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To A. V. Tobolsky, who first introduced us to the mysteries 
of polymer viscoelasticity and to the art of scientific 
research. 



Preface to the 
Third Edition 

More than 20 years have passed since the publication of the 2nd Edition of 
“Introduction to Polymer Viscoelasticity.” Although many of the fundamental 
aspects of the field remain unchanged, there have been a number of significant 
developments. Many have to do with instrumentation and the revolution in data 
collection and analysis, which in no small part has been due to the advent of the 
personal computer and the associated progression of instrumentation of all 
types. 

In recognition of these changes, we have included descriptions of newer 
techniques for studying molecular motion along with updated descriptions of the 
classical experimental methods. An example of the latter is a new appendix that 
describes in more detail the advantages and disadvantages of the various 
geometries commonly used for measuring mechanical response. Included are 
tables with the working equations for these geometries. Those familiar with the 
earlier editions will also notice an increased emphasis on shear properties, 
which is an understandable response to the wide availability of instruments that 
can measure viscoelastic properties in simple shear. We have also, where 
possible, changed nomenclature to follow the recommendations of the Society 
of Rheology, and updated all the figures to increase readability and consistency. 

Inexpensive computation hardware along with accessible software has 
impacted not only the acquisition of viscoelastic data, but also its interpretation. 
In the spirit of these changes, the 3rd Edition features many examples and 
problems that involve numerical modeling and analysis. To relieve the student 
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of the drudgery of data entry, a CD with data files for most numerical problems 
has been included. 

The authors’ experience has shown that by far the most effective way to 
master the material in the text is to work as many problems as possible, hence 
the increased emphasis on this aspect in the 3rd Edition. The problems range 
from relatively straightforward use of an equation included in the book, to far 
more challenging problems requiring detailed analysis and/or numerical 
methods. Some of these would even be suitable for term projects. Problems 
requiring the use of the computer are clearly marked, as are open-ended 
problems that have no one “correct” answer. This type of problem, which is 
required in many undergraduate curricula, provides the student with an 
opportunity to search, assume, approximate and innovate. As in past editions, 
answers to many of the problems are provided in an appendix. These answers 
form an important part of the book, and contain in some cases more details 
concerning the subject phenomena. 

New topics have been introduced such as interfacial polarization, thermally 
stimulated currents (TSC), impedance spectroscopy for highly conducting 
polymers, Nuclear Magnetic Resonance (NMR) relaxation techniques, and the 
physical relaxation of elastomers. Because impedance spectroscopy has not 
been used extensively as a tool for examining polymer motion, this short section 
is included more to explain the similarities and differences between this 
spectroscopy and the related dielectric spectroscopy. On the other hand, NMR 
techniques have undergone rapid development in the last few decades, not only 
in fields such as imaging and high resolution studies of the structures of 
biological macromolecules, but also as a tool for studying the relaxation 
behavior of polymers, particularly in identifying the molecular motions 
responsible for a given relaxation process. While the new section describing 
NMR techniques is necessarily introductory, we have attempted to compare its 
capabilities with dielectric and mechanical spectroscopy in a direct fashion. 

As for other changes, we have with considerable trepidation moved the 
description of deformation in materials from one to three dimensions. Perhaps 
the main impetus for doing this was to simplify the rather complex explanation 
in previous editions of the relationship between tensile and shear properties. As 
an admitted expense, we now have double-subscripted variables in several 
sections. However, we have refrained from including nonlinear strain theory, 
which should properly be left for more advanced courses. 

It is always a difficult task to select material appropriate for inclusion and 
exclusion in an introductory text of modest size and cost. Because of the 
discussion of the topics mentioned above and a somewhat expanded treatment 
of the phenomenology of viscoelasticity, it was felt appropriate to eliminate the 
chapter on chemical stress relaxation. In its place, a discussion of this topic has 
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been included in the chapter entitled Transitions and Relaxations in Polymers; 
and, of course, in several problems at the end of this chapter. 

Professor Aklonis did not participate in the preparation of the 3rd Edition, 
but, as was the case with Professor Shen in the 2nd Edition, his influence is 
clearly present and it is a pleasure for us to acknowledge it. 

Many individuals and organizations have been involved with the assembly of 
the 3rd edition. We wish to thank Ms. Jennifer Chudy and Mr. Alvin A 
Altamirano for help with data entry and equation editing; Dr. Mark Poliks, Dr. 
Lou Madsen and Prof. Marcel Utz for critically reviewing the NMR section, Mr. 
Antonio Senador for checking several problem solutions and Mr. Gerald Ling 
who provided assistance with the challenging task of finding authors of classical 
publications for courtesy permission to reproduce figures. We especially want 
to acknowledge the patience displayed by our spouses, Maripaz N. Shaw and 
Carol B. MacKnight, as the endured though this lengthy project. 

Errors in the text are, of course, the sole responsibility of the authors. It is to 
be hoped that we have recognized and corrected at least some of the errors in 
the 2nd Edition, (many of which were pointed out to us by friends and 
colleagues) and have refrained from introducing a significant number of new 
ones in the 3rd Edition. 

M. T. SHAW 
W. J. MACKNIGHT 

Storrs, Connecticut 
Amherst, Massachusetts 
December 2004 



Preface to the 
Second Edition 

In the decade since the first edition of Introduction to Polymer Viscoelasticity 
appeared, we have noted a number of significant scientific developments. We 
also suffered a personal tragedy with the death of Professor M. C. Shen. 

Among the major developments are a new approach to long-range 
relaxational motions known as the theory of reptation, and the further 
elucidation of the kinetic theory of rubber elasticity. In this second edition, we 
have attempted to take account of some of these developments on a level 
consistent with the introductory nature of the text. We have also added an 
entirely new chapter on dielectric relaxation, a technique now widely used to 
investigate molecular motions in polar polymers. Finally, we have tried to 
strengthen and clarify several other sections as well as eliminate errors or 
inconsistencies in the first edition that have been pointed out to us by colleagues 
and students. 

Both of us felt very deeply the untimely death of Professor Shen, as did 
many others who valued his friendship and respected his scientific prowess. He 
made important and lasting contributions to such diverse areas as rubber 
elasticity theory, the understanding of mechanical properties of block 
copolymers, and plasma polymerization, to name but a few. His collaboration 
in the preparation of the second edition was sorely missed, but we feel that his 
influence remains clear and we are proud to acknowledge it. 

We wish to thank Dr. Richard M. Neumann, who read the manuscript 
critically, and Ms. Teresa M. Wilder, who drew many of the figures. We are 
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also indebted to Dr. Neumann and Professor L. L. Chapoy for furnishing some 
of the new problems contained in this edition. 

Once again we accept sole responsibility for any errors in the text, be they 
old ones remaining from the first edition or new ones that may appear in the 
second. 

J. J. AKLONIS 
W. J. MACKNIGHT 

Los Angeles, California 
Amherst, Massachusetts 
December I982 



Preface to the 
First Edition 

The viscoelastic response of polymeric materials is a subject which has 
undergone extensive development over the past twenty years and still accounts 
for a major portion of the research effort expended. It is not difficult to 
understand the reason for this emphasis in view of the vast quantities of 
polymeric substances which find applications as engineering plastics and the 
still greater volume which are utilized as elastomers. The central importance of 
the time and temperature dependence of the mechanical properties of polymers 
lies in the large magnitudes of these dependencies when compared to other 
structural materials such as metals. Thus an understanding of viscoelastic 
behavior is fundamental for the proper utilization of polymers. 

Viscoelasticity is a subject of great complexity fraught with conceptual 
difficulties. It is possible to distinguish two basic approaches to the subject 
which we shall designate as the continuum mechanical approach and the 
molecular approach. The former attempts to describe the viscoelastic behavior 
of a body by means of a mathematical schema which is not concerned with the 
molecular structure of the body, while the latter attempts to deduce bulk 
viscoelastic properties from molecular architecture. The continuum mechanical 
approach has proven to be very successful in treating a large number of 
problems and is of very great importance. However, it is not our intention to 
treat this approach rigorously in this text. Rather, we shall be concerned with 
the molecular approach and attempt to present a basic foundation upon which 
the reader can build. The fundamental difficulty encountered with the 
molecular approach lies in the fact that polymeric materials are large molecules 
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of very complex structures. These structures are too complex, even if they were 
known in sufficient detail which, in general, they are not, to lend themselves to 
mathematical analysis. It is therefore necessary to resort to simplified structural 
models, and the results deduced from these are limited by the validity of the 
models adopted. 

Several excellent treatments of molecular viscoelasticity are available. (See 
the references of Chapter 1.) The book by Professor Ferry, in particular, is an 
exhaustive and complete exposition. The question may then be asked, why the 
necessity for still another text and one restricted to bulk amorphous polymers, at 
that? Such a question must send each of the authors scurrying in quest of an 
"apologia pro vita sua." The answer to the question lies in the use of the word 
"introduction" in the title. What we have attempted to do is to provide a 
detailed grounding in the fundamental concepts. This means, for example, that 
all derivations have been presented in great detail, that concepts and models 
have been presented with particular attention to assumptions, simplifications, 
and limitations, and that problems have been provided at the end of each chapter 
to illustrate points in the text. The level of mathematical difficulty is such that 
the average baccalaureate chemist should be able to readily grasp it. Where 
more advanced mathematical techniques are required, such as transform 
techniques, the necessary methods are developed in the text. 

Having attempted to delineate what this book is, it may be well to remind the 
reader what it is not. First of all, it is not a complete treatment -lacking among 
other topics discussions of crystalline polymers, solution behavior, melt 
rheology, and ultimate properties. It is also not written from the continuum 
mechanics approach and thus is not mathematically sophisticated. Finally, it is 
not a primer of polymer science. Familiarity with the basic concepts of the field 
is presumed. 

The authors' first acquaintance with the literature of viscoelastic behavior in 
polymers evoked a response much like that experienced by neophytes in the 
literary arts on a first reading of Finnegan's Wake, by James Joyce. It is 
immediately apparent that one is in the presence of a great work, but somehow 
it will be necessary to master the language before appreciation, let alone 
understanding, may be achieved. Recognizing the nature of the problem, 
Joycean scholars came to the rescue with works of analysis to provide a 
skeleton key to Fznnegan's Wake. Proper utilization of this skeleton key will 
open the door to an understanding of that forbidding masterwork. It was thus 
our intent to provide a similar skeleton key to the literature of molecular 
viscoelasticity. How well we have succeeded must be left to the judgment of 
our readers. 

We are grateful to the students at our respective institutions who have 
suffered our attempts to present the material in this text in coherent form at 
various stages of development. Their criticisms and suggestions have led to 
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significant improvements. We are also grateful to Mrs. William Jackson, who 
translated many rough sketches into finished drawings. It is hardly to be 
expected that a work of this nature could be free from errors. We have 
attempted to eliminate as many as possible but, of course, bear full 
responsibility for those remaining. 

JOHN J. AKLONIS 
WILLIAM J. MACKNIGHT 

MITCHEL SHEN 

Los Angeles, California 
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Introduction 

The subject matter of this book is the response that polymers exhibit when they 
are subjected to external forces of various kinds. Almost without exception, 
polymers belong to a class of substances known as viscoelastic bodies. As the 
name implies, these materials respond to external forces in a manner 
intermediate between the behavior of an elastic solid and a viscous liquid. To 
set the stage for what follows, it is necessary to describe in very general terms 
the types of force to which the viscoelastic bodies are subjected. 

Consider first the motion of a rigid body in space. This motion can be 
thought of as consisting of translational and rotational components. If no forces 
act on the body, it will maintain its original state of motion indefinitely in 
accordance with Newton's first law of motion. However, if a single force or a 
set of forces whose vector sum is nonzero act on the body, it will experience 
acceleration or a change in its state of motion. Consider, however, the case 
where the vector sum of forces acting on the body is zero and the body 
experiences no change in either its translational or rotational component of 
motion. In such a condition, the body is said to be stressed. If the requirement 
of rigidity is removed, the body will in general undergo a deformation as a 
result of the application of these balanced forces. If this occurs, the body is 
said to be strained. It is the relationship between stress and strain that is our 
main concern. Depending on the types of stress and strain applied to a body, it 
is possible to use these quantities to define new quantities-material 
properties-that ultimately relate to the chemical and physical structure of the 
body. These material properties are called moduli. To understand the physical 
meaning of the modulus of a solid, consider the following simple experiment. 
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2 INTRODUCTION 

Suppose we have a piece of rubber (e.g., polyisobutylene), ?4 cm ?4 cm x 4 
cm, and a piece of plastic (e.g., polystyrene) of the same dimensions. The 
experiment to be performed consists of suspending a weight (applying a force) 
of, say 1 kg, from each sample as shown in Figure 1 - 1. 

I 

AL 

Figure 1-1. 
undeformed shape for both samples is shown on the left. 

Deformation of samples made from plastic vs. rubber. As a reference, the 

As is obvious, the deformation of the rubber will be much greater than that of 
the plastic. Using this experiment we can define a spring constant k as the 
applied forcefdivided by the change in length AL 

k = F I A L  (1-1) 

and use this number to compare the samples. However, to obtain a measure 
that is independent of the sample size, i.e., a material property, as opposed to a 
sample property, we must divide the applied force by the initial cross-sectional 
area A0 and divide the AL by the initial sample length LO. Then the modulus M 
is: 

Since AL is much larger for the rubber than for the plastic, fi-om equation (1-2) 
it is clear that the modulus of the rubber is much lower than the modulus of the 
plastic. Thus the particular modulus defined in equation (1-2) specifies the 
resistance of a material to elongation at small deformations and is called the 
Young’s modulus. It is normally given the symbol E. (See www.rheology.org for 
suggestions on standard nomenclature for viscoelastic quantities.) 
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Further experimentation, however, reveals that the situation is more 
complicated than is initially apparent. If, for example, one were to carry out the 
test on the rubber at liquid nitrogen temperature, one would find that this 
'lrubber" undergoes a much smaller elongation than with the same force at room 
temperature. In fact, the extension would be so small as to be comparable to 
the extension exhibited by the plastic at room temperature. A more dramatic 
demonstration of this effect is obtained by immersing a rubber ball in liquid 
nitrogen for several minutes. The cold ball, when bounced, no longer has the 
characteristic properties of a rubbery object but, instead, is indistinguishable 
from a hard sphere made of plastic. 

On the other hand, if the piece of plastic is heated in an oven to 130 "C and 
then subjected to the modulus measurement, it is found that a much larger 
elongation, comparable to the elongation of the rubber at room temperature, 
results. 

These simple experiments indicate that the modulus of a polymeric material 
is not invariant, but is a function of temperature, that is, M=M(T). 

;tic 

: \  
: \  
i \  4 1  Use temperature I 

\ \ 
I 

?k -1 00 
I 
-50 

I 
1 I \  

0 50 
A 
100 

Temperature, OC 
Figure 1-2. Schematic of the modulus vs. temperature behavior for a rubber and a plastic over 
a broad temperature range. 

An investigation of the temperature dependence of the modulus of our two 
samples is now possible. At temperature TI we measure the modulus as before, 
then increase the temperature to T2, and so on. Schematic data from such an 
experiment are plotted in Figure 1-2. The temperature dependence of the 
modulus is so great that it must be plotted on a logarithmic scale. (This large 
variation in modulus presents experimental problems that will be treated 
subsequently.) The region between the vertical dashed lines represents nonnal- 
use temperatures and, consistent with the opening experiment, we find that in 
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this range the plastic has a high modulus while the rubber has a relatively low 
modulus. Upon cooling, the modulus of the rubber rises markedly, by as much 
as four orders of magnitude, indicating that the rubber at lower temperatures 
behaves like a plastic. Another drastic change in modulus for the rubber is 
evidenced at higher temperatures; here the material is becoming softer, as 
indicated by further decreases in modulus. This behavior is discussed in detail 
in Chapter 4. The modulus-temperature behavior for the plastic is seen to be 
quite similar to that of the rubber except that the changes occur at higher 
temperatures, resulting in the high modulus observed at room temperature. At 
135°C it is clear that the modulus of this material is that of a rubber, agreeing 
with the results of one of the earlier "experiments" in this discussion. 

Log (t, s) 
Figure 1-3. Schematic modulus-time curve for a polymer at constant temperature. 

One more type of deformational experiment remains to be discussed. 
Consider a material like pitch or tar, which is used as a roof coating and is 
applied at elevated temperatures. Our test is similar to the standard experiment 
done above, utilizing the same size sample at room temperature. First we 
suspend the 1-kg weight from the sample and observe the small resultant 
extension. According to equation ( 1-2), the modulus calculated is high. 
However, if the sample is left suspended in this vertical position for several 
hours, the result is a considerable elongation of the sample. Now application of 
equation (1-2) gives a very low value for the modulus. Thus the modulus 
measurement on the short time-scale of a few seconds resulted in a high value 
while the modulus measurement on the longer time-scale of hours resulted in a 
low modulus. This apparent discrepancy is accounted for by realizing that the 
modulus is a function of time as well as temperature; this has been found to be 
the case generally for polymeric systems. Strictly then, the measurements 
spoken of earlier in this chapter and depicted schematically in Figure 1-2 
should have some time associated with each modulus value. (Time represents 
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the duration between the application of the force and the measurement of the 
extension.) It is convenient to pick the same constant time for all 
measurements, so one might consider the constant time-factor in Figure 1-2 to 
be 10 seconds. 

As is evident from the above discussion, it should be possible to measure the 
behavior of a material as a function of time at constant temperature. A 
schematic modulus-time behavior is shown in Figure 1-3. The modulus is seen 
to fall from its initial high value by about three orders of magnitude to a 
modulus indicative 'of a rubber and, after evidencing a plateau, fall again. The 
ordinate here is log t; at the chosen temperature an experiment lasting for 1 to 
30 minutes would characterize this material as a plastic. However, in an 
experiment lasting 10' minutes (200 years), the material would "look like" an 
elastomer. Longer measurements would correspond to still softer materials. 
Methods for obtaining curves of the type shown in Figure 1-3 are discussed in 
Chapter 4, as well as methods of converting from modulus-time behavior to 
modulus-temperature behavior and vice versa. 

0.86 
PVAc 

0.83 
-20 -10 0 10 20 30 40 50 

T, O C  

3 

Figure 1-4. Specific-volume data for poly(viny1 acetate) used to determine its Tg 

Another experiment is often carried out in laboratories dealing with the 
physical properties of polymers. This is the determination of the temperature at 
which the material properties change from those of a plastic to those of a 
rubber. This temperature is known as the glass transition temperature and is a 
characteristic property of each substance. In Figure 1-2, for example, it is clear 
that at about 100°C, the modulus of the plastic exhibits a steep decrease. 
Careful analysis of the curve in this region, however, indicates no abrupt 
change in modulus but rather a smoothly varying change. From this 
experiment, it would seem that the glass transition occurs over a range of 
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temperatures rather than at a single temperature. Experimentally, it has been 
found that the coefficient of expansion of a substance undergoes a more abrupt 
change in the region of the glass transition. The temperature at this change, in 
fact, is defined as the glass transition temperature Tg- An example of the data 
obtained in the determination of a glass transition temperature by this method is 
presented in Figure 1-4. The volume of a sample is measured as a function of 
temperature using a dilatometer, care being taken to change the temperature 
slowly and at an essentially constant rate. The temperature where there is a 
change in slope (due to a discontinuity in the coefficient of expansion) is taken 
as Tg. In the example shown in Figure 1-4, Tg is about 34 "C. 
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Phenomenological 
Treat men t of 
Viscoelas ticity 

To place the concepts discussed in the Introduction on a more quantitative 
basis, and to understand better some of the added complications that arise from 
the time dependence of the modulus, several methods commonly used to make 
physical measurements on polymeric systems are described in this chapter. 
First, however, it is necessary to define rigorously the parameters to be derived 
from the experimental data in terms of the type of deformation applied to the 
sample. * 

A. ELASTIC MODULUS 

Perhaps the simplest deformation that can be applied to a sample is uniaxial 
tension or compression, shown in Figure 2-la. This is the type of deformation 
mentioned in the Introduction. However, our previous concept of force is 

* In this context, both stress and strain are defined considering very small deformations. Under 
these conditions, the properties of the material are strictly constant and second-order effects 
(nonlinearities) are negligible. For example, to effect large shear strains, it is necessary to 
apply stresses to the material other than the obvious shear stress. While nonlinear effects are 
important, they are beyond the scope of this book, and the reader is advised to consult more 
advanced texts. 

7 

Introduction to Polymer Viscoelasticity, 3rd Edition. 
Montgomery T. Shaw, William J. MacKnight 

Copyright 0 2005 John Wiley & Sons, Inc. 
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modified slightly in this more quantitative discussion to become the stress 
defined as 

F F  
A YZ 

0- =-=- 

where the subscript E represents uniaxial extension and the other symbols are 
defined in the figure. Stress, denoted in general by the symbol a, has the units 
of dynes/cm2 (dynes per square centimeter), lbf/in? (psi), or N/m2 (Newtons per 
square meter). Current international convention prescribes the latter, which is 
named the Pascal (after Blaise Pascal, 1623-1662). Pa is the abbreviation for 
the Pascal. Note that static definitions are being considered here, that is, the 
parameters do not vary with time. These initial considerations will shortly be 
generalized to time-dependent functions. 

(a) (b) 

Figure 2-1. Tension (a) and shear (b) of a three-dimensional sample subjected to very small 
deformations. 

The application of a tensile stress to a real body will result in a corresponding 
extensional deformation as illustrated in Figure 2- 1 a. The fractional extension 
is defined as the tensile strain. Thus, E, the tensile strain resulting from the 
application of a uniaxial stress, is given as 

Ax 
X 

&=-  

and it is clear from this expression that E is dimensionless. For the static 
situation, the tensile modulus E and the tensile compliance D are defined by 
equation (2-3) 
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Again it must be emphasized that this discussion is strictly limited to time- 
independent phenomena. 

The second type of deformation is illustrated in Figure 2-lb and is called 
simple shear. The application of the force F in the x direction will result in the 
shearing displacement shown by the dashed lines. Here the stress 0, is 

F 
XY 

0-=- 

where, by convention, no subscript is used. The shear strain yis given as 

(2-4) 

where B is the angle shown and is related to AWY by simple trigonometry. 
Note that there are no displacements at all in either the y direction or the z 
direction for simple shear.+ The shear modulus G and the shear compliance J 
are defined using the relationship 

0 1  

Y J  
G = - = -  

Note that the choice of the coordinate symbols (x, y, z )  for the directions 
parallel to the X, Y and Z sides, respectively, is arbitrary. In this regard, we 
should again remind ourselves that real pieces of material are three- 
dimensional. The three-dimensional aspect of a material means that both the 
location and direction of the forces on the sample’s surfaces must be taken into 
account. As stated in the Introduction we must balance the forces in all 
directions on the sample, and similarly balance all the moments. Otherwise, the 
sample will start to accelerate, which would make the measurements difficult 
indeed! 

Our simple picture is as 
shown in Figure 2-lb, but let us think about how this might actually be done in 
the laboratory. 

For example, consider the shearing of a cube. 

The x, y and z direction are often referred to as the flow, gradient and neutral direction, 
The z direction is also known as the vorticity axis. Indeed, round particles respectively. 

suspended in a sheared fluid will tend to rotate around the z axis. 
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I 
I 

I 

Plate 
wF 

I 
I 
I 

I 
I 

I 
I 

Suppose the sample is glued to a solid platform and sheared by a force 
applied to a movable plate glued similarly to the top surface, as illustrated in 
Figure 2-2. While this appears to be a simple application of two balanced 
forces, the table and plate are actually doing more; they are applying a torque or 
moment to the sample. To understand this, consider the sample as a free body 
for a moment, as shown in Figure 2-3. 

I F  
I 

I 
I 

Figure 2-3. Forces applied to the sample to cause shear will also lead to rotation. 

It should be clear from this drawing that the forces, while balanced in the x, y 
and z directions, are not aligned, and the sample will rotate. This twist can be 
opposed by application of a counteracting twist, or moment, to either the top or 
bottom plate (or both). But as far as the sample is concerned, this kounteracting 
moment is equivalent to placing a second pair of forces on the sample as shown 
in Figure 2-4. Now all forces and moments are in balance. 

1 '  
Figure 2-4. Rotation of the sample can be stopped by applying another pair of forces. 

Note the apparent symmetry of the arrangement in Figure 2-4 about the 
diagonal. Simple shear, however, does not have such symmetry. Although this 
discrepancy is not important at low strains, it is evident that at larger 
deformations, there must be a slight difference in the "plates" through which 
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the forces are applied to the vertical sides: they must be able to stretch 
effortlessly to allow the sample volume to be preserved. (Compare the length 
of the slanted dotted lines in Figure 2-3 with that of the original vertical lines.) 
Clearly such “virtual clamps” would be extremely hard to make, but they do 
help us to visualize how the external forces can, in principle, be applied to 
sample to make it deform according to our definition of the deformation, in this 
case simple shear. In addition, in general, it may be necessary to apply a force 
to the top and bottom plates to force the sample thickness to stay the same. The 
apparently straightforward “simple shear” has turned out to be quite 
complicated! 

A somewhat simpler example of the virtual clamp is the one used to stretch 
a sample. For uniaxial extension, the situation is as depicted in Figure 2-5. 

Earlier 

later 

Figure 2-5. To keep the volume of the sample constant during stretching, the sample must 
become thinner. 

Note that the sample has elongated in the stretch direction; but, to preserve 
volume, has had to thin. The “clamps” at the ends also had to shrink to 
accommodate this motion and avoid distortion of the sample. In practice, of 
course, this can’t be done, so an “end correction” must be applied unless the 
sample is very long and thin. Alternatively, one can visualize the virtual 
clamps as a transverse line of material points well removed from the physical 
clamps. 

One might ask what has pinched the sides together, as there is no external 
force acting on these surfaces. Surprisingly, the answer is pressure; a negative 
pressure inside the sample has drawn in the sides. Interestingly, one can 
alternatively apply pressure or forces to the sides of a sample and effect the 
same deformation. For example, Griswold et al.I3 accomplished this by 
winding rubber bands around a piece of polyethylene. Children do this by 
wrapping their hand around a cylinder of soft clay, and squeezing; the clay 
elongates. 

We can see most easily how pressure works by introducing the concept of 
material stress, as opposed to the total or applied stress to the sample. Material 
stress can be regarded as the stress produced by the deformation of the material; 
it always opposes the deformation. The force applied to the clamps must be 
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strong enough to counteract both the material stress and any pressure, just as 
when an inflated rubber balloon is squeezed, both the gas pressure and the 
stretching of the rubber oppose the force applied. 

Considering the tension experiment, we designate the direction of stretch as 
the x direction and the force causing this as F,. This is also the direction of the 
normal to the plane to which the force is applied (the virtual clamp); its area 
will be designated A,. The stress on this face is given by 

FX 

AX 
oxx =- (2-7) 

where the double subscript on o reminds us of both the force direction (x) and 
the area normal (also x in this example). This is the total stress; it’s what’s 
actually applied to the sample by a clamp. As mentioned earlier, the material 
stress (sometimes called extra or deviatoric stresst) is what the material 
produces as a reaction to its deformation. We designate this as zxx. The two 
may or may not be equal as we can see by examining the virtual clamp. 
Remember that the virtual clamp does not bend, but shrinks or expands freely 
in both directions and applies the tensile force uniformly to the material it 
contacts. 

Examining the virtual clamp for a moment, we have the following free-body 
diagram for the clamp: 

Sample Virtual clamp 

I 
I 

Figure 2-6. Free-body force diagram for the clamp used to stretch a sample. 

The force balance includes three contributions: (1) o,Ax due to the applied 
force or the total stress o, times the clamp area A,, (2) z,Ax due to the 
material resisting the deformation, and (3) the pressure P in the sample, again 
multiplied by the clamp area to give force. Because the clamp area is common 
to all, we can write the equation: 

The technical difference between “deviatoric” and “extra” stress, and correspondingly the 
differences between the pressure in equation (2-9) and the thermodynamic pressure are 
important for describing compressible materials at large strains. By restricting the discussion to 
small strains and incompressible materials, we can avoid these complications. 
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z,, = cTxx + P 

or, on rearranging 

on = z, - P  (2-9) 

The pressure is written as if it were positive. But this is not always the case. If 
P is negative, the value of the total stress 0, required to sustain the 
deformation will be larger than the stress created by the deformation of the 
material, z,. This is one reason why the tensile modulus is larger than the 
shear modulus. But how can this relationship be firmed up? We can do this by 
examining the sides of the sample. 

The equation relating total, material and pressure stresses will work for any 
clamp, including one placed on the sides of the sample, as shown in Figure 2-7. 

Figure 2-7. Free-body diagram of a virtual clamp pasted to the side of the sample.. 

First of all, the material-generated force zyYAy must act outward on the "clamp" 
because the material is being compressed, which it resists. Except for the small 
contribution of atmospheric pressure (which we will neglect), the external force 
q#y applied to this virtual clamp is zero. The force sum now shows that the 
pressure-generated force PA, must be negative, i.e., the pressure is negative. Ln 
equation form, we write: 

- OYY - z, - P  = 0 

Thus 

P = 2, 

(2-10) 

(2-1 1) 

Because zyy is compressive, or negative, the value of P is negative, as we 
surmised. (In common English, the sides are being pulled in by the negative 
pressure.) Equation (2-1 1) can be substituted into equation (2-9) to yield 

or, more generally, 

0..-0-.. =z . . - - . .  
11 JJ 11 JJ 

(2- 12) 

(2-13) 
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where i andj  denote any of the three coordinate directions. Now it remains to 
connect the stresses with the deformations. 

As we have seen, the connection between stress and strain in a material is 
the modulus as given by equations (2-3) and (2-6). We can combine both of 
these equations into one, called Hooke's law, which will apply for the material- 
generated stress due to any deformation, as written in equation (2-14). 

z.. = Gy, 
!I 

(2-14) 

Here q is the material-generated stress, G is the shear modulus and z, is the 
general deformation, which we still need to define. Applying equation (2-14) 
gives 

(2- 1 5) 

Equation (2-14) requires that the deformation x, be defined so that it is 
consistent with the shear strain' in a shear experiment, and is independent of 
whole-body rotations or displacements. As mentioned in Chapter 1, whole- 
body motions simply move or rotate the sample without deforming it. 
Referring to the shear experiment, we can see that the ij correspond to y and x; 
that is the plate on which the force is applied has a normal in the y direction, 
while the force is the x direction. Thus we might guess that the expression for 
fix should be 

a% Y ,  =- 
?y 

(2- 16) 

where u, are displacements in the x direction (designated as AX in Figure 2-1). 
Unfortunately, while close, this is not general enough, because a rotation of the 
cube will produce a value of the displacement gradient even though the sample 
is not deformed. To correct for this, the following form is used: 

(2- 17) 

and, in general, 

auj hi 
!I axi axj 

y.. = - + - (2-18) 
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where in shear, x1 = x,  x2 = y and x3 = z.§ The numeric subscript convention is 
widely used and is more convenient if matrix notation is needed. Also, as a 
point of interest for the mathematically inclined, it can be shown that for very 
small deformations, the form in equation (2-18) is unique, i.e., there are no 
other choices. 

Returning to the tensile sample and applying this form in a consistent 
fashion gives: 

au, 
ax ax 

dux = 2- dux = 2& +- - 
d X  

Y x x  -- 

where E is the tensile strain. Similarly, 

(2-19) 

(2-20) 

for small strains in order to keep the volume constant (but see discussion under 
Poisson ratio). Thus the applied tensile stress becomes 

(2-21) 

Using the definition of tensile modulus from equation (2-3) gives the 
relationship: 

On comparing equation (2-21) and equation (2-22) we see that 

E = 3 G  (2-23) 

Note that we have assumed that the deformations are small and the sample does 
not change volume. 

To avoid problems with pressure that might be applied to the outside of the 
sample, it is customary to define the extensional stress 0, in terms of the 
difference between the two applied stresses, thus 

. 
(2-24) 

When oyy is very small or zero, 0, is just the stress applied to the ends of the 
sample via the clamps. However, if the stretch is accomplished by squeezing 

' Some authors choose to define strain with a factor of % on the right-hand side. This removes 
a factor of two from the expressions in tension, e.g., in equation (2-20), but introduces a factor 
of two in expressions for shear stress. 
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on the sides, then oyy is a negative number (equal to the squeezing pressure) 
and 0, is zero. 0, remains the same, which is quite appropriate. 

In the case of tension, the stresses on the tensile sample are parallel to what 
is referred to as the principal directions, and one can then use the shorthand 

(2-25) 

They are thus referred to a “principal stresses.” 
A comment about nomenclature is in order because the student will discover 

different conventions. As hinted at above, for Cartesian coordinates there is a 
natural tendency to connect the (x, y, z) directions with direction vectors (x~, x2, 
x3) used in general expressions such as equation (2-18). To convert to 
numerals, changes such as listed below are needed: 

(2-26) 

The decision to connect x to 1 is arbitrary; the z direction could as well be 
assigned the number 1. Conventionally, the subscript 1 is associated with the 
direction of principal motion or displacement, but again this is arbitrary. Also, 
there is a convention with respect to the sign of the tensile stress that is applied 
to the sample [e.g., equation (2-14)]; it could as well be called positive if the 
sample were compressed from the ends, rather than pulled. The latter in fact 
has the advantage that the sense (compression) is the same as externally applied 
pressure. The disadvantage is that expressions such as equation (2-14) would 
carry negative signs. Of lesser importance is the convention used for the order 
of subscripts for shear, i.e., oI2 = F,/A2 or 021 = Fl/A2, as o12 = ail in most 
cases. Thus the student should be aware of these differences, and ask the 
following three questions: (1) What is the sign convention for tensile stress; (2) 
What is the subscript for the principal direction of flow and (3) What is the 
definition of the strain [e.g., equation (2-1 S)]? Finally, the reader should note 
the subscript order for shear flows. 

Example 2-1: 
Calculate the pressure required to inflate a thin-walled spherical balloon made 
from a Hookian elastic material. 
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The equation describing the Hookian material is 

zii = Gy.. 
!l 

with 

auj au, 
!I axi ax, 

y. .  =-+- 

(2- 14) 

(2-1 8) 

If the balloon has an initial radius of Ro and a thickness of &, then the thickness 
at any state of inflation will be 

s = so ~ , 2  R~ 

to preserve material volume. A force balance between the two hemispheres 
reveals that 

where P is the pressure in the balloon and a, is the stress applied by the 
material of one hemisphere on the material of the other. Combining equations 
(a) and (b) and solving for P gives 

Now it remains to find the total “applied” stress 0,. Our strategy is to 
calculate the material-generated stress z,, which we can connect to the 
balloon’s growing radius using equation (2-14). To do this, we first need to 
relate the strain to the balloon radius (or thickness). If the curvature of the 
balloon surface is ignored, the deformation is similar to a flat sheet being 
stretched biaxially, with the amount of stretch being proportional to the balloon 
circumference (and radius). Thus, at small strains, the displacement gradient is 
duildxi = aui/axi = du,/dx = AR/Ro = WR,- 1. Therefore, via equation (2- 18), 

at low strains. 
remembering that the volume of the material is constant, gives 

Assigning the subscript z for the thickness direction, and 

y ,  = -4(R / Ro - 1) 
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again for low strains. Note that zz is negative, corresponding to thinning of the 
balloon as it inflates. The material-generated stresses z, and zzz are obtained 
using equation (2-14), and the difference between them will be on - a,. With 
0, there is a slight problem because the inside of the balloon has pressure, 
whereas the outside does not. Suffice it to say that with thin balloons, this 
contribution is negligible and 

Using equation (2-29) to get the pressure gives finally 

P = 1 2 G d 0  / R, (1 + E )  

where E is used in place of R/Ro - 1. The interesting prediction of this equation 
is that the pressure will rise at first, and then fall starting at E =  112. Although a 
pressure maximum is indeed observed, we should be acutely aware that strains 
this large are well beyond the limits of the Hookean elastic model of equations 
(2-14) and (2-18). 

The important lesson from this example is that we can determine the shear 
modulus of a material by deforming it in an experiment that looks nothing like 
the picture of simple shear in Figure 2-2. This is an illustration of the 
advantage of the full consideration of the three-dimensional character of 
deformation. 

The applications of Hooke's law [equations (2-14) and (2-18)] discussed 
above have assumed that the volume of the material is invariant with strain 
during a tensile deformation. However, because the pressure is not zero, this 
may not be the case, and the strains in each direction must be known to account 
for this. By measuring the actual transverse (yyy) and longitudinal (ym) strains, 
one can define the ratio of these two strains as a material property. This is 
called Poisson's ratio p, and is defined as: 

(2-27) 

where the ;v;.~ are defined in (2-1 8) in terms of the displacement gradients. If we 
still assume Hookean behavior under these circumstances, then we find the 
following relationships between E and G and D and J: 

E=2(1+p)G and J=2(1+,u)D (2-28) 
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In terms of volume changes, Poisson's ratio is given by the equivalent 
relationship 

(2-29) 

where E= yJ2, i.e., the displacement gradient in the stretch direction. 
Experimentally, p is quite close to 0.5 for a rubber but is lower, in the range of 
0.2 to 0.3, for some plastics and still lower for certain heterogeneous materials. 
In fact, one can make heterogeneous anisotropic materials that expand in 
thickness when pulled! One is shown in Figure 2-8. 

Figure 2-8. This gasket material exhibits a slightly negative Poisson ratio. On pulling, the 
square marked on the sample increased in width from 7.1 to 7.6 111111, or about 7%. The 
thickness direction (not shown) expanded even more. The length of the square increased 
-10%. Thus, Poisson's ratio is about -0.07l0.1 = -0.7. 

B. TRGNSIENT EXPERIMENTS 

Consideration of the time dependence of relaxation phenomena adds additional 
complications. The value of a measured modulus or compliance will very 
definitely depend on the exact manner in which th.e experiment is carried out. 

First, a polymer is 
subjected to a constant uniaxial stress C F ~ ,  for one hour; this perturbation results 
in some measurable strain, say E (1 hour). In a second experiment, however, an 
identical sample is subjected to sufficient stress to result in the same strain E (1 
hour) immediately upon application of the stress. Then the stress is decreased 
so that the strain remains constant at E (1 hour). The value of the stress after 1 
hour in the second experiment is defined as 02. In general, oI and o2 will not 
be the same, the stress cr2 associated with the constant strain experiment being 
lower. However, since the strains are the same, the two "modulus" values 

As an example, consider the following experiments. 
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calculated from equation (2-3) are different. Consequently one must explicitly 
state the method in which a parameter is to be measured in its definition. 
Fortunately, most parameters obtained fiom different experiments will suffice 
to define all the others2 if the strains are small. Some of these transformations 
will be treated later in this chapter. 

The two experiments just described are, respectively, creep and stress 
relaxation, both in tension. Figure 2-9, shows a crude form of a creep 
experiment in shear. In such an experiment the sample is subjected to constant 
shear stress 00 and its shear strain yis  measured as a function of time. The 
shear creep compliance J(t) resulting from such an experiment is: 

Y (4 
I J ( t )  = - 

0 0  
(2-30) 

The corresponding experiment in extension results in the tensile creep 
compliance D(t) defined by 

(2-3 1) 

where o ~ , ~  is the constant tensile stress applied to the sample and E ( t )  is the 
observed tensile strain. 

Fixed 

Weight pan l:l 
j__ 

Figure 2-9. A simple apparatus to measure shear creep. 

To run the experiment shown in Figure 2-9, the sample and the fixtures (plates) 
should be placed into a constant temperature environment where the sample 
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and fixtures are allowed to come to thermal equilibrium. During this time the 
movable plate is locked in place to eliminate stress from the sample. When the 
sample and fixtures, are at thermal equilibrium, the appropriate weights are 
placed on the weight pan and the movable plate is unlocked. The experimenter 
must then record the position of the weight pan using the scale and the 
corresponding time. It should be clear that the shear strain f i t )  as a function of 
time is easily calculated from these data and knowledge of the sample 
dimensions using equation (2-5). The force exerted by the total weight of the 
pan, weights and clamp is used to calculate the constant shear stress. With this 
information in hand, the shear creep compliance J(t)  can be calculated using 
equation (2-30). It must be emphasized that this experimental setup is among 
the crudest imaginable and will give correspondingly imprecise results unless 
considerable refinement is made. Commercial instruments are now readily 
available that apply the shearing force using a low-inertia, low-friction, 
constant-torque motor, rather than weights. For more details, the student may 
refer to the manufacturers' web sites.7 

Another common type of transient experiment, called stress relaxation, may 
be considered. Here, the strain is maintained constant and the stress is 
measured as a function of time. A schematic of a simple stress-relaxation 
apparatus is shown in Figure 2-10. The sample, in the form of a strip, is first 
attached to the upper clamp and the signal produced by the load cell is 
recorded; this corresponds to zero stress applied to the sample. Next the lower 
clamp is attached and the latch is locked. The sample is heated to the 
temperature desired and thermal equilibrium established. (Usually the sample's 
temperature is raised to about 10 degrees above the test temperature or to a 
temperature above the glass temperature to allow possible "frozen-in" strains to 
relax before approach to the test temperature is established.) Adjustments are 
made with the threaded lower clamp to compensate for thermal expansion of 
the sample. At the start of the experiment, the strain is introduced by releasing 
the latch and allowing the strong spring to stretch the sample until the stop is 
reached. A recorder monitors the signal from the load cell; this can be 
converted to force by subtracting the zero signal and multiplying by a constant 
derived from the signal produced by known weights attached to the upper 
clamp. From these data, application of equations (2-7), (2-19) and (2-22) and 
the definition of the tensile relaxation modulus E(t) from equation (2-32) 

(2-32) 
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gives the desired result. In contrast to the creep experiment, the tensile strain 
is held constant. (The strain varies minutely during the measurement because 
of the flexibility of the frame, clamps and load cell.) 

Load cell 

h e  

Adjustable s top 

I 
Frame d 

Strong spring 

Figure 2-10. A simple apparatus to measure tensile stress relaxation. The spring must be 
strong enough to stretch the sample very quickly. 

Similarly, a shear stress relaxation experiment would measure G(t), the 
shear stress relaxation modulus 

(2-33) 

with yo being the constant shear strain. 

are no longer applicable to our new time-dependent functions, since 
Equations of the form of (2-3) and (2-6) relating moduli and compliances 

(2-34) 

as was discussed in the example mentioned earlier in this section. 
Similarly, other moduli and compliances can be defined and they are not, in 

general, equal to the functions defined above. Remember that G(t) and E(t) 
can only be measured directly from constant-strain experiments, while J(t) and 

* *  

** Examples include the time-dependent modulus from stress-strain experiments, and the 
constant-force creep compliance.2.’ ’ 
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D(t) can only be measured directly from constant-stress experiments. 
Conversions from other experiments are often troublesome and can easily lead 
to considerable error. 

C. DYNAMIC EXPERIMENTS 

In addition to creep and stress relaxation experiments, another type of 
measurement is quite common. Here the stress or strain, instead of being a step 
function, is an oscillatory function with an angular frequency w. The standard 
unit of w is radians per second (rad/s).tt Dynamic modulus values measured 
using such perturbations are functions of w rather than time. The problem of 
putting dynamic experiments on a quantitative level is only slightly more 
difficult than is the case with step-deformation experiments. 

I Computer1 

Sensor plate 

Sampl 

I Moving plate 

r 
x = x  ,coswt 

>.- T o /  0 I 
Electromechanical 

driver 1 
Figure 2-11. Schematic of a dynamic experiment in shear. The electromechanical driver 
provides a sinusoidal motion of fixed frequency and amplitude. 

To become familiar with the dynamic experiment, we will begin by 
considering the simple apparatus depicted in Figure 2-1 1. The key part of this 
apparatus is the electromechanical driver, which provides a vertical motion that 
is sinusoidal in nature and of fixed amplitude and frequency. In early 
instruments, the driver was essentially a loudspeaker coil that was driven by a 
sinusoidal voltage from a signal generator. More modem instruments use a 

Frequency in cycles per second (Hz) and in radians per second (rads) are related by the 
equation w = 27f 
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linear servomotor. The experiment can also be done by twisting a rod or disk 
in a sinusoidal pattern as shown in Figure (2-12). Another essential part of the 
apparatus is the device that detects the position of the driven plate. Early 
instruments simply assumed that the clamp moved in synchrony with the 
electrical signal supplied to the driver. Modem instruments detect the position 
separately, using an optical encoder, for example. (An optical encoder is 
simply a very fine pattern on a transparent substrate that moves through a light 
beam. A photocell counts the number of interrupts, and thus the position of the 
encoder pattern. Many computer mice use such devices.) The third key part of 
the instrument is the load cell, which measures the force sustained by the 
sample as a result of the moving plate. It must be calibrated carefully. 

Y = + r ,  
1 

y = o  Y=-& 
Figure 2-12. Dynamic experiment in shear wherein the disk-shaped sample is twisted 
sinusoidally. The line in the shaded sample depicts a line of material points, showing the 
shearing of the sample from right to left. In some designs, one plate is connected to a 
servomotor that produces the sinusoidal motion while the other plate is connected to the load 
cell. Other manufacturers use one plate for both functions, with the other solidly fastened to the 
frame of the machine. 

On running the experiment, the motion of the driven plate and the force on 
the load cell are recorded with a computer. These two signals are then 
compared in two ways: The first comparison is the phase difference between 
the two. The phase can be regarded as an angle if one considers the complete 
cycle to take place over an angle of 2ncorresponding to a complete circle. The 
phase angle is given the symbol 6. For a perfectly elastic substance, the two 
signals will be exactly in phase and 6 = 0. The second comparison is the 
amplitude ratio of the two signals. The force amplitude, along with the proper 
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geometric quantities as shown in equation (2-4), will give the stress amplitude, 
oo (not to be confused with that in equation (2-30)). The motion detector, along 
with the thickness of the sample between the plates, will give the amplitude of 
the shear strain yo (not to be confused with yo in equation (2-33)). The ratio of 
these two would be a modulus, but this modulus is not customarily used. 
Instead, the following quantities are defined: 

G’ = (o0 / Y , ) C O S ~  (2-35) 

and 

G” = (oo /yo)s in6  (2-36) 

A depiction of the origin of these definitions is provided by Figure 2-13, 
which shows graphically the nature of the two sinusoidal signals vs. time. For 
this example, the strain, which is fixed by the instrument, is given by the 
equation 

y(t) = y o  sin at (2-37) 

while the resulting stress is given by: 

o(t)  = oo sin(ut + 6) (2-38) 

G’ is simply the stress (termed 07 measured at the maximum strain divided by 
the strain amplitude yo, which is the strain reached at wt = n/2. On the other 
hand, G” is the stress (termed 0”) at zero strain (i.e., the strain at wt = 0) 
divided by yo. In spite of the fact that the strain is zero, the stress, in general, 
will not be zero. According to Figure 2-13, the stresses at these two points can 
be calculated from equation (2-38) on substituting wt = n/2 and wt = 0, 
respectively. The latter gives directly o’ = oo sin 6, while the former gives o”= 
oo sin ( n / 2 + 4  = oo [sin (7r/2) cos 6 + cos (n/2) sin 4 = oo cos 6. These two 
results complete the demonstration of the correspondence of equations (2-35) 
and (2-36) with the stress values shown in Figure 2-13. 

The physical meaning of the material properties G‘ and G” can be sought by 
referring again to Figure 2-13. From this figure it is clear that the rate of strain 
is a maximum when the strain passes through zero because a sine wave has its 
maximum rate of change at this point. Thus, the stress at zero strain, 0‘’ is the 
result of the sample responding to stvain rate as would a purely viscous 
material. As the strain reaches its peak at ut = n/2, the strain rate approaches 
zero. The sample at this point must therefore be responding only to strain, as 
would an elastic material. 
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For the dynamic experiment, most will agree that the stress response 
resulting from perfect sinusoidal strain input is likely to be sinusoidal and have 
the same frequency. However, it is far from obvious that the response will 
always be this simple. In fact, with real materials a perfectly sinusoidal stress 
response is achieved only at vanishingly low values of strain, yo. The response 
at higher strain will still be periodic, but will be mixed with higher frequency 
components.tt The relative amplitude of these components will increase with 
strain level. 

70 

x 

I I 
0 wt = 7112 wt = 71 wt = 3x12 wt = 271 

Time x frequency, wt 

Figure 2-13. The response of a sample to a sinusoidal shear strain y( t )  is a sinusoidal shear 
stress o(t) that leads the strain by a phase angle 6. Arrows show the physical meaning of the 
stresses o' and 0'' corresponding to the elastic or in-phase component G' of t k  dynamic shear 
modulus and the viscous, out-of-phase or loss component G", i.e., GI= 07% and G" = a"/yo . 

One widely used quantity, tan 6, remains to be defined. Simple trigonometric 
relationships reveal the following equalities: 

(2-39) 

where tan 6 is often called the loss tangent. Parameters with one prime are 
called storage functions and those with two primes loss functions. This has to 
do with the fact that in-phase stress and strain results in elastically stored 
energy; however the component of stress that is out of phase with the strain 

++  
++ The response of complex materials, e.g., block copolymers, may not even be periodic, as the 
oscillatory deformation can lead to transient changes in the properties of the material. 
Eventually, of course, the response should become strictly periodic as the material transforms 
to its new structure, although some have reported chaotic behavior. 
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results in the viscous dissipation of energy, which simply heats the sample 
(Problem 2-4). Thus tan Sis the ratio of lost energy to stored energy. 

In the above considerations, a sinusoidal shear strain is applied to the 
sample. It should be clear that a sinusoidal shear stvess could also be applied 
resulting in corresponding compliance functions J' and J". The former results 
from the deformation in phase with the stress, while the latter corresponds to 
the out-of-phase deformation. The value of tan 6remains the same, as can be 
seen from the curves in Figure 2-13, where we can easily imagine the stress as 
the applied variable and strain as the measured variable. Tensile stress is 
equally applicable and definitions of E'(u),  E"(w), D"(u), D'(w), etc. are 
completely analogous to the derived shear parameters. At a given frequency, 
the value of tan 6 is always the same for any of these quantities, i.e., tan S = 

E "IE = D "ID I. 

The nomenclature of complex moduli and compliances is also often used. 
Here the out-of-phase component is made the imaginary part of a complex 
parameter; thus the complex shear modulus G" and the complex shear 
compliance s" are defined as 

s" = 11G" = S ~ iS' (2-40) 

The difference in sign on the imaginary term results from the fact that the stress 
leads the strain, while the strain lags the stress; see Figure 2-13. The use of 
complex numbers to represent the functions has no particular physical 
significance, although some mathematical manipulations become significantly 
easier. 

D. BOLTZMANN SUPERPOSITION PRINCIPLE 

The Boltzmann superposition principle is one of the simplest but most powerful 
principles of polymer physics.2 We have previously defined the shear creep 
compliance as relating the stress and strain in a creep experiment.ps Solving 
equation (2-6) for strain gives 

(2-41) 

p8 The development here will be done for shear, and a,, will be referred to simply as o- without 
a subscript. All arguments presented concerning shear variables are completely applicable to 
tensile parameters also. 
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The stress 00 is applied instantaneously at time equal to zero. One might, 
however, imagine an experiment where a stress o, is applied, not at t = 0, but at 
some other arbitrary time, perhaps sl. For this experiment equation (2-41) 
would become 

Consider now the application of two stress increments oo and a, at the times t = 

0 and t = sl respectively. The Boltzmarm superposition principle asserts that 
the two stresses act independently and the resultant strains add linearly. This 
situation is illustrated in Figure 2-14. Thus 

y( t )  = a,J(t)+ o ,J ( t  - s,) (2-43) 

or for a more general experiment consisting of discrete stress increments ol, 02, 

03, ... a, applied at times t = sl, s2, s3, . . .s,, 

c .- 
P 
t 
fn 

n 

y ( t )  = CoJ(t - Si). 
i= l  

(2-44) 

Time 
Figure 2-14. Linear addition of strains resulting from sequentially applied stresses. 

The summation of the individual ai's would represent the total stress so that in 
considering a continuous stress application, o@), the increment of applied stress 
is just the derivative of 4 s )  times the increment of time ds. Replacing the 
summation by an integration results in 

y ( t )  = ""oJ ( t  - s)ds . 
as 

(2-45) 
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Note that in this equation t has become thefixed time of the observation of the 
strain; and, for the purposes of integration, can be regarded as a constant. The 
stress history is accounted for in terms of the dummy integration variable s. 
The lower limit of integration is taken as -00, because the complete stress 
history contributes to the observed strain. The upper limit is t, the time of 
observation of the strain, because stresses applied after t can have no effect on 
the observed strain. 

In a completely analogous manner, one may derive an expression relating 
the stress o( t )  to the strain in a sample that has experienced some continuous 
strain history given by the function y ( t )  : 

~ ( t )  = 51 m G ( t  - S ) ~ S  
ds 

(2-46) 

Equations (2-45) and (2-46) are often given in an alternative form, which we 
will now derive. Integrating equation (2-45) by parts 

Judv=uv-  I .  vdu (2-47) 

where 

one obtains 

(2-48) 

We assume that a(-co) is equal to zero; that is, the sample was initially 
unstressed. Setting t - s equal to a, a new variable, and observing new limits of 
integration due to this variable change, gives 

r(t) = J(O)o(t) + o(t - a)- aJ(a> da 
da 

In an analogous manner, equation (2-46) becomes 

(2-49) 

(2-50) 
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Example 2. Consider a material with a creep compliance given by the fbnction 

J ( t )  = J ,  + % 
where J, represents the recoverable deformation and q is the viscosity. Using 
the Boltzmann superposition principle, calculate the strain r ( t )  when this body 
is subjected to the linear stress function o(t) shown in Figure 2-15; (i) at times 
during the loading and (ii) at times after the loading has ceased, i.e., t > t , ,  

i. For 0 < t < t l ,  the stress history in terms of the integration variable s, is 

-005s50 a(s) = 0 

O S S S t ,  a(s) = b 

Time t 
Figure 2-15. Stress history used in calculations. 

Making use of equation (2-45), one has 

Carrying out this simple integration (remembering that t is constant for the 
purposes of integration) leads to 

kz2 y ( t )  = ktJ, + - 
271 

Recalling that kt is just the total applied stress at the time t yields 

Equation (d) then gives an expression for the strain at time t in a body whose 
creep compliance is given by equation (a) when it is subjected to a linear 
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loading pattern starting at time zero. Note that t must fall in the stressing 
period, i.e., 0 I t I t l .  

ii. We now calculate the strain after the stress addition has stopped. Again 
we can summarize the stressing history in terms of the integration variable s: 

- 0 o l s l O  o(s )  = 0 

0 5 s q  a(s) = h 

t, l s l t  o(s) = kt, 

On splitting the integral of equation (2-45) into the threes zones corresponding 
to the above history, we see that only the one for the zones, 0 < s < t l ,  is 
nonzero. It becomes: 

y(t)  = 6' kLJr + t - s  

Note the difference between equations (e) and (b); the latter has as its limit tl 

instead oft. Again, this is a simple integration, which gives the result: 

1 ( t  - t , )  + t, / 2  
rl 

Y(t) = )I.. + 

At t = tl, both equations (d) and (f) yield the same result, as they indeed must. 
It is informative to carry out part (ii) of this example using the alternative 

form of equation (2-45), that is, equation (2-49). One must use the new 
variable in the integral so that the strain history is introduced in terms of this 
transformed variable rather than in terms of the normal laboratory time. 
Writing equation (2-49) for part (ii) of the example gives 

y(t) = J(Ob(t)+ co(t - a)- aJkdda 
da 

Recalling the stress history described above, there was no stress imposed 
between the time s = -a and time s = 0. However, in terms of the variable a = 
t - s, this corresponds to a = +0o and a = t .  This is a consequence of the 
variable change used to derive equation (2-49). Application of this equation 
without changing variables will necessarily lead to an incorrect result. 
Completing the stress summary in the usual way: 

-0ols lO o(s)=o m 2 a 2 t  
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0 5 S 5 t ,  a(s)=ks t 2 a 2 t - t 1  

tl <sit a(u)=ktl t - t , 2 a 2 O  

From equation (a) 

Again we divide the integral into three parts corresponding to the strain history 
above: 0 -+ t - tl ,  t - tl + t and finally t + 00. The latter is zero because the 
stress is zero. Substituting equation (h) and the strain history into equation (8) 
yields 

Integration and cancellation gives (0 as indeed it must. 

