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Al. Politechniki 6, 93 - 590 Łódz, Poland
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Kamiński, M. M. (Marcin M.), 1969–

Computational mechanics of composite materials: sensitivity, randomness, and
Multiscale behaviour / M.M. Kamiński
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Preface  

Composite materials accompanied the human activity from the beginning of the 
civilisation. Apart from natural composites, like the wood, applied in various 
structures people invented many multi-component materials even in ancient times. 
One of the most famous applications of the old-time composites is the Chinese 
Wall, whose durability and stability was ensured by contrastively different 
materials incorporated into a single structure. Next applications worked out and 
popularised in Central Europe in the Middle Ages was known as the Prussian wall 
combining the wooden skeleton filled with the bricks. One of the most significant 
milestones in the history of modern composites was the application of the concrete 
reinforced with the steel bars in France at the end of the nineteenth century. 

Nowadays composites play a very important role in engineering from aerospace 
technology and nuclear devices to microelectronics or structural engineering 
applications [37,128,203,286,298,351,367,389]. Considering this fact and the 
growing role of numerical experiments in the designing of structures and industrial 
processes, one of the most important purposes of computational mechanics 
research and direction of progress appeared to be precise numerical modelling of 
these materials. On the other hand, experimental sciences prove that every 
structural parameter has a random, in fact stochastic, character. Thus, many 
probabilistic approaches and methodologies have emerged recently to simulate 
more accurately the real behaviour of mechanical systems and processes. These 
methods show that the random character of parameters discussed is very important 
for the systems simulated [14,121,357]. This conclusion may lead us to the 
hypothesis, that the random character of the material and physical parameters 
should play an essential role in multi-component structures [32,34,151,154,275].  

Modern computational mechanics of composite materials follows many various 
ways through different science domains from experimental materials science to 
advanced computational techniques and applied mathematics. They engage more 
and more complicated and precise testing methods and devices, stochastic and 
sensitivity analysis algorithms and multiscale domain theoretical solutions for 
partial and ordinary differential equations reflecting some practical engineering 
and physical problems. Commercial computer programs based on the Finite 
Element Method enable now visualisation of the multifield, multiphase and non-
stationary physical and mechanical problems and even introducing uncertainty into 
computer simulation using random variables (ANSYS, for instance). The growth of 
computer power obtained from technological progress and advances in parallel 
numerical techniques practically eliminated the parameter of the cost of 
computational time in modelling, which resulted in the efficient implementation 
and use of Monte Carlo simulation.  

The basic idea behind this book was to collect relatively up-to-date 
approaches to the composite materials lying somewhere in between experimental 
measurements and their opportunities, theoretical advances in applied mathematics 
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and mechanics, numerical algorithms and computers as well as the practical needs 
of the engineers. The methods are well-documented in the context of computer 
batch files, scripts and computer programs. It will enable the readers to start from 
this point and to continue and/or replace the ideas with newer, more accurate and 
efficient ones. The author believes that this book will appear to be useful for 
applied mathematicians, specialists in numerical methods and for engineers: civil, 
mechanical, aerospace and from related branches of industry. Some elements of 
probabilistic calculus and computation as well as general ideas can also be applied 
by students, who can incorporate these concepts into new research or into the 
existing well-documented knowledge dealing with composite materials.  

A primary version of the book was completed in Texas, during the author’s 
postdoctoral research at Rice University in Houston in the academic year 
1999/2000 under auspices of Prof. P.D. Spanos. The author would like to 
appreciate the help of many people, whose valuable comments and the time spent 

from the Institute of Fundamental Technological Research, Polish Academy of 
Science in Warsaw, who expressed many precious ideas during a common research 
in random composites and who promoted this research. Prof. Tran Duong Hien 
from Technical University of Szczecin influenced the work in the area of stochastic 
finite elements. The cooperation with Prof. B.A. Schrefler from the University of 
Padua in Italy concerning numerical analysis of superconducting composites 
remarkably enhanced the relevant computational illustration included in the book. 

younger colleagues, was decisive for finishing of some computations devoted to 
heat transfer and fracture analysis. The author would like to express his respect to 
all the colleagues from Chair of Mechanics of Materials at the Technical 

unknown reviewers, the editors and the people who commented and criticised this 
work is also appreciated.  

Layout of the Book  

Mathematical preliminaries open the book considerations and consist of basic 
definitions of random events, variables and probabilistic moments as well as 
description of the Monte Carlo simulation technique with the relevant statistical 
estimation theory elements. The stochastic perturbation approach (second order 
second central moment generalised to the nth order and higher moments technique) 
is explained using two examples: a transient heat transfer equation and the solution 
of the linear elastodynamic problem. The solution to these problems in terms of 
expected values and standard deviations as well as spatial and temporal cross-
covariances is demonstrated and it illustrates the applicability of the method. An 
important part of this opening chapter is a probabilistic algebraic description of 
some transforms of random variables, which is necessary for further formulation 
and development of the stochastic interface defects model. Some of them are valid 

enabled finishing of the book. Special thanks are directed to Prof. Michał Kleiber

The help of Mr. Łukasz Figiel, M.Sc. and Mr. Marcin Pawlik, Dr. Eng., two of my

University of Łódź  for their advising voices, too. Last but not least, the role of the
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for the Gaussian variates only, which essentially bounds the application. However, 
it leads to the specific formulae implemented further in the computer software 
attached. An important issue raised in this chapter is to show a difference between 
Gaussian and quasi-Gaussian random variables defined on some unempty and 
bounded real subsets.  

Elastic problems related to deterministic and probabilistic systems are collected 
in Chapter 2. They are divided into two essentially different parts – the first shows 
the linear elastic behaviour of some composite materials and structures in boundary 
value problems connected with their real microstructure. The other part contains 
description of the homogenisation technique together with the relevant numerical 
tests documenting the computational determination of so-called homogenisation 
functions, a posteriori error analysis related to homogenisation problems, 
probabilistic moments of effective material tensors and their variability with 
respect to some input parameters.  

The first part of this chapter starts from the mathematical model of composite, 
whose material characteristics are given arbitrarily as constant deterministic values 
or by using the first two probabilistic moments constant through the given 
component material region (or volume). Further, the stochastic interface defects 
concept is presented, which originated from some computational contact 
mechanics models. The interface defects are introduced as semicircles lying on the 
interface into a weaker material. The radii and total number of these defects are 
input cut-off Gaussian random variables defined using their expected values and 
the variances (or standard deviations) with elastic properties equal to 0. The 
modeling is performed through the following steps: (i) determination of the 
interphase – a thin film containing all the defects with thickness determined from 
defect probabilistic parameters, (ii) probabilistic spatial averaging of the defects 
over the interphase area, (iii) computational analysis of a new composite with the 
new extra component. Obviously, it is not possible to approximate the real 
composite with stochastic interface microdefects very accurately. However it can 
be and it is done intermediately – by comparison with the composites with the 
weakened interphase or interface, for instance. Computational experiments 
validating the model are performed using the system ABAQUS [1] (in the 
deterministic approach) and the specially adapted academic package POLSAP (for 
the Stochastic Finite Element Method – SFEM needs) [183]. All the results 
obtained for various composites and various combinations of interface defect 
parameters demonstrate a high level of structural uncertainty in the case of their 
presence as well as a significant increase of the structural state functions stresses 
and displacements around the interface region. The second part of the chapter 
concerns the homogenisation method both in deterministic and probabilistic 
context. Computational experiments dealing with a numerical solution of the 
homogenisation problem are done thanks to the FEM commercial system ANSYS 
[2], where most of the databases for these experiments are available from the 
author to be used in further extensions of mathematical and mechanical 
homogenisation model.  



x    Computational Mechanics of Composite Materials

Interface defects model and probabilistic homogenisation using both Monte 
Carlo simulation techniques are analysed using the authors FEM implementation 
called MCCEFF. The results of simulation are compared in terms of expected 
values and variances with analogous results obtained through the stochastic second 
order perturbation methodology. The appendix to this chapter consists of necessary 
fundamental mathematical theorems and definitions for the asymptotic 
homogenisation theorem. 

Elastoplasticity of composites discussed in the next chapter is focused on the 
alternative homogenisation technique, where instead of periodicity conditions 
imposed on the external boundaries of the RVE, some combination of the 
symmetry conditions and strain fields are applied to this element. The application 
of this method to the homogenisation of a periodic superconducting coil cable is 
also shown – an effective elastoplastic constitutive law is determined numerically 
and shown as a function of the homogenising uniform strain applied at the RVE 
boundary. Analogously to the methods typical for elastostatic problems, the closed-
form equations for effective yield stresses are formulated in various ways, which 
can next be extended on probabilistic analysis. This chapter is completed with the 
transformation matrices algebraic definition, which is the essence of the 
computational implementation of the method. Probabilistic moments of the 
effective elastoplastic constitutive law can be obtained as a conjunction of this 
method with the Monte Carlo simulation technique discussed in the previous 
chapter. The fundamental issue is however experimental determination of higher 
order probabilistic moments for the superconductor material characteristics; 
otherwise the analysis is useful in the context of the sensitivity of the homogenised 
characteristics with respect to the adopted level of input randomness only.  

Sensitivity analysis presented in Chapter 4 is entirely devoted to a relatively 
new research area – determination of the sensitivity gradients for homogenised 
material characteristics. For this purpose two essentially different homogenisation 
methods are used – algebraic approximation and asymptotic methodology. Starting 
from a traditional description of the effective parameters in both methods, the 
sensitivity gradients are determined by the symbolic calculus approach and, on the 
other hand, pure computational strategy based on the Finite Difference Method 
(FDM). The implementation and results obtained from these two methods 
demonstrate the basic limitations of the methods, i.e. necessity of closed-form 
equations for the symbolic approach and numerical instabilities in the FDM 
simulations. This knowledge is necessary for significant time savings in the 
extension of this study to the random composite sensitivity analysis where the 
heterogeneous periodic composites with probabilistically defined material 
properties are analysed. The probabilistic sensitivity of such structures is defined 
through the introduction of sensitivity gradients of probabilistic moments of the 
effective material parameters with respect to the appropriate moments of composite
structure parameters – elastic properties of the constituents as well as interface 
defect data.  

Fracture and fatigue – the collection of various fatigue theories with special 
emphasis placed on the second order perturbation method application are discussed 
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next. The crucial numerical illustration is presented in the case of the Paris 
Erdogan rule where some of the system input data are treated as random va riables. 
Therefore, expected values are compared against the deterministic values and 
standard deviations are added, too. An analogous approach is used to reformulate 
the well-known fracture criteria applied for composite materials – Tsai-Wu and 
Tsai-Hill - and to use them in symbolic computations for probabilistic parameters 
of the composite material fracture parameters. The essential part of this chapter is 
devoted to the FEM modelling of fracture and fatigue of some composites where 
analytical solutions are not available. Computational illustrations consist of static 
fracture of curved composite under shear loading leading to the delamination, 
fatigue analysis of composite pipe joint as well as thermomechanical fatigue of the 
curved laminate under thermal and/or static quasistatic load varying in time with 
constant amplitude. Most of the frequently used theories and equations for fatigue 
analysis are collected in the appendix to this chapter.  

Reliability analysis is included in the Chapter 6 and it consists of a discussion 
of various order reliability computational approaches together with the Weibull 
Second Order and Third Moment model (W-SOTM). This methodology is used to 
compute the reliability index for the composite Hertz contact problem, where 
elastic spherical inclusion of the reinforcement is loaded by the force to remain in 
contact with the matrix. Further in this chapter a stochastic process description of 
the degradation phenomena is also given, which appears to be common for the 
homogeneous and heterogeneous structures and materials. It can find a broad field 
of applications together with efficient implementations of stochastic processes 
(with both spatial and temporal randomness) in the Finite Element Method (or 
BEM, FDM, meshless as well as hybrid method based) programs.  

An application of the wavelet-based multiresolutional approach to composite 
materials in terms of homogenisation of multiscale media is the extension of 
previous considerations and concludes the book. The traditional composite 
materials model consisting of two or three geometrical scales is now rewritten in 
view of practically infinite number of separate scales (resolutions) that can be 
linked using interscale wavelet projection (some mathematical transformation). 
The basic tool necessary for such an analysis development is the basic wavelet 
basis (a mathematical function varying rapidly in a given geometrical scale), which 
can be used now to transform between neighboring scales. The homogenised 
characteristics for the composite can be determined usually in the closed-form 
equation if and only if the limit of an infinite series of wavelet projections between 
all geometrical scales exists and is unique. As is illustrated by some wavelet 
function samples, such an analysis type can be some alternative for the random 
analysis, because the wavelet functions used in various scale makes, in the coarsest 
scale, the impression that the relevant material property demonstrates the great 
level of some kind of uncertainty. It is not underlined clearly that the main 
limitation of this methodology is that the wavelet projection between the 
neighbouring scales can be continued through the range of validity of the same 
physical laws. It is not possible to carry out the passage from the atomistic to the 
global scale of the composite using the same wavelet projection and, most 
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probably, this is the way that this research area should be extended. The 
multiresolutional homogenisation is demonstrated for a very general case – a linear 
ordinary differential equation, which can reflect the linear elastic behaviour of a 
unidirectional multiscale composite in compression/tension or in bending. On the 
other hand, this technique can be applied with only small modifications to the 
unidirectional field problems for heat conduction, seepage flow, electrostatic 
problems, etc. Further, as is documented by the mathematical derivations, the 
MRA approach formula reduces to the results obtained in the asymptotic 
homogenisation technique for the two-scale medium. Since some research is done 
towards the multiscale analysis and homogenisation for 2D heterogeneous media, 
the main interest has been directed next to the multiresolutional homogenisation of 
dynamic and transient problems. Some basic theoretical and computational results 
are obtained under the assumption that non-stationary and dynamic components of 
the relevant ODEs can be homogenised independently from the stationary part. In 
practice it makes possible to calculate effective dynamic structural parameters as 
the relevant spatial averages for the entire multiscale composite; it is however done 
for the material properties given a priori as some algebraic combination of the 
elementary wavelets (harmonic, Haar, Gabor, Morlet, Daubechies and Mexican hat 
functions). Since the homogenisation is the intermediate technique to determine the 
homogeneous equivalent medium and to replace the real structure with this 
medium, the results are incorporated next in the classical Finite Element calculus 
for various boundary value or boundary initial engineering problems. They 
unambiguously show the limitations of the application of various homogenisation 
techniques used in engineering computations, i.e. simple spatial averaging, 
asymptotic approach and multiresolutional method. As can be expected, spatial 
averaging gives the fastest but least precise approximation for the real structure. 
The application of the wavelet technique is more recommended to periodic 
composites having a smaller number of periodicity cells in the Representative 
Volume Element (RVE), whereas the asymptotic approach gives the best results 
for increased number of cells in the RVE. Therefore, for most engineering 
composite structures, where the total number of the periods through their lengths is 
limited, the proposed multiscale approach seems to be the most efficient. The 
wavelet functions can be incorporated in the Finite Element Method automatic 
projection between various scales even for the needs of homogeneous system 
structural computations – for the fluid flow problems where the profile of the flow 
is a nonlinear and multiscale complex function (wind pressure profile for high 
buildings in civil engineering applications). That is why some elementary 
equations and ideas are collected here and the conjunction of such  an analysis with 
the second order perturbation analysis is presented here to extend the applicability 
range of traditional wavelet projection on probabilistic analyses, where some input 
random fields are given using the expected values and the spatial or temporal 
cross-correlations. The elementary numerical example of cosinusoidal wavelet 
function implemented in the symbolic package MAPLE demonstrates the 
computational aspects of this methodology. There is no doubt, however, that the 
next step will be to make the multiresolutional version of asymptotic 
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homogenisation of the multiscale plane periodic structures where the Daubechies 
wavelets can find application.  

A number of references follow the last chapter. However new valuable 
conference papers, research and review articles as well as entire books continue to 
appear on the publishing market. Therefore, it is impossible to appreciate the 
significant contributions of all the people to this field. The book is completed with 
the appendix containing the user’s manual to the computer code MCCEFF 
available from the author on the special request. Following the algorithm for data 
preparation, the reader will be able to solve either deterministic and/or probabilistic
homogenisation problems for the fibre-reinforced composite for the rectangular 
RVE containing a single fibre with the round cross-section. The next part of this 
appendix is devoted to the batch file for the elastoplastic analysis of the 
steel-reinforced concrete plate using the commercial FEM system ABAQUS. This 
file contains the author’s comments written in such a manner that the file is 
ready-to-use by ABAQUS without further processing. Symbolic computation 
code written in the MAPLE standard concludes the appendix. This script is 
responsible for a computational mathematic derivation of the homogenised heat 
conductivity coefficient for the unidirectional multiscale periodic composite 
structure according to (1) the spatial averaging method, (2) asymptotic 
homogenisation approach and (3) multiresolutional homogenisation method. It 
returns for initially specified wavelet functions the values of homogenised 
parameters, their variability with respect to the contrast parameter and the interface 
location for two-component RVE. This file can be used without further 
modifications for sensitivity gradient symbolic computations for the effective 
parameters returned from these methods with respect to the design parameters 
mentioned. Probabilistic analysis using Monte Carlo simulation, probabilistic 
integration technique and perturbation-based analysis is under construction now 
and will be available also by a special request from the author.  
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1 Mathematical Preliminaries  

1.1 Probability Theory Elements  

1.1.1 Introduction  

Probability theory [326,357,365] is a part of theoretical and applied mathematics, 
which is engaged in establishing the rules governing random events – random 
games or experimental testing. The definitions, theorems and lemmas given below 
are necessary to understand the basic equations and computer implementation 
aspects used in the later numerical analyses presented in the book. They can also 
be used to calculate many of the closed-form equations applied frequently in 
applied sciences and engineering practice [19,37,150,201,202,253].  

Definition 
The variations with n elements for k elements are k elements series where each 
number 1,2,...,k corresponds to the single element from the initial set. The 
variations can differ in the elements or their order. The total number of all 
variations with n elements for k is described by the relation   

( ) 444 3444 21

timesk

k
n knnn

kn

n
V

−

+−−=
−

= )1)...(1(
!

!
(1.1) 

Example 
Let us consider the three-element set A{X,Y,Z}. Two-element variations of this 

set are represented as 62
3 =V : XY, YZ, XZ, YX, ZY, ZX.  

Definition 
Permutations with n elements are n-element series where each number 1,2,...,n
corresponds to the single element from the initial n-element set. The difference 
between permutations is in the element order. The total number of all permutations 
with n different elements is given by the formula:

!...21 nnVP n
nn =⋅⋅⋅== (1.2) 

If among n elements X, Y, Z,... there are identical elements, where X repeats a
times, Y appears b times, while Z repeats c times etc., then   
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!!!

!

cba

n
Pn =

(1.3) 

Example 
Let us consider the three element set A{X,Y,Z}. The following permutations of the 
set A are available: 63 =P : XYZ, XZY, YZX, YXZ, ZXY, ZYX.  

Definition 
The combinations with n elements for k elements are k-elements sets, which can 
be created by choosing any k elements from the given n-element set, where the 
order does not play any role. The combinations can differ in the elements only. The 
total number of all combinations with n for k elements is described by the formula  

)!(!
!

knk

n

k

n
C k

n −
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⎞
⎜⎜⎝

⎛
= (1.4) 

In specific cases it is found that  

n
n

Cn =⎟⎟⎠
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C n
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where  
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n
(1.6) 

Example 
Let us consider a set A{X,Y,Z} as before. Two-element variations of this set are 
the following: XY, XZ and YZ.  

The fundamental concepts of probability theory are random experiments and 
random events resulting from them. A single event, which can result from some 
random experiment is called elementary event, an and for the single die throw is 
equivalent to any sum of the dots on a die taken from the set {1,…,6}. Further, it is 
concluded that all elementary events corresponding to the random experiment form 
the elementary events space defined usually as Ω, which various subsets like A 
and/or B belong to (favouring the specified event or not, for instance).  

Definition 
A formal notation A∈ω  denotes that the elementary event ω belongs to the event 
A and is understood in the following way – if ω results from some experiment, then
the event A happened too, which ω belongs to. The notation means that the 
elementary event ω favours the event A.
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Definition 
The formal notation BA ⊂ , which means that event A is included in the event B is 
understood such that event A results in the event B since the following implication 
holds true: if the elementary event ω favours event A, then event ω favours event 
B, too.  

Definition 
An alternative of the events nAAA ,...,, 21  is the following sum:  

U
n

i
in AAAA

1
21 ...

=
=∪∪∪ (1.7) 

which is a random event consisting of all random elementary events belonging to 
at least one of the events nAAA ,...,, 21 .

Definition 
A conjunction of the events nAAA ,...,, 21  is a product  

I
n

i
in AAAA

1
21 ...

=
=∩∩∩ (1.8) 

which proceeds if and only if any of the events nAAA ,...,, 21  proceed.  

Definition 
Probability is a function P which is defined on the subsets of the elementary events 
and having real values in closed interval [0,1] such that   
(1) P(Ω)=1, P(∅)=0;  
(2) for any finite and/or infinite series of the excluding events ,...,...,, 21 nAAA

∅=∩ ji AA , there holds for i≠j

( )∑=⎟
⎠
⎞⎜

⎝
⎛

i
i

i
i APAP U (1.9) 

Starting from the above definitions one can demonstrate the following lemmas:  

Lemma  
The probability of the alternative of the events is equal to the sum of the 
probabilities of these events.  

Lemma 
If event B results from event A then  
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( ) ( )BPAP ≤ (1.10) 

The definition of probability does not reflect however a natural very practical need 
of its value determination and that is why the simplified Laplace definition is 
frequently used for various random events.  

Definition 
If n trials forms the random space of elementary events where each experiment has 
the same probability equal to 1/n, then the probability of the m-element event A is 
equal to   

( )
n

m
AP = (1.11) 

Next, we will explain the definition, meaning and basic properties of the 
probability spaces. The probability space (Ω,F,P) is uniquely defined by the space 
of elementary random events Ω, the events field F and probabilistic measure P.
The field of events F is the relevant family of subsets of the space of elementary 
random events Ω. This field F is a non-empty, complementary and countable 
additive set having σ-algebra structure.  

Definition 
The probabilistic measure P is a function  

]1,0[: →FP (1.12) 

which is a nonnegative, countable additive and normalized function defined on the 
fields of random events. The pair (Ω,F) is a countable space, while the events are 
countable subsets of Ω. The value P(A) assigned by the probabilistic measure P to 
event A is called a probability of this event.  

Definition 
Two events A and B are independent if they fulfil the following condition:  

( ) )()( BPAPBAP ⋅=∩ (1.13) 

while the events { }nAAA ,...,, 21  are pair independent, if this condition holds true for 

any pair from this set.  

Definition 
Let us consider the probability space (Ω,F,P) and measurable space { }n

n B,ℜ ,

where Bn is a class of the Borelian sets. Then, the representation   
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nX ℜ→Ω: (1.14) 

is an n-dimensional random variable or n-dimensional random vector.  

Definition 
The probability distribution of the random variable X is a function ]1,0[: →BPX

such that  

)()( BXPbPX
Bb

∈=∀
∈

(1.15) 

The probability distribution of the random variable is a probabilistic measure.  

Definition 
Let us consider the following probability space ( )XPB,,ℜ . The function 

]1,0[: →ℜXF  defined as  

( )[ ]xPxF X ,)( ∞−= (1.16) 

is called the cumulative distribution function of the variable X.

Definition 
The function +ℜ→ℜ:f  has the following properties:   

(1) there holds almost everywhere (in each point of the cumulative distribution 
function differentiability):  

)(
)(

xf
dx

xdF = (1.17) 

(2)
0)( ≥xf (1.18) 

(3)

∫
+∞

∞−
= 1)( dxxf (1.19) 

(4) for any Borelian set Bb ∈  the integral ( )∫ ∈=
b

bXPdxxf )(  is a probability 

density function (PDF) of the variable X.

Definition 
Let us consider the random variable ℜ→Ω:X  defined on the probabilistic space
( )PF ,,Ω . The expected value of the random variable X is defined as   

∫
+∞

∞−
= )()(][ ωω dPXXE (1.20) 
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if only the Lesbegue integral with respect to the probabilistic measure exists and 
converges.   

Lemma
ccE

c
=∀

ℜ∈
][ (1.21) 

Lemma
There holds for any random numbers iX  and the real numbers ℜ∈ic

[ ]∑∑
==

=⎥
⎦
⎤

⎢
⎣
⎡ n

i
ii

n

i
ii XEcXcE

11
(1.22) 

Lemma
There holds for any independent random variables iX

[ ]∏∏
=

=⎥
⎦

⎤
⎢
⎣

⎡

=

n

i
i

n

i XE
i

XE
11

(1.23) 

Definition 
Let us consider the following random variable ℜ→Ω:X  defined on the 
probabilistic space ( )PF ,,Ω . The variance of the variable X is defined as   

[ ]( )∫
Ω

−= )()()( 2 ωω dPXEXXVar (1.24) 

and the standard deviation is called the quantity  

)()( XVarX =σ (1.25) 

Lemma
0)( =∀

ℜ∈
cVar

c
(1.26) 

Lemma
)()( 2 XVarccXVar

c
=∀

ℜ∈
(1.27) 

Lemma
There holds for any two independent random variables X and Y

( ) )()( YVarXVarYXVar +=± (1.28) 

( ) ][)()()()(][ 22 YEXVarYVarXVarYVarXEYXVar ⋅+⋅+⋅=⋅ (1.29) 
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Definition 
Let us consider the random variable ℜ→Ω:X  defined on the probabilistic space
( )PF ,,Ω . A complex function of the real variable Z→ℜ:ϕ  such that  

[ ])exp()( itXEt =ϕ (1.30) 

stands for the characteristic function of the variable X.  

1.1.2 Gaussian and Quasi-Gaussian Random 

Variables   

Let us consider the random variable X having a Gaussian probability distribution 
function with m being the expected value and 0>σ  the standard deviation. The 
distribution function of this variable is   

dt
t

xF
x

∫
∞−

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −=
2

exp
2

1
)(

2

π
(1.31) 

where the probability density function is calculated as  

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −−=
2

2

2

)(
exp

2

1
)(

σπσ
mx

xf (1.32) 

The characteristic function for this variable is denoted as  

[ ] ( )22
2
1exp)exp()( tmititXEt σϕ −== . (1.33) 

If the variable X with the parameters (m,σ) is Gaussian, then its linear transform 
BAXY +=  with ℜ∈BA,  is Gaussian, too, and its parameters are equal to Am+B

and σA  for 0≠A , respectively.  

Problem   
Let us consider the random variable X with the first two moments E[X] and Var(X). 
Let us determine the corresponding moments of the new variable 2XY = .

Solution  
The problem has been solved using three different ways illustrating various 
methods applicable in this and in analogous cases. The generality of these methods 
make them available in the determination of probabilistic moments and their 
parameters for most random variables and their transforms for given or unknown 
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probability density functions of the input frequently takes place in which numerous 
engineering problems.  

I method  
Starting from the definition of the variance of a ny random variable one can write  

)()()( 22 YEYEYVar −= (1.34) 

Let 2XY = , then  

)())(()( 22222 XEXEXVar −= (1.35) 

The value of [ ]4XE  will be determined through integration of the characteristic 
function for the Gaussian probability density function  

[ ] ∫
+∞

∞−
⎟⎟⎠

⎞
⎜⎜⎝

⎛ −−= dx
mx

xXE
2

2
4

2
14

2

)(
exp

σπσ (1.36) 

where m=E[X] and )(XVar=σ  denote the expected value and standard 

deviation of the considered distribution, respectively. Next, the following 
standardised variable is introduced  

σ
mx

t
−= , where dtdx,mtx σ=+σ= (1.37) 

which gives  

[ ] dt
t

mtXE ∫
+∞

∞−
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+=

2
exp)(

2
4

2
14 σ
π (1.38) 

After some algebraic transforms of the integrand function it is obtained that  

[ ] dtemtmtmmttXE
t

∫
+∞

∞−

−++++= 2

2

)464( 432223344

2
14 σσσσ
π (1.39) 

and, dividing into particular integrals, there holds  

[ ] 2

2

)464( 5
4

4
3

3
22

2
3

1
4

2
14 t

eImImImmIIXE
−++++= σσσσ

π

(1.40) 

where the components denote  
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dtetI
t

∫
+∞

∞−

−= 2

2
4

1 ; dtetI
t

∫
+∞

∞−

−= 2

2
3

2 ; dtetI
t

∫
+∞

∞−

−= 2

2
2
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dtteI
t

∫
+∞

∞−

−= 2

2

4 ; dteI
t

∫
+∞

∞−

−= 2

2

5

(1.41) 

It should be mentioned that the values of the odd integrals on the real domain are 
equal to 0 in the following calculation   

∫∫∫
+∞

∞−

+∞

∞−
+=

0

0

)()()()()()( dxxgxfdxxgxfdxxgxf
(1.42) 

If the function f(x) is odd and g(x) is even   

f(-x)=-f(x), g(-x)=g(x), (1.43) 

then it can be written  

∫∫∫
+∞+∞

∞−
−=−=

00

0

)()()()()()( dxxgxfdxxgxfdxxgxf . (1.44) 

Considering that the odd indices integrals are calculated; this results in  

π22

2

5 == ∫
+∞

∞−

−
dteI

t

(1.45) 
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dteteetddtet
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After simplification the result is  

[ ] [ ] [ ] )(3)(663 22442244 XVarXEXVarXEmmXE ++=++= σσ (1.48) 

[ ] [ ] )(2222 XVarXEmXE +=+= σ (1.49)
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[ ] [ ]
[ ])2)()((2

)2(2)(
2

2222242

XEXVarXVar

mXEXEXVar

+=

+=−= σσ
(1.50)

II method   
Initial algebraic rules can be proved following the method shown below. Using a 
modified algebraic definition of the variance   

[ ] [ ]2242 )( XEXEXVar −= (1.51) 

and the expected value  

[ ] [ ]XEXVarXE 22 )( += (1.52) 

subtracted from the following equation  

[ ] [ ]( ) [ ] [ ]XEXEXVarXVarXEXVarXE 4222222 )(2)( ++=+= (1.53) 

we can demonstrate the following desired result:   

[ ] [ ]XEXEXVarXVarXEXVar 42242 ][)(2)()( −−−= (1.54) 

III method   
The characteristic function for the Gaussian PDF has the following form:  

( )22
2
1exp)( tmitt σϕ −= (1.55) 

where  

[ ]kkk XEi=)0()(ϕ ; 0≥k (1.56) 

and  

ϕϕ =)0( ; im=′ )0(ϕ (1.57) 

The mathematical induction rule leads us to the conclusion that  

( ) )()1()()( )2(2)1(2)( tnttimt nnn −− ⋅−−⋅−= ϕσϕσϕ , 2≥n (1.58) 

which results in the equations  
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22)2( )0( σϕ −−= m (1.59) 

( )22)3( 3)0( σϕ +−= mmi (1.60) 

4224)4( 36)0( σσϕ ++= mm (1.61) 

giving the same input equations.  

Problem 2  

Let us determine the value of the Gaussian integral ∫
+∞

∞−
− dxx )exp( 2 .

Solution  
Starting from the obvious fact that  

( )( )
( )( ) ( )( )dxdyyxdxdyyx

dxdyyx

K K

K

∫∫ ∫∫

∫∫

+−≤+−≤

+−

2

1

2222

22

expexp

exp

(1.62) 

with K1 being a circle with radius t and located in the centre of Cartesian 

coordinates, K denotes the square contour with edge equal to 2t , while K2 stands 

for a circle with radius 2t . The coordinates transform to the polar system given 
by   

ϕcosrx =  , ϕsinry = (1.63) 

returns  

( )

( ) ( ) ( ) ϕ

ϕ

πϕ

πϕ

drdrdyydxx

drdrr

tr

t

t

t

t

tr

∫∫∫∫

∫∫

≤≤
≤≤−−

≤≤
≤≤

−≤−−≤

−

20
20

222

20
0

2

expexpexp

exp

(1.64) 

Using the observation that  

( ) ( )∫∫
−−

−=−
t

t

t

t

dyydxx 22 expexp  (1.65) 

one can determine  

( ) ( ) ( )∫ ∫∫∫ ∫ −≤⎥
⎦

⎤
⎢
⎣

⎡
−≤−

−

ππ
ϕϕ

2

0 0

2
2

2
2

0 0

2 expexpexp
ttt

t

t

rdrrddxxrdrrd (1.66) 
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Next, considering the rule  

( ) ( )∫ −−=− 2
2
12 expexp rrdrr (1.67) 

and the symmetry  

( ) ( )∫∫ −=−
−

tt

t

dxxdxx
0

22 exp2exp  (1.68) 

it is obtained finally that  

( )( ) ( ) ( )( )2
2

0

22 2exp1exp4exp1 tdxxt
t

−−≤⎥
⎦

⎤
⎢
⎣

⎡
−≤−− ∫ ππ (1.69) 

Then, a square rooting procedure gives  

( )( ) ( ) ( )( )2
2
1

0

22
2
1 2exp1expexp1 tdxxt

t

−−≤−≤−− ∫ ππ (1.70) 

The three functions theorem and the limiting procedure for ∞→t  allow us to 
show  

( ) π2
1

0

2explim =−∫∞→

t

t
dxx (1.71) 

with  

( ) ( ) 12exp1limexp1lim 22 =−−=−−
∞→∞→

tt
tt

(1.72) 

Lemma (Central Limit Theorem)  
For any independent random variables iX  for i=1,2,...,n the following sum 

∑=
i

iXX  is asymptotically Gaussian where the parameters are equal ∑=
i

imm

and ∑=
i

i
22 σσ , respectively.  

Further X be the random variable with P and F being the probability density and 
distribution functions, respectively and S any given Borelian set such that  

)()( SXPSPP ⊂== (1.73) 
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Now, let us consider the following subset SS ⊂0  such that  

{ } +∞≤<≤≤∈= ba;bXa:SXS
0

(1.74) 

The probability density function defined on a domain 0S  is called a truncated 

Gaussian and its distribution function is given as  

( )
⎪
⎩

⎪
⎨

⎧

>
≤≤

<
=≤≤ −

−

bx,

bxa;

ax,

bXaxF
)a(F)b(F
)a(F)x(F

1

0
(1.75) 

and its probability density function is equal to  

( )
∫

=≤≤
b

a

dttf

xf
bXaxf

)(

)(
(1.76) 

The considered problem of cutting off the probability density function in case 
of Gaussian or related random variable is very important for engineering 
applications in probabilistic calculus. Most engineering parameters, being random, 
must have nonnegative values as Young modulus or heat conductivity coefficients 
for instance [132]. Other parameters, like the Poisson ratio, are restricted to small 
intervals only. Then, let us focus on modifications of the presented formula 
describing the expected values and variances demonstrated for classical Gaussian 
variates in the case of bounded real domains.  

Let us consider the Gaussian variable ( )σ,mN  restricted to the positive values 

only. According to the above formulae, there holds   

( )
( )σ

σλ
m

m

F

f

−−
−

=
1 (1.77) 

Then, the first two probabilistic moments for the so modified Gaussian PDF are 
obtained as  

λσ+= mXE ][ (1.78) 
22)( σλσ ++= mmXVar (1.79) 

Starting from the derived equations one can calculate the expected values and the 
variances of the quasi-Gaussian random variables, whose domains are restricted to 
the specific and bounded intervals resulting from physical interpretation of a 
specific equilibrium problem.  
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1.2 Monte Carlo Simulation Method  

Monte Carlo simulation is a numerical method based in general on random 
sampling and statistical estimation [39,44,125] and now there are multiple 
numerical realizations of the latters as crude simulation, stratified and importance 
sampling as well as Latin Hypercube Sampling methodology. Nevertheless, the 
most important part of the method is a reliable random number generator. Monte 
Carlo simulation (MCS) is, in fact, a numerical method based on random sampling 
via a random number generator. The most important applications of the MCS 
technique in engineering of composite materials are: (a) fatigue and/or failure 
modeling [10,243], (b) modeling of random material properties [73,171,174,175, 
191,196,306] and (c) reliability analysis [79]. Random nature of the effective 
properties calculated in homogenisation problem follows usually randomness of 
material properties of a composite, which are defined as the input Gaussian 
variables. To obtain the random sequences of this variable it is necessary to 
produce first numerically uniform deviates. They are random numbers, which lie 
within a specified range ([0,1] typically), and each number is as likely to occur as 
any other in the range. Generation of the uniform distributions is done using a 
standard FORTRAN library routine, which can be implemented as a linear 
congruential generator, which generates a sequence of integer numbers 321 ,, III ,...,

each between 0 and m-1, by using the recurrence relation [39]  

cIaI jj +⋅=+1               (mod m) (1.80) 

where m is called the modulus and a, c are positive integers called the multiplier 
and the increment, respectively. The recurrence (1.80) will possibly repeat itself 
with a period that is obviously no greater than m. If m, a and c are properly chosen, 
then the period of recurrence is of maximal length m. The sequence of real 
numbers between 0 and 1 is returned here by dividing 1+jI  by m, so that it is 

strictly less than 1, but occasionally (once in m calls). The linear congruential 
method is very fast and requires only a few operations per call, but it is not free of 
sequential correlation on successive calls and the special shuffling routine has to be 
added to eliminate this disadvantage. Next, the Box-Muller method is 
implemented to transform these variables to the normalized Gaussian distribution – 
let us consider for this purpose the transformation between two uniform deviates 
on (0,1) denoted by 1x , 2x  and two quantities 1y and 2y  defined as follows  

211 2cosln2 xxy π⋅⋅−= (1.81) 

212 2sinln2 xxy π⋅⋅−= (1.82) 

Equivalently it can be written that  
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(1.84) 

with the Jacobian determinant of the form  
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∂
∂

∂
∂

(1.85) 

since it is a product of the functions of 2y  and 1y  separately. Finally, we obtain 

each y is returned as the independent Gaussian variable.  
The second part of the simulation procedure is a statistical estimation procedure 

[29], which enables approximation of probabilistic moments and the relevant 
coefficients for the given series of output variables and for the specified number of 
random trials. The equations listed below are implemented in the statistical 
estimation procedure to compute the probabilistic moments with respect to M,
which denotes here the total number of Monte Carlo random trials.  

Statistical estimation theory is devoted to determination and verification of 
statistical estimators computed on a basis of the random trials sets. These 
estimators are necessary for efficient approximation of the analysed random 
variable and they are introduced for the random variables, fields and processes to 
assure their stochastic convergence.  

Definition 
If there exist a random variable X such that   

( ) 1lim
0

=<−∀
∞→>

ε
ε

XXP n
n

(1.86) 

then the series of random variables nX  stochastically converges to X. Let us note 

that the consistent, unbiased, most effective and asymptotically most effective 
estimators are available in statistical estimation theory.  

Definition
The consistent estimator is each estimator stochastically convergent to the 
estimated parameter.  

Definition
The unbiased estimator fulfils the following condition:  

[ ] QQE n =ˆ (1.87) 
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Definition
The most effective estimator is the unbiased estimator with the minimal variance.  

Definition
The asymptotically most effective estimator of the quantity nQ

)

 is the following 

one:  

1
)(

)(
lim 0 =⎟⎟⎠

⎞
⎜⎜⎝

⎛
∞→ nn QVar

QVar
)

)

(1.88) 

where ( )0QVar
)

 is the most effective variance estimator.  

Definition
The expected value estimator of the random variable X(ω) in an n-element random 
trial is the average value  

( )[ ] ∑
=

==
n

i
in XXXE

1

1ω (1.89) 

It can be proved that this is consistent, unbiased and the most effective estimator 
for the Gaussian, binomial and Poisson probability distribution.  

Definition
The variance estimator for the random variable X(ω) in an n-element random 
event is the quantity   

( )( ) ( )∑
=

− −=
n

i
in XXXVar

1

2
1

1ω (1.90) 

It can be demonstrated that this estimator is consistent and unbiased. Using this 
estimator one can determine standard deviation estimator.  

Definition
The standard deviation estimator is equal to  

( )( ) ( )( )ωω XVarXS = (1.91) 

Comment   
The variance estimator in the n-element random event can be defined as   

( )( ) ( )∑
=

−=
n

i
in

XXXVar
1

21ω (1.92) 

It can be demonstrated that  



   Mathematical Preliminaries     17      

( )( )[ ] 21σω n
nXVarE −= (1.93) 

which gives the negative bias. The estimator bias is defined as the deviation of this 
estimator from its value to be determined. There holds   

[ ] 2122122 σσσσ nn
n

nSE −=−=− − (1.94) 

which results in a negative and bias, which is irrelevant since the natural condition 
for the variance 0≥VarY .

Definition 
The estimator of the ordinary kth order probabilistic moment of the random 
variable X(ω) in the n-element random trial is given as   

( )( ) ∑
=

=
n

i

k
ink XXm

1

1ω (1.95) 

Definition 
The estimator of the kth order central probabilistic moment is defined as  

( )( ) ( )( ) ( )( )[ ]ωωωµ XmXmX kk 1−= (1.96) 

Any central moments of odd order are equal to 0 in case of the normalized 
Gaussian PDF N(m,σ), while the first three even moments are given below.   

Definition 
The estimator of the second order central moment is equal to  

( )( ) 2

2
σωµ =X (1.97) 

Definition 
The estimator of the fourth order central moment is given as  

( )( ) 4

4
3σωµ =X (1.98) 

Definition 
The estimator of the sixth order central moment is equal to  

( )( )
3

6

6

15

m
X

σωµ = (1.99) 
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Using the proposed estimators of the central moments of the random variable X(ω)
valid for the n-element random event, the following probabilistic coefficients are 
usually calculated:  

Definition 
The coefficient of variation for X(ω) is equal to  

( )( ) ( )( )
( )[ ]ω
ωσωα

XE

X
X = (1.100) 

Definition 
The coefficient of asymmetry for X(ω) equals to  

( )( ) ( )( )
( )( )ωσ
ωµωβ

X

X
X

3
3= (1.101) 

Definition 
The coefficient of concentration for X(ω) is equal to  

( )( ) ( )( )
( )( )ωσ
ωµωγ

X

X
X

4
4= (1.102) 

which results in 0⎯⎯ →⎯ ∞→n
β  and 3⎯⎯ →⎯ ∞→n

γ  for the Gaussian random variables.  

Definition 
The estimator of covariance for two random variables X(ω) and Y(ω) in a two 
dimensional n-element random trial is defined as    

( ) ( )( ) ( )( ) ( )( )YYXXYXCov i

n

i
in

−−= ∑
=

− ωωωω
1

1
1, (1.103) 

Definition 
The coefficient of correlation for two variables X(ω) and Y(ω) in two dimensional 
n-element random event is equal to   

( ) ( )( )
( )( ) ( )( )ωω

ωωρ
YVarXVar

YXCov
XY

,= (1.104) 

Remark 
Two random variables X(ω) and Y(ω) are fully correlated only if ρXY=1 and 
uncorrelated in case of ρXY=0.  



   Mathematical Preliminaries     19      

Equations (1.101) and (1.102) are very useful together with the relevant PDF 
estimator in recognising of the probabilistic distribution function type for the 
output variables – using the Central Limit Theorem the Gaussian variables can be 
found. This is very important aspect considering the fact that theoretical 
considerations in this subject are rather complicated and not always possible.  

1.3 Stochastic Second Moment Perturbation 

Approach  

1.3.1 Transient Heat Transfer Problems  

The main concept of stochastic second order perturbation technique [263] 
applied in the next chapters to various transient heat transfer computations can be 
explained on the example of the following equation [135]:  

QTKTC =⋅+⋅ & (1.105) 

where K, C are some linear stochastic operators equivalent to the heat conductivity
and capacity matrices, T is the random thermal response vector for the structure 
with T&  representing its time derivative, while Q is the admissible heat flux (due to 
the boundary conditions) applied on the system. To introduce a precise definition 
of K, for instance, let us consider the Hilbert space H defined on a real domain D
and the probability space ( )P,,σΩ , where Dx ∈ , Ω∈θ  and R→ΩΘ : . Then, 

the operator );( ωxK  is some stochastic operator defined on Θ×H , which means 

that it is a differential operator with the coefficients varying randomly with respect 
to one or more independent design random variables of the system; the operator C
can be defined analogously. As is known, the analytical solutions to such a class of 
partial differential equations are available for some specific cases and that is why 
quite different approximating numerical methods are used (simulation, perturbation 
or spectral methods as well).  

Further, let us denote the vector of random variables of a problem as { });( θxbr

and its probability density functions as )( rbg  and ( )sr bbg , , respectively; 

Rsr ,...,2,1, =  are indexing input random variables. Next, let us introduce integral 
definition for the expected values of this vector as  

∫
+∞

∞−
= rrrr dbbgbbE )(][

(1.106) 
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with its covariance in the form  

( ) [ ]( ) [ ]( ) ( )∫ ∫
+∞

∞−

+∞

∞−
−−= srsrssrrsr dbdbbbgbEbbEbbbCov ,, (1.107) 

Next, all material and physical parameters of Ω as well as their state functions 
being random fields are extended by the use of stochastic expansion via the Taylor 
series as follows:  

( ) ( ) ( )( )∑ ∏
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∆+=
N

n

n

r

rn
n

bxK
n

xKxK
1 1

0 )(;
!

;; θθεθθ (1.108) 

where ε is some given small perturbation parameter, rb∆ε  denotes the first order 

variation of 
r

b∆ about its expected value [ ]rbE  and ( )θ;)( xK n  represents the nth 

order partial derivatives with respect to the random variables determined at the 
expected values. The variable θ represents here the random event belonging to the 
corresponding probability space of admissible events (nonnegative, for instance). 
The second order perturbation approach is now analysed and then the random 
operator ( )θ;xK  is expanded as  

srrsrr bbxKbxKxKxK ∆∆+∆+= );();();();( ,2
2
1,0 θεθεθθ (1.109)

It can be noted that the second order equation is obtained by multiplying the R-
variate probability density function ( )RR bbbp ,...,, 21  by the ε2-terms and by 

integrating over the domain of ( )θ;xb . Assuming that the small parameter ε of the 

expansion is equal to 1 and applying the stochastic second order perturbation 
methodology to the fundamental deterministic equation (1.105), we find  

• zeroth order equations:  

);();();();();( 00000 θθθθθ xQxTxKxTxC =⋅+⋅ & (1.110)

• first order equations (for r=1,…,R):  

);();();();();(

);();();();(
,,00,

,00,

θθθθθ

θθθθ

xQxTxKxTxK

xTxCxTxC
rrr

rr

=⋅+⋅+

⋅+⋅ &&

(1.111)

• second order equations (for r,s=1,…,R):  
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(1.112)

 It is clear that coefficients for the products of K, C and T are the successive 
orders of the initial basic deterministic eqn (1.110) and they are taken from the 
well-known Pascal triangle. As far as the nth order partial differential 
perturbation-based approach is concerned, then the general statement can be 
written out using the Leibniz differentiation rule in the following form:  
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The equations from m=0 to the specific value of n should be generated to 
introduce all hierarchical equations system for the nth order perturbation approach. 
Usually, it is assumed that higher than second order perturbations can be neglected, 
the system of equations (1.110) - (1.112) constitutes the given equilibrium 
problem. The detailed convergence studies should be carried out in further 
extensions of the model with respect to perturbation order, parameter ε and the 
coefficient of variation of input random variables.  

Furthermore, it can be noted that system (1.111) is rewritten for all random 
parameters of the problem indexed by r =1,…,R (R equations), while system 
(1.112) gives us generally R2 equations. The unnecessary equations are eliminated 
here through multiplying both sides of the highest order equation by the 
appropriate covariance matrix of input random parameters. There holds  

• zeroth order equations:  

);();();();();( 00000 θθθθθ xQxTxKxTxC =⋅+⋅ & (1.114)

• 1st order equations (for r =1,…,R):  
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• second order equations (for r,s=1,…,R):  
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It is observed that solving for the nth order perturbation equations system, the 
closure of the entire hierarchical system is obtained by nth order correlation of 
input random vector components br and bs, respectively; for this purpose nth order 
statistical information about input random variables is however necessary. To 
obtain the probabilistic solution for the analysed heat flow problem, eqn (1.114) is 
solved for 0T , eqn (1.115) for first order terms rT ,  and, finally, eqn (1.116) for 

)2(T . Therefore, using the definition of expected value and applying the second 
order expansion, it is derived that  
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and further  
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This result leads us to the following relation for the expected values [135,190]:   

( )[ ][ ] ( )[ ] ( )[ ] rs
b

rs STTTE xxbxxbxxb ;;;;;; ,
2
10 θθθ += (1.119) 

Now, using the perturbation approach, both spatial and temporal cross-
covariances can be determined separately. There holds for spatial cross-covariance 
computed at the specific time moment τ   
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which gives as a result  

( ) ( ) ( ) ( )τθτθτθτθ ;;;;;;;;;; )2()1()2(,)1(,)2()1( xxxxxx rs
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T STTS = (1.121) 

Alternatively, one can compute the time cross-covariances in the case where 
the input random process varies in time (and does not depend on spatial variables). 
It is obtained for time moments τ1 and τ2 by the use of analogous definitions that  
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which yields  

( ) ( ) ( ) ( )212
,

1
,

21 ;;;;;;;;;; ττθτθτθττθ xxxx rs
b

srij
T STTS = (1.123) 

It is important to underline that the perturbation methodology at the present 
stage does not allow for computational modeling of the boundary-initial problems 
where the input parameters are full stochastic processes varying in space and time. 

1.3.2 Elastodynamics with Random Parameters  

Generally, the following problem is solved now [56,181,198]:  

fKuuCuM =++ &&& (1.124) 

where M, C and K are linear stochastic operators, u is the random structural 
response, while f is the admissible excitation of this system. The definitions of the 
matrices as random operators are introduced analogously to the considerations 
included in Sec. 1.3.1. Usually, such operators are identified as mass, damping and 
stiffness matrices in structural dynamics applications. As is known, the analytical 
solutions for such a class of partial differential equations are available for some 
specific cases, since quite different approximating numerical methods are used; 



24     Computational Mechanics of Composite Materials  

various mathematical approaches to the solution of that problem are reported and 
presented in [233,249,324,326]. However the second order perturbation second 
central probabilistic moment approach is documented below.  

The stochastic second order Taylor series based extension [208] of the basic 
deterministic equation (1.124) of the problem leads by equating of the same order 
terms for ),0[ ∞∈τ  to  

• zeroth order equations:  

( ) ( ) ( ) ( ) ( ) ( ) ( )ττττ ;;;; 00000000000000 bfbubKbubCbubM =++ &&&

(1.125)

• first order equations (for r=1,…,R):  
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• second order equations (for r,s=1,…,R):  
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Therefore, the generalized nth order partial differential perturbation-based 
equation of motion can be proposed as  
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where the operators nnn KCM ,,, ,,  denote nth order partial derivatives of mass, 
damping and stiffness matrices with respect to the input random variables 
determined at the expected values of these variables, respectively. The vectors 

( )τ;0, bf n , ( )τ;0, bu n
&& , ( )τ;0, bu n

& , ( )τ;0, bu n  represent analogous nth order partial 

derivatives of external excitation, accelerations, velocities as well as displacements 
of the system.  
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Let us note that the stochastic hierarchical equations of motion for desired 
perturbation order m can be obtained from eqn (1.128) by successive expansion 
and substitution of n by the natural numbers 0,1,…,m, which returns the system of 
(m+1) equations. Then zeroth order solution is obtained from the first equation; 
then, inserting the zeroth order solution into the second equation (of the first 
order), the first order solution can be determined. An analogous procedure is 
repeated to determine all orders of the structural response, which are finally used in 
the calculation of the response probabilistic moments.  

Assuming that higher than second order perturbations can be neglected, this 
equation system constitutes the equilibrium problem. The detailed convergence 
studies should be carried out in further extensions of the model with respect to 
perturbation order, parameter θ and coefficient of variation of input random 
variables. If higher than the second probabilistic moment approach is considered, 
then the coefficients of assymetry, concentration, etc., also influence final 
effectiveness of the perturbation-based solution.  

Analogously to the stochastic expansion of (1.105), the first and second order 
equations are modified and it is found that  

• zeroth order equations:  

( ) ( ) ( ) ( ) ( ) ( ) ( )ττττ ;;;; 00000000000000 bfbubKbubCbubM =++ &&&

(1.129)

• first order equations (for r=1,…,R):  
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• second order equations (for r,s=1,…,R):  
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Let us observe that looking for the nth order perturbation approach, the closure 
of hierarchical equations is obtained by the nth order correlation of input random 
process components br and bs, respectively; nth order statistical information about 
input random variables is however necessary for this purpose.  

To obtain the probabilistic solution for the considered equilibrium problem, 

(1.129) is solved for 0u  (and its time derivatives 0u&  and 0u&& , respectively), next 

(1.130) for first order terms of ru , and, finally, (1.131) for )2(u . Two probabilistic 
moment characterisations of all the state functions for the boundary value problem 
starts from the expected value of the structural displacement vector components. 
Using its definition   
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[ ] ( )( ) bxb dptutuE R θ;)()( ∫
+∞

∞−
= (1.132) 

the second order accurate expectations are equal to  

[ ] )2(
2
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2
10 )()()( utuSututuE rs

b
rs +=+= (1.133) 

In quite a similar manner the second moment probabilistic characteristics are 
obtained. Defining the time cross-correlation function as  

( ) ( )( ) ( ) ( )[ ]{ } ( ) ( )[ ]{ } ( )( ) bxb dptuEtutuEtututuCov R θ;; 221121 −−= ∫
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it is found that  

( ) ( )( ) ( ) ( ) ( )srsr bbCovtutututuCov ,; 2
,

1
,

21 = (1.135) 

which completes the two-moment characterization of the perturbation-based 
solution for the dynamic equilibrium problem (1.124). The entire solution 
simplifies in the case of free vibrations when the following equations are to be 
solved:  

0][ )( =ΦΩ− MK α (1.136) 

)(αΩ  and Φ  are the eigenvalues and eigenvectors, respectively and α=1,...,N

denotes the total number of degrees of freedom of a structure. The second order 
expansion leads to the following equation system:  
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To determine the probabilistic moments of the eigenvectors, up to the second 
order derivatives with respect to input random variables are to be determined first. 
While zeroth order quantities are obtained directly from the relation (1.137), the 
methodology of first order terms calculation is definitely more complicated. 
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Equation (1.138) is transformed for this purpose by multiplying by the transposed 
zeroth order eigenvector, which gives  
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(1.140) 

Since Φ0 is diagonal and K0 and M0 are symmetric, (1.140) is modified as  
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Let us observe that Ω,r is diagonal and therefore  
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which finally results in  
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Next, using an analogous technique in the case of the second order equation, it 
is derived that  
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which finally implies  
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The next problem is to determine the first and second order derivatives of the 
eigenvectors. Basically, the eigenvector derivative is expressed as a linear 
combination of all the eigenvectors in the original system. Equations describing the 
coefficients of the linear combination are formed using the M-orthonormality and 
K-orthogonality conditions. Starting from (1.138), the αth eigenpair is determined 
as  
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and (1.143) in the following form:  
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It yields by substitution  
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with rR )(α  being equal to  
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Further, it is assumed that the αth first order eigenvector r,
)(αΦ  can be expressed 

as a linear combination of all the zeroth order eigenvectors as  

rr a )(
0,

)( αα Φ=Φ (1.150) 

The complete description of the coefficients ra )(α  is given by the following 

formula:  
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Similarly as above, the second order eigenvector )2(
)(αΦ  is approximated by a linear 

combination of all the zeroth order eigenvectors  
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Then, one can show the following result [208]:  
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Finally, the first two probabilistic moments of the eigenvalues and eigenvectors 
are found in a typical way, which completes the solution of the second order 
second central probabilistic moment eigenvalue and eigenvector problem.  

Summing up the applications of the stochastic perturbation methodology it 
should be pointed out that the main disadvantage is dependence between the 
assumed order of the expansion, interrelations between input probabilistic 
characteristics and overall precision of such a computational methodology. The 
method found its numerous applications in structural engineering [88,208,237], in 
homogenisation [162,164,192] as well as in fluid dynamics computations [184]. 
Computational implementation in conjunction with Finite Element Method  both in 
displacement [208] and stress versions [186], Boundary Element Method [51,185] 
as well as with Finite Difference Method [187,198] are available now, whereas the 
scaled the Boundary-Finite Element Method has no such extension [369].  

Nevertheless, the perturbation method can be very useful after successful 
implementation in symbolic computations programs, which will enable automatic 
perturbation-based extension of up to nth order [178] for any variational equation 
[25,297] as well as ordinary or partial differential equations solutions [68,90]. The 
application of the perturbation method in stochastic processes [319,326] modelling 
needs its essential improvements, because now the randomness of an input cannot 
be introduced both in space and time.  



2 Elasticity Problems  

Numerical experiments devoted to multi-component and multiscale media 
modelling are still one of the most important part of modern computational 
mechanics and engineering [98,161,272,312]. The main idea of this chapter in this 
context is to present a general approach to numerical analysis of elastostatic 
problems in 1D and 2D heterogeneous media [105,274,300,317] and the 
homogenisation method of periodic linear elastic engineering composite structures 
exhibiting randomness in material parameters [32,83,356,372,375]. As is shown 
below, the effective elasticity tensor components of such structures are obtained as 
the closed-form equations in the deterministic approach, which enables a 
relatively easy extension to the stochastic analysis by the application of the second 
order perturbation second central probabilistic moment analysis. On the other hand, 
the Monte Carlo simulation approach is employed to solve the cell problem. As is 
known from numerous books and articles in this area, the main difficulty in 
homogenisation is the lack of one general model valid for various composite 
structures; different nature homogenised constitutive relations are derived for 
beams, plates, shells etc. and even for the same type of engineering structure 
different effective relations are fulfilled for composites with constituents of 
different types (with ceramic, metal or polymer matrices and so forth). That is why 
numerous theoretical and numerical homogenisation models of composites are 
developed and applied in engineering practice.

All the theories in this field can be arbitrarily divided, considering especially 
the method and form of the final results, into two essentially different groups. The 
first one contains all the methods resulting in closed form equations characterizing 
upper and lower bounds [108,138,156,285,339] or giving direct approximations of 
the effective material tensors [122,123,248]. In alternative, so-called cell problems 
are solved to calculate, on the basis of averaged stresses or strains, the final global 
characteristics of the composite in elastic range [11,214,304,383], for thermoelastic
analysis [117], for composites with elasto-plastic [50,57,58,146,332] or 
visco-elasto-plastic components [366], in the case of fractured or porous 
structures [38,361] or damaged interfaces [224,252,358]. The very recently even 
multiscale methods [236,340] and models have been worked out to include the 
atomistic scale effects in global composite characteristics [67,145]. The results 
obtained for the first models are relatively easy and fast in computation. However, 
usually these approximations are not so precise as the methods based on the cell 
problem solutions. In this context, the decisive role of symbolic computations and 
the relevant computational tools (MAPLE, MATHEMATICA, MATLAB, for 
instance) should be underlined [64,111,268]. By using the MAPLE program and 
any closed form equations for effective characteristics of composites as well as 
thanks to the stochastic second order perturbation technique (in practice of any 
finite order), the probabilistic moments of these characteristics can be derived and 
computed. The great value of such a computational technique lies in its usefulness 
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in stochastic sensitivity studies. The closed form probabilistic moments of the 
homogenised tensor make it possible to derive explicitly the sensitivity gradients 
with respect to the expected values and standard deviations of the original material 
properties of a composite.  

Probabilistic methods in homogenisation [116,120,141,146,259,287,378] obey 
(a) algebraic derivation of the effective properties, (b) Monte-Carlo simulation of 
the effective tensor, (c) Voronoi-tesselations of the RVE together with the relevant 
FEM studies, (d) the moving-window technique. The alternative stochastic second 
order approach to the cell problem solution, where the SFEM analysis should be 
applied to calculate the effective characteristics, is displayed below. Various 
effective elastic characteristics models proposed in the literature are extended 
below using the stochastic perturbation technique and verified numerically with 
respect to probabilistic material parameters of the composite components. The 
entire homogenisation methodology is illustrated with computational examples of 
the two-component heterogeneous bar, fibre-reinforced and layered unidirectional 
composites as well as the heterogeneous plate. Thanks to these experiments, the 
general computational algorithm for stochastic homogenisation is proposed by 
some necessary modifications with comparison to the relevant theoretical 
approach.  

