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Preface

Composite materials accompanied the human activity from the beginning of the
civilisation. Apart from natural composites, like the wood, applied in various
structures people invented many multi—component materials even in ancient times.
One of the most famous applications of the old—time composites is the Chinese
Wall, whose durability and stability was ensured by contrastively different
materials incorporated into a single structure. Next applications worked out and
popularised in Central Europe in the Middle Ages was known as the Prussian wall
combining the wooden skeleton filled with the bricks. One of the most significant
milestones in the history of modern composites was the application of the concrete
reinforced with the steel bars in France at the end of the nineteenth century.

Nowadays composites play a very important role in engineering from aerospace
technology and nuclear devices to microelectronics or structural engineering
applications [37,128,203,286,298,351,367,389]. Considering this fact and the
growing role of numerical experiments in the designing of structures and industrial
processes, one of the most important purposes of computational mechanics
research and direction of progress appeared to be precise numerical modelling of
these materials. On the other hand, experimental sciences prove that every
structural parameter has a random, in fact stochastic, character. Thus, many
probabilistic approaches and methodologies have emerged recently to simulate
more accurately the real behaviour of mechanical systems and processes. These
methods show that the random character of parameters discussed is very important
for the systems simulated [14,121,357]. This conclusion may lead us to the
hypothesis, that the random character of the material and physical parameters
should play an essential role in multi—component structures [32,34,151,154,275].

Modern computational mechanics of composite materials follows many various
ways through different science domains from experimental materials science to
advanced computational techniques and applied mathematics. They engage more
and more complicated and precise testing methods and devices, stochastic and
sensitivity analysis algorithms and multiscale domain theoretical solutions for
partial and ordinary differential equations reflecting some practical engineering
and physical problems. Commercial computer programs based on the Finite
Element Method enable now visualisation of the multifield, multiphase and non-
stationary physical and mechanical problems and even introducing uncertainty into
computer simulation using random variables (ANSYS, for instance). The growth of
computer power obtained from technological progress and advances in parallel
numerical techniques practically eliminated the parameter of the cost of
computational time in modelling, which resulted in the efficient implementation
and use of Monte Carlo simulation.

The basic idea behind this book was to collect relatively up—to—date
approaches to the composite materials lying somewhere in between experimental
measurements and their opportunities, theoretical advances in applied mathematics
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and mechanics, numerical algorithms and computers as well as the practical needs
of the engineers. The methods are well-documented in the context of computer
batch files, scripts and computer programs. It will enable the readers to start from
this point and to continue and/or replace the ideas with newer, more accurate and
efficient ones. The author believes that this book will appear to be useful for
applied mathematicians, specialists in numerical methods and for engineers: civil,
mechanical, aerospace and from related branches of industry. Some elements of
probabilistic calculus and computation as well as general ideas can also be applied
by students, who can incorporate these concepts into new research or into the
existing well—documented knowledge dealing with composite materials.

A primary version of the book was completed in Texas, during the author’s
postdoctoral research at Rice University in Houston in the academic year
1999/2000 under auspices of Prof. P.D. Spanos. The author would like to
appreciate the help of many people, whose valuable comments and the time spent
enabled finishing of the book. Special thanks are directed to Prof. Michal Kleiber
from the Institute of Fundamental Technological Research, Polish Academy of
Science in Warsaw, who expressed many precious ideas during a common research
in random composites and who promoted this research. Prof. Tran Duong Hien
from Technical University of Szczecin influenced the work in the area of stochastic
finite elements. The cooperation with Prof. B.A. Schrefler from the University of
Padua in Italy concerning numerical analysis of superconducting composites
remarkably enhanced the relevant computational illustration included in the book.
The help of Mr. Lukasz Figiel, M.Sc. and Mr. Marcin Pawlik, Dr. Eng., two of my
younger colleagues, was decisive for finishing of some computations devoted to
heat transfer and fracture analysis. The author would like to express his respect to
all the colleagues from Chair of Mechanics of Materials at the Technical
University of £6dZ for their advising voices, too. Last but not least, the role of the
unknown reviewers, the editors and the people who commented and criticised this
work is also appreciated.

Layout of the Book

Mathematical preliminaries open the book considerations and consist of basic
definitions of random events, variables and probabilistic moments as well as
description of the Monte Carlo simulation technique with the relevant statistical
estimation theory elements. The stochastic perturbation approach (second order
second central moment generalised to the nth order and higher moments technique)
is explained using two examples: a transient heat transfer equation and the solution
of the linear elastodynamic problem. The solution to these problems in terms of
expected values and standard deviations as well as spatial and temporal cross-
covariances is demonstrated and it illustrates the applicability of the method. An
important part of this opening chapter is a probabilistic algebraic description of
some transforms of random variables, which is necessary for further formulation
and development of the stochastic interface defects model. Some of them are valid
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for the Gaussian variates only, which essentially bounds the application. However,
it leads to the specific formulae implemented further in the computer software
attached. An important issue raised in this chapter is to show a difference between
Gaussian and quasi—Gaussian random variables defined on some unempty and
bounded real subsets.

Elastic problems related to deterministic and probabilistic systems are collected
in Chapter 2. They are divided into two essentially different parts — the first shows
the linear elastic behaviour of some composite materials and structures in boundary
value problems connected with their real microstructure. The other part contains
description of the homogenisation technique together with the relevant numerical
tests documenting the computational determination of so-called homogenisation
functions, a posteriori error analysis related to homogenisation problems,
probabilistic moments of effective material tensors and their variability with
respect to some input parameters.

The first part of this chapter starts from the mathematical model of composite,
whose material characteristics are given arbitrarily as constant deterministic values
or by using the first two probabilistic moments constant through the given
component material region (or volume). Further, the stochastic interface defects
concept is presented, which originated from some computational contact
mechanics models. The interface defects are introduced as semicircles lying on the
interface into a weaker material. The radii and total number of these defects are
input cut-off Gaussian random variables defined using their expected values and
the variances (or standard deviations) with elastic properties equal to 0. The
modeling is performed through the following steps: (i) determination of the
interphase — a thin film containing all the defects with thickness determined from
defect probabilistic parameters, (ii) probabilistic spatial averaging of the defects
over the interphase area, (iii) computational analysis of a new composite with the
new extra component. Obviously, it is not possible to approximate the real
composite with stochastic interface microdefects very accurately. However it can
be and it is done intermediately — by comparison with the composites with the
weakened interphase or interface, for instance. Computational experiments
validating the model are performed using the system ABAQUS [1] (in the
deterministic approach) and the specially adapted academic package POLSAP (for
the Stochastic Finite Element Method — SFEM needs) [183]. All the results
obtained for various composites and various combinations of interface defect
parameters demonstrate a high level of structural uncertainty in the case of their
presence as well as a significant increase of the structural state functions stresses
and displacements around the interface region. The second part of the chapter
concerns the homogenisation method both in deterministic and probabilistic
context. Computational experiments dealing with a numerical solution of the
homogenisation problem are done thanks to the FEM commercial system ANSYS
[2], where most of the databases for these experiments are available from the
author to be used in further extensions of mathematical and mechanical
homogenisation model.
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Interface defects model and probabilistic homogenisation using both Monte
Carlo simulation techniques are analysed using the authors FEM implementation
called MCCEFF. The results of simulation are compared in terms of expected
values and variances with analogous results obtained through the stochastic second
order perturbation methodology. The appendix to this chapter consists of necessary
fundamental mathematical theorems and definitions for the asymptotic
homogenisation theorem.

Elastoplasticity of composites discussed in the next chapter is focused on the
alternative homogenisation technique, where instead of periodicity conditions
imposed on the external boundaries of the RVE, some combination of the
symmetry conditions and strain fields are applied to this element. The application
of this method to the homogenisation of a periodic superconducting coil cable is
also shown — an effective elastoplastic constitutive law is determined numerically
and shown as a function of the homogenising uniform strain applied at the RVE
boundary. Analogously to the methods typical for elastostatic problems, the closed-
form equations for effective yield stresses are formulated in various ways, which
can next be extended on probabilistic analysis. This chapter is completed with the
transformation matrices algebraic definition, which is the essence of the
computational implementation of the method. Probabilistic moments of the
effective elastoplastic constitutive law can be obtained as a conjunction of this
method with the Monte Carlo simulation technique discussed in the previous
chapter. The fundamental issue is however experimental determination of higher
order probabilistic moments for the superconductor material characteristics;
otherwise the analysis is useful in the context of the sensitivity of the homogenised
characteristics with respect to the adopted level of input randomness only.

Sensitivity analysis presented in Chapter 4 is entirely devoted to a relatively
new research area — determination of the sensitivity gradients for homogenised
material characteristics. For this purpose two essentially different homogenisation
methods are used — algebraic approximation and asymptotic methodology. Starting
from a traditional description of the effective parameters in both methods, the
sensitivity gradients are determined by the symbolic calculus approach and, on the
other hand, pure computational strategy based on the Finite Difference Method
(FDM). The implementation and results obtained from these two methods
demonstrate the basic limitations of the methods, i.e. necessity of closed-form
equations for the symbolic approach and numerical instabilities in the FDM
simulations. This knowledge is necessary for significant time savings in the
extension of this study to the random composite sensitivity analysis where the
heterogeneous periodic composites with probabilistically defined material
properties are analysed. The probabilistic sensitivity of such structures is defined
through the introduction of sensitivity gradients of probabilistic moments of the
effective material parameters with respect to the appropriate moments of composite
structure parameters — elastic properties of the constituents as well as interface
defect data.

Fracture and fatigue — the collection of various fatigue theories with special
emphasis placed on the second order perturbation method application are discussed
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next. The crucial numerical illustration is presented in the case of the Paris
Erdogan rule where some of the system input data are treated as random variables.
Therefore, expected values are compared against the deterministic values and
standard deviations are added, too. An analogous approach is used to reformulate
the well-known fracture criteria applied for composite materials — Tsai—Wu and
Tsai—Hill - and to use them in symbolic computations for probabilistic parameters
of the composite material fracture parameters. The essential part of this chapter is
devoted to the FEM modelling of fracture and fatigue of some composites where
analytical solutions are not available. Computational illustrations consist of static
fracture of curved composite under shear loading leading to the delamination,
fatigue analysis of composite pipe joint as well as thermomechanical fatigue of the
curved laminate under thermal and/or static quasistatic load varying in time with
constant amplitude. Most of the frequently used theories and equations for fatigue
analysis are collected in the appendix to this chapter.

Reliability analysis is included in the Chapter 6 and it consists of a discussion
of various order reliability computational approaches together with the Weibull
Second Order and Third Moment model (W-SOTM). This methodology is used to
compute the reliability index for the composite Hertz contact problem, where
elastic spherical inclusion of the reinforcement is loaded by the force to remain in
contact with the matrix. Further in this chapter a stochastic process description of
the degradation phenomena is also given, which appears to be common for the
homogeneous and heterogeneous structures and materials. It can find a broad field
of applications together with efficient implementations of stochastic processes
(with both spatial and temporal randomness) in the Finite Element Method (or
BEM, FDM, meshless as well as hybrid method based) programs.

An application of the wavelet-based multiresolutional approach to composite
materials in terms of homogenisation of multiscale media is the extension of
previous considerations and concludes the book. The traditional composite
materials model consisting of two or three geometrical scales is now rewritten in
view of practically infinite number of separate scales (resolutions) that can be
linked using interscale wavelet projection (some mathematical transformation).
The basic tool necessary for such an analysis development is the basic wavelet
basis (a mathematical function varying rapidly in a given geometrical scale), which
can be used now to transform between neighboring scales. The homogenised
characteristics for the composite can be determined usually in the closed—form
equation if and only if the limit of an infinite series of wavelet projections between
all geometrical scales exists and is unique. As is illustrated by some wavelet
function samples, such an analysis type can be some alternative for the random
analysis, because the wavelet functions used in various scale makes, in the coarsest
scale, the impression that the relevant material property demonstrates the great
level of some kind of uncertainty. It is not underlined clearly that the main
limitation of this methodology is that the wavelet projection between the
neighbouring scales can be continued through the range of validity of the same
physical laws. It is not possible to carry out the passage from the atomistic to the
global scale of the composite using the same wavelet projection and, most
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probably, this is the way that this research area should be extended. The
multiresolutional homogenisation is demonstrated for a very general case— a linear
ordinary differential equation, which can reflect the linear elastic behaviour of a
unidirectional multiscale composite in compression/tension or in bending. On the
other hand, this technique can be applied with only small modifications to the
unidirectional field problems for heat conduction, seepage flow, electrostatic
problems, etc. Further, as is documented by the mathematical derivations, the
MRA approach formula reduces to the results obtained in the asymptotic
homogenisation technique for the two-scale medium. Since some research is done
towards the multiscale analysis and homogenisation for 2D heterogeneous media,
the main interest has been directed next to the multiresolutional homogenisation of
dynamic and transient problems. Some basic theoretical and computational results
are obtained under the assumption that non—stationary and dynamic components of
the relevant ODEs can be homogenised independently from the stationary part. In
practice it makes possible to calculate effective dynamic structural parameters as
the relevant spatial averages for the entire multiscale composite; it is however done
for the material properties given a priori as some algebraic combination of the
elementary wavelets (harmonic, Haar, Gabor, Morlet, Daubechies and Mexican hat
functions). Since the homogenisation is the intermediate technique to determine the
homogeneous equivalent medium and to replace the real structure with this
medium, the results are incorporated next in the classical Finite Element calculus
for various boundary value or boundary initial engineering problems. They
unambiguously show the limitations of the application of various homogenisation
techniques used in engineering computations, i.e. simple spatial averaging,
asymptotic approach and multiresolutional method. As can be expected, spatial
averaging gives the fastest but least precise approximation for the real structure.
The application of the wavelet technique is more recommended to periodic
composites having a smaller number of periodicity cells in the Representative
Volume Element (RVE), whereas the asymptotic approach gives the best results
for increased number of cells in the RVE. Therefore, for most engineering
composite structures, where the total number of the periods through their lengths is
limited, the proposed multiscale approach seems to be the most efficient. The
wavelet functions can be incorporated in the Finite Element Method automatic
projection between various scales even for the needs of homogeneous system
structural computations — for the fluid flow problems where the profile of the flow
is a nonlinear and multiscale complex function (wind pressure profile for high
buildings in civil engineering applications). That is why some elementary
equations and ideas are collected here and the conjunction of such an analysis with
the second order perturbation analysis is presented here to extend the applicability
range of traditional wavelet projection on probabilistic analyses, where some input
random fields are given using the expected values and the spatial or temporal
cross—correlations. The elementary numerical example of cosinusoidal wavelet
function implemented in the symbolic package MAPLE demonstrates the
computational aspects of this methodology. There is no doubt, however, that the
next step will be to make the multiresolutional version of asymptotic
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homogenisation of the multiscale plane periodic structures where the Daubechies
wavelets can find application.

A number of references follow the last chapter. However new valuable
conference papers, research and review articles as well as entire books continue to
appear on the publishing market. Therefore, it is impossible to appreciate the
significant contributions of all the people to this field. The book is completed with
the appendix containing the user’s manual to the computer code MCCEFF
available from the author on the special request. Following the algorithm for data
preparation, the reader will be able to solve either deterministic and/or probabilistic
homogenisation problems for the fibre—reinforced composite for the rectangular
RVE containing a single fibre with the round cross—section. The next part of this
appendix is devoted to the batch file for the elastoplastic analysis of the
steel—reinforced concrete plate using the commercial FEM system ABAQUS. This
file contains the author’s comments written in such a manner that the file is
ready—to—use by ABAQUS without further processing. Symbolic computation
code written in the MAPLE standard concludes the appendix. This script is
responsible for a computational mathematic derivation of the homogenised heat
conductivity coefficient for the unidirectional multiscale periodic composite
structure according to (1) the spatial averaging method, (2) asymptotic
homogenisation approach and (3) multiresolutional homogenisation method. It
returns for initially specified wavelet functions the values of homogenised
parameters, their variability with respect to the contrast parameter and the interface
location for two—component RVE. This file can be used without further
modifications for sensitivity gradient symbolic computations for the effective
parameters returned from these methods with respect to the design parameters
mentioned. Probabilistic analysis using Monte Carlo simulation, probabilistic
integration technique and perturbation—based analysis is under construction now
and will be available also by a special request from the author.
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1 Mathematical Preliminaries

1.1 Probability Theory Elements

1.1.1 Introduction

Probability theory [326,357,365] is a part of theoretical and applied mathematics,
which is engaged in establishing the rules governing random events — random
games or experimental testing. The definitions, theorems and lemmas given below
are necessary to understand the basic equations and computer implementation
aspects used in the later numerical analyses presented in the book. They can also
be used to calculate many of the closed—form equations applied frequently in
applied sciences and engineering practice [19,37,150,201,202,253].

Definition

The variations with n elements for k£ elements are k elements series where each
number 1,2,...,k corresponds to the single element from the initial set. The
variations can differ in the elements or their order. The total number of all
variations with n elements for k is described by the relation

VEe D)=k +1)

" (n-k)!

(1.1)

k—times

Example
Let us consider the three-element set A{X,Y,Z}. Two—element variations of this

set are represented as V32 =6:XY,YZ, XZ, YX,ZY, ZX.

Definition

Permutations with n elements are n—element series where each number 1,2,...,n
corresponds to the single element from the initial n—element set. The difference
between permutations is in the element order. The total number of all permutations
with n different elements is given by the formula:

P =Vn"=1~2~...-n=n! (1.2)

If among n elements X, Y, Z.... there are identical elements, where X repeats a
times, Y appears b times, while Z repeats c times etc., then
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_ (1.3)

F, =
alb!c!

Example
Let us consider the three element set A{X,Y,Z}. The following permutations of the
set A are available: P, =6 : XYZ, XZY, YZX, YXZ, ZXY, ZYX.

Definition

The combinations with n elements for k elements are k—elements sets, which can
be created by choosing any k elements from the given n—element set, where the
order does not play any role. The combinations can differ in the elements only. The
total number of all combinations with n for k elements is described by the formula

n n!
G :(k): K (n—k)! (1.4)

In specific cases it is found that

1 n n n

C, = | =n, C) = y =1 (1.5)

ny (n n) (n _1

k) \n-k ) \n) (0] (1.6)
Example

Let us consider a set A{X,Y,Z} as before. Two—element variations of this set are
the following: XY, XZ and YZ.

where

The fundamental concepts of probability theory are random experiments and
random events resulting from them. A single event, which can result from some
random experiment is called elementary event, an and for the single die throw is
equivalent to any sum of the dots on a die taken from the set {1,...,6}. Further, it is
concluded that all elementary events corresponding to the random experiment form
the elementary events space defined usually as Q, which various subsets like A
and/or B belong to (favouring the specified event or not, for instance).

Definition

A formal notation @€ A denotes that the elementary event ® belongs to the event
A and is understood in the following way — if ® results from some experiment, then
the event A happened too, which ® belongs to. The notation means that the
elementary event ® favours the event A.
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Definition

The formal notation A — B, which means that event A is included in the event B is
understood such that event A results in the event B since the following implication
holds true: if the elementary event ® favours event A, then event ® favours event
B, too.

Definition
An alternative of the events A,A,,...,A, is the following sum:

A UA U...UA = nA.
1 2 n 911 (1.7)

which is a random event consisting of all random elementary events belonging to
at least one of the events A ,A,,...,A .

Definition
A conjunction of the events A,,A,,...,A, is a product

ANAN..NA =NA

i=1

(1.8)
which proceeds if and only if any of the events A, ,A,,...,A, proceed.

Definition

Probability is a function P which is defined on the subsets of the elementary events
and having real values in closed interval [0,1] such that

(1) P(Q)=1, P(D)=0;

(2) for any finite and/or infinite series of the excluding events A A,,...,A ,...
A, NA; =, there holds for i#j

P(L’_JA,J=;P(A,-) (1.9)

Starting from the above definitions one can demonstrate the following lemmas:

Lemma
The probability of the alternative of the events is equal to the sum of the
probabilities of these events.

Lemma
If event B results from event A then
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P(A)< P(B) (1.10)

The definition of probability does not reflect however a natural very practical need
of its value determination and that is why the simplified Laplace definition is
frequently used for various random events.

Definition

If n trials forms the random space of elementary events where each experiment has
the same probability equal to 1/n, then the probability of the m—element event A is
equal to

Next, we will explain the definition, meaning and basic properties of the
probability spaces. The probability space (€2,F,P) is uniquely defined by the space
of elementary random events Q, the events field F and probabilistic measure P.
The field of events F is the relevant family of subsets of the space of elementary
random events . This field F is a non—empty, complementary and countable
additive set having G-algebra structure.

Definition
The probabilistic measure P is a function

P:F—[0,]] (1.12)

which is a nonnegative, countable additive and normalized function defined on the
fields of random events. The pair (£2,F) is a countable space, while the events are
countable subsets of Q. The value P(A) assigned by the probabilistic measure P to
event A is called a probability of this event.

Definition
Two events A and B are independent if they fulfil the following condition:

P(ANB)=P(A)- P(B) (1.13)

while the events {A,,A,,...,A, } are pair independent, if this condition holds true for
any pair from this set.

Definition
Let us consider the probability space (€2,F,P) and measurable space {9?",8,, },
where B, is a class of the Borelian sets. Then, the representation
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X:Q—->R" (1.14)
is an n—dimensional random variable or n—dimensional random vector.

Definition
The probability distribution of the random variable X is a function P, : B —[0,1]

such that

Y P,(b)=P(X € B) (1.15)

The probability distribution of the random variable is a probabilistic measure.

Definition
Let us consider the following probability space (SK,B,PX). The function

Fy :R—[0,1] defined as
F(x) = P, [(~o0,x)] (1.16)
is called the cumulative distribution function of the variable X.

Definition
The function f:R — R, has the following properties:

(1) there holds almost everywhere (in each point of the cumulative distribution
function differentiability):

dFW _ (1.17)
dx
2
F()20 (1.18)
3)
[ fGodx=1 (1.19)

—oo

(4) for any Borelian set be B the integral J f(x)dx = P(X € b) is a probability
b

density function (PDF) of the variable X.

Definition
Let us consider the random variable X :Q — R defined on the probabilistic space

(Q, F, P). The expected value of the random variable X is defined as

E[X]= ij (w)dP(w) (1.20)

—oo
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if only the Lesbegue integral with respect to the probabilistic measure exists and
converges.

Lemma
V‘RE[C]zc (1.21)

Lemma
There holds for any random numbers X, and the real numbers ¢, € R

E[icixz}:zcz‘E[Xi] (1.22)

Lemma
There holds for any independent random variables X,

E{gXi}zle[Xi] (1.23)

Definition
Let us consider the following random variable X :Q —R defined on the

probabilistic space (Q, F, P). The variance of the variable X is defined as

Var(X) = [ (X (w) - E[X ]} dP() (1.24)
Q

and the standard deviation is called the quantity

o(X) = Var(X) (1.25)

Lemma
yj{ Var(c) =0 (1.26)

Lemma
V\;{Var(cX) =c*Var(X) (1.27)

Lemma

There holds for any two independent random variables X and Y

Var(X £Y)=Var(X)+Var(Y) (1.28)
Var(X -Y)= E*[X]-Var(Y)+Var(X)-Var(Y)+Var(X)- E*[Y] (1.29)
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Definition
Let us consider the random variable X :Q — R defined on the probabilistic space

(Q,F, P). A complex function of the real variable ¢ : R — Z such that
@(t) = Elexp(itX)] (1.30)

stands for the characteristic function of the variable X.

1.1.2 Gaussian and Quasi-Gaussian Random

Variables

Let us consider the random variable X having a Gaussian probability distribution
function with m being the expected value and o > 0 the standard deviation. The
distribution function of this variable is

I
F(x)=ﬁjexr{ 2t )dt (1.31)

where the probability density function is calculated as

1 (x-m)’
fo)= - CXP[ — J (1.32)

o 20

The characteristic function for this variable is denoted as
o) = Elexp(itX)]= exp(mit - %(721‘2 ) (1.33)

If the variable X with the parameters (m,06) is Gaussian, then its linear transform
Y = AX + B with A,Be R is Gaussian, too, and its parameters are equal to Am+B

and |A|0' for A#0, respectively.

Problem
Let us consider the random variable X with the first two moments E[X] and Var(X).

Let us determine the corresponding moments of the new variable ¥ = X *.

Solution

The problem has been solved using three different ways illustrating various
methods applicable in this and in analogous cases. The generality of these methods
make them available in the determination of probabilistic moments and their
parameters for most random variables and their transforms for given or unknown
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probability density functions of the input frequently takes place in which numerous
engineering problems.

I method
Starting from the definition of the variance of a ny random variable one can write

Var(Y)=EXY?*)—E*(Y) (1.34)
Let Y = X2, then
Var(X*)=E(X*)*)-E*(X?) (1.35)

The value of E [X 4] will be determined through integration of the characteristic
function for the Gaussian probability density function

+oo _ 2
E[X“]:ﬁ | x4exp[—%}dx (1.36)

where m=E[X] and o =.Var(X) denote the expected value and standard

deviation of the considered distribution, respectively. Next, the following
standardised variable is introduced

t=x_m,where X =10+ m,dx = odt (1.37)
o
which gives
+oo t2
4 4
E[X ]:ﬁij;(to”rm) exp{—;}h‘ (1.38)

After some algebraic transforms of the integrand function it is obtained that

oo 2
E[X4]= ﬁ | (0%t +40°mt® + 60 m*t* + dom’t +m*) ¢ T dt (1.39)

and, dividing into particular integrals, there holds

[ 4] 1L (4 3 2 2 3 T (1.40)
Ex* |- (01, + 40 ml, + 607 n I +dom’ L, +m'I) e

where the components denote
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+oo 2 Foo 2 +o0 2
Iy =[t'e 2dt; I, = [tPe 2dt; I, = [ t?e *dt;
- - - (1.41)
1, = Jz‘e 2dt; Iszje 2 dt

It should be mentioned that the values of the odd integrals on the real domain are
equal to 0 in the following calculation

oo 0 oo (1.42)
[ f()gdx = [ f(x)g(x)dx+ [ f(x)g(x)dx
—oo —o0 0
If the function f(x) is odd and g(x) is even
Jx)=-/(x), g(-x)=g(x), (1.43)
then it can be written
0 +oo +oo
[ Fgdx = [ f(=x)gxdx =~ [ f(x)g(x)dx . (1.44)
—o0 0 0
Considering that the odd indices integrals are calculated; this results in
to 2
reo 2 teo 2 teo 2
L= [ tPe *dt=— t(te” T)dt = [td(e ?)
- - - (1.46)
2T e 2
=—te 7| + e Tdt=V2r
+oo4ﬁ oo 4 2 2 e 2
I =[te’ dt=—[tde > =-te | —[e ’dt
o . . (1.47)

2|7 e 2
| - Jerar|=3V2r.

+o0 2 +oo 2 1
=3[t’e *dt=-3[tde * =-3te *

After simplification the result is

E[x*|=30" +602m® +m* = E*[X |+ 6Var(X)EX[X |+ 3Vari(x) ~ (148)
E[x?|=6% +m? = E2[X |+ Var(x) (1.49)
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Var(X?) = E[X4]— EZ[X2]= 26%(0? +2m?)

1.50
= 2Var(X)(Var(X)+2E*[X ) (1.50)

Il method
Initial algebraic rules can be proved following the method shown below. Using a
modified algebraic definition of the variance

Var(x?) = E[x*]- E*[x ?] (1.51)
and the expected value
E|x?|=varx)+ E[x] (1.52)

subtracted from the following equation

E2[x2]= Var(x) + E2[X] ] =Var’X + arOE X+ E4x] (1)
we can demonstrate the following desired result:
Var(X?) = E[x* |- var?(X) - 2var(x) E*[ X 1- E*[X | (1.54)
111 method
The characteristic function for the Gaussian PDF has the following form:
(1) = explmit —Lo1*) (1.55)
where
o) =i E[x*]; k20 (1.56)
and
0¥ =¢; ¢ (0)=im (1.57)
The mathematical induction rule leads us to the conclusion that
0” (1) =(im-16)- 0" (1) = (n=Do> 0" (1), n22 (1.58)

which results in the equations
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(P(Z)(0)=—m2—62 (159)
0 (0) = —mi(m® +306) (1.60)
0 (0)=m* +6m’c* +30* (1.61)

giving the same input equations.

Problem 2

oo
Let us determine the value of the Gaussian integral [exp(—x*)dx.

—oo

Solution
Starting from the obvious fact that

f exp(— (xz + yz))dxdy

K

< gexp(— (x2 +y? ))dxdy < Hexp(— (x2 +y? ))dxdy

K,

(1.62)

with K; being a circle with radius ¢ and located in the centre of Cartesian
coordinates, K denotes the square contour with edge equal to I\E , while K, stands

for a circle with radius t\/E . The coordinates transform to the polar system given
by

X=rcosQ , y=rsing (1.63)
returns

| exp(— r? )rdrdq)

0<r<r
0<p<2rm (1 64)
t t
< jexp(— x? )dx Jexp(— y2 )dy < _[_[ exp(— r? )drd(p
—t -t 0<r<ty2
0<p<2rm
Using the observation that
t t
Jexpl? )dx = Jexpl-y?)dy (1.65)

—t —t

one can determine

2n t t 2 2 Nt
J' dgo_[exp(— rz)rdr < {Jexp(— xz)dx] < .[ do J exp(— rz)rdr (1.66)
0 0 0 0

—t
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Next, considering the rule
jexp(— rz)rdr = —'Eexp(— r2) (1.67)

and the symmetry

-t

.t[exp(— x2)dx = Z:{exp(— x2)dx (1.68)

it is obtained finally that

oli—explr?)< 4@ ool xz)dx]z cali—expl-27) 1.69)

Then, a square rooting procedure gives
1 li-expl-r2))< fexpl- 22 )ar < L V(1 -expl-212) (1.70)
0

The three functions theorem and the limiting procedure for ¢ — o allow us to
show

llmjexp( )d =1Jr 1.71)

IA)W

with

lim1/1—expi—t2izlim,[]—expi—th ):1 (1.72)

=0

Lemma (Central Limit Theorem)
For any independent random variables X, for i=1,2,...,n the following sum

X =Y X, is asymptotically Gaussian where the parameters are equal m = m,

i i

and 6> =Y 07 , respectively.

Further X be the random variable with P and F being the probability density and
distribution functions, respectively and S any given Borelian set such that

P=P(S)=P(X cS) (1.73)
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Now, let us consider the following subset S; — S such that

SO={XES:aSXSb}; a<b< oo (1.74)

The probability density function defined on a domain S, is called a truncated

Gaussian and its distribution function is given as

0, x<a

F(x)-F(a)
b Fla)’ a<x<b

1, x>b

F(a< X <b)= (1.75)

and its probability density function is equal to

f()c|aSXSb)=bfi (1.76)

| f@)dr

The considered problem of cutting off the probability density function in case
of Gaussian or related random variable is very important for engineering
applications in probabilistic calculus. Most engineering parameters, being random,
must have nonnegative values as Young modulus or heat conductivity coefficients
for instance [132]. Other parameters, like the Poisson ratio, are restricted to small
intervals only. Then, let us focus on modifications of the presented formula
describing the expected values and variances demonstrated for classical Gaussian
variates in the case of bounded real domains.

Let us consider the Gaussian variable N (m,a) restricted to the positive values

only. According to the above formulae, there holds

_fE
A—T) (1.77)

SIS
Q‘S —

|

Then, the first two probabilistic moments for the so modified Gaussian PDF are
obtained as

E[X]=m+Ao (1.78)
Var(X) =m* + Aom + o> (1.79)

Starting from the derived equations one can calculate the expected values and the
variances of the quasi—Gaussian random variables, whose domains are restricted to
the specific and bounded intervals resulting from physical interpretation of a
specific equilibrium problem.
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1.2 Monte Carlo Simulation Method

Monte Carlo simulation is a numerical method based in general on random
sampling and statistical estimation [39,44,125] and now there are multiple
numerical realizations of the latters as crude simulation, stratified and importance
sampling as well as Latin Hypercube Sampling methodology. Nevertheless, the
most important part of the method is a reliable random number generator. Monte
Carlo simulation (MCS) is, in fact, a numerical method based on random sampling
via a random number generator. The most important applications of the MCS
technique in engineering of composite materials are: (a) fatigue and/or failure
modeling [10,243], (b) modeling of random material properties [73,171,174,175,
191,196,306] and (c) reliability analysis [79]. Random nature of the effective
properties calculated in homogenisation problem follows usually randomness of
material properties of a composite, which are defined as the input Gaussian
variables. To obtain the random sequences of this variable it is necessary to
produce first numerically uniform deviates. They are random numbers, which lie
within a specified range ([0,1] typically), and each number is as likely to occur as
any other in the range. Generation of the uniform distributions is done using a
standard FORTRAN library routine, which can be implemented as a linear
congruential generator, which generates a sequence of integer numbers 1,,1,,15 ...,

each between 0 and m-1, by using the recurrence relation [39]

I,,=al;+c (mod m) (1.80)

where m is called the modulus and a, ¢ are positive integers called the multiplier
and the increment, respectively. The recurrence (1.80) will possibly repeat itself
with a period that is obviously no greater than m. If m, a and ¢ are properly chosen,
then the period of recurrence is of maximal length m. The sequence of real

numbers between 0 and 1 is returned here by dividing /,,, by m, so that it is

strictly less than 1, but occasionally (once in m calls). The linear congruential
method is very fast and requires only a few operations per call, but it is not free of
sequential correlation on successive calls and the special shuffling routine has to be
added to eliminate this disadvantage. Next, the Box—Muller method is
implemented to transform these variables to the normalized Gaussian distribution—
let us consider for this purpose the transformation between two uniform deviates
on (0,1) denoted by x,, x, and two quantities y, and y, defined as follows

¥, =+/—2-1Inx, - cos2mx, (1.81)
¥, =4/—2-Inx, -sin2mx, (1.82)

Equivalently it can be written that
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5 =expl-4 (57 +37 ) (1.83)
1 ¥, (1.84)
X, =—-arctg —
2 Y
with the Jacobian determinant of the form
d(x,,x AN
S) a2 el 107 +32) (1.85)

ox; oxy
(¥, ¥,) WT ER

since it is a product of the functions of y, and y, separately. Finally, we obtain

each y is returned as the independent Gaussian variable.

The second part of the simulation procedure is a statistical estimation procedure
[29], which enables approximation of probabilistic moments and the relevant
coefficients for the given series of output variables and for the specified number of
random trials. The equations listed below are implemented in the statistical
estimation procedure to compute the probabilistic moments with respect to M,
which denotes here the total number of Monte Carlo random trials.

Statistical estimation theory is devoted to determination and verification of
statistical estimators computed on a basis of the random trials sets. These
estimators are necessary for efficient approximation of the analysed random
variable and they are introduced for the random variables, fields and processes to
assure their stochastic convergence.

Definition
If there exist a random variable X such that

v lim P(|X, - X|<e)=1 (1.86)
£>0n—oo

then the series of random variables X, stochastically converges to X. Let us note

that the consistent, unbiased, most effective and asymptotically most effective
estimators are available in statistical estimation theory.

Definition
The consistent estimator is each estimator stochastically convergent to the

estimated parameter.

Definition
The unbiased estimator fulfils the following condition:

E[Qn]=Q (1.87)
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Definition
The most effective estimator is the unbiased estimator with the minimal variance.

Definition
The asymptotically most effective estimator of the quantity Qn is the following

. (Var(Q,)
nim(var(gn) J (1.88)

one:

where Var(@o) is the most effective variance estimator.

Definition
The expected value estimator of the random variable X(®) in an n—element random
trial is the average value

E[X(a))]=%g,X,=}? (1.89)

It can be proved that this is consistent, unbiased and the most effective estimator
for the Gaussian, binomial and Poisson probability distribution.

Definition

The variance estimator for the random variable X(®) in an n—element random
event is the quantity

Var(X (o)) = %E(X -X)? (1.90)

It can be demonstrated that this estimator is consistent and unbiased. Using this
estimator one can determine standard deviation estimator.

Definition
The standard deviation estimator is equal to

S(X (@)= y/Var(X (@)) (1.91)

Comment
The variance estimator in the n—element random event can be defined as

Var(X(a)))=%§i(Xi_X)2 (1.92)

It can be demonstrated that



Mathematical Preliminaries 17

ElVar(X (0))]= =Lo> (1.93)

n

which gives the negative bias. The estimator bias is defined as the deviation of this
estimator from its value to be determined. There holds

Els?]-o? =216 —6? =162 (1.94)

which results in a negative and bias, which is irrelevant since the natural condition
for the variance VarY >0.

Definition
The estimator of the ordinary kth order probabilistic moment of the random
variable X(w) in the n—element random trial is given as

m (X @)=13x! -
i=1
Definition
The estimator of the kth order central probabilistic moment is defined as
(X @)= m,[(X (@) m (X @) (1.96)

Any central moments of odd order are equal to O in case of the normalized
Gaussian PDF N(m,c), while the first three even moments are given below.

Definition
The estimator of the second order central moment is equal to

w (X (@)=0> (1.97)

Definition
The estimator of the fourth order central moment is given as

u, (¥ (@)=30" (1.98)

Definition
The estimator of the sixth order central moment is equal to

150°
1 (X ()= mf (1.99)
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Using the proposed estimators of the central moments of the random variable X(w)
valid for the n—element random event, the following probabilistic coefficients are
usually calculated:

Definition
The coefficient of variation for X(w) is equal to

()= 22

E[X ()] (1.100)

Definition
The coefficient of asymmetry for X(w) equals to

o (X(@)) (1.101)

Definition
The coefficient of concentration for X(w) is equal to

T o' (X (@) (1.102)
which results in f———>0 and y———3 for the Gaussian random variables.

Definition
The estimator of covariance for two random variables X(®) and Y(®) in a two
dimensional n—element random trial is defined as

Cov(X (0),Y(0))=-L 3 (X,(0)- X)¥,(0)-) (1.103)

i=1

Definition
The coefficient of correlation for two variables X(®) and Y(w) in two dimensional
n—element random event is equal to

y _ CoX(0) V(o)
7 War(X @)Var(Y @) (1.104)

Remark
Two random variables X(w) and Y(w) are fully correlated only if pxy=1 and
uncorrelated in case of pxy=0.
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Equations (1.101) and (1.102) are very useful together with the relevant PDF
estimator in recognising of the probabilistic distribution function type for the
output variables — using the Central Limit Theorem the Gaussian variables can be
found. This is very important aspect considering the fact that theoretical
considerations in this subject are rather complicated and not always possible.

1.3 Stochastic Second Moment Perturbation
Approach

1.3.1 Transient Heat Transfer Problems

The main concept of stochastic second order perturbation technique [263]
applied in the next chapters to various transient heat transfer computations can be
explained on the example of the following equation [135]:

CT+K-T=Q (1.105)

where K, C are some linear stochastic operators equivalent to the heat conductivity
and capacity matrices, T is the random thermal response vector for the structure
with T representing its time derivative, while Q is the admissible heat flux (due to
the boundary conditions) applied on the system. To introduce a precise definition
of K, for instance, let us consider the Hilbert space H defined on a real domain D
and the probability space (Q,O',P), where xe D, 6 Q and ©:Q — R. Then,
the operator K(x;®@) is some stochastic operator defined on Hx® , which means
that it is a differential operator with the coefficients varying randomly with respect
to one or more independent design random variables of the system; the operator C
can be defined analogously. As is known, the analytical solutions to such a class of
partial differential equations are available for some specific cases and that is why
quite different approximating numerical methods are used (simulation, perturbation
or spectral methods as well).

Further, let us denote the vector of random variables of a problem as {br(x;e)}
and its probability density functions as g(b") and g(b ",b* ), respectively;
r,s =1,2,...,R are indexing input random variables. Next, let us introduce integral
definition for the expected values of this vector as

b= [b g (b")db' (1100

—oco
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with its covariance in the form

Covlp’ b )= T T(b" - E@D(b ~Ep Dg(b’,bs av' av* (1.107)

—00 —oco

Next, all material and physical parameters of Q as well as their state functions
being random fields are extended by the use of stochastic expansion via the Taylor
series as follows:

N n n

K(x:0)=K°(x:0)+ 2{8—'K(")(x;9) [146" (9)} (1.108)
n=l| 1 r=1

where € is some given small perturbation parameter, €éAb” denotes the first order

variation of Ab" about its expected value E[b’] and K" (x;0) represents the nth

order partial derivatives with respect to the random variables determined at the
expected values. The variable 0 represents here the random event belonging to the
corresponding probability space of admissible events (nonnegative, for instance).
The second order perturbation approach is now analysed and then the random
operator K (x;@) is expanded as

K(x;0)=K"(x;0)+ K" (x:0)Ab" + L&’ K" (x;0)Ab" Ab* (1.109)

It can be noted that the second order equation is obtained by multiplying the R-
variate probability density function p, (bl,bz,...,b R) by the €-terms and by

integrating over the domain of b(x;@). Assuming that the small parameter € of the

expansion is equal to 1 and applying the stochastic second order perturbation
methodology to the fundamental deterministic equation (1.105), we find
e zeroth order equations:

C'(x:0)-T°(x:0)+ K*(x:60)- T°(x;6) = 0° (x:6) (1.110)
e first order equations (for r=1,...,R):

C"(x;0) T’ (x;0)+ C°(x;0)- T (x;0)

(1.111)
+ K7 (x0)-T°(x;0) + K°(x;0)- T (x;0) = Q" (x;0)

e second order equations (for r,s=1,...,R):
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C"(x0) T (x,0)+2C" (x;0) - T* (x;0) + C°(x;0) - T"" (x;0)
+K 7 (x;0) T (x;0) + 2K (x;0) - T (x;0) + K° (x;0) - T"" (x;0)
=0"(x;0)

(1.112)

It is clear that coefficients for the products of K, C and T are the successive
orders of the initial basic deterministic eqn (1.110) and they are taken from the
well-known Pascal triangle. As far as the nth order partial differential
perturbation-based approach is concerned, then the general statement can be
written out using the Leibniz differentiation rule in the following form:

(gJC(”)(x;O)-To(x;e)+(’;JC(”_1)()C;0)~T(l)(x;9)+...
M)~ gy 70 (. e, 0/..
+ JC (x;0)-T (x,9)+(OJK (x;0)-T"(x;0)
n
; (1.113)
+ 1JK“"D(x;e)-T“>(x;e)+...
n M. (=D .. o (..
+ JK (x;0)-T (x,9)+( JK (x%;,0)- T (x;0)
n-— n
’ HJK“” (1:0) T (x:0) = 0" (x:6)
n

The equations from m=0 to the specific value of n should be generated to
introduce all hierarchical equations system for the nth order perturbation approach.
Usually, it is assumed that higher than second order perturbations can be neglected,
the system of equations (1.110) — (1.112) constitutes the given equilibrium
problem. The detailed convergence studies should be carried out in further
extensions of the model with respect to perturbation order, parameter € and the
coefficient of variation of input random variables.

Furthermore, it can be noted that system (1.111) is rewritten for all random
parameters of the problem indexed by r=1,...,R (R equations), while system
(1.112) gives us generally R equations. The unnecessary equations are eliminated
here through multiplying both sides of the highest order equation by the
appropriate covariance matrix of input random parameters. There holds

e zeroth order equations:

C%(x,0) T°(x;0)+ K° (x:0)- T°(x;0) = 0° (x;0) (1.114)

e st order equations (for r =1,...,R):
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C(x;0) T’ (x;0)+ C°(x;0) - T (x;0)

0 0 (1.115)
+K"(x,0) - T"(x;0)+ K" (x;0)- T (x;0) = Q" (x;0)
e second order equations (for r,s=1,...,R):
C'(x;0)- T? (x;0) + K (x:0) - T? (x:6)
(1.116)

{07 (:0) - K™ (1:0) T0(x:0) + 2K (x:0) -T* (x:6)
— O (1:0)-TO(1:0) +2C7 (x:0) T (x:0) }Covlp” . b*)

It is observed that solving for the nth order perturbation equations system, the
closure of the entire hierarchical system is obtained by nth order correlation of
input random vector components b' and b°, respectively; for this purpose nth order
statistical information about input random variables is however necessary. To
obtain the probabilistic solution for the analysed heat flow problem, eqn (1.114) is

solved for T°, eqn (1.115) for first order terms 7" and, finally, eqn (1.116) for

T . Therefore, using the definition of expected value and applying the second
order expansion, it is derived that

Elrb(x:6):x]l= [Tlb(x:6)x] py (bx:0)) b

—oo

- (1.117)
= _j{TO[b(x;O)x]+ T [b(x;0 ) x| Ab, (x)
#1777 b(x:0): x]Ab, (x)Ab, (x)} p (b(x:6)) db
and further
7 (5:0) ] i b(x:0) b 47 (5:6) T, () i bls:0)
o o (1.118)

+ %T’” (x;G)TAb, (x:0)Ab, (x;0) pr (b(x;6)) db

This result leads us to the following relation for the expected values [135,190]:
E[Tb(x:6);x[l=T°[b(x;60);x]+ 17" [b(x:0):x] 5;° (1.119)

Now, using the perturbation approach, both spatial and temporal cross-
covariances can be determined separately. There holds for spatial cross—covariance
computed at the specific time momentt
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Corlrble®;0)xse |- Thlx:0)x ;e | )= 52 (sx @)
= Tlrbloo)xo o] elrblso-olo] ) 1120)
rbl:0)x:e)- Elrb:0)x 2] by bots0) b

which gives as a result
53k :x®:050) =7 (Vs0:7) 7o [ Ds0:7) s kVsx®io5e) (11210

Alternatively, one can compute the time cross—covariances in the case where
the input random process varies in time (and does not depend on spatial variables).
It is obtained for time moments 7, and 1, by the use of analogous definitions that

Cov(Tb(x:0)x;7, } T[b(x:0 ) x:7, )= S (x:7,:7,)

= 1oy xr - Efbco)xn T} (1.122)

—oco

X{T[b(x;elx;rz]— E[T[b(x;@lx; Ty ]]}pR (b(x;0))db
which yields
SI(x;0;7,;7,)=T"(x;0;7,) T (x;0;7,) S, (x;0;7,37,) (1.123)

It is important to underline that the perturbation methodology at the present
stage does not allow for computational modeling of the boundary—initial problems
where the input parameters are full stochastic processes varying in space and time.

1.3.2 Elastodynamics with Random Parameters

Generally, the following problem is solved now [56,181,198]:

Mii+Ci+Ku=f (1.124)

where M, C and K are linear stochastic operators, u is the random structural
response, while f is the admissible excitation of this system. The definitions of the
matrices as random operators are introduced analogously to the considerations
included in Sec. 1.3.1. Usually, such operators are identified as mass, damping and
stiffness matrices in structural dynamics applications. As is known, the analytical
solutions for such a class of partial differential equations are available for some
specific cases, since quite different approximating numerical methods are used;
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various mathematical approaches to the solution of that problem are reported and
presented in [233,249,324,326]. However the second order perturbation second
central probabilistic moment approach is documented below.

The stochastic second order Taylor series based extension [208] of the basic
deterministic equation (1.124) of the problem leads by equating of the same order
terms for 7€ [0,00) to

e zeroth order equations:
MO0 (07 )+ €O (p°)al (b0 )+ KOG )ul it )= £O(0%r)  (1.125)
o first order equations (for r=1,...,R):

M ()il (p0sr)+ € (60 )i (b0 J+ K (60 )u (b°:7)
MO0 (b0t )+ OO )i (057 )+ KO () (b°:7) (1.126)
= f”(bo;f)

e second order equations (for r,s=1,...,R):
M ()i (0052 )+ 0 ()i (03 )+ K (0 ) (:7)
oM (60 )it (6057 )+ 207 (00 )it (0052 )+ 2K (60 ) (b°:7)

M O(60)i b0z e 60 )i (07 b KO0 )ur (0:) (1127)
= 17 b"s)

Therefore, the generalized nth order partial differential perturbation—based
equation of motion can be proposed as

Z{n}wk b ce0n)ii* b0 z6):7)
K=o k

+ i[z }:’n_k (bo(x;e))”’k (bo (x;e);r)
k=

¥ iﬂ(z}(’n_k(”%x;e))u”‘(bO(x;G);f)= 7l ox)
k=

(1.128)

where the operators M™,C",K™ denote nth order partial derivatives of mass,
damping and stiffness matrices with respect to the input random variables
determined at the expected values of these variables, respectively. The vectors
" (bo;r), 0" (bo;r), 0" (bo;r), u" (bo;r) represent analogous nth order partial
derivatives of external excitation, accelerations, velocities as well as displacements
of the system.
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Let us note that the stochastic hierarchical equations of motion for desired
perturbation order m can be obtained from eqn (1.128) by successive expansion
and substitution of n by the natural numbers 0,1,...,m, which returns the system of
(m+1) equations. Then zeroth order solution is obtained from the first equation;
then, inserting the zeroth order solution into the second equation (of the first
order), the first order solution can be determined. An analogous procedure is
repeated to determine all orders of the structural response, which are finally used in
the calculation of the response probabilistic moments.

Assuming that higher than second order perturbations can be neglected, this
equation system constitutes the equilibrium problem. The detailed convergence
studies should be carried out in further extensions of the model with respect to
perturbation order, parameter 6 and coefficient of variation of input random
variables. If higher than the second probabilistic moment approach is considered,
then the coefficients of assymetry, concentration, etc., also influence final
effectiveness of the perturbation—based solution.

Analogously to the stochastic expansion of (1.105), the first and second order
equations are modified and it is found that

e zeroth order equations:

MO0 (b7 )+ €0 (6°)al (6% )+ KOO )ulp0i7)= £O(0%)  (1.129)
o first order equations (for r=1,...,R):

MO0 )i (07 )+ b0 )i (b0 7)+ K060 )u (0 7) .
= 0 ) {0 ) o0 )i b0 e k0 )u o) Y

e second order equations (for r,s=1,...,R):

MO0 )i® B0z )+ 060 )i® (07 )+ KO0 )u® (02 )
={r (bo?f)—M’” (°)i® (% )- 7 (6° )i (607 )- k7 (°)u® b 7) (113D
—om (p0)ii (002 - 207 (00 )it (03 7)- 2K (0 )urt (03 Jiconlp” b7 )

Let us observe that looking for the nth order perturbation approach, the closure
of hierarchical equations is obtained by the nth order correlation of input random
process components b" and b°, respectively; nth order statistical information about
input random variables is however necessary for this purpose.

To obtain the probabilistic solution for the considered equilibrium problem,
(1.129) is solved for u° (and its time derivatives #° and ii°, respectively), next
(1.130) for first order terms of " and, finally, (1.131) for u'* . Two probabilistic
moment characterisations of all the state functions for the boundary value problem

starts from the expected value of the structural displacement vector components.
Using its definition
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Elu®)]= [u(t)pg(b(x;6))db (1.132)

the second order accurate expectations are equal to
E[“(l)]=uo(t)+%u’m51:‘r =u’(t)++u"? (1.133)

In quite a similar manner the second moment probabilistic characteristics are
obtained. Defining the time cross—correlation function as

Covlult fu(t )= +_E{ ulty)- E[“(tl )]}{ u(t)- E[M(t2 )]}pR (b(x;0))db (1.134)
it is found that
Cov(u(t,);ult,))= u”(tl)u's(tz)cov(br’bx) (1.135)

which completes the two—moment characterization of the perturbation—based
solution for the dynamic equilibrium problem (1.124). The entire solution
simplifies in the case of free vibrations when the following equations are to be
solved:

(K —QM] D=0 (1.136)

Q,, and @ are the eigenvalues and eigenvectors, respectively and o=1,....N

denotes the total number of degrees of freedom of a structure. The second order
expansion leads to the following equation system:

(K’ -Q),M°1®° =0 (1.137)
[K*-QQ,M 10" =K -Q,M° - Q¢ M"1®° (1.138)

(K -Q), M 10 =

FS TS 0 Na .S 0 TS 0
—{K = QM " =200, M = Q)M ] © (1.139)

SR Qg MO - Q0 M@ [Covlp” b

To determine the probabilistic moments of the eigenvectors, up to the second
order derivatives with respect to input random variables are to be determined first.
While zeroth order quantities are obtained directly from the relation (1.137), the
methodology of first order terms calculation is definitely more complicated.
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Equation (1.138) is transformed for this purpose by multiplying by the transposed
zeroth order eigenvector, which gives

o' [k - Q% M°]o - o' @/ MO0’ =0 k-0 m]er  (1:140)
Since @’ is diagonal and K° and M° are symmetric, (1.140) is modified as
o st e | o e lor o
Let us observe that Q" is diagonal and therefore
"' Q; M°D° =Q, & M D (1.142)
which finally results in
(1.143)

oy, =0 [k - M ]e’

Next, using an analogous technique in the case of the second order equation, it
is derived that

o[-0 0 0] 52 07 ~(2) 17040
o [K QM ]q>< -2 QM

=" [k - 207, M - Q0 M |0 Covlp”b*) (1.144)

—o" [k -0 MO -0, M | Corlp” ")

which finally implies

o® =" [k 20y 11 -l i |@ corlp.) (1.145)

+20" [k —Q7 M°-Q0, M | Corlp” 1)

The next problem is to determine the first and second order derivatives of the
eigenvectors. Basically, the eigenvector derivative is expressed as a linear
combination of all the eigenvectors in the original system. Equations describing the
coefficients of the linear combination are formed using the M—orthonormality and
K—-orthogonality conditions. Starting from (1.138), the ath eigenpair is determined
as

0 0 1,057 . o0 0 rrleo
k0 - m oy, =k -y MmO -l mr]el, (1.146)
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and (1.143) in the following form:

Q) = q’?a)lK’r —a)?a)M”J@?a) (1.147)
It yields by substitution
k0 -, Mm° oy, = RE, (1.148)
with R(,, being equal to
Ry =l =0, (K" = Q0 M @0, M0 — Q0 M7 |0, (1.149)

Further, it is assumed that the aith first order eigenvector @, can be expressed
as a linear combination of all the zeroth order eigenvectors as

¢r

- d)oa(a) (1.150)

The complete description of the coefficients aj, is given by the following

formula:

— @ fora#ad (1.151)
al, =1 %%

Similarly as above, the second order eigenvector <D(a> is approximated by a linear

combination of all the zeroth order eigenvectors

Q) =0°a) (1.152)

Then, one can show the following result [208]:

(I)O R(Z)
—(a) @) , fora#d

@ _ ey =Wz (1.153)
@) — 1 0 S ros
(zd)(a)M (I)(a) +2(D(a)M <1) +a(a)a(a) )Cov(b ,b )

|foroo=a
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Finally, the first two probabilistic moments of the eigenvalues and eigenvectors
are found in a typical way, which completes the solution of the second order
second central probabilistic moment eigenvalue and eigenvector problem.

Summing up the applications of the stochastic perturbation methodology it
should be pointed out that the main disadvantage is dependence between the
assumed order of the expansion, interrelations between input probabilistic
characteristics and overall precision of such a computational methodology. The
method found its numerous applications in structural engineering [88,208,237], in
homogenisation [162,164,192] as well as in fluid dynamics computations [184].
Computational implementation in conjunction with Finite Element Method both in
displacement [208] and stress versions [186], Boundary Element Method [51,185]
as well as with Finite Difference Method [187,198] are available now, whereas the
scaled the Boundary—Finite Element Method has no such extension [369].

Nevertheless, the perturbation method can be very useful after successful
implementation in symbolic computations programs, which will enable automatic
perturbation—based extension of up to nth order [178] for any variational equation
[25,297] as well as ordinary or partial differential equations solutions [68,90]. The
application of the perturbation method in stochastic processes [319,326] modelling
needs its essential improvements, because now the randomness of an input cannot
be introduced both in space and time.



2 Elasticity Problems

Numerical experiments devoted to multi-component and multiscale media
modelling are still one of the most important part of modern computational
mechanics and engineering [98,161,272,312]. The main idea of this chapter in this
context is to present a general approach to numerical analysis of elastostatic
problems in 1D and 2D heterogeneous media [105,274,300,317] and the
homogenisation method of periodic linear elastic engineering composite structures
exhibiting randomness in material parameters [32,83,356,372,375]. As is shown
below, the effective elasticity tensor components of such structures are obtained as
the closed—form equations in the deterministic approach, which enables a
relatively easy extension to the stochastic analysis by the application of the second
order perturbation second central probabilistic moment analysis. On the other hand,
the Monte Carlo simulation approach is employed to solve the cell problem. As is
known from numerous books and articles in this area, the main difficulty in
homogenisation is the lack of one general model valid for various composite
structures; different nature homogenised constitutive relations are derived for
beams, plates, shells etc. and even for the same type of engineering structure
different effective relations are fulfilled for composites with constituents of
different types (with ceramic, metal or polymer matrices and so forth). That is why
numerous theoretical and numerical homogenisation models of composites are
developed and applied in engineering practice.

All the theories in this field can be arbitrarily divided, considering especially
the method and form of the final results, into two essentially different groups. The
first one contains all the methods resulting in closed form equations characterizing
upper and lower bounds [108,138,156,285,339] or giving direct approximations of
the effective material tensors [122,123,248]. In alternative, so—called cell problems
are solved to calculate, on the basis of averaged stresses or strains, the final global
characteristics of the composite in elastic range [11,214,304,383], for thermoelastic
analysis [117], for composites with elasto—plastic [50,57,58,146,332] or
visco—elasto—plastic components [366], in the case of fractured or porous
structures [38,361] or damaged interfaces [224,252,358]. The very recently even
multiscale methods [236,340] and models have been worked out to include the
atomistic scale effects in global composite characteristics [67,145]. The results
obtained for the first models are relatively easy and fast in computation. However,
usually these approximations are not so precise as the methods based on the cell
problem solutions. In this context, the decisive role of symbolic computations and
the relevant computational tools (MAPLE, MATHEMATICA, MATLAB, for
instance) should be underlined [64,111,268]. By using the MAPLE program and
any closed form equations for effective characteristics of composites as well as
thanks to the stochastic second order perturbation technique (in practice of any
finite order), the probabilistic moments of these characteristics can be derived and
computed. The great value of such a computational technique lies in its usefulness
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in stochastic sensitivity studies. The closed form probabilistic moments of the
homogenised tensor make it possible to derive explicitly the sensitivity gradients
with respect to the expected values and standard deviations of the original material
properties of a composite.

Probabilistic methods in homogenisation [116,120,141,146,259,287,378] obey
(a) algebraic derivation of the effective properties, (b) Monte—Carlo simulation of
the effective tensor, (c) Voronoi—tesselations of the RVE together with the relevant
FEM studies, (d) the moving—window technique. The alternative stochastic second
order approach to the cell problem solution, where the SFEM analysis should be
applied to calculate the effective characteristics, is displayed below. Various
effective elastic characteristics models proposed in the literature are extended
below using the stochastic perturbation technique and verified numerically with
respect to probabilistic material parameters of the composite components. The
entire homogenisation methodology is illustrated with computational examples of
the two—component heterogeneous bar, fibre—reinforced and layered unidirectional
composites as well as the heterogeneous plate. Thanks to these experiments, the
general computational algorithm for stochastic homogenisation is proposed by
some necessary modifications with comparison to the relevant theoretical
approach.

Finally, it is observed that having analytical expressions for the effective
Young modulus and their probabilistic moments, the model presented can be
extended to the deterministic and stochastic structural sensitivity analysis for
elastostatics or elastodynamics of the periodic composite bar structures. It can be
done assuming ideal bonds between different homogeneous parts of the composites
or even considering stochastic interface defects between them and introducing the
interphase model due to the derivations carried out or another related
microstructural phenomena both in linear an nonlinear range. In the same time,
starting from the deterministic description of the homogenised structure, the
effective behaviour related to any external excitations described by the stochastic
processes can be obtained.

2.1 Composite Model. Interface Defects Concept

The main object of the considerations is the random periodic composite
structure Y with the Representative Volume Element (RVE) denoted by Q. Let us
assume that € contain perfectly bonded, coherent and disjoint subsets being
homogeneous (for classical fibre—reinforced composites there are two components,
for instance) and let us assume that the scale between corresponding geometrical
diameters of Q and the whole Y is described by some small parameter €>0; this
parameter indexes all the tensors rewritten for the geometrical scale connected with
Q. Further, it should be mentioned that random periodic composites are
considered; it is assumed that for an additional ® belonging to a suitable
probability space there exists such a homothety that transforms € into the entire
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composite Y. In the random case this homothety is defined for all probabilistic
moments of input random variables or fields considered. Next, let us introduce two
different coordinate systems: y = (y], Vo y3) at the microscale of the composite

and x = (x,,x,,x,) at the macroscale. Then, any periodic state function F defined

on Y can be expressed as

2.1

Fe(x)=F(§)=F(y)

This definition allows a description of the macro functions (connected with the
macroscale of a composite) in terms of micro functions and vice versa. Therefore,
the elasticity coefficients (being homogenised) can be defined as

Cha(x)=Cyy (y) 2.2)

Random fields under consideration are defined in terms of geometrical as well
as material properties of the composite. However the periodic microstructure as
well as its macrogeometry is deterministic. Randomising different composite
properties, the set of all possible realisations of a particular introduced random
field have to be admissible from the physical and geometrical point of view, which
is partially explained by the below relations. Let each subset € contain linear—
elastic and transversely isotropic materials where Young moduli and Poisson
coefficients are truncated Gaussian random variables with the first two
probabilistic moments specified. There holds

0<elx;m)< oo (2.3)
: Q 2.4
Eleto)l-{ 40
e,; x€ Q,
Vare 0 o (2.5)
Cov(ei(x;wxe,.(x;w)):[ . V} e12
~l<v(nw)<i (2.6)
vy xe Q 2.7
E ; =
b0l { e
] N\ | Varv, 0o | .. (2.8)
Cov(vi(x,a))vj(x,a)))—[ 0 Var v2:|, ,j=1,2

Moreover, it is assumed that there are no spatial correlations between Young
moduli and Poisson coefficients and the effect of Gaussian variables cutting—off in
the context of (2.3) and (2.6) does not influence the relevant probabilistic
moments. This assumption will be verified computationally in the numerical
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experiments; a discussion on the cross—property correlations has been done in
[315]. Further, the random elasticity tensor for each component material can be
defined as

v(x,®)

Ciju ()Gw): 5ij5k1

) e(x;m)

(1+v(xo)(l-2v(xeo il =12 09

1
+ (5ik5jl +6;6 )me(x;w)

Considering all the assumptions posed above, the random periodicity of Y can
be understood as the existence of such a translation which, applied to €, enables to
cover the entire Y (as a consequence, the probabilistic moments of e(x;®) and
v(x;m) are periodic too). Thus, let us adopt Y as a random composite if relevant
properties of the RVE are Gaussian random variables with specified first two
probabilistic moments; these variables are bounded to probability spaces
admissible from mechanical and physical point of view.

Let us note that the probabilistic description of the elasticity simplifies
significantly if the Poisson coefficient is assumed to be a deterministic function so
that

v(x)=v,_, fora=12,...n; xe Q_ (2.10)
Finally, the random elasticity tensor field C;;, (x;®) is represented as follows:

Cip (x:0)
@2.11)

2(1+v(x))

- v(x)
=e(x; a’){(siia’d (1+v@)(1-2v()

+ (5ik5jz +0,0 );}

Because of the linear relation between the elasticity tensor components and the
Young modulus these components have the truncated Gaussian distribution and
can thus be derived uniquely from their first two moments as

Elcijkl (x;a))J= Ajji(a) (X) - E[ea (x;a))]

for iJ,k,l:l,z, a:l,z’“.,n; xe QH (212)

and

Var(cijkl (x;w)): At @) (O Ajjia (a) (x)Var(ea (x;a)))

for i,j,k,I=1,2, a=1,2,...n; xe Q,, (2.13)

with no sum over repeating indices at the right hand side.



