − 2 × 1 = 0 (iii)

which gives

FEF = +15.5 kN

the positive sign indicating tension.

Note that Eqs (i), (ii) and (iii) each include just one of the unknown member forces so
that it is immaterial which is calculated first. In some problems, however, a preliminary
examination is worthwhile to determine the optimum order of solution.

In Ex. 4.3 we see that there are just three possible equations of equilibrium so that we
cannot solve for more than three unknown forces. It follows that a section such as mm
which must divide the frame into two separate parts must also not cut through more than
three members in which the forces are unknown. For example, if we wished to determine
the forces in CD, DF, FG and FH we would first calculate FCD using the section mm
as above and then determine FDF, FFG and FFH using the section nn. Actually, in this
particular example FDF may be seen to be zero by inspection (see Section 4.5) but the
principle holds.
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B (xB, yB)

A (xA, yA)

a

TAB

y

x FIGURE 4.19 Method of tension coefficients

4.8 METHOD OF TENSION COEFFICIENTS

An alternative form of the method of joints which is particularly useful in the analysis
of space trusses is the method of tension coefficients.

Consider the member AB, shown in Fig. 4.19, which connects two pinned joints A and B
whose coordinates, referred to arbitrary xy axes, are (xA, yA) and (xB, yB) respectively;
the member carries a tensile force, TAB, is of length LAB and is inclined at an angle α

to the x axis. The component of TAB parallel to the x axis at A is given by

TAB cos α = TAB
(xB − xA)

LAB
= TAB

LAB
(xB − xA)

Similarly the component of TAB at A parallel to the y axis is

TAB sin α = TAB

LAB
(yB − yA)

We now define a tension coefficient tAB = TAB/LAB so that the above components of
TAB become

parallel to the x axis: tAB(xB − xA) (4.3)

parallel to the y axis: tAB(yB − yA) (4.4)

Equilibrium equations may be written down for each joint in turn in terms of tension
coefficients and joint coordinates referred to some convenient axis system. The solu-
tion of these equations gives tAB, etc, whence TAB = tABLAB in which LAB, unless given,
may be calculated using Pythagoras’ theorem, i.e. LAB =√(xB − xA)2 + (yB − yA)2.
Again the initial assumption of tension in a member results in negative values
corresponding to compression. Note the order of suffixes in Eqs (4.3) and (4.4).

EXAMPLE 4.4 Determine the forces in the members of the pin-jointed truss shown
in Fig. 4.20.

The support reactions are first calculated and are as shown in Fig. 4.20.
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FIGURE 4.20
Analysis of a truss

using tension
coefficients (Ex. 4.4)

1.5 m 1.5 m

1.5 m

x

y

RA,V � 1 kN RE � 4 kN

E(3.0, 0)C(1.5, 0)A(0, 0)

F(3.0, 1.5)B(0, 1.5) D(1.5, 1.5)

RA,H � 3 kN

3 kN

5 kN

The next step is to choose an xy axis system and then insert the joint coordinates in
the diagram. In Fig. 4.20 we shall choose the support point A as the origin of axes
although, in fact, any joint would suffice; the joint coordinates are then as shown.

Again, as in the method of joints, the solution can only begin at a joint where there are
no more than two unknown member forces, in this case joints A and E. Theoretically
it is immaterial at which of these joints the analysis begins but since A is the origin
of axes we shall start at A. Note that it is unnecessary to insert arrows to indicate the
directions of the member forces since the members are assumed to be in tension and the
directions of the components of the member forces are automatically specified when
written in terms of tension coefficients and joint coordinates (Eqs (4.3) and (4.4)).

The equations of equilibrium at joint A are

x direction: tAB(xB − xA) + tAC(xC − xA) − RA,H = 0 (i)

y direction: tAB(yB − yA) + tAC(yC − yA) + RA,V = 0 (ii)

Substituting the values of RA,H, RA,V and the joint coordinates in Eqs (i) and (ii) we
obtain, from Eq. (i),

tAB(0 − 0) + tAC(1.5 − 0) − 3 = 0

whence

tAC = +2.0

and from Eq. (ii)

tAB(1.5 − 0) + tAC(0 − 0) + 1 = 0

so that

tAB = −0.67
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We see from the derivation of Eqs (4.3) and (4.4) that the units of a tension coefficient
are force/unit length, in this case kN/m. Generally, however, we shall omit the units.

We can now proceed to joint B at which, since tBA (=tAB) has been calculated, there
are two unknowns

x direction: tBA(xA − xB) + tBC(xC − xB) + tBD(xD − xB) + 3 = 0 (iii)

y direction: tBA(yA − yB) + tBC(yC − yB) + tBD(yD − yB) = 0 (iv)

Substituting the values of the joint coordinates and tBA in Eqs (iii) and (iv) we have,
from Eq. (iii)

−0.67(0 − 0) + tBC(1.5 − 0) + tBD(1.5 − 0) + 3 = 0

which simplifies to

1.5tBC + 1.5tBD + 3 = 0 (v)

and from Eq. (iv)

−0.67(0 − 1.5) + tBC(0 − 1.5) + tBD(1.5 − 1.5) = 0

whence

tBC = +0.67

Hence, from Eq. (v)

tBD = −2.67

There are now just two unknown member forces at joint D. Hence, at D

x direction: tDB(xB − xD) + tDF(xF − xD) + tDC(xC − xD) = 0 (vi)

y direction: tDB(yB − yD) + tDF(yF − yD) + tDC(yC − yD) − 5 = 0 (vii)

Substituting values of joint coordinates and the previously calculated value of
tDB (=tBD) in Eqs (vi) and (vii) we obtain, from Eq. (vi)

−2.67(0 − 1.5) + tDF(3.0 − 1.5) + tDC(1.5 − 1.5) = 0

so that

tDF = −2.67

and from Eq. (vii)

−2.67(1.5 − 1.5) + tDF(1.5 − 1.5) + tDC(0 − 1.5) − 5 = 0

from which

tDC = −3.33
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The solution then proceeds to joint C to obtain tCF and tCE or to joint F to determine
tFC and tFE; joint F would be preferable since fewer members meet at F than at C.
Finally, the remaining unknown tension coefficient (tEC or tEF) is found by considering
the equilibrium of joint E. Then

tFC = +2.67, tFE = −2.67, tEC = 0

which the reader should verify.

The forces in the truss members are now calculated by multiplying the tension
coefficients by the member lengths, i.e.

TAB = tABLAB = −0.67 × 1.5 = −1.0 kN (compression)

TAC = tACLAC = +2.0 × 1.5 = +3.0 kN (tension)

TBC = tBCLBC

in which

LBC =
√

(xB − xC)2 + (yB − yC)2 =
√

(0 − 1.5)2 + (1.5 − 0)2 = 2.12 m

Then

TBC = +0.67 × 2.12 = +1.42 kN (tension)

Note that in the calculation of member lengths it is immaterial in which order the joint
coordinates occur in the brackets since the brackets are squared. Also

TBD = tBDLBD = −2.67 × 1.5 = −4.0 kN (compression)

Similarly

TDF = −4.0 kN (compression)

TDC = −5.0 kN (compression)

TFC = +5.67 kN (tension)

TFE = −4.0 kN (compression)

TEC = 0

4.9 GRAPHICAL METHOD OF SOLUTION

In some instances, particularly when a rapid solution is required, the member forces
in a truss may be found using a graphical method.

The method is based upon the condition that each joint in a truss is in equilibrium so
that the forces acting at a joint may be represented in magnitude and direction by the
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sides of a closed polygon (see Section 2.1). The directions of the forces must be drawn
in the same directions as the corresponding members and there must be no more
than two unknown forces at a particular joint otherwise a polygon of forces cannot be
constructed. The method will be illustrated by applying it to the truss in Ex. 4.2.

EXAMPLE 4.5 Determine the forces in the members of the Warren truss shown in
Fig. 4.21; all members are 1 m long.

2 kN 3 kN

1 kN

2.75 kN 3.25 kN

2

3

4

8

7

6

51

A
DE

CB

FIGURE 4.21 Analysis of a truss by a
graphical method

It is convenient in this approach to designate forces in members in terms of the areas
between them rather than referring to the joints at their ends. Thus, in Fig. 4.21, we
number the areas between all forces, both internal and external; the reason for this
will become clear when the force diagram for the complete structure is constructed.

The support reactions were calculated in Ex. 4.2 and are shown in Fig. 4.21. We must
start at a joint where there are no more than two unknown forces, in this example either
A or D; here we select A. The force polygon for joint A is constructed by going round
A in, say, a clockwise sense. We must then go round every joint in the same sense.

First we draw a vector 12 to represent the support reaction at A of 2.75 kN to a
convenient scale (see Fig. 4.22). Note that we are moving clockwise from the region
1 to the region 2 so that the vector 12 is vertically upwards, the direction of the
reaction at A (if we had decided to move round A in an anticlockwise sense the vector
would be drawn as 21 vertically upwards). The force in the member AB at A will be
represented by a vector 26 in the direction AB or BA, depending on whether it is tensile
or compressive, while the force in the member AE at A is represented by the vector 61
in the direction AE or EA depending, again, on whether it is tensile or compressive.
The point 6 in the force polygon is therefore located by drawing a line through the
point 2 parallel to the member AB to intersect, at 6, a line drawn through the point 1
parallel to the member AE. We see from the force polygon that the direction of the
vector 26 is towards A so that the member AB is in compression while the direction
of the vector 61 is away from A indicating that the member AE is in tension. We now



chap-04 17/1/2005 16: 28 page 102

102 • Chapter 4 / Analysis of Pin-jointed Trusses

8
7

6 1

4

3
5

2

FIGURE 4.22 Force polygon for the truss of Ex. 4.5

insert arrows on the members AB and AE in Fig. 4.21 to indicate compression and
tension, respectively.

We next consider joint B where there are now just two unknown member forces since we
have previously determined the force in the member AB; note that, moving clockwise
round B, this force is represented by the vector 62, which means that it is acting towards
B as it must since we have already established that AB is in compression. Rather than
construct a separate force polygon for the joint B we shall superimpose the force
polygon on that constructed for joint A since the vector 26 (or 62) is common to both;
we thereby avoid repetition. Thus, through the point 2, we draw a vector 23 vertically
downwards to represent the 2 kN load to the same scale as before. The force in the
member BC is represented by the vector 37 parallel to BC (or CB) while the force in
the member BE is represented by the vector 76 drawn in the direction of BE (or EB);
this locates the point 7 in the force polygon. Hence we see that the force in BC (vector
37) acts towards B indicating compression, while the force in BE (vector 76) acts away
from B indicating tension; again, arrows are inserted in Fig. 4.21 to show the action of
the forces.

Now we consider joint C where the unknown member forces are in CD and CE. The
force in the member CB at C is represented in magnitude and direction by the vector
73 in the force polygon. From the point 3 we draw a vector 34 vertically downwards to
represent the 3 kN load. The vectors 48 and 87 are then drawn parallel to the members
CD and CE and represent the forces in the members CD and CE, respectively. Thus
we see that the force in CD (vector 48) acts towards C, i.e. CD is in compression,
while the force in CE (vector 87) acts away from C indicating tension; again we insert
corresponding arrows on the members in Fig. 4.21.

Finally the vector 45 is drawn vertically upwards to represent the vertical reaction
(=3.25 kN) at D and the vector 58, which must be parallel to the member DE, inserted
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FIGURE 4.23 Compound
truss

(since the points 5 and 8 are already located in the force polygon this is a useful check
on the accuracy of construction). From the direction of the vector 58 we deduce that
the member DE is in tension.

Note that in the force polygon the vectors may be read in both directions. Thus the
vector 26 represents the force in the member AB acting at A, while the vector 62
represents the force in AB acting at B. It should also be clear why there must be con-
sistency in the sense in which we move round each joint; e.g. the vector 26 represents
the direction of the force at A in the member AB when we move in a clockwise sense
round A. However, if we then move in an anticlockwise sense round the joint B the
vector 26 would represent the magnitude and direction of the force in AB at B and
would indicate that AB is in tension, but clearly it is not.

4.10 COMPOUND TRUSSES

In some situations simple trusses are connected together to form a compound truss,
in which case it is generally not possible to calculate the forces in all the members by
the method of joints even though the truss is statically determinate.

Figure 4.23 shows a compound truss comprising two simple trusses AGC and BJC
connected at the apex C and by the linking bar GJ; all the joints are pinned and
we shall suppose that the truss carries loads at all its joints. We note that the truss
has 27 members and 15 joints so that Eq. (4.1) is satisfied and the truss is statically
determinate. This truss is, in fact, a Fink truss (see Fig. 4.1(c)).

Initially we would calculate the support reactions at A and B and commence a method
of joints solution at the joint A (or at the joint B) where there are no more than two
unknown member forces. Thus the magnitudes of FAD and FAE would be obtained.
Then, by considering the equilibrium of joint D, we would calculate FDE and FDF and
then FEF and FEG by considering the equilibrium of joint E. At this stage, however,
the analysis can proceed no further, since at each of the next joints to be considered, F
and G, there are three unknown member forces: FFG, FFI and FFH at F, and FGF, FGI

and FGJ at G. An identical situation would have arisen if the analysis had commenced
in the right-hand half of the truss at B. This difficulty is overcome by taking a section
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mm to cut the three members HC, IC and GJ and using the method of sections to
calculate the corresponding member forces. Having obtained FGJ we can consider
the equilibrium of joint G to calculate FGI and FGF. Hence FFI and FFH follow by
considering the equilibrium of joint F; the remaining unknown member forces follow.
Note that obtaining FGJ by taking the section mm allows all the member forces in the
right-hand half of the truss to be found by the method of joints.

The method of sections could be used to solve for all the member forces. First we
could obtain FHC, FIC and FGJ by taking the section mm and then FFH, FFI and FGI by
taking the section nn where FGJ is known, and so on.

4.11 SPACE TRUSSES

The most convenient method of analysing statically determinate stable space trusses
(see Eq. (4.2)) is that of tension coefficients. In the case of space trusses, however, there
are three possible equations of equilibrium for each joint (Eq. (2.11)); the moment
equations (Eq. (2.12)) are automatically satisfied since, as in the case of plane trusses,
the lines of action of all the forces in the members meeting at a joint pass through
the joint and the pin cannot transmit moments. Therefore the analysis must begin at
a joint where there are no more than three unknown forces.

The calculation of the reactions at supports in space frames can be complex. If a space
frame has a statically determinate support system, a maximum of six reaction com-
ponents can exist since there are a maximum of six equations of overall equilibrium
(Eqs (2.11) and (2.12)). However, for the truss to be stable the reactions must be ori-
entated in such a way that they can resist the components of the forces and moments
about each of the three coordinate axes. Fortunately, in many problems, it is unnec-
essary to calculate support reactions since there is usually one joint at which there are
no more than three unknown member forces.

EXAMPLE 4.6 Calculate the forces in the members of the space truss whose
elevations and plan are shown in Fig. 4.24.

In this particular problem the exact nature of the support points is not specified so that
the support reactions cannot be calculated. However, we note that at joint F there are
just three unknown member forces so that the analysis may begin at F.

The first step is to choose an axis system and an origin of axes. Any system may be
chosen so long as care is taken to ensure that there is agreement between the axis
directions in each of the three views. Also, any point may be chosen as the origin of
axes and need not necessarily coincide with a joint. In this problem it would appear
logical to choose F, since the analysis will begin at F. Furthermore, it will be helpful to
sketch the axis directions on each of the three views as shown and to insert the joint
coordinates on the plan view (Fig. 4.24(c)).
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FIGURE 4.24
Elevations and plan

of space frame of
Ex. 4.6
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(c)
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F(0, 0, 0)E(0, 0, �2)

A(�2, �2, �4)
B(�2, �2, 2)

x

z

2 m

2 m

At joint F

x direction: tFD(xD − xF) + tFB(xB − xF) + tFE(xE − xF) − 40 = 0 (i)

y direction: tFD(yD − yF) + tFB(yB − yF) + tFE(yE − yF) = 0 (ii)

z direction: tFD(zD − zF) + tFB(zB − zF) + tFE(zE − zF) = 0 (iii)

Substituting the values of the joint coordinates in Eqs (i), (ii) and (iii) in turn we obtain,
from Eq. (i)

tFD(2 − 0) + tFB(−2 − 0) + tFE(0 − 0) − 40 = 0
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whence

tFD − tFB − 20 = 0 (iv)

from Eq. (ii)

tFD(−2 − 0) + tFB(−2 − 0) + tFE(0 − 0) = 0

which gives

tFD + tFB = 0 (v)

and from Eq. (iii)

tFD(2 − 0) + tFB(2 − 0) + tFE(−2 − 0) = 0

so that

tFD + tFB − tFE = 0 (vi)

From Eqs (v) and (vi) we see by inspection that

tFE = 0

Now adding Eqs (iv) and (v)

2tFD − 20 = 0

whence

tFD = 10

Therefore, from Eq. (v)

tFB = −10

We now proceed to joint E where, since tEF = tFE, there are just three unknown
member forces

x direction: tEB(xB − xE) + tEC(xC − xE) + tEA(xA − xE) + tEF(xF − xE) = 0
(vii)

y direction: tEB(yB − yE) + tEC(yC − yE) + tEA(yA − yE) + tEF(yF − yE) − 60 = 0
(viii)

z direction: tEB(zB − zE) + tEC(zC − zE) + tEA(zA − zE) + tEF(zF − zE) = 0
(ix)

Substituting the values of the coordinates and tEF (=0) in Eqs (vii)–(ix) in turn gives,
from Eq. (vii)

tEB(−2 − 0) + tEC(2 − 0) + tEA(−2 − 0) = 0
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so that

tEB − tEC + tEA = 0 (x)

from Eq. (viii)

tEB(−2 − 0) + tEC(−2 − 0) + tEA(−2 − 0) − 60 = 0

whence

tEB + tEC + tEA + 30 = 0 (xi)

and from Eq. (ix)

tEB(2 + 2) + tEC(−4 + 2) + tEA(−4 + 2) = 0

which gives

tEB − 0.5tEC − 0.5tEA = 0 (xii)

Subtracting Eq. (xi) from Eq. (x) we have

−2tEC − 30 = 0

so that

tEC = −15

Now subtracting Eq. (xii) from Eq. (xi) (or Eq. (x)) yields

1.5tEC + 1.5tEA + 30 = 0

which gives

tEA = −5

Finally, from any of Eqs (x)–(xii),

tEB = −10

The length of each of the members is now calculated, except that of EF which is given
(=2 m). Using Pythagoras’ theorem

LFB =
√

(xB − xF)2 + (yB − yF)2 + (zB − zF)2

whence

LFB =
√

(−2 − 0)2 + (−2 − 0)2 + (2 − 0)2 = 3.46 m

Similarly

LFD = LEC = LEA = 3.46 m LEB = 4.90 m
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The forces in the members then follow

TFB = tFBLFB = −10 × 3.46 kN = −34.6 kN (compression)

Similarly

TFD = +34.6 kN (tension)

TFE = 0

TEC = −51.9 kN (compression)

TEA = −17.3 kN (compression)

TEB = −49.0 kN (compression)

The solution of Eqs (iv)–(vi) and (x)–(xii) in Ex. 4.6 was relatively straightforward in
that many of the coefficients of the tension coefficients could be reduced to unity. This
is not always the case, so that it is possible that the solution of three simultaneous
equations must be carried out. In this situation an elimination method, described in
standard mathematical texts, may be used.

4.12 A COMPUTER-BASED APPROACH

The calculation of the member forces in trusses generally involves, as we have seen, in
the solution of a number of simultaneous equations; clearly, the greater the number
of members the greater the number of equations. For a truss with N members and R
reactions N + R equations are required for a solution provided that the truss and the
support systems are both statically determinate. However, in some cases such as in
Ex. 4.6, it is possible to solve for member forces without first calculating the support
reactions. This still could mean that there would be a large number of equations to
solve so that a more mechanical approach, such as the use of a computer, would be
time and labour saving. For this we need to express the equations in matrix form.

At the joint F in Ex. 4.6 suppose that, instead of the 40 kN load, there are external
loads XF, YF and ZF applied in the positive directions of the respective axes. Eqs (i),
(ii) and (iii) are then written as

tFD(xD − xF) + tFB(xB − xF) + tFE(xE − xF) + XF = 0

tFD(yD − yF) + tFB(yB − yF) + tFE(yE − yF) + YF = 0

tFD(zD − zF) + tFB(zB − zF) + tFE(zE − zF) + ZF = 0

In matrix form these become
xD − xF xB − xF xE − xF

yD − yF yB − yF yE − yF

zD − zF zB − zF zE − zF




tFD

tFB

tFE


 =


−XF

−YF

−ZF



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or

[C][t] = [F]

where [C] is the coordinate matrix, [t] the tension coefficient matrix and [F] the force
matrix. Then

[t] = [C]−1[F]

Computer programs exist which will carry out the inversion of [C] so that the tension
coefficients are easily obtained.

In the above the matrix equation only represents the equilibrium of joint F. There are, in
fact, six members in the truss so that a total of six equations are required. The additional
equations are Eqs (vii), (viii) and (ix) in Ex. 4.6. Therefore, to obtain a complete
solution, these equations would be incorporated giving a 6 × 6 square matrix for [C].

In practice plane and space frame programs exist which, after the relevant data have
been input, give the member forces directly. It is, however, important that the funda-
mentals on which these programs are based are understood. We shall return to matrix
methods later.

P R O B L E M S

P.4.1 Determine the forces in the members of the truss shown in Fig. P.4.1 using the
method of joints and check the forces in the members JK, JD and DE by the method
of sections.

Ans. AG = +37.5, AB = −22.5, BG = −20.0, BC = −22.5, GC = −12.5, GH = +30.0,
HC = 0, HJ = +30.0, CJ = +12.5, CD = −37.5, JD = −10.0, JK = +37.5, DK = +12.5,
DE = −45.0, EK = −70.0, FE = −45.0, FK = +75.0. All in kN.

FIGURE P.4.1

G H J K

A
B C D E F

8 m

60 kN30 kN

5 � 6 m

P.4.2 Calculate the forces in the members of the truss shown in Fig. P.4.2.

Ans. AC = −30.0, AP = +26.0, CP = −8.7, CE = −25.0, PE = +8.7, PF = +17.3,
FE = −17.3, GE = −20.0, HE = +8.7, FH = +17.3, GH = −8.7, JG = −15.0,
HJ = +26.0, FB = 0, BJ = −15.0. All in kN.
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FIGURE P.4.2

10 kN

10 kN

10 kN

E
H

60°
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A
P F

B

4 m

4 � 2 m

G

J

P.4.3 Calculate the forces in the members EF, EG, EH and FH of the truss shown in
Fig. P.4.3. Note that the horizontal load of 4 kN is applied at the joint C.

Ans. EF = −20.0, EG = −80.0, EH = −33.3, FH = +106.6. All in kN.

FIGURE P.4.3

4 kN

40 kN

CA

D F H

E G B

1.5 m

6 � 2 m

40 kN

P.4.4 The roof truss shown in Fig. P.4.4 is comprised entirely of equilateral triangles;
the wind loads of 6 kN at J and B act perpendicularly to the member JB. Calculate the
forces in the members DF, EF, EG and EK.

Ans. DF = +106.4, EF = +1.7, EG = −107.3, KE = −20.8. All in kN.

FIGURE P.4.4

36 kN

C

A
D F H B

E G J

36 kN 36 kN

36 kN

K
36 kN

6 kN

4 � 3 m

6 kN
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P.4.5 The upper chord joints of the bowstring truss shown in Fig. P.4.5 lie on a parabola
whose equation has the form y = kx2 referred to axes whose origin coincides with the
uppermost joint. Calculate the forces in the members AD, BD and BC.

Ans. DA = −3.1, DB = −0.5, CB = +2.7. All in kN.

FIGURE P.4.5

2 kN 2 kN

6 � 3 m

B

A

D 7 m

C

3 kN

P.4.6 The truss shown in Fig. P.4.6 is supported by a hinge at A and a cable at D which is
inclined at an angle of 45◦ to the horizontal members. Calculate the tension, T , in the
cable and hence the forces in all the members by the method of tension coefficients.

Ans. T = 13.6, BA = −8.9, CB = −9.2, DC = −4.6, ED = +7.1, EF = −5.0,
FG = −0.4, GH = −3.3, HA = −4.7, BH = +3.4, GB = +4.1, FC = −6.5, CG = +4.6,
DF = +4.6. All in kN.

FIGURE P.4.6

0.5 m

0.5 m

5 kN7.5 kN

1 m

1 m 1 m 1 m

B

A

C

H G F E

D45°

T

P.4.7 Check your answers to problems P.4.1 and P.4.2 using a graphical method.

P.4.8 Find the forces in the members of the space truss shown in Fig. P.4.8; suggested
axes are also shown.

Ans. OA = +24.2, OB = +11.9, OC = −40.2. All in kN.
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FIGURE P.4.8
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P.4.9 Use the method of tension coefficients to calculate the forces in the members of
the space truss shown in Fig. P.4.9. Note that the loads P2 and P3 act in a horizontal
plane and at angles of 45◦ to the vertical plane BAD.

Ans. AB = +13.1, AD = +13.1, AC = −59.0. All in kN.

FIGURE P.4.9

P2 � 25 kN A

A

B

B

C

D

B, D C

A

C D

2.5 m

45° 45°

2.5 m 3 m

4 m

3 m

P1 � 25 kN P1

P2 P3

P2, P3

P3 � 25 kN

P.4.10 The pin-jointed truss shown in Fig. P.4.10 is attached to a vertical wall at the
points A, B, C and D; the members BE, BF, EF and AF are in the same horizontal plane.
The truss supports vertically downward loads of 9 and 6 kN at E and F, respectively,
and a horizontal load of 3 kN at E in the direction EF.
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Calculate the forces in the members of the truss using the method of tension
coefficients.

Ans. EF = −3.0, EC = −15.0, EB = +12.0, FB = +5.0, FA = +4.0, FD = −10.0.
All in kN.

FIGURE P.4.10
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P.4.11 Fig. P.4.11 shows the plan of a space truss which consists of six pin-jointed
members. The member DE is horizontal and 4 m above the horizontal plane containing
A, B and C while the loads applied at D and E act in a horizontal plane. Calculate the
forces in the members.

Ans. AD = 0, DC = 0, DE = +40.0, AE = 0, CE = −60.0, BE = +60.0. All in kN.

FIGURE P.4.11
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Flexible cables have been used to form structural systems for many centuries. Some of
the earliest man-made structures of any size were hanging bridges constructed from
jungle vines and creepers, and spanning ravines and rivers. In European literature
the earliest description of an iron suspension bridge was published by Verantius in
1607, while ropes have been used in military bridging from at least 1600. In modern
times, cables formed by binding a large number of steel wires together are employed
in bridge construction where the bridge deck is suspended on hangers from the cables
themselves. The cables in turn pass over the tops of towers and are fixed to anchor
blocks embedded in the ground; in this manner large, clear spans are achieved. Cables
are also used in cable-stayed bridges, as part of roof support systems, for prestressing
in concrete beams and for guyed structures such as pylons and television masts.

Structurally, cables are extremely efficient because they make the most effective use
of structural material in that their loads are carried solely through tension. Therefore,
there is no tendency for buckling to occur either from bending or from compressive
axial loads (see Chapter 21). However, many of the structures mentioned above are
statically indeterminate to a high degree. In other situations, particularly in guyed
towers and cable-stayed bridges, the extension of the cables affects the internal force
system and the analysis becomes non-linear. Such considerations are outside the scope
of this book so that we shall concentrate on cables in which loads are suspended directly
from the cable.

Two categories of cable arise; the first is relatively lightweight and carries a limited
number of concentrated loads, while the second is heavier with a more uniform dis-
tribution of load. We shall also examine, in the case of suspension bridges, the effects
of different forms of cable support at the towers.

5.1 LIGHTWEIGHT CABLES CARRYING CONCENTRATED LOADS

In the analysis of this type of cable we shall assume that the self-weight of the cable is
negligible, that it can only carry tensile forces and that the extension of the cable does
not affect the geometry of the system. We shall illustrate the method by examples.

114
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EXAMPLE 5.1 The cable shown in Fig. 5.1 is pinned to supports at A and B and
carries a concentrated load of 10 kN at a point C. Calculate the tension in each part
of the cable and the reactions at the supports.

FIGURE 5.1
Lightweight cable

carrying a
concentrated load

RA

RA,V

TCA TCB

RB,V

RB,H

RB

RA,H

A B

C

10 kN

2 m3 m

1 m
ba

Since the cable is weightless the lengths AC and CB are straight. The tensions TAC and
TCB in the parts AC and CB, respectively, may be found by considering the equilibrium
of the forces acting at C where, from Fig. 5.1, we see that

α = tan−1 1/3 = 18.4◦ β = tan−1 1/2 = 26.6◦

Resolving forces in a direction perpendicular to CB (thereby eliminating TCB) we have,
since α + β = 45◦

TCA cos 45◦ − 10 cos 26.6◦ = 0

from which

TCA = 12.6 kN

Now resolving forces horizontally (or alternatively vertically or perpendicular to CA)
gives

TCB cos 26.6◦ − TCA cos 18.4◦ = 0

so that

TCB = 13.4 kN

Since the bending moment in the cable is everywhere zero we can take moments about
B (or A) to find the vertical component of the reaction at A, RA,V (or RB,V) directly.
Then

RA,V × 5 − 10 × 2 = 0 (i)

so that

RA,V = 4 kN
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Now resolving forces vertically for the complete cable

RB,V + RA,V − 10 = 0 (ii)

which gives

RB,V = 6 kN

From the horizontal equilibrium of the cable the horizontal components of the reac-
tions at A and B are equal, i.e. RA,H = RB,H. Thus, taking moments about C for the
forces to the left of C

RA,H × 1 − RA,V × 3 = 0 (iii)

from which

RA,H = 12 kN (=RB,H)

Note that the horizontal component of the reaction at A, RA,H, would be included in
the moment equation (Eq. (i)) if the support points A and B were on different levels.
In this case Eqs (i) and (iii) could be solved simultaneously for RA,V and RA,H. Note
also that the tensions TCA and TCB could be found from the components of the support
reactions since the resultant reaction at each support, RA at A and RB at B, must be
equal and opposite in direction to the tension in the cable otherwise the cable would
be subjected to shear forces, which we have assumed is not possible. Hence

TCA = RA =
√

R2
A,V + R2

A,H =
√

42 + 122 = 12.6 kN

TCB = RB =
√

R2
B,V + R2

B,H =
√

62 + 122 = 13.4 kN

as before.

In Ex. 5.1 the geometry of the loaded cable was specified. We shall now consider the
case of a cable carrying more than one load. In the cable in Fig. 5.2(a), the loads
W1 and W2 at the points C and D produce a different deflected shape to the loads
W3 and W4 at C and D in Fig. 5.2(b). The analysis is then affected by the change
in geometry as well as the change in loading, a different situation to that in beam

FIGURE 5.2 Effect
on cable geometry

of load variation

A

C

(a) (b)

W1

W2 W3
W4

D

B A

C
D

B
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and truss analysis. The cable becomes, in effect, a mechanism and changes shape to
maintain its equilibrium; the analysis then becomes non-linear and therefore statically
indeterminate. However, if the geometry of the deflected cable is partially specified,
say the maximum deflection or sag is given, the system becomes statically determinate.

EXAMPLE 5.2 Calculate the tension in each of the parts AC, CD and DB of the
cable shown in Fig. 5.3.

FIGURE 5.3 Cable
of Ex. 5.2

0.5 m

A

C

10 kN

1.5 m 2 m 1.8 m

6 kN

D

B
b

g
a

RA

RA,V RB,V

RB,H

RB

TCA
TCD

TDC
TDBRA,H

There are different possible approaches to the solution of this problem. For exam-
ple, we could investigate the equilibrium of the forces acting at the point C and
resolve horizontally and vertically. We would then obtain two equations in which
the unknowns would be TCA, TCD, α and β. From the geometry of the cable
α = tan−1(0.5/1.5) = 18.4◦ so that there would be three unknowns remaining. A third
equation could be obtained by examining the moment equilibrium of the length AC of
the cable about A, where the moment is zero since the cable is flexible. The solution of
these three simultaneous equations would be rather tedious so that a simpler approach
is preferable.

In Ex. 5.1 we saw that the resultant reaction at the supports is equal and opposite to
the tension in the cable at the supports. Therefore, by determining RA,V and RA,H we
can obtain TCA directly. Hence, taking moments about B we have

RA,V × 5.3 − 10 × 3.8 − 6 × 1.8 = 0

from which

RA,V = 9.2 kN

Since the cable is perfectly flexible the internal moment at any point is zero. Therefore,
taking moments of forces to the left of C about C gives

RA,H × 0.5 − RA,V × 1.5 = 0
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so that

RA,H = 27.6 kN

Alternatively we could have obtained RA,H by using the fact that the resultant reaction,
RA, at A is in line with the cable at A, i.e. RA,V/RA,H = tan α = tan 18.4◦, which gives
RA,H = 27.6 kN as before. Having obtained RA,V and RA,H, TCA follows. Thus

TCA = RA =
√

R2
A,H + R2

A,V =
√

27.62 + 9.22

i.e.

TCA = 29.1 kN

From a consideration of the vertical equilibrium of the forces acting at C we have

TCD sin β + TCA sin α − 10 = TCD sin β + 29.1 sin 18.4◦ − 10 = 0

which gives

TCD sin β = 0.815 (i)

From the horizontal equilibrium of the forces at C

TCD cos β − TCA cos α = TCD cos β − 29.1 cos 18.4◦ = 0

so that

TCD cos β = 27.612 (ii)

Dividing Eq. (i) by Eq. (ii) yields

tan β = 0.0295

from which

β = 1.69◦

Therefore from either of Eq. (i) or (ii)

TCD = 27.6 kN

We can obtain the tension in DB in a similar manner. Thus, from the vertical
equilibrium of the forces at D, we have

TDB sin γ − TDC sin β − 6 = TDB sin γ − 27.6 sin 1.69◦ − 6 = 0

from which

TDB sin γ = 6.815 (iii)
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From the horizontal equilibrium of the forces at D we see that

TDB cos γ − TCB cos β = TDB cos γ − 27.6 cos 1.69◦ = 0

from which

TDB cos γ = 27.618 (iv)

Dividing Eq. (iii) by Eq. (iv) we obtain

tan γ = 0.2468

so that

γ = 13.86◦

TDB follows from either of Eq. (iii) or (iv) and is

TDB = 28.4 kN

Alternatively we could have calculated TDB by determining RB,H (=RA,H)
and RB,V.

Then

TDB = RB =
√

R2
B,H + R2

B,V

and

γ = tan−1
(

RB,V

RB,H

)

This approach would, in fact, be a little shorter than the one given above. However, in
the case where the cable carries more than two loads, the above method must be used
at loading points adjacent to the support points.

5.2 HEAVY CABLES

We shall now consider the more practical case of cables having a significant self-weight.

GOVERNING EQUATION FOR DEFLECTED SHAPE

The cable AB shown in Fig. 5.4(a) carries a distributed load w(x) per unit of its hori-
zontally projected length. An element of the cable, whose horizontal projection if δx,
is shown, together with the forces acting on it, in Fig. 5.4(b). Since δx is infinitesimally
small, the load intensity may be regarded as constant over the length of the element.
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FIGURE 5.4 Cable
subjected to a

distributed load

B V � δV
T � δT
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V
T
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u
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RA,H

RB,H

Suppose that T is the tension in the cable at the point x and that T + δT is the ten-
sion at the point x + δx; the vertical and horizontal components of T are V and H ,
respectively. In the absence of any externally applied horizontal loads we see that

H = constant

and from the vertical equilibrium of the element we have

V + δV − w(x)δx − V = 0

so that, in the limit as δx → 0

dV
dx

= w(x) (5.1)

From Fig. 5.4(b)

V
H

= tan θ = +dy
dx

where y is the vertical deflection of the cable at any point referred to the x axis.

Hence

V = +H
dy
dx

so that

dV
dx

= +H
d2y
dx2 (5.2)

Substituting for dV/dx from Eq. (5.1) into Eq. (5.2) we obtain the governing equation
for the deflected shape of the cable. Thus

H
d2y
dx2 = +w(x) (5.3)

We are now in a position to investigate cables subjected to different load applications.
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δs

δy

δx

ws

FIGURE 5.5 Elemental length of cable under its own weight

CABLE UNDER ITS OWN WEIGHT

In this case let us suppose that the weight per actual unit length of the cable is ws. Then,
by referring to Fig. 5.5, we see that the weight per unit of the horizontally projected
length of the cable, w(x), is given by

w(x)δx = wsδs (5.4)

Now, in the limit as δs → 0, ds = (dx2 + dy2)1/2

Whence, from Eq. (5.4)

w(x) = ws

[
1 +

(
dy
dx

)2
]1/2

(5.5)

Substituting for w(x) from Eq. (5.5) in Eq. (5.3) gives

H
d2y
dx2 = +ws

[
1 +

(
dy
dx

)2
]1/2

(5.6)

Let dy/dx = p. Then Eq. (5.6) may be written

H
dp
dx

= +ws(1 + p2)1/2

or, rearranging and integrating∫
dp

(1 + p2)1/2 = +
∫

ws

H
dx (5.7)

The term on the left-hand side of Eq. (5.7) is a standard integral. Thus

sinh−1 p = +ws

H
x + C1

in which C1 is a constant of integration. Then

p = sinh
(
+ws

H
x + C1

)
Now substituting for p (=dy/dx) we obtain

dy
dx

= sinh
(
+ws

H
x + C1

)
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which, when integrated, becomes

y = + H
ws

cosh
(
+ws

H
x + C1

)
+ C2 (5.8)

in which C2 is a second constant of integration.

The deflected shape defined by Eq. (5.8) is known as a catenary; the constants C1 and
C2 may be found using the boundary conditions of a particular problem.

EXAMPLE 5.3 Determine the equation of the deflected shape of the symmetrically
supported cable shown in Fig. 5.6, if its self-weight is ws per unit of its actual length.

A

L

x

y

B

D

FIGURE 5.6 Deflected
shape of a
symmetrically
supported cable

The equation of its deflected shape is given by Eq. (5.8), i.e.

y = + H
ws

cosh
(
+ws

H
x + C1

)
+ C2 (i)

Differentiating Eq. (i) with respect to x we have

dy
dx

= sinh
(
+ws

H
x + C1

)
(ii)

From symmetry, the slope of the cable at mid-span is zero, i.e. dy/dx = 0 when x = L/2.
Thus, from Eq. (ii)

0 = sinh
(

+ws

H
L
2

+ C1

)

from which

C1 = −ws

H
L
2

Eq. (i) then becomes

y = + H
ws

cosh
[
+ws

H

(
x − L

2

)]
+ C2 (iii)

The deflection of the cable at its supports is zero, i.e. y = 0 when x = 0 and x = L. From
the first of these conditions

0 = + H
ws

cosh
(

−ws

H
L
2

)
+ C2
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so that

C2 = − H
ws

cosh
(

−ws

H
L
2

)
= − H

ws
cosh

(
ws

H
L
2

)
(note: cosh(−x) ≡ cosh(x))

Eq. (iii) is then written as

y = + H
ws

{
cosh

[
+ws

H

(
x − L

2

)]
− cosh

(
ws

H
L
2

)}
(iv)

Equation (iv) gives the deflected shape of the cable in terms of its self-weight, its
length and the horizontal component, H , of the tension in the cable. In a particular
case where, say, ws, L and H are specified, the sag, D, of the cable is obtained directly
from Eq. (iv). Alternatively if, instead of H , the sag D is fixed, H is obtained from Eq.
(iv) which then becomes a transcendental equation which may be solved graphically.

Since H is constant the maximum tension in the cable will occur at the point where
the vertical component of the tension in the cable is greatest. In the above example
this will occur at the support points where the vertical component of the tension in the
cable is equal to half its total weight. For a cable having supports at different heights,
the maximum tension will occur at the highest support since the length of cable from
its lowest point to this support is greater than that on the opposite side of the lowest
point. Furthermore, the slope of the cable at the highest support is a maximum (see
Fig. 5.4(a)).

CABLE SUBJECTED TO A UNIFORM HORIZONTALLY
DISTRIBUTED LOAD

This loading condition is, as we shall see when we consider suspension bridges, more
representative of that in actual suspension structures than the previous case.

For the cable shown in Fig. 5.7, Eq. (5.3) becomes

H
d2y
dx2 = +w (5.9)

FIGURE 5.7 Cable
carrying a uniform

horizontally
distributed load

h

L1 L2

H(in CB)

RB � Tmax

H(in CA)

x

y

w

A

C

B

D

a
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Integrating Eq. (5.9) with respect to x we have

H
dy
dx

= +wx + C1 (5.10)

again integrating

Hy = +w
x2

2
+ C1x + C2 (5.11)

The boundary conditions are y = 0 at x = 0 and y = h at x = L. The first of these gives
C2 = 0 while from the second we have

H(+h) = +w
L2

2
+ C1L

so that

C1 = −wL
2

+ H
h
L

Equations (5.10) and (5.11) then become, respectively

dy
dx

= + w
H

x − wL
2H

+ h
L

(5.12)

and

y = + w
2H

x2 −
(

wL
2H

− h
L

)
x (5.13)

Thus the cable in this case takes up a parabolic shape.

Equations (5.12) and (5.13) are expressed in terms of the horizontal component, H ,
of the tension in the cable, the applied load and the cable geometry. If, however, the
maximum sag, D, of the cable is known, H may be eliminated as follows.

The position of maximum sag coincides with the point of zero slope. Thus from
Eq. (5.12)

0 = + w
H

x − wL
2H

+ h
L

so that

x = L
2

− Hh
wL

= L1 (see Fig. 5.7)

Then the horizontal distance, L2, from the lowest point of the cable to the support at
B is given by

L2 = L − L1 = L
2

+ Hh
wL

Now considering the moment equilibrium of the length CB of the cable about B we
have, from Fig. 5.7

HD − w
L2

2
2

= 0
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so that

HD − w
2

(
L
2

+ Hh
wL

)2

= 0 (5.14)

Equation (5.14) is a quadratic equation in H and may be solved for a specific case
using the formula.

Alternatively, H may be determined by considering the moment equilibrium of the
lengths AC and CB about A and C, respectively. Thus, for AC

H(D − h) − w
L2

1
2

= 0

which gives

H = wL2
1

2(D − h)
(5.15)

For CB

HD − wL2
2

2
= 0

so that

H = wL2
2

2D
(5.16)

Equating Eqs (5.15) and (5.16)

wL2
1

2(D − h)
= wL2

2
2D

which gives

L1 =
√

D − h
D

L2

But

L1 + L2 = L

therefore

L2

[√
D − h

D
+ 1

]
= L

from which

L2 = L(√
D − h

D + 1
) (5.17)

Then, from Eq. (5.16)

H = wL2

2D
[√

D − h
D + 1

]2 (5.18)
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As in the case of the catenary the maximum tension will occur, since H = constant, at
the point where the vertical component of the tension is greatest. Thus, in the cable of
Fig. 5.7, the maximum tension occurs at B where, as L2 > L1, the vertical component
of the tension (=wL2) is greatest. Hence

Tmax =
√

(wL2)2 + H2 (5.19)

in which L2 is obtained from Eq. (5.17) and H from one of Eqs (5.14), (5.16) or (5.18).

At B the slope of the cable is given by

α = tan−1
(

wL
H

)
(5.20)

or, alternatively, from Eq. (5.12)(
dy
dx

)
z=L

= + w
H

L − wL
2H

+ h
L

= +wL
2H

+ h
L

(5.21)

For a cable in which the supports are on the same horizontal level, i.e. h = 0, Eqs
(5.12), (5.13), (5.14) and (5.19) reduce, respectively, to

dy
dx

= w
H

(
x − L

2

)
(5.22)

y = w
2H

(x2 − Lx) (5.23)

H = wL2

8D
(5.24)

Tmax = wL
2

√
1 +

(
L

4D

)2

(5.25)

We observe from the above that the analysis of a cable under its own weight, that is a
catenary, yields a more complex solution than that in which the load is assumed to be
uniformly distributed horizontally. However, if the sag in the cable is small relative to
its length, this assumption gives results that differ only slightly from the more accurate
but more complex catenary approach. Therefore, in practice, the loading is generally
assumed to be uniformly distributed horizontally.

EXAMPLE 5.4 Determine the maximum tension and the maximum slope in the
cable shown in Fig. 5.8 if it carries a uniform horizontally distributed load of intensity
10 kN/m.

From Eq. (5.17)

L2 = 200(√
18 − 6

18 + 1
) = 110.1 m
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FIGURE 5.8
Suspension cable

of Ex. 5.4

6 m A

C

B

10L2

18 m

a

200 m

H

L1 L2

L2/2
Tmax

Then, from Eq. (5.16)

H = 10 × 110.12

2 × 18
= 3367.2 kN

The maximum tension follows from Eq. (5.19), i.e.

Tmax =
√

(10 × 110.1)2 + 3367.22 = 3542.6 kN

Then, from Eq. (5.20)

αmax = tan−1 10 × 110.1
3367.2

= 18.1◦ at B

SUSPENSION BRIDGES

A typical arrangement for a suspension bridge is shown diagrammatically in Fig. 5.9.
The bridge deck is suspended by hangers from the cables which pass over the tops of
the towers and are secured by massive anchor blocks embedded in the ground. The
advantage of this form of bridge construction is its ability to provide large clear spans
so that sea-going ships, say, can pass unimpeded. Typical examples in the UK are the
suspension bridges over the rivers Humber and Severn, the Forth road bridge and the
Menai Straits bridge in which the suspension cables comprise chain links rather than
tightly bound wires. Suspension bridges are also used for much smaller spans such as
pedestrian footbridges and for light vehicular traffic over narrow rivers.

The major portion of the load carried by the cables in a suspension bridge is due to
the weight of the deck, its associated stiffening girder and the weight of the vehicles
crossing the bridge. By comparison, the self-weight of the cables is negligible. We may
assume therefore that the cables carry a uniform horizontally distributed load and
therefore take up a parabolic shape; the analysis described in the preceding section
then applies.
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FIGURE 5.9
Diagrammatic

representation of a
suspension bridge Anchor block

Anchor cable

Tower

Cable
Hanger

Bridge deck

FIGURE 5.10
Idealization of
cable supports

(Anchor cable)
TA

TC
TA TC

hT

(a)

b a ab

(b)

(Suspension cable) (Anchor cable) (Suspension cable)

The cables, as can be seen from Fig. 5.9, are continuous over the tops of the towers. In
practice they slide in grooves in saddles located on the tops of the towers. For conve-
nience we shall idealize this method of support into two forms, the actual method lying
somewhere between the two. In Fig. 5.10(a) the cable passes over a frictionless pulley,
which means that the tension, TA, in the anchor cable is equal to TC, the tension at the
tower in the suspension cable. Generally the inclination, β, of the anchor cable is fixed
and will not be equal to the inclination, α, of the suspension cable at the tower. There-
fore, there will be a resultant horizontal force, HT, on the top of the tower given by

HT = TC cos α − TA cos β

or, since TA = TC

HT = TC(cos α − cos β) (5.26)

HT, in turn, produces a bending moment, MT, in the tower which is a maximum at the
tower base. Hence

MT(max) = HThT = TC(cos α − cos β)hT (5.27)

Also, the vertical compressive load, VT, on the tower is

VT = TC(sin α + sin β) (5.28)
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In the arrangement shown in Fig. 5.10(b) the cable passes over a saddle which is
supported on rollers on the top of the tower. The saddle therefore cannot resist a
horizontal force and adjusts its position until

TA cos β = TC cos α (5.29)

For a given value of β, Eq. (5.29) determines the necessary value of TA. Clearly, since
there is no resultant horizontal force on the top of the tower, the bending moment
in the tower is everywhere zero. Finally, the vertical compressive load on the tower is
given by

VT = TC sin α + TA sin β (5.30)

EXAMPLE 5.5 The cable of a suspension bridge, shown in Fig. 5.11, runs over a
frictionless pulley on the top of each of the towers at A and B and is fixed to anchor
blocks at D and E. If the cable carries a uniform horizontally distributed load of
120 kN/m determine the diameter required if the permissible working stress on the
gross area of the cable, including voids, is 600 N/mm2. Also calculate the bending
moment and direct load at the base of a tower and the required weight of the anchor
blocks.

FIGURE 5.11
Suspension bridge

of Ex. 5.5

A

D

C

B

E

30 m

300 m
WA

120 kN/m
50 m

45°45°

The tops of the towers are on the same horizontal level, so that the tension in the
cable at these points is the same and will be the maximum tension in the cable. The
maximum tension is found directly from Eq. (5.25) and is

Tmax = 120 × 300
2

√
1 +

(
300

4 × 30

)2

= 48 466.5 kN

The maximum direct stress, σmax, is given by

σmax = Tmax

πd2/4
(see Section 7.1)

in which d is the cable diameter. Hence

600 = 48 466.5 × 103

πd2/4
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which gives

d = 320.7 mm

The angle of inclination of the suspension cable to the horizontal at the top of the
tower is obtained using Eq. (5.20) in which L2 = L/2. Hence

α = tan−1
(

wL
2H

)
= tan−1

(
120 × 300

2H

)

where H is given by Eq. (5.24). Thus

H = 120 × 3002

8 × 30
= 45 000 kN

so that

α = tan−1
(

120 × 300
2 × 45 000

)
= 21.8◦

Therefore, from Eq. (5.27), the bending moment at the base of the tower is

MT = 48 466.5(cos 21.8◦ − cos 45◦) × 50

from which

MT = 536 000 kN m

The direct load at the base of the tower is found using Eq. (5.28), i.e.

VT = 48 466.5(sin 21.8◦ + sin 45◦)

which gives

VT = 52 269.9 kN

Finally the weight, WA, of an anchor block must resist the vertical component of the
tension in the anchor cable. Thus

WA = TA cos 45◦ = 48 466.5 cos 45◦

from which

WA = 34 271.0 kN.

P R O B L E M S

P.5.1 Calculate the tension in each segment of the cable shown in Fig. P.5.1 and also
the vertical distance of the points B and E below the support points A and F.

Ans. TAB = TFE = 26.9 kN, TCB = TED = 25.5 kN, TCD = 25.0 kN, 1.0 m.
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FIGURE P.5.1

A

B

5 kN
5 kN

2.5 m 2.5 m 2.5 m 2.5 m 2.5 m

1.5 m

5 kN
5 kN

C D
E

F

P.5.2 Calculate the sag at the point B in the cable shown in Fig. P.5.2 and the tension
in each of its segments.

Ans. 0.81 m relative to A. TAB = 4.9 kN, TBC = 4.6 kN, TDC = 4.7 kN.

FIGURE P.5.2

A

B
C

D 0.7 m

0.5 m
1 kN

2 kN

2 m2 m2 m

P.5.3 Calculate the sag, relative to A, of the points C and D in the cable shown in
Fig. P.5.3. Determine also the tension in each of its segments.

Ans. C = 4.2 m, D = 3.1 m, TAB = 10.98 kN, TBC = 9.68 kN, TCD = 9.43 kN.

FIGURE P.5.3

A

B

C
4 kN

5 kN

3 kN

4 m 4 m5 m 5 m

D

E
2.6 m

0.5 m

P.5.4 A cable that carries a uniform horizontally distributed load of 10 kN/m is sus-
pended between two points that are at the same level and 80 m apart. Determine the
minimum sag that may be allowed at mid-span if the maximum tension in the cable is
limited to 1000 kN.

Ans. 8.73 m.

P.5.5 A suspension cable is suspended from two points 102 m apart and at the same hor-
izontal level. The self-weight of the cable can be considered to be equivalent to 36 N/m
of horizontal length. If the cable carries two concentrated loads each of 10 kN at 34 m
and 68 m horizontally from the left-hand support and the maximum sag in the cable
is 3 m, determine the maximum tension in the cable and the vertical distance between
the concentrated loads and the supports.

Ans. 129.5 kN, 2.96 m.
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P.5.6 A cable of a suspension bridge has a span of 80 m, a sag of 8 m and carries a
uniform horizontally distributed load of 24 kN/m over the complete span. The cable
passes over frictionless pulleys at the top of each tower which are of the same height.
If the anchor cables are to be arranged such that there is no bending moment in the
towers, calculate the inclination of the anchor cables to the horizontal. Calculate also
the maximum tension in the cable and the vertical force on a tower.

Ans. 21.8◦, 2584.9 kN, 1919.9 kN.

P.5.7 A suspension cable passes over saddles supported by roller bearings on the top
of two towers 120 m apart and differing in height by 2.5 m. The maximum sag in the
cable is 10 m and each anchor cable is inclined at 55◦ to the horizontal. If the cable
carries a uniform horizontally distributed load of 25 kN/m and is to be made of steel
having an allowable tensile stress of 240 N/mm2, determine its minimum diameter.
Calculate also the vertical load on the tallest tower.

Ans. 218.7 mm, 8990.9 kN.

P.5.8 A suspension cable has a sag of 40 m and is fixed to two towers of the same height
and 400 m apart; the effective cross-sectional area of the cable is 0.08 m2. However, due
to corrosion, the effective cross-sectional area of the central half of the cable is reduced
by 20%. If the stress in the cable is limited to 500 N/mm2, calculate the maximum
allowable distributed load the cable can support. Calculate also the inclination of the
cable to the horizontal at the top of the towers.

Ans. 62.8 kN/m, 21.8◦.

P.5.9 A suspension bridge with two main cables has a span of 250 m and a sag of 25 m.
It carries a uniform horizontally distributed load of 25 kN/m and the allowable stress
in the cables is 800 N/mm2. If each anchor cable makes an angle of 45◦ with the towers,
calculate:

(a) the required cross-sectional area of the cables,
(b) the load in an anchor cable and the overturning force on a tower, when

(i) the cables run over a pulley device,
(ii) the cables are attached to a saddle resting on rollers.

Ans. (a) 5259 mm2, (b) (i) 4207.2 kN, 931.3 kN (ii) 5524.3 kN, 0.

P.5.10 A suspension cable passes over two towers 80 m apart and carries a load of
5 kN/m of span. If the top of the left-hand tower is 4 m below the top of the right-hand
tower and the maximum sag in the cable is 16 m, calculate the maximum tension in the
cables. Also, if the cable passes over saddles on rollers on the tops of the towers with
the anchor cable at 45◦ to the horizontal, calculate the vertical thrust on the right-hand
tower.

Ans. 358.3 kN, 501.5 kN.
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The Romans were the first to use arches as major structural elements, employing
them, mainly in semicircular form, in bridge and aqueduct construction and for roof
supports, particularly the barrel vault. Their choice of the semicircular shape was due
to the ease with which such an arch could be set out. Generally these arches, as we
shall see, carried mainly compressive loads and were therefore constructed from stone
blocks, or voussoirs, where the joints were either dry or used weak mortar.

During the Middle Ages, Gothic arches, distinguished by their pointed apex, were used
to a large extent in the construction of the great European cathedrals. The horizontal
thrust developed at the supports, or springings, and caused by the tendency of an arch
to ‘flatten’ under load was frequently resisted by flying buttresses. This type of arch was
also used extensively in the 19th century.

In the 18th century masonry arches were used to support bridges over the large number
of canals that were built in that period. Many of these bridges survive to the present
day and carry loads unimagined by their designers.

Today arches are usually made of steel or of reinforced or prestressed concrete and
can support both tensile as well as compressive loads. They are used to support bridge
decks and roofs and vary in span from a few metres in a roof support system to sev-
eral hundred metres in bridges. A fine example of a steel arch bridge is the Sydney
harbour bridge in which the deck is supported by hangers suspended from the arch
(see Fig. 1.6(a) and (b) for examples of bridge decks supported by arches).

Arches are constructed in a variety of forms. Their components may be straight or
curved, but generally fall into two categories. The first, which we shall consider in this
chapter, is the three-pinned arch which is statically determinate, whereas the second,
the two-pinned arch, is statically indeterminate and will be considered in Chapter 16.

Initially we shall examine the manner in which arches carry loads.

6.1 THE LINEAR ARCH

There is a direct relationship between the action of a flexible cable in carrying loads and
the action of an arch. In Section 5.1 we determined the tensile forces in the segments

133
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of lightweight cables carrying concentrated loads and saw that the geometry of a cable
changed under different loading systems; hence, for example, the two geometries of
the same cable in Fig. 5.2(a) and (b).

Let us suppose that the cable in Fig. 5.2(a) is made up of three bars or links AC, CD and
DB hinged together at C and D and pinned to the supports at A and B. If the loading
remains unchanged the deflected shape of the three-link structure will be identical to
that of the cable in Fig. 5.2(a) and is shown in Fig. 6.1(a). Furthermore the tension
in a link will be exactly the same as the tension in the corresponding segment of the
cable. Now suppose that the three-link structure of Fig. 6.1(a) is inverted as shown in
Fig. 6.1(b) and that the loads W1 and W2 are applied as before. In this situation the
forces in the links will be identical in magnitude to those in Fig. 6.1(a) but will now be
compressive as opposed to tensile; the structure shown in Fig. 6.1(b) is patently an arch.

The same argument can be applied to any cable and loading system so that the internal
forces in an arch may be deduced by analysing a cable having exactly the same shape
and carrying identical loads, a fact first realized by Robert Hooke in the 17th century.
As in the example in Fig. 6.1 the internal forces in the arch will have the same magnitude
as the corresponding cable forces but will be compressive, not tensile.

It is obvious from the above that the internal forces in the arch act along the axes of
the different components and that the arch is therefore not subjected to internal shear
forces and bending moments; an arch in which the internal forces are purely axial is
called a linear arch. We also deduce, from Section 5.2, that the internal forces in an arch
whose shape is that of a parabola and which carries a uniform horizontally distributed
load are purely axial. Further, it will now have become clear why the internal members
of a bowstring truss (Section 4.1) carrying loads of equal magnitude along its upper
chord joints carry zero force.

However, there is a major difference between the behaviour of the two structures in
Fig. 6.1(a) and (b). A change in the values of the loads W1 and W2 will merely result in
a change in the geometry of the structure in Fig. 6.1(a), whereas the slightest changes
in the values of W1 and W2 in Fig. 6.1(b) will result in the collapse of the arch as a
mechanism. In this particular case collapse could be prevented by replacing the pinned

FIGURE 6.1
Equivalence of cable

and arch structures

A A

C
D

B

C
D

B

(a) (b)
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W2

W2
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joint at C (or D) by a rigid joint as shown in Fig. 6.2. The forces in the members remain
unchanged since the geometry of the structure is unchanged, but the arch is now stable
and has become a three-pinned arch which, as we shall see, is statically determinate.

If now the pinned joint at D was replaced by a rigid joint, the forces in the mem-
bers would remain the same, but the arch has become a two-pinned arch. In this case,
because of the tension cable equivalence, the arch is statically determinate. It is impor-
tant to realize, however, that the above arguments only apply for the set of loads W1

and W2 which produce the particular shape of cable shown in Fig. 6.1(a). If the loads
were repositioned or changed in magnitude, the two-pinned arch would become stat-
ically indeterminate and would probably cease to be a linear arch so that bending
moments and shear forces would be induced. The three-pinned arch of Fig. 6.2 would
also become non-linear if the loads were repositioned or changed in magnitude.

In the above we have ignored the effect on the geometry of the arch caused by the
shortening of the members. The effect of this on the three-pinned arch is negligible
since the pins can accommodate the small changes in angle between the members
which this causes. This is not the case in a two-pinned arch or in an arch with no
pins at all (in effect a portal frame) so that bending moments and shear forces are
induced. However, so long as the loads (W1 and W2 in this case) remain unchanged
in magnitude and position, the corresponding stresses are ‘secondary’ and will have
little effect on the axial forces.

The linear arch, in which the internal forces are purely axial, is important for the
structural designer since the linear arch shape gives the smallest stresses. If, how-
ever, the thrust line is not axial, bending stresses are induced and these can cause
tension on the inner or outer faces (the intrados and extrados) of the arch. In a
masonry arch in which the joints are either dry or made using a weak mortar, this
can lead to cracking and possible failure. Furthermore, if the thrust line lies out-
side the faces of the arch, instability leading to collapse can also occur. We shall
deduce in Section 9.2 that for no tension to be developed in a rectangular cross sec-
tion, the compressive force on the section must lie within the middle third of the
section.

In small-span arch bridges, these factors are not of great importance since the greatest
loads on the arch come from vehicular traffic. These loads vary with the size of the
vehicle and its position on the bridge, so that it is generally impossible for the designer
to achieve a linear arch. On the other hand, in large-span arch bridges, the self-weight

W1
W2

A B

C
D

FIGURE 6.2 Linear three-pinned arch
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of the arch forms the major portion of the load the arch has to carry. In Section 5.2 we
saw that a cable under its own weight takes up the shape of a catenary. It follows that
the ideal shape for an arch of constant thickness is an inverted catenary. However, in
the analysis of the three-pinned arch we shall assume a general case in which shear
forces and bending moments, as well as axial forces, are present.

6.2 THE THREE-PINNED ARCH

A three-pinned arch would be used in situations where there is a possibility of support
displacement; this, in a two-pinned arch, would induce additional stresses. In the
analysis of a three-pinned arch the first step, generally, is to determine the support
reactions.

SUPPORT REACTIONS – SUPPORTS ON SAME HORIZONTAL
LEVEL

Consider the arch shown in Fig. 6.3. It carries an inclined concentrated load, W , at a
given point D, a horizontal distance a from the support point A. The equation of the
shape of the arch will generally be known so that the position of specified points on
the arch, say D, can be obtained. We shall suppose that the third pin is positioned at
the crown, C, of the arch, although this need not necessarily be the case; the height or
rise of the arch is h.

The supports at A and B are pinned but neither can be a roller support or the arch
would collapse. Therefore, in addition to the two vertical components of the reactions
at A and B, there will be horizontal components RA,H and RB,H. Thus, there are
four unknown components of reaction but only three equations of overall equilibrium
(Eq. (2.10)) so that an additional equation is required. This is obtained from the fact
that the third pin at C is unable to transmit bending moments although, obviously, it
is able to transmit shear forces.

FIGURE 6.3
Three-pinned arch

A

C

B

D

a

a

RA,H
RB,H

RA,V RB,V

L/2 L/2

hD

h

W
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Then, from the overall vertical equilibrium of the arch in Fig. 6.3, we have

RA,V + RB,V − W cos α = 0 (6.1)

and from the horizontal equilibrium

RA,H − RB,H − W sin α = 0 (6.2)

Now taking moments about, say, B,

RA,VL − W cos α(L − a) − W sin αhD = 0 (6.3)

The internal moment at C is zero so that we can take moments about C of forces to
the left or right of C. A slightly simpler expression results by considering forces to the
left of C, i.e.

RA,V
L
2

− RA,Hh = 0 (6.4)

Equations (6.1)–(6.4) enable the four components of reaction to be found; the normal
force, shear force and bending moment at any point in the arch follow.

EXAMPLE 6.1 Calculate the normal force, shear force and bending moment at the
point X in the semicircular arch shown in Fig. 6.4.

FIGURE 6.4
Three-pinned arch

of Ex. 6.1

C

BA

6 m

60 kN

100 kN

45°

30°

30°

RA,V RB,V

RA,H
RB,H

X

In this example we can find either vertical component of reaction directly by taking
moments about one of the support points. Hence, taking moments about B, say,

RA,V × 12 − 60(6 cos 30◦ + 6) − 100(6 sin 30◦ + 6) = 0

which gives

RA,V = 131.0 kN
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Now resolving forces vertically

RB,V + RA,V − 60 − 100 = 0

which, on substituting for RA,V, gives

RB,V = 29.0 kN

Since no horizontal loads are present, we see by inspection that

RA,H = RB,H

Finally, taking moments of forces to the right of C about C (this is a little simpler than
considering forces to the left of C) we have

RB,H × 6 − RB,V × 6 = 0

from which

RB,H = 29.0 kN = RA,H

The normal force at the point X is obtained by resolving the forces to one side of X
in a direction tangential to the arch at X. Thus, considering forces to the left of X and
taking tensile forces as positive

NX = −RA,V cos 45◦ − RA,H sin 45◦ + 60 cos 45◦

so that

NX = −70.7 kN

and is compressive.

The shear force at X is found by resolving the forces to one side of X in a direction
perpendicular to the tangent at X. We shall take a positive shear force as acting radially
inwards when it is to the left of a section. So, considering forces to the left of X

SX = −RA,V sin 45◦ + RA,H cos 45◦ + 60 sin 45◦

which gives

SX = −29.7 kN

Now taking moments about X for forces to the left of X and regarding a positive
moment as causing tension on the underside of the arch, we have

MX = RA,V(6 − 6 cos 45◦) − RA,H × 6 sin 45◦ − 60 (6 cos 30◦ − 6 cos 45◦)

from which

MX = +50.0 kN m

Note that in Ex. 6.1 the sign conventions adopted for normal force, shear force and
bending moment are the same as those specified in Chapter 3.
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SUPPORT REACTIONS – SUPPORTS ON DIFFERENT LEVELS

In the three-pinned arch shown in Fig. 6.5 the support at B is a known height, hB,
above A. Let us suppose that the equation of the shape of the arch is known so that
all dimensions may be calculated. Now, resolving forces vertically gives

RA,V + RB,V − W cos α = 0 (6.5)

and horizontally we have

RA,H − RB,H − W sin α = 0 (6.6)

Also, taking moments about B, say,

RA,VL − RA,HhB − W cos α(L − a) − W sin α(hD − hB) = 0 (6.7)

Note that, unlike the previous case, the horizontal component of the reaction at A is
included in the overall moment equation (Eq. (6.7)).

Finally we can take moments of all the forces to the left or right of C about C since
the internal moment at C is zero. In this case the overall moment equation (Eq. (6.7))
includes both components, RA,V and RA,H, of the support reaction at A. If we now
consider moments about C of forces to the left of C, we shall obtain a moment equation
in terms of RA,V and RA,H. This equation, with Eq. (6.7), provides two simultaneous
equations which may be solved for RA,V and RA,H. Alternatively if, when we were
considering the overall moment equilibrium of the arch, we had taken moments about
A, Eq. (6.7) would have been expressed in terms of RB,V and RB,H. Then we would
obtain the fourth equation by taking moments about C of the forces to the right of C
and the two simultaneous equations would be in terms of RB,V and RB,H. Theoretically
this approach is not necessary but it leads to a simpler solution. Referring to Fig. 6.5

RA,Vc − RA,Hh = 0 (6.8)

FIGURE 6.5
Three-pinned arch

with supports at
different levels
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The solution of Eqs (6.7) and (6.8) gives RA,V and RA,H, then RB,V and RB,H follow
from Eqs (6.5) and (6.6), respectively.

EXAMPLE 6.2 The parabolic arch shown in Fig. 6.6 carries a uniform horizontally
distributed load of intensity 10 kN/m over the portion AC of its span. Calculate the
values of the normal force, shear force and bending moment at the point D.

FIGURE 6.6
Parabolic arch of

Ex. 6.2

hD

hB

A

D

C

B

7 m

7.5 m
15 m 10 m

x

ya

10 kN/m

RA,H

RA,V

RB,H

RB,V

Initially we must determine the equation of the arch so that the heights of B and D
may be calculated. The simplest approach is to choose the origin of axes at C so that
the equation of the parabola may be written in the form

y = kx2 (i)

in which k is a constant. At A, y = 7 m when x = −15 m. Hence, from Eq. (i)

7 = k × (−15)2

whence

k = 0.0311

and Eq. (i) becomes

y = 0.0311x2 (ii)

Then

yB = 0.0311 × (10)2 = 3.11 m

Hence

hB = 7 − 3.11 = 3.89 m
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Also

yD = 0.0311 × (−7.5)2 = 1.75 m

so that

hD = 7 − 1.75 = 5.25 m

Taking moments about A for the overall equilibrium of the arch we have

RB,V × 25 + RB,H × 3.89 − 10 × 15 × 7.5 = 0

which simplifies to

RB,V + 0.16RB,H − 45.0 = 0 (iii)

Now taking moments about C for the forces to the right of C we obtain

RB,V × 10 − RB,H × 3.11 = 0

which gives

RB,V − 0.311RB,H = 0 (iv)

The simultaneous solution of Eqs (iii) and (iv) gives

RB,V = 29.7 kN RB,H = 95.5 kN

From the horizontal equilibrium of the arch we have

RA,H = RB,H = 95.5 kN

and from the vertical equilibrium

RA,V + RB,V − 10 × 15 = 0

which gives

RA,V = 120.3 kN

To calculate the normal force and shear force at the point D we require the slope of
the arch at D. From Eq. (ii)(

dy
dx

)
D

= 2 × 0.0311 × (−7.5) = −0.4665 = − tan α

Hence

α = 25.0◦
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Now resolving forces to the left (or right) of D in a direction parallel to the tangent at
D we obtain the normal force at D. Hence

ND = −RA,V sin 25.0◦ − RA,H cos 25.0◦ + 10 × 7.5 sin 25.0◦

which gives

ND = −105.7 kN (compression)

The shear force at D is then

SD = −RA,V cos 25.0◦ + RA,H sin 25.0◦ + 10 × 7.5 cos 25.0◦

so that

SD = −0.7 kN

Finally the bending moment at D is

MD = RA,V × 7.5 − RA,H × 5.25 − 10 × 7.5 × 7.5
2

from which

MD = +119.6 kN m

6.3 A THREE-PINNED PARABOLIC ARCH CARRYING A

UNIFORM HORIZONTALLY DISTRIBUTED LOAD

In Section 5.2 we saw that a flexible cable carrying a uniform horizontally distributed
load took up the shape of a parabola. It follows that a three-pinned parabolic arch
carrying the same loading would experience zero shear force and bending moment
at all sections. We shall now investigate the bending moment in the symmetrical
three-pinned arch shown in Fig. 6.7.

FIGURE 6.7
Parabolic arch

carrying a uniform
horizontally

distributed load

w
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xRA,H
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RB,H
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y
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A B
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The vertical components of the support reactions are, from symmetry,

RA,V = RB,V = wL
2

Also, in the absence of any horizontal loads

RA,H = RB,H

Now taking moments of forces to the left of C about C,

RA,Hh − RA,V
L
2

+ wL
2

L
4

= 0

which gives

RA,H = wL2

8h
With the origin of axes at A, the equation of the parabolic shape of the arch may be
shown to be

y = 4h
L2 (Lx − x2)

The bending moment at any point P(x, y) in the arch is given by

MP = RA,Vx − RA,Hy − wx2

2

or, substituting for RA,V and RA,H and for y in terms of x,

MP = wL
2

x − wL2

8h
4h
L2 (Lx − x2) − wx2

2

Simplifying this expression

MP = wL
2

x − wL
2

x + wx2

2
− wx2

2
= 0

as expected.

The shear force may also be shown to be zero at all sections of the arch.

6.4 BENDING MOMENT DIAGRAM FOR A THREE-PINNED ARCH

Consider the arch shown in Fig. 6.8; we shall suppose that the equation of the arch
referred to the xy axes is known. The load W is applied at a given point D(xD, yD)
and the support reactions may be calculated by the methods previously described. The
bending moment, MP1, at any point P1(x, y) between A and D is given by

MP1 = RA,Vx − RA,Hy (6.9)
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FIGURE 6.8
Determination of

the bending moment
diagram for a

three-pinned arch
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and the bending moment, MP2, at the point P2, (x, y) between D and B is

MP2 = RA,Vx − W (x − xD) − RA,Hy (6.10)

Now let us consider a simply supported beam AB having the same span as the arch and
carrying a load, W , at the same horizontal distance, xD, from the left-hand support
(Fig. 6.9(a)). The vertical reactions, RA and RB will have the same magnitude as the
vertical components of the support reactions in the arch. Thus the bending moment
at any point between A and D and a distance x from A is

MAD = RAx = RA,Vx (6.11)

Also the bending moment at any point between D and B a distance x from A is

MDB = RAx − W (x − xD) = RA,Vx − W (x − xD) (6.12)
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FIGURE 6.10
Complete bending

moment diagram for
a three-pinned arch

‘Arch’ bending moment
diagram

‘Simply supported beam’ bending
moment diagram

Complete bending moment
diagram

A B
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�ve
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C

A BActual bending
moment at a section

giving the bending moment diagram shown in Fig. 6.9(b). Comparing Eqs (6.11) and
(6.12) with Eqs (6.9) and (6.10), respectively, we see that Eq. (6.9) may be written

MP1 = MAD − RA,H y (6.13)

and Eq. (6.10) may be written

MP2 = MDB − RA,H y (6.14)

Therefore, the complete bending moment diagram for the arch may be regarded as
the sum of a ‘simply supported beam’ bending moment diagram and an ‘arch’ bending
moment diagram in which the ‘arch’ diagram has the same shape as the arch itself,
since its ordinates are equal to a constant multiplied by y. The two bending moment
diagrams may be superimposed as shown in Fig. 6.10 to give the complete bending
moment diagram for the arch. Note that the curve of the arch forms the baseline of
the bending moment diagram and that the bending moment at the crown of the arch
where the third pin is located is zero.

In the above it was assumed that the mathematical equation of the curve of the arch
is known. However, in a situation where, say, only a scale drawing of the curve of
the arch is available, a semigraphical procedure may be adopted if the loads are ver-
tical. The ‘arch’ bending moment at the crown C of the arch is RAHh as shown in
Fig. 6.10. The magnitude of this bending moment may be calculated so that the scale
of the bending moment diagram is then fixed by the rise (at C) of the arch in the
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A
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D

C

C

F

F
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FIGURE 6.11 Bending moment
diagram for a three-pinned arch
carrying two loads

scale drawing. Also this bending moment is equal in magnitude but opposite in sign
to the ‘simply supported beam’ bending moment at this point. Other values of ‘simply
supported beam’ bending moment may be calculated at, say, load positions and plot-
ted on the complete bending moment diagram to the already determined scale. The
diagram is then completed, enabling values of bending moment to be scaled off as
required.

In the arch of Fig. 6.8 a simple construction may be used to produce the complete
bending moment diagram. In this case the arch shape is drawn as in Fig. 6.10 and this,
as we have seen, fixes the scale of the bending moment diagram. Then, since the final
bending moment at C is zero and is also zero at A and B, a line drawn from A through
C to meet the vertical through the point of application of the load at E represents the
‘simply supported beam’ bending moment diagram between A and D. The bending
moment diagram is then completed by drawing the line EB.

This construction is only possible when the arch carries a single load. In the case of an
arch carrying two or more loads as in Fig. 6.11, the ‘simply supported beam’ bending
moments must be calculated at D and F and their values plotted to the same scale
as the ‘arch’ bending moment diagram. Clearly the bending moment at C remains
zero.

We shall consider the statically indeterminate two-pinned arch in Chapter 16.

P R O B L E M S

P.6.1 Determine the value of the bending moment in the loaded half of the semicircular
three-pinned arch shown in Fig. P.6.1 at a horizontal distance of 5 m from the left-hand
support.

Ans. 67.0 kN m (sagging).
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A

C

B

10 m

20 kN/m

FIGURE P.6.1

P.6.2 Figure P.6.2 shows a three-pinned arch of radius 12 m. Calculate the normal
force, shear force and bending moment at the point D.

Ans. 14.4 kN (compression), 5.5 kN, 21.6 kN m (hogging).

2 m

6 m
8 m

20 kN

3 m

A

D

B

C

12 m
 radius

FIGURE P.6.2

P.6.3 The three-pinned arch shown in Fig. P.6.3 is parabolic in shape. If the arch carries
a uniform horizontally distributed load of intensity 40 kN/m over the part CB, calculate
the bending moment at D.

Ans. 140.9 kN m (sagging).

A

C

D

B

7 m10 m

4 m

3 m

FIGURE P.6.3

P.6.4 In the three-pinned arch ACB shown in Fig. P.6.4 the portion AC has the shape
of a parabola with its origin at C, while CB is straight. The portion AC carries a
uniform horizontally distributed load of intensity 30 kN/m, while the portion CB carries
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a uniform horizontally distributed load of intensity 18 kN/m. Calculate the normal
force, shear force and bending moment at the point D.

Ans. 91.2 kN (compression), 9.0 kN, 209.8 kN m (sagging).

A

D

C

B

5 m

18 kN/m30 kN/m

4 m
9 m 3 m

FIGURE P.6.4

P.6.5 Draw normal force, shear force and bending moment diagrams for the loaded
half of the three-pinned arch shown in Fig. P.6.5.

Ans. NBD = 26.5 kN, NDE = 19.4 kN, NEF = NFC = 15 kN (all compression).

SBD = 5.3 kN, SDE = −1.8 kN, SEF = 2.5 kN, SFC = −7.5 kN.

MD = 11.3 kN m, ME = 7.5 kN m, MF = 11.3 kN m (sagging).

C F E

A

D

B

3 m

3 m 3 m 3 m 3 m

10 kN 10 kN

10 kN

1.5 m 1.5 m 1.5 m

FIGURE P.6.5

P.6.6 Calculate the components of the support reactions at A and D in the three-
pinned arch shown in Fig. P.6.6 and hence draw the bending moment diagram for the
member DC; draw the diagram on the tension side of the member. All members are
1 .5 m long.
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Ans. RA,V = 6.46 kN, RA,H = 11.13 kN, RD,V = 21.46 kN, RD,H = 3.87 kN.

MD = 0, MC = 5.81 kN m (tension on left of CD).

A

B

C

D

60°

30°

10 kN

5 kN

15 kN

FIGURE P.6.6
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We are now in a position to calculate internal force distributions in a variety of struc-
tural systems, i.e. normal forces, shear forces and bending moments in beams and
arches, axial forces in truss members, the tensions in suspension cables and torque
distributions in beams. These internal force systems are distributed throughout the
cross section of a structural member in the form of stresses. However, although there
are four basic types of internal force, there are only two types of stress: one which acts
perpendicularly to the cross section of a member and one which acts tangentially. The
former is known as a direct stress, the latter as a shear stress.

The distribution of these stresses over the cross section of a structural member depends
upon the internal force system at the section and also upon the geometry of the cross
section. In some cases, as we shall see later, these distributions are complex, partic-
ularly those produced by the bending and shear of unsymmetrical sections. We can,
however, examine the nature of each of these stresses by considering simple loading
systems acting on structural members whose cross sections have some degree of sym-
metry. At the same time we shall define the corresponding strains and investigate the
relationships between the two.

7.1 DIRECT STRESS IN TENSION AND COMPRESSION

The simplest form of direct stress system is that produced by an axial load. Suppose
that a structural member has a uniform ‘I’ cross section of area A and is subjected to
an axial tensile load, P, as shown in Fig. 7.1(a). At any section ‘mm’ the internal force
is a normal force which, from the arguments presented in Chapter 3, is equal to P
(Fig. 7.1(b)). It is clear that this normal force is not resisted at just one point on each
face of the section as Fig. 7.1(b) indicates but at every point as shown in Fig. 7.2. We
assume in fact that P is distributed uniformly over the complete face of the section so
that at any point in the cross section there is an intensity of force, i.e. stress, to which
we give the symbol σ and which we define as

σ = P
A

(7.1)

150
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(b)

m

m

m

m

m

m

P

P

N � P

N � P

P

P

FIGURE 7.1 Structural
member with axial load
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FIGURE 7.2 Internal force distribution in a beam
section

This direct stress acts in the direction shown in Fig. 7.2 when P is tensile and in the
reverse direction when P is compressive. The sign convention for direct stress is iden-
tical to that for normal force; a tensile stress is therefore positive while a compressive
stress is negative. The SI unit of stress is the pascal (Pa) where 1 Pa is 1 N/m2. However
this is a rather small quantity in many cases so generally we shall use mega-pascals
(MPa) where 1 MPa = 1 N/mm2.

In Fig. 7.1 the section mm is some distance from the point of application of the load.
At sections in the proximity of the applied load the distribution of direct stress will
depend upon the method of application of the load, and only in the case where the
applied load is distributed uniformly over the cross section will the direct stress be
uniform over sections in this region. In other cases stress concentrations arise which
require specialized analysis; this topic is covered in more advanced texts on strength
of materials and stress analysis.

We shall see in Chapter 8 that it is the level of stress that governs the behaviour of struc-
tural materials. For a given material, failure, or breakdown of the crystalline structure
of the material under load, occurs at a constant value of stress. For example, in the
case of steel subjected to simple tension failure begins at a stress of about 300 N/mm2,
although variations occur in steels manufactured to different specifications. This stress
is independent of size or shape and may therefore be used as the basis for the design
of structures fabricated from steel. Failure stress varies considerably from material to
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material and in some cases depends upon whether the material is subjected to tension
or compression.

A knowledge of the failure stress of a material is essential in structural design where,
generally, a designer wishes to determine a minimum size for a structural member
carrying a given load. For example, for a member fabricated from a given material and
subjected to axial load, we would use Eq. (7.1) either to determine a minimum area of
cross section for a given load or to check the stress level in a given member carrying a
given load.

EXAMPLE 7.1 A short column has a rectangular cross section with sides in the ratio
1 : 2 (Fig. 7.3). Determine the minimum dimensions of the column section if the column
carries an axial load of 800 kN and the failure stress of the material of the column is
400 N/mm2.

800 kN

2B
B

FIGURE 7.3 Column of Ex. 7.1

From Eq. (7.1) the minimum area of the cross section is given by

Amin = P
σmax

= 800 × 103

400
= 2000 mm2

But

Amin = 2B2 = 2000 mm2

from which

B = 31.6 mm

Therefore the minimum dimensions of the column cross section are 31.6 mm ×
63.2 mm. In practice these dimensions would be rounded up to 32 mm × 64 mm or,
if the column were of some standard section, the next section having a cross-sectional
area greater than 2000 mm2 would be chosen. Also the column would not be designed
to the limit of its failure stress but to a working or design stress which would incorporate
some safety factor (see Section 8.7).
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7.2 SHEAR STRESS IN SHEAR AND TORSION

An externally applied shear load induces an internal shear force which is tangential
to the faces of a beam cross section. Figure 7.4(a) illustrates such a situation for a
cantilever beam carrying a shear load W at its free end. We have seen in Chapter 3
that the action of W is to cause sliding of one face of the cross section relative to the
other; W also induces internal bending moments which produce internal direct stress
systems; these are considered in a later chapter. The internal shear force S (=W )
required to maintain the vertical equilibrium of the portions of the beam is distributed
over each face of the cross section. Thus at any point in the cross section there is
a tangential intensity of force which is termed shear stress. This shear stress is not
distributed uniformly over the faces of the cross section as we shall see in Chapter 10.
For the moment, however, we shall define the average shear stress over the faces of
the cross section as

τav = W
A

(7.2)

where A is the cross-sectional area of the beam.

Note that the internal shear force S shown in Fig. 7.4(a) is, according to the sign con-
vention adopted in Chapter 3, positive. However, the applied load W would produce
an internal shear force in the opposite direction on the positive face of the section so
that S would actually be negative.

A system of shear stresses is induced in a different way in the circular-section bar shown
in Fig. 7.4(b) where the internal torque (T) tends to produce a relative rotational sliding
of the two faces of the cross section. The shear stresses are tangential to concentric
circular paths in the faces of the cross section. We shall examine the shear stress due
to torsion in various cross sections in Chapter 11.

FIGURE 7.4
Generation of shear
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7.3 COMPLEMENTARY SHEAR STRESS

Consider the cantilever beam shown in Fig. 7.5(a). Let us suppose that the beam is
of rectangular cross section having a depth h and unit thickness; it carries a vertical
shear load W at its free end. The internal shear forces on the opposite faces mm and
nn of an elemental length δx of the beam are distributed as shear stresses in some
manner over each face as shown in Fig. 7.5(b). Suppose now that we isolate a small
rectangular element ABCD of depth δh of this elemental length of beam (Fig. 7.5(c))
and consider its equilibrium. Since the element is small, the shear stresses τ on the faces
AD and BC may be regarded as constant. The shear force resultants of these shear
stresses clearly satisfy vertical equilibrium of the element but rotationally produce
a clockwise couple. This must be equilibrated by an anticlockwise couple which can
only be produced by shear forces on the horizontal faces AB and CD of the element.
Let τ ′ be the shear stresses induced by these shear forces. The equilibrium of the
element is satisfied in both horizontal and vertical directions since the resultant force
in either direction is zero. However, the shear forces on the faces BC and AD form a
couple which would cause rotation of the element in an anticlockwise sense. We need,
therefore, a clockwise balancing couple and this can only be produced by shear forces
on the faces AB and CD of the element; the shear stresses corresponding to these
shear forces are τ ′ as shown. Then for rotational equilibrium of the element about the
corner D

τ ′ × δx × 1 × δh = τ × δh × 1 × δx

which gives

τ ′ = τ (7.3)

We see, therefore, that a shear stress acting on a given plane is always accompanied by
an equal complementary shear stress acting on planes perpendicular to the given plane
and in the opposite sense.

FIGURE 7.5
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7.4 DIRECT STRAIN

Since no material is completely rigid, the application of loads produces distortion. An
axial tensile load, for example, will cause a structural member to increase in length,
whereas a compressive load would cause it to shorten.

Suppose that δ is the change in length produced by either a tensile or compressive
axial load. We now define the direct strain, ε, in the member in non-dimensional form
as the change in length per unit length of the member. Hence

ε = δ

L0
(7.4)

where L0 is the length of the member in its unloaded state. Clearly ε may be either a
tensile (positive) strain or a compressive (negative) strain. Equation (7.4) is applicable
only when distortions are relatively small and can be used for values of strain up to and
around 0.001, which is adequate for most structural problems. For larger values, load–
displacement relationships become complex and are therefore left for more advanced
texts.

We shall see in Section 7.7 that it is convenient to measure distortion in this non-
dimensional form since there is a direct relationship between the stress in a member
and the accompanying strain. The strain in an axially loaded member therefore
depends solely upon the level of stress in the member and is independent of its length
or cross-sectional geometry.

7.5 SHEAR STRAIN

In Section 7.3 we established that shear loads applied to a structural member induce a
system of shear and complementary shear stresses on any small rectangular element.
The distortion in such an element due to these shear stresses does not involve a change
in length but a change in shape as shown in Fig. 7.6. We define the shear strain, γ , in the
element as the change in angle between two originally mutually perpendicular edges.
Thus in Fig. 7.6

γ = φ radians (7.5)

Distorted
shape

τ

τ

f f

τ

τ

FIGURE 7.6 Shear strain in an element
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FIGURE 7.7 Cube subjected to hydrostatic pressure

7.6 VOLUMETRIC STRAIN DUE TO HYDROSTATIC PRESSURE

A rather special case of strain which we shall find useful later occurs when a cube
of material is subjected to equal compressive stresses, σ , on all six faces as shown in
Fig. 7.7. This state of stress is that which would be experienced by the cube if it were
immersed at some depth in a fluid, hence the term hydrostatic pressure. The analysis
would, in fact, be equally valid if σ were a tensile stress.

Suppose that the original length of each side of the cube is L0 and that δ is the decrease
in length of each side due to the stress. Then, defining the volumetric strain as the
change in volume per unit volume, we have

volumetric strain = L3
0 − (L0 − δ)3

L3
0

Expanding the bracketed term and neglecting second- and higher-order powers of δ

gives

volumetric strain = 3L2
0δ

L3
0

from which

volumetric strain = 3δ

L0
(7.6)

Thus we see that for this case the volumetric strain is three times the linear strain in
any of the three stress directions.

7.7 STRESS–STRAIN RELATIONSHIPS

HOOKE’S LAW AND YOUNG’S MODULUS

The relationship between direct stress and strain for a particular material may be
determined experimentally by a tensile test which is described in detail in Chapter 8.
A tensile test consists basically of applying an axial tensile load in known increments
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ε (strain)

s (stress)

b

a

FIGURE 7.8 Typical stress–strain curve

to a specimen of material of a given length and cross-sectional area and measuring
the corresponding increases in length. The stress produced by each value of load may
be calculated from Eq. (7.1) and the corresponding strain from Eq. (7.4). A stress–
strain curve is then drawn which, for some materials, would have a shape similar to
that shown in Fig. 7.8. Stress–strain curves for other materials differ in detail but,
generally, all have a linear portion such as ab in Fig. 7.8. In this region stress is directly
proportional to strain, a relationship that was discovered in 1678 by Robert Hooke
and which is known as Hooke’s law. It may be expressed mathematically as

σ = Eε (7.7)

where E is the constant of proportionality. E is known as Young’s modulus or the elastic
modulus of the material and has the same units as stress. For mild steel E is of the
order of 200 kN/mm2. Equation (7.7) may be written in alternative form as

σ

ε
= E (7.8)

For many materials E has the same value in tension and compression.

SHEAR MODULUS

By comparison with Eq. (7.8) we can define the shear modulus or modulus of rigidity,
G, of a material as the ratio of shear stress to shear strain; thus

G = τ

γ
(7.9)

VOLUME OR BULK MODULUS

Again, the volume modulus or bulk modulus, K, of a material is defined in a similar
manner as the ratio of volumetric stress to volumetric strain, i.e.

K = volumetric stress
volumetric strain

(7.10)

It is not usual to assign separate symbols to volumetric stress and strain since they may,
respectively, be expressed in terms of direct stress and linear strain. Thus in the case
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of hydrostatic pressure (Section 7.6)

K = σ

3ε
(7.11)

EXAMPLE 7.2 A mild steel column is hollow and circular in cross section with
an external diameter of 350 mm and an internal diameter of 300 mm. It carries a
compressive axial load of 2000 kN. Determine the direct stress in the column and also
the shortening of the column if its initial height is 5 m. Take E = 200 000 N/mm2.

The cross-sectional area A of the column is given by

A = π

4
(3502 − 3002) = 25 525.4 mm2

The direct stress σ in the column is, therefore, from Eq. (7.1)

σ = −2000 × 103

25 525.4
= −78.4 N/mm2 (compression)

The corresponding strain is obtained from either Eq. (7.7) or Eq. (7.8) and is

ε = −78.4
200 000

= −0.000 39

Finally the shortening, δ, of the column follows from Eq. (7.4), i.e.

δ = 0.000 39 × 5 × 103 = 1.95 mm

EXAMPLE 7.3 A short, deep cantilever beam is 500 mm long by 200 mm deep and is
2 mm thick. It carries a vertically downward load of 10 kN at its free end. Assuming that
the shear stress is uniformly distributed over the cross section of the beam, calculate
the deflection due to shear at the free end. Take G = 25 000 N/mm2.

The internal shear force is constant along the length of the beam and equal to 10 kN.
Since the shear stress is uniform over the cross section of the beam, we may use
Eq. (7.2) to determine its value, i.e.

τav = W
A

= 10 × 103

200 × 2
= 25 N/mm2

This shear stress is constant along the length of the beam; it follows from Eq. (7.9)
that the shear strain is also constant along the length of the beam and is given by

γ = τav

G
= 25

25 000
= 0.001 rad
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This value is in fact the angle that the beam makes with the horizontal. The deflection,
�s, due to shear at the free end is therefore

�s = 0.001 × 500 = 0.5 mm

In practice, the solution of this particular problem would be a great deal more complex
than this since the shear stress distribution is not uniform. Deflections due to shear
are investigated in Chapter 13.

7.8 POISSON EFFECT

It is common experience that a material such as rubber suffers a reduction in cross-
sectional area when stretched under a tensile load. This effect, known as the Poisson
effect, also occurs in structural materials subjected to tensile and compressive loads,
although in the latter case the cross-sectional area increases. In the region where the
stress–strain curve of a material is linear, the ratio of lateral strain to longitudinal
strain is a constant which is known as Poisson’s ratio and is given the symbol ν. The
effect is illustrated in Fig. 7.9.

Consider now the action of different direct stress systems acting on an elemental cube
of material (Fig. 7.10). The stresses are all tensile stresses and are given suffixes which
designate their directions in relation to the system of axes specified in Section 3.2.
In Fig. 7.10(a) the direct strain, εx, in the x direction is obtained directly from either

FIGURE 7.9
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Eq. (7.7) or Eq. (7.8) and is

εx = σx

E
Due to the Poisson effect there are accompanying strains in the y and z directions given
by

εy = −νεx εz = −νεx

or, substituting for εx in terms of σx

εy = −ν
σx

E
εz = −ν

σx

E
(7.12)

These strains are negative since they are associated with contractions as opposed to
positive strains produced by extensions.

In Fig. 7.10(b) the direct stress σy has an effect on the direct strain εx as does σx on εy.
Thus

εx = σx

E
− νσy

E
εy = σy

E
− νσx

E
εz = νσx

E
− νσy

E
(7.13)

By a similar argument, the strains in the x, y and z directions for the cube of Fig.
7.10(c) are

εx = σx

E
− νσy

E
− νσz

E
εy = σy

E
− νσx

E
− νσz

E
εz = σz

E
− νσx

E
− νσy

E
(7.14)

Let us now suppose that the cube of material in Fig. 7.10(c) is subjected to a uniform
stress on each face such that σx = σy = σz = σ . The strain in each of the axial directions
is therefore the same and is, from any one of Eq. (7.14)

ε = σ

E
(1 − 2ν)

In Section 7.6 we showed that the volumetric strain in a cube of material subjected to
equal stresses on all faces is three times the linear strain. Thus in this case

volumetric strain = 3σ

E
(1 − 2ν) (7.15)

It would be unreasonable to suppose that the volume of a cube of material subjected
to tensile stresses on all faces could decrease. It follows that Eq. (7.15) cannot have a
negative value. We conclude, therefore, that v must always be less than 0.5. For most
metals v has a value in the region of 0.3 while for concrete v can be as low as 0.1.

Collectively E, G, K and v are known as the elastic constants of a material.

7.9 RELATIONSHIPS BETWEEN THE ELASTIC CONSTANTS

There are different methods for determining the relationships between the elastic
constants. The one presented here is relatively simple in approach and does not require
a knowledge of topics other than those already covered.
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FIGURE 7.11
Determination of
the relationships

between the elastic
constants
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In Fig. 7.11(a), ABCD is a square element of material of unit thickness and is in
equilibrium under a shear and complementary shear stress system τ . Imagine now
that the element is ‘cut’ along the diagonal AC as shown in Fig. 7.11(b). In order to
maintain the equilibrium of the triangular portion ABC it is possible that a direct
force and a shear force are required on the face AC. These forces, if they exist, will be
distributed over the face of the element in the form of direct and shear stress systems,
respectively. Since the element is small, these stresses may be assumed to be constant
along the face AC. Let the direct stress on AC in the direction BD be σBD and the
shear stress on AC be τAC. Then resolving forces on the element in the direction BD
we have

σBDAC × 1 − τAB × 1 × cos 45◦ − τBC × 1 × cos 45◦ = 0

Dividing through by AC

σBD = τ
AB
AC

cos 45◦ + τ
BC
AC

cos 45◦

or

σBD = τ cos2 45◦ + τ cos2 45◦

from which

σBD = τ (7.16)

The positive sign indicates that σBD is a tensile stress. Similarly, resolving forces in the
direction AC

τACAC × 1 + τAB × 1 × cos 45◦ − τBC × 1 × cos 45◦ = 0

Again dividing through by AC we obtain

τAC = −τ cos2 45◦ + τ cos2 45◦ = 0

A similar analysis of the triangular element ABD in Fig. 7.11(c) shows that

σAC = −τ (7.17)

and
τBD = 0
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Hence we see that on planes parallel to the diagonals of the element there are direct
stresses σBD (tensile) and σAC (compressive) both numerically equal to τ as shown
in Fig. 7.12. It follows from Section 7.8 that the direct strain in the direction BD is
given by

εBD = σBD

E
+ νσAC

E
= τ

E
(1 + ν) (7.18)

Note that the compressive stress σAC makes a positive contribution to the strain εBD.

In Section 7.5 we defined shear strain and saw that under pure shear, only a change
of shape is involved. Thus the element ABCD of Fig. 7.11(a) distorts into the shape
A′B′CD shown in Fig. 7.13. The shear strain γ produced by the shear stress τ is then
given by

γ = φ radians = B′B
BC

(7.19)

since φ is a small angle. The increase in length of the diagonal DB to DB′ is
approximately equal to FB′ where BF is perpendicular to DB′. Thus

εDB = DB′ − DB
DB

= FB′

DB

Again, since φ is a small angle, BB̂′F � 45◦ so that

FB′ = BB′ cos 45◦
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Also

DB = BC
cos 45◦

Hence

εDB = B′B cos2 45◦

BC
= 1

2
B′B
BC

Therefore, from Eq. (7.19)

εDB = 1
2
γ (7.20)

Substituting for εDB in Eq. (7.18) we obtain

1
2
γ = τ

E
(1 + ν)

or, since τ/γ = G from Eq. (7.9)

G = E
2(1 + ν)

or E = 2G(1 + ν) (7.21)

The relationship between Young’s modulus E and bulk modulus K is obtained directly
from Eqs (7.10) and (7.15). Thus, from Eq. (7.10)

volumetric strain = σ

K

where σ is the volumetric stress. Substituting in Eq. (7.15)

σ

K
= 3σ

E
(1 − 2ν)

from which

K = E
3(1 − 2ν)

(7.22)

Eliminating E from Eqs (7.21) and (7.22) gives

K = 2G(1 + ν)
3(1 − 2ν)

(7.23)

EXAMPLE 7.4 A cube of material is subjected to a compressive stress σ on each
of its faces. If ν = 0.3 and E = 200 000 N/mm2, calculate the value of this stress if the
volume of the cube is reduced by 0.1%. Calculate also the percentage reduction in
length of one of the sides.

From Eq. (7.22)

K = 200 000
3(1 − 2 × 0.3)

= 167 000 N/mm2
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The volumetric strain is 0.001 since the volume of the block is reduced by 0.1%.

Therefore, from Eq. (7.10)

0.001 = σ

K
or

σ = 0.001 × 167 000 = 167 N/mm2

In Section 7.6 we established that the volumetric strain in a cube subjected to a uniform
stress on all six faces is three times the linear strain. Thus in this case

linear strain = 1
3

× 0.001 = 0.000 33

The length of one side of the cube is therefore reduced by 0.033%.

7.10 STRAIN ENERGY IN SIMPLE TENSION OR COMPRESSION

An important concept in the analysis of structures is that of strain energy. The total
strain energy of a structural member may comprise the separate strain energies due
to axial load, bending moment, shear and torsion. In this section we shall concentrate
on the strain energy due to tensile or compressive loads; the strain energy produced
by each of the other loading systems is considered in the relevant, later chapters.

A structural member subjected to a gradually increasing tensile load P gradually
increases in length (Fig. 7.14(a)). The load–extension curve for the member is linear
until the limit of proportionality is exceeded, as shown in Fig. 7.14(b). The geometry
of the non-linear portion of the curve depends upon the properties of the material of
the member (see Chapter 8). Clearly the load P moves through small displacements
� and therefore does work on the member. This work, which causes the member to
extend, is stored in the member as strain energy. If the value of P is restricted so that
the limit of proportionality is not exceeded, the gradual removal of P results in the
member returning to its original length and the strain energy stored in the member
may be recovered in the form of work. When the limit of proportionality is exceeded,

FIGURE 7.14
Load–extension

curve for an axially
loaded member

Load P

Cross-sectional area, A

Limit of proportionality

Extension �

(b)(a)

L0
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�
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not all of the work done by P is recoverable; some is used in producing a permanent
distortion of the member (see Chapter 8), the related energy appearing largely as heat.

Suppose the structural member of Fig. 7.14(a) is gradually loaded to some value of P
within the limit of proportionality of the material of the member, the corresponding
elongation being �. Let the elongation corresponding to some intermediate value of
load, say P1, be �1 (Fig. 7.15). Then a small increase in load of δP1 will produce a small
increase, δ�1, in elongation. The incremental work done in producing this increment
in elongation may be taken as equal to the average load between P1 and P1 + δP1

multiplied by δ�1. Thus

incremental work done =
[

P1 + (P1 + δP1)
2

]
δ�1

which, neglecting second-order terms, becomes

incremental work done = P1 δ�1

The total work done on the member by the load P in producing the elongation � is
therefore given by

total work done =
∫ �

0
P1 d�1 (7.24)

Since the load–extension relationship is linear, then

P1 = K�1 (7.25)

where K is some constant whose value depends upon the material properties of the
member. Substituting the particular values of P and � in Eq. (7.25), we obtain

K = P
�

Load

Extension

P

P1��P1

∆1��∆1

P1

∆1 ∆

FIGURE 7.15 Work done by a gradually
applied load
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so that Eq. (7.25) becomes

P1 = P
�

�1

Now substituting for P1 in Eq. (7.24) we have

total work done =
∫ �

0

P
�

�1 d�1

Integration of this equation yields

total work done = 1
2

P� (7.26)

Alternatively, we see that the right-hand side of Eq. (7.24) represents the area under
the load–extension curve, so that again we obtain

total work done = 1
2

P�

By the law of conservation of energy, the total work done is equal to the strain energy,
U , stored in the member. Thus

U = 1
2

P� (7.27)

The direct stress, σ , in the member of Fig. 7.14(a) corresponding to the load P is given
by Eq. (7.1), i.e.

σ = P
A

Also the direct strain, ε, corresponding to the elongation � is, from Eq. (7.4)

ε = �

L0

Furthermore, since the load–extension curve is linear, the direct stress and strain are
related by Eq. (7.7), so that

P
A

= E
�

L0

from which

� = PL0

AE
(7.28)

In Eq. (7.28) the quantity L0/AE determines the magnitude of the displacement pro-
duced by a given load; it is therefore known as the flexibility of the member. Conversely,
by transposing Eq. (7.28) we see that

P = AE
L0

�

in which the quantity AE/L0 determines the magnitude of the load required to produce
a given displacement. The term AE/L0 is then the stiffness of the member.
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Substituting for � in Eq. (7.27) gives

U = P2L0

2AE
(7.29)

It is often convenient to express strain energy in terms of the direct stress σ . Rewriting
Eq. (7.29) in the form

U = 1
2

P2

A2
AL0

E
we obtain

U = σ 2

2E
× AL0 (7.30)

in which we see that AL0 is the volume of the member. The strain energy per unit
volume of the member is then

σ 2

2E
The greatest amount of strain energy per unit volume that can be stored in a member
without exceeding the limit of proportionality is known as the modulus of resilience
and is reached when the direct stress in the member is equal to the direct stress
corresponding to the elastic limit of the material of the member.

The strain energy, U , may also be expressed in terms of the elongation, �, or the direct
strain, ε. Thus, substituting for P in Eq. (7.29)

U = EA�2

2L0
(7.31)

or, substituting for σ in Eq. (7.30)

U = 1
2

Eε2 × AL0 (7.32)

The above expressions for strain energy also apply to structural members subjected
to compressive loads since the work done by P in Fig. 7.14(a) is independent of the
direction of movement of P. It follows that strain energy is always a positive quantity.

The concept of strain energy has numerous and wide ranging applications in structural
analysis particularly in the solution of statically indeterminate structures. We shall
examine in detail some of the uses of strain energy later but here we shall illustrate its
use by applying it to some relatively simple structural problems.

DEFLECTION OF A SIMPLE TRUSS

The truss shown in Fig. 7.16 carries a gradually applied load W at the joint A.
Considering the vertical equilibrium of joint A

PAB cos 45◦ − W = 0
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FIGURE 7.16 Deflection of a simple truss

so that

PAB = 1.41W (tension)

Now resolving forces horizontally at A

PAC + PAB cos 45◦ = 0

which gives

PAC = −W (compression)

It is obvious from inspection that PAC is a compressive force but, for consistency,
we continue with the convention adopted in Chapter 4 for solving trusses where all
members are assumed, initially, to be in tension.

The strain energy of each member is then, from Eq. (7.29)

UAB = (1.41W )2 × 1.41L
2AE

= 1.41W 2L
AE

UAC = W 2L
2AE

If the vertical deflection of A is �v, the work done by the gradually applied load, W, is

1
2

W�v

Then equating the work done to the total strain energy of the truss we have

1
2

W�v = 1.41W 2L
AE

+ W 2L
2AE

so that

�v = 3.82WL
AE
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FIGURE 7.17 Composite concrete column

Using strain energy to calculate deflections in this way has limitations. In the above
example �v is, in fact, only the vertical component of the actual deflection of the joint
A since A moves horizontally as well as vertically. Therefore we can only find the
deflection of a load in its own line of action by this method. Furthermore, the method
cannot be applied to structures subjected to more than one applied load as each load
would contribute to the total work done by moving through an unknown displacement
in its own line of action. There would, therefore, be as many unknown displacements
as loads in the work–energy equation. We shall return to examine energy methods in
much greater detail in Chapter 15.

COMPOSITE STRUCTURAL MEMBERS

Axially loaded composite members are of direct interest in civil engineering where con-
crete columns are reinforced by steel bars and steel columns are frequently embedded
in concrete as a fire precaution.

In Fig. 7.17 a concrete column of cross-sectional area AC is reinforced by two steel bars
having a combined cross-sectional area AS. The modulus of elasticity of the concrete is
EC and that of the steel ES. A load P is transmitted to the column through a plate which
we shall assume is rigid so that the deflection of the concrete is equal to that of the
steel. It follows that their respective strains are equal since both have the same original
length. Since EC is not equal to ES we see from Eq. (7.7) that the compressive stresses,
σC and σS, in the concrete and steel, respectively, must have different values. This
also means that unless AC and AS have particular values, the compressive loads, PC

and PS, in the concrete and steel are also different. The problem is therefore statically
indeterminate since we can write down only one equilibrium equation, i.e.

PC + PS = P (7.33)
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The second required equation derives from the fact that the displacements of the steel
and concrete are identical since, as noted above, they are connected by the rigid plate;
this is a compatibility of displacement condition. Then, from Eq. (7.28)

PCL
ACEC

= PSL
ASES

(7.34)

Substituting for PC from Eq. (7.34) in Eq. (7.33) gives

PS

(
ACEC

ASES
+ 1
)

= P

from which

PS = ASES

ACEC + ASES
P (7.35)

PC follows directly from Eqs (7.34) and (7.35), i.e.

PC = ACEC

ACEC + ASES
P (7.36)

The vertical displacement, δ, of the column is obtained using either side of Eq. (7.34)
and the appropriate compressive load, PC or PS. Thus

δ = PL
ACEC + ASES

(7.37)

The direct stresses in the steel and concrete are obtained from Eqs (7.35) and (7.36),
thus

σS = ES

ACEC + ASES
P σC = EC

ACEC + ASES
P (7.38)

We could, in fact, have solved directly for the stresses by writing Eqs (7.33) and (7.34)
as

σCAC + σSAS = P (7.39)

and
σCL
EC

= σSL
ES

(7.40)

respectively.

EXAMPLE 7.5 A reinforced concrete column, 5 m high, has the cross section shown
in Fig. 7.18. It is reinforced by four steel bars each 20 mm in diameter and carries a
load of 1000 kN. If Young’s modulus for steel is 200 000 N/mm2 and that for concrete
is 15 000 N/mm2, calculate the stress in the steel and in the concrete and also the
shortening of the column.
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Steel reinforcing
bars

400 mm

400 mm

FIGURE 7.18 Reinforced concrete
column of Ex. 7.5

The total cross-sectional area, AS, of the steel reinforcement is

AS = 4 × π

4
× 202 = 1257 mm2

The cross-sectional area, AC, of the concrete is reduced due to the presence of the
steel and is given by

AC = 4002 − 1257 = 158 743 mm2

Equations (7.38) then give

σS = 200 000 × 1000 × 103

158 743 × 15 000 + 1257 × 200 000
= 76.0 N/mm2

σC = 15 000 × 1000 × 103

158 743 × 15 000 + 1257 × 200 000
= 5.7 N/mm2

The deflection, δ, of the column is obtained using either side of Eq. (7.40). Thus

δ = σCL
EC

= 5.7 × 5 × 103

15 000
= 1.9 mm

THERMAL EFFECTS

It is possible for stresses to be induced by temperature changes in composite members
which are additional to those produced by applied loads. These stresses arise when
the components of a composite member have different rates of thermal expansion and
contraction.

First, let us consider a member subjected to a uniform temperature rise, �T , along its
length. The member expands from its original length, L0, to a length, LT, given by

LT = L0(1 + α�T)

where α is the coefficient of linear expansion of the material of the member. In the
condition shown in Fig. 7.19 the member has been allowed to expand freely so that no
stresses are induced. The increase in the length of the member is then

LT − L0 = L0α�T
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FIGURE 7.19
Expansion due to
temperature rise

L0

LT

FIGURE 7.20
Reinforced

concrete column
subjected to a

temperature rise

Cross-sectional area, AS

(a) (b) (c)

Cross-sectional
area, AC L0aS�T

L0

L0aC�T

�S

�
�C

Suppose now that expansion is completely prevented so that the final length of the
member after the temperature rise is still L0. The member has, in effect, been com-
pressed by an amount L0α�T , thereby producing a compressive strain, ε, which is
given by (see Eq. (7.4))

ε = L0α�T
L0

= α�T (7.41)

The corresponding compressive stress, σ , is from Eq. (7.7)

σ = Eα�T (7.42)

In composite members the restriction on expansion or contraction is usually imposed
by the attachment of one component to another. For example, in a reinforced concrete
column, the bond between the reinforcing steel and the concrete prevents the free
expansion or contraction of either.

Consider the reinforced concrete column shown in Fig. 7.20(a) which is subjected to a
temperature rise, �T . For simplicity we shall suppose that the reinforcement consists
of a single steel bar of cross-sectional area, AS, located along the axis of the column; the
actual cross-sectional area of concrete is AC. Young’s modulus and the coefficient of
linear expansion of the concrete are EC and αC, respectively, while the corresponding
values for the steel are ES and αS. We shall assume that αS > αC.

Figure 7.20(b) shows the positions the concrete and steel would attain if they were
allowed to expand freely; in this situation neither material is stressed. The displace-
ments L0αC�T and L0αS�T are obtained directly from Eq. (7.41). However, since
they are attached to each other, the concrete prevents the steel from expanding this full
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amount while the steel forces the concrete to expand further than it otherwise would;
their final positions are shown in Fig. 7.20(c). It can be seen that δC is the effective
elongation of the concrete which induces a direct tensile load, PC. Similarly δS is the
effective contraction of the steel which induces a compressive load, PS. There is no
externally applied load so that the resultant axial load at any section of the column is
zero so that

PC (tension) = PS (compression) (7.43)

Also, from Fig. 7.20(b) and (c) we see that

δC + δS = L0αS�T − L0αC�T

or

δC + δS = L0�T(αS − αC) (7.44)

From Eq. (7.28)

δC = PCL0

ACEC
δS = PSL0

ASES
(7.45)

Substituting for δC and δS in Eq. (7.44) we obtain

PC

ACEC
+ PS

ASES
= �T(αS − αC) (7.46)

Simultaneous solution of Eqs (7.43) and (7.46) gives

PC (tension) = PS (compression) = �T(αS − αC)(
1

ACEC
+ 1

ASES

) (7.47)

or

PC (tension) = PS(compression) = �T(αS − αC)ACECASES

ACEC + ASES
(7.48)

The tensile stress, σC, in the concrete and the compressive stress, σS, in the steel follow
directly from Eq. (7.48).

σC = PC

AC
= �T(αS − αC)ECASES

ACEC + ASES

σS = PS

AS
= �T(αS − αC)ACECES

ACEC + ASES

(7.49)

From Fig. 7.20(b) and (c) it can be seen that the actual elongation, δ, of the column is
given by either

δ = L0αC�T + δC or δ = L0αS�T − δS (7.50)

Using the first of Eq. (7.50) and substituting for δC from Eq. (7.45) then PC from Eq.
(7.48) we have

δ = L0αC�T + �T(αS − αC)ACECASESL0

ACEC(ACEC + ASES)
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which simplifies to

δ = L0�T
(

αCACEC + αSASES

ACEC + ASES

)
(7.51)

Clearly when αC = αS = α, say, PC = PS = 0, σC = σS = 0 and δ = L0α�T as for
unrestrained expansion.

The above analysis also applies to the case, αC > αS, when, as can be seen from Eqs
(7.48) and (7.49) the signs of PC, PS, σC and σS are reversed. Thus the load and stress
in the concrete become compressive, while those in the steel become tensile. A similar
argument applies when �T specifies a temperature reduction.

Equation (7.44) is an expression of the compatibility of displacement of the concrete
and steel. Also note that the stresses could have been obtained directly by writing Eqs
(7.43) and (7.44) as

σCAC = σSAS

and
σCL0

EC
+ σSL0

ES
= L0�T(αS − αC)

respectively.

EXAMPLE 7.6 A rigid slab of weight 100 kN is supported on three columns each of
height 4 m and cross-sectional area 300 mm2 arranged in line. The two outer columns
are fabricated from material having a Young’s modulus of 80 000 N/mm2 and a coef-
ficient of linear expansion of 1.85 × 10−5/◦C; the corresponding values for the inner
column are 200 000 N/mm2 and 1.2 × 10−5/◦C. If the slab remains firmly attached to
each column, determine the stress in each column and the displacement of the slab if
the temperature is increased by 100◦C.

The problem may be solved by determining separately the stresses and displacements
produced by the applied load and the temperature rise; the two sets of results are then
superimposed. Let subscripts o and i refer to the outer and inner columns, respectively.
Using Eq. (7.38) we have

σi (load) = Ei

AoEo + AiEi
P σo (load) = Eo

AoEo + AiEi
P (i)

In Eq. (i)

AoEo + AiEi = 2 × 300 × 80 000 + 300 × 200 000 = 108.0 × 106

Then

σi (load) = 200 000 × 100 × 103

108.0 × 106 = 185.2 N/mm2 (compression)

σo (load) = 80 000 × 100 × 103

108.0 × 106 = 74.1 N/mm2 (compression)
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Equation (7.49) give the values of σi (temp.) and σo (temp.) produced by the
temperature rise, i.e.

σo(temp.) = �T(αi − αo)EoAiEi

AoEo + AiEi

σi(temp.) = �T(αi − αo)AoEoEi

AoEo + AiEi

(ii)

In Eq. (ii) αo > αi so that σo (temp.) is a compressive stress while σi (temp.) is a tensile
stress. Hence

σo(temp.) = 100(1.2 − 1.85) × 10−5 × 80 000 × 300 × 200 000
108.0 × 106

= −28.9 N/mm2 (i.e. compression)

σi(temp.) = 100(1.2 − 1.85) × 10−5 × 2 × 300 × 80 000 × 200 000
108.0 × 106

= −57.8 N/mm2 (i.e. tension)

Superimposing the sets of stresses, we obtain the final values of stress, σi and σo, due
to load and temperature change combined. Hence

σi = 185.2 − 57.8 = 127.4 N/mm2 (compression)
σo = 74.1 + 28.9 = 103.0 N/mm2 (compression)

The displacements due to the load and temperature change are found using Eqs (7.37)
and (7.51), respectively. Hence

δ (load) = 100 × 103 × 4 × 103

108.0 × 106 = 3.7 mm (contraction)

δ (temp.) = 4 × 103 × 100

×
(

1.85 × 10−5 × 2 × 300 × 80 000 + 1.2 × 10−5 × 300 × 200 000
108.0 × 106

)

= 6.0 mm (elongation)

The final displacement of the slab involves an overall elongation of the columns of
6.0 − 3.7 = 2.3 mm.