Finally, it is observed that having analytical expressions for the effective 
Young modulus and their probabilistic moments, the model presented can be 
extended to the deterministic and stochastic structural sensitivity analysis for 
elastostatics or elastodynamics of the periodic composite bar structures. It can be 
done assuming ideal bonds between different homogeneous parts of the composites 
or even considering stochastic interface defects between them and introducing the 
interphase model due to the derivations carried out or another related 
microstructural phenomena both in linear an nonlinear range. In the same time, 
starting from the deterministic description of the homogenised structure, the 
effective behaviour related to any external excitations described by the stochastic 
processes can be obtained.  

2.1 Composite Model. Interface Defects Concept  

The main object of the considerations is the random periodic composite 
structure Y with the Representative Volume Element (RVE) denoted by Ω. Let us 
assume that Ω contain perfectly bonded, coherent and disjoint subsets being 
homogeneous (for classical fibre-reinforced composites there are two components, 
for instance) and let us assume that the scale between corresponding geometrical 
diameters of Ω and the whole Y is described by some small parameter ε>0; this 
parameter indexes all the tensors rewritten for the geometrical scale connected with 
Ω. Further, it should be mentioned that random periodic composites are 
considered; it is assumed that for an additional ω belonging to a suitable 
probability space there exists such a homothety that transforms Ω into the entire 
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composite Y. In the random case this homothety is defined for all probabilistic 
moments of input random variables or fields considered. Next, let us introduce two 
different coordinate systems: ( )321 ,, yyy=y  at the microscale of the composite 

and ( )321 ,, xxx=x  at the macroscale. Then, any periodic state function F defined 

on Y can be expressed as  

( ) ( )y
x

x FFF =⎟
⎠
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⎝
⎛=

ε
ε (2.1) 

This definition allows a description of the macro functions (connected with the 
macroscale of a composite) in terms of micro functions and vice versa. Therefore, 
the elasticity coefficients (being homogenised) can be defined as  

( ) ( )yx ijklijkl CC =ε (2.2) 

Random fields under consideration are defined in terms of geometrical as well 
as material properties of the composite. However the periodic microstructure as 
well as its macrogeometry is deterministic. Randomising different composite 
properties, the set of all possible realisations of a particular introduced random 
field have to be admissible from the physical and geometrical point of view, which 
is partially explained by the below relations. Let each subset aΩ  contain linear-

elastic and transversely isotropic materials where Young moduli and Poisson 
coefficients are truncated Gaussian random variables with the first two 
probabilistic moments specified. There holds  
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Moreover, it is assumed that there are no spatial correlations between Young 
moduli and Poisson coefficients and the effect of Gaussian variables cutting-off in 
the context of (2.3) and (2.6) does not influence the relevant probabilistic 
moments. This assumption will be verified computationally in the numerical 
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experiments; a discussion on the cross-property correlations has been done in 
[315]. Further, the random elasticity tensor for each component material can be 
defined as  
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Considering all the assumptions posed above, the random periodicity of Y can 
be understood as the existence of such a translation which, applied to Ω, enables to 
cover the entire Y (as a consequence, the probabilistic moments of e(x;ω) and 
ν(x;ω) are periodic too). Thus, let us adopt Y as a random composite if relevant 
properties of the RVE are Gaussian random variables with specified first two 
probabilistic moments; these variables are bounded to probability spaces 
admissible from mechanical and physical point of view.  

Let us note that the probabilistic description of the elasticity simplifies 
significantly if the Poisson coefficient is assumed to be a deterministic function so 
that  

ax νν =)( , for a=1,2,...,n; ax Ω∈ (2.10) 

Finally, the random elasticity tensor field );( ωxCijkl  is represented as follows:  
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Because of the linear relation between the elasticity tensor components and the 
Young modulus these components have the truncated Gaussian distribution and 
can thus be derived uniquely from their first two moments as   

[ ] [ ]);()();( )( ωω xeExAxCE aaijklijkl ⋅=
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with no sum over repeating indices  at the right hand side.  

(2.13) 
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There holds  
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General methodology leading to the final results of the effective elasticity 
tensor is to rewrite either strain energy (or complementary energy, for instance) or 
equilibrium equations for a homogeneous medium and the heterogeneous one. 
Next, the effective parameters are derived by equating corresponding expressions 
for the homogeneous and for the real structure. This common methodology is 
applied below, particular mathematical considerations are included in the next 
sections and only the final result useful in further general stochastic analysis is 
shown. The expected values for the effective elasticity tensor in the most general 
case can be obtained by the second order perturbation based extension as [162,208]  
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Using classical probability theory definitions and theorems it is obtained that  
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Therefore  
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Further, the covariance matrix ( ))()( ; eff
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tensor is calculated using its integral definition  
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whereas inserting the second order perturbation expansion it is found that  
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After all algebraic transformations and neglecting terms of order higher than 
second, there holds  
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Then, starting from two-moment characterization of the effective elasticity tensor 
and the corresponding homogenisation models presented in (2.15) - (2.21), the 
stochastic second order probabilistic moment analysis of a particular engineering 
composites can be carried out. In the general case, these equations lead to a rather 
complicated description of probabilistic moments for the effective elasticity tensor 
particular components.  

In the theory of elasticity the continuum is usually uniquely represented by its 
geometry and elastic properties; most often a character of these features is 
considered as deterministic. It has been numerically proved for the fibre 
composites that the influence of the elastic properties randomness on the 
deterministically represented geometry can be significant. The most general model 
of the linear elastic medium, and intuitively the nearest to the real material, is 
based on the assumption that both its geometry and elasticity are random fields or 
stochastic processes. The phenomenon of random, both interface [5,27,131,200, 
225,242] and volumetric [74,316,342,353,388], non-homogeneities occur mainly 
in the composite materials. While the interface defects (technological inaccuracies, 
matrix cracks, reinforcement breaks or debonding) are important considering the 
fracturing of such composites, the volume heterogeneities generally follow the 
discrete nature of many media. The existing models of stochastic media (based on 
various kinds of geometrical tesselations) do not make it possible to analyse such 
problems and that is why a new formulation is proposed.  

The main idea of the proposed model is a transformation of the stochastic 
medium into some deterministic media with random material parameters, more 
useful in the numerical analysis. Such a transformation is possible provided the 
probabilistic characteristics of geometric dimensions and total number of defects 
occuring at the interfaces are given, assuming that these random fields are 
Gaussian with non-negative or restricted values only. All non-homogeneities 
introduced are divided into two groups: the stochastic interface defects (SID), 
which have non-zero intersections with the interface boundaries, and the 
volumetric stochastic defects (VSD) having no common part with any interface or 
external composite boundary. Further, the interphases are deterministically 
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constructed around all interface boundaries using probabilistic bounds of geometric 
dimensions of the SID considered. Finally, the stochastic geometry is replaced by 
random elastic characteristics of composite constituents thanks to a probabilistic 
modification of the spatial averaging method (PAM). Let us note that the 
formulation proposed for including the SID in the interphase region has its origin 
in micro-mechanical approach to the contact problems rather than in the existing 
interface defects models.  

Having so defined the composite with deterministic geometry and stochastic 
material properties, the stochastic boundary-value problem can be numerically 
solved using either the Monte Carlo simulation method, which is based on 
computational iterations over input random fields, or the SFEM based on second-
order perturbation theory or based on spectral decomposition. The perturbation-
based method has found its application to modeling of fibre-reinforced composites 
and, in view of its computational time savings, should be preferred.  

Finally, let us consider the material discontinuities located randomly on the 
boundaries between composite constituents (interfaces) as it is shown in Figs. 2.1 
and 2.2.  

Ω
a-1

Ω
a

Figure 2.1. Interface defects geometrical sample 

Ω a-1

Ω a

r
b

Bubble

Figure 2.2. A single interface defect geometric idealization 

Numerical model for such nonhomogeneities is based on the assumption that 
[193,194]:  
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(1) there is a finite number of material defects on all composite interfaces; the total 
number of defects considered is assumed as a random parameter (with nonnegative 
values only) defined by its first two probabilistic moments;  
(2) interface defects are approximated by the semi-circles (bubbles) lying with 
their diameters on the interfaces; the radii of the bubbles are assumed to be the next 
random parameter of the problem defined by the expected value and the variance;  
(3) geometric dimensions of every defect belonging to any aΩ  are small in 

comparison with the minimal distance between the )1,2( −−Γ aa  and ),1( aa−Γ
boundaries for a=3,...,n or with 1Ω  geometric dimensions;  

(4) all elastic characteristics specified above are assumed equal to 0 if aDx ∈ , for 

a=1,2,...,n.
It should be underlined that the model introduced approximates the real defects 

rather precisely. In further investigations the semi-circle shape of the defects 
should be replaced with semi-elliptical [353] and their physical model should obey 
nucleation and growth phenomena [345,346] preserving a random character. 
However to build up the numerical procedure, the bubbles should be appropriately 
averaged over the interphases, which they belong to. Probabilistic averaging 
method is proposed in the next section to carry out this smearing.  

Let us consider the stochastic material non-homogeneities contained in some 
Ω⊂Ωa . The set of the defects considered aD  can be divided into three subsets 

aD′ , aD ′′  and aD ′′′ , where aD′  contains all the defects having a non-zero 

intersection with the boundary ),1( aa −Γ , aD ′′  having zero intersection with ),1( aa −Γ
and )1,( +Γ aa , and aD ′′′  having a non-zero intersection with )1,( +Γ aa . Further, all the 

defects belonging to subsets aD′  and 
a
D ′′′  are called the stochastic interface defects 

(SID) and those belonging to aD ′′  the volumetric stochastic defects (VSD). Let us 

consider such aΩ′ , aΩ ′′  and aΩ ′′′ , where aaaa Ω ′′′∪Ω′′∪Ω′=Ω , that with probability 

equal to 1, there holds aaD Ω′⊂′ , aaD Ω′′⊂′′  and aaD Ω ′′′⊂′′′  (cf. Figure 2.3).  

Figure 2.3.  Interphase schematic representation  
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The subsets aaa Ω ′′′Ω ′′Ω′ ,,  can be geometrically constructed using probabilistic 

moments of the defect parameters (their geometric dimensions and total number). 
To provide such a construction let us introduce random fields );( ωxa∆′  and 

);( ωxa∆ ′′′  as upper bounds on the norms of normal vectors defined on the 

boundaries ),1( aa −Γ  and )1,( +Γ aa  and the boundaries of the SID belonging to aD′ ,

and aD ′′′ , respectively. Next, let us consider the upper bounds of probabilistic 

distributions of );( ωxa∆′  and );( ωxa∆ ′′′  given as follows:  

[ ] ( ));(3);( ωω xVarxE aaa ∆′+∆′=∆′ (2.22) 

[ ] ( ));(3);( ωω xVarxE aaa ∆ ′′′+∆ ′′′=∆ ′′′ (2.23) 

Thus, aa Ω ′′′Ω′ ,  can be expressed in the following form:  

{ }aaaaia PdxP ∆′≤ΓΩ∈=Ω′ − ),(:)( ),1( (2.24) 

{ }aaaaia PdxP ∆ ′′′≤ΓΩ∈=Ω ′′′ + ),(:)( )1,( (2.25) 

where i=1,2 and ),( ΓPd  denotes the distance from a point P to the contour Γ . Let 

us note that aΩ ′′  can be obtained as  

aaaa
Ω ′′′∪Ω′−Ω=Ω′′ (2.26) 

Deterministic spatial averaging of properties aY  on continuous and disjoint 

subsets aΩ  of Ω  is employed to formulate the probabilistic averaging method. 

The averaged property )(avY  characterizing the region Ω  is given by the following 
equation [65,129]:  

Ω

Ω
=

∑
=

n

a
aa

av
Y

Y 1)( ; Ω∈x
(2.27) 

where Ω  is the two-dimensional Lesbegue measure of Ω . Deterministic 

averaging can be transformed to the probabilistic case only if Ω  is defined 
deterministically, and aY  and aΩ  are uncorrelated random fields. The expected 

value of probabilistically averaged )()( ωpavY  on Ω  can be derived as  



Elasticity problems     39 

[ ] [ ] [ ])()(
1

)(
1

)( ωωω a

n

a
a

pav EYEYE Ω
Ω

= ∑
=

(2.28) 

and, similarly, the variance as  

( ) ( ) ( ))()(
1

)(
1

2
)( ωωω a

n

a
a

pav VarYVarYVar Ω
Ω

= ∑
=

(2.29) 

Using the above equations Young moduli are probabilistically averaged over all 

aΩ  regions and their aaa Ω ′′′Ω ′′Ω′ ,,  subsets. Finally, a primary stochastic geometry 

of the considered composite is replaced by the new deterministic one. In this way, 
the n-component composite having m interfaces with stochastic interface defects 
on both sides of each interface and with volume non-homogeneities can be 
transformed to a n+m-component structure with deterministic geometry and 
probabilistically defined material parameters. More detailed equations of the PAM 
can be derived for given stochastic parameters of interface defects (if these defects 
can be approximated by specific shapes - circles, hexagons or their halves for 
instance).  

Let us suppose that there is a finite element number of discontinuities in the 
matrix region located on the fibre-matrix interface. These discontinuities are 
approximated by bubbles – semicircles placed with their diameters on the interface, 
see Figure 2.4. The random distribution of the assumed defects is uniquely defined 
by the expected values and variances of the total number and radius of the bubbles; 
it is shown below, there is a sufficient number of parameters to obtain a complete 
characterization of semicircles averaged elastic constants. 

Using (2.28) and (2.29) one can determine the expected value and the variance 
of the effective Young modulus ke , the terms included in the covariance matrix of 

this modulus and also the Poisson ratio. It yields for the expected value  
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Figure 2.4. Bubble interface defects in the fibre-reinforced composite  

Figure 2.5. Interphase for bubble interface defects  

As can be easily seen in the above relation, there holds  
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In a similar way the variance is derived as  
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It can be shown that this equation could have the following form:
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which, neglecting moments of higher than second order, can be reduced to  
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Now the distribution parameters bS  have to be found. As can be seen 

( ) bbb MrS 2
2
1 π= (2.35) 

where bM  is the number of )(ibΩ  regions found in c2Ω  (according to Figures 2.4 

and 2.5) and is equal to  

bb RmM π2= (2.36) 

Therefore, using fundamental properties of random variables it is obtained that  

[ ] [ ]bb mERME ⋅= π2 (2.37) 

and 

[ ] [ ]bb mVarRMVar ⋅= 224π (2.38) 

From the definition of the expected value one derives  

[ ] ( )[ ] [ ] [ ]{ } [ ]bbbbbb MErVarrEMrESE +== 2
2

2
2

ππ (2.39) 

Finally, the variance of bS  is found as 

[ ] ( )[ ] ( )[ ]bbbbb MrVarMrVarSVar 2
4

2
2

2ππ == (2.40) 

It can be shown that this expression may be transformed into the form: 
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[ ] [ ] [ ]( ) [ ]
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Substituting the equations describing bS  distribution parameters into the relations 

describing the expected value and variance of the ke  modulus, we can similarly 
derive the data necessary for numerical analysis.  

Using analogous equations, the stochastic interface defects in the fibre region 
can be approximated. So, let us assume a finite number of these discontinuities 
inserted into the contact zone. As already established, the fibre material has good 
resistance to degradation (much better than the matrix) and because of this, the 
defects in the 1Ω  region can be approximated as teeth with their sharp sides 
directed towards the fibre centre. A single discontinuity is, from the geometrical 
point of view, the superposition of two circular quadrants with the same radius 
(Figure 2.6). There holds  
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and  
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Figure 2.6. Teeth interface defects in fibre-reinforced composite  
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Figure 2.7. Interphase for teeth interface defects 

The relations describing the discontinuity parameters will have a different form 

( )( ) ttt MrS 2

22 Π−= (2.44) 

so that  
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and, finally 
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The Poisson ratio for the fibre interphase region can be obtained in analogous way. 
Finally, the covariance matrix of the Young modulus for this composite takes the 
following form:  
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Zeroing of the corresponding covariance matrix components can be achieved from 
the assumed mutual independence of the Young modulus in the fibre, its contact 
zone and associated regions for the matrix.  

Special purpose numerical procedure has been implemented to check the 
influence of the interface defects parameters on the effective elastic parameters of 
the interphase. The expected values of the interface discontinuities in the matrix 
and fibre contact zone were assumed as 4, 10, 20 and 40 with the width of the 
observed interface varying between 4.0E-3 and 2.0E-2. The results of these 
computations are presented in Figures 2.8 to 2.13: the expected values of the 
homogenised Young modulus functions are given in Figures 2.8 and 2.9, the 
averaged Poisson ratio functions in Figures 2.10 and 2.11 and the variances of the 
Young modulus functions in Figures 2.12 and 2.13. All of these variables are 
marked on the vertical axis and the expected values of the interface defects radius 
are shown in the horizontal ones.  
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Figure 2.8. Expected values of probabilistically averaged Young modulus in fibre 
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Figure 2.11. Probabilistically averaged Poisson ratio in matrix 

As is expected, the resulting expected values of the homogenised Young 
modulus both in the matrix and the fibre regions, and similarly the Poisson ratio, 
are linear functions of the contact zone widths. The variances of the averaged 
Young modulus are second or higher order functions of this variable and this order 
is directly dependent on the number of interface defects.  

Comparing Figures 2.8 with 2.9 and 2.12 with 2.13 it can be seen that the 
Young modulus in the matrix contact zone is, for the present problem, much more 
sensitive to variation of its parameters than the same modulus in the fibre 
interphase. Larger coefficient of variation of this modulus is obtained in the matrix 
interface region rather than in the fibre contact zone. On the other hand, the 
homogenised elastic properties are derived by averaging their values in both 
regions. Thus, greater changes in these properties can be expected in the matrix 
because of the larger volume of bubbles related to the fibre teeth.  

Another interesting effect (cf. Figures 2.12 and 2.13) is the increase of 
variances of the homogenised Young modulus in the matrix contact zone for 
increasing width of this zone and the number of bubbles. The reverse effect occurs 
for the fibre side of the interface and its teeth. This is due to the fact that bubbles 
occupy more than half of a volume of the corresponding contact zone, and teeth 
less than a half.  
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2.2 Elastostatics of Some Composites  

Elastic properties and geometry of Ω  so defined result in the random 
displacement field );( ωxui  and random stress tensor );( ωσ xij  satisfying the 

classical boundary-value problem typical for the linear elastostatics problem. Let 
us assume that there are the stress and displacement boundary conditions, tΩ∂  and 

uΩ∂  respectively, defined on Ω . Let ijklC  be a random function of 1C  class 

defined on the entire Ω  region. Let ρ  denote the mass density of a material 

contained in Ω  and ifρ  denote the vector of body forces per a unit volume. The 

boundary-differential equation system describing this equilibrium problem can be 
written as follows  

);();();( ωεωωσ xxCx klijklij = (2.48) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

i

j

j

i
ij x

xu

x

xu
x

∂
ω∂

∂
ω∂ωε

);();(
;

2
1

(2.49) 

0)();(, =+ ijij fx ωρωσ (2.50) 

[ ] [ ]);(ˆ);( ωω xuExuE ii = ; ux Ω∈∂ (2.51) 

( ) 0);( =ωxuVar i ; ux Ω∈∂ (2.52) 

[ ] [ ]);();( ωωσ xtEnxE ijij = ; tx Ω∈∂ (2.53) 

( ) 0);( =jij nxVar ωσ ; tx Ω∈∂ (2.54) 

for a=1,2,...,n and i,j,k,l=1,2.  
Generally, the equation system posed above is solved using the well-

established numerical methods. However it should first be transformed to the 
variational formulation. Such a formulation, based on the Hamilton principle, is 
presented in the next section. To have the formulation better illustrated, an example 
of the periodic superconducting coil structure is employed. The stochastic non-
homogeneities simulate the technological innacuracies of placing the 
superconducting cable in the RVE. Its periodicity cell in that case is subjected to 
horizontal uniform tension on its vertical boundaries to analyse the influence of the 
stochastic defects on the probabilistic moments of horizontal displacements. The 
stochastic variations of these displacements with respect to the thickness of the 
interphase constructed are verified numerically. Stochastic computational 
experiments are performed using the ABAQUS system and the program POLSAP 
specially adapted for this purpose.  
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2.2.1 Deterministic Computational Analysis  

The main idea of the numerical experiments provided in this section is to 
illustrate the horizontal displacements fields and the shear stresses obtained for the 
deterministic problem of uniform extension of the periodicity cell quarter. Both 
Young modulus and Poisson ratio are assumed here as deterministic functions; for 
the purpose of the tests, the program ABAQUS [1] is used together with its 
graphical postprocessor. The periodicity cell quarter has been discretised by 224 
rectangular 4-node plane strain isoparametric finite elements according to Figure 
2.14. 

Figure 2.14. Discretisation of the fibre-reinforced composite cell quarter 

The symmetry displacement boundary conditions are applied on the horizontal 
edges of the quarter as well as on the left horizontal edge, while the uniform 
extension is applied on the right vertical edge of the RVE. The standard deviations 
of the composite component Young moduli are taken as )( 1eσ = 4.2 GPa, )( 2eσ =

0.4 GPa and the stochastic interface defect data are approximated by the following 
values: [ ]nE =3, ( ) [ ] 15.005.0 == nEnσ , [ ] RrE 02.0= , ( ) 40.81.0 −== ERrσ .

Probabilistically averaged values of the interphase elastic characteristics are 
obtained from these parameters as follows [ ] GPaeE k 82.3= , ( ) GPaeVar k 48.1= ,

324.0=kν  with the interphase thickness equal to 01040.
k
=∆ . Four numerical 

experiments have been carried out for these parameters taking the values collected 
in Table 2.1.  

Table 2.1. Young modulus values of the interphase for particular tests 
Test number 1 2 3 4 

ke 2e [ ]keE [ ] ( )kk eeE σ⋅− 3 [ ] ( )kk eeE σ⋅+ 3
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Horizontal displacement fields and the shear stress fields for particular 
experiments are presented in Figure 2.15 and 2.19 (test no 1), Figure 2.16 and 2.20 
for test no 2, Figure 2.17, 2.21 for test no 3 and Figure 2.18 for test no 4.  

Comparing these results, it is seen that a decrease of the Young modulus value 
lower than its expected value results in a jump of the horizontal displacements field 
within and around the interphase. This effect can be interpreted as the possibility of 
debonding of the composite components caused by the worsening of the interphase 
elastic parameters, which confirms the usefulness of the presented mathematical-
numerical model in the interphase phenomena analysis. It should be underlined that 
in other models of interphase defects and contact effects at the interface, the 
horizontal displacements have discontinuous character too. On the other hand, 
increasing the Young modulus above its expected value does not introduce any 
sensible differences in comparison with the traditional deterministic model for the 
perfect interface.  

Analysing the shear stresses fields ( )ix12σ  collected in Figures 2.19 and 2.21 a 

jump of the respective values of stresses at the boundary between the fibre and the 
interphase region is observed in all cases. In the case of tests no. 1, 2 and 4 the 
shear stress fields have quite similar characters differing one from another in the 
interface regions placed near the horizontal and vertical edges of the periodicity 
cell quarter. The ( )ix12σ  field obtained for test no. 3 has decisively different 

character: for almost the entire interface the jump of stresses between the matrix, 
interphase and fibre regions is visible. It may confirm the previous thesis based on 
the displacement results dealing with the usefulness of the model proposed for the 
analysis of the interface phenomena.  
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Figure 2.15. Horizontal displacements for test no. 1 
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Figure 2.19. The shear stresses for test no. 1  
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Figure 2.20. The shear stresses for test no. 2 
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Figure 2.21. The shear stresses for test no. 3   

The general purpose of the computational experiments performed is to verify 
the stochastic elastic behaviour of the composite materials with respect to 
probabilistic moments of the input random variables: both the Young moduli of the 
constituents as well as the stochastic interface defects parameters. The starting 
point for such analyses is a verification of the probabilistically averaged Young 
modulus in the interphase (example 1). This has been done by the use of the special 
FORTRAN subroutine, while the next tests have been carried out using the 4-node 
isoparametric rectangular plane strain element of the system POLSAP. Material 
parameters of the composite constituents are taken in examples 1 to 3 as 
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=)( 1eE 84.0 GPa, 1ν =0.22, 2.4)( 1 =eσ GPa, =)( 2eE 4.0 GPa, σ ( ) .e2 0 4= GPa, 

2ν =0.34 (expected values and standard deviations of the Young modulus and 

Poisson ratio, respectively).  

2.2.2 Random Composite without Interface 

Defects  

The main aim of the numerical analysis is to verify numerically the elastic 
behaviour of a fibre composite when the Young modulus of composite components 
is Gaussian random variable. Moreover, numerical tests are carried out to state in 
what way, for various contents of fibre (with round section) in a periodicity cell, 
the random material properties of reinforcement and matrix influence the 
displacement and stress distribution in the cell. A quarter of a fibre composite 
periodicity cell is tested in numerical analysis and its discretisation is shown in 
Figure 2.22.  

Figure 2.22. Discretisation of the periodicity cell quarter 

Numerical implementation enabling the computations is made using a 4-node 
rectangular plane element of the program POLSAP (Plane Strain/Stress and 
Membrane Element). The composite structure is subjected to the uniform tension 
(100 kN/m) on a vertical cell boundary (60 finite elements with 176 degrees of 
freedom). Vertical displacements are fixed on the remaining cell external 
boundaries and the plane strain analysis is performed. Twelve numerical tests are 
carried out assuming the fibre contents of 30, 40 and 50 % and the resulting 
coefficients of variation are taken from Table 2.2.  

Table 2.2. Coefficients of variation for different numerical tests
Test number )( 1eα )( 2eα
1 0.10 0.10 
2 0.10 0.05 
3 0.05 0.10 
4 0.05 0.05 
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Each time the first two probabilistic moments of the displacements are 
observed at the interface and on the tensioned vertical edge. In the case of stress 
expectations, location and maximum value of reduced stress are examined. Figures 
2.23 and 2.24 demonstrate radial displacement coefficients of variation of points 
belonging to the fibre-matrix boundary, which depend on the angle β  describing 

their locations on this boundary. 
The results of test no. 1 (Table 2.2) are presented in Figure 2.23, and the next 

figure shows the results of test no. 3; results of the remaining tests (no. 2 and 4) 

agree with them respectively. In both cases coefficients of variation for o90=θ
are omitted on the graphs because of their large values. For fibre contents equal to 

50%, they are approximately 1.5 times greater than for o0=θ  (disproportion of 
the data would give an illegible picture). Therefore, it can be concluded that the 
randomness of displacements on the considered boundary depends mainly on the 
random character of fibre elastic properties, which means  

2,11];[)]([ Ω∈≅ ∂αα xexu (2.55) 
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Figure 2.23. Coefficients of variation in test no. 1  
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Figure 2.24. Coefficients of variation in test no. 3  

Fibre contents in periodicity cell influence also displacement coefficients of 

variation on 12Ω∂ . This influence is visible especially at oo 450 ≤≤ θ . For 40% 

contents this decrease is not so sharp, and for 50% plane fraction the tendency is 
the opposite: the coefficient increases up to about 1.5 times of the value obtained at 

o0=θ . In a physical way it may be interpreted as increasing the random measure 
of uncertainty about displacements perpendicular to the fibre boundary of the 
points belonging to its upper part with increasing fibre radius. 

Figures 2.25-2.26 show displacement coefficients of the variation of horizontal 
points belonging to a vertical, uniformly tensioned edge of periodicity cell obtained 
in tests no. 1, 2, 3 and 4 respectively. Real numbers in decreasing order denote 
height on the vertical tensioned edge on the horizontal axes of these figures.  
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Figure 2.25. Coefficients of variation in test no. 1  
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Figure 2.26. Coefficients of variation in test no. 2  
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Figure 2.27. Coefficients of variation in test no. 3  
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Figure 2.28. Coefficients of variation in test no. 4  

The main conclusion from these results is that the random character of the 
matrix elastic properties influences the randomness of displacements at the 
tensioned edge of the composite specimen tested. Analogously to the previous 
observations it can be written that  
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][)]([ 2exu αα ≅ ; σ∂ ˆΩ∈x (2.56) 

Let us note that the random character of fibre stiffness has rather secondary 
influence here. The curves describing displacement variation coefficients on the 
edge are becoming less and less sharp together with an increase of the coefficients 
of variation of the fibre Young modulus. Increase of fibre contents in the 
periodicity cell, as expected, in all cases decreases variation coefficients of 
tensioned edge displacements, which physically can be interpreted as increasing 
stiffening of periodicity cell by the fibre. 

Now, let us analyse expected values of maximum stresses (in MPa) in fibre and 
matrix specified in Figure 2.29. Darker bars show the maximal stresses in the 
matrix region, while lighter bars denote the fibre region, respectively.  

Generally, it can be observed that the difference between the obtained expected 
values and the results of deterministic tests is approximately equal to the 
computational error. This difference would undoubtedly be much bigger if the 
formula describing these values included a component connected with elasticity 
tensor derivatives. The present version of computer program includes only the first 
two components, which correspond with expected values of displacement 
functions.  

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

30(0)

30(2)

30(4)

40(0)

40(2)

40(4)

50(0)

50(2)

50(4)

Figure 2.29. Expected values of maximal stresses  

The results obtained lead to the conclusion that the most important factor 
influencing the value of maximum stresses is unquestionably the fibre radius, cf. 
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Figure 2.29. In the case of the matrix region, maximum stresses increase 
approximately in direct proportion to fibre radius increment 

RxE ≈)]([ maxσ ; 2Ω∈x (2.57) 

To get an analogous relation for maximum stress appearing in the fibre, it is 
necessary to make a more precise numerical analysis. In tested examples with 
plane fractions of 30, 40 and 50% extremum appeared at 40% contents of fibre in 
the periodicity cell. Another factor, which influences the expected values of 
maximum stresses within a given material, is its coefficient of variation for the 
Young modulus. The following relation can be formulated:  

][)]([ max iexE ασ ≈ ; ix Ω∈ (2.58) 

Finally, it can be observed that there is a third-order influence of stronger 
material random changes of elastic features on maximum stresses in the matrix, 
especially with decreasing fibre contents in the RVE. 

In the context of the present numerical analysis of maximum stresses it should 
be added that, apart from changes in the expected values of these stresses, a change 
of their locations was observed. In order to state the relation between the location 
of changes in the direction of the stress functions extremum and fibre radius 
increment it would be necessary to consider a wider range of this radius variation 
(equivalent to, for example, a surface fraction of 10 to 60%) with simultaneously 
increasing the number of tests (each 1 to 5% for example). The most essential thing 
would be, however, creating a mesh much more precise than the one used in the 
above tests, especially near the composite interface, where we have, of interest to 
us, maximum stresses. 

2.2.3 Fibre-reinforced Composite with Stochastic 

Interface Defects 

The subject of the third numerical example is the fibre-reinforced periodic 
composite, which has been discretised in Figure 2.30 as a cell quarter with smaller 
contact zones on the left and with larger ones on the right. The composite structure 
is subjected to uniform tension on the vertical cell boundary. Six numerical tests 
have been performed assuming interphases with different values of the total 
number of defects (in turn: 0%, 25% and 50% of the interface length). In each test, 
the first two probabilistic moments of the displacements are observed on the phase 
boundary and on the vertical edge subjected to tension and the coefficient of 
variation for displacements. 



Elasticity problems     61 

Figure 2.30.  Quarter periodicity cell mesh for the SFEM analysis  
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Figure 2.31.  Expected values of horizontal displacement at the interface  
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Figure 2.32. Coefficients of variation of horizontal displacements at the interface  
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Figure 2.33. Expected values of horizontal displacements at the tensioned edge  
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Figure 2.34. Coefficients of variation of horizontal displacements at the tensioned edge  

The expected values of the displacements and their coefficients of variation are 
placed on the vertical axes of all figures. The angle β, which determines the 
location of a point on the fibre-matrix interface with respect to the x or y-
coordinate on the tensioned edge, and which is marked on the vertical axes.  

A further general observation is a direct proportionality between the number of 
interface defects and the volume of the contact zone as well as the expected values 
or coefficients of variation of these displacements. Small differences occur in the 
interface expected values of displacements for larger values of the angle β.

By comparing the coefficients of variation of the interface displacements 
(Figure 2.32 and 2.34) quite different forms for the relation between these 
coefficients and the angle β are observed. The model with a large contact zone 
shows a high sensitivity to the number of defects and the changes for the small 
contact zone are proportional. In the case of the coefficients of variation of the 
tensioned edge horizontal displacement both the models give approximately 
reversed effects. For example a small contact zone causes larger coefficients for 
smaller β values than for the larger ones (Figure 2.32). For both sizes of the contact 
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zones the changes in the coefficient α are inversely proportional to the increase in 
the number of discontinuities and show some similarity.  

Finally, in both models the expected values of the displacement are quite 
similar with respect to their locations. In the large contact zone (Figure 2.31 and 
2.33) the differences between the obtained expected values of displacements for 
0%, 25% and 50% of discontinuities are more significant.  

2.2.4 Stochastic Interface Defects in Laminated 

Composite 

The two-component layered composite has been tested in this example. The 
discretisation into 72 finite elements and 233 degrees of freedom as well as the 
mixed boundary conditions is shown in Figure 2.35. Both layers have been 
uniformly extended in the opposite directions to verify the influence of interphase 
between them on the overall behaviour of the structure.  

Figure 2.35. Two-layer laminate in the computational shear test  

Ten numerical experiments have been carried out in the example: the 
deterministic problem (test-d) and the stochastic one without interface defects 
(test-s). In the next experiments the standard deviations of the defects are taken as 

][1.0][ rEr ⋅=σ , ][1.0][ nEn ⋅=σ , and the expected values are shown in Table 2.3 

(contribution of the boundary occupied by bubbles to the total boundary is given in 
brackets).  

Table 2.3. The expected values of the interface defects tested  
 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

E[r] 5.0E-2 5.0E-2 5.0E-2 5.0E-2 1.0E-1 1.0E-1 1.0E-1 1.0E-1 
E[n] 5 

(10%) 
10
(20%) 

15
(30%) 

20
(40%) 

5
(20%) 

10
(40%) 

15
(60%) 

20
(80%) 

The results of the analyses have been collected in Table 2.3, which shows the 
expected values and the coefficients of variation of the displacements and are 
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generally consistent with those obtained experimentally (in the range of expected 
values). The increases of the expected values in comparison to the results obtained 
in test-d and test-s are included also in this table. The coefficients of variation of 
the horizontal displacements for smaller and greater interphase are presented in 
Figure 2.36 and 2.37 as a function of the location of a point on the 

2
Ω  boundary. 

On the horizontal axis the height of the point (h) in decreasing order is presented: 
the coordinate 2.5 denotes the point belonging to the interface and 1Ω region on the 

extended 2Ω  boundary, while the coordinate 5.0 denotes the point belonging to the 

upper 2Ω  boundary.  

Table 2.4. The expected values and coefficients of variation of the displacements tested 

 Test-d test-s test 1 test 2 test 3 test 4 test 5 test 6 test 7 Test 
8

E[q]
(E-2)

1.924 
2.610 

1.939 
2.633 

2.049 2.089 2.134 2.188 2.686 2.844 3.065 3.408 

∆E[q]
(%)

-0.8 
-0.9 

0.0 
0.0 

5.7 7.7 10.1 12.8 2.0 8.0 16.4 29.4 

α[q] - 0.082 0.078 0.080 0.083 0.089 0.088 0.098 0.120 0.158 

Generally, all the results computed show that the most sensitive region to the 
input random parameters is the point located on the weaker material (matrix) and 
the interphase on the extended 2Ω  boundary. Moreover, analysing the increases of 

the expected values of horizontal displacements on the tensioned boundary the 
significant influence of the stochastic interface defects introduced can be observed. 
In all tests performed the displacements obtained are greater than for the 
composites without defects between the composite constituents.  

Moreover, the increases of the displacements analysed increase faster than the 
increases of the total length of the boundary occupied by the bubbles, which 
follows the stochastic nonlinearity of the model presented. The diagrams of the 
displacements have analogous characteristics to those obtained for the coefficients 
of variation presented later. However, considering the large disproportions between 
the values computed near the interphase and outside it, these graphs have been 
omitted.  
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Figure 2.36. Coefficients of variation of horizontal displacements for shear test (I) 
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Figure 2.37. Coefficients of variation of horizontal displacements for shear test (II) 

Comparing the coefficients of variation of the horizontal displacements it is 
seen that, especially in case of tests no. 5 to 8 (the interphase twice as large as for 
tests 1 to 4) the significant increase of these displacements is about 95% in case of 
test no. 8. These increases are analogous to the increases of expected values greater 
for displacements rather than the corresponding increases of total length of 
interface boundary occupied by the bubbles.  

As can be expected, the statistical response of the laminate should depend on 
the contrast between stronger and weaker layer material properties, interphase 
elastic parameters, the total number of layers in the composite etc. Essentially 
different situation can be observed when both material properties and external load 
are introduced as random variables [273].  
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2.2.5 Superconducting Coil Cable Probabilistic 

Analysis  

The main ideas of the experiment [193] are as follows: (i) comparison of the 
stochastic behaviour of the superconducting coil cable in the original geometry 
with the model in which the technological nonhomogeneities have been 
probabilistically averaged; (ii) verification of the model sensitivity to the assumed 
thickness of the interphase introduced.  

The example of the RVE analysed is presented in Figures 2.38 and 2.39 (all 
geometric dimensions are given in mm). A single discontinuity is modelled by 
complementing two circle quarters (teeths with their sharp sides directed to the 
interior of the superconducting cable). Their radii are equal to 1.5 mm for defects 
on the interface superconducting cable-tube and 2.0 mm for defects on the 
interface cable-jacket. The periodicity cell is subjected to a horizontal uniform 
tension on its vertical boundaries; due to symmetry only one quarter of this cell is 
employed. Displacement boundary conditions on all the remaining external 
boundaries are assumed to satisfy the symmetry conditions.  

Figure 2.38. Superconducting coil cable RVE geometry  

Figure 2.39. Quarter periodicity cell mesh for the superconductor  
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The elastic properties and their probabilistic characteristics of the RVE 
components, the expected values and the standard deviations of Young moduli, 
Poisson ratios and Kirchhoff moduli are collected in Table 2.5.  

Table 2.5.   Elastic characteristics of composite components  
Material E[e] [GPa] σ(e) [GPa] ν G [GPa] 

Tube 205.0 8.0 0.265 81.0 
Superconductor 182.0 0.0 0.300 70.0 
Jacket 126.0 12.0 0.311 48.0 
Insulation 36.0 0.0 0.210 11.0 

The following tests are performed: deterministic test including defects non-
averaged (test 1), an experiment without defects (test 2), an experiment with 
defects averaged in the interphase (test 3) or over the finite elements which they 
belong to (test 4). The first two probabilistic moments of the displacements are 
observed in each test on the interface determined by a radius equal to 9.0 mm 
(between the lower superconductor interphase and the superconductor region). 
Four additional tests are performed in test 3 to verify the results variations with 
respect to the interphase thicknesses: test 3A, where the thickness is equal to the 
expected value of the relevant geometric dimensions of interface defects, test 3D 
with thickness given by eqn (2.22) and tests 3B and 3C with the intermediate 
thicknesses.  

The results of these computations due to tests numbered 1 to 4 are presented in 
Figures 2.40 and 2.41: the expected values of the horizontal displacements and 
their coefficients of variation. The first two moments are marked on the vertical 
axes of these figures, while the angle β, which determines the location of a point 
on the interface considered with respect to the x-coordinate on the horizontal axes. 
The results of tests 3A to 3D are collected in Table 2.6 presented below the figures. 
The expected values of displacements observed (in mm) are given in the upper row 
of each table cell and the coefficients of variation in the lower one.  
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Figure 2.40. Expected values of horizontal displacements at the tensioned edge 
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Figure 2.41. Coefficients of variation of horizontal displacements at the tensioned edge  

Table 2.6. The expected values and the coefficients of variation of horizontal displacements  
β [°] Test 3A Test 3B Test 3C Test 3D 
0 1.066 

0.0241 
1.069 
0.0237 

1.078 
0.0235 

1.085 
0.0233 

9 1.047 
0.0239 

1.053 
0.0238 

1.057 
0.0234 

1.062 
0.0232 

18 0.985 
0.0236 

0.993 
0.0234 

0.994 
0.0231 

1.003 
0.0230 

27 0.895 
0.0239 

0.897 
0.0235 

0.908 
0.0234 

0.910 
0.0231 

36 0.783 
0.0241 

0.784 
0.0238 

0.784 
0.0235 

0.790 
0.0232 

45 0.631 
0.0212 

0.634 
0.0212 

0.639 
0.0213 

0.645 
0.0214 

Generally, it can be observed that in all stochastic tests the expected values of 
horizontal displacements are greater than the corresponding values obtained from 
deterministic tests, which follow equation (1.134). The greatest expected values of 
displacements observed are obtained for test 4: from 50% (for β≈0°) to 100% (for 
β≈80°) greater than in the remaining tests. Analogous observation can be done for 
the coefficients of variation. Generally, these facts follow the great variances of the 
Young moduli in finite elements containing defects averaged in comparison to the 
remaining elements.  

On the basis of these results it can be stated that the observed probabilistic 
moments of displacements are strongly sensitive to the scale of the composite 
structure, which probabilistic averaging is applied in. A rapid decrease of the total
area of the region averaged results in a significant increase of the effective Young 
modulus and much smaller increases of the expected values for the displacements. 
Further, the expected values obtained in test 2 (without including interface defects 
in any form) give the most exact results of the horizontal displacements computed 
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in the deterministic model. However, for β≈30°, which corresponds to the defects 
location, the best approximation is obtained in test 3 (with interphase zones 
introduced).  

Finally, let us consider the stochastic variations of the interface horizontal 
displacements to the interphase zone thicknesses illustrated by the results collected 
in Table 2.6. It can be observed that increasing thickness causes a small increase of 
the horizontal displacements and a decrease of the coefficients of variation. The 
decrease (or increase) has a linear character and the maximum increment is no 
greater than 2% of the values considered. It confirms the possibility of using the 
model presented in the numerical analysis of stochastic non-homogeneities 
(especially interface defects) in composite materials. To verify the applicability of 
the model presented this sensitivity should be discussed as a function of interface 
defects and elastic properties of composite component stochastic parameters.  

Let us note that the SFEM methodology can be applied in further analyses for 
numerical modelling of random both uncoupled and coupled thermal, electric or 
magnetic fields in various superconducting structures [221,385]. A common 
application of the stochastic perturbation technique with computational plasticity 
algorithms will enable us to perform modelling of interface debonding in the case 
of laminates and fibre-reinforced composites, which will essentially extend our 
knowledge of composites behaviour in relation to the existing models 
[251,384,386].  
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2.3 Homogenisation Approach 

Homogenisation methods present some specific approach to such 
computational analysis of composite materials, where the homogeneous medium 
equivalent to the real composite is proposed. The assumptions decisive for these 
methods are introduced in the context of numerous equivalence criteria; usually it 
is assumed that internal energies per unit mass stored in both systems are to be 
equal. A concept of the Representative Volume Element (RVE) for the composite 
is most frequently used together with the corresponding assumption on a scale 
parameter relating dimensions of the RVE to the entire composite - it has to tend 
to 0, which is usually unrealistic for most of engineering composites. It is evident 
now that the spatial distribution of the reinforcement (uniaxially periodic, with 
rectangular, hexagonal, triangular periodicity or completely random according to 
Gaussian or Poisson distributions) is of decisive importance for the effective 
material tensors [52]. There exist some mathematical approaches, where the scale 
parameter is assumed to be some small and positively defined [370]. It gives a less 
restrictive model, but such an approach has no general corresponding FEM 
computational implementations in the existing software. The essential differences 
between these two methodologies are especially apparent in homogenisation of 
dynamic and transient heat transfer problems, where dispersive effects are 
observed under the last assumption only.  

Most of the homogenisation methods have one common point - the necessity 
of use of the so-called homogenisation functions. These functions are the solutions 
of the cell problem on the RVE under periodic boundary conditions, where some 
additional conditions can be imposed on external boundaries or/and interfaces 
between the composite constituents. Some exceptions can be obtained for the 1D 
homogenisation problems, where effective thermal (and/or elastic) parameters may 
be derived directly. Let us note that if some further assumptions on composite 
microgeometry are introduced (a composite has a specified number of components 
in the periodicity cell and the shapes and/or location of the components are given), 
then the closed form equations for the effective material properties for either 2 or 
3D structures can be derived [6,65,253].  

2.3.1 Unidirectional Periodic Structures   

Let us consider a unidirectional heterogeneous bar in unstressed and unstrained 
state, with periodic structure and with elastic properties piecewise constant. An 
example of the structure under considerations is presented below (Figures 2.42 and 
2.43).  
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Figure 2.42. RVE of two-component composite bar  

Figure 2.43. Unidirectional periodic two-component composite beam  

Using the parameter ε the displacements and stresses are asymptotically expanded 
in the bar as follows [30,43,133,308]:  

...),(),(),()( 2210 +++= yxyxyxx uuuu εεε (2.59) 

and  

...),(),(),()( 2210 +++= yxyxyxx σεεσσσ ε (2.60) 

where ),()( yxiu , ),()( yxiσ  are periodic, too; the coordinate x is introduced in the 

macro scale (Figure 2.43), with y in the micro scale (cf. Figure 2.42). Introducing 
these expansions into classical Hooke law it is found that  
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whereas the equilibrium equation  

0=+
∂

∂ ε
ε

γσ
x

(2.62) 

results in  
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Hence, the following zeroth, first and second order constitutive equations are 
derived:   
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Applying an analogous methodology, the equilibrium equation is expanded as  
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It is observed that zeroth order displacements and stresses depend on the 

macroscale coordiante only )(uu x
00 =  and )(00 xσσ = , so that it can be written 

that  
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Integrating both sides of (2.69) over the periodicity cell of a bar, there holds  
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which leads to the following description of the homogenised (effective) Young 
modulus   

∫
Ω

Ω
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Such a formulation makes it possible to derive the closed form equations for the 
expected values and covariances of the homogenised Young moduli using classical 
definitions of probabilistic moments or by an application of perturbation theory. It 
is possible to derive such equations for particular engineering examples only if the 
bar has a geometrical characteristics piecewise constant within its length. Let us 
consider further the RVE built up with n piecewise constant components defined 
on Ω by the use of design parameters ( )iii lAe ,,  where ei=const. for ily ∈  and such 

that ji ee ≠  for i,j=1,...,n. Hence, the integration in formula (2.71) can be replaced 

by   
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where the variables Ai, li denote the cross-sectional area and the length of the ith 
structural element. After some algebraic transformations relation (2.72) can be 
transformed to  
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which can be efficiently implemented in any FEM computer program. Let us note 
that an analogous procedure can be applied successfully for the transient heat 
transfer problem Young moduli are to be replaced here by the relevant coefficients 
of heat conduction.  

If the general beam structure is to be homogenised, the equilibrium and 
constitutive equations should be enriched with transversal effect components but, 
for the composite beams having constant Poisson ratio within its length and various 
Young moduli, the formulation posed above is quite sufficient for the needs of 
computational analyses. Moreover, it should be underlined that the homogenisation 
model for 2D and 3D problems is carried out similarly but the effective elasticity 
tensor is to be introduced instead of the Young modulus only. As a result, it is not 
possible to derive any closed form algebraic equations describing the effective 
properties of a composite, which significantly complicates numerical analysis. On 
the other hand, the randomness in multidimensional composite structures appears 
usually in their geometry, too, which must be implemented in the FEM analysis 
using some special finite element types.  

Finally, considering further applications of the homogenisation approach in the 
elastodynamics of engineering structures, the effective mass density of a composite 
can be derived according to the spatial averaging method as [28,265]  
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∫
ΩΩ

= dyyeff )(
1)( ρρ . (2.74) 

Let us mention that this relation is used for any space configuration and 
periodicity conditions of a composite. Since that, having a homogenised 
elastostatic problem, especially in random case, further extension to the 
elastodynamic analysis in the context of a stochastic second order perturbation 
technique does not seem to be very complicated. The expected values for the 
effective Young modulus can be obtained by the second order perturbation second 
probabilistic moment analysis as [162]  
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Using classical probability theory definitions and theorems   
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one can determine that  
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Further, using the analogous methodology the covariance matrix for the 

effective Young modulus ( ))(effeCov  is derived  
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and, using the classical perturbation approach, there holds  
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After all possible algebraic transformations and by neglecting the terms of order 
greater than the second, it is obtained that  
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For the particular case of the two-component composite structure there holds  
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Let us consider the case of a 1D bar structure with two homogeneous 
components having deterministically defined geometry (cross-sections and 
lengths) and with Young moduli assumed to be the input random variables. The 
zeroth, first and second order derivatives of the effective elasticity with respect to 
the Young moduli of the composite constituents are obtained by analytical 
derivation:  

• zeroth order components   
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• first order components   
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• second order components   
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Then, the resulting covariance matrix of the effective elastic behaviour for the two 
component composite structure is described as follows:  
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To obtain the stochastic finite element model let us introduce the displacement 
field approximation. The zeroth, first and second order stiffness matrices for the 
homogenised bar structures may be written out by analogy to the previous 
considerations:     
• zeroth order stiffnesses 
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with m denoting the total number of bar intervals with constant cross-sectional 
area A(m) ;  
• first order stiffnesses  
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• second order stiffness  
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Hence, the canonical set of the second order SFEM equations can be rewritten as 
follows:  
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which makes it possible to compute 0)(effq , reff ),(q  and rseff ),(q  and to calculate the 

first probabilistic moments of displacements as  

[ ] ( ))()(),(
2
10)()( , eff

r
eff

r
rseffeffeff eeE Covqqq += (2.93)

( ) ( ))()(),(),()()( ,, eff
r

eff
r

seffreffseffreff eeCovqqqqCov = (2.94)

The expected values and cross-covariances of the stresses are obtained in 
comparison to the heterogeneous model as 
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The first computational example deals with Young moduli defined as 
deterministic function and cross-sectional area being a random field, while in the 
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second Young moduli of the constituents are only randomised. Due to the 
homogenisation method presented, the effective Young modulus is obtained in the 
form of a random field in both cases. Since the fact that homogenisation is only the 
intermediate tool to analyse composite structures, the expected values and standard 
deviations of displacements for homogenised structures are compared against those 
obtained for real, multi-component structure models.  

The results of these analyses make it possible to modify the theoretically 
established probabilistic homogenisation algorithm to approximate expected values 
as well as covariances in the most efficient way. Neglecting the fact that effective 
material characterisation presented above is derived assuming periodicity of a 
composite, we try to use this approach in composites having small number of the 
RVEs on their lengths.  

The first numerical experiment deals with the homogenisation of a beam 
clamped at both sides and subjected to uniformly distributed vertical static load 
(see Figure 2.44), analogously to the computational illustration demonstrated in 
[208].  

                                                          x 3

                                 
               Q(x 1)

                                                                                                                          x1

            e 2                                                                             e 1

                           L/2                                                 L/2  

Figure 2.44. Clamped beam homogenised 

Young moduli of the composite beam constituents discretised here by the use 
of 100 finite elements, are assumed to be deterministic variables, so that 
e1/e2={1.00; 1.25; …; 3.00}, while e2=2.0 GPa and ν1=ν2=0.30. The mesh nodes 
are numbered sequentially from the left to right edge. The cross-sectional area of 
the beam Ar is an input random field defined as  
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Other data are taken as follows:  
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0
1 )( AfxQ γ+=  for  f =49.61 and γ =7.7126 

while  
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It is observed that starting from deterministically defined Young moduli the 
effective Young modulus random field is obtained as a result of the cross-
sectional area randomness.  

The main purpose of the SFEM-based tests is to verify the variability of the 
two-moment statistical response of the structure with respect to probabilistic input 
random fields. The results of the analysis are collected in Figures 2.45-2.48. The 
first two figures report expected values (vertical axes) as functions of location 
around the midpoint of a beam (horizontal axes); variable NN denotes here the 
node number where node 51 is the central point. The models outlined in the legend 
correspond to different composite configurations related to e1/e2 value – model 2R 
is equivalent to computational analysis of the beam in its real heterogeneous 
configuration with the Young moduli relation taken as 1.25. Thee data labelled as 
model 2H denote SFEM analysis results for the same homogenised model. The 
data obtained for model 1 denote the homogeneous beam withe1=e2, while ‘j’ from 
‘model jR’ or ‘model jH’ is equivalent to the relation taken from the set 
{1.00;1.25;…;3.00}, accordingly.  

Figure 2.45. Expected values of the beam displacements 
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Figure 2.46. Expected values of the beam displacements  

Figure 2.47. Standard deviations of the beam displacements 
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Figure 2.48. Standard deviations of the beam displacements 

Analysing the results presented in Figures 2.45 and 2.46 as well as 2.47 and 
2.48 it is seen that the homogenised structure approximates the real one with 
satisfactory precision, which is observed especially for smaller values of the 
relation e1/e2. It can be seen that this approximation effectiveness has the same 
character for the expected values and standard deviations of displacements 
analysed. It is characteristic that while probabilistic moments of structural 
displacements are symmetric for symmetric boundary conditions imposed on the 
homogenised beam then for a real composite beam this field has not the symmetric 
character at all with greater values under the weaker part of a beam. Further, 
relating standard deviations to the corresponding expected values, it is observed 
that output coefficients of variance for displacements are equal to 0.05 (in real and 
homogenised beam) which, taking into account limitations of the perturbation 
technique, enable one to confirm the usefulness of this methodology for such an 
analysis. It should be underlined that neglecting the bending effects in 
homogenisation procedure has no effect on the differences observed because the 
Poisson ratio of both composite components is the same while the 3D beam finite 
element used is quite appropriate for that analysis.  

Two-component linear elastic composite bar is built up with two homogeneous 
components with the following material and geometrical data: E[e1]=3000, A1=4, 
l1=15, E[e2]=2500, A2=2, l2=10 are considered (see Figure 2.49). The covariance 
matrix of Young moduli variables is assumed to be equal:  

9.0E-05

1.0E-04

1.1E-04

1.2E-04

1.3E-04

1.4E-04

1.5E-04

1.6E-04

1.7E-04

1.8E-04

1.9E-04

41 43 45 47 49 51 53 55 57 59 61

Model 1

Model 6R

Model 6H

Model 7R

Model 7H

Model 8R

Model 8H

Model 9R

Model 9H

stdev(u)

NN



82     Computational Mechanics of Composite Materials  

( ) 310
500,62.

000,75000,90
, ×⎥

⎦

⎤
⎢
⎣

⎡
=

symm
eeCov sr

while the external loads Q1=200 and Q2=250 are applied to the structure:  

                                           1                              6                               12  

                                                                                  Q 1                            Q 2

                                                         L 1                              L 2

Figure 2.49. Two-component bar structure 

The expected value and the covariance matrix of the effective Young modulus 
are calculated first and next, probabilistic moments of displacements and stresses 
for the original composite are computed. We compare these results against those 
determined for the homogenised structure. The input data and the results of 
computations are collected in Table 2.7 given below – the components of 
covariance matrix are equivalent to 10% standard deviation of the input Young 
moduli according to the following relation:  
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Table 2.7.
Probabilistic data and intermediate results for computational experiments  
Model 

no 
Input data  
(1st probabilistic  moments) 

Input data  
(2nd probabilistic moments) 
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Next, the first two probabilistic moments of horizontal displacements are 
analysed along the bar. The results obtained for the stiffer part show better 
approximation by model 2 (with covariance matrix homogenised), while for a 
weaker part by model 3 (with original covariance matrix). Quite a different 
situation is observed for the standard deviations - those resulting from model 3 



Elasticity problems     83 

approximate those obtained in model 1 very well, while the results of model 2 are 
definitely smaller.  

Table 2.8. Expected values and standard deviations of beam displacements 
Node Expected values Standard deviations 

Number 
(NN) 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

1 0 0 0 0 0 0 

2 0.0789 0.0825 0.0829 7.81E-03 5.89E-03 8.61E-03 

3 0.1578 0.1649 0.1659 1.56E-02 1.18E-02 1.72E-02 

4 0.2367 0.2474 0.2488 2.34E-02 1.77E-02 2.58E-02 

5 0.3156 0.3298 0.3318 3.13E-02 2.35E-02 3.45E-02 

6 0.3945 0.4123 0.4147 3.91E-02 2.94E-02 4.31E-02 

7 0.4734 0.4947 0.4976 4.69E-02 3.53E-02 5.17E-02 

8 0.5786 0.586 0.5895 5.73E-02 3.80E-02 5.97E-02 

9 0.6838 0.6772 0.6813 6.77E-02 4.06E-02 6.76E-02 

10 0.7891 0.7684 0.7732 7.81E-02 4.32E-02 7.56E-02 

11 0.8943 0.8596 0.865 8.85E-02 4.59E-02 8.36E-02 

12 0.9995 0.9509 0.9569 9.90E-02 4.85E-02 9.16E-02 

13 1.1045 1.0421 1.0487 0.1094 0.0511 9.95E-02 

Taking into account the results of computational experiments presented in Table 
2.8, the following algorithm is proposed to model strictly periodic composite 
beams using homogenisation-based SFEA.  

Input random variables definition

[ ] ( )sr
r bbCovbE ,,

Initial boundary value problem

0, =+ εε γσ jij

→ solve:
00)(0)( QqK =εε

0)(),(),(0)( εεεε qKqK rr −=

( ) ( )srrssr bbCov ,2 0)(),(),(),()2)((0)( εεεεεε qKqKqK −−=
Evaluation of effective Young moduli parameters

[ ] ( )seffreffeff eeCoveE )()()( ,,
Homogenised boundary value problem :

0)()(
, =+ effeff
jij γσ

1st SFEM solution (zeroth order homogenised displacements ):

→ solve:
00)(

]1[
0)( QqK =effeff

0)(
]1[

),(),(
]1[

0)( effreffreffeff qKqK −=



84     Computational Mechanics of Composite Materials  

( ) ( )seffreffeffrseffseffreffeffeff eeCov )()(0)(
]1[

),(),(
]1[

),()2)((
]1[

0)( ,2 qKqKqK −−=
2nd SFEM solution (first and second order homogenised displacements )
→ solve:

00)(
]2[

0)( QqK =effeff

0)(
]2[

),(),(
]2[

0)( effreffreffeff qKqK −=

( ) ( )sreffrseffseffreffeffeff bbCov ,2 0)(
]2[

),(),(
]2[

),()2)((
]2[

0)( qKqKqK −−=
Final evaluation of displacements probabilistic moments

[ ] )2)((
]2[

0)(
]1[

)( effeffeff qqqE βββ +=

( ) ( )srseffreffeffeff bbCovqqqqCov ,, ),(
]2[

),(
]2[

)()(
βαβα =

Figure 2.50. Algorithm of homogenisation-based SFEM analysis  

It should be underlined that such a stochastic second order homogenisation 
scheme has its basis in the computational observations only. However its results 
are in good agreement with those observed for the real composite model subjected 
to the same boundary conditions.

2.3.2 2D and 3D Composites with Uniaxially 

Distributed Inclusions  

This class of composites is equivalent to all 2D and 3D periodic heterogeneous 
structures where isotropic homogeneous constituents are distributed periodically 
along the x3 axis, which in practice is observed in case of the periodic laminates. 
Further, it should be mentioned that the effective elasticity tensor components valid
for these structures can be reduced to the periodic bar structure shown above only 
if the 1D case is considered. The following system of partial differential equations 
is considered here to calculate probabilistic moments of the effective elasticity 
tensor [159]:  
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According to the general theory, the homogenised formulation of the problem has 
the following form:  
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where the effective coefficients )eff(

ijkl
C  are given by the formula. The 
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for any ( )yχ
mn  periodic on the RVE. Since the heterogeneity distribution is 
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for any ( )
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ymn
χ  being periodic on the RVE. Therefore, (2.100) is ordinary 

differential equations system, which can be solved explicitly as  
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If the elasticity tensor components 
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Taking into account that the state functions depend on y3 axis only, the effective 
parameters are expressed as  

Ω
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Finally, the homogenised elasticity tensor components are given by  
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In case of isotropic and linear elastic constituent materials of this composite, it is 
obtained after some algebraic manipulation [159,177]  
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while the remaining components are equal to 0. The layered structure analysed in 
this experiment has material characteristics corresponding to a glass-epoxy 
composite: E[e1]= 84.0 GPa, σ(e1)= 8.4 GPa, ν1=0.22 and E[e2]= 4.0 GPa, σ(e2)= 
0.4 GPa, ν2=0.34; the volume ratios are taken as equal. The results of 
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computational analysis are collected as deterministic quantities, expected values 
and coefficients of variation computed for the particular components in Table 2.9 
below.  

