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Preface to First Edition

The purpose of this book is to provide, in a unified form, a text covering the associated
topics of structural and stress analysis for students of civil engineering during the first
two years of their degree course. The book is also intended for students studying for
Higher National Diplomas, Higher National Certificates and related courses in civil
engineering.

Frequently, textbooks on these topics concentrate on structural analysis or stress
analysis and often they are lectured as two separate courses. There is, however, a
degree of overlap between the two subjects and, moreover, they are closely related.
In this book, therefore, they are presented in a unified form which illustrates their
interdependence. This is particularly important at the first-year level where there is a
tendency for students to ‘compartmentalize’ subjects so that an overall appreciation
of the subject is lost.

The subject matter presented here is confined to the topics students would be
expected to study in their first two years since third- and fourth-year courses in struc-
tural and/or stress analysis can be relatively highly specialized and are therefore best
served by specialist texts. Furthermore, the topics are arranged in a logical manner so
that one follows naturally on from another. Thus, for example, internal force systems
in statically determinate structures are determined before their associated stresses and
strains are considered, while complex stress and strain systems produced by the simul-
taneous application of different types of load follow the determination of stresses and
strains due to the loads acting separately.

Although in practice modern methods of analysis are largely computer based, the
methods presented in this book form, in many cases, the basis for the establishment
of the flexibility and stiffness matrices that are used in computer-based analysis. It is
therefore advantageous for these methods to be studied since, otherwise, the student
would not obtain an appreciation of structural behaviour, an essential part of the
structural designer’s background.

In recent years some students enrolling for degree courses in civil engineering,
while being perfectly qualified from the point of view of pure mathematics, lack a
knowledge of structural mechanics, an essential basis for the study of structural and
stress analysis. Therefore a chapter devoted to those principles of statics that are a
necessary preliminary has been included.

As stated above, the topics have been arranged in a logical sequence so that they
form a coherent and progressive ‘story’. Hence, in Chapter 1, structures are considered
in terms of their function, their geometries in different roles, their methods of support
and the differences between their statically determinate and indeterminate forms. Also

ai
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considered is the role of analysis in the design process and methods of idealizing struc-
tures so that they become amenable to analysis. In Chapter 2 the necessary principles
of statics are discussed and applied directly to the calculation of support reactions.
Chapters 3-6 are concerned with the determination of internal force distributions in
statically determinate beams, trusses, cables and arches, while in Chapter 7 stress
and strain are discussed and stress—strain relationships established. The relationships
between the elastic constants are then derived and the concept of strain energy in axial
tension and compression introduced. This is then applied to the determination of the
effects of impact loads, the calculation of displacements in axially loaded members
and the deflection of a simple truss. Subsequently, some simple statically indetermi-
nate systems are analysed and the compatibility of displacement condition introduced.
Finally, expressions for the stresses in thin-walled pressure vessels are derived. The
properties of the different materials used in civil engineering are investigated in Chap-
ter 8 together with an introduction to the phenomena of strain-hardening, creep and
relaxation and fatigue; a table of the properties of the more common civil engineering
materials is given at the end of the chapter. Chapters 9, 10 and 11 are respectively con-
cerned with the stresses produced by the bending, shear and torsion of beams while
Chapter 12 investigates composite beams. Deflections due to bending and shear are
determined in Chapter 13, which also includes the application of the theory to the
analysis of some statically indeterminate beams. Having determined stress distribu-
tions produced by the separate actions of different types of load, we consider, in Chap-
ter 14, the state of stress and strain at a point in a structural member when the loads
act simultaneously. This leads directly to the experimental determination of surface
strains and stresses and the theories of elastic failure for both ductile and brittle mater-
ials. Chapter 15 contains a detailed discussion of the principle of virtual work and the
various energy methods. These are applied to the determination of the displacements
of beams and trusses and to the determination of the effects of temperature gradi-
ents in beams. Finally, the reciprocal theorems are derived and their use illustrated.
Chapter 16 is concerned solely with the analysis of statically indeterminate structures.
Initially methods for determining the degree of statical and kinematic indeterminacy
of a structure are described and then the methods presented in Chapter 15 are used
to analyse statically indeterminate beams, trusses, braced beams, portal frames and
two-pinned arches. Special methods of analysis, i.e. slope—deflection and moment dis-
tribution, are then applied to continuous beams and frames. The chapter is concluded
by an introduction to matrix methods. Chapter 17 covers influence lines for beams,
trusses and continuous beams while Chapter 18 investigates the stability of columns.

Numerous worked examples are presented in the text to illustrate the theory, while
a selection of unworked problems with answers is given at the end of each chapter.

T.H.G. MEGSON
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Preface to Second Edition

Since ‘Structural and Stress Analysis’ was first published changes have taken place in
courses leading to degrees and other qualifications in civil and structural engineering.
Universities and other institutions of higher education have had to adapt to the dif-
ferent academic backgrounds of their students so that they can no longer assume a
basic knowledge of, say, mechanics with the result that courses in structural and stress
analysis must begin at a more elementary stage. The second edition of ‘Structural and
Stress Analysis’ is intended to address this issue.

Although the feedback from reviewers of the first edition was generally encouraging
there were suggestions for changes in presentation and for the inclusion of topics that
had been omitted. This now means, in fact, that while the first edition was originally
intended to cover the first two years of a degree scheme, the second edition has been
expanded so that it includes third- and fourth-year topics such as the plastic analysis
of frames, the finite element method and yield line analysis of slabs. Furthermore,
the introductions to the earlier chapters have been extended and in Chapter 1, for
example, the discussions of structural loadings, structural forms, structural elements
and materials are now more detailed. Chapter 2, which presents the principles of
statics, now begins with definitions of force and mass while in Chapter 3 a change in
axis system is introduced and the sign convention for shear force reversed.

Chapters 4, 5 and 6, in which the analysis of trusses, cables and arches is presented,
remain essentially the same although Chapter 4 has been extended to include an
illustration of a computer-based approach.

In Chapter 7, stress and strain, some of the original topics have been omitted;
these are some examples on the use of strain energy such as impact loading, suddenly
applied loads and the solutions for the deflections of simple structures and the analysis
of a statically indeterminate truss which is covered later.

The discussion of the properties of engineering materials in Chapter 8 has been
expanded as has the table of material properties given at the end of the chapter.

Chapter 9 on the bending of beams has been modified considerably. The change
in axis system and the sign convention for shear force is now included and the dis-
cussion of the mechanics of bending more descriptive than previously. The work on
the plastic bending of beams has been removed and is now contained in a completely
new chapter (18) on plastic analysis. The introduction to Chapter 10 on the shear of
beams now contains an illustration of how complementary shear stresses in beams are
produced and is also, of course, modified to allow for the change in axis system and
sign convention. Chapter 11 on the torsion of beams remains virtually unchanged as
does Chapter 12 on composite beams apart from the change in axis system and sign
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convention. Beam deflections are considered in Chapter 13 which is also modified to
accommodate the change in axis system and sign convention.

The analysis of complex stress and strain in Chapter 14 is affected by the change
in axis system and also by the change in sign convention for shear force. Mohr’s circle
for stress and for strain are, for example, completely redrawn.

Chapters 15 and 16, energy methods and the analysis of statically indeterminate
structures, are unchanged except that the introduction to matrix methods in Chapter
16 has been expanded and is now part of Chapter 17 which is new and includes the
finite element method of analysis.

Chapter 18, as mentioned previously, is devoted to the plastic analysis of beams
and frames while Chapter 19 contains yield line theory for the ultimate load analysis
of slabs.

Chapters 20 and 21, which were Chapters 17 and 18 in the first edition, on influence
lines and structural instability respectively, are modified to allow for the change in axis
system and, where appropriate, for the change in sign convention for shear force.

Two appendices have been added. Appendix A gives a list of the properties of a
range of standard sections while Appendix B gives shear force and bending moment
distributions and deflections for standard cases of beams.

Finally, an accompanying Solutions Manual has been produced which gives
detailed solutions for all the problems set at the end of each chapter.

T.H.G. MEGSON
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Chapter 1 / Introduction

In the past it was common practice to teach structural analysis and stress analysis,
or theory of structures and strength of materials as they were frequently known, as
two separate subjects where, generally, structural analysis was concerned with the
calculation of internal force systems and stress analysis involved the determination
of the corresponding internal stresses and associated strains. Inevitably a degree of
overlap occurred. For example, the calculation of shear force and bending moment
distributions in beams would be presented in both structural and stress analysis courses,
as would the determination of displacements. In fact, a knowledge of methods of
determining displacements is essential in the analysis of some statically indeterminate
structures. It seems logical, therefore, to unify the two subjects so that the ‘story’ can
be told progressively with one topic following naturally on from another.

In this chapter we shall look at the function of a structure and then the different kinds of
loads the structures carry. We shall examine some structural systems and ways in which
they are supported. We shall also discuss the difference between statically determinate
and indeterminate structures and the role of analysis in the design process. Finally, we
shall look at ways in which structures and loads can be idealized to make structures
easier to analyse.

1.1 FUNCTION OF A STRUCTURE

The basic function of any structure is to carry loads and transmit forces. These arise
in a variety of ways and depend, generally, upon the purpose for which the structure
has been built. For example, in a steel-framed multistorey building the steel frame
supports the roof and floors, the external walls or cladding and also resists the action
of wind loads. In turn, the external walls provide protection for the interior of the
building and transmit wind loads through the floor slabs to the frame while the roof
carries snow and wind loads which are also transmitted to the frame. In addition, the
floor slabs carry people, furniture, floor coverings, etc. All these loads are transmitted
by the steel frame to the foundations of the building on which the structure rests and
which form a structural system in their own right.

Other structures carry other types of load. A bridge structure supports a deck which
allows the passage of pedestrians and vehicles, dams hold back large volumes of water,

1
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1.2 Loabps

retaining walls prevent the slippage of embankments and offshore structures carry
drilling rigs, accommodation for their crews, helicopter pads and resist the action
of the sea and the elements. Harbour docks and jetties carry cranes for unloading
cargo and must resist the impact of docking ships. Petroleum and gas storage tanks
must be able to resist internal pressure and, at the same time, possess the strength
and stability to carry wind and snow loads. Television transmitting masts are usually
extremely tall and placed in elevated positions where wind and snow loads are the
major factors. Other structures, such as ships, aircraft, space vehicles, cars, etc. carry
equally complex loading systems but fall outside the realm of structural engineering.
However, no matter how simple or how complex a structure may be or whether the
structure is intended to carry loads or merely act as a protective covering, there will
be one load which it will always carry, its own weight.

Generally, loads on civil engineering structures fall into two categories. Dead loads
are loads that act on a structure all the time and include its self-weight, fixtures, such
as service ducts and light fittings, suspended ceilings, cladding and floor finishes, etc.
Interestingly, machinery and computing equipment are assumed to be movable even
though they may be fixed into position. Live or imposed loads are movable or actually
moving loads; these include vehicles crossing a bridge, snow, people, temporary par-
titions and so on. Wind loads are live loads but their effects are considered separately
because they are affected by the location, size and shape of a structure. Soil or hydro-
static pressure and dynamic effects produced, for example, by vibrating machinery,
wind gusts, wave action or even earthquake action in some parts of the world, are the
other types of load.

In most cases Codes of Practice specify values of the above loads which must be used
in design. These values, however, are usually multiplied by a factor of safety to allow
for uncertainties; generally the factors of safety used for live loads tend to be greater
than those applied to dead loads because live loads are more difficult to determine
accurately.

1.3 STRUCTURAL SYSTEMS

The decision as to which type of structural system to use rests with the structural
designer whose choice will depend on the purpose for which the structure is required,
the materials to be used and any aesthetic considerations that may apply. It is possible
that more than one structural system will satisfy the requirements of the problem; the
designer must then rely on experience and skill to choose the best solution. On the
other hand there may be scope for a new and novel structure which provides savings
in cost and improvements in appearance.
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Structural systems are made up of a number of structural elements although it is
possible for an element of one structure to be a complete structure in its own right.
For example, a simple bearn may be used to carry a footpath over a stream (Fig. 1.1) or
form part of a multistorey frame (Fig. 1.2). Beams are one of the commonest structural
elements and carry loads by developing shear forces and bending moments along their
length as we shall see in Chapter 3.

TRUSSES

As spans increase the use of beams to support bridge decks becomes uneconomical.
For moderately large spans frusses are sometimes used. These are arrangements of
straight members connected at their ends. They carry loads by developing axial forces
in their members but this is only exactly true if the ends of the members are pinned
together, the members form a triangulated system and loads are applied only at the
joints (see Section 4.2). Their depth, for the same span and load, will be greater than
that of a beam but, because of their skeletal construction, a truss will be lighter. The
Warren truss shown in Fig. 1.3 is a two-dimensional plane truss and is typical of those
used to support bridge decks; other forms are shown in Fig. 4.1.
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;;f;é7/ ;;é%;;/ FIGURE 1.3 Warren truss
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FiGUuRe 1.5 Multibay single storey
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Trusses are not restricted to two-dimensional systems. Three-dimensional trusses, or
space trusses, are found where the use of a plane truss would be impracticable. Exam-
ples are the bridge deck support system in the Forth Road Bridge and the entrance
pyramid of the Louvre in Paris.

MOMENT FRAMES

Moment frames differ from trusses in that they derive their stability from their joints
which are rigid, not pinned. Also their members can carry loads applied along their
length which means that internal member forces will generally consist of shear forces
and bending moments (see Chapter 3) as well as axial loads although these, in some
circumstances, may be negligibly small.

Figure 1.2 shows an example of a two-bay, multistorey moment frame where the hori-
zontal members are beams and the vertical members are called columns. Figures 1.4(a)
and (b) show examples of Portal frames which are used in single storey industrial con-
struction where large, unobstructed working areas are required; for extremely large
areas several Portal frames of the type shown in Fig. 1.4(b) are combined to form a
multibay system as shown in Fig. 1.5.

Moment frames are comparatively easy to erect since their construction usually
involves the connection of steel beams and columns by bolting or welding; for example,
the Empire State Building in New York was completed in 18 months.



1.3 Structural Systems ¢ 5

Deck

Column /

Arch

: Abutment ;Z

Span

A
v

Arch

/’/:% / Hanger
Deck
FIGURE 1.6 Arches as

(b) bridge deck supports

ARCHES

The use of trusses to support bridge decks becomes impracticable for longer than
moderate spans. In this situation arches are often used. Figure 1.6(a) shows an arch
in which the bridge deck is carried by columns supported, in turn, by the arch. Alter-
natively the bridge deck may be suspended from the arch by hangers, as shown in
Fig. 1.6(b). Arches carry most of their loads by developing compressive stresses within
the arch itself and therefore in the past were frequently constructed using materials
of high compressive strength and low tensile strength such as masonry. In addition
to bridges, arches are used to support roofs. They may be constructed in a variety of
geometries; they may be semicircular, parabolic or even linear where the members
comprising the arch are straight. The vertical loads on an arch would cause the ends
of the arch to spread, in other words the arch would flatten, if it were not for the
abutments which support its ends in both horizontal and vertical directions. We shall
see in Chapter 6 that the effect of this horizontal support is to reduce the bending
moment in the arch so that for the same loading and span the cross section of the arch
would be much smaller than that of a horizontal beam.

CABLES

For exceptionally long-span bridges, and sometimes for short spans, cables are used
to support the bridge deck. Generally, the cables pass over saddles on the tops of
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Figure 1.7
Suspension bridge
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towers and are fixed at each end within the ground by massive anchor blocks. The
cables carry hangers from which the bridge deck is suspended; a typical arrangement
is shown in Fig. 1.7.

A weakness of suspension bridges is that, unless carefully designed, the deck is very
flexible and can suffer large twisting displacements. A well-known example of this was
the Tacoma Narrows suspension bridge in the US in which twisting oscillations were
triggered by a wind speed of only 19 m/s. The oscillations increased in amplitude until
the bridge collapsed approximately 1 h after the oscillations had begun. To counteract
this tendency bridge decks are stiffened. For example, the Forth Road Bridge has its
deck stiffened by a space truss while the later Severn Bridge uses an aerodynamic,
torsionally stiff, tubular cross-section bridge deck.

An alternative method of supporting a bridge deck of moderate span is the cable-stayed
system shown in Fig. 1.8. Cable-stayed bridges were developed in Germany after World
War II when materials were in short supply and a large number of highway bridges,
destroyed by military action, had to be rebuilt. The tension in the stays is maintained
by attaching the outer ones to anchor blocks embedded in the ground. The stays can
be a single system from towers positioned along the centre of the bridge deck or a
double system where the cables are supported by twin sets of towers on both sides of
the bridge deck.

SHEAR AND CORE WALLS

Sometimes, particularly in high rise buildings, shear or core walls are used to resist the
horizontal loads produced by wind action. A typical arrangement is shown in Fig. 1.9
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where the frame is stiffened in a direction parallel to its shortest horizontal dimension
by a shear wall which would normally be of reinforced concrete.

Alternatively a lift shaft or service duct is used as the main horizontal load carrying
member; this is known as a core wall. An example of core wall construction in a tower
block is shown in cross section in Fig. 1.10. The three cell concrete core supports a
suspended steel framework and houses a number of ancillary services in the outer cells
while the central cell contains stairs, lifts and a central landing or hall. In this particular
case the core wall not only resists horizontal wind loads but also vertical loads due to
its self-weight and the suspended steel framework.

A shear or core wall may be analysed as a very large, vertical, cantilever beam (see
Fig. 1.15). A problem can arise, however, if there are openings in the walls, say, of a
core wall which there would be, of course, if the core was a lift shaft. In such a situation
a computer-based method of analysis would probably be used.
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CONTINUUM STRUCTURES

Examples of these are folded plate roofs, shells, floor slabs, etc. An arch dam is a
three-dimensional continuum structure as are domed roofs, aircraft fuselages and
wings. Generally, continuum structures require computer-based methods of analysis.

1.4 SuUPPORT SYSTEMS

The loads applied to a structure are transferred to its foundations by its supports.
In practice supports may be rather complicated in which case they are simplified, or
idealized, into a form that is much easier to analyse. For example, the support shown
in Fig. 1.11(a) allows the beam to rotate but prevents translation both horizontally and
vertically. For the purpose of analysis it is represented by the idealized form shown in
Fig. 1.11(b); this type of support is called a pinned support.

A beam that is supported at one end by a pinned support would not necessarily be
supported in the same way at the other. One support of this type is sufficient to maintain
the horizontal equilibrium of a beam and it may be advantageous to allow horizontal
movement of the other end so that, for example, expansion and contraction caused
by temperature variations do not cause additional stresses. Such a support may take
the form of a composite steel and rubber bearing as shown in Fig. 1.12(a) or consist
of a roller sandwiched between steel plates. In an idealized form, this type of support
is represented as shown in Fig. 1.12(b) and is called a roller support. It is assumed
that such a support allows horizontal movement and rotation but prevents movement
vertically, up or down.

It is worth noting that a horizontal beam on two pinned supports would be statically
indeterminate for other than purely vertical loads since, as we shall see in Section 2.5,
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FIGURE 1.12
Idealization of a
sliding or roller
support

FiGure 1.13
Idealization of a
built-in support
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there would be two vertical and two horizontal components of support reaction but
only three independent equations of statical equilibrium.

In some instances beams are supported in such a way that both translation and rotation
are prevented. In Fig. 1.13(a) the steel I-beam is connected through brackets to the
flanges of a steel column and therefore cannot rotate or move in any direction; the
idealized form of this support is shown in Fig. 1.13(b) and is called a fixed, built-in or
encastré support. A beam that is supported by a pinned support and a roller support as
shown in Fig. 1.14(a) is called a simply supported beam; note that the supports will not
necessarily be positioned at the ends of a beam. A beam supported by combinations
of more than two pinned and roller supports (Fig. 1.14(b)) is known as a continuous
beam. A beam that is built-in at one end and free at the other (Fig. 1.15(a)) is a can-
tilever beam while a beam that is built-in at both ends (Fig. 1.15(b)) is a fixed, built-in
or encastré beam.

When loads are applied to a structure, reactions are produced in the supports and in
many structural analysis problems the first step is to calculate their values. It is impor-
tant, therefore, to identify correctly the type of reaction associated with a particular
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FiGure 1.14  (a)
Simply supported
beam and (b)

continuous beam

FIGURe 1.15  (a)
Cantilever beam
and (b) fixed or

built-in beam

Ficure 1.16
Support reactions in
a cantilever beam
subjected to an
inclined load at its
free end
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support. Supports that prevent translation in a particular direction produce a force
reaction in that direction while supports that prevent rotation cause moment reactions.
For example, in the cantilever beam of Fig. 1.16, the applied load W has horizontal
and vertical components which cause horizontal (Ra 11) and vertical (Ra v ) reactions
of force at the built-in end A, while the rotational effect of W is balanced by the
moment reaction M. We shall consider the calculation of support reactions in detail
in Section 2.5.

1.5 STATICALLY DETERMINATE AND INDETERMINATE STRUCTURES

In many structural systems the principles of statical equilibrium (Section 2.4) may be
used to determine support reactions and internal force distributions; such systems are
called statically determinate. Systems for which the principles of statical equilibrium
are insufficient to determine support reactions and/or internal force distributions, i.e.
there are a greater number of unknowns than the number of equations of statical
equilibrium, are known as statically indeterminate or hyperstatic systems. However,
it is possible that even though the support reactions are statically determinate, the
internal forces are not, and vice versa. For example, the truss in Fig. 1.17(a) is, as we
shall see in Chapter 4, statically determinate both for support reactions and forces in



1.6 Analysis and Design ¢ 11

FIGURE 1.17 (a)

Statically

determinate truss
and (b) statically 7
indeterminate truss (a) (b)

the members whereas the truss shown in Fig. 1.17(b) is statically determinate only as
far as the calculation of support reactions is concerned.

Another type of indeterminacy, kinematic indeterminacy, is associated with the ability
to deform, or the degrees of freedom, of a structure and is discussed in detail in
Section 16.3. A degree of freedom is a possible displacement of a joint (or node as it
is often called) in a structure. For instance, a joint in a plane truss has three possible
modes of displacement or degrees of freedom, two of translation in two mutually
perpendicular directions and one of rotation, all in the plane of the truss. On the
other hand a joint in a three-dimensional space truss or frame possesses six degrees
of freedom, three of translation in three mutually perpendicular directions and three
of rotation about three mutually perpendicular axes.

1.6 ANALYSIS AND DESIGN

Some students in the early stages of their studies have only a vague idea of the differ-
ence between an analytical problem and a design problem. We shall examine the var-
ious steps in the design procedure and consider the role of analysis in that procedure.

Initially the structural designer is faced with a requirement for a structure to fulfil a
particular role. This may be a bridge of a specific span, a multistorey building of a
given floor area, a retaining wall having a required height and so on. At this stage
the designer will decide on a possible form for the structure. For example, in the case
of a bridge the designer must decide whether to use beams, trusses, arches or cables
to support the bridge deck. To some extent, as we have seen, the choice is governed
by the span required, although other factors may influence the decision. In Scotland,
the Firth of Tay is crossed by a multispan bridge supported on columns, whereas the
road bridge crossing the Firth of Forth is a suspension bridge. In the latter case a large
height clearance is required to accommodate shipping. In addition it is possible that the
designer may consider different schemes for the same requirement. Further decisions
are required as to the materials to be used: steel, reinforced concrete, timber, etc.

Having decided on a particular system the loads on the structure are calculated. We
have seen in Section 1.2 that these comprise dead and live loads. Some of these loads,
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such as a floor load in an office building, are specified in Codes of Practice while a
particular Code gives details of how wind loads should be calculated. Of course the
self-weight of the structure is calculated by the designer.

When the loads have been determined, the structure is analysed, i.e. the external and
internal forces and moments are calculated, from which are obtained the internal stress
distributions and also the strains and displacements. The structure is then checked for
safety, i.e. that it possesses sufficient strength to resist loads without danger of collapse,
and for serviceability, which determines its ability to carry loads without excessive defor-
mation or local distress; Codes of Practice are used in this procedure. It is possible that
this check may show that the structure is underdesigned (unsafe and/or unserviceable)
or overdesigned (uneconomic) so that adjustments must be made to the arrangement
and/or the sizes of the members; the analysis and design check are then repeated.

Analysis, as can be seen from the above discussion, forms only part of the complete
design process and is concerned with a given structure subjected to given loads. Gen-
erally, there is a unique solution to an analytical problem whereas there may be one,
two or more perfectly acceptable solutions to a design problem.

1.7 STRUCTURAL AND LOAD IDEALIZATION

Generally, structures are complex and must be idealized or simplified into a form that
can be analysed. This idealization depends upon factors such as the degree of accuracy
required from the analysis because, usually, the more sophisticated the method of
analysis employed the more time consuming, and therefore the more costly, it is. A
preliminary evaluation of two or more possible design solutions would not require the
same degree of accuracy as the check on the finalized design. Other factors affecting the
idealization include the type of load being applied, since it is possible that a structure
will require different idealizations under different loads.

We have seen in Section 1.4 how actual supports are idealized. An example of struc-
tural idealization is shown in Fig. 1.18 where the simple roof truss of Fig. 1.18(a) is
supported on columns and forms one of a series comprising a roof structure. The roof
cladding is attached to the truss through purlins which connect each truss, and the truss
members are connected to each other by gusset plates which may be riveted or welded
to the members forming rigid joints. This structure possesses a high degree of statical
indeterminacy and its analysis would probably require a computer-based approach.
However, the assumption of a simple support system, the replacement of the rigid
joints by pinned or hinged joints and the assumption that the forces in the members
are purely axial, result, as we shall see in Chapter 4, in a statically determinate struc-
ture (Fig. 1.18(b)). Such an idealization might appear extreme but, so long as the loads
are applied at the joints and the truss is supported at joints, the forces in the members
are predominantly axial and bending moments and shear forces are negligibly small.
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FiGure 1.19
Idealization of a
load system
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At the other extreme a continuum structure, such as a folded plate roof, would be
idealized into a large number of finite elements connected at nodes and analysed using
a computer; the finite element method is, in fact, an exclusively computer-based tech-
nique. A large range of elements is available in finite element packages including
simple beam elements, plate elements, which can model both in-plane and out-of-
plane effects, and three-dimensional ‘brick’ elements for the idealization of solid
three-dimensional structures.

In addition to the idealization of the structure loads also, generally, need to be ideal-
ized. In Fig. 1.19(a) the beam AB supports two cross beams on which rests a container.
There would, of course, be a second beam parallel to AB to support the other end of
each cross beam. The flange of each cross beam applies a distributed load to the beam
AB but if the flange width is small in relation to the span of the beam they may be
regarded as concentrated loads as shown in Fig. 1.19(b). In practice there is no such
thing as a concentrated load since, apart from the practical difficulties of applying one,
a load acting on zero area means that the stress (see Chapter 7) would be infinite and
localized failure would occur.
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Ficure 1.20
Idealization of a
load system:
uniformly
distributed
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The load carried by the cross beams, i.e. the container, would probably be applied
along a considerable portion of their length as shown in Fig. 1.20(a). In this case the
load is said to be uniformly distributed over the length CD of the cross beam and is
represented as shown in Fig. 1.20(b).

Distributed loads need not necessarily be uniform but can be trapezoidal or, in more
complicated cases, be described by a mathematical function. Note that all the beams
in Figs. 1.19 and 1.20 carry a uniformly distributed load, their self-weight.

1.8 STRUCTURAL ELEMENTS

Structures are made up of structural elements. For example, in frames these are beams
and columns. The cross sections of these structural elements vary in shape and depend
on what is required in terms of the forces to which they are subjected. Some common
sections are shown in Fig. 1.21.

The solid square (or rectangular) and circular sections are not particularly efficient
structurally. Generally they would only be used in situations where they would be sub-
jected to tensile axial forces (stretching forces acting along their length). In cases where
the axial forces are compressive (shortening) then angle sections, channel sections,
Tee-sections or I-sections would be preferred.
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I-section and channel section beams are particularly efficient in carrying bending
moments and shear forces (the latter are forces applied in the plane of a beam’s
cross section) as we shall see later.

The rectangular hollow (or square) section beam is also efficient in resisting bending
and shear but is also used, as is the circular hollow section, as a column. A Universal
Column has a similar cross section to that of the Universal Beam except that the flange
width is greater in relation to the web depth.

Concrete, which is strong in compression but weak in tension, must be reinforced by
steel bars on its tension side when subjected to bending moments. In many situations
concrete beams are reinforced in both tension and compression zones and also carry
shear force reinforcement.

Other types of structural element include box girder beams which are fabricated from
steel plates to form tubular sections; the plates are stiffened along their length and
across their width to prevent them buckling under compressive loads. Plate girders,
once popular in railway bridge construction, have the same cross-sectional shape as a
Universal Beam but are made up of stiffened plates and have a much greater depth
than the largest standard Universal Beam. Reinforced concrete beams are sometimes
cast integrally with floor slabs whereas in other situations a concrete floor slab may
be attached to the flange of a Universal Beam to form a composite section. Timber
beams are used as floor joists, roof trusses and, in laminated form, in arch construction
and so on.

1.9 MATERIALS OF CONSTRUCTION

A knowledge of the properties and behaviour of the materials used in structural engi-
neering is essential if safe and long-lasting structures are to be built. Later we shall
examine in some detail the properties of the more common construction materials but
for the moment we shall review the materials available.

STEEL

Steel is one of the most commonly used materials and is manufactured from iron
ore which is first converted to molten pig iron. The impurities are then removed
and carefully controlled proportions of carbon, silicon, manganese, etc. added, the
amounts depending on the particular steel being manufactured.

Mild steel is the commonest type of steel and has a low carbon content. It is relatively
strong, cheap to produce and is widely used for the sections shown in Fig. 1.21. It
is a ductile material (see Chapter 8), is easily welded and because its composition is
carefully controlled its properties are known with reasonable accuracy. High carbon
steels possess greater strength than mild steel but are less ductile whereas high yield
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Ficure 1.22
Examples of
cold-formed sections

steel is stronger than mild steel but has a similar stiffness. High yield steel, as well as
mild steel, is used for reinforcing bars in concrete construction and very high strength
steel is used for the wires in prestressed concrete beams.

Low carbon steels possessing sufficient ductility to be bent cold are used in the manu-
facture of cold-formed sections. In this process unheated thin steel strip passes through
a series of rolls which gradually bend it into the required section contour. Simple pro-
files, such as a channel section, may be produced in as few as six stages whereas more
complex sections may require 15 or more. Cold-formed sections are used as lightweight
roof purlins, stiffeners for the covers and sides of box beams and so on. Some typical
sections are shown in Fig. 1.22.

Other special purpose steels are produced by adding different elements. For example,
chromium is added to produce stainless steel although this is too expensive for general
structural use.

CONCRETE

Concrete is produced by mixing cement, the commonest type being ordinary Portland
cement, fine aggregate (sand), coarse aggregate (gravel, chippings) with water. A
typical mix would have the ratio of cement/sand/coarse aggregate to be 1:2: 4 but this
can be varied depending on the required strength.

The tensile strength of concrete is roughly only 10% of its compressive strength and
therefore, as we have already noted, requires reinforcing in its weak tension zones and
sometimes in its compression zones.

TIMBER

Timber falls into two categories, hardwoods and softwoods. Included in hardwoods are
oak, beech, ash, mahogany, teak, etc. while softwoods come from coniferous trees,
such as spruce, pine and Douglas fir. Hardwoods generally possess a short grain and
are not necessarily hard. For example, balsa is classed as a hardwood because of its
short grain but is very soft. On the other hand some of the long-grained softwoods,
such as pitch pine, are relatively hard.

Timber is a naturally produced material and its properties can vary widely due to vary-
ing quality and significant defects. It has, though, been in use as a structural material
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for hundreds of years as a visit to any of the many cathedrals and churches built in the
Middle Ages will confirm. Some of timber’s disadvantages, such as warping and twist-
ing, can be eliminated by using it in laminated form. Plywood is built up from several
thin sheets glued together but with adjacent sheets having their grains running at 90°
to each other. Large span roof arches are sometimes made in laminated form from
timber strips. Its susceptibility to the fungal attacks of wet and dry rot can be prevented
by treatment as can the potential ravages of woodworm and death watch beetle.

MASONRY

Masonry in structural engineering includes bricks, concrete blocks and stone. These
are brittle materials, weak in tension, and are therefore used in situations where they
are only subjected to compressive loads.

Bricks are made from clay shale which is ground up and mixed with water to form a
stiff paste. This is pressed into moulds to form the individual bricks and then fired in
a kiln until hard. An alternative to using individual moulds is the extrusion process in
which the paste is squeezed through a rectangular-shaped die and then chopped into
brick lengths before being fired.

Figure 1.23 shows two types of brick. One has indentations, called frogs, in its larger
faces while the other, called a perforated brick, has holes passing completely through
it; both these modifications assist the bond between the brick and the mortar and help
to distribute the heat during the firing process. The holes in perforated bricks also
allow a wall, for example, to be reinforced vertically by steel bars passing through the
holes and into the foundations.

Engineering bricks are generally used as the main load bearing components in a
masonry structure and have a minimum guaranteed crushing strength whereas facing
bricks have a wide range of strengths but have, as the name implies, a better appear-
ance. In a masonry structure the individual elements are the bricks while the complete
structure, including the mortar between the joints, is known as brickwork.

Mortar commonly consists of a mixture of sand and cement the proportions of which
canvary from 3: 1 to 8: 1 depending on the strength required; the lower the amount of
sand the stronger the mortar. However, the strength of the mortar must not be greater
than the strength of the masonry units otherwise cracking can occur.
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Solid Hollow FiGure 1.24  Concrete blocks
Concrete blocks, can be solid or hollow as shown in Fig. 1.24, are cheap to produce
and are made from special lightweight aggregates. They are rough in appearance when
used for, say, insulation purposes and are usually covered by plaster for interiors or
cement rendering for exteriors. Much finer facing blocks are also manufactured for
exterior use and are not covered.

Stone, like timber, is a natural material and is, therefore, liable to have the same wide,
and generally unpredictable, variation in its properties. It is expensive since it must
be quarried, transported and then, if necessary, ‘dressed” and cut to size. However, as
with most natural materials, it can provide very attractive structures.

ALUMINIUM

Pure aluminium is obtained from bauxite, is relatively expensive to produce, and is too
soft and weak to act as a structural material. To overcome its low strength it is alloyed
with elements such as magnesium. Many different alloys exist and have found their
primary use in the aircraft industry where their relatively high strength/low weight ratio
is a marked advantage; aluminium is also a ductile material. In structural engineer-
ing aluminium sections are used for fabricating lightweight roof structures, window
frames, etc. It can be extruded into complicated sections but the sections are generally
smaller in size than the range available in steel.

CAST IRON, WROUGHT IRON

These are no longer used in modern construction although many old, existing struc-
tures contain them. Cast iron is a brittle material, strong in compression but weak
in tension and contains a number of impurities which have a significant effect on its
properties.

Wrought iron has a much less carbon content than cast iron, is more ductile but
possesses a relatively low strength.

COMPOSITE MATERIALS

Some use is now being made of fibre reinforced polymers or composites as they are
called. These are lightweight, high strength materials and have been used for a number
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of years in the aircraft, automobile and boat building industries. They are, however,
expensive to produce and their properties are not fully understood.

Strong fibres, such as glass or carbon, are set in a matrix of plastic or epoxy resin
which is then mechanically and chemically protective. The fibres may be continuous
or discontinuous and are generally arranged so that their directions match those of the
major loads. In sheet form two or more layers are sandwiched together to form a lay-up.

In the early days of composite materials glass fibres were used in a plastic matrix,
this is known as glass reinforced plastic (GRP). More modern composites are carbon
fibre reinforced plastics (CFRP). Other composites use boron and Kevlar fibres for
reinforcement.

Structural sections, as opposed to sheets, are manufactured using the pultrusion pro-
cess in which fibres are pulled through a bath of resin and then through a heated die
which causes the resin to harden; the sections, like those of aluminium alloy, are small
compared to the range of standard steel sections available.

1.10 Tnr Usk oF COMPUTERS

In modern-day design offices most of the structural analyses are carried out using
computer programs. A wide variety of packages is available and range from rela-
tively simple plane frame (two-dimensional) programs to more complex finite element
programs which are used in the analysis of continuum structures. The algorithms on
which these programs are based are derived from fundamental structural theory writ-
ten in matrix form so that they are amenable to computer-based solutions. However,
rather than simply supplying data to the computer, structural engineers should have
an understanding of the fundamental theory for without this basic knowledge it would
be impossible for them to make an assessment of the limitations of the particular pro-
gram being used. Unfortunately there is a tendency, particularly amongst students, to
believe without question results in a computer printout. Only with an understanding
of how structures behave can the validity of these results be mentally checked.

The first few chapters of this book, therefore, concentrate on basic structural theory
although, where appropriate, computer-based applications will be discussed. In later
chapters computer methods, i.e. matrix and finite element methods, are presented in
detail.



Copyrighted Materials

Copyright © 2005 Elsevier Retrieved from www.knovel.com

Chapier 2/ Principles of Statics

2.1 Forck

Statics, as the name implies, is concerned with the study of bodies at rest or, in other
words, in equilibrium, under the action of a force system. Actually, a moving body
is in equilibrium if the forces acting on it are producing neither acceleration nor
deceleration. However, in structural engineering, structural members are generally at
rest and therefore in a state of statical equilibrium.

In this chapter we shall discuss those principles of statics that are essential to structural
and stress analysis; an elementary knowledge of vectors is assumed.

The definition of a force is derived from Newton’s First Law of Motion which states
that a body will remain in its state of rest or in its state of uniform motion in a straight
line unless compelled by an external force to change that state. Force is therefore
associated with a change in motion, i.e. it causes acceleration or deceleration.

The basic unit of force in structural and stress analysis is the Newton (N) which is
roughly a tenth of the weight of this book. This is a rather small unit for most of the loads
in structural engineering so a more convenient unit, the kilonewton (kN) is often used.

1kN = 1000 N

All bodies possess mass which is usually measured in kilograms (kg). The mass of a
body is a measure of the quantity of matter in the body and, for a particular body,
is invariable. This means that a steel beam, for example, having a given weight (the
force due to gravity) on earth would weigh approximately six times less on the moon
although its mass would be exactly the same.

We have seen that force is associated with acceleration and Newton’s Second Law of
Motion tells us that

force = mass x acceleration

20
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Gravity, which is the pull of the earth on a body, is measured by the acceleration it
imparts when a body falls; this is taken as 9.81 m/s> and is given the symbol g. It follows
that the force exerted by gravity on a mass of 1kg is

force =1 x 9.81

The Newton is defined as the force required to produce an acceleration of 1 m/s? in
a mass of 1kg which means that it would require a force of 9.81 N to produce an
acceleration of 9.81 m/s? in a mass of 1kg, i.e. the gravitational force exerted by a mass
of 1kgis 9.81 N. Frequently, in everyday usage, mass is taken to mean the weight of a
body in kg.

We all have direct experience of force systems. The force of the earth’s gravitational
pull acts vertically downwards on our bodies giving us weight; wind forces, which can
vary in magnitude, tend to push us horizontally. Therefore forces possess magnitude
and direction. At the same time the effect of a force depends upon its position. For
example, a door may be opened or closed by pushing horizontally at its free edge, but
if the same force is applied at any point on the vertical line through its hinges the door
will neither open nor close. We see then that a force is described by its magnitude,
direction and position and is therefore a vector quantity. As such it must obey the laws
of vector addition, which is a fundamental concept that may be verified experimentally.

Since a force is a vector it may be represented graphically as shown in Fig. 2.1, where
the force F is considered to be acting on an infinitesimally small particle at the point A
and in a direction from left to right. The magnitude of F is represented, to a suitable
scale, by the length of the line AB and its direction by the direction of the arrow. In
vector notation the force F is written as F.

Suppose a cube of material, placed on a horizontal surface, is acted upon by a force
F1 as shown in plan in Fig. 2.2(a). If F is greater than the frictional force between the
surface and the cube, the cube will move in the direction of F. Again if a force F;
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Ficure 2.3
Resultant of two
concurrent forces

is applied as shown in Fig. 2.2(b) the cube will move in the direction of F. It follows
that if F1 and F, were applied simultaneously, the cube would move in some inclined
direction as though it were acted on by a single inclined force R (Fig. 2.2(c)); R is
called the resultant of F1 and F».

Note that F; and F, (and R) are in a horizontal plane and that their lines of action
pass through the centre of gravity of the cube, otherwise rotation as well as translation
would occur since, if Fq, say, were applied at one corner of the cube as shown in
Fig. 2.2(d), the frictional force f, which may be taken as acting at the center of the
bottom face of the cube would, with Fq, form a couple (see Section 2.2).

The effect of the force R on the cube would be the same whether it was applied at the
point A or at the point B (so long as the cube is rigid). Thus a force may be considered
to be applied at any point on its line of action, a principle known as the transmissibility
of a force.

PARALLELOGRAM OF FORCES

The resultant of two concurrent and coplanar forces, whose lines of action pass through
a single point and lie in the same plane (Fig. 2.3(a)), may be found using the theorem
of the parallelogram of forces which states that:

If two forces acting at a point are represented by two adjacent sides of a parallelogram
drawn from that point their resultant is represented in magnitude and direction by the
diagonal of the parallelogram drawn through the point.

Thus in Fig. 2.3(b) R is the resultant of F| and F3. This result may be verified experi-
mentally or, alternatively, demonstrated to be true using the laws of vector addition.
In Fig. 2.3(b) the side BC of the parallelogram is equal in magnitude and direction to
the force F1 represented by the side OA. Therefore, in vector notation

R=F,+F;

The same result would be obtained by considering the side AC of the parallelogram
which is equal in magnitude and direction to the force F,. Thus

R=F+F

(a) (b)
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Note that vectors obey the commutative law, i.e.
F,+Fi=F+F

The actual magnitude and direction of R may be found graphically by drawing the
vectors representing F'; and F to the same scale (i.e. OB and BC) and then completing
the triangle OBC by drawing in the vector, along OC, representing R. Alternatively,
R and 0 may be calculated using the trigonometry of triangles, i.e.

R* = F} + F3 + 2F F cosa (2.1)
and
Fi sin o
tan = ———— 2.2
an Fy + Ficosa (2:2)

In Fig. 2.3(a) both F| and F are ‘pulling away’ from the particle at O. In Fig. 2.4(a) F;
is a ‘thrust’ whereas F, remains a ‘pull’. To use the parallelogram of forces the system
must be reduced to either two ‘pulls’ as shown in Fig. 2.4(b) or two ‘thrusts’ as shown
in Fig. 2.4(c). In all three systems we see that the effect on the particle at O is the same.

Aswe have seen, the combined effect of the two forces F; and F; acting simultaneously
is the same as if they had been replaced by the single force R. Conversely, if R were to
be replaced by F; and F; the effect would again be the same. F; and F> may therefore
be regarded as the components of R in the directions OA and OB; R is then said to
have been resolved into two components, F1 and F».

Of particular interest in structural analysis is the resolution of a force into two com-
ponents at right angles to each other. In this case the parallelogram of Fig. 2.3(b)

F5 (pull)

A
(thrust)
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FIGURE 2.5
Resolution of a
force into two
components at
right angles

FIGURE 2.6
Resultant of a
system of
concurrent forces

becomes a rectangle in which « =90° (Fig. 2.5) and, clearly
Fy =Rcosf Fi=Rsin6 (2.3)
It follows from Fig. 2.5, or from Eqgs (2.1) and (2.2), that

F
RP=F+F} tanf=— (2.4)

F
We note, by reference to Fig. 2.2(a) and (b), that a force does not induce motion in a
direction perpendicular to its line of action; in other words a force has no effect in a
direction perpendicular to itself. This may also be seen by setting 6 = 90° in Eq. (2.3),

then
Fi=R F,=0

and the component of R in a direction perpendicular to its line of action is zero.

THE RESULTANT OF A SYSTEM OF CONCURRENT FORCES

So far we have considered the resultant of just two concurrent forces. The method used
for that case may be extended to determine the resultant of a system of any number
of concurrent coplanar forces such as that shown in Fig. 2.6(a). Thus in the vector
diagram of Fig. 2.6(b)

Rp=F+F

F1=F{sin6) a = 90°
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where Ry; is the resultant of F; and F,. Further
Riz=Rp+F;3=F +F,+F;
so that Ry»3 is the resultant of Fy, F, and F3. Finally
R=Ri+Fs=F +F,+F;+F,4

where R is the resultant of Fy, F», F3 and Fg4.

The actual value and direction of R may be found graphically by constructing the vector
diagram of Fig. 2.6(b) to scale or by resolving each force into components parallel to
two directions at right angles, say the x and y directions shown in Fig. 2.6(a). Then

Fy=F1+Fycosaa —Fzcos8 —Fscosy
F,=F;sina +F3sin B — Fysiny

Then

R=/F}+F;

F,
tanh = =

X

and

The forces Fy, F», F3 and F4 in Fig. 2.6(a) do not have to be taken in any particular
order when constructing the vector diagram of Fig. 2.6(b). Identical results for the
magnitude and direction of R are obtained if the forces in the vector diagram are
taken in the order F1, Fa, F3, F as shown in Fig. 2.7 or, in fact, are taken in any order
so long as the directions of the forces are adhered to and one force vector is drawn
from the end of the previous force vector.

EQUILIBRANT OF A SYSTEM OF CONCURRENT FORCES

In Fig. 2.3(b) the resultant R of the forces F; and F; represents the combined effect
of F1 and F; on the particle at O. It follows that this effect may be eliminated by
introducing a force Rg which is equal in magnitude but opposite in direction to R at

FIGURE 2.7  Alternative construction of force diagram
for system of Fig. 2.6(a)
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FIGURE 2.8
Equilibrant of two
concurrent fO[‘CQS

FIGURE 2.9
Equilibrant of a
number of
concurrent forces

" Re(=R)
.-~ Equilibrant of F; and F,

Fa

P

(@) (b)

O, as shown in Fig. 2.8(a). Rg is known at the equilibrant of F1 and F> and the particle
at O will then be in equilibrium and remain stationary. In other words the forces Fi,
F> and RE are in equilibrium and, by reference to Fig. 2.3(b), we see that these three
forces may be represented by the triangle of vectors OBC as shown in Fig. 2.8(b). This
result leads directly to the law of the triangle of forces which states that:

If three forces acting at a point are in equilibrium they may be represented in magnitude
and direction by the sides of a triangle taken in order.

The law of the triangle of forces may be used in the analysis of a plane, pin-jointed
truss in which, say, one of three concurrent forces is known in magnitude and direction
but only the lines of action of the other two. The law enables us to find the magnitudes
of the other two forces and also the direction of their lines of action.

The above arguments may be extended to a system comprising any number of concur-
rent forces. In the force system of Fig. 2.6(a), Rg, shown in Fig. 2.9(a), is the equilibrant
of the forces Fy, Fy, F3 and F4. Then F1, F», F3, F4 and Rg may be represented by the
force polygon OBCDE as shown in Fig. 2.9(b).

Fa

Fy

(@)
The law of the polygon of forces follows:

If a number of forces acting at a point are in equilibrium they may be represented in
magnitude and direction by the sides of a closed polygon taken in order.



FIGURE 2.10
Resultant of a
system of
non-concurrent
forces
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"

3

(a)

Again, the law of the polygon of forces may be used in the analysis of plane, pin-jointed
trusses where several members meet at a joint but where no more than two forces are
unknown in magnitude.

THE RESULTANT OF A SYSTEM OF NON-CONCURRENT
FORCES

In most structural problems the lines of action of the different forces acting on the
structure do not meet at a single point; such a force system is non-concurrent.

Consider the system of non-concurrent forces shown in Fig. 2.10(a); their resultant
may be found graphically using the parallelogram of forces as demonstrated in Fig.
2.10(b). Produce the lines of action of F; and F; to their point of intersection, Ij.
Measure [1A =F; and [;B=F> to the same scale, then complete the parallelogram
I ACB; the diagonal CI; represents the resultant, R12, of F1 and F,. Now produce
the line of action of R1; backwards to intersect the line of action of F3 at I;. Measure
I,D =Ry, and I,F = F; to the same scale as before, then complete the parallelogram
I,DEF; the diagonal I,E = Rj»3, the resultant of Rj> and F3. It follows that R123 =R,
the resultant of F1, F> and F3. Note that only the line of action and the magnitude of
R can be found, not its point of action, since the vectors F1, F» and F3 in Fig. 2.10(a)
define the lines of action of the forces, not their points of action.

If the points of action of the forces are known, defined, say, by coordinates referred
to a convenient xy axis system, the magnitude, direction and point of action of their
resultant may be found by resolving each force into components parallel to the x and
y axes and then finding the magnitude and position of the resultants R, and R, of each
set of components using the method described in Section 2.3 for a system of parallel
forces. The resultant R of the force system is then given by

R=/R}+R}
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and its point of action is the point of intersection of R, and Ry; finally, its inclination

6 to the x axis, say, is
R
0 = tan~! <—y)
Ry

2.2 MOMENT OF A FORCE

Ficure 2.11
Rotational effect of
a force

FIGURE 2.12
Moment of a force
about a given point

So far we have been concerned with the translational effect of a force, i.e. the tendency
of a force to move a body in a straight line from one position to another. A force may,
however, exert a rotational effect on a body so that the body tends to turn about some
given point or axis.

Rotational
(a) (b) effect of F

Figure 2.11(a) shows the cross section of, say, a door that is attached to a wall by a pivot
and bracket arrangement which allows it to rotate in a horizontal plane. A horizontal
force, F, whose line of action passes through the pivot, will have no rotational effect
on the door but when applied at some distance along the door (Fig. 2.11(b)) will cause
it to rotate about the pivot. It is common experience that the nearer the pivot the force
F is applied the greater must be its magnitude to cause rotation. At the same time its
effect will be greatest when it is applied at right angles to the door.

In Fig. 2.11(b) F is said to exert a moment on the door about the pivot. Clearly the
rotational effect of F depends upon its magnitude and also on its distance from the
pivot. We therefore define the moment of a force, F, about a given point O (Fig. 2.12)
as the product of the force and the perpendicular distance of its line of action from

0
Given point



FiGuRre 2.13
Resolution of a
moment

2.2 Moment of a Force ¢ 29

the point. Thus, in Fig. 2.12, the moment, M, of F about O is given by
M = Fa (2.5)

where ‘a’ is known as the lever arm or moment arm of F about O; note that the units
of a moment are the units of force x distance.

It can be seen from the above that a moment possesses both magnitude and a rota-
tional sense. For example, in Fig. 2.12, F exerts a clockwise moment about O. A
moment is therefore a vector (an alternative argument is that the product of a vec-
tor, F, and a scalar, a, is a vector). It is conventional to represent a moment vector
graphically by a double-headed arrow, where the direction of the arrow designates a
clockwise moment when looking in the direction of the arrow. Therefore, in Fig. 2.12,
the moment M (= Fa) would be represented by a double-headed arrow through O with
its direction into the plane of the paper.

Moments, being vectors, may be resolved into components in the same way as forces.
Consider the moment, M (Fig. 2.13(a)), in a plane inclined at an angle 6 to the xz
plane. The component of M in the xz plane, M,,, may be imagined to be produced
by rotating the plane containing M through the angle 6 into the xz plane. Similarly,
the component of M in the yz plane, M,,, is obtained by rotating the plane containing
M through the angle 90 — 6. Vectorially, the situation is that shown in Fig. 2.13(b),
where the directions of the arrows represent clockwise moments when viewed in the
directions of the arrows. Then

M,; =Mcos6 M,, =M sin0

The action of a moment on a structural member depends upon the plane in which it
acts. For example, in Fig. 2.14(a), the moment, M, which is applied in the longitu-
dinal vertical plane of symmetry, will cause the beam to bend in a vertical plane. In
Fig. 2.14(b) the moment, M, is applied in the plane of the cross section of the beam

and will therefore produce twisting; in this case M is called a forque.

Ty

M,, = Mcos 6

z

(a) (b)
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Ficure 2.14
Action of a
moment in

different planes

FIGURE 2.15
Moment of a
couple

/,

// //
M M
(a) (b)
F
o
A
B
F

COUPLES

Consider the two coplanar, equal and parallel forces F which act in opposite directions
asshown in Fig. 2.15. The sum of their moments, Mo, about any point O in their plane is

Mo =F xBO —F x AO

where OAB is perpendicular to both forces. Then
Mo =F(BO — AO) =F x AB

and we see that the sum of the moments of the two forces F about any point in their
plane is equal to the product of one of the forces and the perpendicular distance
between their lines of action; this system is termed a couple and the distance AB is the
arm or lever arm of the couple.

Since a couple is, in effect, a pure moment (not to be confused with the moment of
a force about a specific point which varies with the position of the point) it may be
resolved into components in the same way as the moment M in Fig. 2.13.

EQUIVALENT FORCE SYSTEMS

In structural analysis it is often convenient to replace a force system acting at one point
by an equivalent force system acting at another. For example, in Fig. 2.16(a), the effect
on the cylinder of the force F acting at A on the arm AB may be determined as follows.

If we apply equal and opposite forces F at B as shown in Fig. 2.16(b), the overall effect
on the cylinder is unchanged. However, the force F at A and the equal and opposite
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Cylinder

FIGURE 2.16
Equivalent force
system  (b) (©

force F at B form a couple which, as we have seen, has the same moment (Fa) about
any point in its plane. Thus the single force F at A may be replaced by a single force
F at B together with a moment equal to Fa as shown in Fig. 2.16(c). The effects of the
force F at B and the moment (actually a torque) Fa may be calculated separately and
then combined using the principle of superposition (see Section 3.7).

2.3 THE RESULTANT OF A SYSTEM OF PARALLEL FORCES

Since, as we have seen, a system of forces may be replaced by their resultant, it follows
that a particular action of a force system, say the combined moments of the forces
about a point, must be identical to the same action of their resultant. This principle
may be used to determine the magnitude and line of action of a system of parallel
forces such as that shown in Fig. 2.17(a).

The point of intersection of the lines of action of F; and F» is at infinity so that
the parallelogram of forces (Fig. 2.3(b)) degenerates into a straight line as shown in
Fig. 2.17(b) where, clearly

R=F +F, (2.6)



32

Chapter 2 / Principles of Statics
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Y X ,
F, ' YF, :

YR RYYF;
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FIGURE 2.17 Resultant of a

(a) (b) system of parallel forces

The position of the line of action of R may be found using the principle stated above,
i.e. the sum of the moments of F; and F, about any point must be equivalent to the
moment of R about the same point. Thus from Fig. 2.17(a) and taking moments about,
say, the line of action of F; we have

Faa = Re = (Fy + Fa)x

Hence
Fp
Fi+F;

a (2.7)

Note that the action of R is equivalent to that of F and F», so that, in this case, we
equate clockwise to clockwise moments.

The principle of equivalence may be extended to any number of parallel forces irre-
spective of their directions and is of particular use in the calculation of the position of
centroids of area, as we shall see in Section 9.6.

EXxAmMPLE 2.1  Find the magnitude and position of the line of action of the resultant
of the force system shown in Fig. 2.18.

In this case the polygon of forces (Fig. 2.6(b)) degenerates into a straight line and
R=2-34+6+1=06kN @A)

Suppose that the line of action of R is at a distance x from the 2kN force, then, taking
moments about the 2 kN force

Re=-3x06+6x09+1x1.2
Substituting for R from Eq. (i) we have

x=-18+54+12
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2kN 3kN ' 6kN 1kN
YR

- X >

- |

le——

0.6m 0.3m 0.3m FIGURE 2.18  Force system of Ex. 2.1
which gives
x=0.8m

We could, in fact, take moments about any point, say now the 6 kN force. Then
R(09—-x)=2x%x09-3x%x03-1x03

so that
x = 0.8 m as before

Note that in the second solution, anticlockwise moments have been selected as positive.

2.4 EouiLIBRIUM OF FORCE SYSTEMS

We have seen in Section 2.1 that, for a particle or a body to remain stationary, i.e.
in statical equilibrium, the resultant force on the particle or body must be zero. It
follows that if a body (generally in structural analysis we are concerned with bodies,
i.e. structural members, not particles) is not to move in a particular direction, the
resultant force in that direction must be zero. Furthermore, the prevention of the
movement of a body in two directions at right angles ensures that the body will not
move in any direction at all. Then, for such a body to be in equilibrium, the sum of
the components of all the forces acting on the body in any two mutually perpendicular
directions must be zero. In mathematical terms and choosing, say, thex andy directions
as the mutually perpendicular directions, the condition may be written

Y Fe=0 > F=0 (2.8)

However, the condition specified by Eq. (2.8) is not sufficient to guarantee the equi-
librium of a body acted on by a system of coplanar forces. For example, in Fig. 2.19 the
forces F acting on a plate resting on a horizontal surface satisfy the condition > Fy =0
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YA
< F X
> a
x
F> AN —_t
\ FIGURE 2.19  Couple
Plate produced by out-of-line forces

(there are no forces in the y direction so that ) F, =0 is automatically satisfied), but
form a couple Fa which will cause the plate to rotate in an anticlockwise sense so long
as its magnitude is sufficient to overcome the frictional resistance between the plate
and the surface. We have also seen that a couple exerts the same moment about any
point in its plane so that we may deduce a further condition for the statical equilib-
rium of a body acted upon by a system of coplanar forces, namely, that the sum of the
moments of all the forces acting on the body about any point in their plane must be
zero. Therefore, designating a moment in the xy plane about the z axis as M, we have

> M. =0 (2.9)

Combining Eqs (2.8) and (2.9) we obtain the necessary conditions for a system of
coplanar forces to be in equilibrium, i.e.

Y Fe=0 > F=0 Y M=0 (2.10)

The above arguments may be extended to a three-dimensional force system which is,
again, referred to an xyz axis system. Thus for equilibrium

Y Fe=0 > F=0 Y F.=0 (2.11)

and

> M=0 > My=0 Y M, =0 (2.12)

2.5 CALCULATION OF SUPPORT REACTIONS

The conditions of statical equilibrium, Eq. (2.10), are used to calculate reactions at
supports in structures so long as the support system is statically determinate (see
Section 1.5). Generally the calculation of support reactions is a necessary preliminary
to the determination of internal force and stress distributions and displacements.
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Beam of Ex. 2.2
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EXAmMPLE 2.2  Calculate the support reactions in the simply supported beam ABCD
shown in Fig. 2.20.

The different types of support have been discussed in Section 1.4. In Fig. 2.20 the sup-
port at A is a pinned support which allows rotation but no translation in any direction,
while the support at D allows rotation and translation in a horizontal direction but
not in a vertical direction. Therefore there will be no moment reactions at A or D and
only a vertical reaction at D, Rp. It follows that the horizontal component of the 5 kN
load can only be resisted by the support at A, Ra u, which, in addition, will provide a
vertical reaction, Ra v .

Since the forces acting on the beam are coplanar, Egs. (2.10) are used. From the first
of these, i.e. > F, =0, we have

RA,H —5c0s60° =0

which gives
Rap =25kN

The use of the second equation, ) Fy, =0, at this stage would not lead directly to either
Ra,v or Rp since both would be included in the single equation. A better approach is
to use the moment equation, > M, =0, and take moments about either A or D (it is
immaterial which), thereby eliminating one of the vertical reactions. Taking moments,
say, about D, we have

Rav x12-3x 09— (5sin60°) x 0.4=0 (i)

Note that in Eq. (i) the moment of the 5kN force about D may be obtained either
by calculating the perpendicular distance of its line of action from D (0.4 sin 60°)
or by resolving it into vertical and horizontal components (5sin 60° and 5 cos 60°,
respectively) where only the vertical component exerts a moment about D. From

3kN
5kN

%
A
RA,H _— [

5 A

0.3m 0.5m 0.4m
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Eq. (i)
Rav =3.7kN
The vertical reaction at D may now be found using Y Fy =0 or by taking moments
about A, which would be slightly lengthier. Thus
Rp +Rav —3—5sin60°=0
so that

Rp =3.6kN

EXAMPLE 2.3 Calculate the reactions at the support in the cantilever beam shown
in Fig. 2.21.

The beam has a fixed support at A which prevents translation in any direction and also
rotation. The loads applied to the beam will therefore induce a horizontal reaction,
Ra H,at A and a vertical reaction, Ra v, together with a moment reaction M. Using
the first of Egs. (2.10), > F, =0, we obtain

Ram —2cos45° =0
whence
Rap = 1.4kN
From the second of Egs. (2.10), > F, =0
Rav —5—2sin45° =0
which gives

Ray = 6.4kN

AY

5kN 2kN

a l B 01/455 )

Y
A
Y

FIGURE 2.21 i<

Beam of Ex. 2.3 0.4m 0.6m
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Finally from the third of Eqgs. (2.10), >~ M, =0, and taking moments about A, thereby
eliminating Ra g and Ra v

MaA —5x%x04—(2sin45°) x 1.0=0

from which
Ma =3.4kNm
In Exs 2.2 and 2.3, the directions or sense of the support reactions is reasonably obvious.

However, where this is not the case, a direction or sense is assumed which, if incorrect,
will result in a negative value.

Occasionally the resultant reaction at a support is of interest. In Ex. 2.2 the resultant
reaction at A is found using the first of Eqgs. (2.4), i.e.

Ry =Riu+Riy
which gives
R; =25 +3.7
so that
Ra =45kN

The inclination of R to, say, the vertical is found from the second of Egs. (2.4). Thus

Ranu 25
tanf = —— = — = 0.676
M= Rav 37
from which
0 =34.0°

ExAmpPLE 2.4  Calculate the reactions at the supports in the plane truss shown in
Fig. 2.22.

The truss is supported in the same manner as the beam in Ex. 2.2 so that there will be
horizontal and vertical reactions at A and only a vertical reaction at B.

The angle of the truss, «, is given by

o = tan~! (?) = 38.7°

From the first of Eqgs. (2.10) we have

Ram —5sin38.7° — 10sin38.7° = 0
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FIGURE 2.22
Truss of Ex. 2.4

5kN
10kN

24m

1.2m

Ran «——

/ /
3kN 2kN

Rayv Ra
2m 2m 2m

from which
Ram = 9.4kN
Now taking moments about B, say, (>~ Mp =0)
Rav x 6 —(5c0838.7°) x 4.5+ (55in38.7°) x 1.2 4 (10 cos 38.7°)
x 1.54(10sin38.7°) x 1.2 -3 x4-2x2=0
which gives
Rav = L.8kN

Note that in the moment equation it is simpler to resolve the SkN and 10 kN loads
into horizontal and vertical components at their points of application and then take
moments rather than calculate the perpendicular distance of each of their lines of
action from B.