INITIAL STRESSES AND PRESTRESSING

The terms initial stress and prestressing refer to structural situations in which some
or all of the components of a structure are in a state of stress before external loads
are applied. In some cases, for example welded connections, this is an unavoidable
by-product of fabrication and unless the whole connection is stress-relieved by suitable
heat treatment the initial stresses are not known with any real accuracy. On the other
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hand, the initial stress in a component may be controlled as in a bolted connection;
the subsequent applied load may or may not affect the initial stress in the bolt.

Initial stresses may be deliberately induced in a structural member so that the adverse
effects of an applied load are minimized. In this the category is the prestressing of
beams fabricated from concrete which is particularly weak in tension. An overall state
of compression is induced in the concrete so that tensile stresses due to applied loads
merely reduce the level of compressive stress in the concrete rather than cause tension.
Two methods of prestressing are employed, pre- and post-tensioning. In the former
the prestressing tendons are positioned in the mould before the concrete is poured and
loaded to the required level of tensile stress. After the concrete has set, the tendons
are released and the tensile load in the tendons is transmitted, as a compressive load,
to the concrete. In a post-tensioned beam, metal tubes or conduits are located in the
mould at points where reinforcement is required, the concrete is poured and allowed
to set. The reinforcing tendons are then passed through the conduits, tensioned and
finally attached to end plates which transmit the tendon tensile load, as a compressive
load, to the concrete.

Usually the reinforcement in a concrete beam supporting vertical shear loads is placed
closer to either the upper or the lower surface since such a loading system induces ten-
sion in one part of the beam and compression in the other; clearly the reinforcement is
placed in the tension zone. To demonstrate the basic principle, however, we shall inves-
tigate the case of a post-tensioned beam containing one axially loaded prestressing
tendon.

Suppose that the initial load in the prestressing tendon in the concrete beam shown
in Fig. 7.21 is F. In the absence of an applied load the resultant load at any section of
the beam is zero so that the load in the concrete is also F but compressive. If now a
tensile load, P, is applied to the beam, the tensile load in the prestressing tendon will
increase by an amount �PT while the compressive load in the concrete will decrease
by an amount �PC. From a consideration of equilibrium

�PT + �PC = P (7.52)

Furthermore, the total tensile load in the tendon is F + �PT while the total compressive
load in the concrete is F − �PC.

FIGURE 7.21
Prestressed

concrete beam

Concrete,
cross-sectional area, AC

Applied load, P

Prestressing tendon,
cross-sectional area, AT

End plates

P

L
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The tendon and concrete beam are interconnected through the end plates so that they
both suffer the same elongation, δ, due to P. Then, from Eq. (7.28)

δ = �PTL
ATET

= �PCL
ACEC

(7.53)

where ET and EC are Young’s modulus for the tendon and the concrete, respectively.
From Eq. (7.53)

�PT = ATET

ACEC
�PC (7.54)

Substituting in Eq. (7.52) for �PT we obtain

�PC

(
ATET

ACEC
+ 1
)

= P

which gives

�PC = ACEC

ACEC + ATET
P (7.55)

Substituting now for �PC in Eq. (7.54) from Eq. (7.55) gives

�PT = ATET

ACEC + ATET
P (7.56)

The final loads, PC and PT, in the concrete and tendon, respectively, are then

PC = F − ACEC

ACEC + ATET
P (compression) (7.57)

and

PT = F + ATET

ACEC + ATET
P (tension) (7.58)

The corresponding final stresses, σC and σT, follow directly and are given by

σC = PC

AC
= 1

AC

(
F − ACEC

ACEC + ATET
P
)

(compression) (7.59)

and

σT = PT

AT
= 1

AT

(
F + ATET

ACEC + ATET
P
)

(tension) (7.60)

Obviously if the bracketed term in Eq. (7.59) is negative then σC will be a tensile stress.

Finally the elongation, δ, of the beam due to P is obtained from either of Eq. (7.53)
and is

δ = L
ACEC + ATET

P (7.61)



Chap-07 12/1/2005 12: 45 page 178

178 • Chapter 7 / Stress and Strain

EXAMPLE 7.7 A concrete beam of rectangular cross section, 120 mm × 300 mm, is to
be reinforced by six high-tensile steel prestressing tendons each having a cross-sectional
area of 300 mm2. If the level of prestress in the tendons is 150 N/mm2, determine the
corresponding compressive stress in the concrete. If the reinforced beam is subjected
to an axial tensile load of 150 kN, determine the final stress in the steel and in the
concrete assuming that the ratio of the elastic modulus of steel to that of concrete
is 15.

The cross-sectional area, AC, of the concrete in the beam is given by

AC = 120 × 300 − 6 × 300 = 34 200 mm2

The initial compressive load in the concrete is equal to the initial tensile load in the
steel; thus

σCi × 34 200 = 150 × 6 × 300 (i)

where σCi is the initial compressive stress in the concrete. Hence

σCi = 7.9 N/mm2

The final stress in the concrete and in the steel are given by Eqs (7.59) and (7.60),
respectively. From Eq. (7.59)

σC = F
AC

− EC

ACEC + ATET
P (ii)

in which F/AC = σCi = 7.9 N/mm2. Rearranging Eq. (ii) we have

σC = 7.9 − 1

AC +
(

ET

EC

)
AT

P

or

σC = 7.9 − 150 × 103

34 200 + 15 × 6 × 300
= 5.4 N/mm2 (compression)

Similarly, from Eq. (7.60)

σT = 150 + 1(
EC

ET

)
AC + AT

P

from which

σT = 150 + 150 × 103

1
15 × 34 200 + 6 × 300

= 186.8 N/mm2 (tension)
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7.11 PLANE STRESS

In some situations the behaviour of a structure, or part of it, can be regarded as
two-dimensional. For example, the stresses produced in a flat plate which is sub-
jected to loads solely in its own plane would form a two-dimensional stress system;
in other words, a plane stress system. These stresses would, however, produce strains
perpendicular to the surfaces of the plate due to the Poisson effect (Section 7.8).

An example of a plane stress system is that produced in the walls of a thin cylindrical
shell by internal pressure. Figure 7.22 shows a long, thin-walled cylindrical shell sub-
jected to an internal pressure p. This internal pressure has a dual effect; it acts on the
sealed ends of the shell thereby producing a longitudinal direct stress in cross sections
of the shell and it also tends to separate one-half of the shell from the other along
a diametral plane causing circumferential or hoop stresses. These two situations are
shown in Figs. 7.23 and 7.24, respectively.

Suppose that d is the internal diameter of the shell and t the thickness of its walls. In
Fig. 7.23 the axial load on each end of the shell due to the pressure p is

p × πd2

4

This load is equilibrated by an internal force corresponding to the longitudinal direct
stress, σL, so that

σL π dt = p
π d2

4
which gives

σL = pd
4t

(7.62)

p

p

p

L

FIGURE 7.22 Thin cylindrical shell under internal
pressure

p

sL
FIGURE 7.23 Longitudinal
stresses due to internal pressure
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t

p
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d
Unit length FIGURE 7.24 Circumferential stress due to internal

pressure
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FIGURE 7.25
Two-dimensional stress
system

Now consider a unit length of the half shell formed by a diametral plane (Fig. 7.24).
The force on the shell, produced by p, in the opposite direction to the circumferential
stress, σC, is given by

p × projected area of the shell in the direction of σC

Therefore for equilibrium of the unit length of shell

2σC × (1 × t) = p × (1 × d)

which gives

σC = pd
2t

(7.63)

We can now represent the state of stress at any point in the wall of the shell by con-
sidering the stress acting on the edges of a very small element of the shell wall as
shown in Fig. 7.25(a). The stresses comprise the longitudinal stress, σL, (Eq. (7.62))
and the circumferential stress, σC, (Eq. (7.63)). Since the element is very small, the
effect of the curvature of the shell wall can be neglected so that the state of stress may
be represented as a two-dimensional or plane stress system acting on a plane element
of thickness, t (Fig. 7.25(b)).

In addition to stresses, the internal pressure produces corresponding strains in the walls
of the shell which lead to a change in volume. Consider the element of Fig. 7.25(b).
The longitudinal strain, εL, is, from Eq. (7.13)

εL = σL

E
− ν

σC

E
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or, substituting for σL and σC from Eqs (7.62) and (7.63), respectively

εL = pd
2tE

(
1
2

− ν

)
(7.64)

Similarly, the circumferential strain, εC, is given by

εC = pd
2tE

(
1 − 1

2
ν

)
(7.65)

The increase in length of the shell is εLL while the increase in circumference is εCπd.
We see from the latter expression that the increase in circumference of the shell
corresponds to an increase in diameter, εCd, so that the circumferential strain is equal
to diametral strain (and also radial strain). The increase in volume, �V , of the shell
is then given by

�V = π

4
(d + εCd)2(L + εLL) − π

4
d2L

which, when second-order terms are neglected, simplifies to

�V = πd2L
4

(2εC + εL) (7.66)

Substituting for εL and εC in Eq. (7.66) from Eqs (7.64) and (7.65) we obtain

�V = πd2L
4

pd
tE

(
5
4

− ν

)

so that the volumetric strain is

�V
(πd2L/4)

= pd
tE

(
5
4

− ν

)
(7.67)

The analysis of a spherical shell is somewhat simpler since only one direct stress is
involved. It can be seen from Fig. 7.26(a) and (b) that no matter which diametral
plane is chosen, the tensile stress, σ , in the walls of the shell is constant. Thus for the
equilibrium of the hemispherical portion shown in Fig. 7.26(b)

σ × πdt = p × π d2

4

from which

σ = pd
4t

(7.68)

Again we have a two-dimensional state of stress acting on a small element of the
shell wall (Fig. 7.26(c)) but in this case the direct stresses in the two directions are
equal. Also the volumetric strain is determined in an identical manner to that for the
cylindrical shell and is

3pd
4tE

(1 − ν) (7.69)
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FIGURE 7.26
Stress in a

spherical shell
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EXAMPLE 7.8 A thin-walled, cylindrical shell has an internal diameter of 2 m and
is fabricated from plates 20 mm thick. Calculate the safe pressure in the shell if the
tensile strength of the plates is 400 N/mm2 and the factor of safety is 6. Determine also
the percentage increase in the volume of the shell when it is subjected to this pressure.
Take Young’s modulus E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3.

The maximum tensile stress in the walls of the shell is the circumferential stress, σC,
given by Eq. (7.63). Then

400
6

= p × 2 × 103

2 × 20

from which

p = 1.33 N/mm2

The volumetric strain is obtained from Eq. (7.67) and is

1.33 × 2 × 103

20 × 200 000

(
5
4
−0.3

)
= 0.00063

Hence the percentage increase in volume is 0.063%.

7.12 PLANE STRAIN

The condition of plane strain occurs when all the strains in a structure, or part of
a structure, are confined to a single plane. This does not necessarily coincide with a
plane stress system as we noted in Section 7.11. Conversely, it generally requires a
three-dimensional stress system to produce a condition of plane strain.

Practical examples of plane strain situations are retaining walls or dams where the
ends of the wall or dam are constrained against movement and the loading is constant
along its length. All cross sections are then in the same condition so that any thin
slice of the wall or dam taken perpendicularly to its length would only be subjected to
strains in its own plane.

We shall examine more complex cases of plane stress and plane strain in Chapter 14.
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P R O B L E M S

P.7.1 A column 3 m high has a hollow circular cross section of external diameter
300 mm and carries an axial load of 5000 kN. If the stress in the column is limited
to 150 N/mm2 and the shortening of the column under load must not exceed 2 mm
calculate the maximum allowable internal diameter. Take E = 200 000 N/mm2.

Ans. 205.6 mm.

P.7.2 A steel girder is firmly attached to a wall at each end so that changes in its length
are prevented. If the girder is initially unstressed, calculate the stress induced in the
girder when it is subjected to a uniform temperature rise of 30 K. The coefficient of
linear expansion of the steel is 0.000 05/K and Young’s modulus E = 180 000 N/mm2.
(Note L = L0(1 + αT).)

Ans. 270 N/mm2 (compression).

P.7.3 A column 3 m high has a solid circular cross section and carries an axial load of
10 000 kN. If the direct stress in the column is limited to 150 N/mm2 determine the
minimum allowable diameter. Calculate also the shortening of the column due to this
load and the increase in its diameter. Take E = 200 000 N/mm2 and ν = 0.3.

Ans. 291.3 mm, 2.25 mm, 0.066 mm.

P.7.4 A structural member, 2 m long, is found to be 1.5 mm short when positioned
in a framework. To enable the member to be fitted it is heated uniformly along its
length. Determine the necessary temperature rise. Calculate also the residual stress
in the member when it cools to its original temperature if movement of the ends of
the member is prevented.

If the member has a rectangular cross section, determine the percentage change
in cross-sectional area when the member is fixed in position and at its original
temperature.

Young’s modulus E = 200 000 N/mm2, Poisson’s ratio ν = 0.3 and the coefficient of
linear expansion of the material of the member is 0.000 012/K.

Ans. 62.5 K, 150 N/mm2 (tension), 0.045% (reduction).

P.7.5 A member of a framework is required to carry an axial tensile load of 100 kN. It
is proposed that the member be comprised of two angle sections back to back in which
one 18 mm diameter hole is allowed per angle for connections. If the allowable stress
is 155 N/mm2, suggest suitable angles.

Ans. Required minimum area of cross section = 645.2 mm2. From steel tables, two
equal angles 50 × 50 × 5 mm are satisfactory.
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P.7.6 A vertical hanger supporting the deck of a suspension bridge is formed from a
steel cable 25 m long and having a diameter of 7.5 mm. If the density of the steel is
7850 kg/m3 and the load at the lower end of the hanger is 5 kN, determine the maximum
stress in the cable and its elongation. Young’s modulus E = 200 000 N/mm2.

Ans. 115.1 N/mm2, 14.3 mm.

P.7.7 A concrete chimney 40 m high has a cross-sectional area (of concrete) of 0.15 m2

and is stayed by three groups of four cables attached to the chimney at heights of
15, 25 and 35 m respectively. If each cable is anchored to the ground at a distance
of 20 m from the base of the chimney and tensioned to a force of 15 kN, calculate
the maximum stress in the chimney and the shortening of the chimney including the
effect of its own weight. The density of concrete is 2500 kg/m3 and Young’s modulus
E = 20 000 N/mm2.

Ans. 1.9 N/mm2, 2.2 mm.

P.7.8 A column of height h has a rectangular cross section which tapers linearly in
width from b1 at the base of the column to b2 at the top. The breadth of the cross
section is constant and equal to a. Determine the shortening of the column due to an
axial load P.

Ans. (Ph/[aE(b1 − b2)]) loge(b1/b2).

P.7.9 Determine the vertical deflection of the 20 kN load in the truss shown in
Fig. P.7.9. The cross-sectional area of the tension members is 100 mm2 while that
of the compression members is 200 mm2. Young’s modulus E = 205 000 N/mm2.

Ans. 4.5 mm.

60° 60°

60°60°

20 kN

3 m FIGURE P.7.9

P.7.10 The truss shown in Fig. P.7.10 has members of cross-sectional area 1200 mm2

and Young’s modulus 205 000 N/mm2. Determine the vertical deflection of the load.

Ans. 10.3 mm.
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2 m

2 m

2 m

100 kN

FIGURE P.7.10

P.7.11 Three identical bars of length L are hung in a vertical position as shown in
Fig. P.7.11. A rigid, weightless beam is attached to their lower ends and this in turn
carries a load P. Calculate the load in each bar.

Ans. P1 = P/12, P2 = P/3, P3 = 7P/12.

1 2 3 L

P

a a/2 a/2 FIGURE P.7.11

P.7.12 A composite column is formed by placing a steel bar, 20 mm in diameter and
200 mm long, inside an alloy cylinder of the same length whose internal and external
diameters are 20 and 25 mm, respectively. The column is then subjected to an axial
load of 50 kN. If E for steel is 200 000 N/mm2 and E for the alloy is 70 000 N/mm2,
calculate the stress in the cylinder and in the bar, the shortening of the column and
the strain energy stored in the column.

Ans. 46.5 N/mm2 (cylinder), 132.9 N/mm2 (bar), 0.13 mm, 3.3 Nm.

P.7.13 A timber column, 3 m high, has a rectangular cross section, 100 mm × 200 mm,
and is reinforced over its complete length by two steel plates each 200 mm wide and
10 mm thick attached to its 200 mm wide faces. The column is designed to carry a
load of 100 kN. If the failure stress of the timber is 55 N/mm2 and that of the steel is
380 N/mm2, check the design using a factor of safety of 3 for the timber and 2 for the
steel. E (timber) = 15 000 N/mm2, E (steel) = 200 000 N/mm2.

Ans. σ (timber) = 13.6 N/mm2 (allowable stress = 18.3 N/mm2),
σ (steel) = 181.8 N/mm2 (allowable stress = 190 N/mm2).

P.7.14 The composite bar shown in Fig. P.7.14 is initially unstressed. If the temperature
of the bar is reduced by an amount T uniformly along its length, find an expression for
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the tensile stress induced. The coefficients of linear expansion of steel and aluminium
are αS and αA per unit temperature change, respectively, while the corresponding
values of Young’s modulus are ES and EA.

Ans. T(αSL1 + αAL2)/(L1/ES + L2/EA).

Steel Aluminium

L2L1 FIGURE P.7.14

P.7.15 A short bar of copper, 25 mm in diameter, is enclosed centrally within a steel
tube of external diameter 36 mm and thickness 3 mm. At 0◦C the ends of the bar
and tube are rigidly fastened together and the complete assembly heated to 80◦C.
Calculate the stress in the bar and in the tube if E for copper is 100 000 N/mm2, E for
steel is 200 000 N/mm2 and the coefficients of linear expansion of copper and steel are
0.000 01/◦C and 0.000 006/◦C, respectively.

Ans. σ (steel) = 28.3 N/mm2 (tension),
σ (copper) = 17.9 N/mm2 (compression).

P.7.16 A bar of mild steel of diameter 75 mm is placed inside a hollow aluminium cylin-
der of internal diameter 75 mm and external diameter 100 mm; both bar and cylinder
are the same length. The resulting composite bar is subjected to an axial compressive
load of 106 N. If the bar and cylinder contract by the same amount, calculate the stress
in each.

The temperature of the compressed composite bar is then reduced by 150◦C but
no change in length is permitted. Calculate the final stress in the bar and in
the cylinder. Take E (steel) = 200 000 N/mm2, E (aluminium) = 80 000 N/mm2, α

(steel) = 0.000 012/◦C, α (aluminium) = 0.000 005/◦C.

Ans. Due to load: σ (steel) = 172.6 N/mm2 (compression),
σ (aluminium) = 69.1 N/mm2 (compression).

Final stress: σ (steel) = 187.4 N/mm2 (tension),
σ (aluminium) = − 9.1 N/mm2 (compression).

P.7.17 Two structural members are connected together by a hinge which is formed as
shown in Fig. P.7.17. The bolt is tightened up onto the sleeve through rigid end plates
until the tensile force in the bolt is 10 kN. The distance between the head of the bolt
and the nut is then 100 mm and the sleeve is 80 mm in length. If the diameter of the
bolt is 15 mm and the internal and outside diameters of the sleeve are 20 and 30 mm,
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respectively, calculate the final stresses in the bolt and sleeve when an external tensile
load of 5 kN is applied to the bolt.

Ans. σ (bolt) = 65.4 N/mm2 (tension),
σ (sleeve) = 16.7 N/mm2 (compression).

Sleeve
Rigid end plates

80 mm

100 mm FIGURE P.7.17

P.7.18 Calculate the minimum wall thickness of a cast iron water pipe having an inter-
nal diameter of 1 m under a head of 120 m. The limiting tensile strength of cast iron is
20 N/mm2 and the density of water is 1000 kg/m3.

Ans. 29.4 mm.

P.7.19 A thin-walled spherical shell is fabricated from steel plates and has to withstand
an internal pressure of 0.75 N/mm2. The internal diameter is 3 m and the joint efficiency
80%. Calculate the thickness of plates required using a working stress of 80 N/mm2.
(Note, effective thickness of plates = 0.8 × actual thickness).

Ans. 8.8 mm.
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It is now clear from the discussion in Chapter 7 that the structural designer requires a
knowledge of the behaviour of materials under different types of load before he/she
can be reasonably sure of designing a safe and, at the same time, economic structure.

One of the most important properties of a material is its strength, by which we mean the
value of stress at which it fractures. Equally important in many instances, particularly
in elastic design, is the stress at which yielding begins. In addition, the designer must
have a knowledge of the stiffness of a material so that he/she can prevent excessive
deflections occurring that could cause damage to adjacent structural members. Other
factors that must be taken into consideration in design include the character of the
different loads. For example, it is common experience that a material, such as cast
iron fractures readily under a sharp blow whereas mild steel merely bends.

In Chapter 1 we reviewed the materials that are in common use in structural
engineering; we shall now examine their properties in detail.

8.1 CLASSIFICATION OF ENGINEERING MATERIALS

Engineering materials may be grouped into two distinct categories, ductile materials
and brittle materials, which exhibit very different properties under load. We shall
define the properties of ductility and brittleness and also some additional properties
which may depend upon the applied load or which are basic characteristics of the
material.

DUCTILITY

A material is said to be ductile if it is capable of withstanding large strains under load
before fracture occurs. These large strains are accompanied by a visible change in cross-
sectional dimensions and therefore give warning of impending failure. Materials in this
category include mild steel, aluminium and some of its alloys, copper and polymers.

188
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BRITTLENESS

A brittle material exhibits little deformation before fracture, the strain normally
being below 5%. Brittle materials therefore may fail suddenly without visible warning.
Included in this group are concrete, cast iron, high-strength steel, timber and ceramics.

ELASTIC MATERIALS

A material is said to be elastic if deformations disappear completely on removal of the
load. All known engineering materials are, in addition, linearly elastic within certain
limits of stress so that strain, within these limits, is directly proportional to stress.

PLASTICITY

A material is perfectly plastic if no strain disappears after the removal of load. Ductile
materials are elastoplastic and behave in an elastic manner until the elastic limit is
reached after which they behave plastically. When the stress is relieved the elastic
component of the strain is recovered but the plastic strain remains as a permanent set.

ISOTROPIC MATERIALS

In many materials the elastic properties are the same in all directions at each point in
the material although they may vary from point to point; such a material is known as
isotropic. An isotropic material having the same properties at all points is known as
homogeneous, e.g. mild steel.

ANISOTROPIC MATERIALS

Materials having varying elastic properties in different directions are known as
anisotropic.

ORTHOTROPIC MATERIALS

Although a structural material may possess different elastic properties in different
directions, this variation may be limited, as in the case of timber which has just two
values of Young’s modulus, one in the direction of the grain and one perpendicular to
the grain. A material whose elastic properties are limited to three different values in
three mutually perpendicular directions is known as orthotropic.

8.2 TESTING OF ENGINEERING MATERIALS

The properties of engineering materials are determined mainly by the mechanical
testing of specimens machined to prescribed sizes and shapes. The testing may be
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static or dynamic in nature depending on the particular property being investigated.
Possibly the most common mechanical static tests are tensile and compressive tests
which are carried out on a wide range of materials. Ferrous and non-ferrous metals
are subjected to both forms of test, while compression tests are usually carried out on
many non-metallic materials, such as concrete, timber and brick, which are normally
used in compression. Other static tests include bending, shear and hardness tests,
while the toughness of a material, in other words its ability to withstand shock loads,
is determined by impact tests.

TENSILE TESTS

Tensile tests are normally carried out on metallic materials and, in addition, timber.
Test pieces are machined from a batch of material, their dimensions being specified
by Codes of Practice. They are commonly circular in cross section, although flat test
pieces having rectangular cross sections are used when the batch of material is in the
form of a plate. A typical test piece would have the dimensions specified in Fig. 8.1.
Usually the diameter of a central portion of the test piece is fractionally less than that
of the remainder to ensure that the test piece fractures between the gauge points.

Before the test begins, the mean diameter of the test piece is obtained by taking
measurements at several sections using a micrometer screw gauge. Gauge points are
punched at the required gauge length, the test piece is placed in the testing machine
and a suitable strain measuring device, usually an extensometer, is attached to the
test piece at the gauge points so that the extension is measured over the given gauge
length. Increments of load are applied and the corresponding extensions recorded.
This procedure continues until yield (see Section 8.3) occurs, when the extensometer
is removed as a precaution against the damage which would be caused if the test piece
fractured unexpectedly. Subsequent extensions are measured by dividers placed in
the gauge points until, ultimately, the test piece fractures. The final gauge length and
the diameter of the test piece in the region of the fracture are measured so that the
percentage elongation and percentage reduction in area may be calculated. The two
parameters give a measure of the ductility of the material.

A stress–strain curve is drawn (see Figs 8.8 and 8.12), the stress normally being calcu-
lated on the basis of the original cross-sectional area of the test piece, i.e. a nominal

Gauge points

Diameter, D

Radius, R

Fractionally
reduced
diameter

Gauge length (GL)

Length, L
FIGURE 8.1 Standard
cylindrical test piece
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stress as opposed to an actual stress (which is based on the actual area of cross section).
For ductile materials there is a marked difference in the latter stages of the test as
a considerable reduction in cross-sectional area occurs between yield and fracture.
From the stress–strain curve the ultimate stress, the yield stress and Young’s modulus,
E, are obtained (see Section 7.7).

There are a number of variations on the basic tensile test described above. Some of
these depend upon the amount of additional information required and some upon
the choice of equipment. Thus there is a wide range of strain measuring devices
to choose from, extending from different makes of mechanical extensometer, e.g.
Huggenberger, Lindley, Cambridge, to the electrical resistance strain gauge. The last
would normally be used on flat test pieces, one on each face to eliminate the effects
of possible bending. At the same time a strain gauge could be attached in a direction
perpendicular to the direction of loading so that lateral strains are measured. The
ratio lateral strain/longitudinal strain is Poisson’s ratio, ν, (Section 7.8).

Testing machines are usually driven hydraulically. More sophisticated versions employ
load cells to record load and automatically plot load against extension or stress against
strain on a pen recorder as the test proceeds, an advantage when investigating the
distinctive behaviour of mild steel at yield.

COMPRESSION TESTS

A compression test is similar in operation to a tensile test, with the obvious differ-
ence that the load transmitted to the test piece is compressive rather than tensile.
This is achieved by placing the test piece between the platens of the testing machine
and reversing the direction of loading. Test pieces are normally cylindrical and are
limited in length to eliminate the possibility of failure being caused by instability (Chap-
ter 21). Again contractions are measured over a given gauge length by a suitable strain
measuring device.

Variations in test pieces occur when only the ultimate strength of the material in
compression is required. For this purpose concrete test pieces may take the form of
cubes having edges approximately 10 cm long, while mild steel test pieces are still
cylindrical in section but are of the order of 1 cm long.

BENDING TESTS

Many structural members are subjected primarily to bending moments. Bending tests
are therefore carried out on simple beams constructed from the different materials to
determine their behaviour under this type of load.

Two forms of loading are employed the choice depending upon the type specified in
Codes of Practice for the particular material. In the first a simply supported beam is
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FIGURE 8.2
Bending test on a
beam, ‘two-point’

load
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subjected to a ‘two-point’ loading system as shown in Fig. 8.2(a). Two concentrated
loads are applied symmetrically to the beam, producing zero shear force and constant
bending moment in the central span of the beam (Fig. 8.2(b) and (c)). The condition
of pure bending is therefore achieved in the central span (see Section 9.1).

The second form of loading system consists of a single concentrated load at mid-span
(Fig. 8.3(a)) which produces the shear force and bending moment diagrams shown in
Fig. 8.3(b) and (c).

The loads may be applied manually by hanging weights on the beam or by a testing
machine. Deflections are measured by a dial gauge placed underneath the beam. From
the recorded results a load–deflection diagram is plotted.

For most ductile materials the test beams continue to deform without failure and
fracture does not occur. Thus plastic properties, e.g. the ultimate strength in bending,
cannot be determined for such materials. In the case of brittle materials, including
cast iron, timber and various plastics, failure does occur, so that plastic properties can
be evaluated. For such materials the ultimate strength in bending is defined by the
modulus of rupture. This is taken to be the maximum direct stress in bending, σx,u,
corresponding to the ultimate moment Mu, and is assumed to be related to Mu by the
elastic relationship

σx,u = Mu

I
ymax (see Eq. 9.9)

Other bending tests are designed to measure the ductility of a material and involve
the bending of a bar round a pin. The angle of bending at which the bar starts to crack
is then taken as an indication of its ductility.
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FIGURE 8.3
Bending test on a
beam, single load
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FIGURE 8.4
Shear test

Shear tool Load

Test piece

Block

SHEAR TESTS

Two main types of shear test are used to determine the shear properties of materials.
One type investigates the direct or transverse shear strength of a material and is used
in connection with the shear strength of bolts, rivets and beams. A typical arrangement
is shown diagrammatically in Fig. 8.4 where the test piece is clamped to a block and the
load is applied through the shear tool until failure occurs. In the arrangement shown
the test piece is subjected to double shear, whereas if it is extended only partially across
the gap in the block it would be subjected to single shear. In either case the average
shear strength is taken as the maximum load divided by the shear resisting area.

The other type of shear test is used to evaluate the basic shear properties of a material,
such as the shear modulus, G (Eq. (7.9)), the shear stress at yield and the ultimate shear
stress. In the usual form of test a solid circular-section test piece is placed in a torsion
machine and twisted by controlled increments of torque. The corresponding angles of
twist are recorded and torque–twist diagrams plotted from which the shear properties
of the material are obtained. The method is similar to that used to determine the
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D

F kg

h

d FIGURE 8.5 Brinell hardness test

tensile properties of a material from a tensile test and uses relationships derived in
Chapter 11.

HARDNESS TESTS

The machinability of a material and its resistance to scratching or penetration are
determined by its ‘hardness’. There also appears to be a connection between the
hardness of some materials and their tensile strength so that hardness tests may be
used to determine the properties of a finished structural member where tensile and
other tests would be impracticable. Hardness tests are also used to investigate the
effects of heat treatment, hardening and tempering and of cold forming. Two types of
hardness test are in common use: indentation tests and scratch and abrasion tests.

Indentation tests may be subdivided into two classes: static and dynamic. Of the static
tests the Brinell is the most common. In this a hardened steel ball is pressed into the
material under test by a static load acting for a fixed period of time. The load in kg
divided by the spherical area of the indentation in mm2 is called the Brinell Hardness
Number (BHN). Thus in Fig. 8.5, if D is the diameter of the ball, F the load in kg, h
the depth of the indentation, and d the diameter of the indentation, then

BHN = F
πDh

= 2F

πD[D − √
D2 − d2]

In practice the hardness number of a given material is found to vary with F and D so
that for uniformity the test is standardized. For steel and hard materials F = 3000 kg
and D = 10 mm while for soft materials F = 500 kg and D = 10 mm; in addition the
load is usually applied for 15 s.

In the Brinell test the dimensions of the indentation are measured by means of a
microscope. To avoid this rather tedious procedure, direct reading machines have been
devised of which the Rockwell is typical. The indenting tool, again a hardened sphere,
is first applied under a definite light load. This indenting tool is then replaced by a
diamond cone with a rounded point which is then applied under a specified indentation
load. The difference between the depth of the indentation under the two loads is taken
as a measure of the hardness of the material and is read directly from the scale.

A typical dynamic hardness test is performed by the Shore Scleroscope which consists
of a small hammer approximately 20-mm long and 6 mm in diameter fitted with a
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blunt, rounded, diamond point. The hammer is guided by a vertical glass tube and
allowed to fall freely from a height of 25 cm onto the specimen, which it indents before
rebounding. A certain proportion of the energy of the hammer is expended in forming
the indentation so that the height of the rebound, which depends upon the energy still
possessed by the hammer, is taken as a measure of the hardness of the material.

A number of tests have been devised to measure the ‘scratch hardness’ of materials. In
one test, the smallest load in grams which, when applied to a diamond point, produces a
scratch visible to the naked eye on a polished specimen of material is called its hardness
number. In other tests the magnitude of the load required to produce a definite width
of scratch is taken as the measure of hardness. Abrasion tests, involving the shaking
over a period of time of several specimens placed in a container, measure the resistance
to wear of some materials. In some cases there appears to be a connection between
wear and hardness number although the results show no level of consistency.

IMPACT TESTS

It has been found that certain materials, particularly heat-treated steels, are susceptible
to failure under shock loading whereas an ordinary tensile test on the same material
would show no abnormality. Impact tests measure the ability of materials to withstand
shock loads and provide an indication of their toughness. Two main tests are in use,
the Izod and the Charpy.

FIGURE 8.6 Izod
impact test (a) (b)

Pendulum

Striker

Striker

Test piece

Mounting
block

Test
piece

75°

10°

45°

22 mm

FIGURE 8.7 Charpy
impact test
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Both tests rely on a striker or weight attached to a pendulum. The pendulum is released
from a fixed height, the weight strikes a notched test piece and the angle through
which the pendulum then swings is a measure of the toughness of the material. The
arrangement for the Izod test is shown diagrammatically in Fig. 8.6(a). The specimen
and the method of mounting are shown in detail in Fig. 8.6(b). The Charpy test is
similar in operation except that the test piece is supported in a different manner as
shown in the plan view in Fig. 8.7.

8.3 STRESS–STRAIN CURVES

We shall now examine in detail the properties of the different materials used in civil
engineering construction from the viewpoint of the results obtained from tensile and
compression tests.

LOW CARBON STEEL (MILD STEEL)

A nominal stress–strain curve for mild steel, a ductile material, is shown in Fig. 8.8.
From 0 to ‘a’ the stress–strain curve is linear, the material in this range obeying Hooke’s
law. Beyond ‘a’, the limit of proportionality, stress is no longer proportional to strain
and the stress–strain curve continues to ‘b’, the elastic limit, which is defined as the
maximum stress that can be applied to a material without producing a permanent
plastic deformation or permanent set when the load is removed. In other words, if the
material is stressed beyond ‘b’ and the load then removed, a residual strain exists at
zero load. For many materials it is impossible to detect a difference between the limit
of proportionality and the elastic limit. From 0 to ‘b’ the material is said to be in the
elastic range while from ‘b’ to fracture the material is in the plastic range. The transition
from the elastic to the plastic range may be explained by considering the arrangement
of crystals in the material. As the load is applied, slipping occurs between the crystals
which are aligned most closely to the direction of load. As the load is increased,

FIGURE 8.8
Stress–strain curve
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Neck
FIGURE 8.9 ‘Necking’ of a test piece in
the plastic range

FIGURE 8.10 ‘Cup-and-cone’ failure of a
mild steel test piece

more and more crystals slip with each equal load increment until appreciable strain
increments are produced and the plastic range is reached.

A further increase in stress from ‘b’ results in the mild steel reaching its upper yield
point at ‘c’ followed by a rapid fall in stress to its lower yield point at ‘d’. The existence
of a lower yield point for mild steel is a peculiarity of the tensile test wherein the
movement of the ends of the test piece produced by the testing machine does not
proceed as rapidly as its plastic deformation; the load therefore decreases, as does the
stress. From ‘d’ to ‘f’ the strain increases at a roughly constant value of stress until
strain hardening (see Section 8.4) again causes an increase in stress. This increase in
stress continues, accompanied by a large increase in strain to ‘g’, the ultimate stress,
σult, of the material. At this point the test piece begins, visibly, to ‘neck’ as shown in
Fig. 8.9. The material in the test piece in the region of the ‘neck’ is almost perfectly
plastic at this stage and from this point, onwards to fracture, there is a reduction in
nominal stress.

For mild steel, yielding occurs at a stress of the order of 300 N/mm2. At fracture
the strain (i.e. the elongation) is of the order of 30%. The gradient of the linear
portion of the stress–strain curve gives a value for Young’s modulus in the region of
200 000 N/mm2.

The characteristics of the fracture are worthy of examination. In a cylindrical test
piece the two halves of the fractured test piece have ends which form a ‘cup and cone’
(Fig. 8.10). The actual failure planes in this case are inclined at approximately 45◦ to
the axis of loading and coincide with planes of maximum shear stress (Section 14.2).
Similarly, if a flat tensile specimen of mild steel is polished and then stressed, a pat-
tern of fine lines appears on the polished surface at yield. These lines, which were first
discovered by Lüder in 1854, intersect approximately at right angles and are inclined
at 45◦ to the axis of the specimen, thereby coinciding with planes of maximum shear
stress. These forms of yielding and fracture suggest that the crystalline structure of
the steel is relatively weak in shear with yielding taking the form of the sliding of one
crystal plane over another rather than the tearing apart of two crystal planes.

The behaviour of mild steel in compression is very similar to its behaviour in tension,
particularly in the elastic range. In the plastic range it is not possible to obtain ultimate
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Deformed
test piece

FIGURE 8.11 ‘Barrelling’ of a mild steel test
piece in compression

and fracture loads since, due to compression, the area of cross section increases as
the load increases producing a ‘barrelling’ effect as shown in Fig. 8.11. This increase
in cross-sectional area tends to decrease the true stress, thereby increasing the load
resistance. Ultimately a flat disc is produced. For design purposes the ultimate stresses
of mild steel in tension and compression are assumed to be the same.

The ductility of mild steel is often an advantage in that structures fabricated from
mild steel do not generally suffer an immediate and catastrophic collapse if the yield
stress of a member is exceeded. The member will deform in such a way that loads
are redistributed to other adjacent members and at the same time will exhibit signs of
distress thereby giving a warning of a probable impending collapse.

Higher grades of steel have greater strengths than mild steel but are not as ductile. They
also possess the same Young’s modulus so that the higher stresses are accompanied
by higher strains.

Steel structures are very susceptible to rust which forms on surfaces exposed to oxygen
and moisture (air and rain) and this can seriously weaken a member as its cross-
sectional area is eaten away. Generally, exposed surfaces are protected by either
galvanizing, in which they are given a coating of zinc, or by painting. The latter system
must be properly designed and usually involves shot blasting the steel to remove the
loose steel flakes, or millscale, produced in the hot rolling process, priming, undercoat-
ing and painting. Cold-formed sections do not suffer from millscale so that protective
treatments are more easily applied.

ALUMINIUM

Aluminium and some of its alloys are also ductile materials, although their stress–
strain curves do not have the distinct yield stress of mild steel. A typical stress–strain
curve is shown in Fig. 8.12. The points ‘a’ and ‘b’ again mark the limit of proportionality
and elastic limit, respectively, but are difficult to determine experimentally. Instead
a proof stress is defined which is the stress required to produce a given permanent
strain on removal of the load. In Fig. 8.12, a line drawn parallel to the linear portion
of the stress–strain curve from a strain of 0.001 (i.e. a strain of 0.1%) intersects the
stress–strain curve at the 0.1% proof stress. For elastic design this, or the 0.2% proof
stress, is taken as the working stress.
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FIGURE 8.12 Stress–strain curve
for aluminium

Beyond the limit of proportionality the material extends plastically, reaching its
ultimate stress, σult, at ‘d’ before finally fracturing under a reduced nominal stress at ‘f’.

A feature of the fracture of aluminium alloy test pieces is the formation of a ‘double cup’
as shown in Fig. 8.13, implying that failure was initiated in the central portion of the test
piece while the outer surfaces remained intact. Again considerable ‘necking’ occurs.

FIGURE 8.13 ‘Double-cup’ failure of an
aluminium alloy test piece

In compression tests on aluminium and its ductile alloys similar difficulties are encoun-
tered to those experienced with mild steel. The stress–strain curve is very similar in the
elastic range to that obtained in a tensile test but the ultimate strength in compression
cannot be determined; in design its value is assumed to coincide with that in tension.

Aluminium and its alloys can suffer a form of corrosion particularly in the salt laden
atmosphere of coastal regions. The surface becomes pitted and covered by a white
furry deposit. This can be prevented by an electrolytic process called anodizing which
covers the surface with an inert coating. Aluminium alloys will also corrode if they
are placed in direct contact with other metals, such as steel. To prevent this, plastic is
inserted between the possible areas of contact.

BRITTLE MATERIALS

These include cast iron, high-strength steel, concrete, timber, ceramics, glass, etc.
The plastic range for brittle materials extends to only small values of strain. A typical
stress–strain curve for a brittle material under tension is shown in Fig. 8.14. Little or no
yielding occurs and fracture takes place very shortly after the elastic limit is reached.

The fracture of a cylindrical test piece takes the form of a single failure plane approx-
imately perpendicular to the direction of loading with no visible ‘necking’ and an
elongation of the order of 2–3%.
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FIGURE 8.14 Stress–strain curve for a brittle
material
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FIGURE 8.15 Failure of brittle
materials

In compression the stress–strain curve for a brittle material is very similar to that in
tension except that failure occurs at a much higher value of stress; for concrete the
ratio is of the order of 10 : 1. This is thought to be due to the presence of microscopic
cracks in the material, giving rise to high stress concentrations which are more likely
to have a greater effect in reducing tensile strength than compressive strength.

The form of the fracture of brittle materials under compression is clear and visible.
For example, a cast-iron cylinder cracks on a diagonal plane as shown in Fig. 8.15(a)
while failure of a concrete cube is shown in Fig. 8.15(b) where failure planes intersect
at approximately 45◦ along each vertical face. Figure 8.15(c) shows a typical failure of
a rectangular block of timber in compression. Failure in all these cases is due primarily
to a breakdown in shear on planes inclined to the direction of compression.

Brittle materials can suffer deterioration in hostile environments although concrete is
very durable and generally requires no maintenance. Concrete also provides a protec-
tive cover for the steel reinforcement in beams where the amount of cover depends on
the diameter of the reinforcing bars and the degree of exposure of the beam. In some
situations, e.g. in foundations, concrete is prone to chemical attack from sulphates
contained in groundwater although if these are known to be present sulphate resisting
cement can be used in the concrete.

Brick and stone are durable materials and can survive for hundreds of years as evi-
denced by the many medieval churches and Jacobean houses which still exist. There
are, of course, wide variations in durability. For example, granite is extremely hard
whereas the much softer sandstone can be worn away over periods of time by the
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FIGURE 8.16 Stress–strain curve for a fibre
composite

combined effects of wind and rain, particularly acid rain which occurs when sulphur
dioxide, produced by the burning of fossil fuels, reacts with water to form sulphuric
acid. Bricks and stone are vulnerable to repeated wetting and freezing in which water,
penetrating any surface defect, can freeze causing parts of the surface to flake off or
spall. Some protection can be provided by masonry paints but these require frequent
replacement. An alternative form of protection is a sealant which can be sprayed onto
the surface of the masonry. The disadvantage of this is that, while preventing moisture
penetrating the building, it also prevents water vapour from leaving. The ideal solution
is to use top quality materials, do not apply any treatment and deal with any problem
as it arises.

Timber, as we noted in Chapter 1, can be protected from fungal and insect attacks by
suitable treatments.

COMPOSITES

Fibre composites have stress–strain characteristics which indicate that they are brittle
materials (Fig. 8.16). There is little or no plasticity and the modulus of elasticity is
less than that of steel and aluminium alloy. However, the fibres themselves can have
much higher values of strength and modulus of elasticity than the composite. For
example, carbon fibres have a tensile strength of the order 2400 N/mm2 and a modulus
of elasticity of 400 000 N/mm2.

Fibre composites are highly durable, require no maintenance and can be used in
hostile chemical and atmospheric environments; vinyls and epoxy resins provide the
best resistance.

All the stress–strain curves described in the preceding discussion are those produced
in tensile or compression tests in which the strain is applied at a negligible rate. A
rapid strain application would result in significant changes in the apparent properties
of the materials giving possible variations in yield stress of up to 100%.
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FIGURE 8.17 Strain hardening of a
material

8.4 STRAIN HARDENING

The stress–strain curve for a material is influenced by the strain history, or the loading
and unloading of the material, within the plastic range. For example, in Fig. 8.17 a
test piece is initially stressed in tension beyond the yield stress at, ‘a’, to a value at
‘b’. The material is then unloaded to ‘c’ and reloaded to ‘f’ producing an increase in
yield stress from the value at ‘a’ to the value at ‘d’. Subsequent unloading to ‘g’ and
loading to ‘j’ increases the yield stress still further to the value at ‘h’. This increase in
strength resulting from the loading and unloading is known as strain hardening. It can
be seen from Fig. 8.17 that the stress–strain curve during the unloading and loading
cycles forms loops (the shaded areas in Fig. 8.17). These indicate that strain energy
is lost during the cycle, the energy being dissipated in the form of heat produced by
internal friction. This energy loss is known as mechanical hysteresis and the loops as
hysteresis loops. Although the ultimate stress is increased by strain hardening it is not
influenced to the same extent as yield stress. The increase in strength produced by
strain hardening is accompanied by decreases in toughness and ductility.

8.5 CREEP AND RELAXATION

We have seen in Chapter 7 that a given load produces a calculable value of stress in a
structural member and hence a corresponding value of strain once the full value of the
load is transferred to the member. However, after this initial or ‘instantaneous’ stress
and its corresponding value of strain have been attained, a great number of structural
materials continue to deform slowly and progressively under load over a period of
time. This behaviour is known as creep. A typical creep curve is shown in Fig. 8.18.

Some materials, such as plastics and rubber, exhibit creep at room temperatures but
most structural materials require high temperatures or long-duration loading at mod-
erate temperatures. In some ‘soft’ metals, such as zinc and lead, creep occurs over
a relatively short period of time, whereas materials such as concrete may be subject
to creep over a period of years. Creep occurs in steel to a slight extent at normal
temperatures but becomes very important at temperatures above 316◦C.
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FIGURE 8.18
Typical creep curve
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Closely related to creep is relaxation. Whereas creep involves an increase in strain
under constant stress, relaxation is the decrease in stress experienced over a period of
time by a material subjected to a constant strain.

8.6 FATIGUE

Structural members are frequently subjected to repetitive loading over a long period
of time. For example, the members of a bridge structure suffer variations in loading
possibly thousands of times a day as traffic moves over the bridge. In these circum-
stances a structural member may fracture at a level of stress substantially below the
ultimate stress for non-repetitive static loads; this phenomenon is known as fatigue.

Fatigue cracks are most frequently initiated at sections in a structural member where
changes in geometry, e.g. holes, notches or sudden changes in section, cause stress
concentrations. Designers seek to eliminate such areas by ensuring that rapid changes
in section are as smooth as possible. Thus at re-entrant corners, fillets are provided as
shown in Fig. 8.19.

Other factors which affect the failure of a material under repetitive loading are the type
of loading (fatigue is primarily a problem with repeated tensile stresses due, probably,
to the fact that microscopic cracks can propagate more easily under tension), temper-
ature, the material, surface finish (machine marks are potential crack propagators),
corrosion and residual stresses produced by welding.

Frequently in structural members an alternating stress, σalt, is superimposed on a static
or mean stress, σmean, as illustrated in Fig. 8.20. The value of σalt is the most important
factor in determining the number of cycles of load that produce failure. The stress,
σalt, that can be withstood for a specified number of cycles is called the fatigue strength
of the material. Some materials, such as mild steel, possess a stress level that can be
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withstood for an indefinite number of cycles. This stress is known as the endurance
limit of the material; no such limit has been found for aluminium and its alloys. Fatigue
data are frequently presented in the form of an S–n curve or stress–endurance curve
as shown in Fig. 8.21.

In many practical situations the amplitude of the alternating stress varies and is fre-
quently random in nature. The S–n curve does not, therefore, apply directly and an
alternative means of predicting failure is required. Miner’s cumulative damage theory
suggests that failure will occur when

n1

N1
+ n2

N2
+ · · · + nr

Nr
= 1 (8.1)

where n1, n2, . . . , nr are the number of applications of stresses σalt, σmean and
N1, N2, . . . , Nr are the number of cycles to failure of stresses σalt, σmean.
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8.7 DESIGN METHODS

In Section 8.3 we examined stress–strain curves for different materials and saw that,
generally, there are two significant values of stress: the yield stress, σY, and the ultimate
stress, σult. Either of these two stresses may be used as the basis of design which must
ensure, of course, that a structure will adequately perform the role for which it is
constructed. In any case the maximum stress in a structure should be kept below the
elastic limit of the material otherwise a permanent set will result when the loads are
applied and then removed.

Two design approaches are possible. The first, known as elastic design, uses either the
yield stress (for ductile materials), or the ultimate stress (for brittle materials) and
establishes a working or allowable stress within the elastic range of the material by
applying a suitable factor of safety whose value depends upon a number of consider-
ations. These include the type of material, the type of loading (fatigue loading would
require a larger factor of safety than static loading which is obvious from Section 8.6)
and the degree of complexity of the structure. Therefore for materials such as steel,
the working stress, σw, is given by

σw = σY

n
(8.2)

where n is the factor of safety, a typical value being 1.65. For a brittle material, such
as concrete, the working stress would be given by

σw = σult

n
(8.3)

in which n is of the order of 2.5.

Elastic design has been superseded for concrete by limit state or ultimate load design
and for steel by plastic design (or limit, or ultimate load design). In this approach the
structure is designed with a given factor of safety against complete collapse which is
assumed to occur in a concrete structure when the stress reaches σult and occurs in a
steel structure when the stress at one or more points reaches σY (see Section 9.10). In
the design process working or actual loads are determined and then factored to give
the required ultimate or collapse load of the structure. Knowing σult (for concrete) or
σY (for steel) the appropriate section may then be chosen for the structural member.

The factors of safety used in ultimate load design depend upon several parameters.
These may be grouped into those related to the material of the member and those
related to loads. Thus in the ultimate load design of a reinforced concrete beam the
values of σult for concrete and σY for the reinforcing steel are factored by partial safety
factors to give design strengths that allow for variations of workmanship or quality
of control in manufacture. Typical values for these partial safety factors are 1.5 for
concrete and 1.15 for the reinforcement. Note that the design strength in both cases is
less than the actual strength. In addition, as stated above, design loads are obtained in
which the actual loads are increased by multiplying the latter by a partial safety factor
which depends upon the type of load being considered.
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As well as strength, structural members must possess sufficient stiffness, under normal
working loads, to prevent deflections being excessive and thereby damaging adjacent
parts of the structure. Another consideration related to deflection is the appearance of
a structure which can be adversely affected if large deflections cause cracking of pro-
tective and/or decorative coverings. This is particularly critical in reinforced concrete
beams where the concrete in the tension zone of the beam cracks; this does not affect
the strength of the beam since the tensile stresses are withstood by the reinforcement.
However, if deflections are large the crack widths will be proportionately large and
the surface finish and protection afforded by the concrete to the reinforcement would
be impaired.

Codes of Practice limit deflections of beams either by specifying maximum span/depth
ratios or by fixing the maximum deflection in terms of the span. A typical limitation
for a reinforced concrete beam is that the total deflection of the beam should not
exceed span/250. An additional proviso is that the deflection that takes place after the
construction of partitions and finishes should not exceed span/350 or 20 mm, whichever
is the lesser. A typical value for a steel beam is span/360.

It is clear that the deflections of beams under normal working loads occur within the
elastic range of the material of the beam no matter whether elastic or ultimate load
theory has been used in their design. Deflections of beams, therefore, are checked
using elastic analysis.

TABLE 8.1

Material Density Modulus of Shear Yield Ultimate Poisson’s
(kN/m3) elasticity, modulus, stress, stress, ratio ν

E (N/mm2) G (N/mm2) σY (N/mm2) σ ult (N/mm2)

Aluminium alloy 27.0 70 000 40 000 290 440 0.33
Brass 82.5 103 000 41 000 103 276
Bronze 87.0 103 000 45 000 138 345
Cast iron 72.3 103 000 41 000 552 0.25

(compression)
138 (tension)

Concrete 22.8 21 400 20.7 0.13
(medium strength) (compression)

Copper 80.6 117 000 41 000 245 345
Steel (mild) 77.0 200 000 79 000 250 410–550 0.27
Steel 77.0 200 000 79 000 414 690 0.27
(high carbon)

Prestressing wire 200 000 1570
Timber
softwood 7 000 16
hardwood 6.0 12 000 30

Composite 20 000 250
(glass fibre)
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8.8 MATERIAL PROPERTIES

Table 8.1 lists some typical properties of the more common engineering materials.

P R O B L E M S

P.8.1 Describe a simple tensile test and show, with the aid of sketches, how mea-
sures of the ductility of the material of the specimen may be obtained. Sketch typical
stress–strain curves for mild steel and an aluminium alloy showing their important
features.

P.8.2 A bar of metal 25 mm in diameter is tested on a length of 250 mm. In tension
the following results were recorded:

TABLE P.8.2(a)

Load (kN) 10.4 31.2 52.0 72.8
Extension (mm) 0.036 0.089 0.140 0.191

A torsion test gave the following results:

TABLE P.8.2(b)

Torque (kN m) 0.051 0.152 0.253 0.354
Angle of twist (degrees) 0.24 0.71 1.175 1.642

Represent these results in graphical form and hence determine Young’s modulus,
E, the modulus of rigidity, G, Poisson’s ratio, ν, and the bulk modulus, K , for the
metal.

(Note: see Chapter 11 for torque–angle of twist relationship).

Ans. E � 205 000 N/mm2, G � 80 700 N/mm2, ν � 0.27, K � 148 500 N/mm2.

P.8.3 The actual stress–strain curve for a particular material is given by σ = Cεn where
C is a constant. Assuming that the material suffers no change in volume during plastic
deformation, derive an expression for the nominal stress–strain curve and show that
this has a maximum value when ε = n/(1 − n).

Ans. σ (nominal) = Cεn/(1 + ε).

P.8.4 A structural member is to be subjected to a series of cyclic loads which produce
different levels of alternating stress as shown below. Determine whether or not a
fatigue failure is probable.

Ans. Not probable (n1/N1 + n2/N2 + · · · = 0.39).
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TABLE P.8.4

Loading Number of cycles Number of cycles to failure

1 104 5 × 104

2 105 106

3 106 24 × 107

4 107 12 × 107
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In Chapter 7 we saw that an axial load applied to a member produces a uniform direct
stress across the cross section of the member (Fig. 7.2). A different situation arises
when the applied loads cause a beam to bend which, if the loads are vertical, will take
up a sagging or hogging shape (Section 3.2). This means that for loads which cause a
beam to sag the upper surface of the beam must be shorter than the lower surface as
the upper surface becomes concave and the lower one convex; the reverse is true for
loads which cause hogging. The strains in the upper regions of the beam will, therefore,
be different to those in the lower regions and since we have established that stress is
directly proportional to strain (Eq. (7.7)) it follows that the stress will vary through the
depth of the beam.

The truth of this can be demonstrated by a simple experiment. Take a reasonably long
rectangular rubber eraser and draw three or four lines on its longer faces as shown
in Fig. 9.1(a); the reason for this will become clear a little later. Now hold the eraser
between the thumb and forefinger at each end and apply pressure as shown by the
direction of the arrows in Fig. 9.1(b). The eraser bends into the shape shown and the
lines on the side of the eraser remain straight but are now further apart at the top than
at the bottom. Reference to Section 2.2 shows that a couple, or pure moment, has been
applied to each end of the eraser and, in this case, has produced a hogging shape.

Since, in Fig. 9.1(b), the upper fibres have been stretched and the lower fibres com-
pressed there will be fibres somewhere in between which are neither stretched nor
compressed; the plane containing these fibres is called the neutral plane.

FIGURE 9.1
Bending of a

rubber eraser

Convex

Concave

(a) (b)

209
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Now rotate the eraser so that its shorter sides are vertical and apply the same pressure
with your fingers. The eraser again bends but now requires much less effort. It follows
that the geometry and orientation of a beam section must affect its bending stiffness.
This is more readily demonstrated with a plastic ruler. When flat it requires hardly any
effort to bend it but when held with its width vertical it becomes almost impossible to
bend. What does happen is that the lower edge tends to move sideways (for a hogging
moment) but this is due to a type of instability which we shall investigate later.

We have seen in Chapter 3 that bending moments in beams are produced by the action
of either pure bending moments or shear loads. Reference to problem P.3.4 also shows
that two symmetrically placed concentrated shear loads on a simply supported beam
induce a state of pure bending, i.e. bending without shear, in the central portion of the
beam. It is also possible, as we shall see in Section 9.2, to produce bending moments
by applying loads parallel to but offset from the centroidal axis of a beam. Initially,
however, we shall concentrate on beams subjected to pure bending moments and
consider the corresponding internal stress distributions.

9.1 SYMMETRICAL BENDING

Although symmetrical bending is a special case of the bending of beams of arbitrary
cross section, we shall investigate the former first, so that the more complex general
case may be more easily understood.

Symmetrical bending arises in beams which have either singly or doubly symmetrical
cross sections; examples of both types are shown in Fig. 9.2.

Suppose that a length of beam, of rectangular cross section, say, is subjected to a pure,
sagging bending moment, M , applied in a vertical plane. The length of beam will bend
into the shape shown in Fig. 9.3(a) in which the upper surface is concave and the lower
convex. It can be seen that the upper longitudinal fibres of the beam are compressed
while the lower fibres are stretched. It follows that, as in the case of the eraser, between
these two extremes there are fibres that remain unchanged in length.

Axis of symmetry

Double
(rectangular)

Double
(I-section)

Single
(channel section)

Single
(T-section)

FIGURE 9.2 Symmetrical
section beams
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Thus the direct stress varies through the depth of the beam from compression in the
upper fibres to tension in the lower. Clearly the direct stress is zero for the fibres that
do not change in length; we have called the plane containing these fibres the neutral
plane. The line of intersection of the neutral plane and any cross section of the beam
is termed the neutral axis (Fig. 9.3(b)).

The problem, therefore, is to determine the variation of direct stress through the depth
of the beam, the values of the stresses and subsequently to find the corresponding beam
deflection.

ASSUMPTIONS

The primary assumption made in determining the direct stress distribution produced
by pure bending is that plane cross sections of the beam remain plane and normal to
the longitudinal fibres of the beam after bending. Again, we saw this from the lines on
the side of the eraser. We shall also assume that the material of the beam is linearly
elastic, i.e. it obeys Hooke’s law, and that the material of the beam is homogeneous.
Cases of composite beams are considered in Chapter 12.

DIRECT STRESS DISTRIBUTION

Consider a length of beam (Fig. 9.4(a)) that is subjected to a pure, sagging bending
moment, M , applied in a vertical plane; the beam cross section has a vertical axis of
symmetry as shown in Fig. 9.3(b). The bending moment will cause the length of beam
to bend in a similar manner to that shown in Fig. 9.3(a) so that a neutral plane will

FIGURE 9.3 Beam
subjected to a pure
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exist which is, as yet, unknown distances y1 and y2 from the top and bottom of the
beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz
(see Section 3.2) in which the origin O lies in the neutral plane of the beam. We
shall now investigate the behaviour of an elemental length, δx, of the beam formed by
parallel sections MIN and PGQ (Fig. 9.4(a)) and also the fibre ST of cross-sectional
area δA a distance y above the neutral plane. Clearly, before bending takes place
MP = IG = ST = NQ = δx.

The bending moment M causes the length of beam to bend about a centre of curvature
C as shown in Fig. 9.5(a). Since the element is small in length and a pure moment
is applied we can take the curved shape of the beam to be circular with a radius of
curvature R measured to the neutral plane. This is a useful reference point since, as
we have seen, strains and stresses are zero in the neutral plane.

The previously parallel plane sections MIN and PGQ remain plane as we have demon-
strated but are now inclined at an angle δθ to each other. The length MP is now shorter
than δx as is ST while NQ is longer; IG, being in the neutral plane, is still of length δx.
Since the fibre ST has changed in length it has suffered a strain εx which is given by

εx = change in length
original length

(see Eq. (7.4))

Then

εx = (R − y)δθ − δx
δx

i.e.

εx = (R − y)δθ − Rδθ

Rδθ

so that

εx = − y
R

(9.1)

The negative sign in Eq. (9.1) indicates that fibres in the region where y is positive will
shorten when the bending moment is positive. Then, from Eq. (7.7), the direct stress
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σx in the fibre ST is given by

σx = −E
y
R

(9.2)

The direct or normal force on the cross section of the fibre ST is σxδA. However, since
the direct stress in the beam section is due to a pure bending moment, in other words
there is no axial load, the resultant normal force on the complete cross section of the
beam must be zero. Then ∫

A
σx dA = 0 (9.3)

where A is the area of the beam cross section.

Substituting for σx in Eq. (9.3) from Eq. (9.2) gives

−E
R

∫
A

y dA = 0 (9.4)

in which both E and R are constants for a beam of a given material subjected to a given
bending moment. Thus ∫

A
y dA = 0 (9.5)

Equation (9.5) states that the first moment of the area of the cross section of the beam
with respect to the neutral axis, i.e. the z axis, is equal to zero. Thus we see that the
neutral axis passes through the centroid of area of the cross section. Since the y axis in
this case is also an axis of symmetry, it must also pass through the centroid of the cross
section. Hence the origin, O, of the coordinate axes, coincides with the centroid of
area of the cross section.

Equation (9.2) shows that for a sagging (i.e. positive) bending moment the direct stress
in the beam section is negative (i.e. compressive) when y is positive and positive (i.e.
tensile) when y is negative.

Consider now the elemental strip δA in Fig. 9.4(b); this is, in fact, the cross section
of the fibre ST. The strip is above the neutral axis so that there will be a compressive
force acting on its cross section of σxδA which is numerically equal to (Ey/R)δA from
Eq. (9.2). Note that this force will act at all sections along the length of ST. At S this
force will exert a clockwise moment (Ey/R)yδA about the neutral axis while at T the
force will exert an identical anticlockwise moment about the neutral axis. Considering
either end of ST we see that the moment resultant about the neutral axis of the stresses
on all such fibres must be equivalent to the applied moment M , i.e.

M =
∫

A
E

y2

R
dA

or

M = E
R

∫
A

y2 dA (9.6)
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The term
∫

A y2 dA is known as the second moment of area of the cross section of the
beam about the neutral axis and is given the symbol I. Rewriting Eq. (9.6) we have

M = EI
R

(9.7)

or, combining this expression with Eq. (9.2)

M
I

= E
R

= −σx

y
(9.8)

From Eq. (9.8) we see that

σx = −My
I

(9.9)

The direct stress, σx, at any point in the cross section of a beam is therefore directly
proportional to the distance of the point from the neutral axis and so varies linearly
through the depth of the beam as shown, for the section JK, in Fig. 9.5(b). Clearly, for
a positive, or sagging, bending moment σx is positive, i.e. tensile, when y is negative
and compressive (i.e. negative) when y is positive. Thus in Fig. 9.5(b)

σx,1 = My1

I
(compression) σx,2 = My2

I
(tension) (9.10)

Furthermore, we see from Eq. (9.7) that the curvature, 1/R, of the beam is given by

1
R

= M
EI

(9.11)

and is therefore directly proportional to the applied bending moment and inversely
proportional to the product EI which is known as the flexural rigidity of the beam.

ELASTIC SECTION MODULUS

Equation (9.10) may be written in the form

σx,1 = M
Ze,1

σx,2 = M
Ze,2

(9.12)

in which the terms Ze,1(=I/y1) and Ze,2(=I/y2) are known as the elastic section moduli
of the cross section. For a beam section having the z axis as an axis of symmetry, say,
y1 = y2 and Ze,1 = Ze,2 = Ze. Then, numerically

σx,1 = σx,2 = M
Ze

(9.13)

Expressing the extremes of direct stress in a beam section in this form is extremely
useful in elastic design where, generally, a beam of a given material is required to
support a given bending moment. The maximum allowable stress in the material of
the beam is known and a minimum required value for the section modulus, Ze, can
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be calculated. A suitable beam section may then be chosen from handbooks which list
properties and dimensions, including section moduli, of standard structural shapes.

The selection of a beam cross section depends upon many factors; these include the
type of loading and construction, the material of the beam and several others. However,
for a beam subjected to bending and fabricated from material that has the same failure
stress in compression as in tension, it is logical to choose a doubly symmetrical beam
section having its centroid (and therefore its neutral axis) at mid-depth. Also it can be
seen from Fig. 9.5(b) that the greatest values of direct stress occur at points furthest
from the neutral axis so that the most efficient section is one in which most of the
material is located as far as possible from the neutral axis. Such a section is the I-section
shown in Fig. 9.2.

EXAMPLE 9.1 A simply supported beam, 6 m long, is required to carry a uniformly
distributed load of 10 kN/m. If the allowable direct stress in tension and compression
is 155 N/mm2, select a suitable cross section for the beam.

From Fig. 3.15(d) we see that the maximum bending moment in a simply supported
beam of length L carrying a uniformly distributed load of intensity w is given by

Mmax = wL2

8
(i)

Therefore in this case

Mmax = 10 × 62

8
= 45 kN m

The required section modulus of the beam is now obtained using Eq. (9.13), thus

Ze,min = Mmax

σx,max
= 45 × 106

155
= 290 323 mm3

From tables of structural steel sections it can be seen that a Universal Beam, 254 mm ×
102 mm × 28 kg/m, has a section modulus (about a centroidal axis parallel to its flanges)
of 307 600 mm3. This is the smallest beam section having a section modulus greater
than that required and allows a margin for the increased load due to the self-weight of
the beam. However, we must now check that the allowable stress is not exceeded due
to self-weight. The total load intensity produced by the applied load and self-weight is

10 + 28 × 9.81
103 = 10.3 kN/m

Hence, from Eq. (i)

Mmax = 10.3 × 62

8
= 46.4 kN m

Therefore from Eq. (9.13)

σx,max = 46.4 × 103 × 103

307 600
= 150.8 N/mm2
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The allowable stress is 155 N/mm2 so that the Universal Beam, 254 mm × 102 mm ×
28 kg/m, is satisfactory.

EXAMPLE 9.2 The cross section of a beam has the dimensions shown in Fig. 9.6(a).
If the beam is subjected to a sagging bending moment of 100 kN m applied in a vertical
plane, determine the distribution of direct stress through the depth of the section.

FIGURE 9.6 Direct
stress distribution

in beam of Ex. 9.2

300 mm

200 mm
(a) (b)

G

y

z

25 mm

20 mm

20 mm

78 N/mm2

78 N/mm2

The cross section of the beam is doubly symmetrical so that the centroid, G, of the
section, and therefore the origin of axes, coincides with the mid-point of the web.
Furthermore, the bending moment is applied to the beam section in a vertical plane
so that the z axis becomes the neutral axis of the beam section; we therefore need to
calculate the second moment of area, Iz, about this axis. Thus

Iz = 200 × 3003

12
− 175 × 2603

12
= 193.7 × 106 mm4 (see Section 9.6)

From Eq. (9.9) the distribution of direct stress, σx, is given by

σx = − 100 × 106

193.7 × 106 y = −0.52 y (i)

The direct stress, therefore, varies linearly through the depth of the section from a
value

−0.52 × (+150) = −78 N/mm2 (compression)

at the top of the beam to

−0.52 × (−150) = +78 N/mm2 (tension)

at the bottom as shown in Fig. 9.6(b).
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EXAMPLE 9.3 Now determine the distribution of direct stress in the beam of Ex. 9.2
if the bending moment is applied in a horizontal plane and in a clockwise sense about
Gy when viewed in the direction yG.

In this case the beam will bend about the vertical y axis which therefore becomes the
neutral axis of the section. Thus Eq. (9.9) becomes

σx = −M
Iy

z (i)

where Iy is the second moment of area of the beam section about the y axis. Again
from Section 9.6

Iy = 2 × 20 × 2003

12
+ 260 × 253

12
= 27.0 × 106 mm4

Hence, substituting for M and Iy in Eq. (i)

σx = − 100 × 106

27.0 × 106 z = −3.7z

We have not specified a sign convention for bending moments applied in a horizontal
plane; clearly in this situation the sagging/hogging convention loses its meaning. How-
ever, a physical appreciation of the problem shows that the left-hand edges of the beam
are in tension while the right-hand edges are in compression. Again the distribution is
linear and varies from 3.7 × (+100) = 370 N/mm2 (tension) at the left-hand edges of
each flange to 3.7 × (−100) = −370 N/mm2 (compression) at the right-hand edges.

We note that the maximum stresses in this example are very much greater than those
in Ex. 9.2. This is due to the fact that the bulk of the material in the beam section is
concentrated in the region of the neutral axis where the stresses are low. The use of
an I-section in this manner would therefore be structurally inefficient.

EXAMPLE 9.4 The beam section of Ex. 9.2 is subjected to a bending moment of
100 kN m applied in a plane parallel to the longitudinal axis of the beam but inclined at
30◦ to the left of vertical. The sense of the bending moment is clockwise when viewed
from the left-hand edge of the beam section. Determine the distribution of direct
stress.

The bending moment is first resolved into two components, Mz in a vertical plane and
My in a horizontal plane. Equation (9.9) may then be written in two forms

σx = −Mz

Iz
y σx = −My

Iy
z (i)

The separate distributions can then be determined and superimposed. A more direct
method is to combine the two equations (i) to give the total direct stress at any point
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(y, z) in the section. Thus

σx = −Mz

Iz
y − My

Iy
z (ii)

Now

Mz = 100 cos 30◦ = 86.6 kN m
My = 100 sin 30◦ = 50.0 kN m

}
(iii)

Mz is, in this case, a negative bending moment producing tension in the upper half
of the beam where y is positive. Also My produces tension in the left-hand half of
the beam where z is positive; we shall therefore call My a negative bending moment.
Substituting the values of Mz and My from Eq. (iii) but with the appropriate sign in
Eq. (ii) together with the values of Iz and Iy from Exs 9.2 and 9.3 we obtain

σx = 86.6 × 106

193.7 × 106 y + 50.0 × 106

27.0 × 106 z (iv)

or

σx = 0.45y + 1.85z (v)

Equation (v) gives the value of direct stress at any point in the cross section of the
beam and may also be used to determine the distribution over any desired portion.
Thus on the upper edge of the top flange y = +150 mm, 100 mm ≥ z ≥ −100 mm, so
that the direct stress varies linearly with z. At the top left-hand corner of the top flange

σx = 0.45 × (+150) + 1.85 × (+100) = +252.5 N/mm2 (tension)

At the top right-hand corner

σx = 0.45 × (+150) + 1.85 × (−100) = −117.5 N/mm2 (compression)

The distributions of direct stress over the outer edge of each flange and along the
vertical axis of symmetry are shown in Fig. 9.7. Note that the neutral axis of the beam
section does not in this case coincide with either the z or y axes, although it still passes
through the centroid of the section. Its inclination, α, to the z axis, say, can be found
by setting σx = 0 in Eq. (v). Thus

0 = 0.45y + 1.85z

or
− y

z
= 1.85

0.45
= 4.11 = tan α

which gives

α = 76.3◦

Note that α may be found in general terms from Eq. (ii) by again setting σx = 0. Hence

y
z

= −MyIz

MzIy
= tan α (9.14)
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FIGURE 9.7 Direct
stress distribution

in beam of Ex. 9.4

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2Neutral axis

252.5 N/mm2

252.5 N/mm2

117.5 N/mm2

117.5 N/mm2

a

or

tan α = MyIz

MzIy

since y is positive and z is negative for a positive value of α.

9.2 COMBINED BENDING AND AXIAL LOAD

In many practical situations beams and columns are subjected to combinations of axial
loads and bending moments. For example, the column shown in Fig. 9.8 supports a
beam seated on a bracket attached to the column. The loads on the beam produce
a vertical load, P, on the bracket, the load being offset a distance e from the neutral
plane of the column. The action of P on the column is therefore equivalent to an axial
load, P, plus a bending moment, Pe. The direct stress at any point in the cross section
of the column is therefore the algebraic sum of the direct stress due to the axial load
and the direct stress due to bending.

Neutral plane

Beam

BracketColumn

e

P

FIGURE 9.8 Combined bending and axial
load on a column
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Pez

ey

ez

Pey

z

y

x

P

P

G

FIGURE 9.9 Combined bending
and axial load on a beam section

Consider now a length of beam having a vertical plane of symmetry and subjected
to a tensile load, P, which is offset by positive distances ey and ez from the z and y
axes, respectively (Fig. 9.9). It can be seen that P is equivalent to an axial load P plus
bending moments Pey and Pez about the z and y axes, respectively. The moment Pey

is a negative or hogging bending moment while the moment Pez induces tension in
the region where z is positive; Pez is, therefore, also regarded as a negative moment.
Thus at any point (y, z) the direct stress, σx, due to the combined force system, using
Eqs (7.1) and (9.9), is

σx = P
A

+ Pey

Iz
y + Pez

Iy
z (9.15)

Equation (9.15) gives the value of σx at any point (y, z) in the beam section for any
combination of signs of P, ez, ey.

EXAMPLE 9.5 A beam has the cross section shown in Fig. 9.10(a). It is subjected
to a normal tensile force, P, whose line of action passes through the centroid of the
horizontal flange. Calculate the maximum allowable value of P if the maximum direct
stress is limited to ±150 N/mm2.

The first step in the solution of the problem is to determine the position of the centroid,
G, of the section. Thus, taking moments of areas about the top edge of the flange we
have

(200 × 20 + 200 × 20)ȳ = 200 × 20 × 10 + 200 × 20 × 120

from which

ȳ = 65 mm
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FIGURE 9.10
Direct stress

distribution in
beam section of

Ex. 9.5

200 mm

200 mm

20 mm

20 mm

150 N/mm2

85.3 N/mm2

79.1 N/mm2

(b)(a)

z

y

P

G

y

The second moment of area of the section about the z axis is then obtained using the
methods of Section 9.6 and is

Iz = 200 × 653

3
− 180 × 453

3
+ 20 × 1553

3
= 37.7 × 106 mm4

Since the line of action of the load intersects the y axis, ez in Eq. (9.15) is zero so that

σx = P
A

+ Pey

Iz
y (i)

Also ey = +55 mm so that Pey = +55 P and Eq. (i) becomes

σx = P
(

1
8000

+ 55
37.7 × 106 y

)

or

σx = P(1.25 × 10−4 + 1.46 × 10−6y) (ii)

It can be seen from Eq. (ii) that σz varies linearly through the depth of the beam
from a tensile value at the top of the flange where y is positive to either a tensile or
compressive value at the bottom of the leg depending on whether the bracketed term
is positive or negative. Therefore at the top of the flange

+150 = P[1.25 × 10−4 + 1.46 × 10−6 × (+65)]

which gives the limiting value of P as 682 kN.

At the bottom of the leg of the section y = −155 mm so that the right-hand side of
Eq. (ii) becomes

P[1.25 × 10−4 + 1.46 × 10−6 × (−155)] ≡ −1.01 × 10−4P
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which is negative for a tensile value of P. Hence the resultant direct stress at the bottom
of the leg is compressive so that for a limiting value of P

−150 = −1.01 × 10−4P

from which

P = 1485 kN

Therefore, we see that the maximum allowable value of P is 682 kN, giving the direct
stress distribution shown in Fig. 9.10(b).

CORE OF A RECTANGULAR SECTION

In some structures, such as brick-built chimneys and gravity dams which are fabricated
from brittle materials, it is inadvisable for tension to be developed in any cross section.
Clearly, from our previous discussion, it is possible for a compressive load that is
offset from the neutral axis of a beam section to induce a resultant tensile stress in
some regions of the cross section if the tensile stress due to bending in those regions is
greater than the compressive stress produced by the axial load. Therefore, we require
to impose limits on the eccentricity of such a load so that no tensile stresses are induced.

Consider the rectangular section shown in Fig. 9.11 subjected to an eccentric compres-
sive load, P, applied parallel to the longitudinal axis in the positive yz quadrant. Note
that if P were inclined at some angle to the longitudinal axis, then we need only con-
sider the component of P normal to the section since the in-plane component would
induce only shear stresses. Since P is a compressive load and therefore negative, Eq.
(9.15) becomes

σx = − P
A

− Pey

Iz
y − Pez

Iy
z (9.16)

Note that both Pey and Pez are positive moments according to the sign convention we
have adopted.

ez

ey
z

y

b/6

d/6
D

B

C

A

b

d
P

G

FIGURE 9.11 Core of a rectangular
section
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In the region of the cross section where z and y are negative, tension will develop if∣∣∣∣Pey

Iz
y + Pez

Iy
z
∣∣∣∣ >

∣∣∣∣PA
∣∣∣∣

The limiting case arises when the direct stress is zero at the corner of the section, i.e.
when z = −b/2 and y = −d/2. Therefore, substituting these values in Eq. (9.16) we
have

0 = − P
A

− Pey

Iz

(
−d

2

)
− Pez

Iy

(
−b

2

)

or, since A = bd, Iz = bd3/12, Iy = db3/12 (see Section 9.6)

0 = −bd + 6bey + 6dez

which gives

bey + dez = bd
6

Rearranging we obtain

ey = −d
b

ez + d
6

(9.17)

Equation (9.17) defines the line BC in Fig. 9.11 which sets the limit for the eccentricity
of P from both the z and y axes. It follows that P can be applied at any point in the
region BCG for there to be no tension developed anywhere in the section.

Since the section is doubly symmetrical, a similar argument applies to the regions
GAB, GCD and GDA; the rhombus ABCD is known as the core of the section and has
diagonals BD = b/3 and AC = d/3.

CORE OF A CIRCULAR SECTION

Bending, produced by an eccentric load P, in a circular cross section always takes place
about a diameter that is perpendicular to the radius on which P acts. It is therefore
logical to take this diameter and the radius on which P acts as the coordinate axes of
the section (Fig. 9.12).

R
P

G

R
4

y

z

ez

Section bends
about this axis

FIGURE 9.12 Core of a circular section beam
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Suppose that P in Fig. 9.12 is a compressive load. The direct stress, σx, at any point
(z, y) is given by Eq. (9.15) in which ey = 0. Hence

σx = − P
A

− Pez

Iy
z (9.18)

Tension will occur in the region where z is negative if∣∣∣∣Pez

Iy
z
∣∣∣∣ >

∣∣∣∣PA
∣∣∣∣

The limiting case occurs when σx = 0 and z = −R; hence

0 = − P
A

− Pez

Iy
(−R)

Now A = πR2 and Iy = πR4/4 (see Section 9.6) so that

0 = − 1
πR2 + 4ez

πR3

from which

ez = R
4

Thus the core of a circular section is a circle of radius R/4.

EXAMPLE 9.6 A free-standing masonry wall is 7 m high, 0.6 m thick and has a
density of 2000 kg/m3. Calculate the maximum, uniform, horizontal wind pressure
that can occur without tension developing at any point in the wall.

Consider a 1 m length of wall. The forces acting are the horizontal resultant, P, of the
uniform wind pressure, p, and the weight, W , of the 1 m length of wall (Fig. 9.13).

Clearly the base section is the one that experiences the greatest compressive normal
load due to self-weight and also the greatest bending moment due to wind pressure.

Uniform wind
pressure, p

P

A

R W

B

3.5 m

7 m

m m

0.2 m
FIGURE 9.13 Masonry wall of
Ex. 9.6
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It is also the most critical section since the bending moment that causes tension is a
function of the square of the height of the wall, whereas the weight causing compression
is a linear function of wall height. From Fig. 9.11 it is clear that the resultant, R, of P
and W must lie within the central 0.2 m of the base section, i.e. within the middle third
of the section, for there to be no tension developed anywhere in the base cross section.
The reason for this is that R may be resolved into vertical and horizontal components
at any point in its line of action. At the base of the wall the vertical component is then
a compressive load parallel to the vertical axis of the wall (i.e. the same situation as
in Fig. 9.11) and the horizontal component is a shear load which has no effect as far
as tension in the wall is concerned. The limiting case arises when R passes through
m, one of the middle third points, in which case the direct stress at B is zero and the
moment of R (and therefore the sum of the moments of P and W ) about m is zero.
Hence

3.5P = 0.1W (i)

where

P = p × 7 × 1 N if p is in N/m2

and

W = 2000 × 9.81 × 0.6 × 7 N

Substituting for P and W in Eq. (i) and solving for p gives

p = 336.3 N/m2

9.3 ANTICLASTIC BENDING

In the rectangular beam section shown in Fig. 9.14(a) the direct stress distribution
due to a positive bending moment applied in a vertical plane varies from compression
in the upper half of the beam to tension in the lower half (Fig. 9.14(b)). However,
due to the Poisson effect (see Section 7.8) the compressive stress produces a lateral
elongation of the upper fibres of the beam section while the tensile stress produces

(a) (b) (c)

Compression

Tension FIGURE 9.14 Anticlastic bending
of a beam section
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a lateral contraction of the lower. The section does not therefore remain rectangular
but distorts as shown in Fig. 9.14(c); the effect is known as anticlastic bending.

Anticlastic bending is of interest in the analysis of thin-walled box beams in which the
cross sections are maintained by stiffening ribs. The prevention of anticlastic distortion
induces local variations in stress distributions in the webs and covers of the box beam
and also in the stiffening ribs.

9.4 STRAIN ENERGY IN BENDING

A positive bending moment applied to a length of beam causes the upper longitudinal
fibres to be compressed and the lower ones to stretch as shown in Fig. 9.5(a). The
bending moment therefore does work on the length of beam and this work is absorbed
by the beam as strain energy.

Suppose that the bending moment, M , in Fig. 9.5(a) is gradually applied so that when
it reaches its final value the angle subtended at the centre of curvature by the element
δx is δθ. From Fig. 9.5(a) we see that

R δθ = δx

Substituting in Eq. (9.7) for R we obtain

M = EIz

δx
δθ (9.19)

so that δθ is a linear function of M . It follows that the work done by the gradually
applied moment M is M δθ/2 subject to the condition that the limit of proportionality
is not exceeded. The strain energy, δU , of the elemental length of beam is therefore
given by

δU = 1
2

M δθ (9.20)

or, substituting for δθ from Eq. (9.19) in Eq. (9.20)

δU = 1
2

M2

EIz
δx

The total strain energy, U , due to bending in a beam of length L is therefore

U =
∫

L

M2

2EIz
dx (9.21)

9.5 UNSYMMETRICAL BENDING

Frequently in civil engineering construction beam sections do not possess any axes of
symmetry. Typical examples are shown in Fig. 9.15 where the angle section has legs of
unequal length and the Z-section possesses anti- or skew symmetry about a horizontal
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axis through its centroid, but not symmetry. We shall now develop the theory of bending
for beams of arbitrary cross section.

FIGURE 9.15
Unsymmetrical

beam sections (a) (b)

ASSUMPTIONS

We shall again assume, as in the case of symmetrical bending, that plane sections of the
beam remain plane after bending and that the material of the beam is homogeneous
and linearly elastic.

SIGN CONVENTIONS AND NOTATION

Since we are now concerned with the general case of bending we may apply loading
systems to a beam in any plane. However, no matter how complex these loading
systems are, they can always be resolved into components in planes containing the
three coordinate axes of the beam. We shall use an identical system of axes to that
shown in Fig. 3.6, but our notation for loads must be extended and modified to allow
for the general case.

As far as possible we shall adopt sign conventions and a notation which are consistent
with those shown in Fig. 3.6. Thus, in Fig. 9.16, the externally applied shear load Wy is

FIGURE 9.16 Sign
conventions and

notation

wy (x)

wz (x)

Mz

My

Wy

P

T

w

x

Wz

z

y

u

O

v
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parallel to the y axis but vertically downwards, i.e. in the negative y direction as before;
similarly we take Wz to act in the negative z direction. The distributed loads wy(x) and
wz(x) can be functions of x and are also applied in the negative directions of the axes.
The bending moment Mz in the vertical xy plane is, as before, a sagging (i.e. positive)
moment and will produce compressive direct stresses in the positive yz quadrant of the
beam section. In the same way My is positive when it produces compressive stresses in
the positive yz quadrant of the beam section. The applied torque T is positive when
anticlockwise when viewed in the direction xO and the displacements, u, v and w are
positive in the positive directions of the z, y and x axes, respectively.

The positive directions and senses of the internal forces acting on the positive face
(see Section 3.2) of a beam section are shown in Fig. 9.17 and agree, as far as the
shear force and bending moment in the vertical xy plane are concerned, with those
in Fig. 3.7. The positive internal horizontal shear force Sz is in the positive direction
of the z axis while the internal moment My produces compression in the positive yz
quadrant of the beam section.

FIGURE 9.17
Internal force

system

Sy

My

Mz

Sz
P

T

x

DIRECT STRESS DISTRIBUTION

Figure 9.18 shows the positive face of the cross section of a beam which is subjected to
positive internal bending moments Mz and My. Suppose that the origin O of the y and
z axes lies on the neutral axis of the beam section; as yet the position of the neutral
axis and its inclination to the z axis are unknown.

We have seen in Section 9.1 that a beam bends about the neutral axis of its cross section
so that the radius of curvature, R, of the beam is perpendicular to the neutral axis.
Therefore, by direct comparison with Eq. (9.2) it can be seen that the direct stress, σx,
on the element, δA, a perpendicular distance p from the neutral axis, is given by

σx = −E
p
R

(9.22)
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FIGURE 9.18 Bending of an
unsymmetrical section beam

The beam section is subjected to a pure bending moment so that the resultant direct
load on the section is zero. Hence ∫

A
σx dA = 0

Replacing σx in this equation from Eq. (9.22) we have

−
∫

A
E

p
R

dA = 0

or, for a beam of a given material subjected to a given bending moment

∫
A

p dA = 0 (9.23)

Qualitatively Eq. (9.23) states that the first moment of area of the beam section about
the neutral axis is zero. It follows that in problems involving the pure bending of
beams the neutral axis always passes through the centroid of the beam section. We
shall therefore choose the centroid, G, of a section as the origin of axes.

From Fig. 9.18 we see that

p = z sin α + y cos α (9.24)

so that from Eq. (9.22)

σx = −E
R

(z sin α + y cos α) (9.25)

The moment resultants of the direct stress distribution are equivalent to Mx and My

so that

Mz = −
∫

A
σxy dA My = −

∫
A

σxz dA (see Section 9.1) (9.26)
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Substituting for σx from Eq. (9.25) in Eq. (9.26), we obtain

Mz = E sin α

R

∫
A

zy dA + E cos α

R

∫
A

y2 dA

My = E sin α

R

∫
A

z2 dA + E cos α

R

∫
A

zy dA




(9.27)

In Eq. (9.27) ∫
A

zy dA = Izy

∫
A

y2 dA = Iz

∫
A

z2 dA = Iy

where Izy is the product second moment of area of the beam section about the z and y
axes, Iz is the second moment of area about the z axis and Iy is the second moment of
area about the y axis. Equation (9.27) may therefore be rewritten as

Mz = E sin α

R
Izy + E cos α

R
Iz

My = E sin α

R
Iy + E cos α

R
Izy


 (9.28)

Solving Eq. (9.28)

E sin α

R
= MyIz − MzIzy

IzIy − I2
zy

(9.29)

E cos α

R
= MzIy − MyIzy

IzIy − I2
zy

(9.30)

Now substituting these expressions in Eq. (9.25)

σx = −
(

MyIz − MzIzy

IzIy − I2
zy

)
z −

(
MzIy − MyIzy

IzIy − I2
zy

)
y (9.31)

In the case where the beam section has either Oz or Oy (or both) as an axis of symmetry
Izy = 0 (see Section 9.6) and Eq. (9.31) reduces to

σx = −My

Iy
z − Mz

Iz
y (9.32)

which is identical to Eq. (ii) in Ex. 9.4.

POSITION OF THE NEUTRAL AXIS

We have established that the neutral axis of a beam section passes through the centroid
of area of the section whether the section has an axis of symmetry or not. The inclination
α of the neutral axis to the z axis in Fig. 9.18 is obtained from Eq. (9.31) using the
fact that the direct stress is zero at all points on the neutral axis. Then, for a point
(zNA, yNA)

0 = (MzIzy − MyIz)zNA + (MyIzy − MzIy)yNA
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so that
yNA

zNA
= − (MzIzy − MyIz)

(MyIzy − MzIy)

or, referring to Fig. 9.18

tan α = (MzIzy − MyIz)
(MyIzy − MzIy)

(9.33)

since α is positive when yNA is positive and zNA is negative. Again, for a beam having
a cross section with either Oy or Oz as an axis of symmetry, Izy = 0 and Eq. (9.33)
reduces to

tan α = MyIz

MzIy
(see Eq. (9.14))

9.6 CALCULATION OF SECTION PROPERTIES

It will be helpful at this stage to discuss the calculation of the various section properties
required in the analysis of beams subjected to bending. Initially, however, two useful
theorems are quoted.

PARALLEL AXES THEOREM

Consider the beam section shown in Fig. 9.19 and suppose that the second moment of
area, IG, about an axis through its centroid G is known. The second moment of area,
IN, about a parallel axis, NN, a distance b from the centroidal axis is then given by

IN = IG + Ab2 (9.34)

G

N N

b

Cross-sectional area, A

FIGURE 9.19 Parallel axes theorem

THEOREM OF PERPENDICULAR AXES

In Fig. 9.20 the second moments of area, Iz and Iy, of the section about Oz and Oy
are known. The second moment of area about an axis through O perpendicular to the
plane of the section (i.e. a polar second moment of area) is then

Io = Iz + Iy (9.35)
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y

O
z

FIGURE 9.20 Theorem of perpendicular axes

SECOND MOMENTS OF AREA OF STANDARD SECTIONS

Many sections in use in civil engineering such as those illustrated in Fig. 9.2 may be
regarded as comprising a number of rectangular shapes. The problem of determining
the properties of such sections is simplified if the second moments of area of the
rectangular components are known and use is made of the parallel axes theorem.
Thus, for the rectangular section of Fig. 9.21

d z

N

G

N
b

y

y

�y

FIGURE 9.21 Second moments of area of a
rectangular section

Iz =
∫

A
y2 dA =

∫ d/2

−d/2
by2 dy = b

[
y3

3

]d/2

−d/2

which gives

Iz = bd3

12
(9.36)

Similarly

Iy = db3

12
(9.37)

Frequently it is useful to know the second moment of area of a rectangular section
about an axis which coincides with one of its edges. Thus in Fig. 9.21, and using the
parallel axes theorem

IN = bd3

12
+ bd

(
−d

2

)2

= bd3

3
(9.38)
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EXAMPLE 9.7 Determine the second moments of area Iz and Iy of the I-section
shown in Fig. 9.22.

b
y

Oz ddw

tf

tf

tw

FIGURE 9.22 Second moments of area of
an I-section

Using Eq. (9.36)

Iz = bd3

12
− (b − tw)d3

w
12

Alternatively, using the parallel axes theorem in conjunction with Eq. (9.36)

Iz = 2

[
bt3

f
12

+ btf

(
dw + tf

2

)2
]

+ twd3
w

12

The equivalence of these two expressions for Iz is most easily demonstrated by a
numerical example.

Also, from Eq. (9.37)

Iy = 2
tfb3

12
+ dwt3

w
12

It is also useful to determine the second moment of area, about a diameter, of a circular
section. In Fig. 9.23 where the z and y axes pass through the centroid of the section

Iz =
∫

A
y2 dA =

∫ d/2

−d/2
2
(

d
2

cos θ

)
y2 dy (9.39)

Integration of Eq. (9.39) is simplified if an angular variable, θ , is used. Thus

Iz =
∫ π/2

−π/2
d cos θ

(
d
2

sin θ

)2 d
2

cos θ dθ

i.e.

Iz = d4

8

∫ π/2

−π/2
cos2 θ sin2 θ dθ
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z

y

O

u
y

�y

d
2

FIGURE 9.23 Second moments of area of a
circular section

which gives

Iz = πd4

64
(9.40)

Clearly from symmetry

Iy = πd4

64
(9.41)

Using the theorem of perpendicular axes, the polar second moment of area, Io, is
given by

Io = Iz + Iy = πd4

32
(9.42)

PRODUCT SECOND MOMENT OF AREA

The product second moment of area, Izy, of a beam section with respect to z and y axes
is defined by

Izy =
∫

A
zy dA (9.43)

Thus each element of area in the cross section is multiplied by the product of its
coordinates and the integration is taken over the complete area. Although second
moments of area are always positive since elements of area are multiplied by the
square of one of their coordinates, it is possible for Izy to be negative if the section
lies predominantly in the second and fourth quadrants of the axes system. Such a
situation would arise in the case of the Z-section of Fig. 9.24(a) where the product
second moment of area of each flange is clearly negative.

A special case arises when one (or both) of the coordinate axes is an axis of symmetry so
that for any element of area, δA, having the product of its coordinates positive, there is
an identical element for which the product of its coordinates is negative (Fig. 9.24(b)).
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FIGURE 9.24
Product second
moment of area (a)

Y

y

a

b

z

Z

Cross sectional
area, A

G

O

(c)(b)

O

�A �A

y

z
O

y

z

Summation (i.e. integration) over the entire section of the product second moment of
area of all such pairs of elements results in a zero value for Izy.

We have shown previously that the parallel axes theorem may be used to calculate sec-
ond moments of area of beam sections comprising geometrically simple components.
The theorem can be extended to the calculation of product second moments of area.
Let us suppose that we wish to calculate the product second moment of area, Izy, of
the section shown in Fig. 9.24(c) about axes zy when IZY about its own, say centroidal,
axes system GZY is known. From Eq. (9.43)

Izy =
∫

A
zy dA

or

Izy =
∫

A
(Z − a)(Y − b) dA

which, on expanding, gives

Izy =
∫

A
ZY dA − b

∫
A

Z dA − a
∫

A
Y dA + ab

∫
A

dA

If Z and Y are centroidal axes then
∫

A Z dA = ∫
A Y dA = 0. Hence

Izy = IZY + abA (9.44)

It can be seen from Eq. (9.44) that if either GZ or GY is an axis of symmetry, i.e.
IZY = 0, then

Izy = abA (9.45)

Thus for a section component having an axis of symmetry that is parallel to either of
the section reference axes the product second moment of area is the product of the
coordinates of its centroid multiplied by its area.

A table of the properties of a range of beam sections is given in Appendix A.
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EXAMPLE 9.8 A beam having the cross section shown in Fig. 9.25 is subjected to
a hogging bending moment of 1500 Nm in a vertical plane. Calculate the maximum
direct stress due to bending stating the point at which it acts.

40 mm

z

z

y
80 mm

80 mm

8 mm

C

BA

D

E F

G

8 mm

y

FIGURE 9.25 Beam section of Ex. 9.8

The position of the centroid, G, of the section may be found by taking moments of
areas about some convenient point. Thus

(120 × 8 + 80 × 8) ȳ = 120 × 8 × 4 + 80 × 8 × 48

which gives

ȳ = 21.6 mm

and

(120 × 8 + 80 × 8) z̄ = 80 × 8 × 4 + 120 × 8 × 24

giving

z̄ = 16 mm

The second moments of area referred to axes Gzy are now calculated.

Iz = 120 × (8)3

12
+ 120 × 8 × (17.6)2 + 8 × (80)3

12
+ 80 × 8 × (26.4)2

= 1.09 × 106 mm4

Iy = 8 × (120)3

12
+ 120 × 8 × (8)2 + 80 × (8)3

12
+ 80 × 8 × (12)2

= 1.31 × 106 mm4

Izy = 120 × 8 × (−8) × (+17.6) + 80 × 8 × (+12) × (−26.4)

= −0.34 × 106 mm4

Since Mz = −1500 Nm and My = 0 we have from Eq. (9.31)

σx = −1500 × 103 × (−0.34 × 106)z + 1500 × 103 × (1.31 × 106)y
1.09 × 106 × 1.31 × 106 − (−0.34 × 106)2
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i.e.

σx = 0.39z + 1.5y (i)

Note that the denominator in both the terms in Eq. (9.31) is the same.

Inspection of Eq. (i) shows that σx is a maximum at F where z = 8 mm, y = −66.4 mm.
Hence

σx,max = −96.5 N/mm2 (compressive)

APPROXIMATIONS FOR THIN-WALLED SECTIONS

Modern civil engineering structures frequently take the form of thin-walled cellular box
beams which combine the advantages of comparatively low weight and high strength,
particularly in torsion. Other forms of thin-walled structure consist of ‘open’ section
beams such as a plate girder which is constructed from thin plates stiffened against
instability. In addition to these there are the cold-formed sections which we discussed
in Chapter 1.

There is no clearly defined line separating ‘thick’ and ‘thin-walled’ sections; the approx-
imations allowed in the analysis of thin-walled sections become increasingly inaccurate
the ‘thicker’ a section becomes. However, as a guide, it is generally accepted that the
approximations are reasonably accurate for sections for which the ratio

tmax

b
≤ 0.1

where tmax is the maximum thickness in the section and b is a typical cross-sectional
dimension.

In the calculation of the properties of thin-walled sections we shall assume that the
thickness, t, of the section is small compared with its cross-sectional dimensions so
that squares and higher powers of t are neglected. The section profile may then be
represented by the mid-line of its wall. Stresses are then calculated at points on the
mid-line and assumed to be constant across the thickness.

EXAMPLE 9.9 Calculate the second moment of area, Iz, of the channel section
shown in Fig. 9.26(a).

The centroid of the section is located midway between the flanges; its horizontal
position is not needed since only Iz is required. Thus

Iz = 2

(
bt3

12
+ bth2

)
+ t

[2(h − t/2)]3

12



chap-09 12/1/2005 12: 45 page 238

238 • Chapter 9 / Bending of Beams

FIGURE 9.26
Calculation of the
second moment of

area of a
thin-walled

channel section

z z

b b

t
t

h

h h

h

y y

G

(a) (b)

G

which, on expanding, becomes

Iz = 2

(
bt3

12
+ bth2

)
+ t

12

[
(2)3

(
h3 − 3h2t

2
+ 3ht2

4
− t3

8

)]

Neglecting powers of t2 and upwards we obtain

Iz = 2bth2 + t
(2h)3

12

It is unnecessary for such calculations to be carried out in full since the final result may
be obtained almost directly by regarding the section as being represented by a single
line as shown in Fig. 9.26(b).

EXAMPLE 9.10 A thin-walled beam has the cross section shown in Fig. 9.27.
Determine the direct stress distribution produced by a hogging bending moment Mz.

A B

C
D

G h

h/2

h/2

z

y

t

FIGURE 9.27 Beam section of Ex. 9.10

The beam cross section is antisymmetrical so that its centroid is at the mid-point of
the vertical web. Furthermore, My = 0 so that Eq. (9.31) reduces to

σx = MzIzyz − MzIyy
IzIy − I2

zy
(i)
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But Mz is a hogging bending moment and therefore negative. Eq. (i) must then be
rewritten as

σx = −MzIzyz + MzIyy
IzIy − I2

zy
(ii)

The section properties are calculated using the previously specified approximations
for thin-walled sections; thus

Iz = 2
ht
2

(
h
2

)2

+ th3

12
= h3t

3

Iy = 2
t
3

(
h
2

)3

= h3t
12

Izy = ht
2

(
h
4

)(
h
2

)
+ ht

2

(
−h

4

)(
−h

2

)
= h3t

8

Substituting these values in Eq. (ii) we obtain

σx = Mz

h3t
(6.86y − 10.3z) (iii)

On the top flange y = +h/2, h/2 ≥ z ≥ 0 and the distribution of direct stress is given
by

σx = Mz

h3t
(3.43h − 10.3z)

which is linear. Hence

σx,A = −1.72Mz

h2t
(compressive)

σx,B = +3.43Mz

h2t
(tensile)

In the web −h/2 ≤ y ≤ h/2 and z = 0 so that Eq. (iii) reduces to

σx = 6.86Mz

h3t
y

Again the distribution is linear and varies from

σx,B = +3.43Mz

h2t
(tensile)

to

σx,C = −3.43Mz

h2t
(compressive)

The distribution in the lower flange may be deduced from antisymmetry. The complete
distribution is as shown in Fig. 9.28.
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A

B

C

D

FIGURE 9.28 Distribution of direct stress
in beam section of Ex. 9.10

SECOND MOMENTS OF AREA OF INCLINED AND
CURVED THIN-WALLED SECTIONS

Thin-walled sections frequently have inclined or curved walls which complicate the
calculation of section properties. Consider the inclined thin section of Fig. 9.29. The
second moment of area of an element δs about a horizontal axis through its centroid
G is equal to tδsy2. Therefore the total second moment of area of the section about
Gz, Iz, is given by

y

z

s
�s

b

G

t

a/2

a/2

FIGURE 9.29 Second moments of area of an
inclined thin-walled section

Iz =
∫ a/2

−a/2
ty2 ds =

∫ a/2

−a/2
t(s sin β)2 ds

i.e.

Iz = a3t sin2 β

12
Similarly

Iy = a3t cos2 β

12
The product second moment of area of the section about Gzy is

Izy =
∫ a/2

−a/2
tzy ds =

∫ a/2

−a/2
t(s cos β)(s sin β) ds

i.e.

Izy = a3t sin 2β

24
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z
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t

r
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s
�s

FIGURE 9.30 Second moment of area of a
semicircular thin-walled section

Properties of thin-walled curved sections are found in a similar manner. Thus Iz for
the semicircular section of Fig. 9.30 is

Iz =
∫ π r

0
ty2 ds

Expressing y and s in terms of a single variable θ simplifies the integration; hence

Iz =
∫ π

0
t(−r cos θ)2r dθ

from which

Iz = π r3t
2

9.7 PRINCIPAL AXES AND PRINCIPAL SECOND MOMENTS OF AREA

In any beam section there is a set of axes, neither of which need necessarily be an
axis of symmetry, for which the product second moment of area is zero. Such axes are
known as principal axes and the second moments of area about these axes are termed
principal second moments of area.

Consider the arbitrary beam section shown in Fig. 9.31. Suppose that the second
moments of area Iz, Iy and the product second moment of area, Izy, about arbitrary
axes Ozy are known. By definition

Iz =
∫

A
y2 dA Iy =

∫
A

z2 dA Izy =
∫

A
zy dA (9.46)

The corresponding second moments of area about axes Oz1y1 are

Iz(1) =
∫

A
y2

1 dA Iy(1) =
∫

A
z2

1 dA Iz(1),y(1) =
∫

A
z1y1 dA (9.47)

From Fig. 9.31

z1 = z cos φ + y sin φ y1 = y cos φ − z sin φ
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�A
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z1
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f

f
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z
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FIGURE 9.31 Principal axes in
a beam of arbitrary section

Substituting for y1 in the first of Eq. (9.47)

Iz(1) =
∫

A
(y cos φ − z sin φ)2 dA

Expanding, we obtain

Iz(1) = cos2 φ

∫
A

y2 dA + sin2 φ

∫
A

z2 dA − 2 cos φ sin φ

∫
A

zy dA

which gives, using Eq. (9.46)

Iz(1) = Iz cos2 φ + Iy sin2 φ − Izy sin 2φ (9.48)

Similarly

Iy(1) = Iy cos2 φ + Iz sin2 φ + Izy sin 2φ (9.49)

and

Iz(1),y(1) =
(

Iz − Iy

2

)
sin 2φ + Izy cos 2φ (9.50)

Equations (9.48)–(9.50) give the second moments of area and product second moment
of area about axes inclined at an angle φ to the x axis. In the special case where Oz1y1

are principal axes, Ozp, yp, Iz(p),y(p) = 0, φ = φp and Eqs (9.48) and (9.49) become

Iz(p) = Iz cos2 φp + Iy sin2 φp − Izy sin 2φp (9.51)

and

Iy(p) = Iy cos2 φp + Iz sin2 φp + Izy sin 2φp (9.52)

respectively. Furthermore, since Iz(1),y(1) = Iz(p),y(p) = 0, Eq. (9.50) gives

tan 2φp = 2Izy

Iy − Iz
(9.53)
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The angle φp may be eliminated from Eqs (9.51) and (9.52) by first determining
cos 2φp and sin 2φp using Eq. (9.53). Thus

cos 2φp = (Iy − Iz)/2√
[(Iy − Iz)/2]2 + I2

zy

sin 2φp = Izy√
[(Iy − Iz)/2]2 + I2

zy

Rewriting Eq. (9.51) in terms of cos 2φp and sin 2φp we have

Iz(p) = Iz

2
(1 + cos 2φp) + Iy

2
(1 − cos 2φp) − Izy sin 2φp

Substituting for cos 2φp and sin 2φp from the above we obtain

Iz(p) = Iz + Iy

2
− 1

2

√
(Iz − Iy)2 + 4I2

zy (9.54)

Similarly

Iy(p) = Iz + Iy

2
+ 1

2

√
(Iz − Iy)2 + 4I2

zy (9.55)

Note that the solution of Eq. (9.53) gives two values for the inclination of the principal
axes, φp and φp + π/2, corresponding to the axes Ozp and Oyp.

The results of Eqs (9.48)–(9.55) may be represented graphically by Mohr’s circle, a
powerful method of solution for this type of problem. We shall discuss Mohr’s circle
in detail in Chapter 14 in connection with the analysis of complex stress and strain.

Principal axes may be used to provide an apparently simpler solution to the problem
of unsymmetrical bending. Referring components of bending moment and section
properties to principal axes having their origin at the centroid of a beam section, we
see that Eq. (9.31) or Eq. (9.32) reduces to

σx = −My(p)

Iy(p)
zp − Mz(p)

Iz(p)
yp (9.56)

However, it must be appreciated that before Iz(p) and Iy(p) can be determined Iz, Iy and
Izy must be known together with φp. Furthermore, the coordinates (z, y) of a point in
the beam section must be transferred to the principal axes as must the components, Mz

and My, of bending moment. Thus unless the position of the principal axes is obvious
by inspection, the amount of computation required by the above method is far greater
than direct use of Eq. (9.31) and an arbitrary, but convenient, set of centroidal axes.

9.8 EFFECT OF SHEAR FORCES ON THE THEORY OF BENDING

So far our analysis has been based on the assumption that plane sections remain
plane after bending. This assumption is only strictly true if the bending moments are
produced by pure bending action rather than by shear loads, as is very often the case
in practice. The presence of shear loads induces shear stresses in the cross section of
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a beam which, as shown by elasticity theory, cause the cross section to deform into the
shape of a shallow inverted ‘s’. However, shear stresses in beams, the cross sectional
dimensions of which are small in relation to their length, are comparatively low in
value so that the assumption of plane sections remaining plane after bending may be
used with reasonable accuracy.

9.9 LOAD, SHEAR FORCE AND BENDING MOMENT RELATIONSHIPS,
GENERAL CASE

In Section 3.5 we derived load, shear force and bending moment relationships for
loads applied in the vertical plane of a beam whose cross section was at least singly
symmetrical. These relationships are summarized in Eq. (3.8) and may be extended
to the more general case in which loads are applied in both the horizontal (xz) and
vertical (yx) planes of a beam of arbitrary cross section. Thus for loads applied in a
horizontal plane Eq. (3.8) become

∂2My

∂z2 = −∂Sx

∂x
= −wz(x) (9.57)

and for loads applied in a vertical plane Eq. (3.8) become

∂2Mz

∂x2 = −∂Sy

∂x
= −wy(x) (9.58)

In Chapter 18 we shall return to the topic of beams subjected to bending but, instead
of considering loads which produce stresses within the elastic range of the material
of the beam, we shall investigate the behaviour of beams under loads which cause
collapse.

P R O B L E M S

P.9.1 A girder 10 m long has the cross section shown in Fig. P.9.1(a) and is simply
supported over a span of 6 m (see Fig. P.9.1(b)). If the maximum direct stress in

FIGURE P.9.1

200 mm

15 mm

20 mm

2 m 2 m6 m
20 mm

300 mm

(a) (b)

w kN/m
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the girder is limited to 150 N/mm2, determine the maximum permissible uniformly
distributed load that may be applied to the girder.

Ans. 84.3 kN/m.

P.9.2 A 230 mm × 300 mm timber cantilever of rectangular cross section projects 2.5 m
from a wall and carries a load of 13 300 N at its free end. Calculate the maximum direct
stress in the beam due to bending.

Ans. 9.6 N/mm2.

P.9.3 A floor carries a uniformly distributed load of 16 kN/m2 and is supported by
joists 300 mm deep and 110 mm wide; the joists in turn are simply supported over a
span of 4 m. If the maximum stress in the joists is not to exceed 7 N/mm2, determine
the distance apart, centre to centre, at which the joists must be spaced.

Ans. 0.36 m.

P.9.4 A wooden mast 15 m high tapers linearly from 250 mm diameter at the base to
100 mm at the top. At what point will the mast break under a horizontal load applied
at the top? If the maximum permissible stress in the wood is 35 N/mm2, calculate the
magnitude of the load that will cause failure.

Ans. 5 m from the top, 2320 N.

P.9.5 A main beam in a steel framed structure is 5 m long and simply supported at each
end. The beam carries two cross-beams at distances of 1.5 and 3.5 m from one end, each
of which transmits a load of 20 kN to the main beam. Design the main beam using an
allowable stress of 155 N/mm2; make adequate allowance for the effect of self-weight.

Ans. Universal Beam, 254 mm × 102 mm × 22 kg/m.

P.9.6 A short column, whose cross section is shown in Fig. P.9.6 is subjected to a
compressive load, P, at the centroid of one of its flanges. Find the value of P such that
the maximum compressive stress does not exceed 150 N/mm2.

Ans. 846.4 kN.

FIGURE P.9.6

25 mm

20 mm

20 mm

300 mm

200 mm
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P.9.7 A vertical chimney built in brickwork has a uniform rectangular cross section as
shown in Fig. P.9.7(a) and is built to a height of 15 m. The brickwork has a density of
2000 kg/m3 and the wind pressure is equivalent to a uniform horizontal pressure of
750 N/m2 acting over one face. Calculate the stress at each of the points A and B at
the base of the chimney.

Ans. (A) 0.02 N/mm2 (compression), (B) 0.60 N/mm2 (compression).

FIGURE P.9.7 (a) (b)

A

A

B

B

2 m

2 m

2 m

15 m
Wind

pressure
750 N/m2

Wall thickness
0.25 m on
all sides

P.9.8 A cantilever beam of length 2 m has the cross section shown in Fig. P.9.8. If the
beam carries a uniformly distributed load of 5 kN/m together with a compressive axial
load of 100 kN applied at its free end, calculate the maximum direct stress in the cross
section of the beam.

Ans. 121.5 N/mm2 (compression) at the built-in end and at the bottom of the leg.

FIGURE P.9.8

10 mm

150 mm

10 mm

200 mm

P.9.9 The section of a thick beam has the dimensions shown in Fig. P.9.9. Calculate
the section properties Iz, Iy and Izy referred to horizontal and vertical axes through
the centroid of the section. Determine also the direct stress at the point A due to a
bending moment My = 55 Nm.

Ans. −114 N/mm2 (compression).
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A

z

y

G

5 mm

5 mm

5 mm

20 mm

10 mm FIGURE P.9.9

P.9.10 A beam possessing the thick section shown in Fig. P.9.10 is subjected to a bending
moment of 12 kN m applied in a plane inclined at 30◦ to the left of vertical and in a
sense such that its components Mz and My are negative and positive, respectively.
Calculate the magnitude and position of the maximum direct stress in the beam cross
section.

Ans. 156.2 N/mm2 (compression) at D.

A

JH

F

C D

E

B 10 mm

10 mm

10 mm

150 mm

50 mm

200 mm

FIGURE P.9.10

P.9.11 The cross section of a beam/floor slab arrangement is shown in Fig. P.9.11. The
complete section is simply supported over a span of 10 m and, in addition to its self-
weight, carries a concentrated load of 25 kN acting vertically downwards at mid-span.
If the density of concrete is 2000 kg/m3, calculate the maximum direct stress at the
point A in its cross section.

Ans. 5.4 N/mm2 (tension).
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1 m

0.3 m

0.15 m

0.75 m

A

FIGURE P.9.11

P.9.12 A precast concrete beam has the cross section shown in Fig. P.9.12 and carries
a vertically downward uniformly distributed load of 100 kN/m over a simply supported
span of 4 m. Calculate the maximum direct stress in the cross section of the beam,
indicating clearly the point at which it acts.

Ans. −27.6 N/mm2 (compression) at B.

40 mm
500 mm

300 mm 100 mm

50 mm

50 mm

40 mm

A
B

C

DF

FIGURE P.9.12

P.9.13 A thin-walled, cantilever beam of unsymmetrical cross section supports shear
loads at its free end as shown in Fig. P.9.13. Calculate the value of direct stress at the
extremity of the lower flange (point A) at a section half-way along the beam if the
position of the shear loads is such that no twisting of the beam occurs.

Ans. 194.7 N/mm2 (tension).

800 N

400 N

2000 kN

100 mm

80 mm

40 mm

2.0 mm

2.0 mm

1.0 mm
A

FIGURE P.9.13

P.9.14 A thin-walled cantilever with walls of constant thickness t has the cross section
shown in Fig. P.9.14. The cantilever is loaded by a vertical force P at the tip and a
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horizontal force 2 P at the mid-section. Determine the direct stress at the points A
and B in the cross section at the built-in end.

Ans. (A) −1.85 PL/td2, (B) 0.1 PL/td2.

A B

C D

d/2

d

d/2

L/2

L/2 2P

P

FIGURE P.9.14

P.9.15 A cold-formed, thin-walled beam section of constant thickness has the profile
shown in Fig. P.9.15. Calculate the position of the neutral axis and the maximum direct
stress for a bending moment of 3.5 kN m applied about the horizontal axis Gz.

Ans. α = 51.9◦, ±101.0 N/mm2.

y

z
a

N

A

G

50 mm

6.4 mm

FIGURE P.9.15
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In Chapter 3 we saw that externally applied shear loads produce internal shear forces
and bending moments in cross sections of a beam. The bending moments cause direct
stress distributions in beam sections (Chapter 9); we shall now determine the corre-
sponding distributions of shear stress. Initially, however, we shall examine the physical
relationship between bending and shear; the mathematical relationship has already
been defined in Eq. (3.8).

Suppose that a number of planks are laid one on top of the other and supported at each
end as shown in Fig. 10.1(a). Applying a central concentrated load to the planks at mid
span will cause them to bend as shown in Fig. 10.1(b). Due to bending the underside
of each plank will stretch and the topside will shorten. It follows that there must be a
relative sliding between the surfaces in contact. If now the planks are glued together
they will bend as shown in Fig. 10.2. The glue has prevented the relative sliding of
the adjacent surfaces and is therefore subjected to a shear force. This means that the
application of a vertical shear load to a beam not only produces internal shear forces
on cross sections of the beam but shear forces on horizontal planes as well. In fact,

FIGURE 10.1
Bending of

unconnected
planks (a) (b)

FIGURE 10.2
Bending of

connected planks

250
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we have noted this earlier in Section 7.3 where we saw that shear stresses applied in
one plane induce equal complementary shear stresses on perpendicular planes which
is exactly the same situation as in the connected planks. This is important in the design
of the connections between, say, a concrete slab and the flange of a steel I-section beam
where the connections, usually steel studs, are subjected to this horizontal shear.

Shear stress distributions in beam cross sections depend upon the geometry of the
beam section. We shall now determine this distribution for the general case of an
unsymmetrical beam section before extending the theory to the simpler case of beam
sections having at least one axis of symmetry. This is the reverse of our approach in
Chapter 9 for bending but, here, the development of the theory is only marginally
more complicated for the general case.

10.1 SHEAR STRESS DISTRIBUTION IN A BEAM OF UNSYMMETRICAL SECTION

Consider an elemental length, δx, of a beam of arbitrary section subjected to internal
shear forces Sz and Sy as shown in Fig. 10.3(a). The origin of the axes xyz coincides
with the centroid G of the beam section. Let us suppose that the lines of action of
Sz and Sy are such that no twisting of the beam occurs (see Section 10.4). The shear
stresses induced are therefore due solely to shearing action and are not contributed
to by torsion.