Table 2.9. Effective materials characteristics 

Effective elasticity 
tensor components 

Deterministic Expected value Variation 

C1111=C2222 29.2316 GPa 29.2260 GPa 0.0767 
C3333 10.4662 GPa 10.4566 GPa 0.0954 
C1133=C3311=C2233=C3322 6.1479 GPa 6.1424 GPa 0.0954 
C1122=C2211 34.3657 GPa 34.3601 GPa 0.0794 
C1212=C2121 50.7785 GPa 50.7785 GPa 0.0936 
C2323=C3232 51.5489 GPa 51.5608 GPa 0.0968 

Comparing the results presented in Table 2.9 it is seen that there is no 
difference between the deterministic result and the corresponding expected values 
for effective tensor components, while the coefficient of variation has values 
generally smaller or almost equal to the corresponding input variables value 0.1. 
To verify the variability of the tensor with respect to input Young moduli expected 

values, the MAPLE plot3d option for [ ])(
2323

effCE  and ( ))(
2323

effCα  has been applied; the 
remaining components show almost the same tendencies. The range of variability 
for both the composite components Young moduli is taken as ±10% of the original 
values and, as can be observed in Figures 2.51 and 2.52, Young modulus of the 
weaker material appears to be the decisive parameter for the overall elastic 
characteristics of this composite in terms of a homogenisation method applied. 

Further, it can be noticed that an increase of the coefficient of variation ( ))(
2323

effCα
results from decreasing matrix Young modulus, while the inverse relation is 

observed in case of [ ])(
2323

effCE .

Figure 2.51. Expected values for C2323 component  
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Figure 2.52. Coefficients of variation for C2323 component 

It should be underlined that the model for one dimensionally distributed 
inhomogeneity is valid after some minor simplifications for the heat conduction 
homogenisation of the same composites, since probabilistic numerical algorithm 
has a quite general character.  

2.3.3 Fibre-Reinforced Composites  

2.3.3.1 Algebraic Equations for Homogenised 

Characteristics 

It should be emphasised that the homogenisation procedure can be applied to 
the fibre-reinforced composite with anisotropic consituents, too. The effective 
elasticity tensor in terms of different transverse and longitudinal Young moduli and 
Poisson ratios can be calculated explicitly using the Mori-Tanaka or the self-
consistent analytical homogenisation technique as follows [18,31]:  
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where the following description for the constants k, l, m, n and p is applied:   
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There holds for matrix and fibre   
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where cf and cm denote fibre and matrix volume fractions of a composite measured 
in the direction transverse to the fibres. The indices L and T denote longitudinal 
and transversal elastic characteristics for the components. It can be observed that 
closed form relations for effective elasticity tensor components are obtained in this 
case without the necessity of a cell problem solution. 

Two alternative ways of fibre-reinforced composite homogenisation have been 
proposed below. Since the fact that the computational illustration for the SFEM 
solution of the cell problem is shown in [192], then only the second order 
perturbation based model is discussed here. The composite taken to illustrate 
probabilistic moments of relevant material properties is exactly the same as in the 
previous example. The final equations for the effective characteristics for a layered 
and fibre-reinforced composite do not contain any shape parameters - different 
forms of the reinforcement lead, according to some mathematical considerations, to 
different equations rewritten however for the same parameters: material properties 
and volume ratios of the constituents only. That is why such a comparative studies, 
especially in terms of the random spaces of the material properties analysed, are 
important.  

The deterministic and the corresponding expected values as well as coefficients 
of variation are collected in Table 2.10 for the components of the effective tensor k,
l, m, n and p, separately. Generally, it can be observed that, as previously noted, 
expected values are almost equal to relevant deterministic quantities and the 
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resulting coefficients of variation are almost equal to the corresponding input 
probabilistic coefficients. Further, comparing the data collected in Tables 2.9 and 
2.10 it can be noted that the layered structure has greater effective elastic 
characteristics than the fibre-reinforced composite with the same constituents -
this observation is very important considering practical applications and 
optimisation of composites.  

Table 2.10. Effective materials characteristics 

Effective elasticity  
tensor components 

Deterministic Expected value Variation 

k 6.8350 GPa 6.8216 GPa 0.0902 
l 5.2983 GPa 5.2898 GPa 0.0909 
m 3.5892 GPa 3.5840 GPa 0.0927 
n 46.9052 GPa 46.9000 GPa 0.0938 
p 4.0195 GPa 4.0121 GPa 0.0907 

Further, see Figures 2.53-2.62, the parameter variability of the expected values 
of the effective parameters k, l, m, n and p (Figures 2.53, 2.55, 2.57, 2.59 and 2.61) 
as well as their variances (Figures 2.54, 2.56, 2.58, 2.60 and 2.62) is computed 
with respect to expected values of the Young moduli of the components. It is seen 
that the expected values of all these parameters show greater sensitivity with 
respect to stronger material Young moduli; all the changes are significant 
especially for decreasing values of both moduli. As can be predicted from these 
figures, the sensitivity gradients of all the parameters have positive signs - an 
increase of any effective constant k, l, m, n and p results from the increase of 
Young moduli of fibre or/and matrix. In further computational studies, the 
probabilistic moments so computed may be applied in the FEM-based 
probabilistic computational simulation for an engineering composite by using the 
Monte Carlo simulation technique or, as is done in the first example, the SFEM 
approach.  

Figure 2.53. Expected values of the component k
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Figure 2.54. Variance of the component k

Figure 2.55. Expected values of the component l

Figure 2.56. Variance of the component l
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Figure 2.57. Expected values of the component m

Figure 2.58. Variance of the component m

Figure 2.59. Expected values of the component n
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Figure 2.60. Variance of the component n

Figure 2.61. Expected values of the component p

Figure 2.62. Variance of the component p
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2.3.3.2 Asymptotic Homogenisation Method 

2.3.3.2.1 Deterministic Approach to the Problem  

The homogenisation of the n-component periodic composites in the context of 
linear deterministic elastostatic problem is studied here; the effective modules 
method worked out previously for two-component heterogeneous media is now 
extended on the n-component composites to homogenise multi-component 
materials in general form. The approach proposed enables particularly, as is 
demonstrated, to calculate effective elastic characteristics for composites with 
some interphases between the constituents. As it is known, the interphase in 
engineering practice may be considered as the next homogeneous component of 
the composite with small volume in comparison to the rest of a structure that 
increases contact between reinforcement and matrix and can be crucial for the 
composite macro-behaviour [59,255,270,314]. One of the interphase 
computational modelling method is based on the special (both elastic and 
elastoplastic) interface finite elements [238,260,318].  

On the other hand, there are some approaches in the mechanics of composite 
materials, where the interphase is the hypothetical region containing all interface 
defects that appear between the original components of a composite. Usually, the 
interphase is introduced with thickness and material parameters constant within its 
region; ultrasonic emission seems to be the most efficient experimental method in 
this field. Numerical studies based on this formulation and collected in this chapter 
show the sensitivity of the periodic composite effective parameters to 
strengthening and weakening, in the context of elastic parameters, of the 
interphase. Due to the fact that the observations correspond with engineering 
practice, it may confirm the usefulness of the method to homogenise n-component 
heterogeneous media.  

Very important aspect of the method proposed is that the effective modules 
method in present extended version enables to homogenize the composite materials 
with the microdefects appearing in the constituents – they have the dimensions 
relatively small with comparison to the components. Next, we observe that the 
method presented can be relatively easily transformed to the probabilistic case 
where material properties as well as the periodicity cell geometry may be treated as 
random; the Monte Carlo simulation method is the most recommended technique. 
This formulation may be used to formulate and to compute the deterministic or 
stochastic sensitivity, in a phenomenological or structural sense, to both material 
and geometrical parameters of the composite that enable one to find out the most 
decisive parameters for the entire computational homogenisation procedure.  

The linear problem of elasticity is formulated for the n-component composite 
shown in Figure 2.64 with the Representative Volume Element given in Figure 
2.63 as follows:  
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Ω1

Ω2

                                                     
Ωn

                                                                                    Ωn-1

Figure 2.63. Cross-section of periodic composite structure 

Figure 2.64. The RVE of plane composite 

Let us assume that all interfaces of the composite are perfect in the sense that  

[ ] 0=ε
iu , [ ] 0=Γ

jij nσ (2.121)

where the symbol [.] denotes a jump of the respective function values at the 

interface. The homogenisation problem is to find the limit of solution εu  with ε
tending to 0. For this purpose let us consider a bilinear form ( )vu,a ε  defined as 

follows:  

( ) ( )∫
Ω

Ω= dCa klijijkl )()(, vuvu x εεε
ε (2.122)

and the linear form:  
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( ) ( )∫∫
ΩΩ

Ω+Ω=
σ∂

∂dvpdvFL iiiiv (2.123)

both in a Hilbert space  

( )( ){ }0,
31 =Ω∈=

Ωu
HV

∂
vvv (2.124)

characterised by the norm  

∫
Ω

Ω= dijij )()(
2

vvv εε (2.125)

A variational statement equivalent to the equilibrium problem (2.120) is to find 

V∈εu  fulfilling the equation  

( ) ( )vvu L,a =εε (2.126)

for any V∈v . Let us introduce for this purpose a space of periodic functions 

( )( ){ }31,)( Ω∈=Ω HP vv  so that the trace of v is equal on opposite sides of Ω. Let 

us denote for any )(, Ω∈ Pvu

( ) ∫
Ω

Ω= dCa klijijkly )()()(, vuyvu εε (2.127)

and introduce a homogenisation function )()( Ω∈ Pkijχ  as a solution for the local 

problem on a periodicity cell:  

( )( ) 0,)( =+ wnkkijkijy ya δχ (2.128)

for any )(Ω∈ Pw ; kiδ  denotes the Kronecker delta while kn  is the unit coordinate 

vector. Assuming finally that:  

)( 3ℜ∈ ∞LCijkl
(2.129)

jiklklijijkl CCC == (2.130)

ijijklijijkl CCC ξξξξ 00 ;0 ≥>∃ , jiijji ξξ =∀ , (2.131)

we may introduce a homogenisation theorem as follows:   

Homogenisation theorem  

The solution εu of problem (2.126) converges weakly in space V
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uu →ε (2.132)

if the tensor ( )yε
ijklC  is Ω-periodic and its components fulfil conditions 

(2.129-2.131). Solution u  is the unique one for the problem  

V∈u :   ( ) )(, vvu LD = (2.133)

for any V∈v and  

( ) ∫=
Y

klijijkl dYDD )()(, vuvu εε (2.134)

where  

( ) ( )( )qqklqklppjipijyijkl yyaD nn δχδχ ++
Ω

= )()( ,
1

(2.135)

As a result of this theorem, a limit for 0→ε  gives a homogeneous elastic material 
described by the tensor [163]:  

( )( ) Ω+
Ω

= ∫
Ω

dCCC kl
y
mnijmnijkl

eff
ijkl )()()(

1
)(

)( yyy χε (2.136)

The most important result is that neither the local problem nor the statement 
(2.136) really depend on the stress boundary conditions since that solution obtained 
has a general character. To show formally these results, the local problem is 
rewritten in its differential form 

( ) ( )( ) 0u =+ iiklijkl
j

FC
x

ε
ε ε

∂
∂ x ; Ω∈= yx

ε ; 0=ε
iu  for Ω∈∂y

(2.137)

Next, similarly to the stochastic perturbation approach, an asymptotic expansion is 
employed in terms of the parameter ε as follows:   

...),(),(),()( )2(2)1()0( +++= yxyxyxx iiii uuuu εεε (2.138)

where ),()( yxm
iu  are periodic in y  with a periodicity cell Ω. The main idea of this 

expansion is presented schematically in Figure 2.65: to better illustrate the meaning 
of (2.133) only a quarter of the composite is shown.  
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Figure 2.65. First order asymptotic expansion of displacements in a composite  

Let us note that differentiation separates the coordinates x  and y , so that  

)()()( 1 vvv y
ij

x
ijij εεε ε+= (2.139)

where the strain tensors )(vx
ijε , )(vy

ijε  correspond to small deformations   
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Thus, (2.132) can be rewritten as follows:  
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Next, we equate to 0 the terms with the same order of ε, obtaining an infinite 
sequence of equations. The relations adequate to its zeroth, first and second orders 
can be written as  
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The displacements fields )0(
iu , )1(

iu  and )2(
iu  can be found from these equations 

recurrently only if x  and y  are independent variables. Let us note also that the 

equation  

01 =+ ii PuL (2.148)

with iu  being Ω-periodic function has a unique solution for  

∫
Ω

=
Ω
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ydPP ii
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Further, if the unique solution u(x,y); Ω∈x  of (2.148) is constant then for all x
(where x plays here the role of parameter) we have .0 constu =  Considering this 

fact it can be obtained that  

)(),()0( xyx ii uu = (2.150)

which can be observed in Figure 2.65 as well. It can be observed that the first term 
of the expansion of u does not depend on the micro variable y and can be 
considered as a mean displacement altered by the higher order terms only. Thus, 
(2.146) takes the following form:  
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The solution is obtained by separation of x  and y
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The last two equations give the formulation for the Ω-periodic functions )()( yiklχ
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which completes our consideration of general homogenisation method for linear 
elastostatic problems.   

It is relatively easy to see that the local problems for homogenisation functions 
)()( yiklχ  reduce to the equations given above for any region Ωa where na ≤≤1

for the so-called fibre-like composite materials where one component is placed 
into the next one, etc.  Let us denote by ),1( kk −Γ  the interface between components 

Ωa-1 and Ωa. Then the following conditions are true for a=2,...,n and ),1( aax −Γ∈ :    

[ ] 0=kl
iχ (2.154)

and 
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Summing up all the considerations on the homogenisation problem (2.126), we 
compute the effective elasticity tensor components given by (2.136) using the 
homogenisation functions ikl )(χ  being a solution of a classical well-posed 

boundary value problem with periodicity conditions on the external boundaries of 
Ω. The stress boundary conditions are equal to the difference of constitutive tensor 
components at the particular composite interface. The variational formulation 
necessary for a finite element formulation of the local problem can be introduced 
as follows:  
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which by neglecting body forces leads to  
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Having determined the homogenisation functions for the n-component composite, 
the effective elasticity tensor components from (2.136) are calculated as the result.  

The general configuration of the n-component composite denotes that there are 
m interfaces in the periodicity cell where Nm ∈  and 1−≥ nm . It can be observed 
that for coherent components, as was assumed at first, the case of m=n-1
(minimum value of m) is equivalent to the fibre-like composite characterised in 
the previous section or the composite where n-1 components are embedded into 
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one matrix. In that case the variational formulation of the homogenisation problem 
has the following form:  

( ) ( ) ∑ ∫∑ ∫
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Moreover, it can be seen that the n-component composite in a general 
configuration generates, due to the component permutation scheme, the bounded 
set of (n-1)! various effective elasticity tensors. If some components are disjoint, 
the total number of these subsets must be included in the permutation procedure. It 
would be interesting to calculate, due to the homogenisation method presented, the 
upper and lower bounds of the effective elasticity tensor components for such a set 
of permutations.  

Next, it is observed that in the general case the effective elasticity tensor 
components can be calculated by the following modification of (2.159):  

( ) ( ) ∑ ∫∑ ∫
= Γ= Ω

Γ−=Ω
m

r
pq

n

a
ijpqklijkl

ra

ddC
1

)(
1

)( vFvεχε (2.160)

where the RHS summation is carried out along all interfaces detected in the 
composite periodicity cell. Further, if any interface shows some finite number of 
nonsmoothness, the integration over such contour to be replaced with the sum of 
integrals defined on partially smooth curves composing the interface.  

Finally, it is observed that the effective modules method of homogenisation 
formulated by (2.158) - (2.159) enables one to calculate effective properties for 
the composites including microdefects or interface defects; it can be done by 
equating the appropriate material characteristics to 0 for these regions. For this 
purpose, the computational procedure applied in numerical experiments can be 
linked with the program for digital processing of composite cross-section images.  

Now let us consider the Finite Element Method discretisation of the 
homogenisation problem. Let us introduce the following approximation of 
homogenisation functions irs )(χ  (i,r,s=1,2) at any point of the considered 

continuum Ω  in terms of a finite number of generalised coordinates α)(rsq  and the 

shape functions αϕ i

ααϕχ )()( rsiirs q= ,  2,1,, =sri , N,...,1=α (2.161) 

In the same way the strain )( )(rsij χε  and stress )( )(rsij χσ  tensors are rewritten as  

ααχε )()( )( rsijrsij qB= (2.162) 

ααχεχσσ )()()()( )()( rsklijklrsklijklrsijrsij qBCC === (2.163) 
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where αklB  represents the shape functions derivatives. Introducing (2.162) -

(2.163) into the virtual work equation in its variational form it is found that  

[ ]∫ ∑ ∫
Ω = Γ

Γ Γ=Ω
m

p
irsirslkrsijkljirs

p

p
dFdC

2
)()(,)(,)( δχχδχ       (no sum on r,s)

(2.164) 

Furthermore, let us define the composite global stiffness matrix as  

Ω== ∑ ∫∑
= Ω=

dBBCKK
E

e
klijijkl

E

e

e

e11

)(
βααβαβ (2.165) 

Using this notation in (2.164) and minimising the variational statement with 
respect to the generalised coordinates we arrive at  

αααβ )()( rsrs QqK = (2.166) 

with α)(rsQ  being the external load vector containing the boundary forces given by 

(2.155) - (2.156), which is employed to determine the homogenisation function 

irs )(χ  in three numerical tests for r,s=1,2. To ensure the symmetry conditions on a 

periodicity cell, the orthogonal displacements and rotations for every nodal point 
belonging to the external boundaries of Ω  are fixed. For the functions irs )(χ  so 

defined we compute the stresses )( )(rsij χσ  and average this tensor numerically 

over the region Ω  according to the formula (2.136). 
The fibre-reinforced glass-epoxy composite example with an interphase 

between the fibre and the matrix is analysed in computational experiments [163]. 
The microgeometry of the periodicity cell is shown in Figure 2.66, while material 
characteristics of the constituents are collected in Table 2.11.  

The weaker interphase in our tests may simulate any boundary defects 
appearing in fibre-reinforced composites that are caused by the difference in 
thermal stresses during the fabrication process in metal matrix composites (MMC) 
for instance. On the other hand, a stronger interphase model homogenised 
numerically is equivalent to the case when some layer between the fibre and matrix 
is introduced to enforce component interface bonding strength.  

Generally, 11 groups of computational experiments are performed to compute 
the effective elastic and thermal characteristics for the composite considered. 
Material properties are increased in the interphase starting from 50% of additional 
matrix characteristics with increments equal to 10% for each of the next test group. 
Thus for the 6th group the interphase equivalent to the matrix is obtained and for 
the 11th the material properties of the interphase are equal to 150% of the matrix 
parameters; the results of this analysis are presented in Table 2.12.
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Figure 2.66. Microgeometry of the periodicity cell 

Table 2.11. Material data for composite components   

Material e ν
Glass fibres 72.38 0.200 
Epoxy matrix 2.75 0.350 

Table 2.12. Effective elastic and thermal parameters  

Test no )(
1111

effC )(
1122

effC )(
1212

effC

1 8.566 3.122 14.577 
2 8.815 3.209 14.580 
3  9.020 3.278 14.582 
4  9.197 3.337 14.584 
5  9.338 3.391 14.586 
6  9.474 3.445 14.588 
7  9.610 3.503 14.589 
8 9.761 3.572 14.591 
9 9.949 3.681 14.593 
10 10.619 4.218 14.594 
11 11.399 4.940 14.596 

Analysing these results it can be concluded that all effective parameters show 
some sensitivity to the improved interphase and its material parameters. The 

greatest sensitivity is obtained for )(
1122

effC  and )(
1111

effC  components, while the smallest 

for )(
1212

effC . To obtain more realistic results it will be valuable to introduce 

anisotropy in the equivalent parameters of the interphase; in that case the 

sensitivity of the )(
1212

effC  component increases significantly. However, neglecting 

these disproportions the results computed lead us to the conclusion that the 
improved homogenisation method confirms the crucial role of the interphase on the 
overall characteristics of the composite structure, which is observed in engineering 
practice. Moreover, the variability resulting from computational experiments 
confirms generally the usefulness of the homogenisation method proposed. Other 
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series of computational tests are done to the visualisation of the homogenisation 
functions as well as the resulting stresses and various numerical error estimators.  

Figure 2.67. Boundary conditions for homogenisation problems 
11

χ

Figure 2.68. Horizontal components of the homogenisation function 
11

χ

Figure 2.69. Vertical components of the homogenisation function 
11

χ
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Figure 2.70. Horizontal stresses in the homogenisation problem 
11

χ

Figure 2.71. Vertical stresses in the homogenisation problem 
11

χ

Figure 2.72. Shear stresses in the homogenisation problem 
11

χ



106     Computational Mechanics of Composite Materials  

Figure 2.73. Vortex visualization of the homogenisation function 
11

χ

Figure 2.74. Relative error of the stresses determination in the problem 
11

χ

Figure 2.75. Relative error for strain determination in the homogenisation problem 
11

χ



Elasticity problems     107 

Figure 2.76. Relative error of the strain energy determination 
11

χ

Figure 2.77. Horizontal components of the homogenisation function 
12

χ

Figure 2.78. Vertical components of the homogenisation function 
12

χ



108     Computational Mechanics of Composite Materials  

Figure 2.79. Total values of the homogenisation function 
12

χ

Figure 2.80. Horizontal stresses in the homogenisation problem 
12

χ

Figure 2.81. Vertical stresses in the homogenisation problem 
12

χ
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Figure 2.82. Shear stresses in the homogenisation problem 
12

χ

Figure 2.83. Equivalent von Mises stresses in the homogenisation problem 
12

χ

Figure 2.84. Vortex visualization of the homogenisation function 
12

χ
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Figure 2.85. Relative error of the stresses determination in the problem 
12

χ

Figure 2.86. Relative error of the strain determination in the problem 
12

χ

Figure 2.87. Relative error of the strain energy determination 
12

χ
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Figure 2.88. Horizontal components of the homogenisation function 
22

χ

Figure 2.89. Vertical components of the homogenisation function 
22

χ

Figure 2.90. Total values of the homogenisation function 
22

χ
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Figure 2.91. Horizontal stresses in the homogenisation problem 
22

χ

Figure 2.92. Vertical stresses in the homogenisation problem 
22

χ

Figure 2.93. Shear stresses in the homogenisation problem 
22

χ



Elasticity problems     113 

Figure 2.94. Vortex visualization of the homogenisation function 
22

χ

Figure 2.95.  Relative error of the stresses determination in the problem
22

χ

Figure 2.96. Relative error of the strain determination in the problem 
22

χ
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Figure 2.97. Relative error of the strain energy determination 
22

χ

The results of the computational analysis carried out in this section show that 
the effective properties of the composite and, at the same time, the overall 
behaviour of the composite, in the context of the homogenisation method, are 
sensitive to the interphase between the constituents and its material parameters. It 
should be underlined that the interphase, improved in the example presented above, 
has small total area in the comparison to the fibre and matrix. It can be expected 
that the previous, simplified approach (upper and lower bounds or direct 
approximations of effective properties cited above) do not enable us to arrive at 
such effects.  

Considering the assumption that the scale factor between the RVE and the 
whole composite structure tends to 0 in our analysis and, on the other hand, that 
this quantity in real composites is small but differs from 0, the sensitivity of the 
effective characteristics to this parameter are to be calculated in the next analyses 
based on this approach. To carry out such studies, the scale parameter has to be 
introduced in the equations describing effective properties and next, due to the 
well-known sensitivity analysis methods, the influence of the scale parameter ε
relating composite micro- and macrostructure may be shown. In the analogous 
way we can study the sensitivity of the effective characteristics of the composite to 
the component material parameters but there is no need in this case to introduce 
any extra components into the equations cited above.  

Further mathematical and computational extensions of the model presented 
should be provided to include in the constitutive tensor the components responsible 
for the thermal expansion [228,311]. Having computed the effective characteristics 
on the basis of Young moduli, Poisson ratios, coefficient of thermal expansion and 
heat conduction coefficient [106,163,347] it will be possible to provide the coupled 
temperature-displacement FE analyses of periodic composite materials. At the 
same time it will be valuable to work out the problem presented in the context of 
viscoelastic or elastoviscoplastic material models of the composite constituents 
[74,368]. It will enable us to approximate computationally the fracture and failure 
phenomena in composites resulting from the interface defects or partial debonding 
using the homogenisation approach.   
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2.3.3.2.2 Monte Carlo Simulation Analysis 

Starting from the formula describing the effective elasticity tensor components, 
their expected values are derived using the basic theorems on the random variables 
as follows [191]:  

[ ] [ ]
ΩΩ

+⎥⎦
⎤

⎢⎣
⎡= );();(();()( ωωχσω xCExExCE ijkl

ij
kl

eff
ijkl

(2.167) 

The expressions for the variances (and generally covariances) have a more 
complicated form than the expectations because the averaged stresses and elasticity 
tensor are correlated variables. Therefore  
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The random homogenisation fields ),( ωχ xij  for general composites, similar to 

the deterministic ones, are calculated only numerically. The following probabilistic 
stress boundary conditions are imposed on the boundary ),1( aa−Γ  to find the 

homogenisation functions:  
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(2.170)

where λ(ω) and µ(ω) are the Lame constants. If Young moduli of composite 
components are considered as input random variables then the expected values and 
variances of boundary forces are obtained by separating the RHS into those 
components corresponding to 1−Ωa  and aΩ , respectively. After some algebraic 

transformations there holds  

[ ] [ ] [ ]11)( )()();( −− ⋅−⋅= aapqiaapqiipq eEBeEBxFE ννω (2.171) 
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where the operator ))(( xνpqiB  similar to the tensor ijklA  introduced by eqn (2.14) 

is defined as  

))(1(2

1
)(

))(21))((1(

)(
))((

xxx
x

x
ν

δδ
νν

νδν
+

++
−+

= piqqipipqpqi nnnB (2.172) 

and their variances are equal to  

( ) { } ( ) { } ( )1
2

1
2

)( )()();( −− ⋅+⋅= aapqiaapqiipq eVarBeVarBFVar ννωx

(no sum on p,q,i)
(2.173) 

Finally, probabilistic moments of the effective characteristics are derived using 
statistical estimation methods, according to which the expected values and the 
relevant covariances (computed using the unbiased estimator) of the effective 
elasticity tensor components are obtained as 

[ ] ∑
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ijpq CCE

1

)(1)(

(2.174) 
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where ( )ωjeff
ijpqC )( , Mj ,...,1=  are random series of the tensor components obtained 

as a result of the generation of numerical random values. 
The homogenisation problem presented is implemented into the program 

MCCEFF, which is based on the Monte Carlo simulation technique. The 
implementation of the MCS has been selected from among many other 
probabilistic methods, because this method consists of computer generation of 
random variables in the mechanical problem (cf. Figure 2.98) and computing the 
sequence of deterministic solutions associated with each variable generated; 
similar engineering software is also available [47].  Considering the fact that a 
composite structure has a relatively small number of degrees of freedom, a crude 
random sampling method is used in the computations (contrary to the Random 
Importance or Stratified Sampling methods) [73,125,139].  

Define N, m, a, c, E[e], σ(e), E[ν], σ(ν)
↓

Generate uniform distribution { } )1,0(,...,1 −∈ mII N

Do for k=1,N
)(mod1 mcaII kk += −

Enndo 
↓
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Transform I→x: uniform distribution on (0,1) 
Scaling distribution {I} by the parameter m

↓
Transform pairwise (xi,xi+1)→(yi,yi+1): N(0,1) 

Do for i=1,N

⎪⎩

⎪
⎨
⎧

−=
−=

++

+

11

1

2sinln2

2cosln2

iii

iii

xxy

xxy

π
π

Enddo 
↓

Transform y→e,ν
Do for i=1,N

ei=E[e]+yiσ(e); νi=E[ν]+yiσ(ν)
Enddo 

↓
Cutting off e,ν distributions 

Verify for i=1,N
( ) trueeS =∞<<01 ; ( ) trueS =<<− 2

1
2 1 ν

Enddo 
↓

Computations of the total sample length 
M=N-K: K=sup(k1,k2); 

k1,k2 -  number of S1,S2 negations 
Figure 2.98. Algorithm for random numbers generation  

However, the most important reason for the MCS application is that the 
accuracy of the output variable probabilistic moments estimation does not depend 
on the input variable coefficient of variation (as for the SFEM), but on the total 
number of iterations performed. Taking into account the estimator convergence 
studies and some theoretical considerations, the total number of random trials M
has been taken as equal to 1,000. The flowchart of the program used for 
probabilistic homogenisation is shown in Figure 2.99. As presented, the program 
makes it possible to discretise automatically the RVE on the basis of the main cell 
geometrical parameters, visualisation of the mesh introduced, random generation 
of the input random variables and iterative computations of the homogenisation 
functions as well as statistical estimators of either upper and lower bounds or direct 
effective characteristics of the elasticity tensor components.  

Automatic-parametric mesh generator
↓

Input data visualization
↓

1st loop over random spaces 
Do for iter=1,M

Generation of ( )ωe , ( )ων
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Enddo 

Computations of PDFs of elasticity tensor components 

Upper and lower bounds: ( )( )ω)(sup eff
ijklC , ( )( )ω)(inf eff

ijklC

2nd loop over random spaces
Do for iter=1,M

Generation of )()( ωipqF

Enddo 
↓

3rd loop over random spaces 
Do for iter=1,M

Homogenisation plane strain problems  

( )ωχ ;)( xipq , ( )
Ω

⎟⎠
⎞⎜⎝

⎛ ωχσ ;
i)pq(kl

x

( )ω;)( xeff
ijklC

Enddo 
↓

4th loop over random spaces 
do for iter=1,M

Computations of statistical estimators 

( ))(eff
ijklp Cµ , ( )( ))(sup eff

ijklp Cµ , ( )( ))(inf eff
ijklp Cµ

( )( ))(sup eff
ijklCPDF , ( ))(eff

ijklCPDF , ( )( ))(inf eff
ijklCPDF

Enddo 
Figure 2.99. Algorithm for the MCS simulation of homogenisation procedure   

Numerical analysis of probabilistic homogenisation of the fibre composite with 
stochastic interface defects has been performed using the MCCEFF system 
described above. Internal automatic generator for the square RVE with a centrally 
located round fibre occupying about 50% of the RVE with interface defects has 
been used (the influence of fibre radius variation on the stochastic displacements 
and stress fields has been discussed previously). Considering greater composite 
sensitivity to the matrix defects (bubbles), only composites having such 
discontinuities have been homogenised. The elastic constants for the fibre material

have been taken as follows: [ ]1eE =84 GPa, ν1 =0.22 and the coefficient of Young 

modulus variation ( )1eα =0.1, and for matrix: [ ]2eE =4 GPa, 2ν =0.34. Interface 

defect parameters have been taken in such a way that the coefficients of variation 
of these parameters were equal to 0.1 in all tests: ( ) ][1.0 rEr ⋅=σ  and 

( ) ][1.0 nEn ⋅=σ .

The main aim of the numerical experiments performed was a numerical 
verification of the presented mathematical approach to homogenisation of 
composites with stochastic interface defects. Considering large number of 
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parameters in this approach it was necessary to analyse the probabilistic sensitivity 
of the effective elasticity tensor components. It was done with respect to the 
expected values of the interface defect number and volume and the coefficient of 
matrix Young moduli variation as design parameters. Finally, 132 simulations have 
been performed (with 1000 iterations each) with the following remaining input 
values: E[r]=R{0.03,0.04,0.05} and E[n] has been assumed as equivalent to the 
percentage ratio of the boundary where the defects are located to the total interface 
length from 10% to 60% every 5%. The coefficient of matrix Young modulus 
variation for tests No 1-4 has been taken as 0.100, 0.075, 0.050, 0.025, 
respectively.  

Probabilistic moments of the effective elasticity tensor obtained as a result of 
the simulations are compared in Figures 2.100-2.119. The expected values of 

)()(
1111 ωeffC  are shown in such a way that the test results are presented in increasing 

order in the relevant figures. The coefficients of variation of )()(
1212 ωeffC  are 

neglected in the sensitivity analysis because this random variable is a function of 
random fluctuations of the fibre Young modulus. In all the collected figures the 
ratio of interface discontinuities (DB) to the entire boundary is marked on the 

horizontal axes, while the expected values [ ])()( ωeff
ijklCE  or the coefficients of 

variation ( ))()( ωα eff
ijklC  are displayed on the vertical axes, respectively.  

A decrease of the expected values of )()( ωeff
ijklC  with an increase of the interface 

defects number is observed with generally small differences in comparison with 
the composite with perfect interface. For an increase of the parameter DB from 

10% to 60%, the decrease considered is about 10% for [ ])()(
1111 ωeffCE  and 

[ ])()(
1122 ωeffCE  components, while for [ ])()(

1212 ωeffCE  it is only 1%. The low sensitivity 

of the values for [ ])()( ωeff
ijklCE  obtained with respect to the coefficient of the matrix 

Young modulus variation seems to be very important, as well. Moreover, it can be 
noted that for an increase of the expected values of the interface defects, the values 

of [ ])()(
1111 ωeffCE  and [ ])()(

1122 ωeffCE  increase too, and [ ])()(
1212 ωeffCE - decreases. 

Finally, the increasing DB implies a decrease in the differences of [ ])()(
1111 ωeffCE  and 

[ ])()(
1122 ωeffCE  obtained for different defects values, while for [ ])()(

1212 ωeffCE  these 

differences increase with the increasing total number of the defects.  
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Figure 2.100. Expected values [ ])()(
1111 ωeffCE  in test 1  

Figure 2.101. Expected values [ ])()(
1111 ωeffCE  in test 2  

Figure 2.102. Expected values [ ])()(
1111 ωeffCE  in test 3  
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Figure 2.103. Expected values [ ])()(
1111 ωeffCE  in test 4  

Figure 2.104. Expected values [ ])()(
1122 ωeffCE  in test 1 

Figure 2.105. Expected values [ ])()(
1122 ωeffCE  in test 2 
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Figure 2.106. Expected values [ ])()(
1122 ωeffCE  in test 3 

Figure 2.107. Expected values [ ])()(
1122 ωeffCE  in test 4 

Figure 2.108. Expected values [ ])()(
1212 ωeffCE  in test 1 
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Figure 2.109. Expected values [ ])()(
1212 ωeffCE  in test 2 

Figure 2.110. Expected values [ ])()(
1212 ωeffCE  in test 3 

Figure 2.111. Expected values [ ])()(
1212 ωeffCE  in test 4 
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Figure 2.112. Coefficients of variation ( ))()(
1111 ωα effC  in test 1 

Figure 2.113. Coefficients of variation ( ))()(
1111 ωα effC  in test 2 

Figure 2.114. Coefficients of variation ( ))()(
1111 ωα effC  in test 3 
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Figure 2.115. Coefficients of variation ( ))()(
1111 ωα effC  in test 4 

Figure 2.116. Coefficients of variation ( ))()(
1122 ωα effC  in test 1 

Figure 2.117. Coefficients of variation ( ))()(
1122 ωα effC  in test 2 
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Figure 2.118. Coefficients of variation ( ))()(
1122 ωα effC  in test 3 

Figure 2.119. Coefficients of variation ( ))()(
1122 ωα effC  in test 4 

Analysing the coefficients of variation ( ))()( ωα eff
ijklC , a nonlinear increase of 

these coefficients with a DB increase can be observed in all tests. This dependence 
has a character similar to the behaviour of the coefficient of variation of the Young
modulus obtained during the interphase probabilistic averaging. Moreover, all 
results are in the range of [0.00,0.12] for all the numerical tests, being negligibly 
greater than the maximum value of the input parameter ( )2eα . Furthermore, the 

correlation of interface defect value increases and an ( ))()( ωα eff
ijklC  increase is 

observed, and in opposition to the expected values, the coefficients of the 

)()( ωeff
ijklC  tensor variation are sensitive to ( )2eα  changes. Together with the 

decreasing coefficients of the matrix Young modulus variation the following 
changes are observed:  

- decrease of  ( ))()(
1111 ωα effC  and ( ))()(

1122 ωα effC ;
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- increase of differences between these coefficients obtained for particular values 
of interface defects;  

- significantly faster increase of ( ))()( ωα eff
ijklC  (from 10% in test no 1 to about 30% 

in test no 4).  

The coefficients ( ))()(
1212 ωα effC  (not considered in the analysis) show total non-

sensitivity to analysed parameters.  
Further, taking into account that all the results obtained from the Monte Carlo 

simulations, e.g. the first two probabilistic moments of the effective elasticity 
tensor, are only statistical estimators of the real values of these parameters, the 
numerical sensitivity of these estimators to the number of iterations should be 
analysed. Such an analysis is performed on the periodicity cell taking the total 
number of random trials as N=5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000 and 
10000, respectively.  

Only the probabilistic parameters of )()(
1111 ωeffC are shown, because variations of 

the other component moments of )()( ωeff
ijklC  are quite similar to those presented. 

The total numbers of random number sampling are marked on the horizontal axes, 

while the analysed values of )()( ωeff
ijklC  are on the vertical axes. The functions 

describing convergence of particular estimators obtained in the numerical 
experiments enable us to verify the correctness of the simulations performed and 
come up with an optimum number of the samples for estimation of any 

probabilistic coefficient and/or moment for the tensor )()( ωeff
ijklC .

Figure 2.120. Statistical convergence of the expected value [ ])()(
1111 ωeffCE
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Figure 2.121. Statistical convergence of the expected value [ ])()(
1122 ωeffCE

Figure 2.122. Statistical convergence of the expected value [ ])()(
1212 ωeffCE

Figure 2.123. Statistical convergence of coefficient of variation ( ))()(
1111 ωα effC
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Figure 2.124. Statistical convergence of coefficient of variation ( ))()(
1122 ωα effC

Figure 2.125. Statistical convergence of coefficient of variation ( ))()(
1212 ωα effC

It is seen from the analysis of the expected values of )()( ωeff
ijklC  that the 

estimator convergence character is described by a curve of similar shape in all the 
tests. This curve gradually increases from a minimum at N=5 to a maximum at 
about N=30 to oscillate with asymptotic convergence to the value approximated. It 
is important that in practice for N=100 estimator gives quite a good estimation with 
satisfactory accuracy. Taking for example N=1000, computational error resulting 
from statistical estimation is negligibly small in comparison with the estimated 
value.  

Convergence of ( ))()( ωα eff
ijklC  estimators has quite a different character than for 

[ ])()( ωeff
ijklCE  estimators described above. From the maximum obtained for N=5 the 

curve describing the estimator as a function of the total number of iterations 
decreases between two inflection points for about N=10 and N=30, then for about 
N=100 it starts to converge asymptotically to the approximated quantity. 
Analogous to the expected values the shape of the analysed curves is quite similar 
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each time for different tests and different effective elasticity tensor components. 
Finally, a good approximation is obtained for N=100, while for N=1000 the 
computational error is negligibly small.  

As can be seen in Figures 2.126 and 2.127, the total number of random trials 
necessary in the simulation for precise enough determination of the PDF for 

)()(
1111 ωeffC  is even greater than, for example 5,000-10,000.  

Figure 2.126. Statistical convergence of PDF of )()(
1111 ωeffC

Figure 2.127. Statistical convergence of PDF of )()(
1111 ωeffC

The main idea behind performing further numerical experiments is to compute 
the expected values and variances (or the coefficients of variation) of the effective 
elasticity tensor components for the RVE of the superconducting coil cable 
[199,221]. Next aim is to check the variability of the effective characteristic 
probabilistic moments with respect to the moments of the input random variables. 
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Probabilistic effective characteristics are compared with the appropriate upper and 
lower bounds probabilistic moments for the same composite specimen.  

Due to the internal horizontal and vertical symmetry of the RVE, only a simple 
quarter of the periodicity cell has been analysed in the homogenisation procedure 
for the discretisation of this cell shown before.   

Elastic characteristics and their probabilistic moments of the RVE components 
in the form of the expected values and the standard deviations of Young moduli 
and Poisson ratios as well as of the Kirchhoff moduli are collected in Table 2.14.  

Table 2.14. Probabilistic moments of the elastic characteristics of the superconductor  
Material E[e]

[GPa] 
σ(e)
[GPa] 

E[ν] σ(ν) E[G]
[GPa] 

σ(G)
[GPa] 

Tube 205.0 8.0 0.265 0.010 81.0 2.0 
Superconductor (test 1) 130.0 0.0 0.340 0.000 70.0 0.0 
Superconductor (test 2) 46.8 0.0 0.122 0.000 25.2 0.0 
Jacket 126.0 12.0 0.311 0.012 48.0 6.0 
Insulation 36.0 0.0 0.210 0.000 11.0 0.0 

Three groups of computational experiments have been performed. It is assumed 
that all elastic characteristics are equal to those specified in Table 2.14 in the first 
and second groups of computations (tests 1 and 2), while the elastic parameters of 
the superconducting strands are omitted in the last test. The strand volume fraction 
in the plane considered is assumed in test 1 as equal to 100%, while in the test 2 it 
is assumed equal to 36% (approximately the real value). The elastic characteristics 
of the strands for the second case are calculated using of spatial averaging only. 
These characteristics can be derived by some homogenisation approach (Mori-
Tanaka or self-consistent, for instance) if only the longitudinal elastic modulae are 
measured statistically.   

The results of numerical analyses are presented in Tables 2.15-2.20. Upper and 
lower bounds as well as the effective elastic properties for test 1 are collected in 
Tables 2.15 and 2.16, respectively, for test 2 they are outlined in Tables 2.17 and 
2.18, while for test 3 they are outlined in Tables 2.19-2.20. Deterministic values of 
the effective elasticity tensor and their up to fourth order probabilistic 
characteristics (expected values, coefficients of variation, asymmetry and 
concentration) are shown for all these tests.  

Table 2.15. Effective elasticity tensor components [GPa] in test 1 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 154.94 68.85 43.67 
E[C] 154.27 68.52 43.94 
α(C) 5.56e-2 5.44e-2 5.76e-2 
β(C) -2.06e-1 -2.41e-1 9.98e-2 
γ(C) 3.27 3.29 3.15 
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Table 2.16. Upper and lower bounds for effective elasticity tensor [GPa] in test 1 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented  
 sup(C) inf(C) sup(C) inf(C) Sup(C) inf(C)
Deterministic values 163.49 146.47 75.56 63.27 43.97 41.60 
E[C] 163.60 146.18 75.81 63.16 43.89 41.51 
α(C) 6.89e-2 5.76e-2 9.78e-2 8.14e-2 4.42e-2 3.95e-2 
β(C) 1.79e-7 -1.04e-7 3.32e-7 -1.12e-8 -1.15e-7 -2.51e-7 
γ(C) 3.09 3.06 3.20 3.02 3.07 3.17 
Voigt-Reuss bounds  
Deterministic values 171.49 130.33 80.95 52.63 45.27 38.85 
E[C] 171.88 129.97 81.43 52.46 45.23 38.76 
α(C) 6.78e-2 4.72e-2 9.29e-2 6.60e-2 4.54e-2 3.45e-2 
β(C) 3.23e-7 -2.51e-7 5.15e-7 -1.75e-7 -2.30e-8 -2.50e-7 
γ(C) 3.26 3.17 3.54 3.09 3.03 3.30 

Table 2.17. Effective elasticity tensor components [GPa] in test 2 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 102.33 36.47 33.69 
E[C] 102.50 36.69 33.49 
α(C) 5.83e-2 5.90e-2 6.38e-2 
β(C) -1.86e-1 -1.92e-1 -9.96e-2 
γ(C) 3.23 3.25 3.15 

Table 2.18. Upper and lower bounds for effective elasticity tensor [GPa] in test 2  
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented  
 sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values 100.24 82.24 35.21 22.74 32.52 29.75 
E[C] 100.37 82.05 35.45 22.68 32.46 29.69 
α(C) 8.18e-2 4.11e-2 1.40e-1 5.84e-2 4.99e-2 3.46e-2 
β(C) 2.12e-7 -2.38e-7 4.16e-7 -1.58e-7 -9.73e-8 -2.89e-7 
γ(C) 3.16 3.15 3.38 3.08 3.06 3.21 
Voigt-Reuss bounds  
Deterministic values 113.11 71.80 43.86 16.64 34.63 27.58 
E[C] 113.50 71.65 44.34 16.61 34.58 27.52 
α(C) 1.03e-2 2.48e-2 1.71e-1 2.57e-2 5.94e-2 2.46e-2 
β(C) 3.23e-7 -4.13e-7 5.15e-7 -4.02e-7 -2.30e-8 -4.17e-7 
γ(C) 3.26 3.40 3.54 3.38 3.03 3.41 
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Table 2.19. Effective elasticity tensor components [GPa] in test 3 
Effective 
Characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 75.07 30.15 25.89 
E[C] 75.09 30.29 25.38 
α(C) 9.29e-2 1.06e-1 6.94e-2 
β(C) -1.14e-1 -6.40e-2 -9.97e-2 
γ(C) 3.16 3.15 3.17 

Tab. 2.20. Upper and lower bounds for effective elasticity tensor [GPa] in test 3 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented 
 sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values 73.50 4.02 30.47 4.64e-2 21.51 1.984 
E[C] 73.34 4.02 30.37 4.64e-2 21.49 1.98 
α(C) 1.03e-1 2.34e-3 1.57e-1 3.34e-2 6.56e-3 2.75e-3 
β(C) 2.42e-7 -5.64e-7 4.30e-7 5.57e-7 -7.35e-8 -5.67e-7 
γ(C) 3.182 3.730 3.398 3.704 3.049 3.729 
Voigt-Reuss bounds  
Deterministic values 94.84 2.55 41.27 1.23e-2 26.79 1.27 
E[C] 95.23 2.55 41.74 1.23e-2 26.74 1.27 
α(C) 1.22e-1 9.72e-4 1.81e-1 3.55e-2 7.67e-2 1.15e-3 
β(C) 3.23e-7 -5.80e-7 5.15e-7 5.79e-7 -2.30e-8 -5.89e-7 
γ(C) 3.26 3.77 3.54 3.76 3.03 3.77 

First a general observation, which agrees with engineering intuition, is that the 
deterministic quantities and expected values for upper and lower bounds and 
effective elasticity tensor components are greater for test 1 (composite including 
superconductor) than for test 2 (the cell without superconducting strands). Further, 
it is seen that the results of deterministic analyses approximate very well the 
expected values obtained in probabilistic simulations and that deterministic results 
are generally lower than the approximated expectations.  

Analysing the coefficients of variation of all variables computed it is 
characteristic that the results of test 1 are significantly smaller than the input 
coefficients and the coefficients resulting from test 2. It is caused mainly by the 
fact that some of the input elastic characteristics including superconductor have the 
coefficients of variation equal to 0. Considering that the superconductor occupies a 
significant part of the periodicity cell, the coefficients α resulting from test 2 are in 
the range of those characterising the elastic properties of composite components. It 
should be outlined at the moment that probabilistic moments of effective 
characteristics of order higher than the second are in general in the range of the 
corresponding characteristics of the input elastic parameters in the probabilistic 
homogenisation of elastostatic problems.  

Observing characteristics of the third and fourth order it may be concluded that 
the upper and lower bounds of the effective tensor in both tests have symmetric 
probability density functions, while the effective characteristics PDFs show some 
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asymmetry. Finally, it can be observed that the coefficients of concentration are 
approximately equal to the value corresponding to the Gaussian variable 
probability distribution function.  

Considering these observations we can treat the probability density functions of 
the effective elastic characteristics as Gaussian, which enables us to characterise 
uniquely these distributions using only their first two probabilistic moments. This 
conclusion is very important in the context of the SFEM implementation of the 
problem where only the first two moments of the state functions can be computed 
and, furthermore, all odd moments are equal to 0.  

2.3.2.2.3 Stochastic Perturbation Approach to the 

Homogenisation  

The homogenisation technique presented in the preceding sections is combined 
now with the stochastic second order perturbation second central probabilistic 
moment method. To rewrite the stochastic version of the variational formulation of 
the homogenisation problem, the interface forces equivalent to the stress interface 
conditions should be stochastically perturbed first. It is known from the classical 
theory of homogenisation that in case of ideal bonds between the fibre and matrix, 
the interface load components are obtained in the form of the following difference,
cf. (2.155)  

)1(
)(

)2(
)()( ipqipqipq FFF −= (2.176) 

Taking into account the general Taylor series expansion it is found that   

( ) ( ) ( ) srrs
ipq

rr
ipqipqipq bbFbFFF ∆∆+∆+= ,

)(
2

2
1,

)(
0

)()( θθ (2.177) 

Rewriting the forces )(
)(

t
ipqF  for t=0,1,2, comparing the respective terms of zeroth, 

first and second order, it is obtained after some additional algebra that  

( ) ( ) ( )0)1(
)(

0)2(
)(

0
)( ipqipqipq FFF −= (2.178) 

( ) ( ) ( ) r

ipq
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ipq
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,)1(

)(

,)2(
)(

,
)( −= (2.179) 

( ) ( ) ( ) rs

ipq

rs

ipq
rs

ipq FFF
,)1(

)(

,)2(
)(

,
)( −= (2.180) 

Thus, the stochastic version of minimum potential energy principle for the 
homogenisation problem has the following form:  

� a single zeroth order equation:  
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� R first order equations: 
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� a single second order equation: 
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If the Young moduli of fibre and matrix are the components of the input random 
variable vector then there holds  

( )( )( )
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xx
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where )(a
ijklA  is the tensor given by (2.14) and calculated for the elastic 

characteristics of the respective material indexed by a, whereas )(aψ  is the 

characteristic function. Thus, the first order derivatives of the elasticity tensor with
respect to the input random variable vector are obtained as  
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Hence, the second order derivatives have the form  
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while mixed second order derivatives can be written as  
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Considering the above, all components of the second order derivatives of the 

stiffness matrixes )( pqKαβ  in this problem are equal to 0. Moreover, since the 

assumption of the uncorrelation of input random variables  
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thus, the first and second partial derivatives of the vectors )(
)(

a
ipqF  with respect to the 

random variables vector are calculated as  
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and 
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After all these simplifications, the set of equations (2.181) - (2.183) can be written 
in the following form:  

• a single zeroth order equation:  
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• R first order equations: 
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• a single second order equation: 
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where  

( ) ( ) ( )srrs
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It should be noted that (2.191) - (2.194) give the set of fundamental variational 
equations of the homogenisation problem due to the second order stochastic 
perturbation method. Next, these equations will be discretised by the use of 
classical finite element technique and, as a result, the zeroth, first and second order 
algebraic equations are derived. Further, let us introduce the following 
discretisation of the homogenisation function and its derivatives with respect to the 
random variables using the classical shape functions )(xαϕ i :
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where 2,1=i ; Rsr ,...,1, = ; N,...,1=α  (N is the total number of degrees of 
freedom employed in the region Ω ). In an analogous way, the approximation of 
the strain tensor components is introduced as  
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where )(xαijB  is the typical FEM shape functions derivatives  

)]()([)( ,,2
1 xxx ijjiijB ααα ϕϕ += , Ω∈x (2.201) 

Introducing equations stated above to the zeroth, first and second order 
statements of the homogenisation problem represented by (2.191) - (2.194), the 
stochastic formulation of the problem can be discretised through the following set 
of algebraic linear (in fact deterministic) equations:  
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and K, q(pv), Q(pv) denote the global stiffness matrix, generalised coordinates 
vectors of the homogenisation functions and external load vectors, 
correspondingly. Considering the plane strain nature of the homogenisation 
problem, the global stiffness matrix and its partial derivatives with respect to the 
random variables of the problem can be rewritten as follows:  
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as far as Young moduli are randomised only. Computing from the above equations 

successively the zeroth order displacement vector )0(
)( pvq  from (2.202), first order 

displacement vector r
pvq,

)(  from (2.203) and the second order displacement vector 
)2(
)( pvq  from (2.204) - (2.205), the expected values of the homogenisation function 

can be derived as  
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Their covariance matrix can be determined in the form  



Elasticity problems     139 

( ) ),(, ,
)(

,
)()()(

srs
pv

r
pvspvrpv bbCovqqqqCov = (2.210) 

where α, β are indexing all the degrees of freedom of the RVE. Then, the expected
values of the stress tensor components can be expressed as  
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while its covariances - from the following equation:  
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where i,j,k,l,g,h,p,v=1,2; Efd ≤≤ ,1  standing for the finite elements numbers in 

the cell mesh. In accordance with the probabilistic homogenisation methodology, 
the expected values of the elasticity tensor components can be found starting from 
(2.136) as  
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The second term in this integral can be extended using second order 
perturbation method as follows:  
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There holds  
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Averaging both sides of this equation over the region Ω and including in the 
relation (2.213) together with spatially averaged expected values of the original 
elasticity tensor, the expected values of the homogenised elasticity tensor are 
obtained. Next, the covariances of the effective elasticity tensor components can be 
derived similarly as  
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Finally, the covariances of the effective elasticity tensor components are calculated 
below. Covariance of the first component in (2.216) is derived as  
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Next, the cross-covariances of the second component are calculated and there 
holds  

( ) [ ]( )
[ ]( ) ( ) bb dxpCEC

CECCCCov

Rvupqmnuvvupqmnuv

wtklijtwwtklijtwvupqmnuvwtklijtw

)(

;

,)(,)(

,)(,)(,)(,)(

χχ

χχχχ

−×

−= ∫
+∞

∞−
(2.218)

which, by introducing the simplifying notation, becomes  
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Further, it is obtained that  
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Integration over the probability domain gives  
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or, in a more explicit way, that   
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Now, the third component is transformed as follows:   
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Introducing the symbolic summation notation for the tensor function considered 
above it can be written that   
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By the analogous way, it is obtained  
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The components of effective elasticity tensor covariances are found. Starting from 
the classical definition  
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Transforming the respective integrands and using Fubini theorem applied to the 
integrals of random functions we obtain further  
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which, using the classical definition of the covariance, is equal to  
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Introducing all the statements into the last one it can finally be written that  
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It should be underlined here that the above equations give complete a description 
of the effective elasticity tensor components in the stochastic second moment and 
second order perturbation approach. Finally, let us note that many simplifications 
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resulted here thanks to the assumption that the input random variables of the 
homogenisation problem are just the Young moduli of the fibre and matrix. If the 
Poisson ratios are treated as random, the second order derivatives of the 
constitutive tensor would generally differ from 0 and the stochastic finite element 
formulation of the homogenisation procedure would be essentially more 
complicated.  

For the periodicity cell and its discretisation shown in Figure 2.128 elastic 
properties of the glass fibre and the matrix are adopted as follows: the Young 
moduli expected values E[e1] = 84 GPa, E[e2] = 4.0 GPa, while the deterministic 
Poisson ratios are taken as equal to ν1 = 0.22 in fibre and ν2 = 0.34 – in the matrix.  

Figure 2.128. Periodicity cell tested  

Five different sets of Young moduli coefficients of variation are analysed 
according to Table 2.21 − various values between 0.05 and 0.15 have been adopted 
to verify the influence of the component data randomness on the respective 
probabilistic moments of the homogenised elasticity tensor. The finite difference 
numerical technique has been employed to determine the relevant derivatives with 
respect to the input random variables adopted.  

Table 2.21. The coefficient of variation of the input random variables   

Test number ( )1eα ( )2eα
1 0.050 0.050 
2 0.075 0.075 
3 0.100 0.100 
4 0.125 0.125 
5 0.150 0.150 

The cross-sectional fibre area equals to about a half of the total periodicity cell 
area. The results in the form of expected values and coefficients of variation of the 
homogenised tensor components obtained from four computational tests are shown 
in Table 2.22 and compared against the corresponding values obtained by using the 
MCS technique for the total number of random trials taken as 103.

Table 2.22. Coefficients of variation for the effective elasticity tensor   

Ω
1

Ω
2
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Test ( ))()(
1111 ωα effC ( ))()(

1122 ωα effC

 SFEM MCS SFEM MCS 
1 0.0410 0.0516 0.7152 0.0517 
2 0.0622 0.0777 0.1073 0.0777 
3 0.0830 0.1037 0.1430 0.1037 
4 0.1036 0.1297 0.1788 0.1297 
5 0.1244 0.1557 0.2146 0.1557 

It is seen that the results of the SFEM−based computations are slightly smaller 
than those resulting from the Monte Carlo simulations in the case of ( ))()(

1111 ωα effC ;

the opposite trend is observed for ( ))()(
1122 ωα effC . The differences between both 

models are acceptable for very small input coefficients of variation and above the 
value 0.1 (second order approach limitation) they enormously increase. It is also 
observed that the coefficients from the MCS analysis are equal with each other, 
while the SFEM returns different values for both effective tensor components. It 
follows the fact that the first partial derivatives of both components with respect to 
Young moduli of the fibre and matrix are different. These derivatives are included 
in the SFEM equations for the second order moments and, in the same time, they 
do not influence the MCS homogenisation model at all. Furthermore, a linear 
dependence between the results obtained and the input coefficients of variation of 
the components Young moduli is observed.  

The main reason for numerical implementation of the SFEM equations for 
modelling of the homogenisation problem is a decisive decrease in computation 
time in comparison to that necessary by the MCS technique. It should be 
mentioned that the Monte Carlo sampling time can be approximated as a product 
of the following times:  

(a) a single deterministic cell problem solution,  
(b) the total number of homogenisation functions required (three functions 

χ(11), χ(12) and χ(22) in this plane strain analysis),  
(c) the total number of random trials performed.  
There are some time consuming procedures in the MCS programs such as 

random numbers generation, post-processing estimation procedure and the 
subroutines for averaging the needed parameters within the RVE, which are not 
included, however their times are negligible in comparison with the routines 
pointed out before.  

On the other hand, the time for Stochastic Finite Element Analysis can be 
approximated by multiplication of the following procedure times: (a) the SFE 
solution of the cell problem (with the same order of the cost considered as the 
deterministic analysis) and the total number of necessary homogenisation 
functions. Taking into account the remarks posed above, the difference in 
computational time between MCS and SFEM approaches to the homogenisation 
problem is of the order of about (n-1)τ provided that n is the total number of MCS 
samples and τ stands for the time of a deterministic problem solution. Observing 
this and considering negligible differences between the results of both these 
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methods for smaller random dispersion of input variables, the stochastic second 
order and second moment computational analysis of composite materials should be 
preferred in most engineering problems. The only disadvantage is the complexity 
of the equations, which have to be implemented in the respective program as well 
as the bounds dealing with randomness of input variables (the coefficients of 
variation should be generally smaller than about 0.15).  