The reaction at B, Rp, is now most easily found by resolving vertically ( Y = 0), i.e.
Rp +Rav —5¢0s38.7° +10c0s38.7° -3 -2 =0
which gives
Rp = —0.7kN

In this case the negative sign of Rp indicates that the reaction is downward, not upward,
as initially assumed.

PROBLEMS

P.2.1 Determine the magnitude and inclination of the resultant of the two forces acting
at the point O in Fig. P2.1 (a) by a graphical method and (b) by calculation.

Ans. 21.8KkN, 23.4° to the direction of the 15 kN load.
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10kN

60°
o) >15kN  pigure P.2.1

P.2.2 Determine the magnitude and inclination of the resultant of the system of
concurrent forces shown in Fig. P2.2 (a) by a graphical method and (b) by calculation.

Ans. 8.6kN, 23.9° down and to the left.

12kN 8 kN

).,
/7

20 kN FIGURE P.2.2

P.2.3 Calculate the magnitude, inclination and point of action of the resultant of the
system of non-concurrent forces shown in Fig. P.2.3. The coordinates of the points of

action are given in metres.

Ans. 130.4kN, 49.5° to the x direction at the point (0.81, 1.22).

YA .
(~1.0, 1.25) (

80 kN
30° 50 kN
40 kN a
(0, 0.5) o‘-
l (1.25, 0.25)
0 » X
+ 60 kN FiGuRre P.2.3

P:2.4 Calculate the support reactions in the beams shown in Fig. P2.4(a)—(d).

Ans. (a) Ray =9.2kN to left, Ra v =6.9kN upwards, Rg = 7.9 kN upwards.
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(b) RA =65kN, M =400 kN m anticlockwise.
(c) Ran=20kN to right, Ry v =22.5kN upwards, Rg = 12.5 kN upwards.
(d) Ra =41.8kN upwards, Rg = 54.2 kN upwards.

3kN 7 kN 8 kN
Al |B
775//’%/ 77éé7/
4m 6m 5m 5m

(a)

7 5KkN/m
/H,lillllli

A B
15kN
| 10m
(b)
20 kN
N
10kN 15kN s5m
i l 5kN/m
A BITTT
r Y
77%’7/ 77/%7/ ’
| I | |
| 2m ! 4m | 2m | 2m |
(c)
75 kN/m 8 KN/m
EEEEEREEEEEEN
A \ B
777, \ "
o le |
[ 3am 7! 9m |

(d) Ficure P.2.4
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P.2.5 Calculate the support reactions in the plane trusses shown in Fig. P2.5(a) and (b).
Ans. (a) Ra =57kN upwards, Rg =2 kN downwards.

(b) Ra,n=3713.6 N to left, R v = 835.6 N downwards,
Rp=4735.3N downwards.

5kN 10kN 15kN 15kN 5kN 5kN

L4y oy Y

/
A
/
\

3x2m 5x2m 3x2m

750N 3000 N

| 20m 7
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chapier o3 / Normal Force, Shear

Force, Bending Moment
and Torsion

The purpose of a structure is to support the loads for which it has been designed. To
accomplish this it must be able to transmit a load from one point to another, i.e. from
the loading point to the supports. In Fig. 2.21, for example, the beam transmits the
effects of the loads at B and C to the built-in end A. It achieves this by developing an
internal force system and it is the distribution of these internal forces which must be
determined before corresponding stress distributions and displacements can be found.

Aknowledge of stress is essential in structural design where the cross-sectional area of a
member must be such that stresses do not exceed values that would cause breakdown in
the crystalline structure of the material of the member; in other words, a structural fail-
ure. In addition to stresses, strains, and thereby displacements, must be calculated to
ensure that as well as strength a structural member possesses sufficient stiffness to pre-
vent excessive distortions damaging surrounding portions of the complete structure.

In this chapter we shall examine the different types of load to which a struc-
tural member may be subjected and then determine corresponding internal force
distributions.

3.1 TypEs oF Loap

Structural members may be subjected to complex loading systems apparently com-
prised of several different types of load. However, no matter how complex such systems
appear to be, they consist of a maximum of four basic load types: axial loads, shear
loads, bending moments and torsion.

AXIAL LOAD

Axial loads are applied along the longitudinal or centroidal axis of a structural mem-
ber. If the action of the load is to increase the length of the member, the member is
said to be in fension (Fig. 3.1(a)) and the applied load is tensile. A load that tends to

42



Ficure 3.1
Axially loaded

members

FIGURE 3.2 Shear
loads applied to
beams

3.1 Types of Load « 43

! Y Y Y Y Y Y
I

(b)

shorten a member places the member in compression and is known as a compressive load
(Fig. 3.1(b)). Members such as those shown in Fig. 3.1(a) and (b) are commonly found
in pin-jointed frameworks where a member in tension is called a tie and one in com-
pression a strut or column. More frequently, however, the name ‘column’ is associated
with a vertical member carrying a compressive load, as illustrated in Fig. 3.1(c).

SHEAR LOAD

Shear loads act perpendicularly to the axis of a structural member and have one of
the forms shown in Fig. 3.2; in this case the members are beams. Figure 3.2(a) shows a
concentrated shear load, W, applied to a cantilever beam. The shear load in Fig. 3.2(b)
is distributed over a length of the beam and is of infensity w (force units) per unit length
(see Section 1.7).
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BENDING MOMENT

In practice it is difficult to apply a pure bending moment such as that shown in
Fig. 3.3(a) to a beam. Generally, pure bending moments arise through the application
of other types of load to adjacent structural members. For example, in Fig. 3.3(b), a
vertical member BC is attached to the cantilever AB and carries a horizontal shear
load, P (as far as BC is concerned). AB is therefore subjected to a pure moment,
M = Ph, at B together with an axial load, P.

TORSION

A similar situation arises in the application of a pure torque, T (Fig. 3.4(a)), to abeam.
A practical example of a torque applied to a cantilever beam is given in Fig. 3.4(b)
where the horizontal member BC supports a vertical shear load at C. The cantilever
AB is then subjected to a pure torque, 7 = Wh, plus a shear load, .

All the loads illustrated in Figs 3.1-3.4 are applied to the various members by some
external agency and are therefore externally applied loads. Each of these loads induces
reactions in the support systems of the different beams; examples of the calculation of
support reactions are given in Section 2.5. Since structures are in equilibrium under
a force system of externally applied loads and support reactions, it follows that the
support reactions are themselves externally applied loads.

Now consider the cantilever beam of Fig. 3.2(a). If we were to physically cut through
the beam at some section ‘mm’ (Fig. 3.5(a)) the portion BC would no longer be able
to support the load, W. The portion AB of the beam therefore performs the same
function for the portion BC as does the wall for the complete beam. Thus at the
section mm the portion AB applies a force W and a moment M to the portion BC at
B, thereby maintaining its equilibrium (Fig. 3.5(b)); by the law of action and reaction
(Newton’s Third Law of Motion), BC exerts an equal force system on AB, but opposite
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FIGURE 3.5 Internal force system generated by an external shear load
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in direction. The complete force systems acting on the two faces of the section mm
are shown in Fig. 3.5(b).

Systems of forces such as those at the section mm are known as internal forces. Gen-
erally, they vary throughout the length of a structural member as can be seen from
Fig. 3.5(b) where the internal moment, M, increases in magnitude as the built-in end is
approached due to the increasing rotational effect of W. We note that applied loads of
one type can induce internal forces of another. For example, in Fig. 3.5(b) the external
shear load, W, produces both shear and bending at the section mm.

Internal forces are distributed throughout beam sections in the form of stresses. It fol-
lows that the resultant of each individual stress distribution must be the corresponding
internal force; internal forces are therefore often known as stress resultants. However,
before an individual stress distribution can be found it is necessary to determine the
corresponding internal force. Also, in design problems, it is necessary to determine
the position and value of maximum stress and displacement. Usually, the first step
in the analysis of a structure is to calculate the distribution of each of the four basic
internal force types throughout the component structural members. We shall therefore
determine the distributions of the four internal force systems in a variety of structural
members. First, however, we shall establish a notation and sign convention for each
type of force.
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3.2 NOTATION AND SIGN CONVENTION

FIGURE 3.6
Notation and sign
conventions for
displacements and
externally applied
loads

FIGURE 3.7
Positive internal
force systems

We shall be concerned initially with structural members having at least one longitu-
dinal plane of symmetry. Normally this will be a vertical plane and will contain the
externally applied loads. Later, however, we shall investigate the bending and shear of
beams having unsymmetrical sections so that as far as possible the notation and sign
convention we adopt now will be consistent with that required later.

The axes system we shall use is the right-handed system shown in Fig. 3.6 in which the
x axis is along the longitudinal axis of the member and the y axis is vertically upwards.
Externally applied loads W (concentrated) and w (distributed) are shown acting ver-
tically downwards since this is usually the situation in practice. In fact, choosing a
sign convention for these externally applied loads is not particularly important and
can be rather confusing since they will generate support reactions, which are exter-
nal loads themselves, in an opposite sense. An external axial load P is positive when
tensile and a torque 7 is positive if applied in an anticlockwise sense when viewed in
the direction xO. Later we shall be concerned with displacements in structural mem-
bers and here the vertical displacement v is positive in the positive direction of the
y axis.

We have seen that external loads generate internal force systems and for these it is
essential to adopt a sign convention since, unless their directions and senses are known,
it is impossible to calculate stress distributions.

Figure 3.7 shows a positive set of internal forces acting at two sections of a beam.

Note that the forces and moments acting on opposite faces of a section are identical
and act in opposite directions since the internal equilibrium of the beam must be
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maintained. If this were not the case one part of the beam would part company with
the other. A difficulty now arises in that a positive internal force, say the shear force S,
acts upwards on one face of a section and downwards on the opposite face. We must
therefore specify the face of the section we are considering. We can do this by giving
signs to the different faces. In Fig. 3.7 we define a positive face as having an outward
normal in the positive direction of the x axis (faces nn and mm) and a negative face as
having an outward normal in the negative direction of the x axis (faces pp and qq). At
nn and mm positive internal forces act in positive directions on positive faces while at
pp and qq positive internal forces act in negative directions on negative faces.

A positive bending moment M, clockwise on the negative face pp and anticlockwise
on the positive face mm, will cause the upper surface of the beam to become concave
and the lower surface convex. This, for obvious reasons, is called a sagging bending
moment. A negative bending moment will produce a convex upper surface and a
concave lower one and is therefore termed a hogging bending moment.

The axial, or normal, force N is positive when tensile, i.e. it pulls away from either face
of a section, and a positive internal torque 7 is anticlockwise on positive internal faces.

Generally the structural engineer will need to know peak values of these internal
forces in a structural member. To determine these peak values internal force diagrams
are constructed; the methods will be illustrated by examples.

3.3 NorMmAL FoRrcE

ExampLE 3.1  Construct a normal force diagram for the beam AB shown in
Fig. 3.8(a).

The first step is to calculate the support reactions using the methods described in
Section 2.5. In this case, since the beam is on a roller support at B, the horizontal load
at B is reacted at A; clearly Ro g = 10kN acting to the left.

Generally the distribution of an internal force will change at a loading discontinuity.
In this case there is no loading discontinuity at any section of the beam so that we
can determine the complete distribution of the normal force by calculating the normal
force at any section X, a distance x from A.

Consider the length AX of the beam as shown in Fig. 3.8(b) (equally we could consider
the length XB). The internal normal force acting at X is Nap which is shown acting
in a positive (tensile) direction. The length AX of the beam is in equilibrium under
the action of Ra g (=10kN) and Nag. Thus, from Section 2.4, for equilibrium in the
x direction

NAB_RA,H =NAB_IO:O



48 ¢ Chapter 3 / Normal Force, Shear Force, Bending Moment and Torsion

B
F—>10kN

A

Bav = 10kN ;> @

AH 4 7~
X

A X

< l__’NAB
;f;;/
RA,H = 10kN
X

(b)
10kN 10kN

(a)

+ve

FIGURE 3.8 Normal
force diagram for A B
the beam of Ex. 3.1 (¢

which gives
Nap = +10kN

Nag is positive and therefore acts in the assumed positive direction; the normal force
diagram for the complete beam is then as shown in Fig. 3.8(c).

When the equilibrium of a portion of a structure is considered as in Fig. 3.8(b) we are
using what is termed a free body diagram.

EXAMPLE 3.2 Draw a normal force diagram for the beam ABC shown in Fig. 3.9(a).

A X4 B 10kN X, C
I I

N

A B 10kN X, 10kN 10kN
Rap =10kN
FIGURE 3.9 AH <_| e F— Ngo +ve

Normal force %
>/ A B C

diagram for the
beam of Ex. 3.2 (0 (d)
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Again by considering the overall equilibrium of the beam we see that Ra g = 10kN
acting to the left (C is the roller support).

In this example there is a loading discontinuity at B so that the distribution of the
normal force in AB will be different to that in BC. We must therefore determine the
normal force at an arbitrary section X; between A and B, and then at an arbitrary
section X; between B and C.

The free body diagram for the portion of the beam AX; is shown in Fig. 3.9(b).
(Alternatively we could consider the portion X;C). As before, we draw in a positive
normal force, Nag. Then, for equilibrium of AX; in the x direction

Nag—10=0
so that
NaB = +10kN (tension)

Now consider the length ABX; of the beam; again we draw in a positive normal force,
Npc. Then for equilibrium of ABX in the x direction

Npc+10—-10=0
which gives
Ngc =0

Note that we would have obtained the same result by considering the portion X,C of
the beam.

Finally the complete normal force diagram for the beam is drawn as shown in
Fig. 3.9(d).

ExampLE 3.3 Figure 3.10(a) shows a beam ABCD supporting three concentrated
loads, two of which are inclined to the longitudinal axis of the beam. Construct the
normal force diagram for the beam and determine the maximum value.

In this example we are only concerned with determining the normal force distribution
in the beam, so that it is unnecessary to calculate the vertical reactions at the supports.
Further, the horizontal components of the inclined loads can only be resisted at A
since D is a roller support. Thus, considering the horizontal equilibrium of the beam

Ram + 6c0os60° —4cos60° =0

which gives

Rap=—1kN
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The negative sign of Ra p indicates that the reaction acts to the right and not to the
left as originally assumed. However, rather than change the direction of R g in the
diagram, it is simpler to retain the assumed direction and then insert the negative
value as required.

Although there is an apparent loading discontinuity at B, the 2kN load acts perpen-
dicularly to the longitudinal axis of the beam and will therefore not affect the normal
force. We may therefore consider the normal force at any section X; between A and
C. The free body diagram for the portion AX; of the beam is shown in Fig. 3.10(b);
again we draw in a positive normal force Nac. For equilibrium of AX;

Nac —Rap =0

so that
Nac = Rau = —1kN (compression)

The horizontal component of the inclined load at C produces a loading discontinuity
so that we now consider the normal force at any section X; between C and D. Here
it is slightly simpler to consider the equilibrium of the length X, D of the beam rather
than the length AXj;. Thus, from Fig. 3.10(c)

Ncp —4cos60° =0
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which gives
Ncp = +2kN (tension)

From the completed normal force diagram in Fig. 3.10(d) we see that the maximum
normal force in the beam is 2kN (tension) acting at all sections between C and D.

3.4 SHEAR FoRCE AND BENDING MOMENT

It is convenient to consider shear force and bending moment distributions in beams
simultaneously since, as we shall see in Section 3.5, they are directly related. Again the
method of construction of shear force and bending moment diagrams will be illustrated
by examples.

EXAMPLE 3.4  Cantilever beam with a concentrated load at the free end (Fig. 3.11).

7 w
w
Z Mpg
A X '
SAB
A
X o '4—»'
w - - L—x
L

(a) (b)

A B

—-ve Shear force

w w

(c)
—ve Bending moment
A B

(d)

FIGURE 3.11 Shear ] w
force and bending
moment diagrams
g : B
for the beam of

Ex. 3.4 (e
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Generally, as in the case of normal force distributions, we require the variation in shear
force and bending moment along the length of a beam. Again, loading discontinuities,
such as concentrated loads and/or a sudden change in the intensity of a distributed load,
cause discontinuities in the distribution of shear force and bending moment so that
it is necessary to consider a series of sections, one between each loading discontinuity.
In this example, however, there are no loading discontinuities between the built-in
end A and the free end B so that we may consider a section X at any point between
A and B.

For many beams the value of each support reaction must be calculated before the
shear force and bending moment distributions can be obtained. In Fig. 3.11(a) a con-
sideration of the overall equilibrium of the beam (see Section 2.5) gives a vertical
reaction, W, and a moment reaction, WL, at the built-in end. However, if we consider
the equilibrium of the length XB of the beam as shown in the free body diagram in
Fig. 3.11(b), this calculation is unnecessary.

As in the case of normal force distributions we assign positive directions to the shear
force, SAB, and bending moment, Mg, at the section X. Then, for vertical equilibrium
of the length XB of the beam we have

Sas+W =0

which gives
Sap = W

The shear force is therefore constant along the length of the beam and the shear force
diagram is rectangular in shape, as shown in Fig. 3.11(c).

The bending moment, Mapg, is now found by considering the moment equilibrium of
the length XB of the beam about the section X. Alternatively we could take moments
about B, but this would involve the moment of the shear force, Sag, about B. This
approach, although valid, is not good practice since it includes a previously calculated
quantity; in some cases, however, this is unavoidable. Thus, taking moments about the
section X we have

Mg + W(L —x) =0
so that

MAB = —W(L —X) (1)

Equation (i) shows that M ap varies linearly along the length of the beam, is negative,
i.e. hogging, at all sections and increases from zero at the free end (x =L) to —WL at
the built-in end where x =0.

It is usual to draw the bending moment diagram on the tension side of a beam. This
procedure is particularly useful in the design of reinforced concrete beams since it
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shows directly the surface of the beam near which the major steel reinforcement should
be provided. Also, drawing the bending moment diagram on the tension side of a beam
can give an indication of the deflected shape as illustrated in Exs 3.4-3.7. This is not
always the case, however, as we shall see in Exs 3.8 and 3.9.

In this case the beam will bend as shown in Fig. 3.11(e), so that the upper surface of the
beam is in tension and the lower one in compression; the bending moment diagram
is therefore drawn on the upper surface as shown in Fig. 3.11(d). Note that negative
(hogging) bending moments applied in a vertical plane will always result in the upper
surface of a beam being in tension.

EXAMPLE 3.5 Cantilever beam carrying a uniformly distributed load of intensity w.

Again it is unnecessary to calculate the reactions at the built-in end of the cantilever;
their values are, however, shown in Fig. 3.12(a). Note that for the purpose of calculating
the moment reaction the uniformly distributed load may be replaced by a concentrated
load (=wL) acting at a distance L/2 from A.

There is no loading discontinuity between A and B so that we may consider the shear
force and bending moment at any section X between A and B. As before, we insert

ZAA w X B w
i ty vy vy vvedy o, Yoy
X B
Sas
h
wL X i L=x i
= L
(a) (b)
Shear force
A
B
—ve
wL
()
wl?
2
—ve Bending moment
A B

(d)
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positive directions for the shear force, Sap, and bending moment, Mag, in the free
body diagram of Fig. 3.12(b). Then, for vertical equilibrium of the length XB of
the beam

Sap+w(lL —x)=0
so that
Sa = —w(L —x) (i)
Therefore Sap varies linearly withx and varies from zero at Bto —wL at A (Fig. 3.12(c)).

Now consider the moment equilibrium of the length AB of the beam and take moments
about X

w
Mag + E(L —x)2 =0
which gives

Map = —%V(L —x)? (i)

Note that the total load on the length XB of the beam is w(L —x), which we may
consider acting as a concentrated load at a distance (L — x)/2 from X. From Eq. (ii)
we see that the bending moment, Mag, is negative at all sections of the beam and
varies parabolically as shown in Fig. 3.12(d) where the bending moment diagram is
again drawn on the tension side of the beam. The actual shape of the bending moment
diagram may be found by plotting values or, more conveniently, by examining Eq. (ii).
Differentiating with respect to x we obtain

dMag
o - w(L —x) (iii)

so that when x =L, dMag/dx =0 and the bending moment diagram is tangential to
the datum line AB at B. Furthermore it can be seen from Eq. (iii) that the gradient
(dM ap/dx) of the bending moment diagram decreases as x increases, so that its shape
is as shown in Fig. 3.12(d).

EXAMPLE 3.6  Simply supported beam carrying a central concentrated load.

In this example it is necessary to calculate the value of the support reactions, both
of which are seen, from symmetry, to be W/2 (Fig. 3.13(a)). Also, there is a loading
discontinuity at B, so that we must consider the shear force and bending moment first
at an arbitrary section X say, between A and B and then at an arbitrary section X3
between B and C.

From the free body diagram in Fig. 3.13(b) in which both Sap and Map are in positive
directions we see, by considering the vertical equilibrium of the length AX; of the
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beam, that
w
Sap+ = =0
which gives
w
SAB = ——
AB 5

S ap is therefore constant at all sections of the beam between A and B, in other words,
from a section immediately to the right of A to a section immediately to the left of B.

Now consider the free body diagram of the length X,C of the beam in Fig. 3.13(c).
Note that, equally, we could have considered the length ABXj, but this would have
been slightly more complicated in terms of the number of loads acting. For vertical

equilibrium of X,C

Sgc—— =0
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from which

w
Spc =+
and we see that Spc is constant at all sections of the beam between B and C so that
the complete shear force diagram has the form shown in Fig. 3.13(d). Note that the
change in shear force from that at a section immediately to the left of B to that at a
section immediately to the right of B is + . We shall consider the implications of this
later in the chapter.

It would also appear from Fig. 3.13(d) that there are two different values of shear
force at the same section B of the beam. This results from the assumption that W is
concentrated at a point which, practically, is impossible since there would then be an
infinite bearing pressure on the surface of the beam. In practice, the load W and the
support reactions would be distributed over a small length of beam (Fig. 3.14(a)) so
that the actual shear force distribution would be that shown in Fig. 3.14(b).

The distribution of the bending moment in AB is now found by considering the moment
equilibrium about X of the length AX; of the beam in Fig. 3.13(b). Thus

w
MAB—7X=0

or

Map = %x i)

Therefore Map varies linearly from zero at A (x =0) to +WL/4 at B (x =L/2).

f——
< <
e

NS
R —
—_—
—]
R
l\)\$

(a)

l\)\g
m\g

—ve

m\g
NS

FIGURE 3.14 Shear force diagram in a
(b) practical situation



FiGURe 3.15
Shear force and
bending moment
diagrams for the
beam of Ex. 3.7

3.4 Shear Force and Bending Moment ¢ 57

Now considering the length X,C of the beam in Fig. 3.13(c) and taking moments
about Xj.

w
Mgc — 7(L —x)=0
which gives

Misc = +70-(L —x) (i)

From Eq. (ii) we see that Mpc varies linearly from +WL/4 at B (x =L/2) to zero at C
(x=L).

The complete bending moment diagram is shown in Fig. 3.13(e). Note that the bending
moment is positive (sagging) at all sections of the beam so that the lower surface of
the beam is in tension. In this example the deflected shape of the beam would be that
shown in Fig. 3.13(f).

ExampLE 3.7  Simply supported beam carrying a uniformly distributed load.

The symmetry of the beam and its load may again be used to determine the support
reactions which are each wL/2. Furthermore, there is no loading discontinuity between
the ends A and B of the beam so that it is sufficient to consider the shear force and
bending moment at just one section X, a distance x, say, from A; again we draw in
positive directions for the shear force and bending moment at the section X in the free
body diagram shown in Fig. 3.15(b).
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Considering the vertical equilibrium of the length AX of the beam gives
L
SAB —Wx + WE =0
ie.
L .
SaB = +w <x — E) i)

Sap therefore varies linearly along the length of the beam from —wL/2 at A (x =0) to
+wL/2 at B (x =L). Note that Sap =0 at mid-span (x = L/2).

Now taking moments about X for the length AX of the beam in Fig. 3.15(b) we have

wx?  wL
M ==
AB t+ > > x=0
from which
wx .
Map = +7(L —X) (ii)

Thus M ap varies parabolically along the length of the beam and is positive (sagging)
at all sections of the beam except at the supports (x =0 and x = L) where it is zero.

Also, differentiating Eq. (ii) with respect to x gives

Mae _ (L _, (iif)
de T \2
From Eq. (iii) we see that dM ap/dx = 0 at mid-span where x = L/2, so that the bending
moment diagram has a turning value or mathematical maximum at this section. In this

case this mathematical maximum is the maximum value of the bending moment in the
beam and is, from Eq. (ii), +wL?/8.

The bending moment diagram for the beam is shown in Fig. 3.15(d) where it is again
drawn on the tension side of the beam; the deflected shape of the beam will be identical
in form to the bending moment diagram.

Examples 3.4-3.7 may be regarded as ‘standard’ cases and it is useful to memorize the
form that the shear force and bending moment diagrams take including the principal
values.

ExampLE 3.8  Simply supported beam with cantilever overhang (Fig. 3.16(a)).

The support reactions are calculated using the methods described in Section 2.5. Thus,
taking moments about B in Fig. 3.16(a) we have

RAXx2-2x3x05+1x1=0
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Rp = 6kN
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The support reaction at B produces a loading discontinuity at B so that we must
consider the shear force and bending moment at two arbitrary sections of the beam,
X1 in AB and X in BC. Free body diagrams are therefore drawn for the lengths AX;
and X, C of the beam and positive directions for the shear force and bending moment
drawn in as shown in Fig. 3.16(b) and (c). Alternatively, we could have considered
the lengths X1BC and ABX3, but this approach would have involved slightly more
complicated solutions in terms of the number of loads applied.

Now from the vertical equilibrium of the length AX; of the beam in Fig. 3.16(b)
we have
SaB—2x+1=0

or
Sap=2c—1 (i)

The shear force therefore varies linearly in AB from —1kN at A (x=0) to +3kN at
B (x=2m). Note that SaAp =0 atx=0.5m.

Consideration of the vertical equilibrium of the length X,C of the beam in
Fig. 3.16(c) gives

Spc +2B3—-x)+1=0

from which

Spc=2c—7 (i)
Equation (ii) shows that Spc varies linearly in BC from —3kN at B(x =2m) to —1kN
at C(x=3m).
The complete shear force diagram for the beam is shown in Fig. 3.16(d).

The bending moment, Mag, is now obtained by considering the moment equilibrium
of the length AX; of the beam about X; in Fig. 3.16(b). Hence

MAB+2x§—1x=o

so that
Map =x — x* (iii)

which is a parabolic function of x. The distribution may be plotted by selecting a series
of values of x and calculating the corresponding values of Mag. However, this would
not necessarily produce accurate estimates of either the magnitudes and positions of
the maximum values of Map or, say, the positions of the zero values of Map which,
as we shall see later, are important in beam design. A better approach is to examine
Eq. (iii) as follows. Clearly when x =0, M4p =0 as would be expected at the simple
support at A. Also at B, where x =2m, Map = —2 kN so that although the support at
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B is a simple support and allows rotation of the beam, there is a moment at B; this is
produced by the loads on the cantilever overhang BC. Rewriting Eq. (iii) in the form

Map =x(1 —x) (iv)

we see immediately that Map = 0 atx = 0 (as demonstrated above) and that M4p =0 at
x =1m, the point D in Fig. 3.16(e). We shall see later in Chapter 9 that at the point in
the beam where the bending moment changes sign the curvature of the beam is zero;
this point is known as a point of contraflexure or point of inflection. Now differentiating
Eq. (iii) with respect to x we obtain

dx

=1-—2 v)

and we see that dMap/dx =0 atx = 0.5 m. In other words M ap has a turning value or
mathematical maximum atx = 0.5 m at which point Mag = 0.25 kN m. Note that this is
not the greatest value of bending moment in the span AB. Also it can be seen that for
0 <x <0.5m, dMap/dx decreases with x while for 0.5 m <x < 2m, dMag/dx increases
negatively with x.

Now we consider the moment equilibrium of the length X, C of the beam in Fig. 3.16(c)
about X,

2
Mpc +5(3 —x)+13-x)=0

so that
Mgpc = —12 4 7x — x? (vi)

from which we see that dMpc/dx is not zero at any point in BC and that as x increases
dMpc/dx decreases.

The complete bending moment diagram is therefore as shown in Fig. 3.16(¢e). Note
that the value of zero shear force in AB coincides with the turning value of the bending
moment.

In this particular example it is not possible to deduce the displaced shape of the beam
from the bending moment diagram. Only three facts relating to the displaced shape
can be stated with certainty; these are, the deflections at A and B are zero and there isa
point of contraflexure at D, 1 m from A. However, using the method described in Sec-
tion 13.2 gives the displaced shape shown in Fig. 3.16(f). Note that, although the beam
is subjected to a sagging bending moment over the length AD, the actual deflection is
upwards; clearly this could not have been deduced from the bending moment diagram.

EXAMPLE 3.9  Simply supported beam carrying a point moment.

From a consideration of the overall equilibrium of the beam (Fig. 3.17(a)) the
support reactions are Ry =My/L acting vertically upward and Rc =My/L acting
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vertically downward. Note that Ra and R¢ are independent of the point of application
of M.

Although there is a loading discontinuity at B it is a point moment and will not affect
the distribution of shear force. Thus, by considering the vertical equilibrium of either
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AX in Fig. 3.17(b) or X,C in Fig. 3.17(c) we see that

M .
SaB =SBC = —TO 1)

The shear force is therefore constant along the length of the beam as shown in

Fig. 3.17(d).
Now considering the moment equilibrium about X; of the length AX; of the beam in
Fig. 3.17(b)
M
Mag — fox =0
or
M .
Mag = Tox (ii)

Mg therefore increases linearly from zero at A (x=0) to +3My/4 at B (x=3L/4).
From Fig. 3.17(c) and taking moments about X; we have

M,
Mgc + =2(L —x)=0
L
or
M
Mgpc = To(x ~L) (iii)

Mg therefore decreases linearly from —My/4 at B (x =3L/4) to zero at C (x =L); the
complete distribution of bending moment is shown in Fig. 3.17(e). The deflected form
of the beam is shown in Fig. 3.17(f) where a point of contraflexure occurs at B, the
section at which the bending moment changes sign.

In this example, as in Ex. 3.8, the exact form of the deflected shape cannot be deduced
from the bending moment diagram without analysis. However, using the method of
singularities described in Section 13.2, it may be shown that the deflection at B is
negative and that the slope of the beam at C is positive, giving the displaced shape
shown in Fig. 3.17(f).

3.5 LoAp, SHEAR FORCE AND BENDING MOMENT RELATIONSHIPS

It is clear from Exs 3.4-3.9 that load, shear force and bending moment are related.
Thus, for example, uniformly distributed loads produce linearly varying shear forces
and maximum values of bending moment coincide with zero shear force. We shall now
examine these relationships mathematically.

The length of beam shown in Fig. 3.18(a) carries a general system of loading comprising
concentrated loads and a distributed load w(x). An elemental length & of the beam
is subjected to the force and moment system shown in Fig. 3.18(b); since &x is very
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Ficure 3.18
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small the distributed load may be regarded as constant over the length 8x. For vertical
equilibrium of the element

S+wx)x —(S+35)=0
so that

+wx)dx —3S =0

Thus, in the limit as &x — 0

g = 4w(x) (3.1)
From Eq. (3.1) we see that the rate of change of shear force at a section of a beam,
in other words the gradient of the shear force diagram, is equal to the value of the
load intensity at that section. In Fig. 3.12(c), for example, the shear force changes
linearly from —wL at A to zero at B so that the gradient of the shear force diagram at
any section of the beam is +wL/L = +w where w is the load intensity. Equation (3.1)
also applies at beam sections subjected to concentrated loads. In Fig. 3.13(a) the load
intensity at B, theoretically, is infinite, as is the gradient of the shear force diagram at
B (Fig. 3.13(d)). In practice the shear force diagram would have a finite gradient at
this section as illustrated in Fig. 3.14.

Now integrating Eq. (3.1) with respect to x we obtain
S:+/w(x)dx+C1 (3.2)

in which Cj is a constant of integration which may be determined in a particular case
from the loading boundary conditions.

If, for example, w(x) is a uniformly distributed load of intensity w, i.e., it is not a
function of x, Eq. (3.2) becomes

S = 4uwx + Cy
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which is the equation of a straight line of gradient +w as demonstrated for the can-
tilever beam of Fig. 3.12 in the previous paragraph. Furthermore, for this particular
example, S =0 atx =L so that C; = —wL and S = —w(L —x) as before.

In the case of a beam carrying only concentrated loads then, in the bays between the
loads, w(x) =0 and Eq. (3.2) reduces to

S=0C

so that the shear force is constant over the unloaded length of beam (see Figs 3.11
and 3.13).

Suppose now that Eq. (3.1) is integrated over the length of beam between the sections
Xj and Xj5. Then

xzds X2
0= +fx w(x) dr

X1 1

which gives

S =81 = /xzw(x)dx (3.3)

1
where S1 and S, are the shear forces at the sections X; and X3 respectively. Equa-
tion (3.3) shows that the change in shear force between two sections of a beam is equal
to the area under the load distribution curve over that length of beam.

The argument may be applied to the case of a concentrated load W which may be
regarded as a uniformly distributed load acting over an extremely small elemental
length of beam, say &. The area under the load distribution curve would then be
wdx (=W) and the change in shear force from the section x to the section x + &x would
be +W. In other words, the change in shear force from a section immediately to the
left of a concentrated load to a section immediately to the right is equal to the value
of the load, as noted in Ex. 3.6.

Now consider the rotational equilibrium of the element & in Fig. 3.18(b) about
B. Thus

dx
M—S&x—w(x)&x; -M+3M)=0
The term involving the square of & is a second-order term and may be neglected.
Hence
—S& —3M =0

or, in the limit as & — 0

dM

— =_5 3.4

dx (34
Equation (3.4) establishes for the general case what may be observed in particular in

the shear force and bending moment diagrams of Exs 3.4-3.9, i.e. the gradient of the
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bending moment diagram at a beam section is equal to minus the value of the shear
force at that section. For example, in Fig. 3.16(¢) the bending moment in AB is a
mathematical maximum at the section where the shear force is zero.

Integrating Eq. (3.4) with respect to x we have
M=—dex+C2 (3.5)

in which Cj is a constant of integration. Substituting for S in Eq. (3.5) from Eq. (3.2)
gives

M= —/ |:+/w(x)dx+C1}dx+C2
) M=- /w(x) dx — Cix+ C2 (3.6)

If w(x) is a uniformly distributed load of intensity w, Eq. (3.6) becomes

$2
M = —w; —Cix+Cy

which shows that the equation of the bending moment diagram on a length of beam
carrying a uniformly distributed load is parabolic.

In the case of a beam carrying concentrated loads only, then, between the loads,
w(x) =0 and Eq. (3.6) reduces to

M=-Cix+C
which shows that the bending moment varies linearly between the loads and has a
gradient —Cj.

The constants Cy and C; in Eq. (3.6) may be found, for a given beam, from the loading
boundary conditions. Thus, for the cantilever beam of Fig. 3.12, we have already shown
that C; = —wL so that M = —wx?/2 +wLx + C;. Also, when x = L, M = 0 which gives
C, = —wL?/2 and hence M = —wx?/2 +wLx — wL?/2 as before.

Now integrating Eq. (3.4) over the length of beam between the sections X; and X,

(Fig. 3.18(a))
%2 M %
M = - f S dv
X1 dx X1

which gives

X2
Mz—Mlz—/ S dx (3.7
X1

where M and M, are the bending moments at the sections X; and X, respectively.
Equation (3.7) shows that the change in bending moment between two sections of a
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beam is equal to minus the area of the shear force diagram between those sections.
Again, using the cantilever beam of Fig. 3.12 as an example, we see that the change in
bending moment from A to B is wL?/2 and that the area of the shear force diagram
between A and B is —wL?/2.

Finally, from Eqs (3.1) and (3.4)

d*M ds

The relationships established above may be used to construct shear force and bending
moment diagrams for some beams more readily than when the methods illustrated in
Exs 3.4-3.9 are employed. In addition they may be used to provide simpler solutions
in some beam problems.

EXAMPLE 3.10  Construct shear force and bending moment diagrams for the beam
shown in Fig. 3.19(a).

2kN 5kN

4kN/m
A B c Dy J VIV }E

Fin = 4.5KN Re = 6.5kN
1m 1m 1m 1m B
(a)
6.5 kN
2.5kN Shear force
A
+ve
A B C E
_ D
ve 2.5kN
Y
4.5kN
(b)
A B C D E
Bending
moment

7KNm

(c)
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Initially the support reactions are calculated using the methods described in Sec-
tion 2.5. Then, for moment equilibrium of the beam about E

RAXx4—-2x3-5%x2—-4x1x05=0

from which

Rp = 4.5kN

Now considering the vertical equilibrium of the beam
RE+RA—2-5-4x1=0
so that

Rg = 6.5kN

In constructing the shear force diagram we can make use of the facts that, as established
above, the shear force is constant over unloaded bays of the beam, varies linearly when
the loading is uniformly distributed and changes positively as a vertically downward
concentrated load is crossed in the positive x direction by the value of the load. Thus in
Fig. 3.19(b) the shear force increases negatively by 4.5 kN as we move from the left of
Ato theright of A, is constant between A and B, changes positively by 2 kN as we move
from the left of B to the right of B, and so on. Note that between D and E the shear
force changes linearly from +2.5kN at D to +6.5kN at a section immediately to the
left of E, in other words it changes by +4 kN, the total value of the downward-acting
uniformly distributed load.

The bending moment diagram may also be constructed using the above relation-
ships, namely, the bending moment varies linearly over unloaded lengths of beam
and parabolically over lengths of beam carrying a uniformly distributed load. Also,
the change in bending moment between two sections of a beam is equal to minus the
area of the shear force diagram between those sections. Thus in Fig. 3.19(a) we know
that the bending moment at the pinned support at A is zero and that it varies linearly
in the bay AB. The bending moment at B is then equal to minus the area of the shear
force diagram between A and B, i.e. —(—4.5 x 1) =4.5 kN m. This represents, in fact,
the change in bending moment from the zero value at A to the value at B. At C the
area of the shear force diagram to the right or left of Cis 7 kN m (note that the bending
moment at E is also zero), and so on. In the bay DE the shape of the parabolic curve
representing the distribution of bending moment over the length of the uniformly
distributed load may be found using part of Eq. (3.8), i.e.

d’M
e
For a vertically downward uniformly distributed load this expression becomes
d’M
=-—w

dx2
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which from mathematical theory shows that the curve representing the variation in
bending moment is convex in the positive direction of bending moment. This may be
observed in the bending moment diagrams in Fig. 3.12(d), 3.15(d) and 3.16(e). In this
example the bending moment diagram for the complete beam is shown in Fig. 3.19(c)
and is again drawn on the tension side of the beam.

ExampLE 3.11 A precast concrete beam of length L is to be lifted from the casting
bed and transported so that the maximum bending moment is as small as possible. If
the beam is lifted by two slings placed symmetrically, show that each sling should be
0.21L from the adjacent end.

The external load on the beam is comprised solely of its own weight, which is uni-
formly distributed along its length. The problem is therefore resolved into that of a
simply supported beam carrying a uniformly distributed load in which the supports
are positioned at some distance a from each end (Fig. 3.20(a)).

The shear force and bending moment diagrams may be constructed in terms of a using
the methods described above and would take the forms shown in Fig. 3.20(b) and (c).
Examination of the bending moment diagram shows that there are two possible posi-
tions for the maximum bending moment. First at B and C where the bending moment
is hogging and has equal values from symmetry; second at the mid-span point where
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the bending moment has a turning value and is sagging if the supports at B and C are
spaced a sufficient distance apart. Suppose that B and C are positioned such that the
value of the hogging bending moment at B and C is numerically equal to the sagging
bending moment at the mid-span point. If now B and C are moved further apart the
mid-span moment will increase while the moment at B and C decreases. Conversely, if
B and C are brought closer together, the hogging moment at B and C increases while
the mid-span moment decreases. It follows that the maximum bending moment will
be as small as possible when the hogging moment at B and C is numerically equal to
the sagging moment at mid-span.

The solution will be simplified if use is made of the relationship in Eq. (3.7). Thus,
when the supports are in the optimum position, the change in bending moment from A
to B (negative) is equal to minus half the change in the bending moment from B to the
mid-span point (positive). It follows that the area of the shear force diagram between
A and B is equal to minus half of that between B and the mid-span point. Then

A4 )

LZ
az—i—La—T:O

which reduces to

the solution of which gives

a =0.21L (the negative solution has no practical significance)

The distribution of torque along a structural member may be obtained by considering
the equilibrium in free body diagrams of lengths of member in a similar manner to
that used for the determination of shear force distributions in Exs 3.4-3.9.

ExampLE 3.12  Construct a torsion diagram for the beam shown in Fig. 3.21(a).

There is a loading discontinuity at B so that we must consider the torque at separate
sections X and X3 in AB and BC, respectively. Thus, in the free body diagrams shown
in Fig. 3.21(b) and (c) we insert positive internal torques.

From Fig. 3.21(b)

Tap—10+8=0

so that

Tap = +2kNm
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from which
Tec = —8kNm

The complete torsion diagram is shown in Fig. 3.21(d).
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ExampLE 3.13  The structural member ABC shown in Fig. 3.22 carries a distributed
torque of 2kN m/m together with a concentrated torque of 10 kN m at mid-span. The
supports at A and C prevent rotation of the member in planes perpendicular to its
axis. Construct a torsion diagram for the member and determine the maximum value

of torque.
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From the rotational equilibrium of the member about its longitudinal axis and its
symmetry about the mid-span section at B, we see that the reactive torques 7a and T¢
are each —9kNm, i.e. clockwise when viewed in the direction CBA. In general, as we
shall see in Chapter 11, reaction torques at supports form a statically indeterminate
system.



3.7 Principle of Superposition ¢ 73
In this particular problem there is a loading discontinuity at B so that we must consider
the internal torques at two arbitrary sections X; and X, as shown in Fig. 3.23(a).

From the free body diagram in Fig. 3.23(b)
Tap+2x—9=0
which gives
Tap =9 — 2x (i)

From Eq. (i) we see that Tap varies linearly from +9kN m at A (x =0) to +5kNm at
a section immediately to the left of B (x =2 m). Furthermore, from Fig. 3.23(c)

Tgc —2(4—x)+9=0
so that
Tgc=—-2x—1 (ii)

from which we see that Tsc varies linearly from —5kN m at a section immediately to
the right of B (x=2m) to —9kNm at C (x=4m). The resulting torsion diagram is
shown in Fig. 3.23(d).

3.7 PRINCIPLE OF SUPERPOSITION

An extremely useful principle in the analysis of linearly elastic structures (see Chap-
ter 8) is that of superposition. The principle states that if the displacements at all
points in an elastic body are proportional to the forces producing them, that is the
body is linearly elastic, the effect (i.e. stresses and displacements) on such a body of a
number of forces acting simultaneously is the sum of the effects of the forces applied
separately.

This principle can sometimes simplify the construction of shear force and bending
moment diagrams.

ExampLE 3.14  Construct the bending moment diagram for the beam shown in
Fig. 3.24(a).

Figures 3.24(b), (c) and (d) show the bending moment diagrams for the cantilever
when each of the three loading systems acts separately. The bending moment diagram
for the beam when the loads act simultaneously is obtained by adding the ordinates of
the separate diagrams and is shown in Fig. 3.24(e).
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FIGURE 3.24 Bending moment (BM) diagram using the principle of superposition

PROBLEMS

P3.1 A transmitting mast of height 40 m and weight 4.5 kN/m length is stayed by three
groups of four cables attached to the mast at heights of 15, 25 and 35 m. If each cable is
anchored to the ground at a distance of 20 m from the base of the mast and tensioned
to a force of 15 kN, draw a diagram of the compressive force in the mast.

Ans. Max. force =314.9kN.

P.3.2 Construct the normal force, shear force and bending moment diagrams for the
beam shown in Fig. P3.2.

Ans. Nap=9.2kN,Npc =9.2kN, Ncp =5.7kN, Npg =0.
SaB=—6.9kN, Sgc = —-3.9kN,Scp = +2.2kN, Spg = +7.9kN.
Mpg=27.6kNm,Mc=51kNm,Mp=40kN m.
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P.3.3 Draw dimensioned sketches of the diagrams of normal force, shear force and
bending moment for the beam shown in Fig. P3.3.

Ans. Nap=Npc=Ncp =0,Npg =—6KkN.
Sa =0,Sg (in AB) =+10kN, Sg (in BC) = —10kN.
Sc = —4kN, Sp (in CD) = —4 kN, Spg = +4kN.
Mp=—25kNm,Mc =—4kNm, Mp = 12kN m.
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FiGure P.3.3

P.3.4 Drawshear force and bending moment diagrams for the beam shown in Fig. P.3.4.

Ans. Sap=—W,Sec=0,Scp =+W.
Mp=Mc=WL/A4.

Note zero shear and constant bending moment in central span.

L/4 L/2 L/4
FiGure P.3.4

P.3.5 The cantilever AB shown in Fig. P3.5 carries a uniformly distributed load of
5kN/m and a concentrated load of 15 kN at its free end. Construct the shear force and
bending moment diagrams for the beam.

Ans. Sp=—15kN,Sc =—65kN.
MB = O,MA =—400kN m.
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P.3.6 Sketch the bending moment and shear force diagrams for the simply supported
beam shown in Fig. P.3.6 and insert the principal values.

Ans. Sp (in AB) =+5kN, Sg (in BC) = —3.75kN, Sc (in BC) =+46.25kN.
Scp=—-5kN,Mp=—12.5kNm,Mc =—-25kNm.
Turning value of bending moment of —5.5kNm in BC, 3.75 m from B.
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P.3.7 Draw the shear force and bending moment diagrams for the beam shown in
Fig. P.3.7 indicating the principal values.

Ans. Sap=—5.6kN,Sp (in BC) =+4.4kN, Sc (in BC) =+7.4kN,
Sc (in CD) = —1.5kN.
Mg =16.8kNm, Mc = —1.125kN m.
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T ™ Ficure P.3.7

P.3.8 Find the value of w in the beam shown in Fig. P.3.8 for which the maximum
sagging bending moment occurs at a point 10/3m from the left-hand support and

determine the value of this moment.

Ans. w=1.2kN/m,6.7kN m.
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P.3.9 Find the value of n for the beam shown in Fig. P.3.9 such that the maximum
sagging bending moment occurs at L/3 from the right-hand support. Using this value
of n determine the position of the point of contraflexure in the beam.

Ans. n=4/3, L/3 from left-hand support.
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Ficure P.3.9

P.3.10 Sketch the shear force and bending moment diagrams for the simply supported
beam shown in Fig. P.3.10 and determine the positions of maximum bending moment
and point of contraflexure. Calculate the value of the maximum moment.

Ans. Sa =—45kN, S (in AB) =+55kN, Sgc = —20kN.
Max =202.5kN m at 9m from A, Mg = —100kN m.
Point of contraflexure is 18 m from A.

5 kN/m 20 kN
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A
Y22 97% ¢
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B b o FiGure P.3.10

P.3.11 Determine the position of maximum bending moment in a simply supported
beam, 8 m span, which carries a load of 100 kN uniformly distributed over its complete
length and, in addition, a load of 120 kN uniformly distributed over 2.5 m to the right
from a point 2m from the left support. Calculate the value of maximum bending
moment and the value of bending moment at mid-span.
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Ans. Mpax =294kN m at 3.6 m from left-hand support.
M (mid-span) =289 kN m.

P.3.12 A simply supported beam AB has a span of 6 m and carries a distributed load
which varies linearly in intensity from zero at A to 2kN/m at B. Sketch the shear force
and bending moment diagrams for the beam and insert the principal values.

Ans. Sap=—2+x%6,5A =—2kN, Sg =+4kN.
Map =2x —x3/18,MmaX =4.62kNm at 3.46 m from A.

P.3.13 A precast concrete beam of length L is to be lifted by a single sling and has one
end resting on the ground. Show that the optimum position for the sling is 0.29 m from
the nearest end.

P.3.14 Construct shear force and bending moment diagrams for the framework shown
in Fig. P.3.14.

Ans. Sap=—60kN, Sgc =—10kN, Scp = +140kN.
Mp =480kN m, Mc =560 kN m.

A Bl lc ; D
;;éé;/ 50 kN 150 kN v

5X4m Ficure P.3.14

P.3.15 Draw shear force and bending moment diagrams for the framework shown in
Fig. P3.15.

Ans. SaAp=~+5kN, Sgc =—+15kN, Scp =+30kN, Spg = —12kN, Sgr = —7 kN,
SrG = —5kN, Sgu =0.
Mg =—10kNm,Mc=—40kNm,Mp =—100kNm, Mg = —76 kN m,
Mg =-20kNm,Mg=Myzx=0.

5KkN J10kN | 15kN [15kN | 5kN 5N
A l Bl Cl Dy Ey F Gl H
Ficure P.3.15 | 3x2m 5X2m 3x2m '|
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P3.16 The cranked cantilever ABC shown in Fig. P.3.16 carries a load of 3kN at its
free end. Draw shear force, bending moment and torsion diagrams for the complete
beam.
Ans. Scg =—3kN, Spa = —3kN

MC = O,MB (in CB) =—6kN m,MB (in BA) = O,MA =—9kNm.

Tcg =0,Tga =6kN m.

A 3m
B
3 kN
C
2m

P3.17 Construct a torsion diagram for the beam shown in Fig. P.3.17.

FiGure P.3.16

Ans. TCB = —300Nm, TBA =—400 N m.

A
B~ 100 N m
c
300N m
2m
1im

P.3.18 The beam ABC shown in Fig. P.3.18 carries a distributed torque of 1 N m/mm
over its outer half BC and a concentrated torque of 500 N m at B. Sketch the torsion
diagram for the beam inserting the principal values.

FiGure P.3.17

Ans. Tc=0,Tg (in BC)=1000Nm, T8 (in AB) =1500 N m.
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500 N'm 1 N m/mm

FiGure P.3.18

P.3.19 The cylindrical bar ABCD shown in Fig. P.3.19 is supported symmetrically at
B and C by supports that prevent rotation of the bar about its longitudinal axis. The
bar carries a uniformly distributed torque of 2N m/mm together with concentrated
torques of 400 Nm at each end. Draw the torsion diagram for the bar and determine
the maximum value of torque.

Ans. Tpc =400+ 2x, Tcg =2x — 2000, Tga = 2x — 4400 (7 in Nm when x is in mm).
Tmax = 1400 Nm at C and B.

400N m

2 N m/mm

FiGure P.3.19
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Trusses

In Chapter 1 we discussed various structural forms and saw that for moderately large
spans, simple beams become uneconomical and may be replaced by trusses. These
structures comprise members connected at their ends and are constructed in a variety
of arrangements. In general, trusses are lighter, stronger and stiffer than solid beams
of the same span; they do, however, take up more room and are more expensive to
fabricate.

Initially in this chapter we shall discuss types of truss, their function and the idealiza-
tion of a truss into a form amenable to analysis. Subsequently, we shall investigate the
criterion which indicates the degree of their statical determinacy, examine the action
of the members of a truss in supporting loads and, finally, examine methods of analysis
of both plane and space trusses.

4.1 TvypEs or TRuss

Generally the form selected for a truss depends upon the purpose for which it is
required. Examples of different types of truss are shown in Fig. 4.1(a)—(f); some are
named after the railway engineers who invented them.

For example, the Pratt, Howe, Warren and K trusses would be used to support bridge
decks and large-span roofing systems (the Howe truss is no longer used for reasons we
shall discuss in Section 4.5) whereas the Fink truss would be used to support gable-
ended roofs. The Bowstring truss is somewhat of a special case in that if the upper
chord members are arranged such that the joints lie on a parabola and the loads, all of
equal magnitude, are applied at the upper joints, the internal members carry no load.
This result derives from arch theory (Chapter 6) but is rarely of practical significance
since, generally, the loads would be applied to the lower chord joints as in the case of
the truss being used to support a bridge deck.

Frequently, plane trusses are connected together to form a three-dimensional struc-
ture. For example, in the overhead crane shown in Fig. 4.2, the tower would usually

81
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(a) Pratt

(b) Howe

(c) Fink

VAVAVAVAN

(d) Warren

(e) K truss

(f) Bowstring FIGURE 4.1 Types of plane truss

comprise four plane trusses joined together to form a ‘box’ while the jibs would be con-
structed by connecting three plane trusses together to form a triangular cross section.

4.2 ASSumMPTIONS IN TRUSS ANALYSIS

It can be seen from Fig. 4.1 that plane trusses consist of a series of triangular units.
The triangle, even when its members are connected together by hinges or pins as in
Fig. 4.3(a), is an inherently stable structure, i.e. it will not collapse under any arrange-
ment of loads applied in its own plane. On the other hand, the rectangular structure
shown in Fig. 4.3(b) would be unstable if vertical loads were applied at the joints and
would collapse under the loading system shown; in other words it is a mechanism.
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Jib
<— Tower
[O—:j FiGURE 4.2  Overhead crane
v structure
B
A C
Collapse

FIGURE 4.3 Basic unit of a truss

Further properties of a pin-jointed triangular structure are that the forces in the mem-
bers are purely axial and that it is statically determinate (see Section 4.4) so long as
the structure is loaded and supported at the joints. The forces in the members can
then be found using the equations of statical equilibrium (Eq. (2.10)). It follows that a
truss comprising pin-jointed triangular units is also statically determinate if the above
loading and support conditions are satisfied. In Section 4.4 we shall derive a simple
test for determining whether or not a pin-jointed truss is statically determinate; this
test, although applicable in most cases is not, as we shall see, foolproof.

The assumptions on which the analysis of trusses is based are as follows:

(1) The members of the truss are connected at their ends by frictionless pins or
hinges.
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(2) The truss is loaded and supported only at its joints.
(3) The forces in the members of the truss are purely axial.

Assumptions (2) and (3) are interdependent since the application of a load at some
point along a truss member would, in effect, convert the member into a simply
supported beam and, as we have seen in Chapter 3, generate, in addition to axial
loads, shear forces and bending moments; the truss would then become statically
indeterminate.

4.3 IDEALIZATION OF A TRUSS

In practice trusses are not pin-jointed but are constructed, in the case of steel
trusses, by bolting, riveting or welding the ends of the members to gusset plates
as shown in Fig. 4.4. In a timber roof truss the members are connected using
spiked plates driven into their vertical surfaces on each side of a joint. The joints
in trusses are therefore semi-rigid and can transmit moments, unlike a friction-
less pinned joint. Furthermore, if the loads are applied at points on a member
away from its ends, that member behaves as a fixed or built-in beam with unknown
moments and shear forces as well as axial loads at its ends. Such a truss would pos-
sess a high degree of statical indeterminacy and would require a computer-based
analysis.

However, if such a truss is built up using the basic triangular unit and the loads and
support points coincide with the member joints then, even assuming rigid joints, a
computer-based analysis would show that the shear forces and bending moments
in the members are extremely small compared to the axial forces which, themselves,
would be very close in magnitude to those obtained from an analysis based on the

assumption of pinned joints.
Two angle sections
\ back to back

Gusset
plate

Centroidal axes

_(_.__._,.,(_.________(_’/ FIGURE 4.4
X Actual truss
/ N construction
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A further condition in employing a pin-jointed idealization of an actual truss is that the
centroidal axes of the members in the actual truss are concurrent, as shown in Fig. 4.4.
We shall see in Section 9.2 that a load parallel to, but offset from, the centroidal axis of
amember induces a bending moment in the cross-section of the member; this situation
is minimized in an actual truss if the centroidal axes of all members meeting at a joint
are concurrent.

4.4 STATICAL DETERMINACY

It was stated in Section 4.2 that the basic triangular pin-jointed unit is statically deter-
minate and the forces in the members are purely axial so long as the loads and support
points coincide with the joints. The justification for this is as follows. Consider the
joint B in the triangle in Fig. 4.3(a). The forces acting on the actual pin or hinge are
the externally applied load and the axial forces in the members AB and BC; the system
is shown in the free body diagram in Fig. 4.5. The internal axial forces in the members
BA and BC, Fpa and Fpc, are drawn to show them pulling away from the joint B;
this indicates that the members are in tension. Actually, we can see by inspection that
both members will be in compression since their combined vertical components are
required to equilibrate the applied vertical load. The assumption of tension, however,
would only result in negative values in the calculation of Fpa and Fpc and is therefore
a valid approach. In fact we shall adopt the method of initially assuming tension in all
members of a truss when we consider methods of analysis, since a negative value for a
member force will then always signify compression and will be in agreement with the
sign convention adopted in Section 3.2.

Since the pin or hinge at the joint B is in equilibrium and the forces acting on the
pin are coplanar, Eq. (2.10) apply. Therefore the sum of the components of all the
forces acting on the pin in any two directions at right angles must be zero. The moment
equation, XM =0, is automatically satisfied since the pin cannot transmit a moment
and the lines of action of all the forces acting on the pin must therefore be concurrent.
For the joint B, we can write down two equations of force equilibrium which are
sufficient to solve for the unknown member forces Fpa and Fpc. The same argument
may then be applied to either joint A or C to solve for the remaining unknown internal
force Fac (=Fca). We see then that the basic triangular unit is statically determinate.

Fga Fec  FIGURE 4.5 Joint equilibrium in a triangular structure
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A - . . -
b FIGURE 4.6 Construction of a Warren
E truss

Now consider the construction of a simple pin-jointed truss. Initially we start with a
single triangular unit ABC as shown in Fig. 4.6. A further triangle BCD is created by
adding the 'wo members BD and CD and the single joint D. The third triangle CDE
is then formed by the addition of the two members CE and DE and the single joint
E and so on for as many triangular units as required. Thus, after the initial triangle
is formed, each additional triangle requires swo members and a single joint. In other
words the number of additional members is equal to twice the number of additional
joints. This relationship may be expressed qualitatively as follows.

Suppose that m is the total number of members in a truss and j the total number of
joints. Then, noting that initially there are three members and three joints, the above
relationship may be written

m—3=2(j—3)

so that
m=2—3 (4.1)

If Eq. (4.1) is satisfied, the truss is constructed from a series of statically determi-
nate triangles and the truss itself is statically determinate. Furthermore, if m<2j — 3
the structure is unstable (see Fig. 4.3(b)) or if m > 2j — 3, the structure is statically
indeterminate. Note that Eq. (4.1) applies only to the internal forces in a truss; the
support system must also be statically determinate to enable the analysis to be carried
out using simple statics.

EXAMPLE 4.1  Test the statical determinacy of the pin-jointed trusses shown in
Fig. 4.7.

In Fig. 4.7(a) the truss has five members and four joints so that m =5 and j =4. Then
2j—-3=5=m

and Eq. (4.1) is satisfied. The truss in Fig. 4.7(b) has an additional member so that
m =6 and j = 4. Therefore
m>2—-3

and the truss is statically indeterminate.



FIGURE 4.7 Statical
determinacy of
trusses

FIGURE 4.8
Applicability of
test for statical
determinacy
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(a) (b) (©

The truss in Fig. 4.7(c) comprises a series of triangular units which suggests that it is
statically determinate. However, in this case, m =8 and j =5. Thus

2%j—3=7

so that
m>2j—3

and the truss is statically indeterminate. In fact any single member may be removed
and the truss would retain its stability under any loading system in its own plane.

Unfortunately, in some cases, Eq. (4.1) is satisfied but the truss may be statically
indeterminate or a mechanism. For example, the truss in Fig. 4.8 has nine members
and six joints so that Eq. (4.1) is satisfied. However, clearly the left-hand half is a
mechanism and the right-hand half is statically indeterminate. Theoretically, assuming
that the truss members are weightless, the truss could support vertical loads applied
to the left- and/or right-hand vertical members; this would, of course, be an unstable
condition. Any other form of loading would cause a collapse of the left hand half of
the truss and consequently of the truss itself.

O

The presence of a rectangular region in a truss such as that in the truss in Fig. 4.8
does not necessarily result in collapse. The truss in Fig. 4.9 has nine members and six
joints so that Eq. (4.1) is satisfied. This does not, as we have seen, guarantee either a
stable or statically determinate truss. If, therefore, there is some doubt we can return
to the procedure of building up a truss from a single triangular unit as demonstrated
in Fig. 4.6. Then, remembering that each additional triangle is created by adding two
members and one joint and that the resulting truss is stable and statically determinate,
we can examine the truss in Fig. 4.9 as follows.
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7 FIGURE 4.9 Investigation into truss stability

Suppose that ACD is the initial triangle. The additional triangle ACB is formed by
adding the two members AB and BC and the single joint B. The triangle DCE follows
by adding the two members CE and DE and the joint E. Finally, the two members BF
and EF and the joint F are added to form the rectangular portion CBFE. We therefore
conclude that the truss in Fig. 4.9 is stable and statically determinate. Compare the
construction of this truss with that of the statically indeterminate truss in Fig. 4.7(c).

A condition, similar to Eq. (4.1), applies to space trusses; the result for a space truss
having m members and j pinned joints is

m=3-6 (4.2)

4.5 RESISTANCE OF A TRUSS TO SHEAR FORCE AND BENDING MOMENT

Although the members of a truss carry only axial loads, the truss itself acts as a beam
and is subjected to shear forces and bending moments. Therefore, before we consider
methods of analysis of trusses, it will be instructive to examine the manner in which a
truss resists shear forces and bending moments.

The Pratt truss shown in Fig. 4.10(a) carries a concentrated load W applied at a joint
on the bottom chord at mid-span. Using the methods described in Section 3.4, the
shear force and bending moment diagrams for the truss are constructed as shown in
Fig. 4.10(b) and (c), respectively.

First we shall consider the shear force. In the bay ABCD the shear force is W/2 and
is negative. Thus at any section mm between A and B (Fig. 4.11) we see that the
internal shear force is —W/2. Since the horizontal members AB and DC are unable
to resist shear forces, the internal shear force can only be equilibrated by the vertical
component of the force Fac in the member AC. Figure 4.11 shows the direction of
the internal shear force applied at the section mm so that Fac is tensile. Then

w
Fac cosd45° = 5
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The same result applies to all the internal diagonals whether to the right or left of the
mid-span point since the shear force is constant, although reversed in sign, either side
of the load. The two outer diagonals are in compression since their vertical components
must be in equilibrium with the vertically upward support reactions. Alternatively, we
arrive at the same result by considering the internal shear force at a section just to the
right of the left-hand support and just to the left of the right-hand support.

