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Preface

This is a book for people who love mechanics of composite materials and
MATLAB∗. We will use the popular computer package MATLAB as a matrix
calculator for doing the numerical calculations needed in mechanics of com-
posite materials. In particular, the steps of the mechanical calculations will
be emphasized in this book. The reader will not find ready-made MATLAB
programs for use as black boxes. Instead step-by-step solutions of composite
material mechanics problems are examined in detail using MATLAB. All the
problems in the book assume linear elastic behavior in structural mechanics.
The emphasis is not on mass computations or programming, but rather on
learning the composite material mechanics computations and understanding
of the underlying concepts.

The basic aspects of the mechanics of fiber-reinforced composite materials
are covered in this book. This includes lamina analysis in both the local and
global coordinate systems, laminate analysis, and failure theories of a lamina.
In the last two chapters of the book, we present a glimpse into two espe-
cially advanced topics in this subject, namely, homogenization of composite
materials, and damage mechanics of composite materials. The authors have
deliberately left out the two topics of laminated plates and stability of com-
posites as they feel these two topics are a little bit advanced for the scope of
this book. In addition, each of these topics deserves a separate volume for its
study and there are some books dedicated to these two topics. Each chapter
starts with a summary of the basic equations. This is followed by the MAT-
LAB functions which are specific to the chapter. Then, a number of examples
is solved demonstrating both the theory and numerical computations. The
examples are of two types: the first type is theoretical and involves deriva-
tions and proofs of various equations, while the other type is MATLAB-based
and involves using MATLAB in the calculations. A total of 44 special MAT-
LAB functions for composite material mechanics are provided as M-files on
the accompanying CD-ROM to be used in the examples and solution of the
∗ MATLAB is a registered trademark of the MathWorks, Inc.
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problems. These MATLAB functions are specifically written by the authors
to be used with this book. These functions have been tested successfully with
MATLAB versions 6.0 and 6.2. They should work with other later or previous
versions. Each chapter also ends with a number of problems to be used as
practice for students.

The book is written primarily for students studying mechanics of compos-
ite materials for the first time. The book is self-contained and can be used as
a textbook for an introductory course on mechanics of composite materials.
Since the computations of composite materials usually involve matrices and
matrix manipulations, it is only natural that students use a matrix-based soft-
ware package like MATLAB to do the calculations. In fact the word MATLAB
stands for MATrix LABoratory.

The main features of this book are listed as follows:

1. The book is divided into twelve chapters that are well defined and cor-
related. Each chapter is written in a way to be consistent with the other
chapters.

2. The book includes a short tutorial on using MATLAB in Chap. 1.
3. The CD-ROM that accompanies the book includes 44 MATLAB func-

tions (M-files) that are specifically written by the authors to be used with
this book. These functions comprise what may be called the MATLAB
Composite Material Mechanics Toolbox. It is used mainly for problems in
structural mechanics. The provided MATLAB functions are designed to be
simple and easy to use.

4. The book stresses the interactive use of MATLAB. The MATLAB examples
are solved in an interactive manner in the form of interactive sessions with
MATLAB. No ready-made subroutines are provided to be used as black
boxes. These latter ones are available in other books and on the internet.

5. Some of the examples show in detail the derivations and proofs of various
basic equations in the study of the mechanics of composite materials. The
derivations of the remaining equations are left to some of the problems.

6. Solutions to most of the problems are included in a special section at the
end of the book. These solutions are detailed especially for the first six
chapters.

The authors wish to thank the editors at Springer-Verlag (especially
Dr. Thomas Ditzinger) for their cooperation and assistance during the writ-
ing of this book. Special thanks are also given to our family members without
their support and encouragement this book would not have been possible.
The second author would also like to acknowledge the financial support of the
Center for Computation and Technology headed by Edward Seidel at Louisiana
State University.

Louisiana State University George Z. Voyiadjis
February 2005 Peter I. Kattan
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1

Introduction

This short introductory chapter is divided into two parts. In the first part
there is an overview of the mechanics of fiber-reinforced composite materials.
The second part includes a short tutorial on MATLAB.

1.1 Mechanics of Composite Materials

There are many excellent textbooks available on mechanics of fiber-reinforced
composite materials like those in [1–12]. Therefore this book will not present
any theoretical formulations or derivations of mechanics of composite mate-
rials. Only the main equations are summarized for each chapter followed by
examples. In addition only problems from linear elastic structural mechanics
are used throughout the book.

The main subject of this book is the mechanics of fiber-reinforced com-
posite materials. These materials are usually composed of brittle fibers and a
ductile matrix. The geometry is in the form of a laminate which consists of
several parallel layers where each layer is called a lamina. The advantage of
this construction is that it gives the material more strength and less weight.

The mechanics of composite materials deals mainly with the analysis of
stresses and strains in the laminate. This is usually performed by analyzing the
stresses and strains in each lamina first. The results for all the laminas are then
integrated over the length of the laminate to obtain the overall quantities. In
this book, Chaps. 2–6 deal mainly with the analysis of stress and strain in one
single lamina. This is performed in the local lamina coordinate system and also
in the global laminate coordinate system. Laminate analysis is then discussed
in Chaps. 7–9. The analysis of a lamina and a laminate in these first nine
chapters are supplemented by numerous MATLAB examples demonstrating
the theory in great detail. Each MATLAB example is conducted in the form
of an interactive MATLAB session using the supplied MATLAB functions.
Each chapter of the first nine chapters has a set of special MATLAB functions
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written specifically for each chapter. There are MATLAB functions for lamina
analysis and for laminate analysis.

In Chap. 10, we illustrate the basic concepts of the major four failure theo-
ries of a single lamina. We do not illustrate the failure of a complete laminate
because this mainly depends on which lamina fails first and so on. Finally,
Chaps. 11 and 12 provide an introduction to the advanced topics of homog-
enization and damage mechanics in composite materials, respectively. These
two topics are very important and are currently under extensive research ef-
forts worldwide.

The analyses discussed in this book are limited to linear elastic composite
materials. The reader who is interested in advanced topics like elasto-plastic
composites, temperature effects, creep effects, viscoplasticity, composite plates
and shells, dynamics and vibration of composites, etc. may refer to the widely
available literature on these topics.

1.2 MATLAB Functions for Mechanics
of Composite Materials

The CD-ROM accompanying this book includes 44 MATLAB functions (M-
files) specifically written by the authors to be used for the analysis of fiber-
reinforced composite materials with this book. They comprise what may be
called the MATLAB Composite Materials Mechanics Toolbox. The following
is a listing of all the functions available on the CD-ROM. The reader can refer
to each chapter for specific usage details.

OrthotropicCompliance(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13)
OrthotropicStiffness(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13)
TransverselyIsotropicCompliance(E1, E2, NU12, NU23, G12)
TransverselyIsotropicStiffness(E1, E2, NU12, NU23, G12)
IsotropicCompliance(E, NU)
IsotropicStiffness(E, NU)

E1 (Vf, E1f, Em)
NU12 (Vf, NU12f, NUm)
E2 (Vf, E2f, Em, Eta, NU12f, NU21f, NUm, E1f, p)
G12 (Vf, G12f, Gm, EtaPrime, p)
Alpha1 (Vf, E1f, Em, Alpha1f, Alpham)
Alpha2 (Vf, Alpha2f, Alpham, E1, E1f, Em, NU1f, NUm, Alpha1f, p)
E2Modified(Vf, E2f, Em, Eta, NU12f, NU21f, NUm, E1f, p)

ReducedCompliance(E1, E2, NU12, G12)
ReducedStiffness(E1, E2, NU12, G12)
ReducedIsotropicCompliance(E, NU)
ReducedIsotropicStiffness(E, NU)
ReducedStiffness2 (E1, E2, NU12, G12)
ReducedIsotropicStiffness2 (E, NU)
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T (theta)
Tinv(theta)
Sbar(S, theta)
Qbar(Q, theta)
Tinv2 (theta)
Sbar2 (S, T)
Qbar2 (Q, T)

Ex (E1, E2, NU12, G12, theta)
NUxy(E1, E2, NU12, G12, theta)
Ey(E1, E2, NU21, G12, theta)
NUyx (E1, E2, NU21, G12, theta)
Gxy(E1, E2, NU12, G12, theta)
Etaxyx (Sbar)
Etaxyy(Sbar)
Etaxxy(Sbar)
Etayxy(Sbar)

Strains(eps xo, eps yo, gam xyo, kap xo, kap yo, kap xyo, z)

Amatrix (A, Qbar, z1, z2)
Bmatrix (B, Qbar, z1, z2)
Dmatrix (D, Qbar, z1, z2)

Ebarx (A, H)
Ebary(A, H)
NUbarxy(A, H)
NUbaryx (A, H)
Gbarxy(A, H)

1.3 MATLAB Tutorial

In this section a very short MATLAB tutorial is provided. For more details
consult the excellent books listed in [13–21] or the numerous freely available
tutorials on the internet – see [22–29]. This tutorial is not comprehensive but
describes the basic MATLAB commands that are used in this book.

In this tutorial it is assumed that you have started MATLAB on your
system successfully and you are ready to type the commands at the MATLAB
prompt (which is denoted by double arrows “�”). Entering scalars and simple
operations is easy as is shown in the examples below:

>> 2 * 3 + 7

ans =

13
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>> sin(45*pi/180)

ans =

0.7071

>> x = 6

x =

6

>> 5/sqrt(2 - x)

ans =

0 - 2.5000i

Notice that the last result is a complex number. To suppress the output
in MATLAB use a semicolon to end the command line as in the following
examples. If the semicolon is not used then the output will be shown by
MATLAB:

>> y = 35;

>> z = 7;

>> x = 3 * y + 4 * z;

>> w = 2 * y - 5 * z

w =

35

MATLAB is case-sensitive, i.e. variables with lowercase letters are different
than variables with uppercase letters. Consider the following examples using
the variables x and X.

>> x = 1

x =

1

>> X = 2

X =

2

>> x
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x =

1

>> X

X =

2

Use the help command to obtain help on any particular MATLAB com-
mand. The following example demonstrates the use of help to obtain help on
the det command.

>> help det

DET Determinant.

DET(X) is the determinant of the square matrix X.

Use COND instead of DET to test for matrix singularity.

See also COND.

Overloaded methods

help sym/det.m

The following examples show how to enter matrices and perform some
simple matrix operations:

>> x = [1 4 7 ; 3 5 6 ; 1 3 8]

x =

1 4 7

3 5 6

1 3 8

>> y = [1 ; 3 ; 0 ]

y =

1

3

0

>> w = x * y
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w =

13

18

10

Let us now solve the following system of simultaneous algebraic equations:⎡
⎢⎢⎣

1 4 6 −5
3 1 0 −1
3 7 2 1
0 1 3 5

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

1
−2

0
5

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

We will use Gaussian elimination to solve the above system of equations.
This is performed in MATLAB by using the backslash operator “\” as follows:

>> A = [1 4 6 -5 ; 3 1 0 -1 ; 3 7 2 1 ; 0 1 3 5]

A =

1 4 6 -5

3 1 0 -1

3 7 2 1

0 1 3 5

>> b = [1 ; -2 ; 0 ; 5]

b =

1

-2

0

5

>> x = A\b

x =

-0.4444

-0.1111

0.7778

0.5556

It is clear that the solution is x1 = −0.4444, x2 = −0.1111, x3 = 0.7778,
and x4 = 0.5556. Alternatively, one can use the inverse matrix of A to obtain
the same solution directly as follows:
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>> x = inv(A) * b

x =

-0.4444

-0.1111

0.7778

0.5556

It should be noted that using the inverse method usually takes longer than
using Gaussian elimination especially for large systems.

Finally in order to plot a graph of the function y = f(x), we use the MAT-
LAB command plot(x, y) after we have adequately defined both vectors x
and y. The following is a simple example.

>> x = [ 1 2 3 4 5 6 7 8 9 10]

x =

1 2 3 4 5 6 7 8 9 10

>> y = x. ^ 3 - 2 * x. ^ 2 + 5

y =

4 5 14 37 80 149 250 389 572 805

Fig. 1.1. Using the MATLAB Plot command
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EDU >> plot(x, y)

EDU >> hold on;

EDU >> xlabel(‘x’);

EDU >> ylabel(‘y’);

Figure 1.1 shows the plot obtained by MATLAB. It is usually shown in
a separate graphics window. Notice how the xlabel and ylabel MATLAB
commands are used to label the two axes. Notice also how a “dot” is used in
the function definition just before the exponentiation operation to indicate to
MATLAB to carry out the operation on an element by element basis.



2

Linear Elastic Stress-Strain Relations

2.1 Basic Equations

Consider a single layer of fiber-reinforced composite material as shown in
Fig. 2.1. In this layer, the 1-2-3 orthogonal coordinate system is used where
the directions are taken as follows:

1. The 1-axis is aligned with the fiber direction.
2. The 2-axis is in the plane of the layer and perpendicular to the fibers.
3. The 3-axis is perpendicular to the plane of the layer and thus also perpen-

dicular to the fibers.

Fig. 2.1. A lamina illustrating the principle material coordinate system
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The 1-direction is also called the fiber direction, while the 2- and 3-
directions are called the matrix directions or the transverse directions. This
1-2-3 coordinate system is called the principal material coordinate system. The
stresses and strains in the layer (also called a lamina) will be referred to the
principal material coordinate system.

At this level of analysis, the strain or stress of an individual fiber or an
element of matrix is not considered. The effect of the fiber reinforcement is
smeared over the volume of the material. We assume that the two-material
fiber-matrix system is replaced by a single homogeneous material. Obviously,
this single material does not have the same properties in all directions. Such
material with different properties in three mutually perpendicular directions
is called an orthotropic material. Therefore, the layer (lamina) is considered
to be orthotropic.

The stresses on a small infinitesimal element taken from the layer are
illustrated in Fig. 2.2. There are three normal stresses σ1, σ2, and σ3, and
three shear stresses τ12, τ23, and τ13. These stresses are related to the strains
ε1, ε2, ε3, γ12, γ23, and γ13 as follows (see [1]):

Fig. 2.2. An infinitesimal fiber-reinforced element showing the stresses
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⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G12

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

In (2.1), E1, E2, and E3 are the extensional moduli of elasticity along the
1, 2, and 3 directions, respectively. Also, νij (i, j = 1, 2, 3) are the different
Poisson’s ratios, while G12, G23, and G13 are the three shear moduli.

Equation (2.1) can be written in a compact form as follows:

{ε} = [S] {σ} (2.2)

where {ε} and {σ} represent the 6 × 1 strain and stress vectors, respectively,
and [S] is called the compliance matrix. The elements of [S] are clearly ob-
tained from (2.1), i.e. S11 = 1/E1, S12 = −ν21/E2, . . . , S66 = 1/G12.

The inverse of the compliance matrix [S] is called the stiffness matrix [C]
given, in general, as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

In compact form (2.3) is written as follows:

{σ} = [C] {ε} (2.4)

The elements of [C] are not shown here explicitly but are calculated using
the MATLAB function OrthotropicStiffness which is written specifically for
this purpose.

It is shown (see [1]) that both the compliance matrix and the stiffness
matrix are symmetric, i.e. C21 = C12, C23 = C32, C13 = C31, and similarly
for S21, S23, and S13. Therefore, the following expressions can now be easily
obtained:

C11 =
1
S

(S22S33 − S23S23)

C12 =
1
S

(S13S23 − S12S33)

C22 =
1
S

(S33S11 − S13S13)

C13 =
1
S

(S12S23 − S13S22)
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C33 =
1
S

(S11S22 − S12S12)

C23 =
1
S

(S12S13 − S23S11) (2.5)

C44 =
1

S44

C55 =
1

S55

C66 =
1

S66

S = S11S22S33 − S11S23S23 − S22S13S13 − S33S12S12 + 2S12S23S13

It should be noted that the material constants appearing in the compliance
matrix in (2.1) are not all independent. This is clear since the compliance
matrix is symmetric. Therefore, we have the following equations relating the
material constants:

ν12

E1
=

ν21

E2
ν13

E1
=

ν31

E3
(2.6)

ν23

E2
=

ν32

E3

The above equations are called the reciprocity relations for the material
constants. It should be noted that the reciprocity relations can be derived
irrespective of the symmetry of the compliance matrix – in fact we conclude
that the compliance matrix is symmetric from using these relations. Thus
it is now clear that there are nine independent material constants for an
orthotropic material.

A material is called transversely isotropic if its behavior in the 2-direction
is identical to its behavior in the 3-direction. For this case, E2 = E3, ν12 = ν13,
and G12 = G13. In addition, we have the following relation:

G23 =
E2

2(1 + ν23)
(2.7)

It is clear that there are only five independent material constants (E1, E2,
ν12, ν23, G12) for a transversely isotropic material.

A material is called isotropic if its behavior is the same in all three 1-2-3
directions. In this case, E1 = E2 = E3 = E, ν12 = ν23 = ν13 = ν, and G12 =
G23 = G13 = G. In addition, we have the following relation:

G =
E

2(1 + ν)
(2.8)

It is clear that there are only two independent material constants (E, ν)
for an isotropic material.
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At the other end of the spectrum, we have anisotropic materials – these
materials have nonzero entries at the upper right and lower left portions of
their compliance and stiffness matrices.

2.2 MATLAB Functions Used

The six MATLAB functions used in this chapter to calculate compliance and
stiffness matrices are:

OrthotropicCompliance(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13) –
This function calculates the 6×6 compliance matrix for orthotropic materials.
Its input are the nine independent material constants E1, E2, E3, ν12, ν23,
ν13, G12, G23, and G13.

OrthotropicStiffness(E1, E2, E3, NU12, NU23, NU13, G12, G23, G13) – This
function calculates the 6 × 6 stiffness matrix for orthotropic materials. Its
input are the nine independent material constants E1, E2, E3, ν12, ν23, ν13,
G12, G23, and G13.

TransverselyIsotropicCompliance(E1, E2, NU12, NU23, G12) – This function
calculates the 6×6 compliance matrix for transversely isotropic materials. Its
input are the five independent material constants E1, E2, ν12, ν23, and G12.

TransverselyIsotropicStiffness(E1, E2, NU12, NU23, G12) – This function cal-
culates the 6×6 stiffness matrix for transversely isotropic materials. Its input
are the five independent material constants E1, E2, ν12, ν23, and G12.

IsotropicCompliance(E, NU) – This function calculates the 6 × 6 compliance
matrix for isotropic materials. Its input are the two independent material
constants E and ν.

IsotropicStiffness(E, NU) – This function calculates the 6× 6 stiffness matrix
for isotropic materials. Its input are the two independent material constants
E and ν.

The following is a listing of the MATLAB source code for each function:

function y = OrthotropicCompliance(E1,E2,E3,NU12,NU23,NU13,G12,G23,G13)

%OrthotropicCompliance This function returns the compliance matrix

% for orthotropic materials. There are nine

% arguments representing the nine independent

% material constants. The size of the compliance

% matrix is 6 x 6.

y = [1/E1 -NU12/E1 -NU13/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 0 0 0 ;

-NU13/E1 -NU23/E2 1/E3 0 0 0 ; 0 0 0 1/G23 0 0 ; 0 0 0 0 1/G13 0 ;

0 0 0 0 0 1/G12];
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function y = OrthotropicStiffness(E1,E2,E3,NU12,NU23,NU13,G12,G23,G13)

%OrthotropicStiffness This function returns the stiffness matrix

% for orthotropic materials. There are nine

% arguments representing the nine independent

% material constants. The size of the stiffness

% matrix is 6 x 6.

x = [1/E1 -NU12/E1 -NU13/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 0 0 0 ;

-NU13/E1 -NU23/E2 1/E3 0 0 0 ; 0 0 0 1/G23 0 0 ; 0 0 0 0 1/G13 0 ;

0 0 0 0 0 1/G12];

y = inv(x);

function y = TransverselyIsotropicCompliance(E1,E2,NU12,NU23,G12)

%TransverselyIsotropicCompliance This function returns the

% compliance matrix for

% transversely isotropic

% materials. There are five

% arguments representing the

% five independent material

% constants. The size of the

% compliance matrix is 6 x 6.

y = [1/E1 -NU12/E1 -NU12/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 0 0 0 ;

-NU12/E1 -NU23/E2 1/E2 0 0 0 ; 0 0 0 2*(1+NU23)/E2 0 0 ;

0 0 0 0 1/G12 0 ; 0 0 0 0 0 1/G12];

function y = TransverselyIsotropicStiffness(E1,E2,NU12,NU23,G12)

%TransverselyIsotropicStiffness This function returns the

% stiffness matrix for

% transversely isotropic

% materials. There are five

% arguments representing the

% five independent material

% constants. The size of the

% stiffness matrix is 6 x 6.

x = [1/E1 -NU12/E1 -NU12/E1 0 0 0 ; -NU12/E1 1/E2 -NU23/E2 0 0 0 ;

-NU12/E1 -NU23/E2 1/E2 0 0 0 ; 0 0 0 2*(1+NU23)/E2 0 0 ;

0 0 0 0 1/G12 0 ; 0 0 0 0 0 1/G12];

y = inv(x);

function y = IsotropicCompliance(E,NU)

%IsotropicCompliance This function returns the

% compliance matrix for isotropic

% materials. There are two

% arguments representing the

% two independent material

% constants. The size of the

% compliance matrix is 6 x 6.

y = [1/E -NU/E -NU/E 0 0 0 ; -NU/E 1/E -NU/E 0 0 0 ;

-NU/E -NU/E 1/E 0 0 0 ; 0 0 0 2*(1+NU)/E 0 0 ;

0 0 0 0 2*(1+NU)/E 0 ; 0 0 0 0 0 2*(1+NU)/E];
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function y = IsotropicStiffness(E,NU)

%IsotropicStiffness This function returns the

% stiffness matrix for isotropic

% materials. There are two

% arguments representing the

% two independent material

% constants. The size of the

% stiffness matrix is 6 x 6.

x = [1/E -NU/E -NU/E 0 0 0 ; -NU/E 1/E -NU/E 0 0 0 ;

-NU/E -NU/E 1/E 0 0 0 ; 0 0 0 2*(1+NU)/E 0 0 ;

0 0 0 0 2*(1+NU)/E 0 ; 0 0 0 0 0 2*(1+NU)/E];

y = inv(x);

Example 2.1

For an orthotropic material, derive expressions for the elements of the stiffness
matrix Cij directly in terms of the nine independent material constants.

Solution

Substitute the elements of [S] from (2.1) into (2.5) along with using (2.6).
This is illustrated in detail for C11 below. First evaluate the expression of S
from (2.5) as follows:

S = S11S22S33 − S11S23S23 − S22S13S13 − S33S12S12 + 2S12S23S13

=
1

E1

1
E2

1
E3

− 1
E1

(−ν23

E2

)(−ν32

E3

)

− 1
E2

(−ν13

E1

)(−ν31

E3

)
− 1

E3

(−ν12

E1

)(−ν21

E2

)

+2
(−ν12

E1

)(−ν23

E2

)(−ν31

E3

)

=
1 − ν23ν32 − ν13ν31 − ν12ν21 − 2ν12ν23ν31

E1E2E3

=
1 − ν0

E1E2E3
(2.9a)

where ν0 is given by

ν0 = ν23ν32 + ν13ν31 + ν12ν21 + 2ν12ν23ν31 (2.9b)

Next, C11 is calculated as follows
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C11 =
1
S

(S22S33 − S23S23)

=
E1E2E3

1 − ν0

[
1

E2

1
E3

−
(−ν23

E2

)(−ν32

E3

)]

=
(1 − ν23ν32) E1

1 − ν0
(2.9c)

Similarly, the following expressions for the other elements of [C] can be
derived:

C12 =
(ν21 + ν31ν23) E1

1 − ν0
=

(ν12 + ν32ν13) E2

1 − ν0
(2.9d)

C13 =
(ν31 + ν21ν32) E1

1 − ν0
=

(ν13 + ν12ν23) E3

1 − ν0
(2.9e)

C22 =
(1 − ν13ν31) E2

1 − ν0
(2.9f)

C23 =
(ν32 + ν12ν31) E2

1 − ν0
=

(ν23 + ν21ν13) E3

1 − ν0
(2.9g)

C33 =
(1 − ν12ν21) E3

1 − ν0
(2.9h)

C44 = G23 (2.9i)
C55 = G13 (2.9j)
C66 = G12 (2.9k)

MATLAB Example 2.2

Consider a 60-mm cube made of graphite-reinforced polymer composite ma-
terial that is subjected to a tensile force of 100 kN perpendicular to the fiber
direction, directed along the 2-direction. The cube is free to expand or con-
tract. Use MATLAB to determine the changes in the 60-mm dimensions of
the cube. The material constants for graphite-reinforced polymer composite
material are given as follows [1]:

E1 = 155.0 GPa, E2 = E3 = 12.10 GPa
ν23 = 0.458, ν12 = ν13 = 0.248
G23 = 3.20 GPa, G12 = G13 = 4.40 GPa

Solution

This example is solved using MATLAB. First, the normal stress in the 2-
direction is calculated in GPa as follows:
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>> sigma2 = 100/(60*60)

sigma2 =

0.0278

The stress vector is set up next as follows:

>> sigma = [0 sigma2 0 0 0 0]

sigma =

0 0.0278 0 0 0 0

The compliance matrix is then calculated using the MATLAB function Or-
thotropicCompliance as follows:

>> S = OrthotropicCompliance(155.0, 12.10, 12.10, 0.248, 0.458, 0.248,

4.40, 3.20, 4.40)

S =

0.0065 -0.0016 -0.0016 0 0 0

-0.0016 0.0826 -0.0379 0 0 0

-0.0016 -0.0379 0.0826 0 0 0

0 0 0 0.3125 0 0

0 0 0 0 0.2273 0

0 0 0 0 0 0.2273

The stress vector is adjusted to be a 6 × 1 column vector as follows:

>> sigma = sigma’

sigma =

0

0.0278

0

0

0

0

The strain vector is next obtained by applying (2.2) as follows:

>> epsilon = S*sigma

epsilon =

-0.0000

0.0023

-0.0011
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0

0

0

Note that the strain in dimensionless. Note also that ε11 is very small but is
not zero as it seems from the above result. To get the strain ε11 exactly, we
need to use the format command to get more digits as follows:

>> format short e

>> epsilon

epsilon =

-4.4444e-005

2.2957e-003

-1.0514e-003

0

0

0

Finally, the change in length in each direction is calculated by multiplying the
strain by the dimension in each direction as follows:

>> d1 = epsilon(1)*60

d1 =

-2.6667e-003

>> d2 = epsilon(2)*60

d2 =

1.3774e-001

>> d3 = epsilon(3)*60

d3 =

-6.3085e-002

Notice that the change in the fiber direction is −2.6667× 10−3 mm which
is very small due to the fibers reducing the deformation in this direction.
The minus sign indicates that there is a reduction in this dimension along
the fibers. The change in the 2-direction is 0.13774 mm and is the largest
change because the tensile force is along this direction. This change is positive
indicating an extension in the dimension along this direction. Finally, the
change in the 3-direction is −0.063085 mm. This change is minus since it
indicates a reduction in the dimension along this direction.
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Note that you can obtain online help from MATLAB on any of the MAT-
LAB functions by using the help command. For example, to obtain help on
the MATLAB function OrthotropicCompliance, use the help command as
follows:

>> help OrthotropicCompliance

OrthotropicCompliance This function returns the compliance matrix

for orthotropic materials. There are nine

arguments representing the nine independent

material constants. The size of the compliance

matrix is 6 x 6.

Note that we can use the MATLAB function TransverselyIsotropicCom-
pliance instead of the MATLAB function OrthotropicCompliance in this ex-
ample to obtain the same results. This is because the material constants for
graphite-reinforced polymer composite material are the same in the 2- and
3-directions.

MATLAB Example 2.3

Repeat Example 2.2 if the cube is made of aluminum instead of graphite-
reinforced polymer composite material. The material constants for aluminum
are E = 72.4 GPa and ν = 0.300. Use MATLAB.

Solution

This example is solved using MATLAB. First, the normal stress in the 2-
direction is calculated in GPa as follows:

>> sigma2 = 100/(60*60)

sigma2 =

0.0278

Next, the stress vector is setup directly as a column vector as follows:

>> sigma = [0 ; sigma2 ; 0 ; 0 ; 0 ; 0]

sigma =

0

0.0278

0

0

0

0
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Since aluminum is an isotropic material, the compliance matrix for aluminum
is calculated using the MATLAB function IsotropicCompliance as follows:

>> S = IsotropicCompliance(72.4, 0.3)

S =

0.0138 -0.0041 -0.0041 0 0 0

-0.0041 0.0138 -0.0041 0 0 0

-0.0041 -0.0041 0.0138 0 0 0

0 0 0 0.0359 0 0

0 0 0 0 0.0359 0

0 0 0 0 0 0.0359

Next, the strain vector is calculated using (2.2) as follows:

>> epsilon = S*sigma

epsilon =

1.0e-003 *

-0.1151

0.3837

-0.1151

0

0

0

Finally, the change in length in each direction is calculated by multiplying the
strain by the dimension in each direction as follows:

>> d1 = epsilon(1)*60

d1 =

-0.0069

>> d2 = epsilon(2)*60

d2 =

0.0230

>> d3 = epsilon(3)*60

d3 =

-0.0069
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Notice that the change in the 1-direction is −0.0069 mm. The minus sign
indicates that there is a reduction in this dimension along 1-direction. The
change in the 2-direction is 0.0230 mm and is the largest change because the
tensile force is along this direction. This change is positive indicating an ex-
tension in the dimension along this direction. Finally, the change in the 3-
direction is −0.0069 mm. This change is minus since it indicates a reduction
in the dimension along this direction. Also, note that the changes along the
1- and 3-directions are identical since the material is isotropic and these two
directions are perpendicular to the 2-direction in which the force is applied.

Problems

Problem 2.1

Derive (2.5) in detail.

Problem 2.2

Discuss the validity of the reciprocity relations given in (2.6).

Problem 2.3

Write the 6× 6 compliance matrix for a transversely isotropic material directly
in terms of the five independent material constants E1, E2, ν12, ν23, and G12.

Problem 2.4

Derive expressions for the elements Cij of the stiffness matrix for a transversely
isotropic material directly in terms of the five independent material constants
E1, E2, ν12, ν23, and G12.

Problem 2.5

Write the 6 × 6 compliance matrix for an isotropic material directly in terms
of the two independent material constants E and ν.

Problem 2.6

Write the 6 × 6 stiffness matrix for an isotropic material directly in terms of
the two independent material constants E and ν.
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MATLAB Problem 2.7

Consider a 40-mm cube made of glass-reinforced polymer composite mater-
ial that is subjected to a compressive force of 150 kN perpendicular to the
fiber direction, directed along the 3-direction. The cube is free to expand or
contract. Use MATLAB to determine the changes in the 40-mm dimensions
of the cube. The material constants for glass-reinforced polymer composite
material are given as follows [1]:

E1 = 50.0 GPa, E2 = E3 = 15.20 GPa
ν23 = 0.428, ν12 = ν13 = 0.254
G23 = 3.28 GPa, G12 = G13 = 4.70 GPa

MATLAB Problem 2.8

Repeat Problem 2.7 if the cube is made of aluminum instead of glass-reinforced
polymer composite material. The material constants for aluminum are E =
72.4 GPa and ν = 0.300. Use MATLAB.

MATLAB Problem 2.9

When a fiber-reinforced composite material is heated or cooled, the material
expands or contracts just like an isotropic material. This is deformation that
takes place independently of any applied load. Let ∆T be the change in tem-
perature and let α1, α2, and α3 be the coefficients of thermal expansion for
the composite material in the 1, 2, and 3-directions, respectively. In this case,
the stress-strain relation of (2.1) and (2.2) becomes as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1 − α1∆T
ε2 − α2∆T
ε3 − α3∆T

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.10)

In terms of the stiffness matrix (2.10) becomes as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1 − α1∆T
ε2 − α2∆T
ε3 − α3∆T

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.11)

In (2.10) and (2.11), the strains ε1, ε2, and ε3 are called the total strains,
α1∆T , α2∆T , and α3∆T are called the free thermal strains, and (ε1−α1∆T ),
(ε2 − α2∆T ), and (ε3 − α3∆T ) are called the mechanical strains.
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Consider now the cube of graphite-reinforced polymer composite material
of Example 2.2 but without the tensile force. Suppose the cube is heated 30◦C
above some reference state. Given α1 = −0.01800 × 10−6/◦C and α2 = α3 =
24.3×10−6/◦C, use MATLAB to determine the changes in length of the cube
in each one of the three directions.

Problem 2.10

Consider the effects of moisture strains in this problem. Let ∆M be the change
in moisture and let β1, β2, and β3 be the coefficients of moisture expansion in
the 1, 2, and 3-directions, respectively. In this case, the free moisture strains
are β1∆M , β2∆M , and β3∆M in the 1, 2, and 3-directions, respectively.
Write the stress-strain equations in this case that correspond to (2.10) and
(2.11). In your equations, superimpose both the free thermal strains and the
free moisture strains.



3

Elastic Constants Based
on Micromechanics

3.1 Basic Equations

The purpose of this chapter is to predict the material constants (also called
elastic constants) of a composite material by studying the micromechanics of
the problem, i.e. by studying how the matrix and fibers interact. These are
the same material constants used in Chap. 2 to calculate the compliance and
stiffness matrices. Computing the stresses within the matrix, within the fiber,
and at the interface of the matrix and fiber is very important for understand-
ing some of the underlying failure mechanisms. In considering the fibers and
surrounding matrix, we have the following assumptions [1]:

1. Both the matrix and fibers are linearly elastic.
2. The fibers are infinitely long.
3. The fibers are spaced periodically in square-packed or hexagonal packed

arrays.

There are three different approaches that are used to determine the elastic
constants for the composite material based on micromechanics. These three
approaches are [1]:

1. Using numerical models such as the finite element method.
2. Using models based on the theory of elasticity.
3. Using rule-of-mixtures models based on a strength-of-materials approach.

Consider a unit cell in either a square-packed array (Fig. 3.1) or a
hexagonal-packed array (Fig. 3.2) – see [1]. The ratio of the cross-sectional
area of the fiber to the total cross-sectional area of the unit cell is called the
fiber volume fraction and is denoted by V f . The fiber volume fraction satisfies
the relation 0 < V f < 1 and is usually 0.5 or greater. Similarly, the matrix
volume fraction V m is the ratio of the cross-sectional area of the matrix to
the total cross-sectional area of the unit cell. Note that V m also satisfies
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Fig. 3.1. A unit cell in a square-packed array of fiber-reinforced composite material

0 < V m < 1. The following relation can be shown to exist between V f and
V m:

V f + V m = 1 (3.1)

In the above, we use the notation that a superscript m indicates a matrix
quantity while a superscript f indicates a fiber quantity. In addition, the
matrix material is assumed to be isotropic so that Em

1 = Em
2 = Em and

νm
12 = νm. However, the fiber material is assumed to be only transversely

isotropic such that Ef
3 = Ef

2 , νf
13 = νf

12, and νf
23 = νf

32 = νf .
Using the strength-of-materials approach and the simple rule of mixtures,

we have the following relations for the elastic constants of the composite ma-
terial (see [1]). For Young’s modulus in the 1-direction (also called the longi-
tudinal stiffness), we have the following relation:

E1 = Ef
1 V f + EmV m (3.2)

where Ef
1 is Young’s modulus of the fiber in the 1-direction while Em is

Young’s modulus of the matrix. For Poisson’s ratio ν12, we have the following
relation:

ν12 = νf
12V

f + νmV m (3.3)
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Fig. 3.2. A unit cell in a hexagonal-packed array of fiber-reinforced composite
material

where νf
12 and νm are Poisson’s ratios for the fiber and matrix, respectively.

For Young’s modulus in the 2-direction (also called the transverse stiffness),
we have the following relation:

1
E2

=
V f

Ef
2

+
V m

Em
(3.4)

where Ef
2 is Young’s modulus of the fiber in the 2-direction while Em is

Young’s modulus of the matrix. For the shear modulus G12, we have the
following relation:

1
G12

=
V f

Gf
12

+
V m

Gm
(3.5)

where Gf
12 and Gm are the shear moduli of the fiber and matrix, respectively.

For the coefficients of thermal expansion α1 and α2 (see Problem 2.9), we
have the following relations:

α1 =
αf

1Ef
1 V f + αmEmV m

Ef
1 V f + EmV m

(3.6)

α2 =
[
αf

2 −
(

Em

E1

)
νf
1 (αm − αf

1 )V m

]
V f

+

[
αm +

(
Ef

1

E1

)
νm(αm − αf

1 )V f

]
V m (3.7)

where αf
1 and αf

2 are the coefficients of thermal expansion for the fiber in the 1-
and 2-directions, respectively, and αm is the coefficient of thermal expansion
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for the matrix. However, we can use a simple rule-of-mixtures relation for α2

as follows:
α2 = αf

2V f + αmV m (3.8)

A similar simple rule-of-mixtures relation for α1 cannot be used simply
because the matrix and fiber must expand or contract the same amount in
the 1-direction when the temperature is changed.

While the simple rule-of-mixtures models used above give accurate results
for E1 and ν12, the results obtained for E2 and G12 do not agree well with
finite element analysis and elasticity theory results. Therefore, we need to
modify the simple rule-of-mixtures models shown above. For E2, we have the
following modified rule-of-mixtures formula:

1
E2

=
V f

Ef
2

+ ηV m

Em

V f + ηV m
(3.9)

where η is the stress-partitioning factor (related to the stress σ2). This factor
satisfies the relation 0 < η < 1 and is usually taken between 0.4 and 0.6.
Another alternative rule-of-mixtures formula for E2 is given by:

1
E2

=
ηfV f

Ef
2

+
ηmV m

Em
(3.10)

where the factors ηf and ηm are given by:

ηf =
Ef

1 V f +
[(

1 − νf
12ν

f
21

)
Em + νmνf

21E
f
1

]
V m

Ef
1 V f + EmV m

(3.11)

ηm =

[(
1 − νm2

)
Ef

1 −
(
1 − νmνf

12

)
Em
]
V f + EmV m

Ef
1 V f + EmV m

(3.12)

The above alternative model for E2 gives accurate results and is used
whenever the modified rule-of-mixtures model of (3.9) cannot be applied, i.e.
when the factor η is not known.

The modified rule-of-mixtures model for G12 is given by the following
formula:

1
G12

=
V f

Gf
12

+ η′V m

Gm

V f + η′V m
(3.13)

where η′ is the shear stress-partitioning factor. Note that η′ satisfies the re-
lation 0 < η′ < 1 but using η′ = 0.6 gives results that correlate with the
elasticity solution.

Finally, the elasticity solution gives the following formula for G12:

G12 = Gm

[
(Gm + Gf

12) − V f (Gm − Gf
12)

(Gm + Gf
12) + V f (Gm − Gf

12)

]
(3.14)
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3.2 MATLAB Functions Used

The six MATLAB functions used in this chapter to calculate the elastic ma-
terial constants are:

E1 (Vf, E1f, Em) – This function calculates the longitudinal Young’s modulus
E1 for the lamina. Its input consists of three arguments as illustrated in the
listing below.

NU12 (Vf, NU12f, NUm) – This function calculates Poisson’s ratio ν12 for the
lamina. Its input consists of three arguments as illustrated in the listing below.

E2 (Vf, E2f, Em, Eta, NU12f, NU21f, NUm, E1f, p) – This function calcu-
lates the transverse Young’s modulus E2 for the lamina. Its input consists of
nine arguments as illustrated in the listing below. Use the value zero for any
argument not needed in the calculations.