34  Computational Mechanics of Composite Materials

There holds

1
2(1+v(x)) (2.14)

_ V(x)
A (x) =66 (1 +v(x))(1 ~ 2v(x)) + (5ik5jl +6,6 ji )

ijkl=12

General methodology leading to the final results of the effective elasticity
tensor is to rewrite either strain energy (or complementary energy, for instance) or
equilibrium equations for a homogeneous medium and the heterogeneous one.
Next, the effective parameters are derived by equating corresponding expressions
for the homogeneous and for the real structure. This common methodology is
applied below, particular mathematical considerations are included in the next
sections and only the final result useful in further general stochastic analysis is
shown. The expected values for the effective elasticity tensor in the most general
case can be obtained by the second order perturbation based extension as [162,208]

(eff) o0 " (eff)r L AL A 18 (ef)rs (2.15)
Elcsr = Tl 0wy + ab" 7 (y) + L Ab" AB* CED™ ) pre(b) b

Using classical probability theory definitions and theorems it is obtained that

T i (2.16)
[pr(y))db=1, [Abpg(b(y))db=0
T 2.17
[Ab"AB pg (b(y) db = Covlp”,b*); 1< 7,5<R (@17)
Therefore
Elcs (n]= i )+ Lch covlp” b*) (2.18)

Further, the covariance matrix Cov(Ci;Z]lf );C;‘;ffnf) of the effective elasticity

tensor is calculated using its integral definition

Covlci;cten )

pgmn

= flegr - ey et - i) sloob, )ana, @19

oo

whereas inserting the second order perturbation expansion it is found that
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+oo
_ Tl e ef)r 1 (eff)rs _ (e )0
= Hegrr +an.cii +Lanan. ey - i) (2.20)

—o0

(cemo s ap L ap, ab. O~ W ooy, b, ) dbydb,

mnpq mnpq mnpgq mnpq

After all algebraic transformations and neglecting terms of order higher than
second, there holds

Cov( ). ol )

ijkl pgmn

2.21)

i f ] eff ).,r ~(eff )s
= IAbrCéif””AbsC,ﬁff;Zf g(bi»bj)dbidbj :Ci(jkaf)’ Cr(m]z)(); Cov(b,,b,).

—o0

Then, starting from two—moment characterization of the effective elasticity tensor
and the corresponding homogenisation models presented in (2.15) — (2.21), the
stochastic second order probabilistic moment analysis of a particular engineering
composites can be carried out. In the general case, these equations lead to a rather
complicated description of probabilistic moments for the effective elasticity tensor
particular components.

In the theory of elasticity the continuum is usually uniquely represented by its
geometry and elastic properties; most often a character of these features is
considered as deterministic. It has been numerically proved for the fibre
composites that the influence of the elastic properties randomness on the
deterministically represented geometry can be significant. The most general model
of the linear elastic medium, and intuitively the nearest to the real material, is
based on the assumption that both its geometry and elasticity are random fields or
stochastic processes. The phenomenon of random, both interface [5,27,131,200,
225,242] and volumetric [74,316,342,353,388], non-homogeneities occur mainly
in the composite materials. While the interface defects (technological inaccuracies,
matrix cracks, reinforcement breaks or debonding) are important considering the
fracturing of such composites, the volume heterogeneities generally follow the
discrete nature of many media. The existing models of stochastic media (based on
various kinds of geometrical tesselations) do not make it possible to analyse such
problems and that is why a new formulation is proposed.

The main idea of the proposed model is a transformation of the stochastic
medium into some deterministic media with random material parameters, more
useful in the numerical analysis. Such a transformation is possible provided the
probabilistic characteristics of geometric dimensions and total number of defects
occuring at the interfaces are given, assuming that these random fields are
Gaussian with non-negative or restricted values only. All non—homogeneities
introduced are divided into two groups: the stochastic interface defects (SID),
which have non-zero intersections with the interface boundaries, and the
volumetric stochastic defects (VSD) having no common part with any interface or
external composite boundary. Further, the interphases are deterministically
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constructed around all interface boundaries using probabilistic bounds of geometric
dimensions of the SID considered. Finally, the stochastic geometry is replaced by
random elastic characteristics of composite constituents thanks to a probabilistic
modification of the spatial averaging method (PAM). Let us note that the
formulation proposed for including the SID in the interphase region has its origin
in micro—mechanical approach to the contact problems rather than in the existing
interface defects models.

Having so defined the composite with deterministic geometry and stochastic
material properties, the stochastic boundary—value problem can be numerically
solved using either the Monte Carlo simulation method, which is based on
computational iterations over input random fields, or the SFEM based on second—
order perturbation theory or based on spectral decomposition. The perturbation—
based method has found its application to modeling of fibre —reinforced composites
and, in view of its computational time savings, should be preferred.

Finally, let us consider the material discontinuities located randomly on the
boundaries between composite constituents (interfaces) as it is shown in Figs. 2.1
and 2.2.

Q

a-1

Figure 2.1. Interface defects geometrical sample

Figure 2.2. A single interface defect geometric idealization

Numerical model for such nonhomogeneities is based on the assumption that
[193,194]:
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(1) there is a finite number of material defects on all composite interfaces; the total
number of defects considered is assumed as a random parameter (with nonnegative
values only) defined by its first two probabilistic moments;

(2) interface defects are approximated by the semi-circles (bubbles) lying with
their diameters on the interfaces; the radii of the bubbles are assumed to be the next
random parameter of the problem defined by the expected value and the variance;
(3) geometric dimensions of every defect belonging to any Q  are small in
comparison with the minimal distance between the I, ,,, and T,
boundaries for a=3,...,n or with Q, geometric dimensions;

(4) all elastic characteristics specified above are assumed equal to 0 if xe D, for
a=1,2,...,n.

It should be underlined that the model introduced approximates the real defects
rather precisely. In further investigations the semi—circle shape of the defects
should be replaced with semi—elliptical [353] and their physical model should obey
nucleation and growth phenomena [345,346] preserving a random character.
However to build up the numerical procedure, the bubbles should be appropriately
averaged over the interphases, which they belong to. Probabilistic averaging
method is proposed in the next section to carry out this smearing.

Let us consider the stochastic material non—homogeneities contained in some
Q, c Q. The set of the defects considered D, can be divided into three subsets
D,

intersection with the boundary T, , D/ having zero intersection with T},

Further, all the

D’ and D!, where D/ contains all the defects having a non-zero

and T, ,and D] having a non-zero intersection with T, ., .
defects belonging to subsets D/ and D are called the stochastic interface defects
(SID) and those belonging to D/ the volumetric stochastic defects (VSD). Let us
consider such Q, Q7 and Q7 , where Q,=Q/ U Q) UQ”, that with probability

equal to 1, there holds D, cQ/,, D! Q! and D”c Q" (cf. Figure 2.3).

Aal Z_T_ Dwo—_ B

I

Figure 2.3. Interphase schematic representation

a-1,a) 1—‘(a,a,+1/
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The subsets ),Q”,Q” can be geometrically constructed using probabilistic

moments of the defect parameters (their geometric dimensions and total number).
To provide such a construction let us introduce random fields A; (x;w) and

A”(x;w) as upper bounds on the norms of normal vectors defined on the
boundaries T, and T, and the boundaries of the SID belonging to D),
and D, respectively. Next, let us consider the upper bounds of probabilistic

distributions of A] (x;w) and A”(x;w) given as follows:

A, = E[N, (x;0) |+ 3 Var(A, (x;0)) (2.22)
A" = E[A”(x; 0) |+ 3 Var(A7 (x; 0)) (2.23)

Thus, Q/,Q” can be expressed in the following form:
Q, ={P(x)e Q, 1d(P,T410) S A, | (2.24)
Q) ={P(x)€ Q, 1 d(P.T(, 411 S AT} (2.25)

where i=1,2 and d(P,I") denotes the distance from a point P to the contour T". Let

us note that Q” can be obtained as
Q=0 -Q vQ” (2.26)

Deterministic spatial averaging of properties Y, on continuous and disjoint

subsets Q_  of Q is employed to formulate the probabilistic averaging method.

a
(av)

The averaged property Y
equation [65,129]:

characterizing the region Q is given by the following

iYa Qﬂ
Y@ ==l q ; xeQ

(2.27)

where |Q| is the two—dimensional Lesbegue measure of €. Deterministic

averaging can be transformed to the probabilistic case only if Q is defined
deterministically, and Y, and Q, are uncorrelated random fields. The expected

value of probabilistically averaged Y " (w) on Q can be derived as
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av 1 <
Elr®? )((D)]= @E]E[Ya (@)] EuQu ((D)” (2.28)
and, similarly, the variance as
Varly " @)= ﬁ S Var(y, @) var(Q, @) (2.29)
a=l1

Using the above equations Young moduli are probabilistically averaged over all
Q, regions and their Q/,Q”,Q” subsets. Finally, a primary stochastic geometry

of the considered composite is replaced by the new deterministic one. In this way,
the n—component composite having m interfaces with stochastic interface defects
on both sides of each interface and with volume non—homogeneities can be
transformed to a n+m-—component structure with deterministic geometry and
probabilistically defined material parameters. More detailed equations of the PAM
can be derived for given stochastic parameters of interface defects (if these defects
can be approximated by specific shapes — circles, hexagons or their halves for
instance).

Let us suppose that there is a finite element number of discontinuities in the
matrix region located on the fibre—matrix interface. These discontinuities are
approximated by bubbles — semicircles placed with their diameters on the interface,
see Figure 2.4. The random distribution of the assumed defects is uniquely defined
by the expected values and variances of the total number and radius of the bubbles;
it is shown below, there is a sufficient number of parameters to obtain a complete
characterization of semicircles averaged elastic constants.

Using (2.28) and (2.29) one can determine the expected value and the variance
of the effective Young modulus e, , the terms included in the covariance matrix of

this modulus and also the Poisson ratio. It yields for the expected value

S Q,

¢

Sq. =S
E[]E{—}E[]{l Ll ]] 20)
Q.
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Q b(i)

Ql

Figure 2.4. Bubble interface defects in the fibre —reinforced composite

AZC

L R J AZC

Figure 2.5. Interphase for bubble interface defects

As can be easily seen in the above relation, there holds

Sa, = n{(R +Elrg ]+ 3@[%])2 - RZ}

In a similar way the variance is derived as

Varle,, |=Var||1- S, ‘e,
Sa,,

2.31)

(2.32)



Elasticity problems 41

It can be shown that this equation could have the following form:

(2.33)

Var[eZC ] = {1 - SL E[Sb ]}2 Var[ez ]

Q,

c

+

5 Var[Sb ]Var[ez]+ ZLVar[Sb]E2 [ez]
Q,, Sa,,

2¢

which, neglecting moments of higher than second order, can be reduced to

2
Var[gZC]:{l_ ! E[Sb]} Varle, |+ ——Varls, | E2[e, ] (2.34)
Sa, Sa,

2¢ 2¢

Now the distribution parameters S, have to be found. As can be seen
Sp =%”(rb)2Mb (2.35)

where M, is the number of €, regions foundin €,  (according to Figures 2.4

and 2.5) and is equal to
M, =2nRm, (2.36)
Therefore, using fundamental properties of random variables it is obtained that

E[M,)=27R - E[m, ] (2.37)
and
Var[Mb]=47r2R2 -Var[mb] (2.38)
From the definition of the expected value one derives

E[s,]= 5 El(rb )szJ= %{E2 [1, ]+ varlr, ]}E[Mb] (2.39)

Finally, the variance of §, is found as
Varls, 1= Varlz (5 ¥ v, J= =2 varl(, P 1, | (2.40)

It can be shown that this expression may be transformed into the form:
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2

Var[Sb]= ”T <E2 [rb]—f— Var[rb ])zVar[Mb]
+ %Var[”b] (E2 [Mb]-i- Var[Mb ]) (2E2 [rb]+ Var[rb ])

(2.41)

Substituting the equations describing §, distribution parameters into the relations

describing the expected value and variance of the e, modulus, we can similarly

derive the data necessary for numerical analysis.

Using analogous equations, the stochastic interface defects in the fibre region
can be approximated. So, let us assume a finite number of these discontinuities
inserted into the contact zone. As already established, the fibre material has good
resistance to degradation (much better than the matrix) and because of this, the
defects in the €, region can be approximated as teeth with their sharp sides
directed towards the fibre centre. A single discontinuity is, from the geometrical
point of view, the superposition of two circular quadrants with the same radius
(Figure 2.6). There holds

and

Q.

Ele, 1= E[el][l_%E[St]]

Var[elc]z {l - L E[S, ]FVar[el]

Q

c

; Var[St ]Var[el]+ S%Var[S,] E? [el]

er le

1Y

L
Oy 4

+

Ki

Ql

Figure 2.6. Teeth interface defects in fibre-reinforced composite

(2.42)

(2.43)
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Figure 2.7. Interphase for teeth interface defects

The relations describing the discontinuity parameters will have a different form

=@-3)n )M (2.44)

t

so that
Els, 1= -=) i P 1, )= - ) {2 1+ varls v, (2.45)

and, finally

Var[S,]z(—%f(E2 |+ varlr, )zVar

+2. -2 f varl;] EZ[M,]+VW[M,])(2E2 I 1+ varlr )

(2.46)

The Poisson ratio for the fibre interphase region can be obtained in analogous way.
Finally, the covariance matrix of the Young modulus for this composite takes the
following form:

Cov(e(i) e )=
Varle,]  Cole,.e, ] 0 0 2.47)
Covle,,e,.] Varle,,] 0 0
0 0 Var[ezc ] Cov[eZc €5 ]

0 0 Covle,, e, ] Varle, ]
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Zeroing of the corresponding covariance matrix components can be achieved from
the assumed mutual independence of the Young modulus in the fibre, its contact
zone and associated regions for the matrix.

Special purpose numerical procedure has been implemented to check the
influence of the interface defects parameters on the effective elastic parameters of
the interphase. The expected values of the interface discontinuities in the matrix
and fibre contact zone were assumed as 4, 10, 20 and 40 with the width of the
observed interface varying between 4.0E-3 and 2.0E-2. The results of these
computations are presented in Figures 2.8 to 2.13: the expected values of the
homogenised Young modulus functions are given in Figures 2.8 and 2.9, the
averaged Poisson ratio functions in Figures 2.10 and 2.11 and the variances of the
Young modulus functions in Figures 2.12 and 2.13. All of these variables are
marked on the vertical axis and the expected values of the interface defects radius
are shown in the horizontal ones.

84.5 -
| 84

835 + -
83 +

| 82.5 ‘

| 32 L —4 "teet ‘ T ‘ ‘ |

S R 10 "teeth” | LT~

| — - — - 20 "teeth” o~ |
81 + 4 e e e~ - - -

— - —40 "teeth" T~

| 805 — — L L |

80 f f f f f f f |

Figure 2.8. Expected values of probabilistically averaged Young modulus in fibre
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Figure 2.9. Expected values of probabilistically averaged Young modulus in matrix
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Figure 2.10. Probabilistically averaged Poisson ratio in fibre
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Figure 2.11. Probabilistically averaged Poisson ratio in matrix

As is expected, the resulting expected values of the homogenised Young
modulus both in the matrix and the fibre regions, and similarly the Poisson ratio,
are linear functions of the contact zone widths. The variances of the averaged
Young modulus are second or higher order functions of this variable and this order
is directly dependent on the number of interface defects.

Comparing Figures 2.8 with 2.9 and 2.12 with 2.13 it can be seen that the
Young modulus in the matrix contact zone is, for the present problem, much more
sensitive to variation of its parameters than the same modulus in the fibre
interphase. Larger coefficient of variation of this modulus is obtained in the matrix
interface region rather than in the fibre contact zone. On the other hand, the
homogenised elastic properties are derived by averaging their values in both
regions. Thus, greater changes in these properties can be expected in the matrix
because of the larger volume of bubbles related to the fibre teeth.

Another interesting effect (cf. Figures 2.12 and 2.13) is the increase of
variances of the homogenised Young modulus in the matrix contact zone for
increasing width of this zone and the number of bubbles. The reverse effect occurs
for the fibre side of the interface and its teeth. This is due to the fact that bubbles
occupy more than half of a volume of the corresponding contact zone, and teeth
less than a half.
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Figure 2.12. Variances of probabilistically averaged Young modulus in fibre
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2.2 Elastostatics of Some Composites

Elastic properties and geometry of Q so defined result in the random
displacement field u;(x;®) and random stress tensor 0 ;(x;®) satisfying the
classical boundary—value problem typical for the linear elastostatics problem. Let
us assume that there are the stress and displacement boundary conditions, 0€, and

dQ, respectively, defined on Q. Let C,;, be a random function of C' class
defined on the entire € region. Let p denote the mass density of a material
contained in € and pf, denote the vector of body forces per a unit volume. The
boundary—differential equation system describing this equilibrium problem can be
written as follows

0, (x;0) = Cyyy (X, 0) £44(x;0) (2.48)
g;(xw)= %(3”,8(;6] o) . &”j&():; w)) (2.49)
o, j(xw)+p@) f;=0 (2.50)

Elu. (x;0)]= Eli. (x;0)]; xeoQ, (2.51)
Var(u, (x;0))=0; xedQ, (2.52)
Elo;(x;0)]n; = Elt;(x0)]; xe 0@, (2.53)
Var(c,-j (x;a)))nj =0; x€0Q, (2.54)

for a=1,2,...,n and i,j,k,I=1,2.

Generally, the equation system posed above is solved using the well—
established numerical methods. However it should first be transformed to the
variational formulation. Such a formulation, based on the Hamilton principle, is
presented in the next section. To have the formulation better illustrated, an example
of the periodic superconducting coil structure is employed. The stochastic non—
homogeneities simulate the technological innacuracies of placing the
superconducting cable in the RVE. Its periodicity cell in that case is subjected to
horizontal uniform tension on its vertical boundaries to analyse the influence of the
stochastic defects on the probabilistic moments of horizontal displacements. The
stochastic variations of these displacements with respect to the thickness of the
interphase constructed are verified numerically. Stochastic computational
experiments are performed using the ABAQUS system and the program POLSAP
specially adapted for this purpose.
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2.2.1 Deterministic Computational Analysis

The main idea of the numerical experiments provided in this section is to
illustrate the horizontal displacements fields and the shear stresses obtained for the
deterministic problem of uniform extension of the periodicity cell quarter. Both
Young modulus and Poisson ratio are assumed here as deterministic functions; for
the purpose of the tests, the program ABAQUS [1] is used together with its
graphical postprocessor. The periodicity cell quarter has been discretised by 224
rectangular 4—node plane strain isoparametric finite elements according to Figure
2.14.

Figure 2.14. Discretisation of the fibre-reinforced composite cell quarter

The symmetry displacement boundary conditions are applied on the horizontal
edges of the quarter as well as on the left horizontal edge, while the uniform
extension is applied on the right vertical edge of the RVE. The standard deviations
of the composite component Young moduli are taken as o(e,) =4.2 GPa, o(e,) =
0.4 GPa and the stochastic interface defect data are approximated by the following
values: E[n]=3, o(n)=0.05E[n}0.15, E[rF0.02R, o(r)=0.1R=8.0E-4.
Probabilistically averaged values of the interphase elastic characteristics are
obtained from these parameters as follows E [ek E3.82 GPa, Var(e, )=1.48 GPa,

v,=0.324 with the interphase thickness equal to Ak=0.0104. Four numerical

experiments have been carried out for these parameters taking the values collected
in Table 2.1.

Table 2.1. Young modulus values of the interphase for particular tests
Test number 1 2 3 4
€y ) E[ek] E[ek]_3"7(ek) E[ek ]+3'0'(ek)
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Horizontal displacement fields and the shear stress fields for particular
experiments are presented in Figure 2.15 and 2.19 (test no 1), Figure 2.16 and 2.20
for test no 2, Figure 2.17, 2.21 for test no 3 and Figure 2.18 for test no 4.

Comparing these results, it is seen that a decrease of the Young modulus value
lower than its expected value results in a jump of the horizontal displacements field
within and around the interphase. This effect can be interpreted as the possibility of
debonding of the composite components caused by the worsening of the interphase
elastic parameters, which confirms the usefulness of the presented mathematical—
numerical model in the interphase phenomena analysis. It should be underlined that
in other models of interphase defects and contact effects at the interface, the
horizontal displacements have discontinuous character too. On the other hand,
increasing the Young modulus above its expected value does not introduce any
sensible differences in comparison with the traditional deterministic model for the
perfect interface.

Analysing the shear stresses fields ¢, (xl.) collected in Figures 2.19 and 2.21 a

jump of the respective values of stresses at the boundary between the fibre and the
interphase region is observed in all cases. In the case of tests no. 1, 2 and 4 the
shear stress fields have quite similar characters differing one from another in the
interface regions placed near the horizontal and vertical edges of the periodicity
cell quarter. The Glz(xl.) field obtained for test no. 3 has decisively different

character: for almost the entire interface the jump of stresses between the matrix,
interphase and fibre regions is visible. It may confirm the previous thesis based on
the displacement results dealing with the usefulness of the model proposed for the
analysis of the interface phenomena.
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Figure 2.15. Horizontal displacements for test no. 1



Figure 2.16. Horizontal displacements for test no. 2

Figure 2.17. Horizontal displacements for test no. 3
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Figure 2.18. Horizontal displacements for test no. 4

Figure 2.19. The shear stresses for test no. 1
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Figure 2.20. The shear stresses for test no. 2
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Figure 2.21. The shear stresses for test no. 3

The general purpose of the computational experiments performed is to verify
the stochastic elastic behaviour of the composite materials with respect to
probabilistic moments of the input random variables: both the Young moduli of the
constituents as well as the stochastic interface defects parameters. The starting
point for such analyses is a verification of the probabilistically averaged Young
modulus in the interphase (example 1). This has been done by the use of the special
FORTRAN subroutine, while the next tests have been carried out using the 4—node
isoparametric rectangular plane strain element of the system POLSAP. Material
parameters of the composite constituents are taken in examples 1 to 3 as
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E(e,) =84.0 GPa, v,=0.22, o(e;)=4.2GPa, E(e,) =4.0 GPa, o(e,) = 04 GPa,
v,=0.34 (expected values and standard deviations of the Young modulus and

Poisson ratio, respectively).

2.2.2 Random Composite without Interface

Defects

The main aim of the numerical analysis is to verify numerically the elastic
behaviour of a fibre composite when the Young modulus of composite components
18 Gaussian random variable. Moreover, numerical tests are carried out to state in
what way, for various contents of fibre (with round section) in a periodicity cell,
the random material properties of reinforcement and matrix influence the
displacement and stress distribution in the cell. A quarter of a fibre composite
periodicity cell is tested in numerical analysis and its discretisation is shown in
Figure 2.22.

Figure 2.22. Discretisation of the periodicity cell quarter

Numerical implementation enabling the computations is made using a 4—node
rectangular plane element of the program POLSAP (Plane Strain/Stress and
Membrane Element). The composite structure is subjected to the uniform tension
(100 kN/m) on a vertical cell boundary (60 finite elements with 176 degrees of
freedom). Vertical displacements are fixed on the remaining cell external
boundaries and the plane strain analysis is performed. Twelve numerical tests are
carried out assuming the fibre contents of 30, 40 and 50 % and the resulting
coefficients of variation are taken from Table 2.2.

Table 2.2. Coefficients of variation for different numerical tests

Test number ole) ofey)
1 0.10 0.10
2 0.10 0.05
3 0.05 0.10
4 0.05 0.05
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Each time the first two probabilistic moments of the displacements are
observed at the interface and on the tensioned vertical edge. In the case of stress
expectations, location and maximum value of reduced stress are examined. Figures
2.23 and 2.24 demonstrate radial displacement coefficients of variation of points
belonging to the fibre—matrix boundary, which depend on the angle  describing

their locations on this boundary.

The results of test no. 1 (Table 2.2) are presented in Figure 2.23, and the next
figure shows the results of test no. 3; results of the remaining tests (no. 2 and 4)
agree with them respectively. In both cases coefficients of variation for 8 =90°
are omitted on the graphs because of their large values. For fibre contents equal to
50%, they are approximately 1.5 times greater than for 8 =0° (disproportion of
the data would give an illegible picture). Therefore, it can be concluded that the
randomness of displacements on the considered boundary depends mainly on the
random character of fibre elastic properties, which means

afu(x)=ale lsxe o, (2.55)
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Figure 2.23. Coefficients of variation in test no. 1
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Figure 2.24. Coefficients of variation in test no. 3

Fibre contents in periodicity cell influence also displacement coefficients of

variation on 0Q,, . This influence is visible especially at 0° <0 <45°. For 40%

contents this decrease is not so sharp, and for 50% plane fraction the tendency is
the opposite: the coefficient increases up to about 1.5 times of the value obtained at

0 =0". In a physical way it may be interpreted as increasing the random measure
of uncertainty about displacements perpendicular to the fibre boundary of the
points belonging to its upper part with increasing fibre radius.

Figures 2.25-2.26 show displacement coefficients of the variation of horizontal

points belonging to a vertical, uniformly tensioned edge of periodicity cell obtained
in tests no. 1, 2, 3 and 4 respectively. Real numbers in decreasing order denote
height on the vertical tensioned edge on the horizontal axes of these figures.
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Figure 2.26. Coefficients of variation in test no. 2
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Figure 2.28. Coefficients of variation in test no. 4

The main conclusion from these results is that the random character of the
matrix elastic properties influences the randomness of displacements at the
tensioned edge of the composite specimen tested. Analogously to the previous
observations it can be written that
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ofu(x)]=ale,]; x€ dQ; (2.56)

Let us note that the random character of fibre stiffness has rather secondary
influence here. The curves describing displacement variation coefficients on the
edge are becoming less and less sharp together with an increase of the coefficients
of variation of the fibre Young modulus. Increase of fibre contents in the
periodicity cell, as expected, in all cases decreases variation coefficients of
tensioned edge displacements, which physically can be interpreted as increasing
stiffening of periodicity cell by the fibre.

Now, let us analyse expected values of maximum stresses (in MPa) in fibre and
matrix specified in Figure 2.29. Darker bars show the maximal stresses in the
matrix region, while lighter bars denote the fibre region, respectively.

Generally, it can be observed that the difference between the obtained expected
values and the results of deterministic tests is approximately equal to the
computational error. This difference would undoubtedly be much bigger if the
formula describing these values included a component connected with elasticity
tensor derivatives. The present version of computer program includes only the first
two components, which correspond with expected values of displacement
functions.

Figure 2.29. Expected values of maximal stresses

The results obtained lead to the conclusion that the most important factor
influencing the value of maximum stresses is unquestionably the fibre radius, cf.
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Figure 2.29. In the case of the matrix region, maximum stresses increase
approximately in direct proportion to fibre radius increment

Elo, (0)]=R; xeQ, (2.57)

To get an analogous relation for maximum stress appearing in the fibre, it is
necessary to make a more precise numerical analysis. In tested examples with
plane fractions of 30, 40 and 50% extremum appeared at 40% contents of fibre in
the periodicity cell. Another factor, which influences the expected values of
maximum stresses within a given material, is its coefficient of variation for the
Young modulus. The following relation can be formulated:

Elo,, (D] =~ole]; xeQ, (2.58)

Finally, it can be observed that there is a third—order influence of stronger
material random changes of elastic features on maximum stresses in the matrix,
especially with decreasing fibre contents in the RVE.

In the context of the present numerical analysis of maximum stresses it should
be added that, apart from changes in the expected values of these stresses, a change
of their locations was observed. In order to state the relation between the location
of changes in the direction of the stress functions extremum and fibre radius
increment it would be necessary to consider a wider range of this radius variation
(equivalent to, for example, a surface fraction of 10 to 60%) with simultaneously
increasing the number of tests (each 1 to 5% for example). The most essential thing
would be, however, creating a mesh much more precise than the one used in the
above tests, especially near the composite interface, where we have, of interest to
us, maximum stresses.

2.2.3 Fibre-reinforced Composite with Stochastic

Interface Defects

The subject of the third numerical example is the fibre—reinforced periodic
composite, which has been discretised in Figure 2.30 as a cell quarter with smaller
contact zones on the left and with larger ones on the right. The composite structure
is subjected to uniform tension on the vertical cell boundary. Six numerical tests
have been performed assuming interphases with different values of the total
number of defects (in turn: 0%, 25% and 50% of the interface length). In each test,
the first two probabilistic moments of the displacements are observed on the phase
boundary and on the vertical edge subjected to tension and the coefficient of
variation for displacements.
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Figure 2.30. Quarter periodicity cell mesh for the SFEM analysis
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Figure 2.31. Expected values of horizontal displacement at the interface
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Figure 2.32. Coefficients of variation of horizontal displacements at the interface
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Figure 2.33. Expected values of horizontal displacements at the tensioned edge
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Figure 2.34. Coefficients of variation of horizontal displacements at the tensioned edge

The expected values of the displacements and their coefficients of variation are
placed on the vertical axes of all figures. The angle 3, which determines the
location of a point on the fibre—matrix interface with respect to the x or y—
coordinate on the tensioned edge, and which is marked on the vertical axes.

A further general observation is a direct proportionality between the number of
interface defects and the volume of the contact zone as well as the expected values
or coefficients of variation of these displacements. Small differences occur in the
interface expected values of displacements for larger values of the angle [3.

By comparing the coefficients of variation of the interface displacements
(Figure 2.32 and 2.34) quite different forms for the relation between these
coefficients and the angle B are observed. The model with a large contact zone
shows a high sensitivity to the number of defects and the changes for the small
contact zone are proportional. In the case of the coefficients of variation of the
tensioned edge horizontal displacement both the models give approximately
reversed effects. For example a small contact zone causes larger coefficients for
smaller 3 values than for the larger ones (Figure 2.32). For both sizes of the contact
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zones the changes in the coefficient o are inversely proportional to the increase in
the number of discontinuities and show some similarity.

Finally, in both models the expected values of the displacement are quite
similar with respect to their locations. In the large contact zone (Figure 2.31 and
2.33) the differences between the obtained expected values of displacements for
0%, 25% and 50% of discontinuities are more significant.

2.2.4 Stochastic Interface Defects in Laminated

Composite

The two—component layered composite has been tested in this example. The
discretisation into 72 finite elements and 233 degrees of freedom as well as the
mixed boundary conditions is shown in Figure 2.35. Both layers have been
uniformly extended in the opposite directions to verify the influence of interphase
between them on the overall behaviour of the structure.

o\ =
E

Figure 2.35. Two—layer laminate in the computational shear test

Ten numerical experiments have been carried out in the example: the
deterministic problem (test—d) and the stochastic one without interface defects
(test—s). In the next experiments the standard deviations of the defects are taken as
o[r]=0.1- E[r], o[n]=0.1- E[n], and the expected values are shown in Table 2.3

(contribution of the boundary occupied by bubbles to the total boundary is given in
brackets).

Table 2.3. The expected values of the interface defects tested

Test1 |Test2 |Test3 |Test4 |Test5S |Test6 |Test7 |[Test8§
E[r] |5.0E-2 |5.0E-2 [5.0E-2 |5.0E-2 |1.0E-1 |1.0E-1 |1.0E-1 |1.0E-I
E[n] |5 10 15 20 5 10 15 20
(10%) | (20%) | (30%) | (40%) | (20%) | (40%) | (60%) |(80%)

The results of the analyses have been collected in Table 2.3, which shows the
expected values and the coefficients of variation of the displacements and are
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generally consistent with those obtained experimentally (in the range of expected
values). The increases of the expected values in comparison to the results obtained
in test—d and test—s are included also in this table. The coefficients of variation of
the horizontal displacements for smaller and greater interphase are presented in
Figure 2.36 and 2.37 as a function of the location of a point on the 92 boundary.

On the horizontal axis the height of the point (%) in decreasing order is presented:
the coordinate 2.5 denotes the point belonging to the interface and 2, region on the
extended €2, boundary, while the coordinate 5.0 denotes the point belonging to the
upper Q, boundary.

Table 2.4. The expected values and coefficients of variation of the displacements tested

Test-d |test-s |test1 |test2 |test3 |testd |testS | test6 |test7 | Test
8

E[q] 1924 |[1.939 [2.0492.089|2.134|2.188|2.686 |2.844 [ 3.065 | 3.408
(E-2) [2.610 [2.633

AE[q] | -0.8 0.0 5.7 7.7 10.1 [12.8 2.0 8.0 16.4 (29.4
(%) -0.9 0.0

olgl |- 0.082 1 0.078 ]10.080 | 0.083 | 0.089 | 0.088 | 0.098 | 0.120 | 0.158

Generally, all the results computed show that the most sensitive region to the
input random parameters is the point located on the weaker material (matrix) and
the interphase on the extended €2, boundary. Moreover, analysing the increases of

the expected values of horizontal displacements on the tensioned boundary the
significant influence of the stochastic interface defects introduced can be observed.
In all tests performed the displacements obtained are greater than for the
composites without defects between the composite constituents.

Moreover, the increases of the displacements analysed increase faster than the
increases of the total length of the boundary occupied by the bubbles, which
follows the stochastic nonlinearity of the model presented. The diagrams of the
displacements have analogous characteristics to those obtained for the coefficients
of variation presented later. However, considering the large disproportions between
the values computed near the interphase and outside it, these graphs have been
omitted.
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Figure 2.36. Coefficients of variation of horizontal displacements for shear test (I)
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Figure 2.37. Coefficients of variation of horizontal displacements for shear test (II)

Comparing the coefficients of variation of the horizontal displacements it is
seen that, especially in case of tests no. 5 to 8 (the interphase twice as large as for
tests 1 to 4) the significant increase of these displacements is about 95% in case of
test no. 8. These increases are analogous to the increases of expected values greater
for displacements rather than the corresponding increases of total length of
interface boundary occupied by the bubbles.

As can be expected, the statistical response of the laminate should depend on
the contrast between stronger and weaker layer material properties, interphase
elastic parameters, the total number of layers in the composite etc. Essentially
different situation can be observed when both material properties and external load
are introduced as random variables [273].
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2.2.5 Superconducting Coil Cable Probabilistic

Analysis

The main ideas of the experiment [193] are as follows: (i) comparison of the
stochastic behaviour of the superconducting coil cable in the original geometry
with the model in which the technological nonhomogeneities have been
probabilistically averaged; (ii) verification of the model sensitivity to the assumed
thickness of the interphase introduced.

The example of the RVE analysed is presented in Figures 2.38 and 2.39 (all
geometric dimensions are given in mm). A single discontinuity is modelled by
complementing two circle quarters (teeths with their sharp sides directed to the
interior of the superconducting cable). Their radii are equal to 1.5 mm for defects
on the interface superconducting cable—tube and 2.0 mm for defects on the
interface cable—jacket. The periodicity cell is subjected to a horizontal uniform
tension on its vertical boundaries; due to symmetry only one quarter of this cell is
employed. Displacement boundary conditions on all the remaining external
boundaries are assumed to satisfy the symmetry conditions.

15,
INSULAT 10N 12_|
il
JACKET
TUBE
TEE | e
[telite]
SUPERCONDUCT ING
CABLE _
I T
L 40 w9
1.5 51 I
54
Figure 2.38. Superconducting coil cable RVE geometry
[T J 7
L1

Figure 2.39. Quarter periodicity cell mesh for the superconductor
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The elastic properties and their probabilistic characteristics of the RVE
components, the expected values and the standard deviations of Young moduli,
Poisson ratios and Kirchhoff moduli are collected in Table 2.5.

Table 2.5. Elastic characteristics of composite components

Material Ele] [GPa] | o(e) [GPa] |4 G [GPa]
Tube 205.0 8.0 0.265 81.0
Superconductor 182.0 0.0 0.300 70.0
Jacket 126.0 12.0 0.311 48.0
Insulation 36.0 0.0 0.210 11.0

The following tests are performed: deterministic test including defects non—
averaged (test 1), an experiment without defects (test 2), an experiment with
defects averaged in the interphase (test 3) or over the finite elements which they
belong to (test 4). The first two probabilistic moments of the displacements are
observed in each test on the interface determined by a radius equal to 9.0 mm
(between the lower superconductor interphase and the superconductor region).
Four additional tests are performed in test 3 to verify the results variations with
respect to the interphase thicknesses: test 3A, where the thickness is equal to the
expected value of the relevant geometric dimensions of interface defects, test 3D
with thickness given by eqn (2.22) and tests 3B and 3C with the intermediate
thicknesses.

The results of these computations due to tests numbered 1 to 4 are presented in
Figures 2.40 and 2.41: the expected values of the horizontal displacements and
their coefficients of variation. The first two moments are marked on the vertical
axes of these figures, while the angle 8, which determines the location of a point
on the interface considered with respect to the x—coordinate on the horizontal axes.
The results of tests 3A to 3D are collected in Table 2.6 presented below the figures.
The expected values of displacements observed (in mm) are given in the upper row
of each table cell and the coefficients of variation in the lower one.

E[q] [mm]
1.1
I R BN
0.9 R
0.8 1 | " ctest] N
—Oo—test 2 N
0.7 T+ " test3 3 N
-+ -test4 s\l
0.6 : 7 B
0 9 18 27 36 45

Figure 2.40. Expected values of horizontal displacements at the tensioned edge
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Figure 2.41. Coefficients of variation of horizontal displacements at the tensioned edge

Table 2.6. The expected values and the coefficients of variation of horizontal displacements

B[] Test 3A Test 3B Test 3C Test 3D
0 1.066 1.069 1.078 1.085
0.0241 0.0237 0.0235 0.0233
9 1.047 1.053 1.057 1.062
0.0239 0.0238 0.0234 0.0232
18 0.985 0.993 0.994 1.003
0.0236 0.0234 0.0231 0.0230
27 0.895 0.897 0.908 0.910
0.0239 0.0235 0.0234 0.0231
36 0.783 0.784 0.784 0.790
0.0241 0.0238 0.0235 0.0232
45 0.631 0.634 0.639 0.645
0.0212 0.0212 0.0213 0.0214

Generally, it can be observed that in all stochastic tests the expected values of
horizontal displacements are greater than the corresponding values obtained from
deterministic tests, which follow equation (1.134). The greatest expected values of
displacements observed are obtained for test 4: from 50% (for f=0°) to 100% (for
B=80°) greater than in the remaining tests. Analogous observation can be done for
the coefficients of variation. Generally, these facts follow the great variances of the
Young moduli in finite elements containing defects averaged in comparison to the
remaining elements.

On the basis of these results it can be stated that the observed probabilistic
moments of displacements are strongly sensitive to the scale of the composite
structure, which probabilistic averaging is applied in. A rapid decrease of the total
area of the region averaged results in a significant increase of the effective Young
modulus and much smaller increases of the expected values for the displacements.
Further, the expected values obtained in test 2 (without including interface defects
in any form) give the most exact results of the horizontal displacements computed
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in the deterministic model. However, for f=30°, which corresponds to the defects
location, the best approximation is obtained in test 3 (with interphase zones
introduced).

Finally, let us consider the stochastic variations of the interface horizontal
displacements to the interphase zone thicknesses illustrated by the results collected
in Table 2.6. It can be observed that increasing thickness causes a small increase of
the horizontal displacements and a decrease of the coefficients of variation. The
decrease (or increase) has a linear character and the maximum increment is no
greater than 2% of the values considered. It confirms the possibility of using the
model presented in the numerical analysis of stochastic non—homogeneities
(especially interface defects) in composite materials. To verify the applicability of
the model presented this sensitivity should be discussed as a function of interface
defects and elastic properties of composite component stochastic parameters.

Let us note that the SFEM methodology can be applied in further analyses for
numerical modelling of random both uncoupled and coupled thermal, electric or
magnetic fields in various superconducting structures [221,385]. A common
application of the stochastic perturbation technique with computational plasticity
algorithms will enable us to perform modelling of interface debonding in the case
of laminates and fibre-reinforced composites, which will essentially extend our
knowledge of composites behaviour in relation to the existing models
[251,384,386].
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2.3 Homogenisation Approach

Homogenisation methods present some specific approach to such
computational analysis of composite materials, where the homogeneous medium
equivalent to the real composite is proposed. The assumptions decisive for these
methods are introduced in the context of numerous equivalence criteria; usually it
is assumed that internal energies per unit mass stored in both systems are to be
equal. A concept of the Representative Volume Element (RVE) for the composite
is most frequently used together with the corresponding assumption on a scale
parameter relating dimensions of the RVE to the entire composite — it has to tend
to 0, which is usually unrealistic for most of engineering composites. It is evident
now that the spatial distribution of the reinforcement (uniaxially periodic, with
rectangular, hexagonal, triangular periodicity or completely random according to
Gaussian or Poisson distributions) is of decisive importance for the effective
material tensors [52]. There exist some mathematical approaches, where the scale
parameter is assumed to be some small and positively defined [370]. It gives a less
restrictive model, but such an approach has no general corresponding FEM
computational implementations in the existing software. The essential differences
between these two methodologies are especially apparent in homogenisation of
dynamic and transient heat transfer problems, where dispersive effects are
observed under the last assumption only.

Most of the homogenisation methods have one common point — the necessity
of use of the so—called homogenisation functions. These functions are the solutions
of the cell problem on the RVE under periodic boundary conditions, where some
additional conditions can be imposed on external boundaries or/and interfaces
between the composite constituents. Some exceptions can be obtained for the 1D
homogenisation problems, where effective thermal (and/or elastic) parameters may
be derived directly. Let us note that if some further assumptions on composite
microgeometry are introduced (a composite has a specified number of components
in the periodicity cell and the shapes and/or location of the components are given),
then the closed form equations for the effective material properties for either 2 or
3D structures can be derived [6,65,253].

2.3.1 Unidirectional Periodic Structures

Let us consider a unidirectional heterogeneous bar in unstressed and unstrained
state, with periodic structure and with elastic properties piecewise constant. An
example of the structure under considerations is presented below (Figures 2.42 and
2.43).
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Figure 2.43. Unidirectional periodic two—component composite beam

Using the parameter € the displacements and stresses are asymptotically expanded
in the bar as follows [30,43,133,308]:

u'(x)=u’(x,y) +eu' (x,y) +u*(X,y) +... (2.59)
and

c‘x)=0"(x,y)+e0' (X,y) +€°07(X,y) +... (2.60)

where u”(x,y), 0 (x,y) are periodic, too; the coordinate x is introduced in the

macro scale (Figure 2.43), with y in the micro scale (cf. Figure 2.42). Introducing
these expansions into classical Hooke law it is found that

of(x)=0’x,y)+e0' (x,y) +£>03(x,y) +...

ou’ 1 9u’ ou' ou' (260
=e(y){ uxy), 1o (x’y)+e u(x.y) , ou (x’y)+..}

ox g Oy ox dy

whereas the equilibrium equation

st . (2.62)
+y =0
ox

results in
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dc’ 10906’ 9d0' dc' ,00°> 9do’ (2.63)
+e—+—+¢ +€ +..+y7(y)=0
ox € dy ox oy ox ay

Hence, the following zeroth, first and second order constitutive equations are
derived:

0 (2.64)
0= e(y) 2
dy
o E 3_,41 (2.65)
o —e(y){ ~ o
o' = e(y) u' o (2.66)
-y ox dy

Applying an analogous methodology, the equilibrium equation is expanded as

do’ o (2.67)
dy
0 1 2.68
0 +9% 4y(3)=0 269
ox  dy

It is observed that zeroth order displacements and stresses depend on the
macroscale coordiante only 1’ =u’(x) and 6° =0°(x), so that it can be written
that

0 1 2.69
() = e(y{au (), o' (x.y) ] (2.69)
ox dy

Integrating both sides of (2.69) over the periodicity cell of a bar, there holds

0 2.70
(g P @
Q

e(y) ox

which leads to the following description of the homogenised (effective) Young
modulus

Q) (2.71)
dy
g{e(y)

ol —
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Such a formulation makes it possible to derive the closed form equations for the
expected values and covariances of the homogenised Young moduli using classical
definitions of probabilistic moments or by an application of perturbation theory. It
is possible to derive such equations for particular engineering examples only if the
bar has a geometrical characteristics piecewise constant within its length. Let us
consider further the RVE built up with n piecewise constant components defined
on Q by the use of design parameters (e;, A, ) where e;=const. for ye [, and such

that e, e ; for i,j=1,...,n. Hence, the integration in formula (2.71) can be replaced
by

pen — 1 (2.72)
Al

i

M-

e.

! i

where the variables A;, [; denote the cross-sectional area and the length of the ith
structural element. After some algebraic transformations relation (2.72) can be
transformed to

ITe; 2.73)

el —

n
Y Alee,..e e ..e,
i=1

which can be efficiently implemented in any FEM computer program. Let us note
that an analogous procedure can be applied successfully for the transient heat
transfer problem Young moduli are to be replaced here by the relevant coefficients
of heat conduction.

If the general beam structure is to be homogenised, the equilibrium and
constitutive equations should be enriched with transversal effect components but,
for the composite beams having constant Poisson ratio within its length and various
Young moduli, the formulation posed above is quite sufficient for the needs of
computational analyses. Moreover, it should be underlined that the homogenisation
model for 2D and 3D problems is carried out similarly but the effective elasticity
tensor is to be introduced instead of the Young modulus only. As a result, it is not
possible to derive any closed form algebraic equations describing the effective
properties of a composite, which significantly complicates numerical analysis. On
the other hand, the randomness in multidimensional composite structures appears
usually in their geometry, too, which must be implemented in the FEM analysis
using some special finite element types.

Finally, considering further applications of the homogenisation approach in the
elastodynamics of engineering structures, the effective mass density of a composite
can be derived according to the spatial averaging method as [28,265]
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1
(eff) —
p= |Q !J;P(y)dY- (2.74)

Let us mention that this relation is used for any space configuration and
periodicity conditions of a composite. Since that, having a homogenised
elastostatic problem, especially in random case, further extension to the
elastodynamic analysis in the context of a stochastic second order perturbation
technique does not seem to be very complicated. The expected values for the
effective Young modulus can be obtained by the second order perturbation second
probabilistic moment analysis as [162]

B too, " o
ERD )= [0 )+ 80T () + LA A D () ) )b (375

—oo

Using classical probability theory definitions and theorems

Jp ()b =1, [ Abpg(b(y))db=0 (2.76)

—oo

JAD AV py bty )b = Covlp’.b'); 1<rs<R @

one can determine that
E[e(eﬁ) (y)]= e(ejf)O (y) + %é(eﬁ)'” (y)COV(br ’bx) (278)

Further, using the analogous methodology the covariance matrix for the
effective Young modulus Cov(e("ff ) ) is derived

Corel:ef )= Tl ()~ () el ) - 7)) b, )t

—oco

and, using the classical perturbation approach, there holds
400
= [0 () + Ab, e (y)+ L Ab, Ab, T (y) = e (y))

X (6470 (y) + Ab, T (¥) + 1 b, Ab, ST (y) =l (1) Y by, ) by,

After all possible algebraic transformations and by neglecting the terms of order
greater than the second, it is obtained that



Elasticity problems 75

oo
Covle; et )= Ab el (y)Abe T (y) g(b,. b, )dbydb, 279

—oco

=/ (y)el" " (y) Cov(b, . b,)

For the particular case of the two—component composite structure there holds

Jen & (Al + ALy ) eey (2.80)

Al Al T
7111 + 7222 e, Al +eAyl,

Let us consider the case of a 1D bar structure with two homogeneous
components having deterministically defined geometry (cross—sections and
lengths) and with Young moduli assumed to be the input random variables. The
zeroth, first and second order derivatives of the effective elasticity with respect to
the Young moduli of the composite constituents are obtained by analytical
derivation:

e  zeroth order components

o0 _ (AL + AL Ele, [Ele, ] (2.81)

Ele, |A L + Ele, JA,L,

e first order components

ae(ejf) B Alll(Alll +A212)E2[€2] ae(eﬂ) _ Azlz(Alll +A212)E2[€1]

de,  (EleJap +Ele Y des  (Ele,Jod,+ EleJaL (2.82)

e second order components

9’e'" _—2ALAL (AL +AL)E e, ] (2.83)
de? (Ele, JAL, + Ele, AL )

9" _ —2AL AL (AL +AL)E[e] (2.84)
de? (Ele, JAL, + Ele, AL )

32" 2ALAL(AL + Al Ele, [Ele, ] (2.85)

de,de, - (E[e2 ]Alll + E[el ]Azlz )%

Then, the resulting covariance matrix of the effective elastic behaviour for the two
component composite structure is described as follows:
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o e Jetel
Cov(el(eﬁ) ,el(eff))z Covle, e, ) —
de, Oe, (2.86)
e el :
Cov(el(fff) oS )= Covle,,e, ) ——
de,  Oe,
e Jolell)
Cov(e;eﬂ) e ): Covle,,e, ) ——
de, Ode,

To obtain the stochastic finite element model let us introduce the displacement
field approximation. The zeroth, first and second order stiffness matrices for the
homogenised bar structures may be written out by analogy to the previous
considerations:

. zeroth order stiffnesses

@ A1 =11 = Am[1 -1
K@ | € =Y 0 2.87
! -1 1 % (-1 1 (2.87)

with m denoting the total number of bar intervals with constant cross—sectional
(m) ,
area A" ;

. first order stiffnesses
K@e = K :é 1 -1
e 1|-1 1
(eff) (eff) _ (2.88)
K @A — K _¢ 1 1
JA [ |-1 1
K@ = K@ ~ e“al1 -1
ol ? -1 1

° second order stiffness
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K(eﬁ-)ve(cff)e(fff) _ 2K =0 K @44 — 0K

8(6(—M - ’ aAZ
K@ — 2°K“) o 2@ Al 1 -1
a Eal R (2.89)
e KD 11
oA 1l-1 1

K@ _ 9K A |: 1 —1:|

il B
K @A — 9K B et |: 1 _1:|

Aol 17 |-1 1

Hence, the canonical set of the second order SFEM equations can be rewritten as
follows:

K @0q 0 = Q° (2.90)

K 0q (@ = _K ()7 g0 (2.91)

K@ 0g @ — _2K(qﬁf),rqwff),scov(eﬁeﬁ')’ eﬁfff’)) (2.92)

which makes it possible to compute q“/”°, q'/" and q‘“”" and to calculate the
first probabilistic moments of displacements as

E[q(eﬂ)]z q“’ +%q(eﬂ),mcov(e’(_eﬂ)’e;eff)) (2.93)

Cov(q(eﬂ)r,q(ejf)s )= q<eﬁ'),rq<eﬁ'>.sCov(eieﬁ» el ) (2.94)

The expected values and cross—covariances of the stresses are obtained in
comparison to the heterogeneous model as

E[G’;eﬂ)e] (2.95)
={Ci(jzjl§‘)(e)0(q(6ff)0 +1 g +Ci(jzf,f)(””q(eﬁ”s}B,E;)Cov(eﬁeﬂ), elel)

and

COV(O-i(jeﬂ')e’Gl(jefj")f'): BOBL I Cov(el), ey

)(e)0 0 ), off ), R F(f).s  (eff )0 0
X{Cl;ijl?‘ )e) C;jijlﬁl‘l)(f) q(eff) rq(eﬂ) S 4 Cl_(ﬂecjl?)(e) rq(j%)(f) Yq(eﬂ) q(eff) (2.96)

(eff Ye)r (efF )0 (eff s (effI0 , ~(eff Ne)O (eI F)r  (eff s
cl ct +CiOocs q

(eff )0
ij ijmn q q ijmn qeﬂ }

The first computational example deals with Young moduli defined as
deterministic function and cross—sectional area being a random field, while in the
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second Young moduli of the constituents are only randomised. Due to the
homogenisation method presented, the effective Young modulus is obtained in the
form of a random field in both cases. Since the fact that homogenisation is only the
intermediate tool to analyse composite structures, the expected values and standard
deviations of displacements for homogenised structures are compared against those
obtained for real, multi-component structure models.

The results of these analyses make it possible to modify the theoretically
established probabilistic homogenisation algorithm to approximate expected values
as well as covariances in the most efficient way. Neglecting the fact that effective
material characterisation presented above is derived assuming periodicity of a
composite, we try to use this approach in composites having small number of the
RVEs on their lengths.

The first numerical experiment deals with the homogenisation of a beam
clamped at both sides and subjected to uniformly distributed vertical static load
(see Figure 2.44), analogously to the computational illustration demonstrated in
[208].

Q(x 1)
VNN N TN N NN

v
| L2 | L2 |
| | |

Figure 2.44. Clamped beam homogenised
Young moduli of the composite beam constituents discretised here by the use
of 100 finite elements, are assumed to be deterministic variables, so that
eile;={1.00; 1.25; ...; 3.00}, while e,=2.0 GPa and v;=v,=0.30. The mesh nodes

are numbered sequentially from the left to right edge. The cross—sectional area of
the beam A, is an input random field defined as

E[A, ]= A°(1.0+0—I;3xr } r=1,..50 and A’=5.0x 107

w(A, A )= exp(—@} 2=0.10;00=0.07; r,s =1,....100

Other data are taken as follows:
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Q(x,)= f+7A° for £=49.61 and y=7.7126
while
1x2 = Ix3 :ﬁ(Ar)z’ le :Ix2 +I~c3’ ﬂ :% ; L=1O

It is observed that starting from deterministically defined Young moduli the
effective Young modulus random field is obtained as a result of the cross—
sectional area randomness.

The main purpose of the SFEM—based tests is to verify the variability of the
two—moment statistical response of the structure with respect to probabilistic input
random fields. The results of the analysis are collected in Figures 2.45-2.48. The
first two figures report expected values (vertical axes) as functions of location
around the midpoint of a beam (horizontal axes); variable NN denotes here the
node number where node 51 is the central point. The models outlined in the legend
correspond to different composite configurations related to e,/e, value — model 2R
is equivalent to computational analysis of the beam in its real heterogeneous
configuration with the Young moduli relation taken as 1.25. Thee data labelled as
model 2H denote SFEM analysis results for the same homogenised model. The
data obtained for model 1 denote the homogeneous beam withe;=e;, while ‘j” from
‘model jR’ or ‘model jH’ is equivalent to the relation taken from the set
{1.00;1.25;...;3.00}, accordingly.

E[uj

e

3.8E-02 T e

— — — Model 1

—— Model 6R
—1— Model 6H
—a— Model 7R
3.0E-02 —=aA— Model 7H
—O— Model 8R
—@— Model 8H

3.4E-02

2.6E-02 —&— Model 9R
—14 —o— Model 9H

2.2E-02 -

1.8E-02 +—— T NN

M 43 45 47 49 51 53 55 57 59 61

Figure 2.45. Expected values of the beam displacements
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Efu]
4.0E-02
L l—TT T TT-= -
3.8E-02 e ~]
- N~
L ~J — — — Model 1
3.6E-02 —=m— Model 2R
p —— Model 2H
3.48-02 —&— Model 3R
—2A— Model 3H
3.2E-02 3 i
—— Model 4R
3
2BP¥ < BTSB! L | o odel aH
3.0E-02 i =S
W ) ;\ﬁ\;\‘, —e— Model 5R
Pﬁf‘ —— Model 5H
2.8E-02 ./4: = A — H\
! A
2.6E-02 ’/‘
2.4E-02 ¢ NN
L3l 43 45 47 49 51 53 55 57 59 61
Figure 2.46. Expected values of the beam displacements
stdev(u)
2.0E-04
- +—1 TTTTTT T -
LT ™~ — = = Model 1
1.8E-04 + F~<d | —=—Model 2R
—{+— Model 2H
—&— Model 3R

1.6E-04

1.4E-04

—#— Model 3H
—o— Model 4R
——o6— Model 4H
—&— Model 5R
—o— Model 5H

1.2E-04 &= -
41 43 45 47 49 51 53 55 57 59

Figure 2.47. Standard deviations of the beam displacements
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NN
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stdev(u)
1.9E-04 = e = —
v 1 mT ™4

1.8E-04 L+~ ~a

1.7E-04 — — — Model 1
—— Model 6R

1.66-04 —{3— Model 6H

1.5E-04 —a— Model 7R
——2A— Model 7H

1.4E-04 —e— Model 8R

1.3E-04 —©— Model 8H
[ | —¢— Model 9R
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M 43 45 47 49 51 53 55 57 59 61

Figure 2.48. Standard deviations of the beam displacements

Analysing the results presented in Figures 2.45 and 2.46 as well as 2.47 and
2.48 it is seen that the homogenised structure approximates the real one with
satisfactory precision, which is observed especially for smaller values of the
relation e;/e;. It can be seen that this approximation effectiveness has the same
character for the expected values and standard deviations of displacements
analysed. It is characteristic that while probabilistic moments of structural
displacements are symmetric for symmetric boundary conditions imposed on the
homogenised beam then for a real composite beam this field has not the symmetric
character at all with greater values under the weaker part of a beam. Further,
relating standard deviations to the corresponding expected values, it is observed
that output coefficients of variance for displacements are equal to 0.05 (in real and
homogenised beam) which, taking into account limitations of the perturbation
technique, enable one to confirm the usefulness of this methodology for such an
analysis. It should be underlined that neglecting the bending effects in
homogenisation procedure has no effect on the differences observed because the
Poisson ratio of both composite components is the same while the 3D beam finite
element used is quite appropriate for that analysis.

Two-component linear elastic composite bar is built up with two homogeneous
components with the following material and geometrical data: E[e;]=3000, A,=4,
1;=15, E[e;]=2500, A,=2, [,=10 are considered (see Figure 2.49). The covariance
matrix of Young moduli variables is assumed to be equal:



82  Computational Mechanics of Composite Materials

m@,,@:[

90,000 75,000 3
x10°
symm. 62,500

while the external loads Q;=200 and Q,=250 are applied to the structure:

1 6 12
\
[ | —
I Q Q-
L 1 \ L, \

Figure 2.49. Two—component bar structure

The expected value and the covariance matrix of the effective Young modulus
are calculated first and next, probabilistic moments of displacements and stresses
for the original composite are computed. We compare these results against those
determined for the homogenised structure. The input data and the results of
computations are collected in Table 2.7 given below — the components of
covariance matrix are equivalent to 10% standard deviation of the input Young
moduli according to the following relation:

Cov(ei,ej):|: of 0102:|

symm. O,

Table 2.7.
Probabilistic data and intermediate results for computational experiments
Model | Input data Input data
no (1* probabilistic moments) | (2nd probabilistic moments)
C ( ) 90,000 75,000 <10°
_ ovie, e, )=
1 Ele;,e;]={3000,2500} symm. 62,500
41,649 16,659
(effh_ Covle! ' )= 0’
2 E[e'"]=2857,1437 ( ) symm. 6,663
, , 90,000 75,000
(e Covle! el )=|"" T Ix10°

Next, the first two probabilistic moments of horizontal displacements are
analysed along the bar. The results obtained for the stiffer part show better
approximation by model 2 (with covariance matrix homogenised), while for a
weaker part by model 3 (with original covariance matrix). Quite a different
situation is observed for the standard deviations — those resulting from model 3
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approximate those obtained in model 1 very well, while the results of model 2 are
definitely smaller.

Table 2.8. Expected values and standard deviations of beam displacements

Node Expected values Standard deviations

Number (Model 1 |Model 2 |Model 3 Model 1 Model 2 Model 3
(NN)

1 0 0 0 0 0 0

2 0.0789 0.0825 0.0829 7.81E-03  |5.89E-03 8.61E-03
3 0.1578 0.1649 0.1659 1.56E-02 1.18E-02 1.72E-02
4 0.2367 0.2474 0.2488 2.34E-02 1.77E-02  [2.58E-02
5 0.3156 0.3298 0.3318 3.13E-02 [2.35E-02 |3.45E-02
6 0.3945 0.4123 0.4147 391E-02 [2.94E-02 |4.31E-02
7 0.4734 0.4947 0.4976 4.69E-02 |3.53E-02 |[5.17E-02
8 0.5786 0.586 0.5895 5.73E-02  [3.80E-02 |5.97E-02
9 0.6838 0.6772 0.6813 6.77E-02  |4.06E-02  [6.76E-02
10 0.7891 0.7684 0.7732 7.81E-02  |4.32E-02 |7.56E-02
11 0.8943 0.8596 0.865 8.85E-02 |4.59E-02  |8.36E-02
12 0.9995 0.9509 0.9569 9.90E-02 [4.85E-02 [9.16E-02
13 1.1045 1.0421 1.0487 0.1094 0.0511 9.95E-02

Taking into account the results of computational experiments presented in Table
2.8, the following algorithm is proposed to model strictly periodic composite
beams using homogenisation—based SFEA.

Input random variables definition
E[br], Cov( r,bs)
Initial boundary value problem

€ £ __
0y, 7 =0
— solve:
K(S)Oq(g)o — QO
K©'q©" = K ©7q©°
K(S)Oq(e)(Z) _ (_ K (E),rq(s).s _ K(e),rsq(s)o k‘ov(b’ b )
Evaluation of effective Young moduli parameters
E[e(eftf') lCov(e‘eﬁ ol )
Homogenised boundary value problem :
(eff) (eff) _
C,; v =0
1%t SFEM solution (zeroth order homogenised displacements ):
— solve:

K(é’ﬂ)oq(eﬁ)o _ QO
[1] -

(eff )0 (eff ).r _ (eff).r o (eff )0
K q; " =-K LISy
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(€0 (e )2) _ (eff)or py (eff )s (effurs  (ef)0 ef)r (eff)s
K qy —(_2K q; " -K qdp; )Cov(e ,€ )

2™ SFEM solution (first and second order homogenised displacements )
— solve:

(eff )0 (eff )O _ 0
K*7q;35 " =Q

(eff )0 . (eff)r _ (eff ),r o (eff )0
K q,  =-K qp)

K(eﬂ)oquj]f)(Z) — (_ 2K(€ﬁ‘),rqg]]7”),s _ K(eﬁ),rsqgf]f)o )Cov(b’ b )
Final evaluation of displacements probabilistic moments
(eff) |, (efF)0 (eff)2)
E[‘],B ]—C]ﬁm +qp

o) ) Y (el (eff)us r
Cov(q( "q" )—qae[zl q;{/Z]JCov(b ’bs)

o

Figure 2.50. Algorithm of homogenisation-based SFEM analysis

It should be underlined that such a stochastic second order homogenisation
scheme has its basis in the computational observations only. However its results
are in good agreement with those observed for the real composite model subjected
to the same boundary conditions.

2.3.2 2D and 3D Composites with Uniaxially
Distributed Inclusions

This class of composites is equivalent to all 2D and 3D periodic heterogeneous
structures where isotropic homogeneous constituents are distributed periodically
along the x; axis, which in practice is observed in case of the periodic laminates.
Further, it should be mentioned that the effective elasticity tensor components valid
for these structures can be reduced to the periodic bar structure shown above only
if the 1D case is considered. The following system of partial differential equations
is considered here to calculate probabilistic moments of the effective elasticity
tensor [159]:

(o2 st v, sm 9

According to the general theory, the homogenised formulation of the problem has
the following form:

(Ci(jzjljr)uk’,),j:fi(x) u(x):u"(x), xe 0Q. (2.98)
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where the effective coefficients

C(Zy’ are given by the formula. The
iji

homogenisation functions xk[(y) are determined as the solution of the local
problem on the RVE

33 Cijkl (y3 )ail (ka" )+ Cijmn (y3) =0;xeQ (2.99)
J

for any y"™(y) periodic on the RVE. Since the heterogeneity distribution is
observed along y_ axis only, a solution should be of the form 2" (y)=7""(y;). It

yields the following problem for determination of %™ (y})

ai ., (y3 >aay3 (x;j" )+ c (yg) =0, xeQ (2.100)

for any x'"”(yg) being periodic on the RVE. Therefore, (2.100) is ordinary

differential equations system, which can be solved explicitly as

C,'3/<3(Y3)761?f’31 +Crn (73)= A . (2.101)

If the elasticity tensor components Cw are invertible, then

Zl?’fg = _{ Ck3j3 }_l Cj3mn + {Ck3j3 }1 Aj (2.102)

The periodicity condition results in <x'§"> =0 which introduced in (2.102) yields
3 /o

0= _<{Ck3j3 }_ICJ'Smn >Q + <{ Ck3j3 }_1>9Aj (2.103)

Therefore

(2.104)

A = <{ Ci3k3}_1 >; <{ Ck3j3}] Cj3mn>

Q

and there holds

_ B - B 2.105
lllc’jg=_{Ck3j3}lcj3mn+{Ck3j3}1<{Cj3q3}1>91<{C43p3}1Cp3mn>g (2109
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Taking into account that the state functions depend on y; axis only, the effective
parameters are expressed as

C(fff) :<C +C kl > (2106)
ijkl Q

ijkl ijm3°¥ m,3

Finally, the homogenised elasticity tensor components are given by

Ciil” =(Cu ) - <Cijm3{cm3p3 F'Cpmu >Q

+ <C,~jm3 { Co3p3 }—1 >Q <{ Cins }—1 >:<{ Cos }1 Coa >Q (2.107)

In case of isotropic and linear elastic constituent materials of this composite, it is
obtained after some algebraic manipulation [159,177]

<1—2v>2
. v 1-v)e 1-2v)e 1-v
cip e =(e ) (2 o e
(+v)i-2v)/, 1-v? [o [A+v)1=2v)
(I-v)e o
cf = 1
(1+v)(1-2v) (2.109)
1-vie /[,
<1—2v>
1-v
C(Eﬂ)=c(€ﬁ)=c(€ff)=c(3ﬂ)= Q 2.110
1133 3311 2233 3322 (1 +V)(1 _ 2‘/) ( . )
(1-v)e o

<1—2v>

p of 1-2v 1-v

Cflgz)=C§z’{f=< 2 > —<( )€> +< Q @2.111)
Q Q

(=v) 1-v? (A+v)(i-2v)
(1-v)e o
cen =) = € CeD — o - 1 (2.112)
1212 2121 (1+V) \ s “1212 2121 —1+v
€ | a

while the remaining components are equal to 0. The layered structure analysed in
this experiment has material characteristics corresponding to a glass—epoxy
composite: Ele;]= 84.0 GPa, o(e;)= 8.4 GPa, v,=0.22 and E[e;]= 4.0 GPa, 6(e,)=
0.4 GPa, v,=0.34; the volume ratios are taken as equal. The results of
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computational analysis are collected as deterministic quantities, expected values
and coefficients of variation computed for the particular components in Table 2.9
below.