If the diagonal AC was repositioned to span between D and B it would be subjected
to an axial compressive load. This situation would be undesirable since the longer a
compression member, the smaller the load required to cause buckling (see Chapter 21).
Therefore, the aim of truss design is to ensure that the forces in the longest members,
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FIGURE 4.12
Internal bending
moment in a truss

Ficure 4.13
Resistance of a
bending moment at
a mid-bay point

the diagonals in this case, are predominantly tensile. So we can see now why the Howe
truss (Fig. 4.1(b)), whose diagonals for downward loads would be in compression, is
no longer in use.

In some situations the loading on a truss could be reversed so that a diagonal that is
usually in tension would be in compression. To counter this an extra diagonal inclined in
the opposite direction is included (spanning, say, from D to B in Fig. 4.12). This, as we
have seen, would result in the truss becoming statically indeterminate. However, if it is
assumed that the original diagonal (ACin Fig. 4.12) has buckled under the compressive
load and therefore carries no load, the truss is once again statically determinate.

We shall now consider the manner in which a truss resists bending moments. The
bending moment at a section immediately to the left of the mid-span vertical BC in
the truss in Fig. 4.10(a) is, from Fig. 4.10(c), 1.5W and is positive, as shown in Fig. 4.12.
This bending moment is equivalent to the moment resultant, about any point in their
plane, of the member forces at this section. In Fig. 4.12, analysis by the method of
sections (Section 4.7) gives Fga = 1.5W (compression), Fac =0.707W (tension) and
Fpc =1.0W (tension). Therefore at C, Fpc plus the horizontal component of Fac is
equal to 1.5W which, together with Fga, produces a couple of magnitude 1.5W x 1
which is equal to the applied bending moment. Alternatively, we could take moments
of the internal forces about B (or C). Hence

Mp = Fpc x 1 + Fac x 1sin45° = 1.0W x 14+ 0.707W x 1sin45° = 1.5W

as before. Note that in Fig. 4.12 the moment resultant of the internal force system is
equivalent to the applied moment, i.e. it is in the same sense as the applied moment.

Now let us consider the bending moment at, say, the mid-point of the bay AB, where its
magnitude is, from Fig. 4.10(c), 1.25W. The internal force system is shown in Fig. 4.13

45° -0 Fan F
im
FDC Y

A
T Fea = 15W X 1251
\FAC=O7O7W
—
7797 D Foc = 1.0W
| 10m 1.0m _[05m|
I i 1
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in which Fa, Fac and Fpc have the same values as before. Then, taking moments
about, say, the mid-point of the top chord member AB, we have

M =Fpc x 1+ Fac x 0.5sin45° = 1.0W x 14 0.707W x 0.5sin45° = 1.25W

the value of the applied moment.

From the discussion above it is clear that, in trusses, shear loads are resisted by inclined
members, while all members combine to resist bending moments. Furthermore, pos-
itive (sagging) bending moments induce compression in upper chord members and
tension in lower chord members.

Finally, note that in the truss in Fig. 4.10 the forces in the members GE, BC and HF
are all zero, as can be seen by considering the vertical equilibrium of joints E, B and F.
Forces would only be induced in these members if external loads were applied directly
at the joints E, B and E. Generally, if three coplanar members meet at a joint and
two of them are collinear, the force in the third member is zero if no external force is
applied at the joint.

4.6 METHOD OF JOINTS

We have seen in Section 4.4 that the axial forces in the members of a simple pin-jointed
triangular structure may be found by examining the equilibrium of their connecting
pins or hinges in two directions at right angles (Eq. (2.10)). This approach may be
extended to plane trusses to determine the axial forces in all their members; the method
is known as the method of joints and will be illustrated by the following example.

EXAMPLE 4.2 Determine the forces in the members of the Warren truss shown in
Fig. 4.14; all members are 1 m long.

12 kN lS kN

B C

Z

<«

FIGURE 4.14
Analysis of a Warren

Ry =2.75kN T T Rp = 3.25kN
truss
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Generally, although not always, the support reactions must be calculated first. So,
taking moments about D for the truss in Fig. 4.14 we obtain

Rax2-2x%x15-1x1-3%x05=0

which gives
Ra =2.75kN

Then, resolving vertically
Rp+Ra—2-1-3=0

so that
Rp = 3.25kN

Note that there will be no horizontal reaction at A (D is a roller support) since no
horizontal loads are applied.

The next step is to assign directions to the forces acting on each joint. In one approach
the truss is examined to determine whether the force in a member is tensile or com-
pressive. For some members this is straightforward. For example, in Fig. 4.14, the
vertical reaction at A, Ra, can only be equilibrated by the vertical component of the
force in AB which must therefore act downwards, indicating that the member is in
compression (a compressive force in a member will push towards a joint whereas a
tensile force will pull away from a joint). In some cases, where several members meet
at a joint, the nature of the force in a particular member is difficult, if not impossible,
to determine by inspection. Then a direction must be assumed which, if incorrect, will
result in a negative value for the member force. It follows that, in the same truss, both
positive and negative values may be obtained for tensile forces and also for compressive
forces, a situation leading to possible confusion. Therefore, if every member in a truss
is initially assumed to be in tension, negative values will always indicate compression
and the solution will then agree with the sign convention adopted in Section 3.2.

We now assign tensile forces to the members of the truss in Fig. 4.14 using arrows to
indicate the action of the force in the member on the joint; then all arrows are shown to
pull away from the adjacent joint.

The analysis, as we have seen, is based on a consideration of the equilibrium of each
pin or hinge under the action of all the forces at the joint. Thus for each pin or hinge
we can write down two equations of equilibrium. It follows that a solution can only be
obtained if there are no more than two unknown forces acting at the joint. In Fig. 4.14,
therefore, we can only begin the analysis at the joints A or D, since at each of the joints
B and C there are three unknown forces while at E there are four.

Consider joint A. The forces acting on the pin at A are shown in the free body diagram
in Fig. 4.15. Fap may be determined directly by resolving forces vertically.
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Fas
A 60°
Fae
Rp =2.75kN FIGURE 4.15 Equilibrium of forces at joint A
Hence
Fapsin60° +2.75 =0 i)
so that
Fap = —3.18kN

the negative sign indicating that AB is in compression as expected.
Referring again to Fig. 4.15 and resolving forces horizontally
Fag + Fapcos60° =0 (ii)
Substituting the negative value of Fap in Eq. (ii) we obtain
Fag —3.18cos60° =0
which gives
Fag = +1.59kN

the positive sign indicating that Fap is a tensile force.

We now inspect the truss to determine the next joint at which there are no more than
two unknown forces. At joint E there remain three unknowns since only Fga (=FAE)
has yet been determined. At joint B there are now two unknowns since Fga (=FAB)
has been determined; we can therefore proceed to joint B. The forces acting at B
are shown in Fig. 4.16. Since Fpa is now known we can resolve forces vertically and
therefore obtain Fg directly. Thus

Fgg cos30° 4+ Fga cos30°+2 =0 (iii)
Substituting the negative value of Fga in Eq. (iii) gives
Fgg = +0.87kN

which is positive and therefore tensile.
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2kN

Fea Fae FIGURE 4.16 Equilibrium of forces at joint B

Resolving forces horizontally at the joint B we have
Fgc + Fgg cos 60° — Fga cos60° = 0 (iv)
Substituting the positive value of Fgg and the negative value of Fpa in Eq. (iv) gives
Fpc = —2.03kN

the negative sign indicating that the member BC is in compression.

We have now calculated four of the seven unknown member forces. There are in
fact just two unknown forces at each of the remaining joints C, D and E so that,
theoretically, it is immaterial which joint we consider next. From a solution viewpoint
there are three forces at D, four at C and five at E so that the arithmetic will be
slightly simpler if we next consider D to obtain Fpc and Fpg and then C to obtain
Fcg. At C, Fcg could be determined by resolving forces in the direction CE rather
than horizontally or vertically. Carrying out this procedure gives

Fpc = —3.75kN (compression)
Fpg = +1.88 kN (tension)
Fce = +0.29kN (tension)

The reader should verify these values using the method suggested above.

It may be noted that in this example we could write down 10 equations of equilibrium,
two for each of the five joints, and yet there are only seven unknown member forces.
The apparently extra three equations result from the use of overall equilibrium to
calculate the support reactions. An alternative approach would therefore be to write
down the 10 equilibrium equations which would include the three unknown support
reactions (there would be a horizontal reaction at A if horizontal as well as vertical loads
were applied) and solve the resulting 10 equations simultaneously. Overall equilibrium
could then be examined to check the accuracy of the solution. Generally, however, the
method adopted above produces a quicker solution.
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4.7 METHOD OF SECTIONS

FIGURE 4.17
Calculation of
member forces
using the method
of sections

FIGURE 4.18
Equilibrium of a
portion of a truss

It will be appreciated from Section 4.5 that in many trusses the maximum member
forces, particularly in horizontal members, will occur in the central region where
the applied bending moment would possibly have its maximum value. It will also be
appreciated from Ex. 4.2 that the calculation of member forces in the central region of
a multibay truss such as the Pratt truss shown in Fig. 4.1(a) would be extremely tedious
since the calculation must begin at an outside support and then proceed inwards joint
by joint. This approach may be circumvented by using the method of sections.

The method is based on the premise that if a structure is in equilibrium, any portion
or component of the structure will also be in equilibrium under the action of any
external forces and the internal forces acting between the portion or component and
the remainder of the structure. We shall illustrate the method by the following example.

EXAMPLE 4.3  Calculate the forces in the members CD, CF and EF in the Pratt
truss shown in Fig. 4.17.

m
2kN c 1\ b G
R A
i A im
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Ran = 2kN E| | F \n H
Ve
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Rav =4.5kN [< »| Rg = 5.5kN

Initially the support reactions are calculated and are readily shown to be
Rav =45kN Ran=2kN Rp=55kN

We now ‘cut’ the members CD, CF and EF by a section mm, thereby dividing the truss
into two separate parts. Consider the left-hand part shown in Fig. 4.18 (equally we
could consider the right-hand part). Clearly, if we actually cut the members CD, CF
and EF, both the left- and right-hand parts would collapse. However, the equilibrium
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of the left-hand part, say, could be maintained by applying the forces Fcp, Fcr and Fgp
to the cut ends of the members. Therefore, in Fig. 4.18, the left-hand part of the truss
is in equilibrium under the action of the externally applied loads, the support reactions
and the forces Fcp, Fcr and Fgr which are, as in the method of joints, initially assumed
to be tensile; Eq. (2.10) are then used to calculate the three unknown forces.

Resolving vertically gives
Fcrcosd45°+4—-45=0 (i)

so that
Fcp =+4+0.71kN

and is tensile.

Now taking moments about the point of intersection of Fcr and Fgr we have

Fepx1+42x1+445x4—4x1=0 (ii)

so that
Fcp = —16kN

and is compressive.

Finally FgF is obtained by taking moments about C, thereby eliminating Fcr and
Fcp from the equation. Alternatively, we could resolve forces horizontally since Fcr
and Fcp are now known; however, this approach would involve a slightly lengthier
calculation. Hence

Fppx1—-45x3-2x1=0 (iii)

which gives
Fgr = +15.5kN

the positive sign indicating tension.

Note that Egs (i), (ii) and (iii) each include just one of the unknown member forces so
that it is immaterial which is calculated first. In some problems, however, a preliminary
examination is worthwhile to determine the optimum order of solution.

In Ex. 4.3 we see that there are just three possible equations of equilibrium so that we
cannot solve for more than three unknown forces. It follows that a section such as mm
which must divide the frame into two separate parts must also not cut through more than
three members in which the forces are unknown. For example, if we wished to determine
the forces in CD, DE, FG and FH we would first calculate Fcp using the section mm
as above and then determine Fpr, Frg and Fry using the section nn. Actually, in this
particular example Fpr may be seen to be zero by inspection (see Section 4.5) but the
principle holds.
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— X FIGURE 4.19 Method of tension coefficients

4.8 METHOD OF TENSION COEFFICIENTS

An alternative form of the method of joints which is particularly useful in the analysis
of space trusses is the method of tension coefficients.

Consider the member AB, shown in Fig. 4.19, which connects two pinned joints A and B
whose coordinates, referred to arbitrary xy axes, are (xa,ya) and (xg,yB) respectively;
the member carries a fensile force, Tag, is of length L o and is inclined at an angle «
to the x axis. The component of Tap parallel to the x axis at A is given by

B(XB —xA) _ Tas

TAB cosa = TA XB — XA
Las Las ( )

Similarly the component of Tap at A parallel to the y axis is
. T
Tapsino = _AB (vB —yA)
Lag

We now define a tension coefficient tap = Tap/Lap so that the above components of
Tap become

parallel to the x axis: tAB(XB — xa) (4.3)

parallel to the y axis: fAB(YB — yA) (4.4)

Equilibrium equations may be written down for each joint in turn in terms of tension
coefficients and joint coordinates referred to some convenient axis system. The solu-
tion of these equations gives faB, etc, whence Tap = AL ap in which L o, unless given,

may be calculated using Pythagoras’ theorem, i.e. Lagp =+/(xg —XA)? + (yB —ya)>.
Again the initial assumption of tension in a member results in negative values
corresponding to compression. Note the order of suffixes in Eqs (4.3) and (4.4).

EXAmMPLE 4.4 Determine the forces in the members of the pin-jointed truss shown
in Fig. 4.20.

The support reactions are first calculated and are as shown in Fig. 4.20.
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coefficients (Ex. 4.4)

The next step is to choose an xy axis system and then insert the joint coordinates in
the diagram. In Fig. 4.20 we shall choose the support point A as the origin of axes
although, in fact, any joint would suffice; the joint coordinates are then as shown.

Again, as in the method of joints, the solution can only begin at a joint where there are
no more than two unknown member forces, in this case joints A and E. Theoretically
it is immaterial at which of these joints the analysis begins but since A is the origin
of axes we shall start at A. Note that it is unnecessary to insert arrows to indicate the
directions of the member forces since the members are assumed to be in tension and the
directions of the components of the member forces are automatically specified when
written in terms of tension coefficients and joint coordinates (Eqs (4.3) and (4.4)).

The equations of equilibrium at joint A are
x direction: fAB(xB — xA) + tac(xc —xA) —Rau =0 (1)
y direction: tAB(YB —ya) + tac(yc —ya) + Rav =0 (ii)

Substituting the values of Ra 11, Ra,v and the joint coordinates in Eqgs (i) and (ii) we
obtain, from Eq. (i),

taB(0 — 0) +tAoc(1.5-0) -3 =0
whence
tac =+2.0
and from Eq. (ii)
tAB(1.5 —0) +tac(0-0)+1=0
so that

tag = —0.67
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We see from the derivation of Eqs (4.3) and (4.4) that the units of a tension coefficient
are force/unit length, in this case kN/m. Generally, however, we shall omit the units.

We can now proceed to joint B at which, since tga (=taB) has been calculated, there
are two unknowns

x direction: tBA(xA —xB) + th(XC —xB) + tBD(xD —xB) +3=0 (iii)
y direction: 1ga(ya —yB) + tBc(yc —yB) + tBD(YD —¥B) = 0 (iv)
Substituting the values of the joint coordinates and tga in Egs (iii) and (iv) we have,
from Eq. (iii)
—0.67(0 — 0) + tc(1.5 — 0) + tgp(1.5 - 0) +3 =0
which simplifies to
1.5tgc +1.5tgp +3 =0 )
and from Eq. (iv)
—0.67(0 — 1.5) 4+ tpc(0 — 1.5) + tpp(1.5 - 1.5) = 0
whence
tgc = +0.67
Hence, from Eq. (v)
tgp = —2.67
There are now just two unknown member forces at joint D. Hence, at D
x direction: tDB(xB —xD) + tDp(xF —xD) + tDc(xC —xD) =0 (Vi)
y direction: tDB(yB —yD) + tDF(YF —yD) + tpc(yc —yD) —5=0 (Vii)

Substituting values of joint coordinates and the previously calculated value of
tpB (=tBp) in Eqs (vi) and (vii) we obtain, from Eq. (vi)

—2.67(0 — 1.5) + tpr(3.0 — 1.5) + tpc(1.5 - 1.5) =0
so that
tpF = —2.67
and from Eq. (vii)
—2.67(1.5-1.5) +tpr(1.5 - 1.5) + tpc(0 - 1.5) = 5=0

from which

tpc = —3.33
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The solution then proceeds to joint C to obtain ¢cr and ¢cg or to joint F to determine
trc and fpg; joint F would be preferable since fewer members meet at F than at C.
Finally, the remaining unknown tension coefficient (tgc or tgF) is found by considering
the equilibrium of joint E. Then

tpc = +2.67, tpg = —2.67, tgc =0
which the reader should verify.

The forces in the truss members are now calculated by multiplying the tension
coefficients by the member lengths, i.e.

Tas = taBLaB = —0.67 x 1.5 = —1.0kN (compression)
Tac = tacLac = +2.0 x 1.5 = +3.0kN (tension)

Tsc =tecLBC

in which

Lpc = /8 —xc)? + 08 —yc)> = /(0 — L5 + (15— 0)2 = 2.12m
Then
Tec = +0.67 x 2.12 = +1.42 kN (tension)

Note that in the calculation of member lengths it is immaterial in which order the joint
coordinates occur in the brackets since the brackets are squared. Also

Tsp = tpLBDp = —2.67 x 1.5 = —4.0kN (compression)
Similarly
Tpr = —4.0kN (compression)
Tpc = —5.0kN (compression)
Trc = +5.67kN (tension)
Trg = —4.0kN (compression)
Tec =0

4.9 GRAPHICAL METHOD OF SOLUTION

In some instances, particularly when a rapid solution is required, the member forces
in a truss may be found using a graphical method.

The method is based upon the condition that each joint in a truss is in equilibrium so
that the forces acting at a joint may be represented in magnitude and direction by the
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sides of a closed polygon (see Section 2.1). The directions of the forces must be drawn
in the same directions as the corresponding members and there must be no more
than two unknown forces at a particular joint otherwise a polygon of forces cannot be
constructed. The method will be illustrated by applying it to the truss in Ex. 4.2.

EXAMPLE 4.5 Determine the forces in the members of the Warren truss shown in
Fig. 4.21; all members are 1 m long.

2kN 3kN

FIGURE 4.21  Analysis of a truss by a
2.75kN 3.25kN graphical method

It is convenient in this approach to designate forces in members in terms of the areas
between them rather than referring to the joints at their ends. Thus, in Fig. 4.21, we
number the areas between all forces, both internal and external; the reason for this
will become clear when the force diagram for the complete structure is constructed.

The support reactions were calculated in Ex. 4.2 and are shown in Fig. 4.21. We must
start at a joint where there are no more than two unknown forces, in this example either
A or D; here we select A. The force polygon for joint A is constructed by going round
A in, say, a clockwise sense. We must then go round every joint in the same sense.

First we draw a vector 12 to represent the support reaction at A of 2.75kN to a
convenient scale (see Fig. 4.22). Note that we are moving clockwise from the region
1 to the region 2 so that the vector 12 is vertically upwards, the direction of the
reaction at A (if we had decided to move round A in an anticlockwise sense the vector
would be drawn as 21 vertically upwards). The force in the member AB at A will be
represented by a vector 26 in the direction AB or BA, depending on whether it is tensile
or compressive, while the force in the member AE at A is represented by the vector 61
in the direction AE or EA depending, again, on whether it is tensile or compressive.
The point 6 in the force polygon is therefore located by drawing a line through the
point 2 parallel to the member AB to intersect, at 6, a line drawn through the point 1
parallel to the member AE. We see from the force polygon that the direction of the
vector 26 is towards A so that the member AB is in compression while the direction
of the vector 61 is away from A indicating that the member AE is in tension. We now
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4 FIGURE 4.22  Force polygon for the truss of Ex. 4.5

insert arrows on the members AB and AE in Fig. 4.21 to indicate compression and
tension, respectively.

We next consider joint Bwhere there are now just two unknown member forces since we
have previously determined the force in the member AB; note that, moving clockwise
round B, this force is represented by the vector 62, which means that it is acting towards
B as it must since we have already established that AB is in compression. Rather than
construct a separate force polygon for the joint B we shall superimpose the force
polygon on that constructed for joint A since the vector 26 (or 62) is common to both;
we thereby avoid repetition. Thus, through the point 2, we draw a vector 23 vertically
downwards to represent the 2kN load to the same scale as before. The force in the
member BC is represented by the vector 37 parallel to BC (or CB) while the force in
the member BE is represented by the vector 76 drawn in the direction of BE (or EB);
this locates the point 7 in the force polygon. Hence we see that the force in BC (vector
37) acts towards B indicating compression, while the force in BE (vector 76) acts away
from B indicating tension; again, arrows are inserted in Fig. 4.21 to show the action of
the forces.

Now we consider joint C where the unknown member forces are in CD and CE. The
force in the member CB at C is represented in magnitude and direction by the vector
73 in the force polygon. From the point 3 we draw a vector 34 vertically downwards to
represent the 3kN load. The vectors 48 and 87 are then drawn parallel to the members
CD and CE and represent the forces in the members CD and CE, respectively. Thus
we see that the force in CD (vector 48) acts towards C, i.e. CD is in compression,
while the force in CE (vector 87) acts away from C indicating tension; again we insert
corresponding arrows on the members in Fig. 4.21.

Finally the vector 45 is drawn vertically upwards to represent the vertical reaction
(=3.25kN) at D and the vector 58, which must be parallel to the member DE, inserted
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(since the points 5 and 8 are already located in the force polygon this is a useful check
on the accuracy of construction). From the direction of the vector 58 we deduce that
the member DE is in tension.

Note that in the force polygon the vectors may be read in both directions. Thus the
vector 26 represents the force in the member AB acting at A, while the vector 62
represents the force in AB acting at B. It should also be clear why there must be con-
sistency in the sense in which we move round each joint; e.g. the vector 26 represents
the direction of the force at A in the member AB when we move in a clockwise sense
round A. However, if we then move in an anticlockwise sense round the joint B the
vector 26 would represent the magnitude and direction of the force in AB at B and
would indicate that AB is in tension, but clearly it is not.

4.10 ComroUND TRUSSES

In some situations simple trusses are connected together to form a compound truss,
in which case it is generally not possible to calculate the forces in all the members by
the method of joints even though the truss is statically determinate.

Figure 4.23 shows a compound truss comprising two simple trusses AGC and BJC
connected at the apex C and by the linking bar GJ; all the joints are pinned and
we shall suppose that the truss carries loads at all its joints. We note that the truss
has 27 members and 15 joints so that Eq. (4.1) is satisfied and the truss is statically
determinate. This truss is, in fact, a Fink truss (see Fig. 4.1(c)).

Initially we would calculate the support reactions at A and B and commence a method
of joints solution at the joint A (or at the joint B) where there are no more than two
unknown member forces. Thus the magnitudes of Fap and Fag would be obtained.
Then, by considering the equilibrium of joint D, we would calculate Fpg and Fpp and
then Fgr and Fgg by considering the equilibrium of joint E. At this stage, however,
the analysis can proceed no further, since at each of the next joints to be considered, F
and G, there are three unknown member forces: Frg, Frr and Fry at F, and Fgp, Far
and Fgj at G. An identical situation would have arisen if the analysis had commenced
in the right-hand half of the truss at B. This difficulty is overcome by taking a section
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mm to cut the three members HC, IC and GJ and using the method of sections to
calculate the corresponding member forces. Having obtained Fgy we can consider
the equilibrium of joint G to calculate Fgr and Fgr. Hence Frr and Frg follow by
considering the equilibrium of joint F; the remaining unknown member forces follow.
Note that obtaining Fgj by taking the section mm allows all the member forces in the
right-hand half of the truss to be found by the method of joints.

The method of sections could be used to solve for all the member forces. First we
could obtain Fyc, Fic and Fgj by taking the section mm and then Fry, Fr1 and Fgy by
taking the section nn where Fgjy is known, and so on.

4.11 Speack TRUSSES

The most convenient method of analysing statically determinate stable space trusses
(see Eq. (4.2))is that of tension coefficients. In the case of space trusses, however, there
are three possible equations of equilibrium for each joint (Eq. (2.11)); the moment
equations (Eq. (2.12)) are automatically satisfied since, as in the case of plane trusses,
the lines of action of all the forces in the members meeting at a joint pass through
the joint and the pin cannot transmit moments. Therefore the analysis must begin at
a joint where there are no more than three unknown forces.

The calculation of the reactions at supports in space frames can be complex. If a space
frame has a statically determinate support system, a maximum of six reaction com-
ponents can exist since there are a maximum of six equations of overall equilibrium
(Egs (2.11) and (2.12)). However, for the truss to be stable the reactions must be ori-
entated in such a way that they can resist the components of the forces and moments
about each of the three coordinate axes. Fortunately, in many problems, it is unnec-
essary to calculate support reactions since there is usually one joint at which there are
no more than three unknown member forces.

EXAMPLE 4.6  Calculate the forces in the members of the space truss whose
elevations and plan are shown in Fig. 4.24.

In this particular problem the exact nature of the support points is not specified so that
the support reactions cannot be calculated. However, we note that at joint F there are
just three unknown member forces so that the analysis may begin at F.

The first step is to choose an axis system and an origin of axes. Any system may be
chosen so long as care is taken to ensure that there is agreement between the axis
directions in each of the three views. Also, any point may be chosen as the origin of
axes and need not necessarily coincide with a joint. In this problem it would appear
logical to choose F, since the analysis will begin at F. Furthermore, it will be helpful to
sketch the axis directions on each of the three views as shown and to insert the joint
coordinates on the plan view (Fig. 4.24(c)).
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Ex. 4.6 (0
Atjoint F
x direction: tpp(xp — xF) + fre(xg — xp) + frE(xg —xF) —40 =0 @)
y direction: tFD(yD —yF) =+ tFB(yB —yF) + tFE(yE —yF) =0 (ii)
z direction: tFD(ZD — ZF) + tFB(ZB — ZF) + IFE(ZE - ZF) =0 (iii)

Substituting the values of the joint coordinates in Eqs (i), (ii) and (iii) in turn we obtain,
from Eq. (i)

tFD(Z — 0) + t]:B(—Z — 0) + tFE(O — 0) —40=0
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whence
trp —trg —20=0 (iv)
from Eq. (ii)
trp(—2 —0) +tr(—2 —0) + trp(0—0) =0
which gives
tgp +trg =0 v)
and from Eq. (iii)

tFD(Z —-0)+ ZFB(Z — 0) +tre(—2 — 0) =0

so that

tfp + 1B —trg =0 (vi)

From Eqgs (v) and (vi) we see by inspection that

tre =0
Now adding Eqgs (iv) and (v)
2tkp —20=0
whence
trp = 10
Therefore, from Eq. (v)
trg = —10

We now proceed to joint E where, since fgr =fFg, there are just three unknown
member forces

x direction: tgg(xg — XE) + tEc(X*Cc —XE) + tEA(*A —XE) + tEF(XF —xg) =0

(vii)
y direction: tgg(yB — yE) + tec(yc —YE) + tEA(YA —YE) +tEF(YF —YE) — 60 =0
(viii)
z direction: fEB(ZB — ZE) + tEC(ZC - ZE) + tEA(ZA — ZE) + tEF(ZF — ZE) =0
(ix)

Substituting the values of the coordinates and tgr (=0) in Eqs (vii)—(ix) in turn gives,
from Eq. (vii)

tEB(—2 —0) +tgc(2—-0) +tga(—2-0) =0
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so that
1EB — fEC +1EA =0
from Eq. (viii)
teB(—2 — 0) +tgc(—2 —0) + tga(—2—-0) - 60 =0
whence
tgB +tec +tEa +30=0
and from Eq. (ix)
teB(2 +2) + tec(—4+2) +tpa(—4+2) =0
which gives
teg — 0.5tgc — 0.5tgA =0
Subtracting Eq. (xi) from Eq. (x) we have
—2tgc —30=0
so that
tgc = —15
Now subtracting Eq. (xii) from Eq. (xi) (or Eq. (x)) yields
1.5tgc + 1.5tga +30 =0
which gives
tEa = =5
Finally, from any of Eqs (x)—(xii),

tgeg = —10
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x)

(xi)

(xii)

The length of each of the members is now calculated, except that of EF which is given

(=2 m). Using Pythagoras’ theorem

Lpg = \/(XB —xp)? + (B —yF)? + (zB — 2F)?

whence

Lip = /(-2=0)> + (~2 - 07 + (2 — 0)> = 3.46m
Similarly
LFD = LEC = LEA =3.46m LEB =4.90m
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The forces in the members then follow
Tre = trBLFB = —10 x 3.46 kN = —34.6 kN (compression)
Similarly
Trp = +34.6kN (tension)
Tre =0
Tec = —51.9kN (compression)
Tea = —17.3kN (compression)
Tep = —49.0kN (compression)

The solution of Eqs (iv)—(vi) and (x)—(xii) in Ex. 4.6 was relatively straightforward in
that many of the coefficients of the tension coefficients could be reduced to unity. This
is not always the case, so that it is possible that the solution of three simultaneous
equations must be carried out. In this situation an elimination method, described in
standard mathematical texts, may be used.

4.12 A COMPUTER-BASED APPROACH

The calculation of the member forces in trusses generally involves, as we have seen, in
the solution of a number of simultaneous equations; clearly, the greater the number
of members the greater the number of equations. For a truss with N members and R
reactions N + R equations are required for a solution provided that the truss and the
support systems are both statically determinate. However, in some cases such as in
Ex. 4.6, it is possible to solve for member forces without first calculating the support
reactions. This still could mean that there would be a large number of equations to
solve so that a more mechanical approach, such as the use of a computer, would be
time and labour saving. For this we need to express the equations in matrix form.

At the joint F in Ex. 4.6 suppose that, instead of the 40 kN load, there are external
loads X, Yr and Zf applied in the positive directions of the respective axes. Eqs (i),
(ii) and (iii) are then written as

tFD(XD — XF) + tFB(XB — XF) + fFE(E —XF) + XF =0

tro(yD —YF) +trB(YB — YF) + tFE(VE — YF) + YF =0

t¥p(zD — zF) + trB(zB — 2F) + tFE(ZE — 2F) + ZF = 0
In matrix form these become

Xp —XF XB—XF XE —XF | | FD —XF

YD—YF YB—YF YE—YF||trB | =|-YF
ZD —ZF ZB—ZF ZE —2ZF | |IFE —ZF
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or
[Clle] = [F]

where [C] is the coordinate matrix, [¢] the tension coefficient matrix and [F] the force
matrix. Then

[1] = [C]7'[F]

Computer programs exist which will carry out the inversion of [C] so that the tension
coefficients are easily obtained.

Inthe above the matrix equation only represents the equilibrium of joint F. There are, in
fact, sixmembers in the truss so that a total of six equations are required. The additional
equations are Eqs (vii), (viii) and (ix) in Ex. 4.6. Therefore, to obtain a complete
solution, these equations would be incorporated giving a 6 x 6 square matrix for [C].

In practice plane and space frame programs exist which, after the relevant data have
been input, give the member forces directly. It is, however, important that the funda-
mentals on which these programs are based are understood. We shall return to matrix
methods later.

PROBLEMS

P4.1 Determine the forces in the members of the truss shown in Fig. P4.1 using the
method of joints and check the forces in the members JK, JD and DE by the method
of sections.

Ans. AG =+37.5, AB=—22.5, BG = —20.0, BC = —22.5, GC = —12.5, GH = +30.0,
HC =0, HJ = +30.0, CJ = +12.5,CD = —37.5,JD = —10.0, JK = +37.5, DK = +12.5,
DE = —45.0, EK = —70.0, FE = —45.0, FK = +75.0. All in kN.

G H J K

8m

L 5X6m

| i

P4.2 Calculate the forces in the members of the truss shown in Fig. P.4.2.

Ans. AC=—30.0, AP=+26.0, CP=-8.7, CE=-25.0, PE=+8.7, PF=+17.3,
FE=-173, GE=-20.0, HE=+8.7, FH=+173, GH=-8.7, JG=-15.0,
HJ = +26.0, FB =0, BJ = —15.0. All in kN.
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P4.3 Calculate the forces in the members EE, EG, EH and FH of the truss shown in
Fig. P4.3. Note that the horizontal load of 4 kN is applied at the joint C.

Ans. EF=-20.0, EG=-80.0, EH=—33.3, FH=+106.6. All in kN.

40 kN 40 kN

A «—— yC YE G B

7 /4 1.5m

Y
D F H
6X2m _

FiGUure P.4.3 [ '|

P.4.4 The roof truss shown in Fig. P4.4 is comprised entirely of equilateral triangles;
the wind loads of 6 kN at J and B act perpendicularly to the member JB. Calculate the
forces in the members DE, EE, EG and EK.

Ans. DF=+106.4, EF=+1.7, EG=—107.3, KE = —20.8. All in kN.
36 kN

K
36 kN 36 kN 36 kN 36 kN

6N
c E G J
6N
A
é; D F H §%B
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Ficure P.4.4
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P4.5 The upper chord joints of the bowstring truss shown in Fig. P.4.5 lie on a parabola
whose equation has the form y = kx? referred to axes whose origin coincides with the
uppermost joint. Calculate the forces in the members AD, BD and BC.

Ans. DA=-3.1, DB=-0.5, CB=+2.7. All in kN.

Y
A | b T,
e s
2kN 3kN 2kN
L 6 X3m J

I

P4.6 The trussshown in Fig. P4.6 is supported by a hinge at A and a cable at D which is
inclined at an angle of 45° to the horizontal members. Calculate the tension, 7, in the
cable and hence the forces in all the members by the method of tension coefficients.

Ans. T=13.6, BA=-89, CB=-92, DC=-4.6, ED=+7.1, EF=-5.0,
FG=-04,GH=-33, HA=-4.7, BH=43.4, GB=+4.1, FC=-6.5, CG = +4.6,
DF =+4.6. All in kN.

B C 45°\ D
7 A

A im
0.5m
Y

0.5m 1m im 1m

P4.7 Check your answers to problems P4.1 and P4.2 using a graphical method.

P4.8 Find the forces in the members of the space truss shown in Fig. P4.8; suggested
axes are also shown.

Ans. OA=+242,0B=+11.9, OC=—40.2. All in kN.
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N 8m

9m
Ficure P.4.8

P4.9 Use the method of tension coefficients to calculate the forces in the members of
the space truss shown in Fig. P4.9. Note that the loads P, and P3 act in a horizontal
plane and at angles of 45° to the vertical plane BAD.

Ans. AB=+13.1, AD =+13.1, AC=—-59.0. All in kN.
P, = 25kN P,

P, = 25kN Al P; = 25kN l
- AQ —»P, P;

) >

[e}vy)

(@Xe;

F1GURE P.4.9

P4.10 The pin-jointed truss shown in Fig. P.4.10 is attached to a vertical wall at the
points A, B, Cand D; the members BE, BE, EF and AF are in the same horizontal plane.
The truss supports vertically downward loads of 9 and 6 kN at E and E respectively,
and a horizontal load of 3kN at E in the direction EF.



FIGURE P.4.10

Ficure P.4.11
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Calculate the forces in the members of the truss using the method of tension
coefficients.

Ans. EF=-3.0, EC=-15.0, EB=+12.0, FB=+5.0, FA=+4.0, FD=-10.0.
All in kN.

D 6 kN

P4.11 Fig. P4.11 shows the plan of a space truss which consists of six pin-jointed
members. The member DE is horizontal and 4 m above the horizontal plane containing
A, B and C while the loads applied at D and E act in a horizontal plane. Calculate the
forces in the members.

Ans. AD=0, DC=0, DE =+40.0, AE=0, CE=-60.0, BE=+460.0. All in kN.
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Chapter D / Cables

Flexible cables have been used to form structural systems for many centuries. Some of
the earliest man-made structures of any size were hanging bridges constructed from
jungle vines and creepers, and spanning ravines and rivers. In European literature
the earliest description of an iron suspension bridge was published by Verantius in
1607, while ropes have been used in military bridging from at least 1600. In modern
times, cables formed by binding a large number of steel wires together are employed
in bridge construction where the bridge deck is suspended on hangers from the cables
themselves. The cables in turn pass over the tops of towers and are fixed to anchor
blocks embedded in the ground; in this manner large, clear spans are achieved. Cables
are also used in cable-stayed bridges, as part of roof support systems, for prestressing
in concrete beams and for guyed structures such as pylons and television masts.

Structurally, cables are extremely efficient because they make the most effective use
of structural material in that their loads are carried solely through tension. Therefore,
there is no tendency for buckling to occur either from bending or from compressive
axial loads (see Chapter 21). However, many of the structures mentioned above are
statically indeterminate to a high degree. In other situations, particularly in guyed
towers and cable-stayed bridges, the extension of the cables affects the internal force
system and the analysis becomes non-linear. Such considerations are outside the scope
of this book so that we shall concentrate on cables in which loads are suspended directly
from the cable.

Two categories of cable arise; the first is relatively lightweight and carries a limited
number of concentrated loads, while the second is heavier with a more uniform dis-
tribution of load. We shall also examine, in the case of suspension bridges, the effects
of different forms of cable support at the towers.

5.1 LicnTwriGHT CABLES CARRYING CONCENTRATED LOADS

In the analysis of this type of cable we shall assume that the self-weight of the cable is
negligible, that it can only carry tensile forces and that the extension of the cable does
not affect the geometry of the system. We shall illustrate the method by examples.
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ExampLE 5.1 The cable shown in Fig. 5.1 is pinned to supports at A and B and
carries a concentrated load of 10kN at a point C. Calculate the tension in each part
of the cable and the reactions at the supports.

Rayv Rev A
R B
S b~
-— —
Ban =
im

3m

N
3
L

Since the cable is weightless the lengths AC and CB are straight. The tensions 7'4c and
Tcp in the parts AC and CB, respectively, may be found by considering the equilibrium
of the forces acting at C where, from Fig. 5.1, we see that

a=tan"11/3=184° B =tan"'1/2 =26.6°

Resolving forces in a direction perpendicular to CB (thereby eliminating 7cg) we have,
since o + 8 =45°

Tca cos45° — 10c0s26.6° =0
from which
Tca = 12.6kN

Now resolving forces horizontally (or alternatively vertically or perpendicular to CA)
gives

Tcpc0s26.6° — Tca cos18.4° =0
so that
Tcg = 13.4kN

Since the bending moment in the cable is everywhere zero we can take moments about
B (or A) to find the vertical component of the reaction at A, Ra v (or Rgy) directly.
Then

RA,VXS—IOXZZO (1)
so that

Ravy = 4kN



116 e« Chapter 5 / Cables

FIGURE 5.2 Effect
on cable geometry
of load variation

Now resolving forces vertically for the complete cable
Rpv+Rav—10=0 (ii)
which gives
Rpyv = 6kN
From the horizontal equilibrium of the cable the horizontal components of the reac-

tions at A and B are equal, i.e. Ra y =Rpa. Thus, taking moments about C for the
forces to the left of C

RA,H x 1 _RA,V x3=0 (iii)
from which

Ran =12kN (=RpHn)

Note that the horizontal component of the reaction at A, Ra y, would be included in
the moment equation (Eq. (i)) if the support points A and B were on different levels.
In this case Eqs (i) and (iii) could be solved simultaneously for Ra v and Ra 1. Note
also that the tensions Tca and Tcp could be found from the components of the support
reactions since the resultant reaction at each support, Ra at A and Rp at B, must be
equal and opposite in direction to the tension in the cable otherwise the cable would
be subjected to shear forces, which we have assumed is not possible. Hence

as before.

In Ex. 5.1 the geometry of the loaded cable was specified. We shall now consider the
case of a cable carrying more than one load. In the cable in Fig. 5.2(a), the loads
W1 and W, at the points C and D produce a different deflected shape to the loads
W3 and W, at C and D in Fig. 5.2(b). The analysis is then affected by the change
in geometry as well as the change in loading, a different situation to that in beam

(a) (b)
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and truss analysis. The cable becomes, in effect, a mechanism and changes shape to
maintain its equilibrium; the analysis then becomes non-linear and therefore statically
indeterminate. However, if the geometry of the deflected cable is partially specified,
say the maximum deflection or sag is given, the system becomes statically determinate.

EXAMPLE 5.2  Calculate the tension in each of the parts AC, CD and DB of the
cable shown in Fig. 5.3.

1.5m J‘ 2m

There are different possible approaches to the solution of this problem. For exam-
ple, we could investigate the equilibrium of the forces acting at the point C and
resolve horizontally and vertically. We would then obtain two equations in which
the unknowns would be Tca,Tcp,o and B. From the geometry of the cable
a = tan1(0.5/1.5) = 18.4° so that there would be three unknowns remaining. A third
equation could be obtained by examining the moment equilibrium of the length AC of
the cable about A, where the moment is zero since the cable is flexible. The solution of
these three simultaneous equations would be rather tedious so that a simpler approach
is preferable.

In Ex. 5.1 we saw that the resultant reaction at the supports is equal and opposite to
the tension in the cable at the supports. Therefore, by determining Ra v and Ra g we
can obtain Tca directly. Hence, taking moments about B we have

RaAyvx53-10x38-6x18=0

from which

Rav = 9.2kN

Since the cable is perfectly flexible the internal moment at any point is zero. Therefore,
taking moments of forces to the left of C about C gives

Rap x05—Ray x15=0



118

Chapter 5 / Cables

so that
Ran =27.6kN

Alternatively we could have obtained Ra i by using the fact that the resultant reaction,
Ra, at Aiis in line with the cable at A, i.e. Ra v/Ran = tana = tan 18.4°, which gives
Ra H=27.6kN as before. Having obtained Ra v and Ra 1, Tca follows. Thus

Tca =Ra = JRiy +Riy = v27.62 +9.22
i.e.
Tca = 29.1kN

From a consideration of the vertical equilibrium of the forces acting at C we have
Tcpsin B+ Teasina — 10 = Tepsin B +29.1sin18.4° — 10 =0
which gives
Tcpsin B = 0.815 (i)

From the horizontal equilibrium of the forces at C

TcpcosB —Teacosa = Tepcos B —29.1cos18.4° =0

so that
Tcpcos B =27.612 (ii)
Dividing Eq. (i) by Eq. (ii) yields

tan 8 = 0.0295

from which
B =1.69°
Therefore from either of Eq. (i) or (ii)
Tcp = 27.6kN

We can obtain the tension in DB in a similar manner. Thus, from the vertical
equilibrium of the forces at D, we have

TDB siny — TDC Sil‘lﬂ —6= TDB siny —27.6s5in1.69° - 6=0

from which

Tppsiny = 6.815 (iif)
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From the horizontal equilibrium of the forces at D we see that
Tpgcosy —Tcgcos B =Tppcosy —27.6¢c0s1.69° =0
from which
Tpgcosy = 27.618 (iv)
Dividing Eq. (iii) by Eq. (iv) we obtain
tan y = 0.2468

so that
y = 13.86°

Tpp follows from either of Eq. (iii) or (iv) and is
Tpp = 28.4kN

Alternatively we could have calculated Tpg by determining Ry (=RaH)

and Rpv.
Then

Tpp = Rp = Ry +Ryy
and

y — tanfl <leB_’V)
RpH

This approach would, in fact, be a little shorter than the one given above. However, in
the case where the cable carries more than two loads, the above method must be used
at loading points adjacent to the support points.

5.2 HrAvyY CABLES

We shall now consider the more practical case of cables having a significant self-weight.

GOVERNING EQUATION FOR DEFLECTED SHAPE

The cable AB shown in Fig. 5.4(a) carries a distributed load w(x) per unit of its hori-
zontally projected length. An element of the cable, whose horizontal projection if dx,
is shown, together with the forces acting on it, in Fig. 5.4(b). Since dx is infinitesimally
small, the load intensity may be regarded as constant over the length of the element.
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FIGURE 5.4 Cable
subjected to a
distributed load

(a) (b)

Suppose that T is the tension in the cable at the point x and that 7 + 3T is the ten-
sion at the point x + 3x; the vertical and horizontal components of T are V' and H,
respectively. In the absence of any externally applied horizontal loads we see that

H = constant

and from the vertical equilibrium of the element we have

V4+3V —wx)x -V =0

so that, in the limit as & — 0

dv
From Fig. 5.4(b)

V—tan9—+dy
H T dx

where y is the vertical deflection of the cable at any point referred to the x axis.

Hence
dy
V =+H—
RRE
so that
dv d?y
— =+H—= 5.2

Substituting for dV//dx from Eq. (5.1) into Eq. (5.2) we obtain the governing equation

for the deflected shape of the cable. Thus
d?y
H@ = +w(x) (5.3)

We are now in a position to investigate cables subjected to different load applications.
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%

Ficure 5.5 LElemental length of cable under its own weight

CABLE UNDER ITS OWN WEIGHT

In this case let us suppose that the weight per actual unit length of the cable isw. Then,
by referring to Fig. 5.5, we see that the weight per unit of the horizontally projected
length of the cable, w(x), is given by

w(x)dx = wsds 54

Now, in the limit as 8s — 0, ds = (dx* + dy?)!/?

Whence, from Eq. (5.4)

a2 172
w(x) = ws[l + (ay) ] (5.5)
Substituting for w(x) from Eq. (5.5) in Eq. (5.3) gives
1/2
d? dy)?
Hé - +ws|:1 + (d—)yc) } (5.6)

Let dy/dx =p. Then Eq. (5.6) may be written

d
H$p = +wy(1+p?)'?
or, rearranging and integrating
dp Wy
/ TR IC 7 h 67

The term on the left-hand side of Eq. (5.7) is a standard integral. Thus
sinh™!p = —i—%x +C1
in which Cj is a constant of integration. Then
. Wg
p= smh(—i-ﬁx + C1)
Now substituting for p (=dy/dx) we obtain

il—dz = sinh(—i—%x + C1)
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which, when integrated, becomes
H Wy
y= +MTS cosh<+ﬁx+C1) +C (5.8)

in which C; is a second constant of integration.

The deflected shape defined by Eq. (5.8) is known as a catenary; the constants C; and
C; may be found using the boundary conditions of a particular problem.

EXAMPLE 5.3 Determine the equation of the deflected shape of the symmetrically
supported cable shown in Fig. 5.6, if its self-weight is wg per unit of its actual length.

1

A

Y x
w

shape of a
symmetrically

J FIGURE 5.6 Deflected
~l supported cable

e
The equation of its deflected shape is given by Eq. (5.8), i.e.
H Ws .
y= +;Scosh<+ﬁx+C1) +C (i)
Differentiating Eq. (i) with respect to x we have

dy ) W .
i smh(—i-ﬁx + Cl) (ii)

From symmetry, the slope of the cable at mid-span is zero, i.e. dy/dx =0whenx =L /2.
Thus, from Eq. (ii)

L
0= sinh(—i—%— + C1>

H?2
from which
ws L
“ ="z
Eq. (i) then becomes
H L
Y= cosh[—i—%(x— 5)} + G (iii)

The deflection of the cable at its supports is zero, i.e.y =0 whenx =0 andx = L. From
the first of these conditions

H ws L
0=+—cosh| ——— C
—i—WScos ( H2>+ 2



FIGURE 5.7 Cable
carrying a uniform
horizontally
distributed load
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so that

H L H L
C = o cosh (—%5> = e cosh(% 5) (note: cosh(—x) = cosh(x))

Eq. (iii) is then written as

y=+MHTS {Cosh[—i—%(x—%)} —cosh(%%)} (iv)

Equation (iv) gives the deflected shape of the cable in terms of its self-weight, its
length and the horizontal component, H, of the tension in the cable. In a particular
case where, say, ws, L and H are specified, the sag, D, of the cable is obtained directly
from Eq. (iv). Alternatively if, instead of H, the sag D is fixed, H is obtained from Eq.
(iv) which then becomes a transcendental equation which may be solved graphically.

Since H is constant the maximum tension in the cable will occur at the point where
the vertical component of the tension in the cable is greatest. In the above example
this will occur at the support points where the vertical component of the tension in the
cable is equal to half its total weight. For a cable having supports at different heights,
the maximum tension will occur at the highest support since the length of cable from
its lowest point to this support is greater than that on the opposite side of the lowest
point. Furthermore, the slope of the cable at the highest support is a maximum (see

Fig. 5.4(a)).

CABLE SUBJECTED TO A UNIFORM HORIZONTALLY
DISTRIBUTED LOAD

This loading condition is, as we shall see when we consider suspension bridges, more
representative of that in actual suspension structures than the previous case.

For the cable shown in Fig. 5.7, Eq. (5.3) becomes

d2
HE); = +w (5.9)

/W

Hiin cB) Hiin cay
L, L J
>

!: ol
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Integrating Eq. (5.9) with respect tox we have

d
Hay — 4w+ G (5.10)
again integrating
2
Hy = +w? +Cix+C (5.11)

The boundary conditions are y =0 at x =0 and y =/ at x = L. The first of these gives
C, =0 while from the second we have

LZ
H(+h) = +w—+CiL

so that
wL h
Ci=——+H—
=T L
Equations (5.10) and (5.11) then become, respectively
dy w wL h
and
W, wL  h
— 4+ (Z=_= 1
y ~|—2Hx <2H L)x (5.13)

Thus the cable in this case takes up a parabolic shape.

Equations (5.12) and (5.13) are expressed in terms of the horizontal component, H,
of the tension in the cable, the applied load and the cable geometry. If, however, the
maximum sag, D, of the cable is known, H may be eliminated as follows.

The position of maximum sag coincides with the point of zero slope. Thus from
Eq. (5.12)

0= —|—Wx wL . h
~ H 2H L
so that
L Hh .
X=o=-F =L (see Fig. 5.7)

Then the horizontal distance, L, from the lowest point of the cable to the support at
B is given by
Ly=L—-1L1= I: + %
2 wL
Now considering the moment equilibrium of the length CB of the cable about B we
have, from Fig. 5.7

L2
HD—W72=0
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so that

w(L Hh\*

HD——(=+—) =0 5.14

2 (2 + wL> (5.14)
Equation (5.14) is a quadratic equation in H and may be solved for a specific case
using the formula.
Alternatively, H may be determined by considering the moment equilibrium of the
lengths AC and CB about A and C, respectively. Thus, for AC

LZ

H(D —h) — w71 =0

which gives

wlL?
H=_—_"1_ 5.15
2(D —h) ( )
For CB
WL%
HD - —= =0
2
so that
wl.?
H=—2 5.16
D (5.16)
Equating Eqgs (5.15) and (5.16)
2(D —h) 2D
which gives
D—h
L= D Ly
But
Li+L,=L
therefore
D—-h
L ——+1(=L
2 |: D + }
from which
L
Ly, = (5.17)
( DBh + 1)
Then, from Eq. (5.16)
LZ
H= it (5.18)
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As in the case of the catenary the maximum tension will occur, since H = constant, at
the point where the vertical component of the tension is greatest. Thus, in the cable of
Fig. 5.7, the maximum tension occurs at B where, as L, > L1, the vertical component
of the tension (=wL,) is greatest. Hence

Tmax = ) (WL2)? + H? (5.19)

inwhich L, is obtained from Eq. (5.17) and H from one of Eqs (5.14), (5.16) or (5.18).

At B the slope of the cable is given by
L
o = tan~! (%) (5.20)

or, alternatively, from Eq. (5.12)
(dy) w wlL h wL h
z=L

g mtrTawm L

= 5.21
. (521)
For a cable in which the supports are on the same horizontal level, i.e. =0, Eqgs
(5.12), (5.13), (5.14) and (5.19) reduce, respectively, to

d w L
w
y = ﬁ(xz — Lx) (5.23)
wlL?
H= " 5.24
8D (5:24)
Tom = "5 1o (EY (5.25)
) 4D '

We observe from the above that the analysis of a cable under its own weight, that is a
catenary, yields a more complex solution than that in which the load is assumed to be
uniformly distributed horizontally. However, if the sag in the cable is small relative to
its length, this assumption gives results that differ only slightly from the more accurate
but more complex catenary approach. Therefore, in practice, the loading is generally
assumed to be uniformly distributed horizontally.

EXAMPLE 5.4 Determine the maximum tension and the maximum slope in the
cable shown in Fig. 5.8 if it carries a uniform horizontally distributed load of intensity
10 kN/m.

From Eq. (5.17)

2
L, = L =110.1m

18—6
(V5 +1)



FIGURE 5.8
Suspension cable
of Ex. 5.4
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18m

200m

Then, from Eq. (5.16)

10 x 11017

%18 3367.2kN

The maximum tension follows from Eq. (5.19), i.e.

Tmax = /(10 x 110.1)2 + 3367.22 = 3542.6 kN

Then, from Eq. (5.20)

10 x 110.1

B2 18.1° at B

max = tan

SUSPENSION BRIDGES

A typical arrangement for a suspension bridge is shown diagrammatically in Fig. 5.9.
The bridge deck is suspended by hangers from the cables which pass over the tops of
the towers and are secured by massive anchor blocks embedded in the ground. The
advantage of this form of bridge construction is its ability to provide large clear spans
so that sea-going ships, say, can pass unimpeded. Typical examples in the UK are the
suspension bridges over the rivers Humber and Severn, the Forth road bridge and the
Menai Straits bridge in which the suspension cables comprise chain links rather than
tightly bound wires. Suspension bridges are also used for much smaller spans such as
pedestrian footbridges and for light vehicular traffic over narrow rivers.

The major portion of the load carried by the cables in a suspension bridge is due to
the weight of the deck, its associated stiffening girder and the weight of the vehicles
crossing the bridge. By comparison, the self-weight of the cables is negligible. We may
assume therefore that the cables carry a uniform horizontally distributed load and
therefore take up a parabolic shape; the analysis described in the preceding section
then applies.
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FIGURE 5.9
Diagrammatic
representation of a
suspension bridge

Ficure 5.10
Idealization of
cable supports

Cable Anchor cable
Hanger

d Tower Bridge deck b
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Anchor block
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The cables, as can be seen from Fig. 5.9, are continuous over the tops of the towers. In
practice they slide in grooves in saddles located on the tops of the towers. For conve-
nience we shall idealize this method of support into two forms, the actual method lying
somewhere between the two. In Fig. 5.10(a) the cable passes over a frictionless pulley,
which means that the tension, T, in the anchor cable is equal to T¢, the tension at the
tower in the suspension cable. Generally the inclination, 8, of the anchor cable is fixed
and will not be equal to the inclination, «, of the suspension cable at the tower. There-
fore, there will be a resultant horizontal force, Ht, on the top of the tower given by

Ht =Tccosa — Ta cos B
or, since Th =T¢

Ht = Tc(cosa — cos B) (5.26)

Hr, in turn, produces a bending moment, M, in the tower which is a maximum at the
tower base. Hence

MT(max) = Htht = Tc(cosa — cos B)ht (5.27)

Also, the vertical compressive load, V1, on the tower is

Vr = Te(sina + sin B) (5.28)



FIGURE 5.11
Suspension bridge
of Ex. 5.5
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In the arrangement shown in Fig. 5.10(b) the cable passes over a saddle which is
supported on rollers on the top of the tower. The saddle therefore cannot resist a
horizontal force and adjusts its position until

TacosB =Tccosa (5.29)

For a given value of 8, Eq. (5.29) determines the necessary value of T'4. Clearly, since
there is no resultant horizontal force on the top of the tower, the bending moment
in the tower is everywhere zero. Finally, the vertical compressive load on the tower is
given by

Vr =Tcsina + Ta sin B (5.30)

EXAMPLE 5.5 The cable of a suspension bridge, shown in Fig. 5.11, runs over a
frictionless pulley on the top of each of the towers at A and B and is fixed to anchor
blocks at D and E. If the cable carries a uniform horizontally distributed load of
120 kN/m determine the diameter required if the permissible working stress on the
gross area of the cable, including voids, is 600 N/mm?. Also calculate the bending
moment and direct load at the base of a tower and the required weight of the anchor
blocks.

A B
A
30m/
C
o0 /i 120 kN/m — N

45 YV VY VYV VY VY VY VVVVY 45
T T T

|‘ 300 m ‘|

Wa ™ |

The tops of the towers are on the same horizontal level, so that the tension in the
cable at these points is the same and will be the maximum tension in the cable. The
maximum tension is found directly from Eq. (5.25) and is

Tmax =

120 x 300 1 ( 300

2
> m) = 48466.5kN

The maximum direct stress, omax, i given by

Tmax

Omax = W (see Section 7.1)

in which d is the cable diameter. Hence

48466.5 x 103

600 =
wd?/4
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which gives
d = 320.7 mm

The angle of inclination of the suspension cable to the horizontal at the top of the
tower is obtained using Eq. (5.20) in which L, =L /2. Hence

e (ML _ gt (120 300
*= 2H) ™ 2H

where H is given by Eq. (5.24). Thus

120 x 3007

H= = 45000 kN
8 x 30

so that

120 x 300

-1 )
= — | =21.
@ = tan <2x45000> 8

Therefore, from Eq. (5.27), the bending moment at the base of the tower is

Mt = 48466.5(cos 21.8° — cos45°) x 50

from which
Mt =536 000kN m
The direct load at the base of the tower is found using Eq. (5.28), i.e.

Vr = 48466.5(sin 21.8° + sin 45°)

which gives
Vr =52269.9kN

Finally the weight, W, of an anchor block must resist the vertical component of the
tension in the anchor cable. Thus

Wa = Ta cos45° = 48466.5 cos 45°

from which

Wa =34271.0kN.

PROBLEMS

P.5.1 Calculate the tension in each segment of the cable shown in Fig. P5.1 and also
the vertical distance of the points B and E below the support points A and F.

Ans. TAB = TFE =269 kN, TCB = TED =255 kN, TCD =25.0 kN, 1.0m.
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P.5.2 Calculate the sag at the point B in the cable shown in Fig. P5.2 and the tension
in each of its segments.

Ans. 0.81 m relative to A. Tap =4.9kN, Tgc =4.6kN, Tpc =4.7kN.

- I e
I > ' l

P.5.3 Calculate the sag, relative to A, of the points C and D in the cable shown in
Fig. P5.3. Determine also the tension in each of its segments.

Ans. C=42m,D=3.1m, Tap =10.98kN, Tpc =9.68kN, Tcp =9.43 kN.

P.5.4 A cable that carries a uniform horizontally distributed load of 10 kN/m is sus-
pended between two points that are at the same level and 80 m apart. Determine the
minimum sag that may be allowed at mid-span if the maximum tension in the cable is
limited to 1000 kN.

Ans. 8.73m.

P.5.5 Asuspension cable is suspended from two points 102 m apart and at the same hor-
izontal level. The self-weight of the cable can be considered to be equivalent to 36 N/m
of horizontal length. If the cable carries two concentrated loads each of 10kN at 34 m
and 68 m horizontally from the left-hand support and the maximum sag in the cable
is 3 m, determine the maximum tension in the cable and the vertical distance between
the concentrated loads and the supports.

Ans. 129.5kN, 2.96 m.
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P5.6 A cable of a suspension bridge has a span of 80m, a sag of 8m and carries a
uniform horizontally distributed load of 24 kN/m over the complete span. The cable
passes over frictionless pulleys at the top of each tower which are of the same height.
If the anchor cables are to be arranged such that there is no bending moment in the
towers, calculate the inclination of the anchor cables to the horizontal. Calculate also
the maximum tension in the cable and the vertical force on a tower.

Ans. 21.8°,2584.9kN, 1919.9kN.

P.5.7 A suspension cable passes over saddles supported by roller bearings on the top
of two towers 120 m apart and differing in height by 2.5 m. The maximum sag in the
cable is 10 m and each anchor cable is inclined at 55° to the horizontal. If the cable
carries a uniform horizontally distributed load of 25 kN/m and is to be made of steel
having an allowable tensile stress of 240 N/mm?, determine its minimum diameter.
Calculate also the vertical load on the tallest tower.

Ans. 218.7mm, 8990.9 kN.

P.5.8 A suspension cable has a sag of 40 m and is fixed to two towers of the same height
and 400 m apart; the effective cross-sectional area of the cable is 0.08 m?. However, due
to corrosion, the effective cross-sectional area of the central half of the cable is reduced
by 20%. If the stress in the cable is limited to 500 N/mm?, calculate the maximum
allowable distributed load the cable can support. Calculate also the inclination of the
cable to the horizontal at the top of the towers.

Ans. 62.8kN/m, 21.8°.

P5.9 A suspension bridge with two main cables has a span of 250 m and a sag of 25 m.
It carries a uniform horizontally distributed load of 25 kN/m and the allowable stress
in the cables is 800 N/mm?. If each anchor cable makes an angle of 45° with the towers,
calculate:

(a) the required cross-sectional area of the cables,

(b) the load in an anchor cable and the overturning force on a tower, when
(i) the cables run over a pulley device,
(ii) the cables are attached to a saddle resting on rollers.

Ans. (a) 5259 mm2, (b) (i) 4207.2kN, 931.3kN (ii) 5524.3kN, 0.

P5.10 A suspension cable passes over two towers 80 m apart and carries a load of
5 kN/m of span. If the top of the left-hand tower is 4 m below the top of the right-hand
tower and the maximum sag in the cable is 16 m, calculate the maximum tension in the
cables. Also, if the cable passes over saddles on rollers on the tops of the towers with
the anchor cable at 45° to the horizontal, calculate the vertical thrust on the right-hand
tower.

Ans. 358.3kN, 501.5kN.
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The Romans were the first to use arches as major structural elements, employing
them, mainly in semicircular form, in bridge and aqueduct construction and for roof
supports, particularly the barrel vault. Their choice of the semicircular shape was due
to the ease with which such an arch could be set out. Generally these arches, as we
shall see, carried mainly compressive loads and were therefore constructed from stone
blocks, or voussoirs, where the joints were either dry or used weak mortar.

During the Middle Ages, Gothic arches, distinguished by their pointed apex, were used
to a large extent in the construction of the great European cathedrals. The horizontal
thrust developed at the supports, or springings, and caused by the tendency of an arch
to ‘flatten’ under load was frequently resisted by flying buttresses. This type of arch was
also used extensively in the 19th century.

In the 18th century masonry arches were used to support bridges over the large number
of canals that were built in that period. Many of these bridges survive to the present
day and carry loads unimagined by their designers.