G12 (Vf, G12f, Gm, EtaPrime, p) – This function calculates the shear mod-
ulus G12 for the lamina. Its input consists of five arguments as illustrated
in the listing below. Use the value zero for any argument not needed in the
calculations.

Alpha1 (Vf, E1f, Em, Alpha1f, Alpham) – This function calculates the co-
efficient of thermal expansion α1 for the lamina. Its input consists of five
arguments as illustrated in the listing below.

Alpha2 (Vf, Alpha2f, Alpham, E1, E1f, Em, NU1f, NUm, Alpha1f, p) – This
function calculates the coefficient of thermal expansion α2 for the lamina. Its
input consists of ten arguments as illustrated in the listing below. Use the
value zero for any argument not needed in the calculations.

The following is a listing of the MATLAB source code for each function:

function y = E1(Vf,E1f,Em)

%E1 This function returns Young’s modulus in the

% longitudinal direction. Its input are three values:

% Vf - fiber volume fraction

% E1f - longitudinal Young’s modulus of the fiber

% Em - Young’s modulus of the matrix

% This function uses the simple rule-of-mixtures formula

% of equation (3.2)

Vm = 1 - Vf;

y = Vf*E1f + Vm*Em;

function y = NU12(Vf,NU12f,NUm)

%NU12 This function returns Poisson’s ratio NU12

% Its input are three values:

% Vf - fiber volume fraction

% NU12f - Poisson’s ratio NU12 of the fiber

% NUm - Poisson’s ratio of the matrix
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% This function uses the simple rule-of-mixtures

% formula of equation (3.3)

Vm = 1 - Vf;

y = Vf*NU12f + Vm*NUm;

function y = E2(Vf,E2f,Em,Eta,NU12f,NU21f,NUm,E1f,p)

%E2 This function returns Young’s modulus in the

% transverse direction. Its input are nine values:

% Vf - fiber volume fraction

% E2f - transverse Young’s modulus of the fiber

% Em - Young’s modulus of the matrix

% Eta - stress-partitioning factor

% NU12f - Poisson’s ratio NU12 of the fiber

% NU21f - Poisson’s ratio NU21 of the fiber

% NUm - Poisson’s ratio of the matrix

% E1f - longitudinal Young’s modulus of the fiber

% p - parameter used to determine which equation to use:

% p = 1 - use equation (3.4)

% p = 2 - use equation (3.9)

% p = 3 - use equation (3.10)

% Use the value zero for any argument not needed

% in the calculations.

Vm = 1 - Vf;

if p == 1

y = 1/(Vf/E2f + Vm/Em);

elseif p == 2

y = 1/((Vf/E2f + Eta*Vm/Em)/(Vf + Eta*Vm));

elseif p == 3

deno = E1f*Vf + Em*Vm;

etaf = (E1f*Vf + ((1-NU12f*NU21f)*Em + NUm*NU21f*E1f)*Vm) /deno;

etam = (((1-NUm*NUm)*E1f - (1-NUm*NU12f)*Em)*Vf + Em*Vm) /deno;

y = 1/(etaf*Vf/E2f + etam*Vm/Em);

end

function y = G12(Vf,G12f,Gm,EtaPrime,p)

%G12 This function returns the shear modulus G12

% Its input are five values:

% Vf - fiber volume fraction

% G12f - shear modulus G12 of the fiber

% Gm - shear modulus of the matrix

% EtaPrime - shear stress-partitioning factor

% p - parameter used to determine which equation to use:

% p = 1 - use equation (3.5)

% p = 2 - use equation (3.13)

% p = 3 - use equation (3.14)

% Use the value zero for any argument not needed

% in the calculations.

Vm = 1 - Vf;
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if p == 1

y = 1/(Vf/G12f + Vm/Gm);

elseif p == 2

y = 1/((Vf/G12f + EtaPrime*Vm/Gm)/(Vf + EtaPrime*Vm));

elseif p == 3

y = Gm*((Gm + G12f) - Vf*(Gm - G12f))/((Gm + G12f) +

Vf*(Gm - G12f));

end

function y = Alpha1(Vf,E1f,Em,Alpha1f,Alpham)

%Alpha1 This function returns the coefficient of thermal

% expansion in the longitudinal direction.

% Its input are five values:

% Vf - fiber volume fraction

% E1f - longitudinal Young’s modulus of the fiber

% Em - Young’s modulus of the matrix

% Alpha1f - coefficient of thermal expansion in the

% 1-direction for the fiber

% Alpham - coefficient of thermal expansion for the matrix

Vm = 1 - Vf;

y = (Vf*E1f*Alpha1f + Vm*Em*Alpham)/(E1f*Vf + Em*Vm);

function y = Alpha2(Vf,Alpha2f,Alpham,E1,E1f,Em,NU1f,NUm,

Alpha1f,p)

%Alpha2 This function returns the coefficient of thermal

% expansion in the transverse direction.

% Its input are ten values:

% Vf - fiber volume fraction

% Alpha2f - coefficient of thermal expansion in the

% 2-direction for the fiber

% Alpham - coefficient of thermal expansion for the matrix

% E1 - longitudinal Young’s modulus of the lamina

% E1f - longitudianl Young’s modulus of the fiber

% Em - Young’s modulus of the matrix

% NU1f - Poisson’s ratio of the fiber

% NUm - Poisson’s ratio of the matrix

% Alpha1f - coefficient of thermal expansion in the

% 1-direction

% p - parameter used to determine which equation to use

% p = 1 - use equation (3.8)

% p = 2 - use equation (3.7)

% Use the value zero for any argument not needed in

% the calculation

Vm = 1 - Vf;

if p == 1

y = Vf*Alpha2f + Vm*Alpham;

elseif p == 2

y = (Alpha2f - (Em/E1)*NU1f*(Alpham - Alpha1f)*Vm)*Vf +

(Alpham + (E1f/E1)*NUm*(Alpham - Alpha1f)*Vf)*Vm;

end
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Example 3.1

Derive the simple rule-of-mixtures formula for the calculation of the longitu-
dinal modulus E1 given in (3.2).

Solution

Consider a longitudinal cross-section of length L of the fiber and matrix in a
lamina as shown in Fig. 3.3. Let Af and Am be the cross-sectional areas of the
fiber and matrix, respectively. Let also F f

1 and Fm
1 be the longitudinal forces

in the fiber and matrix, respectively. Then we have the following relations:

Fig. 3.3. A longitudinal cross-section of fiber-reinforced composite material for
Example 3.1

F f
1 = σf

1 Af (3.15a)

Fm
1 = σm

1 Am (3.15b)

where σf
1 and σm

1 are the longitudinal normal stresses in the fiber and matrix,
respectively. These stresses are given in terms of the longitudinal strains εf

1

and εm
1 as follows:

σf
1 = Ef

1 εf
1 (3.16a)

σm
1 = Emεm

1 (3.16b)

where Ef
1 is the longitudinal modulus of the fiber and Em is the modulus of

the matrix.
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Let F1 be the total longitudinal force in the lamina where F1 is given by:

F1 = σ1A (3.17)

where σ1 is the total longitudinal normal stress in the lamina and A is the
total cross-sectional area of the lamina. The total longitudinal normal stress
σ1 is given by:

σ1 = E1ε1 (3.18)

However, using force equilibrium, it is clear that we have the following relation
between the total longitudinal force and the longitudinal forces in the fiber
and matrix:

F1 = F f
1 + Fm

1 (3.19)

Substituting (3.15a,b) and (3.17) into (3.19), then substituting (3.16a,b) and
(3.18) into the resulting equation, we obtain the following relation:

E1ε1A = Ef
1 εf

1Af + Emεm
1 Am (3.20)

Next, we use the compatibility condition εf
1 = εm

1 = ε1 since the matrix, fiber,
and lamina all have the same strains. Equation (3.20) is simplified as follows:

E1A = Ef
1 Af + EmAm (3.21)

Finally, we divide (3.21) by A and note that Af/A = V f and Am/A = V m

to obtain the required formula for E1 as follows:

E1 = Ef
1 V f + EmV m (3.22)

MATLAB Example 3.2

Consider a graphite-reinforced polymer composite lamina with the following
material properties for the matrix and fibers [1]:

Em = 4.62GPa, νm = 0.360

Ef
1 = 233GPa, νf

12 = 0.200

Ef
2 = 23.1GPa, νf

23 = 0.400

Gf
12 = 8.96GPa Gf

23 = 8.27GPa

Use MATLAB and the simple rule-of-mixtures formulas to calculate the values
of the four elastic constants E1, ν12, E2, and G12 for the lamina. Use V f = 0.6.
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Solution

This example is solved using MATLAB. First, the MATLAB function E1 is
used to calculate the longitudinal modulus E1 in GPa as follows:

>> E1(0.6, 233, 4.62)

ans =

141.6480

Poisson’s ratio ν12 is then calculated using the MATLAB function NU12 as
follows:

>> NU12(0.6, 0.200, 0.360)

ans =

0.2640

The transverse modulus E2 is then calculated in GPa using the MATLAB
function E2 as follows (note that we use the value zero for each parameter
not needed in the calculations):

>> E2(0.6, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

ans =

8.8846

The shear modulus for the matrix Gm is calculated in GPa using (2.8) as
follows:

>> Gm = 4.62/(2*(1 + 0.360))

Gm =

1.6985

Finally, the shear modulus G12 of the lamina is calculated in GPa using the
MATLAB function G12 as follows:

>> G12(0.6, 8.96, Gm, 0, 1)

ans =

3.3062

Note that νf
23 and Gf

23 are not used in this example.
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MATLAB Example 3.3

Consider the graphite-reinforced polymer composite lamina of Example 3.2.
Use MATLAB to plot a graph for each one of the four elastic constants (E1,
ν12, E2, G12) versus the fiber volume fraction V f . Use all values of V f ranging
from 0 to 1 (in increments of 0.1).

Solution

This example is solved using MATLAB. First, the array for the x-axis is set
up as follows:

>> x = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]

x =

Columns 1 through 10

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

0.8000 0.9000

Column 11

1.0000

Then, the longitudinal modulus E1 is calculated in GPa using the MATLAB
function E1 for all values of V f between 0 and 1 as follows (in increments of
0.1):

>> y(1) = E1(0, 233, 4.62)

y =

4.6200

>> y(2) = E1(0.1, 233, 4.62)

y =

4.6200 27.4580

>> y(3) = E1(0.2, 233, 4.62)

y =

4.6200 27.4580 50.2960

>> y(4) = E1(0.3, 233, 4.62)
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y =

4.6200 27.4580 50.2960 73.1340

>> y(5) = E1(0.4, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720

>> y(6) = E1(0.5, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100

>> y(7) = E1(0.6, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100 141.6480

>> y(8) = E1(0.7, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100 141.6480

164.4860

>> y(9) = E1(0.8, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100 141.6480

164.4860 187.3240

>> y(10) = E1(0.9, 233, 4.62)

y =

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100 141.6480

164.4860 187.3240 210.1620

>> y(11) = E1(1, 233, 4.62)

y =

Columns 1 through 10

4.6200 27.4580 50.2960 73.1340 95.9720 118.8100 141.6480
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164.4860 187.3240 210.1620

Column 11

233.0000

The plot command is then used to plot the graph of E1 versus V f as follows.
The resulting plot is shown in Fig. 3.4. Notice that the variation is linear.

>> plot(x,y)

>> xlabel(‘V^f’);

>> ylabel(‘E_1 (GPa)’);

Poisson’s ratio ν12 is then calculated using the MATLAB function NU12 for
all values of V f between 0 and 1 as follows (in increments of 0.1):

>> z(1) = NU12(0, 0.200, 0.360)

z =

0.3600

>> z(2) = NU12(0.1, 0.200, 0.360)

z =

0.3600 0.3440

>> z(3) = NU12(0.2, 0.200, 0.360)

z =

Fig. 3.4. Variation of E1 versus V f for Example 3.3
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0.3600 0.3440 0.3280

>> z(4) = NU12(0.3, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120

>> z(5) = NU12(0.4, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960

>> z(6) = NU12(0.5, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800

>> z(7) = NU12(0.6, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800 0.2640

>> z(8) = NU12(0.7, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800 0.2640 0.2480

>> z(9) = NU12(0.8, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800 0.2640

0.2480 0.2320

>> z(10) = NU12(0.9, 0.200, 0.360)

z =

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800 0.2640 0.2480

0.2320 0.2160

>> z(11) = NU12(1, 0.200, 0.360)
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z =

Columns 1 through 10

0.3600 0.3440 0.3280 0.3120 0.2960 0.2800 0.2640 0.2480

0.2320 0.2160

Column 11

0.2000

The plot command is then used to plot the graph of ν12 versus V f as
follows. The resulting plot is shown in Fig. 3.5. Notice that the variation is
linear.

Fig. 3.5. Variation of ν12 versus V f for Example 3.3

>> plot(x,z)

>> xlabel(‘V^f’);

>> ylabel(‘\nu_{12}’);

The transverse modulus E2 is then calculated using the MATLAB function
E2 using all values of V f between 0 and 1 as follows (in increments of 0.1):

>> w(1) = E2(0, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200

>> w(2) = E2(0.1, 23.1, 4.62, 0, 0, 0, 0, 0, 1)
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w =

4.6200 5.0217

>> w(3) = E2(0.2, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000

>> w(4) = E2(0.3, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789

>> w(5) = E2(0.4, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941

>> w(6) = E2(0.5, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000

>> w(7) = E2(0.6, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000 8.8846

>> w(8) = E2(0.7, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000 8.8846 10.5000

>> w(9) = E2(0.8, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000 8.8846 10.5000

12.8333

>> w(10) = E2(0.9, 23.1, 4.62, 0, 0, 0, 0, 0, 1)

w =

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000 8.8846 10.5000

12.8333 16.5000

>> w(11) = E2(1, 23.1, 4.62, 0, 0, 0, 0, 0, 1)
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w =

Columns 1 through 10

4.6200 5.0217 5.5000 6.0789 6.7941 7.7000 8.8846 10.5000

12.8333 16.5000

Column 11

23.1000

The plot command is then used to plot the graph of E2 versus V f as follows.
The resulting plot is shown in Fig. 3.6. Notice that the variation is nonlinear.

Fig. 3.6. Variation of E2 versus V f for Example 3.3

>> plot(x,w)

>> xlabel(‘V^f’);

>> ylabel(‘E_2 (GPa)’);

Finally, the shear modulus G12 is then calculated using the MATLAB function
G12 using all values of V f between 0 and 1 as follows (in increments of 0.1).
Note that we first calculate Gm using (2.8).

>> Gm = 4.62/(2*(1 + 0.360))

Gm =

1.6985

>> u(1) = G12(0, 8.96, Gm, 0, 1)
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u =

1.6985

>> u(2) = G12(0.1, 8.96, Gm, 0, 1)

u =

1.6985 1.8483

>> u(3) = G12(0.2, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271

>> u(4) = G12(0.3, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441

>> u(5) = G12(0.4, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133

>> u(6) = G12(0.5, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557

>> u(7) = G12(0.6, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557 3.3062

>> u(8) = G12(0.7, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557 3.3062 3.9254

>> u(9) = G12(0.8, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557 3.3062 3.9254

4.8301

>> u(10) = G12(0.9, 8.96, Gm, 0, 1)

u =

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557 3.3062 3.9254

4.8301 6.2766
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>> u(11) = G12(1, 8.96, Gm, 0, 1)

u =

Columns 1 through 10

1.6985 1.8483 2.0271 2.2441 2.5133 2.8557 3.3062 3.9254

4.8301 6.2766

Column 11

8.9600

The plot command is then used to plot the graph of G12 versus V f as follows.
The resulting plot is shown in Fig. 3.7. Notice that the variation is nonlinear.

>> plot(x,u)

>> xlabel(‘V^f’);

>> ylabel(‘G_{12} (GPa)’);

Problems

Problem 3.1

Derive (3.1) in detail.

Problem 3.2

Derive the simple rule-of-mixtures formula for the calculation of Poisson’s
ratio ν12 given in (3.3).

Fig. 3.7. Variation of G12 versus V f for Example 3.3
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Problem 3.3

Derive the simple rule-of-mixtures formula for the calculation of the transverse
modulus E2 given in (3.4).

MATLAB Problem 3.4

In the calculation of the transverse modulus E2 using the simple rule-of-
mixtures formula of (3.4), the results can be improved by replacing Em by
Em′

where Em′
is given by:

Em′
=

Em

1 − νm2 (3.23)

where νm is Poisson’s ratio of the matrix. Modify the MATLAB function E2

with the addition of this formula as a fourth case to be calculated when the
parameter p is set to the value 4.

MATLAB Problem 3.5

Consider a carbon/epoxy composite lamina with the following matrix and
fiber material properties [2]:

Ef
2 = 14.8 GPa, Em = 3.45 GPa, νm = 0.36

Use MATLAB to calculate the transverse modulus E2 using the following
three methods (use V f = 0.65):

(a) the simple rule-of-mixtures formula of (3.4).
(b) the modified rule-of-mixtures formula of (3.9) with η = 0.5.
(c) the alternative rule-of-mixtures formula of (3.10). For this case, use Ef

1 =
85.6 GPa, νf

12 = νf
21 = 0.3.

MATLAB Problem 3.6

Consider the glass/epoxy composite lamina of Problem 3.5. Use MATLAB to
plot a graph of the transverse modulus E2 versus the fiber volume fraction
V f for each one of the following cases. Use all values of V f ranging from 0 to
1 (in increments of 0.1).

(a) the simple rule-of-mixtures formula of (3.4).
(b) the modified rule-of-mixtures formula of (3.9) with η = 0.4.
(c) the modified rule-of-mixtures formula of (3.9) with η = 0.5.
(d) the modified rule-of-mixtures formula of (3.9) with η = 0.6.
(e) the alternative rule-of-mixtures formula of (3.10) with the values given in

part (c) of Problem 3.5.

Make sure that all five graphs appear on the same plot.
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MATLAB Problem 3.7

Consider a carbon/epoxy composite lamina with the following matrix and
fiber material properties [2]:

Gf
12 = 28.3 GPa, Gm = 1.27 GPa

Use MATLAB to calculate the shear modulus G12 using the following three
methods (use V f = 0.55):

(a) the simple rule-of-mixtures formula of (3.5).
(b) the modified rule-of-mixtures formula of (3.13) with η′ = 0.6.
(c) the elasticity formula of (3.14).

MATLAB Problem 3.8

Consider the glass/epoxy composite lamina of Problem 3.7. Use MATLAB to
plot a graph of the shear modulus G12 versus the fiber volume fraction V f for
each one of the following cases. Use all values of V f ranging from 0 to 1 (in
increments of 0.1).

(a) the simple rule-of-mixtures formula of (3.5).
(b) the modified rule-of-mixtures formula of (3.13) with η′ = 0.6.
(c) the elasticity formula of (3.14).

Make sure that all three graphs appear on the same plot.

MATLAB Problem 3.9

Consider the graphite-reinforced polymer composite lamina of Example 3.2.
Let the coefficients of thermal expansion for the matrix and fibers be given as
follows [1]:

αm = 41.4 × 10−6/K

αf
1 = −0.540 × 10−6/K

αf
2 = 10.10 × 10−6/K

Use MATLAB to calculate α1 and α2 for the lamina. When calculating α2,
use the two formulas given (3.7) and (3.8).

Problem 3.10

Consider a fiber-reinforced composite lamina assuming the existence of an
interface region. Let Ef , Em, and Ei be Young’s moduli for the matrix, fiber,
and interface material, respectively. Also, let V f , V m, and V i be the volume
fractions of the fiber, matrix, and interface satisfying the relation V f + V m +
V i = 1. Determine an expression for the longitudinal modulus E1 of the
lamina using a simple rule-of-mixtures formula.
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Plane Stress

4.1 Basic Equations

In the analysis of fiber-reinforced composite materials, the assumption of plane
stress is usually used for each layer (lamina). This is mainly because fiber-
reinforced materials are utilized in beams, plates, cylinders, and other struc-
tural shapes which have at least one characteristic geometric dimension in an
order of magnitude less than the other two dimensions. In this case, the stress
components σ3, τ23, and τ13 are set to zero with the assumption that the 1-2
plane of the principal material coordinate system is in the plane of the layer
(lamina) – see [1]. Therefore, the stresses σ1, σ2, and τ12 lie in a plane, while
the stresses σ3, τ23, and τ13 are perpendicular to this plane and are zero (see
Fig. 4.1).

Using the assumption of plane stress, it is seen that the stress-strain re-
lations of Chap. 2 are greatly simplified. Setting σ3 = τ23 = τ13 = 0 in (2.1)
leads to the following:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

0
0
0

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.1)

As a result of the plane stress assumption and using (4.1), we conclude
that:

γ23 = 0 (4.2)
γ13 = 0 (4.3)
ε3 = S13σ1 + S23σ2 �= 0 (4.4)
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Fig. 4.1. An infinitesimal fiber-reinforced composite element in a state of plane
stress

Therefore (4.1) reduces to the following equation:⎧⎨
⎩

ε1

ε2

γ12

⎫⎬
⎭ =

⎡
⎣S11 S12 0

S12 S22 0
0 0 S66

⎤
⎦
⎧⎨
⎩

σ1

σ2

τ12

⎫⎬
⎭ (4.5)

The 3 × 3 matrix in (4.5) is called the reduced compliance matrix. The inverse
of the reduced compliance matrix is the reduced stiffness matrix given as
follows: ⎧⎨

⎩
σ1

σ2

τ12

⎫⎬
⎭ =

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎧⎨
⎩

ε1

ε2

γ12

⎫⎬
⎭ (4.6)

where the elements Qij are given as follows:

Q11 =
S22

S11S22 − S2
12

(4.7a)

Q12 = − S12

S11S22 − S2
12

(4.7b)

Q22 =
S11

S11S22 − S2
12

(4.7c)

Q66 =
1

S66
(4.7d)
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4.2 MATLAB Functions Used

The four MATLAB functions used in this chapter to calculate the reduced
compliance and stiffness matrices are:

ReducedCompliance(E1, E2, NU12, G12) – This function calculates the re-
duced compliance matrix for the lamina. Its input consists of four arguments
representing the four elastic constants E1, E2, ν12, and G12. See Problem 4.1.

ReducedStiffness(E1, E2, NU12, G12) – This function calculates the reduced
stiffness matrix for the lamina. Its input consists of four arguments represent-
ing the four elastic constants E1, E2, ν12, and G12. See Problem 4.2.

ReducedIsotropicCompliance(E, NU) – This function calculates the reduced
isotropic compliance matrix for the lamina. Its input consists of two arguments
representing the two elastic constants E and ν. See Problem 4.3.

ReducedIsotropicStiffness(E, NU) – This function calculates the reduced
isotropic stiffness matrix for the lamina. Its input consists of two arguments
representing the two elastic constants E and ν. See Problem 4.4.

The following is a listing of the MATLAB source code for each function:

function y = ReducedCompliance(E1,E2,NU12,G12)

%ReducedCompliance This function returns the reduced compliance

% matrix for fiber-reinforced materials.

% There are four arguments representing four

% material constants. The size of the reduced

% compliance matrix is 3 x 3.

y = [1/E1 -NU12/E1 0 ; -NU12/E1 1/E2 0 ; 0 0 1/G12];

function y = ReducedStiffness(E1,E2,NU12,G12)

%ReducedStiffness This function returns the reduced stiffness

% matrix for fiber-reinforced materials.

% There are four arguments representing four

% material constants. The size of the reduced

% stiffness matrix is 3 x 3.

NU21 = NU12*E2/E1;

y = [E1/(1-NU12*NU21) NU12*E2/(1-NU12*NU21) 0 ;NU12*E2/(1-NU12*NU21)

E2/(1-NU12*NU21) 0 ; 0 0 G12];

function y = ReducedIsotropicCompliance(E,NU)

%ReducedIsotropicCompliance This function returns the

% reduced isotropic compliance

% matrix for fiber-reinforced materials.

% There are two arguments representing

% two material constants. The size of

% the reduced compliance matrix is 3 x 3.

y = [1/E -NU/E 0 ; -NU/E 1/E 0 ; 0 0 2*(1+NU)/E];



50 4 Plane Stress

function y = ReducedIsotropicStiffness(E,NU)

%ReducedIsotropicStiffness This function returns the

% reduced isotropic stiffness

% matrix for fiber-reinforced materials.

% There are two arguments representing

% two material constants. The size of

% the reduced stiffness matrix is 3 x 3.

y = [E/(1-NU*NU) NU*E/(1-NU*NU) 0 ; NU*E/(1-NU*NU) E/(1-NU*NU) 0 ; 0

0 E/2/(1+NU)];

Example 4.1

Derive the following expressions for the elements Qij of the 3 × 3 reduced
stiffness matrix where Cij are the elements of the 6 × 6 stiffness matrix of
(2.3).

Q11 = C11 − C2
13

C33
(4.8a)

Q12 = C12 − C13C23

C33
(4.8b)

Q22 = C22 − C2
23

C33
(4.8c)

Q66 = C66 (4.8d)

Solution

For the case of plane stress, set σ3 = τ23 = τ13 = 0 in (2.3) to obtain (while
using the symmetric form of the [C] matrix).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

0
0
0

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.9)

We can therefore write the following three equations based on the first, second,
and sixth rows of (4.9):

σ1 = C11ε1 + C12ε2 + C13ε3 (4.10a)
σ2 = C12ε1 + C22ε2 + C23ε3 (4.10b)
τ12 = C66γ12 (4.10c)

In addition, we can write the following relation based on the third row of
(4.9):
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0 = C13ε1 + C23ε2 + C33ε3 (4.11)

Solving (4.11) for ε3 to obtain:

ε3 = −C13

C33
ε1 − C23

C33
ε2 (4.12)

Substitute (4.12) into (4.10a,b) and simplify to obtain the following relations:

σ1 =
(

C11 − C2
13

C33

)
ε1 +

(
C12 − C13C23

C33

)
ε2 (4.13a)

σ2 =
(

C12 − C13C23

C33

)
ε1 +

(
C22 − C2

23

C33

)
ε2 (4.13b)

τ12 = C66γ12 (4.13c)

Rewriting (4.13a,b,c) in matrix form we obtain (see (4.6)):⎧⎨
⎩

σ1

σ2

τ12

⎫⎬
⎭ =

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎧⎨
⎩

ε1

ε2

γ12

⎫⎬
⎭ (4.14)

where the elements Qij are given by (see (4.8a,b,c,d).):

Q11 = C11 − C2
13

C33
(4.15a)

Q12 = C12 − C13C23

C33
(4.15b)

Q22 = C22 − C2
23

C33
(4.15c)

Q66 = C66 (4.15d)

MATLAB Example 4.2

Consider a layer of graphite-reinforced composite material 200 mm long,
100 mm wide, and 0.200 mm thick. The layer is subjected to an inplane ten-
sile force of 4 kN in the fiber direction which is perpendicular to the 100-mm
width. Assume the layer to be in a state of plane stress and use the elastic
constants given in Example 2.2. Use MATLAB to determine the transverse
strain ε3.

Solution

This example is solved using MATLAB. First, the full 6×6 compliance matrix
is obtained as follows using the MATLAB function

OrthotropicCompliance of Chap. 2.
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>> S = OrthotropicCompliance(155.0, 12.10, 12.10, 0.248, 0.458,

0.248, 4.40, 3.20, 4.40)

S =

0.0065 -0.0016 -0.0016 0 0 0

-0.0016 0.0826 -0.0379 0 0 0

-0.0016 -0.0379 0.0826 0 0 0

0 0 0 0.3125 0 0

0 0 0 0 0.2273 0

0 0 0 0 0 0.2273

Using the third row of (4.1), we obtain the following expression for the trans-
verse strain ε3 (see (4.4)):

ε3 = S13σ1 + S23σ2 (4.16)

Next, the stresses σ1 and σ2 are calculated in GPa as follows:

>> sigma1 = 4/(100*0.200)

sigma1 =

0.2000

>> sigma2 = 0

sigma2 =

0

Finally, the transverse strain ε3 is calculated using (4.16) as follows:

>> epsilon3 = S(1,3)*sigma1 + S(2,3)*sigma2

epsilon3 =

-3.2000e-004

Thus, we obtain the transverse strain ε3 = −3.2 × 10−4.

MATLAB Example 4.3

Consider the graphite-reinforced composite material of Example 2.2.

(a) Use MATLAB to determine the reduced compliance and stiffness matrices.
(b) Use MATLAB to check that the two matrices obtained in (a) are indeed

inverses of each other by multiplying them together to get the identity
matrix.
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Solution

This example is solved using MATLAB. First, the reduced compliance matrix
is obtained as follows using the MATLAB function ReducedCompliance.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the reduced stiffness matrix is obtained as follows using the MATLAB
function ReducedStiffness :

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Finally, the two matrices are multiplied with each other to get the identity
matrix in order to show that they are indeed inverses of each other.

>> S*Q

ans =

1.0000 0 0

-0.0000 1.0000 0

0 0 1.0000

Problems

Problem 4.1

Write the reduced compliance matrix for a fiber-reinforced composite material
in terms of the four elastic constants E1, E2, ν12, and G12.

Problem 4.2

Write the reduced stiffness matrix for a fiber-reinforced composite material in
terms of the four elastic constants E1, E2, ν12, and G12.
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Problem 4.3

Write the reduced compliance matrix for an isotropic fiber-reinforced compos-
ite material in terms of the two elastic constants E and ν.

Problem 4.4

Write the reduced stiffness matrix for an isotropic fiber-reinforced composite
material in terms of the two elastic constants E and ν.

MATLAB Problem 4.5

Consider the glass-reinforced polymer composite material of Problem 2.7.

(a) Use MATLAB to determine the reduced compliance and stiffness matrices.
(b) Use MATLAB to check that the two matrices obtained in (a) are indeed

inverses of each other by multiplying them together to get the identity
matrix.

MATLAB Problem 4.6

Consider the layer of composite material of Example 4.2. Suppose that the
layer is subjected to an inplane compressive force of 2.5 kN in the 2-direction
instead of the 4 kN force in the 1-direction. Use MATLAB to calculate the
transverse strain ε3 in this case.

MATLAB Problem 4.7

Consider the isotropic material aluminum with E = 72.4 GPa and ν = 0.3.

(a) Use MATLAB to determine the reduced compliance and stiffness matrices.
(b) Use MATLAB to check that the two matrices obtained in (a) are indeed

inverses of each other by multiplying them together to get the identity
matrix.

MATLAB Problem 4.8

Suppose in Example 4.2 that the fibers are perpendicular to the 200-mm
direction. Use MATLAB to calculate the transverse strain ε3 in this case.

MATLAB Problem 4.9

Write two MATLAB functions called ReducedStiffness2 and ReducedIsotrop-
icStifness2 where the reduced stiffness matrix in each case is determined by
taking the inverse of the reduced compliance matrix.
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Problem 4.10

Consider a layer of fiber-reinforced composite material that is subjected to
both temperature and moisture variations. Write the 3 × 3 reduced stress-
strain equations that correspond to (4.5) and (4.6). See Problems 2.9 and
2.10 of Chap. 2.
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Global Coordinate System

5.1 Basic Equations

In this chapter, we will refer the response of each layer (lamina) of material to
the same global system. We accomplish this by transforming the stress-strain
relations for the lamina 1-2-3 coordinate system into the global coordinate sys-
tem. This transformation will be done for the state of plane stress using the
standard transformation relations for stresses and strains given in introduc-
tory courses in mechanics of materials [1].

Consider an isolated infinitesimal element in the principal material coor-
dinate system (1-2-3 system) that will be transformed into the x-y-z global
coordinate system as shown in Fig. 5.1. The fibers are oriented at angle θ
with respect to the +x axis of the global system. The fibers are parallel to
the x-y plane and the 3 and z axes coincide. The orientation angle θ will be
considered positive when the fibers rotate counterclockwise from the +x axis
toward the +y axis.

The stresses on the small volume of element are now identified with respect
to the x-y-z system. The six components of stress are now σx, σy, σz, τyz,
τxz, and τxy, while the six components of strain are εx, εy, εz, γyz, γxz, and
γxy (see Fig. 5.2).

Note that in a plane stress state, it follows that the out-of-plane stress
components in the x-y-z global coordinate system are zero, i.e. σz = τyz =
τxz = 0 (see Problem 5.1).

The stress transformation relation is given as follows for the case of plane
stress: ⎧⎨

⎩
σ1

σ2

τ12

⎫⎬
⎭ =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn m2 − n2

⎤
⎦
⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (5.1)

where m = cos θ and n = sin θ. The above relation is written in compact form
as follows:
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Fig. 5.1. A infinitesimal fiber-reinforced composite element showing the local and
global coordinate systems

Fig. 5.2. An infinitesimal fiber-reinforced composite element showing the stress
components in the global coordinate system
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⎩

σ1

σ2

τ12

⎫⎬
⎭ = [T ]

⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ (5.2)

where [T ] is the transformation matrix given as follows:

[T ] =

⎡
⎣ m2 n2 2mn

n2 m2 −2mn
−mn mn m2 − n2

⎤
⎦ (5.3)

The inverse of the matrix [T ] is [T ]−1 given as follows (see Problem 5.3):

[T ]−1 =

⎡
⎣m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎦ (5.4)

where [T ]−1 is used in the following equation:⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭ = [T ]−1

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ (5.5)

Similar transformation relations hold for the strains as follows:⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ = [T ]

⎧⎪⎨
⎪⎩

εx

εy

1
2γxy

⎫⎪⎬
⎪⎭ (5.6)

⎧⎪⎨
⎪⎩

εx

εy

1
2γxy

⎫⎪⎬
⎪⎭ = [T ]−1

⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ (5.7)

Note that the strain transformation (5.6) and (5.7) include a factor of 1/2
with the engineering shear strain. Therefore (4.5) and (4.6) of Chap. 4 are
modified now to include this factor as follows:⎧⎪⎨

⎪⎩
ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 1

2S66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ (5.8)

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 2Q66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε1

ε2

1
2γ12

⎫⎪⎬
⎪⎭ (5.9)
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Substitute (5.6) and (5.2) into (5.8) and rearrange the terms to obtain (also
multiply the third row through by a factor of 2):⎧⎪⎨

⎪⎩
εx

εy

γxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭ (5.10)

where the transformed reduced compliance matrix [S̄] is given by:

[S̄] =

⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦ = [T ]−1

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦ [T ] (5.11)

Equation (5.11) represents the complex relations that describe the response
of an element of fiber-reinforced composite material in a state of plane stress
that is subjected to stresses not aligned with the fibers, nor perpendicular to
the fibers. In this case, normal stresses cause shear strains and shear stresses
cause extensional strains. This coupling found in fiber-reinforced composite
materials is called shear-extension coupling.

Similarly, we can derive the transformed reduced stiffness matrix [Q̄] by
substituting (5.2) and (5.6) into (5.9) and rearranging the terms. We therefore
obtain: ⎧⎪⎨

⎪⎩
σx

σy

τxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εx

εy

γxy

⎫⎪⎬
⎪⎭ (5.12)

where [Q̄] is given by:

[Q̄] =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦ = [T ]−1

⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎥⎦ [T ] (5.13)

Equation (5.13) further supports the shear-extension coupling of fiber-
reinforced composite materials. Note that the following relations hold between
[S̄] and [Q̄]:

[Q̄] = [S̄]−1 (5.14a)

[S̄] = [Q̄]−1 (5.14b)

5.2 MATLAB Functions Used

The four MATLAB functions used in this chapter to calculate the four major
matrices are:
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T (theta) – This function calculates the transformation matrix [T ] given the
angle “theta”. The orientation angle “theta” must be given in degrees. The
returned matrix has size 3 × 3.

Tinv(theta) – This function calculates the inverse of the transformation ma-
trix [T ] given the angle “theta”. The orientation angle “theta” must be given
in degrees. The returned matrix has size 3 × 3.

Sbar(S,theta) – This function calculates the transformed reduced compliance
matrix [S̄] for the lamina. Its input consists of two arguments representing
the reduced compliance matrix [S] and the orientation angle “theta”. The
returned matrix has size 3 × 3.

Qbar(Q,theta) – This function calculates the transformed reduced stiffness
matrix [Q̄] for the lamina. Its input consists of two arguments representing the
reduced stiffness matrix [Q] and the orientation angle “theta”. The returned
matrix has size 3 × 3.

The following is a listing of the MATLAB source code for each function:

function y = T(theta)

%T This function returns the transformation matrix T

% given the orientation angle "theta".

% There is only one argument representing "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

y = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

function y = Tinv(theta)

%Tinv This function returns the inverse of the

% transformation matrix T

% given the orientation angle "theta".

% There is only one argument representing "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

y = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

function y = Sbar(S,theta)

%Sbar This function returns the transformed reduced

% compliance matrix "Sbar" given the reduced

% compliance matrix S and the orientation

% angle "theta".

% There are two arguments representing S and "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);
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n = sin(theta*pi/180);

T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

y = Tinv*S*T;

function y = Qbar(Q,theta)

%Qbar This function returns the transformed reduced

% stiffness matrix "Qbar" given the reduced

% stiffness matrix Q and the orientation

% angle "theta".

% There are two arguments representing Q and "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

T = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

Tinv = [m*m n*n -2*m*n ; n*n m*m 2*m*n ; m*n -m*n m*m-n*n];

y = Tinv*Q*T;

Example 5.1

Using (5.11), derive explicit expressions for the elements S̄ij in terms of Sij

and θ (use m and n for θ).

Solution

Multiply the three matrices in (5.11) as follows:⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦ =

⎡
⎢⎣

m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎥⎦
⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦

⎡
⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎦

(5.15)

The above multiplication can be performed either manually or using a com-
puter algebra system like MAPLE or MATHEMATICA or the MATLAB Sym-
bolic Math Toolbox. Therefore, we obtain the following expression:

S̄11 = S11m
4 + (2S12 + S66)n2m2 + S22n

4 (5.16a)

S̄12 = (S11 + S22 − S66)n2m2 + S12(n4 + m4) (5.16b)

S̄16 = (2S11 − 2S12 − S66)nm3 − (2S22 − 2S12 − S66)n3m (5.16c)

S̄22 = S11n
4 + (2S12 + S66)n2m2 + S22m

4 (5.16d)

S̄26 = (2S11 − 2S12 − S66)n3m − (2S22 − 2S12 − S66)nm3 (5.16e)

S̄66 = 2(2S11 + 2S22 − 4S12 − S66)n2m2 + S66(n4 + m4) (5.16f)
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MATLAB Example 5.2

Consider a graphite-reinforced polymer composite lamina with the elastic con-
stants as given in Example 2.2. Use MATLAB to plot the values of the six
elements S̄ij of the transformed reduced compliance matrix [S̄] as a function
of the orientation angle θ in the range −π/2 ≤ θ ≤ π/2.

Solution

This example is solved using MATLAB. First, the reduced 3 × 3 compliance
matrix is obtained as follows using the MATLAB function ReducedCompliance
of Chap. 4.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the transformed reduced compliance matrix [S̄] is calculated at each
value of θ between −90◦ and 90◦ in increments of 10◦ using the MATLAB
function Sbar .