Imagine now that a ‘slice’ of width b0 is taken through the length of the element. Let τ

be the average shear stress along the edge, b0, of the slice in a direction perpendicular
to b0 and in the plane of the cross section (Fig. 10.3(b)); note that τ is not necessarily the
absolute value of shear stress at this position. We saw in Chapter 7 that shear stresses on
given planes induce equal, complementary shear stresses on planes perpendicular to
the given planes. Thus, τ on the cross-sectional face of the slice induces shear stresses
τ on the flat longitudinal face of the slice. In addition, as we saw in Chapter 3, shear
loads produce internal bending moments which, in turn, give rise to direct stresses in

FIGURE 10.3
Determination of

shear stress
distribution in a

beam of arbitrary
cross section
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z
G

�x
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Sy
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�x

�A'
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Complementary
shear stress, τ

(a) (b)

Direct stress
due to bending

Average shear stress, τ
along edge b0
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beam cross sections. Therefore on any filament, δA′, of the slice there is a direct stress
σx at the section x and a direct stress σx + (∂σx/∂x)δx at the section x + δx (Fig. 10.3(b)).
The slice is therefore in equilibrium in the x direction under the combined action of
the direct stress due to bending and the complementary shear stress, τ . Hence

τb0 δx −
∫

A′
σx dA′ +

∫
A′

(
σx + ∂σx

∂x
δx
)

dA′ = 0

which, when simplified, becomes

τb0 = −
∫

A′

∂σx

∂x
dA′ (10.1)

We shall assume (see Section 9.8) that the direct stresses produced by the bending
action of shear loads are given by the theory developed for the pure bending of beams.
Therefore, for a beam of unsymmetrical section and for coordinates referred to axes
through the centroid of the section

σx = −
(

MyIz − MzIzy

IzIy − I2
zy

)
z −

(
MzIy − MyIzy

IzIy − I2
zy

)
y (i.e. Eq. (9.31))

Then

∂σx

∂x
= −

{
[(∂My/∂x)Iz − (∂Mz/∂x)Izy] z + [(∂Mz/∂x)Iy − (∂My/∂x)Izy] y

IzIy − I2
zy

}

From Eqs (9.57) and (9.58)

∂My

∂x
= −Sz

∂Mz

∂x
= −Sy

so that

∂σx

∂x
= −

{
(−SzIz + SyIzy)z + (−SyIy + SzIzy)y

IzIy − I2
zy

}

Substituting for ∂σx/∂x in Eq. (10.1) we obtain

τb0 = SyIzy − SzIz

IzIy − I2
zy

∫
A′

z dA′ + SzIzy − SyIy

IzIy − I2
zy

∫
A′

y dA′

or

τ = SyIzy − SzIz

b0(IzIy − I2
zy)

∫
A′

z dA′ + SzIzy − SyIy

b0(IzIy − I2
zy)

∫
A′

y dA′ (10.2)

The slice may be taken so that the average shear stress in any chosen direction can be
determined.
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10.2 SHEAR STRESS DISTRIBUTION IN SYMMETRICAL SECTIONS

Generally in civil engineering we are not concerned with shear stresses in unsymmetri-
cal sections except where they are of the thin-walled type (see Sections 10.4 and 10.5).
‘Thick’ beam sections usually possess at least one axis of symmetry and are subjected
to shear loads in that direction.

Suppose that the beam section shown in Fig. 10.4 is subjected to a single shear load Sy.
Since the y axis is an axis of symmetry, it follows that Izy = 0 (Section 9.6). Therefore
Eq. 10.2 reduces to

τ = − Sy

b0Iz

∫
A′

y dA′ (10.3)

The negative sign arises because the average shear stress τ along the base b0 of the
slice A′ is directed towards b0 from within the slice as shown in Fig. 10.3(b). Taking
the slice above Gz, as in Fig. 10.4, means that τ is now directed downwards. Clearly
a positive shear force Sy produces shear stresses in the positive y direction, hence the
negative sign.

Clearly the important shear stresses in the beam section of Fig. 10.4 are in the direction
of the load. To find the distribution of this shear stress throughout the depth of the
beam we therefore take the slice, b0, in a direction parallel to and at any distance y
from the z axis. The integral term in Eq. (10.3) represents, mathematically, the first
moment of the shaded area A′ about the z axis. We may therefore rewrite Eq. (10.3) as

τ = −SyA′ȳ
b0Iz

(10.4)

Sy

y

y1

y

�y1

A'

b0Average
shear stress, τ
across b0

z
G

b

FIGURE 10.4 Shear stress
distribution in a symmetrical
section beam
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where ȳ is the distance of the centroid of the area A′ from the z axis. Alternatively, if
the value of ȳ is not easily determined, say by inspection, then

∫
A′y dA′ may be found by

calculating the first moment of area about the z axis of an elemental strip of length b,
width δy1 (Fig. 10.4), and integrating over the area A′. Equation (10.3) then becomes

τ = − Sy

b0Iz

∫ ymax

y
by1 dy1 (10.5)

Either of Eqs. (10.4) or (10.5) may be used to determine the distribution of verti-
cal shear stress in a beam section possessing at least a horizontal or vertical axis of
symmetry and subjected to a vertical shear load. The corresponding expressions for
the horizontal shear stress due to a horizontal load are, by direct comparison with
Eqs (10.4) and (10.5)

τ = −SzA′z̄
b0Iy

τ = − Sz

b0Iy

∫ zmax

z
bz1 dz1 (10.6)

in which b0 is the length of the edge of a vertical slice.

EXAMPLE 10.1 Determine the distribution of vertical shear stress in the beam
section shown in Fig. 10.5(a) due to a vertical shear load Sy.

Sy

y

d

y

A'

z
G

b

2bd

(b)(a)

3Sy

b0

FIGURE 10.5 Shear stress
distribution in a rectangular
section beam

In this example the value of ȳ for the slice A′ is found easily by inspection so that we
may use Eq. (10.4). From Fig. 10.5(a) we see that

b0 = b Iz = bd3

12
A′ = b

(
d
2

− y
)

ȳ = 1
2

(
d
2

+ y
)

Hence

τ = −12Sy

b2d3 b
(

d
2

− y
)

1
2

(
d
2

+ y
)
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which simplifies to

τ = − 6Sy

bd3

(
d2

4
− y2

)
(10.7)

The distribution of vertical shear stress is therefore parabolic as shown in Fig. 10.5(b)
and varies from τ = 0 at y = ± d/2 to τ = τmax = 3Sy/2bd at the neutral axis (y = 0) of
the beam section. Note that τmax = 1.5τav, where τav, the average vertical shear stress
over the section, is given by τav = Sy/bd.

EXAMPLE 10.2 Determine the distribution of vertical shear stress in the I-section
beam of Fig. 10.6(a) produced by a vertical shear load, Sy.

It is clear from Fig. 10.6(a) that the geometry of each of the areas A′
f and A′

w formed by
taking a slice of the beam in the flange (at y = yf ) and in the web (at y = yw), respectively,
are different and will therefore lead to different distributions of shear stress. First we
shall consider the flange. The area A′

f is rectangular so that the distribution of vertical
shear stress, τf , in the flange is, by direct comparison with Ex. 10.1

τf = − Sy

BIz

B
2

(
D
2

− yf

)(
D
2

+ yf

)

or

τf = − Sy

2Iz

(
D2

4
− y2

f

)
(10.8)

where Iz is the second moment of area of the complete section about the centroidal
axis Gz and is obtained by the methods of Section 9.6.

FIGURE 10.6 Shear
stress distribution in

an I-section beam
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A difficulty arises in the interpretation of Eq. (10.8) which indicates a parabolic dis-
tribution of vertical shear stress in the flanges increasing from τf = 0 at yf = ±D/2 to
a value

τf = − Sy

8Iz
(D2 − d2) (10.9)

at yf = ±d/2. However, the shear stress must also be zero at the inner surfaces ab, etc.,
of the flanges. Equation (10.8) therefore may only be taken to give an indication of the
vertical shear stress distribution in the flanges in the vicinity of the web. Clearly if the
flanges are thin so that d is close in value to D then τf in the flanges at the extremities
of the web is small, as indicated in Fig. 10.6(b).

The area A′
w formed by taking a slice in the web at y = yw comprises two rectangles

which may therefore be treated separately in determining A′ȳ for the web.

Thus

τw = − Sy

twIz

[
B
(

D
2

− d
2

)
1
2

(
D
2

+ d
2

)
+ tw

(
d
2

− yw

)
1
2

(
d
2

+ yw

)]

which simplifes to

τw = − Sy

twIz

[
B
8

(D2 − d2) + tw
2

(
d2

4
− y2

w

)]
(10.10)

or

τw = −Sy

Iz

[
B

8tw
(D2 − d2) + 1

2

(
d2

4
− y2

w

)]
(10.11)

Again the distribution is parabolic and increases from

τw = −Sy

Iz

B
8tw

(D2 − d2) (10.12)

at yw = ±d/2 to a maximum value, τw,max, given by

τw,max = −Sy

Iz

[
B

8tw
(D2 − d2) + d2

8

]
(10.13)

at y = 0. Note that the value of τw at the extremities of the web (Eq. (10.12)) is greater
than the corresponding values of τf by a factor B/tw. The complete distribution is
shown in Fig. 10.6(b). Note also that the negative sign indicates that τ is vertically
upwards.

The value of τw,max (Eq. (10.13)) is not very much greater than that of τw at the
extremities of the web. In design checks on shear stress values in I-section beams it is
usual to assume that the maximum shear stress in the web is equal to the shear load
divided by the web area. In most cases the result is only slightly different from the
value given by Eq. (10.13). A typical value given in Codes of Practice for the maximum
allowable value of shear stress in the web of an I-section, mild steel beam is 100 N/mm2;
this is applicable to sections having web thicknesses not exceeding 40 mm.
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We have been concerned so far in this example with the distribution of vertical shear
stress. We now consider the situation that arises if we take the slice across one of the
flanges at z = zf as shown in Fig. 10.7(a). Equations (10.4) and (10.5) still apply, but in
this case b0 = tf . Thus, using Eq. (10.4)

τf(h) = − Sy

tfIz
tf

(
B
2

− zf

)
1
2

(
D
2

+ d
2

)

where τf(h) is the distribution of horizontal shear stress in the flange. Simplifying the
above equation we obtain

τf(h) = −Sy(D + d)
4Iz

(
B
2

− zf

)
(10.14)

Equation (10.14) shows that the horizontal shear stress varies linearly in the flanges
from zero at zf = B/2 to −Sy(D + d)B/8Iz at zf = 0.

We have defined a positive shear stress as being directed towards the edge b0 of the slice
away from the interior of the slice, Fig. 10.3(b). Since Eq. (10.14) is always negative for
the upper flange, τf(h) in the upper flange is directed towards the edges of the flange.
By a similar argument τf(h) in the lower flange is directed away from the edges of the
flange because y for a slice in the lower flange is negative making Eq. (10.14) always
positive. The distribution of horizontal shear stress in the flanges of the beam is shown
in Fig. 10.7(b).

From Eq. (10.12) we see that the numerical value of shear stress at the extremities of
the web multiplied by the web thickness is

τwtw = Sy

Iz

B
8

(D + d)(D − d) = Sy

Iz

B
8

(D + d)2tf (10.15)

FIGURE 10.7
Distribution of
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The product of horizontal flange stress and flange thickness at the extremities of the
web is, from Eq. (10.14)

τf(h)tf = Sy

Iz

B
8

(D + d)tf (10.16)

Comparing Eqs (10.15) and (10.16) we see that

τwtw = 2τf(h)tf (10.17)

The product stress × thickness gives the shear force per unit length in the walls of the
section and is known as the shear flow, a particularly useful parameter when considering
thin-walled sections. In the above example we note that τf(h)tf is the shear flow at the
extremities of the web produced by considering one half of the complete flange. From
symmetry there is an equal shear flow at the extremities of the web from the other half
of the flange. Equation (10.17) therefore expresses the equilibrium of the shear flows
at the web/flange junctions. We shall return to a more detailed consideration of shear
flow when investigating the shear of thin-walled sections.

In ‘thick’ I-section beams the horizontal flange shear stress is not of great importance
since, as can be seen from Eq. (10.17), it is of the order of half the magnitude of the
vertical shear stress at the extremities of the web if tw � tf . In thin-walled I-sections
(and other sections too) this horizontal shear stress can produce shear distortions
of sufficient magnitude to redistribute the direct stresses due to bending, thereby
seriously affecting the accuracy of the basic bending theory described in Chapter 9.
This phenomenon is known as shear lag.

EXAMPLE 10.3 Determine the distribution of vertical shear stress in a beam of
circular cross section when it is subjected to a shear force Sy (Fig. 10.8).

The area A′ of the slice in this problem is a segment of a circle and therefore does not
lend itself to the simple treatment of the previous two examples. We shall therefore
use Eq. (10.5) to determine the distribution of vertical shear stress. Thus

τ = − Sy

b0Iz

∫ D/2

y
by1 dy1 (10.18)

where

Iz = πD4

64
(Eq. (9.40))

Integration of Eq. (10.18) is simplified if angular variables are used; thus, from Fig. 10.8

b0 = 2 × D
2

cos θ b = 2 × D
2

cos φ y1 = D
2

sin φ dy1 = D
2

cos φ dφ

Equation (10.18) then becomes

τ = − 16Sy

πD2 cos θ

∫ π/2

θ

cos2 φ sin φ dφ
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FIGURE 10.8
Distribution of shear
stress in a beam of
circular cross section

Integrating we obtain

τ = − 16Sy

πD2 cos θ

[
−cos3 φ

3

]π/2

θ

which gives

τ = − 16Sy

3πD2 cos2 θ

But

cos2 θ = 1 − sin2 θ = 1 −
(

y
D/2

)2

Therefore

τ = − 16Sy

3πD2

(
1 − 4y2

D2

)
(10.19)

The distribution of shear stress is parabolic with values of τ = 0 at y = ±D/2 and
τ = τmax = −16Sy/3πD2 at y = 0, the neutral axis of the section.

10.3 STRAIN ENERGY DUE TO SHEAR

Consider a small rectangular element of material of side δx, δy and thickness t subjected
to a shear stress and complementary shear stress system, τ (Fig. 10.9(a)); τ produces a
shear strain γ in the element so that distortion occurs as shown in Fig. 10.9(b), where
displacements are relative to the side CD. The horizontal displacement of the side AB
is γ δy so that the shear force on the face AB moves through this distance and therefore
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τ
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FIGURE 10.9 Determination of
strain energy due to shear

does work. If the shear loads producing the shear stress are gradually applied, then
the work done by the shear force on the element and hence the strain energy stored,
δU , is given by

δU = 1
2
τ t δxγ δy

or

δU = 1
2
τγ t δx δy

Now γ = τ/G, where G is the shear modulus and t δx δy is the volume of the element.
Hence

δU = 1
2

τ 2

G
× volume of element

The total strain energy, U , due to shear in a structural member in which the shear
stress, τ , is uniform is then given by

U = τ 2

2G
× volume of member (10.20)

10.4 SHEAR STRESS DISTRIBUTION IN THIN-WALLED OPEN SECTION BEAMS

In considering the shear stress distribution in thin-walled open section beams we shall
make identical assumptions regarding the calculation of section properties as were
made in Section 9.6. In addition we shall assume that shear stresses in the plane of the
cross section and parallel to the tangent at any point on the beam wall are constant

Assumed
constant
across t

Thickness, t
Assumed
negligible

tτ

(a) (b)

FIGURE 10.10
Assumptions in thin-
walled open section
beams



chap-10 12/1/2005 12: 45 page 261

10.4 Shear Stress Distribution in Thin-walled Open Section Beams • 261

FIGURE 10.11
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across the thickness (Fig. 10.10(a)), whereas shear stresses normal to the tangent are
negligible (Fig. 10.10(b)). The validity of the latter assumption is evident when it is
realized that these normal shear stresses must be zero on the inner and outer surfaces
of the section and that the walls are thin. We shall further assume that the wall thickness
can vary round the section but is constant along the length of the member.

Figure 10.11 shows a length of a thin-walled beam of arbitrary section subjected to
shear loads Sz and Sy which are applied such that no twisting of the beam occurs.
In addition to shear stresses, direct stresses due to the bending action of the shear
loads are present so that an element δs × δx of the beam wall is in equilibrium under
the stress system shown in Fig. 10.12(a). The shear stress τ is assumed to be positive
in the positive direction of s, the distance round the profile of the section measured
from an open edge. Although we have specified that the thickness t may vary with s,
this variation is small for most thin-walled sections so that we may reasonably make
the approximation that t is constant over the length δs. As stated in Ex. 10.2 it is
convenient, when considering thin-walled sections, to work in terms of shear flow to
which we assign the symbol q (=τ t). Figure 10.12(b) shows the shear stress system of
Fig. 10.12(a) represented in terms of q. Thus for equilibrium of the element in the x
direction (

σx + ∂σx

∂x
δx
)

t δs − σxt δs +
(

q + ∂q
∂s

δs
)

δx − q δx = 0

which gives

∂q
∂s

+ t
∂σx

∂x
= 0 (10.21)
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Again we assume that the direct stresses are given by Eq. (9.31). Then, substituting in
Eq. (10.21) for ∂σx/∂x from the derivation of Eq. (10.2)

∂q
∂s

= (SyIzy − SzIz)
IzIy − I2

zy
tz + (SzIzy − SyIy)

IzIy − I2
zy

ty

Integrating this expression from s = 0 (where q = 0 on the open edge of the section)
to any point s we have

qs =
(

SyIzy − SzIz

IzIy − I2
zy

)∫ s

0
tz ds +

(
SzIzy − SyIy

IzIy − I2
zy

)∫ s

0
ty ds (10.22)

The shear stress at any point in the beam section wall is then obtained by dividing qs

by the wall thickness at that point, i.e.

τs = qs

ts
(10.23)

EXAMPLE 10.4 Determine the shear flow distribution in the thin-walled Z-section
beam shown in Fig. 10.13 produced by a shear load Sy applied in the plane of the web.

h/2

C D

G

B
A

t

hz

sB

sA

Sy

y

FIGURE 10.13 Beam section of Ex. 10.4

The origin for our system of reference axes coincides with the centroid of the section
at the mid-point of the web. The centroid is also the centre of antisymmetry of the
section so that the shear load, applied through this point, causes no twisting of the
section and the shear flow distribution is given by Eq. (10.22) in which Sz = 0, i.e

qs = SyIzy

IzIy − I2
zy

∫ s

0
tz ds − SyIy

IzIy − I2
zy

∫ s

0
ty ds (i)

The second moments of area of the section about the z and y axes have previously
been calculated in Ex. 9.10 and are

Iz = h3t
3

Iy = h3t
12

Izy = h3t
8

Substituting these values in Eq. (i) we obtain

qs = Sy

h3

∫ s

0
(10.29z − 6.86y)ds
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On the upper flange AB, y = +h/2 and z = h/2 − sA where 0 ≤ sA ≤ h/2. Therefore

qAB = Sy

h3

∫ sA

0
(1.72h − 10.29sA)dsA

which gives

qAB = Sy

h3 (1.72hsA − 5.15s2
A) (ii)

Thus at A (sA = 0), qA = 0 and at B (sA = h/2), qB = −0.43 Sy/h. Note that the order of
the suffixes of q in Eq. (ii) denotes the positive direction of q (and sA). An examination
of Eq. (ii) shows that the shear flow distribution on the upper flange is parabolic with
a change of sign (i.e. direction) at sA = 0.33h. For values of sA < 0.33h, qAB is positive
and is therefore in the same direction as sA. Furthermore, qAB has a turning value
between sA = 0 and sA = 0.33h at a value of sA given by

dqAB

dsA
= 1.72h − 10.29sA = 0

i.e. at sA = 0.17h. The corresponding value of qAB is then, from Eq. (ii),
qAB = 0.14Sy/h.

In the web BC, y = +h/2 − sB where 0 ≤ sB ≤ h and z = 0. Thus

qBC = Sy

h3

∫ sB

0
(6.86sB − 3.43h) dsB + qB (iii)

Note that in Eq. (iii), qBC is not zero when sB = 0 but equal to the value obtained by
inserting sA = h/2 in Eq. (ii), i.e. qB = −0.43 Sy/h. Integrating the first two terms on
the right-hand side of Eq. (iii) we obtain

qBC = Sy

h3 (3.43s2
B − 3.43hsB − 0.43h2) (iv)

Equation (iv) gives a parabolic shear flow distribution in the web, symmetrical about
Gz and with a maximum value at sB = h/2 equal to −1.29Sy/h; qAB is negative at all
points in the web.

The shear flow distribution in the lower flange may be deduced from antisymmetry;
the complete distribution is shown in Fig. 10.14.

SHEAR CENTRE

We have specified in the previous analysis that the lines of action of the shear loads Sz

and Sy must not cause twisting of the section. For this to be the case, Sz and Sy must
pass through the shear centre of the section. Clearly in many practical situations this
is not so and torsion as well as shear is induced. These problems may be simplified by
replacing the shear loads by shear loads acting through the shear centre, plus a pure
torque, as illustrated in Fig. 10.15 for the simple case of a channel section subjected to
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FIGURE 10.14
Shear flow
distribution in
beam section of
Ex. 10.4 D

C

B

A

1.29Sy /h

0.43Sy /h

0.33h

0.14Sy /h

FIGURE 10.15
Replacement of a
shear load by a
shear load acting
through the shear
centre plus a
torque

S

S

zs

Sy

Sy

T � Sy zs

FIGURE 10.16
Special cases of
shear centre
(S.C.) position

S.C.

S.C. S.C.

a vertical shear load Sy applied in the line of the web. The shear stresses corresponding
to the separate loading cases are then added by superposition.

Where a section possesses an axis of symmetry, the shear centre must lie on this axis.
For cruciform, T and angle sections of the type shown in Fig. 10.16 the shear centre
is located at the intersection of the walls since the resultant internal shear loads all
pass through this point. In fact in any beam section in which the walls are straight and
intersect at just one point, that point is the shear centre of the section.

EXAMPLE 10.5 Determine the position of the shear centre of the thin-walled
channel section shown in Fig. 10.17.

The shear centre S lies on the horizontal axis of symmetry at some distance zS, say,
from the web. If an arbitrary shear load, Sy, is applied through the shear centre, then
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h/2

h/2

b

y

zS

z

t

t

S

Sy

sA
AB

C D

G

FIGURE 10.17 Channel section
beam of Ex. 10.5

the shear flow distribution is given by Eq. (10.22) and the moment about any point
in the cross section produced by these shear flows is equivalent to the moment of the
applied shear load about the same point; Sy appears on both sides of the resulting
equation and may therefore be eliminated to leave zS as the unknown.

For the channel section, Gz is an axis of symmetry so that Izy = 0. Equation (10.22)
therefore simplifies to

qs = −Sy

Iz

∫ s

0
ty ds

where

Iz = th3

12
+ 2bt

(
h
2

)2

= th3

12

(
1 + 6

b
h

)

Substituting for Iz and noting that t is constant round the section, we have

qs = − 12Sy

h3(1 + 6b/h)

∫ s

0
y ds (i)

The solution of this type of problem may be reduced in length by giving some thought
to what is required. We are asked, in this case, to obtain the position of the shear
centre and not a complete shear flow distribution. From symmetry it can be seen that
the moments of the resultant shear forces on the upper and lower flanges about the
mid-point of the web are numerically equal and act in the same sense. Furthermore, the
moment of the web shear about the same point is zero. Therefore it is only necessary
to obtain the shear flow distribution on either the upper or lower flange for a solution.
Alternatively, the choice of either flange/web junction as the moment centre leads to
the same conclusion.



chap-10 12/1/2005 12: 45 page 266

266 • Chapter 10 / Shear of Beams

On the upper flange, y = +h/2 so that from Eq. (i) we obtain

qAB = − 6Sy

h2(1 + 6b/h)
sA (ii)

Equating the anticlockwise moments of the internal shear forces about the mid-point
of the web to the clockwise moment of the applied shear load about the same point
gives

SyzS = −2
∫ b

0
qAB

h
2

dsA

Substituting for qAB from Eq. (ii) we have

SyzS = 2
∫ b

0

6Sy

h2(1 + 6b/h)
h
2

sA dsA

from which

zS = 3b2

h(1 + 6b/h)

In the case of an unsymmetrical section, the coordinates (zS, yS) of the shear centre
referred to some convenient point in the cross section are obtained by first determining
zS in a similar manner to that described above and then calculating yS by applying a
shear load Sz through the shear centre.

10.5 SHEAR STRESS DISTRIBUTION IN THIN-WALLED CLOSED

SECTION BEAMS

The shear flow and shear stress distributions in a closed section, thin-walled beam are
determined in a manner similar to that described in Section 10.4 for an open section
beam but with two important differences. Firstly, the shear loads may be applied at
points in the cross section other than the shear centre so that shear and torsion occur
simultaneously. We shall see that a solution may be obtained for this case without
separating the shear and torsional effects, although such an approach is an acceptable
alternative, particularly if the position of the shear centre is required. Secondly, it is
not generally possible to choose an origin for s that coincides with a known value of
shear flow. A closed section beam under shear is therefore singly redundant as far
as the internal force system is concerned and requires an equation additional to the
equilibrium equation (Eq. (10.21)). Identical assumptions are made regarding section
properties, wall thickness and shear stress distribution as were made for the open
section beam.

The thin-walled beam of arbitrary closed section shown in Fig. 10.18 is subjected to
shear loads Sz and Sy applied through any point in the cross section. These shear loads
produce direct and shear stresses on any element in the beam wall identical to those
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z

G

y

Sz

Sy

s

t

x FIGURE 10.18 Shear of a
thin-walled closed section
beam

shown in Fig. 10.12. The equilibrium equation (Eq. (10.21)) is therefore applicable
and is

∂q
∂s

+ t
∂σx

∂x
= 0

Substituting for ∂σx/∂x from the derivation of Eq. (10.2) and integrating we obtain, in
an identical manner to that for an open section beam

qs = SyIzy − SzIz

IzIy − I2
zy

∫ s

0
tz ds + SzIzy − SyIy

IzIy − I2
zy

∫ s

0
ty ds + qs,0 (10.24)

where qs,0 is the value of shear flow at the origin of s.

It is clear from a comparison of Eqs (10.24) and (10.22) that the first two terms of the
right-hand side of Eq. (10.24) represent the shear flow distribution in an open section
beam with the shear loads applied through its shear centre. We shall denote this ‘open
section’ or ‘basic’ shear flow distribution by qb and rewrite Eq. (10.24) as

qs = qb + qs,0

We obtain qb by supposing that the closed section beam is ‘cut’ at some convenient
point, thereby producing an ‘open section’ beam as shown in Fig. 10.19(b); we take
the ‘cut’ as the origin for s. The shear flow distribution round this ‘open section’ beam
is given by Eq. (10.22), i.e.

qb = SyIzy − SzIz

IzIy − I2
zy

∫ s

0
tz ds + SzIzy − SyIy

IzIy − I2
zy

∫ s

0
ty ds

Equation (10.22) is valid only if the shear loads produce no twist; in other words, Sz

and Sy must be applied through the shear centre of the ‘open section’ beam. Thus by
‘cutting’ the closed section beam to determine qb we are, in effect, transferring the line
of action of Sz and Sy to the shear centre, Ss,0, of the resulting ‘open section’ beam.
The implication is, therefore, that when we ‘cut’ the section we must simultaneously
introduce a pure torque to compensate for the transference of Sz and Sy. We shall
show in Chapter 11 that the application of a pure torque to a closed section beam
results in a constant shear flow round the walls of the beam. In this case qs,0, which
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FIGURE 10.19
Determination of

shear flow value at
the origin for s in a

closed section beam
(a) (b)

Moment
centre

Sz

qs

�s

�A h0

j0

Ss,0
Szs

p

Sy

Sy

‘cut’

is effectively a constant shear flow round the section, corresponds to the pure torque
produced by the shear load transference. Clearly different positions of the ‘cut’ will
result in different values for qs,0 since the corresponding ‘open section’ beams have
different shear centre positions.

Equating internal and external moments in Fig. 10.19(a), we have

Szη0 + Syξ0 =
∮

pqs ds =
∮

pqb ds + qs,0

∮
p ds

where
∮

denotes integration taken completely round the section. In Fig. 10.19(a) the
elemental area δA is given by

δA = 1
2

p δs

Thus ∮
p ds = 2

∮
dA

or ∮
p ds = 2A

where A is the area enclosed by the mid-line of the section wall. Hence

Sxη0 + Syξ0 =
∮

pqb ds + 2Aqs,0 (10.25)

If the moment centre coincides with the lines of action of Sz and Sy then Eq. (10.25)
reduces to

0 =
∮

pqb ds + 2Aqs,0 (10.26)

The unknown shear flow qs,0 follows from either of Eqs. (10.25) or (10.26). Note that
the signs of the moment contributions of Sz and Sy on the left-hand side of Eq. (10.25)
depend upon the position of their lines of action relative to the moment centre. The
values given in Eq. (10.25) apply only to Fig. 10.19(a) and could change for different
moment centres and/or differently positioned shear loads.
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FIGURE 10.20 Rate
of twist in a

thin-walled closed
section beam (a) (b)

Distortion
due to shear

�s

�x

f1 f2
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�w

R
pR

�νt

νt

s � 0, s � st

SHEAR CENTRE

A complication arises in the determination of the position of the shear centre of
a closed section beam since the line of action of the arbitrary shear load (applied
through the shear centre as in Ex. 10.5) must be known before qs,0 can be determined
from either of Eqs. (10.25) or (10.26). However, before the position of the shear centre
can be found, qs,0 must be obtained. Thus an alternative method of determining qs,0

is required. We therefore consider the rate of twist of the beam which, when the shear
loads act through the shear centre, is zero.

Consider an element, δs × δx, of the wall of the beam subjected to a system of shear and
complementary shear stresses as shown in Fig. 10.20(a). These shear stresses induce
a shear strain, γ , in the element which is given by

γ = φ1 + φ2

irrespective of whether direct stresses (due to bending action) are present or not. If
the linear displacements of the sides of the element in the s and x directions are δvt

(i.e. a tangential displacement) and δw, respectively, then as both δs and δx become
infinitely small

γ = ∂w
∂s

+ ∂vt

∂x
(10.27)

Suppose now that the beam section is given a small angle of twist, θ , about its centre of
twist, R. If we assume that the shape of the cross section of the beam is unchanged by
this rotation (i.e. it moves as a rigid body), then from Fig. 10.20(b) it can be seen that
the tangential displacement, vt, of a point in the wall of the beam section is given by

vt = pRθ

Hence

∂vt

∂x
= pR

∂θ

∂x
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Since we are assuming that the section rotates as a rigid body, it follows that θ is a
function of x only so that the above equation may be written

∂vt

∂x
= pR

dθ

dx

Substituting for ∂vt/∂x in Eq. (10.27) we have

γ = ∂w
∂s

+ pR
dθ

dx

Now

γ = τ

G
= qs

Gt

Thus
qs

Gt
= ∂w

∂s
+ pR

dθ

dx

Integrating both sides of this equation completely round the cross section of the beam,
i.e. from s = 0 to s = sι (see Fig. 10.20(b))∮

qs

Gt
ds =

∮
∂w
∂s

ds + dθ

dx

∮
pR ds

which gives ∮
qs

Gt
ds = [w]s=sι

s=0 + dθ

dx
2A

The axial displacement, w, must have the same value at s = 0 and s = sι. Therefore the
above expression reduces to

dθ

dx
= 1

2A

∮
qs

Gt
ds (10.28)

For shear loads applied through the shear centre, dθ/dx = 0 so that

0 =
∮

qs

Gt
ds

which may be written

0 =
∮

1
Gt

(qb + qs,0)ds

Hence

qs,0 = −
∮

(qb/Gt)ds∮
ds/Gt

(10.29)

If G is constant then Eq. (10.29) simplifies to

qs,0 = −
∮

(qb/t)ds∮
ds/t

(10.30)
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EXAMPLE 10.6 A thin-walled, closed section beam has the singly symmetrical,
trapezoidal cross section shown in Fig. 10.21. Calculate the distance of the shear
centre from the wall AD. The shear modulus G is constant throughout the section.

FIGURE 10.21
Closed section

beam of Ex. 10.6

300 mm
12 mm

8 mm

10 mm

10 mm

150 mm

150 mm

800 mm

300 mm

D

C

B

O

S

A

sA

sB

Sy

sC

z

zs

The shear centre lies on the horizontal axis of symmetry so that it is only necessary
to apply a shear load Sy through S to determine zS. Furthermore the axis of symme-
try coincides with the centroidal reference axis Gz so that Izy = 0. Equation (10.24)
therefore simplifies to

qs = −Sy

Iz

∫ s

0
ty ds + qs,0 (i)

Note that in Eq. (i) only the second moment of area about the z axis and coordinates
of points referred to the z axis are required so that it is unnecessary to calculate the
position of the centroid on the z axis. It will not, in general, and in this case in particular,
coincide with S.

The second moment of area of the section about the z axis is given by

Iz = 12×6003

12
+ 8×3003

12
+ 2

[∫ 800

0
10
(

150 + 150
800

s
)2

ds

]

from which Iz = 1074 × 106 mm4. Alternatively, the second moment of area of each
inclined wall about an axis through its own centroid may be found using the method
described in Section 9.6 and then transferred to the z axis by the parallel axes theorem.

We now obtain the qb shear flow distribution by ‘cutting’ the beam section at the
mid-point O of the wall CB. Thus, since y = −sA we have

qb,OB = Sy

Iz

∫ sA

0
8sA dsA

which gives

qb,OB = Sy

Iz
4s2

A (ii)
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Thus

qb,B = Sy

Iz
× 9 × 104

For the wall BA where y = −150 − 150sB/800

qb,BA = Sy

Iz

[∫ sB

0
10
(

150 + 150
800

sB

)
dsB + 9 × 104

]

from which

qb,BA = Sy

Iz

(
1500sB + 15

16
s2
B + 9 × 104

)
(iii)

Then

qb,A = Sy

Iz
× 189 × 104

In the wall AD, y = −300 + sC so that

qb,AD = Sy

Iz

[∫ sC

0
12(300 − sC) dsC + 189 × 104

]

which gives

qb,AD = Sy

Iz
(3600sC − 6s2

C + 189 × 104) (iv)

The remainder of the qb distribution follows from symmetry.

The shear load Sy is applied through the shear centre of the section so that we must
use Eq. (10.30) to determine qs,0. Now

∮
ds
t

= 600
12

+ 2 × 800
10

+ 300
8

= 247.5

Therefore

qs,0 = − 2
247.5

(∫ 150

0

qb,OB

8
dsA +

∫ 800

0

qb,BA

10
dsB +

∫ 300

0

qb,AD

12
dsC

)
(v)

Substituting for qb,OB, qb,BA and qb,AD in Eq. (v) from Eqs (ii), (iii) and (iv),
respectively, we obtain

qs,0 = − 2Sy

247.5Iz

[∫ 150

0

s2
A
2

dsA +
∫ 800

0

(
150sB + 15

160
s2
B + 9 × 103

)
dsB

+
∫ 300

0

(
300sC − 1

2
s2
C + 189 × 104

12

)
dsC

]
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from which

qs,0 = −Sy

Iz
× 1.04 × 106

Taking moments about the mid-point of the wall AD we have

−Syzs = 2

(∫ 150

0
786qOB dsA +

∫ 800

0
294qBAdsB

)
(vi)

Noting that qOB = qb,OB + qs,0 and qBA = qb,BA + qs,0 we rewrite Eq. (vi) as

Syzs = 2Sy

Iz

[∫ 150

0
786(+4s2

A − 1.4×106)dsA

+
∫ 800

0
294(+1500sB + 15

16
s2
B − 0.95×106)dsB

]
(vii)

Integrating Eq. (vii) and eliminating Sy gives

zs = 282 mm.

P R O B L E M S

P.10.1 A cantilever has the inverted T-section shown in Fig. P.10.1. It carries a vertical
shear load of 4 kN in a downward direction. Determine the distribution of vertical
shear stress in its cross-section.

Ans. In web: τ = 0.004(442 − y2) N/mm2, in flange: τ = 0.004(262 − y2) N/mm2.

40 mm

10 mm

10 mm

60 mm

FIGURE P.10.1

P.10.2 An I-section beam having the cross-sectional dimensions shown in Fig. P.10.2
carries a vertical shear load of 80 kN. Calculate and sketch the distribution of vertical
shear stress across the beam section and determine the percentage of the total shear
load carried by the web.
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Ans. τ (base of flanges) = 1.1 N/mm2, τ (ends of web) = 11.1 N/mm2,
τ (neutral axis) = 15.77 N/mm2, 95.9%.

15 mm

20 mm

20 mm

400 mm

150 mm FIGURE P.10.2

P.10.3 A doubly symmetrical I-section beam is reinforced by a flat plate attached to
the upper flange as shown in Fig. P.10.3. If the resulting compound beam is subjected
to a vertical shear load of 200 kN, determine the distribution of shear stress in the
portion of the cross section that extends from the top of the plate to the neutral axis.
Calculate also the shear force per unit length of beam resisted by the shear connection
between the plate and the flange of the I-section beam.

Ans. τ (top of plate) = 0
τ (bottom of plate) = 0.68 N/mm2

τ (top of flange) = 1.36 N/mm2

τ (bottom of flange) = 1.78 N/mm2

τ (top of web) = 14.22 N/mm2

τ (neutral axis) = 15.15 N/mm2

Shear force per unit length = 272 kN/m.

25 mm

30 mm

30 mm
40 mm

400 mm

200 mm

600 mm

FIGURE P.10.3

P.10.4 A timber beam has a rectangular cross section, 150 mm wide by 300 mm deep,
and is simply supported over a span of 4 m. The beam is subjected to a two-point
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loading at the quarter span points. If the beam fails in shear when the total of the two
concentrated loads is 180 kN, determine the maximum shear stress at failure.

Ans. 3 N/mm2.

P.10.5 A beam has the singly symmetrical thin-walled cross section shown in Fig. P.10.5.
Each wall of the section is flat and has the same length, a, and thickness, t. Determine
the shear flow distribution round the section due to a vertical shear load, Sy, applied
through the shear centre and find the distance of the shear centre from the point C.

Ans. qAB = −3Sy(2asA − s2
A/2)/16a3 sin α

qBC = −3Sy(3/2 + sB/a − s2
B/2a2)/16a sin α

S.C. is 5a cos α/8 from C.

S

Sy

t

a sA

sB

A

B

D

E

Ca

a

2a

2a

FIGURE P.10.5

P.10.6 Define the term ‘shear centre’ of a thin-walled open section and determine the
position of the shear centre of the thin-walled open section shown in Fig. P.10.6.

Ans. 2.66r from centre of semicircular wall.

2r

r

r

2r

Narrow slit

FIGURE P.10.6
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P.10.7 Determine the position of the shear centre of the cold-formed, thin-walled
section shown in Fig. P.10.7. The thickness of the section is constant throughout.

Ans. 87.5 mm above centre of semicircular wall.

25 mm 25 mm

50 mm

100 mm

50
mm

FIGURE P.10.7

P.10.8 The thin-walled channel section shown in Fig. P.10.8 has flanges that decrease
linearly in thickness from 2t0 at the tip to t0 at their junction with the web. The web
has a constant thickness t0. Determine the distribution of shear flow round the section
due to a shear load Sy applied through the shear centre S. Determine also the position
of the shear centre.

Ans. qAB = −Sy t0h(sA − s2
A/4d)/Ix, qBC = −Syt0(hsB − s2

B + 3hd/2)/2Ix,
where Ix = t0 h2(h + 9d)/12; 5d2/(h + 9d) from mid-point of web.

S

B A

DC

Sy sB

sA

t0

h

d

2t0

FIGURE P.10.8

P.10.9 Calculate the position of the shear centre of the thin-walled unsymmetrical
channel section shown in Fig. P.10.9.

Ans. 23.1 mm from web BC, 76.3 mm from flange CD.
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100 mm

100 mm

10 mm

50 mm

10 mm

5 mm
A B

CD

FIGURE P.10.9

P.10.10 The closed, thin-walled, hexagonal section shown in Fig. P.10.10 supports a
shear load of 30 kN applied along one side. Determine the shear flow distribution
round the section if the walls are of constant thickness throughout.

Ans. qAB = 1.2sA − 0.003s2
A + 50

qBC = 0.6sB − 0.006s2
B + 140

qCD = −0.6sC − 0.003s2
C + 140.

Remainder of distribution follows by symmetry. All shear flows in N/mm.

100 mm

30 kN
C

D

B

A

F E

sC

sE

sF

sB

sA

sA

FIGURE P.10.10

P.10.11 A closed section, thin-walled beam has the shape of a quadrant of a circle
and is subjected to a shear load S applied tangentially to its curved side as shown in
Fig. P.10.11. If the walls are of constant thickness throughout determine the shear flow
distribution round the section.

Ans. qOA = S(1.61 cos θ − 0.81)/r qAB = S(0.57s2 − 1.14rs − 0.33)/r.

A

BC 45°

O

u r

s

S

FIGURE P.10.11
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P.10.12 An overhead crane runs on tracks supported by a thin-walled beam whose
closed cross section has the shape of an isosceles triangle (Fig. P.10.12). If the walls
of the section are of constant thickness throughout determine the position of its shear
centre.

Ans. 0.7 m from horizontal wall.

hE

2 m

3 m

S

FIGURE P.10.12

P.10.13 A box girder has the singly symmetrical trapezoidal cross section shown in
Fig. P.10.13. It supports a vertical shear load of 500 kN applied through its shear
centre and in a direction perpendicular to its parallel sides. Calculate the shear flow
distribution and the maximum shear stress in the section.

Ans. qOA = 0.25sA

qAB = 0.21sB − 2.14 × 10−4s2
B + 250

qBC = −0.17sC + 246
τmax = 30.2 N/mm2.

1 m

2 m

D B
C

E O sA

sC

sB

A

120°120°

10 mm
10 mm

500 kN

12 mm

8 mm

FIGURE P.10.13
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Torsion in beams arises generally from the action of shear loads whose points of appli-
cation do not coincide with the shear centre of the beam section. Examples of practical
situations where this occurs are shown in Fig. 11.1 where, in Fig. 11.1(a), a concrete
encased I-section steel beam supports an offset masonry wall and in Fig. 11.1(b) a
floor slab, cast integrally with its supporting reinforced concrete beams, causes torsion
of the beams as it deflects under load. Codes of Practice either imply or demand that
torsional stresses and deflections be checked and provided for in design.

FIGURE 11.1
Causes of torsion in

beams (a) (b)

Reinforced concrete
beam

The solution of torsion problems is complex particularly in the case of beams of solid
section and arbitrary shape for which exact solutions do not exist. Use is then made
of empirical formulae which are conveniently expressed in terms of correction factors
based on the geometry of a particular shape of cross section. The simplest case involv-
ing the torsion of solid section beams (as opposed to hollow cellular sections) is that of
a circular section shaft or bar. Therefore, this case forms an instructive introduction
to the more complex cases of the torsion of solid section, thin-walled open section and
closed section beams.

11.1 TORSION OF SOLID AND HOLLOW CIRCULAR SECTION BARS

Initially, as in the cases of bending and shear, we shall examine the physical aspects of
torsion.

Suppose that the circular section bar shown in Fig. 11.2(a) is cut at some point along
its length and that the two parts of the bar are threaded onto a spindle along its axis.

279
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Now we draw a line ABC along the surface of the bar parallel to its axis and apply
equal and opposite torques, T, at each end as shown in Fig. 11.2(b). The two parts of
the bar will rotate relative to each other so that the line ABC becomes stepped. For
this to occur there must be a relative slippage between the two internal surfaces in
contact.

If, now, we glue the two parts of the bar together this relative slippage is prevented.
The glue, therefore, produces an in-plane force which must, from a consideration
of the equilibrium of either part of the bar, be equal to the applied torque T. This
internal torque is distributed over each face of the cross section of the bar in the form
of torsional shear stresses whose resultant must be a pure torque. It follows that the
form of these internal shear stresses is that shown in Fig. 11.3 in which they act on a
series of small elements positioned on an internal circle of radius r. Of course, there
are an infinite number of elements on this circle and an infinite number of circles
within the cross section.

Our discussion so far applies to all cross sections of the bar. The problem is to deter-
mine the distribution of shear stress and the actual twisting of the bar that the torque
causes.

FIGURE 11.2
Torsion of a circular

section bar

A

B

C

(a)

AT

T

B B

Initial position
of ABC

C

(b)

FIGURE 11.3 Shear
stresses produced by

a pure torque

Shear stress

r
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FIGURE 11.4
Torsion of a solid

circular section bar

T B
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T

r r

(a)
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A� A
D

O
u
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(b)

O
R

δs

δr

Figure 11.4(a) shows a circular section bar of length L subjected to equal and opposite
torques, T, at each end. The torque at any section of the bar is therefore equal to T and
is constant along its length. We shall assume that cross sections remain plane during
twisting, that radii remain straight during twisting and that all normal cross sections
equal distances apart suffer the same relative rotation.

Consider the generator AB on the surface of the bar and parallel to its longitudinal
axis. Due to twisting, the end A is displaced to A′ so that the radius OA rotates through
a small angle, θ , to OA′. The shear strain, γs, on the surface of the bar is then equal to
the angle ABA′ in radians so that

γs = AA′

L
= Rθ

L

Similarly the shear strain, γ , at any radius r is given by the angle DCD′ so that

γ = DD′

L
= rθ

L

The shear stress, τ , at the radius r is related to the shear strain γ by Eq. (7.9). Then

γ = τ

G
= rθ

L

or, rearranging

τ

r
= G

θ

L
(11.1)

Consider now any cross section of the bar as shown in Fig. 11.4(b). The shear stress,
τ , on an element δs of an annulus of radius r and width δr is tangential to the annulus,
is in the plane of the cross section and is constant round the annulus since the cross
section of the bar is perfectly symmetrical (see also Fig. 11.3). The shear force on
the element δs of the annulus is then τ δs δr and its moment about the centre, O, of
the section is τ δs δr r. Summing the moments on all such elements of the annulus we
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obtain the torque, δT , on the annulus, i.e.

δT =
∫ 2π r

0
τ δr r ds

which gives

δT = 2π r2τ δr

The total torque on the bar is now obtained by summing the torques from each annulus
in the cross section. Thus

T =
∫ R

0
2π r2τ dr (11.2)

Substituting for τ in Eq. (11.2) from Eq. (11.1) we have

T =
∫ R

0
2π r3G

θ

L
dr

which gives

T = πR4

2
G

θ

L
or

T = JG
θ

L
(11.3)

where J = πR4/2 (=πD4/32) is defined as the polar second moment of area of the cross
section (see Eq. (9.42)). Combining Eqs (11.1) and (11.3) we have

T
J

= τ

r
= G

θ

L
(11.4)

Note that for a given torque acting on a given bar the shear stress is a maximum at the
outer surface of the bar. Note also that these shear stresses induce complementary
shear stresses on planes parallel to the axis of the bar but not on the actual surface
(Fig. 11.5).

T

T

FIGURE 11.5 Shear and
complementary shear
stresses at the surface of a
circular section bar
subjected to torsion

TORSION OF A CIRCULAR SECTION HOLLOW BAR

The preceding analysis may be applied directly to a hollow bar of circular section
having outer and inner radii Ro and Ri, respectively. Equation (11.2) then becomes

T =
∫ Ro

Ri

2π r2τ dr
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Substituting for τ from Eq. (11.1) we have

T =
∫ Ro

Ri

2π r3G
θ

L
dr

from which

T = π

2
(R4

o − R4
i )G

θ

L

The polar second moment of area, J , is then

J = π

2
(R4

o − R4
i ) (11.5)

STATICALLY INDETERMINATE CIRCULAR SECTION BARS
UNDER TORSION

In many instances bars subjected to torsion are supported in such a way that the support
reactions are statically indeterminate. These reactions must be determined, however,
before values of maximum stress and angle of twist can be obtained.

Figure 11.6(a) shows a bar of uniform circular cross section firmly supported at each
end and subjected to a concentrated torque at a point B along its length. From
equilibrium we have

T = TA + TC (11.6)

A second equation is obtained by considering the compatibility of displacement at B
of the two lengths AB and BC. Thus the angle of twist at B in AB must equal the angle
of twist at B in BC, i.e.

θB(AB) = θB(BC)

TC

TC

TA

T

TA

LAB LBC

T

C
B

A

(a)

(b)

FIGURE 11.6 Torsion of a
circular section bar with built-in
ends
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or using Eq. (11.3)

TALAB

GJ
= TCLBC

GJ
whence

TA = TC
LBC

LAB

Substituting in Eq. (11.6) for TA we obtain

T = TC

(
LBC

LAB
+ 1
)

which gives

TC = LAB

LAB + LBC
T (11.7)

Hence

TA = LBC

LAB + LBC
T (11.8)

The distribution of torque along the length of the bar is shown in Fig. 11.6(b). Note
that if LAB > LBC, TC is the maximum torque in the bar.

EXAMPLE 11.1 A bar of circular cross section is 2.5 m long (Fig. 11.7). For 2 m of
its length its diameter is 200 mm while for the remaining 0.5 m its diameter is 100 mm.
If the bar is firmly supported at its ends and subjected to a torque of 50 kNm applied
at its change of section, calculate the maximum stress in the bar and the angle of twist
at the point of application of the torque. Take G = 80 000 N/mm2.

In this problem Eqs (11.7) and (11.8) cannot be used directly since the bar changes
section at B. Thus from equilibrium

T = TA + TC (i)

and from the compatibility of displacement at B in the lengths AB and BC

θB(AB) = θB(BC)

Diameter
200 mm

Diameter
100 mm

50 kN m

A B
C

0.5 m2.0 m
FIGURE 11.7 Bar of
Ex. 11.1
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or using Eq. (11.3)

TALAB

GJAB
= TCLBC

GJBC

whence

TA = LBC

LAB

JAB

JBC
TC (ii)

Substituting in Eq. (i) we obtain

T = TC

(
LBC

LAB

JAB

JBC
+ 1
)

or

50 = TC


0.5

2.0
×
(

200 × 10−3

100 × 10−3

)4

+ 1




from which

TC = 10 kN m

Hence, from Eq. (i)

TA = 40 kN m

Although the maximum torque occurs in the length AB, the length BC has the smaller
diameter. It can be seen from Eq. (11.4) that shear stress is directly proportional
to torque and inversely proportional to diameter (or radius) cubed. Therefore, we
conclude that in this case the maximum shear stress occurs in the length BC of the bar
and is given by

τmax = 10 × 106 × 100 × 32
2 × π × 1004 = 50.9 N/mm2

Also the rotation at B is given by either

θB = TALAB

GJAB
or θB = TCLBC

GJBC

Using the first of these expressions we have

θB = 40 × 106 × 2 × 103 × 32
80 000 × π × 2004 = 0.0064 rad

or

θB = 0.37◦
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Torque

T

Angle of twistu
FIGURE 11.8 Torque–angle of twist
relationship for a gradually applied torque

11.2 STRAIN ENERGY DUE TO TORSION

It can be seen from Eq. (11.3) that for a bar of a given material, a given length, L, and
radius, R, the angle of twist is directly proportional to the applied torque. Therefore a
torque–angle of twist graph is linear and for a gradually applied torque takes the form
shown in Fig. 11.8. The work done by a gradually applied torque, T , is equal to the
area under the torque–angle of twist curve and is given by

Work done = 1
2

Tθ

The corresponding strain energy stored, U , is therefore also given by

U = 1
2

Tθ

Substituting for T and θ from Eq. (11.4) in terms of the maximum shear stress, τmax,
on the surface of the bar we have

U = 1
2

τmaxJ
R

× τmaxL
GR

or

U = 1
4

τ 2
max
G

πR2L since J = πR4

2
Hence

U = τ 2
max
4G

× volume of bar (11.9)

Alternatively, in terms of the applied torque T we have

U = 1
2

Tθ = T2L
2GJ

(11.10)

11.3 PLASTIC TORSION OF CIRCULAR SECTION BARS

Equation (11.4) apply only if the shear stress–shear strain curve for the material of
the bar in torsion is linear. Stresses greater than the yield shear stress, τY, induce
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FIGURE 11.9
Idealized shear

stress–shear strain
curve for a mild

steel bar

τ

g
gY

τY

FIGURE 11.10
Plastic torsion of a
circular section bar

R
R

R

(a) (b) (c)

Elastic
core

τY

τY τY

rc

plasticity in the outer region of the bar and this extends radially inwards as the torque
is increased. It is assumed, in the plastic analysis of a circular section bar subjected to
torsion, that cross sections of the bar remain plane and that radii remain straight.

For a material, such as mild steel, which has a definite yield point the shear stress–shear
strain curve may be idealized in a similar manner to that for direct stress (see Fig. 9.32)
as shown in Fig. 11.9. Thus, after yield, the shear strain increases at a more or less
constant value of shear stress. It follows that the shear stress in the plastic region of a
mild steel bar is constant and equal to τY. Figure 11.10 illustrates the various stages in
the development of full plasticity in a mild steel bar of circular section. In Fig. 11.10(a)
the maximum stress at the outer surface of the bar has reached the yield stress, τY.
Equations (11.4) still apply, therefore, so that at the outer surface of the bar

TY

J
= τY

R

or

TY = πR3

2
τY (11.11)

where TY is the torque producing yield. In Fig. 11.10(b) the torque has increased
above the value TY so that the plastic region extends inwards to a radius re. Within re

the material remains elastic and forms an elastic core. At this stage the total torque is
the sum of the contributions from the elastic core and the plastic zone, i.e.

T = τYJe

re
+
∫ R

re

2π r2τY dr

where Je is the polar second moment of area of the elastic core and the contribution
from the plastic zone is derived in an identical manner to Eq. (11.2) but in which
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τ = τY = constant. Hence

T = τYπ r3
e

2
+ 2

3
πτY(R3 − r3

e)

which simplifies to

T = 2πR3

3
τY

(
1 − r3

e

4R3

)
(11.12)

Note that for a given value of torque, Eq. (11.12) fixes the radius of the elastic core
of the section. In stage three (Fig. 11.10(c)) the cross section of the bar is completely
plastic so that re in Eq. (11.12) is zero and the ultimate torque or fully plastic torque,
TP, is given by

TP = 2πR3

3
τY (11.13)

Comparing Eqs (11.11) and (11.13) we see that

TP

TY
= 4

3
(11.14)

so that only a one-third increase in torque is required after yielding to bring the bar to
its ultimate load-carrying capacity.

Since we have assumed that radii remain straight during plastic torsion, the angle of
twist of the bar must be equal to the angle of twist of the elastic core which may be
obtained directly from Eq. (11.3). Thus for a bar of length L and shear modulus G,

θ = TL
GJe

= 2TL
πGr4

e
(11.15)

or, in terms of the shear stress, τY, at the outer surface of the elastic core

θ = τYL
Gre

(11.16)

Either of Eq. (11.15) or (11.16) shows that θ is inversely proportional to the radius, re,
of the elastic core. Clearly, when the bar becomes fully plastic, re → 0 and θ becomes,
theoretically, infinite. In practical terms this means that twisting continues with no
increase in torque in the fully plastic state.

11.4 TORSION OF A THIN-WALLED CLOSED SECTION BEAM

Although the analysis of torsion problems is generally complex and in some instances
relies on empirical methods for a solution, the torsion of a thin-walled beam of arbitrary
closed section is relatively straightforward.

Figure 11.11(a) shows a thin-walled closed section beam subjected to a torque, T . The
thickness, t, is constant along the length of the beam but may vary round the cross
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FIGURE 11.11
Torsion of a

thin-walled closed
section beam
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(a) (b)
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q � δs
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section. The torque T induces a stress system in the walls of the beam which consists
solely of shear stresses if the applied loading comprises only a pure torque. In some
cases structural or loading discontinuities or the method of support produce a system
of direct stresses in the walls of the beam even though the loading consists of torsion
only. These effects, known as axial constraint effects, are considered in more advanced
texts.

The shear stress system on an element of the beam wall may be represented in terms of
the shear flow, q, (see Section 10.4) as shown in Fig. 11.11(b). Again we are assuming
that the variation of t over the side δs of the element may be neglected. For equilibrium
of the element in the x direction we have(

q + ∂q
∂s

δs
)

δx − q δx = 0

which gives

∂q
∂s

= 0 (11.17)

Considering equilibrium in the s direction(
q + ∂q

∂x
δx
)

δs − q δs = 0

from which

∂q
∂x

= 0 (11.18)

Equations (11.17) and (11.18) may only be satisfied simultaneously by a constant value
of q. We deduce, therefore, that the application of a pure torque to a thin-walled closed
section beam results in the development of a constant shear flow in the beam wall.
However, the shear stress, τ , may vary round the cross section since we allow the wall
thickness, t, to be a function of s.

The relationship between the applied torque and this constant shear flow may be
derived by considering the torsional equilibrium of the section shown in Fig. 11.12. The
torque produced by the shear flow acting on the element, δs, of the beam wall is q δs p.
Hence

T =
∮

pq ds
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Area, A
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FIGURE 11.12 Torque–shear
flow relationship in a
thin-walled closed section beam

or, since q = constant

T = q
∮

p ds (11.19)

We have seen in Section 10.5 that
∮

p ds = 2A where A is the area enclosed by the
midline of the beam wall. Hence

T = 2Aq (11.20)

The theory of the torsion of thin-walled closed section beams is known as the Bredt-
Batho theory and Eq. (11.20) is often referred to as the Bredt-Batho formula.

It follows from Eq. (11.20) that

τ = q
t

= T
2At

(11.21)

and that the maximum shear stress in a beam subjected to torsion will occur at the
section where the torque is a maximum and at the point in that section where the
thickness is a minimum. Thus

τmax = Tmax

2Atmin
(11.22)

In Section 10.5 we derived an expression (Eq. (10.28)) for the rate of twist, dθ /dx,
in a shear-loaded thin-walled closed section beam. Equation (10.28) also applies to
the case of a closed section beam under torsion in which the shear flow is constant
if it is assumed that, as in the case of the shear-loaded beam, cross sections remain
undistorted after loading. Thus, rewriting Eq. (10.28) for the case qs = q = constant,
we have

dθ

dx
= q

2A

∮
ds
Gt

(11.23)

Substituting for q from Eq. (11.20) we obtain

dθ

dx
= T

4A2

∮
ds
Gt

(11.24)
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or, if G, the shear modulus, is constant round the section

dθ

dx
= T

4A2G

∮
ds
t

(11.25)

EXAMPLE 11.2 A thin-walled circular section beam has a diameter of 200 mm and
is 2 m long; it is firmly restrained against rotation at each end. A concentrated torque
of 30 kN m is applied to the beam at its mid-span point. If the maximum shear stress
in the beam is limited to 200 N/mm2 and the maximum angle of twist to 2◦, calculate
the minimum thickness of the beam walls. Take G = 25 000 N/mm2.

The minimum thickness of the beam corresponding to the maximum allowable shear
stress of 200 N/mm2 is obtained directly using Eq. (11.22) in which Tmax = 15 kN m.
Thus

tmin = 15 × 106 × 4
2 × π × 2002 × 200

= 1.2 mm

The rate of twist along the beam is given by Eq. (11.25) in which∮
ds
t

= π × 200
tmin

Hence
dθ

dx
= T

4A2G
× π × 200

tmin
(i)

Taking the origin for x at one of the fixed ends and integrating Eq. (i) for half the
length of the beam we obtain

θ = T
4A2G

× 200π

tmin
x + C1

where C1 is a constant of integration. At the fixed end where x = 0, θ = 0 so that C1 = 0.
Hence

θ = T
4A2G

× 200π

tmin
x

The maximum angle of twist occurs at the mid-span of the beam where x = 1 m. Hence

tmin = 15 × 106 × 200 × π × 1 × 103 × 180
4 × (π × 2002/4)2 × 25 000 × 2 × π

= 2.7 mm

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm.

11.5 TORSION OF SOLID SECTION BEAMS

Generally, by solid section beams, we mean beam sections in which the walls do not
form a closed loop system. Examples of such sections are shown in Fig. 11.13. An
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FIGURE 11.13
Examples of solid beam
sections
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FIGURE 11.14 Torsion constant for a ‘thick’
I-section beam

obvious exception is the hollow circular section bar which is, however, a special case
of the solid circular section bar. The prediction of stress distributions and angles of
twist produced by the torsion of such sections is complex and relies on the St. Venant
warping function or Prandtl stress function methods of solution. Both of these methods
are based on the theory of elasticity which may be found in advanced texts devoted
solely to this topic. Even so, exact solutions exist for only a few practical cases, one of
which is the circular section bar.

In all torsion problems, however, it is found that the torque, T , and the rate of twist,
dθ/dx, are related by the equation

T = GJ
dθ

dx
(11.26)

where G is the shear modulus and J is the torsion constant. For a circular section bar J is
the polar second moment of area of the section (see Eq. (11.3)) while for a thin-walled
closed section beam J , from Eq. (11.25), is seen to be equal to 4A2/

∮
(ds/t). It is J , in

fact, that distinguishes one torsion problem from another.

For ‘thick’ sections of the type shown in Fig. 11.13 J is obtained empirically in terms
of the dimensions of the particular section. For example, the torsion constant of the
‘thick’ I-section shown in Fig. 11.14 is given by

J = 2J1 + J2 + 2αD4
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FIGURE 11.15 Shear stress distribution due to torsion in a
thin-walled open section beam

where

J1 = bt3
f

3

[
1 − 0.63

tf
b

(
1 − t4

f
12b4

)]

J2 = 1
3

dt3
w

α = t1
t2

(
0.15 + 0.1

r
tf

)

in which t1 = tf and t2 = tw if tf < tw, or t1 = tw and t2 = tf if tf > tw.

It can be seen from the above that J1 and J2, which are the torsion constants of the
flanges and web, respectively, are each equal to one-third of the product of their
length and their thickness cubed multiplied, in the case of the flanges, by an empirical
constant. The torsion constant for the complete section is then the sum of the torsion
constants of the components plus a contribution from the material at the web/flange
junction. If the section were thin-walled, tf 	 b and D4 would be negligibly small, in
which case

J � 2
bt3

f
3

+ dt3
w

3
Generally, for thin-walled sections the torsion constant J may be written as

J = 1
3

∑
st3 (11.27)

in which s is the length and t the thickness of each component in the cross section or
if t varies with s

J = 1
3

∫
section

t3 ds (11.28)

The shear stress distribution in a thin-walled open section beam (Fig. 11.15) may be
shown to be related to the rate of twist by the expression

τ = 2Gn
dθ

dx
(11.29)
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where n is the distance to any point in the section wall measured normally from its
midline. The distribution is therefore linear across the thickness as shown in Fig. 11.15
and is zero at the midline of the wall. An alternative expression for shear stress dis-
tribution is obtained, in terms of the applied torque, by substituting for dθ /dx in Eq.
(11.29) from Eq. (11.26). Thus

τ = 2n
T
J

(11.30)

It is clear from either of Eqs. (11.29) or (11.30) that the maximum value of shear stress
occurs at the outer surfaces of the wall when n = ±t/2 . Hence

τmax = ±Gt
dθ

dx
= ±Tt

J
(11.31)

The positive and negative signs in Eq. (11.31) indicate the direction of the shear stress
in relation to the assumed direction for s.

The behaviour of closed and open section beams under torsional loads is similar in
that they twist and develop internal shear stress systems. However, the manner in
which each resists torsion is different. It is clear from the preceding discussion that
a pure torque applied to a beam section produces a closed, continuous shear stress
system since the resultant of any other shear stress system would generally be a shear
force unless, of course, the system were self-equilibrating. In a closed section beam
this closed loop system of shear stresses is allowed to develop in a continuous path
round the cross section, whereas in an open section beam it can only develop within
the thickness of the walls; examples of both systems are shown in Fig. 11.16. Here,
then, lies the basic difference in the manner in which torsion is resisted by closed and
open section beams and the reason for the comparatively low torsional stiffness of
thin-walled open sections. Clearly the development of a closed loop system of shear
stresses in an open section is restricted by the thinness of the walls.

Closed
section TorqueTorque

Open
section FIGURE 11.16 Shear stress

development in closed and open
section beams subjected to torsion

EXAMPLE 11.3 The thin-walled section shown in Fig. 11.17 is symmetrical about
a horizontal axis through O. The thickness t0 of the centre web CD is constant, while
the thickness of the other walls varies linearly from t0 at points C and D to zero at the
open ends A, F, G and H. Determine the torsion constant J for the section and also
the maximum shear stress produced by a torque T .
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FIGURE 11.17 Beam section of Ex. 11.3

Since the thickness of the section varies round its profile except for the central web,
we use both Eqs (11.27) and (11.28) to determine the torsion constant. Thus,

J = 2at3
0

3
+ 2 × 1

3

∫ a

0

(
sAt0

a

)3

dsA + 2 × 1
3

∫ 3a

0

(
sBt0
3a

)3

dsB

which gives

J = 4at3
0

3
The maximum shear stress is now obtained using Eq. (11.31), i.e.

τmax = ±Tt0
J

= ±3Tt0
4at3

0
= ± 3T

4at2
0

11.6 WARPING OF CROSS SECTIONS UNDER TORSION

Although we have assumed that the shapes of closed and open beam sections remain
undistorted during torsion, they do not remain plane. Thus, for example, the cross
section of a rectangular section box beam, although remaining rectangular when
twisted, warps out of its plane as shown in Fig. 11.18(a), as does the channel sec-
tion of Fig. 11.18(b). The calculation of warping displacements is covered in more
advanced texts and is clearly of importance if a beam is, say, built into a rigid founda-
tion at one end. In such a situation the warping is suppressed and direct tensile and
compressive stresses are induced which must be investigated in design particularly if
a beam is of concrete where even low tensile stresses can cause severe cracking.
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(a) (b)

FIGURE 11.18
Warping of beam
sections due to
torsion

Some beam sections do not warp under torsion; these include solid (and hollow)
circular section bars and square box sections of constant thickness.

P R O B L E M S

P.11.1 The solid bar of circular cross section shown in Fig. P.11.1 is subjected to a
torque of 1 kN m at its free end and a torque of 3 kN m at its change of section. Cal-
culate the maximum shear stress in the bar and the angle of twist at its free end.
G = 70 000 N/mm2.

Ans. 40.7 N/mm2, 0.6◦.

100 mm
diameter 50 mm

diameter

400 mm200 mm

3 kN m
1 kN m

FIGURE P.11.1

P.11.2 A hollow circular section shaft 2 m long is firmly supported at each end and has
an outside diameter of 80 mm. The shaft is subjected to a torque of 12 kN m applied
at a point 1.5 m from one end. If the shear stress in the shaft is limited to 150 N/mm2

and the angle of twist to 1.5◦, calculate the maximum allowable internal diameter. The
shear modulus G = 80 000 N/mm2.

Ans. 63.7 mm.

P.11.3 A bar ABCD of circular cross section having a diameter of 50 mm is firmly
supported at each end and carries two concentrated torques at B and C as shown in
Fig. P.11.3. Calculate the maximum shear stress in the bar and the maximum angle of
twist. Take G = 70 000 N/mm2.

Ans. 66.2 N/mm2 in CD, 2.3◦ at B.
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1000 N m 1500 N m

2 m 1 m 1 m

A B C D

FIGURE P.11.3

P.11.4 A bar ABCD has a circular cross section of 75 mm diameter over half its length
and 50 mm diameter over the remaining half of its length. A torque of 1 kN m is applied
at C midway between B and D as shown in Fig. P.11.4. Sketch the distribution of torque
along the length of the bar and calculate the maximum shear stress and the maximum
angle of twist in the bar G = 70 000 N/mm2.

Ans. τmax = 23.2 N/mm2 in CD, 0.38◦ at C.

50 mm
diameter

75 mm
diameter

1.0 m 0.5 m 0.5 m

C

D
B

1 kN m
A

FIGURE P.11.4

P.11.5 A thin-walled rectangular section box girder carries a uniformly distributed
torque loading of 1 kN m/mm over the outer half of its length as shown in Fig. P.11.5.
Calculate the maximum shear stress in the walls of the box girder and also the dis-
tribution of angle of twist along its length; illustrate your answer with a sketch. Take
G = 70 000 N/mm2.

Ans. 133.3 N/mm2. In AB, θ = 3.81 × 10−6x rad.
In BC, θ = 1.905 × 10−9(4000x − x2/2) − 0.00381 rad.

2 m

2 m

x

A

C

B
1 kN m/mm

15 mm

15 mm

10 mm

10 mm

1 m

0.75 m

FIGURE P.11.5
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P.11.6 The thin-walled box section beam ABCD shown in Fig. P.11.6 is attached at
each end to supports which allow rotation of the ends of the beam in the longitudinal
vertical plane of symmetry but prevent rotation of the ends in vertical planes perpen-
dicular to the longitudinal axis of the beam. The beam is subjected to a uniform torque
loading of 20 Nm/mm over the portion BC of its span. Calculate the maximum shear
stress in the cross section of the beam and the distribution of angle of twist along its
length G = 70 000 N/mm2.

Ans. 71.4 N/mm2, θB = θC = 0.36◦, θ at mid-span = 0.72◦.

4 mm

4 mm

6 mm 6 mm

350 mm

200 mm

20 Nm/mm

4 m

1 m

1 m

A B

C
D

FIGURE P.11.6

P.11.7 Figure P.11.7 shows a thin-walled cantilever box-beam having a constant width
of 50 mm and a depth which decreases linearly from 200 mm at the built-in end to
150 mm at the free end. If the beam is subjected to a torque of 1 kN m at its free end,
plot the angle of twist of the beam at 500 mm intervals along its length and determine
the maximum shear stress in the beam section. Take G = 25 000 N/mm2.

Ans. τmax = 33.3 N/mm2.

50 mm

200 mm

2.0 mm

2500 mm

150
mm1 kN m

FIGURE P.11.7

P.11.8 The cold-formed section shown in Fig. P.11.8 is subjected to a torque of
50 Nm. Calculate the maximum shear stress in the section and its rate of twist.
G = 25 000 N/mm2.

Ans. τmax = 220.6 N/mm2, dθ /dx = 0.0044 rad/mm.
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2 mm

20 mm25 mm

25 mm

25 mm

15 mm

15 mm

FIGURE P.11.8

P.11.9 The thin-walled angle section shown in Fig. P.11.9 supports shear loads that
produce both shear and torsional effects. Determine the maximum shear stress in the
cross section of the angle, stating clearly the point at which it acts.

Ans. 18.0 N/mm2 on the inside of flange BC at 16.5 mm from point B.

60 mm

80 mm
1 mm

2.5 mm

2.0 mm

500 N

1000 N2 mm

AB

C

FIGURE P.11.9

P.11.10 Figure P.11.10 shows the cross section of a thin-walled inwardly lipped channel.
The lips are of constant thickness while the flanges increase linearly in thickness from
1.27 mm, where they meet the lips, to 2.54 mm at their junctions with the web. The
web has a constant thickness of 2.54 mm and the shear modulus G is 26 700 N/mm2.
Calculate the maximum shear stress in the section and also its rate of twist if it is
subjected to a torque of 100 Nm.

Ans. τmax = ± 297.4 N/mm2, dθ /dx = 0.0044 rad/mm.

50 mm

50 mm

50 mm

1.27 mm2.54 mm

38 mm

FIGURE P.11.10
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Frequently in civil engineering construction beams are fabricated from comparatively
inexpensive materials of low strength which are reinforced by small amounts of high-
strength material, such as steel. In this way a timber beam of rectangular section
may have steel plates bolted to its sides or to its top and bottom surfaces. Again,
concrete beams are reinforced in their weak tension zones and also, if necessary, in
their compression zones, by steel-reinforcing bars. Other instances arise where steel
beams support concrete floor slabs in which the strength of the concrete may be allowed
for in the design of the beams. The design of reinforced concrete beams, and concrete
and steel beams is covered by Codes of Practice and relies, as in the case of steel
beams, on ultimate load analysis. The design of steel-reinforced timber beams is not
covered by a code, and we shall therefore limit the analysis of this type of beam to an
elastic approach.

12.1 STEEL-REINFORCED TIMBER BEAMS

The timber joist of breadth b and depth d shown in Fig. 12.1 is reinforced by two steel
plates bolted to its sides, each plate being of thickness t and depth d. Let us suppose
that the beam is bent to a radius R at this section by a positive bending moment, M .
Clearly, since the steel plates are firmly attached to the sides of the timber joist, both
are bent to the same radius, R. Then, from Eq. (9.7), the bending moment, Mt, carried

z

y

dG

tt
b FIGURE 12.1 Steel-reinforced timber beam

300
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by the timber joist is

Mt = EtIt

R
(12.1)

where Et is Young’s modulus for the timber and It is the second moment of area of
the timber section about the centroidal axis, Gz. Similarly for the steel plates

Ms = EsIs

R
(12.2)

in which Is is the combined second moment of area about Gz of the two plates. The
total bending moment is then

M = Mt + Ms = 1
R

(EtIt + EsIs)

from which
1
R

= M
EtIt + EsIs

(12.3)

From a comparison of Eqs (12.3) and (9.7) we see that the composite beam behaves
as a homogeneous beam of bending stiffness EI where

EI = EtIt + EsIs

or

EI = Et

(
It + Es

Et
Is

)
(12.4)

The composite beam may therefore be treated wholly as a timber beam having a total
second moment of area

It + Es

Et
Is

This is equivalent to replacing the steel-reinforcing plates by timber ‘plates’ each hav-
ing a thickness (Es/Et)t as shown in Fig. 12.2(a). Alternatively, the beam may be
transformed into a wholly steel beam by writing Eq. (12.4) as

EI = Es

(
Et

Es
It + Is

)

so that the second moment of area of the equivalent steel beam is

Et

Es
It + Is

which is equivalent to replacing the timber joist by a steel ‘joist’ of breadth (Et/Es)b
(Fig. 12.2(b)). Note that the transformed sections of Fig. 12.2 apply only to the case
of bending about the horizontal axis, Gz. Note also that the depth, d, of the beam is
unchanged by either transformation.

The direct stress due to bending in the timber joist is obtained using Eq. (9.9), i.e.

σt = −Mty
It

(12.5)



Chap-12 12/1/2005 12: 46 page 302

302 • Chapter 12 / Composite Beams

Equivalent timber
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b
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Es

Et
t

Es

Et
b

Et

Es FIGURE 12.2 Equivalent
beam sections

From Eqs (12.1) and (12.3)

Mt = EtIt

EtIt + EsIs
M

or

Mt = M

1 + EsIs
EtIt

(12.6)

Substituting in Eq. (12.5) from Eq. (12.6) we have

σt = − My

It + Es
Et

Is
(12.7)

Equation (12.7) could in fact have been deduced directly from Eq. (9.9) since
It + (Es/Et)Is is the second moment of area of the equivalent timber beam of
Fig. 12.2(a). Similarly, by considering the equivalent steel beam of Fig. 12.2(b), we
obtain the direct stress distribution in the steel, i.e.

σs = − My

Is + Et
Es

It
(12.8)

EXAMPLE 12.1 A beam is formed by connecting two timber joists each
100 mm × 400 mm with a steel plate 12 mm × 300 mm placed symmetrically between
them (Fig. 12.3). If the beam is subjected to a bending moment of 50 kN m, determine
the maximum stresses in the steel and in the timber. The ratio of Young’s modulus for
steel to that of timber is 12 : 1.

The second moments of area of the timber and steel about the centroidal axis, Gz, are

It = 2 × 100 × 4003

12
= 1067 × 106 mm4
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FIGURE 12.3 Steel-reinforced timber beam
of Ex. 12.1
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FIGURE 12.4 Reinforced
timber beam with steel
plates attached to its top
and bottom surfaces

and

Is = 12 × 3003

12
= 27 × 106 mm4

respectively. Therefore, from Eq. (12.7) we have

σt = ± 50 × 106 × 200
1067 × 106 + 12 × 27 × 106 = ±7.2 N/mm2

and from Eq. (12.8)

σs = ± 50 × 106 × 150
27 × 106 + 1067 × 106/12

= ±64.7 N/mm2

Consider now the steel-reinforced timber beam of Fig. 12.4(a) in which the steel
plates are attached to the top and bottom surfaces of the timber. The section may be
transformed into an equivalent timber beam (Fig. 12.4(b)) or steel beam (Fig. 12.4(c))
by the methods used for the beam of Fig. 12.1. The direct stress distributions are then
obtained from Eqs (12.7) and (12.8). There is, however, one important difference
between the beam of Fig. 12.1 and that of Fig. 12.4(a). In the latter case, when the
beam is subjected to shear loads, the connection between the timber and steel must
resist horizontal complementary shear stresses as shown in Fig. 12.5. Generally, it is
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FIGURE 12.5 Shear stresses
between steel plates and timber
beam (side view of a length of
beam)

sufficiently accurate to assume that the timber joist resists all the vertical shear and
then calculate an average value of shear stress, τav, i.e.

τav = Sy

bd

so that, based on this approximation, the horizontal complementary shear stress is
Sy/bd and the shear force per unit length resisted by the timber/steel connection is Sy/d.

EXAMPLE 12.2 A timber joist 100 mm × 200 mm is reinforced on its top and bottom
surfaces by steel plates 15 mm thick × 100 mm wide. The composite beam is simply
supported over a span of 4 m and carries a uniformly distributed load of 10 kN/m.
Determine the maximum direct stress in the timber and in the steel and also the shear
force per unit length transmitted by the timber/steel connection. Take Es/Et = 15.

The second moments of area of the timber and steel about a horizontal axis through
the centroid of the beam are

It = 100 × 2003

12
= 66.7 × 106 mm4

and

Is = 2 × 15 × 100 × 107.52 = 34.7 × 106 mm4

respectively. The maximum bending moment in the beam occurs at mid-span and is

Mmax = 10 × 42

8
= 20 kN m

From Eq. (12.7)

σt,max = ± 20 × 106 × 100
66.7 × 106 + 15 × 34.7 × 106 = ±3.4 N/mm2

and from Eq. (12.8)

σs,max = ± 20 × 106 × 115
34.7 × 106 + 66.7 × 106/15

= ±58.8 N/mm2
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The maximum shear force in the beam occurs at the supports and is equal to
10 × 4/2 = 20 kN. The average shear stress in the timber joist is then

τav = 20 × 103

100 × 200
= 1 N/mm2

It follows that the shear force per unit length in the timber/steel connection is
1 × 100 = 100 N/mm or 100 kN/m. Note that this value is an approximation for design
purposes since, as we saw in Chapter 10, the distribution of shear stress through the
depth of a beam of rectangular section is not uniform.

12.2 REINFORCED CONCRETE BEAMS

As we have noted in Chapter 8, concrete is a brittle material which is weak in tension. It
follows that a beam comprised solely of concrete would have very little bending strength
since the concrete in the tension zone of the beam would crack at very low values of
load. Concrete beams are therefore reinforced in their tension zones (and sometimes in
their compression zones) by steel bars embedded in the concrete. Generally, whether
the beam is precast or forms part of a slab/beam structure, the bars are positioned in a
mould (usually fabricated from timber and called formwork) into which the concrete
is poured. On setting, the concrete shrinks and grips the steel bars; the adhesion or
bond between the bars and the concrete transmits bending and shear loads from the
concrete to the steel.

In the design of reinforced concrete beams the elastic method has been superseded
by the ultimate load method. We shall, however, for completeness, consider both
methods.

ELASTIC THEORY

Consider the concrete beam section shown in Fig. 12.6(a). The beam is subjected to a
bending moment, M , and is reinforced in its tension zone by a number of steel bars of
total cross-sectional area As. The centroid of the reinforcement is at a depth d1 from
the upper surface of the beam; d1 is known as the effective depth of the beam. The
bending moment, M , produces compression in the concrete above the neutral axis
whose position is at some, as yet unknown, depth, n, below the upper surface of the
beam. Below the neutral axis the concrete is in tension and is assumed to crack so that
its contribution to the bending strength of the beam is negligible. All tensile forces are
therefore resisted by the reinforcing steel.

The reinforced concrete beam section may be conveniently analysed by the method
employed in Section 12.1 for steel-reinforced beams. The steel reinforcement is, there-
fore, transformed into an equivalent area, mAs, of concrete in which m, the modular
ratio, is given by

m = Es

Ec
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FIGURE 12.6
Reinforced

concrete beam

d1

y

z

b b

Neutral
axis

Total area of
reinforcement, As

mAs

n

Neutral
axis

C

Resultant of compressive
stress in concrete

Resultant of tensile
stress in steel

sc/Ec

ss

sc

ss

n/3

Es

d1�
n
3

(a) (b)

(c)

T

(d)

where Es and Ec are Young’s moduli for steel and concrete, respectively. The trans-
formed section is shown in Fig. 12.6(b). Taking moments of areas about the neutral
axis we have

bn
n
2

= mAs(d1 − n)

which, when rearranged, gives a quadratic equation in n, i.e.

bn2

2
+ mAsn − mAsd1 = 0 (12.9)

solving gives

n = mAs

b



√

1 + 2bd1

mAs
− 1


 (12.10)

Note that the negative solution of Eq. (12.9) has no practical significance and is
therefore ignored.
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The second moment of area, Ic, of the transformed section is

Ic = bn3

3
+ mAs(d1 − n)2 (12.11)

so that the maximum stress, σc, induced in the concrete is

σc = −Mn
Ic

(12.12)

The stress, σs, in the steel may be deduced from the strain diagram (Fig. 12.6(c)) which
is linear throughout the depth of the beam since the beam section is assumed to remain
plane during bending. Then

σs/Es

d1 − n
= −σc/Ec

n
(note: strains are of opposite sign)

from which

σs = −σc
Es

Ec

(
d1 − n

n

)
= −σcm

(
d1 − n

n

)
(12.13)

Substituting for σc from Eq. (12.12) we obtain

σs = mM
Ic

(d1 − n) (12.14)

Frequently, instead of determining stresses in a given beam section subjected to a
given applied bending moment, we wish to calculate the moment of resistance of a
beam when either the stress in the concrete or the steel reaches a maximum allowable
value. Equations (12.12) and (12.14) may be used to solve this type of problem but an
alternative and more direct method considers moments due to the resultant loads in
the concrete and steel. From the stress diagram of Fig. 12.6(d)

M = C
(

d1 − n
3

)
so that

M = σc

2
bn
(

d1 − n
3

)
(12.15)

Alternatively, taking moments about the centroid of the concrete stress diagram

M = T
(

d1 − n
3

)
or

M = σsAs

(
d1 − n

3

)
(12.16)

Equation (12.16) may also be used in conjunction with Eq. (12.13) to ‘design’ the
area of reinforcing steel in a beam section subjected to a given bending moment
so that the stresses in the concrete and steel attain their maximum allowable values
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simultaneously. Such a section is known as a critical or economic section. The position
of the neutral axis is obtained directly from Eq. (12.13) in which σs, σc, m and d1 are
known. The required area of steel is then determined from Eq. (12.16).

EXAMPLE 12.3 A rectangular section reinforced concrete beam has a breadth of
200 mm and is 350 mm deep to the centroid of the steel reinforcement which consists
of two steel bars each having a diameter of 20 mm. If the beam is subjected to a bending
moment of 30 kN m, calculate the stress in the concrete and in the steel. The modular
ratio m is 15.

The area As of the steel reinforcement is given by

As = 2 × π

4
× 202 = 628.3 mm2

The position of the neutral axis is obtained from Eq. (12.10) and is

n = 15 × 628.3
200



√

1 + 2 × 200 × 350
15 × 628.3

− 1


 = 140.5 mm

Now using Eq. (12.11)

Ic = 200 × 140.53

3
+ 15 × 628.3(350 − 140.5)2 = 598.5 × 106 mm4

The maximum stress in the concrete follows from Eq. (12.12), i.e.

σc = −30 × 106 × 140.5
598.5 × 106 = −7.0 N/mm2 (compression)

and from Eq. (12.14)

σs = 15 × 30 × 106

598.5 × 106 (350 − 140.5) = 157.5 N/mm2 (tension)

EXAMPLE 12.4 A reinforced concrete beam has a rectangular section of breadth
250 mm and a depth of 400 mm to the steel reinforcement, which consists of three
20 mm diameter bars. If the maximum allowable stresses in the concrete and steel are
7.0 N/mm2 and 140 N/mm2, respectively, determine the moment of resistance of the
beam. The modular ratio m = 15.

The area, As, of steel reinforcement is

As = 3 × π

4
× 202 = 942.5 mm2

From Eq. (12.10)

n = 15 × 942.5
250



√

1 + 2 × 250 × 400
15 × 942.5

− 1


 = 163.5 mm
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The maximum bending moment that can be applied such that the permissible stress
in the concrete is not exceeded is given by Eq. (12.15). Thus

M = 7
2

× 250 × 163.5
(

400 − 163.5
3

)
× 10−6 = 49.4 kN m

Similarly, from Eq. (12.16) the stress in the steel limits the applied moment to

M = 140 × 942.5
(

400 − 163.5
3

)
× 10−6 = 45.6 kN m

The steel is therefore the limiting material and the moment of resistance of the beam
is 45.6 kN m.

EXAMPLE 12.5 A rectangular section reinforced concrete beam is required to
support a bending moment of 40 kN m and is to have dimensions of breadth 250 mm
and effective depth 400 mm. The maximum allowable stresses in the steel and concrete
are 120 N/mm2 and 6.5 N/mm2, respectively; the modular ratio is 15. Determine the
required area of reinforcement such that the limiting stresses in the steel and concrete
are attained simultaneously.

Using Eq. (12.13) we have

120 = 6.5 × 15
(

400
n

− 1
)

from which n = 179.3 mm.

The required area of steel is now obtained from Eq. (12.16); hence

As = M
σs(d1 − n/3)

i.e.

As = 40 × 106

120(400 − 179.3/3)
= 979.7 mm2

It may be seen from Ex. 12.4 that for a beam of given cross-sectional dimensions,
increases in the area of steel reinforcement do not result in increases in the moment
of resistance after a certain value has been attained. When this stage is reached the
concrete becomes the limiting material, so that additional steel reinforcement only
serves to reduce the stress in the steel. However, the moment of resistance of a beam
of a given cross section may be increased above the value corresponding to the limiting
concrete stress by the addition of steel in the compression zone of the beam.

Figure 12.7(a) shows a concrete beam reinforced in both its tension and compression
zones. The centroid of the compression steel of area Asc is at a depth d2 below the upper
surface of the beam, while the tension steel of area Ast is at a depth d1. The section
may again be transformed into an equivalent concrete section as shown in Fig. 12.7(b).
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FIGURE 12.7
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However, when determining the second moment of area of the transformed section
it must be remembered that the area of concrete in the compression zone is reduced
due to the presence of the steel. Thus taking moments of areas about the neutral axis
we have

bn2

2
− Asc(n − d2) + mAsc(n − d2) = mAst(d1 − n)

or, rearranging

bn2

2
+ (m − 1)Asc(n − d2) = mAst(d1 − n) (12.17)

It can be seen from Eq. (12.17) that multiplying Asc by (m − 1) in the transformation
process rather than m automatically allows for the reduction in the area of concrete
caused by the presence of the compression steel. Thus the second moment of area of
the transformed section is

Ic = bn3

3
+ (m − 1)Asc(n − d2)2 + mAst(d1 − n)2 (12.18)

The maximum stress in the concrete is then

σc = −Mn
Ic

(see Eq. (12.12))
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The stress in the tension steel and in the compression steel are obtained from the
strain diagram of Fig. 12.7(c). Hence

σsc/Es

n − d2
= σc/Ec

n
(both strains have the same sign) (12.19)

so that

σsc = m(n − d2)
n

σc = −mM(n − d2)
Ic

(12.20)

and

σst = mM
Ic

(d1 − n) as before (12.21)

An alternative expression for the moment of resistance of the beam is derived by
taking moments of the resultant steel and concrete loads about the compressive
reinforcement. Therefore from the stress diagram of Fig. 12.7(d)

M = T(d1 − d2) − Cc

(n
3

− d2

)
whence

M = σstAst(d1 − d2) − σc

2
bn
(n

3
− d2

)
(12.22)

EXAMPLE 12.6 A rectangular section concrete beam is 180 mm wide and has a
depth of 360 mm to its tensile reinforcement. It is subjected to a bending moment
of 45 kN m and carries additional steel reinforcement in its compression zone at a
depth of 40 mm from the upper surface of the beam. Determine the necessary areas
of reinforcement if the stress in the concrete is limited to 8.5 N/mm2 and that in the
steel to 140 N/mm2. The modular ratio Es/Ec = 15.

Assuming that the stress in the tensile reinforcement and that in the concrete attain
their limiting values we can determine the position of the neutral axis using Eq. (12.13).
Thus

140 = 8.5 × 15
(

360
n

− 1
)

from which

n = 171.6 mm

Substituting this value of n in Eq. (12.22) we have

45 × 106 = 140Ast(360 − 40) + 8.5
2

× 180 × 171.6
(

171.6
3

− 40
)

which gives

Ast = 954 mm2
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FIGURE 12.8
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We can now use Eq. (12.17) to determine Asc or, alternatively, we could equate the load
in the tensile steel to the combined compressive load in the concrete and compression
steel. Substituting for n and Ast in Eq. (12.17) we have

180 × 171.62

2
+ (15 − 1)Asc(171.6 − 40) = 15 × 954(360 − 171.6)

from which

Asc = 24.9 mm2

The stress in the compression steel may be obtained from Eq. (12.20), i.e.

σsc = −15
(171.6 − 40)

171.6
× 8.5 = −97.8 N/mm2 (compression)

In many practical situations reinforced concrete beams are cast integrally with floor
slabs, as shown in Fig. 12.8. Clearly, the floor slab contributes to the overall strength
of the structure so that the part of the slab adjacent to a beam may be regarded as
forming part of the beam. The result is a T-beam whose flange, or the major portion of
it, is in compression. The assumed width, B, of the flange cannot be greater than L, the
distance between the beam centres; in most instances B is specified in Codes of Practice.

It is usual to assume in the analysis of T-beams that the neutral axis lies within the flange
or coincides with its under surface. In either case the beam behaves as a rectangular
section concrete beam of width B and effective depth d1 (Fig. 12.9). Therefore, the
previous analysis of rectangular section beams still applies.

ULTIMATE LOAD THEORY

We have previously noted in this chapter and also in Chapter 8 that the modern
design of reinforced concrete structures relies on ultimate load theory. The calculated
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moment of resistance of a beam section is therefore based on the failure strength of
concrete in compression and the yield strength of the steel reinforcement in tension
modified by suitable factors of safety. Typical values are 1.5 for concrete (based on
its 28-day cube strength) and 1.15 for steel. However, failure of the concrete in com-
pression could occur suddenly in a reinforced concrete beam, whereas failure of the
steel by yielding would be gradual. It is therefore preferable that failure occurs in the
reinforcement rather than in the concrete. Thus, in design, the capacity of the concrete
is underestimated to ensure that the preferred form of failure occurs. A further factor
affecting the design stress for concrete stems from tests in which it has been found that
concrete subjected to compressive stress due to bending always fails before attaining
a compressive stress equal to the 28-day cube strength. The characteristic strength of
concrete in compression is therefore taken as two-thirds of the 28-day cube strength.
A typical design strength for concrete in compression is then

σcu

1.5
× 0.67 = 0.45σcu

where σcu is the 28-day cube strength. The corresponding figure for steel is

σY

1.15
= 0.87σY

In the ultimate load analysis of reinforced concrete beams it is assumed that plane
sections remain plane during bending and that there is no contribution to the bending
strength of the beam from the concrete in tension. From the first of these assumptions
we deduce that the strain varies linearly through the depth of the beam as shown
in Fig. 12.10(b). However, the stress diagram in the concrete is not linear but has
the rectangular–parabolic shape shown in Fig. 12.10(c). Design charts in Codes of
Practice are based on this stress distribution, but for direct calculation purposes a
reasonably accurate approximation can be made in which the rectangular–parabolic
stress distribution of Fig. 12.10(c) is replaced by an equivalent rectangular distribution
as shown in Fig. 12.11(b) in which the compressive stress in the concrete is assumed
to extend down to the mid-effective depth of the section at the maximum condition,
i.e. at the ultimate moment of resistance, Mu, of the section.
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FIGURE 12.11
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Mu is then given by

Mu = C 3
4 d1 = 0.40σcub 1

2 d1
3
4 d1

which gives

Mu = 0.15σcub(d1)2 (12.23)

or

Mu = T 3
4 d1 = 0.87σYAs

3
4 d1

from which

Mu = 0.65σYAsd1 (12.24)

whichever is the lesser. For applied bending moments less than Mu a rectangular stress
block may be assumed for the concrete in which the stress is 0.4σcu but in which the
depth of the neutral axis must be calculated. For beam sections in which the applied
bending moment is greater than Mu, compressive reinforcement is required.

EXAMPLE 12.7 A reinforced concrete beam having an effective depth of 600 mm
and a breadth of 250 mm is subjected to a bending moment of 350 kN m. If the 28-day
cube strength of the concrete is 30 N/mm2 and the yield stress in tension of steel is
400 N/mm2, determine the required area of reinforcement.

First it is necessary to check whether or not the applied moment exceeds the ultimate
moment of resistance provided by the concrete. Hence, using Eq. (12.23)

Mu = 0.15 × 30 × 250 × 6002 × 10−6 = 405 kN m

Since this is greater than the applied moment, the beam section does not require
compression reinforcement.

We now assume the stress distribution shown in Fig. 12.12 in which the neutral axis
of the section is at a depth n below the upper surface of the section. Thus, taking
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moments about the tensile reinforcement we have

350 × 106 = 0.4 × 30 × 250n
(

600 − n
2

)
from which

n = 243.3 mm

The lever arm is therefore equal to 600 − 243.3/2 = 478.4 mm. Now taking moments
about the centroid of the concrete we have

0.87 × 400 × As × 478.4 = 350 × 106

which gives

As = 2102.3 mm2

EXAMPLE 12.8 A reinforced concrete beam of breadth 250 mm is required to have
an effective depth as small as possible. Design the beam and reinforcement to support
a bending moment of 350 kN m assuming that σcu = 30 N/mm2 and σY = 400 N/mm2.

In this example the effective depth of the beam will be as small as possible when the
applied moment is equal to the ultimate moment of resistance of the beam. Then,
using Eq. (12.23)

350 × 106 = 0.15 × 30 × 250 × d2
1

which gives

d1 = 557.8 mm

This is not a practical dimension since it would be extremely difficult to position the
reinforcement to such accuracy. We therefore assume d1 = 558 mm. Since the section
is stressed to the limit, we see from Fig. 12.11(b) that the lever arm is

3
4

d1 = 3
4

× 558 = 418.5 mm



Chap-12 12/1/2005 12: 46 page 316

316 • Chapter 12 / Composite Beams

Hence, from Eq. (12.24)

350 × 106 = 0.87 × 400 As × 418.5

from which

As = 2403.2 mm2

A comparison of Exs 12.7 and 12.8 shows that the reduction in effective depth is only
made possible by an increase in the area of steel reinforcement.

We have noted that the ultimate moment of resistance of a beam section of given
dimensions can only be increased by the addition of compression reinforcement.
However, although the design stress for tension reinforcement is 0.87σY, compres-
sion reinforcement is designed to a stress of 0.72σY to avoid the possibility of the
reinforcement buckling between the binders or stirrups. The method of designing a
beam section to include compression reinforcement is simply treated as an extension
of the singly reinforced case and is best illustrated by an example.

EXAMPLE 12.9 A reinforced concrete beam has a breadth of 300 mm and an
effective depth to the tension reinforcement of 618 mm. Compression reinforcement,
if required, will be placed at a depth of 60 mm. Ifσcu = 30 N/mm2 andσY = 410 N/mm2,
design the steel reinforcement if the beam is to support a bending moment of 650 kN m.

The ultimate moment of resistance provided by the concrete is obtained using
Eq. (12.23) and is

Mu = 0.15 × 30 × 300 × 6182 × 10−6 = 515.6 kN m

This is less than the applied moment so that compression reinforcement is required to
resist the excess moment of 650 − 515·6 = 134·4 kN m. If Asc is the area of compression
reinforcement

134.4 × 106 = lever arm × 0.72 × 410Asc

i.e.

134.4 × 106 = (618 − 60) × 0.72 × 410Asc

which gives

Asc = 815.9 mm2

The tension reinforcement, Ast, is required to resist the moment of 515.6 kN m (as
though the beam were singly reinforced) plus the excess moment of 134.4 kN m. Hence

Ast = 515.6 × 106

0.75 × 618 × 0.87 × 410
+ 134.4 × 106

(618 − 60) × 0.87 × 410
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from which

Ast = 3793.8 mm2

The ultimate load analysis of reinforced concrete T-beams is simplified in a similar
manner to the elastic analysis by assuming that the neutral axis does not lie below the
lower surface of the flange. The ultimate moment of a T-beam therefore corresponds
to a neutral axis position coincident with the lower surface of the flange as shown in
Fig. 12.13(a). Mu is then the lesser of the two values given by

Mu = 0.4σcuBhf

(
d1 − hf

2

)
(12.25)

or

Mu = 0.87σYAs

(
d1 − hf

2

)
(12.26)

For T-beams subjected to bending moments less than Mu, the neutral axis lies within
the flange and must be found before, say, the amount of tension reinforcement can
be determined. Compression reinforcement is rarely required in T-beams due to the
comparatively large areas of concrete in compression.

EXAMPLE 12.10 A reinforced concrete T-beam has a flange width of 1200 mm and
an effective depth of 618 mm; the thickness of the flange is 150 mm. Determine the
required area of reinforcement if the beam is required to resist a bending moment of
500 kN m. Take σcu = 30 N/mm2 and σY = 410 N/mm2.

Mu for this beam section may be determined using Eq. (12.25), i.e.

Mu = 0.4 × 30 × 1200 × 150
(

618 − 150
2

)
× 10−6 = 1173 kN m

Since this is greater than the applied moment, we deduce that the neutral axis lies
within the flange. Then from Fig. 12.14

500 × 106 = 0.4 × 30 × 1200n
(

618 − n
2

)
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FIGURE 12.14
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the solution of which gives

n = 59 mm

Now taking moments about the centroid of the compression concrete we have

500 × 106 = 0.87 × 410 × As

(
618 − 59

2

)

which gives

As = 2381.9 mm2

12.3 STEEL AND CONCRETE BEAMS

In many instances concrete slabs are supported on steel beams, the two being joined
together by shear connectors to form a composite structure. We therefore have a
similar situation to that of the reinforced concrete T-beam in which the flange of the
beam is concrete but the leg is a standard steel section.

Ultimate load theory is used to analyse steel and concrete beams with stress limits
identical to those applying in the ultimate load analysis of reinforced concrete beams;
plane sections are also assumed to remain plane.

Consider the steel and concrete beam shown in Fig. 12.15(a) and let us suppose that the
neutral axis lies within the concrete flange. We ignore the contribution of the concrete
in the tension zone of the beam to its bending strength, so that the assumed stress
distribution takes the form shown in Fig. 12.15(b). A convenient method of designing
the cross section to resist a bending moment, M , is to assume the lever arm to be
(hc + hs)/2 and then to determine the area of steel from the moment equation

M = 0.87σYAs
(hc + hs)

2
(12.27)

The available compressive force in the concrete slab, 0.4 σcubhc, is then checked to
ensure that it exceeds the tensile force, 0.87σYAs, in the steel. If it does not, the
neutral axis of the section lies within the steel and As given by Eq. (12.27) will be too
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small. If the neutral axis lies within the concrete slab the moment of resistance of the
beam is determined by first calculating the position of the neutral axis. Thus, since the
compressive force in the concrete is equal to the tensile force in the steel

0.4σcubn1 = 0.87σYAs (12.28)

Then, from Fig. 12.15

Mu = 0.87σYAs

(
d − n1

2

)
(12.29)

If the neutral axis lies within the steel, the stress distribution shown in Fig. 12.16(b)
is assumed in which the compressive stress in the steel above the neutral axis is the
resultant of the tensile stress and twice the compressive stress. Thus, if the area of
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steel in compression is Asc, we have, equating compressive and tensile forces

0.4σcubhc + 2 × (0.87σY)Asc = 0.87σYAs (12.30)

which gives Asc and hence hsc. Now taking moments

Mu = 0.87σYAs

(
d − hc

2

)
− 2 × (0.87σY)Asc

(
hsc − hc

2

)
(12.31)

EXAMPLE 12.11 A concrete slab 150 mm thick is 1.8 m wide and is to be supported
by a steel beam. The total depth of the steel/concrete composite beam is limited to
562 mm. Find a suitable beam section if the composite beam is required to resist a
bending moment of 709 kN m. Take σcu = 30 N/mm2 and σY = 350 N/mm2.

Using Eq. (12.27)

As = 2 × 709 × 106

0.87 × 350 × 562
= 8286 mm2

The tensile force in the steel is then

0.87 × 350 × 8286 × 10−3 = 2523 kN

and the compressive force in the concrete is

0.4 × 1.8 × 103 × 150 × 30 × 10−3 = 3240 kN

The neutral axis therefore lies within the concrete slab so that the area of steel in
tension is, in fact, equal to As. From Steel Tables we see that a Universal Beam of
nominal size 406 mm × 152 mm × 67 kg/m has an actual overall depth of 412 mm and
a cross-sectional area of 8530 mm2. The position of the neutral axis of the composite
beam incorporating this beam section is obtained from Eq. (12.28); hence

0.4 × 30 × 1800n1 = 0.87 × 350 × 8530

which gives

n1 = 120 mm

Substituting for n1 in Eq. (12.29) we obtain the moment of resistance of the composite
beam

Mu = 0.87 × 350 × 8530(356 − 60) × 10−6 = 769 kN m

Since this is greater than the applied moment we deduce that the beam section is
satisfactory.
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P R O B L E M S

P.12.1 A timber beam 200 mm wide by 300 mm deep is reinforced on its top and bottom
surfaces by steel plates each 12 mm thick by 200 mm wide. If the allowable stress in
the timber is 8 N/mm2 and that in the steel is 110 N/mm2, find the allowable bending
moment. The ratio of the modulus of elasticity of steel to that of timber is 20.

Ans. 94.7 kN m.

P.12.2 A simply supported beam of span 3.5 m carries a uniformly distributed load of
46.5 kN/m. The beam has the box section shown in Fig. P.12.2. Determine the required
thickness of the steel plates if the allowable stresses are 124 N/mm2 for the steel and
8 N/mm2 for the timber. The modular ratio of steel to timber is 20.

Ans. 17 mm.

100 mm

300 mm

Timber

Steel

t t

75
mm

75
mm

FIGURE P.12.2

P.12.3 A timber beam 150 mm wide by 300 mm deep is reinforced by a steel plate
150 mm wide and 12 mm thick which is securely attached to its lower surface. Deter-
mine the percentage increase in the moment of resistance of the beam produced by
the steel-reinforcing plate. The allowable stress in the timber is 12 N/mm2 and in the
steel, 155 N/mm2. The modular ratio is 20.

Ans. 176%.

P.12.4 A singly reinforced rectangular concrete beam of effective span 4.5 m is
required to carry a uniformly distributed load of 16.8 kN/m. The overall depth, D,
is to be twice the breadth and the centre of the steel is to be at 0.1D from the under-
side of the beam. Using elastic theory find the dimensions of the beam and the area
of steel reinforcement required if the stresses are limited to 8 N/mm2 in the concrete
and 140 N/mm2 in the steel. Take m = 15.

Ans. D = 406.7 mm, As = 980.6 mm2.
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P.12.5 A reinforced concrete beam is of rectangular section 300 mm wide by 775 mm
deep. It has five 25 mm diameter bars as tensile reinforcement in one layer with 25 mm
cover and three 25 mm diameter bars as compression reinforcement, also in one layer
with 25 mm cover. Find the moment of resistance of the section using elastic theory
if the allowable stresses are 7.5 N/mm2 and 125 N/mm2 in the concrete and steel,
respectively. The modular ratio is 16.

Ans. 214.5 kN m.

P.12.6 A reinforced concrete T-beam is required to carry a uniformly distributed load
of 42 kN/m on a simply supported span of 6 m. The slab is 125 mm thick, the rib is
250 mm wide and the effective depth to the tensile reinforcement is 550 mm. The
working stresses are 8.5 N/mm2 in the concrete and 140 N/mm2 in the steel; the mod-
ular ratio is 15. Making a reasonable assumption as to the position of the neutral
axis find the area of steel reinforcement required and the breadth of the compression
flange.

Ans. 2655.7 mm2, 700 mm (neutral axis coincides with base of slab).

P.12.7 Repeat P.12.4 using ultimate load theory assuming σcu = 24 N/mm2 and
σY = 280 N/mm2.

Ans. D = 307.8 mm, As = 843 mm2.

P.12.8 Repeat P.12.5 using ultimate load theory and take σcu = 22.5 N/mm2,
σY = 250 N/mm2.

Ans. 222.5 kN m.

P.12.9 Repeat P.12.6 using ultimate load theory. Assume σcu = 25.5 N/mm2 and
σY = 280 N/mm2.

Ans. 1592 mm2, 304 mm (neutral axis coincides with base of slab).

P.12.10 A concrete slab 175 mm thick and 2 m wide is supported by, and firmly
connected to, a 457 mm × 152 mm × 74 kg/m Universal Beam whose actual depth
is 461.3 mm and whose cross-sectional area is 9490 mm2. If σcu = 30 N/mm2 and
σY = 350 N/mm2, find the moment of resistance of the resultant steel and concrete
beam.

Ans. 919.5 kN m.
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In Chapters 9, 10 and 11 we investigated the strength of beams in terms of the stresses
produced by the action of bending, shear and torsion, respectively. An associated
problem is the determination of the deflections of beams caused by different loads
for, in addition to strength, a beam must possess sufficient stiffness so that excessive
deflections do not have an adverse effect on adjacent structural members. In many
cases, maximum allowable deflections are specified by Codes of Practice in terms of
the dimensions of the beam, particularly the span; typical values are quoted in Section
8.7. We also saw in Section 8.7 that beams may be designed using either elastic or
plastic analysis. However, since beam deflections must always occur within the elastic
limit of the material of a beam they are determined using elastic theory.

There are several different methods of obtaining deflections in beams, the choice
depending upon the type of problem being solved. For example, the double integration
method gives the complete shape of a beam whereas the moment-area method can only
be used to determine the deflection at a particular beam section. The latter method,
however, is also useful in the analysis of statically indeterminate beams.

Generally beam deflections are caused primarily by the bending action of applied
loads. In some instances, however, where a beam’s cross-sectional dimensions are not
small compared with its length, deflections due to shear become significant and must
be calculated. We shall consider beam deflections due to shear in addition to those
produced by bending. We shall also include deflections due to unsymmetrical bending.

13.1 DIFFERENTIAL EQUATION OF SYMMETRICAL BENDING

In Chapter 9 we developed an expression relating the curvature, 1/R, of a beam to the
applied bending moment, M , and flexural rigidity, EI, i.e.

1
R

= M
EI

(Eq. (9.11))

For a beam of a given material and cross section, EI is constant so that the curvature
is directly proportional to the bending moment. We have also shown that bending
moments produced by shear loads vary along the length of a beam, which implies that

323
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FIGURE 13.1
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the curvature of the beam also varies along its length; Eq. (9.11) therefore gives the
curvature at a particular section of a beam.

Consider a beam having a vertical plane of symmetry and loaded such that at a section
of the beam the deflection of the neutral plane, referred to arbitrary axes Oxy, is v and
the slope of the tangent to the neutral plane at this section is dv/dx (Fig. 13.1). Also,
if the applied loads produce a positive, i.e. sagging, bending moment at this section,
then the upper surface of the beam is concave and the centre of curvature lies above
the beam as shown. For the system of axes shown in Fig. 13.1, the sign convention
usually adopted in mathematical theory gives a positive value for this curvature, i.e.

1
R

= d2v/dx2[
1 + (dv/dx)2

]3/2 (13.1)

For small deflections dv/dx is small so that (dv/dx)2 is negligibly small compared with
unity. Equation (13.1) then reduces to

1
R

= d2v

dx2 (13.2)

whence, from Eq. (9.11)

d2v

dx2 = M
EI

(13.3)

Double integration of Eq. (13.3) then yields the equation of the deflection curve of
the neutral plane of the beam.

In the majority of problems concerned with beam deflections the bending moment
varies along the length of a beam and therefore M in Eq. (13.3) must be expressed as
a function of x before integration can commence. Alternatively, it may be convenient
in cases where the load is a known function of x to use the relationships of Eq. (3.8).
Thus

d3v

dx3 = − S
EI

(13.4)
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d4v

dx4 = − w
EI

(13.5)

We shall now illustrate the use of Eqs (13.3), (13.4) and (13.5) by considering some
standard cases of beam deflection.

EXAMPLE 13.1 Determine the deflection curve and the deflection of the free end
of the cantilever shown in Fig. 13.2(a); the flexural rigidity of the cantilever is EI.

EI

L

W
X

(a)

(b)

y

G x
y ytip

FIGURE 13.2 Deflection of a
cantilever beam carrying a
concentrated load at its free end
(Ex. 13.1)

The load W causes the cantilever to deflect such that its neutral plane takes up the
curved shape shown Fig. 13.2(b); the deflection at any section X is then v while that
at its free end is vtip. The axis system is chosen so that the origin coincides with the
built-in end where the deflection is clearly zero.

The bending moment, M , at the section X is, from Fig. 13.2(a)

M = −W (L − x) (i.e. hogging) (i)

Substituting for M in Eq. (13.3) we obtain

d2v

dx2 = − W
EI

(L − x)

or in more convenient form

EI
d2v

dx2 = −W (L − x) (ii)

Integrating Eq. (ii) with respect to x gives

EI
dv

dx
= −W

(
Lx − x2

2

)
+ C1
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where C1 is a constant of integration which is obtained from the boundary condition
that dv/dx = 0 at the built-in end where x = 0. Hence C1 = 0 and

EI
dv

dx
= −W

(
Lx − x2

2

)
(iii)

Integrating Eq. (iii) we obtain

EIv = −W

(
Lx2

2
− x3

6

)
+ C2

in which C2 is again a constant of integration. At the built-in end v = 0 when x = 0 so
that C2 = 0. Hence the equation of the deflection curve of the cantilever is

v = − W
6EI

(3Lx2 − x3) (iv)

The deflection, vtip, at the free end is obtained by setting x = L in Eq. (iv). Thus

vtip = −WL3

3EI
(v)

and is clearly negative and downwards.

EXAMPLE 13.2 Determine the deflection curve and the deflection of the free end
of the cantilever shown in Fig. 13.3(a).

EI

w
X

(a) L

(b)

y

G x
y ytip

FIGURE 13.3 Deflection of a cantilever
beam carrying a uniformly distributed
load

The bending moment, M , at any section X is given by

M = −w
2

(L − x)2 (i)

Substituting for M in Eq. (13.3) and rearranging we have

EI
d2v

dx2 = −w
2

(L − x)2 = −w
2

(L2 − 2Lx + x2) (ii)
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Integration of Eq. (ii) yields

EI
dv

dx
= −w

2

(
L2x − Lx2 + x3

3

)
+ C1

When x = 0 at the built-in end, v = 0 so that C1 = 0 and

EI
dv

dx
= −w

2

(
L2x − Lx2 + x3

3

)
(iii)

Integrating Eq. (iii) we have

EIv = −w
2

(
L2 x2

2
− Lx3

3
+ x4

12

)
+ C2

and since v = 0 when x = 0, C2 = 0. The deflection curve of the beam therefore has the
equation

v = − w
24EI

(6L2x2 − 4Lx3 + x4) (iv)

and the deflection at the free end where x = L is

vtip = −wL4

8EI
(v)

which is again negative and downwards. The applied loading in this case may be easily
expressed in mathematical form so that a solution can be obtained using Eq. (13.5),
i.e.

d4v

dx4 = − w
EI

(vi)

in which w = constant. Integrating Eq. (vi) we obtain

EI
d3v

dx3 = −wx + C1

We note from Eq. (13.4) that

d3v

dx3 = − S
EI

(i.e. −S = − wx + C1)

When x = 0, S = −wL so that

C1 = wL

Alternatively we could have determined C1 from the boundary condition that when
x = L, S = 0.

Hence

EI
d3v

dx3 = −w(x − L) (vii)
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Integrating Eq. (vii) gives

EI
d2v

dx2 = −w

(
x2

2
− Lx

)
+ C2

From Eq. (13.3) we see that

d2v

dx2 = M
EI

and when x = 0, M = −wL2/2 (or when x = L, M = 0) so that

C2 = −wL2

2

and

EI
d2v

dx2 = −w
2

(x2 − 2Lx + L2)

which is identical to Eq. (ii). The solution then proceeds as before.

EXAMPLE 13.3 The cantilever beam shown in Fig. 13.4(a) carries a uniformly
distributed load over part of its span. Calculate the deflection of the free end.

(a)

(b)

G

G D

D
uD

yD �F

F

a

y

x

F

EI
L

w

FIGURE 13.4 Cantilever beam of
Ex. 13.3

If we assume that the cantilever is weightless then the bending moment at all sections
between D and F is zero. It follows that the length DF of the beam remains straight.
The deflection at D can be deduced from Eq. (v) of Ex. 13.2 and is

vD = −wa4

8EI

Similarly the slope of the cantilever at D is found by substituting x = a and L = a in
Eq. (iii) of Ex. 13.2; thus (

dv

dx

)
D

= θD = −wa3

6EI

The deflection, vF, at the free end of the cantilever is then given by

vF = −wa4

8EI
− (L − a)

wa3

6EI
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which simplifies to

vF = − wa3

24EI
(4L − a)

EXAMPLE 13.4 Determine the deflection curve and the mid-span deflection of the
simply supported beam shown in Fig. 13.5(a).

(b)

G

X

EI

x

y

L

w

(a)

2
wL

2
wL

y

FIGURE 13.5 Deflection of a
simply supported beam
carrying a uniformly
distributed load (Ex. 13.4)

The support reactions are each wL/2 and the bending moment, M , at any section X, a
distance x from the left-hand support is

M = wL
2

x − wx2

2
(i)

Substituting for M in Eq. (13.3) we obtain

EI
d2v

dx2 = w
2

(Lx − x2) (ii)

Integrating we have

EI
dv

dx
= w

2

(
Lx2

2
− x3

3

)
+ C1

From symmetry it is clear that at the mid-span section the gradient dv/dx = 0.

Hence

0 = w
2

(
L3

8
− L3

24

)
+ C1

whence

C1 = −wL3

24
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Therefore

EI
dv

dx
= w

24
(6Lx2 − 4x3 − L3) (iii)

Integrating again gives

EIv = w
24

(2Lx3 − x4 − L3x) + C2

Since v = 0 when x = 0 (or since v = 0 when x = L) it follows that C2 = 0 and the
deflected shape of the beam has the equation

v = w
24EI

(2Lx3 − x4 − L3x) (iv)

The maximum deflection occurs at mid-span where x = L/2 and is

vmid-span = − 5wL4

384EI
(v)

So far the constants of integration were determined immediately they arose. However,
in some cases a relevant boundary condition, say a value of gradient, is not obtainable.
The method is then to carry the unknown constant through the succeeding integration
and use known values of deflection at two sections of the beam. Thus in the previous
example Eq. (ii) is integrated twice to obtain

EIv = w
2

(
Lx3

6
− x4

12

)
+ C1x + C2

The relevant boundary conditions are v = 0 at x = 0 and x = L. The first of these
gives C2 = 0 while from the second we have C1 = −wL3/24. Thus the equation of
the deflected shape of the beam is

v = w
24EI

(2Lx3 − x4 − L3x)

as before.