Today arches are usually made of steel or of reinforced or prestressed concrete and
can support both tensile as well as compressive loads. They are used to support bridge
decks and roofs and vary in span from a few metres in a roof support system to sev-
eral hundred metres in bridges. A fine example of a steel arch bridge is the Sydney
harbour bridge in which the deck is supported by hangers suspended from the arch
(see Fig. 1.6(a) and (b) for examples of bridge decks supported by arches).

Arches are constructed in a variety of forms. Their components may be straight or
curved, but generally fall into two categories. The first, which we shall consider in this
chapter, is the three-pinned arch which is statically determinate, whereas the second,
the two-pinned arch, is statically indeterminate and will be considered in Chapter 16.

Initially we shall examine the manner in which arches carry loads.

6.1 Tur LINEAR ARCH

There is a direct relationship between the action of a flexible cable in carrying loads and
the action of an arch. In Section 5.1 we determined the tensile forces in the segments
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FIGURE 6.1
Equivalence of cable
and arch structures

of lightweight cables carrying concentrated loads and saw that the geometry of a cable
changed under different loading systems; hence, for example, the two geometries of
the same cable in Fig. 5.2(a) and (b).

Letus suppose that the cable in Fig. 5.2(a) is made up of three bars or links AC, CD and
DB hinged together at C and D and pinned to the supports at A and B. If the loading
remains unchanged the deflected shape of the three-link structure will be identical to
that of the cable in Fig. 5.2(a) and is shown in Fig. 6.1(a). Furthermore the tension
in a link will be exactly the same as the tension in the corresponding segment of the
cable. Now suppose that the three-link structure of Fig. 6.1(a) is inverted as shown in
Fig. 6.1(b) and that the loads W1 and W, are applied as before. In this situation the
forces in the links will be identical in magnitude to those in Fig. 6.1(a) but will now be
compressive as opposed to tensile; the structure shown in Fig. 6.1(b) is patently an arch.

The same argument can be applied to any cable and loading system so that the internal
forces in an arch may be deduced by analysing a cable having exactly the same shape
and carrying identical loads, a fact first realized by Robert Hooke in the 17th century.
Asinthe example in Fig. 6.1 the internal forces in the arch will have the same magnitude
as the corresponding cable forces but will be compressive, not tensile.

It is obvious from the above that the internal forces in the arch act along the axes of
the different components and that the arch is therefore not subjected to internal shear
forces and bending moments; an arch in which the internal forces are purely axial is
called a linear arch. We also deduce, from Section 5.2, that the internal forces in an arch
whose shape is that of a parabola and which carries a uniform horizontally distributed
load are purely axial. Further, it will now have become clear why the internal members
of a bowstring truss (Section 4.1) carrying loads of equal magnitude along its upper
chord joints carry zero force.

However, there is a major difference between the behaviour of the two structures in
Fig. 6.1(a) and (b). A change in the values of the loads W and W, will merely result in
a change in the geometry of the structure in Fig. 6.1(a), whereas the slightest changes
in the values of W and W, in Fig. 6.1(b) will result in the collapse of the arch as a
mechanism. In this particular case collapse could be prevented by replacing the pinned

(a) (b)
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joint at C (or D) by a rigid joint as shown in Fig. 6.2. The forces in the members remain
unchanged since the geometry of the structure is unchanged, but the arch is now stable
and has become a three-pinned arch which, as we shall see, is statically determinate.

If now the pinned joint at D was replaced by a rigid joint, the forces in the mem-
bers would remain the same, but the arch has become a two-pinned arch. In this case,
because of the tension cable equivalence, the arch is statically determinate. It is impor-
tant to realize, however, that the above arguments only apply for the set of loads W
and W, which produce the particular shape of cable shown in Fig. 6.1(a). If the loads
were repositioned or changed in magnitude, the two-pinned arch would become stat-
ically indeterminate and would probably cease to be a linear arch so that bending
moments and shear forces would be induced. The three-pinned arch of Fig. 6.2 would
also become non-linear if the loads were repositioned or changed in magnitude.

In the above we have ignored the effect on the geometry of the arch caused by the
shortening of the members. The effect of this on the three-pinned arch is negligible
since the pins can accommodate the small changes in angle between the members
which this causes. This is not the case in a two-pinned arch or in an arch with no
pins at all (in effect a portal frame) so that bending moments and shear forces are
induced. However, so long as the loads (W and W, in this case) remain unchanged
in magnitude and position, the corresponding stresses are ‘secondary’ and will have
little effect on the axial forces.

The linear arch, in which the internal forces are purely axial, is important for the
structural designer since the linear arch shape gives the smallest stresses. If, how-
ever, the thrust line is not axial, bending stresses are induced and these can cause
tension on the inner or outer faces (the intrados and extrados) of the arch. In a
masonry arch in which the joints are either dry or made using a weak mortar, this
can lead to cracking and possible failure. Furthermore, if the thrust line lies out-
side the faces of the arch, instability leading to collapse can also occur. We shall
deduce in Section 9.2 that for no tension to be developed in a rectangular cross sec-
tion, the compressive force on the section must lie within the middle third of the
section.

In small-span arch bridges, these factors are not of great importance since the greatest
loads on the arch come from vehicular traffic. These loads vary with the size of the
vehicle and its position on the bridge, so that it is generally impossible for the designer
to achieve a linear arch. On the other hand, in large-span arch bridges, the self-weight

FIGURE 6.2 Linear three-pinned arch
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of the arch forms the major portion of the load the arch has to carry. In Section 5.2 we
saw that a cable under its own weight takes up the shape of a catenary. It follows that
the ideal shape for an arch of constant thickness is an inverted catenary. However, in
the analysis of the three-pinned arch we shall assume a general case in which shear
forces and bending moments, as well as axial forces, are present.

6.2 THE THREE-PINNED ARCH

FiGure 6.3
Three-pinned arch

A three-pinned arch would be used in situations where there is a possibility of support
displacement; this, in a two-pinned arch, would induce additional stresses. In the
analysis of a three-pinned arch the first step, generally, is to determine the support
reactions.

SUPPORT REACTIONS - SUPPORTS ON SAME HORIZONTAL
LEVEL

Consider the arch shown in Fig. 6.3. It carries an inclined concentrated load, W, at a
given point D, a horizontal distance a from the support point A. The equation of the
shape of the arch will generally be known so that the position of specified points on
the arch, say D, can be obtained. We shall suppose that the third pin is positioned at
the crown, C, of the arch, although this need not necessarily be the case; the height or
rise of the arch is &.

The supports at A and B are pinned but neither can be a roller support or the arch
would collapse. Therefore, in addition to the two vertical components of the reactions
at A and B, there will be horizontal components Ro g and Rgy. Thus, there are
four unknown components of reaction but only three equations of overall equilibrium
(Eq. (2.10)) so that an additional equation is required. This is obtained from the fact
that the third pin at C is unable to transmit bending moments although, obviously, it
is able to transmit shear forces.

Y
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FIGURE 6.4
Three-pinned arch
of Ex. 0.1
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Then, from the overall vertical equilibrium of the arch in Fig. 6.3, we have
Rav +Rpv —Wcosa =0 (6.1)
and from the horizontal equilibrium
Ran —Rpu — Wsina =0 (6.2)
Now taking moments about, say, B,
RavL —Wcosa(L —a) — W sinahp =0 (6.3)

The internal moment at C is zero so that we can take moments about C of forces to

the left or right of C. A slightly simpler expression results by considering forces to the
left of C, i.e.

L
Rav7 —Ranh =0 (6.4)

Equations (6.1)—(6.4) enable the four components of reaction to be found; the normal
force, shear force and bending moment at any point in the arch follow.

ExAmMPLE 6.1 Calculate the normal force, shear force and bending moment at the
point X in the semicircular arch shown in Fig. 6.4.

100kN

RA,V RB,V

In this example we can find either vertical component of reaction directly by taking
moments about one of the support points. Hence, taking moments about B, say,

Rav x 12 —60(6cos30° + 6) — 100(6sin 30° 4+ 6) =0

which gives

Ravy = 131.0kN
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Now resolving forces vertically
Rpv +Rav—60—-100=0
which, on substituting for Ra v, gives
Rpv =29.0kN
Since no horizontal loads are present, we see by inspection that
RAH =RBH

Finally, taking moments of forces to the right of C about C (this is a little simpler than
considering forces to the left of C) we have

Rpux6—Rpy x6=0
from which
R =29.0kN =Ran

The normal force at the point X is obtained by resolving the forces to one side of X
in a direction tangential to the arch at X. Thus, considering forces to the left of X and
taking tensile forces as positive

Nx = —Ra,v c0845° — Ra p sin 45° 4 60 cos 45°
so that
Nx = —70.7kN
and is compressive.

The shear force at X is found by resolving the forces to one side of X in a direction
perpendicular to the tangent at X. We shall take a positive shear force as acting radially
inwards when it is to the left of a section. So, considering forces to the left of X

Sx = —RaA,vsin45° + Ra p cos 45° + 60 sin 45°
which gives
Sx = —29.7kN

Now taking moments about X for forces to the left of X and regarding a positive
moment as causing tension on the underside of the arch, we have

Mx = Rav(6 — 6c0s45°) — Rap x 65in45° — 60 (6 cos 30° — 6 cos 45°)
from which
Mx = +50.0kNm

Note that in Ex. 6.1 the sign conventions adopted for normal force, shear force and
bending moment are the same as those specified in Chapter 3.
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SUPPORT REACTIONS - SUPPORTS ON DIFFERENT LEVELS

In the three-pinned arch shown in Fig. 6.5 the support at B is a known height, /g,
above A. Let us suppose that the equation of the shape of the arch is known so that
all dimensions may be calculated. Now, resolving forces vertically gives

Rav+Rpyv —Wcosa =0 (6.5)
and horizontally we have
Ran —Rpu — Wsina =0 (6.6)
Also, taking moments about B, say,
RAavL —Ranhg —Wcosa(L —a) — Wsina(hp —hg) =0 (6.7)

Note that, unlike the previous case, the horizontal component of the reaction at A is
included in the overall moment equation (Eq. (6.7)).

Finally we can take moments of all the forces to the left or right of C about C since
the internal moment at C is zero. In this case the overall moment equation (Eq. (6.7))
includes both components, Ra v and Ra y, of the support reaction at A. If we now
consider moments about C of forces to the left of C, we shall obtain a moment equation
in terms of Ra v and Ra . This equation, with Eq. (6.7), provides two simultaneous
equations which may be solved for Ro v and Ra p. Alternatively if, when we were
considering the overall moment equilibrium of the arch, we had taken moments about
A, Eq. (6.7) would have been expressed in terms of Rgv and Rg . Then we would
obtain the fourth equation by taking moments about C of the forces to the right of C
and the two simultaneous equations would be in terms of Rg v and Rg y. Theoretically
this approach is not necessary but it leads to a simpler solution. Referring to Fig. 6.5

Rave—Ranh =0 (6.8)
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FIGURE 6.6
Parabolic arch of

Ex. 6.2

The solution of Eqs (6.7) and (6.8) gives Ra v and Ra H, then Rp v and Rp i follow
from Eqs (6.5) and (6.6), respectively.

EXAMPLE 6.2 The parabolic arch shown in Fig. 6.6 carries a uniform horizontally
distributed load of intensity 10 kN/m over the portion AC of its span. Calculate the
values of the normal force, shear force and bending moment at the point D.

10 kN/m
Yy VYVYYY

7m

1 15m 10m

o i

Initially we must determine the equation of the arch so that the heights of B and D
may be calculated. The simplest approach is to choose the origin of axes at C so that
the equation of the parabola may be written in the form

y =kt i)

in which k is a constant. At A,y =7 m when x = —15m. Hence, from Eq. (i)

7 =k x (—15)°
whence
k =0.0311
and Eq. (i) becomes
y = 0.0311x> (i)
Then
yg = 0.0311 x (10)> =3.11m
Hence

hg=7-311=3.89m
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Also

yp = 0.0311 x (=7.5)> =1.75m

so that
hp=7—-175=525m
Taking moments about A for the overall equilibrium of the arch we have

RB,V x 25 +RB,H x3.8 —-10x15x75=0

which simplifies to
Ry +0.16Rgy —45.0=0 (iii)
Now taking moments about C for the forces to the right of C we obtain

RB,V x 10 _RB,H x3.11=0

which gives
Rpv —0311Rgg =0 (iv)
The simultaneous solution of Eqs (iii) and (iv) gives
Rpv =29.7kN Rpn =95.5kN
From the horizontal equilibrium of the arch we have
Ran =Rpu =955kN
and from the vertical equilibrium
Rav+Rpv—10x15=0
which gives

Ray = 120.3kN

To calculate the normal force and shear force at the point D we require the slope of
the arch at D. From Eq. (ii)

d
(_y> =2 % 0.0311 x (~7.5) = —0.4665 = — tan &
dx D

Hence

o =25.0°
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Now resolving forces to the left (or right) of D in a direction parallel to the tangent at
D we obtain the normal force at D. Hence

Np = —RA v sin25.0° — R g cos 25.0° 4+ 10 x 7.5sin 25.0°
which gives
Np = —105.7kN (compression)

The shear force at D is then
Sp = —RA,v €0825.0° + RA g sin 25.0° + 10 x 7.5 c0s 25.0°

so that
Sp = —0.7kN
Finally the bending moment at D is

7.5
MD =RA,V x 7.5 _RA,H x525-10x 7.5 x 7

from which

Mp = +119.6kNm

6.3 A THREE-PINNED PARABOLIC ARCH CARRYING A
UN1ForM HORIZONTALLY DISTRIBUTED LOAD

In Section 5.2 we saw that a flexible cable carrying a uniform horizontally distributed
load took up the shape of a parabola. It follows that a three-pinned parabolic arch
carrying the same loading would experience zero shear force and bending moment
at all sections. We shall now investigate the bending moment in the symmetrical
three-pinned arch shown in Fig. 6.7.

w
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FIGURE 6.7
Parabolic arch
carrying a uniform
horizontally -
distributed load |
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The vertical components of the support reactions are, from symmetry,

wL
Rav=Rpy=—
Also, in the absence of any horizontal loads
Ran=RpH

Now taking moments of forces to the left of C about C,

L wLL

Rayph—RaAv=+—-—=0
AH AV5 + 52
which gives
wL?
Rapg=——
AH=

With the origin of axes at A, the equation of the parabolic shape of the arch may be
shown to be

4h
y=;Ix —x%)
The bending moment at any point P(x,y) in the arch is given by

2
wx
Mp = Ravx — Rany — >

or, substituting for Ra v and Ra g and fory in terms of x,

wlL — wL? 4h wx2
Mp="n W 2y -
=g ) -5

Simplifying this expression

as expected.

The shear force may also be shown to be zero at all sections of the arch.

6.4 BENDING MOMENT DIAGRAM FOR A THREE-PINNED ARCH

Consider the arch shown in Fig. 6.8; we shall suppose that the equation of the arch
referred to the xy axes is known. The load W is applied at a given point D(xp,yp)
and the support reactions may be calculated by the methods previously described. The
bending moment, Mp;, at any point P;(x,y) between A and D is given by

Mpi = Ra,vx — Rany (6.9)
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FIGURE 6.8
Determination of
the bending moment
diagram for a
three-pinned arch

FIGURE 6.9
Bending moment
diagram for a
simply supported
beam (tension on
undersurface of
beam)
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and the bending moment, Mp3, at the point P, (x,y) between D and B is

Mpy = Ravx — W(x —xp) — Rany (6.10)
Now let us consider a simply supported beam AB having the same span as the arch and
carrying a load, W, at the same horizontal distance, xp, from the left-hand support
(Fig. 6.9(a)). The vertical reactions, R and Rp will have the same magnitude as the

vertical components of the support reactions in the arch. Thus the bending moment
at any point between A and D and a distance x from A is

MAD =RAx =RA,Vx (6.11)

Also the bending moment at any point between D and B a distance x from A is

Mpp = Rax — W(x —xp) = Rayvx — W(x —xp) (6.12)



FIGuRrE 6.10
Complete bending
moment diagram for
a three-pinned arch
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—ve ‘Arch’ bending moment

diagram

A A B

A B

‘Simply supported beam’ bending
moment diagram

Complete bending moment
diagram

T Actual bending
moment at a section

giving the bending moment diagram shown in Fig. 6.9(b). Comparing Eqs (6.11) and
(6.12) with Egs (6.9) and (6.10), respectively, we see that Eq. (6.9) may be written

Mp1 = MaD — Ra HY (6.13)
and Eq. (6.10) may be written
Mpz = Mpp — Rany (6.14)

Therefore, the complete bending moment diagram for the arch may be regarded as
the sum of a ‘simply supported beam’ bending moment diagram and an ‘arch’ bending
moment diagram in which the ‘arch’ diagram has the same shape as the arch itself,
since its ordinates are equal to a constant multiplied by y. The two bending moment
diagrams may be superimposed as shown in Fig. 6.10 to give the complete bending
moment diagram for the arch. Note that the curve of the arch forms the baseline of
the bending moment diagram and that the bending moment at the crown of the arch
where the third pin is located is zero.

In the above it was assumed that the mathematical equation of the curve of the arch
is known. However, in a situation where, say, only a scale drawing of the curve of
the arch is available, a semigraphical procedure may be adopted if the loads are ver-
tical. The ‘arch’ bending moment at the crown C of the arch is Ragh as shown in
Fig. 6.10. The magnitude of this bending moment may be calculated so that the scale
of the bending moment diagram is then fixed by the rise (at C) of the arch in the
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FIGURE 6.11 Bending moment
B diagram for a three-pinned arch
A carrying two loads

scale drawing. Also this bending moment is equal in magnitude but opposite in sign
to the ‘simply supported beam’ bending moment at this point. Other values of ‘simply
supported beam’ bending moment may be calculated at, say, load positions and plot-
ted on the complete bending moment diagram to the already determined scale. The
diagram is then completed, enabling values of bending moment to be scaled off as
required.

In the arch of Fig. 6.8 a simple construction may be used to produce the complete
bending moment diagram. In this case the arch shape is drawn as in Fig. 6.10 and this,
as we have seen, fixes the scale of the bending moment diagram. Then, since the final
bending moment at C is zero and is also zero at A and B, a line drawn from A through
C to meet the vertical through the point of application of the load at E represents the
‘simply supported beam’ bending moment diagram between A and D. The bending
moment diagram is then completed by drawing the line EB.

This construction is only possible when the arch carries a single load. In the case of an
arch carrying two or more loads as in Fig. 6.11, the ‘simply supported beam’ bending
moments must be calculated at D and F and their values plotted to the same scale
as the ‘arch’ bending moment diagram. Clearly the bending moment at C remains
ZEero.

We shall consider the statically indeterminate two-pinned arch in Chapter 16.

PROBLEMS

P.6.1 Determine the value of the bending moment in the loaded half of the semicircular
three-pinned arch shown in Fig. P.6.1 at a horizontal distance of 5 m from the left-hand
support.

Ans. 67.0kNm (sagging).
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20 kN/m

7 FIGURE P.6.1

P.6.2 Figure P.6.2 shows a three-pinned arch of radius 12m. Calculate the normal
force, shear force and bending moment at the point D.

Ans. 14.4kN (compression), 5.5kN, 21.6 kN m (hogging).

FIGURE P.6.2

P.6.3 The three-pinned arch shown in Fig. P.6.3 is parabolic in shape. If the arch carries
auniform horizontally distributed load of intensity 40 kN/m over the part CB, calculate
the bending moment at D.

Ans. 140.9 kN m (sagging).

FiGure P.6.3

P.6.4 In the three-pinned arch ACB shown in Fig. P.6.4 the portion AC has the shape
of a parabola with its origin at C, while CB is straight. The portion AC carries a
uniform horizontally distributed load of intensity 30 kN/m, while the portion CB carries
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a uniform horizontally distributed load of intensity 18 kN/m. Calculate the normal
force, shear force and bending moment at the point D.

Ans. 91.2kN (compression), 9.0 kN, 209.8 kN m (sagging).

30 kN/m 18 kN/m

EEEEEEEEEREEEEE
C

FIGURE P.6.4

P.6.5 Draw normal force, shear force and bending moment diagrams for the loaded
half of the three-pinned arch shown in Fig. P.6.5.

Ans. Npp =26.5kN, Npg =19.4kN, Ngr = Nrc = 15kN (all compression).
Sgp = 5.3kN, Spg = —1.8kN, Sgr = 2.5kN, Spc = —7.5kN.

Mp = 11.3kNm, Mg = 7.5kNm, Mr = 11.3kN m (sagging).

1.5m 1.5m 1.5m

l10kNl10kN
Co_F E  1okN

O
A

3m 3m 3m

FiGuRre P.6.5

P.6.6 Calculate the components of the support reactions at A and D in the three-
pinned arch shown in Fig. P.6.6 and hence draw the bending moment diagram for the
member DC; draw the diagram on the tension side of the member. All members are
1.5m long.
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Ans. Ray = 6.46kN, Ra g = 11.13kN, Rp,y = 21.46kN, Rp g = 3.87kN.

Mp = 0,Mc = 5.81 kN m (tension on left of CD).
% A 5kN
60°
B

10 kN
30°

<« 15kN

o dZ FIGURE P.6.6
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We are now in a position to calculate internal force distributions in a variety of struc-
tural systems, i.e. normal forces, shear forces and bending moments in beams and
arches, axial forces in truss members, the tensions in suspension cables and torque
distributions in beams. These internal force systems are distributed throughout the
cross section of a structural member in the form of stresses. However, although there
are four basic types of internal force, there are only two types of stress: one which acts
perpendicularly to the cross section of a member and one which acts tangentially. The
former is known as a direct stress, the latter as a shear stress.

The distribution of these stresses over the cross section of a structural member depends
upon the internal force system at the section and also upon the geometry of the cross
section. In some cases, as we shall see later, these distributions are complex, partic-
ularly those produced by the bending and shear of unsymmetrical sections. We can,
however, examine the nature of each of these stresses by considering simple loading
systems acting on structural members whose cross sections have some degree of sym-
metry. At the same time we shall define the corresponding strains and investigate the
relationships between the two.

7.1 DirecT STRESS IN TENSION AND COMPRESSION

The simplest form of direct stress system is that produced by an axial load. Suppose
that a structural member has a uniform ‘T’ cross section of area A and is subjected to
an axial tensile load, P, as shown in Fig. 7.1(a). At any section ‘mm’ the internal force
is a normal force which, from the arguments presented in Chapter 3, is equal to P
(Fig. 7.1(b)). It is clear that this normal force is not resisted at just one point on each
face of the section as Fig. 7.1(b) indicates but at every point as shown in Fig. 7.2. We
assume in fact that P is distributed uniformly over the complete face of the section so
that at any point in the cross section there is an intensity of force, i.e. stress, to which
we give the symbol o and which we define as

o=— (7.1)
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FIGURE 7.1 Structural
(b) member with axial load

Direct
stress

FIGURE 7.2 Internal force distribution in a beam
m section

This direct stress acts in the direction shown in Fig. 7.2 when P is tensile and in the
reverse direction when P is compressive. The sign convention for direct stress is iden-
tical to that for normal force; a tensile stress is therefore positive while a compressive
stress is negative. The S unit of stress is the pascal (Pa) where 1 Pa is 1 N/m?. However
this is a rather small quantity in many cases so generally we shall use mega-pascals
(MPa) where 1 MPa = 1 N/mm?.

In Fig. 7.1 the section mm is some distance from the point of application of the load.
At sections in the proximity of the applied load the distribution of direct stress will
depend upon the method of application of the load, and only in the case where the
applied load is distributed uniformly over the cross section will the direct stress be
uniform over sections in this region. In other cases stress concentrations arise which
require specialized analysis; this topic is covered in more advanced texts on strength
of materials and stress analysis.

We shall see in Chapter 8 that it is the level of stress that governs the behaviour of struc-
tural materials. For a given material, failure, or breakdown of the crystalline structure
of the material under load, occurs at a constant value of stress. For example, in the
case of steel subjected to simple tension failure begins at a stress of about 300 N/mm?,
although variations occur in steels manufactured to different specifications. This stress
is independent of size or shape and may therefore be used as the basis for the design
of structures fabricated from steel. Failure stress varies considerably from material to
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material and in some cases depends upon whether the material is subjected to tension
or compression.

A knowledge of the failure stress of a material is essential in structural design where,
generally, a designer wishes to determine a minimum size for a structural member
carrying a given load. For example, for a member fabricated from a given material and
subjected to axial load, we would use Eq. (7.1) either to determine a minimum area of
cross section for a given load or to check the stress level in a given member carrying a
given load.

EXAMPLE 7.1 A short column has a rectangular cross section with sides in the ratio
1:2 (Fig.7.3). Determine the minimum dimensions of the column section if the column
carries an axial load of 800 kN and the failure stress of the material of the column is
400 N/mm?.

800 kN

\?\ 2B

v
%% FiGure 7.3 Column of Ex. 7.1

From Eq. (7.1) the minimum area of the cross section is given by

Amin = J:ax = 800430103 = 2000 mm?
But
Amin = 2B* = 2000 mm?>
from which

B =31.6mm

Therefore the minimum dimensions of the column cross section are 31.6 mm x
63.2mm. In practice these dimensions would be rounded up to 32 mm x 64 mm or,
if the column were of some standard section, the next section having a cross-sectional
area greater than 2000 mm? would be chosen. Also the column would not be designed
to the limit of its failure stress but to a working or design stress which would incorporate
some safety factor (see Section 8.7).
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7.2 SHEAR STRESS IN SHEAR AND TORSION

FIGURE 7.4
Generation of shear
stresses in beam
sections

An externally applied shear load induces an internal shear force which is tangential
to the faces of a beam cross section. Figure 7.4(a) illustrates such a situation for a
cantilever beam carrying a shear load W at its free end. We have seen in Chapter 3
that the action of W is to cause sliding of one face of the cross section relative to the
other; W also induces internal bending moments which produce internal direct stress
systems; these are considered in a later chapter. The internal shear force S (=W)
required to maintain the vertical equilibrium of the portions of the beam is distributed
over each face of the cross section. Thus at any point in the cross section there is
a tangential intensity of force which is termed shear stress. This shear stress is not
distributed uniformly over the faces of the cross section as we shall see in Chapter 10.
For the moment, however, we shall define the average shear stress over the faces of
the cross section as

(7.2)

Tay =

w
A

where A is the cross-sectional area of the beam.

Note that the internal shear force S shown in Fig. 7.4(a) is, according to the sign con-
vention adopted in Chapter 3, positive. However, the applied load W would produce
an internal shear force in the opposite direction on the positive face of the section so
that § would actually be negative.

A system of shear stresses is induced in a different way in the circular-section bar shown
in Fig. 7.4(b) where the internal torque (7") tends to produce a relative rotational sliding
of the two faces of the cross section. The shear stresses are tangential to concentric
circular paths in the faces of the cross section. We shall examine the shear stress due
to torsion in various cross sections in Chapter 11.

S=W Internal stress

A.— | resultants
L /
Y W applied
| + |oad
i
Siis distributed '
over face of section
\]
S=w Applied ©~ T
torque
(a) Shear load (b) Torsional load
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7.3 COMPLEMENTARY SHEAR STRESS

FiGURE 7.5
Complementary
shear stress

Consider the cantilever beam shown in Fig. 7.5(a). Let us suppose that the beam is
of rectangular cross section having a depth / and unit thickness; it carries a vertical
shear load W at its free end. The internal shear forces on the opposite faces mm and
nn of an elemental length & of the beam are distributed as shear stresses in some
manner over each face as shown in Fig. 7.5(b). Suppose now that we isolate a small
rectangular element ABCD of depth 8k of this elemental length of beam (Fig. 7.5(c))
and consider its equilibrium. Since the element is small, the shear stresses T on the faces
AD and BC may be regarded as constant. The shear force resultants of these shear
stresses clearly satisfy vertical equilibrium of the element but rotationally produce
a clockwise couple. This must be equilibrated by an anticlockwise couple which can
only be produced by shear forces on the horizontal faces AB and CD of the element.
Let 7’ be the shear stresses induced by these shear forces. The equilibrium of the
element is satisfied in both horizontal and vertical directions since the resultant force
in either direction is zero. However, the shear forces on the faces BC and AD form a
couple which would cause rotation of the element in an anticlockwise sense. We need,
therefore, a clockwise balancing couple and this can only be produced by shear forces
on the faces AB and CD of the element; the shear stresses corresponding to these
shear forces are 7’ as shown. Then for rotational equilibrium of the element about the
corner D

UxWx1Ixdh=1xdhx1xx
which gives
=1 (7.3)

We see, therefore, that a shear stress acting on a given plane is always accompanied by
an equal complementary shear stress acting on planes perpendicular to the given plane
and in the opposite sense.

/ AW
n T N
#1‘Lah v
h peit f sh
T
m n n{l I’?] rD< ‘‘‘‘‘‘‘ C
i R

(a) (b) (c)
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7.4 DIRECT STRAIN

Since no material is completely rigid, the application of loads produces distortion. An
axial tensile load, for example, will cause a structural member to increase in length,
whereas a compressive load would cause it to shorten.

Suppose that 3 is the change in length produced by either a tensile or compressive
axial load. We now define the direct strain, ¢, in the member in non-dimensional form
as the change in length per unit length of the member. Hence

&= — (7.4)

where Ly is the length of the member in its unloaded state. Clearly ¢ may be either a
tensile (positive) strain or a compressive (negative) strain. Equation (7.4) is applicable
only when distortions are relatively small and can be used for values of strain up to and
around 0.001, which is adequate for most structural problems. For larger values, load—
displacement relationships become complex and are therefore left for more advanced
texts.

We shall see in Section 7.7 that it is convenient to measure distortion in this non-
dimensional form since there is a direct relationship between the stress in a member
and the accompanying strain. The strain in an axially loaded member therefore
depends solely upon the level of stress in the member and is independent of its length
or cross-sectional geometry.

7.5 SHEAR STRAIN

In Section 7.3 we established that shear loads applied to a structural member induce a
system of shear and complementary shear stresses on any small rectangular element.
The distortion in such an element due to these shear stresses does not involve a change
in length but a change in shape as shown in Fig. 7.6. We define the shear strain, y, in the
element as the change in angle between two originally mutually perpendicular edges.
Thus in Fig. 7.6

y = ¢ radians (7.5)

r_,:' Distorted
,'/ shape

FIGURE 7.6 Shear strain in an element
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o g
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o FIGURE 7.7 Cube subjected to hydrostatic pressure

7.6 VOLUMETRIC STRAIN DUE TO HYDROSTATIC PRESSURE

A rather special case of strain which we shall find useful later occurs when a cube
of material is subjected to equal compressive stresses, o, on all six faces as shown in
Fig. 7.7. This state of stress is that which would be experienced by the cube if it were
immersed at some depth in a fluid, hence the term hydrostatic pressure. The analysis
would, in fact, be equally valid if o were a tensile stress.

Suppose that the original length of each side of the cube is Ly and that 3 is the decrease
in length of each side due to the stress. Then, defining the volumetric strain as the
change in volume per unit volume, we have
L3 — (Lo —38)®
volumetric strain = w

L3

0

Expanding the bracketed term and neglecting second- and higher-order powers of §

gives
o 3L
volumetric strain = ——
L3
0
from which
3
volumetric strain = — (7.6)
Lo

Thus we see that for this case the volumetric strain is three times the linear strain in
any of the three stress directions.

7.7 STRESS—STRAIN RELATIONSHIPS
HOOKE’S LAW AND YOUNG’S MODULUS

The relationship between direct stress and strain for a particular material may be
determined experimentally by a fensile fest which is described in detail in Chapter 8.
A tensile test consists basically of applying an axial tensile load in known increments
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o (stress) A

a =
e (strain)  Figure 7.8 Typical stress—strain curve

to a specimen of material of a given length and cross-sectional area and measuring
the corresponding increases in length. The stress produced by each value of load may
be calculated from Eq. (7.1) and the corresponding strain from Eq. (7.4). A stress—
strain curve is then drawn which, for some materials, would have a shape similar to
that shown in Fig. 7.8. Stress—strain curves for other materials differ in detail but,
generally, all have a linear portion such as ab in Fig. 7.8. In this region stress is directly
proportional to strain, a relationship that was discovered in 1678 by Robert Hooke
and which is known as Hooke’s law. It may be expressed mathematically as

oc=Es (7.7)

where E is the constant of proportionality. E is known as Young’s modulus or the elastic
modulus of the material and has the same units as stress. For mild steel E is of the
order of 200 kN/mm?. Equation (7.7) may be written in alternative form as

2=k (7.8)

For many materials E has the same value in tension and compression.

SHEAR MODULUS

By comparison with Eq. (7.8) we can define the shear modulus or modulus of rigidity,
G, of a material as the ratio of shear stress to shear strain; thus

G="1 (7.9)
Y

VOLUME OR BULK MODULUS

Again, the volume modulus or bulk modulus, K, of a material is defined in a similar
manner as the ratio of volumetric stress to volumetric strain, i.e.

volumetric stress

= 7.10
volumetric strain ( )

It is not usual to assign separate symbols to volumetric stress and strain since they may,
respectively, be expressed in terms of direct stress and linear strain. Thus in the case
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of hydrostatic pressure (Section 7.6)

K=- (7.11)

EXAMPLE 7.2 A mild steel column is hollow and circular in cross section with
an external diameter of 350 mm and an internal diameter of 300 mm. It carries a
compressive axial load of 2000 kN. Determine the direct stress in the column and also
the shortening of the column if its initial height is 5 m. Take E =200 000 N/mm?.

The cross-sectional area 4 of the column is given by

A= %(3502 — 300%) = 25525.4 mm>

The direct stress o in the column is, therefore, from Eq. (7.1)

2000 x 103 ) .
o = ~Emi = —78.4N/mm* (compression)

The corresponding strain is obtained from either Eq. (7.7) or Eq. (7.8) and is

—78.4

= 550000 = —0.00039

Finally the shortening, 3, of the column follows from Eq. (7.4), i.e.

8 =0.00039 x 5 x 10> = 1.95mm

EXAMPLE 7.3  Ashort, deep cantilever beam is 500 mm long by 200 mm deep and is
2 mm thick. It carries a vertically downward load of 10 kN at its free end. Assuming that
the shear stress is uniformly distributed over the cross section of the beam, calculate
the deflection due to shear at the free end. Take G = 25000 N/mm?.

The internal shear force is constant along the length of the beam and equal to 10kN.
Since the shear stress is uniform over the cross section of the beam, we may use
Eq. (7.2) to determine its value, i.e.

w10 x 103

_——=— = 2
1= 200x2 = »N/mm

Tav =
This shear stress is constant along the length of the beam; it follows from Eq. (7.9)
that the shear strain is also constant along the length of the beam and is given by
Tav 25

y = el = 25000 =0.001rad
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This value is in fact the angle that the beam makes with the horizontal. The deflection,
A, due to shear at the free end is therefore

Ag = 0.001 x 500 = 0.5 mm

In practice, the solution of this particular problem would be a great deal more complex
than this since the shear stress distribution is not uniform. Deflections due to shear
are investigated in Chapter 13.

7.8 PoissoN EFrecT

FIGURE 7.9
The Poisson
effect

FIGURE 7.10

The Poisson
effect in a cube of
material

It is common experience that a material such as rubber suffers a reduction in cross-
sectional area when stretched under a tensile load. This effect, known as the Poisson
effect, also occurs in structural materials subjected to tensile and compressive loads,
although in the latter case the cross-sectional area increases. In the region where the
stress—strain curve of a material is linear, the ratio of lateral strain to longitudinal
strain is a constant which is known as Poisson’s ratio and is given the symbol v. The
effect is illustrated in Fig. 7.9.

Consider now the action of different direct stress systems acting on an elemental cube
of material (Fig. 7.10). The stresses are all tensile stresses and are given suffixes which
designate their directions in relation to the system of axes specified in Section 3.2.
In Fig. 7.10(a) the direct strain, &, in the x direction is obtained directly from either

Lateral strain

Tension

Compression
B S

Longitudinal strain

UX\@ 07\6

Y
> X Yo,

(a) (b)
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Eq. (7.7) or Eq. (7.8) and is

Ox
Ex = E
Due to the Poisson effect there are accompanying strains in the y and z directions given
by
gy = —Véy £ = —V&
or, substituting for ¢, in terms of oy
Ox Ox
&y =—Vv— & =—v—= 7.12
y E z E ( )

These strains are negative since they are associated with contractions as opposed to
positive strains produced by extensions.

In Fig. 7.10(b) the direct stress oy, has an effect on the direct strain &, as does oy on &y.

Thus
ox Voy Oy  Voy voy  Voy
X _ =2 _ = =—_-—= 7.13
“T“E"E YTE E “TEE (7.13)
By a similar argument, the strains in the x, y and z directions for the cube of Fig.
7.10(c) are
oy Voy Vo 0y  VOy  VO; 0; VOoy VOy
== - —=—-— == - — - — ==-—-— (714
“~f"E E "t E E %" E & W

Let us now suppose that the cube of material in Fig. 7.10(c) is subjected to a uniform
stress on each face such that oy = 0, = 0, = 0. The strain in each of the axial directions
is therefore the same and is, from any one of Eq. (7.14)

6= %(1—2\;)

In Section 7.6 we showed that the volumetric strain in a cube of material subjected to
equal stresses on all faces is three times the linear strain. Thus in this case

3
volumetric strain = EU(I —2v) (7.15)

It would be unreasonable to suppose that the volume of a cube of material subjected
to tensile stresses on all faces could decrease. It follows that Eq. (7.15) cannot have a
negative value. We conclude, therefore, that v must always be less than 0.5. For most
metals v has a value in the region of 0.3 while for concrete v can be as low as 0.1.

Collectively E, G, K and v are known as the elastic constants of a material.

7.9 RELATIONSHIPS BETWEEN THE ELASTIC CONSTANTS

There are different methods for determining the relationships between the elastic
constants. The one presented here is relatively simple in approach and does not require
a knowledge of topics other than those already covered.
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In Fig. 7.11(a), ABCD is a square element of material of unit thickness and is in
equilibrium under a shear and complementary shear stress system 7. Imagine now
that the element is ‘cut’ along the diagonal AC as shown in Fig. 7.11(b). In order to
maintain the equilibrium of the triangular portion ABC it is possible that a direct
force and a shear force are required on the face AC. These forces, if they exist, will be
distributed over the face of the element in the form of direct and shear stress systems,
respectively. Since the element is small, these stresses may be assumed to be constant
along the face AC. Let the direct stress on AC in the direction BD be opp and the
shear stress on AC be tac. Then resolving forces on the element in the direction BD

we have
oBDAC x 1 —7AB x 1 x c0s45° — tBC x 1 x cos45° =0
Dividing through by AC
AB BC
OBD = rE cos45° + ‘L’E cos 45°
or
OBD = T COs” 45° + T cos? 45°
from which

OBD =T (7.16)

The positive sign indicates that opp is a tensile stress. Similarly, resolving forces in the
direction AC

TACAC x 14+ 7tAB x 1 x cos45° — 1BC x 1 x cos45° =0
Again dividing through by AC we obtain
TAC = —7 08’ 45° + T cos? 45° = 0
A similar analysis of the triangular element ABD in Fig. 7.11(c) shows that
OAC = —T (7.17)

and
mp =0
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gac T T

ogp = T
D C
T FIGURE 7.12 Stresses on diagonal planes in element
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y FIGURE 7.13 Distortion due to shear in
D C element

Hence we see that on planes parallel to the diagonals of the element there are direct
stresses opp (tensile) and oac (compressive) both numerically equal to v as shown
in Fig. 7.12. It follows from Section 7.8 that the direct strain in the direction BD is
given by

OBD , VOAC _ T

= > = — 7.18
EBD E + E E(1+v) ( )

Note that the compressive stress oac makes a positive contribution to the strain epp.

In Section 7.5 we defined shear strain and saw that under pure shear, only a change
of shape is involved. Thus the element ABCD of Fig. 7.11(a) distorts into the shape
A’B’'CD shown in Fig. 7.13. The shear strain y produced by the shear stress 7 is then
given by

/

BC

y = ¢ radians = (7.19)

since ¢ is a small angle. The increase in length of the diagonal DB to DB’ is
approximately equal to FB’ where BF is perpendicular to DB’. Thus

DB’ — DB _ FB’

®DB = 55— = bp

Again, since ¢ is a small angle, BB'F ~ 45° so that

FB' = BB’ cos45°
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Also
_ BC
"~ cos45°
Hence
_ B'Bcos?45°  1BB
fDB="TBC T 2BC
Therefore, from Eq. (7.19)
1
EDB = 5]/ (720)

Substituting for epp in Eq. (7.18) we obtain
1 T
Zy=—(1
27 =gty

or, since t/y =G from Eq. (7.9)

E

The relationship between Young’s modulus E and bulk modulus K is obtained directly
from Eqgs (7.10) and (7.15). Thus, from Eq. (7.10)

. . o
volumetric strain = X

where o is the volumetric stress. Substituting in Eq. (7.15)

o 3o
—=—01-=-2
k=g
from which
K= E (7.22)
C3(1-2v) ‘
Eliminating E from Eqs (7.21) and (7.22) gives
2G(1+v)
K=—""=- 7.23
3(1—-2v) (7:23)

ExampPLE 7.4 A cube of material is subjected to a compressive stress o on each
of its faces. If v =0.3 and E =200 000 N/mm?, calculate the value of this stress if the
volume of the cube is reduced by 0.1%. Calculate also the percentage reduction in
length of one of the sides.

From Eq. (7.22)

200000

=_— = 167000N/mm?
3(1-2x023) /mm
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The volumetric strain is 0.001 since the volume of the block is reduced by 0.1%.

Therefore, from Eq. (7.10)

0.001 = Z

or
o = 0.001 x 167000 = 167 N/mm?

In Section 7.6 we established that the volumetric strain in a cube subjected to a uniform
stress on all six faces is three times the linear strain. Thus in this case

linear strain = % x 0.001 = 0.00033

The length of one side of the cube is therefore reduced by 0.033%.

7.10 STRAIN ENERGY IN SIMPLE TENSION OR COMPRESSION

FIGURE 7.14
Load—extension
curve for an axially
loaded member

An important concept in the analysis of structures is that of strain energy. The total
strain energy of a structural member may comprise the separate strain energies due
to axial load, bending moment, shear and torsion. In this section we shall concentrate
on the strain energy due to tensile or compressive loads; the strain energy produced
by each of the other loading systems is considered in the relevant, later chapters.

A structural member subjected to a gradually increasing tensile load P gradually
increases in length (Fig. 7.14(a)). The load—extension curve for the member is linear
until the limit of proportionality is exceeded, as shown in Fig. 7.14(b). The geometry
of the non-linear portion of the curve depends upon the properties of the material of
the member (see Chapter 8). Clearly the load P moves through small displacements
A and therefore does work on the member. This work, which causes the member to
extend, is stored in the member as strain energy. If the value of P is restricted so that
the limit of proportionality is not exceeded, the gradual removal of P results in the
member returning to its original length and the strain energy stored in the member
may be recovered in the form of work. When the limit of proportionality is exceeded,

Load P A

L Limit of proportionality
0

Cross-sectional area, A

vt
_>‘l>

Extension A

(a) (b)
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not all of the work done by P is recoverable; some is used in producing a permanent
distortion of the member (see Chapter 8), the related energy appearing largely as heat.

Suppose the structural member of Fig. 7.14(a) is gradually loaded to some value of P
within the limit of proportionality of the material of the member, the corresponding
elongation being A. Let the elongation corresponding to some intermediate value of
load, say P, be A1 (Fig. 7.15). Then a small increase in load of 3P; will produce a small
increase, 8 A1, in elongation. The incremental work done in producing this increment
in elongation may be taken as equal to the average load between P and P; + 8P
multiplied by 8A. Thus

incremental work done = |:

P P 3P
1+(;+ 1):|8A1

which, neglecting second-order terms, becomes
incremental work done = P; A1

The total work done on the member by the load P in producing the elongation A is
therefore given by

A
total work done = / P dA; (7.24)
0
Since the load-extension relationship is linear, then
P =KAq (7.25)

where K is some constant whose value depends upon the material properties of the
member. Substituting the particular values of P and A in Eq. (7.25), we obtain

P

K=—

A

Load 4
P
P;+3P;
Py
Extension

FIGURE 7.15 Work done by a gradually
applied load
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so that Eq. (7.25) becomes
P

Pi=—A
1= 381

Now substituting for P; in Eq. (7.24) we have

Ap
total work done = / —A1dA
0o A
Integration of this equation yields

1
total work done = EPA (7.26)

Alternatively, we see that the right-hand side of Eq. (7.24) represents the area under
the load—extension curve, so that again we obtain

total work done = %PA

By the law of conservation of energy, the total work done is equal to the strain energy,
U, stored in the member. Thus

U= %PA (7.27)

The direct stress, o, in the member of Fig. 7.14(a) corresponding to the load P is given
by Eq. (7.1), i.e.

o = Z
Also the direct strain, ¢, corresponding to the elongation A is, from Eq. (7.4)

A

&= —
Ly

Furthermore, since the load—extension curve is linear, the direct stress and strain are

related by Eq. (7.7), so that

P A
—_ _E—
A Lo
from which
PLy
I —— 7.28
1E (7.28)

In Eq. (7.28) the quantity Lo/AE determines the magnitude of the displacement pro-
duced by a given load; it is therefore known as the flexibility of the member. Conversely,
by transposing Eq. (7.28) we see that

in which the quantity AE/L determines the magnitude of the load required to produce
a given displacement. The term AE/L is then the stiffness of the member.
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Substituting for A in Eq. (7.27) gives

_ P2

U=—2"
2AE

(7.29)

It is often convenient to express strain energy in terms of the direct stress o. Rewriting
Eq. (7.29) in the form

1 P2 AL
U=-—-2
242 E
we obtain
o2

in which we see that AL is the volume of the member. The strain energy per unit

volume of the member is then

o2

2F
The greatest amount of strain energy per unit volume that can be stored in a member
without exceeding the limit of proportionality is known as the modulus of resilience
and is reached when the direct stress in the member is equal to the direct stress
corresponding to the elastic limit of the material of the member.

The strain energy, U, may also be expressed in terms of the elongation, A, or the direct
strain, . Thus, substituting for P in Eq. (7.29)

EAN?
= 31
U L (7.31)
or, substituting for ¢ in Eq. (7.30)
1
U= EEEZ x AL (7.32)

The above expressions for strain energy also apply to structural members subjected
to compressive loads since the work done by P in Fig. 7.14(a) is independent of the
direction of movement of P. It follows that strain energy is always a positive quantity.

The concept of strain energy has numerous and wide ranging applications in structural
analysis particularly in the solution of statically indeterminate structures. We shall
examine in detail some of the uses of strain energy later but here we shall illustrate its
use by applying it to some relatively simple structural problems.

DEFLECTION OF A SIMPLE TRUSS

The truss shown in Fig. 7.16 carries a gradually applied load W at the joint A.
Considering the vertical equilibrium of joint A

Pagcosd45® — W =0
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7

Cross-sectional area, A

L l FIGURE 7.16 Deflection of a simple truss

so that
Pap =1.41W (tension)

Now resolving forces horizontally at A
Pac + Pagcos45° =0
which gives
Pac = —W  (compression)

It is obvious from inspection that Pac is a compressive force but, for consistency,
we continue with the convention adopted in Chapter 4 for solving trusses where all
members are assumed, initially, to be in tension.

The strain energy of each member is then, from Eq. (7.29)

_ (LAIW)2 x 141L  1.4W2L
B 24E - AE

Uas

If the vertical deflection of A is Ay, the work done by the gradually applied load, W, is
1
3 WAy

Then equating the work done to the total strain energy of the truss we have

1.4W2L  W2L
+

1
WA, =
2W v AE 24E

so that
3.82WL
Ay =
AE
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Using strain energy to calculate deflections in this way has limitations. In the above
example A, is, in fact, only the vertical component of the actual deflection of the joint
A since A moves horizontally as well as vertically. Therefore we can only find the
deflection of a load in its own line of action by this method. Furthermore, the method
cannot be applied to structures subjected to more than one applied load as each load
would contribute to the total work done by moving through an unknown displacement
in its own line of action. There would, therefore, be as many unknown displacements
as loads in the work—energy equation. We shall return to examine energy methods in
much greater detail in Chapter 15.

COMPOSITE STRUCTURAL MEMBERS

Axiallyloaded composite members are of direct interest in civil engineering where con-
crete columns are reinforced by steel bars and steel columns are frequently embedded
in concrete as a fire precaution.

In Fig. 7.17 a concrete column of cross-sectional area A¢ is reinforced by two steel bars
having a combined cross-sectional area As. The modulus of elasticity of the concrete is
Ec and that of the steel Es. A load P is transmitted to the column through a plate which
we shall assume is rigid so that the deflection of the concrete is equal to that of the
steel. It follows that their respective strains are equal since both have the same original
length. Since E¢ is not equal to Es we see from Eq. (7.7) that the compressive stresses,
oc and oy, in the concrete and steel, respectively, must have different values. This
also means that unless Ac and As have particular values, the compressive loads, Pc
and Ps, in the concrete and steel are also different. The problem is therefore statically
indeterminate since we can write down only one equilibrium equation, i.e.

Pc+Ps=P (733)
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The second required equation derives from the fact that the displacements of the steel
and concrete are identical since, as noted above, they are connected by the rigid plate;
this is a compatibility of displacement condition. Then, from Eq. (7.28)

PcL  PsL
AcEc — AsEs

(7.34)

Substituting for Pc from Eq. (7.34) in Eq. (7.33) gives

from which

AsEs

= 7.35
S AcEc + AsEs ( )

Pc follows directly from Eqs (7.34) and (7.35), i.e.

AcEc

Po=—-—"—"—
€~ AcEc +AsEs

(7.36)

The vertical displacement, 8, of the column is obtained using either side of Eq. (7.34)
and the appropriate compressive load, Pc or Ps. Thus

PL

b= —n—— 7.37
AcEc +AsEs (7-37)

The direct stresses in the steel and concrete are obtained from Eqs (7.35) and (7.36),
thus
E E
- S p oc=—"—C P
AcEc +AsEs AcEc +AsEs

We could, in fact, have solved directly for the stresses by writing Eqs (7.33) and (7.34)

os

(7.38)

as
ocAc +osAs =P (7.39)
and
ocl  osL
= = 7.40
respectively.

EXAMPLE 7.5 A reinforced concrete column, 5 m high, has the cross section shown
in Fig. 7.18. It is reinforced by four steel bars each 20 mm in diameter and carries a
load of 1000 kN. If Young’s modulus for steel is 200 000 N/mm? and that for concrete
is 15000 N/mm?, calculate the stress in the steel and in the concrete and also the
shortening of the column.
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The total cross-sectional area, As, of the steel reinforcement is
Ag = 4 x % x 20? = 1257 mm?
The cross-sectional area, Ac, of the concrete is reduced due to the presence of the
steel and is given by
Ac = 400% — 1257 = 158 743 mm*
Equations (7.38) then give

200000 x 1000 x 10°

~ 158743 x 15000 + 1257 x 200000
15000 x 1000 x 103

~ 158743 x 15000 + 1257 x 200 000

= 76.0N/mm?

os

oc = 5.7N/mm?

The deflection, 3, of the column is obtained using either side of Eq. (7.40). Thus

_ocl _5Tx5x10° o
~ Ec 15000 7

THERMAL EFFECTS

It is possible for stresses to be induced by temperature changes in composite members
which are additional to those produced by applied loads. These stresses arise when
the components of a composite member have different rates of thermal expansion and
contraction.

First, let us consider a member subjected to a uniform temperature rise, AT, along its
length. The member expands from its original length, L, to a length, L, given by

Lt =Lo(1+4+ aAT)

where « is the coefficient of linear expansion of the material of the member. In the
condition shown in Fig. 7.19 the member has been allowed to expand freely so that no
stresses are induced. The increase in the length of the member is then

Lt —Ly=LoaxAT
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Ficure 7.19
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Suppose now that expansion is completely prevented so that the final length of the

member after the temperature rise is still Lo. The member has, in effect, been com-

pressed by an amount Lo AT, thereby producing a compressive strain, &, which is
given by (see Eq. (7.4))

Loa AT

&= Lo

The corresponding compressive stress, o, is from Eq. (7.7)

o =FEaAT (7.42)

In composite members the restriction on expansion or contraction is usually imposed
by the attachment of one component to another. For example, in a reinforced concrete
column, the bond between the reinforcing steel and the concrete prevents the free
expansion or contraction of either.

Consider the reinforced concrete column shown in Fig. 7.20(a) which is subjected to a
temperature rise, AT. For simplicity we shall suppose that the reinforcement consists
of a single steel bar of cross-sectional area, As, located along the axis of the column; the
actual cross-sectional area of concrete is Ac. Young’s modulus and the coefficient of
linear expansion of the concrete are Ec and «c, respectively, while the corresponding
values for the steel are Es and as. We shall assume that ag > ac.

Figure 7.20(b) shows the positions the concrete and steel would attain if they were
allowed to expand freely; in this situation neither material is stressed. The displace-
ments LoacAT and LoasAT are obtained directly from Eq. (7.41). However, since
they are attached to each other, the concrete prevents the steel from expanding this full
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amount while the steel forces the concrete to expand further than it otherwise would;
their final positions are shown in Fig. 7.20(c). It can be seen that 8¢ is the effective
elongation of the concrete which induces a direct tensile load, Pc. Similarly 3g is the
effective contraction of the steel which induces a compressive load, Ps. There is no
externally applied load so that the resultant axial load at any section of the column is
zero so that

Pc (tension) = Pg (compression) (7.43)
Also, from Fig. 7.20(b) and (c) we see that
dc +8s = LoasAT — Loac AT
or
8¢ +8s = LoAT (s — xc) (7.44)

From Eq. (7.28)
PcLy S — PsLy

8c = = 7.45
€= dcEc S = oEs (7.45)
Substituting for 3¢ and 8s in Eq. (7.44) we obtain
Pc Ps
— = AT (as — 7.46
AcEc T AsEs (as — ac) (7.46)
Simultaneous solution of Eqs (7.43) and (7.46) gives
AT (as —
Pc (tension) = Pgs (compression) = i (s af) (7.47)
(ACEC i ASES>
or
AT (as — EcAsE
Pc (tension) = Pg(compression) = (os — ac)dcEcAsEs (7.48)

AcEc +AsEs
The tensile stress, oc, in the concrete and the compressive stress, os, in the steel follow
directly from Eq. (7.48).

Pc _ AT(as —ac)EcAsEs

ocC

o A_C - AcEc + AsEs (7 49)
o5 = ﬁ _ AT(as — ac)AcEcEs
As AcEc +AsEs

From Fig. 7.20(b) and (c) it can be seen that the actual elongation, 8, of the column is
given by either

8 = Loac AT + 3¢ or d = LoasAT — 3 (7.50)

Using the first of Eq. (7.50) and substituting for 3¢ from Eq. (7.45) then Pc from Eq.
(7.48) we have
AT (s — ac)AcEcAsEsLy

AcEc(AcEc +A4sEs)

d = LoacAT +
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which simplifies to

(7.51)

AcE E
8=L0AT<aC cEc + asAs s)

AcEc +AsEs
Clearly when ac=as=0wo, say, Pc=Ps=0,o0c=0s=0 and 3=LoxAT as for
unrestrained expansion.

The above analysis also applies to the case, ac > as, when, as can be seen from Eqs
(7.48) and (7.49) the signs of Pc, Ps, oc and os are reversed. Thus the load and stress
in the concrete become compressive, while those in the steel become tensile. A similar
argument applies when AT specifies a temperature reduction.

Equation (7.44) is an expression of the compatibility of displacement of the concrete
and steel. Also note that the stresses could have been obtained directly by writing Eqs
(7.43) and (7.44) as

ocAc = osAs
and
ocLo  osLo
=0 2 LoAT (as —
Ec + Es 0AT (as — ac)
respectively.

EXAMPLE 7.6 A rigid slab of weight 100 kN is supported on three columns each of
height 4 m and cross-sectional area 300 mm? arranged in line. The two outer columns
are fabricated from material having a Young’s modulus of 80 000 N/mm? and a coef-
ficient of linear expansion of 1.85 x 107>/°C; the corresponding values for the inner
column are 200 000 N/mm? and 1.2 x 10~5/°C. If the slab remains firmly attached to
each column, determine the stress in each column and the displacement of the slab if
the temperature is increased by 100°C.

The problem may be solved by determining separately the stresses and displacements
produced by the applied load and the temperature rise; the two sets of results are then
superimposed. Let subscripts o and i refer to the outer and inner columns, respectively.
Using Eq. (7.38) we have

E; Eo

(load) = ———__p load) = ——° _p
oi (load) = Z=——% o0 (load) = —— ¢

(i)
In Eq. (i)
AoEq + A;E; = 2 x 300 x 80000 + 300 x 200000 = 108.0 x 10°

Then
200000 x 100 x 103
108.0 x 10°

80000 x 100 x 103
108.0 x 10°

oi (load) = = 185.2N/mm? (compression)

0o (load) = = 74.1N/mm? (compression)
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Equation (7.49) give the values of o; (temp.) and o, (temp.) produced by the
temperature rise, i.e.

AT (0 — a)EoA;E;

t )=
oo(temp) = = Fo + AiE; (i)
oi(temp.) = AT (otj — a)AoEGE;
' P)= AoEo +AiEi

In Eq. (ii) a0 > «j so that o, (temp.) is a compressive stress while oj (temp.) is a tensile
stress. Hence

_100(1.2 - 1.85) x 1073 x 80000 x 300 x 200000

coltemp.) 108.0 x 10
= —28.9N/mm? (i.e. compression)
100(1.2 — 1.85) x 107> x 2 x 300 x 80000 x 200000
oi(temp.) =

108.0 x 106

= —57.8N/mm? (i.e. tension)

Superimposing the sets of stresses, we obtain the final values of stress, o and o, due
to load and temperature change combined. Hence

o; = 185.2 — 57.8 = 127.4N/mm? (compression)
0o = 74.1 +28.9 = 103.0 N/mm? (compression)

The displacements due to the load and temperature change are found using Eqs (7.37)
and (7.51), respectively. Hence

100 x 10° x 4 x 103
108.0 x 106

5 (temp.) = 4 x 10 x 100

3 (load) =

= 3.7mm (contraction)

1.85 x 1075 x 2 x 300 x 80000 + 1.2 x 107> x 300 x 200 000
X
108.0 x 10°

= 6.0mm (elongation)

The final displacement of the slab involves an overall elongation of the columns of
6.0—-3.7=23mm.

INITIAL STRESSES AND PRESTRESSING

The terms initial stress and prestressing refer to structural situations in which some
or all of the components of a structure are in a state of stress before external loads
are applied. In some cases, for example welded connections, this is an unavoidable
by-product of fabrication and unless the whole connection is stress-relieved by suitable
heat treatment the initial stresses are not known with any real accuracy. On the other
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FiGure 7.21

Prestressed

concrete beam

hand, the initial stress in a component may be controlled as in a bolted connection;
the subsequent applied load may or may not affect the initial stress in the bolt.

Initial stresses may be deliberately induced in a structural member so that the adverse
effects of an applied load are minimized. In this the category is the prestressing of
beams fabricated from concrete which is particularly weak in tension. An overall state
of compression is induced in the concrete so that tensile stresses due to applied loads
merely reduce the level of compressive stress in the concrete rather than cause tension.
Two methods of prestressing are employed, pre- and post-tensioning. In the former
the prestressing tendons are positioned in the mould before the concrete is poured and
loaded to the required level of tensile stress. After the concrete has set, the tendons
are released and the tensile load in the tendons is transmitted, as a compressive load,
to the concrete. In a post-tensioned beam, metal tubes or conduits are located in the
mould at points where reinforcement is required, the concrete is poured and allowed
to set. The reinforcing tendons are then passed through the conduits, tensioned and
finally attached to end plates which transmit the tendon tensile load, as a compressive
load, to the concrete.

Usually the reinforcement in a concrete beam supporting vertical shear loads is placed
closer to either the upper or the lower surface since such a loading system induces ten-
sion in one part of the beam and compression in the other; clearly the reinforcement is
placed in the tension zone. To demonstrate the basic principle, however, we shall inves-
tigate the case of a post-tensioned beam containing one axially loaded prestressing
tendon.

Suppose that the initial load in the prestressing tendon in the concrete beam shown
in Fig. 7.21 is F. In the absence of an applied load the resultant load at any section of
the beam is zero so that the load in the concrete is also F but compressive. If now a
tensile load, P, is applied to the beam, the tensile load in the prestressing tendon will
increase by an amount APt while the compressive load in the concrete will decrease
by an amount APc. From a consideration of equilibrium

APT+ APc =P (7.52)

Furthermore, the total tensile load in the tendon is F + APt while the total compressive
load in the concrete is F — APc.

Concrete, Prestressing tendon,
cross-sectional area, Ag cross-sectional area, At

o o\; o o o ° c o
D, ° S 4, 0 /° > L, o
o 2

3] 1% oa" 7 oa" v
o w2 I ° & > o @
2 4 = a o a

End plates

f—r

Applied load, P<——]
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The tendon and concrete beam are interconnected through the end plates so that they
both suffer the same elongation, 3, due to P. Then, from Eq. (7.28)

§_ APTL _ APcL
"~ AtEr  AcEc

(7.53)

where ET and Ec are Young’s modulus for the tendon and the concrete, respectively.
From Eq. (7.53)

_ArtET
~ AcEc
Substituting in Eq. (7.52) for APt we obtain

ATET
AP 1)|=P
¢ (ACEC * )

APt APc (7.54)

which gives
AcEc

APr=———~ P 7.55
€~ AcEc + A7Er (7.35)

Substituting now for APc in Eq. (7.54) from Eq. (7.55) gives

AtET
APp=—F— P 7.56
17 AcEc + AvEr (7.56)

The final loads, Pc and P, in the concrete and tendon, respectively, are then

AcEc .
Pc=F—- ——————P (compression 7.57
¢ AcEc +AtET (comp ) (7:57)
and
AtET .
Pr=F+ ————P (tension 7.58
V=Pt A v (Y (739)
The corresponding final stresses, oc and or, follow directly and are given by
PC 1 AcEC .
— — - p 7.59
oc Ac = Ac ( AcEc 1 ATEr ) (compression) (7.59)
and
Pr 1 ATET ) .
oT=—-—=— -—— P tension 7.60
T Ar T ar ( AcEc +AtEt ( ) (7.60)

Obviously if the bracketed term in Eq. (7.59) is negative then oc will be a tensile stress.