>> S1 = Sbar(S, -90)

S1 =

0.0826 -0.0016 -0.0000

-0.0016 0.0065 0.0000

-0.0000 0.0000 0.2273

>> S2 = Sbar(S, -80)

S2 =

0.0909 -0.0122 -0.0452

-0.0122 0.0193 0.0712

-0.0226 0.0356 0.2061

>> S3 = Sbar(S, -70)

S3 =

0.1111 -0.0390 -0.0647

-0.0390 0.0528 0.1137

-0.0323 0.0568 0.1524



64 5 Global Coordinate System

>> S4 = Sbar(S, -60)

S4 =

0.1315 -0.0695 -0.0454

-0.0695 0.0934 0.1114

-0.0227 0.0557 0.0914

>> S5 = Sbar(S, -50)

S5 =

0.1390 -0.0894 0.0065

-0.0894 0.1258 0.0685

0.0033 0.0342 0.0516

>> S6 = Sbar(S, -40)

S6 =

0.1258 -0.0894 0.0685

-0.0894 0.1390 0.0065

0.0342 0.0033 0.0516

>> S7 = Sbar(S, -30)

S7 =

0.0934 -0.0695 0.1114

-0.0695 0.1315 -0.0454

0.0557 -0.0227 0.0914

>> S8 = Sbar(S, -20)

S8 =

0.0528 -0.0390 0.1137

-0.0390 0.1111 -0.0647

0.0568 -0.0323 0.1524

>> S9 = Sbar(S, -10)

S9 =

0.0193 -0.0122 0.0712

-0.0122 0.0909 -0.0452

0.0356 -0.0226 0.2061
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>> S10 = Sbar(S, 0)

S10 =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

>> S11 = Sbar(S, 10)

S11 =

0.0193 -0.0122 -0.0712

-0.0122 0.0909 0.0452

-0.0356 0.0226 0.2061

>> S12 = Sbar(S, 20)

S12 =

0.0528 -0.0390 -0.1137

-0.0390 0.1111 0.0647

-0.0568 0.0323 0.1524

>> S13 = Sbar(S, 30)

S13 =

0.0934 -0.0695 -0.1114

-0.0695 0.1315 0.0454

-0.0557 0.0227 0.0914

>> S14 = Sbar(S, 40)

S14 =

0.1258 -0.0894 -0.0685

-0.0894 0.1390 -0.0065

-0.0342 -0.0033 0.0516

>> S15 = Sbar(S, 50)

S15 =

0.1390 -0.0894 -0.0065

-0.0894 0.1258 -0.0685

-0.0033 -0.0342 0.0516

>> S16 = Sbar(S, 60)



66 5 Global Coordinate System

S16 =

0.1315 -0.0695 0.0454

-0.0695 0.0934 -0.1114

0.0227 -0.0557 0.0914

>> S17 = Sbar(S, 70)

S17 =

0.1111 -0.0390 0.0647

-0.0390 0.0528 -0.1137

0.0323 -0.0568 0.1524

>> S18 = Sbar(S, 80)

S18 =

0.0909 -0.0122 0.0452

-0.0122 0.0193 -0.0712

0.0226 -0.0356 0.2061

>> S19 = Sbar(S, 90)

S19 =

0.0826 -0.0016 0.0000

-0.0016 0.0065 -0.0000

0.0000 -0.0000 0.2273

The x-axis is now setup for the plots as follows:

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

50 60 70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50

60 70 80 90

The values of S̄11 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y1 = [S1(1,1) S2(1,1) S3(1,1) S4(1,1) S5(1,1) S6(1,1) S7(1,1)

S8(1,1) S9(1,1) S10(1,1) S11(1,1) S12(1,1) S13(1,1) S14(1,1)

S15(1,1) 16(1,1) S17(1,1) S18(1,1) S19(1,1)]

y1 =

Columns 1 through 14
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0.0826 0.0909 0.1111 0.1315 0.1390 0.1258 0.0934

0.0528 0.0193 0.0065 0.0193 0.0528 0.0934 0.1258

Columns 15 through 19

0.1390 0.1315 0.1111 0.0909 0.0826

The plot of the values of S̄11 versus θ is now generated using the following
commands and is shown in Fig. 5.3. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

Fig. 5.3. Variation of S̄11 versus θ for Example 5.2

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{11} GPa’);

The values of S̄12 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y2 = [S1(1,2) S2(1,2) S3(1,2) S4(1,2) S5(1,2) S6(1,2) S7(1,2)

S8(1,2) S9(1,2) S10(1,2) S11(1,2) S12(1,2) S13(1,2)

S14(1,2) S15(1,2) S16(1,2) S17(1,2) S18(1,2) S19(1,2)]

y2 =

Columns 1 through 14

-0.0016 -0.0122 -0.0390 -0.0695 -0.0894 -0.0894 -0.0695

-0.0390 -0.0122 -0.0016 -0.0122 -0.0390 -0.0695 -0.0894
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Columns 15 through 19

-0.0894 -0.0695 -0.0390 -0.0122 -0.0016

The plot of the values of S̄12 versus θ is now generated using the following
commands and is shown in Fig. 5.4. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

Fig. 5.4. Variation of S̄12 versus θ for Example 5.2

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{12} GPa’);

The values of S̄16 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y3 = [S1(1,3) S2(1,3) S3(1,3) S4(1,3) S5(1,3) S6(1,3) S7(1,3)

S8(1,3) S9(1,3) S10(1,3) S11(1,3) S12(1,3) S13(1,3) S14(1,3)

S15(1,3) S16(1,3) S17(1,3) S18(1,3) S19(1,3)]

y3 =

Columns 1 through 14

-0.0000 -0.0452 -0.0647 -0.0454 0.0065 0.0685 0.1114

0.1137 0.0712 0 -0.0712 -0.1137 -0.1114 -0.0685

Columns 15 through 19

-0.0065 0.0454 0.0647 0.0452 0.0000



5.2 MATLAB Functions Used 69

Fig. 5.5. Variation of S̄16 versus θ for Example 5.2

The plot of the values of S̄16 versus θ is now generated using the following
commands and is shown in Fig. 5.5. Notice that this compliance is an odd
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{16} GPa’);

The values of S̄22 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y4 = [S1(2,2) S2(2,2) S3(2,2) S4(2,2) S5(2,2) S6(2,2) S7(2,2)

S8(2,2) S9(2,2) S10(2,2) S11(2,2) S12(2,2) S13(2,2) S14(2,2)

S15(2,2) S16(2,2) S17(2,2) S18(2,2) S19(2,2)]

y4 =

Columns 1 through 14

0.0065 0.0193 0.0528 0.0934 0.1258 0.1390 0.1315

0.1111 0.0909 0.0826 0.0909 0.1111 0.1315 0.1390

Columns 15 through 19

0.1258 0.0934 0.0528 0.0193 0.0065

The plot of the values of S̄22 versus θ is now generated using the following
commands and is shown in Fig. 5.6. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.
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>> plot(x,y4)}

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{22} GPa’);

Fig. 5.6. Variation of S̄22 versus θ for Example 5.2

The values of S̄26 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦

>> y5 = [S1(2,3) S2(2,3) S3(2,3) S4(2,3) S5(2,3) S6(2,3) S7(2,3)

S8(2,3) S9(2,3) S10(2,3) S11(2,3) S12(2,3) S13(2,3) S14(2,3)

S15(2,3) S16(2,3) S17(2,3) S18(2,3) S19(2,3)]

y5 =

Columns 1 through 14

0.0000 0.0712 0.1137 0.1114 0.0685 0.0065 -0.0454

-0.0647 -0.0452 0 0.0452 0.0647 0.0454 -0.0065

Columns 15 through 19

-0.0685 -0.1114 -0.1137 -0.0712 -0.0000

The plot of the values of S̄26 versus θ is now generated using the following
commands and is shown in Fig. 5.7. Notice that this compliance is an odd
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.
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Fig. 5.7. Variation of S̄26 versus θ for Example 5.2

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{26} GPa’);}

The values of S̄66 are now calculated for each value of θ between −90◦ and
90◦ in increments of 10◦.

>> y6 = [S1(3,3) S2(3,3) S3(3,3) S4(3,3) S5(3,3) S6(3,3) S7(3,3)

S8(3,3) S9(3,3) S10(3,3) S11(3,3) S12(3,3) S13(3,3) S14(3,3)

S15(3,3) S16(3,3) S17(3,3) S18(3,3) S19(3,3)]

y6 =

Columns 1 through 14

0.2273 0.2061 0.1524 0.0914 0.0516 0.0516 0.0914

0.1524 0.2061 0.2273 0.2061 0.1524 0.0914 0.0516

Columns 15 through 19

0.0516 0.0914 0.1524 0.2061 0.2273

The plot of the values of S̄66 versus θ is now generated using the following
commands and is shown in Fig. 5.8. Notice that this compliance is an even
function of θ. Notice also the rapid variation of the compliance as θ increases
or decreases from 0◦.

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{66} GPa’);
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Fig. 5.8. Variation of S̄66 versus θ for Example 5.2

MATLAB Example 5.3

Consider a plane element of size 40 mm × 40 mm made of graphite-reinforced poly-
mer composite material whose elastic constants are given in Example 2.2. The ele-
ment is subjected to a tensile stress σx = 200MPa in the x-direction. Use MATLAB
to calculate the strains and the deformed dimensions of the element in the following
two cases:

(a) the fibers are aligned along the x-axis.
(b) the fibers are inclined to the x-axis with an orientation angle θ = 30◦.

Solution

This example is solved using MATLAB. First, the reduced compliance matrix is
obtained as follows using the MATLAB function ReducedCompliance of Chap. 4.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the transformed reduced compliance matrix is calculated for part (a) with
θ = 0◦ using the MATLAB function Sbar.

>> S1 = Sbar(S,0)
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S1 =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the stress vector in the global coordinate system is setup in GPa as follows:

>> sigma = [200e-3 ; 0 ; 0]

sigma =

0.2000

0

0

The strain vector is now calculated in the global coordinate system using (5.10):

>> epsilon = S1*sigma

epsilon =

0.0013

-0.0003

0

The change in the length in both the x- and y-direction is calculated next in mm as
follows:

>> deltax = 40*epsilon(1)

deltax =

0.0516

>> deltay = 40*epsilon(2)

deltay =

-0.0128

The change in the right angle (in radians) of the element is then calculated using
the shear strain obtained from the strain vector above. It is noticed that in this
case, this change is zero indicating that the right angle remains a right angle after
deformation. This is mainly due to the fibers being aligned along the x-direction.

>> gammaxy = epsilon(3)

gammaxy =

0

The deformed dimensions are next calculated as follows:
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>> dx = 40 + deltax

dx =

40.0516

>> dy = 40 + deltay

dy =

39.9872

Next, the transformed reduced compliance matrix is calculated for part (b) with
θ = 30◦ using the MATLAB function Sbar.

>> S2 = Sbar(S, 30)

S2 =

0.0934 -0.0695 -0.1114

-0.0695 0.1315 0.0454

-0.0557 0.0227 0.0914

The strain vector is now calculated in the global coordinate system using (5.10):

>> epsilon = S2*sigma

epsilon =

0.0187

-0.0139

-0.0111

The change in the length in both the x- and y-direction is calculated next in mm as
follows:

>> deltax = 40*epsilon(1)

deltax =

0.7474

>> deltay = 40*epsilon(2)

deltay =

-0.5562

The deformed dimensions are next calculated as follows:

>> dx = 40 + deltax
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dx =

40.7474

>> dy = 40 + deltay

dy =

39.4438

The change in the right angle (in radians) of the element is then calculated using
the shear strain obtained from the strain vector above. It is noticed that in this case,
there is a negative shear strain indicating that the right angle increases to become
more than 90◦ after deformation. This is mainly due to the fibers being inclined at
an angle to the x-direction.

>> gammaxy = epsilon(3)

gammaxy =

-0.0111

Problems

Problem 5.1

Show mathematically why the three stresses σz, τyz, and τxz (with respect to the
global coordinate system) vanish in the case of plane stress.

Problem 5.2

Derive (5.1) in detail.

Problem 5.3

Derive the expression for [T ]−1 given in (5.4). Use (5.3) in your derivation.

Problem 5.4

Show the validity of (5.14a,b).

Problem 5.5

Using (5.13), derive explicit expressions for the elements Q̄ij in terms of Qij and θ
(use m and n for θ).
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MATLAB Problem 5.6

Write a new MATLAB function called Tinv2 which calculates the inverse of the
transformation matrix [T ] by calculating first [T ] then inverting it using the MAT-
LAB function inv. Use the same argument “theta” that was used in the MATLAB
function Tinv .

MATLAB Problem 5.7

(a) Write a new MATLAB function called Sbar2 to calculate the transformed re-
duced compliance matrix [S̄]. Use the two arguments S and T instead of S and
“theta” as was used in the MATLAB function Sbar .

(b) Write a new MATLAB function called Qbar2 to calculate the transformed re-
duced stiffness matrix [Q̄]. Use the two arguments Q and T instead of Q and
“theta” as was used in the MATLAB function Qbar.

MATLAB Problem 5.8

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the six elements S̄ij of the
transformed reduced compliance matrix [S̄] as a function of the orientation angle θ
in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 5.9

Consider a graphite-reinforced polymer composite lamina with the elastic constants
as given in Example 2.2. Use MATLAB to plot the values of the six elements Q̄ij of
the transformed reduced stiffness matrix [Q̄] as a function of the orientation angle
θ in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 5.10

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the six elements Q̄ij of
the transformed reduced stiffness matrix [Q̄] as a function of the orientation angle
θ in the range −π/2 ≤ θ ≤ π/2.

Problem 5.11

(a) Show that the transformed reduced compliance matrix [S̄] becomes equal to the
reduced compliance matrix [S] when θ = 0◦.

(b) Show that the transformed reduced stiffness matrix [Q̄] becomes equal to the
reduced stiffness matrix [Q] when θ = 0◦.
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Problem 5.12

Show that [S̄] = [S] for isotropic materials. In particular, show the following rela-
tion:

[S̄] = [S] =

⎡
⎢⎢⎢⎢⎢⎣

1

E
− ν

E
0

− ν

E

1

E
0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦ (5.17)

Problem 5.13

Show that [Q̄] = [Q] for isotropic materials. In particular, show the following rela-
tion:

[Q̄] = [Q] =

⎡
⎢⎢⎢⎢⎢⎣

E

1 − ν2

νE

1 − ν2
0

νE

1 − ν2

E

1 − ν2
0

0 0
E

2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎦ (5.18)

MATLAB Problem 5.14

Consider a plane element of size 50 mm × 50 mm made of glass-reinforced polymer
composite material whose elastic constants are given in Problem 2.7. The element
is subjected to a tensile stress σx = 100MPa in the x-direction. Use MATLAB to
calculate the strains and the deformed dimensions of the element in the following
three cases:

(a) the fibers are aligned along the x-axis.
(b) the fibers are inclined to the x-axis with an orientation angle θ = 45◦.
(c) the fibers are inclined to the x-axis with an orientation angle θ = −45◦.

Problem 5.15

Consider the case of free thermal and moisture strains. Show that in this case (5.10)
and (5.12) take the following modified forms:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭ (5.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎪⎬
⎪⎪⎭ (5.20)



78 Global Coordinate System

where ∆T and ∆M are the changes in temperature and moisture, respectively, αx,
αy and αxy are the coefficients of thermal expansion with respect to the global
coordinate system, and βx, βy, and βxy are the coefficients of moisture deformation
with respect to the global coordinate system.



6

Elastic Constants Based
on Global Coordinate System

6.1 Basic Equations

The engineering properties or elastic constants were introduced in Chap. 2 with
respect to the lamina 1-2-3 coordinate system. Their evaluation was presented in
Chap. 3 based also on the 1-2-3 coordinate system. We can also define elastic con-
stants with respect to the x-y-z global coordinate system. The elastic constants in
the x-y-z coordinate system can be derived directly from their definitions, just as
they were derived in Chap. 3 for the 1-2-3 coordinate system.

The elastic constants based on the x-y-z global coordinate system are given as
follows [1]:

Ex =
E1

m4 +
(

E1
G12

− 2ν12

)
n2m2 + E1

E2
n4

(6.1)

νxy =
ν12

(
n4 + m4

) − (1 + E1
E2

− E1
G12

)
n2m2

m4 +
(

E1
G12

− 2ν12

)
n2m2 + E1

E2
n2

(6.2)

Ey =
E2

m4 +
(

E2
G12

− 2ν21

)
n2m2 + E2

E1
n4

(6.3)

νyx =
ν21

(
n4 + m4

) − (1 + E2
E1

− E2
G12

)
n2m2

m4 +
(

E2
G12

− 2ν21

)
n2m2 + E2

E1
n2

(6.4)

Gxy =
G12

n4 + m4 + 2
(

2G12
E1

(1 + 2ν12) + 2G12
E2

− 1
)

n2m2
(6.5)

It is useful to define several other material properties for fiber-reinforced com-
posite materials that can be used to categorize response [1]. These properties have
as their basis the fact that an element of fiber-reinforced composite material with
its fiber oriented at some arbitrary angle exhibits a shear strain when subjected to
a normal stress, and it also exhibits an extensional strain when subjected to a shear
stress.
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Poisson’s ratio is defined as the ratio of extensional strains, given that the el-
ement is subjected only to a simple normal stress. By analogy, the coefficient of
mutual influence of the second kind is defined as the ratio of a shear strain to an
extensional strain, given that the element is subjected to only a single normal stress.
The coefficient of mutual influence of the first kind is defined as the ratio of an ex-
tensional strain to a shear strain, given that the element is subjected to only a single
shear stress (see [1]).

One coefficient of mutual influence of the second kind is defines as follows:

ηxy,x =
γxy

εx
(6.6)

where σx �= 0 and all other stresses are zero. Another coefficient of mutual influence
of the second kind is defined as follows:

ηxy,y =
γxy

εy
(6.7)

where σy �= 0 and all other stresses are zero. It can be shown that the coefficients
of mutual influence of the second kind can be written as follows:

ηxy,x =
S̄16

S̄11
(6.8)

ηxy,y =
S̄26

S̄22
(6.9)

The coefficients of mutual influence of the first kind are defined as follows:

ηx,xy =
εx

γxy
(6.10)

ηy,xy =
εy

γxy
(6.11)

where τxy �= 0 and all other stresses are zero. It can be shown that the coefficients
of mutual influence of the first kind can be written as follows:

ηx,xy =
S̄16

S̄66
(6.12)

ηy,xy =
S̄26

S̄66
(6.13)

6.2 MATLAB Functions Used

The nine MATLAB functions used in this chapter to calculate the constants based
on the global coordinate system are :

Ex (E1, E2, NU12, G12, theta) – This function calculates the elastic modulus Ex

along the x-direction in the global coordinate system. Its input consists of five ar-
guments representing the four elastic constants E1, E2, ν12, G12, and the fiber
orientation angle θ.
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NUxy(E1, E2, NU12, G12, theta) – This function calculates Poisson’s ratio νxy in
the global coordinate system. Its input consists of five arguments representing the
four elastic constants E1, E2, ν12, G12, and the fiber orientation angle θ.

Ey(E1, E2, NU21, G12, theta) – This function calculates the elastic modulus Ey

along the y-direction in the global coordinate system. Its input consists of five ar-
guments representing the four elastic constants E1, E2, ν21, G12, and the fiber
orientation angle θ.

NUyx (E1, E2, NU21, G12, theta) – This function calculates Poisson’s ratio νyx in
the global coordinate system. Its input consists of five arguments representing the
four elastic constants E1, E2, ν21, G12, and the fiber orientation angle θ.

Gxy(E1, E2, NU12, G12, theta) – This function calculates the shear modulus Gxy

in the global coordinate system. Its input consists of five arguments representing
the four elastic constants E1, E2, ν12, G12, and the fiber orientation angle θ.

Etaxyx (Sbar) – This function calculates the coefficient of mutual influence of the
second kind ηxy,x. It has one argument – the transformed reduced compliance matrix
[S̄].

Etaxyy(Sbar) – This function calculates the coefficient of mutual influence of the
second kind ηxy,y. It has one argument – the transformed reduced compliance matrix
[S̄].

Etaxxy(Sbar) – This function calculates the coefficient of mutual influence of the
first kind ηx,xy. It has one argument – the transformed reduced compliance matrix
[S̄].

Etayxy(Sbar) – This function calculates the coefficient of mutual influence of the
first kind ηy,xy. It has one argument – the transformed reduced compliance matrix
[S̄].

The following is a listing of the MATLAB source code for each function:

function y = Ex(E1,E2,NU12,G12,theta)

%Ex This function returns the elastic modulus

% along the x-direction in the global

% coordinate system. It has five arguments:

% E1 - longitudinal elastic modulus

% E2 - transverse elastic modulus

% NU12 - Poisson’s ratio

% G12 - shear modulus

% theta - fiber orientation angle

% The angle "theta" must be given in degrees.

% Ex is returned as a scalar

m = cos(theta*pi/180);

n = sin(theta*pi/180);

denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n^4;

y = E1/denom;
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function y = NUxy(E1,E2,NU12,G12,theta)

%NUxy This function returns Poisson’s ratio

% NUxy in the global

% coordinate system. It has five arguments:

% E1 - longitudinal elastic modulus

% E2 - transverse elastic modulus

% NU12 - Poisson’s ratio

% G12 - shear modulus

% theta - fiber orientation angle

% The angle "theta" must be given in degrees.

% NUxy is returned as a scalar

m = cos(theta*pi/180);

n = sin(theta*pi/180);

denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n*n;

numer = NU12*(n^4 + m^4) - (1 + E1/E2 - E1/G12)*n*n*m*m;

y = numer/denom;

function y = Ey(E1,E2,NU21,G12,theta)

%Ey This function returns the elastic modulus

% along the y-direction in the global

% coordinate system. It has five arguments:

% E1 - longitudinal elastic modulus

% E2 - transverse elastic modulus

% NU21 - Poisson’s ratio

% G12 - shear modulus

% theta - fiber orientation angle

% The angle "theta" must be given in degrees.

% Ey is returned as a scalar

m = cos(theta*pi/180);

n = sin(theta*pi/180);

denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n^4;

y = E2/denom;

function y = NUyx(E1,E2,NU21,G12,theta)

%NUyx This function returns Poisson’s ratio

% NUyx in the global

% coordinate system. It has five arguments:

% E1 - longitudinal elastic modulus

% E2 - transverse elastic modulus

% NU21 - Poisson’s ratio

% G12 - shear modulus

% theta - fiber orientation angle

% The angle "theta" must be given in degrees.

% NUyx is returned as a scalar

m = cos(theta*pi/180);

n = sin(theta*pi/180);

denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n*n;

numer = NU21*(n^4 + m^4) - (1 + E2/E1 - E2/G12)*n*n*m*m;

y = numer/denom;
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function y = Gxy(E1,E2,NU12,G12,theta)

%Gxy This function returns the shear modulus

% Gxy in the global

% coordinate system. It has five arguments:

% E1 - longitudinal elastic modulus

% E2 - transverse elastic modulus

% NU12 - Poisson’s ratio

% G12 - shear modulus

% theta - fiber orientation angle

% The angle "theta" must be given in degrees.

% Gxy is returned as a scalar

m = cos(theta*pi/180);

n = sin(theta*pi/180);

denom = n^4 + m^4 + 2*(2*G12*(1 + 2*NU12)/E1 + 2*G12/E2 - 1)

*n*n*m*m;

y = G12/denom;

function y = Etaxyx(Sbar)

%Etaxyx This function returns the coefficient of

% mutual influence of the second kind

% ETAxy,x in the global coordinate system.

% It has one argument - the reduced

% transformed compliance matrix Sbar.

% Etaxyx is returned as a scalar

y = Sbar(1,3)/Sbar(1,1);

function y = Etaxyy(Sbar)

%Etaxyy This function returns the coefficient of

% mutual influence of the second kind

% ETAxy,y in the global coordinate system.

% It has one argument - the reduced

% transformed compliance matrix Sbar.

% Etaxyy is returned as a scalar

y = Sbar(2,3)/Sbar(2,2);

function y = Etaxxy(Sbar)

%Etaxxy This function returns the coefficient of

% mutual influence of the first kind

% ETAx,xy in the global coordinate system.

% It has one argument - the reduced

% transformed compliance matrix Sbar.

% Etaxxy is returned as a scalar

y = Sbar(1,3)/Sbar(3,3);
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function y = Etayxy(Sbar)

%Etayxy This function returns the coefficient of

% mutual influence of the first kind

% ETAy,xy in the global coordinate system.

% It has one argument - the reduced

% transformed compliance matrix Sbar.

% Etayxy is returned as a scalar

y = Sbar(2,3)/Sbar(3,3);

Example 6.1

Derive the expression for Ex given in (6.1).

Solution

From an elementary course on mechanics of materials, we have the following relation
(assuming uniaxial tension with σx �= 0 and all other stresses zeros):

εx =
σx

Ex
(6.14)

However, from (5.10), we also have the following relation:

εx = S̄11σx (6.15)

Comparing (6.14) and (6.15), we conclude the following:

1

Ex
= S̄11 (6.16)

Substituting for S̄11 from (5.16a) and taking the inverse of (6.16), we obtain the
desired result as follows:

Ex =
1

S̄11
=

E1

m4 +
(

E1
G12

− 2ν12

)
n2m2 + E1

E2
n4

(6.17)

In the above equation, we have substituted for the elements of the reduced
compliance matrix with the appropriate elastic constants.

MATLAB Example 6.2

Consider a graphite-reinforced polymer composite lamina with the elastic constants
as given in Example 2.2. Use MATLAB to plot the values of the five elastic constants
Ex, νxy, Ey, νyx, and Gxy as a function of the orientation angle θ in the range
−π/2 ≤ θ ≤ π/2.
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Solution

This example is solved using MATLAB. The elastic modulus Ex is calculated at
each value of θ between −90◦ and 90◦ in increments of 10◦ using the MATLAB
function Ex .

>> Ex1 = Ex(155.0, 12.10, 0.248, 4.40, -90)

Ex1 =

12.1000

>> Ex2 = Ex(155.0, 12.10, 0.248, 4.40, -80)

Ex2 =

11.8632

>> Ex3 = Ex(155.0, 12.10, 0.248, 4.40, -70)

Ex3 =

11.4059

>> Ex4 = Ex(155.0, 12.10, 0.248, 4.40, -60)

Ex4 =

11.2480

>> Ex5 = Ex(155.0, 12.10, 0.248, 4.40, -50)

Ex5 =

11.9204

>> Ex6 = Ex(155.0, 12.10, 0.248, 4.40, -40)

Ex6 =

14.1524

>> Ex7 = Ex(155.0, 12.10, 0.248, 4.40, -30)

Ex7 =

19.6820

>> Ex8 = Ex(155.0, 12.10, 0.248, 4.40, -20)
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Ex8 =

34.1218

>> Ex9 = Ex(155.0, 12.10, 0.248, 4.40, -10)

Ex9 =

78.7623

>> Ex10 = Ex(155.0, 12.10, 0.248, 4.40, 0)

Ex10 =

155

>> Ex11 = Ex(155.0, 12.10, 0.248, 4.40, 10)

Ex11 =

78.7623

>> Ex12 = Ex(155.0, 12.10, 0.248, 4.40, 20)

Ex12 =

34.1218

>> Ex13 = Ex(155.0, 12.10, 0.248, 4.40, 30)

Ex13 =

19.6820

>> Ex14 = Ex(155.0, 12.10, 0.248, 4.40, 40)

Ex14 =

14.1524

>> Ex15 = Ex(155.0, 12.10, 0.248, 4.40, 50)

Ex15 =

11.9204

>> Ex16 = Ex(155.0, 12.10, 0.248, 4.40, 60)
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Ex16 =

11.2480

>> Ex17 = Ex(155.0, 12.10, 0.248, 4.40, 70)

Ex17 =

11.4059

>> Ex18 = Ex(155.0, 12.10, 0.248, 4.40, 80)

Ex18 =

11.8632

>> Ex19 = Ex(155.0, 12.10, 0.248, 4.40, 90)

Ex19 =

12.1000

The x-axis is now setup for the plots as follows:

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

40 50 60 70 80 90

The values of Ex are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y1 = [Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11 Ex12 Ex13 Ex14

Ex15 Ex16 Ex17 Ex18 Ex19]

y1 =

Columns 1 through 14

12.1000 11.8632 11.4059 11.2480 11.9204 14.1524 19.6820

34.1218 78.7623 155.0000 78.7623 34.1218 19.6820 14.1524

Columns 15 through 19

11.9204 11.2480 11.4059 11.8632 12.1000
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Fig. 6.1. Variation of Ex versus θ for Example 6.2

The plot of the values of Ex versus θ is now generated using the following
commands and is shown in Fig. 6.1. Notice that this modulus is an even function
of θ. Notice also the rapid variation of the modulus as θ increases or decreases from
0◦.

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘E_x (GPa)’);

Next, Poisson’s ratio νxy is calculated at each value of θ between −90◦ and 90◦

in increments of 10◦ using the MATLAB function NUxy.

>> NUxy1 = NUxy(155.0, 12.10, 0.248, 4.40, -90)

NUxy1 =

0.0194

>> NUxy2 = NUxy(155.0, 12.10, 0.248, 4.40, -80)

NUxy2 =

0.0640

>> NUxy3 = NUxy(155.0, 12.10, 0.248, 4.40, -70)
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NUxy3 =

0.1615

>> NUxy4 = NUxy(155.0, 12.10, 0.248, 4.40, -60)

NUxy4 =

0.2577

>> NUxy5 = NUxy(155.0, 12.10, 0.248, 4.40, -50)

NUxy5 =

0.3303

>> NUxy6 = NUxy(155.0, 12.10, 0.248, 4.40, -40)

NUxy6 =

0.3785

>> NUxy7 = NUxy(155.0, 12.10, 0.248, 4.40, -30)

NUxy7 =

0.4058

>> NUxy8 = NUxy(155.0, 12.10, 0.248, 4.40, -20)

NUxy8 =

0.4107

>> NUxy9 = NUxy(155.0, 12.10, 0.248, 4.40, -10)

NUxy9 =

0.3670

>> NUxy10 = NUxy(155.0, 12.10, 0.248, 4.40, 0)

NUxy10 =

0.2480

>> NUxy11 = NUxy(155.0, 12.10, 0.248, 4.40, 10)
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NUxy11 =

0.3670

>> NUxy12 = NUxy(155.0, 12.10, 0.248, 4.40, 20)

NUxy12 =

0.4107

>> NUxy13 = NUxy(155.0, 12.10, 0.248, 4.40, 30)

NUxy13 =

0.4058

>> NUxy14 = NUxy(155.0, 12.10, 0.248, 4.40, 40)

NUxy14 =

0.3785

>> NUxy15 = NUxy(155.0, 12.10, 0.248, 4.40, 50)

NUxy15 =

0.3303

>> NUxy16 = NUxy(155.0, 12.10, 0.248, 4.40, 60)

NUxy16 =

0.2577

>> NUxy17 = NUxy(155.0, 12.10, 0.248, 4.40, 70)

NUxy17 =

0.1615

>> NUxy18 = NUxy(155.0, 12.10, 0.248, 4.40, 80)

NUxy18 =

0.0640

>> NUxy19 = NUxy(155.0, 12.10, 0.248, 4.40, 90)
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NUxy19 =

0.0194

The values of νxy are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y2 = [NUxy1 NUxy2 NUxy3 NUxy4 NUxy5 NUxy6 NUxy7 NUxy8 NUxy9 NUxy10

NUxy11 NUxy12 NUxy13 NUxy14 NUxy15 NUxy16 NUxy17 NUxy18 NUxy19]

y2 =

Columns 1 through 14

0.0194 0.0640 0.1615 0.2577 0.3303 0.3785

0.4058 0.4107 0.3670 0.2480 0.3670 0.4107 0.4058 0.3785

Columns 15 through 19

0.3303 0.2577 0.1615 0.0640 0.0194

The plot of the values of νxy versus θ is now generated using the following
commands and is shown in Fig. 6.2. Notice that this ratio is an even function of θ.
Notice also the rapid variation of the ratio as θ increases or decreases from 0◦.

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\nu_{xy}’);

Fig. 6.2. Variation of νxy versus θ for Example 6.2
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Next, the elastic modulus Ey is calculated at each value of θ between −90◦ and
90◦ in increments of 10◦ using the MATLAB function Ey .

>> Ey1 = Ey(155.0, 12.10, 0.248, 4.40, -90)

Ey1 =

155

>> Ey2 = Ey(155.0, 12.10, 0.248, 4.40, -80)

Ey2 =

86.2721

>> Ey3 = Ey(155.0, 12.10, 0.248, 4.40, -70)

Ey3 =

39.3653

>> Ey4 = Ey(155.0, 12.10, 0.248, 4.40, -60)

Ey4 =

22.8718

>> Ey5 = Ey(155.0, 12.10, 0.248, 4.40, -50)

Ey5 =

16.2611

>> Ey6 = Ey(155.0, 12.10, 0.248, 4.40, -40)

Ey6 =

13.3820

>> Ey7 = Ey(155.0, 12.10, 0.248, 4.40, -30)

Ey7 =

12.2222

>> Ey8 = Ey(155.0, 12.10, 0.248, 4.40, -20)
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Ey8 =

11.9374

>> Ey9 = Ey(155.0, 12.10, 0.248, 4.40, -10)

Ey9 =

12.0208

>> Ey10 = Ey(155.0, 12.10, 0.248, 4.40, 0)

Ey10 =

12.1000

>> Ey11 = Ey(155.0, 12.10, 0.248, 4.40, 10)

Ey11 =

12.0208

>> Ey12 = Ey(155.0, 12.10, 0.248, 4.40, 20)

Ey12 =

11.9374

>> Ey13 = Ey(155.0, 12.10, 0.248, 4.40, 30)

Ey13 =

12.2222

>> Ey14 = Ey(155.0, 12.10, 0.248, 4.40, 40)

Ey14 =

13.3820

>> Ey15 = Ey(155.0, 12.10, 0.248, 4.40, 50)

Ey15 =

16.2611

>> Ey16 = Ey(155.0, 12.10, 0.248, 4.40, 60)
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Ey16 =

22.8718

>> Ey17 = Ey(155.0, 12.10, 0.248, 4.40, 70)

Ey17 =

39.3653

>> Ey18 = Ey(155.0, 12.10, 0.248, 4.40, 80)

Ey18 =

86.2721

>> Ey19 = Ey(155.0, 12.10, 0.248, 4.40, 90)

Ey19 =

155

The values of Ey are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y3 = [Ey1 Ey2 Ey3 Ey4 Ey5 Ey6 Ey7 Ey8 Ey9 Ey10 Ey11 Ey12 Ey13 Ey14

Ey15 Ey16 Ey17 Ey18 Ey19]

y3 =

Columns 1 through 14

155.0000 86.2721 39.3653 22.8718 16.2611 13.3820 12.2222

11.9374 12.0208 12.1000 12.0208 11.9374 12.2222 13.3820

Columns 15 through 19

16.2611 22.8718 39.3653 86.2721 155.0000

The plot of the values of Ey versus θ is now generated using the following
commands and is shown in Fig. 6.3. Notice that this modulus is an even function
of θ. Notice also the rapid variation of the modulus as θ increases or decreases
from 0◦.

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘E_y (GPa)’);

Next, Poisson’s ratio νyx is calculated at each value of θ between −90◦ and 90◦

in increments of 10◦ using the MATLAB function NUyx
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Fig. 6.3. Variation of Ey versus θ for Example 6.2

>> NUyx1 = NUyx(155.0, 12.10, 0.248, 4.40, -90)

NUyx1 =

3.1769

>> NUyx2 = NUyx(155.0, 12.10, 0.248, 4.40, -80)

NUyx2 =

1.9812

>> NUyx3 = NUyx(155.0, 12.10, 0.248, 4.40, -70)

NUyx3 =

1.1713

>> NUyx4 = NUyx(155.0, 12.10, 0.248, 4.40, -60)

NUyx4 =

0.8617

>> NUyx5 = NUyx(155.0, 12.10, 0.248, 4.40, -50)
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NUyx5 =

0.6987

>> NUyx6 = NUyx(155.0, 12.10, 0.248, 4.40, -40)

NUyx6 =

0.5775

>> NUyx7 = NUyx(155.0, 12.10, 0.248, 4.40, -30)

NUyx7 =

0.4663

>> NUyx8 = NUyx(155.0, 12.10, 0.248, 4.40, -20)

NUyx8 =

0.3616

>> NUyx9 = NUyx(155.0, 12.10, 0.248, 4.40, -10)

NUyx9 =

0.2799

>> NUyx10 = NUyx(155.0, 12.10, 0.248, 4.40, 0)

NUyx10 =

0.2480

>> NUyx11 = NUyx(155.0, 12.10, 0.248, 4.40, 10)

NUyx11 =

0.2799

>> NUyx12 = NUyx(155.0, 12.10, 0.248, 4.40, 20)

NUyx12 =

0.3616

>> NUyx13 = NUyx(155.0, 12.10, 0.248, 4.40, 30)



6.2 MATLAB Functions Used 97

NUyx13 =

0.4663

>> NUyx14 = NUyx(155.0, 12.10, 0.248, 4.40, 40)

NUyx14 =

0.5775

>> NUyx15 = NUyx(155.0, 12.10, 0.248, 4.40, 50)

NUyx15 =

0.6987

>> NUyx16 = NUyx(155.0, 12.10, 0.248, 4.40, 60)

NUyx16 =

0.8617

>> NUyx17 = NUyx(155.0, 12.10, 0.248, 4.40, 70)

NUyx17 =

1.1713

>> NUyx18 = NUyx(155.0, 12.10, 0.248, 4.40, 80)

NUyx18 =

1.9812

>> NUyx19 = NUyx(155.0, 12.10, 0.248, 4.40, 90)

NUyx19 =

3.1769

The values of νyx are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y4 = [NUyx1 NUyx2 NUyx3 NUyx4 NUyx5 NUyx6 NUyx7 NUyx8 NUyx9 NUyx10

NUyx11 NUyx12 NUyx13 NUyx14 NUyx15 NUyx16 NUyx17 NUyx18 NUyx19]

y4 =

Columns 1 through 14



98 6 Elastic Constants Based on Global Coordinate System

3.1769 1.9812 1.1713 0.8617 0.6987 0.5775 0.4663

0.3616 0.2799 0.2480 0.2799 0.3616 0.4663 0.5775

Columns 15 through 19

0.6987 0.8617 1.1713 1.9812 3.1769

The plot of the values of νyx versus θ is now generated using the following
commands and is shown in Fig. 6.4. Notice that this ratio is an even function of θ.
Notice also the rapid variation of the ratio as θ increases or decreases from 0◦.

Fig. 6.4. Variation of νyx versus θ for Example 6.2

>> plot(x,y4)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\nu_{yx}’);

Next, the shear modulus Gxy is calculated at each value of θ between −90◦ and
90◦ in increments of 10◦ using the MATLAB function Gxy.