2.3.4 Upper and Lower Bounds for Effective 

Characteristics  

Let us consider the coefficients of the following linear second order elliptic 
problem [65]:  

fuεC =− ))(( εεdiv ;   Ω∈x (2.230)

)()( ,,2
1 εεεε ijjiij uu +=u ;   Ω∈x (2.231)

)()( )( pp x εεε ψ CC = (2.232)

with boundary conditions  

0=εu ;   Ω∂∈x (2.233)

In the above equations )(, εε uεu and f denote the displacement field, strain tensor 

and vector of external loadings, respectively. As was presented in Sec. 2.3.3.2, the 

effective (homogenised) tensor 0C  is such a tensor that replacing εC  and 0C  in 

the above system gives 0u  as a solution, which is a weak limit of εu  with scale 
parameter tends to 0. It should be mentioned that without any other assumptions on 
Ω microgeometry the bounded set of effective properties is generated. Moreover, it 
can be proved that there exist such tensors )inf( ijklC  and )sup( ijklC  that  

)sup()inf( 0
ijklijklijkl CCC ≤≤ (2.234)

It is well known that the theorem of minimum potential energy gives the upper 
bounds of the effective tensor, whereas the minimum complementary energy 
approximates the lower bounds. Thanks to the Eshelby formula the explicit 
equations are as follows: 
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where uκ , uµ  have the following form: 
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Further, lower bounds for the elasticity tensor are obtained as 
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where it holds that  
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and n is a total number of composite constituents where nrcr ≤≤1,  denote their 

volume fractions. It should be noted that 

)21(3 υ
κ

−
= e

(2.239)

)1(2 υ
µ

+
= e

(2.240)

µκλ 3
2−= (2.241)

µδδδδλδδ )( jkiljlikklijijklC ++= (2.242)

From the engineering point of view the most interesting is the effectiveness of 
such a characterisation of ijklC , which can be approximated as the difference 

between upper and lower estimates and, on the other hand, sensitivity of the 
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effective tensor with respect to material characteristics of the constituents. The 
Monte Carlo simulation technique has been used to compute probabilistic moments 
of the effective elasticity tensor components for the periodic superconductor 
analysed before. The superconducting cable consists of fibres made of a 
superconductor placed around a thin-walled pipe (tube) covered with a jacket and 
insulating material. Experimental data describing elastic characteristics of the 
composite constituents are collected in Table 2.23.  

Table 2.23. Probabilistic elastic characteristics of the superconductor components  

Material E[e] σ(e) E[ν] σ(ν)
316LN 205 GPa 8 GPa 0.265 0.010 

Incoloy 908
‘annealed’ 

‘cold worked’ 
182 GPa 
184 GPa 

-
-

0.303 
0.299 

-
-

Titanium 126 GPa 12 GPa 0.311 0.012 
Insulation 
G10-CR 36 GPa - 0.21 -

Because of negligible differences in the elastic properties of Incoloy (between 
the ‘annealed’ and ‘cold worked’ state) the ‘annealed’ state of the superconductor 
is considered further. All the results obtained in the computational experiments 
have been collected in Table 2.24 and Figures 2.129-2.137. Because of the fact 
that the expected values appeared to be rather insensitive to the total number of 
random trials in the Monte Carlo simulations, results of the relevant convergence 
tests have been omitted in the tables and presented further in the figures. The 
expected values considered have been collected in Table 2.24 for M=10,000 
random trials.  

Table 2.24. Effective elasticity tensor components and their expected values (in GPa) 

Effective Analysis type 
property Deterministic probabilistic 

type )(eff
JJJJC )(eff

JKKJC )(eff
JKJKC )(eff

JJJJC )(eff
JKKJC )(eff

JKJKC

sup-VR 189.56 81.83 53.86 189.94 82.30 53.82 
Sup 178.44 76.07 51.18 178.57 76.37 51.10 
Inf 156.99 62.70 47.14 156.68 62.61 47.03 

Inf-VR 137.93 51.86 43.03 137.54 51.71 42.92 

Effective properties collected in this chapter (sup, inf in Table 2.24) have been 
compared with the Voigt-Reuss ones (sup-VR, inf-VR in Table 2.24). Considering 
the results obtained, it should be noted that these first approximators are generally
more restrictive than the Voigt-Reuss ones. Further, it can be observed that 
deterministic values are, with acceptable accuracy, equal to the corresponding 
expected values. Thus, for relatively small standard deviations of the input elastic 
characteristics, the randomness in the effective characteristics can be neglected. 
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Finally, it can be noted that more restrictive bounds can be used to determine the 
effective elasticity tensor in a more efficient way. Taking as a basis the arithmetic 
average of the upper and lower bounds, the difference between these bounds is in 

the range of 13% for )(eff
JJJJC  bound component, 19% for )(eff

JKJKC  bound component 

and 8% for )(eff
JKKJC  bound component.  

The following figures contain the results of the convergence analysis of the 
coefficient of variation, asymmetry and concentration with respect to increasing 
total number of Monte Carlo random trials. All these coefficients are presented for 

)(eff
JJJJC  bounds in Figures 2.129, 2.132 and 2.135, for )(eff

JKJKC  bounds in Figures 

2.130, 2.133 and 2.136 and for )(eff
JKKJC  in Figures 2.131, 2.134 and 2.137. On the 

horizontal axes of these figures the total number of Monte Carlo random trials M is 
marked, while the vertical is used for the coefficient of variation.  

General observation here is that the )(eff
JKJKC  bounds are the most sensitive with 

respect to the randomness of input elastic characteristics. These coefficients for 
)(eff

JKJKC  bounds appeared to be the greatest and then we obtain the coefficients for 
)(eff

JJJJC  and )(eff
JKKJC , respectively. Next, it can be mentioned that the estimators of the 

coefficients of variation show fast convergence to their limits. Efficient 

approximation of final coefficients for various components of the tensor )(eff
ijklC

bounds is obtained for M equal to about 2,500 random trials. Generally, it is 
observed that the coefficients of variation of effective elasticity tensor fulfil the 
inequalities detected in case of the expected values. The greatest coefficients are 
obtained for Reuss bounds, next the upper and lower bounds proposed in this 
chapter, and the smallest for the Voigt lower bounds.  
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Figure 2.129. The coefficients of variation of )(eff
JJJJC  bounds  
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Figure 2.130. The coefficients of variation of )(eff
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Figure 2.132. The coefficients of asymmetry of )(eff
JJJJC  bounds  
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Figure 2.133. The coefficients of asymmetry of )eff(
JKJKC  bounds  
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Figure 2.134. The coefficients of asymmetry of )(eff
JKKJC  bounds  
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Figure 2.135. The coefficients of concentration of )(eff
JJJJC  bounds  
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Figure 2.136. The coefficients of concentration of )(eff
JKJKC  bounds  
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Figure 2.137. The coefficients of concentration of )(eff
JKKJC  bounds  

Observing the results presented in Figures 2.132 and 2.134 it can be observed 

that all coefficients of asymmetry of )(eff
ijklC  verified tend to 0 with increasing total 

number of random trials. Comparing )(eff
JJJJC  and )(eff

JKJKC against )(eff
JKKJC bounds it can 

be stated that the first two variables have minimum positive asymmetry, while the 
last have a negative one. It should be mentioned that for such probabilistic 
distributions with non-zero coefficients of asymmetry, the expected value is not 
equal to the most probable one.  

Moreover, taking into account the convergence of coefficients of asymmetry it 
is seen that they are generally more slowly convergent than coefficients of 
variation estimators. M larger than 5,000 is required to compute these estimators 
with satisfactory accuracy. Analogous to the coefficients of variation, the hierarchy 

of the expected values of )(eff
ijklC , which has been discussed above, is fulfilled.  
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Figures 2.135-2.137 present the coefficients of concentration for different 
components of the effective elasticity tensor. The estimator convergence analysis 
proves that M equal to almost 10,000 is needed to compute these coefficients 
properly. The convergence of these estimators is more complex than the previous 
ones, but generally their values are greater than 3, which is characteristic for the 

Gaussian variables. Thus it can be stated that the )(eff
ijklC  probabilistic distributions 

obtained are more concentrated around their expected values than the Gaussian 

variables, but this difference is no greater than a maximum of 15% for the )(eff
JKJKC

bounds.  
Figures 2.138-2.140 illustrate the probability density functions of the upper 

and lower bounds for )(eff
JJJJC , )(eff

JKJKC and )(eff
JKKJC  components of the effective 

elasticity tensor. On the horizontal axes of these figures the values computed for 
these components are marked, while on the vertical axes the relevant probability 
density function (PDF) is given.  

The PDFs for the tensor )(eff
ijklC  computed together with the additional 

coefficients of asymmetry and concentration β, γ show that these functions have 
distributions quite similar to the bell-shaped Gaussian distribution curve. Thus, in 
further analyses proposed in the conclusions, we assume that for the input random 
variables being elastic characteristics (Young moduli and Poisson ratios) being 
Gaussian uncorrelated random variables, the upper and lower bounds computed 
having also a Gaussian distribution, which essentially simplifies further estimation 
and related numerical analyses.  
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Figure 2.138. The probability densities of )(eff
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Figure 2.140. The probability densities of )(eff
JKKJC  bounds  

The results of numerical tests performed lead us to the conclusion that the 
probabilistic upper and lower bounds of the effective elasticity tensor may be very 
efficient in the characterisation of superconducting composites with randomly 
defined elastic characteristics because of negligible relative differences between 
the upper and lower bounds. Considering the computational time cost they appear 
to be much more useful in engineering practice than other FEM-based direct 
methods.  

Computational experiments carried out prove that the coefficients of variation 
of the bounds computed are in the range of the input random variables of the 
problem. Considering further analyses of homogenised superconducting coils, this 
fact confirms the need for the application of the SFEM in such computations, 
which is important for essential time savings in comparison with the simulation 
methods.  

The probabilistic sensitivity of the effective elastic characteristics with respect 
to the probabilistic material parameters should be verified computationally in 
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further analyses as an effect of regression test, for instance. Such an analysis 
enables us to find out these parameters of composite constituent elastic 
characteristics, which are the most influencing for global superconductor 
behaviour.  

The procedure for effective elastic properties approximation seems to be the 
only method, which can be successfully applied to the homogenisation of 
stochastic interface defects. Such an approach will make the elastic properties of 
the interphases much more sensitive to the presence of structural defects than was 
in case of the Probabilistic Averaging Method. Considering this, the bounds 
presented should be implemented in numerical analysis of stochastic structural 
defects into the artificial composite interphases.  

2.3.5 Effective Constitutive Relations for the Steel 

Reinforced Concrete Plates 

The homogenisation method proposed for composite plates analysis is not 
based on any mathematical model. However it seems to be very effective for high 
contrast steel-reinforced concrete plates [160]. The next main reason to apply this 
model is that the composite plate need not be periodic in the applied approach, 
which perfectly reflects the civil engineering needs. To get the effective 
characterisation for the elasticity tensor, Eshelby theorem can be used since upper 
and lower bounds for this tensor are determined. However it is proved by 
comparison with collected experimental results, either lower and upper bounds are 
very effective in computational modelling of a real plate. Both of them can be used 
to calculate the zeroth, first and second order stiffness matrix and the resulting 
probabilistic moments of displacements and stresses for the composite plate during 
the SFEM analysis. It decisively simplifies the numerical analysis in comparison to 
the traditional FEM modelling of such structures (where reinforcement 
discretisation is complicated); more accurate results, especially in terms of thin 
periodic plate vibration analysis, are shown in [155]. Finally, it should be 
mentioned that the homogenised effective characteristics for composite shells can 
be derived analogously, following considerations presented in [227,338].  

Numerical test deals with the homogenisation of steel-reinforced concrete 
plates characterised by the data collected in Table 2.25; the coefficients of 
variation randomized Young moduli are taken as 0.1 as in all previous 
experiments. The concrete rectangular plate with horizontal dimensions 0.90 m x 
0.90 m and thickness 0.045 m, supported at its corners and loaded by the vertical 
concentrated force is examined and Table 2.26 contains the deterministic and 
probabilistic homogenisation output. It can be observed that, as in previous 
examples, the deterministic and expected values are close to each other, 
respectively, and the resulting coefficients of variation are obtained as smaller or 
equal to those taken for input random variables.  
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Table 2.25. Material data of the composite plate  

Material properties Steel Concrete 
Young modulus 200.0 GPa 28.6 GPa 
Poisson ratio 0.30 0.15 
Volume fraction  0.0367 0.9633 
Yield stress 345.0 GPa 20.68 GPa 

Table 2.26. Effective materials characteristics 

Effective elasticity  
tensor components 

Deterministic Expected value Variation 

( )[ ]1111inf CE 42.53 GPa 42.52 GPa 0.0985 

( )[ ]1111sup CE 44.84 GPa 44.84 GPa 0.0905 

( )[ ]1212inf CE 13.13 GPa 13.12 GPa 0.0982 

( )[ ]1212sup CE 13.88 GPa 13.88 GPa 0.0896 

( )[ ]1122inf CE 16.27 GPa 16.28 GPa 0.0991 

( )[ ]1122sup CE 17.09 GPa 17.09 GPa 0.0896 

The most important observation is that the lower and upper bounds are almost 
equal for any of the effective elasticity tensor components. Thus it does not matter 
which of them are used in the approximation of the real composite structure. 
Hence, the very complicated discretisation process of this particular concrete 
structure type (ABAQUS) can be replaced with an analysis of the homogeneous 
plate with elasticity tensor components calculated as proposed above. After 
successful verification of other reinforced concrete plates with various 
combinations of input parameters, such formulas for the effective elasticity tensor 
could be incorporated in the finite element stiffness formation process to speed up 
the FEM modelling procedures for these structures.  

The variability analysis for expected values and the coefficients of variation of 
the effective elasticity tensor is presented in Figures 2.141 and 2.142 as a function 
of Young moduli expectations of the steel and concrete. It is seen that the Young 
modulus of the concrete matrix is detected as a crucial parameter for both 
probabilistic moments. It is due to the fact that the matrix is the dominating 
component (in the volumetric context) while the equations for homogenised tensor 
are rewritten as functions of the volume ratios of the composite components.  

Considering the above, the behaviour of a real composite is compared against 
the homogenised one, cf. Figure 2.143. It is seen that the central deflection 
increments for both models are almost equal in the elastic range and, further, some 
expressions for the nonlinear range should be proposed and verified.  
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Figure 2.141. Expected value of upper bound for the component C1111

Figure 2.142. Coefficient of variation of upper bound for the component C1111

A very broad discussion on theoretical and numerical modelling concepts in 
reinforced concrete structures have been presented in [22] - fracture analysis 
contained in this study can be incorporated into the SFEM using the approach 
described in [33]. Future analyses devoted to the application of homogenisation 
technique in reinforced plates modelling should focus on incorporation of the 
microcracks appearing in real matrices. It can be done using initial homogenisation 
of the cracks into the matrix [92,266,321] to find equivalent homogeneous 
medium; further homogenisation follows the above considerations. 

Taking into account all the results of this test as well as the previous analyses 
on the homogeneous plates with random parameters, the application of the 
Stochastic Finite Element Method for the homogenised plate should approximate 
the probabilistic moments of displacements [63] in linear elastic range for the real 
plate very well. The expected values and variances of the effective elasticity tensor 
can be obtained for this purpose by using symbolic MAPLE computations 
analogous to those presented above.  
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Figure 2.143. Vertical displacements of the composite plate centre  

2.4 Conclusions   

The main advantage of the homogenisation approach proposed is that any 
randomness in geometry or elasticity of the composite structures is replaced by a 
single effective random variable of the elasticity tensor components characterising 
such a structure. Hence, computational studies of engineering composites with 
different random variables using a homogeneous one with deterministically 
defined geometry and equivalent probability density function of the elastic 
properties can be carried out. It is observed that using an analytical expression for 
the homogenised elastic properties, the randomness in geometry for the periodicity 
cell can be introduced and can result in random fluctuations of the effective 
parameters only. Furthermore, even if the composite structure is not periodic, the 
results of homogenisation method application are satisfactory, i.e. the probabilistic 
response of the structure homogenised approximates very well the real composite 
model; analytical solution in the correlative approach for random quasi-periodic 
structures can be found in [278].  

The basic value of the proposed homogenisation method is that the equations 
for the expected values and covariances of effective characteristics do not depend 
on the PDF type of the input random fields. However, in case of greater values of 
higher order probabilistic moments related to the first two as well as the lack of the 
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PDFs symmetry, a higher order version of the perturbation method is 
recommended. It is important since the probability density function of the input 
may not always be assumed properly, while in most experimental cases it is a 
subject of the statistical approximation only. Application of a stochastic higher 
order perturbation technique is relatively easy for closed form homogenisation 
equations considering the symbolic differentiation approach. It should be 
emphasised that, taking into account the capability of MAPLE links with 
FORTRAN routines, the program can be used in further SFEM computations as an 
intermediate procedure for symbolic homogenisation and sequential order 
perturbation derivation.  

It should be underlined that the method proposed can find its application in 
stochastic reliability studies (SOSM approach) for various composite structures. 
This homogenisation technique makes it possible to reduce significantly the total 
number of degrees of freedom for such a structure, while the expected values and 
covariances of displacements and stresses enable one to estimate the second order 
second moment reliability (SORM) index or even third order reliability coefficients 
(W-SOTM). In the same time, both probabilistic methodologies have 
[171,175,180] and can find further applications in determination of effective heat 
conductivity coefficients in various models [216,294] including fibre-reinforced 
structures with some interfacial thermal resistance [303].  

Due to the satisfactory accuracy of the homogenisation approach in modelling 
of composite structures, the model worked out can be treated as the first step for 
so-called self-homogenising finite elements, where the computer program 
automatically homogenises the entire structure using original material composite 
characteristics and finally calculates the displacements and stresses probabilistic 
moments for an equivalent homogeneous medium. On the other hand, the 
stochastic perturbation homogenisation procedure can be further modified for 
elastoplastic composite structures using Transformation Field Analysis (TFA) or 
Fast Fourier Transform (FFT) approaches. In the same time, the study of stochastic 
elastodynamic effective behaviour is recommended since the still growing range of 
composites has possible engineering applications.  

2.5 Appendix 

We prove, in the context of the composite model introduced in this chapter, that 
u(x,y) being a solution of problem (2.121) is constant in the region Ω. For this 
purpose, let us consider u(y) being a Ω-periodic displacement function and the 
solution of the following boundary value problem:  
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where g(y) are given functions defined on Ω or Γr, r=1,...,m with m being the total 
number of various interface boundaries. The variational formulation of (A2.1) may 
be stated as follows:  
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for V∈v  being the following space:  
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while the corresponding components of the vector v are equal on the two opposite 
faces of Ω. Taking into account these conditions and neglecting body forces, we 
arrive at the well-known relation, cf. (2.121):  

)(),( vvu La = (A2.4)

If cvi =  is taken, which belongs to the set C of vectors constant on Ω, there holds 
for all Cc ∈

0)( =cL (A2.5)

Thus, if g(y) from (A2.1) is such that 0)( ≠cL , there is no solution for the problem 

(A2.1). Next, let us introduce the space S=V/C and let us denote by .
k

 the norm 
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(4) (A8) may be written equivalently as  
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(5) It can be proved that S is an Hilbert space for the norm  
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(6) The norm equivalent to (A2.9) on space S may be rewritten as  
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If we prove the statement (6) thus, due to the fact that N(v) is continuous as well as 
coercive on space S and, further, applying the Lax-Millgram theorem we arrive at 
the conclusion that there exists a unique solution for (A2.1). To show this fact let 
us note that  
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where  

( )vv 22
N≤ (A2.12)

There exists such a constant c1 that for all W∈v  that there holds  

( )vv 2
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Let us introduce the orthogonal projection operator O such that  

( )( ) CLO →Ω 3

1
2: (A2.14)

with respect to the scalar product corresponding to 
1

. . It yields  

( ) 2

111
22

OvvN −+= vv (A2.15)

Equation (A2.15) is true if and only if for all V∈v  there holds  
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We assume that it is possible to improve ( ) Vvv nnn ∈= 21 ,v  for any positive n such 

that  
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Setting ( )nnnnn OvvOvv 2211 , −−=w  we get for all Cc ∈  that  
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Then, { }nw  is bounded in V and there exists such a subsequence ( ){ }mmm ww 21 ,=w ,

which converges weakly to w0 in V. Since that, 
µ

1
w  converges strongly in 

( )( )3

1
2 ΩL

1
1

0
1 =w (A2.19)

Due to the lower semi-continuity there holds  
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Finally, it is obtained that  
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3 Elastoplastic Problems  

3.1 Introduction  

There are numerous well-established techniques to calculate effective material 
characteristics for composite materials. In the case of composite components 
volume fractions only, one can use the closed form algebraic equations on upper 
and lower bounds or direct estimates for the effective material tensor components. 
Otherwise, the cell problems are formulated and solved using their Finite Element 
Method (FEM) or, alternatively, the Boundary Element Method (BEM) numerical 
implementations that enable direct computations of the effective characteristics. 
Recent advances in the area of computational methods in homogenisation of the 
nonlinear effective characterisation of heterogeneous materials and structures are 
reported in [4,85,86,107,112,136,250,325]. In the same time, stochastic analysis is 
still being developed to estimate or to compute probabilistic moments of 
homogenised material tensors.  

Homogenisation of composite materials with elastoplastic constituents is 
presented below using the so-called Transformation Field Analysis (TFA) 
proposed by Dvorak and now applied to approximate the effective nonlinear 
behaviour of a three-component periodic composite. The self-consistent model 
and Mori-Tanaka theory, providing the estimation of the overall thermoelastic 
constants of composites on the basis of constituent properties and volume fractions, 
are partially incorporated in this model. Computational implementation of the 
method consists of the utilisation of the program ABAQUS to enable automatic 
homogenisation of n-component periodic composites in a general configuration of 
the components in the RVE. Numerical examples of the three-component periodic 
composite homogenisation make it possible to compare the nonlinear behaviour of 
a composite for its real and homogenised models in the case of the specific 
boundary problem defined for the cell. The next step in the development of this 
approach would be to determine the parameter sensitivity of the homogenised 
properties of the composite with respect to the material characteristics of the 
constituents as well as to some geometrical data defining the RVE. Statistical and 
stochastic simulation of probabilistic moments of the effective material tensors 
would be possible after such a sensitivity determination, taking into account the 
experimental knowledge of the statistical parameters of the composite constituents.  

3.2 Homogenisation Method  

The periodic n-component composite in the plane orthogonal to the fibre 
direction is considered where perfectly bonded components are assumed to be 
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elastoplastic. Mechanical behaviour of the composite constituents is represented by 
time and temperature dependent constitutive relations under the assumption that for 
any time τ  the total strains and stresses can be decomposed as  

),),),
rrr

τε+τε=τε yyy (((
*el (3.1) 

),(),(),( *
rrr τστστσ yyy += el (3.2) 

where el
rε , *

rε  denote elastic strain resulting from a given displacement boundary 

condition applied on the region rΩ  and the eigenstrain in the same subregion, 

respectively; el
rσ , *

rσ  stand for the elastic stress and eigenstress tensor 

components in rΩ . The eigenstrain and eigenstress fields considered here as 

transformation field may be decomposed in the case of thermal and inelastic effects 
as  

),()(),(*
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rTr += (3.3) 

),()(),(* ττατ yσlyσ
rel
rTrr += (3.4) 

where rm  denotes the thermal strain tensor, rl  is the thermal stress tensor, while 

αT(τ) represents the linear thermal expansion coefficient. A procedure of 
determination of the effective thermal expansion coefficients for various 

composites has been described in [253,305,311]. Since inel
rε  is the inelastic strain 

and rel
rσ  is the relaxation stress, (3.1) and (3.2) can be written as  
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where rC  and rM  are the elastic and compliance tensor components for the 

subregion rΩ . Hence, it is possible to write the following relations between 
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rrrrr ε,,,, CMlm  and rel

rσ :
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Mechanical and thermal elastic influence functions are given by the following 
relations:  

),()()()(),( *
rs τετετε yyy,DyAy srr ′+= (3.12) 
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rs τστετσ yyyFyBy srr ′+= (3.13) 

Matrices )(yB r  and )(yA r  in (3.12) and (3.13) denote stress and strain 

concentration factor tensors representing the volume averages of the corresponding 
functions over the periodicity cell, as is proposed in (3.14) to (3.17). To describe 
the overall homogenised response of volume Ω , the resulting strains and stresses 
are combined with their corresponding local components described by (3.3) to 
(3.6) as   
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Then, local elastic fields may be written as  
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where ar(y) and br(y) are the thermoelastic strain and stress concentration factors 

[86,94]. The strain transformation field ),(* τε y  defined in Ω  results in the 

displacements on the unconstrained part of surface ∂ Ω , while the transformation 

stress ),(* τσ y  generates surface tractions on Ω  being constrained. The relation 

between the local and global transformation fields is proposed as  
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The elastic local strain ),( τε yr  and stress fields ),( τσ yr  are found from a 

superposition of the elastic local fields ),(el
r τε y  and ),(el

r τσ y  with local 

eigenstrains ),(*
r τε y  and eigenstresses ),(*

r τσ y , respectively; the same model in 

the context of global scale is introduced analogously. These two different scales 
are linked using the formulation for local strain and stress fields in the following 
form:  

)(),()()( * y'y'yDy'Ay' srsrr εεε += (3.20) 

)(),()()( * y'y'yFyBy srsrr σσσ += (3.21) 

),( y'yDrs , ),( y'yFrs  are transformation strain and stress influence functions, 

which enable us to relate the strain and stress tensor components on the macroscale 
defined by y and the microscale identified by y′. Solving the following boundary 
value problem on the RVE we get  

0
)(

)( =
∂

∂=
y
y

y
σσdiv (3.22) 

)()()( *
rrr yyMy εσε +=r

(3.23) 

∫
Ω

Ω=Ω
Ω

εε dr )(
1

y (3.24) 

)()( * yuyyu += ε (3.25) 

where the local uniform strain field rε  is found using the matrices )(yA r ,

),( y'yDrs . Further, it is possible to determine the approximated expression of the 

averaged strain in the subvolume rΩ  given as  

∑
=

+=
N

sr
rrsrr

1,

*εεε DA (3.26) 

Analogous to (3.26), the averaged stresses in the subregion 
r

Ω  can be written 

in the form  

∑
=

+=
N

sr
rrsrr

1,

*σσσ FB (3.27) 

It is observed that Fr(y,y′) and Dr(y,y′) are eigenstress and eigenstrain influence 
functions, that reflect the effect on the scale y resulting from a transformation on 
the scale y’ under overall uniform applied stress or strain. The additional influence 
functions are determined in terms of averages and piecewise constant 
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approximations in the introduced subregions inside the RVE. Therefore, under 
overall strain ε(t)=0, the transformation concentration factor tensor Drs gives the 
strain induced in the subvolume rΩ  by a unit uniform eigenstrain in sΩ . Under 

overall stress σ(t)=0, the concentration factor tensor Frs defines the stress in rΩ
resulting from the unit eigenstrain located in sΩ . It can be shown that these 

tensors can be determined in the case of multiphase medium as  

( )( ) ( ) s
T
ssrsrrsr CAcICCAID −−−= − δ1 (3.28) 

( )( ) ( ) s
T
ssrsrrsr MBcIMMBIF −−−= − δ1

(r,s=1,...,N, without summation over repeated indices) 

(3.29) 

which for a two-component composite gives  

( )( ) αβαα CCCAID 1−−−= pp

( )( ) ββαβ CCCAID 1−−−−= pp

(3.30) 

( )( ) αβαα MMMBIF 1−−−= pp

( )( ) ββαβ MMMBIF 1−−−−= pp

for p=α,β

(3.31) 

This completes the description of the homogenisation method for a composite with 
elastoplastic coefficients by use of the Transformation Field Analysis (TFA). It 
should be underlined that, in comparison to the homogenisation model valid for the 
linear elastic range, the necessity of transformation matrix computations is crucial 
for the proposed nonlinear FEM analysis.  

3.3 Finite Element Equations of Elastoplasticity  

The following boundary value problem is now considered [206,210]:  

0, =∆ lklσ ; Ω∈x (3.32) 

mnklmnkl C εσ ∆=∆ ~ ; Ω∈x (3.33) 

][ ,,,,,,,,2
1

likilikilikikllkmn uuuuuuuu ∆∆+∆+∆+∆+∆=∆ε ; Ω∈x (3.34) 

with the boundary conditions  

kllk
tn ∆=∆σ ; σ∂ Ω∈x , 3,2,1=k (3.35) 

kk
uu ˆˆ ˆ∆=∆ ; uΩ∈∂x , 3,2,1ˆ =k (3.36) 
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This problem is solved for displacements ( )xku , strain ( )xklε  and stress ( )xklσ
tensor components fulfilling equilibrium equations (3.32)-(3.36). Let us note that 
the stress tensor increments ( )xklσ∆ , ( )xklσ~∆  denote here the first and second 

Piola-Kirchhoff tensors  

mlkmmlkmmlkmkl FFF σσσσ ~~~ ∆+∆+∆∆=∆ ; Ω∈x (3.37) 

where  

mkkm uF ,∆=∆ ; Ω∈x (3.38) 

To get the solution, the following functional defined on the displacement 
increments as ku∆  is introduced:   

( ) ( ) ( )∫∫
ΩΩ

Ω∆∆−Ω∆∆+∆∆=∆
∂

∂σεε dutduuCuJ kklikiklmnklklmnk
ˆ~

,,2
1

2
1 (3.39) 

Let us note that this methodology is common for homogeneous m aterials as well as 
heterogeneous media. In case of composites, the last equation can be decomposed 
into the integrals valid for particular constituents and their boundaries and 
interfaces, separately.  

Now, let us introduce the displacement increment function ( )xku∆  being 

continuous and differentiable on Ω and, consequently, including all geometrically 
continuous and coherent subsets (finite elements) eΩ , e=1,...,E discretising the 

entire Ω. It is not assumed that ( )xku∆  is differentiable on the interelement 

surfaces and boundaries efΩ∂  (for e,f=1,...,E, fe ≠ ). Next, let us consider the 

following approximation of ( )xku∆  for Ω∈x :

( ) ( ) )(

1

N
N

kk uu
e

ζ
ζ

ζϕ ∆=∆ ∑
=

xx (3.40) 

where ( )xkζϕ  are the shape functions for node k, )(Nuζ∆  represents the degrees of 

freedom (DOF) vector, while Ne is the total number of the DOF in this node. 
Considering above, the displacements and strains gradients are rewritten as 
follows:  

( ) ( ) )(
,,

N
lklk uu ζ

ζϕ ∆=∆ xx (3.41) 

( ) )()()2()1( ][ N
kl

N
klklkl uBuBB ζ

ζ
ζ

ζζε ∆=∆+=∆ x (3.42) 

( ) )()( NN
klkl uuB ξζ
ζξε ∆∆=∆ x (3.43) 
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and finally  

( ) ( ) ( )xxx klklkl εεε ∆+∆=∆ (3.44) 

The following notation is applied (3.42) and (3.43):  

( ) ( )xx ζζ ϕ lkklB ,
)1( = (3.45) 

( ) ( ) ( ) )(
,,

)2( N
likikl uB ξ

ξζζ ϕϕ xxx = (3.46) 

( ) ( ) ( )xxx ξζζξ ϕϕ likiklB ,,2
1= (3.47) 

All these equations are substituted into the variational formulation of the 
problem (cf. (3.39)). There holds 

( )( )
( )
(

))()()()()()()(

)()()()()(
2
1

2
1

2
1

2
1

NN
mn

NN
kl

N
mn

NN
kl

NN
mn

N
kl

N
mn

N
klklmn

mnklmnklmnklmnklklmn

mnmnklklklmnmnklklmn

uuBuuBuBuuB

uuBuBuBuBC

C

CC

νµ
µν

ζζ
ζξ

µ
µ

ξζ
ζξ

νµ
µν

ζ
ζ

ξ
ξ

ζ
ζ

εεεεεεεε

εεεεεε

∆∆∆∆+∆∆∆+

∆∆∆+∆∆=

∆∆+∆∆+∆∆+∆∆=

∆+∆∆+∆=∆∆

(3.48) 

( ) ( ) )(
,

)(
,2

1
,,2

1 ~~ N
li

N
kikllikikl uuuu ξ

ξ
ζ

ζ ϕϕσσ ∆∆=∆∆ xx (3.49) 

Next, the following notation is applied:    

( ) ( )∫
Ω

Ω=
e

duk li
N

kikl
e xx ξ

ζ
ζσ

ζξ ϕϕσ ,
)(

,
)( ~ (3.50) 

∫
Ω

Ω=
e

dBBCk mnklklmn
econ ξζ

ζξ
)1()1(

2
1)( (3.51) 

( )∫
Ω

Ω++=
e

dBBBBBBCk mnklmnklmnklklmn
eu ξζξζξζ

ζξ
)2()2()1()2()2()1(

2
1)( (3.52) 

where  
eueconee kkkk )()()()1(

ζξζξ
σ

ζξζξ ++= (3.53) 

and for the second and third order terms  
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( )∫
Ω

Ω∆∆∆+∆∆∆=
e

duBuuBuuBuBC

k

N
mn

NN
kl

NN
mn

N
klklmn

e

)()()()()()(
2
3

)2(

µ
µ

ξζ
ζξ

νµ
µν

ζ
ζ

ζξ
(3.54) 

( )∫
Ω

Ω∆∆∆∆=
e

duuBuuBCk NN
mn

NN
klklmn

e )()()()()3( 2 νµ
µν

ξζ
ζξ

ζξ
(3.55) 

Introducing )(ikζξ  for i=1,2,3 to the functional ( )kuJ ∆  in (3.39) and applying the 

transformation from the local to the global system by the use of the following 
formula, typical for the FEM implementation:  

αξαζ qau N ∆=∆ )( (3.56) 

it is obtained that   

( )
ααδγβααβγδ

γβααβγβααβα

qQqqqqK

qqqKqqKqJ

∆∆−∆∆∆∆+

∆∆∆+∆∆=∆
)3(

4
1

)2(
3
1)1(

2
1

(3.57) 

The stationarity of the functional ( )αqJ ∆  leads to the following algebraic 

equation:  

αδγβαβγδγβαβγβαβ QqqqKqqKqK ∆=∆∆∆+∆∆+∆ )3()2()1( (3.58) 

being fulfilled for any configuration of Ω. The iterative numerical solution of this 
equation makes it possible, according to the specified boundary conditions, to 
compute the effective constitutive tensor components of the homogenised 
composite. It should be stressed that the first two components of the stiffness 
matrix are considered only in further numerical analysis (geometrical nonlinearity 
is omitted in the homogenisation process); a detailed description of the numerical 
integration and solution of (3.58) can be found in [12,72,271,276], for instance.  

3.4 Numerical Analysis   

As was mentioned above, the main goal of the TFA approach is to compute the 
transformation matrices Ar, Drs that are determined only once for the original 
geometry of the composite and assuming initially linear elastic characteristics of 
the constituents. There holds that  

r
rr

)dd(d
el

rr ΩΩΩ εεεσ inel
r

eff
rr

eff
r d +== CC
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∑
=

+=
N

DA
1s,r

r
s

r

ddd
ΩΩ εεε inel

srsr

(3.59) 

rr

el

r

el

r dd
ΩΩ

εCσ
el
r=  and  

rr

inel

r

inel

r dd
ΩΩ

εCσ r= (3.60) 

r
el
r CCC +=eff

r
(3.61) 

Further, using spatial averaging definitions, the averaged stress tensor components 
are calculated as follows:  

εε Ω =
r

 and σσ Ω =r (3.62) 

Hence, the effective elasticity tensor components 
eff

C are derived for a given 

increment as  

ε=σ d
eff

d C (3.63) 

( ) inel

r

N

s,r

inel

rs

N

r

el

rr

eff
:c σεDCC

1

1 sr1

c
−

==
∑∑ +=

(3.64) 

In the particular case of a two-component composite, the transformation and 
concentration matrices are obtained as, cf. (3.30) and (3.31)  

1
1

21111 ))(( CCCAID −−−= (3.65) 

1
1

21221 ))(( CCCAID −−−= (3.66) 

2
1

21112 ))(( CCCAID −−−−= (3.67) 

2
1

21222 ))(( CCCAID −−−−= (3.68) 

21,CC  denote here the components corresponding to elastic properties, while 

21, AA  are mechanical concentration matrices. Finally, using (3.64) it is obtained 

that  

( ) ( )∑ ∑
=

−−
+++=

N

r

inelinelinelineleleleff cc
2

2
1

21221
1

11112211 :c:c σεσε DDCCC

( ) ( )∑
−−

++ inelinelinelinel
2

1
22221

1
1211 :c:c σεσε DD

(3.69) 

The FEM aspects of TFA computational implementation are discussed in detail 
in Section 3.4 below. Further, it should be noticed that there were some approaches 
in the elastoplastic approach to composites where, analogously to the linear 
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elasticity homogenisation method, the approximation of the effective yield limit 
stresses of a composite is proposed as a quite simple closed form function  

21
σσ=σ(eff) (3.70) 

or, in terms of the effective yield surface, in the following form:  

( ) ( )[ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Φ

−

≥

2)2(

1

)2(

)1(

12
0

)(max y
y

y

y
ymycc σσσ

σ
σ

σ (3.71) 

where 3)(
2

1 == µ
µym ( )212 ,µµµ V  and V is any estimate of the viscosity compliance 

tensor defined using the viscosities µ1 and µ2. A review of the most recent theories 
in this field can be found in [381], for instance.  

The main aim of computational experiment presented is to determine the global 
nonlinear homogenised constitutive law for two component composites with 
elastoplastic components; the FEM based program ABAQUS [1] is used in all 
computational procedures. However the method presented can be implemented in 
any nonlinear FEM plane strain/stress code such as [60], for instance. The 
numerical experiments are carried out in the microstructural (RVE) level, and that 
is why the global response of the composite is predicted starting from the 
behaviour of the periodicity cell. The numerical micromechanical model consists 
of a three-component periodicity cell with horizontal and vertical symmetry axes 
and dimensions 3.0 cm (horizontal) ×  2.13 cm (vertical) (cf. Figure 3.1 and 3.2). 
The composite is made of epoxy matrix and metal reinforcement with material 
properties of the components collected in Table 1. The void embedded into the 
steel casting simulates a lack of any matrix in the periodicity cell. Some nonzero 
material data are introduced to avoid numerical singularities during the 
homogenisation problem solution.  

The 10-node biquadratic, quadrilateral hybrid linear pressure reduced 
integration plane strain finite elements with 4 integration Gaussian points are used 
to discretise the cell. Periodic boundary conditions are imposed to ensure periodic 
character of the entire structure behaviour. A suitable formulation of displacement 
boundary conditions has the following form:  

))()(( 12 PyPyu iji −= ε (3.72) 

where { }21,uuui =  represents the displacement function components, ijε  is the 

global total strain imposed on the periodicity cell, while )( 1Py  and )( 2Py  denote 

coordinates of the points lying on the opposite sides of the RVE. 
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Figure 3.1. Cross section of a superconducting coil

Figure 3.2. 3D view of the superconducting coil part

Table 3.1. Material characteristics of composite constituents 
No Material Young modulus Poisson ratio Yield stress 

1 Epoxy resin 7000.0 0.3 10.0 

2 Metal 42000.0 0.2 22.0 
3 Void 70.0 0.1 0.1 

To calculate the effective tensor components, the boundary value problem given by 
(3.22) - (3.25) is solved first, where the periodicity cell is discretised with 25 finite 
elements of the type CGPE10R implemtented into the system ABAQUS. The 
displacement boundary conditions are introduced at the edges of the RVE quarter 
as is shown in Figures 3.3 and 3.4.  

y2

                                                                                       u 1=E11y1

                                  
y1

                            

Figure 3.3. Boundary conditions for 011 ≠E
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                                             y2 u2=E22y2

y1

Figure 3.4. Boundary conditions for 022 ≠E

Further, since the generalised plane strain is considered, the matrices computed 
have a rank 4=α  and the total dimensions of the matrices rA  and rsD  are 

]44[ × . The first step in the numerical analysis is to compute mechanical and 

transformation concentration matrices rA  and rsD , which is carried out according 

to the special purpose implementation in the computer system ABAQUS. 
Transformation matrices rA  and rsD  are evaluated as  

(1) matrix 
r

A  by means of the overall strain loading case 

{ } T
ij ],2,,[ 33122211 εεεεεε ==  introduced using displacements  

jiji yu ε= , (3.73) 

(2) matrix 
rs

D  imposing the uniform eigenstrain in the subvolume rV  or sV  as the 

uniform stress; since it is not possible to introduce the eigenstrain directly in each 
subvolume in the program ABAQUS, the stress tensor components are calculated 
as  

*
r

* : εσ rr C−= , and r=1,...,N (3.74) 

and imposed on each of the N subvolumes, where the elasticity tensor Cr is given 
by  
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C (3.75) 

The accuracy of the homogenisation method applied for a given material model 
is verified by comparison with the results obtained for real heterogeneous 
composite under the same boundary conditions. For this purpose, the same 
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boundary value problem is solved with four different loading cases. The 
elastoplastic static analysis consists of 25 incremental load steps (with a constant 
increment in each step) and is performed using the Radial Return algorithm for the 
perfect 2J  elastoplastic material. The results in the form of stress strain relations 

are shown in Figures 3.5 to 3.8, while the stress distribution in the periodicity cell 
can be compared in Figures 3.9 to 3.12.  

Generally, it is observed that the elastic range is very well approximated by the 
TFA model results. However, the homogenised material seems to be a little stiffer 
than the heterogeneous one, especially in the nonlinear range in the direction y1 of 
the RVE. At the same time, for the interrelation of shear strain and stress, the last 
incremental steps show almost linear behaviour and that is why practically there is 
no difference between heterogeneous and homogeneous material. To obtain more 
efficient effective elastoplastic properties, homogenisation method presented above 
should be corrected to include the increments of transformation matrices during the 
loading process. 
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Figure 3.5. Constitutive σ11-ε11 relation for homogenised and real composites  
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Figure 3.6. Constitutive σ22-ε22 relation for homogenised and real composites  
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Figure 3.8. Constitutive σ12-2ε12 relation for homogenised and real composites  

Figure 3.9. The equivalent stress 
eq

11
σ  distribution in the RVE  
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Figure 3.10. The equivalent stress 
eq

22
σ  distribution in the RVE

Figure 3.11. The equivalent stress 
eq

12
σ  distribution in the RVE 
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Figure 3.12. The equivalent stress 
eq

33
σ  distribution in the RVE 

That is why the FEM mesh should employed the most precisely around all 
interfaces – its density along the external RVE edges does not need to be so 
precise. Comparing the stresses fields spatial variations with analogous results 
collected in Sec. 2.3.3.2 it is seen that maximum stresses variations are obtained 
along the interface in RVE. This observation does not depend on the 
homogenisation approach used as well as on its FEM solution, so it is common for 
various cell problem solutions.  

Further, the effective properties of the homogenised material are computed 
starting from the properties of the composite constituents and the constitutive 
relation verified for all strain increments during the computational incremental 
analysis. We use the relation (3.70) and therefore  
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while the inelastic part of the effective constitutive tensor can be written as  
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which completes the calculations of the effective elastoplastic characteristics of the 
composite considered. As it is shown here, the homogenisation technique presented
can be very efficiently used in case of linear elastic constituents of the composite. 
It can be used instead of the previous method, where the symmetry conditions have 
been applied on the external edges of the RVE and some specific stress boundary 
conditions were applied on the bimaterial (or multimaterial) interfaces.  

3.5 Some Comments on Probabilistic Effective 

Properties 

Deterministic approaches to homogenisation of elastoplastic or 
viscoelastoplastic composites worked out recently are more complicated than the 
analysis presented above. However some authors presented simplified 
approximations for the effective yield stresses or yield conditions. It is known that 
for some special case where the volume fractions of the fibre-matrix constituents 
are equal or almost equal, the effective yield stresses can be described as  

21
)( ΣΣ=Σ eff (3.75) 

where 21,ΣΣ  denote the yield stresses for the two-component composite. This 

relation is used to show how to calculate the probabilistic moments in case, where 
yield stresses are characterized by their first two probabilistic moments. These 
parameters are defined for fibre and matrix using [ ]1ΣE , ( )1Σσ  and [ ]2ΣE ,

( )2Σσ . Considering the above, then the first two probabilistic moments of the 

effective parameter can be calculated starting from 

( ) 21

2)( ΣΣ=Σ eff (3.76) 

and by using the second order perturbation method, we get   
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since the second order derivatives of the effective yield stresses are equal to 0. 
Then, omitting second order terms being equal to 0, the variance of effective yield 
stresses can be calculated as  
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which gives a combination of variances under the assumption of uncorrelation of 
the variables Σ1 and Σ2. Finally, the expected value and variance of the effective 

yield stress can be determined from the following equation system:

( ) [ ] ( ))()(22)( effeffeff VarEE Σ+Σ=⎥⎦
⎤

⎢⎣
⎡ Σ (3.79) 

and  

( ) ( ) [ ] ( )( ))()(2)(2)( 22 effeffeffeff VarEVarVar Σ+ΣΣ=⎟⎠
⎞⎜⎝

⎛ Σ (3.80)

Probabilistic moments of effective yield stresses of a composite can be found as a 
solution of (3.77) and (3.78) in conjunction with the statements (3.79) and (3.80). 
For illustration, using a matrix built up with the following material data: 

[ ] MPaE 802 =Σ , ( ) MPa.08
2

=Σσ  and the fibre as [ ] MPaE 4100
1

=Σ ,

( ) MPa410
1

=Σσ , the effective plastic stress is obtained as the expected value 

GPaE eff 969.552][ )( =Σ  and the standard deviation ( ) GPa.
)eff(

36740=Σσ .

3.6 Conclusions  

As is shown in the computational experiments, the homogenised material 
obtained as a result of the Transformation Field Analysis (TFA) is stiffer in the 
nonlinear range than the original composite. It is caused by the fact that the 
constitutive relations during the whole iteration procedure are based on constant 
constitutive tensors rC  with elastic properties. To obtain a better effective 

approximation of composite behaviour, these matrices should be divided into 
elastic and plastic parts, after yielding, by means of the consistent tangent matrices.  

Since the Transformation Field Analysis makes it possible to characterise 
explicitly the effective elastoplastic behaviour starting from composite component 
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material properties, it is possible to carry out the numerical sensitivity studies of 
homogenised composite properties with respect to its original material 
characteristics. Such computational studies make it possible to determine the most 
decisive material parameter for the overall elastoplastic behaviour of the 
composite, which may be important in the context of optimisation techniques 
applied in composite engineering design studies.  

Due to the fact that most of the composite components material characteristics 
are obtained experimentally as statistical estimators, the next step to utilise the 
present approach is probabilistic implementation of the homogenisation problem. It 
will generally enable us to compute the respective probabilistic moments and 
coefficients of effective properties, starting from the expected values and standard 
deviations of composite component elastoplastic characteristics. As is known, it 
can be done using the Monte Carlo simulation technique, for instance. Further, it 
should be mentioned that such an implementation makes it possible to specify the 
stochastic sensitivity of composite effective characteristics to the randomness of 
the component material nonlinear behaviour.  

3.7 Appendix  

The two-component transversely isotropic RVE of volume Ω is subjected to a 
uniform overall strain increment E∆ or stress ∆Σ . A possible description of the 
local uniform strain and stress increment field is suggested as  

EA ∆=∆ rrε , r=1,2   (A3.1) 

∆Σ=∆ rr Bσ , r=1,2  (A3.2) 

with further relations  

IAA =+ 2211 cc (A3.3) 

IBB =+ 2211 cc (A3.4) 

Further, the local and overall increments are expressed as 

2211 σσ ∆+∆=∆Σ cc    and   2211 cc εε ∆+∆=∆E (A3.5) 

with composite constituent volume fractions  

Ω
Ω

1

1
=c ,

Ω
Ω

2

2
=c  and ΩΩΩ =∪

21
.

(A3.6) 

The constitutive relations for composite constituents in elastoplastic range are 
defined as  
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rrr εσ ∆=∆ C , rrr σε ∆=∆ M    and   1−= rr CM (A3.7) 

while the overall properties are  

EC∆=∆Σ , ∆Σ=∆ ME    and   1−= CM (A3.8) 

The constitutive and compliance matrices are given as the relevant spatial averages 
over the RVE  
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The individual components of rB  and rA  may be found as solutions of (A3.3) 

and (A3-4). There holds that  
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as well as  
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(A3.11) 

where  

LLC EcEcE )2(2)1(1 +=    and   ( ) 2)1()2()2()1(1 aEEa LLLL −=−= νν (A3.12) 

Next, the transformation and concentration matrices rsD , rsF  are calculated as 

( )( ) 1
1

211 CCCAID −−−= rr , ( )( ) 2
1

212 CCCAID −−−= rr
(A3.13) 

( )( ) 1
1

211 MMMBIF −−−= rr , ( )( ) 2
1

212 MMMAIF −−−= rr
(A3.14) 

with 11D , 12D , 21D , 22D , 11F , 12F , 21F , 22F  to be calculated. The components of 

the matrix 11D  are obtained as, for instance,   
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The remaining coefficients of 11D  are equal to 0.  



4 Sensitivity Analysis for Some Composites  

4.1 Deterministic Problems 

As is known, the sensitivity analysis in engineering systems is employed to 
verify how input parameters of a specific engineering problem influence the 
analysed state functions (displacements, stresses and temperatures, for instance). 
The sensitivity coefficients [269], being the purpose of such an analysis, are 
computed using partial derivatives of the considered state function with respect to 
the particular input parameter(s). These derivatives can be obtained numerically 
starting from the fundamental algebraic equations system of the problem, for 
instance, or alternatively, by a simple derivation if only a closed form solution 
exists; some combined analytical-numerical methods are also known [99]. It is 
important to underline that this methodology is common for all discrete numerical 
techniques: Boundary Element Method (BEM) [51,206], Finite Difference Method 
(FDM) [90,206], FEM [7,21,387] as well as hybrid and meshless strategies [81].   

From the computational point of view, there are the following numerical 
methods in structural design sensitivity analysis [75,76,103,134,207]: the Direct 
Differentiation Method (DDM), the Adjoint Variable Method (AVM) applied 
together with the Material Derivative Approach (MDA) or the Domain 
Parametrisation Approach (DPA) suitable for shape sensitivity studies. 
Considering these capabilities and, on the other hand, a very complex structure of 
composite materials, sensitivity analysis should be applied especially in design 
studies for such structures. Instead of a single (or two) parameters characterising 
the elastic response of a homogeneous structure, the total number of design 
parameters is obtained as a product of component numbers in a composite and the 
number of material and geometrical parameters for a single component. Even some 
extra state variables should be analysed to define interfacial behaviour, general 
interaction of the constituents and/or the lack of periodicity. Usually, to reduce the 
complexity of the original composite, the so-called effective homogenisation 
medium having the same strain (or complementary) energy is analysed.  

This chapter is devoted to general computational sensitivity studies of the 
homogenisation method for some periodic composite materials with linear elastic 
and transversely isotropic constituents. The composite is first homogenised, the 
effective material tensor components are computed using the FEM-based 
additional computer program. Further, material parameters of the composite most 
decisive for its effective material properties are determined numerically. It should 
be underlined that the homogenisation method is generally an intermediate 
numerical tool applied to exclude the necessity of composite micro-scale 
discretisation and, in the same time, to reduce the total number of degrees of 
freedom of the entire model. On the other hand, there are many numerical 
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homogenisation techniques. They can be divided generally into two essentially 
different approaches: stress averaging (the boundary stresses are introduced 
between the composite constituents plus displacement-type periodicity conditions) 
and strain approach (uniform extensions of the RVE boundaries in various 
directions plus periodicity conditions on the remaining cell edges). Considering 
this, different results of the homogenisation method in terms of the effective 
material tensors are obtained (as a result quite different sensitivity gradients must 
be computed in these two approaches). The sensitivity analysis introduces a new 
aspect of the homogenisation technique – it can be verified if the homogenised and 
original structures have the same or even analogous (in terms of their signs) 
sensitivity gradients. The composites can be optimised then by manipulating its 
material or geometrical design parameters [310] as well as by choosing various 
constituent materials with computationally determined shape for the new designed 
composite structure.  

The sensitivity gradients are computed here by application of a 
homogenisation-oriented computer program MCCEFF according to the DDM 
implementation approach and presented as functions of the composite design 
parameters - Young moduli and Poisson ratios of the constituents. Since a finite 
difference scheme is used for the sensitivity gradient computations, numerical 
sensitivity of the final results to the increase of an arbitrarily introduced parameter 
must be verified. This numerical phenomenon makes it necessary to determine the 
most suitable interval of parameter increments for the particular effective elasticity
tensor components.  

The entire computational methodology is illustrated with two examples – 1D 
and 2D two component periodic composites. The closed form effective Young 
modulus is used in the first example, while the homogenisation function is to be 
computed in the second case. Both illustrations show that different components of 
the effective elasticity tensor show different sensitivities to particular mechanical 
properties of the original composite and, further, the illustrations make it possible 
to determine the most decisive elastic parameters for the homogenisation-based 
computational design studies. Quite similar sensitivity studies are carried out in the 
case of heat conductivity coefficient for 1D, 2D and 3D two component 
composites.  

It should be noticed that sensitivity analysis can be used for validation of 
various homogenisation methods. In most cases an increase in Young moduli of 
composite components should result in a corresponding increase of the effective 
material tensor components; an opposite phenomenon can be observed for some 
specific cases, but usually in an extremely small range only. Therefore, if the 
sensitivity analysis shows that most of the gradients are negative, the 
homogenisation theory should be essentially corrected.   

The applied effective modulus method is verified below using the examples of 
1D distributed heterogeneities in the periodic two-component bar structure and of 
the fibre-reinforced periodic composite. As is demonstrated for plane composite 
structure, the sensitivity gradients of a homogenised elasticity tensor show some 
instabilities observed for an extremely small value of the perturbation parameter. 
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At the same time, for Poisson ratios values tending to their physical bounds, an 
uncontrolled increase of all sensitivity gradients is observed. That is why a 
continuation of this study is necessary in the context of computational error, to 
extend constitutive models of composite components as well as to evaluate 
geometrical and material sensitivity gradients for more complex heterogeneous 
structures, especially in the probabilistic context.  

Another important topic studied here is the application of the parameter finite 
difference analysis to the sensitivity analysis of the uniform plane strain problem of 
the real composite. This is done under the assumption that the RVE of plane cross-
section is uniformly extended in two perpendicular directions and the unit shear 
strain is applied on the RVE. Therefore, the sensitivity functional is proposed as 
the elastic strain energy stored in the cell, which is treated as some type of 
representative strain state of the composite under real conditions. To reflect the real 
conditions of the composite service more accurately, the particular strain 
component can be scaled over some multipliers to illustrate pure horizontal and/or 
vertical extension of the composite specimen. The sensitivity of this functional is 
taken as a measure of influence of various material parameters on the overall 
behaviour of the composite. According to the previous results, we observe the 
Poisson ratio of the matrix as a dominating material parameter for the fibre-
reinforced periodic composites with the RVE specified below.  

Finally, it should be mentioned that this sensitivity analysis is introduced and 
performed to validate the homogenisation theory itself. In the case when the 
external boundary conditions are known together with the micromorphology of a 
certain composite, the homogenisation theory makes it possible to determine the 
effective characteristics of this structure and, according to the sensitivity analysis 
the sensitivity gradients of both real and homogenised structures are computed. If 
these gradients have consistent signs and comparable values, the homogenisation 
algorithm proposed is useful in computational modelling; otherwise another 
method should be proposed. It can happen that some homogenisation theories (or 
even closed form equations) are valid for some specific boundary value problems 
and it can be verified in this way. Another promising field of application of such an 
analysis is optimization and/or identification of composite materials and structures.  

Sensitivity gradients cannot be obtained analytically if the homogenisation 
function components are determined numerically in some cell problem solutions. 
Hence, two separate ways can be followed, the first one being purely 
computational finite difference based studies, where the gradients are obtained as 
differences of some slightly modified homogenisation tests. Alternatively, a semi-
analytical method can be implemented where the spatial averages of the 
constitutive tensor components (independent from homogenisation functions) are 
differentiated symbolically and the remaining part resulting from homogenisation 
FEM tests is analysed using the finite differences; analogous opportunities are 
available for probabilistic (and next stochastic) analyses. Taking into account the 
consistency of the Monte Carlo simulation application and the computational time 
savings, full numerical differentiation is implemented. A semi-analytical approach 
can be implemented partially in some mathematical symbolic computation 
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packages, where probabilistic moments can be derived according to the classical 
integral definitions, while the random fields of homogenising stresses averaged 
over the RVE are treated using the numerical differentiation approach.  

The results of computations in the form of deterministic derivatives or their 
probabilistic equivalents can next be implemented in deterministic and/or 
probabilistic optimisation problems based on the gradient techniques. Such an 
analysis will enable us to optimise various composites [84,240,264,281,320] using 
their homogenised models – without the necessity of complicated multiscale 
problem discretisation and their further solution. The main benefits of the 
integrated computational approach to the composites are (a) the most effective 
choice of composite components (sensitivity to the expected values of material 
parameters), (b) selection of the best processing technology from the necessary 
accuracy point of view (standard deviation levels), (c) efficient durability control 
and analysis (sensitivity to the interface and structural defects parameters), etc. The 
proposed method is significantly more complicated than the previous approaches. 
However it makes the computational model of composite materials and their 
behaviour more realistic and focused on the engineering analyses.  

4.1.1 Sensitivity Analysis Methods  

The main aim of the structural design sensitivity analysis is to study the 
interrelation between the response (or state variables) of a structure determined 
from a solution for the boundary-value problem and design variables begin the 
input data for the solution process. Displacements, stresses, temperatures or 
velocities can be taken as the structural response measures, whereas such 
parameters as truss and beam cross-sectional areas, plate and shell thicknesses and 
material characteristics are usually chosen as design variables. Let us note that 
even for linear elastic problems the equilibrium equations may generally contain 
some nonlinear expressions for the state and design variables – this is the case of 
plate/shell thickness and/or truss lengths and, especially, material parameters in 
composites.  

The sensitivity gradients are the main numerical tool to evaluate the design 
sensitivity of a structure with respect to some design parameter. For engineers a 
more interesting issue is the overall sensitivity of the structure examined under 
general loading conditions than particular state function gradients. The gradients of 
the structural response functionals with respect to design variables give a useful 
measure of structural response variation together with the change of a given design 
input.  

The sensitivity analysis is especially applicable with common implementation 
with one of the well-established numerical methods of structural analysis, i.e. with
the finite element formulation. To illustrate the main ideas let us consider the static 
structural response of a linear elastic system with N degrees of freedom defined by 
the functional [208]  
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( ) ( )[ ]ddd hhqGh ,α=ℑ , d=1,2,…,D;   N,...,2,1=α (4.1) 

where G is a given function of structural displacements vector ( αq ) and design 

variables, dh  represents a D-dimensional vector of design variables; the 
displacement vector satisfies classical equilibrium equations, i.e.  

( ) ( ) ( )ddd hQhqhK αβαβ = (4.2) 

The displacement vector is assumed to be an implicit function of design 
variables, because the stiffness matrix αβK  and the load vector αQ  are some 

functions of these variables.  
Now, the SDS analysis is employed to determine the changes of the structural 

response functional with variations in design parameters, so the so-called 

sensitivity gradient dh∂∂ℑ is to be determined. The chain rule of differentiation 

applied to (4.1) returns here  

ddd qGG .
.

..
αα+=ℑ (4.3) 

where d.(.)  and α.(.)  denote first partial derivatives with respect to the dth design 

variable and the αth nodal displacement, respectively. The design variables dh  are 
introduced as the only arguments in the functions ℑ , αβK , αq , αQ  and, therefore, 

partial derivatives of these functions with respect to dh  are in fact equal to the 

corresponding total derivatives. Nevertheless, there holds ddhG .ℑ=∂∂  in case of 

G. Since it is an explicitly given function of dh  and αq , the derivatives dG .  and 

α.G  may be computed directly, while dq .
α  is to be determined numerically.  

The first technique for computing of the sensitivity gradients known as the 
direct differentiation method (DDM) extensively employed in structural 

optimisation reflects the following algorithm. Let us assume that ( )dhKαβ  and 

( )dhQα  are continuously differentiable with respect to the design variables dh ;

then, the vector ( )dhqβ  is also continuously differentiable. Differentiation of both 

sides of (4.2) with respect to dh  gives   

βαβαβαβ qKQqK ddd ... −= (4.4) 

Since the stiffness matrix αβK  is assumed to be nonsingular,  (4.4) can be solved 

for dq .
β ; it yields   
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( )γαγααββ qKQKGG dddd ..1
.