Table 2.9. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components

Ci111=Con 29.2316 GPa 29.2260 GPa 0.0767
Cazz 10.4662 GPa 10.4566 GPa 0.0954
C1133=C3311=C0335=C3320 6.1479 GPa 6.1424 GPa 0.0954
Ci12=Cnny 34.3657 GPa 34.3601 GPa 0.0794
Ci21=Caip 50.7785 GPa 50.7785 GPa 0.0936
Cr303=Cs3» 51.5489 GPa 51.5608 GPa 0.0968

Comparing the results presented in Table 2.9 it is seen that there is no
difference between the deterministic result and the corresponding expected values
for effective tensor components, while the coefficient of variation has values
generally smaller or almost equal to the corresponding input variables value 0.1.
To verify the variability of the tensor with respect to input Young moduli expected
values, the MAPLE plot3d option for E [C;ig;] and a(cggng) has been applied; the
remaining components show almost the same tendencies. The range of variability
for both the composite components Young moduli is taken as £10% of the original
values and, as can be observed in Figures 2.51 and 2.52, Young modulus of the
weaker material appears to be the decisive parameter for the overall elastic
characteristics of this composite in terms of a homogenisation method applied.
Further, it can be noticed that an increase of the coefficient of variation oc(Cgfzf;)
results from decreasing matrix Young modulus, while the inverse relation is

observed in case of E [C;ifzﬂ) )

Figure 2.51. Expected values for C,3,; component



88  Computational Mechanics of Composite Materials

Figure 2.52. Coefficients of variation for C,3,; component

It should be underlined that the model for one dimensionally distributed
inhomogeneity is valid after some minor simplifications for the heat conduction
homogenisation of the same composites, since probabilistic numerical algorithm
has a quite general character.

2.3.3 Fibre-Reinforced Composites

2.3.3.1 Algebraic Equations for Homogenised

Characteristics

It should be emphasised that the homogenisation procedure can be applied to
the fibre—reinforced composite with anisotropic consituents, too. The effective
elasticity tensor in terms of different transverse and longitudinal Young moduli and
Poisson ratios can be calculated explicitly using the Mori—Tanaka or the self—
consistent analytical homogenisation technique as follows [18,31]:

o, [» 1 I 0 0 0][g,
0, k+m k-m 0 0 Of|&y 2.113)
o3| k+m 0 0 O0]]|&s,
Oy - m 0 0f] £y
(o sym. p 0]|&y,
O Pylén

where the following description for the constants k, I, m, n and p is applied:
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20 +enps + P0)
_m,m,(k, +2m, )+ k,m,(c,m, +c,m,) (2.115)
" e 2m, Yem, m, )

o Cokg b +m, ) +e,m, (k, +m,) (2.116)

Cf (km +mm)+cm (kf +mm)
| = Cflf (km +mm)+cmlm (kf +mm) (2117)

Cf (km +mm )+cm (kj +mm)
I, =1 2.118
nzcmnm+cfnf+(l—cflf—c l )—f n ( )

m“m
kf _km

There holds for matrix and fibre

[ -1
GT ET EL

1="2kv, (2.119)

2
n=E, +4kv; :EL+%

m=G,,p=G,

where ¢, and ¢,, denote fibre and matrix volume fractions of a composite measured
in the direction transverse to the fibres. The indices L and T denote longitudinal
and transversal elastic characteristics for the components. It can be observed that
closed form relations for effective elasticity tensor components are obtained in this
case without the necessity of a cell problem solution.

Two alternative ways of fibre—reinforced composite homogenisation have been
proposed below. Since the fact that the computational illustration for the SFEM
solution of the cell problem is shown in [192], then only the second order
perturbation based model is discussed here. The composite taken to illustrate
probabilistic moments of relevant material properties is exactly the same as in the
previous example. The final equations for the effective characteristics for a layered
and fibre—reinforced composite do not contain any shape parameters — different
forms of the reinforcement lead, according to some mathematical considerations, to
different equations rewritten however for the same parameters: material properties
and volume ratios of the constituents only. That is why such a comparative studies,
especially in terms of the random spaces of the material properties analysed, are
important.

The deterministic and the corresponding expected values as well as coefficients
of variation are collected in Table 2.10 for the components of the effective tensor k,
I, m, n and p, separately. Generally, it can be observed that, as previously noted,
expected values are almost equal to relevant deterministic quantities and the
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resulting coefficients of variation are almost equal to the corresponding input
probabilistic coefficients. Further, comparing the data collected in Tables 2.9 and
2.10 it can be noted that the layered structure has greater effective elastic
characteristics than the fibre-reinforced composite with the same constituents —
this observation is very important considering practical applications and
optimisation of composites.

Table 2.10. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components

k 6.8350 GPa 6.8216 GPa 0.0902

l 5.2983 GPa 5.2898 GPa 0.0909

m 3.5892 GPa 3.5840 GPa 0.0927

n 46.9052 GPa 46.9000 GPa 0.0938

p 4.0195 GPa 4.0121 GPa 0.0907

Further, see Figures 2.53—-2.62, the parameter variability of the expected values
of the effective parameters k, [, m, n and p (Figures 2.53, 2.55, 2.57, 2.59 and 2.61)
as well as their variances (Figures 2.54, 2.56, 2.58, 2.60 and 2.62) is computed
with respect to expected values of the Young moduli of the components. It is seen
that the expected values of all these parameters show greater sensitivity with
respect to stronger material Young moduli; all the changes are significant
especially for decreasing values of both moduli. As can be predicted from these
figures, the sensitivity gradients of all the parameters have positive signs — an
increase of any effective constant k, I, m, n and p results from the increase of
Young moduli of fibre or/and matrix. In further computational studies, the
probabilistic moments so computed may be applied in the FEM-based
probabilistic computational simulation for an engineering composite by using the
Monte Carlo simulation technique or, as is done in the first example, the SFEM
approach.

Figure 2.53. Expected values of the component k



Elasticity problems 91

Figure 2.54. Variance of the component k

Figure 2.55. Expected values of the component [

Figure 2.56. Variance of the component /
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Figure 2.57. Expected values of the component m

Figure 2.58. Variance of the component m

Figure 2.59. Expected values of the component n
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Figure 2.60. Variance of the component n

Figure 2.61. Expected values of the component p

Figure 2.62. Variance of the component p
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2.3.3.2 Asymptotic Homogenisation Method

2.3.3.2.1 Deterministic Approach to the Problem

The homogenisation of the n—component periodic composites in the context of
linear deterministic elastostatic problem is studied here; the effective modules
method worked out previously for two—component heterogeneous media is now
extended on the n-component composites to homogenise multi-component
materials in general form. The approach proposed enables particularly, as is
demonstrated, to calculate effective elastic characteristics for composites with
some interphases between the constituents. As it is known, the interphase in
engineering practice may be considered as the next homogeneous component of
the composite with small volume in comparison to the rest of a structure that
increases contact between reinforcement and matrix and can be crucial for the
composite macro—behaviour [59,255,270,314]. One of the interphase
computational modelling method is based on the special (both elastic and
elastoplastic) interface finite elements [238,260,318].

On the other hand, there are some approaches in the mechanics of composite
materials, where the interphase is the hypothetical region containing all interface
defects that appear between the original components of a composite. Usually, the
interphase is introduced with thickness and material parameters constant within its
region; ultrasonic emission seems to be the most efficient experimental method in
this field. Numerical studies based on this formulation and collected in this chapter
show the sensitivity of the periodic composite effective parameters to
strengthening and weakening, in the context of elastic parameters, of the
interphase. Due to the fact that the observations correspond with engineering
practice, it may confirm the usefulness of the method to homogenise n—component
heterogeneous media.

Very important aspect of the method proposed is that the effective modules
method in present extended version enables to homogenize the composite materials
with the microdefects appearing in the constituents — they have the dimensions
relatively small with comparison to the components. Next, we observe that the
method presented can be relatively easily transformed to the probabilistic case
where material properties as well as the periodicity cell geometry may be treated as
random; the Monte Carlo simulation method is the most recommended technique.
This formulation may be used to formulate and to compute the deterministic or
stochastic sensitivity, in a phenomenological or structural sense, to both material
and geometrical parameters of the composite that enable one to find out the most
decisive parameters for the entire computational homogenisation procedure.

The linear problem of elasticity is formulated for the n—component composite
shown in Figure 2.64 with the Representative Volume Element given in Figure
2.63 as follows:



Elasticity problems 95

do;;

&x./
G,-f-nj =p;;Xxed Qg k=12
uf =0;xed Q, (2.120)

O'if = C;fk/ (X)Elfz

e _ 1. ¢ €
| € =7 U T

000000

Figure 2.64. The RVE of plane composite

Let us assume that all interfaces of the composite are perfect in the sense that

ls]=0. fo,n"]=0 (2.121)

[/}

where the symbol [.] denotes a jump of the respective function values at the
interface. The homogenisation problem is to find the limit of solution u® with €
tending to 0. For this purpose let us consider a bilinear form ag(u, V) defined as
follows:

a(u,v)= [ Cyy (f) £;(u) £, (v)dQ (2.122)
Q

and the linear form:



96 Computational Mechanics of Composite Materials
L(v)= [Fv,dQ+ jpivid@Q) (2.123)
Q Ky

both in a Hilbert space
v={ive @) v, =0} (2.124)
characterised by the norm

”V"2 = J-gii(v)eij (v)dQ (2.125)
Q

A variational statement equivalent to the equilibrium problem (2.120) is to find
u® eV fulfilling the equation

a*(u,v)=L(v) (2.126)

for any ve V. Let us introduce for this purpose a space of periodic functions

P(Q)= {v,ve (H : (Q)y} so that the trace of v is equal on opposite sides of Q. Let

us denote for any u,ve P(Q)

a,(u,v)= [ Cyy (), (e, (v)dQ (2.127)
Q

and introduce a homogenisation function ¥, € P(€2) as a solution for the local

problem on a periodicity cell:
ay((l(ij)k +}’j5ki)nk,w)=0 (2.128)

for any we P(Q); J,; denotes the Kronecker delta while n, is the unit coordinate
vector. Assuming finally that:

Ciu € L~ (%) (2.129)
Cijkl = Ckl,jj = C_,';k/ (2.130)
3¢, > 0; Ctjklét:igk/ 2 C()gijéij > v[,jét:/' = éji (2.131)

we may introduce a homogenisation theorem as follows:

Homogenisation theorem
The solution u® of problem (2.126) converges weakly in space V
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£

u® Su (2.132)

if the tensor C;k,(y) is Q-periodic and its components fulfil conditions
(2.129-2.131). Solution u is the unique one for the problem

ueV: D(u,v)=L(v) (2.133)
for any ve V and
D(u,v)= [ D€, Wwe, (V)dY (2.134)
Y
where
Dukl |Q| y «?C(u)p + y,5pj) n,, (Z(kl)q + ylsqk )nq) (2.135)

As a result of this theorem, a limit for € — 0 gives a homogeneous elastic material
described by the tensor [163]:

C;Z]zy) |Q| ,[( Cini (V) +Cp )€, (X(k/) (Y))}i (2.136)

The most important result is that neither the local problem nor the statement
(2.136) really depend on the stress boundary conditions since that solution obtained
has a general character. To show formally these results, the local problem is
rewritten in its differential form

a%j(cijkl(f)sk/<uf))+ﬂ=0 1=yeQ;uf =0 for ye d Q (2.137)

Next, similarly to the stochastic perturbation approach, an asymptotic expansion is
employed in terms of the parameter € as follows:

uf (x)=u”(x,y)+eu’ (x,y) +£u® (X,y) +... (2.138)
where u" (x,y) are periodic in y with a periodicity cell Q. The main idea of this

expansion is presented schematically in Figure 2.65: to better illustrate the meaning
of (2.133) only a quarter of the composite is shown.
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X5

1

3uxy) U(xy) U'(X) Vi

Figure 2.65. First order asymptotic expansion of displacements in a composite

Let us note that differentiation separates the coordinates x and y, so that

g;(V)=¢; (v)+ el (v)

€ 7Y

where the strain tensors £ (V) 8 7 (v) correspond to small deformations

ooy L[ dv dv; voon 1[IV v,
£1(v) = 5{&j+8xi} £)(v) = {@Uy}

Thus, (2.132) can be rewritten as follows:
-2 -1 ) (1) 2,@ 4 _
(e L +¢ L2+L3)(ul. +&7u; )+E—O

where

d ou
Lu, =——| Cyu (y) 25
1 9 j[ ijki z )

ou J ou
Lyu; =Cyy(y)—— (&yk J—'—ay_(cijkl (y))gk
I j 1

Ju
Ly, = Cy, (y)gj(j)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

Next, we equate to 0 the terms with the same order of €, obtaining an infinite
sequence of equations. The relations adequate to its zeroth, first and second orders

can be written as
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Lluim) =0 (2.145)
Lu +Lu® =0 (2.146)
Llu,-m +Lu +L3u,.(°) +F, =0 (2.147)

The displacements fields u”, u!" and u® can be found from these equations
recurrently only if X and y are independent variables. Let us note also that the
equation

Lu,+P =0 (2.148)
with u; being Q—periodic function has a unique solution for

1 (2.149)
(P) =@£elidy =0

Further, if the unique solution u(x,y); x€ € of (2.148) is constant then for all x
(where x plays here the role of parameter) we have u, = const. Considering this

fact it can be obtained that
u® (x,y) =u,(x) (2.150)

which can be observed in Figure 2.65 as well. It can be observed that the first term
of the expansion of u does not depend on the micro variable y and can be
considered as a mean displacement altered by the higher order terms only. Thus,
(2.146) takes the following form:

d d 2.151
Lt (5.3 + = (C () 1l ()) =0 @D
Y, ox,
The solution is obtained by separation of X and y
(2.152)

d
u® (x,y) =x(k,>,-<y>g(u;"><x>)+u,-(x)
1

The last two equations give the formulation for the —periodic functions y ,;,; (y)

J a%(kl)m (y)] 0 (2.153)

gj{cm(Y) o, +§y_j<cijkl(y))=0
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which completes our consideration of general homogenisation method for linear
elastostatic problems.

It is relatively easy to see that the local problems for homogenisation functions
Xun: (y) reduce to the equations given above for any region €2, where 1<a<n

for the so—called fibre—like composite materials where one component is placed
into the next one, etc. Let us denote by T’ _,,, the interface between components

€Q,.; and €. Then the following conditions are true for a=2,...,nand xe [, :

[x¥]=0 (2.154)
and
= 2.155
Oj (Z(pq)) [ pqlJ ]r n;= F(pq)i r ( )
(a-l,a) (a-1,a)
— (a) (a-1) .,
[Cl’q"j]r(ufl' ) =C paij _Cpqij ; X€ r(u—l,11) (2.156)

Summing up all the considerations on the homogenisation problem (2.126), we
compute the effective elasticity tensor components given by (2.136) using the
homogenisation functions y,,, being a solution of a classical well—posed

boundary value problem with periodicity conditions on the external boundaries of
Q. The stress boundary conditions are equal to the difference of constitutive tensor
components at the particular composite interface. The variational formulation
necessary for a finite element formulation of the local problem can be introduced
as follows:

Y [Couen i) e ()d@==3 [0, (e h1vidl + [ fidQ (2.157)
Q

a=lQ, a=2T 0

which by neglecting body forces leads to

zlg.[cuklgkl(?((pq)) i dQ_ 221_ .[F(pq),v,dl“ (2.158)
a (a-l,a)

Having determined the homogenisation functions for the n—component composite,
the effective elasticity tensor components from (2.136) are calculated as the result.

The general configuration of the n—component composite denotes that there are
m interfaces in the periodicity cell where me N and m =n—1. It can be observed
that for coherent components, as was assumed at first, the case of m=n-1
(minimum value of m) is equivalent to the fibre—like composite characterised in
the previous section or the composite where n-1 components are embedded into
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one matrix. In that case the variational formulation of the homogenisation problem
has the following form:

n—1

Z IC,]kzskz(Z<pq>) £;(v)dQ=- 2 [Fopvi (2.159)

l—‘(lu)

Moreover, it can be seen that the n—component composite in a general
configuration generates, due to the component permutation scheme, the bounded
set of (n-1)! various effective elasticity tensors. If some components are disjoint,
the total number of these subsets must be included in the permutation procedure. It
would be interesting to calculate, due to the homogenisation method presented, the
upper and lower bounds of the effective elasticity tensor components for such a set
of permutations.

Next, it is observed that in the general case the effective elasticity tensor
components can be calculated by the following modification of (2.159):

021 Q.[CIJklgkl(Z(pq)) §(V)dQ =~ 21 FJqu)Vdr (2.160)

where the RHS summation is carried out along all interfaces detected in the
composite periodicity cell. Further, if any interface shows some finite number of
nonsmoothness, the integration over such contour to be replaced with the sum of
integrals defined on partially smooth curves composing the interface.

Finally, it is observed that the effective modules method of homogenisation
formulated by (2.158) — (2.159) enables one to calculate effective properties for
the composites including microdefects or interface defects; it can be done by
equating the appropriate material characteristics to O for these regions. For this
purpose, the computational procedure applied in numerical experiments can be
linked with the program for digital processing of composite cross—section images.

Now let us consider the Finite Element Method discretisation of the
homogenisation problem. Let us introduce the following approximation of
homogenisation functions y,,,, (i,r,s=1,2) at any point of the considered

continuum € in terms of a finite number of generalised coordinates g,,,, and the

shape functions ¢,,
Xosyi = Pialrsya » ir,s=12, a=1.,N (2'161)
In the same way the strain €;(y,,,)) and stress 0;(¥,,,) tensors are rewritten as

& (l(m) = BijaQ(m)a (2.162)
Oiiirs) =0y (?C(m) = Cijklgkl (Z(m)) = Cijleklaq(rx)a (2.163)
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where B,, represents the shape functions derivatives. Introducing (2.162) —

klow
(2.163) into the virtual work equation in its variational form it is found that

.!lgl(r.v)i,jcijklx(rs)k,l dQ = 2 J.(Sx(rs)i [F(r,r)i:'l"p dr’ (no sum on r,s) (2.164)

p=2T,

Furthermore, let us define the composite global stiffness matrix as

E E
_ (e) _
K.z _Z{Kaﬁ =2 JC::/HB' BkwdQ (2.165)

ijo
e=1 Q,

Using this notation in (2.164) and minimising the variational statement with
respect to the generalised coordinates we arrive at

K“ﬂq(m')d = Q(m‘)lx (2 166)

with @, , being the external load vector containing the boundary forces given by

(2.155) — (2.156), which is employed to determine the homogenisation function
Xy in three numerical tests for r,s=1,2. To ensure the symmetry conditions on a

periodicity cell, the orthogonal displacements and rotations for every nodal point
belonging to the external boundaries of € are fixed. For the functions y . so

defined we compute the stresses 0 (¥,,,) and average this tensor numerically

over the region Q according to the formula (2.136).

The fibre—reinforced glass—epoxy composite example with an interphase
between the fibre and the matrix is analysed in computational experiments [163].
The microgeometry of the periodicity cell is shown in Figure 2.66, while material
characteristics of the constituents are collected in Table 2.11.

The weaker interphase in our tests may simulate any boundary defects
appearing in fibre—reinforced composites that are caused by the difference in
thermal stresses during the fabrication process in metal matrix composites (MMC)
for instance. On the other hand, a stronger interphase model homogenised
numerically is equivalent to the case when some layer between the fibre and matrix
is introduced to enforce component interface bonding strength.

Generally, 11 groups of computational experiments are performed to compute
the effective elastic and thermal characteristics for the composite considered.
Material properties are increased in the interphase starting from 50% of additional
matrix characteristics with increments equal to 10% for each of the next test group.
Thus for the 6th group the interphase equivalent to the matrix is obtained and for
the 11th the material properties of the interphase are equal to 150% of the matrix
parameters; the results of this analysis are presented in Table 2.12.
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Figure 2.66. Microgeometry of the periodicity cell

Table 2.11. Material data for composite components

Material e v
Glass fibres 72.38 0.200
Epoxy matrix 2.75 0.350

Table 2.12. Effective elastic and thermal parameters

Test no C l(ﬂ"fl ) CI<ILJZ2) Cl(ze_lff;)

1 8.566 3.122 14.577
2 8.815 3.209 14.580
3 9.020 3.278 14.582
4 9.197 3.337 14.584
5 9.338 3.391 14.586
6 9.474 3.445 14.588
7 9.610 3.503 14.589
8 9.761 3.572 14.591
9 9.949 3.681 14.593
10 10.619 4218 14.594
11 11.399 4.940 14.596

Analysing these results it can be concluded that all effective parameters show
some sensitivity to the improved interphase and its material parameters. The

greatest sensitivity is obtained for C\7) and C{/) components, while the smallest

for C7). To obtain more realistic results it will be valuable to introduce
anisotropy in the equivalent parameters of the interphase; in that case the
sensitivity of the C',) component increases significantly. However, neglecting
these disproportions the results computed lead us to the conclusion that the
improved homogenisation method confirms the crucial role of the interphase on the
overall characteristics of the composite structure, which is observed in engineering
practice. Moreover, the variability resulting from computational experiments
confirms generally the usefulness of the homogenisation method proposed. Other
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series of computational tests are done to the visualisation of the homogenisation
functions as well as the resulting stresses and various numerical error estimators.

Figure 2.67. Boundary conditions for homogenisation problems X“

. . L . 1
Figure 2.68. Horizontal components of the homogenisation function ¥,

. . . . . 11
Figure 2.69. Vertical components of the homogenisation function
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. . . . . 11
Figure 2.70. Horizontal stresses in the homogenisation problem %

Figure 2.71. Vertical stresses in the homogenisation problem x“

Figure 2.72. Shear stresses in the homogenisation problem X”
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. S . . 1
Figure 2.73. Vortex visualization of the homogenisation function %

: . . . 11
Figure 2.74. Relative error of the stresses determination in the problem 7

. . . S - 1
Figure 2.75. Relative error for strain determination in the homogenisation problem %,
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. . . . 1
Figure 2.76. Relative error of the strain energy determination 7%

: L . 12
Figure 2.77. Horizontal components of the homogenisation function 7%

. . o . 12
Figure 2.78. Vertical components of the homogenisation function %
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Figure 2.79. Total values of the homogenisation function X]Z

. . L 12
Figure 2.80. Horizontal stresses in the homogenisation problem 7

Figure 2.81. Vertical stresses in the homogenisation problem xlz
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Figure 2.82. Shear stresses in the homogenisation problem Xn

. . . o 12
Figure 2.83. Equivalent von Mises stresses in the homogenisation problem ¥

. S I . 12
Figure 2.84. Vortex visualization of the homogenisation function %
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. . . . . 12
Figure 2.85. Relative error of the stresses determination in the problem 7

. . T 12
Figure 2.86. Relative error of the strain determination in the problem 7

Figure 2.87. Relative error of the strain energy determination xlz
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. . L . p2)
Figure 2.88. Horizontal components of the homogenisation function 7%

: L . 2
Figure 2.89. Vertical components of the homogenisation function ¥

Figure 2.90. Total values of the homogenisation function X22

111
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. . . o »
Figure 2.91. Horizontal stresses in the homogenisation problem 7

Figure 2.92. Vertical stresses in the homogenisation problem Xzz

Figure 2.93. Shear stresses in the homogenisation problem X22
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. S A . 2
Figure 2.94. Vortex visualization of the homogenisation function %

. L 2
Figure 2.95. Relative error of the stresses determination in the problem 7

Figure 2.96. Relative error of the strain determination in the problem X22
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. . . . . 22
Figure 2.97. Relative error of the strain energy determination 7%

The results of the computational analysis carried out in this section show that
the effective properties of the composite and, at the same time, the overall
behaviour of the composite, in the context of the homogenisation method, are
sensitive to the interphase between the constituents and its material parameters. It
should be underlined that the interphase, improved in the example presented above,
has small total area in the comparison to the fibre and matrix. It can be expected
that the previous, simplified approach (upper and lower bounds or direct
approximations of effective properties cited above) do not enable us to arrive at
such effects.

Considering the assumption that the scale factor between the RVE and the
whole composite structure tends to 0 in our analysis and, on the other hand, that
this quantity in real composites is small but differs from 0, the sensitivity of the
effective characteristics to this parameter are to be calculated in the next analyses
based on this approach. To carry out such studies, the scale parameter has to be
introduced in the equations describing effective properties and next, due to the
well-known sensitivity analysis methods, the influence of the scale parameter €
relating composite micro— and macrostructure may be shown. In the analogous
way we can study the sensitivity of the effective characteristics of the composite to
the component material parameters but there is no need in this case to introduce
any extra components into the equations cited above.

Further mathematical and computational extensions of the model presented
should be provided to include in the constitutive tensor the components responsible
for the thermal expansion [228,311]. Having computed the effective characteristics
on the basis of Young moduli, Poisson ratios, coefficient of thermal expansion and
heat conduction coefficient [106,163,347] it will be possible to provide the coupled
temperature—displacement FE analyses of periodic composite materials. At the
same time it will be valuable to work out the problem presented in the context of
viscoelastic or elastoviscoplastic material models of the composite constituents
[74,368]. It will enable us to approximate computationally the fracture and failure
phenomena in composites resulting from the interface defects or partial debonding
using the homogenisation approach.
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2.3.3.2.2 Monte Carlo Simulation Analysis

Starting from the formula describing the effective elasticity tensor components,
their expected values are derived using the basic theorems on the random variables
as follows [191]:

Elegh (oo E[(Gk, " (x w)>9]+ E[(C,.jk, (x; w)>Q] (2.167)

The expressions for the variances (and generally covariances) have a more
complicated form than the expectations because the averaged stresses and elasticity
tensor are correlated variables. Therefore

Varlclel (s )= Var(<0'kl (o (x: w)>9 ) (2.168)

+ 2COV(<O'kl (2 (x; a))>Q,<Clj,d x0) )+ Var(<Cijk, (x: a))>Q)

The random homogenisation fields y”(x,w) for general composites, similar to
the deterministic ones, are calculated only numerically. The following probabilistic

stress boundary conditions are imposed on the boundary I, to find the
homogenisation functions:
E F(pq)i ((l)) Tror :|
) (2.169)
= E[ﬂ,(a)) M quni:| + E[/,t(a)) P (np5qi +n,0,; )]
Var F([’ﬂ)i(w)|l"([,,l‘,,) )
(2.170)
= Var(/l(a))h_wm 0y )+ Var(u(a))h_(al'“) (np5q,» +n,0, ))

where M(®) and (W(w) are the Lame constants. If Young moduli of composite
components are considered as input random variables then the expected values and
variances of boundary forces are obtained by separating the RHS into those
components corresponding to €, and €, respectively. After some algebraic

transformations there holds

Elqu)i ('x’('o)J= qui (va ) : E[ea ]_ qui (va—l) : E[ea—l ] (2 171)
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where the operator B, (v(x)) similar to the tensor A, introduced by eqn (2.14)

Pqi
is defined as
V(X) 1

PV =0 vana-avoy T O vy )

and their variances are equal to

Var( (pq)l(x w)) {qu,(v )} Var {qu,(va ])} Var e, ,) -
(no sum on p,q,l) 2.173)

Finally, probabilistic moments of the effective characteristics are derived using
statistical estimation methods, according to which the expected values and the
relevant covariances (computed using the unbiased estimator) of the effective
elasticity tensor components are obtained as

(eff) (eff)j
Elcyn]= ZCM I (2.174)

ColC (@), C) (@)=L Z(C(eﬂ” e Mewn - Eleen]) 2.175)

ypq rsuy ypq upq rsuv
j=1

where C ;;’Z i ( ), j=L,...M are random series of the tensor components obtained

as a result of the generation of numerical random values.

The homogenisation problem presented is implemented into the program
MCCEFF, which is based on the Monte Carlo simulation technique. The
implementation of the MCS has been selected from among many other
probabilistic methods, because this method consists of computer generation of
random variables in the mechanical problem (cf. Figure 2.98) and computing the
sequence of deterministic solutions associated with each variable generated,
similar engineering software is also available [47]. Considering the fact that a
composite structure has a relatively small number of degrees of freedom, a crude
random sampling method is used in the computations (contrary to the Random
Importance or Stratified Sampling methods) [73,125,139].

| Define N, m, a, c, Elel, o(e), E[V], 6(V) |
J
Generate uniform distribution {I e Dy }e 0,m—-1)
Do for k=1,N
I, =al,_, +c(modm)
Enndo

1
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Transform /—x: uniform distribution on (0,1)
Scaling distribution {I} by the parameter m
d
Transform pairwise (x;,x;.1)—=(;,yi.1): N(0,1)
Do for i=1,N

Y, =+/—2Inx; cos2mx,,,
Vi =/~ 2Inx; sin 27mx,,,

Enddo
{
Transform y—e,v
Do for i=1,N
e=E[e]+y0(e); V=E[V]+y;0(V)
Enddo
{
Cutting off e,v distributions
Verify for i=1,N
SI(O <e< oo)=true ; Sz(—1<v <%)=true
Enddo
{
Computations of the total sample length
M=N-K: K=sup(k1,k2);
ky,k; - number of S1,52 negations
Figure 2.98. Algorithm for random numbers generation

However, the most important reason for the MCS application is that the
accuracy of the output variable probabilistic moments estimation does not depend
on the input variable coefficient of variation (as for the SFEM), but on the total
number of iterations performed. Taking into account the estimator convergence
studies and some theoretical considerations, the total number of random trials M
has been taken as equal to 1,000. The flowchart of the program used for
probabilistic homogenisation is shown in Figure 2.99. As presented, the program
makes it possible to discretise automatically the RVE on the basis of the main cell
geometrical parameters, visualisation of the mesh introduced, random generation
of the input random variables and iterative computations of the homogenisation
functions as well as statistical estimators of either upper and lower bounds or direct
effective characteristics of the elasticity tensor components.

| Automatic-parametric mesh generator |
d

| Input data visualization |
d

1st loop over random spaces
Do for iter=1,M

Generation of e(w), v(a))
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Enddo

Computations of PDFs of elasticity tensor components

Upper and lower bounds: sup(C ,j,”jf ) (co)), inf (C ,(,Zf ) (a)))
2nd loop over random spaces
Do for iter=1,M
Generation of F,  (®)
Enddo
{

3rd loop over random spaces
Do for iter=1,M
Homogenisation plane strain problems

tolio). (o1, (o))

i o)
Enddo
d

4th loop over random spaces
do for iter=1,.M
Computations of statistical estimators

u,lcgl). u,bupley? ), finelcg)
PDF(sup(c?”)), PDF(CS), PDF(inf(c))

Enddo
Figure 2.99. Algorithm for the MCS simulation of homogenisation procedure

Numerical analysis of probabilistic homogenisation of the fibre composite with
stochastic interface defects has been performed using the MCCEFF system
described above. Internal automatic generator for the square RVE with a centrally
located round fibre occupying about 50% of the RVE with interface defects has
been used (the influence of fibre radius variation on the stochastic displacements
and stress fields has been discussed previously). Considering greater composite
sensitivity to the matrix defects (bubbles), only composites having such
discontinuities have been homogenised. The elastic constants for the fibre material

have been taken as follows: E [e] ]=84 GPa, v,=0.22 and the coefficient of Young
modulus variation (e, )=0.1, and for matrix: Ele,|=4 GPa, v,=0.34. Interface

defect parameters have been taken in such a way that the coefficients of variation
of these parameters were equal to 0.1 in all tests: O'(r): 0.1-E[r] and

o(n)=0.1- E[n].
The main aim of the numerical experiments performed was a numerical

verification of the presented mathematical approach to homogenisation of
composites with stochastic interface defects. Considering large number of
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parameters in this approach it was necessary to analyse the probabilistic sensitivity
of the effective elasticity tensor components. It was done with respect to the
expected values of the interface defect number and volume and the coefficient of
matrix Young moduli variation as design parameters. Finally, 132 simulations have
been performed (with 1000 iterations each) with the following remaining input
values: E[r]=R{0.03,0.04,0.05} and E[n] has been assumed as equivalent to the
percentage ratio of the boundary where the defects are located to the total interface
length from 10% to 60% every 5%. The coefficient of matrix Young modulus
variation for tests No 1-4 has been taken as 0.100, 0.075, 0.050, 0.025,
respectively.

Probabilistic moments of the effective elasticity tensor obtained as a result of
the simulations are compared in Figures 2.100-2.119. The expected values of

C!?"(w) are shown in such a way that the test results are presented in increasing

order in the relevant figures. The coefficients of variation of C\)(w) are

neglected in the sensitivity analysis because this random variable is a function of
random fluctuations of the fibre Young modulus. In all the collected figures the
ratio of interface discontinuities (DB) to the entire boundary is marked on the

horizontal axes, while the expected values E[Ci(fzflf)(a))] or the coefficients of

variation a(C;,ﬁ?’ (a))) are displayed on the vertical axes, respectively.

A decrease of the expected values of C f,jf ’(w) with an increase of the interface

defects number is observed with generally small differences in comparison with
the composite with perfect interface. For an increase of the parameter DB from

10% to 60%, the decrease considered is about 10% for E Cl(f’ﬁ)(a))] and
E [Cl(fg) (a))] components, while for E[Cl(;’fz) (a))] it is only 1%. The low sensitivity
of the values for E|Cj;]’ (a))] obtained with respect to the coefficient of the matrix

Young modulus variation seems to be very important, as well. Moreover, it can be
noted that for an increase of the expected values of the interface defects, the values

of E [C l(f{f;)(a))] and E [Cl(fszz) (a))] increase too, and E [C pe (a))] — decreases.
Finally, the increasing DB implies a decrease in the differences of E [C e (a))] and

E[Cl(ff;(a))] obtained for different defects values, while for E[Cf;’fz) (a))] these
differences increase with the increasing total number of the defects.
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E[Cn(w)]

14.5

DB [%]

14 g - J
10% 15% 1% 1% 30 5% A% 45% 50% 55% 0%

Figure 2.100. Expected values E [Cl(fﬁ) (a))] in test 1

E[Cin(o)]
16.5 ;

16 &

4 i
155§

R S———

14 | DB [%]

10% 15% 0% % 30% 35% A% 45% SO'K. 55‘3‘ 0%
Figure 2.101. Expected values E [Cl(f’ﬁ) (co)] in test 2

E[Cn(@)]
16.5

16 &

DB [%]
10%% 15% 0% 15% e 15% A% 5% % 55% 60%

14

Figure 2.102. Expected values E [C ) (a))] in test 3
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E[Cini(0)]
16.5

16 &

y
14 : : | DB (%]
10% 15% 20% 5% 0% 5% 0% 45% 0% 55%

Figure 2.103. Expected values E [Cl(fﬁ) (a))] in test 4

3

E[Cyina(o)
53

3.2

L.
5.1
4

5 4- i b mansssams Grinpsssini st TR LR VRTINS SRV | g ¥ .~ V' d IR

4.9

48

DB [%]

4.6 1
0% 15% % 5% 30% 5% 40% 5% 50% 55% 60%

Figure 2.104. Expected values E [Cl(f’;z) (co)] in test 1

E[Cyin(®)]
535

5.25

518 Qe

505 e

4.75 1

DB [%]

4.65 + T ' g - - - - ~
10% 15% 20% 25% 30% 35% 40%  45% 50% 55%  60%

Figure 2.105. Expected values E [C ) (w)] in test 2
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E[Gin(w))

535

515

505 &

495 4o

DB [%]

10% 15% 2% 5% 0% 5% 0% A5% 0% 5% 60%

Figure 2.106. Expected values E [C s (w)] in test 3

E[Cyn(o)]
5.35

DB [%
4.65 (%]

10% I.'I.@ﬁ 0% 15“ 0% 35"6 40% 45% 50% 5% 0%
Figure 2.107. Expected values E [Cl(f’;z) (co)] in test 4

E[Ci22(0)]
17.635

17.63 {-

17.625

17.62

17.615

17.61

17.605 * ' + r |
10% 15% 0% 1% 0% 35% A% 5% 0% 5% 60%

Figure 2.108. Expected values E [C A ((o)] in test 1



Elasticity problems 123

E[Cyzp(0)]
17.635 :
17.63 T4 :‘-—'.&';- ‘.‘.‘. e e » PO IPUTIERON: Lo —o— DSM
17.615 4-—— . __1 S i b
[y A o0 — p "
17.605 DB [%]

10% 15% 20% 25% 30%  35% 40%  45% 0% 55%  60%

Figure 2.109. Expected values E [Cf;ﬁ) (a))] in test 2

E[Cpn(o)]

17.635 . T
17.63
17.625 -
17.62

\
17.615

»
17.61 :

] . DB [%]

17.605 u

?

10% 15% 20% % 0% 5% 0% 45% 50% 5%

Figure 2.110. Expected values E [Cl(fﬁ) (a))] in test 3

E[Ciap(o)]
17.635

17.63

17.625

17.62 1

17.615

17.605

i i { )
10% 15% 20% 5% 0% 5% 4% 4% 50% 55% 60%

Figure 2.111. Expected values E [C wn (a))] in test 4
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a(Cyyy5(0))
0.12

0.116 4-——emciernd

0" 1‘ P SSE—— i -

(11 B b N ISKCUSINON Wi
0.11

0.106

0.104 ol

10% 15% 0% 5% 0% 5% 0% 5% 0% 55% 0%

Figure 2.112. Coefficients of variation a(C ) (a))) in test 1
a(Cyin(@))
0.102 . - : : - : - . ]

0.1

0.094
0.092

0.09
0.088
0.084

| DB (%]
0.082 | :
1% 15% 0% 5% 0% 3% 4% 4% 50% 55% 60%
Figure 2.113. Coefficients of variation a(C,‘fﬁ) (a))) in test 2

o Cyyp(w))
0.09

008 4-——

0.075

0.07

0.065

DB [%]

10% 15% 0% 5% 0% 5% 0% 45% 0% 55% 0%

Figure 2.114. Coefficients of variation a(C an (a))) in test 3
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Cyypa(@))
0.07
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Figure 2.115. Coefficients of variation a(C ) (a))) in test 4

a(Cyyn(w))
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0.114
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011 {
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Figure 2.116. Coefficients of variation Oc(C,(f’Q (a))) in test 1
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Figure 2.117. Coefficients of variation a(C a (a))) in test 2
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a(Cyn(m))
0.08

0.075 1
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o__..-f Y
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Figure 2.118. Coefficients of variation a(C a (a))) in test 3

a(Cpyna(m))
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Figure 2.119. Coefficients of variation a(Cfff;) (a))) in test 4

Analysing the coefficients of variation Oc(Cl;.sz >(a))), a nonlinear increase of

these coefficients with a DB increase can be observed in all tests. This dependence
has a character similar to the behaviour of the coefficient of variation of the Young
modulus obtained during the interphase probabilistic averaging. Moreover, all
results are in the range of [0.00,0.12] for all the numerical tests, being negligibly
greater than the maximum value of the input parameter (x(ez). Furthermore, the
correlation of interface defect value increases and an a(C,:(ji,ff )(w)) increase is
observed, and in opposition to the expected values, the coefficients of the
C 5;7 )(w) tensor variation are sensitive to a(ez) changes. Together with the

decreasing coefficients of the matrix Young modulus variation the following
changes are observed:

— decrease of a(Cl(f’ﬁ) (a))) and oc(Cl(f’;;) (w));



Elasticity problems 127

— increase of differences between these coefficients obtained for particular values
of interface defects;

— significantly faster increase of a(C,:(,z,f”(a))) (from 10% in test no 1 to about 30%
in test no 4).
The coefficients Oc(Cffffz) (a))) (not considered in the analysis) show total non-

sensitivity to analysed parameters.

Further, taking into account that all the results obtained from the Monte Carlo
simulations, e.g. the first two probabilistic moments of the effective elasticity
tensor, are only statistical estimators of the real values of these parameters, the
numerical sensitivity of these estimators to the number of iterations should be
analysed. Such an analysis is performed on the periodicity cell taking the total
number of random trials as N=5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000 and
10000, respectively.

Only the probabilistic parameters of C\{?’(w) are shown, because variations of
the other component moments of C,i7’ (@) are quite similar to those presented.
The total numbers of random number sampling are marked on the horizontal axes,
while the analysed values of Cii/’(w) are on the vertical axes. The functions

describing convergence of particular estimators obtained in the numerical
experiments enable us to verify the correctness of the simulations performed and
come up with an optimum number of the samples for estimation of any

probabilistic coefficient and/or moment for the tensor C ljgf (o).

EI(:IINI

15.1

149

N

5 1o 15 50 100 50 500 1000 1500 5000 10000

Figure 2.120. Statistical convergence of the expected value E [C,(fﬁ) (a))]
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Figure 2.121. Statistical convergence of the expected value E [C
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Figure 2.122. Statistical convergence of the expected value E [C
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Figure 2.123. Statistical convergence of coefficient of variation a(C i (a)))
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Figure 2.124. Statistical convergence of coefficient of variation oc(C ) (a)))
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Figure 2.125. Statistical convergence of coefficient of variation a(Cl(fﬁ) (a)))

It is seen from the analysis of the expected values of C,:(,,’;{/ '(w) that the

estimator convergence character is described by a curve of similar shape in all the
tests. This curve gradually increases from a minimum at N=5 to a maximum at
about N=30 to oscillate with asymptotic convergence to the value approximated. It
is important that in practice for N=100 estimator gives quite a good estimation with
satisfactory accuracy. Taking for example N=1000, computational error resulting
from statistical estimation is negligibly small in comparison with the estimated

value.

Convergence of Oc(C,;.iff ) (a))) estimators has quite a different character than for

E [C;fo )(w)] estimators described above. From the maximum obtained for N=5 the

curve describing the estimator as a function of the total number of iterations
decreases between two inflection points for about N=10 and N=30, then for about
N=100 it starts to converge asymptotically to the approximated quantity.
Analogous to the expected values the shape of the analysed curves is quite similar
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each time for different tests and different effective elasticity tensor components.
Finally, a good approximation is obtained for N=100, while for N=1000 the
computational error is negligibly small.

As can be seen in Figures 2.126 and 2.127, the total number of random trials
necessary in the simulation for precise enough determination of the PDF for

C)(w) is even greater than, for example 5,000—10,000.

P(Crnl@))
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Figure 2.126. Statistical convergence of PDF of C ' (w)
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Figure 2.127. Statistical convergence of PDF of C/ (w)

The main idea behind performing further numerical experiments is to compute
the expected values and variances (or the coefficients of variation) of the effective
elasticity tensor components for the RVE of the superconducting coil cable
[199,221]. Next aim is to check the variability of the effective characteristic
probabilistic moments with respect to the moments of the input random variables.
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Probabilistic effective characteristics are compared with the appropriate upper and
lower bounds probabilistic moments for the same composite specimen.

Due to the internal horizontal and vertical symmetry of the RVE, only a simple
quarter of the periodicity cell has been analysed in the homogenisation procedure
for the discretisation of this cell shown before.

Elastic characteristics and their probabilistic moments of the RVE components
in the form of the expected values and the standard deviations of Young moduli
and Poisson ratios as well as of the Kirchhoff moduli are collected in Table 2.14.

Table 2.14. Probabilistic moments of the elastic characteristics of the superconductor

Material Ele] o(e) E[v] o(v) E[G] o(G)
[GPa] |[GPa] [GPa] |[GPa]
Tube 205.0 |8.0 0.265 10.010 |81.0 2.0

Superconductor (test 1) | 130.0 0.0 0.340 ]0.000 |70.0 0.0
Superconductor (test 2) | 46.8 0.0 0.122 ]0.000 [25.2 0.0
Jacket 126.0 |[12.0 0.311 ]0.012 |48.0 6.0
Insulation 36.0 0.0 0.210 |0.000 |11.0 0.0

Three groups of computational experiments have been performed. It is assumed
that all elastic characteristics are equal to those specified in Table 2.14 in the first
and second groups of computations (tests 1 and 2), while the elastic parameters of
the superconducting strands are omitted in the last test. The strand volume fraction
in the plane considered is assumed in test 1 as equal to 100%, while in the test 2 it
is assumed equal to 36% (approximately the real value). The elastic characteristics
of the strands for the second case are calculated using of spatial averaging only.
These characteristics can be derived by some homogenisation approach (Mori—
Tanaka or self—consistent, for instance) if only the longitudinal elastic modulae are
measured statistically.

The results of numerical analyses are presented in Tables 2.15-2.20. Upper and
lower bounds as well as the effective elastic properties for test 1 are collected in
Tables 2.15 and 2.16, respectively, for test 2 they are outlined in Tables 2.17 and
2.18, while for test 3 they are outlined in Tables 2.19-2.20. Deterministic values of
the effective elasticity tensor and their up to fourth order probabilistic
characteristics (expected values, coefficients of variation, asymmetry and
concentration) are shown for all these tests.

Table 2.15. Effective elasticity tensor components [GPa] in test 1

Effective (eff) (eff) (eff)
characteristics Ciny Cian Ciiz
Deterministic values | 154.94 68.85 43.67
E[C] 154.27 68.52 43.94
a(C) 5.56e-2 5.44e-2 5.76e-2
B(O) -2.06e-1 2.41e-1 9.98¢e-2
Y(O) 3.27 3.29 3.15
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Table 2.16. Upper and lower bounds for effective elasticity tensor [GPa] in test 1

Effective (eff) (eff) (eff)
characteristics Ciii Cuarz Ciiz

Upper and lower bounds presented

sup(C) inf(C) sup(C) inf(C) Sup(C) inf(C)

Deterministic values | 163.49 146.47 75.56 63.27 43.97 41.60
E[C] 163.60 146.18 75.81 63.16 43.89 41.51
a(C) 6.89¢-2 |5.76e-2 [9.78e-2 |8.14e-2 |4.42e-2 |3.95e-2
B(O) 1.79e-7 | -1.04e-7 |[3.32e-7 |-1.12e-8 |-1.15e-7 |-2.51e-7
Y(C) 3.09 3.06 3.20 3.02 3.07 3.17
Voigt-Reuss bounds

Deterministic values | 171.49 130.33 80.95 52.63 45.27 38.85
E[C] 171.88 129.97 81.43 52.46 45.23 38.76
a(C) 6.78e-2 | 4.72e-2 [9.29e-2 |6.60e-2 |4.54e-2 |3.45e-2
B(O) 3.23e-7 |-2.51e-7 |5.15e-7 |[-1.75e-7 |-2.30e-8 |-2.50e-7
Y(C) 3.26 3.17 3.54 3.09 3.03 3.30
Table 2.17. Effective elasticity tensor components [GPa] in test 2

Effective (eff) (eff) (eff)
characteristics G Cranz iz

Deterministic values | 102.33 36.47 33.69

E[C] 102.50 36.69 33.49

a(C) 5.83e-2 5.90e-2 6.38e-2

B(C) -1.86e-1 -1.92e-1 -9.96e-2

Y(C) 3.23 3.25 3.15
Table 2.18. Upper and lower bounds for effective elasticity tensor [GPa] in test 2
Effective (eff) (ef) (eff)
characteristics Cin Cuanz Ciiz

Upper and lower bounds presented

sup(C) | inf(C) sup(C) | inf(C) sup(C) | inf(C)

Deterministic values | 100.24 82.24 35.21 22.74 32.52 29.75
E[C] 100.37 82.05 35.45 22.68 32.46 29.69
a(C) 8.18e-2 |4.11e-2 |[1.40e-1 |5.84e-2 |[4.99e¢-2 |3.46e-2
B(C) 2.12e-7 |-2.38e-7 |4.16e-7 |-1.58e-7 [-9.73e-8 |-2.89e-7
Y(C) 3.16 3.15 3.38 3.08 3.06 3.21
Voigt-Reuss bounds

Deterministic values | 113.11 71.80 43.86 16.64 34.63 27.58
E[C] 113.50 71.65 44.34 16.61 34.58 27.52
a(C) 1.03e-2 |2.48e-2 |1.7le-1 [2.57e-2 |5.94e-2 |2.46e-2
B(C) 3.23e-7 |-4.13e-7 |[5.15e-7 |-4.02e-7 |-2.30e-8 |-4.17e-7
Y(C) 3.26 3.40 3.54 3.38 3.03 341
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Table 2.19. Effective elasticity tensor components [GPa] in test 3

Effective (eff) (eff) (eff)
Characteristics Ciii Ciznz Ciiz
Deterministic values | 75.07 30.15 25.89
E[C] 75.09 30.29 25.38
a(C) 9.29¢-2 1.06e-1 6.94¢-2
B(C) -1.14e-1 -6.40e-2 -9.97e-2
Y(C) 3.16 3.15 3.17
Tab. 2.20. Upper and lower bounds for effective elasticity tensor [GPa] in test 3

Effective (eff) (eff) (eff)
characteristics Ciin Ciai Ciiz
Upper and lower bounds presented

sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values | 73.50 4.02 30.47 4.64e-2 | 21.51 1.984
E[C] 73.34 4.02 30.37 4.64e-2  |21.49 1.98
a(C) 1.03e-1 | 2.34e-3 1.57e-1 |3.34e-2 |6.56e-3 |2.75e-3
B(O) 2.42e-7 |-5.64e-7 |[4.30e-7 |5.57e-7 |-7.35e-8 |-5.67e-7
Y(O) 3.182 3.730 3.398 3.704 3.049 3.729
Voigt-Reuss bounds
Deterministic values | 94.84 2.55 41.27 1.23e-2 | 26.79 1.27
E[C] 95.23 2.55 41.74 1.23e-2 |[26.74 1.27
a(C) 1.22e-1 | 9.72e4 | 1.81e-1 3.55e-2 | 7.67e2 |[1.15e-3
B(C) 3.23e-7 |-5.80e-7 |5.15e-7 |5.79e-7 |-2.30e-8 [-5.89e-7
Y(C) 3.26 3.77 3.54 3.76 3.03 3.77

First a general observation, which agrees with engineering intuition, is that the
deterministic quantities and expected values for upper and lower bounds and
effective elasticity tensor components are greater for test 1 (composite including
superconductor) than for test 2 (the cell without superconducting strands). Further,
it is seen that the results of deterministic analyses approximate very well the
expected values obtained in probabilistic simulations and that deterministic results
are generally lower than the approximated expectations.

Analysing the coefficients of variation of all variables computed it is
characteristic that the results of test 1 are significantly smaller than the input
coefficients and the coefficients resulting from test 2. It is caused mainly by the
fact that some of the input elastic characteristics including superconductor have the
coefficients of variation equal to 0. Considering that the superconductor occupies a
significant part of the periodicity cell, the coefficients o resulting from test 2 are in
the range of those characterising the elastic properties of composite components. It
should be outlined at the moment that probabilistic moments of effective
characteristics of order higher than the second are in general in the range of the
corresponding characteristics of the input elastic parameters in the probabilistic
homogenisation of elastostatic problems.

Observing characteristics of the third and fourth order it may be concluded that
the upper and lower bounds of the effective tensor in both tests have symmetric
probability density functions, while the effective characteristics PDFs show some
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asymmetry. Finally, it can be observed that the coefficients of concentration are
approximately equal to the value corresponding to the Gaussian variable
probability distribution function.

Considering these observations we can treat the probability density functions of
the effective elastic characteristics as Gaussian, which enables us to characterise
uniquely these distributions using only their first two probabilistic moments. This
conclusion is very important in the context of the SFEM implementation of the
problem where only the first two moments of the state functions can be computed
and, furthermore, all odd moments are equal to 0.

2.3.2.2.3 Stochastic Perturbation Approach to the

Homogenisation

The homogenisation technique presented in the preceding sections is combined
now with the stochastic second order perturbation second central probabilistic
moment method. To rewrite the stochastic version of the variational formulation of
the homogenisation problem, the interface forces equivalent to the stress interface
conditions should be stochastically perturbed first. It is known from the classical
theory of homogenisation that in case of ideal bonds between the fibre and matrix,
the interface load components are obtained in the form of the following difference,
cf. (2.155)

F —F®» _g® (2.176)

(pg)i (p)i (pq)i

Taking into account the general Taylor series expansion it is found that

F(pq)i = (F(pq)i)o +9(F<pq)i)’rAbr + %GZ(F(M)I' )Js Ab"Ab° (2.177)

Rewriting the forces F”

(pa)i for =0,1,2, comparing the respective terms of zeroth,

first and second order, it is obtained after some additional algebra that

(Fp)° = (Fé,fq)),-)o - (Fg;;)i)o (2.178)
(Fop) = (E 2 )" = (F0,) (2.179)
(Fip )™ = (f‘}(pzq)ﬁ)ﬁ —(F((,?q)i)’” (2.180)

Thus, the stochastic version of minimum potential energy principle for the
homogenisation problem has the following form:
= asingle zeroth order equation:
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&i,jcgkz(l(pq)k,z)odg =" j&i(ﬁpq)i)od(ﬁ Q) (2.181)

a=12Q 0Q,,

a

= R first order equations:

0 "
z!zzl,Zd'. avi,jcijkl(x(pq)k,lJ dfd (2.182)

0
SRR ES YT &

BQ a=12 0 i,j ikl
a

= asingle second order equation:

( 2 f5vi,jC3k1 (Z(pq)k,/ )’mdQ]COV(br’bs)

-

2

Q
( (60, (F i) ”d(aQ)JCOV(b’ b*) (2.183)

_[2 > o G Ukz(l(pq)kz) aQ+ 3y j5v,] ykl (pq)k,l)OdQ

a:l,ZQi[ a=12qQ,
b

If the Young moduli of fibre and matrix are the components of the input random
variable vector then there holds

J (Cg/k/ (e(x; ) X))

de

a

Sy ALY, fora=12 2.184)

where ;Zz) is the tensor given by (2.14) and calculated for the elastic

characteristics of the respective material indexed by a, whereas y'“ is the

characteristic function. Thus, the first order derivatives of the elasticity tensor with
respect to the input random variable vector are obtained as

de ijkl ikl
a

a(cijkl (elx; o) X)) :{‘P(”A(” \{,(Z)A(z)} (2.185)

Hence, the second order derivatives have the form
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82(C"f“(e(X;w)gX)) (a)8 EZI)(X) =0, fora=1,2 (2180
de’ e,

a

while mixed second order derivatives can be written as

9*(Cyule(x; 0} ) _y0? ) _ o o (2.187)
de,de, de, de,

Considering the above, all components of the second order derivatives of the
stiffness matrixes K &g‘” in this problem are equal to 0. Moreover, since the

assumption of the uncorrelation of input random variables

Vare, 0 (2.188)
Cov(el @ ) - 0 Vare
2

thus, the first and second partial derivatives of the vectors F, @

(pgi With respect to the

random variables vector are calculated as

IFY. 9cw

a”’q” = tn =AY n, xedQ,, a=12 (2.189)
ea etl
and
IF. drcl 9 Al
PO o = W0y = =Wy 20, x€d Q,, a=12 (2.190)

86‘1 86,1 ! aea

After all these simplifications, the set of equations (2.181) — (2.183) can be written
in the following form:
e asingle zeroth order equation:

2z j5v:/ ukl(l(pq)kl) dQ=— ISV( (pq)t) d(0Q) (2.191)

a=12Q, Q,,

e R first order equations:

&, .CY TdQ=— [év|A, . |n.d(oQ
gmj . Cl ) ag{zv'[ o (30D (2.192)

- .[5":1 ik (?C(pq)kl)odg

alQ

e asingle second order equation:
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2 ,[(Svi,jcz_'(;kl (Z(pq)k,l }2) dQ

a=1,2 Q,
’ b 2.193
:—a§2d[5Vi,jC£j;d(Z(pq)k,1)“ dQ Cov(b b ) ( )
where
(Z<pq>k,1)(2) =_%(Z(pq)k,l)JSCOV(br,bS) o

It should be noted that (2.191) — (2.194) give the set of fundamental variational
equations of the homogenisation problem due to the second order stochastic
perturbation method. Next, these equations will be discretised by the use of
classical finite element technique and, as a result, the zeroth, first and second order
algebraic equations are derived. Further, let us introduce the following
discretisation of the homogenisation function and its derivatives with respect to the
random variables using the classical shape functions ¢,,(X):

(Z<pv)i(X))O = Qi (X)- (q(pv)a)o, xeQ, py=1.2 (2.195)
(X(pv)i(X))’r =<Pia(x)-(q(pv)a)”, xeQ, py=1,2 (2.196)
(i)™ =010 (). x€ Q. pov=12 (2.197)

where i=12; r,s=1..,R; a=1,...,N (N is the total number of degrees of
freedom employed in the region ). In an analogous way, the approximation of
the strain tensor components is introduced as

83’ <Z(pv) (X)): Bjjo, (X) (q(pv)a)o , XeQ (2.198)
Sfjr (X(pv) (X)): Bijtx (x) (Q(pv)a)’r , XeQ (2.199)
gl?jm (X(pv) (X))= Bija (X) (Q(pv)a)’rs » X€ Q (2'200)

where B, (x) is the typical FEM shape functions derivatives
Bjo (%) = 3101, j(X) + 0o, (0], x€ Q (2.201)

Introducing equations stated above to the zeroth, first and second order
statements of the homogenisation problem represented by (2.191) — (2.194), the
stochastic formulation of the problem can be discretised through the following set
of algebraic linear (in fact deterministic) equations:



138  Computational Mechanics of Composite Materials

Koq(opt) = Q(Op‘) (2202)
r 0
q( pv) Q([n ) (pv) (2203)
KOq((IZ)z) =-K Q(p\)COV(br b*) (2.204)
where
a6 =105, Cov(b",b*) (2.205)

and K, qpvy, Qv denote the global stiffness matrix, generalised coordinates
vectors of the homogenisation functions and external load vectors,
correspondingly. Considering the plane strain nature of the homogenisation
problem, the global stiffness matrix and its partial derivatives with respect to the
random variables of the problem can be rewritten as follows:

E
c’
62:;(! ijkl IJ(X kl[i
‘ (2.206)
1 T 0
E —
2& | 1 0 |B B dQ
= (1+Vv)(1=-2v) s ijo  KIp
e| symm ﬁ
E
c’
OL Z‘;é" ijkl ljot kl[i
‘ (2.207)
(v | T
_y 4V | 1 0 B B dQ
a(1+v)(1-2v) 4 s fjo kB
e| symm 2(‘17:)
zxﬁ - ;JCU;:IBU&BHB(’ZQ (2208)

as far as Young moduli are randomised only. Computing from the above equations
successively the zeroth order displacement vector q( V) from (2.202), first order

displacement vector g, from (2.203) and the second order displacement vector

q((ii) from (2.204) — (2.205), the expected values of the homogenisation function

can be derived as

E[q(pv)]z q(opv) 2 q(m)COV(br bs) (2'209)

Their covariance matrix can be determined in the form
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C0V<‘1<pv>r G prys )= Gip i COV(D" D7) (2210)

where o, B are indexing all the degrees of freedom of the RVE. Then, the expected
values of the stress tensor components can be expressed as

(e)|_ ()0, 0 1 _.rs (e),r ,s (e) roys
E[o,-j J- {CUZI @) T3 90pm) T Cia q(,,v)}Bk, Cov(b",b") (221D
while its covariances — from the following equation:
Covlo®, 64" )= BE'BY) Covid”b*)
@0 ~(f)0_,r s (e)r ~(f)ss 0 0
{Cijkl Cijmn q(pv)q(pv) + Cijkl Cijmn q(pv)q(pv) (2212)
@ r ()0 s 0 @0 ~(f)r 0 s }
+Cijkl Cijmn 4 pvy9pv) +Cijkl Cijmn 9 pv)9(pv)
where i,j,k,l.g,h,p,v=1,2; 1<d, f <E standing for the finite elements numbers in

the cell mesh. In accordance with the probabilistic homogenisation methodology,
the expected values of the elasticity tensor components can be found starting from
(2.136) as

1

E Ci(jlenjz)]: @g{ (E[Ciqu ]+ E[Cijklgkl (Z(pq) )] )dQ (2.213)

The second term in this integral can be extended using second order
perturbation method as follows:

E lszjklgkl (X( pq)) J

+oo
= [(CS +ab"Cy +L A AB'C ) pi(b(x)) db
(2.214)

X +.r((x(pq)k,l )0 +Ab" (X(pq)k,l )’u + %AbuAbv (Z(pq)k,l )’W )pR (b(x)) db

There holds
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oo
E[Czjklgkl (Z(pq> )]= | Cf}kz (Z<pq)k,1 )0 pr(b(x))db

+oo
+ JAB Cy A (Y i s ) P b)) (2215)

e )
+% J.Cl'jklAbMAbl (x(pq)k,l)’w PR (b(x))db
= Ci?kl (Z(pq)k,l )0 + {Cz?j?d (Z(pq)k,l )’S + %C,;(;kl (Z(pq)k,, )’” }Cov(b’ ,bs)

Averaging both sides of this equation over the region Q and including in the
relation (2.213) together with spatially averaged expected values of the original
elasticity tensor, the expected values of the homogenised elasticity tensor are
obtained. Next, the covariances of the effective elasticity tensor components can be
derived similarly as

Wralt —
COV(CiE'iJIy) ’ Cnfg); )_ Cov(cijkl ’ Cmnpq )+ Cov(cijkl ’ Cmnuv%(pq)u,v )

( ) ( ) (2.216)
+Cov Cijrsx(kl)r,s ’ Cmnpq +Cov Cijrsx(kl)r,s ’ Cmnuvl(pq)u,v

Finally, the covariances of the effective elasticity tensor components are calculated
below. Covariance of the first component in (2.216) is derived as

+oo

COV(Cijkl > Cmnpq): ,[ (Cijkl - E[Cijkl ] )(Cmnpq - E[Cmnpq] )pR (b(x)) db

—oo

+oo
= (C0y + b, €y = o )+ Ab,Cig = Coop I (b)) 2.217)

—oo

mnpgq mnpq

+oo
= Gty Citpa [ Ab,Ab, pi (b(0))db = €1y Ct Corl” )

Next, the cross—covariances of the second component are calculated and there
holds

+oo

COV(Cijer(kz)z,w; Conn X (pgyu,v )= I(CHMX(kI)t,w - E[Czjrwl(kl)z,w] ) (2.218)

—oo

X (Cmnqu(pq)u,v - E[Cmnuvx(pq)u,v] )pR (b(x)) db

which, by introducing the simplifying notation, becomes
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+oo
J(C0% + €7 b, 1" + Oy b, +C” b, b, + CO ™ Ab, A,
e+ 1€ )l b e bo) ab

v (2.219)
x [[D°9° + D Abp® + D p* Ab, + D“Ab,gAb, + 1D Ab,Ab,

—oco

(D%’ + (D9 + D% )Covlp® b7 )} o (b)) db

Further, it is obtained that

+oo
[(CO%° +C7Ab, 1° + COx b, +C7Ab, 1" A, +-C " Ab,Ab,

f{c“ 20+ 0 +1C0 covlp” b )} o (b)) b

X T (Do(po +D“Ab,@° + D’ Ab, + D“Ab, @ Ab, +1 D0/ Ab A,
e (2.220)
—{D%° + D9 + 1D lov(p®,b° )} Jpe (b)) ab

+o0 +oo
= [C7Ab, XD Ab,¢° pr (b(x))db+ [CAb,x D@ °Ab, pp(b(x))db

—oo —oo

+oo +oo
+ [COx"Ab,D*Ab,9  prb(x))db+ [COxAb D@ “Ab, g (b(x))db

—oco —oo

Integration over the probability domain gives

+oo +oo
JCTAb, x "D Ab,¢° pr (b(x))db+ [CAb, x°D 9 Ab, pr (b(x))db

—oco —oo

+oo +o0
+ [COx"Ab,D“Ab,¢° pp(b(x)) b+ [C°x"Ab,D 9 Ab, pr (b(x))db (2221)

—oco —oco

= {C”D’S 2°0° +C" "D +C D" + CO)(”DOgo’S}Cov(br,bs)

or, in a more explicit way, that
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COV( Uer(kl)t w 5 Cmnuvl(pq)u v)

{ lij mnuv (Z(kl)t w) (Z(pq)u v) + Cl]twcmnuv (Z(kl)t,w)o(x(pq)u,v)ys
+ Cl?tw mnuv (x(kl)r,w) (Z(pq)u,v ) + Cl?tw mnuy (Z(k])t,w)’r (Z(pq)u,v )’S }

X Cov( ".b* )
Now, the third component is transformed as follows:

Cov(ciikl ; Cmnuv%(pq)u,v )= COV(C; DX)

= Jle? + €7 ab, ) pplbo) db

+oo
x [[D0y° +D"Ab, x° + DOy < Ab, + D Ab, y“Ab, +L D" b Ab,

—o0

{02+ g+ 100 )Corfp, b ) oy b)) ab

+oo +oo
= [C"Ab,D“Ab,x pr(b(x))db+ [C7Ab,D’y“Ab, p(b(x))db

) —oo

{cp g+ feorl’ b

(2.222)

(2.223)

Introducing the symbolic summation notation for the tensor function considered

above it can be written that
COV(CiikI > Cmnuv%(pq)u,v )
= Cov(C:Dy)={C'D* 4 + "Dy feovlp” 1)
{Cz]kl Ctrinuv (Z(pq)u,v ) + Cljk] C:?muv (x(pq)u,v ) * }Cov(br ’ bS )

By the analogous way, it is obtained
COV( ijrw%(kl)t w;Cmnpq)
= Cov(Cy:D)={C" 4D + %D fcovlp” . b*)
= { ijrw (Z(kl)z,w) ;l1npq + C;j;\v (X(kl)r,w)’s Cmnpq }Cov(b’ b* )

(2.224)

(2.225)

The components of effective elasticity tensor covariances are found. Starting from

the classical definition
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Cov(Ci(l.zflf) . )

mnpq

= COV(Cijkl + Cijtw%(kl)f,w ; Cmnpq + Cmnuv%( pq)u,v)
o (2.226)
= j(cykl + Ciin X (ktyew — E[Cijkl ]_ E[Cijzwl(km,w])

X (Cmnpq + Cmnuvx(pq)u,v - E[Cmnpq ]_ E[Cmnuvl(pq)u, v ])pR (b()()) db

Transforming the respective integrands and using Fubini theorem applied to the
integrals of random functions we obtain further

+oo
.[ (Cijkl -E [Cl]kl ]XC111npq -E [Cmnpq ])p R (b (X)) db

—oo

too
x J. (Cijkl - E[Cijkl ]Xcmnuvl(pq)u,v - E[Cmnuvl(pq)u,v ])pR (b(x)) db (2.227)

—oo

+oo
x .[ (Cijrwl(kl)z,w - E[Cijtwl(km,w ]Xcmnpq - E[Cmnpq ])PR (b(x)) db

—o0

oo
X ,[ (Cijrw%(kl)t,w - E[th/'twl(kl)t,w ]Xcmnuv)((pq)u,v - E[Cmnuv%(pq)u,v ])pR db

—o0

which, using the classical definition of the covariance, is equal to

COV(Cijkl s Cmnpq )+ Cov(cijkl > Cmnuv%(pq)u,v )+

2.228
+ COV(Cijth(kl)t,w’ Cmnpq )+ COV(Cijth(kl)t,w’ Cmnuv%(pq)u,v) ( )

Introducing all the statements into the last one it can finally be written that

colesscun)
=CitConmpg + Ciiw (Z(kz)t,w )0 Coonpg + Ciinw (Z(kz)z,w )’S Cf?mpq
+ C;j};cl C;rlslluv (Z(M)u,v )O + Czjj;lcr?muv (Z(pq)u,v ) * (2_229)
+ Ciny Coumu (Z(kl)z,w )O (Z( pa)u,v ) O+ Ci}';vvCZnuv (Z(Id)r,w )0 (Z(pqm,v )'S
+ CinComan Cern)” (Zw)u,v )"+ anvC3nL,v(Z<kz>z,w)’r (Z<pq>u,v )A}
x Cov (br b’ )
It should be underlined here that the above equations give complete a description

of the effective elasticity tensor components in the stochastic second moment and
second order perturbation approach. Finally, let us note that many simplifications
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resulted here thanks to the assumption that the input random variables of the
homogenisation problem are just the Young moduli of the fibre and matrix. If the
Poisson ratios are treated as random, the second order derivatives of the
constitutive tensor would generally differ from O and the stochastic finite element
formulation of the homogenisation procedure would be essentially more
complicated.