EXAMPLE 13.5 Figure 13.6(a) shows a simply supported beam carrying a con-
centrated load W at mid-span. Determine the deflection curve of the beam and the
maximum deflection.

The support reactions are each W /2 and the bending moment M at a section X a
distance x (≤ L/2) from the left-hand support is

M = W
2

x (i)

From Eq. (13.3) we have

EI
d2v

dx2 = W
2

x (ii)
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y

(a)

X

G

W

EI

L

x

y

(b)

2
W

2
W

FIGURE 13.6 Deflection of a
simply supported beam
carrying a concentrated load at
mid-span (Ex. 13.5)

Integrating we obtain

EI
dv

dx
= W

2
x2

2
+ C1

From symmetry the slope of the beam is zero at mid-span where x = L/2. Thus
C1 = −WL2/16 and

EI
dv

dx
= W

16
(4x2 − L2) (iii)

Integrating Eq. (iii) we have

EIv = W
16

(
4x3

3
− L2x

)
+ C2

and when x = 0, v = 0 so that C2 = 0. The equation of the deflection curve is, therefore

v = W
48EI

(4x3 − 3L2x) (iv)

The maximum deflection occurs at mid-span and is

vmid-span = − WL3

48EI
(v)

Note that in this problem we could not use the boundary condition that v = 0 at x = L
to determine C2 since Eq. (i) applies only for 0 ≤ x ≤ L/2; it follows that Eqs (iii) and
(iv) for slope and deflection apply only for 0 ≤ x ≤ L/2 although the deflection curve
is clearly symmetrical about mid-span.

EXAMPLE 13.6 The simply supported beam shown in Fig. 13.7(a) carries a con-
centrated load W at a distance a from the left-hand support. Determine the deflected
shape of the beam, the deflection under the load and the maximum deflection.
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y

ymax

yc
G

C BA

(b)

(a)

X1 X2

y

x

a

L

W

EI

RA = (L � a)W
L RB = aW

L

FIGURE 13.7
Deflection of a
simply supported
beam carrying a
concentrated load
not at mid-span
(Ex. 13.6)

Considering the moment and force equilibrium of the beam we have

RA = W
L

(L − a) RB = Wa
L

At a section X1, a distance x from the left-hand support where x ≤ a, the bending
moment is

M = RAx (i)

At the section X2, where x ≥ a

M = RAx − W (x − a) (ii)

Substituting both expressions for M in turn in Eq. (13.3) we obtain

EI
d2v

dx2 = RAx (x ≤ a) (iii)

and

EI
d2v

dx2 = RAx − W (x − a) (x ≥ a) (iv)

Integrating Eqs (iii) and (iv) we obtain

EI
dv

dx
= RA

x2

2
+ C1 (x ≤ a) (v)

EI
dv

dx
= RA

x2

2
− W

(
x2

2
− ax

)
+ C′

1 (x ≥ a) (vi)

and

EIv = RA
x3

6
+ C1x + C2 (x ≤ a) (vii)
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EIv = RA
x3

6
− W

(
x3

6
− ax2

2

)
+ C′

1x + C′
2 (x ≥ a) (viii)

in which C1, C′
1, C2, C′

2 are arbitrary constants. In using the boundary conditions
to determine these constants, it must be remembered that Eqs (v) and (vii) apply
only for 0 ≤ x ≤ a and Eqs (vi) and (viii) apply only for a ≤ x ≤ L. At the left-hand sup-
port v = 0 when x = 0, therefore, from Eq. (vii), C2 = 0. It is not possible to determine
C1, C′

1 and C′
2 directly since the application of further known boundary conditions

does not isolate any of these constants. However, since v = 0 when x = L we have,
from Eq. (viii)

0 = RA
L3

6
− W

(
L3

6
− aL2

2

)
+ C′

1L + C′
2

which, after substituting RA = W (L − a)/L, simplifies to

0 = WaL2

3
+ C′

1L + C′
2 (ix)

Additional equations are obtained by considering the continuity which exists at the
point of application of the load; at this section Eqs (v)–(viii) apply. Thus, from Eqs
(v) and (vi)

RA
a2

2
+ C1 = RA

a2

2
− W

(
a2

2
− a2

)
+ C′

1

which gives

C1 = Wa2

2
+ C′

1 (x)

Now equating values of deflection at x = a we have, from Eqs (vii) and (viii)

RA
a3

6
+ C1a = RA

a3

6
− W

(
a3

6
− a3

2

)
+ C′

1a + C′
2

which yields

C1a = Wa3

3
+ C′

1a + C′
2 (xi)

Solution of the simultaneous Eqs (ix), (x) and (xi) gives

C1 = −Wa
6L

(a − 2L)(a − L)

C′
1 = −Wa

6L
(a2 + 2L2)

C′
2 = Wa3

6
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Equations (v)–(vii) then become respectively

EI
dv

dx
= −W (a − L)

6L
[3x2 + a(a − 2L)] (x ≤ a) (xii)

EI
dv

dx
= −Wa

6L
(3x2 − 6Lx + a2 + 2L2) (x ≥ a) (xiii)

EIv = −W (a − L)
6L

[x3 + a(a − 2L) x] (x ≤ a) (xiv)

EIv = −Wa
6L

[x3 − 3Lx2 + (a2 + 2L2) x − a2L] (x ≥ a) (xv)

The deflection of the beam under the load is obtained by putting x = a into either of
Eq. (xiv) or (xv). Thus

vC = −Wa2(a − L)2

3EIL
(xvi)

This is not, however, the maximum deflection of the beam. This will occur, if a < L/2,
at some section between C and B. Its position may be found by equating dv/dx in Eq.
(xiii) to zero. Hence

0 = 3x2 − 6Lx + a2 + 2L2 (xvii)

The solution of Eq. (xvii) is then substituted in Eq. (v) and the maximum deflection
follows.

For a central concentrated load a = L/2 and

vC = − WL3

48EI

as before.

EXAMPLE 13.7 Determine the deflection curve of the beam AB shown in Fig.
13.8 when it carries a distributed load that varies linearly in intensity from zero at the
left-hand support to w0 at the right-hand support.

To find the support reactions we first take moments about B. Thus

RAL = 1
2 w0L

L
3

which gives

RA = w0L
6
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A

X

B

EI

L

RA RB
x

x

y

w0

Load intensity at section X is w0 L
x

FIGURE 13.8 Deflection
of a simply supported
beam carrying a
triangularly distributed
load

Resolution of vertical forces then gives

RB = w0L
3

The bending moment, M , at any section X, a distance x from A is

M = RAx − 1
2

(
w0

x
L

)
x

x
3

or

M = w0

6L
(L2x − x3) (i)

Substituting for M in Eq. (13.3) we obtain

EI
d2v

dx2 = w0

6L
(L2x − x3) (ii)

which, when integrated, becomes

EI
dv

dx
= w0

6L

(
L2 x2

2
− x4

4

)
+ C1 (iii)

Integrating Eq. (iii) we have

EIv = w0

6L

(
L2 x3

6
− x5

20

)
+ C1x + C2 (iv)

The deflection v = 0 at x = 0 and x = L. From the first of these conditions we obtain
C2 = 0, while from the second

0 = w0

6L

(
L5

6
− L5

20

)
+ C1L

which gives

C1 = −7w0L4

360
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The deflection curve then has the equation

v = − w0

360EIL
(3x5 − 10L2x3 + 7L4x) (v)

An alternative method of solution is to use Eq. (13.5) and express the applied load in
mathematical form. Thus

EI
d4v

dx4 = −w = −w0
x
L

(vi)

Integrating we obtain

EI
d3v

dx3 = −w0
x2

2L
+ C3

When x = 0 we see from Eq. (13.4) that

EI
d3v

dx3 = RA = w0L
6

Hence

C3 = w0L
6

and

EI
d3v

dx3 = −w0
x2

2L
+ w0L

6
(vii)

Integrating Eq. (vii) we have

EI
d2v

dx2 = −w0x3

6L
+ w0L

6
x + C4

Since the bending moment is zero at the supports we have

EI
d2v

dx2 = 0 when x = 0

Hence C4 = 0 and

EI
d2v

dx2 = − w0

6L
(x3 − L2x)

as before.

13.2 SINGULARITY FUNCTIONS

A comparison of Exs 13.5 and 13.6 shows that the double integration method becomes
extremely lengthy when even relatively small complications such as the lack of symme-
try due to an offset load are introduced. Again the addition of a second concentrated
load on the beam of Ex. 13.6 would result in a total of six equations for slope and deflec-
tion producing six arbitrary constants. Clearly the computation involved in determining
these constants would be tedious, even though a simply supported beam carrying two
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concentrated loads is a comparatively simple practical case. An alternative approach
is to introduce so-called singularity or half-range functions. Such functions were first
applied to beam deflection problems by Macauley in 1919 and hence the method is
frequently known as Macauley’s method.

We now introduce a quantity [x−a] and define it to be zero if (x − a) < 0, i.e. x < a, and
to be simply (x − a) if x > a. The quantity [x − a] is known as a singularity or half-range
function and is defined to have a value only when the argument is positive in which
case the square brackets behave in an identical manner to ordinary parentheses. Thus
in Ex. 13.6 the bending moment at a section of the beam furthest from the origin for
x may be written as

M = RAx − W [x − a]

This expression applies to both the regions AC and CB since W [x − a] disappears for
x < a. Equations (iii) and (iv) in Ex. 13.6 then become the single equation

EI
d2v

dx2 = RAx − W [x − a]

which on integration yields

EI
dv

dx
= RA

x2

2
− W

2
[x − a]2 + C1

and

EIv = RA
x3

6
− W

6
[x − a]3 + C1x + C2

Note that the square brackets must be retained during the integration. The arbitrary
constants C1 and C2 are found using the boundary conditions that v = 0 when x = 0
and x = L. From the first of these and remembering that [x − a]3 is zero for x < a, we
have C2 = 0. From the second we have

0 = RA
L3

6
− W

6
[L − a]3 + C1L

in which RA = W (L − a)/L.

Substituting for RA gives

C1 = −Wa(L − a)
6L

(2L − a)

Then

EIv = − W
6L

{
−(L − a) x3 + L[x − a]3 + a(L − a)(2L − a) x

}
The deflection of the beam under the load is then

vC = −Wa2(L − a)2

3EIL

as before.
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EXAMPLE 13.8 Determine the position and magnitude of the maximum upward
and downward deflections of the beam shown in Fig. 13.9.

B

X

F

2W

C DA

W

x
EI

W

RA RF

y

a a a a FIGURE 13.9 Macauley’s method
for the deflection of a simply
supported beam (Ex. 13.8)

A consideration of the overall equilibrium of the beam gives the support reactions;
thus

RA = 3
4

W (upward) RF = 3
4

W (downward)

Using the method of singularity functions and taking the origin of axes at the left-hand
support, we write down an expression for the bending moment, M , at any section X
between D and F, the region of the beam furthest from the origin. Thus

M = RAx − W [x − a] − W [x − 2a] + 2W [x − 3a] (i)

Substituting for M in Eq. (13.3) we have

EI
d2v

dx2 = 3
4

Wx − W [x − a] − W [x − 2a] + 2W [x − 3a] (ii)

Integrating Eq. (ii) and retaining the square brackets we obtain

EI
dv

dx
= 3

8
Wx2 − W

2
[x − a]2 − W

2
[x − 2a]2 + W [x − 3a]2 + C1 (iii)

and

EIv = 1
8

Wx3 − W
6

[x − a]3 − W
6

[x − 2a]3 + W
3

[x − 3a]3 + C1x + C2 (iv)

in which C1 and C2 are arbitrary constants. When x = 0 (at A), v = 0 and hence C2 = 0.
Note that the second, third and fourth terms on the right-hand side of Eq. (iv) disappear
for x < a. Also v = 0 at x = 4a (F) so that, from Eq. (iv), we have

0 = W
8

64a3 − W
6

27a3 − W
6

8a3 + W
3

a3 + 4aC1

which gives

C1 = −5
8

Wa2
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Equations (iii) and (iv) now become

EI
dv

dx
= 3

8
Wx2 − W

2
[x − a]2 − W

2
[x − 2a]2 + W [x − 3a]2 − 5

8
Wa2 (v)

and

EIv = 1
8

Wx3 − W
6

[x − a]3 − W
6

[x − 2a]3 + W
3

[x − 3a]3 − 5
8

Wa2x (vi)

respectively.

To determine the maximum upward and downward deflections we need to know in
which bays dv/dx = 0 and thereby which terms in Eq. (v) disappear when the exact
positions are being located. One method is to select a bay and determine the sign of
the slope of the beam at the extremities of the bay. A change of sign will indicate that
the slope is zero within the bay.

By inspection of Fig. 13.9 it seems likely that the maximum downward deflection will
occur in BC. At B, using Eq. (v)

EI
dv

dx
= 3

8
Wa2 − 5

8
Wa2

which is clearly negative. At C

EI
dv

dx
= 3

8
W 4a2 − W

2
a2 − 5

8
Wa2

which is positive. Therefore, the maximum downward deflection does occur in BC and
its exact position is located by equating dv/dx to zero for any section in BC. Thus, from
Eq. (v)

0 = 3
8

Wx2 − W
2

[x − a]2 − 5
8

Wa2

or, simplifying,

0 = x2 − 8ax + 9a2 (vii)

Solution of Eq. (vii) gives

x = 1.35a

so that the maximum downward deflection is, from Eq. (vi)

EIv = 1
8

W (1.35a)3 − W
6

(0.35a)3 − 5
8

Wa2(1.35a)

i.e.

vmax (downward) = −0.54Wa3

EI
In a similar manner it can be shown that the maximum upward deflection lies between
D and F at x = 3.42a and that its magnitude is

vmax (upward) = 0.04Wa3

EI
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An alternative method of determining the position of maximum deflection is to select
a possible bay, set dv/dx = 0 for that bay and solve the resulting equation in x. If the
solution gives a value of x that lies within the bay, then the selection is correct, otherwise
the procedure must be repeated for a second and possibly a third and a fourth bay.
This method is quicker than the former if the correct bay is selected initially; if not, the
equation corresponding to each selected bay must be completely solved, a procedure
clearly longer than determining the sign of the slope at the extremities of the bay.

EXAMPLE 13.9 Determine the position and magnitude of the maximum deflection
in the beam of Fig. 13.10.

A B C D

X

L/2

EI

L/4 L/4

w
y

x

RD �
5wL
32RA �

3wL
32

FIGURE 13.10 Deflection
of a beam carrying a part
span uniformly
distributed load
(Ex. 13.9)

Following the method of Ex. 13.8 we determine the support reactions and find the
bending moment, M , at any section X in the bay furthest from the origin of the axes.
Thus

M = RAx − w
L
4

[
x − 5L

8

]
(i)

Examining Eq. (i) we see that the singularity function [x − 5L/8] does not become zero
until x ≤ 5L/8 although Eq. (i) is only valid for x ≥ 3L/4. To obviate this difficulty we
extend the distributed load to the support D while simultaneously restoring the status
quo by applying an upward distributed load of the same intensity and length as the
additional load (Fig. 13.11).

At the section X, a distance x from A, the bending moment is now given by

M = RAx − w
2

[
x − L

2

]2

+ w
2

[
x − 3L

4

]2

(ii)

L/2

EI
RA

RD

L/4 L/4

A B
C

X

D

w

x

y
w

FIGURE 13.11 Method of solution
for a part span uniformly
distributed load
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Equation (ii) is now valid for all sections of the beam if the singularity functions are
discarded as they become zero. Substituting Eq. (ii) into Eq. (13.3) we obtain

EI
d2v

dx2 = 3
32

wLx − w
2

[
x − L

2

]2

+ w
2

[
x − 3L

4

]2

(iii)

Integrating Eq. (iii) gives

EI
dv

dx
= 3

64
wLx2 − w

6

[
x − L

2

]3

+ w
6

[
x − 3L

4

]3

+ C1 (iv)

EIv = wLx3

64
− w

24

[
x − L

2

]4

+ w
24

[
x − 3L

4

]4

+ C1x + C2 (v)

where C1 and C2 are arbitrary constants. The required boundary conditions are v = 0
when x = 0 and x = L. From the first of these we obtain C2 = 0 while the second gives

0 = wL4

64
− w

24

(
L
2

)4

+ w
24

(
L
4

)4

+ C1L

from which

C1 = −27wL3

2048

Equations (iv) and (v) then become

EI
dv

dx
= 3

64
wLx2 − w

6

[
x − L

2

]3

+ w
6

[
x − 3L

4

]3

− 27wL3

2048
(vi)

and

EIv = wLx3

64
− w

24

[
x − L

2

]4

+ w
24

[
x − 3L

4

]4

− 27wL3

2048
x (vii)

In this problem, the maximum deflection clearly occurs in the region BC of the beam.
Thus equating the slope to zero for BC we have

0 = 3
64

wLx2 − w
6

[
x − L

2

]3

− 27wL3

2048

which simplifies to

x3 − 1.78Lx2 + 0.75xL2 − 0.046L3 = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at x � 0.6L. Hence
from Eq. (vii) the maximum deflection is

vmax = −4.53 × 10−3wL4

EI
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A

B
C

X

x

b

M0

L

EI

y

RA � �
M0

L
RC �

M0

L
FIGURE 13.12
Deflection of a simply
supported beam carrying
a point moment
(Ex. 13.10)

EXAMPLE 13.10 Determine the deflected shape of the beam shown in Fig. 13.12.

In this problem an external moment M0 is applied to the beam at B. The support
reactions are found in the normal way and are

RA = −M0

L
(downwards) RC = M0

L
(upwards)

The bending moment at any section X between B and C is then given by

M = RAx + M0 (i)

Equation (i) is valid only for the region BC and clearly does not contain a singularity
function which would cause M0 to vanish for x ≤ b. We overcome this difficulty by
writing

M = RAx + M0[x − b]0 (Note: [x − b]0 = 1) (ii)

Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the
beam since [x − b]0 disappears when x ≤ b. Substituting for M from Eq. (ii) in Eq.
(13.3) we obtain

EI
d2v

dx2 = RAx + M0[x − b]0 (iii)

Integration of Eq. (iii) yields

EI
dv

dx
= RA

x2

2
+ M0[x − b] + C1 (iv)

and

EIv = RA
x3

6
+ M0

2
[x − b]2 + C1x + C2 (v)

where C1 and C2 are arbitrary constants. The boundary conditions are v = 0 when
x = 0 and x = L. From the first of these we have C2 = 0 while the second gives

0 = −M0

L
L3

6
+ M0

2
[L − b]2 + C1L
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from which

C1 = −M0

6L
(2L2 − 6Lb + 3b2)

The equation of the deflection curve of the beam is then

v = M0

6EIL

{
x3 + 3L[x − b]2 − (2L2 − 6Lb + 3b2)x

}
(vi)

13.3 MOMENT-AREA METHOD FOR SYMMETRICAL BENDING

The double integration method and the method of singularity functions are used when
the complete deflection curve of a beam is required. However, if only the deflection
of a particular point is required, the moment-area method is generally more suitable.

Consider the curvature–moment equation (Eq. (13.3)), i.e.

d2v

dx2 = M
EI

Integration of this equation between any two sections, say A and B, of a beam gives∫ B

A

d2v

dx2 dx =
∫ B

A

M
EI

dx (13.6)

or [
dv

dx

]B

A
=
∫ B

A

M
EI

dx

which gives (
dv

dx

)
B

−
(

dv

dx

)
A

=
∫ B

A

M
EI

dx (13.7)

In qualitative terms Eq. (13.7) states that the change of slope between two sections A
and B of a beam is numerically equal to the area of the M/EI diagram between those
sections.

We now return to Eq. (13.3) and multiply both sides by x thereby retaining the equality.
Thus

d2v

dx2 x = M
EI

x (13.8)

Integrating Eq. (13.8) between two sections A and B of a beam we have∫ B

A

d2v

dx2 x dx =
∫ B

A

M
EI

x dx (13.9)

The left-hand side of Eq. (13.9) may be integrated by parts and gives[
x

dv

dx

]B

A
−
∫ B

A

dv

dx
dx =

∫ B

A

M
EI

x dx
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or

[
x

dv

dx

]B

A
− [v]B

A =
∫ B

A

M
EI

x dx

Hence, inserting the limits we have

xB

(
dv

dx

)
B

− xA

(
dv

dx

)
A

− (vB − vA) =
∫ B

A

M
EI

x dx (13.10)

in which xB and xA represent the x coordinate of each of the sections B and A, respec-
tively, while (dv/dx)B and (dv/dx)A are the respective slopes; vB and vA are the
corresponding deflections. The right-hand side of Eq. (13.10) represents the moment
of the area of the M/EI diagram between the sections A and B about A.

Equations (13.7) and (13.10) may be used to determine values of slope and deflection
at any section of a beam. We note that in both equations we are concerned with the
geometry of the M/EI diagram. This will be identical in shape to the bending moment
diagram unless there is a change of section. Furthermore, the form of the right-hand
side of both Eqs (13.7) and (13.10) allows two alternative methods of solution. In cases
where the geometry of the M/EI diagram is relatively simple, we can employ a semi-
graphical approach based on the actual geometry of the M/EI diagram. Alternatively,
in complex problems, the bending moment may be expressed as a function of x and a
completely analytical solution obtained. Both methods are illustrated in the following
examples.

EXAMPLE 13.11 Determine the slope and deflection of the free end of the
cantilever beam shown in Fig. 13.13.

A

(a)

(b)

L

EI

B

W

x

y

�ve

WL
EI

M
EI

diagram

FIGURE 13.13 Moment-area method
for the deflection of a cantilever
(Ex. 13.11)
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We choose the origin of the axes at the free end B of the cantilever. Equation (13.7)
then becomes (

dv

dx

)
A

−
(

dv

dx

)
B

=
∫ B

A

M
EI

dx

or, since (dv/dx)A = 0

−
(

dv

dx

)
B

=
∫ L

0

M
EI

dx (i)

Generally at this stage we decide which approach is most suitable; however, both
semi-graphical and analytical methods are illustrated here. Using the geometry of Fig.
13.13(b) we have

−
(

dv

dx

)
B

= 1
2

L
(−WL

EI

)

which gives (
dv

dx

)
B

= WL2

2EI

(compare with the value given by Eq. (iii) of Ex. 13.1. Note the change in sign due to
the different origin for x).

Alternatively, since the bending moment at any section x is −Wx we have, from Eq. (i)

−
(

dv

dx

)
B

=
∫ L

0
−Wx

EI
dx

which again gives (
dv

dx

)
B

= WL2

2EI

With the origin for x at B, Eq. (13.10) becomes

xA

(
dv

dx

)
A

− xB

(
dv

dx

)
B

− (vA − vB) =
∫ A

B

M
EI

x dx (ii)

Since (dv/dx)A = 0 and xB = 0 and vA = 0, Eq. (ii) reduces to

vB =
∫ L

0

M
EI

x dx (iii)

Again we can now decide whether to proceed semi-graphically or analytically. Using
the former approach and taking the moment of the area of the M/EI diagram about
B, we have

vB = 1
2

L
(−WL

EI

)
2
3

L

which gives

vB = −WL3

3EI
(compare with Eq. (v) of Ex. 13.1)
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Alternatively we have

vB =
∫ L

0

(−Wx)
EI

x dx = −
∫ L

0

Wx2

EI
dx

which gives

vB = −WL3

3EI

as before.

Note that if the built-in end had been selected as the origin for x, we could not have
determined vB directly since the term xB(dv/dx)B in Eq. (ii) would not have vanished.
The solution for vB would then have consisted of two parts, first the determination of
(dv/dx)B and then the calculation of vB.

EXAMPLE 13.12 Determine the maximum deflection in the simply supported beam
shown in Fig. 13.14(a).

FIGURE 13.14
Moment-area

method for a simply
supported beam

carrying a uniformly
distributed load

Centroid of area of left-hand
half of M/EI diagram

(a)

(b)

A
C

B

EI

L /2 L /2

w

x

y

RA �
wL
2

RB �
wL
2

wL2

8EI

L5
8 2��

From symmetry we deduce that the beam reactions are each wL/2; the M/EI diagram
has the geometry shown in Fig. 13.14(b).

If we take the origin of axes to be at A and consider the half-span AC, Eq. (13.10)
becomes

xC

(
dv

dx

)
C

− xA

(
dv

dx

)
A

− (vC − vA) =
∫ C

A

M
EI

x dx (i)

In this problem (dv/dx)C = 0, xA = 0 and vA = 0; hence Eq. (i) reduces to

vC = −
∫ L/2

0

M
EI

x dx (ii)
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Using the geometry of the M/EI diagram, i.e. the semi-graphical approach, and
taking the moment of the area of the M/EI diagram between A and C about A we
have from Eq. (ii)

vC = −2
3

wL2

8EI
L
2

5
8

(
L
2

)

which gives

vC = − 5wL4

384EI
(see Eq. (v) of Ex. 13.4).

For the completely analytical approach we express the bending moment M as a function
of x; thus

M = wL
2

x − wx2

2
or

M = w
2

(Lx − x2)

Substituting for M in Eq. (ii) we have

vC = −
∫ L/2

0

w
2EI

(Lx2 − x3) dx

which gives

vC = − w
2EI

[
Lx3

3
− x4

4

]L/2

0

Then

vC = − 5wL4

384EI

EXAMPLE 13.13 Figure 13.15(a) shows a cantilever beam of length L carrying a
concentrated load W at its free end. The section of the beam changes midway along
its length so that the second moment of area of its cross section is reduced by half.
Determine the deflection of the free end.

In this problem the bending moment and M/EI diagrams have different geometrical
shapes. Choosing the origin of axes at C, Eq. (13.10) becomes

xA

(
dv

dx

)
A

− xC

(
dv

dx

)
C

− (vA − vC) =
∫ A

C

M
EI

x dx (i)

in which (dv/dx)A = 0, xC = 0, vA = 0. Hence

vC =
∫ L

0

M
EI

x dx (ii)
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FIGURE 13.15
Deflection of a

cantilever of varying
section

Bending moment diagram

(a)

A B C

(b)

(c)

WL

L /2

I

L /2

5L /6

I/2

y

W

x

WL
EI

WL
EI

WL
2EI

3
4

L

2
23
L� �

�ve

�ve

diagram
EI
M

From the geometry of the M/EI diagram (Fig. 13.15(c)) and taking moments of areas
about C we have

vC =
[(−WL

2EI

)
L
2

3L
4

+ 1
2

(−WL
2EI

)
L
2

5L
6

+ 1
2

(−WL
EI

)
L
2

2
3

L
2

]

which gives

vC = −3WL3

8EI

Analytically we have

vC =
[∫ L/2

0

−Wx2

EI/2
dx +

∫ L

L/2

−Wx2

EI
dx

]
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or

vC = − W
EI



[

2x3

3

]L/2

0

+
[

x3

3

]L

L/2




Hence

vC = −3WL3

8EI
as before.

EXAMPLE 13.14 The cantilever beam shown in Fig. 13.16 tapers along its length
so that the second moment of area of its cross section varies linearly from its value
I0 at the free end to 2I0 at the built-in end. Determine the deflection at the free end
when the cantilever carries a concentrated load W .

L

W

y

I0

x
B

A

FIGURE 13.16 Deflection of a cantilever of
tapering section

Choosing the origin of axes at the free end B we have, from Eq. (13.10)

xA

(
dv

dx

)
A

− xB

(
dv

dx

)
B

− (vA − vB) =
∫ A

B

M
EIX

x dx (i)

in which Ix, the second moment of area at any section X, is given by

IX = I0

(
1 + x

L

)
Also (dv/dx)A = 0, xB = 0, vA = 0 so that Eq. (i) reduces to

vB =
∫ L

0

Mx
EI0
(
1 + x

L

) dx (ii)

The geometry of the M/EI diagram in this case will be complicated so that the analytical
approach is most suitable. Therefore since M = −Wx, Eq. (ii) becomes

vB = −
∫ L

0

Wx2

EI0
(
1 + x

L

) dx

or

vB = −WL
EI0

∫ L

0

x2

L + x
dx (iii)
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Rearranging Eq. (iii) we have

vB = −WL
EI0

[∫ L

0
(x − L) dx +

∫ L

0

L2

L + x
dx

]

Hence

vB = −WL
EI0

[(
x2

2
− Lx

)
+ L2 loge(L − x)

]L

0

so that

vB = −WL3

EI0

(
−1

2
+ loge 2

)

i.e.

vB = −0.19WL3

EI0

13.4 DEFLECTIONS DUE TO UNSYMMETRICAL BENDING

We noted in Chapter 9 that a beam bends about its neutral axis whose inclination to
arbitrary centroidal axes is determined from Eq. (9.33). Beam deflections, therefore,
are always perpendicular in direction to the neutral axis.

Suppose that at some section of a beam, the deflection normal to the neutral axis (and
therefore an absolute deflection) is ζ . Then, as shown in Fig. 13.17, the centroid G is
displaced to G′. The components of ζ , u and v, are given by

u = ζ sin α v = ζ cos α (13.11)

The centre of curvature of the beam lies in a longitudinal plane perpendicular to the
neutral axis of the beam and passing through the centroid of any section. Hence for a

Loaded

z

� a

a

ν

Unloaded

y

u

Neutral axis

G�

G

FIGURE 13.17
Deflection of a beam
of unsymmetrical
cross section
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radius of curvature R, we see, by direct comparison with Eq. (13.2) that

1
R

= d2ζ

dx2 (13.12)

or, substituting from Eq. (13.11)

sin α

R
= d2u

dx2
cos α

R
= d2v

dx2 (13.13)

We observe from the derivation of Eq. (9.31) that

E sin α

R
= MyIz − MzIzy

IzIy − I2
zy

E cos α

R
= MzIy − MyIzy

IzIy − I2
zy

Therefore, from Eq. (13.13)

d2u
dx2 = MyIz − MzIzy

E(IzIy − I2
zy)

(13.14)

d2v

dx2 = MzIy − MyIzy

E(IzIy − I2
zy)

(13.15)

EXAMPLE 13.15 Determine the horizontal and vertical components of the deflec-
tion of the free end of the cantilever shown in Fig. 13.18. The second moments of area
of its unsymmetrical section are Iz, Iy and Izy.

z

x

y

W

L

F

G

D

FIGURE 13.18 Deflection of a cantilever of
unsymmetrical cross section carrying a
concentrated load at its free end
(Ex. 13.15)

The bending moments at any section of the beam due to the applied load W are

Mz = −W (L − x), My = 0

Then Eq. (13.14) reduces to

d2u
dx2 = W (L − x)Izy

E(IzIy − I2
zy)

(i)
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Integrating with respect to x

du
dx

= WIzy

E(IzIy − I2
zy)

(
Lx − x2

2
+ C1

)

When x = 0, (du/dx) = 0 so that C1 = 0 and

du
dx

= WIzy

E(IzIy − I2
zy)

(
Lx − x2

2

)
(ii)

Integrating Eq. (ii) with respect to x

u = WIzy

E(IzIy − I2
zy)

(
Lx2

2
− x3

6
+ C2

)

When x = 0, u = 0 so that C2 = 0. Therefore

u = WIzy

6E(IzIy − I2
zy)

(3Lx2 − x3) (iii)

At the free end of the cantilever where x = L

ufe = WIzyL3

3E(IzIy − I2
zy)

(iv)

The deflected shape of the beam in the xy plane is found in an identical manner from
Eq. (13.15) and is

v = − WIy

6E(IzIy − I2
zy)

(3Lx2 − x3) (v)

from which the deflection at the free end is

vfe = − WIyL3

3E(IzIy − I2
zy)

(vi)

The absolute deflection, δfe, at the free end is given by

δfe = (u2
fe + v2

fe)
1
2 (vii)

and its direction is at tan−1(ufe/vfe) to the vertical.

Note that if either Gz or Gy is an axis of symmetry Izy = 0 and Eqs. (iv) and (vi) reduce
to

ufe = 0 vfe = −WL3

3EIz
(compare with Eq. (v) of Ex. 13.1)

EXAMPLE 13.16 Determine the deflection of the free end of the cantilever beam
shown in Fig. 13.19. The second moments of area of its cross section about a horizontal
and vertical system of centroidal axes are Iz, Iy and Izy.



chap-13 17/1/2005 16: 28 page 353

13.5 Deflection due to Shear • 353

w

L

G

y

z

x

FIGURE 13.19 Deflection of a cantilever
of unsymmetrical cross section carrying a
uniformly distributed load (Ex. 13.16)

The method of solution is identical to that in Ex. 13.15 except that the bending moments
Mz and My are given by

Mz = −w(L − x)2/2 My = 0

The values of the components of the deflection at the free end of the cantilever are

ufe = wIzyL4

8E(IzIy − I2
zy)

vfe = − wIyL4

8E(IzIy − I2
zy)

Again, if either Gz or Gy is an axis of symmetry, Izy = 0 and these expressions reduce
to

ufe = 0, vfe = − wL4

8EIz
(compare with Eq. (v) of Ex. 13.2)

13.5 DEFLECTION DUE TO SHEAR

So far in this chapter we have been concerned with deflections produced by the bending
action of shear loads. These shear loads however, as we saw in Chapter 10, induce
shear stress distributions throughout beam sections which in turn produce shear strains
and therefore shear deflections. Generally, shear deflections are small compared with
bending deflections, but in some cases of deep beams they can be comparable. In the
following we shall use strain energy to derive an expression for the deflection due to
shear in a beam having a cross section which is at least singly symmetrical.

In Chapter 10 we showed that the strain energy U of a piece of material subjected to
a uniform shear stress τ is given by

U = τ 2

2G
× volume (Eq. (10.20))

However, we also showed in Chapter 10 that shear stress distributions are not uniform
throughout beam sections. We therefore write Eq. (10.20) as

U = β

2G
×
(

S
A

)2

× volume (13.16)
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z

y

y1

δx

δy

b0

y2

y

A
G

Sy

FIGURE 13.20 Determination of form
factor β

in which S is the applied shear force, A is the cross-sectional area of the beam section
and β is a constant which depends upon the distribution of shear stress through the
beam section; β is known as the form factor.

To determine β we consider an element b0 δy in an elemental length δx of a beam
subjected to a vertical shear load Sy (Fig. 13.20); we shall suppose that the beam
section has a vertical axis of symmetry. The shear stress τ is constant across the width,
b0, of the element (see Section 10.2). The strain energy, δU , of the element b0 δy δx,
from Eq. (10.20) is

δU = τ 2

2G
× b0 δy dx (13.17)

Therefore the total strain energy U in the elemental length of beam is given by

U = δx
2G

∫ y2

y1

τ 2b0 dy (13.18)

Alternatively U for the elemental length of beam is obtained using Eq. (13.16); thus

U = β

2G
×
(

Sy

A

)2

× Aδx (13.19)

Equating Eqs (13.19) and (13.18) we have

β

2G
×
(

Sy

A

)2

× A δx = δx
2G

∫ y2

y1

τ 2b0 dy

whence

β = A
S2

y

∫ y2

y1

τ 2b0 dy (13.20)

The shear stress distribution in a beam having a singly or doubly symmetrical cross
section and subjected to a vertical shear force, Sy, is given by Eq. (10.4), i.e.

τ = −SyA′ ȳ
b0Iz
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Substituting this expression for τ in Eq. (13.20) we obtain

β = A
S2

y

∫ y2

y1

(
SyA′ ȳ
b0Iz

)2

b0 dy

which gives

β = A
I2
z

∫ y2

y1

(A′ ȳ)2

b0
dy (13.21)

Suppose now that δvs is the deflection due to shear in the elemental length of beam of
Fig. 13.16. The work done by the shear force Sy (assuming it to be constant over the
length δx and gradually applied) is then

1
2

Sy δvs

which is equal to the strain energy stored. Hence

1
2

Sy δvs = β

2G
×
(

S
A

)2

× A δx

which gives

δvs = β

G

(
S
A

)
δx

The total deflection due to shear in a beam of length L subjected to a vertical shear
force Sy is then

vs = β

G

∫
L

(
Sy

A

)
dx (13.22)

EXAMPLE 13.17 A cantilever beam of length L has a rectangular cross section of
breadth B and depth D and carries a vertical concentrated load, W , at its free end.
Determine the deflection of the free end, including the effects of both bending and
shear. The flexural rigidity of the cantilever is EI and its shear modulus G.

Using Eq. (13.21) we obtain the form factor β for the cross section of the beam directly.
Thus

β = BD
(BD3/12)2

∫ D/2

−D/2

1
B

[
B
(

D
2

− y
)

1
2

(
D
2

+ y
)]2

dy (see Ex. 10.1)

which simplifies to

β = 36
D5

∫ D/2

−D/2

(
D4

16
− D2y2

2
+ y4

)
dy

Integrating we obtain

β = 36
D5

[
D4y
16

− D2y3

6
+ y5

5

]D/2

−D/2
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which gives

β = 6
5

Note that the dimensions of the cross section do not feature in the expression for β.
The form factor for any rectangular cross section is therefore 6/5 or 1.2.

Let us suppose that vs is the vertical deflection of the free end of the cantilever due to
shear. Hence, from Eq. (13.22) we have

vs = 6
5G

∫ L

0

(−W
BD

)
dx

so that

vs = − 6WL
5GBD

(i)

The vertical deflection due to bending of the free end of a cantilever carrying a con-
centrated load has previously been determined in Ex. 13.1 and is −WL3/3EI. The
total deflection, vT, produced by bending and shear is then

vT = −WL3

3EI
− 6WL

5GBD
(ii)

Rewriting Eq. (ii) we obtain

vT = −WL3

3EI

[
1 + 3

10
E
G

(
D
L

)2
]

(iii)

For many materials (3E/10G) is approximately unity so that the contribution of shear
to the total deflection is (D/L)2 of the bending deflection. Clearly this term only
becomes significant for short, deep beams.

13.6 STATICALLY INDETERMINATE BEAMS

The beams we have considered so far have been supported in such a way that the
support reactions could be determined using the equations of statical equilibrium; such
beams are therefore statically determinate. However, many practical cases arise in which
additional supports are provided so that there are a greater number of unknowns than
the possible number of independent equations of equilibrium; the support systems
of such beams are therefore statically indeterminate. Simple examples are shown in
Fig. 13.21 where, in Fig. 13.21(a), the cantilever does not, theoretically, require the
additional support at its free end and in Fig. 13.21(b) any one of the three supports is
again, theoretically, redundant. A beam such as that shown in Fig. 13.21(b) is known
as a continuous beam since it has more than one span and is continuous over one or
more supports.
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FIGURE 13.21
Examples of

statically
indeterminate

beams (a) (b)

We shall now use the results of the previous work in this chapter to investigate methods
of solving statically indeterminate beam systems. Having determined the reactions,
diagrams of shear force and bending moment follow in the normal manner.

The examples given below are relatively simple cases of statically indeterminate beams.
We shall investigate more complex cases in Chapter 16.

METHOD OF SUPERPOSITION

In Section 3.7 we discussed the principle of superposition and saw that the combined
effect of a number of forces on a structural system may be found by the addition of
their separate effects. The principle may be applied to the determination of support
reactions in relatively simple statically indeterminate beams. We shall illustrate the
method by examples.

EXAMPLE 13.18 The cantilever AB shown in Fig. 13.22(a) carries a uniformly
distributed load and is provided with an additional support at its free end. Determine
the reaction at the additional support.

A

A

(a) (b)

�

(c)

Aw w

EI EI

EI

RA RB

RB

L L

L

MA

B

B B

≡

FIGURE 13.22
Propped cantilever
of Ex. 13.18

Suppose that the reaction at the support B is RB. Using the principle of superposition
we can represent the combined effect of the distributed load and the reaction RB as
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the sum of the two loads acting separately as shown in Fig. 13.22(b) and (c). Also,
since the vertical deflection of B in Fig. 13.22(a) is zero, it follows that the vertical
downward deflection of B in Fig. 13.22(b) must be numerically equal to the vertically
upward deflection of B in Fig. 13.22(c). Therefore using the results of Exs (13.1) and
(13.2) we have ∣∣∣∣∣RBL3

3EI

∣∣∣∣∣ =
∣∣∣∣∣wL4

8EI

∣∣∣∣∣
whence

RB = 3
8

wL

It is now possible to determine the reactions RA and MA at the built-in end using the
equations of simple statics. Taking moments about A for the beam in Fig. 13.22(a) we
have

MA = wL2

2
− RBL = wL2

2
− 3

8
wL2 = 1

8
wL2

Resolving vertically

RA = wL − RB = wL − 3
8

wL = 5
8

wL

In the solution of Ex. 13.18 we selected RB as the redundancy; in fact, any one of the
three support reactions, MA, RA or RB, could have been chosen. Let us suppose that
MA is taken to be the redundant reaction. We now represent the combined loading
of Fig. 13.22(a) as the sum of the separate loading systems shown in Fig. 13.23(a) and
(b) and work in terms of the rotations of the beam at A due to the distributed load
and the applied moment, MA. Clearly, since there is no rotation at the built-in end
of a cantilever, the rotations produced separately in Fig. 13.23(a) and (b) must be
numerically equal but opposite in direction. Using the method of Section 13.1 it may
be shown that

θA (due to w) = wL3

24EI
(clockwise)

and

θA (due to MA) = MAL
3EI

(anticlockwise)

Since

|θA(MA)| = |θA(w)|
we have

MA = wL2

8

as before.
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FIGURE 13.23
Alternative solution

of Ex. 13.19 (a) (b)

B

�

BAA
w

L L

EIEI
RA1

RB1
RB2

RA2

MA

FIGURE 13.24
Practical examples

of fixed beams (a) (b)

FIGURE 13.25
Support reactions in

a fixed beam

A B

MB

RBRA

MA

BUILT-IN OR FIXED-END BEAMS

In practice single-span beams may not be free to rotate about their supports but are
connected to them in a manner that prevents rotation. Thus a reinforced concrete
beam may be cast integrally with its supports as shown in Fig. 13.24(a) or a steel beam
may be bolted at its ends to steel columns (Fig. 13.24(b)). Clearly neither of the beams
of Fig. 13.24(a) or (b) can be regarded as simply supported.

Consider the fixed beam of Fig. 13.25. Any system of vertical loads induces reactions
of force and moment, the latter arising from the constraint against rotation provided
by the supports. There are then four unknown reactions and only two possible equa-
tions of statical equilibrium; the beam is therefore statically indeterminate and has
two redundancies. A solution is obtained by considering known values of slope and
deflection at particular beam sections.

EXAMPLE 13.19 Figure 13.26(a) shows a fixed beam carrying a central concen-
trated load, W . Determine the value of the fixed-end moments, MA and MB.

Since the ends A and B of the beam are prevented from rotating, moments MA and
MB are induced in the supports; these are termed fixed-end moments. From symmetry
we see that MA = MB and RA = RB = W/2.
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FIGURE 13.26
Bending moment

diagram for a fixed
beam (Ex. 13.19)

A C B

B

B

Fixed-end moment diagram

Resultant bending moment
diagram

Free bending moment diagram

B

A

A

A

W

L /2

EI
MA

MA

MA

RA RB

MB

MB

MB

L /2

4
WL

(a)

(b)

(c)

�ve

�ve �ve

�ve

�ve

(d)

The beam AB in Fig. 13.26(a) may be regarded as a simply supported beam carrying
a central concentrated load with moments MA and MB applied at the supports. The
bending moment diagrams corresponding to these two loading cases are shown in Fig.
13.26(b) and (c) and are known as the free bending moment diagram and the fixed-
end moment diagram, respectively. Clearly the concentrated load produces sagging
(positive) bending moments, while the fixed-end moments induce hogging (negative)
bending moments. The resultant or final bending moment diagram is constructed by
superimposing the free and fixed-end moment diagrams as shown in Fig. 13.26(d).

The moment-area method is now used to determine the fixed-end moments, MA and
MB. From Eq. (13.7) the change in slope between any two sections of a beam is equal
to the area of the M/EI diagram between those sections. Therefore, the net area of
the bending moment diagram of Fig. 13.26(d) must be zero since the change of slope
between the ends of the beam is zero. It follows that the area of the free bending
moment diagram is numerically equal to the area of the fixed-end moment diagram;
thus

MAL = 1
2

WL
4

L

which gives

MA = MB = WL
8
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FIGURE 13.27
Complete bending

moment diagram for
fixed beam of

Ex. 13.19

8
WL

8
WL

8
WL

L /2L /4 L /4

�ve

�ve�ve

and the resultant bending moment diagram has principal values as shown in Fig.
13.27. Note that the maximum positive bending moment is equal in magnitude to the
maximum negative bending moment and that points of contraflexure (i.e. where the
bending moment changes sign) occur at the quarter-span points.

Having determined the support reactions, the deflected shape of the beam may be
found by any of the methods described in the previous part of this chapter.

EXAMPLE 13.20 Determine the fixed-end moments and the fixed-end reactions
for the beam shown in Fig. 13.28(a).

FIGURE 13.28
Fixed beam of

Ex. 13.20

L
Wab

MB

MB

MA

MA

RA RB

�ve�ve

�ve

EI

L

W

a b

B

BC

A

A

(a)

(b)

The resultant bending moment diagram is shown in Fig. 13.28(b) where the line AB
represents the datum from which values of bending moment are measured. Again the
net area of the resultant bending moment diagram is zero since the change in slope
between the ends of the beam is zero. Hence

1
2

(MA + MB)L = 1
2

L
Wab

L

which gives

MA + MB = Wab
L

(i)
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We require a further equation to solve for MA and MB. This we obtain using Eq. 13.10
and taking the origin for x at A; hence we have

xB

(
dv

dx

)
B

− xA

(
dv

dx

)
A

− (vB − vA) =
∫ B

A

M
EI

x dx (ii)

In Eq. (ii) (dv/dx)B = (dv/dx)A = 0 and vB = vA = 0 so that

0 =
∫ B

A

M
EI

x dx (iii)

and the moment of the area of the M/EI diagram between A and B about A is zero.
Since EI is constant for the beam, we need only consider the bending moment diagram.
Therefore from Fig. 13.28(b)

MAL
L
2

+ (MB − MA)
L
2

2
3

L = 1
2

a
Wab

L
2a
3

+ 1
2

b
Wab

L

(
a + 1

3
b
)

Simplifying, we obtain

MA + 2MB = Wab
L2 (2a + b) (iv)

Solving Eqs (i) and (iv) simultaneously we obtain

MA = Wab2

L2 MB = Wa2b
L2 (v)

We can now use statics to obtain RA and RB; hence, taking moments about B

RAL − MA + MB − Wb = 0

Substituting for MA and MB from Eq. (v) we have

RAL = Wab2

L2 − Wa2b
L2 + Wb

whence

RA = Wb2

L3 (3a + b)

Similarly

RB = Wa2

L3 (a + 3b)

EXAMPLE 13.21 The fixed beam shown in Fig. 13.29(a) carries a uniformly
distributed load of intensity w. Determine the support reactions.

From symmetry, MA = MB and RA = RB. Again the net area of the bending moment
diagram must be zero since the change of slope between the ends of the beam is zero
(Eq. (13.7)). Hence

MAL = 2
3

wL2

8
L



chap-13 17/1/2005 16: 28 page 363

13.6 Statically Indeterminate Beams • 363

FIGURE 13.29
Fixed beam carrying

a uniformly
distributed load

(Ex. 13.21)

MA MB
EI

L

�ve

�ve�ve

w

MA MB

RA

A

(a)

(b)

B

RB

wL2

8

so that

MA = MB = wL2

12

From statics

RA = RB = wL
2

EXAMPLE 13.22 The fixed beam of Fig. 13.30 carries a uniformly distributed load
over part of its span. Determine the values of the fixed-end moments.

FIGURE 13.30
Fixed beam with

part span uniformly
distributed load

(Ex. 13.22)

A B

b

L

EI

RB

MB

x
a

w

RA

MA

�x

Consider a small element δx of the distributed load. We can use the results of Ex. 13.20
to write down the fixed-end moments produced by this elemental load since it may be
regarded, in the limit as δx → 0, as a concentrated load. Therefore from Eq. (v) of
Ex. 13.20 we have

δMA = w δx
x(L − x)2

L2

The total moment at A, MA, due to all such elemental loads is then

MA =
∫ b

a

w
L2 x(L − x)2 dx
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which gives

MA = w
L2

[
L2

2
(b2 − a2) − 2

3
L(b3 − a3) + 1

4
(b4 − a4)

]
(i)

Similarly

MB = wb3

L2

(
L
3

− b
4

)
(ii)

If the load covers the complete span, a = 0, b = L and Eqs (i) and (ii) reduce to

MA = MB = wL2

12
(as in Ex. 13.21.)

FIXED BEAM WITH A SINKING SUPPORT

In most practical situations the ends of a fixed beam would not remain perfectly aligned
indefinitely. Since the ends of such a beam are prevented from rotating, a deflection
of one end of the beam relative to the other induces fixed-end moments as shown in
Fig. 13.31(a). These are in the same sense and for the relative displacement shown
produce a total anticlockwise moment equal to MA + MB on the beam. This moment
is equilibrated by a clockwise couple formed by the force reactions at the supports.
The resultant bending moment diagram is shown in Fig. 13.31(b) and, as in previous

FIGURE 13.31
Fixed beam with a

sinking support

A

B

EI

MA

MA

MB

MB

L

(MA � MB)

L

(MA � MB)

L

�

(a)

(b)

�ve

�ve
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examples, its net area is zero since there is no change of slope between the ends of the
beam and EI is constant (see Eq. (13.7)). This condition is satisfied by MA = MB.

Let us now assume an origin for x at A; Eq. (13.10) becomes

xB

(
dv

dx

)
B

− xA

(
dv

dx

)
A

− (vB − vA) =
∫ B

A

M
EI

x dx (i)

in which (dv/dx)A = (dv/dx)B = 0, vA = 0 and vB = −δ. Hence Eq. (i) reduces to

δ =
∫ L

0

M
EI

x dx

Using the semi-graphical approach and taking moments of areas about A we have

δ = −1
2

L
2

MA

EI
L
6

+ 1
2

L
2

MA

EI
5
6

L

which gives

MA = 6EIδ
L2 (hogging)

It follows that

MB = 6EIδ
L2 (sagging)

The effect of building in the ends of a beam is to increase both its strength and its
stiffness. For example, the maximum bending moment in a simply supported beam
carrying a central concentrated load W is WL/4 but it is WL/8 if the ends are built-in. A
comparison of the maximum deflections shows a respective reduction from WL3/48EI
to WL3/192EI. It would therefore appear desirable for all beams to have their ends
built-in if possible. However, in practice this is rarely done since, as we have seen,
settlement of one of the supports induces additional bending moments in a beam. It
is also clear that such moments can be induced during erection unless the supports
are perfectly aligned. Furthermore, temperature changes can induce large stresses
while live loads, which produce vibrations and fluctuating bending moments, can have
adverse effects on the fixity of the supports.

One method of eliminating these difficulties is to employ a double cantilever construc-
tion. We have seen that points of contraflexure (i.e. zero bending moment) occur at
sections along a fixed beam. Thus if hinges were positioned at these points the bend-
ing moment diagram and deflection curve would be unchanged but settlement of a
support or temperature changes would have little or no effect on the beam.

P R O B L E M S

P.13.1 The beam shown in Fig. P.13.1 is simply supported symmetrically at two points
2 m from each end and carries a uniformly distributed load of 5 kN/m together with
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two concentrated loads of 2 kN each at its free ends. Calculate the deflection at
the mid-span point and at its free ends using the method of double integration.
EI = 43 × 1012 N mm2.

Ans. 3.6 mm (downwards), 2.0 mm (upwards).

2 kN

w � 5 kN/m

2 kN

2 m 2 m8 m FIGURE P.13.1

P.13.2 A beam AB of length L (Fig. P.13.2) is freely supported at A and at a point C
which is at a distance KL from the end B. If a uniformly distributed load of intensity w
per unit length acts on AC, find the value of K which will cause the upward deflection
of B to equal the downward deflection midway between A and C.

Ans. 0.24.

A C

B

KL

L

w

FIGURE P.13.2

P.13.3 A uniform beam is simply supported over a span of 6 m. It carries a trape-
zoidally distributed load with intensity varying from 30 kN/m at the left-hand support
to 90 kN/m at the right-hand support. Find the equation of the deflection curve and
hence the deflection at the mid-span point. The second moment of area of the cross
section of the beam is 120 × 106 mm4 and Young’s modulus E = 206 000 N/mm2.

Ans. 41 mm (downwards).

P.13.4 A cantilever of length L and having a flexural rigidity EI carries a distributed
load that varies in intensity from w per unit length at the built-in end to zero at the
free end. Find the deflection of the free end.

Ans. wL4/30EI (downwards).
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P.13.5 Determine the position and magnitude of the maximum deflection of the simply
supported beam shown in Fig. P.13.5 in terms of its flexural rigidity EI.

Ans. 38.8/EI m downwards at 2.9 m from left-hand support.

6 kN 4 kN

1 kN/m

1 m 1 m2 m 2 m FIGURE P.13.5

P.13.6 Calculate the position and magnitude (in terms of EI) of the maximum
deflection in the beam shown in Fig. P.13.6.

Ans. 1309.2/EI m downwards at 13.3 m from left-hand support.

4 kN

20 kN m

10 m 10 m 10 m

C
D

B

A

FIGURE P.13.6

P.13.7 Determine the equation of the deflection curve of the beam shown in Fig. P.13.7.
The flexural rigidity of the beam is EI.

Ans.

v = − 1
EI

{
125

6
x3 − 50[x − 1]2 + 50

12
[x − 2]4 − 50

12
[x − 4]4 − 525

6
[x − 4]3 + 237.5x

}
.

100 N m 100 N/m

A

B

C
D F

200 N m

1 m 2 m 3 m1 m FIGURE P.13.7

P.13.8 The beam shown in Fig. P.13.8 has its central portion reinforced so that its
flexural rigidity is twice that of the outer portions. Use the moment-area method to
determine the central deflection.

Ans. 3WL3/256EI (downwards).
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W

2EI
EIA

B C EI

L /4 L /4 L /4 L /4 FIGURE P.13.8

P.13.9 A simply supported beam of flexural rigidity EI carries a triangularly distributed
load as shown in Fig. P.13.9. Determine the deflection of the mid-point of the beam.

Ans. w0L4/120EI (downwards).

L

w0/unit length

A
B

C

FIGURE P.13.9

P.13.10 The simply supported beam shown in Fig. P.13.10 has its outer regions rein-
forced so that their flexural rigidity may be regarded as infinite compared with the
central region. Determine the central deflection.

Ans. 7WL3/384EI (downwards).

W

EI

Rigid Rigid

L /4 L /4 L /4 L /4 FIGURE P.13.10

P.13.11 Calculate the horizontal and vertical components of the deflection at the cen-
tre of the simply supported span AB of the thick Z-section beam shown in Fig. P.13.11.
Take E = 200 000 N/mm2.

Ans. u = 2.45 mm (to right), v = 1.78 mm (upwards).
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FIGURE P.13.11

2 m

1 m

C

B

A

15 mm

15 mm

20 mm
5 mm

5 mm

5 mm

20 N

P.13.12 The simply supported beam shown in Fig. P.13.12 supports a uniformly dis-
tributed load of 10 N/mm in the plane of its horizontal flange. The properties of
its cross section referred to horizontal and vertical axes through its centroid are
Iz = 1.67 × 106 mm4, Iy = 0.95 × 106 mm4 and Izy = −0.74 × 106 mm4. Determine the
magnitude and direction of the deflection at the mid-span section of the beam. Take
E = 70 000 N/mm2.

Ans. 52.3 mm at 23.9◦ below horizontal.

FIGURE P.13.12

10 N/mm

2 m

100 mm

10 mm

10 mm

80 mm

P.13.13 A uniform cantilever of arbitrary cross section and length L has section prop-
erties Iz, Iy and Izy with respect to the centroidal axes shown (Fig. P.13.13). It is loaded
in the vertical plane by a tip load W . The tip of the beam is hinged to a horizontal
link which constrains it to move in the vertical direction only (provided that the actual
deflections are small). Assuming that the link is rigid and that there are no twisting
effects, calculate the force in the link and the deflection of the tip of the beam.

Ans. WIzy/Iz (compression if Izy is positive), WL3/3EIz (downwards).
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FIGURE P.13.13

W L

y

z

x

G

P.13.14 A thin-walled beam is simply supported at each end and supports a uniformly
distributed load of intensity w per unit length in the plane of its lower horizontal flange
(see Fig. P.13.14). Calculate the horizontal and vertical components of the deflection
of the mid-span point. Take E = 200 000 N/mm2.

Ans. u = −9.1 mm, v = 5.2 mm.

FIGURE P.13.14

1.5 m

80 mm

60
m

m

100 mm

10 N/mm

5 mm

5 mm

P.13.15 A uniform beam of arbitrary unsymmetrical cross section and length 2L is
built-in at one end and is simply supported in the vertical direction at a point half-
way along its length. This support, however, allows the beam to deflect freely in the
horizontal z direction (Fig. P.13.15). Determine the vertical reaction at the support.

Ans. 5W/2.

FIGURE P.13.15 W

L

C

B
A

L
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P.13.16 A cantilever of length 3L has section second moments of area Iz, Iy and Izy

referred to horizontal and vertical axes through the centroid of its cross section. If
the cantilever carries a vertically downward load W at its free end and is pinned to a
support which prevents both vertical and horizontal movement at a distance 2L from
the built-in end, calculate the magnitude of the vertical reaction at the support. Show
also that the horizontal reaction is zero.

Ans. 7W/4.

P.13.17 Calculate the deflection due to shear at the mid-span point of a simply sup-
ported rectangular section beam of length L which carries a vertically downward load
W at mid-span. The beam has a cross section of breadth B and depth D; the shear
modulus is G.

Ans. 3WL/10GBD (downwards).

P.13.18 Determine the deflection due to shear at the free end of a cantilever of length
L and rectangular cross section B × D which supports a uniformly distributed load of
intensity w. The shear modulus is G.

Ans. 3wL2/5GBD (downwards).

P.13.19 A cantilever of length L has a solid circular cross section of diameter D and
carries a vertically downward load W at its free end. The modulus of rigidity of the
cantilever is G. Calculate the shear stress distribution across a section of the cantilever
and hence determine the deflection due to shear at its free end.

Ans. τ = 16W (1 − 4y2/D2)/3πD2, 40WL/9πGD2 (downwards).

P.13.20 Show that the deflection due to shear in a rectangular section beam supporting
a vertical shear load Sy is 20% greater for a shear stress distribution given by the
expression

τ = −SyA′ȳ
boIz

than for a distribution assumed to be uniform.

A rectangular section cantilever beam 200 mm wide by 400 mm deep and 2 m long
carries a vertically downward load of 500 kN at a distance of 1 m from its free end.
Calculate the deflection at the free end taking into account both shear and bending
effects. Take E = 200 000 N/mm2 and G = 70 000 N/mm2.

Ans. 2.06 mm (downwards).

P.13.21 The beam shown in Fig. P.13.21 is simply supported at each end and is provided
with an additional support at mid-span. If the beam carries a uniformly distributed
load of intensity w and has a flexural rigidity EI, use the principle of superposition to
determine the reactions in the supports.

Ans. 5wL/4 (central support), 3wL/8 (outside supports).
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FIGURE P.13.21

P.13.22 A built-in beam ACB of span L carries a concentrated load W at C a distance
a from A and b from B. If the flexural rigidity of the beam is EI, use the principle of
superposition to determine the support reactions.

Ans. RA = Wb2(L + 2a)/L3, RB = Wa2(L + 2b)/L3, MA = Wab2/L2, MB = Wa2b/L2.

P.13.23 A beam has a second moment of area I for the central half of its span and
I/2 for the outer quarters. If the beam carries a central concentrated load W , find the
deflection at mid-span if the beam is simply supported and also the fixed-end moments
when both ends of the beam are built-in.

Ans. 3WL3/128EI, 5WL/48.

P.13.24 A cantilever beam projects 1.5 m from its support and carries a uniformly
distributed load of 16 kN/m over its whole length together with a load of 30 kN at
0.75 m from the support. The outer end rests on a prop which compresses 0.12 mm for
every kN of compressive load. If the value of EI for the beam is 2000 kNm2, determine
the reaction in the prop.

Ans. 23.4 kN.
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In Chapters 7, 9, 10 and 11 we determined stress distributions produced separately
by axial load, bending moment, shear force and torsion. However, in many practical
situations some or all of these force systems act simultaneously so that the various
stresses are combined to form complex systems which may include both direct and
shear stresses. In such cases it is no longer a simple matter to predict the mode of
failure of a structural member, particularly since, as we shall see, the direct and shear
stresses at a point due to, say, bending and torsion combined are not necessarily the
maximum values of direct and shear stress at that point.

Therefore as a preliminary to the investigation of the theories of elastic failure in
Section 14.10 we shall examine states of stress and strain at points in structural mem-
bers subjected to complex loading systems.

14.1 REPRESENTATION OF STRESS AT A POINT

We have seen that, generally, stress distributions in structural members vary through-
out the member. For example the direct stress in a cantilever beam carrying a point
load at its free end varies along the length of the beam and throughout its depth. Sup-
pose that we are interested in the state of stress at a point lying in the vertical plane
of symmetry and on the upper surface of the beam mid-way along its span. The direct
stress at this point on planes perpendicular to the axis of the beam can be calculated
using Eq. (9.9). This stress may be imagined to be acting on two opposite sides of a
very small thin element ABCD in the surface of the beam at the point (Fig. 14.1).

Since the element is thin we can ignore any variation in direct stress across its thickness.
Similarly, since the sides of the element are extremely small we can assume that σ has
the same value on each opposite side BC and AD of the element and that σ is constant
along these sides (in this particular case σ is constant across the width of the beam but
the argument would apply if it were not). We are therefore representing the stress at
a point in a structural member by a stress system acting on the sides and in the plane

373
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of a thin, very small element; such an element is known as a two-dimensional element
and the stress system is a plane stress system as we saw in Section 7.11.

14.2 DETERMINATION OF STRESSES ON INCLINED PLANES

Suppose that we wish to determine the direct and shear stresses at the same point in
the cantilever beam of Fig. 14.1 but on a plane PQ inclined at an angle to the axis of
the beam as shown in Fig. 14.2(a). The direct stress on the sides AD and BC of the
element ABCD is σx in accordance with the sign convention adopted previously.

Consider the triangular portion PQR of the element ABCD where QR is parallel to
the sides AD and BC. On QR there is a direct stress which must also be σx since there
is no variation of direct stress on planes parallel to QR between the opposite sides of
the element. On the side PQ of the triangular element let σn be the direct stress and τ

the shear stress. Although the stresses are uniformly distributed along the sides of the
elements it is convenient to represent them by single arrows as shown in Fig. 14.2(b).

The triangular element PQR is in equilibrium under the action of forces corresponding
to the stresses σx, σn and τ . Thus, resolving forces in a direction perpendicular to PQ
and assuming that the element is of unit thickness we have

σn PQ = σx QR cos θ
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or

σn = σx
QR
PQ

cos θ

which simplifies to

σn = σx cos2 θ (14.1)

Resolving forces parallel to PQ

τPQ = σxQR sin θ

from which

τ = σx cos θ sin θ

or

τ = σx

2
sin 2θ (14.2)

We see from Eqs (14.1) and (14.2) that although the applied load induces direct stresses
only on planes perpendicular to the axis of the beam, both direct and shear stresses
exist on planes inclined to the axis of the beam. Furthermore it can be seen from
Eq. (14.2) that the shear stress τ is a maximum when θ = 45◦. This explains the mode
of failure of ductile materials subjected to simple tension and other materials such
as timber under compression. For example, a flat aluminium alloy test piece fails in
simple tension along a line at approximately 45◦ to the axis of loading as illustrated
in Fig. 14.3. This suggests that the crystal structure of the metal is relatively weak in
shear and that failure takes the form of sliding of one crystal plane over another as
opposed to the tearing apart of two crystal planes. The failure is therefore a shear
failure although the test piece is in simple tension.

Shear failure

FIGURE 14.3 Mode of failure in an aluminium alloy test piece
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BIAXIAL STRESS SYSTEM

A more complex stress system may be produced by a loading system such as that shown
in Fig. 14.4 where a thin-walled hollow cylinder is subjected to an internal pressure, p.
The internal pressure induces circumferential or hoop stresses σy, given by Eq. (7.63),
on planes parallel to the axis of the cylinder and, in addition, longitudinal stresses,
σx, on planes perpendicular to the axis of the cylinder (Eq. (7.62)). Thus any two-
dimensional element of unit thickness in the wall of the cylinder and having sides
perpendicular and parallel to the axis of the cylinder supports a biaxial stress system
as shown in Fig. 14.4. In this particular case σx and σy each have constant values
irrespective of the position of the element.

Let us consider the equilibrium of a triangular portion ABC of the element as shown
in Fig. 14.5. Resolving forces in a direction perpendicular to AB we have

σn AB = σx BC cos θ + σy AC sin θ

or

σn = σx
BC
AB

cos θ + σy
AC
AB

sin θ

which gives

σn = σx cos2 θ + σy sin2 θ (14.3)

FIGURE 14.4
Generation of a

biaxial stress
system

sx
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Determination of
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Resolving forces parallel to AB

τ AB = σx BC sin θ − σy AC cos θ

or

τ = σx
BC
AB

sin θ − σy
AC
AB

cos θ

which gives

τ =
(

σx − σy

2

)
sin 2θ (14.4)

Again we see that although the applied loads produce only direct stresses on planes
perpendicular and parallel to the axis of the cylinder, both direct and shear stresses
exist on inclined planes. Furthermore, for given values of σx and σy (i.e. p) the shear
stress τ is a maximum on planes inclined at 45◦ to the axis of the cylinder.

EXAMPLE 14.1 A cylindrical pressure vessel has an internal diameter of 2 m and
is fabricated from plates 20 mm thick. If the pressure inside the vessel is 1.5 N/mm2

and, in addition, the vessel is subjected to an axial tensile load of 2500 kN, calculate
the direct and shear stresses on a plane inclined at an angle of 60◦ to the axis of the
vessel. Calculate also the maximum shear stress.

From Eq. (7.63) the circumferential stress is

pd
2t

= 1.5 × 2 × 103

2 × 20
= 75 N/mm2

From Eq. (7.62) the longitudinal stress is

pd
4t

= 37.5 N/mm2

The direct stress due to axial load is, from Eq. (7.1)

2500 × 103

π × 2000 × 20
= 19.9 N/mm2

Therefore on a rectangular element at any point in the wall of the vessel there is a
biaxial stress system as shown in Fig. 14.6. Now considering the equilibrium of the
triangular element ABC we have, resolving forces perpendicular to AB

σn AB × 20 = 57.4 BC × 20 cos 30◦ + 75 AC × 20 cos 60◦

Since the walls of the vessel are thin the thickness of the two-dimensional element may
be taken as 20 mm. However, as can be seen, the thickness cancels out of the above
equation so that it is simpler to assume unit thickness for two-dimensional elements
in all cases. Then

σn = 57.4 cos2 30◦ + 75 cos2 60◦
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FIGURE 14.6
Biaxial stress
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sn

A C

B

60°τ

75 N/mm2

75 N/mm2

57.4 N/mm2

57.4
N/mm2

37.5 � 19.9 � 57.4 N/mm2

which gives

σn = 61.8 N/mm2

Resolving parallel to AB

τ AB = 57.4 BC cos 60◦ − 75 AC sin 60◦

or

τ = 57.4 sin 60◦ cos 60◦ − 75 cos 60◦ sin 60◦

from which

τ = −7.6 N/mm2

The negative sign of τ indicates that τ acts in the direction AB and not, as was assumed,
in the direction BA. From Eq. (14.4) it can be seen that the maximum shear stress
occurs on planes inclined at 45◦ to the axis of the cylinder and is given by

τmax = 57.4 − 75
2

= −8.8 N/mm2

Again the negative sign of τmax indicates that the direction of τmax is opposite to that
assumed.

GENERAL TWO-DIMENSIONAL CASE

If we now apply a torque to the cylinder of Fig. 14.4 in a clockwise sense when viewed
from the right-hand end, shear and complementary shear stresses are induced on the
sides of the rectangular element in addition to the direct stresses already present. The
value of these shear stresses is given by Eq. (11.21) since the cylinder is thin-walled.
We now have a general two-dimensional stress system acting on the element as shown
in Fig. 14.7(a). The suffixes employed in designating shear stress refer to the plane on
which the stress acts and its direction. Thus τxy is a shear stress acting on an x plane
in the y direction. Conversely τyx acts on a y plane in the x direction. However, since
τxy = τyx we label both shear and complementary shear stresses τxy as in Fig. 14.7(b).
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FIGURE 14.7
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Considering the equilibrium of the triangular element ABC in Fig. 14.7(b) and
resolving forces in a direction perpendicular to AB

σn AB = σx BC cos θ + σy AC sin θ − τxy BC sin θ − τxy AC cos θ

Dividing through by AB and simplifying we obtain

σn = σx cos2 θ + σy sin2 θ − τxy sin 2θ (14.5)

Now resolving forces parallel to BA

τ AB = σx BC sin θ − σy AC cos θ + τxy BC cos θ − τxy AC sin θ

Again dividing through by AB and simplifying we have

τ = (σx − σy)
2

sin 2θ + τxy cos 2θ (14.6)

EXAMPLE 14.2 A cantilever of solid, circular cross section supports a compressive
load of 50 000 N applied to its free end at a point 1.5 mm below a horizontal diameter
in the vertical plane of symmetry together with a torque of 1200 Nm (Fig. 14.8).

Calculate the direct and shear stresses on a plane inclined at 60◦ to the axis of the
cantilever at a point on the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of 50 000 N together with a
bending moment of 50 000 × 1.5 = 75 000 N mm in a vertical plane. Thus at any point
on the lower edge of the vertical plane of symmetry there are direct compressive
stresses due to axial load and bending moment which act on planes perpendicular to
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FIGURE 14.8
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the axis of the beam and are given, respectively, by Eqs (7.1) and (9.9). Therefore

σx (axial load) = 50 000
π × 602/4

= 17.7 N/mm2

σx (bending moment) = 75 000 × 30
π × 602/64

= 3.5 N/mm2

The shear stress τxy at the same point due to the torque is obtained from Eq. (11.4)
and is

τxy = 1200 × 103 × 30
π × 604/32

= 28.3 N/mm2

The stress system acting on a two-dimensional rectangular element at the point is
as shown in Fig. 14.9. Note that, in this case, the element is at the bottom of the
cylinder so that the shear stress is opposite in direction to that in Fig. 14.7. Considering
the equilibrium of the triangular element ABC and resolving forces in a direction
perpendicular to AB we have

σn AB = −21.2 BC cos 30◦ + 28.3 BC sin 30◦ + 28.3 AC cos 30◦

Dividing through by AB we obtain

σn = −21.2 cos2 30◦ + 28.3 cos 30◦ sin 30◦ + 28.3 sin 30◦ cos 30◦

which gives

σn = 8.6 N/mm2
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Similarly resolving parallel to AB

τ AB = −21.2 BC cos 60◦ − 28.3 BC sin 60◦ + 28.3 AC cos 60◦

so that

τ = −21.2 sin 60◦ cos 60◦ − 28.3 sin2 60◦ + 28.3 cos2 60◦

from which

τ = −23.3 N/mm2

acting in the direction AB.

14.3 PRINCIPAL STRESSES

Equations (14.5) and (14.6) give the direct and shear stresses on an inclined plane at
a point in a structural member subjected to a combination of loads which produces
a general two-dimensional stress system at that point. Clearly for given values of σx,
σy and τxy, in other words a given loading system, both σn and τ vary with the angle θ

and will attain maximum or minimum values when dσn/dθ = 0 and dτ/dθ = 0. From
Eq. (14.5)

dσn

dθ
= −2σx cos θ sin θ + 2σy sin θ cos θ − 2τxy cos 2θ = 0

then

−(σx − σy) sin 2θ − 2τxy cos 2θ = 0

or

tan 2θ = − 2τxy

σx − σy
(14.7)

Two solutions, −θ and −θ − π/2, satisfy Eq. (14.7) so that there are two mutually
perpendicular planes on which the direct stress is either a maximum or a minimum.
Furthermore, by comparison of Eqs (14.7) and (14.6) it can be seen that these planes
correspond to those on which τ = 0.

The direct stresses on these planes are called principal stresses and the planes are called
principal planes.

From Eq. (14.7)

sin 2θ = − 2τxy√
(σx − σy)2 + 4τ 2

xy

cos 2θ = σx − σy√
(σx − σy)2 + 4τ 2

xy
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and

sin 2
(
θ + π

2

)
= 2τxy√

(σx − σy)2 + 4τ 2
xy

cos 2
(
θ + π

2

)
= −(σx − σy)√

(σx − σy)2 + 4τ 2
xy

Rewriting Eq. (14.5) as

σn = σx

2
(1 + cos 2θ) + σy

2
(1 − cos 2θ) − τxy sin 2θ

and substituting for {sin 2θ , cos 2θ} and {sin 2(θ + π/2), cos 2(θ + π/2)} in turn gives

σI = σx + σy

2
+ 1

2

√
(σx − σy)2 + 4τ 2

xy (14.8)

σII = σx + σy

2
− 1

2

√
(σx − σy)2 + 4τ 2

xy (14.9)

where σI is the maximum or major principal stress and σII is the minimum or minor
principal stress; σI is algebraically the greatest direct stress at the point while σII is
algebraically the least. Note that when σII is compressive, i.e. negative, it is possible
for σII to be numerically greater than σI.

From Eq. (14.6)

dτ

dθ
= (σx − σy) cos 2θ − 2τxy sin 2θ = 0

giving

tan 2θ = (σx − σy)
2τxy

(14.10)

It follows that

sin 2θ = (σx − σy)√
(σx − σy)2 + 4τ 2

xy

cos 2θ = 2τxy√
(σx − σy)2 + 4τ 2

xy

sin 2
(
θ + π

2

)
= − (σx − σy)√

(σx − σy)2 + 4τ 2
xy

cos 2
(
θ + π

2

)
= − 2τxy√

(σx − σy)2 + 4τ 2
xy

Substituting these values in Eq. (14.6) gives

τmax,min = ±1
2

√
(σx − σy)2 + 4τ 2

xy (14.11)
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Here, as in the case of the principal stresses, we take the maximum value as being the
greater value algebraically.

Comparing Eq. (14.11) with Eqs (14.8) and (14.9) we see that

τmax = σI − σII

2
(14.12)

Equations (14.11) and (14.12) give alternative expressions for the maximum shear
stress acting at the point in the plane of the given stresses. This is not necessarily the
maximum shear stress in a three-dimensional element subjected to a two-dimensional
stress system, as we shall see in Section 14.10.

Since Eq. (14.10) is the negative reciprocal of Eq. (14.7), the angles given by these two
equations differ by 90◦ so that the planes of maximum shear stress are inclined at 45◦

to the principal planes.

We see now that the direct stresses, σx, σy, and shear stresses, τxy, are not, in a general
case, the greatest values of direct and shear stress at the point. This fact is clearly
important in designing structural members subjected to complex loading systems, as
we shall see in Section 14.10. We can illustrate the stresses acting on the various planes
at the point by considering a series of elements at the point as shown in Fig. 14.10.
Note that generally there will be a direct stress on the planes on which τmax acts.

EXAMPLE 14.3 A structural member supports loads which produce, at a particular
point, a direct tensile stress of 80 N/mm2 and a shear stress of 45 N/mm2 on the same
plane. Calculate the values and directions of the principal stresses at the point and
also the maximum shear stress, stating on which planes this will act.
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Suppose that the tensile stress of 80 N/mm2 acts in the x direction. Then σx =
+80 N/mm2, σy = 0 and τxy = 45 N/mm2. Substituting these values in Eqs (14.8) and
(14.9) in turn gives

σI = 80
2

+ 1
2

√
802 + 4 × 452 = 100.2 N/mm2

σII = 80
2

− 1
2

√
802 + 4 × 452 = −20.2 N/mm2

From Eq. (14.7)

tan 2θ = −2 × 45
80

= −1.125

from which

θ = −24◦11′ (corresponding to σI)

Also, the plane on which σII acts corresponds to θ = −24◦11′ − 90◦ = −114◦11′.

The maximum shear stress is most easily found from Eq. (14.12) and is given by

τmax = 100.2 − (−20.2)
2

= 60.2 N/mm2

The maximum shear stress acts on planes at 45◦ to the principal planes. Thus
θ = −69◦11′ and θ = −159◦11′ give the planes of maximum shear stress.

14.4 MOHR’S CIRCLE OF STRESS

The state of stress at a point in a structural member may be conveniently represented
graphically by Mohr’s circle of stress. We have shown that the direct and shear stresses
on an inclined plane are given, in terms of known applied stresses, by

σn = σx cos2 θ + σy sin2 θ − τxy sin 2θ (Eq. (14.5))

and

τ = (σx − σy)
2

sin 2θ + τxy cos 2θ (Eq. (14.6))

respectively. The positive directions of these stresses and the angle θ are shown in
Fig. 14.7. We now write Eq. (14.5) in the form

σn = σx

2
(1 + cos 2θ) + σy

2
(1 − cos 2θ) − τxy sin 2θ

or

σn − 1
2

(σx + σy) = 1
2

(σx − σy) cos 2θ − τxy sin 2θ (14.13)
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FIGURE 14.11 Mohr’s circle of stress

Now squaring and adding Eqs (14.6) and (14.13) we obtain

[
σn − 1

2
(σx + σy)

]2

+ τ 2 =
[

1
2

(σx − σy)
]2

+ τ 2
xy (14.14)

Equation (14.14) represents the equation of a circle of radius

±1
2

√
(σx − σy)2 + 4τ 2

xy

and having its centre at the point
(

σx + σy
2 , 0

)
.

The circle may be constructed by locating the points Q1(σx, −τxy) and Q2(σy, +τxy)
referred to axes Oστ as shown in Fig. 14.11. The line Q1Q2 is then drawn and intersects
the Oσ axis at C. From Fig. 14.11

OC = OP1 − CP1 = σx − σx − σy

2
so that

OC = σx + σy

2

Thus the point C has coordinates
(

σx+σy
2 , 0

)
which, as we have seen, is the centre of

the circle. Also

CQ1 =
√

CP2
1 + P1Q2

1

=
√[

σx − σy

2

]2

+ τ 2
xy

whence

CQ1 = 1
2

√
(σx − σy)2 + 4τ 2

xy

which is the radius of the circle; the circle is then drawn as shown.
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Now we set CQ′ at an angle 2θ (positive clockwise) to CQ1; Q′ is then the point (σn, −τ )
as demonstrated below.

From Fig. 14.11 we see that

ON = OC + CN

or, since OC = (σx + σy)/2, CN = CQ′ cos(β − 2θ) and CQ′ = CQ1, we have

σn = σx − σy

2
+ CQ1(cos β cos 2θ + sin β sin 2θ)

But

CQ1 = CP1

cos β
and CP1 = σx − σy

2

Hence

σn = σx + σy

2
+
(

σx − σy

2

)
cos 2θ + CP1 tan β sin 2θ

which, on rearranging, becomes

σn = σx cos2 θ + σy sin2 θ − τxy sin 2θ

as in Eq. (14.5). Similarly it may be shown that

Q′N = −τxy cos 2θ −
(

σx − σy

2

)
sin 2θ = −τ

as in Eq. (14.6). It must be remembered that the construction of Fig. 14.11 corresponds
to the stress system of Fig. 14.7(b); any sign reversal must be allowed for. Also the Oσ

and Oτ axes must be constructed to the same scale otherwise the circle would not be
that represented by Eq. (14.14).

The maximum and minimum values of the direct stress σn, that is the major and minor
principal stresses σI and σII, occur when N and Q′ coincide with B and A, respectively.
Thus

σI = OC + radius of the circle

i.e.

σI = σx + σy

2
+ 1

2

√
(σx − σy)2 + 4τ 2

xy (as in Eq. (14.8))

and

σII = OC − radius of the circle

so that

σII = σx + σy

2
− 1

2

√
(σx − σy)2 + 4τ 2

xy (as in Eq. (14.9))

The principal planes are then given by 2θ = β(σI) and 2θ = β + π(σII).
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The maximum and minimum values of the shear stress τ occur when Q′ coincides with
F and D at the lower and upper extremities of the circle. At these points τmax,min are
clearly equal to the radius of the circle. Hence

τmax,min = ±1
2

√
(σx − σy)2 + 4τ 2

xy (see Eq. (14.11))

The minimum value of shear stress is the algebraic minimum. The planes of maxi-
mum and minimum shear stress are given by 2θ = β + π/2 and 2θ = β + 3π/2 and are
inclined at 45◦ to the principal planes.

EXAMPLE 14.4 Direct stresses of 160 N/mm2, tension, and 120 N/mm2, com-
pression, are applied at a particular point in an elastic material on two mutually
perpendicular planes. The maximum principal stress in the material is limited to
200 N/mm2, tension. Use a graphical method to find the allowable value of shear
stress at the point.

FIGURE 14.12
Mohr’s circle of

stress for Ex. 14.4

Q1 (160 N/mm2, �112 N/mm2)

Q2

(�120 N/mm2, 112 N/mm2)

s1 (�200 N/mm2)
s

τ

P2 P1

B

CO

First, axes Oστ are set up to a suitable scale. P1 and P2 are then located corre-
sponding to σx = 160 N/mm2 and σy = −120 N/mm2, respectively; the centre C of the
circle is mid-way between P1 and P2 (Fig. 14.12). The radius is obtained by locating
B (σ1 = 200 N/mm2) and the circle then drawn. The maximum allowable applied shear
stress, τxy, is then obtained by locating Q1 or Q2. The maximum shear stress at the
point is equal to the radius of the circle and is 180 N/mm2.

14.5 STRESS TRAJECTORIES

We have shown that direct and shear stresses at a point in a beam produced, say,
by bending and shear and calculated by the methods discused in Chapters 9 and 10,
respectively, are not necessarily the greatest values of direct and shear stress at the
point. In order, therefore, to obtain a more complete picture of the distribution,
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FIGURE 14.13
Stress trajectories

in a beam (a) (b)

magnitude and direction of the stresses in a beam we investigate the manner in which
the principal stresses vary throughout a beam.

Consider the simply supported beam of rectangular section carrying a central concen-
trated load as shown in Fig. 14.13(a). Using Eqs (9.9) and (10.4) we can determine
the direct and shear stresses at any point in any section of the beam. Subsequently
from Eqs (14.8), (14.9) and (14.7) we can find the principal stresses at the point and
their directions. If this procedure is followed for very many points throughout the
beam, curves, to which the principal stresses are tangential, may be drawn as shown
in Fig. 14.13(b). These curves are known as stress trajectories and form two orthogonal
systems; in Fig. 14.13(b) solid lines represent tensile principal stresses and dotted lines
compressive principal stresses. The two sets of curves cross each other at right angles
and all curves intersect the neutral axis at 45◦ where the direct stress (calculated from
Eq. (9.9)) is zero. At the top and bottom surfaces of the beam where the shear stress
(calculated from Eq. (10.4)) is zero the trajectories have either horizontal or vertical
tangents.

Another type of curve that may be drawn from a knowledge of the distribution of
principal stress is a stress contour. Such a curve connects points of equal principal
stress.

14.6 DETERMINATION OF STRAINS ON INCLINED PLANES

In Section 14.2 we investigated the two-dimensional state of stress at a point in a
structural member and determined direct and shear stresses on inclined planes; we
shall now determine the accompanying strains.

Figure 14.14(a) shows a two-dimensional element subjected to a complex direct
and shear stress system. The applied stresses will distort the rectangular element
of Fig. 14.14(a) into the shape shown in Fig. 14.14(b). In particular, the triangular
element ABC will suffer distortion to the shape A′B′C′ with corresponding changes
in the length CD and the angle BDC. The strains associated with the stresses σx, σy

and τxy are εx, εy and γxy, respectively. We shall now determine the direct strain εn in a
direction normal to the plane AB and the shear strain γ produced by the shear stress
acting on the plane AB.
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FIGURE 14.14
Determination of

strains on an
inclined plane
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To a first order of approximation

A′C′ = AC(1 + εx)

C′B′ = CB(1 + εy)

A′B′ = AB(1 + εn+π/2)


 (14.15)

where εn+π/2 is the direct strain in the direction AB. From the geometry of the triangle
A′B′C′ in which angle B′C′A′ = π/2 + γxy

(A′B′)2 = (A′C′)2 + (C′B′)2 − 2(A′C′)(C′B′) cos
(π

2
+ γxy

)

or, substituting from Eq. (14.15)

(AB)2(1+εn+π/2)2 = (AC)2(1+εx)2+(CB)2(1+εy)2+2(AC)(CB)(1+εx)(1+εy) sin γxy

Noting that (AB)2 = (AC)2 +(CB)2 and neglecting squares and higher powers of small
quantities, this equation may be rewritten

2(AB)2εn+π/2 = 2(AC)2εx + 2(CB)2εy + 2(AC)(CB)γxy

Dividing through by 2(AB)2 gives

εn+π/2 = εx sin2 θ + εy cos2 θ + sin θ cos θ γxy (14.16)

The strain εn in the direction normal to the plane AB is found by replacing the angle
θ in Eq. (14.16) by θ − π/2. Hence

εn = εx cos2 θ + εy sin2 θ − γxy

2
sin 2θ (14.17)

Now from triangle C′D′B′ we have

(C′B′)2 = (C′D′)2 + (D′B′)2 − 2(C′D′)(D′B′) cos
(π

2
− γ

)
(14.18)
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in which

C′B′ = CB(1 + εy)

C′D′ = CD(1 + εn)

D′B′ = DB(1 + εn+π/2)

Substituting in Eq. (14.18) for C′B′, C′D′ and D′B′ and writing cos (π/2 − γ ) = sin γ

we have

(CB)2(1 + εy)2 = (CD)2(1 + εn)2 = (DB)2(1 + εn+π/2)2

− 2(CD)(DB)(1 + εn)(1 + εn+π/2) sin γ (14.19)

Again ignoring squares and higher powers of strains and writing sin γ = γ , Eq. (14.19)
becomes

(CB)2(1 + 2εy) = (CD)2(1 + 2εn) + (DB)2(1 + 2εn+π/2) − 2(CD)(DB)γ

From Fig. 14.14(a) we see that (CB)2 = (CD)2 + (DB)2 and the above equation
simplifies to

2(CB)2εy = 2(CD)2εn + 2(DB)2εn+π/2 − 2(CD)(DB)γ

Dividing through by 2(CB)2 and rearranging we obtain

γ = εn sin2 θ + εn+π/2 cos2 θ − εy

sin θ cos θ

Substitution of εn and εn+π/2 from Eqs (14.17) and (14.16) yields

γ

2
= εx − εy

2
sin 2θ + γxy

2
cos 2θ (14.20)

14.7 PRINCIPAL STRAINS

From a comparison of Eqs (14.17) and (14.20) with Eqs (14.5) and (14.6) we observe
that the former two equations may be obtained from Eqs (14.5) and (14.6) by replacing
σn by εn, σx by εx, σy by εy, τxy by γxy/2 and τ by γ /2. It follows that for each deduc-
tion made from Eqs (14.5) and (14.6) concerning σn and τ there is a corresponding
deduction from Eqs (14.17) and (14.20) regarding εn and γ /2. Thus at a point in a
structural member there are two mutually perpendicular planes on which the shear
strain γ is zero and normal to which the direct strain is the algebraic maximum or
minimum direct strain at the point. These direct strains are the principal strains at the
point and are given (from a comparison with Eqs (14.8) and (14.9)) by

εI = εx + εy

2
+ 1

2

√
(εx − εy)2 + γ 2

xy (14.21)
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and

εII = εx + εy

2
− 1

2

√
(εx − εy)2 + γ 2

xy (14.22)

Since the shear strain γ is zero on these planes it follows that the shear stress must also
be zero and we deduce from Section 14.3 that the directions of the principal strains and
principal stresses coincide. The related planes are then determined from Eq. (14.7) or
from

tan 2θ = − γxy

εx − εy
(14.23)

In addition the maximum shear strain at the point is given by(γ

2

)
max

= 1
2

√
(εx − εy)2 + γ 2

xy (14.24)

or (γ

2

)
max

= εI − εII

2
(14.25)

(cf. Eqs (14.11) and (14.12)).

14.8 MOHR’S CIRCLE OF STRAIN

The argument of Section 14.7 may be applied to Mohr’s circle of stress described in
Section 14.4. A circle of strain, analogous to that shown in Fig. 14.11, may be drawn
when σx, σy, etc., are replaced by εx, εy, etc., as specified in Section 14.7. The horizontal
extremities of the circle represent the principal strains, the radius of the circle half the
maximum shear strain, and so on.

EXAMPLE 14.5 A structural member is loaded in such a way that at a particular point
in the member a two-dimensional stress system exists consisting of σx = +60 N/mm2,
σy = −40 N/mm2 and τxy = 50 N/mm2.

(a) Calculate the direct strain in the x and y directions and the shear strain, γxy, at the
point.

(b) Calculate the principal strains at the point and determine the position of the
principal planes.

(c) Verify your answer using a graphical method. Take E = 200 000 N/mm2 and
Poisson’s ratio, ν = 0.3.

(a) From Section 7.8

εx = 1
200 000

(60 + 0.3 × 40) = 360 × 10−6

εy = 1
200 000

(−40 − 0.3 × 60) = −290 × 10−6



chap-14 12/1/2005 12: 46 page 392

392 • Chapter 14 / Complex Stress and Strain

The shear modulus, G, is obtained using Eq. (7.21); thus

G = E
2(1 + ν)

= 200 000
2(1 + 0.3)

= 76 923 N/mm2

Hence, from Eq. (7.9)

γxy = τxy

G
= 50

76 923
= 650 × 10−6

(b) Now substituting in Eqs (14.21) and (14.22) for εx, εy and γxy we have

εI = 10−6
[

360 − 290
2

+ 1
2

√
(360 + 290)2 + 6502

]

which gives

εI = 495 × 10−6

Similarly

εII = −425 × 10−6

From Eq. (14.23) we have

tan 2θ = − 650 × 10−6

360 × 10−6 + 290 × 10−6 = −1

Therefore

2θ = −45◦ or −225◦

so that

θ = −22.5◦ or − 112.5◦

(c) Axes Oε and Oγ are set up and the points Q1(360 × 10−6, − 1
2 × 650 × 10−6) and

Q2(−290 × 10−6, 1
2 × 650 × 10−6) located. The centre C of the circle is the inter-

section of Q1Q2 and the Oε axis (Fig. 14.15). The circle is then drawn with radius
equal to CQ1 and the points B(εI) and A(εII) located. Finally, angle Q1CB = −2θ

and Q1CA = −2θ − π .

FIGURE 14.15
Mohr’s circle of

strain for Ex. 14.5




A O
C

B
εII εI εP1P2

Q1

Q2

(�290 � 10�6, � 650 � 10�6)1
2

(360 � 10�6, � 650 � 10�6)1
2

�



chap-14 12/1/2005 12: 46 page 393

14.9 Experimental Measurement of Surface Strains and Stresses • 393

14.9 EXPERIMENTAL MEASUREMENT OF SURFACE STRAINS AND STRESSES

Stresses at a point on the surface of a structural member may be determined by mea-
suring the strains at the point, usually with electrical resistance strain gauges. These
consist of a short length of fine wire sandwiched between two layers of impregnated
paper, the whole being glued to the surface of the member. The resistance of the
wire changes as the wire stretches or contracts so that as the surface of the mem-
ber is strained the gauge indicates a change of resistance which is measurable on a
Wheatstone bridge.

Strain gauges measure direct strains only, but the state of stress at a point may be
investigated in terms of principal stresses by using a strain gauge ‘rosette’. This consists
of three strain gauges inclined at a given angle to each other. Typical of these is the
45◦ or ‘rectangular’ strain gauge rosette illustrated in Fig. 14.16(a). An equiangular
rosette has gauges inclined at 60◦.

Suppose that a rosette consists of three arms, ‘a’, ‘b’ and ‘c’ inclined at angles α and β

as shown in Fig. 14.16(b). Suppose also that εI and εII are the principal strains at the
point and that εI is inclined at an unknown angle θ to the arm ‘a’. Then if εa, εb and
εc are the measured strains in the directions θ , (θ + α) and (θ + α + β) to εI we have,
from Eq. (14.17)

εa = εI cos2 θ + εII sin2 θ (14.26)

in which εn has become εa, εx has become εI, εy has become εII and γxy is zero since
the x and y directions have become principal directions. This situation is equivalent,
as far as εa, εI and εII are concerned, to the strains acting on a triangular element as
shown in Fig. 14.16(c). Rewriting Eq. (14.26) we have

εa = εI

2
(1 + cos 2θ) + εII

2
(1 − cos 2θ)

or

εa = 1
2

(εI + εII) + 1
2

(εI − εII) cos 2θ (14.27)

FIGURE 14.16
Electrical

resistance strain
gauge

measurement (a)

a a

b
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Similarly

εb = 1
2

(εI + εII) + 1
2

(εI − εII) cos 2(θ + α) (14.28)

and

εc = 1
2

(εI + εII) + 1
2

(εI − εII) cos 2(θ + α + β) (14.29)

Therefore if εa, εb and εc are measured in given directions, i.e. given angles α and β,
then εI, εII and θ are the only unknowns in Eqs (14.27), (14.28) and (14.29).

Having determined the principal strains we obtain the principal stresses using
relationships derived in Section 7.8. Thus

εI = 1
E

(σI − νσII) (14.30)

and

εII = 1
E

(σII − νσI) (14.31)

Solving Eqs (14.30) and (14.31) for σI and σII we have

σI = E
1 − ν2 (εI + νεII) (14.32)

and

σII = E
1 − ν2 (εII + νεI) (14.33)

For a 45◦ rosette α = β = 45◦ and the principal strains may be obtained using the
geometry of Mohr’s circle of strain. Suppose that the arm ‘a’ of the rosette is inclined
at some unknown angle θ to the maximum principal strain as in Fig. 14.16(b). Then

O

C N M




90°

2u

R(εc)

P(εb)

εIεII ε

Q(εa)

FIGURE 14.17 Mohr’s circle of strain for a
45◦ strain gauge rosette
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Mohr’s circle of strain is as shown in Fig. 14.17; the shear strains γa, γb and γc do not
feature in the discussion and are therefore ignored. From Fig. 14.17

OC = 1
2

(εa + εc)

CN = εa − OC = 1
2

(εa − εc)

QN = CM = εb − OC = εb − 1
2

(εa + εc)

The radius of the circle is CQ and

CQ =
√

CN2 + QN2

Hence

CQ =
√[

1
2

(εa − εc)
]2

+
[
εb − 1

2
(εa + εc)

]2

which simplifies to

CQ = 1√
2

√
(εa − εb)2 + (εc − εb)2

Therefore εI, which is given by

εI = OC + radius of the circle

is

εI = 1
2

(εa + εc) + 1√
2

√
(εa − εb)2 + (εc − εb)2 (14.34)

Also

εII = OC − radius of the circle

i.e.

εII = 1
2

(εa + εc) − 1√
2

√
(εa − εb)2 + (εc − εb)2 (14.35)

Finally the angle θ is given by

tan 2θ = QN
CN

= εb − (1/2)(εa + εc)
(1/2)(εa − εc)

i.e.

tan 2θ = 2εb − εa − εc

εa − εc
(14.36)

A similar approach can be adopted for a 60◦ rosette.
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EXAMPLE 14.6 A shaft of solid circular cross section has a diameter of 50 mm and is
subjected to a torque, T , and axial load, P. A rectangular strain gauge rosette attached
to the surface of the shaft recorded the following values of strain: εa = 1000 × 10−6,
εb = −200 × 10−6 and εc = −300 × 10−6 where the gauges ‘a’ and ‘c’ are in line with
and perpendicular to the axis of the shaft, respectively. If the material of the shaft has
a Young’s modulus of 70 000 N/mm2 and a Poisson’s ratio of 0.3, calculate the values
of T and P.

Substituting the values of εa, εb and εc in Eq. (14.34) we have

εI = 10−6

2
(1000 − 300) + 10−6

√
2

√
(1000 + 200)2 + (−200 + 300)2

which gives

εI = 10−6

2
(700 + 1703) = 1202 × 10−6

It follows from Eq. (14.35) that

εII = 10−6

2
(700 − 1703) = −502 × 10−6

Substituting for εI and εII in Eq. (14.32) we have

σI = 70 000 × 10−6

1 − (0.3)2 (1202 − 0.3 × 502) = 80.9 N/mm2

Similarly from Eq. (14.33)

σII = 70 000 × 10−6

1 − (0.3)2 (−502 + 0.3 × 1202) = −10.9 N/mm2

Since σy = 0 (note that the axial load produces σx only), Eqs (14.8) and (14.9) reduce to

σI = σx

2
+ 1

2

√
σ 2

x + 4τ 2
xy (i)

and

σII = σx

2
− 1

2

√
σ 2

x + 4τ 2
xy (ii)

respectively. Adding Eqs (i) and (ii) we obtain

σI + σII = σx

Thus

σx = 80.9 − 10.9 = 70 N/mm2

Substituting for σx in either of Eq. (i) or (ii) gives

τxy = 29.7 N/mm2
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For an axial load P

σx = 70 N/mm2 = P
A

= P
(π/4) × 502 (Eq. (7.1))

so that

P = 137.4 kN

Also for the torque T and using Eq. (11.4) we have

τxy = 29.7 N/mm2 = Tr
J

= T × 25
(π/32) × 504

which gives

T = 0.7 kN m

Note that P could have been found directly in this case from the axial strain εa. Thus
from Eq. (7.8)

σx = Eεa = 70 000 × 1000 × 10−6 = 70 N/mm2

as before.

14.10 THEORIES OF ELASTIC FAILURE

The direct stress in a structural member subjected to simple tension or compression
is directly proportional to strain up to the yield point of the material (Section 7.7). It
is therefore a relatively simple matter to design such a member using the direct stress
at yield as the design criterion. However, as we saw in Section 14.3, the direct and
shear stresses at a point in a structural member subjected to a complex loading system
are not necessarily the maximum values at the point. In such cases it is not clear how
failure occurs, so that it is difficult to determine limiting values of load or alternatively
to design a structural member for given loads. An obvious method, perhaps, would be
to use direct experiment in which the structural member is loaded until deformations
are no longer proportional to the applied load; clearly such an approach would be
both time-wasting and uneconomical. Ideally a method is required that relates some
parameter representing the applied stresses to, say, the yield stress in simple tension
which is a constant for a given material.

In Section 14.3 we saw that a complex two-dimensional stress system comprising direct
and shear stresses could be represented by a simpler system of direct stresses only, in
other words, the principal stresses. The problem is therefore simplified to some extent
since the applied loads are now being represented by a system of direct stresses only.
Clearly this procedure could be extended to the three-dimensional case so that no
matter how complex the loading and the resulting stress system, there would remain at
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σI

σI

σII

σII

σIII
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FIGURE 14.18 Reduction of a complex three-dimensional
stress system

the most just three principal stresses, σI, σII and σIII, as shown, for a three-dimensional
element, in Fig. 14.18.

It now remains to relate, in some manner, these principal stresses to the yield stress
in simple tension, σY, of the material.

DUCTILE MATERIALS

A number of theories of elastic failure have been proposed in the past for ductile
materials but experience and experimental evidence have led to all but two being
discarded.

Maximum shear stress theory

This theory is usually linked with the names of Tresca and Guest, although it is more
widely associated with the former. The theory proposes that:

Failure (i.e. yielding) will occur when the maximum shear stress in the material is equal to
the maximum shear stress at failure in simple tension.

For a two-dimensional stress system the maximum shear stress is given in terms of the
principal stresses by Eq. (14.12). For a three-dimensional case the maximum shear
stress is given by

τmax = σmax − σmin

2
(14.37)

where σmax and σmin are the algebraic maximum and minimum principal stresses. At
failure in simple tension the yield stress σY is in fact a principal stress and since there
can be no direct stress perpendicular to the axis of loading, the maximum shear stress
is, therefore, from either of Eqs. (14.12) or (14.37)

τmax = σY

2
(14.38)
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Thus the theory proposes that failure in a complex system will occur when
σmax − σmin

2
= σY

2

or

σmax − σmin = σY (14.39)

Let us now examine stress systems having different relative values of σI, σII and σIII.
First suppose that σI > σII > σIII > 0. From Eq. (14.39) failure occurs when

σI − σIII = σY (14.40)

Second, suppose that σI > σII > 0 but σIII = 0. In this case the three-dimensional stress
system of Fig. 14.18 reduces to a two-dimensional stress system but is still acting on a
three-dimensional element. Thus Eq. (14.39) becomes

σI − 0 = σY

or

σI = σY (14.41)

Here we see an apparent contradiction of Eq. (14.12) where the maximum shear stress
in a two-dimensional stress system is equal to half the difference of σI and σII. However,
the maximum shear stress in that case occurs in the plane of the two-dimensional
element, i.e. in the plane of σI and σII. In this case we have a three-dimensional
element so that the maximum shear stress will lie in the plane of σI and σIII.

Finally, let us suppose that σI >0, σII < 0 and σIII = 0. Again we have a two-
dimensional stress system acting on a three-dimensional element but now σII is a
compressive stress and algebraically less than σIII. Thus Eq. (14.39) becomes

σI − σII = σY (14.42)

Shear strain energy theory

This particular theory of elastic failure was established independently by von Mises,
Maxwell and Hencky but is now generally referred to as the von Mises criterion. The
theory proposes that:

Failure will occur when the shear or distortion strain energy in the material reaches the
equivalent value at yielding in simple tension.

In 1904 Huber proposed that the total strain energy, Ut, of an element of material
could be regarded as comprising two separate parts: that due to change in volume and
that due to change in shape. The former is termed the volumetric strain energy, Uv,
the latter the distortion or shear strain energy, Us. Thus

Ut = Uv + Us (14.43)
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Since it is relatively simple to determine Ut and Uv, we obtain Us by transposing
Eq. (14.43). Hence

Us = Ut − Uv (14.44)

Initially, however, we shall demonstrate that the deformation of an element of material
may be separated into change of volume and change in shape.

The principal stresses σI, σII and σIII acting on the element of Fig. 14.18 may be
written as

σI = 1
3

(σI + σII + σIII) + 1
3

(2σI − σII − σIII)

σII = 1
3

(σI + σII + σIII) + 1
3

(2σII − σI − σIII)

σIII = 1
3

(σI + σII + σIII) + 1
3

(2σIII − σII − σI)

or

σI = σ̄ + σ 1
I

σII = σ̄ + σ 1
II

σIII = σ̄ + σ 1
III


 (14.45)

Thus the stress system of Fig. 14.18 may be represented as the sum of two separate
stress systems as shown in Fig. 14.19. The σ̄ stress system is clearly equivalent to
a hydrostatic or volumetric stress which will produce a change in volume but not a
change in shape. The effect of the σ 1 stress system may be determined as follows.
Adding together Eqs (14.45) we obtain

σI + σII + σIII = 3σ̄ + σ 1
I + σ 1

II + σ 1
III

but

σ̄ = 1
3

(σI + σII + σIII)

FIGURE 14.19
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so that

σ 1
I + σ 1

II + σ 1
III = 0 (14.46)

From the stress–strain relationships of Section 7.8 we have

ε1
I = σ 1

I
E

− ν

E
(σ 1

II + σ 1
III)

ε1
II = σ 1

II
E

− ν

E
(σ 1

I + σ 1
III)

ε1
III = σ 1

III
E

− ν

E
(σ 1

I + σ 1
II)




(14.47)

The volumetric strain εv corresponding to σ 1
I , σ 1

II and σ 1
III is equal to the sum of the

linear strains. Thus from Eqs (14.47)

εv = ε1
I + ε1

II + ε1
III = (1 − 2ν)

E
(σ 1

I + σ 1
II + σ 1

III)

which, from Eq. (14.46), gives

εv = 0

It follows that σ 1
I , σ 1

II and σ 1
III produce no change in volume but only change in shape.

We have therefore successfully divided the σI, σII, σIII stress system into stresses (σ̄ )
producing changes in volume and stresses (σ 1) producing changes in shape.

In Section 7.10 we derived an expression for the strain energy, U , of a member
subjected to a direct stress, σ (Eq. (7.30)), i.e.

U = 1
2

× σ 2

E
× volume

This equation may be rewritten

U = 1
2

× σ × ε × volume

since E = σ/ε. The strain energy per unit volume is then σε/2. Thus for a three-
dimensional element subjected to a stress σ̄ on each of its six faces the strain energy
in one direction is

1
2
σ̄ ε̄

where ε̄ is the strain due to σ̄ in each of the three directions. The total or volumetric
strain energy per unit volume, Uv, of the element is then given by

Uv = 3
(

1
2
σ̄ ε̄

)

or, since

ε̄ = σ̄

E
− 2ν

σ̄

E
= σ̄

E
(1 − 2ν)
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Uv = 1
2
σ̄

3σ̄

E
(1 − 2ν) (14.48)

But

σ̄ = 1
3

(σI + σII + σIII)

so that Eq. (14.48) becomes

Uv = (1 − 2ν)
6E

(σI + σII + σIII)2 (14.49)

By a similar argument the total strain energy per unit volume, Ut, of an element
subjected to stresses σI, σII and σIII is

Ut = 1
2
σIεI + 1

2
σIIεII + 1

2
σIIIεIII (14.50)

where

εI = σI

E
− ν

E
(σII + σIII)

εII = σII

E
− ν

E
(σI + σIII)

εIII = σIII

E
− ν

E
(σI + σII)




(see Eq. (14.47)) (14.51)

and

Substituting for εI, etc. in Eq. (14.50) and then for Uv from Eq. (14.49) and Ut in
Eq. (14.44) we have

Us = 1
2E

[
σ 2

I + σ 2
II + σ 2

III − 2ν(σIσII + σIIσIII + σIIIσI) − (1 − 2ν)
6E

(σI + σII + σIII)2
]

which simplifies to

Us = (1 + ν)
6E

[(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2]

per unit volume.

From Eq. (7.21)

E = 2G(1 + ν)

Thus

Us = 1
12G

[(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2] (14.52)

The shear or distortion strain energy per unit volume at failure in simple tension
corresponds to σI = σY, σII = σIII = 0. Hence from Eq. (14.52)

Us (at failure in simple tension) = σ 2
Y

6G
(14.53)
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According to the von Mises criterion, failure occurs when Us, given by Eq. (14.52),
reaches the value of Us, given by Eq. (14.53), i.e. when

(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2 = 2σ 2
Y (14.54)

For a two-dimensional stress system in which σIII = 0, Eq. (14.54) becomes

σ 2
I + σ 2

II − σIσII = σ 2
Y (14.55)

Design application

Codes of Practice for the use of structural steel in building use the von Mises crite-
rion for a two-dimensional stress system (Eq. (14.55)) in determining an equivalent
allowable stress for members subjected to bending and shear. Thus if σx and τxy are
the direct and shear stresses, respectively, at a point in a member subjected to bending
and shear, then the principal stresses at the point are, from Eqs (14.8) and (14.9)

σI = σx

2
+ 1

2

√
σ 2

x + 4τ 2
xy

σII = σx

2
− 1

2

√
σ 2

x + 4τ 2
xy

Substituting these expressions in Eq. (14.55) and simplifying we obtain

σY =
√

σ 2
x + 3τ 2

xy (14.56)

In Codes of Practice σY is termed an equivalent stress and allowable values are given
for a series of different structural members.

Yield loci

Equations (14.39) and (14.54) may be plotted graphically for a two-dimensional stress
system in which σIII = 0 and in which it is assumed that the yield stress, σY, is the same
in tension and compression.

Figure 14.20 shows the yield locus for the maximum shear stress or Tresca theory of
elastic failure. In the first and third quadrants, when σI and σII have the same sign,
failure occurs when either σI = σY or σII = σY (see Eq. (14.41)) depending on which
principal stress attains the value σY first. For example, a structural member may be
subjected to loads that produce a given value of σII (<σY) and varying values of σI. If
the loads were increased, failure would occur when σI reached the value σY. Similarly
for a fixed value of σI and varying σII. In the second and third quadrants where σI

and σII have opposite signs, failure occurs when σI − σII = σY or σII − σI = σY (see
Eq. (14.42)). Both these equations represent straight lines, each having a gradient of
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FIGURE 14.20 Yield locus for the
Tresca theory of elastic failure

45°
σI

σII

σYσY

σY

σY

Tresca yield locus

FIGURE 14.21 Yield locus for the
von Mises theory

45◦ and an intercept on the σII axis of σY. Clearly all combinations of σI and σII that
lie inside the locus will not cause failure, while all combinations of σI and σII on or
outside the locus will. Thus the inside of the locus represents elastic conditions while
the outside represents plastic conditions. Note that for the purposes of a yield locus,
σI and σII are interchangeable.

The shear strain energy (von Mises) theory for a two-dimensional stress system is
represented by Eq. (14.55). This equation may be shown to be that of an ellipse whose
major and minor axes are inclined at 45◦ to the axes of σI and σII as shown in Fig. 14.21.
It may also be shown that the ellipse passes through the six corners of the Tresca yield
locus so that at these points the two theories give identical results. However, for other
combinations of σI and σII the Tresca theory predicts failure where the von Mises
theory does not so that the Tresca theory is the more conservative of the two.

The value of the yield loci lies in their use in experimental work on the validation of
the different theories. Structural members fabricated from different materials may be
subjected to a complete range of combinations of σI and σII each producing failure. The
results are then plotted on the yield loci and the accuracy of each theory is determined
for different materials.
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EXAMPLE 14.7 The state of stress at a point in a structural member is defined by
a two-dimensional stress system as follows: σx = +140 N/mm2, σy = −70 N/mm2 and
τxy = +60 N/mm2. If the material of the member has a yield stress in simple tension of
225 N/mm2, determine whether or not yielding has occurred according to the Tresca
and von Mises theories of elastic failure.

The first step is to determine the principal stresses σI and σII. From Eqs (14.8)
and (14.9)

σI = 1
2

(140 − 70) + 1
2

√
(140 + 70)2 + 4 × 602

i.e.

σI = 155.9 N/mm2

and

σII = 1
2

(140 − 70) − 1
2

√
(140 + 70)2 + 4 × 602

i.e.

σII = −85.9 N/mm2

Since σII is algebraically less than σIII (=0), Eq. (14.42) applies.

Thus

σI − σII = 241.8 N/mm2

This value is greater than σY (=225 N/mm2) so that according to the Tresca theory
failure has, in fact, occurred.

Substituting the above values of σI and σII in Eq. (14.55) we have

(155.9)2 + (−85.9)2 − (155.9)(−85.9) = 45 075.4

The square root of this expression is 212.3 N/mm2 so that according to the von Mises
theory the material has not failed.

EXAMPLE 14.8 The rectangular cross section of a thin-walled box girder (Fig. 14.22)
is subjected to a bending moment of 250 kN m and a torque of 200 kN m. If the allow-
able equivalent stress for the material of the box girder is 180 N/mm2, determine
whether or not the design is satisfactory using the requirement of Eq. (14.56).

The maximum shear stress in the cross section occurs in the vertical walls of the section
and is given by Eq. (11.22), i.e.

τmax = Tmax

2Atmin
= 200 × 106

2 × 500 × 250 × 10
= 80 N/mm2
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12 mm

12 mm

10 mm 10 mm

500 mm

250 mm FIGURE 14.22 Box girder beam section of Ex. 14.8

The maximum stress due to bending occurs at the top and bottom of each vertical wall
and is given by Eq. (9.9), i.e.

σ = My
I

where

I = 2 × 12 × 250 × 2502 + 2 × 10 × 5003

12
(see Section 9.6)

i.e.

I = 583.3 × 106 mm4

Thus

σ = 250 × 106 × 250
583.3 × 106 = 107.1 N/mm2

Substituting these values in Eq. (14.56) we have√
σ 2

x + 3τ 2
xy =

√
107.12 + 3 × 802 = 175.1 N/mm2

This equivalent stress is less than the allowable value of 180 N/mm2 so that the box
girder section is satisfactory.

EXAMPLE 14.9 A beam of rectangular cross section 60 mm × 100 mm is subjected
to an axial tensile load of 60 000 N. If the material of the beam fails in simple tension
at a stress of 150 N/mm2 determine the maximum shear force that can be applied to
the beam section in a direction parallel to its longest side using the Tresca and von
Mises theories of elastic failure.

The direct stress σx due to the axial load is uniform over the cross section of the beam
and is given by

σx = 60 000
60 × 100

= 10 N/mm2
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The maximum shear stress τmax occurs at the horizontal axis of symmetry of the beam
section and is, from Eq. (10.7)

τmax = 3
2

× Sy

60 × 100
(i)

Thus from Eqs (14.8) and (14.9)

σI = 10
2

+ 1
2

√
102 + 4τ 2

max σII = 10
2

− 1
2

√
102 + 4τ 2

max

or

σI = 5 +
√

25 + τ 2
max σII = 5 −

√
25 + τ 2

max (ii)

It is clear from the second of Eq. (ii) that σII is negative since |√25 + τ 2
max| > 5. Thus

in the Tresca theory Eq. (14.42) applies and

σI − σII = 2
√

25 + τ 2
max = 150 N/mm2

from which

τmax = 74.8 N/mm2

Thus from Eq. (i)

Sy = 299.3 kN

Now substituting for σI and σII in Eq. (14.55) we have

(
5 +

√
25 + τ 2

max

)2

+
(

5 −
√

25 + τ 2
max

)2
−
(

5 +
√

25 + τ 2
max

)(
5 −

√
25 + τ 2

max

)
= 1502

which gives

τmax = 86.4 N/mm2

Again from Eq. (i)

Sy = 345.6 kN

BRITTLE MATERIALS

When subjected to tensile stresses brittle materials such as cast iron, concrete and
ceramics fracture at a value of stress very close to the elastic limit with little or no
permanent yielding on the planes of maximum shear stress. In fact the failure plane is
generally flat and perpendicular to the axis of loading, unlike ductile materials which
have failure planes inclined at approximately 45◦ to the axis of loading; in the latter
case failure occurs on planes of maximum shear stress (see Sections 8.3 and 14.2). This



chap-14 12/1/2005 12: 46 page 408

408 • Chapter 14 / Complex Stress and Strain

would suggest, therefore, that shear stresses have no effect on the failure of brittle
materials and that a direct relationship exists between the principal stresses at a point
in a brittle material subjected to a complex loading system and the failure stress in
simple tension or compression. This forms the basis for the most widely accepted
theory of failure for brittle materials.

Maximum normal stress theory

This theory, frequently attributed to Rankine, states that:

Failure occurs when one of the principal stresses reaches the value of the yield stress in
simple tension or compression.

For most brittle materials the yield stress in tension is very much less than the yield
stress in compression, e.g. for concrete σY (compression) is approximately 20σY (ten-
sion). Thus it is essential in any particular problem to know which of the yield stresses
is achieved first.

Suppose that a brittle material is subjected to a complex loading system which produces
principal stresses σI, σII and σIII as in Fig. 14.18. Thus for σI > σII > σIII > 0 failure
occurs when

σI = σY (tension) (14.57)

Alternatively, for σI > σII > 0, σIII < 0 and σI < σY (tension) failure occurs when

σIII = σY (compression) (14.58)

and so on.