Any of equations (2-45), (2-46), (2-49), or (2-50) is sufficient as a statement of 
the Boltzmann superposition principle for linear viscoelastic response of a 
material. Often in particular applications, however, it is more convenient to use 
one form than another. All can be extended to three dimensions by using the 
same forms with the strains given by equation (2-18). Thus, for example, 
equation (2-46) becomes: 

(2-46a) 

The reader should remember that the use of the definition of strain given in 
equation (2-18) means that this result applies only to small deformations. For 
example, equation (2-46a) fails to predict that one must apply a normal stress to 
the plates to constrain the displacements to the xl direction. The failure is 
evident on realizing that development of a normal stress a22 would require a 
displacement in the x2 direction (i.e., normal to the plates), which is not present. 

E. RELATIONSHIP BETWEEN THE CREEP COMPLIANCE AND 
THE STRESS RELAXATION MODULUS 

One of the direct consequences of the Boltzmann superposition principle is that 
there is a relationship between the stress relaxation modulus and the creep 
compliance. We have already seen that when dealing with time-independent 
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functions, the compliance and the modulus are simply the reciprocals of each 
other. This simple relationship no longer holds in the time-dependent case. For 
materials describable by the Boltzmann superposition principle, the general 
solution is 

t = IG(s)J(t -s)ds (2-5 1) 

This relationship is derived using Laplace transforms in Appendix I. Figure 2- 
16 illustrates the relationship between G and J for a particular material; it can 
be readily seen that the shapes of these two curves are markedly different, i.e., 
J(t)  + G(t). 

F. RELATIONSHIPS BETWEEN STATIC AND DYNAMIC 
PROPERTIES 

Still another relationship between experimental parameters is a direct 
consequence of the Boltzmann superposition principle. We will derive the 
equations relating the shear stress relaxation modulus G(t) to the in-phase and 
out-of-phase dynamic shear moduli G’( w) and G”( w) starting from equation (2- 
46) 

A simple variable change setting a = t --s yields 

a(t) = - - ‘)G(a)da 
da 

(2-46) 

(2-52) 

Log ( t l T )  

Figure 2-16. An example of the relationship between creep compliance and a stress relaxation 
modulus. On a log-log plot, the two would be mirror images if reciprocally related. 
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Consider the application of a sinusoidal strain, which may be represented by 

y(t)  = yo sin wt (2-37) 

where yo is the maximum amplitude of the strain. The phase of the strain is 
arbitrarily set at zero, which can be done without loss of generality, and will 
simplify the development. Equation (2-37) applies, of course, for any time, 
including t - a; thus 

y (t  - a )  = yo sin[@ (t  - a)] = yo sin wt cos wa - yo cos wt sin wa (2-53) 

Differentiation of this result with respect to the variable a gives 

(2-54) 

which is just what we need for the integrand of equation (2-52). Substitution of 
equation (2-54) into equation (2-26) and simplification gives 

o(t)l yo = sin wt foawG(a)sin wa da + cos wt %wG(a) cos wa da (2-55) 

Thus we have two integrals-one that is modified by sin wt, the other by cos wt. 
Due to the way in which we phased the strain in equation (2-37), the stress 
corresponding to G‘ will occur at wt = 7d2, at which point sin wt = 1 and cos wt 
= 0 (see Figure 2-13). Thus 

G’(o) = w rG(a)sin 0 wada (2-56) 

from the remaining first term. On the other hand, the stress corresponding to 
G” will occur at ot = 0, at which point sin wt = 0 and cos wt = 1. Thus 

G”(w) = w ~omG(a)cos wada (2-57) 

from the remaining second term of equation (2-55). Note that the choice of the 
symbol for the integration variable, in this case a,  is completely arbitrary. Also 
in this section we have tacitly assumed that G(t) approaches zero at long times. 
If this is not true, as is the case with a crosslinked polymer, one may introduce 
the function G(t) - G, where G, represents the equilibrium shear modulus. It is 
clear that this difference does indeed become zero at long times. 

It is apparent that equation (2-56) and equation (2-57) embody a Fourier sine 
and cosine transformation of G(t); thus normal Fourier transform’ methods 
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permit the inversion of these relations to give the static modulus as a function 
of the dynamic properties. This is a specific example illustrative of the method 
by which one may relate static and dynamic properties. Listings of other 
results may be found in texts such as Ferry.2 In more general terms, it can be 
stated that the Boltzmann superposition principle, written in terms of a single 
material function, G(t), can be used to derive all other for linear viscoelastic 
properties. In practice, however, these transforms are often mathematically 
very challenging and prone to numerical error. One example is the conversion 
of G(t) to J(t), which is derived analytically in Appendix 1 and illustrated by 
problems 6 and 14 at the end of this chapter. 

APPENDIX 1 : CONNECTING CREEP COMPLIANCE AND STRESS 
RELAXATION MODULUS USING LAPLACE 
TRANSFORMS 

At sufficiently low strains, the Boltzmann superposition principle allows us to 
express moduli and compliances in terms of one another even in the time- 
dependent case. We will derive these relationships directly from equations (2- 
45) and (2-46) with the aid of Laplace transforms. A short introduction or 
review of Laplace transform techniques will be presented first. 

Transform techniques in general are remarkably useful mathematical tools. 
The manner in which a transform operates is to take a problem in equation form 
from one space, where its solution is difficult, to another space where, it is 
hoped, the solution will be simpler. The solution in transform space is then 
transformed back into the original space to yield the answer to the problem. 

The Laplace transform of a function F(t) is denoted&) or L(F(t)) and is 
defined as 

f ( p )  = L(F(t)) = 6 KPf  F(t)dt 

However, to see how the transform technique works, it is instructive to apply it 
to several simple examples that will also be needed later. Many of these basic 
relationships are listed in tables of Laplace transforms. 

Our first example is the calculation of the Laplace transform of the function 

F(t)  = at (b) 

where a is a constant. Substitution into equation (a) gives 
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which, upon integration, yields 

a L(at) = - 
P2 

Thus it is clear that 

L(t) = 2 1 L(aF(t)) = aL(F(t)) 
P 

Next, consider the Laplace transform of the function F(t-a), where F(x) = 0 for 
x < 0. Again, substitution into equation (a) gives 

Now letting t - a = x ,  one has 

Lastly, consider the transform of F'(t)  . Proceeding as above, 

Integration by parts yields 

The second term is just the definition of the Laplace transform of F(t) times p ;  
evaluation of the first term at the limits of integration gives 

L(F'(t)) = -F(O) + pL(F(t)) 6) 
It is clear that this expression is very helpful, allowing one to find the transform 
of the derivative of a function from knowledge of the function itselc it is not 
necessary to know the derivative of the function explicitly. 

One additional result is needed, and it is derived in Appendix 2 of this 
chapter. This is Borel's theorem, which states: 
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Using these results, we can now derive the relationship between the creep 
compliance and the stress relaxation modulus. 

The Laplace transform of equation (2-45) yields 

or 

Making use of the result derived in equation (g) gives 

The term enclosed in brackets, however, is nothing except the Laplace 
transform of the derivative of J(t). Thus we may apply the result obtained in 
equation (j) to get 

Equations (0) and (p) give 

This is the solution of the problem in transform space. We have a direct 
relationship between the transforms of the compliance and the modulus. This 
solution must now be returned to real space. Making use of Borel’s theorem, 
equation (k), and the result derived in equation (e) gives the final result: 

t = LG(s)l(t - s)ds (2-5 1) 

This convolution integral expresses the relationship between the creep 
compliance and the stress relaxation modulus. It is exact and depends only on 
the applicability of the Boltzmann superposition principle. 
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These equations are used to convert a modulus to compliance in problem 6 
of this chapter. The results of this calculation are depicted in Figure 2-16. In 
dealing with experimental results, the modulus is often available only as a set 
of discrete data gathered over a finite time interval. In this case, the 
transformation to a similar set of predicted creep data is a difficult numerical 
problem that can result in substantial  error^.^,^ Commercial software packages 
are available that can do this and other "integral" transforms, but these should 
all be used with caution. A simplified example is suggested in problem 14. 

APPENDIX 2: BOREL'S THEOREM 

Consider the two functions F,(t) and F2(t) whose Laplace transforms are given 
as fi (p) andfi (p) respectively. Then the product 

if 

F2 ( t )  = 0 t<O (b) 

However, application of equation (g) in Appendix 1 yields 

Upon rearrangement we get 

Applying condition (b) yields the desired result 

APPENDIX 3: GEOMETRIES FOR THE MEASUREMENT OF 
VISCOELASTIC FUNCTIONS 

1. Axial Geometries 

The geometries commonly used for measurements in instruments generating a 
linear or axial motion are listed in Table 2-1. With the exception of the shear 
sandwich, all require a solid sample. The drawings and associated formula 
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apply to the step-strain stress relaxation test wherein the sample is subjected to 
an instantaneous small displacement Ax. For a dynamic experiment, the Ax 
should be replaced by the amplitude of the oscillatory displacement, while the 
force should be replaced by the amplitude of the oscillatory force. Introduction 
of the phase angle will then give the real and imaginary components of the 
complex modulus. For example, for simple tension 

and 

E' = jE*I cos 6 

E" = IE*I sin 6 

(b) 

(c> 

where IE*I is the magnitude of the complex dynamic modulus. 
Simple extension or compression of a rod or strip serves to define the 

Young's modulus. While straightforward in appearance, this geometry has 
experimental difficulties that may require several precautions and corrections. 
For example, the tensile sample may be difficult to grip without inducing 
locally high stresses or slippage. Thus, careful work requires that the 
deformation E be measured separately from the motion of the grips that apply 
the force to the sample. Often deformation is measured with an optical gauge 
or a clip-on extensometer. Another approach is to use samples of different 
lengths and extrapolate the observed moduli to infinite length. At nonambient 
temperatures, variation of temperature along a long sample may be difficult to 
eliminate. As with most axial geometries, it is necessary to provide a preload 
of the sample for dynamic measurements to prevent buckling. 

For stiff specimens, conveniently large displacements can be realized by 
using a bending mode. Shown in Table 2-1 are several bending geometries, all 
of which have certain advantages. Before discussing these, it should be pointed 
out that the bending of sample results in a spatially nonuniform stress. The 
highest stress is at the concave and convex surfaces of the specimen, while it is 
zero at the centroid of the cross-section. This means that the outside layers of 
the sample have a disproportionately large effect on the resulting modulus. 
While this is not an issue with perfectly homogeneous samples, it is common 
for molded specimens to have a skin that is quite different from the core. A 
skin effect can be used to advantage to examine, say, degradation of the outside 
surface. 
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In choosing among the bending modes, the important factors are the 
stiffness and size of the specimen and the amount of displacement that is 
needed to produce a workable force signal. If the sample is short and thick, it is 
probably best to choose the single cantilever geometry, because it will give the 
most displacement for the least force. At the other extreme is the double 
cantilever, which consequently would be the most appropriate for thinner 
and/or more flexible samples. For the latter, it is important to note that the 
geometry is over determined if both of the clamps are rigidly fixed to the 
instrument frame. While this is not an issue at very low displacements, it 
should be corrected for at higher displacements. It also should be recognized 
that all the bending modes subject the sample to shear as well as bending. (The 
center part of the 4-point bending mode is pure bending, but the ends are 
subjected to shear.) Shearing of the sample leads to artificially low modulus 
values, although the effect is negligible if the sample thickness and 
displacements are low relative to the length of the sample. Corrections for 
shear are also available. 

As mentioned the 4-point bending experiment is special in that the center 
section is subjected to pure bending that is constant along this section. As the 
bottom surface of material in this section is under the greatest tensile stress, the 
sample is likely to fail somewhere in this region. Thus the 4-point geometry 
can provide a method of testing the ultimate mechanical properties of uniform 
brittle materials as well as a method for measuring the modulus. This 
combination is difficult to achieve in other geometries. 

On examination of the bending formulas, it should be apparent that the 
accuracy of the modulus is highly dependent on the accuracy of the samples 
length and thickness measurements. A 3% error in either of these dimensions 
will give a 10% error in the modulus. Interestingly, the strong influence of the 
length measurement is alleviated by the bending geometry shown in Table 2-2. 

The shear sandwich is widely used for generating shearing motion in soft or 
even fluid samples. Clearly the amount of strain is limited, and this geometry 
is thus not generally suitable for gaining information on the steady-state flow 
properties of fluids, although it useful for transient measurements that approach 
the steady state. It is highly important that the flat plates be strictly parallel, as 
misaligned plates will generate very high squeezing forces that lead to 
artificially high modulus values. With fluids, the gap should be small enough 
to hold the fluid in place by capillary forces. 

The compression mode has been used successfully for soft samples that can 
be accurately made with strictly parallel faces on the top and bottom of the 

*** 

*** Samples of low lengthlheight ratio may deform considerably due to shear, invalidating the 
results obtained with the equations that assume bending is the major source of deformation. 
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sample. To prevent buckling, the sample must have a modest height relative to 
its width. The penalty for this condition is that the state of the boundary at the 
sample/plate interface has an extraordinarily large influence on the measured 
modulus value. Not only must the faces be smooth and parallel, but also they 
must be either treated to eliminate slip, or to induce complete slip. The former 
can be realized by using an adhesive, selecting one that does not influence the 
properties of the sample, or roughened surfaces. Complete slip requires very 
smooth surfaces treated to reduce the coefficient of friction. For example, 
Teflon@-coated plates used in conjunction with a compatible lubricant have 
found to be effective." 

Table 2-1 Test Geometries for Instruments that Generate Axial (Linear) 
Motion 

F?/ 
Simple 

Compression 

A 

3-point 
bending 

L F  
wd Ax 

E = -(-) 

Ax 

L 
& = -  

E = i7Ri( L F  z) for 

complete slip 
- A x  

L 
& = -  

L' F 
4wd' Ax 

d A x  
L L  

E=-  (-1 

Emax = 6-(-1 
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4-point 
bending 

Single 
cantilever 
(Slab) 

Single 
cantilever 
(Rod) 

Double 
cantilever 

I/ 

L +d 

4L3 F 
3nR Ax 

E = y(-) 

R A x  
L L  &,,ax = 3-(-) 

E=- L' F 
16wd Ax 

d A x  
L L  

G=-(-) 

3 (-1 

Emax = 12-(-) 

d F  
2wL Ax 

Ax 
Y=- d 

2. Rotational Geometries 

The test geometries listed in Table 2-2 are those commonly used for 
instruments that can apply rotary motion, either in the form of a controlled 
torque or a controlled amount of rotation. The listed examples can as a set 
handle samples from stiff viscoelastic solids to freely flowing liquids. All are 
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suitable for low-strain transient or dynamic experiments, whereas the parallel- 
plate, cone and plate and concentric rotating cylinders can also be used for 
steady shearing measurements as well. Rotation does not lend itself easily to 
the application of tensile or compressive deformations, but one example-the 
bending geometry-can provide a direct measure of Young's modulus. 

Solid viscoelastic samples can be tested in shear using rods or strips that are 
twisted by the instrument. The torque, M, is then directly proportional to the 
shear modulus and amount of twist Q (in radians) with a proportionality factor 
that is purely dependent upon the geometry of the sample. Note that unlike the 
bending of bars and rods, the geometric factor is only linearly dependent on the 
sample length. However, the dependence on the sample thickness is exactly the 
same. This provides the experimentalist with an opportunity for measuring 
Poisson7s ratio by dividing the obtained Young's modulus from bending by the 
shear modulus from twisting the exact same sample. This will result in 
cancellation of errors in the sample thickness (but not length). For example, 
with mds, the ratio of the two is: 

4L3 
I 

2ML 3 A x M  -\ 

where v is Poisson's ratio. Note that the radius of the sample no longer 
appears. Implied by this cancellation is the concomitant cancellation of slight 
radial material variations. 

Twisting of bars or strips has been studied throughout the years because of 
its practical importance. Normally bars and strips are also the simplest sample 
to fabricate. The formulas given are for very small amounts of twist, and with 
no axial load. Clamps that cannot move at all in the axial direction may exert 
significant axial loads on the sample once the twist is applied. Depending upon 
the properties of the sample, this can increase the apparent torque significantly 
and result in an excessively high modulus. Corrections are available. 
Interestingly, while the maximum strain on twisting a cylindrical rod is at the 
outer surface, the outer comers of a twisted bar or strip have no strain at all. 

Flex tests on rotational equipment can be run on the geometry indicated in 
Table 2-2. While this fixture may not be provided with commercial 
instruments, it is easy to build. The remarkable aspect of this geometry for flex 
testing is that the length of the sample enters only to the first power instead of 
the third power of the usual flex test. This means that one can be a bit less 
fastidious about the length and still get good results. The sample's width and 
thickness still enter in the same fashion, however. 
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The plate-plate, cone and plate and Couette geometries are appropriate for 
very soft solids, e.g., gels or viscoelastic liquids. The selection between these 
depends on several factors, including the consistency of the sample and the 
amount of sample available. Of the three, the Couette geometry requires the 
most sample and is the hardest to load, but is the most sensitive for low 
stiffness samples and has the lowest dependence on the spatial dimensions of 
the fixture. It has the additional feature that the highest stress is uniquely at the 
surface of the inner cylinder. The plate-plate or parallel plate (disc) geometry 
requires the smallest amount of material, as the gap can be made indefinitely 
thin. For example, a 0.05-mm gap with 25-mm-diameter plates requires only 
25 mm3 of sample (about 25 mg). However, the modulus depends heavily (4th 
power) on the radius of the sample, which means that the sample must be very 
carefully prepared. Ln contrast, the cone and plate result depends only on the 
3'-d power. The additional advantage of the cone and plate geometry is that the 
deformation in the sample is spatially uniform. Although this is important only 
for nonlinear properties of the materials, it implies that the results may be less 
sensitive to slight nonlinearities found at workable angles of twist. In the plate- 
plate geometry, the highest strain and stress are at the outside edge where the 
influence of any nonlinearity in the sample is magnified for two reasons: (1) 
the area of sample for a fixed differential radial amount is greatest and (2) the 
lever arm for this outside ring is greatest. In spite of these drawbacks, the 
parallel plate fixtures are perhaps the most popular for linear viscoelastic 
measurements because they are easy to load, gap and clean, inexpensive to 
make (disposable plates are available), and the flat surfaces are convenient for 
optical or dielectric measurements. A first-order correction for nonlinear 
effects is provided in the table. 

Links to representative suppliers of commercial equipment, both axial and 
rotational are listed at www.rhe~logy.org.~ 
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Table 2-2. Geometries for Instruments that Generate Rotational Motion 

Rod 

Bar or 
strip 

Parallel 
plates 
(aka: 
plate- 
plate, 
parallel 
disks) U 

(For G(y), a good approximation is 
to assign the modulus given above 
to a strain of 3RRl4L instead of 
Ymnx.)] 

ML 
Rwd3 t(1- 0.63d I w) 

G =  

Y,,,, = d Q / L  

An elastic formula to higher order 
has been reported: l 2  

- ML c;= 
n2 1 E w 3  

120 G dL2 

2Mh G=- 
xR4R 

Y,,, = RRI  h 

for steady shear at 
2Mh v=- 
zR4w 

angular velocity w = d R ldt, 
(see “Rod” for approximation to 
nonlinear properties) 
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Table 2-2. (Continued) 

Cone and 
Plate 

Bending 

Cup and 
Bob 
(aka: 
Couette, 
circular 
Couette) 

Axial 

i_ . .i 

GM 

3 M a  
G =  

2 T ~  3~ 

y=Rlar 

2L M 
E = z ( K )  

3 d  
2 L  

- Em,, - --n 

C2 = amount of twist, rad 

(Does not include small contribution 
from bottom or top surfaces.) 

PROBLEMS 

1. 
of a viscoelastic cube 2 cm on a side after 
time-dependent shear compliance is 

Calculate the weight needed to bring about a 0.40-cm shearing displacement AX, 
loo, lo4, and lo6 seconds. The 
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2. 
G", (b) J', J", (c) IG*l and tan 6, and (d) IPI and tan 6. 
3. 
given by 

Make a table expressing J', J", tan 6, IPJ, IG*l, G' and G" in terms of (a) G' and 

Calculate the stress at time t longer than 2t, in a body with a relaxation modulus 

E(t) = E, e-f'71 + E, e-'lr2 

when the body is subjected to the strain history depicted in the drawing below. 

Time t 
4. By considering a sinusoidal stress applied to a viscoelastic body, show that in- 
phase strain results in conservation of energy (work) whereas out-of-phase strain 
results in energy dissipation. 
5. Show that 

sinmn 1 J ( t )  = _ _ _ ~  
mn G(t) 

if log J(t) = log A +mlogt. Note T(n)  = n/sin(nx), where T(n)  is the gamma function 
defined as 

rxn- 'e-xdx = r (n )  and r(n)= (n - l)! for n > 0 
0 

6. 
given by 

Calculate the creep compliance for a body whose stress relaxation modulus is 

G(t) = GOe-"' 

7. 
the expression 

Calculate G'(w) and G"(w) for a body whose stress relaxation modulus is given by 

G(t) = Goe-"' 

8. The strain in a dynamic shear experiment may be represented as 
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Since, in general, the stress will lead the strain, the corresponding function for the 
stress is 

i (wi+6)  cr* = o o e  

Obtain expressions for G'(w) and G"(w) using this formalism. 
9. The behavior of viscoelastic materials subjected to oscillatory perturbations may 
also be treated by generalizing the concept of viscosity (rather than modulus) and 
separating it into in-phase and out-of-phase components. Thus Newton's law for 
viscous fluids in shear, defined in equation (3-4) in Chapter 3, Section A, becomes 

where 1;1* = v' - iv". Here 7' measures energy dissipation, and 7" measures stored 
energy. In this formalism, show that 

10. Show that the form of the Boltzmann principle given in equation (2-45) reverts to 
the defining equation for the shear creep compliance, equation (2-9), when a sample, 
initially at rest, is subjected to an instantaneous increment of stress at t = 0, which is 
thereafter held constant. 

It may be helpful to note that the Dirac delta function 6 (a)  can be defined as 

f ( x )  = r:(~ - x ' ) f (x ' )  dx' 

That is, it has unit area when a = 0 and is zero everywhere else. 
11. Stress-strain curves are often measured by monitoring the tensile stress as a 
sample, originally at rest, is subjected to a constant tensile strain rate starting at t = 0. 
Show that, at any subsequent time during the constant-strain-rate period, the slope of 
the stress-strain curve is the tensile stress relaxation modulus: 

do,  E(t) = - 
dE 

12. Suppose that a material with a tensile stress relaxation modulus given as 

E(t) = E0e-"' 

is used in an ordinary stress relaxation experiment starting at t = 0 and employing a 
constant strain E, . At some later time, t', the stress is suddenly removed. Show that 
the strain at times greater than t' is 
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-(t-")/r 
E ( t )  = .co (1 - e ) 

13. (Computer) The approximation 

G(t) G'(u) - 0.566G"(~ / 2) + 0.203G"(0) 

with w = l / t  has been proposed for converting dynamic data to stress-relaxation 
m o d ~ l u s . ' ~  Quantify the error incurred through the use of this approximation for the 
relaxation modulus 

G(t) = GOe-"' 

14. (Computer) Using a spread sheet with numerical integration and differentiation 
capabilities, attempt to convert discrete creep data created using the equation 

~ ( t ) =  ( + 5) pa-* 

to the corresponding stress relaxation modulus data. Check your result against the 
analytical prediction. (Hint: Divide the integral of equation (2-5 1) into small steps 
and, starting with the first step over a range At, use the trapazoidal rule to integrate this 
step. Repeat with the next step to establish a pattern. Then set up a spread sheet with 
Ji and AJ, = Ji - Ji.,. Starting at Go = G(0) = l/Jo, calculate G, , etc.) 
15. (a) Show that the shear strain in the parallel-plate geometry (Table 2-2) is given by 
fir) = rWh.  (b) Develop the expression for the torque M, given the shear modulus G. 
(c) If G = G(y), develop an integral expression for the torque. (c) Show that Gauss's 
moment integration formula (see p. 921, Handbook of Mathematical F ~ n c t i o n s ' ~ )  will 
give the approximation listed in Table 2-2 under "Rod." 
16. Tensile machines often operate at constant velocity, which means that the length 
of a sample of initial length Lo long will follow the program L = Lo + vt, where v is the 
crosshead velocity. Develop an expression for the error in the Young's modulus as 
derived from the initial slope of the stress-strain curve from such a machine assuming 
a viscoelastic material with a relaxation modulus given by E = Eo exp(-tl.r). 
17. Design a continuous two-dimensional structure that will, on stretching, expand in 
the transverse direction, as depicted in Figure 2-8. 
18. The infinitesimal material elements in the sharp comers of a solid rectangular bar 
are not strained when the bar is twisted by a small amount. Where then, is the location 
of the material elements that experience the highest shear strain y",,,? (Hint; Examine 
the equation in Table 2-2 for twisting of bars.) 
19. (Computer) The following exercises use the dynamic modulus (G'and G") data in 
file PMMA4 5 .  TXT in the CD. 

(a) Plot the data using log-log and linear-linear scales, and comment on the 
appearance of each. 
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(b) Calculate and plot the magnitude of the complex viscosity I q*1 as a function of 
frequency using log-log scales. Estimate the zero-shear-rate viscosity qo where qo = 

I ??*I(@ -0). 
(c) Create a Cole-Cole plot using this data (see index). 
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Viscoelastic Models 

The phenomenological theory of linear viscoelasticity developed in Chapter 2 
is completely independent of the structural details of the material being 
deformed. The material could be anything that is uniform and isotropic, be it a 
polymer, metal, biological tissue, or clay. As our focus is polymers, it is 
desirable to consider the representation of linear viscoelastic processes by 
certain model systems in order to gain greater insight into relaxation behavior 
and eventually its relationship to structure. In this chapter we consider two 
broad classes of models. The first consists of the so-called "mechanical 
analogs." These are combinations of elements, usually springs and dashpots, 
that more or less faithfully reproduce the qualitative aspects of the viscoelastic 
response of real systems. The second group is composed of the molecular 
theories. Here a fairly reasonable representation of a polymer molecule is 
assumed and the motion of such a molecule in a viscous medium is deduced. 
In this case the viscoelastic behavior is predicted on the basis of molecular 
parameters. It will be demonstrated that the two classes of models are 
equivalent in many respects. 

A. MECHANICAL ELEMENTS 

We return to the tensile elongation experiment described in the Introduction 
and Chapter 2. The simplest mechanical model that has some of the gross 
physical behavior exhibited by bodies subject to uniaxial elongation is a pure 
Hookean spring (Figure 3-la). This body is purely elastic and all inertial 
effects are neglected. If a Hookean spring is stretched by a fixed amount, it 
will produce a force that is proportional to the stretch. By analogy, if a 
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Hookean eZastic material is subjected to an instantaneous strain a, it will 
produce instantaneously a stress a, related to by the equation 

t <\G o r E  

Spring Dashpot Maxwell 
element element model 

Figure 3-1. Spring, dashpot, and Maxwell model. In subsequent depictions of the dashpot, the 
“fluid“ will be removed for simplicity. 

The proportionality constant, E, is the Young’s modulus with which we are 
already acquainted. The instantaneous strain application is assumed to produce 
no oscillation, only a constant stress. Note that the comparison of the Hookean 
spring with the Hookean elastic solid is useful only as a mathematical analogy; 
we don’t expect, for example, to shear the coil spring depicted in Figure 3-1, 
although we can certainly shear a three-dimensional Hookean elastic solid. 
While no actual substances obey Hooke’s law exactly, some materials, such as 
steel and glass, follow Hooke’s law very closely at low values of stress and 
strain. All real materials have inertial effects, and most have at least slight time 
dependence, which Hooke’s law does not address. 

The dominant characteristic of fluids, on the other hand, is not their 
elasticity, but rather their viscosity. The equation of motion for simple linear 
viscous flow is Newton’s law 

dvi d v .  

dxi dxi 
rl 

where the general three-dimensional form in (3-2a) is analogous 
(2-14) and (2-18) for Hooke’s law but with displacement ui 

(3-2a) 

(3-2b) 

(3-2~)  

to equations 
replaced by 
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velocity vi. The symbol 77 stands for the shear viscosity, and is constant for 
Newtonian fluids. The variant in equation (3-2b) is for simple shear, and 
introduces the symbol y for shear rate. Equation (3-2c) shows the form for 
simple extension, and defines the extensional viscosity qE. Clearly vE = 377, 
and for the same reason that E = 3G. At low strains, the tensile strain F is the 
same as for Hooke’s law, equations (2-2) and (2-19). On the other hand, to 
maintain the relationship i. = dvlldxl at higher strains, we must redefine strain 
as E = In (LlLo), where L is the length of the specimen and LO is its initial length. 
This is referred to as the Hencky strain. At low strains, the two are equivalent 
(see Problem 16). 

The mechanical analog of equation (3-2) is the dashpot element (Figure 3- 
1). This is merely a leaky piston in a cylinder filled with a liquid of viscosity q 
for shear or qE for extension. (Remember, the details of geometry, etc. are not 
important; we are looking only for qualitative behavior by analogy. Thus we 
will use the models of Figure 3-1 for both extensional and shear properties.) 
Integration of equation (3-2b) for constant shear stress 00, yields 

0 y ( t )  = L t  
7 

(3-3) 

Thus, subjecting the dashpot to a stress of 100, for time t produces the same 
strain as a stress of 00 applied for a time lot. 

The general expression for rate of deformation that is analogous to equation 
(2- 17) for deformation is not surprisingly 

. dv, dvj y..  =-+-- 
dxj dxi !I (3-4) 

Some conventions based on equation (3-4) include the use of y = y , ,  = dv, ldv,  
for shear rate, and the symbol i. = dv, ldx, for rate of extension. Note that 

1. Maxwell Model 

The mechanical response of viscoelastic bodies such as polymers is poorly 
represented by either the spring or the dashpot. J. C. Maxwell suggested that a 
better approximation would result from a series combination of the spring and 
dashpot elements. Such a model, called a Maxwell element, is shown on the 
right in Figure 3-1. In describing tensile response with the Maxwell element, 
E, the instantaneous tensile modulus, characterizes the response of the spring 
while vE, the viscosity of the liquid in the dashpot, defines the viscous 

& # Y , , .  
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behavior. The ratio of qE to E or q to G defines a time constant z in the 
following manner 

The time constant z is often called the relaxation time of the element. The 
equation of motion of the Maxwell model is 

(3-6) 
d y  1 d o  o d& 1 d o E  oE 

dt E dt qE dt G dt q 
+- - - +- or - -~ - - - ___ 

where o, is used for the tensile stress and o without a subscript stands for the 
shear stress. Equation (3-6) is merely a linear combination of the deformation 
rates of the perfectly elastic behavior as stated in the time derivative of Hooke's 
law (first term on right side) and perfectly viscous behavior as stated in 
Newton's law (second term on right side). 

We will now solve this differential equation subject to several sets of 
experimental boundary conditions. Extensional deformations will be used in 
these examples, but they could also be done equally well for shear. 

10 

8 

9 6  - 
2 
Q 

4 

2 

6 
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4 

2-3 
9 - 
Q 
0 2  

1 
0 
2 

0 
0 

0 2 4 6 8 1 0  - 2 - 1  0 1 2  3 4 
t l  Log t l?  

Figure 3-2. Creep response of a Maxwell body displayed using linear (left) and 
log-log (right) scales. 

Creep Experiment. The model is subjected to an instantaneous tensile 
stress o,,~, which is then held constant. Thus equation (3-6) becomes 

(3-7) 

since do,/dt is zero. Integration of equation (3-7) from time 0 to some time t 
yields, after division by oo, 
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One notices that Q/O--,~ is just the instantaneous response of the Hookean 
spring, and from equation (3-1) it is seen to be equal to the reciprocal of E. 
From the results of Chapter 2, Section A, we have 

where D is the tensile compliance of the spring unit of the model. 

I I 

1 
0.0 

-2 - 1  0 

4 
q -3 

Log t / 7  

\ 
I 1 

- 1  0 1 - 4 '  ' -2 

(c)  Log t l I  

Figure 3-3. Maxwell body behavior using stress relaxation conditions: (a) linear plot, (b) 
linear-log plot, and (c) log-log plot. 

Also from the results of Chapter 2, Section A, it is clear that the left side of 
equation (3-8) is simply the tensile creep compliance, D(t). Thus the response 
of the Maxwell model to a creep experiment is 
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t D(t)  = D + - 
V E  

(3-10) 

This is illustrated in Figure 3-2. Note that the compliance of the Maxwell 
model increases without limit as time goes on, a behavior characteristic of a 
viscoelastic fluid. 

In a stress relaxation experiment, one 
strains the sample instantaneously to some strain and studies the stress oE(t) 
necessary to maintain this constant strain (Chapter 2, Section C). The 
instantaneous strain will be realized only in the spring element. The dashpot 
will gradually relax so that the stress decreases as a function of time. 

After the strain application, dE/dt is zero so equation (3-6) becomes, in light 
of equation (3-5), 

Stress Relaxation Experiment. 

(3-1 1) 

This expression is easily integrated from CTE,~ at time 0 to o(t) at time t to give 

t lno,(t) = lno,,, -- 
z 

Exponentiation and division by c0 yields 

(3-12) 

(3-13) 

Here again, o ~ , ~ / E ~  is the modulus of the spring, E, and the left side of equation 
(3-13) is E(t), the tensile stress relaxation modulus. 

E(t) = Ee-'" (3-14) 

Note that the stress relaxation behavior is exponential in time. Now the value 
of a model is evident: we learn that the mark of a viscoelastic fluid in a stress- 
relaxation experiment is exponential decay of the stress. 

Figures 3-3 illustrate the behavior of the Maxwell model in a stress- 
relaxation experiment. Note that these functions have been plotted on log 
scales as well as the usual rectilinear scales. At times considerably shorter than 
the relaxation time of the springldashpot combination, the element behaves as if 
it were a spring alone. At times very long compared to the relaxation time of 
the dashpot, the model behaves as if it were a dashpot alone, that is, the stress 
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decays to zero. 
involves both the spring and the dashpot. 

At times comparable to the relaxation time, the response 

Dynamic Experiments. We will now consider the response of a Maxwell 
element subjected to a sinusoidal stress, as in a controlled-stress dynamic 
mechanical analyzer. In such a case the strain will also be sinusoidal but out of 
phase with the stress by the angle 8, as discussed in Chapter 2. Thus 

oE (t )  = oE.,,eiwt (3-15) 

where o.,,~ is the amplitude of the stress and w is the frequency (rads). 
Substitution into equation (3-6) yields 

which is easily integrated using the limits of 4tl) at t ,  and 4t2) at t,. (Note that 
so is not necessarily zero because the stress and strain are not in phase.) 

Division of the strain increment by the stress increment yields: 

where D* is the complex tensile compliance defined as D* = Df-iD" and D = 

1/E. Thus in terms of storage and loss compliances (Chapter 2), 

From this point, the calculation of the complex tensile modulus, E*, is 
straightforward. From Chapter 2, Section C, it will be remembered that E* is 
the reciprocal of D*, so we have 

(3-20) ZWE 

D-iDIzw z w - i  
- - 1 E* = 

Use of the complex conjugate gives 
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so 

E T 2 W 2  

1 + w2z2 
E’ z 

and 

E zw El’ = 
1 + w2z2  

(3-21) 

(3-22) 

(3-23) 

The tangent of the phase angle between the stress and strain was shown to be 
(Chapter 2, Section C): 

E” tan6 = - 
E’ 

(3-24) 

giving 

(3-25) 1 tan6 = ~ 

for a Maxwell body. Figure 3-4 represents the frequency dependence of E’ and 
E” for a Maxwell element. 

zw 

I I I I I I I I I  

-4 -3 -2 -1 0 1 2 3 
Log 07 

Figure 3-4. Log-log plots of E’( w)/E and E”( w)/E versus wz for a Maxwell model. 

Again, we can see that the use of the mechanical analog has given us 
important information: a viscoelastic fluid will show, at sufficiently low 
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frequency, E' behavior with frequency that is quadratic (slope of 2 on the log- 
log graph of Figure 3-4) and E" behavior that is linear (slope of 1 on the log-log 
graph of Figure 3-4). 

2. Voigt Element 

Another simple element, the Voigt model, has been used frequently in 
connection with viscoelastic behavior. The Voigt model (Figure 3-5) consists 
of the same fundamental elements as the Maxwell model, except here the 
spring and dashpot are in parallel instead of being in series. Because of this 
arrangement, the Voigt model represents in the simplest possible form a 
viscoelastic solid. The constraint on the model is that the strain must be the 
same in both elements. The stress then must be the sum of the stresses in the 
two individual elements. Thus the fundamental equation of motion for the 
Voigt element is 

d 4 t )  OE ( t )  = &(t)E + V E  ___ or o(t) = y(t)G + vdt dY ( t> 
dt 

(3-26) 

for extension or shear, respectively. This model is usually used in considering 
creep experiments since, as will be seen shortly, it cannot easily be applied to a 
stress relaxation experiment. For the Voigt element we will use shear for our 
development instead of extension. 

Creep Experiment. As the stress is a constant in a creep experiment, one 
has 

t 

0 

Figure 3-5. Voigt model. 

(3-27) 

which is a linear differential equation that can be made exact and then 
integrated using the integrating factor 8'. Integration between the limits y = 0 
and y = y(t)  yields 
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giving 

Simplification gives 

(3-28) 

(3-29) 

(3-30) 

where J(t) is the creep compliance in shear and J =  1/G. G is associated with 
the spring in the model (Figure 3-5). 

Stress Relaxation. With constant strain, the equation of motion of the 
Voigt element reduces to Hooke's law with 

G(t) = G (3-3 1 )  

In spite of this promising result, it is clear that true stress relaxation is an 
impossible experiment, as the dashpot would develop an indefinitely high force 
with the input of a step change of strain. 

Table 3-1. Behavior in Extension of Simple Viscoelastic Models in 
Various Experiments." 

ExDeriment Maxwell Element Voi rrt Element 
Creep D(t)= D + t / v E  D(t)  = D(l-  e-t'r)  

Stress relaxation ~ ( t )  = Ee-'" 
Dynamic D' = D D' = D/(1+ w ~ T * )  

- 

D " = ~ / T ] ~ w  
E' = E W 2 T 2  / ( I +  W 2 T 2 )  

E" = EWT /(1+ w 2 z 2 )  

D" = DWZ /(1+ 0 ~ 2 ~ )  

E' = E 
E" = 0qE 

Stress growth 77; ( t )  = E T ( I  - e-"r) v;(t)=Et+vE 
(transient) 

a For both models the spring element has properties E = 1ID; the dashpot V E  = Er. 

www.rheology.org for standard nomenclature. 
The symbol qi  signifies the tensile stress a$ divided by the constant strain rate i- . See b 
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The application of sinusoidal stress and strain is similar to that for a 
Maxwell body. The results are summarized in Table 3-1 along with the 
previously derived results for a Maxwell element. Figure 3-6 displays the 
frequency dependence of D’ and D” for the Voigt element in tension. The 
response in shear would be identical with J replacing D. 

The response of both the Maxwell and Voigt models to several kinds of 
deformation experiments are much simpler than those of real polymer systems 
according to the results presented in Chapters 2 and 4. In particular, whereas 
most linear polymers of sufficiently high molecular weight have at least two 

- 

-8 /  

\ 

-101 I , I , , 
-4 -2 0 2 4 

Log WT 
Figure 3-6. Frequency dependence of the complex dynamic compliance for the Voigt model. 

major transitions (glass to rubber and rubber to liquid), these models exhibit 
only one transition under all conditions. Upon closer examination, it is also 
apparent that the decay of modulus exhibited by a Maxwell model at times 
slightly greater than z is much more rapid than the corresponding modulus 
decay exhibited by real polymers in either transition region. Thus these simple 
models, while providing qualitative guidance, do not provide good quantitative 
representations of the observed viscoelastic behavior of real polymers. 

To overcome these deficiencies, models have been proposed that consist of 
combinations of Maxwell and Voigt elements. Although an infinite number of 
such combinations is possible, we will consider only two here. The treatments 
of other such models are completely analogous. 

3. Generalized Maxwell Model 

This widely used model consists of an arbitrary number of Maxwell elements 
connected in parallel, as shown in Figure 3-7. 
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Consider a generalized Maxwell model with z elements subjected to a stress 
relaxation experiment. The strain in each element is characterized by a spring 
constant Ei and a viscosity vE,,[; thus each zi is determined. In all of the 
individual elements, the strain is the same and the total stress O, is the 
summation of the individual stresses experienced by each element. One can 
then write: 

(3-32) 

OE = OE., + OE,2 + OE,3 + ... + OE,n + ... + OE,= (3-33) 

Integration of equation (3-32) gives the partial stresses o,,~, which can then 
be substituted into equation (3-33) to calculate the total stress. When the total 
stress is divided by the constant strain, .c0, the stress relaxation modulus results: 
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i= 1 

where C F ~ , ~ ( O )  is the stress on the nth element at zero time (t  = 0). Thus we see, 
as expected, that the total modulus is the summation of the responses of the 
individual elements. 

The flexibility of this model in reproducing real viscoelastic behavior can be 
easily demonstrated. Consider a two-element model with parameters 

E ,  = 3 x lO9Pa; z1 = 1 min and E2 = 5 x lo5 Pa; z2 = lo3 rnin 

Its behavior (Figure 3-8) reproduces the two transitions observed in real 
polymers. It is possible to replace one of the Maxwell elements in the 
generalized Maxwell model with a spring. The stress would decay to a finite 
value in such a model rather than zero and would approximate the behavior of 
crosslinked polymers. 

Figure 3-8. Behavior of a two-component generalized Maxwell model in stress relaxation. 

Treatments similar to those used in equations (3-32) and (3-33) can be 
applied to the generalized Maxwell model undergoing sinusoidal stress or strain 
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to calculate the complex modulus. 
Expressions for the complex compliance are not simple functions. 

4. Voigt-Kelvin Model 

The Voigt-Kelvin model is a generalization of the Voigt element that results 
from connecting Voigt elements in series (Figure 3-9). Here the compliance 
functions are easily calculated, while the modulus functions are rather 
complicated. The results are summarized in Table 3-2; a sample calculation is 
provided below. 

The results are given in Table 3-2. 

Table 3-2. Behavior of Generalized Maxwell and Voigt-Kelvin Models 
in Various Experiments 

Experiment Generalized Maxwell Voigt-Kelvin Model 
Modela 

Creep 
z 

D ( t ) = C D i ( l + t i r i )  
i = l  1 

z - t l z .  
E( t )  = z E i e  Stress 

relaxation i=l 
Not applicable 

z 

v i ( t )  = C qE,i(l - e-‘”{ ) Stress growth 
(transient)b 

- 

1 

a Also known as the Maxwell-Wiechert model. 
The symbol signifies the tensile stress 0; divided by the strain rate i.. (See 

www.rheology.org for standard nomenclature.) 

Here we derive expressions for D’ and D” of a Voigt-Kelvin model 
consisting of z elements assuming a sinusoidal strain application. Applying 
equation (3-22) to the Voigt-Kelvin model experiencing a strain in the j t h  
element given by 

results in the set of equations 

(3-35)  

o ( t )  = E .E eiWt + vEjiwE,,e iwt for j  = 1 to z (3-36) 
J 0, 
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j=1 

Solving equations (3-36) and (3-37) for the strain in thejth element gives 

O E  ( t )  sj( t )  = E,, 8" = 
J E j  + qEjiw 

(3-37) 

(3-38) 

1 
6 

Figure 3-9. Voigt-Kelvin model. 

which, when substituted into equation (3-37) and simplified, results in 

z 

(3-39) - - -=D*=z  4 t )  1 

O E  (9 j = l  Ej  + qEjio 

It is clear that an inversion of this equation will not yield a simple result. 
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B. DISTRIBUTIONS OF RELAXATION AND RETARDATION 
TIMES 

The pertinent parameters used in a generalized Maxwell model can be easily 
presented in graphical form as shown in Figure 3-10. Here three spring 
constants (lo'', lo*, and lo6) are associated with relaxation times (lo2, lo4, and 
1 O5 respectively). Clearly the stress relaxation modulus for this particular 
generalized Maxwell model could be easily calculated using equation (3-34). 

In considering systems where there are very many Maxwell elements 
employed in the model, that is, z in equation (3-34) is large, it is often 
convenient to replace the summation in the equation by an integration. Thus: 

E( t )  = J-& (z)e-"'dz (3 -40) 

The various E,'s are replaced by a continuous function, E,(z), of the relaxation 
time where this function is called a distribution of relaxation times. Note that 
the dimensions of the variable E,(z) and Ej  are not the same nor is E(z)  a 
modulus; instead it is akin to a probability density. The variable z has 
dimensions of time. The physical interpretation is as follows: E(z)dz is the 
fraction of the total relaxation modulus that has relaxation times between z and 
Z +  dz. In addition to the distribution E(z), one often encounters H(z),  which is 
defined as 

H ( z )  = zE(z) (3-41) 

9 
z 
u1 

0 

L 

0 7  
2 

6 5  

3 3  

ui- 
0 

1 

Log z, or Log 1 

Figure 3-10. Discrete distribution of relaxation times and associated partial modulus values. 
The continuous line represents the stress relaxation modulus based on this distribution. 

Note that H(z) has the dimensions of modulus (e.g., units of Pa). In terms of 
H(z), equation (3-40) becomes 
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(3-42) 

where the integral on the right is done over In z , as opposed to z. 

given in Figure 3-1 1. Mathematically H(z)  can be written as 
Consider calculating the modulus for the distribution of relaxation times 

H ( z )  = 0 
H ( z )  = kz-' 
H ( z )  = 0 

logz < 0 
0 < logz < 1 
logz > 1 

With this H(z), equation (3-42) becomes: 

- e-') k - ( t i l o )  E ( t )  = -(e 
t 

This function is also plotted in Figure 3-1 1; 

(3 -43) 

(3-44) 

I I \  I 
- I  0 1 2 

Log r or Log f 

Figure 3-11. Continuous distribution of relaxation times expressed as H(r)  and the 
corresponding tensile stress relaxation modulus E(t). 

In addition, dynamic modulus functions can be calculated via this 
distribution function; E'(w), for example, is given as 

In r=m w 2 z 2  
In r=-w 1 + w 2 z 2  

E ' (w)=  J H ( z )  d lnz (3-45) 

A similar method is used to consider compliance functions. Here, however, 
the distribution of retardation times L( z), defined as 
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is used. Although H(z )  and L(z)  are related, their exact quantitative 
relationship is quite complicated; the interested reader should consult sources 
such as Ferry’ or Gross.* Mathematical methods for extracting distribution 
functions from experimental modulus or compliance data are also given by 
these authors, and are available commerciall~ as well in the form of freeware 
(e.g., Contin3). In addition, see Problem 10 at the end of this chapter. 

Distributions of relaxation times for real polymer systems are slightly more 
complex than that shown in Figure 3-1 1. Tobolsky has suggested, for example, 
that the stress relaxation modulus of NBS polyisobutylene shown in Figure 3- 
12 can be thought to arise from a distribution of relaxation times that is 
composed of a “box and a wedge.” This composite is shown in Figure 3-12, 
and can be expressed as 

H ( T )  = A 4 l ~ ” ~  
H ( z )  = E, 

z, < z < z, 
z, < z < z, (3-47) 

Log t / a ~ ,  h & Log T, h 

Figure 3-12. Stress relaxation master curve for N.B.S. polyisobutylene at 25°C (dotted line) 
and corresponding box-and-wedge distribution (solid lines). [Adapted from A. V. Tobolsky, 
Properties and Structure of Polymers, p. 128 and 151, by permission of John Wiley & Sons, 
Inc.] 

In this particular case, Tobolsky gives the pertinent parameters the following 
values: 

M =  8.9 x lo3 Pa s1’2 Eo= 7.2 x105 Pa 

z, 10-12.5 22=10-5.4 s 
(3-48) 
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z, = 1.06 10-20~;30  s 

Clearly the wedge is independent of molecular weight and gives rise to the 
primary transition. The box portion of the spectrum generates the rubbery 
plateau and rubbery flow regions of the master curve. As discussed in Chapter 
4, Section A, these regions are strong functions of the molecular weight and 
molecular weight distribution, and the box portion of the spectrum mirrors this 
fact in the dependence of z3 and z, on the weight-average molecular weight 
Mw. 

C. MOLECULAR THEORIES 

Having discussed the viscoelastic responses of simple mechanical models, we 
may now consider molecular theories. In this treatment it will be shown that 
the results of molecular theories can, in fact, be couched in terms of the 
mechanical models already presented. The molecular theories predict the 
distribution of relaxation times and partial moduli associated with each 
relaxation time (zi's and E/s for all i's), which we treated as unknowns or 
parameters in the previous discussion. Thus, although molecular theories are 
not based on mechanical models, the results of these treatments may be 
presented in terms of the parameters of these models. Since, as we have 
already shown, it is possible to develop expressions giving the viscoelastic 
responses of the models to various types of deformations, the predictions of the 
molecular theories are obtainable through the known responses of these models. 

(a) 
0 4 W W W W W O J -  
0 1 2 3 z-2 z-1 Z 

(cl 
Figure 3-13. Bead-and-spring representation of a real polymer molecule in dilute solution. 

Although far from being rigorous, a presentation of some of the salient 
points of the Rouse theory4 will be attempted using the method of Peticolas.' 
The conclusions reached in this section are more or less applicable to the 
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theories presented by Rouse,4 Bueche,6 and Zimm,7 among others. The aim of 
this treatment is to present assumptions upon which the Rouse theory is based 
and to outline the results. Mathematical rigor is not attempted in this 
introductory treatment. For a complete or perhaps accurate understanding of 
the field, the reader must consult the original 

On examining the treatment of the isolated polymer chain in Appendix 2 of 
Chapter 6, one realizes that a long, freely orienting molecule behaves like a 
Hookean entropy spring (Figure 3-13a.). Manipulation of equation 6 )  in 
Appendix 2 of Chapter 6 shows that the restoring force on this spring upon 
stretching by some amount AXis given by 

3kT 
r2 

f (3-49) 

The molecular theory subdivides the polymer molecule into subunits or 
submolecules just long enough so that the end-to-end distribution of each of 
these subunits is Gaussian. This is done so that equation (3-49) is applicable to 
each submolecule. Our picture of the molecule then becomes much like Figure 
3-13b. The volume of the submolecule is concentrated at the beads, which are 
held together by the Hookean springs. Since we will be considering the 
response of the system to a unidirectional perturbation in the x direction, a 
spring oriented exactly perpendicular to the x direction will not contribute to 
the stress acting in the x direction. This holds also for any component of an 
oblique spring not in the x direction. Figure 3-14 indicates the deformations 
allowed for springs in different configurations relative to the perturbing 
function. It should be clear that an “effective spring constant” in the x direction 
will now allow us to portray our system as a one-dimensional chain (Figure 3- 
13c). It arises 
because the polymer chain is linear and because the deformation considered is a 
unidirectional one. The only interactions in the model are those of adjacent 
submolecules with one another. 

This linearization of the problem is in no way restrictive. 
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Before deformation j After deformation -~ I -  
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'I: 
0 

Principal deformation direction 

Figure 3-14. Motions of submolecules with varying orientations in a medium subjected to a 
uniform extensional deformation. A polymer chain will contain many submolecules. 

Having proceeded this far, we are now in a position to write the equation of 
motion for our linear bead-and-spring model. To do this we divide the polymer 
molecule into z submolecules so that there are z springs and z + 1 beads. We 
now introduce a unidirectional deformation. The restoring force on each of the 
beads is given by: 

- 3kT 
f o x  = y ( X 0  -4) a 

(3-50) 
- 3kT 

f. =- ( -Xj -1+2X,-X,+l)  l s i l z - 1  
a 2  LT 

In this set of equationsfk is the force on the ith bead in the x direction, X, is 
the amount by which bead i has been displaced from its equilibrium position, 
and a2 is the mean square end-to-end distance of the submolecule. The form of 
the equation results from the fact that the x-directed force on the ith bead 
reflects the difference between the x-directed forces on the zth and i + 1st 
segments. An additional force acts on the molecule due to the viscous nature of 
the medium in which it is immersed. Under the assumption that the beads 
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move in the manner of spheres through a viscous solvent, the drag force on 
each bead is 

(3-5 1) 

where ps is the segmental friction factor. Under the further assumption that the 
forces arising from the acceleration of the beads are small, the elastic forces 
given in equation (3-50) and the viscous forces given in equation (3-51) must 
balance. This allows us to write: 

- 3kT 
p, xi = ~ (-Xi-, + 2x; - xi+, ) 

a2 
1 S i i z - 1  (3-52) 

This set of linear first-order differential equations may be represented in matrix 
notation as: 

[2] = -B[A][X]  

where 

[XI = 

[ A ]  is the square ( z  + 1 )  x ( z  + 1) matrix 

[A1 = 

1 -1 0 .  
- 1  2 -1 0 

0 -1 2 -1 
0 0 .  
0 0 .  

0 .  

-1 
0 

2 - 1  
-1 1 

(3-53) 

(3-54) 

(3-55) 
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which gives the coefficients for the equations (3-52), while B is the composite 
constant 3kTla2ps. 

Equation (3-52) represents the total physical content of our model. From 
here on, we will be concerned with mathematical methods that allow us to 
solve this apparently complicated set of equations. The main problem arising 
in any attempted solution of these differential equations results from coupling 
of the motions of the beads. Thus X. is not a function of the position of the ith 
bead itself, but is directly dependent on the position of the adjacent beads. This 
rather standard problem is effectively treated using the techniques of normal 
coordinates. We will define a new set of coordinates, qi, made up of a linear 
combination of the Xi's. Thus these new coordinates will be defined as 

or, in matrix notation: 

(3-56) 

(3-57) 

In this equation, [q] and [XI are column matrices and [Q] is a ( z  + 1) by (z + 1)  
square array. It remains for us to define [Q] in such a way that it will lead to 
the solution of equation (3-52). To do this, we wish to be able to express every 
equation in the set in terms of the normal coordinate and its time derivative 
alone. In matrix notation we formally write: 

[41 = -"l[ql (3-58) 

where [A], unlike [A] ,  is diagonal. Now, for example, thejth equation in this 
set reads 

4 .  J = -BA.q. J .I (3-59) 

Since only thejth normal coordinate and its time derivative appear in equation 
(3-59), direct integration yields the time dependence of the motion of this 
coordinate. Clearly, it is in general difficult to have any "feel" for what motion 
each normal coordinate represents since it has a complicated dependence on all 
of the real coordinates. Nevertheless, the sum of the motions of all of the 
normal coordinates is identically equal to the sum of the motions of all of the 
real coordinates because one is just a linear transform of the other [equation (3- 

Thus, to proceed mathematically, we must transform equation (3-52) into 
equation (3-58), which is done by diagonalizing the matrix [A] .  There exists 
another matrix [Q] such that 

5 6 ~ .  
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[Q-'l[AI[Ql= [A1 (3-60) 

Also 

In this equation [A is a diagonal matrix with all nonzero elements = 1. 
Operation by [Q-'1 from the left on equation (3-52) leads to 

If we now set 

our problem is solved, since equation (3-62) becomes 

[GI = -B[Al[ql (3-64) 

It must be reemphasized that the exact nature of [Q-'I is not necessary to the 
physical solution of our problem. Because the normal-coordinate approach 
merely represents a linear transformation of the real coordinates, the motion of 
the polymer represented by all the 4;s will be identical to the motion of the 
polymer represented by all the xi's. Our problem thus becomes the rather 
simple one of finding a diagonal representation of the (z + 1) x (z + 1) matrix 
[A].* This rather well known result (a similar form applies in the treatment of a 
vibrating string, among others) is derived in the appendix at the end of this 
chapter, and is merely stated here: 

wherep goes from 1 to z. Thus the diagonal matrix [A] is 

(3-65) 

* Note that [ A ]  was a (z + 1) x (z + 1) square matrix while [A] is a z x z. This difference in 
order represents the fact that while translation of the total molecule is expressed in [ A ] ,  it is not 
built into [A]. This causes no complication. 
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[A]= 

- - 
4 0 0 .  . .  
0 4 0 .  . .  

0 0 4 . . .  
. 4-1 0 

- . o  4 - 
and 

4 p  = - B i l p q p  

which can be directly integrated to give 

q ,  ( t )  = q,, = q, ( o ) ~ - ' ' ~ P  

(3-66) 

(3-67) 

(3-68) 

p = l t o z  
1 

Bil, 
=-- 

Here qp(0) is the value of the normal coordinate at time zero, that is, at the 
application of a perturbation, and qp(t) is the value of the coordinate at time t. 
We see that the coordinate response is exponential and the system response is 
just the sum total of all the coordinate responses. 