Finally the elongation, 8, of the beam due to P is obtained from either of Eq. (7.53)
and is
L

8=——+——P 7.61
AcEc +ATET (7.61)
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EXAMPLE 7.7 A concrete beam of rectangular cross section, 120 mm x 300 mm, is to
be reinforced by six high-tensile steel prestressing tendons each having a cross-sectional
area of 300 mm?. If the level of prestress in the tendons is 150 N/mm?, determine the
corresponding compressive stress in the concrete. If the reinforced beam is subjected
to an axial tensile load of 150kN, determine the final stress in the steel and in the
concrete assuming that the ratio of the elastic modulus of steel to that of concrete
is 15.

The cross-sectional area, Ac, of the concrete in the beam is given by
Ac = 120 x 300 — 6 x 300 = 34200 mm?

The initial compressive load in the concrete is equal to the initial tensile load in the
steel; thus

oci X 34200 = 150 x 6 x 300 (i)

where o¢;j is the initial compressive stress in the concrete. Hence
oci = 7.9N/mm?

The final stress in the concrete and in the steel are given by Eqs (7.59) and (7.60),
respectively. From Eq. (7.59)

F Ec

_Lr ke, ..
oc Ac AcEc +AtET (H)

in which F/Ac = oc; = 7.9 N/mm?. Rearranging Eq. (ii) we have

oc=79— ;P

Er
A — A
c+(EC> T

or

150 x 10°
34200 + 15 x 6 x 300

Similarly, from Eq. (7.60)

oc=179 =5.4N/mm? (compression)

ot = 150 + ;P

Ec
— )4 A
( ET) c+Ar
from which

150 x 10°
75 % 34200 + 6 x 300

or = 150 + = 186.8N/mm? (tension)
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7.11 PLANE STRESS

In some situations the behaviour of a structure, or part of it, can be regarded as
two-dimensional. For example, the stresses produced in a flat plate which is sub-
jected to loads solely in its own plane would form a two-dimensional stress system;
in other words, a plane stress system. These stresses would, however, produce strains
perpendicular to the surfaces of the plate due to the Poisson effect (Section 7.8).

An example of a plane stress system is that produced in the walls of a thin cylindrical
shell by internal pressure. Figure 7.22 shows a long, thin-walled cylindrical shell sub-
jected to an internal pressure p. This internal pressure has a dual effect; it acts on the
sealed ends of the shell thereby producing a longitudinal direct stress in cross sections
of the shell and it also tends to separate one-half of the shell from the other along
a diametral plane causing circumferential or hoop stresses. These two situations are
shown in Figs. 7.23 and 7.24, respectively.

Suppose that d is the internal diameter of the shell and ¢ the thickness of its walls. In
Fig. 7.23 the axial load on each end of the shell due to the pressure p is

wd?

PXT

This load is equilibrated by an internal force corresponding to the longitudinal direct
stress, or, SO that

7 d?
oL T dt ZPT
which gives
pd
= 7.62
L= (7.62)

FIGURE 7.22  Thin cylindrical shell under internal
pressure

‘_-’/

FIGURE 7.23  Longitudinal
stresses due to internal pressure

oL
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Now consider a unit length of the half shell formed by a diametral plane (Fig. 7.24).
The force on the shell, produced by p, in the opposite direction to the circumferential
stress, oc, is given by

p x projected area of the shell in the direction of oc
Therefore for equilibrium of the unit length of shell
200 x (I xt)=px(1xd)

which gives

_prd

=3 (7.63)

oc
We can now represent the state of stress at any point in the wall of the shell by con-
sidering the stress acting on the edges of a very small element of the shell wall as
shown in Fig. 7.25(a). The stresses comprise the longitudinal stress, o1, (Eq. (7.62))
and the circumferential stress, oc, (Eq. (7.63)). Since the element is very small, the
effect of the curvature of the shell wall can be neglected so that the state of stress may
be represented as a two-dimensional or plane stress system acting on a plane element
of thickness, ¢ (Fig. 7.25(b)).

In addition to stresses, the internal pressure produces corresponding strains in the walls
of the shell which lead to a change in volume. Consider the element of Fig. 7.25(b).
The longitudinal strain, er, is, from Eq. (7.13)

oL ocC

L=F "VE
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or, substituting for o1, and oc from Eqs (7.62) and (7.63), respectively

pd (1
=—=- .64
L= ( 5 v) (7.64)
Similarly, the circumferential strain, c, is given by
_pd 1
=2 (1 2v> (7.65)

The increase in length of the shell is e L while the increase in circumference is ecd.
We see from the latter expression that the increase in circumference of the shell
corresponds to an increase in diameter, ecd, so that the circumferential strain is equal
to diametral strain (and also radial strain). The increase in volume, AV, of the shell
is then given by

AV = %(d +ecd)* (L + e L) — %dZL
which, when second-order terms are neglected, simplifies to

2

L
PN L T, (7.66)

4
Substituting for . and ec in Eq. (7.66) from Eqs (7.64) and (7.65) we obtain

nd*Lpd (5
AV = i (S
V== tE(4 ”)

so that the volumetric strain is

AV pd (5
(nd?L/4) ~ (E <Z N ”) (7.67)

The analysis of a spherical shell is somewhat simpler since only one direct stress is
involved. It can be seen from Fig. 7.26(a) and (b) that no matter which diametral
plane is chosen, the tensile stress, o, in the walls of the shell is constant. Thus for the
equilibrium of the hemispherical portion shown in Fig. 7.26(b)

d2

b4
dt = —
o X px—

from which
pd
o= (7.68)
Again we have a two-dimensional state of stress acting on a small element of the
shell wall (Fig. 7.26(c)) but in this case the direct stresses in the two directions are
equal. Also the volumetric strain is determined in an identical manner to that for the
cylindrical shell and is

3pd
E(l —v) (7.69)
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FiGUuRre 7.26
Stress in a
spherical shell
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ExAmPLE 7.8 A thin-walled, cylindrical shell has an internal diameter of 2m and
is fabricated from plates 20 mm thick. Calculate the safe pressure in the shell if the
tensile strength of the plates is 400 N/mm? and the factor of safety is 6. Determine also
the percentage increase in the volume of the shell when it is subjected to this pressure.
Take Young’s modulus E =200 000 N/mm? and Poisson’s ratio v =0.3.

The maximum tensile stress in the walls of the shell is the circumferential stress, oc,
given by Eq. (7.63). Then

400  px2x103

6  2x20

from which
p = 1.33N/mm?
The volumetric strain is obtained from Eq. (7.67) and is

133 x2 x 103 (5
4

20 < 200000 ——0.3) = 0.00063

Hence the percentage increase in volume is 0.063%.

7.12 PLANE STRAIN

The condition of plane strain occurs when all the strains in a structure, or part of
a structure, are confined to a single plane. This does not necessarily coincide with a
plane stress system as we noted in Section 7.11. Conversely, it generally requires a
three-dimensional stress system to produce a condition of plane strain.

Practical examples of plane strain situations are retaining walls or dams where the
ends of the wall or dam are constrained against movement and the loading is constant
along its length. All cross sections are then in the same condition so that any thin
slice of the wall or dam taken perpendicularly to its length would only be subjected to
strains in its own plane.

We shall examine more complex cases of plane stress and plane strain in Chapter 14.
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PROBLEMS

P7.1 A column 3m high has a hollow circular cross section of external diameter
300mm and carries an axial load of S000kN. If the stress in the column is limited
to 150 N/mm? and the shortening of the column under load must not exceed 2 mm
calculate the maximum allowable internal diameter. Take E = 200 000 N/mm?.

Ans. 205.6 mm.

P.7.2 Asteel girder is firmly attached to a wall at each end so that changes in its length
are prevented. If the girder is initially unstressed, calculate the stress induced in the
girder when it is subjected to a uniform temperature rise of 30 K. The coefficient of
linear expansion of the steel is 0.000 05/K and Young’s modulus E = 180 000 N/mm?.
(Note L=Ly(1+«T).)

Ans. 270 N/mm? (compression).

P.7.3 A column 3 m high has a solid circular cross section and carries an axial load of
10000 kN. If the direct stress in the column is limited to 150 N/mm? determine the
minimum allowable diameter. Calculate also the shortening of the column due to this
load and the increase in its diameter. Take E =200 000 N/mm? and v =0.3.

Ans. 291.3 mm, 2.25 mm, 0.066 mm.

P.7.4 A structural member, 2m long, is found to be 1.5 mm short when positioned
in a framework. To enable the member to be fitted it is heated uniformly along its
length. Determine the necessary temperature rise. Calculate also the residual stress
in the member when it cools to its original temperature if movement of the ends of
the member is prevented.

If the member has a rectangular cross section, determine the percentage change
in cross-sectional area when the member is fixed in position and at its original
temperature.

Young’s modulus E =200 000 N/mm?, Poisson’s ratio v=0.3 and the coefficient of
linear expansion of the material of the member is 0.000 012/K.

Ans. 62.5K, 150 N/mm? (tension), 0.045% (reduction).

P7.5 A member of a framework is required to carry an axial tensile load of 100 kN. It
is proposed that the member be comprised of two angle sections back to back in which
one 18 mm diameter hole is allowed per angle for connections. If the allowable stress
is 155 N/mm?, suggest suitable angles.

Ans. Required minimum area of cross section = 645.2 mm?. From steel tables, two
equal angles 50 x 50 x 5 mm are satisfactory.
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P7.6 A vertical hanger supporting the deck of a suspension bridge is formed from a
steel cable 25 m long and having a diameter of 7.5 mm. If the density of the steel is
7850 kg/m?> and the load at the lower end of the hanger is 5 kN, determine the maximum
stress in the cable and its elongation. Young’s modulus E =200 000 N/mm?.

Ans. 115.1 N/mm?, 14.3 mm.

P7.7 A concrete chimney 40 m high has a cross-sectional area (of concrete) of 0.15 m?
and is stayed by three groups of four cables attached to the chimney at heights of
15, 25 and 35 m respectively. If each cable is anchored to the ground at a distance
of 20m from the base of the chimney and tensioned to a force of 15kN, calculate
the maximum stress in the chimney and the shortening of the chimney including the
effect of its own weight. The density of concrete is 2500 kg/m? and Young’s modulus
E =20000 N/mm?.

Ans. 1.9N/mm?, 2.2 mm.

P.7.8 A column of height / has a rectangular cross section which tapers linearly in
width from b; at the base of the column to b; at the top. The breadth of the cross
section is constant and equal to a. Determine the shortening of the column due to an
axial load P.

Ans. (Ph/[aE(b1 — bz)]) loge(bl/bz).

P.7.9 Determine the vertical deflection of the 20kN load in the truss shown in
Fig. P7.9. The cross-sectional area of the tension members is 100 mm? while that
of the compression members is 200 mm?. Young’s modulus E = 205 000 N/mm?.

Ans. 4.5 mm.

3m Figure P.7.9

P7.10 The truss shown in Fig. P.7.10 has members of cross-sectional area 1200 mm?
and Young’s modulus 205 000 N/mm?. Determine the vertical deflection of the load.

Ans. 10.3 mm.
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L 2m P 2m
[

>

100 kN

Ficure P.7.10

P.7.11 Three identical bars of length L are hung in a vertical position as shown in
Fig. P7.11. A rigid, weightless beam is attached to their lower ends and this in turn
carries a load P. Calculate the load in each bar.

Ans. Py=P/12,P,=P/3,P3="TP/12.

/

[ ]

l P
a l a2 | a2 ’ Ficure P.7.11

P.7.12 A composite column is formed by placing a steel bar, 20 mm in diameter and

200 mm long, inside an alloy cylinder of the same length whose internal and external
diameters are 20 and 25 mm, respectively. The column is then subjected to an axial
load of 50kN. If E for steel is 200000 N/mm? and E for the alloy is 70 000 N/mm?,
calculate the stress in the cylinder and in the bar, the shortening of the column and
the strain energy stored in the column.

Ans. 46.5N/mm? (cylinder), 132.9 N/mm? (bar), 0.13 mm, 3.3 Nm.

P.7.13 A timber column, 3 m high, has a rectangular cross section, 100 mm x 200 mm,
and is reinforced over its complete length by two steel plates each 200 mm wide and
10mm thick attached to its 200 mm wide faces. The column is designed to carry a
load of 100 kN. If the failure stress of the timber is 55 N/mm? and that of the steel is
380 N/mm?, check the design using a factor of safety of 3 for the timber and 2 for the
steel. E (timber) = 15 000 N/mm?, E (steel) =200 000 N/mm?.

Ans. o (timber) = 13.6 N/mm? (allowable stress = 18.3 N/mm?),
o (steel) = 181.8 N/mm? (allowable stress = 190 N/mm?).

P.7.14 The composite bar shown in Fig. P.7.14 is initially unstressed. If the temperature
of the bar is reduced by an amount 7 uniformly along its length, find an expression for
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the tensile stress induced. The coefficients of linear expansion of steel and aluminium
are as and aa per unit temperature change, respectively, while the corresponding
values of Young’s modulus are Eg and E .

Ans. T(asLy + aalz)/(L1/Es + La/EA).

Steel Aluminium

|
|
le ,L »|
L ‘ L, ! Ficure P.7.14

P.7.15 A short bar of copper, 25 mm in diameter, is enclosed centrally within a steel
tube of external diameter 36 mm and thickness 3mm. At 0°C the ends of the bar
and tube are rigidly fastened together and the complete assembly heated to 80°C.
Calculate the stress in the bar and in the tube if E for copper is 100 000 N/mm?, E for
steel is 200 000 N/mm? and the coefficients of linear expansion of copper and steel are
0.00001/°C and 0.000 006/°C, respectively.

Ans. o (steel) =28.3 N/mm? (tension),
o (copper) = 17.9 N/mm? (compression).

P.7.16 A bar of mildsteel of diameter 75 mm is placed inside a hollow aluminium cylin-
der of internal diameter 75 mm and external diameter 100 mm; both bar and cylinder
are the same length. The resulting composite bar is subjected to an axial compressive
load of 10° N. If the bar and cylinder contract by the same amount, calculate the stress
in each.

The temperature of the compressed composite bar is then reduced by 150°C but
no change in length is permitted. Calculate the final stress in the bar and in
the cylinder. Take E (steel)=200000N/mm?, E (aluminium)==80000N/mm?, «
(steel) =0.000012/°C, « (aluminium) = 0.000 005/°C.

Ans. Due to load: o (steel) = 172.6 N/mm? (compression),
o (aluminium) = 69.1 N/mm? (compression).
Final stress: o (steel) = 187.4 N/mm? (tension),
o (aluminium) = — 9.1 N/mm? (compression).

P.7.17 Two structural members are connected together by a hinge which is formed as
shown in Fig. P.7.17. The bolt is tightened up onto the sleeve through rigid end plates
until the tensile force in the bolt is 10kN. The distance between the head of the bolt
and the nut is then 100 mm and the sleeve is 80 mm in length. If the diameter of the
bolt is 15 mm and the internal and outside diameters of the sleeve are 20 and 30 mm,
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respectively, calculate the final stresses in the bolt and sleeve when an external tensile
load of SkN is applied to the bolt.

Ans. o (bolt) = 65.4 N/mm? (tension),
o (sleeve) = 16.7 N/mm? (compression).

Rigid end plates
Sleeve
% U
[ i)
% V-
¥4
B 80 mm 7‘
100 mm Ficure P.7.17

P.7.18 Calculate the minimum wall thickness of a cast iron water pipe having an inter-
nal diameter of 1 m under a head of 120 m. The limiting tensile strength of cast iron is
20 N/mm? and the density of water is 1000 kg/m?.

Ans. 29.4 mm.

P.7.19 A thin-walled spherical shell is fabricated from steel plates and has to withstand
aninternal pressure of 0.75 N/mm?. The internal diameter is 3 m and the joint efficiency
80%. Calculate the thickness of plates required using a working stress of 80 N/mm?.
(Note, effective thickness of plates = 0.8 x actual thickness).

Ans. 8.8 mm.
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Materials

It is now clear from the discussion in Chapter 7 that the structural designer requires a
knowledge of the behaviour of materials under different types of load before he/she
can be reasonably sure of designing a safe and, at the same time, economic structure.

One of the most important properties of a material is its strength, by which we mean the
value of stress at which it fractures. Equally important in many instances, particularly
in elastic design, is the stress at which yielding begins. In addition, the designer must
have a knowledge of the stiffness of a material so that he/she can prevent excessive
deflections occurring that could cause damage to adjacent structural members. Other
factors that must be taken into consideration in design include the character of the
different loads. For example, it is common experience that a material, such as cast
iron fractures readily under a sharp blow whereas mild steel merely bends.

In Chapter 1 we reviewed the materials that are in common use in structural
engineering; we shall now examine their properties in detail.

8.1 CLASSIFICATION OF ENGINEERING MATERIALS

Engineering materials may be grouped into two distinct categories, ductile materials
and brittle materials, which exhibit very different properties under load. We shall
define the properties of ductility and brittleness and also some additional properties
which may depend upon the applied load or which are basic characteristics of the
material.

DUCTILITY

A material is said to be ductile if it is capable of withstanding large strains under load
before fracture occurs. These large strains are accompanied by a visible change in cross-
sectional dimensions and therefore give warning of impending failure. Materials in this
category include mild steel, aluminium and some of its alloys, copper and polymers.

188
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BRITTLENESS

A brittle material exhibits little deformation before fracture, the strain normally
being below 5%. Brittle materials therefore may fail suddenly without visible warning.
Included in this group are concrete, cast iron, high-strength steel, timber and ceramics.

ELASTIC MATERIALS

A material is said to be elastic if deformations disappear completely on removal of the
load. All known engineering materials are, in addition, linearly elastic within certain
limits of stress so that strain, within these limits, is directly proportional to stress.

PLASTICITY

A material is perfectly plastic if no strain disappears after the removal of load. Ductile
materials are elastoplastic and behave in an elastic manner until the elastic limit is
reached after which they behave plastically. When the stress is relieved the elastic
component of the strain is recovered but the plastic strain remains as a permanent set.

ISOTROPIC MATERIALS

In many materials the elastic properties are the same in all directions at each point in
the material although they may vary from point to point; such a material is known as
isotropic. An isotropic material having the same properties at all points is known as
homogeneous, e.g. mild steel.

ANISOTROPIC MATERIALS

Materials having varying elastic properties in different directions are known as
anisotropic.

ORTHOTROPIC MATERIALS

Although a structural material may possess different elastic properties in different
directions, this variation may be limited, as in the case of timber which has just two
values of Young’s modulus, one in the direction of the grain and one perpendicular to
the grain. A material whose elastic properties are limited to three different values in
three mutually perpendicular directions is known as orthotropic.

8.2 TESTING OF ENGINEERING MATERIALS

The properties of engineering materials are determined mainly by the mechanical
testing of specimens machined to prescribed sizes and shapes. The testing may be
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static or dynamic in nature depending on the particular property being investigated.
Possibly the most common mechanical static tests are tensile and compressive tests
which are carried out on a wide range of materials. Ferrous and non-ferrous metals
are subjected to both forms of test, while compression tests are usually carried out on
many non-metallic materials, such as concrete, timber and brick, which are normally
used in compression. Other static tests include bending, shear and hardness tests,
while the toughness of a material, in other words its ability to withstand shock loads,
is determined by impact tests.

TENSILE TESTS

Tensile tests are normally carried out on metallic materials and, in addition, timber.
Test pieces are machined from a batch of material, their dimensions being specified
by Codes of Practice. They are commonly circular in cross section, although flat test
pieces having rectangular cross sections are used when the batch of material is in the
form of a plate. A typical test piece would have the dimensions specified in Fig. 8.1.
Usually the diameter of a central portion of the test piece is fractionally less than that
of the remainder to ensure that the test piece fractures between the gauge points.

Before the test begins, the mean diameter of the test piece is obtained by taking
measurements at several sections using a micrometer screw gauge. Gauge points are
punched at the required gauge length, the test piece is placed in the testing machine
and a suitable strain measuring device, usually an extensometer, is attached to the
test piece at the gauge points so that the extension is measured over the given gauge
length. Increments of load are applied and the corresponding extensions recorded.
This procedure continues until yield (see Section 8.3) occurs, when the extensometer
is removed as a precaution against the damage which would be caused if the test piece
fractured unexpectedly. Subsequent extensions are measured by dividers placed in
the gauge points until, ultimately, the test piece fractures. The final gauge length and
the diameter of the test piece in the region of the fracture are measured so that the
percentage elongation and percentage reduction in area may be calculated. The two
parameters give a measure of the ductility of the material.

A stress—strain curve is drawn (see Figs 8.8 and 8.12), the stress normally being calcu-
lated on the basis of the original cross-sectional area of the test piece, i.e. a nominal

Fractionally
reduced
Gauge points diameter

Yo Y .
!

Gauge length (GL) L Radius, R
- » FIGURE 8.1 Standard
Length, L cylindrical test piece

Diameter, D

X
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stress as opposed to an actual stress (which is based on the actual area of cross section).
For ductile materials there is a marked difference in the latter stages of the test as
a considerable reduction in cross-sectional area occurs between yield and fracture.
From the stress—strain curve the ultimate stress, the yield stress and Young’s modulus,
E, are obtained (see Section 7.7).

There are a number of variations on the basic tensile test described above. Some of
these depend upon the amount of additional information required and some upon
the choice of equipment. Thus there is a wide range of strain measuring devices
to choose from, extending from different makes of mechanical extensometer, e.g.
Huggenberger, Lindley, Cambridge, to the electrical resistance strain gauge. The last
would normally be used on flat test pieces, one on each face to eliminate the effects
of possible bending. At the same time a strain gauge could be attached in a direction
perpendicular to the direction of loading so that lateral strains are measured. The
ratio lateral strain/longitudinal strain is Poisson’s ratio, v, (Section 7.8).

Testing machines are usually driven hydraulically. More sophisticated versions employ
load cells to record load and automatically plot load against extension or stress against
strain on a pen recorder as the test proceeds, an advantage when investigating the
distinctive behaviour of mild steel at yield.

COMPRESSION TESTS

A compression test is similar in operation to a tensile test, with the obvious differ-
ence that the load transmitted to the test piece is compressive rather than tensile.
This is achieved by placing the test piece between the platens of the testing machine
and reversing the direction of loading. Test pieces are normally cylindrical and are
limited in length to eliminate the possibility of failure being caused by instability (Chap-
ter 21). Again contractions are measured over a given gauge length by a suitable strain
measuring device.

Variations in test pieces occur when only the ultimate strength of the material in
compression is required. For this purpose concrete test pieces may take the form of
cubes having edges approximately 10cm long, while mild steel test pieces are still
cylindrical in section but are of the order of 1 cm long.

BENDING TESTS

Many structural members are subjected primarily to bending moments. Bending tests
are therefore carried out on simple beams constructed from the different materials to
determine their behaviour under this type of load.

Two forms of loading are employed the choice depending upon the type specified in
Codes of Practice for the particular material. In the first a simply supported beam is
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FIGURE 8.2
Bending test on a
beam, ‘two-point’

load
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subjected to a ‘two-point’ loading system as shown in Fig. 8.2(a). Two concentrated
loads are applied symmetrically to the beam, producing zero shear force and constant
bending moment in the central span of the beam (Fig. 8.2(b) and (c)). The condition
of pure bending is therefore achieved in the central span (see Section 9.1).

The second form of loading system consists of a single concentrated load at mid-span
(Fig. 8.3(a)) which produces the shear force and bending moment diagrams shown in
Fig. 8.3(b) and (c).

The loads may be applied manually by hanging weights on the beam or by a testing
machine. Deflections are measured by a dial gauge placed underneath the beam. From
the recorded results a load—deflection diagram is plotted.

For most ductile materials the test beams continue to deform without failure and
fracture does not occur. Thus plastic properties, e.g. the ultimate strength in bending,
cannot be determined for such materials. In the case of brittle materials, including
cast iron, timber and various plastics, failure does occur, so that plastic properties can
be evaluated. For such materials the ultimate strength in bending is defined by the
modulus of rupture. This is taken to be the maximum direct stress in bending, oy,
corresponding to the ultimate moment M, and is assumed to be related to M, by the
elastic relationship

M
Oxu = Tuymax (see Eq. 9.9)
Other bending tests are designed to measure the ductility of a material and involve
the bending of a bar round a pin. The angle of bending at which the bar starts to crack
is then taken as an indication of its ductility.
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SHEAR TESTS

Two main types of shear test are used to determine the shear properties of materials.
One type investigates the direct or transverse shear strength of a material and is used
in connection with the shear strength of bolts, rivets and beams. A typical arrangement
is shown diagrammatically in Fig. 8.4 where the test piece is clamped to a block and the
load is applied through the shear tool until failure occurs. In the arrangement shown
the test piece is subjected to double shear, whereas if it is extended only partially across
the gap in the block it would be subjected to single shear. In either case the average
shear strength is taken as the maximum load divided by the shear resisting area.

The other type of shear test is used to evaluate the basic shear properties of a material,
such as the shear modulus, G (Eq. (7.9)), the shear stress at yield and the ultimate shear
stress. In the usual form of test a solid circular-section test piece is placed in a torsion
machine and twisted by controlled increments of torque. The corresponding angles of
twist are recorded and torque—twist diagrams plotted from which the shear properties
of the material are obtained. The method is similar to that used to determine the
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Fkg
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d FIGURE 8.5 Brinell hardness test

tensile properties of a material from a tensile test and uses relationships derived in
Chapter 11.

HARDNESS TESTS

The machinability of a material and its resistance to scratching or penetration are
determined by its ‘hardness’. There also appears to be a connection between the
hardness of some materials and their tensile strength so that hardness tests may be
used to determine the properties of a finished structural member where tensile and
other tests would be impracticable. Hardness tests are also used to investigate the
effects of heat treatment, hardening and tempering and of cold forming. Two types of
hardness test are in common use: indentation tests and scratch and abrasion ftests.

Indentation tests may be subdivided into two classes: static and dynamic. Of the static
tests the Brinell is the most common. In this a hardened steel ball is pressed into the
material under test by a static load acting for a fixed period of time. The load in kg
divided by the spherical area of the indentation in mm? is called the Brinell Hardness
Number (BHN). Thus in Fig. 8.5, if D is the diameter of the ball, F' the load in kg, A
the depth of the indentation, and d the diameter of the indentation, then

F 2F
nDh 7DD — vD? — d2]
In practice the hardness number of a given material is found to vary with F and D so
that for uniformity the test is standardized. For steel and hard materials F =3000 kg

and D =10mm while for soft materials F =500kg and D =10mm; in addition the
load is usually applied for 15s.

BHN =

In the Brinell test the dimensions of the indentation are measured by means of a
microscope. To avoid this rather tedious procedure, direct reading machines have been
devised of which the Rockwell is typical. The indenting tool, again a hardened sphere,
is first applied under a definite light load. This indenting tool is then replaced by a
diamond cone with a rounded point which is then applied under a specified indentation
load. The difference between the depth of the indentation under the two loads is taken
as a measure of the hardness of the material and is read directly from the scale.

A typical dynamic hardness test is performed by the Shore Scleroscope which consists
of a small hammer approximately 20-mm long and 6 mm in diameter fitted with a
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blunt, rounded, diamond point. The hammer is guided by a vertical glass tube and
allowed to fall freely from a height of 25 cm onto the specimen, which it indents before
rebounding. A certain proportion of the energy of the hammer is expended in forming
the indentation so that the height of the rebound, which depends upon the energy still
possessed by the hammer, is taken as a measure of the hardness of the material.

A number of tests have been devised to measure the ‘scratch hardness’ of materials. In
one test, the smallest load in grams which, when applied to a diamond point, produces a
scratch visible to the naked eye on a polished specimen of material is called its hardness
number. In other tests the magnitude of the load required to produce a definite width
of scratch is taken as the measure of hardness. Abrasion tests, involving the shaking
over a period of time of several specimens placed in a container, measure the resistance
to wear of some materials. In some cases there appears to be a connection between
wear and hardness number although the results show no level of consistency.

IMPACT TESTS

Ithas been found that certain materials, particularly heat-treated steels, are susceptible
to failure under shock loading whereas an ordinary tensile test on the same material
would show no abnormality. Impact tests measure the ability of materials to withstand
shock loads and provide an indication of their foughness. Two main tests are in use,
the Izod and the Charpy.

/
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Both tests rely on a striker or weight attached to a pendulum. The pendulum is released
from a fixed height, the weight strikes a notched test piece and the angle through
which the pendulum then swings is a measure of the toughness of the material. The
arrangement for the Izod test is shown diagrammatically in Fig. 8.6(a). The specimen
and the method of mounting are shown in detail in Fig. 8.6(b). The Charpy test is
similar in operation except that the test piece is supported in a different manner as
shown in the plan view in Fig. 8.7.

8.3 STRESS—STRAIN CURVES

Ficure 8.8
Stress—strain curve
for mild steel

We shall now examine in detail the properties of the different materials used in civil
engineering construction from the viewpoint of the results obtained from tensile and
compression tests.

LOW CARBON STEEL (MILD STEEL)

A nominal stress—strain curve for mild steel, a ductile material, is shown in Fig. 8.8.
From (0 to ‘a’ the stress—strain curve is linear, the material in this range obeying Hooke’s
law. Beyond ‘@’, the limit of proportionality, stress is no longer proportional to strain
and the stress—strain curve continues to ‘b’, the elastic limit, which is defined as the
maximum stress that can be applied to a material without producing a permanent
plastic deformation or permanent set when the load is removed. In other words, if the
material is stressed beyond ‘b’ and the load then removed, a residual strain exists at
zero load. For many materials it is impossible to detect a difference between the limit
of proportionality and the elastic limit. From 0 to ‘b’ the material is said to be in the
elastic range while from ‘b’ to fracture the material is in the plastic range. The transition
from the elastic to the plastic range may be explained by considering the arrangement
of crystals in the material. As the load is applied, slipping occurs between the crystals
which are aligned most closely to the direction of load. As the load is increased,

Stess, .
oA Elastic range

| Plastic range |

—
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\ FIGURE 8.9 ‘Necking’ of a test piece in

Neck the plastic range

FiGure 8.10 “Cup-and-cone’ failure of a
mild steel test piece

more and more crystals slip with each equal load increment until appreciable strain
increments are produced and the plastic range is reached.

A further increase in stress from ‘b’ results in the mild steel reaching its upper yield
point at ‘¢’ followed by a rapid fall in stress to its lower yield point at ‘d’. The existence
of a lower yield point for mild steel is a peculiarity of the tensile test wherein the
movement of the ends of the test piece produced by the testing machine does not
proceed as rapidly as its plastic deformation; the load therefore decreases, as does the
stress. From ‘d’ to ‘f” the strain increases at a roughly constant value of stress until
strain hardening (see Section 8.4) again causes an increase in stress. This increase in
stress continues, accompanied by a large increase in strain to ‘g’, the ultimate stress,
oult, of the material. At this point the test piece begins, visibly, to ‘neck’ as shown in
Fig. 8.9. The material in the test piece in the region of the ‘neck’ is almost perfectly
plastic at this stage and from this point, onwards to fracture, there is a reduction in
nominal stress.

For mild steel, yielding occurs at a stress of the order of 300 N/mm?. At fracture
the strain (i.e. the elongation) is of the order of 30%. The gradient of the linear
portion of the stress—strain curve gives a value for Young’s modulus in the region of
200 000 N/mm?.

The characteristics of the fracture are worthy of examination. In a cylindrical test
piece the two halves of the fractured test piece have ends which form a ‘cup and cone’
(Fig. 8.10). The actual failure planes in this case are inclined at approximately 45° to
the axis of loading and coincide with planes of maximum shear stress (Section 14.2).
Similarly, if a flat tensile specimen of mild steel is polished and then stressed, a pat-
tern of fine lines appears on the polished surface at yield. These lines, which were first
discovered by Liider in 1854, intersect approximately at right angles and are inclined
at 45° to the axis of the specimen, thereby coinciding with planes of maximum shear
stress. These forms of yielding and fracture suggest that the crystalline structure of
the steel is relatively weak in shear with yielding taking the form of the sliding of one
crystal plane over another rather than the tearing apart of two crystal planes.

The behaviour of mild steel in compression is very similar to its behaviour in tension,
particularly in the elastic range. In the plastic range it is not possible to obtain ultimate
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FiGure 8.11 ‘Barrelling’ of a mild steel test
A\ piece in compression

and fracture loads since, due to compression, the area of cross section increases as
the load increases producing a ‘barrelling’ effect as shown in Fig. 8.11. This increase
in cross-sectional area tends to decrease the true stress, thereby increasing the load
resistance. Ultimately a flat disc is produced. For design purposes the ultimate stresses
of mild steel in tension and compression are assumed to be the same.

The ductility of mild steel is often an advantage in that structures fabricated from
mild steel do not generally suffer an immediate and catastrophic collapse if the yield
stress of a member is exceeded. The member will deform in such a way that loads
are redistributed to other adjacent members and at the same time will exhibit signs of
distress thereby giving a warning of a probable impending collapse.

Higher grades of steel have greater strengths than mild steel but are not as ductile. They
also possess the same Young’s modulus so that the higher stresses are accompanied
by higher strains.

Steel structures are very susceptible to rust which forms on surfaces exposed to oxygen
and moisture (air and rain) and this can seriously weaken a member as its cross-
sectional area is eaten away. Generally, exposed surfaces are protected by either
galvanizing, in which they are given a coating of zinc, or by painting. The latter system
must be properly designed and usually involves shot blasting the steel to remove the
loose steel flakes, or millscale, produced in the hot rolling process, priming, undercoat-
ing and painting. Cold-formed sections do not suffer from millscale so that protective
treatments are more easily applied.

ALUMINIUM

Aluminium and some of its alloys are also ductile materials, although their stress—
strain curves do not have the distinct yield stress of mild steel. A typical stress—strain
curve is shown in Fig. 8.12. The points ‘a’ and ‘b’ again mark the limit of proportionality
and elastic limit, respectively, but are difficult to determine experimentally. Instead
a proof stress is defined which is the stress required to produce a given permanent
strain on removal of the load. In Fig. 8.12, a line drawn parallel to the linear portion
of the stress—strain curve from a strain of 0.001 (i.e. a strain of 0.1%) intersects the
stress—strain curve at the 0.1% proof stress. For elastic design this, or the 0.2% proof
stress, is taken as the working stress.
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Beyond the limit of proportionality the material extends plastically, reaching its
ultimate stress, oyy, at ‘d’ before finally fracturing under a reduced nominal stress at f”.

Afeature of the fracture of aluminium alloy test pieces is the formation of a ‘double cup’
as shown in Fig. 8.13, implying that failure was initiated in the central portion of the test
piece while the outer surfaces remained intact. Again considerable ‘necking’ occurs.

FIGURE 8.13 ‘Double-cup’ failure of an
aluminium alloy test piece

In compression tests on aluminium and its ductile alloys similar difficulties are encoun-
tered to those experienced with mild steel. The stress—strain curve is very similar in the
elastic range to that obtained in a tensile test but the ultimate strength in compression
cannot be determined; in design its value is assumed to coincide with that in tension.

Aluminium and its alloys can suffer a form of corrosion particularly in the salt laden
atmosphere of coastal regions. The surface becomes pitted and covered by a white
furry deposit. This can be prevented by an electrolytic process called anodizing which
covers the surface with an inert coating. Aluminium alloys will also corrode if they
are placed in direct contact with other metals, such as steel. To prevent this, plastic is
inserted between the possible areas of contact.

BRITTLE MATERIALS

These include cast iron, high-strength steel, concrete, timber, ceramics, glass, etc.
The plastic range for brittle materials extends to only small values of strain. A typical
stress—strain curve for a brittle material under tension is shown in Fig. 8.14. Little or no
yielding occurs and fracture takes place very shortly after the elastic limit is reached.

The fracture of a cylindrical test piece takes the form of a single failure plane approx-
imately perpendicular to the direction of loading with no visible ‘necking’ and an
elongation of the order of 2-3%.
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In compression the stress—strain curve for a brittle material is very similar to that in
tension except that failure occurs at a much higher value of stress; for concrete the
ratio is of the order of 10: 1. This is thought to be due to the presence of microscopic
cracks in the material, giving rise to high stress concentrations which are more likely
to have a greater effect in reducing tensile strength than compressive strength.

The form of the fracture of brittle materials under compression is clear and visible.
For example, a cast-iron cylinder cracks on a diagonal plane as shown in Fig. 8.15(a)
while failure of a concrete cube is shown in Fig. 8.15(b) where failure planes intersect
at approximately 45° along each vertical face. Figure 8.15(c) shows a typical failure of
arectangular block of timber in compression. Failure in all these cases is due primarily
to a breakdown in shear on planes inclined to the direction of compression.

Brittle materials can suffer deterioration in hostile environments although concrete is
very durable and generally requires no maintenance. Concrete also provides a protec-
tive cover for the steel reinforcement in beams where the amount of cover depends on
the diameter of the reinforcing bars and the degree of exposure of the beam. In some
situations, e.g. in foundations, concrete is prone to chemical attack from sulphates
contained in groundwater although if these are known to be present sulphate resisting
cement can be used in the concrete.

Brick and stone are durable materials and can survive for hundreds of years as evi-
denced by the many medieval churches and Jacobean houses which still exist. There
are, of course, wide variations in durability. For example, granite is extremely hard
whereas the much softer sandstone can be worn away over periods of time by the
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combined effects of wind and rain, particularly acid rain which occurs when sulphur
dioxide, produced by the burning of fossil fuels, reacts with water to form sulphuric
acid. Bricks and stone are vulnerable to repeated wetting and freezing in which water,
penetrating any surface defect, can freeze causing parts of the surface to flake off or
spall. Some protection can be provided by masonry paints but these require frequent
replacement. An alternative form of protection is a sealant which can be sprayed onto
the surface of the masonry. The disadvantage of this is that, while preventing moisture
penetrating the building, it also prevents water vapour from leaving. The ideal solution
is to use top quality materials, do not apply any treatment and deal with any problem
as it arises.

Timber, as we noted in Chapter 1, can be protected from fungal and insect attacks by
suitable treatments.

COMPOSITES

Fibre composites have stress—strain characteristics which indicate that they are brittle
materials (Fig. 8.16). There is little or no plasticity and the modulus of elasticity is
less than that of steel and aluminium alloy. However, the fibres themselves can have
much higher values of strength and modulus of elasticity than the composite. For
example, carbon fibres have a tensile strength of the order 2400 N/mm? and a modulus
of elasticity of 400 000 N/mm?.

Fibre composites are highly durable, require no maintenance and can be used in
hostile chemical and atmospheric environments; vinyls and epoxy resins provide the
best resistance.

All the stress—strain curves described in the preceding discussion are those produced
in tensile or compression tests in which the strain is applied at a negligible rate. A
rapid strain application would result in significant changes in the apparent properties
of the materials giving possible variations in yield stress of up to 100%.
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8.4 STRAIN HARDENING

The stress—strain curve for a material is influenced by the strain history, or the loading
and unloading of the material, within the plastic range. For example, in Fig. 8.17 a
test piece is initially stressed in tension beyond the yield stress at, ‘a’, to a value at
‘b’. The material is then unloaded to ‘¢’ and reloaded to ‘f” producing an increase in
yield stress from the value at ‘a’ to the value at ‘d’. Subsequent unloading to ‘g’ and
loading to ‘j” increases the yield stress still further to the value at ‘h’. This increase in
strength resulting from the loading and unloading is known as strain hardening. It can
be seen from Fig. 8.17 that the stress—strain curve during the unloading and loading
cycles forms loops (the shaded areas in Fig. 8.17). These indicate that strain energy
is lost during the cycle, the energy being dissipated in the form of heat produced by
internal friction. This energy loss is known as mechanical hysteresis and the loops as
hysteresis loops. Although the ultimate stress is increased by strain hardening it is not
influenced to the same extent as yield stress. The increase in strength produced by
strain hardening is accompanied by decreases in toughness and ductility.

8.5 CREEP AND RELAXATION

We have seen in Chapter 7 that a given load produces a calculable value of stress in a
structural member and hence a corresponding value of strain once the full value of the
load is transferred to the member. However, after this initial or ‘instantaneous’ stress
and its corresponding value of strain have been attained, a great number of structural
materials continue to deform slowly and progressively under load over a period of
time. This behaviour is known as creep. A typical creep curve is shown in Fig. 8.18.

Some materials, such as plastics and rubber, exhibit creep at room temperatures but
most structural materials require high temperatures or long-duration loading at mod-
erate temperatures. In some ‘soft’ metals, such as zinc and lead, creep occurs over
a relatively short period of time, whereas materials such as concrete may be subject
to creep over a period of years. Creep occurs in steel to a slight extent at normal
temperatures but becomes very important at temperatures above 316°C.
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Closely related to creep is relaxation. Whereas creep involves an increase in strain
under constant stress, relaxation is the decrease in stress experienced over a period of
time by a material subjected to a constant strain.

Structural members are frequently subjected to repetitive loading over a long period
of time. For example, the members of a bridge structure suffer variations in loading
possibly thousands of times a day as traffic moves over the bridge. In these circum-
stances a structural member may fracture at a level of stress substantially below the
ultimate stress for non-repetitive static loads; this phenomenon is known as fatigue.

Fatigue cracks are most frequently initiated at sections in a structural member where
changes in geometry, e.g. holes, notches or sudden changes in section, cause stress
concentrations. Designers seek to eliminate such areas by ensuring that rapid changes
in section are as smooth as possible. Thus at re-entrant corners, fillets are provided as
shown in Fig. 8.19.

Other factors which affect the failure of a material under repetitive loading are the type
of loading (fatigue is primarily a problem with repeated tensile stresses due, probably,
to the fact that microscopic cracks can propagate more easily under tension), temper-
ature, the material, surface finish (machine marks are potential crack propagators),
corrosion and residual stresses produced by welding.

Frequently in structural members an alternating stress, oy, is superimposed on a static
Or mean Stress, omean, as illustrated in Fig. 8.20. The value of oy is the most important
factor in determining the number of cycles of load that produce failure. The stress,
oalt, that can be withstood for a specified number of cycles is called the fatigue strength
of the material. Some materials, such as mild steel, possess a stress level that can be
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withstood for an indefinite number of cycles. This stress is known as the endurance
limit of the material; no such limit has been found for aluminium and its alloys. Fatigue
data are frequently presented in the form of an S—n curve or stress—endurance curve
as shown in Fig. 8.21.

In many practical situations the amplitude of the alternating stress varies and is fre-
quently random in nature. The S-»n curve does not, therefore, apply directly and an
alternative means of predicting failure is required. Miner’s cumulative damage theory
suggests that failure will occur when

L | (8.1)

where ni,ns,...,n, are the number of applications of stresses ou1t, Omean and
N1,Ny,...,N, are the number of cycles to failure of stresses o,t, Omean-
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8.7 DESIGN METHODS

In Section 8.3 we examined stress—strain curves for different materials and saw that,
generally, there are two significant values of stress: the yield stress, oy, and the ultimate
stress, oy;. Either of these two stresses may be used as the basis of design which must
ensure, of course, that a structure will adequately perform the role for which it is
constructed. In any case the maximum stress in a structure should be kept below the
elastic limit of the material otherwise a permanent set will result when the loads are
applied and then removed.

Two design approaches are possible. The first, known as elastic design, uses either the
yield stress (for ductile materials), or the ultimate stress (for brittle materials) and
establishes a working or allowable stress within the elastic range of the material by
applying a suitable factor of safety whose value depends upon a number of consider-
ations. These include the type of material, the type of loading (fatigue loading would
require a larger factor of safety than static loading which is obvious from Section 8.6)
and the degree of complexity of the structure. Therefore for materials such as steel,
the working stress, oy, is given by
oy

ow =~ 8.2)

where n is the factor of safety, a typical value being 1.65. For a brittle material, such

as concrete, the working stress would be given by

[of
Ow = 7“ (8.3)

in which n is of the order of 2.5.

Elastic design has been superseded for concrete by limit state or ultimate load design
and for steel by plastic design (or limit, or ultimate load design). In this approach the
structure is designed with a given factor of safety against complete collapse which is
assumed to occur in a concrete structure when the stress reaches oy and occurs in a
steel structure when the stress at one or more points reaches oy (see Section 9.10). In
the design process working or actual loads are determined and then factored to give
the required ultimate or collapse load of the structure. Knowing oy (for concrete) or
oy (for steel) the appropriate section may then be chosen for the structural member.

The factors of safety used in ultimate load design depend upon several parameters.
These may be grouped into those related to the material of the member and those
related to loads. Thus in the ultimate load design of a reinforced concrete beam the
values of oy for concrete and oy for the reinforcing steel are factored by partial safety
factors to give design strengths that allow for variations of workmanship or quality
of control in manufacture. Typical values for these partial safety factors are 1.5 for
concrete and 1.15 for the reinforcement. Note that the design strength in both cases is
less than the actual strength. In addition, as stated above, design loads are obtained in
which the actual loads are increased by multiplying the latter by a partial safety factor
which depends upon the type of load being considered.
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TABLE 8.1

Properties of Engineering Materials

Aswell as strength, structural members must possess sufficient stiffness, under normal
working loads, to prevent deflections being excessive and thereby damaging adjacent
parts of the structure. Another consideration related to deflection is the appearance of
a structure which can be adversely affected if large deflections cause cracking of pro-
tective and/or decorative coverings. This is particularly critical in reinforced concrete
beams where the concrete in the tension zone of the beam cracks; this does not affect
the strength of the beam since the tensile stresses are withstood by the reinforcement.
However, if deflections are large the crack widths will be proportionately large and
the surface finish and protection afforded by the concrete to the reinforcement would
be impaired.

Codes of Practice limit deflections of beams either by specifying maximum span/depth
ratios or by fixing the maximum deflection in terms of the span. A typical limitation
for a reinforced concrete beam is that the total deflection of the beam should not
exceed span/250. An additional proviso is that the deflection that takes place after the
construction of partitions and finishes should not exceed span/350 or 20 mm, whichever
is the lesser. A typical value for a steel beam is span/360.

It is clear that the deflections of beams under normal working loads occur within the
elastic range of the material of the beam no matter whether elastic or ultimate load
theory has been used in their design. Deflections of beams, therefore, are checked
using elastic analysis.

Material Density Modulus of Shear Yield Ultimate Poisson’s
(kN/m3) elasticity,  modulus, stress, stress, ratio v
E (N/mm?) G (N/mm?) oy (N/mm?) o, (N/mm?)
Aluminium alloy 27.0 70000 40000 290 440 0.33
Brass 82.5 103 000 41000 103 276
Bronze 87.0 103 000 45000 138 345
Cast iron 72.3 103 000 41000 552 0.25
(compression)
138 (tension)
Concrete 22.8 21400 20.7 0.13
(medium strength) (compression)
Copper 80.6 117000 41000 245 345
Steel (mild) 77.0 200000 79000 250 410-550 0.27
Steel 77.0 200000 79000 414 690 0.27
(high carbon)
Prestressing wire 200000 1570
Timber
softwood 7000 16
hardwood 6.0 12000 30
Composite 20000 250

(glass fibre)
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8.8 MATERIAL PROPERTIES

Table 8.1 lists some typical properties of the more common engineering materials.

PROBLEMS

P.8.1 Describe a simple tensile test and show, with the aid of sketches, how mea-
sures of the ductility of the material of the specimen may be obtained. Sketch typical
stress—strain curves for mild steel and an aluminium alloy showing their important
features.

P.8.2 A bar of metal 25 mm in diameter is tested on a length of 250 mm. In tension
the following results were recorded:

TABLE P.8.2(a)

Load (kN) 10.4 31.2 52.0 72.8

Extension (mm) 0.036 0.089 0.140 0.191
A torsion test gave the following results:

TaBLE P.8.2(b)

Torque (kN m) 0.051 0.152  0.253 0.354

Angle of twist (degrees) 0.24  0.71 1175 1.042

Represent these results in graphical form and hence determine Young’s modulus,
E, the modulus of rigidity, G, Poisson’s ratio, v, and the bulk modulus, K, for the
metal.

(Note: see Chapter 11 for torque—angle of twist relationship).
Ans. E ~205000N/mm?, G ~ 80700 N/mm?, v ~0.27, K ~ 148 500 N/mm?.

P.8.3 The actual stress—strain curve for a particular material is given by o = Ce” where
C is a constant. Assuming that the material suffers no change in volume during plastic
deformation, derive an expression for the nominal stress-strain curve and show that
this has a maximum value when e =n/(1 —n).

Ans. o (nominal) =Cs" /(1 +¢).

P.8.4 A structural member is to be subjected to a series of cyclic loads which produce
different levels of alternating stress as shown below. Determine whether or not a
fatigue failure is probable.

Ans. Not probable (n1/Ny +ny/N2 + --- =0.39).
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TaBLE P.8.4

Loading  Number of cycles Number of cycles to failure

1 10t 5 x 10%
2 10° 100

3 100 24 x 107
4 107 12 x 107
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chapier 9 / Bending of Beams

In Chapter 7 we saw that an axial load applied to a member produces a uniform direct
stress across the cross section of the member (Fig. 7.2). A different situation arises
when the applied loads cause a beam to bend which, if the loads are vertical, will take
up a sagging or hogging shape (Section 3.2). This means that for loads which cause a
beam to sag the upper surface of the beam must be shorter than the lower surface as
the upper surface becomes concave and the lower one convex; the reverse is true for
loads which cause hogging. The strains in the upper regions of the beam will, therefore,
be different to those in the lower regions and since we have established that stress is
directly proportional to strain (Eq. (7.7)) it follows that the stress will vary through the
depth of the beam.

The truth of this can be demonstrated by a simple experiment. Take a reasonably long
rectangular rubber eraser and draw three or four lines on its longer faces as shown
in Fig. 9.1(a); the reason for this will become clear a little later. Now hold the eraser
between the thumb and forefinger at each end and apply pressure as shown by the
direction of the arrows in Fig. 9.1(b). The eraser bends into the shape shown and the
lines on the side of the eraser remain straight but are now further apart at the top than
at the bottom. Reference to Section 2.2 shows that a couple, or pure moment, has been
applied to each end of the eraser and, in this case, has produced a hogging shape.

Since, in Fig. 9.1(b), the upper fibres have been stretched and the lower fibres com-
pressed there will be fibres somewhere in between which are neither stretched nor
compressed; the plane containing these fibres is called the neutral plane.

Convex

Concave

FiGURE 9.1
Bending of a
rubber eraser  (a) (b)

209



210 < Chapter 9 / Bending of Beams

Now rotate the eraser so that its shorter sides are vertical and apply the same pressure
with your fingers. The eraser again bends but now requires much less effort. It follows
that the geometry and orientation of a beam section must affect its bending stiffness.
This is more readily demonstrated with a plastic ruler. When flat it requires hardly any
effort to bend it but when held with its width vertical it becomes almost impossible to
bend. What does happen is that the lower edge tends to move sideways (for a hogging
moment) but this is due to a type of instability which we shall investigate later.

We have seen in Chapter 3 that bending moments in beams are produced by the action
of either pure bending moments or shear loads. Reference to problem P.3.4 also shows
that two symmetrically placed concentrated shear loads on a simply supported beam
induce a state of pure bending, i.e. bending without shear, in the central portion of the
beam. It is also possible, as we shall see in Section 9.2, to produce bending moments
by applying loads parallel to but offset from the centroidal axis of a beam. Initially,
however, we shall concentrate on beams subjected to pure bending moments and
consider the corresponding internal stress distributions.

9.1 SYMMETRICAL BENDING

Although symmetrical bending is a special case of the bending of beams of arbitrary
cross section, we shall investigate the former first, so that the more complex general
case may be more easily understood.

Symmetrical bending arises in beams which have either singly or doubly symmetrical
cross sections; examples of both types are shown in Fig. 9.2.

Suppose that a length of beam, of rectangular cross section, say, is subjected to a pure,
sagging bending moment, M, applied in a vertical plane. The length of beam will bend
into the shape shown in Fig. 9.3(a) in which the upper surface is concave and the lower
convex. It can be seen that the upper longitudinal fibres of the beam are compressed
while the lower fibres are stretched. It follows that, as in the case of the eraser, between
these two extremes there are fibres that remain unchanged in length.

Axis of symmetry

_W,J;ﬁm_ S| S | N
|

Double Double Single Single FIGURE 9.2 Symmetrical
(rectangular) (I-section) (channel section) (T-section) section beams
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Thus the direct stress varies through the depth of the beam from compression in the
upper fibres to tension in the lower. Clearly the direct stress is zero for the fibres that
do not change in length; we have called the plane containing these fibres the neutral
plane. The line of intersection of the neutral plane and any cross section of the beam
is termed the neutral axis (Fig. 9.3(b)).

The problem, therefore, is to determine the variation of direct stress through the depth
of the beam, the values of the stresses and subsequently to find the corresponding beam
deflection.

ASSUMPTIONS

The primary assumption made in determining the direct stress distribution produced
by pure bending is that plane cross sections of the beam remain plane and normal to
the longitudinal fibres of the beam after bending. Again, we saw this from the lines on
the side of the eraser. We shall also assume that the material of the beam is linearly
elastic, i.e. it obeys Hooke’s law, and that the material of the beam is homogeneous.
Cases of composite beams are considered in Chapter 12.

DIRECT STRESS DISTRIBUTION

Consider a length of beam (Fig. 9.4(a)) that is subjected to a pure, sagging bending
moment, M, applied in a vertical plane; the beam cross section has a vertical axis of
symmetry as shown in Fig. 9.3(b). The bending moment will cause the length of beam
to bend in a similar manner to that shown in Fig. 9.3(a) so that a neutral plane will

M M
-~ T =y
-—. Neutral |plane __.— l Neutral
axis
(a) (b)
Y y
M M J P M 5A
s I I y1
-
ST _ _ >x X _lo ___Neutral
L I 0 G S z y, axis
N :K Q |
dx

(a) (b)
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FIGURE 9.5

Length of beam
subjected to a pure
bending moment

exist which is, as yet, unknown distances y; and y, from the top and bottom of the
beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz
(see Section 3.2) in which the origin O lies in the neutral plane of the beam. We
shall now investigate the behaviour of an elemental length, 8x, of the beam formed by
parallel sections MIN and PGQ (Fig. 9.4(a)) and also the fibre ST of cross-sectional
area 34 a distance y above the neutral plane. Clearly, before bending takes place
MP =IG=ST=NQ=#.

The bending moment M causes the length of beam to bend about a centre of curvature
C as shown in Fig. 9.5(a). Since the element is small in length and a pure moment
is applied we can take the curved shape of the beam to be circular with a radius of
curvature R measured to the neutral plane. This is a useful reference point since, as
we have seen, strains and stresses are zero in the neutral plane.

The previously parallel plane sections MIN and PGQ remain plane as we have demon-
strated but are now inclined at an angle 86 to each other. The length MP is now shorter
than 3x as is ST while NQ is longer; IG, being in the neutral plane, is still of length &x.
Since the fibre ST has changed in length it has suffered a strain &, which is given by

h in length
_ Saanse In enst (see Eq. (7.4))

original length
Then
_ (R—y)30 — &
T &
ie.
_ (R—y)3 — Rd0
T R36
so that
b = — ;—2 (9.1)

The negative sign in Eq. (9.1) indicates that fibres in the region where y is positive will
shorten when the bending moment is positive. Then, from Eq. (7.7), the direct stress

/)

Neutral
plane Neutral

axis

O'X2



9.1 Symmetrical Bending < 213

oy in the fibre ST is given by
Y
oy =—F R 9.2)
The direct or normal force on the cross section of the fibre ST is 0,84. However, since
the direct stress in the beam section is due to a pure bending moment, in other words
there is no axial load, the resultant normal force on the complete cross section of the
beam must be zero. Then

fA 0, dA =0 (93)

where A is the area of the beam cross section.

Substituting for o, in Eq. (9.3) from Eq. (9.2) gives

E
—§[4ydA =0 (94)

in which both E and R are constants for a beam of a given material subjected to a given
bending moment. Thus

/A yd4 =0 (9.5)

Equation (9.5) states that the first moment of the area of the cross section of the beam
with respect to the neutral axis, i.e. the z axis, is equal to zero. Thus we see that the
neutral axis passes through the centroid of area of the cross section. Since the y axis in
this case is also an axis of symmetry, it must also pass through the centroid of the cross
section. Hence the origin, O, of the coordinate axes, coincides with the centroid of
area of the cross section.

Equation (9.2) shows that for a sagging (i.e. positive) bending moment the direct stress
in the beam section is negative (i.e. compressive) when y is positive and positive (i.e.
tensile) when y is negative.

Consider now the elemental strip 84 in Fig. 9.4(b); this is, in fact, the cross section
of the fibre ST. The strip is above the neutral axis so that there will be a compressive
force acting on its cross section of 0,84 which is numerically equal to (Ey/R)38A from
Eq. (9.2). Note that this force will act at all sections along the length of ST. At S this
force will exert a clockwise moment (Ey/R)y3A about the neutral axis while at T the
force will exert an identical anticlockwise moment about the neutral axis. Considering
either end of ST we see that the moment resultant about the neutral axis of the stresses
on all such fibres must be equivalent to the applied moment M, i.e.

y2
M:/E—dA
"R
or

E
M== / y?dA (9.6)
R J4



214

Chapter 9 / Bending of Beams

The term [, y? dA is known as the second moment of area of the cross section of the
beam about the neutral axis and is given the symbol /. Rewriting Eq. (9.6) we have

EI
M=— 9.7)

or, combining this expression with Eq. (9.2)

M E oy
= 9.8

From Eq. (9.8) we see that

Oy = ——— (9.9)

The direct stress, oy, at any point in the cross section of a beam is therefore directly
proportional to the distance of the point from the neutral axis and so varies linearly
through the depth of the beam as shown, for the section JK, in Fig. 9.5(b). Clearly, for
a positive, or sagging, bending moment oy is positive, i.e. tensile, when y is negative
and compressive (i.e. negative) when y is positive. Thus in Fig. 9.5(b)

M M
Ox1 = % (compression) Ox2 = % (tension) (9.10)

Furthermore, we see from Eq. (9.7) that the curvature, 1/R, of the beam is given by

1 M

and is therefore directly proportional to the applied bending moment and inversely
proportional to the product EI which is known as the flexural rigidity of the beam.

ELASTIC SECTION MODULUS
Equation (9.10) may be written in the form

M M
Ox2 =
Ze,l * Ze,2

Ox,1 = (9.12)
in which the terms Z. 1 (=1 /y1) and Z. 2(=I /y2) are known as the elastic section moduli
of the cross section. For a beam section having the z axis as an axis of symmetry, say,
y1=y2 and Z. 1 =Z.» = Z.. Then, numerically

M

x,1 x,2 Ze ( )
Expressing the extremes of direct stress in a beam section in this form is extremely
useful in elastic design where, generally, a beam of a given material is required to
support a given bending moment. The maximum allowable stress in the material of

the beam is known and a minimum required value for the section modulus, Z., can
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be calculated. A suitable beam section may then be chosen from handbooks which list
properties and dimensions, including section moduli, of standard structural shapes.

The selection of a beam cross section depends upon many factors; these include the
type of loading and construction, the material of the beam and several others. However,
for a beam subjected to bending and fabricated from material that has the same failure
stress in compression as in tension, it is logical to choose a doubly symmetrical beam
section having its centroid (and therefore its neutral axis) at mid-depth. Also it can be
seen from Fig. 9.5(b) that the greatest values of direct stress occur at points furthest
from the neutral axis so that the most efficient section is one in which most of the
material is located as far as possible from the neutral axis. Such a section is the I-section
shown in Fig. 9.2.

ExampLE 9.1 A simply supported beam, 6 m long, is required to carry a uniformly
distributed load of 10 kN/m. If the allowable direct stress in tension and compression
is 155 N/mm?, select a suitable cross section for the beam.

From Fig. 3.15(d) we see that the maximum bending moment in a simply supported

beam of length L carrying a uniformly distributed load of intensity w is given by
wL? .
Mmax = T (1)
Therefore in this case

10 x 62

Mmax = =45kNm

The required section modulus of the beam is now obtained using Eq. (9.13), thus
Mmax 45 x 10°
Oy, max 155

From tables of structural steel sections it can be seen that a Universal Beam, 254 mm x

= 290323 mm?

Ze,min =

102 mm x 28 kg/m, has a section modulus (about a centroidal axis parallel to its flanges)
of 307 600 mm?>. This is the smallest beam section having a section modulus greater
than that required and allows a margin for the increased load due to the self-weight of
the beam. However, we must now check that the allowable stress is not exceeded due
to self-weight. The total load intensity produced by the applied load and self-weight is

28 x 9.81
Hence, from Eq. (i)
10. 2
My = 222 38X O _ 464kNm

Therefore from Eq. (9.13)

46.4 x 103 x 103

Ox,max = 307600 =150.8 N/InIIl2
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FIGURE 9.6 Direct

stress distribution
in beam of Ex. 9.2

The allowable stress is 155 N/mm? so that the Universal Beam, 254 mm x 102 mm x
28 kg/m, is satisfactory.

EXAMPLE 9.2 The cross section of a beam has the dimensions shown in Fig. 9.6(a).
If the beam is subjected to a sagging bending moment of 100 kN m applied in a vertical
plane, determine the distribution of direct stress through the depth of the section.

300 mm Z e

T y l 78 N/mm?
A : | 20 mm
| }
[ 25mm
SNy L
! G
! |2
|

Y [ | 20 mm
T 78 N/mm?

() (b)

The cross section of the beam is doubly symmetrical so that the centroid, G, of the
section, and therefore the origin of axes, coincides with the mid-point of the web.
Furthermore, the bending moment is applied to the beam section in a vertical plane
so that the z axis becomes the neutral axis of the beam section; we therefore need to
calculate the second moment of area, I,, about this axis. Thus

200 x 300° 175 x 260°

L 12 12

= 193.7 x 10° mm* (see Section 9.6)

From Eq. (9.9) the distribution of direct stress, oy, is given by

100 x 100

1937 x 1067 = 0% )

Oy =

The direct stress, therefore, varies linearly through the depth of the section from a
value

—0.52 x (+150) = —78 N/mm? (compression)

at the top of the beam to

—0.52 x (—150) = +78 N/mm? (tension)

at the bottom as shown in Fig. 9.6(b).
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EXAMPLE 9.3 Now determine the distribution of direct stress in the beam of Ex. 9.2
if the bending moment is applied in a horizontal plane and in a clockwise sense about
Gy when viewed in the direction yG.