For the periodicity cell and its discretisation shown in Figure 2.128 elastic
properties of the glass fibre and the matrix are adopted as follows: the Young
moduli expected values E[e;] = 84 GPa, E[e,] = 4.0 GPa, while the deterministic
Poisson ratios are taken as equal to v; = 0.22 in fibre and v, = 0.34 — in the matrix.

Figure 2.128. Periodicity cell tested

Five different sets of Young moduli coefficients of variation are analysed
according to Table 2.21 — various values between 0.05 and 0.15 have been adopted
to verify the influence of the component data randomness on the respective
probabilistic moments of the homogenised elasticity tensor. The finite difference
numerical technique has been employed to determine the relevant derivatives with
respect to the input random variables adopted.

Table 2.21. The coefficient of variation of the input random variables

Test number a(el) 06(62)
1 0.050 0.050
2 0.075 0.075
3 0.100 0.100
4 0.125 0.125
5 0.150 0.150

The cross-sectional fibre area equals to about a half of the total periodicity cell
area. The results in the form of expected values and coefficients of variation of the
homogenised tensor components obtained from four computational tests are shown
in Table 2.22 and compared against the corresponding values obtained by using the
MCS technique for the total number of random trials taken as 10°.

Table 2.22. Coefficients of variation for the effective elasticity tensor
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Test olciif) @) olCit) @)
SFEM MCS SFEM MCS
1 0.0410 0.0516 0.7152 0.0517
2 0.0622 0.0777 0.1073 0.0777
3 0.0830 0.1037 0.1430 0.1037
4 0.1036 0.1297 0.1788 0.1297
5 0.1244 0.1557 0.2146 0.1557

It is seen that the results of the SFEM—based computations are slightly smaller
than those resulting from the Monte Carlo simulations in the case of a(Cl(f{fl)(w));

the opposite trend is observed for a(Cfng (a))). The differences between both

models are acceptable for very small input coefficients of variation and above the
value 0.1 (second order approach limitation) they enormously increase. It is also
observed that the coefficients from the MCS analysis are equal with each other,
while the SFEM returns different values for both effective tensor components. It
follows the fact that the first partial derivatives of both components with respect to
Young moduli of the fibre and matrix are different. These derivatives are included
in the SFEM equations for the second order moments and, in the same time, they
do not influence the MCS homogenisation model at all. Furthermore, a linear
dependence between the results obtained and the input coefficients of variation of
the components Young moduli is observed.

The main reason for numerical implementation of the SFEM equations for
modelling of the homogenisation problem is a decisive decrease in computation
time in comparison to that necessary by the MCS technique. It should be
mentioned that the Monte Carlo sampling time can be approximated as a product
of the following times:

(a) asingle deterministic cell problem solution,

(b) the total number of homogenisation functions required (three functions

X1 X2y and Y22 in this plane strain analysis),

(c) the total number of random trials performed.

There are some time consuming procedures in the MCS programs such as
random numbers generation, post—processing estimation procedure and the
subroutines for averaging the needed parameters within the RVE, which are not
included, however their times are negligible in comparison with the routines
pointed out before.

On the other hand, the time for Stochastic Finite Element Analysis can be
approximated by multiplication of the following procedure times: (a) the SFE
solution of the cell problem (with the same order of the cost considered as the
deterministic analysis) and the total number of necessary homogenisation
functions. Taking into account the remarks posed above, the difference in
computational time between MCS and SFEM approaches to the homogenisation
problem is of the order of about (n-1)T provided that # is the total number of MCS
samples and 7 stands for the time of a deterministic problem solution. Observing
this and considering negligible differences between the results of both these
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methods for smaller random dispersion of input variables, the stochastic second
order and second moment computational analysis of composite materials should be
preferred in most engineering problems. The only disadvantage is the complexity
of the equations, which have to be implemented in the respective program as well
as the bounds dealing with randomness of input variables (the coefficients of
variation should be generally smaller than about 0.15).

2.3.4 Upper and Lower Bounds for Effective

Characteristics

Let us consider the coefficients of the following linear second order elliptic
problem [65]:

—div(Cfsu®))=f; xeQ (2.230)
g; ) =1 +uf); xeQ (2.231)
C =y (x) CEP (2.232)

with boundary conditions
u=0; xeodQ (2.233)

In the above equations u®, g(u®) and f denote the displacement field, strain tensor
and vector of external loadings, respectively. As was presented in Sec. 2.3.3.2, the
effective (homogenised) tensor C° is such a tensor that replacing C* and C° in
the above system gives u’ as a solution, which is a weak limit of u® with scale
parameter tends to 0. It should be mentioned that without any other assumptions on
Q microgeometry the bounded set of effective properties is generated. Moreover, it
can be proved that there exist such tensors inf(Cy,) and sup(Cy,) that

inf(Cyy ) < Cjy < sup(Cyy) (2.234)

It is well known that the theorem of minimum potential energy gives the upper
bounds of the effective tensor, whereas the minimum complementary energy
approximates the lower bounds. Thanks to the Eshelby formula the explicit
equations are as follows:
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N -1
supK = [ZCV(KL, +Kr)_'] —K,
r=l1

4 (2.235)
N -1
Supu:[zcl‘(ull+ur) ] _‘LLM
r=1
where x,, u, have the following form:
KM =%:umax
—1
n, =3 L, 10 (2.236)
umax 9Kmax +8‘lei\X
Further, lower bounds for the elasticity tensor are obtained as
N -1
inf k = [ZC,(KZ + K'r)_l:I -k,
’;1 . (2.237)
inf = [ZC,(/LI +u,)"] -1
r=lI
where it holds that
Kl = %»umin 2 328
w0 ) (2.328)
: ? /'Lmin 9Kmin +81umin

and n is a total number of composite constituents where c,,1<r<n denote their
volume fractions. It should be noted that

K= ﬁ (2.239)
e
YR, (2.240)
A=k-2p (2.241)
Cpy = 8,8,A+ (8,8, +8,8 ) (2.242)

From the engineering point of view the most interesting is the effectiveness of
such a characterisation of Cy, , which can be approximated as the difference

between upper and lower estimates and, on the other hand, sensitivity of the
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effective tensor with respect to material characteristics of the constituents. The
Monte Carlo simulation technique has been used to compute probabilistic moments
of the effective elasticity tensor components for the periodic superconductor
analysed before. The superconducting cable consists of fibres made of a
superconductor placed around a thin—walled pipe (tube) covered with a jacket and
insulating material. Experimental data describing elastic characteristics of the
composite constituents are collected in Table 2.23.

Table 2.23. Probabilistic elastic characteristics of the superconductor components

Material Ele] o(e) E[v] o(Vv)
316LLN 205 GPa 8 GPa 0.265 0.010
Incoloy 908
‘annealed’ 182 GPa - 0.303 -
‘cold worked’ 184 GPa - 0.299 -
Titanium 126 GPa 12 GPa 0.311 0.012
Insulation
G10-CR 36 GPa - 0.21 -

Because of negligible differences in the elastic properties of Incoloy (between
the ‘annealed’ and ‘cold worked’ state) the ‘annealed’ state of the superconductor
is considered further. All the results obtained in the computational experiments
have been collected in Table 2.24 and Figures 2.129-2.137. Because of the fact
that the expected values appeared to be rather insensitive to the total number of
random trials in the Monte Carlo simulations, results of the relevant convergence
tests have been omitted in the tables and presented further in the figures. The
expected values considered have been collected in Table 2.24 for M=10,000
random trials.

Table 2.24. Effective elasticity tensor components and their expected values (in GPa)

Effective Analysis type

property Deterministic probabilistic
type (eff) (eff) (eff) (eff) (eff) (eff)
yp C.l!!! CJKK.I CJK.IK C./.l!! CJKK./ CJK./K

sup-VR | 189.56 [ 81.83 | 53.86 189.94 | 82.30 53.82
Sup 178.44 1 76.07 [ 51.18 178.57 | 76.37 51.10
Inf 156.99 | 62.70 | 47.14 156.68 | 62.61 47.03

Inf-VR | 137.93 [ 51.86 | 43.03 137.54 | 51.71 42.92

Effective properties collected in this chapter (sup, inf in Table 2.24) have been
compared with the Voigt—Reuss ones (sup-VR, inf-VR in Table 2.24). Considering
the results obtained, it should be noted that these first approximators are generally
more restrictive than the Voigt—Reuss ones. Further, it can be observed that
deterministic values are, with acceptable accuracy, equal to the corresponding
expected values. Thus, for relatively small standard deviations of the input elastic
characteristics, the randomness in the effective characteristics can be neglected.
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Finally, it can be noted that more restrictive bounds can be used to determine the
effective elasticity tensor in a more efficient way. Taking as a basis the arithmetic
average of the upper and lower bounds, the difference between these bounds is in

the range of 13% for C'%/) bound component, 19% for C'?) bound component

and 8% for C') bound component.

The following figures contain the results of the convergence analysis of the
coefficient of variation, asymmetry and concentration with respect to increasing
total number of Monte Carlo random trials. All these coefficients are presented for

C'") bounds in Figures 2.129, 2.132 and 2.135, for C'¥) bounds in Figures

2.130, 2.133 and 2.136 and for C'%) in Figures 2.131, 2.134 and 2.137. On the
horizontal axes of these figures the total number of Monte Carlo random trials M is
marked, while the vertical is used for the coefficient of variation.

General observation here is that the C'¥) bounds are the most sensitive with
respect to the randomness of input elastic characteristics. These coefficients for
C'r) bounds appeared to be the greatest and then we obtain the coefficients for

C'") and C'\%) | respectively. Next, it can be mentioned that the estimators of the

coefficients of variation show fast convergence to their limits. Efficient

approximation of final coefficients for various components of the tensor Cl.(jﬁff )
bounds is obtained for M equal to about 2,500 random trials. Generally, it is
observed that the coefficients of variation of effective elasticity tensor fulfil the
inequalities detected in case of the expected values. The greatest coefficients are
obtained for Reuss bounds, next the upper and lower bounds proposed in this

chapter, and the smallest for the Voigt lower bounds.
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Figure 2.135. The coefficients of concentration of C ;%) bounds
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Observing the results presented in Figures 2.132 and 2.134 it can be observed

that all coefficients of asymmetry of C ;Zf ) verified tend to 0 with increasing total

number of random trials. Comparing C'¥) and C'¥) against C‘%) bounds it can

be stated that the first two variables have minimum positive asymmetry, while the
last have a negative one. It should be mentioned that for such probabilistic
distributions with non—zero coefficients of asymmetry, the expected value is not
equal to the most probable one.

Moreover, taking into account the convergence of coefficients of asymmetry it
is seen that they are generally more slowly convergent than coefficients of
variation estimators. M larger than 5,000 is required to compute these estimators
with satisfactory accuracy. Analogous to the coefficients of variation, the hierarchy

of the expected values of C/;7’, which has been discussed above, is fulfilled.
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Figures 2.135-2.137 present the coefficients of concentration for different
components of the effective elasticity tensor. The estimator convergence analysis
proves that M equal to almost 10,000 is needed to compute these coefficients
properly. The convergence of these estimators is more complex than the previous
ones, but generally their values are greater than 3, which is characteristic for the

Gaussian variables. Thus it can be stated that the C ;Zf ) probabilistic distributions
obtained are more concentrated around their expected values than the Gaussian
variables, but this difference is no greater than a maximum of 15% for the C'7)

bounds.
Figures 2.138-2.140 illustrate the probability density functions of the upper

and lower bounds for C'), C'¥) and C'¥) components of the effective

elasticity tensor. On the horizontal axes of these figures the values computed for
these components are marked, while on the vertical axes the relevant probability
density function (PDF) is given.

The PDFs for the tensor Cj7’ computed together with the additional

coefficients of asymmetry and concentration 3, Y show that these functions have
distributions quite similar to the bell-shaped Gaussian distribution curve. Thus, in
further analyses proposed in the conclusions, we assume that for the input random
variables being elastic characteristics (Young moduli and Poisson ratios) being
Gaussian uncorrelated random variables, the upper and lower bounds computed
having also a Gaussian distribution, which essentially simplifies further estimation
and related numerical analyses.

0.21 -

0.18

0.15 Esup-VRH

0.12 | Esup |
Oinf H

0.09 Qinf-VR

0.06

0.03

E-40 E-36 E-20 E-o E E+o0 E+20 E+306 E+4o
Figure 2.138. The probability densities of C ;jz) bounds



154  Computational Mechanics of Composite Materials

0.21 =
[@Esup-VR
0.18 E— Esup
0.15 Qinf
——————— OdinfVR
0.12
0.09
0.06
- iEIE
0 B L L L - L
E-40 E-30 E-20 E-o E E+o E+20 E+30 E+4o
Figure 2.139. The probability densities of C') bounds
2.00E-01
1.80E-01 T
1.60E-01 Esup-VR
1.40E-01 . msup
1.20E-01 Qint
1.00E-01 Qint-VR
8.00E-02
6.00E-02
4.00E-02
e 1 [ —
0.00E+00 - L L
E-40 E-30 E-20 E-o E E+o E+20 E+30 E+do

Figure 2.140. The probability densities of C ;ig(} bounds

The results of numerical tests performed lead us to the conclusion that the
probabilistic upper and lower bounds of the effective elasticity tensor may be very
efficient in the characterisation of superconducting composites with randomly
defined elastic characteristics because of negligible relative differences between
the upper and lower bounds. Considering the computational time cost they appear
to be much more useful in engineering practice than other FEM—based direct
methods.

Computational experiments carried out prove that the coefficients of variation
of the bounds computed are in the range of the input random variables of the
problem. Considering further analyses of homogenised superconducting coils, this
fact confirms the need for the application of the SFEM in such computations,
which is important for essential time savings in comparison with the simulation
methods.

The probabilistic sensitivity of the effective elastic characteristics with respect
to the probabilistic material parameters should be verified computationally in



Elasticity problems 155

further analyses as an effect of regression test, for instance. Such an analysis
enables us to find out these parameters of composite constituent elastic
characteristics, which are the most influencing for global superconductor
behaviour.

The procedure for effective elastic properties approximation seems to be the
only method, which can be successfully applied to the homogenisation of
stochastic interface defects. Such an approach will make the elastic properties of
the interphases much more sensitive to the presence of structural defects than was
in case of the Probabilistic Averaging Method. Considering this, the bounds
presented should be implemented in numerical analysis of stochastic structural
defects into the artificial composite interphases.

2.3.5 Effective Constitutive Relations for the Steel
Reinforced Concrete Plates

The homogenisation method proposed for composite plates analysis is not
based on any mathematical model. However it seems to be very effective for high
contrast steel-reinforced concrete plates [160]. The next main reason to apply this
model is that the composite plate need not be periodic in the applied approach,
which perfectly reflects the civil engineering needs. To get the effective
characterisation for the elasticity tensor, Eshelby theorem can be used since upper
and lower bounds for this tensor are determined. However it is proved by
comparison with collected experimental results, either lower and upper bounds are
very effective in computational modelling of a real plate. Both of them can be used
to calculate the zeroth, first and second order stiffness matrix and the resulting
probabilistic moments of displacements and stresses for the composite plate during
the SFEM analysis. It decisively simplifies the numerical analysis in comparison to
the traditional FEM modelling of such structures (where reinforcement
discretisation is complicated); more accurate results, especially in terms of thin
periodic plate vibration analysis, are shown in [155]. Finally, it should be
mentioned that the homogenised effective characteristics for composite shells can
be derived analogously, following considerations presented in [227,338].

Numerical test deals with the homogenisation of steel-reinforced concrete
plates characterised by the data collected in Table 2.25; the coefficients of
variation randomized Young moduli are taken as 0.1 as in all previous
experiments. The concrete rectangular plate with horizontal dimensions 0.90 m x
0.90 m and thickness 0.045 m, supported at its corners and loaded by the vertical
concentrated force is examined and Table 2.26 contains the deterministic and
probabilistic homogenisation output. It can be observed that, as in previous
examples, the deterministic and expected values are close to each other,
respectively, and the resulting coefficients of variation are obtained as smaller or
equal to those taken for input random variables.
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Table 2.25. Material data of the composite plate

Material properties Steel Concrete
Young modulus 200.0 GPa 28.6 GPa
Poisson ratio 0.30 0.15
Volume fraction 0.0367 0.9633
Yield stress 345.0 GPa 20.68 GPa

Table 2.26. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components
[inf (Cllll )] 42.53 GPa 42.52 GPa 0.0985
Elsup(C,,,, )] 44.84 GPa 44.84 GPa 0.0905
Elinf(C,y, )] 13.13 GPa 13.12 GPa 0.0982
Elsup(C,,, )] 13.88 GPa 13.88 GPa 0.0896
Elinf(C,,,, )] 16.27 GPa 16.28 GPa 0.0991
Elsup(C,,», )] 17.09 GPa 17.09 GPa 0.0896

The most important observation is that the lower and upper bounds are almost
equal for any of the effective elasticity tensor components. Thus it does not matter
which of them are used in the approximation of the real composite structure.
Hence, the very complicated discretisation process of this particular concrete
structure type (ABAQUS) can be replaced with an analysis of the homogeneous
plate with elasticity tensor components calculated as proposed above. After
successful verification of other reinforced concrete plates with various
combinations of input parameters, such formulas for the effective elasticity tensor
could be incorporated in the finite element stiffness formation process to speed up
the FEM modelling procedures for these structures.

The variability analysis for expected values and the coefficients of variation of
the effective elasticity tensor is presented in Figures 2.141 and 2.142 as a function
of Young moduli expectations of the steel and concrete. It is seen that the Young
modulus of the concrete matrix is detected as a crucial parameter for both
probabilistic moments. It is due to the fact that the matrix is the dominating
component (in the volumetric context) while the equations for homogenised tensor
are rewritten as functions of the volume ratios of the composite components.

Considering the above, the behaviour of a real composite is compared against
the homogenised one, cf. Figure 2.143. It is seen that the central deflection
increments for both models are almost equal in the elastic range and, further, some
expressions for the nonlinear range should be proposed and verified.
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Figure 2.141. Expected value of upper bound for the component C);y;

Figure 2.142. Coefficient of variation of upper bound for the component Cy;y;

A very broad discussion on theoretical and numerical modelling concepts in
reinforced concrete structures have been presented in [22] — fracture analysis
contained in this study can be incorporated into the SFEM using the approach
described in [33]. Future analyses devoted to the application of homogenisation
technique in reinforced plates modelling should focus on incorporation of the
microcracks appearing in real matrices. It can be done using initial homogenisation
of the cracks into the matrix [92,266,321] to find equivalent homogeneous
medium; further homogenisation follows the above considerations.

Taking into account all the results of this test as well as the previous analyses
on the homogeneous plates with random parameters, the application of the
Stochastic Finite Element Method for the homogenised plate should approximate
the probabilistic moments of displacements [63] in linear elastic range for the real
plate very well. The expected values and variances of the effective elasticity tensor
can be obtained for this purpose by using symbolic MAPLE computations
analogous to those presented above.
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Figure 2.143. Vertical displacements of the composite plate centre

2.4 Conclusions

The main advantage of the homogenisation approach proposed is that any
randomness in geometry or elasticity of the composite structures is replaced by a
single effective random variable of the elasticity tensor components characterising
such a structure. Hence, computational studies of engineering composites with
different random variables using a homogeneous one with deterministically
defined geometry and equivalent probability density function of the elastic
properties can be carried out. It is observed that using an analytical expression for
the homogenised elastic properties, the randomness in geometry for the periodicity
cell can be introduced and can result in random fluctuations of the effective
parameters only. Furthermore, even if the composite structure is not periodic, the
results of homogenisation method application are satisfactory, i.e. the probabilistic
response of the structure homogenised approximates very well the real composite
model; analytical solution in the correlative approach for random quasi—periodic
structures can be found in [278].

The basic value of the proposed homogenisation method is that the equations
for the expected values and covariances of effective characteristics do not depend
on the PDF type of the input random fields. However, in case of greater values of
higher order probabilistic moments related to the first two as well as the lack of the
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PDFs symmetry, a higher order version of the perturbation method is
recommended. It is important since the probability density function of the input
may not always be assumed properly, while in most experimental cases it is a
subject of the statistical approximation only. Application of a stochastic higher
order perturbation technique is relatively easy for closed form homogenisation
equations considering the symbolic differentiation approach. It should be
emphasised that, taking into account the capability of MAPLE links with
FORTRAN routines, the program can be used in further SFEM computations as an
intermediate procedure for symbolic homogenisation and sequential order
perturbation derivation.

It should be underlined that the method proposed can find its application in
stochastic reliability studies (SOSM approach) for various composite structures.
This homogenisation technique makes it possible to reduce significantly the total
number of degrees of freedom for such a structure, while the expected values and
covariances of displacements and stresses enable one to estimate the second order
second moment reliability (SORM) index or even third order reliability coefficients
(W-SOTM). In the same time, both probabilistic methodologies have
[171,175,180] and can find further applications in determination of effective heat
conductivity coefficients in various models [216,294] including fibre-reinforced
structures with some interfacial thermal resistance [303].

Due to the satisfactory accuracy of the homogenisation approach in modelling
of composite structures, the model worked out can be treated as the first step for
so—called self-homogenising finite elements, where the computer program
automatically homogenises the entire structure using original material composite
characteristics and finally calculates the displacements and stresses probabilistic
moments for an equivalent homogeneous medium. On the other hand, the
stochastic perturbation homogenisation procedure can be further modified for
elastoplastic composite structures using Transformation Field Analysis (TFA) or
Fast Fourier Transform (FFT) approaches. In the same time, the study of stochastic
elastodynamic effective behaviour is recommended since the still growing range of
composites has possible engineering applications.

2.5 Appendix

We prove, in the context of the composite model introduced in this chapter, that
u(x,y) being a solution of problem (2.121) is constant in the region €. For this
purpose, let us consider u(y) being a Q—periodic displacement function and the
solution of the following boundary value problem:
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—%O‘ij =F,-(yl xe Q

J
0; =Ciu (Y)gkl (“)’ xe QUQ, (A2.1)

|GN| = g(y), xel,r=1,...m

where g(y) are given functions defined on Q or I, 7=1,...,m with m being the total
number of various interface boundaries. The variational formulation of (A2.1) may
be stated as follows:

M=

(A2.2)

I

[o,nvdl+3 [ ,,(VdQ = [ fv,dQ
T, Q

a=1 Q,

r

for ve V being the following space:

vl el @liblzom =1 mh (A23)

while the corresponding components of the vector v are equal on the two opposite
faces of Q. Taking into account these conditions and neglecting body forces, we
arrive at the well—known relation, cf. (2.121):

a(u,v) = L(v) (A2.4)

If v, =c is taken, which belongs to the set C of vectors constant on €2, there holds
forall ce C

L(c)=0 (A2.5)
Thus, if g(y) from (A2.1) is such that L(c) # 0, there is no solution for the problem

(A2.1). Next, let us introduce the space S=V/C and let us denote by ””k the norm

in [Hl(Qk )]2 and by ”k the norm in L’ (Qk ). Let us observe that

& V is a subspace of V: [H' (Ql )]3 X [H2(§22 )]3 ;
(2)  V isa Hilbert space for the norm

2 2 é
V=l + vl

(A2.6)

(3)  There holds
vl = Sles (v) |i +Z|vi|i (A2.7)
i,j i
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(4)  (A8) may be written equivalently as

, , 1 (A2.8)
{1 + s
(5) It can be proved that S is an Hilbert space for the norm
||V|| = Inf |||V + c||| (A2.9)
ceC
(6)  The norm equivalent to (A2.9) on space S may be rewritten as
(A2.10)

N<V>=(;|g,,<v> |f+z|ez:,<v>|§]z

If we prove the statement (6) thus, due to the fact that N(v) is continuous as well as
coercive on space S and, further, applying the Lax—Millgram theorem we arrive at
the conclusion that there exists a unique solution for (A2.1). To show this fact let
us note that

I = g+l = °0)s gl el (a2
where
”V"2 < NZ(V) (A2.12)
There exists such a constant ¢; that for all ve W that there holds
M <N () (A2.13)
Let us introduce the orthogonal projection operator O such that
0 :(L2 @ ))3 SC (A2.14)
with respect to the scalar product corresponding to || - Ityields
I = M)+, 0w [ (A2.15)
Equation (A2.15) is true if and only if for all ve V' there holds

|v1 - 0v1|f < CINZ(V) (A2.16)

We assume that it is possible to improve v" = (vl”,v;1 )e V' for any positive n such
that
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(A2.17)

=1, N2(v")<

2
|v1" -O0v/ ]

I | =

Setting w" = (vl” -0v!,v, —0v§) we get for all ce C that

(A2.18)

N2<w”)Sl; wl'
n

1=1; (wl",c)=0

Then, {w"} is bounded in V and there exists such a subsequence {w"’ = (w{”,w;" )},

which converges weakly to w, in V. Since that, wlLl converges strongly in
@)y

Wi =1 (A2.19)

Due to the lower semi—continuity there holds

N2 (w°)< 1imN>(w")=0 (A2.20)
Finally, it is obtained that

& (Wlo )= 0; g (Wg)= 0 (A22D)
which gives as the result

w)=w)=ceC (A2.22)



3 Elastoplastic Problems

3.1 Introduction

There are numerous well—established techniques to calculate effective material
characteristics for composite materials. In the case of composite components
volume fractions only, one can use the closed form algebraic equations on upper
and lower bounds or direct estimates for the effective material tensor components.
Otherwise, the cell problems are formulated and solved using their Finite Element
Method (FEM) or, alternatively, the Boundary Element Method (BEM) numerical
implementations that enable direct computations of the effective characteristics.
Recent advances in the area of computational methods in homogenisation of the
nonlinear effective characterisation of heterogeneous materials and structures are
reported in [4,85,86,107,112,136,250,325]. In the same time, stochastic analysis is
still being developed to estimate or to compute probabilistic moments of
homogenised material tensors.

Homogenisation of composite materials with elastoplastic constituents is
presented below using the so—called Transformation Field Analysis (TFA)
proposed by Dvorak and now applied to approximate the effective nonlinear
behaviour of a three—component periodic composite. The self—consistent model
and Mori—Tanaka theory, providing the estimation of the overall thermoelastic
constants of composites on the basis of constituent properties and volume fractions,
are partially incorporated in this model. Computational implementation of the
method consists of the utilisation of the program ABAQUS to enable automatic
homogenisation of n—component periodic composites in a general configuration of
the components in the RVE. Numerical examples of the three—component periodic
composite homogenisation make it possible to compare the nonlinear behaviour of
a composite for its real and homogenised models in the case of the specific
boundary problem defined for the cell. The next step in the development of this
approach would be to determine the parameter sensitivity of the homogenised
properties of the composite with respect to the material characteristics of the
constituents as well as to some geometrical data defining the RVE. Statistical and
stochastic simulation of probabilistic moments of the effective material tensors
would be possible after such a sensitivity determination, taking into account the
experimental knowledge of the statistical parameters of the composite constituents.

3.2 Homogenisation Method

The periodic n—component composite in the plane orthogonal to the fibre
direction is considered where perfectly bonded components are assumed to be
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elastoplastic. Mechanical behaviour of the composite constituents is represented by
time and temperature dependent constitutive relations under the assumption that for
any time 7 the total strains and stresses can be decomposed as

e (y,D=¢"(y,0+€ (y,7) CRY
o, (y,7)=0"(y,7)+0,(y,7) (3.2)

where €, € denote elastic strain resulting from a given displacement boundary

ro®

condition applied on the region €, and the eigenstrain in the same subregion,

¢ o] stand for the elastic stress and eigenstress tensor

r? r

respectively; ©
components in .. The eigenstrain and eigenstress fields considered here as

transformation field may be decomposed in the case of thermal and inelastic effects
as

£ (y,7) =m o, (T) + " (y,7) (3.3)
6 (y.7) =1 0, (1) +6" (y.T) (3.4)
where m, denotes the thermal strain tensor, [, is the thermal stress tensor, while

o7(T) represents the linear thermal expansion coefficient. A procedure of
determination of the effective thermal expansion -coefficients for various

composites has been described in [253,305,311]. Since €

inel
r

is the inelastic strain

and o :” is the relaxation stress, (3.1) and (3.2) can be written as

. (y.1)=M,0,(y.7)+m 0(t)+ & (y,7) (-5
o,(y,1)=C,e,(y, 1) +1.8()+5" (y,7) (3.6)

r

where C, and M, are the elastic and compliance tensor components for the

subregion Q.. Hence, it is possible to write the following relations between

inel rel ,
m,1 M C, e and 0" :

M =C 3.7

m =-M,1 (3.8)

1. =—Cm, (3.9)

e (y,1) =-M,0 " (y,7) (3.10)

o’ (y,1)=-C,e" (y,1) (3.11)
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Mechanical and thermal elastic influence functions are given by the following
relations:

g,(y,0) = A, (Y)e(®)+ D (y,¥)e, (y,7) (3.12)
o,(y,7)=B,(y)e(®)+F_ (y,y)o.(y,7) (3.13)

Matrices B, (y) and A (y) in (3.12) and (3.13) denote stress and strain

concentration factor tensors representing the volume averages of the corresponding
functions over the periodicity cell, as is proposed in (3.14) to (3.17). To describe
the overall homogenised response of volume €2, the resulting strains and stresses
are combined with their corresponding local components described by (3.3) to
(3.6) as

e(r) = j €,(y,7)dQ
| | (3.14)
|Q| [lef (y.0) +&,(y.D)ldQ=¢" (1) + € (1)
o(r)= ja (y,7)dQ =
| | (3.15)
|Q| [los(y. 1)+ 0, (y,0)1dQ =0 (1) + 0" (1)
Then, local elastic fields may be written as
EEI (T) = | | _[[A (Y)S(T) +a (y)aT (T)] dQ (316)
Gel (T) - |Q| J[B (Y)G(T) + b (Y)ar (T)] dQ (317)

where a,(y) and b,(y) are the thermoelastic strain and stress concentration factors
[86,94]. The strain transformation field 8*(y,7) defined in Q results in the
displacements on the unconstrained part of surface d Q , while the transformation
stress o (y,T) generates surface tractions on Q being constrained. The relation
between the local and global transformation fields is proposed as

£ (1)=

g Jle, (.0 - A, (V)e(@)] dQ = |f AWE YDA 5

|Q |Q

o (T)—| |I[6 {(¥)-B,.(y)o(@)] dQ—| |JBT(y)0 (y.7) dQ (3.19)
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The elastic local strain €, (y,7) and stress fields o, (y,7) are found from a
superposition of the elastic local fields sfl(y,r) and Gfl(y,r) with local

eigenstrains er* (y,7) and eigenstresses G: (y,7), respectively; the same model in

the context of global scale is introduced analogously. These two different scales
are linked using the formulation for local strain and stress fields in the following
form:

£,(y)=A,(y)e+D, (v.y)e (¥') (3.20)
c,(y)=B,(y)o +F, (y,y)o,(y") (3.21)

D, (y.y'), F_ (y,y') are transformation strain and stress influence functions,
which enable us to relate the strain and stress tensor components on the macroscale
defined by y and the microscale identified by y’. Solving the following boundary
value problem on the RVE we get

. _do(y)
divoly) = ay 0 (3.22)
£,(y)=M,0,(y)+&,(y) (3.23)
1
5 SJ2 £,(y)dQ=(g), o)
u(y)=gey+u (y) (3.25)

where the local uniform strain field &, is found using the matrices A (y),
D, (y,y') . Further, it is possible to determine the approximated expression of the

averaged strain in the subvolume €, given as

N
e, =Ae+ YD, e (3.26)

rs=1

Analogous to (3.26), the averaged stresses in the subregion (2, can be written
in the form

N
c,=B,o+ YF o,

Pt (3.27)
It is observed that F(y,y") and D(y,y’) are eigenstress and eigenstrain influence
functions, that reflect the effect on the scale y resulting from a transformation on
the scale y’ under overall uniform applied stress or strain. The additional influence
functions are determined in terms of averages and piecewise constant
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approximations in the introduced subregions inside the RVE. Therefore, under
overall strain €(¢)=0, the transformation concentration factor tensor D, gives the
strain induced in the subvolume €, by a unit uniform eigenstrain in Q. Under

overall stress 6(f)=0, the concentration factor tensor F,, defines the stress in Q,
resulting from the unit eigenstrain located in . It can be shown that these

tensors can be determined in the case of multiphase medium as
D, =(-A,)(C,-C)'(5,1-c,AT)C, (3.28)
F, =(1-B,)(M, -M)"(5,1-c,B” )M, (3.29)

(r,s=1,...,N, without summation over repeated indices)

which for a two—component composite gives

D, =(-A,)c,-c;s)'c,
D,;=-[-A,)C,-C;s)'Cy
Fpa = (I_Bp)(Moc _MB)IMO(

FPﬂ = _(I _Bp)(Moc _MﬁylMﬁ
for p=0.,3

(3.30)

(3.31)

This completes the description of the homogenisation method for a composite with
elastoplastic coefficients by use of the Transformation Field Analysis (TFA). It
should be underlined that, in comparison to the homogenisation model valid for the
linear elastic range, the necessity of transformation matrix computations is crucial
for the proposed nonlinear FEM analysis.

3.3 Finite Element Equations of Elastoplasticity

The following boundary value problem is now considered [206,210]:

Aoy, =0; xe Q (3.32)
Agkl = CklmnAgmn ; X€ Q (333)
Ag,, = %[Auk,l +Auy g g Aug g+ Aug g+ Aug pAug ] xe Q (3.34)

with the boundary conditions

Ao n =At; xed Q, k=123 (3.35)
Au =Ai.; x€d Q,, k=123 (3.36)
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This problem is solved for displacements u, (x), strain &y (x) and stress o, (x)

tensor components fulfilling equilibrium equations (3.32)—(3.36). Let us note that
the stress tensor increments Ao, (x), A6, (x) denote here the first and second

Piola—Kirchhoff tensors

Ao, =AF,AG, +F, AG, +AF, G, ; X Q (3.37)
where
AF,, =Au,, ; x€ Q (3.38)

To get the solution, the following functional defined on the displacement
increments as Au, is introduced:

J(u) = [ ClAey ALy + 16 A A )dQ — [ A Aud (@ Q) (B39
Q o

Let us note that this methodology is common for homogeneous m aterials as well as
heterogeneous media. In case of composites, the last equation can be decomposed
into the integrals valid for particular constituents and their boundaries and
interfaces, separately.

Now, let us introduce the displacement increment function Au, (x) being

continuous and differentiable on Q and, consequently, including all geometrically
continuous and coherent subsets (finite elements) €, e=1,...,E discretising the

entire Q. It is not assumed that Auk( ) is differentiable on the interelement
surfaces and boundaries QQef (for ef=1,...,E, e+ f ). Next, let us consider the

following approximation of Au, (x) for xe Q:

NF
Auy (x)= CZI% (x) Auf™ (3.40)

(N)

where @, (x) are the shape functions for node k, Au;"’ represents the degrees of

freedom (DOF) vector, while N, is the total number of the DOF in this node.
Considering above, the displacements and strains gradients are rewritten as
follows:

Auy, (x)= g, (x) Auf”) (3.41)
A, (x)=[BL* + B Aul™ = BEAul™ (3.42)
AE, (x)= B Auf™ Aug™ (3.43)
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and finally
Ag,, (x)= AE, (x)+AE,, (x) (3.44)

The following notation is applied (3.42) and (3.43):

l_;lfll)g (X) = (Dlg,l (X) (3.45)
E/f;)g (X) = gofk (X)(pi ( )"‘(N) (3.46)
B (x)= 17, (x)of; (x) (3.47)

All these equations are substituted into the variational formulation of the
problem (cf. (3.39)). There holds

5 ClimDEYAE 1, =% Chiy (Agkl +Agy ) (AE +AE, )
=2 Chtmn (08,7, + A AZ,, + AT AR, +AF,AF,,) (3.48)
=5 Cklmn( kng“(N)Bé

mn

AugN) + BgAu(N)B “nVAuLN)Au‘SN)

+ Bkgé AuéN)AuéN)B,ﬁnAuLN) + B,gé AuéN)Au(gN)EnfnvAuLN)Au\(,N) )
56 Au, Au,, =36 z(p:k (X)A”(N) (291 (X)A"‘EN) (3.49)

Next, the following notation is applied:

9 = [6u0f, ()0, ()0 650
Q,
K™ = [4C B B0 @5
Q,
K = [LCum (B(I)C B@S L BOIBWE | BRI BRE ) 40 (3.52)
Q,
where
ké%)t _k(a)e +k(con)e +k(u)c (3.53)

and for the second and third order terms
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k(Z)e
; DA, NG (M A (N) L BEA (N A (N ) (3.54)
3 v
:chklmn(BklAug B Au, " Auy,” + By Aug Aué Brfl‘nAu# )dQ
K = [2C 0 BEAUY MM B A A a2 (3.55)
Q

e

Introducing k{ for i=1,2,3 to the functional J(Au, ) in (3.39) and applying the

transformation from the local to the global system by the use of the following
formula, typical for the FEM implementation:

AuéN) = agaA% (3.56)
it is obtained that

J(Aq, )=1KAq,Aqy +1 K Aq,AqsAq,

L g3 (3.57)
+51KopsAq,0q509,Aq5 — AQ,Aq,,

The stationarity of the functional J (Aqa) leads to the following algebraic
equation:

0] )
Ko 3Aqs + Kop,

AqgAq, + K sAqsAq,Aqs = AQ, (3.58)
being fulfilled for any configuration of €. The iterative numerical solution of this
equation makes it possible, according to the specified boundary conditions, to
compute the effective constitutive tensor components of the homogenised
composite. It should be stressed that the first two components of the stiffness
matrix are considered only in further numerical analysis (geometrical nonlinearity
is omitted in the homogenisation process); a detailed description of the numerical
integration and solution of (3.58) can be found in [12,72,271,276], for instance.

3.4 Numerical Analysis

As was mentioned above, the main goal of the TFA approach is to compute the
transformation matrices A,, D, that are determined only once for the original
geometry of the composite and assuming initially linear elastic characteristics of
the constituents. There holds that

<d0'r>gr =C¢r3ff<d€r>gr =Cfff<(d£fl +dginel)>g

»
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<d£r>!2, =A de+ i Drs<d£sinel>g (3.59)

r,s=1 s
<d6il>g, :Cfl<dgil>gy and <d61rnel>gr :Cr<d81rnel>gr (3.60)
c"=C’+C, (3.61)

Further, using spatial averaging definitions, the averaged stress tensor components
are calculated as follows:

(e,), =€ and (0,), =0 (3.62)

Hence, the effective elasticity tensor components C? are derived for a given
increment as
do=C"de (3.63)
eff N el N ine ! ine (364)
C"=YcC"+3 ¢ (D € 1) c6"

=1 77 r,s=1

In the particular case of a two—component composite, the transformation and
concentration matrices are obtained as, cf. (3.30) and (3.31)

D, =I-A)(C, -C,)"'C, (3.65)
D, =I-A,)C, -C,)"'C, (3.66)
D, =-I1-A)C,-C,)"'C, (3.67)
D, =—(I-A,)C, -C,)"C, (3.68)

C,,C, denote here the components corresponding to elastic properties, while
A, A, are mechanical concentration matrices. Finally, using (3.64) it is obtained
that

N . 1 . . 1 .
CT = Yol +e,Cf + S Dy ] o+, et ) ol
r=2

(3.69)
. 1 . . 1 :
inel . inel inel . inel

+201(D2181 T oZ +02(D2282 T o

The FEM aspects of TFA computational implementation are discussed in detail
in Section 3.4 below. Further, it should be noticed that there were some approaches
in the elastoplastic approach to composites where, analogously to the linear
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elasticity homogenisation method, the approximation of the effective yield limit
stresses of a composite is proposed as a quite simple closed form function

P = oo, (3.70)

or, in terms of the effective yield surface, in the following form:

y

o -
¢(G)=g}§)x cfw{ﬁ} c[m(y)a—(o;”)z] (3.71)

where m(y=41)=3 u,V (4,,1,) and Vis any estimate of the viscosity compliance

tensor defined using the viscosities [; and [1,. A review of the most recent theories
in this field can be found in [381], for instance.

The main aim of computational experiment presented is to determine the global
nonlinear homogenised constitutive law for two component composites with
elastoplastic components; the FEM based program ABAQUS [1] is used in all
computational procedures. However the method presented can be implemented in
any nonlinear FEM plane strain/stress code such as [60], for instance. The
numerical experiments are carried out in the microstructural (RVE) level, and that
is why the global response of the composite is predicted starting from the
behaviour of the periodicity cell. The numerical micromechanical model consists
of a three—component periodicity cell with horizontal and vertical symmetry axes
and dimensions 3.0 cm (horizontal) X 2.13 cm (vertical) (cf. Figure 3.1 and 3.2).
The composite is made of epoxy matrix and metal reinforcement with material
properties of the components collected in Table 1. The void embedded into the
steel casting simulates a lack of any matrix in the periodicity cell. Some nonzero
material data are introduced to avoid numerical singularities during the
homogenisation problem solution.

The 10-node biquadratic, quadrilateral hybrid linear pressure reduced
integration plane strain finite elements with 4 integration Gaussian points are used
to discretise the cell. Periodic boundary conditions are imposed to ensure periodic
character of the entire structure behaviour. A suitable formulation of displacement
boundary conditions has the following form:

u; =€;(y(P)—y(R)) (3.72)

where u; ={u,,u, } represents the displacement function components, €; is the

global total strain imposed on the periodicity cell, while y(A) and y(P,) denote
coordinates of the points lying on the opposite sides of the RVE.
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Figure 3.1. Cross section of a superconducting coil
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Figure 3.2. 3D view of the superconducting coil part

Table 3.1. Material characteristics of composite constituents

No Material Young modulus Poisson ratio Yield stress
1 Epoxy resin 7000.0 0.3 10.0

2 Metal 42000.0 0.2 22.0

3 Void 70.0 0.1 0.1

173

To calculate the effective tensor components, the boundary value problem given by
(3.22) — (3.25) is solved first, where the periodicity cell is discretised with 25 finite
elements of the type CGPEIOR implemtented into the system ABAQUS. The
displacement boundary conditions are introduced at the edges of the RVE quarter
as is shown in Figures 3.3 and 3.4.

y

=Euy:

Figure 3.3. Boundary conditions for E;; # 0
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yA w=Ey,

Y1

Figure 3.4. Boundary conditions for E,, # 0

Further, since the generalised plane strain is considered, the matrices computed
have a rank a=4 and the total dimensions of the matrices A, and D, are

[4x4]. The first step in the numerical analysis is to compute mechanical and

transformation concentration matrices A, and D, , which is carried out according

to the special purpose implementation in the computer system ABAQUS.
Transformation matrices A, and D are evaluated as

(1) matrix A by means of the overall strain loading case

€= {s,.j}z [€,,,€5,,2€,,€5;]" introduced using displacements
U, =€;y;, (3.73)

(2) matrix D imposing the uniform eigenstrain in the subvolume V,_ or V, as the

uniform stress; since it is not possible to introduce the eigenstrain directly in each
subvolume in the program ABAQUS, the stress tensor components are calculated
as

o,=-C,:¢e ,and r=1,...,N (3.74)

and imposed on each of the N subvolumes, where the elasticity tensor C, is given
by

I-v, v, v, 0
- 0
___E r W (3.75)
T —vyd-2vy| v v 1w | 02
0 0 0 TV
2

The accuracy of the homogenisation method applied for a given material model
is verified by comparison with the results obtained for real heterogeneous
composite under the same boundary conditions. For this purpose, the same
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boundary value problem is solved with four different loading cases. The
elastoplastic static analysis consists of 25 incremental load steps (with a constant
increment in each step) and is performed using the Radial Return algorithm for the
perfect J, elastoplastic material. The results in the form of stress strain relations

are shown in Figures 3.5 to 3.8, while the stress distribution in the periodicity cell
can be compared in Figures 3.9 to 3.12.

Generally, it is observed that the elastic range is very well approximated by the
TFA model results. However, the homogenised material seems to be a little stiffer
than the heterogeneous one, especially in the nonlinear range in the direction y; of
the RVE. At the same time, for the interrelation of shear strain and stress, the last
incremental steps show almost linear behaviour and that is why practically there is
no difference between heterogeneous and homogeneous material. To obtain more
efficient effective elastoplastic properties, homogenisation method presented above
should be corrected to include the increments of transformation matrices during the
loading process.
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Figure 3.5. Constitutive 6;,-€;; relation for homogenised and real composites
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Figure 3.8. Constitutive 61,-2€; relation for homogenised and real composites
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Figure 3.9. The equivalent stress ¢ distribution in the RVE
1
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Figure 3.10. The equivalent stress o distribution in the RVE
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Figure 3.11. The equivalent stress o distribution in the RVE
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Figure 3.12. The equivalent stress o distribution in the RVE
3

That is why the FEM mesh should employed the most precisely around all
interfaces — its density along the external RVE edges does not need to be so
precise. Comparing the stresses fields spatial variations with analogous results
collected in Sec. 2.3.3.2 it is seen that maximum stresses variations are obtained
along the interface in RVE. This observation does not depend on the
homogenisation approach used as well as on its FEM solution, so it is common for
various cell problem solutions.

Further, the effective properties of the homogenised material are computed
starting from the properties of the composite constituents and the constitutive
relation verified for all strain increments during the computational incremental
analysis. We use the relation (3.70) and therefore

k+pu k—pu k—u 0] [15776.83 26017 26017 0
oo _|kmH k+p k-p o 0]_| 26017 1577683 26017 0

k—u k—u k+u 0 2601.7 26017 1577683 0

0 0 0 u 0 0 0 6587.57

while the inelastic part of the effective constitutive tensor can be written as

3393.88 150592 2080.0 0
1o 749.44 2653.36 1576.12 0
16314 1546.4 5017.2 0

0 0 0 499.600

inel
C" =o:¢
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which completes the calculations of the effective elastoplastic characteristics of the
composite considered. As it is shown here, the homogenisation technique presented
can be very efficiently used in case of linear elastic constituents of the composite.
It can be used instead of the previous method, where the symmetry conditions have
been applied on the external edges of the RVE and some specific stress boundary
conditions were applied on the bimaterial (or multimaterial) interfaces.

3.5 Some Comments on Probabilistic Effective

Properties

Deterministic  approaches to homogenisation of elastoplastic or
viscoelastoplastic composites worked out recently are more complicated than the
analysis presented above. However some authors presented simplified
approximations for the effective yield stresses or yield conditions. It is known that
for some special case where the volume fractions of the fibre—matrix constituents
are equal or almost equal, the effective yield stresses can be described as

Y — lzlzz (3.75)

where X%, denote the yield stresses for the two—component composite. This

relation is used to show how to calculate the probabilistic moments in case, where
yield stresses are characterized by their first two probabilistic moments. These
parameters are defined for fibre and matrix using E[Zl], G(Zl) and E[ZZ],

G(Zz). Considering the above, then the first two probabilistic moments of the
effective parameter can be calculated starting from

(Z(C'ff))z — 2122 (3.76)

and by using the second order perturbation method, we get

E[(Z(em )2]

+

j 3.77)
J(Z(z) + €Ab142’2u + LzezAbuAbvzéw ) Pr (b(X)) db

oo

+oo
x [(£0 +eAb, 3y +Le2Ab,AbT ) pr(b(x)) db

_ Elz, el ]
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since the second order derivatives of the effective yield stresses are equal to O.
Then, omitting second order terms being equal to 0, the variance of effective yield
stresses can be calculated as

Var((z(eﬁ))z ): Var(£,2,)= [(£Z, - E[2,%,]) pr(b(x))ab
. - (3.78)
= {50 +eabzy (59 +eAb 25 )~ 2052 } p (b)) b

—oco

= Var2(21 )+ Varz(Zz)

which gives a combination of variances under the assumption of uncorrelation of
the variables X and X,. Finally, the expected value and variance of the effective

yield stress can be determined from the following equation system:
E[(Z(gﬂ) )2:| = E? [Z(eﬂ) ]+ Var(z(eﬁ‘) ) (3.79)
and

Var((z<eﬂ->)z ): ZVar(Z(eﬂ'))(z £ [Zuff» ] + Var(z@ﬂ') )) (3.80)

Probabilistic moments of effective yield stresses of a composite can be found as a
solution of (3.77) and (3.78) in conjunction with the statements (3.79) and (3.80).
For illustration, using a matrix built up with the following material data:
E[2,]=80 MPa, o©(Z,)=80MPa and the fibre as E[Z,|=4100MPa,

0(Z,)=410 MPa, the effective plastic stress is obtained as the expected value
E[3“]=552.969 GPa and the standard deviation & (=% )=40.367 GPa .

3.6 Conclusions

As is shown in the computational experiments, the homogenised material
obtained as a result of the Transformation Field Analysis (TFA) is stiffer in the
nonlinear range than the original composite. It is caused by the fact that the
constitutive relations during the whole iteration procedure are based on constant
constitutive tensors C, with elastic properties. To obtain a better effective

approximation of composite behaviour, these matrices should be divided into
elastic and plastic parts, after yielding, by means of the consistent tangent matrices.

Since the Transformation Field Analysis makes it possible to characterise
explicitly the effective elastoplastic behaviour starting from composite component
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material properties, it is possible to carry out the numerical sensitivity studies of
homogenised composite properties with respect to its original material
characteristics. Such computational studies make it possible to determine the most
decisive material parameter for the overall elastoplastic behaviour of the
composite, which may be important in the context of optimisation techniques
applied in composite engineering design studies.

Due to the fact that most of the composite components material characteristics
are obtained experimentally as statistical estimators, the next step to utilise the
present approach is probabilistic implementation of the homogenisation problem. It
will generally enable us to compute the respective probabilistic moments and
coefficients of effective properties, starting from the expected values and standard
deviations of composite component elastoplastic characteristics. As is known, it
can be done using the Monte Carlo simulation technique, for instance. Further, it
should be mentioned that such an implementation makes it possible to specify the
stochastic sensitivity of composite effective characteristics to the randomness of
the component material nonlinear behaviour.

3.7 Appendix

The two-component transversely isotropic RVE of volume Q is subjected to a
uniform overall strain increment AE or stress AX. A possible description of the
local uniform strain and stress increment field is suggested as

Ag, =A AE, r=1,2 (A3.1)
Ao, =B ,AX, r=12 (A3.2)
with further relations
A +c,A, =1 (A3.3)
B, +c,B, =1 (A3.4)

Further, the local and overall increments are expressed as
AX=cAo, +c,Ac, and AE=cA¢g +c,A¢g, (A3.5)
with composite constituent volume fractions

clzﬁ,az% and Q,LQ,=0. (A3.6)

0%

The constitutive relations for composite constituents in elastoplastic range are
defined as
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Ac,=C,Ae,, Ae,=M,AG, and M,=C," (A3.7)
while the overall properties are
AX=CAE, AE=MAX and M=C" (A3.8)

The constitutive and compliance matrices are given as the relevant spatial averages
over the RVE

2 2
C=YcCA,, M=YcM,B,
r=1

r=1

(A3.9)

The individual components of B, and A, may be found as solutions of (A3.3)
and (A3—4). There holds that

0.5(k/k, +u/u,) 050k, —u/u) 0501-1)/k, 0
0.5(k/k, —p/pu,) 050k, +u/u,) 0501-1)/k, 0

A, = (A3.10)
0 0 1 0
0 0 0 uru,
as well as
E. 0 0 0
| 0 E, 0 ] L (A3.11)
=— , for r=1,
' EC (l_cr)ar (l_crhr ErL
0 0 0 E;
where
Ec=cEy, +6,E,, and  a, =y, Eny —Vo By )=—a, (A3.12)

Next, the transformation and concentration matrices D, F _ are calculated as

rs

D, =(I-A,)(C-C)'c, D,=0-A,)(C-C,)'C, (A3.13)
F, = (I_Br)(Ml _Mz)_lMl - :(I_Ar)(Ml _Mz)_le (A3.14)

r

with D,,, D,,, D,,, D,,, F,,, F,,, F,,, F,, to be calculated. The components of

the matrix D,, are obtained as, for instance,
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The remaining coefficients of D,, are equal to 0.

(A3.15)

(A3.16)

(A3.17)

(A3.18)

(A3.19)

(A3.20)

(A3.21)

(A3.22)



4 Sensitivity Analysis for Some Composites

4.1 Deterministic Problems

As is known, the sensitivity analysis in engineering systems is employed to
verify how input parameters of a specific engineering problem influence the
analysed state functions (displacements, stresses and temperatures, for instance).
The sensitivity coefficients [269], being the purpose of such an analysis, are
computed using partial derivatives of the considered state function with respect to
the particular input parameter(s). These derivatives can be obtained numerically
starting from the fundamental algebraic equations system of the problem, for
instance, or alternatively, by a simple derivation if only a closed form solution
exists; some combined analytical-numerical methods are also known [99]. It is
important to underline that this methodology is common for all discrete numerical
techniques: Boundary Element Method (BEM) [51,206], Finite Difference Method
(FDM) [90,206], FEM [7,21,387] as well as hybrid and meshless strategies [81].

From the computational point of view, there are the following numerical
methods in structural design sensitivity analysis [75,76,103,134,207]: the Direct
Differentiation Method (DDM), the Adjoint Variable Method (AVM) applied
together with the Material Derivative Approach (MDA) or the Domain
Parametrisation Approach (DPA) suitable for shape sensitivity studies.
Considering these capabilities and, on the other hand, a very complex structure of
composite materials, sensitivity analysis should be applied especially in design
studies for such structures. Instead of a single (or two) parameters characterising
the elastic response of a homogeneous structure, the total number of design
parameters is obtained as a product of component numbers in a composite and the
number of material and geometrical parameters for a single component. Even some
extra state variables should be analysed to define interfacial behaviour, general
interaction of the constituents and/or the lack of periodicity. Usually, to reduce the
complexity of the original composite, the so—called effective homogenisation
medium having the same strain (or complementary) energy is analysed.

This chapter is devoted to general computational sensitivity studies of the
homogenisation method for some periodic composite materials with linear elastic
and transversely isotropic constituents. The composite is first homogenised, the
effective material tensor components are computed using the FEM-based
additional computer program. Further, material parameters of the composite most
decisive for its effective material properties are determined numerically. It should
be underlined that the homogenisation method is generally an intermediate
numerical tool applied to exclude the necessity of composite micro—scale
discretisation and, in the same time, to reduce the total number of degrees of
freedom of the entire model. On the other hand, there are many numerical
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homogenisation techniques. They can be divided generally into two essentially
different approaches: stress averaging (the boundary stresses are introduced
between the composite constituents plus displacement—type periodicity conditions)
and strain approach (uniform extensions of the RVE boundaries in various
directions plus periodicity conditions on the remaining cell edges). Considering
this, different results of the homogenisation method in terms of the effective
material tensors are obtained (as a result quite different sensitivity gradients must
be computed in these two approaches). The sensitivity analysis introduces a new
aspect of the homogenisation technique — it can be verified if the homogenised and
original structures have the same or even analogous (in terms of their signs)
sensitivity gradients. The composites can be optimised then by manipulating its
material or geometrical design parameters [310] as well as by choosing various
constituent materials with computationally determined shape for the new designed
composite structure.

The sensitivity gradients are computed here by application of a
homogenisation—oriented computer program MCCEFF according to the DDM
implementation approach and presented as functions of the composite design
parameters — Young moduli and Poisson ratios of the constituents. Since a finite
difference scheme is used for the sensitivity gradient computations, numerical
sensitivity of the final results to the increase of an arbitrarily introduced parameter
must be verified. This numerical phenomenon makes it necessary to determine the
most suitable interval of parameter increments for the particular effective elasticity
tensor components.

The entire computational methodology is illustrated with two examples — 1D
and 2D two component periodic composites. The closed form effective Young
modulus is used in the first example, while the homogenisation function is to be
computed in the second case. Both illustrations show that different components of
the effective elasticity tensor show different sensitivities to particular mechanical
properties of the original composite and, further, the illustrations make it possible
to determine the most decisive elastic parameters for the homogenisation—based
computational design studies. Quite similar sensitivity studies are carried out in the
case of heat conductivity coefficient for 1D, 2D and 3D two component
composites.

It should be noticed that sensitivity analysis can be used for validation of
various homogenisation methods. In most cases an increase in Young moduli of
composite components should result in a corresponding increase of the effective
material tensor components; an opposite phenomenon can be observed for some
specific cases, but usually in an extremely small range only. Therefore, if the
sensitivity analysis shows that most of the gradients are negative, the
homogenisation theory should be essentially corrected.

The applied effective modulus method is verified below using the examples of
1D distributed heterogeneities in the periodic two—component bar structure and of
the fibre—reinforced periodic composite. As is demonstrated for plane composite
structure, the sensitivity gradients of a homogenised elasticity tensor show some
instabilities observed for an extremely small value of the perturbation parameter.
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At the same time, for Poisson ratios values tending to their physical bounds, an
uncontrolled increase of all sensitivity gradients is observed. That is why a
continuation of this study is necessary in the context of computational error, to
extend constitutive models of composite components as well as to evaluate
geometrical and material sensitivity gradients for more complex heterogeneous
structures, especially in the probabilistic context.

Another important topic studied here is the application of the parameter finite
difference analysis to the sensitivity analysis of the uniform plane strain problem of
the real composite. This is done under the assumption that the RVE of plane cross—
section is uniformly extended in two perpendicular directions and the unit shear
strain is applied on the RVE. Therefore, the sensitivity functional is proposed as
the elastic strain energy stored in the cell, which is treated as some type of
representative strain state of the composite under real conditions. To reflect the real
conditions of the composite service more accurately, the particular strain
component can be scaled over some multipliers to illustrate pure horizontal and/or
vertical extension of the composite specimen. The sensitivity of this functional is
taken as a measure of influence of various material parameters on the overall
behaviour of the composite. According to the previous results, we observe the
Poisson ratio of the matrix as a dominating material parameter for the fibre—
reinforced periodic composites with the RVE specified below.