.. −+=ℑ − (4.5) 

The alternative AVM strategy begins with the introduction of an adjoint 
variable vector αλ , α=1,2,…,N such that  

1
.

−= αββαλ KG (4.6) 

It yields the adjoint equations for αλ  in the form  

αβαβ λ .GK = (4.7) 

and then, the sensitivity gradient coefficients may be obtained as  

( )βαβααλ qKQG dddd .... −+=ℑ (4.8) 

having solved the above equation for the adjoint variables βλ . The main ideas of 

the DDM and AVM seem to be identical but in realistic engineering design 
problems their computer performance is considerably different. Since most of the 
functions are given explicitly in the problems considered, the DDM technique has 
found its application below.  

The matrices of derivatives of practically any order of the global stiffness 
matrix with respect to design variables are obtained simply by adding derivatives 
of element stiffness expressed in the global coordinate system. It is done quite 
similarly to the assembling procedure for the global stiffness matrix. This process 
is usually essentially simplified, because almost all entries in the matrices of their 
derivatives with respect to the particular design variables are equal to 0 and then all 
arithmetic operations can be carried out at the element level.  

Effective computation of stiffness derivatives with respect to design variables 
for finite elements is another issue to be taken into account in developments of any 
sensitivity-oriented software. Most up-to-date finite element codes engage 
numerical integration instead of using the closed form expressions in terms of 
design variables to generate the element stiffness matrices. For such numerically 
generated element matrices a differentiation process with respect to design 
variables can be performed through a sequence of computations (at least two 
solution for initial and for a slightly perturbed design parameter) used to generate 
these matrices, leading to implicit design derivative procedures.  

The element matrices of the design derivatives can also be obtained by using a 
finite difference scheme, which is demonstrated for the eth element of the stiffness 
matrix  
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where )(eKαβ  is the eth element stiffness matrix, dh  is the d th component of the 

D-dimensional design variable vector h, ε represents a small perturbation and the 

D-dimensional vector 
)(

1
d

 is equal to 1 at the d th position and zeroes elsewhere. 

Such a scheme is known as forward finite difference rule, however backward and 
central differences can be applied too. Backward differentiation uses the values of 
a function in actual (h) and previous point (h-ε), while central difference is 
returned from arithmetic averaging of equations containing forward and backward 
differences.  

4.1.2 Sensitivity of Homogenised Heat 

Conductivity 

As is known, it is possible to obtain the effective heat conductivity tensor 
components by the application of some algebraic approximations for particular 
types of composite materials. However, numerical procedure is not very general in 
this case. The effective heat conductivity for a periodic fibre-reinforced composite 
in a 2D problem where the fibre has the round cross-section and the total 
composite volume is relatively large in comparison to the single inclusion can be 
approximated using the Cylinder Assemblage Model (CAM) for a fibre-reinforced 
plane structure. The Spherical Inclusion Model (SIM) [65] for spherical inclusions 
distributed periodically (3D composite). The heat conductivity coefficients of 
composite components k1, k2 are such that k1>k2 (the same results hold true for 
electrical conductivity, magnetic permeability and the dielectric constant for 
composites, for instance).  

A concept of the first test is to compare the effective heat conductivities 
obtained for the 1D, 2D (fibre) and 3D (particle-reinforced) composites in terms of 
various reinforcement volume ratios and the interrelation between heat 
conductivity coefficients for both components. The following equations are used:  
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where vf is the reinforcement volume fraction, while k1, k2 are heat conductivity 
coefficients of composite components such that k1>k2.

Furthermore, the sensitivities of effective heat conductivity with respect to 
those characterising original composite components are determined: the 
computations are performed using the mathematical package MAPLE. All the 
results of the numerical experiments are presented in Figures 4.1-4.9: the effective 
heat conductivities for the 1D, 2D and 3D composites are plotted in Figures 4.1-
4.3, their material sensitivities with respect to design variable k1 in Figures 4.4-
4.6, while sensitivity studies with respect to the parameter k2 are presented in 
Figures 4.7-4.9.  

Figure 4.1. Effective heat conductivity for 1D composite 

Figure 4.2. Material sensitivity of k(eff) in 1D problem to k1

Figure 4.3. Sensitivity of k(eff) in 1D problem to vf
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Figure 4.4. Effective heat conductivity for 2D composite 

Figure 4.5. Material sensitivity of k(eff) in 2D problem to k1

Figure 4.6. Sensitivity of k(eff) in 2D problem to vf

Figure 4.7. Effective heat conductivity for 3D composite 
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Figure 4.8. Material sensitivity of k(eff) in 3D problem to k1

Figure 4.9. Sensitivity of k(eff) in 3D problem to vf

Analysing numerical results it can be observed that the effective heat 
conductivity surface has an analogous shapes for 1D, 2D and 3D composites. 
However the values of this coefficient obtained for the same reinforcement ratio 
are largest for 3D composite with spherical inclusion, next largest for 2D fibre-
reinforced composite, and smallest for the 1D case. Therefore, 3D composites 
seem to be most optimal - using the same volume of reinforcement, the highest 
value of the effective material property is obtained. According to engineering 
intuition, it is found that increasing both k1 and vf an increasing of final value of 
k(eff) is obtained. The results of sensitivity studies presented in Figures 4.3, 4.6 and 
4.9 make it possible to observe the greatest sensitivity of composite effective 
characteristics with respect to both design parameters (k1 and vf) for extremely 
small values of the coefficient k1 and the largest value of the reinforcement ratio. 
The sensitivity gradients of k(eff) with respect to vf have almost constant value, 
while with respect to k1 are efficiently nonlinear and reach the maximum for vf=0.5 
(cf. Figure 4.2 and 4.3, for instance). This result means that the effective 
conductivity value is most sensitive to the changes of k1, if the reinforcement 
volume ratio is maximal, which is predictable result and it positively validates this 
homogenisation method.   

The smallest sensitivity of k(eff) to the parameter k1 can be noted for vf tending to 
0, while the inverse relation is observed with respect to the reinforcement volume 
fraction. The variability of the sensitivity surface for k(eff) with respect to the heat 
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conductivity coefficient k1 is almost the same for all composites. However in the 
case of sensitivity to vf the 2D and 3D models are similar, while the 1D case is 
essentially different - it results from the relevant equations forms.  

4.1.3 Sensitivity of Homogenised Young Modulus 

for Periodic Composite Bars  

Let us consider periodic composite bar applied to the compressive/tensile 
stresses and the homogenised Young modulus of such a structure. For such a 
unidirectional n-component composite structure, one can readily obtain the 
sensitivity gradients of the effective parameter e(eff) with respect to the modulus of 
its jth component ej  as  
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The geometrical sensitivity with respect to the cross-sectional area Aj is determined 
as  
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Analogously, geometrical sensitivity with respect to the member length lj is 
calculated from the following formula:
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It should be underlined that the equations obtained above can be relatively easily 
inserted in the 1D implementations of the FEM formulation for elastostatics as well 
as heat conduction problems, both in deterministic and stochastic computation.   

Now, the sensitivity gradients are derived first for a 1D two-component 
composite with the RVE presented in Figure 2.42. Considering the fact that 
composite materials are characterised by numerous parameters, it is essential to 
reduce this number by introduction of non-dimensional normalised parameters 
between the corresponding material and geometric characteristics of a composite. 
It is recommended to make the sensitivity analysis more focused with opportunity 
to compare the sensitivity gradients with each other.  

Determination of the first sensitivity gradient, cf. (4.11), makes it possible to 
verify how the interrelation between cross-sectional area α of both components 
influences the final effective Young modulus of the composite. The next gradient 
is responsible for the sensitivity of the composite to the length of both components 
ratio γ, while the last one gives information about the influence of interrelation β of 
the Young moduli for composite components.  

The general observation in this analysis is that an increase in analysed 
structural geometrical parameters results in a decrease of the effective parameter 
value (negative derivative sign) and vice versa. Analogously, it is observed that 
increasing any Young modulus of composite components, the increase of the 
effective homogenised parameter is obtained. Quantitative verification of the most 
decisive parameter depends on the interrelations between particular material and 
geometrical characteristics and should be analysed in detail in further studies. In 
case of the unidirectional composite, the shape sensitivity studies with respect to 
the interface location can be done analytically. All the sensitivities calculated 
above enable us to design, during engineering studies, the most suitable 
interrelations between particular components for unidirectional 
tensioned/compressed structural members. Considering the nature of the presented 
1D homogenisation approach, it is clear that the sensitivity of the Young modulus 
holds true for the effective heat conductivity and other related coefficients. 

The first and second order sensitivity gradients together with the mean value of 
the homogenised Young modulus have been computed and collected in the figures 
below. The following input data are adopted: e2=2.0E9, the coefficient γ relating 
the lengths of composite components is arbitrarily taken as equal to 1. Other 
parameters are adopted in the following form: A2=0.2 and l2=10.0. The effective 
Young modulus is determined with respect to the reinforcement ratio as well as to 
the cross-sectional area ratio of the components and presented below.  
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Figure 4.10. Parameter variability of the effective Young modulus  

Figure 4.11. Parameter variability of e(eff) sensitivity gradient wrt parameter α
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Figure 4.12. Parameter variability of e(eff) sensitivity gradient wrt parameter β

Figure 4.13. Parameter variability of e(eff) sensitivity gradient wrt parameter γ
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Figure 4.14. Second order sensitivity gradient of e(eff) wrt parameter α

Figure 4.15. Second order sensitivity gradient of e(eff) wrt parameter β
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Figure 4.16. Second order sensitivity gradient of e(eff) wrt parameter γ

It is seen that in the case of both ratios equal to 1, the effective elasticity 
modulus is obtained as the value corresponding to a weaker material, which 
perfectly agrees with engineering intuition. Next, first and second order derivatives 
of the effective Young modulus of the composite with respect to the coefficients 
relating composite components are computed and analysed. It is typical that all the 
first order gradients are positive, while second order derivatives are less equal to 0. 
It reflects the fact that the overall effective Young modulus increase is obtained by 
the corresponding increase of any of these parameters. The second order sensitivity 
gradients computed and visualised above enable one to confirm the existence of an 
extremum of the first order derivatives presented before.  

4.1.4 Material Sensitivity of Unidirectional 

Periodic Composites  

The formulas describing the effective elasticity tensor components for the 
periodic composite with unidirectional distribution of the heterogeneities (see 
(2.103) - (2.107)) have been implemented in the symbolic computations package 
MAPLE to derive the appropriate sensitivity gradients [177]. The two-component 
composite shown schematically in Figure 4.17 was examined with the following 
input data for (a) weaker material e2=4.0E9, ν2=0.34, c2=1-c1 and (b) stronger 
material: e1=4.0 E9 α, ν1=0.34 β, c1=0.5.  
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                                                       αe2, βν2        e2, ν2   

x3

l                    l

Figure 4.17. RVE of two-component composite bar  

Design parameters α and β are introduced to make the visualisation of 
particular sensitivity gradients for some variations of the contrast between Young 
moduli and Poisson ratios of laminate layers. It will enable more successful 
optimisation of the composite in case of the homogenisation theory applications. 
The gradients collected on figures given below are normalised to make all the 
surfaces presented comparable to each other. First, quite obvious engineering 
interpretation of these results is that if particular gradient is less than 0 – an 
increase of design parameter accompanies a decrease of particular effective 
characteristic value. Otherwise (gradient greater than 0), an increase of the design 
parameter results in the appropriate increase of the homogenised quantity, while 
gradient comparable to 0 means that the given design parameter almost does not 
influence the overall effective characteristic. The figures plotted from the specially
implemented MAPLE script present the sensitivity gradients of the homogenised 

elasticity tensor components – for 
)eff(

C
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 (Figures 4.18-4.21), 
)eff(

C
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 (Figures 

4.22-4.25), 
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 (Figures 4.26-4.29), 
)eff(

C
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 (Figures 4.30-4.33) and 
)eff(

C
1212

(Figures 4.34-4.37). Parameters α and β equivalent to the contrasts between 
stronger and weaker materials Young moduli and Poisson ratios are marked on the 
vertical axes of these figures, correspondingly.  
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Figure 4.20. Sensitivity of 
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Figure 4.26. Sensitivity of 
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Figure 4.32. Sensitivity of 
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How is demonstrated in all these figures, an increase of Young moduli of both 
stronger and weaker material result in the increase of all effective elasticity tensor 
components. Sensitivity gradients computed with respect to Poisson ratios of both 
composite components have mixed signs and all gradients essentially differ from 0. 
Taking into account particular variations and values of these results it can be 
observed that  
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(a) 
)eff(

C
1111

 is sensitive at most wrt ν1, then to e1 and e2 and at least to ν2 and all 

gradients are positive;  

(b) 
)eff(

C
3333

 is most sensitive to ν2, then to e2, ν1 and at least to e1; all values are 

positive;  

(c) 
)eff(

C
1133

 is the most sensitive wrt e2 and then to ν2, e1 and at least to ν1 where the 

last parameter sensitivity analysis results in the negative gradient;  

(d)
)eff(

C
1122

 (similarly to 
)eff(

C
1111

) is most sensitive to ν1, then to e1 and e2 and at least 

to ν2 and all gradients have positive values;  

(e) 
)eff(

C
1212

 shows the greatest sensitivity wrt e1, then to e2 and finally to ν2 and ν1

where the last two variables give negative gradients.  

Table 4.1. Sensitivity gradients for the unidirectional periodic composite  
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e1 0.9041 0.1138 0.0603 0.7696 0.9584 3.9570 
e2 0.0959 0.8862 0.9397 0.2304 0.0451 2.5430 
ν1 -0.0476 0.0368 -0.2811 0.7849 -0.1728 -1.1099 
ν2 0.0338 1.2018 0.6254 0.1891 -0.0105 1.8538 

Furthermore, the sensitivity gradients of 
h.

G  with respect to all design 
parameters, i.e. Young moduli and Poisson ratios of both layers have been 
computed symbolically. They are found for equal values of components volume 
fractions in the RVE (50%) with the following material parameters: e1=84.0 GPa, 
ν1=0,22 and e2=4.0 GPa, ν2=0.34. All the gradients are collected in Tab. 4.1 – for 
particular components of the effective elasticity tensor and global composite 
structural response functional G. It is visible from these results that positive values 

of
h.

G  are determined for e1 and both material parameters of a weaker material, 
whereas negative – in case of stronger material Poisson coefficient. It should be 
mentioned that uniform strain field with 1=ε

ij
 is applied at the RVE to define this 

functional.  

Particular values of the quantities 
h.

G  lead to the conclusion that the entire 
composite is the most sensitive with respect to Young modulus of stronger 
material, then to the parameters e2 and ν2 and at least – to the parameter ν1.
Comparing these results with analogous results obtained for the fibre-reinforced 
composite and collected in Tab. 2 it is observed that quite similar values are 
obtained in both cases and, moreover, both composites show negative sensitivity to 
Poisson ratios of stronger material. The fibre-reinforced composite is however the 
most sensitive with respect to the Poisson ratio of a composite weaker component.  
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Finally, is can be noted that since the procedure presented for unidirectional 
composite contains the algebraic approximations of homogenised characteristics 
depending on volume fractions of the components, the sensitivity gradients can be 
easily recalculated to include the volume fractions of both (or greater number of) 
constituents. 

4.1.5 Sensitivity of Homogenised Properties for 

Fibre-Reinforced Periodic Composites  

Material sensitivity of the periodic fibre-reinforced plane composite is studied 
here according to the numerical homogenisation method employed in Chapter 2. 
The sensitivity coefficients for effective elasticity tensor components with respect 
to the design parameters vector represented by h can be calculated using formula 
(2.131) as [167,177]  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ω
Ω∂

∂+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ω
Ω∂

∂= ∫∫
ΩΩ

dCdC
d

dC
pqklijklijpq

eff
ijpq

)(

)(
11

χ
hhh

ε (4.13) 

which can be rewritten in the following form:  
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It is necessary to underline that differentiation with respect to any design 
sensitivity parameter can be inserted under the integration sign over the RVE, only 
if geometrical sensitivity with respect to composite composite dimensions is not 
accounted. It is observed that if the input sensitivity parameters are not the 
arguments of the elasticity tensor Cijkl, the formula (4.14) simplifies to  
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while the derivatives of the homogenisation functions )pq(χ  with respect to the 

components of vector h can be determined computationally by only. The first 
component of the sensitivity gradients in eqn (4.14) can be computed using 
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analytical methods implemented in any symbolic computation packages. 

Furthermore, the sensitivity of )(eff
ijpqC  components with respect to the fibre shape 

can be derived. However the final equations have a decisively more complicated 
form and they could be shown, only if the homogenisation function is derived 
analytically. Finally, the homogenised tensor derivatives are normalized as 
follows:  
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which makes it possible to compare all the homogenised tensor sensitivity 
gradients with each other and to establish quantitatively the most decisive 
parameters.  

The most interesting problem however is not to determine the sensitivity 
coefficients of the homogenised tensor with respect to particular composite 
parameters but to approximate the sensitivity of the entire structure to its some 
design parameters. That is why, following previous considerations, we need to 
establish some structural response functional being an implicit function of the 
homogenisation function of the original composite design parameters 
[75,76,207,208]. This functional must represent the overall elastic strain (or 
complementary) energy for such a plane strain problem defined on the RVE which, 
after some minor modifications only, can be valid for numerous engineering 
applications in the composites engineering.  

Therefore, let us define the sensitivity functional as the strain energy of the 
homogenised composite under a combination of the uniform constant strains in 
horizontal and vertical directions as well as for the transverse strain εxy as is 
illustrated below. In this case, the sensitivity functional can be expressed as   

( )

{ } { }( )
{ } { }( )∫

∫

∫∫

Ω

Ω

ΩΩ

Ω++++

Ω+++=

Ω+++=Ω=

dCCCC

dCCCC

ddG

effeffeffeff

effeffeffeff

ijij

2222
)(

222211
)(

22112112
)(

211221
)(

21212
1

1221
)(

122112
)(

12121122
)(

112211
)(

11112
1

22222121121211112
1

2
1

εεεεεε

εεεεεε

εσεσεσεσεσ

(4.17) 

The strain state relevant to this functional can represent (a) uniaxial and/or 
biaxial compression/tension of the RVE; (b) shear (or torsion) of the composite 
specimen for ε11=0 and ε22=0 or (c) some combined strain state for the 
homogenised material.  

Let us note that the difference between the vertical and horizontal strain tensor 
components is important in the case of an elliptical fibre and/or rectangular RVE 
where the extension of the cell give the unsymmetric strain field. Integrating over 
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the RVE domain, recalling the assumed constant strain over this cell as well as a 

constant character of )(eff
ijklC  on Ω, one can get  
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where l is a basic dimension of the RVE cell. Taking into account the elasticity 
tensor symmetry, the functional G can be expressed as  
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Figure 4.38. An idea of the structural response functional for the homogenised composite  

Further, partial derivatives of G with respect to any component of the design 
parameters vector h can be calculated as  
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The first component differs from 0 only if the design parameter vector contains the 
external diameter of the RVE. Otherwise, sensitivity gradients of this functional 
are determined as  
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Using this formula the most decisive design parameter for the homogenised 
composite in uniform plane strain can be determined having computed the 
effective elasticity tensor gradients from (4.13).  
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Finally, it is observed for the 1D heterogeneous structure with the constant 
cross-section A that the structural response functional G can be expressed as  
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which gives for the unit strain  
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and then the sensitivity gradients of the functional G may be easily calculated by 
the chain rule as was proposed before.  

The deterministic discretised homogenisation problem of elastic composites 
given by (4.14) is rewritten in the case of the DDM sensitivity studies as follows:  
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where the sensitivity gradients of homogenisation function components are 
calculated as   
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If design variables are not the arguments of the RHS vector, it can be reduced to 
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The derivatives of the stiffness matrix components 
h∂

∂ αβK
 can be computed 

explicitly during the stiffness process formation or, alternatively, thanks to the 
finite difference scheme (FDM) presented below. Therefore, sensitivity 
coefficients of the effective elasticity tensor components are calculated starting 
from the above equations as  
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for N,...,1,, =γβα . If, for example, the sensitivity parameter is introduced as the 

Young modulus h≡ea, then the elasticity tensor is rearranged as  
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while the finite element stiffness matrix component corresponding to ath material 
parameters can be expressed as  
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As a result, the sensitivity of mth finite element stiffness matrix component with 
respect to the ath material Young modulus is computed as  
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Further, the sensitivity gradients of the RHS vector are obtained in a general form  
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and the sensitivity of the effective elasticity tensor to Young modulus ea is 
determined as  
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Analogously, the sensitivity gradients of the effective elasticity tensor 
components for a composite with respect to the Poisson ratios can be calculated but 
since the elasticity tensor is a complex function of these ratios, the derivation is 
omitted here.  
                                         Ω1                                                                  Ω2 

 

 

 

 
Figure 4.39. Periodic composite specimen  

Figure 4.40. Mesh of the periodicity cell 

Let us consider for illustration the composite with periodicity cell shown in 
Figure 4.39 - the fibre has a round cross-section and the entire RVE is 
rectangular. The analysed composite is assumed to be perfectly periodic with fibres 
distributed uniformly in the transverse cross-section, while the reinforcement ratio 
is equal to 50% of the total area of the RVE. Material characteristics for the 
computational analysis are taken as follows: e1=84.0 GPa, e2=4.0 GPa, ν1=0.34 and 
ν2=0.22; the FEM discretisation using 4-node linear plane strain elements is 
presented in Figure 4.40.  

Computational sensitivity studies are carried out to determine the sensitivity 
gradients of the effective elasticity tensor components with respect to material 
parameters of the constituents, i.e. Young moduli and Poisson ratios of fibre and 
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matrix. All computational tests are done by the use of the specially tailored 
computer program MCCEFF [167,173], designed and implemented for 
deterministic and stochastic computational homogenisation-based studies. The 
variability of the sensitivity gradients of the effective elasticity tensor components 
resulting from the perturbation parameter variations are presented in Figures 4.41-

4.52: for the component )(
1111

effC  (Figures 4.41-4.44), for the component )(
1122

effC

(Figures 4.45-4.48), and for )(
1122

effC  in Figures 4.49-4.52. The sensitivity gradients 

are marked on the horizontal axes for three different ranges of parameter 
increments shown on the vertical axes. These series correspond to the homogenised 
tensor increments in the range of promiles (O(-3)), percents (O(-2)) and tenths (O(-
1)) of the verified parameter. The numerous experiments result from the fact that, 
as was expected and shown numerically, particular values of sensitivity gradients 
of the effective tensor components depend on the perturbation of a given material 
parameter employed as the design parameter.  

Table 4.2. Sensitivity gradients of the effective elasticity tensor  
h

h

C eff

∂
∂ )(

1111

h

C eff

∂
∂ )(

1122

h

C eff

∂
∂ )(

1212
hG .

e1 0.141 0.072 0.958 2.129 
ν1 0.056 0.180 -0.173 -0.090 
e2 0.867 0.926 0.044 1.881 
ν2 1.205 2.814 -0.011 3.987 

As can be observed on all these graphs, the worst numerical stability of 
sensitivity gradients is obtained for the smallest perturbation order O(-3) and can 
result from the computational error of the homogenisation method itself. This 
numerical phenomenon can be studied in terms of the discretisation density of the 
RVE in the homogenisation analysis and with respect to the reinforcement ratio of 
the entire composite. Another phenomenon, resulting from physical aspects of the 
composite being visible especially in Figures 4.44, 4.48 and 4.52 in the case of the 
sensitivities of O(-1) order, is caused by the fact that the Poisson ratio of the matrix
tends to its upper physical limit for this variable, which results in an uncontrolled 

increase of the components )(
1111

effC  and )(
1122

effC  sensitivity gradients. Because of that, 

greater values of )(eff
ijklC  derivatives with respect to ∆ν2 do not exist.  
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Next, comparing all the figures, it is seen that the best numerical stability is 
obtained for the computational series corresponding to O(-2). The sensitivity 
gradients in this range are almost constant for 1-10% of all input parameters 
perturbations. Starting from these results, a more detailed comparison, both from a 
computational and engineering point of view, can be carried out for various FEM 
mesh sizes and the interrelations of design parameter mean values. It should be 
noticed that, as for the 1D composite example, a negative sign of the sensitivity 

gradient is equivalent to a decrease of a particular )(eff
ijklC  component, 

accompanying the increase of this parameter value; a positive derivative 
corresponds to the opposite relation.  

Observing the particular results of computational analysis it can be noticed that 
most sensitivity gradients are positive (except those shown in Figures 4.51 and 
4.52), which basically means that an increase of most elastic characteristics of 
fibre-reinforced composite components results in corresponding increase of the 

overall effective elasticity tensor; the effective elasticity tensor components )(
1111

effC

and )(
1122

effC  are sensitive at most to Poisson ratios of the composite constituents. The 

component )(
1212

effC  is sensitive to the Young modulus of the matrix (with a negative 

sign). Furthermore, it is seen that particular values of the presented gradients 
depend strongly on the interrelations between the main values of Young moduli 
and Poisson ratios of the entire structure. That is why the observed phenomena are 
the best illustration of the material sensitivity of glass-epoxy periodic composites 
only. The results collected in Table 4.2 can be compared against those obtained 
before for essentially different interrelations between the composite components – 
we observe in that study that for similar constituents the signs of particular 
gradients are exactly the same. However the values are qualitatively different. This 
is why such an analysis must be oriented to the particular composite; otherwise it 
should be carried out for the very particular engineering application of the analysed 
composite.  

The sensitivity with respect to the reinforcement shape, local lack of periodicity 
as well as material parameters in the case of inelastic behaviour of the constituents 
may be verified numerically in further computational studies on homogenised 
properties of the composites. On the other hand, it seems to be reasonable to verify 
the computed sensitivity gradient to the interrelation between corresponding elastic 
properties of the components (the ratio of Young modulus in a fibre to Young 
modulus of a matrix, for instance). This study would validate if all groups of 
various composites with the same geometry of the RVE had the same or at least 
comparable sensitivity gradients.  

Finally, the approximation of the determined gradients by some specific values 
is proposed and, considering all the remarks posed above, it is established as the 
arithmetic average of the gradients corresponding to 1% and 10% increments of the 

design parameters. These values are used to approximate the value of hG .

computed on the basis of (4.21), which are scaled over the RVE total area. Using 
such a composite structure response functional, the Poisson ratio of a matrix and 
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the next Young modulus of the fibre are detected as the most decisive design 
material parameters of this composite in the view of its homogenised elastic 
parameters.  

4.2 Probabilistic Analysis  

The main purpose of the sensitivity analysis is to verify numerically the 
influence of some particular input parameters on the analysed state functions. In 
the case of the homogenisation procedure, the sensitivity of the effective elasticity 
tensor can be verified in terms of material parameters of the constituents, 
reinforcement shape and its spatial distribution, the volume ratios of the 
components, etc.; material parameters of composite constituents are taken below as 
design parameters.  

Analogous situation takes place in case of probabilistic analysis, however the 
total number of possible design parameters dramatically increases. It reflects the 
fact that each geometrical and material parameter is usually represented by its at 
least two probabilistic moments. Hence, all probabilistic moments of all input 
variables can be considered as design parameters. At the same time, the sensitivity
gradients can be computed in addition to any probabilistic moment of the state 
function determined during a structural modeling. Therefore, we can determine the 
sensitivity gradients of expected values of displacement vector to the expected 
values and/or standard deviations of structural members thickness, length or elastic 
parameters. Similarly, the cross-correlation function or standard deviation of the 
resulting state variables can be the subject of the SDS analysis.  

Using the definition of effective elasticity tensor, the sensitivity of the mth 
order probabilistic moment of this tensor with respect to the nth order central 
probabilistic moment of an input random design variable vector h can be 
formulated as  

( )( )( ) ( )

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ω

∂
∂+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
Ω

∂
∂=

∂
∂

∫

∫

Ω

Ω

d

dC
C

kl
ijm

n

ijklm
nn

eff
ijklm

ωσµ
µ

ωµ
µµ

ωµ

;;
)(

;;
)()(

;

)(

)(

xhχ
h

xh
hh

h

(4.34) 

The first component of the RHS summation can be derived analytically or 
symbolically, whereas the second one can be obtained numerically only by using 
the Finite or Boundary Element Method programs adopted for any probabilistic 
technique. If the effective material tensor is represented by the closed form 
function of the elastic properties of composite components, then it is possible to 
derive analytically probabilistic moments of a homogenised tensor. Alternatively, 
the Monte Carlo simulation technique may be used to randomise and estimate the 
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sensitivity gradients of any order probabilistic moments with respect to the 
effective elasticity tensor components.  

Numerical illustration is carried out by an application of the Monte Carlo 
simulation for a homogenisation cell problem have been performed using specially
modified FEM code MCCEFF and its 4-node rectangular isoparametric plane 
strain finite elements. The results of computations are expected now as the partial 
derivatives of probabilistic moments of the effective elasticity tensor with respect 
to relevant probabilistic moments of elastic or geometrical characteristics of the 
fibre and/or matrix as well as the interface defects (Young modulus of the matrix is 
treated here as the design probabilistic variable).  

Sensitivity gradients of up to the fourth order probabilistic characteristics of the 
homogenised elasticity tensor components with respect to h≡e2(ω) being 
uncorrelated Gaussian random variables are obtained for the following data: 

[ ] 60.841 EeE = , [ ] 60.42 EeE = , ( ) 1256.701 EeVar = , ( ) 100.162 EeVar = ; it 

corresponds to the coefficient of variation equal to 0.1 for both Young moduli. The 
interface defects (model with ‘bubbles’) are simulated numerically in such a way 
that a 10% elastic characteristic reduction in the interphase is obtained and they are 
compared against the results computed for a composite with perfectly bonded 
components (model with ‘no bubbles’). The results of simulations are collected in 
Table 4.3 as sensitivity gradients of first two probabilistic moments of the 
homogenised elasticity tensor components with respect to expected value and the 
variance of the matrix Young modulus.  

Table 5.3. Probabilistic sensitivity gradients of the homogenised elasticity tensor 

[ ]2eE∂
∂

( )2eVar∂
∂

Probabilistic moment 

‘Bubbles’ ‘No bubbles’ ‘Bubbles’ ‘No bubbles’ 

][ )(
1111

effCE 0.0819 0.0817 -0.0001 -0.0001 

( ))(
1111

effCα -0.0748 -0.0747 0.0405 0.0405 

( ))(
1111

effCβ -0.0076 -0.0127 -0.0005 -0.0064 

( ))(
1111

effCγ -0.0003 0.0005 -0.0004 0.0000 

][ )(
1122

effCE 0.0892 0.0893 -0.0001 -0.0001 

( ))(
1122

effCα -0.0815 -0.0815 0.0438 0.0438 

( ))(
1122

effCβ 0.0082 0.0059 0.0012 0.0013 

( ))(
1122

effCγ 0.0003 0.0002 0.0002 0.0003 

][ )(
1212

effCE 0.0043 0.0043 -0.00006 0.0000 

( ))(
1212

effCα -0.0043 -0.0043 0.0020 0.0020 

( ))(
1212

effCβ 0.0000 -0.0001 0.0003 -0.00002 

( ))(
1212

effCγ 0.0000 0.0000 0.0000 0.0000 
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The results collected above show that the most sensitive probabilistic moment 
of the homogenised tensor component with respect to [ ]2eE  is the expected value 

of ][ )(
1122

effCE , which is slightly greater than the result computed for ][ )(
1111

effCE . An 

analogous relation is observed in addition to the coefficient of variation ( ))(
1122

effCα
and ( )2eVar . However sensitivity gradients determined with respect to the 

expected value are significantly greater than those obtained for the variance, which 
partially reflects the input coefficient of the variation of the matrix Young 

modulus. The smallest sensitivity of random variable )()(
1212 ωeffC  with respect to the 

random input e2(ω) is observed also, while the fourth order coefficients of 
concentration are in practice neither sensitive to [ ]2eE  nor to ( )2eVar , which 

follows the Gaussian type of both input and output probabilistic distributions in 
homogenisation problems. The most sensitive statistical estimator is the coefficient 
of asymmetry – some differences are observed between the models with and 
without interface bubbles, where  some sign changes are also noticeable. 

Comparing the probabilistic gradients computed for the composite with and 
without the interphase some small variations between these two models are 
observed. These variations however can increase together with further weakening 
of the interphase and detailed computer simulation can verify this tendency.  

Further computations are necessary to study the variability of the obtained 
results with respect to the chosen increment during the numerical differentiation 
process; the proposed value of 10% has been detected as the most effective in 
previous computations. An increase in effectiveness of the numerical procedure 
can be achieved by implementation of a semi-analytical homogenisation 
procedure, where the sensitivity gradients of spatially averaged effective elasticity 
tensor components are determined symbolically using the system MAPLE, for 
instance, and an averaged stress tensor is differentiated numerically using the finite 
difference scheme.  

4.3 Conclusions   

The sensitivity analysis of homogenised material tensors, proposed and carried 
out in this Chapter, makes it possible to consider the influence of particular 
material parameters of the composite components on the overall effective 
properties of a composite. Thanks to such an analysis, a composite designer can 
generally determine the most decisive material characteristics of the constituents 
(Poisson ratios of fibre and matrix for a 2D composite, for instance) and then, 
modifying their values during the design process, can optimise the composite 
structure for the effective parameters given a priori. The sensitivity equations for 
homogenisation of linear elastic composites can be extended to an analogous 
analysis for effective properties of composites with viscoelastoplastic components, 
both in a deterministic and probabilistic context. The proposed methodology has a 
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general character, however further examination of various composites (beams, 
plates, 2D and 3D structures) should give different results.  

Particular computational studies, performed in terms of perturbation parameter 
ε applied in sensitivity gradients analysis, show that the best numerical stability is 
obtained for ε≈O(-2). Smaller order taken in numerical analysis causes 
significantly greater deviations of the final result, while the lack of physical sense 
of the problem is obtained for ε≈O(-1), where the Poisson ratio is taken as a design 
parameter. Further computations should be carried out to determine the RVE mesh 
and the finite element type influence on the final result.  

Considering the assumption that the scale factor between the periodicity cell 
and the entire composite structure tends to 0 and, on the other hand, that this 
quantity in real composites is small and positive, but differs from 0, the sensitivity 
of the effective characteristics for this parameter is to be calculated next using the 
so-called homogenisation micro-macro analysis, for instance. To make such an 
analysis, the scale parameter must be inserted in equations describing the effective 
quantities and then, the influence of the relation between the micro- and 
macrostructure must be shown.  

Sensitivity analysis of the 1D, 2D and 3D homogenisation of effective heat 
conductivity carried out in this chapter may be applied for any linear potential field 
problem - irrotational and incompressible fluid flow, film lubrication, acoustic 
vibration as well as for electric conduction, electrostatic field and electromagnetic 
waves. To use these results for homogenisation of other engineering problems, the 
well-known field analogies may be applied to transform the effective Young 
modulus to related physical field parameters.  

Proposed methodology of the sensitivity gradient computations for 
homogenised tensor components of periodic random composites is exact in the 
probabilistic sense because of the application of the Monte Carlo simulation 
technique. The use of the MCS technique preserves the existence and uniqueness 
of the classical homogenisation problem solution – it exists for each realisation 
separately. Therefore, thanks to the statistical estimation implementation, a 
mathematically correct probabilistic characterisation of the homogenised tensor 
components is obtained. The numerical weakness of the finite difference apparatus 
implemented in the homogenisation-oriented FEM code should be eliminated in 
further simulations by the verification of the sensitivity gradient values with 
respect to variations of the input parameter increments. As is documented by some 
previous computations, lack of numerical stability of such sensitivity computations 
is observed for physical parameters tending to their physical bounds.  

An analogous procedure can be applied to determine the sensitivity gradients of 
homogenised characteristics of other composites, i.e. 1D periodic beams, plates, 
shells, periodic 3D structures with particles and fibres of various shapes as well as 
multi–component engineering structures as superconducting devices [168] studied 
before. A linear elastic model in sensitivity analysis may be extended to inelastic 
homogenised characteristics [118,230,307] as well as on stochastic optimisation of 
composites through the homogenisation method.  



5 Fracture and Fatigue Models for 

Composites 

5.1 Introduction 

The effective fatigue model for engineering composites analysis is decisive for 
a precise estimation of the overall life of this structure and satisfactory reliability 
analysis of such materials. Various theoretical, experimental and computational 
criteria must be satisfied in the same time to obtain such a model [37,172,246,298]. 
These criteria may include material properties of composite constituents [226,258], 
composite type [229] (ductile or brittle components), spatial distribution, length  
(continuity) as well as size effect of the reinforcing fibres [219,220,335], frequency 
effects [350], load amplitude type [48] (constant or not), micromechanical 
phenomena [110,217,279], etc. First of all, a very precise, experimentally based 
deterministic idea of fatigue life cycle estimation has to be proposed. It should be 
adequate for the composite components, the technology applied and numerical 
methodology implemented. Monitoring of most engineering composites and 
preventing the fatigue failure is very complicated and usually demands very 
modern technology [360]. It is widely known that the interface conditions and 
phenomena can be decisive factors for both static fracture and fatigue resistance of 
laminates, fibre- and particle-reinforced composites. Analytical models even in 
the case of linear elasticity models are complicated [369], therefore numerical 
analysis is very popular in this area. Engineering FEM software makes it possible 
to simulate delamination processes [362] and fatigue damage [62,277] in 
fibre-reinforced composites as well as time-dependent interlaminar debonding 
processes [69], for instance.   

The application of the well-known Palmgren-Miner or Paris-Erdogan laws is 
not always recommended as the most effective method in spite of their simplicity 
or wide technological usage. The choice of fatigue theory should be accompanied 
with a corresponding sensitivity analysis, where physical and material input 
parameters included into the fatigue life cycle equation are treated as design 
variables. Due to the sensitivity gradients determination, the most decisive 
parameters should be considered, while the remaining ones, considering further 
stochastic analysis complexity, may be omitted. The sensitivity gradients can be 
determined analytically using symbolic computation packages (MAPLE, 
MATLAB, MATHEMATICA, etc.) or may result from discrete FEM 
computations, for instance. A related problem is to decide if the local concept of 
composite fatigue is to be applied (critical element concept, for instance), where 
local fatigue damage causes global structural changes of the composite reliability. 
This results in computational FEM or Boundary Element Method (BEM) based 
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analyses of the whole composite in its real configuration, including the 
microgeometry and all interface phenomena into it. Alternatively, the 
homogenisation method can be applied, where the complementary energy or 
potential energy of the entire system is the only measure of composite fatigue. 
Then, the global discretisation of the original structure is used instead and the 
equivalent, homogeneous medium is simulated numerically.  

Next, an appropriate analytical or computational stochastic analysis method 
corresponding to the level of randomness of input parameters is considered. The 
Monte Carlo simulation based analysis, stochastic second or third order 
perturbation method or, alternatively, stochastic spectral analysis can be taken into 
account. The first method does not have any restrictions on input random variable 
probabilistic moment interrelations. However, time consuming computations can 
be expected. Numerical analysis using the second approach implementation is very 
fast, but not sufficiently effective for larger than 10% variations of input random 
parameters, while the last approach has some limitations on convergence of the 
output parameters and fields. The choice between the methods proposed is implied 
by the availability of the experimental techniques, considering the input 
randomness level. On the other hand this choice is determined by relevant 
reliability criteria for composites. Furthermore, having collected most of the 
deterministic fatigue concepts for composites, corresponding stochastic equations 
can be obtained automatically using analytical derivation or computer simulation 
techniques.  

Combination of deterministic models and stochastic methods requires another 
engineering decision about the choice of the randomness type to be analysed. It is 
known from recent references in this area that (i) random variables, (ii) random 
fields as well as (iii) stochastic processes can be considered as the input of the 
entire fatigue analysis. According to the state-of-the-art research, the first two 
types of randomness can be considered together with FEM or BEM based 
computational simulation, while the stochastic processes can be used in terms of 
direct simulation of the fatigue process when the analytical solution is known. 
Some approximate methods of combining discrete modelling with stochastic 
degradation of homogeneous materials are available in reliability modeling; 
however without any application in engineering composites area until now.  

Various fatigue models worked out for composites can be classified in different 
ways: using the scale of the model application (local or global) or considering the 
main goal of the analysis (fatigue cycle number, its stiffness reduction, its crack 
growth or damage function determination), the analysis type (deterministic, 
probabilistic or stochastic) as well as the composite material type (ceramic, 
polymer-based, metal matrix and so forth).  

Considering various scales of engineering composites and fatigue phenomena 
related to them, the local and, alternatively, global approaches are considered. 
Local and microlocal models represented by the critical element concept [299], 
assume that there exists so-called critical element in the entire composite structure 
that controls the total fatigue damage (as well as subcrtitical elements, too), and 
then the local damage is governing the reliability of the whole composite structure. 
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This assumption results in the fact that the whole composite, together with 
microstructural defects increasing during fatigue processes, should be discretised 
for the FEM or BEM simulation. Taking into account the application of the 
probabilistic analysis, the model implies the randomness in microgeometry of the 
composite, which is extremely difficult in computational simulation, as is shown 
below. Some special purpose algorithms are introduced to replace the randomness 
in composite interface geometry with the stochasticity of material thermoelastic 
properties.  

Alternatively, a homogenisation method is proposed for more efficient fracture 
and fatigue phenomena analysis [223] that originated from analysis of linear 
periodic elastic composites without defects. The main idea is to find the medium 
equivalent to the original composite in terms of complementary energy, or 
potential energy, equal for both media. The final goal of the homogenisation 
procedure is to find the effective material characteristics defining the equivalent 
homogeneous medium. The effective constitutive relations can be found for the 
composite with elastic, elastoplastic or even viscoelastoplastic components with 
and/or without microstructural defects. The general assumption of the model 
means, however, that every local phenomenon can be averaged in some sense in 
the entire composite volume and that the global, not local, phenomena result in the 
overall composite fatigue.  

5.2 Existing Techniques Overview  

Taking into account the results of fatigue analysis, four essentially different 
approaches can be observed: (i) direct determination of the fatigue cycle number N,
(ii) fatigue stiffness reduction where mechanical properties of the composite are 
decreased in the function of N, (iii) observation of the crack length growth a as a 
function of fatigue cycle number (as da/dN, taking into account the physical nature 
of fatigue phenomenon) or, alternatively, (iv) estimation of the damage function in 
terms of dD/dN. A damage function is usually proposed as follows:  
(1) D=0 with cycle number n=0;  
(2) D=1, where failure occurs;  

(3) ∑
=

∆=
n

i
iDD

1

, where iD∆  is the amount of damage accumulation during fatigue 

at stress level ri. Generally, the function D can be represented as   

( ),...,,,, MTfrnDD = (5.1) 

where n indexes a number of the current fatigue cycle, r is the applied stress level, f
denotes applied stress frequency, T is temperature, while M denotes the moisture 
content. Then, contrary to the crack length growth analysis, the damage function 
can be proposed each time in a different form as a function of various structural 
parameters. 



Fracture and Fatigue Analysis of Composites     225 

Let us note that direct determination of fatigue cycle number makes it possible 
to derive, without any further computational simulations, the life of the structure 
till the failure, while the stiffness reduction approach is frequently used together 
with the FEM or BEM structural analyses. The crack length growth and damage 
function approach are used together with the structural analysis FEM programs, 
usually to compute the stress intensity factors. However final direct or symbolic 
integration of crack length or damage function is necessary to complete the entire 
fatigue life computations.  

Considering the mathematical nature of the fatigue life cycle estimation, the 
deterministic approach can be applied, where all input parameters are defined 
uniquely by their mean values. Otherwise, the whole variety of probabilistic 
approaches can be introduced where fatigue structural life is described as a simple 
random variable with structural parameters defined deterministically and random 
external loads. The cumulative fatigue damage can be treated as a random process,
where all design parameters are modelled as stochastic parameters. However, in all
probabilistic approaches sufficient statistical information about all input parameters 
is necessary, which is especially complicated in the last approach where random 
processes are considered due to the statistical input in some constant periods of 
time (using the same technology to assure the same randomness level).  

The analysis of fatigue life cycle number begins with direct estimation of this 
parameter by a simple power function (A5.1) consisting of stress amplitude as well 
as some material constant(s). Alternatively, an exponential-logarithmic equation 
can be proposed (A5.2), where temperature, strength and residual stresses are 
inserted. Both of them have a deterministic form and can be randomised using any 
of the methods described below. The weak point is the homogeneous character of 
the material being analysed; to use these criteria for composites, the effective 
parameters should be calculated first. In contrary to theoretical models, the 
experimentally based probabilistic law can be proposed where parameters of the 
Weibull distribution of static strength are inserted (A5.3); it is important to 
underline that this law does not have its deterministic origin.  

More complicated from the viewpoint of engineering practice are the stiffness 
reduction models (cf. A5.4-A5.7), where structural material characteristics are 
reduced together with a successive fatigue cycle number increase. The stiffness 
reduction model is used in FEM or BEM dynamical modelling to recalculate the 
component stiffness in each cycle. It is done using a linear model for stiffness 
reduction, cf. (A5.5), as well as some power laws (see (A5.4), for example) 
determined on the basis of mechanical properties reduction rewritten for 
homogeneous media only. An alternative power law presented as (A5.7) consists 
of the time of rupture, creep and fatigue, measured in hours. Considering the 
random analysis aspects, a probabilistic treatment of material properties seems to 
be much more justified.  

Deterministic fatigue crack growth analysis presented by (A5.8) - (A5.29) can 
be classified taking into account the physical basis of this law formation, such as 
energy approaches (A5.8) - (A5.11), crack opening displacement (COD) based 
approaches (A5.12), (A5.15) - (A5.17), (A5.19) and (A5.20), continuous 
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dislocation formalism (A5.13), skipband decohesion (A5.18), nucleation rate 
process models (A5.14) and (A5.15), dislocation approaches (A5.23) and (A5.24), 
monotonic yield strength dependence (A5.25) and (A5.31) as well as another 
mixed laws (A5.26) - (A5.30) and (A5.32) - (A5.35). Description of the 
derivative da/dN enables further integration and determination of the critical crack
length. The second classification method is based on a verification of the validity 
of a particular theory in terms of elastic (A5.8) - (A5.20), (A5.26) - (A5.30), 
(A5.32) - (A5.34) or elastoplastic (A5.22) - (A5.25) and (A5.31) mechanism of 
material fracture. Most of them are used for composites, even though they are 
defined for homogeneous media, except for the Ratwani-Kan and Wang-
Crossman models (A5.21) and (A5.22), where composite material characteristics 
are inserted. All of the homogeneous models contain stress intensity factor ∆K in 
various powers (from 2 to n), while composite-oriented theories are based on 
delamination length parameter. The structure of these equations enables one to 
include statistical information about any material or geometrical parameters and, 
next, to use a simulation or perturbation technique to determine expected values 
and variances of the critical crack length, which are very useful in stochastic 
reliability analysis.  

An essentially different methodology is proposed for the statistical analysis 
[9,35,130,288,333,349,359] and in the stochastic case [241,244,373], where the 
crack size and/or components material parameters, their spatial distribution may be 
treated as random processes (cf. eqns (A5.36) - (A5.44)). Then, various 
representations and types of random fields and stochastic processes are used, such 
as stationary and nonstationary Gaussian white noise, homogeneous Poisson 
counting process [204] as well as Markovian [304], birth and death or renewal 
processes. However all of them are formulated for a globally homogeneous 
material. These methods are intuitively more efficient in real fatigue process 
modelling than deterministic ones, but they require definitely a more advanced 
mathematical apparatus. Further, randomised versions of deterministic models can 
be applied together with structural analysis programs, while stochastic characters 
of a random process cannot be included without any modification in the FEM or 
the BEM computer routines. An alternative option for stochastic models of fatigue
is experimentally based formulation of fatigue law, where measurements of various 
material parameters are taken in constant time periods. Then, statistical information 
about expected values and higher order probabilistic characteristics histories is 
obtained, which allows approximation of the entire fatigue process. Such a method, 
used previously for homogeneous structural elements, is very efficient in stochastic 
reliability prognosis and then random fatigue process can be included in SFEM 
computations. Let us observe that formulations analogous to the ones presented 
above can be used for ductile fracture of composites where initiation, coalescence 
and closing of microvoids are observed under periodic or quasiperiodic external 
loads.  

A wide variety of fatigue damage function models is collected at the end of the 
appendix. The basic rules are based on the numbers of cycles to failure ((A5.45) -
(A5.48), (A5.54) - (A5.57), (A5.63) - (A5.65) and (A5.67)) illustrated with 
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classical and modified Palmgren-Miner approach, for instance. This variable is 
most frequently treated as a random variable or a random process in stochastic 
modelling. Another group consists of mechanical models, where stress (A5.50) -
(A5.53) or strain (A5.66) - (A5.67) limits are used instead of global life cycle 
number. Such models reflect the actual state of a composite during the fatigue 
process better and are more appropriate for the needs of computational 
probabilistic structural analysis. The combination of both approaches is proposed 
by Morrow in (A5.66) for constant stress amplitude and for different cycles by 
(A5.67). The overall fatigue analysis is then more complicated. However the most 
realistic model is obtained. Accidentally, Fong model is used, where damage 
function is represented by an exponential function of damage trend k, which is a 
compromise between counting fatigue cycles and mechanical tensor 
measurements.  

The very important problem is to distinguish the scale of application of the 
proposed model, especially in the context of determination of a fatigue crack 
length. The models valid for long cracks do not account for the phenomena 
appearing at the microscale of the composite specimen. On the contrary, cf. 
(A5.33), the microstructural parameter d is introduced, which makes it possible to 
include material parameters in the microscale in the equation describing the fatigue
crack growth.  

All the models for the damage function can be extended on random variables 
theoretically, by perturbation methodology, or computationally, using the relevant 
MCS approach. The essential minor point observed in most of the formulae 
described above is a general lack of microstructural analysis. The two approaches 
analysed above can model cracks in real laminates, while other types of composites 
must be analysed using fatigue laws for homogeneous materials. This approach is 
not a very realistic one, since fatigue resistance of fibres, matrices, interfaces and 
interphases is essentially different. Considering the delamination phenomena 
during periodic stress changes, an analogous fatigue approach for fibre-matrix 
interface decohesion should be worked out. The probabilistic structural analysis of 
such a model can be made using SFEM computations or by a homogenisation. 
However a closed-form fatigue law should be completed first.  

As is known, there exist a whole variety of effective probabilistic methods in 
engineering. The usage of any of these approaches depends on the following 
factors: (a) type of random variables (normal, lognormal or Weibull, for instance), 
(b) probabilistic information on the input random variables, fields or processes (in 
the form of moments or probability density function (PDF)), (c) interrelations 
between particular probabilistic characteristics of the input (of higher to the first 
order, especially), (d) method of solution of corresponding deterministic problem 
and (e) available computational time as well as (f) applied reliability criteria.  

If the closed form solution is available or can be derived symbolically using 
computational algebra, then the probability density function (PDF) of the output 
can be found starting from analogous information about the input PDF. It can be 
done generally from definition – using integration methods, or, alternatively, by the 
characteristic function derivation. The following PDF are used in this case: 
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lognormal for stress and strain tensors, lognormal and Gaussian distributions for 
elastic properties as well as for the geometry of fatigue specimen. Weibull density 
function is used to simulate external loads (shifted Rayleigh PDF, alternatively), 
yield strength as well as the fracture toughness, while the initial crack length is 
analysed using a shifted exponential probability density function.  

As is known [313], one of the following computational methods can be used in 
probabilistic fatigue modelling: Monte Carlo simulation technique, stochastic 
(second or higher order) perturbation analysis as well as some spectral techniques 
(Karhunen-Loeve or polynomial chaos decompositions). Alternatively, Hermitte-
Gauss quadratures (HGQ) or various sampling methods (Latin Hypercube 
Sampling – LHS, for instance) in conjunction with one of the latters may be used. 
Computational experience shows that simulation and sampling techniques are or 
can be implemented as exact methods. However their time cost is very high. 
Perturbation-based approaches have their limitations on higher order probabilistic
moments, but they are very fast. The efficiency of spectral methods depends on the 
order of decomposition being used, but computational time is close to that offered 
by the perturbation approach. Unfortunately, there is no available full comparison 
of all these techniques – comparison of MCS and SFEM can be found in [208], 
HGQ with SFEM in [237] and stochastic spectral FEM with MCS in [113,114]. A 
lot of numerical experiments have been conducted in this area, including 
cumulative damage analysis of composites by the MCS approach (Ma et al. [243]) 
and simulation of stochastic processes given by (A5.30) - (A5.38). However, the 
problem of an appropriate conjunction of stochastic processes and structural 
analysis using FEM or BEM techniques has not been solved yet.   

Let us analyse the application of the perturbation technique to damage function 
D extension, where it is a function of random parameter vector b. Using a 
stochastic Taylor expansion it is obtained that  

( ) ( ) ( )0,2
2
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Then, according to the classical definition, the expected value of this function 
can be derived as  
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Since this function is usually used for damage control, which in the 
deterministic case is written as 1≤D , an analogous stochastic formulation should 
be proposed. It can be done using some deterministic function being a combination 
of damage function probabilistic moments as follows:  

[ ]( ) 1)()( ≤≤ bb DgD kµ (5.5) 

where ( ))(bDkµ  denote some function of up to kth order probabilistic moments. 

Usually, it is carried out using a stochastic ‘envelope’ function being the upper 
bound for the entire probability density function as, for instance  

[ ]( ) [ ] )(3)()( bbb DDEDg k −=µ (5.6) 

This formula holds true for Gaussian random deviates only. It should be 
underlined that this approximation should be modified in the case of other random 
variables, using the definition that the value of damage function should be smaller 
than 1 with probability almost equal to 1; the lower bound can be found or 
proposed analogously. In the case of classical Palmgren-Miner rule (A5.45), with 
fatigue life cycle number N treated as an input random variable,  

N

n
D = , bN ≡ (5.7) 

the expected value is derived as follows [215]:  
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and the variance in the form of  
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It is observed that the methodology can also be applied to randomise all of the 
functions D listed in the appendix to this chapter with respect to any single or any 
vector of composite input random parameters. In contrast to the classical derivation 
of the probabilistic moments from their definitions, there is no need to make 
detailed assumptions on input PDF to calculate expected values and variances for 
the inversed random variables in this approach.  

Let us determine for illustration the number of fatigue cycles of cumulative 
damage of a crack at the weld subjected to cyclic random loading with the 
specified expected value and standard deviation (or another second order 
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probabilistic characteristics) of ∆σ. Let us assume that the crack in a weld is 
growing according to the Paris-Erdogan law, cf. (A5.26), described by the 
equation  

( ) 2
m

aYC
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da m
πσ∆= (5.10) 

and that Y≠Y(a). Then  
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which gives by integration that  
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Taking for N=0 the initial condition a=ai, it is obtained that  
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for 
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Therefore, the number of cycles to failure is given by  

β
1=fN

(5.15) 

The following equation is used to determine the probabilistic moments of the 
number of cycles for a crack to grow from the initial length ai to its final length af:
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Substituting for ∆K one obtains  
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By the use of a stochastic second order perturbation technique we determine the 
expected value of ∆N as  

[ ] ( ) ( )( )
( ) ( )σ

σ
σσ ∆

∆∂

∆∆∂+∆∆=∆ Var
N

NNE
20

02
0

2

1
(5.18) 

and the variance of number of cycles as 

( ) ( )( )
( ) ( )σ

σ
σ ∆⎟⎟⎠

⎞
⎜⎜⎝

⎛
∆∂

∆∆∂=∆ Var
N

NVar

2

0

0

(5.19) 

Adopting m=2 it is calculated using (5.17) and (5.18) that  
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and  
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The following data are adopted in probabilistic symbolic computations: 
[ ] MPa.E

minmax
010=σ−σ=σ∆ , ai=25 mm and obtained experimentally 

C=1.64x10-10, Y=1.15. The visualisation of the first two probabilistic moments of 
fatigue cycle number is done using the symbolic computation program MAPLE as 
functions of the coefficient of variation α(∆σ) and the final crack length af. The 
results of the analysis in the form of deterministic values, corresponding expected 
values and standard deviations are presented below with the design parameters 
marked on the horizontal axes. 

Figure 5.1. Deterministic values of fatigue cycles (dN)
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Figure 5.2. Expected values of fatigue cycles number (EdN)

Figure 5.3. Standard deviations of fatigue cycles number (sdN)

Especially interesting here is a comparison between deterministic analysis and 
expected values obtained for analogous input data. It is seen that the expectations 
are essentially greater than the deterministic output, which results from (5.17), for 
instance. The difference increases nonlinearly together with an increase in the 
coefficient of variation of the stress amplitude ∆σ. In the case of α(∆σ)=25% this 
difference is equal to about 20% of the relevant deterministic values. This result 
can be used as the safety factor which could be proposed for deterministic analysis 
as S=1.2 for an analogous range of random variability of the stress amplitude. 
Furthermore, it is seen that the final crack length is remarkably more decisive for 
fatigue cycle number (even in a random case) than the coefficient of variation of 
the stress amplitude.  

As shown in Figure 5.3, the variability of the examined standard deviation of 
∆σ is essentially different from that typical for deterministic and expected values. 
The influences of final crack length and input coefficient of variation are almost 
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the same for 25% increases of both parameters. Considering the above it can be 
concluded that the influence of the random character in fatigue cycle number is 
important in higher than first order probabilistic moments computations. It is clear 
that the presented symbolic computation methodology can be next exploited in the 
determination of stochastic sensitivity gradients of probabilistic moments of the 
fatigue cycle number with respect to particular random characteristics of the 
chosen input variables appearing in the fatigue life cycles formula. In particular, it 
will enable us to compare the sensitivity of various fatigue models with respect to 
the same parameters in which the sensitivity gradients are the most reasonable and 
realistic. The situation would be definitely more complicated if the variation of 
stress amplitude together with fatigue cycle number is analysed. Random 
fluctuations of ∆σ in time should be taken into account in this case and, therefore, 
∆σ(ω)=∆σ(ω,t) is to be considered as a resulting nonstationary random process.  

5.3 Computational Issues   

Since the deterministic equations are valid for the Monte Carlo simulation 
analysis as well, then the essential theoretical differences are observed in the case 
of perturbation based analysis. The corresponding fatigue-oriented SFEM model 
begins with the new description of the material properties, where the stiffness 
reduction approach can result in the following equations for the Young modulus, 
Poisson ratio and material density as well as spring stiffness for interface 
modelling  

( ))(1)( 0 nDene −= , ( ))(1)( 0 nDn −=νν
( ))(1)( 0 nDn −= ρρ , ( ))(1)( 0 nDknk −= (5.27) 

Therefore, the first two probabilistic moments for the Young modulus can be 
represented as  

[ ]( ))]([1)]([ 0 nDEeEneE −= (5.28) 

( )( ) ( ) ( ))(1)(1))(( 00 nDVareVarnDeVarneVar −=−= (5.29) 

and up to the second order perturbation equations are rewritten in the incremental 
formulation as follows:  

• zeroth order 
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(5.30) 

• first order 
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• second order  
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where the stiffness matrix perturbation orders are defined as  
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so the dynamical structural response is given in the form  
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The situation is more complicated when the crack phenomenon is considered 
apart from the material stochasticity and nonlinearity. In such a situation so-called 
direct methods are used or special purpose enriched finite elements with crack tip 
modelling can be applied alternatively. In the latter case, the displacements near 
the crack tip can be defined as  
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while the near field component fu can be rewritten as  

( ) ( )
⎭
⎬
⎫

⎥⎦
⎤

⎢⎣
⎡ −+

⎩
⎨
⎧

−⎥⎦
⎤

⎢⎣
⎡ −−

=

2

3
sin

2
sin12sin

2

3
cos

2
cos12cos

24

1

θθγφθθγφ

π
r

G
fu

(5.36) 

where φ denotes the orientation angle of a crack, which is measured from the 
positive x axis, r and θ are polar coordinates with origin at the crack tip and 
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measured from the crack angle, G is shear modulus, while γ denotes νγ 43 −=  for 

plane strain problems or is equal to 
ν
νγ

+
−=

1

3
 for the plane stress analyses. The 

corresponding SFEM equations for displacements near the crack tip are rewritten 
using (5.36), while the stress intensity factors are computed using BEM or FEM 
techniques or, alternatively, are derived mathematically starting from stress 
equilibrium and displacement compatibility equations. The numerical results of 
SFEM analysis for composites with and/or without interface and volumetric 
microdefects are presented in [193,194], while in the case of the cracked medium 
they can be found in [33].  