>> Gxy1 = Gxy(155.0, 12.10, 0.248, 4.40, -90)

Gxy1 =

4.4000

>> Gxy2 = Gxy(155.0, 12.10, 0.248, 4.40, -80)

Gxy2 =

4.7285
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>> Gxy3 = Gxy(155.0, 12.10, 0.248, 4.40, -70)

Gxy3 =

5.8308

>> Gxy4 = Gxy(155.0, 12.10, 0.248, 4.40, -60)

Gxy4 =

7.9340

>> Gxy5 = Gxy(155.0, 12.10, 0.248, 4.40, -50)

Gxy5 =

10.3771

>> Gxy6 = Gxy(155.0, 12.10, 0.248, 4.40, -40)

Gxy6 =

10.3771

>> Gxy7 = Gxy(155.0, 12.10, 0.248, 4.40, -30)

Gxy7 =

7.9340

>> Gxy8 = Gxy(155.0, 12.10, 0.248, 4.40, -20)

Gxy8 =

5.8308

>> Gxy9 = Gxy(155.0, 12.10, 0.248, 4.40, -10)

Gxy9 =

4.7285

>> Gxy10 = Gxy(155.0, 12.10, 0.248, 4.40, 0)

Gxy10 =

4.4000



100 6 Elastic Constants Based on Global Coordinate System

>> Gxy11 = Gxy(155.0, 12.10, 0.248, 4.40, 10)

Gxy11 =

4.7285

>> Gxy12 = Gxy(155.0, 12.10, 0.248, 4.40, 20)

Gxy12 =

5.8308

>> Gxy13 = Gxy(155.0, 12.10, 0.248, 4.40, 30)

Gxy13 =

7.9340

>> Gxy14 = Gxy(155.0, 12.10, 0.248, 4.40, 40)

Gxy14 =

10.3771

>> Gxy15 = Gxy(155.0, 12.10, 0.248, 4.40, 50)

Gxy15 =

10.3771

>> Gxy16 = Gxy(155.0, 12.10, 0.248, 4.40, 60)

Gxy16 =

7.9340

>> Gxy17 = Gxy(155.0, 12.10, 0.248, 4.40, 70)

Gxy17 =

5.8308

>> Gxy18 = Gxy(155.0, 12.10, 0.248, 4.40, 80)

Gxy18 =

4.7285
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>> Gxy19 = Gxy(155.0, 12.10, 0.248, 4.40, 90)

Gxy19 =

4.4000

The values of Gxy are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y5 = [Gxy1 Gxy2 Gxy3 Gxy4 Gxy5 Gxy6 Gxy7 Gxy8 Gxy9 Gxy10 Gxy11

Gxy12 Gxy13 Gxy14 Gxy15 Gxy16 Gxy17 Gxy18 Gxy19]

y5 =

Columns 1 through 14

4.4000 4.7285 5.8308 7.9340 10.3771 10.3771 7.9340

5.8308 4.7285 4.4000 4.7285 5.8308 7.9340 10.3771

Columns 15 through 19

10.3771 7.9340 5.8308 4.7285 4.4000

The plot of the values of Gxy versus θ is now generated using the following
commands and is shown in Fig. 6.5. Notice that this modulus is an even function
of θ. Notice also the rapid variation of the modulus as θ increases or decreases
from 0◦.

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘G_{xy} (GPa)’);

Fig. 6.5. Variation of Gxy versus θ for Example 6.2
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MATLAB Example 6.3

Consider a graphite-reinforced polymer composite lamina with the elastic constants
as given in Example 2.2. Use MATLAB to plot the values of the two coefficients of
mutual influence of the second kind ηxy,x and ηxy,y as a function of the orientation
angle θ in the range −π/2 ≤ θ ≤ π/2.

Solution

This example is solved using MATLAB. First, the reduced 3× 3 compliance matrix
is obtained as follows using the MATLAB function ReducedCompliance of Chap. 4.

>> S = ReducedCompliance(155.0, 12.10, 0.248, 4.40)

S =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

Next, the transformed reduced compliance matrix [S̄] is calculated at each value
of θ between −90◦ and 90◦ in increments of 10◦ using the MATLAB function Sbar.

>> S1 = Sbar(S, -90)

S1 =

0.0826 -0.0016 -0.0000

-0.0016 0.0065 0.0000

-0.0000 0.0000 0.2273

>> S2 = Sbar(S, -80)

S2 =

0.0909 -0.0122 -0.0452

-0.0122 0.0193 0.0712

-0.0226 0.0356 0.2061

>> S3 = Sbar(S, -70)

S3 =

0.1111 -0.0390 -0.0647

-0.0390 0.0528 0.1137

-0.0323 0.0568 0.1524

>> S4 = Sbar(S, -60)
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S4 =

0.1315 -0.0695 -0.0454

-0.0695 0.0934 0.1114

-0.0227 0.0557 0.0914

>> S5 = Sbar(S, -50)

S5 =

0.1390 -0.0894 0.0065

-0.0894 0.1258 0.0685

0.0033 0.0342 0.0516

>> S6 = Sbar(S, -40)

S6 =

0.1258 -0.0894 0.0685

-0.0894 0.1390 0.0065

0.0342 0.0033 0.0516

>> S7 = Sbar(S, -30)

S7 =

0.0934 -0.0695 0.1114

-0.0695 0.1315 -0.0454

0.0557 -0.0227 0.0914

>> S8 = Sbar(S, -20)

S8 =

0.0528 -0.0390 0.1137

-0.0390 0.1111 -0.0647

0.0568 -0.0323 0.1524

>> S9 = Sbar(S, -10)

S9 =

0.0193 -0.0122 0.0712

-0.0122 0.0909 -0.0452

0.0356 -0.0226 0.2061

>> S10 = Sbar(S, 0)
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S10 =

0.0065 -0.0016 0

-0.0016 0.0826 0

0 0 0.2273

>> S11 = Sbar(S, 10)

S11 =

0.0193 -0.0122 -0.0712

-0.0122 0.0909 0.0452

-0.0356 0.0226 0.2061

>> S12 = Sbar(S, 20)

S12 =

0.0528 -0.0390 -0.1137

-0.0390 0.1111 0.0647

-0.0568 0.0323 0.1524

>> S13 = Sbar(S, 30)

S13 =

0.0934 -0.0695 -0.1114

-0.0695 0.1315 0.0454

-0.0557 0.0227 0.0914

>> S14 = Sbar(S, 40)

S14 =

0.1258 -0.0894 -0.0685

-0.0894 0.1390 -0.0065

-0.0342 -0.0033 0.0516

>> S15 = Sbar(S, 50)

S15 =

0.1390 -0.0894 -0.0065

-0.0894 0.1258 -0.0685

-0.0033 -0.0342 0.0516

>> S16 = Sbar(S, 60)
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S16 =

0.1315 -0.0695 0.0454

-0.0695 0.0934 -0.1114

0.0227 -0.0557 0.0914

>> S17 = Sbar(S, 70)

S17 =

0.1111 -0.0390 0.0647

-0.0390 0.0528 -0.1137

0.0323 -0.0568 0.1524

>> S18 = Sbar(S, 80)

S18 =

0.0909 -0.0122 0.0452

-0.0122 0.0193 -0.0712

0.0226 -0.0356 0.2061

>> S19 = Sbar(S, 90)

S19 =

0.0826 -0.0016 0.0000

-0.0016 0.0065 -0.0000

0.0000 -0.0000 0.2273

The x-axis is now setup for the plots as follows:

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

40 50 60 70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

20 30 40 50 60 70 80 90

The values of the coefficient of mutual influence of the second kind ηxy,x is
calculated next for each value of θ in increments of 10◦ using the MATLAB function
Etaxyx .

>> Etaxyx1 = Etaxyx(S1)

Etaxyx1 =

-2.1194e-016

>> Etaxyx2 = Etaxyx(S2)
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Etaxyx2 =

-0.4968

>> Etaxyx3 = Etaxyx(S3)

Etaxyx3 =

-0.5821

>> Etaxyx4 = Etaxyx(S4)

Etaxyx4 =

-0.3455

>> Etaxyx5 = Etaxyx(S5)

Etaxyx5 =

0.0471

>> Etaxyx6 = Etaxyx(S6)

Etaxyx6 =

0.5446

>> Etaxyx7 = Etaxyx(S7)

Etaxyx7 =

1.1927

>> Etaxyx8 = Etaxyx(S8)

Etaxyx8 =

2.1536

>> Etaxyx9 = Etaxyx(S9)

Etaxyx9 =

3.6831

>> Etaxyx10 = Etaxyx(S10)
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Etaxyx10 =

0

>> Etaxyx11 = Etaxyx(S11)

Etaxyx11 =

-3.6831

>> Etaxyx12 = Etaxyx(S12)

Etaxyx12 =

-2.1536

>> Etaxyx13 = Etaxyx(S13)

Etaxyx13 =

-1.1927

>> Etaxyx14 = Etaxyx(S14)

Etaxyx14 =

-0.5446

>> Etaxyx15 = Etaxyx(S15)

Etaxyx15 =

-0.0471

>> Etaxyx16 = Etaxyx(S16)

Etaxyx16 =

0.3455

>> Etaxyx17 = Etaxyx(S17)

Etaxyx17 =

0.5821

>> Etaxyx18 = Etaxyx(S18)
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Etaxyx18 =

0.4968

>> Etaxyx19 = Etaxyx(S19)

Etaxyx19 =

2.1194e-016

The values of ηxy,x are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y6 = [Etaxyx1 Etaxyx2 Etaxyx3 Etaxyx4 Etaxyx5 Etaxyx6 Etaxyx7

Etaxyx8 Etaxyx9 Etaxyx10 Etaxyx11 Etaxyx12 Etaxyx13 Etaxyx14

Etaxyx15 Etaxyx16 Etaxyx17 Etaxyx18 Etaxyx19]

y6 =

Columns 1 through 14

-0.0000 -0.4968 -0.5821 -0.3455 0.0471 0.5446

1.1927 2.1536 3.6831 0 -3.6831 -2.1536 -1.1927

-0.5446

Columns 15 through 19

-0.0471 0.3455 0.5821 0.4968 0.0000

The plot of the values of ηxy,x versus θ is now generated using the following
commands and is shown in Fig. 6.6. Notice that this coefficient is an odd function
of θ. Notice also the rapid variation of the coefficient as θ increases or decreases
from 0◦.

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\eta_{xy,x}’);

The values of the coefficient of mutual influence of the second kind ηxy,y is
calculated next for each value of θ in increments of 10◦ using the MATLAB function
Etaxyy .

>> Etaxyy1 = Etaxyy(S1)

Etaxyy1 =

4.1613e-015

>> Etaxyy2 = Etaxyy(S2)
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Fig. 6.6. Variation of ηxy,x versus θ for Example 6.3

Etaxyy2 =

3.6831

>> Etaxyy3 = Etaxyy(S3)

Etaxyy3 =

2.1536

>> Etaxyy4 = Etaxyy(S4)

Etaxyy4 =

1.1927

>> Etaxyy5 = Etaxyy(S5)

Etaxyy5 =

0.5446

>> Etaxyy6 = Etaxyy(S6)

Etaxyy6 =

0.0471
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>> Etaxyy7 = Etaxyy(S7)

Etaxyy7 =

-0.3455

>> Etaxyy8 = Etaxyy(S8)

Etaxyy8 =

-0.5821

>> Etaxyy9 = Etaxyy(S9)

Etaxyy9 =

-0.4968

>> Etaxyy10 = Etaxyy(S10)

Etaxyy10 =

0

>> Etaxyy11 = Etaxyy(S11)

Etaxyy11 =

0.4968

>> Etaxyy12 = Etaxyy(S12)

Etaxyy12 =

0.5821

>> Etaxyy13 = Etaxyy(S13)

Etaxyy13 =

0.3455

>> Etaxyy14 = Etaxyy(S14)

Etaxyy14 =

-0.0471
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>> Etaxyy15 = Etaxyy(S15)

Etaxyy15 =

-0.5446

>> Etaxyy16 = Etaxyy(S16)

Etaxyy16 =

-1.1927

>> Etaxyy17 = Etaxyy(S17)

Etaxyy17 =

-2.1536

>> Etaxyy18 = Etaxyy(S18)

Etaxyy18 =

-3.6831

>> Etaxyy19 = Etaxyy(S19)

Etaxyy19 =

-4.1613e-015

The values of ηxy,y are now calculated for each value of θ between −90◦ and 90◦

in increments of 10◦.

>> y7 = [Etaxyy1 Etaxyy2 Etaxyy3 Etaxyy4 Etaxyy5 Etaxyy6 Etaxyy7

Etaxyy8 Etaxyy9 Etaxyy10 Etaxyy11 Etaxyy12 Etaxyy13 Etaxyy14

Etaxyy15 Etaxyy16 Etaxyy17 Etaxyy18 Etaxyy19]

y7 =

Columns 1 through 14

0.0000 3.6831 2.1536 1.1927 0.5446 0.0471 -0.3455

-0.5821 -0.4968 0 0.4968 0.5821 0.3455 -0.0471

Columns 15 through 19

-0.5446 -1.1927 -2.1536 -3.6831 -0.0000

The plot of the values of ηxy,y versus θ is now generated using the following
commands and is shown in Fig. 6.7. Notice that this coefficient is an odd function
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Fig. 6.7. Variation of ηxy,y versus θ for Example 6.3

of θ. Notice also the rapid variation of the coefficient as θ increases or decreases
from 0◦.

>> plot(x,y7)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\eta_{xy,y}’);

Problems

Problem 6.1

Derive the expression for νxy given in (6.2).

Problem 6.2

Derive the expression for Ey given in (6.3).

Problem 6.3

Derive the expression for νyx given in (6.4).

Problem 6.4

Derive the expression for Gxy given in (6.5).
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MATLAB Problem 6.5

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the five elastic constants
Ex, νxy, Ey, νyx, and Gxy as a function of the orientation angle θ in the range
−π/2 ≤ θ ≤ π/2.

Problem 6.6

Derive the expressions for the coefficients of mutual influence of the second kind
ηxy,x and ηxy,y given in (6.8) and (6.9).

Problem 6.7

Derive the expressions for the coefficients of mutual influence of the first kind ηx,xy

and ηy,xy given in (6.12) and (6.13).

MATLAB Problem 6.8

Consider a graphite-reinforced polymer composite lamina with the elastic constants
as given in Example 2.2. Use MATLAB to plot the values of the two coefficients of
mutual influence of the first kind ηx,xy and ηy,xy as a function of the orientation
angle θ in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 6.9

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the two coefficients of
mutual influence of the second kind ηxy,x and ηxy,y as a function of the orientation
angle θ in the range −π/2 ≤ θ ≤ π/2.

MATLAB Problem 6.10

Consider a glass-reinforced polymer composite lamina with the elastic constants as
given in Problem 2.7. Use MATLAB to plot the values of the two coefficients of
mutual influence of the first kind ηx,xy and ηy,xy as a function of the orientation
angle θ in the range −π/2 ≤ θ ≤ π/2.
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Laminate Analysis – Part I

7.1 Basic Equations

Fiber-reinforced materials consist usually of multiple layers of material to form a
laminate. Each layer is thin and may have a different fiber orientation – see Fig. 7.1.
Two laminates may have the same number of layers and the same fiber angles but
the two laminates may be different because of the arrangement of the layers.

In this chapter, we will evaluate the influence of fiber directions, stacking arrange-
ments and material properties on laminate and structural response. We will study
a simplified theory called classical lamination theory for this purpose (see [1]).

Figure 7.2 shows a global Cartesian coordinate system and a general laminate
consisting of N layers. The laminate thickness is denoted by H and the thickness of
an individual layer by h. Not all layers necessarily have the same thickness, so the
thickness of the kth layer is denoted by hk.

The origin of the through-thickness coordinate, designated z, is located at the
laminate geometric midplane. The geometric midplane may be within a particular
layer or at an interface between layers. We consider the +z axis to be downward
and the laminate extends in the z direction from −H/2 to +H/2. We refer to the
layer at the most negative location as layer 1, the next layer in as layer 2, the layer
at an arbitrary location as layer k, and the layer at the most positive z position as
layer N . The locations of the layer interfaces are denoted by a subscripted z; the

Fig. 7.1. Schematic illustration of a laminate with four layers
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Fig. 7.2. Schematic illustration showing a cross-section and a plan view

first layer is bounded by locations z0 and z1, the second layer by z1 and z2, the kth
layer by zk−1 and zk, and the Nth layer by zN−1 and zN [1].

Let us examine the deformation of an x-z cross-section [1]. Figure 7.3 shows
in detail the deformation of a cross-section, and in particular the displacements of
point P , a point located at an arbitrary distance z below point P 0, a point on
the reference surface, with points P and P 0 being on line AA′. The superscript 0
will be reserved to denote the kinematics of point P 0 on the reference surface. In
particular, the horizontal translation of point P 0 in the x direction will be denoted
by u0. The vertical translation will be denoted by w0. The rotation of the reference
surface about the y axis at point P 0 is ∂w0/∂x. An important part of the Kirchhoff
hypothesis is the assumption that line AA′ remains perpendicular to the reference
surface. Because of this, the rotation of line AA′ is the same as the rotation of the
reference surface, and thus the rotation of line AA′, as viewed in the x-z plane, is
∂w0/∂x. It is assumed that [1]:

∂w0

∂x
< 1 (7.1)

By less than unity is meant that sines and tangents of angles of rotation are
replaced by the rotations themselves, and cosines of the angles of rotation are replace
by 1. With this approximation, then, the rotation of point P 0 causes point P to
translate horizontally in the minus x direction by an amount equal to:

z =
∂w0

∂x
(7.2)



7.1 Basic Equations 117

Fig. 7.3. Schematic illustration showing the kinematics of deformation of a laminate

Therefore, the horizontal translation of a point P with coordinates (x, y, z) in
the direction of the x-axis is then given by:

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
(7.3)

Also, the vertical translation of point P in the direction of the z-axis is given
by:

w(x, y, z) = w0(x, y) (7.4)

The horizontal translation of point P in the direction of the y-axis is similar to
that in the direction of the x-axis and is given by:

v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
(7.5)

Therefore, we now have the following relations:

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
(7.6a)
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v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
(7.6b)

w(x, y, z) = w0(x, y) (7.6c)

Next, we investigate the strains that result from the displacements according to
the Kirchhoff hypothesis. This can be done by using the strain-displacement relations
from the theory of elasticity. Using these relations and (7.6a,b,c), we can compute
the strains at any point within the laminate, and by using these laminate strains
in the stress-strain relations, we can compute the stresses at any point within the
laminate.

From the strain-displacement relations and (7.6a), the extensional strain in the
x direction, εx, is given by:

εx(x, y, z) ≡ ∂u(x, y, z)

∂x
=

∂u0(x, y)

∂x
− z

∂2w0(x, y)

∂x2
(7.7)

Equation (7.7) may be re-written as follows:

εx(x, y, z) = ε0
x(x, y) + zκ0

x(x, y) (7.8)

where the following notation is used:

ε0
x(x, y) =

∂u0(x, y)

∂x
(7.9a)

κ0
x(x, y) = −∂2w0(x, y)

∂x2
(7.9b)

The quantity ε0
x is referred to as the extensional strain of the reference surface

in the x direction, and κ0
x is referred to as the curvature of the reference surface in

the x direction. The other five strain components are given by:

εy(x, y, z) ≡ ∂v(x, y, z)

∂y
= ε0

y(x, y) + zκ0
y(x, y) (7.10a)

εz(x, y, z) ≡ ∂w(x, y, z)

∂z
=

∂w0(x, y)

∂z
= 0 (7.10b)

γyz(x, y, z) ≡ ∂w(x, y, z)

∂y
+

∂v(x, y, z)

∂z

=
∂w0(x, y)

∂y
− ∂w0(x, y)

∂y
= 0 (7.10c)

γxz(x, y, z) ≡ ∂w(x, y, z)

∂x
+

∂u(x, y, z)

∂z

=
∂w0(x, y)

∂x
− ∂w0(x, y)

∂x
= 0 (7.10d)

γxy(x, y, z) ≡ ∂v(x, y, z)

∂x
+

∂u(x, y, z)

∂y
= γ0

xy + zκ0
xy (7.10e)

where the following notation is used:

ε0
y(x, y) =

∂v0(x, y)

∂y
(7.11a)
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κ0
y(x, y) = −∂2w0(x, y)

∂y2
(7.11b)

γ0
xy(x, y) =

∂v0(x, y)

∂x
+

∂u0(x, y)

∂y
(7.11c)

κ0
xy(x, y) = −2

∂2w0(x, y)

∂x∂y
(7.11d)

The quantities ε0
y, κ0

y, γ0
xy, and κ0

xy are referred to as the reference surface extensional
strain in the y direction, the reference surface curvature in the y direction, the
reference surface inplane shear strain, and the reference surface twisting curvature,
respectively.

The second important assumption of classical lamination theory is that each
point within the volume of a laminate is in a state of plane stress. Therefore, we can
compute the stresses if we know the strains and curvatures of the reference surface.
Accordingly, using the strains that result from the Kirchhoff hypothesis, (7.8) and
(7.10a, e), we find that the stress-strain relations for a laminate become:⎧⎨

⎩
σx

σy

τxy

⎫⎬
⎭ =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x + zκ0

x

ε0
y + zκ0

y

γ0
xy + zκ0

xy

⎫⎪⎬
⎪⎭ (7.12)

Finally the force and moment resultants in the laminate can be computed using
the stresses as follows:

Nx =

H/2∫
−H/2

σxdz (7.13a)

Ny =

H/2∫
−H/2

σydz (7.13b)

Nxy =

H/2∫
−H/2

τxydz (7.13c)

Mx =

H/2∫
−H/2

σxzdz (7.13d)

My =

H/2∫
−H/2

σyzdz (7.13e)

Mxy =

H/2∫
−H/2

τxyzdz (7.13f)

7.2 MATLAB Functions Used

The only MATLAB function used in this chapter to calculate the strains is:
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Strains(eps xo, eps yo, gam xyo, kap xo, kap yo, kap xyo, z) – This function calcu-
lates the three strains εx, εy, and γxy at any point P on the normal line given the
three strains ε0

x, ε0
y, γ0

xy and the three curvatures κ0
x, κ0

y, κ0
xy at point P 0, and the

distance z between P and P 0. There are seven input arguments to this function.
The function returns the 3 × 1 strain vector.

The following is a listing of the MATLAB source code for this function:

function y = Strains(eps_xo,eps_yo,gam_xyo,kap_xo,kap_yo,kap_xyo,z)

%Strains This function returns the strain vector at any point P

% along the normal line at distance z from point Po which

% lies on the reference surface. There are seven input

% arguments for this function - namely the three strains

% and three curvatures at point Po and the distance z.

% The size of the strain vector is 3 x 1.

epsilonx = eps_xo + z * kap_xo;

epsilony = eps_yo + z * kap_yo;

gammaxy = gam_xyo + z * kap_xyo;

y = [epsilonx ; epsilony ; gammaxy];

MATLAB Example 7.1

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.500 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

ε0
x = 400 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

Solution

This example is solved using MATLAB. First the strains are calculated at the five
interface locations using the MATLAB function Strains as follows:
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>> epsilon1 = Strains(400e-6,0,0,0,0,0,-0.250e-3)

epsilon1 =

1.0e-003 *

0.4000

0

0

>> epsilon2 = Strains(400e-6,0,0,0,0,0,-0.125e-3)

epsilon2 =

1.0e-003 *

0.4000

0

0

>> epsilon3 = Strains(400e-6,0,0,0,0,0,0)

epsilon3 =

1.0e-003 *

0.4000

0

0

>> epsilon4 = Strains(400e-6,0,0,0,0,0,0.125e-3)

epsilon4 =

1.0e-003 *

0.4000

0

0

>> epsilon5 = Strains(400e-6,0,0,0,0,0,0.250e-3)

epsilon5 =

1.0e-003 *

0.4000

0

0
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Next, the reduced stiffness [Q} in GPa is calculated for this material using the
MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

The transformed reduced stiffnesses [Q̄] in GPa for the four layers are now cal-
culated using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q,0)

Qbar1 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar2 = Qbar(Q,90)

Qbar2 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar3 = Qbar(Q,90)

Qbar3 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar4 = Qbar(Q,0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the stresses in each layer are calculated in MPa. Note that the stress
vector is calculated twice for each layer – once at the top of the layer and once at
the bottom of the layer.
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>> sigma1a = Qbar1*epsilon1*1e3

sigma1a =

62.2991

1.2061

0

>> sigma1b = Qbar1*epsilon2*1e3

sigma1b =

62.2991

1.2061

0

>> sigma2a = Qbar2*epsilon2*1e3

sigma2a =

4.8634

1.2061

-0.0000

>> sigma2b = Qbar2*epsilon3*1e3

sigma2b =

4.8634

1.2061

-0.0000

>> sigma3a = Qbar3*epsilon3*1e3

sigma3a =

4.8634

1.2061

-0.0000

>> sigma3b = Qbar3*epsilon4*1e3

sigma3b =

4.8634

1.2061

-0.0000
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>> sigma4a = Qbar4*epsilon4*1e3

sigma4a =

62.2991

1.2061

0

>> sigma4b = Qbar4*epsilon5*1e3

sigma4b =

62.2991

1.2061

0

Next, we setup the y-axis for the three plots:

>> y = [0.250 0.125 0.125 0 0 -0.125 -0.125 -0.250]

y =

0.2500 0.1250 0.1250 0 0 -0.1250 -0.1250

-0.2500

The distribution of the stress σx along the depth of the laminate is now plotted
as follows (see Fig. 7.4):

>> x = [sigma4b(1) sigma4a(1) sigma3b(1) sigma3a(1) sigma2b(1)
sigma2a(1) sigma1b(1) sigma1a(1)]

x =

62.2991 62.2991 4.8634 4.8634 4.8634 4.8634 62.2991
62.2991

>> plot(x,y)
>> xlabel(‘\sigma_x (MPa)’)
>> ylabel(‘z (mm)’)

The distribution of the stress σy along the depth of the laminate is now plotted
as follows (see Fig. 7.5):

>> x = [sigma4b(2) sigma4a(2) sigma3b(2) sigma3a(2) sigma2b(2)
sigma2a(2) sigma1b(2) sigma1a(2)]

x =

1.2061 1.2061 1.2061 1.2061 1.2061 1.2061 1.2061
1.2061

>> plot(x,y)
>> ylabel(‘z (mm)’)
>> xlabel(‘\sigma_y (MPa)’)
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Fig. 7.4. Variation of σx versus z for Example 7.1

Fig. 7.5. Variation of σy versus z for Example 7.1

The distribution of the stress τxy along the depth of the laminate is now plotted
as follows (see Fig. 7.6):

>> x = [sigma4b(3) sigma4a(3) sigma3b(3) sigma3a(3) sigma2b(3) sigma2a(3)

sigma1b(3) sigma1a(3)]

x =

1.0e-015 *

0 0 -0.1162 -0.1162 -0.1162 -0.1162 0 0
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Fig. 7.6. Variation of τxy versus z for Example 7.1

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\tau_{xy} (MPa)’)

Next, the three force resultants are calculated in MN/m using (7.13a,b,c) as
follows:

>> Nx = 0.125e-3 * (sigma1a(1) + sigma2a(1) + sigma3a(1) + sigma4a(1))

Nx =

0.0168

>> Ny = 0.125e-3 * (sigma1a(2) + sigma2a(2) + sigma3a(2) + sigma4a(2))

Ny =

6.0306e-004

>> Nxy = 0.125e-3 * (sigma1a(3) + sigma2a(3) + sigma3a(3) + sigma4a(3))

Nxy =

-2.9043e-020

Next, the three moment resultants are calculated in MN.m/m using (7.13d,e,f)
as follows:
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>> Mx = sigma1a(1)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(1)* (0 -

(-0.125e-3)^2)/2 + sigma3a(1)* ((0.125e-3)^2 - 0)/2 + sigma4a(1)*

((0.250e-3)^2 - (0.125e-3)^2)/2

Mx =

0

>> My = sigma1a(2)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(2)* (0 -

(-0.125e-3)^2)/2 + sigma3a(2)* ((0.125e-3)^2 - 0)/2 + sigma4a(2)*

((0.250e-3)^2 - (0.125e-3)^2)/2

My =

3.3087e-024

>> Mxy = sigma1a(3)* ((-0.125e-3)^2 - (-0.250e-3)^2)/2 + sigma2a(3)* (0 -

(-0.125e-3)^2)/2 + sigma3a(3)* ((0.125e-3)^2 - 0)/2 + sigma4a(3)*

((0.250e-3)^2 - (0.125e-3)^2)/2

Mxy =

0

Next, the transformation matrix is calculated for each one of the four layers
using the MATLAB function T as follows:

>> T1 = T(0)

T1 =

1 0 0

0 1 0

0 0 1

>> T2 = T(90)

T2 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000

>> T3 = T(90)

T3 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000
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>> T4 = T(0)

T4 =

1 0 0

0 1 0

0 0 1

The strain vector is now calculated in each layer with respect to the principal
material system as follows. Note that the strain vector is calculated twice for each
layer – once at the top of the layer and once at the bottom of the layer. Notice also
that in this case there is no need to correct the strain vector for the factor of 1/2
since the shear strain is zero in this example.

>> eps1a = T1*epsilon1

eps1a =

1.0e-003 *

0.4000

0

0

>> eps1b = T1*epsilon2

eps1b =

1.0e-003 *

0.4000

0

0

>> eps2a = T2*epsilon2

eps2a =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps2b = T2*epsilon3
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eps2b =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps3a = T3*epsilon3

eps3a =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps3b = T3*epsilon4

eps3b =

1.0e-003 *

0.0000

0.4000

-0.0000

>> eps4a = T4*epsilon4

eps4a =

1.0e-003 *

0.4000

0

0

>> eps4b = T4*epsilon5

eps4b =

1.0e-003 *

0.4000

0

0
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Finally, the stress vector is calculated in MPa for each layer with respect to the
principal material systems as follows:

>> sig1 = T1*sigma1a

sig1 =

62.2991

1.2061

0

>> sig2 = T2*sigma2a

sig2 =

1.2061

4.8634

-0.0000

>> sig3 = T3*sigma3a

sig3 =

1.2061

4.8634

-0.0000

>> sig4 = T4*sigma4a

sig4 =

62.2991

1.2061

0

MATLAB Example 7.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.900 mm and is
stacked as a [±30/0]S laminate. The six layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:
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(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

Solution

This example is solved using MATLAB. First, the strains are calculated at the seven
interface locations using the MATLAB function Strains as follows:

>> epsilon1 = Strains(0,0,0,2.5,0,0,-0.450e-3)

epsilon1 =

-0.0011

0

0

>> epsilon2 = Strains(0,0,0,2.5,0,0,-0.300e-3)

epsilon2 =

1.0e-003 *

-0.7500

0

0

>> epsilon3 = Strains(0,0,0,2.5,0,0,-0.150e-3)

epsilon3 =

1.0e-003 *

-0.3750

0

0

>> epsilon4 = Strains(0,0,0,2.5,0,0,0)

epsilon4 =

0

0

0
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>> epsilon5 = Strains(0,0,0,2.5,0,0,0.150e-3)

epsilon5 =

1.0e-003 *

0.3750

0

0

>> epsilon6 = Strains(0,0,0,2.5,0,0,0.300e-3)

epsilon6 =

1.0e-003 *

0.7500

0

0

>> epsilon7 = Strains(0,0,0,2.5,0,0,0.450e-3)

epsilon7 =

0.0011

0

0

Next, the reduced stiffness [Q] in GPa is calculated for this material using the
MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

The transformed reduced stiffnesses [Q̄] in GPa for the six layers are now calcu-
lated using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q,30)

Qbar1 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034
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>> Qbar2 = Qbar(Q,-30)

Qbar2 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar3 = Qbar(Q,0)

Qbar3 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar4 = Qbar(Q,0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar5 = Qbar(Q,-30)

Qbar5 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar6 = Qbar(Q,30)

Qbar6 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

Next, the stresses in each layer are calculated in MPa. Note that the stress
vector is calculated twice for each layer – once at the top of the layer and once at
the bottom of the layer.

>> sigma1a = Qbar1*epsilon1*1e3

sigma1a =

-102.5424

-35.6816

-53.6163
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>> sigma1b = Qbar1*epsilon2*1e3

sigma1b =

-68.3616

-23.7877

-35.7442

>> sigma2a = Qbar2*epsilon2*1e3

sigma2a =

-68.3616

-23.7877

35.7442

>> sigma2b = Qbar2*epsilon3*1e3

sigma2b =

-34.1808

-11.8939

17.8721

>> sigma3a = Qbar3*epsilon3*1e3

sigma3a =

-58.4054

-1.1307

0

>> sigma3b = Qbar3*epsilon4*1e3

sigma3b =

0

0

0

>> sigma4a = Qbar4*epsilon4*1e3

sigma4a =

0

0

0
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>> sigma4b = Qbar4*epsilon5*1e3

sigma4b =

58.4054

1.1307

0

>> sigma5a = Qbar5*epsilon5*1e3

sigma5a =

34.1808

11.8939

-17.8721

>> sigma5b = Qbar5*epsilon6*1e3

sigma5b =

68.3616

23.7877

-35.7442

>> sigma6a = Qbar6*epsilon6*1e3

sigma6a =

68.3616

23.7877

35.7442

>> sigma6b = Qbar6*epsilon7*1e3

sigma6b =

102.5424

35.6816

53.6163

Next, we setup the y-axis for the three plots:

>> y = [0.450 0.300 0.300 0.150 0.150 0 0 -0.150 -0.150 -0.300 -0.300

-0.450]

y =

0.4500 0.3000 0.3000 0.1500 0.1500 0 0

-0.1500 -0.1500 -0.3000 -0.3000 -0.4500
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Fig. 7.7. Variation of σx versus z for Example 7.2

The distribution of the stress σx along the depth of the laminate is now plotted
as follows (see Fig. 7.7):

>> x = [sigma6b(1) sigma6a(1) sigma5b(1) sigma5a(1) sigma4b(1)

sigma4a(1) sigma3b(1) sigma3a(1) sigma2b(1) sigma2a(1)

sigma1b(1) sigma1a(1)]

x =

102.5424 68.3616 68.3616 34.1808 58.4054 0 0

-58.4054 -34.1808 -68.3616 -68.3616 -102.5424

>> plot(x,y)

>> xlabel(‘\sigma_x (MPa)’)

>> ylabel(‘z (mm)’)

The distribution of the stress σy along the depth of the laminate is now plotted
as follows (see Fig. 7.8):

>> x = [sigma6b(2) sigma6a(2) sigma5b(2) sigma5a(2) sigma4b(2)

sigma4a(2) sigma3b(2) sigma3a(2) sigma2b(2) sigma2a(2)

sigma1b(2) sigma1a(2)]

x =

35.6816 23.7877 23.7877 11.8939 1.1307 0 0

-1.1307 -11.8939 -23.7877 -23.7877 -35.6816

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\sigma_y (MPa)’)
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Fig. 7.8. Variation of σy versus z for Example 7.2

The distribution of the stress τxy along the depth of the laminate is now plotted
as follows (see Fig. 7.9):

>> x = [sigma6b(3) sigma6a(3) sigma5b(3) sigma5a(3) sigma4b(3)

sigma4a(3) sigma3b(3) sigma3a(3) sigma2b(3) sigma2a(3)

sigma1b(3) sigma1a(3)]

x =

53.6163 35.7442 -35.7442 -17.8721 0 0 0

0 17.8721 35.7442 -35.7442 -53.6163

>> plot(x,y)

>> ylabel(‘z (mm)’)

>> xlabel(‘\tau_{xy} (MPa)’)

Next, the three force resultants are calculated in MN/m using (7.13a,b,c) as
follows:

>> Nx = 0.150 * (sigma1a(1) + sigma2a(1) + sigma3a(1) + sigma4a(1) +

sigma5a(1) + sigma6a(1))

Nx =

-19.0150

>> Ny = 0.150 * (sigma1a(2) + sigma2a(2) + sigma3a(2) + sigma4a(2) +

sigma5a(2) + sigma6a(2))
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Fig. 7.9. Variation of τxy versus z for Example 7.2

Ny =

-3.7378

>> Nxy = 0.150 * (sigma1a(3) + sigma2a(3) + sigma3a(3) + sigma4a(3) +

sigma5a(3) + sigma6a(3))

Nxy =

0

Next, the three moment resultants are calculated in MN.m/m using (7.13d, e, f)
as follows:

>> Mx = sigma1a(1) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(1) *

(-0.150)^2 - (-0.300)^2)/2 + sigma3a(1) * (0 - (-0.150)^2)/2 +

sigma4a(1) * ((0.150)^2 - 0)/2 + sigma5a(1) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(1) * ((0.450)^2 - (0.300)^2)/2

Mx =

13.7312

>> My = sigma1a(2) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(2) *

((-0.150)^2 - (-0.300)^2)/2 + sigma3a(2) * (0 - (-0.150)^2)/2 +

sigma4a(2) * ((0.150)^2 - 0)/2 + sigma5a(2) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(2) * ((0.450)^2 - (0.300)^2)/2
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My =

4.5621

>> Mxy = sigma1a(3) * ((-0.300)^2 - (-0.450)^2)/2 + sigma2a(3) *

((-0.150)^2 - (-0.300)^2)/2 + sigma3a(3) * (0 - (-0.150)^2)/2

+ sigma4a(3) * ((0.150)^2 - 0)/2 + sigma5a(3) * ((0.300)^2 -

(0.150)^2)/2 + sigma6a(3) * ((0.450)^2 - (0.300)^2)/2

Mxy =

3.2170

Next, the transformation matrix is calculated for each one of the six layers using
the MATLAB function T as follows:

>> T1 = T(30)

T1 =

0.7500 0.2500 0.8660

0.2500 0.7500 -0.8660

-0.4330 0.4330 0.5000

>> T2 = T(-30)

T2 =

0.7500 0.2500 -0.8660

0.2500 0.7500 0.8660

0.4330 -0.4330 0.5000

>> T3 = T(0)

T3 =

1 0 0

0 1 0

0 0 1

>> T4 = T(0)

T4 =

1 0 0

0 1 0

0 0 1
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>> T5 = T(-30)

T5 =

0.7500 0.2500 -0.8660

0.2500 0.7500 0.8660

0.4330 -0.4330 0.5000

>> T6 = T(30)

T6 =

0.7500 0.2500 0.8660

0.2500 0.7500 -0.8660

-0.4330 0.4330 0.5000

The strain vector is now calculated in each layer with respect to the principal
material system. Note that the strain vector is calculated twice for each layer – once
at the top of the layer and once at the bottom of the layer.

>> eps1a = T1*epsilon1

eps1a =

1.0e-003 *

-0.8438

-0.2812

0.4871

>> eps1b = T1*epsilon2

eps1b =

1.0e-003 *

-0.5625

-0.1875

0.3248

>> eps2a = T2*epsilon2

eps2a =

1.0e-003 *

-0.5625

-0.1875

-0.3248
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>> eps2b = T2*epsilon3

eps2b =

1.0e-003 *

-0.2813

-0.0937

-0.1624

>> eps3a = T3*epsilon3

eps3a =

1.0e-003 *

-0.3750

0

0

>> eps3b = T3*epsilon4

eps3b =

0

0

0

>> eps4a = T4*epsilon4

eps4a =

0

0

0

>> eps4b = T4*epsilon5

eps4b =

1.0e-003 *

0.3750

0

0

>> eps5a = T5*epsilon5
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eps5a =

1.0e-003 *

0.2813

0.0937

0.1624

>> eps5b = T5*epsilon6

eps5b =

1.0e-003 *

0.5625

0.1875

0.3248

>> eps6a = T6*epsilon6

eps6a =

1.0e-003 *

0.5625

0.1875

-0.3248

>> eps6b = T6*epsilon7

eps6b =

1.0e-003 *

0.8438

0.2812

-0.4871

Next, we correct the shear strain component for the factor of 1/2 that appears in
the equations.

>> eps1a(3) = eps1a(3)*2

eps1a =

1.0e-003 *

-0.8438

-0.2812

0.9743
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>> eps2a(3) = eps2a(3)*2

eps2a =

1.0e-003 *

-0.5625

-0.1875

-0.6495

>> eps3a(3) = eps3a(3)*2

eps3a =

1.0e-003 *

-0.3750

0

0

>> eps4a(3) = eps4a(3)*2

eps4a =

0

0

0

>> eps5a(3) = eps5a(3)*2

eps5a =

1.0e-003 *

0.2813

0.0937

0.3248

>> eps6a(3) = eps6a(3)*2

eps6a =

1.0e-003 *

0.5625

0.1875

-0.6495
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Finally, the stress vector is calculated in MPa for each layer with respect to the
principal material system as follows:

>> sig1 = T1*sigma1a

sig1 =

-132.2602

-5.9637

2.1434

>> sig2 = T2*sigma2a

sig2 =

-88.1735

-3.9758

-1.4289

>> sig3 = T3*sigma3a

sig3 =

-58.4054

-1.1307

0

>> sig4 = T4*sigma4a

sig4 =

0

0

0

>> sig5 = T5*sigma5a

sig5 =

44.0867

1.9879

0.7145

>> sig6 = T6*sigma6a

sig6 =

88.1735

3.9758

-1.4289
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Problems

MATLAB Problem 7.1

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.600 mm and is stacked as
a [0/90]S laminate. The four layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

ε0
x = 500 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.600 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.
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MATLAB Problem 7.3

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.600 mm and is stacked as
a [0/90]S laminate. The four layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.4

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.900 mm and is stacked as
a [±30/0]S laminate. The six layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

κ0
x = 2.5 m−1

ε0
x = ε0

y = γ0
xy = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.5

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.900 mm and is
stacked as a [±30/0]S laminate. The six layers are of equal thickness. It is deformed
so that at a point (x, y) on the reference surface, we have the following strains and
curvatures:
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ε0
x = 1000 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.