In this case the beam will bend about the vertical y axis which therefore becomes the
neutral axis of the section. Thus Eq. (9.9) becomes
M .
Oy = —EZ (1)
where I, is the second moment of area of the beam section about the y axis. Again
from Section 9.6

20 x 2003 260 x 253
X +

_ 6 4
B B =27.0 x 10° mm

I=2

Hence, substituting for M and I, in Eq. (i)

100 x 10°

o= T ox 1060 - O

We have not specified a sign convention for bending moments applied in a horizontal
plane; clearly in this situation the sagging/hogging convention loses its meaning. How-
ever, a physical appreciation of the problem shows that the left-hand edges of the beam
are in tension while the right-hand edges are in compression. Again the distribution is
linear and varies from 3.7 x (4+100) = 370 N/mm? (tension) at the left-hand edges of
each flange to 3.7 x (—100) = —370 N/mm? (compression) at the right-hand edges.

We note that the maximum stresses in this example are very much greater than those
in Ex. 9.2. This is due to the fact that the bulk of the material in the beam section is
concentrated in the region of the neutral axis where the stresses are low. The use of
an I-section in this manner would therefore be structurally inefficient.

ExampPLE 9.4 The beam section of Ex. 9.2 is subjected to a bending moment of
100 kN m applied in a plane parallel to the longitudinal axis of the beam but inclined at
30° to the left of vertical. The sense of the bending moment is clockwise when viewed
from the left-hand edge of the beam section. Determine the distribution of direct
stress.

The bending moment is first resolved into two components, M in a vertical plane and
M, in a horizontal plane. Equation (9.9) may then be written in two forms
M, M, .
Oy = —— Oy = ——~2Z 1
x I y x 1, (i)
The separate distributions can then be determined and superimposed. A more direct
method is to combine the two equations (i) to give the total direct stress at any point
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(v, z) in the section. Thus
Oy =——Yy— —2Z (ii)

Now

M, = 100 cos 30° = 86.6 kN m (iii)
My =100sin30° = 50.0kN m

M, is, in this case, a negative bending moment producing tension in the upper half
of the beam where y is positive. Also M, produces tension in the left-hand half of
the beam where z is positive; we shall therefore call M, a negative bending moment.
Substituting the values of M, and M, from Eq. (iii) but with the appropriate sign in
Eq. (ii) together with the values of I, and I, from Exs 9.2 and 9.3 we obtain

_86.6 x 10° L 300 x 10°,
T 1937 x 106 " 27.0 x 106

ox (iv)
or
oy = 0.45y + 1.85z (v)

Equation (v) gives the value of direct stress at any point in the cross section of the
beam and may also be used to determine the distribution over any desired portion.
Thus on the upper edge of the top flange y =+150 mm, 100 mm >z > —100 mm, so
that the direct stress varies linearly with z. At the top left-hand corner of the top flange

oy = 0.45 x (+150) 4 1.85 x (4+100) = 4+252.5N/mm? (tension)
At the top right-hand corner
oy = 0.45 x (+150) + 1.85 x (—=100) = —117.5N/mm? (compression)

The distributions of direct stress over the outer edge of each flange and along the
vertical axis of symmetry are shown in Fig. 9.7. Note that the neutral axis of the beam
section does not in this case coincide with either the z or y axes, although it still passes
through the centroid of the section. Its inclination, «, to the z axis, say, can be found
by setting o, =0 in Eq. (v). Thus

0=0.45y+1.85z

or

y 185
A i
z 045 tan«
which gives
a=76.3°

Note that o may be found in general terms from Eq. (ii) by again setting o, = 0. Hence

y Myl

=tana (9.14)

z Ml
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67.5 N/mm?
252.5 N/mm? /
XA 117.5 N/mm?
| 67.5 N/mm?
[
L ,/
1175 N/mm2 67.5 N/mm?
FIGURE 9.7 Direct \LM 252.5 N/mm?
stress distribution
in beam of Ex. 9.4 Neutral axis 67 5 N/mm?2
or
M,
tanoa = 7z
M.I,

since y is positive and z is negative for a positive value of «.

9.2 ComBINED BENDING AND AXIAL L.OAD

In many practical situations beams and columns are subjected to combinations of axial
loads and bending moments. For example, the column shown in Fig. 9.8 supports a
beam seated on a bracket attached to the column. The loads on the beam produce
a vertical load, P, on the bracket, the load being offset a distance e from the neutral
plane of the column. The action of P on the column is therefore equivalent to an axial
load, P, plus a bending moment, Pe. The direct stress at any point in the cross section
of the column is therefore the algebraic sum of the direct stress due to the axial load
and the direct stress due to bending.

Neutral plane

Beam

Column — |

\
P

By
|
l
I L Bracket
l
L

| FIGURE 9.8 Combined bending and axial
load on a column
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FiGure 9.9 Combined bending
and axial load on a beam section

Consider now a length of beam having a vertical plane of symmetry and subjected
to a tensile load, P, which is offset by positive distances e, and e, from the z and y
axes, respectively (Fig. 9.9). It can be seen that P is equivalent to an axial load P plus
bending moments Pe, and Pe; about the z and y axes, respectively. The moment Pey,
is a negative or hogging bending moment while the moment Pe, induces tension in
the region where z is positive; Pe; is, therefore, also regarded as a negative moment.
Thus at any point (y,z) the direct stress, oy, due to the combined force system, using
Egs (7.1) and (9.9), is

P Pe, Pe
=—+—=y+ - 9.15
Ox A + I, y+ 1, Z ( )

Equation (9.15) gives the value of o, at any point (y,z) in the beam section for any
combination of signs of P, e;, ey.

EXAMPLE 9.5 A beam has the cross section shown in Fig. 9.10(a). It is subjected
to a normal tensile force, P, whose line of action passes through the centroid of the
horizontal flange. Calculate the maximum allowable value of P if the maximum direct
stress is limited to =150 N/mm?.

The first step in the solution of the problem is to determine the position of the centroid,
G, of the section. Thus, taking moments of areas about the top edge of the flange we
have

(200 x 20 + 200 x 20)y = 200 x 20 x 10 4+ 200 x 20 x 120

from which

y = 65 mm
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|__ 200 mm 2|
[ Ay i |
150 N/mm?2
| P ‘ 20 mm
j7 A
P, L —— R B S — S
G 85.3 N/mm2
! 20mm 200 mm
—_— | |— —
L] = &
79.1 N/mm?2

(a) (b)

The second moment of area of the section about the z axis is then obtained using the
methods of Section 9.6 and is

=37.7 x 10° mm*

200 x 65° 180 x 453 20 x 1553
L=—F—"—3—"+—3

Since the line of action of the load intersects the y axis, e, in Eq. (9.15) is zero so that

P Pe .
Ux=z+l—:y (i)

Also e, =+55 mm so that Pe, =+55 P and Eq. (i) becomes

_p( L,
o =1\8000 " 37.7 x 106
or
op = P(1.25 x 107* 4+ 1.46 x 10~%) (ii)

It can be seen from Eq. (ii) that o, varies linearly through the depth of the beam
from a tensile value at the top of the flange where y is positive to either a tensile or
compressive value at the bottom of the leg depending on whether the bracketed term
is positive or negative. Therefore at the top of the flange

+150 = P[1.25 x 10™* + 1.46 x 107° x (465)]

which gives the limiting value of P as 682 kN.

At the bottom of the leg of the section y = —155mm so that the right-hand side of
Eq. (ii) becomes

P[1.25 x 107* 4+ 1.46 x 107° x (=155)] = —1.01 x 10~*P
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which is negative for a tensile value of P. Hence the resultant direct stress at the bottom
of the leg is compressive so that for a limiting value of P

—150 = —1.01 x 107*P

from which

P = 1485kN

Therefore, we see that the maximum allowable value of P is 682 kN, giving the direct
stress distribution shown in Fig. 9.10(b).

CORE OF A RECTANGULAR SECTION

In some structures, such as brick-built chimneys and gravity dams which are fabricated
from brittle materials, it is inadvisable for tension to be developed in any cross section.
Clearly, from our previous discussion, it is possible for a compressive load that is
offset from the neutral axis of a beam section to induce a resultant tensile stress in
some regions of the cross section if the tensile stress due to bending in those regions is
greater than the compressive stress produced by the axial load. Therefore, we require
to impose limits on the eccentricity of such aload so that no tensile stresses are induced.

Consider the rectangular section shown in Fig. 9.11 subjected to an eccentric compres-
sive load, P, applied parallel to the longitudinal axis in the positive yz quadrant. Note
that if P were inclined at some angle to the longitudinal axis, then we need only con-
sider the component of P normal to the section since the in-plane component would
induce only shear stresses. Since P is a compressive load and therefore negative, Eq.
(9.15) becomes

oy =—— — 2y % (9.16)

Note that both Pe, and Pe, are positive moments according to the sign convention we
have adopted.

y
A
eZ
1 )
| b/6 | A
°
Gy P A~ D i
PIA A I A ) e e
B-.[G-"__db
Al $
l Y
> > FIGURE 9.11  Core of a rectangular

b section



9.2 Combined Bending and Axial Load ¢ 223

In the region of the cross section where z and y are negative, tension will develop if

Pe, Pe,

LY

~ 14

i

The limiting case arises when the direct stress is zero at the corner of the section, i.e.
when z=—b/2 and y = —d/2. Therefore, substituting these values in Eq. (9.16) we

O__P_Pey d\ P (D
A L 2 I, 2

or, since A =bd, I, =bd> /12, I =db> /12 (see Section 9.6)

have

0 = —bd + 6be, + 6de,

which gives

bd
be, +de, = 3
Rearranging we obtain
d d
&="p¢ + I (9.17)

Equation (9.17) defines the line BC in Fig. 9.11 which sets the limit for the eccentricity
of P from both the z and y axes. It follows that P can be applied at any point in the
region BCG for there to be no tension developed anywhere in the section.

Since the section is doubly symmetrical, a similar argument applies to the regions
GAB, GCD and GDA; the rhombus ABCD is known as the core of the section and has
diagonals BD =b/3 and AC=d/3.

CORE OF A CIRCULAR SECTION

Bending, produced by an eccentric load P, in a circular cross section always takes place
about a diameter that is perpendicular to the radius on which P acts. It is therefore
logical to take this diameter and the radius on which P acts as the coordinate axes of
the section (Fig. 9.12).

/ y
Section bends
about this axis

FIGURE 9.12 Core of a circular section beam
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Suppose that P in Fig. 9.12 is a compressive load. The direct stress, oy, at any point
(z,y) is given by Eq. (9.15) in which e, = 0. Hence

oy =——— —2z (9.18)

Tension will occur in the region where z is negative if

PeZZ
1

>
A

; ‘
The limiting case occurs when o, =0 and z = —R; hence

P Pe,
0=———-—7(-R

Now A =7R? and I, = 7R*/4 (see Section 9.6) so that

1 4e,
7R? 7R3

0=-

from which

ez:Z

Thus the core of a circular section is a circle of radius R/4.

EXAMPLE 9.6 A free-standing masonry wall is 7m high, 0.6 m thick and has a
density of 2000 kg/m3. Calculate the maximum, uniform, horizontal wind pressure
that can occur without tension developing at any point in the wall.

Consider a 1 m length of wall. The forces acting are the horizontal resultant, P, of the
uniform wind pressure, p, and the weight, I, of the 1 m length of wall (Fig. 9.13).

Clearly the base section is the one that experiences the greatest compressive normal
load due to self-weight and also the greatest bending moment due to wind pressure.

T~

% Uniform wind
pressure, p

— ]

g 3.5m

51
7,

Al mi|m \
Y ”
RYYwW

Ny FIGURE 9.13  Masonry wall of

0.2m Ex. 9.6
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It is also the most critical section since the bending moment that causes tension is a
function of the square of the height of the wall, whereas the weight causing compression
is a linear function of wall height. From Fig. 9.11 it is clear that the resultant, R, of P
and W must lie within the central 0.2 m of the base section, i.e. within the middle third
of the section, for there to be no tension developed anywhere in the base cross section.
The reason for this is that R may be resolved into vertical and horizontal components
at any point in its line of action. At the base of the wall the vertical component is then
a compressive load parallel to the vertical axis of the wall (i.e. the same situation as
in Fig. 9.11) and the horizontal component is a shear load which has no effect as far
as tension in the wall is concerned. The limiting case arises when R passes through
m, one of the middle third points, in which case the direct stress at B is zero and the
moment of R (and therefore the sum of the moments of P and W) about m is zero.

Hence
35P =0.1w 6]
where
P=px7x1IN if pisin N/m?
and

W =2000 x 9.81 x 0.6 x 7N

Substituting for P and W in Eq. (i) and solving for p gives

p = 336.3N/m?

9.3 ANTICLASTIC BENDING

In the rectangular beam section shown in Fig. 9.14(a) the direct stress distribution
due to a positive bending moment applied in a vertical plane varies from compression
in the upper half of the beam to tension in the lower half (Fig. 9.14(b)). However,
due to the Poisson effect (see Section 7.8) the compressive stress produces a lateral
elongation of the upper fibres of the beam section while the tensile stress produces

Compression

L1 4; D

Tension

FIGURE 9.14 Anticlastic bending
(a) (b) (c) of a beam section
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a lateral contraction of the lower. The section does not therefore remain rectangular
but distorts as shown in Fig. 9.14(c); the effect is known as anticlastic bending.

Anticlastic bending is of interest in the analysis of thin-walled box beams in which the
cross sections are maintained by stiffening ribs. The prevention of anticlastic distortion
induces local variations in stress distributions in the webs and covers of the box beam
and also in the stiffening ribs.

9.4 STRAIN ENERGY IN BENDING

A positive bending moment applied to a length of beam causes the upper longitudinal
fibres to be compressed and the lower ones to stretch as shown in Fig. 9.5(a). The
bending moment therefore does work on the length of beam and this work is absorbed
by the beam as strain energy.

Suppose that the bending moment, M, in Fig. 9.5(a) is gradually applied so that when
it reaches its final value the angle subtended at the centre of curvature by the element
dx is 860. From Fig. 9.5(a) we see that

R360 =&
Substituting in Eq. (9.7) for R we obtain

EI
M==23%0 (9.19)
&

so that 36 is a linear function of M. It follows that the work done by the gradually
applied moment M is M 36 /2 subject to the condition that the limit of proportionality
is not exceeded. The strain energy, 3U, of the elemental length of beam is therefore

given by
1
U = zM 30 (9.20)
or, substituting for 80 from Eq. (9.19) in Eq. (9.20)
1 M?
3 =-—&
2EIL
The total strain energy, U, due to bending in a beam of length L is therefore
M2
= 21
U /é SEL dx (9.21)

9.5 UNSYMMETRICAL BENDING

Frequently in civil engineering construction beam sections do not possess any axes of
symmetry. Typical examples are shown in Fig. 9.15 where the angle section has legs of
unequal length and the Z-section possesses anti- or skew symmetry about a horizontal
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axis through its centroid, but not symmetry. We shall now develop the theory of bending
for beams of arbitrary cross section.

[—

|
(@) (b)

ASSUMPTIONS

We shall again assume, as in the case of symmetrical bending, that plane sections of the
beam remain plane after bending and that the material of the beam is homogeneous
and linearly elastic.

SIGN CONVENTIONS AND NOTATION

Since we are now concerned with the general case of bending we may apply loading
systems to a beam in any plane. However, no matter how complex these loading
systems are, they can always be resolved into components in planes containing the
three coordinate axes of the beam. We shall use an identical system of axes to that
shown in Fig. 3.6, but our notation for loads must be extended and modified to allow
for the general case.

As far as possible we shall adopt sign conventions and a notation which are consistent
with those shown in Fig. 3.6. Thus, in Fig. 9.16, the externally applied shear load W, is
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FIGURE 9.17
Internal force
system

parallel to the y axis but vertically downwards, i.e. in the negative y direction as before;
similarly we take W, to act in the negative z direction. The distributed loads wy(x) and
w;(x) can be functions of x and are also applied in the negative directions of the axes.
The bending moment M, in the vertical xy plane is, as before, a sagging (i.e. positive)
moment and will produce compressive direct stresses in the positive yz quadrant of the
beam section. In the same way M, is positive when it produces compressive stresses in
the positive yz quadrant of the beam section. The applied torque T is positive when
anticlockwise when viewed in the direction xO and the displacements, u, v and w are
positive in the positive directions of the z,y and x axes, respectively.

The positive directions and senses of the internal forces acting on the positive face
(see Section 3.2) of a beam section are shown in Fig. 9.17 and agree, as far as the
shear force and bending moment in the vertical xy plane are concerned, with those
in Fig. 3.7. The positive internal horizontal shear force S; is in the positive direction
of the z axis while the internal moment M, produces compression in the positive yz
quadrant of the beam section.

DIRECT STRESS DISTRIBUTION

Figure 9.18 shows the positive face of the cross section of a beam which is subjected to
positive internal bending moments M, and M,.. Suppose that the origin O of the y and
z axes lies on the neutral axis of the beam section; as yet the position of the neutral
axis and its inclination to the z axis are unknown.

We have seen in Section 9.1 that a beam bends about the neutral axis of its cross section
so that the radius of curvature, R, of the beam is perpendicular to the neutral axis.
Therefore, by direct comparison with Eq. (9.2) it can be seen that the direct stress, oy,
on the element, 84, a perpendicular distance p from the neutral axis, is given by

oy = —E% (9.22)
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Area A

Neutral
axis

FIGURE 9.18 Bending of an

unsymmetrical section beam

The beam section is subjected to a pure bending moment so that the resultant direct
load on the section is zero. Hence

/adizo
A

Replacing oy in this equation from Eq. (9.22) we have

p
— | Exd4A=0
/A R

or, for a beam of a given material subjected to a given bending moment

f pdA=0 (9:23)
A

Qualitatively Eq. (9.23) states that the first moment of area of the beam section about
the neutral axis is zero. It follows that in problems involving the pure bending of
beams the neutral axis always passes through the centroid of the beam section. We
shall therefore choose the centroid, G, of a section as the origin of axes.

From Fig. 9.18 we see that
p=zsina +ycosa (9.24)
so that from Eq. (9.22)
E .
oy = —§(2s1na +ycosa) (9.25)

The moment resultants of the direct stress distribution are equivalent to M, and M,
so that

M, = —/ oyxy dA M, = —/ oyzdA (see Section 9.1) (9.26)
4 A
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Substituting for o, from Eq. (9.25) in Eq. (9.26), we obtain

Esi E
M, = Sma/zydA+ cosa/ysz
4 R J4

R
(9.27)
E sin E cos
M, = R"‘/AzszJr Ra/AzydA

In Eq. (9.27)

/zydA:IZy /yszzlz /zszzly
4 4 A

where I is the product second moment of area of the beam section about the z and y
axes, I, is the second moment of area about the z axis and I, is the second moment of
area about the y axis. Equation (9.27) may therefore be rewritten as

Esi E
M, — s;nalzy_’_ c;so: :
) (9.28)
Esina Ecosa
M, = R vt v
Solving Eq. (9.28)
Esina Myl — ML, (9.29)
R LI, —1I3 )
Ecosa M1, — Myl (930)
R LI, - 13 )
Now substituting these expressions in Eq. (9.25)
M1, — M,I. M1, — M,I.
oy = — (Ml Mely) (Mol — Myl ) (9:31)
LI, —1I2 LI, —12

In the case where the beam section has either Oz or Oy (or both) as an axis of symmetry
Iy =0 (see Section 9.6) and Eq. (9.31) reduces to

M, M,
=——z- = 9.32
Ox 1, z I y ( )

which is identical to Eq. (ii) in Ex. 9.4.

POSITION OF THE NEUTRAL AXIS

We have established that the neutral axis of a beam section passes through the centroid
of area of the section whether the section has an axis of symmetry or not. The inclination
« of the neutral axis to the z axis in Fig. 9.18 is obtained from Eq. (9.31) using the
fact that the direct stress is zero at all points on the neutral axis. Then, for a point

(zna>yNA)

0 = (M,Ly — MyI,)z2xa + (MyLy — M_I,)yna
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so that
YNA (M Ly — Myl)
ZNA (ML, — M.1,)
or, referring to Fig. 9.18
(M1, — Myl,)

(MyIZy - MZIY) (933)

tana =

since « is positive when yna is positive and zna is negative. Again, for a beam having
a cross section with either Oy or Oz as an axis of symmetry, I,, =0 and Eq. (9.33)
reduces to

M1
tana = Mil; (see Eq. (9.14))

9.6 CALCULATION OF SECTION PROPERTIES

It will be helpful at this stage to discuss the calculation of the various section properties
required in the analysis of beams subjected to bending. Initially, however, two useful
theorems are quoted.

PARALLEL AXES THEOREM

Consider the beam section shown in Fig. 9.19 and suppose that the second moment of
area, I, about an axis through its centroid G is known. The second moment of area,
IN, about a parallel axis, NN, a distance b from the centroidal axis is then given by

IN = IG + Ab? (9.34)

Cross-sectional area, A

Y
N——— - LN FIGURE 9.19 Parallel axes theorem

THEOREM OF PERPENDICULAR AXES

In Fig. 9.20 the second moments of area, I; and I, of the section about Oz and Oy
are known. The second moment of area about an axis through O perpendicular to the
plane of the section (i.e. a polar second moment of area) is then

Io=1,+1, (9.35)
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AN
.

SECOND MOMENTS OF AREA OF STANDARD SECTIONS

FIGURE 9.20 Theorem of perpendicular axes

Many sections in use in civil engineering such as those illustrated in Fig. 9.2 may be
regarded as comprising a number of rectangular shapes. The problem of determining
the properties of such sections is simplified if the second moments of area of the
rectangular components are known and use is made of the parallel axes theorem.
Thus, for the rectangular section of Fig. 9.21

Ay

b N FIGURE 9.21 Second moments of area of a
I‘—’l rectangular section

dj2 y3
12=fy2dA=/ by*dy = b 3
A —d/2

dj2
—d/2

which gives

bd*
I, =— .
=2 (9.36)
Similarly
ab?
I, = — 9.37

Frequently it is useful to know the second moment of area of a rectangular section
about an axis which coincides with one of its edges. Thus in Fig. 9.21, and using the
parallel axes theorem

bd> d bd?

2
IN=— —=) =— -
N= T +bd( 2) 3 (9.38)
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EXAMPLE 9.7  Determine the second moments of area I, and I, of the I-section
shown in Fig. 9.22.

T FIGURE 9.22 Second moments of area of
an I-section

Using Eq. (9.36)
bd® (b —ty)d3,
[ =— Y Wlw
12 12

Alternatively, using the parallel axes theorem in conjunction with Eq. (9.36)

b3 dy +t:\?|  ted?
L=2|-"24by (> ks
z |:12+bf< P ) + 12

The equivalence of these two expressions for I; is most easily demonstrated by a
numerical example.

Also, from Eq. (9.37)

tfb3 dwtsv

=25+

Itis also useful to determine the second moment of area, about a diameter, of a circular
section. In Fig. 9.23 where the z and y axes pass through the centroid of the section

[ raae [ (4 2
L= | yd4A= 2| =cosf |y dy (9.39)
A —dp \2

Integration of Eq. (9.39) is simplified if an angular variable, 6, is used. Thus

7/2 d 2,
I, = / dcosf (— sin9) —cos6 do
—x/2 2 2

ie.
d4 /2 )
L, =— cos? 6sin® 6 do
8 —/2
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Ay

e BN
e N

Nl

FIGURE 9.23 Second moments of area of a
circular section

which gives

wd*
I, =—- 9.40
o4 (-40)
Clearly from symmetry
wd*
I, = — 9.41

Using the theorem of perpendicular axes, the polar second moment of area, I, is
given by

wd*

Io=IL+1 = =

(9.42)

PRODUCT SECOND MOMENT OF AREA

The product second moment of area, Iy, of a beam section with respect to z and y axes
is defined by

@:me (9.43)

Thus each element of area in the cross section is multiplied by the product of its
coordinates and the integration is taken over the complete area. Although second
moments of area are always positive since elements of area are multiplied by the
square of one of their coordinates, it is possible for I, to be negative if the section
lies predominantly in the second and fourth quadrants of the axes system. Such a
situation would arise in the case of the Z-section of Fig. 9.24(a) where the product
second moment of area of each flange is clearly negative.

A special case arises when one (or both) of the coordinate axes is an axis of symmetry so
that for any element of area, 84, having the product of its coordinates positive, there is
an identical element for which the product of its coordinates is negative (Fig. 9.24(b)).
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<
> <

Cross sectional

A
SA SA < > area, A
Z <
 We)
oo b
P 0 o 7Y
FIGURE 9.24 : L

Product second

z
moment of area (a) (b) (c)

Summation (i.e. integration) over the entire section of the product second moment of
area of all such pairs of elements results in a zero value for 7.

We have shown previously that the parallel axes theorem may be used to calculate sec-
ond moments of area of beam sections comprising geometrically simple components.
The theorem can be extended to the calculation of product second moments of area.
Let us suppose that we wish to calculate the product second moment of area, Iy, of
the section shown in Fig. 9.24(c) about axes zy when Izy about its own, say centroidal,
axes system GZY is known. From Eq. (9.43)

Izyz/zydA
4

or
Izy=/A(Z—a)(Y—b)dA

which, on expanding, gives

Izy=/ZYdA—b/ZdA—a/YdA+ab/ dA4
A A A A

If Z and Y are centroidal axes then [, Zd4 = [, Y d4 =0. Hence
]@, =Iyy +abA (9.44)

It can be seen from Eq. (9.44) that if either GZ or GY is an axis of symmetry, i.e.
Izy =0, then

Ly = abA (9.45)

Thus for a section component having an axis of symmetry that is parallel to either of
the section reference axes the product second moment of area is the product of the
coordinates of its centroid multiplied by its area.

A table of the properties of a range of beam sections is given in Appendix A.
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EXAMPLE 9.8 A beam having the cross section shown in Fig. 9.25 is subjected to
a hogging bending moment of 1500 Nm in a vertical plane. Calculate the maximum
direct stress due to bending stating the point at which it acts.

40 mm 80 mm
iA l Ay B

gmm [ 4 |
{ D y C A
7Y
G
z
< > 80 mm

ELIF L
8 mm FIGURE 9.25 Beam section of Ex. 9.8

The position of the centroid, G, of the section may be found by taking moments of
areas about some convenient point. Thus

(120 x 8+ 80 x 8)y =120 x 8 x 4+ 80 x 8 x 48
which gives
y =21.6mm
and
(120 x 8+80x 8)z=80x8x4+120 x 8 x 24
giving
z =16mm

The second moments of area referred to axes Gzy are now calculated.

120 x (8)° 8 x (80)3
IZ=A+120x8x(17.6)2+&+80x8x(26.4)2
12 12
=1.09 x 10° mm*
8 x (120)3 80 x (8)°
y=%+120x8x(8)2+%+80x8x(12)2

=1.31 x 10° mm*
LIy =120 x 8 x (=8) x (+17.6) + 80 x 8 x (+12) x (—-26.4)
= —0.34 x 10° mm*
Since M; = —1500 Nm and M, =0 we have from Eq. (9.31)

1500 x 103 x (=0.34 x 10%)z 4 1500 x 10° x (1.31 x 10°)y
1.09 x 106 x 1.31 x 106 — (—0.34 x 106)2

Oy =
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ie.
o = 0.392 + 1.5y (1)

Note that the denominator in both the terms in Eq. (9.31) is the same.

Inspection of Eq. (i) shows that o, is a maximum at F where z =8 mm, y = —66.4 mm.
Hence

Ox,max = —96.5 N/mm2 (compressive)

APPROXIMATIONS FOR THIN-WALLED SECTIONS

Modern civil engineering structures frequently take the form of thin-walled cellular box
beams which combine the advantages of comparatively low weight and high strength,
particularly in torsion. Other forms of thin-walled structure consist of ‘open’ section
beams such as a plate girder which is constructed from thin plates stiffened against
instability. In addition to these there are the cold-formed sections which we discussed
in Chapter 1.

There is no clearly defined line separating ‘thick’ and ‘thin-walled’ sections; the approx-
imations allowed in the analysis of thin-walled sections become increasingly inaccurate
the ‘thicker’ a section becomes. However, as a guide, it is generally accepted that the
approximations are reasonably accurate for sections for which the ratio

tmax < O 1

b

where fax 1s the maximum thickness in the section and b is a typical cross-sectional
dimension.

In the calculation of the properties of thin-walled sections we shall assume that the
thickness, ¢, of the section is small compared with its cross-sectional dimensions so
that squares and higher powers of ¢ are neglected. The section profile may then be
represented by the mid-line of its wall. Stresses are then calculated at points on the
mid-line and assumed to be constant across the thickness.

EXAMPLE 9.9 Calculate the second moment of area, I, of the channel section
shown in Fig. 9.26(a).

The centroid of the section is located midway between the flanges; its horizontal
position is not needed since only I, is required. Thus

b3 ) [2(h —t/2)]
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AY 4
S )
h h
< G Y - G v
z= - z= -
| h | h
yt
FIGURE 9.26 e vyt Y
Calculation of the T T
second moment of ’
area of a ‘
b b
thin-walled
channel section (@) (b)

which, on expanding, becomes

be3 ¢ 3h%t 3h? B
L =2 — +bh* ) + — M-y —
z (12+ )+12[(2) (h > T2 8):|

Neglecting powers of > and upwards we obtain
2h)?
1, = 2bn2 + 12
: BT
It is unnecessary for such calculations to be carried out in full since the final result may

be obtained almost directly by regarding the section as being represented by a single
line as shown in Fig. 9.26(b).

ExampLE 9.10 A thin-walled beam has the cross section shown in Fig. 9.27.
Determine the direct stress distribution produced by a hogging bending moment M, .

w2 AY
A B \
—pr— |
S ———— S (5 h
C y
p—
hi2 FIGURE 9.27 Beam section of Ex. 9.10

The beam cross section is antisymmetrical so that its centroid is at the mid-point of
the vertical web. Furthermore, M, =0 so that Eq. (9.31) reduces to

M, Iz — M. 1y
=TT 12
LI, — Izy

(i)
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But M, is a hogging bending moment and therefore negative. Eq. (i) must then be
rewritten as

o — —M. Iz + MLy
O LL -1

(i)

The section properties are calculated using the previously specified approximations
for thin-walled sections; thus

LB ) )

Substituting these values in Eq. (ii) we obtain
M.
oy = h—32t(6.86y —~10.32) (iii)

On the top flange y=+h/2, h/2 >z >0 and the distribution of direct stress is given
by

M
or = 13 (3:43h — 10.32)

which is linear. Hence

1.72M, .
OrA == (compressive)
3.43M.
Oy,B = h—zl‘z (tensﬂe)

In the web —h/2 <y <h/2 and z =0 so that Eq. (iii) reduces to

6.86M,
T T

Again the distribution is linear and varies from

3.43M.
OxB = +Tt2 (tensile)
to
3.43M, .
OxC =~ (compressive)

The distribution in the lower flange may be deduced from antisymmetry. The complete
distribution is as shown in Fig. 9.28.
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B
A
=
FIGURE 9.28 Distribution of direct stress
C in beam section of Ex. 9.10

SECOND MOMENTS OF AREA OF INCLINED AND
CURVED THIN-WALLED SECTIONS

Thin-walled sections frequently have inclined or curved walls which complicate the
calculation of section properties. Consider the inclined thin section of Fig. 9.29. The
second moment of area of an element 8s about a horizontal axis through its centroid
G is equal to t3sy?. Therefore the total second moment of area of the section about
Gz, 1., is given by

4

e

z G \y
FIGURE 9.29 Second moments of area of an
t inclined thin-walled section
al2 al2
I = / y*ds = t(ssin ) ds
—a/2 —a/2
ie.
I - a3t sin® B
12
Similarly
I — a3tcos? B
YT12

The product second moment of area of the section about Gzy is
a/2 a/2
I =/ tzyds = t(scos B)(ssin B)ds
—a/2 —a/2
i.e.

I a’tsin2p
T 4
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FIGURE 9.30 Second moment of area of a
semicircular thin-walled section

Properties of thin-walled curved sections are found in a similar manner. Thus I, for
the semicircular section of Fig. 9.30 is

nr
Iz:/ ty* ds
0

Expressing y and s in terms of a single variable 0 simplifies the integration; hence

g
IZ=/ t(—rcos6)’r do
0

from which

9.7 PRINCIPAL AXES AND PRINCIPAL SECOND MOMENTS OF AREA

In any beam section there is a set of axes, neither of which need necessarily be an
axis of symmetry, for which the product second moment of area is zero. Such axes are
known as principal axes and the second moments of area about these axes are termed
principal second moments of area.

Consider the arbitrary beam section shown in Fig. 9.31. Suppose that the second
moments of area I, 1, and the product second moment of area, I, about arbitrary
axes Ozy are known. By definition

Izzfysz 1y=fzsz IzyzfzydA (9.46)
4 4 4
The corresponding second moments of area about axes Oz1y; are

Lay = /A yidA L = /A zidA  Layyn) = /A ziy1 dA (9.47)

From Fig. 9.31

z1 =zCcos¢ +ysing y; =ycos¢ —zsing
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Y1

FIGURE 9.31 Principal axes in
a beam of arbitrary section

Substituting for y; in the first of Eq. (9.47)

Iz(l):[A(ycosqb—zsinfp)sz

Expanding, we obtain

L =cosz¢/y2dA+sin2¢/zsz—2cos¢sin¢>/zydA
A A A

which gives, using Eq. (9.46)

Loy =1, cos® ¢ + I sin® ¢ — Ly sin2¢ (9.48)
Similarly
Ly = Iy cos® ¢ + L sin* ¢ + Ly sin 2¢ (9.49)
and
L-L\ .
Ly = | =5 | sin2¢ + Iy cos 2¢ (9.50)

Equations (9.48)—(9.50) give the second moments of area and product second moment
of area about axes inclined at an angle ¢ to the x axis. In the special case where Oz1y;
are principal axes, Ozp,yp, L;(p)y(p) = 0, ¢ = ¢p and Eqgs (9.48) and (9.49) become

L) = I: cos? gy, + Iy sin’ gy, — Ly sin 25 (9.51)

and
Ly = Iy cos” ¢y + L sin® ¢y + Ly sin 2y, (9.52)
respectively. Furthermore, since L(1)y(1) = Lp)yp) = 0, Eq. (9.50) gives

21,
LI

tan 2¢p = (9.53)
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The angle ¢, may be eliminated from Eqs (9.51) and (9.52) by first determining
cos 2¢p, and sin 2¢, using Eq. (9.53). Thus

(Iy —1I;)/2 sin 2¢, — L

Cos 2¢pp = p =
Jdy —1)/2P + 13 Jy —L)/2P +13

Rewriting Eq. (9.51) in terms of cos 2¢;, and sin 2¢, we have

L I .
Lp) = Ez(l + cos 2¢p) + Ey(l — €08 2¢p) — Iy sin 2

Substituting for cos 2¢), and sin 2¢), from the above we obtain

L+, 1

L) = % -5 [ — I,)> + 413, (9.54)
L+1, 1

Lipy = — 5 AT 3 [(I — I,)? + 412, (9.55)

Note that the solution of Eq. (9.53) gives two values for the inclination of the principal
axes, ¢p and ¢, + /2, corresponding to the axes Ozp and Oyp.

Similarly

The results of Eqs (9.48)—(9.55) may be represented graphically by Mohr’s circle, a
powerful method of solution for this type of problem. We shall discuss Mohr’s circle
in detail in Chapter 14 in connection with the analysis of complex stress and strain.

Principal axes may be used to provide an apparently simpler solution to the problem
of unsymmetrical bending. Referring components of bending moment and section
properties to principal axes having their origin at the centroid of a beam section, we
see that Eq. (9.31) or Eq. (9.32) reduces to

Ly T L)

However, it must be appreciated that before 1) and /) can be determined I, Iy and

M, M.
—_p, z(p) (9.56)

Iy must be known together with ¢;,. Furthermore, the coordinates (z, y) of a point in
the beam section must be transferred to the principal axes as must the components, M,
and My, of bending moment. Thus unless the position of the principal axes is obvious
by inspection, the amount of computation required by the above method is far greater
than direct use of Eq. (9.31) and an arbitrary, but convenient, set of centroidal axes.

9.8 EFrrECT OF SHEAR FORCES ON THE THEORY OF BENDING

So far our analysis has been based on the assumption that plane sections remain
plane after bending. This assumption is only strictly true if the bending moments are
produced by pure bending action rather than by shear loads, as is very often the case
in practice. The presence of shear loads induces shear stresses in the cross section of
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a beam which, as shown by elasticity theory, cause the cross section to deform into the
shape of a shallow inverted ‘s’. However, shear stresses in beams, the cross sectional
dimensions of which are small in relation to their length, are comparatively low in
value so that the assumption of plane sections remaining plane after bending may be
used with reasonable accuracy.

9.9 Loap, SHEAR FORCE AND BENDING MOMENT RELATIONSHIPS,
GENERAL CASE

Ficure P.9.1

In Section 3.5 we derived load, shear force and bending moment relationships for
loads applied in the vertical plane of a beam whose cross section was at least singly
symmetrical. These relationships are summarized in Eq. (3.8) and may be extended
to the more general case in which loads are applied in both the horizontal (xz) and
vertical (yx) planes of a beam of arbitrary cross section. Thus for loads applied in a
horizontal plane Eq. (3.8) become

Pu,_ s,
9z2 ox

and for loads applied in a vertical plane Eq. (3.8) become

= —w;(x) (9.57)

32M, 38,
e = ax = W -

In Chapter 18 we shall return to the topic of beams subjected to bending but, instead
of considering loads which produce stresses within the elastic range of the material
of the beam, we shall investigate the behaviour of beams under loads which cause
collapse.

PROBLEMS

P9.1 A girder 10 m long has the cross section shown in Fig. P9.1(a) and is simply
supported over a span of 6m (see Fig. P9.1(b)). If the maximum direct stress in

w kN/m

>~ AAEEEEEEEERERRERE

300 mm 2; é?
v/ /

—— L i

T 2m 6m 2m
20mm

(a) (b)




Problems e« 245

the girder is limited to 150 N/mm?, determine the maximum permissible uniformly
distributed load that may be applied to the girder.

Ans. 84.3kN/m.

P9.2 A230mm x 300 mm timber cantilever of rectangular cross section projects 2.5 m
from a wall and carries a load of 13300 N at its free end. Calculate the maximum direct
stress in the beam due to bending.

Ans. 9.6 N/mm?.

P9.3 A floor carries a uniformly distributed load of 16 kN/m? and is supported by
joists 300 mm deep and 110 mm wide; the joists in turn are simply supported over a
span of 4m. If the maximum stress in the joists is not to exceed 7 N/mm?, determine
the distance apart, centre to centre, at which the joists must be spaced.

Ans. 0.36 m.

P.9.4 A wooden mast 15 m high tapers linearly from 250 mm diameter at the base to
100 mm at the top. At what point will the mast break under a horizontal load applied
at the top? If the maximum permissible stress in the wood is 35 N/mm?, calculate the
magnitude of the load that will cause failure.

Ans. 5m from the top, 2320 N.

P.9.5 A mainbeam in a steel framed structure is 5 m long and simply supported at each
end. The beam carries two cross-beams at distances of 1.5 and 3.5 m from one end, each
of which transmits a load of 20 kN to the main beam. Design the main beam using an
allowable stress of 155 N/mm?; make adequate allowance for the effect of self-weight.

Ans. Universal Beam, 254 mm x 102 mm x 22 kg/m.

P9.6 A short column, whose cross section is shown in Fig. P9.6 is subjected to a
compressive load, P, at the centroid of one of its flanges. Find the value of P such that
the maximum compressive stress does not exceed 150 N/mm?.

Ans. 846.4KkN.

25mm —>»> fe—

300 mm

=3

|
FiGure P.9.6 200 mm
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FiGure P.9.7

FiGure P.9.8

P.9.7 A vertical chimney built in brickwork has a uniform rectangular cross section as
shown in Fig. P.9.7(a) and is built to a height of 15 m. The brickwork has a density of
2000 kg/m? and the wind pressure is equivalent to a uniform horizontal pressure of
750 N/m? acting over one face. Calculate the stress at each of the points A and B at
the base of the chimney.

Ans. (A) 0.02N/mm? (compression), (B) 0.60 N/mm? (compression).

_ Wall thickness o Y
// 0.25m on -
/ all sides -
' / ' 15m
Wind >
pressure  —m
- 2
750 N/m2 |
TN A B Y
7
e
2m

() (b)

P.9.8 A cantilever beam of length 2 m has the cross section shown in Fig. P.9.8. If the
beam carries a uniformly distributed load of 5 kN/m together with a compressive axial
load of 100 kN applied at its free end, calculate the maximum direct stress in the cross
section of the beam.

Ans. 121.5N/mm? (compression) at the built-in end and at the bottom of the leg.

150 mm

A
r

.ﬁ
)
3
3

200 mm

100mMm —» le——0o

P.9.9 The section of a thick beam has the dimensions shown in Fig. P.9.9. Calculate
the section properties I, 1, and I, referred to horizontal and vertical axes through
the centroid of the section. Determine also the direct stress at the point A due to a
bending moment M, =55 Nm.

Ans. —114N/mm? (compression).
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ry
A
5mm
20 mm Z - G
B {
] 5mm
— .4———»'
5mm 10mm FiGure P.9.9

P.9.10 Abeam possessing the thick section shown in Fig. P9.10is subjected to abending
moment of 12kNm applied in a plane inclined at 30° to the left of vertical and in a
sense such that its components M, and M, are negative and positive, respectively.
Calculate the magnitude and position of the maximum direct stress in the beam cross
section.

Ans. 156.2N/mm? (compression) at D.

| 150 mm |

BP r}A ¢10mm
J

f

—»  &— 10 mm

200 mm

50 mm Ficure P.9.10

P.9.11 The cross section of a beam/floor slab arrangement is shown in Fig. P.9.11. The
complete section is simply supported over a span of 10 m and, in addition to its self-
weight, carries a concentrated load of 25 kN acting vertically downwards at mid-span.
If the density of concrete is 2000 kg/m?, calculate the maximum direct stress at the
point A in its cross section.

Ans. 5.4N/mm? (tension).
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0.75m

P

0.3m Ficure P.9.11

P.9.12 A precast concrete beam has the cross section shown in Fig. P.9.12 and carries
avertically downward uniformly distributed load of 100 kN/m over a simply supported
span of 4m. Calculate the maximum direct stress in the cross section of the beam,
indicating clearly the point at which it acts.

Ans. —27.6N/mm? (compression) at B.

A *50mm
B

40 mm ? 40 mm

500mm| —»f fa— —» |—

C
I ISOmm
F D

3 100 mm

00 mm FIGURE P.9.12

P9.13 A thin-walled, cantilever beam of unsymmetrical cross section supports shear
loads at its free end as shown in Fig. P9.13. Calculate the value of direct stress at the
extremity of the lower flange (point A) at a section half-way along the beam if the
position of the shear loads is such that no twisting of the beam occurs.

Ans. 194.7N/mm? (tension).

]
800N X
2.0mm

/ 80 mm
2000 kN
Ficure P.9.13

P9.14 A thin-walled cantilever with walls of constant thickness ¢ has the cross section
shown in Fig. P.9.14. The cantilever is loaded by a vertical force P at the tip and a

400N
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horizontal force 2 P at the mid-section. Determine the direct stress at the points A
and B in the cross section at the built-in end.

Ans. (A) —1.85PL/td?, (B) 0.1 PL/td>.

>
@

L2

C D
L/2 2P

a2 d2 Ficure P.9.14

P.9.15 A cold-formed, thin-walled beam section of constant thickness has the profile
shown in Fig. P.9.15. Calculate the position of the neutral axis and the maximum direct
stress for a bending moment of 3.5 kN m applied about the horizontal axis Gz.

Ans. o« =51.9°, +£101.0 N/mm?.

p o S—

6.4 mm

| Ficure P.9.15
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Chapter 10 / Shear of Beams

Ficure 10.1
Bending of
unconnected
planks

Ficure 10.2
Bending of
connected planks

In Chapter 3 we saw that externally applied shear loads produce internal shear forces
and bending moments in cross sections of a beam. The bending moments cause direct
stress distributions in beam sections (Chapter 9); we shall now determine the corre-
sponding distributions of shear stress. Initially, however, we shall examine the physical
relationship between bending and shear; the mathematical relationship has already
been defined in Eq. (3.8).

Suppose that a number of planks are laid one on top of the other and supported at each
end as shown in Fig. 10.1(a). Applying a central concentrated load to the planks at mid
span will cause them to bend as shown in Fig. 10.1(b). Due to bending the underside
of each plank will stretch and the topside will shorten. It follows that there must be a
relative sliding between the surfaces in contact. If now the planks are glued together
they will bend as shown in Fig. 10.2. The glue has prevented the relative sliding of
the adjacent surfaces and is therefore subjected to a shear force. This means that the
application of a vertical shear load to a beam not only produces internal shear forces
on cross sections of the beam but shear forces on horizontal planes as well. In fact,

(a) (b)

250



10.1 Shear Stress Distribution in a Beam ¢ 251

we have noted this earlier in Section 7.3 where we saw that shear stresses applied in
one plane induce equal complementary shear stresses on perpendicular planes which
is exactly the same situation as in the connected planks. This is important in the design
of the connections between, say, a concrete slab and the flange of a steel I-section beam
where the connections, usually steel studs, are subjected to this horizontal shear.

Shear stress distributions in beam cross sections depend upon the geometry of the
beam section. We shall now determine this distribution for the general case of an
unsymmetrical beam section before extending the theory to the simpler case of beam
sections having at least one axis of symmetry. This is the reverse of our approach in
Chapter 9 for bending but, here, the development of the theory is only marginally
more complicated for the general case.

10.1 SHEAR STRESS DISTRIBUTION IN A BEAM OF UNSYMMETRICAL SECTION

FiGure 10.3
Determination of
shear stress
distribution in a
beam of arbitrary
cross section

Consider an elemental length, &, of a beam of arbitrary section subjected to internal
shear forces S, and S, as shown in Fig. 10.3(a). The origin of the axes xyz coincides
with the centroid G of the beam section. Let us suppose that the lines of action of
S, and S, are such that no twisting of the beam occurs (see Section 10.4). The shear
stresses induced are therefore due solely to shearing action and are not contributed
to by torsion.

Imagine now that a ‘slice’ of width b is taken through the length of the element. Let ¢
be the average shear stress along the edge, by, of the slice in a direction perpendicular
to b and in the plane of the cross section (Fig. 10.3(b)); note that 7 is not necessarily the
absolute value of shear stress at this position. We saw in Chapter 7 that shear stresses on
given planes induce equal, complementary shear stresses on planes perpendicular to
the given planes. Thus, t on the cross-sectional face of the slice induces shear stresses
7 on the flat longitudinal face of the slice. In addition, as we saw in Chapter 3, shear
loads produce internal bending moments which, in turn, give rise to direct stresses in

Complementary
shear stress, 7

Direct stress
due to bending

Average shear stress, ©
(a) (b) along edge by
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beam cross sections. Therefore on any filament, 34’, of the slice there is a direct stress
oy at the sectionx and a direct stress oy + (d0y/9x)3x at the sectionx + 8 (Fig. 10.3(b)).
The slice is therefore in equilibrium in the x direction under the combined action of
the direct stress due to bending and the complementary shear stress, 7. Hence

00y

thy & — odi’+/ (ox+—&x)dA’=0
4 ’ 0x

which, when simplified, becomes

doy . ,

thy = — (10.1)

A’ ox

We shall assume (see Section 9.8) that the direct stresses produced by the bending
action of shear loads are given by the theory developed for the pure bending of beams.
Therefore, for a beam of unsymmetrical section and for coordinates referred to axes
through the centroid of the section

M1, — M1 M. I, — M,
on=———"" ) —2—3 |y (e Eq.(9.31))
Izly _Izy Izly _Izy

Then

doy [(0M,,/0x)I, — (OM,/3x)L,y] z + [(OM, /dx)], — (OM,/dx)L, ]y
o LI, — 12

From Eqgs (9.57) and (9.58)

oM, oM,
—r -5,
ox ox

so that

B0y | (=S:L + Syly)z + (=Syly + SzLy )y
wx LI, — 12,

Substituting for doy/0x in Eq. (10.1) we obtain

Sl — S,1. S, 1L, — S,1,
thy = 2270 [ g 22 T [y
Ll — 12 |y L, —12 [y
or
Syl — S.I, Suly — Sy,
T = zdA' + =L 22 dA4’ 10.2
bo(Lly —12) L4 bo(Lly —12) Ja” (102)

The slice may be taken so that the average shear stress in any chosen direction can be
determined.
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10.2 SHEAR STRESS DISTRIBUTION IN SYMMETRICAL SECTIONS

Generally in civil engineering we are not concerned with shear stresses in unsymmetri-
cal sections except where they are of the thin-walled type (see Sections 10.4 and 10.5).
‘Thick’ beam sections usually possess at least one axis of symmetry and are subjected
to shear loads in that direction.

Suppose that the beam section shown in Fig. 10.4 is subjected to a single shear load S,.
Since the y axis is an axis of symmetry, it follows that I, = 0 (Section 9.6). Therefore
Eq. 10.2 reduces to

Sy
= — / 1 .
T bOIZ//ydA (10.3)

The negative sign arises because the average shear stress t along the base bg of the
slice A’ is directed towards by from within the slice as shown in Fig. 10.3(b). Taking
the slice above Gz, as in Fig. 10.4, means that 7 is now directed downwards. Clearly
a positive shear force S, produces shear stresses in the positive y direction, hence the
negative sign.

Clearly the important shear stresses in the beam section of Fig. 10.4 are in the direction
of the load. To find the distribution of this shear stress throughout the depth of the
beam we therefore take the slice, by, in a direction parallel to and at any distance y
from the z axis. The integral term in Eq. (10.3) represents, mathematically, the first
moment of the shaded area 4" about the z axis. We may therefore rewrite Eq. (10.3) as

5,45
= — 104
-~ (10.4)

y

e AN | 8y
Y 0 !
By

A\

=
A
Average g

shear stress, 7 h y
across by

i G
FIGURE 10.4 Shear stress

distribution in a symmetrical
section beam
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where y is the distance of the centroid of the area A" from the z axis. Alternatively, if
the value of y is not easily determined, say by inspection, then [,y d4” may be found by
calculating the first moment of area about the z axis of an elemental strip of length b,
width 8y (Fig. 10.4), and integrating over the area A’. Equation (10.3) then becomes

Ymax
T= —;;2 /y by dy: (10.5)
Either of Egs. (10.4) or (10.5) may be used to determine the distribution of verti-
cal shear stress in a beam section possessing at least a horizontal or vertical axis of
symmetry and subjected to a vertical shear load. The corresponding expressions for
the horizontal shear stress due to a horizontal load are, by direct comparison with
Egs (10.4) and (10.5)

S,A'z S, Zmax
— P bz, dz 10.6
= Tt / 21 dzy (10.6)

in which by is the length of the edge of a vertical slice.

EXAMPLE 10.1 Determine the distribution of vertical shear stress in the beam
section shown in Fig. 10.5(a) due to a vertical shear load S,,.

A
y
27,57
4
y“ 3s,
2bd
z <
G d
A
b FIGURE 10.5 Shear stress
distribution in a rectangular
(a) (b) section beam

In this example the value of y for the slice A’ is found easily by inspection so that we
may use Eq. (10.4). From Fig. 10.5(a) we see that

bd? d 1/d
= I = — A/Z —_ _=— -
bo="> =1 b(2 y) y 2<2 +y)

128, (d 1
= ppt(5)3

Hence
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which simplifies to

6Sy (d?
=% (Z - y2> (10)

The distribution of vertical shear stress is therefore parabolic as shown in Fig. 10.5(b)
and varies from t =0 aty = £ d/2 to T = Tmax = 3S,/2bd at the neutral axis (y = 0) of
the beam section. Note that tmax = 1.574y, Where t,y, the average vertical shear stress
over the section, is given by 7,y =), /bd.

EXAMPLE 10.2 Determine the distribution of vertical shear stress in the I-section
beam of Fig. 10.6(a) produced by a vertical shear load, S,,.

It is clear from Fig. 10.6(a) that the geometry of each of the areas A} and A}, formed by
taking a slice of the beam in the flange (aty =yr) and in the web (aty =yy,), respectively,
are different and will therefore lead to different distributions of shear stress. First we
shall consider the flange. The area A; is rectangular so that the distribution of vertical
shear stress, tr, in the flange is, by direct comparison with Ex. 10.1

Sy, B (D D+
tT=—=\|=— =
f BL 2 \2 ye 3 Yt

or
S, (D*
= A (T —Yf> (10.8)

where I, is the second moment of area of the complete section about the centroidal
axis Gz and is obtained by the methods of Section 9.6.

y Ay
A
— N ‘
, 7; at base
% AL |<_ of flange
Yw d
z D < >
G Tmax

—> «— Iy,

a b 4

(a) (b)
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A difficulty arises in the interpretation of Eq. (10.8) which indicates a parabolic dis-
tribution of vertical shear stress in the flanges increasing from =t =0 at ys =+D/2 to

avalue

Sy 2 n
= —S—IZ(D —d°) (10.9)
atys = +d /2. However, the shear stress must also be zero at the inner surfaces ab, etc.,
of the flanges. Equation (10.8) therefore may only be taken to give an indication of the
vertical shear stress distribution in the flanges in the vicinity of the web. Clearly if the
flanges are thin so that d is close in value to D then t; in the flanges at the extremities

of the web is small, as indicated in Fig. 10.6(b).

The area A}, formed by taking a slice in the web at y =y, comprises two rectangles
which may therefore be treated separately in determining A’y for the web.

_ S [g(P_d\1 (D, d\ . (d 1(d,
wWETLIP\2 7 2) 2\ ) T g T g g T

which simplifes to

Thus

T = —5—2[%@2 _ &)+ %(d; —y@) (10.10)

or )
Ty = —f—zy [%(DZ —d?) + %(dzz —y%v) (10.11)

Again the distribution is parabolic and increases from )
Ty = —%8%(02 —d?) (10.12)

atyy = *d/2 to a maximum value, Ty max, given by

S| B o o, &
=——=|—MD" —d — 10.13
Tw,max 1, |:8tw( ) + 3 ( )
aty =0. Note that the value of 7, at the extremities of the web (Eq. (10.12)) is greater
than the corresponding values of tr by a factor B/t,. The complete distribution is
shown in Fig. 10.6(b). Note also that the negative sign indicates that t is vertically
upwards.

The value of 7y max (Eq. (10.13)) is not very much greater than that of z, at the
extremities of the web. In design checks on shear stress values in [-section beams it is
usual to assume that the maximum shear stress in the web is equal to the shear load
divided by the web area. In most cases the result is only slightly different from the
value given by Eq. (10.13). A typical value given in Codes of Practice for the maximum
allowable value of shear stress in the web of an I-section, mild steel beam is 100 N/mm?;
this is applicable to sections having web thicknesses not exceeding 40 mm.
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We have been concerned so far in this example with the distribution of vertical shear
stress. We now consider the situation that arises if we take the slice across one of the
flanges at z =z¢ as shown in Fig. 10.7(a). Equations (10.4) and (10.5) still apply, but in
this case bp =t;. Thus, using Eq. (10.4)

Sy ; B z 1/(D N d
T = —— — — =4+ =
=4 "\2 )2 {272
where t¢(p) is the distribution of horizontal shear stress in the flange. Simplifying the
above equation we obtain

Ttny = (10.14)

5@ +d) (B
A 2

Equation (10.14) shows that the horizontal shear stress varies linearly in the flanges
from zero at zf =B/2 to —S,(D +d)B/8I, at z; = 0.

We have defined a positive shear stress as being directed towards the edge by of the slice
away from the interior of the slice, Fig. 10.3(b). Since Eq. (10.14) is always negative for
the upper flange, ¢ in the upper flange is directed towards the edges of the flange.
By a similar argument t¢(y,) in the lower flange is directed away from the edges of the
flange because y for a slice in the lower flange is negative making Eq. (10.14) always
positive. The distribution of horizontal shear stress in the flanges of the beam is shown
in Fig. 10.7(b).

From Eq. (10.12) we see that the numerical value of shear stress at the extremities of
the web multiplied by the web thickness is

o)
oo| &

Y

e+ (10.15)

Sy B
Twty = ——(D +d)(D —d) =
I8

P - O

Centre line
of web

— —> —> | <— <—
FiGugre 10.7 \[/
Distribution of

horizontal shear | B | f
stress in the {langes | |
of an I-section beam (@) (b)
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The product of horizontal flange stress and flange thickness at the extremities of the
web is, from Eq. (10.14)

Sy B
Thhytt = I—yg(D +d)t; (10.16)
z
Comparing Eqgs (10.15) and (10.16) we see that
Twlyw = 2‘L'f(h)tf (10.17)

The product stress x thickness gives the shear force per unit length in the walls of the
section and is known as the shear flow, a particularly useful parameter when considering
thin-walled sections. In the above example we note that ¢yt is the shear flow at the
extremities of the web produced by considering one half of the complete flange. From
symmetry there is an equal shear flow at the extremities of the web from the other half
of the flange. Equation (10.17) therefore expresses the equilibrium of the shear flows
at the web/flange junctions. We shall return to a more detailed consideration of shear
flow when investigating the shear of thin-walled sections.

In ‘thick’ I-section beams the horizontal flange shear stress is not of great importance
since, as can be seen from Eq. (10.17), it is of the order of half the magnitude of the
vertical shear stress at the extremities of the web if ¢, >~ ;. In thin-walled I-sections
(and other sections too) this horizontal shear stress can produce shear distortions
of sufficient magnitude to redistribute the direct stresses due to bending, thereby
seriously affecting the accuracy of the basic bending theory described in Chapter 9.
This phenomenon is known as shear lag.

EXAMPLE 10.3 Determine the distribution of vertical shear stress in a beam of
circular cross section when it is subjected to a shear force S, (Fig. 10.8).

The area A’ of the slice in this problem is a segment of a circle and therefore does not
lend itself to the simple treatment of the previous two examples. We shall therefore
use Eq. (10.5) to determine the distribution of vertical shear stress. Thus

S D/2b d 10.18
Tz_bolz/): y1 y1 ( . )
where
xD*
I, = —— (Eq. (9.40
- =2 (Eq. 940)

Integration of Eq. (10.18) is simplified if angular variables are used; thus, from Fig. 10.8
D D D D
b0=2x§cose b=2xzcos¢ ylzzsin¢> dy1=5005¢d¢

Equation (10.18) then becomes

165,

L N Py
D+ cosf

/2
/ cos? ¢sing do
6
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Distribution of shear
stress in a beam of
circular cross section

Integrating we obtain

T =

/2
16S, |:_cos3¢:| /

~ 7D2cosh 3 .

which gives
16Sy

_ 2
T=— 32D2 cos” 6
But
2 2 Y 2
f=1-sin“0=1—-=—=
cos sin (D/ 2)
Therefore
16Sy 4y?
=———=(1-= 10.19
T T 32 ( D2 (10.19)
The distribution of shear stress is parabolic with values of t =0 at y=4D/2 and
T = Tnax = —165y /371D2 aty =0, the neutral axis of the section.

10.3 STRAIN ENERGY DUE TO SHEAR

Consider a small rectangular element of material of side 8x, 8y and thickness # subjected
to a shear stress and complementary shear stress system, t (Fig. 10.9(a));  produces a
shear strain y in the element so that distortion occurs as shown in Fig. 10.9(b), where
displacements are relative to the side CD. The horizontal displacement of the side AB
is y dy so that the shear force on the face AB moves through this distance and therefore
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T y8y
B —>' A
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T '
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PR C <—— D
8 FIGURE 10.9 Determination of

(a) (b) strain energy due to shear

does work. If the shear loads producing the shear stress are gradually applied, then
the work done by the shear force on the element and hence the strain energy stored,
3U, is given by

1
U = zrt &y dy

or
1
dU = Eryt&c?‘)y

Now y =1/G, where G is the shear modulus and ¢ 8x 8y is the volume of the element.
Hence

172
dU = el x volume of element

The total strain energy, U, due to shear in a structural member in which the shear
stress, 7, is uniform is then given by

2
U= ZT_G x volume of member (10.20)

10.4 SHEAR STRESS DISTRIBUTION IN THIN-WALLED OPEN SECTION BEAMS

In considering the shear stress distribution in thin-walled open section beams we shall
make identical assumptions regarding the calculation of section properties as were
made in Section 9.6. In addition we shall assume that shear stresses in the plane of the
cross section and parallel to the tangent at any point on the beam wall are constant

Assumed Assumed
constant Thickness, t negligible Ficure 10.10
across t Assumptions in thin-

walled open section
(a) (b) beams
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across the thickness (Fig. 10.10(a)), whereas shear stresses normal to the tangent are
negligible (Fig. 10.10(b)). The validity of the latter assumption is evident when it is
realized that these normal shear stresses must be zero on the inner and outer surfaces
of the section and that the walls are thin. We shall further assume that the wall thickness
can vary round the section but is constant along the length of the member.

Figure 10.11 shows a length of a thin-walled beam of arbitrary section subjected to
shear loads S, and S, which are applied such that no twisting of the beam occurs.
In addition to shear stresses, direct stresses due to the bending action of the shear
loads are present so that an element 3s x 3x of the beam wall is in equilibrium under
the stress system shown in Fig. 10.12(a). The shear stress t is assumed to be positive
in the positive direction of s, the distance round the profile of the section measured
from an open edge. Although we have specified that the thickness ¢t may vary with s,
this variation is small for most thin-walled sections so that we may reasonably make
the approximation that ¢ is constant over the length 3s. As stated in Ex. 10.2 it is
convenient, when considering thin-walled sections, to work in terms of shear flow to
which we assign the symbol g (=t¢). Figure 10.12(b) shows the shear stress system of
Fig. 10.12(a) represented in terms of g. Thus for equilibrium of the element in the x
direction

5 5
o+ 22 8 ) 85 — ot ds + (g + Las Jax —qax =0
ox as

which gives

aq taox

— — =0 10.21
as 0x ( )
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Again we assume that the direct stresses are given by Eq. (9.31). Then, substituting in
Eq. (10.21) for doy/9x from the derivation of Eq. (10.2)

g (Sl — SZIZ)tz N (S:1y — Sy1y)

s LI, — 13 LI, - 12

Integrating this expression from s = 0 (where ¢ = 0 on the open edge of the section)
to any point s we have

Syby — S.I, \ [*
= (22— [ tzds ds 10.22
ds (Izly_% )/0 z +< Izly—IZ )/ty (10.22)

The shear stress at any point in the beam section wall is then obtained by dividing g
by the wall thickness at that point, i.e.

u=2 (10.23)
ty

ExampLE 10.4 Determine the shear flow distribution in the thin-walled Z-section
beam shown in Fig. 10.13 produced by a shear load S, applied in the plane of the web.