Alternatively, the structural microdefects are modelled by spherical voids 
during the ductile type fatigue fracture. Let us assume that the total number of the 
microdefects is equal to Ma, their radius is denoted by Ra in the composite 
component indexed with a. Adopting further that both of them are functions of the 
fatigue cycle, the modified elasticity tensor components can be calculated using 
stiffness reduction of the Young modulus and Poisson ratio as follows:  
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The use of more advanced deterministic theories is known from the literature. 
However equivalent stochastic models are not available now. Similarly to a solid 
model with deterministic and stochastic microvoids, the stiffness reduction 
approach for cracked media can be applied as well [267]. The following material 
data are adopted for n=0: Young modulus Em=2.1 E11, Poisson ratio νm=0.3, 
expected value of microvoids radius E[r]=0.1 and standard deviation of microvoids 
radius σ(r)=0.01, expected value of microvoids total number E[M]=1 and variance 
of microvoids total number Var(M)=0. The Young modulus is taken with ±10%
deviations from the mean value the microvoid ratio variability is included in the 

interval [0,1.0]. Therefore an adequate visualisation of the component )(
1111

effC  can be 

obtained, cf. Figure 5.4.  
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Figure 5.4. Parameter variability of )(
1111

effC  for damaged homogeneous solid  

Analysing the effective tensor surface, the expected linear dependence of this 
tensor on the Young modulus is observed as well as the nonlinear dependence on 
the microvoid mean radius (greater sensitivity to geometrical parameters of the 
structural defects). If only the statistical information about the input parameters is 
available, then the elasticity tensor can be rewritten using its first two probabilistic
moments and introduced directly in SFEM analysis. If stochastic analysis in the 
elastoplastic range is necessary, the corresponding extension of the models 
presented in [355] can be applied. The microvoid volumetric ratio parameter is to 
be replaced with the two-parameter approach shown above and the probabilistic 
moments of these parameters are to be inserted as a function of the fatigue cycle.  

As was mentioned before, the main goal of the homogenisation procedure is to 
find effective material properties of the homogeneous material, equivalent to the 
original composite. The most simplified method is to use the spatial average as the 
homogenised property and it is still used in terms of effective mass density, which 
can be rewritten for the nth cycle of fatigue analysis as   

Ω
= )()()( nneff ρρ (5.38) 

Analogous homogenisation rule is applied in the case of heat capacity in transient 
heat transfer analysis and related thermoelastic or thermoelastoplastic coupled 
analyses of composites. The homogenisation of the elasticity tensor components is 
definitely more complicated and is usually carried out as  

( )
ΩΩ

+= )()()( )()( nnCnC klij
a

ijkl
eff

ijkl χσ ,    for i,j,k,l=1,2,3 (5.39) 

where )(nklχ  are the homogenisation function depending on the fatigue cycle.  
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The entire procedure can be applied for the fatigue analysis by rewriting the 
material properties of the composite components in terms of the current fatigue 
cycle number. Then, homogenising the constitutive law for each cycle, the whole 
composite fatigue can be modelled in a global scale, without the necessity for a 
very precise microscale discretisation or computational substructuring; an 
analogous analysis can be carried out for composite materials with cracks 
[336,337], for instance. It should be underlined that the described homogenisation 
procedure is sensitive to the RVE determination from the entire composite and to 
the scale parameter relating this element, dimensions to the dimensions of the 
entire composite. The formula for effective elasticity tensor is rewritten under the 
assumption that this parameter tends to 0, which is a very unrealistic model.  

Furthermore, the homogenisation procedure can be established for random 
composites, too, only if the randomness does not influence the periodic character 
of the composite (especially during the fatigue process). Then, either MCS [191] as 
well as SFEM [192] can be utilised for this purpose. Therefore, starting from 
probabilistic characteristics of the composite properties, the expected values, 
variances (or standard deviations) as well as higher order moments (in the 
statistical estimation only) can be computed.  

A very important issue from the technological point of view is the presence of 
the interface defects (usually with stochastic nature) appearing and growing 
between the composite components. Various computational models are proposed in 
this case in terms of special purpose spring finite elements or, alternatively, using 
the interphase as a new, separate material between the original composite 
components. This new material can be constructed from the original semicircular 
defects with random parameters, smeared (averaged probabilistically) over the 
entire interphase region according to the stochastic model introduced in Chapter 2; 
the composite with such an introduced interphase is then homogenised. To utilise 
the model for fatigue life cycle analysis, the geometrical and physical properties of 
the composite should be described in terms of the fatigue cycle number and then 
homogenised cycle by cycle for the needs of computational simulation of the 
composite.  
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5.3.1 Delamination of Two-Component Curved 

Laminates  

Let us consider a two-component elastic transversely isotropic material in 
two-dimensional space Ω defined by the polar coordinate system y={R,Θ} (cf. 
Figures 5.40-5.43). It is necessary to introduce the following relations:  
(a) the gap between two surfaces  

( ) ( ) ( )Θ−Θ=Θ ,,, )1()2( RuRuRg RR
(5.40) 

(b) the relative tangential slip of two surfaces 

( ) ( ) ( )Θ−Θ=Θ ΘΘ ,,, )1()2( RuRuRs (5.41) 

(c) the normal traction  

( ) ( ) ( )Θ−Θ=Θ ,,, )1()2( RRR RRR σσσ (5.42) 

(d) the shear traction  

( ) ( ) ( )Θ−Θ=Θ ΘΘΘ ,,, )1()2( RRR RRR σσσ , { }∞∈Θ=Γ=Γ ,0;: 0RRcc
(5.43) 

where R0 is the radius of the interface curvature. Since (5.40) - (5.43) are referred 
to the composite interface (cracked or joined) Γc (R=R0=const) only, then their 
radial dependence is neglected. The equilibrium problem of linear elasticity is 
given by the following equations system [95]:  

• equilibrium equations  

( ) 0
11 =+−+

∂
∂

+
∂

∂
Θ

Θ
RR

RR b
RRRR

σσ
σσ (5.44) 

0
21 =++

Θ∂
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+
∂

∂
ΘΘ

ΘΘ b
RRR R

R σ
σσ (5.45) 

where bR and bΘ denote the body force components;  
• strain-displacement relations  
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• constitutive relations  
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The following boundary conditions are employed:  

RR uu ˆ=    and   ΘΘ = uu ˆ  on uΓ (5.48) 

RR tt ˆ=    and   ΘΘ = tt ˆ  on σΓ (5.49) 

0)( =Θg ; 0)( =Θs ⇒ 0)(σR =Θ ; 0)( =ΘΘRσ  on Γc (5.50) 

0)( =Θg ; 0)( ≠Θs ⇒ 0)(σR <Θ ; )(σµ)( Θ=ΘΘ RRσ  on Γc (5.51) 

0)( >Θg ; 0)( =Θs  or 0)( ≠Θs 0)(σR =Θ , 0)( =ΘΘRσ  on Γc (5.52) 

0)( <Θg ; 0)( ≠Θs 0)(σR <Θ ; )(σµ)( Θ=ΘΘ RRσ  on Γc (5.53) 

( ) ( ))(ssign)(sign
R

Θ=Θσ  on Γc (5.54) 

where µ denotes the constant friction coefficient. Then, the near-tip stress field is 
described in the polar coordinate system as {x}={r,θ} (cf. Figure 5.6).  

Figure 5.5. Two-component curved laminate structure 
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x1=rcosθ

x2=rsinθ

Figure 5.6. Near-tip field  

It is assumed that both crack surfaces are modelled as perfectly smooth – there 
are no neither meso- nor micro-asperities on this surface in the context of the 
FEM contact model presented by [49,371,382], however application of the 
Boundary Element Method is also known, see [374]. Considering future particle-
reinforced composites delamination simulations, the 3D contact algorithms must be 
employed [284,322]. The asymptotic nature of the elastic fields near a transition in 
the boundary conditions (crack tip) is expressed by the analytic functions and 
therefore, the description of a near-tip stress for an interface crack between two 
different transversely isotropic in a plane stress problem and the traction-free 
crack surfaces is given as follows [301]:  

[ ]( ) ( ) [ ]( ) ),(2Im,2rRe 5.05.0i ∈Σ+∈Σ= −∈−∈ θπθπσ II
ij

iI
ijij rKrrK , (5.55) 

where i,j=1,2, ),( ∈Σ θI
ij , ),( ∈Σ θII

ij  are the angular functions derived using the 

Muskhelishvili potentials; ri∈ describes here the oscillatory stress singularity given 
as 

( ) ( )rirr i lnsinlncos ∈+∈=∈ (5.56) 

The angular functions correspond to the normal and in-plane shear tractions, 
respectively, on interface ahead crack tip (x1>0; θ=0) at a distance r given by 
[140,222]:  

( ) ∈−π=σ+σ i. rrK 50

1222
2i  or 

[ ]( ) 5.0
22 2Re −∈= rKr i πσ  and [ ]( ) 5.0

12 2Im −∈= rKr i πσ
(5.57) 

Moreover, the functions ),( ∈Σ θI
ij , ),( ∈Σ θII

ij  are related to the elastic properties of 

the bimaterial specimen using the oscillatory index ∈ given by  

Ω2

x1

 x2 r

θ
a

Ω1
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where the Kolosov constant κn is given as [158,259]  

n

n

n ν+

ν−
=κ

1

3
 for the plane stress 

(5.59) 

nn
ν−=κ 43  for the plane strain; n=1,2. (5.60) 

where νn and Gn denote the Poisson ratio and shear modulus of the nth component, 
respectively. Next, the elastic Dundur mismatch parameters are defined by  
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    and   

( ) ( )
( ) ( )11
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Then, it is possible to rewrite (5.58) in the following way: 
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The fracture modes I and II [54] of the SIF in the case of an interface crack 
between dissimilar isotropic materials are now coupled together into the single 
complex SIF K=K1+iK2 uniquely characterising the singular stress field; K1 and K2

are the functions of a distance r from the tip and may be denoted as follows:  

( )∈= iKrrK Re)(1  and ( )∈= iKrrK Im)(2
(5.63) 

The associated relative crack surfaces displacements (∆ui=ui(r,θ=π)-ui(r, θ=-π)) at 
a distance r behind the tip (x1<0; θ=±π) are described in the following way:  
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Finally, the ERR for the crack propagation along the interface may be given as  

( )∈⎟⎟⎠
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where K =K1-iK2 is the conjugate complex SIF. It finally gives  
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which makes it possible to calculate the material interface toughness starting from 
the local stress field under critical load.

The main goal of the computational experiments is to simulate the delamination 
process of a two-component layered composite subjected to shear loading in the 
shear device. It is predicted that near tip behaviour and frictional stresses along the 
crack surfaces are the main parameters governing the ERR. Therefore, the FEM-

based numerical modelling of the delamination process is applied to get the 
accurate information about the following data: near-tip displacement and stress 
field description, normal stress distribution along the crack surfaces as well as the 
relation between the ERR and interface crack length.  

A two-component curved composite beam is analysed numerically under the 
following assumptions: (i) the interlaminar adhesive layer has zero thickness (no 
contribution to ERR), (ii) near-tip stress field is analysed in the same way as the 
straight crack, (iii) the crack propagates along the interface only (kinking of a crack 
out of the interface is not considered), (iv) kinematic friction along the crack 
surfaces is accounted for, (v) friction between supporting jigs and the specimen is 
neglected (liquid lubrication of the tested material surface is assumed). The 
material components are homogeneous isotropic and linear elastic (cf. Table 5.1); 
geometrical data are given in Table 5.2 and Figure 5.7.  

A FEM geometrical model is made from the three types of finite elements: 8-
node plane stress quadrilateral with out-of-plane thickness (5.0e-3 m) and 4 
integration points PLANE82 (structural solid), 3-node contact surface element 
with 2 integration points CONTA172 and 3-node target surface elements 
TARGE169. The last two element types simulate two essentially different kinds of 
material contact behaviour: flexible-to-flexible (between crack surfaces) and 
rigid–to-flexible (between the rigid curved device jigs and the curved specimen 
sides). For the present purposes, surface contact elements are more preferred than 
point-to-surface contact elements considering the curved geometry of a specimen 
and the requirements of a precise and detailed contact description as well as faster 
computational processing (smaller total number of contact finite elements). 
Moreover, target elements (CONTA172) simulating rigid curved jigs are modelled 
as longer than specimen curved sides (ΘT+1°) to prevent loss of the contact at the 
model edges during the loading process. Crack tip vicinity is modelled by the ring 
of 16 8-noded finite elements (cf. Figure 5.9) introduced around 6-node triangular 
elements (PLANE82). The required square-root singularity on the element sides is 
achieved by the motion of the midside nodes of crack tip elements into the quarter 
points. Size of the crack tip element ring is 5.0 E-06 m in the radial direction, 
which corresponds to 0.02% of the component thickness (the characteristic length 
of a composite specimen). The very dense discretisation (cf. Figures 5.8 and 5.9) 
makes it possible to analyse the near-tip stress zone where the singular stresses 
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dominate (in so-called K-dominance zone) with the length about 3% of the 
component thickness. 

Figure 5.7. Composite beam geometry  

Table 5.1. Material input data for FEM analysis  
Material 
No.  

Radial elastic  
modulus eR [GPa] 

Angular elastic 
modulus eΘ [GPa] 

Shear modulus 
G RΘ [GPa] 

Poisson ratio 
νRΘ

1 5.0 5.0 2.5 0.2 
2 10.0 10.0 5 0.3 

Table 5.2. Geometrical input data for FEM analysis  
Component thickness  
[m]

Total angle 
ΘT [deg] 

Interface plane radius  
R0 [m] 

Crack propagation 
range Θa [deg] 

h1 h2    
0.0025 0.0025 20 0.0525 <6-14> 

Figure 5.8. Crack tip zone discretisation Figure 5.9. Crack tip mesh 
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The propagation of a crack is modelled computationally by the change of the 
crack tip position under constant radius value R=R0. Thus, if the crack length 
increases during its propagation, the total number of elements and nodes increases 
as well as is comprised in the range between 2,302 and 2,878 finite elements (from 
6,225 to 7,825 nodes).  

The incremental nonlinear analyses (according to contact and friction) with two 
different boundary conditions (BC) and material configurations (cf. Table 5.3 and 
Figures 5.10 and 5.11) are performed to determine the influence of different load 
and material combinations on the contact between crack surfaces. The external 
loading is of static shear type and is applied in the form of displacement 
increments; the weaker component is loaded first.  

Table 5.3. Geometrical boundary conditions for the composite beam  
Case 1 Case 2 
(i) Θ=ΘT and R∈〈R0, R0+h1〉: uR=0  
(ii) Θ∈〈-1°, ΘT〉, R=R0+h1: uR=uΘ=0
(iii) Θ∈〈0°,ΘT+1°〉, R=R0-h2: uR=0; uΘ=u~

(iv) Θ=0° and R∈〈R0-h2, R0〉: uΘ=u~

(i) Θ=ΘT and R∈〈R0-h2, R0〉: uR=0  
(ii) Θ∈〈-1° ΘT 〉, R= R0-h2: uR=uΘ=0
(iii) Θ∈〈0°, ΘT +1°〉, R=R0+h1: uR=0; uΘ=u~

(iv) Θ=0° and R∈〈R0, R=R0+h1〉: uΘ=u~

Figure 5.10. Model BC (case 1) 

Figure 5.11. Model BC (case 2) 

Frontal solver implemented of the ANSYS is used to solve the problem using the 
full Newton-Raphson iteration technique (stiffness matrix updated each time) 
together with the additional convergence enhancement tools: predictor-corrector 
and the line search options. The standard unilateral contact is modelled (pressure is 
equal to zero during separation) as well as one-pass contact (asymmetric contact) 
to obtain the equilibrium solution of contact tractions by means of the augmented 
Lagrangian method (iterative series of contact stiffness are updated for the contact 
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stresses computation). Moreover, the unsymmetrical tangent stiffness matrix is 
used to derive of contact tractions what improved solution convergence in 
comparison with the symmetric tangent stiffness matrix approximation algorithm. 

The cracks are closed on almost the entire length under applied shear loading, 
which results in sliding and sticking behaviour of the composite. Nevertheless, it is 
observed that in the case of weaker material loading, the area around the crack tip 
is opened which makes it possible to use the LEFM oscillatory theory of interfacial 
cracks in the ERR calculation. The length of the opened crack tip zones remains 
constant during crack propagation (about 1-2% of the total crack length, cf. Figure 
5.12), while the crack opening maximum values are different for various crack 
lengths. It may be due to the change of the crack tip loading direction during crack 
propagation process. Moreover, the zero value of a crack opening shown in Figure 
5.12 corresponds to sliding contact behaviour of the composite, which takes place 
in 98-99% of the crack length measured from the specimen edges; the asymptotic 
behaviour of stress is shown in Figure 5.13. The values of stresses depend 
asymptotically on the very high stress values up to values about 5 orders smaller 
and which are never equal to zero. Further, the oscillatory stress singularity is 
slightly influenced by the increasing friction coefficient µ and for extremal case 
(µ=1.0) the stress exponent is equal to λ=0.494.  

Next, asymptotic behaviour of stress in the case of a completely closed crack 
(loading of stiffer component) is analysed in Figure 5.22. The extremal values of 
stresses (crack tip stress values) are considerably influenced by the friction 
coefficient increase and differ by about one order for µ=1. In this case the exponent 
λ depends on the friction coefficient µ and the interface fracture mechanics idea for 
the opened crack is no longer applicable. However, it is possible to calculate 
numerically the ERR for a closed crack with friction by means of the technique 
proposed in [292] using the FEM analysis [24], but here only the opened crack 
model is analysed. As can be expected, the stress tensor components around the 
crack for the test without the friction are essentially greater than those typical for 
the composite contact problem with a non-zero friction coefficient. It reflects the 
fact that some part of the internal strain energy is dissipated by the friction 
phenomenon in the second case, cf. Figures 5.14-5.21.  

Figure 5.12. Crack opening displacement (case 1; µ=0.5)  
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Figure 5.13. Near-tip stress dependence on µ (opened crack tip)  

Figure 5.14. Near-tip stresses σrθ [Pa] (µ=0.5)  
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Figure 5.15. Near-tip stresses σrθ [Pa](µ=0) 

Figure 5.16. Near-tip stresses σr [Pa] (µ=0.5) 
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Figure 5.17. Near-tip stresses σr [Pa] (µ=0) 

Figure 5.18. Near-tip stresses σrθ [Pa] (µ=0.5) 
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Figure 5.19. Near-tip stresses σrθ [Pa] (µ=0) 

Figure 5.20. Near-tip stresses σr [Pa] (with µ=0.5) 
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Figure 5.21. Near-tip stresses σr [Pa] (µ=0) 

Figure 5.22. Near-tip stress dependence on µ (closed crack tip)  
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obtained in conjunction with constant value of µ, results in a uniform frictional 
stress σΘ along the crack surfaces according to Coulomb law. The part of the crack 
surface with quasi-uniform normal stress distribution increases together with the 
crack length increase as follows: 3.44E-3 m (6°), 7.33E-3m (10°), 8.93E-3 m (14°) 
for Figure 5.21 and 3.89E-3 m (6°), 5.04E-3m (10°), 8.93E-3 (14°) for Figure 6.22. 
It is reasonable because of the greater non-uniform deformation of the composite 
edges (due to BC) decreases with respect to the entire crack length during its 
propagation.  

Figure 5.23. Normal stress distribution along the crack surface (case 1; µ=0.5)  

Figure 5.24. Normal stress distribution along the crack surface (case 2; µ=0.5) 

The variable ERR is a function of the interface crack length and is computed 
for two different friction coefficients (µ=0 and µ=0.5). As is expected, a large 
decrease in ERR value follows the friction coefficient increase (cf. Figure 5.25). 
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For the shortest crack length (amin=5.5E-3 m) the ERR takes value 1.54E-3 kJ/m2

(µ=0) and 1.03E-3 kJ/m2 (µ=0.5), while for the longest crack length (amax=1.282E-
2 m) the ERR value is equal to 8.71E-4 kJ/m2 (µ=0) and 3.48E-4 kJ/m2 (µ=0.5). 
Therefore, during the crack propagation from 5.5E-3 to 1.282E-2 m, the total 
amount of energy dissipated due to friction is comprised between 33 and 60% of 
the ERR value in the frictionless case. Moreover, the crack extension is stable 
(ERR decreases together with an increase of interface crack length), which means 
that a higher load should be applied to keep the growth of a crack. However, a 
friction phenomenon has a stabilising effect on the fracture process, which speeds 
up the ERR decrease together with crack length in comparison to a frictionless 
behaviour. Then, the quasi-stationary tendency of the ERR is observed for a certain 
crack length (a>1.1E-2 m) in frictional (from 3.9E-4 to 3.48E-4 kJ/m2) and 
frictionless (from 9.06E-4 to 8.71E-4 kJ/m2) cases. The stationary region of ERR 
may imply uniform crack tip load which would make it possible to determine 
experimentally the force responsible for delamination only; further analysis 
indicates the mode mixing of the fracture process. The shear mode prevails over 
the tensile mode of the ERR but the shear/tensile mode ratio (ERR2/ERR1) 
increases from 2.78 (amin) to 2.88 (amax) for µ=0 and decreases from 2.55 (amin) to 
2.45 (amax) for µ=0.5. Although the friction influences both contributions of the 
ERR (ERR1 and ERR2), the ERR shear mode ERR2 is more reduced by the 
frictional stresses along the crack surfaces due to its direction during interface 
crack extension than the ERR tensile mode ERR1.  

Figure 5.25. Energy release rate comparison  
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Figure 5.26. ERR contributions (µ=0)  

Figure 5.27. ERR contributions (µ=0.5) 

The computations are performed on a single processor machine (700 MHz) 
with 256 MB (RAM) memory; the computer processing time (CP) and cumulative 
number of iterations (CNI) are presented in Table 5.4 as functions of various crack 
lengths for the 20th loadstep of the displacement increment.  

Table 5.4. Computational experiments technical data  
CP 
[s] 

CNI Crack 
length 
a [deg] 

Element 
number 

µ=0 µ=0.5 µ=0 µ=0.5 
6 2302 12413.580 11809.241 292 263 
10 2590 12958.353 15646.158 270 327 
14 2878 10506.438 10735.686 230 231 

It is observed that the CP time is not affected by the friction coefficient and the 
finite element number, but depends on some certain crack tip positions as the result
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of the curved model geometry. Thus, it is possible to point out that the critical 
crack length maximising CP and CNI exists and is equal to about Θa=10°.  

5.3.2 Fatigue Analysis of a Composite Pipe Joint  

A deterministic computational model of fatigue crack-like damage propagation 
in the composite pipe joint is introduced here and examined numerically using the 
FEM program ANSYS. The studies dealing with the other pressure vessels like 
longitudinally cracked pipes can be found in [142,218]. The model is built upon 
the following assumptions cf. [97,157,205,211,376]: (a) material components are 
linear elastic, (b) possible defect nucleation and growth is located within the 
adhesive layer and is caused by the high stress concentrations, (c) no initial 
manufacturing flaws, pre-cracks or other defects are assumed in the original 
adhesive layer (before the beginning of the fatigue loading process), (d) there are 
no microdefects forming and next coalescence during composite tension (typical 
for metallic materials) apart from crack formation and propagation, (e) the cyclic 
load has constant amplitude and (f) fatigue crack-like damage propagation is 
stable.  

The stresses along the adhesive layer length are not uniform and their gradients 
arise at joint edges, which results from extension of the specimen layers in the 
opposite directions (composite pipe and coupling), cf. Figure 5.28. Then it is 
assumed that defects start to grow longitudinally along the adhesive layer and 
uniformly over all pipe circumference, under applied tensile load σapp, when the 
resulting average shear stress 〈τad〉 over some distance d from the high stress 

concentration region is equal to or greater than the shear static strength u
adτ  in 

adhesive layer. This criterion is expressed by the following equation:  

u
ad

d

Aadad dX
d

τττ ≥= ∫
0

1
(5.69) 

The formula (5.69) is called the average stress criterion after it was applied to 
notched strength prediction of laminated composites under uniaxial tension; a 
graphical representation of this criterion is shown schematically in Figure 5.28. 
The distance d is called the characteristic length and can stand for the damage 
accumulated or a nonlinear process zone. It is expressed here in terms of the 
critical fracture mechanics parameter as the critical Stress Intensity Factor (KIIc)
and shear strength of the adhesive layer as  

2

2

1
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

u
ad

IIcK
d

τπ
(5.70) 
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Since (5.70) is based on the assumption of the square-root stress singularity in 
the front of the sharp crack tip, it does not precisely represent the stress distribution 
in the tubular adhesive layer in the stress concentration region. However, this 
characteristic length serves to estimate upper bound on the finite element size at 
the crack-like damage tip.  

Figure 5.28. Pipe-to-pipe adhesive connection: 3D and 2D views 

Then, it is postulated that after the crack-like defect had nucleated, it steadily 
propagates along the adhesive layer as the main single crack leading to an average 
stress increase over the distance d along with the number of load cycles N as  

( ) ( ) ( )
( )∫∫ −

⇒=
d

A
ad

d

Aadad dX
ND

N

d
dXN

d
N

00 1

11 τ
ττ (5.71) 

where D(N) denotes the classical scalar damage variable, which may be written in 
terms of the nucleated and propagating main crack a as follows:  

( ) ( )
al

Na
ND = (5.72) 

The defect propagation terminates according to the condition   

( ) ( ) alNaND =⇔= 1 (5.73) 

which corresponds to the loss of stiffness for all those finite elements in the 
adhesive layer that are placed on the crack propagation path.  

- stress concentration regions 
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pipes 

adhesive bonding X

X
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〉
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The boundary differential equation system, which describes fatigue defect 
propagation along the adhesive layer of a composite pipe joint may be defined over 
the pipe element of length dla(N)=dXA-da(N) as follows:  
(i) equilibrium and damage equations  

( )NdFdF adp =  and ( )NdFdF adc = (5.74) 

( ) ( ) ( )NdlDNDDd aopadipopp πτπσ =− 22

4

(5.75) 

( ) ( ) ( )NdlDNDDd aicadicocc πτπσ =− 22

4

(5.76) 

(ii) constitutive relations  

( ) p

Ap

ENdl

dw σ
=  and ( ) c

Ac

ENdl

dw σ= (5.77) 

( ) ( )
ad

cpad
ad t

G
N

γγ
τ

−
= (5.78) 

(iii) boundary conditions  

( ) p

app

LX

p

ENdl

dw

A

σ
=

=

 and ( ) c

app

X

c

ENdl

dw

A

σ
=

=0

(5.79) 

( ) 0
0

=
=AX

p

Ndl

dw
 and ( ) 0=

=LX

c

A
Ndl

dw
(5.80) 

where Fp, Fad, Fc represent internal axial forces in a pipe, adhesive layer and 
coupling, respectively, internal axial stresses in the pipe, adhesive and coupling are 
denoted by σp, τad and σc. Let us assume that Ep, Ec and Gad are the axial modulus 
of the pipe, elastic modulus of the connecting layer and the adhesive shear 
modulus; wp and wc denote pipe and coupling axial displacements. This problem is 
now solved numerically for the pipe and coupling shear strains cp γγ ,  and 

adhesive shear stresses ( )Nadτ .

The main purpose of further computational studies is a prediction of crack 
damage propagation rate per a cycle in the composite pipe joint subjected to the 
pure tension fatigue load with the load time variations shown in Figure 5.29 (each 
load cycle is divided into two time intervals of 6 months). The cycle asymmetry 
ratio R is equal to 0, while the load amplitude is equal to the applied maximum 

load ( app
maxσ ). Since quasistatic fatigue load is applied, no frequency effect is 

therefore considered here.  
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Let us note that the axis symmetry of the composite pipe joint results in 
simplification of the entire computational model and essentially speeds up the 
analysis process - only half of the composite pipe joint in the axial direction is 
considered only. The final computational model geometrical data to the FEM 
displacement-based commercial program ANSYS [2] are shown in Figure 5.30. 
The pipe and coupling component are made up of E-glass/epoxy composite (50% 
fibre volume fraction) and the adhesive layer (rubber toughened epoxy). All 
material properties of the composite pipe joint components are listed in Table 5.5.  

Figure 5.29. Applied fatigue load  Figure 5.30. Computational model 

The axisymmetric FEM analysis is carried out using four node finite elements 
PLANE42 of three translational degrees of freedom (DOF) (u,v,w) at each node. 
The model mesh is made to obtain greater density in high stress concentration 
regions (at both edges of the adhesive layer) - in this region the finite element size 
was equal to the process zone d given by (5.70). During loading process, the 
average value of the shear stress component computed by ANSYS in the finite 

element is compared to the static shear strength ( u
adσ ) of the adhesive layer. After 

this value had been exceeded within a finite element, then finite element stiffness 
was multiplied by the reduction factor equal to 1×10-6, and the element was 
deactivated, until analysis was terminated.

Table 5.5. Material properties of the model  
Property Rubber toughened epoxy (joint) E-glass/epoxy 
Longitudinal modulus [GPa] 3.05 45 
Transverse modulus [GPa] 3.05 12 
Shear modulus [GPa] 1.13 5.5 
Poisson ratio 0.35 0.28 
Shear strength [MPa] 54 70 
Tensile strength [MPa] 82 1020 
Fracture toughness GIc [kJ/m2] 3.4 - 
Fracture toughness GIIc [kJ/m2] 3.55 - 
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Supposing that the shear mode of failure is dominating in the problem, several 
different failure modes may occur in composite pipe joints subjected to the tensile 
static load. That is why the distribution of stresses within the pipe, adhesive layer 
and coupling was analysed first to find out whether the shear stresses are the most 
decisive stress components for failure initiation within the adhesive joint or not. 
For the pipe joint geometry considered (cf. Figure 5.30), the computations 
predicted the bonding failure is dominated by the shear stresses, while other stress 
components (orthogonal and parallel) values were at least one order smaller. These 
results excluded other modes of failure for this specific model and load amplitude 

app
maxσ =270 MPa and, finally, confirmed appli cability of failure criterion (5.69).  

a – A=216 MPa 

                                                                                                            b – A=243 MPa 

                                                                                                            c – A=270 MPa 

                                                                                                            d – A=405 MPa 

                                                                                                            e – A=540 MPa

Figure 5.31. Crack-like damage growth under various amplitude fatigue loading  
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Figure 5.32. Crack-like damage growth per cycle  
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Figure 5.33. Fatigue constants estimation  

The crack-like damage evolution in the adhesive layer is presented for five 

different load amplitudes A= app
maxσ =216, 243, 270, 406 and 540 MPa as a function 

of load cycles. Those load amplitude values correspond to 4× u
adτ , 4.5× u

adτ , 5× u
adτ ,

7.5× u
adτ  and 10× u

adτ , respectively. They were chosen to find out the load 

amplitude effect on a composite pipe joint. Since below an applied load amplitude 
A=216 MPa no damage nucleation was observed, then this load value may be 
assigned to the load threshold, Ath. The tendency of longitudinal crack-like 
damage propagation was obtained from the computer analysis as the difference 
between crack-like damage tip at Nth and (N-1)th cycle. The crack-like damage 
tip position was chosen to be the centroid of the finite element with reduced 
stiffness. Since the crack-like damage growth occurred from two opposite sides of 
the joint, thus two extreme longitudinal positions of the crack damage tips were 
considered and summed up to give a single crack-like damage value, as shown in 
Fig. 5.31. It is shown that an increase of amplitude resulted in a decrease of the 
load cycles were required for the final failure.  

Then, the results from Figure 5.31 were used to calculate a mean crack-like 
damage propagation rate [mm/cycle] as a function of the applied mean fatigue-like 
load, calculated from (6.81) with the results shown in Figures 5.32 and 5.33.  

A relation between the mean crack-like damage propagation rate and the 
applied mean stress is presented in Figure 5.33. The logarithmic form was taken in 
order to obtain coefficients α=2.3591 and β=-12.132 of the function 

( ) βα += )ln(ln ba . The final relation between the mean crack damage 

propagation rate and the applied mean stress is given by the following equation:  
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( )( )[ ]me
dN

da

m

σln0.235910.121320101 4 +−× −
=⎟

⎠
⎞⎜

⎝
⎛ (5.82) 

The usage of (5.82) makes it possible to estimate the mean crack damage 
propagation rate under applied mean fatigue load, although it should be compared 
with other computational approaches to the problem or the relevant experimental 
results. For composite containing different material properties, it would be 
necessary to repeat all numerical procedures carried out here, because α, β are 
load- and material-dependent constants.  

In order to present stress distribution during crack-like damage propagation, 
shear stresses are plotted for different load cycles in Figures 5.34-5.38. These 
stresses were determined as a function of the joint length in the middle of the 
adhesive layer thickness. The crack-like damage tips on both sides of a joint are 
denoted by ‘A’ and ‘B’. It is shown that shear stresses at the crack-like damage 
tips increase along with load cycle number, as was expected. It is caused by the 
fact that the load transfer area from pipe to coupling decreases. The crack-like 
damage propagation is initially the same for both tips ‘A’ and ‘B’ and supported by 
similar shear stress magnitudes. Then, the shear stress magnitude changes and it is 
different at opposite crack damage tips. It probably results from the non-uniform 
extension of the crack damage across the remained adhesive layer. It is necessary 
to mention that the lower part of the pipe overlapped coupling before the failure, 
which does not demonstrate a realistic situation, where pipe and coupling would 
slide over each other.  

The tendency of fatigue crack propagation was also inspected under different 
failure conditions utilising the concept of the average stress criterion. That is why 
the average orthogonal and parallel stresses were compared with relevant strength 
values for different amplitudes of the applied load. Computations revealed that it 
would be necessary to modify failure criterion, given by (5.69) to predict fatigue 
life as a combination of the average shear stress with average longitudinal tensile 
stress in case when applied load amplitude is higher than σmax>406 MPa.  



Fracture and Fatigue Analysis of Composites     261 

Figure 5.34. Shear stresses in undamaged adhesive layer 

Figure 5.35. Shear stresses in adhesive layer after 1 cycle (1 year)  
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Figure 5.36. Shear stresses in adhesive layer after 2 cycles  

Figure 5.37. Shear stresses in adhesive layer after 5 cycles  
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Figure 5.38. Shear stresses in adhesive layer after 9 cycles  

Computations presented above are performed using 2,606 finite elements (254 
in the adhesive layer); some numerical examples have been undertaken in order to 
estimate the total finite element number effect on the results. It was assumed that 
finite element number in the adhesive layer may only influence results by only. 
Thus the vertical mesh division effect was studied first with 400, 800, 1200, 1600, 
2,000 and 4,000 finite elements, respectively. The results became independent 
from the decreasing finite element size (cf. Figure 5.39), while the critical finite 
element size for which results did not change was equal to le≈0.0001 m. It 
corresponds to about 250 vertical mesh divisions of the considered adhesive layer 
length.  

Figure 5.39. Fatigue life sensitivity to the finite elements number in adhesive layer  

A

0.5 1 1.5 2 2.5

-10

-8

-6

-4

-2

A

B

S
he

ar
 s

tr
es

se
s 

τ a
d[

M
P

a]
×1

07

2 4 6 8

0.005

0.01

0.015

0.02

0.025

Loading cycles number N 

C
ra

ck
-li

ke
 d

am
ag

e 
gr

ow
th

 [
m

] 

400 elements 

≥ 1000 elements 

800 elements 

Distance over bonded region [m] ×10-2



264     Computational Mechanics of Composite Materials 

Numerical results presented in Figure 5.40 show that the finite element size 
simulating characteristic length d should be much smaller than those approximated 
by (5.70) and should be equal to d≈0.0007 m. Similar comparative study was 
carried out for different horizontal divisions and they demonstrated a rather small 
mesh effect on fatigue life prediction, which oscillated in that case between 8.4 and 
8.6 load cycles number (cf. Figure 5.39).  

Figure 5.40. Fatigue life sensitivity to the finite elements number in adhesive layer 

For the geometry of the model considered here, its finite element mesh of the 
adhesive layer should be designed using 5 × 250 elements (horizontal × vertical) in 
order to avoid a finite element mesh effect on the life prediction. Finally, it is 
suggested to solve numerically the problem by finite elements possessing a greater 
number of nodal degrees of freedom (nodal translations and rotations) such as shell 
finite elements, for instance, to improve the accuracy of the computational model.  

The numerical approach proposed here enables efficient estimation of fatigue 
crack damage evolution rate in the composite pipe joint subjected to varying tensile 
load. This approach may be especially convenient in fatigue life prediction for the 
structures with high stress concentration regions, where internal stresses even 
under applied fatigue loading may be high enough to overcome material or 
component static strength. Qualitative numerical comparison of the fatigue crack 
damage evolution rate can be elaborated by the FEM displacement-based using 
cohesive zone fracture mechanics tools. In this case the damage of adhesive layer 
can be represented by a single crack model and crack evolution can be numerically 
determined e.g. through common spring finite elements, interface finite elements 
or solid finite elements with embedded discontinuity defined using the condition 
for a critical energy release rate growth.  
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5.3.3 Thermomechanical Fatigue of Curved 

Composite Beams 

A two-component composite material with volume Ω is considered in the plane 
stress in an initially unstressed, undeformed and uncracked state, where its two 
constituents (Ω1, Ω2) are linear elastic and transversely isotropic materials; the 
effective elasticity tensor of the composite domain Ω is uniquely defined by their 
deterministic Young moduli and Poisson ratios. The problem is focused as before 
on the composite interface where a pre-crack of length ao is introduced. Both 
crack surfaces are assumed to be perfectly smooth – there are neither meso- nor 
micro-asperities on their surfaces in the context of a contact model. The constant 

amplitude fatigue load ijσ  is applied with the coefficient of a cycle asymmetry 

max
ij

min
ijR σσ= . The stress field under applied general transverse load at the crack 

tip is described by (5.57).  
 Now, let us analyse the fatigue phenomenon for such an interface 
[77,109,291,295], which results from thermo-mechanical external load cycles 
applied at the composite specimen [93,96]. Analogous to the classical Paris-
Erdogan equation used to describe the fatigue crack growth rate in metals, its 
modified version is used  

( )qGc
dN

da ∆= (5.83) 

where c and q are some material constants determined experimentally. The energy 
release rate (ERR) range is described here as follows:  

minmax GGG −=∆ (5.84) 

with maxG  and minG  calculated for a certain applied load max
ijσ  and min

ijσ ,

correspondingly. A quite similar fatigue analysis may also be applied in the case of 
thermal cycling or coupled thermomechanical fatigue analysis. However, it is 
necessary to apply the following equation to calculate the ERR range during 
periodic temperature variations:  

( ) ( )maxmin TGTGG −=∆ (5.85) 

where Tmin and Tmax are minimum and maximum temperatures for a given thermal 
cycle. The modified Paris-Erdogan equation (5.83) is used to estimate the number 
of fatigue cycles required for the steady state crack growth from an initial 
detectable precrack ao to its critical length acr. It is assumed that once the critical 
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crack length is reached, the crack grows continuously leading to the material 
failure by a delamination; this assumption determines the entire mechanism of a 
fatigue fracture of this particulate composite. Since that, the following fracture 
criterion is proposed:  

cri
ii

ii

da
aa

aa

GG

da

dG =⇒>
−
−

= +
+

+

→ 1
1

1

0
0lim  and Gi+1≥1.05Gi

(5.86) 

The 5% factor is used in (5.86) to prevent instabilities of crack propagation and 
which is based on some computational observations presented later. On the other 
hand, if the ERR is less than the threshold value Gth, then no crack growth is 
observed.  

Figure 5.41. Composite FEM model  

Figure 5.42. Mechanical boundary conditions  
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Moreover, it is possible to describe micro-crack density by the damage 
function as D=a/acr. In this case this function may be used to calculate the effective 
stress tensor for a cracked body as follows:  

( )
cr

crij
eff
ij)cr(eff

ij
a

aa

D

−
=

−
=

σσ
σ

1
(5.87) 

where eff
ijσ  denotes the effective stress tensor of the initially perfectly bonded 

composite under applied load, which can be calculated by the classical 
homogenisation or mechanics of composite materials theory. Then, the effective 
stress tensor of a cracked body is estimated from (5.87) and is compared to the 
effective strength of a two-component curved composite. 

The main purpose of computation is to estimate the number of load cycles 
required to composite fatigue failure by delamination as a function of the friction 
coefficient. The composite thermal cycling is simulated numerically to observe 
fatigue crack growth under non-mechanical loading. The analysis consists of the 
following steps in order to evaluate these parameters: (i) determination of the near-
tip stress distribution under applied load (FEM analysis); (ii) evaluation of total 
ERR (and its contributions) as a function of the interface crack length and the 
friction coefficient; (iii) calculation of ERR range and (iv) determination of fatigue
cycles to failure.  

The composite FEM model for computer analysis is presented in Figures 5.41 
and 5.42 - two linearly elastic transverse isotropic homogeneous components with 
the geometry parameters and material properties collected in Tables 5.6 and 5.7 are 
analysed.  

Table 5.6. ANSYS geometrical input data  
h1 0.0025 Component thickness [m] 
h2 0.0025 

Total angle ΘT [deg]; aT [m] 20; 1.83×10-2 

Interface plane radius Ro [m] 5.25×10-2

Pre-crack ΘT [deg]; ao [m] 6; 5.5×10-3

Table 5.7. ANSYS input material properties 
Property Boron/epoxy Aluminium 7075-T6 

Density [kg/m3] 2000 2810 
Young modulus [GPa] 207 70.8 

Poisson ratio  0.21 0.33 
Shear modulus [GPa] 4.8 26.9 

CTE [1/°C] ×10-6 4.5 23.4 
Conductivity [W/m°C] 14.7 130 
Heat capacity [J/kg°C] 1150 960 

The composite specimen is discretised in the FEM analysis using from 2,172 to 
2,908 finite elements and from 5,863 to 7,879 nodal points to simulate the interface
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crack propagation. The crack length change is equal to 0.5deg (0.9×10-4m). The 
very dense model discretisation around the crack tip needs a large effort for the 
singular near-tip stresses behaviour simulation. The elements used for model 
discretisation are 8-node plane stress solid elements PLANE82 (mechanical 
analysis) with 4 integration points and 8-node thermal solid elements PLANE77 
(thermal analysis) with 9 integration points. Two-dimensional (2D) contact 
(CONTA171) and target (TARGE169) finite elements are used to simulate the 
contact with friction between crack surfaces and frictionless contact between 
external supports and model edges; the contact finite elements have 3 nodes and 2 
integration points, while target finite elements are defined using 3 nodes. The 
numerical problem to be solved is geometrically nonlinear taking into account 
elastic contact with friction or frictionless elastic contact - that is why an 
incremental analysis is applied. The contact traction computation is possible thanks 
to the augmented Lagrangian technique with contact stiffness matrix 
symmetrisation. This technique as a combination of the two main constraint 
methods (penalty and Lagrange multiplier) is chosen in conjunction with 
predictor-corrector and the line-search numerical options to ensure satisfactory 
solution convergence.  

The applied fatigue load is chosen as a compressive shear of 1.75 kN (138 
MPa) with the cycle asymmetry factor R=0.017. It is observed that the shear 
contribution to the total ERR prevails (∆G2≈∆GT) over tensile mode under the 
given fatigue load. Since the shear mode dominates, the ERR is taken from the 

range min
2

max
2 GGG −=∆  only and its dependence on the friction coefficient is 

shown in Figure 5.43. The values of ERR range vary together with the coefficient 
of friction from 147 (ao=5.49×10-3 m) to 183 J/m2 (al=1.28×10-2 m) for µ=0 and 
from 108.4 (ao) to 103.4 J/m2 (al) for µ=0.15. The energy dissipated due to friction 
results in a reduction of the ERR and alters the tendency of crack propagation - it 
stabilises the fracture process.  

That is why the critical crack lengths corresponding to the lowest values of 
friction coefficients are equal to acr=5.2 mm for µ=0.0 and µ=0.01, which are 
smaller than those obtained for µ>0.01 and equal to acr=7.4 mm. Thus, the number 
of cycles to composite failure by delamination is based on the critical crack length 
criterion and is calculated from (5.83). The parameter q=10 and the ERR threshold 
∆Gth=100 J/m2 are applied together with the parameter c=1×10-26. The results of 
the composite life prediction are shown in Figure 5.44 – we observe there that the 
friction coefficient increases strongly and decreases the crack growth rate per cycle 
which finally leads to composite fatigue life improvement, under the assumption 
that interface delamination does not bring about other damage processes such as 
wear, for instance. Finally, the number of fatigue cycles to composite failure are 
estimated to be Nf=61,865 cycles for µ=0 and Nf=5.067040×106 cycles for µ=0.14.  
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Figure 5.43. Energy release rate range during fatigue crack growth  

Figure 5.44. Composite mechanical fatigue life  
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Figure 5.45. Initial temperature conditions  

Figure 5.46. Thermal cycling  

Figure 5.47. Temperature distribution (1st cycle, T=+71°C)  

Figure 5.48. Temperature distribution (1st cycle, T=-54°C)  

∆T=+71/-54°C 

Tl=20°

Tu=20°
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Figure 5.49. Temperature distribution (25th cycle, T=+71°C)  

Figure 5.50. Temperature distribution (25th cycle, T=-54°C)  

Figure 5.51. Temperature distribution (50th cycle, T=+71°C)  

Figure 5.52. Temperature distribution (50th cycle, T=-54°C)  
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Figure 5.53. Temperature distribution (75th cycle, T=+71°C)  

Figure 5.54. Temperature distribution (75th cycle, T=-54°C)  

Figure 5.55. Temperature distribution (100th cycle, T=+71°C)  

Figure 5.56. Temperature distribution (100th cycle, T=-54°C)  

Computational thermal cycling is carried out for the composite specimen in the 
temperature range Tmax=+71 and Tmin=-54 - thermal boundary conditions are 
presented in Figures 5.44 and 5.45. First of all, the stationary thermal analysis is 
worked out to introduce the initial conditions for temperature distribution (cf. 
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Figure 5.44). Then, thermal cycling is carried out thanks to the non-stationary 
thermal analysis implemented in the program ANSYS. The number of simulated 
fatigue cycles is taken as 10 E5 cycles for +71/-54°C and corresponds to the total 
time t=252,000 s, where ∆t=1260 s is used in numerical analysis as an incremental 
time step. As is shown later, the fatigue crack growth after 100 cycles is very small 
and equal to ∆a=3×10-6 m. Therefore, the analysis is carried out for the initial crack 
length ao=5.5×10-3 m. Initially, the temperature has almost the same value in all 
composite regions. Then, the difference in temperature increases together with the 
number of thermal cycles, and even temperatures with opposite signs are observed 
in opposite composite regions (upper and lower component). It is predicted that the 
near-tip stress range can be reduced if the temperatures of opposite signs appear on 
either side of the composite interface.  

The temperature distribution over the laminate cross-section is presented for 
25, 50, 75 and 100 cycles in Figures 5.49-5.56 for two temperatures mentioned 
above. Comparing Figures 5.47, 5.49, 5.51 and 5.53 illustrating the temperature 
distributions for greater initial temperature at the bottom of a laminate, it is seen 
that the minimal temperature is decreasing together with an increase of the fatigue 
cycle number (a composite is frozen during a fatigue analysis). Quite the opposite 
observation can be made for T=-54°C (cf. Figures 5.48, 5.50, 5.52, 5.54 and 5.56). 
The maximal temperature increases from T=-53.5°C (for 1st cycle) to about 12°C
which means that the composite is heated during the delamination process. For 
both initial temperatures at the bottom of a structure, spatial distributions of 
temperature gradients are exactly the same.  

The results of non-stationary analysis give an input for a mechanical analysis 
carried out for a composite model subjected to zero external mechanical loads. 
However, the composite is circumferentially fixed by the target finite elements and 
on the left side of the upper component by the supports. This coupling makes it 
possible to analyse the thermal stresses in a composite and further, to determine the 
ERR range. As was noticed before, the near-tip stress range is reduced during 
thermal cycling.  

The equivalent thermal stresses σ(th-eqv) distributions around the crack tip are 
shown in Figures 5.57-5.62 for an initial crack length (ao) at the upper and lower 
limit temperatures (+74°C and –54°C). Thermal stresses range is reduced 
from ∆σ(th-eqv)=-1000 MPa (after the 1st cycle) to -930 MPa (after 100 cycles).  
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Figure 5.57. Thermal equivalent stress σ(th-eqv) [Pa] (1st cycle; +71°C)  

Figure 5.58. Thermal equivalent stress σ(th-eqv) [Pa] (1st cycle; -54°C)  
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Figure 5.59. Thermal equivalent stress σ(th-eqv) [Pa] (50th cycle; +71°C)  

Figure 5.60. Thermal equivalent stress σ(th-eqv) [Pa] (50th cycle; -54°C)  
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Figure 5.61. Thermal equivalent stress σ(th-eqv) [Pa] (100th cycle; +71°C)  

Figure 5.62. Thermal equivalent stress σ(th-eqv) [Pa] (100th cycle; -54°C)  
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Figure 5.63. Contact pressure along the normalized crack length  

Comparing these figures it can be noticed that thermal equivalent stresses are 
generally greater for greater initial temperature. Further, as can be expected, the 
maximum value of these stresses for both temperatures decreases together with an 
increase of the fatigue cycle number. Next, it is observed that material deformation 
at the upper temperature limit (+71°C) led to crack surface contact the over total 
crack length, while at the lower temperature limit (-54°C) the crack surfaces are 
opened along almost the entire crack length with the closed region near the 
specimen edge acl=1.14×10-3 m; it can be observed in Figure 5.63, where the 
contact pressure distribution along crack surfaces is presented after the 1st and 100th

thermal cycle; a region characterised by the contact pressures σR=0 MPa 
corresponds to the crack opening. The normalised crack length equal to 0.3 is 
referred to the crack tip position, where the contact pressure at T=+74°C is reduced 
by about 10% after 100 thermal cycles.  

The computed range of ERR is presented as a function of the interface crack 
length for a constant friction coefficient µ=0.0 in Figure 5.64. The total ERR range 
as a function of the interface crack length has a decreasing tendency. Mode I of the 
ERR range prevails, contrary to the ERR range contributions obtained from 
mechanical cycling, and is comprised of between 93.4% (ao=5.4×10-3 m) and 
95.2% (a=7.2×10-3 m) of a total ERR range, while the fatigue crack is arrested at 
aarr=6.3×10-3 m according to the assumption of fatigue crack growth threshold 
∆Gth=100 J/m2.

Finally, the ERR range determination makes it possible to estimate the number 
of thermal cycles necessary to hold up the fatigue crack growth. The same fatigue 
constants as in the case mechanical fatigue are used to calculate the fatigue cycle 
number. The number of thermal cycles to increase the crack length from ao to arr is 
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equal to Narr=1.012155×106 cycles (cf. Figure 5.65). As fatigue crack is arrested 
and supported by the decreasing ERR range (see Figure 5.64), no criterion of 
composite failure is possible to take into account the crack propagation instability. 
That is why it would be feasible to use (5.87) to estimate the fatigue damage 
accumulation influence on the overall composite properties, replacing acr by aarr.

Figure 5.64. Energy release rate range  

Figure 5.65. Number of cycles to fatigue crack arrest  
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5.4 Perturbation-based Fracture Criteria  

Contrary to the traditional fracture criteria used in both deterministic analysis 
and stochastic Monte Carlo simulations, the probabilistic fracture criteria consist of 
probabilistic moments of material strength as well as the corresponding moments 
of external load and its direction angle. The second order perturbation technique is 
applied below to rewrite the Tsai-Hill criterion in terms of expected values and 
standard deviations of all quantities discussed.  

It is expected that a failure criterion is a function of material strength and the 
stress (or strain) applied at the specimen. While for isotropic and homogeneous 
materials such a condition should not be relatively complicated, in the case of 
composites, the total strength is a function of composite type, the principal 
directions of the structure and the stress applied as well as the angle relating this 
stress to the direction introduced. One of the most popular in composite 
engineering are Tsai-Hill and Tsai-Wu failure criteria, which may be rewritten as 
follows:  
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X, Y, S denote composite strengths in the three principal directions (longitudinal, 
transverse and shear, respectively) while σ and θ denote externally applied axial 
stress and the angle between this stress and principal direction X [352];  
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where Xt, Xc, Yt, Yc and S are axial strength in tension, compression and transverse 
strength in tension and compression as well as shear strength, as previously. 
Equations (5.88) and (5.89) can be rewritten for the needs of probabilistic analysis 
after some basic algebraic transformations, while all of the quantities appearing in 
these equations may be treated as random variables.  

Let us consider a fracture criterion for a composite being a function of material 
properties and stress tensor components to introduce the perturbation-based 
fracture analysis  

( ) 0; =Xσf (5.90)

In terms of random loads and/or probabilistically given composite properties it can 
be said that (6.90) is verified with probability almost equal to 1. Since the fact that 
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the character of the final probability density function (PDF) is unknown then 
denoting by ( )( )X,σµ fk  the kth order probabilistic moment of the failure function 

( )X;σf , there holds  

( ) ( )( )( ) 0,, =≥ XX σµσ fFf k (5.91)

where ( )( )( )X,σµ fF k  is some deterministic function of probabilistic moments 

( )( )X,σµ fk . The function can be evaluated starting from integration over the 

probability domain method, the characteristic function differentiation approach, 
Monte Carlo simulation technique or, alternatively, stochastic perturbation theory. 
Using the classical second order version of the perturbation technique, zeroth, first 
and second order equations for Tsai-Hill criteria in the form of  
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can be written as  
• zeroth order equation:  
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• first order equations: 
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• second order equation:   
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Analogous zeroth, first and second order equations can be obtained from Tsai-
Wu deterministic criteria, cf. (5.89). Then, the first two probabilistic moments for 
the failure function ( )X;σf  can be calculated in the form of expected values  

( )[ ] ( ) ( )XXX ;;; )2(
2
1)0( σσσ fffE += (5.96)

and variances  

( )( ) ( )( ) )(;;
2, bXX VarffVar r σσ = (5.97)

using the relations derived above.  
Starting from the first two probabilistic moments , various forms of the function 

( )( )( )X,σµ fF k  can be proposed which depend generally on the probability 

density function of input random variables as well as the output PDF of the failure 
function ( )X;σf . The following form of F is proposed below:  

( ) ( )[ ] ( )( )XXX ;fVar;fE;f σ−σ≥σ 3 (5.98)

which gives the most accurate result for Gaussian deviates and all symmetric PDF 
with the same first two probabilistic moments and the fourth order coefficient of 
concentration greater than 3. By the ‘desired result’ it is understood that inequality 
(5.98) holds true with probability almost equal to 1. Let us note that such a 
function is called an envelope function in stochastic theories of structural 
reliability.  

The probabilistic failure criteria presented above have been examined in terms 
of the angle θ and axial stress σ being input random variables for the following 
material properties of the composite X=5.0 GPa, Y=6.0 GPa, S=4.0 GPa for Tsai-
Hill criterion and Xt=5.0 GPa, Xc=5.5 GPa, Yt=6.0 GPa, Yc=6.6 GPa, S=4.0 GPa in 
the case of Tsai-Wu model. The variability of the expected values of the input 
parameters is taken as E[θ] =0,...,45 and E[σ]=2.0 GPa,...,6.0 GPa, while their 
standard deviations are in the range of 10% of the corresponding expected values. 
All computations are done by the use of the symbolic computation mathematical 
package MAPLE - zeroth, first and second order failure surfaces are obtained and 
starting from them the expected values, standard deviations and ‘envelope’ failure 
surfaces are plotted. Figures 5.66-5.69 and 5.70-5.73 presented below contain 
deterministic, probabilistic envelopes, expected values and standard deviations of 
Tsai-Hill and Tsai-Wu failure surfaces. It is seen that the character of standard 
deviations for both criteria plots is essentially different from the other surfaces.  

Analysing the results plotted in Figures 5.66-5.73 it should be underlined that 
deterministic surfaces are quite close to their expected values (see (5.96)). It is 
caused by the fact that the coefficient of variation of both input random variables is 
relatively small. Further, it is observed that the ‘envelope’ failure surfaces for both 
Tsai-Hill and Tsai-Wu criteria have generally the same character as the 
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corresponding deterministic and expected values. However, essentially smaller 
values generally confirm its usefulness in the probabilistic analysis of composite 
failure and should be studied further in detail. Especially valuable would be the 
application of the methodology proposed in the case of full statistical information 
on composite strength properties and the external load applied.  

Finally, it should be underlined that the symbolic approach to stochastic 
perturbation analysis makes possible any finite order computations of probabilistic 
moments of the output. Due to this fact, precise numerical studies on model 
convergence for different perturbation orders, various PDF of input variables and 
their probabilistic parameters should be carried out.  

Figure 5.66. Tsai-Hill deterministic failure surface 

Figure 5.67. Tsai-Hill ‘envelope’ failure surface 



Fracture and Fatigue Analysis of Composites     283 

Figure 5.68. Expected values for Tsai-Hill failure surface  

Figure 5.69. Standard deviations of Tsai-Hill failure surface  

Figure 5.70. Tsai-Wu deterministic failure surface 
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Figure 5.71. Tsai-Wu ‘envelope’ failure surface 

Figure 5.72. Expected values for Tsai-Wu failure surface 

Figure 5.73. Standard deviations of Tsai-Wu failure surface 
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5.5 Concluding Remarks   

The whole variety of mathematical and computational tools shown above 
makes it possible to analyse efficiently ordinary and cumulative deterministic and 
stochastic fatigue processes in different composite materials. Some local and 
global models are mentioned and the deterministic or stochastic techniques 
together with the approaches which enable randomisation of classical deterministic 
techniques to obtain at least the first two probabilistic moments of the structural 
response. For this purpose, most established composite oriented fatigue theories are 
classified and listed here. Next, the application of the perturbation-based SFEM 
has been demonstrated for various aspects of the fatigue process computational 
modelling to the W-SOTM reliability analysis, starting from direct FEM 
simulation in conjunction with fracture phenomena.  

An alternative computational technique (MCS) is shown using the example of 
homogenisation analysis for a fibre-reinforced composite with stochastic interface 
defects simulating interface fatigue. Most of the computational illustrations 
presented above show, which is intuitively clear, that the expected values of 
structural functions decrease together with fatigue process progress. In the same 
time, the second order probabilistic characteristics (standard deviations, variances 
or coefficients of variation) increase together with the increase of fatigue cycle 
number, which means that the random uncertainty measure is increasing during the 
entire process.  

The probabilistic modelling of composite materials fatigue processes 
summarised and proposed in this chapter is still an open question due to the fact 
that the area of composite material applications as well as the relevant technologies 
is still extending and because of the developments of the stochastic mechanics 
itself. The stochastic second or higher order perturbation theory for various 
problems shown above is very fast in randomisation of composite fatigue theories 
and in computational modelling. However, it is not sufficiently efficient in 
numerical simulation of engineering systems with increasing standard deviations of 
input structural parameters. The simulation methods based on the MCS approach 
are computationally exact, but not very effective in simple approximation of the 
probabilistic moments of the composite state functions, their failure criteria and the 
additional reliability index. Further usage of stochastic differential equations 
computer solvers [149] in conjunction with the FEM is recommended to include 
full stochastic nature of crack initiation and detection into the model.  

An essential minor point of the up-to-date fatigue analysis methods (both 
deterministic and stochastic) is the lack of microstructural effects in the final 
formulae; some work is done for laminated structures. However interface 
phenomena in fibre-reinforced composites and stochastic microstructural 
problems in all composites are not included in the analysis until now. Finally, the 
lack of systematic sensitivity analysis of various models is observed, which makes 
it impossible to find a reasonable compromise between complexity of the fatigue 
analysis approach, probabilistic treatment of various phenomena resulting in 
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cumulative damage and applied mathematical and numerical techniques. Such a 
sensitivity analysis should be carried out treating the expected values and higher 
order probabilistic moments of structural composite parameters as design variables, 
which seems to be necessary considering the application of random variables and 
fields in this area.   