MATLAB Problem 7.6

Consider a glass-reinforced polymer composite laminate with the elastic constants as
given in Problem 2.7. The laminate has total thickness of 0.900 mm and is stacked as
a [±30/0]S laminate. The six layers are of equal thickness. It is deformed so that at
a point (x, y) on the reference surface, we have the following strains and curvatures:

ε0
x = 1000 × 10−6

ε0
y = γ0

xy = κ0
x = κ0

y = κ0
xy = 0

Use MATLAB to determine the following:

(a) the three components of strain at the interface locations.
(b) the three components of stress in each layer. Plot the stress distribution along

the depth of the laminate for each component.
(c) the force and moment resultants in the laminate.
(d) the three components of strain at the interface locations with respect to the

principal material system.
(e) the three components of stress in each layer with respect to the principal material

system.
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Laminate Analysis – Part II

8.1 Basic Equations

In Chap. 7, we derived the necessary formulas to calculate the strains and stresses
through the thickness and the force and moment resultants given the strains and
curvatures at a point (x, y) on the reference surface. In this chapter, we will study
the reverse process. Given the force and moment resultants, we want to calculate
the stresses and strains through the thickness as well as the strains and curvatures
on the reference surface. We also want to do this by computing the laminate stiffness
matrix.

Figures 8.1 and 8.2 show the force and moment resultants, respectively. In the
two figures, a small element of laminate surrounding a point (x, y) on the geometric
midplane is shown [1].

The force resultants Nx, Ny, and Nxy can be shown to be related to the strains
and curvatures at the reference surface by the following equation:⎧⎪⎨
⎪⎩

Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ +

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

κ0
x

κ0
y

κ0
XY

⎫⎪⎬
⎪⎭ (8.1)

Fig. 8.1. Schematic illustration of the force resultants on a composite laminate
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Fig. 8.2. Schematic illustration of the moment resultants on a composite laminate

Similarly, the moment resultants Mx, My, and Mxy can also be shown to be
related to the strains and curvatures at the reference surface by the following
equation:⎧⎪⎨
⎪⎩

Mx

My

Mxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ +

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

κ0
x

κ0
y

κ0
XY

⎫⎪⎬
⎪⎭ (8.2)

where the matrix components Aij , Bij , and Dij are given as follows:

Aij =

N∑
k=1

Q̄ijk(zk − zk−1) (8.3)

Bij =
1

2

N∑
k=1

Q̄ijk

(
z2

k − z2
k−1

)
(8.4)

Dij =
1

3

N∑
k=1

Q̄ijk

(
z3

k − z3
k−1

)
(8.5)

Equations (8.1) and (8.2) can be combined into one single equation as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ny

Nxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
x

ε0
y

γ0
xy

κ0
x

κ0
y

κ0
xy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.6)

where the 6 × 6 matrix consisting of the components Aij , Bij , and Dij (i,j =
1, 2, 6) is called the laminate stiffness matrix, sometimes also called the ABD matrix.
Note that the matrix components Aij , Bij , and Dij represent smeared or integrated
properties of the laminate – this is because they are integrals (see [1]).
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In order to be able to obtain the strains and curvatures at the reference surface in
terms of the force and moment resultants, the inverse of (8.6) is written as follows [1]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
x

ε0
y

γ0
xy

κ0
x

κ0
y

κ0
xy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

a11 a12 a16 b11 b12 b16

a12 a22 a26 b12 b22 b26

a16 a26 a66 b16 b26 b66

b11 b12 b16 d11 d12 d16

b12 b22 b26 d12 d22 d26

b16 b26 b66 d16 d26 d66

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ny

Nxy

Mx

My

Mxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.7)

where⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a16 b11 b12 b16

a12 a22 a26 b12 b22 b26

a16 a26 a66 b16 b26 b66

b11 b12 b16 d11 d12 d16

b12 b22 b26 d12 d22 d26

b16 b26 b66 d16 d26 d66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(8.8)
Next, we consider the classification of laminates and their effect on the ABD

matrix. Laminates are usually classified into the following five categories [1]:

1. Symmetric Laminates – A laminate is symmetric if for every layer to one side of
the laminate reference surface with a specific thickness, specific material prop-
erties, and specific fiber orientation, there is another layer the same distance on
the opposite side of the reference surface with the same thickness, material prop-
erties, and fiber orientation. If the laminate is not symmetric, then it is referred
to as an unsymmetric laminate.

For a symmetric laminate, all the components of the B matrix are identically
zero. Therefore, we have the following decoupled system of equations:⎧⎪⎨

⎪⎩
Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ (8.9)

⎧⎪⎨
⎪⎩

Mx

My

Mxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

κ0
x

κ0
y

κ0
XY

⎫⎪⎬
⎪⎭ (8.10)

2. Balanced Laminates – A laminate is balanced if for every layer with a specific
thickness, specific material properties, and specific fiber orientation, there is an-
other layer with the same thickness, material properties, but opposite fiber ori-
entation somewhere in the laminate. The other layer can be anywhere within the
thickness. For balanced laminates, the stiffness matrix components A16 and A26

are always zero.
3. Symmetric Balanced Laminates – A laminate is a symmetric balanced laminate if

it meets both the criterion of being symmetric and the criterion of being balanced.
In this case, we have the following decoupled system of equations:
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Nx

Ny

}
=

[
A11 A12

A12 A22

]{
ε0

x

ε0
y

}
(8.11)

Nxy = A66γ
0
xy (8.12)⎧⎪⎨

⎪⎩
Mx

My

Mxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

κ0
x

κ0
y

κ0
XY

⎫⎪⎬
⎪⎭ (8.13)

4. Cross-Ply Laminates – A laminate is a cross-ply laminate if every layer has its
fibers oriented at either 0◦ or 90◦. In this case, the components A16, A26, B16,
B26, D16, and D26 are all zero.

8.2 MATLAB Functions Used

The three MATLAB functions used in this chapter to calculate the [A], [B], and [D]
matrices are:

Amatrix(A, Qbar, z1, z2) – This function calculates the [A] matrix for a laminate
consisting of N layers where each layer k (k = 1, 2, 3, . . . , N) has a transformed

reduced stiffness matrix
[
Q̄
]k

. There are four input arguments to this function.
This function assembles the desired matrix after each layer’s effect is included in a
separate call to this function. The parameters z1 and z2 are zk−1 and zk, respectively,
for layer k. The function returns the 3 × 3 matrix [A].

Bmatrix(B, Qbar, z1, z2) – This function calculates the [B] matrix for a laminate
consisting of N layers where each layer k (k = 1, 2, 3, . . . , N) has a transformed

reduced stiffness matrix
[
Q̄
]k

. There are four input arguments to this function.
This function assembles the desired matrix after each layer’s effect is included in a
separate call to this function. The parameters z1 and z2 are zk−1 and zk, respectively,
for layer k. The function returns the 3 × 3 matrix [B].

Dmatrix(D, Qbar, z1, z2) – This function calculates the [D] matrix for a laminate
consisting of N layers where each layer k (k = 1, 2, 3, . . . , N) has a transformed

reduced stiffness matrix
[
Q̄
]k

. There are four input arguments to this function.
This function assembles the desired matrix after each layer’s effect is included in a
separate call to this function. The parameters z1 and z2 are zk−1 and zk, respectively,
for layer k. The function returns the 3 × 3 matrix [D].

The following is a listing of the MATLAB source code for these functions:

function y = Amatrix(A,Qbar,z1,z2)

%Amatrix This function returns the [A] matrix

% after the layer k with stiffness [Qbar]

% is assembled.

% A - [A] matrix after layer k

% is assembled.

% Qbar - [Qbar] matrix for layer k

% z1 - z(k-1) for layer k

% z2 - z(k) for layer k
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for i = 1 : 3

for j = 1 : 3

A(i,j) = A(i,j) + Qbar(i,j)*(z2-z1);

end

end

y = A;

function y = Bmatrix(B,Qbar,z1,z2)

%Bmatrix This function returns the [B] matrix

% after the layer k with stiffness [Qbar]

% is assembled.

% B - [B] matrix after layer k

% is assembled.

% Qbar - [Qbar] matrix for layer k

% z1 - z(k-1) for layer k

% z2 - z(k) for layer k

for i = 1 : 3

for j = 1 : 3

B(i,j) = B(i,j) + Qbar(i,j)*(z2^2 -z1^2);

end

end

y = B/2;

function y = Dmatrix(D,Qbar,z1,z2)

%Dmatrix This function returns the [D] matrix

% after the layer k with stiffness [Qbar]

% is assembled.

% D - [D] matrix after layer k

% is assembled.

% Qbar - [Qbar] matrix for layer k

% z1 - z(k-1) for layer k

% z2 - z(k) for layer k

for i = 1 : 3

for j = 1 : 3

D(i,j) = D(i,j) + Qbar(i,j)*(z2^3 -z1^3);

end

end

y = D/3;

Example 8.1

Derive (8.3) and (8.4) in detail.

Solution

The derivation of (8.3) and (8.4) involves using (7.13a), (7.13b), and (7.13c) along
with (7.12). Substitute the expression of σx obtained from (7.12) into (7.13a) to
obtain:
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Nx =

H/2∫
−H/2

[
Q̄11

(
ε0

x + zκ0
x

)
+ Q̄12

(
ε0

y + zκ0
y

)
+ Q̄16

(
γ0

xy + zκ0
xy

)]
dz (8.14)

Expanding (8.14), we obtain:

Nx = ε0
x

H/2∫
−H/2

Q̄11 dz + κ0
x

H/2∫
−H/2

Q̄11 zdz + ε0
y

H/2∫
−H/2

Q̄12 dz + κ0
y

H/2∫
−H/2

Q̄12 zdz

+γ0
xy

H/2∫
−H/2

Q̄16 dz + κ0
xy

H/2∫
−H/2

Q̄16 zdz (8.15)

Next, we expand the first term of (8.15) as follows:

H/2∫
−H/2

Q̄11 dz =

z1∫
z0

Q̄11dz +

z2∫
z1

Q̄11dz + · · · +
zk∫

zk−1

Q̄11dz + · · · +
zN∫

zN−1

Q̄11dz (8.16)

Recognizing that Q̄11 is constant within each layer, it can be taken outside the
integrals above leading to the following expression:

H/2∫
−H/2

Q̄11 dz = Q̄11 (z1 − z0) + Q̄11 (z2 − z1) + · · · + Q̄11 (zk − zk−1)

+ · · · + Q̄11 (zN − zN−1) (8.17)

The above equation can be re-written as follows:

H/2∫
−H/2

Q̄11 dz =
N∑

k=1

Q̄11 (zk − zk−1) = A11 (8.18)

Similarly, we can show that the other five integrals of (8.15) can be written as
follows:

H/2∫
−H/2

Q̄12 dz =
N∑

k=1

Q̄12 (zk − zk−1) = A12 (8.19a)

H/2∫
−H/2

Q̄16 dz =
N∑

k=1

Q̄16 (zk − zk−1) = A16 (8.19b)

H/2∫
−H/2

Q̄11 zdz =
1

2

N∑
k=1

Q̄11

(
z2

k − z2
k−1

)
= B11 (8.19c)
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H/2∫
−H/2

Q̄12 zdz =
1

2

N∑
k=1

Q̄12

(
z2

k − z2
k−1

)
= B12 (8.19d)

H/2∫
−H/2

Q̄16 zdz =
1

2

N∑
k=1

Q̄16

(
z2

k − z2
k−1

)
= B16 (8.19e)

Using the remaining two equations of the matrix (7.12), we obtain the general
desired expressions as follows:

Aij =

N∑
k=1

Q̄ij (zk − zk−1) (8.20)

Bij =
1

2

N∑
k=1

Q̄ij

(
z2

k − z2
k−1

)
(8.21)

MATLAB Example 8.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.500 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. Calculate the
[A], [B], and [D] matrices for this laminate.

Solution

This example is solved using MATLAB. First, the reduced stiffness matrix [Q] for
a typical layer using the MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the transformed reduced stiffness matrix
[
Q̄
]

is calculated for each layer
using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q,0)

Qbar1 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000
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>> Qbar2 = Qbar(Q,90)

Qbar2 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar3 = Qbar(Q,90)

Qbar3 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> Qbar4 = Qbar(Q,0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the distances zk(k = 1, 2, 3, 4, 5) are calculated as follows:

>> z1 = -0.250

z1 =

-0.2500

>> z2 = -0.125

z2 =

-0.1250

>> z3 = 0

z3 =

0

>> z4 = 0.125

z4 =

0.1250
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>> z5 = 0.250

z5 =

0.2500

Next, the [A] matrix is calculated using four calls to the MATLAB function
Amatrix as follows:

>> A = zeros(3,3)

A =

0 0 0

0 0 0

0 0 0

>> A = Amatrix(A,Qbar1,z1,z2)

A =

19.4685 0.3769 0

0.3769 1.5198 0

0 0 0.5500

>> A = Amatrix(A,Qbar2,z2,z3)

A =

20.9883 0.7538 -0.0000

0.7538 20.9883 0.0000

-0.0000 0.0000 1.1000

>> A = Amatrix(A,Qbar3,z3,z4)

A =

22.5081 1.1307 -0.0000

1.1307 40.4567 0.0000

-0.0000 0.0000 1.6500

>> A = Amatrix(A,Qbar4,z4,z5)

A =

41.9765 1.5076 -0.0000

1.5076 41.9765 0.0000

-0.0000 0.0000 2.2000

Next, the [B] matrix is calculated using four calls to the MATLAB function
Bmatrix as follows (make sure to divide the final result by 2 since this step is not
performed by the Bmatrix function):
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>> B = zeros(3,3)

B =

0 0 0

0 0 0

0 0 0

>> B = Bmatrix(B,Qbar1,z1, z2)

B =

-7.3007 -0.1413 0

-0.1413 -0.5699 0

0 0 -0.2063

>> B = Bmatrix(B,Qbar2,z2, z3)

B =

-7.4907 -0.1885 0.0000

-0.1885 -3.0035 -0.0000

0.0000 -0.0000 -0.2750

>> B = Bmatrix(B,Qbar3,z3, z4)

B =

-7.3007 -0.1413 0

-0.1413 -0.5699 0

0 0 -0.2063

>> B = Bmatrix(B,Qbar4,z4, z5)

B =

1.0e-015 *

0 0 0

0 -0.1110 0

0 0 0

>> B = B/2

B =

1.0e-016 *
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0 0 0

0 -0.5551 0

0 0 0

Next, the [D] matrix is calculated using four calls to the MATLAB function
Dmatrix as follows (make sure to divide the final result by 3 since this step is not
performed by the Dmatrix function):

>> D = zeros(3,3)

D =

0 0 0

0 0 0

0 0 0

>> D = Dmatrix(D,Qbar1, z1, z2)

D =

2.1294 0.0412 0

0.0412 0.1662 0

0 0 0.0602

>> D = Dmatrix(D,Qbar2, z2, z3)

D =

2.1531 0.0471 -0.0000

0.0471 0.4704 0.0000

-0.0000 0.0000 0.0688

>> D = Dmatrix(D,Qbar3, z3, z4)

D =

2.1769 0.0530 -0.0000

0.0530 0.7746 0.0000

-0.0000 0.0000 0.0773

>> D = Dmatrix(D,Qbar4, z4, z5)

D =

4.3062 0.0942 -0.0000

0.0942 0.9408 0.0000

-0.0000 0.0000 0.1375



160 8 Laminate Analysis – Part II

>> D = D/3

D =

1.4354 0.0314 -0.0000

0.0314 0.3136 0.0000

-0.0000 0.0000 0.0458

MATLAB Example 8.3

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.900 mm and
is stacked as a [±30/0]S laminate. The six layers are of equal thickness. Calculate
the [A], [B], and [D] matrices for this laminate.

Solution

This example is solved using MATLAB. First, the reduced stiffness matrix [Q] for
a typical layer using the MATLAB function ReducedStiffness as follows:

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the transformed reduced stiffness matrix
[
Q̄
]

is calculated for each layer
using the MATLAB function Qbar as follows:

>> Qbar1 = Qbar(Q, 30)

Qbar1 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

>> Qbar2 = Qbar(Q, -30)

Qbar2 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar3 = Qbar(Q, 0)
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Qbar3 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar4 = Qbar(Q, 0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Qbar5 = Qbar(Q, -30)

Qbar5 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Qbar6 = Qbar(Q, 30)

Qbar6 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

Next, the distances zk (k = 1, 2, 3, 4, 5, 6, 7) are calculated as follows:

>> z1 = -0.450

z1 =

-0.4500

>> z2 = -0.300

z2 =

-0.3000

>> z3 = -0.150

z3 =

-0.1500
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>> z4 = 0

z4 =

0

>> z5 = 0.150

z5 =

0.1500

>> z6 = 0.300

z6 =

0.3000

>> z7 = 0.450

z7 =

0.4500

Next, the [A] matrix is calculated using six calls to the MATLAB function
Amatrix as follows:

>> A = zeros(3,3)

A =

0 0 0

0 0 0

0 0 0

>> A = Amatrix(A,Qbar1,z1,z2)

A =

13.6723 4.7575 14.2977

4.7575 2.9031 4.3551

7.1488 2.1776 9.2705

>> A = Amatrix(A,Qbar2,z2,z3)

A =

27.3446 9.5151 0.0000

9.5151 5.8062 0.0000

0.0000 0.0000 18.5410
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>> A = Amatrix(A,Qbar3,z3,z4)

A =

50.7068 9.9674 0.0000

9.9674 7.6300 0.0000

0.0000 0.0000 19.2010

>> A = Amatrix(A,Qbar4,z4,z5)

A =

74.0690 10.4197 0.0000

10.4197 9.4537 0.0000

0.0000 0.0000 19.8610

>> A = Amatrix(A,Qbar5,z5,z6)

A =

87.7413 15.1772 -14.2977

15.1772 12.3568 -4.3551

-7.1488 -2.1776 29.1315

>> A = Amatrix(A,Qbar6,z6,z7)

A =

101.4136 19.9348 0.0000

19.9348 15.2599 0.0000

0.0000 0.0000 38.4020

Next, the [B] matrix is calculated using six calls to the MATLAB function
Bmatrix as follows (make sure to divide the final result by 2 since this step is not
performed by the Bmatrix function):

>> B = zeros(3,3)

B =

0 0 0

0 0 0

0 0 0

>> B = Bmatrix(B,Qbar1,z1,z2)

B =

-10.2542 -3.5682 -10.7233

-3.5682 -2.1773 -3.2663

-5.3616 -1.6332 -6.9529
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>> B = Bmatrix(B,Qbar2,z2,z3)

B =

-16.4068 -5.7091 -4.2893

-5.7091 -3.4837 -1.3065

-2.1447 -0.6533 -11.1246

>> B = Bmatrix(B,Qbar3,z3,z4)

B =

-19.9111 -5.7769 -4.2893

-5.7769 -3.7573 -1.3065

-2.1447 -0.6533 -11.2236

>> B = Bmatrix(B,Qbar4,z4,z5)

B =

-16.4068 -5.7091 -4.2893

-5.7091 -3.4837 -1.3065

-2.1447 -0.6533 -11.1246

>> B = Bmatrix(B,Qbar5,z5,z6)

B =

-10.2542 -3.5682 -10.7233

-3.5682 -2.1773 -3.2663

-5.3616 -1.6332 -6.9529

>> B = Bmatrix(B,Qbar6,z6,z7)

B =

1.0e-015 *

0 -0.4441 0

0 0 0

0 0 -0.8882

>> B = B/2

B =

1.0e-015 *
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0 -0.2220 0

0 0 0

0 0 -0.4441

Next, the [D] matrix is calculated using six calls to the MATLAB function
Dmatrix as follows (make sure to divide the final result by 3 since this step is not
performed by the Dmatrix function):

>> D = zeros(3,3)

D =

0 0 0

0 0 0

0 0 0

>> D = Dmatrix(D,Qbar1,z1,z2)

D =

5.8449 2.0338 6.1123

2.0338 1.2411 1.8618

3.0561 0.9309 3.9631

>> D = Dmatrix(D,Qbar2,z2,z3)

D =

7.9983 2.7832 3.8604

2.7832 1.6983 1.1759

1.9302 0.5879 5.4232

>> D = Dmatrix(D,Qbar3,z3,z4)

D =

8.5240 2.7933 3.8604

2.7933 1.7394 1.1759

1.9302 0.5879 5.4381

>> D = Dmatrix(D,Qbar4,z4,z5)

D =

9.0496 2.8035 3.8604

2.8035 1.7804 1.1759

1.9302 0.5879 5.4529
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>> D = Dmatrix(D,Qbar5,z5,z6)

D =

11.2030 3.5528 1.6085

3.5528 2.2376 0.4900

0.8042 0.2450 6.9130

>> D = Dmatrix(D,Qbar6,z6,z7)

D =

17.0479 5.5867 7.7207

5.5867 3.4787 2.3518

3.8604 1.1759 10.8762

>> D = D/3

D =

5.6826 1.8622 2.5736

1.8622 1.1596 0.7839

1.2868 0.3920 3.6254

Problems

Problem 8.1

Derive (8.5) in detail.

MATLAB Problem 8.2

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.600 mm and is
stacked as a [0/90]S laminate. The four layers are of equal thickness. Calculate the
[A], [B], and [D] matrices for this laminate.

MATLAB Problem 8.3

Consider a glass-reinforced polymer composite laminate with the elastic constants
as given in Problem 2.7. The laminate has total thickness of 0.600mm and is stacked
as a [0/90]S laminate. The four layers are of equal thickness. Calculate the [A], [B],
and [D] matrices for this laminate.
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MATLAB Problem 8.4

Consider a glass-reinforced polymer composite laminate with the elastic constants
as given in Problem 2.7. The laminate has total thickness of 0.900mm and is stacked
as a [±30/0]S laminate. The six layers are of equal thickness. Calculate the [A], [B],
and [D] matrices for this laminate.

MATLAB Problem 8.5

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.800 mm and
is stacked as a [+30/0]S laminate. The four layers are of equal thickness. Calculate
the [A], [B], and [D] matrices for this laminate.

MATLAB Problem 8.6

Consider a glass-reinforced polymer composite laminate with the elastic constants
as given in Problem 2.7. The laminate has total thickness of 0.800mm and is stacked
as a [+30/0]S laminate. The four layers are of equal thickness. Calculate the [A],
[B], and [D] matrices for this laminate.

MATLAB Problem 8.7

Consider a graphite-reinforced polymer composite laminate with the elastic con-
stants as given in Example 2.2. The laminate has total thickness of 0.600 mm and
is stacked as a [+45/0/ −30]T laminate. The three layers are of equal thickness.
Calculate the [A], [B], and [D] matrices for this laminate.

MATLAB Problem 8.8

Consider a glass-reinforced polymer composite laminate with the elastic constants
as given in Problem 2.7. The laminate has total thickness of 0.600mm and is stacked
as a [+45/0/−30]T laminate. The three layers are of equal thickness. Calculate the
[A], [B], and [D] matrices for this laminate.
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Effective Elastic Constants of a Laminate

9.1 Basic Equations

In this chapter, we introduce the concept of effective elastic constants for the lam-
inate. These constants are the effective extensional modulus in the x direction Ēx,
the effective extensional modulus in the y direction Ēy, the effective Poisson’s ratios
ν̄xy and ν̄yx, and the effective shear modulus in the x-y plane Ḡxy.

The effective elastic constants are usually defined when considering the inplane
loading of symmetric balanced laminates. In the following equations, we consider
only symmetric balanced or symmetric cross-ply laminates. We therefore define the
following three average laminate stresses [1]:

σ̄x =
1

H

∫ H/2

−H/2

σxdz (9.1)

σ̄y =
1

H

∫ H/2

−H/2

σydz (9.2)

τ̄xy =
1

H

∫ H/2

−H/2

τxydz (9.3)

where H is the thickness of the laminate. Comparing (9.1), (9.2), and (9.3) with
(7.13), we obtain the following relations between the average stresses and the force
resultants:

σ̄x =
1

H
Nx (9.4)

σ̄y =
1

H
Ny (9.5)

τ̄xy =
1

H
Nxy (9.6)

Solving (9.4), (9.5), and (9.6) for Nx, Ny, and Nxy, and substituting the results
into (8.11) and (8.12) for symmetric balanced laminates, we obtain:
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⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

a11H a12H 0

a12H a22H 0

0 0 a66H

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ̄x

σ̄y

τ̄xy

⎫⎪⎬
⎪⎭ (9.7)

The above 3 × 3 matrix is defined as the laminate compliance matrix for sym-
metric balanced laminates. Therefore, by analogy with (4.5), we obtain the following
effective elastic constants for the laminate:

Ēx =
1

a11H
(9.8a)

Ēy =
1

a22H
(9.8b)

Ḡxy =
1

a66H
(9.8c)

ν̄xy = −a12

a11
(9.8d)

ν̄yx = −a12

a22
(9.8e)

It is clear from the above equations that ν̄xy and ν̄yx are not independent and
are related by the following reciprocity relation:

ν̄xy

Ēx
=

ν̄yx

Ēy
(9.9)

Finally, we note that the expressions of the effective elastic constants of (9.8)
can be re-written in terms of the components Aij of the matrix [A] as shown in
Example 9.1.

9.2 MATLAB Functions Used

The five MATLAB function used in this chapter to calculate the average laminate
elastic constants are:

Ebarx(A,H) – This function calculates the average laminate modulus in the x-
direction Ēx. There are two input arguments to this function – they are the thickness
of the laminate H and the 3 × 3 stiffness matrix [A] for balanced symmetric lami-
nates. The function returns a scalar quantity which the desired modulus.

Ebary(A,H) – This function calculates the average laminate modulus in the y-
direction Ēy. There are two input arguments to this function – they are the thickness
of the laminate H and the 3 × 3 stiffness matrix [A] for balanced symmetric lami-
nates. The function returns a scalar quantity which the desired modulus.

NUbarxy(A,H) – This function calculates the average laminate Poisson’s ratio ν̄xy.
There are two input arguments to this function – they are the thickness of the
laminate H and the 3 × 3 stiffness matrix [A] for balanced symmetric laminates.
The function returns a scalar quantity which the desired Poisson’s ratio.

NUbaryx(A,H) – This function calculates the average laminate Poisson’s ratio ν̄yx.
There are two input arguments to this function – they are the thickness of the
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laminate H and the 3 × 3 stiffness matrix [A] for balanced symmetric laminates.
The function returns a scalar quantity which the desired Poisson’s ratio.

Gbarxy(A,H) – This function calculates the average laminate shear modulus Ḡxy.
There are two input arguments to this function – they are the thickness of the
laminate H and the 3 × 3 stiffness matrix [A] for balanced symmetric laminates.
The function returns a scalar quantity which the desired shear modulus.

The following is a listing of the MATLAB source code for these functions:

function y = Ebarx(A,H)

%Ebarx This function returns the average laminate modulus

% in the x-direction. Its input are two arguments:

% A - 3 x 3 stiffness matrix for balanced symmetric

% laminates.

% H - thickness of laminate

a = inv(A);

y = 1/(H*a(1,1));

function y = Ebary(A,H)

%Ebary This function returns the average laminate modulus

% in the y-direction. Its input are two arguments:

% A - 3 x 3 stiffness matrix for balanced symmetric

% laminates.

% H - thickness of laminate

a = inv(A);

y = 1/(H*a(2,2));

function y = NUbarxy(A,H)

%NUbarxy This function returns the average laminate

% Poisson’s ratio NUxy. Its input are two arguments:

% A - 3 x 3 stiffness matrix for balanced symmetric

% laminates.

% H - thickness of laminate

a = inv(A);

y = -a(1,2)/a(1,1);

function y = NUbaryx(A,H)

%NUbaryx This function returns the average laminate

% Poisson’s ratio NUyx. Its input are two arguments:

% A - 3 x 3 stiffness matrix for balanced symmetric

% laminates.

% H - thickness of laminate

a = inv(A);

y = -a(1,2)/a(2,2);

function y = Gbarxy(A,H)

%Gbarxy This function returns the average laminate shear

% modulus. Its input are two arguments:

% A - 3 x 3 stiffness matrix for balanced symmetric
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% laminates.

% H - thickness of laminate

a = inv(A);

y = 1/(H*a(3,3));

Example 9.1

Show that the effective elastic constants for the laminate can be written in terms of
the components Aij of the [A] matrix as follows:

Ēx =
A11AA22 − A2

12

A22H
(9.10a)

Ēy =
A11AA22 − A2

12

A11H
(9.10b)

ν̄xy =
A12

A22
(9.10c)

ν̄yx =
A12

A11
(9.10d)

Ḡxy =
A66

H
(9.10e)

Solution

Starting with (8.11) and (8.12) as follows:⎧⎪⎨
⎪⎩

Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

A11 A12 0

A12 A22 0

0 0 A66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ (9.11)

take the inverse of (9.11) to obtain:⎧⎪⎨
⎪⎩

ε0
x

ε0
y

γ0
xy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

a11 a12 0

a12 a22 0

0 0 a66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Nx

Ny

Nxy

⎫⎪⎬
⎪⎭ (9.12)

where

a11 =
A22

A11A22 − A2
12

(9.13a)

a22 =
A11

A11A22 − A2
12

(9.13b)

a12 =
A12

A11A22 − A2
12

(9.13c)

a66 =
1

A66
(9.13d)
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Next, substitute (9.13) into (9.8) to obtain the required expressions as follows:

Ēx =
A11AA22 − A2

12

A22H
(9.14a)

Ēy =
A11AA22 − A2

12

A11H
(9.14b)

ν̄xy =
A12

A22
(9.14c)

ν̄yx =
A12

A11
(9.14d)

Ḡxy =
A66

H
(9.14e)

MATLAB Example 9.2

Consider a four-layer [0/90]S graphite-reinforced polymer composite laminate with
the elastic constants as given in Example 2.2. The laminate has total thickness of
0.800 mm. The four layers are of equal thickness. Use MATLAB to determine the
five effective elastic constants for this laminate.

Solution

This example is solved using MATLAB. First, the reduced stiffness matrix [Q] for
a typical layer using the MATLAB function ReducedStiffness as follows:

EDU>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the transformed reduced stiffness matrix
[
Q̄
]

is calculated for each layer using
the MATLAB function Qbar as follows:

EDU>> Qbar1 = Qbar(Q, 0)

Qbar1 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000



174 9 Effective Elastic Constants of a Laminate

EDU>> Qbar2 = Qbar(Q, 90)

Qbar2 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

EDU>> Qbar3 = Qbar(Q, 90)

Qbar3 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

EDU>> Qbar4 = Qbar(Q, 0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the distances zk(k = 1, 2, 3, 4, 5) are calculated as follows:

EDU>> z1 = -0.400

z1 =

-0.4000

EDU>> z2 = -0.200

z2 =

-0.2000

EDU>> z3 = 0

z3 =

0

EDU>> z4 = 0.200

z4 =

0.2000
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EDU>> z5 = 0.400

z5 =

0.4000

Next, the [A] matrix is calculated using four calls to the MATLAB function Amatrix
as follows:

EDU>> A = zeros(3,3)

A =

0 0 0

0 0 0

0 0 0

EDU>> A = Amatrix(A,Qbar1,z1,z2)

A =

31.1496 0.6031 0

0.6031 2.4317 0

0 0 0.8800

EDU>> A = Amatrix(A,Qbar2,z2,z3)

A =

33.5812 1.2061 -0.0000

1.2061 33.5812 0.0000

-0.0000 0.0000 1.7600

EDU>> A = Amatrix(A,Qbar3,z3,z4)

A =

36.0129 1.8092 -0.0000

1.8092 64.7308 0.0000

-0.0000 0.0000 2.6400

EDU>> A = Amatrix(A,Qbar4,z4,z5)

A =

67.1625 2.4122 -0.0000

2.4122 67.1625 0.0000

-0.0000 0.0000 3.5200

Finally, five calls are made to the five MATLAB functions introduced in this chapter
to calculate the five effective elastic constants of this laminate.



176 9 Effective Elastic Constants of a Laminate

EDU>> H = 0.800

H =

0.8000

EDU>> Ebarx(A,H)

ans =

83.8448

EDU>> Ebary(A,H)

ans =

83.8448

EDU>> NUbarxy(A,H)

ans =

0.0359

EDU>> NUbaryx(A,H)

ans =

0.0359

EDU>> Gbarxy(A,H)

ans =

4.4000

MATLAB Example 9.3

Consider a six-layer [±30/0]S graphite-reinforced polymer composite laminate with
the elastic constants as given in Example 2.2. The laminate has total thickness of
0.900 mm. The four layers are of equal thickness. Use MATLAB to determine the
five effective elastic constants for this laminate.

Solution

This example is solved using MATLAB. First, the reduced stiffness matrix [Q] for
a typical layer using the MATLAB function ReducedStiffness as follows:
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EDU>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

Next, the transformed reduced stiffness matrix
[
Q̄
]

is calculated for each layer using
the MATLAB function Qbar as follows:

EDU>> Qbar1 = Qbar(Q, 30)

Qbar1 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

EDU>> Qbar2 = Qbar(Q, -30)

Qbar2 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

EDU>> Qbar3 = Qbar(Q, 0)

Qbar3 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

EDU>> Qbar4 = Qbar(Q, 0)

Qbar4 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

EDU>> Qbar5 = Qbar(Q, -30)

Qbar5 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034
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EDU>> Qbar6 = Qbar(Q, 30)

Qbar6 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

Next, the distances zk (k = 1, 2, 3, 4, 5, 6, 7) are calculated as follows:

EDU>> z1 = -0.450

z1 =

-0.4500

EDU>> z2 = -0.300

z2 =

-0.3000

EDU>> z3 = -0.150

z3 =

-0.1500

EDU>> z4 = 0

z4 =

0

EDU>> z5 = 0.150

z5 =

0.1500

EDU>> z6 = 0.300

z6 =

0.3000

EDU>> z7 = 0.450

z7 =

0.4500
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Next, the [A] matrix is calculated using six calls to the MATLAB function Amatrix
as follows:

EDU>> A = zeros(3,3)

A =

0 0 0

0 0 0

0 0 0

EDU>> A = Amatrix(A,Qbar1,z1,z2)

A =

13.6723 4.7575 14.2977

4.7575 2.9031 4.3551

7.1488 2.1776 9.2705

EDU>> A = Amatrix(A,Qbar2,z2,z3)

A =

27.3446 9.5151 0.0000

9.5151 5.8062 0.0000

0.0000 0.0000 18.5410

EDU>> A = Amatrix(A,Qbar3,z3,z4)

A =

50.7068 9.9674 0.0000

9.9674 7.6300 0.0000

0.0000 0.0000 19.2010

EDU>> A = Amatrix(A,Qbar4,z4,z5)

A =

74.0690 10.4197 0.0000

10.4197 9.4537 0.0000

0.0000 0.0000 19.8610

EDU>> A = Amatrix(A,Qbar5,z5,z6)

A =

87.7413 15.1772 -14.2977

15.1772 12.3568 -4.3551

-7.1488 -2.1776 29.1315
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EDU>> A = Amatrix(A,Qbar6,z6,z7)

A =

101.4136 19.9348 0.0000

19.9348 15.2599 0.0000

0.0000 0.0000 38.4020

Finally, five calls are made to the five MATLAB functions introduced in this chapter
to calculate the five effective elastic constants of this laminate.

EDU>> H = 0.900

H =

0.9000

EDU>> Ebarx(A,H)

ans =

83.7466

EDU>> Ebary(A,H)

ans =

12.6015

EDU>> NUbarxy(A,H)

ans =

1.3063

EDU>> NUbaryx(A,H)

ans =

0.1966

EDU>> Gbarxy(A,H)

ans =

42.6689
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Problems

Problem 9.1

Show that the effective shear modulus Ḡxy is not related to the effective
extensional modulus Ēx and the effective Poisson’s ratio ν̄xy by the relation:

Ḡxy =
Ēx

2(1 + ν̄xy)
(9.15)

MATLAB Problem 9.2

Consider a graphite-reinforced polymer composite laminate with the elas-
tic constants as given in Example 2.2. The laminate has total thickness of
0.600 mm and is stacked as a [0/90]S laminate. The four layers are of equal
thickness. Use MATLAB to determine the five effective elastic constants for
this laminate.

MATLAB Problem 9.3

Consider a glass-reinforced polymer composite laminate with the elastic con-
stants as given in Problem 2.7. The laminate has total thickness of 0.600 mm
and is stacked as a [0/90]S laminate. The four layers are of equal thickness. Use
MATLAB to determine the five effective elastic constants for this laminate.

MATLAB Problem 9.4

Consider a glass-reinforced polymer composite laminate with the elastic con-
stants as given in Problem 2.7. The laminate has total thickness of 0.900 mm
and is stacked as a [±30/0]S laminate. The six layers are of equal thickness.
Use MATLAB to determine the five effective elastic constants for this lami-
nate.

MATLAB Problem 9.5

Consider a graphite-reinforced polymer composite laminate with the elas-
tic constants as given in Example 2.2. The laminate has total thickness of
0.800 mm and is stacked as a [+30/0]S laminate. The four layers are of equal
thickness. Use MATLAB to determine the five effective elastic constants for
this laminate.

MATLAB Problem 9.6

Consider a glass-reinforced polymer composite laminate with the elastic con-
stants as given in Problem 2.7. The laminate has total thickness of 0.800 mm
and is stacked as a [+30/0]S laminate. The four layers are of equal thick-
ness. Use MATLAB to determine the five effective elastic constants for this
laminate.
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MATLAB Problem 9.7

Consider a graphite-reinforced polymer composite laminate with the elas-
tic constants as given in Example 2.2. The laminate has total thickness of
0.600 mm and is stacked as a [+45/0/−30]T laminate. The three layers are of
equal thickness. Use MATLAB to determine the five effective elastic constants
for this laminate.

MATLAB Problem 9.8

Consider a glass-reinforced polymer composite laminate with the elastic con-
stants as given in Problem 2.7. The laminate has total thickness of 0.600 mm
and is stacked as a [+45/0/−30]T laminate. The three layers are of equal
thickness. Use MATLAB to determine the five effective elastic constants for
this laminate.
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Failure Theories of a Lamina

10.1 Basic Equations

In this chapter we present various failure theories for one single layer of the
composite laminate, usually called a lamina. We use the following notation
throughout this chapter for the various strengths or ultimate stresses:

σT
1 : tensile strength in longitudinal direction.

σC
1 : compressive strength in longitudinal direction.

σT
2 : tensile strength in transverse direction.

σC
2 : compressive strength in transverse direction.

τF
12 : shear strength in the 1-2 plane.

where the strength means the ultimate stress or failure stress, the longitudinal
direction is the fiber direction (1-direction), and the transverse direction is the
2-direction (perpendicular to the fiber).