As mentioned above, however, the exact nature of the normal coordinate in 
terms of the real coordinates is not easily perceived. Likewise, the exact nature 
of the real perturbation is not easily visualized in terms of perturbation to the 
normal coordinates. Thus to carry out our calculation exactly, we would have 
to transform the perturbation into the normal-coordinate framework. This is 
exactly the technique used by Bueche.6 The perturbation, that is, the boundary 
condition, used to solve equation (3-67) was that every normal coordinate was 
instantaneously displaced to the position of qi(0) at time zero and then no 
additional forces were put on the system. This perturbation corresponds neither 
to creep nor to stress relaxation. Although boundary conditions corresponding 
to these real experiments are more complicated in terms of normal coordinates,6 
it can be shown2 that the relaxation times that arise in a stress-relaxation 
experiment are just one-half as large as 'those calculated above. Thus, from 
here on zp will be used to denote a relaxation time and is given by 
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1 1 (3-69) 

Now one may associate these relaxation times with the relaxation times of a 
generalized Maxwell model. Thus the stress relaxation behavior for the bead- 
and-spring model is given as 

(3-70) 
p=I 

where the individual zp’s are given in equation (3-69). 

kinetic theory of rubber elasticity as applied to the submolecules. Once again, 
It remains to define the individual E;s; here one normally relies on the 

3kT f =-Ax 
a2 

(3-49) 

is the elastic force experienced by each spring if the ends are perturbed some 
amount Ax. Consider, however, that we have N polymer molecules per unit 
volume and the average cross-sectional area of each is b2. Thus the stress 
experienced by each spring should be given as 

f 0 =--_ 
b2 a2b2 

(3-71) 

The instantaneous tensile modulus is just the stress divided by the strain, so 

3kT 
E ab2 

E(0) 1 EL = - (3-72) 

The denominator of the right side of this equation is merely the volume 
occupied per submolecule, given as 

2 1  ab =- 
Nz 

(3-73) 

Here N is the polymer concentration in molecules per unit volume. Substitution 
of equation (3-73) into (3-72) yields 

E(0) = 3NkTz (3-74) 

Clearly, however, the short-time limit of equation (3-70) is just 
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E(0) = 2 E, (3-75) 
p=l 

Now one usually assumes that all of the individual Ep's are equal and given as 

E, = 3NkT (3-76) 

so that equations (3-74) and (3-75) are consistent. Since we have the zp's and 
Ep's of the generalized Maxwell model we may immediately write, for example, 

(3-77) 

Note that the choice of the tensile modulus is arbitrary; the shear modulus 
could have been calculated. In this case the factor of 3 would be absent. 
Remember that the variable N represents the number of chains per unit volume. 
Alternatively, equation (3-77) can be written: 

(3-78) 

where c is the more familiar mass concentration of polymer (e.g., kg/m3), R is 
the gas constant (e.g., 8.3145 J/mol K) and A4 is the molecular weight of the 
polymer (e.g., kg/mol). 

Example 3-1. Calculate the modulus Ep for each Rouse mode assuming a 10% 
solution of polymer of molecular weight 100 kDa. 

For a 10% solution, c = 100 kg/m3, assuming a solution density of about 1000 
kg/m3. A molecular weight of 100 kDa is the same as 100,000 g/mol or 100 
kg/mol. Thus in SI units, M = 100 kg/mol. The modulus according to equation 
(3-76) is then 

Ep = 3NkT = 3cRTIM 

= 3x100 kgim3x 8.31434 J/mol K x 298 K f 100 kg/mol 

= 7400 J/m3 = 7.4 kPa 

This value is reasonable for solutions of this concentration. 
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D. APPLICATIONS OF FLEXIBLE-CHAIN MODELS TO 
SOLUTIONS 

As we are primarily concerned with the viscoelastic nature of bulk materials in 
this introductory text, we will not dwell on the application of these ideas to 
solutions; however, considering that the model has been derived for the case of 
a dilute solution, it is of interest to examine briefly its agreement with the 
observed viscoelastic response of solutions. First it must be recognized that 
neither a*, the mean square end-to-end distance of the submolecule nor p, the 
segmental friction factor, may be easily evaluated. Thus a method of 
eliminating them from our equations would be helpful. The solution viscosity 
in excess of the solvent viscosity can be thought of as arising from the 
dissolved polymer and since our polymer behavior has been cast into the 
generalized Maxwell framework, this excess viscosity is just the sum of the 
viscosity of each of the elements in the model. 

(3-79) 
p=l  

where 7 is the shear viscosity of the solution, vS, is the shear viscosity of the 
solvent, and Gp is the shear modulus (one third of Ep for incompressible fluids). 
Combining equation (3-79) with (3-69), (3-76), with the definition B = 3kT/ci2ps 
yields 

(3-80) - ca2ps 1 
- 

z 1  
7 -‘I, = NkTx- 

p=l 2BAp - 4 z s i n 2 ( p ? i / [ 2 ( z  +1)]> 

Now for small values of X, 

sinX = X (3-81) 

and since this expression is in the denominator of each term in the sum in 
equation (3-80), where the smallest arguments of the sine function will 
contribute most, we may write 

This summation is well known, and for large values of z it is equal to 7r2/6. 
Furthermore, for large values of z, 1 is small compared to z so that substitution 
of equation (3-82) into equation (3-80) yields 
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Applying the same arguments to equation (3-69), remembering 
3kTla2ps, yields 

a2psz2  
6x2kTp2 

z =  forp < z 

Combination of equation (3-83) and equation (3-84) gives 

(3-83) 

that B = 

(3-84) 

(3-85) 

where the excess viscosity 77 - vS and concentration of the solution are known 
or are easily measured. Recalling that c = MNINA, where c is the mass 
concentration, M is molecular weight and NA is Avogadro's number, gives the 
convenient form 

(3-86) 

Rouse and Sitte18 have investigated the applicability of the theory to real 
systems, in particular, dilute solutions of polystyrene in the good solvent 
toluene. Their results are reproduced in Figure 3-15. The agreement between 
theory and experiment is excellent. However, in a sense a certain amount of 
"curve fitting" is involved, since the friction factors and a* have been adjusted 
to fit the data through the method outlined in deriving equation (3-84). 

E. THE ZIMM MODIFICATION 

Consideration of another major modification that has been applied to the 
flexible chain model seems pertinent at this point. It has long been appreciated 
that the velocity field of the solvent would be perturbed deep inside a coiled 
polymer molecule. It is clear that this effect is not considered in the above 
treatment because the viscous drag is given as p,Xi in equation (3-51) 
irrespective of whether Xi happens to be inside the coiled molecule or on its 
surface. Thus one might expect the Rouse formulation to be most applicable to 
polymer-solvent systems in which the elongated conformations of polymer 
chains predominate. For such conformations, there would be little shielding of 
one part of a molecule by another part of the same molecule. This is the case in 
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Figure 3-15, where toluene, a good solvent for polystyrene, would favor 
extended conformations. Balanced against this is the assumption of the model 
that the Gaussian distribution function holds (see Chapter 6, Appendix 2 for 
details). This is not the case in a solvent that favors extended conformations. 
Thus, the agreement shown in Figure 3-1 5 is probably fortuitous. 

0.44 4 
Log (frequency, Hz) 

Figure 3-15. Experimental observation (PS in toluene at 30.3 "C) and prediction of the Rouse 
theory. The molecular weights ( m a )  and concentrations (kg/m3) from left to right are: 6200, 
1.44; 520, 8.9; and 253, 14.6. [After P. E. Rouse and K. Sittel, J.  Appl. Phys., 24, 690 (1954)] 

Zirnm7 has developed a theory that treats such "hydrodynamic shielding" 
and although we will not go into detail, it is helpful to examine the results of 
this calculation. The main difference between the Rouse and Zimm treatments 
occurs in the relaxation times, not in the partial modulus values. The relaxation 
times according to the Zimm treatment are 

(3-87) 

where the Kp are constants: K1 = 4.04, K2 = 12.79, K3 = 24.2, and so on. 
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Figure 3-16. Predictions of the Rouse and Zimm theories. [After J. D. Ferry et al., J. Phys. 
Chem., 66, 536 (1962). Reprinted by permission of the American Chemical Society.] 

Figure 3-17. Experimental results for polystyrene in ArochlorB compared with predictions 
according to the Zimm theory. [After J. D. Ferry et al., J. Phys. Chem., 66, 536 (1962). 
Reprinted by permission of the American Chemical Society.] 

In Figure 3-16 we have compared the prediction of the Rouse and Zimm 
theories.' The limiting values of the slopes of plots of log G' versus log w at 
large w are one-half for the Rouse treatment and two-thirds for the Zimm 
treatment. This arises from the different distributions of relaxation times in the 
Rouse and Zimm theories. In Figure 3-17 the results of DeMallie' for the 
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system of polystyrene in Arochlor@ are presented.§ Arochlor@, a rather poor 
solvent for polystyrene, yields a predominance of tightly coiled polymer 
conformations where hydrodynamic shielding would be expected to be most 
important. The remarkable agreement between theory and experiment shown 
by Figures 3-16 and 3-17 illustrates the validity of the bead-and-spring model 
for the viscoelastic behavior of polymer solutions. 

F. EXTENSION TO BULK POLYMER 

Returning to our major concern, bulk polymeric behavior, we may ask if we 
should expect the bead-and-spring model to be applicable at all. The equations 
of motion, equation (3-52), were written on the premise that the beads 
encountered viscous drag by virtue of their immersion in a solvent with 
viscosity vs. No solvent is present in the bulk case, and it would thus appear 
that equation (3-5 1) should not apply to this situation. However, the functional 
form of the viscous drag term [the left side of equation (3-52)] merely states 
that the solvent medium exerts the same drag on each bead regardless of the 
bead's position. Substituting an ensemble of bead-spring polymer molecules 
for the solvent can preserve this functional form. This procedure has the effect 
of changing the numerical value of the segmental friction factor, ps, but leaving 
the form of the left side of equation (3-52) unchanged. The right side of 
equation (3-52), representing the restoring force resulting from the perturbation 
of a submolecule, is an intramolecular property, at least to a first 
approximation, and thus would not be expected to change drastically with the 
substitution of additional polymer for solvent. Therefore equation (3-52) is still 
applicable to the bulk polymer with the appropriate changes in numerical 
values for such parameters as ps and a2. The usual normal coordinate analysis 
again leads directly to equation (3-69) for the distribution of the z relaxation 
times. The partial modulus remains NkT where N is the number of polymer 
chains per unit volume of bulk polymeric material. An analysis equivalent to 
that given in equations (3-79) through (3-85) yields the relationship: 

(3-88) 

where 7 represents the steady-flow shear viscosity of the bulk polymer and p is 
the mass density. Again, this is for high z. The time-dependent shear stress 
relaxation modulus would thus be given as 

' Arochlor@ is the trademark for a series of chlorinated biphenyls, which are no longer widely 
available due to health and environmental concerns. 
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Figure 3-18. Rouse theory in the rubbery plateau and flow regions. Varying numbers of 
segments considered. Note increasing region of power-law behavior (slope = -%) as the 
number of segments is increased. 

A plot of log G(tlz1) versus log(tlz1) is shown in Figure 3-18. We have 
assumed that N = 6 x 10’’ molecules/cm3, which corresponds roughly to a 
molecular weight of lo5 and a density of 1 g/cm3; NkT, the modulus associated 
with each relaxation time, is then 3.2 x lo4 Pa at 385 K. The number of terms 
in the summation of equation (3-89), or equivalently, the number of 
submolecules in the polymer molecule, z, is not determined. We have plotted 
G(t) for several values of z. It should be clear that z = 1 is just the Maxwell 
body behavior. As z increases, the Rouse theory predicts that the relaxation 
profile, while still approaching exponential behavior at long times, becomes 
increasingly power law (straight line on the plot shown) at lower frequencies. 
The slope has the same magnitude, 54, as that for the components of the 
complex dynamic modulus. Power-law behavior denotes an indefinitely broad 
and continuous spectrum of relaxation processes, placing the material at the 
boundary between a solid and a liquid. If the relaxation is truly power law over 
all frequencies, then all viscoelastic properties will also be power law. 

Quite disappointing, however, is the comparison of the curves in this figure 
with those presented in Chapters 2, 4 and 5 that show the observed 
experimental response of bulk polymers. Experimentally, high-molecular- 
weight polymers exhibit two major transitions while the bead-and-spring model 
predicts only one, albeit with a broadened time response relative to a Maxwell 
model. 

Ferry, Landel, and Williams1o have suggested a simple but appealing 
explanation for this apparent shortcoming of the theory and, moreover, have put 
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forth a modification of the theory that "predicts" two transitions as observed 
experimentally. In describing their treatment, let us introduce some of the 
considerations regarding the molecular mechanisms giving rise to these 
transitions; these are explained in greater detail in Chapter 4, Section A. The 
behavior in the rubbery region is due mainly to the long-range translational 
motions of an entangled rubbery mass. The molecular motion responsible for 
the behavior observed in the primary transition region, however, is of a much 
shorter range, involving perhaps only a handful of monomer units. 
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Figure 3-19. Calculations of the viscosity from the stress relaxation master curve for NBS PIB 
at 25 "C (see Figure 3-12) via equation (3-89), showing the important contribution to the 
integral from the long-time data and the negligible contribution from the short-time modes in 
the glassy region. 

Consider now the segmental friction factor ps used in equation (3-52). If the 
motion of submoleculej is part of a coordinated long-range type of motion, we 
would expect the friction factor to reflect the entangled nature of the system, 
since for a long-range motion to take place, entanglements must be unraveled. 
Conversely, in short-range motions, entanglements should play only a 
diminishingly small role; the friction factor would be expected to correspond to 
that of the same chemical species without entanglements (low-molecular- 
weight polymer). Thus Ferry, Landel, and Williams argued that one should 
expect two independent friction factors to be operative. One of these reflects 
the viscous drag experienced by a submolecule taking part in short-range 
uncoordinated motions with short relaxation times, and the other is indicative 
of the viscous drag experienced by a submolecule taking part in long-range 
coordinated motions with long relaxation times. 

We now ask which of the two friction factors has been used in the 
expression for zp equation (3-88). The segmental friction factor ps has been 
eliminated from this expression through its dependence on 7, the steady-state 
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shear viscosity. Our question becomes, then, what molecular motion does 7 
depend upon? Quite possibly it could reflect all motions of the polymer 
molecules, but fortunately for this discussion, it is rather simple to show that 
only long-range coordinated motions contributed substantially to 7. To do this, 
we borrow from Chapter 4 equation (4-7): 

7 = cG(t )d t  (4-7) 

where we are now calculating a shear viscosity. 
demonstration of this equation.) A simple transformation yields 

(See problem 3-8 for the 

7 = tG(t)d Int (3-90) 
-m 

In Figure 3-19 is plotted the integrand of this integral along with a typically 
reduced master curve of a high-molecular-weight polymer. It is evident that the 
only significant contribution to the area comprising 7 comes from the long-time 
portion of the master curve, clearly indicating that the above statement 
concerning long-range motions as being the primary contribution to 7 is 
correct. 

The friction factor operative for the short-range motions may be thought of 
as being obtained from measurements on polymers where entanglements are 
not present and the only contribution to all physical properties, 7 included, 
comes from short-range motions. Such a polymer is just one of low molecular 
weight where entanglements are not possible because the chains are too short. 
The critical molecular weight for the onset of entanglements varies strongly 
with the structure of the polymer. For example the critical molecular weight is 
about 30,000 for polystyrene and only about 3000 for polybutadiene. To 
account for behavior both above and below the critical entanglement length, 
Ferry, Landel, and Williams postulate one friction factor operative at 
relaxation times shorter than some critical relaxation time z, and another, ps, 
operative at longer relaxation times: 

(3-91) 
p,a2z2 

6n2kTp2 
z =  z- 2 z, 

Moreover, they postulated a relationship pIpo as 
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A4 
logp, = 2.4log- 

Ps,o Mc 
(3-92) 

where A4, is the critical molecular weight for the onset of entanglement. We 
see that they postulate a friction factor ps which varies as molecular weight to 
the 2.4 power, unlike ps,o which is not a function of molecular weight. If we 
associate the long modes ( z p  2 zc) with the rubbery-flow region, then the 
number of modes for this region is dx. The distribution of relaxation 
times given in equation (3-84) was used to calculate the stress-relaxation 
modulus curve shown in Figure 3-20, and it is clear that the gross features of 
the relaxation of a real polymer are reproduced. However, to 
curve, it was 

10 

FL W modification 
of Rouse theory 

generate this 

necessary to assume unrealistic physical parameters. Before tackling this 
problem, let us examine the origin of the 2.4 in equation (3-92). 

Remembering that the viscosity of a generalized Maxwell model is just the 
sum of the viscosities of the individual Maxwell elements will help shed -light 
on the 2.4 factor in equation (3-92). We have already noted that all of the 
viscosity of a high-molecular-weight polymer derives from long-range 
translational motion of the polymer, that is, from motions with zp > z, or where 
the fiiction factor ps is operative. Thus we may write 

(3-93) 
p=l 

and 



NkTpsa2z2 pi 1 
6n2kT p=,p  7 7 =  c1  

wherep, is defined as 
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( 3  -94) 

(3-95) 

Ifp, is greater than five, for example, the summation is relatively insensitive 
to changes in p ,  and essentially may be considered as a constant. Examination 
of each variable in equation (3-94) with respect to molecular-weight 
dependence reveals 

77 CC M3.4 (3-96) 

since N,  the number density of chains is inversely proportional to molecular 
weight; z ,  the number of submolecules per polymer molecule, is directly 
proportional; and the friction factor ps, it has been pointed out, varies as the 2.4 
power of molecular weight. All the other terms are independent of molecular 
weight. Realizing that equation (3-96) is an established experimental fact for 
high-molecular-weight materials makes clear the choice of 2.4 in equation (3- 
92). There is no direct way of deriving this value from this theory. 

As mentioned above, there are several shortcomings of the Ferry, Landel, 
and Williams modification of the Rouse theory that must be kept in mind. 
Although these considerations indicate that the modification does not strictly 
account for all observations, it must be appreciated that this was a major step in 
making a degree of theoretical sense out of a large amount of sometimes 
confusing experimental data. 

The argument of Williams" is perhaps the most serious blow to the Ferry- 
Landel-Williams work. Williams examined the short-time limit of equation (3- 
89) and observed that 

z 

G(0) = N k T C ( 1 )  = zNkT (3-97) 
p=l 

He pointed out that this relationship is true no matter what value of the friction 
factor is used, because the exponential of (O/z,) is always 1.0. The limiting 
value of the modulus at short times is clearly predicted from equation (3-97). 
Experimentally, G(0) is found to be in the neighborhood of 3 GPa for most 
polymers (Chapter 4). If we consider, for example, a polymer of molecular 
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weight 150,000 and a density of 1.5 g/cm3, the value for NkT at 300 K turns out 
to be about 2.5 x lo4 Pa. 

5 -  (Polysfryene, transition region) 

I I I I I 

What, then, is the value of z? One should recall that a submolecule was 
defined as the shortest unit of a chain whose end-to-end distance is Gaussian. 
Clearly, this would not be true of a monomeric or dimeric submolecule due to 
internal constraints on molecular geometry. Williams decided that the smallest 
unit he could accept for a submolecule was composed of five monomer units. 
If we let our polymer be polystyrene, whose monomer molecular weight is 100, 
we have 1500 monomer units per chain, or 300 submolecules per polymer 
chain. Using equation (3-97) 

G(0) = 300 x (2.5 x lo4 Pa) = 7.5 x lo6 Pa (3-98) 

which is about two orders of magnitude smaller than the experimentally 
determined value. A reasonable explanation for this shortcoming is the use of 
NkT as a partial modulus for all chain motion. This value, while clearly 
applicable to rubberlike systems, is not so clearly applicable to deformations of 
the glassy state. Tobolsky and DuPre** have pointed out that the equations of 
motion [equation (3-52)] can be written and solved for chain units much 
smaller than the submolecule while employing a partial modulus more realistic 
for the types of molecular motion expected in the glassy state. Thus a Feny- 
Landel-Williams type of modification is still feasible in spite of Williams' 
objection. 

Another major discrepancy between theory and experiment is exemplified in 
Figure 3-21. In this figure, the predicted relaxation according to the Rouse 
theory is compared with an experimental result for polystyrene in the primary 
transition region. It is clear that polystyrene undergoes its glass-to-rubber 
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transition much more sharply than is predicted by flexible chain theories, which 
predict a slope of -% in this region for a log-log plot. Many other polymers, in 
contrast to this, obey the flexible-chain theory result rather closely. 
Polyisobutylene is one notable example. The discrepancy noted in the case of 
polystyrene is important, however, as we shall show. The question arises: 
What molecular factors contribute to the discrepancy in the case of 
polystyrene? To explore this question, we use the maximum slope of the stress 
relaxation master curve in the glass-to-rubber transition region as a criterion for 
agreement between theory and experiment. Values of this slope measured 
experimentally for several polymers are listed in Table 3-3. 

Table 3-3. Transition Region Slope for 
Several ~ o ~ y m e r s ’ ~  

Polymer Slope 
Poly(viny1 chloride) - 0.6 
Pol yisobut ylene - 0.7 
Poly(ethy1ene terephthalate) - 0.9 
Pol ycarbonate - 1.2 
Polystyrene - 1.5 

The starting point is the theoretical expression for the relaxation modulus taken 
from the fundamental Rouse formulation given in equation (3-89). The 
relaxation times are those given in equation (3-91), except we are concerned for 
this demonstration only with the transition region where short-range motions 
dominate, i.e., zp < z,. Let us define a fictitious relaxation time zL such that 

poa2z2 
ZL = ___ 

6n2kT 
(3 -99) 

where zL would be the maximum relaxation time z1 if one were not forced to 
change friction factors from ps,o to ps for the long relaxation times. For all zp < 
z, one may then write 

and equation (3-89) is modified to become 

(3- 100) 

(3- 10 1) 
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where G, the partial modulus associated with each relaxation, may or may not 
be NkT but is the same for all short-range molecular motions. Similarly, z is the 
number of molecular units considered per chain and is not necessarily the usual 
number of submolecules. It is argued now that for relatively large values ofp,  
sayp > 5, the summation may be replaced by an integration to yield 

Letting 

(3- 1 02) 

(3-103) 

Although this integral cannot be carried out analytically, it is proportional to the 
incomplete gamma function P(a, x) = y(a, x)/F(a), where r (a )  is the complete 
gamma f~nction: '~~' '  Thus 

(3- 104) ua-l -u I e du = y(a,x) = P(a,x)T(a) 

As a = % in this case, r ( a )  = r(%) = &. Thus 

An important aspect of this equation is the behavior of P(?4, x), which rapidly 
varies between 0 and 1 near x = a. Thus, if z and pc are sufficiently different, 
there exists a range of t/zL that gives a value of almost exactly 1.0 for the 
quantity in the square brackets. In this range, then, G(t) is controlled 
exclusively by the t-' term, giving the characteristic -% slope on log-log scales. 
The advent of the incomplete gamma function is incidental. Recall that the t-' 
term resulted from the substitution of X = tp2/q to simplify the integral in Eq. 
(3-100). Thus the important and fundamental feature of the Rouse formulation 
is the l/p2 dependence of the relaxation times, which leads to the -% slope. 
The function G(t)/G(O) has been plotted in Figure 3-22, and for times between 
rL/z2 and r~/p: it is clear that the slope of log G(t) versus log t is -% , as 
expected. 
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Figure 3-22. 
rela$ng elements. The elements in the transition region in each case is z - pc .  

Relaxation in the primary transition region considering varying numbers of 

TobolskyI6 has suggested that the response of a highly coupled system 
would be more like that experimentally observed for polystyrene and has 
suggested ways to solve the equations generated from these considerations. 
Instead of considering the response of a linear chain, he treats the assembly of 
molecules as a network that is coupled, via springs, in two and three 
dimensions. This treatment is considered beyond the scope of an introductory 
book; interested readers are referred to the original papers. 

Advancement of these historical treatments has taken many routes. One 
fresh approach was to abandon the normal-mode approach altogether for the 
rubbery-flow region and to treat relaxation in this region as a diffusion process. 
This approach, called reptation, is described below. It focuses principally on 
the motions at longer times and assigns Rouse-like relaxation to shorter times. 
For description of relaxation in the glassy region, there has been some recent 
development in justifying the “stretched exponential” form 

12,13,16.17 

G(t) =Go exp[-(tlz)P] (3- 1 06) 

in terms of molecular motions in the glass.’’ This equation is also known as the 
KWW (Kohlrausch; Williams and Watts) equation as was first used by 
Kohl ra~sch’~  in 1876 to describe the relaxation of inorganic glasses. The shape 
of the KWW equation is compared with the Maxwell model in Figure 3-23.+ 

For p < 1, the KWW function has an unusual behavior as time t approaches zero in that the 
relaxation rate -dG(t)ldt becomes infinite, while the slope on a log-log plot such as Figure 3-23 
becomes zero. 
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The KWW model has found use in describing the results of dynamic 
simulations of a glass using a partially filled cubic lattice construct (e.g., Okun 
et a1.20). Relaxation in the glass occurs, according to this model, by hopping of 
segments from filled to open sites in the lattice. As the glass is cooled, the 
segments become longer, and the probability of a neighboring open site 
becomes rapidly lower. The result of this analysis is a Rouse spectrum wherein 
the normal-mode relaxation follows the KWW form instead of single 
exponential. As the mode number index p increases (lower relaxation times), 
the value of p decreases; that is, the relaxation process covers a wider time 
frame. Thus 

z 

G(t) = G Cexp[-(tp' / T ~ ) ~ ( ~ ) ]  (3- 107) 
P'Pg 

where p(p) is the mode-dependent exponent. The form of p(p) is not given 
explicitly by the theory. 
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Figure 3-23. Comparison of the relaxation behavior of the empirical KWW expression of 
equation (3-104) with data for PIB in the rubbery flow region. Data: NBS PIB; see Ferry' for a 
table of these data. Copies of the data are also in the CD (PIB-Rel-1. TXT and P I B - R e l -  
2. TXT). 

Relaxation processes in the crosslinked rubbery state are generally small in 
magnitude but nonetheless of great practical importance. Heating in cyclically 
deformed elastomers is an often-undesirable outcome of these processes. 
While the high-frequency relaxation processes in elastomers undoubtedly 
involves Rouse-like motions of segments of the network chains, the low- 
frequency relaxation is assignable to reptation (see section G) of dangling chain 
ends. Curro and Pincus*' showed that reptation of the dangling ends by path 
retracement (diffusion by doubling back along its own contour) will produce a 
relaxation of the form 
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G(t) = G(w)[l- (t  / z ) - ~ ]  (3-108) 

where G(w) is the equilibrium modulus, z is a characteristic time and m is a 
positive constant that depends on the crosslink density of the network (see 
Chapter 6 for a description of network topology). This relationship was 
postulated earlier by Chasset and Thirion,22 but purely as a convenient 
empiricism for describing their data. Typically m is around 0.1, indicating that 
the relaxation process is extremely broad. Clearly equation (3-108) is not valid 
except at t >> z. 

G. REPTATION 

Although theories of the Rouse-Bueche-Zimm type have been very successful 
in rationalizing the behavior of polymeric systems from a molecular point of 
view, another class of theories is presently commanding the most attention. 
These theories treat the motion of polymer molecules in terms of reptation, a 
reptile-like diffusive motion of each polymer molecule through a matrix formed 
by its neighbors.: To a considerable extent, this new approach has overcome 
some of the most important shortcomings of the normal-mode theories, which 
we will outline next.23 

As mentioned above, it is not clear that the concept of random- or ideal- 
chain elasticity is an appropriate assumption for modeling the dynamics of 
high-molecular-weight polymeric solids. In equation (3-97), for example, it is 
clear that the maximum value of the modulus predicted by the normal mode 
theories is much smaller than that observed experimentally. Even in solution, it 
may not be correct to use the spring constant associated with an ideal chain.23 
Also, the complications arising from hydrodynamic screening, which Zimm has 
considered for the case of dilute solutions, have been essentially ignored. 
Finally, in the normal-mode theories no direct account is taken of interchain 
interactions; it is tacitly assumed that one chain may pass through other chains 
to execute its normal-mode motion as if the latter were not present, that is, as if 
they were phantom chains (Chapter 6, Section B). The only role of these 
chains is to present a uniform viscous continuum in which the beads of the 
chain can move freely. Clearly, the influence of entanglements becomes 
difficult to visualize in this picture. In addition, the normal-mode theories 
provide no guidance on the role of more complicated chain architectures such 
as branches. 

The word “reptation” was created by De Gennes in 1971 (see De G e n n e ~ ~ ~ ) .  The term “tube 
model” is used to describe complete theories that incorporate Rouse and reptation motions 
within a tube-like constraint of the surrounding polymer chains. 
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The reptation model, on the other hand, recognizes such impediments to 
chain motion. In Figure 3-24a a single chain is shown along with randomly 
placed dots that represent fixed obstacles to the chain motion. The reptation 
model suggests that the chain must move through this obstacle course in a 
worm-like fashion as relaxation occurs. 

Figure 3-24. Reptation model view of a polymer chain: (a) with obstacles (dots); (b) in a tube. 

Exact calculations based on this model are complex. Nevertheless, it is 
relatively easy to develop certain "scaling laws" that relate how various 
macroscopic properties might depend on molecular properties. We will briefly 
sketch the development of such a scaling law for viscosity and chain length (or 
molecular weight) based on the reptation mode1.23>24 

For convenience, motion of the chain through the set of obstacles of Figure 
3-24a may be thought of as the motion of a chain constrained to move in a tube 
as shown in Figure 3-24b. The maximum relaxation time, zmax, can be 
associated with the time necessary for the molecule to diffuse out of the 
constraining tube. This is so because the contour of the original tube would be 
influenced by external stresses applied to the system, and these would be totally 
relaxed when the molecule was no longer contained in the tube. Thus the 
problem becomes one of calculating diffusion times of polymer molecules in 
tubes. 

According to De G e n n e ~ , ~ ~  this may be done as follows: First, apply a 
steady force f to the chain and observe its velocity v in the tube. Under these 
circumstances the mobility, ,&be, of the molecule in the tube is defined as 

v = P t u b e f  (3- 109) 
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Let n be the number of monomer units per molecule. To obtain the same 
velocity v, with molecules of various contour lengths, that is with various 
values of n, the force must be directly proportional to n. Thus, equation (3-109) 
may be rewritten: 

where p1 is independent of chain length. Knowing the molecular mobility 
allows one to calculate the diffusion constant through the Nernst-Einstein 
equationz5: 

b << a << R cc Ltube << L 

Figure 3-25. Tube model with definitions of important length scales. [Adapted from R. G. 
Larson, T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman and T. C .  B. McLeish, J.  
Rheol., 47, 809 (2003), with permission.] 

(3-1 11) 

where k is Boltzmann's constant and where a ,  is also independent of chain 
length. From the study of diffusion, it is well known26 that 

X 2  D = -  
2t 

(3-1 12) 



96 VISCOELASTIC MODELS 

where x is the average distance a molecule moves in time t in a medium of 
diffusion constant D. The direct combination of equations (3-1 11) and (3-1 12) 
gives 

(3-1 13) 

where the diffusion time has been identified with the maximum relaxation time 
and the diffusion distance with the tube length Ltube (Figure 3-25). Clearly, the 
tube length is directly proportional to the polymer chain length and thus the 
maximum relaxation time is predicted to depend on chain length to the third 
power. 
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Figure 3-26. The molecular-weight dependence of the viscosities of a series of polyethylene 
melts. It can be seen that the slope of 3 predicted by equation (3-1 15) falls short, while a slope 
of 3.4 is virtually perfect. (Data from various sources.) 

The viscosity associated with this reptating motion may now be calculated 
as 

q= ZG (3-1 14) 

In the elementary reptation model, the modulus G depends on distance between 
obstacles and is, therefore, not chain, length dependent. Thus, the chain length 
dependence of q and z,, are predicted to be the same, that is, 

r l x n  3 (3-1 15) 

Equation (3-115) is an example of a scaling law in that it indicates how 
viscosity should depend on or "scale with" chain length and, therefore, 
molecular weight. It is perhaps a bit surprising that this equation can be 
derived so simply, considering the complicated picture of chain motion 
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suggested by the reptation model. It is known from experiment that the 
viscosity of polymer melts actually varies as about the 3.4 power of molecular 
weight (equation 3-96), as shown in Figure 3-26. The polymer must be above a 
critical molecular weight, which is related to that for entanglement. 

Within the context of the tube model of entanglement melts and solutions, 
more complex motions are possible at shorter times. In addition there are 
additional phenomena at long times. For the latter, it is clearly unrealistic to 
expect the constraints of the tube to remain in place indefinitely. The process 
of removal of constraints is termed “constraint release.” This results in the 
effective widening of the tube, referred to as “tube enlargement.” A 
quantitative description of by des Cloi~eaux*~ has been termed “double 
reptation” because the tube walls are reptating away from the chain at the same 
time the chain is reptating out of the tube. This becomes exceedingly important 
in considering mixtures of different molecular weights, and states, in essence, 
that the large molecules slow down the relaxation of the small molecules, while 
the small molecules speed up the relaxation of the large ones. The form of the 
relaxation is 

where wi are the weight fractions of the components, and F are the reduced 
relaxation functions G(t)IG(O) of the components. 

At times less than z,, there are rapid motions within the tube that are 
thought to be Rouse-like. 

APPENDIX: MANIPULATION OF THE ROUSE MATRIX 

Equation (3-65), which will be derived in this appendix, represents the 
eigenvalues used in diagonalizing the matrix [A]  of equation (3-53) 

[k] = - B [ A ] [ X ]  (3-53) 

where [A]  is a square matrix of order (z + 1). 
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[A1 = 

- - 
1 -1 0 .  

-1 2 - 1  0 .  
0 - 1  2 - 1  0 .  
0 0 .  

0 0 .  -1 2 - 1  
- 0 -1 1 - 

First transform [A] into a form that will be easier to treat. To do this, note that 

where [ c] is also a matrix of order z x (z + 1) and has the form 

[CI = 

and 

[C'] = 

1 - 1  0 0 .  
0 1 - 1  0 .  
0 0 1 - 1 .  

. 1 -1 

. o  1 
0 

-1 

1 0 0 0  . 
-1 1 0 0  . 

0 - 1 1 0  . 
. . .  
. . . - 1  1 
. . .  0 - 1  

Thus, equation (3-53)  can be written as 

[XI = -B[C'][C][X] 

Now premultiply both sides of this equation by [q: 
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where [R] is called the Rouse matrix, 

0 0  
-1 0 

2 1  

. .  -1 
0 
0 

2 
-1 

0 

-1 
2 

-1 

which is a z x z square matrix. (See footnote near equation (3-65) for a 
discussion of matrix order.) The Rouse [R] matrix can now be diagonalized by 
the approach mentioned in the text: 

[v-' I ~ R I ~ P I  = [A1 (h) 

Operation by [@*I from the left on equation (b) gives 

[9-'""1= -B[9,-'1[~1[91[9,-' l [ c l [x l  (9  

In the above equation we took advantage of the fact that [@'I[ p] = [Ij, similar 
to that shown in equation (3-61). Now define normal coordinates 

and 

which are slightly different from equation (3-63). This is done strictly for 
mathematical convenience and has no consequence in the final solution. 
Equation (i) can thus be recast as 

M I =  - w " l  (3-64) 

where [q] and [q] are column matrices and [A] is a diagonal matrix. 
Now diagonalize [R] by rewriting equation (h) as 
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Equation (1) requires that the corresponding elements in the matrices on both 
sides must be equal after the multiplication has been carried out. Thus, for each 
value of Aij, we obtain a set of linear equations as follows (the reader may wish 
to verify them for a 3 x 3 matrix): 

............................... 

Pz ,z - I  + (2 - A>P,, = 0 - 

where pu is the ijth tern in [ p]. 

same form: 
To solve the set of equations given above, we note that they all have the 

with the condition that 

Equation (n) can be treated and solved as a difference equation. In operator 
notation it is just 

[-E-' + (2 - A) - E]pm = 0 (P) 

where the operator E displaces a function in the positive direction and E-' in the 
negative direction, that is, 

Now to solve equation (p), assume that the solution has the following form: 

p m (4) 

where p is a constant and a is a function to be determined. 
equation (9) into (p) results in 

Insertion of 

+ (2 -A) - e a ]  = 0 (r) 
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For equation (m) to yield nontrivial results, it is necessary that 

-e-a + (2 - 2) -ea = 0 

or 

Equation (s) is satisfied by two values of a, namely +a and -a, since cosh(+a) 
= cosh(-a). Thus, the solution to the difference equation also must be satisfied 
by two functions (Je'"' and pe-"").The general solution is then just 

g,, = Plpefrnn + ~2pe-"" (t) 

where P, and P2 are constants. Since 

and 

ex + e-' 
2 

cash x = 

we can have the following equivalent general solution: 

9" =MI sinh(rna) + M2 cosh(rna) (4 
where the M s  are constants. For rn = 0, equation (o), the boundary condition, 
demands 

q ) = 0 = M 2  (9 
and 

pm = 0 = sinh(z + 1) (w) 

since M ,  is a constant. But the value of the h 
argument is an integral multiple of (in), where i = Y - 1 . Therefore, 

erbolic sine is zero if the 

Combination of equations (x) and (s) finally gives the desired result: 
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ip T 
/ z p  = 2 - 2 C O S ~ - - - -  

2-1 

= 2 1 -cos- ( ,"=,I 
=lain:( 2(z PZ + 1) ) (3-65) 

wherep = 1, 2, 3 ,..., z. 

PROBLEMS 

1. 
times tl I much greater than 1. 
2. 
body 

theory of Chapter 2. 

sinusoidal strain application. 
3. 

Calculate the slope of the curve in Figure 3-3c and its limiting value at reduced 

Develop expressions for the complex modulus and compliance for a Maxwell 

(a) From the stress relaxation modulus of the body using the phenomenological 

(b) From the equation of the Maxwell model equation (3-6) assuming a 

Develop expressions for Or, D", El, and E" for a Voigt element 

(a) From equation (3-3 1) using the phenomenological relationships of Chapter 
2. 

(b) From the equation of motion of the Voigt element, equation (3-26), assuming a 
sinusoidal stress application. (Notice the appearance of a transient term when the 
boundary condition ~ ( 0 )  = 0 is used.) 
4. Derive an expression for the complex modulus of a generalized Maxwell model 
subjected to a smusoidal strain. Show that the complex compliance is not obtainable 
as a simple analytical function. 
5. Derive an expression for the complex modulus of z Maxwell elements in series 
assuming a sinusoidal strain application. 
6. Bueche6 has shown that the flexible bead-and-spring model leads to the following 
expression for the creep compliance of an undiluted polymer: 

1 
3NkTr2 p 

C1(' -e-''?P) 
8 D(t)  = 

where p = 1, 3 ,  5 ..., z. In this case the retardation times are given by 
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psa2z2 

3x2kTp2 
z =  p =  1 , 3 , 5  )...) z 

Show that 
(a) The retardation times can be rewritten as 

127 z =  
Nn2kTp2 

(b) The partial compliances of the equivalent Voigt-Kelvin model are 

8 
3NkTn2p2 

D, = 

7. Determine the parameters for a two-element generalized Maxwell model (El ,  E2, 
r,, z2) which would give a log E"(w) versus log w response similar to that shown 
below: 

I I 
10 - Maxwell-Wiecherf Model 

9 -  

Lu 

0 2 4 6 8 10 12 
Log 0 

8. 
9. 
< z,,, where 

Show that equation (3-90) yields the viscosity for a generalized Maxwell model. 
Calculate the slope of a stress relaxation master curve at some time t when z,,," < t 

10. It is frequently necessary to obtain the function H( z) from experimental data, and 
various approximations are useful in carrying out this transformation. Show that the 
so-called first approximation: 

results from approximating the expression in equation (3-42) by a unit step at t = z. 
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11. (a) Derive an expression for H,(z) for a Maxwell body. Plot this function as log 
Hl(z)/& versus z/  z ~ ~ ~ ~ ~ ~ ~ .  Be sure to remember that the relaxation time for the 
Maxwell body is a constant. 

(b) Compare the above result with H2( z), a second approximation of H( z) which is 
given as 

1 t=25 

12. (Computer) Consider the Rouse model depicted in Figures 3-16 and 3-18, and as 
described by equations (3-88) and (3-89). 

(a) Verify numerically the behavior of G(t/z,), G'( z, u), GIr( zl w), and I ~ * 1 (  z, u) as 
the number of modes becomes large. 

(b) Compare your numerical results for G(t/z,) using a stretched exponential 
(Kohlraush-Williams-Watts) relaxation function G(t) = G(O)exp[(-t/a T ~ ) ~ ] ,  where a and 
b are adjustable parameters. 

(c) Using your numerical results, invent a continuous empirical expression for the 
frequency response of G'(zlw), where zl is the longest relaxation time 0, = 1 mode). 
Assume limiting slopes of 2 and % at low and high frequencies, respectively. Use 
equation 3-78 for guidance. 
13. (Computer) Starting the double reptation relationship equation (3-1 16) for a 
bimodal mixture, use an iterative process to estimate the molecular-weight ratio of the 
two components of the blend with the relaxation data listed in file MW-Blend . TXT in 
the CD. This data is for a 5050 blend. Assume exponential forms for the F(t, Mi). 
14. If G(t) = Go/(l + t/z)", what is the lowest value of y1 that will give a finite shear 
viscosity. (Refer to Figure 3-1 9 and accompanying discussion.) 
15. Explore the nature of dG(t)/dt and d log G(t)ld log t for the Maxwell, KWW and 
Rouse relaxation functions as t +O and M. 

16. An isochronal stress-strain curve is established by applying deformation to a 
sample at various strain rates and cross-plotting the results at a fixed time. In this 
fashion the effects of strain can be separated from the effects of time. 

Show that the isochronal stress-strain curve is linear for a generalized 
Maxwell material. Calculate the time-dependent modulus from this result. 

Calculate and plot vs. t / z  the isochronal modulus for a single Maxwell model 
[G(t) = Ge-"? where the data are gathered using stress growth, creep and stress 
relaxation experiments. Compare the results. 
17. Using the Rouse model for bulk materials, estimate the molecular weight of the 
PMMA described by the data in PMMA4 5 . TXT in the CD. Compare with the reported 
molecular weight of 45 kDa. 

(a) 

(b) 



VISCOELASTIC MODELS 105 

18. (Computer) Repeat the calculation of viscosity of PIB shown in Figure 3-19 using 
the data P I B - R e l - 1 .  TXT or PIB-Rel-2.  TXT (either one) in the CD. Use both a 
KWW and an exponential function to extrapolate data to long times. Comment on 
differences, if any between these two methods. 
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Time-Temperature 
Correspondence 

Having examined some of the basic manifestations of the phenomenological 
aspects of viscoelasticity in Chapter 2, along with the efforts to model this 
behavior in Chapter 3, we now shift our emphasis to the results of experiments 
on polymers, and the interpretation of these results in terms of the accepted 
molecular mechanisms. We then explore the important idea of time- 
temperature correspondence and demonstrate the close relationship between 
these two variables in determining the viscoelastic responses of polymers. 

A. FOUR REGIONS OF VISCOELASTIC BEHAVIOR 

Once again, let us begin by considering an experiment. A polymer sample of 
unit cross-sectional area is subjected to an instantaneous tensile strain that is 
thereafter maintained constant. The tensile stress oE(t) is monitored as a 
function of time, and the tensile stress relaxation modulus is obtained using 
equation (2-32). Let t in equation (2-32) be any arbitrary time, perhaps 10 
seconds. Next the stress is removed, allowing the sample to relax, and the 
temperature is changed. The same experiment is carried out, yielding E (10 
seconds) at this new temperature. The experiment is repeated at many 
temperatures to yield the “ten-second tensile relaxation modulus” as a function 
of temperature.’ For short, this is referred to as a “modulus-temperature 
curve.” Alternatively, we might run the experiment in shear using a dynamic 
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test and record the shear storage modulus G' at, say, 0.1 rads as a function of 
temperature. * 

The types of behavior most often observed are shown in Figures 4-1 to 4-3. 
(We have selected tensile relaxation as an example; other types of deformation 
would have been equally suitable.) Figure 4-1 shows idealized modulus- 
temperature curves for typical linear and crosslinked amorphous polymers. In 
this plot, four regions of viscoelastic behavior are identified. At low 
temperatures where the modulus is higher than lo9 Pa, the polymer is hard and 
brittle; this is the glassy region. The glassy modulus, E,,  a slowly decreasing 
function of temperature, is a useful parameter to use in characterizing 
polymeric behavior. In this glassy region, thermal energy is insufficient to 
surmount the potential barriers for rotational and translational motions of 
segments of the polymer molecules. The chain segments are essentially 
"frozen" in fixed positions on the sites of a disordered quasi-lattice with their 
segments vibrating around these fixed positions much like low-molecular- 
weight molecules in a molecular crystal. With increasing temperature, the 
amplitude of vibrational motion becomes greater, and eventually the thermal 
energy becomes roughly comparable to the potential energy barriers to segment 
rotation and translation. In this temperature region, the polymer is at the glass 
transition temperature where short-range diffusional motions begin. Segments 
are free to "jump" from one lattice site to another; the brittle glass becomes a 
resilient leather. 

10 

2 6  
(3 

5 

4 

3 

Y 

0 
0 
1 

Glassy 

Temperature 

Figure 4-1. Schematic modulus-temperature curve showing various regions of viscoelastic 
behavior. 

* The data for the "modulus-temperature curve" are most often gathered in the dynamic mode 
at a fixed frequency of around 1 rads, either in shear or flex, depending on the stiffness range 
of the test material over the desired temperature range. See Appendix 3 of Chapter 2. 
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The glass transition is accompanied by a precipitous decrease in the 
modulus of several decades, as indicated in Figure 4-1. The breadth of this 
transition region ranges from 5 "C to more than 20 "C, depending on the nature 
of the polymer in question. 

As the temperature is further increased, the modulus again reaches a plateau 
region. This rubbery plateau is characterized by the modulus E2, as shown in 
Figure 4-1. In this temperature interval, the short-range diffusional motions of 
the polymer segments that initially gave rise to the glass transition occur very 
much faster than our measurement time of 10 seconds. On the other hand, the 
long-range cooperative motions of chains that would result in diffusion of 
complete molecules are still greatly restricted by the presence of strong local 
interactions between neighboring chains. In the case of the crosslinked 
material, these interactions consist of primary chemical bonds. In the linear 
polymer, they are known as entanglements, and their precise nature is not clear. 
In any case, in the rubbery plateau region, segments of chains reorient relative 
to each other but large-scale translational motion does not occur in the allotted 
10 seconds. 

The viscoelastic responses of linear and crosslinked polymers through the 
rubbery plateau region are essentially identical. As the temperature is further 
increased, however, differences between these two categories of polymers 
become evident, as shown in Figure 4-1. First consider a crosslinked network. 
As temperature is increased, the crosslinks consisting of primary chemical 
bonds remain intact, preventing the chains from translating relative to one 
another. Thus, although the modulus changes slightly with temperature in the 
rubbery plateau region of a crosslinked polymer (Chapter 6, Section A), the 
changes are small compared to those exhibited during the glass transition. 
Thus, to a first approximation, the modulus will remain constant for a 
crosslinked rubber up to temperatures where chemical degradation begins to 
occur. 

The situation is quite different for a linear polymer. In this case, increasing 
temperature causes larger scale molecular motions until eventually whole 
polymer molecules begin to translate. When the temperature is high enough, 
local chain interactions are no longer of sufficiently high energy to prevent 
molecular flow. During the 10-second test, the molecules will slip by one 
another, and the polymer sample will exhibit a correspondingly low modulus. 
Because the molecules are translating relative to one another in this region, it 
should be expected that a considerable amount of permanent flow will result 
from experiments carried out under these conditions. When the strain is 
released in our stress relaxation experiment, the sample will not recover to its 
former length but will relax to a new equilibrium state having a greater length. 
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Thus, during the experiment the sample has undergone flow, and this area of 
the 10-second modulus temperature curve is therefore called the flow region. 

I I I I I 

120 140 160 180 200 220 240 
Temperature, O C  

Figure 4-2. Shear modulust vs. temperature behavior for two polycarbonate samples of 
different molecular weights, along with the response of a partially crystallized sample. (See 
Chapter 5 for additional discussion.) [Adapted from J. P. Mercier, J. J. Aklonis, M. Litt and A. 
V. Tobolsky, J. Appl. Polym. Sci. 9,447-459 (1965). Copyright 1965 0 Wiley Periodicals, Inc., 
a Wiley Company.] 

If temperature is increased still further, barring chemical reaction the sample 
will become a viscous liquid. Our simple experimental setup is no longer 
applicable at high temperatures where the sample will not support its own 
weight. The modulus will, however, continue to decrease. 

With this background, it will be easy to proceed with the analysis of the 
modulus-temperature behavior of more complicated systems. 

First consider the effect of different molecular weights in linear amorphous 
systems. Figure 4-2 shows the modulus-temperature behavior of two 
polycarbonate samples. The 40-kDa sample was available in two forms: 
amorphous (open circles) and partially crystalline (filled circles). A higher 
molecular weight sample, 90 kDa, was available only in the amorphous form. 
At temperatures below 140 "C, the materials are identical. There is no 
differentiation between the samples since short-range segmental motions are 
determining the behavior. Such motions are essentially independent of 
molecular weight at high molecular weights. At higher temperatures, however, 
where translational motions of the complete molecules determine the relaxation 

These historical data4 were gathered using the Clash-Berg creep apparatus, which yields J( t )  at 
t = 10 s. The inversion of these data is the value plotted in Figure 4-2, and clearly will be 
different than G(t) at t = 10 s, especially in the transition regions. This will result in a slight 
temperature shift (see Problem 4-10). 
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behavior of the sample, it is most reasonable to expect longer molecules to 
maintain a pseudo-network to higher temperatures. This is indeed observed as 
shown in Figure 4-2. We notice that the initial decay of the glassy modulus for 
the 40-kDa sample occurs at lower temperatures than is the case with the high- 
molecular-weight polymer and the rubbery plateau is less pronounced. The 
behavior of the 40-kDa sample in the glass transition region may be 
qualitatively accounted for on the basis of "free volume" considerations as 
follows (more detail is given in Chapter 5).  Because a linear polymer chain has 
two ends, decreasing the length of the chains leads to an increase in the 
concentration of ends in the sample. However, because a chain middle is 
attached to other segments on both sides, it is less mobile than a chain end 
attached on only one side. Thus a polymer sample that has a greater 
concentration of chain ends than another comparable sample will exhibit 
greater chain mobility at a given temperature. In other words, a decrease in 
molecular weight leads to a decrease in glass transition temperature. The 
abbreviated rubbery plateau is due to the fact that the short molecules present in 
this low molecular weight sample form relatively few entanglements, and these 
are able to disentangle at a relatively low temperature compared to the 90-kDa 
sample. The semicrystalline sample, on the other hand, has a pronounced and 
high rubbery plateau because the crystallites are acting like crosslinks until they 
start melting at around 200 "C. 

40 80 120 160 
4 " ' " " ' ' " " ' ~  ' ' I ' 1 1 " '  

-40 0 
Temperature, O C  

Figure 4-3. Comparison of ten-second modulus vs. temperature curves for three common 
thermoplastics: polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE). 

For a polymer where crystallinity dominates its relaxation behavior, the 
situation is quite different. Figure 4-3 shows the 10-second modulus vs. 
temperature curve for such a crystalline polymer, polyethylene (PE). Included 
also in this figure is the modulus-temperature curve for polyvinyl chloride 
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(PVC), a polymer with extremely low crystallinity. These two are contrasted 
with atactic polystyrene (PS), a typical noncrystalline polymer. 

It should be emphasized that all of the crystalline polymers discussed here 
are not totally crystalline but partly crystalline and partly amorphous. Thus one 
expects to see behavior characteristic of the crystalline regions superposed 
upon behavior characteristic of the amorphous regions. This superposition is 
not necessarily a linear one but may rather be a complex coupling of the 
response of each region. Furthermore, the degree of crystallinity as well as the 
crystallite size is not a unique feature of any polymer system. Both of these 
properties are determined by prior thermal history. 

The general characteristics attributed to the amorphous portion are not 
greatly modified in crystalline polymers with low crystallinity, such as PVC 
and to some extent the polycarbonate sample shown in Figure 4-2. There is 
still a glass-to-rubber transition, a rubbery plateau, and finally, in uncrosslinked 
systems, a flow region. The amorphous material, however, couples with the 
crystalline portion of the polymer. The main transition exhibited by the 
crystalline part of the polymer is a melting from an ordered crystal to a liquid, 
disordered state. The temperature of this melting is usually given the symbol 
Tm; however, it should be recognized that the melting process does not occur at 
a single temperature but over a range of temperatures corresponding to the 
range of sizes and morphologies of the crystallites. 

With these thoughts in mind, one may now analyze the curves in Figure 4-3. 
Consider polyethylene; T, is about 125 "C. While the temperature of the glass 
transition is not yet known with certainty, it seems clear that it is low, probably 
lower than -70 "C. At temperatures between the glass transition temperature 
and T,, the polymer exhibits a very high modulus. Molecularly, this is to be 
expected because, in polyethylene, a large portion of the polymer is crystalline. 
Therefore, in this region one is observing the relaxation of a small amount of 
material held together by numerous hard crystallites, leading to a high modulus. 
As T, is approached, changes in the crystalline superstructure and in the degree 
of crystallinity result in a rapid decrease of the modulus. At the melting point, 
the modulus drops sharply to the rubbery plateau characteristic of amorphous 
polyethylene. With the crystallites gone, we are left with essentially a normal 
amorphous polymer that will exhibit behavior characteristic of amorphous 
polymers. This, indeed, is so for polyethylene where a rubbery plateau and 
eventually a flow region are observed at temperatures above T,. 

The situation is somewhat similar in the case of polyvinyl chloride (PVC). 
PVC has a far lower degree of crystallinity than polyethylene so that the 
viscoelastic response of PVC might be expected to approximate more closely 
that of an amorphous polymer than does polyethylene. Figure 4-3 indicates that 
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this is indeed the case. Specifically, the modulus drop in PVC at Tg is 
considerably greater than that in polyethylene, although the rubbery plateau 
modulus is higher than that of amorphous polymers and the rubbery plateau 
extends to the melting point of the PVC crystallites, about 180 “C. In polymers 
of low crystallinity like PVC and the recrystallized polycarbonate sample in 
Figure 4-2, the rubbery plateau can be well explained by the postulate that the 
crystallites act as both filler particles and as crosslinks. (“Filler” is used here in 
the sense of a the particulate solids often added to polymers to increase stiffness 
and improve other properties.) The PVC has a minor amount; the 
polycarbonate , considerably more. 

10 
PVCldi-2-ethylhexyl succinafe 

-150 -100 -50 0 50 100 150 
Temperature, OC (a) 

PVC w/ 25 wt.% plasticizer 10 
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Figure 4-4. Panel (a) shows the influence of plasticizer content on the modulus-temperature 
response of PVC through the glass transition region. Note that increasing plasticizer content 
tends to broaden the transition markedly at first and then the effect decreases at even higher 
concentrations.2 [From Figure 7 in K. Schmieder and K. Wolf, Kolloid Z. 127 65 (1952), 0 
Springer-Verlag, 1952. With kind permission of Springer Science and Business Media.] The 
data in panel (b) suggests that the broadening effect is highly dependent on the chemical nature 
of the plasticizer as well. [After K. Boo, Ph.D, Thesis, University of Connecticut, Storrs, CT, 
(1990), with permission.]. See also Problem 5-8. 



114 TIME-TEMPERATURE CORRESPONDENCE 

Once again, it should be pointed out that the exact shape of the modulus- 
temperature curve of a crystalline polymer depends on the thermal history of 
the sample, particularly on the rate of cooling from the melt and annealing 
treatment. Two crystalline polymers are mechanically “equivalent,” for 
practical purposes, if they have the same values of Tg, T,,, chain length, 
percentage of crystallinity, and crystalline structure. Because this is rarely the 
case, semicrystalline polymers exhibit a wide spectrum of properties. 