5.6 Appendix 

Various fatigue models are collected below to give the overview of the 
capabilities of this analysis for both homogeneous and heterogeneous structures; 
they are listed according to the subject classification presented in this chapter.   
A. Fatigue cycles number analysis - determine N:
1. Madsen (power law function) [244]:  

mKSN −= (A5.1) 

S is stress amplitude, K,m are some material constants;  
2. Boyce and Chamis [42]:  
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NMF - final cycle, NMO - reference cycle, S - fatigue strength, S0 - reference 
fatigue strength, TF - final temperature, T0 - reference temperature, T - current 
temperature, σ - current mean stress, σ0 - reference (residual) stress, n,q -

empirical parameters;  
3. Caprino, D’Amore and Facciolo [53]:  
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fn(N) - probability of failure; γ,σ - scale parameter (characteristic strength) and 
the shape parameter of the Weibull distribution of the static strength; R - given 
stress ratio; σmax - maximum stress level; α, β - constants from experiments.  

B. Stiffness reduction models:   
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1. Whitworth [365]:  
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E(n) - residual modulus after n fatigue cycles, E0 - initial modulus, N=n/N* -
ratio of applied cycles to fatigue life; S,a,D - some constants, f(E0,S) - some 

function of E0,S, i.e. 
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2. Hansen [127]:     
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A - some constant, εe - effective strain level, ε0 - damage strain where
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3. Bast and Boyce (creep component for the stiffness reduction) [20]:  
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tu - ultimate strength of creep hours when rupture strength is very small, t0 -

reference number of creep hours where rupture strength is very large, t - current 
number of creep hours, v - empirical material constant for the creep effect.  

C. Fatigue crack growth analysis (
dN

da
) - deterministic methods (Yokobori [379]):   

1. Liu (energy approach)  2

1 ⎟
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2. Paris (energy approach)  4
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3. Raju (energy approach)  
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4. Cherepanov (energy 
approach) 23
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σ
α ∆

(A5.11) 

5. Rice (crack opening 
displacement - COD) 
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6. Weertman (continuous 
dislocation formalism)  2

4

6
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K
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α ∆

(A5.13) 

7. Weertman, Mura and Lin 
(continuous dislocation 
formalism) 
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(A5.14) 

8. Lardner (COD)  
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9. Schwalbe (COD)  
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10. Pook and Frost (COD)  2
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11. Tomkins  
(skipband decohesion)   
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12. McEvily (semi-
experimental approach with 
COD)  
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13. Donahue et al. (COD)  
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14. Yokobori I (nucleation 
rate process approach)  
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15. Yokobori II (nucleation 
rate process approach)  
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16. Yokobori III (dislocation 
approach)  2
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17. Yokobori IV (dislocation 
approach)  2
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where αi, i=1,15 denote some experimentally determined material constants;  

18. Yokobori V (monotonic 
yield strength dependence)  

n
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K
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⎛ ∆
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(A5.25) 

19. Paris-Erdogan [280]:  

( ) [ ]mm aaYCKC πσ∆=∆ )( (A5.26) 

Y(a) - geometry factor, σ∆ - stress range, C, m - some material constants;  
20. Ratwani-Kan [296]:  

( ) 11 mn
thzmizma bC τττ −− (A5.27) 

τ zmi - minimum interlaminar shear stresses, τ zma - maximum interlaminar 

shear stresses, τ th - interlaminar threshold shear stress range, C, n1, m1 - material 

constants, b - delamination length;  
21. Wang-Crossman:  
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α (A5.28) 

Gc - critical strain energy rate; σm - applied load, E - elastic modulus, a -

delamination width; t - ply thickness;  
22. Forman et al. [101]:  
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∆−−
∆
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;     
max

min

K

K
R = (A5.29) 

where C, m are the material constants with 3≈m  for steels and m≈3-4 for 
alluminium alloys;  
23. Donahue et al. [82] for thKK ∆→∆  obtained  
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24. McEvily and Groeger [247]  
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where σY denotes the yield stresses of the specimen, A is an environment sensitive 
material parameter and KIC is a plane strain fracture toughness.  
25. Experimentally based law for combined mode I and mode II loadings proposed 
by Roberts and Kibler [302], where crack growth is obtained as  

( )m
eKC ∆ , ( )4

1
44 8 IIIe KKK += (A5.32) 

26. Hobson [137] proposed one of the first quantitative models to describe short 
fatigue crack growth in terms of a microstructural parameter d assumed as a 
material characteristic  

( ) daadCa ≤− − ;1 αα (A5.34) 

where α, C are empirical constants (C depends on both material and loading 
parameters – Young modulus, yield stress and the applied cyclic stress);  

27. Kitagawa-Takahashi curve: the LEFM (linear elastic fracture mechanics) 
approach determining the condition describing the stress level 

th
K∆  when the 

cracks can grow  

aYKth πσ∆=∆ (A5.35) 

Let us recall that the LEFM approach is invalid when the small-scale yielding 
conditions are exceeded 

cy
σ≥σ∆

3
2  where 

cy
σ  is the cyclic yield stress;  

28. Priddle law [290]:  
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(A5.36) 

C - growth resistance, KF - critical value for the stress intensity factor;  

D. Fatigue crack growth analysis - determination of 
dN

da
 (some stochastic 

methods)

( ) ( ))()()(,,,,
)(

max tYaQtXRASKKQ
dt

tda +=∆= µ
(A5.37) 

a(t) - random crack size, Q - some nonnegative function, ∆K - stress intensity 
factor range, Kmax - maximum stress intensity factor, X(t) - nonnegative random 
process, Y(t) - random process with 0 mean;   
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1. Ditlevsen and Sobczyk [80]:  

),(
)( γtXa

dt

tda p= (A5.38) 

p = 1,3/2,2 (experimental), X(t) - Gaussian white noise, process with finite 
correlation time;  
2. Lin and Yang [234]:  
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=
)(

1

,),(
tN

k
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N(t) - homogeneous Poisson counting process, τk - arrival time of kth pulse, Zk -

random amplitude of kth pulse with the following synergistic sine hyperbolic 
functional form:  
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a(n) - half crack length, Ci - some parameters 
- randomized form:  
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3. Spencer et al. [327]:  

ZaQ
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)( = , )(tGZ
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dZ +−= ξ , 0)0( aa = , 0)0( ZZ = (A5.42) 

where G(t) - stationary Gaussian white noise, Z(t) - nonstationary random 
process; the Pontriagin-Vitt equation is used   
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with the boundary conditions:  
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Fatigue damage function based model - calculation of 
dN

dD
:

1. Palmgren-Miner model [299]:  

N

n
D = (A5.46) 

n - number of fatigue cycle, N - number of cycles to failure;  

2. Modified Palmgren-Miner model:  

C

N

n
D ⎟

⎠
⎞⎜

⎝
⎛= (A5.47) 

C - constant independent of applied stress; some probabilistic aspects of this 
model can be found in [254];  
3. Shanley model:  

nCSD kb= (A5.48) 

S - applied stress, C,K - constants, b - slope of central position of S-N curve;  
4. Marco-Starkey model:  

iC

N

n
D ⎟

⎠
⎞⎜

⎝
⎛= (A5.49) 

Ci>1 - stress dependent constant;  
5. Henry model:  

( )
t

tt

S

SS
D

′−
= (A5.50) 

St - fatigue of virgin specimen, 
t

S ′
- fatigue limit after damage;  

6. Corten-Dolan model:  

αmcnD = (A5.51) 

m - number of damage nuclei, c,a - function of stress condition; α - some 
constant;  
7. Gatt model:  
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( )α
tt SSD ′−= (A5.52) 

8. Marin model:  

CNS k = (A5.53) 

9. Manson model:  
- for crack initiation:  

IN

n
D = (A5.54) 

- for crack propagation:  

PN

n
D = (A5.55) 

10. Owen-Howe model:  
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B,C - some constants;  
11. Srivatsavan-Subramanyan model:  
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12. Lemaitre-Plumtree model:  
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13. Fong model [100]:  

1)exp(

1)exp(

−
−=

k

kx
D (A5.59) 

where k represents damage trend;  
14. Cole model:  

CAAD −= (A5.60) 
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DA - attenuation due to damage, A - total attenuation, C - attenuation of virgin 

specimen;  
15. Fitzgerald-Wang model:  

*
1

E

E
D −= (A5.61) 

E - modulus at a fatigue cycle; E* - reference modulus;  
16. Wool model:  

akD
dt

dD =−
(A5.62) 

17. Chou model:  

)(nFD ∆= (A5.63) 

18. Hwang-Han model I [143]:  

c

f N

n

FF

nFF
D ⎟

⎠
⎞⎜

⎝
⎛=

−
−

=
0

0 )(
(A5.64) 

F0 - undamaged, Ff - damaged modulus;  
19. Hwang-Han model II [144]:  
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εf - failure strain;   
20. Hwang-Han model III:   

c

c

f nB

n

r

rn
D

−−
=

−
−

=
1

)(

0

0

εε
εε

(A5.66) 

21. Morrow approach [257]:  
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Si - amplitude of stress causing fatigue damage, Sm - maximum stress amplitude, 
ni - number of stress peak at level SI, d - plastic work interaction exponent, Ni -

number of stress peak to the failure if Si =const.;  
22. Morrow approach with different cycles:  
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6 Reliability Analysis  

6.1 Introductory Remarks  

A very natural application of SFEM and the other probabilistic analytical and 
numerical methods [313] is the reliability assessment for both homogeneous 
[45,256,354] and heterogeneous structures [87,102,231,262]. The starting point of 
the analysis is to assume the limit state function in terms of any structural state 
parameters - displacements, stresses, temperatures or strains (as well as some 
combination of them in the coupled problems). Then, starting from statistical input 
on the structural parameter, probabilistic structural analysis is carried out and, 
finally, starting from the limit state function, the reliability index is computed. The 
reliability index should have the same properties as the classical Kolmogoroff 
probability and, in the same time, the damage function.  

Following the stochastic structural analyses, First Order Reliability Method 
(FORM) and Second Order Reliability Method (SORM) are most frequently used 
[87,114,115,209]. The methods do not provide satisfactory results for non-
symmetric PDF of the input and output in the same time and that is why the higher 
order moments are proposed. Considering numerous applications of the Weibull 
PDF in the composite material area, the corresponding Second Order Third 
Moment (W-SOTM) approach proposed for homogeneous media is described 
below. To illustrate this approach, let us denote the limit state function as g. The 
expected values, variances and skewnesses of this function are calculated or 
computed first using up to the second orders of this function, the limit state 
function derivatives with respect to the input random variables vector b as well as 
using its probabilistic moments (σi as a standard deviation). There holds  
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These formulae can be derived using the classical perturbation approach 
described previously. Next, parameters x , β, λ of the Weibull distribution [8] are 
obtained as a solution of the following system of equations:  
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where the Gamma function is defined as  

⎪
⎪
⎩

⎪⎪
⎨

⎧

ℜ∈
−+++

>
=Γ −

∞→

∞
−−∫

)(
)1)...(2)(1(

!

)0(
)( 1

0

1

lim xanyfor
nxxxx

nn

xfordtte

x x

n

xt
(6.7) 

Finally, the reliability index is obtained as  
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The application of this type of analysis to a simple two-component composite 
beam is shown in [179], for instance. From the computational point of view it 
should be underlined that the mathematical packages for symbolic computation are 
very useful in inversion of the Gamma function and in obtaining a direct numerical 
solution of the equations system presented above.  

The methodology shown above and applied for homogeneous media can be 
used for simulation of the composite materials as well. Having proposed a general 
algorithm for usage of the limit function g, the corresponding various limit 
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functions adequate to composite materials are summarised below. The most 
simplified and natural formulation of the limit function is a difference between 
allowable and computed values of the structural state function or functions.  

All limit state functions proposed and used for composites can be divided 
basically into three different groups. The most generalised functions, independent 
from the composite components type, and even from homogeneity or heterogeneity 
of a medium and fracture character as well as physical mechanisms of the whole 
process, can be classified into the first group. The functions included in the second 
one obey a precise definition of material fracture mechanism in terms of 
elastoplastic behaviour, crack formation and its propagation into the composite 
during the whole process. The last group is characterised by the presence of the 
failure function in the limit function and is therefore usually oriented to the specific 
groups and types of composite materials.  

The most general relations are maximum stress and strain laws formulated in 
terms of longitudinal and transverse stresses and strain for both compression and 
tension as follows:  
- maximum stress law:  
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- maximum strain law:  
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As can be seen, the limit functions are independent from of composite material 
type (fibre-reinforced or laminated) as well as from the character of its 
components (polymer-based, metal matrix, etc.). They originate from the 
mechanics of homogeneous media. However, brittle or ductile character of material 
damage is not taken into account in the analysis as well as the possibility of crack 
formation during the fatigue process. That is why more sophisticated criteria are 
proposed as, for instance, the one formulated as   
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where X1 is loading stress, X2 yield strength, X3 tensile stress, X4 fracture 
toughness, X5 initial crack length, X6 crack length and calculation of K1c is 
presented by [91]. This limit state function allows us to combine brittle and ductile
fracture type of the analysed material specimen, even in the elastoplastic range. 
However, as in previous formula, it is quite non-sensitive to the composite material 
type. Considering that, the limit state functions are combined with the failure stress 
or strain functions in the form of so-called quadratic polynomial failure criteria, 
for instance. The limit state functions proposed using such a criterion can be used 
for the unidirectional composite laminate in both stress and strain formulations:  
- Hill-Chamis:  
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T
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T
X GXg εε ,1)( −= (6.12) 

- Hoffman and Tsai-Wu [352]:  

T
XBXXA

T
X FFXg ,,1)( −−= σσ , T

XBXXA
T
X GGXg ,,1)( −−= εε (6.13) 

Starting from the equations describing the limit function g, its probabilistic 
moments are calculated using the formula proposed above, but in such a case the 
knowledge of failure function probabilistic moments is necessary. In this context, 
analogous to the previous considerations, the second order perturbation method can 
be applied to randomise any of the reliability criteria i.e. Tsai-Hill failure criterion.  

6.2 Perturbation-based Reliability for Contact 

Problem  

To illustrate the reliability analysis implementation, the stochastic perturbation 
reliability analysis of the linear elastic contact analysis is carried out for a 
composite reinforced with spherical particles. Since the solution for the 
deterministic problem is known and has been worked out analytically, the 
probabilistic analysis is made using the package MAPLE. The reliability limit 
function and probabilistic moments of the contact stress computations as well as 
some sensitivity numerical studies are carried out by the use of this program 
together with the visualisation of all computed functions. This methodology can be 
successfully applied for randomisation of all contact problem reliability studies, 
where contact stresses are described by the closed form equations. Otherwise, 
Stochastic Finite [88,162] or Boundary Element Method [46,51,185] 
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computational implementations are to be made in order to get general approximate 
probabilistic solutions for the composite contact problems. Furthermore, the 
numerical approach to stochastic reliability, stochastic contact modelling and the 
relevant analytical computation aspects can be applied and explored in various 
areas of modern engineering, especially in the field of composite materials.  

Let us consider the contact phenomenon between two linear elastic isotropic 
regions characterised by the Young moduli ( )21 , ee  and Poisson ratios ( )21,νν . Let 

us assume that the regions have spherical shapes with radii R1 and R2, respectively, 
and that the contact is considered in a point denoted by C, as it is shown in Figure 
6.1 below. The 3D view of the particle-reinforced composite plane cross-section 
is shown in Figure 6.2. 

R1

    
r

R2

                                                                  P
M
N

z1 z2

                                                                 C  

Figure 6.1. Contact surface geometry  

                                            
Figure 6.2. 3D view of the particle-reinforced composite plane cross-section 

Particle 

Matrix 
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Let us observe that the contact problem is axisymmetric with respect to the 
vertical axis introduced at the centre of the spherical particle and at the bottom of 
this sphere (Figure 6.2). It is assumed that there is no pressure between the 
composite constituents and therefore the contact appears at the point C only. The 
distance between the points on the contacting surfaces and the plane transverse to 
the vertical axis of both surfaces is assumed to be small and can be described as  

( )
21

21
2

12 2 RR

RRr
zz

−=− (6.14) 

where r denotes the distance between the points M, N and the symmetry axis 
introduced at C. If the composite is loaded by the vertical force P acting along the 
vertical axis at the point C, then some local strains are induced in the 
neighbourhood of this point. They are a result of a contact phenomenon on a small 
circular surface (contact area). Assuming that the composite constituents radii R1

and R2 are sufficiently greater than the radius of the contact area, then the results of 
the Bussinesq problem of the linear elastic half-space loaded by the concentrated 
force can be adopted here. For this purpose let us denote by w1 the vertical 
displacement induced by the local vertical strain of the point M belonging to the 
matrix; w2 is the corresponding displacement of the point N in a vertical direction. 
Finally, assuming that the tangential plane in point C remains unmovable during a 
local compression, the close-up of the two points M and N can be expressed by 
some real η as [344]  

( ) ( )
21

21
2

21 2 RR

RRr
ww

−=+−= αη
(6.15) 

If M and N belong to the contact area, their displacements wi for i=1,2 can be 
written as  

∫∫
−

= ϕ
π

ν
qdsd

E
w

i

i
i

21
(6.16) 

which follows the symmetry of the pressure intensity q and the corresponding local 
strains with respect to the vertical axis at the point C. Integration in this formula is 
carried out over the entire contact surface. Therefore  

( ) ( )
21

21
2

21 2 RR

RRr
qdsdkk

−
−=+ ∫∫ αϕ (6.17) 

Now, we are looking for such an expression for q to fulfil the above equation. It 
can be obtained for the pressure distribution on the contact surface represented by 
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the coordinates of the hemisphere with the radius a constructed on a contact 
surface. If q0 is taken as the pressure at the point C, then one can show that  

A
a

q
qds 0=∫ (6.18) 

where  

( )ϕπ 222 sin
2

raA −= (6.19) 

which gives  
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Finally, the parameters a and α can be determined for this problem as  
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which gives maximal pressure on the contact surface equal to  
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a

P
q
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= (6.22) 

Then, the normal stress can be defined as  
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Let us note that the shear stresses are equal to 0, which result from the spherical 
symmetry of the reinforcing particle. However in the case of ellipsoidal 
reinforcement the shear stresses differ from 0.  

The main purpose of further analysis is to determine the probabilistic 
characteristics of maximal contact stresses as well as contact surface geometrical 
parameters. Since the spherical particle surrounding the matrix is considered, let us 
assume that the difference R1-R2=ε is smaller than R2. This parameter is treated as 
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input design parameter in further sensitivity analysis. The characteristics 
mentioned above are necessary in the final stochastic reliability computations and, 
considering the complexity of the equations describing reliability parameters, the 
stochastic second order perturbation method is proposed. The second order 
perturbation follows a traditional approach in this area (and the lack of 
convergence studies with respect to the Taylor expansion order). The third 
probabilistic moment method reflects the need of unsymmetric random variables 
modelling. Adopting the same notation as before (see Chapter 1) the skewness 
parameter S(ui) is calculated by  

( ) ( ) [ ]( )∫
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∞−
−= dbbpuEu

u
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1 3

3σ (6.24) 

In further applications, the Weibull distribution is used with the probability density 
function defined as  
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where β is the Weibull shape parameter, λ denotes the scale parameter and x  is the 
location parameter, which indicates the smallest value of the random variable x for 
which the probability density function is positive. Considering this definition, the 
Weibull PDF is used for general mechanical applications, where many random 
variables must be nonnegative (Young modulus and some geometrical parameters, 
for instance) and especially in composite failure and fatigue modelling. Let us note 
that if discrete representation of a random variable b(x;θ) is used, then statistical 
estimators may be applied to approximate any order probabilistic moments of this 
variable.  

Starting from probabilistic moments and the stochastic perturbation 
methodology presented above, we compute the first three probabilistic orders of 
the vertical stresses [ ]);( ωσ xE z , ( ));( ωσ xVar z  and ( ));( ωσ xS z  as  
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and  
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Having computed the first three probabilistic moments of contact stresses 
(expected values, standard deviations and skewness coefficients), the random field 
of the limit function g(z;ω) is to be proposed. Usually, it can be introduced as a 
difference between allowable and actual stresses );( ωσ zz  induced in the 

composite as 

( ) ( ) ( )ωσωσω ;; zzg zall −= (6.29) 

Let us underline that allowable stresses are most frequently analysed as random 
variables in the interior of statistically homogeneous materials, whereas actual 
stresses are random fields. That is why the computational analysis presented later 
is carried out for the specific value of the vertical coordinate z. The random 
variable of allowable stresses ( )ωσ all  is specified by the use of the first three 

probabilistic moments ( )[ ]ωσ allE , ( )( )ωσ allVar  and ( )( )ωσ allS . Then, the 

corresponding probabilistic characteristics of the limit function are calculated as  
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Inserting the limit state function g from (6.29) into (6.30)-(6.32) and assuming 
that the random variable of allowable stresses and the random field of actual 
stresses are uncorrelated it is obtained that  
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and, finally  
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Comparing the second order second moment (SOSM) approach with the second 
order third moment (SOTM) approach, it is seen that the expected values are 
described by exactly the same equation, while standard deviations (or variances) 
have some extra components connected with the skewness of analysed PDF; the 
third order parameter of the output PDF is taken into account in the SOTM-based 
analysis [282].  
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Computational experiments are conducted by the use of the symbolic 
computation system MAPLE, where the stochastic second order perturbation 
method in W-SOTM reliability analysis of the contact problem has been 
implemented. The entire analysis is divided into three groups of essentially various 
numerical examples: (1) deterministic analysis and sensitivity study of a contact 
problem with respect to the vertical spatial coordinate, (2) stochastic second order 
perturbation based numerical modelling by randomising most of the input problem
parameters and (3) stochastic numerical modelling according to the Weibull second 
order third moment approach. 

Deterministic analysis (Figure 6.3) and the sensitivity of contact stresses in a 
two-component composite with spherical particles is verified with respect to the 
vertical spatial coordinate. The following data are adopted for the computational 
analysis: e2=2.0E9, ν1=0.3, ν2=0.2, R2=0.18, P=10.0E5, α=e1/e2=2.0~8.0, 
β=R1/R2=1.001-1.01.  

Figure 6.3. Contact stresses for the spherical particle-reinforced composite  

Figure 6.4. Sensitivity of contact stresses to vertical spatial coordinate ‘z’
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Computational analysis of vertical contact stresses and their sensitivity 
gradients (dσz/dz) with respect to the spatial coordinate is presented in Figure 6.4. 
The reinforcement ratio (a) and the radii ratio (b) are marked on the vertical axes 
in Figures 6.3 and 6.4. The compressive contact stresses are most sensitive to the 
parameter β for its value tending to 0 (matrix perfectly surrounds the matrix) and 
for the parameter α tending to 1 (Young modulus of the reinforcing particle tends 
to the matrix Young modulus). One of the main benefits of the MAPLE 
computations, i.e. visualisation of the stress variations and their sensitivity 
gradients, can be studied in these figures.  

All the input parameters of the analysed contact problem are treated as random 
variables: Young moduli and Poisson ratios of the composite components as well 
as their radii. Deterministically calculated vertical stresses in the contact area are 
compared below with expected values, standard deviations and probabilistic 
envelope values of the vertical contact stresses for z=0.1. The standard deviations 
of the variables are taken in the range of 10% of the corresponding expectations; 
all variables are assumed to be uncorrelated.  

The computed deterministic contact stresses are shown in Figures 6.5, 6.9, 6.13 
for the particle centre (z=0.09) and for the matrix (z=-0.5 and z=-2.0, respectively). 
The expected values of contact stresses are shown in Figures 6.6, 6.10 and 6.14 for 
the same points, the standard deviations are shown in Figures 6.7, 6.11 and 6.15, 
while the probabilistic envelopes for these stresses surfaces are presented in 
Figures 6.8, 6.12 and 6.16. The vertical contact stress parameters are marked on the 
vertical axes; horizontal axes define the reinforcement ratio of the composite (a)
and the ratio between particle and the surrounding matrix radii (b). All the surfaces 
shown in these figures have the same character and the variability with respect to 
the input parameters α and β, apart from the standard deviations plots.  

Analysing Figures 6.5-6.6, 6.9-6.10 and 6.13-6.14, it is seen that the expected 
values of contact stress surfaces are quite close to those obtained in the 
corresponding deterministic analyses. Essential differences are observed between 
Figures 6.5-6.8, 6.9-6.12 and 6.13-6.16, where probabilistic envelopes of these 
stresses are shown. These envelopes are determined for a particular x on the basis 
of the results presented in Figs. 6.6-6.7, 6.10-6.11 and 6.14-6.15 as  

));((3]);([));(( xxfsigxxfExxfEnv −= (6.36) 

Let us note that (6.36) is frequently used in the Stochastic Finite Element 
computations and stochastic fatigue analysis. The values of probabilistic envelope 
surfaces are significantly smaller than the corresponding values obtained from 
deterministic analysis, which means that stochastic perturbation based 
computational analysis more restrictive than the classical model as well as the 
corresponding expected values. All the surfaces combined in the probability 
envelope show that vertical stresses tend to 0 for the reinforcement ratio and matrix 
radius tending to a spherical particle radius. Comparing all deterministic and 
stochastic results, it is clear that the contact stresses are most sensitive to the 
vertical spatial coordinate.  



308     Random Composites  

Analysing Figures 6.5-6.8, 6.10-6.12 and 6.14-6.16 in terms of the contact 
stress variations with respect to the composite reinforcement ratio, it is observed 
that the greatest sensitivity appears for α→1, which means that the greatest 
variations of examined probabilistic stresses are obtained for the homogeneous 
contact problem. Further numerical sensitivity analysis with respect to the Poisson 
ratio interrelations of both composite components is necessary.  

The computational study on structural reliability, proposed in the theoretical 
considerations on structural reliability, is the main subject of the next example. The 
set of input data together with their probabilistic characteristics is given in Table 
6.1 for the same composite contact problem as before. The Weibull probability 
density function (PDF) of the limit function is determined together with its up to 
third order probabilistic moments (cf. Table 6.1) obtained by a symbolic 
computational solution of the nonlinear equations system (6.30)-(6.32). The PDF 
of a limit function is presented in Figure 6.17 – probabilistic vertical stresses are 
shown on the horizontal axis, while the probability on the vertical axis.  

First, it can be seen that even for a relatively small input coefficient of variation 
of input parameters (not greater than 0.1), the randomness level of the output 
function is about 18% of the relevant expected value. That is why the proposed 
third order approach is more accurate for the analysed contact problem. 
Furthermore, we observe that even for input skewnesses equal to 0, the 
corresponding third order probabilistic characteristics differ from 0, which reflects 
the differences in algebraic combinations of lower order characteristics. In further 
analysis it is necessary to verify the sensitivity (both in deterministic and stochastic 
context) of output Weibull PDF probabilistic moments with respect to all input 
mechanical parameters and their random characteristics. At the same time, the 
cross-correlation function of contact stresses can be symbolically computed using 
the program MAPLE.  

Figure 6.5. Deterministic contact stresses (z=0.018)  
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Figure 6.6. Expected values of contact stresses (z=0.018)  

Figure 6.7. Standard deviations of contact stresses (z=0.018)  

Figure 6.8. Probabilistic envelope of contact stresses (z=0.018)  
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Figure 6.9. Deterministic contact stresses (z=-0.5)  

Figure 6.10. Expected values of contact stresses (z=-0.5)  

Figure 6.11. Standard deviations of contact stresses (z=-0.5) 
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Figure 6.12. Probabilistic envelope of contact stresses (z=-0.5)  

Figure 6.13. Deterministic contact stresses (z=-2.0)  

Figure 6.14. Expected values of contact stresses (z=-2.0) 
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Figure 6.15. Standard deviations of contact stresses (z=-2.0) 

Figure 6.16. Probabilistic envelope of contact stresses (z=-2.0) 

Figure 6.17. Equivalent Weibull distribution for the limit function   
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Table 6.1. Probabilistic input data for reliability index computations  
Parameter Value 
E2 2.0E6 
ν1 0.3 
ν2 0.2 
R2 1.8 
P 5.0E2 
Z -0.018 
σ(e2) 0.2E6 
S(e2) 0.0 
σ(R2) 0.018 
S(R2) 0.0 
σall -4.0E5 
α 10.0 

β 1.01 

E[g] -211378.33 

σ(g) 38213.61838 (α=0.18) 

S(g) 5.158577 

The analysis presented above reflects various sources of randomness and 
stochasticity in contact problems of the spherical particle reinforced composites. In 
comparison to the second order second probabilistic moment approach, third order 
probabilistic moments of both input and output parameters are analysed. It is 
demonstrated that even for skewnesses of the inputs equal to 0, the output third 
order probabilistic moments in reliability studies slightly differ from 0. It results 
from the main idea of the SOTM approach and from the interrelations between 
lower order probabilistic characteristics. Further, it is observed that deterministic 
values of the state functions are quite close to the computed expected values. They 
are considerably greater and well approximated by their probabilistic envelopes, 
which confirms the usefulness of these envelopes in various stochastic numerical 
experiments.  

The most interesting extension of this study would be introducing: (1) the 
randomness of non-spherical contact surface (ellipsoidal one) and, next, (2) more 
realistic incremental Stochastic Finite or Boundary Element Method (SFEM or 
SBEM, respectively) of nonlinear geometry of the contacting surface. Next, the 
application of a computational W-SOTM reliability study in various numerical 
analyses of composites would be interesting, too. Neglecting relatively simple 
character of the deterministic contact problem, the geometrical sensitivity of the 
contact stress values is decisive for this analysis, both in deterministic and 
stochastic cases. Considering the above, one can have a conclusion that the 
stochastic second order perturbation analysis in a conjunction with mathematical 
symbolic computations is a very powerful stochastic computational tool. However, 
the limitations on the input randomness level typical for such an analysis must be 
fulfilled [208].  
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6.3. Stochastic Model of Degradation Process 

Let us consider an engineering system 3ℜ∈Ω  under stochastic degradation 
processes (SDP) with n uncorrelated components ( ) ( )tDtD i ;;;; ωω xx = , i=1,..,n

where [ )∞∈ ,t 0 . It is assumed that for every [ )∞∈ ,0τ  the components 

( )τω;;xiD  are Gaussian random variables, i.e. they are uniquely defined by their 

first two probabilistic moments: the expected values ( )[ ]τω;;xiDE  and the 

variances ( )( )τω;;xiDVar . Due to the uncorrelation assumption, the covariance 

matrix for any [ )∞∈ ,0τ  between the SDP components, it yields [176]  

( ) ( )( ) 0;;;;; =τωτω xx ji DDCov ;     i,j=1,...,n, ji ≠ (6.37)

Moreover, because of the lack of respective experimental results, we assume 
that there are no time correlations between the SDP components 

( ) ( )( ) 0;;;;; )2()1( =τωτω xx ji DDCov ;     i,j=1,...,n (6.38)

However, in contrast to the above, the spatial correlation of particular 
components have non-zero values 

( ) ( )( ) 0;;;;; )2()1( ≠τωτω xx ii DDCov (6.39)

and are computed by use of the statistical estimation methods. Let us note that, 
from an engineering point of view, every ( )tDi ;;ωx  for i=1,...,n represents some 

material (elastic characteristics or yield stress) or geometrical properties (section 
area, element thickness) of the system Ω under considerations.  

Further, let us assume that all SDP components are statistically measured 
(obtained in the experimental way) in the moments mttt ,...,, 21 , for some Nm ∈ .

On the basis of a measured M series of these components, the basic statistical 
parameters are estimated by use of the following formulae:  
� the expected values estimator:  
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=

ω=ω
M

i k
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M
t;;DE
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1
xx

(6.40)

where ( )k
j

i tD ;;)( ωx  denotes the jth measurement of the ith SDP component in the 

moment 
k

t ;

� unbiased variance estimator of the ith SDP component in the moment 
k

t :
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� standard deviation of the ith SDP component in the moment 
k

t :

( )( ) ( )( )kiki tDVartD ;;;; ωωσ xx = (6.42)

� coefficient of variation of the ith SDP component in the moment 
k

t :
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� covariance matrix estimator of the ith SDP component in the moment 
k

t :
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Next, on the basis of all statistical estimators of the SDP components 
( )tDi ;;ωx  computed for the moments mttt ,...,, 21 , let us introduce the polynomial 

approximation of the respective probabilistic moments. This approximation is 
shown for the example of the expected values and the variances:  

( )[ ] ∑
=

⋅=
p

i

p
pi tAtDE

1

;;ωx ; kp ≤
(6.45)

( )( ) ∑
=

⋅=
q

i

q
qki tBtDVar

1

;;ωx ; kq ≤
(6.46)

where the coefficients qp BA ,  depend on estimated values of the probabilistic 

moments approximated in the moments mttt ,...,, 21 . Thus, on the basis of discrete 

values of these moments, their continuous time functions are obtained. It should be 
underlined that (6.45) and (6.46) enable us generally to provide an extrapolation of 
the expected values and variances which is the basis of the approach proposed.  

Finally, let us introduce the following time continuous functions, being 

stochastic upper ( )τ;)( xU i  and lower ( )τ;)( xL i  bounds for every SDP components 

( )tDi ;;ωx  in the form  
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To obtain these bounds for some [ )∞∈ ,0τ , the well-known following bounds for 

Gaussian variables are used  

( ) ( )[ ] ( )( )τωτωτ ;;3;;;)( xDVarxDExU ii
i += (6.48)

( ) ( )[ ] ( )( )τωτωτ ;;3;;;)( xDVarxDExL ii
i −= (6.49)

It should be noted that the interval ( ) ( )[ ]ττ ;,; )()( xUxL ii  can be contracted by 

decreasing the coefficient multiplied by the standard deviations of ( )τω;;xiD  in 

(6.48) and (6.49). However the probability value specified in (6.47) will decrease 
respectively as a result.  

As was stated above, the main purpose of our analysis is to make a prognosis of 
the stochastic reliability and failure time and/or to compute the safety interval for 
the respective design parameters of the engineering system Ω considered. Taking 
this into account, there are two kinds of boundary conditions: the 1st kind, of stress 
(load capacity conditions) and the 2nd kind, of displacement type (service 
conditions). Finally, the following inequalities are to be verified simultaneously to 
find out the time prognosis of the engineering structural safety:

( )[ ] ( )[ ]
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⎨
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≤
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all
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;;;;

;;;;

max

max

ωω
ωσωσ

uu (6.50)

where umax and σmax are maximal values of displacements and stresses, while 
quantities indexed with ‘all’ are allowable values. Solving the set of inequalities 
(6.50) iteratively with given time increment t∆ , the failure time 

f
t  can be found 

as such a value, for which one of these inequalities does not hold as the first one.  
It should be noted that these inequalities are based on the comparison of the 

upper bounds of the maximal stresses and displacement stochastic processes and 
the lower bounds of the allowable stresses and displacement stochastic processes. 
Moreover, the lower bounds from the right sides of the system (6.50) can be 
derived on the basis of the given SDP components ( )τω;;xiD  or given explicitly 

as deterministic values being an effect of simplified engineering calculations. On 
the other hand, the probabilistic moments of the maximal stresses and 
displacements can be evaluated by the collocation of the simulation technique or 
stochastic perturbation method with analytical solutions of the given problem or 
various numerical methods. Finally, let us note that the methodology presented can 
be efficiently used in conjunction with stochastic fatigue and fracture theories 
[89,377] and can extend the existing probabilistic strength models [142].  



7 Multiresolutional Wavelet Analysis  

7.1 Introduction  

Multiscale analysis based on wavelet analysis, being a very modern and 
extensively developed numerical technique in signal theory [147,148,380], even in 
probabilistic context [289], introduces the capability to analyse the composite 
systems with multiple geometrical scales, which is very realistic for most 
engineering composites (the scales of microdefects, interface, reinforcement and 
the entire structure). Nowadays, this technique is employed in porous materials 
modelling [104], general FEM and BEM solutions for boundary problems [119], in 
vibration analysis [235] as well as in crack detection and impact damages 
[293,331,343], for instance. Figure 7.1 below presents the MATLAB illustration of 
the signal that can be interpreted as the information about the variability of 
heterogeneous medium physical properties in time (and/or in space). It is seen how 
such a signal can be decomposed using discrete wavelet transforms on the partially 
homogeneous parameters on different levels [169,170]. After such a 
decomposition, the traditional or wavelet-based discrete numerical methods can be 
applied for computational physical modelling.  

Figure 7.1. Discrete and continuous wavelet signal transform 
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The homogenisation method is still the most efficient way of computational 
modelling of composite systems. Usually it is assumed that there exists some scale 
relation between composite components and the entire system – two scales are 
introduced that are related by a scale parameter being some small real value 
tending most frequently to 0. An essential disadvantage of all these techniques is 
the impossibility of sensitivity analysis of composite homogenised characteristics 
with respect to geometrical scales relations.  

Wavelet analysis became very popular in the area of composite materials 
modelling because of their multiscale and stochastic nature. The most interesting 
issue is composite global behaviour, which is more important than the 
multiphysical phenomena appearing at different levels of their complicated 
multiscale structure. That is why it is necessary to build an efficient mathematical 
and numerical multiresolutional algorithm to analyse composite materials and 
structures.  

As is known, two essentially different ways are proposed to achieve this goal. 
First, the composite can be analysed directly using the wavelet 
decomposition-based FEM approach where the multiresolutional analysis can 
recover the material properties of any component at practically any geometrical 
level. The method leads to an exponential increase of the total number of degrees 
of freedom in the model – each new decomposition level increases this number.  

Alternatively, a multiscale homogenisation algorithm can be applied to 
determine effective material parameters of the entire composite and next, to carry 
out the classical FEM or other related method-based computations. The basic 
difference between these two approaches is that the wavelet decomposition and 
construction algorithms are incorporated into the matrix FEM computations in the 
first method. The second method is based on the determination of the effective 
material parameters and Finite Element analysis of the equivalent homogeneous 
system, where the dimensions of the original heterogeneous and homogenised 
problems are almost the same. An analogous two methodologies had been known 
before the wavelet analysis was incorporated in engineering computations. 
However the homogenisation method assumptions dealing with the interrelations 
between macro- and microscales were essentially less realistic.  

Considering the above, the aim of this chapter is to demonstrate the use of the 
wavelet-based homogenisation method in comparison with its preceding classical 
formulations. Effective material parameters of a periodic composite beam are 
determined symbolically in MAPLE and next, the temporal and spatial variability 
of thermal responses of homogenised systems are determined numerically and 
compared with the real structure behaviour. It is assumed here that material 
properties are temperature–independent, which should be extended next to the 
thermal-dependent behaviour. As is verified by the computational experiments, all
homogenisation methods (classical and multiresolutional) give a satisfactory 
approximation of real heat transfer phenomena in the multiscale heterogeneous 
structure. The approach should be verified next for other types of composites as 
well as various physical and structural problems in both a deterministic and 
stochastic context. Separate studies should be carried out for the computer 
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implementation of wavelet analysis in the Finite Element Method programs and 
comparison with the multiscale algorithm.   

Further, we demonstrate the application of the wavelet-based homogenisation 
method in comparison with its preceding classical formulation. Effective material 
parameters of the periodic composite beam are determined symbolically in 
MAPLE and next, the structural responses of the linear elastic homogenised 
systems are determined numerically and compared with the real structure 
vibrations. The eigenproblems for various combinations of the effective parameters 
are computed thanks to the specially adopted Finite Element Method computer 
code to determine the most efficient homogenisation method for the periodic 
multiscale composite. It is done for two-, three- and five-bay free supported 
periodic composite beams having their applications in the aerospace industry as 
well as in the modelling of bridge vibrations, for instance. As is verified by the 
computational experiments, the homogenisation methods (classical and 
multiresolutional) give a satisfactory approximation of the periodic composite 
beam eigenfrequencies. The approach should be verified next for other types of 
structures as well as for other structural problems in both deterministic and 
probabilistic context. 

Wavelet analysis is an especially promising tool in the domain of composite 
materials. It enables: (1) constructing the multiscale heterogeneous structures using 
particular wavelets which has to perfectly reflect the manufacturing process, for 
instance, and (2) multidimensional decomposition of the spatial distribution of 
composite materials and physical properties by the use of the wavelets of various 
types defined in different scales (heat conductivity or Young modulus along the 
heterogeneous specimen). The first opportunity corresponds to the analysis of 
experimental results (image analysis of composite morphology), while the second 
reflects the theoretical and computational analysis.  

Let us notice that the wavelet analysis introduces new meaning for the term 
composite. In the view of the analysis below we can distinguish homogeneous 
materials from composites using the following definition: the composite material 
and/or structure is such a heterogeneous continuum in which material or physical 
properties are related in macro- and microscales by at least a single wavelet 
transform. This definition extends traditional, rather engineering approach to 
composites where laminated or fibre-reinforced structures were considered 
(partially constant character of material characteristics) to those media with 
sinusoidal variability in one direction of these properties at least (see Figures 
7.2-7.7 below). Figure 7.2 shows the spatial variability of the Young modulus 
using the following wavelet function [188]:   
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, l=10.  

The next figures present the contributions of various scales to the macroscale 
elastic characteristic of the entire composite structure.  
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Figure 7.2. Distribution of the Young modulus in the real composite  

Figure 7.3. Zeroth order wavelet approximation of Young modulus in zeroth scale 



Multiresolutional Analysis     321 

Figure 7.4. First order wavelet approximation of Young modulus in zeroth scale 

Figure 7.5. Second order wavelet approximation of Young modulus in zeroth scale 
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Figure 7.6. Second order wavelet approximation of Young modulus in first scale 

Figure 7.7. Third order wavelet approximation of Young modulus in first scale 

As is shown in the next figures (Figures 7.8 and 7.9), using some special 
combinations of the basic wavelets (Haar, Mexican hat, Gabor, Morlet, Daubechies 
and/or sinusoidal waves [323]), the spatial variability of Young modulus for the 
two component composite with and without some interphase can be 
computationally simulated using a theoretical description of the spatial distribution 
of this modulus and the symbolic computation package MAPLE, for instance. For 
illustration of the problem we consider the Representative Volume Element (RVE) 
of a two-component composite with the following elastic characteristics: 
e1=209E9 and e2=209E8 with the RVE length l=1.0 and equal volume fractions of 
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both components. The following wavelet function is proposed to achieve the 
multiscale character of Young modulus spatial variability in the RVE without the 
interface defects (Figure 7.8):  

( ) ( )xxxhxe 410110 105sin102.0105sin102.0)()( ××+××+=

for h(x) being the Haar wavelet function. It can be noticed that, thanks to the 
multiscale character of the choosen functions, the picture of composite Young 
modulus shows the randomness on its microscale. However the character of the 
spatial variability of this modulus is still deterministic. Furthermore, we can 
illustrate much more complicated and sometimes more realistic effects in 
composites – the RVE can be almost damaged at the interface and, according to 
ageing and fatigue processes, the spatial distribution of elastic properties can be far 
from constant along the heterogeneity main axis. It is approximated by a 
combination of Haar, some sinusoidal and the so-called Mexican hat wavelets as  

( ) ( )
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−×××−××−

×+××+××+=
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The algebraic structure of this wavelet is a little complicated: however (1) it 
illustrates very well the capabilities of the wavelet-based approximation of 
mechanical and physical properties of the real composites, (2) it can be used 
together with structural image analysis tools for the relevant analyses of 
composites and (3) it enables direct symbolic homogenisation of such media.  

Figure 7.8. Wavelet approximation of elastic properties of two-component 
composite 
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Figure 7.9. Wavelet approximation of the elastic properties of two-component composite 
with interface defects 

As far as this composite is unidirectional, some classical homogenisation 
closed-form equations can be used to construct the equivalent medium using the 
relevant differential equilibrium equations directly. In this case it does not matter 
whether deterministic or probabilistic distribution of material coefficients are given 
– the PDF symbolic integration can be carried out using a computer. Fortunately, 
the structural sensitivity analysis may be performed with respect to the variabilities 
of material properties in quite different scales of the composite; it can be carried 
out analogously to the considerations presented in [167].  

The situation complicates significantly in the case of planar distribution of 
material tensors, where the cell problems are to be solved by wavelet 
decomposition and construction to determine the effective behaviour of the entire 
composite. However, it is mathematically proved in this chapter, that when the 
structure is heterogeneous in many scales, the effective elastic modulus differs 
from that obtained for the corresponding classical two-scale and two-component 
composite beam.  

Another disadvantage of the wavelet-based analysis of composite materials is 
the assumption of a very arbitrary character that the physical model and the 
accompanying equations of thermodynamical equilibrium have exactly the same 
form in each scale of the considered medium which follows purely mathematical 
nature of the wavelet transform. It eliminates the opportunity of the physical 
transition from the particle scale through chemical interface reactions in various 
composites to the global scale of the entire engineering structure. It reflects the 
intuitive feeling that the transition between the corresponding medium scale must 
strongly depend on the physical scale we are operating on.  
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7.2 Multiscale Reduction and Homogenisation  

Therefore, a multiresolutional homogenisation method is proposed for 
numerical analysis together with various stochastic computational techniques, 
which makes it possible to determine probabilistic characteristics of various 
multiscale composites. Considering the fact that the multiresolutional method 
makes it possible to determine the effective physical characteristics in a closed 
form, the stochastic second order perturbation approach is applied to analyse the 
multiscale randomness of the entire composite in the most general form.  

Let us consider the following differential equilibrium equation to distinguish 
the differences between a classical asymptotic approach and multiresolutional 
scheme:  

)()()( xfxu
dx

d
xe

dx

d =⎟
⎠
⎞⎜

⎝
⎛− ;     ]1,0[∈x (7.1) 

where e(x), defining material properties of the heterogeneous medium, varies 
arbitrarily on many scales (macro, meso and micro, etc.). The unit interval denotes 
here the Representative Volume Element (RVE), also called the periodicity cell. 

The classical result obtained through the asymptotic homogenisation theory is 
given by (2.71) for deterministic composites exhibiting two separate geometrical 
scales linked by the scale parameter ε - this is the weakest point of this approach. 
Sometimes ε is treated as a positive real number tending to 0 (practically an infinite 
number of the RVEs in the composite) and, alternatively, some small positive 
parameter. As it can be demonstrated, the essential differences are observed in 
these two models. Now, this parameter is treated as some real functions introduced 
as the wavelet function relating two or more separate geometrical scales of the 
composite.  

In contrast to the classical approach to the homogenisation problem, the 
multiresolution approach uses the algebraic transformation between scales 
provided by the multiresolution analysis to solve for the fine-scale behaviour and 
explicitly eliminate it from the equation. This approach has the advantage that the 
coefficients may vary on arbitrarily many scales. The chain of subspaces  

...... 21012 ⊂⊂⊂⊂⊂⊂ −− VVVVV (7.2) 

defines the hierarchy of scales that the multiresolution scheme uses. This chain of 
subspaces is defined in such a way that the space jV  is “finer” than the space 1+jV

in the sense that (1) all of 1+jV  is contained in jV , and (2) the component of jV

which is not in 1+jV  consists of functions which resolve features on a scale finer 

than any function in 1+jV  may resolve. The difference between successive spaces 

in this chain is captured by the so-called wavelet space 1+jW , defined to the 
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orthogonal complement of 1+jV  in jV . An orthogonal basis for the wavelet space 

1+jW  is constructed which has vanishing moments, i.e. the basis elements are 
2L -orthogonal to low-degree polynomials. The existence of orthogonal wavelet 

bases with vanishing moments distinguishes the multiresolution approach from 
typical multi-scale discretisations provided by finite-element or hierarchical 
bases. If we are considering a multiresolution analysis defined on a bounded 
domain, then the hierarchy of scales defined above has the coarsest scale (which is 
called 0V ), and we write instead  

...210 ⊂⊂⊂ −− VVV (7.3) 

Let us review the multiresolution strategy for the reduction and homogenisation 
of linear problems. Let us consider to this purpose a bounded linear operator 

jjj VVS →: . Since jV  is spanned by translations of the function ( )kxj −2φ , we 

know that the operator jS  may be written in the form of a matrix. If the 

multiresolution analysis is defined on a bounded domain, then this matrix is finite; 
otherwise it is an infinite matrix, which we consider as an operator on 2L . Let us 
consider the equation  

fxS j = (7.4) 

The decomposition 11 ++ ⊕= jjj WVV  allows us to split the operator jS  into four 

pieces (recall that 1+jW  is called the wavelet space and is the “detail” or fine-scale 

component of jV ) and write  
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where we have  
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and 1, +∈ jyx Wdd , 1, +∈ jyx Vss  are the 2L -orthogonal projections of x and f onto 

the 1+jW  and 1+jV  spaces. The projection 
x

s  is thus the coarse-scale component of 
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the solution x and xd  is its fine-scale component. Formally eliminating xd  from 

(7.5) by substituting ( )xSfSx sBdAd
jj

−= −1  yields  

( ) fSSfxSSSS dACssBACT
jjjjjj

11 −− −=− (7.7) 

This equation is called a reduced equation, while the operator  

jjjjj SSSSS BACTR 1−−= (7.8) 

is a one step reduction of the operator jS  also known as the Schur complement of 

the block matrix ⎟
⎟
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⎞
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jj

SS
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Note that the solution xs  of the reduced equation is exactly xPj 1+ , where 1+jP

is the projection onto 1+jV  and x is the solution of (7.4). Note that the reduced 

equation is not the same as the averaged equation, which is given by  

fxS ssT
j

=~ (7.9) 

Once we have obtained the reduced equation, it may formally be reduced again 
to produce an equation on 2+jV  and the solution of this equation is just the 2+jV

component of the solution for (7.4). Likewise, we may reduce these equations 
recursively n times (assuming that, if the multiresolution analysis is on a bounded 
domain, then j+n§0) to produce an equation on njV + , the solution of which is the 

projection of the solution of (7.4) on njV + .

We note that in the finite-dimensional case, if we are considering a 
multiresolution analysis defined on a domain in R, the reduced equation (7.5) has 
half as many unknowns as the original equation (7.4). If the domain is in R2, then 
the reduced equations have one-fourth as many unknowns as the original equation. 
Reduction, therefore, preserves the coarse-scale behaviour of solutions while 
reducing the number of unknowns.  

In order to iterate the reduction step over many scales, we need to preserve the 
form of the equation as a way of deriving a recurrence relation. In (7.4) and (7.5), 
both jS  and 

jSR  are matrices, and thus the procedure may be repeated. However, 

identification of the matrix structure is usually not sufficient. In particular, even 

though the matrix A for ODEs and PDEs is sparse, the component 1−
jSA  term may 

become dense, changing the equation from a local one to a global one. It is 
important to know under what circumstances the local nature of the differential 
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operator may be (approximately) preserved. Furthermore, if the equation is of the 
form of  

( ) )()()( xfxuxe =∇−∇ (7.10) 

or some other variable-coefficient differential equation, we should verify if the 
reduction procedure preserves this form, so that we may find effective coefficients 
of the equation on the coarse scale. This process is the basic goal of 
homogenisation techniques, and it extracts information from the reduced equation 
based on the form of the original equation. Thus, within the multiresolution 
approach, reduction and homogenisation are closely related but have different 
goals: homogenisation attempts to find effective equations and their coefficients on 
the coarse scale, whereas reduction merely finds a coarse-scale version of a given 
system of equations.  

The multiresolutional (MRA) homogenisation procedure is applied to the 
systems of ODEs, which may be written in the form  

( )pAxKqBx +=++ λ (7.11) 

In particular, we consider equations of the form  

( ) ( )∫ +=+++
t

dsspsxsAtqtxtBI
0

)()()()()()( λ , )1,0(∈t (7.12) 

on )1,0(2L , where B(t) and A(t) are n x n matrix-valued functions, p(t) and q(t) are 

vector forcing terms, and x(t) is the solution vector. As a differential equation this 
is written as  

( )( ) )()()()()()( tptxtAtqtxtBI
dt

d +=++
(7.13) 

with the initial conditions ( ) λ−−=+ )0()0()0( qxBI . On jV , j<0, the projection 

of (7.11) is written as  

( )jjjjjjj pxAKqxB +=++ λ (7.14) 

or  

jjj fxS = (7.15) 

where  

jjjj AKBS −= , λ−−= jjjj qpKf , jjj xPx = (7.16) 
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After a single reduction, our goal is to have an equation on 1+jV  of the form  
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where jj
j

j xPx 1
)(
1 ++ = , jj

j
j xPB 1

)(
1 ++ = , etc. We use the notation )( j

lB  to indicate that 

the equation is first projected to a scale jV , and then the reduction procedure is 

applied l-j times to obtain an equation on lV . This notation therefore indicates that  

(7.17) was obtained by a single reduction of the same form of equation on jV  one 

time to produce an equation on the coarser scale 1+jV .

It allows one to establish a recurrence relation for k=j,j+1,...,0 between the 

operators and forcing terms )()()()( ,,, j
k

j
k

j
k

j
k qpxB  on 1+kV . It turns out that this task of 

finding the recurrence relations is simplified significantly if one uses a 
multiresolution analysis whose basis functions have non-overlapping support. We 
use the Haar basis, but a multiwavelet basis may be used if higher order elements 
are necessary.  

In the Haar basis, the operators 
jj

A,B  and 
j

K  derived from equations of the 

form of (7.14) have a simple form. Each of these is in an (Njn) x (Njn) matrix, 
where Nj=2j is the number of unknowns on the scale jV  and n denotes the number 

of equations in the original system. Furthermore, 
j

B  and 
j

A  are both block-

diagonal matrices. The diagonal blocks of 
j

B  and 
j

A  are n x n matrices. There are 

therefore Nj diagonal blocks, each of which is an n x n matrix. For 
j

B  and 
j

A we 

denote their ith diagonal blocks by 
ij

B ⎟⎠
⎞⎜⎝

⎛  and 
ij

A ⎟⎠
⎞⎜⎝

⎛ . The matrices are given by 

the Haar coefficients of the n x n matrix-valued functions B(x) and A(x) on the 
scale jV . It can be written that  
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where  
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where j
j

−= 2δ , I is the n x n identity matrix, and 
ij

B ⎟⎠
⎞⎜⎝

⎛  and 
ij

A ⎟⎠
⎞⎜⎝

⎛ are the ith 

Haar coefficients on scale jV  of the n x n matrix-value functions B(x) as well as 

A(x). For (7.17), the recursion relations are given by  
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(7.23) 
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where  
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and, finally,  

( ) ( )iA
k

iB DSIF
2

δ
++=

(7.29) 

Note that the recurrence relations are local and can be carried out over many 
scales as needed (assuming the existence of 1−F  at each scale). Starting with 
(7.17) on jV−  and, reducing j times, yields on 0V

( ))(
0

)(
0

)(
00

)(
0

)(
0

)(
0

jjjjjj pxAKqxB +=++ λ (7.30) 
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where to compute )(
0

)(
0

)(
0

)(
0 ,,, jjjj qpAB  we use the recurrence relations j times.  

Multiresolutional homogenisation is formulated as follows. First, we consider 
the limit of (7.30) as −∞→j , therefore  

( ))(
0

)(
0

)(
00

)(
0

)(
0

)(
0

−∞−∞−∞−∞−∞−∞ +=++ pxAKqxB λ (7.31) 

It is employed to eliminate infinite number of fine scales from the original 

equation. The matrices )(
0

)(
0 , −∞−∞ AB  are called the reduced coefficients of (7.14). 

Then, we look for the operators and forcing terms )(),(),(),( tqtptAtB hhhh  with 

certain desired qualities (e.g. constant values) such that  the equation  

( ) ( )∫ +=+++
t

hhhh dsspsxsAtqtxtBI
0

)()()()()()( λ , )1,0(∈t (7.32) 

subjected to the same reduction and limit procedure as (7.12), yields on 0V  the 

same equation as in (7.31). For (7.12) we usually require that hhhh qpAB ,,,  be 

constant. The result of homogenisation in this case is summarised as follows:  

Theorem  

Given (7.12), if the limits, which determine the matrices )(
0

−∞B  and )(
0

−∞A  exist, 

then there exist constant matrices hh AB ,  and forcing terms hh qp , , such that the 

reduced coefficients and forcing terms of (7.32) are given by 
)(

0
)(

0
)(

0
)(

0 ,,, −∞−∞−∞−∞ pqAB . The homogenised coefficients hh AB ,  and forcing terms 
hh qp ,  are defined by  

)(
0

−∞= AAh (7.33) 

IAAB hh −= −1~ (7.34) 
)(

0
−∞= pph (7.35) 
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(7.36) 

where  

( )( )hh AABIIA
1

2
1)(

0log
~ −−∞ −++= (7.37) 

Proof  
It is observed that for the constant coefficients the recurrence relations (7.21) and 
(7.22) simplify to  
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Likewise, the recurrence relations for the forcing terms simplify to  

h
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h
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(7.40) 
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Since the term hA  is unchanged by reduction, it is clear that )(
0

−∞= AAh . Similarly, 
hp  is unchanged by reduction, so )(

0
−∞= pph . The situation for hB  and hq  is 

more complicated. We solve for them analytically using the solution of (7.32). 

Consider the case 0)(
0 =−∞p . Clearly, then, it is the case that )(

0
−∞= qqh . The 

solution of (7.32) is therefore given by  

( )qtAtx ~~
exp)( −= (7.42) 

where ( ) hh ABIA
1~ −+= , ( ) ( )λ++= − hh qBIq

1~ . The average of this solution must 

also solve (7.31) since it is the equation for the average value of the solution by 
definition. The average value of x(t) in (7.32) on the interval [0,1] is given by  

( ) ( )( ) qAAIqdttAx ~~~
exp~~

exp 1
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The solution to (7.31) is given by  

( ) ( )λ+−+−= −∞−−∞−∞−∞ )(
0

1)(
02

1)(
0

)(
0 qABIx (7.44) 

The right hand sides of (7.43) and (7.44) are demonstrated to be equal for all λ;
setting λ=0 and solving for hB  yields the solution given in the statement of the 

proposition. The case when 0)(
0 ≠−∞p  proceeds similarly.  

Solutions of (7.32) have the same “average” or coarse-scale behaviour as 
solutions of (7.12). The main point is that this homogenisation procedure allows 
for coefficients to vary on arbitrarily many intermediate scales, which is in contrast 
to the classical homogenisation examples, which did not allow for intermediate 
scales.  
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As formulated above, the multiresolution approach to homogenisation requires 

the computation of )(
0

−∞A  and )(
0

−∞B , i.e. a limit over infinitely many scales. The 

typical practice is to compute successive )(
0

JA −  and )(
0

JB −  terms until finer 

approximations vary by less than some specified tolerance, and use these matrices 

as approximations to )(
0

−∞A  and )(
0

−∞B .

Besides establishing the general framework for multiresolution reduction and 
homogenisation, it is observed that for systems of linear ordinary differential 
equations, using the Haar basis (or a multiwavelet basis) provides a technical 
advantage. Since the functions of the Haar basis on a fixed scale do not have 
overlapping supports, the recurrence relations for the operators and forcing terms 
in the equation may be written as local relations and solved explicitly. Thus, for 
ODEs, an explicit local reduction and homogenisation procedure is possible.  

Let us consider for illustration (7.1) with initial conditions at x=0. It may be 
rewritten as the coupled first-order system  
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⎨
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By writing in an integral form one can obtain  
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Thus, in the notation of (7.11), B(x)=0, ⎟⎟⎠
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Using the reduction procedure in the Haar basis for a system of linear 

differential equations, the goal is to find constants hhhh qpAB ,,,  such that  
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after reduction to the scale 0V  will be the same as (7.46) reduced to that scale. This 

is accomplished by solving the recursion relations between the operators in the 
reduced equations explicitly, element-by-element in each matrix. This is possible 
to do because of the non-overlapping supports of the Haar basis functions on a 
fixed scale. The result for the first two coefficients is  
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where  
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t
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Similar expressions for hp  and hq  can be found. Note that we have 0== hh qp

if f(x)=0 identically. Furthermore, in general hh AB ,  do not depend on p and q. As 

a first-order system of ordinary differential equations, the homogenised equation 
yields  

( )⎪
⎩

⎪
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⎧

−=

=

)(2)(

)()(

21 xvMMxu
dx

d

xfxv
dx

d h

(7.50) 

what is somewhat different from the classical result. This difference results from 
the fact that the multiresolution homogenisation procedure allows the coefficients 
e(x) to vary on arbitrarily many scales, whereas the classical approach presented 
before allows only for coefficients of the form ( )ε/xe . In the multiresolution 

context this amounts to restricting the coefficients to an asymptotically fine scale. 
Let us apply the same limit in the preceding section to the coefficients appearing in 
the multiresolution approach. We start with the coefficients of the form ( )ε/xe .