We also use the following notation for the ultimate strains:

εT
1 : ultimate tensile strain in the longitudinal direction.

εC
1 : ultimate compressive strain in the longitudinal direction.

εT
2 : ultimate tensile strain in the transverse direction.

εC
2 : ultimate compressive strain in the transverse direction.

γF
12 : ultimate shear strain in the 1-2 plane.

It is assumed that the lamina behaves in a linear elastic manner. For
the longitudinal uniaxial loading of the lamina (see Fig. 10.1), we have the
following elastic relations:

σT
1 = E1ε

T
1 (10.1)

σC
1 = E1ε

C
1 (10.2)
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Fig. 10.1. Stress-strain curve for the longitudinal uniaxial loading of a lamina

where E1 is Young’s modulus of the lamina in the longitudinal (fiber) direc-
tion.

For the transverse uniaxial loading of the lamina (see Fig. 10.2), we have
the following elastic relations:

σT
2 = E2ε

T
2 (10.3)

σC
2 = E2ε

C
2 (10.4)

where E2 is Young’s modulus of the lamina in the transverse direction. For
the shear loading of the lamina (see Fig. 10.3), we have the following elastic
relation:

τF
12 = G12γ

F
12 (10.5)

where G12 is the shear modulus of the lamina.

10.1.1 Maximum Stress Failure Theory

In the maximum stress failure theory, failure of the lamina is assumed to
occur whenever any normal or shear stress component equals or exceeds the
corresponding strength. This theory is written mathematically as follows:

σC
1 < σ1 < σT

1 (10.6)
σC

2 < σ2 < σT
2 (10.7)

|τ12| < τF
12 (10.8)
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Fig. 10.2. Stress-strain curve for the transverse uniaxial loading of a lamina

Fig. 10.3. Stress-strain curve for the shear loading of a lamina

where σ1 and σ2 are the maximum material normal stresses in the lamina,
while τ12 is the maximum shear stress in the lamina.

The failure envelope for this theory is clearly illustrated in Fig. 10.4. The
advantage of this theory is that it is simple to use but the major disadvantage
is that there is no interaction between the stress components.
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Fig. 10.4. Failure envelope for the maximum stress failure theory

10.1.2 Maximum Strain Failure Theory

In the maximum strain failure theory, failure of the lamina is assumed to occur
whenever any normal or shear strain component equals or exceeds the corre-
sponding ultimate strain. This theory is written mathematically as follows:

εC
1 < ε1 < εT

1 (10.9)
εC
2 < ε2 < εT

2 (10.10)
|γ12| < γF

12 (10.11)

where ε1, ε2, and γ12 are the principal material axis strain components. In
this case, we have the following relation between the strains and the stresses
in the longitudinal direction:

ε1 =
σT

1

E1
=

σ1

E1
− ν12

σ2

E1
(10.12)

Simplifying (10.12), we obtain:

σ2 =
σ1 − σT

1

ν12
(10.13)

Similarly, we have the following relation between the strains and the stresses
in the transverse direction:

ε2 =
σT

2

E2
=

σ2

E2
− ν21

σ1

E2
(10.14)

Simplifying (10.14), we obtain:
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σ2 = ν21σ1 + σT
2 (10.15)

The failure envelope for this theory is clearly shown in Fig. 10.5 (based on
(10.13) and (10.15)). The advantage of this theory is that it is simple to use
but the major disadvantage is that there is no interaction between the strain
components.

Fig. 10.5. Failure envelope for the maximum strain failure theory

Figure 10.6 shows the two failure envelopes of the maximum stress the-
ory and the maximum strain theory superimposed on the same plot for
comparison.

10.1.3 Tsai-Hill Failure Theory

The Tsai-Hill failure theory is derived from the von Mises distortional energy
yield criterion for isotropic materials but is applied to anisotropic materials
with the appropriate modifications. In this theory, failure is assumed to occur
whenever the distortional yield energy equals or exceeds a certain value related
to the strength of the lamina. In this theory, there is no distinction between
the tensile and compressive strengths. Therefore, we use the following notation
for the strengths of the lamina:

σF
1 : strength in longitudinal direction.

σF
2 : strength in transverse direction.

τF
12 : shear strength in the 1-2 plane.

The Tsai-Hill failure theory is written mathematically for the lamina as
follows:
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Fig. 10.6. Comparison of the failure envelopes for the maximum stress theory and
maximum strain theory

σ2
1(

σF
1

)2 − σ1σ2(
σF

1

)2 +
σ2

2(
σF

2

)2 +
τ2
12(

τF
12

)2 ≤ 1 (10.16)

The failure envelope for this theory is clearly shown in Fig. 10.7. The
advantage of this theory is that there is interaction between the stress com-
ponents. However, this theory does not distinguish between the tensile and
compressive strengths and is not as simple to use as the maximum stress
theory or the maximum strain theory.

Fig. 10.7. Failure envelope for the Tsai-Hill failure theory
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Fig. 10.8. Comparison between the three failure envelopes

Figure 10.8 shows the three failure envelopes of the maximum stress theory,
the maximum strain theory, and the Tsai-Hill theory superimposed on the
same plot for comparison.

10.1.4 Tsai-Wu Failure Theory

The Tsai-Wu failure theory is based on a total strain energy failure theory. In
this theory, failure is assumed to occur in the lamina if the following condition
is satisfied:

F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + F1σ1 + F2σ2 + F12σ1σ2 ≤ 1 (10.17)

where the coefficients F11, F22, F66, F1, F2, and F12 are given by:

F11 =
1

σT
1 σC

1

(10.18)

F22 =
1

σT
2 σC

2

(10.19)

F1 =
1

σT
1

− 1
σC

1

(10.20)

F1 =
1

σT
2

− 1
σC

2

(10.21)

F66 =
1(

τF
12

)2 (10.22)

and F12 is a coefficient that is determined experimentally. Tsai-Hahn deter-
mined F12 to be given by the following approximate expression:
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Fig. 10.9. A general failure ellipse for the Tsai-Wu failure theory

F12 ≈ −1
2

√
F11F22 (10.23)

The failure envelope for this theory is shown in general in Fig. 10.9. The
advantage of this theory is that there is interaction between the stress com-
ponents and the theory does distinguish between the tensile and compressive
strengths. A major disadvantage of this theory is that it is not simple to use.

Finally, in order to compare the failure envelopes for a composite lamina
with the envelopes of isotropic ductile materials, Fig. 10.10 shows the failure
envelopes for the usual von Mises and Tresca criteria for isotropic materials.

Problems

Problem 10.1

Determine the maximum value of α > 0 if stresses of σx = 3α, σy = −2α,
and τxy = 5α are applied to a 60◦-lamina of graphite/epoxy. Use the maxi-
mum stress failure theory. The material properties of this lamina are given as
follows:

V f = 0.70 σT
1 = 1500MPa

E1 = 181GPa σC
1 = 1500MPa

E2 = 10.30GPa σT
2 = 40MPa

ν12 = 0.28 σC
2 = 246 MPa

G12 = 7.17GPa τF
12 = 68MPa
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Fig. 10.10. Two failure criteria for ductile homogeneous materials

Problem 10.2

Repeat Problem 10.1 using the maximum strain failure theory instead of the
maximum stress failure theory.

Problem 10.3

Repeat Problem 10.1 using the Tsai-Hill failure theory instead of the maxi-
mum stress failure theory.

Problem 10.4

Repeat Problem 10.1 using the Tsai-Wu failure theory instead of the maxi-
mum stress failure theory.

MATLAB Problem 10.5

Use MATLAB to plot the four failure envelopes using the strengths given in
Problem 10.1.

Problem 10.6

Determine the maximum value of α > 0 if stresses of σx = 3α, σy = −2α, and
τxy = 5α are applied to a 30◦-lamina of glass/epoxy. Use the maximum stress
failure theory. The material properties of this lamina are given as follows:
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V f = 0.45 σT
1 = 1062MPa

E1 = 38.6GPa σC
1 = 610 MPa

E2 = 8.27GPa σT
2 = 31MPa

ν12 = 0.26 σC
2 = 118 MPa

G12 = 4.14GPa τF
12 = 72MPa

Problem 10.7

Repeat Problem 10.6 using the maximum strain failure theory instead of the
maximum stress failure theory.

Problem 10.8

Repeat Problem 10.6 using the Tsai-Hill failure theory instead of the maxi-
mum stress failure theory.

Problem 10.9

Repeat Problem 10.6 using the Tsai-Wu failure theory instead of the maxi-
mum stress failure theory.

MATLAB Problem 10.10

Use MATLAB to plot the four failure envelopes using the strengths given in
Problem 10.6.
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Introduction to Homogenization
of Composite Materials

11.1 Eshelby Method

In this chapter, we present a brief overview of the homogenization of composite
materials. Homogenization refers to the process of considering a statistically
homogeneous representation of the composite material called a representative
volume element (RVE). This homogenized element is considered for purposes
of calculating the stresses and strains in the matrix and fibers. We will em-
phasize mainly the Eshelby method in the homogenization process. For more
details, the reader is referred to the book An Introduction to Metal Matrix
Composites by Clyne and Withers.

Since the composite system is composed of two different materials (matrix
and fibers) with two different stiffnesses, internal stresses will arise in both
the two constituents. Eshelby in the 1950s demonstrated that an analytical
solution may be obtained for the special case when the fibers have the shape
of an ellipsoid. Furthermore, the stress is assumed to be uniform within the el-
lipsoid. Eshelby’s method is summarized by representing the actual inclusion
(i.e fibers) by one made of the matrix material (called the equivalent homoge-
neous inclusion). This equivalent inclusion is assumed to have an appropriate
strain (called the equivalent transformation strain) such that the stress field is
the same as for the actual inclusion. This is the essence of the homogenization
process.

The following is a summary of the steps followed in the homogenization
procedure according to the Eshelby method (see Fig. 11.1):

1. Consider an initially unstressed elastic homogeneous material (see
Fig. 11.1a). Imagine cutting an ellipsoidal region (i.e. inclusion) from this
material. Imagine also that the inclusion undergoes a shape change free
from the constraining matrix by subjecting it to a transformation strain
εT
ij (see Fig. 11.1b) where the indices i and j take the values 1, 2, and 3.

2. Since the inclusion has now changed in shape, it cannot be replaced directly
into the hole in the matrix material. Imagine applying surface tractions to
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Fig. 11.1. Schematic illustration of homogenization according to the Eshelby
method

the inclusion to return it to its original shape, then imagine returning it
back to the matrix material (see Fig. 11.1c).

3. Imagine welding the inclusion and matrix material together then removing
the surface tractions. The matrix and inclusion will then reach an equilib-
rium state when the inclusion has a constraining strain εC

ij relative to the
initial shape before it was removed (see Fig. 11.1d).

4. The stress in the inclusion σI
ij can now be calculated as follows assuming

the strain is uniform within the inclusion:

σI
ij = CM

ijkl

(
εC
kl − εT

kl

)
(11.1)

where CM
ijkl are the components of the elasticity tensor of the matrix\mat-

erial.
5. Eshelby has shown that the constraining strain εC

ij can be calculated in
terms of the transformation strain εT

ij using the following equations:

εC
ij = Sijklε

T
kl (11.2)

where Sijkl are the components of the Eshelby tensor S. The Eshelby tensor
S is a fourth-rank tensor determined using Poisson’s ratio of the inclusion
material and the inclusion’s aspect ration.

6. Finally, the stress in the inclusion is determined by substituting (11.2) into
(11.1) and simplifying to obtain:

σI
ij = CM

ijkl (Sklmn − Iklmn) εT
mn (11.3)

where Iklmn are the components of the fourth-rank identity tensor given
by:
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Iklmn =
1
2

(δkmδln + δknδlm) (11.4)

and δij are the components of the Kronecker delta tensor.

Using matrices, (11.3) is re-written as follows:{
σI
}

=
[
CM

]
([S] − [I])

{
εT
}

(11.5)

where the braces are used to indicate a vector while the brackets are used to
indicate a matrix.

Next, expressions of the Eshelby tensor S are presented for the case of
long infinite cylindrical fibers. In this case, the values of the Eshelby tensor
depend on Poisson’s ratio ν of the fibers and are determined as follows:

S1111 = S2222 =
5 − ν

8(1 − ν)
(11.6a)

S3333 = 0 (11.6b)

S1122 = S2211 =
−1 + 4ν

8(1 − ν)
(11.6c)

S1133 = S2233 =
ν

2(1 − ν)
(11.6d)

S3311 = S3322 = 0 (11.6e)

S1212 = S1221 = S2112 = S2121 =
3 − 4ν

8(1 − ν)
(11.6f)

S1313 = S1331 = S3113 = S3131 =
1
4

(11.6g)

S3232 = S3223 = S2332 = S2323 =
1
4

(11.6h)

Sijkl = 0 , otherwise (11.6i)

In addition to Eshelby’s method of determining the stresses and strains
in the fibers and matrix, there are other methods based on Hill’s stress and
strain concentration factors.

Problems

Problem 11.1

Derive the equations of the Eshelby method for the case of a misfit strain due
to a differential thermal contraction assuming that the matrix and inclusion
have different thermal expansion coefficients.

Problem 11.2

Derive the equations of the method for the case of internal stresses in ex-
ternally loaded composites. Assume the existence of an external load that is
responsible for the transfer of load to the inclusion.
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Problem 11.3

The formulation in this chapter has been based on what are called dilute com-
posite systems, i.e. a single inclusion is embedded within an infinite matrix.
In this case, the inclusion volume fraction is less than a few percent. Consider
non-dilute systems where the inclusion volume fraction is much higher with
many inclusions. What modifications to the equations of the Eshelby method
are needed to formulate the theory for non-dilute systems.



12

Introduction to Damage Mechanics
of Composite Materials

12.1 Basic Equations

The objective of this final chapter is to introduce the reader to the subject
of damage mechanics of composite materials. For further details, the reader
is referred to the comprehensive book on this subject written by the authors:
Advances in Damage Mechanics: Metals and Metal Matrix Composites. This
chapter does not contain any MATLAB functions or examples.

In this chapter, only elastic composites are considered. The fibers are as-
sumed to be continuous and perfectly aligned. In addition, a perfect bond is
assumed to exist at the matrix-fiber interface. A consistent mathematical for-
mulation is presented in the next sections to derive the equations of damage
mechanics for these composite materials using two different approaches: one
overall and one local. The elastic stiffness matrix is derived using both these
two approaches and is shown to be identical in both cases.

For simplicity, the composite system is assumed to consist of a matrix re-
inforced with continuous fibers. Both the matrix and fibers are linearly elastic
with different material constants. Let C̄ denote the configuration of the un-
damaged composite system and let C̄m and C̄f denote the configurations of
the undamaged matrix and fibers, respectively. Since the composite system as-
sumes a perfect bond at the matrix-fiber interface, it is clear that C̄m ∩ C̄f = φ
and C̄m ∪ C̄f = C̄. In the overall approach, the problem reduces to trans-
forming the undamaged configuration C̄ into the damaged configuration C.
In contrast, two intermediate configurations Cm and Cf are considered in the
local approach for the matrix and fibers, respectively. In the latter approach,
the problem is reduced to transforming each of the undamaged configurations
C̄m and C̄f into the damaged configurations Cm and Cf , respectively.

In case of elastic fiber-reinforced composites, the following linear relation
is used for each constituent in its respective undamaged configuration:

σ̄k = Ēk : ε̄k, k = m, f (12.1)
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where σ̄k is the effective constituent stress tensor, ε̄k is the effective strain
tensor, and Ēk is the effective constituent elasticity tensor. The operation:
denotes the tensor contraction operation over two indices. For the case of an
isotropic constituent, Ēk is given by the following formula:

Ēk = λ̄kI2 ⊗ I2 + 2ūkI4 (12.2)

where λ̄k and µ̄k are the effective constituent Lame’s constants, I2 is the
second-rank identity tensor, and I4 is the fourth-rank identity tensor. The
operation ⊗ is the tensor cross product between two second-rank tensors to
produce a fourth-rank tensor.

Within the framework of the micromechanical analysis of composite ma-
terials, the effective constituent stress tensor σ̄k is related to the effective
composite stress tensor σ̄ by the following relation:

σ̄k = B̄k : σ̄ (12.3)

The fourth-rank tensor B̄k is the constituent stress concentration tensor.
It can be determined using several available homogenization models such as
the Voigt and Mori-Tanaka models. The effective constituent strain tensor ε̄k

is determined in a similar way by the following relation:

ε̄k = Āk : ε̄ (12.4)

where ε̄ is the effective composite strain tensor and Āk is the fourth-rank
constituent strain concentration tensor.

Next, the overall and local approaches to damage in elastic composites are
examined in the following two sections.

12.2 Overall Approach

In this approach, damage is incorporated in the composite system as a whole
through one damage tensor called the overall damage tensor. The two steps
needed in this approach are shown schematically in Fig. 12.1 for a two-phase
composite system consisting of a matrix and fibers. In the first step, the
elastic equations are formulated in an undamaged composite system. This is
performed here using the law of mixtures as follows:

σ̄ = c̄mσ̄m + c̄f σ̄f (12.5)

where c̄m and c̄f are the effective matrix and fiber volume fractions, respec-
tively.

In the effective composite configuration C̄, the following linear elastic re-
lation holds:

σ̄ = Ē : ε̄ (12.6)
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Fig. 12.1. Schematic diagram illustrating the overall approach for composite ma-
terials

where Ē is the fourth-rank constant elasticity tensor. Substituting (12.1),
(12.4), and (12.6) into (12.5) and simplifying, one obtains the following ex-
pression for Ē:

Ē = c̄mĒm : Ām + c̄f Ēf : Āf (12.7)

In the second step of the formulation, damage is induced through the
fourth-rank damage effect tensor M as follows:

σ̄ = M : σ (12.8)

where σ is the composite stress tensor. Equation (12.8) represents the damage
transformation equation for the stress tensor. In order to derive a similar
relation for the strain tensor, one needs to use the hypothesis of elastic energy
equivalence. In this hypothesis, the elastic energy of the damage system is
equal to the elastic energy of the effective system. Applying this hypothesis
to the composite system by equating the two elastic energies, one obtains:

1
2
ε : σ =

1
2
ε̄ : σ̄ (12.9)

where ε is the composite strain tensor. Substituting (12.8) into (12.9) and
simplifying, one obtains the damage transformation equation for the strain
tensor as follows:

ε̄ = M−T : ε (12.10)

where the superscript −T denotes the inverse transpose of the tensor.
In order to derive the final relation in the damaged composite system, one

substitutes (12.8) and (12.10) into (12.6) to obtain:

σ = E : ε (12.11)

where the fourth-rank elasticity tensor E is given by:

E = M−1 : Ē : M−T (12.12a)

Substituting for Ē from (12.7) into (12.12a), one obtains:

E = M−1 :
(
c̄mĒm : Ām + c̄f Ēf : Āf

)
: M−T (12.12b)

The above equation represents the elasticity tensor in the damaged com-
posite system according to the overall approach.
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12.3 Local Approach

In this approach, damage is introduced in the first step of the formulation
using two independent damage tensors for the matrix and fibers. However,
more damage tensors may be introduced to account for other types of damage
such as debonding and delamination. The two steps involved in this approach
are shown schematically in Fig. 12.2. One first introduces the fourth-rank
matrix and fiber damage effect tensors Mm and Mf , respectively, as follows:

Fig. 12.2. Schematic diagram illustrating the local approach for composite materials

σ̄k = Mk : σk , k = m, f (12.13)

The above equation can be interpreted in a similar way to (12.8) except
that it applies at the constituent level. It also represents the damage trans-
formation equation for each constituent stress tensor. In order to derive a
similar transformation equation for the constituent strain tensor, one applies
the hypothesis of elastic energy equivalence to each constituent separately as
follows:

1
2
εk : σk =

1
2
ε̄k : σ̄k , k = m, f (12.14)

In using (12.14), one assumes that there are no micromechanical or con-
stituent elastic interactions between the matrix and fibers. This assumption
is not valid in general. From micromechanical considerations, there should
be interactions between the elastic energies in the matrix and fibers. How-
ever, such interactions are beyond the scope of this book as the resulting
equations will be complicated and the sought relations may consequently be
unattainable. It should be clear to the reader that (12.14) is the single most
important assumption that is needed to derive the relations of the local ap-
proach. It will also be needed later when we show the equivalence of the over-
all and local approaches. Therefore, the subsequent relations are very special
cases when (12.14) is valid.

Substituting (12.13) into (12.14) and simplifying, one obtains the required
transformations for the constituent strain tensor as follows:

ε̄k = Mk−T

: εk , k = m, f (12.15)
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The above equation implies a decoupling between the elastic energy in the
matrix and fibers. Other methods may be used that include some form of
coupling but they will lead to complicated transformation equations that are
beyond the scope of this book.

Substituting (12.13) and (12.15) into (12.1) and simplifying, one obtains:

σk = Ek : εk , k = m, f (12.16)

where the constituent elasticity tensor Ek is given by:

Ek = Mk−1
: Ēk : Mk−T

, k = m, f (12.17)

Equation (12.16) represents the elasticity relation for the damaged con-
stituents. The second step of the formulation involves transforming (12.17)
into the whole composite system using the law of mixtures as follows:

σ = cmσm + cfσf (12.18)

where cm and cf are the matrix and fiber volume fractions, respectively, in
the damaged composite system. Before proceeding with (12.18), one needs to
derive a strain constituent equation similar to (12.4). Substituting (12.10) and
(12.15) into (12.4) and simplifying, one obtains:

εk = Ak : ε , k = m, f (12.19)

where the constituent strain concentration tensor Ak in the damaged state is
given by:

Ak = MkT

: Āk : M−T , k = m, f (12.20)

The above equation represents the damage transformation equation for
the strain concentration tensor.

Finally, one substitutes (12.11), (12.16), and (12.19) into (12.18) and sim-
plifies to obtain:

E = cmEm : Am + cfEf : Af (12.21)

Equation (12.21) represents the elasticity tensor in the damaged composite
system according to the local approach.

12.4 Final Remarks

In this final section, it is shown that both the overall and local approaches
are equivalent elastic composites which are considered here. This proof is
performed by showing that both the elasticity tensors given in (12.12b) and
(12.21) are exactly the same. In fact, it is shown that (12.21) reduces to
(12.12b) after making the appropriate substitution.
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First, one needs to find a damage transformation equation for the volume
fractions. This is performed by substituting (12.8) and (12.13) into (12.5),
simplifying and comparing the result with (12.18). One therefore obtains:

ckI4 = c̄kM−1 : Mk , k = m, f (12.22)

where I4 is the fourth-rank identity tensor. Substituting (12.17) and (12.20)
into (12.21) and simplifying, one obtains:

E =
(
cmMm−1

: Ēm : Ām + cfMf−1
: Ēf : Āf

)
: M−T (12.23)

Finally, one substitutes (12.22) into (12.23) and simplifies to obtain:

E = M−1 :
(
c̄mĒm : Ām + c̄f Ēf : Āf

)
: M−T (12.24)

It is clear that the above equation is the same as (12.12b). Therefore,
both the overall and local approaches yield the same elasticity tensor in the
damaged composite system.

Equation (12.24) can be generalized to an elastic composite system with
n constituents as follows:

E = M−1 :

(
n∑

k=1

c̄kĒk : Āk

)
: M−T (12.25)

The two formulations of the overall and local approaches can be used to
obtain the above equation for a composite system with n constituents. The
derivation of (12.25) is similar to the derivation of (12.24) – therefore it is not
presented here and is left to the problems.

In the remaining part of this section, some additional relations are pre-
sented to relate the overall damage effect tensor with the constituent damage
effect tensors. Substituting (12.3) into (12.5) and simplifying, one obtains the
constraint equation for the stress concentration tensors. The constraint equa-
tion is generalized as follows:

n∑
k=1

c̄kB̄k = I4 (12.26)

where I4 is the fourth-rank identity tensor. To find a relation between the
stress concentration tensors in the effective and damaged states, one substi-
tutes (12.8) and (12.13) into (12.3) and simplifies to obtain:

σk = Bk : σ , k = 1, 2, 3, . . . , n (12.27)

where Bk is the fourth-rank stress concentration tensor in the damaged con-
figuration and is given by:

Bk = Mk−1
: B̄k : M , k = 1, 2, 3, . . . , n (12.28)



Problems 203

Substituting (12.27) into (12.18) and simplifying, the resulting constraint is
generalized as follows:

n∑
k=1

ckBk = I4 (12.29)

Finally, substituting (12.28) into (12.29) and simplifying, one obtains:

M =

(
n∑

k=1

ckMk−1
: B̄k

)−1

(12.30)

Equation (12.30) represents the required relation between the overall and local
(constituent) damage effect tensors.

Problems

Problem 12.1

Consider a composite system that consists of n constituents. In this case, the
overall approach is schematically illustrated in Fig. 12.3. In this case, derive
(12.25) in detail.

Fig. 12.3. Schematic diagram illustrating the overall approach for composite ma-
terials for Problem 12.1

Problem 12.2

Consider a composite system that consists of n constituents. In this case, the
local approach is schematically illustrated in Fig. 12.4. In this case, derive
(12.25) in detail.
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Fig. 12.4. Schematic diagram illustrating the local approach for composite materials
for Problem 12.2

Problem 12.3

Derive (12.20) in detail.

Problem 12.4

Derive (12.28) in detail.

Problem 12.5

The stress and strain concentration tensors are usually determined using one
of the following four models:

1. The Voigt model.
2. The Reuss model.
3. The Mori-Tanaka model.
4. The Eshelby Tensor.

Make a literature search on the above four models and describe each model
briefly writing its basic equations.
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Problem 2.1

In this case, [S] is symmetric given as follows:

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

|S| = [S11(S22S33 − S23S23) − S12(S12S33 − S13S23)

+S13(S12S23 − S13S22)] S44S55S66

= (S11S22S33 − S11S23S23 − S33S12S12

−S22S13S13 + 2S12S23S13) S44S55S66

Next, use the following formula to calculate the inverse of [S]:

[C] = [S]−1 =
adj[S]
|S|

Only C11 will be calculated in detail as follows:

C11 =
(adj[S])11

|S| =
(S22S33 − S23S23) S44S55S66

|S| =
1
S

(S22S33 − S23S23)

where S is given in the book in (2.5). The same procedure can be followed to
derive the other elements of [C] given in (2.5).
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Problem 2.2

The reciprocity relations of (2.6) are valid for linear elastic analysis. They
can be derived by applying the Maxwell-Betti Reciprocal Theorem. For more
details, see [1].

Problem 2.3

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/E1 −ν12/E1 −ν13/E1 0 0 0
−ν12/E1 1/E2 −ν23/E2 0 0 0
−ν13/E1 −ν23/E2 1/E2 0 0 0

0 0 0 2(1 + ν23)
E2

0 0
0 0 0 0 1/G12 0
0 0 0 0 0 1/G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 2.4

S = S11S22S33 − S11S23S23 − S22S13S13 − S33S12S12 + 2S12S23S13

=
1

E1

1
E2

1
E2

− 1
E1

(−ν23

E2

)(−ν23

E2

)
− 1

E2

(−ν12

E1

)(−ν21

E2

)

− 1
E2

(−ν12

E1

)(−ν21

E2

)
+ 2

(−ν12

E1

)(−ν23

E2

)(−ν21

E2

)

=
1 − ν2

23 − 2ν12ν21 − 2ν12ν23ν21

E1E2
2

=
1 − ν′

E1E2
2

where ν′ is given by:

ν′ = ν2
23 + 2ν12ν21 + 2ν12ν23ν21

Next, C11 is calculated in detail as follows:

C11 =
1
S

(S22S33 − S23S23)

=
E1E

2
2

1 − ν′

[
1

E2

1
E2

−
(−ν23

E2

)(−ν23

E2

)]

=

(
1 − ν2

23

)
E1

1 − ν′
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Similarly, the other elements of [C] are obtained as follows:

C12 =
(1 + ν23)ν12E2

1 − ν′

C13 =
(1 + ν23)ν12E2

1 − ν′ = C12

C22 =
(1 − ν12ν21)E2

1 − ν′

C23 =
(ν23 + ν12ν21)E2

1 − ν′

C33 =
(1 − ν12ν21)E2

1 − ν′ = C22

C44 =
E2

2(1 + ν23)

C55 = G12

C66 = G12 = C55

Problem 2.5

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E

−ν

E

−ν

E
0 0 0

−ν

E

1
E

−ν

E
0 0 0

−ν

E

−ν

E

1
E

0 0 0

0 0 0
2(1 + ν)

E
0 0

0 0 0 0
2(1 + ν)

E
0

0 0 0 0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[S] =
1
E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Problem 2.6

[C] =
E

(1 + ν)(1 + 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 − ν 1 − ν 0 0 0
1 − ν 1 1 − ν 0 0 0
1 − ν 1 − ν 1 0 0 0

0 0 0
1 + 2ν

2
0 0

0 0 0 0
1 + 2ν

2
0

0 0 0 0 0
1 + 2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 2.7

>> sigma3 = 150/(40*40)

sigma3 =

0.0938

>> sigma = [0 ; 0 ; sigma3 ; 0 ; 0 ; 0]

sigma =

0

0

0.0938

0

0

0

>> [S] =

OrthotropicCompliance(50.0,15.2,15.2,0.254,0.428,0.254,4.70,

3.28,4.70)

S =

0.0200 -0.0051 -0.0051 0 0 0

-0.0051 0.0658 -0.0282 0 0 0

-0.0051 -0.0282 0.0658 0 0 0

0 0 0 0.3049 0 0

0 0 0 0 0.2128 0

0 0 0 0 0 0.2128

>> epsilon = S*sigma
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epsilon =

-0.0005

-0.0026

0.0062

0

0

0

>> format short e

>> epsilon

epsilon =

-4.7625e-004

-2.6398e-003

6.1678e-003

0

0

0

>> d1 = epsilon(1)*40

d1 =

-1.9050e-002

>> d2 = epsilon(2)*40

d2 =

-1.0559e-001

>> d3 = epsilon(3)*40

d3 =

2.4671e-001

Problem 2.8

>> sigma3 = 150/(40*40)

sigma3 =

0.0938
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>> sigma = [0 ; 0 ; sigma3 ; 0 ; 0 ; 0]

sigma =

0

0

0.0938

0

0

0

>> [S] = IsotropicCompliance(72.4,0.3)

S =

0.0138 -0.0041 -0.0041 0 0 0

-0.0041 0.0138 -0.0041 0 0 0

-0.0041 -0.0041 0.0138 0 0 0

0 0 0 0.0359 0 0

0 0 0 0 0.0359 0

0 0 0 0 0 0.0359

>> epsilon = S*sigma

epsilon =

-0.0004

-0.0004

0.0013

0

0

0

>> format short e

>> epsilon

epsilon =

-3.8847e-004

-3.8847e-004

1.2949e-003

0

0

0

>> d1 = epsilon(1)*40

d1 =

-1.5539e-002
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>> d2 = epsilon(2)*40

d2 =

-1.5539e-002

>> d3 = epsilon(3)*40

d3 =

5.1796e-002

Problem 2.9

>> sigma2 = 100/(60*60)

sigma2 =

0.0278

>> sigma = [0 ; sigma2 ; 0 ; 0 ; 0 ; 0]

sigma =

0

0.0278

0

0

0

0

>> [S] =

OrthotropicCompliance(155.0,12.10,12.10,0.248,0.458,0.248,

4.40,3.20,4.40)

S =

0.0065 -0.0016 -0.0016 0 0 0

-0.0016 0.0826 -0.0379 0 0 0

-0.0016 -0.0379 0.0826 0 0 0

0 0 0 0.3125 0 0

0 0 0 0 0.2273 0

0 0 0 0 0 0.2273
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>> EpsilonMechanical = S*sigma

EpsilonMechanical =

-0.0000

0.0023

-0.0011

0

0

0

>> format short e

>> EpsilonMechanical

EpsilonMechanical =

-4.4444e-005

2.2957e-003

-1.0514e-003

0

0

0

>> EpsilonThermal(1) = -0.01800e-6*30

EpsilonThermal =

-5.4000e-007

>> EpsilonThermal(2) = 24.3e-6*30

EpsilonThermal =

-5.4000e-007 7.2900e-004

>> EpsilonThermal(3) = 24.3e-6*30

EpsilonThermal =

-5.4000e-007 7.2900e-004 7.2900e-004

>> EpsilonThermal(4) = 0

EpsilonThermal =

-5.4000e-007 7.2900e-004 7.2900e-004 0

>> EpsilonThermal(5) = 0



Solutions to Problems 213

EpsilonThermal =

-5.4000e-007 7.2900e-004 7.2900e-004 0 0

>> EpsilonThermal(6) = 0

EpsilonThermal =

-5.4000e-007 7.2900e-004 7.2900e-004 0 0 0

>> EpsilonThermal = EpsilonThermal’

EpsilonThermal =

-5.4000e-007

7.2900e-004

7.2900e-004

0

0

0

>> Epsilon = EpsilonMechanical + EpsilonThermal

Epsilon =

-4.4984e-005

3.0247e-003

-3.2242e-004

0

0

0

>> d1 = Epsilon(1)*60

d1 =

-2.6991e-003

>> d2 = Epsilon(2)*60

d2 =

1.8148e-001

>> d3 = Epsilon(3)*60
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d3 =

-1.9345e-002

>>

Problem 2.10

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − α1∆T − β1∆T

ε2 − α2∆T − β2∆T

ε3 − α3∆T − β3∆T

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε1 − α1∆T − β1∆T

ε2 − α2∆T − β2∆T

ε3 − α3∆T − β3∆T

γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Problem 3.1

Let A be the total cross-sectional area of the unit cell and let Af and Am be
the cross-sectional areas of the fiber and matrix, respectively. Then, we have
the following relations based on the geometry of the problem:

Af + Am = A

Divide both sides of the above equation by A to obtain:

Af

A
+

Am

A
= 1

Substituting Af/A = V f and Am/A = V m, we obtain (3.1) as follows:

V f + V m = 1
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Problem 3.2

Let W be the width of the cross-section in Fig. 3.3 (see book). Also, let W f

and Wm be the widths of the fiber and matrix, respectively.

νf
12 = −∆W f/W f

∆L/L

νm = −∆Wm/Wm

∆L/L

∆W f = −νf
12W

f ∆L

L

∆Wm = −νmWm ∆L

L

∆W = ∆W f + ∆Wm

= −
(
νf
12W

f + νmWm
) ∆L

L

∆W

W
= −

(
νf
12

W f

W
+ νm Wm

W

)
∆L

L

−∆W/W

∆L/L
= νf

12V
f + νmV m

where W f/W = V f and Wm/W = V m. Then, we obtain:

ν12 = νf
12V

f + νmV m

Problem 3.3

Let W be the width of the cross-section in Fig. 3.3 (see book). Also, let
W f and Wm be the widths of the fiber and matrix, respectively. Also, from
equilibrium, we have σf

2 = σm
2 = σ2.

σf
2 = σ2 = Ef

2 εf
2 = Ef

2

∆W f

W f

σm
2 = σ2 = Emεm

2 = Em ∆Wm

Wm

∆W f =
W f

Ef
2

σ2

∆Wm =
Wm

Em
σ2

ε2 =
∆W

W
=

∆W f + ∆Wm

W
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=

(
W f

Ef
2

+ W m

Em

)
σ2

W

ε2 =

(
W f/W

Ef
2

+
Wm/W

Em

)
σ2

ε2 =
1

E2
σ2

1
E2

=
V f

Ef
2

+
V m

Em

where W f/W = V f and Wm/W = V m.

Problem 3.4

The following is a listing of the modified MATLAB function E2 called
E2Modified . Note that this modified function is available with the M-files
for the book on the CD-ROM that accompanies the book.
function y = E2Modified(Vf,E2f,Em,Eta,NU12f,NU21f,NUm,E1f,p)

%E2Modified This function returns Young’s modulus in the

% transverse direction. Its input are nine values:

% Vf - fiber volume fraction

% E2f - transverse Young’s modulus of the fiber

% Em - Young’s modulus of the matrix

% Eta - stress-partitioning factor

% NU12f - Poisson’s ratio NU12 of the fiber

% NU21f - Poisson’s ratio NU21 of the fiber

% NUm - Poisson’s ratio of the matrix

% E1f - longitudinal Young’s modulus of the fiber

% p - parameter used to determine which equation to use:

% p = 1 - use equation (3.4)

% p = 2 - use equation (3.9)

% p = 3 - use equation (3.10)

% p = 4 - use the modified formula using (3.23)

% Use the value zero for any argument not needed

% in the calculations.

Vm = 1 - Vf;

if p == 1

y = 1/(Vf/E2f + Vm/Em);

elseif p == 2

y = 1/((Vf/E2f + Eta*Vm/Em)/(Vf + Eta*Vm));

elseif p == 3

deno = E1f*Vf + Em*Vm;

etaf = (E1f*Vf + ((1-NU12f*NU21f)*Em + NUm*NU21f

*E1f)*Vm)/deno;
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etam = (((1-NUm*NUm)*E1f - (1-NUm*NU12f)*Em)*Vf

+ Em*Vm)/deno;

y = 1/(etaf*Vf/E2f + etam*Vm/Em);

elseif p == 4

EmPrime = Em/(1 - NUm*NUm);

y = 1/(Vf/E2f + Vm/EmPrime);

end

Problem 3.5

The transverse modulus E2 is calculated in GPa using the three different
formulas with the MATLAB function E2 as follows. Note that the three values
obtained are comparable and very close to each other.