A yield locus may be drawn for the two-dimensional case, as for the Tresca and von
Mises theories of failure for ductile materials, and is shown in Fig. 14.23. Note that
since the failure stress in tension, σY(T), is generally less than the failure stress in
compression, σY(C), the yield locus is not symmetrically arranged about the σI and σII

FIGURE 14.23
Yield locus for a
brittle material

σII

σI

σII � σY(T)σII � σY(T)

σI � σY(T)

σI � σY(T)
σI � σY(C)

σI � σY(C)

σII � σY(C)σII � σY(C)

σI � 0, σII � 0σI � 0, σII � 0

σI � 0, σII � 0σI � 0, σII � 0

σY(T)

σY(T)σY(C)

σY(C)
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axes. Again combinations of stress corresponding to points inside the locus will not
cause failure, whereas combinations of σI and σII on or outside the locus will.

EXAMPLE 14.10 A concrete beam has a rectangular cross section 250 mm ×
500 mm and is simply supported over a span of 4 m. Determine the maximum mid-span
concentrated load the beam can carry if the failure stress in simple tension of concrete
is 1.5 N/mm2. Neglect the self-weight of the beam.

If the central concentrated load is W N the maximum bending moment occurs at
mid-span and is

4W
4

= W Nm (see Ex.3.6)

The maximum direct tensile stress due to bending occurs at the soffit of the beam
and is

σ = W × 103 × 250 × 12
250 × 5003 = W × 9.6 × 10−5 N/mm2 (Eq. 9.9)

At this point the maximum principal stress is, from Eq. (14.8)

σI = W × 9.6 × 10−5 N/mm2

Thus from Eq. (14.57) the maximum value of W is given by

σI = W × 9.6 × 10−5 = σY (tension) = 1.5 N/mm2

from which W = 15.6 kN.

The maximum shear stress occurs at the horizontal axis of symmetry of the beam
section over each support and is, from Eq. (10.7)

τmax = 3
2

× W/2
250 × 500

i.e.

τmax = W × 0.6 × 10−5 N/mm2

Again, from Eq. (14.8), the maximum principal stress is

σ1 = W × 0.6 × 10−5 N/mm2 = σY (tension) = 1.5 N/mm2

from which

W = 250 kN

Thus the maximum allowable value of W is 15.6 kN.
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P R O B L E M S

P.14.1 At a point in an elastic material there are two mutually perpendicular planes,
one of which carries a direct tensile stress of 50 N/mm2 and a shear stress of 40 N/mm2

while the other plane is subjected to a direct compressive stress of 35 N/mm2 and a
complementary shear stress of 40 N/mm2. Determine the principal stresses at the
point, the position of the planes on which they act and the position of the planes on
which there is no direct stress.

Ans. σI = 65.9 N/mm2, θ = −21.6◦ σII = −50.9 N/mm2, θ = −111.6◦.

No direct stress on planes at 27.1◦ and 117.1◦ to the plane on which the 50 N/mm2

stress acts.

P.14.2 One of the principal stresses in a two-dimensional stress system is 139 N/mm2

acting on a plane A. On another plane B normal and shear stresses of 108 and
62 N/mm2, respectively, act. Determine

(a) the angle between the planes A and B,

(b) the other principal stress,

(c) the direct stress on the plane perpendicular to plane B.

Ans. (a) 26◦34′, (b) −16 N/mm2, (c) 15 N/mm2.

P.14.3 The state of stress at a point in a structural member may be represented by
a two-dimensional stress system in which σx = 100 N/mm2, σy = −80 N/mm2 and
τxy = 45 N/mm2. Determine the direct stress on a plane inclined at 60◦ to the pos-
itive direction of σx and also the principal stresses. Calculate also the inclination of
the principal planes to the plane on which σx acts. Verify your answers by a graphical
method.

Ans. σn = 16 N/mm2 σI = 110.6 N/mm2 σII = −90.6 N/mm2 θ = −13.3◦ and
−103.3◦.

P.14.4 Determine the normal and shear stress on the plane AB shown in Fig. P.14.4
when

(i) α = 60◦, σx = 54 N/mm2, σy = 30 N/mm2, τxy = 5 N/mm2;

(ii) α = 120◦, σx = −60 N/mm2, σy = −36 N/mm2, τxy = 5 N/mm2.

Ans. (i) σn = 52.3 N/mm2, τ = 7.9 N/mm2;

(ii) σn = −58.3 N/mm2, τ = 7.9 N/mm2.
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y

x

A

B
a

FIGURE P.14.4

P.14.5 A shear stress τxy acts in a two-dimensional field in which the maximum allow-
able shear stress is denoted by τmax and the major principal stress by σI. Derive, using
the geometry of Mohr’s circle of stress, expressions for the maximum values of direct
stress which may be applied to the x and y planes in terms of the parameters given.

Ans. σx = σI − τmax +
√

τ 2
max − τ 2

xy σy = σI − τmax −
√

τ 2
max − τ 2

xy.

P.14.6 In an experimental determination of principal stresses a cantilever of hollow
circular cross section is subjected to a varying bending moment and torque; the inter-
nal and external diameters of the cantilever are 40 and 50 mm, respectively. For a
given loading condition the bending moment and torque at a particular section of the
cantilever are 100 and 50 N m, respectively. Calculate the maximum and minimum
principal stresses at a point on the outer surface of the cantilever at this section where
the direct stress produced by the bending moment is tensile. Determine also the max-
imum shear stress at the point and the inclination of the principal stresses to the axis
of the cantilever.

The experimental values of principal stress are estimated from readings obtained from
a 45◦ strain gauge rosette aligned so that one of its three arms is parallel to and another
perpendicular to the axis of the cantilever. For the loading condition of zero torque
and varying bending moment, comment on the ratio of these strain gauge readings.

Ans. σI = 14.6 N/mm2 σII = −0.8 N/mm2

τmax = 7.7 N/mm2 θ = −13.3◦ and −103.3◦.

P.14.7 A thin-walled cylinder has an internal diameter of 1200 mm and has walls
1.2 mm thick. It is subjected to an internal pressure of 0.7 N/mm2 and a torque, about
its longitudinal axis, of 500 kN m. Determine the principal stresses at a point in the
wall of the cylinder and also the maximum shear stress.

Ans. 466.4 N/mm2, 58.6 N/mm2, 203.9 N/mm2.

P.14.8 A rectangular piece of material is subjected to tensile stresses of 83 and
65 N/mm2 on mutually perpendicular faces. Find the strain in the direction of each
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stress and in the direction perpendicular to both stresses. Determine also the max-
imum shear strain in the plane of the stresses, the maximum shear stress and their
directions. Take E = 200 000 N/mm2 and ν = 0.3.

Ans. 3.18 × 10−4, 2.01 × 10−4, −2.22 × 10−4, γmax = 1.17 × 10−4, τmax = 9.0 N/mm2

at 45◦ to the direction of the given stresses.

P.14.9 A cantilever beam of length 2 m has a rectangular cross section 100 mm wide
and 200 mm deep. The beam is subjected to an axial tensile load, P, and a vertically
downward uniformly distributed load of intensity w. A rectangular strain gauge rosette
attached to a vertical side of the beam at the built-in end and in the neutral plane of
the beam recorded the following values of strain: εa = 1000 × 10−6, εb = 100 × 10−6,
εc = −300 × 10−6. The arm ‘a’ of the rosette is aligned with the longitudinal axis of
the beam while the arm ‘c’ is perpendicular to the longitudinal axis.

Calculate the value of Poisson’s ratio, the principal strains at the point and hence the
values of P and w. Young’s modulus, E = 200 000 N/mm2.

Ans. P = 4000 kN w = 255.3 kN/m.

P.14.10 A beam has a rectangular thin-walled box section 50 mm wide by 100 mm
deep and has walls 2 mm thick. At a particular section the beam carries a bending
moment M and a torque T . A rectangular strain gauge rosette positioned on the top
horizontal wall of the beam at this section recorded the following values of strain:
εa = 1000×10−6, εb = −200×10−6, εc = −300×10−6. If the strain gauge ‘a’ is aligned
with the longitudinal axis of the beam and the strain gauge ‘c’ is perpendicular to
the longitudinal axis, calculate the values of M and T . Take E = 200 000 N/mm2 and
ν = 0.3.

Ans. M = 3333 Nm T = 1692 Nm.

P.14.11 The simply supported beam shown in Fig. P.14.11 carries two symmetrically
placed transverse loads, W . A rectangular strain gauge rosette positioned at the point
P gave strain readings as follows: εa = −222 ×10−6, εb = −213×10−6, εc = 45×10−6.
Also the direct stress at P due to an external axial compressive load is 7 N/mm2.
Calculate the magnitude of the transverse load. Take E = 31 000 N/mm2, ν = 0.2.

Ans. W = 98.1 kN

Equal distances

W W

Centroidal
axis

a
P

P
c b

150 mm

300 mm
45°

FIGURE P.14.11
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P.14.12 In a tensile test on a metal specimen having a cross section 20 mm by 10 mm
elastic breakdown occurred at a load of 70 000 N.

A thin plate made from the same material is to be subjected to loading such that at
a certain point in the plate the stresses are σy = −70 N/mm2, τxy = 60 N/mm2 and
σx. Determine the maximum allowable values of σx using the Tresca and von Mises
theories of elastic breakdown.

Ans. 259 N/mm2 (Tresca) 294 N/mm2 (von Mises).

P.14.13 A beam of circular cross section is 3000 mm long and is attached at each end
to supports which allow rotation of the ends of the beam in the longitudinal vertical
plane of symmetry but prevent rotation of the ends in vertical planes perpendicular
to the axis of the beam (Fig. P.14.13). The beam supports an offset load of 40 000 N at
mid-span.

If the material of the beam suffers elastic breakdown in simple tension at a stress of
145 N/mm2, calculate the minimum diameter of the beam on the basis of the Tresca
and von Mises theories of elastic failure.

Ans. 136 mm (Tresca) 135 mm (von Mises).

40 000 N

40 000 N

3000 mm 1000 mm FIGURE P.14.13

P.14.14 A cantilever of circular cross section has a diameter of 150 mm and is made
from steel, which, when subjected to simple tension suffers elastic breakdown at a
stress of 150 N/mm2.

The cantilever supports a bending moment and a torque, the latter having a value
numerically equal to twice that of the former. Calculate the maximum allowable val-
ues of the bending moment and torque on the basis of the Tresca and von Mises
theories of elastic failure.

Ans. M = 22.2 kN m T = 44.4 kN m (Tresca).

M = 24.9 kN m T = 49.8 kN m (von Mises).

P.14.15 A certain material has a yield stress limit in simple tension of 387 N/mm2. The
yield limit in compression can be taken to be equal to that in tension. The material is
subjected to three stresses in mutually perpendicular directions, the stresses being in
the ratio 3 : 2 : −1.8. Determine the stresses that will cause failure according to the
von Mises and Tresca theories of elastic failure.
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Ans. Tresca: σI = 241.8 N/mm2 σII = 161.2 N/mm2 σIII = −145.1 N/mm2.

von Mises: σI = 264.0 N/mm2 σII = 176.0 N/mm2 σIII = −158.4 N/mm2.

P.14.16 A column has the cross section shown in Fig. P.14.16 and carries a compressive
load P parallel to its longitudinal axis. If the failure stresses of the material of the col-
umn are 4 and 22 N/mm2 in simple tension and compression, respectively, determine
the maximum allowable value of P using the maximum normal stress theory.

Ans. 634.9 kN.

200 mm

100 mm

400 mm

P

FIGURE P.14.16
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The majority of the structural problems we have encountered so far have involved
structures in which the support reactions and the internal force systems are statically
determinate. These include beams, trusses, cables and three-pinned arches and, in the
case of beams, we have calculated displacements. Some statically indeterminate struc-
tures have also been investigated. These include the composite structural members in
Section 7.10 and the circular section beams subjected to torsion and supported at each
end in Section 11.1. These relatively simple problems were solved using a combination
of statical equilibrium and compatibility of displacements. Further, in Section 13.6, a
statically indeterminate propped cantilever was analysed using the principle of super-
position (Section 3.7) while the support reactions for some cases of fixed beams were
determined by combining the conditions of statical equilibrium with the moment-area
method (Section 13.3). These methods are perfectly adequate for the comparatively
simple problems to which they have been applied. However, other more powerful
methods of analysis are required for more complex structures which may possess a
high degree of statical indeterminacy. These methods will, in addition, be capable of
providing rapid solutions for some statically determinate problems, particularly those
involving the calculation of displacements.

The methods fall into two categories and are based on two important concepts; the first,
the principle of virtual work, is the most fundamental and powerful tool available for
the analysis of statically indeterminate structures and has the advantage of being able
to deal with conditions other than those in the elastic range, while the second, based
on strain energy, can provide approximate solutions of complex problems for which
exact solutions may not exist. The two methods are, in fact, equivalent in some cases
since, although the governing equations differ, the equations themselves are identical.

In modern structural analysis, computer-based techniques are widely used; these
include the flexibility and stiffness methods. However, the formulation of, say, stiff-
ness matrices for the elements of a complex structure is based on one of the above
approaches, so that a knowledge and understanding of their application is advanta-
geous. We shall examine the flexibility and stiffness methods in Chapter 16 and their
role in computer-based analysis.

Other specialist approaches have been developed for particular problems. Examples of
these are the slope-deflection method for beams and the moment-distribution method

415
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for beams and frames; these will also be described in Chapter 16 where we shall
consider statically indeterminate structures. Initially, however, in this chapter, we
shall examine the principle of virtual work, the different energy theorems and some
of the applications of these two concepts.

15.1 WORK

Before we consider the principle of virtual work in detail, it is important to clarify
exactly what is meant by work. The basic definition of work in elementary mechanics
is that ‘work is done when a force moves its point of application’. However, we shall
require a more exact definition since we shall be concerned with work done by both
forces and moments and with the work done by a force when the body on which it acts
is given a displacement which is not coincident with the line of action of the force.

Consider the force, F, acting on a particle, A, in Fig. 15.1(a). If the particle is given a
displacement, �, by some external agency so that it moves to A′ in a direction at an
angle α to the line of action of F, the work, WF , done by F is given by

WF = F(� cos α) (15.1)

or

WF = (F cos α)� (15.2)

Thus we see that the work done by the force, F, as the particle moves from A to A′

may be regarded as either the product of F and the component of � in the direction
of F (Eq. (15.1)) or as the product of the component of F in the direction of � and �

(Eq. (15.2)).

Now consider the couple (pure moment) in Fig. 15.1(b) and suppose that the couple
is given a small rotation of θ radians. The work done by each force F is then F(a/2)θ
so that the total work done, WC, by the couple is

WC = F
a
2
θ + F

a
2
θ = Faθ

FIGURE 15.1 Work
done by a force
and a moment
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It follows that the work done, WM , by the pure moment, M , acting on the bar AB in
Fig. 15.1(c) as it is given a small rotation, θ , is

WM = Mθ (15.3)

Note that in the above the force, F, and moment, M , are in position before the
displacements take place and are not the cause of them. Also, in Fig. 15.1(a), the
component of � parallel to the direction of F is in the same direction as F; if it had
been in the opposite direction the work done would have been negative. The same
argument applies to the work done by the moment, M , where we see in Fig. 15.1(c)
that the rotation, θ , is in the same sense as M . Note also that if the displacement, �,
had been perpendicular to the force, F, no work would have been done by F.

Finally it should be remembered that work is a scalar quantity since it is not associated
with direction (in Fig. 15.1(a) the force F does work if the particle is moved in any
direction). Thus the work done by a series of forces is the algebraic sum of the work
done by each force.

15.2 PRINCIPLE OF VIRTUAL WORK

The establishment of the principle will be carried out in stages. First we shall consider
a particle, then a rigid body and finally a deformable body, which is the practical
application we require when analysing structures.

PRINCIPLE OF VIRTUAL WORK FOR A PARTICLE

In Fig. 15.2 a particle, A, is acted upon by a number of concurrent forces, F1, F2, . . . ,
Fk, . . . , Fr ; the resultant of these forces is R. Suppose that the particle is given a small
arbitrary displacement, �v, to A′ in some specified direction; �v is an imaginary or
virtual displacement and is sufficiently small so that the directions of F1, F2, etc., are
unchanged. Let θR be the angle that the resultant, R, of the forces makes with the
direction of �v and θ1, θ2, . . . , θk, . . . , θr the angles that F1, F2, . . . , Fk, . . . , Fr make

F2

Fk

Fr

F1

A

R

A�

u1

uR

�V

FIGURE 15.2 Virtual work for
a system of forces acting on a
particle
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with the direction of �v, respectively. Then, from either of Eqs (15.1) or (15.2) the
total virtual work, WF , done by the forces F as the particle moves through the virtual
displacement, �v, is given by

WF = F1�v cos θ1 + F2�v cos θ2 + · · · + Fk�v cos θk + · · · + Fr�v cos θr

Thus

WF =
r∑

k=1

Fk�v cos θk

or, since �v is a fixed, although imaginary displacement

WF = �v

r∑
k=1

Fk cos θk (15.4)

In Eq. (15.4)
∑r

k=1 Fk cos θk is the sum of all the components of the forces, F, in the
direction of �v and therefore must be equal to the component of the resultant, R, of
the forces, F, in the direction of �v, i.e.

WF = �v

r∑
k=1

Fk cos θk = �vR cos θR (15.5)

If the particle, A, is in equilibrium under the action of the forces, F1, F2, . . . ,
Fk, . . . , Fr , the resultant, R, of the forces is zero (Chapter 2). It follows from Eq. (15.5)
that the virtual work done by the forces, F, during the virtual displacement, �v, is zero.

We can therefore state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces the total work done
by the forces for a small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is
not in equilibrium if the virtual displacement is taken to be in a direction perpendicular
to their resultant, R. We cannot, therefore, state the converse of the above principle
unless we specify that the total work done must be zero for any arbitrary displacement.
Thus:

A particle is in equilibrium under the action of a system of forces if the total work done by
the forces is zero for any virtual displacement of the particle.

Note that in the above, �v is a purely imaginary displacement and is not related in
any way to the possible displacement of the particle under the action of the forces,
F. �v has been introduced purely as a device for setting up the work–equilibrium
relationship of Eq. (15.5). The forces, F, therefore remain unchanged in magnitude
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and direction during this imaginary displacement; this would not be the case if the
displacement were real.

PRINCIPLE OF VIRTUAL WORK FOR A RIGID BODY

Consider the rigid body shown in Fig. 15.3, which is acted upon by a system of external
forces, F1, F2, . . . , Fk, . . . , Fr . These external forces will induce internal forces in the
body, which may be regarded as comprising an infinite number of particles; on adjacent
particles, such as A1 and A2, these internal forces will be equal and opposite, in other
words self-equilibrating. Suppose now that the rigid body is given a small, imaginary,
that is virtual, displacement, �v (or a rotation or a combination of both), in some
specified direction. The external and internal forces then do virtual work and the total
virtual work done, Wt, is the sum of the virtual work, We, done by the external forces
and the virtual work, Wi, done by the internal forces. Thus

Wt = We + Wi (15.6)

Since the body is rigid, all the particles in the body move through the same displace-
ment, �v, so that the virtual work done on all the particles is numerically the same.
However, for a pair of adjacent particles, such as A1 and A2 in Fig. 15.3, the self-
equilibrating forces are in opposite directions, which means that the work done on A1

is opposite in sign to the work done on A2. Thus the sum of the virtual work done on
A1 and A2 is zero. The argument can be extended to the infinite number of pairs of
particles in the body from which we conclude that the internal virtual work produced
by a virtual displacement in a rigid body is zero. Equation (15.6) then reduces to

Wt = We (15.7)

Since the body is rigid and the internal virtual work is therefore zero, we may regard
the body as a large particle. It follows that if the body is in equilibrium under the action
of a set of forces, F1, F2, . . . , Fk, . . . , Fr , the total virtual work done by the external
forces during an arbitrary virtual displacement of the body is zero.

Self-equilibrating internal forces

F1

Fr Fk

F2

A1 A2

FIGURE 15.3 Virtual
work for a rigid body
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The principle of virtual work is, in fact, an alternative to Eq. (2.10) for specifying the
necessary conditions for a system of coplanar forces to be in equilibrium. To illustrate
the truth of this we shall consider the calculation of the support reactions in a simple
beam.

EXAMPLE 15.1 Calculate the support reactions in the simply supported beam
shown in Fig. 15.4.

FIGURE 15.4 Use of
the principle of
virtual work to

calculate support
reactions

W

W

W

B

B�

B�

A�

C�
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A

RA
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RC

RC

RC

C

a b

a b

L

L

A

A B

B C

C

�v,B

�v � uva

uv

�v � uvL
�v

�v,C

(a)

(b)

(c)

Only a vertical load is applied to the beam so that only vertical reactions, RA and RC,
are produced.
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Suppose that the beam at C is given a small imaginary, that is a virtual, displacement,
�v,C, in the direction of RC as shown in Fig. 15.4(b). Since we are concerned here
solely with the external forces acting on the beam we may regard the beam as a rigid
body. The beam therefore rotates about A so that C moves to C′ and B moves to B′.
From similar triangles we see that

�v,B = a
a + b

�v,C = a
L

�v,C (i)

The total virtual work, Wt, done by all the forces acting on the beam is then given by

Wt = RC�v,C − W�v,B (ii)

Note that the work done by the load, W , is negative since �v,B is in the opposite
direction to its line of action. Note also that the support reaction, RA, does no work
since the beam only rotates about A. Now substituting for �v,B in Eq. (ii) from Eq. (i)
we have

Wt = RC�v,C − W
a
L

�v,C (iii)

Since the beam is in equilibrium, Wt is zero from the principal of virtual work. Hence,
from Eq. (iii)

RC�v,C − W
a
L

�v,C = 0

which gives

RC = W
a
L

which is the result that would have been obtained from a consideration of the moment
equilibrium of the beam about A. RA follows in a similar manner. Suppose now that
instead of the single displacement �v,C the complete beam is given a vertical virtual
displacement, �v, together with a virtual rotation, θv, about A as shown in Fig. 15.4(c).
The total virtual work, Wt, done by the forces acting on the beam is now given by

Wt = RA�v − W (�v + aθv) + RC(�v + Lθv) = 0 (iv)

since the beam is in equilibrium. Rearranging Eq. (iv)

(RA + RC − W )�v + (RCL − Wa)θv = 0 (v)

Equation (v) is valid for all values of �v and θv so that

RA + RC − W = 0 RCL − Wa = 0

which are the equations of equilibrium we would have obtained by resolving forces
vertically and taking moments about A.

It is not being suggested here that the application of Eq. (2.10) should be abandoned
in favour of the principle of virtual work. The purpose of Ex. 15.1 is to illustrate the
application of a virtual displacement and the manner in which the principle is used.
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VIRTUAL WORK IN A DEFORMABLE BODY

In structural analysis we are not generally concerned with forces acting on a rigid body.
Structures and structural members deform under load, which means that if we assign a
virtual displacement to a particular point in a structure, not all points in the structure
will suffer the same virtual displacement as would be the case if the structure were
rigid. This means that the virtual work produced by the internal forces is not zero as it
is in the rigid body case, since the virtual work produced by the self-equilibrating forces
on adjacent particles does not cancel out. The total virtual work produced by applying
a virtual displacement to a deformable body acted upon by a system of external forces
is therefore given by Eq. (15.6).

If the body is in equilibrium under the action of the external force system then every
particle in the body is also in equilibrium. Therefore, from the principle of virtual
work, the virtual work done by the forces acting on the particle is zero irrespective
of whether the forces are external or internal. It follows that, since the virtual work
is zero for all particles in the body, it is zero for the complete body and Eq. (15.6)
becomes

We + Wi = 0 (15.8)

Note that in the above argument only the conditions of equilibrium and the concept
of work are employed. Thus Eq. (15.8) does not require the deformable body to be
linearly elastic (i.e. it need not obey Hooke’s law) so that the principle of virtual work
may be applied to any body or structure that is rigid, elastic or plastic. The principle
does require that displacements, whether real or imaginary, must be small, so that
we may assume that external and internal forces are unchanged in magnitude and
direction during the displacements. In addition the virtual displacements must be
compatible with the geometry of the structure and the constraints that are applied,
such as those at a support. The exception is the situation we have in Ex. 15.1 where
we apply a virtual displacement at a support. This approach is valid since we include
the work done by the support reactions in the total virtual work equation.

WORK DONE BY INTERNAL FORCE SYSTEMS

The calculation of the work done by an external force is straightforward in that it
is the product of the force and the displacement of its point of application in its
own line of action (Eqs (15.1), (15.2) or (15.3)) whereas the calculation of the work
done by an internal force system during a displacement is much more complicated. In
Chapter 3 we saw that no matter how complex a loading system is, it may be simplified
to a combination of up to four load types: axial load, shear force, bending moment
and torsion; these in turn produce corresponding internal force systems. We shall
now consider the work done by these internal force systems during arbitrary virtual
displacements.



chap-15 17/1/2005 16: 15 page 423

15.2 Principle of Virtual Work • 423

Cross-sectional
area, A

T

y

S

N

G
M

z

x

�x

�A

FIGURE 15.5 Virtual
work due to internal
force system

Axial force

Consider the elemental length, δx, of a structural member as shown in Fig. 15.5 and
suppose that it is subjected to a positive internal force system comprising a normal
force (i.e. axial force), N , a shear force, S, a bending moment, M and a torque, T ,
produced by some external loading system acting on the structure of which the member
is part. Note that the face on which the internal forces act is a negative face, see Fig. 3.7.
The stress distributions corresponding to these internal forces have been related in
previous chapters to an axis system whose origin coincides with the centroid of area of
the cross section. We shall, in fact, be using these stress distributions in the derivation
of expressions for internal virtual work in linearly elastic structures so that it is logical
to assume the same origin of axes here; we shall also assume that the y axis is an axis
of symmetry. Initially we shall consider the normal force, N .

The direct stress, σ , at any point in the cross section of the member is given by σ = N /A
(Eq. (7.1)). Therefore the normal force on the element δA at the point (z, y) is

δN = σδA = N
A

δA

Suppose now that the structure is given an arbitrary virtual displacement which pro-
duces a virtual axial strain, εv, in the element. The internal virtual work, δwi,N , done
by the axial force on the elemental length of the member is given by

δwi,N =
∫

A

N
A

dAεv δx
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which, since
∫

A dA = A, reduces to

δwi,N = Nεv δx (15.9)

In other words, the virtual work done by N is the product of N and the virtual axial
displacement of the element of the member. For a member of length L, the virtual
work, wi,N , done during the arbitrary virtual strain is then

wi,N =
∫

L
Nεv dx (15.10)

For a structure comprising a number of members, the total internal virtual work, Wi,N ,
done by axial force is the sum of the virtual work of each of the members. Thus

wi,N =
∑∫

L
Nεv dx (15.11)

Note that in the derivation of Eq. (15.11) we have made no assumption regarding the
material properties of the structure so that the relationship holds for non-elastic as
well as elastic materials. However, for a linearly elastic material, i.e. one that obeys
Hooke’s law (Section 7.7), we can express the virtual strain in terms of an equivalent
virtual normal force. Thus

εv = σv

E
= Nv

EA
Therefore, if we designate the actual normal force in a member by NA, Eq. (15.11)
may be expressed in the form

wi,N =
∑∫

L

NANv

EA
dx (15.12)

Shear force

The shear force, S, acting on the member section in Fig. 15.5 produces a distribution
of vertical shear stress which, as we saw in Section 10.2, depends upon the geometry
of the cross section. However, since the element, δA, is infinitesimally small, we may
regard the shear stress, τ , as constant over the element. The shear force, δS, on the
element is then

δS = τ δA (15.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a
virtual shear strain, γv, at the element. This shear strain represents the angular rotation
in a vertical plane of the element δA × δx relative to the longitudinal centroidal axis
of the member. The vertical displacement at the section being considered is therefore
γv δx. The internal virtual work, δwi,S, done by the shear force, S, on the elemental
length of the member is given by

δwi,S =
∫

A
τ dAγv δx
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We saw in Section 13.5 that we could assume a uniform shear stress through the cross
section of a beam if we allowed for the actual variation by including a form factor, β.
Thus the expression for the internal virtual work in the member may be written

δwi,S =
∫

A
β

(
S
A

)
dAγv δx

or

δwi,S = βSγv δx (15.14)

Hence the virtual work done by the shear force during the arbitrary virtual strain in a
member of length L is

wi,S = β

∫
L

Sγv dx (15.15)

For a linearly elastic member, as in the case of axial force, we may express the virtual
shear strain, γv, in terms of an equivalent virtual shear force, Sv. Thus, from Section 7.7

γv = τv

G
= Sv

GA

so that from Eq. (15.15)

wi,S = β

∫
L

SASv

GA
dx (15.16)

For a structure comprising a number of linearly elastic members the total internal
work, Wi,S, done by the shear forces is

Wi,S =
∑

β

∫
L

SASv

GA
dx (15.17)

Bending moment

The bending moment, M , acting on the member section in Fig. 15.5 produces a distri-
bution of direct stress, σ , through the depth of the member cross section. The normal
force on the element, δA, corresponding to this stress is therefore σ δA. Again we
shall suppose that the structure is given a small arbitrary virtual displacement which
produces a virtual direct strain, εv, in the element δA × δx. Thus the virtual work done
by the normal force acting on the element δA is σ δA εv δx. Hence, integrating over the
complete cross section of the member we obtain the internal virtual work, δwi,M , done
by the bending moment, M , on the elemental length of member, i.e.

δwi,M =
∫

A
σ dAεv δx (15.18)

The virtual strain, εv, in the element δA × δx is, from Eq. (9.1), given by

εv = y
Rv
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where Rv is the radius of curvature of the member produced by the virtual displace-
ment. Thus, substituting for εv in Eq. (15.18), we obtain

δwi,M =
∫

A
σ

y
Rv

dA δx

or, since σ y δA is the moment of the normal force on the element, δA, about the z axis,

δwi,M = M
Rv

δx

Therefore, for a member of length L, the internal virtual work done by an actual
bending moment, MA, is given by

wi,M =
∫

L

MA

Rv
dx (15.19)

In the derivation of Eq. (15.19) no specific stress–strain relationship has been assumed,
so that it is applicable to a non-linear system. For the particular case of a linearly elastic
system, the virtual curvature 1/Rv may be expressed in terms of an equivalent virtual
bending moment, Mv, using the relationship of Eq. (9.11), i.e.

1
Rv

= Mv

EI

Substituting for 1/Rv in Eq. (15.19) we have

wi,M =
∫

L

MAMv

EI
dx (15.20)

so that for a structure comprising a number of members the total internal virtual work,
Wi,M , produced by bending is

Wi,M =
∑∫

L

MAMv

EI
dx (15.21)

In Chapter 9 we used the suffix ‘z’ to denote a bending moment in a vertical plane
about the z axis (Mz) and the second moment of area of the member section about the
z axis (Iz). Clearly the bending moments in Eq. (15.21) need not be restricted to those
in a vertical plane; the suffixes are therefore omitted.

Torsion

The internal virtual work, wi,T , due to torsion in the particular case of a linearly elastic
circular section bar may be found in a similar manner and is given by

wi,T =
∫

L

TATv

GIo
dx (15.22)

in which Io is the polar second moment of area of the cross section of the bar (see Sec-
tion 11.1). For beams of non-circular cross section, Io is replaced by a torsion constant,
J , which, for many practical beam sections is determined empirically (Section 11.5).
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Hinges

In some cases it is convenient to impose a virtual rotation, θv, at some point in a
structural member where, say, the actual bending moment is MA. The internal virtual
work done by MA is then MAθv (see Eq. (15.3)); physically this situation is equivalent
to inserting a hinge at the point.

Sign of internal virtual work

So far we have derived expressions for internal work without considering whether it is
positive or negative in relation to external virtual work.

Suppose that the structural member, AB, in Fig. 15.6(a) is, say, a member of a truss and
that it is in equilibrium under the action of two externally applied axial tensile loads,
P; clearly the internal axial, that is normal, force at any section of the member is P.
Suppose now that the member is given a virtual extension, δv, such that B moves to B′.
Then the virtual work done by the applied load, P, is positive since the displacement,
δv, is in the same direction as its line of action. However, the virtual work done by
the internal force, N (=P), is negative since the displacement of B is in the opposite
direction to its line of action; in other words work is done on the member. Thus, from
Eq. (15.8), we see that in this case

We = Wi (15.23)

Equation (15.23) would apply if the virtual displacement had been a contraction and
not an extension, in which case the signs of the external and internal virtual work in
Eq. (15.8) would have been reversed. Clearly the above applies equally if P is a com-
pressive load. The above arguments may be extended to structural members subjected
to shear, bending and torsional loads, so that Eq. (15.23) is generally applicable.

VIRTUAL WORK DUE TO EXTERNAL FORCE SYSTEMS

So far in our discussion we have only considered the virtual work produced by externally
applied concentrated loads. For completeness we must also consider the virtual work
produced by moments, torques and distributed loads.
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In Fig. 15.7 a structural member carries a distributed load, w(x), and at a particular
point a concentrated load, W , a moment, M , and a torque, T . Suppose that at the
point a virtual displacement is imposed that has translational components, �v, y and
�v,x, parallel to the y and x axes, respectively, and rotational components, θv and φv,
in the yx and zy planes, respectively.

If we consider a small element, δx, of the member at the point, the distributed load
may be regarded as constant over the length δx and acting, in effect, as a concentrated
load w(x) δx. Thus the virtual work, we, done by the complete external force system is
given by

we = W�v, y + P�v, x + Mθv + Tφv +
∫

L
w(x)�v, y dx

For a structure comprising a number of load positions, the total external virtual work
done is then

We =
∑[

W�v, y + P�v, x + Mθv + Tφv +
∫

L
w(x)�v, y dx

]
(15.24)

In Eq. (15.24) there need not be a complete set of external loads applied at every
loading point so, in fact, the summation is for the appropriate number of loads. Further,
the virtual displacements in the above are related to forces and moments applied in
a vertical plane. We could, of course, have forces and moments and components of
the virtual displacement in a horizontal plane, in which case Eq. (15.24) would be
extended to include their contribution.

The internal virtual work equivalent of Eq. (15.24) for a linear system is, from Eqs
(15.12), (15.17), (15.21) and (15.22)

Wi =
∑[∫

L

NANv

EA
dx + β

∫
L

SASv

GA
dx +

∫
L

MAMv

EI
dx +

∫
L

TATv

GJ
dx + MAθv

]
(15.25)

in which the last term on the right-hand side is the virtual work produced by an actual
internal moment at a hinge (see above). Note that the summation in Eq. (15.25) is
taken over all the members of the structure.
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USE OF VIRTUAL FORCE SYSTEMS

So far, in all the structural systems we have considered, virtual work has been pro-
duced by actual forces moving through imposed virtual displacements. However, the
actual forces are not related to the virtual displacements in any way since, as we have
seen, the magnitudes and directions of the actual forces are unchanged by the virtual
displacements so long as the displacements are small. Thus the principle of virtual
work applies for any set of forces in equilibrium and any set of displacements. Equally,
therefore, we could specify that the forces are a set of virtual forces in equilibrium and
that the displacements are actual displacements. Therefore, instead of relating actual
external and internal force systems through virtual displacements, we can relate actual
external and internal displacements through virtual forces.

If we apply a virtual force system to a deformable body it will induce an internal virtual
force system which will move through the actual displacements; thus, internal virtual
work will be produced. In this case, for example, Eq. (15.10) becomes

wi,N =
∫

L
NvεA dx

in which Nv is the internal virtual normal force and εA is the actual strain. Then, for
a linear system, in which the actual internal normal force is NA, εA = NA/EA, so that
for a structure comprising a number of members the total internal virtual work due to
a virtual normal force is

Wi,N =
∑∫

L

NvNA

EA
dx

which is identical to Eq. (15.12). Equations (15.17), (15.21) and (15.22) may be shown
to apply to virtual force systems in a similar manner.

APPLICATIONS OF THE PRINCIPLE OF VIRTUAL WORK

We have now seen that the principle of virtual work may be used either in the form of
imposed virtual displacements or in the form of imposed virtual forces. Generally the
former approach, as we saw in Ex. 15.1, is used to determine forces, while the latter is
used to obtain displacements.

For statically determinate structures the use of virtual displacements to determine
force systems is a relatively trivial use of the principle although problems of this type
provide a useful illustration of the method. The real power of this approach lies in
its application to the solution of statically indeterminate structures, as we shall see in
Chapter 16. However, the use of virtual forces is particularly useful in determining
actual displacements of structures. We shall illustrate both approaches by examples.

EXAMPLE 15.2 Determine the bending moment at the point B in the simply
supported beam ABC shown in Fig. 15.8(a).
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FIGURE 15.8
Determination of
bending moment
at a point in the
beam of Ex. 15.2
using virtual work

We determined the support reactions for this particular beam in Ex. 15.1. In this
example, however, we are interested in the actual internal moment, MB, at the point
of application of the load. We must therefore impose a virtual displacement which
will relate the internal moment at B to the applied load and which will exclude other
unknown external forces such as the support reactions, and unknown internal force
systems such as the bending moment distribution along the length of the beam. There-
fore, if we imagine that the beam is hinged at B and that the lengths AB and BC are
rigid, a virtual displacement, �v,B, at B will result in the displaced shape shown in
Fig. 15.8(b).

Note that the support reactions at A and C do no work and that the internal moments
in AB and BC do no work because AB and BC are rigid links. From Fig. 15.8(b)

�v,B = aβ = bα (i)

Hence

α = a
b
β

and the angle of rotation of BC relative to AB is then

θB = β + α = β
(

1 + a
b

)
= L

b
β (ii)

Now equating the external virtual work done by W to the internal virtual work done
by MB (see Eq. (15.23)) we have

W�v,B = MBθB (iii)

Substituting in Eq. (iii) for �v,B from Eq. (i) and for θB from Eq. (ii) we have

Waβ = MB
L
b

β
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which gives

MB = Wab
L

which is the result we would have obtained by calculating the moment of RC (=Wa/L
from Ex. 15.1) about B.

EXAMPLE 15.3 Determine the force in the member AB in the truss shown in
Fig. 15.9(a).

FIGURE 15.9
Determination of

the internal force in
a member of a truss

using virtual work

C

D
B

A E

3 m

4 m

C

B

A E

(b)(a)

B�

C�

D

4 m

30 kN

10 kN

�C

�v,B
a

a

We are required to calculate the force in the member AB, so that again we need to
relate this internal force to the externally applied loads without involving the internal
forces in the remaining members of the truss. We therefore impose a virtual extension,
�v,B, at B in the member AB, such that B moves to B′. If we assume that the remaining
members are rigid, the forces in them will do no work. Further, the triangle BCD will
rotate as a rigid body about D to B′C′D as shown in Fig. 15.9(b). The horizontal
displacement of C, �C, is then given by

�C = 4α

while

�v,B = 3α
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Hence

�C = 4�v,B

3
(i)

Equating the external virtual work done by the 30 kN load to the internal virtual work
done by the force, FBA, in the member, AB, we have (see Eq. (15.23) and Fig. 15.6)

30�C = FBA�v,B (ii)

Substituting for �C from Eq. (i) in Eq. (ii),

30 × 4
3
�v,B = FBA�v,B

Whence

FBA = +40 kN (i.e. FBA is tensile)

In the above we are, in effect, assigning a positive (i.e. tensile) sign to FBA by imposing
a virtual extension on the member AB.

The actual sign of FBA is then governed by the sign of the external virtual work. Thus,
if the 30 kN load had been in the opposite direction to �C the external work done
would have been negative, so that FBA would be negative and therefore compressive.
This situation can be verified by inspection. Alternatively, for the loading as shown in
Fig. 15.9(a), a contraction in AB would have implied that FBA was compressive. In
this case DC would have rotated in an anticlockwise sense, �C would have been in the
opposite direction to the 30 kN load so that the external virtual work done would
be negative, resulting in a negative value for the compressive force FBA; FBA would
therefore be tensile as before. Note also that the 10 kN load at D does no work since
D remains undisplaced.

We shall now consider problems involving the use of virtual forces. Generally we shall
require the displacement of a particular point in a structure, so that if we apply a virtual
force to the structure at the point and in the direction of the required displacement
the external virtual work done will be the product of the virtual force and the actual
displacement, which may then be equated to the internal virtual work produced by the
internal virtual force system moving through actual displacements. Since the choice of
the virtual force is arbitrary, we may give it any convenient value; the simplest type of
virtual force is therefore a unit load and the method then becomes the unit load method.

EXAMPLE 15.4 Determine the vertical deflection of the free end of the cantilever
beam shown in Fig. 15.10(a).

Let us suppose that the actual deflection of the cantilever at B produced by the uni-
formly distributed load is υB and that a vertically downward virtual unit load was
applied at B before the actual deflection took place. The external virtual work done by
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w
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1 (Unit load)

(b)

�B FIGURE 15.10
Deflection of the free
end of a cantilever
beam using the unit
load method

the unit load is, from Fig. 15.10(b), 1υB. The deflection, υB, is assumed to be caused
by bending only, i.e. we are ignoring any deflections due to shear. The internal virtual
work is given by Eq. (15.21) which, since only one member is involved, becomes

Wi,M =
∫ L

0

MAMv

EI
dx (i)

The virtual moments, Mv, are produced by a unit load so that we shall replace Mv by
M1. Then

Wi,M =
∫ L

0

MAM1

EI
dx (ii)

At any section of the beam a distance x from the built-in end

MA = −w
2

(L − x)2 M1 = −1(L − x)

Substituting for MA and M1 in Eq. (ii) and equating the external virtual work done by
the unit load to the internal virtual work we have

1υB =
∫ L

0

w
2EI

(L − x)3dx

which gives

υB = − w
2EI

[
1
4

(L − x)4
]L

0

so that

υB = wL4

8EI
(as in Ex. 13.2)

Note that υB is in fact negative but the positive sign here indicates that it is in the same
direction as the unit load.
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EXAMPLE 15.5 Determine the rotation, i.e. the slope, of the beam ABC shown in
Fig. 15.11(a) at A.

2
W

2
W

EI

W

x L/2 L/2

A

(a)

B C

L

A

(b)

C

Unit moment

L
1

Rv,C �
L
1

Rv,A �

uA

FIGURE 15.11
Determination of the
rotation of a simply
supported beam at
a support using the
unit load method

The actual rotation of the beam at A produced by the actual concentrated load, W , is
θA. Let us suppose that a virtual unit moment is applied at A before the actual rotation
takes place, as shown in Fig. 15.11(b). The virtual unit moment induces virtual support
reactions of Rv,A (=1/L) acting downwards and Rv,C (=1/L) acting upwards. The actual
internal bending moments are

MA = +W
2

x 0 ≤ x ≤ L/2

MA = +W
2

(L − x) L/2 ≤ x ≤ L

The internal virtual bending moment is

Mv = 1 − 1
L

x 0 ≤ x ≤ L

The external virtual work done is 1θA (the virtual support reactions do no work as
there is no vertical displacement of the beam at the supports) and the internal virtual
work done is given by Eq. (15.21). Hence

1θA = 1
EI

[∫ L/2

0

W
2

x
(

1 − x
L

)
dx +

∫ L

L/2

W
2

(L − x)
(

1 − x
L

)
dx

]
(i)
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Simplifying Eq. (i) we have

θA = W
2EIL

[∫ L/2

0
(Lx − x2)dx +

∫ L

L/2
(L − x)2dx

]
(ii)

Hence

θA = W
2EIL



[

L
x2

2
− x3

3

]L/2

0

− 1
3

[
(L − x)3

]L

L/2




from which

θA = WL2

16EI

which is the result that may be obtained from Eq. (iii) of Ex. 13.5.

EXAMPLE 15.6 Calculate the vertical deflection of the joint B and the horizontal
movement of the support D in the truss shown in Fig. 15.12(a). The cross-sectional
area of each member is 1800 mm2 and Young’s modulus, E, for the material of the
members is 200 000 N/mm2.

FIGURE 15.12
Deflection of a truss
using the unit load

method (b)

(a)

4 m

4 m

4 m 4 m
100 kN

40 kN

(c)

D
CB

E F

E F

E F

A

D
CB

A

D
1

CB
A

1

The virtual force systems, i.e. unit loads, required to determine the vertical deflection
of B and the horizontal deflection of D are shown in Fig. 15.12(b) and (c), respectively.
Therefore, if the actual vertical deflection at B is δB,v and the horizontal deflection at D
is δD,h the external virtual work done by the unit loads is 1δB,v and 1δD,h, respectively.
The internal actual and virtual force systems comprise axial forces in all the members.
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These axial forces are constant along the length of each member so that for a truss
comprising n members, Eq. (15.12) reduces to

Wi,N =
n∑

j=1

FA, jFv, jLj

EjAj
(i)

in which FA, j and Fv, j are the actual and virtual forces in the jth member which has a
length Lj, an area of cross-section Aj and a Young’s modulus Ej.

Since the forces Fv, j are due to a unit load, we shall write Eq. (i) in the form

Wi,N =
n∑

j=1

FA, jF1, jLj

EjAj
(ii)

Also, in this particular example, the area of cross section, A, and Young’s modulus, E,
are the same for all members so that it is sufficient to calculate

∑n
j=1 FA, jF1, jLj and

then divide by EA to obtain Wi,N .

The forces in the members, whether actual or virtual, may be calculated by the method
of joints (Section 4.6). Note that the support reactions corresponding to the three sets
of applied loads (one actual and two virtual) must be calculated before the internal
force systems can be determined. However, in Fig. 15.12(c), it is clear from inspection
that F1,AB = F1,BC = F1,CD = +1 while the forces in all other members are zero. The
calculations are presented in Table 15.1; note that positive signs indicate tension and
negative signs compression.

Thus equating internal and external virtual work done (Eq. (15.23)) we have

1δB,v = 1263.6 × 106

200 000 × 1800

whence

δB,v = 3.51 mm

TABLE 15.1

Member L (m) FA (kN) F1,B F1,D FAF1,BL (kNm) FAF1,DL (kN m)

AE 5.7 −84.9 −0.94 0 +451.4 0
AB 4.0 +60.0 +0.67 +1.0 +160.8 +240.0
EF 4.0 −60.0 −0.67 0 +160.8 0
EB 4.0 +20.0 +0.67 0 +53.6 0
BF 5.7 −28.3 +0.47 0 −75.2 0
BC 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CD 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CF 4.0 +100.0 0 0 0 0
DF 5.7 −113.1 −0.47 0 +301.0 0∑= +1263.6

∑= +880.0
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and

1δD,h = 880 × 106

200 000 × 1800
which gives

δD,h = 2.44 mm

Both deflections are positive which indicates that the deflections are in the directions
of the applied unit loads. Note that in the above it is unnecessary to specify units for
the unit load since the unit load appears, in effect, on both sides of the virtual work
equation (the internal F1 forces are directly proportional to the unit load).

Examples 15.2–15.6 illustrate the application of the principle of virtual work to the
solution of problems involving statically determinate linearly elastic structures. We
have also previously seen its application in the plastic bending of beams (Fig. 9.43),
thereby demonstrating that the method is not restricted to elastic systems. We shall
now examine the alternative energy methods but we shall return to the use of virtual
work in Chapter 16 when we consider statically indeterminate structures.

15.3 ENERGY METHODS

Although it is generally accepted that energy methods are not as powerful as the
principle of virtual work in that they are limited to elastic analysis, they possibly find
their greatest use in providing rapid approximate solutions of problems for which
exact solutions do not exist. Also, many statically indeterminate structures may be
conveniently analysed using energy methods while, in addition, they are capable of
providing comparatively simple solutions for deflection problems which are not readily
solved by more elementary means.

Energy methods involve the use of either the total complementary energy or the total
potential energy (TPE) of a structural system. Either method may be employed to solve
a particular problem, although as a general rule displacements are more easily found
using complementary energy while forces are more easily found using potential energy.

STRAIN ENERGY AND COMPLEMENTARY ENERGY

In Section 7.10 we investigated strain energy in a linearly elastic member subjected to
an axial load. Subsequently in Sections 9.4, 10.3 and 11.2 we derived expressions for
the strain energy in a linearly elastic member subjected to bending, shear and torsional
loads, respectively. We shall now examine the more general case of a member that is
not linearly elastic.

Figure 15.13(a) shows the jth member of a structure comprising n members. The
member is subjected to a gradually increasing load, Pj, which produces a gradually
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FIGURE 15.13 Load–deflection
curve for a non-linearly elastic
member

increasing displacement, �j. If the member possesses non-linear elastic characteristics,
the load–deflection curve will take the form shown in Fig. 15.13(b). Let us suppose
that the final values of Pj and �j are Pj,F and �j,F.

As the member extends (or contracts if Pj is a compressive load) Pj does work which,
as we saw in Section 7.10, is stored in the member as strain energy. The work done by
Pj as the member extends by a small amount δ�j is given by

δWj = Pj δ�j

Therefore the total work done by Pj, and therefore the strain energy stored in the
member, as Pj increases from zero to Pj,F is given by

uj =
∫ �j,F

0
Pj d�j (15.26)

which is clearly the area OBD under the load–deflection curve in Fig. 15.13(b).
Similarly the area OAB, which we shall denote by cj, above the load–deflection curve
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is given by

cj =
∫ Pj,F

0
�j dPj (15.27)

It may be seen from Fig. 15.13(b) that the area OABD represents the work done by a
constant force Pj,F moving through the displacement �j,F. Thus from Eqs (15.26) and
(15.27)

uj + cj = Pj,F �j,F (15.28)

It follows that since uj has the dimensions of work, cj also has the dimensions of
work but otherwise cj has no physical meaning. It can, however, be regarded as the
complement of the work done by Pj in producing the displacement �j and is therefore
called the complementary energy.

The total strain energy, U , of the structure is the sum of the individual strain energies
of the members. Thus

U =
n∑

j=1

uj

which becomes, when substituting for uj from Eq. (15.26)

U =
n∑

j=1

∫ �j,F

0
Pj d�j (15.29)

Similarly, the total complementary energy, C, of the structure is given by

C =
n∑

j=1

cj

whence, from Eq. (15.27)

C =
n∑

j=1

∫ Pj,F

0
�j dPj (15.30)

Equation (15.29) may be written in expanded form as

U =
∫ �1,F

0
P1 d�1 +

∫ �2,F

0
P2 d�2 + · · · +

∫ �j,F

0
Pj d�j + · · · +

∫ �n,F

0
Pn d�n (15.31)

Partially differentiating Eq. (15.31) with respect to a particular displacement, say �j,
gives

∂U
∂�j

= Pj (15.32)

Equation (15.32) states that the partial derivative of the strain energy in an elastic
structure with respect to a displacement �j is equal to the corresponding force Pj;
clearly U must be expressed as a function of the displacements. This equation is
generally known as Castigliano’s first theorem (Part I) after the Italian engineer who
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�j FIGURE 15.14 Load–deflection curve for a
linearly elastic member

derived and published it in 1879. One of its primary uses is in the analysis of non-linearly
elastic structures, which is outside the scope of this book.

Now writing Eq. (15.30) in expanded form we have

C =
∫ P1,F

0
�1 dP1 +

∫ P2,F

0
�2 dP2 + · · · +

∫ Pj,F

0
�j dPj + · · · +

∫ Pn,F

0
�n dPn (15.33)

The partial derivative of Eq. (15.33) with respect to one of the loads, say Pj, is then

∂C
∂Pj

= �j (15.34)

Equation (15.34) states that the partial derivative of the complementary energy of an
elastic structure with respect to an applied load, Pj, gives the displacement of that load
in its own line of action; C in this case is expressed as a function of the loads. Equation
(15.34) is sometimes called the Crotti–Engesser theorem after the two engineers, one
Italian, one German, who derived the relationship independently, Crotti in 1879 and
Engesser in 1889.

Now consider the situation that arises when the load–deflection curve is linear, as
shown in Fig. 15.14. In this case the areas OBD and OAB are equal so that the strain
and complementary energies are equal. Thus we may replace the complementary
energy, C, in Eq. (15.34) by the strain energy, U . Hence

∂U
∂Pj

= �j (15.35)

Equation (15.35) states that, for a linearly elastic structure, the partial derivative of
the strain energy of a structure with respect to a load gives the displacement of the
load in its own line of action. This is generally known as Castigliano’s first theorem (Part
II). Its direct use is limited in that it enables the displacement at a particular point
in a structure to be determined only if there is a load applied at the point and only
in the direction of the load. It could not therefore be used to solve for the required
displacements at B and D in the truss in Ex. 15.6.
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THE PRINCIPLE OF THE STATIONARY VALUE OF THE
TOTAL COMPLEMENTARY ENERGY

Suppose that an elastic structure comprising n members is in equilibrium under
the action of a number of forces, P1, P2, . . . , Pk, . . . , Pr , which produce corres-
ponding actual displacements, �1, �2, . . . , �k, . . . , �r , and actual internal forces,
F1, F2, . . . , Fj, . . . , Fn. Now let us suppose that a system of elemental virtual forces,
δP1, δP2, . . . , δPk, . . . , δPr , are imposed on the structure and act through the actual
displacements. The external virtual work, δWe, done by these elemental virtual forces
is, from Section 15.2,

δWe = δP1 �1 + δP2 �2 + · · · + δPk �k + · · · + δPr �r

or

δWe =
r∑

k=1

�k δPk (15.36)

At the same time the elemental external virtual forces are in equilibrium with an elem-
ental internal virtual force system, δF1, δF2, . . . , δFj, . . . , δFn, which moves through
actual internal deformations, δ1, δ2, . . . , δj, . . . , δn. Hence the internal elemental
virtual work done is

δWi =
n∑

j=1

δj δFj (15.37)

From Eq. (15.23)

r∑
k=1

�k δPk =
n∑

j=1

δj δFj

so that
n∑

j=1

δj δFj −
r∑

k=1

�k δPk = 0 (15.38)

Equation (15.38) may be written as

δ


 n∑

j=1

∫ Fj

0
δj dFj −

r∑
k=1

�k Pk


 = 0 (15.39)

From Eq. (15.30) we see that the first term in Eq. (15.39) represents the complementary
energy, Ci, of the actual internal force system, while the second term represents the
complementary energy, Ce, of the external force system. Ci and Ce are opposite in sign
since Ce is the complement of the work done by the external force system while Ci is
the complement of the work done on the structure. Rewriting Eq. (15.39), we have

δ(Ci + Ce) = 0 (15.40)
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In Eq. (15.39) the displacements, �k, and the deformations, δj, are the actual displace-
ments and deformations of the elastic structure. They therefore obey the condition of
compatibility of displacement so that Eqs (15.40) and (15.39) are equations of geo-
metrical compatibility. Also Eq. (15.40) establishes the principle of the stationary value
of the total complementary energy which may be stated as:

For an elastic body in equilibrium under the action of applied forces the true internal
forces (or stresses) and reactions are those for which the total complementary energy has
a stationary value.

In other words the true internal forces (or stresses) and reactions are those that satisfy
the condition of compatibility of displacement. This property of the total complemen-
tary energy of an elastic structure is particularly useful in the solution of statically
indeterminate structures in which an infinite number of stress distributions and reac-
tive forces may be found to satisfy the requirements of equilibrium so that, as we have
already seen, equilibrium conditions are insufficient for a solution.

We shall examine the application of the principle in the solution of statically indeter-
minate structures in Chapter 16. Meanwhile we shall illustrate its application to the
calculation of displacements in statically determinate structures.

EXAMPLE 15.7 The calculation of deflections in a truss.

Suppose that we wish to calculate the deflection, �2, in the direction of the load, P2,
and at the joint at which P2 is applied in a truss comprising n members and carrying
a system of loads P1, P2, . . . , Pk, . . . , Pr , as shown in Fig. 15.15. From Eq. (15.39) the
total complementary energy, C, of the truss is given by

C =
n∑

j=1

∫ Fj

0
δj dFj −

r∑
k=1

�k Pk (i)

A
C

B

Pr

PkP1

P2

FIGURE 15.15
Deflection of a truss
using complementary
energy
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From the principle of the stationary value of the total complementary energy with
respect to the load P2, we have

∂C
∂P2

=
n∑

j=1

δj
∂Fj

∂P2
− �2 = 0 (ii)

from which

�2 =
n∑

j=1

δj
∂Fj

∂P2
(iii)

Note that the partial derivatives with respect to P2 of the fixed loads, P1, P3, . . . ,
Pk, . . . , Pr , vanish.

To complete the solution we require the load–displacement characteristics of the
structure. For a non-linear system in which, say,

Fj = b(δj)c

where b and c are known, Eq. (iii) becomes

�2 =
n∑

j=1

(
Fj

b

)1/c ∂Fj

∂P2
(iv)

In Eq. (iv) Fj may be obtained from basic equilibrium conditions, e.g. the method of
joints, and expressed in terms of P2; hence ∂Fj/∂P2 is found. The actual value of P2 is
then substituted in the expression for Fj and the product (Fj/b)1/c∂Fj/∂P2 calculated
for each member. Summation then gives �2.

In the case of a linearly elastic structure δj is, from Sections 7.4 and 7.7, given by

δj = Fj

EjAj
Lj

in which Ej, Aj and Lj are Young’s modulus, the area of cross section and the length
of the jth member. Substituting for δj in Eq. (iii) we obtain

�2 =
n∑

j=1

FjLj

EjAj

∂Fj

∂P2
(v)

Equation (v) could have been derived directly from Castigliano’s first theorem (Part II)
which is expressed in Eq. (15.35) since, for a linearly elastic system, the complementary
and strain energies are identical; in this case the strain energy of the jth member is
F2

j Lj/2AjEj from Eq. (7.29). Other aspects of the solution merit discussion.

We note that the support reactions at A and B do not appear in Eq. (i). This convenient
absence derives from the fact that the displacements, �1, �2, . . . , �k, . . . , �r , are the
actual displacements of the truss and fulfil the conditions of geometrical compatibility
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and boundary restraint. The complementary energy of the reactions at A and B is
therefore zero since both of their corresponding displacements are zero.

In Eq. (v) the term ∂Fj/∂P2 represents the rate of change of the actual forces in the
members of the truss with P2. This may be found, as described in the non-linear case, by
calculating the forces, Fj, in the members in terms of P2 and then differentiating these
expressions with respect to P2. Subsequently the actual value of P2 would be substituted
in the expressions for Fj and thus, using Eq. (v), �2 obtained. This approach is rather
clumsy. A simpler alternative would be to calculate the forces, Fj, in the members
produced by the applied loads including P2, then remove all the loads and apply P2

only as an unknown force and recalculate the forces Fj as functions of P2; ∂Fj/∂P2 is
then obtained by differentiating these functions.

This procedure indicates a method for calculating the displacement of a point in the
truss in a direction not coincident with the line of action of a load or, in fact, of a point
such as C which carries no load at all. Initially the forces Fj in the members due to
P1, P2, . . . , Pk, . . . , Pr are calculated. These loads are then removed and a dummy or
fictitious load, Pf , applied at the point and in the direction of the required displacement.
A new set of forces, Fj, are calculated in terms of the dummy load, Pf , and thus ∂Fj/∂Pf

is obtained. The required displacement, say �C of C, is then given by

�C =
n∑

j=1

FjLj

EjAj

∂Fj

∂Pf
(vi)

The simplification may be taken a stage further. The force Fj in a member due to
the dummy load may be expressed, since the system is linearly elastic, in terms of the
dummy load as

Fj = ∂Fj

∂Pf
Pf (vii)

Suppose now that Pf = 1, i.e. a unit load. Equation (vii) then becomes

Fj = ∂Fj

∂Pf
1

so that ∂Fj/∂Pf = F1, j, the load in the jth member due to a unit load applied at
the point and in the direction of the required displacement. Thus, Eq. (vi) may be
written as

�C =
n∑

j=1

FjF1, jLj

EjAj
(viii)

in which a unit load has been applied at C in the direction of the required displacement.
Note that Eq. (viii) is identical in form to Eq. (ii) of Ex. 15.6.

In the above we have concentrated on members subjected to axial loads. The argu-
ments apply in cases where structural members carry bending moments that produce
rotations, shear loads that cause shear deflections and torques that produce angles of
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twist. We shall now demonstrate the application of the method to structures subjected
to other than axial loads.

EXAMPLE 15.8 Calculate the deflection, υB, at the free end of the cantilever beam
shown in Fig. 15.16(a).

A

W

EI

L

x

B

(a)

A

Radius of
curvature

Centre of curvature

W

υB

δu

δx

B

(b)

FIGURE 15.16
Deflection of a
cantilever beam using
complementary energy

We shall assume that deflections due to shear are negligible so that υB is entirely due
to bending action in the beam. In this case the total complementary energy of the
beam is, from Eq. (15.39)

C =
∫ L

0

∫ M

0
dθ dM − WυB (i)

in which M is the bending moment acting on an element, δx, of the beam; δx subtends
a small angle, δθ , at the centre of curvature of the beam. The radius of curvature of
the beam at the section is R as shown in Fig. 15.16(b) where, for clarity, we represent
the beam by its neutral plane. From the principle of the stationary value of the total
complementary energy of the beam

∂C
∂W

=
∫ L

0

∂M
∂W

dθ − υB = 0

whence

υB =
∫ L

0

∂M
∂W

dθ (ii)
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In Eq. (ii)

δθ = δx
R

and from Eq. (9.11)

− 1
R

= M
EI

(here the curvature is negative since the centre of curvature is below the beam) so that

δθ = − M
EI

δx

Substituting in Eq. (ii) for δθ we have

υB = −
∫ L

0

M
EI

∂M
∂W

dx (iii)

From Fig. 15.16(a) we see that

M = −W (L − x)

Hence
∂M
∂W

= −(L − x)

Note: Equation (iii) could have been obtained directly from Eq. (9.21) by using
Castigliano’s first theorem (Part II).

Equation (iii) then becomes

υB = −
∫ L

0

W
EI

(L − x)2dx

whence

υB = −WL3

3EI
(as in Ex 13.1)

(Note that υB is downwards and therefore negative according to our sign convention.)

EXAMPLE 15.9 Determine the deflection, υB, of the free end of a cantilever
beam carrying a uniformly distributed load of intensity w. The beam is represented in
Fig. 15.17 by its neutral plane; the flexural rigidity of the beam is EI.

A
B

L

EI

x

w
Pf

υB

FIGURE 15.17 Deflection of
a cantilever beam using the
dummy load method
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For this example we use the dummy load method to determine υB since we require the
deflection at a point which does not coincide with the position of a concentrated load;
thus we apply a dummy load, Pf , at B as shown. The total complementary energy, C,
of the beam includes that produced by the uniformly distributed load; thus

C =
∫ L

0

∫ M

0
dθ dM − PfυB −

∫ L

0
υw dx (i)

in which υ is the displacement of an elemental length, δx, of the beam at any distance
x from the built-in end. Then

∂C
∂Pf

=
∫ L

0
dθ

∂M
∂Pf

− υB = 0

so that

υB =
∫ L

0
dθ

∂M
∂Pf

(ii)

Note that in Eq. (i) υ is an actual displacement and w an actual load, so that the last
term disappears when C is partially differentiated with respect to Pf . As in Ex. 15.8

δθ = − M
EI

δx

Also

M = −Pf (L − x) − w
2

(L − x)2

in which Pf is imaginary and therefore disappears when we substitute for M in Eq. (ii).
Then

∂M
∂Pf

= −(L − x)

so that

υB = −
∫ L

0

w
2EI

(L − x)3dx

whence

υB = −wL4

8EI
(see Ex. 13.2)

For a linearly elastic system the bending moment, Mf , produced by a dummy load, Pf ,
may be written as

Mf = ∂M
∂Pf

Pf

If Pf = 1, i.e. a unit load

Mf = ∂M
∂Pf

1
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so that ∂M/∂Pf = M1, the bending moment due to a unit load applied at the point
and in the direction of the required deflection. Thus we could write an equation for
deflection, such as Eq. (ii), in the form

υ =
∫ L

0

MAM1

EI
dx (see Eq. (ii) of Ex. 15.4) (iii)

in which MA is the actual bending moment at any section of the beam and M1 is the
bending moment at any section of the beam due to a unit load applied at the point
and in the direction of the required deflection. Thus, in this example

MA = −w
2

(L − x)2 M1 = −1(L − x)

so that

υB =
∫ L

0

w
2EI

(L − x)3dx

as before. Here υB is positive which indicates that it is in the same direction as the
unit load.

TEMPERATURE EFFECTS

The principle of the stationary value of the total complementary energy in conjunction
with the unit load method may be used to determine the effect of a temperature
gradient through the depth of a beam.

Normally, if a structural member is subjected to a uniform temperature rise, t, it will
expand as shown in Fig. 15.18. However, a variation in temperature through the depth
of the member such as the linear variation shown in Fig. 15.19(b) causes the upper

FIGURE 15.18
Expansion of

a member due
to a uniform

temperature rise

A B

Expansion

t

FIGURE 15.19
Bending of a beam

due to a linear
temperature

gradient

A

B

h

h

L

t

R
0

∆Te,B

(b)(a) (c)

δu

δx

δx (1 � at)



chap-15 17/1/2005 16: 15 page 449

15.3 Energy Methods • 449

fibres to expand more than the lower ones so that bending strains, without bending
stresses, are induced as shown in Fig. 15.19(a). Note that the undersurface of the
member is unstrained since the change in temperature in this region is zero.

Consider an element, δx, of the member. The upper surface will increase in length
to δx(1 + αt), while the length of the lower surface remains equal to δx as shown in
Fig. 15.19(c); α is the coefficient of linear expansion of the material of the member.
Thus, from Fig. 15.19(c)

R
δx

= R + h
δx(1 + αt)

so that

R = h
αt

Also

δθ = δx
R

whence

δθ = αt δx
h

(15.41)

If we require the deflection, �Te,B, of the free end of the member due to the tempera-
ture rise, we can employ the unit load method as in Ex. 15.9. Thus, by comparison with
Eq. (ii) in Ex. 15.9

�Te,B =
∫ L

0
dθ

∂M
∂Pf

(15.42)

in which, as we have seen, ∂M/∂Pf = M1, the bending moment at any section of the
member produced by a unit load acting vertically downwards at B. Now substituting
for δθ in Eq. (15.42) from Eq. (15.41)

�Te,B = −
∫ L

0
M1

αt
h

dx (15.43)

In the case of a beam carrying actual external loads the total deflection is, from the prin-
ciple of superposition (Section 3.7), the sum of the bending, shear (unless neglected)
and temperature deflections. Note that in Eq. (15.43) t can vary arbitrarily along the
length of the beam but only linearly with depth. Note also that the temperature gradi-
ent shown in Fig. 15.19(b) produces a hogging deflected shape for the member. Thus,
strictly speaking, the radius of curvature, R, in the derivation of Eq. (15.41) is negative
(compare with Fig. 9.4) so that we must insert a minus sign in Eq. (15.43) as shown.

EXAMPLE 15.10 Determine the deflection of the free end of the cantilever beam
in Fig. 15.20 when subjected to the temperature gradients shown.



chap-15 17/1/2005 16: 15 page 450

450 • Chapter 15 / Virtual Work and Energy Methods

FIGURE 15.20
Deflection of a

cantilever beam
having linear

lengthwise and
depthwise

temperature
gradients

A B

L

x

h

t0
t0

The temperature, t, at any section x of the beam is given by

t = x
L

t0

Thus, substituting for t in Eq. (15.43), which applies since the variation of temperature
through the depth of the beam is identical to that in Fig. 15.19(b), and noting that
M1 = −1(L − x) we have

�Te,B = −
∫ L

0
[−1(L − x)]

α

h
x
L

t0 dx

which simplifies to

�Te,B = αt0
hL

∫ L

0
(Lx − x2)dx

whence

�Te,B = αt0L2

6h

POTENTIAL ENERGY

In the spring–mass system shown in its unstrained position in Fig. 15.21(a) the potential
energy of the mass, m, is defined as the product of its weight and its height, h, above
some arbitrary fixed datum. In other words, it possesses energy by virtue of its position.
If the mass is allowed to move to the equilibrium position shown in Fig. 15.21(b) it has
lost an amount of potential energy mg�F. Thus, deflection is associated with a loss of
potential energy or, alternatively, we could say that the loss of potential energy of the
mass represents a negative gain in potential energy. Thus, if we define the potential
energy of the mass as zero in its undeflected position in Fig. 15.21(a), which is the
same as taking the position of the datum such that h = 0, its actual potential energy in
its deflected state in Fig. 15.21(b) is −mgh. In the deflected state, the total energy of
the spring–mass system is the sum of the potential energy of the mass (−mgh) and the
strain energy of the spring.
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FIGURE 15.21
Potential energy of a
spring–mass system (a)

Datum Datum

Mass, m

h h

(b)

�F

Applying the above argument to the elastic member in Fig. 15.13(a) and defining the
‘total potential energy’ (TPE) of the member as the sum of the strain energy, U , of the
member and the potential energy, V , of the load, we have

TPE = U + V =
∫ �j,F

0
Pj d�j − Pj,F �j,F (see Eq. (15.24)) (15.44)

Thus, for a structure comprising n members and subjected to a system of loads,
P1, P2, . . . , Pk, . . . , Pr , the TPE is given by

TPE = U + V =
n∑

j=1

∫ �j,F

0
Pj d�j −

r∑
k=1

Pk�k (15.45)

in which Pj is the internal force in the jth member, �j,F is its extension or contraction
and �k is the displacement of the load, Pk, in its line of action.

THE PRINCIPLE OF THE STATIONARY VALUE OF THE
TOTAL POTENTIAL ENERGY

Let us now consider an elastic body in equilibrium under a series of loads, P1, P2, . . . ,
Pk, . . . , Pr , and let us suppose that we impose infinitesimally small virtual displace-
ments, δ�1, δ�2, . . . , δ�k, . . . , δ�r , at the points of application and in the directions
of the loads. The virtual work done by the loads is then

δWe =
r∑

k=1

Pk δ�k (15.46)

This virtual work will be accompanied by an increment of virtual strain energy, δU ,
or internal virtual work since, by imposing virtual displacements at the points of
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TPE C
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B

u
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 V
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�
 f
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FIGURE 15.22 States of equilibrium
of a particle

application of the loads we induce accompanying virtual strains in the body itself.
Therefore, from the principle of virtual work (Eq. (15.23)) we have

δWe = δU

or

δU − δWe = 0

Substituting for δWe from Eq. (15.46) we obtain

δU −
r∑

k=1

Pk δ�k = 0 (15.47)

which may be written in the form

δ

(
U −

r∑
k=1

Pk �k

)
= 0

in which we see that the second term is the potential energy, V , of the applied loads.
Hence the equation becomes

δ(U + V ) = 0 (15.48)

and we see that the TPE of an elastic system has a stationary value for all small
displacements if the system is in equilibrium.

It may also be shown that if the stationary value is a minimum, the equilibrium is
stable. This may be demonstrated by examining the states of equilibrium of the particle
at the positions A, B and C in Fig. 15.22. The TPE of the particle is proportional to its
height, h, above some arbitrary datum, u; note that a single particle does not possess
strain energy, so that in this case TPE = V . Clearly, at each position of the particle,
the first-order variation, ∂(U + V )/∂u, is zero (indicating equilibrium) but only at B,
where the TPE is a minimum, is the equilibrium stable; at A the equilibrium is unstable
while at C the equilibrium is neutral.
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The principle of the stationary value of the TPE may therefore be stated as:

The TPE of an elastic system has a stationary value for all small displacements when
the system is in equilibrium; further, the equilibrium is stable if the stationary value is a
minimum.

Potential energy can often be used in the approximate analysis of structures in cases
where an exact analysis does not exist. We shall illustrate such an application for a
simple beam in Ex. 15.11 below and in Chapter 21 in the case of a buckled column;
in both cases we shall suppose that the deflected form is unknown and has to be
initially assumed (this approach is called the Rayleigh–Ritz method). For a linearly
elastic system, of course, the methods of complementary energy and potential energy
are identical.

EXAMPLE 15.11 Determine the deflection of the mid-span point of the linearly
elastic, simply supported beam ABC shown in Fig. 15.23(a).

(a)

(b)

A B C

W

EI

x L/2L/2

A C

B

W

υB
FIGURE 15.23
Approximate value for
beam deflection using
TPE

We shall suppose that the deflected shape of the beam is unknown. Initially, there-
fore, we shall assume a deflected shape that satisfies the boundary conditions for the
beam. Generally, trigonometric or polynomial functions have been found to be the
most convenient where the simpler the function the less accurate the solution. Let us
suppose that the displaced shape of the beam is given by

υ = υB sin
πx
L

(i)

in which υB is the deflection at the mid-span point. From Eq. (i) we see that
when x = 0 and x = L, υ = 0 and that when x = L/2, υ = υB. Furthermore, dυ/dx =
(π/L)υB cos (πx/L) which is zero when x = L/2. Thus the displacement function
satisfies the boundary conditions of the beam.
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The strain energy due to bending of the beam is given by Eq. (9.21), i.e.

U =
∫ L

0

M2

2EI
dx (ii)

Also, from Eq. (13.3)

M = EI
d2υ

dx2 (iii)

Substituting in Eq. (iii) for υ from Eq. (i), and for M in Eq. (ii) from Eq. (iii), we have

U = EI
2

∫ L

0

υ2
Bπ4

L4 sin2 πx
L

dx

which gives

U = π4EIυ2
B

4L3

The TPE of the beam is then given by

TPE = U + V = π4EIυ2
B

4L3 − WυB

Hence, from the principle of the stationary value of the TPE

∂(U + V )
∂υB

= π4EIυB

2L3 − W = 0

whence

υB = 2WL3

π4EI
= 0.02053

WL3

EI
(iv)

The exact expression for the deflection at the mid-span point was found in Ex. 13.5
and is

υB = WL3

48EI
= 0.02083

WL3

EI
(v)

Comparing the exact and approximate results we see that the difference is less than
2%. Furthermore, the approximate deflection is less than the exact deflection because,
by assuming a deflected shape, we have, in effect, forced the beam into that shape by
imposing restraints; the beam is therefore stiffer.

15.4 RECIPROCAL THEOREMS

There are two reciprocal theorems: one, attributed to Maxwell, is the theorem of
reciprocal displacements (often referred to as Maxwell’s reciprocal theorem) and the
other, derived by Betti and Rayleigh, is the theorem of reciprocal work. We shall see, in
fact, that the former is a special case of the latter. We shall also see that their proofs
rely on the principle of superposition (Section 3.7) so that their application is limited
to linearly elastic structures.
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THEOREM OF RECIPROCAL DISPLACEMENTS

In a linearly elastic body a load, P1, applied at a point 1 will produce a displacement,
�1, at the point and in its own line of action given by

�1 = a11P1

in which a11 is a flexibility coefficient which is defined as the displacement at the point
1 in the direction of P1 produced by a unit load at the point 1 in the direction of P1. It
follows that if the elastic body is subjected to a series of loads, P1, P2, . . . , Pk, . . . , Pr ,
each of the loads will contribute to the displacement of point 1. Thus the corresponding
displacement, �1, at the point 1 (i.e. the total displacement in the direction of P1

produced by all the loads) is then

�1 = a11P1 + a12P2 + · · · + a1kPk + · · · + a1rPr

in which a12 is the displacement at the point 1 in the direction of P1 produced by a
unit load at 2 in the direction of P2, and so on. The corresponding displacements at
the points of application of the loads are then

�1 = a11P1 + a12P2 + · · · + a1kPk + · · · + a1rPr

�2 = a21P1 + a22P2 + · · · + a2kPk + · · · + a2rPr
...

�k = ak1P1 + ak2P2 + · · · + akkPk + · · · + akrPr
...

�r = ar1P1 + ar2P2 + · · · + arkPk + · · · + arrPr




(15.49)

or, in matrix form


�1

�2
...

�k
...

�r




=




a11 a12 . . . a1k . . . a1r

a21 a22 . . . a2k . . . a2r
...

ak1 ak2 . . . akk . . . akr
...

ar1 ar2 . . . ark . . . arr







P1

P2
...

Pk
...

Pr




(15.50)

which may be written in matrix shorthand notation as

{�} = [A]{P}
Suppose now that a linearly elastic body is subjected to a gradually applied load, P1,
at a point 1 and then, while P1 remains in position, a load P2 is gradually applied at
another point 2. The total strain energy, U1, of the body is equal to the external work
done by the loads; thus

U1 = P1

2
(a11P1) + P2

2
(a22P2) + P1(a12P2) (15.51)
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The third term on the right-hand side of Eq. (15.51) results from the additional work
done by P1 as it is displaced through a further distance a12P2 by the action of P2. If
we now remove the loads and then apply P2 followed by P1, the strain energy, U2, is
given by

U2 = P2

2
(a22P2) + P1

2
(a11P1) + P2(a21P1) (15.52)

By the principle of superposition the strain energy of the body is independent of the
order in which the loads are applied. Hence

U1 = U2

so that

a12 = a21 (15.53)

Thus, in its simplest form, the theorem of reciprocal displacements states that:

The displacement at a point 1 in a given direction due to a unit load at a point 2 in a second
direction is equal to the displacement at the point 2 in the second direction due to a unit
load at the point 1 in the given direction.

The theorem of reciprocal displacements may also be expressed in terms of moments
and rotations. Thus:

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at the
point 2 produced by a unit moment at the point 1.

Finally we have:

The rotation in radians at a point 1 due to a unit load at a point 2 is numerically equal to
the displacement at the point 2 in the direction of the unit load due to a unit moment at
the point 1.

EXAMPLE 15.12 A cantilever 800 mm long with a prop 500 mm from its built-in
end deflects in accordance with the following observations when a concentrated load
of 40 kN is applied at its free end:

Distance from 0 100 200 300 400 500 600 700 800
fixed end (mm)
Deflection (mm) 0 0.3 1.4 2.5 1.9 0 −2.3 −4.8 −10.6

What will be the angular rotation of the beam at the prop due to a 30 kN load applied
200 mm from the built-in end together with a 10 kN load applied 350 mm from the
built-in end?
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(a)

(b)

A

A

200 mm

30 kN 10 kN

θB

350 mm

D

D

E

E

40 kN

B

B

C

C

FIGURE 15.24 Deflection of
a propped cantilever using
the reciprocal theorem

The initial deflected shape of the cantilever is plotted to a suitable scale from the
above observations and is shown in Fig. 15.24(a). Thus, from Fig. 15.24(a) we see that
the deflection at D due to a 40 kN load at C is 1.4 mm. Hence the deflection at C
due to a 40 kN load at D is, from the reciprocal theorem, 1.4 mm. It follows that the
deflection at C due to a 30 kN load at D is equal to (3/4) × (1.4) = 1.05 mm. Again, from
Fig. 15.24(a), the deflection at E due to a 40 kN load at C is 2.4 mm. Thus the deflection
at C due to a 10 kN load at E is equal to (1/4) × (2.4) = 0.6 mm. Therefore the total
deflection at C due to a 30 kN load at D and a 10 kN load at E is 1.05 + 0.6 = 1.65 mm.
From Fig. 15.24(b) we see that the rotation of the beam at B is given by

θB = tan−1
(

1.65
300

)
= tan−1(0.0055)

or

θB = 0◦19′

EXAMPLE 15.13 An elastic member is pinned to a drawing board at its ends A
and B. When a moment, M , is applied at A, A rotates by θA, B rotates by θB and the
centre deflects by δ1. The same moment, M , applied at B rotates B by θC and deflects
the centre through δ2. Find the moment induced at A when a load, W , is applied to
the centre in the direction of the measured deflections, and A and B are restrained
against rotation.

The three load conditions and the relevant displacements are shown in Fig. 15.25.
Thus, from Fig. 15.25(a) and (b) the rotation at A due to M at B is, from the reciprocal
theorem, equal to the rotation at B due to M at A.
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(c)

(b)

(a)

A

W

MA MB
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B
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δ1
θBθA

FIGURE 15.25 Model
analysis of a fixed beam

Thus

θA(b) = θB

It follows that the rotation at A due to MB at B is

θA(c),1 = MB

M
θB (i)

where (b) and (c) refer to (b) and (c) in Fig. 15.25.

Also, the rotation at A due to a unit load at C is equal to the deflection at C due to a
unit moment at A. Therefore

θA(c),2

W
= δ1

M

or

θA(c),2 = W
M

δ1 (ii)

in which θA(c),2 is the rotation at A due to W at C. Finally the rotation at A due to MA

at A is, from Fig. 15.25(a) and (c)

θA(c),3 = MA

M
θA (iii)

The total rotation at A produced by MA at A, W at C and MB at B is, from Eqs (i), (ii)
and (iii)

θA(c),1 + θA(c),2 + θA(c),3 = MB

M
θB + W

M
δ1 + MA

M
θA = 0 (iv)
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since the end A is restrained against rotation. In a similar manner the rotation at B is
given by

MB

M
θC + W

M
δ2 + MA

M
θB = 0 (v)

Solving Eqs (iv) and (v) for MA gives

MA = W

(
δ2θB − δ1θC

θAθC − θ2
B

)

The fact that the arbitrary moment, M , does not appear in the expression for the
restraining moment at A (similarly it does not appear in MB) produced by the load
W indicates an extremely useful application of the reciprocal theorem, namely the
model analysis of statically indeterminate structures. For example, the fixed beam of
Fig. 15.25(c) could possibly be a full-scale bridge girder. It is then only necessary to
construct a model, say, of perspex, having the same flexural rigidity, EI, as the full-scale
beam and measure rotations and displacements produced by an arbitrary moment, M ,
to obtain the fixed-end moments in the full-scale beam supporting a full-scale load.

THEOREM OF RECIPROCAL WORK

Let us suppose that a linearly elastic body is to be subjected to two systems of
loads, P1, P2, . . . , Pk, . . . , Pr , and, Q1, Q2, . . . , Qi, . . . , Qm, which may be applied simul-
taneously or separately. Let us also suppose that corresponding displacements are
�P,1, �P,2, . . . , �P,k, . . . , �P,r due to the loading system, P, and �Q,1, �Q,2, . . . ,
�Q, i, . . . , �Q,m due to the loading system, Q. Finally, let us suppose that the loads,
P, produce displacements �′

Q,1, �′
Q,2, . . . , �′

Q, i, . . . , �′
Q,m at the points of application

and in the direction of the loads, Q, while the loads, Q, produce displacements
�′

P,1, �′
P,2, . . . , �′

P,k, . . . , �′
P,r at the points of application and in the directions of the

loads, P.

Now suppose that the loads P and Q are applied to the elastic body gradually and
simultaneously. The total work done, and hence the strain energy stored, is then
given by

U1 = 1
2 P1(�P,1 + �′

P,1) + 1
2 P2(�P,2 + �′

P,2) + · · · + 1
2 Pk(�P,k + �′

P,k)

+ · · · + 1
2 Pr(�P,r + �′

P,r) + 1
2 Q1(�Q,1 + �′

Q,1) + 1
2 Q2(�Q,2 + �′

Q,2)

+ · · · + 1
2 Qi(�Q,i + �′

Q,i) + · · · + 1
2 Qm(�Q,m + �′

Q,m) (15.54)

If now we apply the P-loading system followed by the Q-loading system, the total strain
energy stored is

U2 = 1
2 P1�P,1 + 1

2 P2�P,2 + · · · + 1
2 Pk�P,k + · · · + 1

2 Pr�P,r + 1
2 Q1�Q,1 + 1

2 Q2�Q,2

+ · · · + 1
2 Qi�Q,i + · · · + 1

2 Qm�Q,m + P1�
′
P,1 + P2�

′
P,2 + Pk�

′
P,k + · · · + Pr�

′
P,r

(15.55)
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Since, by the principle of superposition, the total strain energies, U1 and U2, must be
the same, we have from Eqs (15.54) and (15.55)

− 1
2 P1�

′
P,1 − 1

2 P2�
′
P,2 − · · · − 1

2 Pk�
′
P, k − · · · − 1

2 Pr�
′
P, r

= − 1
2 Q1�

′
Q,1 − 1

2 Q2�
′
Q,2 − · · · − 1

2 Qi�
′
Q,i − · · · − 1

2 Qm�′
Q,m

In other words
r∑

k=1

Pk�
′
P,k =

m∑
i=1

Qm�′
Q,m (15.56)

The expression on the left-hand side of Eq. (15.56) is the sum of the products of the P
loads and their corresponding displacements produced by the Q loads. The right-hand
side of Eq. (15.56) is the sum of the products of the Q loads and their corresponding
displacements produced by the P loads. Thus the theorem of reciprocal work may be
stated as:

The work done by a first loading system when moving through the corresponding dis-
placements produced by a second loading system is equal to the work done by the second
loading system when moving through the corresponding displacements produced by the
first loading system.

Again, as in the theorem of reciprocal displacements, the loading systems may be
either forces or moments and the displacements may be deflections or rotations.

If, in the above, the P- and Q-loading systems comprise just two loads, say P1 and Q2,
then, from Eq. (15.56), we see that

P1(a12Q2) = Q2(a21P1)

so that

a12 = a21

as in the theorem of reciprocal displacements. Therefore, as stated initially, we see that
the theorem of reciprocal displacements is a special case of the theorem of reciprocal
work.

In addition to the use of the reciprocal theorems in the model analysis of structures
as described in Ex. 15.13, they are used to establish the symmetry of, say, the stiff-
ness matrix in the matrix analysis of some structural systems. We shall examine this
procedure in Chapter 16.

P R O B L E M S

P.15.1 Use the principle of virtual work to determine the support reactions in the beam
ABCD shown in Fig. P.15.1.
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Ans. RA = 1.25W RD = 1.75W .

A B C D

W2W

L/4 L/4L/2

FIGURE P.15.1

P.15.2 Find the support reactions in the beam ABC shown in Fig. P.15.2 using the
principle of virtual work.

Ans. RA = (W + 2wL)/4 Rc = (3W + 2wL)/4.

A

B

C

W

w

L/43L/4

FIGURE P.15.2

P.15.3 Determine the reactions at the built-in end of the cantilever beam ABC shown
in Fig. P.15.3 using the principle of virtual work.

Ans. RA = 3W MA = 2.5WL.

A B
C

W 2W

L/2L/2

FIGURE P.15.3

P.15.4 Find the bending moment at the three-quarter-span point in the beam shown
in Fig. P.15.4. Use the principle of virtual work.

Ans. 3wL2/32.
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A B

w

L

FIGURE P.15.4

P.15.5 Calculate the forces in the members FG, GD and CD of the truss shown in
Fig. P.15.5 using the principle of virtual work. All horizontal and vertical members are
1 m long.

Ans. FG = +20 kN GD = +28.3 kN CD = −20 kN.

A

E F G

D
C

20 kN

10 kN

B

FIGURE P.15.5

P.15.6 Use the unit load method to calculate the vertical displacements at the quarter-
and mid-span points in the beam shown in Fig. P.15.6.

Ans. 57wL4/6144EI 5wL4/384EI. (both downwards)

A B

w

EI

L

FIGURE P.15.6

P.15.7 Calculate the deflection of the free end C of the cantilever beam ABC shown
in Fig. P.15.7 using the unit load method.

Ans. wa3(4L − a)/24EI. (downwards)
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A B
C

w

EI

L

a

FIGURE P.15.7

P.15.8 Use the unit load method to calculate the deflection at the free end of the
cantilever beam ABC shown in Fig. P.15.8.

Ans. 3WL3/8EI. (downwards)

A B
C

EI

L/2 L/2

EI/2

W

FIGURE P.15.8

P.15.9 Use the unit load method to find the magnitude and direction of the deflection
of the joint C in the truss shown in Fig. P.15.9. All members have a cross-sectional area
of 500 mm2 and a Young’s modulus of 200 000 N/mm2.

Ans. 23.4 mm, 9.8◦ to left of vertical.

A B

C
DE

1 m

1 m 1 m
200 kN

FIGURE P.15.9

P.15.10 Calculate the magnitude and direction of the deflection of the joint A in
the truss shown in Fig. P.15.10. The cross-sectional area of the compression mem-
bers is 1000 mm2 while that of the tension members is 750 mm2. Young’s modulus is
200 000 N/mm2.

Ans. 30.3 mm, 10.5◦ to right of vertical.
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FIGURE P.15.10

A

200 kN

50 kN

45°

2 m 2 m 2 m

P.15.11 A rigid triangular plate is suspended from a horizontal plane by three vertical
wires attached to its corners. The wires are each 1 mm diameter, 1440 mm long with
a modulus of elasticity of 196 000 N/mm2. The ratio of the lengths of the sides of the
plate is 3 : 4 : 5. Calculate the deflection at the point of application of a load of 100 N
placed at a point equidistant from the three sides of the plate.

Ans. 0.33 mm.

P.15.12 The pin-jointed space truss shown in Fig. P.15.12 is pinned to supports 0, 4,
5 and 9 and is loaded by a force P in the x direction and a force 3P in the negative y
direction at the point 7. Find the rotation of the member 27 about the z axis due to this
loading. All members have the same cross-sectional area, A, and Young’s modulus, E.
(Hint. Calculate the deflections in the x direction of joints 2 and 7.)

Ans. 382P/9AE.

FIGURE P.15.12

3a
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4a

4a

3P
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P.15.13 The tubular steel post shown in Fig. P.15.13 carries a load of 250 N at the free
end C. The outside diameter of the tube is 100 mm and its wall thickness is 3 mm.
If the modulus of elasticity of the steel is 206 000 N/mm2, calculate the horizontal
movement of C.

Ans. 53.3 mm.
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250 N

C

4R

R

R �1500 mm

FIGURE P.15.13

P.15.14 A cantilever beam of length L and depth h is subjected to a uniform tempera-
ture rise along its length. At any section, however, the temperature increases linearly
from t1 on the undersurface of the beam to t2 on its upper surface. If the coefficient
of linear expansion of the material of the beam is α, calculate the deflection at its
free end.

Ans. α(t2 − t1)L2/2 h.

P.15.15 A simply supported beam of span L is subjected to a temperature gradient
which increases linearly from zero at the left-hand support to t0 at the right-hand
support. If the temperature gradient also varies linearly through the depth, h, of
the beam and is zero on its undersurface, calculate the deflection of the beam at its
mid-span point. The coefficient of linear expansion of the material of the beam is α.

Ans. −αt0L2/48 h.

P.15.16 Figure P.15.16 shows a frame pinned to supports at A and B. The frame centre-
line is a circular arc and its section is uniform, of bending stiffness EI and depth d. Find
the maximum stress in the frame produced by a uniform temperature gradient through
the depth, the temperature on the outer and inner surfaces being raised and lowered
by an amount T . The coefficient of linear expansion of the material of the frame is α.
(Hint. Treat half the frame as a curved cantilever built-in on its axis of symmetry and
determine the horizontal reaction at a support by equating the horizontal deflection
produced by the temperature gradient to the horizontal deflection produced by the
reaction).

Ans. 1.29ETα.

A B

�T

�T

d

r

30°30°

FIGURE P.15.16
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P.15.17 Calculate the deflection at the mid-span point of the beam of Ex. 15.11 by
assuming a deflected shape function of the form

υ = υ1 sin
πx
L

+ υ3 sin
3πx
L

in which υ1 and υ3 are unknown displacement parameters. Note:

∫ L

0
sin2

(nπx
L

)
dx = L

2

∫ L

0
sin
(mπx

L

)
sin
(nπx

L

)
dx = 0

Ans. 0.02078WL3/EI.

P.15.18 A beam is supported at both ends and has the central half of its span reinforced
such that its flexural rigidity is 2EI; the flexural rigidity of the remaining parts of the
beam is EI. The beam has a span L and carries a vertically downward concentrated
load, W , at its mid-span point. Assuming a deflected shape function of the form

υ = 4υmx2

L3 (3L − 4x) (0 ≤ x ≤ L/2)

in which υm is the deflection at the mid-span point, determine the value of υm.

Ans. 0.00347WL3/EI.

P.15.19 Figure P.15.19 shows two cantilevers, the end of one being vertically above the
end of the other and connected to it by a spring AB. Initially the system is unstrained.
A weight, W , placed at A causes a vertical deflection at A of δ1 and a vertical deflection
at B of δ2. When the spring is removed the weight W at A causes a deflection at A of δ3.
Find the extension of the spring when it is replaced and the weight, W , is transferred
to B.

Ans. δ2(δ1 − δ2)/(δ3 − δ1)

A

B
FIGURE P.15.19

P.15.20 A beam 2.4 m long is simply supported at two points A and B which are 1.44 m
apart; point A is 0.36 m from the left-hand end of the beam and point B is 0.6 m from
the right-hand end; the value of EI for the beam is 240 × 108 N mm2. Find the slope
at the supports due to a load of 2 kN applied at the mid-point of AB.

Use the reciprocal theorem in conjunction with the above result to find the deflection
at the mid-point of AB due to loads of 3 kN applied at each end of the beam.

Ans. 0.011, 15.8 mm.
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Statically indeterminate structures occur more frequently in practice than those that
are statically determinate and are generally more economical in that they are stiffer
and stronger. For example, a fixed beam carrying a concentrated load at mid-span
has a central displacement that is one-quarter of that of a simply supported beam
of the same span and carrying the same load, while the maximum bending moment
is reduced by half. It follows that a smaller beam section would be required in the
fixed beam case, resulting in savings in material. There are, however, disadvantages
in the use of this type of beam for, as we saw in Section 13.6, the settling of a support
in a fixed beam causes bending moments that are additional to those produced by
the loads, a serious problem in areas prone to subsidence. Another disadvantage of
statically indeterminate structures is that their analysis requires the calculation of
displacements so that their cross-sectional dimensions are required at the outset. The
design of such structures therefore becomes a matter of trial and error, whereas the
forces in the members of a statically determinate structure are independent of member
size. On the other hand, failure of, say, a member in a statically indeterminate frame
would not necessarily be catastrophic since alternative load paths would be available,
at least temporarily. However, the failure of a member in, say, a statically determinate
truss would lead, almost certainly, to a rapid collapse.

The choice between statically determinate and statically indeterminate structures
depends to a large extent upon the purpose for which a particular structure is required.
As we have seen, fixed or continuous beams are adversely affected by support settle-
ment so that the insertion of hinges at, say, points of contraflexure would reduce
the structure to a statically determinate state and eliminate the problem. This pro-
cedure would not be practical in the construction of skeletal structures for high-rise
buildings so that these structures are statically indeterminate. Clearly, both types of
structures exist in practice so that methods of analysis are required for both statically
indeterminate and statically determinate structures.

In this chapter we shall examine methods of analysis of different forms of statically
indeterminate structures; as a preliminary we shall discuss the basis of the different
methods, and investigate methods of determining the degree of statical and kinematic
indeterminacy, an essential part of the analytical procedure.

467
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16.1 FLEXIBILITY AND STIFFNESS METHODS

In Section 4.4 we briefly discussed the statical indeterminacy of trusses and established
a condition, not always applicable, for a truss to be stable and statically determinate.
This condition, which related the number of members and the number of joints, did not
involve the support reactions which themselves could be either statically determinate
or indeterminate. The condition was therefore one of internal statical determinacy;
clearly the determinacy, or otherwise, of the support reactions is one of external statical
determinacy.

Consider the portal frame shown in Fig. 16.1. The frame carries loads, P and W , in
its own plane so that the system is two-dimensional. Since the vertical members AB
and FD of the frame are fixed at A and F, the applied loads will generate a total of six
reactions of force and moment as shown. For a two-dimensional system there are three
possible equations of statical equilibrium (Eq. (2.10)) so that the frame is externally
statically indeterminate to the third degree. The situation is not improved by taking a
section through one of the members since this procedure, although eliminating one of
the sets of reactive forces, would introduce three internal stress resultants. If, however,
three of the support reactions were known or, alternatively, if the three internal stress
resultants were known, the remaining three unknowns could be determined from the
equations of statical equilibrium and the solution completed.

A different situation arises in the simple truss shown in Fig. 4.7(b) where, as we saw,
the additional diagonal results in the truss becoming internally statically indeterminate
to the first degree; note that the support reactions are statically determinate.

In the analysis of statically indeterminate structures two basic methods are employed.
In one the structure is reduced to a statically determinate state by employing releases,
i.e. by eliminating a sufficient number of unknowns to enable the support reactions
and/or the internal stress resultants to be found from a consideration of statical equi-
librium. For example, in the frame in Fig. 16.1 the number of support reactions would
be reduced to three if one of the supports was pinned and the other was a pinned

W

P
B C D

FA
RA,H

RA,V RF,V

RF,H

MA MF
FIGURE 16.1 Statical
indeterminacy of a portal
frame
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roller support. The same result would be achieved if one support remained fixed and
the other support was removed entirely. Also, in the truss in Fig. 4.7(b), removing
a diagonal, vertical or horizontal member would result in the truss becoming stat-
ically determinate. Releasing a structure in this way would produce displacements that
would not otherwise be present. These displacements may be calculated by analysing
the released statically determinate structure; the force system required to eliminate
them is then obtained, i.e. we are employing a compatibility of displacement condition.
This method is generally termed the flexibility or force method; in effect this method
was used in the solution of the propped cantilever in Fig. 13.22.

The alternative procedure, known as the stiffness or displacement method is analogous
to the flexibility method, the major difference being that the unknowns are the displace-
ments at specific points in the structure. Generally the procedure requires a structure
to be divided into a number of elements for each of which load–displacement rela-
tionships are known. Equations of equilibrium are then written down in terms of the
displacements at the element junctions and are solved for the required displacements;
the complete solution follows.

Both the flexibility and stiffness methods generally result, for practical structures
having a high degree of statical indeterminacy, in a large number of simultaneous
equations which are most readily solved by computer-based techniques. However, the
flexibility method requires the structure to be reduced to a statically determinate state
by inserting releases, a procedure requiring some judgement on the part of the analyst.
The stiffness method, on the other hand, requires no such judgement to be made and
is therefore particularly suitable for automatic computation.

Although the practical application of the flexibility and stiffness methods is generally
computer based, they are fundamental to ‘hand’ methods of analysis as we shall see.
Before investigating these hand methods we shall examine in greater detail the indeter-
minacy of structures since we shall require the degree of indeterminacy of a structure
before, in the case of the flexibility method, the appropriate number of releases can
be determined. At the same time the kinematic indeterminacy of a structure is needed
to determine the number of constraints that must be applied to render the structure
kinematically determinate in the stiffness method.

16.2 DEGREE OF STATICAL INDETERMINACY

In some cases the degree of statical indeterminacy of a structure is obvious from
inspection. For example, the portal frame in Fig. 16.1 has a degree of external statical
indeterminacy of 3, while the truss of Fig. 4.7(b) has a degree of internal statical
indeterminacy of 1. However, in many cases, the degree is not obvious and in other
cases the internal and external indeterminacies may not be independent so that we
need to consider the complete structure, including the support system. A more formal
and methodical approach is therefore required.
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FIGURE 16.2
Statical

indeterminacy
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RINGS

The simplest approach is to insert constraints in a structure until it becomes a series
of completely stiff rings. The statical indeterminacy of a ring is known and hence that
of the completely stiff structure. Then by inserting the number of releases required to
return the completely stiff structure to its original state, the degree of indeterminacy
of the actual structure is found.

Consider the single ring shown in Fig. 16.2(a); the ring is in equilibrium in space
under the action of a number of forces that are not coplanar. If, say, the ring is cut
at some point, X, the cut ends of the ring will be displaced relative to each other as
shown in Fig. 16.2(b) since, in effect, the internal forces equilibrating the external
forces have been removed. The cut ends of the ring will move relative to each other
in up to six possible ways until a new equilibrium position is found, i.e. translationally
along the x, y and z axes and rotationally about the x, y and z axes, as shown in Fig.
16.2(c). The ring is now statically determinate and the internal force system at any
section may be obtained from simple equilibrium considerations. To rejoin the ends of
the ring we require forces and moments proportional to the displacements, i.e. three
forces and three moments. Therefore at any section in a complete ring subjected to
an arbitrary external loading system there are three internal forces and three internal
moments, none of which may be obtained by statics. A ring is then six times statically
indeterminate. For a two-dimensional system in which the forces are applied in the
plane of the ring, the internal force system is reduced to an axial force, a shear force
and a moment, so that a two-dimensional ring is three times statically indeterminate.
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FIGURE 16.3
Examples of rings M � 1, N � 1 M � 2, N � 2M � 3, N � 3

Node

Member

M � 4, N � 4

FIGURE 16.4 Effect
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a ring
Cut

M = 2, N = 3
Cut

M = 4, N = 5

Cut

M = 5, N = 6

Cut

M = 3, N = 4

FIGURE 16.5
Foundation acting

as a structural
member

A C

B

The above arguments apply to any closed loop so that a ring may be of any shape.
Furthermore, a ring may be regarded as comprising any number of members which
form a closed loop and which are joined at nodes, a node being defined as a point
at the end of a member. Examples of rings are shown in Fig. 16.3 where the number
of members, M , and the number of nodes, N , are given. Note that the number of
members is equal to the number of nodes in every case. However, when a ring is cut
we introduce an additional member and two additional nodes, as shown in Fig. 16.4.

THE ENTIRE STRUCTURE

Since we shall require the number of rings in a structure, and since it is generally
necessary to include the support system, we must decide what constitutes the structure.
For example, in Fig. 16.5 the members AB and BC are pinned to the foundation at
A and C. The foundation therefore acts as a member of very high stiffness. In this
simple illustration it is obvious that the members AB and BC, with the foundation,
form a ring if the pinned joints are replaced by rigid joints. In more complex structures
we must ensure that just sufficient of the foundation is included so that superfluous
indeterminacies are not introduced; the structure is then termed the entire structure.
This condition requires that the points of support are singly connected such that for
any two points A and B in the foundation system there is only one path from A to
B that does not involve retracing any part of the path. For example, in Fig. 16.6(a)
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FIGURE 16.6
Determination of

the entire structure

A

G

B B B

E E E
G G

F F F

A
A

Foundation
‘member’

(a) (b) (c)

FIGURE 16.7 A
completely stiff

structure (a) (b)

and (b) there is only one path between A and B which does not involve retracing
part of the path. In Fig. 16.6(c), however, there are two possible paths from A to B,
one via G and one via F and E. Thus the support points in Fig. 16.6(a) and (b) are
singly connected while those in Fig. 16.6(c) are multiply connected. We note from the
above that there may be a number of ways of singly connecting the support points in
a foundation system and that each support point in the entire structure is attached to
at least one foundation ‘member’. Including the foundation members increases the
number of members, but the number of nodes is unchanged.

THE COMPLETELY STIFF STRUCTURE

Having established the entire structure we now require the completely stiff structure
in which there is no point or member where any stress resultant is always zero for
any possible loading system. Thus the completely stiff structure (Fig. 16.7(b)) corres-
ponding to the simple truss in Fig. 16.7(a) has rigid joints (nodes), members that are
capable of resisting shear loads as well as axial loads and a single foundation member.
Note that the completely stiff structure comprises two rings, is two-dimensional and
therefore six times statically indeterminate. We shall consider how such a structure is
‘released’ to return it to its original state (Fig. 16.7(a)) after considering the degree of
indeterminacy of a three-dimensional system.

DEGREE OF STATICAL INDETERMINACY

Consider the frame structure shown in Fig. 16.8(a). It is three-dimensional and com-
prises three portal frames that are rigidly built-in at the foundation. Its completely stiff
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FIGURE 16.8
Determination of

the degree of statical
indeterminacy of a

structure (a) (b) (c)

equivalent is shown in Fig. 16.8(b) where we observe by inspection that it consists of
three rings, each of which is six times statically indeterminate so that the completely
stiff structure is 3 × 6 = 18 times statically indeterminate. Although the number of
rings in simple cases such as this is easily found by inspection, more complex cases
require a more methodical approach.

Suppose that the members are disconnected until the structure becomes singly con-
nected as shown in Fig. 16.8(c). (A singly connected structure is defined in the same
way as a singly connected foundation.) Each time a member is disconnected, the num-
ber of nodes increases by one, while the number of rings is reduced by one; the number
of members remains the same. The final number of nodes, N ′, in the singly connected
structure is therefore given by

N ′ = M + 1 (M = number of members)

Suppose now that the members are reconnected to form the original completely stiff
structure. Each reconnection forms a ring, i.e. each time a node disappears a ring is
formed so that the number of rings, R, is equal to the number of nodes lost during the
reconnection. Thus

R = N ′ − N

where N is the number of nodes in the completely stiff structure. Substituting for N ′

from the above we have

R = M − N + 1

In Fig. 16.8(b), M = 10 and N = 8 so that R = 3 as deduced by inspection. There-
fore, since each ring is six times statically indeterminate, the degree of statical
indeterminacy, n′

s, of the completely stiff structure is given by

n′
s = 6(M − N + 1) (16.1)

For an actual entire structure, releases must be inserted to return the completely stiff
structure to its original state. Each release will reduce the statical indeterminacy by 1,
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FIGURE 16.9
Number of releases

for a plane truss

A A

A

B B B

(a) (b) (c)

D D
E E

E

C C C

so that if r is the total number of releases required, the degree of statical indeterminacy,
ns, of the actual structure is

ns = n′
s − r

or, substituting for n′
s from Eq. (16.1)

ns = 6(M − N + 1) − r (16.2)

Note that in Fig. 16.8 no releases are required to return the completely stiff structure of
Fig. 16.8(b) to its original state in Fig. 16.8(a) so that its degree of indeterminacy is 18.

In the case of two-dimensional structures in which a ring is three times statically
indeterminate, Eq. (16.2) becomes

ns = 3(M − N + 1) − r (16.3)

TRUSSES

A difficulty arises in determining the number of releases required to return the
completely stiff equivalent of a truss to its original state.

Consider the completely stiff equivalent of a plane truss shown in Fig. 16.9(a); we are
not concerned here with the indeterminacy or otherwise of the support system which
is therefore omitted. In the actual truss each member is assumed to be capable of
resisting axial load only so that there are two releases for each member, one of shear
and one of moment, a total of 2M releases. Thus, if we insert a hinge at the end of
each member as shown in Fig. 16.9(b) we have achieved the required number, 2M ,
of releases. However, in this configuration, each joint would be free to rotate as a
mechanism through an infinitesimally small angle, independently of the members; the
truss is then excessively pin-jointed. This situation can be prevented by removing one
hinge at each joint as shown, for example at joint B in Fig. 16.9(c). The member BC
then prevents rotation of the joint at B. Furthermore, the presence of a hinge at B in
BA and at B in BE ensures that there is no moment at B in BC so that the conditions
for a truss are satisfied.
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From the above we see that the total number, 2M , of releases is reduced by 1 for each
node. Thus the required number of releases in a plane truss is

r = 2M − N (16.4)

so that Eq. (16.3) becomes

ns = 3(M − N + 1) − (2M − N)

or

ns = M − 2N + 3 (16.5)

Equation (16.5) refers only to the internal indeterminacy of a truss so that the degree
of indeterminacy of the support system is additional. Also, returning to the simple
triangular truss of Fig. 16.7(a) we see that its degree of internal indeterminacy is, from
Eq. (16.5), given by

ns = 3 − 2 × 3 + 3 = 0

as expected.

A similar situation arises in a space truss where, again, each member is required to
resist axial load only so that there are 5M releases for the complete truss. This could
be achieved by inserting ball joints at the ends of each member. However, we would
then be in the same kind of position as the plane truss of Fig. 16.9(b) in that each joint
would be free to rotate through infinitesimally small angles about each of the three
axes (the members in the plane truss can only rotate about one axis) so that three
constraints are required at each node, a total of 3N constraints. Therefore the number
of releases is given by

r = 5M − 3N

so that Eq. (16.2) becomes

ns = 6(M − N + 1) − (5M − 3N)

or

ns = M − 3N + 6 (16.6)

For statically determinate plane trusses and space trusses, i.e. ns = 0, Eqs (16.5) and
(16.6), respectively, becomes

M = 2N − 3 M = 3N − 6 (16.7)

which are the results deduced in Section 4.4 (Eqs (4.1) and (4.2)).

16.3 KINEMATIC INDETERMINACY

We have seen that the degree of statical indeterminacy of a structure is, in fact, the
number of forces or stress resultants which cannot be determined using the equations
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of statical equilibrium. Another form of the indeterminacy of a structure is expressed
in terms of its degrees of freedom; this is known as the kinematic indeterminacy, nk, of
a structure and is of particular relevance in the stiffness method of analysis where the
unknowns are the displacements.

A simple approach to calculating the kinematic indeterminacy of a structure is to
sum the degrees of freedom of the nodes and then subtract those degrees of freedom
that are prevented by constraints such as support points. It is therefore important
to remember that in three-dimensional structures each node possesses 6 degrees of
freedom while in plane structures each node possess three degrees of freedom.

EXAMPLE 16.1 Determine the degrees of statical and kinematic indeterminacy of
the beam ABC shown in Fig. 16.10(a).

FIGURE 16.10
Determination of the

statical and kinematic
indeterminacies of the

beam of Ex. 16.1

A
A

B

B

C
C

(a) (b)

r � 1 r � 2 r � 2

The completely stiff structure is shown in Fig. 16.10(b) where we see that M = 4 and
N = 3. The number of releases, r, required to return the completely stiff structure to
its original state is 5, as indicated in Fig. 16.10(b); these comprise a moment release
at each of the three supports and a translational release at each of the supports B and
C. Therefore, from Eq. (16.3)

ns = 3(4 − 3 + 1) − 5 = 1

so that the degree of statical indeterminacy of the beam is 1.

Each of the three nodes possesses 3 degrees of freedom, a total of nine. There are
four constraints so that the degree of kinematic indeterminacy is given by

nk = 9 − 4 = 5

EXAMPLE 16.2 Determine the degree of statical and kinematic indeterminacy of
the truss shown in Fig. 16.11(a).

FIGURE 16.11
Determinacy of the

truss of Ex. 16.2 (a) (b)
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The completely stiff structure is shown in Fig. 16.11(b) in which we see that M = 17
and N = 8. However, since the truss is pin-jointed, we can obtain the internal statical
indeterminacy directly from Eq. (16.5) in which M = 16, the actual number of truss
members. Thus

ns = 16 − 16 + 3 = 3

and since, as can be seen from inspection, the support system is statically determinate,
the complete structure is three times statically indeterminate.

Alternatively, considering the completely stiff structure in Fig. 16.11(b) in which
M = 17 and N = 8, we can use Eq. (16.3). The number of internal releases is found
from Eq. (16.4) and is r = 2 × 16 − 8 = 24. There are three additional releases from
the support system giving a total of 27 releases. Thus, from Eq. (16.3)

ns = 3(17 − 8 + 1) − 27 = 3

as before.

The kinematic indeterminacy is found as before by examining the total degrees of
freedom of the nodes and the constraints, which in this case are provided solely by
the support system. There are eight nodes each having 2 translational degrees of
freedom. The rotation at a node does not result in a stress resultant and is therefore
irrelevant. There are therefore 2 degrees of freedom at a node in a plane truss and
3 in a space truss. In this example there are then 8 × 2 = 16 degrees of freedom and
three translational constraints from the support system. Thus

nk = 16 − 3 = 13

EXAMPLE 16.3 Calculate the degree of statical and kinematic indeterminacy of
the frame shown in Fig. 16.12(a).

FIGURE 16.12
Statical and

kinematic
indeterminacies

of the frame
of Ex. 16.3 (a) (b)

In the completely stiff structure shown in Fig. 16.12(b), M = 7 and N = 6. The number
of releases, r, required to return the completely stiff structure to its original state is 3.
Thus, from Eq. (16.3)

ns = 3(7 − 6 + 1) − 3 = 3
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The number of nodes is six, each having 3 degrees of freedom, a total of 18. The
number of constraints is three so that the kinematic indeterminacy of the frame is
given by

nk = 18 − 3 = 15

EXAMPLE 16.4 Determine the degree of statical and kinematic indeterminacy in
the space frame shown in Fig. 16.13(a).

FIGURE 16.13
Space frame
of Ex. 16.4 (a) (b)

In the completely stiff structure shown in Fig. 16.13(b), M = 19, N = 13 and r = 0.
Therefore from Eq. (16.2)

ns = 6(19 − 13 + 1) − 0 = 42

There are 13 nodes each having 6 degrees of freedom, a total of 78. There are six
constraints at each of the four supports, a total of 24. Thus

nk = 78 − 24 = 54

We shall now consider different types of statically indeterminate structure and the
methods that may be used to analyse them; the methods are based on the work and
energy methods described in Chapter 15.

16.4 STATICALLY INDETERMINATE BEAMS

Beams are statically indeterminate generally because of their support systems. In
this category are propped cantilevers, fixed beams and continuous beams. A propped
cantilever and some fixed beams were analysed in Section 13.6 using either the principle
of superposition or moment-area methods. We shall now apply the methods described
in Chapter 15 to some examples of statically indeterminate beams.
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EXAMPLE 16.5 Calculate the support reaction at B in the propped cantilever shown
in Fig. 16.14.

FIGURE 16.14
Propped cantilever

of Ex. 16.5

A

EI

L

RB

w

x

B

In this example it is unnecessary to employ the procedures described in Section 16.2
to calculate the degree of statical indeterminacy since this is obvious by inspection.
Thus the removal of the vertical support at B would result in a statically determin-
ate cantilever beam so that we deduce that the degree of statical indeterminacy is 1.
Furthermore, it is immaterial whether we use the principle of virtual work or com-
plementary energy in the solution since, for linearly elastic systems, they result in the
same equations (see Chapter 15). First, we shall adopt the complementary energy
approach.

The total complementary energy, C, of the beam is given, from Eq. (i) of Ex. 15.8, by

C =
∫ L

0

∫ M

0
dθ dM − RBvB (i)

in which vB is the vertical displacement of the cantilever at B (in this case vB = 0 since
the beam is supported at B).

From the principle of the stationary value of the total complementary energy we have

∂C
∂RB

=
∫ L

0

∂M
∂RB

dθ − vB = 0 (ii)

which, by comparison with Eq. (iii) of Ex. 15.8, becomes

vB =
∫ L

0

M
EI

∂M
∂RB

dx = 0 (iii)

The bending moment, M , at any section of the beam is given by

M = RB(L − x) − w
2

(L − x)2

Hence
∂M
∂RB

= L − x
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Substituting in Eq. (iii) for M and ∂M/∂RB we have

∫ L

0

{
RB(L − x)2 − w

2
(L − x)3

}
dx = 0 (iv)

from which

RB = 3wL
8

which is the result obtained in Ex. 13.19.

The algebra in the above solution would have been slightly simplified if we had assumed
an origin for x at the end B of the beam. Equation (iv) would then become

∫ L

0

(
RB x2 − w

2
x3
)

dx = 0

which again gives

RB = 3wL
8

Having obtained RB, the remaining support reactions follow from statics.

An alternative approach is to release the structure so that it becomes statically
determinate by removing the support at B (by inspection the degree of statical inde-
terminacy is 1 so that one release only is required in this case) and then to calculate
the vertical displacement at B due to the applied load using, say, the unit load method
which, as we have seen, is based on the principle of virtual work or, alternatively, com-
plementary energy. We then calculate the vertical displacement at B produced by RB

acting alone, again, say, by the unit load method. The sum of the two displacements
must be zero since the beam at B is supported, so that we obtain an equation in which
RB is the unknown.

It is not essential to select the support reaction at B as the release. We could, in
fact, choose the fixing moment at A in which case the beam would become a simply
supported beam which, of course, is statically determinate. We would then determine
the moment at A required to restore the slope of the beam at A to zero.

In the above, the released structure is frequently termed the primary structure.