The incorporation of soluble diluents (solvents, plasticizers) into polymers 
alters the viscoelastic properties to a greater or lesser extend depending on the 
exact polymer diluent system and the amount of diluent present. One of the 
most important polymers used in the plasticized state is polyvinyl chloride. 
Figure 4-4a shows that PVC plasticized with di-2-ethyloctyl succinate differs 
significantly from pure PVC in viscoelastic behavior. Although El and E2 
appear to be essentially independent of the presence of diluents, other 
characteristic parameters show important effects. For example, T,, the 
inflection temperature of the modulus-temperature curve, is depressed 
systematically with plasticizer content. In addition, the transition region is 
broadened at low plasticizer concentrations, and then narrows. It was pointed 
out previously that rubbery flow commences in PVC when T,,, is exceeded. 
Since T, is depressed due to the presence of diluent, the flow region begins at a 
lower temperature than for unplasticized PVC. If we regard diluent as part of 
the polymer system, then the occurrence of the flow region at lower 
temperatures might be interpreted as being due to the lowering of the number 
average molecular weight. An alternative interpretation is to regard the diluent 
as simply lowering the thermodynamic activity of polymer segments in the 
amorphous region relative to those in the crystalline region, thus shifting the 
equilibrium in favor of a “solution” of segments in the plasticizer-rich “phase.” 
The markedly different behavior of the different plasticizers shown in Figure 4- 
4b tend to support the latter hypothesis. 

As the plasticizer molecules are small, the explanation for the low glass 
transition temperature of the plasticized systems is likely to be associated with 
the easier motions of the smaller molecules due to fewer constraints than 
macromolecules of equivalent chemical structure. More detailed and 
quantitative arguments concerning the role of plasticizers can be found in 
Chapter 5 .  

B. TIME-TEMPERATURE SUPERPOSITION 

Remembering that the modulus is a function of time as well as temperature 
leads us to wonder about the parallels between modulus measured as a function 
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of time at constant temperature and modulus measured as a function of 
temperature at constant time, as discussed in the first part of this chapter. In 
principle, the complete modulus-time behavior of any polymer can be measured 
at any temperature using the techniques outlined in Chapter 2. In practice, the 
experiment is difficult to do over a time "window" of more than about 4 
decades. The results of such an experiment with a limited time window are 
shown on the left side of Figure 4-5, where tensile stress relaxation has been 
chosen as the experiment. Clearly, only a small range of viscoelastic response 
manifests itself during the accessible time window, but the adjacent curves at 
different temperatures curiously appear to suggest something about what might 
happen if the time window were larger. Indeed, experimentalists have found a 
shifting procedure that enables one to construct a "master curve"-a complete 
modulus-time behavior at a constant temperature. This empirical procedure, 
referred to as time-temperature superposition, leads to a more general 
hypothesis called time-temperature correspondence that can be rationalized by 
consideration of fundamental molecular motions in polymers (Chapter 7). 

5 ; '  -2 I ' 0 I ' 2 I ' 4 I ' 6 ' ' 8 I 

Log t, s 
Figure 4-5. Construction of a master curve using tensile stress relaxation data gathered at five 
temperatures. 

The time-temperature correspondence principle states that there are two 
methods to use to determine the polymer's behavior at longer (or shorter) times 
than those covered by a stress-relaxation experiment run at TI. First, one may 
improve the experiment to measure directly the response at longer (shorter) 
times. For the longer times, however, this procedure rapidly becomes 
prohibitively time-consuming because the change is so slow (note that Figure 
4-5 is plotted on a log scale). (For the shorter times, the limitations are 
equipment related, e.g., transducer response time, problems with instrument 
and sample inertia, etc.) An alternative, according to the time-temperature 
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correspondence principle, is to increase the temperature to T2, for example, and 
again carry out the relaxation experiment using the experimentally accessible 
time range. Then, shifting curve T2 horizontally to the right will result in an 
exact superposition of the curves measured at TI and T2 in the areas where the 
modulus values overlap and an extension of the curve measured at T,  to 
modulus values lower than those measured at temperature Tl .  The time- 
temperature correspondence principle asserts that this extension is identical to 
the response that would be found at long times at the temperature T,, if one 
were able to do the experiment. Thus, one effectively has a measure of the 
complete modulus-time behavior by applying the time-temperature 
correspondence principle to experimental measurements of polymer relaxations 
carried out on experimentally accessible time scales. 

Again it should be emphasized that there are two aspects to time- 
temperature superposition: (1) empirical superposition of data gathered at 
different temperatures to form a single master curve, and (2) representation of 
the actual relaxation of the polymer at a single temperature by this composite 
curve. The second does not automatically follow from the first; indeed, Plazek 
has shown that equivalence is not quantitatively correct except in limited time- 
temperature  range^.^ However, there have been positive demonstrations of 
time-temperature equivalence for a few polymers and many successful 
applications to amorphous polymers. It should be clear from the previous 
discussion that the principle cannot be expected to apply to multiphase or 
semicrystalline polymers. 

Mathematically, time-temperature equivalence may be expressed as 

where the notation indicates that the stress relaxation modulus G is a function 
of both time and temperature. It can be seen from this expression that the effect 
of changing temperature is the same as applying a multiplicative factor to the 
time scale, which corresponds to an additive shift to the log time scale. Note 
that the development here uses the shear modulus, but could as well be done 
with the tensile modulus, E, or the corresponding compliance or dynamic 
 function^.^ 

When shifting experimental data, one additional correction is necessary. We 
have, by shifting horizontally, compensated for a change in the time scale 
brought about by changing temperature. There is also, however, an inherent, 
but small, change in the modulus brought about by a change in temperature. 
(Remember, we are trying to describe the behavior at TI using data taken at T2 
but as if the data had been taken at TI.) In Chapter 6 it is shown that the 
modulus of a rubbery network is directly proportional to T, the absolute 
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temperature. Thus, in applying a reducing procedure to make a master curve 
for individual relaxation experiments, not only must one take into account the 
time-scale shift, one must also consider that there will be a slight vertical shift 
due to the temperature variation. Similarly, since the volume of a polymer is a 
function of temperature, and the modulus, being defined per unit cross- 
sectional area, will obviously vary with the amount of matter contained in unit 
volume, a corresponding correction must be made to account for the change of 
mass per unit volume with temperature. The density is obviously the parameter 
that must be used. These considerations lead one to write:3 

Division by the temperature corrects for the changes in modulus due to the 
inherent dependence of modulus on temperature, while division by the density 
corrects for the changing number of chains per unit volume with temperature 
variation. 

When constructing a master curve, one arbitrarily picks a reference 
temperature, To. (Instead of To, many authors choose to use TR to signify the 
reference temperature.) The modulus at any time t, which one would observe at 
the temperature To in terms of the experimentally observed modulus values at 
different temperatures T, is therefore given as 

(4-3) 

where ar is to be discussed more fully. 
functions, e.g., J(t), equation (4-2) takes the form 

If one is considering compliance 

and 

J(t ,  TO ) = p(T)T J(t/a,  , T )  
P(T0 )To 

C. MASTER CURVES 

(4-4) 

(4-5) 

We may now consider the preparation of a master curve from the data in Figure 
4-5; these are depicted by circles and cover the experimental time range from 
about 10 to lo4 s. First, let us arbitrarily pick T4 as the reference temperature. 
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With a knowledge of the density at all the temperatures Ti, one applies the 
vertical correction factor stated in equation (4-3) to all the curves. For T4 the 
factor p(To)To/ p(T)T is unity, resulting in no shift. This must be so since T4 
has been chosen as the reference. At the other temperatures, however, the 
correction factor will not in general be unity. Let us now consider that these 
corrections have been made to the experimental data to give the reduced 
modulus ER as depicted. Next, the curve at T3 is shifted to the left, giving rise 
to the dotted extension of the E(t, T4) curve. At temperature T,, which is higher 
than T4, the curve needs to be shifted to the right. This shifting process is 
repeated until a smooth master curve is formed.$ Again this procedure is 
mathematically described by equation (4-3), but with E instead of G. The a ,  's 
are functions of temperature and are known as the shift factors. The subscript T 
indicates that the shift factors are taken relative to some reference temperature, 
but remember that the value of a, depends on both temperatures. 

It should be clear that any temperature might have been chosen as the 
reference temperature. If T3 had been chosen, for example, only two of the 
shifts (T ,  and T2), would have been to the left with shift factors larger than 1.0, 
while two of the shift factors (T4 and T,) would have been to the right with shift 
factors less than 1.0. In fact, one does not need to use one of the experimental 
temperatures as the reference temperature; any value within the temperature 
range can be used simply by interp~lation.~ 

-101 1 I I 1 
-20 0 20 40 60 

T-lg, K 

Figure 4-6. The WLF equation using the constants for polystyrene listed in Table 4-1 

' The algorithm for accurately establishing the amount of shift is not completely trivial, as the 
data segments are often not perfectly superposable. See, e.g., Gordon and Shaw.s 
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D. THE WLF EQUATION 

A common practice is to reduce relaxation or creep data to the temperature Tg; 
thus, the reference temperature is picked as the glass transition temperature 
measured by some slow technique such as dilatometry. The reason for 
choosing Tg as the reference temperature is founded on the idea that all 
amorphous polymers at their glass transition temperature will have similar 
viscoelastic behavior. This type of corresponding states principal is often 
expressed in terms of a hopefully universal mathematical relationship between 
the shift factor aT at a particular temperature and the difference between Tg and 
this temperature. Perhaps the most well known of these relationships is the 
WLF equation 

- c, (T - T,) loga, = 
C, +T-T, (4-6) 

after its discoverers Williams, Landel, and Ferry.6 The constants, C, and C,, 
originally thought to be universal constants, have been shown to vary from 
polymer to polymer. A list of C1 and C2 for several of the most common 
polymers is presented in Table 4-1, while Figure 4-6 shows the dependence of 
aT on the temperature offset T - Tg. Note that the shift factor a ,  at the reference 
temperature Tg (i.e., T - Tg = 0) is 1 .O, and thus log aT is zero. 

Table 4-1. WLF Parameters4 

Polymer c1 C2Y K TgY K 
Pol yisobutylene 16.6 104 202 
Natural rubber (Hevea) 16.7 53.6 200 

Polystyrene 14.5 50.4 373 
Poly(ethy1 methacrylate) 17.6 65.5 335 

Polyurethane elastomer 15.6 32.6 23 8 

"Universal constants" 17.4 51.6 

The form of equation (4-6) is predicted in a straightforward way from rather 
simple theoretical considerations. First, however, we must realize that the shift 
factor aT is not only meaningful in terms of moduli, but material properties such 
as diffusivity and viscosity. Taking the latter as an example, we start with the 
equation (Chapter 3, Problem 3-8) 

V ( T )  = r ~ ( t ,  0 ~ ) d t  (4-7) 
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where v(T) is the shear viscosity of a polymer at the temperature T. Now 
consider two master curves at two different temperatures. The two 
temperatures that we choose are Tg, our reference temperature, and T, any other 
temperature. We can write 

G(t/ar, Tg) = G(t, r )  (4-8) 

where we have assumed time-temperature correspondence; that is, every 
modulus value G ( t / a ,  Tg) has a corresponding modulus value of equal 
magnitude G(t, 7) on the master curve at temperature T. (We are neglecting the 
vertical shifts for simplicity; their inclusion would substantially add to the 
complexity of this discussion but would not substantially affect the outcome.) 

Equation (4-7) can be written as well for the shear viscosity at Tg, becoming 

V(T,) = f G ( t ' ,  T,)dt' (4-9) 

where t' is a dummy variable for this integration and could be given any symbol 
without influencing the outcome. Because of the limits of integration, 0 and 03, 

we can make the following substitution: 

t" = aT t' and dt" = aTdtf  (4- 10) 

in equation (4-9) to give 

v(T,)= cG(t',T')dt' = rG(tff/a,,T')dt" /a ,  (4- 1 1) 

Note that the limits of the integral are unchanged as can be seen from equation 
(4-10). Because aT is dependent only on temperature, it can be treated as a 
constant that can be factored out of the integral, giving 

G(t",T)dtff l a ,  = ~ ( T ) l a ,  (4-12) 1 
where once again use has been made of equations (4-7) and (4-8). The general. 
result of equation (4-12) is that the time shift factor for any temperature relative 
to any reference temperature, To, including To = Tg, is simply the ratio of the 
viscosities at the two temperatures, that is, 

(4- 13) 
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With this result in hand, we may now return to the theoretical rationalization 
of the form of the WLF equation. The starting point is the semiempirical 
Doolittle equation for the viscosity of a liquid 

(4-14) 

which gives an expression for the viscosity of a system in terms of two 
constants A and B.7 As was stated earlier, this viscosity could be the tensile 
viscosity or the shear viscosity. V is the total volume of the system while V,is 
the free volume available to the system (a qualitative rather than quantitative 
view of free volume is sufficient for this discussion). The interpretation of 
equation (4-14) is that viscosity is intimately connected with mobility, which is 
closely related to free volume. As the free volume increases, the viscosity 
rapidly decreases. This equation has been found to express the viscosity 
dependence of simple liquids to a high degree of accuracy. Rearrangement of 
equation (4- 14) gives 

l n q = A + B  --1 c 1 (4- 1 5 )  

where f is the fractional free volume V ,  /V.  It is now assumed that above the 
glass transition temperature, the fractional free volume increases linearly with 
temperature, that is, 

(4- 16) 

where f is the fractional free volume at T, any temperature above, f, is the 
fractional free volume at Tg, and 9 is the coefficient of thermal expansion of 
the fractional free volume above Tg. In terms of equation (4-16), the Doolittle 
equation becomes 

(4- 1 7) 

Subtraction yields 
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which simplifies to 

- 3 - 2 - 1  0 1 2  3 4 5 6 7 8 9 
Log (t, s) 

(4- 18) 

(4- 19) 

Log UTt, s (b) 
Figure 4-7. (a) Plot of the relaxation master curve for each of the temperatures indicated. The 
line through each of the data sets indicates the relaxation behavior over the entire time range 
expected for that temperature. The curves are moved only in the horizontal direction to fit the 
data. The empirical description for the curves follows an equation suggested by Smith,* i.e., 
E = (Eg- &)/[ 1+ (z/z,)”]+E,/[ 1+ (z/~,)~], where the constants were obtained by a fit as shown in 
(b), to the original superposed data (open circles) listed in Ferry4 while the line is from the 
equation of Smith. [Data originally published by E. Castiff and A. V. Tobolsky, J. Colloid Sci., 
10,375 (1955)] 
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a form identical to the WLF equation where C1 is identified with B/2.303& and 
C2 with &/ay Thus the form of the WLF equation is consistent with the 
empirical Doolittle equation and the assumption of a linear expansion of free 
volume above Tg. 

Assuming that the WLF equation does indeed describe the time-temperature 
shifts, the complete viscoelastic response of any polymer under any 
experimental conditions may be obtained from knowledge of any two of the 
following three functions: the master curve at any temperature, the modulus- 
temperature curve at any time, and the shift factors relative to some reference 
temperature. For example, suppose we are given the constants C,, and C, for a 
polymer whose master curve is known. (The values given for C, and C2 are 
those that result from fitting equation (4-6) to the a ,  vs. T data.5) For 
simplicity, we can assume that the master curve is at the same reference 
temperature as that in the WLF equation, perhaps Tg. Suppose it is desired to 
calculate the 1 0-second modulus-versus-temperature curve for this polymer. 

The 10-second modulus at Tg is read directly from the master curve. Now, 
however, the master curve can be shifted to exhibit the behavior of the polymer 
at some other temperature. Applying this horizontal shift, with the slight 
additional vertical correction, if significant, allows one to "predict" the 10- 
second modulus, at this new temperature from the shifted curve. This 
procedure is repeated until the entire modulus-time curve is generated (Figure 

Having thus generated the manifold of curves shown in Figure 4-7, it is 
possible to view the dependence of the modulus-temperature plots on the 
arbitrary choice of time. This is done merely by picking points off intersections 
of the master curves with vertical lines drawn from the point of interest on the 
time scale. The result of such treatment is shown by the simulations in Figure 
4-8. (Problem 4-3 shows that the effects are less pronounced with real data 
because of experimental difficulties combined with the failure of the WLF 
equation below Tg.) It is apparent that the longer the constant time of 
measurement, the sharper the resulting curves. In fact, if it is assumed that the 
ideas embodied in the WLF equation are applicable at temperatures 
considerably below Tg, it can be shown that an experiment of the type depicted 
in Figure 4-8 carried out infinitely slowly would result in a type of second- 
order thermodynamic transition, that is, a discontinuity in the modulus, at a 
temperature about 50 "C below Tg. 

4-7). 
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Figure 4-8. Simulations of master curves and modulus vs. temperature curves for a glassy 
polymer. (a) The master curves, shown at increments of 5 "C tend to be spaced more widely as 
the temperature is lowered because of the nature of the WLF relationship used for the 
temperature dependence [see Figure (4-6)]. (b) Demonstration of the influence of measurement 
time on the shape of the modulus-temperature curve. As the measurement time increases (by 1- 
decade increments), the apparent T, decreases but the sharpness of the transition increases. 
(Simulation uses Smith empiricism' for glass transition and the KWW function for the rubbery 
flow region.) 

In reviewing equation (4-6), it is evident that temperatures other that Tg can 
be used as the reference temperature with corresponding linear changes in the 
values of C, and C2 (see Problem 4-2). One choice of particular interest is that 
suggested by the discussion above-the second-order transition temperature, T2 
where log aT becomes unbounded. In this case 

(4-20) 

This result is known as the Vogel equation. 
polystyrene, the Vogel temperature T2 is expected to be around 50 "C 

(See also Problem 4-6.) For 

E. MOLECULAR INTERPRETATION OF VISCOELASTIC 
RESPONSE 

We now briefly discuss the molecular interpretation of the behavior exhibited 
by polymers that are held at constant temperature and studied as a function of 
time in a stress relaxation experiment covering the entire time scale (possibly 
14 decades, or more). 

In the very short time ranges, the molecules, not having sufficient time to 
reorient substantially, probably react to a deformation by distorting 
intermolecular distances. These distortions, being of a relatively high energy, 
result in a high modulus. At longer times, however, reorientation and 
translation of chain segments is possible and occurs more extensively. The 
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chain motion, while mainly chaotic, is biased in a fashion to relieve the stress. 
Such motion allows the most severely distorted parts of the chains to relax to 
lower energy conformations, resulting in a modulus decrease. This is the glass 
transition process, which can be looked at as a balancing of stress along the 
contour length of the chain. At still longer times, the stress is very low, but the 
elongation and orientation of the chains is nearly maintained due to 
entanglement interactions that hinder long-range motions. Such a network of 
interacting flexible chains is a rubber. In the longest time range of interest, the 
chains can move past one another, resulting in extensive relaxation and a 
modulus characteristic of a polymer melt. Now the end-to-end distance returns 
its equilibrium value, and the end-to-end vectors become randomized. The 
stress drops toward zero. 

In this discussion, it is impossible to describe quantitatively the time ranges 
that give rise to each type of behavior, since the temperature variable causes all 
of these ranges to be relative. According to these ideas, a plastic would have 
the modulus of a rubber on a time scale of perhaps thousands of years while a 
rubber might behave as a plastic on a nanosecond time scale.§ 

PROBLEMS 

1. An apparent activation energy E* for viscoelastic relaxation may be obtained as 
the slope (multiplied by the gas constant R)  of a plot of In aT as a function of 1/T, 
according to the Arrhenius equation 

For materials showing WLF-like behavior, such a plot yields a curved line and thus a 
temperature-dependent activation energy. 
(a) Obtain an analytical expression for the activation energy from the WLF equation in 
terms of the WLF constants C, and C, and To = Tg. Using the "universal" values for 
the constants C, and C,, find the activation energies at Tg if (1) Tg = 200 K (2) Tg = 400 
K? 

It was once considered that direct evidence of the long-term flow of a glass was provided by 
the variation in thickness of the glass found in ancient cathedral windows. However, modem 
studies of this hypothesis have instead found that the thickness variations are most likely the 
result of manufacturing processes for the panes combined with the craftsman's propensity for 
placing the thicker edge of the pane down. For more details, see: R. C. Plumb, Antique 
windowpanes and the flow of supercooled liquids, J. Chem. Educ., 66, 994-996 (1989). See 
also problem 7, this chapter. 
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(b) Show that the activation energy becomes independent of temperature for T >> Tg 
and approaches a value of about 33 kJ/mol for all materials. Would you expect the 
activation energy for real polymers to obey this prediction? Why or why not? 
2. The WLF equation may be written using any convenient temperature as the 
reference temperature. The form of the equation remains the same but the values of 
the constants C,  and C2 change. Using the "universal" values for C,  and C, at T,, 
calculate C, and C, for a reference temperature of T, + 50. 
3. Tabulated below, and listed in BPA-PC-Re1 . TXT in the accompanying CD, are 
the results of stress relaxation measurements made on bis-phenol A polycarbonate. 
Construct the master curve and calculate C, and C,, the WLF equation parameters, for 
a reference temperature of 150.8 "C. 

~~~ ~ ~~ 

Stress Relaxation-Polycarbonate M, = 40,000 [after Mercier, J. P. 

4.25 10.03 145.6 6 
141. 10 2.75 9.03 
2.00 10.19 3.00 8.72 
2.25 10.19 3.25 8.50 
2.50 10.16 3.50 8.25 
2.75 10.13 3.75 8.09 
3.00 10.09 4.00 7.94 
3.25 10.03 146. 7 
3.50 9.94 2.50 8.72 
3.75 9.82 2.75 8.47 
4.00 9.66 3.00 8.25 
4.25 9.50 3.25 8.06 

142. 9 3.50 7.94 
2.00 10.13 3.75 7.82 
2.25 10.09 4.00 7.67 
2.50 10.03 150.8 12 
2.75 9.97 2.00 7.97 
3.00 9.88 2.25 7.85 
3.25 9.67 2.50 7.78 

et al., J. Appl. Polym. Sci., 9,447-459 (1965)l.' 
130. 10 3.50 9.63 2.75 7.72 3.50 6.78 
2.00 10.25 3.75 9.47 3.00 7.69 3.75 6.63 
2.25 10.25 4.00 9.22 3.25 7.64 4.00 6.41 
2.50 10.25 144.9 6 3.50 7.59 4.25 6.13 
2.75 10.25 2.25 9.66 3.75 7.55 4.50 5.85 
3 . 0 0  1 0 . 2 2  2.50 9.50 4.00 7-50 4.75 5.53 
3.25 10.19 2.75 9.28 4.25 7.44 161.5 9 
3.50 10.16 3.00 9.03 4.50 7.34 2.25 7.06 
3.75 10.13 3.25 8.88 4.75 7.25 2.50 6.97 
4.00 10.06 3.50 8.66 156. 13 2.75 6.85 

7.59 3.00 6.64 
7.55 3.25 6.50 
7.50 3.50 6.31 
7.41 3.75 6.06 
7.34 4.00 5.78 
7.25 4.25 5.47 
7.19 167. 6 
7.06 2.25 6.72 
6.94 2.50 6.50 
6.78 2.75 6.25 
6.59 3.00 5.97 
6.38 3.25 5.63 
6.13 3.50 5.22 
1 171. 5 
7.34 2.25 6.00 
7.25 2.50 5.72 
7.16 2.75 5.41 
7.03 3.00 5.03 
6.94 3.25 4.63 

2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.00 

2.25 
2.50 
2.75 
3.00 
3.25 

59. 

~ ~~ ~~ 

Data are arranged by groups headed by the temperature in "C and the 
number of points in the group. Data are log ( t ,  s), and log (E ,  dyn/cm*). 
1 dyn/cm2 = 0.1 Pa. 

4. (Computer) Determine the 10-s modulus-versus-temperature curve for a material 
whose tensile stress relaxation modulus is given as 
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where E,  = 3 . 0 ~ 1 0 ~  Pa, E2 = 5 . 0 ~ 1 0 ~  Pa , z, = 1 s and z, = lo4 s. Use the "universal" 
values for the constants in the WLF equation. 
5. Derive an expression for log a,  for a polymer whose shear stress relaxation 
modulus is given as 

i = l  

where each Gi, is independent of temperature and each z;. is of the Arrhenius form: 

E'IRT zi = Aie 

Assume that Ai is independent of T, and that E* is constant for all relaxation times. 
6. The Vogel equation, 

1 
loga, = - P  

4 T - U  

is often used to treat the temperature dependence of viscoelastic properties. Show that 
the Vogel equation is identical to the WLF equation by expressing a, p and T,, in 
terms of C, and C, and Tg. 
7. (Open-ended) If the ancient craftsmen had used polycarbonate in cathedral 
windows instead of glass, calculate the expected thickness variation after 1500 years in 
a pane 25 cm high that was initially uniform. Assume that the pane is rectangular and 
is not constrained by its frame except vertically at the bottom edge to keep the pane 
from falling. See Chapter 2 for hints on converting E(t) to D(t). Carefully list all 
assumptions and approximations as part of your answer. 
8. (Open-ended) Investigate the applicability of the Doolittle equation to a simple 
fluid with the objective of showing that temperature per se has no influence on 
viscosity. To approach this problem, find high-accuracy viscosity and specific-volume 
data in, for example, the Handbook of Chemistry and Physics. Compare these data 
with the predictions of the Doolittle equation, carefully noting any systematic 
discrepancies . 
9. (Open-ended, Computer) Using the WLF constants of Table 4-1, generate log shift 
factors at 5 temperatures above Tg, e.g., Tg + 2, 7, 12, 17, and 22 "C. To these add a 
small amount of error, using random deviates with 0.03-decade standard deviation 
(many spread sheets will generate these for you). Using the two linearized forms of 
the WLF equation: 
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T - T  1 

log% CI CI 
g -  c2 + -(T - T,) 

recalculate C,  and C2 from your error-containing data and compare these results with 
the original values. Include in your comparisons the results from the direct fitting of 
equation (4-6). A thorough report will include sample graphs showing the plots of the 
data according to above equations. (If this procedure is repeated many times, one can 
establish the confidence limits of the calculated values of C, and C,. This method is 
known as the Monte Carlo method of error analysis.) 
10. (Computer) The Figure 4-2 data for amorphous polycarbonate is listed in file 
PC4  0 kDa . TXT in the CD. As explained in the footnote of Figure 4-2, these data are 
actually 1/J(10 s). Using the WLF constants for polycarbonate of C, = 16.4 and C2 = 

54.3, with T, = 150.8 "C, correct these data using the approximation of Problem 2-5. 
Plot on the same graph the modulus-temperature curves based on your G(10 s) and the 
original 1/J(10 s), and comment on the differences. 
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Transitions and 
Relaxation in 
Amorphous Polymers 

Amorphous polymers, as we have seen in Chapter 4, undergo a transition from 
glassy behavior to rubbery behavior. This transition is quite sharp, usually 
occurring over a temperature range of a few degrees. The decrease in modulus 
of about three orders of magnitude that accompanies this transition makes it 
clear that it is the single most important parameter characterizing the 
mechanical behavior of amorphous polymers. 

In this chapter, the glass transition phenomenon is treated in moderate detail, 
including phenomenological aspects, molecular theories, and the effect of 
molecular structure. In addition, relaxation occurring in the glassy state below 
the glass transition temperature ( Tg) is discussed. 

A. PHENOMENOLOGY OF THE GLASS TRANSITION 

The classic method for the experimental determination of the glass transition 
temperature is dilatometry. Thus, as briefly mentioned in Chapter 1, the 
temperature dependence of the specific volume is determined by a suitable 
technique, and the temperature at the change in slope upon cooling is taken as 
T,. Such a plot is indicated in Figure 5-1, where it is shown that the T, is 
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determined as the intersection of the straight-line portions* of the curve above 
and below T,. The slope is, of course, related to the cubical coefficient of 
thermal expansion, a, which exhibits a discontinuity at Tg. As is apparent from 
Figures 5-1 and 5-2, the glass transition is a rate-dependent phenomenon. 
Dilatometric methods are simple in principle but complex in practice. The 
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Figure 5-1. Specific volume versus temperature for a polyvinylacetate sample quick-quenched 
from well above T, to the experimental temperatures. Volumes measured 0.02 hours and 100 
hours after quenching as indicated. Filled points represent equilibrium behavior. [After A. J. 
Kovacs,J. Polym. Sci., 30, 131 (1958).] 

displacement method is perhaps the most commonly used. The thermal 
expansion coefficient is determined by measuring the amount of confining fluid 
displaced by the polymer. The success of the method depends on the selection 
of a confining fluid that is not absorbed by the polymer and undergoes no phase 
transitions in the temperature range of interest. Mercury is often used, although 
it possesses obvious temperature limitations. In addition to dilatometry, 
calorimetry has been extensively employed, a discontinuity or peak in heat 
capacity being observed at T,, depending on thermal history and heating rate 
(Figure 5-2). The continuing development of instrumentation and techniques 
for differential scanning calorimetry’ have enhanced the importance of 
thermodynamic measurements associated with the determination of Tg. For 
information on instrumentation, the reader is referred to the manufacturers’ 
websites, which are normally listed at www.njacs.orglthermaI.htm1. 

It has been repeatedly emphasized throughout this book that the glass 
transition in amorphous polymers is accompanied by profound changes in their 
viscoelastic response. Thus the stress relaxation modulus commonly decreases 

* In fact, the data, as well as the theoretical equation of state for polymer fluids, exhibit gradual 
curvature, but this does not have a substantial effect on the determination of T,. 
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by about three orders of magnitude in the vicinity of the Tg determined by 
calorimetry or dilatometry, and the creep compliance increases by about three 
orders of magnitude. In addition, under dynamic experimental conditions, the 
storage moduli and compliances behave in a similar manner to the 
corresponding static quantities. The loss moduli and compliances, on the other 
hand, exhibit maxima in the glass transition region, as does tan 6. Figure 5-3 
summarizes these results for a styrene-butadiene copolymer. The data in 
Figure 5-3 were collected at a constant frequency of 1 Hz over the temperature 
range indicated. (The tan 6 plotted in Figure 5-3 was calculated from the 
original log A using the relationship A = n tan6. The decrement, A, is 
commonly found directly from the response of a resonant torsional pendulum, 
which was used to gather the data shown.) It can be seen from Figure 5-3 that 

350 360 370 380 390 
Temperature, K 

Figure 5-2. Thermal scans of polystyrene at 5.4 Wmin (0.09 Us) after cooling from well 
above T, at the rates indicated. Curves have been shifted vertically for clarity. After B. 
Wunderlich, D. M. Bodily and M. H. Kaplan, J. Appl. Phys., 35,95 (1964). 

the maxima in tan 6 and G" occur at different temperatures, the G" maximum 
being lower. Frequently, the tan 6 or G" peak temperatures are taken as the Tg, 
but it is clear that they will not be identical and that, in general, they will both 
yield higher values than those obtained by dilatometric or thermodynamic 
methods, owing to differences in the time scale. 
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Temperature, "C 

Figure 5-3. Temperature dependencies of G', Grr and tan 6 for styrene butadiene copolymer. 
[After L. E. Nielsen, Mechanical Properties of Polymers, Reinhold, New York, 1962.1 

Figure 5-4 gives the temperature dependence of E' and tan6 for polyvinyl 
chloride at various frequencies. The shift of the tan 6 peak maximum to higher 
temperatures with increasing frequency occurs in accordance with the WLF 
equation and is again an illustration of the rate dependence of the glass 
transition phenomenon. 

I I 1 
0 20 40 60 80 100120140 

Temperature, OC 

Figure 5-4. Temperature dependencies of E' and tan 6 for polyvinyl chloride at various 
frequencies. After G. W. Becker, Kolloid-2. 140 1 (1955). [Reprinted by permission of Dr. 
Dietrich Steinkopff Verlag.] 

One of the oldest methods for the determination of Tg involves the 
temperature dependence of viscosity. Figure 5-5 is a plot of the variation of 
viscosity with temperature for polystyrene. Various authors have argued that 
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the glass transition temperature represents an isoviscous state with viscosity 
10l2 Pa s. Such a high viscosity is not easily measurable by normal flow 
techniques and, in fact, its determination is usually accomplished from creep or 
stress relaxation measurements by the techniques of Chapter 2. 

Many profound physical changes occur at Tg in addition to those already 
mentioned. The refractive index undergoes an abrupt change at Tg. In the case 
of polar polymers, the dielectric loss tangent passes through a maximum in the 
vicinity of Tg, as does the imaginary part of the complex dielectric constant 
(Chapter 7, Section A). Because of the increased mobility at Tg, the line width 
in a nuclear magnetic resonance experiment2 undergoes an abrupt narrowing at 
this temperature (see Chapter 7, Section B). All of these effects, and many 
others, have been used as measures of Tg, and they all arise from the 
fundamental changes in molecular dynamics which occur in the vicinity of Tg. 
It should be apparent from the discussion that each experimental method will 
yield a different value for Tg and that even the same method will yield different 
results depending on the time scale. Thus, in order to compare Tg values, both 
the method of measurement and the rate of measurement should be specified. 

100 120 140 160 180 200 220 
J, OC 

Figure 5-5. Temperature dependence of viscosity for a cyclic polystyrene sample of molecular 
weight 106,000, The line is a fit with the WLF relationship, equation (4-6). [Adapted with 
permission from G. B. McKenna et al., Macromolecules, 20, 498-512 (1987). Copyright 1987 
American Chemical S~cie ty] '~  

B. THEORIES OF THE GLASS TRANSITION 

1. Free-Volume Theory 

In Section D of Chapter 4 the WLF equation was derived on the basis of free- 
volume concepts. In particular, we may write 
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where fr and fro are the fractional free volumes at temperatures T and To, 
respectively, and B, a parameter in the Doolittle equation, is experimentally 
found to be close to unity. Unfortunately, the concept of free volume is 
difficult to define in a precise manner. In an approximate way we can represent 
the segments of a polymer chain by rigid bodies and the free volume as the 
holes present between these segments as a result of packing requirements. 
Presumably the free volume reaches a constant value at Tg that is too small to 
allow the large-scale conformational rearrangements of the chain backbones 
associated with Tg to occur on the time scale of the experiment. Above Tg, on 
the other hand, fi-ee volume increases and becomes sufficiently large to allow 
such motions to occur. These ideas are embodied in equation (4- 16), which we 
quote here. 

f =& + q(T-Tg) 

f=& 
T >  Tg 

T <  Tg (4- 16) 

The fractional free volume f reaches a constant value, &, at Tg and increases 
linearly above Tg with the coefficient of expansion q-. Following Chapter 4, 
substitution of equation (4-16) into equation (5-1) with Tg as the reference 
temperature yields the WLF equation where the constants C, and C2 are given 
by 

fg c, =- 
2.303 fg “f 

B c, = (5-2) 

Knowledge of the numerical values of C, and C, thus leads to the parametersf, 
and af through equation (5-2), if B is taken as unity. The constants C, and C2 
were originally taken to be universal for all amorphous polymers with C, = 

17.44 and C2 = 51.6. It was later found that C1 values were indeed 
approximately constant for all systems but that C, varied quite widely. This is 
illustrated by Table 4-1. Equation (5-2) indicates that this result means that& is 
approximately constant at a value of 0.025, but that af varies from one 
amorphous polymer to another. It is clear that the WLF equation predicts that 
Tg represents an iso-free-volume state. While this concept is not strictly true it 
is nevertheless of wide utility, as we shall see in the following discussion. 

It is possible to identify af with A a  = ar - ag, that is, the difference between 
the expansion coefficients above and below Tg. If this is done, good agreement 
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is obtained for many polymers between experimentally determined values of 
A a  and af obtained from C, values through equation (5-2). Inasmuch as there 
is no a priori method of defining a+ the above agreement is perhaps the best 
justification for the identification of afwith Aa. 

The free-volume approach embodied in equation (4-16) may be easily 
generalized to include the effect of pressure. Intuitively, pressure may be 
thought of as having the effect of "squeezing out" free volume and thus raising 
the glass transition temperature; such has actually been found to be the case. 
The magnitude of the effect is predictable as follows. Assume the polymer is 
taken from state 1 characterized by P I ,  and Tsl to state 2 characterized by P, 
and Tg2. In general, any change from state 1 to state 2 may be characterized by 

f 2  =f, + a J ( T 2  - q ) - P / ( p 2  - 4 )  (5-3)  

where py refers to the isothennal compressibility of free volume, assumed 
independent of pressure over the range of interest. If the polymer remains at Ts 
in going from state 1 to state 2, f2 must also remain equal to fi, since Tg is an 
iso-free-volume state. Thus, under these conditions, 

For small changes, equation (5-4) becomes 

Let &= AP, the compressibility above and below Ts, and af= Aa. Then 

dP A a  
(5-6) 

Although precise pressure measurements are difficult and not very much data 
have been reported, amorphous polymers at least approximately obey equation 
(5-6). (See Table 5-1 .) 

The free-volume theory finds ready application in predicting the effect on Ts 
of diluents and molecular weight, among others. As an example, we shall 
derive an expression for the dependence of Ts on plasticizer concentration. The 
total fractional free volume of a polymer-diluent system may be written as 

f= 0.025 + ap(T-Tg,p)Qjp  + ad(T-Tg,d)Qjd  (5-7) 
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Table 5-1. Pressure Dependence of Tg 

TVAdAC,, dTJdP, APlAa, 
Polymer Watm Uatm "IUatm 
Polyvinyl acetate 0.02Sa 0.02 a 0.05" 

Natural Rubber o.02oa 0.024' 0.024' 
Polymethyl methacrylate - 0.023d 0.065' 

"J. M. OReilly, J. Polym. Sci., 57, 429 (1962). 
bS. Matsuoka and B. Maxwell, J. Polym. Sci., 32, 131 (1958). 
'J. E. McKinney, H. V. Belcher, and R. S. Marvin, Trans. SOC. Rheol., 4, 347 (1960). 
dN. Shishkin, Sov. Phys.-Solid State, 2, 322 (1960). 
"G. Allen, D. Sims, and G. J. Wilson, Polymer, 2,375 (1961). 

Polystyrene - 0.036b 0.1Ob 

In equation (5-7) the subscripts p and d refer to polymer and diluent, 
respectively, and 4 is the volume fraction. At the Tg of the 
mixture, f becomes 0.025. Using this fact and substituting 
have 
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Figure 5-6. (a) Dependence of T, on 4, for mixtures of polymethyl methacrylate with diethyl 
phthalate. Comparison of experimental results with equation (5-8). Parameters found were: 
adlap = 2.32, Tg,d = -57 "C, T , ,  = 104 *C.+ [After F. N. KeIIey and F. Bueche, f. Polym. Sci., 
50 549 (1961)l; (b) Variation of T, for a miscible polymer blend of polycaprolactone (PCL) and 
poly(styrene-co-acrylonitrile) (SAN), with a description of the data using the Gordon-Taylor 
relationship, equation (5-27). The two points at low SAN content have a higher-than-expected 
T, because of crystallization of the PCL. [After S-C. Chiu and T. G. Smith, J. Appl. Polym. 
Scz., 29,1797 (1984). Copyright 0 1984, Wiley Periodicals, Inc., a Wiley Company.] 

The form of equation (5-8) does not allow cy,, and ad to be determined separately. 
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This is a form of the Gordon-Taylor relationship, equation (5-27), although the 
original equation was expressed in terms in mass rather than volume fraction. 

The dependence of Tg on @p as predicted from equation (5-8) is plotted in 
Figure 5-6a for the system poly(methy1 methacrylate)-diethyl phthalate, 
together with some experimental results. Tg can also be modified by blending 
with a miscible polymer component, which is widely practiced, particularly for 
PVC. A classical polymer blend comprising polycaprolactone (PCL) and 
poly(styrene-co-acrylonitrile) (SAN) is illustrated in Figure 5-6b. 

2. Thermodynamic Theory 

Equilibrium phase transitions are well treated using the classical 
thermodynamic approach. In particular, the phenomena of melting and 
vaporization are characterized by the equality of the molar Gibbs free energy of 
the two phases at the transition temperature. 

(5-10) 

However, the volumes and entropies of the two phases are not equal. 

Ehrenfest3 refers to the type of phase transition described above as a first-order 
transition because there are discontinuities in the first partial derivatives of the 
Gibbs free energy at the transition point. For example, 

dF=-SdT+ VdP (5-12) 

and we have 

s = -[g) 
P 

V = ( $ )  T (5-13) 

This notion is easily generalized to higher-order transitions. Thus a second- 
order transition is described as one in which the second partial derivatives of 
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the Gibbs free energy show discontinuities at the transition point, a third-order 
transition involves discontinuities in the third partial derivatives, and so on. 

In particular, for a second-order transition, 

- (s]p=(g)p=+ d2F 

(5-14) 

So, at the second-order transition temperature, the following discontinuities are 
observed: 

AC, = C ,  - C, 

A a  =a2 -a, (5-15) 

It is just these discontinuities that often occur in experiments involving the 
glass transition, and, because of this, Tg is often referred to as the second-order 
transition point. It is clear, however, that the observed Tg is a rate-dependent 
phenomenon. The thermodynamic analysis given above refeis only to an 
equilibrium process and thus cannot be directly applied to the experimental Tg. 
The kinetic nature of the observed Tg does not, however, preclude the existence 
of a true second-order transition temperature. Thus, in a dilatometric 
experiment, when the polymer is cooled from the rubbery or liquid states, 
volume contractions take place involving conformational rearrangements. At 
temperatures far above Tg thermal equilibrium is maintained during the cooling 
process, but as the temperature is lowered a point is eventually reached at 
which the rate of volume contraction becomes comparable with the rate of 
cooling. Below this temperature, volume relaxation and hence conformational 
rearrangements are not possible during the time scale of the experiment, and the 
discontinuities C, , AP, and A a  are observed. Such an analysis indicates that an 
infinitely slow cooling rate would be required to observe the true 
thermodynamic second-order transition temperature, if it exists at all. 

Kauzmann4 noted that if the entropies of simple glass-forming liquids were 
extrapolated to low temperatures, they would go to zero long before the 
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absolute zero of temperature was reached. Such a result, requiring negative 
entropies, is clearly meaningless in a physical sense. Kauzmann resolved this 
paradox by suggesting that the glassy state is not an equilibrium state and that 
the glasses would pass over into crystalline solids at equilibrium before the 
temperature of zero-extrapolated entropy could be achieved. Such an 
explanation denies the existence of a second-order thermodynamic transition. 
However, many polymeric substances have never been obtained in a crystalline 
state and it is difficult to imagine the possibility of crystallizing a material such 
as atactic polystyrene, for example. It was subsequently suggested by Gibbs 
and DiMarzio5 that the conformational entropy at equilibrium would indeed 
attain a value of zero at a finite temperature, defined as T2, undergoing no 
further change between T2 and absolute This idea is schematically 
illustrated in Figure 5-7 in which the dotted line represents Kauzmann's 
extrapolation. The T2 of Gibbs and DiMarzio is a true second-order transition 
temperature. In this view the observed T, is the kinetic reflection of the 
underlying thermodynamic phenomenon that would occur at T2. 

Gibbs and DiMarzio suggest that at high temperatures a very great number 
of conformations are accessible to each chain. They assume that for each chain 
segment there is one definite lowest energy conformation, so that at equilibrium 
at low temperatures there is just. one conformation available to the entire chain. 
Thus, as the chain is cooled from high to low temperatures, fewer and fewer 
high-energy conformations become accessible until at T2 only the one lowest 
energy state is allowed. 
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Figure 5-7. Schematic representation of conformational entropy vs. temperature for a glass- 
forming substance. The temperature at which the entropy attains a value of 0 is the T2 of Gibbs 
and DiMarzio. The dotted line is the extrapolation of Kauzmann designed to illustrate the 
infeasibility of a glassy equilibrium state, and the proposal of Gibbs and DiMarzio. [After J. H. 
Gibbs in Modern Aspects of the Vitreous State, Vol. 1, J. D. Mackenzie, Ed., Butterworths, 
Washington, 1960.1 
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In reality, however, there are so many states accessible at high temperatures 
that the reorientation from one state to any other particular state may take quite 
some time. In fact, as we cool the sample and intrinsically slow down 
molecular movement, it should take longer and longer to get to any particular 
conformation. To insure getting all the chains into the lowest energy 
conformation, the experiment would have to be carried out infinitely slowly. 

The temperature at which the second-order transition would occur, 
according to these ideas, may be calculated using the WLF equation (4-6). To 
shift an experiment from a finite time-scale to an infinite time-scale would take 
a value of log aT approaching infinity. Clearly this will be the case if the 
denominator of the right side of equation (4-6) goes to zero while the numerator 
remains finite. 

C2 + T2 - Tg = 0 (5-16) 

Since C, is relatively constant for most polymers, one derives the relation that 

T2 = Tg - C, Tg - 52 (5-17) 

Thus the second-order phase change would be observed about 50 K below T, 
for an experiment carried out infinitely slowly. 

The Gibbs-DiMarzio model is characterized by two parameters. These are 
the hole-formation energy, uo, and the flex energy, E. The parameter uo is a 
reflection of intermolecular energy contributions and E is a reflection of 
intramolecular energy contributions. Specifically, for hydrocarbon chains such 
as polymethylene, uo is the energy of interaction, or the "van der Waals bond" 
energy between a pair of chemically nonbonded but nearest neighboring 
segments in the lattice. In order to define E, we note that if 2 is the number of 
primary valences of each backbone chain atom, there are ( Z -  1) possible 
orientations of a bond i with respect to the coordinate system formed by the 
bonds (i - 1) and (i - 2) of the same molecule. In the case of a hydrocarbon 
chain, Z = 4. It is assumed that an energy is associated with one of the three 
possible orientations and an energy E~ is associated with the other two, with E~ 

> E,. It should be 
emphasized that E, a thermodynamic quantity, has nothing to say about the 
magnitude of potential energy barriers to rotation about chain backbone bonds. 
Rather, E refers only to the energy difference between low-lying .rotational 
isomeric states. According to the theory, it is found that uo is directly 
proportional to T2 and that E lkT2 i s  a constant for all polymers. Recasting this 
ratio in terms of T, rather than T2, it can be shown that rlkT, possesses the 
"universal" value of 2.26 for all amorphous polymers.6 

Then E is defined as the difference between g2 and E ~ .  
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We can demonstrate the utility of the Gibbs-DiMarzio theory by applying it 
to the calculation of the Tg of a random copolymer. Let us assume that the flex 
energy of a random copolymer composed of A and B monomer units is given 
by 

& = X A E A  + XsEs (5-18) 

where xA and xB are the mole fractions of monomer units A and B, respectively. 
Substituting the "universal" value of E = 2.26 kTg in equation (5-18) 

immediately leads to 

(5-19) 

which is identical in form to an empirical equation of Wood7 found to have 
wide applicability to random copolymers. 

The Gibbs-DiMarzio approach, as has been stated, rests on the existence of a 
true second-order thermodynamic transition at a temperature T2 below the 
observed Tg. The pressure dependence of T2 can thus be obtained by the 
methods of equilibrium thermodynamics. For a first-order phase transition, the 
pressure dependence of the transition temperature is given by the Clapeyron 
equation 

dT AV 
dP AS 

- (5-20) 

Straightforward application of the Clapeyron equation to a second-order 
transition is not possible because both AV and AS are 0, and thus dT/dP is 
indeterminate. However, we may invoke L'Hopital's rule and differentiate both 
numerator and denominator of the right side of equation (5-20) independently 
to obtain the limiting behavior. This may be done with respect to either 
temperature or pressure. Thus, recalling equation (5-  14) and differentiating 
equation (5-20) with respect to temperature: 

Differentiating with respect to pressure, there results 

(5-22) 
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Thus the pressure dependence of T2 and hence Tg is given by either equation (5- 
21) or equation (5-22). Equation (5-22) is, of course, identical to the free- 
volume result, equation (5-6). A comparison of these quantities has been given 
in Table 5-1. 

170 
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i" Gibbs-DiMarzio theory 

The Gibbs DiMarizio theory has been applied to the understanding of other 
behavior, e.g., the molecular weight dependence of the glass transition 
temperature of cyclic vs. linear oligomers. The prediction of the Gibbs 
DiMarizio theory is that for the cyclic oligomers, the glass transition 
temperature should fall with molecular weight because of the entropy decrease 
brought about by forming the chain into a ring. This behavior is illustrated 
using poly(dimethy1 siloxane) oligomers in Figure 5-8. The linear oligomers, 
on the other hand, behave in the normal fashion as can be seen from the results 
for these included in Figure 5-8. 

3. Kinetic Theories 

Several kinetic theories have been particularly successful in explaining various 
features of the glass transition phenomenon. Here the emphasis is on 
separating fundamental molecular aspects of the transition from factors 
introduced by the particular way in which an experiment is carried out. Such 
theories have become moderately complicated in the past several years. 
However, by concentrating on models with a single ordering parameter, we will 
attempt to convey the general framework of these theories without tackling the 
conceptual and mathematical complications that are necessary to realize 
quantitative agreement between theory and experiment. 

Figure 5-8. Molecular weight trends in the glass transition temperature trends in cyclic and 
linear oligomers of poly(dimethy1 siloxane), and the comparison of these data with the 
prediction of the Gibbs-DiMarzio theory. [Reprinted with permission from E. A. DiMarizio 
and C. M. Guttman, Macromolecules, 20, 1403 (1987). Copyright 1987, American Chemical 
Society] 
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Figure 5-9. Contraction isotherms for glucose, a low-molecular-weight glass-forming 
substance. Samples were quenched from equilibrium at 40 "C to the temperatures indicated. 
Solid line through the points at 24.9 "C were calculated using equations (5-23) and (5-25) with 
T, = 35 "C,& = 0.025, or= 3 . 6 ~ 1 0 . ~  K', and z(T,, 6= 0) = 0.015. Fits to the other temperatures 
are possible using the same equations, but require small changes in the parameters. [After A. J. 
Kovacs, Fortschr. Hochpolym., 3, 394 (1964), 0 by Springer-Verlag, 1964. With kind 
permission of Springer Science and Business Media.] 

For the purpose of this discussion, the data to be analyzed are of a slightly 
different sort from those considered previously. In Figure 5-9, we have plotted 
several volume-contraction isotherms for glucose. First of all, it should be 
noted that glucose is not a high-molecular-weight polymer, but rather a low- 
molecular-weight material that is easily vitrified. In fact, many aspects of the 
glass transition phenomenon are virtually independent of molecular weight. 
Thus, the behavior exhibited by glucose in its glass transition region is 
essentially the same as that of any high-molecular-weight amorphous polymer. 
The experiments represented in this figure involve annealing the sample at 40 
"C (a temperature above the usually quoted glass transition temperature, Tg = 

35 "C) until equilibrium is established. Then, the sample is quickly cooled to 
the experimental temperature. In addition to an "instantaneous" volume 
adjustment, one finds a substantial and often prolonged volume adjustment that 
takes place after the temperature jump. In Figure 5-9 this time-dependent 
volume change is shown for several experimental temperatures ranging from 
35.0 to 19.8 "C. Here, the normalized volume departure from equilibrium, ( Y -  
Ye) / Ye which we shall call 6, is plotted as a function of log time. One can 
clearly see that volume equilibrium is established rapidly at the higher 
experimental temperatures but has not been attained even after several days at 
19.8 "C. 
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The kinetic theories under discussion have as a goal the explanation for such 
time-dependent approaches to equilibrium. For most simple substances such as 
gases or single-phase liquids, the specific volume is a unique function of 
temperature and pressure. In the case of vitrifiable materials in the glass 
transition region, this is no longer so. As is clear from Figure 5-8, at 19.8 "C, 
for example, it is possible to prepare a material with a volume almost 0.5% 
greater than its equilibrium volume and the sample will retain much of this 
volume excess for very long periods of time. Under such circumstances, rather 
than indicating that volume is a unique function of temperature and pressure, 
kinetic theories suggest writing Y(T, P, where 5 is called an ordering 
parameter and is a general measure of how far the sample is away from volume 
equilibrium. With the establishment of equilibrium, the volume again becomes 
a unique function of temperature and pressure as 5 itself depends only on T and 
P at equilibrium. 

At this point in the development, a differential equation is usually written. 
Since we are interested in the establishment of equilibrium under isothermal 
conditions after a single temperature jump applied to the sample initially at 
equilibrium, the equation is particularly simple: 

(5-23) 

Once again, 6 is the normalized departure from equilibrium and the equation 
postulates that the rate of approach toward equilibrium (d6ldt) is proportional 
to S itself. The retardation time z may be thought of as the proportionality 
constant; if z is small, equilibrium is achieved rapidly and if large, slowly. 

A very important aspect of kinetic theories now surfaces. Equation (5-23) is 
concerned with the time dependence of volume recovery after a temperature 
jump. However, as 
discussed in Chapters 3 and 4, the rate at which the molecules can move is a 
sensitive function of the free volume, and the free volume is varying with time 
in Figure 5-9. Thus, it is clear that the retardation time in equation (5-23) must 
itself depend upon 6 and vary with time. This situation can be treated in quite a 
straightforward way by modifying equation (4-16) as 

For the volume to change, the molecules must move. 

f=& + a f (T  - Tg) + S (5-24) 

wheref, the fractional free volume, adopts equilibrium values whenever 6 = 0. 
(The usual restriction of applying equation (4- 16) only to temperatures above 
Tg is normally relaxed at this point.) The fractional free-volume dependence of 
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the viscosity should be the same as that of the retardation time under 
discussion, so that equation (4-1 8) may be generalized to: 

(5-25) 

This equation explicitly relates a reference retardation time z( T', 6= 0) 
measured under conditions of volume equilibrium at T to a retardation time 
applicable under any other conditions of temperature and volume via the usual 
free-volume parameters. 

Equations (5-23) and (5-25) have been used to calculate the solid line 
through the data points in Figure 5-9 at 24.9 C .  Reasonable values for the free- 
volume parameters and the reference retardation time were used and are listed 
in the figure legend. 

While the agreement between the experimental data and the theoretical 
calculation is very satisfying, other types of volume and enthalpy recovery 
experiments show that the single-ordering parameter model is not sufficiently 
flexible to rationalize many of the important aspects of the glass transition 
phenomenon. As a result, more complex models based on multiple ordering 
parameters are now under development.8 

C. STRUCTURAL PARAMETERS AFFECTING THE GLASS 
TRANSITION 

We have seen that the free-volume, thermodynamic, and kinetic theories serve 
to rationalize the glass transition phenomenon in a wide variety of polymeric 
systems. There are, of course, additional effects that cannot be well explained 

Table 5-2. Glass Transition Temperatures for Selected Polymers 
Organic Polymers Tg, "C 
Pol yacenaphthalene 264 
Polyvinyl pyrrolidone 175 
Poly-o-vinyl benzyl alcohol 140 
Poly-p-vinyl benzyl alcohol 160 

Polyacrylic acid 106 
Polymethyl methacrylate 105 
Polyvinyl formal 105 

Pol yacrylonitrile 96 

Polymethacrylonitde 120 

Polystyrene 100 
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Table 5-2. (Continued) 

Organic Polymers TR , "C 
Polyvinyl chloride 87 
Polyvinyl alcohol 85 
Polyvinyl acetal 82 
Polyvinyl proprional 72 
Polyethylene terephthalate 69 
Polyvinyl isobutyral 56 
Polycaprolactam (nylon 6) 50 
Polyhexamethylene adipamide (nylon 6,6) 50 
Polyvinyl butyral 49 
Pol ychlorotri fluorethylene 45 

Pol yperfluoropropylene 11 
Polymethyl acrylate 9 

Polyvinyl fluoride -20 

Polyvinylidene fluoride -3 9 

Polyhexamethylene sebacamide (nylon 6, 10) 40 
Polyvinyl acetate 29 

Polyvinylidene chloride -17 

Pol y-1-butene -25 

Poly- 1 -hexene -50 
Pol ychloroprene -50 
Polyvinyl-n-butyl ether -52 
Polytetramethylene sebacate -57 
Polybutylene oxide -60 
Polypropylene oxide -60 
Poly -1 -octene -65 
Polyethylene adipate -70 
Polyisobutylene -70 
Natural rubber -72 
Pol yisoprene -73 
Pol ybutadiene -85 
Polydimethyl siloxane -123 
Inorganic Polymers TR ,"C 

Polycalcium phosphate 525 
Polysodium phosphate 285 

Arsenic trisulfide 195 
Arsenic trioxide 160 
Sulfur 75 
Selenium 30 

Silicon dioxide 1200-1 700 

Boron trioxide 200-260 

Polyphosphoric acid -10 
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on the basis of either of these approaches. In this section we examine some 
structural parameters affecting Tg in a qualitative manner, pointing out 
exceptions to the theories quoted above. 

The details of the molecular structure of polymers profoundly influence the 
observed Tgls, as illustrated by Table 5-2, where we may contrast the Tg of 
polydimethyl siloxane, -123 "C, with that of poly(ca1cium phosphate), + 525 
"C. At least approximately, we may separate the observed effects into 
intermolecular and intramolecular parts. The latter refer to structural 
parameters affecting the stiffness of the chain backbone; we shall examine 
these first. 

The internal mobility of a chain reflects the ease of rotation of backbone 
bonds about one another. This is determined by the barrier to internal rotation 
and by steric hindrance introduced by the presence of substituents on the 
backbone chain atoms. Thus, the low Tg of polydimethyl siloxane may be 
rationalized on the basis of a low rotational energy barrier. A similar 
explanation may be advanced for the low Tg of linear polyethylene, -78 "C. 
(Some controversy still exists concerning the Tg of linear polyethylene. For 
example, values as low as -128 "C have been proposed by Beatty and Karasz,' 
while others report higher values. Check the latest issue of Polymer 
Handbook" for an extensive listing of Tg's.) The steric hindrance factor may 
be illustrated by considering the effect of the substitution of various groups for 
hydrogen atoms on a linear polyethylene chain. The placement of a methyl 
group on alternate carbon atoms results in polypropylene, which has a Tg of -20 
"C. Polystyrene, which has a phenyl group on alternate carbon atoms, has a Tg 
of +lo0 "C, over 200" higher than that of unsubstitufed polymethylene. This 
type of correlation must be applied with caution, however. Consider 
polyisobutylene, containing two methyl groups on alternate carbon atoms. In 
this case the Tg is -80 "C, some 60" lower than the monosubstituted case, 
polypropylene, while poly(a-methylstyrene) has a Tg of about 180 "C.' 

Ring- 
substituted polystyrenes show this effect and, in the case of 
polyacenaphthalene, the motions of the chain are so severely restricted that the 
Tg occurs at 264 "C. Chain microstructure is clearly important in determining 
chain mobility. We have already discussed the case of random copolymers on 
the basis of the Gibbs-DiMarzio theory and have developed equation (5-19), 
which shows that the Tg of a random copolymer is intermediate between the 
Tg 's of the corresponding homopolymers. Equation (5-19) is similar in form to 
the empirical expression of Wood7 

An increase in side group bulkiness generally serves to raise Tg. 

N. G. McCrum, B. E. Read and G. Williams, Anelastic and Dielectric Effects in Polymeric 
Solids, Wiley, New York, 1967, p. 416. Other values have been reported." 
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(5-26) 

where WA and W, are the weight fractions of the comonomers A and B, and KA 
and KB are constants characteristic of A and B, respectively. Equation (5-26) 
may be rearranged to 

1 - (1 - k)W, W, + kW, 
(5-27) 

where k = KB/KA. Thus equation (5-27) has one more parameter (k )  than 
equation ( 5 -  19). 

Equation (5-27), also known as the Gordon-Taylor' ' equation, has found 
wide application to random amorphous copolymers. Figure 5-10 shows the 
experimental results for a series of styrene-butadiene copolymers along with 
the corresponding Tg 's calculated from equation (5-27) with k = 0.34. (See 
problems at the end of this chapter for additional equations.) 

1 0 0 1  

3 
Weight  f ract ion s tyrene  

Figure 5-10. Composition dependence of T, for a series of random styrene-butadiene 
copolymers compared to the predicted curve calculated on the basis of equation (5-27) with k = 

0.34. [After M. Gordon and J. S. Taylor, J. Appl. Chem. 2,493 (1952).] 

Equation (5-27) is applicable only to random copolymers; very different 
phenomena are observed in the case of block and graft copolymers. Frequently 
in these situations, two Tg7s are observed as a consequence of the occurrence of 
microphase separation. This subject is beyond the scope of this book, however. 

In addition to copolymer composition, geometrical and steric isomerism 
play important roles in the determination of chain stiffness and thus of T,. 
Polydienes, for example, can exist as cis and trans geometrical isomers. In the 
case of poly( 1, 5-butadiene), the cis isomer has a T, of -102 "C while the stiffer 
trans isomer shows a T, of -48 "C. The effect is not nearly so marked in the 
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case of polyisoprene where the cis isomer exhibits a Tg of -73 "C and the trans 
isomer a Tg of -53 "C. 

Vinyl polymers of the type CH2CHX and vinylidene polymers of the type 
CH,CXY are capable of existing in different stereoregular forms. These are 
generally referred to as isotactic, syndiotactic, and atactic forms; it is here 
assumed that the reader is familiar with this nomenclature and the specific 
structures associated with it. It has been shown that steric isomerism has little 
effect on the Tg of vinyl polymers but profoundly affects the T, of vinylidene 
polymers.12 In the latter case, the isotactic form invariably is associated with 
the lowest Tg values. This result has also been rationalized on the basis of the 
Gibbs-DiMarzio theory, but again the details are beyond the scope of this book. 

Turning to intermolecular effects, we first note that the free-volume 
approach is of great utility here, although by no means universally applicable. 
One example is the effect of low-molecular-weight diluents or plasticizers, 
which have already been accounted for by the free-volume theory through 
equation (5-8). The general idea is that plasticizers lower T, by introducing 
free volume into the system, the final Tg being intermediate between that of the 
plasticizer and that of the polymer. The free-volume theory cannot account, 
however, for the plasticizing effect of water on polar polymers. Water exerts a 
dramatic plasticizing effect on nylons, greater than 30 "C for the first weight 
per cent. However, the addition of water in low concentrations actually 
increases the density of the polymer-water mixture and would thus be expected 
to raise the T, on the basis of the free-volume theory rather than lowering it as 
actually observed. The explanation is that water acts to break intermolecular 
hydrogen bonds present in the nylon, thus allowing greater chain mobility and 
also more efficient packing, the net result leading to a decrease in Tg. 

The effect of molecular weight has been approached in Chapters 3 and 4. 
Specifically, free volume around chain ends is taken to be greater than that 
around chain middles because of imperfect packing at the chain ends. It is 
expected that Tg will become independent of molecular weight at high 
molecular weights due to the negligible concentration of chain ends in high- 
molecular-weight polymers. It follows directly from the free-volume theory 
(see Problem 5-1) that 

C T =T"--  
M n  

(5-28) 

where is the number-average molecular weight of the polymer. This 
relationship is known as the Fox-Flory equation. 

Figure 5-1 1 illustrates equation (5-28) for the case of polystyrene; it is seen 
that the data are well fitted for c = 1.7 x lo5. The c values vary from polymer 
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to polymer but are generally of the same order of magnitude as the polystyrene 
case. 

M x 10” 
0 20 40 60 80 
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Figure 5-11. 7‘’ versus reciprocal molecular weight for polystyrene fractions. The solid line is 
a plot of equation (5-28) with c = 1.7 x 10’. [After T. G Fox and P. J. Flory, J. Appl. Phys. 21, 
58 1 (1950), by permission of the American Institute of Physics.] 

A second important intermolecular structural feature is crosslinking, which 
Both the free-volume and the Gibbs- often has a strong influence on Tg. 

DiMarzio theories give a result of the form: 

(5-29) 

where Tgo is the glass transition temperature for the uncrosslinked polymer and 
NO is the number density of crosslinks. The two theories differ in that the 
constant k has different dependencies on structure and bulk material properties. 
For the Gibbs-DiMarzio theory, k will depend explicitly on the molecular 
structure of the network chains, whereas the free-volume theory predicts a 
dependence of k on the ratio of the differences in expansion coefficients, that is, 

(5-30) 

where a,,, is the expansion coefficient of the monomer, while ar and ag are the 
expansion coefficients for the uncrosslinked polymer above and below Tg, 
respectively. 

These ideas are difficult to test experimentally. One system that has been 
investigated, however, is poly(styrene-co-divinylbenzene), which has the 
desirable feature of a strong structural similarity between the main-chain 
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monomer, styrene, and the crosslinker, divinylbenzene. The results for this 
system are shown in Figure 5-12. 

1001 

D. RELAXATIONS IN THE GLASSY STATE 

In addition to the glass transition, amorphous polymers usually exhibit at least 
one so-called secondary relaxation region. Secondary relaxations are 
manifestations of motions within the polymer in the glassy state. Since large- 
scale motions such as those accompanying the glass transition are impossible in 
the glassy state, the secondary relaxations must arise from localized motions. 
These are conveniently classified into two types: main-chain motions and side- 
group motions. In this section we describe methods of detecting secondary 
relaxations and give examples of secondary relaxations belonging to both side- 
group and main-chain motions. 

In contrast to other Tg methods, dynamic measurements easily detect glassy 
state relaxations and have been extensively applied to their study. These 
include dynamic mechanical methods, dielectric relaxation, and nuclear 
magnetic resonance (NMR). Since we are primarily concerned with 
viscoelastic response at this point, we shall confine the discussion to the 
dynamic mechanical technique and delay our consideration of dielectric and 
NMR methods until Chapter 7. 

As should be apparent, it is possible to detect secondary relaxations by 
performing measurements over a frequency range at constant temperature or 
over a temperature range at constant frequency. The latter technique is usually 
employed, largely because extended mechanical frequency ranges are difficult 

Figure 5-12. Glass transition change in the system poly(styrene-co-divinylbenzene) as a 
function of the crosslink density. No is the number density (e.g., mmol/cm3) crosslinks, 
whereas p is the bulk mass density (e.g., g/cm3). The dotted line is the fit of equation (5-29) 
with the result that kp is 130 k 10 g/mol. [Adapted from T. G Fox and S. Loshaek, J. Polym. 
Sci., 15, 371 (1955). Copyright 0 1955, Wiley Periodicals, Inc., a Wiley Company.] 
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Figure 5-13. Temperature dependence of tan Gfor polymethyl methacrylate showing the a and 
p relaxations. [After L. E. Nielsen, Mechanical Properties of Polymers, Reinhold, new York, 
1962, p. 178.1 

Much of the discussion of the motions underlying the glass transition has 
been presented without reference to the details of molecular structure. Because 
of the relatively long-range motions characterizing the glass transition, it is 
possible to construct general theories applicable to all amorphous polymers 
without regard to fine structural details. Such is not the case with the localized 
secondary relaxations. We must in general consider structural features 
involving only a few main-chain or side-group atoms. Many different 

to achieve experimentally and many secondary relaxations of interest occur at 
very high frequencies at room temperature. 

As an example the case of polymethyl methacrylate may be cited. Figure 5- 
13 shows a plot of the logarithmic decrement versus temperature for this 
polymer at a constant frequency of 1 Hz in the temperature range -50 to + 160 
"C. Two relaxation peaks are discernible: the higher temperature relaxation 
corresponding to the glass transition (7'' = -105 "C) and a secondary relaxation 
at 50 "C. It becomes necessary to adopt a labeling scheme for the various 
relaxations observed. Several schemes are currently in use and we shall choose 
one of the most popular, that of labeling the peaks a, p, y, and so on, in order of 
decreasing temperature. Thus, in a linear amorphous polymer, the a relaxation 
corresponds to the glass transition, the p relaxation to the highest temperature 
glassy-state relaxation, and so forth. Polymethyl methacrylate exhibits only 
one secondary relaxation in the temperature range of Figure 5-13 and this is the 
p relaxation at 50 "C. 
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mechanisms have been proposed for the large variety of secondary relaxations 
observed, and a detailed consideration is beyond the scope of this treatment. 
More detailed accounts exist in the work of McCrum, Read, and William~, '~ 
Ferry14 and M~rayama, '~  which should be consulted for more details. We shall 
present only two mechanisms here. 

--- 

Figure 5-14. The crankshaft mechanism according to Schatzki Figure 5-14. The crankshaft mechanism according to Schatzki 

First is the crankshaft mechanism of Schatzki.I6 It has been observed for 
many polymers containing linear (CH,) sequences with y2 = 4 or greater, that a 
secondary relaxation occurs at about -120 "C at 1 Hz. This seems to be true 
regardless of whether the CH, sequences occur in the main chain or in the side 
groups. Thus both polyethylene and poly-n-butyl methacrylate exhibit this 
relaxation. The mechanism proposed by Schatzki is shown in Figure 5- 14. 

The motion responsible for the relaxation is a rotation about the two co- 
linear bonds 1 and 7 such that the carbon atoms between bonds 1 and 7 move in 
the manner of a crankshaft. The co-linearity of the two terminal bonds is 
achievable if there are four intervening carbon atoms on the assumption of 
tetrahedral valence angles and a rotational isomeric state model. Support is to 
be found for the crankshaft mechanism in the fact that the activation energy 
estimated for the model, 54 kJ/mol, is close to the experimental results, 50-63 
kJ/mol, and in the fact that the predicted free volume of activation, about four 
times the molar volume of a CH, unit, is also in good agreement with 
experimental estimates based on pressure studies. 

An outstanding example of the identification of a secondary relaxation with 
a specific molecular structure lies in the work of Hei jb~er . '~  Heijboer studied 
a large number of methacrylate polymers containing the cyclohexyl group in 
the ester side chain. His results for a series of methyl methacrylate-cyclohexyl 
methacrylate copolymers are shown in Figure 5-15. It can be seen that the 
magnitude but not the temperature of the low temperature relaxation is affected 
by the concentration of cyclohexyl groups. The observed activation energy for 
this relaxation is 48 kJ/mol, identical with that observed for a mechanical 
relaxation in many low-molecular-weight cyclohexyl derivatives. This led to 
the identification of the polymeric relaxation with a flipping of the substituted 
cyclohexyl ring from one conformation to another. 
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Figure 5-15. Temperature dependence of tan 6 for copolymers of methyl methacrylate and 
cyclohexyl methacrylate. Open circles are pure polymethyl methacrylate. [After J. Heijboer, 
Kofloid-Z. 171 7 (1960), by permission of Dr. Dietrich Steinkopff Verlag.] 

The time-temperature or frequency-temperature superposition scheme 
discussed in Chapter 4, Section By is applicable to secondary relaxations as well 
as to the glass transition, assuming that the observed secondary relaxation 
peaks are well resolved. When the shift factors are obtained for these 
secondary relaxations, it is found that their temperature dependencies do not 
obey the WLF equation but follow an equation of the Arrhenius form, that is:, 

Ha loga, cc - 
2.303RT 

(5-3 1) 

Thus plots of log a ,  versus 1/T for a secondary relaxation will yield straight 
lines, not curves as in the WLF case. This fact has been used to distinguish the 
main glass transition from other relaxations occurring in semicrystalline 
polymers.§ 

E. RELAXATION PROCESSES IN NETWORKS 

1. Physical Relaxation 

The equilibrium mechanical properties of soft polymeric networks (gels, 
elastomers) are described in some detail in Chapter 6. Ideally elastomers and 
covalently crosslinked gels are perfect solids that have no time dependence. 
The reality is quite different, in that there may be significant dissipation in the 
network due to a number of mechanisms, the most of important of which are 
retraction of loose network ends and the chemical scission of the network 

' It should be emphasized that data of good precision covering a broad temperature range are 
needed to distinguish between the Arrhenius and WLF relationships. 
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chains or crosslinks. (The viscoelastic properties of networks below Tg are 
similar in most cases to the uncrosslinked polymer.) 

Early experiments with elastomers showed that the relaxation toward 
equilibrium was sharply dependent on crosslink density. It was found that 
tightly crosslinked networks relaxed very quickly, whereas networks with low 
crosslink density exhibited relaxation that covered an extremely broad time 
scale. These early experiments were correlated in terms of the expression for 
the tensile relaxation modulus E(t): 

E( t )  = EJ1+ ( t / z ) - m ]  (5-32) 

where Em is the equilibrium modulus, zis the relaxation time and rn is the shape 
coefficient. This form is often referred to as the Chasset-Thirion equation after 
the experimentalists Chasset and Thirion.18 Values of m generally fall around 
0.1, meaning that the relaxation is very broad. Figure 5-16 shows an example 
of this relaxation and its description with the Chasset-Thirion relationship. 

Butyl rubber w /  oil 
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Figure 5-16. Physical stress relaxation at 25 "C in a crosslinked network made by a zinc oxide 
cure of a halobutyl rubber. The elastomer has been soaked in oil to speed the relaxation. The 
line is the fit to the data using the Chasset-Thirion equation with Em = 0.018 MPa, z =  1.04 s 
and m = 0.3 1. The nature of the polymer and the cure makes for a chemically stable structure; 
otherwise, the plot would begin to curve downward at long time. 

Theoretical justification of the Chasset-Thirion expression has been 
provided in terms of reptation of the free ends of the network.'' (See Chapter 
3, Section G for a general. description of reptation.) The elastomeric network 
provides each dangling end with constraints that do not release; thus the chain 
must relax by reptation along its own contour. According to the ideas of the 
tube models, the chain must push a loop through the tube wall, which will then 
allow the chain end to move along the tube. On release of the loop, the 
dangling chain end can penetrate into the network in a relaxed configuration. 
Other possible mechanisms are path retracement, i.e., the end of the chain 
retraces the path of the rest of the chain to achieve a relaxed configuration. All 
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I I 

of these processes take many steps, and the time required climbs markedly as 
the structure of the chain end becomes more complex. 

2. Chemical Processes 

Many elastomers exhibit relaxation processes due to chemical changes in the 
network, a process that can become dominant at high temperatures. Chemical 
changes in elastomers are expected in part because of their flexible chain 
structure, which precludes the use of electronically stabilized conjugated ring 
structures commonly found in high-performance engineering thermoplastics 
such a polyimides. Fundamentally chemically stable main chains such as found 
in perfluoroelastomers may feature curing mechanisms that give less stable 
crosslinks (see Chapter 6 for a full discussion of these terms). Regardless of 
the particular moiety responsible for the chemical change, the net result is an 
observed decay of stress in a stress relaxation experiment. This is referred to as 
chemical stress relaxation, and classically was done in extension to allow ample 
exposure of the sample to the surrounding environment. In some polymers, 
such as natural rubber shown in Figure 5-17, the relaxation is nearly 
exponential, suggesting a first-order chemical degradation of the network 
chains of concentration No, that is, 

dNo I dt = -kN0 (5-33) 

or 

No@) = No(0)e-k' (5-34) 
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where k is the first-order rate constant. The connection of this behavior to the 
shear stress relaxation modulus G is through equation (6-59) developed in 
Section B of Chapter 6 

(6-59) 

where f is a constant factor near 1. As introduced in Chapter 6, Section A, the 
observed tensile stress 0, for an elastomer is related linearly to the shear 
modulus through the relationship 

oE = G(A2 - l / A )  , (6-60~) 

where il is the stretch ratio. (Review Chapter 2 to recall the relationship 
between tensile and shear properties.) The net result on combining equations 
(6-60c), (6-59) and (5-34) is the relationship 

(5-35)  

where oE(t) and q ( 0 )  are the stress at time t and zero, respectively. Invariably, 
however, if this hypothesis is checked by measuring the time dependence of G 
using dynamic methods (see Chapter 2), there is a large discrepancy-the latter 
does not fall as fast, or may even increase! This discrepancy has been 
explained in terms of the chemistry of the network, which can include 
reversible reactions that slow the loss of network chains or side reactions that 
lead to the formation of new network chains. These ideas are embodied in the 
two-network hypothesis of Andrews, Tobolsky and Hanson,20 which describes 
the chemical processes as a superposition of an original strained network and a 
new network formed in a relaxed state. This mechanism also explains the 
widely used standard test referred to as compression set, wherein the recovery 
of strain following chemical stress relaxation is measured.2' This simple test 
involves compression of the sample between two plates for a fixed period of 
time while exposed to elevated temperatures. At the end of the exposure the 
plates of the removed and the thickness of the sample is measured and 
compared with the original thickness. According to the two-network 
hypothesis, the network formed in the relaxed state resists the recovery of the 
sample to its original thickness; a balance of the original and new networks 
determines the recovered thickness. 

In a few special cases, remarkable quantitative agreement between 
independently measured chemical degradation reactions and chemical stress 
relaxation has been achieved. However, in most cases quantitative 
interpretation is confounded by other effects such as many parallel reactions, 
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simultaneous physical relaxation, crystallization processes, the influence of 
stress on some chemical reactions, and the contributions of physical 
entanglements in the networks. Thus the main attributes of chemical stress 
relaxation of elastomer networks are: 

High sensitivity to small amounts of chemical degradation. The high 
sensitivity results from the amplification due to the large number of 
degradable links in each network chain combined with the fact that a 
chain becomes ineffective in supporting stress after but a single scission 
step. 

0 Direct relationship to important technological properties such as the 
sealing pressure exerted by a compressed O-ring. 

0 Facile detection of interchange reactions in elastomers. Interchange 
reactions cause breakage of network chains but the chains quickly 
reform in another configuration. Networks that undergo interchange 
reactions will exhibit no time dependence of the dynamic modulus, 
whereas they will exhibit exponential decay of stress in a stress- 
relaxation experiment. An example of an elastomer that shows 
interchange is polysulfide, which has main-chain structures involving 
sequences of labile sulfur-sulfur bonds. 
Ability to distinguish degradation reactions confined to bonds in the 
crosslink vs. general degradation of the main-chain bonds. These two 
can be distinguished by comparing the behavior of networks that are 
crosslinked to a different extent. See Problem 5-12. 

0 

Time, min 

Figure 5-18. Dynamic mechanical behavior during the chemical cure of a phenolic resole resin 
at 125 "C. The noise at the beginning of the experiment results from the rapid evolution of 
moisture, which causes some bubbles to form. [From J. Rose, MS Thesis, University of 
Connecticut, Storrs, CT (2001).] 

Relaxation processes during the curing (crosslinking) of networks have also 
been studied extensively, particularly with respect to the curing of thermosets 
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for composites. Typical behavior during the cure of a resin starting from low 
molecular weight to a relatively high state of cure is shown in Figure 5-18. The 
results show that the cure kinetics slow markedly at times beyond 30 min. 

PROBLEMS 

1. 
given by 

Assuming that the molecular-weight dependence of the fractional free volume is 

A 
f M = f m + -  

M" 
where fM is the fractional free volume at number-average molecular weight M,, fm is 
the fractional free volume at infinite molecular weight, and A is a constant, derive 
equation (5-28). 
2. It has been observed that methacrylate polymers containing linear (CH,), 
sequences in the ester side chain exhibit a regular decrease in Tg with increasing n. 
Some data are provided in file Tg-A1 k y l  -MA. TXT on the CD. 

(a) Plot this data as Tg vs. n. 
(b) Devise an explanation for this on the basis of the free-volume theory. 
( c )  (Computer) Use the data provided, along with your explanation in part (b) to 

Qualitatively predict the dependence of Tg on tensile stress on the basis of 
(a) The free-volume theory 
(b) The Gibbs-DiMarzio theory. 

predict the Tg of polyethylene. (Hint: Consider the equation in part b of Problem 5-4.) 

3. 

Might your results suggest an experimental test to distinguish between the two 
theories? 
4. (a) If we consider a polymer to be made of only chain ends and chain middles, 
show that the following equation may be obtained from equation (5-28): 

where we, is the weight fraction of the chain ends and Me is the weight of chain ends 
per mole of chains. 

(b) One of the equations used to predict glass transition temperature depression 
due to the incorporation of solvent is 
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where subscripts p and s refer to the polymer and the solvent, respectively, and K is a 
constant. Rearrange this equation into a form similar to the one in part (a) by 
considering chain ends as solvent. 
5. (a) For a miscible blend (mixture) of polymer 1 with polymer 2, derive the 
following formula for Tg, the glass transition temperature of the blend: 

lnTg = m, (ACP.1 )w + m2(AG,2 b T ,  
m, (ACP,l)+ m2 ( G . 2  ) 

m, and m2 are mass fractions, T, and T2 are glass transition temperatures and ACp,, and 
ACp,2 are heat capacity differences (per unit mass) between the liquid and glassy states 
for polymers 1 and 2 respectively. You may assume that the entropy of the blend is 
given as 

s = x,s, + x2s2 

where x, denotes mole fraction and that at all glass transition temperatures, 

Sglass = Sliquid 

(b) Also show that if TI and T2 are close and ACP,, = ACp,2, the above relationship 
reduces to: T = WIT,  + W2T2 where Wi are the weight fractions. [See P. B. Couchman, 
Phys. Lett., 70A, 155 (1 979).] 
6. (Open-ended) To estimate the importance of the variation of retardation time with 
recovery in the single-ordering-parameter kinetic view of the glass transition, contrast 
the experimentally observed behavior given in Figure 5-9 with that predicted by a 
single-ordering parameter model with a structurally independent retardation time: 

For the consideration of the 24.9 “C curve in the figure, values of 6, = 3.0 ~ 1 0 . ~  and z 
= 1.0 h are appropriate. Data for this curve are listed in Glucose-txt in the CD. 
7. (Open-ended; Computer) The influence of film thickness on the glass transition 
temperature is an important problem in thin-film technology. In dealing with very thin 
films, thickness is not the only factor-preparation method, the nature of the substrates 
(if any) and even the method of measurement may influence the result. Considering 
the data below (also in file Fi lm-Tg . TXT in the accompanying CD) for films cast on 
a single surface, and assuming that the film’s surface is a layer 6 in thickness and 
featuring twice the free volume of the bulk polymer, derive an expression for the 
film’s Tg in terms of surface layer thickness 6 ,  film thickness h, and the T, of the bulk. 
Choose any reasonable method of averaging the Tg’s of the two layers. Use your 
equation to fit the data provided, and plot the result. If this approach is valid, suggest 
what would happen if two surfaces of the film were exposed to the air. 
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Log (thickness, m) Tg, K 
-7.746 320.6 
-7.577 322.1 
-7.4 65 
-7.451 

324.2 
325.0 

-7.437 325.7 
-7.338 
-7.282 
-7.099 
-7.042 
-5.352 

327.0 
327.0 
327.9 
329.1 
330.4 

-4.296 330.9 
Data from Fig. 4 of F. Kremer and L. Hartmann, Dielectrics Newsletter, 
September 200 1, pp. 4-6. 

(Open end; Computer) The curves in Figure 4-4a are drawn according to the 8. 
empirical function 

where Ti andA7). the inflection temperature and breadth of the glass transition, 
respectively, can be determined quite accurately from the available data. The symbols 
G,, and G,, represent the moduli of the glass and rubbery plateau, respectively; and 
and Aq, the inflection temperature and breadth of the rubbery flow transition, 
respectively. Some of the parameters associated with the fits are: 

z, "C Plasticizer 
amount, wt% 

0 93.2 
10 59.4 
20 31.1 
30 2.3 
40 -35 
50 -73.7 
60 -86.7 

AT,, "C 

2.3 
4.3 
12.9 
22.5 
23.6 
18.6 
12.7 

(a) Using the Fox equation:* 

Tg Tg,A Tg.B 

estimate the inflection temperature for the glass transition of the plasticizer, assuming 
the plasticized mixture is a single phase. Compare prediction of the Fox equation to 
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that of the Fox-Flory equation (5-28), assuming the polymer molecular weight is 150 
kDa. 

(b) If the highly plasticized polymer instead separates into two liquid phases, 
sketch the phase diagram of the mixture assuming a melting point of the 
semicrystalline polymer of 180 “C and that the ATi represents the breadth of the two- 
phase liquid-liquid region. Name the phases present in each composition-temperature 
region. 

(c) Assuming the log modulus response is proportional to the amount of each 
phase, calculate the modulus-temperature response for equilibrium phases of 0.2 and 1. 
weight fraction plasticizer with an overall amount of 0.3, and using the q.’s from part 
(a) and AT. for pure PVC. Comment on the result. 
9. Data for the Tg’s of PDMS oligomers are listed in file Tg-PDMS . TXT on the CD, 
whereas the Tg’s of low-molecular-weight PVC resins are listed in Tg-PVC . TXT. 

(a) After converting the degree of polymerization (d,) to molecular weight for the 
PDMS (assume all methyl substitution and that d, = 2 is (CH,),Si-0-Si(CH,),-0- 
Si(CH,),, compare the deviations of these two polymers from the Fox-Flory equation. 

(b) (Computer, Challenging) Compare the fits from (a) with those of the two- 
parameter Gibbs-DiMarizio equation24 

where x = dp, and /?= -dkTg. The two parameters are vo and E, the fraction of holes 
and flex energy, respectively. The independent variable is implicit in the left-hand 
side of the equation, which makes this problem challenging. 
10. (Open-ended) Problem 5-3 addresses in a qualitative fashion the predicted effects 
of tensile stress on Tg. This problem calls for a quantification of these predictions 
using a polymer of your choice. The following steps are suggested: 

(a) Pick an elastomer with readily available tabulations of physical properties. 
Find T,, the expansion coefficient a, the isothermal compressibility pand the change 
of C, through the glass transition. 

(b) Using equation (5-6) for the influence of pressure on T,, calculate the change 
of tensile stress 0,. (Hint: Refer to Chapter 2 to find the relationship between tensile 
stress and pressure.) 

(c) The simplified Gibbs-DiMarizio formula for T, change is: 
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where A is the stretch ratio, G is the modulus at To and ACp is the change of Cp through 
the glass transition. After learning in Chapter 6 that 0, = G(Az- l/A) and finding the 
magnitude of G for crosslinked elastomers, calculate T’(A) - Tg(l). 

(d) Plot both results of a stress range that could conceivably be achieved with the 
elastomer you choose. 

(e) Comment of the magnitude of the Tg changes and design an experiment using 
the tensile mode of a dynamic mechanical thermal analyzer (DMTA) to carry out your 
experiment. 
11. (Computer) (a) Compare the Chasset-Thirion equation with an exponential 
relaxation to equilibrium such as 

E( t )  =E,[l+aexp(- t /z)]  

at times considerably longer than z and such that the modulus is only 10% greater than 
E, at t = z. One approach is to generate “data” with the exponential expression, and 
then fit these results with the Chasset-Thirion equation to find rn. Is there any limit to 
the value of rn as the t l  z grows? 

(b) The data used for Figure 5-16 are listed in Butyl-Rel. TXT in the CD. 
Using this data, compare the quality of fit of the exponential equation with that of the 
Chasset-Thirion equation. Is there any evidence in favor of either? 
12. Examine the influence of crosslink density N, on the chemical stress relaxation of 
a network assuming that each main chain have an equal number of equally susceptible 
bonds that undergo first-order chemical scission with a rate constant k , ,  whereas all N, 
crosslinks (per unit volume) have only one susceptible bond that undergoes first-order 
scission with a rate constant k2. Start with a perfect network with modulus given by G 
= NoRT where No = 2 N, = p/Mc where N, is the number density of crosslinks, p is the 
mass density and M, is the molecular weight of each network chain. Assume that each 
mainchain linkage has a molecular weight of M,. 
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Elasticity of Rubbery 
Networks 

The high elasticity of rubberlike materials is certainly their most striking 
characteristic. A crosslinked elastomer strip, extended to several times its 
original length when released, will return to that original length exhibiting little 
or no permanent deformation as a result of the extension. This is, of course, in 
marked contrast to the behavior of crystalline solids and glasses, which cannot 
normally be extended to more than a very small fraction of their original length 
without undergoing fracture. It is also in contrast to the behavior of ductile 
materials such as some metals, which can undergo large deformations without 
fracture but which do not return to their original length upon removal of the 
deforming stress. 

The elastic response of elastomers has been the subject of a great deal of 
study by many investigators because of its very great technological importance 
as well as its intrinsic scientific interest. Starting from one material, namely 
natural rubber, the development of polymerization techniques has resulted in a 
host of substances that may properly be called rubbers, and a giant synthetic- 
rubber industry has developed to exploit them commercially. The term 
"elastomer" has become the generic scientific name for a rubbery material. 

In this chapter, we first discuss the thermodynamics of rubber elasticity. 
The classical thermodynamic approach, as is well known, is only concerned 
with the macroscopic behavior of the material under investigation and has 
nothing to do with its molecular structure. The latter belongs to the realm of 
statistical mechanics, which is the subject of the second section, and has as its 
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basis the statistical description of the flexible polymer chain, a subject that is 
introduced in Appendix 1. We next examine the relative significance of energy 
and entropy in rubber elasticity. A phenomenological treatment then follows, 
which provides an extension of the description of elasticity to three dimensions 
and large deformations. Finally, we discuss various effects on rubber elasticity, 
such as degree of crosslinking, swelling, fillers, and crystallinity. 

A. THERMODYNAMIC TREATMENT 

The experimental techniques for investigating the thermodynamic behavior of 
elastomers are quite numerous and varied. It is possible to investigate the 
elastomer's response to various kinds of deformations, such as shear, tension, 
and compression, and it is also possible to vary temperature, pressure, and 
volume. Conceptually, one of the easiest experiments to perform is to extend 
an elastomer strip to some fixed length and then measure the restoring stress 
exerted by the strip as a function of temperature at constant (atmospheric) 
pressure. It turns out that such a simple experiment embodies the fundamental 
thermodynamic principles of rubber elasticity and thus serves to provide a point 
of departure for the ensuing development. As we shall treat rubber elasticity by 
equilibrium thermodynamics, our measurements must be done in accordance 
with this condition. Experimentally, equilibrium is attained after stretching by 
allowing stress relaxation (see Chapter 5 ,  Section E) to proceed for a long time 
until constant modulus is obtained.* Achievement of equilibrium can be 
evidenced by the reversible changes in elastic force upon changing the 
temperature. 

Figure 6- 1 illustrates the equilibrium stress-temperature behavior of natural 
rubber at various extension ratios.' The curves are linear over considerable 
temperature ranges with negative slopes at low degrees of elongation and 
positive slopes at higher degrees of elongation. This behavior is not confined 
to natural rubber but is general for all elastomers. 

The analysis of the experimental results begins with the combined first and 
second laws of thermodynamics, applicable to reversible processes. As shown 
in the Appendix 2, it reads 

dU=TdS-dW (6- 1 ) 