>> E2(0.65, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

ans =

6.8791

>> E2(0.65, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

ans =

8.7169

>> E2(0.65, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

ans =

7.6135

Problem 3.6

>> y(1) = E2(0, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500

>> y(2) = E2(0.1, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366
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>> y(3) = E2(0.2, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750

>> y(4) = E2(0.3, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809

>> y(5) = E2(0.4, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766

>> y(6) = E2(0.5, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956

>> y(7) = E2(0.6, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956 6.3905

>> y(8) = E2(0.7, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956 6.3905

7.4486

>> y(9) = E2(0.8, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956 6.3905

7.4486 8.9266
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>> y(10) = E2(0.9, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956 6.3905

7.4486 8.9266 11.1363

>> y(11) = E2(1, 14.8, 3.45, 0, 0, 0, 0, 0, 1)

y =

3.4500 3.7366 4.0750 4.4809 4.9766 5.5956 6.3905

7.4486 8.9266 11.1363 14.8000

>> z(1) = E2(0, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500

>> z(2) = E2(0.1, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402

>> z(3) = E2(0.2, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933

>> z(4) = E2(0.3, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182

>> z(5) = E2(0.4, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258

>> z(6) = E2(0.5, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290
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>> z(7) = E2(0.6, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290 8.7439

>> z(8) = E2(0.7, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290 8.7439

9.9903

>> z(9) = E2(0.8, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290 8.7439

9.9903 11.3927

>> z(10) = E2(0.9, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290 8.7439

9.9903 11.3927 12.9825

>> z(11) = E2(1, 14.8, 3.45, 0.4, 0, 0, 0, 0, 2)

z =

3.4500 4.1402 4.8933 5.7182 6.6258 7.6290 8.7439

9.9903 11.3927 12.9825 14.8000

>> w(1) = E2(0, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500

>> w(2) = E2(0.1, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090

>> w(3) = E2(0.2, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)
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w =

3.4500 4.0090 4.6348

>> w(4) = E2(0.3, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401

>> w(5) = E2(0.4, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412

>> w(6) = E2(0.5, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590

>> w(7) = E2(0.6, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590 8.1209

>> w(8) = E2(0.7, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590 8.1209

9.3638

>> w(9) = E2(0.8, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590 8.1209

9.3638 10.8382

>> w(10) = E2(0.9, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)
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w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590 8.1209

9.3638 10.8382 12.6156

>> w(11) = E2(1, 14.8, 3.45, 0.5, 0, 0, 0, 0, 2)

w =

3.4500 4.0090 4.6348 5.3401 6.1412 7.0590 8.1209

9.3638 10.8382 12.6156 14.8000

>> u(1) = E2(0, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500

>> u(2) = E2(0.1, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197

>> u(3) = E2(0.2, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548

>> u(4) = E2(0.3, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701

>> u(5) = E2(0.4, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850

>> u(6) = E2(0.5, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258
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>> u(7) = E2(0.6, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258 7.6290

>> u(8) = E2(0.7, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258 7.6290

8.8468

>> u(9) = E2(0.8, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258 7.6290

8.8468 10.3561

>> u(10) = E2(0.9, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258 7.6290

8.8468 10.3561 12.2759

>> u(11) = E2(1, 14.8, 3.45, 0.6, 0, 0, 0, 0, 2)

u =

3.4500 3.9197 4.4548 5.0701 5.7850 6.6258 7.6290

8.8468 10.3561 12.2759 14.8000

>> v(1) = E2(0, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500

>> v(2) = E2(0.1, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564

>> v(3) = E2(0.2, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)
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v =

3.4500 4.1564 4.6041

>> v(4) = E2(0.3, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767

>> v(5) = E2(0.4, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249

>> v(6) = E2(0.5, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878

>> v(7) = E2(0.6, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878 7.1155

>> v(8) = E2(0.7, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878 7.1155

8.1845

>> v(9) = E2(0.8, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878 7.1155

8.1845 9.6228

>> v(10) = E2(0.9, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878 7.1155

8.1845 9.6228 11.6657



Solutions to Problems 225

Fig. Variation of E2 versus V f for Problem 3.6

>> v(11) = E2(1, 14.8, 3.45, 0, 0.3, 0.3, 0.36, 85.6, 3)

v =

3.4500 4.1564 4.6041 5.0767 5.6249 6.2878 7.1155

8.1845 9.6228 11.6657 14.8000

>> x = [0 ; 0.1 ; 0.2 ; 0.3 ; 0.4 ; 0.5 ; 0.6 ; 0.7 ; 0.8 ;

0.9 ; 1]

x =

0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000
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>> plot(x,y,‘k-’,x,z,‘k--’,x,w,‘k:’,x,u,‘k-.’,x,v,‘ko:’)

>> xlabel(‘V_f’);

>> ylabel(‘E_2 GPa’);

>> legend(‘p = 1’, ‘p = 2, eta = 0.4’, ‘p = 2, eta = 0.5’,

‘p = 2, eta = 0.6’, ‘p = 3’, 5);

Problem 3.7

The shear modulus G12 is calculated in GPa using three different formulas
using the MATLAB function G12 as follows. Notice that the second and third
values obtained are very close.

>> G12(0.55, 28.3, 1.27, 0, 1)

ans =

2.6755

>> G12(0.55, 28.3, 1.27, 0.6, 2)

ans =

3.5340

>> G12(0.55, 28.3, 1.27, 0, 3)

ans =

3.8382

Problem 3.8

>> y(1) = G12(0, 28.3, 1.27, 0, 1)

y =

1.2700

>> y(2) = G12(0.1, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041

>> y(3) = G12(0.2, 28.3, 1.27, 0, 1)
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y =

1.2700 1.4041 1.5699

>> y(4) = G12(0.3, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801

>> y(5) = G12(0.4, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552

>> y(6) = G12(0.5, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309

>> y(7) = G12(0.6, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309 2.9748

>> y(8) = G12(0.7, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309 2.9748

3.8321

>> y(9) = G12(0.8, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309 2.9748

3.8321 5.3836

>> y(10) = G12(0.9, 28.3, 1.27, 0, 1)

y =

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309 2.9748

3.8321 5.3836 9.0463
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>> y(11) = G12(1, 28.3, 1.27, 0, 1)

y =

Columns 1 through 10

1.2700 1.4041 1.5699 1.7801 2.0552 2.4309 2.9748

3.8321 5.3836 9.0463

Column 11

28.3000

>> z(1) = G12(0, 28.3, 1.27, 0.6, 2)

z =

1.2700

>> z(2) = G12(0.1, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928

>> z(3) = G12(0.2, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661

>> z(4) = G12(0.3, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095

>> z(5) = G12(0.4, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538

>> z(6) = G12(0.5, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510
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>> z(7) = G12(0.6, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510 3.9966

>> z(8) = G12(0.7, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510 3.9966

5.2863

>> z(9) = G12(0.8, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510 3.9966

5.2863 7.4945

>> z(10) = G12(0.9, 28.3, 1.27, 0.6, 2)

z =

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510 3.9966

5.2863 7.4945 12.1448

>> z(11) = G12(1, 28.3, 1.27, 0.6, 2)

z =

Columns 1 through 10

1.2700 1.4928 1.7661 2.1095 2.5538 3.1510 3.9966

5.2863 7.4945 12.1448

Column 11

28.3000

>> w(1) = G12(0, 28.3, 1.27, 0, 3)

w =

1.2700
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>> w(2) = G12(0.1, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255

>> w(3) = G12(0.2, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383

>> w(4) = G12(0.3, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297

>> w(5) = G12(0.4, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297 2.7340

>> w(6) = G12(0.5, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082

>> w(7) = G12(0.6, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082 4.3552

>> w(8) = G12(0.7, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082 4.3552

5.7830

>> w(9) = G12(0.8, 28.3, 1.27, 0, 3)
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w =

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082 4.3552

5.7830 8.1823

>> w(10) = G12(0.9, 28.3, 1.27, 0, 3)

w =

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082 4.3552

5.7830 8.1823 13.0553

>> w(11) = G12(1, 28.3, 1.27, 0, 3)

w =

Columns 1 through 10

1.2700 1.5255 1.8383 2.2297 2.7340 3.4082 4.3552

5.7830 8.1823 13.0553

Column 11

28.3000

>> x = [0 ; 0.1 ; 0.2 ; 0.3 ; 0.4 ; 0.5 ; 0.6 ; 0.7 ; 0.8 ;

0.9 ; 1]

x =

0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

>> plot(x,y,‘k-’,x,z,‘k--’,x,w,‘k-.’)

>> xlabel(‘V ^ f’);

>> ylabel(‘G_{}12{} GPa’);

>> legend(‘p = 1’, ‘p = 2’, ‘p = 3’, 3);
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Fig. Variation of G12 versus V f for Problem 3.8

Problem 3.9

First, the longitudinal coefficient of thermal expansion α1 is calculated in /K
as follows:

>> Alpha1(0.6, 233, 4.62, -0.540e-6, 41.4e-6)

ans =

7.1671e-009

Next, the transverse coefficient of thermal expansion α2 is calculated in /K
using two different formulas as follows. Notice that in the second formula, we
need to calculate also the value of the longitudinal modulus E1. Note also
that the two values obtained are comparable and very close to each other.

>> Alpha2(0.6, 10.10e-6, 41.4e-6, 0, 0, 0, 0, 0, 0, 1)

ans =

2.2620e-005

>> E1 = E1(0.6, 233, 4.62)

E1 =

141.6480
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>> Alpha2(0.6, 10.10e-6, 41.4e-6, E1, 233, 4.62, 0.200,

0.360, -0.540e-6, 2)

ans =

2.8515e-005

Problem 3.10

E1 = EfV f + EmV m + EiV i

Note that the derivation of the above equation is very similar to the derivation
in Example 3.1.

Problem 4.1

⎧⎪⎨
⎪⎩

ε1

ε2

γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎣

1
E1

−ν12

E1
0

−ν12

E1

1
E2

0

0 0
1

G12

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭

Problem 4.2

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎢⎣

E1

1 − ν12ν21

ν12E2

1 − ν12ν21
0

ν12E2

1 − ν12ν21

E2

1 − ν12ν21
0

0 0 G12

⎤
⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

ε1

ε2

γ12

⎫⎪⎬
⎪⎭

where ν12E2 = ν21E1.

Problem 4.3

⎧⎪⎨
⎪⎩

ε1

ε2

γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎣

1
E

−ν

E
0

−ν

E

1
E

0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭
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Problem 4.4

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎣

E

1 − ν2

νE

1 − ν2
0

νE

1 − ν2

E

1 − ν2
0

0 0
E

2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩

ε1

ε2

γ12

⎫⎪⎬
⎪⎭

Problem 4.5

>> S = ReducedCompliance(50.0, 15.2, 0.254, 4.70)

S =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> Q = ReducedStiffness(50.0, 15.2, 0.254, 4.70)

Q =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

>> S*Q

ans =

1.0000 0 0

0 1.0000 0

0 0 1.0000

Problem 4.6

>> S = OrthotropicCompliance(155.0, 12.10, 12.10, 0.248, 0.458,

0.248, 4.40, 3.20, 4.40)

S =

0.0065 -0.0016 -0.0016 0 0 0

-0.0016 0.0826 -0.0379 0 0 0
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-0.0016 -0.0379 0.0826 0 0 0

0 0 0 0.3125 0 0

0 0 0 0 0.2273 0

0 0 0 0 0 0.2273

>> sigma1 = 0

sigma1 =

0

>> sigma2 = -2.5/(200*0.200)

sigma2 =

-0.0625

>> epsilon3 = S(1,3)*sigma1 + S(2,3)*sigma2

epsilon3 =

0.0024

Problem 4.7

>> S = ReducedIsotropicCompliance(72.4, 0.3)

S =

0.0138 -0.0041 0

-0.0041 0.0138 0

0 0 0.0359

>> Q = ReducedIsotropicStiffness(72.4, 0.3)

Q =

79.5604 23.8681 0

23.8681 79.5604 0

0 0 27.8462

>> S*Q

ans =

1.0000 0 0

0 1.0000 0

0 0 1.0000
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Problem 4.8

>> S = OrthotropicCompliance(155.0, 12.10, 12.10, 0.248, 0.458,

0.248, 4.40, 3.20, 4.40)

S =

0.0065 -0.0016 -0.0016 0 0 0

-0.0016 0.0826 -0.0379 0 0 0

-0.0016 -0.0379 0.0826 0 0 0

0 0 0 0.3125 0 0

0 0 0 0 0.2273 0

0 0 0 0 0 0.2273

>> sigma1 = 4/(200*0.200)

sigma1 =

0.1000

>> sigma2 = 0

sigma2 =

0

>> epsilon3 = S(1,3)*sigma1 + S(2,3)*sigma2

epsilon3 =

-1.6000e-004

Problem 4.9

function y = ReducedStiffness2(E1,E2,NU12,G12)

%ReducedStiffness2 This function returns the reduced

% stiffness matrix for fiber-reinforced

% materials.

% There are four arguments representing

% four material constants.

% The size of the reduced compliance

% matrix is 3 x 3. The reuduced stiffness

% matrix is calculated as the inverse of

% the reduced compliance matrix.

z = [1/E1 -NU12/E1 0 ; -NU12/E1 1/E2 0 ; 0 0 1/G12];

y = inv(z);
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function y = ReducedIsotropicStiffness2(E,NU)

%ReducedIsotropicStiffness2 This function returns the

% reduced isotropic stiffness

% matrix for fiber-reinforced

% materials.

% There are two arguments

% representing two material

% constants. The size of the

% reduced compliance matrix is

% 3 x 3. The reduced stiffness

% matrix is calculated

% as the inverse of the reduced

% compliance matrix.

z = [1/E -NU/E 0 ; -NU/E 1/E 0 ; 0 0 2*(1+NU)/E];

y = inv(z);

Problem 4.10

⎧⎪⎨
⎪⎩

ε1 − α1∆T − β1∆M

ε2 − α2∆T − β2∆M

γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

ε1 − α1∆T − β1∆M

ε2 − α2∆T − β2∆M

γ12

⎫⎪⎬
⎪⎭

Problem 5.1

From an introductory course on mechanics of materials, we have the following
stress transformation equations between the 1-2-3 coordinate system and the
x-y-z global coordinate system:

σ1 = σx cos2 θ + σy sin2 θ + 2τxy sin θ cos θ

σ2 = σx sin2 θ + σy cos2 θ − 2τxy sin θ cos θ

σ3 = σz

τ23 = τyz cos θ − τxz sin θ

τ13 = τyz sin θ + τxz cos θ

τ12 = −σx sin θ cos θ + σy sin θ cos θ + τxy(cos2 θ − sin2 θ)

For the case of plane stress, we already have σ3 = τ23 = τ13 = 0. Substitute
this into the third, fourth, and fifth equations above and rearrange the terms
to obtain:
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σz = 0

τyz cos θ − τxz sin θ = 0

τyz sin θ + τxz cos θ = 0

It is clear now that σz = 0. Next, we solve the last two equations above by
multiplying the first equation by cos θ and the second equation by sin θ. Then,
we add the two equation to obtain:

τyz(cos2 θ + sin2 θ) = 0

However, we know that cos2 θ + sin2 θ = 1. Therefore, we conclude that
τyz = 0. It also follows immediately that τxz = 0 also.

Problem 5.2

From an introductory course on mechanics of materials, we have the following
stress transformation equations between the 1-2-3 coordinate system and the
x-y-z global coordinate system:

σ1 = σx cos2 θ + σy sin2 θ + 2τxy sin θ cos θ

σ2 = σx sin2 θ + σy cos2 θ − 2τxy sin θ cos θ

τ12 = −σx sin θ cos θ + σy sin θ cos θ + τxy(cos2 θ − sin2 θ)

Write the above three equations in matrix form as follows:⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭

Let m = cos θ and n = sin θ. Therefore, we obtain the desired equation as
follows: ⎧⎪⎨

⎪⎩
σ1

σ2

τ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭

Problem 5.3

[T ] =

⎡
⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎦
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Calculate the determinant of [T ] as follows:

|T | = m2

∣∣∣∣∣m
2 −2mn

mn m2 − n2

∣∣∣∣∣− n2

∣∣∣∣∣ n2 −2mn

−mn m2 − n2

∣∣∣∣∣+ 2mn

∣∣∣∣∣ n2 m2

−mn mn

∣∣∣∣∣
=
(
m2 + n2

)3
= 1

The above is true since m2 + n2 = cos2 θ + sin2 θ = 1. Therefore, we obtain:

[T ]−1 =
adj[T}
|T | = adj[T ]

=

⎡
⎢⎣

m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎥⎦

Problem 5.4

[S̄] = [T ]−1[S][T ]

[S̄]−1 =
(
[T ]−1[S][T ]

)−1
= [T ]−1[S]−1

(
[T ]−1

)−1
= [T ]−1[Q][T ] = [Q̄]

Similarly, we also have the other way:

[Q̄] = [T ]−1[Q][T ]

[Q̄]−1 =
(
[T ]−1[Q][T ]

)−1
= [T ]−1[Q]−1

(
[T ]−1

)−1
= [T ]−1[S][T ] = [S̄]

Problem 5.5

Multiply the three matrices in (5.13) in book as follows:⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦ =

⎡
⎢⎣

m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

⎤
⎥⎦
⎡
⎢⎣

Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎥⎦

⎡
⎢⎣

m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎥⎦
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The above multiplication can be performed either manually or using a com-
puter algebra system like MAPLE or MATHEMATICA or the MATLAB Sym-
bolic Math Toolbox. Therefore, we obtain the following expression:

Q̄11 = Q11m
4 + 2(Q12 + 2Q66)n2m2 + Q22n

4

Q̄12 = (Q11 + Q22 − 4Q66)n2m2 + Q12(n4 + m4)

Q̄16 = (Q11 − Q12 − 2Q66)nm3 + (Q12 − Q22 + 2Q66)n3m

Q̄22 = Q11n
4 + 2(Q12 + 2Q66)n2m2 + Q22m

4

Q̄26 = (Q11 − Q12 − 2Q66)n3m + (Q12 − Q22 + 2Q66)nm3

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66)n2m2 + Q66(n4 + m4)

Problem 5.6

function y = Tinv2(theta)

%Tinv2 This function returns the inverse of the

% transformation matrix T

% given the orientation angle "theta".

% There is only one argument representing "theta"

% The size of the matrix is 3 x 3.

% The angle "theta" must be given in degrees.

m = cos(theta*pi/180);

n = sin(theta*pi/180);

x = [m*m n*n 2*m*n ; n*n m*m -2*m*n ; -m*n m*n m*m-n*n];

y = inv(x);

Problem 5.7

function y = Sbar2(S,T)

%Sbar2 This function returns the transformed reduced

% compliance matrix "Sbar" given the reduced

% compliance matrix S and the transformation

% matrix T.

% There are two arguments representing S and T

% The size of the matrix is 3 x 3.

Tinv = inv(T);

y = Tinv*S*T;

function y = Qbar2(Q,T)

%Qbar2 This function returns the transformed reduced

% stiffness matrix "Qbar" given the reduced

% stiffness matrix Q and the transformation

% matrix T.

% There are two arguments representing Q and T



Solutions to Problems 241

% The size of the matrix is 3 x 3.

Tinv = inv(T);

y = Tinv*Q*T;

Problem 5.8

>> S = ReducedCompliance(50.0, 15.20, 0.254, 4.70)

S =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> S1 = Sbar(S, -90)

S1 =

0.0658 -0.0051 -0.0000

-0.0051 0.0200 0.0000

-0.0000 0.0000 0.2128

>> S2 = Sbar(S, -80)

S2 =

0.0740 -0.0147 -0.0451

-0.0147 0.0310 0.0608

-0.0226 0.0304 0.1935

>> S3 = Sbar(S, -70)

S3 =

0.0945 -0.0391 -0.0664

-0.0391 0.0594 0.0959

-0.0332 0.0479 0.1447

>> S4 = Sbar(S, -60)

S4 =

0.1161 -0.0669 -0.0515

-0.0669 0.0932 0.0912

-0.0258 0.0456 0.0892



242 Solutions to Problems

>> S5 = Sbar(S, -50)

S5 =

0.1268 -0.0850 -0.0056

-0.0850 0.1188 0.0507

-0.0028 0.0254 0.0529

>> S6 = Sbar(S, -40)

S6 =

0.1188 -0.0850 0.0507

-0.0850 0.1268 -0.0056

0.0254 -0.0028 0.0529

>> S7 = Sbar(S, -30)

S7 =

0.0932 -0.0669 0.0912

-0.0669 0.1161 -0.0515

0.0456 -0.0258 0.0892

>> S8 = Sbar(S, -20)

S8 =

0.0594 -0.0391 0.0959

-0.0391 0.0945 -0.0664

0.0479 -0.0332 0.1447

>> S9 = Sbar(S, -10)

S9 =

0.0310 -0.0147 0.0608

-0.0147 0.0740 -0.0451

0.0304 -0.0226 0.1935

>> S9 = Sbar(S, -10)

S9 =

0.0310 -0.0147 0.0608

-0.0147 0.0740 -0.0451

0.0304 -0.0226 0.1935
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>> S10 = Sbar(S, 0)

S10 =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> S11 = Sbar(S, 10)

S11 =

0.0310 -0.0147 -0.0608

-0.0147 0.0740 0.0451

-0.0304 0.0226 0.1935

>> S12 = Sbar(S, 20)

S12 =

0.0594 -0.0391 -0.0959

-0.0391 0.0945 0.0664

-0.0479 0.0332 0.1447

>> S13 = Sbar(S, 30)

S13 =

0.0932 -0.0669 -0.0912

-0.0669 0.1161 0.0515

-0.0456 0.0258 0.0892

>> S14 = Sbar(S, 40)

S14 =

0.1188 -0.0850 -0.0507

-0.0850 0.1268 0.0056

-0.0254 0.0028 0.0529

>> S15 = Sbar(S, 50)

S15 =

0.1268 -0.0850 0.0056

-0.0850 0.1188 -0.0507

0.0028 -0.0254 0.0529
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>> S16 = Sbar(S, 60)

S16 =

0.1161 -0.0669 0.0515

-0.0669 0.0932 -0.0912

0.0258 -0.0456 0.0892

>> S17 = Sbar(S, 70)

S17 =

0.0945 -0.0391 0.0664

-0.0391 0.0594 -0.0959

0.0332 -0.0479 0.1447

>> S18 = Sbar(S, 80)

S18 =

0.0740 -0.0147 0.0451

-0.0147 0.0310 -0.0608

0.0226 -0.0304 0.1935

>> S19 = Sbar(S, 90)

S19 =

0.0658 -0.0051 0.0000

-0.0051 0.0200 -0.0000

0.0000 -0.0000 0.2128

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50

60 70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10

0 10 20 30 40 50 60 70 80 90

>> y1 = [S1(1,1) S2(1,1) S3(1,1) S4(1,1) S5(1,1) S6(1,1)

S7(1,1) S8(1,1) S9(1,1) S10(1,1) S11(1,1) S12(1,1) S13(1,1)

S14(1,1) S15(1,1) S16(1,1) S17(1,1) S18(1,1) S19(1,1)]

y1 =

Columns 1 through 14

0.0658 0.0740 0.0945 0.1161 0.1268 0.1188
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0.0932 0.0594 0.0310 0.0200 0.0310 0.0594

0.0932 0.1188

Columns 15 through 19

0.1268 0.1161 0.0945 0.0740 0.0658

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{11} (GPa)^{-1}’);

Fig. Variation of S̄11 versus θ for Problem 5.8

>> y2 = [S1(1,2) S2(1,2) S3(1,2) S4(1,2) S5(1,2) S6(1,2) S7(1,2)

S8(1,2) S9(1,2) S10(1,2) S11(1,2) S12(1,2) S13(1,2) S14(1,2)

S15(1,2) S16(1,2) S17(1,2) S18(1,2) S19(1,2)]

y2 =

Columns 1 through 14

-0.0051 -0.0147 -0.0391 -0.0669 -0.0850 -0.0850

-0.0669 -0.0391 -0.0147 -0.0051 -0.0147 -0.0391

-0.0669 -0.0850

Columns 15 through 19

-0.0850 -0.0669 -0.0391 -0.0147 -0.0051
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>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{12} (GPa)^{-1}’);

Fig. Variation of S̄12 versus θ for Problem 5.8

>> y3 = [S1(1,3) S2(1,3) S3(1,3) S4(1,3) S5(1,3) S6(1,3) S7(1,3)

S8(1,3) S9(1,3) S10(1,3) S11(1,3) S12(1,3) S13(1,3) S14(1,3)

S15(1,3) S16(1,3) S17(1,3) S18(1,3) S19(1,3)]

y3 =

Columns 1 through 14

-0.0000 -0.0451 -0.0664 -0.0515 -0.0056 0.0507

0.0912 0.0959 0.0608 0 -0.0608 -0.0959

-0.0912 -0.0507

Columns 15 through 19

0.0056 0.0515 0.0664 0.0451 0.0000

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{16} (GPa)^{-1}’);
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Fig. Variation of S̄16 versus θ for Problem 5.8

>> y4 = [S1(2,2) S2(2,2) S3(2,2) S4(2,2) S5(2,2) S6(2,2) S7(2,2)

S8(2,2) S9(2,2) S10(2,2) S11(2,2) S12(2,2) S13(2,2) S14(2,2)

S15(2,2) S16(2,2) S17(2,2) S18(2,2) S19(2,2)]

y4 =

Columns 1 through 14

0.0200 0.0310 0.0594 0.0932 0.1188 0.1268

0.1161 0.0945 0.0740 0.0658 0.0740 0.0945

0.1161 0.1268

Columns 15 through 19

0.1188 0.0932 0.0594 0.0310 0.0200

>> plot(x,y4)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{22} (GPa)^{-1}’);
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Fig. Variation of S̄22 versus θ for Problem 5.8

>> y5 = [S1(2,3) S2(2,3) S3(2,3) S4(2,3) S5(2,3) S6(2,3) S7(2,3)

S8(2,3) S9(2,3) S10(2,3) S11(2,3) S12(2,3) S13(2,3) S14(2,3)

S15(2,3) S16(2,3) S17(2,3) S18(2,3) S19(2,3)]

y5 =

Columns 1 through 14

0.0000 0.0608 0.0959 0.0912 0.0507 -0.0056

-0.0515 -0.0664 -0.0451 0 0.0451 0.0664

0.0515 0.0056

Columns 15 through 19

-0.0507 -0.0912 -0.0959 -0.0608 -0.0000

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{26} (GPa)^{-1}’);

>> y6 = [S1(3,3) S2(3,3) S3(3,3) S4(3,3) S5(3,3) S6(3,3) S7(3,3)

S8(3,3) S9(3,3) S10(3,3) S11(3,3) S12(3,3) S13(3,3) S14(3,3)

S15(3,3) S16(3,3) S17(3,3) S18(3,3) S19(3,3)]

y6 =

Columns 1 through 14

0.2128 0.1935 0.1447 0.0892 0.0529 0.0529

0.0892 0.1447 0.1935 0.2128 0.1935 0.1447

0.0892 0.0529
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Fig. Variation of S̄26 versus θ for Problem 5.8

Columns 15 through 19

0.0529 0.0892 0.1447 0.1935 0.2128

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘S^{-}_{66} (GPa)^{-1}’);

Fig. Variation of S̄66 versus θ for Problem 5.8
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Problem 5.9

>> Q = ReducedStiffness(155.0, 12.10, 0.248, 4.40)

Q =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Q1 = Qbar(Q, -90)

Q1 =

12.1584 3.0153 0.0000

3.0153 155.7478 -0.0000

0.0000 -0.0000 4.4000

>> Q2 = Qbar(Q, -80)

Q2 =

12.0115 7.4919 0.0435

7.4919 146.9414 -49.1540

0.0218 -24.5770 13.3532

>> Q3 = Qbar(Q, -70)

Q3 =

13.1434 18.8271 -8.4612

18.8271 123.1392 -83.8363

-4.2306 -41.9181 36.0236

>> Q4 = Qbar(Q, -60)

Q4 =

19.3541 31.7170 -29.0342

31.7170 91.1488 -95.3179

-14.5171 -47.6589 61.8034

>> Q5 = Qbar(Q, -50)

Q5 =

34.3711 40.1302 -57.6152

40.1302 59.3051 -83.7927

-28.8076 -41.8964 78.6299
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>> Q6 = Qbar(Q, -40)

Q6 =

59.3051 40.1302 -83.7927

40.1302 34.3711 -57.6152

-41.8964 -28.8076 78.6299

>> Q7 = Qbar(Q, -30)

Q7 =

91.1488 31.7170 -95.3179

31.7170 19.3541 -29.0342

-47.6589 -14.5171 61.8034

>> Q8 = Qbar(Q, -20)

Q8 =

123.1392 18.8271 -83.8363

18.8271 13.1434 -8.4612

-41.9181 -4.2306 36.0236

>> Q9 = Qbar(Q, -10)

Q9 =

146.9414 7.4919 -49.1540

7.4919 12.0115 0.0435

-24.5770 0.0218 13.3532

>> Q10 = Qbar(Q, 0)

Q10 =

155.7478 3.0153 0

3.0153 12.1584 0

0 0 4.4000

>> Q11 = Qbar(Q, 10)

Q11 =

146.9414 7.4919 49.1540

7.4919 12.0115 -0.0435

24.5770 -0.0218 13.3532
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>> Q12 = Qbar(Q, 20)

Q12 =

123.1392 18.8271 83.8363

18.8271 13.1434 8.4612

41.9181 4.2306 36.0236

>> Q13 = Qbar(Q, 30)

Q13 =

91.1488 31.7170 95.3179

31.7170 19.3541 29.0342

47.6589 14.5171 61.8034

>> Q14 = Qbar(Q, 40)

Q14 =

59.3051 40.1302 83.7927

40.1302 34.3711 57.6152

41.8964 28.8076 78.6299

>> Q15 = Qbar(Q, 50)

Q15 =

34.3711 40.1302 57.6152

40.1302 59.3051 83.7927

28.8076 41.8964 78.6299

>> Q16 = Qbar(Q, 60)

Q16 =

19.3541 31.7170 29.0342

31.7170 91.1488 95.3179

14.5171 47.6589 61.8034

>> Q17 = Qbar(Q, 70)

Q17 =

13.1434 18.8271 8.4612

18.8271 123.1392 83.8363

4.2306 41.9181 36.0236
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>> Q18 = Qbar(Q, 80)

Q18 =

12.0115 7.4919 -0.0435

7.4919 146.9414 49.1540

-0.0218 24.5770 13.3532

>> Q19 = Qbar(Q, 90)

Q19 =

12.1584 3.0153 -0.0000

3.0153 155.7478 0.0000

-0.0000 0.0000 4.4000

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

70 80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

20 30 40 50 60 70 80 90

>> y1 = [Q1(1,1) Q2(1,1) Q3(1,1) Q4(1,1) Q5(1,1) Q6(1,1) Q7(1,1)

Q8(1,1) Q9(1,1) Q10(1,1) Q11(1,1) Q12(1,1) Q13(1,1) Q14(1,1)

Q15(1,1) Q16(1,1) Q17(1,1) Q18(1,1) Q19(1,1)]

y1 =

Columns 1 through 14

12.1584 12.0115 13.1434 19.3541 34.3711 59.3051

91.1488 123.1392 146.9414 155.7478 146.9414 123.1392

91.1488 59.3051

Columns 15 through 19

34.3711 19.3541 13.1434 12.0115 12.1584

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{11} (GPa)’);
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Fig. Variation of Q̄11 versus θ for Problem 5.9

>> y2 = [Q1(1,2) Q2(1,2) Q3(1,2) Q4(1,2) Q5(1,2) Q6(1,2) Q7(1,2)

Q8(1,2) Q9(1,2) Q10(1,2) Q11(1,2) Q12(1,2) Q13(1,2) Q14(1,2)

Q15(1,2) Q16(1,2) Q17(1,2) Q18(1,2) Q19(1,2)]

y2 =

Columns 1 through 14

3.0153 7.4919 18.8271 31.7170 40.1302 40.1302

31.7170 18.8271 7.4919 3.0153 7.4919 18.8271

31.7170 40.1302

Columns 15 through 19

40.1302 31.7170 18.8271 7.4919 3.0153

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{12} (GPa)’);
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Fig. Variation of Q̄12 versus θ for Problem 5.9

>> y3 = [Q1(1,3) Q2(1,3) Q3(1,3) Q4(1,3) Q5(1,3) Q6(1,3) Q7(1,3)

Q8(1,3) Q9(1,3) Q10(1,3) Q11(1,3) Q12(1,3) Q13(1,3) Q14(1,3)

Q15(1,3) Q16(1,3) Q17(1,3) Q18(1,3) Q19(1,3)]

y3 =

Columns 1 through 14

0.0000 0.0435 -8.4612 -29.0342 -57.6152 -83.7927

-95.3179 -83.8363 -49.1540 0 49.1540 83.8363

95.3179 83.7927

Columns 15 through 19

57.6152 29.0342 8.4612 -0.0435 -0.0000

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{16} (GPa)’);
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Fig. Variation of Q̄16 versus θ for Problem 5.9

>> y4 = [Q1(2,2) Q2(2,2) Q3(2,2) Q4(2,2) Q5(2,2) Q6(2,2) Q7(2,2)

Q8(2,2) Q9(2,2) Q10(2,2) Q11(2,2) Q12(2,2) Q13(2,2) Q14(2,2)

Q15(2,2) Q16(2,2) Q17(2,2) Q18(2,2) Q19(2,2)]

y4 =

Columns 1 through 14

155.7478 146.9414 123.1392 91.1488 59.3051 34.3711

19.3541 13.1434 12.0115 12.1584 12.0115 13.1434 19.3541

34.3711

Columns 15 through 19

59.3051 91.1488 123.1392 146.9414 155.7478

>> plot(x,y4)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{22} (GPa)’);
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Fig. Variation of Q̄22 versus θ for Problem 5.9

>> y5 = [Q1(2,3) Q2(2,3) Q3(2,3) Q4(2,3) Q5(2,3) Q6(2,3) Q7(2,3)

Q8(2,3) Q9(2,3) Q10(2,3) Q11(2,3) Q12(2,3) Q13(2,3) Q14(2,3)

Q15(2,3) Q16(2,3) Q17(2,3) Q18(2,3) Q19(2,3)]

y5 =

Columns 1 through 14

-0.0000 -49.1540 -83.8363 -95.3179 -83.7927 -57.6152

-29.0342 -8.4612 0.0435 0 -0.0435 8.4612

29.0342 57.6152

Columns 15 through 19

83.7927 95.3179 83.8363 49.1540 0.0000

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{26} (GPa)’);
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Fig. Variation of Q̄26 versus θ for Problem 5.9

>> y6 = [Q1(3,3) Q2(3,3) Q3(3,3) Q4(3,3) Q5(3,3) Q6(3,3) Q7(3,3)

Q8(3,3) Q9(3,3) Q10(3,3) Q11(3,3) Q12(3,3) Q13(3,3) Q14(3,3)

Q15(3,3) Q16(3,3) Q17(3,3) Q18(3,3) Q19(3,3)]

y6 =

Columns 1 through 14

4.4000 13.3532 36.0236 61.8034 78.6299 78.6299

61.8034 36.0236 13.3532 4.4000 13.3532 36.0236

61.8034 78.6299

Columns 15 through 19

78.6299 61.8034 36.0236 13.3532 4.4000

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{66} (GPa)’);
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Fig. Variation of Q̄66 versus θ for Problem 5.9

Problem 5.10

>> Q = ReducedStiffness(50.0, 15.20, 0.254, 4.70)

Q =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

>> Q1 = Qbar(Q, -90)

Q1 =

15.5041 3.9380 0.0000

3.9380 51.0003 -0.0000

0.0000 -0.0000 4.7000

>> Q2 = Qbar(Q, -80)

Q2 =

15.1348 5.3777 1.8406

5.3777 48.4903 -13.9810

0.9203 -6.9905 7.5793
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>> Q3 = Qbar(Q, -70)

Q3 =

14.5714 9.0230 0.7118

9.0230 41.7630 -23.5283

0.3559 -11.7642 14.8700

>> Q4 = Qbar(Q, -60)

Q4 =

15.1478 13.1683 -4.7121

13.1683 32.8959 -26.0285

-2.3560 -13.0143 23.1606

>> Q5 = Qbar(Q, -50)

Q5 =

18.2343 15.8740 -13.2692

15.8740 24.3981 -21.6877

-6.6346 -10.8439 28.5719

>> Q6 = Qbar(Q, -40)

Q6 =

24.3981 15.8740 -21.6877

15.8740 18.2343 -13.2692

-10.8439 -6.6346 28.5719

>> Q7 = Qbar(Q, -30)

Q7 =

32.8959 13.1683 -26.0285

13.1683 15.1478 -4.7121

-13.0143 -2.3560 23.1606

>> Q8 = Qbar(Q, -20)

Q8 =

41.7630 9.0230 -23.5283

9.0230 14.5714 0.7118

-11.7642 0.3559 14.8700
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>> Q9 = Qbar(Q, -10)

Q9 =

48.4903 5.3777 -13.9810

5.3777 15.1348 1.8406

-6.9905 0.9203 7.5793

>> Q10 = Qbar(Q, 0)

Q10 =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

>> Q11 = Qbar(Q, 10)

Q11 =

48.4903 5.3777 13.9810

5.3777 15.1348 -1.8406

6.9905 -0.9203 7.5793

>> Q12 = Qbar(Q, 20)

Q12 =

41.7630 9.0230 23.5283

9.0230 14.5714 -0.7118

11.7642 -0.3559 14.8700

>> Q13 = Qbar(Q, 30)

Q13 =

32.8959 13.1683 26.0285

13.1683 15.1478 4.7121

13.0143 2.3560 23.1606

>> Q14 = Qbar(Q, 40)

Q14 =

24.3981 15.8740 21.6877

15.8740 18.2343 13.2692

10.8439 6.6346 28.5719
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>> Q15 = Qbar(Q, 50)

Q15 =

18.2343 15.8740 13.2692

15.8740 24.3981 21.6877

6.6346 10.8439 28.5719

>> Q16 = Qbar(Q, 60)

Q16 =

15.1478 13.1683 4.7121

13.1683 32.8959 26.0285

2.3560 13.0143 23.1606

>> Q17 = Qbar(Q, 70)

Q17 =

14.5714 9.0230 -0.7118

9.0230 41.7630 23.5283

-0.3559 11.7642 14.8700

>> Q18 = Qbar(Q, 80)

Q18 =

15.1348 5.3777 -1.8406

5.3777 48.4903 13.9810

-0.9203 6.9905 7.5793

>> Q19 = Qbar(Q, 90)

Q19 =

15.5041 3.9380 -0.0000

3.9380 51.0003 0.0000

-0.0000 0.0000 4.7000

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

20 30 40 50 60 70 80 90
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>> y1 = [Q1(1,1) Q2(1,1) Q3(1,1) Q4(1,1) Q5(1,1) Q6(1,1) Q7(1,1)

Q8(1,1) Q9(1,1) Q10(1,1) Q11(1,1) Q12(1,1) Q13(1,1) Q14(1,1)

Q15(1,1) Q16(1,1) Q17(1,1) Q18(1,1) Q19(1,1)]

y1 =

Columns 1 through 14

15.5041 15.1348 14.5714 15.1478 18.2343 24.3981

32.8959 41.7630 48.4903 51.0003 48.4903 41.7630

32.8959 24.3981

Columns 15 through 19

18.2343 15.1478 14.5714 15.1348 15.5041

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{11} (GPa)’);

Fig. Variation of Q̄11 versus θ for Problem 5.10

>> y2 = [Q1(1,2) Q2(1,2) Q3(1,2) Q4(1,2) Q5(1,2) Q6(1,2) Q7(1,2)

Q8(1,2) Q9(1,2) Q10(1,2) Q11(1,2) Q12(1,2) Q13(1,2) Q14(1,2)

Q15(1,2) Q16(1,2) Q17(1,2) Q18(1,2) Q19(1,2)]
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y2 =

Columns 1 through 14

3.9380 5.3777 9.0230 13.1683 15.8740 15.8740

13.1683 9.0230 5.3777 3.9380 5.3777 9.0230

13.1683 15.8740

Columns 15 through 19

15.8740 13.1683 9.0230 5.3777 3.9380

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{12} (GPa)’);

Fig. Variation of Q̄12 versus θ for Problem 5.10

>> y3 = [Q1(1,3) Q2(1,3) Q3(1,3) Q4(1,3) Q5(1,3) Q6(1,3) Q7(1,3)

Q8(1,3) Q9(1,3) Q10(1,3) Q11(1,3) Q12(1,3) Q13(1,3) Q14(1,3)

Q15(1,3) Q16(1,3) Q17(1,3) Q18(1,3) Q19(1,3)]
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y3 =

Columns 1 through 14

0.0000 1.8406 0.7118 -4.7121 -13.2692 -21.6877

-26.0285 -23.5283 -13.9810 0 13.9810 23.5283

26.0285 21.6877

Columns 15 through 19

13.2692 4.7121 -0.7118 -1.8406 -0.0000

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{16} (GPa)’);

Fig. Variation of Q̄16 versus θ for Problem 5.10

>> y4 = [Q1(2,2) Q2(2,2) Q3(2,2) Q4(2,2) Q5(2,2) Q6(2,2) Q7(2,2)

Q8(2,2) Q9(2,2) Q10(2,2) Q11(2,2) Q12(2,2) Q13(2,2) Q14(2,2)

Q15(2,2) Q16(2,2) Q17(2,2) Q18(2,2) Q19(2,2)]

y4 =

Columns 1 through 14

51.0003 48.4903 41.7630 32.8959 24.3981 18.2343

15.1478 14.5714 15.1348 15.5041 15.1348 14.5714

15.1478 18.2343
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Columns 15 through 19

24.3981 32.8959 41.7630 48.4903 51.0003

>> plot(x,y4)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{22} (GPa)’);

Fig. Variation of Q̄22 versus θ for Problem 5.10

>> y5 = [Q1(2,3) Q2(2,3) Q3(2,3) Q4(2,3) Q5(2,3) Q6(2,3) Q7(2,3)

Q8(2,3) Q9(2,3) Q10(2,3) Q11(2,3) Q12(2,3) Q13(2,3) Q14(2,3)

Q15(2,3) Q16(2,3) Q17(2,3) Q18(2,3) Q19(2,3)]

y5 =

Columns 1 through 14

-0.0000 -13.9810 -23.5283 -26.0285 -21.6877 -13.2692

-4.7121 0.7118 1.8406 0 -1.8406 -0.7118

4.7121 13.2692

Columns 15 through 19

21.6877 26.0285 23.5283 13.9810 0.0000

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{26} (GPa)’);
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Fig. Variation of Q̄26 versus θ for Problem 5.10

>> y6 = [Q1(3,3) Q2(3,3) Q3(3,3) Q4(3,3) Q5(3,3) Q6(3,3) Q7(3,3)

Q8(3,3) Q9(3,3) Q10(3,3) Q11(3,3) Q12(3,3) Q13(3,3) Q14(3,3)

Q15(3,3) Q16(3,3) Q17(3,3) Q18(3,3) Q19(3,3)]

y6 =

Columns 1 through 14

4.7000 7.5793 14.8700 23.1606 28.5719 28.5719

23.1606 14.8700 7.5793 4.7000 7.5793 14.8700

23.1606 28.5719

Columns 15 through 19

28.5719 23.1606 14.8700 7.5793 4.7000

>> plot(x,y6)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘Q^{-}_{66} (GPa)’);
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Fig. Variation of Q̄66 versus θ for Problem 5.10

Problem 5.11

When θ = 0◦, we have [T ] = [T ]−1 = [I], where [I] is the identity matrix.
Therefore, we have;

[S̄] = [T ]−1[S][T ] = [I][S][I] = [S]

[Q̄] = [T ]−1[Q][T ] = [I][Q][I] = [Q]

Problem 5.12

For isotropic materials, we showed in Problem 4.3 that [S] is given by:

[S] =

⎡
⎢⎢⎢⎢⎢⎣

1
E

−ν

E
0

−ν

E

1
E

0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦

Therefore, we have:

S11 =
1
E

S12 =
−ν

E
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S22 =
1
E

S16 = 0

S26 = 0

S66 =
2(1 + ν)

E

Substitute the above equations into (5.16) from the book to obtain:

S̄11 =
1
E

m4 +
[−2ν

E
+

2(1 + ν)
E

]
n2m2 +

1
E

n4

=
1
E

(
m2 + n2

)2
=

1
E

S̄12 =
[

1
E

+
1
E

− 2(1 + ν)
E

]
n2m2 − ν

E

(
n4 + m4

)
= − ν

E

(
m2 + n2

)2
= − ν

E

S̄22 =
1
E

(derivation similar to S̄11).