1
y

Al— s,

Ze——————— ¢~ h

F1GURE 10.13 Beam section of Ex. 10.4

The origin for our system of reference axes coincides with the centroid of the section
at the mid-point of the web. The centroid is also the centre of antisymmetry of the
section so that the shear load, applied through this point, causes no twisting of the
section and the shear flow distribution is given by Eq. (10.22) in which S; =0, i.e

I
S_IISy—ZyIZ/ ds_u By / as 0
The second moments of area of the section about the z and y axes have previously
been calculated in Ex. 9.10 and are
LB e
T3 T2
Substituting these values in Eq. (i) we obtain

S N
qs = — / (10.29z — 6.86y)ds
n Jy
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On the upper flange AB,y=+h/2 andz = h/2 — sa where 0 <sa <h/2. Therefore

S, [
aan =7 / (1.72h — 10.2952)dsa
0

which gives
S
gAB = h—§(1.72hsA —5.155%) (ii)

Thusat A (sa =0),ga =0and at B (s =h/2),qg = —0.43 Sy /h. Note that the order of
the suffixes of g in Eq. (ii) denotes the positive direction of g (and s ). An examination
of Eq. (ii) shows that the shear flow distribution on the upper flange is parabolic with
a change of sign (i.e. direction) at so = 0.334. For values of so < 0.334, gaB is positive
and is therefore in the same direction as sa. Furthermore, gag has a turning value
between s =0 and sp =0.33/4 at a value of s given by

dgaB
dsy

=1.72h —10.29so =0

i.e. at spo=0.17h. The corresponding value of gap is then, from Eq. (ii),
gap =0.145,/h.

In the web BC,y = +h/2 — sg where 0 <sg </ and z =0. Thus

S, [®

gBC = h—§ / (6.86s5 — 3.43h) dsg + gB (iii)
0

Note that in Eq. (iii), gpc is not zero when sg = 0 but equal to the value obtained by

inserting so =//2 in Eq. (ii), i.e. gg = —0.43 5, /h. Integrating the first two terms on

the right-hand side of Eq. (iii) we obtain

S
gBC = h—§(3.43s2B — 3.43hsp — 0.43h%) (iv)

Equation (iv) gives a parabolic shear flow distribution in the web, symmetrical about
Gz and with a maximum value at sg = 1/2 equal to —1.29S, /h; gaB is negative at all
points in the web.

The shear flow distribution in the lower flange may be deduced from antisymmetry;
the complete distribution is shown in Fig. 10.14.

SHEAR CENTRE

We have specified in the previous analysis that the lines of action of the shear loads S,
and Sy, must not cause twisting of the section. For this to be the case, S, and S, must
pass through the shear centre of the section. Clearly in many practical situations this
is not so and torsion as well as shear is induced. These problems may be simplified by
replacing the shear loads by shear loads acting through the shear centre, plus a pure
torque, as illustrated in Fig. 10.15 for the simple case of a channel section subjected to
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avertical shear load S, applied in the line of the web. The shear stresses corresponding
to the separate loading cases are then added by superposition.

Where a section possesses an axis of symmetry, the shear centre must lie on this axis.
For cruciform, T and angle sections of the type shown in Fig. 10.16 the shear centre
is located at the intersection of the walls since the resultant internal shear loads all
pass through this point. In fact in any beam section in which the walls are straight and
intersect at just one point, that point is the shear centre of the section.

ExampLE 10.5 Determine the position of the shear centre of the thin-walled
channel section shown in Fig. 10.17.

The shear centre S lies on the horizontal axis of symmetry at some distance zs, say,
from the web. If an arbitrary shear load, Sy, is applied through the shear centre, then
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beam of Ex. 10.5

the shear flow distribution is given by Eq. (10.22) and the moment about any point
in the cross section produced by these shear flows is equivalent to the moment of the
applied shear load about the same point; S, appears on both sides of the resulting
equation and may therefore be eliminated to leave zg as the unknown.

For the channel section, Gz is an axis of symmetry so that I, = 0. Equation (10.22)
therefore simplifies to

Sy [*
== ds
qs I /0 ty

th3 h\> b
= (B (1)

Substituting for I, and noting that ¢ is constant round the section, we have

where

125, s

= A oo Jo 7Y ®

The solution of this type of problem may be reduced in length by giving some thought
to what is required. We are asked, in this case, to obtain the position of the shear
centre and not a complete shear flow distribution. From symmetry it can be seen that
the moments of the resultant shear forces on the upper and lower flanges about the
mid-point of the web are numerically equal and act in the same sense. Furthermore, the
moment of the web shear about the same point is zero. Therefore it is only necessary
to obtain the shear flow distribution on either the upper or lower flange for a solution.
Alternatively, the choice of either flange/web junction as the moment centre leads to
the same conclusion.
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On the upper flange, y = +4/2 so that from Eq. (i) we obtain

6S,

T2+ 6b/h) A (i)

gdAB =

Equating the anticlockwise moments of the internal shear forces about the mid-point
of the web to the clockwise moment of the applied shear load about the same point
gives

bop
Sst=—2/ CIABzdSA
0

Substituting for gap from Eq. (ii) we have

b 6S. h
Spzs =2 ———>———sads
y28 /0h2(1+6b/h)2SA A
from which
e 32
>~ h(1 + 6b/h)

In the case of an unsymmetrical section, the coordinates (zs,ys) of the shear centre
referred to some convenient point in the cross section are obtained by first determining
zs in a similar manner to that described above and then calculating ys by applying a
shear load S, through the shear centre.

10.5 SHEAR STRESS DISTRIBUTION IN THIN-WALLED CLOSED

SECTION BEAMS

The shear flow and shear stress distributions in a closed section, thin-walled beam are
determined in a manner similar to that described in Section 10.4 for an open section
beam but with two important differences. Firstly, the shear loads may be applied at
points in the cross section other than the shear centre so that shear and torsion occur
simultaneously. We shall see that a solution may be obtained for this case without
separating the shear and torsional effects, although such an approach is an acceptable
alternative, particularly if the position of the shear centre is required. Secondly, it is
not generally possible to choose an origin for s that coincides with a known value of
shear flow. A closed section beam under shear is therefore singly redundant as far
as the internal force system is concerned and requires an equation additional to the
equilibrium equation (Eq. (10.21)). Identical assumptions are made regarding section
properties, wall thickness and shear stress distribution as were made for the open
section beam.

The thin-walled beam of arbitrary closed section shown in Fig. 10.18 is subjected to
shear loads S, and Sy applied through any point in the cross section. These shear loads
produce direct and shear stresses on any element in the beam wall identical to those
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X FIGURE 10.18 Shear of a
thin-walled closed section
beam

shown in Fig. 10.12. The equilibrium equation (Eq. (10.21)) is therefore applicable
and is

aq doy

—4+t—=0

as + ox
Substituting for do, /dx from the derivation of Eq. (10.2) and integrating we obtain, in

an identical manner to that for an open section beam

Syl 51 S.Ly — S,
gs = 22—~ ”y / tzds + Zy yy/(;tyds—i—qso (10.24)

where gy is the value of shear flow at the origin of s.

It is clear from a comparison of Eqs (10.24) and (10.22) that the first two terms of the
right-hand side of Eq. (10.24) represent the shear flow distribution in an open section
beam with the shear loads applied through its shear centre. We shall denote this ‘open
section’ or ‘basic’ shear flow distribution by g}, and rewrite Eq. (10.24) as

ds =qp + 45,0

We obtain gy, by supposing that the closed section beam is ‘cut’ at some convenient
point, thereby producing an ‘open section’ beam as shown in Fig. 10.19(b); we take
the ‘cut’ as the origin for s. The shear flow distribution round this ‘open section’ beam
is given by Eq. (10.22), i.e.

Syl — .1 S.Ly — S,I
Oylzy — Oz1z Ozlzy — Oyly
_ (z ds + ds
R A 7} / LI, 13 /

Equation (10.22) is valid only if the shear loads produce no twist; in other words, S,
and S, must be applied through the shear centre of the ‘open section” beam. Thus by
‘cutting’ the closed section beam to determine gy, we are, in effect, transferring the line
of action of §; and Sy, to the shear centre, S;, of the resulting ‘open section” beam.
The implication is, therefore, that when we ‘cut’ the section we must simultaneously
introduce a pure torque to compensate for the transference of S, and S,. We shall
show in Chapter 11 that the application of a pure torque to a closed section beam
results in a constant shear flow round the walls of the beam. In this case g, which



268 < Chapter 10 / Shear of Beams

F1Gure 10.19
Determination of
shear flow value at
the origin for s in a
closed section beam

is effectively a constant shear flow round the section, corresponds to the pure torque
produced by the shear load transference. Clearly different positions of the ‘cut’ will
result in different values for gy since the corresponding ‘open section’ beams have
different shear centre positions.

Equating internal and external moments in Fig. 10.19(a), we have

S:no + Syéo0 = y{pqsds = ygp%derqs,o fpds

where § denotes integration taken completely round the section. In Fig. 10.19(a) the
elemental area 34 is given by

M:%p?‘)s
Thus
%pds=2¢.dA
or
fpds:ZA

where A is the area enclosed by the mid-line of the section wall. Hence

Sxno + Syo = ?§ Pqp ds + 24q; (10.25)

If the moment centre coincides with the lines of action of S, and S, then Eq. (10.25)
reduces to

0= fp% ds + 2Ag;sp (10.26)

The unknown shear flow g; ¢ follows from either of Egs. (10.25) or (10.26). Note that
the signs of the moment contributions of S, and S, on the left-hand side of Eq. (10.25)
depend upon the position of their lines of action relative to the moment centre. The
values given in Eq. (10.25) apply only to Fig. 10.19(a) and could change for different
moment centres and/or differently positioned shear loads.
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Distortion

/‘\6; due to shear

(a) (b)

SHEAR CENTRE

A complication arises in the determination of the position of the shear centre of
a closed section beam since the line of action of the arbitrary shear load (applied
through the shear centre as in Ex. 10.5) must be known before g can be determined
from either of Egs. (10.25) or (10.26). However, before the position of the shear centre
can be found, g, must be obtained. Thus an alternative method of determining g; ¢
is required. We therefore consider the rate of twist of the beam which, when the shear
loads act through the shear centre, is zero.

Consider an element, 3s x &x, of the wall of the beam subjected to a system of shear and
complementary shear stresses as shown in Fig. 10.20(a). These shear stresses induce
a shear strain, y, in the element which is given by

Yy =¢1+ ¢

irrespective of whether direct stresses (due to bending action) are present or not. If
the linear displacements of the sides of the element in the s and x directions are dv;
(i.e. a tangential displacement) and 3w, respectively, then as both 8s and 3x become
infinitely small

_ ow aUt

= — + — 10.27
as ox ( )

14

Suppose now that the beam section is given a small angle of twist, 6, about its centre of
twist, R. If we assume that the shape of the cross section of the beam is unchanged by
this rotation (i.e. it moves as a rigid body), then from Fig. 10.20(b) it can be seen that
the tangential displacement, vy, of a point in the wall of the beam section is given by

Ut =pR9

Hence

dvy a0
0x = PR 0x
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Since we are assuming that the section rotates as a rigid body, it follows that 6 is a
function of x only so that the above equation may be written

8Ut _ do
ox — PR dx

Substituting for dv;/dx in Eq. (10.27) we have

ow do
y = m +PRa
Now
yo L 4
G Gt
Thus

qs _8w+ do
Gt~ s PRay

Integrating both sides of this equation completely round the cross section of the beam,
i.e. froms = 0tos =s, (see Fig. 10.20(b))
qs do
—ds = ds — ds
Gt o PR
which gives
s s=s, , 40
—ds = ' 2A
G Wl—g + =
The axial displacement, w, must have the same value at s =0 and s =s,. Therefore the
above expression reduces to

do 1 qs
10.2
A& 24) Gt (10-28)
For shear loads applied through the shear centre, df /dx = 0 so that
qs
0=¢@ =ds
Gt
which may be written
0= f ! (qv + gs0)ds
= Gt db T (gs,0
Hence
$(qn/Gt)ds
= 10.29
If G is constant then Eq. (10.29) simplifies to
t)ds
dso = —M (10.30)

¢ ds/t
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ExampLE 10.6 A thin-walled, closed section beam has the singly symmetrical,
trapezoidal cross section shown in Fig. 10.21. Calculate the distance of the shear
centre from the wall AD. The shear modulus G is constant throughout the section.

12mm
300 mm

300 mm Sc

The shear centre lies on the horizontal axis of symmetry so that it is only necessary

to apply a shear load S, through S to determine zs. Furthermore the axis of symme-
try coincides with the centroidal reference axis Gz so that I, =0. Equation (10.24)
therefore simplifies to

Sy s .
%Z_I_/ tyds +qs0 1)
z JO

Note that in Eq. (i) only the second moment of area about the z axis and coordinates
of points referred to the z axis are required so that it is unnecessary to calculate the
position of the centroid on the z axis. It will not, in general, and in this case in particular,
coincide with S.

The second moment of area of the section about the z axis is given by

12 3 3 800 1 2
[, = 126007, 8>300 +2[/ 10(150+ﬂs> ds
0

12 12 800

from which I, = 1074 x 10 mm*. Alternatively, the second moment of area of each
inclined wall about an axis through its own centroid may be found using the method
described in Section 9.6 and then transferred to the z axis by the parallel axes theorem.

We now obtain the gy shear flow distribution by ‘cutting’ the beam section at the
mid-point O of the wall CB. Thus, since y = —sa we have

S, [
qb,0B = I—y / 8sa dsa
z JO
which gives

S ..
qb,0B = el 4s% (ii)
z
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Thus
S
qoB = — x 9 x 10*
> IZ

For the wall BA where y = —150 — 150sg,/800

S B 150
db,BA = I—y |:/ 10 (150 + —sB) dsg + 9 x 104]
0

z 800
from which
qoBA = i—y (1500sB + %]23 +9 x 104> (iii)
Then

S
goa = -2 x 189 x 10*
> IZ

In the wall AD, y = —300 + sc so that

S, [ [
qb,AD = I—y [/ 12(300 — sc) dsc + 189 x 104}
0

z
which gives

db,AD = f—j(%oosC — 652 + 189 x 10%) (iv)
The remainder of the gy, distribution follows from symmetry.
The shear load Sy is applied through the shear centre of the section so that we must

use Eq. (10.30) to determine ¢g9. Now

t_E—i_ 10 +?=247.5

%§_600 2x 800 300

Therefore

2 150 4db,0B 800 qdb,BA 300 db,AD i
9 ds, 2 dg _’
4s0 247.5 (/0 8 A /0 10 B /0 12 c v)

Substituting for gy 0B, gbpa and gpap in Eq. (v) from Eqgs (ii), (iii) and (iv),
respectively, we obtain

28, 150 52 800 15 , 3
=- —ds 150 — 9x107 ) ds
ds,0 247 51 /0 > A+/O < SB + 16OSB+ X ) B

300 4

1 189 x 10

300sc — =52+ ———— ) ds
+/0 ( sC 2sc+ 0 ) c:|
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from which

S
gs0 = — =2 x 1.04 x 10°
I
Taking moments about the mid-point of the wall AD we have
150 800
—8yzg =2 / 786q0B dsa +/ 294gpadsp (vi)
0 0
Noting that goB = qb,0B + ¢s,0 and gBa =qb A + 5,0 We rewrite Eq. (vi) as

28 150
Syzy = I—y [ / 786(+4s% — 1.4x10%)dsa
z 0

800 15
+ f 294(41500sp + ESZB —0.95x10%)dsp (vii)
0

Integrating Eq. (vii) and eliminating S gives

zg = 282 mm.

PROBLEMS

P10.1 A cantilever has the inverted T-section shown in Fig. P.10.1. It carries a vertical
shear load of 4kN in a downward direction. Determine the distribution of vertical
shear stress in its cross-section.

Ans. Inweb: T =0.004(44%> —y*)N/mm?,  in flange: 7 =0.004(26> —y?) N/mm?.

- T

60 mm

Y
l l ‘; 10mm

40 mm

]
A

Ficure P.10.1

P10.2 An I-section beam having the cross-sectional dimensions shown in Fig. P.10.2
carries a vertical shear load of 80 kN. Calculate and sketch the distribution of vertical
shear stress across the beam section and determine the percentage of the total shear
load carried by the web.
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Ans. 7 (base of flanges) = 1.1 N/mm?, 7 (ends of web) = 11.1 N/mm?,
7 (neutral axis) = 15.77 N/mm?, 95.9%.

| | o]

15mm
—

400 mm

| | _jzomm
s

FiGure P.10.2

P10.3 A doubly symmetrical I-section beam is reinforced by a flat plate attached to
the upper flange as shown in Fig. P.10.3. If the resulting compound beam is subjected
to a vertical shear load of 200 kN, determine the distribution of shear stress in the
portion of the cross section that extends from the top of the plate to the neutral axis.
Calculate also the shear force per unit length of beam resisted by the shear connection
between the plate and the flange of the I-section beam.

Ans. 7 (top of plate) = 0
7 (bottom of plate) = 0.68 N/mm?
7 (top of flange) = 1.36 N/mm?
t (bottom of flange) = 1.78 N/mm?
7 (top of web) = 14.22 N/mm?
7 (neutral axis) = 15.15 N/mm?
Shear force per unit length = 272 kN/m.

400 mm

A
\

w
S
3
3

25 mm 600 mm

200
}*__an_" Ficure P.10.3

P10.4 A timber beam has a rectangular cross section, 150 mm wide by 300 mm deep,
and is simply supported over a span of 4m. The beam is subjected to a two-point



Problems < 275

loading at the quarter span points. If the beam fails in shear when the total of the two
concentrated loads is 180 kN, determine the maximum shear stress at failure.

Ans. 3N/mm2.

P10.5 Abeam has the singly symmetrical thin-walled cross section shown in Fig. P.10.5.
Each wall of the section is flat and has the same length, a, and thickness, ¢. Determine
the shear flow distribution round the section due to a vertical shear load, Sy, applied
through the shear centre and find the distance of the shear centre from the point C.

Ans. gap =—3Sy(2asa — szA/Z)/16a3 sin o
qBc = —38,(3/2 +sg/a —s%/2a%)/16a sin o
S.C.is 5a cos /8 from C.

a S A
S, 4
B/\ﬁ
S
a C
S ) a _ )
D @
t
E Ficure P.10.5

P10.6 Define the term ‘shear centre’ of a thin-walled open section and determine the
position of the shear centre of the thin-walled open section shown in Fig. P.10.6.

Ans. 2.66r from centre of semicircular wall.

2r

Ficure P.10.6
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P10.7 Determine the position of the shear centre of the cold-formed, thin-walled
section shown in Fig. P.10.7. The thickness of the section is constant throughout.

Ans. 87.5 mm above centre of semicircular wall.

TN
/ ﬁ
/ S
I

50 mm

25 mm 100 mm 25 mm Ficure P.10.7

P.10.8 The thin-walled channel section shown in Fig. P.10.8 has flanges that decrease
linearly in thickness from 2¢ at the tip to fg at their junction with the web. The web
has a constant thickness ¢#y. Determine the distribution of shear flow round the section
due to a shear load Sy applied through the shear centre S. Determine also the position
of the shear centre.

Ans. gap=—Sytoh(sa —s%/4d) /L., qvc =—Syto(hsp —s% +3hd/2)/2L,
where I, =to h*(h + 9d)/12; 5d* / (h + 9d) from mid-point of web.

SA<_‘A EO

A

—»1 fe— 1

Ficure P.10.8

P10.9 Calculate the position of the shear centre of the thin-walled unsymmetrical
channel section shown in Fig. P.10.9.

Ans. 23.1 mm from web BC, 76.3 mm from flange CD.
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100 mm

+ 5mm B v

3

l 100 mm Ficure P.10.9

P10.10 The closed, thin-walled, hexagonal section shown in Fig. P.10.10 supports a
shear load of 30kN applied along one side. Determine the shear flow distribution
round the section if the walls are of constant thickness throughout.

A

Ans. qag=1.2sa —0.003s3 + 50
gsc = 0.6sg — 0.006s% + 140
gcp = —0.6sc — 0.003sZ + 140.

Remainder of distribution follows by symmetry. All shear flows in N/mm.

100 mm |
e S ——
I—» c
B__ B > 30kN
Sc

Sa
a, -
P
7
F E

|—>SF Ficure P.10.10

P10.11 A closed section, thin-walled beam has the shape of a quadrant of a circle
and is subjected to a shear load § applied tangentially to its curved side as shown in
Fig. P.10.11. If the walls are of constant thickness throughout determine the shear flow
distribution round the section.

Ans. goa =S(1.61cos0 —0.81)/r gap=S5(0.57s> — 1.14rs —0.33)/r.

Ficure P.10.11
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P10.12 An overhead crane runs on tracks supported by a thin-walled beam whose
closed cross section has the shape of an isosceles triangle (Fig. P.10.12). If the walls
of the section are of constant thickness throughout determine the position of its shear

centre.

Ans. 0.7m from horizontal wall.

2m

=

FiGure P.10.12

P10.13 A box girder has the singly symmetrical trapezoidal cross section shown in
Fig. P.10.13. It supports a vertical shear load of 500kN applied through its shear
centre and in a direction perpendicular to its parallel sides. Calculate the shear flow
distribution and the maximum shear stress in the section.

Ans. goa =0.25s4
gaB=0.21sg — 2.14 x 10~*s3 + 250
gc =—0.17sc + 246
Tmax = 30.2N/mm?.

500 kN
Sc
8 mm
C
D ¢ B
10mm
10mm —
120° 12mm 120°
im ¢ S
E T O——>SA A
le >
' 2m ! Ficure P.10.13
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Chapter 11 / Torsion of Beams

Torsion in beams arises generally from the action of shear loads whose points of appli-
cation do not coincide with the shear centre of the beam section. Examples of practical
situations where this occurs are shown in Fig. 11.1 where, in Fig. 11.1(a), a concrete
encased I-section steel beam supports an offset masonry wall and in Fig. 11.1(b) a
floor slab, cast integrally with its supporting reinforced concrete beams, causes torsion
of the beams as it deflects under load. Codes of Practice either imply or demand that
torsional stresses and deflections be checked and provided for in design.

—— R T = Reinforced concrete
_________________ - beam
u

Ficure 11.1 -
Causes of torsion in
beams (2) (b)

The solution of torsion problems is complex particularly in the case of beams of solid
section and arbitrary shape for which exact solutions do not exist. Use is then made
of empirical formulae which are conveniently expressed in terms of correction factors
based on the geometry of a particular shape of cross section. The simplest case involv-
ing the torsion of solid section beams (as opposed to hollow cellular sections) is that of
a circular section shaft or bar. Therefore, this case forms an instructive introduction
to the more complex cases of the torsion of solid section, thin-walled open section and
closed section beams.

11.1 TorsioN oF SoLib AND HoLLOW CIRCULAR SECTION BARS

Initially, as in the cases of bending and shear, we shall examine the physical aspects of
torsion.

Suppose that the circular section bar shown in Fig. 11.2(a) is cut at some point along
its length and that the two parts of the bar are threaded onto a spindle along its axis.

279
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FIGURE 11.2
Torsion of a circular
section bar

FIGURE 11.3  Shear
stresses produced by
a pure torque

Now we draw a line ABC along the surface of the bar parallel to its axis and apply
equal and opposite torques, 7, at each end as shown in Fig. 11.2(b). The two parts of
the bar will rotate relative to each other so that the line ABC becomes stepped. For
this to occur there must be a relative slippage between the two internal surfaces in
contact.

If, now, we glue the two parts of the bar together this relative slippage is prevented.
The glue, therefore, produces an in-plane force which must, from a consideration
of the equilibrium of either part of the bar, be equal to the applied torque 7. This
internal torque is distributed over each face of the cross section of the bar in the form
of torsional shear stresses whose resultant must be a pure torque. It follows that the
form of these internal shear stresses is that shown in Fig. 11.3 in which they act on a
series of small elements positioned on an internal circle of radius r. Of course, there
are an infinite number of elements on this circle and an infinite number of circles
within the cross section.

Our discussion so far applies to all cross sections of the bar. The problem is to deter-
mine the distribution of shear stress and the actual twisting of the bar that the torque
causes.

>

Initial position



Ficure 11.4
Torsion of a solid
circular section bar
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(a) (b)

Figure 11.4(a) shows a circular section bar of length L subjected to equal and opposite
torques, 7, at each end. The torque at any section of the bar is therefore equal to 7'and
is constant along its length. We shall assume that cross sections remain plane during
twisting, that radii remain straight during twisting and that all normal cross sections
equal distances apart suffer the same relative rotation.

Consider the generator AB on the surface of the bar and parallel to its longitudinal
axis. Due to twisting, the end A is displaced to A’ so that the radius OA rotates through
a small angle, 0, to OA’. The shear strain, ys, on the surface of the bar is then equal to
the angle ABA’ in radians so that

AA"  Ro
L L

Vs =
Similarly the shear strain, y, at any radius r is given by the angle DCD’ so that

_ DD’ 10
V=TT

The shear stress, t, at the radius r is related to the shear strain y by Eq. (7.9). Then

ro
L

Ql

J/ =
or, rearranging
T 0
Z=G=
r L

Consider now any cross section of the bar as shown in Fig. 11.4(b). The shear stress,

(11.1)

7, on an element 8s of an annulus of radius r and width 8r is tangential to the annulus,
is in the plane of the cross section and is constant round the annulus since the cross
section of the bar is perfectly symmetrical (see also Fig. 11.3). The shear force on
the element 3s of the annulus is then 7 8s 8 and its moment about the centre, O, of
the section is 7 3s 3r . Summing the moments on all such elements of the annulus we



282

Chapter 11 / Torsion of Beams

obtain the torque, 37, on the annulus, i.e.

2nr
ST:/ tdrrds
0

which gives
8T = 2mrit or

The total torque on the bar is now obtained by summing the torques from each annulus
in the cross section. Thus

R
T:/ 2t dr (11.2)
0

Substituting for 7 in Eq. (11.2) from Eq. (11.1) we have
R 0
T = f 273G —dr
0 L

which gives
TR* 6

T=——-0G—-
2 L

or
T= JGQ (11.3)
L
whereJ =7 R*/2 (= nD*/32) is defined as the polar second moment of area of the cross
section (see Eq. (9.42)). Combining Eqs (11.1) and (11.3) we have

T 0
= _=G= 114
J r L ( )

Note that for a given torque acting on a given bar the shear stress is a maximum at the
outer surface of the bar. Note also that these shear stresses induce complementary
shear stresses on planes parallel to the axis of the bar but not on the actual surface
(Fig. 11.5).

FiGure 11.5 Shear and

g
T ay
\Q\ complementary shear
) T stresses at the surface of a
‘6\'" circular section bar

subjected to torsion

TORSION OF A CIRCULAR SECTION HOLLOW BAR

The preceding analysis may be applied directly to a hollow bar of circular section
having outer and inner radii R, and R;, respectively. Equation (11.2) then becomes

R,
T =/ 2nrtt dr
R;
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Substituting for t from Eq. (11.1) we have
R, 0
T = f 273G —dr
Ri L
from which
T4 N,
T = E(RO —R; )GZ
The polar second moment of area, J, is then

T
J= E(Rf) —RY) (11.5)

STATICALLY INDETERMINATE CIRCULAR SECTION BARS
UNDER TORSION

In many instances bars subjected to torsion are supported in such a way that the support
reactions are statically indeterminate. These reactions must be determined, however,
before values of maximum stress and angle of twist can be obtained.

Figure 11.6(a) shows a bar of uniform circular cross section firmly supported at each
end and subjected to a concentrated torque at a point B along its length. From
equilibrium we have

T=Ta+Tc (11.6)

A second equation is obtained by considering the compatibility of displacement at B
of the two lengths AB and BC. Thus the angle of twist at B in AB must equal the angle
of twist at B in BC, i.e.

OB(AB) = IB(BC)

.
A .

K ¥
Ta s AT
A A }; C C

LAB LBC

Ta { Ficure 11.6  Torsion of a
circular section bar with built-in
(b) ends
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or using Eq. (11.3)
TaLAg _ TcLpc

GJ GJ
whence
Lgc
Ta =Tc—
LB

Substituting in Eq. (11.6) for TA we obtain

L
T =Tc (L—ii +1)

which gives

L
Te=—"28 7 (11.7)
Lag + Lpc
Hence
Lgc
Th=——"—T 11.8
LA+ Lpc (11.8)

The distribution of torque along the length of the bar is shown in Fig. 11.6(b). Note
that if Lap > Lpc, Tc is the maximum torque in the bar.

ExampLE 11.1 A bar of circular cross section is 2.5 m long (Fig. 11.7). For 2m of
its length its diameter is 200 mm while for the remaining 0.5 m its diameter is 100 mm.
If the bar is firmly supported at its ends and subjected to a torque of 50 kNm applied
at its change of section, calculate the maximum stress in the bar and the angle of twist
at the point of application of the torque. Take G = 80 000 N/mm?.

In this problem Eqs (11.7) and (11.8) cannot be used directly since the bar changes
section at B. Thus from equilibrium

T=Ta+Tc i)
and from the compatibility of displacement at B in the lengths AB and BC

OB(aB) = UB(BC)
50 kN m

7
A’
[

Diameter ( t

200 mm

C
A \B/ Diameter
s 100 mm

> FIGURE 11.7 Bar of
20m 0.5m Ex. 111

A
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or using Eq. (11.3)

TaLag  TcLgc
GIlap  Glge

whence

A= Lrclan C
LagJBC

(if)
Substituting in Eq. (i) we obtain

L
T =Tc <—BCJA—B+1>

LB JBC
or
05 (200 102"
50="Tc 70~ <W> +1

from which

Tc = 10kNm
Hence, from Eq. (i)

Ta =40kNm

Although the maximum torque occurs in the length AB, the length BC has the smaller
diameter. It can be seen from Eq. (11.4) that shear stress is directly proportional
to torque and inversely proportional to diameter (or radius) cubed. Therefore, we
conclude that in this case the maximum shear stress occurs in the length BC of the bar
and is given by

10 x 10° x 100 x 32

= = 50.9N/mm?
fmax 2 x 7w x 100% /mm
Also the rotation at B is given by either
_ TaLaAB . TcLgc

g = —
B= G O BT GIne

Using the first of these expressions we have

_40x106x2x103x32

_ — 0.0064 rad
B 80000 x 77 x 2007 ra

or

g = 0.37°
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Torque 4

T ___________

> FIGURE 11.8  Torque—angle of twist
0 Angle of twist relationship for a gradually applied torque

11.2 STRAIN ENERGY DUE TO TORSION

It can be seen from Eq. (11.3) that for a bar of a given material, a given length, L, and
radius, R, the angle of twist is directly proportional to the applied torque. Therefore a
torque—angle of twist graph is linear and for a gradually applied torque takes the form
shown in Fig. 11.8. The work done by a gradually applied torque, 7, is equal to the
area under the torque—angle of twist curve and is given by

1
Work done = §T9
The corresponding strain energy stored, U, is therefore also given by
1
U=-T¢6
2

Substituting for 7" and 6 from Eq. (11.4) in terms of the maximum shear stress, Tmax,
on the surface of the bar we have

1 tmax/ TmaxL

Y=32"rR *Gr
or
112 R
U= Z%nRzL since J = nT
Hence
)
U= % x volume of bar (11.9)
Alternatively, in terms of the applied torque 7" we have
1 T’L
U= ETH =3G7 (11.10)

11.3 Prastic TorsioN oF CIRCULAR SECTION BARS

Equation (11.4) apply only if the shear stress—shear strain curve for the material of
the bar in torsion is linear. Stresses greater than the yield shear stress, ty, induce
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plasticity in the outer region of the bar and this extends radially inwards as the torque
is increased. It is assumed, in the plastic analysis of a circular section bar subjected to
torsion, that cross sections of the bar remain plane and that radii remain straight.

For a material, such as mild steel, which has a definite yield point the shear stress—shear
strain curve may be idealized in a similar manner to that for direct stress (see Fig. 9.32)
as shown in Fig. 11.9. Thus, after yield, the shear strain increases at a more or less
constant value of shear stress. It follows that the shear stress in the plastic region of a
mild steel bar is constant and equal to ry. Figure 11.10 illustrates the various stages in
the development of full plasticity in a mild steel bar of circular section. In Fig. 11.10(a)
the maximum stress at the outer surface of the bar has reached the yield stress, ty.
Equations (11.4) still apply, therefore, so that at the outer surface of the bar

A% Ty
J "R
or
R3
Ty = ”Try (11.11)

where Ty is the torque producing yield. In Fig. 11.10(b) the torque has increased
above the value Ty so that the plastic region extends inwards to a radius .. Within r
the material remains elastic and forms an elastic core. At this stage the total torque is
the sum of the contributions from the elastic core and the plastic zone, i.e.

Te

J R
T = e +/ 2nr?ry dr
Te

where J. is the polar second moment of area of the elastic core and the contribution
from the plastic zone is derived in an identical manner to Eq. (11.2) but in which
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T =ty = constant. Hence

ynrd 2

T = 2 +§7TTY(R3—F2)
which simplifies to
27R3 rg’

Note that for a given value of torque, Eq. (11.12) fixes the radius of the elastic core
of the section. In stage three (Fig. 11.10(c)) the cross section of the bar is completely
plastic so that r. in Eq. (11.12) is zero and the ultimate torque or fully plastic torque,
Tp, is given by

2nR3

Tp = ”3 Ty (11.13)
Comparing Eqs (11.11) and (11.13) we see that
P 4

= 11.14

so that only a one-third increase in torque is required after yielding to bring the bar to
its ultimate load-carrying capacity.

Since we have assumed that radii remain straight during plastic torsion, the angle of
twist of the bar must be equal to the angle of twist of the elastic core which may be
obtained directly from Eq. (11.3). Thus for a bar of length L and shear modulus G,

TL 2TL
= — = 11.15
GJ. nGr? ( )
or, in terms of the shear stress, Ty, at the outer surface of the elastic core
‘EyL
0 = 11.16
Gre ( )

Either of Eq. (11.15) or (11.16) shows that 6 is inversely proportional to the radius, re,
of the elastic core. Clearly, when the bar becomes fully plastic, re — 0 and 6 becomes,
theoretically, infinite. In practical terms this means that twisting continues with no
increase in torque in the fully plastic state.

11.4 TorsiON OF A THIN-WALLED CLOSED SECTION BEAM

Although the analysis of torsion problems is generally complex and in some instances
relies on empirical methods for a solution, the torsion of a thin-walled beam of arbitrary
closed section is relatively straightforward.

Figure 11.11(a) shows a thin-walled closed section beam subjected to a torque, 7. The
thickness, ¢, is constant along the length of the beam but may vary round the cross
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section. The torque 7" induces a stress system in the walls of the beam which consists
solely of shear stresses if the applied loading comprises only a pure torque. In some
cases structural or loading discontinuities or the method of support produce a system
of direct stresses in the walls of the beam even though the loading consists of torsion
only. These effects, known as axial constraint effects, are considered in more advanced
texts.

The shear stress system on an element of the beam wall may be represented in terms of
the shear flow, g, (see Section 10.4) as shown in Fig. 11.11(b). Again we are assuming
that the variation of z over the side 8s of the element may be neglected. For equilibrium
of the element in the x direction we have

dq
—8& | —qx =0
(q + as s) q
which gives
dq
—=0 11.17
% (11.17)
Considering equilibrium in the s direction
d
<q+ —q&x>?‘>s —qd =0
ox
from which
0
%9 _

ox
Equations (11.17) and (11.18) may only be satisfied simultaneously by a constant value

(11.18)

of g. We deduce, therefore, that the application of a pure torque to a thin-walled closed
section beam results in the development of a constant shear flow in the beam wall.
However, the shear stress, T, may vary round the cross section since we allow the wall
thickness, ¢, to be a function of s.

The relationship between the applied torque and this constant shear flow may be
derived by considering the torsional equilibrium of the section shown in Fig. 11.12. The
torque produced by the shear flow acting on the element, 3s, of the beam wall is g s p.
Hence

T:quds
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Ficure 11.12  Torque-shear
flow relationship in a
thin-walled closed section beam

or, since ¢ = constant

T:quds (11.19)

We have seen in Section 10.5 that ¢ p ds =24 where A is the area enclosed by the
midline of the beam wall. Hence

T =24q (11.20)

The theory of the torsion of thin-walled closed section beams is known as the Bredt-
Batho theory and Eq. (11.20) is often referred to as the Bredt-Batho formula.

It follows from Eq. (11.20) that

q T
T===_— 11.21

t 2At ( )
and that the maximum shear stress in a beam subjected to torsion will occur at the
section where the torque is a maximum and at the point in that section where the
thickness is a minimum. Thus

Tmax

Tmax = A (11.22)
In Section 10.5 we derived an expression (Eq. (10.28)) for the rate of twist, d9/dx,
in a shear-loaded thin-walled closed section beam. Equation (10.28) also applies to
the case of a closed section beam under torsion in which the shear flow is constant
if it is assumed that, as in the case of the shear-loaded beam, cross sections remain
undistorted after loading. Thus, rewriting Eq. (10.28) for the case g¢; = ¢ = constant,
we have

do q ds
&% =4 ?{ Gt (11.23)

Substituting for g from Eq. (11.20) we obtain

do T ds
— = — 11.24
de 442 % Gt ( )
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or, if G, the shear modulus, is constant round the section

de T ds
—=——¢ — 11.2
dx 4A2G¢ t (11.25)

EXAMPLE 11.2 A thin-walled circular section beam has a diameter of 200 mm and
is 2m long; it is firmly restrained against rotation at each end. A concentrated torque
of 30 kN m is applied to the beam at its mid-span point. If the maximum shear stress
in the beam is limited to 200 N/mm? and the maximum angle of twist to 2°, calculate
the minimum thickness of the beam walls. Take G = 25 000 N/mm?.

The minimum thickness of the beam corresponding to the maximum allowable shear
stress of 200 N/mm? is obtained directly using Eq. (11.22) in which Tax = 15kNm.
Thus

Lo 13x100x4 o

T2 %o x 2002 x 200
The rate of twist along the beam is given by Eq. (11.25) in which

% ds  m x 200
t

Imin

Hence
de T 7 x 200 .
5. = 7~ X - (1)
dx  44%G ' min

Taking the origin for x at one of the fixed ends and integrating Eq. (i) for half the
length of the beam we obtain

0= T X &x +Cq
442G tmin
where Cj is a constant of integration. At the fixed end wherex =0,6 =0so that C; =0.
Hence
0 L y 200nx
442G tmin

The maximum angle of twist occurs at the mid-span of the beam wherex = 1 m. Hence

15 x 10° x 200 x 7 x 1 x 10° x 180
tmin = =2.7mm
4 x (m x 200%2/4)2 x 25000 x 2 x 7

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm.

11.5 ToORSION OF SOLID SECTION BEAMS

Generally, by solid section beams, we mean beam sections in which the walls do not
form a closed loop system. Examples of such sections are shown in Fig. 11.13. An
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]
L1 ]
Rectangular ‘Thick’ ‘Thick’ Thin-walled Ficure 11.13
block I-section channel Z-section Examples of solid beam
section sections

FiGURE 11.14 Torsion constant for a “thick’
b I-section beam

obvious exception is the hollow circular section bar which is, however, a special case
of the solid circular section bar. The prediction of stress distributions and angles of
twist produced by the torsion of such sections is complex and relies on the St. Venant
warping function or Prandtl stress function methods of solution. Both of these methods
are based on the theory of elasticity which may be found in advanced texts devoted
solely to this topic. Even so, exact solutions exist for only a few practical cases, one of
which is the circular section bar.

In all torsion problems, however, it is found that the torque, 7', and the rate of twist,
d6/dx, are related by the equation

do
T=G]— 11.26
o (11.26)

where G is the shear modulus and/J is the forsion constant. For a circular section barJ is
the polar second moment of area of the section (see Eq. (11.3)) while for a thin-walled
closed section beam J, from Eq. (11.25), is seen to be equal to 44%/§ (ds/t). ItisJ, in
fact, that distinguishes one torsion problem from another.

For ‘thick’ sections of the type shown in Fig. 11.13 J is obtained empirically in terms
of the dimensions of the particular section. For example, the torsion constant of the
‘thick’ I-section shown in Fig. 11.14 is given by

J =201 +J, + 2aD*
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FIGURE 11.15 Shear stress distribution due to torsion in a
thin-walled open section beam

b} tf tf

where

1
]2 = gdtsv
51 r
o= — <0.15 + 0.1—)
19} It

inwhich t{ =t and t) =ty if t; <tw, Ort; =ty and tr, =t5 if ty > ty.

It can be seen from the above that J; and J,, which are the torsion constants of the
flanges and web, respectively, are each equal to one-third of the product of their
length and their thickness cubed multiplied, in the case of the flanges, by an empirical
constant. The torsion constant for the complete section is then the sum of the torsion
constants of the components plus a contribution from the material at the web/flange
junction. If the section were thin-walled, #; <« b and D* would be negligibly small, in
which case

b2 de
J~2f 4 2w
3 + 3

Generally, for thin-walled sections the torsion constantJ may be written as

1 3
J=3 > st (11.27)

in which s is the length and ¢ the thickness of each component in the cross section or

if ¢ varies with s

1

J £ ds (11.28)

B § section
The shear stress distribution in a thin-walled open section beam (Fig. 11.15) may be
shown to be related to the rate of twist by the expression

do
=2Gn— 11.29
T ndx ( )
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where n is the distance to any point in the section wall measured normally from its
midline. The distribution is therefore linear across the thickness as shown in Fig. 11.15
and is zero at the midline of the wall. An alternative expression for shear stress dis-
tribution is obtained, in terms of the applied torque, by substituting for d6/dx in Eq.
(11.29) from Eq. (11.26). Thus

T
T= 2n7 (11.30)

It is clear from either of Eqs. (11.29) or (11.30) that the maximum value of shear stress
occurs at the outer surfaces of the wall when n ==¢/2 . Hence

do Tt

The positive and negative signs in Eq. (11.31) indicate the direction of the shear stress
in relation to the assumed direction for s.

The behaviour of closed and open section beams under torsional loads is similar in
that they twist and develop internal shear stress systems. However, the manner in
which each resists torsion is different. It is clear from the preceding discussion that
a pure torque applied to a beam section produces a closed, continuous shear stress
system since the resultant of any other shear stress system would generally be a shear
force unless, of course, the system were self-equilibrating. In a closed section beam
this closed loop system of shear stresses is allowed to develop in a continuous path
round the cross section, whereas in an open section beam it can only develop within
the thickness of the walls; examples of both systems are shown in Fig. 11.16. Here,
then, lies the basic difference in the manner in which torsion is resisted by closed and
open section beams and the reason for the comparatively low torsional stiffness of
thin-walled open sections. Clearly the development of a closed loop system of shear
stresses in an open section is restricted by the thinness of the walls.

Closed / 3
section

C/ Open

section  FIGURE 11.16 Shear stress
development in closed and open
section beams subjected to torsion

ExampLE 11.3  The thin-walled section shown in Fig. 11.17 is symmetrical about
a horizontal axis through O. The thickness #y of the centre web CD is constant, while
the thickness of the other walls varies linearly from # at points C and D to zero at the
open ends A, E G and H. Determine the torsion constant J for the section and also
the maximum shear stress produced by a torque 7.
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H

FiGURE 11.17 Beam section of Ex. 11.3

Since the thickness of the section varies round its profile except for the central web,
we use both Eqs (11.27) and (11.28) to determine the torsion constant. Thus,

2t 3a
(0 s (2

which gives

3
_ daty
3
The maximum shear stress is now obtained using Eq. (11.31), i.e.

i Tty i 3Tt 3T
T; = —_— = —_— = JRE—
e J 4at] "~ dat}

11.6 WarprING or Cross SECTIONS UNDER TORSION

Although we have assumed that the shapes of closed and open beam sections remain
undistorted during torsion, they do not remain plane. Thus, for example, the cross
section of a rectangular section box beam, although remaining rectangular when
twisted, warps out of its plane as shown in Fig. 11.18(a), as does the channel sec-
tion of Fig. 11.18(b). The calculation of warping displacements is covered in more
advanced texts and is clearly of importance if a beam is, say, built into a rigid founda-
tion at one end. In such a situation the warping is suppressed and direct tensile and
compressive stresses are induced which must be investigated in design particularly if
a beam is of concrete where even low tensile stresses can cause severe cracking.
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Ficure 11.18
Warping of beam
sections due to
torsion

(a)

Some beam sections do not warp under torsion; these include solid (and hollow)
circular section bars and square box sections of constant thickness.

PROBLEMS

P.11.1 The solid bar of circular cross section shown in Fig. P.11.1 is subjected to a
torque of 1kNm at its free end and a torque of 3kN m at its change of section. Cal-
culate the maximum shear stress in the bar and the angle of twist at its free end.
G = 70000 N/mm?.

Ans. 40.7N/mm?, 0.6°.

100 mm

P diameter 50mm
diameter

/\'3kNm
¢/ (/‘\1 kN m
\V;

W

200 mm 400 mm
Ficure P.11.1

P11.2 A hollow circular section shaft 2 m long is firmly supported at each end and has

an outside diameter of 80 mm. The shaft is subjected to a torque of 12kN m applied
at a point 1.5 m from one end. If the shear stress in the shaft is limited to 150 N/mm?
and the angle of twist to 1.5°, calculate the maximum allowable internal diameter. The
shear modulus G =80 000 N/mm?>.

Ans. 63.7mm.

P11.3 A bar ABCD of circular cross section having a diameter of 50 mm is firmly
supported at each end and carries two concentrated torques at B and C as shown in
Fig. P11.3. Calculate the maximum shear stress in the bar and the maximum angle of

twist. Take G = 70 000 N/mm?.

Ans. 66.2N/mm? in CD, 2.3° at B.
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2m im im Ficure P.11.3

P11.4 Abar ABCD has a circular cross section of 75 mm diameter over half its length
and 50 mm diameter over the remaining half of its length. A torque of 1 kN mis applied
at C midway between B and D as shown in Fig. P.11.4. Sketch the distribution of torque
along the length of the bar and calculate the maximum shear stress and the maximum
angle of twist in the bar G =70 000 N/mm?.

Ans. Tmax = 23.2N/mm? in CD, 0.38° at C.

50 mm
diameter
ZAA B 1kNm
1 [y o
75 mm
diameter \
¥ C\/
7

Dy e A

P11.5 A thin-walled rectangular section box girder carries a uniformly distributed
torque loading of 1 kN m/mm over the outer half of its length as shown in Fig. P.11.5.
Calculate the maximum shear stress in the walls of the box girder and also the dis-
tribution of angle of twist along its length; illustrate your answer with a sketch. Take
G = 70000 N/mm?,

Ans. 133.3N/mm?. In AB, 6 =3.81 x 10 °x rad.
In BC, 6 =1.905 x 10~(4000x — x?/2) — 0.00381 rad.

15mm 0.75m

Ficure P.11.5
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P11.6 The thin-walled box section beam ABCD shown in Fig. P.11.6 is attached at
each end to supports which allow rotation of the ends of the beam in the longitudinal
vertical plane of symmetry but prevent rotation of the ends in vertical planes perpen-
dicular to the longitudinal axis of the beam. The beam is subjected to a uniform torque
loading of 20 Nm/mm over the portion BC of its span. Calculate the maximum shear
stress in the cross section of the beam and the distribution of angle of twist along its
length G = 70 000 N/mm?.

Ans. 71.4N/mm?, g = 6c = 0.36°, 0 at mid-span =0.72°.

4 mm
¥
A

e e 350 mm
6mm 6mm

4 mm ‘L
¥
+

im
200 mm Ficure P.11.6

P.11.7 Figure P.11.7 shows a thin-walled cantilever box-beam having a constant width
of 50mm and a depth which decreases linearly from 200 mm at the built-in end to
150 mm at the free end. If the beam is subjected to a torque of 1 kN m at its free end,
plot the angle of twist of the beam at 500 mm intervals along its length and determine
the maximum shear stress in the beam section. Take G = 25000 N/mm?.

Ans. Tmax = 33.3 N/mm?.

.
200 mm
150
TkNmM ~ mm 2.0mm
5% Sa——— Z

2500 MM
50 mm Ficure P.11.7

P11.8 The cold-formed section shown in Fig. P11.8 is subjected to a torque of
50Nm. Calculate the maximum shear stress in the section and its rate of twist.
G =25000 N/mm?.

Ans. Tmax = 220.6 N/'mm?, d6/dx = 0.0044 rad/mm.
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P11.9 The thin-walled angle section shown in Fig. P.11.9 supports shear loads that
produce both shear and torsional effects. Determine the maximum shear stress in the
cross section of the angle, stating clearly the point at which it acts.

Ans. 18.0 N/mm? on the inside of flange BC at 16.5 mm from point B.

C
7
2.0mm
e
60 mm
L 500 N l2.5 mm
—]
B A
2mm 1000 N
1mm ‘
80 mm |
- >| Ficure P.11.9

P.11.10 Figure P.11.10shows the cross section of a thin-walled inwardly lipped channel.
The lips are of constant thickness while the flanges increase linearly in thickness from
1.27 mm, where they meet the lips, to 2.54 mm at their junctions with the web. The
web has a constant thickness of 2.54 mm and the shear modulus G is 26 700 N/mm?.
Calculate the maximum shear stress in the section and also its rate of twist if it is
subjected to a torque of 100 Nm.

Ans. Tmax = £ 297.4 N/mm?, d6/dx = 0.0044 rad/mm.

A —""""] Y
38 mm
50 mm
u Y
o Y |
A
2.54 mm 1.27 mm
50mm | ol le— ] e
. T
R —1

50 mm FiGure P.11.10
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Chapier 12/ Composite Beams

Frequently in civil engineering construction beams are fabricated from comparatively
inexpensive materials of low strength which are reinforced by small amounts of high-
strength material, such as steel. In this way a timber beam of rectangular section
may have steel plates bolted to its sides or to its top and bottom surfaces. Again,
concrete beams are reinforced in their weak tension zones and also, if necessary, in
their compression zones, by steel-reinforcing bars. Other instances arise where steel
beams support concrete floor slabs in which the strength of the concrete may be allowed
for in the design of the beams. The design of reinforced concrete beams, and concrete
and steel beams is covered by Codes of Practice and relies, as in the case of steel
beams, on ultimate load analysis. The design of steel-reinforced timber beams is not
covered by a code, and we shall therefore limit the analysis of this type of beam to an
elastic approach.

12.1 STEEL-REINFORCED TIMBER BEAMS

The timber joist of breadth b and depth d shown in Fig. 12.1 is reinforced by two steel
plates bolted to its sides, each plate being of thickness ¢ and depth d. Let us suppose
that the beam is bent to a radius R at this section by a positive bending moment, M.
Clearly, since the steel plates are firmly attached to the sides of the timber joist, both
are bent to the same radius, R. Then, from Eq. (9.7), the bending moment, M;, carried

e
t t
—){ b l‘_ FiGURE 12.1  Steel-reinforced timber beam

300
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by the timber joist is
E\J,
M, = £t
R

where E; is Young’s modulus for the timber and [; is the second moment of area of

(12.1)

the timber section about the centroidal axis, Gz. Similarly for the steel plates
_ E;
R

in which I is the combined second moment of area about Gz of the two plates. The

M;

(12.2)

total bending moment is then
1
M = Mt +Ms = E(Etlt +Esls)

from which
1 M
R~ EJ +E

From a comparison of Eqs (12.3) and (9.7) we see that the composite beam behaves

(12.3)

as a homogeneous beam of bending stiffness EI where
EI = Ed; + El
or
Eq
El =E (Ii + =I5 (12.4)
Eq

The composite beam may therefore be treated wholly as a timber beam having a total
second moment of area
Es
It + EIS
This is equivalent to replacing the steel-reinforcing plates by timber ‘plates’ each hav-
ing a thickness (Es/E¢)t as shown in Fig. 12.2(a). Alternatively, the beam may be
transformed into a wholly steel beam by writing Eq. (12.4) as

E
EI = Eq (l?zlt + Is)
so that the second moment of area of the equivalent steel beam is
Eq
—I +1
Es t +1s

which is equivalent to replacing the timber joist by a steel ‘joist’ of breadth (E¢/Es)b
(Fig. 12.2(b)). Note that the transformed sections of Fig. 12.2 apply only to the case
of bending about the horizontal axis, Gz. Note also that the depth, d, of the beam is
unchanged by either transformation.

The direct stress due to bending in the timber joist is obtained using Eq. (9.9), i.e.

of = ——— (12.5)
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Equivalent timber
reinforcing
‘plates’

Equivalent steel
‘joist’

E, b E, t g b t

=S¢ =S¢ =

E, E E, FIGURE 12.2  Equivalent
(a) (b) beam sections

From Eqs (12.1) and (12.3)
E\l;

=—-—-—M
T Edi+E;
or
M
My = — (12.6)
1+ BL
Ed
Substituting in Eq. (12.5) from Eq. (12.6) we have
M
o = ———— (12.7)
I + E_iIS

Equation (12.7) could in fact have been deduced directly from Eq. (9.9) since
I+ (Es/Ev)]s is the second moment of area of the equivalent timber beam of
Fig. 12.2(a). Similarly, by considering the equivalent steel beam of Fig. 12.2(b), we
obtain the direct stress distribution in the steel, i.e.

My

S A (12.8)
154-§§L

Og =

ExampLE 12,1 A beam is formed by connecting two timber joists each
100 mm x 400 mm with a steel plate 12 mm x 300 mm placed symmetrically between
them (Fig. 12.3). If the beam is subjected to a bending moment of 50 kN m, determine
the maximum stresses in the steel and in the timber. The ratio of Young’s modulus for
steel to that of timber is 12: 1.

The second moments of area of the timber and steel about the centroidal axis, Gz, are

4003
h=2xm0x7?c=mmx1mmm4
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I, =12 x TR =27 x 10° mm*
respectively. Therefore, from Eq. (12.7) we have

50 x 10° x 200

= =+72N 2
7= 7067 x 106 + 12 x 27 x 106 /mm
and from Eq. (12.8)
50 x 10° x 150
oy = i — +64.7N/mm?>

27 x 10° + 1067 x 106/12

Consider now the steel-reinforced timber beam of Fig. 12.4(a) in which the steel
plates are attached to the top and bottom surfaces of the timber. The section may be
transformed into an equivalent timber beam (Fig. 12.4(b)) or steel beam (Fig. 12.4(c))
by the methods used for the beam of Fig. 12.1. The direct stress distributions are then
obtained from Eqs (12.7) and (12.8). There is, however, one important difference
between the beam of Fig. 12.1 and that of Fig. 12.4(a). In the latter case, when the
beam is subjected to shear loads, the connection between the timber and steel must
resist horizontal complementary shear stresses as shown in Fig. 12.5. Generally, it is
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Complementary
shear stress system

S —_— — —> — FIGURE 12.5 Shear stresses
between steel plates and timber
o = beam (side view of a length of
av -
bd  heam)

sufficiently accurate to assume that the timber joist resists all the vertical shear and
then calculate an average value of shear stress, 74y, i.€.

Sy

Toy = —

av bd
so that, based on this approximation, the horizontal complementary shear stress is
Sy /bd and the shear force per unit length resisted by the timber/steel connectionis Sy /d.

ExampLE 12,2 A timberjoist 100 mm x 200 mm is reinforced on its top and bottom
surfaces by steel plates 15 mm thick x 100 mm wide. The composite beam is simply
supported over a span of 4m and carries a uniformly distributed load of 10 kN/m.
Determine the maximum direct stress in the timber and in the steel and also the shear
force per unit length transmitted by the timber/steel connection. Take Eg/E; = 15.

The second moments of area of the timber and steel about a horizontal axis through
the centroid of the beam are

I = M = 66.7 x 10° mm*
and
Iy =2 x 15 x 100 x 107.5% = 34.7 x 10 mm*
respectively. The maximum bending moment in the beam occurs at mid-span and is

10 x 42

Mopax = —20kNm

From Eq. (12.7)

N 20 x 10° x 100
O =
tmax 66.7 x 106 + 15 x 34.7 x 10

and from Eq. (12.8)

c = +3.4N/mm?

20 x 10° x 115

=+ = +58.8 N/mm?
Tsmax = 347100 + 66.7 x 106/15 /mm
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The maximum shear force in the beam occurs at the supports and is equal to
10 x 4/2 =20kN. The average shear stress in the timber joist is then

_20x 103
" =700 x 200

It follows that the shear force per unit length in the timber/steel connection is

= 1N/mm2

1 x 100 =100 N/mm or 100 kN/m. Note that this value is an approximation for design
purposes since, as we saw in Chapter 10, the distribution of shear stress through the
depth of a beam of rectangular section is not uniform.

12.2 REINFORCED CONCRETE BEAMS

Aswe have noted in Chapter 8, concrete is a brittle material which is weak in tension. It
follows that abeam comprised solely of concrete would have very little bending strength
since the concrete in the tension zone of the beam would crack at very low values of
load. Concrete beams are therefore reinforced in their tension zones (and sometimes in
their compression zones) by steel bars embedded in the concrete. Generally, whether
the beam is precast or forms part of a slab/beam structure, the bars are positioned in a
mould (usually fabricated from timber and called formwork) into which the concrete
is poured. On setting, the concrete shrinks and grips the steel bars; the adhesion or
bond between the bars and the concrete transmits bending and shear loads from the
concrete to the steel.

In the design of reinforced concrete beams the elastic method has been superseded
by the ultimate load method. We shall, however, for completeness, consider both
methods.

ELASTIC THEORY

Consider the concrete beam section shown in Fig. 12.6(a). The beam is subjected to a
bending moment, M, and is reinforced in its tension zone by a number of steel bars of
total cross-sectional area As. The centroid of the reinforcement is at a depth d; from
the upper surface of the beam; d; is known as the effective depth of the beam. The
bending moment, M, produces compression in the concrete above the neutral axis
whose position is at some, as yet unknown, depth, n, below the upper surface of the
beam. Below the neutral axis the concrete is in tension and is assumed to crack so that
its contribution to the bending strength of the beam is negligible. All tensile forces are
therefore resisted by the reinforcing steel.

The reinforced concrete beam section may be conveniently analysed by the method
employed in Section 12.1 for steel-reinforced beams. The steel reinforcement is, there-
fore, transformed into an equivalent area, mAs, of concrete in which m, the modular
ratio, is given by

— ES

m_EC
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where E5 and E; are Young’s moduli for steel and concrete, respectively. The trans-
formed section is shown in Fig. 12.6(b). Taking moments of areas about the neutral
axis we have

bng = mA(d) — n)

which, when rearranged, gives a quadratic equation in #, i.e.

bn?
> +mAgn —mAgd; =0 (12.9)
solving gives
mAs | | 2bd
= 1 -1 12.10
" b + mAsg ( )

Note that the negative solution of Eq. (12.9) has no practical significance and is
therefore ignored.
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The second moment of area, I, of the transformed section is

bn’ 2
I. = = + mAs(d1 — n) (12.11)

so that the maximum stress, o¢, induced in the concrete is

Mn

- (12.12)

Oc =

The stress, o, in the steel may be deduced from the strain diagram (Fig. 12.6(c)) which
is linear throughout the depth of the beam since the beam section is assumed to remain
plane during bending. Then

os/Es _ oc/Ec

(note: strains are of opposite sign)

di—n n
from which
Es (di—n di—n
05 = —UCE—z ( 111 > = —om < 1n > (12.13)
Substituting for o, from Eq. (12.12) we obtain
M
o5 = ”} (di —n) (12.14)
C

Frequently, instead of determining stresses in a given beam section subjected to a
given applied bending moment, we wish to calculate the moment of resistance of a
beam when either the stress in the concrete or the steel reaches a maximum allowable
value. Equations (12.12) and (12.14) may be used to solve this type of problem but an
alternative and more direct method considers moments due to the resultant loads in
the concrete and steel. From the stress diagram of Fig. 12.6(d)

n
M=c(d-3)
so that
oc n
M = Zbn (d1 - 5) (12.15)
Alternatively, taking moments about the centroid of the concrete stress diagram
n
M=T(d - g)
or
n
M = o,Aq <d1 - 5) (12.16)

Equation (12.16) may also be used in conjunction with Eq. (12.13) to ‘design’ the
area of reinforcing steel in a beam section subjected to a given bending moment
so that the stresses in the concrete and steel attain their maximum allowable values
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simultaneously. Such a section is known as a critical or economic section. The position
of the neutral axis is obtained directly from Eq. (12.13) in which o5, oc, m and d; are
known. The required area of steel is then determined from Eq. (12.16).

EXAmMPLE 12.3 A rectangular section reinforced concrete beam has a breadth of
200 mm and is 350 mm deep to the centroid of the steel reinforcement which consists
of two steel bars each having a diameter of 20 mm. If the beam is subjected to a bending
moment of 30 kN m, calculate the stress in the concrete and in the steel. The modular
ratio m is 15.

The area 4 of the steel reinforcement is given by
Ay =2x 7 x20° = 628.3mm’

The position of the neutral axis is obtained from Eq. (12.10) and is

15 x 6283 2 % 200 x 350
"= T00 15 x 628.3

— 1) = 140.5mm

Now using Eq. (12.11)
200 x 140.5°
c 3
The maximum stress in the concrete follows from Eq. (12.12), i.e.