~~~~ ~ 

* Recent theory described in Section E of Chapter 5 suggests that true equilibrium will be 
difficult to achieve by stress relaxation of an elastomer, but provides a relationship for 
extrapolation to equilibrium. 
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In equation (6-1) the increment of work, dW, refers to all of the work (i.e., 
electrical, mechanical, pressure-volume, chemical, etc.) performed by the 
system (the sample) on its surroundings. The development of thermodynamics 
given in most physical chemistry texts is confined to gases where dW becomes 
simply pressure-volume work, PdY, where P is the external environment. In 
the case of an elastomer deformed by an amount dL in tension and exerting a 
restoring forceJ; the mechanical work performed on the system to accomplish 
the deformation, namely fdL,  must also be included in dW. Thus, for an 
elastomer strained uniaxially in tension, 

dW= PdV- fdL  (6-2) 

350 *Heating 
300 I-/ 0 Cooling 1.961 

1.762 

250 1.577 0 
Q 

150 

100 

50 

'0 10 20 30 40 50 60 
0 Temperature, C 

Figure 6-1. Stress-temperature curves of natural rubber. Extension ratios /z are indicated on 
the right of the figure. [After M. Shen, D. A. McQuarrie, and J. L. Jackson, J. Appl. Phys., 38, 
791 (1967), by permission of the American Institute of Physics.] 

In the measurements discussed above, P is the atmospheric pressure and dV is 
the volume dilation accompanying the elongation of the elastomer. Generally, 
PdV is much smaller than fdL  and may sometimes be neglected in comparison 
to fdL. However, for completeness the treatment following will include 
pressure-volume work. The sign of fdL  is the opposite of the PdV term because 
the symbolfis conventionally assigned to the force exerted by the environment 
on the sample, which is the opposite of the convention used for the PdV term, 
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which represents work done by the sample on the environment. The sign of the 
differential dL is positive when the sample becomes longer.+ 

Equation (6-1) now becomes 

d U =  TdS - (PdV- fdL)  (6-3) 

Because the experiments discussed were performed under constant pressure 
conditions, it is appropriate to use the thermodynamic entity H, the enthalpy. H 
is defined as 

Differentiating equation (6-4) at constant pressure results in 

dH = dU i PdV (6-5) 

Substituting for dU from equation (6-3) we obtain 

dH = TdS i f dL  (6-6) 

Thus, the restoring force exerted by the elastomer when it has undergone a 
deformation by the amount dL at constant temperature and pressure is: 

Equation (6-7) shows that the restoring force originates in the enthalpy and 
entropy changes that occur in the elastomer as a result of the deformation that it 
undergoes. 

The change in slope of the stress-temperature curve from negative values at 
low degrees of elongation to positive values at high degrees of elongation is 
known as the thermoelastic inversion phenomenon (Figure 6-1). To understand 
why this should occur, it is necessary to derive a thermodynamic expression for 
the slope of this curve, that is, an expression for ( a f / l T ) p , L  This can be done as 
follows. Changes in the Gibbs free energy of a closed system are given by the 
expression 

dF = -SdT + VdP + fdL  (6-8) 

One of Maxwell's relations states that 

The sign convention for the thermodynamic work varies; many thermodynamic textbooks 
now use the convention that positive work is that applied to the sample by the environment. 
We will use the classical sign convention here. 

t 



Substitution for (as/ dL)T,, in equation (6-7) yields 

= + T[3p,L 
which, upon rearrangement, leads to the desired result: 
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(6-9) 

(6-10) 

(6-1 1) 

This expression shows that for the slope of the f versus T curves to be negative, 
it must be that (aH/aL)Kp likewise, for the slope to be positive, it must be 
that (dH/aL)xp <J: The experimental results show that the former inequality 
holds at low elongations and the latter inequality holds at high elongations. At 
sufficiently high elongations it is possible to neglect (dHlaL)r:p in comparison 
with f; and, as a result, 

(6-12) 

Thus f becomes directly proportional to the absolute temperature, meaning that 
the elastic response of the elastomer is entirely governed by the decrease in 
entropy resulting from chain extension upon deformation of the sample. 

Although equation (6- 12) adequately describes the behavior of an elastomer 
at high extensions (> 10% for natural rubber), it is nevertheless true that the 
coefficient (aH/dL)~:p has a finite value and cannot be neglected in a complete 
treatment of rubber elasticity. [It should be stated that equation (6-12) is 
inadequate to describe the behavior of most elastomers at very high extensions 
because of increasing limitations on chain extension and motion, as well as the 
onset of crystallization in many elastomers. When this occurs, the term 
(dH/dL)rp once again becomes important and may actually outweigh the term 
T(dS/aL) T, P .  I 

To explore the origins of the coefficient (dH/dL)rp we return to equation (6- 
5) .  Differentiation of equation (6-5) at constant temperature yields: 

(6- 13) 
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We wish to separate effects arising from volume changes and effects arising 
from deformations of the material. To do this, we proceed as follows: 
Expressing changes in U as functions of length and volume changes yields 

d U = ( $ ) L , T d V + ( g )  dL 
V.T 

From equation (6- 14): 

(6- 14) 

(6- 15) 

which, upon substitution into equation (6- 13) and rearrangement, gives 

Equation (6-16) shows that the coefficient (dH/dL)rp consists of a part arising 
from internal energy changes occurring during a change of length at constant 
volume and a volume-dependent part. Although the thermodynamic 
development is not concerned with the molecular nature of the elastomer, the 
coefficient (aU/aL)r v can be related to intramolecular energy effects. This is 
so because of the constant-volume condition. Real elastomers usually have 
nonzero values for this coefficient. 

The coefficient (8UIaL)rL may be transformed into experimentally 
accessible quantities as follows. The Helmholtz free energy, dA, is given by 

dA = -SdT - PdV + fdL (6- 17) 

From this it follows that 

("j =(") 
T,L  aT V , L  

(6- 18) 

Returning to equation (6-3) and differentiating with respect to V at constant T 
and L: 

(6-19) 

or, making use of equation (6-18): 
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Using the chain rule of partial differentiation, 

The cubical coefficient of thermal expansion is defined by 

and the coefficient of isothermal compressibility by 

p = - L( E)  ' T.L 

(Note that both a and p may be weak functions 

(6-20) 

(6-21) 

(6-22) 

(6-23) 

of length inasmuch as the 
volume of the elastomer undergoes changes on extension.) 
definitions, we have 

Using these 

and 

a [3T.L = T P - p  
Inserting equation (6-25) into equation (6-16) yields: 

(6-24) 

(6-25) 

(6-26) 

The quantity (dH/aL)~p is directly accessible from experimental f versus T 
curves (at constant L )  as the intercept at T = 0 of the tangent to the experimental 
curve at any desired temperature [see equation (6-lo)]. Its evaluation thus 
involves no difficulty for any elastomer provided equilibrium constant-pressure 
stress-temperature data are available. In principle, the second term on the right 
side of equation (6-26) is also directly measurable, but precise values turn out 
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to be very difficult to obtain in practice. Measurements of a and p can be 
carried out with relative ease, but the coefficient (dVIi3L)T.p is very small for 
most elastomers and usually depends on extension; thus great experimental 
skill is required to obtain a measurement of any 

By combining equation (6-26) with equation (6- lo), the energetic 
component of the elastic force6 becomes 

(6-27) 

Thus, from equation (6-27) one should be able to compute the relative 
importance of contributions from energy and entropy to rubber elasticity. Once 
again, the difficulty of measuring accurate values of the partial ( d V / d L ) ~ p  
renders this separation difficult at best. 

In general, direct measurements have not been fi-uitful and various 
approximate methods have been d e ~ i s e d . ~  The latter are discussed in more 
detail in Section B2 of this chapter. 

B. STATISTICAL TREATMENT 

A rubber-like solid is unique in that its physical properties resemble those of 
solids, liquids, and gases in various respects. It is solidlike in that it maintains 
dimensional stability, and its elastic response at small strains (-4%) is 
essentially Hookean. It behaves like a liquid because its coefficient of thermal 
expansion and isothermal compressibility are of the same order of magnitude as 
those of liquids. The implication of this is that the intermolecular forces in an 
elastomer are similar to those in liquids. It resembles gases in the sense that the 
stress in a deformed elastomer increases with increasing temperature, much as 
the pressure in a compressed gas increases with increasing temperature. This 
gas-like behavior was, in fact, what first provided the hint that rubbery stresses 
are entropic in origin. 

1. Derivation 

The molecular model for the ideal gas is a collection of point masses in 
ceaseless, random, thermal motion, the motion of any two of the point masses 
being completely uncorrelated with one another. The counterpart to this in the 
case of the ideal elastomer is a collection of volumeless, long, flexible chains 
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that are continually undergoing conformational rearrangements due to thermal 
motion but with all conformations equally accessible. The latter implies that all 
conformations are isoenergetic, that is, there are no energy differences among 
conformations. It is assumed that fewer chain conformations are accessible 
upon stretching, leading to a decrease in entropy, and hence to the restoring 
stress exerted by the elastomer. 

To exhibit an equilibrium elastic stress, it is necessary for the collection of 
linear polymer chains in an elastomer to be tied together into an infinite 
network. Otherwise the Brownian motions of the macromolecules will cause 
them to move past each other, thus exhibiting flow. Chemical crosslinking 
reactions to form covalent bonds are many and varied. In addition, microphase 
separation of parts of the chain (e.g., a chemically different sequence in a block 
copolymer) can provide a strong tie. It suffices for our purposes to consider a 
crosslink to be a permanent tie-point between two chains (Figure 6-2). 

Linear Chains Crosslinked Network 

Reaction v ' 

I- Chain loop / 

LLasted crosslin,\i. Terminal chain Entanglement 

Figure 6-2. Schematic diagram of an ensemble of linear polymer chains being crosslinked into 
an infinite network. 

To compare the ideal elastomer with the ideal gas on a more quantitative basis, 
we note from equation (6-3) that 

Equation (6-28) resembles the relation 

(6-28) 

(6-29) 

applicable to gases. For ideal gases the internal energy is independent of 
volume, (aUlaY) ,  = 0 , and the entropy has two components: one is associated 
with the heat capacity of the gas, but independent of volume; the other is 
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related to the configurational entropy of the system, and thus a function of the 
volume. By analogy, the ideal elastomer may be looked at in the same way. Its 
internal energy is independent of elongation as required by the model, and thus 
(dU/dL)~,v = 0 and the stress can be attributed to the configurational entropy 
alone. 

The term configurational entropy has been applied historically to the 
volume-dependent portion of the entropy in an ideal gas; by analogy, the 
elongation-dependent entropy in the ideal elastomer was also referred to as 
configurational entropy. A difficulty arises with this terminology in 
elastomers. Elastomer molecules are capable of geometrical isomerization, 
such as cis and trans isomers as well as stereoisomerism, which results in, for 
example, isotactic and syndiotactic forms. These various isomers are known as 
configurations and cannot be transformed from one into another without 
breaking chemical bonds. Thus, upon stretching, no configurational changes 
are possible and there is no configurational contribution to the entropy. What 
does take place are rotations about single bonds in the chain backbone. It is 
these conformational changes that give rise to the entropy decrease upon 
stretching. The conformational statistics of a single chain were the subject of 
the last chapter. Thus conformational entropy changes upon stretching are the 
major sources of rubber elasticity, and we shall refer to the entropy involved as 
conformational entropy in the discussion that follows. 

In the formulation of the statistical theory of rubber elasticity,5-” the 
following simplifying assumptions are made: 

1. The internal energy of the system is independent of the conformations of 
the individual chains. 

2. An individual network chain is freely joined and volumeless; 
consequently, it obeys Gaussian statistics (Appendix 1). 

3. The total number of conformations of an isotropic network of such 
Gaussian chains is the product of the number of conformations of the 
individual network chains. 

4. Crosslink junctions in the network are fixed at their mean positions. 
Upon deformation, these junctions transform affinely, that is, in the same 
ratio as the macroscopic deformation ratio of the elastomer sample. 

Now, from equation (6- 17): 

f =(3 T Y  (6-30) 

But by definition, 
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A - U - T S  (6-3 1 )  

Because of assumption 1 ,  however, we need not find an explicit expression for 
U but can concentrate on the entropy expression. For this we shall again 
invoke the Boltzmann relation [Appendix 2, equation (g)], as we did for the 
isolated chain: 

S = k l n Q  (6-32) 

where R is the total number of conformations available to the rubber network. 
According to assumption 2, the number of conformations available to the ith 
individual chain is given by the Gaussian distribution function [Appendix 1 ,  
equation (k)]: 

(6-33) 

Equation (6-33) describes the probability density for one end of the chain at the 
coordinates (xi, yi, zi) in the unstrained state, the other end being at the origin of 
the Cartesian coordinate system. The chain's end-to-end vector ri has a 
magnitude of (x: + y; + z;)'. (Figures 6-14 and 6-15, Appendix 1). Following 
assumption 3, the total number of conformations available to a network of N 
such chains is 

N 

R = n w ( q )  
i=I 

and the conformational entropy of the undeformed network is just 

N 

S,  =3kln,-kxb2(xi2 b +yi 2 + Z i 2 )  
?i? i=l 

or 

2 ,  

N A, = A ,  + k T x b 2 ( x i 2  + y i  2 + z i  
i=l 

(6-34) 

(6-35) 

(6-36) 

where A, is that portion of the Helmholtz free energy that is not related to 
conformational entropy changes. 

In the strained state, the chain is deformed to rl' with the chain end now at 
coordinates (xi', yi', zi'), To relate the microscopic strain of the chains to the 
macroscopic strain of the elastomer sample, we assume the deformation to be 
affine (assumption 4). Consider a unit cube of an isotropic rubber sample 
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(Figure 6-3a). In the general case of a pure homogeneous strain, the cube is 
transformed into a rectangular parallelepiped (Figure 6-3b). The dimensions of 
the parallelepiped are it,, ;12 and it3 in the three principal axes, where the itj's 
are called the principal extension ratios. Choosing the coordinate axes for the 
chain to coincide with the principal axes of strain for the sample, then 

x'j=;l, xi y'i=;12 yt z1j=it3 zj (6-37) 

The Helmholtz free energy of the deformed network can thus be written as 

N 

Ad = A, + kTCb2(4X12 + ;l;y12 + /gZ12)  (6-38) 
i = I  

m 1 

/ O3 

Figure 6-3. A unit cube of elastomer: (a) in the unstrained state; (b) in the homogeneous 
strained state; (c) under uniaxial extension. 

The total change in free energy of the elastomer network due to the deformation 
is simply the difference between equations (6-36) and (6-38): 

1 N N N 

(4 - 1)Cb2x,2 + (4 -l)Cb2y12 + (4 - 1)Cb2z12) (6-39) 
i = I  i=l  i=l 
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We recall that by definition: 

(6-40) 2 2 2 2  ‘;. = x i  + y i  +zi 

For a random, isotropic network all directions are equally probable; then 

(6-41) 2 2 2 1 2  x. = y .  = z .  = - y .  
1 3 1  

Equation (6-39) now becomes 

(6-42) 
1 -  
3 

=-kNTb2r2(A:  +A: +A: -3) 

where we have written b2r2 = ZN 1=1 b2q2 I N  . In Appendix 1 we defined b2 for 
an unstrained freely orienting random chain as 

2 3  b == 
2r; 

(6-43) 

If the network chains in the unstrained state have the same distribution of 
conformations as an ensemble of free chains, then b2r2 = 312. However, in real 
networks this condition may not be met. For instance, some of the chains may 
already be partially strained during the crosslinking process. The details of the 
crosslinking process; that is, whether it is carried out in solution or in bulk, may 
also affect the state of the network. It is therefore more general to write the 
following: 

(6-44) 

where b2 is averaged over all the free chains, that is bz = 3 / 2 7 .  Here 
yo = 2.1’ / N refers to the mean square end-to-end distance of the chain in the 
network, and r/” to the mean square end-to-end distance of the isolated chain. 
Substitution of equation (6-44) into equation (6-42) yields 

2 

T r2  M = - N k = L ( 4 + 4 + 4 - 3 3 )  
2 r; 

(6-45) 
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- _  
The parameter ri /.;, sometimes referred to as the front factor, can be regarded 
as the average deviation of the network chains from the dimensions they would 
assume if they were isolated and free from all constraints. For an ideal 
elastomer network, the front factor is unity. 

The treatment of rubber elasticity presented above represents one possible 
extreme of behavior. The assumption that the crosslink points in the network 
are fixed at their mean positions and that the crosslink points deform affinely 
gives rise to this extreme. In real polymer networks, each crosslink point finds 
itself in the neighborhood of many other crosslink points. This can be verified 
by estimating the order of magnitude of the concentration of crosslinks and 
then calculating the number of crosslink points that would be found within 
some reasonable distance (perhaps 2 nm) of any given crosslink point. Upon 
deformation, the affine assumption insists that all of these crosslinks remain in 
the neighborhood of the particular crosslink point under consideration and, 
moreover, that their relative positions are fixed. 

In the consideration of real networks, it is clear that this assumption is 
overly restrictive. For example, consider a particular chain that happens to be 
reasonably extended in the unstrained network state. In the neighborhood of a 
crosslink point for this chain, we will find many other crosslink points for other 
chains. At least some of these other chains are expected to be in less extended 
configurations than the chain under consideration. Upon deformation, the 
tendency for the already extended chain to further elongate would be expected 
to be less than the tendency for the more relaxed chains to elongate. This being 
the case, the positions of crosslink points would be expected to move past one 
another in a manner not strictly defined by the affine deformation. 

The other extreme of behavior involves the "phantom chain" approximation. 
Here, it is assumed that the individual chains and crosslink points may pass 
through one another as if they had no material existence; that is, they may act 
like phantom chains. In this approximation, the mean position of crosslink 
points in the deformed network is consistent with the affine transformation, but 
fluctuations of the crosslink points are allowed about their mean positions and 
these fluctuations are not affected by the state of strain in the network. Under 
these conditions, the distribution function characterizing the position of 
crosslink points in the deformed network cannot be simply related to the 
corresponding distribution function in the undeformed network via an affine 
transformation. In this approximation, the crosslink points are able to readjust, 
moving through one another, to attain the state of lowest free energy subject to 
the deformed dimensions of the network. 

For an ideal network with tetrafunctional crosslink points, it can be shown 
for the phantom chain approximation that'2 
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(6-46) 

It is clear that the Helmholtz free-energy change upon deformation predicted by 
equation (6-46) is just one-half as large as that given in equation (6-45) based 
on the affine deformation of crosslink points.’* Real networks probably exhibit 
behavior that is between these two extremes. Not all crosslink points move 
affinely; however, steric interactions are strong enough to prevent the phantom 
approximation from being completely realistic. 

From this point forward, we continue with our development of rubber 
elasticity theory using equation (6-45) as a starting point. We must remember 
however, that this equation is based on a limiting approximation and that the 
behavior of real networks may not be quantitatively consistent with this 
expression. 

After a uniaxial 
extension (2, = L/Lo) is applied, the length in the direction of stretch is L and 
the volume dilates to V. We have mentioned previously that the strain-induced 
volume dilation for unfilled elastomers is very small, of the order of magnitude 
of Nevertheless, the deformation process is not a volume-preserving one 
as required by equation (6-30). The device that is generally employed to 
circumvent this difficulty is to redefine the reference state. A hypothetical 
hydrostatic pressure is imagined to have been applied to the sample so that its 
volume in the unstretched state is also V. The initial length is no longer Lo, but 
is 

Suppose our unit cube has volume VO and length Lo. 

113 

L’ = Lo[ 3 (6-47) 

and the extension ratio in the direction of the uniaxial stretch based on L’ 
becomes 

* L  A = -  
L’ 

or 

113 

4=+] 
- -  

The average chain dimensions become r2 = r,’(V/V0)2’3 
redefined reference state 

(6-48a) 

(6-48b) 

Because of the 
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(6-49a) 

while previously 

(6-49b) 
V A,A,Iz, =- 
vo 

Since the network is isotropic, the contractions along the two lateral axes are 
equal and 

(6-50) 

The uniaxial extension of the unit cube is illustrated in Figure 6-3c. Inserting 
equation (6-50) into equation (6-45), the change in Helmholtz free energy upon 
deformation becomes 

for simple uniaxial extension. Since 

f =’(””) 
L‘ aA* T,v  

(6-5 1) 

(6-52a) 

(6-52b) 

Performing the indicated differentiation on equation (6-5 l), we obtain the 
equation of state for rubber elasticity: 

(6-53) 

In equation (6-53) f is the total elastic restoring force exerted by the sample. 
For many purposes it is more convenient to deal with expressions relating the 
stress to the deformation rather than the total force as in equation (6-53). For 
this purpose we define a stress o,, = f /Ao, where A ,  is the cross-sectional area 
of the undeformed sample. We further define No = N/V, as the number of 
network chains per unit volume of the undeformed sample, where V, = Ld,.  
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We shall also use the term No to represent the number of moles of network 
chains per unit volume (mol/m3) when used with R, the gas constant (8.315 Pa 
m3/mol K), instead of k, the Boltzmann constant ( 1 . 3 8 1 ~ 1 0 . ~ ~  Pa m3/K). With 
the aid of equation (6-48), we can rewrite equation (6-53) in terms of the 
nominal stress o,, as 

(6-54) 

where R = NAk, NA being Avogadro's number ( 6 . 0 2 2 ~ 1 0 ~ ~  mol-'). The ratio 
V/Vo is very nearly unity, which means also that A = Ao/A; thus, it is often 
adequate to write equation (6-54) as 

(6-55)  

where oE is the true stress. The difference between equations (6-54) and (6-55) 
is numerically trivial, although conceptually important. 

The extension ratio may be written as 

A = l + E  (6-56) 

where E is the tensile strain,. AL,/Lo. By the binomial expansion 

A2 = (1 + E ) ~  = 1 + 2 s  + . . . and l / A  = 1/( 1 + E ) = 1 - E +. . . (6-57) 

For very small strains, higher-order terms can be neglected and equation (6-55) 
may be recast as 

Y 2  E = lim- O E  - - 3N0RT 0 

.I' &+O & 
(6-58) 

where E is the equilibrium tensile modulus. If the volume of the material does 
not change, then the tensile modulus is three times the shear modulus G 
(Chapter 2, Section A), then 

- 
Y L  

G = N,RT+ (6-59) 

Thus the equation of state can be recast as 
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f = G 4 (  A - $) (6-60a) 

expressed as nominal tensile stressj7Ao = a,, 

oEO = G( A - +) 
or the true tensile stress a, = F/A 

oE = G( A2 - i) 

(6-60b) 

(6-60~) 

where G is the shear modulus defined by equation (6-59). Note that if we were 
somehow able to calculate G via equation (6-59) for a real elastomer, the value 
would not, in general, agree with the experimental value as determined by 
direct measurements in simple shear. In the absence of experimental problems, 
the discrepancy would be due to shortcomings in the molecular theory.$ 

70 

60 

50 

v; 40 
P 
2 30 Figure 6-4. Stress-strain curve for natural 

rubber. The theoretical curve was calculated 
E, 20 from equation (6-60) with G = 4 MPa. [After 
z L. R. G. Treloar, Trans. Faraday Soc., 40, 59 

10 (1944), by permission of the Faraday 
Society.] 
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The equation of state for rubber elasticity, embodied by any of equations (6- 
53) through (6-60), is important not only because it is historically the first 
quantitative treatment of molecular theories for elastomers but also because it 
laid a conceptual foundation for theories for the physical properties of polymers 
in general. Some of these have been discussed in detail in previous chapters. 
Perhaps the single most significant contribution is its recognition of the role of 

Somewhat beyond the scope of this book is to demonstrate that the theory, when simplified to 
this point, predicts that 0 = Gy, even at high strains (see problem 22). Note that the solid 
defined by the high-strain theory in equation (6-60) reduces to the Hookean solid at low strains, 
and is referred to occasionally as a neo-Hookean solid (see Section C). 
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entropy in polymers, in contradistinction to the predominant role of energy in 
"ordinary" solids. The equation predicts that the elastic force is directly 
proportional to temperature and to the total number of chains in the network. 
Both of these are experimentally observed. The strain dependence of the elastic 
force is clearly not Hookean, as it is for a single polymer chain [Appendix 2, 
equation (i)]. Figure 6-4 compares the theory with the experimental 
stress-strain curve.13 The agreement is good for strains below 50% or A< 1.5, 
but is poor at high extensions. At these high strains the network chains 
approach their limiting extensions, and the Gaussian assumption is no longer 
valid. Another complicating factor is the onset of strain-induced 
crystallization. Even though the Gaussian theory is only valid at relatively low 
strains, it is extremely valuable in providing a molecular interpretation for 
rubber elasticity. 