Suppose that the vertical displacement at the free end of the released cantilever due
to the uniformly distributed load vB,0. Then, from Eq. (iii) of Ex. 15.9 (noting that MA

in that equation has been replaced by Ma here to avoid confusion with the bending
moment at A)

vB,0 =
∫ L

0

MaM1

EI
dx (v)

in which

Ma = −w
2

(L − x)2 M1 = −1(L − x)
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Hence, substituting for Ma and M1 in Eq. (v), we have

vB,0 =
∫ L

0

w
2EI

(L − x)3dx

which gives

vB,0 = wL4

8EI
(vi)

We now apply a vertically downward unit load at the B end of the cantilever from
which the distributed load has been removed. The displacement, vB,1, due to this unit
load is then, from Eq. (v)

vB,1 =
∫ L

0

1
EI

(L − x)2dx

from which

vB,1 = L3

3EI
(vii)

The displacement due to RB at B is −RBvB,1 (RB acts in the opposite direction to the
unit load) so that the total displacement, vB, at B due to the uniformly distributed load
and RB is, using the principle of superposition

vB = vB,0 − RBvB,1 = 0 (viii)

Substituting for vB,0 and vB,1 from Eqs (vi) and (vii) we have

wL4

8EI
− RB

L3

3EI
= 0

which gives

RB = 3wL
8

as before. This approach is the flexibility method described in Section 16.1 and is, in
effect, identical to the method used in Ex. 13.18.

In Eq. (viii) vB,1 is the displacement at B in the direction of RB due to a unit load
at B applied in the direction of RB (either in the same or opposite directions). For a
beam that has a degree of statical indeterminacy greater than 1 there will be a series
of equations of the same form as Eq. (viii) but which will contain the displacements
at a specific point produced by the redundant forces. We shall therefore employ the
flexibility coefficient akj (k = 1, 2, . . . , r; j = 1, 2, . . . , r) which we defined in Section 15.4
as the displacement at a point k in a given direction produced by a unit load at a point
j in a second direction. Thus, in the above, vB,1 = a11 so that Eq. (viii) becomes

vB,0 − a11RB = 0 (ix)
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It is also convenient, since the flexibility coefficients are specified by numerical
subscripts, to redesignate RB as R1. Thus Eq. (ix) becomes

vB,0 − a11R1 = 0 (x)

EXAMPLE 16.6 Determine the support reaction at B in the propped cantilever
shown in Fig. 16.15(a).

FIGURE 16.15
Propped cantilever

of Ex. 16.6

A(2) A

1

AB BC CB(1)

EI

MA

(�M2)

x

x x

L/2

L/2

(a) (b) (c)

L/2

L

L L

R1R2

W W

As in Ex. 16.5, the cantilever in Fig. 16.15(a) has a degree of statical indeterminacy
equal to 1. Again we shall choose the support reaction at B, R1, as the indeterminacy;
the released or primary structure is shown in Fig. 16.15(b). Initially we require the
displacement, vB,0, at B due to the applied load, W , at C. This may readily be found
using the unit load method. Thus from Eq. (iii) of Ex. 15.9

vB,0 =
∫ L

0

{
− W

EI

(
3L
2

− x
)}

{−1(L − x)} dx

which gives

vB,0 = 7WL3

12EI
(i)

Similarly, the displacement at B due to the unit load at B in the direction of R1 (Fig.
16.15(c)) is

a11 = L3

3EI
(use Eq. (vii) of Ex. 16.5)

Hence, since,

vB,0 − a11R1 = 0 (ii)

we have

7WL3

12EI
− L3

3EI
R1 = 0

from which

R1 = 7W
4
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Alternatively, we could select the fixing moment, MA (=M2), at A as the release. The
primary structure is then the simply supported beam shown in Fig. 16.16(a) where
RA = −W /2 and RB = 3W /2. The rotation at A may be found by any of the methods
previously described. They include the integration of the second-order differential
equation of bending (Eq. (13.3)), the moment-area method described in Section 13.3
and the unit load method (in this case it would be a unit moment). Thus, using the
unit load method and applying a unit moment at A as shown in Fig. 16.16(b) we have,
from the principle of virtual work (see Ex. 15.5)

1θA,0 =
∫ L

0

MaMv

EI
dx +

∫ 3L/2

L

MaMv

EI
dx (iii)

In Eq. (iii)

Ma = −W
2

x Mv = 1
L

x − 1 (0 ≤ x ≤ L)

Ma = Wx − 3WL
2

Mv = 0
(

L ≤ x ≤ 3L
2

)

Substituting in Eq. (iii) we have

θA,0 = W
2EIL

∫ L

0
(Lx − x2)dx

from which

θA,0 = WL2

12EI
(anticlockwise)

The flexibility coefficient, θ22, i.e. the rotation at A (point 2), due to a unit moment at
A is obtained from Fig. 16.16(b). Thus

θ22 =
∫ L

0

1
EI

( x
L

− 1
)2

dx

from which

θ22 = L
3EI

(anticlockwise)

FIGURE 16.16
Alternative solution

for Ex. 16.6

RA

x L

W

L/2

RB

A(2) B(1)
C

1 CBA

(a) (b)

1/L �1/L
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Therefore, since the rotation at A in the actual structure is zero

θA,0 + θ22M2 = 0

or

WL2

12EI
+ L

3EI
M2 = 0

which gives

M2 = −WL
4

(clockwise)

Considering now the statical equilibrium of the beam in Fig. 16.15(a) we have, taking
moments about A

R1L − W
3L
2

− WL
4

= 0

so that

R1 = 7WL
4

as before.

EXAMPLE 16.7 Determine the support reactions in the three-span continuous
beam ABCD shown in Fig. 16.17(a).

It is clear from inspection that the degree of statical indeterminacy of the beam is two.
Therefore, if we choose the supports at B and C as the releases, the primary structure
is that shown in Fig. 16.17(b). We therefore require the vertical displacements, vB,0

and vC,0, at the points B and C. These may readily be found using any of the methods

FIGURE 16.17
Analysis of a

three-span
continuous beam

A

A A

1 1

A B DC

(a)

(c) (d)

(b)

EI

RA RB (�R1) RC (�R2) RD

B(1)

B(1) B(1)

C(2)

C(2) C(2)

D

D D

6 kN 6 kN10 kN 10 kN

0.5 m 0.5 m 0.5 m 0.5 m 1.0 m

12 kN/m 12 kN/m
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previously described (unit load method, moment-area method, Macauley’s method
(Section 13.2)) and are

vB,0 = 8.88
EI

vC,0 = 9.08
EI

(downwards)

We now require the flexibility coefficients, a11, a12, a22 and a21. The coefficients a11

and a21 are found by placing a unit load at B (point 1) as shown in Fig. 16.17(c) and
then determining the displacements at B and C (point 2). Similarly, the coefficients
a22 and a12 are found by placing a unit load at C and calculating the displacements
at C and B; again, any of the methods listed above may be used. However, from the
reciprocal theorem (Section 15.4) a12 = a21 and from symmetry a11 = a22. Therefore it
is only necessary to calculate the displacements a11 and a21 from Fig. 16.17(c). These
are

a11 = a22 = 0.45
EI

a21 = a12 = 0.39
EI

(downwards)

The total displacements at the support points B and C are zero so that

vB,0 − a11R1 − a12R2 = 0 (i)

vC,0 − a21R1 − a22R2 = 0 (ii)

or, substituting the calculated values of vB,0, a11, etc., in Eqs (i) and (ii), and multiplying
through by EI

8.88 − 0.45R1 − 0.39R2 = 0 (iii)

9.08 − 0.39R1 − 0.45R2 = 0 (iv)

Note that the negative signs in the terms involving R1 and R2 in Eqs (i) and (ii) are
due to the fact that the unit loads were applied in the opposite directions to R1 and
R2. Solving Eqs (iii) and (iv) we obtain

R1 (= RB) = 8.7 kN R2 (= RC) = 12.68 kN

The remaining reactions are determined by considering the statical equilibrium of the
beam and are

RA = 1.97 kN RB = 4.65 kN

In Exs 16.5–16.7 we have assumed that the beam supports are not subjected to a vertical
displacement themselves. It is possible, as we have previously noted, that a support
may sink, so that the right-hand side of the compatibility equations, Eqs (viii), (ix)
and (x) in Ex. 16.5, Eq. (ii) in Ex. 16.6 and Eqs (i) and (ii) in Ex. 16.7, would not be
zero but equal to the actual displacement of the support. In such a situation one of
the releases should coincide with the displaced support.

It is clear from Ex. 16.7 that the number of simultaneous equations of the form of
Eqs (i) and (ii) requiring solution is equal to the degree of statical indeterminacy of
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the structure. For structures possessing a high degree of statical indeterminacy the
solution, by hand, of a large number of simultaneous equations is not practicable. The
equations would then be expressed in matrix form and solved using a computer-based
approach. Thus for a structure having a degree of statical indeterminacy equal to n
there would be n compatibility equations of the form

v1,0 + a11R1 + a12R2 + · · · + a1nRn = 0
...

vn,0 + an1R1 + an2R2 + · · · + annRn = 0

or, in matrix form 


v1,0
...

vn,0


 = −




a11 a12 . . . a1n
...

an1 an2 . . . ann






R1
...

Rn




Note that here n is ns, the degree of statical indeterminacy; the subscript ‘s’ has been
omitted for convenience.

Alternative methods of solution of continuous beams are the slope–deflection method
described in Section 16.9 and the iterative moment distribution method described in
Section 16.10. The latter method is capable of producing relatively rapid solutions for
beams having several spans.

16.5 STATICALLY INDETERMINATE TRUSSES

A truss may be internally and/or externally statically indeterminate. For a truss that is
externally statically indeterminate, the support reactions may be found by the methods
described in Section 16.4. For a truss that is internally statically indeterminate the
flexibility method may be employed as illustrated in the following examples.

EXAMPLE 16.8 Determine the forces in the members of the truss shown in
Fig. 16.18(a); the cross-sectional area, A, and Young’s modulus, E, are the same
for all members.

The truss in Fig. 16.18(a) is clearly externally statically determinate but, from Eq.
(16.5), has a degree of internal statical indeterminacy equal to 1 (M = 6, N = 4). We
therefore release the truss so that it becomes statically determinate by ‘cutting’ one
of the members, say BD, as shown in Fig. 16.18(b). Due to the actual loads (P in this
case) the cut ends of the member BD will separate or come together, depending on
whether the force in the member (before it was cut) was tensile or compressive; we
shall assume that it was tensile.
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FIGURE 16.18
Analysis of a

statically
indeterminate truss

A A A

Cut

B B BC C C

1

1

P

XBD

XBD

P

L

D D D

(a) (b) (c)

45°

We are assuming that the truss is linearly elastic so that the relative displacement of
the cut ends of the member BD (in effect the movement of B and D away from or
towards each other along the diagonal BD) may be found using, say, the unit load
method as illustrated in Exs 15.6 and 15.7. Thus we determine the forces Fa, j, in the
members produced by the actual loads. We then apply equal and opposite unit loads
to the cut ends of the member BD as shown in Fig. 16.18(c) and calculate the forces,
F1, j in the members. The displacement of B relative to D, �BD, is then given by

�BD =
n∑

j=1

Fa, jF1, jLj

AE
(see Eq. (viii) in Ex. 15.7)

The forces, Fa, j, are the forces in the members of the released truss due to the actual
loads and are not, therefore, the actual forces in the members of the complete truss.
We shall therefore redesignate the forces in the members of the released truss as F0, j.
The expression for �BD then becomes

�BD =
n∑

j=1

F0, jF1, jLj

AE
(i)

In the actual structure this displacement is prevented by the force, XBD, in the redun-
dant member BD. If, therefore, we calculate the displacement, aBD, in the direction
of BD produced by a unit value of XBD, the displacement due to XBD will be XBDaBD.
Clearly, from compatibility

�BD + XBDaBD = 0 (ii)

from which XBD is found. Again, as in the case of statically indeterminate beams, aBD

is a flexibility coefficient. Having determined XBD, the actual forces in the members
of the complete truss may be calculated by, say, the method of joints or the method of
sections.

In Eq. (ii), aBD is the displacement of the released truss in the direction of BD produced
by a unit load. Thus, in using the unit load method to calculate this displacement, the
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TABLE 16.1

Member Lj (m) F0, j F1, j F0, jF1, jLj F2
1, jLj Fa, j

AB L 0 −0.71 0 0.5L +0.40P
BC L 0 −0.71 0 0.5L +0.40P
CD L −P −0.71 0.71PL 0.5L −0.60P
BD 1.41L – 1.0 – 1.41L −0.56P
AC 1.41L 1.41P 1.0 2.0PL 1.41L +0.85P
AD L 0 −0.71 0 0.5L +0.40P∑ = 2.71PL

∑ = 4.82L

actual member forces (F1, j) and the member forces produced by the unit load (Fl, j)
are the same. Therefore, from Eq. (i)

aBD =
n∑

j=1

F2
1, jLj

AE
(iii)

The solution is completed in Table 16.1.

From Table 16.1

�BD = 2.71PL
AE

aBD = 4.82L
AE

Substituting these values in Eq. (i) we have

2.71PL
AE

+ XBD
4.82L

AE
= 0

from which

XBD = −0.56P (i.e. compression)

The actual forces, Fa, j, in the members of the complete truss of Fig. 16.18(a) are now
calculated using the method of joints and are listed in the final column of Table 16.1.

We note in the above that �BD is positive, which means that �BD is in the direction
of the unit loads, i.e. B approaches D and the diagonal BD in the released structure
decreases in length. Therefore in the complete structure the member BD, which pre-
vents this shortening, must be in compression as shown; also aBD will always be positive
since it contains the term F2

1, j. Finally, we note that the cut member BD is included
in the calculation of the displacements in the released structure since its deformation,
under a unit load, contributes to aBD.

EXAMPLE 16.9 Calculate the forces in the members of the truss shown in Fig.
16.19(a). All members have the same cross sectional area, A, and Young’s modulus, E.

By inspection we see that the truss is both internally and externally statically indeter-
minate since it would remain stable and in equilibrium if one of the diagonals, AD
or BD, and the support at C were removed; the degree of indeterminacy is therefore
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FIGURE 16.19
Statically

indeterminate truss
of Ex. 16.9
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2. Unlike the truss in Ex. 16.18, we could not remove any member since, if BC or
CD were removed, the outer half of the truss would become a mechanism while the
portion ABDE would remain statically indeterminate. Therefore we select AD and
the support at C as the releases, giving the statically determinate truss shown in Fig.
16.19(b); we shall designate the force in the member AD as X1 and the vertical reaction
at C as R2.

In this case we shall have two compatibility conditions, one for the diagonal AD and
one for the support at C. We therefore need to investigate three loading cases: one
in which the actual loads are applied to the released statically determinate truss in
Fig. 16.19(b), a second in which unit loads are applied to the cut member AD (Fig.
16.19(c)) and a third in which a unit load is applied at C in the direction of R2 (Fig.
16.19(d)). By comparison with the previous example, the compatibility conditions are

�AD + a11X1 + a12R2 = 0 (i)

vC + a21X1 + a22R2 = 0 (ii)

in which �AD and vC are, respectively, the change in length of the diagonal AD and
the vertical displacement of C due to the actual loads acting on the released truss,
while a11, a12, etc., are flexibility coefficients, which we have previously defined (see
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TABLE 16.2

Member Lj F0, j F1, j (X 1) F1, j (R2) F0, jF1, j (X 1)Lj F0, jF1, j (R2)Lj F2
1, j (X 1)Lj F2

1, j (R2)Lj F1, j(X1) F1, j(R2)Lj Fa, j

AB 1 10.0 −0.71 −2.0 −7.1 −20.0 0.5 4.0 1.41 0.67
BC 1.41 0 0 −1.41 0 0 0 2.81 0 −4.45
CD 1 0 0 1.0 0 0 0 1.0 0 3.15
DE 1 0 −0.71 1.0 0 0 0.5 1.0 −0.71 0.12
AD 1.41 0 1.0 0 0 0 1.41 0 0 4.28
BE 1.41 −14.14 1.0 1.41 −20.0 −28.11 1.41 2.81 2.0 −5.4
BD 1 0 −0.71 0 0 0 0.5 0 0 −3.03∑ = −27.1

∑ = −48.11
∑ = 4.32

∑ = 11.62
∑ = 2.7

Ex. 16.7). The calculations are similar to those carried out in Ex. 16.8 and are shown
in Table 16.2.

From Table 16.2

�AD =
n∑

j=1

F0, jF1, j(X1)Lj

AE
= −27.1

AE
(i.e. AD increases in length)

vC =
n∑

j=1

F0,jF1, j(R2)Lj

AE
= −48.11

AE
(i.e. C displaced downwards)

a11 =
n∑

j=1

F2
1, j(X1)Lj

AE
= 4.32

AE

a22 =
n∑

j=1

F2
1, j(R2)Lj

AE
= 11.62

AE

a12 = a21

n∑
j=1

F1, j(X1)F1, j(R2)Lj

AE
= 2.7

AE

Substituting in Eqs (i) and (ii) and multiplying through by AE we have

−27.1 + 4.32X1 + 2.7R2 = 0 (iii)

−48.11 + 2.7X1 + 11.62R2 = 0 (iv)

Solving Eqs (iii) and (iv) we obtain

X1 = 4.28 kN R2 = 3.15 kN

The actual forces, Fa, j, in the members of the complete truss are now calculated by
the method of joints and are listed in the final column of Table 16.2.
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SELF-STRAINING TRUSSES

Statically indeterminate trusses, unlike the statically determinate type, may be sub-
jected to self-straining in which internal forces are present before external loads are
applied. Such a situation may be caused by a local temperature change or by an initial
lack of fit of a member. In cases such as these, the term on the right-hand side of the
compatibility equations, Eq. (ii) in Ex. 16.8 and Eqs (i) and (ii) in Ex. 16.9, would not
be zero.

EXAMPLE 16.10 The truss shown in Fig. 16.20(a) is unstressed when the tem-
perature of each member is the same, but due to local conditions the temperature
in the member BC is increased by 30◦C. If the cross-sectional area of each member
is 200 mm2 and the coefficient of linear expansion of the members is 7 × 10−6/◦C,
calculate the resulting forces in the members; Young’s modulus E = 200 000 N/mm2.

FIGURE 16.20
Self-straining due to

a temperature
change

A A A

D D DC C C

1

1

X1

X1

(a) (b) (c)

B B B

3 m

4 m

Due to the temperature rise, the increase in length of the member BC is
3 × 103 × 30 × 7 × 10−6 = 0.63 mm. The truss has a degree of internal statical inde-
terminacy equal to 1 (by inspection). We therefore release the truss by cutting the
member BC, which has experienced the temperature rise, as shown in Fig. 16.20(b);
we shall suppose that the force in BC is X1. Since there are no external loads on the
truss, �BC is zero and the compatibility condition becomes

a11X1 = −0.63 mm (i)

in which, as before

a11 =
n∑

j=1

F2
1, jLj

AE

Note that the extension of BC is negative since it is opposite in direction to X1. The
solution is now completed in Table 16.3. Hence

a11 = 48 000
200 × 200 000

= 1.2 × 10−3

Thus, from Eq. (i)

X1 = −525 N
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TABLE 16.3

Member Lj (mm) F1, j F2
1, jLj Fa, j (N)

AB 4000 1.33 7111.1 −700
BC 3000 1.0 3000.0 −525
CD 4000 1.33 7111.1 −700
DA 3000 1.0 3000.0 −525
AC 5000 −1.67 13 888.9 875
DB 5000 −1.67 13 888.9 875∑ = 48 000.0

The forces, Fa, j, in the members of the complete truss are given in the final column of
Table 16.3.

An alternative approach to the solution of statically indeterminate trusses, both self-
straining and otherwise, is to use the principle of the stationary value of the total
complementary energy. Thus, for the truss of Ex. 16.8, the total complementary energy,
C, is, from Eq. (15.39), given by

C =
n∑

j=1

∫ Fj

0
δj dFj − P�C

in which �C is the displacement of the joint C in the direction of P. Let us suppose
that the member BD is short by an amount λBD (i.e. the lack of fit of BD), then

C =
n∑

j=1

∫ Fj

0
δj dFj − P�C − X1λBD

From the principle of the stationary value of the total complementary energy we have

∂C
∂X1

=
n∑

j=1

δj
∂Fj

∂X1
− λBD = 0 (16.8)

Assuming that the truss is linearly elastic, Eq. (16.8) may be written

∂C
∂X1

=
n∑

j=1

FjLj

AjEj

∂Fj

∂X1
− λBD = 0 (16.9)

or since, for linearly elastic systems, the complementary energy, C, and the strain
energy, U , are interchangeable,

∂U
∂X1

=
n∑

j=1

FjLj

AjEj

∂Fj

∂X1
= λBD (16.10)

Equation (16.10) expresses mathematically what is generally referred to as
Castigliano’s second theorem which states that
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TABLE 16.4

Member Lj Fa, j ∂Fa, j/∂X 1 Fa, jLj(∂Fa, j/∂X 1)

AB L −0.71X1 −0.71 0.5LX1
BC L −0.71X1 −0.71 0.5LX1
CD L −P − 0.71X1 −0.71 (0.71P + 0.5X1)L
DA L −0.71X1 −0.71 0.5LX1
AC 1.41L 1.41P + X1 1.0 (2P + 1.41X1)L
BD 1.41L X1 1.0 1.41X1L∑ = 2.71PL + 4.82X1L

For a linearly elastic structure the partial differential coefficient of the total strain energy
of the structure with respect to the force in a redundant member is equal to the initial lack
of fit of that member.

The application of complementary energy to the solution of statically indeterminate
trusses is very similar to the method illustrated in Exs 16.8–16.10. For example, the
solution of Ex. 16.8 would proceed as follows.

Again we select BD as the redundant member and suppose that the force in BD is X1.
The forces, Fa, j, in the complete truss are calculated in terms of P and X1, and hence
∂Fa, j/∂X1 obtained for each member. The term (Fa, jLj/AjEj)∂Fa, j/∂X1 is calculated
for each member and then summed for the complete truss. Equation (16.9) (or (16.10))
in which λBD = 0 then gives X1 in terms of P. The solution is illustrated in Table 16.4.
Thus from Eq. (16.9)

1
AE

(2.71PL + 4.82X1L) = 0

from which

X1 = −0.56P

as before.

Of the two approaches illustrated by the two solutions of Ex. 16.8, it can be seen that
the use of the principle of the stationary value of the total complementary energy
results in a slightly more algebraically clumsy solution. This will be even more the case
when the degree of indeterminacy of a structure is greater than 1 and the forces Fa, j

are expressed in terms of the applied loads and all the redundant forces. There will,
of course, be as many equations of the form of Eq. (16.9) as there are redundancies.

16.6 BRACED BEAMS

Some structures consist of beams that are stiffened by trusses in which the beam
portion of the structure is capable of resisting shear forces and bending moments in
addition to axial forces. Generally, however, displacements produced by shear forces
are negligibly small and may be ignored. Therefore, in such structures we shall assume
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that the members of the truss portion of the structure resist axial forces only while the
beam portion resists bending moments and axial forces; in some cases the axial forces
in the beam are also ignored since their effect, due to the larger area of cross section,
is small.

EXAMPLE 16.11 The beam ABC shown in Fig. 16.21(a) is simply supported and
stiffened by a truss whose members are capable of resisting axial forces only. The beam
has a cross-sectional area of 6000 mm2 and a second moment of area of 7.2 × 106 mm4.
If the cross-sectional area of the members of the truss is 400 mm2, calculate the forces
in the members of the truss and the maximum value of the bending moment in the
beam. Young’s modulus, E, is the same for all members.

FIGURE 16.21
Braced beam
of Ex. 16.11 (a)

A A AB B BC C C

D D DE E EX1 X1

(b) (c)

60°

1.0 m0.5 m0.5 m
12 kN 12 kN

1 1

9 kN 3 kN

x

We observe that if the beam were capable of resisting axial forces only, the structure
would be a relatively simple statically determinate truss. However, the beam, in add-
ition to axial forces, resists bending moments (we are ignoring the effect of shear)
so that the structure is statically indeterminate with a degree of indeterminacy equal
to 1, the bending moment at any section of the beam. Therefore we require just one
release to produce a statically determinate structure; it does not necessarily have to be
the bending moment in the beam, so we shall choose the truss member ED as shown
in Fig. 16.21(b) since this will produce benefits from symmetry when we consider the
unit load application in Fig. 16.21(c).

In this example displacements are produced by the bending of the beam as well as by
the axial forces in the beam and truss members. Thus, in the released structure of Fig.
16.21(b), the relative displacement, �ED, of the cut ends of the member ED is, from
the unit load method (see Eq. (iii) of Ex. 15.9 and Exs 16.8–16.10), given by

�ED =
∫

ABC

M0M1

EI
dx +

n∑
j=1

F0, jF1, jLj

AjE
(i)

in which M0 is the bending moment at any section of the beam ABC in the released
structure. Further, the flexibility coefficient, a11, of the member ED is given by

a11 =
∫

ABC

M2
1

EI
dx +

n∑
j=1

F2
1, jLj

AjE
(ii)
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TABLE 16.5

Member Aj (mm2) F0, j (kN) F1, j F0, jF1, j/Aj F2
1, j/Aj Fa, j (kN)

AB 6000 0 −0.5 0 4.17 × 10−5 −2.01
BC 6000 0 −0.5 0 4.17 × 10−5 −2.01
CD 400 0 1.0 0 2.5 × 10−3 4.02
ED 400 0 1.0 0 2.5 × 10−3 4.02
BD 400 0 −1.0 0 2.5 × 10−3 −4.02
EB 400 0 −1.0 0 2.5 × 10−3 −4.02
AE 400 0 1.0 0 2.5 × 10−3 4.02∑ = 0

∑ = 0.0126

In Eqs (i) and (ii) the length, Lj, is constant, as is Young’s modulus, E. These may
therefore be omitted in the calculation of the summation terms in Table 16.5.

Examination of Table 16.5 shows that the displacement, �ED, in the released structure
is due solely to the bending of the beam, i.e. the second term on the right-hand side of
Eq. (i) is zero; this could have been deduced by inspection of the released structure.
Also the contribution to displacement of the axial forces in the beam may be seen,
from the first two terms in the penultimate column of Table 16.5, to be negligibly small.

The contribution to �ED of the bending of the beam will now be calculated. Thus from
Fig. 16.21(b)

M0 = 9x (0 � x � 0.5 m)

M0 = 9x − 12(x − 0.5) = 6 − 3x (0.5 � x � 2.0 m)

M1 = −0.87x (0 � x � 1.0 m)

M1 = −0.87x + 1.74(x − 1.0) = 0.87x − 1.74 (1.0 � x � 2.0 m)

Substituting from M0 and M1 in Eq. (i) we have

∫
ABC

M0M1

EI
dx

= 1
EI

[
−
∫ 0.5

0
9 × 0.87x2 dx −

∫ 1.0

0.5
(6 − 3x)0.87x dx +

∫ 2.0

1.0
(6 − 3x)(0.87x − 1.74) dx

]

from which ∫
ABC

M0M1

EI
dx = −0.33 × 106

E
mm

Similarly

∫
ABC

M2
1

EI
dx = 1

EI

[∫ 1.0

0
0.872x2 dx +

∫ 2.0

1.0
(0.87x − 1.74)2 dx

]
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(a)

(b)

2.76 kN m

0.48 kN m

12 kN

A

A B C

B
C

�ve

�ve

RA � 9 � 4.02 cos 30°
 � 5.52 kN

RB � 2 � 4.02 cos 30°
 � 6.96 kN

RC � 3 � 4.02 cos 30°
 � �0.48 kN

FIGURE 16.22 Bending
moment distribution in
the beam of Ex. 16.11

from which ∫
ABC

M2
1

EI
dx = 0.083 × 103

EI
mm/N

The compatibility condition gives

�ED + a11X1 = 0

so that

−0.33 × 106

E
+ 0.083 × 103

E
X1 = 0

which gives

X1 = 4018.1 N or X1 = 4.02 kN

The axial forces in the beam and truss may now be calculated using the method of
joints and are given in the final column of Table 16.5. The forces acting on the beam in
the complete structure are shown in Fig. 16.22(a) together with the bending moment
diagram in Fig. 16.22(b), from which we see that the maximum bending moment in
the beam is 2·76 kN m.

16.7 PORTAL FRAMES

The flexibility method may be applied to the analysis of portal frames although, as we
shall see, in all but simple cases the degree of statical indeterminacy is high so that
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(a) (b)

X1

M1

X2

FIGURE 16.23 Indeterminacy
of a portal frame

the number of compatibility equations requiring solution becomes too large for hand
computation.

Consider the portal frame shown in Fig. 16.23(a). From Section 16.2 we see that the
frame, together with its foundation, form a single two-dimensional ring and is there-
fore three times statically indeterminate. Therefore we require 3 releases to obtain
the statically determinate primary structure. These may be obtained by removing the
foundation at the foot of one of the vertical legs as shown in Fig. 16.23(b); we then
have two releases of force and one of moment and the primary structure is, in effect,
a cranked cantilever. In this example there would be three compatibility equations
requiring solution, two of translation and one of rotation. Clearly, for a plane, two-bay
portal frame we would have six compatibility equations so that the solution would
then become laborious; further additions to the frame would make a hand method
of solution impracticable. Furthermore, as we shall see in Section 16.10, the moment
distribution method produces a rapid solution for frames although it should be noted
that using this method requires that the sway of the frame, that is its lateral move-
ment, is considered separately whereas, in the flexibility method, sway is automatically
included.

EXAMPLE 16.12 Determine the distribution of bending moment in the frame
ABCD shown in Fig. 16.24(a); the flexural rigidity of all the members of the frame is EI.

FIGURE 16.24
Portal frame
of Ex. 16.12

A A A

(a) (b) (c)

3.5 m

3 m

4 kN/m 4 kN/m

10 kN 10 kN

B B B

1

1

C C C

D D D

EI

EI EI x1

R1

R2

x2
x3

Comparison with Fig. 16.23(a) shows that the frame has a degree of statical inde-
terminacy equal to 2 since the vertical leg CD is pinned to the foundation at D. We
therefore require just 2 releases of reaction, as shown in Fig. 16.24(b), to obtain the
statically determinate primary structure. For frames of this type it is usual to neglect
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the displacements produced by axial force and to assume that they are caused solely
by bending.

The point D in the primary structure will suffer vertical and horizontal displacements,
�D,V and �D,H. Thus if we designate the redundant reactions as R1, and R2, the
equations of compatibility are

�D,V + a11R1 + a12R2 = 0 (i)

�D,H + a21R1 + a22R2 = 0 (ii)

in which the flexibility coefficients have their usual meaning. Again, as in the preceding
examples, we employ the unit load method to calculate the displacements and flexibility
coefficients. Thus

�D,V =
∑∫

L

M0M1,V

EI
dx

in which M1,V is the bending moment at any point in the frame due to a unit load
applied vertically at D.

Similarly

�D,H =
∑∫

L

M0M1,H

EI
dx

and

a11 =
∑∫

L

M2
1,V

EI
dx a22 =

∑∫
L

M2
1,H

EI
dx a12 = a21 =

∑∫
L

M1,VM1,H

EI
dx

We shall now write down expressions for bending moment in the members of the
frame; we shall designate a bending moment as positive when it causes tension on the
outside of the frame. Thus in DC

M0 = 0 M1,V = 0 M1,H = −1x1

In CB

M0 = 4x2
x2

2
= 2x2

2 M1,V = −1x2 M1,H = −3

In BA

M0 = 4 × 3.5 × 1.75 + 10x3 = 24.5 + 10x3 M1,V = −3.5 M1,H = −1(3 − x3)

Hence

�D,V = 1
EI

[∫ 3.5

0
(−2x3

2) dx2 +
∫ 3

0
−(24.5 + 10x3)3.5 dx3

]
= −489.8

EI

�D,H = 1
EI

[∫ 3.5

0
(−6x2

2) dx2 +
∫ 3

0
−(24.5 + 10x3)(3 − x3) dx3

]
= −241.0

EI
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a11 = 1
EI

[∫ 3.5

0
x2

2 dx2 +
∫ 3

0
3.52 dx3

]
= 51.0

EI

a22 = 1
EI

[∫ 3

0
x2

1 dx1 +
∫ 3.5

0
32 dx2 +

∫ 3

0
(3 − x3)2 dx3

]
= 49.5

EI

a12 = a21 = 1
EI

[∫ 3.5

0
3x2 dx2 +

∫ 3

0
3.5(3 − x3) dx3

]
= 34.1

EI

Substituting for �D,V, �D,H, a11, etc., in Eqs (i) and (ii) we obtain

−489.8
EI

+ 51.0
EI

R1 + 34.1
EI

R2 = 0 (iii)

and

−241.0
EI

+ 34.1
EI

R1 + 49.5
EI

R2 = 0 (iv)

Solving Eqs (iii) and (iv) we have

R1 = 11.8 kN R2 = −3.3 kN

The bending moment diagram is then drawn as shown in Fig. 16.25.

FIGURE 16.25
Bending
moment

diagram for the
frame of Ex.

16.12 (diagram
drawn on

tension side of
members)

A D

C
B

13.2 kN m

7.0 kN m

9.9 kN m
6.98 kN m

It can be seen that the amount of computation for even the relatively simple frame of
Ex. 16.12 is quite considerable. Generally, therefore, as stated previously, the moment
distribution method or a computer-based analysis would be employed.

16.8 TWO-PINNED ARCHES

In Chapter 6 we saw that a three-pinned arch is statically determinate due to the
presence of the third pin or hinge at which the internal bending moment is zero; in
effect the presence of the third pin provides a release. Therefore a two-pinned arch
such as that shown in Fig. 16.26(a) has a degree of statical indeterminacy equal to 1.
This is also obvious from inspection since, as in the three-pinned arch, there are two
reactions at each of the supports.
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The analysis of two-pinned arches, i.e. the determination of the support reactions,
may be carried out using the flexibility method; again, as in the case of portal frames,
it is usual to ignore the effect of axial force on displacements and to assume that they
are caused by bending action only.

The arch in Fig. 16.26(a) has a profile whose equation may be expressed in terms of
the reference axes x and y. The second moment of area of the cross section of the arch
is I and we shall designate the distance round the profile from A as s.

Initially we choose a release, say the horizontal reaction, R1, at B, to obtain the statically
determinate primary structure shown in Fig. 16.26(b). We then employ the unit load
method to determine the horizontal displacement, �B,H, of B in the primary structure
and the flexibility coefficient, a11. Then, from compatibility

�B,H − a11R1 = 0 (16.11)

in which the term containing R1 is negative since R1 is opposite in direction to the unit
load (see Fig. 16.26(c)).

Then, with the usual notation

�B,H =
∫

Profile

M0M1

EI
ds (16.12)

in which M0 depends upon the applied loading and M1 = 1y (a moment is positive if it
produces tension on the undersurface of the arch). Also

a11 =
∫

Profile

M2
1

EI
ds =

∫
Profile

y2

EI
ds (16.13)

FIGURE 16.26
Solution of a

two-pinned arch

(a)

(c)

1

(b)

A

A A

B

B B

y

yy

x

x x

RA,V RB,V

RA,H RB,H (�R1)

s

L
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Substituting for M1 in Eq. (16.12) and then for �B,H and a11 in Eq. (16.11) we obtain

R1 =
∫

Profile (M0y/EI)ds∫
Profile ( y2/EI)ds

(16.14)

EXAMPLE 16.13 Determine the support reactions in the semicircular two-pinned
arch shown in Fig. 16.27(a). The flexural rigidity, EI, of the arch is constant throughout.

FIGURE 16.27
Semicircular arch of

Ex. 16.13

ARA,H

RA,V

R�A,V R�B,V

x

y

RB,V

RB,H  (�R1)

(a)

(c)(b)

10 kN/m

10 kN/m

5 m

B

AA 1

uu

BB

Again we shall choose the horizontal reaction at the support B as the release so that
RB,H (=R1) is given directly by Eq. (16.14) in which M0 and s are functions of x and y.
The computation will therefore be simplified if we use an angular coordinate system
so that, from the primary structure shown in Fig. 16.27(b)

M0 = R′
B,V(5 + 5 cos θ) − 10

2
(5 + 5 cos θ)2 (i)

in which R′
B,V is the vertical reaction at B in the primary structure. From Fig. 16.27(b) in

which, from symmetry, R′
B,V = R′

A,V, we have R′
B,V = 50 kN. Substituting for R′

B,V in
Eq. (i) we obtain

M0 = 125 sin2 θ (ii)
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Also y = 5 sin θ and ds = 5 dθ , so that from Eq. (16.14) we have

R1 =
∫π

0 125 sin2 θ 5 sin θ 5dθ∫ π

0 25 sin2 θ 5 dθ

or

R1 =
∫π

0 25 sin3 θ dθ∫π
0 sin2 θ dθ

(iii)

which gives

R1 = 21.2 kN (= RB,H)

The remaining reactions follow from a consideration of the statical equilibrium of the
arch and are

RA,H = 21.2 kN RA,V = RB,V = 50 kN

The integrals in Eq. (iii) of Ex. 16.13 are relatively straightforward to evaluate; the
numerator may be found by integration by parts, while the denominator is found
by replacing sin2 θ by (1 − cos 2θ)/2. Furthermore, in an arch having a semicircular
profile, M0, y and ds are simply expressed in terms of an angular coordinate system.
However, in a two-pinned arch having a parabolic profile this approach cannot be
used and complex integrals result. Such cases may be simplified by specifying that the
second moment of area of the cross section of the arch varies round the profile; one
such variation is known as the secant assumption and is described below.

SECANT ASSUMPTION

In Eq. (16.14) the term ds/I appears. If this term could be replaced by a term that is a
function of either x or y, the solution would be simplified.

Consider the elemental length, δs, of the arch shown in Fig. 16.28 and its projections,
δx and δy, on the x and y axes. From the elemental triangle

δx = δs cos θ

or, in the limit as δs → 0

ds = dx
cos θ

= dx sec θ

�s
�y

�x
u

FIGURE 16.28 Elemental length of arch
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Thus
ds
I

= dx sec θ

I
Let us suppose that I varies round the profile of the arch such that I = I0 sec θ where
I0 is the second moment of area at the crown of the arch (i.e. where θ = 0). Then

ds
I

= dx sec θ

I0 sec θ
= dx

I0

Thus substituting in Eq. (16.14) for ds/I we have

R1 =
∫

Profile (M0y/EI0)dx∫
Profile (y2/EI0)dx

or

R1 =
∫

Profile M0y dx∫
Profile y2 dx

(16.15)

EXAMPLE 16.14 Determine the support reactions in the parabolic arch shown in
Fig. 16.29 assuming that the second moment of area of the cross section of the arch
varies in accordance with the secant assumption.

C

A B

W

y

x

a

L

h

RA,H

RB,H (�R1)

RA,V
RB,V

FIGURE 16.29
Parabolic arch
of Ex. 16.14

The equation of the arch may be shown to be

y = 4h
L2 (Lx − x2) (i)

Again we shall release the arch at B as in Fig. 16.26(b). Then

M0 = R′
A,Vx (0 � x � a)

M0 = R′
A,Vx − W (x − a) (a � x � L)

in which R′
A,V is the vertical reaction at A in the released structure. Now taking

moments about B we have

R′
A,VL − W (L − a) = 0
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from which

R′
A,V = W

L
(L − a)

Substituting in the expressions for M0 gives

M0 = W
L

(L − a)x (0 � x � a) (ii)

M0 = W
L

(L − x) (a � x � L) (iii)

The denominator in Eq. (16.15) may be evaluated separately. Thus, from Eq. (i)∫
Profile

y2 dx =
∫ L

0

(
4h
L2

)2

(Lx − x2)2dx = 8h2L
15

Then, from Eq. (16.15) and Eqs (ii) and (iii)

R1 = 15
8h2L

[∫ a

0

W
L

(L − a)x
4h
L2 (Lx − x2)dx +

∫ L

a

Wa
L

(L − x)
4h
L2 (Lx − x2)dx

]

which gives

R1 = 5Wa
8hL3 (L3 + a3 − 2La2) (iv)

The remaining support reactions follow from a consideration of the statical equilibrium
of the arch.

If, in Ex. 16.14, we had expressed the load position in terms of the span of the arch,
say a = kL, Eq. (iv) in Ex. 16.14 becomes

R1 = 5WL
8h

(k + k4 − 2k3) (16.16)

Therefore, for a series of concentrated loads positioned at distances k1L, k2L, k3L,
etc., from A, the reaction, R1, may be calculated for each load acting separately using
Eq. (16.16) and the total reaction due to all the loads obtained by superposition.

The result expressed in Eq. (16.16) may be used to determine the reaction, R1, due to a
part-span uniformly distributed load. Consider the arch shown in Fig. 16.30. The arch
profile is parabolic and its second moment of area varies as the secant assumption. An
elemental length, δx, of the load produces a load w δx on the arch. Thus, since δx is
very small, we may regard this load as a concentrated load. This will then produce an
increment, δR1, in the horizontal support reaction which, from Eq. (16.16), is given by

δR1 = 5
8

w δx
L
h

(k + k4 − 2k3)

in which k = x/L. Therefore, substituting for k in the expression for δR1 and then
integrating over the length of the load we obtain

R1 = 5wL
8h

∫ x2

x1

(
x
L

+ x4

L4 − 2x3

L3

)
dx
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BA

w

y

x

�x

x1

x2

L

RA,H
RB,H  (�R1)

RA,V RB,V
FIGURE 16.30 Parabolic
arch carrying a
part-span uniformly
distributed load

which gives

R1 = 5wL
8h

[
x2

2L
+ x5

5L4 − x4

2L3

]x2

x1

For a uniformly distributed load covering the complete span, i.e. x1 = 0, x2 = L, we have

R1 = 5wL
8h

(
L2

2L
+ L5

5L4 − L4

2L3

)
= wL2

8h

The bending moment at any point (x, y) in the arch is then

M = wL
2

x − wx2

2
− wL2

8h

[
4h
L2 (Lx − x2)

]

i.e.

M = wL
2

x − wx2

2
− wL

2
x + wx2

2
= 0

Therefore, for a parabolic two-pinned arch carrying a uniformity distributed load over
its complete span, the bending moment in the arch is everywhere zero; the same result
was obtained for the three-pinned arch in Chapter 6.

Although the secant assumption appears to be an artificial simplification in the solution
of parabolic arches it would not, in fact, produce a great variation in second moment
of area in, say, large-span shallow arches. The assumption would therefore provide
reasonably accurate solutions for some practical cases.

TIED ARCHES

In some cases the horizontal support reactions are replaced by a tie which connects
the ends of the arch as shown in Fig. 16.31(a). In this case we select the axial force,
X1, in the tie as the release. The primary structure is then as shown in Fig. 16.31(b)
with the tie cut. The unit load method, Fig. 16.31(c), is then used to determine the
horizontal displacement of B in the primary structure. This displacement will receive
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FIGURE 16.31
Solution for a tied

two-pinned arch

A A A

(a) (b) (c)

1 1

B B B
Tie

L x

X1 X1

L

contributions from the bending of the arch and the axial force in the tie. Thus, with
the usual notation

�B,H =
∫

Profile

M0M1

EI
ds +

∫ L

0

F0F1L
AE

dx

and

a11 =
∫

Profile

M2
1

EI
ds +

∫ L

0

F2
1 L

AE
dx

The compatibility condition is then

�B,H + a11X1 = 0

SEGMENTAL ARCHES

A segmental arch is one comprising segments having different curvatures or different
equations describing their profiles. The analysis of such arches is best carried out using
a computer-based approach such as the stiffness method in which the stiffness of an
individual segment may be found by determining the force–displacement relationships
using an energy approach. Such considerations are, however, outside the scope of
this book.

16.9 SLOPE–DEFLECTION METHOD

An essential part of the computer-based stiffness method of analysis and also of the
moment distribution method are the slope–deflection relationships for beam elements.
In these, the shear forces and moments at the ends of a beam element are related to
the end displacements and rotations. In addition these relationships provide a method
of solution for the determination of end moments in statically indeterminate beams
and frames; this method is known as the slope–deflection method.

Consider the beam, AB, shown in Fig. 16.32. The beam has flexural rigidity EI and
is subjected to moments, MAB and MBA, and shear forces, SAB and SBA, at its ends.
The shear forces and moments produce displacements vA and vB and rotations θA and
θB as shown. Here we are concerned with moments at the ends of a beam. The usual
sagging/hogging sign convention is therefore insufficient to describe these moments
since a clockwise moment at the left-hand end of a beam coupled with an anticlockwise
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FIGURE 16.32
Slope and deflection

of a beam

SAB

SBA

MBAMAB

x

B

υA
uA

uB

υB

EI

y

A

moment at the right-hand end would induce a positive bending moment at all sections
of the beam. We shall therefore adopt a sign convention such that the moment at a point
is positive when it is applied in a clockwise sense and negative when in an anticlockwise
sense; thus in Fig. 16.32 both moments MAB and MBA are positive. We shall see in the
solution of a particular problem how these end moments are interpreted in terms of
the bending moment distribution along the length of a beam. In the analysis we shall
ignore axial force effects since these would have a negligible effect in the equation
for moment equilibrium. Also, the moments MAB and MBA are independent of each
other but the shear forces, which in the absence of lateral loads are equal and opposite,
depend upon the end moments.

From Eq. (13.3) and Fig. 16.32

EI
d2v

dx2 = MAB + SABx

Hence

EI
dv

dx
= MABx + SAB

x2

2
+ C1 (16.17)

and

EIv = MAB
x2

2
+ SAB

x3

6
+ C1x + C2 (16.18)

When

x = 0
dv

dx
= θA v = vA

Therefore, from Eq. (16.17) C1 = EIθA and from Eq. (16.18), C2 = EIvA. Equations
(16.17) and (16.18) then, respectively, become

EI
dv

dx
= MABx + SAB

x2

2
+ EIθA (16.19)

and

EIv = MAB
x2

2
+ SAB

x3

6
+ EIθAx + EIvA (16.20)
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Also, at x = L, dv/dx = θB and v = vB. Thus, from Eqs (16.19) and (16.20) we have

EIθB = MABL + SAB
L2

2
+ EIθA (16.21)

and

EIvB = MAB
L2

2
+ SAB

L3

6
+ EIθAL + EIvA (16.22)

Solving Eqs (16.21) and (16.22) for MAB and SAB gives

MAB = −2EI
L

[
2θA + θB + 3

L
(vA − vB)

]
(16.23)

and

SAB = 6EI
L2

[
θA + θB + 2

L
(vA − vB)

]
(16.24)

Now, from the moment equilibrium of the beam about B, we have

MBA + SABL + MAB = 0

or

MBA = −SABL − MAB

Substituting for SAB and MAB in this expression from Eqs (16.24) and (16.23) we obtain

MBA = −2EI
L

[
2θB + θA + 3

L
(vA − vB)

]
(16.25)

Further, Since SBA = −SAB (from the vertical equilibrium of the element)

SBA = −6EI
L2

[
θA + θB + 2

L
(vA − vB)

]
(16.26)

Equations (16.23)–(16.26) are usually written in the form

MAB = −6EI
L2 vA − 4EI

L
θA + 6EI

L2 vB − 2EI
L

θB

SAB = 12EI
L3 vA + 6EI

L2 θA − 12EI
L3 vB + 6EI

L2 θB

MBA = −6EI
L2 vA − 2EI

L
θA + 6EI

L2 vB − 4EI
L

θB

SBA = −12EI
L3 vA − 6EI

L2 θA + 12EI
L3 vB − 6EI

L2 θB




(16.27)

Equation (16.27) are known as the slope–deflection equations and establish force–
displacement relationships for the beam as opposed to the displacement–force rela-
tionships of the flexibility method. The coefficients that pre-multiply the components
of displacement in Eq. (16.27) are known as stiffness coefficients.
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The beam in Fig. 16.32 is not subject to lateral loads. Clearly, in practical cases,
unless we are interested solely in the effect of a sinking support, lateral loads will be
present. These will cause additional moments and shear forces at the ends of the beam.
Equations (16.23)–(16.26) may then be written as

MAB = −2EI
L

[
2θA + θB + 3

L
(vA − vB)

]
+ MF

AB (16.28)

SAB = 6EI
L2

[
θA + θB + 2

L
(vA − vB)

]
+ SF

AB (16.29)

MBA = −2EI
L

[
2θB + θA + 3

L
(vA − vB)

]
+ MF

BA (16.30)

SBA = −6EI
L2

[
θA + θB + 2

L
(vA − vB)

]
+ SF

BA (16.31)

in which MF
AB and MF

BA are the moments at the ends of the beam caused by the applied
loads and correspond to θA = θB = 0 and vA = vB = 0, i.e. they are fixed-end moments
(FEMs). Similarly the shear forces SF

AB and SF
BA correspond to the fixed-end case.

EXAMPLE 16.15 Find the support reactions in the three-span continuous beam
shown in Fig. 16.33.

6 kN 10 kN 12 kN/m
A B

EI

C D

0.5 m 0.5 m 0.5 m 0.5 m 1.0 m FIGURE 16.33 Continuous
beam of Ex. 16.15

The beam in Fig. 16.33 is the beam that was solved using the flexibility method in
Ex. 16.7, so that this example provides a comparison between the two methods.

Initially we consider the beam as comprising three separate fixed beams AB, BC and
CD and calculate the values of the FEMs, MF

AB, MF
BA, MF

BC, etc. Thus, using the
results of Exs 13.20 and 13.22 and remembering that clockwise moments are positive
and anticlockwise moments negative

MF
AB = −MF

BA = −6 × 1.0
8

= −0.75 kN m

MF
BC = −MF

CB = −10 × 1.0
8

= −1.25 kN m

MF
CD = −MF

DC = −12 × 1.02

12
= −1.0 kN m
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In the beam of Fig. 16.33 the vertical displacements at all the supports are zero, i.e.
vA, vB, vC and vD are zero. Therefore, from Eqs (16.28) and (16.30) we have

MAB = −2EI
1.0

(2θA + θB) − 0.75 (i)

MBA = −2EI
1.0

(2θB + θA) + 0.75 (ii)

MBC = −2EI
1.0

(2θB + θC) − 1.25 (iii)

MCB = −2EI
1.0

(2θC + θB) + 1.25 (iv)

MCD = −2EI
1.0

(2θC + θD) − 1.0 (v)

MDC = −2EI
1.0

(2θD + θC) + 1.0 (vi)

From the equilibrium of moments at the supports

MAB = 0 MBA + MBC = 0 MCB + MCD = 0 MDC = 0

Substituting for MAB, etc., from Eqs (i)–(vi) in these expressions we obtain

4EIθA + 2EIθB + 0.75 = 0 (vii)

2EIθA + 8EIθB + 2EIθC + 0.5 = 0 (viii)

2EIθB + 8EIθC + 2EIθD − 0.25 = 0 (ix)

4EIθD + 2EIθC − 1.0 = 0 (x)

The solution of Eqs (vii)–(x) gives

EIθA = −0.183 EIθB = −0.008 EIθC = −0.033 EIθD = +0.267

Substituting these values in Eqs (i)–(vi) gives

MAB = 0 MBA = 1.15 MBC = −1.15 MCB = 1.4 MCD = −1.4 MDC = 0

The end moments acting on the three spans of the beam are now shown in Fig. 16.34.
They produce reactions RAB, RBA, etc., at the supports; thus

RAB = −RBA = −1.15
1.0

= −1.15 kN

RBC = −RCB = − (1.4 − 1.15)
1.0

= −0.25 kN
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FIGURE 16.34
Moments and

reactions at the ends
of the spans of the

continuous beam of
Ex. 16.15

A

RAB RBA RBC RCB RCD RDC

B B C C D

1.15 1.15 1.4 1.4

RCD = −RDC = 1.4
1.0

= 1.40 kN

Therefore, due to the end moments only, the support reactions are

RA,M = −1.15 kN RB,M = 1.15 − 0.25 = 0.9 kN,

RC,M = 0.25 + 1.4 = 1.65 kN RD,M = −1.4 kN

In addition to these reactions there are the reactions due to the actual loading, which
may be obtained by analysing each span as a simply supported beam (the effects of
the end moments have been calculated above). In this example these reactions may
be obtained by inspection. Thus

RA,S = 3.0 kN RB,S = 3.0 + 5.0 = 8.0 kN RC,S = 5.0 + 6.0 = 11.0 kN

RD,S = 6.0 kN

The final reactions at the supports are then

RA = RA,M + RA,S = −1.15 + 3.0 = 1.85 kN

RB = RB,M + RB,S = 0.9 + 8.0 = 8.9 kN

RC = RC,M + RC,S = 1.65 + 11.0 = 12.65 kN

RD = RD,M + RD,S = −1.4 + 6.0 = 4.6 kN

Alternatively, we could have obtained these reactions by the slightly lengthier
procedure of substituting for θA, θB, etc., in Eqs (16.29) and (16.31). Thus, e.g.

SAB = RA = 6EI
L2 (θA + θB) + 3.0 (vA = vB = 0)

which gives RA = 1.85 kN as before.

Comparing the above solution with that of Ex. 16.7 we see that there are small
discrepancies; these are caused by rounding-off errors.

Having obtained the support reactions, the bending moment distribution (reverting
to the sagging (positive) and hogging (negative) sign convention) is obtained in the
usual way and is shown in Fig. 16.35.
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1.15 kNm

0.93 kNm

1.23 kNm

0.88 kNm

0.76 m

1.40 kNm

A

B C

D

�ve �ve �ve

�ve �ve

FIGURE 16.35 Bending
moment diagram for the
beam of Ex. 16.15

EXAMPLE 16.16 Determine the end moments in the members of the portal frame
shown in Fig. 16.36; the second moment of area of the vertical members is 2.5I while
that of the horizontal members is I.

A

B

I I

3 kN/m

C

D

E

2.5I
2.5I

20 m

10 kN

5 m

5 m

6 m
FIGURE 16.36 Portal
frame of Ex. 16.16

In this particular problem the approach is very similar to that for the continuous beam
of Ex. 16.15. However, due to the unsymmetrical geometry of the frame and also to
the application of the 10 kN load, the frame will sway such that there will be horizontal
displacements, vB and vC, at B and C in the members BA and CD. Since we are
ignoring displacements produced by axial forces then vB = vC = v1, say. We would,
in fact, have a similar situation in a continuous beam if one or more of the supports
experienced settlement. Also we note that the rotation, θA, at A must be zero since
the end A of the member AB is fixed.

Initially, as in Ex. 16.15, we calculate the FEMs in the members of the frame, again
using the results of Exs 13.20 and 13.22. The effect of the cantilever CE may be included
by replacing it by its end moment, thereby reducing the number of equations to be
solved. Thus, from Fig. 16.36 we have

MF
CE = −3 × 62

2
= −54 kN m

MF
AB = −MF

BA = −10 × 10
8

= −12.5 kN m

MF
BC = −MF

CB = −3 × 202

12
= −100 kN m MF

CD = MF
DC = 0
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Now, from Eqs (16.28) and (16.30)

MAB = −2 × 2.5EI
10

(
θB − 3

10
v1

)
− 12.5 (i)

MBA = −2 × 2.5EI
10

(
2θB − 3

10
v1

)
+ 12.5 (ii)

In Eqs (i) and (ii) we are assuming that the displacement, v1, is to the right.
Furthermore

MBC = −2EI
20

(2θB + θC) − 100 (iii)

MCB = −2EI
20

(2θC + θB) + 100 (iv)

MCD = −2 × 2.5EI
10

(
2θC + θD + 3

10
v1

)
(v)

MDC = −2 × 2.5EI
10

(
2θD + θC + 3

10
v1

)
(vi)

From the equilibrium of the member end moments at the joints

MBA + MBC = 0 MCB + MCD − 54 = 0 MDC = 0

Substituting in the equilibrium equations for MBA, MBC, etc., from Eqs (i)–(vi) we
obtain

1.25EIθB + 0.1EIθC − 0.15EIv1 + 87.5 = 0 (vii)

1.2EIθC + 0.1EIθB + 0.5EIθC + 0.15EIv1 − 46 = 0 (viii)

EIθD + 0.5EIθC + 0.15EIv1 = 0 (ix)

Since there are four unknown displacements we require a further equation for a solu-
tion. This may be obtained by considering the overall horizontal equilibrium of the
frame. Thus

SAB + SDC − 10 = 0

in which, from Eq. (16.29)

SAB = 6 × 2.5EI
102 θB − 12 × 2.5EI

103 v1 + 5

where the last term on the right-hand side is SF
AB (=+5 kN), the contribution of the

10 kN horizontal load to SAB. Also

SDC = 6 × 2.5EI
102 (θD + θC) − 12 × 2.5EI

103 v1

Hence, substituting for SAB and SDC in the equilibrium equations, we have

EIθB + EIθD + EIθC − 0.4EIv1 − 33.3 = 0 (x)
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Solving Eqs (vii)–(x) we obtain

EIθB = −101.5 EIθC = +73.2 EIθD = −9.8 EIv1 = −178.6

Substituting these values in Eqs (i)–(vi) yields

MAB = 11.5 kN m MBA = 87.2 kN m MBC = −87.2 kN m

MCB = 95.5 kN m MCD = −41.5 kN m

MDC = 0 MCE = −54 kN m

16.10 MOMENT DISTRIBUTION

Examples 16.15 and 16.16 show that the greater the complexity of a structure, the
greater the number of unknowns and therefore the greater the number of simultaneous
equations requiring solution; hand methods of analysis then become extremely tedious
if not impracticable so that alternatives are desirable. One obvious alternative is to
employ computer-based techniques but another, quite powerful hand method is an
iterative procedure known as the moment distribution method. The method was derived
by Professor Hardy Cross and presented in a paper to the ASCE in 1932.

PRINCIPLE

Consider the three-span continuous beam shown in Fig. 16.37(a). The beam carries
loads that, as we have previously seen, will cause rotations, θA, θB, θC and θD at the sup-
ports as shown in Fig. 16.37(b). In Fig. 16.37(b), θA and θC are positive (corresponding
to positive moments) and θB and θD are negative.

Suppose that the beam is clamped at the supports before the loads are applied, thereby
preventing these rotations. Each span then becomes a fixed beam with moments at
each end, i.e. FEMs. Using the same notation as in the slope–deflection method these
moments are MF

AB, MF
BA, MF

BC, MF
CB, MF

CD and MF
DC. If we now release the beam at the

support B, say, the resultant moment at B, MF
BA +MF

BC, will cause rotation of the beam
at B until equilibrium is restored; MF

BA +MF
BC is the out of balance moment at B. Note

that, at this stage, the rotation of the beam at B is not θB. By allowing the beam to rotate
to an equilibrium position at B we are, in effect, applying a balancing moment at B
equal to −(MF

BA +MF
BC). Part of this balancing moment will cause rotation in the span

BA and part will cause rotation in the span BC. In other words the balancing moment
at B has been distributed into the spans BA and BC, the relative amounts depending
upon the stiffness, or the resistance to rotation, of BA and BC. This procedure will
affect the FEMs at A and C so that they will no longer be equal to MF

AB and MF
CB. We

shall see later how they are modified.

We now clamp the beam at B in its new equilibrium position and release the beam at,
say, C. This will produce an out of balance moment at C which will cause the beam to
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A

A

uA
uB uC uD

B

B

(a)

(b)

C

C

D

D

FIGURE 16.37 Principle
of the moment
distribution method

rotate to a new equilibrium position at C. The FEM at D will then be modified and
there will now be an out of balance moment at B. The beam is now clamped at C and
released in turn at A and D, thereby modifying the moments at B and C.

The beam is now in a position in which it is clamped at each support but in which
it has rotated at the supports through angles that are not yet equal to θA, θB, θC and
θD. Clearly the out of balance moment at each support will not be as great as it was
initially since some rotation has taken place; the beam is now therefore closer to
the equilibrium state of Fig. 16.37(b). The release/clamping procedure is repeated
until the difference between the angle of rotation at each support and the equilibrium
state of Fig. 16.37(b) is negligibly small. Fortunately this occurs after relatively few
release/clamping operations.

In applying the moment distribution method we shall require the FEMs in the different
members of a beam or frame. We shall also need to determine the distribution of the
balancing moment at a support into the adjacent spans and also the fraction of the
distributed moment which is carried over to each adjacent support.

The sign convention we shall adopt for the FEMs is identical to that for the end
moments in the slope–deflection method; thus clockwise moments are positive,
anticlockwise are negative.

FIXED-END MOMENTS

We shall require values of FEMs for a variety of loading cases. It will be useful,
therefore, to list them for the more common loading causes; others may be found
using the moment-area method described in Section 13.3. Included in Table 16.6 are
the results for the fixed beams analysed in Section 13.7.
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TABLE 16.6

FEMs

Load case MF
AB MF

BA

−WL
8

+WL
8A B

W

L /2 L /2

−Wab2

L2 +Wa2b

L2A B
W

a b

L

−wL2

12
+wL2

12
A B

L

w

− w

L2

[
L2

2
(b2 − a2) − 2

3
L(b3 − a3) + 1

4
(b4 − a4)

]
+wb3

L2

(
L
3

− b
4

)
A B

w

a
b

L

+M0b

L2 (2a − b) +M0a

L2 (2b − a)A B
M0

a b
L

−6EIδ

L2 −6EIδ

L2
A

B

L

El
δ

0 −3EIδ

L2
A

B
EI

L

δ

STIFFNESS COEFFICIENT

A moment applied at a point on a beam causes a rotation of the beam at that point, the
angle of rotation being directly proportional to the applied moment (see Eq. (9.19)).
Thus for a beam AB and a moment MBA applied at the end B

MBA = −KABθB (16.32)
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A B

Bu�
Bu�

C

FIGURE 16.38 Determination of DF

in which KAB (= KBA) is the rotational stiffness of the beam AB. The value of KAB

depends, as we shall see, upon the support conditions at the ends of the beam. Note
that, from Fig. 16.32 a positive MBA decreases θB.

DISTRIBUTION FACTOR

Suppose that in Fig. 16.38 the out of balance moment at the support B in the beam
ABC to be distributed into the spans BA and BC is MB (= MF

BA + MF
BC) at the first

release. Let M ′
BA be the fraction of MB to be distributed into BA and M ′

BC be the
fraction of MB to be distributed into BC. Suppose also that the angle of rotation at B
due to MB is θ ′

B. Then, from Eq. (16.32)

M ′
BA = −KBAθ ′

B (16.33)

and

M ′
BC = −KBCθ ′

B (16.34)

but

M ′
BA + M ′

BC + MBA = 0

Note that M ′
BA and M ′

BC are fractions of the balancing moment while MB is the out
of balance moment. Substituting in this equation for M ′

BA and M ′
BC from Eqs (16.33)

and (16.34)

−θ ′
B(KBA + KBC) = −MB

so that

θ ′
B = MB

KBA + KBC
(16.35)

Substituting in Eqs (16.33) and (16.34) for θ ′
B from Eq. (16.35) we have

M ′
BA = KBA

KBA + KBC
(−MB) M ′

BC = KBC

KBA + KBC
(−MB) (16.36)

The terms KBA/(KBA + KBC) and KBC/(KBA + KBC) are the distribution factors (DFs)
at the support B.

STIFFNESS COEFFICIENTS AND CARRY OVER FACTORS

We shall now derive values of stiffness coefficient (K) and carry over factor (COF)
for a number of support and loading conditions. These will be of use in the solution
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of a variety of problems. For this purpose we use the slope–deflection equations,
Eqs (16.28) and (16.30). Thus for a span AB of a beam

MAB = −2EI
L

[
2θA + θB + 3

L
(vA − vB)

]

and

MBA = −2EI
L

[
2θB + θA + 3

L
(vA − vB)

]

In some problems we shall be interested in the displacement of one end of a beam
span relative to the other, i.e. the effect of a sinking support. Thus for, say vA = 0 and
vB = δ (the final two load cases in Table 16.6) the above equations become

MAB = −2EI
L

(
2θA + θB − 3

L
δ

)
(16.37)

and

MBA = −2EI
L

(
2θB + θA − 3

L
δ

)
(16.38)

Rearranging Eqs (16.37) and (16.38) we have

2θA + θB − 3
L

δ = − L
2EI

MAB (16.39)

and

2θB + θA − 3
L

δ = − L
2EI

MBA (16.40)

Equations (16.39) and (16.40) may be expressed in terms of various combinations of
θA, θB and δ. Thus subtracting Eq. (16.39) from Eq. (16.40) and rearranging we obtain

θB − θA = − L
2EI

(MBA − MAB) (16.41)

Multiplying Eq. (16.39) by 2 and subtracting from Eq. (16.40) gives

δ

L
− θA = − L

6EI
(MBA − 2MAB) (16.42)

Now eliminating θA between Eqs (16.39) and (16.40) we have

θB − δ

L
= − L

6EI
(2MBA − MAB) (16.43)

We shall now use Eqs (16.41)–(16.43) to determine stiffness coefficients and COFs for
a variety of support and loading conditions at A and B.

Case 1: A fixed, B simply supported, moment MBA applied at B

This is the situation arising when a beam has been released at a support (B) and we
require the stiffness coefficient of the span BA so that we can determine the DF; we
also require the fraction of the moment, MBA, which is carried over to the support at A.
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In this case θA = δ = 0 so that, from Eq. (16.42)

MAB = 1
2

MBA

Therefore one-half of the applied moment, MBA, is carried over to A so that the
COF = 1/2. Now from Eq. (16.43) we have

θB = − L
6EI

(
2MBA − MBA

2

)

so that

MBA = −4EI
L

θB

from which (see Eq. (16.32))

KBA = 4EI
L

(= KAB)

Case 2: A simply supported, B simply supported, moment MBA
applied at B

This situation arises when we release the beam at an internal support (B) and the
adjacent support (A) is an outside support which is pinned and therefore free to
rotate. In this case the moment, MBA, does not affect the moment at A, which is
always zero; there is, therefore, no carry over from B to A.

From Eq. (16.43)

θB = − L
6EI

2MBA (MAB = 0)

which gives

MBA = −3EI
L

θB

so that

KBA = 3EI
L

(= KAB)

Case 3: A and B simply supported, equal moments MBA and −MAB
applied at B and A

This case is of use in a symmetrical beam that is symmetrically loaded and would apply
to the central span. Thus identical operations will be carried out at each end of the
central span so that there will be no carry over of moment from B to A or A to B. Also
θB = −θA so that from Eq. (16.41)

MBA = −2EI
L

θB

and

KBA = 2EI
L

(= KAB)



chap-16 17/1/2005 16: 29 page 520

520 • Chapter 16 / Analysis of Statically Indeterminate Structures

Case 4: A and B simply supported, the beam antisymmetrically
loaded such that MBA = MAB

This case uses the antisymmetry of the beam and loading in the same way that Case
3 uses symmetry. There is therefore no carry over of moment from B to A or A to B
and θA = θB. Therefore, from Eq. (16.43)

MBA = −6EI
L

θB

so that

KBA = 6EI
L

(= KAB)

We are now in a position to apply the moment distribution method to beams and
frames. Note that the successive releasing and clamping of supports is, in effect, carried
out simultaneously in the analysis.

First we shall consider continuous beams.

CONTINUOUS BEAMS

EXAMPLE 16.17 Determine the support reactions in the continuous beam ABCD
shown in Fig. 16.39; its flexural rigidity EI is constant throughout.

20 kN

3 m 2 m1 m1 m

EI
A B C D

8 kN/m

FIGURE 16.39 Beam
of Ex. 16.17

Initially we calculate the FEMs for each of the three spans using the results presented
in Table 16.6. Thus

MF
AB = −MF

BA = −8 × 32

12
= −6.0 kN m

MF
BC = −MF

CB = −8 × 22

12
− 20 × 2

8
= −7.67 kN m

MF
CD = −MF

DC = −8 × 22

12
= −2.67 kN m

In this particular example certain features should be noted. Firstly, the support at A
is a fixed support so that it will not be released and clamped in turn. In other words,
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the moment at A will always be balanced (by the fixed support) but will be continually
modified as the beam at B is released and clamped. Secondly, the support at D is an
outside pinned support so that the final moment at D must be zero. We can therefore
reduce the amount of computation by balancing the beam at D initially and then
leaving the support at D pinned so that there will be no carry over of moment from C
to D in the subsequent moment distribution. However, the stiffness coefficient of CD
must be modified to allow for this since the span CD will then correspond to Case 2
as the beam is released at C and is free to rotate at D. Thus KCD = KDC = 3EI/L. All
other spans correspond to Case 1 where, as we release the beam at a support, that
support is a pinned support while the beam at the adjacent support is fixed. Therefore,
for the spans AB and BC, the stiffness coefficients are 4EI/L and the COFs are equal
to 1/2.

The DFs are obtained from Eq. (16.36). Thus

DFBA = KBA

KBA + KBC
= 4EI/3

4EI/3 + 4EI/2
= 0.4

DFBC = KBC

KBA + KBC
= 4EI/2

4EI/3 + 4EI/2
= 0.6

DFCB = KCB

KCB + KCD
= 4EI/2

4EI/2 + 3EI/2
= 0.57

DFCD = KCD

KCB + KCD
= 3EI/2

4EI/2 + 3EI/2
= 0.43

Note that the sum of the DFs at a support must always be equal to unity since they
represent the fraction of the out of balance moment which is distributed into the spans
meeting at that support. The solution is now completed as shown in Table 16.7.

Note that there is a rapid convergence in the moment distribution. As a general rule
it is sufficient to stop the procedure when the distributed moments are of the order of
2% of the original FEMs. In the table the last moment at C in CD is −0.02 which is
0.75% of the original FEM, while the last moment at B in BC is +0.05 which is 0.65%
of the original FEM. We could, therefore, have stopped the procedure at least one
step earlier and still have retained sufficient accuracy.

The final reactions at the supports are now calculated from the final support moments
and the reactions corresponding to the actual loads, i.e. the free reactions; these are
calculated as though each span were simply supported. The procedure is identical to
that in Ex. 16.15.

For example, in Table 16.8 the final moment reactions in AB form a couple to balance
the clockwise moment of 7.19 − 5.42 = 1.77 kN m acting on AB. Thus at A the reaction
is 1.77/3.0 = 0.6 kN acting downwards while at B in AB the reaction is 0.6 kN acting
upwards. The remaining final moment reactions are calculated in the same way.



chap-16 17/1/2005 16: 29 page 522

522 • Chapter 16 / Analysis of Statically Indeterminate Structures

TABLE 16.7

A C D

DFs – 0.4 0.6 0.57 0.43 1.0

FEMs �6.0 �6.0 �7.67 �7.67 �2.67 �2.67
Balance D �2.67
Carry over �1.34
Balance �0.67 �1.0 �2.09 �1.58
Carry over �0.34 �1.05 �0.5
Balance �0.42 �0.63 �0.29 �0.21
Carry over �0.21 �0.15 �0.32
Balance �0.06 �0.09 �0.18 �0.14
Carry over �0.03 �0.09 �0.05
Balance �0.04 �0.05 �0.03 �0.02

Final moments �5.42 �7.19 �7.19 �5.95 �5.95 0

B

TABLE 16.8

A B C D

Free reactions ↑12.0 12.0↑ ↑18.0 18.0↑ ↑8.0 8.0↑
Final moment reactions ↓0.6 0.6↑ ↑0.6 0.6↓ ↑2.98 2.98↓
Total reactions (kN) ↑11.4 12.6↑ ↑18.6 17.4↑ ↑10.98 5.02↑

Finally the complete reactions at each of the supports are

RA = 11.4 kN RB = 12.6 + 18.6 = 31.2 kN

RC = 17.4 + 10.98 = 28.38 kN RD = 5.02 kN

EXAMPLE 16.18 Calculate the support reactions in the beam shown in Fig. 16.40;
the flexural rigidity, EI, of the beam is constant throughout.

FIGURE 16.40
Beam of Ex. 16.18

A B

EI

C D

E

4 m7 m

12 kN 7 kN 7 kN 5 kN22 kN (total)

7 m 4 m 4 m 4 m12 m

This example differs slightly from Ex. 16.17 in that there is no fixed support and there
is a cantilever overhang at the right-hand end of the beam. We therefore treat the
support at A in exactly the same way as the support at D in the previous example. The
effect of the cantilever overhang may be treated in a similar manner since we know
that the final value of moment at D is −5 × 4 = −20 kN m. We therefore calculate
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the FEMs MF
DE (= −20 kN m) and MF

DC, balance the beam at D, carry over to C and
then leave the beam at D balanced and pinned; again the stiffness coefficient, KDC, is
modified to allow for this (Case 2).

The FEMs are again calculated using the appropriate results from Table 16.6. Thus

MF
AB = −MF

BA = −12 × 14
8

= −21 kN m

MF
BC = −MF

CB = −7 × 4 × 82

122 − 7 × 8 × 42

122 = −18.67 kN m

MF
CD = −MF

DC = −22 × 12
12

= −22 kN m

MF
DE = −5 × 4 = −20 kN m

The DFs are calculated as follows

DFBA = KBA

KBA + KBC
= 3EI/14

3EI/14 + 4EI/12
= 0.39

Hence

DFBC = 1 − 0.39 = 0.61

DFCB = KCB

KCB + KCD
= 4EI/12

4EI/12 + 3EI/12
= 0.57

Hence

DFCD = 1 − 0.57 = 0.43

The solution is completed as follows:

A C D E

DFs 1 0.39 0.61 0.57 0.43 1.0 0 –

FEMs �21.0 �21.0 �18.67 �18.67 �22.0 �22.0 �20.0 0
Balance A and D �21.0 �2.0
Carry over �10.5 �1.0
Balance �5.0 �7.83 �2.47 �1.86
Carry over �1.24 �3.92
Balance �0.48 �0.76 �2.23 �1.69
Carry over �1.12 �0.38
Balance �0.44 �0.68 �0.22 �0.16
Carry over �0.11 �0.34
Balance �0.04 �0.07 �0.19 �0.15

Final moments 0 �25.54 �25.54 �19.14 �19.14 �20.0 �20.0 0

B

The support reactions are now calculated in an identical manner to that in Ex. 16.17
and are

RA = 4.18 kN RB = 15.35 kN RC = 17.4 kN RD = 16.07 kN
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EXAMPLE 16.19 Calculate the reactions at the supports in the beam ABCD shown
in Fig. 16.41. The flexural rigidity of the beam is constant throughout.

A

EI

B C
D

5 m

5 kN/m 5 kN/m40 kN

5 m 6 m6 m FIGURE 16.41 Symmetrical
beam of Ex. 16.19

The beam in Fig. 16.41 is symmetrically supported and loaded about its centre line;
we may therefore use this symmetry to reduce the amount of computation.

In the centre span, BC, MF
BC = −MF

CB and will remain so during the distribution. This
situation corresponds to Case 3, so that if we reduce the stiffness (KBC) of BC to 2EI/L
there will be no carry over of moment from B to C (or C to B) and we can consider
just half the beam. The outside pinned support at A is treated in exactly the same way
as the outside pinned supports in Exs 16.17 and 16.18.

The FEMs are

MF
AB = −MF

BA = −5 × 62

12
= −15 kN m

MF
BC = −MF

CB = −40 × 5
8

= −25 kN m

The DFs are

DFAB = KBA

KBA + KBC
= 3EI/6

3EI/6 + 2EI/10
= 0.71

Hence

DFBC = 1 − 0.71 = 0.29

The solution is completed as follows:

A

DFs 1 0.71 0.29

FEMs �15.0 �15.0 �25.0
Balance A �15.0
Carry over �7.5
Balance B �1.78 �0.72

Final moments 0 �24.28 �24.28

B
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Note that we only need to balance the beam at B once. The use of symmetry therefore
leads to a significant reduction in the amount of computation.

EXAMPLE 16.20 Calculate the end moments at the supports in the beam shown in
Fig. 16.42 if the support at B is subjected to a settlement of 12 mm. Furthermore, the
second moment of area of the cross section of the beam is 9 × 106 mm4 in the span
AB and 12 × 106 mm4 in the span BC; Young’s modulus, E, is 200 000 N/mm2.

A B C

5 m

6 kN/m
40 kN

3 m 3 m FIGURE 16.42 Beam of
Ex. 16.20

In this example the FEMs produced by the applied loads are modified by additional
moments produced by the sinking support. Thus, using Table 16.6

MF
AB = −6 × 52

12
− 6 × 200 000 × 9 × 106 × 12

(5 × 103)2 × 106 = −17.7 kN m

MF
BA = +6 × 52

12
− 6 × 200 000 × 9 × 106 × 12

(5 × 103)2 × 106 = +7.3 kN m

Since the support at C is an outside pinned support, the effect on the FEMs in BC of
the settlement of B is reduced (see the last case in Table 16.6). Thus

MF
BC = −40 × 6

8
+ 3 × 200 000 × 12 × 106 × 12

(6 × 103)2 × 106 = −27.6 kN m

MF
CB = +40 × 6

8
= +30.0 kN m

The DFs are

DFBA = KBA

KBA + KBC
= (4E × 9 × 106)/5

(4E × 9 × 106)/5 + (3E × 12 × 106)/6
= 0.55

Hence

DFBC = 1 − 0.55 = 0.45
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FIGURE 16.43
Symmetrical and

unsymmetrical
portal frames

Displaced
shape

A D

(a) (b)

CB

Displaced
shape

A C

DFs – 0.55 0.45 1.0

FEMs �17.7 �7.3 �27.6 �30.0
Balance C �30.0
Carry over �15.0
Balance B �19.41 �15.89
Carry over �9.71

Final moments �7.99 �26.71 �26.71 0

B

Note that in this example balancing the beam at B has a significant effect on the fixing
moment at A; we therefore complete the distribution after a carry over to A.

PORTAL FRAMES

Portal frames fall into two distinct categories. In the first the frames, such as that shown
in Fig. 16.43(a), are symmetrical in geometry and symmetrically loaded, while in the
second (Fig. 16.43(b)) the frames are unsymmetrical due either to their geometry,
the loading or a combination of both. The displacements in the symmetrical frame of
Fig. 16.43(a) are such that the joints at B and C remain in their original positions (we
are ignoring axial and shear displacements and we assume that the joints remain rigid
so that the angle between adjacent members at a joint is unchanged by the loading).
In the unsymmetrical frame there are additional displacements due to side sway or
sway as it is called. This sway causes additional moments at the ends of the members
which must be allowed for in the analysis.

Initially we shall consider frames in which there is no sway. The analysis is then virtually
identical to that for continuous beams with only, in some cases, the added complication
of more than two members meeting at a joint.

EXAMPLE 16.21 Obtain the bending moment diagram for the frame shown in
Fig. 16.44; the flexural rigidity EI is the same for all members.
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FIGURE 16.44
Beam of Ex. 16.21

A

D E

16 m4 m4 m4 m

12 m

12 kN 12 kN
1 kN/m

CB

In this example the frame is unsymmetrical but sway is prevented by the member
BC which is fixed at C. Also, the member DA is fixed at D while the member EB is
pinned at E.

The FEMs are calculated using the results of Table 16.6 and are

MF
AD = MF

DA = 0 MF
BE = MF

EB = 0

MF
AB = −MF

BA = −12 × 4 × 82

122 − 12 × 8 × 42

122 = −32 kN m

MF
BC = −MF

CB = −1 × 162

12
= −21.3 kN m

Since the vertical member EB is pinned at E, the final moment at E is zero. We
may therefore treat E as an outside pinned support, balance E initially and reduce
the stiffness coefficient, KBE, as before. However, there is no FEM at E so that the
question of balancing E initially does not arise. The DFs are now calculated

DFAD = KAD

KAD + KAB
= 4EI/12

4EI/12 + 4EI/12
= 0.5

Hence

DFAB = 1 − 0.5 = 0.5

DFBA = KBA

KBA + KBC + KBE
= 4EI/12

4EI/12 + 4EI/16 + 3EI/12
= 0.4

DFBC = KBC

KBA + KBC + KBE
= 4EI/16

4EI/12 + 4EI/16 + 3EI/12
= 0.3

Hence

DFBE = 1 − 0.4 − 0.3 = 0.3

The solution is now completed below.
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Joint D A B C E

Member DA AD AB BA BE BC CB EB
DFs – 0.5 0.5 0.4 0.3 0.3 – 1.0

FEMs 0 0 −32.0 +32.0 0 −21.3 +21.3 0
Balance A and B +16.0 +16.0 −4.3 −3.2 −3.2
Carry over +8.0 −2.15 +8.0 −1.6
Balance +1.08 +1.08 −3.2 −2.4 −2.4
Carry over +0.54 −1.6 +0.54 −1.2
Balance +0.8 +0.8 −0.22 −0.16 −0.16
Carry over +0.4 −0.11 +0.4 −0.08
Balance +0.05 +0.06 −0.16 −0.12 −0.12

Final moments +8.94 +17.93 −17.93 +33.08 −5.88 −27.18 +18.42 0

FIGURE 16.45
Bending moment

diagram for the
frame of Ex. 16.21
(bending moments

(kN m) drawn on
tension side of

members)

18.42
27.18

17.93

17.93 A
B

D E

C5.88

8.94

33.08

FIGURE 16.46
Calculation of sway

effect in a portal
frame

A A

B B

(a) (b)

MBA

MAB

MCD

uv

uv uv

uv

huvhuv

MDC

RD,HRA,H

P

h h

C C

D D

The bending moment diagram is shown in Fig. 16.45 and is drawn on the tension side
of each member. The bending moment distributions in the members AB and BC are
determined by superimposing the fixing moment diagram on the free bending moment
diagram, i.e. the bending moment diagram obtained by supposing that AB and BC are
simply supported.

We shall now consider frames that are subject to sway. For example, the frame shown in
Fig. 16.46(a), although symmetrical itself, is unsymmetrically loaded and will therefore
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sway. Let us suppose that the final end moments in the members of the frame are MAB,
MBA, MBC, etc. Since we are assuming a linearly elastic system we may calculate the
end moments produced by the applied loads assuming that the frame does not sway,
then calculate the end moments due solely to sway and superimpose the two cases.
Thus

MAB = MNS
AB + MS

AB MBA = MNS
BA + MS

BA

and so on, in which MNS
AB is the end moment at A in the member AB due to the applied

loads, assuming that sway is prevented, while MS
AB is the end moment at A in the

member AB produced by sway only, and so on for MBA, MBC, etc.

We shall now use the principle of virtual work (Section 15.2) to establish a relationship
between the final end moments in the member and the applied loads. Thus we impose
a small virtual displacement on the frame comprising a rotation, θv, of the members
AB and DC as shown in Fig. 16.46(b). This displacement should not be confused with
the sway of the frame which may, or may not, have the same form depending on the
loads that are applied. In Fig. 16.46(b) the members are rotating as rigid links so that
the internal moments in the members do no work. Therefore the total virtual work
comprises external virtual work only (the end moments MAB, MBA, etc. are externally
applied moments as far as each frame member is concerned) so that, from the principle
of virtual work

MABθv + MBAθv + MCDθv + MDCθv + Phθv = 0

Hence

MAB + MBA + MCD + MDC + Ph = 0 (16.44)

Note that, in this case, the member BC does not rotate so that the end moments MBC

and MCB do no virtual work. Now substituting for MAB, MBA, etc. in Eq. (16.44) we
have

MNS
AB + MS

AB + MNS
BA + MS

BA + MNS
CD + MS

CD + MNS
DC + MS

DC + Ph = 0 (16.45)

in which the no-sway end moments, MNS
AB, etc., are found in an identical manner to

those in the frame of Ex. 16.21.

Let us now impose an arbitrary sway on the frame; this can be of any convenient mag-
nitude. The arbitrary sway and moments, MAS

AB, MAS
BA, etc., are calculated using the

moment distribution method in the usual way except that the FEMs will be caused
solely by the displacement of one end of a member relative to the other. Since the
system is linear the member end moments will be directly proportional to the sway so
that the end moments corresponding to the actual sway will be directly proportional to
the end moments produced by the arbitrary sway. Thus, MS

AB = kMAS
AB, MS

BA = kMAS
BA,
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etc. in which k is a constant. Substituting in Eq. (16.45) for MS
AB, MS

BA, etc.
we obtain

MNS
AB + MNS

BA + MNS
CD + MNS

DC + k(MAS
AB + MAS

BA + MAS
CD + MAS

DC) + Ph = 0 (16.46)

Substituting the calculated values of MAS
AB, MAS

AB, etc. in Eq. (16.46) gives k. The actual
sway moments MS

AB, etc., follow as do the final end moments, MAB (= MNS
AB + MS

AB),
etc.

An alternative method of establishing Eq. (16.44) is to consider the equilibrium of
the members AB and DC. Thus, from Fig. 16.46(a) in which we consider the moment
equilibrium of the member AB about B we have

RA,Hh − MAB − MBA = 0

which gives

RA,H = MAB + MBA

h

Similarly, by considering the moment equilibrium of DC about C

RD,H = MDC + MCD

h

Now, from the horizontal equilibrium of the frame

RA,H + RD,H + P = 0

so that, substituting for RA,H and RD,H we obtain

MAB + MBA + MDC + MCD + Ph = 0

which is Eq. (16.44).

EXAMPLE 16.22 Obtain the bending moment diagram for the portal frame shown
in Fig. 16.47(a). The flexural rigidity of the horizontal member BC is 2EI while that
of the vertical members AB and CD is EI.

First we shall determine the end moments in the members assuming that the frame
does not sway. The corresponding FEMs are found using the results in Table 16.6 and
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FIGURE 16.47
Portal frame of

Ex. 16.22

A A

B BC

� �

C

D D

(a) (b)

2EI 2EI

EI EI EI EI

4 kN

2 kN

10 m

10 m5 m

are as follows:

MF
AB = MF

BA = 0 MF
CD = MF

DC = 0

MF
BC = −4 × 5 × 102

152 = −8.89 kN m

MF
CB = +4 × 10 × 52

152 = +4.44 kN m

The DFs are

DFBA = KBA

KBA + KBC
= 4EI/10

4EI/10 + 4 × 2EI/15
= 0.43

Hence

DFBC = 1 − 0.43 = 0.57

From the symmetry of the frame, DFCB = 0.57 and DFCD = 0.43.

The no-sway moments are determined in the table overleaf. We now assume that the
frame sways by an arbitrary amount, δ, as shown in Fig. 16.47(b). Since we are ignoring
the effect of axial strains, the horizontal movements of B and C are both δ. The FEMs
corresponding to this sway are then (see Table 16.6)

MF
AB = MF

BA = −6EIδ
102 = MF

DC = MF
CD

MF
BC = MF

CB = 0

Suppose that δ = 100 × 102/6EI. Then

MF
AB = MF

BA = MF
DC = MF

CD = −100 kN m (a convenient value)

The DFs for the members are the same as those in the no-sway case since they are func-
tions of the member stiffness. We now obtain the member end moments corresponding
to the arbitrary sway.
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No-sway case

DFs – –0.43 0.57 0.57 0.43

FEMs 0 00 0�8.89 �4.44
Balance

Balance

Balance

Balance

Balance

�3.82 �5.07 �2.53 �1.91
Carry over

Carry over

Carry over

Carry over

�1.91 �1.26 �2.53 �0.95
�0.54 �0.72 �1.44 �1.09

�0.27 �0.72 �0.36 �0.55

�0.55

�0.31 �0.41 �0.21 �0.15
�0.15 �0.11 �0.21 �0.08

�0.12

�0.02 �0.01

�0.09
�0.03

�0.03 �0.03
�0.03

�0.05 �0.06
�0.06

�2.36 �4.75 �3.25 �3.25 �1.63�4.75

B C DA

Final moments (MNS)

Sway case

DFs – –0.43 0.57 0.57 0.43

FEMs �100 �100 �100 �1000 0
Balance �43 �57 �57 �43
Carry over �21.5 �28.5 �28.5 �21.5
Balance �12.3 �16.2 �16.2 �12.3
Carry over �6.2 �8.1 �8.1 �6.2
Balance �3.5 �4.6 �4.6 �3.5
Carry over �1.8 �2.3 �2.3 �1.8
Balance �1.0 �1.0�1.3 �1.3

Final arbitrary
sway moments (MAS)

�82.9 �66.8 �66.8 �66.8 �66.8 �82.9

C DA B

Comparing the frames shown in Figs 16.47 and 16.46 we see that they are virtually
identical. We may therefore use Eq. (16.46) directly. Thus, substituting for the no-sway
and arbitrary-sway end moments we have

2.36 + 4.75 − 3.25 − 1.63 + k(−82.9 − 66.8 − 66.8 − 82.9) + 2 × 10 = 0

which gives

k = 0.074

The actual sway moments are then

MS
AB = kMAS

AB = 0.074 × (−82.9) = −6.14 kN m
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Similarly

MS
BA = −4.94 kN m MS

BC = 4.94 kN m MS
CB = 4.94 kN m

MS
CD = −4.94 kN m MS

DC = −6.14 kN m

Thus the final end moments are

MAB = MNS
AB + MS

AB = 2.36 − 6.14 = −3.78 kN m

Similarly

MBA = −0.19 kN m MBC = 0.19 kN m MCB = 8.19 kN m

MCD = −8.19 kN m MDC = −7.77 kN m

The bending moment diagram is shown in Fig. 16.48 and is drawn on the tension side
of the members.

8.19

8.19

0.19

0.19

3.78 7.77

10.75

B C

DA

FIGURE 16.48 Bending moment
diagram for the portal frame of
Ex. 16.22. Bending moments
(kNm) drawn on tension side of
members

EXAMPLE 16.23 Calculate the end moments in the members of the frame shown
in Fig. 16.49. All members have the same flexural rigidity, EI; note that the member
CD is pinned to the foundation at D.

A

B C

D

6 m

3 m

3 m

40 kN

20 kN/m

4.5 m FIGURE 16.49 Frame of
Ex. 16.23
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Initially, the FEMs produced by the applied loads are calculated. Thus, from Table 16.6

MF
BA = −MF

BA = −40 × 6
8

= −30 kN m

MF
BC = −MF

CB = −20 × 62

12
= −60 kN m

MF
CD = MF

DC = 0

The DFs are calculated as before. Note that the length of the member CD =√
62 + 4.52 = 7.5 m.

DFBA = KBA

KBA + KBC
= 4EI/6

4EI/6 + 4EI/6
= 0.5

Hence

DFBC = 1 − 0.5 = 0.5

DFCB = KCB

KCB + KCD
= 4EI/6

4EI/6 + 3EI/7.5
= 0.625

Therefore

DFCD = 1 − 0.625 = 0.375

No-sway case

DFs – 0.5 0.5 0.625 0.375 1.0

FEMs �30.0 �30.0 �60.0 �60.0 0 0

0

Balance �15.0 �15.0 �37.5 �22.5
Carry over �7.5 �18.8 �7.5
Balance �9.4 �9.4 �4.7

�4.7
�2.8

�1.8
�2.4Carry over �4.7

Balance �1.2 �1.2 �2.9
Carry over �0.6 �1.5 �0.6
Balance �0.75 �0.75 �0.38 �0.22

Final moments(MNS) �17.2 �56.35 �56.35 �27.32 �27.32

B C DA

Unlike the frame in Ex. 16.22 the frame itself in this case is unsymmetrical. There-
fore the geometry of the frame, after an imposed arbitrary sway, will not have the
simple form shown in Fig. 16.47(b). Furthermore, since the member CD is inclined,
an arbitrary sway will cause a displacement of the joint C relative to the joint B. This
also means that in the application of the principle of virtual work a virtual rotation of
the member AB will result in a rotation of the member BC, so that the end moments
MBC and MCB will do work; Eq. (16.46) cannot, therefore, be used in its existing form.
In this situation we can make use of the geometry of the frame after an arbitrary
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A
D

C

C�

B�
B

6u

4.5u

7.5u

6u

6 m
u

u

u
3
4

u
3
4

u
3
4

FIGURE 16.50 Arbitrary sway and virtual
displacement geometry of frame of Ex. 16.23

virtual displacement to deduce the relative displacements of the joints produced by an
imposed arbitrary sway; the FEMs due to the arbitrary sway may then be calculated.

Figure 16.50 shows the displaced shape of the frame after a rotation, θ , of the member
AB. This diagram will serve, as stated above, to deduce the FEMs due to sway and
also to establish a virtual work equation similar to Eq. (16.46). It is helpful, when
calculating the rotations of the different members, to employ an instantaneous centre,
I. This is the point about which the triangle IBC rotates as a rigid body to IB′C′; thus
all sides of the triangle rotate through the same angle which, since BI = 8 m (obtained
from similar triangles AID and BIC), is 3θ /4. The relative displacements of the joints
are then as shown.

The FEMs due to the arbitrary sway are, from Table 16.6 and Fig. 16.50

MF
AB = MF

BA = −6EI(6θ)
62 = −EIθ

MF
BC = MF

CB = +6EI(4.5θ)
62 = +0.75EIθ

MF
CD = −3EI(7.5θ)

7.52 = −0.4EIθ

If we impose an arbitrary sway such that EIθ = 100 we have

MF
AB = MF

BA = −100 kN m MF
BC = MF

CB = +75 kN m MF
CD = −40 kN m

Now using the principle of virtual work and referring to Fig. 16.50 we have

MABθ + MBAθ + MBCθ

(−3θ

4

)
+ MCB

(−3θ

4

)

+ MCDθ + 40
(

6θ

2

)
+ 20 × 6

(−4.5θ

2

)
= 0
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Sway case

DFs 0.5 0.5 0.625 0.375 1.0

FEMs �100 �100 �75 �75 �40 0
Balance �12.5 �12.5 �21.9 �13.1
Carry over �6.3 �10.9 �6.3
Balance �5.45 �5.45 �3.9

�2.72
�2.4

�1.02
�1.95Carry over �2.72

Balance �0.97 �0.97 �1.7
Carry over �0.49 �0.85 �0.49
Balance �0.43 �0.43 �0.31 �0.18

Final arbitrary sway 
moments(MAS)

�90.49 �80.65 �80.65 �56.7 �56.7

B C D

–

A

Hence

4(MAB + MBA + MCD) − 3(MBC + MCB) − 600 = 0 (i)

Now replacing MAB, etc., by MNS
AB + kMAS

AB, etc., Eq (i) becomes

4(MNS
AB + MNS

BA + MNS
CD) − 3(MNS

BC + MNS
CB) + k[4(MAS

AB + MAS
BA + MAS

CD)

− 3(MAS
BC + MAS

CB)] − 600 = 0

Substituting the values of MNS
AB and MAS

AB, etc., we have

4(−17.2 + 56.35 − 27.32) − 3(−56.35 + 27.32)

+ k[4(−90.49 − 80.65 − 56.7) − 3(80.65 + 56.7)] − 600 = 0

from which k = −0.352. The final end moments are calculated from MAB =
MNS

AB − 0.352MAS
AB, etc., and are given below.

AB BA BC CB CD DC

No-sway moments −17.2 +56.4 −56.4 +27.3 −27.3 0
Sway moments +31.9 +28.4 −28.4 −20.0 +20.0 0

Final moments +14.7 +84.8 −84.8 +7.3 −7.3 0

The methods described in this chapter are hand methods of analysis although they are
fundamental, particularly the slope–deflection method, to the computer-based matrix
methods of analysis which are described in Chapter 17.
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P R O B L E M S

P.16.1 Determine the degrees of static and kinematic indeterminacy in the plane
structures shown in Fig. P.16.1.

FIGURE P.16.1

(a) (b) (c)

(d) (e)

Tie

Ans. (a) ns = 3, nk = 6, (b) ns = 1, nk = 2, (c) ns = 2, nk = 4, (d) ns = 6, nk = 15, (e)
ns = 2, nk = 7.

P.16.2 Determine the degrees of static and kinematic indeterminacy in the space
frames shown in Fig. P.16.2.

FIGURE P.16.2 (a) (b) (c)

Ans. (a) ns = 6, nk = 24, (b) ns = 42, nk = 36, (c) ns = 18, nk = 6.

P.16.3 Calculate the support reactions in the beam shown in Fig. P.16.3 using a
flexibility method.

FIGURE P.16.3

A B

12 kN 10 kN

EI

C

1.6 m 1.2 m0.8 m 0.8 m

Ans. RA = 3.3 kN RB = 14.7 kN RC = 4.0 kN MA = 2.2 kN m (hogging).
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P.16.4 Determine the support reactions in the beam shown in Fig. P.16.4 using a
flexibility method.

FIGURE P.16.4
12 m

A B EI C

12 m

7 kN0.75 kN/m

12 m

Ans. RA = 3.5 kN RB = 9.0 kN RC = 3.5 kN MA = 7 kN m (hogging)
MC = −19 kN m (hogging).

P.16.5 Use a flexibility method to determine the support reactions in the beam shown
in Fig. P.16.5. The flexural rigidity EI of the beam is constant throughout.

FIGURE P.16.5

A B

12 kN

12 m 4 m4 m4 m4 m7 m 7 m

7 kN 7 kN
22 kN (total)

5 kN

EI

C D E

Ans. RA = 4.3 kN RB = 15.0 kN RC = 17.8 kN RD = 15.9 kN.

P.16.6 Calculate the forces in the members of the truss shown in Fig. P.16.6. The mem-
bers AC and BD are 30 mm2 in cross section, all the other members are 20 mm2 in cross
section. The members AD, BC and DC are each 800 mm long; E = 200 000 N/mm2.

FIGURE P.16.6

A

DC

100 N

60°
B

Ans. AC = 48.2 N BC = 87.6 N BD = −1.8 N CD = 2.1 N AD = 1.1 N.

P.16.7 Calculate the forces in the members of the truss shown in Fig. P.16.7. The cross-
sectional area of all horizontal members is 200 mm2, that of the vertical members is
100 mm2 while that of the diagonals is 300 mm2; E is constant throughout.
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FIGURE P.16.7

A

B C D

F
G

100 kN

2 m 2 m

2 m

Ans. AB = FD = −29.2 kN BC = CD = −29.2 kN AG = GF = 20.8 kN BG = DG =
41.3 kN AC = FC = −29.4 kN CG = 41.6 kN.

P.16.8 Calculate the forces in the members of the truss shown in Fig. P.16.8 and the
vertical and horizontal components of the reactions at the supports; all members of
the truss have the same cross-sectional properties.

FIGURE P.16.8

A

BCE

F
D

5 m

100 kN

5 m

5 m

2.5 m

Ans. RA,V = 67.52 kN RA,H = 70.06 kN = RF,H RF,V = 32.48 kN
AB = −32.48 kN AD = −78.31 kN BC = −64.98 kN BD = 72.65 kN
CD = −100.0 kN CE = −64.98 kN DE = 72.65 kN DF = −70.06 kN
EF = −32.49 kN.

P.16.9 The plane truss shown in Fig. P.16.9(a) has one member (24) which is loosely
attached at joint 2 so that relative movement between the end of the member and
the joint may occur when the framework is loaded. This movement is a maximum
of 0.25 mm and takes place only in the direction 24. Figure P.16.9(b) shows joint 2
in detail when the framework is unloaded. Find the value of P at which the member
24 just becomes an effective part of the truss and also the loads in all the members
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when P = 10 kN. All members have a cross-sectional area of 300 mm2 and a Young’s
modulus of 70 000 N/mm2.

FIGURE P.16.9

1 2

12 �

32
42

34

P

(a) (b)

600 mm

450 mm

0.25 mm

Ans. P = 2.95 kN 12 = 2.48 kN 23 = 1.86 kN 34 = 2.48 kN
41 = −5.64 kN 13 = 9.4 kN 42 = −3.1 kN.

P.16.10 Figure P.16.10 shows a plane truss pinned to a rigid foundation. All members
have the same Young’s modulus of 70 000 N/mm2 and the same cross-sectional area,
A, except the member 12 whose cross-sectional area is 1.414A.

FIGURE P.16.10

1

2

3 4

4a

3a

5a

12a

Under some systems of loading, member 14 carries a tensile stress of 0.7 N/mm2.
Calculate the change in temperature which, if applied to member 14 only, would reduce
the stress in that member to zero. The coefficient of linear expansion α = 2 × 10−6/◦C.

Ans. 5.5◦.
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P.16.11 The truss shown in Fig. P.16.11 is pinned to a foundation at the points A and B
and is supported on rollers at G; all members of the truss have the same axial rigidity
EA = 2 × 109 N.

FIGURE P.16.11

B C

60° 60°

D F

G
HJ

1 m 1 m 1 m

A

Calculate the forces in all the members of the truss produced by a settlement of 15 mm
at the support at G.

Ans. GF = 1073.9 kN GH = −536.9 kN FH = −1073.9 kN
FD = 1073.9 kN JH = −1610.8 kN HD = 1073.9 kN
DC = 2147.7 kN CJ = 1073.9 kN JA = −2684.6 kN
AC = −1073.9 kN JD = −1073.9 kN BC = 3221.6 kN.

P.16.12 The cross-sectional area of the braced beam shown in Fig. P.16.12 is 4A and
its second moment of area for bending is Aa2/16. All other members have the same
cross-sectional area, A, and Young’s modulus is E for all members. Find, in terms of
w, A, a and E, the vertical displacement of the point D under the loading shown.

FIGURE P.16.12

3a

4a 4a 4a

D

E F G

3wa
1.5w

C B A

Ans. 30 232 wa2/3AE.

P.16.13 Determine the force in the vertical member BD (the king post) in the trussed
beam ABC shown in Fig. P.16.13. The cross-sectional area of the king post is 2000 mm2,
that of the beam is 5000 mm2 while that of the members AD and DC of the truss
is 200 mm2; the second moment of area of the beam is 4.2 × 106 mm4 and Young’s
modulus, E, is the same for all members.
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FIGURE P.16.13

A B

D

C

1 m

2 m 2 m

100 kN

Ans. 91.6 kN.

P.16.14 Determine the distribution of bending moment in the frame shown in Fig.
P.16.14.

FIGURE P.16.14

w

EI

2EI

2L/3

L

DA

2EI

B C

Ans. MB = 7wL2/45 MC = 8wL2/45. Parabolic distribution on AB, linear on BC
and CD.

P.16.15 Use the flexibility method to determine the end moments in the members of
the portal frame shown in Fig. P.16.15. The flexural rigidity of the horizontal member
BC is 2EI while that of the vertical members AB and CD is EI.

FIGURE P.16.15

4 kN

2 kN
B

A D

C

10 m

10 m5 m

EI EI

2EI
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Ans. MAB = −3.63 kN m MBA = −MBC = −0.07 kN m MCB = −MCD = 8.28 kN m
MDC = −8.02 kN m M (at vert. load) = 10.62 kN m (sagging).

P.16.16 Calculate the end moments in the members of the frame shown in Fig. P.16.16
using the flexibility method; all members have the same flexural rigidity, EI.

FIGURE P.16.16

20 kN/m

B C

DA

3 m

40 kN

6 m 4.5 m

3 m

Ans. MAB = 14.8 kN m MBA = −MBC = 84.8 kN m MCB = −MCD = 7.0 kN m
MDC = 0.

P.16.17 The two-pinned circular arch shown in Fig. P.16.17 carries a uniformly dis-
tributed load of 15 kN/m over the half-span AC. Calculate the support reactions and
the bending moment at the crown C.

FIGURE P.16.17

15 kN/m

C

60° 60°

BA

R � 3.5 m

Ans. RA,V = 34.1 kN RB,V = 11.4 kN RA,H = RB,H = 17.7 kN MC = 3.6 kN m.

P.16.18 The two-pinned parabolic arch shown in Fig. P.16.18 has a second moment
of area, I, that varies such that I = I0 sec θ where I0 is the second moment of area
at the crown of the arch and θ is the slope of the tangent at any point. Calculate the
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horizontal thrust at the arch supports and determine the bending moment in the arch
at the loading points and at the crown.

FIGURE P.16.18

50 kN

10 m 10 m 10 m

A B
3 m

D

C

F

50 kN

Ans. RA,H = RB,H = 169.8 kN MD = 47.2 kN m MC = −9.4 kN m.

P.16.19 Show that, for a two-pinned parabolic arch carrying a uniformly distributed
load over its complete span and in which the second moment of area of the cross
section varies as the secant assumption, the bending moment is everywhere zero.

P.16.20 Use the slope–deflection method to solve P.16.3 and P.16.4.

P.16.21 Use the slope–deflection method to determine the member end moments in
the portal frame of Ex. 16.22.

P.16.22 Calculate the support reactions in the continuous beam shown in Fig. P.16.22
using the moment distribution method; the flexural rigidity, EI, of the beam is constant
throughout.

FIGURE P.16.22

0.75 kN/m
7 kN

12 m 12 m 12 m 5 m

1 kN

A
D

B C

EI

Ans. RA = 2.7 kN RB = 10.6 kN RC = 3.7 kN MA = −1.7 kN m.

P.16.23 Calculate the support reactions in the beam shown in Fig. P.16.23 using
the moment distribution method; the flexural rigidity, EI, of the beam is constant
throughout.

Ans. RC = 28.2 kN RD = 17.0 kN RE = 4.8 kN ME = 1.6 kN m.
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FIGURE P.16.23

10 kN

10 kN m
50 kN

A

B

1.0 m

1.0 m

1.0 m0.5 m 0.5 m

C D

E

EI

P.16.24 In the beam ABC shown in Fig. P.16.24 the support at B settles by 10 mm
when the loads are applied. If the second moment of area of the spans AB and BC
are 83.4 × 106 mm4 and 125.1 × 106 mm4, respectively, and Young’s modulus, E, of
the material of the beam is 207 000 N/mm2, calculate the support reactions using the
moment distribution method.

FIGURE P.16.24

50 kN

C B A

6.25 kN/m

2.5 m 2.5 m 4 m

Ans. RC = 28.6 kN RB = 15.8 kN RA = 30.5 kN MA = 53.9 kN m.

P.16.25 Calculate the end moments in the members of the frame shown in Fig. P.16.25
using the moment distribution method. The flexural rigidity of the members AB, BC
and BD are 2EI, 3EI and EI, respectively, and the support system is such that sway is
prevented.

FIGURE P.16.25

A

D

B C

8 kN 8 kN 8 kN

16 m

6 m 6 m 6 m 6 m 6 m
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Ans. MAB = MCB = 0 MBA = 30 kN m MBC = −36 kN m,

MBD = 6 kN m MDB = 3 kN m.

P.16.26 The frame shown in Fig. P.16.26 is pinned to the foundation of A and
D and has members whose flexural rigidity is EI. Use the moment distribution
method to calculate the moments in the members and draw the bending moment
diagram.

FIGURE P.16.26

25 kN

50 kN

B

A

C

D

2 m

3 m

3 m

4 m

Ans. MA = MD = 0 MB = 11.9 kN m MC = 63.2 kN m.

P.16.27 Use the moment distribution method to calculate the bending moments
at the joints in the frame shown in Fig. P.16.27 and draw the bending moment
diagram.

FIGURE P.16.27

A

B C

D

5 m

5 m

3 m

10 kN

4 m
2EI

2EI

3EI

Ans. MAB = MDC = 0 MBA = 12.7 kN m = −MBC MCB = −13.9 kN m = −MCD.

P.16.28 The frame shown in Fig. P.16.28 has rigid joints at B, C and D and is pinned to
its foundation at A and G. The joint D is prevented from moving horizontally by the
member DF which is pinned to a support at F. The flexural rigidity of the members
AB and BC is 2EI while that of all other members is EI.
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FIGURE P.16.28

2EI

2EI

EI

EI
EI

A

B C

D

G

F

40 kN

14 kN/m

6 m 3 m

3 m

3 m

Use the moment distribution method to calculate the end moments in the members.

Ans. MBA = −MBC = 2.6 kN m MCB = −MCD = 67.7 kN m MDC = −53.5 kN m
MDF = 26.7 kN m MDG =26.7 kN m.
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The methods described in Chapter 16 are basically methods of analysis which are
suitable for use with a hand calculator. They also provide an insight into the physical
behaviour of structures under different loading conditions and it is this fundamen-
tal knowledge which enables the structural engineer to design structures which are
capable of fulfilling their required purpose. However, the more complex a structure
the lengthier, and more tedious, hand methods of analysis become and the more the
approximations which have to be made. It was this situation which led, in the late 1940s
and early 1950s, to the development of matrix methods of analysis and, at the same
time, to the emergence of high-speed, electronic, digital computers. Conveniently,
matrix methods are ideally suited to expressing structural theory in a form suitable for
numerical solution by computer.

The modern digital computer is capable of storing vast amounts of data and producing
solutions for highly complex structural problems almost instantaneously. There is a
wide range of program packages available which cover static and dynamic problems
in all types of structure from skeletal to continuum. Unfortunately these packages are
not foolproof and so it is essential for the structural engineer to be able to select the
appropriate package and to check the validity of the results; without a knowledge of
fundamental theory this is impossible.

In Section 16.1 we discussed the flexibility and stiffness methods of analysis of statically
indeterminate structures and saw that the flexibility method involves releasing the
structure, determining the displacements in the released structure and then finding
the forces required to fulfil the compatibility of displacement condition in the complete
structure. The method was applied to statically indeterminate beams, trusses, braced
beams, portal frames and two-pinned arches in Sections 16.4–16.8. It is clear from the
analysis of these types of structure that the greater the degree of indeterminacy the
higher the number of simultaneous equations requiring solution; for large numbers of
equations a computer approach then becomes necessary. Furthermore, the flexibility
method requires judgements to be made in terms of the release selected, so that a more
automatic procedure is desirable so long, of course, as the fundamental behaviour of
the structure is understood.

In Section 16.9 we examined the slope–deflection method for the solution of static-
ally indeterminate beams and frames; the slope–deflection equations also form the

548
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basis of the moment–distribution method described in Section 16.10. These equations
are, in fact, force–displacement relationships as opposed to the displacement–force
relationships of the flexibility method. The slope–deflection and moment–distribution
methods are therefore stiffness or displacement methods.

The stiffness method basically requires that a structure, which has a degree of kine-
matic indeterminacy equal to nk, is initially rendered determinate by imposing a system
of nk constraints. Thus, for example, in the slope–deflection analysis of a continuous
beam (e.g. Ex. 16.15) the beam is initially fixed at each support and the fixed-end
moments calculated. This generally gives rise to an unbalanced system of forces
at each node. Then by allowing displacements to occur at each node we obtain a
series of force–displacement states (Eqs (i)–(vi) in Ex. 16.15). The nk equilibrium
conditions at the nodes are then expressed in terms of the displacements, giving nk

equations (Eqs (vii)–(x) in Ex. 16.15), the solution of which gives the true values of
the displacements at the nodes. The internal stress resultants follow from the known
force–displacement relationships for each member of the structure (Eqs (i)–(vi) in Ex.
16.15) and the complete solution is then the sum of the determinate solution and the
set of nk indeterminate systems.

Again, as in the flexibility method, we see that the greater the degree of indeterminacy
(kinematic in this case) the greater the number of equations requiring solution, so
that a computer-based approach is necessary when the degree of interdeterminacy
is high. Generally this requires that the force–displacement relationships in a struc-
ture are expressed in matrix form. We therefore need to establish force–displacement
relationships for structural members and to examine the way in which these individ-
ual force–displacement relationships are combined to produce a force–displacement
relationship for the complete structure. Initially we shall investigate members that are
subjected to axial force only.

17.1 AXIALLY LOADED MEMBERS

Consider the axially loaded member, AB, shown in Fig. 17.1(a) and suppose that it is
subjected to axial forces, FA and FB, and that the corresponding displacements are
wA and wB; the member has a cross-sectional area, A, and Young’s modulus, E. An
elemental length, δx, of the member is subjected to forces and displacements as shown
in Fig. 17.1(b) so that its change in length from its unloaded state is w + δw − w = δw.
Thus, from Eq. (7.4), the strain, ε, in the element is given by

ε = dw
dx

Further, from Eq. (7.8)

F
A

= E
dw
dx
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FIGURE 17.1
Axially loaded

member (a)

A B

(b)

x �x
�x

F � �F, w � �w

L

FB, wB F, wFA, wA

so that

dw = F
AE

dx

Therefore the axial displacement at the section a distance x from A is given by

w =
∫ x

0

F
AE

dx

which gives

w = F
AE

x + C1

in which C1 is a constant of integration. When x = 0, w = wA so that C1 = wA and the
expression for w may be written as

wB = F
AE

x + wA (17.1)

In the absence of any loads applied between A and B, F = FB = −FA and Eq. (17.1)
may be written as

w = FB

AE
x + wA (17.2)

Thus, when x = L, w = wB so that from Eq. (17.2)

wB = FB

AE
L + wA

or

FB = AE
L

(wB − wA) (17.3)

Furthermore, since FB = −FA we have, from Eq. (17.3)

−FA = AE
L

(wB − wA)

or

FA = −AE
L

(wB − wA) (17.4)
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Equations (17.3) and (17.4) may be expressed in matrix form as follows{
FA

FB

}
=
[

AE/L −AE/L
−AE/L AE/L

]{
wA

wB

}

or {
FA

FB

}
= AE

L

[
1 −1

−1 1

]{
wA

wB

}
(17.5)

Equation (17.5) may be written in the general form

{F} = [KAB]{w} (17.6)

in which {F} and {w} are generalized force and displacement matrices and [KAB] is the
stiffness matrix of the member AB.

Suppose now that we have two axially loaded members, AB and BC, in line and
connected at their common node B as shown in Fig. 17.2.

In Fig. 17.2 the force, FB, comprises two components: FB,AB due to the change in
length of AB, and FB,BC due to the change in length of BC. Thus, using the results of
Eqs (17.3) and (17.4)

FA = AABEAB

LAB
(wA − wB) (17.7)

FB = FB,AB + FB,BC = AABEAB

LAB
(wB − wA) + ABCEBC

LBC
(wB − wC) (17.8)

FC = ABCEBC

LBC
(wC − wB) (17.9)

in which AAB, EAB and LAB are the cross-sectional area, Young’s modulus and length
of the member AB; similarly for the member BC. The term AE/L is a measure of the
stiffness of a member, this we shall designate by k. Thus, Eqs (17.7)–(17.9) become

FA = kAB(wA − wB) (17.10)

FB = −kABwA + (kAB + kBC)wB − kBCwC (17.11)

FC = kBC(wC − wB) (17.12)

FIGURE 17.2 Two
axially loaded

members in line

FA, wA
A B

node

C
FB, wB

LAB LBC

FC, wC
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Equations (17.10)–(17.12) are expressed in matrix form as




FA

FB

FC


 =


 kAB −kAB 0

−kAB kAB + kBC −kBC

0 −kBC kBC






wA

wB

wC


 (17.13)

Note that in Eq. (17.13) the stiffness matrix is a symmetric matrix of order 3 × 3,
which, as can be seen, connects three nodal forces to three nodal displacements. Also,
in Eq. (17.5), the stiffness matrix is a 2 × 2 matrix connecting two nodal forces to two
nodal displacements. We deduce, therefore, that a stiffness matrix for a structure in
which n nodal forces relate to n nodal displacements will be a symmetric matrix of the
order n × n.