Finally, it should be mentioned that this sensitivity analysis is introduced and
performed to validate the homogenisation theory itself. In the case when the
external boundary conditions are known together with the micromorphology of a
certain composite, the homogenisation theory makes it possible to determine the
effective characteristics of this structure and, according to the sensitivity analysis
the sensitivity gradients of both real and homogenised structures are computed. If
these gradients have consistent signs and comparable values, the homogenisation
algorithm proposed is useful in computational modelling; otherwise another
method should be proposed. It can happen that some homogenisation theories (or
even closed form equations) are valid for some specific boundary value problems
and it can be verified in this way. Another promising field of application of such an
analysis is optimization and/or identification of composite materials and structures.

Sensitivity gradients cannot be obtained analytically if the homogenisation
function components are determined numerically in some cell problem solutions.
Hence, two separate ways can be followed, the first one being purely
computational finite difference based studies, where the gradients are obtained as
differences of some slightly modified homogenisation tests. Alternatively, a semi—
analytical method can be implemented where the spatial averages of the
constitutive tensor components (independent from homogenisation functions) are
differentiated symbolically and the remaining part resulting from homogenisation
FEM tests is analysed using the finite differences; analogous opportunities are
available for probabilistic (and next stochastic) analyses. Taking into account the
consistency of the Monte Carlo simulation application and the computational time
savings, full numerical differentiation is implemented. A semi—analytical approach
can be implemented partially in some mathematical symbolic computation
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packages, where probabilistic moments can be derived according to the classical
integral definitions, while the random fields of homogenising stresses averaged
over the RVE are treated using the numerical differentiation approach.

The results of computations in the form of deterministic derivatives or their
probabilistic equivalents can next be implemented in deterministic and/or
probabilistic optimisation problems based on the gradient techniques. Such an
analysis will enable us to optimise various composites [84,240,264,281,320] using
their homogenised models — without the necessity of complicated multiscale
problem discretisation and their further solution. The main benefits of the
integrated computational approach to the composites are (a) the most effective
choice of composite components (sensitivity to the expected values of material
parameters), (b) selection of the best processing technology from the necessary
accuracy point of view (standard deviation levels), (c) efficient durability control
and analysis (sensitivity to the interface and structural defects parameters), etc. The
proposed method is significantly more complicated than the previous approaches.
However it makes the computational model of composite materials and their
behaviour more realistic and focused on the engineering analyses.

4.1.1 Sensitivity Analysis Methods

The main aim of the structural design sensitivity analysis is to study the
interrelation between the response (or state variables) of a structure determined
from a solution for the boundary—value problem and design variables begin the
input data for the solution process. Displacements, stresses, temperatures or
velocities can be taken as the structural response measures, whereas such
parameters as truss and beam cross—sectional areas, plate and shell thicknesses and
material characteristics are usually chosen as design variables. Let us note that
even for linear elastic problems the equilibrium equations may generally contain
some nonlinear expressions for the state and design variables — this is the case of
plate/shell thickness and/or truss lengths and, especially, material parameters in
composites.

The sensitivity gradients are the main numerical tool to evaluate the design
sensitivity of a structure with respect to some design parameter. For engineers a
more interesting issue is the overall sensitivity of the structure examined under
general loading conditions than particular state function gradients. The gradients of
the structural response functionals with respect to design variables give a useful
measure of structural response variation together with the change of a given design
input.

The sensitivity analysis is especially applicable with common implementation
with one of the well-established numerical methods of structural analysis, i.e. with
the finite element formulation. To illustrate the main ideas let us consider the static
structural response of a linear elastic system with N degrees of freedom defined by
the functional [208]
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3(n!)=Glg, (1 ).0?]. a=12....0; a=12...N 4.1)

where G is a given function of structural displacements vector (g, ) and design

variables, h’ represents a D-—dimensional vector of design variables; the
displacement vector satisfies classical equilibrium equations, i.e.

Kopn)ap (0" )= 0, (1) 42)

The displacement vector is assumed to be an implicit function of design
variables, because the stiffness matrix K,; and the load vector O, are some

functions of these variables.
Now, the SDS analysis is employed to determine the changes of the structural
response functional with variations in design parameters, so the so—called

sensitivity gradient 83/ oh‘ is to be determined. The chain rule of differentiation

applied to (4.1) returns here

34 =G4 +G q" (4.3)

where () and (.), denote first partial derivatives with respect to the dth design

variable and the aith nodal displacement, respectively. The design variables h“ are
introduced as the only arguments in the functions 3, K o> Qo> 0, and, therefore,

partial derivatives of these functions with respect to h? are in fact equal to the
corresponding total derivatives. Nevertheless, there holds E)G/ oh’ =3 in case of

G. Since it is an explicitly given function of 4* and g, , the derivatives G and

G, may be computed directly, while qlf is to be determined numerically.

The first technique for computing of the sensitivity gradients known as the
direct differentiation method (DDM) extensively employed in structural

optimisation reflects the following algorithm. Let us assume that K, (hd) and
0, (hd) are continuously differentiable with respect to the design variables h*;
then, the vector ¢ 5 (hd) is also continuously differentiable. Differentiation of both

sides of (4.2) with respect to h¢ gives
d _ ~d d
K(Z,Bqﬁ _Qa _Kaﬁqﬂ (44)

Since the stiffness matrix K,; is assumed to be nonsingular, (4.4) can be solved

for gy ; it yields
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3 =G +G K08 -K2q,) (4.5)

The alternative AVM strategy begins with the introduction of an adjoint
variable vector A, , a=1,2,...,N such that

Ay =G 4K (4.6)

It yields the adjoint equations for A, in the form

KA =G, 4.7)
and then, the sensitivity gradient coefficients may be obtained as
5 =6"+4, (0! ~Kia,) (48

having solved the above equation for the adjoint variables A;. The main ideas of

the DDM and AVM seem to be identical but in realistic engineering design
problems their computer performance is considerably different. Since most of the
functions are given explicitly in the problems considered, the DDM technique has
found its application below.

The matrices of derivatives of practically any order of the global stiffness
matrix with respect to design variables are obtained simply by adding derivatives
of element stiffness expressed in the global coordinate system. It is done quite
similarly to the assembling procedure for the global stiffness matrix. This process
is usually essentially simplified, because almost all entries in the matrices of their
derivatives with respect to the particular design variables are equal to O and then all
arithmetic operations can be carried out at the element level.

Effective computation of stiffness derivatives with respect to design variables
for finite elements is another issue to be taken into account in developments of any
sensitivity-oriented software. Most up-to-date finite element codes engage
numerical integration instead of using the closed form expressions in terms of
design variables to generate the element stiffness matrices. For such numerically
generated element matrices a differentiation process with respect to design
variables can be performed through a sequence of computations (at least two
solution for initial and for a slightly perturbed design parameter) used to generate
these matrices, leading to implicit design derivative procedures.

The element matrices of the design derivatives can also be obtained by using a
finite difference scheme, which is demonstrated for the eth element of the stiffness
matrix

Ky 1 ‘ -
o EE[K;;(hH@)g)— k9w d=12...0, 4.9)
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where K fx;) is the eth element stiffness matrix, 49 is the d th component of the

D—dimensional design variable vector A, € represents a small perturbation and the

D—dimensional vector 1, isequal to 1 at the d th position and zeroes elsewhere.

Such a scheme is known as forward finite difference rule, however backward and
central differences can be applied too. Backward differentiation uses the values of
a function in actual (h) and previous point (h-€), while central difference is
returned from arithmetic averaging of equations containing forward and backward
differences.

4.1.2 Sensitivity of Homogenised Heat

Conductivity

As is known, it is possible to obtain the effective heat conductivity tensor
components by the application of some algebraic approximations for particular
types of composite materials. However, numerical procedure is not very general in
this case. The effective heat conductivity for a periodic fibre—reinforced composite
in a 2D problem where the fibre has the round cross—section and the total
composite volume is relatively large in comparison to the single inclusion can be
approximated using the Cylinder Assemblage Model (CAM) for a fibre—reinforced
plane structure. The Spherical Inclusion Model (SIM) [65] for spherical inclusions
distributed periodically (3D composite). The heat conductivity coefficients of
composite components k;, k, are such that k;>k, (the same results hold true for
electrical conductivity, magnetic permeability and the dielectric constant for
composites, for instance).

A concept of the first test is to compare the effective heat conductivities
obtained for the 1D, 2D (fibre) and 3D (particle-reinforced) composites in terms of
various reinforcement volume ratios and the interrelation between heat
conductivity coefficients for both components. The following equations are used:

e 1D composite

k(eff) |Q|
dQ
ak(y)
e 2D composite
1-v k -
Kyl =ky| 1+v L2
oo 2k —k,
e 3D composite
—1
1-v k
kD = k| 14y, | —L+—2
P 3k —k
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where v is the reinforcement volume fraction, while k;, k, are heat conductivity
coefficients of composite components such that k;>k,.

Furthermore, the sensitivities of effective heat conductivity with respect to
those characterising original composite components are determined: the
computations are performed using the mathematical package MAPLE. All the
results of the numerical experiments are presented in Figures 4.1-4.9: the effective
heat conductivities for the 1D, 2D and 3D composites are plotted in Figures 4.1—
4.3, their material sensitivities with respect to design variable k; in Figures 4.4—
4.6, while sensitivity studies with respect to the parameter k, are presented in
Figures 4.7-4.9.

Figure 4.1. Effective heat conductivity for 1D composite

Figure 4.2. Material sensitivity of X’ in 1D problem to k;

Figure 4.3. Sensitivity of X in 1D problem to v;
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Figure 4.4. Effective heat conductivity for 2D composite

Figure 4.5. Material sensitivity of K’ in 2D problem to k;

Figure 4.6. Sensitivity of X in 2D problem to v;

Figure 4.7. Effective heat conductivity for 3D composite

193
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Figure 4.8. Material sensitivity of £’ in 3D problem to k;

Figure 4.9. Sensitivity of X“” in 3D problem to v;

Analysing numerical results it can be observed that the effective heat
conductivity surface has an analogous shapes for 1D, 2D and 3D composites.
However the values of this coefficient obtained for the same reinforcement ratio
are largest for 3D composite with spherical inclusion, next largest for 2D fibre—
reinforced composite, and smallest for the 1D case. Therefore, 3D composites
seem to be most optimal — using the same volume of reinforcement, the highest
value of the effective material property is obtained. According to engineering
intuition, it is found that increasing both k; and v an increasing of final value of
k7 is obtained. The results of sensitivity studies presented in Figures 4.3, 4.6 and
4.9 make it possible to observe the greatest sensitivity of composite effective
characteristics with respect to both design parameters (k; and vy) for extremely
small values of the coefficient k; and the largest value of the reinforcement ratio.
The sensitivity gradients of K’ with respect to v have almost constant value,
while with respect to k; are efficiently nonlinear and reach the maximum forv=0.5
(cf. Figure 4.2 and 4.3, for instance). This result means that the effective
conductivity value is most sensitive to the changes of k;, if the reinforcement
volume ratio is maximal, which is predictable result and it positively validates this
homogenisation method.

The smallest sensitivity of kX’ to the parameter k; can be noted for v; tending to
0, while the inverse relation is observed with respect to the reinforcement volume
fraction. The variability of the sensitivity surface for A’’’ with respect to the heat
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conductivity coefficient k; is almost the same for all composites. However in the
case of sensitivity to vy the 2D and 3D models are similar, while the 1D case is
essentially different — it results from the relevant equations forms.

4.1.3 Sensitivity of Homogenised Young Modulus
for Periodic Composite Bars

Let us consider periodic composite bar applied to the compressive/tensile
stresses and the homogenised Young modulus of such a structure. For such a
unidirectional n—component composite structure, one can readily obtain the
sensitivity gradients of the effective parameter e/’ with respect to the modulus of
its jth component e; as

PRC HeHe(ZAlee llem...en)

_tl el !

a 2
% [ZAlee... e ..e )

= ii12 i—1 i+l
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The geometrical sensitivity with respect to the cross-sectional area A; is determined
as
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Analogously, geometrical sensitivity with respect to the member length /; is
calculated from the following formula:
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It should be underlined that the equations obtained above can be relatively easily
inserted in the 1D implementations of the FEM formulation for elastostatics as well
as heat conduction problems, both in deterministic and stochastic computation.

Now, the sensitivity gradients are derived first for a 1D two—component
composite with the RVE presented in Figure 2.42. Considering the fact that
composite materials are characterised by numerous parameters, it is essential to
reduce this number by introduction of non—dimensional normalised parameters
between the corresponding material and geometric characteristics of a composite.
It is recommended to make the sensitivity analysis more focused with opportunity
to compare the sensitivity gradients with each other.

Determination of the first sensitivity gradient, cf. (4.11), makes it possible to
verify how the interrelation between cross—sectional area o. of both components
influences the final effective Young modulus of the composite. The next gradient
is responsible for the sensitivity of the composite to the length of both components
ratio y, while the last one gives information about the influence of interrelation 3 of
the Young moduli for composite components.

The general observation in this analysis is that an increase in analysed
structural geometrical parameters results in a decrease of the effective parameter
value (negative derivative sign) and vice versa. Analogously, it is observed that
increasing any Young modulus of composite components, the increase of the
effective homogenised parameter is obtained. Quantitative verification of the most
decisive parameter depends on the interrelations between particular material and
geometrical characteristics and should be analysed in detail in further studies. In
case of the unidirectional composite, the shape sensitivity studies with respect to
the interface location can be done analytically. All the sensitivities calculated
above enable us to design, during engineering studies, the most suitable
interrelations between particular components for unidirectional
tensioned/compressed structural members. Considering the nature of the presented
1D homogenisation approach, it is clear that the sensitivity of the Young modulus
holds true for the effective heat conductivity and other related coefficients.

The first and second order sensitivity gradients together with the mean value of
the homogenised Young modulus have been computed and collected in the figures
below. The following input data are adopted: e,=2.0E9, the coefficient 7y relating
the lengths of composite components is arbitrarily taken as equal to 1. Other
parameters are adopted in the following form: A,=0.2 and [,=10.0. The effective
Young modulus is determined with respect to the reinforcement ratio as well as to
the cross-sectional area ratio of the components and presented below.
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Figure 4.10. Parameter variability of the effective Young modulus
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Figure 4.15. Second order sensitivity gradient of ¢'*” wrt parameter 3
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1m 10

Figure 4.16. Second order sensitivity gradient of ¢ wrt parameter y

It is seen that in the case of both ratios equal to 1, the effective elasticity
modulus is obtained as the value corresponding to a weaker material, which
perfectly agrees with engineering intuition. Next, first and second order derivatives
of the effective Young modulus of the composite with respect to the coefficients
relating composite components are computed and analysed. It is typical that all the
first order gradients are positive, while second order derivatives are less equal to 0.
It reflects the fact that the overall effective Young modulus increase is obtained by
the corresponding increase of any of these parameters. The second order sensitivity
gradients computed and visualised above enable one to confirm the existence of an
extremum of the first order derivatives presented before.

4.1.4 Material Sensitivity of Unidirectional

Periodic Composites

The formulas describing the effective elasticity tensor components for the
periodic composite with unidirectional distribution of the heterogeneities (see
(2.103) — (2.107)) have been implemented in the symbolic computations package
MAPLE to derive the appropriate sensitivity gradients [177]. The two—component
composite shown schematically in Figure 4.17 was examined with the following
input data for (a) weaker material e,=4.0E9, v,=0.34, c,=1-c; and (b) stronger
material: ¢,=4.0 E9 a, v;=0.34 B, ¢,=0.5.
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Figure 4.17. RVE of two—component composite bar

Design parameters o and B are introduced to make the visualisation of
particular sensitivity gradients for some variations of the contrast between Young
moduli and Poisson ratios of laminate layers. It will enable more successful
optimisation of the composite in case of the homogenisation theory applications.
The gradients collected on figures given below are normalised to make all the
surfaces presented comparable to each other. First, quite obvious engineering
interpretation of these results is that if particular gradient is less than 0 — an
increase of design parameter accompanies a decrease of particular effective
characteristic value. Otherwise (gradient greater than 0), an increase of the design
parameter results in the appropriate increase of the homogenised quantity, while
gradient comparable to 0 means that the given design parameter almost does not
influence the overall effective characteristic. The figures plotted from the specially
implemented MAPLE script present the sensitivity gradients of the homogenised

elasticity tensor components — for C::ﬁ) (Figures 4.18—-4.21), C;;i) (Figures

4.22-4.25), CI(IZ " (Figures 4.26-4.29), C'”"’ (Figures 4.30-4.33) and cl‘zﬁ !

1122
(Figures 4.34—4.37). Parameters oo and B equivalent to the contrasts between
stronger and weaker materials Young moduli and Poisson ratios are marked on the
vertical axes of these figures, correspondingly.
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How is demonstrated in all these figures, an increase of Young moduli of both
stronger and weaker material result in the increase of all effective elasticity tensor
components. Sensitivity gradients computed with respect to Poisson ratios of both
composite components have mixed signs and all gradients essentially differ from 0.
Taking into account particular variations and values of these results it can be
observed that
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(eff . ..
(a) C 7) is sensitive at most wrt v;, then to e; and e, and at least to v, and all
1111
gradients are positive;
(b) Cg;fg) 1S most sensitive to Vv,, then to e,, v; and at least to e;; all values are
positive;
(c C ) is the most sensitive wrt e, and then to v,, e; and at least to v; where the
1133
last parameter sensitivity analysis results in the negative gradient;
p y y g g
(eff .. eff . ..
@ C ) (similarly to c'’ )) is most sensitive to vy, then to e; and e, and at least
1122 1111

to v, and all gradients have positive values;

(e) C :;f;) shows the greatest sensitivity wrt e, then to e, and finally to v, and v,

where the last two variables give negative gradients.

Table 4.1. Sensitivity gradients for the unidirectional periodic composite

ac(eﬁ) acfeff) ac(eﬁ) aC(eff) ac(eﬁ") G‘h
h 111 3333 1133 1122 1212
oh oh oh oh oh

er 0.9041 0.1138 0.0603 0.7696 0.9584 3.9570

e 0.0959 0.8862 0.9397 0.2304 0.0451 2.5430

Vi -0.0476 0.0368 -0.2811 0.7849 -0.1728 -1.1099

Vs 0.0338 1.2018 0.6254 0.1891 -0.0105 1.8538

Furthermore, the sensitivity gradients of G" with respect to all design
parameters, i.e. Young moduli and Poisson ratios of both layers have been
computed symbolically. They are found for equal values of components volume
fractions in the RVE (50%) with the following material parameters: e,=84.0 GPa,
v=0,22 and e,=4.0 GPa, v,=0.34. All the gradients are collected in Tab. 4.1 — for
particular components of the effective elasticity tensor and global composite
structural response functional G. It is visible from these results that positive values

of G" are determined for e; and both material parameters of a weaker material,

whereas negative — in case of stronger material Poisson coefficient. It should be

mentioned that uniform strain field with € =1 is applied at the RVE to define this
ij

functional.

Particular values of the quantities G" lead to the conclusion that the entire
composite is the most sensitive with respect to Young modulus of stronger
material, then to the parameters e, and v, and at least — to the parameter v;.
Comparing these results with analogous results obtained for the fibre—reinforced
composite and collected in Tab. 2 it is observed that quite similar values are
obtained in both cases and, moreover, both composites show negative sensitivity to
Poisson ratios of stronger material. The fibre—reinforced composite is however the
most sensitive with respect to the Poisson ratio of a composite weaker component.




206 Computational Mechanics of Composite Materials

Finally, is can be noted that since the procedure presented for unidirectional
composite contains the algebraic approximations of homogenised characteristics
depending on volume fractions of the components, the sensitivity gradients can be
easily recalculated to include the volume fractions of both (or greater number of)
constituents.

4.1.5 Sensitivity of Homogenised Properties for

Fibre-Reinforced Periodic Composites

Material sensitivity of the periodic fibre—reinforced plane composite is studied
here according to the numerical homogenisation method employed in Chapter 2.
The sensitivity coefficients for effective elasticity tensor components with respect
to the design parameters vector represented by h can be calculated using formula
(2.131) as [167,177]

dcip 9|1 L9

which can be rewritten in the following form:

acy)
dh
(4.14)
J’ qu 1J'8Ciikl (X ) dO+ — C kz(X(pq))
il gl b g

It is necessary to underline that differentiation with respect to any design
sensitivity parameter can be inserted under the integration sign over the RVE, only
if geometrical sensitivity with respect to composite composite dimensions is not
accounted. It is observed that if the input sensitivity parameters are not the
arguments of the elasticity tensor C;jy, the formula (4.14) simplifies to

dcl(l;ff) (x g )
- —|Q|J ,,k,—d“ R (4.15)

while the derivatives of the homogenisation functions Y, ,,, with respect to the

components of vector & can be determined computationally by only. The first
component of the sensitivity gradients in eqn (4.14) can be computed using
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analytical methods implemented in any symbolic computation packages.

Furthermore, the sensitivity of Cffz) components with respect to the fibre shape

can be derived. However the final equations have a decisively more complicated
form and they could be shown, only if the homogenisation function is derived
analytically. Finally, the homogenised tensor derivatives are normalized as
follows:

dce aC(eff) h
___urqg __urq . ..
-————— (no summation over i,j,p,q) (4.16)
(eff)
'scaled ah C’Jpq (h)

which makes it possible to compare all the homogenised tensor sensitivity
gradients with each other and to establish quantitatively the most decisive
parameters.

The most interesting problem however is not to determine the sensitivity
coefficients of the homogenised tensor with respect to particular composite
parameters but to approximate the sensitivity of the entire structure to its some
design parameters. That is why, following previous considerations, we need to
establish some structural response functional being an implicit function of the
homogenisation function of the original composite design parameters
[75,76,207,208]. This functional must represent the overall elastic strain (or
complementary) energy for such a plane strain problem defined on the RVE which,
after some minor modifications only, can be valid for numerous engineering
applications in the composites engineering.

Therefore, let us define the sensitivity functional as the strain energy of the
homogenised composite under a combination of the uniform constant strains in
horizontal and vertical directions as well as for the transverse strain &, as is
illustrated below. In this case, the sensitivity functional can be expressed as

G :%J.o- €;dQ = LZJ(GIISII +G 121y + 0y € + Oy, ) dQ

Q Q

(eff) 4 (eff) (eff) 4.17
=3 ({qui(fl ey +Ci%ey }511 +{C1§J?2 en +Cish, 521}812)d9 @.17)

(eff) (eff) (eff) (eff)
({ Czefg &t Cz% P }821 + {C2§f1f1 &t nggz € }822 )dQ

The strain state relevant to this functional can represent (a) uniaxial and/or
biaxial compression/tension of the RVE; (b) shear (or torsion) of the composite
specimen for &,=0 and &,=0 or (c) some combined strain state for the
homogenised material.

Let us note that the difference between the vertical and horizontal strain tensor
components is important in the case of an elliptical fibre and/or rectangular RVE
where the extension of the cell give the unsymmetric strain field. Integrating over
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the RVE domain, recalling the assumed constant strain over this cell as well as a
constant character of Cj;/’ on €, one can get

? (4.18)
_ (eff) (eff) (eff) (eff) (eff) (eff) (eff) (eff)
G - ?{Cllll + C1122 + C1212 + C1221 + C2121 + C2112 + C2211 + C2222

where [ is a basic dimension of the RVE cell. Taking into account the elasticity
tensor symmetry, the functional G can be expressed as

G=1{c + ) + 20 (4.19)

1=
) !

] =

&=
.

Figure 4.38. An idea of the structural response functional for the homogenised composite

822=1

Further, partial derivatives of G with respect to any component of the design
parameters vector 4 can be calculated as

G.h :a_G
oh
5 (eff ) aC(fff) aC(<ﬂ) (4.20)
_al (eff ) (eff) (eff )%, 42 111 1122 1212
= +C " +2C +1 + +2
oh Yun 122 1212 oh oh ch

The first component differs from O only if the design parameter vector contains the
external diameter of the RVE. Otherwise, sensitivity gradients of this functional
are determined as

G.h

" oh oh oh oh “.21)

_ 936G _ lz{ac:ff'? L ac:;f?}
Using this formula the most decisive design parameter for the homogenised

composite in uniform plane strain can be determined having computed the
effective elasticity tensor gradients from (4.13).
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Finally, it is observed for the 1D heterogeneous structure with the constant
cross—section A that the structural response functional G can be expressed as

G=1[oedQ=2[e"Deedy = Ae'd) Y
2_[0 2_’.@ eedy J-g y .
Q 7 l
which gives for the unit strain
Ae'M]
B ’ (4.23)

and then the sensitivity gradients of the functional G may be easily calculated by
the chain rule as was proposed before.

The deterministic discretised homogenisation problem of elastic composites
given by (4.14) is rewritten in the case of the DDM sensitivity studies as follows:

oK, ﬁ aq(rs)ot _ aQ(rs)ot

where the sensitivity gradients of homogenisation function components are
calculated as

n - (4.25)

aq(rs)a _ K_l aQ(rs)(x aKaﬁ —%,
" on  on

If design variables are not the arguments of the RHS vector, it can be reduced to

aQ(rs)oc -l aK(xﬁ
oh B on 4 (rs)ax (4.26)

K
The derivatives of the stiffness matrix components —%  can be computed

explicitly during the stiffness process formation or, alternatively, thanks to the
finite difference scheme (FDM) presented below. Therefore, sensitivity
coefficients of the effective elasticity tensor components are calculated starting
from the above equations as
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ac'"’ oC

ijkl _ I]k[ z/pq

oh |g|I |Q|I i pan ™

dq

o J‘C (pg)y Q

1|5 w wv oh (4.27)
=ij o Q+ L j—aC'WB K'Q dQ

Q|2 oh Qo oh Tk By (rem

oK

— 00
Tl . . (rq)B
|Q| !{Cg/k[ Bk/y By oh Q( pa b |Q| -I.Cl/k, Bkly . a—th

for a, B,y =1,..., N . If, for example, the sensitivity parameter is introduced as the

Young modulus s=e,, then the elasticity tensor is rearranged as

Cit (ex)v(x))=e, ()AL (V(x)) (4.28)
and
aC (e(x );v(x)
' ) =A""(v(x)) (4.29)
ae ijkl

a

while the finite element stiffness matrix component corresponding to ath material
parameters can be expressed as

KY = [Cl)B,BsdQ= ¢ A%)B,,B,;dO (4.30)
Q,

ijo ijou
Q(l

As a result, the sensitivity of mth finite element stiffness matrix component with
respect to the ath material Young modulus is computed as

K | [ A By Bupdx™ € Q,
2@ ™

4.31)
0; otherwise

Further, the sensitivity gradients of the RHS vector are obtained in a general form

I pgra _ a([cpqaj(a)])nj
ch de

= [quaj(a) ]”j (4.32)

a

and the sensitivity of the effective elasticity tensor to Young modulus e, is
determined as
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aC( eff')
i _ L gt LA g7
de _|Q| E[ ijkl dix+ |Q| JAl/k/ I/VKYB Q( 27 )BdQ

(4.33)
Licp jA(")B B dQl0  dQ
|Q| ikl w al iy kB (pa B

+ L C'B K [ (‘”] dQ
J

|Q| o Uk iy Byl pabi

Analogously, the sensitivity gradients of the effective elasticity tensor
components for a composite with respect to the Poisson ratios can be calculated but
since the elasticity tensor is a complex function of these ratios, the derivation is
omitted here.

Q Q,

00000 e ee)
00000 e ee
00003007

000006 e
000006 6o
000006 6o

Figure 4.39. Periodic composite specimen

Figure 4.40. Mesh of the periodicity cell

Let us consider for illustration the composite with periodicity cell shown in
Figure 4.39 — the fibre has a round cross—section and the entire RVE is
rectangular. The analysed composite is assumed to be perfectly periodic with fibres
distributed uniformly in the transverse cross-section, while the reinforcement ratio
is equal to 50% of the total area of the RVE. Material characteristics for the
computational analysis are taken as follows: ¢;,=84.0 GPa, ¢,=4.0 GPa, v,=0.34 and
v,=0.22; the FEM discretisation using 4-node linear plane strain elements is
presented in Figure 4.40.

Computational sensitivity studies are carried out to determine the sensitivity
gradients of the effective elasticity tensor components with respect to material
parameters of the constituents, i.e. Young moduli and Poisson ratios of fibre and
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matrix. All computational tests are done by the use of the specially tailored
computer program MCCEFF [167,173], designed and implemented for
deterministic and stochastic computational homogenisation—based studies. The
variability of the sensitivity gradients of the effective elasticity tensor components
resulting from the perturbation parameter variations are presented in Figures 4.41 —

4.52: for the component C\%) (Figures 4.41-4.44), for the component C\%)

(Figures 4.45-4.48), and for C7) in Figures 4.49—4.52. The sensitivity gradients

are marked on the horizontal axes for three different ranges of parameter
increments shown on the vettical axes. These series correspond to the homogenised
tensor increments in the range of promiles (O(-3)), percents (O(-2)) and tenths (O(-
1)) of the verified parameter. The numerous experiments result from the fact that,
as was expected and shown numerically, particular values of sensitivity gradients
of the effective tensor components depend on the perturbation of a given material
parameter employed as the design parameter.

Table 4.2. Sensitivity gradients of the effective elasticity tensor

h oC; ) 915, 9C, G"
oh oh oh

e 0.141 0.072 0.958 2.129

v, 0.056 0.180 0.173 -0.090

e 0.867 0.926 0.044 1.881

v, 1.205 2814 0.011 3.987

As can be observed on all these graphs, the worst numerical stability of
sensitivity gradients is obtained for the smallest perturbation order O(-3) and can
result from the computational error of the homogenisation method itself. This
numerical phenomenon can be studied in terms of the discretisation density of the
RVE in the homogenisation analysis and with respect to the reinforcement ratio of
the entire composite. Another phenomenon, resulting from physical aspects of the
composite being visible especially in Figures 4.44, 4.48 and 4.52 in the case of the
sensitivities of O(-1) order, is caused by the fact that the Poisson ratio of the matrix
tends to its upper physical limit for this variable, which results in an uncontrolled

increase of the components C|/7 and C\{) sensitivity gradients. Because of that,

greater values of Cjj/’ derivatives with respect to Av, do not exist.
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Figure 4.41. Sensitivity of C wrt ¢,
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Figure 4.43. Sensitivity of C\% wrt v,
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Figure 4.44. Sensitivity of C\¥)) wrt v,
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Figure 4.48. Sensitivity of C\Z) wrt v,
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Next, comparing all the figures, it is seen that the best numerical stability is
obtained for the computational series corresponding to O(-2). The sensitivity
gradients in this range are almost constant for 1-10% of all input parameters
perturbations. Starting from these results, a more detailed comparison, both from a
computational and engineering point of view, can be carried out for various FEM
mesh sizes and the interrelations of design parameter mean values. It should be
noticed that, as for the 1D composite example, a negative sign of the sensitivity

gradient is equivalent to a decrease of a particular Cé;ff ) component,

accompanying the increase of this parameter value; a positive derivative
corresponds to the opposite relation.

Observing the particular results of computational analysis it can be noticed that
most sensitivity gradients are positive (except those shown in Figures 4.51 and
4.52), which basically means that an increase of most elastic characteristics of
fibre—reinforced composite components results in corresponding increase of the

overall effective elasticity tensor; the effective elasticity tensor components C,)

and C\{) are sensitive at most to Poisson ratios of the composite constituents. The

component C\s7) is sensitive to the Young modulus of the matrix (with a negative

sign). Furthermore, it is seen that particular values of the presented gradients
depend strongly on the interrelations between the main values of Young moduli
and Poisson ratios of the entire structure. That is why the observed phenomena are
the best illustration of the material sensitivity of glass—epoxy periodic composites
only. The results collected in Table 4.2 can be compared against those obtained
before for essentially different interrelations between the composite components —
we observe in that study that for similar constituents the signs of particular
gradients are exactly the same. However the values are qualitatively different. This
is why such an analysis must be oriented to the particular composite; otherwise it
should be carried out for the very particular engineering application of the analysed
composite.

The sensitivity with respect to the reinforcement shape, local lack of periodicity
as well as material parameters in the case of inelastic behaviour of the constituents
may be verified numerically in further computational studies on homogenised
properties of the composites. On the other hand, it seems to be reasonable to verify
the computed sensitivity gradient to the interrelation between corresponding elastic
properties of the components (the ratio of Young modulus in a fibre to Young
modulus of a matrix, for instance). This study would validate if all groups of
various composites with the same geometry of the RVE had the same or at least
comparable sensitivity gradients.

Finally, the approximation of the determined gradients by some specific values
is proposed and, considering all the remarks posed above, it is established as the
arithmetic average of the gradients corresponding to 1% and 10% increments of the

design parameters. These values are used to approximate the value of G

computed on the basis of (4.21), which are scaled over the RVE total area. Using
such a composite structure response functional, the Poisson ratio of a matrix and
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the next Young modulus of the fibre are detected as the most decisive design
material parameters of this composite in the view of its homogenised elastic
parameters.

4.2 Probabilistic Analysis

The main purpose of the sensitivity analysis is to verify numerically the
influence of some particular input parameters on the analysed state functions. In
the case of the homogenisation procedure, the sensitivity of the effective elasticity
tensor can be verified in terms of material parameters of the constituents,
reinforcement shape and its spatial distribution, the volume ratios of the
components, etc.; material parameters of composite constituents are taken below as
design parameters.

Analogous situation takes place in case of probabilistic analysis, however the
total number of possible design parameters dramatically increases. It reflects the
fact that each geometrical and material parameter is usually represented by its at
least two probabilistic moments. Hence, all probabilistic moments of all input
variables can be considered as design parameters. At the same time, the sensitivity
gradients can be computed in addition to any probabilistic moment of the state
function determined during a structural modeling. Therefore, we can determine the
sensitivity gradients of expected values of displacement vector to the expected
values and/or standard deviations of structural members thickness, length or elastic
parameters. Similarly, the cross-correlation function or standard deviation of the
resulting state variables can be the subject of the SDS analysis.

Using the definition of effective elasticity tensor, the sensitivity of the mth
order probabilistic moment of this tensor with respect to the nth order central
probabilistic moment of an input random design variable vector h can be
formulated as

A, (s b:0)

wm o,w|” ’”L{Cw( Xl J

_9 un{joy (x(k’)(h X; w))dQJ

o m) (h)

(4.34)

The first component of the RHS summation can be derived analytically or
symbolically, whereas the second one can be obtained numerically only by using
the Finite or Boundary Element Method programs adopted for any probabilistic
technique. If the effective material tensor is represented by the closed form
function of the elastic properties of composite components, then it is possible to
derive analytically probabilistic moments of a homogenised tensor. Alternatively,
the Monte Carlo simulation technique may be used to randomise and estimate the
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sensitivity gradients of any order probabilistic moments with respect to the
effective elasticity tensor components.

Numerical illustration is carried out by an application of the Monte Carlo
simulation for a homogenisation cell problem have been performed using specially
modified FEM code MCCEFF and its 4—node rectangular isoparametric plane
strain finite elements. The results of computations are expected now as the partial
derivatives of probabilistic moments of the effective elasticity tensor with respect
to relevant probabilistic moments of elastic or geometrical characteristics of the
fibre and/or matrix as well as the interface defects (Young modulus of the matrix is
treated here as the design probabilistic variable).

Sensitivity gradients of up to the fourth order probabilistic characteristics of the
homogenised elasticity tensor components with respect to h=e,(®w) being
uncorrelated Gaussian random variables are obtained for the following data:
Ele,]=840E6, Ele,]=40E6, Var(e,)=70.56 E12, Var(e,)=16.0 E10; it
corresponds to the coefficient of variation equal to 0.1 for both Young moduli. The
interface defects (model with ‘bubbles’) are simulated numerically in such a way
that a 10% elastic characteristic reduction in the interphase is obtained and they are
compared against the results computed for a composite with perfectly bonded
components (model with ‘no bubbles’). The results of simulations are collected in
Table 4.3 as sensitivity gradients of first two probabilistic moments of the
homogenised elasticity tensor components with respect to expected value and the
variance of the matrix Young modulus.

Table 5.3. Probabilistic sensitivity gradients of the homogenised elasticity tensor

d 0
Probabilistic moment aE[ez] oVar(e,)
‘Bubbles’ ‘No bubbles’ ‘Bubbles’ ‘No bubbles’
E[C](f?:) ] 0.0819 0.0817 -0.0001 -0.0001
(C](f]”]) ) -0.0748 -0.0747 0.0405 0.0405
B (Cl(le]lﬁi) ) -0.0076 -0.0127 -0.0005 -0.0064
y(cl(fjlﬁ‘l) ) -0.0003 0.0005 -0.0004 0.0000
E[Cl(le]zy;)] 0.0892 0.0893 -0.0001 -0.0001
a(cl(lejzy‘z) ) -0.0815 -0.0815 0.0438 0.0438
(CI(]ezﬁ? ) 0.0082 0.0059 0.0012 0.0013
(C(e//) ) 0.0003 0.0002 0.0002 0.0003
1122
E[C(Eﬂ ) ] 0.0043 0.0043 -0.00006 0.0000
1212
(C(eﬁ) ) -0.0043 -0.0043 0.0020 0.0020
1212
( (eff) ) 0.0000 -0.0001 0.0003 -0.00002
1212
(C(eﬁ) ) 0.0000 0.0000 0.0000 0.0000
1212
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The results collected above show that the most sensitive probabilistic moment
of the homogenised tensor component with respect to E [e2] is the expected value

of E[CY)], which is slightly greater than the result computed for E[C{#’]. An

analogous relation is observed in addition to the coefficient of variation OC(CI(E”Z))

and Var(e,). However sensitivity gradients determined with respect to the

expected value are significantly greater than those obtained for the variance, which
partially reflects the input coefficient of the variation of the matrix Young

modulus. The smallest sensitivity of random variable C\7)(w) with respect to the

random input e (®) is observed also, while the fourth order coefficients of
concentration are in practice neither sensitive to Ele, | nor to Var(e,), which

follows the Gaussian type of both input and output probabilistic distributions in
homogenisation problems. The most sensitive statistical estimator is the coefficient
of asymmetry — some differences are observed between the models with and
without interface bubbles, where some sign changes are also noticeable.

Comparing the probabilistic gradients computed for the composite with and
without the interphase some small variations between these two models are
observed. These variations however can increase together with further weakening
of the interphase and detailed computer simulation can verify this tendency.

Further computations are necessary to study the variability of the obtained
results with respect to the chosen increment during the numerical differentiation
process; the proposed value of 10% has been detected as the most effective in
previous computations. An increase in effectiveness of the numerical procedure
can be achieved by implementation of a semi—analytical homogenisation
procedure, where the sensitivity gradients of spatially averaged effective elasticity
tensor components are determined symbolically using the system MAPLE, for
instance, and an averaged stress tensor is differentiated numerically using the finite
difference scheme.

4.3 Conclusions

The sensitivity analysis of homogenised material tensors, proposed and carried
out in this Chapter, makes it possible to consider the influence of particular
material parameters of the composite components on the overall effective
properties of a composite. Thanks to such an analysis, a composite designer can
generally determine the most decisive material characteristics of the constituents
(Poisson ratios of fibre and matrix for a 2D composite, for instance) and then,
modifying their values during the design process, can optimise the composite
structure for the effective parameters given a priori. The sensitivity equations for
homogenisation of linear elastic composites can be extended to an analogous
analysis for effective properties of composites with viscoelastoplastic components,
both in a deterministic and probabilistic context. The proposed methodology has a
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general character, however further examination of various composites (beams,
plates, 2D and 3D structures) should give different results.

Particular computational studies, performed in terms of perturbation parameter
€ applied in sensitivity gradients analysis, show that the best numerical stability is
obtained for €=O(-2). Smaller order taken in numerical analysis causes
significantly greater deviations of the final result, while the lack of physical sense
of the problem is obtained for e=O(-1), where the Poisson ratio is taken as a design
parameter. Further computations should be carried out to determine the RVE mesh
and the finite element type influence on the final result.

Considering the assumption that the scale factor between the periodicity cell
and the entire composite structure tends to 0 and, on the other hand, that this
quantity in real composites is small and positive, but differs from 0, the sensitivity
of the effective characteristics for this parameter is to be calculated next using the
so-called homogenisation micro—macro analysis, for instance. To make such an
analysis, the scale parameter must be inserted in equations describing the effective
quantities and then, the influence of the relation between the micro— and
macrostructure must be shown.

Sensitivity analysis of the 1D, 2D and 3D homogenisation of effective heat
conductivity carried out in this chapter may be applied for any linear potential field
problem — irrotational and incompressible fluid flow, film lubrication, acoustic
vibration as well as for electric conduction, electrostatic field and electromagnetic
waves. To use these results for homogenisation of other engineering problems, the
well-known field analogies may be applied to transform the effective Young
modulus to related physical field parameters.

Proposed methodology of the sensitivity gradient computations for
homogenised tensor components of periodic random composites is exact in the
probabilistic sense because of the application of the Monte Carlo simulation
technique. The use of the MCS technique preserves the existence and uniqueness
of the classical homogenisation problem solution — it exists for each realisation
separately. Therefore, thanks to the statistical estimation implementation, a
mathematically correct probabilistic characterisation of the homogenised tensor
components is obtained. The numerical weakness of the finite difference apparatus
implemented in the homogenisation—oriented FEM code should be eliminated in
further simulations by the verification of the sensitivity gradient values with
respect to variations of the input parameter increments. As is documented by some
previous computations, lack of numerical stability of such sensitivity computations
is observed for physical parameters tending to their physical bounds.

An analogous procedure can be applied to determine the sensitivity gradients of
homogenised characteristics of other composites, i.e. 1D periodic beams, plates,
shells, periodic 3D structures with particles and fibres of various shapes as well as
multi-component engineering structures as superconducting devices [168] studied
before. A linear elastic model in sensitivity analysis may be extended to inelastic
homogenised characteristics [118,230,307] as well as on stochastic optimisation of
composites through the homogenisation method.



5 Fracture and Fatigue Models for

Composites

5.1 Introduction

The effective fatigue model for engineering composites analysis is decisive for
a precise estimation of the overall life of this structure and satisfactory reliability
analysis of such materials. Various theoretical, experimental and computational
criteria must be satisfied in the same time to obtain such a model [37,172,246,298].
These criteria may include material properties of composite constituents [226,258],
composite type [229] (ductile or brittle components), spatial distribution, length
(continuity) as well as size effect of the reinforcing fibres [219,220,335], frequency
effects [350], load amplitude type [48] (constant or not), micromechanical
phenomena [110,217,279], etc. First of all, a very precise, experimentally based
deterministic idea of fatigue life cycle estimation has to be proposed. It should be
adequate for the composite components, the technology applied and numerical
methodology implemented. Monitoring of most engineering composites and
preventing the fatigue failure is very complicated and usually demands very
modern technology [360]. It is widely known that the interface conditions and
phenomena can be decisive factors for both static fracture and fatigue resistance of
laminates, fibre— and particle—reinforced composites. Analytical models even in
the case of linear elasticity models are complicated [369], therefore numerical
analysis is very popular in this area. Engineering FEM software makes it possible
to simulate delamination processes [362] and fatigue damage [62,277] in
fibre—reinforced composites as well as time—dependent interlaminar debonding
processes [69], for instance.

The application of the well-known Palmgren—Miner or Paris—Erdogan laws is
not always recommended as the most effective method in spite of their simplicity
or wide technological usage. The choice of fatigue theory should be accompanied
with a corresponding sensitivity analysis, where physical and material input
parameters included into the fatigue life cycle equation are treated as design
variables. Due to the sensitivity gradients determination, the most decisive
parameters should be considered, while the remaining ones, considering further
stochastic analysis complexity, may be omitted. The sensitivity gradients can be
determined analytically using symbolic computation packages (MAPLE,
MATLAB, MATHEMATICA, etc.) or may result from discrete FEM
computations, for instance. A related problem is to decide if the local concept of
composite fatigue is to be applied (critical element concept, for instance), where
local fatigue damage causes global structural changes of the composite reliability.
This results in computational FEM or Boundary Element Method (BEM) based
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analyses of the whole composite in its real configuration, including the
microgeometry and all interface phenomena into it. Alternatively, the
homogenisation method can be applied, where the complementary energy or
potential energy of the entire system is the only measure of composite fatigue.
Then, the global discretisation of the original structure is used instead and the
equivalent, homogeneous medium is simulated numerically.

Next, an appropriate analytical or computational stochastic analysis method
corresponding to the level of randomness of input parameters is considered. The
Monte Carlo simulation based analysis, stochastic second or third order
perturbation method or, alternatively, stochastic spectral analysis can be taken into
account. The first method does not have any restrictions on input random variable
probabilistic moment interrelations. However, time consuming computations can
be expected. Numerical analysis using the second approach implementation is very
fast, but not sufficiently effective for larger than 10% variations of input random
parameters, while the last approach has some limitations on convergence of the
output parameters and fields. The choice between the methods proposed is implied
by the availability of the experimental techniques, considering the input
randomness level. On the other hand this choice is determined by relevant
reliability criteria for composites. Furthermore, having collected most of the
deterministic fatigue concepts for composites, corresponding stochastic equations
can be obtained automatically using analytical derivation or computer simulation
techniques.

Combination of deterministic models and stochastic methods requires another
engineering decision about the choice of the randomness type to be analysed. It is
known from recent references in this area that (i) random variables, (ii) random
fields as well as (iii) stochastic processes can be considered as the input of the
entire fatigue analysis. According to the state—of—the—art research, the first two
types of randomness can be considered together with FEM or BEM based
computational simulation, while the stochastic processes can be used in terms of
direct simulation of the fatigue process when the analytical solution is known.
Some approximate methods of combining discrete modelling with stochastic
degradation of homogeneous materials are available in reliability modeling;
however without any application in engineering composites area until now.

Various fatigue models worked out for composites can be classified in different
ways: using the scale of the model application (local or global) or considering the
main goal of the analysis (fatigue cycle number, its stiffness reduction, its crack
growth or damage function determination), the analysis type (deterministic,
probabilistic or stochastic) as well as the composite material type (ceramic,
polymer—based, metal matrix and so forth).

Considering various scales of engineering composites and fatigue phenomena
related to them, the local and, alternatively, global approaches are considered.
Local and microlocal models represented by the critical element concept [299],
assume that there exists so—called critical element in the entire composite structure
that controls the total fatigue damage (as well as subcrtitical elements, too), and
then the local damage is governing the reliability of the whole composite structure.
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This assumption results in the fact that the whole composite, together with
microstructural defects increasing during fatigue processes, should be discretised
for the FEM or BEM simulation. Taking into account the application of the
probabilistic analysis, the model implies the randomness in microgeometry of the
composite, which is extremely difficult in computational simulation, as is shown
below. Some special purpose algorithms are introduced to replace the randomness
in composite interface geometry with the stochasticity of material thermoelastic
properties.

Alternatively, a homogenisation method is proposed for more efficient fracture
and fatigue phenomena analysis [223] that originated from analysis of linear
periodic elastic composites without defects. The main idea is to find the medium
equivalent to the original composite in terms of complementary energy, or
potential energy, equal for both media. The final goal of the homogenisation
procedure is to find the effective material characteristics defining the equivalent
homogeneous medium. The effective constitutive relations can be found for the
composite with elastic, elastoplastic or even viscoelastoplastic components with
and/or without microstructural defects. The general assumption of the model
means, however, that every local phenomenon can be averaged in some sense in
the entire composite volume and that the global, not local, phenomena result in the
overall composite fatigue.

5.2 Existing Techniques Overview

Taking into account the results of fatigue analysis, four essentially different
approaches can be observed: (i) direct determination of the fatigue cycle number N,
(i1) fatigue stiffness reduction where mechanical properties of the composite are
decreased in the function of N, (iii) observation of the crack length growth a as a
function of fatigue cycle number (as da/dN, taking into account the physical nature
of fatigue phenomenon) or, alternatively, (iv) estimation of the damage function in
terms of dD/dN. A damage function is usually proposed as follows:

(1) D=0 with cycle number n=0;
(2) D=1, where failure occurs;

3) D= iADi , where AD;, is the amount of damage accumulation during fatigue
i=1

at stress level r;. Generally, the function D can be represented as

D=D(n,r, f.T,M,..) (5.1)

where n indexes a number of the current fatigue cycle, r is the applied stress level, f
denotes applied stress frequency, T is temperature, while M denotes the moisture
content. Then, contrary to the crack length growth analysis, the damage function
can be proposed each time in a different form as a function of various structural
parameters.
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Let us note that direct determination of fatigue cycle number makes it possible
to derive, without any further computational simulations, the life of the structure
till the failure, while the stiffness reduction approach is frequently used together
with the FEM or BEM structural analyses. The crack length growth and damage
function approach are used together with the structural analysis FEM programs,
usually to compute the stress intensity factors. However final direct or symbolic
integration of crack length or damage function is necessary to complete the entire
fatigue life computations.

Considering the mathematical nature of the fatigue life cycle estimation, the
deterministic approach can be applied, where all input parameters are defined
uniquely by their mean values. Otherwise, the whole variety of probabilistic
approaches can be introduced where fatigue structural life is described as a simple
random variable with structural parameters defined deterministically and random
external loads. The cumulative fatigue damage can be treated as a random process,
where all design parameters are modelled as stochastic parameters. However, in all
probabilistic approaches sufficient statistical information about all input parameters
is necessary, which is especially complicated in the last approach where random
processes are considered due to the statistical input in some constant periods of
time (using the same technology to assure the same randomness level).

The analysis of fatigue life cycle number begins with direct estimation of this
parameter by a simple power function (AS5.1) consisting of stress amplitude as well
as some material constant(s). Alternatively, an exponential-logarithmic equation
can be proposed (AS5.2), where temperature, strength and residual stresses are
inserted. Both of them have a deterministic form and can be randomised using any
of the methods described below. The weak point is the homogeneous character of
the material being analysed; to use these criteria for composites, the effective
parameters should be calculated first. In contrary to theoretical models, the
experimentally based probabilistic law can be proposed where parameters of the
Weibull distribution of static strength are inserted (A5.3); it is important to
underline that this law does not have its deterministic origin.

More complicated from the viewpoint of engineering practice are the stiffness
reduction models (cf. A5.4—A5.7), where structural material characteristics are
reduced together with a successive fatigue cycle number increase. The stiffness
reduction model is used in FEM or BEM dynamical modelling to recalculate the
component stiffness in each cycle. It is done using a linear model for stiffness
reduction, cf. (AS5.5), as well as some power laws (see (A5.4), for example)
determined on the basis of mechanical properties reduction rewritten for
homogeneous media only. An alternative power law presented as (A5.7) consists
of the time of rupture, creep and fatigue, measured in hours. Considering the
random analysis aspects, a probabilistic treatment of material properties seems to
be much more justified.

Deterministic fatigue crack growth analysis presented by (A5.8) — (A5.29) can
be classified taking into account the physical basis of this law formation, such as
energy approaches (A5.8) — (AS5.11), crack opening displacement (COD) based
approaches (A5.12), (A5.15) — (A5.17), (AS5.19) and (AS5.20), continuous
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dislocation formalism (AS5.13), skipband decohesion (A5.18), nucleation rate
process models (A5.14) and (AS.15), dislocation approaches (A5.23) and (A5.24),
monotonic yield strength dependence (AS5.25) and (AS5.31) as well as another
mixed laws (A5.26) — (A5.30) and (AS5.32) — (AS.35). Description of the
derivative da/dN enables further integration and determination of the critical crack
length. The second classification method is based on a verification of the validity
of a particular theory in terms of elastic (A5.8) — (A5.20), (A5.26) — (A5.30),
(A5.32) — (A5.34) or elastoplastic (A5.22) — (AS5.25) and (A5.31) mechanism of
material fracture. Most of them are used for composites, even though they are
defined for homogeneous media, except for the Ratwani—Kan and Wang—
Crossman models (A5.21) and (AS5.22), where composite material characteristics
are inserted. All of the homogeneous models contain stress intensity factor AK in
various powers (from 2 to n), while composite—oriented theories are based on
delamination length parameter. The structure of these equations enables one to
include statistical information about any material or geometrical parameters and,
next, to use a simulation or perturbation technique to determine expected values
and variances of the critical crack length, which are very useful in stochastic
reliability analysis.

An essentially different methodology is proposed for the statistical analysis
[9,35,130,288,333,349,359] and in the stochastic case [241,244,373], where the
crack size and/or components material parameters, their spatial distribution may be
treated as random processes (cf. eqns (A5.36) — (AS5.44)). Then, various
representations and types of random fields and stochastic processes are used, such
as stationary and nonstationary Gaussian white noise, homogeneous Poisson
counting process [204] as well as Markovian [304], birth and death or renewal
processes. However all of them are formulated for a globally homogeneous
material. These methods are intuitively more efficient in real fatigue process
modelling than deterministic ones, but they require definitely a more advanced
mathematical apparatus. Further, randomised versions of deterministic models can
be applied together with structural analysis programs, while stochastic characters
of a random process cannot be included without any modification in the FEM or
the BEM computer routines. An alternative option for stochastic models of fatigue
is experimentally based formulation of fatigue law, where measurements of various
material parameters are taken in constant time periods. Then, statistical information
about expected values and higher order probabilistic characteristics histories is
obtained, which allows approximation of the entire fatigue process. Such a method,
used previously for homogeneous structural elements, is very efficient in stochastic
reliability prognosis and then random fatigue process can be included in SFEM
computations. Let us observe that formulations analogous to the ones presented
above can be used for ductile fracture of composites where initiation, coalescence
and closing of microvoids are observed under periodic or quasiperiodic external
loads.

A wide variety of fatigue damage function models is collected at the end of the
appendix. The basic rules are based on the numbers of cycles to failure ((A5.45) —
(A5.48), (A5.54) — (A5.57), (A5.63) — (A5.65) and (AS5.67)) illustrated with
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classical and modified Palmgren—Miner approach, for instance. This variable is
most frequently treated as a random variable or a random process in stochastic
modelling. Another group consists of mechanical models, where stress (A5.50) —
(A5.53) or strain (AS5.66) — (A5.67) limits are used instead of global life cycle
number. Such models reflect the actual state of a composite during the fatigue
process better and are more appropriate for the needs of computational
probabilistic structural analysis. The combination of both approaches is proposed
by Morrow in (A5.66) for constant stress amplitude and for different cycles by
(AS5.67). The overall fatigue analysis is then more complicated. However the most
realistic model is obtained. Accidentally, Fong model is used, where damage
function is represented by an exponential function of damage trend k, which is a
compromise between counting fatigue cycles and mechanical tensor
measurements.

The very important problem is to distinguish the scale of application of the
proposed model, especially in the context of determination of a fatigue crack
length. The models valid for long cracks do not account for the phenomena
appearing at the microscale of the composite specimen. On the contrary, cf.
(A5.33), the microstructural parameter d is introduced, which makes it possible to
include material parameters in the microscale in the equation describing the fatigue
crack growth.

All the models for the damage function can be extended on random variables
theoretically, by perturbation methodology, or computationally, using the relevant
MCS approach. The essential minor point observed in most of the formulae
described above is a general lack of microstructural analysis. The two approaches
analysed above can model cracks in real laminates, while other types of composites
must be analysed using fatigue laws for homogeneous materials. This approach is
not a very realistic one, since fatigue resistance of fibres, matrices, interfaces and
interphases is essentially different. Considering the delamination phenomena
during periodic stress changes, an analogous fatigue approach for fibre—matrix
interface decohesion should be worked out. The probabilistic structural analysis of
such a model can be made using SFEM computations or by a homogenisation.
However a closed-form fatigue law should be completed first.

As is known, there exist a whole variety of effective probabilistic methods in
engineering. The usage of any of these approaches depends on the following
factors: (a) type of random variables (normal, lognormal or Weibull, for instance),
(b) probabilistic information on the input random variables, fields or processes (in
the form of moments or probability density function (PDF)), (c) interrelations
between particular probabilistic characteristics of the input (of higher to the first
order, especially), (d) method of solution of corresponding deterministic problem
and (e) available computational time as well as (f) applied reliability criteria.

If the closed form solution is available or can be derived symbolically using
computational algebra, then the probability density function (PDF) of the output
can be found starting from analogous information about the input PDF. It can be
done generally from definition — using integration methods, or, alternatively, by the
characteristic function derivation. The following PDF are used in this case:
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lognormal for stress and strain tensors, lognormal and Gaussian distributions for
elastic properties as well as for the geometry of fatigue specimen. Weibull density
function is used to simulate external loads (shifted Rayleigh PDF, alternatively),
yield strength as well as the fracture toughness, while the initial crack length is
analysed using a shifted exponential probability density function.

As is known [313], one of the following computational methods can be used in
probabilistic fatigue modelling: Monte Carlo simulation technique, stochastic
(second or higher order) perturbation analysis as well as some spectral techniques
(Karhunen—Loeve or polynomial chaos decompositions). Alternatively, Hermitte—
Gauss quadratures (HGQ) or various sampling methods (Latin Hypercube
Sampling — LHS, for instance) in conjunction with one of the latters may be used.
Computational experience shows that simulation and sampling techniques are or
can be implemented as exact methods. However their time cost is very high.
Perturbation-based approaches have their limitations on higher order probabilistic
moments, but they are very fast. The efficiency of spectral methods depends on the
order of decomposition being used, but computational time is close to that offered
by the perturbation approach. Unfortunately, there is no available full comparison
of all these techniques — comparison of MCS and SFEM can be found in [208],
HGQ with SFEM in [237] and stochastic spectral FEM with MCS in [113,114]. A
lot of numerical experiments have been conducted in this area, including
cumulative damage analysis of composites by the MCS approach (Ma et al. [243])
and simulation of stochastic processes given by (A5.30) — (A5.38). However, the
problem of an appropriate conjunction of stochastic processes and structural
analysis using FEM or BEM techniques has not been solved yet.

Let us analyse the application of the perturbation technique to damage function
D extension, where it is a function of random parameter vector b. Using a
stochastic Taylor expansion it is obtained that

D(b)=D°(b°)+eAb D" (b°)+Le>Ab"Ab’ D (b°) (52)

Then, according to the classical definition, the expected value of this function
can be derived as

E[D®)]= [ D) p(b) db
- - (5.3)
= [(D° b0 )+ ea" D" (b0 )+ Le2ab ab* D (b°) p(b) b

=D (b0)+%D’” (bo )Cov(br ,bx)

while variance is
2 5.4)
Var(D)= (aa_ﬁ) Var(b)
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Since this function is usually used for damage control, which in the
deterministic case is written as D <1, an analogous stochastic formulation should
be proposed. It can be done using some deterministic function being a combination
of damage function probabilistic moments as follows:

D(b) < g(u, [DM)])<1 (5.5)

where (D(b)) denote some function of up to kth order probabilistic moments.

Usually, it is carried out using a stochastic ‘envelope’ function being the upper
bound for the entire probability density function as, for instance

g [DM)] )= E[DM)]-3/D(b) (5.6)

This formula holds true for Gaussian random deviates only. It should be
underlined that this approximation should be modified in the case of other random
variables, using the definition that the value of damage function should be smaller
than 1 with probability almost equal to 1; the lower bound can be found or
proposed analogously. In the case of classical Palmgren—Miner rule (A5.45), with
fatigue life cycle number N treated as an input random variable,

D= N=b -7
N

the expected value is derived as follows [215]:

" —Var(N) (5-8)
(v

n
E[D]=D" +1D"™Var(N)= V0 +

and the variance in the form of

2 59
(];l—OYVar(N) =

It is observed that the methodology can also be applied to randomise all of the
functions D listed in the appendix to this chapter with respect to any single or any
vector of composite input random parameters. In contrast to the classical derivation
of the probabilistic moments from their definitions, there is no need to make
detailed assumptions on input PDF to calculate expected values and variances for
the inversed random variables in this approach.

Let us determine for illustration the number of fatigue cycles of cumulative
damage of a crack at the weld subjected to cyclic random loading with the
specified expected value and standard deviation (or another second order

Var(D) = (D™ ¥ Var(N) =
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probabilistic characteristics) of Ac. Let us assume that the crack in a weld is
growing according to the Paris—Erdogan law, cf. (A5.26), described by the
equation

E:C(YAG\/;)ma% (5.10)
and that Y#Y(a). Then
(44 jclvacz )" an ©-11)
a 2

L5 :C(YAO'\/;)mN+D, De R (5-12)
-2+1
Taking for N=0 the initial condition a=a;, it is obtained that
a k o (5.13)
a, 1- BN
for
k=2-1, B=rrclracr)” (5.14)
Therefore, the number of cycles to failure is given by
1 1
N, =L (5.15)
B

The following equation is used to determine the probabilistic moments of the
number of cycles for a crack to grow from the initial length g; to its final length a

ag 1

AN = |———da
I oK) (5.16)
Substituting for AK one obtains
1 Yo
AN = f re (5.17)
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By the use of a stochastic second order perturbation technique we determine the
expected value of AN as

E[aN]= AN(Ac® )+ %%(ﬁ;o»wr(m) (5.18)

and the variance of number of cycles as

Var(AN)= (a(ﬁgNA(%for» JZ Var(Ao) (5.19)

Adopting m=2 it is calculated using (5.17) and (5.18) that

1 a, 1 6
E|AN |=————In| — Var(A
lav] CY’rm n( a, IEZ[A0]+E4[AG] ar G):| (5.20)
and
4 o[ 4 | alao)
Var(AN)——Czy4n2 In (a; ]E4[AG] (5.21)

The following data are adopted in probabilistic symbolic computations:
E[Ac]zc -6 =100MPa, a=25 mm and obtained experimentally

C=1.64x10""", Y=1.15. The visualisation of the first two probabilistic moments of
fatigue cycle number is done using the symbolic computation program MAPLE as
functions of the coefficient of variation 0l(Ac) and the final crack length a;. The
results of the analysis in the form of deterministic values, corresponding expected
values and standard deviations are presented below with the design parameters
marked on the horizontal axes.

Figure 5.1. Deterministic values of fatigue cycles (dN)
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Figure 5.2. Expected values of fatigue cycles number (EdN)

Figure 5.3. Standard deviations of fatigue cycles number (o dN)

Especially interesting here is a comparison between deterministic analysis and
expected values obtained for analogous input data. It is seen that the expectations
are essentially greater than the deterministic output, which results from (5.17), for
instance. The difference increases nonlinearly together with an increase in the
coefficient of variation of the stress amplitude Ac. In the case of A(AG)=25% this
difference is equal to about 20% of the relevant deterministic values. This result
can be used as the safety factor which could be proposed for deterministic analysis
as S=1.2 for an analogous range of random variability of the stress amplitude.
Furthermore, it is seen that the final crack length is remarkably more decisive for
fatigue cycle number (even in a random case) than the coefficient of variation of
the stress amplitude.

As shown in Figure 5.3, the variability of the examined standard deviation of
AG is essentially different from that typical for deterministic and expected values.
The influences of final crack length and input coefficient of variation are almost
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the same for 25% increases of both parameters. Considering the above it can be
concluded that the influence of the random character in fatigue cycle number is
important in higher than first order probabilistic moments computations. It is clear
that the presented symbolic computation methodology can be next exploited in the
determination of stochastic sensitivity gradients of probabilistic moments of the
fatigue cycle number with respect to particular random characteristics of the
chosen input variables appearing in the fatigue life cycles formula. In particular, it
will enable us to compare the sensitivity of various fatigue models with respect to
the same parameters in which the sensitivity gradients are the most reasonable and
realistic. The situation would be definitely more complicated if the variation of
stress amplitude together with fatigue cycle number is analysed. Random
fluctuations of Ac in time should be taken into account in this case and, therefore,
Ac(m)=Ac(m,t) is to be considered as a resulting nonstationary random process.