30 x 10° x 140.5
598.5 x 106

+ 15 x 628.3(350 — 140.5)> = 598.5 x 10® mm*

Oc = — = —7.0N/mm? (compression)

and from Eq. (12.14)

15 x 30 x 10°
ﬁ(%o — 140.5) = 157.5N/mm? (tension)
D X

Og =

ExampLE 12.4 A reinforced concrete beam has a rectangular section of breadth
250 mm and a depth of 400 mm to the steel reinforcement, which consists of three
20 mm diameter bars. If the maximum allowable stresses in the concrete and steel are
7.0N/mm? and 140 N/mm?, respectively, determine the moment of resistance of the
beam. The modular ratio m =15.

The area, A, of steel reinforcement is
A =3 x % x 20% = 942.5 mm>

From Eq. (12.10)

15 x 942.5 2 x 250 x 400
n=—— (\/1+m—1) = 163.5mm
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The maximum bending moment that can be applied such that the permissible stress
in the concrete is not exceeded is given by Eq. (12.15). Thus

M = % x 250 x 163.5 (400 — 163£) x 107® = 49.4kNm

Similarly, from Eq. (12.16) the stress in the steel limits the applied moment to

163.5
M =140 x 942.5 <400 - T) x 107% = 45.6 kN m

The steel is therefore the limiting material and the moment of resistance of the beam
is 45.6 kN m.

EXAMPLE 12.5 A rectangular section reinforced concrete beam is required to
support a bending moment of 40 kN m and is to have dimensions of breadth 250 mm
and effective depth 400 mm. The maximum allowable stresses in the steel and concrete
are 120 N/mm? and 6.5 N/mm?, respectively; the modular ratio is 15. Determine the
required area of reinforcement such that the limiting stresses in the steel and concrete
are attained simultaneously.

Using Eq. (12.13) we have

120=6.5 x 15 (@ - 1)
n

from which n =179.3 mm.

The required area of steel is now obtained from Eq. (12.16); hence
M
As= ———m——
) os(d1 —n/3)
ie.
3 40 x 10°
7 120(400 — 179.3/3)

= 979.7 mm?

It may be seen from Ex. 12.4 that for a beam of given cross-sectional dimensions,
increases in the area of steel reinforcement do not result in increases in the moment
of resistance after a certain value has been attained. When this stage is reached the
concrete becomes the limiting material, so that additional steel reinforcement only
serves to reduce the stress in the steel. However, the moment of resistance of a beam
of a given cross section may be increased above the value corresponding to the limiting
concrete stress by the addition of steel in the compression zone of the beam.

Figure 12.7(a) shows a concrete beam reinforced in both its tension and compression
zones. The centroid of the compression steel of area A is at a depth d, below the upper
surface of the beam, while the tension steel of area Ay is at a depth d;. The section
may again be transformed into an equivalent concrete section as shown in Fig. 12.7(b).
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However, when determining the second moment of area of the transformed section
it must be remembered that the area of concrete in the compression zone is reduced

due to the presence of the steel. Thus taking moments of areas about the neutral axis
we have

b 2
% — Age(n — do) + mAse(n — do) = mAg(dy — n)

or, rearranging

bn?

N + (m — DAse(n — d2) = mAgx(d1 — n) (12.17)
It can be seen from Eq. (12.17) that multiplying As. by (m — 1) in the transformation
process rather than m automatically allows for the reduction in the area of concrete

caused by the presence of the compression steel. Thus the second moment of area of
the transformed section is

bn?
Ie = =+ (m = DAse(n — d2)? + mAg(d; — n)? (12.18)

The maximum stress in the concrete is then

M
oc = _I_n (see Eq. (12.12))

C
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The stress in the tension steel and in the compression steel are obtained from the
strain diagram of Fig. 12.7(c). Hence

osc/Es _ oc/Ec¢

= (both strains have the same sign) (12.19)
n—az
so that
—d M@n —d
o= M zd2)  _ mM(n—da) (12.20)
n 1.
and
M
Ost = n} (dy —n) as before (12.21)
C

An alternative expression for the moment of resistance of the beam is derived by
taking moments of the resultant steel and concrete loads about the compressive
reinforcement. Therefore from the stress diagram of Fig. 12.7(d)

M =T —do) — c(’% —dz)

whence
oc n
M = oyd(di —d2) - 5 bn(g . dz) (12.22)

ExampLE 12.6 A rectangular section concrete beam is 180 mm wide and has a
depth of 360 mm to its tensile reinforcement. It is subjected to a bending moment
of 45kNm and carries additional steel reinforcement in its compression zone at a
depth of 40 mm from the upper surface of the beam. Determine the necessary areas
of reinforcement if the stress in the concrete is limited to 8.5 N/mm? and that in the
steel to 140 N/mm?2. The modular ratio E /E.=15.

Assuming that the stress in the tensile reinforcement and that in the concrete attain
their limiting values we can determine the position of the neutral axis using Eq. (12.13).

Thus
140 = 8.5 x 15 (ﬁ — 1)
n

from which
n=171.6 mm

Substituting this value of n in Eq. (12.22) we have
8.5 171.6
45 x 10° = 14045(360 — 40) + - x 180 x 171.6 (T — 40)

which gives

Ag = 954 mm?
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We can now use Eq. (12.17) to determine A or, alternatively, we could equate the load
in the tensile steel to the combined compressive load in the concrete and compression
steel. Substituting for n and Ay in Eq. (12.17) we have

180 x 171.62

5 + (15 — 1) A (171.6 — 40) = 15 x 954(360 — 171.6)

from which
Age = 24.9mm?
The stress in the compression steel may be obtained from Eq. (12.20), i.e.

(171.6 — 40)

- _ 2 ;
716 x 8.5 = —-97.8 N/mm~ (compression)

osc = —15
In many practical situations reinforced concrete beams are cast integrally with floor
slabs, as shown in Fig. 12.8. Clearly, the floor slab contributes to the overall strength
of the structure so that the part of the slab adjacent to a beam may be regarded as
forming part of the beam. The result is a T-beam whose flange, or the major portion of
it, is in compression. The assumed width, B, of the flange cannot be greater than L, the
distance between the beam centres; in most instances B is specified in Codes of Practice.

Itis usual to assume in the analysis of T-beams that the neutral axis lies within the flange
or coincides with its under surface. In either case the beam behaves as a rectangular
section concrete beam of width B and effective depth d; (Fig. 12.9). Therefore, the
previous analysis of rectangular section beams still applies.

ULTIMATE LOAD THEORY

We have previously noted in this chapter and also in Chapter 8 that the modern
design of reinforced concrete structures relies on ultimate load theory. The calculated
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moment of resistance of a beam section is therefore based on the failure strength of
concrete in compression and the yield strength of the steel reinforcement in tension
modified by suitable factors of safety. Typical values are 1.5 for concrete (based on
its 28-day cube strength) and 1.15 for steel. However, failure of the concrete in com-
pression could occur suddenly in a reinforced concrete beam, whereas failure of the
steel by yielding would be gradual. It is therefore preferable that failure occurs in the
reinforcement rather than in the concrete. Thus, in design, the capacity of the concrete
is underestimated to ensure that the preferred form of failure occurs. A further factor
affecting the design stress for concrete stems from tests in which it has been found that
concrete subjected to compressive stress due to bending always fails before attaining
a compressive stress equal to the 28-day cube strength. The characteristic strength of
concrete in compression is therefore taken as two-thirds of the 28-day cube strength.
A typical design strength for concrete in compression is then

O
Tasl x 0.67 = 0.450¢,

where o, is the 28-day cube strength. The corresponding figure for steel is

oy
m = 0.870’Y

In the ultimate load analysis of reinforced concrete beams it is assumed that plane
sections remain plane during bending and that there is no contribution to the bending
strength of the beam from the concrete in tension. From the first of these assumptions
we deduce that the strain varies linearly through the depth of the beam as shown
in Fig. 12.10(b). However, the stress diagram in the concrete is not linear but has
the rectangular—parabolic shape shown in Fig. 12.10(c). Design charts in Codes of
Practice are based on this stress distribution, but for direct calculation purposes a
reasonably accurate approximation can be made in which the rectangular—parabolic
stress distribution of Fig. 12.10(c) is replaced by an equivalent rectangular distribution
as shown in Fig. 12.11(b) in which the compressive stress in the concrete is assumed
to extend down to the mid-effective depth of the section at the maximum condition,
i.e. at the ultimate moment of resistance, M, of the section.
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M, is then given by
M, = C3dy = 0.400c,b3d1 3dy

which gives

M, = 0.150.,b(d1)? (12.23)
or

My = T3d; = 0.870yAs3d;
from which
M, = 0.650yAsd; (12.24)

whichever is the lesser. For applied bending moments less than M,, a rectangular stress
block may be assumed for the concrete in which the stress is 0.40, but in which the
depth of the neutral axis must be calculated. For beam sections in which the applied
bending moment is greater than M,,, compressive reinforcement is required.

ExampLE 12.7 A reinforced concrete beam having an effective depth of 600 mm
and a breadth of 250 mm is subjected to a bending moment of 350 kN m. If the 28-day
cube strength of the concrete is 30 N/mm? and the yield stress in tension of steel is
400 N/mm?, determine the required area of reinforcement.

First it is necessary to check whether or not the applied moment exceeds the ultimate
moment of resistance provided by the concrete. Hence, using Eq. (12.23)

M, = 0.15 x 30 x 250 x 600% x 107% = 405 kN m

Since this is greater than the applied moment, the beam section does not require
compression reinforcement.

We now assume the stress distribution shown in Fig. 12.12 in which the neutral axis
of the section is at a depth n below the upper surface of the section. Thus, taking
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moments about the tensile reinforcement we have
350 x 106 = 0.4 x 30 x 250n(600 - ’%)

from which
n =243.3mm

The lever arm is therefore equal to 600 — 243.3/2 = 478.4 mm. Now taking moments
about the centroid of the concrete we have

0.87 x 400 x A x 478.4 = 350 x 10°

which gives

Ag = 2102.3 mm?

ExampLE 12.8 A reinforced concrete beam of breadth 250 mm is required to have
an effective depth as small as possible. Design the beam and reinforcement to support
a bending moment of 350 kN m assuming that oc, = 30 N/mm? and oy = 400 N/mm?.

In this example the effective depth of the beam will be as small as possible when the
applied moment is equal to the ultimate moment of resistance of the beam. Then,
using Eq. (12.23)

350 x 10® = 0.15 x 30 x 250 x d%
which gives
di = 557.8mm

This is not a practical dimension since it would be extremely difficult to position the
reinforcement to such accuracy. We therefore assume d; = 558 mm. Since the section
is stressed to the limit, we see from Fig. 12.11(b) that the lever arm is

%dl _ % x 558 = 418.5mm
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Hence, from Eq. (12.24)
350 x 10° = 0.87 x 4004 x 418.5

from which

Ag = 2403.2 mm?

A comparison of Exs 12.7 and 12.8 shows that the reduction in effective depth is only
made possible by an increase in the area of steel reinforcement.

We have noted that the ultimate moment of resistance of a beam section of given
dimensions can only be increased by the addition of compression reinforcement.
However, although the design stress for tension reinforcement is 0.870y, compres-
sion reinforcement is designed to a stress of 0.720y to avoid the possibility of the
reinforcement buckling between the binders or stirrups. The method of designing a
beam section to include compression reinforcement is simply treated as an extension
of the singly reinforced case and is best illustrated by an example.

EXAMPLE 12.9 A reinforced concrete beam has a breadth of 300 mm and an
effective depth to the tension reinforcement of 618 mm. Compression reinforcement,
if required, will be placed at a depth of 60 mm. If 6¢, = 30 N/mm? and oy = 410 N/mm?,
design the steel reinforcement if the beam is to support abending moment of 650 kN m.

The ultimate moment of resistance provided by the concrete is obtained using
Eq. (12.23) and is

M, = 0.15 x 30 x 300 x 618% x 107% = 515.6kNm

This is less than the applied moment so that compression reinforcement is required to
resist the excess moment of 650 — 515-6 = 134-4 kN m. If A is the area of compression
reinforcement

134.4 x 10° = lever arm x 0.72 x 4104,
ie.
134.4 x 10° = (618 — 60) x 0.72 x 4104
which gives
Age = 815.9 mm?

The tension reinforcement, Ay, is required to resist the moment of 515.6kNm (as
though the beam were singly reinforced) plus the excess moment of 134.4 kN'm. Hence

B 515.6 x 10° N 134.4 x 106
"~ 0.75 x 618 x 0.87 x 410~ (618 — 60) x 0.87 x 410

Ast
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The ultimate load analysis of reinforced concrete T-beams is simplified in a similar
manner to the elastic analysis by assuming that the neutral axis does not lie below the
lower surface of the flange. The ultimate moment of a T-beam therefore corresponds
to a neutral axis position coincident with the lower surface of the flange as shown in
Fig. 12.13(a). M, is then the lesser of the two values given by

M, = 0.400,Bh; <d1 — %) (12.25)
or
ht
My = 0.87ovAs (di = = (12.26)

For T-beams subjected to bending moments less than M,,, the neutral axis lies within
the flange and must be found before, say, the amount of tension reinforcement can
be determined. Compression reinforcement is rarely required in T-beams due to the
comparatively large areas of concrete in compression.

ExampLE 12.10 A reinforced concrete T-beam has a flange width of 1200 mm and
an effective depth of 618 mm; the thickness of the flange is 150 mm. Determine the
required area of reinforcement if the beam is required to resist a bending moment of
500 kN m. Take oy =30 N/mm? and oy =410 N/mm?.

M, for this beam section may be determined using Eq. (12.25), i.e.

My = 0.4 x 30 x 1200 x 150 (618 — 1;—0) x 107® = 1173kNm

Since this is greater than the applied moment, we deduce that the neutral axis lies
within the flange. Then from Fig. 12.14

500 x 10° = 0.4 x 30 x 1200n(618 — ’%)
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the solution of which gives
n =59 mm
Now taking moments about the centroid of the compression concrete we have

59
500 x 10° = 0.87 x 410 xAS(618 — 7)

which gives

Ag = 2381.9 mm?

12.3 STEEL AND CONCRETE BEAMS

In many instances concrete slabs are supported on steel beams, the two being joined
together by shear connectors to form a composite structure. We therefore have a
similar situation to that of the reinforced concrete T-beam in which the flange of the
beam is concrete but the leg is a standard steel section.

Ultimate load theory is used to analyse steel and concrete beams with stress limits
identical to those applying in the ultimate load analysis of reinforced concrete beams;
plane sections are also assumed to remain plane.

Consider the steel and concrete beam shown in Fig. 12.15(a) and let us suppose that the
neutral axis lies within the concrete flange. We ignore the contribution of the concrete
in the tension zone of the beam to its bending strength, so that the assumed stress
distribution takes the form shown in Fig. 12.15(b). A convenient method of designing
the cross section to resist a bending moment, M, is to assume the lever arm to be
(h¢ + hs)/2 and then to determine the area of steel from the moment equation

(he + hs)

M = 0.870yAs >

(12.27)

The available compressive force in the concrete slab, 0.4 oo bk, is then checked to
ensure that it exceeds the tensile force, 0.870yAs, in the steel. If it does not, the
neutral axis of the section lies within the steel and A given by Eq. (12.27) will be too
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small. If the neutral axis lies within the concrete slab the moment of resistance of the
beam is determined by first calculating the position of the neutral axis. Thus, since the
compressive force in the concrete is equal to the tensile force in the steel

0.40ebn1 = 0.87oyAs (12.28)
Then, from Fig. 12.15
n
My = 0.870yA; (d - 71) (12.29)

If the neutral axis lies within the steel, the stress distribution shown in Fig. 12.16(b)
is assumed in which the compressive stress in the steel above the neutral axis is the
resultant of the tensile stress and twice the compressive stress. Thus, if the area of
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steel in compression is Ay, we have, equating compressive and tensile forces
0.4ocubhc + 2 x (0.870y)Asc = 0.870yAs (12.30)

which gives A and hence hg.. Now taking moments

he

M, = 0.870vAs ( - 3) — 2 % (0.870y)As <hsc - %) (12.31)

ExampLE 12.11 A concrete slab 150 mm thick is 1.8 m wide and is to be supported
by a steel beam. The total depth of the steel/concrete composite beam is limited to
562 mm. Find a suitable beam section if the composite beam is required to resist a
bending moment of 709 kN m. Take o¢y =30 N/mm? and oy = 350 N/mm?.

Using Eq. (12.27)

2 x 709 x 10°

_ _ 2
= 087 x 350 x 562~ o286mm

The tensile force in the steel is then
0.87 x 350 x 8286 x 103 = 2523kN
and the compressive force in the concrete is
0.4 x 1.8 x 10° x 150 x 30 x 107> = 3240kN

The neutral axis therefore lies within the concrete slab so that the area of steel in
tension is, in fact, equal to As. From Steel Tables we see that a Universal Beam of
nominal size 406 mm x 152 mm x 67 kg/m has an actual overall depth of 412 mm and
a cross-sectional area of 8530 mm?2. The position of the neutral axis of the composite
beam incorporating this beam section is obtained from Eq. (12.28); hence

0.4 x 30 x 1800n1 = 0.87 x 350 x 8530
which gives
n1 = 120mm

Substituting for 1 in Eq. (12.29) we obtain the moment of resistance of the composite
beam

M, = 0.87 x 350 x 8530(356 — 60) x 107° = 769 kN m

Since this is greater than the applied moment we deduce that the beam section is
satisfactory.
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PROBLEMS

P12.1 Atimber beam 200 mm wide by 300 mm deep is reinforced on its top and bottom
surfaces by steel plates each 12 mm thick by 200 mm wide. If the allowable stress in
the timber is 8 N/mm? and that in the steel is 110 N/mm?, find the allowable bending
moment. The ratio of the modulus of elasticity of steel to that of timber is 20.

Ans. 94.7kNm.

P12.2 A simply supported beam of span 3.5 m carries a uniformly distributed load of
46.5 kN/m. The beam has the box section shown in Fig. P.12.2. Determine the required
thickness of the steel plates if the allowable stresses are 124 N/mm? for the steel and
8 N/mm? for the timber. The modular ratio of steel to timber is 20.

Ans. 17 mm.

L,' 100 mm |<_t

75 = A
mm e
e

Steel . 300 mm

7SI —_—
[

mm
] Y

Timber FIGURE P.12.2

P12.3 A timber beam 150 mm wide by 300 mm deep is reinforced by a steel plate
150 mm wide and 12 mm thick which is securely attached to its lower surface. Deter-
mine the percentage increase in the moment of resistance of the beam produced by
the steel-reinforcing plate. The allowable stress in the timber is 12 N/mm? and in the
steel, 155 N/mm?. The modular ratio is 20.

Ans. 176%.

P12.4 A singly reinforced rectangular concrete beam of effective span 4.5m is
required to carry a uniformly distributed load of 16.8 kN/m. The overall depth, D,
is to be twice the breadth and the centre of the steel is to be at 0.1D from the under-
side of the beam. Using elastic theory find the dimensions of the beam and the area
of steel reinforcement required if the stresses are limited to 8 N/mm? in the concrete
and 140 N/mm? in the steel. Take m = 15.

Ans. D =406.7 mm, As = 980.6 mm?.
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P12.5 A reinforced concrete beam is of rectangular section 300 mm wide by 775 mm
deep. It has five 25 mm diameter bars as tensile reinforcement in one layer with 25 mm
cover and three 25 mm diameter bars as compression reinforcement, also in one layer
with 25 mm cover. Find the moment of resistance of the section using elastic theory
if the allowable stresses are 7.5 N/mm? and 125 N/mm? in the concrete and steel,
respectively. The modular ratio is 16.

Ans. 214.5kNm.

P12.6 A reinforced concrete T-beam is required to carry a uniformly distributed load
of 42kN/m on a simply supported span of 6 m. The slab is 125 mm thick, the rib is
250 mm wide and the effective depth to the tensile reinforcement is 550 mm. The
working stresses are 8.5 N/mm? in the concrete and 140 N/mm? in the steel; the mod-
ular ratio is 15. Making a reasonable assumption as to the position of the neutral
axis find the area of steel reinforcement required and the breadth of the compression
flange.

Ans. 2655.7mm?, 700 mm (neutral axis coincides with base of slab).

P12.7 Repeat P12.4 using ultimate load theory assuming og, =24 N/mm? and
oy =280 N/mm?.

Ans. D=307.8mm, A, = 843 mm?.

P12.8 Repeat P12.5 using ultimate load theory and take acu:22.5N/mm2,
oy =250 N/mm?.

Ans. 222.5kNm.

P12.9 Repeat P12.6 using ultimate load theory. Assume o, =25.5N/mm? and
oy =280 N/mm?.

Ans. 1592 mm?, 304 mm (neutral axis coincides with base of slab).

P12.10 A concrete slab 175mm thick and 2m wide is supported by, and firmly
connected to, a 457 mm x 152 mm x 74kg/m Universal Beam whose actual depth
is 461.3mm and whose cross-sectional area is 9490 mm?2. If oo, =30 N/mm2 and
oy =350N/mm?, find the moment of resistance of the resultant steel and concrete
beam.

Ans. 919.5kNm.
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Chapter 13 / Deflection of Beams

In Chapters 9, 10 and 11 we investigated the strength of beams in terms of the stresses
produced by the action of bending, shear and torsion, respectively. An associated
problem is the determination of the deflections of beams caused by different loads
for, in addition to strength, a beam must possess sufficient stiffness so that excessive
deflections do not have an adverse effect on adjacent structural members. In many
cases, maximum allowable deflections are specified by Codes of Practice in terms of
the dimensions of the beam, particularly the span; typical values are quoted in Section
8.7. We also saw in Section 8.7 that beams may be designed using either elastic or
plastic analysis. However, since beam deflections must always occur within the elastic
limit of the material of a beam they are determined using elastic theory.

There are several different methods of obtaining deflections in beams, the choice
depending upon the type of problem being solved. For example, the double integration
method gives the complete shape of abeam whereas the moment-area method can only
be used to determine the deflection at a particular beam section. The latter method,
however, is also useful in the analysis of statically indeterminate beams.

Generally beam deflections are caused primarily by the bending action of applied
loads. In some instances, however, where a beam’s cross-sectional dimensions are not
small compared with its length, deflections due to shear become significant and must
be calculated. We shall consider beam deflections due to shear in addition to those
produced by bending. We shall also include deflections due to unsymmetrical bending.

13.1 DIFFERENTIAL EQUATION OF SYMMETRICAL BENDING

In Chapter 9 we developed an expression relating the curvature, 1/R, of a beam to the
applied bending moment, M, and flexural rigidity, EI, i.e.

1 M
== (Ba.(9.1D)

For a beam of a given material and cross section, EI is constant so that the curvature
is directly proportional to the bending moment. We have also shown that bending
moments produced by shear loads vary along the length of a beam, which implies that

323
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FiGure 13.1
Deflection and
curvature of a beam
due to bending

Centre of curvature

Neutral plane

the curvature of the beam also varies along its length; Eq. (9.11) therefore gives the
curvature at a particular section of a beam.

Consider a beam having a vertical plane of symmetry and loaded such that at a section
of the beam the deflection of the neutral plane, referred to arbitrary axes Oxy, is v and
the slope of the tangent to the neutral plane at this section is dv/dx (Fig. 13.1). Also,
if the applied loads produce a positive, i.e. sagging, bending moment at this section,
then the upper surface of the beam is concave and the centre of curvature lies above
the beam as shown. For the system of axes shown in Fig. 13.1, the sign convention
usually adopted in mathematical theory gives a positive value for this curvature, i.e.

d?v/dx?

1

- = 13.1)
37 (

R [1+ (@v/dv?]

For small deflections dv/dx is small so that (dv/dx)? is negligibly small compared with

unity. Equation (13.1) then reduces to

1 d%
whence, from Eq. (9.11)
dv M
@ T EH (133)

Double integration of Eq. (13.3) then yields the equation of the deflection curve of
the neutral plane of the beam.

In the majority of problems concerned with beam deflections the bending moment
varies along the length of a beam and therefore M in Eq. (13.3) must be expressed as
a function of x before integration can commence. Alternatively, it may be convenient
in cases where the load is a known function of x to use the relationships of Eq. (3.8).
Thus

d3v S
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d*v w

— = —— 13.

dx? EI (135
We shall now illustrate the use of Eqs (13.3), (13.4) and (13.5) by considering some
standard cases of beam deflection.

ExamMPLE 13.1 Determine the deflection curve and the deflection of the free end
of the cantilever shown in Fig. 13.2(a); the flexural rigidity of the cantilever is E1.

A
\

FIGURE 13.2 Deflection of a

G . X . .
\'\ v v cantilever beam carrying a
ip e
_y concentrated load at its free end

(b) (Ex. 13.1)

The load W causes the cantilever to deflect such that its neutral plane takes up the
curved shape shown Fig. 13.2(b); the deflection at any section X is then v while that
at its free end is vgp. The axis system is chosen so that the origin coincides with the
built-in end where the deflection is clearly zero.

The bending moment, M, at the section X is, from Fig. 13.2(a)
M =—-W(L —x) (i.e. hogging) @A)

Substituting for M in Eq. (13.3) we obtain

d?v w
- - _ (L -
o~ Tt
or in more convenient form
d?v ..
EI@ = —W(L —x) (11)

Integrating Eq. (ii) with respect to x gives

dv x2
El— = — ILx — —
o W( 2>+C1



326

Chapter 13 / Deflection of Beams

where C; is a constant of integration which is obtained from the boundary condition
that dv/dx =0 at the built-in end where x =0. Hence C; =0 and

dv x?
Ela =-W < - ?) (iii)

Integrating Eq. (iii) we obtain

Lx? i3
Elv=-W|— - — C
v (2 6>+ 2

in which C; is again a constant of integration. At the built-in end v =0 whenx =0 so
that C, =0. Hence the equation of the deflection curve of the cantilever is

w

__" 2_.3 :
v = 6E1(3Lx x7) (iv)
The deflection, vyp, at the free end is obtained by setting x =L in Eq. (iv). Thus
WL3
vtip = _ﬁ (V)

and is clearly negative and downwards.

EXAMPLE 13.2 Determine the deflection curve and the deflection of the free end
of the cantilever shown in Fig. 13.3(a).

|X
. w
7 v ¥ Vv ¥y v ¥
i
El
[ .
@ Lo
y |
|
G Y _If > X FiGUuRE 13.3  Deflection of a cantilever
\'\ R beam carrying a uniformly distributed
(b) load

The bending moment, M, at any section X is given by
M =2 (L —x)? Q)

Substituting for M in Eq. (13.3) and rearranging we have

d%v w 2 W, s 2 .
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Integration of Eq. (ii) yields

dv w x>
El—=—= (L - L*+ =
dr 2< x Lx+3)+cl

When x = 0 at the built-in end, v =0 so that C; =0 and

dv w , , X3
Ela_—E<Lx—Lx +§ (111)

Integrating Eq. (iii) we have

and since v =0whenx =0, C, = 0. The deflection curve of the beam therefore has the

equation
w 2.2 3, .4 )
=——(6L%* — AL
v 24EI(6 X X +x7) (iv)
and the deflection at the free end where x =L is
wL4
Vtip = —@ (V)

which is again negative and downwards. The applied loading in this case may be easily
expressed in mathematical form so that a solution can be obtained using Eq. (13.5),

ie.
d*v w .
& =T )
in which w = constant. Integrating Eq. (vi) we obtain
d*v
EI@ = —wx + C1

We note from Eq. (13.4) that
d3v S )
F:—E—‘I (l.e. —S=—wx +C1)
Whenx =0,5 = —wL so that
Ci=wL

Alternatively we could have determined C; from the boundary condition that when
x=L,5=0.

Hence

EIﬂ =-wkx—L) (vii)
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Integrating Eq. (vii) gives

d?v

xZ

From Eq. (13.3) we see that

d?v M
dx2  EI
and when x = 0, M = —wL?/2 (or whenx =L, M =0) so that

L2
=2

2
and

2
ic—;’ - —g(x2 _2Lx+L?)

which is identical to Eq. (ii). The solution then proceeds as before

EI

EXAMPLE 13.3  The cantilever beam shown in Fig. 13.4(a) carries a uniformly
distributed load over part of its span. Calculate the deflection of the free end.

G w D
/REERERREN F
\ |
92— El |
.< L N
@
Yi I
G » X
3”0 v
D F
(b) ®oF

FiGUuRre 13.4 Cantilever beam of
Ex. 13.3

If we assume that the cantilever is weightless then the bending moment at all sections

between D and F is zero. It follows that the length DF of the beam remains straight.
The deflection at D can be deduced from Eq. (v) of Ex. 13.2 and is

wa4

- 8EI
Similarly the slope of the cantilever at D is found by substitutingx=a and L =a in
Eq. (iii) of Ex. 13.2; thus

(dv _QD__wa3
),

The deflection, vr, at the free end of the cantilever is then given by

vp =

wa4 wa3
vp=—— — (L

SEI ~YSEl
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which simplifies to

wa3

“2apr MY

VUF =

ExampLE 13.4 Determine the deflection curve and the mid-span deflection of the
simply supported beam shown in Fig. 13.5(a).

X|
|
T T T il T
! ’

\El

FiGURE 13.5 Deflection of a

£ > X simply supported beam
carrying a uniformly

(b) distributed load (Ex. 13.4)

|
|
|
I .|
i >
|
!

The support reactions are each wL/2 and the bending moment, M, at any section X, a
distance x from the left-hand support is

wL wx? .
M=—7x->" @

Substituting for M in Eq. (13.3) we obtain

d2v

EI@:

%V(Lx ) (i)

Integrating we have

From symmetry it is clear that at the mid-span section the gradient dv/dx =0.

w(L3 L3
0=5(§‘ﬂ>+cl

wL3
24

Hence

whence

C =
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Therefore
EI% - %(6Lx2 — 43— L3 (i)

Integrating again gives
Elv = ;—4(2Lx3 L)+ G

Since v=0 when x=0 (or since v=0 when x=L) it follows that C, =0 and the
deflected shape of the beam has the equation

w

= @(mﬁ —x* - L%) (iv)

v

The maximum deflection occurs at mid-span where x = L/2 and is

SwL*

Umid-span = T 384E] v)

So far the constants of integration were determined immediately they arose. However,
in some cases a relevant boundary condition, say a value of gradient, is not obtainable.
The method is then to carry the unknown constant through the succeeding integration
and use known values of deflection at two sections of the beam. Thus in the previous
example Eq. (ii) is integrated twice to obtain

w (L x*
Elv=— = -2
v 2(6 12)—ierH—Cz

The relevant boundary conditions are v=0 at x=0 and x =L. The first of these
gives C; =0 while from the second we have Ci = —wL3/24. Thus the equation of
the deflected shape of the beam is

w

= @(214)6:5 —x4 — L3x)

v

as before.

ExampLE 13.5  Figure 13.6(a) shows a simply supported beam carrying a con-
centrated load W at mid-span. Determine the deflection curve of the beam and the
maximum deflection.

The support reactions are each W/2 and the bending moment M at a section X a

distance x (< L/2) from the left-hand support is
w

From Eq. (13.3) we have

El— = —x (i)
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§>_

m\g
—

»x  FIGURE 13.6 Deflection of a
simply supported beam
T carrying a concentrated load at

(b) mid-span (Ex. 13.5)

:

Integrating we obtain

From symmetry the slope of the beam is zero at mid-span where x=L/2. Thus
Ci=-WL?/16 and
d w
Elav = (@’ - L?) (iif)
Integrating Eq. (iii) we have

W[ 43
Elv = — (%—L%) 1 G

and whenx =0, v =0so that C; = 0. The equation of the deflection curve is, therefore

W
U= 1REI

(4x® — 3L%) (iv)

The maximum deflection occurs at mid-span and is

WL?
Umid-span = T 48EI V)

Note that in this problem we could not use the boundary condition that v =0 atx=L
to determine C; since Eq. (i) applies only for 0 <x < L /2; it follows that Eqs (iii) and
(iv) for slope and deflection apply only for 0 <x <L /2 although the deflection curve
is clearly symmetrical about mid-span.

EXAMPLE 13.6  The simply supported beam shown in Fig. 13.7(a) carries a con-
centrated load W at a distance a from the left-hand support. Determine the deflected
shape of the beam, the deflection under the load and the maximum deflection.



332

Chapter 13 / Deflection of Beams
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(b) (Ex. 13.6)

Considering the moment and force equilibrium of the beam we have

|44 Wa
RA = A (L —a) Rp = T

At a section X, a distance x from the left-hand support where x <a, the bending
moment is

M = Rax @A)
At the section Xp, where x >a
M =Rax—W(x —a) (ii)

Substituting both expressions for M in turn in Eq. (13.3) we obtain

B d?v R
a2 = Rax (x<a) (iii)

and

EIdzv R .
a2 — Rax— W(x —a) x>a) (iv)
Integrating Eqs (iii) and (iv) we obtain
d 2

Eza” - RA% +C (x<a) v)
dv x? x? , .
ElazRAE—W<5—ax>+C1 x=>a) (vi)

and

3

Elv = RA% FCx+ G (x<a) (vii)
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3 3 2

Elv = RA% W (% - ‘%) FCx+Cy (x>a) (vii)
in which C1,C},Cs,C), are arbitrary constants. In using the boundary conditions
to determine these constants, it must be remembered that Eqs (v) and (vii) apply
only for 0 <x <a and Eqs (vi) and (viii) apply only for a <x < L. At the left-hand sup-
port v =0whenx =0, therefore, from Eq. (vii), C» =0. It is not possible to determine
C1,C} and C directly since the application of further known boundary conditions
does not isolate any of these constants. However, since v =0 when x =L we have,
from Eq. (viii)
L3 <L3 al?

O=RpA— W |—— — CiL + C;
A6 6 2)+ 1 + 2

which, after substituting Ry = W (L — a)/L, simplifies to

Wal?
0= 4 CL+C) (ix)

Additional equations are obtained by considering the continuity which exists at the
point of application of the load; at this section Eqs (v)—(viii) apply. Thus, from Eqs
(v) and (vi)

2 2 2
a a a
Ra—+Ci=Ra— —W|=—a*|+C
A5 +C1=Raz (2 “>+1
which gives

W2
C1=Ta+cg (x)

Now equating values of deflection at x =a we have, from Eqs (vii) and (viii)

3 3 3 3
a a a’ a
RAg—i-Cla:RAg—W <€—3> +Cla+ G,

which yields

Wa? .
Cia = -t Cla+C) (xi)

Solution of the simultaneous Eqs (ix), (x) and (xi) gives
Wa
=——>(@—-2L)a—-L
Ci=-2r@-2L)a~L)

Wa
r_ 2 2
Cl=—¢p (@ +2L%)
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Equations (v)—(vii) then become respectively

dv W(a—-L)

w__ru—r) 2 _ .o
EI I L [3x“+a(a—2L)] (x<a) (xii)
dv _ Wa 2 2 2
Eldx =~ (3x* —6Lx+a”+2L") (x>a) (xiii)
Elv = _W[ﬁ +a(a—2L)x] (x<a) (xiv)

Wa ; 2 2 2 2
EIv=—6—L[x —3Lx"+ (@ +2L)x —a“L] (x>a) (xv)

The deflection of the beam under the load is obtained by putting x =a into either of
Eq. (xiv) or (xv). Thus
Wa?(a — L)?
3EIL

This is not, however, the maximum deflection of the beam. This will occur, ifa <L /2,
at some section between C and B. Its position may be found by equating dv/dx in Eq.

ve = (xvi)

(xiii) to zero. Hence
0=3x%—6Lx+a’+2L? (xvii)

The solution of Eq. (xvii) is then substituted in Eq. (v) and the maximum deflection
follows.

For a central concentrated load a =1 /2 and

WL3

Y =~ a8Ed

as before.
ExampLE 13.7 Determine the deflection curve of the beam AB shown in Fig.

13.8 when it carries a distributed load that varies linearly in intensity from zero at the
left-hand support to wy at the right-hand support.

To find the support reactions we first take moments about B. Thus

1 L

which gives
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Load intensity at section X is wy %

A ¢ — X
é; T NE
A 4 N | - FiGure 13.8  Deflection
Ra = :! Rg of a simply supported
beam carrying a
l< L = triangularly distributed
| load

Resolution of vertical forces then gives

wol
e

The bending moment, M, at any section X, a distance x from A is

USRI
or

M= :—E(sz —x%) (i)

Substituting for M in Eq. (13.3) we obtain

d2U wo 2 3 .
EI@:6_L(Lx_x) (ii)

which, when integrated, becomes

dv  wo [, 22 x*
Ela = 6_L (L 3 — Z +C1 (lll)
Integrating Eq. (iii) we have
Ero= 0 (122 -2 ) f ot e (iv)
"Ter\" 6 T20) TR

The deflection v =0 at x =0 and x = L. From the first of these conditions we obtain
C, =0, while from the second

wo (L5 L°
= —(=-=)+cCL
6L<6 20>Jrl
which gives
TwoL*
=2

360
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The deflection curve then has the equation

wo

=~ 360ETL (3x° — 10L%x> + 7L*) v)

An alternative method of solution is to use Eq. (13.5) and express the applied load in
mathematical form. Thus

d*v X .
EI@ =-w=-wor (vi)
Integrating we obtain
d3v x?
El— =-wi—+C
o3 wo oL +C3
When x =0 we see from Eq. (13.4) that
d3v wolL
El— =RpA = —
w AT e
Hence
woL
C3=—
T 76
and
d3v x> woL "
EI@ = —WOZ + T (Vll)

Integrating Eq. (vii) we have

d®v woxr>  wol
El— =-"2 4+ 24 C
a2 6L + 6 X+ Cy

Since the bending moment is zero at the supports we have

d?v
EIW =0 whenx=0
Hence C4 =0 and
EI@ = —6—L(x —L x)

as before.

13.2 SINGULARITY FUNCTIONS

A comparison of Exs 13.5 and 13.6 shows that the double integration method becomes
extremely lengthy when even relatively small complications such as the lack of symme-
try due to an offset load are introduced. Again the addition of a second concentrated
load on the beam of Ex. 13.6 would result in a total of six equations for slope and deflec-
tion producing six arbitrary constants. Clearly the computation involved in determining
these constants would be tedious, even though a simply supported beam carrying two
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concentrated loads is a comparatively simple practical case. An alternative approach
is to introduce so-called singularity or half-range functions. Such functions were first
applied to beam deflection problems by Macauley in 1919 and hence the method is
frequently known as Macauley’s method.

We now introduce a quantity [x —a] and define it to be zero if (x —a) <0, i.e.x <a, and
to be simply (x —a) if x > a. The quantity [x — a] is known as a singularity or half-range
function and is defined to have a value only when the argument is positive in which
case the square brackets behave in an identical manner to ordinary parentheses. Thus
in Ex. 13.6 the bending moment at a section of the beam furthest from the origin for
x may be written as

M = Rax — W[x —a]

This expression applies to both the regions AC and CB since W [x — a] disappears for
x <a. Equations (iii) and (iv) in Ex. 13.6 then become the single equation

d2
EIJ’Z’ — Rax — W[x —a]

which on integration yields

dU X2 I[ 2
El— =Rp~— — —[x —
A 2[x al* + Cq

and

3

w
Elv =RA%—F[X—Q]3+C1X+C2

Note that the square brackets must be retained during the integration. The arbitrary
constants C; and C, are found using the boundary conditions that v =0 when x =0
and x = L. From the first of these and remembering that [x — a]? is zero for x <a, we
have C; =0. From the second we have

L3 w

0=Ra—r — <L al’ + CiL
in which Ry =W (L —a)/L.
Substituting for Rp gives
Wa(lL —a
Cr = —%(u _a)

Then
Elv = _6KL {—(L —a)x* +L[x —aP +a(lL —a)2L —a)x]

The deflection of the beam under the load is then

Wa?(L — a)?
3EIL

vCc =

as before.
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ExAmMPLE 13.8 Determine the position and magnitude of the maximum upward
and downward deflections of the beam shown in Fig. 13.9.

2w |X

|

1

é; “ELT
4 |

—» X

F
|
TRF

FIGURE 13.9 Macauley’s method
for the deflection of a simply
supported beam (Ex. 13.8)

a

A consideration of the overall equilibrium of the beam gives the support reactions;
thus

3 3
Ra = ZW (upward) Rr = ZW (downward)

Using the method of singularity functions and taking the origin of axes at the left-hand
support, we write down an expression for the bending moment, M, at any section X
between D and F, the region of the beam furthest from the origin. Thus

M =Rax — Wix —a] — Wx — 2a] + 2W[x — 3a] i)
Substituting for M in Eq. (13.3) we have

v 3
Elas = JW = Wir—al = Wlx — 2a] + 2W[x — 3a] (i)

Integrating Eq. (ii) and retaining the square brackets we obtain

dv _ 3 2 w ) w 2 2
Ela_ g > [x —a] > [x—2a]"+Wx —-3a]"+ C; (iii)

and
1 /4 /4 w
Elv = gWx3 - k- al - b= 24)° + b 3P +Cx+Cy (i)
in which C; and C; are arbitrary constants. Whenx =0 (at A), v=0and hence C, =0.
Note that the second, third and fourth terms on the right-hand side of Eq. (iv) disappear
forx <a. Also v =0 atx =4a (F) so that, from Eq. (iv), we have

w w w w
0= §64a3 - F27a3 - €8”3 + ?af’ + 4aC

which gives

5
Cl = —§Waz
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Equations (iii) and (iv) now become

d 3 w w 5
Elav = gsz— T[x—a]z— 7[x—2a]2+W[x—3a]2— gWa2 )
and
1 w 5
Elv = gWx3 - %[x —a] - F[x —2a] + %[x —3a]® - gWazx (vi)
respectively.

To determine the maximum upward and downward deflections we need to know in
which bays dv/dv =0 and thereby which terms in Eq. (v) disappear when the exact
positions are being located. One method is to select a bay and determine the sign of
the slope of the beam at the extremities of the bay. A change of sign will indicate that
the slope is zero within the bay.

By inspection of Fig. 13.9 it seems likely that the maximum downward deflection will
occur in BC. At B, using Eq. (v)

dv 3 5
El— = “Wa® — ~Wa?
I 8Wa 3 a
which is clearly negative. At C
dv 3 w 5
El— = “W4d> — —d®> — Wa?
R M A M

which is positive. Therefore, the maximum downward deflection does occur in BC and

its exact position is located by equating dv/dx to zero for any section in BC. Thus, from
Eq. (v)
3

w 5
0= gsz — ?[x —a]® - gWa2

or, simplifying,
0 =x? — 8ax + 9a° (vii)
Solution of Eq. (vii) gives
x=135a

so that the maximum downward deflection is, from Eq. (vi)
1 w 5
Elv = gW(1.35a)3 - F(O.35a)3 - gWa2(1.35a)

ie.
0.54Wa’
EI
In a similar manner it can be shown that the maximum upward deflection lies between

Umax (downward) = —

D and F at x = 3.42a and that its magnitude is

0.04Wa?
EI

Umax (upward) =
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An alternative method of determining the position of maximum deflection is to select
a possible bay, set dv/dx =0 for that bay and solve the resulting equation in x. If the
solution gives a value ofx that lies within the bay, then the selection is correct, otherwise
the procedure must be repeated for a second and possibly a third and a fourth bay.
This method is quicker than the former if the correct bay is selected initially; if not, the
equation corresponding to each selected bay must be completely solved, a procedure
clearly longer than determining the sign of the slope at the extremities of the bay.

EXAMPLE 13.9 Determine the position and magnitude of the maximum deflection
in the beam of Fig. 13.10.

y |X
w
A Bf ¥ ¥ ¥ic | b
{ / 1 ] —»x
El ! @
7/ | 4
3wl swL FIGURE 13.10 Deflection
R = Ro =75 ¢ ; ATV G 9 Ty
A= 35 32  of a beam carrying a part
L2 L/4 L4 span uniformly
distributed load
(Ex. 13.9)

Following the method of Ex. 13.8 we determine the support reactions and find the
bending moment, M, at any section X in the bay furthest from the origin of the axes.
Thus

4 8

Examining Eq. (i) we see that the singularity function [x — 5L/8] does not become zero
until x <5L/8 although Eq. (i) is only valid for x > 3L /4. To obviate this difficulty we
extend the distributed load to the support D while simultaneously restoring the status

M:RAx—w£ [x—2i| (i)

quo by applying an upward distributed load of the same intensity and length as the
additional load (Fig. 13.11).

At the section X, a distance x from A, the bending moment is now given by

L7? 17>
M=RM—YP——}+gP—%} (i)

AN

FiGure 13.11 Method of solution
for a part span uniformly
distributed load
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Equation (ii) is now valid for all sections of the beam if the singularity functions are
discarded as they become zero. Substituting Eq. (ii) into Eq. (13.3) we obtain

dv 3 w L] w 3L7?
gdv_ 3 _wl L wl 3L
@ =" [x 2} +3 [ 4 } (i)
Integrating Eq. (iii) gives
dv 3 5, w LT w 3L7? ,
Ela—6—4WLX —EI:X—E] +g|:x—Ti| +C1 (IV)
wLe W LT w 3L
Elv = 64 —ﬁ[x—a} +ﬂ|:x—7:| +C1X+C2 (V)

where C1 and C; are arbitrary constants. The required boundary conditions are v =0
when x =0 and x = L. From the first of these we obtain C, =0 while the second gives

wL?* w (L 4 w (L 4
= _ 2 (Z ~ (= CiL
0= 24<2> +24(4) to

from which
_awL?
T T4
Equations (iv) and (v) then become
dv 3 w[ L7 w 3L 2wl
T wL2 =Ly = == = i
Bl = 6" 6 [x 2] *% [x 4} 2048 (vi)

and

£y W w|: LT w[x_s_LT 27wl

7R 7H Y 7 H il B T o)
In this problem, the maximum deflection clearly occurs in the region BC of the beam.

Thus equating the slope to zero for BC we have

3, 0w LT 2mwL?
*T 3 2048

which simplifies to
x* — 1.78Lx* + 0.75xL? — 0.046L°> = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at x ~0.6L. Hence
from Eq. (vii) the maximum deflection is

4.53 x 103wL?
EI

Umax = —
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>
s
)

\
/
£

b
¢
¥

TR _ M Ficure 13.12
C" L Deflection of a simply
| supported beam carrying

=
I
|
~IE
—

Y

a point moment

(Ex. 13.10)

ExampLE 13.10 Determine the deflected shape of the beam shown in Fig. 13.12.

In this problem an external moment My is applied to the beam at B. The support
reactions are found in the normal way and are

M M
RA = —TO (downwards) Rc = TO (upwards)
The bending moment at any section X between B and C is then given by
M = Rax + M (i)

Equation (i) is valid only for the region BC and clearly does not contain a singularity
function which would cause My to vanish for x <b. We overcome this difficulty by
writing

M = Rax +Mo[x —b]°  (Note: [x —b]" =1) (i)

Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the
beam since [x — b]" disappears when x <b. Substituting for M from Eq. (ii) in Eq.

(13.3) we obtain
d?v
EI@ = Rax + Mo[x — b]° (iii)
Integration of Eq. (iii) yields
o x2+M[x bl +C (iv)
o~ Rag 0 1
and
3
M
Elv= RA% n TO[x P+ O+ G v)

where C1 and C; are arbitrary constants. The boundary conditions are v =0 when
x=0andx =L. From the first of these we have C, =0 while the second gives
My L3

Mo )
__ML” Mo, /
0 — L -bP +C
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from which
Ci = _Aﬂ(zL2 — 6Lb + 3b?)
6L
The equation of the deflection curve of the beam is then

— Mo 3 2 2 2 .
V= {x +3L[x — b2 — (2L2 — 6Lb + 3b )x} (vi)

13.3 MOMENT-AREA METHOD FOR SYMMETRICAL BENDING

The double integration method and the method of singularity functions are used when
the complete deflection curve of a beam is required. However, if only the deflection
of a particular point is required, the moment-area method is generally more suitable.

Consider the curvature—-moment equation (Eq. (13.3)), i.e.

d%v M
dx2  EI
Integration of this equation between any two sections, say A and B, of a beam gives
B 42y Bm
— dx = — dx 13.6
A dx2 /A EI (13.6)
or
dv1B B
[_v] _ / M
which gives
dv dv B M
— ) (=) = — dx 13.7
( dx )B ( dx ) A /A EI (13.7)

In qualitative terms Eq. (13.7) states that the change of slope between two sections A
and B of a beam is numerically equal to the area of the M/EI diagram between those
sections.

We now return to Eq. (13.3) and multiply both sides by x thereby retaining the equality.

Thus
d%v M
Integrating Eq. (13.8) between two sections A and B of a beam we have
B @2y Bm
—xdx = —xdx 13.9
N /A EI" (13.9)

The left-hand side of Eq. (13.9) may be integrated by parts and gives

d B B4 B
[_v} _ _vdx:/ M
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or

dv® B B M
[a}A—[U]A—\/A EXC]X

Hence, inserting the limits we have

dv dv B M

in whichxg and xA represent the x coordinate of each of the sections B and A, respec-
tively, while (dv/dx)p and (dv/dx)a are the respective slopes; vg and va are the
corresponding deflections. The right-hand side of Eq. (13.10) represents the moment
of the area of the M/EI diagram between the sections A and B about A.

Equations (13.7) and (13.10) may be used to determine values of slope and deflection
at any section of a beam. We note that in both equations we are concerned with the
geometry of the M/EI diagram. This will be identical in shape to the bending moment
diagram unless there is a change of section. Furthermore, the form of the right-hand
side of both Eqs (13.7) and (13.10) allows two alternative methods of solution. In cases
where the geometry of the M/EI diagram is relatively simple, we can employ a semi-
graphical approach based on the actual geometry of the M/EI diagram. Alternatively,
in complex problems, the bending moment may be expressed as a function of x and a
completely analytical solution obtained. Both methods are illustrated in the following
examples.

ExampLE 13.11  Determine the slope and deflection of the free end of the
cantilever beam shown in Fig. 13.13.

w
A Y
. X B
/
El
N
il L ]
(a)
WL
El
% diagram
—ve FIGUure 13.13 Moment-area method
for the deflection of a cantilever

(b) (Ex. 13.11)
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We choose the origin of the axes at the free end B of the cantilever. Equation (13.7)

()-8, e

Generally at this stage we decide which approach is most suitable; however, both

then becomes

or, since (dv/dx)a =0

semi-graphical and analytical methods are illustrated here. Using the geometry of Fig.

13.13(b) we have
C(dv) lL —WL
dc ) 2 EI
dv) _ WL?
dv)g  2EI

(compare with the value given by Eq. (iii) of Ex. 13.1. Note the change in sign due to
the different origin for x).

which gives

Alternatively, since the bending moment at any section x is —Wx we have, from Eq. (i)

d L
_(_v) :f W

dv  WL?
dx ) 2EI

With the origin for x at B, Eq. (13.10) becomes

which again gives

d d AM
a(E) (), e[
Since (dv/dx)a =0 andxg =0 and va =0, Eq. (ii) reduces to
L
M
VB = /0 Exdx (iii)

Again we can now decide whether to proceed semi-graphically or analytically. Using
the former approach and taking the moment of the area of the M /EI diagram about

1 [—WL\ 2
”BziL( EI >§L

B, we have

which gives

WL3 :
UB = —apr (compare with Eq. (v) of Ex. 13.1)
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Ficure 13.14
Moment-area
method for a simply
supported beam
carrying a uniformly

“distributed load

Alternatively we have

which gives
wL?

Y= = 3Er

as before.

Note that if the built-in end had been selected as the origin for x, we could not have
determined vg directly since the term xg(dv/dx)g in Eq. (ii) would not have vanished.
The solution for vg would then have consisted of two parts, first the determination of
(dv/dx)p and then the calculation of vg.

EXAMPLE 13.12 Determine the maximum deflection in the simply supported beam
shown in Fig. 13.14(a).
!

Y Y Y ¥V Y VYV YV VY ¥p

A
/ c
7SS /
T B T
wL wL
) o=

L2 L2

(a)
Centroid of area of left-hand
half of M/EI diagram

(b)

From symmetry we deduce that the beam reactions are each wL/2; the M/EI diagram
has the geometry shown in Fig. 13.14(b).

If we take the origin of axes to be at A and consider the half-span AC, Eq. (13.10)

In this problem (dv/dx)c =0,xa =0 and va =0; hence Eq. (i) reduces to

L/2 M
ve = —/ o (ii)
0

becomes

EI
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Using the geometry of the M/EI diagram, i.e. the semi-graphical approach, and
taking the moment of the area of the M /EI diagram between A and C about A we

2wlL?L5 (L
Wc=——7>-—=-| =
38EI28\2

have from Eq. (ii)

which gives

SwL*
Ve = —3;]5] (see Eq. (v) of Ex. 13.4).
For the completely analytical approach we express the bending moment M as a function
of x; thus
wL wx?
M=5-7%
or

M= %(Lx —x?)

Substituting for M in Eq. (ii) we have

which gives

T 2|3 4 .
Then
. SwL*
YC = T34kl

ExampLE 13.13  Figure 13.15(a) shows a cantilever beam of length L carrying a
concentrated load W at its free end. The section of the beam changes midway along
its length so that the second moment of area of its cross section is reduced by half.
Determine the deflection of the free end.

In this problem the bending moment and M /EI diagrams have different geometrical
shapes. Choosing the origin of axes at C, Eq. (13.10) becomes

in which (dv/dx)a =0, xc =0, va =0. Hence

L
M "
ve = —x dx ii

/0 EI (if)
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Ficure 13.15
Deflection of a
cantilever of varying
section

Chapter 13 / Deflection of Beams

Ay
w
A B C y
X -
|
N / I2
A L2 T L2
(@)
WL
Bending moment diagram
—ve
(b)

5L/6

M diagram
£l @39

(©)

From the geometry of the M /EI diagram (Fig. 13.15(c)) and taking moments of areas

about C we have

(L LaL
CEI\2Er )24

which gives

Analytically we have

L2 _p2
ve = |;/(; EI/2 dx +

1 /-WL L5L+1 —WL\L2L
2\2EI )26 2\ EI )232

3WL3
8EI

vCc =

L a2
/‘ Wx d
L EI
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or
W 23 L)2 3 L
5[]

0 L/2
Hence

3WL3

"CT TREr

as before.

ExAmPLE 13.14 The cantilever beam shown in Fig. 13.16 tapers along its length
so that the second moment of area of its cross section varies linearly from its value
Iy at the free end to 21 at the built-in end. Determine the deflection at the free end
when the cantilever carries a concentrated load W.

i t FIGURE 13.16 Deflection of a cantilever of
tapering section

Choosing the origin of axes at the free end B we have, from Eq. (13.10)

dv dv AM
=) - -\ - — = — xdx i
xA(dx>A XB<dx>B (va = vs) /B EIx" @
in which Iy, the second moment of area at any section X, is given by
X
=1 (1+7)

Also (dv/dx)a =0,xg =0, va =0 so that Eq. (i) reduces to

L
M
vp = f — (i)
o El(1+7)
The geometry of the M /EI diagram in this case will be complicated so that the analytical
approach is most suitable. Therefore since M = —Wx, Eq. (ii) becomes

L W2
m=— [
o El(1+7%)
or
WL L x?
CEly Jo L+x

(iif)

VB =
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Rearranging Eq. (iii) we have

WL M AL L 2
S —L)dx dx
B=TF L /O(x ) +/0 Ltx
Hence
WL | (x> k
VB — _E_IO (5 —Lx> +L2 loge(L —x):|0
so that
= WL 1—l—lo 2
UB= TR T2 T %
1.€.
0.19WL3
VBp= ———

Ely

13.4 DEFLECTIONS DUE TO UNSYMMETRICAL BENDING

We noted in Chapter 9 that a beam bends about its neutral axis whose inclination to
arbitrary centroidal axes is determined from Eq. (9.33). Beam deflections, therefore,

are always perpendicular in direction to the neutral axis.

Suppose that at some section of a beam, the deflection normal to the neutral axis (and
therefore an absolute deflection) is ¢. Then, as shown in Fig. 13.17, the centroid G is
displaced to G’. The components of ¢, u and v, are given by

u=_¢singa

v={cosa (13.11)

The centre of curvature of the beam lies in a longitudinal plane perpendicular to the
neutral axis of the beam and passing through the centroid of any section. Hence for a

! Unloaded

Neutral axis

Figure 13.17
Deflection of a beam
of unsymmetrical
cross section
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radius of curvature R, we see, by direct comparison with Eq. (13.2) that

1 d%

- =— 13.12

R dx? (13.12)
or, substituting from Eq. (13.11)

=== %‘2‘ === 3;2(_; (13.13)
We observe from the derivation of Eq. (9.31) that
Esina ML, — ML,
R LI - 3
Ecosa M, — Ml
R LI - IES

Therefore, from Eq. (13.13)

SPu _ ML = Mol (13.14)
&2 E(LL, —13) '
d>v ML, — Myl

v _ 13.15
&2~ E(LL —I2) (13.15)

ExampLE 13.15 Determine the horizontal and vertical components of the deflec-
tion of the free end of the cantilever shown in Fig. 13.18. The second moments of area
of its unsymmetrical section are I, I, and .

FIGURE 13.18 Deflection of a cantilever of
unsymmetrical cross section carrying a
concentrated load at its free end

(Ex. 13.15)

The bending moments at any section of the beam due to the applied load W are
M,=-W(L-x), M,=0
Then Eq. (13.14) reduces to

d2u WL —x)l,

&2 T E(LL - 12) ®
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Integrating with respect to x

du WL, x2
—=_2 [(Ix-=+C
dv ~ E(LL, 1) ( + 1)

Whenx =0, (du/dx) =0 so that C; =0 and

T, 2
du_ Why (% (i)
&~ E(LL —12) 2

Integrating Eq. (ii) with respect to x

WL, Lx* X3
[ A - C
" E(Izly—lzzy)< 2 "6 ¢

When x =0,u =0 so that C, =0. Therefore

WIL,

e S LZ— 3
6E(Izly—122y)(3x x7) (iii)

u

At the free end of the cantilever where x =L

WI,L3

T 3E(LL - 13) (iv)

Ufe

The deflected shape of the beam in the xy plane is found in an identical manner from
Eq. (13.15) and is
WI,

e SEY - B
6E(I.I, — Igy)( *) )
from which the deflection at the free end is
WI,L3 .
Vfe = 24 (vi)

3E(I1, — Izzy)
The absolute deflection, 8¢, at the free end is given by
e = (uf, +v3)? (vii)
and its direction is at '[an_l(ufe /vte) to the vertical.

Note that if either Gz or Gy is an axis of symmetry I, = 0 and Egs. (iv) and (vi) reduce
to
3

~3EL (compare with Eq. (v) of Ex. 13.1)

ute =0 v =

ExAMPLE 13.16 Determine the deflection of the free end of the cantilever beam
shown in Fig. 13.19. The second moments of area of its cross section about a horizontal
and vertical system of centroidal axes are I, 1, and I,
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FIGURE 13.19 Deflection of a cantilever
x of unsymmetrical cross section carrying a
uniformly distributed load (Ex. 13.16)

The method of solution isidentical to that in Ex. 13.15 except that the bending moments
M, and M, are given by

M, = —w(L —x)*/2 M,=0
The values of the components of the deflection at the free end of the cantilever are

wlyL* wl,L*

e TREWLL-12) T TBE(LL-13)

Again, if either Gz or Gy is an axis of symmetry, I, = 0 and these expressions reduce
to

L4
ufe =0, vge = el (compare with Eq. (v) of Ex. 13.2)
8EIL

13.5 DEFLECTION DUE TO SHEAR

So far in this chapter we have been concerned with deflections produced by the bending
action of shear loads. These shear loads however, as we saw in Chapter 10, induce
shear stress distributions throughout beam sections which in turn produce shear strains
and therefore shear deflections. Generally, shear deflections are small compared with
bending deflections, but in some cases of deep beams they can be comparable. In the
following we shall use strain energy to derive an expression for the deflection due to
shear in a beam having a cross section which is at least singly symmetrical.

In Chapter 10 we showed that the strain energy U of a piece of material subjected to
a uniform shear stress 7 is given by

2
T
U= Tehe volume (Eq. (10.20))

However, we also showed in Chapter 10 that shear stress distributions are not uniform
throughout beam sections. We therefore write Eq. (10.20) as

_ B (5Y
U= G~ (Z) x volume (13.16)
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Sy
OX
by
)/Sy %
b Y
G Y1

FIGURE 13.20 Determination of form
factor B

in which S is the applied shear force, A is the cross-sectional area of the beam section
and B is a constant which depends upon the distribution of shear stress through the
beam section; 8 is known as the form factor.

To determine 8 we consider an element by 3y in an elemental length 8x of a beam
subjected to a vertical shear load S, (Fig. 13.20); we shall suppose that the beam
section has a vertical axis of symmetry. The shear stress 7 is constant across the width,
bo, of the element (see Section 10.2). The strain energy, U, of the element bg 3y &x,
from Eq. (10.20) is

2
T
3U = — x bo 8y dx 13.1
U= 55 xbody (13.17)
Therefore the total strain energy U in the elemental length of beam is given by
& 2 )
U=— by d 13.18
G ), T (13.18)
Alternatively U for the elemental length of beam is obtained using Eq. (13.16); thus
B (Y
=— — A 13.1
U Tehe (A x Adx (13.19)

Equating Eqgs (13.19) and (13.18) we have

B $\? ax/yzz
L e A =— bod
2GX<A . 2G ), T

whence
A [
b= f %bg dy (13.20)
y N1
The shear stress distribution in a beam having a singly or doubly symmetrical cross
section and subjected to a vertical shear force, Sy, is given by Eq. (10.4), i.e.

S,A'y
bol,
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Substituting this expression for t in Eq. (13.20) we obtain

4 (S

— 82 ), \ bol;
which gives
4 /ﬂ (A7)
== d 13.21
B 2), e @ (13.21)

Suppose now that dvs is the deflection due to shear in the elemental length of beam of
Fig. 13.16. The work done by the shear force S, (assuming it to be constant over the
length & and gradually applied) is then

1
ESy Bvs

which is equal to the strain energy stored. Hence

1 B S\?
ESy&US—% X (Z) x A &

_B (S
8v5—5<2>8x

The total deflection due to shear in a beam of length L subjected to a vertical shear

force Sy is then
B / Sy
= — — 13.22
U= L\ dx (13.22)

ExamPLE 13.17 A cantilever beam of length L has a rectangular cross section of
breadth B and depth D and carries a vertical concentrated load, W, at its free end.

which gives

Determine the deflection of the free end, including the effect