2. Energy Contribution 

In our statistical treatment of an ideal elastomer, we have assumed that the 
elastic force is entirely attributable to the conformational entropy of 
deformation, energy effects being neglected. That the theory reproduces the 
essential features of the elasticity of real elastomers attests to the basic 
soundness of this assumption. On the other hand, we know that in real 
elastomers such energy effects cannot be entirely absent, and deviations fi-om 
the ideal elastomer model may be expected to occur. Let us now examine in 
greater detail the extent to which the neglect of energy effects is justified. We 
can rewrite equation (6-28): 

f =fe +fs (6-61) 

with 

f e  =(%) TJ' 

(6-62) 

(6-63) 

Since we can experimentally determine f and obtain5 from the thermodynamic 
identity [Maxwell relationship resulting from equation (6- 17)], 

(ZIT," = 

We can findf, by 

(6-64) 
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f ,  = f  -T[$ V.L (6-65) 

As discussed in the previous section, the condition of constant volume is 
difficult to achieve experimentally. Similarly, the alternative expression, 
equation (6-28), also contains terms that are not accurately measurable. We 
can, however, take advantage of the exact expression of the statistical theory: 

(6-66) 

where G is defined by equation (6-59). Assuming that G is constant, we can 
differentiate equation (6-66) with respect to T, keeping V and L constant. 
(Note, however, that V, and Lo are not constant.) The result is 

a 
1. 1.1 1.2 1.3 1.4 

2401 

2001 

6 120 
6 l 6 O I  

Figure 6-5. Determination of shear moduli for natural rubber at 10°C and 60°C by plotting 
nominal stress am against iE - llA2. [After M. Shen and P. J. Blatz J. Appl. Phys., 39, 4937 
(1968), by the permission of the American Institute of Physics.] 

Combining equations (6-67) and (6-65), we obtain: 

dlnG aTf L = f - f z - -  3 

(6-67) 

(6-68) 

The advantage of equation (6-68) is that experimental errors in stress-strain 
data at various temperatures are averaged out in plotting flA0 (i.e., oEo) against 
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(A - I-*), the slope of which is the shear modulus (Figure 6-5). Knowing shear 
moduli as a function of temperature, values offe can be readily calc~lated. '~ 

For the sake of comparison, it is more meaningful to use the relative energy 
contributionf,/f Thus equation (6-68) can be rewritten as: 

Table 6-1. Thermoelastic Data of Selected Elastomers at 30 "C 

(6-69) 

Polymer x104 x103 Lff Ref. 
Pol y( ethylene-co-propylene) 

Poly(tetrafluoroethy1ene-co- 
( E W  

perfluoropropylene) (Viton 
A) 

( S W  
Pol y(butadiene-co-styrene) 

Poly(butadiene-co- 

Poly(cis- 1,4-butadiene) 
Poly(cis-isoprene) 

(natural rubber) 
Poly( 2-hydroxypropyl 

acrylate) 

acrylonitrile) (Hycar) 

2.5 2.9 0.04 

3 .0 2.8 b 
0.05 

b 
2.9 3.4 -0.12 

2.6 2.9 0.03 
b 

b 2.1 2.8 0.10 
c 

2.2 2.5 0.18 
d 

2.8 3.6 -0.53a 
n 
d 

Poly( isobutylacrylate) 2.4 3.4 -0.42" 

a Reference temperature: 120°C. 

Poly( isobutylmethacrylate) 2.2 2.3 0.02" 

E. H. Cirlin, H. M. Gebhard, and M. Shen, J. Macromol Sci., Part A, 5,981 (1971). 
M. Shen, Macromolecules, 2,358 (1969). 
M. Shen, E. H. Cirlin, and H. M. Gebhard, Macromolecules, 2,682 (1969). d 

Values offelf calculated from equation (6-69) are independent of A, as long as 
they are obtained within the region of strain for which the Gaussian theory is 
valid. 

Table 6-1 shows the values offelf for several elastomers. We see that in 
general we cannot expect the contribution of energy to rubber elasticity to be 
zero. Rather, a fraction of the stress is attributable to energy, the rest to 
entropy. However, since this fraction is a constant as a function of strain, the 
general shape of the stress-strain curve is still unaffected. Thus the neglect of 
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energy effects in the statistical theory essentially causes the predicted curve to 
differ from the experimental one by a constant factor. The shear modulus in the 
statistical theory expression [equation (6-60)] is normally obtained by fitting 
the experimental stress-strain curye rather than calculating a priori from 
equation (6-59) (neither NO nor $/rf can at present be determined with 
certainty by independent measurements). For this reason the energy component 
of the elastic force is often "absorbed" in the equation of state, rather than 
separated according to equation (6-61). 

We recall that one of the assumptions used in the derivation of the statistical 
theory is the free-energy additivity principle (assumption 3). According to this 
principle, the number of conformations available to a network of chains is just 
the product of all the conformations of the individual chains, or the entropy of 
the network is the sum of the entropies of individual chains in the network. In 
order for this assumption to be valid, it is required that chains in the network 
behave as if they were in free space and unaffected by the presence of other 
chains. This stipulation can only be satisfied if interchain interactions are 
absent. Thus the energy effects present in rubber elasticity must only come 
from intrachain interactions, such as the energy barriers hindering rotations 
along the polymer chain. It is reasonable to expect that real polymer chains are 
not isoenergetic, that is, energies of the individual chains are not constant as a 
function of their conformations. It follows that changes in the supply of 
thermal energy (changes in temperature) would produce changes in the chain 
dimensions as well. We can derive an expression for the temperature 
coefficient of the unperturbed dimension of the polymer chain - by 
differentiating equation (6-59) and remembering that No = N/Vo and r,' is 
proportional to ~ 0 2 ' ~  : 

- 
d lnr2 dlnG a T  
d InT dInT 3 

f =1---- 

Inserting equation (6-70) into equation (6-69), we see that 
- 

f dInr/2 
f dlnT 
e-- - 

(6-70) 

(6-71) 

The temperature dependence of the end-to-end distance of the isolated chain is 
related to the energy barriers between the rotational configurations of the chain 
(see Appendix 1). Thus the energy effects in rubber elasticity can, in principle, 
be related directly to structural features of the molecular chains. 
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C. PHENOMENOLOGICAL TREATMENT 

The statistical theory of rubber elasticity discussed in the preceding section was 
arrived at through considerations of the underlying molecular structure. The 
equation of state was obtained directly from the Helmholtz free energy of 
deformation (or simply conformational entropy of deformation, since the 
energy effects were assumed to be absent), which we can recast with the aid of 
equations (6-45) and (6-59) as 

A = -TS = i G ( 4  + +/2: -3) (6-72) 

As we have already seen in Figure 6-4, the theory does not give a complete 
description of the stress-strain behavior of rubberlike materials. This is 
perhaps to be expected in view of the many rather drastic simplifying 
assumptions that have been made in its derivation. That the theory predicts 
many of the essential features of rubber elasticity is a tribute to the depth of its 
insigfit. However, it is desirable to be able to describe mathematically the 
stress-strain relations of elastomers over a larger region of strain. For this 
purpose we must resort to continuum mechanics for a phenomenological 
treatment of elasticity at large strains. 

The phenomenological theory, as its name implies, concerns itself only with 
the observed behavior of elastomers. It is not based on considerations of the 
molecular structure of the polymer. The central problem here is to find an 
expression for the elastic energy stored in the system, analogous to the free 
energy expression in the statistical theory [equation (6-72)]. Consider again the 
deformation of our unit cube in Figure 6-3. In order to arrive at the state of 
strain, a certain amount of work must be done which is stored in the body as 
strain energy: 

(6-73) 

where w is the strain energy density (J/m3 or Pa), the o;,~ are the principal 
“engineering” stresses %/A,) and the Ats are again the principal extension 
ratios. This energy is a unique function of the state of strain but, unlike the 
values of the stresses, is independent of the type or orientation of the coordinate 
system. If the value of w is known as a function of strain, the elastic 
properties of the material can then be completely defined by differentiation of 
equation (6-73) (see Problem 6-1 1). Note that w has been created without any 
regard for the nature of the material or the molecular mechanism of elasticity; it 
is purely a mechanical construct. As such, it must satisfy certain logical 
constraints, in the case of isotropic solids. For example, to avoid dependence 
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on the type or orientation of the coordinate system, it logically must be 
expressible of in terms of the so-called strain  invariant^:'^"^ 

w = w ( I J  i=l, 2, 3 (6-74) 

where 

I ,  = a; + a; + a; 

I ,  = a;a; + aijl: + a;x (6-75) 

2 2 2  I ,  = a, a,a, 
[Note that there are alternative, but equivalent, definitions of these in the 
literature, comprising sums or products of the ones shown here; for example, 
I ,  = + q2, which is quotient of the I ,  and I2 in equation (6-75).] The 
third strain invariant is obviously 

+ 

2 

I ,  =[$I (6-76) 

which is equal to unity for an incompressible material. In the undefonned state, 
I ,  = 3, I, = 3 and I3 =l. 

As with all functions, a general form of the strain energy function for an 
isotropic material can be formed by a Taylor expansion. The result is: 

m w= CC&,  -3)j(12 - 3 ) j ( 1 3  -1y (6-77) 
i , j , k = O  

Note that the quantities in the parentheses are chosen such that the strain energy 
vanishes at zero strain. As we cannot determine a priori the set of terms in 
equation (6-77), let us examine the lowest members of the series. For i = 1 , j  = 

0, k = 0: 

which is functionally identical to the Gaussian free energy of deformation 
[equation (6-72)]. We recall from the thermodynamic treatment that' the stress- 
strain relation can then be obtained from w (-AA) by differentiation. Again 
for the special case of uniaxial extension, using equation (6-50) and setting 
Cleo= C, , and observing the incompressibility condition, it follows that 
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J 

C2/CI = 2 0 

000 
0 4 -  

1 3 -  

I 

% 
\ - 

w * 
1 

G 2- 

b" 1 -  

CY 
\ 

- 

OE =a*- aW = 2c,( A? - +) aa* (6-79) 

where O, is the tensile stress and A* is the extension ratio under constant 
volume conditions. Equation (6-79) is a form of the general expression for a 
so-called neo-Hookean solid, and represents a highly significant extension of 
the basic Hookean model to higher strains. If C, = G/2, equation (6-79) is just 
the statistical expression [equation (6-60)]. 

In principle, even better descriptions of behavior at high strains can be found 
by retaining more terms in the Taylor expansion. Suppose, for example, we 
retain an additional term with i = 0 , j  = 1, k = 0; then 

- 

W = C l o o ( ~ t  -3)+C010(12 -3) (6-80) 

For uniaxial extension, we obtain 

OE=2c, a -- +2c,  a -2 ( *2 1;) [ * :. ) (6-81) 

where again for simplicity we have set CI = CIoo and C2 = Cola. Equation (6- 
81) is known as the Mooney-Rivlin equation, which can alternatively be 
expressed as 

0 , = 2  c,+- a -- ( :)( x) 
since a = A* in the incompressible case. 

(6-82) 
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The conventional test of equation (6-82) is to plot experimental stress-strain 
data as 0, /(A2 - l/A) or oEo /(A - 1/A2) against l/A. The plot, often referred to 
as Mooney-Rivlin plot, should yield a straight line with an intercept at l / A  = 0 
of 2C1, and a slope of 2C2. Figure 6-6 shows a schematic Mooney-Rivlin plot 
for C2/C1 = 2. At low strains both (A2 - l/A) and l/A are extremely sensitive to 
experimental errors in extension ratio measurements. Thus if the measured A 
varies around the true A by only 1%, significant deviations can be expected in 
this region of strain, as shown by the points in the figure. To a large extent, this 
problem can be avoided by a direct nonlinear treatment of equation (6-82), that 
is, fitting force and length data directly to equation (6-82) to derive C, and C2, 
and possibly the initial sample length as well (recall that A = L/L0).17 

Example 1. As can be seen from Figure 6-6, the Mooney elastic material is 
“softer” than an ideal elastomer with the same modulus G, and thus can 
describe the observed negative deviations fiom ideal behavior such as shown in 
Figure 6-4. If C, and C2 are equal, what is the ratio (Mooney/Ideal) of the 
tensile stresses at an elongation of 1 OO%? 

The expressions required are equation (6-60) for the ideal elastomer and 
equation (6-82) for the Mooney solid. As we are seeking a ratio, either nominal 
or actual stresses can be calculated. An elongation of 100% means that the 
sample length is increased by 100% of the original length; thus, the value of A 
is simply: 

A = L / L o  =(Lo+Lo) /Lo  = 2  

As the moduli of the two materials are the same and Cj = C2 

2 (Cl + C2)= G and C1= C2 = G/4 

The ratio of the two stresses is then 

= 3 / 4  
2(C, +C2/2)  - 2(G/4+G/8) 

G G 
- 

D. FACTORS AFFECTING RUBBER ELASTICITY 

1. Effect of Degree of Crosslinking 

According to the statistical theory of rubber elasticity, the elastic stress of an 
elastomer under uniaxial extension is directly proportional to the concentration 
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of network chains No. For an elastomer sample whose density is p (g/cm3), if 
the molecular weight of each chain in the network is on the average M, (g/mol), 
then No = p/M, (mol/cm3). Thus the shear modulus of the elastomer [equation 
(6-59)] can be written as 

(6-83) 

Equation (6-83) assumes that the network is a perfect one in that all chains in 
the network are effective in giving rise to the elastic stress. Ideally each 
crosslink connects four network chains, while each such chain is terminated by 
two crosslinks. However, as illustrated in Figure 6-2, a number of network 
imperfections are possible. Each linear polymer chain with molecular weight 
My even if all crosslinks are "normal," must give rise to two terminal chains that 
are incapable of supporting stress. Thus the number of effective chains must 
not include the imperfections due to chain ends. On incorporating this 
correction, the shear modulus can be written as: * * 

Note, however, that if the initial molecular weight of the linear polymer is 
infinite, equation (6-84) reduces to equation (6-83). Figure 6-7 shows a plot of 
G against 1/M for a series of natural rubber samples; the trend predicted by 
equation (6-84) is clearly supported by the data." 

0 2 4 6 8 1 0 1 2 1 4  
1 06/M 

Figure 6-7. Variation of shear moduli of natural rubber with reciprocal initial molecular weight 
for various degrees of crosslinking. [After L. Mullins, J. Appl. Polym. Sci., 2, 257 (1959), by 
the permission of John Wiley & Sons, Inc.] 
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Another type of deviation from the "normal" crosslink structure of the 
elastomer is the effect of chain entanglements (Figure 6-2). Such 
entanglements would impose additional conformational restrictions on the 
network chains and thus would have the effect of a "quasi-crosslink" in 
increasing the elastic stress. Because the chains in actual elastomers are rather 
closely packed together, one might expect several such entanglements to occur 
between the crosslinks. Thus their contribution to stress may be quite 
significant, especially for chains that are sufficiently long to permit a number of 
such entanglements. In the absence of an effective way to calculate this 
quantity, we simply add its contribution to the shear modulus as: 

(6-85) 

where a represents the entanglement contribution. 
In addition to terminal chains and entanglements, there are other types of 

network imperfections. Figure 6-2 shows that if a short chain were crosslinked 
only once, the crosslink is a wasted one because the chain cannot support 
elastic stress. Also, if a crosslink forms an intrachain loop, it is again an 
ineffective crosslink. Unfortunately, owing to its very complexity, it is at 
present impossible to completely characterize the network structure of an 
elastomer. 

2. Effect of Swelling 

Linear polymers are capable of dissolving in appropriate solvents to form 
homogeneous polymer solutions. However, if crosslinks are introduced to tie 
the chains into an infinite network, the polymer can no longer dissolve. Instead 
the solvent is absorbed into the polymer network, giving rise to the 
phenomenon of swelling. A swollen elastomer is in fact a solution, except that 
its mechanical response is now elastic rather than viscous. As solvents fill the 
network, chains are extended. The resulting refractive force operates in 
opposition to the swelling force. There is a maximum degree of swelling, at 
which point these two forces are at equilibrium. 

If the elastomer is swollen to below the equilibrium swelling so that no de- 
swelling will occur upon deformation, the statistical expression for the shear 
modulus [equation (6-59)] can be readily modified. We define V, as the ratio of 
the unswollen volume to the swollen one, which is identical to the volume 
fraction of polymer in the mixture. The number of network chains per unit 
volume then becomesBnVr and the mean square end-to-end distance of the 
network chain is now r-0' / Vr2'3. Equation (6-59) then reads 
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2 
113 ' 0  G, = NoRTVr = 

r; 
(6-86) 

for swollen elastomers. The equation of state is now 

(6-87) 

where subscripts s refer to the swollen sample and the stress is based on the 
swollen, stretched cross-sectional area. The stretch ratio As is defined with 
respect to the unstruzned, swollen state. If stress is expressed in terms of per- 
unit cross-sectional area of unstrained, unswollen sample, then 

(6-88) 

since AOn = A0sV,2/3, where subscript d refer to the dry (unswollen) sample. The 
As is still as before. 

We can also derive an expression on the basis of the Mooney-Rivlin strain 
energy function for swollen elastomers. A dry elastomer sample will undergo 
two types of deformation: one due to swelling and the other due to extension. 
The strain energy function per unit volume of swollen elastomer is related to 
that of the dry sample by 

where subscripts s and d refer to swollen and dry samples respectively. In 
equation (6-89) the strain invariants I* and I, are defined by Ai,d 's, that is, 
strains suffered by the dry elastomer (both swelling and extension). The 
deformation due to isotropic swelling is just V[1/3 for all three principal axes; 
thus, the Ai,d 's are related to the & 's (deformation of swollen elastomer by 
extension) by 

(6-90) 

For the case of simple uniaxial extension, assuming incompressibility for the 
sake of convenience, we obtain with the aid of equations (6-49), (6-50) and (6- 
80) 



194 RUBBER ELASTICITY 

1.8- 
U 

5 1.6- 
a 

m7 
\ - 
’ 1.4- 

=? 

c 
z 

I 

“, 1.2- - 
D 

bE 1 .o- 

(6-9 1) 

The stress-strain relation can thus be obtained directly by differentiating with 
respect to As [equation (6-79)]: 

oE,s = 2c,vr1/3 A; - - + 2 c , ~ , 5 / ~  - - [ :I [ :I (6-92) 

In terms of per-unit cross-sectional area of unswollen sample, unstretched 
sample, the nominal stress oEo is:2o 

(6-93) 

The C1 term of the Mooney-Rivlin equation is often identified with the shear 
modulus of the statistical equation; we see that both Cl’s depend on V, in the 
same manner [compare equation (6-92) with (6-87) or (6-93) with (6-88)]. 

NR in n-decane 

For comparison with experimental data, we follow equation (6-93) and plot 
( T E O , d K 1 ”  /2(As - A:) as a function of vr4” /As. h Figure 6-8 we see that for 
natural rubber swollen to various degrees, the data all fall on a straight line with 
the same slope (C,) and intercept (C,) in excellent agreement with theory. The 
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upturns in the region of large strains are due to strain-induced crystallization 
and finite extensibility of the polymer chains, which are not taken into account 
by either statistical or phenomenological theories2' 

3. Effect of Fillers 

The use of fillers in elastomers is of paramount technological significance. 
Such items as automotive tires depend on the addition of fillers to confer on 
them enhanced wear resistance, strength, and elastic modulus. A wide variety 
of fillers are commonly employed, such as carbon black, zinc oxide, carbonates 
and silicates of calcium and magnesium. Generally there are two types of 
filler: reinforcing and nonreinforcing. The filler is reinforcing if it is capable of 
increasing the stifhess of the elastomer without impairing its strength and 
losing its rubbery character. 
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Figure 6-9. Effect of filler concentration on the moduli of natural rubber samples (filler: MT 
carbon black). The curve was calculated from equation (6-94). [After L. Mullins and N. R. 
Tobin, J. Appl. Polym. Sci., 9,2993 (1965), by permission of John Wiley & Sons, Inc.] 

Commonly used expressions for describing the effect of hard fillers on the 
elastic modulus of elastomers are the Guth-Smallwood equation 22323 

-=1+2.54f Ef +14.14; 
EO 

the Krieger-Douherty equation24 

(6-94) 

(6-95) 

and the Mooney equation25 
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(6-96) 

In these equations, q$- is the volume fraction of filler, and subscripts f and 0 
refer to the filled and unfilled elastomers respectively. Note that equations (6- 
95) and (6-96) introduce a parameter @,,, that accounts for the maximum 
packing fraction of the filler. For randomly placed spherical filler particles, @,,, 
= 0.637. 
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Figure 6-10. Mooney-Rivlin plots of natural rubber filled with MT carbon black: Top set: 
actual data without using the strain amplification factor. Bottom curves: after reduction using 
the strain amplification factor, equation (6-95). [After L. Mullins and N. R. Tobin, J. Appl. 
PoEym. Sci., 9,2993 (1965), by permission of John Wiley & Sons, Inc.] 

Equation (6-94) has been found to be valid for a number of filled systems up 
to a value of @j. of about 0.3, whereas (6-95) and (6-96c) can be used at 
somewhat higher concentrations. These equations were first used to describe 
the viscosity of liquids with suspended solid particles. In fact equation (6-94) 
was derived using basic hydrodynamic principles. Equations of this type have 
been "borrowed" to be used for the elasticity of filled elastomers, based on the 
analogy between steady viscous flow and elastic deformation as described in 
equations (3-4) and (2-14), respectively. Certainly an additional justification 
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for adoption is to be found in the good agreement with experimental data,26 as 
illustrated, for example, in Figure 6-9. 

The right side of equation (6-94) is sometimes referred to as the strain 
amplification factor. Suppose we have a sample of elastomer in which is 
dispersed fillers of concentration 4 ~ .  The fillers are rigid solid particles with 
very high modulus. When the filled elastomer is deformed, since the fillers are 
so much more rigid than the elastomer, they essentially remain undeformed. 
Thus all the strain must be suffered by the rubbery phase of the sample. The 
actual strain sustained by the elastomer is greater than the applied strain by the 
factor given by the right side of equation (6-94). Thus we can write the 
extension ratio appropriate to the elastomer matrix as26 

A = 1 + ~ ( 1 +  2.5@f + 14.14;) (6-97) 

where E is the applied strain on the filled sample. 
Figure 6-10 shows the Mooney-Rivlin plot of a series of natural rubbers 

filled with carbon black using the applied strain on the filled sample. As 
expected, the stress increases as a function of increasing filler concentration. 
The rise at high strains (low l/A) can again be attributed to crystallization or 
finite extensibility of the chains in the filled sample. Now if we plot the same 
data on the basis of the strain sustained by the elastomer matrix (A), using the 
strain amplification factor according to equation (6-97), the curves in Figure 6- 
10 are seen to be brought much closer together. Note especially that the 
minima in the curves fall roughly at the same value of l/A. From the slopes 
and intercepts of these curves, C,, and C, can be readily obtained. The values 
of these Mooney-Rivlin parameters for the filled samples are quite close to 
those of the unfilled sample. The agreement is excellent for elastomers filled 
up to 5%; it is poorer for higher filled contents. These results strongly suggest 
that the role of fillers is to amplify the applied strain according to equation (6- 
97). The elastic properties of the elastomer itself are unaffected by the presence 
of these fillers. 

Another important effect of fillers is stress softening, or the Mullins effect. 
If a filled sample is stretched for the first time to loo%, the stress-strain curve 
will follow that illustrated in Figure 6-1 1. Now the strain is removed, and the 
sample is restretched to 200%. The stress in the second cycle is lower than that 
in the first up to loo%, after which it continues in a manner following the first 
cycle. If we repeat the stress-strain in a third cycle, we again see a softening 
up to 200% due to the previous strain history. This stress-softening effect was 
first discovered by Mullins, after whom it is named. 

27 
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Figure 6-11. Stress softening of natural rubber filled with MPC carbon black (Mullins effect). 
Numerals indicate the stress-strain cycles. [After F. Bueche, J. Appl. Polym. Sci., 4, 107 
(1 960) by permission of John Wiley & Sons.] 

A molecular interpretation was first given by F. Bueche2* for the Mullins 
effect. Figure 6-12 shows that for a reinforced elastomer, the polymer chains 
are attached to the filler particles. Some of the chains may be relaxed, but 
others are already relatively extended. Upon stretching, the "prestrained" 
chains will reach maximum extension first and either will become detached 
from the fillers or will be broken. In the second cycle, these broken chains no 
longer support the stress, thus giving rise to the observed softening in stress. If 
the stress-strain cycle is repeated for the third time, the same process will be 
repeated. The softened elastomer can be "healed" by annealing at higher 
temperatures. 

Figure 6-12. Schematic diagram of polymer chains attached to filler particles. 
Bueche, Physical Properties of Polymers, Interscience, New York 1962, p. 49.1 

[After F. 

4. Effect of Strain-Induced Crystallization 

When a sample of elastomer is stretched, it becomes anisotropic in that the 
network chains tend to orient themselves more in the direction of stretch than in 
the lateral directions. The more ordered chains favor the formation of 
crystallites. These crystallites will tie together a number of neighboring 
network chains, thereby exerting an additional crosslinking effect. This 
increase in the degree of crosslinking will in turn cause a rise in the elastic 
stress. The reason that these crystallites in fact act as crosslinks is attributable 
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to their high modulus, which is estimated to be of the order of 10" Pa. This 
value is some five orders of magnitude greater than that of most elastomers, 
which is in the range of lo6 Pa. If crystallization is allowed to proceed further, 
more and more of the amorphous material is replaced. At high degrees of 
crystallinity it is not adequate to regard crystallites just as crosslinks. They will 
also now act as fillers in further increasing the elastic stress. 
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Figure 6-13. Stress-strain curves of natural rubber at 0 "C and 60 "C. The rise in stress at 0 
"C at A > 3 is attributed to strain-induced crystallization. [After K. J. Smith, A. Greene, and A. 
Ciferri, Kolloid-Z, 194,49 (1964), by permission of Dr. Dietrich Steinkopff Verlag.] 

That crystallization increases the elastic stress has already been 
demonstrated in Figure 6-8, in which the Mooney-Rivlin plot shows a rise at 
high extension ratios. However, it should be remembered that part of this 
increase is due to finite extensibility of network chains. In Figure 6-13 we 
show the stress-strain curves of natural rubber at two  temperature^.^^ At 0 "C 
there is considerable strain-induced crystallization, and we observe a dramatic 
rise in the elastic stress above ;Z = 3.0. Wide-angle X-ray measurements show 
the appearance of crystallinity above this strain. At 60 "C there is little or no 
crystallization, and the stress-strain curve shows a much smaller upturn at high 
strains. The latter is presumably due only to the finite extensibility of the 
polymer chains in the network. 

APPENDIX 1: STATISTICS OF A POLYMER CHAIN 

The special structure of polymer molecules that distinguishes them from other 
species is their long, flexible chain structure. To describe this situation, let us 
first consider an isolated polymer chain and then extend the results to 
ensembles of chains, that is, to the bulk polymer. An isolated linear polymer 
chain is capable of assuming many different conformations. Because of 
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thermal agitation, such a chain is also constantly changing from one 
conformation to another; namely, it is undergoing Brownian motion. Because 
of the presence in real chains of short- and long-range interactions between 
segments, bond-angle restrictions, potential energy barriers, and other 
characteristics, an exact statistical calculation becomes a very complex 
mathematical problem. However, because these chains have such a large 
number of conformations, idealized models can be used to derive the average 
properties. In most cases, these quantities provide a good asymptotic 
approximation to the true values for any sufficiently long linear polymer chain. 

We shall first derive the average properties of an ideal polymer chain that is 
infinitely long, possesses negligibly small volume, and has freely jointed links. 
Next we shall examine the influence of fixed bond angles between adjacent 
links. The concept of the statistically equivalent random chain will then be 
introduced to rationalize the validity of using these model chains to represent 
the behavior of real polymer chains. Finally, the equation of state for a single 
polymer chain will be discussed. This equation is the starting point for 
equations (6-32) and (6-33) 

Suppose our ideal polymer chain has n links, each of length I; then the fully 
extended length of the chain would be: 

R = n l  (a) 

However, the fully extended conformation is only one of a great many; it would 
be more meaningful to consider an avgage size of the macromolecule such as 
the mean square end-to-end distance, r 2 .  As the name implies, the end-to-end 
distance is just the length of the vector connecting the two ends of the ideal 
chain. This average can be that for a given molecule at a number of times or 
that of an ensemble of identical molecules at the same time.§ Thus, for p chains 
that do not interact with one another, 

where ri refers to the end-to-end distance of the ith chain. Considering now a 
single chain of n links, let I, designate the vectorial length of linkj; then 

n 

ri =Clj = I ,  + I ,  +I ,  + . . . + I ,  
.j=l 

For a justification of this assertion, the reader is referred to standard statistics texts such as R. 
C. Tolman, Principles of Statistical Mechanics, Oxford, 1938. 
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The square of the end-to-end distance of a particular chain is obtained fiom 
equation (c). 

n 

= C l ;  * l j  + 2x1 ,  . l ;  
j=l  k < j  

The dot product of two vectors, however, is just the product of their absolute 
values times the cosine of the angle, 8, between one vector and the other vector; 
thus, for identical links 

The angle between the same vectors 4 in the first sum of equation (d) is zero, 
and the cosine of zero is unity. Thus the first sum in equation (d) is simply 

" 

Now in the second sum of equation (d) we deal with the product of two 
different vectors lk and 4. As any two links can assume any orientation 
whatsoever with respect to each other, any angle B between two vectors lk and 4 
is just as probable as any other angle. Thus for every cosB in the second term 
of equation (d) there is a cos(n+ 8) = -cosB that exactly cancels it. The result 
is that the second term in equation (e) is 0. This gives us the mean square end- 
to-end distance of a freely orienting chain 30-34 

= n12 

via equation (b). 
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Y 

Figure 6-14. Conformation of a polymer chain with one end fixed at the origin of a Cartesian 
coordinate system. 

In addition, it is possible to calculate the property x2, which is the average of 
the square of the projection of ri on to any fixed axis, in this case the x axis. 
This average distance is clearly less than the average end-to-end distance; a 
geometrical exercise gives: 

The next important step is to find, for a chain of n links each of length I ,  the 
probability of achieving a particular end-to-end length. To be more precise, if 
one end of this chain is at the origin of a Cartesian coordinate system, what are 
the chances of finding the other end in a small volume element dx dy dz which 
is at a distance r from the origin (Figure 6-14)? This problem is known as the 
random flight problem and will be solved for the one-dimensional case 
first. We thus constrain r to lie on the x-axis, then calculate the probability 
u(x) that x has a value between x and x + dx. For a chain consisting of a lar e 
number of links, we can assume that every link contributes a length I / I F  3 
[equation (h)] to the component on the x-axis. Some of them will be in the 
positive x direction (n+ of them in number) and some in the negative (n-). 
Since the chain is freely jointed, the probability of taking either direction will 
be equal, namely 1/2. The total length of the x-axis component is then trivially: 

34-35 

The derivation continues by writing the probability w of a random flight with 
n+ positive steps and n- negative steps36 
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where n =n+ +n-. After expanding the factorials and normalizing the total 
probability to unity, we get the very important equation: 

Equation (k) is known as the Gaussian distribution function. 
generalized to the three-dimensional case, as follows: 

It can be 

w(x,y,z)dxdydz = w(x)dx &)dy w(z)dz 

3 

= (-$) exp(- b2r2)dxdydz 

where 

(n) 2 2 2 2  r = x  + y  + z  

Equation (1) gives the probability that if one end of a freely orienting chain 
is fixed at the origin, the other end will be found in a volume element dx dy dz 
located at r away from the origin. The probability of finding the free chain end 
in a spherical shell of radius r centered at the origin, referred to as the radial 
distribution function w(r)dr, is simply obtained by multiplying w(x, y ,  z )  by the 
volume of a spherical shell of thickness dr located at a distance r from the 
origin, that is, 4m2dr. The result is: 

3 

w(r)dr = (5) exp(- b2r2)47r2dr 

Equation (0) is illustrated in Figure 6-15. (Note that w(r) 

(0) 

has dimensions of 
reciprocal length.) The maximum in the curve corresponds to the most 
probable end-to-end distance, and it can be found easily by differentiating 
equation (0). The result, or the most probable value of Y, is l/b or (2nZ2/3)”. 
The mean square end-to-end distance is given by the second moment of the 
radial distribution function: 
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However, the denominator of the right side of equation (p) is unity, since the 
radial distribution function is normalized. Integration yields: 

which is just the expression derived previously using geometrical arguments 
[equation (g)] . 

3 
r ,  nm 

Figure 6-15. Radial distribution function of a chain of lo4 freely orienting segments each of 
length 0.25 nm. 

If instead of allowing the links in the chain to rotate freely, we fix the angle 
between successive links at an angle 6, the chain becomes considerably longer. 
An approximate expression for this effect is: 

For example, for a polymethylene chain having nearly tetrahedral bond angles, 
the angle between a given segment and its projection on the next segment is 
about 70". Thus, cos6= 0.34, and 

- 

r 2  = 2.03n12 (4 
which is twice the value of a freely orienting chain. However, on considering 
the structure of more complicated polymers with stiff rings in the chain, there is 
really little guidance on what can be designated as a link. It certainly would be 
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very incorrect to use a structural repeat unit, for example. To avoid these 
ambiguities, the concept of a statistically equivalent random chain has been 
devised.37 For any sufficiently long real chain, we can find a random chain 
with the same mean square end-to-end distance, that is: 

where the subscript e refers to the equivalent random chain. However, if both 
the number and the lengths of segments of the equivalent random chain can be 
chosen at will, there would be an infinite selection. Thus, we must impose 
another condition: the fully extended length of the equivalent random chain 
must be equal to that of the real chain without the distortion of bond angles and 
lengths. If this is the case, then 

R = R, = nele 

Thus there is only one model chain that is statistically equivalent to the real 
chain with 

By implication, the real chain then obeys the same Gaussian distribution 
function as model chain. 

As an example, we consider a polymethylene chain (Figure 6-16). Its fully 
extended length and mean square end-to-end distance are, respectively, 
(considering only bond angle restrictions) 

e R = nlcos- = nlcos35" = 0.82~~1 (w) 
2 

Figure 6-16. Polymethylene backbone in the fully extended conformation. 

Remembering that 
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we get via equations (v) we get 

n, = 0.331 n and I ,  = 2.48 I ( 4  

Thus each statistically equivalent random segment is equal to about three 
carbon-carbon bonds in the real polymethylene chain. 

The effect of tetrahedral bond angles on the radial distribution function 
enters through the parameter b, the value of which decreased from 3/2n12 in the 
freely orienting chain to 3/4nZ2 in the chain with tetrahedral bond angles. 

APPENDIX 2: EQUATION OF STATE FOR A POLYMER CHAIN 

Appendix 1 describes the statistical properties of a single chain that has no 
external constraints imposed on it. If one end of this polymer chain is fixed at 
the origin of a coordinate system, then due to Brownian motion the position of 
the other end of the chain will fluctuate according to the Gaussian distribution 
function [equation (o), Appendix 11. In general, there are a large number of 
Conformations that the chain can assume consistent with its ends being 
separated by a distance Y. The number of conformations for each r is 
proportional to the radial distribution function. If we constrain the chain ends 
to remain a fixed distance r apart, conformations consistent with all other end- 
to-end distances become unavailable. As a consequence, the "degree of 
randomness" is now lessened - in other words, the entropy is decreased. A 
tension must therefore be set up owing to this perturbation. 

The development for a single chain follows the same line of attack as for the 
ensemble, starting with the first law of thermodynamics 

dU=TdS-dW (6-1) 

where U is the internal energy, T is temperature, S is entropy, and W is work 
done by the system on the surroundings. By definition, the Helmholtz free 
energy is 

at constant temperature. Equations (a) and (b) thus tell us that 

dA=dW (b) 

for an isothermal process where the stress-strain work is just 

dW = -fdr ( 4  
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where the force and the end-to-end vector r are always aligned. The tensile 
force on a polymer chain at constant temperature and length is just 

f =-(F)T =+(:) T 

In the case of our model chain, which has no energy barrier hindering the 
rotation of the segments, the internal energy of the chain is the same for all 
conformations. Thus the first term on the right side of equation (d) is zero, and 

f = -T( g) 
T 

To calculate the entropy for our Gaussian chain, we use the Boltzmann's 
relation from statistical mechanics 

S = k l n R  (0 
where k is Boltzmann's constant and R is the total number of conformations 
available to the system. In our case, we want R to be a function of r the vector 
separation of the chain ends. Let there be some large fixed number of 
conformations, NT, available to a chain. Then the number of conformations 
consistent with a certain r is just 

Q(r) = NTw(r) (8) 

where w(r) is just w(r) of equation (0) in Appendix 1. Thus 

Inserting equation (h) into equation (0 and differentiating according to equation 
(e), we obtain the equation of state for a single polymer chain: 36,38,39 

f = 2kTb2r (9 

In equation (i), f is a vector aligned with the vector r. Thus if the ends of a 
chain are held a fixed distance r = Irl apart by a tensile force, then this force is 
directly proportional to Y ,  and to absolute temperature. It is also inversely 
proportional to the mean square length of the chain, since b2 = 3 / 2r2 [equation 
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(m)]. In fact, equation (i) is just Hooke’s law for a spring with spring constant 
2kTb2. The elasticity of this spring originates in the decrease in conformational 
entropy with chain end separation and thus it is often referred to as an “entropy 
spring.” This entropy spring concept is basic to the formulation of the 
molecular theory of polymer viscoelasticity. If, instead of a single chain, we 
have a network of chains, an analogous derivation will give us the equation of 
state for rubber elasticity, as has been shown in this chapter. 

PROBLEMS 

1. 
for an ideal elastomer 

Starting with the equation of state of rubber elasticity [equation (6-60)], show that 

2. From the above equations and equation (6-11), find an expression for the 
stress-temperature coefficient of an ideal elastomer at constant pressure and length, 
that is (af / aT)p,L. 
3. If an elastomer sample in the form of a unit cube is deformed by pure shear, then 
the three principal extension ratios are A, = A, 4 = I , &  = l/A. [Compare with the case 
of simple extension where 4 = & = 1/42.] Following the arguments of Section B, 
derive an expression relating 0, and A, where 0- is the true tensile stress. 

4. Repeat Problem 3 using the Mooney-Rivlin strain energy function [equation (6- 
Wl. 
5. In analogy to the kinetic theory of ideal gases, the statistical theory of rubber 
elasticity is often called the kinetic theory of rubber elasticity. Reflect upon the 
similarities and differences between the basic philosophies of these two theories. 
6. For a piece of ideal elastomer whose density is 0.95 g/cm3, calculate its shear 
modulus at room temperature if its initial molecular weight is 100,000 g/mol and the 
molecular weight of the network chain after crosslinlung is 5000 g/mol (assuming 
absence of other network defects). 
7. What is the maximum degree of swelling for an elastomer that would fail at 100% 
extension in the unswollen state? 
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8. If the tensile modulus for an unfilled elastomer is 5x106 Pa, what value would it 
have if it were filled to &= 0.3? Suppose after several strain cycles, half of the filler is 
ineffective due to Mullins effect. What is its tensile modulus now? 
9. Starting with equation (6-66), derive equation (6-67). 
10. An alternative expression for the energy contribution to the extension force is 

where A* is the extension ratio under constant-volume conditions [see equations (6- 
48b) and (6-50)]. Making any necessary assumptions (list), derive this expression. 
11. The "Leibniz formula" for differentiation of an integral is 

Using this formula, show that differentiation of the strain-energy function equation (6- 
73) does indeed give the stress, as suggested by equation (6-79). Assume uniaxial 
stretching by application of external force only in the stretching direction, and an 
incompressible material. (Hint: Note that the upper limits /zi on the integrals in 
equation (6-73) are poJ the same as the integrals' dummy variable Al!, and can be 
treated as constants.) 
12. (Computer) Examine Figure 6-5 carefully and note that the data at higher strains 
tend to fall below the line representing the statistical theory for an ideal elastomer. 
However, the data might be accurately represented by the Mooney-Rivlin equation. 

10 "C 60 "C 

A-1 /A2 oE0, MPa A-IIA' aEo, MPa 

0.160 0.288 0.125 0.271 

0.276 0.526 0.245 0.549 

0.394 0.737 0.362 0.779 

0.51 5 0.971 0.488 1.058 

0.636 1.173 0.609 1.316 

0.748 1.367 0.725 1.530 

0.836 1.504 0.81 1 1.699 

0.914 1.636 0.889 1.859 
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The data for this figure are provided above and in the CD in file NR-Mod. TXT. 
Using a spreadsheet, generate a Mooney-Rivlin plot and calculate C, and. C,. In 
addition, fit the data to the equivalent multivariant linear form 

OEO = 2 c ,  ( A  - 1/ R) + 2C*(1 - 1/ A3) 

and compare the resulting constants with those from the Mooney-Rivlin plot. Plot the 
resulting curves using the same scales as the original drawing. In addition, plot the 
residuals, that is, the experimental values of nominal stress minus the predicted values, 
for the two Mooney-Rivlin fits, as well as the statistical theory fit based on the first 5 
points. (Hint: Note that it will be necessary to solve for A, given the group A - l/A2.) 
13. (Computer) The Mooney-Rivlin plots often show poor linearity at low strains. 
Considering that a likely systematic error is an inaccurate value of Lo, the unstretched 
length of the sample, the observed A should be corrected by a multiplicative constant 
close to 1.0 to get the true stretch ratio aA. Using the form of the Mooney-Rivlin 
equation 

and nonlinear regression analysis, vary the parameter u, along with C, and C,, to give 
the best fit to the data of problem 12. Calculate and plot the residuals (see problem 12) 
and compare with those for a fixed at 1 .O. 
14. Write out in detail equation (b), Appendix 1, with the aid of equations (c) and (d) 
i f n = 4 , p =  1. 
15. The radial distribution function [equation (6-33) and equation (l), Appendix I ]  was 
derived for a chain possessing negligible volume. Suppose we now have a chain 
whose segments have excluded volume (no two segments can occupy the same space). 
How would the most probable distance (the maximum in Figure 6-15) be affected? 
16. Carry out the integrations indicated in equation (p), Appendix 1. Hint: 

1.3.5.  - - - .  (2a - 1) 
2"+'ba 

x 2 a e - b x 2  dx = - 

17. It is known that for a poly-cis-isoprene chain, each monomer unit is 0.46 nm long 
and r2 = 0 . 1 6 2 ~ ~  nm2. What is the statistically equivalent random chain for this 
macromolecule? 
18. Using the following more exact statement of Stirling's approximation, 

- 

Inn!= ( n  + +)ln(n) - n + +In27t 

derive equation (k) from equation (j), Appendix 1. 

19. Calculate y 2  for a Gaussian chain considering only chain conformations for which 
r >  1/2b. 

- 
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20. Calculate F , the average end-to-end distance for a Gaussian chain. 
21. Suppose that a Gaussian chain is attached to the ends of a rectangular box as 
shown. 

Further, suppose that the length of the box L is equal to the most probable end-to-end 
separation of the chain (llb) and that the ends of the box are square, having cross- 
sectional area s’. 

(a) Derive an expression relating P, the pressure on the ends of the box, to the 
temperature. 

(b) What temperature is necessary to generate a pressure of 100 atm if L = 10 nm 
and the area s2 of the end of the box is 0.1 nm’. 
22. Starting with the expression for the strain energy, derive the stress-strain 
expressions for an ideal elastomer when deformed in simple shear (A, = y / 2  + [( y/2)* + 
1]”2 , 4 = 1AI, A3 = l), where yis the shear strain). 
23. Starting with equation (6-59), derive the important result given in equation (6-70). 
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Dielectric and NMR 
Methods 

While viscoelastic phenomena are commonly studied by perturbing the material 
with a mechanical stress, it is possible and sometimes convenient to perturb the 
sample by application of a field. The field interacts with the material to move it 
slightly away from equilibrium. The response of the material to the field, or its 
relaxation to equilibrium on removal of the field then provides a direct picture 
of molecular motion. In the case of dielectric methods, an electric field is 
applied, which causes charges (e.g., ions) in the material to move and structural 
dipoles to align. In the case of nuclear magnetic resonance (NMR), the 
situation is more complex in that the equilibrium state of electronic spins of 
selected atoms is disturbed by a radio-frequency field. The relaxation of these 
spins to equilibrium is assisted by interaction with the surrounding material, 
and mobility in this material is thus indirectly measured. The advantages of 
these methods over the mechanical methods include their sensitivity to specific 
structural details of the molecules in the material and, for the dielectric method, 
the ability to cover a wide frequency range. 

A. DIELECTRIC METHODS 

When an insulating material is subjected to an applied electric field, charge 
separation and molecular rearrangement occur within the material, causing the 
phenomenon of polarization. The magnitude of the polarization is measured by 
a property of the material called the dielectric constant. This macroscopic 
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property is in turn related to the molecular structure of the dielectric through the 
molecular polarizability and the molecular dipole moment. The exact form of 
this connection is far from obvious, and several theories have been proposed to 
explain it. 

Dielectric relaxation, as the name implies, is concerned with the time, 
frequency, and/or temperature dependence of the dielectric constant. Since the 
magnitude of the dielectric constant is related to the molecular structure, its 
dependence on time, frequency, and/or temperature generally reflects molecular 
motion. In the case of homogeneous polymers, the dielectric relaxation 
technique may therefore be used as a probe for the study of transitions and 
relaxations in a manner analogous to that already discussed for mechanical 
relaxation. In this chapter we are concerned with the application of dielectric 
relaxation to amorphous polymers, and we attempt to point out differences 
between the dielectric and mechanical relaxation techniques. 

In a manner now familiar, we start by treating dielectric relaxation 
phenomenologically, that is, in macroscopic terms, where the existence of 
molecules is ignored. In Section 2, we extend our development by 
incorporating molecular considerations. Applications of these ideas to 
polymers are treated in Sections 3 through 4. 

1. Phenomenology 

For the purposes of this discussion, we need only be concerned with electrical 
circuits that contain capacitances, C, and resistances, R. The resistance is the 
dissipative element, formally analogous to the dashpot in the mechanical model 
case. It is defined by Ohm's law: 

V R = -  
I (7- 1) 

where Y is the voltage in volts, I is the current in amps, and R has units of 
ohms. A capacitor consists of two ideal electrodes separated by vacuum and is 
a conservative element, playing the same role as the spring in the mechanical 
model case. If a voltage V is applied to the capacitor plates in vacuum, the 
capacitor will hold a charge Q, which is measured in coulombs and which is 
related to the voltage as: 

Q=COV (7-2) 

Co is the capacitance and is measured in farads. If the plates are separated by a 
dielectric, that is, by an insulating material (rather than a vacuum), the capacitor 
will accept more charge at the same potential due to polarization of the 
dielectric. Under these conditions, the capacitance becomes 
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c= ECO (7-3) 

where E is the dielectric constant. (The “dielectric constant” is more properly 
referred to as the relative permittivity because it is the ratio of the permittivity 
the dielectric to that of vacuum, ~ g )  As is clear from the definition, E is a 
dimensionless quantity. For vacuum, E = 1 by definition; E = 8 1 for water, E -  6 
for various types of inorganic glasses, and E = 1.0006 for air. Since E is a 
function of time or frequency, as well as temperature, these values change with 
experimental conditions. The quoted numbers are for low-frequency 
experiments (equilibrium values) at room temperature. The dielectric constant 
of water decreases to about 1.8 for frequencies involved in optical experiments 

Hz). At these frequencies an approximation for the dielectric constant is 
given by the Maxwell equation E w n2, where n is the refractive index of the 
material. 

We shall now show that a series combination of a capacitor and a resistance 
in an electrical circuit leads to the same linear differential equation describing 
the time dependence of the charge as that for the Voigt model describing the 
time dependence of the stress in the mechanical case.’ 

Figure 7-1. 
6 

Schematic representation of an RC circuit. 

Figure 7-1 is a schematic representation of the circuit in question. For series 
electrical circuits, the voltage across the terminals is the sum of the 
voltages across the elements: 

Y =  YCfVR (7-4) 

Now Vc is given by equation (7-2) and VR by equation (7-1). The current is 
defined by 

I=--  dQ 
dt 

(7-5) 
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Substituting equation (7-5) into equation (7-4): 

Q dQ 
C dt 

V=-+R-  (7-6) 

Now if we define 

z=RC (7-7) 

equation (7-6) may be rearranged to give 

z-+Q=CV dQ 
dt (7-8) 

This equation is entirely analogous to the equation of motion for the Voigt 
element in the mechanical case [equation (3-26)]. 

By comparing these two equations, it can be seen that charge is the electrical 
analogue of the strain, voltage is the electrical analogue of the stress, and 
capacitance corresponds to the mechanical compliance. It should be noted that 
a series electrical model gives rise to an equation of motion of the same form as 
a parallel mechanical model. This is because voltages add when in series while 
stresses add when in parallel. 

Not surprisingly, equation (7-8) may be integrated for various boundary 
conditions in the same manner as the mechanical Voigt element described in 
Chapter 3. For example, for a constant voltage Yo, applied at time t = 0, the 
result is 

Q(t) = CV,( 1 - e-"? (7-9) 

The integration of equation (7-8) is carried out using the integrating factor 
technique, which was hl ly  explained in Chapter 3, equation (3-28). It should 
be clear that equation (7-9) represents the electrical analogue of the 
mechanical-creep experiment on a single Voigt element. 

In the development so far, we have assumed that capacitance is independent 
of time, which is only strictly true for a vacuum. All real materials exhibit 
time-dependent capacitances, which arise from the time dependence of the 
dielectric constant. We are interested in this time dependence since it contains 
information about molecular motion. We can utilize the approach used to 
obtain equation (7-8), since a capacitor containing a dielectric itself behaves 
like an RC circuit. This means that the same differential equations apply to the 
real capacitor as to a fictitious RC circuit that may be treated as its analogue. 
One of the simplest of such circuits is that represented in Figure 7-1 and 
described by equation (7-8). 
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To proceed, it is necessary to introduce several relationships from 

For an infinite-plate capacitor with parallel plates: 
elementary electrostatic theory. 

V E = -  
d 

(7-10) 

where E is the applied electric field and d is the distance between the plates. 
The charge density omay be defined as 

Q o=- 
A 

(7-1 1) 

where A is the cross-sectional area of the plates. With a vacuum between the 
plates, the charge density is oo and the electric field becomes* 

Now suppose that while the capacitor is connected to a constant voltage 
source, a dielectric (such as the sample under study) is inserted in the space 
between the capacitor plates. Additional current will flow into the capacitor 
owing to polarization of the dielectric material. The polarization itself is time 
dependent but, at equilibrium, the original charge density oo will increase to o, 
where 

0 = &R (7-13) 

and where E~ is the limiting value of the dielectric constant of the sample at 
long times. 

The polarization at infinite time, PR, is defined by 

oo+PR= o (7-14) 

and represents an increase in the charge density due to the presence of the 
dielectric. The physical origin of the polarization, although not of immediate 
interest in this discussion of phenomenology, is the displacement of positive 
and negative charges within the dielectric as well as the reorienting of 
permanent molecular dipoles under the influence of the electric field. 

* The relationship between the electric field strength and the charge density in our capacitor 
derives from the application of Gauss's flux theorem, which is beyond the scope of this book. 
Standard texts on electricity and magnetism, such as that by A. D. Kip (McGraw-Hill, New 
York, 1969), treat this subject in depth. The student should be forewarned, however, that 
numerous subtle differences in notation and definition abound in this area. The same symbol is 
often used for different, although related, quantities in various texts. 
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By combining equations (7-12, 7-13, and 7-14), we obtain an expression for 
the limiting value of the electric polarization at long times in terms of zR: 

47r 
E 

& -1=-p R R (7- 15) 

Although the polarization is generally time dependent, experimentally one finds 
that it can be partitioned into an instantaneous component, which we will 
designate P, and a time-dependent term PD(t). Thus 

P(t) = pD(t) + P(J (7-16) 

at infinite time (equilibrium) 

pD(t)  = (7-17) 

and 

PR (7- 18) 

Thus, equation (7-15) becomes 

(7-1 9) 

Without loss of generality, the limiting value of the dielectric constant may also 
be partitioned in the same way, that is, E~ = + q,. By analogy with equation 
(7-1 5) ,  we define q, as 

47r 
E 

& -1=-p U R (7-20) 

We may now specifically consider the kinetics of polarization. We may 
assume that the polarization, P(t), approaches its equilibrium value, PR, at a rate 
proportional to its distance from equilibrium [see equation (5-23), which is 
closely related]: 

dP(t) - P(t) - PR 
dt z 

(7-21) 

The time constant zis not the same as that in equation (7-7). Via equations (7- 
16 and 7-1 8), the time-dependent part becomes 

(7-22) 
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Eliminating PO through equations 7-1 8,7-15, and 7-20 gives 

(7-23) 

where the electric field is time dependent [E = E(t)]. Now if the real capacitor, 
which we are viewing as a fictitious RC circuit, is subjected to an electric field 
periodic in time, 

E*(w,t)  = E,,e'"' (7-24) 

we may solve equation (7-23) to yield 

(7-25) 

The integration of equation (7-23) is carried out in the same fashion as equation 
(7-8). In addition, it has been assumed that the oscillatory field has been 
applied to the sample long enough (t  >>z) so that a steady condition has 
developed. This being the case, terms involving e-"' are dropped since this 
factor approaches zero. These exponentials are, in fact, associated with initial 
transients, arising at the start of the experiment, which quickly become 
unimportant under most experimental conditions. The complex dielectric 
constant as a function of frequency can now be defined as 

(7-26) 

where the cV term on the right must be included since P,*(w,t) contains no 
information about time-independent (instantaneous) properties of the dielectric. 
Combining equations 7-25 and 7-26 gives 

'R -'U &*(U) - Eu = 7 
1 + zwz 

(7-27) 

Separating P ( w )  into its real and imaginary parts by multiplying the numerator 
and denominator by the complex conjugate (1 - iwz) of the denominator yields 

&*(a) = E' iE" 

'R -'U E' = Eu + 
1 + w2z2 
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(7-28) 

EN tan6 =I 
& 

These equations are plotted in Figure 7-2. They are formally identical to the 
compliance response of a Voigt element in series with a spring when the entire 
model is subjected to a sinusoidal stress. The complex dielectric constant is 
thus the analogue of the complex compliance, with the electric field playing the 
role of stress and the electric displacement 4naplaying the role of strain. 

The dielectric behavior described by equation (7-28) is known as the Debye 
dispersion.2 Note the key assumption of first-order relaxation in equation (7- 
2 1). 

~ 0.4 % 
C 

- 5  c 

Log WT 

Figure 7-2. Debye plots for dielectric relaxation. 

2. Molecular Interpretation of the Dielectric Constant 

In Section 1 we developed the concept of polarization under the influence of an 
electric field from a phenomenological point of view. Now we dircct our 
attention to the underlying molecular properties and supermolecular structure 
that give rise to the observed phenomena. 

First, consider a molecule that has an asymmetrical distribution of positive 
and negative charges. HC1 is an example; the large disparity in the 
electronegativities of chlorine and hydrogen causes the bonding electron 
distribution in the molecule to be denser on the halogen than on the hydrogen. 
This asymmetrical charge distribution in the molecule gives rise to a'permanent 
dipole moment with a magnitude of 1.08 D (D = Debye). For two charges of 
opposite sign having magnitudes of the charge of the electron, separated by a 
distance of 1 8 , ,  

p = er = (4.8 x lo-'' esu)(l x lo-' cm) 
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= 4.8 x lo-'* esu cm = 4.8 D (7-29) 

When such a permanent dipole is placed in an electric field, orientation takes 
place as the molecule attempts to align with the field in order to adopt a low- 
energy configuration. This orientation is clearly time dependent and gives rise 
to P,(t), the time-dependent macroscopic polarization discussed previously. 