In more general terms the matrix in Eq. (17.13) may be written in the form

[K ] =



k11 k12 k13

k21 k22 k23

k31 k32 k33


 (17.14)

in which the element k11 relates the force at node 1 to the displacement at node 1,
k12 relates the force at node 1 to the displacement at node 2, and so on. Now, for the
member connecting nodes 1 and 2

[K12] =
[

k11 k12

k21 k22

]

and for the member connecting nodes 2 and 3

[K23] =
[

k22 k23

k32 k33

]

Therefore we may assemble a stiffness matrix for a complete structure, not by the
procedure used in establishing Eqs (17.10)–(17.12) but by writing down the matrices
for the individual members and then inserting them into the overall stiffness matrix
such as that in Eq. (17.14). The element k22 appears in both [K12] and [K23] and will
therefore receive contributions from both matrices. Hence, from Eq. (17.5)

[KAB] =
[

kAB −kAB

−kAB kAB

]

and

[KBC] =
[

kBC −kBC

−kBC kBC

]
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Inserting these matrices into Eq. (17.14) we obtain

[KABC] =

 kAB −kAB 0

−kAB kAB + kBC −kBC

0 −kBC kBC




as before. We see that only the k22 term (linking the force at node 2(B) to the dis-
placement at node 2) receives contributions from both members AB and BC. This
results from the fact that node 2(B) is directly connected to both nodes 1(A) and 3(C)
while nodes 1 and 3 are connected directly to node 2. Nodes 1 and 3 are not directly
connected so that the terms k13 and k31 are both zero, i.e. they are not affected by
each other’s displacement.

To summarize, the formation of the stiffness matrix for a complete structure is carried
out as follows: terms of the form kii on the main diagonal consist of the sum of the
stiffnesses of all the structural elements meeting at node i, while the off-diagonal terms
of the form kij consist of the sum of the stiffnesses of all the elements connecting node
i to node j.

Equation (17.13) may be solved for a specific case in which certain boundary conditions
are specified. Thus, for example, the member AB may be fixed at A and loads FB and
FC applied. Then wA = 0 and FA is a reaction force. Inversion of the resulting matrix
enables wB and wC to be found.

In a practical situation a member subjected to an axial load could be part of a truss
which would comprise several members set at various angles to one another. Therefore,
to assemble a stiffness matrix for a complete structure, we need to refer axial forces
and displacements to a common, or global, axis system.

Consider the member shown in Fig. 17.3. It is inclined at an angle θ to a global axis
system denoted by xy. The member connects node i to node j, and has member or local
axes x̄, ȳ. Thus nodal forces and displacements referred to local axes are written as F̄,
w̄, etc., so that, by comparison with Eq. (17.5), we see that{

F̄x,i

F̄x, j

}
= AE

L

[
1 −1

−1 1

]{
w̄i

w̄j

}
(17.15)

where the member stiffness matrix is written as [K̄ij].

Fy,i

Fy, j

Fx,i

Fx, j

Fx, j

j

y

i x
u

y �

Fx,i

x w

FIGURE 17.3 Local and
global axes systems for an
axially loaded member
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In Fig. 17.3 external forces F̄x,i and F̄x, j are applied to i and j. It should be noted that
F̄y,i and F̄y, j do not exist since the member can only support axial forces. However, F̄x,i

and F̄x, j have components Fx,i, Fy,i and Fx, j, Fy, j respectively, so that whereas only two
force components appear for the member in local coordinates, four components are
present when global coordinates are used. Therefore, if we are to transfer from local
to global coordinates, Eq. (17.15) must be expanded to an order consistent with the
use of global coordinates. Thus




F̄x,i

F̄y,i

F̄x,i

F̄y, j




= AE
L




1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0







w̄i

v̄i

w̄j

v̄j




(17.16)

Expansion of Eq. (17.16) shows that the basic relationship between F̄x,i, F̄x, j and w̄i,
w̄j as defined in Eq. (17.15) is unchanged.

From Fig. 17.3 we see that

F̄x,i = Fx,i cos θ + Fy,i sin θ

F̄y,i = −Fx,i sin θ + Fy,i cos θ

and

F̄x, j = Fx, j cos θ + Fy, j sin θ

F̄y, j = −Fx, j sin θ + Fy, j cos θ

Writing λ for cos θ and µ for sin θ we express the above equations in matrix form as


F̄x,i

F̄y,i

F̄x, j

F̄y, j




=




λ µ 0 0

−µ λ 0 0

0 0 λ µ

0 0 −µ λ







Fx,i

Fy,i

Fx, j

Fy, j




(17.17)

or, in abbreviated form

{F̄} = [T]{F} (17.18)

where [T] is known as the transformation matrix. A similar relationship exists between
the sets of nodal displacements. Thus

{δ̄} = [T]{δ} (17.19)

in which {δ̄} and {δ} are generalized displacements referred to the local and global
axes, respectively. Substituting now for {F̄} and {δ̄} in Eq. (17.16) from Eqs (17.18)
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and (17.19) we have

[T]{F} = [K̄ij][T]{δ}
Hence

{F} = [T−1][K̄ij][T]{δ} (17.20)

It may be shown that the inverse of the transformation matrix is its transpose, i.e.

[T−1] = [T]T

Thus we rewrite Eq. (17.20) as

{F} = [T]T[K̄ij][T]{δ} (17.21)

The nodal force system referred to the global axes, {F}, is related to the corresponding
nodal displacements by

{F} = [Kij]{δ} (17.22)

in which [Kij] is the member stiffness matrix referred to global coordinates. Compari-
son of Eqs (17.21) and (17.22) shows that

[Kij] = [T]T[K̄ij][T]

Substituting for [T] from Eq. (17.17) and [K̄ij] from Eq. (17.16) we obtain

[Kij] = AE
L




λ2 λµ −λ2 −λµ

λµ µ2 −λµ −µ2

−λ2 −λµ λ2 λµ

−λµ −µ2 λµ µ2


 (17.23)

Evaluating λ (= cos θ) and µ (= sin θ) for each member and substituting in Eq. (17.23)
we obtain the stiffness matrix, referred to global axes, for each member of the
framework.

EXAMPLE 17.1 Determine the horizontal and vertical components of the deflection
of node 2 and the forces in the members of the truss shown in Fig. 17.4. The product
AE is constant for all members.

We see from Fig. 17.4 that the nodes 1 and 3 are pinned to the foundation and are
therefore not displaced. Hence, referring to the global coordinate system shown,

w1 = v1 = w3 = v3 = 0
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FIGURE 17.4 Truss of Ex. 17.1

The external forces are applied at node 2 such that Fx,2 = 0, Fy,2 = −W ; the nodal
forces at 1 and 3 are then unknown reactions.

The first step in the solution is to assemble the stiffness matrix for the complete frame-
work by writing down the member stiffness matrices referred to the global axes using
Eq. (17.23). The direction cosines λ and µ take different values for each of the three
members; therefore, remembering that the angle θ is measured anticlockwise from
the positive direction of the x axis we have the following:

Member θ (deg) λ µ

12 0 1 0
13 90 0 1
23 135 −0.707 0.707

The member stiffness matrices are therefore

[K12] = AE
L




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0


 [K13] = AE

L




0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




[K23] = AE
1·414L




0.5 −0.5 −0.5 0.5
−0.5 0.5 0.5 −0.5
−0.5 0.5 0.5 −0.5

0.5 −0.5 −0.5 0.5


 (i)

The complete stiffness matrix is now assembled using the method suggested in the
discussion of Eq. (17.14). The matrix will be a 6 × 6 matrix since there are six nodal
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forces connected to six nodal displacements; thus




Fx,1

Fy,1

Fx,2

Fy,2

Fx,3

Fy,3




= AE
L




1 0 −1 0 0 0
0 1 0 0 0 −1

−1 0 1.354 −0.354 −0.354 0.354
0 0 −0.354 0.354 0.354 −0.354
0 0 −0.354 0.354 0.354 −0.354
0 −1 0.354 −0.354 −0.354 1.354







w1 = 0
v1 = 0

w2

v2

w3 = 0
v3 = 0




(ii)

If we now delete rows and columns in the stiffness matrix corresponding to zero dis-
placements, we obtain the unknown nodal displacements w2 and v2 in terms of the
applied loads Fx,2 (= 0) and Fy,2 (= −W ). Thus

{
Fx,2

Fy,2

}
= AE

L

[
1.354 −0.354

−0.354 0.354

]{
w2

v2

}
(iii)

Inverting Eq. (iii) gives

{
w2

v2

}
= L

AE

[
1 1
1 3.828

]{
Fx,2

Fy,2

}
(iv)

from which

w2 = L
AE

(Fx,2 + Fy,2) = −WL
AE

v2 = L
AE

(Fx,2 + 3.828Fy,2) = −3.828WL
AE

The reactions at nodes 1 and 3 are now obtained by substituting for w2 and v2 from
Eq. (iv) into Eq. (ii). Hence




Fx,1

Fy,1

Fx,3

Fy,3




=




−1 0
0 0

−0.354 0.354
0.354 −0.354



[

1 1
1 3.828

]{
Fx,2

Fy,2

}
=




−1 −1
0 0
0 1
0 −1



{

Fx,2

Fy,2

}

giving

Fx,1 = −Fx,2 − Fy,2 = W

Fy,1 = 0

Fx,3 = Fy,2 = −W

Fy,3 = W
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The internal forces in the members may be found from the axial displacements of the
nodes. Thus, for a member ij, the internal force Fij is given by

Fij = AE
L

(w̄j − w̄i) (v)

But

w̄j = λwj + µvj

w̄i = λwi + µvi

Hence

w̄j − w̄i = λ(wj − wi) + µ(vj − vi)

Substituting in Eq. (v) and rewriting in matrix form,

Fij = AE
L

[λ µ]

{
wj − wi

vj − vi

}
(vi)

Thus, for the members of the framework

F12 = AE
L

[1 0]




−WL
AE

− 0

−3·828WL
AE

− 0


 = −W (compression)

F13 = AE
L

[0 1]

{
0 − 0
0 − 0

}
= 0 (obvious from inspection)

F23 = AE
1.414L

[−0.707 0.707]




0 + WL
AE

0 + 3.828WL
AE


 = 1.414W (tension)

The matrix method of solution for the statically determinate truss of Ex. 17.1 is com-
pletely general and therefore applicable to any structural problem. We observe from
the solution that the question of statical determinacy of the truss did not arise. Statically
indeterminate trusses are therefore solved in an identical manner with the stiffness
matrix for each redundant member being included in the complete stiffness matrix as
described above. Clearly, the greater the number of members the greater the size of
the stiffness matrix, so that a computer-based approach is essential.

The procedure for the matrix analysis of space trusses is similar to that for plane
trusses. The main difference lies in the transformation of the member stiffness matrices
from local to global coordinates since, as we see from Fig. 17.5, axial nodal forces Fx,i

and Fx, j have each, now, three global components Fx,i, Fy,i, Fz,i and Fx, j, Fy, j, Fz, j,
respectively. The member stiffness matrix referred to global coordinates is therefore
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FIGURE 17.5 Local and
global coordinate systems for
a member in a space truss

of the order 6 × 6 so that [Kij] of Eq. (17.15) must be expanded to the same order to
allow for this. Hence

[Kij] = AE
L




wi vi ui wj vj uj

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(17.24)

In Fig. 17.5 the member ij is of length L, cross-sectional area A and modulus of elasticity
E. Global and local coordinate systems are designated as for the two-dimensional case.
Further, we suppose that

θxx̄ = angle between x and x̄
θxȳ = angle between x and ȳ

...

θzȳ = angle between z and ȳ
...

Therefore, nodal forces referred to the two systems of axes are related as follows

Fx = Fx cos θxx̄ + Fy cos θxȳ + Fz cos θxz̄

Fy = Fx cos θyx̄ + Fy cos θyȳ + Fz cos θyz̄

Fz = Fx cos θzx̄ + Fy cos θzȳ + Fz cos θzz̄


 (17.25)

Writing

λx̄ = cos θxx̄ λȳ = cos θxȳ λz̄ = cos θxz̄

µx̄ = cos θyx̄ µȳ = cos θyȳ µz̄ = cos θyz̄

νx̄ = cos θzx̄ νȳ = cos θzȳ νz̄ = cos θzz̄


 (17.26)
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we may express Eq. (17.25) for nodes i and j in matrix form as




Fx,i

Fy,i

Fz,i

Fx, j

Fy, j

Fz, j




=




λx̄ µx̄ νx̄ 0 0 0
λȳ µȳ νȳ 0 0 0
λz̄ µz̄ νz̄ 0 0 0
0 0 0 λx̄ µx̄ νx̄

0 0 0 λȳ µȳ νȳ

0 0 0 λz̄ µz̄ νz̄







Fx,i

Fy,i

Fz,i

Fx, j

Fy, j

Fz, j




(17.27)

or in abbreviated form

{F̄} = [T]{F}

The derivation of [Kij] for a member of a space frame proceeds on identical lines to
that for the plane frame member. Thus, as before

[Kij] = [T]T[Kij][T]

Substituting for [T] and [Kij] from Eqs (17.27) and (17.24) gives

[Kij] = AE
L




λ2
x̄ λx̄µx̄ λx̄νx̄ −λ2

x̄ −λx̄µx̄ −λx̄νx̄

λx̄µx̄ µ2
x̄ µx̄νx̄ −λx̄µx̄ −µ2

x̄ −µx̄νx̄

λx̄νx̄ µx̄νx̄ ν2
x̄ −λx̄νx̄ −µx̄νx̄ −ν2

x̄
−λ2

x̄ −λx̄µx̄ −λx̄νx̄ λ2
x̄ λx̄µx̄ λx̄νx̄

−λx̄µx̄ −µ2
x̄ −µx̄νx̄ λx̄µx̄ µ2

x̄ µx̄νx̄

−λx̄νx̄ −µx̄νx̄ −ν2
x̄ λx̄νx̄ µx̄νx̄ ν2

x̄




(17.28)

All the suffixes in Eq. (17.28) are x̄ so that we may rewrite the equation in simpler
form, namely

[Kij] = AE
L




λ2 ... SYM

λµ µ2 ...

λν µν ν2 ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−λ2 −λµ −λν
... λ2

−λµ −µ2 −µν
... λµ µ2

−λν −µν −ν2 ... λν µν ν2




(17.29)

where λ, µ and v are the direction cosines between the x, y, z and x̄ axes, respectively.

The complete stiffness matrix for a space frame is assembled from the member stiffness
matrices in a similar manner to that for the plane frame and the solution completed
as before.
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FIGURE 17.6 Forces and
moments on a beam element

17.2 STIFFNESS MATRIX FOR A UNIFORM BEAM

Our discussion so far has been restricted to structures comprising members capable
of resisting axial loads only. Many structures, however, consist of beam assemblies in
which the individual members resist shear and bending forces, in addition to axial loads.
We shall now derive the stiffness matrix for a uniform beam and consider the solution
of rigid jointed frameworks formed by an assembly of beams, or beam elements as
they are sometimes called.

Figure 17.6 shows a uniform beam ij of flexural rigidity EI and length L subjected to
nodal forces Fy,i, Fy, j and nodal moments Mi, Mj in the xy plane. The beam suffers
nodal displacements and rotations vi, vj and θi, θj. We do not include axial forces here
since their effects have already been determined in our investigation of trusses.

The stiffness matrix [Kij] may be written down directly from the beam slope–deflection
equations (16.27). Note that in Fig. 17.6 θi and θj are opposite in sign to θA and θB in
Fig. 16.32. Then

Mi = −6EI
L2 vi + 4EI

L
θi + 6EI

L2 vj + 2EI
L

θj (17.28)

and

Mj = −6EI
L2 vi + 2EI

L
θi + 6EI

L2 vj + 4EI
L

θj (17.29)

Also

−Fy,i = Fy, j = −12EI
L3 vi + 6EI

L2 θi + 12EI
L3 vj + 6EI

L2 θj (17.30)

Expressing Eqs (17.28), (17.29) and (17.30) in matrix form yields




Fy,i

Mi

Fy, j

Mj




= EI




12/L3 −6/L2 −12/L3 −6/L2

−6/L2 4/L 6/L2 2/L
−12/L3 6/L2 12/L3 6/L2

−6/L2 2/L 6/L2 4/L






vi

θi

vj

θj




(17.31)
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which is of the form

{F} = [Kij]{δ}

where [Kij] is the stiffness matrix for the beam.

It is possible to write Eq. (17.31) in an alternative form such that the elements of [Kij]
are pure numbers. Thus




Fy,i

Mi/L
Fy, j

Mj/L




= EI
L3




12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4






vi

θiL
vj

θjL




This form of Eq. (17.31) is particularly useful in numerical calculations for an
assemblage of beams in which EI/L3 is constant.

Equation (17.31) is derived for a beam whose axis is aligned with the x axis so that
the stiffness matrix defined by Eq. (17.31) is actually [Kij] the stiffness matrix referred
to a local coordinate system. If the beam is positioned in the xy plane with its axis
arbitrarily inclined to the x axis then the x and y axes form a global coordinate system
and it becomes necessary to transform Eq. (17.31) to allow for this. The procedure
is similar to that for the truss member of Section 17.1 in that [Kij] must be expanded
to allow for the fact that nodal displacements wi and wj, which are irrelevant for the
beam in local coordinates, have components wi, vi and wj, vj in global coordinates.
Thus

[Kij] = EI




wi vi θi wj vj θj

0 0 0 0 0 0
0 12/L3 −6/L2 0 −12/L3 −6/L2

0 −6/L2 4/L 0 6/L2 2/L
0 0 0 0 0 0
0 −12/L3 6/L2 0 12/L3 6/L2

0 −6/L2 2/L 0 6/L2 4/L




(17.32)

We may deduce the transformation matrix [T] from Eq. (17.17) if we remember that
although w and v transform in exactly the same way as in the case of a truss member
the rotations θ remain the same in either local or global coordinates.

Hence

[T] =




λ µ 0 0 0 0
−µ λ 0 0 0 0

0 0 1 0 0 0
0 0 0 λ µ 0
0 0 0 −µ λ 0
0 0 0 0 0 1




(17.33)
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where λ and µ have previously been defined. Thus since

[Kij] = [T]T[Kij][T] (see Section 17.1)

we have, from Eqs (17.32) and (17.33)

[Kij] = EI




12µ2/L3 SYM
−12λµ/L3 12λ2/L3

6µ/L2 − 6λ/L2 4/L
−12µ2/L3 12λµ/L3 −6µ/L2 12µ2/L3

12λµ/L3 −12λ2/L3 6λ/L2 −12λµ/L3 12λ2/L3

6µ/L2 − 6λ/L2 2/L 6µ/L2 6λ/L2 4λ/L




(17.34)

Again the stiffness matrix for the complete structure is assembled from the mem-
ber stiffness matrices, the boundary conditions are applied and the resulting set of
equations solved for the unknown nodal displacements and forces.

The internal shear forces and bending moments in a beam may be obtained in terms
of the calculated nodal displacements. Thus, for a beam joining nodes i and j we shall
have obtained the unknown values of vi, θi and vj, θj. The nodal forces Fy,i and Mi are
then obtained from Eq. (17.31) if the beam is aligned with the x axis. Hence

Fy,i = EI
(

12
L3 vi − 6

L2 θi − 12
L3 vj − 6

L2 θj

)

Mi = EI
(

− 6
L2 vi + 4

L
θi + 6

L2 vj + 2
L

θj

)

 (17.35)

Similar expressions are obtained for the forces at node j. From Fig. 17.6 we see that
the shear force Sy and bending moment M in the beam are given by

Sy = Fy,i

M = Fy,i x + Mi

}
(17.36)

Substituting Eq. (17.35) into Eq. (17.36) and expressing in matrix form yields

{
Sy

M

}
= EI




12
L3 − 6

L2 − 12
L3 − 6

L2

12
L3 x − 6

L2 − 6
L2 x + 4

L
− 12

L3 x + 6
L2 − 6

L2 x + 2
L






vi

θi

vj

θj




(17.37)

The matrix analysis of the beam in Fig. 17.6 is based on the condition that no external
forces are applied between the nodes. Obviously in a practical case a beam supports
a variety of loads along its length and therefore such beams must be idealized into
a number of beam-elements for which the above condition holds. The idealization is
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FIGURE 17.7
Idealization of a
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accomplished by merely specifying nodes at points along the beam such that any elem-
ent lying between adjacent nodes carries, at the most, a uniform shear and a linearly
varying bending moment. For example, the beam of Fig. 17.7 would be idealized into
beam-elements 1–2, 2–3 and 3–4 for which the unknown nodal displacements are v2,
θ2, θ3, v4 and θ4 (v1 = θ1 = v3 = 0).

Beams supporting distributed loads require special treatment in that the distributed
load is replaced by a series of statically equivalent point loads at a selected number of
nodes. Clearly the greater the number of nodes chosen, the more accurate but more
complicated and therefore time consuming will be the analysis. Figure 17.8 shows a
typical idealization of a beam supporting a uniformly distributed load.

Many simple beam problems may be idealized into a combination of two beam-
elements and three nodes. A few examples of such beams are shown in Fig. 17.9.
If we therefore assemble a stiffness matrix for the general case of a two beam-element
system we may use it to solve a variety of problems simply by inserting the appropri-
ate loading and support conditions. Consider the assemblage of two beam-elements
shown in Fig. 17.10. The stiffness matrices for the beam-elements 1–2 and 2–3 are
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obtained from Eq. (17.31); thus

v1 θ1 v2 θ2

[K12] = EIa





 12/L3

a −6/L2
a

k11

−6/L2
a 4/La





−12/L3

a −6/L2
a

k12

6/L2
a 2/La





−12/L3

a 6/L2
a

k21

−6/L2
a 2/La





 12/L3

a 6/L2
a

k22

6/L2
a 4/La







(17.38)

v2 θ2 v3 θ3

[K23] = EIb





 12/L3

b −6/L2
b

k22

−6/L2
b 4/Lb





−12/L3

b −6/L2
b

k23

6/L2
b 2/Lb





−12/L3

b 6/L2
b

k32

−6/L2
b 2/Lb





 12/L3

b 6/L2
b

k33

6/L2
b 4/Lb







(17.39)

The complete stiffness matrix is formed by superimposing [K12] and [K23] as described
in Ex. 17.1. Hence

[K ] = E




12Ia

L3
a

−6Ia

L2
a

−12Ia

L3
a

−6Ia

L2
a

0 0

−6Ia

L2
a

4Ia

La

6Ia

L2
a

2Ia

La
0 0

−12Ia

L3
a

6Ia

L2
a

12

(
Ia

L3
a

+ Ib

L3
b

)
6

(
Ia

L2
a

− Ib

L2
b

)
−12Ib

L3
b

−6Ib

L2
b

−6Ia

L2
a

2Ia

La
6

(
Ia

L2
a

− Ib

L2
b

)
4
(

Ia

La
+ Ib

Lb

)
6Ib

L2
b

2Ib

Lb

0 0 −12Ib

L3
b

6Ib

L2
b

12Ib

L3
b

6Ib

L2
b

0 0 −6Ib

L2
b

2Ib

Lb

6Ib

L2
b

4Ib

Lb



(17.40)

EXAMPLE 17.2 Determine the unknown nodal displacements and forces in the
beam shown in Fig. 17.11. The beam is of uniform section throughout.
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L

M

W

2L

2

1 3

FIGURE 17.11 Beam of Ex. 17.2

The beam may be idealized into two beam-elements, 1–2 and 2–3. From Fig. 17.11 we
see that v1 = v3 = 0, Fy,2 = −W , M2 = +M . Therefore, eliminating rows and columns
corresponding to zero displacements from Eq. (17.40), we obtain




Fy,2 = −W
M2 = M
M1 = 0
M3 = 0




= EI




27/2L3 9/2L2 6/L2 −3/2L2

9/2L2 6/L 2/L 1/L
6/L2 2/L 4/L 0

−3/2L2 1/L 0 2/L






v2

θ2

θ1

θ3




(i)

Equation (i) may be written such that the elements of [K ] are pure numbers




Fy,2 = −W
M2/L = M/L
M1/L = 0
M3/L = 0




= EI
2L3




27 9 12 −3
9 12 4 2

12 4 8 0
−3 2 0 4






v2

θ2L
θ1L
θ3L




(ii)

Expanding Eq. (ii) by matrix multiplication we have

{
−W
M/L

}
= EI

2L3

([
27 9

9 12

]{
v2

θ2L

}
+
[

12 −3
4 2

]{
θ1L
θ3L

})
(iii)

and {
0
0

}
= EI

2L3

([
12 4
−3 2

]{
v2

θ2L

}
+
[

8 0
0 4

]{
θ1L
θ3L

})
(iv)

Equation (iv) gives {
θ1L
θ3L

}
=
[− 3

2 − 1
2

− 3
4 − 1

2

]{
v2

θ2L

}
(v)

Substituting Eq. (v) in Eq. (iii) we obtain{
v2

θ2L

}
= L3

9EI

[
−4 −2
−2 3

]{
−W
M/L

}
(vi)
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from which the unknown displacements at node 2 are

v2 = −4
9

WL3

EI
− 2

9
ML2

EI

θ2 = 2
9

WL2

EI
+ 1

3
ML
EI

In addition, from Eq. (v) we find that

θ1 = 5
9

WL2

EI
+ 1

6
ML
EI

θ3 = −4
9

WL2

EI
− 1

3
ML
EI

It should be noted that the solution has been obtained by inverting two 2 × 2 matrices
rather than the 4 × 4 matrix of Eq. (ii). This simplification has been brought about by
the fact that M1 = M3 = 0.

The internal shear forces and bending moments can now be found using Eq. (17.37).
For the beam-element 1–2 we have

Sy,12 = EI
(

12
L3 v1 − 6

L2 θ1 − 12
L3 v2 − 6

L2 θ2

)

or

Sy,12 = 2
3

W − 1
3

M
L

and

M12 = EI
[(

12
L3 x − 6

L2

)
v1 +

(
− 6

L2 x + 4
L

)
θ1

+
(

− 12
L3 x + 6

L2

)
v2 +

(
− 6

L2 x + 2
L

)
θ2

]

which reduces to

M12 =
(

2
3

W − 1
3

M
L

)
x

17.3 FINITE ELEMENT METHOD FOR CONTINUUM STRUCTURES

In the previous sections we have discussed the matrix method of solution of struc-
tures composed of elements connected only at nodal points. For skeletal structures
consisting of arrangements of beams these nodal points fall naturally at joints and at
positions of concentrated loading. Continuum structures, such as flat plates, aircraft
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FIGURE 17.12 Finite element idealization of a flat
plate with a central hole

skins, shells, etc., do not possess such natural subdivisions and must therefore be arti-
ficially idealized into a number of elements before matrix methods can be used. These
finite elements, as they are known, may be two- or three-dimensional but the most com-
monly used are two-dimensional triangular and quadrilateral shaped elements. The
idealization may be carried out in any number of different ways depending on such
factors as the type of problem, the accuracy of the solution required and the time and
money available. For example, a coarse idealization involving a small number of large
elements would provide a comparatively rapid but very approximate solution while
a fine idealization of small elements would produce more accurate results but would
take longer and consequently cost more. Frequently, graded meshes are used in which
small elements are placed in regions where high stress concentrations are expected,
e.g. around cut-outs and loading points. The principle is illustrated in Fig. 17.12 where
a graded system of triangular elements is used to examine the stress concentration
around a circular hole in a flat plate.

Although the elements are connected at an infinite number of points around their
boundaries it is assumed that they are only interconnected at their corners or nodes.
Thus, compatibility of displacement is only ensured at the nodal points. However, in
the finite element method a displacement pattern is chosen for each element which may
satisfy some, if not all, of the compatibility requirements along the sides of adjacent
elements.

Since we are employing matrix methods of solution we are concerned initially with
the determination of nodal forces and displacements. Thus, the system of loads on
the structure must be replaced by an equivalent system of nodal forces. Where these
loads are concentrated the elements are chosen such that a node occurs at the point of
application of the load. In the case of distributed loads, equivalent nodal concentrated
loads must be calculated.

The solution procedure is identical in outline to that described in the previous sections
for skeletal structures; the differences lie in the idealization of the structure into
finite elements and the calculation of the stiffness matrix for each element. The latter
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procedure, which in general terms is applicable to all finite elements, may be specified
in a number of distinct steps. We shall illustrate the method by establishing the stiffness
matrix for the simple one-dimensional beam-element of Fig. 17.6 for which we have
already derived the stiffness matrix using slope–deflection.

STIFFNESS MATRIX FOR A BEAM-ELEMENT

The first step is to choose a suitable coordinate and node numbering system for the
element and define its nodal displacement vector {δe} and nodal load vector {Fe}. Use
is made here of the superscript e to denote element vectors since, in general, a finite
element possesses more than two nodes. Again we are not concerned with axial or
shear displacements so that for the beam-element of Fig. 17.6 we have

{δe} =




vi

θi

vj

θj




{Fe} =




Fy,i

Mi

Fy, j

Mj




Since each of these vectors contains four terms the element stiffness matrix [Ke] will
be of order 4 × 4.

In the second step we select a displacement function which uniquely defines the dis-
placement of all points in the beam-element in terms of the nodal displacements. This
displacement function may be taken as a polynomial which must include four arbitrary
constants corresponding to the four nodal degrees of freedom of the element. Thus

v(x) = α1 + α2x + α3x2 + α4x3 (17.41)

Equation (17.41) is of the same form as that derived from elementary bending theory
for a beam subjected to concentrated loads and moments and may be written in matrix
form as

{v(x)} = [1 x x2 x3]




α1

α2

α3

α4




or in abbreviated form as

{v(x)} = [ f (x)]{α} (17.42)

The rotation θ at any section of the beam-element is given by ∂v/∂x; therefore

θ = α2 + 2α3 x + 3α4 x2 (17.43)
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From Eqs (17.41) and (17.43) we can write down expressions for the nodal displace-
ments vi, θi and vj, θj at x = 0 and x = L, respectively. Hence

vi = α1

θi = α2

vj = α1 + α2L + α3L2 + α4L3

θj = α2 + 2α3L + 3α4L2




(17.44)

Writing Eq. (17.44) in matrix form gives




vi

θi

vj

θj




=




1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2







α1

α2

α3

α4




(17.45)

or

{δe} = [A]{α} (17.46)

The third step follows directly from Eqs (17.45) and (17.42) in that we express the
displacement at any point in the beam-element in terms of the nodal displacements.
Using Eq. (17.46) we obtain

{α} = [A−1]{δe} (17.47)

Substituting in Eq. (17.42) gives

{v(x)} = [ f (x)][A−1]{δe} (17.48)

where [A−1] is obtained by inverting [A] in Eq. (17.45) and may be shown to be given by

[A−1] =




1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L

2/L3 1/L2 −2/L3 1/L2


 (17.49)

In step four we relate the strain {ε(x)} at any point x in the element to the displacement
{v(x)} and hence to the nodal displacements {δe}. Since we are concerned here with
bending deformations only we may represent the strain by the curvature ∂2v/∂x2.
Hence from Eq. (17.41)

∂2v

∂x2 = 2α3 + 6α4x (17.50)
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or in matrix form

{ε} = [0 0 2 6x]




α1

α2

α3

α4




(17.51)

which we write as

{ε} = [C]{α} (17.52)

Substituting for {α} in Eq. (17.52) from Eq. (17.47) we have

{ε} = [C][A−1]{δe} (17.53)

Step five relates the internal stresses in the element to the strain {ε} and hence, using
Eq. (17.53), to the nodal displacements {δe}. In our beam-element the stress distribu-
tion at any section depends entirely on the value of the bending moment M at that
section. Thus we may represent a ‘state of stress’ {σ } at any section by the bending
moment M , which, from simple beam theory, is given by

M = −EI
∂2v

∂x2

or

{σ } = [EI]{ε} (17.54)

which we write as

{σ } = [D]{ε} (17.55)

The matrix [D] in Eq. (17.55) is the ‘elasticity’ matrix relating ‘stress’ and ‘strain’. In
this case [D] consists of a single term, the flexural rigidity EI of the beam. Generally,
however, [D] is of a higher order. If we now substitute for {ε} in Eq. (17.55) from
Eq. (17.53) we obtain the ‘stress’ in terms of the nodal displacements, i.e.

{σ } = [D][C][A−1]{δe} (17.56)

The element stiffness matrix is finally obtained in step six in which we replace the
internal ‘stresses’ {σ } by a statically equivalent nodal load system {Fe}, thereby relat-
ing nodal loads to nodal displacements (from Eq. (17.56)) and defining the element
stiffness matrix [Ke]. This is achieved by employing the principle of the stationary
value of the total potential energy of the beam (see Section 15.3) which comprises the
internal strain energy U and the potential energy V of the nodal loads. Thus

U + V = 1
2

∫
vol

{ε}T{σ } d(vol) − {δe}T{Fe} (17.57)
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Substituting in Eq. (17.57) for {ε} from Eq. (17.53) and {σ } from Eq. (17.56) we have

U + V = 1
2

∫
vol

{δe}T[A−1]T[C]T[D][C][A−1]{δe}d(vol) − {δe}T{Fe} (17.58)

The total potential energy of the beam has a stationary value with respect to the nodal
displacements {δe}T; hence, from Eq. (17.58)

∂(U + V )
∂{δe}T =

∫
vol

[A−1]T[C]T[D][C][A−1]{δe} d(vol) − {Fe} = 0 (17.59)

whence

{Fe} =
[∫

vol
[C]T[A−1]T[D][C][A−1] d(vol)

]
{δe} (17.60)

or writing [C][A−1] as [B] we obtain

{Fe} =
[∫

vol
[B]T[D][B]d(vol)

]
{δe} (17.61)

from which the element stiffness matrix is clearly

[Ke] =
[∫

vol
[B]T[D][B] d(vol)

]
(17.62)

From Eqs (17.49) and (17.51) we have

[B] = [C][A−1] = [0 0 2 6x]




1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L

2/L3 1/L2 −2/L3 1/L2




or

[B]T =




− 6
L2 + 12x

L3

− 4
L

+ 6x
L2

6
L2 − 12x

L3

− 2
L

+ 6x
L2




(17.63)
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Hence

[Ke] =
∫ L

0




− 6
L2 + 12x

L3

− 4
L

+ 6x
L2

6
L2 − 12x

L3

− 2
L

+ 6x
L2




[EI]
[
− 6

L2 + 12x
L3 − 4

L
+ 6x

L2
6

L2 − 12x
L3 − 2

L
+ 6x

L2

]
dx

which gives

[Ke] = EI
L3




12 −6L −12 −6L

−6L 4L2 6L 2L2

−12 6L 12 6L

−6L 2L2 6L 4L2


 (17.64)

Equation (17.64) is identical to the stiffness matrix (see Eq. (17.31)) for the uniform
beam of Fig. 17.6.

Finally, in step seven, we relate the internal ‘stresses’, {σ }, in the element to the nodal
displacements {δe}. In fact, this has been achieved to some extent in Eq. (17.56), namely

{σ } = [D][C][A−1]{δe}

or, from the above

{σ } = [D][B]{δe} (17.65)

Equation (17.65) is usually written

{σ } = [H]{δe} (17.66)

in which [H] = [D][B] is the stress–displacement matrix. For this particular beam-
element [D] = EI and [B] is defined in Eq. (17.63). Thus

[H] = EI
[
− 6

L2 + 12
L3 x − 4

L
+ 6

L2 x
6

L2 − 12
L3 x − 2

L
+ 6

L2 x
]

(17.67)

STIFFNESS MATRIX FOR A TRIANGULAR FINITE ELEMENT

Triangular finite elements are used in the solution of plane stress and plane strain
problems. Their advantage over other shaped elements lies in their ability to represent
irregular shapes and boundaries with relative simplicity.
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O
x

j

i

y

k

Fy,k, vk 

Fy, j, vj

Fx,i, wi

Fx, j, wj

Fx,k,wk

Fy,i,vi

FIGURE 17.13 Triangular
element for plane elasticity
problems

In the derivation of the stiffness matrix we shall adopt the step by step procedure of
the previous example. Initially, therefore, we choose a suitable coordinate and node
numbering system for the element and define its nodal displacement and nodal force
vectors. Figure 17.13 shows a triangular element referred to axes Oxy and having nodes
i, j and k lettered anticlockwise. It may be shown that the inverse of the [A] matrix for
a triangular element contains terms giving the actual area of the element; this area
is positive if the above node lettering or numbering system is adopted. The element
is to be used for plane elasticity problems and has therefore two degrees of freedom
per node, giving a total of six degrees of freedom for the element, which will result in
a 6 × 6 element stiffness matrix [Ke]. The nodal forces and displacements are shown
and the complete displacement and force vectors are

{δe} =




wi

vi

wj

vj

wk

vk




{Fe} =




Fx, i

Fy, i

Fx, j

Fy, j

Fx,k

Fy,k




(17.68)

We now select a displacement function which must satisfy the boundary conditions
of the element, i.e. the condition that each node possesses two degrees of freedom.
Generally, for computational purposes, a polynomial is preferable to, say, a trigono-
metric series since the terms in a polynomial can be calculated much more rapidly by a
digital computer. Furthermore, the total number of degrees of freedom is six, so that
only six coefficients in the polynomial can be obtained. Suppose that the displacement
function is

w(x, y) = α1 + α2x + α3y
v(x, y) = α4 + α5x + α6y

}
(17.69)
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The constant terms, α1 and α4, are required to represent any in-plane rigid body
motion, i.e. motion without strain, while the linear terms enable states of constant
strain to be specified; Eq. (17.69) ensures compatibility of displacement along the
edges of adjacent elements. Writing Eq. (17.69) in matrix form gives

{
w(x, y)
v(x, y)

}
=
[

1 x y 0 0 0
0 0 0 1 x y

]



α1

α2

α3

α4

α5

α6




(17.70)

Comparing Eq. (17.70) with Eq. (17.42) we see that it is of the form{
w(x, y)
v(x, y)

}
= [ f (x, y)]{α} (17.71)

Substituting values of displacement and coordinates at each node in Eq. (17.71) we
have, for node i {

wi

vi

}
=
[

1 xi yi 0 0 0
0 0 0 1 xi yi

]
{α}

Similar expressions are obtained for nodes j and k so that for the complete element
we obtain 



wi

vi

wj

vj

wk

vk




=




1 xi yi 0 0 0
0 0 0 1 xi yi

1 xj yj 0 0 0
0 0 0 1 xj yj

1 xk yk 0 0 0
0 0 0 1 xk yk







α1

α2

α3

α4

α5

α6




(17.72)

From Eq. (17.68) and by comparison with Eqs (17.45) and (17.46) we see that
Eq. (17.72) takes the form

{δe} = [A]{α}
Hence (step 3) we obtain

{α} = [A−1]{δe} (compare with Eq. (17.47))

The inversion of [A], defined in Eq. (17.72), may be achieved algebraically as illustrated
in Ex. 17.3. Alternatively, the inversion may be carried out numerically for a particular
element by computer. Substituting for {α} from the above into Eq. (17.71) gives{

w(x, y)
v(x, y)

}
= [ f (x, y)][A−1]{δe} (compare with Eq. (17.48)) (17.73)
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The strains in the element are

{ε} =




εx

εy

γxy


 (17.74)

Direct and shear strains may be defined in the form

εx = ∂w
∂x

εy = ∂v

∂y
γxy = ∂w

∂y
+ ∂v

∂x
(17.75)

Substituting for w and v in Eq. (17.75) from Eq. (17.69) gives

εx = α2

εy = α6

γxy = α3 + α5

or in matrix form

{ε} =

0 1 0 0 0 0

0 0 0 0 0 1
0 0 1 0 1 0







α1

α2

α3

α4

α5

α6




(17.76)

which is of the form

{ε} = [C]{α} (see Eqs (17.51) and (17.52))

Substituting for {α} (= [A−1]{δe}) we obtain

{ε} = [C][A−1]{δe} (compare with Eq. (17.53))

or

{ε} = [B]{δe} (see Eq. (17.63))

where [C] is defined in Eq. (17.76).

In step five we relate the internal stresses {σ } to the strain {ε} and hence, using step
four, to the nodal displacements {δe}. For plane stress problems

{σ } =




σx

σy

τxy


 (17.77)

and

εx = σx

E
− νσy

E

εy = σy

E
− νσx

E

γxy = τxy

G
= 2(1 + ν)

E
τxy




(see Chapter 7)
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Thus, in matrix form

{ε} =




εx

εy

γxy


 = 1

E


 1 −ν 0

−ν 1 0
0 0 2(1 + ν)






σx

σy

τxy


 (17.78)

It may be shown that

{σ } =




σx

σy

τxy


 = E

1 − ν2


1 ν 0

ν 1 0
0 0 1

2 (1 − ν)






εx

εy

γxy


 (17.79)

which has the form of Eq. (17.55), i.e.

{σ } = [D]{ε}

Substituting for {ε} in terms of the nodal displacements {δe} we obtain

{σ } = [D][B]{δe} (see Eq. (17.56))

In the case of plane strain the elasticity matrix [D] takes a different form to that defined
in Eq. (17.79). For this type of problem

εx = σx

E
− νσy

E
− νσz

E

εy = σy

E
− νσx

E
− νσz

E

εz = σz

E
− νσx

E
− νσy

E
= 0

γxy = τxy

G
= 2(1 + ν)

E
τxy

Eliminating σz and solving for σx, σy and τxy gives

{σ } =




σx

σy

τxy


 = E(1 − ν)

(1 + ν)(1 − 2ν)




1
ν

1 − ν
0

ν

1 − ν
1 0

0 0
(1 − 2ν)
2(1 − ν)






εx

εy

γxy


 (17.80)

which again takes the form

{σ } = [D]{ε}

Step six, in which the internal stresses {σ } are replaced by the statically equivalent nodal
forces {Fe} proceeds, in an identical manner to that described for the beam-element.
Thus

{Fe} =
[∫

vol
[B]T[D][B] d(vol)

]
{δe}
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as in Eq. (17.61), whence

[Ke] =
[∫

vol
[B]T[D][B] d(vol)

]

In this expression [B] = [C][A−1] where [A] is defined in Eq. (17.72) and [C] in Eq.
(17.76). The elasticity matrix [D] is defined in Eq. (17.79) for plane stress problems
or in Eq. (17.80) for plane strain problems. We note that the [C], [A] (therefore [B])
and [D] matrices contain only constant terms and may therefore be taken outside the
integration in the expression for [Ke], leaving only

∫
d(vol) which is simply the area,

A, of the triangle times its thickness t. Thus

[Ke] = [[B]T[D][B]At] (17.81)

Finally the element stresses follow from Eq. (17.66), i.e.

{σ } = [H]{δe}
where [H] = [D][B] and [D] and [B] have previously been defined. It is usually found
convenient to plot the stresses at the centroid of the element.

Of all the finite elements in use the triangular element is probably the most versatile.
It may be used to solve a variety of problems ranging from two-dimensional flat plate
structures to three-dimensional folded plates and shells. For three-dimensional appli-
cations the element stiffness matrix [Ke] is transformed from an in-plane xy coordinate
system to a three-dimensional system of global coordinates by the use of a transform-
ation matrix similar to those developed for the matrix analysis of skeletal structures.
In addition to the above, triangular elements may be adapted for use in plate flexure
problems and for the analysis of bodies of revolution.

EXAMPLE 17.3 A constant strain triangular element has corners 1(0, 0), 2(4, 0)
and 3(2, 2) referred to a Cartesian Oxy axes system and is 1 unit thick. If the elasticity
matrix [D] has elements D11 = D22 = a, D12 = D21 = b, D13 = D23 = D31 = D32 = 0 and
D33 = c, derive the stiffness matrix for the element.

From Eq. (17.69)

w1 = α1 + α2(0) + α3(0)

i.e.

w1 = α1 (i)

w2 = α1 + α2(4) + α3(0)

i.e.

w2 = α1 + 4α2 (ii)

w3 = α1 + α2(2) + α3(2)
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i.e.

w3 = α1 + 2α2 + 2α3 (iii)

From Eq. (i)

α1 = w1 (iv)

and from Eqs (ii) and (iv)

α2 = w2 − w1

4
(v)

Then, from Eqs (iii)–(v)

α3 = 2w3 − w1 − w2

4
(vi)

Substituting for α1, α2 and α3 in the first of Eq. (17.69) gives

w = w1 +
(

w2 − w1

4

)
x +

(
2w3 − w1 − w2

4

)
y

or

w =
(

1 − x
4

− y
4

)
w1 +

( x
4

− y
4

)
w2 + y

2
w3 (vii)

Similarly

v =
(

1 − x
4

− y
4

)
v1 +

( x
4

− y
4

)
v2 + y

2
v3 (viii)

Now from Eq. (17.75)

εx = ∂w
∂x

= −w1

4
+ w2

4

εy = ∂v

∂y
= −v1

4
− v2

4
+ v3

2

and

γxy = ∂w
∂y

+ ∂v

∂x
= −w1

4
− w2

4
− v1

4
+ v2

4

Hence

[B]{δe} =




∂w
∂x
∂v

∂y
∂w
∂y

+ ∂v

∂x




= 1
4




−1 0 1 0 0 0

0 −1 0 −1 0 2

−1 −1 −1 1 2 0







w1

v1

w2

v2

w3

v3




(ix)

Also

[D] =

a b 0

b a 0
0 0 c



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Hence

[D][B] = 1
4


−a −b a −b 0 2b

−b −a b −a 0 2a
−c −c −c c 2c 0




and

[B]T[D][B] = 1
16




a + c b + c −a + c b − c −2c −2b
b + c a + c −b + c a − c −2c −2a

−a + c −b + c a + c −b − c −2c 2b
b − c a − c −b − c a + c 2c −2a

−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a




Then, from Eq. (17.81)

[Ke] = 1
4




a + c b + c −a + c b − c −2c −2b
b + c a + c −b + c a − c −2c −2a

−a + c −b + c a + c −b − c −2c 2b
b − c a − c −b − c a + c 2c −2a

−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a




STIFFNESS MATRIX FOR A QUADRILATERAL ELEMENT

Quadrilateral elements are frequently used in combination with triangular elements
to build up particular geometrical shapes.

Figure 17.14 shows a quadrilateral element referred to axes Oxy and having cor-
ner nodes, i, j, k and l; the nodal forces and displacements are also shown and the
displacement and force vectors are

{δe} =




wi

vi

wj

vj

wk

vk

wl

vl




{Fe} =




Fx,i

Fy,i

Fx, j

Fy, j

Fx,k

Fy,k

Fx,l

Fy,l




(17.82)

As in the case of the triangular element we select a displacement function which
satisfies the total of eight degrees of freedom of the nodes of the element; again this
displacement function will be in the form of a polynomial with a maximum of eight
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Fy,l, vl

Fy,k, vk

Fx,k, wk

Fx,l, wl

Fy,i, vi

Fy, j, vj

Fx, j, wj
Fx,i, wi

y

O x

j

kl

i FIGURE 17.14 Quadrilateral
element subjected to nodal
in-plane forces and
displacements

coefficients. Thus

w(x, y) = α1 + α2x + α3y + α4xy
v(x, y) = α5 + α6x + α7y + α8xy

}
(17.83)

The constant terms, α1 and α5, are required, as before, to represent the in-plane rigid
body motion of the element while the two pairs of linear terms enable states of constant
strain to be represented throughout the element. Further, the inclusion of the xy terms
results in both the w(x, y) and v(x, y) displacements having the same algebraic form so
that the element behaves in exactly the same way in the x direction as it does in the y
direction.

Writing Eq. (17.83) in matrix form gives

{
w(x, y)
v(x, y)

}
=
[

1 x y xy 0 0 0 0
0 0 0 0 1 x y xy

]




α1

α2

α3

α4

α5

α6

α7

α8




(17.84)

or

{
w(x, y)
v(x, y)

}
= [ f (x, y)]{α} (17.85)
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Now substituting the coordinates and values of displacement at each node we obtain




wi

vi

wj

vj

wk

vk

wl

vl




=




1 xi yi xiyi 0 0 0 0
0 0 0 0 1 xi yi xiyi

1 xj yj xjyj 0 0 0 0
0 0 0 0 1 xj yj xjyj

1 xk yk xkyk 0 0 0 0
0 0 0 0 1 xk yk xkyk

1 xl yl xlyl 0 0 0 0
0 0 0 0 1 xl yl xlyl







α1

α2

α3

α4

α5

α6

α7

α8




(17.86)

which is of the form

{δe} = [A]{α}

Then

{α} = [A−1]{δe} (17.87)

The inversion of [A] is illustrated in Ex. 17.4 but, as in the case of the triangular
element, is most easily carried out by means of a computer. The remaining analysis is
identical to that for the triangular element except that the {ε} − {α} relationship (see
Eq. (17.76)) becomes

{ε} =

0 1 0 y 0 0 0 0

0 0 0 0 0 0 1 x
0 0 1 x 0 1 0 y







α1

α2

α3

α4

α5

α6

α7

α8




(17.88)

EXAMPLE 17.4 A rectangular element used in a plane stress analysis has corners
whose coordinates (in metres), referred to an Oxy axes system, are 1(−2, −1), 2(2, −1),
3(2, 1) and 4(−2, 1); the displacements (also in metres) of the corners were

w1 = 0.001 w2 = 0.003 w3 = −0.003 w4 = 0
v1 = −0.004 v2 = −0.002 v3 = 0.001 v4 = 0.001

If Young’s modulus E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3, calculate the
stresses at the centre of the element.
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From the first of Eq. (17.83)

w1 = α1 − 2α2 − α3 + 2α4 = 0.001 (i)

w2 = α1 + 2α2 − α3 − 2α4 = 0.003 (ii)

w3 = α1 + 2α2 + α3 + 2α4 = −0.003 (iii)

w4 = α1 − 2α2 + α3 − 2α4 = 0 (iv)

Subtracting Eq. (ii) from Eq. (i)

α2 − α4 = 0.0005 (v)

Now subtracting Eq. (iv) from Eq. (iii)

α2 + α4 = −0.00075 (vi)

Then subtracting Eq. (vi) from Eq. (v)

α4 = −0.000625 (vii)

whence, from either of Eqs (v) or (vi)

α2 = −0.000125 (viii)

Adding Eqs (i) and (ii)

α1 − α3 = 0.002 (ix)

Adding Eqs (iii) and (iv)

α1 + α3 = −0.0015 (x)

Then adding Eqs (ix) and (x)

α1 = 0.00025 (xi)

and, from either of Eqs (ix) or (x)

α3 = −0.00175 (xii)

The second of Eq. (17.83) is used to determine α5, α6, α7 and α8 in an identical manner
to the above. Thus

α5 = −0.001

α6 = 0.00025

α7 = 0.002

α8 = −0.00025

Now substituting for α1, α2, . . . , α8 in Eq. (17.83)

wi = 0.00025 − 0.000125x − 0.00175y − 0.000625xy



Chap-17 20/1/2005 9: 22 page 584

584 • Chapter 17 / Matrix Methods of Analysis

and

vi = −0.001 + 0.00025x + 0.002y − 0.00025xy

Then, from Eq. (17.75)

εx = ∂w
∂x

= −0.000125 − 0.000625y

εy = ∂v

∂y
= 0.002 − 0.00025x

γxy = ∂w
∂y

+ ∂v

∂x
= −0.0015 − 0.000625x − 0.00025y

Therefore, at the centre of the element (x = 0, y = 0)

εx = −0.000125

εy = 0.002

γxy = −0.0015

so that, from Eq. (17.79)

σx = E
1 − ν2 (εx + νεy) = 200 000

1 − 0.32 (−0.000125 + (0.3 × 0.002))

i.e.

σx = 104.4 N/mm2

σy = E
1 − ν2 (εy + νεx) = 200 000

1 − 0.32 (0.002 + (0.3 × 0.000125))

i.e.

σy = 431.3 N/mm2

and

τxy = E
1 − ν2 × 1

2
(1 − ν)γxy = E

2(1 + ν)
γxy

Thus

τxy = 200 000
2(1 + 0.3)

× (−0.0015)

i.e.

τxy = −115.4 N/mm2

The application of the finite element method to three-dimensional solid bodies is
a straightforward extension of the analysis of two-dimensional structures. The basic
three-dimensional elements are the tetrahedron and the rectangular prism, both shown
in Fig. 17.15. The tetrahedron has four nodes each possessing three degrees of free-
dom, a total of 12 for the element, while the prism has 8 nodes and therefore a total of
24 degrees of freedom. Displacement functions for each element require polynomials
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FIGURE 17.15
Tetrahedron and
rectangular prism
finite elements for
three-dimensional
problems

in x, y and z; for the tetrahedron the displacement function is of the first degree with 12
constant coefficients, while that for the prism may be of a higher order to accommo-
date the 24 degrees of freedom. A development in the solution of three-dimensional
problems has been the introduction of curvilinear coordinates. This enables the tetra-
hedron and prism to be distorted into arbitrary shapes that are better suited for fitting
actual boundaries.

New elements and new applications of the finite element method are still being
developed, some of which lie outside the field of structural analysis. These fields
include soil mechanics, heat transfer, fluid and seepage flow, magnetism and electricity.

P R O B L E M S

P.17.1 Figure P.17.1 shows a square symmetrical pin-jointed truss 1234, pinned to rigid
supports at 2 and 4 and loaded with a vertical load at 1. The axial rigidity EA is the
same for all members.

3

4

1

2

P

L

90° 90°

45° 45°

FIGURE P.17.1
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Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve
for all the internal member forces and support reactions.

Ans. v1 = −PL/
√

2AE v3 = −0.293PL/AE F12 = P/2 = F14

F23 = −0.207P = F43 F13 = 0.293P Fx,2 = −Fx,4 = 0.207P
Fy,2 = Fy,4 = P/2.

P.17.2 Use the stiffness method to find the ratio H/P for which the displacement of
node 4 of the plane pin-jointed frame shown loaded in Fig. P.17.2 is zero, and for that
case give the displacements of nodes 2 and 3.

All members have equal axial rigidity EA.

Ans. H/P = 0.449 v2 = −4Pl/(9 + 2
√

3)AE v3 = −6Pl/(9 + 2
√

3)AE.

30°

30°

30° 30°

3

1

2

4

P

H

l FIGURE P.17.2

P.17.3 Form the matrices required to solve completely the plane truss shown in Fig.
P.17.3 and determine the force in member 24. All members have equal axial rigidity.

60° 60° 60°60°

4

51

2

3

Pl
FIGURE P.17.3

Ans. F24 = 0.
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P.17.4 The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.17.4, is
fixed to rigid supports at 1 and 5 and supported by rollers inclined at 45◦ to the
horizontal at nodes 3 and 7. It carries a vertical point load P at node 4 and a uniformly
distributed load w per unit length on the span 26. Assuming the same flexural rigidity
EI for all members, set up the stiffness equations which, when solved, give the nodal
displacements of the frame.

Explain how the member forces can be obtained.

2 4

P

3

6

7

51

45° 45°
2l
2

2l
2

2l
2 2

l
2
l

l

w/unit length

FIGURE P.17.4

P.17.5 The frame shown in Fig. P.17.5 has the planes xz and yz as planes of symmetry.
The nodal coordinates of one quarter of the frame are given in Table P.17.5(i).

4

8

6 9

3

2

1

5

7

P y

x

z

FIGURE P.17.5

In this structure the deformation of each member is due to a single effect, this being
axial, bending or torsional. The mode of deformation of each member is given in Table
P.17.5(ii), together with the relevant rigidity.
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TABLE P.17.5(i)

Node x y z

2 0 0 0
3 L 0 0
7 L 0.8L 0
9 L 0 L

TABLE P.17.5(ii)

Effect

Member Axial Bending Torsional

23 – EI –
37 – – GJ = 0.8EI

29 EA = 6
√

2
EI
L2 – –

Use the direct stiffness method to find all the displacements and hence calculate the
forces in all the members. For member 123 plot the shear force and bending moment
diagrams.

Briefly outline the sequence of operations in a typical computer program suitable for
linear frame analysis.

Ans. F29 = F28 = √
2P/6 (tension) M3 = −M1 = PL/9 (hogging)

M2 = 2PL/9 (sagging) Fy,3 = −Fy,2 = P/3.

Twisting moment in 37, PL/18 (anticlockwise).

P.17.6 Given that the force–displacement (stiffness) relationship for the beam element
shown in Fig. P.17.6(a) may be expressed in the following form:


Fy,1

M1/L
Fy,2

M2/L




= EI
L3




12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4






v1

θ1L
v2

θ2L




obtain the force–displacement (stiffness) relationship for the variable section beam
(Fig. P.17.6(b)), composed of elements 12, 23 and 34.

Such a beam is loaded and supported symmetrically as shown in Fig. P.17.6(c). Both
ends are rigidly fixed and the ties FB, CH have a cross-sectional area a1 and the ties
EB, CG a cross-sectional area a2. Calculate the deflections under the loads, the forces
in the ties and all other information necessary for sketching the bending moment and
shear force diagrams for the beam.

Neglect axial effects in the beam. The ties are made from the same material as the
beam.
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E
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L

I
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384 192
5 2

I
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,

Fy,1, v1 Fy,2, v2

M2, u2M1, u1

FIGURE P.17.6

Ans. vB = vC = −5PL3/144EI θB = −θC = PL2/24EI FBF = 2P/3
FBE = √

2P/3 Fy,A = P/3 MA = −PL/4.

P.17.7 The symmetrical rigid jointed grillage shown in Fig. P.17.7 is encastré at 6, 7, 8
and 9 and rests on simple supports at 1, 2, 4 and 5. It is loaded with a vertical point
load P at 3.

Use the stiffness method to find the displacements of the structure and hence calculate
the support reactions and the forces in all the members. Plot the bending moment
diagram for 123. All members have the same section properties and GJ = 0.8EI.

Ans. Fy,1 = Fy,5 = −P/16
Fy,2 = Fy,4 = 9P/16



Chap-17 20/1/2005 9: 22 page 590

590 • Chapter 17 / Matrix Methods of Analysis

M21 = M45 = −Pl/16 (hogging)
M23 = M43 = −Pl/12 (hogging)

Twisting moment in 62, 82, 74 and 94 is Pl/96.

2
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2
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l
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l

l
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FIGURE P.17.7

P.17.8 It is required to formulate the stiffness of a triangular element 123 with
coordinates (0, 0) (a, 0) and (0, a) respectively, to be used for ‘plane stress’ problems.

(a) Form the [B] matrix.
(b) Obtain the stiffness matrix [Ke].

Why, in general, is a finite element solution not an exact solution?

P.17.9 It is required to form the stiffness matrix of a triangular element 123 for use in
stress analysis problems. The coordinates of the element are (1, 1), (2, 1) and (2, 2)
respectively.

(a) Assume a suitable displacement field explaining the reasons for your choice.
(b) Form the [B] matrix.
(c) Form the matrix which gives, when multiplied by the element nodal displacements,

the stresses in the element. Assume a general [D] matrix.

P.17.10 It is required to form the stiffness matrix for a rectangular element of side
2a × 2b and thickness t for use in ‘plane stress’ problems.

(a) Assume a suitable displacement field.
(b) Form the [C] matrix.
(c) Obtain

∫
vol [C]T[D][C] dV .

Note that the stiffness matrix may be expressed as

[Ke] = [A−1]T
[∫

vol
[C]T[D][C] dV

]
[A−1]
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P.17.11. A square element 1234, whose corners have coordinates x, y (in m) of
(−1, −1), (1, −1), (1, 1) and (−1, 1), respectively, was used in a plane stress finite
element analysis. The following nodal displacements (mm) were obtained:

w1 = 0.1 w2 = 0.3 w3 = 0.6 w4 = 0.1
v1 = 0.1 v2 = 0.3 v3 = 0.7 v4 = 0.5

If Young’s modulus E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3, calculate the
stresses at the centre of the element.

Ans. σx = 51.65 N/mm2, σy = 55.49 N/mm2, τxy = 13.46 N/mm2.

P.17.12 A triangular element with corners 1, 2 and 3, whose x, y coordinates in metres
are (2.0, 3.0), (3.0, 3.0) and (2.5, 4.0), respectively, was used in a plane stress finite
element analysis. The following nodal displacements (mm) were obtained.

w1 = 0.04 v1 = 0.08 w2 = 0.10 v2 = 0.12 w3 = 0.20 v3 = 0.18

Calculate the stresses in the element if Young’s modulus is 200 000 N/mm2 and
Poisson’s ratio is 0.3.

Ans. σx = 25.4 N/mm2 σy = 28.5 N/mm2 τxy = 13.1 N/mm2.

P.17.13 A rectangular element 1234 has corners whose x, y coordinates in metres are,
respectively, (−2, −1), (2, −1), (2, 1) and (−2, 1). The element was used in a plane
stress finite element analysis and the following displacements (mm) were obtained.

1 2 3 4
w 0.001 0.003 −0.003 0.0
v −0.004 −0.002 0.001 0.001

If the stiffness of the element was derived assuming a linear variation of displacements,
Young’s modulus is 200 000 N/mm2 and Poisson’s ratio is 0.3, calculate the stresses at
the centre of the element.

Ans. σx = 104.4 N/mm2 σy = 431.3 N/mm2 τxy = −115.4 N/mm2.

P.17.14 Derive the stiffness matrix of a constant strain, triangular finite element 123
of thickness t and coordinates (0, 0), (2, 0) and (0, 3), respectively, to be used for plane
stress problems. The elements of the elasticity matrix [D] are as follows.

D11 = D22 = a D12 = b D13 = D23 = 0 D33 = c

where a, b and c are material constants.

Ans. See Solutions Manual.
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So far our analysis of the behaviour of structures has assumed that whether the struc-
tures are statically determinate or indeterminate the loads on them cause stresses
which lie within the elastic limit. Design, based on this elastic behaviour, ensures
that the greatest stress in a structure does not exceed the yield stress divided by an
appropriate factor of safety.

An alternative approach is based on plastic analysis in which the loads required to cause
the structure to collapse are calculated. The reasoning behind this method is that, in
most steel structures, particularly redundant ones, the loads required to cause the
structure to collapse are somewhat larger than the ones which cause yielding. Design,
based on this method, calculates the loading required to cause complete collapse and
then ensures that this load is greater than the applied loading; the ratio of collapse load
to the maximum applied load is called the load factor. Generally, plastic, or ultimate
load design, results in more economical structures.

In this chapter we shall investigate the mechanisms of plastic collapse and determine
collapse loads for a variety of beams and frames.

18.1 THEOREMS OF PLASTIC ANALYSIS

Plastic analysis is governed by three fundamental theorems which are valid for elasto-
plastic structures in which the displacements are small such that the geometry of the
displaced structure does not affect the applied loading system.

THE UNIQUENESS THEOREM

The following conditions must be satisfied simultaneously by a structure in its collapsed
state:

The equilibrium condition states that the bending moments must be in equilibrium with
the applied loads.

The yield condition states that the bending moment at any point in the structure must
not exceed the plastic moment at that point.

592
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The mechanism condition states that sufficient plastic hinges must have formed so that
all, or part of, the structure is a mechanism.

THE LOWER BOUND, OR SAFE, THEOREM

If a distribution of moments can be found which satisfies the above equilibrium and
yield conditions the structure is either safe or just on the point of collapse.

THE UPPER BOUND, OR UNSAFE, THEOREM

If a loading is found which causes a collapse mechanism to form then the loading must
be equal to or greater than the actual collapse load.

Generally, in plastic analysis, the upper bound theorem is used. Possible collapse
mechanisms are formulated and the corresponding collapse loads calculated. From the
upper bound theorem we know that all mechanisms must give a value of collapse load
which is greater than or equal to the true collapse load so that the critical mechanism
is the one giving the lowest load. It is possible that a mechanism, which would give a
lower value of collapse load, has been missed. A check must therefore be carried out
by applying the lower bound theorem.

18.2 PLASTIC ANALYSIS OF BEAMS

Generally plastic behaviour is complex and is governed by the form of the stress–strain
curve in tension and compression of the material of the beam. Fortunately mild steel
beams, which are used extensively in civil engineering construction, possess structural
properties that lend themselves to a relatively simple analysis of plastic bending.

We have seen in Section 8.3, Fig. 8.8, that mild steel obeys Hooke’s law up to a
sharply defined yield stress and then undergoes large strains during yielding until
strain hardening causes an increase in stress. For the purpose of plastic analysis we
shall neglect the upper and lower yield points and idealize the stress–strain curve as
shown in Fig. 18.1. We shall also neglect the effects of strain hardening, but since this

FIGURE 18.1
Idealized

stress–strain curve
for mild steel

sY (Compression)

s

sY
(Tension)

�
�Y

�Y
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provides an increase in strength of the steel it is on the safe side to do so. Finally we
shall assume that both Young’s modulus, E, and the yield stress, σY, have the same
values in tension and compression, and that plane sections remain plane after bending.
The last assumption may be shown experimentally to be very nearly true.

PLASTIC BENDING OF BEAMS HAVING A SINGLY
SYMMETRICAL CROSS SECTION

This is the most general case we shall discuss since the plastic bending of beams of
arbitrary section is complex and is still being researched.

Consider the length of beam shown in Fig. 18.2(a) subjected to a positive bending
moment, M , and possessing the singly symmetrical cross section shown in Fig. 18.2(b).
If M is sufficiently small the length of beam will bend elastically, producing at any
section mm, the linear direct stress distribution of Fig. 18.2(c) where the stress, σ , at
a distance y from the neutral axis of the beam is given by Eq. (9.9). In this situation
the elastic neutral axis of the beam section passes through the centroid of area of the
section (Eq. (9.5)).

Suppose now that M is increased. A stage will be reached where the maximum direct
stress in the section, i.e. at the point furthest from the elastic neutral axis, is equal
to the yield stress, σY (Fig. 18.3(b)). The corresponding value of M is called the yield
moment, MY, and is given by Eq. (9.9); thus

MY = σYI
y1

(18.1)

FIGURE 18.2
Direct stress due

to bending in a
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m

m

(a)

G

(b)

Section mm

Elastic
neutral
axis

G

(c)

M

y

M

x z

y

FIGURE 18.3
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If the bending moment is further increased, the strain at the extremity y1 of the section
increases and exceeds the yield strain, εY. However, due to plastic yielding the stress
remains constant and equal to σY as shown in the idealized stress–strain curve of
Fig. 18.1. At some further value of M the stress at the lower extremity of the section also
reaches the yield stress, σY (Fig. 18.3(c)). Subsequent increases in bending moment
cause the regions of plasticity at the extremities of the beam section to extend inwards,
producing a situation similar to that shown in Fig. 18.3(d); at this stage the central
portion or ‘core’ of the beam section remains elastic while the outer portions are
plastic. Finally, with further increases in bending moment the elastic core is reduced
to a negligible size and the beam section is more or less completely plastic. Then, for
all practical purposes the beam has reached its ultimate moment resisting capacity;
the value of bending moment at this stage is known as the plastic moment, MP, of the
beam. The stress distribution corresponding to this moment may be idealized into two
rectangular portions as shown in Fig. 18.3(e).

The problem now, therefore, is to determine the plastic moment, MP. First, however,
we must investigate the position of the neutral axis of the beam section when the latter
is in its fully plastic state. One of the conditions used in establishing that the elastic
neutral axis coincides with the centroid of a beam section was that stress is directly
proportional to strain (Eq. (9.2)). It is clear that this is no longer the case for the stress
distributions of Figs 18.3(c), (d) and (e). In Fig. 18.3(e) the beam section above the
plastic neutral axis is subjected to a uniform compressive stress, σY, while below the neu-
tral axis the stress is tensile and also equal to σY. Suppose that the area of the beam
section below the plastic neutral axis is A2, and that above, A1 (Fig. 18.4(a)). Since
MP is a pure bending moment the total direct load on the beam section must be zero.
Thus from Fig. 18.4

σYA1 = σYA2

so that

A1 = A2 (18.2)

FIGURE 18.4
Position of the

plastic neutral axis
in a beam section

Area, A1

Area, A2

(a) (b)
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Therefore if the total cross-sectional area of the beam section is A

A1 = A2 = A
2

(18.3)

and we see that the plastic neutral axis divides the beam section into two equal areas.
Clearly for doubly symmetrical sections or for singly symmetrical sections in which the
plane of the bending moment is perpendicular to the axis of symmetry, the elastic and
plastic neutral axes coincide.

The plastic moment, MP, can now be found by taking moments of the resultants of the
tensile and compressive stresses about the neutral axis. These stress resultants act at
the centroids C1 and C2 of the areas A1 and A2, respectively. Thus from Fig. 18.4

MP = σYA1ȳ1 + σYA2 ȳ2

or, using Eq. (18.3)

MP = σY
A
2

( ȳ1 + ȳ2) (18.4)

Equation (18.4) may be written in a similar form to Eq. (9.13); thus

MP = σYZP (18.5)

where

ZP = A( ȳ1 + ȳ2)
2

(18.6)

ZP is known as the plastic modulus of the cross section. Note that the elastic modulus,
Ze, has two values for a beam of singly symmetrical cross section (Eq. (9.12)) whereas
the plastic modulus is single-valued.

SHAPE FACTOR

The ratio of the plastic moment of a beam to its yield moment is known as the shape
factor, f. Thus

f = MP

MY
= σYZP

σYZe
= ZP

Ze
(18.7)

where ZP is given by Eq. (18.6) and Ze is the minimum elastic section modulus, I/y1.
It can be seen from Eq. (18.7) that f is solely a function of the geometry of the beam
cross section.

EXAMPLE 18.1 Determine the yield moment, the plastic moment and the shape
factor for a rectangular section beam of breadth b and depth d.
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The elastic and plastic neutral axes of a rectangular cross section coincide (Eq. (18.3))
and pass through the centroid of area of the section. Thus, from Eq. (18.1)

MY = σYbd3/12
d/2

= σY
bd2

6
(i)

and from Eq. (18.4)

MP = σY
bd
2

(
d
4

+ d
4

)
= σY

bd2

4
(ii)

Substituting for MP and MY in Eq. (18.7) we obtain

f = MP

MY
= 3

2
(iii)

Note that the plastic collapse of a rectangular section beam occurs at a bending
moment that is 50% greater than the moment at initial yielding of the beam.

EXAMPLE 18.2 Determine the shape factor for the I-section beam shown in
Fig. 18.5(a).

Again, as in Ex. 18.1, the elastic and plastic neutral axes coincide with the centroid,
G, of the section.

In the fully plastic condition the stress distribution in the beam is that shown in
Fig. 18.5(b). The total direct force in the upper flange is

σYbtf (compression)

FIGURE 18.5 Beam
section of Ex. 18.2 (a) (b)

G

Elastic and
plastic
neutral

axes

b = 150 mm

d = 300 mm

tw = 8 mm

tf = 12 mm

z

y

sY

sY
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and its moment about Gz is

σYbtf

(
d
2

− tf
2

)
≡ σYbtf

2
(d − tf ) (i)

Similarly the total direct force in the web above Gz is

σYtw

(
d
2

− tf

)
(compression)

and its moment about Gz is

σYtw

(
d
2

− tf

)
1
2

(
d
2

− tf

)
≡ σYtw

8
(d − 2tf )2 (ii)

The lower half of the section is in tension and contributes the same moment about Gz
so that the total plastic moment, MP, of the complete section is given by

MP = σY
[
btf (d − tf ) + 1

4
tw(d − 2tf )2] (iii)

Comparing Eqs (18.5) and (iii) we see that ZP is given by

ZP = btf (d − tf ) + 1
4

tw(d − 2tf )2 (iv)

Alternatively we could have obtained ZP from Eq. (18.6).

The second moment of area, I, of the section about the common neutral axis is

I = bd3

12
− (b − tw)(d − 2tf )3

12

so that the elastic modulus Ze is given by

Ze = I
d/2

= 2
d

[
bd3

12
− (b − tw)(d − 2tf )3

12

]
(v)

Substituting the actual values of the dimensions of the section in Eqs (iv) and (v) we
obtain

ZP = 150 × 12(300 − 12) + 1
4

× 8(300 − 2 × 12)2 = 6.7 × 105 mm3

and

Ze = 2
300

[
150 × 3003

12
− (150 − 8)(300 − 24)3

12

]
= 5.9 × 105 mm3

Therefore from Eq. (18.7)

f = MP

MY
= ZP

Ze
= 6.7 × 105

5.9 × 105 = 1.14

and we see that the fully plastic moment is only 14% greater than the moment at initial
yielding.
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EXAMPLE 18.3 Determine the shape factor of the T-section shown in
Fig. 18.6.

FIGURE 18.6 Beam
section of Ex. 18.3

200 mm

Gz

yPy

ye

sY

sY

(a) (b)

150 mm
10 mm

7 mm

Plastic
neutral axis

Elastic
neutral axis

In this case the elastic and plastic neutral axes are not coincident. Suppose that the
former is a depth ye from the upper surface of the flange and the latter a depth yP. The
elastic neutral axis passes through the centroid of the section, the location of which is
found in the usual way. Hence, taking moments of areas about the upper surface of
the flange

(150 × 10 + 190 × 7)ye = 150 × 10 × 5 + 190 × 7 × 105

which gives

ye = 52.0 mm

The second moment of area of the section about the elastic neutral axis is then, using
Eq. (9.38)

I = 150 × 523

3
− 143 × 423

3
+ 7 × 1483

3
= 11.1 × 106 mm4

Therefore

Ze = 11.1 × 106

148
= 75 000 mm3

Note that we choose the least value for Ze since the stress will be a maximum at a point
furthest from the elastic neutral axis.

The plastic neutral axis divides the section into equal areas (see Eq. (18.3)). Inspection
of Fig. 18.6 shows that the flange area is greater than the web area so that the plastic
neutral axis must lie within the flange. Hence

150yP = 150(10 − yP) + 190 × 7

from which

yP = 9.4 mm
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Equation (18.6) may be interpreted as the first moment, about the plastic neutral axis,
of the area above the plastic neutral axis plus the first moment of the area below the
plastic neutral axis. Hence

ZP = 150 × 9.4 × 4.7 + 150 × 0.6 × 0.3 + 190 × 7 × 95.6 = 133 800 mm3

The shape factor f is, from Eq. (18.7)

f = MP

MY
= ZP

Ze
= 133 800

75 000
= 1.78

MOMENT–CURVATURE RELATIONSHIPS

From Eq. (9.8) we see that the curvature k of a beam subjected to elastic bending is
given by

k = 1
R

= M
EI

(18.8)

At yield, when M is equal to the yield moment, MY

kY = MY

EI
(18.9)

The moment–curvature relationship for a beam in the linear elastic range may
therefore be expressed in non-dimensional form by combining Eqs (18.8) and
(18.9), i.e.

M
MY

= k
kY

(18.10)

This relationship is represented by the linear portion of the moment–curvature dia-
gram shown in Fig. 18.7. When the bending moment is greater than MY part of the
beam becomes fully plastic and the moment–curvature relationship is non-linear. As
the plastic region in the beam section extends inwards towards the neutral axis the
curve becomes flatter as rapid increases in curvature are produced by small increases in
moment. Finally, the moment–curvature curve approaches the horizontal line M = MP

M/MY

1

M � MP

M � MY

f

k /kY1
FIGURE 18.7 Moment–curvature diagram
for a beam
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Fully plastic
zone

(a) (b)

sY

sY

d
de

b

Elastic and
plastic neutral axis

FIGURE 18.8 Plastic
bending of a
rectangular-section beam

as an asymptote when, theoretically, the curvature is infinite at the collapse load. From
Eq. (18.7) we see that when M = MP, the ratio M/MY = f , the shape factor. Clearly the
equation of the non-linear portion of the moment–curvature diagram depends upon
the particular cross section being considered.

Suppose a beam of rectangular cross section is subjected to a bending moment which
produces fully plastic zones in the outer portions of the section (Fig. 18.8(a)); the
depth of the elastic core is de. The total bending moment, M , corresponding to the
stress distribution of Fig. 18.8(b) is given by

M = 2σYb
1
2

(d − de)
1
2

(
d
2

+ de

2

)
+ 2

σY

2
b

de

2
2
3

de

2

which simplifies to

M = σYbd2

12

(
3 − d2

e

d2

)
= MY

2

(
3 − d2

e

d2

)
(18.11)

Note that when de = d, M = MY and when de = 0, M = 3MY/2 = MP as derived in
Ex. 18.1.

The curvature of the beam at the section shown may be found using Eq. (9.2) and
applying it to a point on the outer edge of the elastic core. Thus

σY = E
de

2R

or

k = 1
R

= 2σY

Ede
(18.12)

The curvature of the beam at yield is obtained from Eq. (18.9), i.e.

kY = MY

EI
= 2σY

Ed
(18.13)

Combining Eqs (18.12) and (18.13) we obtain

k
kY

= d
de

(18.14)
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Substituting for de/d in Eq. (18.11) from Eq. (18.14) we have

M = MY

2

(
3 − k2

Y
k2

)

so that

k
kY

= 1√
3 − 2M/MY

(18.15)

Equation (18.15) gives the moment–curvature relationship for a rectangular section
beam for MY ≤ M ≤ MP, i.e. for the non-linear portion of the moment–curvature dia-
gram of Fig. 18.7 for the particular case of a rectangular section beam. Corresponding
relationships for beams of different section are found in a similar manner.

We have seen that for bending moments in the range MY ≤ M ≤ MP a beam sec-
tion comprises fully plastic regions and a central elastic core. Thus yielding occurs in
the plastic regions with no increase in stress whereas in the elastic core increases in
deformation are accompanied by increases in stress. The deformation of the beam is
therefore controlled by the elastic core, a state sometimes termed contained plastic
flow. As M approaches MP the moment–curvature diagram is asymptotic to the line
M = MP so that large increases in deformation occur without any increase in moment,
a condition known as unrestricted plastic flow.

PLASTIC HINGES

The presence of unrestricted plastic flow at a section of a beam leads us to the concept
of the formation of plastic hinges in beams and other structures.

Consider the simply supported beam shown in Fig. 18.9(a); the beam carries a concen-
trated load, W , at mid-span. The bending moment diagram (Fig. 18.9(b)) is triangular
in shape with a maximum moment equal to WL/4. If W is increased in value until
WL/4 = MP, the mid-span section of the beam will be fully plastic with regions of
plasticity extending towards the supports as the bending moment decreases; no plas-
ticity occurs in beam sections for which the bending moment is less than MY. Clearly,
unrestricted plastic flow now occurs at the mid-span section where large increases in
deformation take place with no increase in load. The beam therefore behaves as two
rigid beams connected by a plastic hinge which allows them to rotate relative to each
other. The value of W given by W = 4MP/L is the collapse load for the beam.

The length, LP, of the plastic region of the beam may be found using the fact that at
each section bounding the region the bending moment is equal to MY. Thus

MY = W
2

(
L − LP

2

)
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FIGURE 18.9 Formation of a
plastic hinge in a simply
supported beam

Substituting for W (=4MP/L) we obtain

MY = MP

L
(L − LP)

from which

LP = L
(

1 − MY

MP

)

or, from Eq. (18.7)

LP = L
(

1 − 1
f

)
(18.16)

For a rectangular section beam f = 1.5 (see Ex. 18.1), giving LP = L/3. For the
I-section beam of Ex. 18.2, f = 1.14 and LP = 0.12L so that the plastic region in this
case is much smaller than that of a rectangular section beam; this is generally true for
I-section beams.

It is clear from the above that plastic hinges form at sections of maximum bending
moment.

PLASTIC ANALYSIS OF BEAMS

We can now use the concept of plastic hinges to determine the collapse or ultimate
load of beams in terms of their individual yield moment, MP, which may be found for
a particular beam section using Eq. (18.5).

For the case of the simply supported beam of Fig. 18.9 we have seen that the formation
of a single plastic hinge is sufficient to produce failure; this is true for all statically
determinate systems. Having located the position of the plastic hinge, at which the
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moment is equal to MP, the collapse load is found from simple statics. Thus for the
beam of Fig. 18.9, taking moments about the mid-span section, we have

WU

2
L
2

= MP

or

WU = 4MP

L
(as deduced before)

where WU is the ultimate value of the load W .

EXAMPLE 18.4 Determine the ultimate load for a simply supported, rectangular
section beam, breadth b, depth d, having a span L and subjected to a uniformly
distributed load of intensity w.

The maximum bending moment occurs at mid-span and is equal to wL2/8 (see Section
3.4). The plastic hinge therefore forms at mid-span when this bending moment is equal
to MP, the corresponding ultimate load intensity being wU. Thus

wUL2

8
= MP (i)

From Ex. 18.1, Eq. (ii)

MP = σY
bd2

4
so that

wU = 8MP

L2 = 2σYbd2

L2

where σY is the yield stress of the material of the beam.

EXAMPLE 18.5 The simply supported beam ABC shown in Fig. 18.10(a) has a
cantilever overhang and supports loads of 4W and W . Determine the value of W at
collapse in terms of the plastic moment, MP, of the beam.

The bending moment diagram for the beam is constructed using the method of Section
3.4 and is shown in Fig. 18.10(b). Clearly as W is increased a plastic hinge will form
first at D, the point of application of the 4W load. Thus, at collapse

3
4

WUL = MP

so that

WU = 4MP

3L
where WU is the value of W that causes collapse.
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FIGURE 18.10 Beam of Ex. 18.5

The formation of a plastic hinge in a statically determinate beam produces large,
increasing deformations which ultimately result in failure with no increase in load.
In this condition the beam behaves as a mechanism with different lengths of beam
rotating relative to each other about the plastic hinge. The terms failure mechanism
or collapse mechanism are often used to describe this state.

In a statically indeterminate system the formation of a single plastic hinge does not
necessarily mean collapse. Consider the propped cantilever shown in Fig. 18.11(a). The
bending moment diagram may be drawn after the reaction at C has been determined
by any suitable method of analysis of statically indeterminate beams (see Chapter 16)
and is shown in Fig. 18.11(b).

As the value of W is increased a plastic hinge will form first at A where the bending
moment is greatest. However, this does not mean that the beam will collapse. Instead
it behaves as a statically determinate beam with a point load at B and a moment MP at
A. Further increases in W eventually result in the formation of a second plastic hinge
at B (Fig. 18.11(c)) when the bending moment at B reaches the value MP. The beam
now behaves as a mechanism and failure occurs with no further increase in load. The
bending moment diagram for the beam is now as shown in Fig. 18.11(d) with values of
bending moment of−MP at A and MP at B. Comparing the bending moment diagram at
collapse with that corresponding to the elastic deformation of the beam (Fig. 18.11(b))
we see that a redistribution of bending moment has occurred. This is generally the
case in statically indeterminate systems whereas in statically determinate systems the
bending moment diagrams in the elastic range and at collapse have identical shapes
(see Figs 18.9(b) and 18.10(b)). In the beam of Fig. 18.11 the elastic bending moment
diagram has a maximum at A. After the formation of the plastic hinge at A the bending
moment remains constant while the bending moment at B increases until the second
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FIGURE 18.11
Plastic hinges in a
propped cantilever
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plastic hinge forms. Thus this redistribution of moments tends to increase the ultimate
strength of statically indeterminate structures since failure at one section leads to other
portions of the structure supporting additional load.

Having located the positions of the plastic hinges and using the fact that the moment
at these hinges is MP, we may determine the ultimate load, WU, by statics. Therefore
taking moments about A we have

MP = WU
L
2

− RCL (18.17)

where RC is the vertical reaction at the support C. Now considering the equilibrium
of the length BC we obtain

RC
L
2

= MP (18.18)
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Eliminating RC from Eqs (18.17) and (18.18) gives

WU = 6MP

L
(18.19)

Note that in this particular problem it is unnecessary to determine the elastic bending
moment diagram to solve for the ultimate load which is obtained using statics alone.
This is a convenient feature of plastic analysis and leads to a much simpler solution of
statically indeterminate structures than an elastic analysis. Furthermore, the magni-
tude of the ultimate load is not affected by structural imperfections such as a sinking
support, whereas the same kind of imperfection would have an appreciable effect on
the elastic behaviour of a structure. Note also that the principle of superposition (Sec-
tion 3.7), which is based on the linearly elastic behaviour of a structure, does not hold
for plastic analysis. In fact the plastic behaviour of a structure depends upon the order
in which the loads are applied as well as their final values. We therefore assume in
plastic analysis that all loads are applied simultaneously and that the ratio of the loads
remains constant during loading.

An alternative and powerful method of analysis uses the principle of virtual work (see
Section 15.2), which states that for a structure that is in equilibrium and which is given
a small virtual displacement, the sum of the work done by the internal forces is equal
to the work done by the external forces.

Consider the propped cantilever of Fig. 18.11(a); its collapse mechanism is shown in
Fig. 18.11(c). At the instant of collapse the cantilever is in equilibrium with plastic
hinges at A and B where the moments are each MP as shown in Fig. 18.11(d). Suppose
that AB is given a small rotation, θ . From geometry, BC also rotates through an angle θ

as shown in Fig. 18.12; the vertical displacement of B is then θL/2. The external forces

A

B

C

L /2L /2

WU uu

2u

FIGURE 18.12 Virtual displacements
in propped cantilever of Fig. 18.11

on the cantilever which do work during the virtual displacement are comprised solely of
WU since the vertical reactions at A and C are not displaced. The internal forces which
do work consist of the plastic moments, MP, at A and B and which resist rotation. Hence

WUθ
L
2

= (MP)Aθ + (MP)B2θ (see Section 15.1)

from which WU = 6MP/L as before.

We have seen that the plastic hinges form at beam sections where the bending moment
diagram attains a peak value. It follows that for beams carrying a series of point loads,
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plastic hinges are located at the load positions. However, in some instances several
collapse mechanisms are possible, each giving different values of ultimate load. For
example, if the propped cantilever of Fig. 18.11(a) supports two point loads as shown in
Fig. 18.13(a), three possible collapse mechanisms are possible (Fig. 18.13(b–d). Each
possible collapse mechanism should be analysed and the lowest ultimate load selected.

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

(a)

(b)

(c)

(d)

W1 W2

FIGURE 18.13 Possible collapse
mechanisms in a propped
cantilever supporting two
concentrated loads

The beams we have considered so far have carried concentrated loads only so that the
positions of the plastic hinges, and therefore the form of the collapse mechanisms, are
easily determined. This is not the case when distributed loads are involved.

EXAMPLE 18.6 The propped cantilever AB shown in Fig. 18.14(a) carries a uni-
formly distributed load of intensity w. If the plastic moment of the cantilever is MP

calculate the minimum value of w required to cause collapse.

Peak values of bending moment occur at A and at some point between A and B so that
plastic hinges will form at A and at a point C a distance x, say, from A; the collapse
mechanism is then as shown in Fig. 18.14(b) where the rotations of AC and CB are
θ and φ respectively. Then, the vertical deflection of C is given by

δ = θx = φ(L − x) (i)

so that

φ = θ
x

L − x
(ii)
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FIGURE 18.14
Collapse

mechanism for a
propped cantilever
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The total load on AC is wx and its centroid (at x/2 from A) will be displaced a vertical
distance δ/2. The total load on CB is w(L − x) and its centroid will suffer the same
vertical displacement δ/2. Then, from the principle of virtual work

wx
δ

2
+ w(L − x)

δ

2
= MPθ + MP(θ + φ)

Note that the beam at B is free to rotate so that there is no plastic hinge at B.
Substituting for δ from Eq. (i) and φ from Eq. (ii) we obtain

wL
θx
2

= MPθ + MP

(
θ + θ

x
L − x

)

or

wL
θx
2

= MPθ

(
2 + x

L − x

)

Rearranging

w = 2MP

Lx

(
2L − x
L − x

)
(iii)

For a minimum value of w, (dw/dx) = 0. Then

dw
dx

= 2MP

L

[−x(L − x) − (2L − x)(L − 2x)
x2(L − x)2

]
= 0

which reduces to

x2 − 4Lx + 2L2 = 0

Solving gives

x = 0.586L (the positive root is ignored)

Then substituting for x in Eq. (iii)

w (at collapse) = 11.66MP

L2
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We can now use the lower bound theorem to check that we have obtained the critical
mechanism and thereby the critical load. The internal moment at A at collapse is
hogging and equal to MP. Then, taking moments about A

RB L − w
L2

2
= −MP

which gives

RB = 4.83MP

L
Similarly, taking moments about B gives

RA = 6.83MP

L

Summation of RA and RB gives 11.66MP/L = wL so that vertical equilibrium is
satisfied. Further, considering moments of forces to the right of C about C we have

MC = RB(0.414L) − w
0.414L2

2

Substituting for RB and w from the above gives MC = MP. The same result is obtained
by considering moments about C of forces to the left of C. The load therefore satisfies
both vertical and moment equilibrium.

The bending moment at any distance x1, say, from B is given by

M = RBx1 − w
x2

1
2

Then
dM
dx1

= RB − wx1 = 0

so that a maximum occurs when x1 = RB/w. Substituting for RB, x1 and w in the expres-
sion for M gives M = MP so that the yield criterion is satisfied. We conclude, therefore,
that the mechanism of Fig. 18.14(b) is the critical mechanism.

PLASTIC DESIGN OF BEAMS

It is now clear that the essential difference between the plastic and elastic methods of
design is that the former produces a structure having a more or less uniform factor of
safety against collapse of all its components, whereas the latter produces a uniform
factor of safety against yielding. The former method in fact gives an indication of
the true factor of safety against collapse of the structure which may occur at loads
only marginally greater than the yield load, depending on the cross sections used. For
example, a rectangular section mild steel beam has an ultimate strength 50% greater
than its yield strength (see Ex. 18.1), whereas for an I-section beam the margin is in the
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range 10–20% (see Ex. 18.2). It is also clear that each method of design will produce
a different section for a given structural component. This distinction may be more
readily understood by referring to the redistribution of bending moment produced by
the plastic collapse of a statically indeterminate beam.

Two approaches to the plastic design of beams are indicated by the previous analysis.
The most direct method would calculate the working loads, determine the required
strength of the beam by the application of a suitable load factor, obtain by a suitable
analysis the required plastic moment in terms of the ultimate load and finally, knowing
the yield stress of the material of the beam, determine the required plastic section
modulus. An appropriate beam section is then selected from a handbook of structural
sections. The alternative method would assume a beam section, calculate the plastic
moment of the section and hence the ultimate load for the beam. This value of ultimate
load is then compared with the working loads to determine the actual load factor, which
would then be checked against the prescribed value.

EXAMPLE 18.7 The propped cantilever of Fig. 18.11(a) is 10 m long and is required
to carry a load of 100 kN at mid-span. If the yield stress of mild steel is 300 N/mm2,
suggest a suitable section using a load factor against failure of 1.5.

The required ultimate load of the beam is 1.5 × 100 = 150 kN. Then from Eq. (18.19)
the required plastic moment MP is given by

MP = 150 × 10
6

= 250 kN m

From Eq. (18.5) the minimum plastic modulus of the beam section is

ZP = 250 × 106

300
= 833 333 mm3

Referring to an appropriate handbook we see that a Universal Beam,
406 mm × 140 mm × 46 kg/m, has a plastic modulus of 886.3 cm3. This section there-
fore possesses the required ultimate strength and includes a margin to allow for its
self-weight. Note that unless some allowance has been made for self-weight in the
estimate of the working loads the design should be rechecked to include this effect.

EFFECT OF AXIAL LOAD ON PLASTIC MOMENT

We shall investigate the effect of axial load on plastic moment with particular reference
to an I-section beam, one of the most common structural shapes, which is subjected
to a positive bending moment and a compressive axial load, P, Fig. 18.15(a)).

If the beam section were subjected to its plastic moment only, the stress distribution
shown in Fig. 18.15(b) would result. However, the presence of the axial load causes
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FIGURE 18.15
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additional stresses which cannot, obviously, be greater than σY. Thus the region of
the beam section supporting compressive stresses is increased in area while the region
subjected to tensile stresses is decreased in area. Clearly some of the compressive
stresses are due to bending and some due to axial load so that the modified stress
distribution is as shown in Fig. 18.15(c).

Since the beam section is doubly symmetrical it is reasonable to assume that the area
supporting the compressive stress due to bending is equal to the area supporting
the tensile stress due to bending, both areas being symmetrically arranged about the
original plastic neutral axis. Thus from Fig. 18.15(d) the reduced plastic moment,
MP,R, is given by

MP,R = σY(ZP − Za) (18.20)

where Za is the plastic section modulus for the area on which the axial load is assumed
to act. From Eq. (18.6)

Za = 2atw
2

(a
2

+ a
2

)
= a2tw

also

P = 2atwσY

so that

a = P
2twσY

Substituting for Za, in Eq. (18.20) and then for a, we obtain

MP,R = σY

(
ZP − P2

4twσ 2
Y

)
(18.21)
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Let σa be the mean axial stress due to P taken over the complete area, A, of the beam
section. Then

P = σa A

Substituting for P in Eq. (18.21)

MP,R = σY

(
ZP − A2

4tw

σ 2
a

σ 2
Y

)
(18.22)

Thus the reduced plastic section modulus may be expressed in the form

ZP,R = ZP − Kn2 (18.23)

where K is a constant that depends upon the geometry of the beam section and n is
the ratio of the mean axial stress to the yield stress of the material of the beam.

Equations (18.22) and (18.23) are applicable as long as the neutral axis lies in the web
of the beam section. In the rare case when this is not so, reference should be made
to advanced texts on structural steel design. In addition the design of beams carrying
compressive loads is influenced by considerations of local and overall instability, as we
shall see in Chapter 21.

18.3 PLASTIC ANALYSIS OF FRAMES

The plastic analysis of frames is carried out in a very similar manner to that for beams
in that possible collapse mechanisms are identified and the principle of virtual work
used to determine the collapse loads. A complication does arise, however, in that
frames, even though two-dimensional, can possess collapse mechanisms which involve
both beam and sway mechanisms since, as we saw in Section 16.10 in the moment
distribution analysis of portal frames, sway is produced by any asymmetry of the loading
or frame. Initially we shall illustrate the method by a comparatively simple example.

EXAMPLE 18.8 Determine the value of the load W required to cause collapse of
the frame shown in Fig. 18.16(a) if the plastic moment of all members of the frame is
200 kN m. Calculate also the support reactions at collapse.

We note that the frame and loading are unsymmetrical so that sway occurs. The bending
moment diagram for the frame takes the form shown in Fig. 18.16(b) so that there are
three possible collapse mechanisms as shown in Fig. 18.17.

In Fig. 18.17(a) the horizontal member BCD has collapsed with plastic hinges forming
at B, C and D; this is termed a beam mechanism. In Fig. 18.17(b) the frame has
swayed with hinges forming at A, B, D and E; this, for obvious reasons, is called a
sway mechanism. Fig. 18.17(c) shows a combined mechanism which incorporates both
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FIGURE 18.16
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FIGURE 18.17 Collapse mechanisms for the frame of Ex. 18.8

the beam and sway mechanisms. However, in this case, the moments at B due to the
vertical load at C and the horizontal load at B oppose each other so that the moment
at B will be the smallest of the five peak moments and plastic hinges will form at the
other locations. We say, therefore, that there is a hinge cancellation at B; the angle
ABC then remains a right angle. We shall now examine each mechanism in turn to
determine the value of W required to cause collapse. We shall designate the plastic
moment of the frame as MP.

BEAM MECHANISM

Suppose that BC is given a small rotation θ . Since CD = CB then CD also rotates
through the angle θ and the relative angle between CD and the extension of BC is 2θ .
Then, from the principle of virtual work

W 2θ = MPθ + MP2θ + MPθ (i)

which gives

W = 2MP
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In the virtual work equation 2θ is the vertical distance through which W moves and
the first, second and third terms on the right hand side represent the internal work
done by the plastic moments at B, C and D respectively.

SWAY MECHANISM

The vertical member AB is given a small rotation θ , ED then rotates through 2θ .
Again, from the principle of virtual work

W 4θ = MPθ + MPθ + MP2θ + MP2θ (ii)

i.e.

W = 3
2

MP

COMBINED MECHANISM

Since, now, there is no plastic hinge at B there is no plastic moment at B. Then, the
principle of virtual work gives

W 4θ + W 2θ = MPθ + MP2θ + MP3θ + MP2θ (iii)

from which

W = 4
3

MP

We could have obtained Eq. (iii) directly by adding Eqs (i) and (ii) and anticipating
the hinge cancellation at B. Eq. (i) would then be written

W 2θ = {MPθ} + MP2θ + MPθ (iv)

where the term in curly brackets is the internal work done by the plastic moment at B.
Similarly Eq. (ii) would be written

W 4θ = MPθ + {MPθ} + MP2θ + MP2θ (v)

Adding Eqs (iv) and (v) and dropping the term in curly brackets gives

W 6θ = 8MPθ

as before.

From Eqs (i), (ii) and (iii) we see that the critical mechanism is the combined
mechanism and the lowest value of W is 4MP/3 so that

W = 4 × 200
3
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the frame of Ex. 18.8

i.e.

W = 266.7 kN

Figure 18.18 shows the support reactions corresponding to the collapse mode. The
internal moment at D is MP (D is a plastic hinge) so that, taking moments about D for
the forces acting on the member ED

RE,H × 2 = MP = 200 kN m

so that

RE,H = 100 kN

Resolving horizontally

RA,H + 266.7 − 100 = 0

from which

RA,H = −166.7 kN (to the left)

Taking moments about A

RE,V × 4 + RE,H × 2 − 266.7 × 2 − 266.7 × 4 = 0

which gives

RE,V = 350.1 kN

Finally, resolving vertically

RA,V + RE,V − 266.7 = 0
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i.e.

RA,V = −83.4 kN (downwards)

In the portal frame of Ex. 18.8 each member has the same plastic moment MP. In
cases where the members have different plastic moments a slightly different approach
is necessary.

EXAMPLE 18.9 In the portal frame of Ex. 18.8 the plastic moment of the member
BCD is 2MP. Calculate the critical value of the load W .

Since the vertical members are the weaker members plastic hinges will form at B in
AB and at D in ED as shown, for all three possible collapse mechanisms, in Fig. 18.19.
This has implications for the virtual work equation because in Fig. 18.19(a) the plastic
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moment at B and D is MP while that at C is 2MP. The virtual work equation then
becomes

W 2θ = MPθ + 2MP2θ + MPθ

which gives

W = 3MP

For the sway mechanism

W 4θ = MPθ + MPθ + MP2θ + MP2θ

so that

W = 3
2

MP

and for the combined mechanism

W 4θ + W 2θ = MPθ + 2MP2θ + MP3θ + MP2θ
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from which

W = 5
3

MP

Here we see that the minimum value of W which would cause collapse is 3MP/2 and
that the sway mechanism is the critical mechanism.

We shall now examine a portal frame having a pitched roof in which the determination
of displacements is more complicated.

EXAMPLE 18.10 The portal frame shown in Fig. 18.20(a) has members which have
the same plastic moment MP. Determine the minimum value of the load W required
to cause collapse if the collapse mechanism is that shown in Fig. 18.20(b).

FIGURE 18.20
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In Exs 18.8 and 18.9 the displacements of the joints of the frame were relatively simple
to determine since all the members were perpendicular to each other. For a pitched
roof frame the calculation is more difficult; one method is to use the concept of
instantaneous centres.

In Fig. 18.21 the member BC is given a small rotation θ . Since θ is small C can be
assumed to move at right angles to BC to C′. Similarly the member DE rotates about
E so that D moves horizontally to D′. Further, since C moves at right angles to BC
and D moves at right angles to DE it follows that CD rotates about the instantaneous
centre, I, which is the point of intersection of BC and ED produced; the lines IC and
ID then rotate through the same angle φ.

From the triangles BCC′ and ICC′

CC′ = BCθ = ICφ

so that

φ = BC
IC

= θ (i)
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C
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D
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FIGURE 18.21 Method of
instantaneous centres for
the frame of Ex. 18.10

From the triangles EDD′ and IDD′

DD′ = EDα = IDφ

Therefore

α = ID
ED

φ = ID
ED

BC
IC

θ (ii)

Now we drop a perpendicular from C to meet the horizontal through B and D at F.
Then, from the similar triangles BCF and BID

BC
CI

= BF
FD

= 5
5

= 1

so that BC = CI and, from Eq. (i), φ = θ . Also

CF
ID

= BF
BD

= 5
10

= 1
2

from which ID = 2CF = 4 m. Then, from Eq. (ii)

α = 4
5
θ

Finally, the vertical displacement of C to C′ is BFθ (=5θ).

The equation of virtual work is then

W 5θ = MPθ + MP(θ + α) + MP(φ + α) + MPα

Substituting for φ and α in terms of θ from the above gives

W = 1.12MP

The failure mechanism shown in Fig. 18.20(b) does not involve sway. If, however,
a horizontal load were applied at B, say, then sway would occur and other possible
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FIGURE 18.22
Possible collapse

mechanisms
for the frame
of Ex. 18.10

with sway

A A

B B

C

C
D D

E E

(a) (b)

failure mechanisms would have to be investigated; two such mechanisms are shown
in Fig. 18.22. Note that in Fig. 18.22(a) there is a hinge cancellation at C and in
Fig. 18.22(b) there is a hinge cancellation at B. In determining the collapse loads of
such frames the method of instantaneous centres still applies.

P R O B L E M S

P.18.1 Determine the plastic moment and shape factor of a beam of solid circular cross
section having a radius r and yield stress σY.

Ans. MP = 1.33σYr3, f = 1.69.

P.18.2 Determine the plastic moment and shape factor for a thin-walled box girder
whose cross section has a breadth b, depth d and a constant wall thickness t. Calculate
f for b = 200 mm, d = 300 mm.

Ans. MP = σYtd(2b + d)/2, f = 1.17.

P.18.3 A beam having the cross section shown in Fig. P.18.3 is fabricated from mild
steel which has a yield stress of 300 N/mm2. Determine the plastic moment of the
section and its shape factor.

Ans. 256.5 kN m, 1.52.

15 mm

250 mm

300 mm

15 mm

15 mm

75 mm

FIGURE P.18.3

P.18.4 A cantilever beam of length 6 m has an additional support at a distance of 2 m
from its free end as shown in Fig. P.18.4. Determine the minimum value of W at which
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collapse occurs if the section of the beam is identical to that of Fig. P.18.3. State clearly
the form of the collapse mechanism corresponding to this ultimate load.

Ans. 128.3 kN, plastic hinge at C.

2 m2 m 2 m

DCA B
2W W

FIGURE P.18.4

P.18.5 A beam of length L is rigidly built-in at each end and carries a uniformly dis-
tributed load of intensity w along its complete span. Determine the ultimate strength
of the beam in terms of the plastic moment, MP, of its cross section.

Ans. 16MP/L2.

P.18.6 A simply supported beam has a cantilever overhang and supports loads as
shown in Fig. P.18.6. Determine the collapse load of the beam, stating the position of
the corresponding plastic hinge.

Ans. 2MP/L, plastic hinge at D.

W W

L /2L /3L /3 L /3

2W

A B C D E

FIGURE P.18.6

P.18.7 Determine the ultimate strength of the propped cantilever shown in Fig. P.18.7
and specify the corresponding collapse mechanism.

Ans. W = 4MP/L, plastic hinges at A and C.

A B C D

L/3 L/3 L/3

W W

FIGURE P.18.7

P.18.8 The working loads, W , on the propped cantilever of Fig. P.18.7 are each 150 kN
and its span is 6 m. If the yield stress of mild steel is 300 N/mm2, suggest a suitable
section for the beam using a load factor of 1.75 against collapse.

Ans. Universal Beam, 406 mm × 152 mm × 67 kg/m.
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P.18.9 The members of a steel portal frame have the relative plastic moments shown
in Fig. P.18.9. Calculate the required value of M for the ultimate loads shown.

Ans. 36.2 kN m.

A

M

B C D E

M

2M

3 m3 m

25 kN

30 kN 30 kN

3 m

4 m

F

FIGURE P.18.9

P.18.10 The frame shown in Fig. P.18.10 is pinned to its foundation and has relative
plastic moments of resistance as shown. If M has the value 108 kN m calculate the
value of W that will just cause the frame to collapse.

Ans. 60 kN.

6 m 2M

0.75W

3 m 3 m 3 m

4 m

A

M

WW

C

2M

B D

F

E

FIGURE P.18.10

P.18.11 Fig. P.18.11 shows a portal frame which is pinned to its foundation and which
carries vertical and horizontal loads as shown. If the relative values of the plastic
moments of resistance are those given determine the relationship between the load
W and the plastic moment parameter M . Calculate also the foundation reactions at
collapse.
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Ans. W = 0.3M . Horizontal: 0.44W at A, 0.56W at G. Vertical: 0.89W at A,
2.11W at G.

9 m 2m

3 m 3 m 3 m 3 m

6 m

G

M

F

WWW

C D E

2M

W B

A

FIGURE P.18.11

P.18.12 The steel frame shown in Fig. P.18.12 collapses under the loading shown.
Calculate the value of the plastic moment parameter M if the relative plastic moments
of resistance of the members are as shown. Calculate also the support reactions at
collapse.

Ans. M = 56 kN m. Vertical: 32 kN at A, 48 kN at D. Horizontal: 13.3 kN at A,
33.3 kN at D.

40 kN

20 kN B

A

M M

E F

2M

C

D

6 m

3 m3 m3 m3 m3 m

40 kN

FIGURE P.18.12

P.18.13 The pitched roof portal frame shown in Fig. P.18.13 has columns with a plastic
moment of resistance equal to M and rafters which have a plastic moment of resistance
equal to 1.3M . Calculate the smallest value of M that can be used so that the frame
will not collapse under the given loading.

Ans. M = 24 kN m.
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30 kN

5 kN

M

10 kN

C

D

E

B

1.3M 1.3M
3 m

5 m

3 m6 m

M

A

FIGURE P.18.13

P.18.14 The frame shown in Fig. P.18.14 is pinned to the foundation at D and to a wall
at A. The plastic moment of resistance of the column CD is 200 kN m while that of
the rafters AB and BC is 240 kN m. For the loading shown calculate the value of P at
which collapse will take place.

Ans. P = 106.3 kN.

B

C

P

D

P

A

6 m 6 m

M

2 m

3 m3 m

4 m

P/5

4 m

FIGURE P.18.14
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C h a p t e r 19 / Yield Line Analysis
of Slabs

The theory presented in this chapter extends the ultimate load analysis of structures,
begun in Chapter 18 for beams and frames, to reinforced concrete slabs.

Structural engineers, before the development of ultimate load analysis, designed rein-
forced concrete slabs using elastic plate theory. This approach, however, gives no
indication of the ultimate load-carrying capacity of a slab and further analysis had to be
carried out to determine this condition. Alternatively, designers would use standard
tables of bending moment distributions in orthogonal plates with different support
conditions. These standard tables were presented, for reinforced concrete slabs, in
Codes of Practice but were restricted to rectangular slabs which, fortunately, predom-
inate in reinforced concrete construction. However, for non-rectangular slabs and
slabs with openings, these tables cannot be used so that other methods are required.
The method presented here, yield line theory, was developed in the early 1960s by the
Danish engineer, K.W. Johansen.

19.1 YIELD LINE THEORY

There are two approaches to the calculation of the ultimate load-carrying capacity of
a reinforced concrete slab involving yield line theory. One is an energy method which
uses the principle of virtual work and the other, an equilibrium method, studies the
equilibrium of the various parts of the slab formed by the yield lines; we shall restrict the
analysis to the use of the principle of virtual work since this was applied in Chapter 18
to the calculation of collapse loads of beams and frames.

YIELD LINES

A slab is assumed to collapse at its ultimate load through a system of nearly straight lines
which are called yield lines. These yield lines divide the slab into a number of panels and
this pattern of yield lines and panels is termed the collapse mechanism; a typical collapse
mechanism for a simply supported rectangular slab carrying a uniformly distributed
load is shown in Fig. 19.1(a).

The panels formed by the supports and yield lines are assumed to be plane (at fracture
elastic deformations are small compared with plastic deformations and are ignored)

625



Chap-19 12/1/2005 12: 47 page 626

626 • Chapter 19 / Yield Line Analysis of Slabs

and therefore must possess a geometric compatibility; the section AA in Fig. 19.1(b)
shows a cross section of the collapsed slab. It is further assumed that the bending
moment along all yield lines is constant and equal to the value corresponding to the
yielding of the steel reinforcement. Also, the panels rotate about axes along the sup-
ported edges and, in a slab supported on columns, the axes of rotation pass through
the columns, see Fig. 19.2(b). Finally, the yield lines on the sides of two adjacent pan-
els pass through the point of intersection of their axes of rotation. Examples of yield
line patterns are shown in Fig. 19.2. Note the conventions for the representation of
different support conditions.

In the collapse mechanisms of Figs 19.1(a) and 19.2(b) the supports are simple supports
so that the slab is free to rotate along its supported edges. In Fig. 19.2(a) the left-hand
edge of the slab is built in and not free to rotate. At collapse, therefore, a yield line
will develop along this edge as shown. Along this yield line the bending moment will
be hogging, i.e. negative, and the reinforcing steel will be positioned in the upper
region of the slab; where the bending moment is sagging the reinforcing steel will be
positioned in the lower region.

FIGURE 19.1
Collapse mechanism

for a rectangular
slab

A

A

Yield line

Simple
support

Panel
Section AA

(a) (b)

FIGURE 19.2
Collapse

mechanisms and
diagrammatic

representation of
support conditions

Built-in
support

Simple
support

Axes of
rotation

Free
edge

Axes of rotation

Column

Free
edge

Simple supports

(a) (b)
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FIGURE 19.3
Determination of the

ultimate moment
along a yield line

Yield line

Reinforcement
Slab
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m1

m2

a cos a

a sin a

a

a

m1

ma m2
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(a) (b)

ULTIMATE MOMENT ALONG A YIELD LINE

Figure 19.3(a) shows a portion of a slab reinforced in two directions at right angles;
the ultimate moments of resistance of the reinforcement are m1 per unit width of slab
and m2 per unit width of slab. Let us suppose that a yield line occurs at an angle α

to the reinforcement m2. Now consider a triangular element formed by a length a of
the yield line and the reinforcement as shown in Fig. 19.3(b). Then, from the moment
equilibrium of the element in the direction of mα , we have

mαa = m1a cos α(cos α) + m2a sin α(sin α)

i.e.

mα = m1 cos2 α + m2 sin2 α (19.1)

Now, from the moment equilibrium of the element in the direction of mt

mta = m1a cos α(sin α) − m2a sin α(cos α)

so that

mt = (m1 − m2)
2

sin 2α (19.2)

Note that for an isotropic slab, which is one equally reinforced in two perpendicular
directions, m1 = m2 = m, say, so that

mα = m mt = 0 (19.3)

INTERNAL VIRTUAL WORK DUE TO AN ULTIMATE MOMENT

Figure 19.4 shows part of a slab and its axis of rotation. Let us suppose that at some
point in the slab there is a known yield line inclined at an angle α to the axis of rotation;
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FIGURE 19.4
Determination of

the work done by an
ultimate moment
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the ultimate moment is m per unit length along the yield line. Let us further suppose
that the slab is given a small virtual rotation θ . The virtual work done by the ultimate
moment is then given by

VW (m) = (mL)(cosα)θ = m(L cos α)θ (19.4)

We see, therefore, from Eq. (19.4), that the internal virtual work done by an ultimate
moment along a yield line is the value of the moment multiplied by the angle of rotation
of the slab and the projection of the yield line on the axis of rotation.

Usually, rather than give a panel of a slab a virtual rotation, it is simpler to give a point
on a yield line a unit virtual displacement. If, in Fig. 19.4 for example, the point A is
given a unit virtual displacement then

θ = 1
b

where b is the perpendicular distance of A from the axis of rotation. Clearly the
displacement of B due to θ would be greater than unity.

VIRTUAL WORK DUE TO AN APPLIED LOAD

For a slab subjected to a distributed load of intensity w(x, y) the virtual work done by
the load corresponding to the virtual rotation of the slab panels is given by

VW (w) =
∫∫

wu dx dy (19.5)

where u is the virtual displacement at any point (x, y).

Conveniently, many applied loads on slabs are uniformly distributed so that we may
calculate the total load on a slab panel and then determine the displacement of its
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centroid in terms of the given virtual displacement; the virtual work done by the load
is then the product of the two and the total virtual work is the sum of the virtual works
from each panel.

Having obtained the virtual work corresponding to the internal ultimate moments and
the virtual work due to the applied load then the principle of virtual work gives

VW (w) = VW (m) (19.6)

which gives the ultimate load applied to the slab in terms of its ultimate moment of
resistance. This means, in fact, that we can calculate the required moment of resistance
for a slab which supports a given load or, alternatively, we can obtain the maximum
load that can be applied to a slab having a known moment of resistance. In the former
case the given, or working, load is multiplied by a load factor to obtain an ultimate
load while in the latter case the ultimate load is divided by the load factor.

The yield line pattern assumed for the collapse mechanism in a slab may not, of course,
be the true pattern so that, as for the plastic analysis of beams and frames, the virtual
work equation (Eq. (19.6)) gives either the correct ultimate moment or a value smaller
than the correct ultimate moment. Therefore, for a given ultimate load (actual load ×
load factor), the calculated required ultimate moment of resistance is either correct
or less than it should be. In other words, the solution is either correct or unsafe so that
the virtual work approach gives an upper bound on the carrying capacity of the slab.
Generally, in design, two or more yield line patterns are assumed and the maximum
value of the ultimate moment of resistance obtained.

EXAMPLE 19.1 The slab shown in Fig. 19.5 is isotropically reinforced and is
required to carry an ultimate design load of 12 kN/m2. If the ultimate moment of
resistance of the reinforcement is m per unit width of slab in the direction shown,
calculate the value of m for the given yield line pattern.

We note that the slab is simply supported on three sides and is free on the other.
Suppose that the junction c of the yield lines is given a unit virtual displacement.

Then

θA = 1
x

θB = θC = 1
2

The internal virtual work is therefore given by

VW (m) = m × 4
1
x

+ 2m × 4
1
2

(i)

The first term on the right-hand side of Eq. (i) is the work done by the ultimate moment
on the diagonal yield lines ac and bc on the boundary of panel A and is obtained as
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FIGURE 19.5 Slab of
Ex. 19.1

follows. We have seen that, for an isotropic slab, the ultimate moment along an inclined
yield line is equal to the moment of resistance of the reinforcement irrespective of the
inclination of the reinforcement to the yield line (Eq. (19.3)). Further, the work done
by the ultimate moment on an inclined yield line is the product of the moment, the
projection of the yield line on the axis of rotation and the angle of rotation of the panel
(Eq. (19.4)). The second term on the right-hand side of Eq. (i) represents the work
done by the ultimate moment on the diagonal and horizontal yield lines bordering
each of the panels B and C; from symmetry the contribution of both panels will be the
same. From the above argument and considering panel B

VW (m)B = mx
(

1
2

)
+ m(4 − x)

(
1
2

)
= 4m

(
1
2

)

Similarly for panel C.

Equation (i) simplifies to

VW (m) = 4m
(

1
x

+ 1
)

(ii)

The work done by the applied load is most easily found by dividing each of the panels
B and C into a rectangle and a triangle, panel A is a triangle. Then

VW (w) = 12
{

1
2

× 4x × 1
3

+ 2
[

1
2

x × 2 × 1
3

+ (4 − x) × 2 × 1
2

]}
(iii)
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In Eq. (iii) the displacement of the centroids of the triangles in panels A, B and C is
1/3 while the displacement of the centroids of the rectangular portions of panels B and
C is 1/2. Eq. (iii) simplifies to

VW (w) = 96 − 8x (iv)

Equating Eqs (ii) and (iv)

4m
(

1
x

+ 1
)

= 96 − 8x

from which

m = 2

(
12x − x2

1 + x

)
(v)

For a maximum, (dm/dx) = 0, i.e.

0 = (1 + x)(12 − 2x) − (12x − x2)
(1 + x)2

which reduces to

x2 + 2x − 12 = 0

from which

x = 2.6 m (the negative root is ignored)

Then, from Eq. (v)

m = 13.6 kNm/m

In some cases the relationship between the ultimate moment m and the dimension x
is complex so that the determination of the maximum value of m by differentiation is
tedious. A simpler approach would be to adopt a trial and error method in which a
series of values of x are chosen and then m plotted against x.