5.3 Computational Issues

Since the deterministic equations are valid for the Monte Carlo simulation
analysis as well, then the essential theoretical differences are observed in the case
of perturbation based analysis. The corresponding fatigue—oriented SFEM model
begins with the new description of the material properties, where the stiffness
reduction approach can result in the following equations for the Young modulus,
Poisson ratio and material density as well as spring stiffness for interface
modelling

e(n)=ey(1-D(n)), v(n) =v,(1-D(n))
p(n) = p,(1-Dm)), k() =k, (1~ Dn)) (5.27)

Therefore, the first two probabilistic moments for the Young modulus can be
represented as

Ele(n)] = Ele, | (1- ELD(n)]) (5.28)
Var(e(n)) = Var(e, (1 — D(n))) = Var(e, ) Var(1— D(n)) (5.29)

and up to the second order perturbation equations are rewritten in the incremental
formulation as follows:
e  zeroth order

M g5 (MAG 3 (n)+ Cop (MAGE (n) + K 5 (m)Ag s (n) = AQg (n) (5.30)

. first order
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M 5 (MAG 5 (n)+ Cap (MWAG5 () + K g5 (M)A (1) = AQy (n) +

o o ) (5.31)
= (2 AT )+ €y AGS (1) + Ky A )

° second order

M (mAGE (1) + Cly (mAGP (m) + K (m)Ag ()
= 10 () (M55 (mAGY () + Cs AG () + Ky (mAgh(m) (5.3
— (M2 (mAG; () + Cly m)AG S () + K s (A () |

Covlp” (n).b* ()

where the stiffness matrix perturbation orders are defined as

K53 (m="""K 55 ()+ Ky (n) =

(5.33)
= .[C;lgl (n)Bjjo BpdQ+ [0 (n =)@y 1015 ,dQ
Q Q
so the dynamical structural response is given in the form
AGy =G (n+ =G (n) (5.34)

The situation is more complicated when the crack phenomenon is considered
apart from the material stochasticity and nonlinearity. In such a situation so—called
direct methods are used or special purpose enriched finite elements with crack tip
modelling can be applied alternatively. In the latter case, the displacements near
the crack tip can be defined as

{u:Klfu +K[[gu

v=K,f, +K;8, (5:35)
while the near field component f, can be rewritten as
1 r
1 =36 \an
(5.36)

{cos loj [(2}/ - l)cos% —cos %:l —sin ¢|:(27/ + l)sin% —sin %]}

where ¢ denotes the orientation angle of a crack, which is measured from the
positive x axis, r and 0 are polar coordinates with origin at the crack tip and
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measured from the crack angle, G is shear modulus, while y denotes ¥y =3 —4v for

. . 3-v
plane strain problems or is equal to y = i
+v

for the plane stress analyses. The

corresponding SFEM equations for displacements near the crack tip are rewritten
using (5.36), while the stress intensity factors are computed using BEM or FEM
techniques or, alternatively, are derived mathematically starting from stress
equilibrium and displacement compatibility equations. The numerical results of
SFEM analysis for composites with and/or without interface and volumetric
microdefects are presented in [193,194], while in the case of the cracked medium
they can be found in [33].

Alternatively, the structural microdefects are modelled by spherical voids
during the ductile type fatigue fracture. Let us assume that the total number of the
microdefects is equal to M,, their radius is denoted by R, in the composite
component indexed with a. Adopting further that both of them are functions of the
fatigue cycle, the modified elasticity tensor components can be calculated using
stiffness reduction of the Young modulus and Poisson ratio as follows:

M ,(n)R>
city =1L | o

a

2
[ |7, ()R} () )va -

Qa
X
2 2
1+[1—”M“(”)R“ (n)]va(n) 1—2[1—”M“(”)R“ ) ]va(n)
Q, Q, (5.37)
NEX (5ik5j1 +0,0 4 )

2
, H(I_WJW
Q

a

The use of more advanced deterministic theories is known from the literature.
However equivalent stochastic models are not available now. Similarly to a solid
model with deterministic and stochastic microvoids, the stiffness reduction
approach for cracked media can be applied as well [267]. The following material
data are adopted for n=0: Young modulus E,=2.1 El1, Poisson ratio v,,=0.3,
expected value of microvoids radius E[r]=0.1 and standard deviation of microvoids
radius 6(r)=0.01, expected value of microvoids total number E[M]=1 and variance
of microvoids total number Var(M)=0. The Young modulus is taken with £10%
deviations from the mean value the microvoid ratio variability is included in the

interval [0,1.0]. Therefore an adequate visualisation of the component C\{/ can be

obtained, cf. Figure 5.4.
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Figure 5.4. Parameter variability of C ffﬁ) for damaged homogeneous solid

Analysing the effective tensor surface, the expected linear dependence of this
tensor on the Young modulus is observed as well as the nonlinear dependence on
the microvoid mean radius (greater sensitivity to geometrical parameters of the
structural defects). If only the statistical information about the input parameters is
available, then the elasticity tensor can be rewritten using its first two probabilistic
moments and introduced directly in SFEM analysis. If stochastic analysis in the
elastoplastic range is necessary, the corresponding extension of the models
presented in [355] can be applied. The microvoid volumetric ratio parameter is to
be replaced with the two—parameter approach shown above and the probabilistic
moments of these parameters are to be inserted as a function of the fatigue cycle.

As was mentioned before, the main goal of the homogenisation procedure is to
find effective material properties of the homogeneous material, equivalent to the
original composite. The most simplified method is to use the spatial average as the
homogenised property and it is still used in terms of effective mass density, which
can be rewritten for the nth cycle of fatigue analysis as

p(eff)(n) :<p(n)>9 (538)

Analogous homogenisation rule is applied in the case of heat capacity in transient
heat transfer analysis and related thermoelastic or thermoelastoplastic coupled
analyses of composites. The homogenisation of the elasticity tensor components is
definitely more complicated and is usually carried out as

cil'm=(cim) +{o;(um)) . forijiki=123 (5.39)

where y,, (n) are the homogenisation function depending on the fatigue cycle.
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The entire procedure can be applied for the fatigue analysis by rewriting the
material properties of the composite components in terms of the current fatigue
cycle number. Then, homogenising the constitutive law for each cycle, the whole
composite fatigue can be modelled in a global scale, without the necessity for a
very precise microscale discretisation or computational substructuring; an
analogous analysis can be carried out for composite materials with cracks
[336,337], for instance. It should be underlined that the described homogenisation
procedure is sensitive to the RVE determination from the entire composite and to
the scale parameter relating this element, dimensions to the dimensions of the
entire composite. The formula for effective elasticity tensor is rewritten under the
assumption that this parameter tends to 0, which is a very unrealistic model.

Furthermore, the homogenisation procedure can be established for random
composites, too, only if the randomness does not influence the periodic character
of the composite (especially during the fatigue process). Then, either MCS [191] as
well as SFEM [192] can be utilised for this purpose. Therefore, starting from
probabilistic characteristics of the composite properties, the expected values,
variances (or standard deviations) as well as higher order moments (in the
statistical estimation only) can be computed.

A very important issue from the technological point of view is the presence of
the interface defects (usually with stochastic nature) appearing and growing
between the composite components. Various computational models are proposed in
this case in terms of special purpose spring finite elements or, alternatively, using
the interphase as a new, separate material between the original composite
components. This new material can be constructed from the original semicircular
defects with random parameters, smeared (averaged probabilistically) over the
entire interphase region according to the stochastic model introduced in Chapter 2;
the composite with such an introduced interphase is then homogenised. To utilise
the model for fatigue life cycle analysis, the geometrical and physical properties of
the composite should be described in terms of the fatigue cycle number and then
homogenised cycle by cycle for the needs of computational simulation of the
composite.
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5.3.1 Delamination of Two-Component Curved

Laminates

Let us consider a two—component elastic transversely isotropic material in
two—dimensional space € defined by the polar coordinate system y={R,0} (cf.
Figures 5.40-5.43). It is necessary to introduce the following relations:

(a) the gap between two surfaces

2(R,®)=u?(R,0)-ul(R,0) (5.40)
(b) the relative tangential slip of two surfaces
s(R,®)=u? (R,0)-ul(R,0) (5.41)
(c) the normal traction
0,(R,0)=0(R,0)-c(R,0) (5.42)
(d) the shear traction
0 0(R,©)=02(R,0)-0%(RO), T, ={T.:R=Ry:0c (0,0} (5.43)

where Ry is the radius of the interface curvature. Since (5.40) — (5.43) are referred
to the composite interface (cracked or joined) I, (R=Ry=const) only, then their
radial dependence is neglected. The equilibrium problem of linear elasticity is
given by the following equations system [95]:

e equilibrium equations

00 1 do 1 (5.44)
R R or OO0
00y, 100y 2 : (5.45)

R R 0© R

where bg and bg denote the body force components;
e strain—displacement relations

s

i, 1 dug  u, 1(10u, OJuy ug (5.46)
=—, = — + = — + -
TR TR TR T

R ROO® OR R
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e  constitutive relations

GR Cl]]] CIII2 C1113 gR 5 47
GG) C2221 C2222 C2223 89 ( ' )
GR@ C3331 C3332 C3333 gRO
The following boundary conditions are employed:
u,=il, and wug =i, on T, (5.48)
ty=1f, and ty =1, on [, (5.49)
g(©)=0; 5(0)=0=0,(0©)=0; 0,4,(©)=0 onT; (5.50)

8(©)=0; 5(0) #0=>6;(0) <0; |04 (0) = o (O)] on T, (5.51)
2(©)>0; s(@)=0o0r s(®)#0 0x(O)=0, 0,,(0)=0 on T, (5.52)
g(©)<0; 5(0)#0 65(0)<0; |0,6(0)=plo,(©)] on T (5.53)
sign(oR(G ))=sign(s(©)) on T, (5.54)

where U denotes the constant friction coefficient. Then, the near —tip stress field is
described in the polar coordinate system as {x}={r,0} (cf. Figure 5.6).

Figure 5.5. Two—component curved laminate structure
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Figure 5.6. Near—tip field

It is assumed that both crack surfaces are modelled as perfectly smooth — there
are no neither meso— nor micro—asperities on this surface in the context of the
FEM contact model presented by [49,371,382], however application of the
Boundary Element Method is also known, see [374]. Considering future particle-
reinforced composites delamination simulations, the 3D contact algorithms must be
employed [284,322]. The asymptotic nature of the elastic fields near a transition in
the boundary conditions (crack tip) is expressed by the analytic functions and
therefore, the description of a near—tip stress for an interface crack between two
different transversely isotropic in a plane stress problem and the traction—free
crack surfaces is given as follows [301]:

o, =Relkr= |0y 35! (0.6 )+ ImlKr= |0y 295  0.),  (559)

where i,j=1,2, £/(0,€), X/ (6,€) are the angular functions derived using the

Muskhelishvili potentials; 7 describes here the oscillatory stress singularity given
as

IS

€ =cosle Inr)+isin(e Inr) (5.56)

The angular functions correspond to the normal and in—plane shear tractions,
respectively, on interface ahead crack tip (x;>0; 6=0) at a distance r given by
[140,222]:

6 +ic =KQ@ur)*"r or
2 12 (5.57)
o, =Re|kr® o) and o, = Im|kr® J2mr)

Moreover, the functions Z;.(6,€), Z;/(6,€) are related to the elastic properties of

the bimaterial specimen using the oscillatory index € given by
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1 K, /G, +1/G
ee Ly 1[G HYG, (5.58)

2 | x,/G, +1/G,

where the Kolosov constant k;, is given as [158,259]
3-v (5.59)
K = L for the plane stress
no1+v

K =3-4v for the plane strain; n=1,2. (5.60)

where v, and G, denote the Poisson ratio and shear modulus of the nth component,
respectively. Next, the elastic Dundur mismatch parameters are defined by

o= GI(KZ +1)_GZ(K1 +1) and ﬁ
G,(c, +1)+G, (i, +1)

_ Gk, ~1)-G,(x, 1) (5.61)
G,(x, +1)+G,(x, +1)

Then, it is possible to rewrite (5.58) in the following way:

1 (1-B
EZg“{m) (5.62)

The fracture modes I and II [54] of the SIF in the case of an interface crack
between dissimilar isotropic materials are now coupled together into the single
complex SIF K=K,+iK, uniquely characterising the singular stress field; K; and K,
are the functions of a distance r from the tip and may be denoted as follows:

K (r)= Re(Kr’E) and K,(r)= Im(KriE) (5.63)

The associated relative crack surfaces displacements (Au;=u;(r,0=n)-u;(r, 6=-1)) at
a distance r behind the tip (x;<0; 6=*r) are described in the following way:

My ity <[ L) K AN 5.64
' P G, G, }(1+2ie)cosh(7re) 2r (5-64)

Finally, the ERR for the crack propagation along the interface may be given as

ERR :(1—\/1 L ) KK 565

G G, J4cosh’(me)’

where K =K;-iK, is the conjugate complex SIF. It finally gives
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1-v, 1-v, \(K, () +(K, ()
+
G, G, | 4cosh’(me)

ERR = [ , (5.66)

which makes it possible to calculate the material interface toughness starting from
the local stress field under critical load.

The main goal of the computational experiments is to simulate the delamination
process of a two—component layered composite subjected to shear loading in the
shear device. It is predicted that near tip behaviour and frictional stresses along the
crack surfaces are the main parameters governing the ERR. Therefore, the FEM —
based numerical modelling of the delamination process is applied to get the
accurate information about the following data: near—tip displacement and stress
field description, normal stress distribution along the crack surfaces as well as the
relation between the ERR and interface crack length.

A two—component curved composite beam is analysed numerically under the
following assumptions: (i) the interlaminar adhesive layer has zero thickness (no
contribution to ERR), (ii) near—tip stress field is analysed in the same way as the
straight crack, (iii) the crack propagates along the interface only (kinking of a crack
out of the interface is not considered), (iv) kinematic friction along the crack
surfaces is accounted for, (v) friction between supporting jigs and the specimen is
neglected (liquid lubrication of the tested material surface is assumed). The
material components are homogeneous isotropic and linear elastic (cf. Table 5.1);
geometrical data are given in Table 5.2 and Figure 5.7.

A FEM geometrical model is made from the three types of finite elements: §—
node plane stress quadrilateral with out—of—plane thickness (5.0e-3 m) and 4
integration points PLANES82 (structural solid), 3—node contact surface element
with 2 integration points CONTA172 and 3-node target surface elements
TARGE169. The last two element types simulate two essentially different kinds of
material contact behaviour: flexible—to—flexible (between crack surfaces) and
rigid-to—flexible (between the rigid curved device jigs and the curved specimen
sides). For the present purposes, surface contact elements are more preferred than
point—to—surface contact elements considering the curved geometry of a specimen
and the requirements of a precise and detailed contact description as well as faster
computational processing (smaller total number of contact finite elements).
Moreover, target elements (CONTA172) simulating rigid curved jigs are modelled
as longer than specimen curved sides (O1+1°) to prevent loss of the contact at the
model edges during the loading process. Crack tip vicinity is modelled by the ring
of 16 8—noded finite elements (cf. Figure 5.9) introduced around 6—node triangular
elements (PLANES?2). The required square—root singularity on the element sides is
achieved by the motion of the midside nodes of crack tip elements into the quarter
points. Size of the crack tip element ring is 5.0 E-06 m in the radial direction,
which corresponds to 0.02% of the component thickness (the characteristic length
of a composite specimen). The very dense discretisation (cf. Figures 5.8 and 5.9)
makes it possible to analyse the near—tip stress zone where the singular stresses
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dominate (in so—called K—dominance zone) with the length about 3% of the
component thickness.
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Figure 5.7. Composite beam geometry

Table 5.1. Material input data for FEM analysis

Material | Radial elastic Angular elastic Shear modulus Poisson ratio

No. modulus eg [GPa] | modulus eg [GPa] | G zo [GPa] Vro

1 5.0 5.0 25 0.2

2 10.0 10.0 5 0.3

Table 5.2. Geometrical input data for FEM analysis

Component thickness Total angle | Interface plane radius Crack propagation
[m] Or [deg] Ry [m] range O, [deg]

hl hz

0.0025 0.0025 20 0.0525 <6-14>

Figure 5.8. Crack tip zone discretisation ~ Figure 5.9. Crack tip mesh
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The propagation of a crack is modelled computationally by the change of the
crack tip position under constant radius value R=R,. Thus, if the crack length
increases during its propagation, the total number of elements and nodes increases
as well as is comprised in the range between 2,302 and 2,878 finite elements (from
6,225 to 7,825 nodes).

The incremental nonlinear analyses (according to contact and friction) with two
different boundary conditions (BC) and material configurations (cf. Table 5.3 and
Figures 5.10 and 5.11) are performed to determine the influence of different load
and material combinations on the contact between crack surfaces. The external
loading is of static shear type and is applied in the form of displacement
increments; the weaker component is loaded first.

Table 5.3. Geometrical boundary conditions for the composite beam

Case 1

Case 2

(i) ©=0; and Re (Ro, Ry+h1): ux=0

(i) @< (-1°, ©), R=Ryt+h,: ug=1t6=0

(iii) ©<(0°,01+1°), R=Ry-hy: ug=0; ug=1r
(iv) ©=0° and Re{Ry-hy, Ry): ug=1ir

(i) ©=0r and Re(Ry-h,, Ry): ug=0

(ii) O (-1° O ), R= Ro-hy: up=tto=0

(iii) @<(0°, O +1°), R=Ry+h,: ug=0; ug=1r
(iv) ©=0° and Re(Ry, R=Ry+h,): ug=1ir

Figure 5.10. Model BC (case 1)
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Figure 5.11. Model BC (case 2)

Frontal solver implemented of the ANSYS is used to solve the problem using the
full Newton—Raphson iteration technique (stiffness matrix updated each time)
together with the additional convergence enhancement tools: predictor—corrector
and the line search options. The standard unilateral contact is modelled (pressure is
equal to zero during separation) as well as one—pass contact (asymmetric contact)
to obtain the equilibrium solution of contact tractions by means of the augmented
Lagrangian method (iterative series of contact stiffness are updated for the contact



Fracture and Fatigue Analysis of Composites 245

stresses computation). Moreover, the unsymmetrical tangent stiffness matrix is
used to derive of contact tractions what improved solution convergence in
comparison with the symmetric tangent stiffness matrix approximation algorithm.

The cracks are closed on almost the entire length under applied shear loading,
which results in sliding and sticking behaviour of the composite. Nevertheless, it is
observed that in the case of weaker material loading, the area around the crack tip
is opened which makes it possible to use the LEFM oscillatory theory of interfacial
cracks in the ERR calculation. The length of the opened crack tip zones remains
constant during crack propagation (about 1-2% of the total crack length, cf. Figure
5.12), while the crack opening maximum values are different for various crack
lengths. It may be due to the change of the crack tip loading direction during crack
propagation process. Moreover, the zero value of a crack opening shown in Figure
5.12 corresponds to sliding contact behaviour of the composite, which takes place
in 98-99% of the crack length measured from the specimen edges; the asymptotic
behaviour of stress is shown in Figure 5.13. The values of stresses depend
asymptotically on the very high stress values up to values about 5 orders smaller
and which are never equal to zero. Further, the oscillatory stress singularity is
slightly influenced by the increasing friction coefficient | and for extremal case
(u=1.0) the stress exponent is equal to A=0.494.

Next, asymptotic behaviour of stress in the case of a completely closed crack
(loading of stiffer component) is analysed in Figure 5.22. The extremal values of
stresses (crack tip stress values) are considerably influenced by the friction
coefficient increase and differ by about one order for i=1. In this case the exponent
A depends on the friction coefficient l and the interface fracture mechanics idea for
the opened crack is no longer applicable. However, it is possible to calculate
numerically the ERR for a closed crack with friction by means of the technique
proposed in [292] using the FEM analysis [24], but here only the opened crack
model is analysed. As can be expected, the stress tensor components around the
crack for the test without the friction are essentially greater than those typical for
the composite contact problem with a non—zero friction coefficient. It reflects the
fact that some part of the internal strain energy is dissipated by the friction
phenomenon in the second case, cf. Figures 5.14-5.21.
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Figure 5.12. Crack opening displacement (case 1; u=0.5)
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Figure 5.13. Near-tip stress dependence on L (opened crack tip)

Figure 5.14. Near—tip stresses G, [Pa] (1=0.5)
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Figure 5.15. Near—tip stresses G, [Pa](u=0)
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Figure 5.18. Near—tip stresses G4 [Pa] (u=0.5)
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Figure 5.19. Near—tip stresses G, [Pa] (1=0)

Figure 5.20. Near—tip stresses o, [Pa] (with u=0.5)
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Figure 5.21. Near—tip stresses o, [Pa] (u=0)
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Figure 5.22. Near—tip stress dependence on [ (closed crack tip)

Further, normal stress distribution can be analysed along the crack length
0¢e/(0, 0,) (cf. Figures 5.23 and 5.24) from the model edge (zero crack length) to
the crack tip for various crack lengths (©,=6°, 10° and 14°). The uniform
distribution of normal stresses Og, especially for longer cracks (0,>9°), which is
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obtained in conjunction with constant value of |, results in a uniform frictional
stress Gg along the crack surfaces according to Coulomb law. The part of the crack
surface with quasi-uniform normal stress distribution increases together with the
crack length increase as follows: 3.44E-3 m (6°), 7.33E-3m (10°), 8.93E-3 m (14°)
for Figure 5.21 and 3.89E-3 m (6°), 5.04E-3m (10°), 8.93E-3 (14°) for Figure 6.22.
It is reasonable because of the greater non-uniform deformation of the composite
edges (due to BC) decreases with respect to the entire crack length during its
propagation.
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Figure 5.23. Normal stress distribution along the crack surface (case 1; u=0.5)
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Figure 5.24. Normal stress distribution along the crack surface (case 2; u=0.5)

The variable ERR is a function of the interface crack length and is computed
for two different friction coefficients (u=0 and p=0.5). As is expected, a large
decrease in ERR value follows the friction coefficient increase (cf. Figure 5.25).
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For the shortest crack length (ay;,=5.5E-3 m) the ERR takes value 1.54E-3 kJ/m>
(u=0) and 1.03E-3 kJ/m? (u=0.5), while for the longest crack length (am.=1.282E-
2 m) the ERR value is equal to 8.71E-4 kJ/m* (u=0) and 3.48E-4 kJ/m? (u=0.5).
Therefore, during the crack propagation from 5.5E-3 to 1.282E-2 m, the total
amount of energy dissipated due to friction is comprised between 33 and 60% of
the ERR value in the frictionless case. Moreover, the crack extension is stable
(ERR decreases together with an increase of interface crack length), which means
that a higher load should be applied to keep the growth of a crack. However, a
friction phenomenon has a stabilising effect on the fracture process, which speeds
up the ERR decrease together with crack length in comparison to a frictionless
behaviour. Then, the quasi-stationary tendency of the ERR is observed for a certain
crack length (a>1.1E-2 m) in frictional (from 3.9E-4 to 3.48E-4 kJ/m®) and
frictionless (from 9.06E-4 to 8.71E-4 kJ/m?) cases. The stationary region of ERR
may imply uniform crack tip load which would make it possible to determine
experimentally the force responsible for delamination only; further analysis
indicates the mode mixing of the fracture process. The shear mode prevails over
the tensile mode of the ERR but the shear/tensile mode ratio (ERR2/ERR1)
increases from 2.78 (@) to 2.88 (amax) for =0 and decreases from 2.55 (ap;,) to
2.45 (amax) for n=0.5. Although the friction influences both contributions of the
ERR (ERR1 and ERR2), the ERR shear mode ERR2 is more reduced by the
frictional stresses along the crack surfaces due to its direction during interface
crack extension than the ERR tensile mode ERR1.
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Figure 5.25. Energy release rate comparison
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Figure 5.26. ERR contributions (u=0)
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Figure 5.27. ERR contributions (u=0.5)
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The computations are performed on a single processor machine (700 MHz)
with 256 MB (RAM) memory; the computer processing time (CP) and cumulative
number of iterations (CNI) are presented in Table 5.4 as functions of various crack
lengths for the 20™ loadstep of the displacement increment.

Table 5.4. Computational experiments technical data

Crack Element CP CNI
length number [s]
a [deg] u=0 u=0.5 u=0 u=0.5
6 2302 12413.580 11809.241 292 263
10 2590 12958.353 15646.158 270 327
14 2878 10506.438 10735.686 230 231

It is observed that the CP time is not affected by the friction coefficient and the
finite element number, but depends on some certain crack tip positions as the result
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of the curved model geometry. Thus, it is possible to point out that the critical
crack length maximising CP and CNI exists and is equal to about ©,=10°.

5.3.2 Fatigue Analysis of a Composite Pipe Joint

A deterministic computational model of fatigue crack—like damage propagation
in the composite pipe joint is introduced here and examined numerically using the
FEM program ANSYS. The studies dealing with the other pressure vessels like
longitudinally cracked pipes can be found in [142,218]. The model is built upon
the following assumptions cf. [97,157,205,211,376]: (a) material components are
linear elastic, (b) possible defect nucleation and growth is located within the
adhesive layer and is caused by the high stress concentrations, (c) no initial
manufacturing flaws, pre—cracks or other defects are assumed in the original
adhesive layer (before the beginning of the fatigue loading process), (d) there are
no microdefects forming and next coalescence during composite tension (typical
for metallic materials) apart from crack formation and propagation, (e) the cyclic
load has constant amplitude and (f) fatigue crack—like damage propagation is
stable.

The stresses along the adhesive layer length are not uniform and their gradients
arise at joint edges, which results from extension of the specimen layers in the
opposite directions (composite pipe and coupling), cf. Figure 5.28. Then it is
assumed that defects start to grow longitudinally along the adhesive layer and
uniformly over all pipe circumference, under applied tensile load 6***, when the
resulting average shear stress (T,q) over some distance d from the high stress

concentration region is equal to or greater than the shear static strength 7, in
adhesive layer. This criterion is expressed by the following equation:

1 d u
<Tad > = E!Tad dXA 2 Tad (569)

The formula (5.69) is called the average stress criterion after it was applied to
notched strength prediction of laminated composites under uniaxial tension; a
graphical representation of this criterion is shown schematically in Figure 5.28.
The distance d is called the characteristic length and can stand for the damage
accumulated or a nonlinear process zone. It is expressed here in terms of the
critical fracture mechanics parameter as the critical Stress Intensity Factor (Kj.)
and shear strength of the adhesive layer as

2
1K
ad
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Since (5.70) is based on the assumption of the square—root stress singularity in
the front of the sharp crack tip, it does not precisely represent the stress distribution
in the tubular adhesive layer in the stress concentration region. However, this
characteristic length serves to estimate upper bound on the finite element size at
the crack—like damage tip.

(™
/

N~
coupling <d> /f\ X

adhesive bonding
o e Rt e —>

(O - stress concentration regions

Figure 5.28. Pipe—to—pipe adhesive connection: 3D and 2D views

Then, it is postulated that after the crack—like defect had nucleated, it steadily
propagates along the adhesive layer as the main single crack leading to an average
stress increase over the distance d along with the number of load cycles N as

_ ld 1 < Tad(N)
<Tud(N)>_g(_[Tad(N)dXA igomdxf\ (5.71)

where D(N) denotes the classical scalar damage variable, which may be written in
terms of the nucleated and propagating main crack a as follows:

a(N) (5.72)

The defect propagation terminates according to the condition
D(N)=1sa(N)=1, (5.73)

which corresponds to the loss of stiffness for all those finite elements in the
adhesive layer that are placed on the crack propagation path.
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The boundary differential equation system, which describes fatigue defect
propagation along the adhesive layer of a composite pipe joint may be defined over
the pipe element of length dl,(N)=dX-da(N) as follows:

(i) equilibrium and damage equations

dF, = dF,,(N) and dF, =dF,,(N) (5.74)
do, % (Dfp -D, )=1,,(N)x D,,dl,(N) (5.75)
do, % (p2 - D2 )=1,,(N)x DI, (N) (5.76)
(ii) constitutive relations
Wy O g B _Ou
di(N) E, d(N) E, (5.77)
u ()= %{1—}/) (5.78)
(iii) boundary conditions
dw, G . G
a), ,  E, and awy, " E (5.79)
dw
mxﬁ =0 and ;;(LI:’)XAL =0 (5.80)

where F,, F,, F, represent internal axial forces in a pipe, adhesive layer and
coupling, respectively, internal axial stresses in the pipe, adhesive and coupling are
denoted by G, T, and ©.. Let us assume that E,, E. and G, are the axial modulus
of the pipe, elastic modulus of the connecting layer and the adhesive shear
modulus; w, and w, denote pipe and coupling axial displacements. This problem is
now solved numerically for the pipe and coupling shear strains y,,y, and

adhesive shear stresses 7, (N )

The main purpose of further computational studies is a prediction of crack
damage propagation rate per a cycle in the composite pipe joint subjected to the
pure tension fatigue load with the load time variations shown in Figure 5.29 (each
load cycle is divided into two time intervals of 6 months). The cycle asymmetry
ratio R is equal to 0, while the load amplitude is equal to the applied maximum

load (o). Since quasistatic fatigue load is applied, no frequency effect is

max

therefore considered here.
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Let us note that the axis symmetry of the composite pipe joint results in
simplification of the entire computational model and essentially speeds up the
analysis process — only half of the composite pipe joint in the axial direction is
considered only. The final computational model geometrical data to the FEM
displacement—based commercial program ANSYS [2] are shown in Figure 5.30.
The pipe and coupling component are made up of E—glass/epoxy composite (50%
fibre volume fraction) and the adhesive layer (rubber toughened epoxy). All
material properties of the composite pipe joint components are listed in Table 5.5.

A -2
A c Ri=5.08x10"m
! t,=1.27x10°m
A R=Gmin/Gmax=0 ! ta=1.27x1 0”'m
! | t.=1.27x10°m
}
; Omax '
g | <!
o | '
! Omin !
| T 1 > i X
o< T AVAVAN
Time R tp ta L
Figure 5.29. Applied fatigue load Figure 5.30. Computational model

The axisymmetric FEM analysis is carried out using four node finite elements
PLANEA42 of three translational degrees of freedom (DOF) (u,v,w) at each node.
The model mesh is made to obtain greater density in high stress concentration
regions (at both edges of the adhesive layer) — in this region the finite element size
was equal to the process zone d given by (5.70). During loading process, the
average value of the shear stress component computed by ANSYS in the finite

element is compared to the static shear strength (o, ) of the adhesive layer. After

this value had been exceeded within a finite element, then finite element stiffness
was multiplied by the reduction factor equal to 1x10°, and the element was
deactivated, until analysis was terminated.

Table 5.5. Material properties of the model

Property Rubber toughened epoxy (joint) | E-glass/epoxy
Longitudinal modulus [GPa] 3.05 45

Transverse modulus [GPa] 3.05 12

Shear modulus [GPa] 1.13 5.5

Poisson ratio 0.35 0.28

Shear strength [MPa] 54 70

Tensile strength [MPa] 82 1020

Fracture toughness G;. [KJ/m*] | 3.4 -

Fracture toughness Gy, [KJ/m?] | 3.55 -
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Supposing that the shear mode of failure is dominating in the problem, several
different failure modes may occur in composite pipe joints subjected to the tensile
static load. That is why the distribution of stresses within the pipe, adhesive layer
and coupling was analysed first to find out whether the shear stresses are the most
decisive stress components for failure initiation within the adhesive joint or not.
For the pipe joint geometry considered (cf. Figure 5.30), the computations
predicted the bonding failure is dominated by the shear stresses, while other stress
components (orthogonal and parallel) values were at least one order smaller. These
results excluded other modes of failure for this specific model and load amplitude

or =270 MPa and, finally, confirmed appli cability of failure criterion (5.69).

max

Loading cycles number N

a—A=216 MPa
0.025 e d c b a b —A=243 MPa
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Figure 5.31. Crack—like damage growth under various amplitude fatigue loading
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Figure 5.32. Crack-like damage growth per cycle
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Figure 5.33. Fatigue constants estimation

The crack—like damage evolution in the adhesive layer is presented for five
different load amplitudes A= ** =216, 243, 270, 406 and 540 MPa as a function

max

of load cycles. Those load amplitude values correspond to 4x 7., , 4.5XT.,, 5XT.,;,

ad >
7.5xt!, and 10xt.,, respectively. They were chosen to find out the load

amplitude effect on a composite pipe joint. Since below an applied load amplitude
A=216 MPa no damage nucleation was observed, then this load value may be
assigned to the load threshold, Ay. The tendency of longitudinal crack—like
damage propagation was obtained from the computer analysis as the difference
between crack—like damage tip at Nth and (N-1)th cycle. The crack—like damage
tip position was chosen to be the centroid of the finite element with reduced
stiffness. Since the crack—like damage growth occurred from two opposite sides of
the joint, thus two extreme longitudinal positions of the crack damage tips were
considered and summed up to give a single crack—like damage value, as shown in
Fig. 5.31. It is shown that an increase of amplitude resulted in a decrease of the
load cycles were required for the final failure.

Then, the results from Figure 5.31 were used to calculate a mean crack—like
damage propagation rate [mm/cycle] as a function of the applied mean fatigue—like
load, calculated from (6.81) with the results shown in Figures 5.32 and 5.33.

A relation between the mean crack—like damage propagation rate and the
applied mean stress is presented in Figure 5.33. The logarithmic form was taken in
order to obtain coefficients 0=2.3591 and f=-12.132 of the function
In(a)=oln(b)+ B. The final relation between the mean crack damage

propagation rate and the applied mean stress is given by the following equation:
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da _ e[1x10‘4(—121320.0+23591 oo, )] (5.82)
dN ),

The usage of (5.82) makes it possible to estimate the mean crack damage
propagation rate under applied mean fatigue load, although it should be compared
with other computational approaches to the problem or the relevant experimental
results. For composite containing different material properties, it would be
necessary to repeat all numerical procedures carried out here, because o, 3 are
load— and material —dependent constants.

In order to present stress distribution during crack—like damage propagation,
shear stresses are plotted for different load cycles in Figures 5.34-5.38. These
stresses were determined as a function of the joint length in the middle of the
adhesive layer thickness. The crack—like damage tips on both sides of a joint are
denoted by ‘A’ and ‘B’. It is shown that shear stresses at the crack—like damage
tips increase along with load cycle number, as was expected. It is caused by the
fact that the load transfer area from pipe to coupling decreases. The crack—like
damage propagation is initially the same for both tips ‘A’ and ‘B’ and supported by
similar shear stress magnitudes. Then, the shear stress magnitude changes and it is
different at opposite crack damage tips. It probably results from the non—uniform
extension of the crack damage across the remained adhesive layer. It is necessary
to mention that the lower part of the pipe overlapped coupling before the failure,
which does not demonstrate a realistic situation, where pipe and coupling would
slide over each other.

The tendency of fatigue crack propagation was also inspected under different
failure conditions utilising the concept of the average stress criterion. That is why
the average orthogonal and parallel stresses were compared with relevant strength
values for different amplitudes of the applied load. Computations revealed that it
would be necessary to modify failure criterion, given by (5.69) to predict fatigue
life as a combination of the average shear stress with average longitudinal tensile
stress in case when applied load amplitude is higher than G,,,,>406 MPa.
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Figure 5.34. Shear stresses in undamaged adhesive layer
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Figure 5.35. Shear stresses in adhesive layer after 1 cycle (1 year)
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Figure 5.38. Shear stresses in adhesive layer after 9 cycles

Computations presented above are performed using 2,606 finite elements (254
in the adhesive layer); some numerical examples have been undertaken in order to
estimate the total finite element number effect on the results. It was assumed that
finite element number in the adhesive layer may only influence results by only.
Thus the vertical mesh division effect was studied first with 400, 800, 1200, 1600,
2,000 and 4,000 finite elements, respectively. The results became independent
from the decreasing finite element size (cf. Figure 5.39), while the critical finite
element size for which results did not change was equal to [,=0.0001 m. It
corresponds to about 250 vertical mesh divisions of the considered adhesive layer
length.
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0.02 /

0.0150 400 eleme\nts

.
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0.005
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Crack-like damage growth [m]

2 4 6 8

Figure 5.39. Fatigue life sensitivity to the finite elements number in adhesive layer
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Numerical results presented in Figure 5.40 show that the finite element size
simulating characteristic length d should be much smaller than those approximated
by (5.70) and should be equal to d=0.0007 m. Similar comparative study was
carried out for different horizontal divisions and they demonstrated a rather small
mesh effect on fatigue life prediction, which oscillated in that case between 8.4 and
8.6 load cycles number (cf. Figure 5.39).
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Figure 5.40. Fatigue life sensitivity to the finite elements number in adhesive layer

For the geometry of the model considered here, its finite element mesh of the
adhesive layer should be designed using 5 x 250 elements (horizontal X vertical) in
order to avoid a finite element mesh effect on the life prediction. Finally, it is
suggested to solve numerically the problem by finite elements possessing a greater
number of nodal degrees of freedom (nodal translations and rotations) such as shell
finite elements, for instance, to improve the accuracy of the computational model.

The numerical approach proposed here enables efficient estimation of fatigue
crack damage evolution rate in the composite pipe joint subjected to varying tensile
load. This approach may be especially convenient in fatigue life prediction for the
structures with high stress concentration regions, where internal stresses even
under applied fatigue loading may be high enough to overcome material or
component static strength. Qualitative numerical comparison of the fatigue crack
damage evolution rate can be elaborated by the FEM displacement—based using
cohesive zone fracture mechanics tools. In this case the damage of adhesive layer
can be represented by a single crack model and crack evolution can be numerically
determined e.g. through common spring finite elements, interface finite elements
or solid finite elements with embedded discontinuity defined using the condition
for a critical energy release rate growth.
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5.3.3 Thermomechanical Fatigue of Curved

Composite Beams

A two-component composite material with volume € is considered in the plane
stress in an initially unstressed, undeformed and uncracked state, where its two
constituents (€2;, €,) are linear elastic and transversely isotropic materials; the
effective elasticity tensor of the composite domain €2 is uniquely defined by their
deterministic Young moduli and Poisson ratios. The problem is focused as before
on the composite interface where a pre—crack of length a, is introduced. Both
crack surfaces are assumed to be perfectly smooth — there are neither meso— nor
micro—asperities on their surfaces in the context of a contact model. The constant

amplitude fatigue load o is applied with the coefficient of a cycle asymmetry

R=0 " / o;“ . The stress field under applied general transverse load at the crack

tip is described by (5.57).

Now, let us analyse the fatigue phenomenon for such an interface
[77,109,291,295], which results from thermo—mechanical external load cycles
applied at the composite specimen [93,96]. Analogous to the classical Paris—
Erdogan equation used to describe the fatigue crack growth rate in metals, its
modified version is used

da
— =clAG)!
v =<(80)

(5.83)

where ¢ and g are some material constants determined experimentally. The energy
release rate (ERR) range is described here as follows:

AG = Gmax _Gmin (584)

max min

with G™ and G™" calculated for a certain applied load o;" and 0",

correspondingly. A quite similar fatigue analysis may also be applied in the case of
thermal cycling or coupled thermomechanical fatigue analysis. However, it is
necessary to apply the following equation to calculate the ERR range during
periodic temperature variations:

AG =Grm™)-Glrm™) (5.85)

where 7™ and 7™ are minimum and maximum temperatures for a given thermal
cycle. The modified Paris—Erdogan equation (5.83) is used to estimate the number
of fatigue cycles required for the steady state crack growth from an initial
detectable precrack a, to its critical length a.,. It is assumed that once the critical
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crack length is reached, the crack grows continuously leading to the material
failure by a delamination; this assumption determines the entire mechanism of a
fatigue fracture of this particulate composite. Since that, the following fracture
criterion is proposed:

. —G, 5.86
lim 46 = Giu =G >0= a,, =a, and G;;,21.05G; (>.86)
da—0 g a

i T4

The 5% factor is used in (5.86) to prevent instabilities of crack propagation and
which is based on some computational observations presented later. On the other
hand, if the ERR is less than the threshold value Gy, then no crack growth is

observed.
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Figure 5.42. Mechanical boundary conditions
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Moreover, it is possible to describe micro—crack density by the damage
function as D=al/a,,. In this case this function may be used to calculate the effective
stress tensor for a cracked body as follows:

= (5.87)

where O';-ﬂ denotes the effective stress tensor of the initially perfectly bonded

composite under applied load, which can be calculated by the classical
homogenisation or mechanics of composite materials theory. Then, the effective
stress tensor of a cracked body is estimated from (5.87) and is compared to the
effective strength of a two—component curved composite.

The main purpose of computation is to estimate the number of load cycles
required to composite fatigue failure by delamination as a function of the friction
coefficient. The composite thermal cycling is simulated numerically to observe
fatigue crack growth under non—mechanical loading. The analysis consists of the
following steps in order to evaluate these parameters: (i) determination of the near-
tip stress distribution under applied load (FEM analysis); (ii) evaluation of total
ERR (and its contributions) as a function of the interface crack length and the
friction coefficient; (iii) calculation of ERR range and (iv) determination of fatigue
cycles to failure.

The composite FEM model for computer analysis is presented in Figures 5.41
and 5.42 — two linearly elastic transverse isotropic homogeneous components with
the geometry parameters and material properties collected in Tables 5.6 and 5.7 are
analysed.

Table 5.6. ANSYS geometrical input data

Component thickness [m] hy 0.0025
hy 0.0025
Total angle Or [deg]; ar [m] 20; 1.83%x10
Interface plane radius R, [m] 5.25x1072
Pre-crack Oy [deg]; a, [m] 6; 5.5%x10
Table 5.7. ANSYS input material properties
Property Boron/epoxy Aluminium 7075-T6
Density [kg/m’] 2000 2810
Young modulus [GPa] 207 70.8
Poisson ratio 0.21 0.33
Shear modulus [GPa] 4.8 26.9
CTE [1/°C] x10° 4.5 23.4
Conductivity [W/m°C] 14.7 130
Heat capacity [J/kg°C] 1150 960

The composite specimen is discretised in the FEM analysis using from 2,172 to
2,908 finite elements and from 5,863 to 7,879 nodal points to simulate the interface
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crack propagation. The crack length change is equal to 0.5deg (0.9x10*m). The
very dense model discretisation around the crack tip needs a large effort for the
singular near—tip stresses behaviour simulation. The elements used for model
discretisation are 8—node plane stress solid elements PLANE82 (mechanical
analysis) with 4 integration points and 8—node thermal solid elements PLANE77
(thermal analysis) with 9 integration points. Two—dimensional (2D) contact
(CONTAI171) and target (TARGE169) finite elements are used to simulate the
contact with friction between crack surfaces and frictionless contact between
external supports and model edges; the contact finite elements have 3 nodes and 2
integration points, while target finite elements are defined using 3 nodes. The
numerical problem to be solved is geometrically nonlinear taking into account
elastic contact with friction or frictionless elastic contact — that is why an
incremental analysis is applied. The contact traction computation is possible thanks
to the augmented Lagrangian technique with contact stiffness matrix
symmetrisation. This technique as a combination of the two main constraint
methods (penalty and Lagrange multiplier) is chosen in conjunction with
predictor—corrector and the line—search numerical options to ensure satisfactory
solution convergence.

The applied fatigue load is chosen as a compressive shear of 1.75 kN (138
MPa) with the cycle asymmetry factor R=0.017. It is observed that the shear
contribution to the total ERR prevails (AG,=AGr) over tensile mode under the
given fatigue load. Since the shear mode dominates, the ERR is taken from the

range AG =G)™ —G3™ only and its dependence on the friction coefficient is

shown in Figure 5.43. The values of ERR range vary together with the coefficient
of friction from 147 (a,=5.49x10" m) to 183 J/m* (a)=1.28x10" m) for p=0 and
from 108.4 (a,) to 103.4 J/m? (a)) for p=0.15. The energy dissipated due to friction
results in a reduction of the ERR and alters the tendency of crack propagation — it
stabilises the fracture process.

That is why the critical crack lengths corresponding to the lowest values of
friction coefficients are equal to a.,=5.2 mm for u=0.0 and p=0.01, which are
smaller than those obtained for u>0.01 and equal to a.,=7.4 mm. Thus, the number
of cycles to composite failure by delamination is based on the critical crack length
criterion and is calculated from (5.83). The parameter g=10 and the ERR threshold
AG,=100 J/m* are applied together with the parameter ¢=1x10°. The results of
the composite life prediction are shown in Figure 5.44 — we observe there that the
friction coefficient increases strongly and decreases the crack growth rate per cycle
which finally leads to composite fatigue life improvement, under the assumption
that interface delamination does not bring about other damage processes such as
wear, for instance. Finally, the number of fatigue cycles to composite failure are
estimated to be N=61,865 cycles for u=0 and N=5.067040x10° cycles for u=0.14.
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Figure 5.43. Energy release rate range during fatigue crack growth
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Figure 5.48. Temperature distribution (1* cycle, T=-54°C)
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Figure 5.52. Temperature distribution (50" cycle, T=-54°C)
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Figure 5.56. Temperature distribution (100™ cycle, T=-54°C)

Computational thermal cycling is carried out for the composite specimen in the
temperature range T7™=+71 and T™"=-54 — thermal boundary conditions are
presented in Figures 5.44 and 5.45. First of all, the stationary thermal analysis is
worked out to introduce the initial conditions for temperature distribution (cf.
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Figure 5.44). Then, thermal cycling is carried out thanks to the non—stationary
thermal analysis implemented in the program ANSYS. The number of simulated
fatigue cycles is taken as 10 ES cycles for +71/-54°C and corresponds to the total
time t=252,000 s, where At=1260 s is used in numerical analysis as an incremental
time step. As is shown later, the fatigue crack growth after 100 cycles is very small
and equal to Aa=3x10"° m. Therefore, the analysis is carried out for the initial crack
length a,=5.5x10" m. Initially, the temperature has almost the same value in all
composite regions. Then, the difference in temperature increases together with the
number of thermal cycles, and even temperatures with opposite signs are observed
in opposite composite regions (upper and lower component). It is predicted that the
near-tip stress range can be reduced if the temperatures of opposite signs appear on
either side of the composite interface.

The temperature distribution over the laminate cross—section is presented for
25, 50, 75 and 100 cycles in Figures 5.49-5.56 for two temperatures mentioned
above. Comparing Figures 5.47, 5.49, 5.51 and 5.53 illustrating the temperature
distributions for greater initial temperature at the bottom of a laminate, it is seen
that the minimal temperature is decreasing together with an increase of the fatigue
cycle number (a composite is frozen during a fatigue analysis). Quite the opposite
observation can be made for 7=-54°C (cf. Figures 5.48, 5.50, 5.52, 5.54 and 5.56).
The maximal temperature increases from 7=-53.5°C (for 1* cycle) to about 12°C
which means that the composite is heated during the delamination process. For
both initial temperatures at the bottom of a structure, spatial distributions of
temperature gradients are exactly the same.

The results of non—stationary analysis give an input for a mechanical analysis
carried out for a composite model subjected to zero external mechanical loads.
However, the composite is circumferentially fixed by the target finite elements and
on the left side of the upper component by the supports. This coupling makes it
possible to analyse the thermal stresses in a composite and further, to determine the
ERR range. As was noticed before, the near—tip stress range is reduced during
thermal cycling.

The equivalent thermal stresses 6'"*%" distributions around the crack tip are
shown in Figures 5.57-5.62 for an initial crack length (a,) at the upper and lower
limit temperatures (+74°C and -54°C). Thermal stresses range is reduced
from Ac"4=-1000 MPa (after the 1* cycle) to -930 MPa (after 100 cycles).
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Figure 5.58. Thermal equivalent stress 6" [Pa] (1* cycle; -54°C)
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Figure 5.60. Thermal equivalent stress 6" [Pa] (50" cycle; -54°C)
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Figure 5.62. Thermal equivalent stress ™" [Pa] (100™ cycle; -54°C)
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Figure 5.63. Contact pressure along the normalized crack length

Comparing these figures it can be noticed that thermal equivalent stresses are
generally greater for greater initial temperature. Further, as can be expected, the
maximum value of these stresses for both temperatures decreases together with an
increase of the fatigue cycle number. Next, it is observed that material deformation
at the upper temperature limit (+71°C) led to crack surface contact the over total
crack length, while at the lower temperature limit (-54°C) the crack surfaces are
opened along almost the entire crack length with the closed region near the
specimen edge a(,,:l.14><10'3 m; it can be observed in Figure 5.63, where the
contact pressure distribution along crack surfaces is presented after the 1" and 100"
thermal cycle; a region characterised by the contact pressures cx=0 MPa
corresponds to the crack opening. The normalised crack length equal to 0.3 is
referred to the crack tip position, where the contact pressure at 7=+74°C is reduced
by about 10% after 100 thermal cycles.

The computed range of ERR is presented as a function of the interface crack
length for a constant friction coefficient u=0.0 in Figure 5.64. The total ERR range
as a function of the interface crack length has a decreasing tendency. Mode I of the
ERR range prevails, contrary to the ERR range contributions obtained from
mechanical cycling, and is comprised of between 93.4% (a,=5.4x10° m) and
95.2% (a=7.2x10" m) of a total ERR range, while the fatigue crack is arrested at
a=6.3%10" m according to the assumption of fatigue crack growth threshold
AG=100 J/m’.

Finally, the ERR range determination makes it possible to estimate the number
of thermal cycles necessary to hold up the fatigue crack growth. The same fatigue
constants as in the case mechanical fatigue are used to calculate the fatigue cycle
number. The number of thermal cycles to increase the crack length from a, to a,;, is
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equal to Nyy=1.012155x10° cycles (cf. Figure 5.65). As fatigue crack is arrested
and supported by the decreasing ERR range (see Figure 5.64), no criterion of
composite failure is possible to take into account the crack propagation instability.
That is why it would be feasible to use (5.87) to estimate the fatigue damage
accumulation influence on the overall composite properties, replacing d.; by @y
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Figure 5.65. Number of cycles to fatigue crack arrest
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5.4 Perturbation-based Fracture Criteria

Contrary to the traditional fracture criteria used in both deterministic analysis
and stochastic Monte Carlo simulations, the probabilistic fracture criteria consist of
probabilistic moments of material strength as well as the corresponding moments
of external load and its direction angle. The second order perturbation technique is
applied below to rewrite the Tsai—Hill criterion in terms of expected values and
standard deviations of all quantities discussed.

It is expected that a failure criterion is a function of material strength and the
stress (or strain) applied at the specimen. While for isotropic and homogeneous
materials such a condition should not be relatively complicated, in the case of
composites, the total strength is a function of composite type, the principal
directions of the structure and the stress applied as well as the angle relating this
stress to the direction introduced. One of the most popular in composite
engineering are Tsai—Hill and Tsai—Wau failure criteria, which may be rewritten as
follows:

cos*o 1 1 2purg, Sintl 1
e + F_F cos” Osin” 6 + 77 =F (5.88)

X, Y, S denote composite strengths in the three principal directions (longitudinal,
transverse and shear, respectively) while ¢ and 6 denote externally applied axial
stress and the angle between this stress and principal direction X [352];

4 .2 2 . 4 .2 2
cos 0 sin Ocos 9+sm 0 sin Ocos O

XX Yy g
Ao yXXYY L 5 (5.89)
+ 11 cos’ B+ 11 sinzezi2
X X X X o

t c t c

where X,, X,, Y,, Y, and § are axial strength in tension, compression and transverse
strength in tension and compression as well as shear strength, as previously.
Equations (5.88) and (5.89) can be rewritten for the needs of probabilistic analysis
after some basic algebraic transformations, while all of the quantities appearing in
these equations may be treated as random variables.

Let us consider a fracture criterion for a composite being a function of material
properties and stress tensor components to introduce the perturbation—based
fracture analysis

flo:X)=0 (5.90)

In terms of random loads and/or probabilistically given composite properties it can
be said that (6.90) is verified with probability almost equal to 1. Since the fact that
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the character of the final probability density function (PDF) is unknown then
denoting by u, ( f (G, X)) the kth order probabilistic moment of the failure function

f (6; X) , there holds

fle.X)2 Flu, (f(0,X))=0 (5.91)

where F (,uk ( f(0,X))) is some deterministic function of probabilistic moments
W, (f (O',X)). The function can be evaluated starting from integration over the

probability domain method, the characteristic function differentiation approach,
Monte Carlo simulation technique or, alternatively, stochastic perturbation theory.
Using the classical second order version of the perturbation technique, zeroth, first
and second order equations for Tsai—Hill criteria in the form of

o} o0, o} T
f(G;X)=1—(X—‘2—ﬁ+Y—Z+ﬁJ (5.92)

can be written as
e zeroth order equation:

o’ o,0, o> T2
fO(G;X)=1—(X—’2—)'(—f+Y—Z+S*§ (5.93)

e first order equations:

, 1Y) 1 - 1Y) 1 .

I (0§X)={(F) 0'12+F(512) _(F) 0'10'2_?(510'2)’
1Y’ 1 i 1Y’ 1 i

(i) ot o) s ) ]

(5.94)

e second order equation:
fPe:X)=

) o) o



Fracture and Fatigue Analysis of Composites 281

Analogous zeroth, first and second order equations can be obtained from Tsai—
Wu deterministic criteria, cf. (5.89). Then, the first two probabilistic moments for
the failure function f(c;X) can be calculated in the form of expected values

E[f(0:X)]= £ (0:X)+1 f P (0:X) (5.96)
and variances
Var(f(0:X))=(f" (0:X)J Var(b) (5.97)

using the relations derived above.
Starting from the first two probabilistic moments , various forms of the function
F (,uk ( f (0', X))) can be proposed which depend generally on the probability

density function of input random variables as well as the output PDF of the failure
function f (0'; X) The following form of F is proposed below:

£(0:X)= E[f(0: X)]-3{Var(f(c: X)) (5.98)

which gives the most accurate result for Gaussian deviates and all symmetric PDF
with the same first two probabilistic moments and the fourth order coefficient of
concentration greater than 3. By the ‘desired result’ it is understood that inequality
(5.98) holds true with probability almost equal to 1. Let us note that such a
function is called an envelope function in stochastic theories of structural
reliability.

The probabilistic failure criteria presented above have been examined in terms
of the angle 0 and axial stress ¢ being input random variables for the following
material properties of the composite X=5.0 GPa, Y=6.0 GPa, S=4.0 GPa for Tsai—
Hill criterion and X,=5.0 GPa, X.=5.5 GPa, Y,=6.0 GPa, Y.=6.6 GPa, S=4.0 GPa in
the case of Tsai—Wu model. The variability of the expected values of the input
parameters is taken as E[0] =0,...,45 and E[c]=2.0 GPa,...,6.0 GPa, while their
standard deviations are in the range of 10% of the corresponding expected values.
All computations are done by the use of the symbolic computation mathematical
package MAPLE - zeroth, first and second order failure surfaces are obtained and
starting from them the expected values, standard deviations and ‘envelope’ failure
surfaces are plotted. Figures 5.66—5.69 and 5.70-5.73 presented below contain
deterministic, probabilistic envelopes, expected values and standard deviations of
Tsai—Hill and Tsai—Wu failure surfaces. It is seen that the character of standard
deviations for both criteria plots is essentially different from the other surfaces.

Analysing the results plotted in Figures 5.66—5.73 it should be underlined that
deterministic surfaces are quite close to their expected values (see (5.96)). It is
caused by the fact that the coefficient of variation of both input random variables is
relatively small. Further, it is observed that the ‘envelope’ failure surfaces for both
Tsai—Hill and Tsai—Wu criteria have generally the same character as the
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corresponding deterministic and expected values. However, essentially smaller
values generally confirm its usefulness in the probabilistic analysis of composite
failure and should be studied further in detail. Especially valuable would be the
application of the methodology proposed in the case of full statistical information

on composite strength properties and the external load applied.

Finally, it should be underlined that the symbolic approach to stochastic
perturbation analysis makes possible any finite order computations of probabilistic
moments of the output. Due to this fact, precise numerical studies on model
convergence for different perturbation orders, various PDF of input variables and

their probabilistic parameters should be carried out.
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Figure 5.68. Expected values for Tsai—Hill failure surface
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Figure 5.69. Standard deviations of Tsai—Hill failure surface
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Figure 5.70. Tsai—Wu deterministic failure surface
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5.5 Concluding Remarks

The whole variety of mathematical and computational tools shown above
makes it possible to analyse efficiently ordinary and cumulative deterministic and
stochastic fatigue processes in different composite materials. Some local and
global models are mentioned and the deterministic or stochastic techniques
together with the approaches which enable randomisation of classical deterministic
techniques to obtain at least the first two probabilistic moments of the structural
response. For this purpose, most established composite oriented fatigue theories are
classified and listed here. Next, the application of the perturbation—based SFEM
has been demonstrated for various aspects of the fatigue process computational
modelling to the W-SOTM reliability analysis, starting from direct FEM
simulation in conjunction with fracture phenomena.

An alternative computational technique (MCS) is shown using the example of
homogenisation analysis for a fibre—reinforced composite with stochastic interface
defects simulating interface fatigue. Most of the computational illustrations
presented above show, which is intuitively clear, that the expected values of
structural functions decrease together with fatigue process progress. In the same
time, the second order probabilistic characteristics (standard deviations, variances
or coefficients of variation) increase together with the increase of fatigue cycle
number, which means that the random uncertainty measure is increasing during the
entire process.

The probabilistic modelling of composite materials fatigue processes
summarised and proposed in this chapter is still an open question due to the fact
that the area of composite material applications as well as the relevant technologies
is still extending and because of the developments of the stochastic mechanics
itself. The stochastic second or higher order perturbation theory for various
problems shown above is very fast in randomisation of composite fatigue theories
and in computational modelling. However, it is not sufficiently efficient in
numerical simulation of engineering systems with increasing standard deviations of
input structural parameters. The simulation methods based on the MCS approach
are computationally exact, but not very effective in simple approximation of the
probabilistic moments of the composite state functions, their failure criteria and the
additional reliability index. Further usage of stochastic differential equations
computer solvers [149] in conjunction with the FEM is recommended to include
full stochastic nature of crack initiation and detection into the model.

An essential minor point of the up—to—date fatigue analysis methods (both
deterministic and stochastic) is the lack of microstructural effects in the final
formulae; some work is done for laminated structures. However interface
phenomena in fibre—reinforced composites and stochastic microstructural
problems in all composites are not included in the analysis until now. Finally, the
lack of systematic sensitivity analysis of various models is observed, which makes
it impossible to find a reasonable compromise between complexity of the fatigue
analysis approach, probabilistic treatment of various phenomena resulting in
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cumulative damage and applied mathematical and numerical techniques. Such a
sensitivity analysis should be carried out treating the expected values and higher
order probabilistic moments of structural composite parameters as design variables,
which seems to be necessary considering the application of random variables and
fields in this area.

5.6 Appendix

Various fatigue models are collected below to give the overview of the
capabilities of this analysis for both homogeneous and heterogeneous structures;
they are listed according to the subject classification presented in this chapter.

A. Fatigue cycles number analysis — determine N:
1. Madsen (power law function) [244]:

N=KS™ (ASI)

S is stress amplitude, K,m are some material constants;
2. Boyce and Chamis [42]:

N:

)

s (AS5.2)

o | Te-T || Sr-o
’ TF _To SF -0,

Nyr — final cycle, Nyo — reference cycle, S — fatigue strength, S, — reference
fatigue strength, Tr — final temperature, T, — reference temperature, T — current
temperature, G — current mean stress, 6, — reference (residual) stress, n,g —
empirical parameters;

3. Caprino, D’ Amore and Facciolo [53]:

10expqlog N, —[(log Ny —log NMO)

1 Y il
=fl+—- In(l — o —1
N \/ +a(1—R){0-max |n( f"(N))| } (A>3)

Jfa(N) — probability of failure; ¥,6 — scale parameter (characteristic strength) and
the shape parameter of the Weibull distribution of the static strength; R — given
stress ratio; G, — maximum stress level; o, [ — constants from experiments.

B. Stiffness reduction models:
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1. Whitworth [365]:

dE(N) _ Df“(E,,S)

dN aEafl (N) (A54)

E(n) — residual modulus after n fatigue cycles, Ey — initial modulus, N=n/N* —
ratio of applied cycles to fatigue life; S,a,D — some constants, f(E,,S) — some

. . S . .

function of E,,S, i.e. CI:EO ——:I, er — constant depending on overall strain at

e.
f

failure;
2. Hansen [127]:

izl_ﬂ, ﬂ:AZ}(S_fJ dN (A5.5)
ol €

0

A — some constant, €, — effective strain level, &y — damage strain where

. dp fe. )
) | IS
b="y (soj (AS5.6)

3. Bast and Boyce (creep component for the stiffness reduction) [20]:

— - 6 _ -
i=|:tu t0:| 5[10 0.25} (A5.7)

t,—t 10° -1

t, — ultimate strength of creep hours when rupture strength is very small, 7, —
reference number of creep hours where rupture strength is very large, r — current
number of creep hours, v — empirical material constant for the creep effect.