In addition to orienting dipoles, electric fields induce dipole moments in 
molecules, since electrons and nuclei experience forces in opposite directions in 
the same electric field and since electrons, being less massive, move much 
more easily than nuclei in a field. The quantity that measures the ease with 
which the electron cloud in a certain molecule can be distorted is the molecular 
polarizability a,. The magnitude of an induced dipole is given as 

p =a,E (7-30) 

Electrons move very rapidly because of their small mass; consequently the 
electronic distortion produced by an electric field is essentially instantaneous. 
Thus the formation of induced dipoles gives rise to the time-independent Pu 
term described above. 

It remains now to relate the molecular quantities q, and p to the 
macroscopic polarizability or dielectric constant, which can be measured 
experimentally. This is a very difficult task and will not be carried out in a 
rigorous fashion here. Rather, we start our discussion with an approximate 
equation, given by Debye, which describes the complex dielectric constant in 
terms of molecular properties. We rationalize the form of the equation through 
the Clausius-Mosotti equation and then show how ~'(0) and &"(a) can be 
derived from this expression. Additional factors that were not included in 
Debye's original work, such as the effect of the reaction field and orientation 
correlation-which are important in condensed phases-will also be discussed 
before extending the treatment to dielectric relaxation in polymers. 

Debye2 showed that 

E* - 1  M 4nNA 4nNAp2 1 
-- ~ 

9kT l t i w z  + 
- - 

& * t 2 p  3 
(7-3 1) 

This equation is derived for a pure substance with molecular weight M and 
density p. Each molecule of the substance has a permanent dipole moment p 
and polarizability q,. NA stands for Avogadro's number. 

Our explanation of equation (7-31) makes use of the Clausius-Mosotti 
equation, which is derived as follows: 



222 DIELECTRIC AND NMR METHODS 

The electric field E,, produced inside a sphere of uniform dielectric, when 
placed into an electric field E, is given as 

3 

E, =- 3 E  
& + 2  

(7-32) 

This internal field is less than the external field because of polarization of the 
dielectric in the external field. Clearly, when E = 1, that is, for a vacuum, E, = 

E. 
The total electric moment, M,, induced in the sphere is just 

(7-33) 

where as is the polarizability of the material in the sphere. 

related to the corresponding dielectric constant; for the sphere in question 
According to equation (7-20), however, the instantaneous polarization Pu, is 

&, -1 
pus =- E, 4n 

Since the polarization is the electric moment per unit volume: 

(7-34) 

(7-35) 

where as is the radius of the dielectric sphere. Combining equations (7-32) 
through (7-35) leads to 

(7-36) 

a macroscopic form of the Clausius-Mosotti equation. 
To extend this relationship to the molecular domain, suppose that the 

dielectric sphere contains Ns molecules, each of which has polarizability a). 
Then, 

(7-37) 

Furthermore, assuming that the molecules are themselves spheres with radii a 
gives 

'. As defined in equation (7-14), polarization has the same units as 0, charge density, equation 
(7-11). However, in developing the definition, we employed a parallel plate capacitor with 
plate area A and spacing d. Multiplication of Pu by dld shows that polarization may be 
regarded as electric moment (Qd) per unit volume (Ad) .  
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so that equation (7-36) becomes 

(7-38) 

(7-39) 

Furthermore, since the molecular volume can be written as +na3 or M/(pNA), 

(7-40) 

which is the usual form of the Clausius-Mosotti equation for a pure material. It 
relates the instantaneous value of the dielectric constant E ~ ,  a macroscopic 
quantity (the instantaneous dielectric constant), to q,, the molecular 
polarizability. 

We will now shift our attention from E~ to E ~ ,  the long-time limiting value 
of the dielectric constant. Here the tendency of the permanent dipoles to orient 
in the electric field becomes important. 

The energy, U, of a permanent dipole aligned with an electric field of 
strength E is 

U = - E p  (7-41) 

If the dipole is not perfectly aligned with the field, but rather is directed at 
some angle 6 to the field direction, this energy becomes 

u = -EP cos e (7-42) 

In a real material, the tendency of dipoles to align under the influence of the 
field is counteracted by molecular collisions (Brownian motion), which disrupt 
order. The Boltzmann equation of statistical mechanics provides a simple 
method by which the average dipole moment ,E in the direction of the electric 
field can be evaluated in this situation: 

where A is a normalization constant and the term 2 n  sine de measures the 
geometric probability that a dipole has an orientation angle 6 in the limit that E 
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+ 0. (See Figure 7-3). Since it turns out that experimentally we are interested 
in conditions where kT is large compared with orienting energies, the 
exponential in equation (7-44) may be expanded and terms higher than 

Figure 7-3. Alignment of dipoles in a field. 

second order ignored. 

[(l + Ep cos 8 I kT)p cos $sin 8 d 8  

[(I + Ep cos8 I kT)sin 8 d 8  
p =  (7-44) 

This expression can be integrated by standard techniques to yield 

p=-  P2E (7-45) 
3kT 

Debye added this contribution to the induced dipole moment [equation (7- 
30)] to get 

aoE +- P 2 E  =(ao +&I6 
3kT 

or 

P 2  a=a,+- 
3kT 

(7-46) 
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where a is an effective polarizability, which measures the tendency for induced 
dipoles to be formed as well as the tendency for the field to orient the 
permanent dipoles in the long-time limit. 

With this value of a, the Clausius-Mosotti expression may be written for ER 

as 

E, -1 A4 ~zN, 
&,+2 p 3 

(7-47) 

It is now easy to understand the origin of equation (7-3 1). One sees that it is of 
the form of the Clausius-Mosotti equation where the complex dielectric 
constant rather than Q,, or E~ values is used. The complex formulation 
introduces a frequency dependence, which appears in the last term of equation 
(7-31). One would expect the time-dependent contribution to be related to the 
difference between instantaneous and long-time behavior and, indeed, this is 
correct, because the factor multiplying the frequency dependence in equation 
(7-31) is merely the difference between equations (7-47) and (7-40). In fact, 
these two expressions may be combined with equation (7-47) to yield 

&*-1 - E u - 1  [ & -1 "1) 1 
- - -+ R-- ~ 

~ * + 2  ~ ~ + 2  ~ , + 2  ~ , + 2  I + i o z  

Solving for E" gives 

* 3EU +2[(&, -1)Y-&, +l][l/(l+Zwz)] 
& =  

3 - [ ( ~ ,  - l )Y --cU +1][1/(1+ioz)] 

where 

E, + 2  
&, + 2  

y=-  

Clearing fi-actions, one has 

* E,  +i&"X 
& =  

l+ iX 

(7-48) 

(7-49) 

(7-50) 

where 

E, + 2  
EU + 2  

X=- wz 
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Multiplication by the complex conjugate of the denominator, collecting real 
and imaginary terms, and remembering the definition of E* in terms of Eland E” 

in equation (7-28) leads to 

‘ R  -&CJ 
El= &” + 

1+X2 

(7-5 1) 

It is clear that these equations are closely related to the phenomenological 
expression equation (7-28) except that the “molecular rotational relaxation 
time” z is now replaced by an effective relaxation time z* where 

x ER+2 
w &,+2 

z*=--- - z (7-52) 

Equations (7-51) and (7-52) are called the Debye equations; taken in 
conjunction with equation (7-40) and equation (7-47), they relate 
experimentally measurable macroscopic quantities to molecular properties 
within the framework and limitations of the model developed by Debye.’ 

Onsager was the first to obtain an expression for the dielectric constant for a 
more realistic picture of a condensed phase of dipolar molec~les .~ In 
condensed phases, where molecules are close together, account must be taken 
of the so-called reaction field. This effect stems from the fact that a dipolar 
molecule itself polarizes the surrounding medium and this additional 
polarization reacts back on the molecule. Although Onsager took the reaction 
field effect into account, he nevertheless neglected orientation correlations 
between molecules. Derivation of the Onsager equation is beyond the scope of 
this treatment. The reader is referred to the standard We merely 
quote the final result for the dipole moment as a function of the limiting 
dielectric constants: 

(7-53) 

where N is the number of molecules per unit volume. It is possible to solve 
equations similar to equation (7-23) for the Onsager model in an alternating 
electric field, but the result is quite complex. It can be shown, however, that 
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this treatment gives numerical values close to those obtained from the Debye 
model.6 

The orientation correlation between dipoles in condensed phases was 
considered by Kirkwood and finally evaluated by Fro1ich7 in terms of the 
limiting values of the dielectric constant. We shall content ourselves with 
quoting the Kirkwood-Frolich equation as follows, 

E R - E U  = 
2~~ +E" 3kT 

(7-54) 

where g is the Kirkwood correlation factor (see Section 4) and p is the dipole 
moment of the isolated molecule. 

The reader can see from the above developments that the value of the static 
and instantaneous dielectric constants can be related to molecular structure for 
simple dipolar fluids. The main results that translate quite well to polymers is 
the dielectric constant will be highly dependent on the concentration of dipoles 
and the difference E~ - E~ will generally decrease with temperature if the 
polymer is sufficiently fluid. 

3. Interfacial Polarization 

Polymers are quite special dielectrics in that they can be highly insulating and 
have extremely low dielectric constants. For example, polyethylene can exhibit 
a dielectric constant as low as 2.2 and conductivity as low as S/cm. These 
two characteristics make polymers very susceptible to another source of 
polarization-accumulation of virtual charge at the interface between the 
polymer matrix and any more polar or conducting phase, for example, water 
droplets. This interfacial polarization can dominate the dielectric 
characteristics of the polymer at low to intermediate frequencies. As a result, 
the detection of this polarization becomes an effective means of demonstrating 
the presence of two phases in the polymer. Even phases in the nanometer range 
will show this effect. A schematic of such polarization is shown in Figure 7-4. 

Interfacial polarization in biphasic dielectrics was first described by 
Maxwell (same Maxwell as the Maxwell model) in his monograph Electricity 
and Magnetism of 1892.12 Somewhat later the effect was described by Wagner 
in terms of the polarization of a two-layer dielectric in a capacitor and showed 
that the polarization of isolated spheres was similar. Other more complex 
geometries (ellipsoids, rods) were considered by Sillars; as a result, interfacial 
polarization is often called the Maxwell-Wagner-Sillars (MWS) effect. 
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+ + +  + + +  

Figure 7-4. Polarization at the interface between a polymer and a polar inclusion. The 
interfacial charges are illustrated as effective dipoles, showing that distinguishing interfacial 
from dipolar polarization will depend critically on the characteristic time of the former. 

In the case of isolated spheres, the equations are quite straightforward, and 
bring out clearly the effects of field frequency o and filler volume fraction 4. 
The expression for the components of the complex dielectric constant E* are: 

where 

k =  9424 
2&; + &; 

&, (2&; + &I) 
z =  

0 2  

(7-55) 

(7-56) 

(7-57) 

(7-58) 

In these equations the subscript 1 is used to identify the properties of the 
matrix, while 2 is used for the particles. These equations are for the special 
case of a highly insulating matrix of constant dielectric properties containing a 
small amount of well-dispersed spherical particles that are somewhat 
conductive. The important aspect of this result is that the particles produce a 
Debye-like dispersion centered at a frequency of roughly a,/&,. With a 
conductivity of, say, F/m 
(Faraddmeter) the frequency of the MWS dispersion will be around 10 kHz, 
where it can be easily confused with a dipolar relaxation process. As shown by 
equation (7-57), the magnitude of the MWS dispersion should increase linearly 

S/m (Siemens/meter) and 6 = 8.84 x 
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with the amount 4 of the dispersed phase, which is one way of distinguishing 
MWS and dipolar dispersions. 

4. Application to Polymers 

The original forms of the Debye and Onsager treatments are not directly 
applicable to macromolecules, since they are concerned with assemblies of 
rigid dipoles in which the magnitudes of the dipole moments do not change as a 
result of thermal motions. In the case of flexible chain macromolecules whose 
shapes are constantly changing due to random thermal motions, this is 
obviously not a realistic approximation." In addition, both the Debye and 
Onsager treatments give rise to relaxation behavior characterized by a single 
relaxation time and it is quite clear from the discussion in previous chapters of 
this book that the single relaxation time model is inadequate to describe the 
viscoelastic response of polymers. 

The Kirkwood-Frolich expression [equation (7-54)] is, however, applicable 
to flexible chain polymers if we write for the correlation factor 

(7-59) 

where ylj is the angle between the first unit (1) of the chain and thejth unit, and 
N is the number of repeat units in the chain. The symbol p in equation (7-54) is 
now understood to refer to the dipole moment of the isolated repeat unit. In the 
case of the freely jointed chain, when the dipoles of the repeat units lie along 
the chain contour, it is clear that g = 1, since all of the cosine averages are zero 
(see Chapter 6, Appendix 1). It should also be apparent that g will depend on 
the chain geometry, and more sophisticated calculations such as those taking 
into account the interdependence of bond rotational potentials are necessary to 
obtain values of g for real chains. If the structure of the polymer chain is 
known exactly, so that the dipole moment of the isolated repeat unit is available 
together with its angular relationship to the chain backbone, information about 
the conformational properties of the chain in solution can be obtained by 
experimental determinations of g through the use of the Kirkwood-Frolich 
equation. Comparisons may also be made between the experimental value of g 
and those obtained by theoretical calculations. 

Molecular theories describing the dielectric relaxation behavior of polymers 
have been developed and are summarized in references 5 ,  12 and 13. Again, if 
the dipoles are rigidly attached along the chain contour, normal mode theories 
such as those of Rouse and Bueche described in Chapter 3 for the mechanical 
case might be expected to be applicable. In addition, the time-temperature 
superposition principle also generally applies. 
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A particular treatment of dielectric relaxation data is quite common. This is 
the so-called Cole-Cole plotI4 obtained by plotting E" against E', each point 
corresponding to one frequency. From equation (7-28), we have 

(7-60) 

which may be verified by direct substitution. Thus, for the single-relaxation- 
time model, the Cole-Cole plot is a semicircle of radius ( E ~  - E J ~  with its 
center on the &'axis at a distance (cR + q,)/2 from the origin. Note that the 
relaxation time does not appear in equation (7-60) so the Cole- Cole plot is 
independent of this parameter. An example of a Cole-Cole plot for a single- 
relaxation-time model with E~ /q, = 2.67 is shown in Figure 7-5. 
same example as that depicted in Figure 7-2. 

0.4 
0 151.4 OC 
0 155.3 
A 160.2 

3.0 3.2 3.4 3.6 3.8 

This is the 

- 

4.0 
& '  

Figure 7-6. Cole-Cole plot for the cx relaxation in poly (2 chlorostyrene). 

As with mechanical relaxation, the single-relaxation-time model is 
inadequate for polymers and the Cole-Cole plots are not semicircles. Figure 7- 
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6 is an experimental ColeCole plot for the dielectric relaxation of poly (2- 
chlorostyrene) in the glass transition region. It can be seen that the semicircle 
of the single-relaxation-time model has become flattened and shows 
pronounced asymmetry at the high-frequency end (low values of E' and E'?. 

This behavior is typical of that for most amorphous polymers in their primary 
relaxation regions. A number of empirical distribution functions have been 
proposed to fit such data. Some of these are described in references 5 and 12. 
As can also be seen from Figure 7-6, the Cole-Cole plot is also rather 
insensitive to temperature. 

It should be noted that the Cole-Cole method can also be applied to 
dynamic mechanical data, but this is not often done because most such data are 
collected over very restricted frequency ranges. 

5. Experimental Methods 

Among the attractive features of the dielectric relaxation method are its relative 
case of application and the availability of a very large frequency range in a 
more or less continuous manner. In fact, measurements can be made over the 
frequency range from HZ to 3 x 10'' HZ, using a variety of techniques. 
These are summarized in Table 7- 1. 

Table 7-1. Methods for Dielectric Measurements 
Method Frequency Range (Hz) 
DC transient 10 -~  to 10-1 
Ultra-low-frequency bridge (Harris bridge) to lo2 
Schering bridge; transformer bridge; 

transformer ratio arm bridge 10 to 10' 
Resonance circuits; Q meters 
Coaxial (slotted) line; reentrant cavity 
Coaxial line and waveguide 

lo5 to lo8 
10' to 10' 
lo9 to 3 lolo 

DC Transient-Current Method. In this method a step voltage is applied to 
the sample and the current response is measured by a fast-response 
electrometer. For the single- relaxation-time model, the current response would 
be given by equation (7-9). In recent years this method has been of renewed 
interest because with the advent of modem computing methods, it is possible to 
Fourier-transform the response in the time domain to obtain the frequency 
response. Several Fourier-transform dielectric spectrometers have been 
designed. We may note the one of historical significance due to Johnson et 
al?, as well as modem commercial instruments.16 The method has the great 
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advantage that a complete dielectric relaxation spectrum can be recorded in a 
reasonably short time. Practical considerations limit the frequency range 
available from about Hz to lo4 Hz. However, this is a very convenient 
range for the study of molecular motion in polymers, as well as interfacial 
polarization. 

I , 
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Figure 7-7. Schematic of transformer ratio arm bridge. 

Bridge Methods. A commonly employed technique for measuring 
dielectric relaxation in polymers makes use of the transformer ratio arm bridge. 
A schematic of such a bridge appears in Figure 7-7. Referring to this figure, 
the resistance and capacitance of the sample R, and C, are balanced by the 
reference elements Rr and Cr, which have voltages YR and VC across them. The 
conditions for the capacitive and resistive balances are then 

V,C, = vc c, 
V,R, = VR R, 

(7-61) 

It is thus possible to balance the bridge by varying the reference resistor Rr and 
capacitor C,. or by varying the voltages YR and Vc. Transformer ratio arm 
bridges may be conveniently employed over a frequency range from about 10 
Hz to lo6 Hz. Other bridge designs have been described so that the frequency 
range available by these methods can be said to extend from lop2 Hz to lo7 Hz. 

Impedance Spectroscopy. The term “Impedance Spectroscopy” has been 
applied to a bridge method wherein the sample is analyzed in terms of several 
circuit elements all of which are frequency independent. An example circuit is 
shown in Figure 7-8b. The analysis then uses the frequency information to 
derive all the circuit elements. This approach is particularly useful for samples 
that are somewhat more conductive than the usual polymeric solutions and 
solids. Examples include hydrogels and ionomers. 
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The complex impedance of a sample is merely the ratio of the complex 
current and the complex voltage. It is a sample property rather than a material 
property, but material properties (e.g., conductivity) can be derived from the 
result. Figure 7-8a shows an impedance plot, termed a Nyquist plot, for a 
reasonably conductive sample (a composite of an ionomer in a crosslinked 
epoxy matrix). The circular part of the response can be analyzed in terms of a 
simple circuit comprising a resistor in series with a capacitor and another 
resistor shown in Figure 7-8b. 

composite (0.25 meq/g) 

1 2 3 4 5 6  
?/R1 

Log ( R C 4  

Figure 7-8. (a) Impedance spectroscopy result for an ionically conductive epoxy composite 
[adapted with permission of S. Boob, 0 20031; (b) the equivalent circuit (inset) for the circular 
part of the response; and (c) same as (b), but plotted on a frequency scale. 

The connection between the impedance and dielectric measurements can be 
seen easily for only relatively simple examples. In Figure 7-8c the complex 
capacitance plot for the same equivalent circuit is similar to typical dielectric 
response dielectric only in the low-frequency region. The plot of the magnitude 
of the complex impedance, also shown in this panel, is known as the Bode plot. 

This relatively straightforward 
method has been used for years as a method of thermal analysis comparable in 
some aspects to Thermal Mechanical Analysis (TMA). For example, TSC is 
able to detect many of the same transitions as seen by the mechanical methods. 
The advantages of TSC include its extremely high sensitivity and its low 

Thermally Stimulated Current (TSC). 
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frequency. 
Lavergne and Lacabanne.17 

A recent review with numerous references has be written by 

Polycorbono te 
.o - 1.5 O> NMR 

1 

-200 -150 -100 -50 0 50 100 150 200 
Temperature, OC 

Figure 7-9. TSC results for polycarbonate compared with NMR line width and dynamic 
mechanical (DMTA) measurements. [TSC data from Y .  Aoki and J. 0. Brittain, J. Appl. 
Polym. Sci., PoZym. Phys. Ed. 15, 199 (1977) Copyright 0 1977 by Wiley Periodicals, Inc., a 
Wiley Company; NMR data from S. Matsuoka and Y .  Ishida, in Transitions and Relaxations in 
Polymers, Polym. Symp. No. 14, 247 (1966). Copyright 0 1966 by Wiley Periodicals, Inc., a 
Wiley Company; DMTA data from K. Illers and H. Breuer, Kolloid 2. 176, 110 (1961), 0 by 
Springer-Verlag, 1961. With kind permission of Springer Science and Business Media.] 

The TSC method, also known as thermally stimulated discharge (TSD), 
involves polarization of the polymer at a temperature well above all transitions. 
Polarization is carried out using a high DC voltage, which creates a high 
enough field to align dipoles in spite of the high temperature. While 
maintaining the field, the sample is cooled down to a temperature well below 
all transitions. On removing the field, a residual polarization remains. The 
contacts on the sample are now attached to a high-impedance 'kesistor and a 
sensitive current-measuring circuit, for example, an extremely high-impedance 
digital voltmeter connected across the resistor. At this point, the temperature T 
of the sample is increased according to the program: 

T = a + b t  (7-62) 

where t is time and a and b are constants. As the sample passes through a 
transition, some dipoles are able to relax, and a current J(t) is recorded. A 
maximum in this current is observed which corresponds to the maximum rate 
of relaxation of the dipoles and the amount of charge connected with the 
transitions. An expression connecting the maximum to the characteristic time 
zo for the relaxation is 

kTi  
bAE 

zo = __ exp(-AE / kT, ) (7-63) 
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where T,,, is the temperature of maximum current flow, and A E  derives from a 
plot of In J(r)  vs. 1/T at temperatures below the transition. An example of a 
TSC result is provided in Figure 7-9. Included for comparison are the 
mechanical results and the NMR line width for the same temperature range. 

Other Methods. Bridge methods cannot be used above about lo7 Hz 
because the effects of stray inductance become increasingly important at high 
frequencies. According to Table 7-1, resonance circuits may be used at 
frequencies up to lo8 Hz. Above this range, microwave technology must be 
employed. As measurements in this frequency range are somewhat more 
difficult to make and are rarely done on polymers, we shall content ourselves 
with merely mentioning the existence of appropriate techniques without 
explaining them further. All the techniques listed in Table 7-1, up through 
resonance techniques, are referred to as lumped circuit methods. They all have 
in common that the capacitance of the sample to be measured can be 
represented by a series model consisting of a capacitance and a resistor, as in 
Figure 7-1. 

The lumped circuit methods also have in common that the polymer sample 
to be examined can be conveniently arranged in the form of a circular disc that 
is mounted between metal electrodes. The best method of assuring good 
electrical contact between the polymer and the electrodes is to evaporate a thin 
film of a conducting metal such as silver onto the polymer surface. This is 
rarely done in practice, however. It is more common to attach ahminum foil to 
the sample surface, using silicone grease. Care must be taken to ensure that the 
sample disc is truly flat and has a smooth surface. Sample cells used to 
investigate the dielectric relaxation behavior of polymers are usually 

It is a homemade, although several have been described in the literature. 
relatively easy matter to adapt such cells for the measurement of polymeric 
liquids as well as solids. 

The methods listed in Table 7-1 for the frequency range above lo8 Hz are 
referred to as distributed circuit methods. The analysis of the circuits in such 
methods is not so straightforward as in the case of the lumped circuit methods 
and the sample cell and geometry are considerably more complex also. 

6. Application of Dielectric Relaxation to Polymethyl Methacrylate 

In Chapter 5 we cited dynamic mechanical relaxation data for polymethyl 
methacrylate (PMMA). There it was shown that PMMA possesses two 
mechanical relaxation regions over the temperature range - 50" to 160°C at low 
frequencies. These were labeled a for the relaxation accompanying the glass 
transition and p for a secondary relaxation that has generally been associated 
with motions of the ester side group. PMMA has a predominantly nonpolar 

5,12,13 
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backbone with flexible polar side groups. It would therefore be expected that 
motions involving the side groups are very prominent dielectrically. Figure 7- 
10 shows a comparison between the dielectric loss tangent and the mechanical 
loss tangent in PMMA as a function of temperature. It can be seen that the 
dielectric /3 relaxation is of much greater magnitude than the mechanical p 
relaxation, while just the reverse holds true for the dielectric and mechanical a 
processes. It is generally accepted that the p relaxation in PMMA is due to the 
hindered rotation of the -COOCH3 group about the carbon-carbon bond 
linking it to the main chain. The steric hindrance to this rotation comes mainly 
from the a methyl substituents of the two adjacent repeat units. 

Temperature, O C  

Figure 7-10. Comparison between tan S, and tan Sfor PMMA. DielectTic and mechanical data 
from Figures 8.9 and 8.12, respectively, in McCrum et al? Original data were, respectively, 
from G. P. Mikhailov and T. I. Borisova, Polym. Sci. USSR, 2, 387 (1961) and J. Heijboer, 
Physics of Noncrystalline Solids, North Holland, Amsterdam, 1965, p. 231. 

The data cited in Figure 7-10 are for "conventional" (or somewhat 
syndiotactic) PMMA. In the case of isotactic PMMA, the glass transition 
temperature is reduced so that the a and relaxations merge even at low 
frequencies and the dielectric p relaxation appears as a shoulder on the much 
larger a relaxation. It must be assumed in this case that the onset of side-chain 
ester group rotation corresponds to the onset of main-chain micro-Brownian 
motion so that the magnitude of the dielectric relaxation is enhanced. 

7. Comparisons Between Mechanical and Dielectric Relaxation for 

It would appear from the foregoing discussion that a correspondence between 
dielectric and mechanical relaxation can be expected when the molecular 
motions responsible for a mechanical relaxation involve reorientation of a polar 
group. Since there is a formal analogy between the complex mechanical 

Polymers 
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compliance s” and the complex dielectric constant E*, it would seem that 
comparisons between dielectric and mechanical relaxation data is best made by 
comparing these two quantities or their in-phase and out-of-phase components. 
This is rarely done in practice, however. It is much more common to construct 
so-called correlation diagrams in which the frequency of maximum loss is 
plotted against reciprocal temperature. If the positions of a relaxation region on 
such a diagram correspond for various relaxation techniques, it can be assumed 
that the relaxation arises from the same underlying motions. Such a correlation 
map is shown for the a and p relaxations in PMMA in Figure 7-1 1. It can be 
seen that the mechanical and dielectric data correspond well for the a 
relaxation region, but the positions of the mechanical and dielectric p 
relaxations do not coincide although the lines are parallel. Despite this 
discrepancy, the two, ,B relaxations are both understood to arise from motions of 
the ester side- chain, partly because of their similar temperature dependencies. 
It can also be seen from Figure 7-10 that the a and p relaxations merge at 
frequencies in excess of about 5 x lo5 Hz. This figure also includes limited 
NMR results, a subject to be discussed in the next section. 

Figure 7-11. Correlation map for PMMA. Solid symbols, mechanical; open 
dielectric; and crosses, NMR. [Adapted from N. McCrum, B. E. Read and G. 
Anelastic and Dielectric Effects in Polymeric Solids, Wiley, London, 1967.1 

B. NUCLEAR MAGNETIC RESONANCE METHODS 

symbols, 
Williams, 

Because of its breadth and complexity, the discussion of nuclear magnetic 
resonance (NMR) must necessarily be extremely focused on the methods used 
to examine the motions of polymer molecules. The reader is referred to several 
classical monographs and collections for more information. ’ 8-21 
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NMR relaxation techniques are a useful complement to mechanical and 
dielectric methods in that they examine the polymer in a different fashion and 
thus may be able to reveal structure-motion correlations that cannot be seen 
with the other methods. To put this in perspective, we remind ourselves that 
mechanical methods for investigating molecular motion can cover with some 
facility the time span from 1 ms to lo5 s. Times as low as 0.01 ms can be 
reached by sonic wave methods, but these are generally limited to rigid 
polymers that have negligible mechanical dissipation. With NMR, the 
fundamental (Lannor) frequency is the low end of the time scale, and depends 
on the magnetic field strength. For example, a 300-MHz instrument could in 
principle probe motions on the time scale of s, whereas NMR relaxation 
experiments can probe time scales as long as 1 s. Thus the NMR can be 
regarded as complementing the mechanical measurements with extension to a 
far shorter time scale. However, and most importantly, NMR methods hold the 
potential for associating directly the relaxation processes with specific 
structural groups, whereas this information must be inferred from mechanical 
measurements done on various structures. 

In this section, we will concern ourselves mainly with relaxation processes 
in solid polymer samples, as distinct from high-resolution NMR used for 
diagnosing the chemical structure of molecules. The latter can be done on solid 
samples using cross-polarization, magic-angle spinning (CP-MAS), but these 
techniques can eliminate valuable information on the very relaxation processes 
of interest to us. An interesting exception, however, is the WISE experiment, 
which is discussed below. 

Many atoms found commonly in polymers (’H, 13C, I4N, 19F, etc.) possess 
magnetic moments, or “nuclear spins” that precess at convenient frequencies in 
achievable magnetic fields due to the interaction of their angular momentum 
with the torque exerted by the field on the dipole. This phenomenon, somewhat 
analogous to a spinning top, is by itself not very useful. However, the existence 
of two (or more) quantized energy states in a magnetic field means that a spin 
state can be changed by irradiation with externally applied electromagnetic 
energy. For example, with ’H, an applied field of only 2.1 Tesla gives a 
precessional frequency of about 90 MHz, which is at the low end of the FM 
radio broadcast band. The important aspect of this is that the nuclear spin 
becomes a probe of local time-dependent magnetic fields because this 
frequency is sensitive to the total (local + external) field. Additionally, changes 
in energy state, and thus the relative population of upper and lower energy 
states, can be brought about not only by the applied RF field, but also by 
motions of other spins. 
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To understand the interrelationship of these spins with their host polymer 
molecules it is useful to regard the spins as a separate system that is able, on the 
average, to behave substantially independently of the surrounding matrix or 
“lattice.” In contrast, electric dipoles are attached rigidly to the polymer 
chains and thus follow the directional motions of the molecule. While the 
nuclei are attached also to the molecules, and thus change position with the 
molecules, they are not forced along a particular direction with respect to the 
bond directions in the chain. With such a “loose” connection, how does one 
use the magnetic dipoles, which give rise to the NMR signal, to examine the 
lattice? While the influence of the lattice on the nuclear spins is small, it is not 
negligible, because the spins couple to each other through the magnetic 
polarization of the lattice. The rigidity of the lattice has a direct influence on 
this coupling. 

Figure 7-12. Broadline investigation of plasticized PVC. [K. Boo and M. Shaw, Proc. Xth Int. 
Congr. Rheol., 1, 195 (1988).] 

For those familiar with high-resolution NMR, the simplest experiment to 
visualize is a very classic one-line broadening. High-resolution NMR 
depends on high mobility of the nuclear spins to gain narrow line widths. Thus 
line width itself is an indicator of the lack of mobility, or rigidity. 

Considering only protons for the moment, there are two principal sources of 
line broadening in the spectrum of a solid sample: chemical-shift anisotropy 
and dipole-dipole interactions. The former results from the fact that the 
chemical groups in a solid polymer are fixed in different orientations with 
respect to the applied magnetic field. For example, the influence of motion of 
electrons around the ring of the phenyl group in polystyrene will depend highly 
on the orientation of the ring with respect to the field. Thus the deshielding 
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effect on the protons attached to the ring will vary and result in varying fields 
(or, equivalently, frequencies) for the resonance of these protons. The second 
source of broadening is dipole-dipole interaction. (Here again we are referring, 
of course, to magnetic dipoles, not the familiar electric dipoles). For protons 
with a spin of %, the two possible states are with the spin aligned with the field 
or against the field. All dipoles in the sample interact with each other and the 
strength of the interaction depends on the distance between them and the angle 
between the applied field and the line connecting the two dipoles. If the lattice 
is completely rigid, the resonance frequencies of the nuclei vary greatly 
because of different dipole-dipole (spin-spin) interactions between the active 
nuclei in various locations in the structure. This dipolar coupling is similar to 
the scalar coupling important to high-resolution analytical NMR, but the nuclei 
of the lattice are not necessarily chemically bonded to the resonating nucleus. 
The coupling is through space. 

For the reasons outlined above, the line width with solid samples is 
exceedingly broad, often covering 3 0 4 0  kHz and as much as 100 kHz. The 
associated relaxation time is inversely proportional to this line breadth 
(multiplied by n), and thus is on the order of 10 ps for a very rigid solid. This 
relationship between breadth and relaxation time is: 

Breadth, Hz oc 1/( n x relaxation time, s) (7-64) 

Figure 7-12 shows the results of a broadline investigation of plasticized 
PVC. As the system is cooled, the proton resonance broadens and appears to 
split into two distinct contributions, one narrow and the other broad. It is not 
possible, without additional information, to assign the sources of these 
resonances; however, one would guess that the narrow resonance is associated 
with motions of the plasticizer. The additional molecular motion in the soft 
regions means that the spin-spin coupling is not as efficient. 

As one might suppose, the transition between broad and narrow is an 
indicator of the viscosity of the matrix, and thus is a method of gaining 
viscoelastic information. This so-called broadline NMR technique fell out of 
favor a number of years ago because of its nonselective nature, but selective 
techniques and better instrumentation have reversed this trend. In particular, 
there are techniques available that use both I3C (carbon 13) and ‘H (normal 
hydrogen) resonance to pinpoint the source of broad and narrow resonances. 
For example, Figure 7- 13 shows this “two-dimensional” wide-line separation 
(WISE) technique applied to a modified polypropylene. A highly convoluted 
broadline spectrum for this mixture has been resolved by the WISE technique 
into peaks that can be easily assigned to the motions of proton-containing 
groups on the polypropylene and the additive. 



DIELECTRIC AND NMR METHODS 241 

kHz 

25 

'H O -  

-25 - 

60 40 20 O PPm 

Figure 7-13. Crossplot of broadline 'H and CP-MAS (narrow line) I3C spectra for a 43% 
mixture of erucamide with i-PP. Erucamide is a fatty acid amide used with PP film to reduce 
adhesion of adjacent layers of film. The contours indicated by arrows are due to polypropylene 
-CH3, X H -  and -CH2- groups, respectively. This shows that the X H -  group at - 26 ppm on 
the I3C resonance axis has the lowest mobility, as its proton resonance is the broadest. 
[Adapted from I. Quijada-Garrido, M. Wilhelm, H. W. Spiess, J. M. Barrales-Rienda, 
Macromol. Chem. Phys. 199, 985 (1998). Copyright 0 1998, Wiley Periodicals, Inc., A Wiley 
Company.] 

With time-domain (pulsed) instruments, more direct observations of 
relaxation processes can be realized. The most common experiment is to 
polarize the system of spins and then remove or change the field, watching the 
spin system relax. The polarization is accomplished by exposing the material 
to a radio-frequency field at the resonance frequency of the spins, which 
populates the excited state. The very slight increase in the population of the 
high-energy state is reduced principally by two processes: coupling with 
neighboring spins precessing at the same frequency, and by random magnetic 
radiation produced by the lattice. If the material is rigid, the first process 
occurs rapidly because there are usually many properly aligned spins in the 
ground state that can couple with those in the excited state. The second is 
process is much slower because of limited motions in the lattice. 

The spin-spin relaxation time is given the symbol T2, whereas TI is used for 
the spin-lattice relaxation time. In the absence of field inhomogeneities, the 
theoretical expression for the line shape is Lorentzian and is given by the 
expression 

(7-65) 
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where g( f )  is the intensity, f is the frequency, and fo is the frequency at 
maximum intensity. Our expectation is that the value of T2 will be low in the 
glassy state and increase through the glass transition. Typical values range 
from about a second in low-viscosity melts to less than a millisecond in the 
glassy state. The process of spin-spin relaxation takes place on a time scale that 
reflects motions that are most efficient at removing the coupling between the 
spins. Typically for glassy polymers, there is a abrupt increase in T, through 
the glass transition, as shown in Figure 7-14. 

" , I I I I I I 

-200 -150 -100 -50 0 50 100 150 200 

Temperature, "C 

Figure 7-14. Changes in NMR spin-spin and spin-lattice relaxation times with temperature for 
a low-T, polymer PVME and a high- T' polymer PS. [Adapted with permission from T. K. 
Kwei, T. Nishi and R. F. Roberts, Macromolecules, 7, 667 (1974). Copyright 1974 American 
Chemical Society] 

TI on the other hand, reflects the efficiency of the coupling of the spin with 
the lattice, which, it should be recalled, is the surrounding ensemble of material 
that can couple with the subject spin through any motions that produce 
electromagnetic waves of the resonant (Lannor) frequency. TI usually shows a 
minimum near the glass transition, or at the onset of any motion that produces 
additional interaction with the subject spin. This interaction promotes a return 
of the spin to its ground state, with a consequent loss of polarization signal. In 
Figure 7-14, TI for PVME also shows a shallow minimum at -180 
corresponding to the onset of motion of the methyl groups on the side chain of 
the PVME. At high temperatures, the two times approach each other. 

The classical technique to find these two times is to subject the spin system 
to a magnetic pulse with the direction of the pulse at 180" to the primary field, 
that is, in the opposite direction. Such a pulse inverts the populations of the 
ground and excited states (parallel and antiparallel to the field, respectively). 
For this reason, the technique is referred to as inversion recovery. 
Measurement of the magnetization associated with the return to equilibrium 
gives T I .  A 180" pulse can be followed by a pulse at 90" to induce a transverse 
magnetization. (This does not orient the dipoles at 90", but merely biases the 
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phase of the precessing dipoles in the two allowed states.) The relaxation of the 
transverse magnetization, or more properly the dephasing of the dipoles, gives 
T2. These two experiments give their respective times by definition; the reason 
that they reflect spin-lattice and spin-spin processes in a distinct fashion is a 
more advanced subject, and the interested reader is referred to the appropriate 

In 
addition, one can also look at third time, called TIP, which involves are more 
complex pulse and measurement scheme. TIP is useful for examining motions 
in the 10-100 kHz range. It should be noted that both TI and TIP can be found 
using cross-polarization, magic-angle spinning (CP-MAS) experiments on solid 
polymers. Again the reader should examine the references and similar 
literature for more details. 

literature including the references provided at the end of this 

PROBLEMS 

1. 
second capacitor in parallel with the whole array. 

Consider an electrical circuit consisting of a capacitor and resistor in series and a 

h 
Show that, for a step function in voltage, the capacitance of the circuit is 

where 

C, =C, +C2, z=C,R, and C,, =C, 

2. 
magnitude ,q, along the chain contour. 

the mean square dipole moment of the chain, (p') . 

What is the value of g for such a chain? 

would be the qualitative effect on the value of g? 

Consider a freely jointed chain of N links, each having a dipole moment of 

.(a) In the absence of fixed valence angles and bond rotational potentials, calculate 

(b) Repeat the calculation in (a) for a chain with tetrahedral (fixed) valence angles. 

(c) If the chain in (b) possesses barriers to rotations about backbone bonds, what 
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(d) If the barriers to rotation about the backbone bonds are such that a given bond 
can only assume rotation angles of n/2,  n, and 3 n / 2  with respect to the first bond in 
the chain, and the bond rotation potentials are independent of one another, what is the 
value of g and ( p 2 )  ? 

3. Derive equation (7-56) from equation (7-28). 
4. It was shown that a "real" capacitor containing a dielectric behaves by itself like an 
RC circuit. Note the similarity between equations (7-8) and (7-23). If the real 
capacitor is regarded as a "black box," relate E' and E" to the equivalent series 
capacitance, C,, and resistance, R,. 
5. Calculate the power dissipated as a function of w for a Debye dielectric subjected 
to a sinusoidal voltage. w = 2n f  
6. Show that E *  defined by equation (7-28) is formally identical to the compliance, 
D*, of a Voigt element in series with a spring. 
7. Using the relationships developed in Problem 7-4, create Nyquist and Bode plots 
for the complex impedance z* of the circuit shown in Figure 7-1. You will need to use 
the relationship Y* = l/z*, where Y* is the admittance. Finally develop the 
relationships between Z* and E* for this circuit. 
8. (Computer) Using a scanner and the program TRACER. EXE in the CD, or an 
equivalent, digitize the data in Figure 7-6 and attempt to describe it the Cole-Cole 
relationship. Plot your results. 
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Answers to 
Problems 

CHAPTER 2 

2-1. The shear strain wanted is given, according to equation (2-5), as 

AX 0.40cm 
Y 2.0cm 

y=-= = 0.20 

At t = 

of equation (2-30), 
the compliance is numerically equal to lop9 Pa-'. Thus, making use 

However, since the sample cross-sectional area, X x 2, is 4 cm2 (4 x 
the constant force necessary to observe this strain is 

m2) 

F~ = o0(xx r )  = 0.8 x lo5 N 

and division byg, the acceleration due to gravity (9.81 rn/s2), yields 

m=Fo/g=8.2x 103kg 

247 

Introduction to Polymer Viscoelasticity, 3rd Edition. 
Montgomery T. Shaw, William J. MacKnight 

Copyright 0 2005 John Wiley & Sons, Inc. 
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Thus 8.2 x lo3 kg (roughly 9 tons) placed on the sample pan in Figure 2-9 
would cause the pointer to move down 0.40 cm in s. Clearly all the 
apparatus is assumed to have an infinite modulus and inertial effects are 
ignored. Clearly, this is not the preferred way to run a shear creep experiment 
on such a polymer. Torsional deformation of a rod would be a much better 
choice. 

2-2. Since G'and G"are given, our problem is to express tan 6, IG*I, I?/, J' 
and J"in terms of these given parameters. Equation (2-39) gives 

G tan6 = - 
G 

The key to the other quantities is Equation (2-40) 

G* = G' + iG" 

which together give the relationship 

Multiplying numerator and denominator by the complex conjugate G'- iG"and 
separating the real and imaginary parts gives: 

Thus we have the answers for J'and J': and it remains to find the magnitudes. 
By definition of the magnitude of a complex variable, IG*I = [(G')* + (G ) ] , 
which in many math books would be referred to as simply /GI where G is 
understood to be complex without the aid of the asterisk. As ? = 1/G* = 

y*/o*, we expect that the magnitudes will be reciprocally related, i.e., IG*l = 

l / v l .  To show this unquestionably, simply multiply out 

I ,  2 112 

The other parts of the question follow a similar pattern. 

2-3. Equation (2-46) maybe restated as 
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for a tensile experiment. The strain history, in terms of the variable u, is 

where k is magnitude of the slope of the lines in the sketch. This strain history 
can be built into equation (a) to yield 

which can be integrated to give 

2-4. Mechanical work due to application of a force is defined as the integral of 
f d l  (technically 7 . d f ) .  Here we will consider work per unit volume. Thus 

for a shear experiment. Now let 

o = oo coswt 

so that in-phase strain is 

y = yo coswt 

Substitution of these functions into equation (a) yields 
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2ir 2 n  w = Goyo Jo coswt sinwtd(wt) = ooyo[+in2 wtIo 

which is zero. Thus the work done in going through one cycle of deformation 
( a t  goes from 0 to ZT) is zero if the stress and strain are in phase. All the work 
done on the sample in the first quarter of the cycle is recovered on the next 
quarter, etc. 

For out-of-phase strain: 

y = y o  sinwt 

which yields for the integral work 

The second term is zero, but the first gives 

w = yooo7r 

Clearly work is done when the stress and strain are out of phase. 

2-5. Equation (9) of Appendix 1 in Chapter 2 gives 

which is a statement of the relationship between G(t) and J(t) in transform 
space. The Laplace transform of the J(t) given is 

which yields, upon substitution into equation (q), the result for the transform of 
G(t) 

the last multiplication term being added to facilitate return from transfom 
space. Thus 
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Rearrangement and use of the expressions given in the problem yield the 
desired result. 
2-6. Equation (9) of Appendix 1, Chapter 2, relates G(t) and J(t) in transform 
space. 

It is simple to solve in this space and then transform back 

L[G(t)] = Jme-"G(t)dt 0 

- I  

= Go ( P  + +) 
Thus 

Transforming back into real space, 

+L-'-.- 1 

PGO P2G$ 
J ( t )  = L-' - 

l (  :I :. J ( t )  = - 1 + - 
GO 

2-7. From equations (2-56) and (2-57) we know that 
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G’(w) = w Jm sinwsG(s)ds 
0 

m 

0 
G” (0) = w I cos wsG(s)ds 

For this problem 

jp.- sinrnxdx= rn I 
a +rn 

Goo w 2 z 2  
(1/+ + w 2  1 + w2z2  

G (w) = = Go 

also 

- G0@T 
(1/z)2 + w 2  1+w2z2 

- 
wGol/z G‘ ( w )  = 

2-8. 

but e” = cos x + i sin x so that 

(9- 
G * = o ( c o s 6 + i s i n 6 )  

Yo 
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However, G* = G+iG' , and we have: 

0 0  0 0  G=-cosS and G'=-sinS 
YO Yo 

2-9. 

For a dynamic experiment, E* = EOeiW' 

But 

and 

Thus 

2-10. 

(2-45) 
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Time - 0 

At time zero, the stress is instantaneously increased from 0 to 0,. 
To observe how the delta function works, consider 

as the normal relationship between the stress and stress rate. For an 
instantaneously applied stress with an infinite stress rate we may write 

o(t)= f G(u)oodu 
-m 

where S(u) is the Dirac delta function. According to the definition of this 
function given in the equation 

a(t)=O t < O  

o(t) = oo t 2 0  

Similarly for equation (2-27): 

y(t)  = f G(u)o0J(t - u)du 
-m 

For all t > 0 this becomes 

or 

2-11. Leibnitz’s rule for differentiation of an integral is: 

(2-30) 
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1 d&(u) 
-a du 

o E ( t )  = 5 - E(t - U ) ~ U  

d f d&(u) E(t - U ) ~ U  
d 
dt dt -00 du 
-oE(t)=-5 - 

at 

k for t 2 0 
dt 0 fort < 0 

if -- 

k E ( t )  = pg[E(t - u)]du +kE(O) 

But 

dE(t -u) a(t -u) - dE(t -u) - d -E(t  -u)  = 
at d ( t -u )  at d( t  -u) 

:. o E ( t )  = f k dE(t du + kE(0) 
0 d( t  -u) 

or 

I 

0 0 
c+E(t) = J - kd(E(t  - u)) + kE(t - u)/l + kE(0) 

= -kE(O) + kE(t) + kE(0) 

2-12. This will be done in two steps utilizing different forms of the Boltzmann 
principle. 
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424) = 0 

0 I u I t' D(u) = &(u) 

t'< u o(u) = 0 

Starting off with equation (p), Appendix 1 of Chapter 2, an expression for 
the Boltzmann principle in Laplace space, 

L [ m l  = PL[&(t)lW(t)l 

1 L o ( t )  
L[&(t)] = - ___ 

P L[E(t)l 

But L[F( t )]  = re-" 'F( t )d t ,  0 SO 

t' 
L[o( t ) ]  = r e - p f o ( t ) d t  = l'E,E(t)e-Pfdt = &oEoe-t'r e -" dt 
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Eo Eo - t ' ( p + l / r )  Eo Eo e - f ' p  -PI2 e e - - _--- 
P P  P P  

Taking inverse transforms, 

From tables, 

In our case u = 1, which is greater than zero. Also k = t' and t > t' always, 
since we are interested in strains after the stress relaxation experiment. Thus, 
the general situation holds and 

(t --t')' = 1 and r(l) = O!= 1 

Thus, 

(b) The other technique involves transforming E(t) and to D(t) via the 
techniques used in Problem 2-6, and then using a more familiar form of the 
Boltzmann principle such as that given in equation (2-45). (To simplify the 
nomenclature, the symbol o will signify the tensile stress oE.) 

A modulus of the form E(t) = Eoe-f"corresponds to a compliance D(t) = 
1/Eo+t/E0z. Thus, using equation (2-45), adopted for tension, we get: 
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D(t - u)du 
m du 

do(u) 
du 

E(t) = aaD(t) + ~ D(t - u)du - o(t')D(t - t ' )  

The first and last terms arise from the fact that step stresses of oo at 0 and 
-a(t ') at t ' are applied to the sample. When 0 < u < t ', o ( u )  =E&ae-U'r so that 
do(u) /du  = -(E,E, /z)e-"' and 

Recognizing that oo/ E, = ~ g ,  factorization of gives 

&(t)=&* 1+-- 1+- t - t e-t ' /r  - [e -u17(  1 + ; :)$I [ : ( T I  

2-13. The expressions for the components of the dynamic modulus for a 
Maxwell model are given in connection with Problem 2-7. It is convenient in 
view of the problem equation to space the calculated values by factors of 2. A 
depiction of a typical result, in dimensionless form, is: 
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3 -1.5 

Actual 

-3.0 

-3.5 
-2 0 

Log t 

2-14. Start with equation (2-51) 

t 

t = IG(s)J(t -s)ds 
0 

For the first step 

At 

At = IG(s)J(At -s)ds FZ $ At[G(At)J(O) + G(O)J(At)] 
0 

Solving for G(At) gives: 

G(At) = [2 - G(O)J(At)]/Jo 

For the second point at time 2 At 

G(2At) = [4 - 2G(At)J(At) - G(O)J(2At)]/& 

and, in general, 

3 n-1 

J O  " i=l 
G(nAt) = - 2n - G(O)J(nAt) - 2xG( iA t )J [ (n  - i)At] 

The difficult aspect of this expression is the evaluation of the sum, as there is 
one forward-running index, and one going backward. However, because of the 
simplicity of the expression for J(t), we see that the sum can split into two parts 
to give the working expression 

n-l n-1 

2n - G(O)J(nAt) - 2 J ( n A t ) z  G(iAt) + 2aAtziG(iAt)  
i=l  i=I 

where Jo = a = 
At. 

To control numerical error, the complete answer will vary 
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2-15. (a) Shear strain y is the gradient of displacement. For torsion, the 
displacement of the material next to the turning disk is in the Bdirection and is 
simply re, where r is the distance out from the center of the disk. Assuming 
that the material in layers below the turning disk displace in a proportional 
fashion, the displacement in general will be rBz/h, where z is the distance away 
from the stationary plate, and h is the gap. The displacement gradient is then 
just the derivative of this with respect to z, or r 6 h .  

(b) Regarding the torque as force times a lever arm, we can equate the force 
produced by each annular shell at radius r to 02,(r)x2nrdr, where a2] is the 
shear stress produced by the material in that shell. The lever arm is just r. 
Integrating over r gives: 

A4 = 2 z  o,,(r)r*dr c 
In terms of the shear modulus, 02](r) = GHr) if the modulus is independent 

of strain. Substituting this in the previous equation gives: 

R 
M = 27r 6" Gy(r)r2dr = 2nG ( r B l  h)r2dr = 2nGBI h rr'dr 

Integration of the last expression gives finally M = nR4G8/2. 

recognizing that oZl (r)  = G[fr)]f ir) .  

as shown above, is of the form: 

(c) The needed expression can be deduced from above by simply 

(d) The Gaussian integration of a moment expression, such as for the torque 

It is necessary to put the equation for the torque in this form; the result is: 

= 2n[a2,(r)r2dr = 2 d 3  [o,,(rlR)(rlR)2d(r/R) 

For k = 2 and n = 1 , the weighting factor w1 = I / ,  and the location xi = %. Thus 

bf= 2?&'021(3/4)/3 

Note that 0~~(3/) = G(3/4)@/4), that is the stress at each radial position is given 
by the known shear strain at this point times an unknown modulus. If we 
define yR = RB/h and the apparent modulus as GRJ = 2M/nR46, then 

M = 7tR4 GR.A 812 
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Equating these two expressions and recognizing that f ix) = 3 yR/4, then 

G(%) G R J ~  

In other words, an approximation to the actual modulus at a strain of 3/yR is 
simply the apparent linear modulus. By replacing the stress in the integral with 
the modulus and the strain, then the integral is the type k = 3. The first-order 
approximation to this integral is then G(0.8) = GRA, which might be regarded as 
slightly more accurate for small deviations from linearity. 

2-16. We adopt the convention that the sample is clamped at x = 0 and is 
pulled at x = L(t) with velocity vA, the applied velocity We can see that the 
velocity at any place along the sample will then be: 

v = V A X / L = V A X / ( L O  +vat) 

Thus we have a strain rate i . = v A / L  that is decreasing with time. For 
convenience, we also define a nominal strain rate .ko = vA / L o .  Starting with 
equation (2-46) and keeping the 3-dimensional aspect of the sample strictly in 
mind, we have: 

for the time-dependent stress. As both of these strain derivatives will be zero in 
the interval from -a to 0, the only contribution to the stress will be from 
deformations from 0 to time t. The values of the strains are given by equation 
(2- 18), whereupon observing the respective subscripts gives 

dux du Y ,  =- +-=2- 
ax, ax, ax, 

The displacement u, is the amount each original point has moved 
This amount of motion will be 

at time t. 

€ 0 0  

To preserve volume, the displacements in the y (transverse) direction will be % 
this amount. The time-dependent strains then become: 

y ,  = 2 ln(1 + i0t) and yyy = - ln(1 + got) 

The time derivatives (strain rates) are then 
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7, = 2E0 /(1+ got) and 7, = -io /(1+ i o t )  

When placed in the integral we have the result for stress growth of a 
viscoelastic sample in a tensile-testing machine. 

oE (t )  = 3i0 f \ l +  0 ios)-'G(t - s)ds 

While we might integrate this with our chosen relaxation function, it is much 
easier to simply differentiate the integral directly, using Leibnitz's rule, to get 
the modulus. This is not difficult because all time dependence can be factored 
out of the integral. Putting this all into place we have finally: 

Ey = d o , [ ~ ( t ) ] / d ~  lE+o= -{3E0 d fo'(l + iou)-lGoe-(t-U)/' du)/(dEldt)  
dt 

Simplifying gives: 

d 
Ey = -{3i0Goe-'/r jt(l+ 0 iou)-'eU"du)/(d&/dt) 

dt 

Ey = 3i0Goe-f'5 [eU/' (1 + iou)-l]U=f / io 

As can be seen, as generates the familiar Ey = 3Go as t goes to zero. Thus, if 
one is able to measure accurately the slope at t = 0, the result is Young's 
modulus for this type of test. 

CHAPTER 3 

3-1. Figure 3-3c is a plot of the relaxation behavior of a Maxwell body on a 
log-log scale. Thus we want to calculate 

d In E(t)  

where 

However, 

d lnt 

E(t )  = Ee-t'' 

1 
In E(t)  = In E - - 

z 

and since 
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d In E(t) - td lnE(t) 
d lnt dt 

- 

dlnE(t) - t 
d lnt z 

- -- 

which approaches -a for t >>z. This is a characteristic of fluids. 

3-2 and 3-3. As an example, we will work with E'(w) for a Maxwell body: 
(a) Equations (2-56) and (2-57) written for tension give 

which integrates to 

E W 2 Z 2  

1 + w2z2 El(@) = 

(b) Starting with equation (3-6) we find 

on assuming that 

E(t) = E, sin wt 

This expression integrates to 

- e ( t ~  - f z  ('coswt, +wsinwt, 

Because our result must be independent of the starting time t,, and the present 
time tz (E'(w) is not a function oft) let t2 -+ 00. Then 
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or 

E W 2 T 2  

1+W2Z2 

3-4. Here we can start with equation (1) of the answer for Problem 3-2 with 
added subscripts. 

E' (w)  = 

1 oi ('2 1 = - cos wt, + w sin wt, 

This expression can be separated into an in-phase part qr and an out-of-phase 
part a", as follows: 

EiWE0 (w sinot,) q!(t2) = 
1/z; + w 2  

o;(t,) = EiuEo [ i,oswt2) 
l/q2 + w 2  Ti 

Now the total in-phase stress considering all elements is just 

EiW2E0 W 2 )  = c (w sinwt,) 
i 1/z; + w 2  

Here the quantity in parentheses merely expresses the phase of the response (in 
phase) and we may write immediately: 

- Eiw 2z,2 
- 

E;w E ' ( w )  = c 
i 1 / z , ? + w 2  ?1+w2S; 

Similarly, for the out-of-phase response, 

o"(t2) = c EiwEo ( $coswt2) 
i 1/z12 + w 2  

Here cos cot2 just stipulates out-of-phase response and 

E p T i  
i 1+w2z,2 

E"(w)  = c 
Then according to equation (2-22) written for tension: 
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E;W2T,2 E;WZ;  
E*(w) = C ; 1 + W 2 Z L 2  +ic i l + w  2 z; 2 

Clearly such sums are difficult to invert analytically. 