Applying this homogenisation scheme to the elliptic equation with these 
coefficients yields two terms, ( )ε

1
M  and ( )ε

2
M . If we take the limit as 0→ε , it 

is found that  

11
0

)(lim MM =
→

ε
ε

(7.51) 

and  

0)(lim 2
0

=
→

ε
ε

M (7.52) 

Thus, the factor M2 is present in the multiresolution context but does not appear in 
the classical approach, and it is zero when the limit found in the classical method is 
applied to the result of the multiresolution methodology.  
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Let us note that this formula of the homogenised parameter e(eff) introduces 
new, closer bounds on the wavelet function defining material parameters than is 

done by classical formulation: integrals ∫
L

xe
dx

0
)(  and ∫

L

xe
xdx

0
)(  must be of real values and 

e(x) must be positive defined to assure homogenisability of the problem.  The 
counter-example is the family of sinusoidal wavelets of the form 

( )L
xexe πα sin)( 0 += , where ℜ∈Le ,,0 α . Taking for example L=10, e0=20 and 

α=0.1, MAPLE symbolic integration returns i..
L

)x(e
xdx 0719919992422

0

−−=∫ . The 

classical small parameter homogenisation method should be applied in that case; 
otherwise another wavelet decomposition of the real composite is to be performed.  

7.3 Multiscale Homogenisation for the Wave 

Propagation Equation  

For illustration, let us consider the following ordinary differential equation 
(ODE) corresponding to unidirectional acoustic wave propagation in a multiscale 
medium with uniaxial distribution of nonhomogeneities [71,188]:  

)()()( xuxMixu
dx

d ω= ;    ]1,0[∈x
(7.53) 

where physical coefficients M(x) for both composite layers are defined by  
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xM

xM
xM (7.54) 

These equations are solved using the methods typical for a deterministic 
problem and are derived for equal volume ratios of both layers. Otherwise, they 
should be complemented with the ratios c1 and c2. The corresponding homogenised 
equation can be rewritten for the deterministic system as  

)()( )( xuKxu
dx

d eff= (7.55) 

It can be demonstrated [71] that the homogenised coefficient K(eff) is equal to  

( )( ))(
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1)(
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1)(
0

)( log −∞−−∞−∞ −++= AABIIK eff (7.56) 
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for  
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and  
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The right hand side coefficients denote  

( ) ( )( )1
)(

10
)(

12
1 −∞−∞ +=′ AAS A , ( ) ( )( )1

)(
10

)(
12

1 −∞−∞ −=′ AADA
(7.59) 

( ) ( )( )1
)(

10
)(

12
1 −∞−∞ +=′ BBSB , ( ) ( )( )1

)(
10

)(
12

1 −∞−∞ −=′ BBDB
(7.60) 
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After some algebra it is found that  
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where the following extension is used:  
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Taking into account that the coefficients B and A in (7.63) represent physical 
properties of the composite components with the total number of various scales 
tending to infinity, it is possible to determine an analogous definition of the 
homogenised coefficient for a composite with some finite scale number. 
Furthermore, using the stochastic second order perturbation second probabilistic 
moment methodology, it is relatively easy to determine the first two probabilistic 
moments of the homogenised coefficient defined by (7.63).  
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Further, real and imaginary parts of K(eff) are computed according to 
(7.56)-(7.58). The following data are adopted: M0=10.0, M1=1.0 with c1=c2=0.5, 
where the parameter ω→0 (cf. Figures 7.10 and 7.11) and ω→∞ (see Figs. 7.12 
and 7.13). As can be observed, the real and imaginary parts tend to 0 in both cases, 
which finally gives K(eff)→0, too. Further, such a combination of input parameters 
results in a minimum of the K(eff) real part for ω≈1.15. On the other hand, the 
singularity of Im(K(eff)) is obtained with ω≈0.75.  

Figure 7.10. Real part of K(eff) near 0 

Figure 7.11. Imaginary part of K(eff) near 0 
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Figure 7.12. Real part of K(eff) in ω domain 

Figure 7.13. Imaginary part of K(eff) in ω domain 

Next, the effective parameter in its real and imaginary part is determined as a 
function of the ω value and the ratio relating material parameters of the composite 
components M0=2-20. The results are presented in Figures 7.14 and 7.15 below. 
As can be compared with Figures 7.12 and 7.13, the material parameter 
interrelation influences significantly the effective parameters in the same range as 
the ω values. Analogous limiting values in real and imaginary parts of the 
homogenised parameter as well as imaginary part singularities are noticed as 
second order functions of both design parameters of the study.  
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Figure 7.14. Real part of K(eff)

Figure 7.15. Imaginary part of K(eff)

Probabilistic moments of real and imaginary surfaces are expected in the 
probabilistic case. However a more important problem (from the physical point of 
view) is to determine the relations for homogenised coefficients in terms of volume 
fractions of the layers as well as to extend the homogenisation method to the 
heterogeneous multiscale media with a more general periodic geometry of the 
RVE. The entire methodology can be adopted with minor changes to 
computational analysis of the wave propagation in random media [26], where 
material properties are defined using a combination of harmonic functions with 
random coefficients.  
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7.4 Introduction to Multiresolutional FEM 

Implementation  

Let us consider the following boundary value problem for a homogeneous 
medium:  

fuue =+∇− γ2 , Ω∈x (7.65) 

with  

0=u , Ω∂⊂Γ∈ ux (7.66) 

The variational formulation of this problem for the multiscale medium for 
k=1,…,n, indexing its various scales is obtained at the scale k as  

∫∫∫
ΓΩΩ

Γ=Ω+Ω∇∇ dfdudue kkkkk ϕϕγϕ , Ω∈x (7.67) 

Solution of the problem must be found recursively by using some transformation 
between neighbouring medium scales. That is why the following nonsingular n x n
wavelet transform matrix Wk is introduced:  
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where Ik is an identity matrix and  

k
T
kk ϕψ W= (7.69) 

Tk is a two-scale transform such that  
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(7.70) 

with  

12 −= j
k

j
k ϕψ ,    j=1,…,Nk

(7.71) 
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where Nk denotes the total number of the FEM nodal points at the scale k. Let us 
illustrate the wavelet-based FEM idea using the example of a 1D linear two-node 
finite element. The classical shape functions are defined as [78]  
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where N1 is valid for ξ=-1 and N2 – for ξ=1. The scale effect is introduced on the 
finite element level by inserting new extra degrees of freedom at each new scale. 
Then, the scale 1 corresponds to one multiscale DOF per the original finite 
element, scale 2 to two multiscale DOFs, etc., which may be characterised as [66] 

( )12)1(2)( 1 −−+= − jk
kk ξψξψ (7.73) 

and  
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where k defines the actual scale, while j characterises the translates in the finite 
element parametric space. Thus, the reconstruction algorithm starts from the 
original solution for the original mesh and next, introduction of the new scales is 
made using the reconstruction  
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The wavelet algorithm for stiffness matrix reconstruction starts at scale 0 with 
the stiffness matrix  
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where h is the node spacing parameter. Then, the diagonal components of the 
stiffness matrix for any k>0 are equal to  

h

e
K

k
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K
1

22 21
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(7.77) 

It should be underlined that the FEM so modified reflects perfectly the needs of 
computational modelling of multiscale media. When the homogenisation based 
modelling is performed, then the effective stiffness matrix is introduced as  
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

11

11)(
)(

0 h

e eff
effK (7.78) 

and in practice there is no need for a wavelet decomposition of this matrix. We 
observe that the projection algorithm can be applied for such Nn ∈  that ensure a 
sufficient mesh zoom on the smallest scale details in the composite microstructure.  

The effectiveness of this approach can be illustrated with the following 
projection on the wavelet space for the function ( )ttf π2cos)( =  where [ ]1,0∈t

performed by use of the symbolic computation package MAPLE [70,182]. It is 
done for n=2,…,7 and is presented correspondingly in Figures 7.16-7.21 below 
with computational performance indices collected in Table 7.1 (valid for a 
COMPAQ 475 MHz). As is observed, the increasing projection order decisively 
increases the computational time of wavelet decomposition of a multiscale 
phenomenon necessary for the FEM approach.  

Table 7.1. Computational symbolic projection of cosine wavelets  
Projection order 
 ‘n’ 

Finite elements 
 number 

Computational time 
 [sec] 

Memory[MB] 

2 4 3.9 2.00 
3 8 8.0 2.31 
4 16 11.1 2.69 
5 32 23.9 3.37 
6 64 48.6 4.62 
7 128 132.1 7.12 

Figure 7.16. Wavelet projection for n=2  
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Figure 7.17. Wavelet projection for n=3 

Figure 7.18. Wavelet projection for n=4 

Figure 7.19. Wavelet projection for n=5 
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Figure 7.20. Wavelet projection for n=6  

Figure 7.21. Wavelet projection for n=7 

Computational experiments are performed using the system MAPLE and the 
additional implementation of the multiresolution homogenisation analysis. Basic 
computations are carried out with respect to interrelations between physical 
constants of both layers as well as the expansion order. Furthermore, deterministic 
and stochastic sensitivities of complex effective parameters (real and imaginary 
parts) are computed with respect to the first probabilistic moments of input 
physical parameters of composite layers. Finally, let us observe that a homogenised 
system, both in terms of deterministic or stochastic effective coefficients, can be 
analysed numerically using a classical Finite Element Method (FEM), for instance, 
or by application of various stochastic numerical methods (simulation, 
perturbation-based or spectral). A homogenisation-based numerical approach will 
considerably speed up the process of computational modelling of composites and, 
in the case of very complicated multiscale heterogeneous media, it can be the only 
available method. 
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7.5 Free Vibrations Analysis  

The main idea of homogenisation problem solution now is a separate 
calculation of the effective elastic modulus and spatial averaging of the mass 
density, where the first part only needs multiresolutional approach [189]. The 
alternative wavelet-based methodology is presented in [328,329], for a plate wave 
propagation in [152], whereas some classical unidirectional examples are contained 
in [330]. Let us consider the following differential equilibrium equation:  

)()()()( xMxu
dx

d
xIxe

dx

d =⎟
⎠
⎞⎜

⎝
⎛− ;    ]1,0[∈x (7.79) 

where e(x), defining material properties of the heterogeneous medium, varies 
arbitrarily on many scales together with the inertia momentum I(x). A 
multiresolutional homogenisation starts now from the following decomposition of 
the equilibrium equation:  
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to determine the homogenised coefficient e(eff) constant over the interval ]1,0[∈x ,
which takes the integral form  
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On the other hand, the reduction algorithm between multiple scales of the 

composite consists in determination of such effective tensors 
)eff(
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)eff(
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)eff(

p
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q , such that  
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It can be shown that  
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where  
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Furthermore, for f(x)=0 there holds 0)()( == effeff qp , while, in a general case, 
)(effB  and )(effA  do not depend on p and q. Finally, the homogenised ODEs are 

obtained as  
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which is essentially different to the classical result of the asymptotic 
homogenisation shown previously. Effective mass density of a composite can be 
derived by a spatial averaging method, which is completely independent from the 
space configuration and periodicity conditions of a composite structure. The 
relation is used for classical and wavelet-based homogenisation approaches as 
well. Finally, the following variational equation is proposed to achieve the 
dynamic equilibrium for the linear elastic system [208]:  

( )∫∫∫∫
Ω∂ΩΩΩ

Ω∂+Ω=Ω+Ω
σ

δδρδεεδρ dutdufdCduu iiiiklijijklii

)

&&
(7.86) 

where iu represents displacements of the system Ω with elastic properties and

mass density defined by the elasticity tensor )(xCijkl and the function ρ=ρ(x); the 

vector it
)

 denotes the stress boundary conditions defined on Ω∂⊂Ω∂ σ .

An analogous equation rewritten for the homogenised heterogeneous medium 
has the following form:  

( )∫∫∫∫
Ω∂ΩΩΩ

Ω∂+Ω=Ω+Ω
σ

δδρδεεδρ dutdufdCduu iiii
eff

klij
eff

ijklii
eff )

&&
)()()( (7.87) 

where all material properties of the real system are replaced with the effective 
parameters. Let us introduce a discrete representation of the function iu  by the 

following vector of the generalised coordinates for the needs of the Finite Element 
Method implementation:  
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which gives us for the strain tensor components  

( ) ( ) ( )[ ] ( ) ααααα φφε qxBqxxx ijijjiij =+= ,,2

1
(7.89) 

The matrix description for stiffness, mass, damping components as well as the 
RHS vector is proposed as  

Ω= ∫
Ω
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eff
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Ω= ∫
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dM ii
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Usually, it is assumed that the damping matrix can be decomposed into the part 
having the nature of body forces with the proportionality coefficient cM and the rest 
composes the viscous stresses multiplied by the quantity cK, so that  

αβαβαβ KcMcC KM += , )()()( eff
K

eff
M

eff KcMcC αβαβαβ += (7.93) 

After such a discretisation of all the state functions and structural parameters in 
(7.86) and (7.87), the following matrix equation for real heterogeneous system is 
obtained:  

αβαββαββαβ QqKqCqM =++ &&& (7.94) 

Therefore, the equivalent homogenised dynamic equilibrium equation to be 
solved for the deterministic problem has the form   

)()()()( effeffeffeff QqKqCqM αβαββαββαβ =++ &&&

(7.95) 

where the barred unknowns represent the response of the homogenised system. The 
RHS vector is equal to 0, so the homogenised operators are to be computed for the 
LHS components only in the case of free vibrations. The eigenvalues and 
eigenvectors for the undamped systems are determined from the following matrix 
equations:  

( ) 0)( =Φ− βγαβααβ ω MK ;   ( ) 0)(
)(

)( =Φ− βγαβααβ ω effeff MK (7.96) 
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which are implemented and applied below to compare homogenised and real 
composites.  

Numerical analysis illustrating presented ideas is carried out in two separate 
steps. First, homogenised characteristics of a periodic composite determined thanks 
to different homogenisation models are obtained by the use of the MAPLE 
symbolic computation. Then, the FEM analysis of the free vibration problems is 
made for the simply supported two-, three- and five-bay periodic beams, made of 
the original and homogenised composites, having applications in aerospace and 
other engineering structures subjected to vibrations [189]. The periodicity is 
observed in macroscale (equal length of each bay) as well as in microstructure – 
each bay is obtained by reproduction of the identical RVE whose elastic modulus 
is defined by some wavelet function.  

The formulae presented above are implemented in the program MAPLE 
together with the spatial averaging method in order to compare the homogenised 
modulus computed by various ways (spatial averaging, classical and 
multiresolutional) for the same composite. Figure 7.22 illustrates the variability of 
this modulus along the RVE, where the function e(x) is subtracted from the 
following Haar and Mexican hat wavelets:  
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Mass density of the composite is adopted as the wavelet of similar nature  
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which is displayed in Figure 7.23.   
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Figure 7.22. Wavelet-based definition of elastic modulus in the RVE  

Figure 7.23. Wavelet-based definition of mass density in the RVE  

The final form of these functions is established on the basis of the mathematical 
conditions for homogenisability analysed before as well as to obtain the final 
variability of composite properties similar to the traditional multi-component 
structures. Let us note that classical definition of periodic composite material 
properties contained the piecewise constant Haar basis only.  

The following homogenised material properties are obtained from this input: 

137.56)( =effρ , 9548114 E.e
)av( = > 921760 E.e

)wav,eff( = > 943735 E.e
)eff( = ,

which means that for this particular example, the highest value is obtained for the 
spatial averaging method, then – for the wavelet approach at least – for classical 
homogenisation method based on the small parameter assumption. The 
effectiveness of such homogenisation results is verified in the next section by 
comparison of the eigenvalues and the eigenfunctions of some periodic composite 
beams being homogenised with its real material distribution.  

The free vibration problems for two-, three- and five-bay periodic beams are 
solved using the classical and homogenisation-based Finite Element Method 
implementation [13,387]. The unitary inertia momentum is taken in all 
computational cases, ten periodicity cells compose each bay, while material 
properties inserted in the numerical model are calculated from (a) spatial 
averaging, (b) the classical homogenisation method and (c) the multiresolutional 
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scheme proposed above and compared against the real structure response. The 
results of eigenproblem solutions are presented as the first 10 eigenvalue variations 
for the beams in Figures 7.24, 7.26 and 7.28 together with the maximum 
deflections of these beams in Figures 7.25, 7.27 and 7.29 – the resulting values are 
marked on the vertical axes, while the number of the eigenvalue being computed is 
on the horizontal axes. The particular solutions for 1st, 2nd, 3rd and lower next 
eigenvalues are connected with the continuous lines to better illustrate 
interrelations between the results obtained in various homogenisation approaches 
related to the real composite model.  
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Figure 7.24. Eigenvalues progress for various two-bay composite structures  
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Figure 7.25. Maximum deflections for the eigenproblems of two-bay composite structures 
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Figure 7.26. Eigenvalues progress for various three-bay composite structures 
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Figure 7.27. Maximum deflections for the eigenproblems of three-bay composite structures 
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Figure 7.28. Eigenvalues progress for various five-bay composite structures  
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Figure 7.29. Maximum deflections for the eigenproblems of five-bay composite structures 

As can be observed, the eigenvalues obtained for various homogenisation 
models approximate the values computed for the real composite with different 
accuracies, and the maximum deflections are the same. The weakest efficiency in 
eigenvalue modelling is detected in the case of a spatially averaged composite – 
the difference in relation to the real structure results increases together with the 
eigenvalue number. Wavelet-based and classical homogenisation methods give 
more accurate results – the first method is better for smaller numbers of bays (and 
the RVEs along the beam) see Figure 7.24, whereas the classical homogenisation 
approach is recommended in the case of increasing number of the bays and the 
RVEs, cf. Figures 7.26 and 7.28. The justification of this observation comes from 
the fact that the wavelet function appears to be of less importance for the 
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increasing number of periodicity cells in the structure. Another interesting result is 
that the efficiency of the approximation of the maximum deflections for a multibay 
periodic composite beam by the deflections encountered for homogenised systems 
increases together with an increase of the total number of bays. The agreement 
between the eigenvalues for the real and homogenised systems will allow usage of 
the stochastic spectral finite element techniques [261], where the random process 
expansions are based on the relevant eigenvalues.  

Finally, let us note that further extensions of this model on vibration analysis of 
fibre-reinforced composites [60] using 2D wavelets are possible. An application of 
wavelet technique is justified by the fact that the spatial distribution of the 
constituents in the composite specimen is recently a subject of digital image 
analysis [341]. On the other hand, chaotic behaviour of real and homogenised 
composites [199] may be studied in the above context.   

7.6 Multiscale Heat Transfer Analysis   

The idea of transient heat transfer homogenisation, i.e. calculation of the 
effective material parameters, consists in separate spatial averaging of the 
volumetric heat capacity and the solution (analytical or numerical) of the heat 
conduction homogenisation problem [15,165,166,195]. As is illustrated below, the 
final form of the effective heat conductivity coefficient varies with the composite 
model, whereas a composite with piecewise constant properties and/or defined by 
some wavelet functions can have the same homogenised volumetric heat capacity. 
That is why first the heat conduction equation for a 1D periodic composite is 
homogenised and the effective heat capacity and mass density are determined by a 
spatial averaging approach. The multiresolutional homogenisation method starts 
from the following decomposition of heat conduction equation [23,55] as follows:  
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The main goal is to determine the homogenised coefficient k(eff) being constant over 
the interval ]1,0[∈x . Therefore, the equation system (7.102) can be rewritten as   
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On the other hand, the reduction algorithm between multiple scales of the 

composite consists in the determination of such effective operators 
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It can be shown that  
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where  
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Furthermore, for Q(x)=0 there holds 0== )eff()eff(
qp  (in a general case, 

)eff(
B  and 

)eff(
A  do not depend on p and q). Finally, the system of two 

homogenised ordinary differential equations are obtained as  
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which is essentially different than the classical result of the asymptotic 
homogenisation shown previously. Let us observe that in the case of the heat 

conductivity variability in two separate scales ⎟
⎠
⎞⎜

⎝
⎛=

ε
x

xkk ,  the multiresolutional 

scheme reduces to the classical macro-micro methodology where the following 
limits are demonstrated:  
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Finally, the effective volumetric heat capacity of a composite is determined by 
the spatial averaging method, which relation does not depend either on the space 
configuration or on the periodicity conditions of a composite structure, and is used 
for both classical and multiresolutional homogenisation approaches.   
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Using traditional FEM discretisation of the temperature field and its gradients 
by the nodal temperatures vector αθ [7,21,213,283]  

( ) ( ) αα θyHyT = ;   α=1,...,N (7.109) 

( ) ( ) δδ θyHyT yy ,, = ;   δ=1,...,N (7.110) 

the following transient problems are solved:   
� averaged material properties  

)()()( avavav PKC δβδββδβ θθ =′+′& , N,...,,, 21=βδ , (7.111) 

� asymptotically homogenised material properties  

)()()( effeffeff PKC δβδββδβ θθ =′′+′′& , N,...,,, 21=βδ , (7.112) 

� for multiresolutionally homogenised material properties in the system  

weffweffweff PKC )()()(
δβδββδβ θθ =′′′+′′′& , N,...,,, 21=βδ . (7.113) 

Numerical analysis illustrating the ideas presented is carried out in two separate 
steps. First, homogenised characteristics of a periodic composite obtained through 
different homogenisation models are determined by the use of MAPLE symbolic 
computations. This numerical approach is used also to verify input parameter 
variability of the homogenised characteristics as well as design sensitivities of 
these characteristics with respect to the contrast parameter (interrelation between 
the heat conductivities of the composite components) and the interface location 
along the RVE length (g). Next, the FEM analysis of transient heat transfer is made 
to discuss the differences between temperature and heat flux histories resulting 
from various homogenisation models contrasted with the real system. An 
alternative way to model multiscale transient heat transfer phenomena in 
composites is to expand the classical FEM methodology using a wavelet based 
both space and time adaptive numerical methods, as it was discussed in [17], for 
instance; the other aspects of this problem have been studied in [40].  

The formulae for effective heat conductivity are implemented in the program 
MAPLE together with the spatial averaging method in order to compare the 
homogenised modulus computed by various ways for the same composite. Figure 
7.30 illustrates the variability of this modulus along the RVE, where the function 
k(x) is subtracted from the following Haar basis and Mexican hat wavelet:  
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Further, volumetric heat capacity of the composite is adopted as the wavelet of 
a similar form  
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with  
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which is demonstrated in Figure 7.31.   

Figure 7.30. Wavelet-based definition of heat conductivity coefficient in RVE  
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Figure 7.31. Wavelet-based definition of the volumetric heat capacity in RVE 

The final form of these functions is established on the basis of the mathematical 
conditions for homogenisability analysed before as well as to obtain the final 
variability of composite properties similar to the traditional multi-component 
structures. Let us note that the classical definition of periodic composite material 
properties contained the piecewise constant Haar basis only.  

Symbolic computations of the MAPLE system were used next to perform the 
comparison between the spatial averaging, classical and multiresolutional 
homogenisation scheme for various values of the composite constituents contrast 
and the interface position g. The results of the analysis are demonstrated in Figures 
7.32, 7.33 and 7.34, respectively. However it could be expected, the results of 
spatial averaging are globally the greatest for the entire variability ranges of the 
design parameters, while the interrelation between the classical and wavelet-based 
methods differ on the input parameter values.  

The separate, very interesting numerical problem would be to determine the 
intersection of the surfaces plotted in Figures 7.33 and 7.34. It can be interpreted as 
the curve equivalent to such pairs of the contrast and interface location in the RVE 
for which both multiresolutional and classical homogenisation methods can result 
in the same effective quantity. Let us note that the problem is independent from 
physical interpretation of homogenised characteristics).  
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Figure 7.32. Parameter variability of k(av)

Figure 7.33. Parameter variability of k(eff)

Figure 7.34. Parameter variability of k(eff)w
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Figure 7.35. Sensitivity of k(av) wrt contrast parameter   

Figure 7.36. Sensitivity of k(av) wrt the interface location  

Figure 7.37. Sensitivity of k(eff) coefficient wrt components contrast 
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Figure 7.38. Sensitivity of k(eff) wrt interface location 

Figure 7.39. Parameter sensitivity of k(eff)w wrt contrast parameter 

Figure 7.40. Parameter sensitivity of k(eff)w wrt interface location 



Multiresolutional Analysis     361 

Partial derivatives of the averaged, asymptotically and multiresolutionally 
homogenised heat conductivity are normalised using the factor h/k where h denotes 
the contrast or the parameter g, while k≡ {k(av), k(eff), k(eff)w}. The results of symbolic 
computations are presented in Figures 7.35-7.40 and it is clear that the spatial 
averaging method results in the composite with an extremely different parameter 
sensitivity in comparison to the other homogenisation models (both quantitatively 
and qualitatively). Sensitivity gradients for asymptotic and multiresolutional 
homogenisations have very analogous surfaces – the only differences are observed 
for higher values of the design parameters. The numerical results obtained can be 
effectively used in the optimisation of composite materials according to the 
methodology based on the homogenisation approach. Moreover, they can be 
applied to the homogenisation of random composites where first and second order 
parameter sensitivities are necessary to determine the first two probabilistic 
moments of the effective parameter in the second order perturbation approach at 
least.  

The transient heat transfer phenomenon in a two-layer unidirectional 
composite structure has been modelled using the commercial Finite Element 
Method program ANSYS [2]. The division of the periodicity cell with unit length 
L=1.0 m into two components with equal lengths and 1000 of 4-noded 
isoparametric heat transfer finite elements PLANE55 (500 elements for each 
material) is schematically shown in Figure 7.41. Constant temperature T=0 is 
applied at the left boundary and the unit heat flux Q at the right edge, whereas 
initial temperatures along the composite are taken as equal to 0. Material properties 
used in numerical analysis are calculated for (a) real composite structure – test no 
1, (b) spatially averaged composite – test no 2, (c) classical homogenisation 
method – test no 3, and (d) multiresolutional homogenisation scheme proposed 
now – test no 4. Input material data for particular computational tests are collected 
in Table 7.2 below. 

Table 7.2. Material data for the FEM analysis  
Computational test number k [W/m°C] c [J/kg°C] 
1 0.031 / 0.0385 4000 / 29000 
2 0.0349 16465.20 
3 0.0345 16465.20 
4 0.0328 16465.20 

Figure 7.41. Finite Element mesh for the composite structure  

The results for the steady-state analysis are shown in Figures 7.42-7.45 in the 
form of a spatial temperature distribution and the analogous heat flux distribution 
along the composite; their error approximations are computed and visualised also.  
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Considering the nonstationary character of the transient heat transfer, the 
temperature distributions for various moments of the heating process are collected 
in Figures 7.46-7.53. Analysing the temperatures fields along the composite 
structure it can be observed that the best agreement with the structural behaviour is 
obtained for the test related to the multiresolutionally homogenised composite. The 
classical homogenisation method gives more accurate results in the neighbourhood 
of the heated surface only. In the case of temperature gradients it can be concluded 
that the wavelet-based homogenisation approach gives the highest averages 
temperature gradient and greater than the classical method and spatial averaging, 
respectively. It is important considering reliability analysis based on the 
homogenisation methods; this gradient is however a few percent smaller than the 
maximum gradient for the real composite.   

Figure 7.42. Spatial distribution of temperatures in composite 

Figure 7.43. Temperature gradients along the composite 
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Figure 7.44. Solution error distribution along the composite 

Figure 7.45. Temperature gradient error along the composite 
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Figure 7.46. Temperature distribution for t=2x10 E4 sec 

Figure 7.47. Temperature distribution for t=4x10 E4 sec 
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Figure 7.48. Temperature distribution for t=5x10 E4 sec 

Figure 7.49. Temperature distribution for t= 8x10 E4 sec 
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Figure 7.50. Temperature distribution for t= 4x10 E5 sec 

Figure 7.51. Temperature distribution for t=6x10 E5 sec 
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Figure 7.52. Temperature distribution for t=8x10 E5 sec 

Figure 7.53. Temperature distribution for t=1x10 E6 sec 

The temperature solution error related to the real composite behaviour 
numerical tests is best approximated by the error computed for the structure 
homogenised by the wavelet-based methodology also – it shows analogous spatial 
distribution and maximum values, although spatial distribution is analogous in all 
cases as well. In further analysis the results obtained should be contrasted with the 
implementation of the wavelet decomposition of initial material properties in the 
Finite Element Method program.  

Finally, transient behaviour of the composite is analysed numerically and 
presented for various time moments of the heating process in Figures 7.46-7.53. 
The real composite is heated at the boundary relevant to the material with higher 
volumetric heat capacity and the contrast between heat capacities is very high. That 
is why the heating process in the real composite is very slow – significantly slower 
than takes place in all homogenised models (Figure 7.53 corresponds to almost a 
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steady state for comparison). The opposite relation can be noticed in the case of 
inverted materials in the analysed laminate. Neglecting temperature scale 
differences between the real and effective models, the best approximation for the 
original structure behaviour is done by the spatially averaged system.   

7.7 Stochastic Perturbation-based Approach to 

the Wavelet Decomposition  

Let us consider a multiresolutional wavelet-based algorithm and its application 
in the solution of the linear algebraic equations system [334] being a basis for 
various discrete numerical techniques [206]. There holds   

fKq = (7.119) 

where the matrix K is positive definite and represents the behaviour of some linear 
engineering system, q is a discretised vector of the engineering system response 
resulting from the excitation expressed by a vector f. Further, let us assume for the 
needs of the algorithm applicability, that matrix K is of the size 2nx2n  and let us 
introduce the Haar transform for the vector q in the following way:  

( ))2()12()(

2

1 kkk qqs += − (7.120) 

( ))2()12()(

2

1 kkk qqd −= − (7.121) 

with k=1,...,2n-1. Let us observe that s(k) are introduced to scale averages of the 
vector q values in the neighbouring points while d(k) is to scale their differences. 
Let us introduce the matrix Mn such that  
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having dimensions 2nx2n and such that  
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IMMMM
T

nnn

T

n
== (7.123) 

whose top half is denoted by Ln, while the bottom one is Hn. Then, the 
orthogonality gives  

ILLHHMM n
T
nn

T
nn

T
n =+= (7.124) 

and  

IHH n
T
n = , ILL n

T
n = (7.125) 

where  

sLq = , dHq = (7.126) 

Let us rewrite (7.119) in the form of a pair of equations with unknown s and d
as follows:  

( ) ( ) LfHqLKHLqLKLLKq =+= TT (7.127) 

Similarly, there holds  

( ) ( ) HfHqHKHLqHKLHKq =+= TT (7.128) 

Denoting further by  

CLKHTLKL == TT , (7.129) 

and  

AHKHBHKL == TT , (7.130) 

as well as  

ds fHffLf == , (7.131) 

we obtain (7.131) as  

⎩
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fCdTs
(7.132) 
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Assuming that A is invertible, the unknown d can be eliminated from (7.132) to 
get a reduced system of equations, and finally to calculate s. Therefore  

dfABsAd 11 −− +−= (7.133) 

and, by substitution of (7.133) into (7.132) it is obtained that  

( ) ds fCAfsBCAT 11 −− +=− (7.134) 

The procedure of transformation of (7.133) is called a reduction step - the total 
number of unknowns is reduced here two times. Let us introduce the following 
recursions:  
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Since that, we obtain  

111
fsK = (7.136) 

which is similar to the starting equations where the unknown is given as s1=Lq.
The process shown above can be repeated up to n times according to the following 
recursion:  
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where  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

=

T

jjjj

T

jjjj

T

jjjj

T

jjjj

HKHA

HKLC

LKHB

LKLT

(7.138) 

It is seen that considering the dimensions of the initial stiffness matrix in the 
form of 2n x 2n, then repeating the reduction scheme n times, the resulting 
equation has the single scalar unknown where the general unknown reconstruction 
scheme is given by the formula:  
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( ))()()12(
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1 kkk dsq +=−

(7.139) 

( ))()()2(

2

1 kkk dsq −= (7.140) 

An analogous situation takes place when K is a stochastic linear operator 
describing the behaviour of some engineering system, f is a random external 
excitation, while q represents the random response of the system. Then, using 
second order perturbation theory, (7.119) can be expanded as follows:  
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where the first two probabilistic moments of the response are calculated as  

[ ] ( )srrs bbCovE ,,
2
10 qqq += (7.142) 

and 

( ) ( )srsrsr bbCovCov ,, ,, qqqq = (7.143) 

Applying analogous assumptions as previously, i.e.  

( ) ( ) ( ) nrsr OOO 2,,0 === KKK ; Nn ∈ (7.144) 

we decompose mth order displacement vectors q(m) as  
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Since the fact, that the matrix Mn consists of the real numbers only, it is defined in 
exactly the same way. Then, the decomposition of q(m) into the vectors s(m) and d(m)

is introduced as  

)m()m( sLq = (7.147) 

and  
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)m()m( dHq = (7.148) 

Therefore, full multiresolutional decomposition of up to second order 
equilibrium equations is carried out as  

( ) ( ) )()()()()()()( mmTmmTmmm LfHqHLKLqLLKqLK =+= (7.149) 

and  

( ) ( ) )()()()()()()( mmTmmTmmm HfHqHHKLqLHKqHK =+= (7.150) 

Denoting further by  

)()()()( , mTmmTm CHLKTLLK == (7.151) 

and  

)()()()( , mTmmTm AHHKBLHK == (7.152) 

there holds  
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Finally, the reduction equations are obtained as follows:  
• zeroth order equations:  
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• first order equations:  

⎩
⎨
⎧

=+++
=+++

r
d

rrrr

r
s

rrrr

,,00,,00,

,,00,,00,

fdAdAsBsB

fdCdCsTsT
(7.155) 

• second order equations:  
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Since that, we derive the reduction equations for the mth order of a vector d
[182]. The process is much more complicated than in the deterministic case. The 
three up to the second order equation systems are obtained as follows:  
• zeroth order equations:  

( ) ( )000010
dfsBAd +−= − (7.157) 

• first order equations:  
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• second order equations:  
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Then, the reduced equation has the following form:
• zeroth order  

( ) ( ) 00100000100
ds fACfsBACT −− −=⎟⎠
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⎛ − (7.160) 

• first order  
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• second order  
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Since that, the first recursive step for mth order stochastic equations is obtained as  
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As a result, the triple up to the second order equations for 
)m(

s
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 are rewritten as 

follows:   
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where 
)m()m(

Lqs =
1

. Repeating this process up to n times, which is possible 

considering initial dimensions of the matrix K, it is obtained for mth order  
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while the reconstruction scheme for the mth order solution vector is given by the 
following formula:  
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Let us consider for illustration the following transformation of the random 
variables:  

tcosXY p ω= (7.171) 

where ( )P,,X σΩ∈ , Zp ∈  and ℜ∈t,ω . Therefore, the first two probabilistic 

moments of Y can be calculated as  
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according to the presented second order perturbation technique. It is obtained by 
the classical differentiation calculus that  
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and  
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The following iterative formula can be proposed for the nth perturbation approach:  
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Therefore, the expected values are determined  

[ ] [ ] )X(tVarcosX)p(ptcosXEYE pp ω−+ω= −21
2

1 (7.177) 
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and variances as  

( ) )X(tVarcospX)Y(Var p ω= − 221 (7.178) 

in the second order perturbation approach. The visualisation of all wavelet 
functions and their approximations are presented below using the symbolic 
computation package MAPLE [182]. The following function is used 

( )t
l

tf π
ω

2cos
)(

1
)( = , ],[t 10∈  where l(ω) belongs to the additional random space 

with the expected value E[l]=10 and the variance equal to Var(l)=4; p=-1. The 
wavelet projection are shown for n=3,…,6 in case of the expected values – in 
Figures 7.54-7.57 and the wavelet approximations for the variance for n=4,5,6 are 
shown in Figures 7.58-7.60.  

Figure 7.54. Wavelet projection of expected values for n=3 

Figure 7.55. Wavelet projection of expected values for n=4 
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Figure 7.56. Wavelet projection of expected values for n=5 

Figure 7.57. Wavelet projection of expected values for n=6 

Figure 7.58. Wavelet projection of variances for n=4 
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Figure 7.59. Wavelet projection of variances for n=5 

Figure 7.62. Wavelet projection of variances for n=6 

The expected values and their wavelet projections are greater than the 
corresponding deterministic values of f(t) computed for Var(l)=0. Since the 
expectations and their deterministic origins are very similar, the convergence of 
analysed projections is quite the same – for n=6 the approximation error on the 
interval [0,1] in practice can be neglected. The situation changes in the case of 
variances where projection of the 6th order is not quite smooth; for n=2 cannot be 
accepted at all because of the constant function resulting from the wavelet 
projection.  

As is documented in Table 7.3, the total computational cost by means of the 
consumed time and memory necessary to obtain wavelet projection increases 
nonlinearly together with this projection order. Taking into account that the time of 
the linear equation system solution shows the same tendency, the very exact 
solution of (7.120) with 7th and even higher order wavelet projection needs more 
powerful computers. The last column of the computer test shows that the 
approximation of variances needs essentially more time and memory than the 
analogous projection of zeroth order moments (deterministic values) and the 
expectations (first moments). It should be documented by the relevant numerical 
tests, if the computational symbolic projection cost increases together with the 
order of the probabilistic moment being projected onto the same wavelet family.  
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Table 7.3. Computational cost of wavelet projection (for COMPAQ 475 MHz)  
Projection 

order 
q total 

dimension 
f(t)

secs/MB 
E[f(t)] Var[f(t)] 

2 4 7.4/1.94 8.4/1.94 8.9/2.06 
3 8 10.1/2.19 10.9/2.19 11.0/2.31 
4 16 14.1/2.62 14.9/2.62 17.3/2.69 
5 32 20.7/3.25 25.7/3.31 31.8/3.44 
6 64 53.0/4.56 53.7/4.56 70.5/4.94 
7 128 131.0/7.06 130.7/7.06 185.4/7.75 
8 256 395.3/12.2 360.8/12.2 593.2/13.50 

7.8 Concluding Remarks  

As was demonstrated above, the wavelet-based multiresolutional 
computational techniques can be very efficient, considering the capability of 
heterogeneity analysis on extremely different geometrical scales in the same time. 
Such phenomena appear frequently in engineering composites – at the interface 
between the components, on microscale connected with the periodicity cell, for a 
window on mesoscale for a couple of reinforcing fibres or particles as well as for 
the macroscale connected with the global composite structure. As can be observed, 
the wavelet-based numerical methods (especially the Finite Element Method) can 
be successfully used even for the heterogeneous media with random or stochastic 
microstructure thanks to implementation of a randomisation method (simple 
algebra, PDF integration, Monte Carlo simulation, stochastic perturbation or even 
spectral analyses).  

The homogenisation method discussed in this chapter enables us to apply an 
alternative approach, where the effective material parameters (or its probabilistic 
moments) are determined first and then the entire composite is analysed using 
traditional computational techniques. Wavelet-based multiresolutional approach to 
the homogenisation problem should, however, be formulated to introduce the 
components characteristics on many scales into the final effective structural 
parameters. As was demonstrated in the mathematical considerations, homogenised 
properties in multiscale analysis and classical macro-micro passage are essentially
different, even in a deterministic formulation, which was observed previously in 
three scale Monte Carlo simulation based homogenisation studies for the 
fibre-reinforced composites [191,197].  

Finally, let us note that due to the character of the homogenised 1D elastostatic 
problem, computational studies on effective coefficient probabilistic behaviour can 
be applied without any further modifications in the heat conduction problem of a 
composite with exactly the same multiscale internal structure as well as for any 
linear field problem with random coefficients defined by their first two 
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probabilistic moments. The real and imaginary parts of the effective coefficient for 
the wave equation can be used in acoustic wave propagation in random media. It is 
observed that for wave propagation, homogenised coefficients strongly depend on 
the same range on angular velocity and the interrelation of material properties of 
the layered medium components.  

The most important result of the homogenisation-based Finite Element 
modelling of the periodic composite beams is that replacing the real composite 
behaviour is very well approximated by the homogenised model response. For a 
smaller number of bays in the periodic structure, wavelet-based homogenisation 
gives more accurate results, while the classical approach is more efficient for the 
increasing number of bays. Maximum deflections of the analysed beams are 
approximated by all the models with the same precision, which increases for 
increasing number of bays in the whole structure.  

The wavelet-based multiresolutional homogenisation method introduces new 
opportunities to calculate effective parameters for the composites with material 
properties given in various scales by some wavelet functions. This method is more 
attractive from the mathematical point of view. However it is characterised by new, 
closer bounds on the homogenisability of composite structures, but it eliminates all 
formal problems resulting from the assumption of small parameter existence 
between macro- and microscales. Now, practically any number of various scales 
can be considered in composite materials and structures, which is important in all 
these cases, where material properties are obtained through signal detection and its 
analysis. Finally, obtaining satisfactory agreement between the real and 
homogenised structures enables the application of this method to the forced 
vibrations of deterministic systems as well as the use of dynamical systems with 
stochastic parameters.  

The second order perturbation wavelet projection gives complicated formulae 
for approximation of the original functions or matrices, which enables fast 
wavelet-based discretisation of random variables and/or fields. It is necessary to 
recall the algebraic restrictions on the first two probabilistic moments of the input 
to achieve the coefficient of variation to be essentially smaller than 0.15.  

However it is documented by the above numerical examples that the wavelet 
projection of the expected value and its deterministic origin have almost the same 
character – the same order of approximation is necessary to achieve the same 
convergence and error level. Wavelet projection of variance (and higher order 
probabilistic characteristics) needs greater precision, especially for smaller values 
of the projection order n. Let us note that analogous projection for random 
functions or operators defined in two– or three–dimensional spaces can be done by 
the use of Daubechies wavelets in a similar manner to that presented here.  

Symbolic computations package MAPLE [61,70] (as well as other numerical 
tools of this class) is very efficient in wavelet projections of various discrete and/or 
continuous functions because the efficiency of the projection (and its averaged 
error) can be recognised graphically in specially adopted plots. Otherwise, a 
special purpose numerical error routine should be implemented and applied.  
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The most important result of the homogenisation-based Finite Element 
modelling of the periodic composite beams is that the real composite behaviour is 
very well approximated by the homogenised model response. The multiresolutional 
homogenisation technique giving a more accurate approximation of the real 
structure behaviour is decisively more complicated in numerical implementation 
because of the necessity of applying the combined symbolic-FEM approach. A 
wavelet-based space-time decomposition should be applied in computational 
modelling of the transient heat transfer problems in heterogeneous media.   

Furthermore, mathematical and numerical studies should be conducted to 
increase nonstationary heat transfer modelling in unidirectional composites by the 
application of the homogenisation method. In the case of small contrast between 
heat capacities of the constituents, the method proposed was verified as effective; 
the situation changes when the value of contrast parameter increases dramatically.   



8 Appendix 

8.1 Procedure of MCCEFF Input File Preparation  

The instructions described below deal with the preparing of input data file to the 
MCCEFF analysis in the case there is no need to use the mesh generator.  

1. Heading line (12a4) general information  
2. General information about the problem homogenised (6i5)  

Column Variable Description  

1-5 NUMNP Total number of nodal point in the structure discretised 

6-10 NELTYP Total number of finite element groups (=1) 

11-15 LL Total number of load cases (=3) 

36-40 KEQB Total number of non-zero degrees of freedom in the main 
matrix 

66-70 MK Total number of random trials  

71-75 NBN Total number of nodal points of the interfaces 

General comments:
A. NELTYP variable is provided due to the original POLSAP code to extend in the 
next version the MCCEFF code with the analysis of the engineering structures 
homogenised (e.g. fibre-reinforced plates and shells). However due to its constant 
value it may have been omitted.  
B. LL variable is provided taking into account that in the next versions of the 
program the rest of the effective tensor components will be computed (in the 3D 
homogenisation problem). There are three different components of the elasticity 
tensor homogenised for the plane strain problems being solved by the program.  

C. KEQB parameter should be modified (default value is equal to 0) if the program 
MCCEFF in the process of main stiffness matrix formation or solution of the 
fundamental algebraic equations system stops running. The value of the parameter 
is to be taken from the interval [0,NEQB], where NEQB is the total number of the 
degrees of freedom of the composite cell. The probability of the successful 
computations increases with decreasing KEQB parameter.  
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3. Nodal points data (7i5,4d10.0,3i2) 

Column Variable Description  

2-5 N Nodal point number  

7-10 IX(N,1)  

11-15 IX(N,2)  

16-20 IX(N,3) Displacement boundary conditions codes 

21-25 IX(N,4) =0, free degree of freedom  

26-30 IX(N,5) =1, fixed degree of freedom  

31-35 IX(N,6)  

36-45 X(N) X coordinate 

46-55 Y(N) Y coordinate 

56-65 Z(N) Z coordinate 

66-70 K(N) Nodal point generation code 

71-72 M1 Number of the internal region  

73-74 M2 Number of the external region  

75-77 M3 The interface end code (=1) 

General comments:

A. Nodal point numbering has to be continuous and to start from number 1, which 
should denote the centre of the fibre (considering stress boundary conditions 
computations).    
B. Interface nodal points numbering has to be provided in the anticlockwise system 
and the distances between any two points must be equal.  
C. The structure being discretised should be placed in the YZ plane; the X
coordinate will be used in the next version for the analysis of the 3D composite 
problems.  

D. The regions of the different materials should have increasing number starting 
from the central component (fibre in two-component composites) and continuous 
to the external boundary of the cell.  
E. In the case of half or quarter of the periodicity cell analysis the M3 parameter 
should be used to underline the ends of the interface being cutted.  

4. General finite elements data (3i5) 

Column Variable Description  

1-5 =‘3’ Plane strain code  

6-10 NUMEL Total number of finite elements 

11-15 NUMMAT Total number of composite components  
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5. Material data  
5.1. General data (2i5,2d10.0) 

Column Description  

1-5 Material number  

6-10 Total number of different temperatures 

11-20 Gravity loading  

21-30 Mass density 

General comment:  

The total number of the materials used should be greater than 10.  

5.2. Detailed data two lines for any different temperature (8d10.0/3d10.0)  

Column Description  

1-10 Temperature 

11-20 Elasticity modulus En

21-30 Elasticity modulus Es

31-40 Elasticity modulus Et

41-50 Poisson coefficient nn

51-60 Poisson coefficient ns

61-70 Poisson coefficient nt

71-80 Shear modulus G 

1-10 Coefficient of thermal expansion an

11-20 Coefficient of thermal expansion as

21-30 Coefficient of thermal expansion at
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6. Probabilistic parameters (2d10.0/2i5,4d10.0) 

Column Description  

1-10 Variance of Young modulus  

11-20 Variance of Poisson ratio  

1-5 Averaged material type:  

= 1, material without defects 

= 2, material with interface defects 

= 3, material with volume defects  

6-10 Structural defects type:  

= 1, circle  

= 2, triangle 

= 3, rectangle 

= 4, hexagon 

11-20 Expected value of the geometrical parameter 

21-30 Variance of the geometrical parameter  

31-40 Expected value of defects total number  

41-50 Variance of defects total number  

7. Finite elements description (7i5) 

Column Description  

1-5 Finite element number  

6-10 I node number 

11-15 J node number  

16-20 K node number  

21-25 L node number  

26-30 Material number  

56-60 Finite elements generation code:  

=0 (default) - the lack of generation 

=1, generation  

8.2 Input Data for ABAQUS Reinforced Concrete 

Plate Analysis  

Example input data file for the ABAQUS [1] analysis of the steel reinforced 
concrete plate analysed in the book. The comment lines are indicated by ‘**’ to 
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enable the user to gain a better understanding of model computed. The lines 
indicated by ‘*’ or without any indication are program execution lines.  

*heading 
corner supported shell 

**all material and geometrical parameters are defined in US units 
*node 
1,0.,0. 

7,18.,0. 
61,0.,18. 
67,18.,18. 

** node numbers, their coordinates 
*ngen,nset=y-sym 
1,7 

** node generation on the ‘y-sym’ boundary with numbers from 1 to 7 
*ngen,nset=x-sym 
1,61,10 

** node generation on the ‘x-sym’ boundary with numbers from 1 to 61 with 
increment equal to 10 
*ngen,nset=lx2 
61,67 

** node generation on the ‘lx2’ boundary with numbers from 61 to 67 
*ngen,nset=ly2 
7,67,10 

** nodes generation on the ‘ly2’ boundary with numbers from 7 to 67 with 
increment equal to 10 
*nset,nset=one 
1, 

**definition of the nodes set called ‘one’ 
*nfill 
x-sym,ly2,6,1 

**generation (‘filling’) of the nodes contained in the internal of the rectangular 
given by parallel boundaries ‘y-sym’, ‘x-sym’, ‘lx2’ and ‘ly2’ 
*element,type=s8r,elset=slab 
**element type and element set definition  

1,1,3,23,21,2,13,22,11 
**master element definition: corner and midpoint nodes in anti-clockwise order  
*elgen,elset=slab 

**element generation for the element set ‘slab’ 
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1,3,2,1,3,20,3 

**master element number, number of elements to be defined in the first  
**row generated including the master element, increment in node numbers  
**of corresponding nodes from element to element in row (default is 1), 
**increment in element numbers in row (default is 1), numbers of rows to  

**be defined (default is 1), increment in node numbers of corresponding  
**nodes from row to row, increment in element numbers of corresponding 
**elements from row to row, numbers of layers to be defined (defined is  
**1), increment in node numbers of corresponding nodes from layer to  

**layer, increment in element numbers of corresponding elements from  
**layer to layer 
*shell section,elset=slab,material=a1 

1.75,9 
**shell thickness, total number of the integration points through its thickness 
*material,name=a1 

**concrete material parameters definition 
*elastic 
4.15e6,.15 

**Young modulus, Poisson ratio  
*concrete 
3000.,0. 

5500.,.0015 
**absolute value of compressive stress, absolute value of plastic strain (the  
**first stress-strain point must be at zero plastic strain and defines the  

**initial yield point) 
*failure ratios 
1.16 , .0836 

**ratio of the ultimate biaxial compressive stress to the uniaxial  
**compressive ultimate stress (default is 1.16), absolute value of the ratio
**of uniaxial tensile stress at failure to the uniaxial compressive stress at  

**failure (default is 0.09), the ratio of the magnitude of a principal  
**component of plastic strain at ultimate stress in biaxial compression to  
**the plastic strain at ultimate stress in uniaxial compression, the ratio of  

**the tensile principal stress value at cracking, in plane stress, when the  
**other non-zero principal stress component is at the ultimate compressive  
**stress value, to the tensile cracking stress under uniaxial tension.  

*tension stiffening  
**definition of retained tensile stress normal to a crack is a function of the 
**deformation in the direction of the normal to the crack 
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1.,0. 

0.,2.e-3 
**fraction of remaining stress to stress at cracking, absolute value of the  
**direct strain minus the direct strain at cracking 

*rebar,element=shell,material=slabmt,geometry=isoparametric,name=yy 
**definition of the rebars, reinforced element type, material name, rebar 
**geometry type (isoparametric or skew), name of the rebars group 
slab,.014875,1.,-.435,4 

**definition of rebars geometry, cross-sectional area of each rebar, spacing  
**of the rebars in the plane of the shell, position of the rebars in the shell 
**direction, edge number to which rebar are similar [4]  
*rebar,element=shell,material=slabmt,geometry=isoparametric,name=xx 

slab,.014875,1.,-.435,1 
*material,name=slabmt 
*elastic 

29.e6 
**Young modulus, Poisson ratio is default 
*plastic 

50.e3 
**Yield stress value 
*boundary 

**displacement boundary condition definition 
y-sym,ysymm 
x-sym,xsymm 

**symmetry conditions on x-sym, y-sym boundaries 
67,3 
*restart,write,frequency=999 

**option RESTART controls the writing to and reading of the restart file,  
**which is used by the postprocessor; the option will create a restart  
**file after each increment at which the increment number is exactly  

**divisible by N, and at the end of each step of the analysis, regardless of  
**the value of N at that time 
*step,inc=30 

**option STEP must begin each step definition, parameter INC is equal to  
**the maximum number of increments in a step (upper bound, the default  
**value is 10) 

*static,riks 
**this option indicates that the step should be analysed as a static load  
**step; the Riks method is chosen by the RIKS parameter 
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.05,1.,,,,1,3,-1. 

**initial time increment, time period of the step, minimum time increment 
**allowed, maximum increment allowed, maximum value of the load 
**proportionality factor for the Riks method, node number at which the  
**value is being monitored, degree of freedom being monitored, value of  
**the total displacement (or rotation) at the node and degree of freedom  

**which, if crossed during an increment, ends the step at that increment 
*cload 
**concentrated loading definition  

1,3,-5000. 
**node number, number of the corresponding degree of freedom, loading 
**magnitude in the orientation given by the user by ordering nodes into  
**shell elements 

*el print,frequency=10 
**option provided tabular printed output of element variables; parameter 
**FREQUENCY  is equal to the output frequency measured in the  
**increments performed (if this option is omitted, very large printed output  

**files will be produced by large models in multiple increment analysis!) 
s
**all stress components 

sinv 
**all stress invariants (MISES,TRESC,PRESS-equivalent pressure stress,  
**INV3-third stress invariant) 

e
**all strain components 
pe 

** all plastic strain component 
crack 
**crack orientations in concrete 

*el file,frequency=10 
s
sinv 

e
pe 
crack 

*node file,nset=one 
**this option allows nodal variables to be written to the ABAQUS results  
**file (no nodal variables will be written to the results file unless this  

**option is used!) 
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u

*end step 
**FURTHER COMMENTS 
**it is possible to provide SHEAR RETENTION parameter to describe the  

**reduction of the shear modulus as a function of the tensile strain across the 
**crack; if this parameter is omitted (should be placed after TENSION  
**STIFFENING lines), it is assumed that the shear retention behaviour depends  

**only on temperature. EXPANSION parameter may be used to introduce thermal 
**volume change effects in the concrete. The NLGEOM parameter may be  
**included in the STEP option when the large strains and rotations associated with  

**failure of concrete are observed.  

8.3 MAPLE Script for Computations of the 

Homogenised Heat Conductivity Coefficients  

Mexican hat - Haar basis plot of the input heat conductivity  

> restart; sig:=-.5; k1:=0.1; k2:=0.4;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);  

> k:=khaar+0.005*kmexh;  

> plot(k,x=0..1,title='k');  

Mexican hat - Haar basis heat conductivity contrast variability  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);  

> k:=khaar+0.005*kmexh;  

> plot3d(k,x=0..1,contrast=5..100,title='k');  

Spatial averaging of the Mexican hat - Haar type heat conducitivity  

> restart; sig:=-.5; k1:=0.1; k2:=0.4;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);  

> k:=khaar+0.005*kmexh;  

> plot(k,x=0..1,title='k');    

> kav:=evalf(int(k,x=0..1));  

Classical homogenisation of the Mexican hat - Haar basis type heat 
conductivity  

> restart; sig:=-.5; k1:=0.1; k2:=0.4;   
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> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);  

> k:=khaar+0.005*kmexh;  

> kk:=1/k: kkk:=int(kk,x=0..1): khom:=evalf(1/kkk);  

Wavelet homogenisation of the Mexican hat - Haar basis type heat 
conductivity  

> restart; sig:=-.5; k1:=0.1; k2:=0.4;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);  

> k:=khaar+0.005*kmexh;  

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*k);  

> kkk1:=evalf(int(kk,x=0..1)); kkk2:=evalf(int(kkk,x=0..1)); 
kkk3:=evalf(int(kkkk,x=0..1));  

> khomwav:=evalf(1/(kkk1-2*kkk2+2*kkk3));  

Parametric variability of the spatial average of the Mexican hat - Haar type 
heat conductivity with respect to the contrast and volumetric ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=g,k1,x>=g,k2);  

> k:=khaar+0.005*kmexh;  

> kav:=evalf(int(k,x=0..1));  

> plot3d(kav,contrast=5..100,g=0.1..0.9,title='kav');  

Parametric sensitivity of the Mexican hat - Haar basis effective heat 
conductivity with respect to the contrast and volumetric ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=g,k1,x>=g,k2);  

> k:=khaar+0.005*kmexh;  

> kav:=evalf(int(k,x=0..1));  

> dkavdcontrast:=diff(kav,contrast)*contrast/kav;  

> plot3d(dkavdcontrast,contrast=5..100,g=0.1..0.9,title='dkavdcontrast');  

> dkavdg:=diff(kav,g)*g/kav;  

> plot3d(dkavdg,contrast=5..100,g=0.1..0.9,title='dkavdg');  

Parametric variability of the classically homogenised the Mexican hat - Haar 
basis heat conductivity with respect to the contrast and volumetric ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<g,k1,x>g,k2);  

> k:=khaar+0.005*kmexh;  
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> kk:=1/k: kkk:=int(kk,x=0..1): khom:=eval(1/kkk);  

> plot3d(khom,contrast=5..100,g=0.1..0.9,title='khom');  

Parametric sensitivity of the Mexican hat - Haar basis effective heat 
conductivity with respect to the contrast and volumetric ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<g,k1,x>g,k2);  

> k:=khaar+0.005*kmexh;  

> kk:=1/k: kkk:=int(kk,x=0..1): khom:=eval(1/kkk);  

> dkhomdcontrast:=diff(khom,contrast)*contrast/khom;  

> plot3d(dkhomdcontrast,contrast=5..100,g=0.1..0.9, title='dkhomdcontrast');  

> dkhomdg:=diff(khom,g)*g/khom;  

> plot3d(dkhomdg,contrast=5..100,g=0.1..0.9,title='dkhomdg');  

Parametric variability of the multiresolutional homogenisation of the Mexican 
hat - Haar basis heat conductivity with respect to the contrast and volumetric 
ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=g,k1,x>=g,k2);  

> k:=khaar+0.005*kmexh;  

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*k);  

> kkk1:=eval(int(kk,x=0..1)); kkk2:=eval(int(kkk,x=0..1)); 
kkk3:=eval(int(kkkk,x=0..1));  

> khomwav:=eval(1/(kkk1-2*kkk2+2*kkk3));  

> plot3d(khomwav,contrast=5..100,g=0.1..0.9,title='khomwav');  

Parametric sensitivity of the Mexican hat - Haar basis homogenised heat 
conductivity with respect to the contrast and volumetric ratio  

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;   

> kmexh:=2+1/(sqrt(2*Pi)*sig^3)*((exp(-x^2/(2*sig^2)))*(x^2/sig^2-1));  

> khaar:=piecewise(x<=g,k1,x>=g,k2);  

> k:=khaar+0.005*kmexh;  

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*k);  

> kkk1:=eval(int(kk,x=0..1)); kkk2:=eval(int(kkk,x=0..1)); 
kkk3:=eval(int(kkkk,x=0..1));  

> khomwav:=eval(1/(kkk1-2*kkk2+2*kkk3));  

> dkhomwavdcontrast:=diff(khomwav,contrast)*contrast/khomwav;  

> plot3d(dkhomwavdcontrast,contrast=5..100,g=0.1..0.9,title='dkhomwavdcontrast');  

> dkhomwavdg:=diff(khomwav,g)*g/khomwav;  

> plot3d(dkhomwavdg,contrast=5..100,g=0.1..0.9,title='dkhomwavdg');  
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standard deviation 6,315 
standard deviation estimator 16 
standardised variable 8 
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wavelet function, Mexican hat 
  322,348 
wavelet function, Morlet 322 
wavelet signal transform, continuous 
  317 
wavelet signal transform, discrete 
  317 
wavelet space 326 
wavelet transform matrix 340 
wave propagation equation 335 
Weibull distribution 297,303 
Weibull Second Order Third Moment 
Method 296 