C. Fatigue crack growth analysis (j—;\l/ ) - deterministic methods (Yokobori [379]):

1. Liu (energy approach) 2
1[A_KJ (AS5.8)
o,
2. Paris (energy approach) ¥
% | AK (A5.9)
lZ Gsy
3. Raju (energy approach) AK*

“orlk kg e s
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4. Cherepanov (energy
approach)

5. Rice (crack opening
displacement — COD)

6. Weertman (continuous
dislocation formalism)

7. Weertman, Mura and Lin
(continuous dislocation
formalism)

8. Lardner (COD)

9. Schwalbe (COD)

10. Pook and Frost (COD)

11. Tomkins
(skipband decohesion)

12. McEvily (semi-
experimental approach with
COD)

13. Donahue et al. (COD)

14. Yokobori I (nucleation
rate process approach)

15. Yokobori II (nucleation
rate process approach)

16. Yokobori III (dislocation
approach)

17. Yokobori IV (dislocation
approach)

AK*

2 2
Gsy K Ic

0y

AK‘E
oK,

4
9% | AK
L o,

AK4

a,

f(AK’ch’Kmax)

uo,

1/28kT
AK
Op| —
VE

2B /(1+ ) 5 1/2&T
AK bo,,

(m+1)2

AK m+2
al4

JsE

i(m+l)2+ 1 (mt1)2

o AK +8 m+2 1+f O-cy m+2
15 \/E E

(AS5.11)

(AS5.12)

(A5.13)

(AS5.14)

(AS.15)

(A5.16)

(A5.17)

(A5.18)

(A5.19)

(A5.20)

(A5.21)

(A5.22)

(A5.23)

(A5.24)
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where oy, i=1,15 denote some experimentally determined material constants;

yield strength dependence)

18. Yokobori V (monotonic AK "
B[ ] (A5.25)

Jso,

19. Paris—Erdogan [280]:

c(AKY" = Clr@acmal (A5.26)

Y(a) — geometry factor, Ao — stress range, C, m — some material constants;
20. Ratwani—Kan [296]:

CT e~ T —7,)" " (A5.27)

T — minimum interlaminar shear stresses, T,,. — maximum interlaminar

zmi
shear stresses, T, — interlaminar threshold shear stress range, C, n;, m; — material

constants, b — delamination length;
21. Wang—Crossman:

C,(ayo}
a W (A5.28)

G, — critical strain energy rate; G, — applied load, E — elastic modulus, a —
delamination width; ¢ — ply thickness;
22. Forman et al. [101]:

C(AK)'" . R — Kmin
(1-RK, -AK K (A5.29)

where C, m are the material constants with m =3 for steels and m=3-4 for

alluminium alloys;
23. Donahue et al. [82] for AK — AK,, obtained

Cclak -Ak,]" (A5.30)
24. McEvily and Groeger [247]

A
Eoy

AK
[AK—AKh]Z[H—} A5.31
’ KIC _Kmax ( )
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where Gy denotes the yield stresses of the specimen, A is an environment sensitive
material parameter and K¢ is a plane strain fracture toughness.
25. Experimentally based law for combined mode I and mode II loadings proposed
by Roberts and Kibler [302], where crack growth is obtained as

c(AK.)", K, = (K14 +8K, i (A5.32)

26. Hobson [137] proposed one of the first quantitative models to describe short
fatigue crack growth in terms of a microstructural parameter d assumed as a
material characteristic

Ca(d-a)™;a<d (A5.34)

where o, C are empirical constants (C depends on both material and loading
parameters — Young modulus, yield stress and the applied cyclic stress);

27. Kitagawa—Takahashi curve: the LEFM (linear elastic fracture mechanics)

approach determining the condition describing the stress level AKh when the
1

cracks can grow
AK,, =YAc~ma (A5.35)

Let us recall that the LEFM approach is invalid when the small—-scale yielding
conditions are exceeded AG = %Gl where ¢ is the cyclic yield stress;

cy

28. Priddle law [290]:

2

AK

C(—J (A5.36)
KF - Kmux

C — growth resistance, Ky — critical value for the stress intensity factor;

. . . da .
D. Fatigue crack growth analysis — determination of N (some stochastic

methods)

da(t) (A5.37)

o O(AK, K. .S, A, R)X(t)=0(a)(u+Y(r))

a(t) — random crack size, Q — some nonnegative function, AK — stress intensity
factor range, K,,x — maximum stress intensity factor, X(f) — nonnegative random
process, Y(#) — random process with 0 mean;
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1. Ditlevsen and Sobczyk [80]:

da(t)
4 Xen (A5.38)

p = 1,3/2,2 (experimental), X(f) — Gaussian white noise, process with finite
correlation time;
2. Lin and Yang [234]:

N ()

X(t.y)= ngW(t,fk) (A5.39)

N(t) — homogeneous Poisson counting process, T, — arrival time of kth pulse, Z; —
random amplitude of kth pulse with the following synergistic sine hyperbolic
functional form:

’

[dc;(n):| —10% sinh|C, (log AK +C3 ) |+C, (AS5.40)
n

a(n) — half crack length, C; — some parameters
— randomized form:

4

da(n) da(n)
= A5.41
. X(n)[ . ] (A5.41)
3. Spencer et al. [327]:
da(t) , dZ
= =Q(a)l0”, E=—§Z+G(t), a@)=a,, Z(0)=Z2, (A5.42)

where G(f) — stationary Gaussian white noise, Z(f) — nonstationary random
process; the Pontriagin—Vitt equation is used

m—-n 87-”1 & 2Tn
—nT"" =Q(a, 10% -& + 7S ,n=12,...
Ola, ) o &z, ot (A5.43)
with the boundary conditions:
T(ay,z0)=1, T"(ag,zy)—0:zy = oo (A5.44)
" (ay.7,) (A5.45)

VZO :T”(a[:,zo)zo, QO:ZO —> —o0

9z,
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. . . D
Fatigue damage function based model — calculation of Z’—N :

1. Palmgren—Miner model [299]:

Dol (A5.46)
N

n — number of fatigue cycle, N — number of cycles to failure;

2. Modified Palmgren—Miner model:

C
D= (—) (A5.47)

C — constant independent of applied stress; some probabilistic aspects of this
model can be found in [254];
3. Shanley model:

D=CS*n (A5.48)

S — applied stress, C,K — constants, b — slope of central position of S—N curve;
4. Marco—Starkey model:

Ci
n
D= (W) (A5.49)

C;>1 — stress dependent constant;
5. Henry model:

(St _ St')
g (A5.50)

t

D=

S, — fatigue of virgin specimen, S” — fatigue limit after damage;
t

6. Corten—Dolan model:
D =mcn® (A5.51)

m — number of damage nuclei, c,a — function of stress condition; 0. — some
constant;
7. Gatt model:
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D=(s,-S/) (A5.52)
8. Marin model:
SEN=C (A5.53)
9. Manson model:
— for crack initiation:
D= n_ (A5.54)
NI
— for crack propagation:
n
b=y (A5.55)
10. Owen—Howe model:
n n Y
D=B —|-C|— |, .
( N J ( N ) (A5.56)

B,C — some constants;
11. Srivatsavan—Subramanyan model:

D= log N, —logN
B log N, —logn (A5.57)

12. Lemaitre—Plumtree model:

Dzl—(l—%) (A5.58)

1 .
a= strain controlled; a =
p+1 c+p+l1
13. Fong model [100]:

—stress controlled; p,c—material constants

D= exp(kx) —1
~ exp(k)-1 (A5.59)

where k represents damage trend;
14. Cole model:

A, =A-C (A5.60)
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A,, — attenuation due to damage, A — total attenuation, C — attenuation of virgin
specimen;
15. Fitzgerald—Wang model:

E (A5.61)

s

E

D=1-

E — modulus at a fatigue cycle; E* — reference modulus;
16. Wool model:

R (A5.62)
17. Chou model:
D =AF(n) (A5.63)
18. Hwang—Han model I [143]:
F, —F(n) nY
p=-22"‘7_|=
F,—F, (N ) (A5.64)
F, — undamaged, F; — damaged modulus;
19. Hwang—Han model II [144]:
_&(n) r
D= —=T"xr (A5.65)

!

€, — failure strain;
20. Hwang—Han model I1I:

_em-¢g, r n

e, e, 1-rB-n (A5.66)

D

21. Morrow approach [257]:

n, (Si Jd
D, =—|—- (A5.67)
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S; — amplitude of stress causing fatigue damage, S,, — maximum stress amplitude,
n; — number of stress peak at level S;, d — plastic work interaction exponent, N; —
number of stress peak to the failure if S; =const.;

22. Morrow approach with different cycles:

SN\ S, @)

m

d
D(t)= ’gi[ il J (A5.68)



6 Reliability Analysis

6.1 Introductory Remarks

A very natural application of SFEM and the other probabilistic analytical and
numerical methods [313] is the reliability assessment for both homogeneous
[45,256,354] and heterogeneous structures [87,102,231,262]. The starting point of
the analysis is to assume the limit state function in terms of any structural state
parameters — displacements, stresses, temperatures or strains (as well as some
combination of them in the coupled problems). Then, starting from statistical input
on the structural parameter, probabilistic structural analysis is carried out and,
finally, starting from the limit state function, the reliability index is computed. The
reliability index should have the same properties as the classical Kolmogoroff
probability and, in the same time, the damage function.

Following the stochastic structural analyses, First Order Reliability Method
(FORM) and Second Order Reliability Method (SORM) are most frequently used
[87,114,115,209]. The methods do not provide satisfactory results for non-
symmetric PDF of the input and output in the same time and that is why the higher
order moments are proposed. Considering numerous applications of the Weibull
PDF in the composite material area, the corresponding Second Order Third
Moment (W-SOTM) approach proposed for homogeneous media is described
below. To illustrate this approach, let us denote the limit state function as g. The
expected values, variances and skewnesses of this function are calculated or
computed first using up to the second orders of this function, the limit state
function derivatives with respect to the input random variables vector b as well as
using its probabilistic moments (C; as a standard deviation). There holds

Elgl=g+1 Z[ o Jﬂ 6.1)

a%g)%g?é[{%) o’ }o +i[‘9g ? g} CoI-EYgl (62

abz i=1 8b &bz
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|| dg dg 3¢
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i
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i G(g)

These formulae can be derived using the classical perturbation approach
described previously. Next, parameters X, B, A of the Weibull distribution [8] are
obtained as a solution of the following system of equations:

1 _
E[g]=ll“(l+3)+x (6.4)

o(g)= /lz{r (1+%J—r2 [H%H (6.5)
S(g)=/l3[r(1+%)—3r(1+% (1+%) 2r’ (H%HG%@ (6.6)

where the Gamma function is defined as

oo

'[e"tx‘ldt (for x>0) 6.7

T(x)= -
lim S e Dy e e R

Finally, the reliability index is obtained as

e-enl (3| 69

The application of this type of analysis to a simple two—component composite
beam is shown in [179], for instance. From the computational point of view it
should be underlined that the mathematical packages for symbolic computation are
very useful in inversion of the Gamma function and in obtaining a direct numerical
solution of the equations system presented above.

The methodology shown above and applied for homogeneous media can be
used for simulation of the composite materials as well. Having proposed a general
algorithm for usage of the limit function g, the corresponding various limit
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functions adequate to composite materials are summarised below. The most
simplified and natural formulation of the limit function is a difference between
allowable and computed values of the structural state function or functions.

All limit state functions proposed and used for composites can be divided
basically into three different groups. The most generalised functions, independent
from the composite components type, and even from homogeneity or heterogeneity
of a medium and fracture character as well as physical mechanisms of the whole
process, can be classified into the first group. The functions included in the second
one obey a precise definition of material fracture mechanism in terms of
elastoplastic behaviour, crack formation and its propagation into the composite
during the whole process. The last group is characterised by the presence of the
failure function in the limit function and is therefore usually oriented to the specific
groups and types of composite materials.

The most general relations are maximum stress and strain laws formulated in
terms of longitudinal and transverse stresses and strain for both compression and
tension as follows:

- maximum stress law:

(0, 20)
gx(X)= {GLL+GX(G < ) ©9)
\( y 20) .
8,(X)= O'LC+O' (0' <O)
gy(X):GLT _|Gs|
- maximum strain law:
(X)_{gL,t —€x (gx 20)
SO e, verley <0) 610
X £, —5_‘.(5v 20)
X) 5L£+e)_(sy<0)

g, (X)=¢,, —|e

As can be seen, the limit functions are independent from of composite material
type (fibre—reinforced or laminated) as well as from the character of its
components (polymer—based, metal matrix, etc.). They originate from the
mechanics of homogeneous media. However, brittle or ductile character of material
damage is not taken into account in the analysis as well as the possibility of crack
formation during the fatigue process. That is why more sophisticated criteria are
proposed as, for instance, the one formulated as
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X, +X, K T, X, +X,

g(X)= 2X, XX i\/lnsec[ziJ (6.11)
le 2

where X, is loading stress, X, yield strength, X; tensile stress, X, fracture
toughness, X5 initial crack length, X, crack length and calculation of K. is
presented by [91]. This limit state function allows us to combine brittle and ductile
fracture type of the analysed material specimen, even in the elastoplastic range.
However, as in previous formula, it is quite non-sensitive to the composite material
type. Considering that, the limit state functions are combined with the failure stress
or strain functions in the form of so—called quadratic polynomial failure criteria,
for instance. The limit state functions proposed using such a criterion can be used
for the unidirectional composite laminate in both stress and strain formulations:

— Hill-Chamis:

g(X)=1-0}F, 0y, g(X)=1-£,G, ,&, (6.12)
— Hoffman and Tsai—Wu [352]:
g(X):l_G)T(FA,xGX_FBT,x» g(X):]—g)T(GA’XgX _G;,X (6.13)

Starting from the equations describing the limit function g, its probabilistic
moments are calculated using the formula proposed above, but in such a case the
knowledge of failure function probabilistic moments is necessary. In this context,
analogous to the previous considerations, the second order perturbation method can
be applied to randomise any of the reliability criteria i.e. Tsai—Hill failure criterion.

6.2 Perturbation—based Reliability for Contact
Problem

To illustrate the reliability analysis implementation, the stochastic perturbation
reliability analysis of the linear elastic contact analysis is carried out for a
composite reinforced with spherical particles. Since the solution for the
deterministic problem is known and has been worked out analytically, the
probabilistic analysis is made using the package MAPLE. The reliability limit
function and probabilistic moments of the contact stress computations as well as
some sensitivity numerical studies are carried out by the use of this program
together with the visualisation of all computed functions. This methodology can be
successfully applied for randomisation of all contact problem reliability studies,
where contact stresses are described by the closed form equations. Otherwise,
Stochastic  Finite [88,162] or Boundary FElement Method [46,51,185]
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computational implementations are to be made in order to get general approximate
probabilistic solutions for the composite contact problems. Furthermore, the
numerical approach to stochastic reliability, stochastic contact modelling and the
relevant analytical computation aspects can be applied and explored in various
areas of modern engineering, especially in the field of composite materials.

Let us consider the contact phenomenon between two linear elastic isotropic
regions characterised by the Young moduli (e, ,e, ) and Poisson ratios (v,,v, ). Let

us assume that the regions have spherical shapes with radii R, and R,, respectively,
and that the contact is considered in a point denoted by C, as it is shown in Figure
6.1 below. The 3D view of the particle—reinforced composite plane cross—section
is shown in Figure 6.2.

W) E v

Figure 6.1. Contact surface geometry

Particle

Matrix

Figure 6.2. 3D view of the particle—reinforced composite plane cross—section
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Let us observe that the contact problem is axisymmetric with respect to the
vertical axis introduced at the centre of the spherical particle and at the bottom of
this sphere (Figure 6.2). It is assumed that there is no pressure between the
composite constituents and therefore the contact appears at the point C only. The
distance between the points on the contacting surfaces and the plane transverse to
the vertical axis of both surfaces is assumed to be small and can be described as

oy I (R=R,)
27 2RR, (6.14)

where r denotes the distance between the points M, N and the symmetry axis
introduced at C. If the composite is loaded by the vertical force P acting along the
vertical axis at the point C, then some local strains are induced in the
neighbourhood of this point. They are a result of a contact phenomenon on a small
circular surface (contact area). Assuming that the composite constituents radii R,
and R, are sufficiently greater than the radius of the contact area, then the results of
the Bussinesq problem of the linear elastic half—space loaded by the concentrated
force can be adopted here. For this purpose let us denote by w; the vertical
displacement induced by the local vertical strain of the point M belonging to the
matrix; w; is the corresponding displacement of the point N in a vertical direction.
Finally, assuming that the tangential plane in point C remains unmovable during a
local compression, the close—up of the two points M and N can be expressed by
some real n as [344]

r*(R, —R,) (6.15)
n=o-w+w,)=—-1—22
b 2R/R,

If M and N belong to the contact area, their displacements w; for i=1,2 can be
written as

_12Vi (fqdsa
Y=g || adsde (6.16)

which follows the symmetry of the pressure intensity g and the corresponding local
strains with respect to the vertical axis at the point C. Integration in this formula is
carried out over the entire contact surface. Therefore

rz(Rl _Rz)

(k, +k,)[[ qdsdep = o — IRE,

6.17)

Now, we are looking for such an expression for g to fulfil the above equation. It
can be obtained for the pressure distribution on the contact surface represented by
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the coordinates of the hemisphere with the radius a constructed on a contact
surface. If gy is taken as the pressure at the point C, then one can show that

_ 4
Jads==2A 6.18)

where

A=%(az—r2 sinztp) (6.19)

which gives

(k +k) H Z(Rl_Rz)
—r”sin o ——== 6.20
i(a rsin® plp = 2RE, (6.20)
Finally, the parameters a and o can be determined for this problem as
3 P(k, +k, )RR,
=3y
\/ 4 R —R, (6.21)
a=3 9’ Pz(kl +k2)2(R1 _Rz)
16 RR,
which gives maximal pressure on the contact surface equal to
g= 3p (6.22)
2ma’
Then, the normal stress can be defined as
o, = —.[ 3qrdrz’ (r2 +7° )75/2
0 (6.23)

cof )

a _q _1+ Z3
0 a’+7z*

Let us note that the shear stresses are equal to 0, which result from the spherical
symmetry of the reinforcing particle. However in the case of ellipsoidal
reinforcement the shear stresses differ from 0.

The main purpose of further analysis is to determine the probabilistic
characteristics of maximal contact stresses as well as contact surface geometrical
parameters. Since the spherical particle surrounding the matrix is considered, let us
assume that the difference R,-R,=¢ is smaller than R,. This parameter is treated as
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input design parameter in further sensitivity analysis. The characteristics
mentioned above are necessary in the final stochastic reliability computations and,
considering the complexity of the equations describing reliability parameters, the
stochastic second order perturbation method is proposed. The second order
perturbation follows a traditional approach in this area (and the lack of
convergence studies with respect to the Taylor expansion order). The third
probabilistic moment method reflects the need of unsymmetric random variables
modelling. Adopting the same notation as before (see Chapter 1) the skewness
parameter S(u;) is calculated by

+oo

S(”i): 31(14[) J-(ul - E[”;])3PR(b)db (6.24)

In further applications, the Weibull distribution is used with the probability density
function defined as

B(x—x - x—xY -
Pe= i exp| — n X>X (6.25)

where [ is the Weibull shape parameter, A denotes the scale parameter and X is the
location parameter, which indicates the smallest value of the random variable x for
which the probability density function is positive. Considering this definition, the
Weibull PDF is used for general mechanical applications, where many random
variables must be nonnegative (Young modulus and some geometrical parameters,
for instance) and especially in composite failure and fatigue modelling. Let us note
that if discrete representation of a random variable b(x;0) is used, then statistical
estimators may be applied to approximate any order probabilistic moments of this
variable.

Starting from probabilistic moments and the stochastic perturbation
methodology presented above, we compute the first three probabilistic orders of
the vertical stresses E[O'Z (x;a))], Var(O'Z(x;a))) and S(O'Z(x;a))) as

Elo.]=0? +%2( Joz(bi) (6.26)

© b} A (6.27)
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and

(6.28)

i=l a_b, ab, Bb2

L

n ’ 2
3|5 o s

- E'fo.)-3El0. (0. )}

o’(c.)

Having computed the first three probabilistic moments of contact stresses
(expected values, standard deviations and skewness coefficients), the random field
of the limit function g(z;®) is to be proposed. Usually, it can be introduced as a
difference between allowable and actual stresses o (z;w) induced in the

composite as
g(z0)=0,@)-0, (z0) (6.29)

Let us underline that allowable stresses are most frequently analysed as random
variables in the interior of statistically homogeneous materials, whereas actual
stresses are random fields. That is why the computational analysis presented later
is carried out for the specific value of the vertical coordinate z. The random
variable of allowable stresses o, (@) is specified by the use of the first three

probabilistic moments E [0'{,” ()], Var(c,,(®)) and S(o,(®)). Then, the
corresponding probabilistic characteristics of the limit function are calculated as

n 82
E[g]=8°+%2[—§J02(bi) (6.30)
i=1| 0b;
n ag 2 azg
2(o) =g -5 0235 |52, 6.31
)= )Z+,:ll[abij e o) (@30
8

as well as
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2

3
+ z{(a_g) 4340089 g]S(b)a3(b,-) L (3
i=l

S(g)= (go)3 3&[2g (g}f) +<g )zng?]O'z(bi)

ob; ob; ob; o’(g)

— Eg1-3E1glo(g)}—
o’(g)

Inserting the limit state function g from (6.29) into (6.30)—(6.32) and assuming
that the random variable of allowable stresses and the random field of actual
stresses are uncorrelated it is obtained that

Elgl=00 — o, i[

=1

2
n 20 820'
c’(g)=lo% -c’ ] +3|| == | -lo2, -0l )===| o2,
(e)=(0% ~o?f %[( ob; J b Z>8bf} b) (6.34)

n aG, 626

] o’(b) (6.33)

ob?

and, finally

e o R N

[{§—§J3g a—ga—g] $6)0°6)

3[ o 0 0 o] 2(-0 0 1
-E [Gall -0, ]_ 3E[Gall -0, ]6 (Gall _Gz)} 3(_o 0
00w —0;

Comparing the second order second moment (SOSM) approach with the second
order third moment (SOTM) approach, it is seen that the expected values are
described by exactly the same equation, while standard deviations (or variances)
have some extra components connected with the skewness of analysed PDF; the
third order parameter of the output PDF is taken into account in the SOTM—based

analysis [282].
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Computational experiments are conducted by the use of the symbolic
computation system MAPLE, where the stochastic second order perturbation
method in W-SOTM reliability analysis of the contact problem has been
implemented. The entire analysis is divided into three groups of essentially various
numerical examples: (1) deterministic analysis and sensitivity study of a contact
problem with respect to the vertical spatial coordinate, (2) stochastic second order
perturbation based numerical modelling by randomising most of the input problem
parameters and (3) stochastic numerical modelling according to the Weibull second
order third moment approach.

Deterministic analysis (Figure 6.3) and the sensitivity of contact stresses in a
two-component composite with spherical particles is verified with respect to the
vertical spatial coordinate. The following data are adopted for the computational
analysis: €,=2.0E9, v,=0.3, v,=0.2, R,=0.18, P=10.0E5, o=e,/e,=2.0~8.0,
B=R\/R,=1.001-1.01.

1.01

1.0

0 1.008
e i
1 s 1.004 beta

] 1.002

Figure 6.4. Sensitivity of contact stresses to vertical spatial coordinate ‘z’
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Computational analysis of vertical contact stresses and their sensitivity
gradients (dc,/dz) with respect to the spatial coordinate is presented in Figure 6.4.
The reinforcement ratio (@) and the radii ratio (8) are marked on the vertical axes
in Figures 6.3 and 6.4. The compressive contact stresses are most sensitive to the
parameter [ for its value tending to 0 (matrix perfectly surrounds the matrix) and
for the parameter o tending to 1 (Young modulus of the reinforcing particle tends
to the matrix Young modulus). One of the main benefits of the MAPLE
computations, i.e. visualisation of the stress variations and their sensitivity
gradients, can be studied in these figures.

All the input parameters of the analysed contact problem are treated as random
variables: Young moduli and Poisson ratios of the composite components as well
as their radii. Deterministically calculated vertical stresses in the contact area are
compared below with expected values, standard deviations and probabilistic
envelope values of the vertical contact stresses for z=0.1. The standard deviations
of the variables are taken in the range of 10% of the corresponding expectations;
all variables are assumed to be uncorrelated.

The computed deterministic contact stresses are shown in Figures 6.5, 6.9, 6.13
for the particle centre (z=0.09) and for the matrix (z=-0.5 and z=-2.0, respectively).
The expected values of contact stresses are shown in Figures 6.6, 6.10 and 6.14 for
the same points, the standard deviations are shown in Figures 6.7, 6.11 and 6.15,
while the probabilistic envelopes for these stresses surfaces are presented in
Figures 6.8, 6.12 and 6.16. The vertical contact stress parameters are marked on the
vertical axes; horizontal axes define the reinforcement ratio of the composite (@)
and the ratio between particle and the surrounding matrix radii (8). All the surfaces
shown in these figures have the same character and the variability with respect to
the input parameters o and [3, apart from the standard deviations plots.

Analysing Figures 6.5-6.6, 6.9-6.10 and 6.13—-6.14, it is seen that the expected
values of contact stress surfaces are quite close to those obtained in the
corresponding deterministic analyses. Essential differences are observed between
Figures 6.5-6.8, 6.9-6.12 and 6.13—6.16, where probabilistic envelopes of these
stresses are shown. These envelopes are determined for a particular x on the basis
of the results presented in Figs. 6.6—6.7, 6.10-6.11 and 6.14—6.15 as

Env(f (x);x) = E[f (x); x] = 3sig (f (x); x) (6.36)

Let us note that (6.36) is frequently used in the Stochastic Finite Element
computations and stochastic fatigue analysis. The values of probabilistic envelope
surfaces are significantly smaller than the corresponding values obtained from
deterministic analysis, which means that stochastic perturbation based
computational analysis more restrictive than the classical model as well as the
corresponding expected values. All the surfaces combined in the probability
envelope show that vertical stresses tend to O for the reinforcement ratio and matrix
radius tending to a spherical particle radius. Comparing all deterministic and
stochastic results, it is clear that the contact stresses are most sensitive to the
vertical spatial coordinate.
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Analysing Figures 6.5-6.8, 6.10—6.12 and 6.14—6.16 in terms of the contact
stress variations with respect to the composite reinforcement ratio, it is observed
that the greatest sensitivity appears for o—1, which means that the greatest
variations of examined probabilistic stresses are obtained for the homogeneous
contact problem. Further numerical sensitivity analysis with respect to the Poisson
ratio interrelations of both composite components is necessary.

The computational study on structural reliability, proposed in the theoretical
considerations on structural reliability, is the main subject of the next example. The
set of input data together with their probabilistic characteristics is given in Table
6.1 for the same composite contact problem as before. The Weibull probability
density function (PDF) of the limit function is determined together with its up to
third order probabilistic moments (cf. Table 6.1) obtained by a symbolic
computational solution of the nonlinear equations system (6.30)—(6.32). The PDF
of a limit function is presented in Figure 6.17 — probabilistic vertical stresses are
shown on the horizontal axis, while the probability on the vertical axis.

First, it can be seen that even for a relatively small input coefficient of variation
of input parameters (not greater than 0.1), the randomness level of the output
function is about 18% of the relevant expected value. That is why the proposed
third order approach is more accurate for the analysed contact problem.
Furthermore, we observe that even for input skewnesses equal to 0, the
corresponding third order probabilistic characteristics differ from 0, which reflects
the differences in algebraic combinations of lower order characteristics. In further
analysis it is necessary to verify the sensitivity (both in deterministic and stochastic
context) of output Weibull PDF probabilistic moments with respect to all input
mechanical parameters and their random characteristics. At the same time, the
cross—correlation function of contact stresses can be symbolically computed using
the program MAPLE.

1.01 8
Figure 6.5. Deterministic contact stresses (z=0.018)
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1.01 8
Figure 6.6. Expected values of contact stresses (z=0.018)

1.5e+012%
1e+0123
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1.005
1.01 &8 7

Figure 6.8. Probabilistic envelope of contact stresses (z=0.018)
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1.01
Figure 6.9. Deterministic contact stresses (z=-0.5)

1.01 8§
Figure 6.10. Expected values of contact stresses (z=-0.5)

1.006
beta

1.004

100277

Figure 6.11. Standard deviations of contact stresses (z=-0.5)
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1.01 8
Figure 6.12. Probabilistic envelope of contact stresses (z=-0.5)

1.00 8
Figure 6.13. Deterministic contact stresses (z=-2.0)

1.01 8
Figure 6.14. Expected values of contact stresses (z=-2.0)
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=}
3 4 alfa
Figure 6.15. Standard deviations of contact stresses (z=-2.0)

1.01 8§
Figure 6.16. Probabilistic envelope of contact stresses (z=-2.0)
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Figure 6.17. Equivalent Weibull distribution for the limit function
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Table 6.1. Probabilistic input data for reliability index computations

Parameter Value

E, 2.0E6

\ 0.3

V2 0.2

R, 1.8

P 5.0E2

4 -0.018
o(e) 0.2E6
S(er) 0.0

o(Ry) 0.018
S(Ry) 0.0

Ol -4.0E5

o 10.0

B 1.01

Elg] -211378.33
o(g) 38213.61838 (0=0.18)
S(g) 5.158577

The analysis presented above reflects various sources of randomness and
stochasticity in contact problems of the spherical particle reinforced composites. In
comparison to the second order second probabilistic moment approach, third order
probabilistic moments of both input and output parameters are analysed. It is
demonstrated that even for skewnesses of the inputs equal to 0, the output third
order probabilistic moments in reliability studies slightly differ from 0. It results
from the main idea of the SOTM approach and from the interrelations between
lower order probabilistic characteristics. Further, it is observed that deterministic
values of the state functions are quite close to the computed expected values. They
are considerably greater and well approximated by their probabilistic envelopes,
which confirms the usefulness of these envelopes in various stochastic numerical
experiments.

The most interesting extension of this study would be introducing: (1) the
randomness of non-spherical contact surface (ellipsoidal one) and, next, (2) more
realistic incremental Stochastic Finite or Boundary Element Method (SFEM or
SBEM, respectively) of nonlinear geometry of the contacting surface. Next, the
application of a computational W—SOTM reliability study in various numerical
analyses of composites would be interesting, too. Neglecting relatively simple
character of the deterministic contact problem, the geometrical sensitivity of the
contact stress values is decisive for this analysis, both in deterministic and
stochastic cases. Considering the above, one can have a conclusion that the
stochastic second order perturbation analysis in a conjunction with mathematical
symbolic computations is a very powerful stochastic computational tool. However,
the limitations on the input randomness level typical for such an analysis must be
fulfilled [208].
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6.3. Stochastic Model of Degradation Process

Let us consider an engineering system Qe R’ under stochastic degradation
processes (SDP) with n uncorrelated components D(x; a);t)z D,.(x; w;t), i=1,..,n
where te [0,00). It is assumed that for every 7e [0,00) the components
D, (x;a);r) are Gaussian random variables, i.e. they are uniquely defined by their
first two probabilistic moments: the expected values E[Di (x;w;r)] and the
variances Var(Di (x; ®:7)). Due to the uncorrelation assumption, the covariance

matrix for any Te [O,oo) between the SDP components, it yields [176]
Cov(Di(x;a);T);Dj(x;a);‘r))z 0; ij=l,...n, i#]j (6.37)

Moreover, because of the lack of respective experimental results, we assume
that there are no time correlations between the SDP components

Cov(D,- (x; ;7" ); D, (x;a);f(z) ))= 0; ij=l,..n (6.38)

However, in contrast to the above, the spatial correlation of particular
components have non—zero values

Cov(D,. (x“) ;a);r);Di (X(z);w;r));t 0 (6.39)

and are computed by use of the statistical estimation methods. Let us note that,
from an engineering point of view, every D, (x; a);t) for i=1,...,n represents some
material (elastic characteristics or yield stress) or geometrical properties (section
area, element thickness) of the system € under considerations.

Further, let us assume that all SDP components are statistically measured
(obtained in the experimental way) in the moments t,,¢,,...,t, , for some me N .
On the basis of a measured M series of these components, the basic statistical
parameters are estimated by use of the following formulae:
= the expected values estimator:

E[D[ (x; o )]= %i D (X’. ot ) (6.40)

where D!’ (x;w;1, ) denotes the jth measurement of the ith SDP component in the

moment ¢ ;
k

= unbiased variance estimator of the ith SDP component in the moment ¢ :
k
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Var(D,. (x; W;t, )) = ﬁ é{l)iu) (X; w1, )_ E[Dl. (x; wit, )]}2 (6.41)

=  standard deviation of the ith SDP component in the moment tk :

o (D, (x;w:1, )= \Var(D, (x; w:1, )) (6.42)

= coefficient of variation of the ith SDP component in the moment ¢ :
k

Lo _ Var(Di(X;w;tk))
a(D, (xw;1, )= ‘/W (6.43)

= covariance matrix estimator of the ith SDP component in the moment ¢ :
k

Cov(Dl- (X(l) HOH " } D, (x(z) HoRM ))
1 M

- e, £l ) 40
M-15

DO (s a1, )~ E [ X011 )

Next, on the basis of all statistical estimators of the SDP components
D, (x;a);t) computed for the moments ¢,,¢,,...,t,,, let us introduce the polynomial

approximation of the respective probabilistic moments. This approximation is
shown for the example of the expected values and the variances:

6.45
E[D,-(X;w;t)]=iAp-t" : p<k (6.45)
i=1
A4
Var(Di(X;w;tk))=iB 175 g<k (6.46)

i=1

q

where the coefficients A,,B, depend on estimated values of the probabilistic
moments approximated in the moments ¢,,1,,...,¢,,. Thus, on the basis of discrete

values of these moments, their continuous time functions are obtained. It should be
underlined that (6.45) and (6.46) enable us generally to provide an extrapolation of
the expected values and variances which is the basis of the approach proposed.
Finally, let us introduce the following time continuous functions, being
stochastic upper U " (x;T) and lower L" (X;T) bounds for every SDP components

D, (x;a);t) in the form
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\vd 3 P(DI. (x;; 7} <D, (x;w;r)SU("))g
Dilrost)uth (xr) (6.47)

9 (x;7)

To obtain these bounds for some 7€ [0, oo), the well-known following bounds for

Gaussian variables are used

v® (x; 1') = E[Di (x; w;r)]+ 3 Var(D,- (x;a);r)) (6.48)
o (x;r)= E[Di (x;w;r)]— 3 Var(Di (x;a);r)) (6.49)

It should be noted that the interval [L‘” (o) Uu® (x;T)] can be contracted by
decreasing the coefficient multiplied by the standard deviations of D, (x;;7) in

(6.48) and (6.49). However the probability value specified in (6.47) will decrease
respectively as a result.

As was stated above, the main purpose of our analysis is to make a prognosis of
the stochastic reliability and failure time and/or to compute the safety interval for
the respective design parameters of the engineering system €2 considered. Taking
this into account, there are two kinds of boundary conditions: the /st kind, of stress
(load capacity conditions) and the 2nd kind, of displacement type (service
conditions). Finally, the following inequalities are to be verified simultaneously to
find out the time prognosis of the engineering structural safety:

{U [O-max (x; w; t)] < L[O'an (X; w; t)]
(6.50)

Ula,, (nost)l<Llu,, (xo:1)]

where uy,x and G, are maximal values of displacements and stresses, while
quantities indexed with ‘all’ are allowable values. Solving the set of inequalities
(6.50) iteratively with given time increment Ar, the failure time t,» can be found

as such a value, for which one of these inequalities does not hold as the first one.
It should be noted that these inequalities are based on the comparison of the
upper bounds of the maximal stresses and displacement stochastic processes and
the lower bounds of the allowable stresses and displacement stochastic processes.
Moreover, the lower bounds from the right sides of the system (6.50) can be
derived on the basis of the given SDP components D, (x;a);T) or given explicitly

as deterministic values being an effect of simplified engineering calculations. On
the other hand, the probabilistic moments of the maximal stresses and
displacements can be evaluated by the collocation of the simulation technique or
stochastic perturbation method with analytical solutions of the given problem or
various numerical methods. Finally, let us note that the methodology presented can
be efficiently used in conjunction with stochastic fatigue and fracture theories
[89,377] and can extend the existing probabilistic strength models [142].



7 Multiresolutional Wavelet Analysis

7.1 Introduction

Multiscale analysis based on wavelet analysis, being a very modern and
extensively developed numerical technique in signal theory [147,148,380], even in
probabilistic context [289], introduces the capability to analyse the composite
systems with multiple geometrical scales, which is very realistic for most
engineering composites (the scales of microdefects, interface, reinforcement and
the entire structure). Nowadays, this technique is employed in porous materials
modelling [104], general FEM and BEM solutions for boundary problems [119], in
vibration analysis [235] as well as in crack detection and impact damages
[293,331,343], for instance. Figure 7.1 below presents the MATLAB illustration of
the signal that can be interpreted as the information about the variability of
heterogeneous medium physical properties in time (and/or in space). It is seen how
such a signal can be decomposed using discrete wavelet transforms on the partially
homogeneous parameters on different levels [169,170]. After such a
decomposition, the traditional or wavelet—based discrete numerical methods can be
applied for computational physical modelling.

|4| Continuous Wavelet Transform 1-D

1000

Figure 7.1. Discrete and continuous wavelet signal transform
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The homogenisation method is still the most efficient way of computational
modelling of composite systems. Usually it is assumed that there exists some scale
relation between composite components and the entire system — two scales are
introduced that are related by a scale parameter being some small real value
tending most frequently to 0. An essential disadvantage of all these techniques is
the impossibility of sensitivity analysis of composite homogenised characteristics
with respect to geometrical scales relations.

Wavelet analysis became very popular in the area of composite materials
modelling because of their multiscale and stochastic nature. The most interesting
issue is composite global behaviour, which is more important than the
multiphysical phenomena appearing at different levels of their complicated
multiscale structure. That is why it is necessary to build an efficient mathematical
and numerical multiresolutional algorithm to analyse composite materials and
structures.

As is known, two essentially different ways are proposed to achieve this goal.
First, the composite can be analysed directly wusing the wavelet
decomposition—based FEM approach where the multiresolutional analysis can
recover the material properties of any component at practically any geometrical
level. The method leads to an exponential increase of the total number of degrees
of freedom in the model — each new decomposition level increases this number.

Alternatively, a multiscale homogenisation algorithm can be applied to
determine effective material parameters of the entire composite and next, to carry
out the classical FEM or other related method—based computations. The basic
difference between these two approaches is that the wavelet decomposition and
construction algorithms are incorporated into the matrix FEM computations in the
first method. The second method is based on the determination of the effective
material parameters and Finite Element analysis of the equivalent homogeneous
system, where the dimensions of the original heterogeneous and homogenised
problems are almost the same. An analogous two methodologies had been known
before the wavelet analysis was incorporated in engineering computations.
However the homogenisation method assumptions dealing with the interrelations
between macro— and microscales were essentially less realistic.

Considering the above, the aim of this chapter is to demonstrate the use of the
wavelet—based homogenisation method in comparison with its preceding classical
formulations. Effective material parameters of a periodic composite beam are
determined symbolically in MAPLE and next, the temporal and spatial variability
of thermal responses of homogenised systems are determined numerically and
compared with the real structure behaviour. It is assumed here that material
properties are temperature—independent, which should be extended next to the
thermal—dependent behaviour. As is verified by the computational experiments, all
homogenisation methods (classical and multiresolutional) give a satisfactory
approximation of real heat transfer phenomena in the multiscale heterogeneous
structure. The approach should be verified next for other types of composites as
well as various physical and structural problems in both a deterministic and
stochastic context. Separate studies should be carried out for the computer
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implementation of wavelet analysis in the Finite Element Method programs and
comparison with the multiscale algorithm.

Further, we demonstrate the application of the wavelet—based homogenisation
method in comparison with its preceding classical formulation. Effective material
parameters of the periodic composite beam are determined symbolically in
MAPLE and next, the structural responses of the linear elastic homogenised
systems are determined numerically and compared with the real structure
vibrations. The eigenproblems for various combinations of the effective parameters
are computed thanks to the specially adopted Finite Element Method computer
code to determine the most efficient homogenisation method for the periodic
multiscale composite. It is done for two—, three— and five—bay free supported
periodic composite beams having their applications in the aerospace industry as
well as in the modelling of bridge vibrations, for instance. As is verified by the
computational experiments, the homogenisation methods (classical and
multiresolutional) give a satisfactory approximation of the periodic composite
beam eigenfrequencies. The approach should be verified next for other types of
structures as well as for other structural problems in both deterministic and
probabilistic context.

Wavelet analysis is an especially promising tool in the domain of composite
materials. It enables: (1) constructing the multiscale heterogeneous structures using
particular wavelets which has to perfectly reflect the manufacturing process, for
instance, and (2) multidimensional decomposition of the spatial distribution of
composite materials and physical properties by the use of the wavelets of various
types defined in different scales (heat conductivity or Young modulus along the
heterogeneous specimen). The first opportunity corresponds to the analysis of
experimental results (image analysis of composite morphology), while the second
reflects the theoretical and computational analysis.

Let us notice that the wavelet analysis introduces new meaning for the term
composite. In the view of the analysis below we can distinguish homogeneous
materials from composites using the following definition: the composite material
and/or structure is such a heterogeneous continuum in which material or physical
properties are related in macro— and microscales by at least a single wavelet
transform. This definition extends traditional, rather engineering approach to
composites where laminated or fibre—reinforced structures were considered
(partially constant character of material characteristics) to those media with
sinusoidal variability in one direction of these properties at least (see Figures
7.2=7.7 below). Figure 7.2 shows the spatial variability of the Young modulus
using the following wavelet function [188]:

2 4
e(x):eo+sin(%)+0.lsin 7107 7107

+0.1sin , [=10.

The next figures present the contributions of various scales to the macroscale
elastic characteristic of the entire composite structure.
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Figure 7.2. Distribution of the Young modulus in the real composite
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Figure 7.3. Zeroth order wavelet approximation of Young modulus in zeroth scale
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Figure 7.4. First order wavelet approximation of Young modulus in zeroth scale
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Figure 7.5. Second order wavelet approximation of Young modulus in zeroth scale



322  Computational Mechanics of Composite Materials

;ANAA
1YY

Figure 7.6. Second order wavelet approximation of Young modulus in first scale
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Figure 7.7. Third order wavelet approximation of Young modulus in first scale

As is shown in the next figures (Figures 7.8 and 7.9), using some special
combinations of the basic wavelets (Haar, Mexican hat, Gabor, Morlet, Daubechies
and/or sinusoidal waves [323]), the spatial variability of Young modulus for the
two component composite with and without some interphase can be
computationally simulated using a theoretical description of the spatial distribution
of this modulus and the symbolic computation package MAPLE, for instance. For
illustration of the problem we consider the Representative Volume Element (RVE)
of a two—component composite with the following elastic characteristics:
€;=209E9 and e,=209ES8 with the RVE length /=1.0 and equal volume fractions of
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both components. The following wavelet function is proposed to achieve the
multiscale character of Young modulus spatial variability in the RVE without the
interface defects (Figure 7.8):

e(x) = h(x)+0.2x10" sin(5x 10 x )+ 0.2x10" sin(5x10* x)

for h(x) being the Haar wavelet function. It can be noticed that, thanks to the
multiscale character of the choosen functions, the picture of composite Young
modulus shows the randomness on its microscale. However the character of the
spatial variability of this modulus is still deterministic. Furthermore, we can
illustrate much more complicated and sometimes more realistic effects in
composites — the RVE can be almost damaged at the interface and, according to
ageing and fatigue processes, the spatial distribution of elastic properties can be far
from constant along the heterogeneity main axis. It is approximated by a
combination of Haar, some sinusoidal and the so—called Mexican hat wavelets as

e(x) = h(x) +0.2x10" sin(5x10' x)+ 0.2x10 sin(5x10* x )+ 0.6 x10"
~0.76597x10"" xexp(-8.00xx? Jx (16.05 x> ~1)

The algebraic structure of this wavelet is a little complicated: however (1) it
illustrates very well the capabilities of the wavelet—based approximation of
mechanical and physical properties of the real composites, (2) it can be used
together with structural image analysis tools for the relevant analyses of
composites and (3) it enables direct symbolic homogenisation of such media.

294011_MM/-——\/\M
1.8e+H0111
1.6e+H011
1.4e+011
1.2e+0114
1e+0114
Ge+010+
Be+110—1

40101
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I

Figure 7.8. Wavelet approximation of elastic properties of two—component
composite
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Figure 7.9. Wavelet approximation of the elastic properties of two—component composite
with interface defects

As far as this composite is unidirectional, some classical homogenisation
closed—form equations can be used to construct the equivalent medium using the
relevant differential equilibrium equations directly. In this case it does not matter
whether deterministic or probabilistic distribution of material coefficients are given
— the PDF symbolic integration can be carried out using a computer. Fortunately,
the structural sensitivity analysis may be performed with respect to the variabilities
of material properties in quite different scales of the composite; it can be carried
out analogously to the considerations presented in [167].

The situation complicates significantly in the case of planar distribution of
material tensors, where the cell problems are to be solved by wavelet
decomposition and construction to determine the effective behaviour of the entire
composite. However, it is mathematically proved in this chapter, that when the
structure is heterogeneous in many scales, the effective elastic modulus differs
from that obtained for the corresponding classical two—scale and two—component
composite beam.

Another disadvantage of the wavelet—based analysis of composite materials is
the assumption of a very arbitrary character that the physical model and the
accompanying equations of thermodynamical equilibrium have exactly the same
form in each scale of the considered medium which follows purely mathematical
nature of the wavelet transform. It eliminates the opportunity of the physical
transition from the particle scale through chemical interface reactions in various
composites to the global scale of the entire engineering structure. It reflects the
intuitive feeling that the transition between the corresponding medium scale must
strongly depend on the physical scale we are operating on.
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7.2 Multiscale Reduction and Homogenisation

Therefore, a multiresolutional homogenisation method is proposed for
numerical analysis together with various stochastic computational techniques,
which makes it possible to determine probabilistic characteristics of various
multiscale composites. Considering the fact that the multiresolutional method
makes it possible to determine the effective physical characteristics in a closed
form, the stochastic second order perturbation approach is applied to analyse the
multiscale randomness of the entire composite in the most general form.

Let us consider the following differential equilibrium equation to distinguish
the differences between a classical asymptotic approach and multiresolutional
scheme:

d d
—E[e(x)EM(X))= fx);  xel[0]] (7.1)

where e(x), defining material properties of the heterogeneous medium, varies
arbitrarily on many scales (macro, meso and micro, etc.). The unit interval denotes
here the Representative Volume Element (RVE), also called the periodicity cell.

The classical result obtained through the asymptotic homogenisation theory is
given by (2.71) for deterministic composites exhibiting two separate geometrical
scales linked by the scale parameter € — this is the weakest point of this approach.
Sometimes € is treated as a positive real number tending to O (practically an infinite
number of the RVEs in the composite) and, alternatively, some small positive
parameter. As it can be demonstrated, the essential differences are observed in
these two models. Now, this parameter is treated as some real functions introduced
as the wavelet function relating two or more separate geometrical scales of the
composite.

In contrast to the classical approach to the homogenisation problem, the
multiresolution approach uses the algebraic transformation between scales
provided by the multiresolution analysis to solve for the fine—scale behaviour and
explicitly eliminate it from the equation. This approach has the advantage that the
coefficients may vary on arbitrarily many scales. The chain of subspaces

cv,cvcV,cv,cV, c.. (7.2)

defines the hierarchy of scales that the multiresolution scheme uses. This chain of
subspaces is defined in such a way that the space V; is “finer” than the space V,,

in the sense that (1) all of V,,, is contained in V;, and (2) the component of V,
which is not in V,, consists of functions which resolve features on a scale finer
than any function in V,,, may resolve. The difference between successive spaces

in this chain is captured by the so—called wavelet space W;,,, defined to the
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orthogonal complement of V., in V,. An orthogonal basis for the wavelet space

W, is constructed which has vanishing moments, i.e. the basis elements are

[* —orthogonal to low—degree polynomials. The existence of orthogonal wavelet
bases with vanishing moments distinguishes the multiresolution approach from
typical multi—scale discretisations provided by finite—element or hierarchical
bases. If we are considering a multiresolution analysis defined on a bounded
domain, then the hierarchy of scales defined above has the coarsest scale (which is
called V;)), and we write instead

VoV, cV,c.. (7.3)

Let us review the multiresolution strategy for the reduction and homogenisation
of linear problems. Let us consider to this purpose a bounded linear operator

§;:V; =>V,.Since V; is spanned by translations of the function ¢(2jx—k), we
know that the operator §; may be written in the form of a matrix. If the

multiresolution analysis is defined on a bounded domain, then this matrix is finite;

otherwise it is an infinite matrix, which we consider as an operator on L’. Let us
consider the equation

Sx=f (7.4)

The decomposition V; =V, ®@W,,, allows us to split the operator §; into four

pieces (recall that W, is called the wavelet space and is the “detail” or fine—scale

component of V) and write

CSj TS/ Sx St .
where we have
As/- :Wj+1 _>Wj+]
BSj :Vj+] _>W/+I (76)
CS.,- :Wjﬂ - V_/+I
TSj :Vj+1 _>Vj+l

and dX,dyeW.

1s S8, €V, are the L’ —orthogonal projections of x and f onto

the W,,, and V,; spaces. The projection S| is thus the coarse—scale component of
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the solution x and d is its fine—scale component. Formally eliminating d, from

(7.5) by substituting d, = A;'(d, - By s.,) yields
(s, —C5 45"y )s, =5, —C5 A5'd, (7.7)

This equation is called a reduced equation, while the operator

Ry, =Ty, —Cy A; B (7.8)

JoRi

is a one step reduction of the operator §; also known as the Schur complement of
Sj st

the block matrix Cs,» Tsj

Note that the solution s, of the reduced equation is exactly P, x, where P,
is the projection onto V;,; and x is the solution of (7.4). Note that the reduced

equation is not the same as the averaged equation, which is given by

T, 5, =s, (7.9)

Once we have obtained the reduced equation, it may formally be reduced again
to produce an equation on V., and the solution of this equation is just the V,,

component of the solution for (7.4). Likewise, we may reduce these equations
recursively n times (assuming that, if the multiresolution analysis is on a bounded
domain, then j+n<0) to produce an equation on Views the solution of which is the

projection of the solution of (7.4)on V.

We note that in the finite—dimensional case, if we are considering a
multiresolution analysis defined on a domain in R, the reduced equation (7.5) has
half as many unknowns as the original equation (7.4). If the domain is in R?, then
the reduced equations have one—fourth as many unknowns as the original equation.
Reduction, therefore, preserves the coarse—scale behaviour of solutions while
reducing the number of unknowns.

In order to iterate the reduction step over many scales, we need to preserve the
form of the equation as a way of deriving a recurrence relation. In (7.4) and (7.5),
both §; and Rsf are matrices, and thus the procedure may be repeated. However,

identification of the matrix structure is usually not sufficient. In particular, even
though the matrix A for ODEs and PDEs is sparse, the component A;' term may
J

become dense, changing the equation from a local one to a global one. It is
important to know under what circumstances the local nature of the differential
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operator may be (approximately) preserved. Furthermore, if the equation is of the
form of

~V(e(x)Vu(x))= f(x) (7.10)

or some other variable—coefficient differential equation, we should verify if the
reduction procedure preserves this form, so that we may find effective coefficients
of the equation on the coarse scale. This process is the basic goal of
homogenisation techniques, and it extracts information from the reduced equation
based on the form of the original equation. Thus, within the multiresolution
approach, reduction and homogenisation are closely related but have different
goals: homogenisation attempts to find effective equations and their coefficients on
the coarse scale, whereas reduction merely finds a coarse—scale version of a given
system of equations.

The multiresolutional (MRA) homogenisation procedure is applied to the
systems of ODEs, which may be written in the form

Bx+q+A=K(Ax+p) (7.11)

In particular, we consider equations of the form
1
(I +B®OX(®)+q(t) + A = [(A(s)x(s) + p(s))ds , te (0,1) (7.12)
0

on L*(0,1), where B(f) and A(¢) are n x n matrix—valued functions, p(f) and ¢(¢) are

vector forcing terms, and x(#) is the solution vector. As a differential equation this
is written as

4
dt

(1 + B x() + q(1)) = A(t)x(t) + p(2) (7.13)

with the initial conditions (7 + B(0))x(0)=—-g(0)—A . On V;, j<0, the projection

of (7.11) is written as
Bx;+q,+A=K,(Ax, +p,) (7.14)
or
Six;=F; (7.15)

where
S;=B,-K,A;, f;=K,p,—q,— L, x;=Px; (7.16)
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After a single reduction, our goal is to have an equation on V,,; of the form

BUNK +alh+ A=K, (4020 + p) (7.17)

JHIY j+

where x'Y) =P,

m=Pax;, B = P, x;, etc. We use the notation Bl(j) to indicate that

Jjtt J
the equation is first projected to a scale V;, and then the reduction procedure is

applied /-j times to obtain an equation on V. This notation therefore indicates that
(7.17) was obtained by a single reduction of the same form of equation on V; one
time to produce an equation on the coarser scale V,, .

It allows one to establish a recurrence relation for k=j,j+1,...,0 between the
operators and forcing terms B” x\”, p\”,q\” on V,,, . It turns out that this task of

finding the recurrence relations is simplified significantly if one uses a
multiresolution analysis whose basis functions have non—overlapping support. We
use the Haar basis, but a multiwavelet basis may be used if higher order elements
are necessary.

In the Haar basis, the operators B ,A and K derived from equations of the
J J J

form of (7._14) have a simple form. Each of these is in an (Njn) x (Njn) matrix,
where N=2 is the number of unknowns on the scale V; and n denotes the number

of equations in the original system. Furthermore, B and A are both block-
J J

diagonal matrices. The diagonal blocks of B and A are n x n matrices. There are
J J

therefore N; diagonal blocks, each of which is an n x n matrix. For B and A we
J J

J

denote their ith diagonal blocks by (B, ) and (A J . The matrices are given by
)i i

the Haar coefficients of the n X n matrix—valued functions B(x) and A(x) on the
scale V. It can be written that

B, =diag(1+(8;) > (7.18)

and

Ay =diag{ (4;) = (7.19)

where
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110 0 0
I %I 0o .. 0

K,=8|1 1 LI (7.20)
I I 11

where 5j =27 Jisthenx n identity matrix, and (B. ) and (A. ) are the ith
)i I )i

Haar coefficients on scale V; of the n x n matrix—value functions B(x) as well as

A(x). For (7.17), the recursion relations are given by

(42) = (5,), - 0, >,.F{<DB ) +26, ),] a1

(B2 =(8,), - ( N ( D), ——(S,), )F"((D S4), ) (7.22)
(Pii)l ) = (Sp )i _%(DA ).F~ ((Dq ),- + (Sp )) (7.23)

@) =(s,), - % (b,) - %k (,),~.))F" (o, )-(s,) ) (7.24)

where

(SA )i = %((Alfj) )zi + (Ak(j) )2i+1 )’ (DA ), = %((A,f”) (Am )21+l ) (7.25)
(5,), =28 ), +BP),). (0,), =2(B), -(B),.) 726

(5,) =) +()). 0,)=56)-w"),) 72D

(Sq ), = f ((qzj) )21 + (ql(cj) )2i+1 )’ (Dq ), = % ((‘Ilij)) (ql(c]) )2:+1 ) (7.28)

and, finally,
7.29
F=I+(S3)i+67k(DA)- ( )

Note that the recurrence relations are local and can be carried out over many
scales as needed (assuming the existence of F~' at each scale). Starting with
(7.17) on V_; and, reducing j times, yields on V;

Béﬁxéj) +qé” +1=K, (Aé”xé” + p(()j)) (7.30)
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where to compute B, A\, p{”’,q{” we use the recurrence relations j times.

Multiresolutional homogenisation is formulated as follows. First, we consider
the limit of (7.30) as j — —eo , therefore

Byah 4 i + A= K,y (45 + i) (7.31)

It is employed to eliminate infinite number of fine scales from the original
equation. The matrices B{ ™, A{™ are called the reduced coefficients of (7.14).

Then, we look for the operators and forcing terms B (1), A" (1), p"(t),q" (t) with
certain desired qualities (e.g. constant values) such that the equation

(1 + Bh(t))x(t) +q"O+A=] (Ah(s)x(s) +ph (s))ds , 1€ (0) (7.32)
0

subjected to the same reduction and limit procedure as (7.12), yields on V, the

same equation as in (7.31). For (7.12) we usually require that B", A", p",q" be
constant. The result of homogenisation in this case is summarised as follows:

Theorem

Given (7.12), if the limits, which determine the matrices Bé’”) and Aé"”) exist,
then there exist constant matrices B", A" and forcing terms ph , qh , such that the
reduced coefficients and forcing terms of (7.32) are given by
BS™ AT g8, pi . The homogenised coefficients B", A" and forcing terms

p",q" are defined by

A= AT (7.33)
B"=A"A" -1 (7.34)
p'=py” (7.35)
oo -~ o~ ~ | -,
q" =q5 )+(1—%A—A(exp(A—IT Ah) p’J (7.36)
where
A= log(l +(r+B —LAM)! Ah) (7.37)
Proof

It is observed that for the constant coefficients the recurrence relations (7.21) and
(7.22) simplify to
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AL = A (7.38)

52 |
B/, =B+ TkAf (r+B) Al (7.39)

Likewise, the recurrence relations for the forcing terms simplify to

(7.40)
(7.41)

Koo ok
Piv1 = Pi

S, . .
i =qi’—7"A£ (+B!)" pt

Since the term A" is unchanged by reduction, it is clear that A" = Aé’“") . Similarly,
p" is unchanged by reduction, so p" =p{™ . The situation for B" and ¢" is
more complicated. We solve for them analytically using the solution of (7.32).
Consider the case p\™ =0. Clearly, then, it is the case that ¢" =g\ . The

solution of (7.32) is therefore given by

x(t) = —exp(gt)a (7.42)

where A = (I +B" )71 A", G= (I +B" )7I (qh + /1). The average of this solution must

also solve (7.31) since it is the equation for the average value of the solution by
definition. The average value of x(¢) in (7.32) on the interval [0,1] is given by

<x> = {— }[exp(gt)dt}}' = (I - exp(g))g_lci (7.43)
0
The solution to (7.31) is given by

X = _(] + B —%Aé""’) )1 (qé—oo +),) (7.44)

The right hand sides of (7.43) and (7.44) are demonstrated to be equal for all A;
setting A=0 and solving for B” yields the solution given in the statement of the
proposition. The case when p{ ™ #0 proceeds similarly.

Solutions of (7.32) have the same “average” or coarse—scale behaviour as
solutions of (7.12). The main point is that this homogenisation procedure allows
for coefficients to vary on arbitrarily many intermediate scales, which is in contrast
to the classical homogenisation examples, which did not allow for intermediate
scales.
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As formulated above, the multiresolution approach to homogenisation requires
the computation of A{™ and B, i.e. a limit over infinitely many scales. The

typical practice is to compute successive A"’ and B’ terms until finer
approximations vary by less than some specified tolerance, and use these matrices
as approximations to A" and B{™.

Besides establishing the general framework for multiresolution reduction and
homogenisation, it is observed that for systems of linear ordinary differential
equations, using the Haar basis (or a multiwavelet basis) provides a technical
advantage. Since the functions of the Haar basis on a fixed scale do not have
overlapping supports, the recurrence relations for the operators and forcing terms
in the equation may be written as local relations and solved explicitly. Thus, for
ODEs, an explicit local reduction and homogenisation procedure is possible.

Let us consider for illustration (7.1) with initial conditions at x=0. It may be
rewritten as the coupled first—order system

d
I v(x) =—f(x) (7.45)

d
Eu(x)—e(x) v(x)

By writing in an integral form one can obtain

u(x)) (w0 (0 e@)™ ) u@ 0
- = d 7.46
(v(x)) (v(O)) J[[o 0 J[v(t)H—f(t)]] t (740

Thus, in the notation of (7.11), B=0, Ay =|° | 2=["©) ana
0 0 v(0)

0
H=0 11 = .
g(H)=0 as well as p(1) [_mj

Using the reduction procedure in the Haar basis for a system of linear
differential equations, the goal is to find constants B", A", p",4" such that

(]+Bh)[14§x;]+ 4" A= T(Ah(u(t))wh o Jdt (7.47)

v(x 0 (1)

after reduction to the scale V, will be the same as (7.46) reduced to that scale. This

is accomplished by solving the recursion relations between the operators in the
reduced equations explicitly, element—by—element in each matrix. This is possible
to do because of the non—overlapping supports of the Haar basis functions on a
fixed scale. The result for the first two coefficients is
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B — 00 Al = 0 M, -2M,
“lo o “lo 0 (7.48)

where

1 1

L _l=
Ml _'(I;e(t) dt, M2 _b[ e(t) dt (749)

Similar expressions for p”" and ¢" can be found. Note that we have p" =¢" =0

if f(x)=0 identically. Furthermore, in general B”,A" donot depend on p and g. As

a first—order system of ordinary differential equations, the homogenised equation
yields

d _ h
o v(x)=f"(x)

7.50
iu(x) =(M, —2M,)v(x) (7.50)
dx

what is somewhat different from the classical result. This difference results from
the fact that the multiresolution homogenisation procedure allows the coefficients
e(x) to vary on arbitrarily many scales, whereas the classical approach presented
before allows only for coefficients of the form e(x/&). In the multiresolution
context this amounts to restricting the coefficients to an asymptotically fine scale.
Let us apply the same limit in the preceding section to the coefficients appearing in
the multiresolution approach. We start with the coefficients of the form e(x/ 8).
Applying this homogenisation scheme to the elliptic equation with these
coefficients yields two terms, M 1 (€) and M ) (€). If we take the limit as &€ — 0, it

is found that

1in3M1(£)=M, (7.51)
and

lir%Mz(S) =0 (7.52)

Thus, the factor M, is present in the multiresolution context but does not appear in
the classical approach, and it is zero when the limit found in the classical method is
applied to the result of the multiresolution methodology.
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Let us note that this formula of the homogenised parameter ¢/ introduces

new, closer bounds on the wavelet function defining material parameters than is
L L

done by classical formulation: integrals [-%- and _[ 2 must be of real values and
0 0

e(x) e(x)

e(x) must be positive defined to assure homogenisability of the problem. The
counter—example is the family of sinusoidal wavelets of the form

e(x)=e, +asin(%), where e,,o, Le R. Taking for example L=10, ¢,=20 and
L

0=0.1, MAPLE symbolic integration returns j%=—2.99242—19.07199i . The
0

classical small parameter homogenisation method should be applied in that case;
otherwise another wavelet decomposition of the real composite is to be performed.

7.3 Multiscale Homogenisation for the Wave
Propagation Equation

For illustration, let us consider the following ordinary differential equation
(ODE) corresponding to unidirectional acoustic wave propagation in a multiscale
medium with uniaxial distribution of nonhomogeneities [71,188]:

2 u(x) =ioM (xu(x); xe[0,l] (7.53)
dx
where physical coefficients M(x) for both composite layers are defined by
M _ M() s 0<x< %
=M, 1<as (7.54)

These equations are solved using the methods typical for a deterministic
problem and are derived for equal volume ratios of both layers. Otherwise, they
should be complemented with the ratios ¢; and c,. The corresponding homogenised
equation can be rewritten for the deterministic system as

iu()c) = K“Py(x) (7.55)
dx

It can be demonstrated [71] that the homogenised coefficient K" is equal to

K = 10g(1+(1 +B™ —%Aé’”) )*1 Aé"”’) (7.56)
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for
By =8, — 4D~ (D}~ 48 (0 + 457
and

A7 =S, ~D,F (D} +457)

The right hand side coefficients denote

si=1(a) + @), pi=1(a), -(a))
sp =) +B)). i =£() - ()
F=1+S,+1D]
where

(=) _ 1= a=J) (=) _ 1= a-=7)
A./ =lim A,‘ > B_/ =lim Bj

J—e0 J—eo

After some algebra it is found that
A A N 1
=) — (=)) - J i
(Al )j _Aj’ (Bl )j—T (CXP[ > J—IJ +§I —I, ]—1,2

where the following extension is used:

. 2 .3
=1+2m -2 M+ Mt 100" )
2 i 8 i 4 j

(7.57)

(7.58)

(7.59)
(7.60)
(7.61)

(7.62)

(7.63)

(7.64)

Taking into account that the coefficients B and A in (7.63) represent physical
properties of the composite components with the total number of various scales
tending to infinity, it is possible to determine an analogous definition of the
homogenised coefficient for a composite with some finite scale number.
Furthermore, using the stochastic second order perturbation second probabilistic
moment methodology, it is relatively easy to determine the first two probabilistic

moments of the homogenised coefficient defined by (7.63).
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Further, real and imaginary parts of K’ are computed according to
(7.56)—(7.58). The following data are adopted: My=10.0, M,=1.0 with ¢;=c,=0.5,
where the parameter w—0 (cf. Figures 7.10 and 7.11) and ®w—ec (see Figs. 7.12
and 7.13). As can be observed, the real and imaginary parts tend to O in both cases,
which finally gives K”—0, too. Further, such a combination of input parameters
results in a minimum of the K’ real part for w=1.15. On the other hand, the
singularity of Im(K'“”) is obtained with ©=0.75.

e N
0.1
0.2
0.3
0.4
0.5
0.5

07 , T
0 05

Figure 7.10. Real part of K near 0

3 S
2

1

0 05

-

Figure 7.11. Imaginary part of K’’’ near 0
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Figure 7.12. Real part of K7 in @ domain
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Figure 7.13. Imaginary part of K’ in ® domain

Next, the effective parameter in its real and imaginary part is determined as a
function of the ® value and the ratio relating material parameters of the composite
components My=2—-20. The results are presented in Figures 7.14 and 7.15 below.
As can be compared with Figures 7.12 and 7.13, the material parameter
interrelation influences significantly the effective parameters in the same range as
the ® values. Analogous limiting values in real and imaginary parts of the
homogenised parameter as well as imaginary part singularities are noticed as
second order functions of both design parameters of the study.
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Figure 7.14. Real part of K&

Figure 7.15. Imaginary part of K’

Probabilistic moments of real and imaginary surfaces are expected in the
probabilistic case. However a more important problem (from the physical point of
view) is to determine the relations for homogenised coefficients in terms of volume
fractions of the layers as well as to extend the homogenisation method to the
heterogeneous multiscale media with a more general periodic geometry of the
RVE. The entire methodology can be adopted with minor changes to
computational analysis of the wave propagation in random media [26], where
material properties are defined using a combination of harmonic functions with
random coefficients.
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7.4 Introduction to Multiresolutional FEM

Implementation

Let us consider the following boundary value problem for a homogeneous
medium:

-eVu+m=f, xeQ (7.65)
with
u=0, xel, cdQ (7.66)

The variational formulation of this problem for the multiscale medium for
k=1,...,n, indexing its various scales is obtained at the scale k as

[eVu, Vo, do+ [n,0,dQ= [ fo,dl", xeQ (7.67)
Q Q r

Solution of the problem must be found recursively by using some transformation
between neighbouring medium scales. That is why the following nonsingularn x n
wavelet transform matrix W, is introduced:

T, O
W, =T, 0 I, (7.68)
where I, is an identity matrix and
v, =Wo, (7.69)

T is a two—scale transform such that

0.
{ \kal } =T/, (7.70)

with

2j-1

l//k] =0 j=1""’Nk (7.71)
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where N, denotes the total number of the FEM nodal points at the scale k. Let us
illustrate the wavelet—based FEM idea using the example of a 1D linear two—node
finite element. The classical shape functions are defined as [78]

T _ Nl _ %(1_5)
N _{Nz}_{%(l*'f)} (7.72)

where N is valid for E=-1 and N, — for E=1. The scale effect is introduced on the
finite element level by inserting new extra degrees of freedom at each new scale.
Then, the scale 1 corresponds to one multiscale DOF per the original finite
element, scale 2 to two multiscale DOFs, etc., which may be characterised as [66]

v, &)=y, 2 a+&)-2j-1) (7.73)
and

27k 1< g <27 jr2 ™ o
(7.74)

222t _ 1< E <2 427 1]

where k defines the actual scale, while j characterises the translates in the finite
element parametric space. Thus, the reconstruction algorithm starts from the
original solution for the original mesh and next, introduction of the new scales is
made using the reconstruction

skl N Nu + Nagy 2+2H+jA 242814
u, =2 Nu,+ > v, L (7.75)
i=l i=1 ’

The wavelet algorithm for stiffness matrix reconstruction starts at scale 0 with
the stiffness matrix

e 1 -1
Ko=21_1 4 (7.76)

where h is the node spacing parameter. Then, the diagonal components of the
stiffness matrix for any k>0 are equal to

k+1
K2+2K’]+J _2"7e
h =

; (7.77)

It should be underlined that the FEM so modified reflects perfectly the needs of
computational modelling of multiscale media. When the homogenisation based
modelling is performed, then the effective stiffness matrix is introduced as
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(eff) _—
K" =

e(tzﬁ‘)

h

E

B

(7.78)

and in practice there is no need for a wavelet decomposition of this matrix. We
observe that the projection algorithm can be applied for such ne N that ensure a
sufficient mesh zoom on the smallest scale details in the composite microstructure.