3-5. Here we can write 

dE 1 do,  o1 
1--- - +- 
dt El dt v1 

dE. 1 do;  o. 
I--- - +- 
dt E; dt 7; 

d& 1 do,  o 
+ I  

dt E, dt 7, 
z--- - 

These expressions simplify considerably, since: 

and 

Thus 

Defining 

-=A- 1 1 

H i = l  v; 
this equation becomes: 

dE 1 d o  o 
dt Eh dt H 

- +- 
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which is solvable in the usual way. 

3-6. (a) Equation (3-83) can be rearranged to give 

2 2 36 
N 

p z  =-q 

Since all of the terms on the left side are parameters relating to the model itself 
and not to the specific experimental conditions, this result may be substituted 
into the expression for zp in the problem to give the desired result. 

(b) Table 3-2 gives an expression for the tensile creep compliance of a 
Voigt-Kelvin Model as 

z 

D(t) = C D p  (1 - f P 7 P )  

p=l 

Comparison of this expression with that in the problem yields the result that 

8 1  
3NkTn' p 2  

D, = 

3-7. First let us investigate the values of E'(w) and w at the maximum of a 
logE'(w) versus log w curve for a single Maxwell element. 

logE"(w) = logE + logo + logz - log(1 + w'z')  

2w2r2 
d logo 1 + w2z2 

= I -  d log E" (0) 

At the maximum this slope is zero and w is found to equal l/z: Substitution 
of this result into the defining equation for I?( w) shows that 

E 
2 

E"(w) = - 

at the maximum. Thus 

z, =lo-' and E, =4x106 

z,  = and E, = 2 x 10" 

3-8. From equations (3-90) and (4-7) 
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7 = lm tG(t)d lnt = cG( t )d t  
m 

(4-7) 

For a Maxwell-Wiechert model: 

z 

= CGiz i  
i=l 

3-9. 

z 

E ( t )  = ~ E p e - t / 7 p  
p=l 

If zmin < t  <z,,, , the quantity in parentheses is close to 1 and relatively 
constant. Thus 

= -1 d In E( t )  
d lnt 

3-10. Equation (3-42) defines H( z) as 

(3-42) 

For z << t, the exponential is -0.0 whereas for z >> t, it is -1.0. If the 
exponential is approximated by a step function from 0.0 to 1 .O at t = z, we have 

E(t )  = jm In t H(z )d  In z 

Furthermore, 
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E(t + A) - E(t) = - H(z)dlnz = H(t)l t=r (lnt +A-lnt) 

or, in the limit A+O, 

- dE(t) = H ( z )  E H ,  (z) 
d Int 

3-ll(a) 

E(t) = Eoe-t/'m 

where the subscript rn is included to remind us that the relaxation time is 
constant: 

which is plotted below. 
(b) For H2 

d (9) = td(dE(t)/dlnt) 
d ln t  d ln t  dt 

which is also plotted in the figure. 
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I I 1 1 

-5‘ -; ’ -2 - 1  0 1 2 
Log dTm 

3-14. The relationship between viscosity and relaxation modulus is given by 
equation (3-90) and (4-7). For the latter 

7 = cG(t)dt (4-7) 

which for the chosen modulus function gives: 

dt 

For n = 1, this gives the log function, which is unbounded, so n must be greater 
than 1. Substituting x = (1 + tlz) gives the form 

which can be easily integrated to give: 
m 

1 
n-1 

Thus, if n > 1 , the viscosity is finite with a value of 

7 = zGo/(n-l) 

3-15. The slopes are easily calculated by taking derivatives of the appropriate 
expressions and examining the limiting behavior. As the Rouse function is a 
sum of Maxwell elements, it will behave in the same fashion in the limit. For 
the KWW function 

G(t) = Go exp[-(t l z ) ’ ]  (3-106) 
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the derivative with time is: 

which is infinite at t = 0 if p < 1 (the usual situation). However, the slope of the 
log-log relationship at t = 0 will be zero. 

3-16. The isochronal stress-strain curve can be found by analysis of the stress- 
growth function o(t; ?) as given by the Boltzmann superposition relationship 
of equation (2-46). For a generalized Maxwell model, the result is the familiar 

N 

o(t;?) = ?CGir , ( l  -e -"rf )  
i=l 

As the strain rate is constant, we can express the stress as: 

The quantity in the brackets is a function of time only, so will be a constant for 
the isochronal stress-strain experiment. Thus the isochronal stress-strain curve 
for a linear material will be straight. 

The isochronal modulus will be the slope of the stress-strain response, and 
thus equal to the term in the brackets. As t -+ 0, the exponential can be 
expanded to show that the slope is simply: 

N 

G, = CG; 
i=l 

(b) The stress growth, creep and stress relaxation expressions for the single 
Maxwell model are: 

G(1- e - t / r )  
t l z  

o(t)  = Gj,z(l - eC") = y 

o G 
y( t )  = $(I + t / t ) ,  or oo = y(t)---- 

l + t / z  
a( t )  = yo Ge-"' 
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It is evident from these expressions that the isochronal stress-strain response 
depends on the type of experiment. For example, at t / z  = 1, the isochronal 
stress-strain curves will be CT = 0.632Gz CT = 0.5Gy and CT = 0.368Gy 
respectively. 

CHAPTER 4 

4-l(a) Equation (4-6) states 

- c, (T - Tg) loga, = 
C, +T-T, (4-6) 

The apparent energy of activation for viscoelastic relaxation maybe defined as 

* dlna, 
d(l/T) 

E =R- 

which, by simple calculus, is just 

d loga, 
dT 

E* = -RT2(2.303) 

Using equation (a) on equation (4-6) yields 

2 -3 03 C, C, R T E' = (c, + T - T,)' 

Since we are interested in the activation energy at Tg, equation (b) is just 

E* = 2.303 c, RT,' L* 1 
Using the universal constants (C, = 17.4 and C, = 51.6 K) given in Table 4-1, 
and for a Tg of 200 K this quantity is about 258 kJ/mol(62 kcal/mol). 

(b) As T >> Tg equation (b) becomes 

E* = 2.303RC,C2 

which is equal to 17 kJ/mol(4.1 kcal/mol). 

4-2. From Equation (4-1 9), we have 
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where the reference temperature has been taken as Tg. At any other reference 
temperature, say To, we have 

B 
2.303[fg + af(q - T,)] 

c," = 

and 

where equation (4-16) has been used. Algebraic manipulation of these four 
equations gives 

c," = c, 
l+(To -Tg)IC2 

Utilizing the universal constants, at To = Tg + 50 "C yields 

C,O = 8.83 and C," = 101.6"C 

4-3. This problem is worked out in references 5 and 9 of Chapter 4. 

4-4. 
equation (4-6) with the values of C, and C, from Table 4-1 gives 

Starting with the arbitrary temperature T = Tg - 5,  substitution into 

log a T =  -1.87 or a T =  0.0135 

Thus, at this temperature 

and the two relaxation times become 

1s 
rl(Tg-5)=- = 7.4~10 '  s 

0.0135 
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10 

0 
5 -  

4- 

= 7 . 4 ~ 1 0 ~  s lo4 q(T,  - 5 )  = ___ 
0.0135 

5 -  

4- 

Thus, 
5 -10 d740000 s E(10 s, Tg -5) = 3.0 x 10 e -10s’74s+5.0x 10 e 

= 2.6 x lo9 Pa 

Modulus values at other temperatures are calculated in the same way with the 
result shown below. For comparison, the relaxation modulus at Tg - 5 K is also 
plotted; the shapes are similar when a log time scale is used. 

101 I 

4-5. 

n 

G(t, T )  = Gie-t’rl(T) 
i=l 

i=l 

The correspondence principle says 

G -,T =G(t,T,) ( d ,  
or 
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For this to be true for all values oft, each individual exponent must be equal for 
all values oft: 

-tiaTrj(T) - - i / r j ( T )  e - e  1 l i l n  

or 

loga, = 

4-6. From equation (4-6): 

- Cl (T - T,) loga, = 
C, +T-T,  

which may be rearranged to give 

loga, = -C,(T-T, +C2) + ClC2 

T-T, +C2 T-T,  +C2 

=-c, + ClC2 
T-T ,  +C, 

If: 

P = Cl 
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we have the Vogel expression. 

CHAPTER 5 

5-1. Equation (4-16) may be written as 

f, = fg + a,f (T - TgM 1 

where fM is the fractional free volume at some temperature and molecular 
weight. Here we have assumed af and fg are both independent of molecular 
weight. These relationships may be introduced into the equation given in the 
problem to yield 

which is the same form as equation (5-28). 

5-2 (c) The molecular weight of methylene is 14, while that of methacrylate is 
84. Thus the weight fraction of methylene is 14n/(84 + 14n). Using the hint, 
we write 

and identify Tg,s with the Tg of polyethylene and ws with its weight fraction in 
the mixture. (Note: the ends of the methylene sequence are not free ends.) 
Using equation (5-28) then yields 

where 

w, = nl(6 + n)  

Using all three parameters (T,,p, Tgs and K ) ,  we find that the Tgs = 94 K, but 
with a large error. The graph is shown below with the fitted equation. 
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400 I 
Alkyl rnethactylofes 

\ 

5 10 15 20 150;" ' " " I  ' " ' 

n 

5-3. See the answer to Problem 5-10. 

5-4 (a) The weight fraction of chain ends, we, is just the weight of the ends 
divided by the total weight of the polymer. If ni is the number of moles of 
polymer with molecular weight Mi, we is given as 

weight of chain ends - - C n i M e  ;y( C n i  ] we = 
total weight C i n i M ,  CniMi 

The term in parentheses, however, is just the reciprocal of the number-average 
molecular weight of the polymer, M,, so 

Substitution of this relationship into equation (5-28) yields the desired result. 

remembering that wp + we = 1 , gives 
(b) Rewriting the equation given in terms of relevant parameters, 

Tg = Tgm (1 - we) + Tgmw, + Kw, - K( 

Since we is small for polymers, the last term can be neglected and 

Tg 1 Tgm - W, (T," - Tg, - K )  

This expression is identical to the desired result if we identify the term in the 
parentheses with c / Me. 

5-5. The reference here should be sufficient. 

5-6. 

where z does not depend on S dS 6 
dt z 

- - - -_ 
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Thus: 

I n 6 ( t )  t dt‘ 
J;”& dlnS= I- o z  

t ln6(t)-lnSo =-- 

s(t)  = 6,e-”‘ 

z 

where 6, = 3 x and z= 1 h 

s(t) = 3 10-3e-r”.0 

This function is plotted in the accompanying figure,* along with the least 
squares KWW fit for part (b). The parameters for the latter are So = 0.0039, z 
= 0.542 h and p= 0.317 where 6(t)= 6oexp[-(t/z)p]’. 

Log (time, h) 

5-1 1. Solving the equation in the problem for the parameter a gives: 

E(t)/E, -1 
a =  

exp(-t / z) 

which works out to be O.UO.368 = 0.271. Using this value to generate “data” 
shows that the value of m increases as the data at longer times is used. An 
example fit using data greater than t/z = 3 is shown below. The Chasset- 

* Data from A. J. Kovacs, Fortshcr. Hochpolym. 3, 394 (1964),%pringer-Verlag, 1964. With 
kind permission of Springer Science and Business Media. 
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Thirion equation cannot turn as sharply as the exponential in spite of a value of 
m = 2.65. 

0 Exponential relaxation 
- Chasset-Thirion fit 

5-12. The key equation for solving this problem is equation (6-84), which in 
our case simplifies to 

For the general case of network degradation, both M, and M will change. To 
see this, consider that M, = p/2c and M = 2 @[ends], where [ends] is the 
concentration of chain ends. Inverting and taking derivatives of these 
expressions gives 

for the first term and 

d ( l / M )  - - 1 d[ends] = -( 1 - Z T )  dlL1 - - - 1 k,[L]  = ~ kl 
dt 2 p  dt 2p P MO 

for the second, where [L] is the concentration of susceptible linkages of 
molecular weight Mo. We have assumed that the concentration of linkages is so 
large that mild degradation will not change the number appreciably, and thus 
the reaction is pseudo zero order. Combining these to obtain the rate of change 
of modulus gives 
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We can see that both reactions will cause the modulus to decrease, but the 
concentration of crosslinks c will influence only the first term. Note, however, 
that the relative change in modulus at the beginning of the process will be: 

= -(k2 + k , p / c M , )  d 1nG 
dt 

showing that an increase in crosslink density will decrease this quantity. 

CHAPTER 6 

6-l(a) 

dH = TdS + VdP + fdL 

Thus: 

The Maxwell relation 

= -($)L,p 

gives 

Now 

( % ) T , p  = -T(%)L,p +f 

Evaluating the various coefficients using equation (6-60) gives 

and 
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(b) Analogous to part (a) starting with dUinstead of dH. 
( 4  

T a  aV 

(')T,p = F ( z ) T , p  

since 

Substituting the result of part (a): 

Note that since (aH /aL),,, z 0, an ideal rubber has a thermoelastic 
inversion point. 

6-2. Equation (6-1 1) defines the stress-temperature coefficient in terms of 
pertinent quantities. 

In Problem 6- 1 a, 

so  

6-3. Equation (6-42) in terms of this problem states 

3 
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Incorporation of (6-44) gives 
- 

2 r; 

Since pure shear is a constant volume process (A,A2A3 = l), 

and equation (6-52b) becomes 

Operating with this on the second expression gives: 

or 

6-4. According to equation (6-75) 

1 I ,  = A 2 + 1 + -  
A2 

and 

2 1 1 2 = A  +1+- 
A2 

Thus equation (6-80) states: 

- 
w=c,,, A2+--2 +Co*, A2+--2 ( : . I  [ 1 2 1  

and using equation (6-79) gives the tensile stress 
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OE = 2(C,, + C,,,) A’ - - ( 1 2 )  

6-6. Substitution into equation (6-84) gives 

(0.95 g/cm3)(8.3 1 x lo7 erg/mol K)(300 K) 
5000 glmol 

G =  

G =4.3x106dyne/cm2 =4.3x10sPa. 
_ _  

Here we have assumed that the front factor r: / rj is equal to unity. 

6-8. Using equation (6-94a) 

E f  = [ 1 + 2.5(0.3) + 14.1(0.3)* 15 x 1 O7 dynes/cm2 

= 1.5 x lo8 dyne/cm2 = 1.5 x lo7 Pa 

If half of the filler particles become ineffective, 

Vf= 0.15 

and 

E’= 8.3 x lo7 dyne/cm2 = 8.3 x lo6 Pa 

6-9. Starting with equation (6-66) 

one can write 

Differentiation yields 

L v L:, 
+ ( %)v,LG[ L, - v, c) 
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Grouping terms and using the approximation 

-~ 

leads directly to equation (6-67). 

6-11. Recognizing that for simple extension the only principal stress is in the 1 
direction, we have: 

Using Leibnitz's rule to differentiate this integral, keeping in mind that the 
stress is a function of the dummy variable A,' and not the limit A, gives directly 

Solving for ol and equating this principal stress to oE yields equation (6-79). 

6-14. Developing equation (b) in Appendix 1 for n = 4, p = 1 yields: 

2 

- 

r 2  = I ,  I ,  + I ,  - I ,  + I ,  - I ,  + I ,  - I ,  + 
I ,  - I ,  + I ,  * I ,  + I ,  - I ,  + I ,  * I ,  + 
I ,  * Il + I ,  * I ,  + I ,  I ,  + I ,  . I ,  + 
I ,  * I ,  + I ,  * I ,  + I ,  - I ,  + I ,  * I ,  
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6-16. Equation (p), Appendix 1 , may be written as 

dr 

r2e-b2r2  dr 

y 4 e - b 2 r 2  

2 r =  - d m  

after using equation (0) to eliminate w(r)dr . This expression integrates to 

- 
2 3  y =- 

2b2 
- -  - 

Since b2 is 3/  2r2 [equation (m)], we get r2  = r2  . 
6-17. Equation (v) of Appendix 1 states 

R2 r2  
n, =-= and 1 =- 

r 2  " R  

If the length of each monomer is 0.46 nm, R must be 

R = (0.46 nm) n 

where n is the number of monomer units. Thus 

n, = (0.46n)2/0. 16212 = 1.3 n 

and 

1, =O. 16d0.46~~ = 0.35 nm 

6-18. Equation (i) reads 

w(m, n)  = [I)" n! 
2 [(n + rn) / 2]![ n - rn) / 2]! 

and if n >> rn, we can use the form of Stirling's approximation given in the 
problem to get 

- - (n  1 - rn + 1) In[ (;)( 1 - :)] 
2 
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1 
2 

- -1n2n - n In 2 

However, since n >> m, we can use the series expansion 

m m2 l n 1 + -  =+--- ( r) n 2n2 

where third-order and higher-order terms of (mln)  are neglected. We now have: 

1 
2 

27r - n In 2 - -(n + rn + 1) 

Simplifying and taking the antilogarithm of both sides, we obtain 

w(m, n) = ( 
exp( - g) 

In the simplification we have made use of the fact that n >>1, so that 

2n 

6-19. Equation (p) of Appendix 1 is restated in this case as 

r4e-b2r2 dr - y2'=  1 2 ,  
dr 

- 
where r2 ' indicates a particular average quantity. Our problem then becomes 
one of evaluating the definite integrals given. This equation may be rewritten 
as 
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112b - b 2 r 2  

1 / 2 6  - b 2 r 2  

0 

- fomr4e-b2rzdr- r e dr 
y2'= 0 

jomr2e-b2r2dr - r e dr 

Now consider the second term in both the numerator and the denominator of 
this expression. If r is between 0 and 1/2b, the exponential is quite close to 
Thus we may approximate this expression as 

- Jomy4e-b2r2dr - f /2br4dr 
y21= 0 

-b2r2d fdiZbr2dr r -  

which is integrated to give 

- -  
Since the expression in brackets is greater than 1.0- r 2 ' > r 2  . This result 
clearly expected since conformations with small r have been excluded 
calculating r . 
6-20. Once again equation (p) of Appendix 1 is the starting point. 

' lomr2e-b'r2 dr 

In this case the variable transformation 

y = b2r2 

is helpful. This yields 

Both of these integrals are complete gamma functions so that 

1. 

is 
in 
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or 

In comparing the text with the results of this calculation we see that 

In addition, one should recall that J for a Gaussian chain is zero. These 
results are not inconsistent, since what makes the vector average zero is its 
sign: just as many r’s are positive as are negative along any axis. In this 
problem, we have calculated the average of the radius of a spherical shell, a 
scalar quantity that cannot take on negative values. 

6-21(a) From equation (i) in Appendix 2 

f = 2kTb2r 

As we are discussing a only directions along the box,f= 2kn2r ,  where I- is the 
length L = l / b  of the box. Thus: 

f 2kTb2r p=-=- 
A A 

In our case, 

2kTb2- l /b  2kTb 2kT 2kT P =  - - - - 
S2 s2 S2L v 

(b) Solving for the temperature gives T = PV/2k, where k = 1.381 x 

T = 100 atm (1.013 x 10’ Pa/atm) x I nm3/molecule 

J/molecule K. Thus: 

m3/nm3)/ 

(2 x 1.38 1 x 1 0-23 J/molecule K) 

= 367 K 

CHAPTER 7 
7-1. For an electrical circuit of the type pictured, the charges in the two 
branches add: 

Q=Q,  + Q 2  
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From equation (7-9) 

Q, = C,Vo(l - e- t 'r)  

and 

Therefore: 

or: 

Using the definitions of CR and C, and substituting 

C(t)  = (C, - C,[)(l - C-[lr)  + C,[ 

7-2(a) This is entirely analogous to the derivation of the mean square end to 
end distance of the freely jointed chain given in Chapter 6, Appendix 1. The 
result is: 

(b) Following the argument for the dimensions of a chain with tetrahedral 
angles given in Chapter 5,  Section C, the result is: 

Since the bonds of this chain are free to rotate about one another (bond 
rotational potentials are zero), g = 1. 

(c) I f  the chain possesses barriers to rotation about backbone bonds, g will 
take on a value different from 1 since the cosine averages in equation (7-59) are 
now different from 0. 

(d) We must calculate the cosine averages for the angles of each bond with 
respect to the first. Since we are given that the rotation potentials of each bond 
are independent and each bond can only assume the angles z / 2, z, and 3 z / 2 
with respect to the first, we have: 

cosz/2 + cosz + c o s 3 ~ / 2  1 
3 3 

_ _  - - (Cosylj) = 
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Thus g = 0.67 

( p 2 )  = 2gNp; = 1.34Npi 

7-3. Let a = I, - E,, ; b = E, + E,, ; X= wz 

a bJ +(KT = K ( c ~  + a ? ( X : )  2 
1+X2 4 1 + X 2  1+X2 &,I + 9 - - 2 

2 (1 - X 2 ) 2  + 4X2 2 

= a  
4(1+ X 2 ) 2  

7-4. 

7 c* = CO& * 
s* = E * - ~ E ~ *  

*-c*v* 4 -  

V * (t) = Vo exp(iwt) , 

= (iwC*)Y* = Y * V * dq* =c*- d V  * 
dt dt 

I*=-- 

r* (admittance) = iwC* = wCo(d'+ id). For a series of R's and C's, 

1 
R, - i lwC, 

y* = 

By comparing real and imaginary terms one has: 

7-5. Consider only that part of r" which is in phase with Y*. From Problem 7- 
4 one has: r" = iwC* v* = w CO Y*(d'+ id) 

Since 
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7-6. As can be shown by methods of Chapter 3, 

1 oz D" = 
E,(1 + o'z') 

where t = VIE 

El = separate spring I 
' J  1 

E, E, (1 + 0 2 z 2 )  
D'= -+ E, = Voigt spring 

To complete the analogy, 

- = &, 
1 

- = E R  -&, ; 
1 

E2 E, 

7-7. From problem 7-4, the admittance for a resistance and capacitor in series 
is 

1 
R, - i loC, 

y* = 

As z* = l/P we have 

Z' = l / Y '  = R, -ilwC, 

which gives directly the Nyquist plot. For the Bode plot, the magnitude of Z* 
is calculated as: 

where z= C,R,. The Nyquist and Bode plots, respectively, are shown below. 

results above with those of Problem 7-4, and defining tan S = 2"IZ'. 
resulting equations are: 

The relationship between, z* and E* can be easily seen by comparing the 
The 

Note that in contrast to z*, E* is dimensionless. 
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List of Major Symbols 

In certain instances, symbols in this book are used to denote different meanings 
to preserve conformity with those commonly accepted in the literature. Those 
symbols whose usage is restricted to certain chapters are so indicated. Some 
minor symbols are defined in the text where applicable and are not included in 
this list. In designated sections, nomenclature has been simplified to avoid 
complicated formatting. 

Helmholtz free energy 
normalization constant (Chapter 7) 
unstretched cross-sectional area 
Zimm matrix 
entanglement parameter 
atomic radii (Chapter 7) 
mean square end-to-end distance of submolecule 
radius of the dielectric sphere 
shift factor 
3kT/a2ps (Chapter 3) 
3nI2/2 
capacitance (Chapter 7 )  
capacitance in vacuum 
constant pressure heat capacity 
constant volume heat capacity 
reference capacitance 
sample capacitance 
WLF parameters 
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294 LIST OF MAJOR SYMBOLS 

Mooney-Rivlin parameters (Chapter 6 )  
mass concentration 
Fox-Flory constant (Chapter 5) 
diffusion constant (Chapter 7) 
t ensi 1 e compliance 
tensile creep compliance 
capacitor plate spacing (Chapter 7) 
electric field (Chapter 7) 
tensile modulus 
tensile relaxation modulus 
complex tensile modulus 
time-dependent periodic electric field (Chapter 7) 
dynamic storage tensile modulus 
internal electric field (Chapter 7) 
dynamic loss tensile modulus 
equilibrium tensile modulus 
tensile modulus of a filled rubber 
glassy tensile modulus 
rubbery tensile modulus 
charge of the electron 
Gibbs free energy 
general function (Chapter 2) 
force 
fractional free volume (Chapter 4) 
energetic force 
fractional free volume at glass transition 
entropic force 
shear modulus 
shear relaxation modulus 
complex shear modulus 
dynamic storage shear modulus 
dynamic loss shear modulus 
glassy shear modulus 
rubbery shear modulus 
Kirkwood correlation factor 
enthalp y 
activation energy 
distribution of relaxation times 
current 
strain invariants 
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n+ 
n- 
P 
P D  

identity matrix 
initiator concentration 

shear compliance 
shear creep compliance 
complex shear compliance 
dynamic storage shear compliance 
dynamic loss shear compliance 
recoverable compliance 
Gordon-Taylor parameters 
Boltzmann constant 
KAIKB (Chapter 4) 
tube length (Chapter 7) 
length of strained sample 
Laplace transform 
length of unstrained sample at Vo 
length of unstrained sample at V 
new unstrained length 
original unstrained length 
strained length 
distribution of retardation times 
length of a chain link 
vectorial length of a chain link 
modulus (Chapter 1) 
molecular weight 
molecular weight of network chain (Chapter 6) 
critical entanglement molecular weight (Chapter 3 )  
number and weight average molecular weights 
total electric moment in a dielectric sphere 
difference between positive and negative steps (Chapter 6) 
number of network chains 
Avogadro’s number 
number and molar density of network chains 
number of molecules in a dielectric sphere 
fixed number of conformations of chain 
number of links in a polymer chain 
number of positive steps 
number of negative steps 
pressure 
long-time limit of the polarization 

J-1 
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infinite time polarization 
instantaneous polarization 
time-dependent polarization 
time-dependent portion of the polarization 
complex dielectric permittivity 
size parameter 
charge (Chapter 7) 
transformation matrix (Chapter 3) 
elements of [q] matrix (Chapter 3) 
time derivative of q 
normal coordinate matrix 
resistance (Chapter 7) 
extended chain length (Chapter 6) 
ideal gas constant 
reference resistance 
sample resistance 
charge separation (Chapter 7) 
mean square end-to-end distance 
vectorial length of chain ends 
mean square end-to-end distance of a free chain 
mean square end-to-end distance of a real chain 
entropy 
temperature 
glass transition temperature 
inflection temperature 
melting temperature 
reference temperature 
second-order transition temperature 
time 
reference time 
internal energy 
hole-formation energy 
displacement in ith direction 
volume 
voltage (Chapter 7) 
capacitive potential 
volume fraction of diluent 
free volume 
volume fraction of filler (Chapter 6) 
initial volume 
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X 

Xi 
Y 
z 
z 

Yij 

X J  
A 
6 
6 
& 

volume fraction of polymer 
resistive potential 
volume fraction of rubber 
voltage across a sample 
equilibrium volume 
velocity 
work 
strain energy density 
weight fraction of comonomers 
calculational variable (Chapter 7) 
time derivative of displacement 
mole fractions 
number of segments per chain 
diffusion distance (Chapter 3) 
distance in the zth direction 
calculational variable and reactance(Chapter 7) 
number of primary valences of chain atom 
number of mechanical elements or submolecules 

thermal expansion coefficient 
effective polarizability (Chapter 7) 
thermal expansion coefficient of free volume 
thermal expansion coefficient of glass 
molecular polarizability 
polarizability of a dielectric sphere 
thermal expansion coefficient of rubber 
isothermal compressibility 
isothermal compressibility of free volume 
gamma function 
shear strain 
complex strain vector 
in-phase component of strain vector 
out-of-phase component of strain vector 
component of infinitesimal strain tensor 
component of strain rate tensor 
angle between ith andjth chain segment (Chapter 3) 
logarithmic decrement 
loss angle 
normalized volume departure from equilibrium (Chapter 5 )  
tensile strain, du,ldx, 
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dielectric constant (relative permittivity) (Chapter 7) 
flex energies (Chapter 4) 
long time limit of the dielectric constant 
instantaneous dielectric constant 
real part of the complex dielectric constant 
imaginary part of the complex dielectric constant 
complex dielectric constant 
volume fraction 
volume fraction filler 
shear viscosity 
tensile viscosity 
r - v  
extension ratio including strain amplification factor 
diagonalized Zimm matrix 
extension ratio 
extension ratio of dry rubber 
elements of [A] matrix 
extension ratio of swollen rubber 
principal extension ratios 
Poisson ratio 
molecular mobility (Chapter 3) 
dipole moment (Chapter 7) 
180" angle or 3.1416 
mass density 
segmental friction factor (Chapter 3) 
segmental friction factor at short times 
shear stress 
charge density (Chapter 7) 
principal stress vector 
in-phase component of stress vector 
out-of-phase component of stress vector 
tensile stress 
engineering tensile stress, i.e.,flA0 
component of total stress tensor 
charge density in vacuum 
principal stresses 
relaxation or retardation time 
effective relaxation time 
critical relaxation time 
minimum relaxation time 



=P 
5J 
=I 

[@I 
w 
n 
w 
w 
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relaxation time of Rouse model 
component of extra (deviatoric) stress tensor. 
maximum relaxation time 
transformation matrix 
bond angle 
number of conformations 
angular frequency (Chapters 2,3) 
probability (Chapter 6 )  
ordering parameter 



List of Files on CD 

INTRODUCTION 

The accompanying CD contains data files that are useful or necessary for 
several of the exercises. Most are text files and thus should be readable by most 
computer application software. 

While the data have been gathered from standard published sources, they 
have not been checked number for number against the original publications. 
Indeed, some of the data were acquired by digitizing published figures. Other 
sets have been transformed, e.g., from the original units to SI units. They 
should be not be used as a fundamental source of information for anything other 
than their intended purpose. 

LIST OF FILES 

The table below lists the file name, the problem requiring the data and the 
nature of the information in the file. The data sources are also listed. 

Included on the CD is the free-ware program TRACER. EXE, which can be 
useful for digitizing data from published graphs for additional analysis. 
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302 LIST OF FILES ON CD 

File name Problem Description Reference 

BPA-PC- 
Re1 . TXT 

Butyl-Rel.TXT 

Film-Tg.TXT 

Glucose-TXT 

MW-Blend.TXT 

NR-Mod.TXT 

PC4 0 kDa . TXT 

PIB-Rel-1.TXT 

PIB-Rel-2.TXT 

4-3 

5-1 1 

5-7 

5 -6 

3-13 

6-12, 
6-13 

4-10 

3-1 8 

3-1 8 

Stress relaxation data 
for polycarbonate, 40 
m a ,  at various 
temperatures 

Physical stress 
relaxation data for a 
swollen PIB network. 

Glass transition 
temperatures ( Tg) of 
thin iPMMA films as a 
function of film 
thickness 

Volume relaxation data 
for glucose sugar at 
24.9 “C 

Stress relaxation of a 
PS blend of two 
narrow fractions of 
different molecular 
weights 

Stress strain data 
(reduced) for an NR 
elastomer 

10-s creep data for 
pol ycarbonate 

“Standard” NBS stress 
relaxation data for 
polyisobutylene at 25 
“C 

Stress relaxation 
master curve for PIB at 
25 “C spaced at 0.2- 
decade intervals 

J. P. Mercier, J. J. Aklonis, M. 
Litt, and A. V. Tobolsky, J. 
Appl. Polym. Sci., 9,447 (1 965) 

Unpublished data, M. T. Shaw 

Digitized from Fig. 4 (p. 6) of F. 
Kremer and L. Hartmann, 
Dielectrics Newsletter, 
September 200 1, p. 4-6. 

Digitized from Fig. 3 in A. J. 
Kovacs, Fortschr. Hochpolym., 
3, 394 (1964) 

Digitized from data in Figure 4 
of D. Soong, M. Shen, and S. 
D. Hong, J. Rheol., 23,301 
(1979). 

Digitized from M. Shen and P. 
J. Blatz, J. Appl. Phys., 39,4937 
(1 986) 

J. P. Mercier, J. J. Aklonis, M. 
Litt, and A. V. Tobolsky, J. 
Appl. Polym. Sci., 9,447 (1965) 

J. D. Ferry, Viscoelastic 
Properties of Polymers, 3rd ed., 
Wiley, New York, 1980, p. 2 13, 
Table 6, Appendix D 

E. Catsiff and A. V. Tobolsky, 
J.  ColloidSci., 10,375 (1955). 
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File name Problem Description Reference 

PMMA45.TXT 

Tg-Alkyl- 
MA. TXT 

Tg-PDMS.TXT 

Tg-PVC.TXT 

TRACER. EXE 

TRACER. HLP 

2-19 

5 -2 

5-9 

5-9 

7-8 

Dynamic modulus 
master curve for 
PMMA of 45 kDa 
molecular weight at 
180 “C 

Glass transition 
temperatures ( Tg) of 

methacrylates) 
POlY(alky1 

Glass transition 
temperatures ( T,) of 
PDMS of various 
molecular weights. 

Glass transition 
temperatures (T,) of 
PVC of various 
molecular weights. 

Program to aid in the 
digitizing of graphs.a 

Personal communication, Prof. 
A. Schausberger, Linz 
University, Austria 

P. Peyser “Glass Transition 
Temperatures of Polymers,” in 
Polymer Handbook, 3rd ed., J. 
Brandrup and E. Immergut eds., 
Wiley Interscience, New York, 
pp. VI 209-VI 277 

S. J. Clarson, K. Dogson, and J. 
S. Semlyen, Polymer, 26, 93 1 - 
934 (1 985) 

G. Pezzin, F. Zilio-Grandiadn 
and P. Sanmartin, Eur. Polym. 
J., 6, 1053-1061 (1970) 

Freeware written by Marcus 
Karolewslu, 
karolewski@alum.mit.edu, 
1999. 

~ ~~ 

“This program requires distortion-free bitmapped file of the image. Quick instructions: Double 
click on TRACER.EXE to run. Maximize window. Go to File/Open image and type in 
bitmapped file path and name. Go to Set-up/Stretch image to fit image to window, if 
necessary. Double click on reference location near one comer of graph and enter known values 
of xl  and yl.  Lock and click OK. Repeat for second reference location x2, y2 in diagonally 
opposite comer of graph. Go to Trace/Manual. Click on each point to digitize. Copy file of 
data points from the Data tab and paste into spread sheet. 
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influence of chain ends on relaxation, 
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length of, 202,206,2 10 
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segmental relaxation, 108, 1 1 1, 125 
statistics of, 199, 203 
stiffness of, 147 
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secondary relaxation phenomena, 153 
T, according to Gordon-Taylor 

equation, 148 
T, of random, 14 1 

208 

Continuum mechanics 

Copolymer 

treatment with Gibbs-DiMarzio 
theory, 147 

Correlation map 

Couette geometry, 44 

Crankshaft motion, 153 
Creep compliance 

change at T,, 13 1 
definition, 20 
of bead-spring model, 102 
of Maxwell element, 55 
of Voigt element, 60 
of Voigt-Kelvin model, 266 
relationship to stress relaxation, 32 
time dependence, 30 

Creep experiment, 20,22,27,55, 59, 

Critical molecular weight 
for entanglement, 85 
for viscosity, 97 

CrosslinWCrosslinking 
affine motion of, 174, 179 
and chemical stress relaxation, 158, 

and phantom-chain approximation, 

and rubbery state, 92 
and swelling of networks, 192 
and trapping of network 

imperfections, 192 
basis for elastomers, 165 
crystallites as crosslinks, 1 1 1, 198 
degree of crosslinking, 190 
influence on chemical stress 

influence on modulus-termperature 

influence on physical relaxation, 34, 

influence on Tg, 150, 163 
mechanical analog, 63 
schematic representation, 173 

Crystallization, 183 
Cure kinetics of a thermoset, 159 
Dashpot element 

for secondary relaxations, 237 

CP-MAS NMR, 238,243 

216,248 

163 

178 

relaxation, 279 

curve, 108 

93, 154 

in mechanical model, 5 1, 56, 59, 60 
resistance as electrical analog, 214 

dielectric dispersion, 220, 244 
equations, 226 

Debye 
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modification of Clausius-Mosotti 
equation, 22 1, 224 

Density 
as concentration variable in bulk 

charge, 2 17 
correction in time-temperature 

effect on T,, 149 
mass, 82 
number, of chains, 87 
of crosslinks, 150, 155, 163, 279 
probability, 66, 175 
strain energy, 187 

Deviatoric stress, 12 
Dielectric constant 

material, 77 

superposition, 1 17 

behavior near T,, 133 
complex. See Complex dielectric 

constant 
definition, 2 13 
molecular interpretation, 220 
relationship to permittivity, 2 15 
temperature dependence, 2 14 
timelfrequency dependence, 2 16,2 18, 

221,223,227 
Diffusion 

as fundamental relaxation process, 108 
via reptation, 9 1 

Dilatometric method for measuring T,, 6, 
119, 129, 138 

Diluent 
influence on viscoelastic properties, 

See also Plasticizer, 114 
Dirac delta function, 48, 254 
Distribution ofmistribution function for 

charge, 220 
dielectric dispersion, empirical, 23 1 
end-to-end distance, 80, 203 
number of conformations, 175, 177, 

relaxatiodretardation times, 66, 81, 86 
Doolittle equation for viscosity, 121, 127 
Double reptation, 97, 104 
Dynamic mechanical 

behavior through T,, 163 
Cole-Cole plot, 23 1 
material functions, 26, 33, 35,47, 67, 

83, 116,258 
material functions, conversion to 

transient, 49 

114, 135, 149 

203 

measurements, 23, 39, 57, 107, 131, 
151, 157,158,234,235,253 

measurements, fixtures for, 43 

and Mullins effect, 198 
change of Tg on stretching, 162 
continuum-mechanical description for, 

energy lost in, 92 
equation of state, 178 
ideal, 183, 190,208,211 
influence of filler, 195 
Mooney-Rivilin equation, 209 
network properties, 165 
relaxation behavior, 5 
relaxation, chemical, 156 
relaxation, physical, 92, 154 
swelling of, 192, 208 
thermodynamic properties, 167 
thermoelastic properties, 185 
WLF constants for, 119 

as analogs for dielectric behavior, 214 
distributed, 235 
equivalent, for complex impedance, 

lumped, 235 
RC, 215,216,219,244 
resonance, 23 1 

Elastomer 

187 

Electric circuits 

233 

End-to-end distance, 71, 78, 88, 125, 

Entanglement 

Entanglements 

177,186,192,200,203,211 

role in relaxation, 11 1 

and critical molecular weight, 86 
and reptation, 93 
in networks, 158, 192 
role in relaxation, 84, 109, 125 

and Kauzmann paradox, 139 
and rubber elasticity, 166, 168, 172 
role in Gibbs-DiMarizio theory, 139 
role in glass transition of mixtures, 

160 
Entropy spring. See Hookean entropy 

spring 
Equation of state 

Entropy 

for chain, 200,206 
for elastomer, 180, 186, 208 
for swollen elastomer, 193 

Equilibrium modulus, 93, 155 
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Equivalent random chain, 200,205,210 
Expansion 

binomial, 181 
coefficient of, 6, 121, 130, 134, 150, 

162, 171 
series (log), 285 
Taylor, 188 

Extra stress, 12 
Filler 

and Mullins effect, 209, 282 
crystallites as, 1 13 
influence on elastomer properties, 195 

First-order reaction, 156, 163 
First-order relaxation of polarization, 

First-order transition 
definition, 137 
pressure dependence via Clapeyron 

220 

equation, 14 1 
Fixtures for mechanical tests, 20,44 
Flex energy, 141, 162 
Flexural mechanical test, 44 
Flow region 

and KWW expression, 92 
and reptation, 9 1 
and Rouse theory, 83 
effect of diluent, 114 
effect of molecular weight, 69, 110 

Fourier transform, 34, 23 1 
Fox equation, 16 1 
Fox-Flory equation, 149, 162 
Free volume 

and glass transition, 1 1 1, 12 1, 134, 

influence of chain ends on, 149, 159 
influence of free surface on, 160 
influence of plasticizer on, 149 
of activation for bond rotation, 153 
of diluent, 135 

Freely orienting chain, 201,203,206 
Front factor, 178, 282 
Gaussian chain, 174, 207, 210, 21 1,287 
Gaussian distribution function, 80, 175, 

Gaussian free energy function, 188 
Gibbs free energy, 137, 168 
Gibbs-DiMarzio theory, 139, 147, 159 
Glass transition 

144 

203,205 

and change of coefficient of 

and modulus change, 5,109 
expansion, 6 

and segment rotation, 108 
and segmental motion, 109 
as a rate-dependent process, 130, 132 
behavior of viscoelastic properties, 

breadth, influence of plasticizer, 1 13 
free volume theory for, 13 5 
free-volume theory for, 11 1, 12 1 
Gibbs-DiMarzio theory for, 142 
influence of structure, 145 
kinetic theory for, 142 
phenomena of, 129 
segmental motion in, 125 
Smith empiricism for, 124 
theories of, 133 

Glass transition temperature 
and free volume, 12 1 
as reference for time-temperature 

influence of crosslinking on, 150 
influence of diluent, 159 
influence of molecular weight, 1 1 1 
influence of plasticizers, 114 
influence of pressure, 135 
isoviscous state, 133 
measurement using dielectric methods, 

molecular weight influence, 142 
of compatible polymer blends, 160 
of polyethylene, 1 12 
of sucrose, 143 
of various polymers, 145 

131 

shifts, 119 

236 

Glassy modulus, 108, 11 1 
Glassy state 

heat capacity in, 160 
nonequilibrium aspects, 139 
partial modulus of chains in, 88 
relaxations in, 129, 15 1 
spin relaxation in, 242 
stretched exponential relaxation in, 9 1 

Gordon-Taylor equation, 137, 148 
Guth-Smallwood equation, 195 
Heijboer mechanism, 153 
Helmholtz free energy, 170, 175, 180, 

Hooke’s law, 14, 18, 52,60,208 
Hookean behavior, 18,52, 172, 183 
Hookean elastic solid, 18, 52 
Hookean spring, 51, 52,55,70 
Inflection temperature 

influence of plasticizers, 161 

187,206 
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of modulus-temperature curve, 114 
Intermolecular energy 

due to hydrogen bonding, 149 
in elastomers, 172 
in Gibbs-DiMarzio theory, 140, 149, 

influence on T,, 147 
Intramolecular energy 

in Gibbs-DiMarzio theory, 140 
Isoviscous state, 133 
Junction in networks. See Crosslinks 
Kauzmann paradox, 13 8 
Kinetic theory 

150 

of rubber elasticity, 76, 208 
of the glass transition, 138, 142, 160 

Kirkwood-Frolich equation, 227, 229 
Laplace transform, 35, 250, 256 
Leibnitz’s rule, 254, 262, 283 
L’Hopital’s rule, 141 
Linear polymers 

compared to cyclic, 142 
glass transition temperature, 147 
viscoelastic response, 6 1, 70,9 1, 108, 

152 
Linear regression, 2 10 
Linear viscoelastic response, 270 

and Boltzmann superposition 

experiments to measure, 44 
G(t) as core material property, 35 
mechanical analogs for, 5 1 

principle, 32 

Loss compliance, 57, 13 1 
Loss modulus, 26, 13 1 
Loss tangent, 26, 133, 236 
Macroscopic polarization, 22 1 
Master curves for time-temperature 

superpostion 
basic premise, 120 
preparation, 117, 123 
relationship to modulus-temperature 

curves, 124 
Material-generated stress, 14 
Maxwell model, 53, 56, 61, 83, 102, 258 

generalized, 61, 76, 86, 270 
vs. KWW model, 91 

Maxwell’s relations, 168 
Maxwell-Wagner-Sillars (MWS) effect, 

Maxwell-Wiechert model, 64 
Mean square end-to-end distance, 71, 78, 

177, 192,200,203,205 

227 

Melting point, 1 12, 1 13, 162 
Modulus. See also modulus-temperature 

curve 
according to reptation theory, 96 
complex, 27 
conversion of dynamic to transient, 34 
definition, 1, 7 
dynamic, 23 
equilibrium in elastomers, 93 
instantaneous, 76 
isochronal, 104 
measurement of, 19,39 
partial values in distribution, 66 
partial, from Rouse theory, 90 
partial, from Zimm theory, 80 
relationship to compliance, 33, 35 
relaxation, 2 1,47 
relaxation for PIB, 68 
ten-second, 107, 1 10 
tensile vs. shear, 13 
Young’s, 39,43, 52 

Neo-Hookean solid, 189 
Nernst-Einstein equation, 95 
Network 

affine deformation of, 178 
and two-network hypothesis, 157 
chemical stress relaxation of, 154, 

conformational entropy, 175 
conformations of, 174, 175, 186 
crosslink density, 93 
crosslink vs. main-chain scission, 158, 

crystallization on stretching, 198 
effect of fillers, 195 
effect of temperature, 109 
elastic force, 183 
elastic properties of, 173 
entanglement, 1 1 1, 125 
entanglements in, 192 
entropy of, 186 
exchange reactions in, 158 
formation by chemical crosslinking, 

formation during cure of thermoset, 

Helmholtz free energy of, 176 
imperfections in, 93, 19 1, 192 
modulus of, 1 16, 191 
phantom chains in, 178 
relaxation of, 92, 154 

156,278 

163 

173 

158 
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treatment of relaxation in linear 
polymers, 91 

Network chains 
and Gibbs-DiMarzio theory, 150 
behavior at high strains, 183 
chemical scission, 155 
crystallization of, 198 
definition, 174 
end-to-end distance, 177 
exchange reactions of, 158 
finite extensibility, 199 
formation of new, 157 
isolated, 178 
molar density, 18 1 
molecular weight of, 19 1 
motions, 92 
number density, 180 
number density of, 156, 163, 192 
number of conformations, 174 
restrictions due to entanglements, 192 

Newton’s law of viscosity, 48, 52, 54 
Nomenclature, standard, 2 
Nominal stress, 18 1, 184, 194,2 10 
Nonlinear regression, 190 
Nuclear magnetic resonance (NMR) 

and detection of molecular motion, 

and sub-T, relaxations, 15 1 
broadline technique, 240 
change in line width at T,, 133 

Larmor frequency, 238 
line width through T,, 235 
relaxation map, 237 
spin-spin and spin-lattice relaxation 

processes, 242 
time scale of, 238 

213,237 

CP-MAS, 238 

Ohm’s law, 214 
Onsager equation, 226, 229 
Ordering parameter, 144, 160 
Out-of-phase component, 26,33,47,48, 

Permanent dipole moment 
237,250 

alignment in electric field, 22 1 
definition, 220 

Phantom chain approximation, 93, 178 
Plasticizer 

effect on glass transition, 113, 135, 

effect on NMR line width, 240 
phase separation of, 114 

149, 161 

Plateau region. See Rubbery plateau 
Poisson’s ratio, 18,43 
Polarization 

and dielectric constant, 2 13 
and internal field, 222 
in TSC method, 234 
interfacial, 227 
molecular origin, 220 
of nuclear spins, 238 
physical origin, 2 17 
time dependence, 2 18 

and permanent set, 158 
application to elastomer to control 

developed by elastic chain, 2 1 1 
effect on a glass, 144 
effect on bond rotation, 153 
effect on second-order transition 

effect on T,, 135, 136, 162 
in a balloon, 17 
in a deformed sample, 11 
influence on free volume, 135 

Pressure-volume work, 167 
Primary transition. See glass transition 
Principal stresses, 16 
Pure shear, 208,28 1 
Radial distribution function, 203, 206, 

Random flight problem, 202 
Reference temperature 

effect on shift factor, 119 
effect on WLF constants, 124, 126, 

for time-temperature superposition, 

Regions of viscoelastic behavior, 107 
Relative permittivity, 2 15 
Relaxation time 

240 

Pressure 

volume, 179 

temperature, 14 1 

210 

134 

117 

and breadth of NMR absoption peak, 

and friction factor, 84 
Chasset-Thirion equation, 155 
dielectric, Debye and Onsager 

distribution in glass transition region, 

distribution of, 66 
distribution of, box-wedge model, 68 

treatments, 229 

89 
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Ferry, Landel and Williams 

for Maxwell model, 54, 104 
for molecular rotation, 226 
generalized Maxwell model, 76 
KWW equation, 104 
KWW modification of Rouse theory, 

multiple, 66 
Rouse model, 69 
spin-spin, 240 
tube models, 94 
Zimm model, 80 

Reptation model, 92,93 
and Chasset-Thirion equation, 155 
constraint release, 97 
path retracement, 92 

modification of Rouse theory, 86 

92 

Resistance as analog element in model 

Retardation time 
for dielectric response, 2 15,233 

distribution of, 66 
for bead-spring model, 102 
in glassy state, 144, 160 

Root mean square length. See Mean 
square end-to-end distance 

Rouse matrix, 99 
Rouse mode, 77 
Rouse theory, 69,79, 81, 104,229 

applied to KWW equation, 92 
Rubber elasticity. See also Elastomer 

and degree of crosslinlung, 19 1 
and degree of crosslinking, 178 
effect of crystallization on, 199 
energy contribution, 185 
equation of state, 182 
filler effects, 195 
Gaussian theory, 183 
phenomenological treatment, 187 
statistical treatment, 174 
stress softening of, 198 
swollen networks, 192,208 
thermodyanmic treatment, 166 

Rubbery plateau, 69, 83, 109, 11 1, 161 
Secondary relaxation, 15 1, 235 
Second-order transition, 124 

and Clapeyron equation, 14 1 
applicability to glass transition, 138 
definition, 137 
Gibbs-DiMarzio theory, 139 

Segmental friction factor, 72,78, 82, 84 
Shear modulus 

and rubber elasticity, 18 1 
complex, 27 
definition, 9 
dynamic, 26 
from Rouse theory, 77 
in rubber elasticity, 157, 191 
measurement of, 43 
relationship to relaxation modulus, 34 
relationship to tensile modulus, 13 
strain dependent, 49 
temperature dependence, 1 10, 1 16 

and rubbery elasticity, 2 1 1 
definition, 9 
in creep experiment, 20 
in parallel-plate geometry, 49 
in three dimensions, 14 

Shear viscosity, 53, 78, 82, 104, 120 
relationship to relaxation modulus, 

Shear strain 

120 
Shift factor 

for secondary relaxations, 154 
temperature dependence according to 

Arrhenius equation, 154 
temperature dependence according to 

WLF equation, 119, 127 
time-temperature superposition, 1 18 

influence on dielectric response, 236 
influence on T,, 147, 159: 
source of secondary relaxations, 153 

and shear viscosity, 53 
definition, 9, 11 
of elastomer, 182, 2 1 1 

and dynamic properties, 23,34 
applied to generalized Maxwell 

applied to Maxwell model, 102 
complex variable notation, 64 
definition, 25 

application to Voigt model, 6 1 
as analog to sinusoidal voltage, 220 

Side chaidgroup 

Simple shear 

Sinusoidal deformation 

model, 102 

Sinusoidal stress, 47, 57 

Spring. See Hookean spring 
Spring and dashpot, 53,59 
Statistical theory of rubber elasticity. See 

Rubber elasticity, statistical 
treatment 
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Steady flow viscosity. See shear 

Steric isomerism 

Stirling's approximation, 284 
Stirling's approximation, 2 10 
Storage modulus. See Complex modulus 
Strain. See Shear strain and Tensile 

Strain history 

viscosity 

role in chain stiffness and T,, 148 

strain 

and Boltzmann superposition 

and Mullins effect, 197 
Strain invariants, 188, 193 
Strain-induced crystallization, 158, 169, 

Stress 

principle, 29, 3 1,47, 249 

195,197,198 

definition, 8 
extri and deviatoric, 12 
in balloon, 17 
material, 11 
relationship to pressure, 12 
sign of, 16 
tensile, 8 
total, 13 
uniaxial. See Tensile stress 
units for, 8 

and time-temperature superposition, 
115, 116 

chemical, 156 
definition, 20, 2 1 
experiment, 22, 39, 56 
for measuring high viscosity, 133 
master curve, 68, 84 
modulus, 32, See Stress relaxation 

molecular interpretation of, 124 
of bead-spring model, 76 
of generalized Maxwell model, 62 
of Maxwell body, 55 
ofnetwork, 155, 166 
of polycarbonate, 126 
of polyisobutylene, 68 
of Voigt element, 60 
recovery after, 109, 257 
slope in glass transition region, 89, 

Stress relaxation 

modulus 

103 

Modulus, relaxation 
Stress relaxation modulus. See also 

and distribution of relaxation times, 66 

behavior in the glass transition, 130 
conversion to modulus-temperature 

curve, 126 
definition, 22 
during chemical stress relaxation, 157 
of generalized Maxwell model, 62 
of polyisobutylene, 68 
predicted by Rouse model, 82 
relation to creep compliance, 32, 37, 

relation to dynamic modulus, 33 
relationship to creep compliance, 47 
ten-second, 107 

Stress softening (Mullins effect), 198 
Stress-strain relation 

49 

and work, 206 
at constant velocity, 49 
at various temperatures, 184 
for elastomers in shear, 2 1 1 
for elastomers in tension, 182 
from phenomenlogical theory of 

isochronal, 104 
relation to stress-relaxation modulus, 

rubber elasticity, 188 

48 
Submolecule (subunit), 70, 76, 78, 82, 

87,90 
Sulfur, Tg of, 146 
Sulfur-sulfur bonds, 158 
Superposition 

Boltzmann, 27, See also Boltzmann 

time-termperature, 1 14 
superposition principle 

Syndiotactic polymer, 149, 174, 236 
Temperature 

influence on viscoelastic properties, 3 
Tensile properties. See also extensional 

properties 
and Young's modulus, 39 
compliance, 20 
dynamic, 57 
measurement of, 39 
modulus, 8, 13, 15, 53,76,77, 116, 

modulus, equilibrium, 18 1 
of a Maxwell body, 54 
of a Mooney elastic material, 190 
of a neo-Hookean solid, 189 
of a Voigt body, 59 
of elastomers, 166 
of filled elastomers, 197 

209 
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of swollen elastomers, 193 
relationship to shear properties, 15 
sensitivity to environment, 156 
viscosity, 53 

definition, 8 
geometries for, 20 
in elastomers, 18 1 
in three dimensions, 15 
instantaneous, 107 
rate, 48, 53 

Tensile stress 
and creep experiment, 20 
definition, 15 
in bending, 40 
in three dimensions, 8 
influence on Tg, 159 
nomenclature convention, 54 
nominal, 182 
relationship to shear modulus, 15, 157 
relaxation, 22,48, 115 
sign convention, 16 

Tensile strain 

Thermal expansion, 2 1, See also 

Thermally stimulated current (TSC), 233 
Thermodynamic activity, 114 
Thermodynamic identities 

Maxwell equations, 183 
Thermodynamic measurements, 130 
Thermodynamic theory 

for single chain, 206 
of elastomers, 165 
of glass transition, 137 
see also Second-order transition, 141 

Thermodynamic transition 
first-order. See First-order transition 
second-order. See Second-order 

Thermoelastic inversion phenomenon, 

Time-temperature superposition. See 

expansion, coefficient of 

transition 

168 

also Vogel equation and WLF 
equation 

master curves, 1 15, 116 
shift factor, 1 18, See also Shift factor 

Torsional flow, 248, 260 
Torsional pendulum, 13 1 

Transform. See LaPlace and Fourier 

Transform methods, 35, 23 1 
Transition region. See Glass transition 
True stress vs. nominal stress, 18 1 
Two-network theory, 157 
Uniaxial stress. See Tensile stress 
van der Waals bond energy, 140 
Viscosity. See Tensile properties, 

transforms 

viscosity, See Shear properties, 
viscosity, See Newton's law of 
viscosity 

application in three dimensions, 52 
at Tg, 120 
definition, 48 

Viscous dissipation of energy, 27 
Vogel equation, 124, 127, 275 
Vogel temperature, 124 
Voigt element, 59 

analogy with RC circuit, 2 16 
in Voigt-Kelvin model, 64 
summary of properties, 6 1, 102 

Voigt-Kelvin model, 64 
Volume dilation, 167, 179 
Volume relaxation 

Water 
near Tg, 138 

and Maxwell-Wagner-Sillars effect, 

as plasticizer, 149 
dielectric constant, 2 15 

and Doolittle equation, 12 1 
and iso-free-volume theory, 134 
and second-order transition 

finding parameters from data, 127 
for describing temperature shift, 1 19 
relationship to Vogel equation, 127 
use below Tg, 123 
vs. Arrhenius equation, 154 

WLF parameters, 1 19 
Wood's equation, 141, 147 
Young's modulus, 2, 39,43,49, 262 
Young's modulus, 52 
Zimm theory, 80 

227 

WLF equation 

temperature, 140 