In the above we have calculated the internal virtual work produced by an ultimate
moment of resistance which acts along a yield line (Fig. 19.4). This situation would
occur if the direction of the reinforcement was perpendicular to the direction of the
yield line or if the reinforcement was isotropic (see Eq. (19.3)). A more complicated
case arises when a band of reinforcement is inclined at an angle to a yield line and the
slab is not isotropic.

Consider the part of a slab shown in Fig. 19.6 in which the yield line AB is of length L
and is inclined at an angle α to the axis of rotation. Suppose also that the direction of
the reinforcement m is at an angle β to the normal to the yield line.
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FIGURE 19.6
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Then, if the point B is given a unit virtual displacement perpendicular to the plane of
the slab the angle of rotation θ is given by

θ = 1
b

where b is the perpendicular distance of B from the axis of rotation. Further, the
rotation θr of the slab in a plane parallel to the reinforcement is given by

θr = 1
r

where r is the distance of B from the axis of rotation in a direction parallel to the
reinforcement.

From the above

θr = θ
b
r

(19.7)

Also, from triangle BCD

b
r

= cos(α + β)

Then, from Eq. (19.7)

θr = θ cos(α + β) (19.8)

Now, from Eq. (19.1) in which, in this case, m1 = m, m2 = 0 and α = β

mα = m cos2 β (19.9)

and

mt =
(m

2

)
sin 2β (19.10)
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The internal virtual work due to the rotation θ is given by

VW (m) = (mαL)(cos α)θ − (mtL)(sin α)θ (19.11)

where the component of (mtL) perpendicular to the axis of rotation opposes the
component of (mαL). Substituting in Eq. (19.11) for mα and mt from Eqs (19.9) and
(19.10), respectively we have

VW (m) = (mL cos2 β)(cos α)θ −
[(m

2

)
L sin 2β

]
(sin α)θ

which simplifies to

VW (m) = m(L cos β)θ(cos β cos α − sin β sin α)

or

VW (m) = m(L cos β)θ cos (α + β) (19.12)

Substituting for θ cos (α + β) from Eq. (19.8) gives

VW (m) = m(L cos β)θr (19.13)

In Eq. (19.13) the term L cos β is the projection BF of the yield line AB on a
line perpendicular to the direction of the reinforcement. Equation (19.13) may be
written as

VW (m) = m(L cos β)
1
r

(19.14)

where, as we have seen, r is the radius of rotation of the slab in a plane parallel to the
direction of the reinforcement.

EXAMPLE 19.2 Determine the required moment parameter m for the slab shown
in Fig. 19.7 for an ultimate load of 10 kN/m2; the relative values of the reinforcement
are as shown.

Note that in Fig. 19.7 the reinforcement of 1.2m resists a hogging bending moment at
the built-in edge of the slab and is shown dotted.

The first step is to choose a yield line pattern. We shall assume the collapse mechanism
shown in Fig. 19.8; in practice a number of different patterns might be selected and
investigated. Note that there will be a yield line ad along the built-in edge. Suppose,
now, that we impose a unit virtual displacement on the yield line at f; e will suffer the
same virtual displacement since ef and ab are parallel. The angle of rotation of the
panel B (and C) is then 1/2. Panel A rotates about the line ad and its angle of rotation
is 1/ge where ge is the perpendicular distance of ad from e. From the dimensions given
ad = 4.5 m and ge = he cos φ = (1 + x)(4/4.5) = 0.89(1 + x).
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FIGURE 19.7 Slab
of Ex. 19.2
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The slab is not isotropic so that we shall employ the result of Eq. (19.14) to determine
the internal virtual work due to the ultimate moments in the different parts of the
slab. Therefore, for each yield line we need to determine its projection on a line
perpendicular to the reinforcement and the corresponding radius of rotation. We
shall adopt a methodical approach.
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(1) Panel A

• Reinforcement 1.2m
The axis of rotation is the line ad and since the reinforcement is perpendicular
to the yield line ad the projected length is ad = 4.5 m. The radius of rotation is
ge = 0.89(1 + x). The virtual work is then

1.2m × 4.5
[

1
0.89

(1 + x)
]

(i)

• Reinforcement 0.5m
The projected length of the yield lines de and ea parallel to the reinforcement
is 4 m and the radius of rotation is he = 1 + x. The virtual work is then

0.5m × 4
[

1
(1 + x)

]
(ii)

• Reinforcement 1.0m
The projection of the yield line de in a direction parallel to the reinforcement is
dk = 2 + x and the corresponding radius of rotation is ej = he/tan φ = 2(1 + x).

For the yield line ea the projected length is na = x and its radius of rotation is
the same as that of the yield line de, i.e. 2(1 + x). However, since the centre of
rotation is at j the displacement of the reinforcement crossing the yield line ea
is less than its displacement as it crosses the yield line de. At de, therefore, the
reinforcement will be sagging while at ea it will be hogging. The contributions
to the virtual work at these two points will therefore be of opposite sign. The
virtual work is then

1.0m[(2 + x) − x]
2(1 + x)

= 1.0m
(1 + x)

(iii)

(2) Panel B

• Reinforcement 1.0m
We note that the 0.5m reinforcement is parallel to the axis of rotation and does
not, therefore, contribute to the virtual work in this panel. The projection of the
yield lines ae and ef is 4 m and the radius of rotation is 2 m. The virtual work is
then

1.0m × 4
2

= 2.0m (iv)

(3) Panel C

• Reinforcement 1.0m
The situation in panel C is identical to that in panel B except that the projection
of the yield lines de and ef is 6 m. The virtual work is then

3.0m (v)



Chap-19 12/1/2005 12: 47 page 636

636 • Chapter 19 / Yield Line Analysis of Slabs

Adding the results of Eqs (i)–(v) we obtain the total internal virtual work, i.e.

VW (m) =
(

14.07 + 5x
1 + x

)
(vi)

The external virtual work may be found by dividing the slab into rectangles
enpf and ekqf and triangles ane, ekd and ade. Since the displacement of e is
unity the displacement of each of the centroids of the rectangles will be 1/2 and
the displacement of each of the centroids of the triangles will be 1/3. The total
virtual work due to the applied load is then given by

VW (w) = 10
[

2(4 − x)
(

2
2

)
+
( x

2

)(2
3

)
+ 2(2 + x)

(
1
2

)(
1
3

)

+ 4.5 × 0.89(1 + x)
(

1
2

)(
1
3

)]

which simplifies to

VW (w) = 10(9.33 − 0.67x) (vii)

Equating internal and external virtual works, Eqs (vi) and (vii), we have

m = 10(1 + x)(9.33 − 0.67x)
14.07 + 5x

(viii)

The value of x corresponding to the maximum value of m may be found by
differentiating Eq. (viii) with respect to x and equating to zero. Alternatively, a
series of trial values of x may be substituted in Eq. (viii) and the maximum value
of m obtained. Using the former approach gives x = 2.71 m from which

m = 10.09 kNm/m

19.2 DISCUSSION

The method presented here for the analysis of reinforced concrete slabs gives, as
we have seen, upper bound values for the collapse loads of slabs. However, in rela-
tively simple cases of slab geometry and loading, the yield line method can be used
as a design method since the fracture pattern can be obtained with reasonable accu-
racy. Also, in practice the actual collapse load of a slab may be above the calculated
value because of secondary effects such as the kinking of the reinforcing steel in the
vicinity of the fracture line and the effect of horizontal edge restraints which induce
high compressive forces in the plane of the slab with a consequent increase in load
capacity.

An alternative to yield line theory is the strip method proposed by A. Hillerborg at
Stockholm in 1960. This method is a direct design procedure as opposed to yield line
theory which is analytical and therefore will not be investigated here.
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P R O B L E M S

P.19.1 Determine, for the slab shown in Fig. P.19.1, the required moment parameter
m if the design ultimate load is 14 kN/m2.

Ans. 24.31 kNm/m.

FIGURE P.19.1

1.0m

0.6m

10 m

45°

0.4m

0.6m
5 m

P.19.2 The reinforced concrete slab shown in Fig. P.19.2(a) is designed to have an
ultimate load capacity of 10 kN/m2 across its complete area. Determine the required
value of the moment parameter m given that the yield line pattern is as shown.

If an opening is introduced as shown in Fig. P.19.2(b) determine the corresponding
required value of the moment parameter m.

Ans. 32.37 kNm/m, 35.27 kNm/m.

FIGURE P.19.2
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1.0m 3 m 3 m

3 m7 m

(a) (b)
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45°

P.19.3 In the slab shown in Fig. P.19.3 Area 1 carries an ultimate load of intensity
12 kN/m2 while Area 2 carries an ultimate load of intensity 8 kN/m2. Determine the
value of the moment parameter m assuming the yield line pattern shown.

Ans. 14.73 kNm/m.
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FIGURE P.19.3
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P.19.4 Calculate the intensity of uniformly distributed load that would cause the rein-
forced concrete slab shown in Fig. P.19.4 to collapse given the yield line pattern
shown.

Ans. 15. 45 kN/m2.

FIGURE P.19.4

x

20 kNm/m

20 kNm/m

16 kNm/m

16 kNm/m
8 kNm/m

2.5 m

2.5 m

8 m

P.19.5 The reinforced concrete slab shown in Fig. P.19.5 is to be designed to carry
an ultimate load of 15 kN/m2. The distribution of reinforcement is to be such that the
ultimate moments of resistance per unit width of slab for sagging bending are isotropic
and of value m while the ultimate moment of resistance per unit width at continuous
edges is 1.2m. For the yield line pattern shown derive the general work equation and
estimate the value of m by using trial values of x = 2.0, 2.5 and 3.0 m.

Ans. 9.70 kNm/m.
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FIGURE P.19.5
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1 m

4 m

x

P.19.6 The reinforced concrete slab shown in Fig. P.19.6 is reinforced such that the
sagging moments of resistance are isotropic and of value 1.0 m while the hogging
moment of resistance at all built-in edges is 1.4 m. Estimate the required value of the
moment parameter m if the ultimate design load intensity is 20 kN/m2.

Ans. 15.48 kNm/m for x = 2.5 m.

FIGURE P.19.6
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The structures we have considered so far have been subjected to loading systems that
were stationary, i.e. the loads remained in a fixed position in relation to the structure.
In many practical situations, however, structures carry loads that vary continuously.
For example, a building supports a system of stationary loads which consist of its self-
weight, the weight of any permanent fixtures (such as partitions, machinery, etc.) and
also a system of imposed or ‘live’ loads which comprise snow loads, wind loads or any
movable equipment. The structural elements of the building must then be designed
to withstand the worst combination of these fixed and movable loads.

Other forms of movable load consist of vehicles and trains that cross bridges and
viaducts. Again, these structures must be designed to support their self-weight, the
weight of any permanent fixtures such as a road deck or railway track and also the
forces produced by the passage of vehicles or trains. It is then necessary to determine
the critical positions of the vehicles or trains in relation to the bridge or viaduct.
Although these loads are moving loads, they are assumed to be moving or changing at
such a slow rate that dynamic effects (such as vibrations and oscillating stresses) are
absent.

The effects of loads that occupy different positions on a structure can be studied by
means of influence lines. Influence lines give the value at a particular point in a structure
of functions such as shear force, bending moment and displacement for all positions
of a travelling unit load; they may also be constructed to show the variation of support
reaction with the unit load position. From these influence lines the value of a function
at a point can be calculated for a system of loads traversing the structure. For this we
use the principle of superposition so that the structural systems we consider must be
linearly elastic.

20.1 INFLUENCE LINES FOR BEAMS IN CONTACT WITH THE LOAD

We shall now investigate the construction of influence lines for support reactions and
for the shear force and bending moment at a section of a beam when the travelling
load is in continuous contact with the beam.

640
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FIGURE 20.1
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Consider the simply supported beam AB shown in Fig. 20.1(a) and suppose that we
wish to construct the influence lines for the support reactions, RA and RB, and also for
the shear force, SK, and bending moment, MK, at a given section K; all the influence
lines are constructed by considering the passage of a unit load across the beam.

RA influence line

Suppose that the unit load has reached a position C, a distance x from A, as it travels
across the beam. Then, considering the moment equilibrium of the beam about B
we have

RAL − 1(L − x) = 0
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which gives

RA = L − x
L

(20.1)

Hence RA is a linear function of x and when x = 0, RA = 1 and when x = L, RA = 0;
both these results are obvious from inspection. The influence line (IL) for RA (RAIL)
is then as shown in Fig. 20.1(b). Note that when the unit load is at C, the value of RA

is given by the ordinate cd in the RA influence line.

RB influence line

The influence line for the reaction RB is constructed in an identical manner. Thus,
taking moments about A

RBL − 1x = 0

so that

RB = x
L

(20.2)

Equation (20.2) shows that RB is a linear function of x. Further, when x = 0, RB = 0
and when x = L, RB = 1, giving the influence line shown in Fig. 20.1(c). Again, with
the unit load at C the value of RB is equal to the ordinate c1e in Fig. 20.1(c).

SK influence line

The value of the shear force at the section K depends upon the position of the unit
load, i.e. whether it is between A and K or between K and B. Suppose initially that the
unit load is at the point C between A and K. Then the shear force at K is given by

SK = RB

so that from Eq. (20.2)

SK = x
L

(0 ≤ x ≤ a) (20.3)

The sign convention for shear force is that adopted in Section 3.2. We could have
established Eq. (20.3) by expressing SK in terms of RA. Thus

SK = −RA + 1

Substituting for RA from Eq. (20.1) we obtain

SK = −L − x
L

+ 1 = x
L

as before. Clearly, however, expressing SK in the terms of RB is the most direct
approach.

We see from Eq. (20.3) that SK varies linearly with the position of the load. Therefore,
when x = 0, SK = 0 and when x = a, SK = a/L, the ordinate kg in Fig. 20.1(d), and is
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the value of SK with the unit load immediately to the left of K. Thus, with the load
between A and K the SK influence line is the line a2g in Fig. 20.1(d) so that, when the
unit load is at C, the value of SK is equal to the ordinate c2f.

With the unit load between K and B the shear force at K is given by

SK = −RA (or SK = RB − 1)

Substituting for RA from Eq. (20.1) we have

SK = −L − x
L

(a ≤ x ≤ L) (20.4)

Again SK is a linear function of load position. Therefore when x = L, SK = 0 and when
x = a, i.e. the unit load is immediately to the right of K, SK = −(L − a)/L which is the
ordinate kh in Fig. 20.1(d).

From Fig. 20.1(d) we see that the gradient of the line a2g is equal to [(a/L) − 0]/a = 1/L
and that the gradient of the line hb2 is equal to [0 + (L − a)/L]/(L − a) = 1/L. Thus
the gradient of the SK influence line is the same on both sides of K. Furthermore,
gh = kh + kg or gh = (L − a)/L + a/L = 1.

MK influence line

The value of the bending moment at K also depends upon whether the unit load is to
the left or right of K. With the unit load at C

MK = RB(L − a) (or MK = RAa − 1(a − x))

which, when substituting for RB from Eq. (20.2) becomes

MK = (L − a)x
L

(0 ≤ x ≤ a) (20.5)

From Eq. (20.5) we see that MK varies linearly with x. Therefore, when x = 0, MK = 0
and when x = a, MK = (L − a)a/L, which is the ordinate k1j in Fig. 20.1(e).

Now with the unit load between K and B

MK = RAa

which becomes, from Eq. (20.1)

MK =
(

L − x
L

)
a (a ≤ x ≤ L) (20.6)

Again MK is a linear function of x so that when x = a, MK = (L − a)a/L, the ordinate k1j
in Fig. 20.1(e), and when x = L, MK = 0. The complete influence line for the bending
moment at K is then the line a3jb3 as shown in Fig. 20.1(e). Hence the bending moment
at K with the unit load at C is the ordinate c3i in Fig. 20.1(e).
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In establishing the shear force and bending moment influence lines for the section K
of the beam in Fig. 20.1(a) we have made use of the previously derived relationships
for the support reactions, RA and RB. If only the influence lines for SK and MK had
been required, the procedure would have been as follows.

With the unit load between A and K

SK = RB

Now, taking moments about A

RBL − 1x = 0

so that

RB = x
L

Therefore

SK = x
L

This, of course, amounts to the same procedure as before except that the calculation
of RB follows the writing down of the expression for SK. The remaining equations for
the influence lines for SK and MK are derived in a similar manner.

We note from Fig. 20.1 that all the influence lines are composed of straight-line seg-
ments. This is always the case for statically determinate structures. We shall therefore
make use of this property when considering other beam arrangements.

EXAMPLE 20.1 Draw influence lines for the shear force and bending moment at
the section C of the beam shown in Fig. 20.2(a).

In this example we are not required to obtain the influence lines for the support reac-
tions. However, the influence line for the reaction RA has been included to illustrate
the difference between this influence line and the influence line for RA in Fig. 20.1(b);
the reader should verify the RA influence line in Fig. 20.2(b).

Since we have established that influence lines for statically determinate structures
consist of linear segments they may be constructed by placing the unit load at different
positions, which will enable us to calculate the principal values.

SC influence line

With the unit load at A

SC = −RB = 0 (by inspection)

With the unit load immediately to the left of C

SC = RB (i)
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Now taking moments about A we have

RB × 6 − 1 × 2 = 0

which gives

RB = 1
3

Therefore, from Eq. (i)

SC = 1
3

(ii)

Now with the unit load immediately to the right of C

SC = −RA (iii)

Taking moments about B gives

RA × 6 − 1 × 4 = 0

whence

RA = 2
3

so that, from Eq. (iii)

SC = −2
3
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With the unit load at B

SC = −RA = 0 (by inspection) (iv)

Placing the unit load at D we have

SC = −RA (v)

Again taking moments about B

RA × 6 + 1 × 2 = 0

from which

RA = −1
3

Hence

SC = 1
3

(vi)

The complete influence line for the shear force at C is then as shown in Fig. 20.2(c).
Note that the gradient of each of the lines a1e, fb1 and b1g is the same.

MC influence line

With the unit load placed at A

MC = +RB × 4 = 0 (RB = 0 by inspection)

With the unit load at C

MC = +RA × 2 = +4
3

in which RA = 2/3 with the unit load at C (see above). With the unit load at B

MC = +RA × 2 = 0 (RA = 0 by inspection)

Finally, with the unit load at D

MC = +RA × 2

but, again from the calculation of SC, RA = −1/3. Hence

MC = −2
3

The complete influence line for the bending moment at C is shown in Fig. 20.2(d).
Note that the line hb2i is one continuous line.
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20.2 MUELLER–BRESLAU PRINCIPLE

A simple and convenient method of constructing influence lines is to employ the
Mueller–Breslau principle which gives the shape of an influence line without the values
of its ordinates; these, however, are easily calculated for statically determinate systems
from geometry.

Consider the simply supported beam, AB, shown in Fig. 20.3(a) and suppose that a
unit load is crossing the beam and has reached the point C a distance x from A. Suppose
also that we wish to determine the influence line for the moment at the section K, a
distance a from A. We now impose a virtual displacement, vC, at C such that internal
work is done only by the moment at K, i.e. we allow a change in gradient, θK, at K so
that the lengths AK and KB rotate as rigid links as shown in Fig. 20.3(b). Therefore,
from the principle of virtual work (Chapter 15), the external virtual work done by the
unit load is equal to the internal virtual work done by the moment, MK, at K. Thus

1vC = MKθK

If we choose vC so that θK is equal to unity

MK = vC (20.7)

i.e. the moment at the section K due to a unit load at the point C, an arbitrary distance
x from A, is equal to the magnitude of the virtual displacement at C. But, as we have

FIGURE 20.3
Verification of the
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seen in Section 20.1, the moment at a section K due to a unit load at a point C is
the influence line for the moment at K. Therefore, the MK influence line may be
constructed by introducing a hinge at K and imposing a unit change in angle at K; the
displaced shape is then the influence line.

The argument may be extended to the construction of the influence line for the shear
force, SK, at the section K. Suppose now that the virtual displacement, vC, produces a
shear displacement, vS,K, at K as shown in Fig. 20.3(c). Note that the direction of vC is
now in agreement with the sign convention for shear force. Again, from the principle
of virtual work

1vC = SKvS,K

If we choose vC so that vS,K = 1

SK = vC (20.8)

Hence, since the shear force at the section K due to a unit load at any point C is the
influence line for the shear force at K, we see that the displaced shape in Fig. 20.3(c) is
the influence line for SK when the displacement at K produced by the virtual displace-
ment at C is unity. A similar argument may be used to establish reaction influence
lines.

The Mueller–Breslau principle demonstrated above may be stated in general terms as
follows:

The shape of an influence line for a particular function (support reaction, shear force,
bending moment, etc.) can be obtained by removing the resistance of the structure to that
function at the section for which the influence line is required and applying an internal
force corresponding to that function so that a unit displacement is produced at the section.
The resulting displaced shape of the structure then represents the shape of the influence
line.

EXAMPLE 20.2 Use the Mueller–Breslau principle to determine the shape of
the shear force and bending moment influence lines for the section C in the beam in
Ex. 20.1 (Fig. 20.2(a)) and calculate the values of the principal ordinates.

In Fig. 20.4(b) we impose a unit shear displacement at the section C. In effect we are
removing the resistance to shear of the beam at C by cutting the beam at C. We then
apply positive shear forces to the two faces of the cut section in accordance with the
sign convention of Section 3.2. Thus the beam to the right of C is displaced downwards
while the beam to the left of C is displaced upwards. Since the slope of the influence
line is the same on each side of C we can determine the ordinates of the influence line
by geometry. Hence, in Fig. 20.4(b)

c1e
c1a1

= c1f
c1b1



chap-20 12/1/2005 12: 48 page 649

20.3 Systems of Travelling Loads • 649

Therefore

c1e = c1a1

c1b1
c1f = 1

2
c1f

Further, since

c1e + c1f = 1

c1e = 1
3

c1f = 2
3

as before. The ordinate d1g (= 1
3 ) follows.

In Fig. 20.4(c) we have, from the geometry of a triangle,

α + β = 1 (external angle = sum of opposite internal angles)

Then, assuming that the angles α and β are small so that their tangents are equal to
the angles in radians

c2h
c2a2

+ c2h
c2b2

= 1

or

c2h
(

1
2

+ 1
4

)
= 1

whence

c2h = 4
3

as in Fig. 20.2(d). The ordinate d2i (= 2
3 ) follows from similar triangles.
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20.3 SYSTEMS OF TRAVELLING LOADS

Influence lines for beams are constructed, as we have seen, by considering the passage
of a unit load across a beam or by employing the Mueller–Breslau principle. Once
constructed, an influence line may be used to determine the value of the particular
function for shear force, bending moment, etc. at a section of a beam produced by
any system of travelling loads. These may be concentrated loads, distributed loads or
combinations of both. Generally we require the maximum values of a function as the
loads cross the beam.

CONCENTRATED LOADS

By definition the ordinate of an influence line at a point gives the value of the function
at a specified section of a beam due to a unit load positioned at the point. Thus, in the
beam shown in Fig. 20.1(a) the shear force at K due to a unit load at C is equal to the
ordinate c2f in Fig. 20.1(d). Since we are assuming that the system is linear it follows
that the shear force at K produced by a load, W , at C is W c2f.

The argument may be extended to any number of travelling loads whose positions
are fixed in relation to each other. In Fig. 20.5(a), for example, three concentrated
loads, W1, W2 and W3 are crossing the beam AB and are at fixed distances c and d
apart. Suppose that they have reached the positions C, D and E, respectively. Let us

FIGURE 20.5
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also suppose that we require values of shear force and bending moment at the section
K; the SK and MK influence lines are then constructed using either of the methods
described in Sections 20.1 and 20.2.

Since the system is linear we can use the principle of superposition to determine the
combined effects of the loads. Therefore, with the loads in the positions shown, and
referring to Fig. 20.5(b)

SK = W1s1 + W2s2 + W3s3 (20.9)

in which s1, s2 and s3 are the ordinates under the loads in the SK influence line.

Similarly, from Fig. 20.5(c)

MK = W1m1 + W2m2 + W3m3 (20.10)

where m1, m2 and m3 are the ordinates under the loads in the MK influence line.

Maximum shear force at K

It can be seen from Fig. 20.5(b) that, as the loads W1, W2 and W3 move to the right,
the ordinates s1, s2 and s3 increase in magnitude so that the shear force at K increases
positively to a peak value with W1 just to the left of K. When W1 passes to the right of
K, the ordinate, s1, becomes negative, then

SK = −W1s1 + W2s2 + W3s3

and the magnitude of SK suddenly drops. As the loads move further to the right the
now negative ordinate s1 decreases in magnitude while the ordinates s2 and s3 increase
positively. Therefore, a second peak value of SK occurs with W2 just to the left of K.
When W2 passes to the right of K the ordinate s2 becomes negative and

SK = −W1s1 − W2s2 + W3s3

so that again there is a sudden fall in the positive value of SK. A third peak value is
reached with W3 just to the left of K and then, as W3 passes to the right of K, SK

becomes completely negative. The same arguments apply for negative values of SK as
the loads travel from right to left.

Thus we see that maximum positive and negative values of shear force at a section of a
beam occur when one of the loads is at that section. In some cases it is obvious which
load will give the greatest value, in other cases a trial and error method is used.

Maximum bending moment at K

A similar situation arises when determining the position of a set of loads to give the
maximum bending moment at a section of a beam although, as we shall see, a more
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methodical approach than trial and error may be used when the critical load position
is not obvious.

With the loads W1, W2 and W3 positioned as shown in Fig. 20.5(a) the bending moment,
MK, at K is given by Eq. (20.10), i.e.

MK = W1m1 + W2m2 + W3m3

As the loads move to the right the ordinates m1, m2 and m3 increase in magnitude
until W1 passes K and m1 begins to decrease. Thus MK reaches a peak value with W1

at K. Further movement of the loads to the right causes m2 and m3 to increase, while
m1 decreases so that a second peak value occurs with W2 at K; similarly, a third peak
value is reached with W3 at K. Thus the maximum bending moment at K will occur
with a load at K. In some cases this critical load is obvious, or it may be found by trial
and error as for the maximum shear force at K. However, alternatively, the critical
load may be found as follows.

Suppose that the beam in Fig. 20.5(a) carries a system of concentrated loads, W1,
W2, . . . , Wj, . . . , Wn, and that they are in any position on the beam. Then, from
Eq. (20.10)

MK =
n∑

j=1

Wjmj (20.11)

Suppose now that the loads are given a small displacement δx. The bending moment
at K then becomes MK + δMK and each ordinate m becomes m + δm. Therefore, from
Eq. (20.11)

MK + δMK =
n∑

j=1

Wj(mj + δmj)

or

MK + δMK =
n∑

j=1

Wjmj +
n∑

j=1

Wjδmj

whence

δMK =
n∑

j=1

Wjδmj

Therefore, in the limit as δx→0

dMK

dx
=

n∑
j=1

Wj
dmj

dx

in which dmj/dx is the gradient of the MK influence line. Therefore, if

n∑
j=1

Wj,L
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is the sum of the loads to the left of K and
n∑

j=1

Wj,R

is the sum of the loads to the right of K, we have, from Eqs (20.5) and (20.6)

dMK

dx
=

n∑
j=1

Wj,L

(
L − a

L

)
+

n∑
j=1

Wj,R

(
− a

L

)

For a maximum value of MK, dMK/dx = 0 so that

n∑
j=1

Wj,L

(
L − a

L

)
=

n∑
j=1

Wj,R
a
L

or

1
a

n∑
j=1

Wj,L = 1
L − a

n∑
j=1

Wj,R (20.12)

From Eq. (20.12) we see that the bending moment at K will be a maximum with one
of the loads at K (from the previous argument) and when the load per unit length of
beam to the left of K is equal to the load per unit length of beam to the right of K.
Part of the load at K may be allocated to AK and part to KB as required to fulfil this
condition.

Equation (20.12) may be extended as follows. Since

n∑
j=1

Wj =
n∑

j=1

Wj,L +
n∑

j=1

Wj,R

then
n∑

j=1

Wj,R =
n∑

j=1

Wj −
n∑

j=1

Wj,L

Substituting for
n∑

j=1

Wj,R

in Eq. (20.12) we obtain

1
a

n∑
j=1

Wj,L =
(

1
L − a

) n∑
j=1

Wj −
n∑

j=1

Wj,L




Rearranging we have

L − a
a

=
∑n

j=1 Wj −∑n
j=1 Wj,L∑n

j=1 Wj,L
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whence

1
L

n∑
j=1

Wj = 1
a

n∑
j=1

Wj,L (20.13)

Combining Eqs (20.12) and (20.13) we have

1
L

n∑
j=1

Wj = 1
a

n∑
j=1

Wj,L = 1
L − a

n∑
j=1

Wj,R (20.14)

Therefore, for MK to be a maximum, there must be a load at K such that the load per
unit length over the complete span is equal to the load per unit length of beam to the
left of K and the load per unit length of beam to the right of K.

EXAMPLE 20.3 Determine the maximum positive and negative values of shear force
and the maximum value of bending moment at the section K in the simply supported
beam AB shown in Fig. 20.6(a) when it is crossed by the system of loads shown in Fig.
20.6(b).

The influence lines for the shear force and bending moment at K are constructed
using either of the methods described in Sections 20.1 and 20.2 as shown in Fig. 20.6(c)
and (d).

FIGURE 20.6
Determination of

the maximum shear
force and bending

moment at a section
of a beam

BKA

6 m 14 m

(a)

�ve

3 kN 4 kN 5 kN

4 m 4 m

(b)

4.2

a1 b1

k1

(d)

0.7

a
�ve k

0.3

�ve

b

(c)
SKIL

MKIL
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Maximum positive shear force at K

It is clear from inspection that SK will be a maximum with the 5 kN load just to the
left of K, in which case the 3 kN load is off the beam and the ordinate under the 4 kN
load in the SK influence line is, from similar triangles, 0.1. Then

SK(max) = 5 × 0.3 + 4 × 0.1 = 1.9 kN

Maximum negative shear force at K

There are two possible load positions which could give the maximum negative value of
shear force at K; neither can be eliminated by inspection. First we shall place the 3 kN
load just to the right of K. The ordinates under the 4 and 5 kN loads are calculated
from similar triangles and are −0.5 and −0.3, respectively. Then

SK = 3 × (−0.7) + 4 × (−0.5) + 5 × (−0.3) = −5.6 kN

Now with the 4 kN load just to the right of K, the ordinates under the 3 and 5 kN loads
are 0.1 and −0.5, respectively. Then

SK = 3 × (0.1) + 4 × (−0.7) + 5 × (−0.5) = −5.0 kN

Therefore the maximum negative value of SK is −5.6 kN and occurs with the 3 kN load
immediately to the right of K.

Maximum bending moment at K

We position the loads in accordance with the criterion of Eq. (20.14). The load per unit
length of the complete beam is (3 + 4 + 5)/20 = 0.6 kN/m. Therefore if we position the
4 kN load at K and allocate 0.6 kN of the load to AK the load per unit length on AK is
(3 + 0.6)/6 = 0.6 kN/m and the load per unit length on KB is (3.4 + 5)/14 = 0.6 kN/m.
The maximum bending moment at K therefore occurs with the 4 kN load at K; in this
example the critical load position could have been deduced by inspection.

With the loads in this position the ordinates under the 3 and 5 kN loads in the MK

influence line are 1.4 and 3.0, respectively. Then

MK(max) = 3 × 1.4 + 4 × 4.2 + 5 × 3.0 = 36.0 kNm

DISTRIBUTED LOADS

Figure 20.7(a) shows a simply supported beam AB on which a uniformly distributed
load of intensity w and length l is crossing from left to right. Suppose we wish to
obtain values of shear force and bending moment at the section K of the beam. Again
we construct the SK and MK influence lines using either of the methods described in
Sections 20.1 and 20.2.
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FIGURE 20.7 Shear
force and bending
moment due to a

moving uniformly
distributed load
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If we consider an elemental length δl of the load, we may regard this as a concentrated
load of magnitude wδl. The shear force, δSK, at K produced by this elemental length
of load is then from Fig. 20.7(b)

δSK = wδls

The total shear force, SK, at K due to the complete length of load is then

SK =
∫ l

0
ws dl

or, since the load is uniformly distributed

SK = w
∫ l

0
s dl (20.15)

Hence SK = w × area under the projection of the load in the SK influence line.

Similarly

MK = w
∫ l

0
m dl (20.16)

so that MK = w × area under the projection of the load in the MK influence line.

Maximum shear force at K

It is clear from Fig. 20.7(b) that the maximum positive shear force at K occurs with
the head of the load at K while the maximum negative shear force at K occurs with the
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tail of the load at K. Note that the shear force at K would be zero if the load straddled
K such that the negative area under the load in the SK influence line was equal to the
positive area under the load.

Maximum bending moment at K

If we regard the distributed load as comprising an infinite number of concentrated
loads, we can apply the criterion of Eq. (20.14) to obtain the maximum value of
bending moment at K. Thus the load per unit length of the complete beam is equal to
the load per unit length of beam to the left of K and the load per unit length of beam
to the right of K. Therefore, in Fig. 20.8, we position the load such that

wck1

a1k1
= wdk1

k1b1

or
ck1

a1k1
= dk1

k1b1
(20.17)

From Fig. 20.8

fc
hk1

= a1c
a1k1

so that

fc = a1c
a1k1

hk1 =
(

a1k1 − ck1

a1k1

)
hk1 =

(
1 − ck1

a1k1

)
hk1

Similarly

dg =
(

1 − dk1

b1k1

)
hk1

Therefore, from Eq. (20.17) we see that

fc = dg

and the ordinates under the extremities of the load in the MK influence line are equal.
It may also be shown that the area under the load in the MK influence line is a maximum
when fc = dg. This is an alternative method of deducing the position of the load for
maximum bending moment at K. Note that, from Eq. (20.17), K divides the load in
the same ratio as it divides the span.

c

f g

h

a1 b1
k1

d

MKIL

l

FIGURE 20.8 Load
position for maximum
bending moment at K
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EXAMPLE 20.4 A load of length 2 m and intensity 2 kN/m crosses the simply sup-
ported beam AB shown in Fig. 20.9(a). Calculate the maximum positive and negative
values of shear force and the maximum value of bending moment at the quarter
span point.

FIGURE 20.9
Maximum shear

force and bending
moment at the

quarter span point
in the beam of

Ex. 20.4

A K

2.5 m

10 m

0.75

B

(a)

a k
b

1.875

0.25

�ve

�ve

�ve

(b)

(c)

b1
k1a1

MKIL

SKIL

The shear force and bending moment influence lines for the quarter span point K are
constructed in the same way as before and are shown in Fig. 20.9(b) and (c).

Maximum shear force at K

The maximum positive shear force at K occurs with the head of the load at K. In this
position the ordinate under the tail of the load is 0.05. Hence

SK(max +ve) = 2 × 1
2

(0.05 + 0.25) × 2 = 0.6 kN

The maximum negative shear force at K occurs with the tail of the load at K. With the
load in this position the ordinate under the head of the load is −0.55. Thus

SK(max −ve) = −2 × 1
2

(0.75 + 0.55) × 2 = −2.6 kN

Maximum bending moment at K

We position the load so that K divides the load in the same ratio that it divides
the span. Therefore 0.5 m of the load is to the left of K and 1.5 m to the right of K.
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The ordinate in the MK influence line under the tail of the load is then 1.5 as is the
ordinate under the head of the load. The maximum value of MK is thus given by

MK(max) = 2
[

1
2

(1.5 + 1.875) × 0.5 + 1
2

(1.875 + 1.5) × 1.5
]

which gives

MK(max) = 6.75 kN m

DIAGRAM OF MAXIMUM SHEAR FORCE

Consider the simply supported beam shown in Fig. 20.10(a) and suppose that a uni-
formly distributed load of intensity w and length L/5 (any fraction of L may be chosen)
is crossing the beam. We can draw a series of influence lines for the sections, A, K1,
K2, K3, K4 and B as shown in Fig. 20.10(b) and then determine the maximum positive
and negative values of shear force at each of the sections K1, K2, etc. by considering
first the head of the load at K1, K2, etc. and then the tail of the load at A, K1, K2, etc.
These values are then plotted as shown in Fig. 20.10(c).

With the head of the load at K1, K2, K3, K4 and B the maximum positive shear force
is given by w(ak1)s1, w(k1k2)s2, and so on, where s1, s2, etc. are the mid-ordinates of
the areas ak1, k1k2, etc. Since s1, s2, etc. increase linearly, the maximum positive shear
force also increases linearly at all sections of the beam between K1 and B. At a section
between A and K1, the complete length of load will not be on the beam so that the
maximum value of positive shear force at this section will not lie on the straight line
and the diagram of maximum positive shear force between A and K1 will be curved;

A

a b

(b)

(a)

(c)

K1 K2 K3 K4
B

L /5 L /5 L /5 L /5 L /5

s1
s2 s3

k1 k2

k3 k4

a1 b1

�SK(max)

�SK(max)

FIGURE 20.10 Diagram of
maximum shear force
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the maximum positive shear force should be calculated for at least one section between
A and K1.

An identical argument applies to the calculation of the maximum negative shear force
which occurs with the tail of the load at a beam section. Thus, in this case, the non-
linearity will occur as the load begins to leave the beam between K4 and B.

REVERSAL OF SHEAR FORCE

In some structures it is beneficial to know in which parts of the structure, if any, the
maximum shear force changes sign. In Section 4.5, for example, we saw that the diag-
onals of a truss resist the shear forces and therefore could be in tension or compression
depending upon their orientation and the sign of the shear force. If, therefore, we knew
that the sign of the shear force would remain the same under the design loading in
a particular part of a truss we could arrange the inclination of the diagonals so that
they would always be in tension and would not be subject to instability produced by
compressive forces. If, at the same time, we knew in which parts of the truss the shear
force could change sign we could introduce counterbracing (see Section 20.5).

Consider the simply supported beam AB shown in Fig. 20.11(a) and suppose that it
carries a uniformly distributed dead load (self-weight, etc.) of intensity wDL. The shear
force due to this dead load (the dead load shear (DLS)) varies linearly from −wDLL/2
at A to +wDLL/2 at B as shown in Fig. 20.11(b). Suppose now that a uniformly
distributed live load of length less than the span AB crosses the beam. As for the beam
in Fig. 20.10, we can plot diagrams of maximum positive and negative shear force
produced by the live load; these are also shown in Fig. 20.11(b). Then, at any section
of the beam, the maximum shear force is equal to the sum of the maximum positive

A B

wDL

L

(a)

(b)

DLS

DLS

Inverted �SK(max)

�SK(max)

a
c

d e
b

�wDLL

2

wDLL

2

FIGURE 20.11 Reversal of
shear force in a beam
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shear force due to the live load and the DLS force, or the sum of the maximum negative
shear force due to the live load and the DLS force. The variation in this maximum shear
force along the length of the beam will be more easily understood if we invert the DLS
force diagram.

Referring to Fig. 20.11(b) we see that the sum of the maximum negative shear force
due to the live load and the DLS force is always negative between a and c. Furthermore,
between a and c, the sum of the maximum positive shear force due to the live load and
the DLS force is always negative. Similarly, between e and b the maximum shear force
is always positive. However, between c and e the summation of the maximum negative
shear force produced by the live load and the DLS force is negative, while the summa-
tion of the maximum positive shear force due to the live load and the DLS force is posi-
tive. Therefore the maximum shear force between c and e may be positive or negative,
i.e. there is a possible reversal of maximum shear force in this length of the beam.

EXAMPLE 20.5 A simply supported beam AB has a span of 5 m and carries a
uniformly distributed dead load of 0.6 kN/m (Fig. 20.12(a)). A similarly distributed
live load of length greater than 5 m and intensity 1.5 kN/m travels across the beam.
Calculate the length of beam over which reversal of shear force occurs and sketch the
diagram of maximum shear force for the beam.

1.5 kN/m

0.6 kN/m

A B

RA

x

5 m

5.25 kN

5.25 kN

1.5 kN

Load
SK(max)

SK(max)

�ve

a

1.74 m

c
d b

�ve

1.5 kN

(b)

(a)

1.74 m

Load

FIGURE 20.12
Reversal of shear
force in the beam of
Ex. 20.5

The shear force at a section of the beam will be a maximum with the head or tail of
the load at that section. Initially, before writing down an expression for shear force,
we require the support reaction at A, RA. Thus, with the head of the load at a section
a distance x from A, the reaction, RA, is found by taking moments about B.
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Thus

RA × 5 − 0.6 × 5 × 2.5 − 1.5x
(

5 − x
2

)
= 0

whence

RA = 1.5 + 1.5x − 0.15x2 (i)

The maximum shear force at the section is then

S(max) = −RA + 0.6x + 1.5x (ii)

or, substituting in Eq. (ii) for RA from Eq. (i)

S(max) = −1.5 + 0.6x + 0.15x2 (iii)

Equation (iii) gives the maximum shear force at any section of the beam with the
load moving from left to right. Then, when x = 0, S(max) = −1.5 kN and when x = 5 m,
S(max) = +5.25 kN. Furthermore, from Eq. (iii) S(max) = 0 when x = 1.74 m.

The maximum shear force for the load travelling from right to left is found in a similar
manner. The final diagram of maximum shear force is shown in Fig. 20.12(b) where
we see that reversal of shear force may take place within the length cd of the beam;
cd is sometimes called the focal length.

DETERMINATION OF THE POINT OF MAXIMUM BENDING
MOMENT IN A BEAM

Previously we have been concerned with determining the position of a set of loads
on a beam that would produce the maximum bending moment at a given section of
the beam. We shall now determine the section and the position of the loads for the
bending moment to be the absolute maximum.

Consider a section K a distance x1 from the mid-span of the beam in Fig. 20.13 and
suppose that a set of loads having a total magnitude WT is crossing the beam. The
bending moment at K will be a maximum when one of the loads is at K; let this load be
Wj. Also, suppose that the centre of gravity of the complete set of loads is a distance
c from the load Wj and that the total weight of all the loads to the left of Wj is WL,
acting at a distance a from Wj; a and c are fixed values for a given set of loads.

Initially we find RA by taking moments about B.

Hence

RAL − WT

(
L
2

− x1 + c
)

= 0

which gives

RA = WT

L

(
L
2

− x1 + c
)
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FIGURE 20.13 Determination of
the absolute maximum bending
moment in a beam

The bending moment, MK, at K is then given by

MK = RA

(
L
2

+ x1

)
− WLa

or, substituting for RA

MK = WT

L

(
L
2

− x1 + c
)(

L
2

+ x1

)
− WLa

Differentiating MK with respect to x1 we have

dMk

dx1
= WT

L

[
−1
(

L
2

+ x1

)
+ 1

(
L
2

− x1 + c
)]

or
dMK

dx1
= WT

L
(−2x1 + c)

For a maximum value of MK , dMK/dx1 = 0 so that

x1 = c
2

(20.18)

Therefore the maximum bending moment occurs at a section K under a load Wj such
that the section K and the centre of gravity of the complete set of loads are positioned
at equal distances either side of the mid-span of the beam.

To apply this rule we select one of the larger central loads and position it over a section
K such that K and the centre of gravity of the set of loads are placed at equal distances
on either side of the mid-span of the beam. We then check to determine whether the
load per unit length to the left of K is equal to the load per unit length to the right of K.
If this condition is not satisfied, another load and another section K must be selected.

EXAMPLE 20.6 The set of loads shown in Fig. 20.14(b) crosses the simply sup-
ported beam AB shown in Fig. 20.14(a). Calculate the position and magnitude of the
maximum bending moment in the beam.
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FIGURE 20.14
Determination of

absolute maximum
bending moment in

the beam of
Ex. 20.6
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The first step is to find the position of the centre of gravity of the set of loads. Thus,
taking moments about the load W5 we have

(9 + 15 + 15 + 8 + 8) x̄ = 15 × 2 + 15 × 4.3 + 8 × 7.0 + 8 × 9.3

whence

x̄ = 4.09 m

Therefore the centre of gravity of the loads is 0.21 m to the left of the load W3.

By inspection of Fig. 20.14(b) we see that it is probable that the maximum bend-
ing moment will occur under the load W3. We therefore position W3 and the centre
of gravity of the set of loads at equal distances either side of the mid-span of the
beam as shown in Fig. 20.14(a). We now check to determine whether this position
of the loads satisfies the load per unit length condition. The load per unit length on
AB = 55/20 = 2.75 kN/m. Therefore the total load required on AK = 2.75 × 10.105 =
27.79 kN. This is satisfied by W5, W4 and part (3.79 kN) of W3.

Having found the load position, the bending moment at K is most easily found by
direct calculation. Thus taking moments about B we have

RA × 20 − 55 × 10.105 = 0

which gives

RA = 27.8 kN
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so that

MK = 27.8 × 10.105 − 9 × 4.3 − 15 × 2.3 = 207.7 kN m

It is possible that in some load systems there may be more than one load position which
satisfies both criteria for maximum bending moment but the corresponding bending
moments have different values. Generally the absolute maximum bending moment
will occur under one of the loads between which the centre of gravity of the system
lies. If the larger of these two loads is closer to the centre of gravity than the other,
then this load will be the critical load; if not then both cases must be analysed.

20.4 INFLUENCE LINES FOR BEAMS NOT IN CONTACT WITH THE LOAD

In many practical situations, such as bridge construction for example, the moving loads
are not in direct contact with the main beam or girder. Figure 20.15 shows a typical
bridge construction in which the deck is supported by stringers that are mounted on
cross beams which, in turn, are carried by the main beams or girders. The deck loads are
therefore transmitted via the stringers and cross beams to the main beams. Generally,
in the analysis, we assume that the segments of the stringers are simply supported at
each of the cross beams. In Fig. 20.15 the portion of the main beam between the cross
beams, for example FG, is called a panel and the points F and G are called panel points.

Figure 20.16 shows a simply supported main beam AB which supports a bridge deck via
an arrangement of cross beams and stringers. Let us suppose that we wish to construct
shear force and bending moment influence lines for the section K of the main beam
within the panel CD. As before we consider the passage of a unit load; in this case,
however, it crosses the bridge deck.

SK influence line

With the unit load outside and to the left of the panel CD (position 1) the shear force,
SK, at K is given by

SK = RB = x1

L
(20.19)

SK therefore varies linearly as the load moves from A to C. Thus, from Eq. (20.19),
when x1 = 0, SK = 0 and when x1 = a, SK = a/L, the ordinate cf in the SK influence

FIGURE 20.15
Typical bridge

construction
F G

Stringers

Cross beams

Main beam
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line shown in Fig. 20.16(b). Furthermore, from Fig. 20.16(a) we see that SK = SC = SD

with the load between A and C, so that for a given position of the load the shear force
in the panel CD has the same value at all sections.

Suppose now that the unit load is to the right of D between D and B (position 2). Then

SK = −RA = −L − x2

L
(20.20)

and is linear. Therefore when x2 = L, SK = 0 and when x2 = e, SK = −(L − e)/L, the
ordinate dh in the SK influence line. Also, with the unit load between D and B,
SK = SC = SD (= −RA) so that for a given position of the load, the shear force in the
panel CD has the same value at all sections.

Now consider the unit load at some point between C and D (position 3). There will
now be reaction forces, RC and RD, as shown in Fig. 20.16(a) acting on the stringer
and the beam where, by considering the portion of the stringer immediately above the
panel CD as a simply supported beam, we see that RC = (e − x3)/c and RD = (x3 −a)/c.
Therefore the shear force at K is given by

SK = RB − RD (or SK = −RA + RC)

FIGURE 20.16
Influence lines for a

beam not in direct
contact with the

moving load
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so that

SK = x3

L
− (x3 − a)

c
(20.21)

SK therefore varies linearly as the load moves between C and D. Furthermore,
when x3 = a, SK = a/L, the ordinate cf in the SK influence line, and when x3 = e,
SK = −(L − e)/L, the ordinate dh in the SK influence line. Note that in the calcu-
lation of the latter value, e − a = c.

Note also that for all positions of the unit load between C and D, SK = RB + RD which
is independent of the position of K. Therefore, for a given load position between C
and D, the shear force is the same at all sections of the panel.

MK influence line

With the unit load in position 1 between A and C, the bending moment, MK, at K is
given by

MK = RB(L − d) = x1

L
(L − d) (20.22)

MK therefore varies linearly with the load position between A and C. Also, when x1 = 0,
MK = 0 and when x1 = a, MK = a(L − d)/L, the ordinate c1i in the MK influence line
in Fig. 20.16(c).

With the unit load in position 2 between D and B

MK = RAd = L − x2

L
d (20.23)

Again, MK varies linearly with load position so that when x2 = e, MK = (L − e)d/L, the
ordinate d1p in the MK influence line. Furthermore, when x2 = L, MK = 0.

When the unit load is between C and D (position 3)

MK = RB(L − d) − RD(e − d)

As before we consider the stringer over the panel CD as a simply supported beam so
that RD = (x3 − a)/c. Then since

RB = x3

L

MK = x3

L
(L − d) −

(
x3 − a

c

)
(e − d) (20.24)

Equation (20.24) shows that MK varies linearly with load position between C and D.
Therefore, when x3 = a, MK = a(L − d)/L, the ordinate c1i in the MK influence line,
and when x3 = e, MK = d(L − e)/L, the ordinate d1p in the MK influence line. Note
that in the latter calculation e − a = c.
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MAXIMUM VALUES OF SK AND MK

In determining maximum values of shear force and bending moment at a section of a
beam that is not in direct contact with the load, certain points are worthy of note.

1 When the section K coincides with a panel point (C or D, say) the SK and MK

influence lines are identical in geometry to those for a beam that is in direct contact
with the moving load; the same rules governing maximum and minimum values
therefore apply.

2 The absolute maximum value of shear force will occur in an end panel, AE or
DB, when the SK influence line will be identical in form to the bending moment
influence line for a section in a simply supported beam that is in direct contact with
the moving load. Therefore the same criteria for load positioning may be used for
determining the maximum shear force, i.e. the load per unit length of beam is equal
to the load per unit length to the left of E or D and the load per unit length to the
right of E or D.

3 To obtain maximum values of shear force and bending moment in a panel, a trial
and error method is the simplest approach remembering that, for concentrated
loads, a load must be placed at the point where the influence line changes slope.

20.5 FORCES IN THE MEMBERS OF A TRUSS

In some instances the main beams in a bridge are trusses, in which case the cross
beams are positioned at the joints of the truss. The shear force and bending moment
influence lines for a panel of the truss may then be used to determine the variation in
the truss member forces as moving loads cross the bridge.

Consider the simply supported Warren truss shown in Fig. 20.17(a) and suppose that
it carries cross beams at its upper chord joints which, in turn, support the bridge deck.
Alternatively, the truss could be inverted and the cross beams supported by the lower
chord joints; the bridge deck is then the through type. Suppose also that we wish to
determine the forces in the members CD, CE, DE and GE of the truss.

We have seen in Section 4.5 the mechanism by which a truss resists shear forces and
bending moments. Thus shear forces are resisted by diagonal members, while bending
moments are generally resisted by a combination of both diagonal and horizontal
members. Therefore, referring to Fig. 20.17(a), we see that the forces in the members
CE and DE may be determined from the shear force in the panel CD, while the forces
in the members CD and GE may be found from the bending moments at E and C,
respectively. Therefore we construct the influence lines for the shear force in the panel
CD and for the bending moment at E and C, as shown in Fig. 20.17(b), (c) and (d).

In Section 20.4 we saw that, for a given load position, the shear force in a panel such
as CD is constant at all sections in the panel; we will call this shear force SCD. Then,
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FIGURE 20.17
Determination of

forces in the
members of a truss
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considering a section XX through CE, CD and GE, we have

FCE sin θ = SCD

so that

FCE = SCD

sin θ
(20.25)

Similarly

FDE = SCD

sin θ
(20.26)

From Fig. 20.17(b) we see that for a load position between A and J, SCD is positive.
Therefore, referring to Fig. 20.17(a), FCE is compressive while FDE is tensile. For
a load position between J and B, SCD is negative so that FCE is tensile and FDE is
compressive. Thus FCE and FDE will always be of opposite sign; this may also be
deduced from a consideration of the vertical equilibrium of joint E.

If we now consider the moment equilibrium of the truss at a vertical section through
joint E we have

FCDh = ME
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or

FCD = ME

h
(20.27)

Since ME is positive for all load positions (Fig. 20.17(c)), FCD is compressive.

The force in the member GE is obtained from the MC influence line in Fig. 20.17(d).
Thus

FGEh = MC

which gives

FGE = MC

h
(20.28)

FGE will be tensile since MC is positive for all load positions.

It is clear from Eqs (20.25)–(20.28) that the influence lines for the forces in the mem-
bers could be constructed from the appropriate shear force and bending moment
influence lines. Thus, for example, the influence line for FCE would be identical in
shape to the shear force influence line in Fig. 20.17(b) but would have the ordinates
factored by 1/sin θ and the signs reversed. The influence line for FDE would also have
the SCD influence line ordinates factored by 1/sin θ .

EXAMPLE 20.7 Determine the maximum tensile and compressive forces in the
member EC in the Pratt truss shown in Fig. 20.18(a) when it is crossed by a uniformly
distributed load of intensity 2.5 kN/m and length 4 m; the load is applied on the bottom
chord of the truss.

FIGURE 20.18
Determination of

the force in a
member of the Pratt

girder of Ex. 20.7

Counterbracing
E

DH
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8 � 1.4 m

1.4 m

C M
B
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(b) SDCIL

a
d

cj

f

g

(a)

The vertical component of the force in the member EC resists the shear force in the
panel DC. Therefore we construct the shear force influence line for the panel DC as
shown in Fig. 20.18(b). From Eq. (20.19) the ordinate df = 2 × 1.4/(8 × 1.4) = 0.25
while from Eq. (20.20) the ordinate cg = (8 × 1.4 − 3 × 1.4)/(8 × 1.4) = 0.625.
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Furthermore, we see that SDC changes sign at the point j (Fig. 20.18(b)) where jd,
from similar triangles, is 0.4.

The member EC will be in compression when the shear force in the panel DC is positive
and its maximum value will occur when the head of the load is at j, thereby completely
covering the length aj in the SDC influence line. Therefore

FEC sin 45◦ = SDC = 2.5 × 1
2

× 3.2 × 0.25

from which

FEC = 1.41 kN (compression)

The force in the member EC will be tensile when the shear force in the panel DC is
negative. Therefore to find the maximum tensile value of FEC we must position the
load within the part jb of the SDC influence line such that the maximum value of SDC

occurs. Since the positive portion of the SDC influence line is triangular, we may use
the criterion previously established for maximum bending moment. Thus the load per
unit length over jb must be equal to the load per unit length over jc and the load per
unit length over cb. In other words, c divides the load in the same ratio that it divides jb,
i.e. 1 : 7. Therefore 0.5 m of the load is to the left of c, 3.5 m to the right. The ordinates
under the extremities of the load in the SDC influence line are then both 0.3125 m.
Hence the maximum negative shear force in the panel CD is

SCD( max −ve) = 2.5
[

1
2

(0.3125 + 0.625)0.5 + 1
2

(0.625 + 0.3125)3.5
]

which gives

SCD(max −ve) = 4.69 kN

Then, since

FEC sin 45◦ = SCD

FEC = 6.63 kN

which is the maximum tensile force in the member EC.

COUNTERBRACING

A diagonal member of a Pratt truss will, as we saw for the member EC in Ex. 20.7, be in
tension or compression depending on the sign of the shear force in the particular panel
in which the member is placed. The exceptions are the diagonals in the end panels
where, in the Pratt truss of Fig. 20.18(a), construction of the shear force influence
lines for the panels AH and MB shows that the shear force in the panel AH is always
negative and that the shear force in the panel MB is always positive; the diagonals in
these panels are therefore always in tension.
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In some situations the diagonal members are unsuitable for compressive forces so that
counterbracing is required. This consists of diagonals inclined in the opposite direction
to the original diagonals as shown in Fig. 20.18(a) for the two centre panels. The
original diagonals are then assumed to be carrying zero force while the counterbracing
is in tension.

It is clear from Ex. 20.7 that the shear force in all the panels, except the two outer
ones, of a Pratt truss can be positive or negative so that all the diagonals in these panels
could experience compression. Therefore it would appear that all the interior panels
of a Pratt truss require counterbracing. However, as we saw in Section 20.3, the dead
load acting on a beam has a beneficial effect in that it reduces the length of the beam
subjected to shear reversal. This, in turn, will reduce the number of panels requiring
counterbracing.

EXAMPLE 20.8 The Pratt truss shown in Fig. 20.19(a) carries a dead load of
1.0 kN/m applied at its upper chord joints. A uniformly distributed live load, which
exceeds 9 m in length, has an intensity of 1.5 kN/m and is also carried at the upper
chord joints. If the diagonal members are designed to resist tension only, find which
panels require counterbracing.

FIGURE 20.19
Counterbracing in a

Pratt truss

1 2 3 4 5 6 7 8 9 10

A B

1.2 m

(a)

(b)
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c d
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A family of influence lines may be drawn as shown in Fig. 20.19(b) for the shear force
in each of the 10 panels. We begin the analysis at the centre of the truss where the DLS
force has its least effect; initially, therefore, we consider panel 5. The shear force, S5,
in panel 5 with the head of the live load at n5 is given by

S5 = 1.0 (area n5qa − area n5gb) + 1.5 (area n5qa)

i.e.

S5 = −1.0 × area n5gb + 2.5 × area n5qa (i)
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The ordinates in the S5 influence line at g and q are found from similar triangles and
are 0.5 and 0.4, respectively. Also, from similar triangles, n5 divides the horizontal
distance between q and g in the ratio 0.4 : 0.5. Therefore, from Eq. (i)

S5 = −1.0 × 1
2

× 5.0 × 0.5 + 2.5 × 1
2

× 4.0 × 0.4

which gives

S5 = 0.75 kN

Therefore, since S5 is positive, the diagonal in panel 5 will be in compression so that
panel 5, and from symmetry panel 6, requires counterbracing.

Now with the head of the live load at n4, S4 = 1.0 (area n4ra – area n4fb) +
1.5 (area n4ra).

The ordinates and base lengths in the triangles n4fb and n4ra are determined as before.
Then

S4 = −1.0 × 1
2

× 6.0 × 0.6 + 2.5 × 1
2

× 3.0 × 0.3

from which

S4 = −0.675 kN

Therefore, since S4 is negative, panel 4, and therefore panel 7, do not require
counterbracing.

Clearly the remaining panels will not require counterbracing.

Note that for a Pratt truss having an odd number of panels the net value of the dead
load shear force in the central panel is zero, so that this panel will always require
counterbracing.

20.6 INFLUENCE LINES FOR CONTINUOUS BEAMS

The structures we have investigated so far in this chapter have been statically deter-
minate so that the influence lines for the different functions have comprised straight
line segments. A different situation arises for statically indeterminate structures such
as continuous beams.

Consider the two-span continuous beam ABC shown in Fig. 20.20(a) and let us suppose
that we wish to construct influence lines for the reaction at B, the shear force at the
section D in AB and the bending moment at the section F in BC.

The shape of the influence lines may be obtained by employing the Mueller–Breslau
principle described in Section 20.2. Thus, in Fig. 20.20(b) we remove the support at B
and apply a unit displacement in the direction of the support reaction, RB. The beam
will bend into the shape shown since it remains pinned to the supports at A and C.
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FIGURE 20.20
Influence lines for a

continuous beam
using the

Mueller–Breslau
principle
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This would not have been the case, of course, if the span BC did not exist for then the
beam would rotate about A as a rigid link and the RB influence line would have been
straight as in Fig. 20.1(c).

To obtain the shear force influence line for the section D we ‘cut’ the beam at D and
apply a unit shear displacement as shown in Fig. 20.20(c). Again, since the beam is
attached to the support at C, the resulting displaced shape is curved. Furthermore, the
gradient of the influence line must be the same on each side of D because, otherwise, it
would imply the presence of a moment causing a relative rotation. This is not possible
since the displacement we have specified is due solely to shear. It follows that the
influence line between A and D must also be curved.

The influence line for the bending moment at F is found by inserting a hinge at F and
applying a relative unit rotation as shown in Fig. 20.20(d). Again the portion ABF of
the beam will be curved, as will the portion FC, since this part of the beam must rotate
so that the sum of the rotations of the two portions of the beam at F is equal to unity.

EXAMPLE 20.9 Construct influence lines for the reaction at B and for the
shear force and bending moment at D in the two-span continuous beam shown in
Fig. 20.21(a).
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FIGURE 20.21
Influence lines for

the continuous
beam of Ex. 20.9
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The shape of each influence line may be drawn using the Mueller–Breslau principle
as shown in Fig. 20.21(b), (c) and (d). However, before they can be of direct use
in determining maximum values, say, of the various functions due to the passage of
loading systems, the ordinates must be calculated; for this, since the influence lines
are comprised of curved segments, we need to derive their equations.

However, once the influence line for a support reaction, RB in this case, has been
established, the remaining influence lines follow from statical equilibrium.

RB influence line

Suppose initially that a unit load is a distance x1 from A, between A and B. To determine
RB we may use the flexibility method described in Section 16.4. Thus we remove the
support at B (point 2) and calculate the displacement, a21, at B due to the unit load at
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x1 (point 1). We then calculate the displacement, a22, at B due to a vertically downward
unit load at B. The total displacement at B due to the unit load at x1 and the reaction
RB is then

a21 − a22RB = 0 (i)

since the support at B is not displaced. In Eq. (i) the term a22RB is negative since RB

is in the opposite direction to the applied unit load at B.

Both the flexibility coefficients in Eq. (i) may be obtained from a single unit load
application since, from the reciprocal theorem (Section 15.4), the displacement at B
due to a unit load at x1 is equal to the displacement at x1 due to a unit load at B.
Therefore we apply a vertically downward unit load at B.

The equation for the displaced shape of the beam is that for a simply supported beam
carrying a central concentrated load. Therefore, from Eq. (iv) of Ex. 13.5

v = 1
48EI

(4x3 − 3L2x) (ii)

or, for the beam of Fig. 20.21(a)

v = x
12EI

(x2 − 48) (iii)

At B, when x = 4 m

vB = − 32
3EI

= a22 (iv)

Furthermore, the displacement at B due to the unit load at x1 (=displacement at x1

due to a unit load at B) is from Eq. (iii)

vx1 = x1

12EI
(x2

1 − 48) = a21 (v)

Substituting for a22 and a21 in Eq. (i) we have

x1

12EI
(x2

1 − 48) + 32
3EI

RB = 0

from which

RB = − x1

128
(x2

1 − 48) (0 ≤ x1 ≤ 4.0 m) (vi)

Equation (vi) gives the influence line for RB with the unit load between A and B; the
remainder of the influence line follows from symmetry. Eq. (vi) may be checked since
we know the value of RB with the unit load at A and B. Thus from Eq. (vi), when x1 = 0,
RB = 0 and when x1 = 4.0 m, RB = 1 as expected.

If the support at B were not symmetrically positioned, the above procedure would be
repeated for the unit load on the span BC. In this case the equations for the deflected
shape of AB and BC would be Eqs (xiv) and (xv) in Ex. 13.6.
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In this example we require the SD influence line so that we shall, in fact, need to
consider the value of RB with the unit load on the span BC. Therefore from Eq. (xv)
in Ex. 13.6

vx1 = − 1
12EI

(x3
1 − 24x2

1 + 144x1 − 128) (4.0 m ≤ x1 ≤ 8.0 m) (vii)

Hence from Eq. (i)

RB = 1
128

(x3
1 − 24x2

1 + 144x1 − 128) (4.0 m ≤ x1 ≤ 8.0 m) (viii)

A check on Eq. (viii) shows that when x1 = 4.0 m, RB = 1 and when x1 = 8.0 m, RB = 0.

SD influence line

With the unit load to the left of D, the shear force, SD, at D is most simply given by

SD = −RA + 1 (ix)

where, by taking moments about C, we have

RA × 8 − 1(8 − x1) + RB × 4 = 0 (x)

Substituting in Eq. (x) for RB from Eq. (vi) and rearranging gives

RA = 1
256

(x3
1 − 80x1 + 256) (xi)

whence, from Eq. (ix)

SD = − 1
256

(x3
1 − 80x1) (0 ≤ x1 ≤ 2.0 m) (xii)

Therefore, when x1 = 0, SD = 0 and when x1 = 2.0 m, SD = 0.59, the ordinate d1g in
the SD influence line in Fig. 20.21(c).

With the unit load between D and B

SD = −RA

so that, substituting for RA from Eq. (xi)

SD = − 1
256

(x3
1 − 80x1 + 256) (2.0 m ≤ x1 ≤ 4.0 m) (xiii)

Thus, when x1 = 2.0 m, SD = −0.41, the ordinate d1f in Fig. 20.21(c) and when
x1 = 4.0 m, SD = 0.

Now consider the unit load between B and C. Again

SD = −RA
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but in this case, RB in Eq. (x) is given by Eq. (viii). Substituting for RB from Eq. (viii)
in Eq. (x) we obtain

RA = −SD = − 1
256

(x3
1 − 24x2

1 + 176x1 − 384) (4.0 m ≤ x1 ≤ 8.0 m) (xiv)

Therefore the SD influence line consists of three segments, a1g, fb1 and b1c1.

MD influence line

With the unit load between A and D

MD = RA × 2 − 1(2 − x1) (xv)

Substituting for RA from Eq. (xi) in Eq. (xv) and simplifying, we obtain

MD = 1
128

(x3
1 + 48x1) (0 ≤ x1 ≤ 2.0 m) (xvi)

When x1 = 0, MD = 0 and when x1 = 2.0 m, MD = 0.81, the ordinate d2h in the MD

influence line in Fig. 20.21(d).

Now with the unit load between D and B

MD = RA × 2 (xvii)

Therefore, substituting for RA from Eq. (xi) we have

MD = 1
128

(x3
1 − 80x1 + 256) (2.0 m ≤ x1 ≤ 4.0 m) (xviii)

From Eq. (xviii) we see that when x1 = 2.0 m, MD = 0.81, again the ordinate d2h in
Fig. 20.21(d). Also, when x1 = 4.0 m, MD = 0.

Finally, with the unit load between B and C, MD is again given by Eq. (xvii) but in
which RA is given by Eq. (xiv). Hence

MD = − 1
128

(x3
1 − 24x2

1 + 176x1 − 384) (4.0 m ≤ x1 ≤ 8.0 m) (xix)

The maximum ordinates in the SD and MD influence lines for the span BC may be
found by differentiating Eqs (xiv) and (xix) with respect to x1, equating to zero and
then substituting the resulting values of x1 back in the equations. Thus, for example,
from Eq. (xiv)

dSD

dx1
= 1

256
(3x2

1 − 48x1 + 176) = 0

from which x1 = 5.7 m. Hence

SD(max) = 0.1

Similarly MD(max) = −0.2 at x1 = 5.7 m.
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In this chapter we have constructed influence lines for beams, trusses and continuous
beams. Clearly influence lines can be drawn for a wide variety of structures that carry
moving loads. Their construction, whatever the structure, is based on considering the
passage of a unit load across the structure.

P R O B L E M S

P.20.1 Construct influence lines for the support reaction at A in the beams shown in
Fig. P.20.1(a), (b) and (c).

Ans.
(a) Unit load at C, RA = 1.25.
(b) Unit load at C, RA = 1.25; at D, RA = −0.25.
(c) Unit load between A and B, RA = 1; at C, RA = 0.

FIGURE P.20.1
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A B

Hinge
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C
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P.20.2 Draw influence lines for the shear force at C in the beams shown in Fig. P.20.2(a)
and (b).

Ans. Influence line ordinates
(a) D = −0.25, A = 0, C = ±0.5, B = 0.
(b) D = −0.25, A = B = 0, C = ±0.5, E = 0.25.

FIGURE P.20.2
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P.20.3 Draw influence lines for the bending moment at C in the beams shown in
Fig. P.20.2(a) and (b).
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Ans. Influence line ordinates
(a) D = −0.125L, A = B = 0, C = 0.25L.
(b) D = E = −0.125L, A = B = 0, C = 0.25L.

P.20.4 The simply supported beam shown in Fig. P.20.4 carries a uniformly distributed
travelling load of length 10 m and intensity 20 kN/m. Calculate the maximum positive
and negative values of shear force and bending moment at the section C of the beam.

Ans. SC = −37.5 kN, +40.0 kN MC = +550 kN m, −80 kN m.

A

8 m 8 m 4 m

C B D

FIGURE P.20.4

P.20.5 The beam shown in Fig. P.20.5(a) is crossed by the train of four loads shown in
Fig. P.20.5(b). For a section at mid-span, determine the maximum sagging and hogging
bending moments.

Ans. +161.3 kN m, −77.5 kN m.

C

5 m 15 m 5 m
2 m

10 205 20 kN

2 m

(b)(a)

2 m

FIGURE P.20.5

P.20.6 A simply supported beam AB of span 20 m is crossed by the train of loads
shown in Fig. P.20.6. Determine the position and magnitude of the absolute maximum
bending moment on the beam and also the maximum values of positive and negative
shear force anywhere on the beam.

Ans. M(max) = 466.7 kN m under a central load 10.5 m from A.
S(max −ve) = −104 kN at A, S(max +ve) = 97.5 kN at B.

50 kN

5 m 4 m

50 kN 30 kN

FIGURE P.20.6
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P.20.7 The three-span beam shown in Fig. P.20.7 has hinges at C and E in its central
span. Construct influence lines for the reaction at B and for the shear force and bending
moment at the sections K and D.

Ans. Influence line ordinates

RB; A = 0, B = 1, C = 1.25, E = F = G = 0.
SK; A = 0, K = ±0.5, B = 0, C = +0.25, E = 0.
SD; A = B = 0, D = −1.0, C = −1.0, E = F = G = 0.
MK; A = B = 0, K = 1.0, C = −0.5, E = F = G = 0.
MD; A = B = D = 0, C = −0.5, E = F = G = 0.

FIGURE P.20.7
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P.20.8 Draw influence lines for the reactions at A and C and for the bending moment
at E in the beam system shown in Fig. P.20.8. Note that the beam AB is supported on
the lower beam at D by a roller.

If two 10 kN loads, 5 m apart, cross the upper beam AB, determine the maximum
values of the reactions at A and C and the bending moment at E.

Ans. RA(max) = 16.7 kN, RC(max) = 17.5 kN, ME(max) = 58.3 kN m.

FIGURE P.20.8
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P.20.9 A simply supported beam having a span of 5 m has a self-weight of 0.5 kN/m
and carries a travelling uniformly distributed load of intensity 1.2 kN/m and length
1 m. Calculate the length of beam over which shear reversal occurs.

Ans. The central 1.3 m (graphical solution).

P.20.10 Construct an influence line for the force in the member CD of the truss shown
in Fig. P.20.10 and calculate the force in the member produced by the loads positioned
at C, D and E.

Ans. 28.1 kN (compression).



chap-20 12/1/2005 12: 48 page 682

682 • Chapter 20 / Influence Lines

FIGURE P.20.10
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P.20.11 The truss shown in Fig. P.20.11 carries a train of loads consisting of, left to
right, 40, 70, 70 and 60 kN spaced at 2, 3 and 3 m, respectively. If the self-weight of the
truss is 15 kN/m, calculate the maximum force in each of the members CG, HD and
FE.

Ans. CG = 763 kN, HD = −724 kN, FE = −307 kN.

FIGURE P.20.11

A
F H D B

E C
�

G

1.5 m

8 � 2 m

P.20.12 One of the main girders of a bridge is the truss shown in Fig. P.20.12. Loads
are transmitted to the truss through cross beams attached at the lower panel points.
The self-weight of the truss is 30 kN/m and it carries a live load of intensity 15 kN/m
and of length greater than the span. Draw influence lines for the force in each of the
members CE and DE and determine their maximum values.

Ans. CE = +37.3 kN, −65.3 kN, DE = +961.2 kN.

FIGURE P.20.12

C
G

H

D
A B

E

3 m 3.5 m

6 � 4 m

4 m

P.20.13 The Pratt truss shown in Fig. P.20.13 has a self-weight of 1.2 kN/m and carries a
uniformly distributed live load longer than the span of intensity 2.8 kN/m, both being
applied at the upper chord joints. If the diagonal members are designed to resist
tension only, determine which panels require counterbracing.
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Ans. Panels 4, 5 and 6.

FIGURE P.20.13

1 2 3 4

9 � 1 m

5 6 7 8 9

1 m

P.20.14 Using the Mueller–Breslau principle sketch the shape of the influence lines
for the support reactions at A and B, and the shear force and bending moment at E
in the continuous beam shown in Fig. P.20.14.

FIGURE P.20.14

A B E C D

P.20.15 Determine the equation of the influence line for the reaction at A in the
continuous beam shown in Fig. P.20.15 and determine its value when a load of 30 kN/m
covers the span AB.

Ans.

RA = 3
16

{
x3

6
− 1

3
[x − 2]3 − 10

3
x + 16

3

}

26.25 kN.

FIGURE P.20.15

A B C

1.5 m 0.5 m 2.0 m



chap-21 12/1/2005 12: 48 page 684

C h a p t e r 21 / Structural Instability

So far, in considering the behaviour of structural members under load, we have been
concerned with their ability to withstand different forms of stress. Their strength,
therefore, has depended upon the strength properties of the material from which they
are fabricated. However, structural members subjected to axial compressive loads
may fail in a manner that depends upon their geometrical properties rather than
their material properties. It is common experience, for example, that a long slender
structural member such as that shown in Fig. 21.1(a) will suddenly bow with large
lateral displacements when subjected to an axial compressive load (Fig. 21.1(b)). This
phenomenon is known as instability and the member is said to buckle. If the member
is exceptionally long and slender it may regain its initial straight shape when the load
is removed.

Structural members subjected to axial compressive loads are known as columns or
struts, although the former term is usually applied to the relatively heavy vertical
members that are used to support beams and slabs; struts are compression members
in frames and trusses.

It is clear from the above discussion that the design of compression members must
take into account not only the material strength of the member but also its stability
against buckling. Obviously the shorter a member is in relation to its cross-sectional
dimensions, the more likely it is that failure will be a failure in compression of the
material rather than one due to instability. It follows that in some intermediate range
a failure will be a combination of both.

We shall investigate the buckling of long slender columns and derive expressions for
the buckling or critical load; the discussion will then be extended to the design of

(a) (b)
FIGURE 21.1 Buckling of a
slender column

684
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columns of any length and to a consideration of beams subjected to axial load and
bending moment.

21.1 EULER THEORY FOR SLENDER COLUMNS

The first significant contribution to the theory of the buckling of columns was made in
the 18th century by Euler. His classical approach is still valid for long slender columns
possessing a variety of end restraints. Before presenting the theory, however, we shall
investigate the nature of buckling and the difference between theory and practice.

We have seen that if an increasing axial compressive load is applied to a long slender
column there is a value of load at which the column will suddenly bow or buckle in
some unpredetermined direction. This load is patently the buckling load of the col-
umn or something very close to the buckling load. The fact that the column buckles
in a particular direction implies a degree of asymmetry in the plane of the buckle
caused by geometrical and/or material imperfections of the column and its load. The-
oretically, however, in our analysis we stipulate a perfectly straight, homogeneous
column in which the load is applied precisely along the perfectly straight centroidal
axis. Theoretically, therefore, there can be no sudden bowing or buckling, only axial
compression. Thus we require a precise definition of buckling load which may be used
in the analysis of the perfect column.

If the perfect column of Fig. 21.2 is subjected to a compressive load P, only shortening
of the column occurs no matter what the value of P. Clearly if P were to produce a stress
greater than the yield stress of the material of the column, then material failure would
occur. However, if the column is displaced a small amount by a lateral load, F, then, at
values of P below the critical or buckling load, PCR, removal of F results in a return of
the column to its undisturbed position, indicating a state of stable equilibrium. When
P = PCR the displacement does not disappear and the column will, in fact, remain in
any displaced position so long as the displacement is small. Thus the buckling load,

Displaced
position

Initial
position

F

P

P

FIGURE 21.2 Definition of buckling load of a column
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PCR, is associated with a state of neutral equilibrium. For P > PCR enforced lateral
displacements increase and the column is unstable.

BUCKLING LOAD FOR A PIN-ENDED COLUMN

Consider the pin-ended column shown in Fig. 21.3. We shall assume that it is in the
displaced state of neutral equilibrium associated with buckling so that the compressive
axial load has reached the value PCR. We also assume that the column has deflected so
that its displacements, v, referred to the axes 0xy are positive. The bending moment,
M , at any section X is then given by

M = −PCRv

so that substituting for M from Eq. (13.3) we obtain

d2v

dx2 = −PCR

EI
v (21.1)

Rearranging we obtain

d2v

dx2 + PCR

EI
v = 0 (21.2)

The solution of Eq. (21.2) is of standard form and is

v = C1 cos µx + C2 sin µx (21.3)

in which C1 and C2 are arbitrary constants and µ2 = PCR/EI. The boundary conditions
for this particular case are v = 0 at x = 0 and x = L. The first of these gives C1 = 0 while
from the second we have

0 = C2 sin µL

L

0

EI

PCR

PCR

x

y

�

FIGURE 21.3 Determination of buckling load for a
pin-ended column
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For a non-trivial solution (i.e. v �= 0 and C2 �= 0) then

sin µL = 0

so that µL = nπ where n = 1, 2, 3, . . .

Hence
PCR

EI
L2 = n2π2

from which

PCR = n2π2EI
L2 (21.4)

Note that C2 is indeterminate and that the displacement of the column cannot there-
fore be found. This is to be expected since the column is in neutral equilibrium in its
buckled state.

The smallest value of buckling load corresponds to a value of n = 1 in Eq. (21.4), i.e.

PCR = π2EI
L2 (21.5)

The column then has the displaced shape v = C2 sin µx and buckles into the longi-
tudinal half sine-wave shown in Fig. 21.4(a). Other values of PCR corresponding to
n = 2, 3, . . . are

PCR = 4π2EI
L2 PCR = 9π2EI

L2 , . . .

These higher values of buckling load correspond to more complex buckling modes as
shown in Fig. 21.4(b) and (c). Theoretically these different modes could be produced
by applying external restraints to a slender column at the points of contraflexure to
prevent lateral movement. However, in practice, the lowest value is never exceeded
since high stresses develop at this load and failure of the column ensues. Therefore
we are not concerned with buckling loads higher than this.

FIGURE 21.4
Buckling modes of a

pin-ended column

L2L2L2

L
3

L

(a) (b) (c)

PCR �PCR �PCR �
9p2EI4p2EIp2EI

L
3

L
2

L
2 L

3
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BUCKLING LOAD FOR A COLUMN WITH FIXED ENDS

In practice, columns usually have their ends restrained against rotation so that they
are, in effect, fixed. Figure 21.5 shows a column having its ends fixed and subjected to
an axial compressive load that has reached the critical value, PCR, so that the column
is in a state of neutral equilibrium. In this case, the ends of the column are subjected
to fixing moments, MF, in addition to axial load. Thus at any section X the bending
moment, M , is given by

M = −PCRv + MF

Substituting for M from Eq. (13.3) we have

d2v

dx2 = −PCR

EI
v + MF

EI
(21.6)

Rearranging we obtain

d2v

dx2 + PCR

EI
v = MF

EI
(21.7)

the solution of which is

v = C1 cos µx + C2 sin µx + MF

PCR
(21.8)

where

µ2 = PCR

EI

When x = 0, v = 0 so that C1 = −MF/PCR. Further v = 0 at x = L, hence

0 = − MF

PCR
cos µL + C2 sin µL + MF

PCR

L

x

�

y

EI

MF

MF

PCR

PCR

0

FIGURE 21.5 Buckling of a slender column with fixed ends
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which gives

C2 = − MF

PCR

(1 − cos µL)
sin µL

Hence Eq. (21.8) becomes

v = − MF

PCR

[
cos µx + (1 − cos µL)

sin µL
sin µx − 1

]
(21.9)

Note that again v is indeterminate since MF cannot be found. Also since dv/dx = 0 at
x = L we have from Eq. (21.9)

0 = 1 − cos µL

whence

cos µL = 1

and

µL = nπ where n = 0, 2, 4, . . .

For a non-trivial solution, i.e. n �= 0, and taking the smallest value of buckling load
(n = 2) we have

PCR = 4π2EI
L2 (21.10)

BUCKLING LOAD FOR A COLUMN WITH ONE END FIXED
AND ONE END FREE

In this configuration the upper end of the column is free to move laterally and also to
rotate as shown in Fig. 21.6. At any section X the bending moment M is given by

M = PCR(δ − v) or M = −PCRv + MF

EI

MF

PCR

PCR

L

x

y

δ

0

FIGURE 21.6 Determination of buckling load for a
column with one end fixed and one end free
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Substituting for M in the first of these expressions from Eq. (13.3) (equally we could
use the second) we obtain

d2v

dx2 = PCR

EI
(δ − v) (21.11)

which, on rearranging, becomes

d2v

dx2 + PCR

EI
v = PCR

EI
δ (21.12)

The solution of Eq. (21.12) is

v = C1 cos µx + C2 sin µx + δ (21.13)

where µ2 = PCR/EI. When x = 0, v = 0 so that C1 = −δ. Also when x = L, v = δ so that
from Eq. (21.13) we have

δ = −δ cos µL + C2 sin µL + δ

which gives

C2 = δ
cos µL
sin µL

Hence

v = −δ

(
cos µx − cos µL

sin µL
sin µx − 1

)
(21.14)

Again v is indeterminate since δ cannot be determined. Finally we have dv/dx = 0 at
x = 0. Hence from Eq. (21.14)

cos µL = 0

whence

µL = n
π

2
where n = 1, 3, 5, . . .

Thus taking the smallest value of buckling load (corresponding to n = 1) we obtain

PCR = π2EI
4L2 (21.15)

BUCKLING OF A COLUMN WITH ONE END FIXED AND
THE OTHER PINNED

The column in this case is allowed to rotate at one end but requires a lateral force, F,
to maintain its position (Fig. 21.7).

At any section X the bending moment M is given by

M = −PCRv − F(L − x)
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EI

F

L

x

y

y

PCR

PCR

MF

0

FIGURE 21.7 Determination of buckling load for a
column with one end fixed and the other end pinned

Substituting for M from Eq. (13.3) we have

d2v

dx2 = −PCR

EI
v − F

EI
(L − x) (21.16)

which, on rearranging, becomes

d2v

dx2 + PCR

EI
v = − F

EI
(L − x) (21.17)

The solution of Eq. (21.17) is

v = C1 cos µx + C2 sin µx − F
PCR

(L − x) (21.18)

Now dv/dx = 0 at x = 0, so that

0 = µC2 + F
PCR

from which

C2 = − F
µPCR

When x = L, v = 0, hence

0 = C1 cos µL + C2 sin µL

which gives

C1 = F
µPCR

tan µL

Thus Eq. (21.18) becomes

v = F
µPCR

[ tan µL cos µx − sin µx − µ(L − x)] (21.19)
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Solution for lowest
critical load

tan mL

mL

mL

p 3p
2 2

FIGURE 21.8 Solution of a
transcendental equation

Also v = 0 at x = 0. Then

0 = tan µL − µL

or

µL = tan µL (21.20)

Equation (21.20) is a transcendental equation which may be solved graphically as
shown in Fig. 21.8. The smallest non-zero value satisfying Eq. (21.20) is approxi-
mately 4.49.

This gives

PCR = 20.2EI
L2

which may be written approximately as

PCR = 2.05π2EI
L2 (21.21)

It can be seen from Eqs (21.5), (21.10), (21.15) and (21.21) that the buckling load in
all cases has the form

PCR = K2π2EI
L2 (21.22)

in which K is some constant. Equation (21.22) may be written in the form

PCR = π2EI
L2

e
(21.23)

in which Le(=L/K) is the equivalent length of the column, i.e. (by comparison of
Eqs (21.23) and (21.5)) the length of a pin-ended column that has the same buckling
load as the actual column. Clearly the buckling load of any column may be expressed
in this form so long as its equivalent length is known. By inspection of Eqs (21.5),
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(21.10), (21.15) and (21.21) we see that the equivalent lengths of the various types of
column are

both ends pinned Le = 1.0L
both ends fixed Le = 0.5L
one end fixed and one free Le = 2.0L
one end fixed and one pinned Le = 0.7L

21.2 LIMITATIONS OF THE EULER THEORY

For a column of cross-sectional area A the critical stress, σCR, is, from Eq. (21.23)

σCR = PCR

A
= π2EI

AL2
e

(21.24)

The second moment of area, I, of the cross section is equal to Ar2 where r is the radius
of gyration of the cross section. Thus we may write Eq. (21.24) as

σCR = π2E
(Le/r)2 (21.25)

Therefore for a column of a given material, the critical or buckling stress is inversely
proportional to the parameter (Le/r)2. Le/r is an expression of the proportions of the
length and cross-sectional dimensions of the column and is known as its slenderness
ratio. Clearly if the column is long and slender Le/r is large and σCR is small; conversely,
for a short column having a comparatively large area of cross section, Le/r is small
and σCR is high. A graph of σCR against Le/r for a particular material has the form
shown in Fig. 21.9. For values of Le/r less than some particular value, which depends
upon the material, a column will fail in compression rather than by buckling so that
σCR as predicted by the Euler theory is no longer valid. Thus in Fig. 21.9, the actual
failure stress follows the dotted curve rather than the full line.

Actual failure stress

Euler theory

sCR

Le/r
FIGURE 21.9 Variation of critical
stress with slenderness ratio
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21.3 FAILURE OF COLUMNS OF ANY LENGTH

Empirical or semi-empirical methods are generally used to predict the failure of a
column of any length: these then form the basis for safe load or safe stress tables given
in Codes of Practice. One such method which gives good agreement with experiment
is that due to Rankine.

RANKINE THEORY

Suppose that P is the failure load of a column of a given material and of any length.
Suppose also that PS is the failure load in compression of a short column of the same
material and that PCR is the buckling load of a long slender column, again of the same
material. The Rankine theory proposes that

1
P

= 1
PS

+ 1
PCR

(21.26)

Equation (21.26) is valid for a very short column since 1/PCR → 0 and P then → PS;
the equation is also valid for a long slender column since 1/PS is small compared with
1/PCR; thus P → PCR. Therefore, Eq. (21.26) is seen to hold for extremes in column
length.

Now let σS be the yield stress in compression of the material of the column and A its
cross-sectional area. Then

PS = σSA

Also from Eq. (21.23)

PCR = π2EI
L2

e

Substituting for PS and PCR in Eq. (21.26) we have

1
P

= 1
σSA

+ 1
π2EI/L2

e

Thus

1
P

= π2EI/L2
e + σSA

σSAπ2EI/L2
e

so that

P = σSAπ2EI/L2
e

π2EI/L2
e + σSA

Dividing top and bottom of the right-hand side of this equation by π2EI/L2
e we have

P = σSA
1 + σSAL2

e/π
2EI
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But I = Ar2 so that

P = σSA
1 + (σS/π2E)(Le/r)2

which may be written

P = σSA
1 + k(Le/r)2 (21.27)

in which k is a constant that depends upon the material of the column. The failure
stress in compression, σC, of a column of any length is then, from Eq. (21.27)

σC = P
A

= σS

1 + k(Le/r)2 (21.28)

Note that for a column of a given material σC is a function of the slenderness
ratio, Le/r.

INITIALLY CURVED COLUMN

An alternative approach to the Rankine theory bases a design formula on the failure
of a column possessing a small initial curvature, the argument being that in practice
columns are never perfectly straight.

Consider the pin-ended column shown in Fig. 21.10. In its unloaded configuration the
column has a small initial curvature such that the lateral displacement at any value of
x is v0. Let us assume that

v0 = a sin π
x
L

(21.29)

in which a is the initial displacement at the centre of the column. Equation (21.29)
satisfies the boundary conditions of v0 = 0 at x = 0 and x = L and also dv0/dx = 0 at

P

y

P

L

x

a

EI

Deflected shape produced
by compressive load, P

Initial curved shape
of column

0

y0y

yc

FIGURE 21.10 Failure of an initially
curved column
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x = L/2; the assumed deflected shape is therefore reasonable, particularly since we
note that the buckled shape of a pin-ended column is also a half sine-wave.

Since the column is initially curved, an axial load, P, immediately produces bending
and therefore further lateral displacements, v, measured from the initial displaced
position. The bending moment, M , at any section Z is then

M = −P(v + v0) (21.30)

If the column is initially unstressed, the bending moment at any section is proportional
to the change in curvature at that section from its initial configuration and not its
absolute value. From Eq. (13.3)

M = EI
d2v

dx2

so that

d2v

dx2 = − P
EI

(v + v0) (21.31)

Rearranging Eq. (21.31) we have

d2v

dx2 + P
EI

v = − P
EI

v0 (21.32)

Note that P is not, in this case, the buckling load for the column. Substituting for v0

from Eq. (21.29) we obtain

d2v

dx2 + P
EI

v = − P
EI

a sin π
x
L

(21.33)

The solution of Eq. (21.33) is

v = C1 cos µx + C2 sin µx + µ2a
(π2/L2) − µ2 sin π

x
L

(21.34)

in which µ2 = P/EI. If the ends of the column are pinned, v = 0 at x = 0 and x = L.
The first of these boundary conditions gives C1 = 0 while from the second we have

0 = C2 sin µL

Although this equation is identical to that derived from the boundary conditions of
an initially straight, buckled, pin-ended column, the circumstances are now different.
If sin µL = 0 then µL = π so that µ2 = π2/L2. This would then make the third term
in Eq. (21.34) infinite which is clearly impossible for a column in stable equilibrium
(P < PCR). We conclude, therefore, that C2 = 0 and hence Eq. (21.34) becomes

v = µ2a
(π2/L2) − µ2 sin π

x
L

(21.35)
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Dividing the top and bottom of Eq. (21.35) by µ2 we obtain

v = a sin πx/L
(π2/µ2L2) − 1

But µ2 = P/EI and a sin πx/L = v0. Thus

v = v0

(π2EI/PL2) − 1
(21.36)

From Eq. (21.5) we see that (π2EI/L2 = PCR, the buckling load for a perfectly straight
pin-ended column. Hence Eq. (21.36) becomes

v = v0

(PCR/P) − 1
(21.37)

It can be seen from Eq. (21.37) that the effect of the compressive load, P, is to increase
the initial deflection, v0, by a factor 1/(PCR/P) − 1. Clearly as P approaches PCR, v

tends to infinity. In practice this is impossible since material breakdown would occur
before PCR is reached.

If we consider displacements at the mid-height of the column we have from Eq. (21.37)

vc = a
(PCR/P) − 1

Rearranging we obtain

vc = PCR
vc

P
− a (21.38)

Equation (21.38) represents a linear relationship between vc and vc/P. Thus in an
actual test on an initially curved column a graph of vc against vc/P will be a straight
line as the critical condition is approached. The gradient of the line is PCR and its
intercept on the vc axis is equal to a, the initial displacement at the mid-height of the
column. The graph (Fig. 21.11) is known as a Southwell plot and gives a convenient,
non-destructive, method of determining the buckling load of columns.

The maximum bending moment in the column of Fig. 21.10 occurs at mid-height and is

Mmax = −P(a + vc)

Gradient � PCR

υC

υC/P
0

a FIGURE 21.11 Experimental determination of
the buckling load of a column from a
Southwell plot
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Substituting for vc from Eq. (21.38) we have

Mmax = −Pa
(

1 + 1
(PCR/P) − 1

)

or

Mmax = −Pa
(

PCR

PCR − P

)
(21.39)

The maximum compressive stress in the column occurs in an extreme fibre and is from
Eq. (9.15)

σmax = P
A

+ Pa
(

PCR

PCR − P

)(
c
I

)

in which A is the cross-sectional area, c is the distance from the centroidal axis to the
extreme fibre and I is the second moment of area of the column’s cross section. Since
I = Ar2 (r = radius of gyration), we may rewrite the above equation as

σmax = P
A

[
1 + PCR

PCR − P

(ac
r2

)]
(21.40)

Now P/A is the average stress, σ , on the cross section of the column. Thus, writing
Eq. (21.40) in terms of stress we have

σmax = σ

[
1 + σCR

σCR − σ

(ac
r2

)]
(21.41)

in which σCR = PCR/A = π2E(r/L)2 (see Eq. (21.25)). The term ac/r2 is an expression
of the geometrical configuration of the column and is a constant for a given column
having a given initial curvature. Therefore, writing ac/r2 = η, Eq. (21.41) becomes

σmax = σ

(
1 + ησCR

σCR − σ

)
(21.42)

Expanding Eq. (21.42) we have

σmax(σCR − σ ) = σ [(1 + η)σCR − σ ]

which, on rearranging, becomes

σ 2 − σ [σmax + (1 + η)σCR] + σmaxσCR = 0 (21.43)

the solution of which is

σ = 1
2

[σmax + (1 + η)σCR] −
√

1
4

[σmax + (1 + η)σCR]2 − σmaxσCR (21.44)

The positive square root in the solution of Eq. (21.43) is ignored since we are only
interested in the smallest value of σ . Equation (21.44) then gives the average stress,
σ , in the column at which the maximum compressive stress would be reached for any
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value of η. Thus if we specify the maximum stress to be equal to σY, the yield stress of
the material of the column, then Eq. (21.44) may be written

σ = 1
2

[σY + (1 + η)σCR] −
√

1
4

[σY + (1 + η)σCR]2 − σYσCR (21.45)

It has been found from tests on mild steel pin-ended columns that failure of an ini-
tially curved column occurs when the maximum stress in an extreme fibre reaches the
yield stress, σY. Also, from a wide range of tests on mild steel columns, Robertson
concluded that

η = 0.003
(

L
r

)

Substituting this value of η in Eq. (21.45) we obtain

σ = 1
2

[
σY +

(
1 + 0.003

L
r

)
σCR

]
−
√

1
4

[
σY +

(
1 + 0.003

L
r

)
σCR

]2

− σYσCR (21.46)

In Eq. (21.46) σY is a material property while σCR (from Eq. (21.25)) depends upon
Young’s modulus, E, and the slenderness ratio of the column. Thus Eq. (21.46) may
be used to determine safe axial loads or stresses (σ ) for columns of a given material in
terms of the slenderness ratio. Codes of Practice tabulate maximum allowable values
of average compressive stress against a range of slenderness ratios.

21.4 EFFECT OF CROSS SECTION ON THE BUCKLING OF COLUMNS

The columns we have considered so far have had doubly symmetrical cross sections
with equal second moments of area about both centroidal axes. In practice, where
columns frequently consist of I-section beams, this is not the case. For example, a
column having the I-section of Fig. 21.12 would buckle about the centroidal axis about
which the flexural rigidity, EI, is least, i.e. Gy. In fact, the most efficient cross section
from the viewpoint of instability would be a hollow circular section that has the same
second moment of area about any centroidal axis and has as small an amount of
material placed near the axis as possible. However, a disadvantage with this type of
section is that connections are difficult to make.

G

y

z

FIGURE 21.12 Effect of cross section on the buckling of
columns
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In designing columns having only one cross-sectional axis of symmetry (e.g. a channel
section) or none at all (i.e. an angle section having unequal legs) the least radius of
gyration is taken in calculating the slenderness ratio. In the latter case the radius of
gyration would be that about one of the principal axes.

Another significant factor in determining the buckling load of a column is the method
of end support. We saw in Section 21.1 that considerable changes in buckling load result
from changes in end conditions. Thus a column with fixed ends has a higher value of
buckling load than if the ends are pinned (cf. Eqs (21.5) and (21.10)). However, we
have seen that by introducing the concept of equivalent length, the buckling loads
of all columns may be referred to that of a pin-ended column no matter what the
end conditions. It follows that Eq. (21.46) may be used for all types of end condition,
provided that the equivalent length, Le, of the column is used. Codes of Practice
list equivalent or ‘effective’ lengths of columns for a wide variety of end conditions.
Furthermore, although a column buckles naturally in a direction perpendicular to the
axis about which EI is least, it is possible that the column may be restrained by external
means in this direction so that buckling can only take place about the other axis.

21.5 STABILITY OF BEAMS UNDER TRANSVERSE AND AXIAL LOADS

Stresses and deflections in a linearly elastic beam subjected to transverse loads as
predicted by simple beam theory are directly proportional to the applied loads. This
relationship is valid if the deflections are small such that the slight change in geome-
try produced in the loaded beam has an insignificant effect on the loads themselves.
This situation changes drastically when axial loads act simultaneously with the trans-
verse loads. The internal moments, shear forces, stresses and deflections then become
dependent upon the magnitude of the deflections as well as the magnitude of the
external loads. They are also sensitive, as we observed in Section 21.3, to beam imper-
fections such as initial curvature and eccentricity of axial loads. Beams supporting
both axial and transverse loads are sometimes known as beam-columns or simply as
transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load
of intensity w and an axial load, P, as shown in Fig. 21.13. The bending moment at any
section of the beam is

M = −Pv − wLx
2

+ wx2

2
= EI

d2v

dx2 (from Eq. 13.3)

giving

d2v

dx2 + P
EI

v = w
2EI

(x2 − Lx) (21.47)

The standard solution of Eq. (21.47) is

v = C1 cos µx + C2 sin µx + w
2P

(
x2 − Lx − 2

µ2

)
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where C1 and C2 are unknown constants and µ2 = P/EI. Substituting the boundary
conditions v = 0 at x = 0 and L gives

C1 = w
µ2P

C2 = w
µ2P sin µL

(1 − cos µL)

so that the deflection is determinate for any value of w and P and is given by

v = w
µ2P

[
cos µx +

(
1 − cos µL

sin µL

)
sin µx

]
+ w

2P

(
x2 − Lx − 2

µ2

)
(21.48)

In beam columns, as in beams, we are primarily interested in maximum values of stress
and deflection. For this particular case the maximum deflection occurs at the centre
of the beam and is, after some transformation of Eq. (21.48)

vmax = w
µ2P

(
sec

µL
2

− 1
)

− wL2

8P
(21.49)

The corresponding maximum bending moment is

Mmax = −Pvmax − wL2

8
or, from Eq. (21.49)

Mmax = w
µ2

(
1 − sec

µL
2

)
(21.50)

L

y

y

P

P

w

x

2
wL

2
wL

FIGURE 21.13 Bending of a uniformly loaded
beam-column
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We may rewrite Eq. (21.50) in terms of the Euler buckling load, PCR = π2EI/L2, for
a pin-ended column. Hence

Mmax = wL2

π2
PCR

P

(
1 − sec

π

2

√
P

PCR

)
(21.51)

As P approaches PCR the bending moment (and deflection) becomes infinite. How-
ever, the above theory is based on the assumption of small deflections (otherwise
d2v/dx2 would not be a close approximation for curvature) so that such a deduc-
tion is invalid. The indication is, though, that large deflections will be produced by the
presence of a compressive axial load no matter how small the transverse load might be.

Let us consider now the beam column of Fig. 21.14 with pinned ends carrying a
concentrated load W at a distance a from the upper support.

For x ≤ L − a

EI
d2v

dx2 = M = −Pv − Wax
L

(21.52)

and for x ≥ L − a,

EI
d2v

dx2 = M = −Pv − W
L

(L − a)(L − x) (21.53)

W

L

a

x

y

y

P

P

W(L�a)

L

Wa
L

FIGURE 21.14 Beam-column supporting a
point load
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Writing

µ2 = P
EI

Equation (21.52) becomes

d2v

dx2 + µ2v = − Wa
EIL

x

the general solution of which is

v = C1 cos µx + C2 sin µx − Wa
PL

x (21.54)

Similarly the general solution of Eq. (21.53) is

v = C3 cos µx + C4 sin µx − W
PL

(L − a)(L − x) (21.55)

where C1, C2, C3 and C4 are constants which are found from the boundary conditions
as follows.

When x = 0, v = 0, therefore from Eq. (21.54) C1 = 0. At x = L, v = 0 giving, from
Eq. (21.55), C3 = −C4 tan µL. At the point of application of the load the deflection
and slope of the beam given by Eqs (21.54) and (21.55) must be the same. Hence
equating deflections

C2 sin µ(L − a) − Wa
PL

(L − a) = C4[ sin µ(L − a) − tan µL cos µ(L − a)] − Wa
PL

(L − a)

and equating slopes

C2µ cos µ(L − a) − Wa
PL

= C4µ[ cos µ(L − a) + tan µL sin µ(L − a)] + Wa
PL

(L − a)

Solving the above equations for C2 and C4 and substituting for C1, C2, C3 and C4 in
Eqs (21.54) and (21.55) we have

v = W sin µa
Pµ sin µL

sin µx − Wa
PL

x for x ≤ L − a (21.56)

v = W sin µ(L − a)
Pµ sin µL

sin µ(L − x) − W
PL

(L − a)(L − x) for x ≥ L − a (21.57)

These equations for the beam-column deflection enable the bending moment and
resulting bending stresses to be found at all sections.

A particular case arises when the load is applied at the centre of the span. The
deflection curve is then symmetrical with a maximum deflection under the load of

vmax = W
2Pµ

tan
µL
2

− WL
4P

Finally we consider a beam column subjected to end moments, MA and MB, in addition
to an axial load, P (Fig. 21.15). The deflected form of the beam column may be found
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FIGURE 21.15
Beam-column

supporting end
moments

x

y

P
PA B

MA MB

by using the principle of superposition and the results of the previous case. First we
imagine that MB acts alone with the axial load, P. If we assume that the point load, W ,
moves towards B and simultaneously increases so that the product Wa = constant = MB

then, in the limit as a tends to zero, we have the moment MB applied at B. The deflection
curve is then obtained from Eq. (21.56) by substituting µa for sin µa (since µa is now
very small) and MB for Wa. Thus

v = MB

P

(
sin µx
sin µL

− x
L

)
(21.58)

We find the deflection curve corresponding to MA acting alone in a similar way. Sup-
pose that W moves towards A such that the product W (L−a) = constant = MA. Then
as (L − a) tends to zero we have sin µ(L − a) = µ(L − a) and Eq. (21.57) becomes

v = MA

P

[
sin µ(L − x)

sin µL
− (L − x)

L

]
(21.59)

The effect of the two moments acting simultaneously is obtained by superposition of
the results of Eqs (21.58) and (21.59). Hence, for the beam-column of Fig. 21.15

v = MB

P

(
sin µx
sin µL

− x
L

)
+ MA

P

[
sin µ(L − x)

sin µL
− (L − x)

L

]
(21.60)

Equation (21.60) is also the deflected form of a beam-column supporting eccentrically
applied end loads at A and B. For example, if eA and eB are the eccentricities of P at
the ends A and B, respectively, then MA = PeA, MB = PeB, giving a deflected form of

v = eB

(
sin µx
sin µL

− x
L

)
+ eA

[
sin µ(L − x)

sin µL
− (L − x)

L

]
(21.61)

Other beam-column configurations featuring a variety of end conditions and loading
regimes may be analysed by a similar procedure.

21.6 ENERGY METHOD FOR THE CALCULATION OF BUCKLING LOADS IN

COLUMNS (RAYLEIGH–RITZ METHOD)

The fact that the total potential energy of an elastic body possesses a stationary value
in an equilibrium state (see Section 15.3) may be used to investigate the neutral equi-
librium of a buckled column. In particular the energy method is extremely useful when
the deflected form of the buckled column is unknown and has to be ‘guessed’.
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FIGURE 21.16 Shortening of a column due to buckling

First we shall consider the pin-ended column shown in its buckled position in Fig. 21.16.
The internal or strain energy, U , of the column is assumed to be produced by bending
action alone and is given by Eq. (9.21), i.e.

U =
∫ L

0

M2

2EI
dx (21.62)

or alternatively, since EId2v/dx2 = M (Eq. (13.3))

U = EI
2

∫ L

0

(
d2v

dx2

)2

dx (21.63)

The potential energy, V , of the buckling load, PCR, referred to the straight position
of the column as datum, is then

V = −PCRδ

where δ is the axial movement of PCR caused by the bending of the column from its
initially straight position. From Fig. 21.16 the length δL in the buckled column is

δL = (δx2 + δv2)1/2
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and since dv/dx is small then

δL � δx

[
1 + 1

2

(
dv

dx

)2
]

Hence

L =
∫ L′

0

[
1 + 1

2

(
dv

dx

)2
]

dx

giving

L = L′ +
∫ L′

0

1
2

(
dv

dx

)2

dx

Therefore

δ = L − L′ =
∫ L′

0

1
2

(
dv

dx

)2

dx

Since ∫ L′

0

1
2

(
dv

dx

)2

dx

only differs from ∫ L

0

1
2

(
dv

dx

)2

dx

by a term of negligible order, we write

δ =
∫ L

0

1
2

(
dv

dx

)2

dx

giving

V = −PCR

2

∫ L

0

(
dv

dx

)2

dx (21.64)

The total potential energy of the column in the neutral equilibrium of its buckled state
is therefore

U + V =
∫ L

0

M2

2EI
dx − PCR

2

∫ L

0

(
dv

dx

)2

dx (21.65)

or, using the alternative form of U from Eq. (21.63)

U + V = EI
2

∫ L

0

(
d2v

dx2

)2

dx − PCR

2

∫ L

0

(
dv

dx

)2

dx (21.66)
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We shall now assume a deflected shape having the equation

v =
∞∑

n=1

An sin
nπx

L
(21.67)

This satisfies the boundary conditions of

(v)x=0 = (v)x=L = 0

(
d2v

dx2

)
x=0

=
(

d2v

dx2

)
x=L

= 0

and is capable, within the limits for which it is valid and if suitable values for the constant
coefficients, An, are chosen, of representing any continuous curve. We are therefore
in a position to find PCR exactly. Substituting Eq. (21.67) into Eq. (21.66) gives

U + V = EI
2

∫ L

0

(π

L

)4
( ∞∑

n=1

n2An sin
nπx

L

)2

dx

− PCR

2

∫ L

0

(π

L

)2
( ∞∑

n=1

nAn cos
nπx

L

)2

dx (21.68)

The product terms in both integrals of Eq. (21.68) disappear on integration leaving
only integrated values of the squared terms. Thus

U + V = π4EI
4L3

∞∑
n=1

n4A2
n − π2PCR

4L

∞∑
n=1

n2A2
n (21.69)

Assigning a stationary value to the total potential energy of Eq. (21.69) with respect
to each coefficient, An, in turn, then taking An as being typical, we have

∂(U + V )
∂An

= π4EIn4An

2L3 − π2PCRn2An

2L
= 0

from which

PCR = π2EIn2

L2

as before.

We see that each term in Eq. (21.67) represents a particular deflected shape with a
corresponding critical load. Hence the first term represents the deflection of the col-
umn shown in Fig. 21.16 with PCR = π2EI/L2. The second and third terms correspond
to the shapes shown in Fig. 21.4(b) and (c) having critical loads of 4π2EI/L2 and
9π2EI/L2 and so on. Clearly the column must be constrained to buckle into these
more complex forms. In other words, the column is being forced into an unnatural
shape, is consequently stiffer and offers greater resistance to buckling, as we observe
from the higher values of critical load.

If the deflected shape of the column is known, it is immaterial which of Eqs. (21.65) or
(21.66) is used for the total potential energy. However, when only an approximate solu-
tion is possible, Eq. (21.65) is preferable since the integral involving bending moment
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depends upon the accuracy of the assumed form of v, whereas the corresponding
term in Eq. (21.66) depends upon the accuracy of d2v/dx2. Generally, for an assumed
deflection curve v is obtained much more accurately than d2v/dx2.

Suppose that the deflection curve of a particular column is unknown or extremely
complicated. We then assume a reasonable shape which satisfies as far as possible the
end conditions of the column and the pattern of the deflected shape (Rayleigh–Ritz
method). Generally the assumed shape is in the form of a finite series involving a series
of unknown constants and assumed functions of x. Let us suppose that v is given by

v = A1 f1(x) + A2 f2(x) + A3f3(x)

Substitution in Eq. (21.65) results in an expression for total potential energy in terms
of the critical load and the coefficients A1, A2 and A3 as the unknowns. Assigning
stationary values to the total potential energy with respect to A1, A2 and A3 in turn
produces three simultaneous equations from which the ratios A1/A2, A1/A3 and the
critical load are determined. Absolute values of the coefficients are unobtainable
since the displacements of the column in its buckled state of neutral equilibrium are
indeterminate.

As a simple illustration consider the column shown in its buckled state in Fig. 21.17. An
approximate shape may be deduced from the deflected shape of a cantilever loaded
at its free end. Thus, from Eq. (iv) of Ex. 13.1

v = v0x2

2L3 (3L − x)

This expression satisfies the end conditions of deflection, viz. v = 0 at x = 0 and v = v0

at x = L. In addition, it satisfies the conditions that the slope of the column is zero at
the built-in end and that the bending moment, i.e. d2v/dx2, is zero at the free end. The
bending moment at any section is M = PCR(v0 − v) so that substitution for M and v in

L

PCR

y

y0

x

y

FIGURE 21.17 Buckling load for a
built-in column by the energy
method
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Eq. (21.65) gives

U + V = P2
CRv2

0
2EI

∫ L

0

(
1 − 3x2

2L2 + x3

2L3

)2

dx

− PCR

2

∫ L

0

(
3v0

2L3

)2

x2(2L − x)2dx

Integrating and substituting the limits we have

U + V = 17
35

P2
CRv2

0L
2EI

− 3
5

PCR
v2

0
L

Hence

∂(U + V )
∂v0

= 17
35

P2
CRv0L

EI
− 6PCRv0

5L
= 0

from which

PCR = 42EI
17L2 = 2.471

EI
L2

This value of critical load compares with the exact value (see Eq. (21.15)) of
π2EI/4L2 = 2.467 EI/L2; the error, in this case, is seen to be extremely small. Approx-
imate values of critical load obtained by the energy method are always greater than
the correct values. The explanation lies in the fact that an assumed deflected shape
implies the application of constraints in order to force the column to take up an arti-
ficial shape. This, as we have seen, has the effect of stiffening the column with a
consequent increase in critical load.

It will be observed that the solution for the above example may be obtained by simply
equating the increase in internal energy (U) to the work done by the external critical
load (−V ). This is always the case when the assumed deflected shape contains a single
unknown coefficient, such as v0, in the above example.

In this chapter we have investigated structural instability with reference to the over-
all buckling or failure of columns subjected to axial load and also to bending. The
reader should also be aware that other forms of instability occur. For example, the
compression flange in an I-section plate girder can buckle laterally when the girder is
subjected to bending moments unless it is restrained. Furthermore, thin-walled open
section beams that are weak in torsion can exhibit torsional instability, i.e. they sud-
denly twist, when subjected to axial load. These forms of instability are considered in
more advanced texts.

P R O B L E M S

P.21.1 A uniform column of length L and flexural rigidity EI is built-in at one end and
is free at the other. It is designed so that its lowest buckling load is P (Fig. P.21.1(a)).
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P

EI EI

(b)(a)

4P

L L

k

FIGURE P.21.1

Subsequently it is required to carry an increased load and for that it is provided with a
lateral spring at the free end (Fig. P.21.1 (b)). Determine the necessary spring stiffness,
k, so that the buckling load is 4P.

Ans. k = 4Pµ/(µL − tan µL) where µ2 = P/EI.

P.21.2 A pin-ended column of length L and flexural rigidity EI is reinforced to give a
flexural rigidity 4EI over its central half. Determine its lowest buckling load.

Ans. 24.2EI/L2.

P.21.3 A uniform pin-ended column of length L and flexural rigidity EI has an initial
curvature such that the lateral displacement at any point between the column and the
straight line joining its ends is given by

v0 = a
4x
L2 (L − x)

where a is the initial displacement at the mid-length of the column and the origin for
x is at one end.

Show that the maximum bending moment due to a compressive axial load, P, is
given by

Mmax = − 8aP
(µL)2

(
sec

µL
2

− 1
)

where µ2 = P
EI

P.21.4 A compression member is made of circular section tube having a diameter d and
thickness t and is curved initially so that its initial deflected shape may be represented
by the expression

v0 = δ sin
(πx

L

)
in which δ is the displacement at its mid-length and the origin for x is at one end.

Show that if the ends are pinned, a compressive load, P, induces a maximum direct
stress, σmax, given by

σmax = P
πdt

(
1 + 1

1 − α

4δ

d

)



chap-21 12/1/2005 12: 48 page 711

Problems • 711

where α = P/PCR and PCR = π2EI/L2. Assume that t is small compared with d so that
the cross-sectional area of the tube is πdt and its second moment of area is πd3t/8.

P.21.5 In the experimental determination of the buckling loads for 12.5 mm diameter,
mild steel, pin-ended columns, two of the values obtained were:

(i) length 500 mm, load 9800 N,

(ii) length 200 mm, load 26 400 N.

(a) Determine whether either of these values conforms to the Euler theory for
buckling load.

(b) Assuming that both values are in agreement with the Rankine formula, find the
constants σs and k. Take E = 200 000 N/mm2.

Ans. (a) (i) conforms with Euler theory.

(b) σs = 317 N/mm2 k = 1.16 × 10−4.

P.21.6 A tubular column has an effective length of 2.5 m and is to be designed to carry
a safe load of 300 kN. Assuming an approximate ratio of thickness to external diameter
of 1/16, determine a practical diameter and thickness using the Rankine formula with
σs = 330 N/mm2 and k = 1/7500. Use a safety factor of 3.

Ans. Diameter = 128 mm thickness = 8 mm.

P.21.7 A mild steel pin-ended column is 2.5 m long and has the cross section shown
in Fig. P.21.7. If the yield stress in compression of mild steel is 300 N/mm2, determine
the maximum load the column can withstand using the Robertson formula. Compare
this value with that predicted by the Euler theory.

Ans. 576 kN, P(Robertson)/P(Euler) = 0.62.

130 mm

8 mm

8 mm

6 mm

184 mm

FIGURE P.21.7
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P.21.8 A pin-ended column of length L has its central portion reinforced, the second
moment of its area being I2 while that of the end portions, each of length a, is I1. Use
the Rayleigh–Ritz method to determine the critical load of the column assuming that
its centreline deflects into the parabola v = kx(L − x) and taking the more accurate of
the two expressions for bending moment.

In the case where I2 = 1.6I1 and a = 0.2L find the percentage increase in strength due
to the reinforcement.

Ans. PCR = 14.96EI1/L2, 52%.

P.21.9 A tubular column of length L is tapered in wall thickness so that the area and
the second moment of area of its cross section decrease uniformly from A1 and I1 at
its centre to 0.2A1 and 0.2I1 at its ends, respectively.

Assuming a deflected centreline of parabolic form and taking the more correct form
for the bending moment, use the Rayleigh–Ritz method to estimate its critical load;
the ends of the column may be taken as pinned. Hence show that the saving in weight
by using such a column instead of one having the same radius of gyration and constant
thickness is about 15%.

Ans. 7EI1/L2.
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TABLE A.1 (Continued)

3
2BH

3
BH

4
3B

10
3H

8
3B

5
2H

y

O

H

B

G

z

Parabola

z

y

H

z
B

Parabola

G

y

O

z

y
y �Hz2

B2

2pRt, pDt
8

pD3tpR3t,
8

pD3tpR3t, 0
y

t

z G

R D
2

y

G

D

D

BB

z

Ellipse
pBD

4
pBD3

4
pDB3

0

Section A Iz Iy Izyz y

y � H 1�
z2

B2



App-B 12/1/2005 12: 44 page 715

A p p e n d i x B / Bending of Beams:
Standard Cases

TABLE B.1
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716 • Appendix B / Bending of Beams: Standard Cases

TABLE B.1 (Continued)
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