The effectiveness of this approach can be illustrated with the following
projection on the wavelet space for the function f(#) = cos(277: t) where t e [0,1]

performed by use of the symbolic computation package MAPLE [70,182]. It is
done for n=2,...,7 and is presented correspondingly in Figures 7.16—7.21 below
with computational performance indices collected in Table 7.1 (valid for a
COMPAQ 475 MHz). As is observed, the increasing projection order decisively
increases the computational time of wavelet decomposition of a multiscale
phenomenon necessary for the FEM approach.

Table 7.1. Computational symbolic projection of cosine wavelets

Projection order | Finite elements Computational time Memory[MB]
‘n’ number [sec]
2 4 3.9 2.00
3 8 8.0 2.31
4 16 11.1 2.69
5 32 23.9 3.37
6 64 48.6 4.62
7 128 132.1 7.12
11
0.8
0.6
0.49
023
0]
0.2
-0.44
067
067
=11 . : . .
0 0z 0.4 t IS na

Figure 7.16. Wavelet projection for n=2
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Figure 7.17. Wavelet projection for n=3
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Figure 7.18. Wavelet projection for n=4
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Figure 7.19. Wavelet projection for n=5
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Figure 7.20. Wavelet projection for n=6
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Figure 7.21. Wavelet projection for n=7

Computational experiments are performed using the system MAPLE and the
additional implementation of the multiresolution homogenisation analysis. Basic
computations are carried out with respect to interrelations between physical
constants of both layers as well as the expansion order. Furthermore, deterministic
and stochastic sensitivities of complex effective parameters (real and imaginary
parts) are computed with respect to the first probabilistic moments of input
physical parameters of composite layers. Finally, let us observe that a homogenised
system, both in terms of deterministic or stochastic effective coefficients, can be
analysed numerically using a classical Finite Element Method (FEM), for instance,
or by application of various stochastic numerical methods (simulation,
perturbation-based or spectral). A homogenisation—based numerical approach will
considerably speed up the process of computational modelling of composites and,
in the case of very complicated multiscale heterogeneous media, it can be the only
available method.
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7.5 Free Vibrations Analysis

The main idea of homogenisation problem solution now is a separate
calculation of the effective elastic modulus and spatial averaging of the mass
density, where the first part only needs multiresolutional approach [189]. The
alternative wavelet—based methodology is presented in [328,329], for a plate wave
propagation in [152], whereas some classical unidirectional examples are contained
in [330]. Let us consider the following differential equilibrium equation:

d d
—E(e(x)l(x) E"(x))z M(x); xel01] (7.79)

where e(x), defining material properties of the heterogeneous medium, varies
arbitrarily on many scales together with the inertia momentum I(x). A
multiresolutional homogenisation starts now from the following decomposition of
the equilibrium equation:

i v(x) =—M(x)
dx

d
LS Ry

(eff)

to determine the homogenised coefficient ¢'“’’ constant over the interval xe [0,1],

which takes the integral form

0 X -1 -1 t 0
u(x) ) (u(0) -] 0 eI |(u®)], gt (7.81)
v(x) ) (v ) l{0 0 v(r) | \=M(@)
On the other hand, the reduction algorithm between multiple scales of the
() gl preff)

>

composue consists in determination of such effective tensors B

and q , such that

(I+B(eff))( Ex;) 4D 4= J’( (eff)[ugi}r p(eﬁ)Jdt (7.82)
v

V(X

It can be shown that

00 0 C -2C
B(Eff) (eﬁ‘) 1 2

where
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¢ dt L= L)

1 (J)(t)l(r) : ge(t)l(t) (7.84)

Furthermore, for f(x)=0 there holds p“/’ = ¢’ =0, while, in a general case,

B and A’ do not depend on p and g. Finally, the homogenised ODEs are
obtained as

d (eff)
—v(x)=f'¢
o x)=f

(7.85)

iu(x) (€, —2C,)v(x)
dx

which is essentially different to the classical result of the asymptotic
homogenisation shown previously. Effective mass density of a composite can be
derived by a spatial averaging method, which is completely independent from the
space configuration and periodicity conditions of a composite structure. The
relation is used for classical and wavelet—based homogenisation approaches as
well. Finally, the following variational equation is proposed to achieve the
dynamic equilibrium for the linear elastic system [208]:

jpu Ou,dQ + jcuk,e 0, dQ = jpfau dQ+ [1,6u,d(0Q) (7.86)

2,

where u, represents displacements of the system € with elastic properties and
mass density defined by the elasticity tensor Cy, (x) and the function p=p(x); the

vector 7, denotes the stress boundary conditions defined on 9Q, cdQ.

An analogous equation rewritten for the homogenised heterogeneous medium
has the following form:

J'p(eﬁ)u Su,dQ + jcj;{f>e e, dQ = jp<eﬁ)f Su,dQ+ [1,6u,d(0Q) (7.87)

Q4

where all material properties of the real system are replaced with the effective
parameters. Let us introduce a discrete representation of the function u, by the

following vector of the generalised coordinates for the needs of the Finite Element
Method implementation:

()= 0 ()0 [ 7 (x>} .88
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which gives us for the strain tensor components

£;(x)=~

) [(bia,j(x)"'q)ja,i(x)]‘Ia = Bija (x) 9o (7.89)

The matrix description for stiffness, mass, damping components as well as the
RHS vector is proposed as

Ko = ch‘jleijaBkl/}dQ ’ K,EZ” = ,[Cz;z'jly)szaBklﬁ dQ (7.90)
Q Q
Moy =] POufipd Q. Mig" = [ 060,40 (7.91)

Qa = _[pfz(Pt(de + J.?l¢:ad(ag)
Q Q, (7.92)

0 = [P 10+ [6,460)
o Qs

Usually, it is assumed that the damping matrix can be decomposed into the part
having the nature of body forces with the proportionality coefficient cy and the rest
composes the viscous stresses multiplied by the quantity ck, so that

— (eff) _— (eff) (eff)
Cop =CyMos +cx Koy, C =c M +c Ky (7.93)

After such a discretisation of all the state functions and structural parameters in
(7.86) and (7.87), the following matrix equation for real heterogeneous system is
obtained:

M o5y +Cogip + Kupdy =0, (7.94)

Therefore, the equivalent homogenised dynamic equilibrium equation to be
solved for the deterministic problem has the form

MG, +Cl s + K, = 0L (7.95)

where the barred unknowns represent the response of the homogenised system. The
RHS vector is equal to 0, so the homogenised operators are to be computed for the
LHS components only in the case of free vibrations. The eigenvalues and
eigenvectors for the undamped systems are determined from the following matrix
equations:

—_0N- (eff) _ = € \d  —
(Kaﬁ_ww)Maﬁ)(DﬁV =0; (Kag —w(a)Ma,f/ )(Dﬂy =0 (7.96)
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which are implemented and applied below to compare homogenised and real
composites.

Numerical analysis illustrating presented ideas is carried out in two separate
steps. First, homogenised characteristics of a periodic composite determined thanks
to different homogenisation models are obtained by the use of the MAPLE
symbolic computation. Then, the FEM analysis of the free vibration problems is
made for the simply supported two—, three— and five—bay periodic beams, made of
the original and homogenised composites, having applications in aerospace and
other engineering structures subjected to vibrations [189]. The periodicity is
observed in macroscale (equal length of each bay) as well as in microstructure —
each bay is obtained by reproduction of the identical RVE whose elastic modulus
is defined by some wavelet function.

The formulae presented above are implemented in the program MAPLE
together with the spatial averaging method in order to compare the homogenised
modulus computed by various ways (spatial averaging, classical and
multiresolutional) for the same composite. Figure 7.22 illustrates the variability of
this modulus along the RVE, where the function e(x) is subtracted from the
following Haar and Mexican hat wavelets:

20.0E9;0<x<0.5
h(x)=

2.0E90.5<x<1 (1.97)
1 x? —x?
m(x)=2+ ex ,06=-0.4
2ro’ 67 -1 p(Zcrz ) (7.98)
as
e(x)=10.0h( x )+2.0E9 m( x) (7.99)

Mass density of the composite is adopted as the wavelet of similar nature

o= {200; 0<x<05
20;0.5<x<1 (7.100)
with
p(x)=0.5h(x)+0.5m(x) (7.101)

which is displayed in Figure 7.23.
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Figure 7.22. Wavelet-based definition of elastic modulus in the RVE
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Figure 7.23. Wavelet-based definition of mass density in the RVE

The final form of these functions is established on the basis of the mathematical
conditions for homogenisability analysed before as well as to obtain the final
variability of composite properties similar to the traditional multi-component
structures. Let us note that classical definition of periodic composite material
properties contained the piecewise constant Haar basis only.

The following homogenised material properties are obtained from this input:

P =56.137,¢ " = 114548 E9> '™ =60.217 E9> '’ =35.437 E9,

which means that for this particular example, the highest value is obtained for the
spatial averaging method, then — for the wavelet approach at least — for classical
homogenisation method based on the small parameter assumption. The
effectiveness of such homogenisation results is verified in the next section by
comparison of the eigenvalues and the eigenfunctions of some periodic composite
beams being homogenised with its real material distribution.

The free vibration problems for two—, three— and five—bay periodic beams are
solved using the classical and homogenisation—based Finite Element Method
implementation [13,387]. The unitary inertia momentum is taken in all
computational cases, ten periodicity cells compose each bay, while material
properties inserted in the numerical model are calculated from (a) spatial
averaging, (b) the classical homogenisation method and (c) the multiresolutional
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scheme proposed above and compared against the real structure response. The
results of eigenproblem solutions are presented as the first 10 eigenvalue variations
for the beams in Figures 7.24, 7.26 and 7.28 together with the maximum
deflections of these beams in Figures 7.25, 7.27 and 7.29 — the resulting values are
marked on the vertical axes, while the number of the eigenvalue being computed is
on the horizontal axes. The particular solutions for 1%, 2™ 3 and lower next
eigenvalues are connected with the continuous lines to better illustrate
interrelations between the results obtained in various homogenisation approaches
related to the real composite model.
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Figure 7.24. Eigenvalues progress for various two—bay composite structures
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Figure 7.25. Maximum deflections for the eigenproblems of two—bay composite structures
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Figure 7.26. Eigenvalues progress for various three —bay composite structures
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Figure 7.27. Maximum deflections for the eigenproblems of three—bay composite structures
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Figure 7.28. Eigenvalues progress for various five—bay composite structures
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Figure 7.29. Maximum deflections for the eigenproblems of five—bay composite structures

As can be observed, the eigenvalues obtained for various homogenisation
models approximate the values computed for the real composite with different
accuracies, and the maximum deflections are the same. The weakest efficiency in
eigenvalue modelling is detected in the case of a spatially averaged composite —
the difference in relation to the real structure results increases together with the
eigenvalue number. Wavelet—based and classical homogenisation methods give
more accurate results — the first method is better for smaller numbers of bays (and
the RVEs along the beam) see Figure 7.24, whereas the classical homogenisation
approach is recommended in the case of increasing number of the bays and the
RVEs, cf. Figures 7.26 and 7.28. The justification of this observation comes from
the fact that the wavelet function appears to be of less importance for the



Multiresolutional Analysis 353

increasing number of periodicity cells in the structure. Another interesting result is
that the efficiency of the approximation of the maximum deflections for a multibay
periodic composite beam by the deflections encountered for homogenised systems
increases together with an increase of the total number of bays. The agreement
between the eigenvalues for the real and homogenised systems will allow usage of
the stochastic spectral finite element techniques [261], where the random process
expansions are based on the relevant eigenvalues.

Finally, let us note that further extensions of this model on vibration analysis of
fibre-reinforced composites [60] using 2D wavelets are possible. An application of
wavelet technique is justified by the fact that the spatial distribution of the
constituents in the composite specimen is recently a subject of digital image
analysis [341]. On the other hand, chaotic behaviour of real and homogenised
composites [199] may be studied in the above context.

7.6 Multiscale Heat Transfer Analysis

The idea of transient heat transfer homogenisation, i.e. calculation of the
effective material parameters, consists in separate spatial averaging of the
volumetric heat capacity and the solution (analytical or numerical) of the heat
conduction homogenisation problem [15,165,166,195]. As is illustrated below, the
final form of the effective heat conductivity coefficient varies with the composite
model, whereas a composite with piecewise constant properties and/or defined by
some wavelet functions can have the same homogenised volumetric heat capacity.
That is why first the heat conduction equation for a 1D periodic composite is
homogenised and the effective heat capacity and mass density are determined by a
spatial averaging approach. The multiresolutional homogenisation method starts
from the following decomposition of heat conduction equation [23,55] as follows:

p v(x) =-0(x)

d V() (7.102)
—T(x)=—-

d k(x)

The main goal is to determine the homogenised coefficient kX’ being constant over
the interval xe [0,1]. Therefore, the equation system (7.102) can be rewritten as

TG\ _(TO_¥(0 ko™ )(T®),( ©
- = d
(VWJ (V(O)) ({[(0 0 J(v(z)}(_g(;)ﬂ’ (7.103)
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On the other hand, the reduction algorithm between multiple scales of the
(eff ) (eff)

composite consists in the determination of such effective operators B , AT,
(eff ) (eff)
P , q , that
T x T(t
(1 8n)[" e g 2=l aen[ T s e |ar (7.104)
v(x) 0 V(1)
It can be shown that
00 0 k -2k
B = Al — 1 2 7.105
(0 0} 0 0 ( )
where
dr L —1)dr
k, _j j( ) (7.106)
k(t) o k@)

(eff ) _ (eff)
=9

Furthermore, for Q(x)=0 there holds p =0 (in a general case,

B“" and A"’ do not depend on p and ¢). Finally, the system of two
homogenised ordinary differential equations are obtained as

Ly =g

J dx (7.107)
—T(x) = (k; = 2k, Jo(x)
dx

which is essentially different than the classical result of the asymptotic
homogenisation shown previously. Let us observe that in the case of the heat

conductivity variability in two separate scales k = k(x,—) the multiresolutional
€

scheme reduces to the classical macro—micro methodology where the following
limits are demonstrated:

lirr(% k,(e)=k, and lirr(} k,(e)=0 (7.108)

Finally, the effective volumetric heat capacity of a composite is determined by
the spatial averaging method, which relation does not depend either on the space
configuration or on the periodicity conditions of a composite structure, and is used
for both classical and multiresolutional homogenisation approaches.
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Using traditional FEM discretisation of the temperature field and its gradients
by the nodal temperatures vector 68, [7,21,213,283]

T(y)=H,(y)6,; 0=1,...N (7.109)
T,(y)=H;,(y)6;: d=1...N (7.110)

the following transient problems are solved:
= averaged material properties

Cu6y + K0y =P, §B=12...N, (7.111)
= asymptotically homogenised material properties
CEo, + K& 05 =P, 8B=12...N, (7.112)
= for multiresolutionally homogenised material properties in the system
CEoy + Koy =P, 8,B=12,..,N . (7.113)

Numerical analysis illustrating the ideas presented is carried out in two separate
steps. First, homogenised characteristics of a periodic composite obtained through
different homogenisation models are determined by the use of MAPLE symbolic
computations. This numerical approach is used also to verify input parameter
variability of the homogenised characteristics as well as design sensitivities of
these characteristics with respect to the contrast parameter (interrelation between
the heat conductivities of the composite components) and the interface location
along the RVE length (g). Next, the FEM analysis of transient heat transfer is made
to discuss the differences between temperature and heat flux histories resulting
from various homogenisation models contrasted with the real system. An
alternative way to model multiscale transient heat transfer phenomena in
composites is to expand the classical FEM methodology using a wavelet based
both space and time adaptive numerical methods, as it was discussed in [17], for
instance; the other aspects of this problem have been studied in [40].

The formulae for effective heat conductivity are implemented in the program
MAPLE together with the spatial averaging method in order to compare the
homogenised modulus computed by various ways for the same composite. Figure
7.30 illustrates the variability of this modulus along the RVE, where the function
k(x) is subtracted from the following Haar basis and Mexican hat wavelet:

heo) k;0<x<05 114
X)=
ky,;05<x<1 (7.114)
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1 x’ —x*
m(x)=2+ ex , 0=-0.5 7.115
as
k(x)=h(x)+0.001m(x) (7.116)

Further, volumetric heat capacity of the composite is adopted as the wavelet of
a similar form

fz( ) pc;0<x<05 7117
x =
P,c,;05<x<1 (7.117)
with
p(x)e(x)=h(x)+10" m(x) (7.118)

which is demonstrated in Figure 7.31.
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Figure 7.30. Wavelet-based definition of heat conductivity coefficient in RVE
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Figure 7.31. Wavelet-based definition of the volumetric heat capacity in RVE

The final form of these functions is established on the basis of the mathematical
conditions for homogenisability analysed before as well as to obtain the final
variability of composite properties similar to the traditional multi-component
structures. Let us note that the classical definition of periodic composite material
properties contained the piecewise constant Haar basis only.

Symbolic computations of the MAPLE system were used next to perform the
comparison between the spatial averaging, classical and multiresolutional
homogenisation scheme for various values of the composite constituents contrast
and the interface position g. The results of the analysis are demonstrated in Figures
7.32, 7.33 and 7.34, respectively. However it could be expected, the results of
spatial averaging are globally the greatest for the entire variability ranges of the
design parameters, while the interrelation between the classical and wavelet-based
methods differ on the input parameter values.

The separate, very interesting numerical problem would be to determine the
intersection of the surfaces plotted in Figures 7.33 and 7.34. It canbe interpreted as
the curve equivalent to such pairs of the contrast and interface location in the RVE
for which both multiresolutional and classical homogenisation methods can result
in the same effective quantity. Let us note that the problem is independent from
physical interpretation of homogenised characteristics).
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Figure 7.33. Parameter variability of

Figure 7.34. Parameter variability of k"
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Figure 7.35. Sensitivity of £ wrt contrast parameter

Figure 7.36. Sensitivity of £ wrt the interface location

Figure 7.37. Sensitivity of k" coefficient wrt components contrast
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Figure 7.38. Sensitivity of £ wrt interface location
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Figure 7.39. Parameter sensitivity of X" wrt contrast parameter

Figure 7.40. Parameter sensitivity of k¥ wrt interface location
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Partial derivatives of the averaged, asymptotically and multiresolutionally
homogenised heat conductivity are normalised using the factor #/k where h denotes
the contrast or the parameter g, while k= {k™, K’” K}, The results of symbolic
computations are presented in Figures 7.35—7.40 and it is clear that the spatial
averaging method results in the composite with an extremely different parameter
sensitivity in comparison to the other homogenisation models (both quantitatively
and qualitatively). Sensitivity gradients for asymptotic and multiresolutional
homogenisations have very analogous surfaces — the only differences are observed
for higher values of the design parameters. The numerical results obtained can be
effectively used in the optimisation of composite materials according to the
methodology based on the homogenisation approach. Moreover, they can be
applied to the homogenisation of random composites where first and second order
parameter sensitivities are necessary to determine the first two probabilistic
moments of the effective parameter in the second order perturbation approach at
least.

The transient heat transfer phenomenon in a two-layer unidirectional
composite structure has been modelled using the commercial Finite Element
Method program ANSYS [2]. The division of the periodicity cell with unit length
L=1.0 m into two components with equal lengths and 1000 of 4-noded
isoparametric heat transfer finite elements PLANESS (500 elements for each
material) is schematically shown in Figure 7.41. Constant temperature 7=0 is
applied at the left boundary and the unit heat flux Q at the right edge, whereas
initial temperatures along the composite are taken as equal to 0. Material properties
used in numerical analysis are calculated for (a) real composite structure — test no
1, (b) spatially averaged composite — test no 2, (c) classical homogenisation
method — test no 3, and (d) multiresolutional homogenisation scheme proposed
now — test no 4. Input material data for particular computational tests are collected
in Table 7.2 below.

Table 7.2. Material data for the FEM analysis

Computational test number |k [W/m°C] c [J/kg°C]

1 0.031/0.0385 4000 / 29000
2 0.0349 16465.20

3 0.0345 16465.20

4 0.0328 16465.20

Figure 7.41. Finite Element mesh for the composite structure

The results for the steady—state analysis are shown in Figures 7.42—7.45 in the
form of a spatial temperature distribution and the analogous heat flux distribution
along the composite; their error approximations are computed and visualised also.
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Considering the nonstationary character of the transient heat transfer, the
temperature distributions for various moments of the heating process are collected
in Figures 7.46—7.53. Analysing the temperatures fields along the composite
structure it can be observed that the best agreement with the structural behaviour is
obtained for the test related to the multiresolutionally homogenised composite. The
classical homogenisation method gives more accurate results in the neighbourhood
of the heated surface only. In the case of temperature gradients it can be concluded
that the wavelet—based homogenisation approach gives the highest averages
temperature gradient and greater than the classical method and spatial averaging,
respectively. It is important considering reliability analysis based on the
homogenisation methods; this gradient is however a few percent smaller than the
maximum gradient for the real composite.

Figure 7.42. Spatial distribution of temperatures in composite

Figure 7.43. Temperature gradients along the composite
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Figure 7.44. Solution error distribution along the composite

Figure 7.45. Temperature gradient error along the composite
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Figure 7.46. Temperature distribution for r=2x10 E4 sec

Figure 7.47. Temperature distribution for r=4x10 E4 sec
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Figure 7.48. Temperature distribution for r=5x10 E4 sec

Figure 7.49. Temperature distribution for 7= 8x10 E4 sec
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Figure 7.50. Temperature distribution for 7= 4x10 E5 sec

Figure 7.51. Temperature distribution for r=6x10 E5 sec
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Figure 7.52. Temperature distribution for =8x10 ES5 sec

Figure 7.53. Temperature distribution for r=1x10 E6 sec

The temperature solution error related to the real composite behaviour
numerical tests is best approximated by the error computed for the structure
homogenised by the wavelet—based methodology also — it shows analogous spatial
distribution and maximum values, although spatial distribution is analogous in all
cases as well. In further analysis the results obtained should be contrasted with the
implementation of the wavelet decomposition of initial material properties in the
Finite Element Method program.

Finally, transient behaviour of the composite is analysed numerically and
presented for various time moments of the heating process in Figures 7.46—7.53.
The real composite is heated at the boundary relevant to the material with higher
volumetric heat capacity and the contrast between heat capacities is very high. That
is why the heating process in the real composite is very slow — significantly slower
than takes place in all homogenised models (Figure 7.53 corresponds to almost a



368 Computational Mechanics of Composite Materials

steady state for comparison). The opposite relation can be noticed in the case of
inverted materials in the analysed laminate. Neglecting temperature scale
differences between the real and effective models, the best approximation for the
original structure behaviour is done by the spatially averaged system.

7.7 Stochastic Perturbation—based Approach to

the Wavelet Decomposition

Let us consider a multiresolutional wavelet—based algorithm and its application
in the solution of the linear algebraic equations system [334] being a basis for
various discrete numerical techniques [206]. There holds

Kq=f (7.119)

where the matrix K is positive definite and represents the behaviour of some linear
engineering system, g is a discretised vector of the engineering system response
resulting from the excitation expressed by a vector f. Further, let us assume for the
needs of the algorithm applicability, that matrix K is of the size 2"x2" and let us
introduce the Haar transform for the vector q in the following way:

1 _ (7.120)
S(k> — q(2k 1) +q(2k)
7 )
| ) (7.121)
d(/s> - q(2k 1) _q(Zk)
at )

with k=1,...,2"". Let us observe that s® are introduced to scale averages of the
vector q values in the neighbouring points while d* is to scale their differences.
Let us introduce the matrix M, such that

1 1 0 O
0O 0 1 0 O
M=M —L 1 -1 0 O (7.122

having dimensions 2"x2" and such that
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MM =M MT =1 (7.123)

1

whose top half is denoted by L,, while the bottom one is H,. Then, the
orthogonality gives

M!M,=H'H, +LL =1 (7.124)
and
H'H =1,LL =1 (7.125)
where
Lq=s, Hq=d (7.126)

Let us rewrite (7.119) in the form of a pair of equations with unknown s and d
as follows:

LKq = (LKL |Lq+ (LKH’ )Hq = Lf (7.127)
Similarly, there holds
HKq = (HKL )Lq+ ([HKH" )Hq = Hf (7.128)

Denoting further by

LKL =T,LKH" =C (7.129)
and
HKL' =BHKH' = A (7.130)
as well as
Lf=f Hf =f, (7.131)

we obtain (7.131) as

Ts+Cd=f,
(7.132)

Bs+Ad=f,
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Assuming that A is invertible, the unknown d can be eliminated from (7.132) to
get a reduced system of equations, and finally to calculate s. Therefore

d=-A"Bs+A'f, (7.133)
and, by substitution of (7.133) into (7.132) it is obtained that
(T-CA™'B)s=f, +CA™'f, (7.134)
The procedure of transformation of (7.133) is called a reduction step — the total

number of unknowns is reduced here two times. Let us introduce the following
recursions:

K =Kf =f
{ i 0 (7.135)

K=T-CA'Bf=Lf +CA'Hf
1 0 0 0 0 1 0 0 0 00
Since that, we obtain

Ks =f (7.136)

11 1
which is similar to the starting equations where the unknown is given as s;=Lq.

The process shown above can be repeated up to n times according to the following
recursion:

K =T -CA'B
J J J J

i+ j (7.137)
f =Lf +CA'Hf
J+l JJ JoJ JJ
where
T=LKL
J J J ;‘
B =HKL (7.138)
C =LK H’
J J J J

A =HKH'
J J J J

It is seen that considering the dimensions of the initial stiffness matrix in the
form of 2n x 2n, then repeating the reduction scheme n times, the resulting
equation has the single scalar unknown where the general unknown reconstruction
scheme is given by the formula:
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I
Q- _ L () L g
a ‘ﬁ(s +a®) (7.139)
i
@2k _ _ & () _ gk
q ‘ﬁ(s a®) (7.140)

An analogous situation takes place when K is a stochastic linear operator
describing the behaviour of some engineering system, f is a random external
excitation, while q represents the random response of the system. Then, using
second order perturbation theory, (7.119) can be expanded as follows:

K% = f°

K()q,r — f,r _K,rqO

K’q? = (" —2K"q* ~K"q°)Covlp”,0") (7.141)

where the first two probabilistic moments of the response are calculated as
Elq]=q" +1q” Covlp’.b) (7.142)
and
Covlq’.q")=q"q" Covlp”.b") (7.143)
Applying analogous assumptions as previously, i.e.
0(K')=0(K")=0(K")=2"; ne N (7.144)
we decompose mth order displacement vectors g™ as

(m) (m) )

1
(m) _ _~
Sy = \/E(qZk—l+q2k (7.145)

am =E(q‘2’,1’11 —qé’Z)) (7.146)

Since the fact, that the matrix M, consists of the real numbers only, it is defined in
exactly the same way. Then, the decomposition of ¢ into the vectors s™ and d”
is introduced as

Lg" =s" (7.147)

and
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Hq(m) Zd(m) (7148)

Therefore, full multiresolutional decomposition of up to second order
equilibrium equations is carried out as

LK™q™ = (LK(’”)LT)Lq('") + (LK("”HT)Hq(”” —Lfm (7.149)
and
HK"q" =KL )Lq"™ + ([HK"H' |Hq™ = Hf " (7.150)
Denoting further by
LK™L" =T™ LK™H" =C™ (7.151)
and
HK"L" =B"™ HK"H" =A™ (7.152)
there holds
LE™ = HF™ =" (7.153)

Finally, the reduction equations are obtained as follows:
. zeroth order equations:

{T“s“ +Cd° =£°

7.154
BOSO +A()d() :fa(’) ( )
. first order equations:
T's" +T’" +C’d" +C’d" =f
B's’ +B's” +A’d’ +A'd" =f; (7:153)
. second order equations:
T”s" +2T"s* +T’s” +C"d’ +2C"d"* +C°d" =f;"
B”s” +2B"s" +B’s™ + A"d" +2A7d" + A’d" ={," (7.156)
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Since that, we derive the reduction equations for the mth order of a vector d
[182]. The process is much more complicated than in the deterministic case. The
three up to the second order equation systems are obtained as follows:

. zeroth order equations:

d° = (o)’ (-BOs® +£9) (7.157)
e first order equations:
d’ = {(A" ) B0 +£0)+ (A1) B0 - BOs” 47 )} (7.158)
e second order equations:

d(z) _ {(A—l),rs (_ BOSO +fL(i) )+ Z(A_l)’r(— BOSO +f§)vs

(7.159)
(A7) s~ BT 41y )} Covlp”,b")
Then, the reduced equation has the following form:
. zeroth order
(TO—CO(A_I)OBOJSO :fO—CO(A_1>Of3 (7.160)
. first order
(el m el w -l )
(7.161)

+(T0 _C° (A—l)()BO )S,r
—t—c (A7)t -0 (a) 0 — (a1 ) ey

° second order
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(T’”— (a7 fBY - (A" )"SBO—CO(A—I)OBJS—2C"'(A—1)’SB°)S°
( 2c0(a™) B"‘—2C”(A‘1)OB"’JSO+(T°—CO(A‘1)OBO)S’”

+ 2(T” —c(a7)’B —c*(a™) "B (a7 ) B )s

=t —cr (A1) 0 - cO(a ) "0 -0 (a) gy

- 2(0" a) e +c(a ) ey +cr (o)t )

(7.162)

Since that, the first recursive step for mth order stochastic equations is obtained as

K™ = K(m),f(m) —f(m
{ 0 0 - (7.163)

m m - (m) m m)ge(m —
K{" =Tg )_<C0AolBo) £ =L )+(C0A leo)

. . ( .
As a result, the triple up to the second order equations for s " are rewritten as
1

follows:
K%’ =f° (7.164)
11 1
K's' +K's" =f” (7.165)
K"s’ +2K’s" +Ks" =f" (7.166)
where sl —Lq ", Repeating this process up to n times, which is possible

cons1der1ng initial dimensions of the matrix K, it is obtained for mth order

K™ =1 -(cA;'B,)"

£ =L"™f +L f<m>+(CA 'H f)

j+l n—jj n-=j4J

(7.167)

with

(m) _ (m)y T

Tj _Ln_jKj Ln_j

(m) _ (m)y T

Bj _anjKj Ln,j

c™ =L, K™H! (7.168)
(m) _ (m)y T

A™ =H, K{™H,_
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while the reconstruction scheme for the mth order solution vector is given by the
following formula:

m 1 m m

Q5 =E(S(k C+d”) (7.169)
m l m m

q;; =E(S(k —d) (7.170)

Let us consider for illustration the following transformation of the random
variables:

Y=X"coswt (7.171)

where X € (Q G,P), pe Z and w,te R. Therefore, the first two probabilistic

moments of Y can be calculated as

19°Y
ElY|=Y"+—
] +2ax2

Var(X) (7.172)
v Y
Var(Y)=| — | Var(X
) (BX J (X) (7.173)
according to the presented second order perturbation technique. It is obtained by

the classical differentiation calculus that

3—; =pX"" cosmt

(7.174)

and

2

oY ~
aXz:p(p—l)szCOS(Dl (7.175)

The following iterative formula can be proposed for the nth perturbation approach:

'Y [& (1
an=|:g(P—l)]Xp””coswt (7.176)

Therefore, the expected values are determined

Elr]= EP[X]COSW‘*'%P(P—l)Xp_2 cosotVar( X ) (7.177)
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and variances as
Var(Y )= (pX "' J cos® onVar( X ) (7.178)

in the second order perturbation approach. The visualisation of all wavelet
functions and their approximations are presented below using the symbolic
computation package MAPLE [182]. The following function is used

1 ..
f@)= l(—)cos(Zm), te [0]1] where l[(®) belongs to the additional random space
w
with the expected value E[/]=10 and the variance equal to Var(/)=4; p=—1. The
wavelet projection are shown for n=3,...,6 in case of the expected values — in
Figures 7.54—7.57 and the wavelet approximations for the variance for n=4,5,6 are
shown in Figures 7.58-7.60.
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Figure 7.54. Wavelet projection of expected values for n=3
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Figure 7.55. Wavelet projection of expected values for n=4
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Figure 7.56. Wavelet projection of expected values for n=>5
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Figure 7.57. Wavelet projection of expected values for n=6
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Figure 7.58. Wavelet projection of variances for n=4
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Figure 7.59. Wavelet projection of variances for n=5
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Figure 7.62. Wavelet projection of variances for n=6

The expected values and their wavelet projections are greater than the
corresponding deterministic values of f(rf) computed for Var(/)=0. Since the
expectations and their deterministic origins are very similar, the convergence of
analysed projections is quite the same — for n=6 the approximation error on the
interval [0,1] in practice can be neglected. The situation changes in the case of
variances where projection of the 6™ order is not quite smooth; for n=2 cannot be
accepted at all because of the constant function resulting from the wavelet
projection.

As is documented in Table 7.3, the total computational cost by means of the
consumed time and memory necessary to obtain wavelet projection increases
nonlinearly together with this projection order. Taking into account that the time of
the linear equation system solution shows the same tendency, the very exact
solution of (7.120) with 7™ and even higher order wavelet projection needs more
powerful computers. The last column of the computer test shows that the
approximation of variances needs essentially more time and memory than the
analogous projection of zeroth order moments (deterministic values) and the
expectations (first moments). It should be documented by the relevant numerical
tests, if the computational symbolic projection cost increases together with the
order of the probabilistic moment being projected onto the same wavelet family.
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Table 7.3. Computational cost of wavelet projection (for COMPAQ 475 MHz)

Projection q total f(t) E[f(t)] Var[f(t)]
order dimension secs/MB

2 4 7.4/1.94 8.4/1.94 8.9/2.06
3 8 10.1/2.19 10.9/2.19 11.0/2.31
4 16 14.1/2.62 14.9/2.62 17.3/2.69
5 32 20.7/3.25 25.7/3.31 31.8/3.44
6 64 53.0/4.56 53.7/4.56 70.5/4.94
7 128 131.0/7.06 130.7/7.06 185.4/7.75
8 256 395.3/12.2 360.8/12.2 593.2/13.50

7.8 Concluding Remarks

As was demonstrated above, the wavelet—based multiresolutional
computational techniques can be very efficient, considering the capability of
heterogeneity analysis on extremely different geometrical scales in the same time.
Such phenomena appear frequently in engineering composites — at the interface
between the components, on microscale connected with the periodicity cell, for a
window on mesoscale for a couple of reinforcing fibres or particles as well as for
the macroscale connected with the global composite structure. As can be observed,
the wavelet-based numerical methods (especially the Finite Element Method) can
be successfully used even for the heterogeneous media with random or stochastic
microstructure thanks to implementation of a randomisation method (simple
algebra, PDF integration, Monte Carlo simulation, stochastic perturbation or even
spectral analyses).

The homogenisation method discussed in this chapter enables us to apply an
alternative approach, where the effective material parameters (or its probabilistic
moments) are determined first and then the entire composite is analysed using
traditional computational techniques. Wavelet-based multiresolutional approach to
the homogenisation problem should, however, be formulated to introduce the
components characteristics on many scales into the final effective structural
parameters. As was demonstrated in the mathematical considerations, homogenised
properties in multiscale analysis and classical macro—micro passage are essentially
different, even in a deterministic formulation, which was observed previously in
three scale Monte Carlo simulation based homogenisation studies for the
fibre—reinforced composites [191,197].

Finally, let us note that due to the character of the homogenised 1D elastostatic
problem, computational studies on effective coefficient probabilistic behaviour can
be applied without any further modifications in the heat conduction problem of a
composite with exactly the same multiscale internal structure as well as for any
linear field problem with random coefficients defined by their first two
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probabilistic moments. The real and imaginary parts of the effective coefficient for
the wave equation can be used in acoustic wave propagation in random media. It is
observed that for wave propagation, homogenised coefficients strongly depend on
the same range on angular velocity and the interrelation of material properties of
the layered medium components.

The most important result of the homogenisation—based Finite Element
modelling of the periodic composite beams is that replacing the real composite
behaviour is very well approximated by the homogenised model response. For a
smaller number of bays in the periodic structure, wavelet—based homogenisation
gives more accurate results, while the classical approach is more efficient for the
increasing number of bays. Maximum deflections of the analysed beams are
approximated by all the models with the same precision, which increases for
increasing number of bays in the whole structure.

The wavelet—based multiresolutional homogenisation method introduces new
opportunities to calculate effective parameters for the composites with material
properties given in various scales by some wavelet functions. This method is more
attractive from the mathematical point of view. However it is characterised by new,
closer bounds on the homogenisability of composite structures, but it eliminates all
formal problems resulting from the assumption of small parameter existence
between macro— and microscales. Now, practically any number of various scales
can be considered in composite materials and structures, which is important in all
these cases, where material properties are obtained through signal detection and its
analysis. Finally, obtaining satisfactory agreement between the real and
homogenised structures enables the application of this method to the forced
vibrations of deterministic systems as well as the use of dynamical systems with
stochastic parameters.

The second order perturbation wavelet projection gives complicated formulae
for approximation of the original functions or matrices, which enables fast
wavelet—based discretisation of random variables and/or fields. It is necessary to
recall the algebraic restrictions on the first two probabilistic moments of the input
to achieve the coefficient of variation to be essentially smaller than 0.15.

However it is documented by the above numerical examples that the wavelet
projection of the expected value and its deterministic origin have almost the same
character — the same order of approximation is necessary to achieve the same
convergence and error level. Wavelet projection of variance (and higher order
probabilistic characteristics) needs greater precision, especially for smaller values
of the projection order n. Let us note that analogous projection for random
functions or operators defined in two— or three—dimensional spaces can be done by
the use of Daubechies wavelets in a similar manner to that presented here.

Symbolic computations package MAPLE [61,70] (as well as other numerical
tools of this class) is very efficient in wavelet projections of various discrete and/or
continuous functions because the efficiency of the projection (and its averaged
error) can be recognised graphically in specially adopted plots. Otherwise, a
special purpose numerical error routine should be implemented and applied.
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The most important result of the homogenisation—based Finite Element
modelling of the periodic composite beams is that the real composite behaviour is
very well approximated by the homogenised model response. The multiresolutional
homogenisation technique giving a more accurate approximation of the real
structure behaviour is decisively more complicated in numerical implementation
because of the necessity of applying the combined symbolic—-FEM approach. A
wavelet—based space—time decomposition should be applied in computational
modelling of the transient heat transfer problems in heterogeneous media.

Furthermore, mathematical and numerical studies should be conducted to
increase nonstationary heat transfer modelling in unidirectional composites by the
application of the homogenisation method. In the case of small contrast between
heat capacities of the constituents, the method proposed was verified as effective;
the situation changes when the value of contrast parameter increases dramatically.
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8.1 Procedure of MCCEFF Input File Preparation

The instructions described below deal with the preparing of input data file to the
MCCEFF analysis in the case there is no need to use the mesh generator.

1. Heading line (12a4) general information
2. General information about the problem homogenised (6i5)

Column Variable Description

1-5 NUMNP Total number of nodal point in the structure discretised

6-10 NELTYP Total number of finite element groups (=1)

11-15 LL Total number of load cases (=3)

36-40 KEQB Total number of non-zero degrees of freedom in the main
matrix

66-70 MK Total number of random trials

71-75 NBN Total number of nodal points of the interfaces

General comments:

A. NELTYP variable is provided due to the original POLSAP code to extend in the
next version the MCCEFF code with the analysis of the engineering structures
homogenised (e.g. fibre-reinforced plates and shells). However due to its constant
value it may have been omitted.

B. LL variable is provided taking into account that in the next versions of the
program the rest of the effective tensor components will be computed (in the 3D
homogenisation problem). There are three different components of the elasticity
tensor homogenised for the plane strain problems being solved by the program.

C. KEQB parameter should be modified (default value is equal to 0) if the program
MCCEFF in the process of main stiffness matrix formation or solution of the
fundamental algebraic equations system stops running. The value of the parameter
is to be taken from the interval [0,NEQB], where NEQB is the total number of the
degrees of freedom of the composite cell. The probability of the successful
computations increases with decreasing KEQB parameter.
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3. Nodal points data (7i5,4d10.0,3i2)
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Column Variable Description

2-5 N Nodal point number

7-10 IX(N,1)

11-15 IX(N,2)

16-20 IX(N,3) Displacement boundary conditions codes
21-25 IX(N,4) =0, free degree of freedom
26-30 IX(N,5) =1, fixed degree of freedom
31-35 IX(N,6)

36-45 X(N) X coordinate

46-55 Y(N) Y coordinate

56-65 Z(N) Z coordinate

66-70 K(N) Nodal point generation code
71-72 M1 Number of the internal region
73-74 M2 Number of the external region
75-77 M3 The interface end code (=1)

General comments:

A. Nodal point numbering has to be continuous and to start from number 1, which
should denote the centre of the fibre (considering stress boundary conditions
computations).

B. Interface nodal points numbering has to be provided in the anticlockwise sytem
and the distances between any two points must be equal.

C. The structure being discretised should be placed in the YZ plane; the X
coordinate will be used in the next version for the analysis of the 3D composite
problems.

D. The regions of the different materials should have increasing number starting
from the central component (fibre in two-component composites) and continuous
to the external boundary of the cell.

E. In the case of half or quarter of the periodicity cell analysis the M3 parameter
should be used to underline the ends of the interface being cutted.

4. General finite elements data (3i5)

Column Variable Description

1-5 =3 Plane strain code

6-10 NUMEL Total number of finite elements

11-15 NUMMAT | Total number of composite components
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5. Material data
5.1. General data (2i5,2d10.0)

Column Description

1-5 Material number

6-10 Total number of different temperatures
11-20 Gravity loading

21-30 Mass density

General comment:

The total number of the materials used should be greater than 10.

5.2. Detailed data two lines for any different temperature (8d10.0/3d10.0)

Column Description

1-10 Temperature

11-20 Elasticity modulus E,

21-30 Elasticity modulus E;

31-40 Elasticity modulus E,

41-50 Poisson coefficient v,

51-60 Poisson coefficient v,

61-70 Poisson coefficient v,

71-80 Shear modulus G

1-10 Coefficient of thermal expansion a,,
11-20 Coefficient of thermal expansion «;
21-30 Coefficient of thermal expansion a;,
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6. Probabilistic parameters (2d10.0/2i5,4d10.0)

Column Description

1-10 Variance of Young modulus
11-20 Variance of Poisson ratio
1-5 Averaged material type:

=1, material without defects
=2, material with interface defects

=3, material with volume defects

6-10 Structural defects type:

=1, circle

=2, triangle

=3, rectangle

=4, hexagon
11-20 Expected value of the geometrical parameter
21-30 Variance of the geometrical parameter
31-40 Expected value of defects total number
41-50 Variance of defects total number

7. Finite elements description (7i5)

Column Description

1-5 Finite element number

6-10 I node number

11-15 J node number

16-20 K node number

21-25 L node number

26-30 Material number

56-60 Finite elements generation code:

=0 (default) - the lack of generation

=1, generation

8.2 Input Data for ABAQUS Reinforced Concrete
Plate Analysis

Example input data file for the ABAQUS [1] analysis of the steel reinforced
concrete plate analysed in the book. The comment lines are indicated by “**’ to
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enable the user to gain a better understanding of model computed. The lines
indicated by “*’ or without any indication are program execution lines.

*heading

corner supported shell

**all material and geometrical parameters are defined in US units
*node

1,0.,0.

7,18.,0.

61,0.,18.

67,18.,18.

** node numbers, their coordinates

*ngen,nset=y-sym

1,7

** node generation on the ‘y-sym’ boundary with numbers from 1 to 7
*ngen,nset=x-sym

1,61,10

** node generation on the ‘x-sym’ boundary with numbers from 1 to 61 with
increment equal to 10

*ngen,nset=1x2

61,67

** node generation on the ‘1x2” boundary with numbers from 61 to 67
*ngen,nset=ly2

7,67,10

** nodes generation on the ‘ly2’ boundary with numbers from 7 to 67 with
increment equal to 10

*nset,nset=one

1,

**definition of the nodes set called ‘one’

*nfill

x-sym,ly2,6,1

**generation (‘filling’) of the nodes contained in the internal of the rectangular
given by parallel boundaries ‘y-sym’, ‘x-sym’, ‘1x2’ and ‘ly2’
*element,type=s8r,elset=slab

**element type and element set definition

1,1,3,23,21,2,13,22,11

**master element definition: corner and midpoint nodes in anti-clockwise order
*elgen,elset=slab

**element generation for the element set ‘slab’
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1,3,2,1,3,20,3
**master element number, number of elements to be defined in the first
**row generated including the master element, increment in node numbers

**of corresponding nodes from element to element in row (default is 1),
**increment in element numbers in row (default is 1), numbers of rows to

**be defined (default is 1), increment in node numbers of corresponding

**nodes from row to row, increment in element numbers of corresponding
**elements from row to row, numbers of layers to be defined (defined is

*%*1), increment in node numbers of corresponding nodes from layer to
**]layer, increment in element numbers of corresponding elements from
**]layer to layer

*shell section,elset=slab,material=al

1.75,9

**shell thickness, total number of the integration points through its thickness
*material,name=al

**concrete material parameters definition

*elastic

4.15e6,.15

**Young modulus, Poisson ratio

*concrete

3000.,0.

5500.,.0015

**absolute value of compressive stress, absolute value of plastic strain (the
**first stress-strain point must be at zero plastic strain and defines the
**initial yield point)

*failure ratios

1.16, .0836

**ratio of the ultimate biaxial compressive stress to the uniaxial
**compressive ultimate stress (default is 1.16), absolute value of the ratio
**of uniaxial tensile stress at failure to the uniaxial compressive stress at
**failure (default is 0.09), the ratio of the magnitude of a principal
**component of plastic strain at ultimate stress in biaxial compression to
**the plastic strain at ultimate stress in uniaxial compression, the ratio of
**the tensile principal stress value at cracking, in plane stress, when the
**other non-zero principal stress component is at the ultimate compressive
**stress value, to the tensile cracking stress under uniaxial tension.
*tension stiffening

**definition of retained tensile stress normal to a crack is a function of the
**deformation in the direction of the normal to the crack
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1.,0.

0.,2.e-3

**fraction of remaining stress to stress at cracking, absolute value of the
**direct strain minus the direct strain at cracking

*rebar,element=shell, material=slabmt,geometry=isoparametric,name=yy

**definition of the rebars, reinforced element type, material name, rebar
**geometry type (isoparametric or skew), name of the rebars group

slab,.014875,1.,-.435,4
**definition of rebars geometry, cross-sectional area of each rebar, spacing

**of the rebars in the plane of the shell, position of the rebars in the shell
**direction, edge number to which rebar are similar [4]

*rebar,element=shell,material=slabmt,geometry=isoparametric,name=xx
slab,.014875,1.,-.435,1

*material,name=slabmt

*elastic

29.e6

**Young modulus, Poisson ratio is default

*plastic

50.e3

**Yield stress value

*boundary

**displacement boundary condition definition

y-sym,ysymm

X-Sym,Xsymm

**symmetry conditions on x-sym, y-sym boundaries

67,3

*restart,write,frequency=999

**option RESTART controls the writing to and reading of the restart file,
**which is used by the postprocessor; the option will create a restart
**file after each increment at which the increment number is exactly
**divisible by N, and at the end of each step of the analysis, regardless of
**the value of N at that time

*step,inc=30

**option STEP must begin each step definition, parameter INC is equal to
**the maximum number of increments in a step (upper bound, the default
**yalue is 10)

*gtatic,riks

**this option indicates that the step should be analysed as a static load
**step; the Riks method is chosen by the RIKS parameter
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.05,1.,,,,1,3,-1.

**initial time increment, time period of the step, minimum time increment
**allowed, maximum increment allowed, maximum value of the load
**proportionality factor for the Riks method, node number at which the

**value is being monitored, degree of freedom being monitored, value of

**the total displacement (or rotation) at the node and degree of freedom

**which, if crossed during an increment, ends the step at that increment

*cload

**concentrated loading definition

1,3,-5000.

**node number, number of the corresponding degree of freedom, loading
**magnitude in the orientation given by the user by ordering nodes into

**shell elements

*el print,frequency=10

**option provided tabular printed output of element variables; parameter
**FREQUENCY is equal to the output frequency measured in the
**increments performed (if this option is omitted, very large printed output
**files will be produced by large models in multiple increment analysis!)
s

**all stress components

sinv

**all stress invariants (MISES,TRESC,PRESS-equivalent pressure stress,
**[NV3-third stress invariant)

e

**all strain components

pe

*%* all plastic strain component

crack

**crack orientations in concrete

*el file,frequency=10

s

sinv

e

pe

crack

*node file,nset=one

**this option allows nodal variables to be written to the ABAQUS results
**file (no nodal variables will be written to the results file unless this
**option is used!)
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u
*end step

**FURTHER COMMENTS

**it is possible to provide SHEAR RETENTION parameter to describe the
**reduction of the shear modulus as a function of the tensile strain across the
**crack; if this parameter is omitted (should be placed after TENSION
**STIFFENING lines), it is assumed that the shear retention behaviour depends
**only on temperature. EXPANSION parameter may be used to introduce thermal
**yolume change effects in the concrete. The NLGEOM parameter may be
**included in the STEP option when the large strains and rotations associated with
**failure of concrete are observed.

8.3 MAPLE Script for Computations of the

Homogenised Heat Conductivity Coefficients

Mexican hat - Haar basis plot of the input heat conductivity

> restart; sig:=-.5; k1:=0.1; k2:=0.4;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));
> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);

> k:=khaar+0.005*kmexh;

> plot(k,x=0..1,title='k");

Mexican hat - Haar basis heat conductivity contrast variability

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));
> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);

> k:=khaar+0.005*kmexh;

> plot3d(k,x=0..1,contrast=5..100,title='k');

Spatial averaging of the Mexican hat - Haar type heat conducitivity
> restart; sig:=-.5; k1:=0.1; k2:=0.4;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sig"2-1));
> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);

> k:=khaar+0.005*kmexh;

> plot(k,x=0..1,title='k");

> kav:=evalf(int(k,x=0..1));

Classical homogenisation of the Mexican hat - Haar basis type heat
conductivity

> restart; sig:=-.5; k1:=0.1; k2:=0.4;
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> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sig"2)))* (x"2/sig"2-1));
> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);

> k:=khaar+0.005*kmexh;

> kk:=1/k: kkk:=int(kk,x=0..1): khom:=evalf(1/kkk);

Wavelet homogenisation of the Mexican hat - Haar basis type heat
conductivity

> restart; sig:=-.5; k1:=0.1; k2:=0.4;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sig"2)))* (x"2/sig"2-1));
> khaar:=piecewise(x<=0.5,k1,x>=0.5,k2);

> k:=khaar+0.005*kmexh;

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*K);

> kkk1:=evalf(int(kk,x=0..1)); kkk2:=evalf(int(kkk,x=0..1));
kkk3:=evalf(int(kkkk,x=0..1));

> khomwav:=evalf(1/(kkk1-2*kkk2+2*kkk3));

Parametric variability of the spatial average of the Mexican hat - Haar type
heat conductivity with respect to the contrast and volumetric ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sig"2-1));
> khaar:=piecewise(x<=g,k1,x>=g,k2);

> k:=khaar+0.005*kmexh;

> kav:=evalf(int(k,x=0..1));

> plot3d(kav,contrast=5..100,g=0.1..0.9,title='kav");

Parametric sensitivity of the Mexican hat - Haar basis effective heat
conductivity with respect to the contrast and volumetric ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));

> khaar:=piecewise(x<=g,k1,x>=g,k2);

> k:=khaar+0.005*kmexh;

> kav:=evalf(int(k,x=0..1));

> dkavdcontrast:=diff(kav,contrast)*contrast/kav;

> plot3d(dkavdcontrast,contrast=5..100,g=0.1..0.9,title='"dkavdcontrast');
> dkavdg:=diff(kav,g)*g/kav;

> plot3d(dkavdg,contrast=5..100,9=0.1..0.9,title='dkavdg');

Parametric variability of the classically homogenised the Mexican hat - Haar
basis heat conductivity with respect to the contrast and volumetric ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sigN3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));
> khaar:=piecewise(x<g,k1,x>g,k2);

> k:=khaar+0.005*kmexh;
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> kk:=1/k: kkk:=int(kk,x=0..1): khom:=eval(1/kkk);
> plot3d(khom,contrast=5..100,9=0.1..0.9,title='khom");

Parametric sensitivity of the Mexican hat - Haar basis effective heat
conductivity with respect to the contrast and volumetric ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sig"2)))* (x"2/sigN2-1));

> khaar:=piecewise(x<g,k1,x>g,k2);

> k:=khaar+0.005*kmexh;

> kk:=1/k: kkk:=int(kk,x=0..1): khom:=eval(1/kkk);

> dkhomdcontrast:=diff(khom,contrast)*contrast/khom;

> plot3d(dkhomdcontrast,contrast=5..100,g=0.1..0.9, title="dkhomdcontrast');
> dkhomdg:=diff(khom,g)*g/khom;

> plot3d(dkhomdg,contrast=5..100,9=0.1..0.9,title='dkhomdg");

Parametric variability of the multiresolutional homogenisation of the Mexican
hat - Haar basis heat conductivity with respect to the contrast and volumetric
ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));
> khaar:=piecewise(x<=g,k1,x>=g,k2);

> k:=khaar+0.005*kmexh;

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*k);

> kkk1:=eval(int(kk,x=0..1)); kkk2:=eval(int(kkk,x=0..1));
kkk3:=eval(int(kkkk,x=0..1));

> khomwav:=eval(1/(kkk1-2*kkk2+2*kkk3));

> plot3d(khomwav,contrast=5..100,g=0.1..0.9,title='khomwav');

Parametric sensitivity of the Mexican hat - Haar basis homogenised heat
conductivity with respect to the contrast and volumetric ratio

> restart; sig:=-.5; k1:=contrast*k2; k2:=0.05;

> kmexh:=2+1/(sqrt(2*Pi)*sig"3)*((exp(-x"2/(2*sigN2)))* (x"2/sigN2-1));
> khaar:=piecewise(x<=g,k1,x>=g,k2);

> k:=khaar+0.005*kmexh;

> kk:=1/k; kkk:=x/k; kkkk:=1/(2*k);

> kkk1:=eval(int(kk,x=0..1)); kkk2:=eval(int(kkk,x=0..1));
kkk3:=eval(int(kkkk,x=0..1));

> khomwav:=eval(1/(kkk1-2*kkk2+2*kkk3));

> dkhomwavdcontrast:=diff(khomwav,contrast)*contrast/khomwav;

> plot3d(dkhomwavdcontrast,contrast=5..100,g=0.1..0.9,title="dkhomwavdcontrast;
> dkhomwavdg:=diff(khomwav,g)*g/khomwav;

> plot3d(dkhomwavdg,contrast=5..100,g=0.1..0.9,title="dkhomwavdg');
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Index

acceleration 25
average stress criterion 254
augmented Lagrangian method
244,268
Box-Muller method 14
Bussinesq problem 301
Central Limit Theorem 12
coefficient of asymmetry 18
coefficient of concentration 18
coefficient of correlation 18
coefficient of variation 18,315
combinations 2
compliance tensor 164
composite pipe joint 255
concentration matrix 171
consistent estimator 15
contact stress 302
contact surface 301
contact surface finite element 242
covariance matrix 315
crack orientation angle 235

critical stress intensity factor 254
cumulative distribution function 5

damage function 224,228
damping matrix 23,347
delamination 238
design variables vector 189
displacement 25

displacement, expected values 26
displacement, cross-covariances 26
Dundur mismatch parameter 241
effective elasticity tensor
86,87,90,97,131-
133,149,156,171
effective elasticity tensor, covariances
34,115,116,140,143
effective elasticity tensor, expected
values
34,87,90,115,116,139,149,156
effective elasticity tensor, coefficient
of variation 87,90,145,156
effective elasticity tensor, Mori-
Tanaka method 88

effective elasticity tensor, self-
consistent approach 88
effective elasticity tensor, sensitivity
gradients 201,206,212,361
effective elasticity tensor, effective
modules method 94
effective elasticity tensor, upper and
lower bounds 132,133,146,155

effective heat conductivity 354
effective heat conductivity, Cylinder
Assemblage Model 191
effective heat conductivity, Spherical
Inclusion Model 191
effective mass density 74
effective stress tensor 267
effective yield stress, expected values
181
effective yield stress, variances 181
effective yield surface 172
effective Young modulus
72,73,75,345
effective Young modulus, covariance
matrix 74
effective Young modulus, expectation
74
effective Young modulus, sensitivity
gradients 195
eigenpair 28
eigenstrain 166
eigenstress 166
eigenvalue 26,347
eigenvector 26,347
eigenvector, first and second order
derivatives 28
elasticity tensor 164,237
energy release rate 241,265
Eshelby formula 147
estimator, 2™ order probabilistic
moment 17
estimator, 4™ order probabilistic
moment 17
estimator, 6™ order probabilistic
moment 17
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estimator, central kth order

probabilistic moment 17
estimator, covariance 18
estimator, ordinary kth order
probabilistic moment 17
estimator bias 17
even function 9
expected value 5
expected value, cut-off Gaussian
variable 13
expected value, estimator
16,315

expected value, independent random
events 6
expected values, temperature 22
external excitation 25
fatigue crack growth analysis

225,287,291
fatigue cycles analysis 286
fatigue damage function 292

fibre-reinforced composite
49,54,60,88,98,103,118,144,191,

211,219
finite difference 190
First Order Reliability Method 296
first order variation 20
free vibration 345
Gamma function 297
Gaussian, cut-off distribution
function 13
Gaussian, cut-off probability density
function 13

Gaussian, characteristic function 7
Gaussian, distribution function 7

Gaussian, integral 11
Gaussian, probability density function
7
heat capacity matrix 19
heat conductivity matrix 20
hierarchy of scales 325
homogenisation 70,94,155,158

homogenisation function
96,100,101,115,137,138,146

homogenisation theorem 96
Hooke law 71
interface 55
interface curvature 238

interface defects
36,37,38,63,101,118,219
interphase
37,49,50,64,65,67,94,103,114
interphase, elastic parameters
39,40,41,42,43

Kolosov constant 241
laminate 63
Lax-Millgram theorem 161
limit state function 296
limit state function, Hill-Chamis law
299
limit state function, Hoffmann, Tsai-
Wu law 299
limit state function, elastoplastic law
298
limit state function, expected values
296
limit state function, maximum strain
law 298
limit state function, maximum stress
law 298

limit state function, skewness 296
limit state function, variance 296

linear congruential generator 14
local problem 96,97
mass density 236
mass matrix 23,347

Monte Carlo simulation
14,116,145,146,148
modified Paris-Erdogan rule 265

most effective estimator 16
most effective estimator,
asymptotically 16

multiresolution homogenisation
329,332,347,354

multiresolution reduction 328
multiscale discretisation 341
multiscale heat transfer 353
multiscale shape functions 341
multiscale stiffness matrix 341
Newton-Raphson iteration technique
244
nth order perturbation 24
odd function 9
oscillatory stress singularity 240

Palmgren-Miner rule 229



Paris-Erdogan rule 230
particle-reinforced composite
191,300
periodicity 33
permutations 1

perturbation parameter 20,71,97,191
Piola-Kirchhoff tensor, first 168
Piola-Kirchhoff tensor, second 168

probability 34
probability distribution 5
probability space 4

Probabilistic Averaging Method 39

probabilistic envelope 229,308
probabilistic measure 4
probabilistic sensitivity gradients
219
random elasticity tensor 33
random event 2
random events, alternative 3
random events, conjunction 3
random events, independent 4
reconstruction scheme 371,375
reduced equation 327
reduction step 370,374
reliability analysis 296
reliability index 297
Representative Volume Element
31,70,95
Schur complement 327

second order perturbation method
20,34,74,134,231,233,280,375
Second Order Reliability Method

296

sensitivity analysis 185
sensitivity analysis, Adjoint Variable
Method 185,190
sensitivity analysis, Direct
Differentiation Method

185,189,209
sensitivity analysis, Domain
Parametrisation Approach 185
sensitivity analysis, Material
Derivative Approach 185
shape functions 168
shear static strength 254
skewness 303

spatial averaging method 38

Index 417

spatial cross-covariance, temperature

23
standard deviation 6,315
standard deviation estimator 16
standardised variable 8
steel-reinforced concrete plate 155
stiffness matrix 23,347
stiffness reduction models 225,287
stochastic convergence 15,127
stochastic convergence, coefficient of
variation 129
stochastic convergence, expected
values 128
stochastic convergence, probability
density function 130
stochastic convergence 127

stochastic degradation process 314
stochastic degradation process, upper
and lower bounds 316
Stochastic Finite Element Method
3,36,69,77,79,89,117,134,145,
155,158,226,228,235,285,296,

314
stochastic process 226
stochastic Taylor expansion 20
stress intensity factor 241
structural microdefects 235
structural response functional
188,207
structural safety 317
superconducting coil 66,131,148
target surface finite element 242
temperature 19
thermal strain tensor 164
thermal stress tensor 164
Transformation Field Analysis 170
transformation matrix 171
transient heat transfer 19
truncated Gaussian variables 32
Tsai-Hill failure criterion 279
Tsai-Wu failure criterion 279
unbiased estimator 15,315
unidirectional composite 70,84,191
variations 1
variance 6
variance, cut-off Gaussian variable
13
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variance estimator 16,315
variance estimator, most effective 16
variational formulation
96,100,101,102,135,136,137,160,
168,340,346
velocity 25
viscosity compliance tensor 172
volumetric stochastic defects
36,37,38
wavelet function, cosinusoidal 342
wavelet function, Daubechies 322
wavelet function, Gabor 322
wavelet function, Haar 322,348
wavelet function, Mexican hat

322,348
wavelet function, Morlet 322
wavelet signal transform, continuous
317

wavelet signal transform, discrete
317
wavelet space 326
wavelet transform matrix 340
wave propagation equation 335
Weibull distribution 297,303

Weibull Second Order Third Moment
Method 296