S̄16 =
[

2
E

− 2ν

E
− 2(1 + ν)

E

]
nm3 −

[
2
E

− 2ν

E
− 2(1 + ν)

E

]
n3m

= 0 − 0

= 0

S̄26 = 0 (derivation similar to S̄16).

S̄66 = 2
[

2
E

+
2
E

+
4ν

E
− 2(1 + ν)

E

]
n2m2 +

2(1 + ν)
E

(
n4 + m4

)

=
2(1 + ν)

E

(
m2 + n2

)2
=

2(1 + ν)
E
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Therefore, we have now the following equation;

[S̄] = [S] =

⎡
⎢⎢⎢⎢⎢⎣

1
E

−ν

E
0

−ν

E

1
E

0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦

Problem 5.13

We can follow the same approach used in solving Problem 5.12 while using
the result of Problem 5.5. Alternatively, we can follow a shorter approach by
using Problem 5.4 and taking the inverse of [S̄] as follows:

From Problem 5.12, we have:

[S̄] =

⎡
⎢⎢⎢⎢⎢⎣

1
E

−ν

E
0

−ν

E

1
E

0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦

and from Problem 5.5 we obtain:

[Q̄] = [S̄]−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
E

−ν

E
0

−ν

E

1

E
0

0 0
2(1 + ν)

E

⎤
⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎣

E

1 − ν2

νE

1 − ν2 0

νE

1 − ν2

E

1 − ν2
0

0 0
E

2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎦ = [Q]

See also Problem 4.4.

Problem 5.14

>> S = ReducedCompliance(50.0, 15.20, 0.254, 4.70)

S =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> S1 = Sbar(S,0)
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S1 =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> sigma = [100e-3 ; 0 ; 0]

sigma =

0.1000

0

0

>> epsilon = S1*sigma

epsilon =

0.0020

-0.0005

0

>> deltax = 50*epsilon(1)

deltax =

0.1000

>> deltay = 50*epsilon(2)

deltay =

-0.0254

>> gammaxy = epsilon(3)

gammaxy =

0

>> dx = 50 + deltax

dx =

50.1000
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>> dy = 50 + deltay

dy =

49.9746

>> S2 = Sbar(S, 45)

S2 =

0.1253 -0.0875 -0.0229

-0.0875 0.1253 -0.0229

-0.0114 -0.0114 0.0480

>> epsilon = S2*sigma

epsilon =

0.0125

-0.0087

-0.0011

>> deltax = 50*epsilon(1)

deltax =

0.6265

>> deltay = 50*epsilon(2)

deltay =

-0.4374

>> dx = 50 + deltax

dx =

50.6265

>> dy = 50 + deltay

dy =

49.5626

>> gammaxy = epsilon(3)
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gammaxy =

-0.0011

>> S3 = Sbar(S, -45)

S3 =

0.1253 -0.0875 0.0229

-0.0875 0.1253 0.0229

0.0114 0.0114 0.0480

>> epsilon = S3*sigma

epsilon =

0.0125

-0.0087

0.0011

>> deltax = 50*epsilon(1)

deltax =

0.6265

>> deltay = 50*epsilon(2)

deltay =

-0.4374

>> dy = 50 + deltay

dy =

49.5626

>> dx = 50 + deltax

dx =

50.6265

>> gammaxy = epsilon(3)

gammaxy =

0.0011
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Problem 5.15

Using the result of Problem 4.10, we have:⎧⎪⎨
⎪⎩

ε1 − α1∆T − β1∆M

ε2 − α2∆T − β2∆M

γ12

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭

Now, we need to transform the above equation from the 1-2-3 coordinate
system to the x-y-z global coordinate system. The above equation can be re-
written as follows where we have introduced a factor of 1/2 for the engineering
shear strain:⎧⎪⎨

⎪⎩
ε1

ε2
1
2γ12

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

α1∆T

α2∆T
0
2

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

β1∆M

β2∆M
0
2

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S11 S12 0
S12 S22 0
0 0 S66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σ1

σ2

τ12

⎫⎪⎬
⎪⎭

Next, we substitute the following transformation relations along with (5.2)
and (5.6) into the above equation:⎧⎪⎨

⎪⎩
α1∆T

α2∆T
0
2

⎫⎪⎬
⎪⎭ = [T ]

⎧⎪⎨
⎪⎩

αx∆T

αy∆T
1
2αxy∆T

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

β1∆M

β2∆M
0
2

⎫⎪⎬
⎪⎭ = [T ]

⎧⎪⎨
⎪⎩

βx∆M

βy∆M
1
2βxy∆M

⎫⎪⎬
⎪⎭

Therefore, we obtain the desired relation as follows (after grouping the terms
together and using (5.11)):⎧⎪⎨

⎪⎩
εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

σx

σy

τxy

⎫⎪⎬
⎪⎭

Taking the inverse of the above relation, we obtain the second desired results
as follows:⎧⎪⎨

⎪⎩
σx

σy

τxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎥⎦
⎧⎪⎨
⎪⎩

εx − αx∆T − βx∆M

εy − αy∆T − βy∆M

γxy − αxy∆T − βxy∆M

⎫⎪⎬
⎪⎭

Problem 6.1

From an elementary course on mechanics of materials, we have the following
equation:
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νxy = −εy

εx

We also have the following two equations that can be obtained from (5.10):

εy = S̄12σx

εx = S̄11σx

Substitute the above two equations into the first equation above to obtain the
desired relation:

νxy = − S̄12

S̄11
=

ν12

(
n4 + m4

)− (1 + E1
E2

− E1
G12

)
n2m2

m4 +
(

E1
G12

− 2ν12

)
n2m2 + E1

E2
n2

where we have used (5.16) from Chap. 5.

Problem 6.2

From an elementary course on mechanics of materials, we have the following
equation:

εy =
σy

Ey

We also have the following equation that can be obtained from (5.10):

εy = S̄22σy

Comparing the above two equation, we obtain the desired result as follows:

Ey =
1

S̄22
=

E2

m4 +
(

E2
G12

− 2ν21

)
n2m2 + E2

E1
n4

where we have used (5.16) from Chap. 5.

Problem 6.3

From an elementary course on mechanics of materials, we have the following
equation:

νyx = −εx

εy

We also have the following two equations that can be obtained from (5.10):

εy = S̄22σy

εx = S̄12σy
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Substitute the above two equations into the first equation above to obtain the
desired relation:

νyx = − S̄12

S̄22
=

ν21

(
n4 + m4

)− (1 + E2
E1

− E2
G12

)
n2m2

m4 +
(

E2
G12

− 2ν21

)
n2m2 + E2

E1
n2

where we have used (5.16) from Chap. 5.

Problem 6.4

From an elementary course on mechanics of materials, we have the following
equation:

γxy =
τxy

Gxy

We also have the following equation which can be obtained from (5.10):

γxy = S̄66τxy

Comparing the above two equation, we obtain the desired result as follows:

Gxy =
1

S̄66
=

G12

n4 + m4 + 2
(

2G12
E1

(1 + 2ν12) + 2G12
E2

− 1
)

n2m2

where we have used (5.16) from Chap. 5.

Problem 6.5

>> Ex1 = Ex(50.0, 15.20, 0.254, 4.70, -90)

Ex1 =

15.2000

>> Ex2 = Ex(50.0, 15.20, 0.254, 4.70, -80)

Ex2 =

14.7438
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>> Ex3 = Ex(50.0, 15.20, 0.254, 4.70, -70)

Ex3 =

13.7932

>> Ex4 = Ex(50.0, 15.20, 0.254, 4.70, -60)

Ex4 =

13.1156

>> Ex5 = Ex(50.0, 15.20, 0.254, 4.70, -50)

Ex5 =

13.2990

>> Ex6 = Ex(50.0, 15.20, 0.254, 4.70, -40)

Ex6 =

14.8715

>> Ex7 = Ex(50.0, 15.20, 0.254, 4.70, -30)

Ex7 =

18.7440

>> Ex8 = Ex(50.0, 15.20, 0.254, 4.70, -20)

Ex8 =

26.7217

>> Ex9 = Ex(50.0, 15.20, 0.254, 4.70, -10)

Ex9 =

40.3275
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>> Ex10 = Ex(50.0, 15.20, 0.254, 4.70, 0)

Ex10 =

50

>> Ex11 = Ex(50.0, 15.20, 0.254, 4.70, 10)

Ex11 =

40.3275

>> Ex12 = Ex(50.0, 15.20, 0.254, 4.70, 20)

Ex12 =

26.7217

>> Ex13 = Ex(50.0, 15.20, 0.254, 4.70, 30)

Ex13 =

18.7440

>> Ex14 = Ex(50.0, 15.20, 0.254, 4.70, 40)

Ex14 =

14.8715

>> Ex15 = Ex(50.0, 15.20, 0.254, 4.70, 50)

Ex15 =

13.2990

>> Ex16 = Ex(50.0, 15.20, 0.254, 4.70, 60)

Ex16 =

13.1156

>> Ex17 = Ex(50.0, 15.20, 0.254, 4.70, 70)

Ex17 =

13.7932
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>> Ex18 = Ex(50.0, 15.20, 0.254, 4.70, 80)

Ex18 =

14.7438

>> Ex19 = Ex(50.0, 15.20, 0.254, 4.70, 90)

Ex19 =

15.2000

>> y1 = [Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11 Ex12 Ex13 Ex14

Ex15 Ex16 Ex17 Ex18 Ex19]

y1 =

Columns 1 through 14

15.2000 14.7438 13.7932 13.1156 13.2990 14.8715

18.7440 26.7217 40.3275 50.0000 40.3275 26.7217

18.7440 14.8715

Columns 15 through 19

13.2990 13.1156 13.7932 14.7438 15.2000

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

20 30 40 50 60 70 80 90

>> plot(x,y1)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘E_x (GPa)’);
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Fig. Variation of Ex versus θ for Problem 6.5

>> NUxy1 = NUxy(50.0, 15.20, 0.254, 4.70, -90)

NUxy1 =

0.0772

>> NUxy2 = NUxy(50.0, 15.20, 0.254, 4.70, -80)

NUxy2 =

0.1218

>> NUxy3 = NUxy(50.0, 15.20, 0.254, 4.70, -70)

NUxy3 =

0.2162

>> NUxy4 = NUxy(50.0, 15.20, 0.254, 4.70, -60)

NUxy4 =

0.3046
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>> NUxy5 = NUxy(50.0, 15.20, 0.254, 4.70, -50)

NUxy5 =

0.3665

>> NUxy6 = NUxy(50.0, 15.20, 0.254, 4.70, -40)

NUxy6 =

0.4015

>> NUxy7 = NUxy(50.0, 15.20, 0.254, 4.70, -30)

NUxy7 =

0.4108

>> NUxy8 = NUxy(50.0, 15.20, 0.254, 4.70, -20)

NUxy8 =

0.3878

>> NUxy9 = NUxy(50.0, 15.20, 0.254, 4.70, -10)

NUxy9 =

0.3180

>> NUxy10 = NUxy(50.0, 15.20, 0.254, 4.70, 0)

NUxy10 =

0.2540

>> NUxy11 = NUxy(50.0, 15.20, 0.254, 4.70, 10)

NUxy11 =

0.3180

>> NUxy12 = NUxy(50.0, 15.20, 0.254, 4.70, 20)

NUxy12 =

0.3878
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>> NUxy13 = NUxy(50.0, 15.20, 0.254, 4.70, 30)

NUxy13 =

0.4108

>> NUxy14 = NUxy(50.0, 15.20, 0.254, 4.70, 40)

NUxy14 =

0.4015

>> NUxy15 = NUxy(50.0, 15.20, 0.254, 4.70, 50)

NUxy15 =

0.3665

>> NUxy16 = NUxy(50.0, 15.20, 0.254, 4.70, 60)

NUxy16 =

0.3046

>> NUxy17 = NUxy(50.0, 15.20, 0.254, 4.70, 70)

NUxy17 =

0.2162

>> NUxy18 = NUxy(50.0, 15.20, 0.254, 4.70, 80)

NUxy18 =

0.1218

>> NUxy19 = NUxy(50.0, 15.20, 0.254, 4.70, 90)

NUxy19 =

0.0772

>> y2 = [NUxy1 NUxy2 NUxy3 NUxy4 NUxy5 NUxy6 NUxy7 NUxy8 NUxy9 NUxy10

NUxy11 NUxy12 NUxy13 NUxy14 NUxy15 NUxy16 NUxy17 NUxy18 NUxy19]
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y2 =

Columns 1 through 14

0.0772 0.1218 0.2162 0.3046 0.3665 0.4015

0.4108 0.3878 0.3180 0.2540 0.3180 0.3878

0.4108 0.4015

Columns 15 through 19

0.3665 0.3046 0.2162 0.1218 0.0772

>> plot(x,y2)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\nu_{xy}’);

Fig. Variation of νxy versus θ for Problem 6.5

>> Ey1 = Ey(50.0, 15.20, 0.254, 4.70, -90)

Ey1 =

50

>> Ey2 = Ey(50.0, 15.20, 0.254, 4.70, -80)

Ey2 =

41.4650
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>> Ey3 = Ey(50.0, 15.20, 0.254, 4.70, -70)

Ey3 =

28.5551

>> Ey4 = Ey(50.0, 15.20, 0.254, 4.70, -60)

Ey4 =

20.4127

>> Ey5 = Ey(50.0, 15.20, 0.254, 4.70, -50)

Ey5 =

16.2331

>> Ey6 = Ey(50.0, 15.20, 0.254, 4.70, -40)

Ey6 =

14.3773

>> Ey7 = Ey(50.0, 15.20, 0.254, 4.70, -30)

Ey7 =

13.9114

>> Ey8 = Ey(50.0, 15.20, 0.254, 4.70, -20)

Ey8 =

14.2660

>> Ey9 = Ey(50.0, 15.20, 0.254, 4.70, -10)

Ey9 =

14.8932

>> Ey10 = Ey(50.0, 15.20, 0.254, 4.70, 0)

Ey10 =

15.2000
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>> Ey11 = Ey(50.0, 15.20, 0.254, 4.70, 10)

Ey11 =

14.8932

>> Ey12 = Ey(50.0, 15.20, 0.254, 4.70, 20)

Ey12 =

14.2660

>> Ey13 = Ey(50.0, 15.20, 0.254, 4.70, 30)

Ey13 =

13.9114

>> Ey14 = Ey(50.0, 15.20, 0.254, 4.70, 40)

Ey14 =

14.3773

>> Ey15 = Ey(50.0, 15.20, 0.254, 4.70, 50)

Ey15 =

16.2331

>> Ey16 = Ey(50.0, 15.20, 0.254, 4.70, 60)

Ey16 =

20.4127

>> Ey17 = Ey(50.0, 15.20, 0.254, 4.70, 70)

Ey17 =

28.5551

>> Ey18 = Ey(50.0, 15.20, 0.254, 4.70, 80)

Ey18 =

41.4650
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>> Ey19 = Ey(50.0, 15.20, 0.254, 4.70, 90)

Ey19 =

50

>> y3 = [Ey1 Ey2 Ey3 Ey4 Ey5 Ey6 Ey7 Ey8 Ey9 Ey10 Ey11 Ey12 Ey13 Ey14

Ey15 Ey16 Ey17 Ey18 Ey19]

y3 =

Columns 1 through 14

50.0000 41.4650 28.5551 20.4127 16.2331 14.3773

13.9114 14.2660 14.8932 15.2000 14.8932 14.2660

13.9114 14.3773

Columns 15 through 19

16.2331 20.4127 28.5551 41.4650 50.0000

>> plot(x,y3)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘E_y (GPa)’);

Fig. Variation of Ey versus θ for Problem 6.5
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>> NUyx1 = NUyx(50.0, 15.20, 0.254, 4.70, -90)

NUyx1 =

0.8355

>> NUyx2 = NUyx(50.0, 15.20, 0.254, 4.70, -80)

NUyx2 =

0.7873

>> NUyx3 = NUyx(50.0, 15.20, 0.254, 4.70, -70)

NUyx3 =

0.7112

>> NUyx4 = NUyx(50.0, 15.20, 0.254, 4.70, -60)

NUyx4 =

0.6495

>> NUyx5 = NUyx(50.0, 15.20, 0.254, 4.70, -50)

NUyx5 =

0.5928

>> NUyx6 = NUyx(50.0, 15.20, 0.254, 4.70, -40)

NUyx6 =

0.5295

>> NUyx7 = NUyx(50.0, 15.20, 0.254, 4.70, -30)

NUyx7 =

0.4529

>> NUyx8 = NUyx(50.0, 15.20, 0.254, 4.70, -20)

NUyx8 =

0.3655
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>> NUyx9 = NUyx(50.0, 15.20, 0.254, 4.70, -10)

NUyx9 =

0.2871

>> NUyx10 = NUyx(50.0, 15.20, 0.254, 4.70, 0)

NUyx10 =

0.2540

>> NUyx11 = NUyx(50.0, 15.20, 0.254, 4.70, 10)

NUyx11 =

0.2871

>> NUyx12 = NUyx(50.0, 15.20, 0.254, 4.70, 20)

NUyx12 =

0.3655

>> NUyx13 = NUyx(50.0, 15.20, 0.254, 4.70, 30)

NUyx13 =

0.4529

>> NUyx14 = NUyx(50.0, 15.20, 0.254, 4.70, 40)

NUyx14 =

0.5295

>> NUyx15 = NUyx(50.0, 15.20, 0.254, 4.70, 50)

NUyx15 =

0.5928

>> NUyx16 = NUyx(50.0, 15.20, 0.254, 4.70, 60)

NUyx16 =

0.6495
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>> NUyx17 = NUyx(50.0, 15.20, 0.254, 4.70, 70)

NUyx17 =

0.7112

>> NUyx18 = NUyx(50.0, 15.20, 0.254, 4.70, 80)

NUyx18 =

0.7873

>> NUyx19 = NUyx(50.0, 15.20, 0.254, 4.70, 90)

NUyx19 =

0.8355

>> y4 = [NUyx1 NUyx2 NUyx3 NUyx4 NUyx5 NUyx6 NUyx7 NUyx8 NUyx9 NUyx10

NUyx11 NUyx12 NUyx13 NUyx14 NUyx15 NUyx16 NUyx17 NUyx18 NUyx19]

y4 =

Columns 1 through 14

0.8355 0.7873 0.7112 0.6495 0.5928 0.5295

0.4529 0.3655 0.2871 0.2540 0.2871 0.3655

0.4529 0.5295

Columns 15 through 19

0.5928 0.6495 0.7112 0.7873 0.8355

>> plot(x,y4)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\nu_{yx}’);
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Fig. Variation of νyx versus θ for Problem 6.5

>> Gxy1 = Gxy(50.0, 15.20, 0.254, 4.70, -90)

Gxy1 =

4.7000

>> Gxy2 = Gxy(50.0, 15.20, 0.254, 4.70, -80)

Gxy2 =

5.0226

>> Gxy3 = Gxy(50.0, 15.20, 0.254, 4.70, -70)

Gxy3 =

6.0790

>> Gxy4 = Gxy(50.0, 15.20, 0.254, 4.70, -60)

Gxy4 =

7.9902
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>> Gxy5 = Gxy(50.0, 15.20, 0.254, 4.70, -50)

Gxy5 =

10.0531

>> Gxy6 = Gxy(50.0, 15.20, 0.254, 4.70, -40)

Gxy6 =

10.0531

>> Gxy7 = Gxy(50.0, 15.20, 0.254, 4.70, -30)

Gxy7 =

7.9902

>> Gxy8 = Gxy(50.0, 15.20, 0.254, 4.70, -20)

Gxy8 =

6.0790

>> Gxy9 = Gxy(50.0, 15.20, 0.254, 4.70, -10)

Gxy9 =

5.0226

>> Gxy10 = Gxy(50.0, 15.20, 0.254, 4.70, 0)

Gxy10 =

4.7000

>> Gxy11 = Gxy(50.0, 15.20, 0.254, 4.70, 10)

Gxy11 =

5.0226

>> Gxy12 = Gxy(50.0, 15.20, 0.254, 4.70, 20)

Gxy12 =

6.0790
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>> Gxy13 = Gxy(50.0, 15.20, 0.254, 4.70, 30)

Gxy13 =

7.9902

>> Gxy14 = Gxy(50.0, 15.20, 0.254, 4.70, 40)

Gxy14 =

10.0531

>> Gxy15 = Gxy(50.0, 15.20, 0.254, 4.70, 50)

Gxy15 =

10.0531

>> Gxy16 = Gxy(50.0, 15.20, 0.254, 4.70, 60)

Gxy16 =

7.9902

>> Gxy17 = Gxy(50.0, 15.20, 0.254, 4.70, 70)

Gxy17 =

6.0790

>> Gxy18 = Gxy(50.0, 15.20, 0.254, 4.70, 80)

Gxy18 =

5.0226

>> Gxy19 = Gxy(50.0, 15.20, 0.254, 4.70, 90)

Gxy19 =

4.7000

>> y5 = [Gxy1 Gxy2 Gxy3 Gxy4 Gxy5 Gxy6 Gxy7 Gxy8 Gxy9 Gxy10 Gxy11

Gxy12 Gxy13 Gxy14 Gxy15 Gxy16 Gxy17 Gxy18 Gxy19]
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y5 =

Columns 1 through 14

4.7000 5.0226 6.0790 7.9902 10.0531 10.0531

7.9902 6.0790 5.0226 4.7000 5.0226 6.0790

7.9902 10.0531

Columns 15 through 19

10.0531 7.9902 6.0790 5.0226 4.7000

>> plot(x,y5)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘G_{xy} (GPa)’);

Fig. Variation of Gxy versus θ for Problem 6.5

Problem 6.6

From (5.10), we have:

γxy = S̄16σx

εx = S̄11σx

Substitute the above two equations into (6.6) to obtain the desired result as
follows:
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ηxy,x =
S̄16

S̄11

Similarly, from (5.10) again, we have:

γxy = S̄26σy

εy = S̄22σy

Substitute the above two equation into (6.7) to obtain the desired result as
follows:

ηxy,y =
S̄26

S̄22

Problem 6.7

From (5.10), we have:

εx = S̄16τxy

γxy = S̄66τxy

Substitute the above two equations into (6.10) to obtain the desired result as
follows:

ηx,xy =
S̄16

S̄66

Similarly, from (5.10) again, we have:

εy = S̄26τxy

γxy = S̄66τxy

Substitute the above two equations into (6.11) to obtain the desired result as
follows:

ηy,xy =
S̄26

S̄66

Problem 6.8

Continuing with the commands from Example 6.3, we obtain:

>> Etaxxy1 = Etaxxy(S1)

Etaxxy1 =

-7.7070e-017
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>> Etaxxy2 = Etaxxy(S2)

Etaxxy2 =

-0.2192

>> Etaxxy3 = Etaxxy(S3)

Etaxxy3 =

-0.4244

>> Etaxxy4 = Etaxxy(S4)

Etaxxy4 =

-0.4970

>> Etaxxy5 = Etaxxy(S5)

Etaxxy5 =

0.1268

>> Etaxxy6 = Etaxxy(S6)

Etaxxy6 =

1.3271

>> Etaxxy7 = Etaxxy(S7)

Etaxxy7 =

1.2187

>> Etaxxy8 = Etaxxy(S8)

Etaxxy8 =

0.7457

>> Etaxxy9 = Etaxxy(S9)

Etaxxy9 =

0.3457
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>> Etaxxy10 = Etaxxy(S10)

Etaxxy10 =

0

>> Etaxxy11 = Etaxxy(S11)

Etaxxy11 =

-0.3457

>> Etaxxy12 = Etaxxy(S12)

Etaxxy12 =

-0.7457

>> Etaxxy13 = Etaxxy(S13)

Etaxxy13 =

-1.2187

>> Etaxxy14 = Etaxxy(S14)

Etaxxy14 =

-1.3271

>> Etaxxy15 = Etaxxy(S15)

Etaxxy15 =

-0.1268

>> Etaxxy16 = Etaxxy(S16)

Etaxxy16 =

0.4970

>> Etaxxy17 = Etaxxy(S17)

Etaxxy17 =

0.4244
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>> Etaxxy18 = Etaxxy(S18)

Etaxxy18 =

0.2192

>> Etaxxy19 = Etaxxy(S19)

Etaxxy19 =

7.7070e-017

>> y8 = [Etaxxy1 Etaxxy2 Etaxxy3 Etaxxy4 Etaxxy5 Etaxxy6 Etaxxy7

Etaxxy8 Etaxxy9 Etaxxy10 Etaxxy11 Etaxxy12 Etaxxy13 Etaxxy14

Etaxxy15 Etaxxy16 Etaxxy17 Etaxxy18 Etaxxy19]

y8 =

Columns 1 through 14

-0.0000 -0.2192 -0.4244 -0.4970 0.1268 1.3271

1.2187 0.7457 0.3457 0 -0.3457 -0.7457 -1.2187

-1.3271

Columns 15 through 19

-0.1268 0.4970 0.4244 0.2192 0.0000

>> plot(x,y8)

>> xlabel(‘\theta (degrees)’);

>> ylabel(‘\eta_{x,xy}’);

>> Etayxy1 = Etayxy(S1)

Etayxy1 =

1.1813e-016

>> Etayxy2 = Etayxy(S2)

Etayxy2 =

0.3457

>> Etayxy3 = Etayxy(S3)

Etayxy3 =

0.7457
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Fig. Variation of ηx,xy versus θ for Problem 6.8

>> Etayxy4 = Etayxy(S4)

Etayxy4 =

1.2187

>> Etayxy5 = Etayxy(S5)

Etayxy5 =

1.3271

>> Etayxy6 = Etayxy(S6)

Etayxy6 =

0.1268

>> Etayxy7 = Etayxy(S7)

Etayxy7 =

-0.4970
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>> Etayxy8 = Etayxy(S8)

Etayxy8 =

-0.4244

>> Etayxy9 = Etayxy(S9)

Etayxy9 =

-0.2192

>> Etayxy10 = Etayxy(S10)

Etayxy10 =

0

>> Etayxy11 = Etayxy(S11)

Etayxy11 =

0.2192

>> Etayxy12 = Etayxy(S12)

Etayxy12 =

0.4244

>> Etayxy13 = Etayxy(S13)

Etayxy13 =

0.4970

>> Etayxy14 = Etayxy(S14)

Etayxy14 =

-0.1268

>> Etayxy15 = Etayxy(S15)

Etayxy15 =

-1.3271
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>> Etayxy16 = Etayxy(S16)

Etayxy16 =

-1.2187

>> Etayxy17 = Etayxy(S17)

Etayxy17 =

-0.7457

>> Etayxy18 = Etayxy(S18)

Etayxy18 =

-0.3457

>> Etayxy19 = Etayxy(S19)

Etayxy19 =

-1.1813e-016

>> y9 = [Etayxy1 Etayxy2 Etayxy3 Etayxy4 Etayxy5 Etayxy6 Etayxy7

Etayxy8 Etayxy9 Etayxy10 Etayxy11 Etayxy12 Etayxy13 Etayxy14

Etayxy15 Etayxy16 Etayxy17 Etayxy18 Etayxy19]

y9 =

Columns 1 through 14

0.0000 0.3457 0.7457 1.2187 1.3271 0.1268

-0.4970 -0.4244 -0.2192 0 0.2192 0.4244

0.4970 -0.1268

Columns 15 through 19

-1.3271 -1.2187 -0.7457 -0.3457 -0.0000

>> plot(x,y9)

>> xlabel(‘\theta {degrees}’);

>> ylabel(‘\eta_{y,xy}’);
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Fig. Variation of ηy,xy versus θ for Problem 6.8

Problem 6.9

>> S = ReducedCompliance(50.0, 15.20, 0.254, 4.70)

S =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> S1 = Sbar(S, -90)

S1 =

0.0658 -0.0051 -0.0000

-0.0051 0.0200 0.0000

-0.0000 0.0000 0.2128

>> S2 = Sbar(S, -80)

S2 =

0.0740 -0.0147 -0.0451

-0.0147 0.0310 0.0608

-0.0226 0.0304 0.1935
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>> S3 = Sbar(S, -70)

S3 =

0.0945 -0.0391 -0.0664

-0.0391 0.0594 0.0959

-0.0332 0.0479 0.1447

>> S4 = Sbar(S, -60)

S4 =

0.1161 -0.0669 -0.0515

-0.0669 0.0932 0.0912

-0.0258 0.0456 0.0892

>> S5 = Sbar(S, -50)

S5 =

0.1268 -0.0850 -0.0056

-0.0850 0.1188 0.0507

-0.0028 0.0254 0.0529

>> S6 = Sbar(S, -40)

S6 =

0.1188 -0.0850 0.0507

-0.0850 0.1268 -0.0056

0.0254 -0.0028 0.0529

>> S7 = Sbar(S, -30)

S7 =

0.0932 -0.0669 0.0912

-0.0669 0.1161 -0.0515

0.0456 -0.0258 0.0892

>> S8 = Sbar(S, -20)

S8 =

0.0594 -0.0391 0.0959

-0.0391 0.0945 -0.0664

0.0479 -0.0332 0.1447

>> S9 = Sbar(S, -10)
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S9 =

0.0310 -0.0147 0.0608

-0.0147 0.0740 -0.0451

0.0304 -0.0226 0.1935

>> S10 = Sbar(S, 0)

S10 =

0.0200 -0.0051 0

-0.0051 0.0658 0

0 0 0.2128

>> S11 = Sbar(S, 10)

S11 =

0.0310 -0.0147 -0.0608

-0.0147 0.0740 0.0451

-0.0304 0.0226 0.1935

>> S12 = Sbar(S, 20)

S12 =

0.0594 -0.0391 -0.0959

-0.0391 0.0945 0.0664

-0.0479 0.0332 0.1447

>> S13 = Sbar(S, 30)

S13 =

0.0932 -0.0669 -0.0912

-0.0669 0.1161 0.0515

-0.0456 0.0258 0.0892

>> S14 = Sbar(S, 40)

S14 =

0.1188 -0.0850 -0.0507

-0.0850 0.1268 0.0056

-0.0254 0.0028 0.0529
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>> S15 = Sbar(S, 50)

S15 =

0.1268 -0.0850 0.0056

-0.0850 0.1188 -0.0507

0.0028 -0.0254 0.0529

>> S16 = Sbar(S, 60)

S16 =

0.1161 -0.0669 0.0515

-0.0669 0.0932 -0.0912

0.0258 -0.0456 0.0892

>> S17 = Sbar(S, 70)

S17 =

0.0945 -0.0391 0.0664

-0.0391 0.0594 -0.0959

0.0332 -0.0479 0.1447

>> S18 = Sbar(S, 80)

S18 =

0.0740 -0.0147 0.0451

-0.0147 0.0310 -0.0608

0.0226 -0.0304 0.1935

>> S19 = Sbar(S, 90)

S19 =

0.0658 -0.0051 0.0000

-0.0051 0.0200 -0.0000

0.0000 -0.0000 0.2128

>> Etaxyx1 = Etaxyx(S1)

Etaxyx1 =

-2.6414e-016

>> Etaxyx2 = Etaxyx(S2)
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Etaxyx2 =

-0.6095

>> Etaxyx3 = Etaxyx(S3)

Etaxyx3 =

-0.7031

>> Etaxyx4 = Etaxyx(S4)

Etaxyx4 =

-0.4437

>> Etaxyx5 = Etaxyx(S5)

Etaxyx5 =

-0.0444

>> Etaxyx6 = Etaxyx(S6)

Etaxyx6 =

0.4269

>> Etaxyx7 = Etaxyx(S7)

Etaxyx7 =

0.9779

>> Etaxyx8 = Etaxyx(S8)

Etaxyx8 =

1.6138

>> Etaxyx9 = Etaxyx(S9)

Etaxyx9 =

1.9599

>> Etaxyx10 = Etaxyx(S10)
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Etaxyx10 =

0

>> Etaxyx11 = Etaxyx(S11)

Etaxyx11 =

-1.9599

>> Etaxyx12 = Etaxyx(S12)

Etaxyx12 =

-1.6138

>> Etaxyx13 = Etaxyx(S13)

Etaxyx13 =

-0.9779

>> Etaxyx14 = Etaxyx(S14)

Etaxyx14 =

-0.4269

>> Etaxyx15 = Etaxyx(S15)

Etaxyx15 =

0.0444

>> Etaxyx16 = Etaxyx(S16)

Etaxyx16 =

0.4437

>> Etaxyx17 = Etaxyx(S17)

Etaxyx17 =

0.7031
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>> Etaxyx18 = Etaxyx(S18)

Etaxyx18 =

0.6095

>> Etaxyx19 = Etaxyx(S19)

Etaxyx19 =

2.6414e-016

>> x = [-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

80 90]

x =

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

20 30 40 50 60 70 80 90

>> y1 = [Etaxyx1 Etaxyx2 Etaxyx3 Etaxyx4 Etaxyx5 Etaxyx6 Etaxyx7

Etaxyx8 Etaxyx9 Etaxyx10 Etaxyx11 Etaxyx12 Etaxyx13 Etaxyx14

Etaxyx15 Etaxyx16 Etaxyx17 Etaxyx18 Etaxyx19]

y1 =

Columns 1 through 14

-0.0000 -0.6095 -0.7031 -0.4437 -0.0444 0.4269

0.9779 1.6138 1.9599 0 -1.9599 -1.6138

-0.9779 -0.4269

Columns 15 through 19

0.0444 0.4437 0.7031 0.6095 0.0000

>> plot(x,y1)

>> xlabel(‘\theta {degrees}’);

>> ylabel(‘\eta_{xy,x}’);
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Fig. Variation of ηxy, x versus θ for Problem 6.9

>> Etaxyy1 = Etaxyy(S1)

Etaxyy1 =

1.1492e-015

>> Etaxyy2 = Etaxyy(S2)

Etaxyy2 =

1.9599

>> Etaxyy3 = Etaxyy(S3)

Etaxyy3 =

1.6138

>> Etaxyy4 = Etaxyy(S4)

Etaxyy4 =

0.9779
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>> Etaxyy5 = Etaxyy(S5)

Etaxyy5 =

0.4269

>> Etaxyy6 = Etaxyy(S6)

Etaxyy6 =

-0.0444

>> Etaxyy7 = Etaxyy(S7)

Etaxyy7 =

-0.4437

>> Etaxyy8 = Etaxyy(S8)

Etaxyy8 =

-0.7031

>> Etaxyy9 = Etaxyy(S9)

Etaxyy9 =

-0.6095

>> Etaxyy10 = Etaxyy(S10)

Etaxyy10 =

0

>> Etaxyy11 = Etaxyy(S11)

Etaxyy11 =

0.6095

>> Etaxyy12 = Etaxyy(S12)

Etaxyy12 =

0.7031
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>> Etaxyy13 = Etaxyy(S13)

Etaxyy13 =

0.4437

>> Etaxyy14 = Etaxyy(S14)

Etaxyy14 =

0.0444

>> Etaxyy15 = Etaxyy(S15)

Etaxyy15 =

-0.4269

>> Etaxyy16 = Etaxyy(S16)

Etaxyy16 =

-0.9779

>> Etaxyy17 = Etaxyy(S17)

Etaxyy17 =

-1.6138

>> Etaxyy18 = Etaxyy(S18)

Etaxyy18 =

-1.9599

>> Etaxyy19 = Etaxyy(S19)

Etaxyy19 =

-1.1492e-015

>> y2 = [Etaxyy1 Etaxyy2 Etaxyy3 Etaxyy4 Etaxyy5 Etaxyy6 Etaxyy7

Etaxyy8 Etaxyy9 Etaxyy10 Etaxyy11 Etaxyy12 Etaxyy13 Etaxyy14

Etaxyy15 Etaxyy16 Etaxyy17 Etaxyy18 Etaxyy19]
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y2 =

Columns 1 through 14

0.0000 1.9599 1.6138 0.9779 0.4269 -0.0444

-0.4437 -0.7031 -0.6095 0 0.6095 0.7031

0.4437 0.0444

Columns 15 through 19

-0.4269 -0.9779 -1.6138 -1.9599 -0.0000

>> plot(x,y2)

>> xlabel(‘\theta {degrees}’);

>> ylabel(‘\eta_{xy,y}’);

Fig. Variation of ηxy, y versus θ for Problem 6.9

Problem 6.10

Continuing with the commands from Problem 6.9, we obtain:

>> Etaxxy1 = Etaxxy(S1)

Etaxxy1 =

-8.1673e-017



312 Solutions to Problems

>> Etaxxy2 = Etaxxy(S2)

Etaxxy2 =

-0.2333

>> Etaxxy3 = Etaxxy(S3)

Etaxxy3 =

-0.4591

>> Etaxxy4 = Etaxxy(S4)

Etaxxy4 =

-0.5779

>> Etaxxy5 = Etaxxy(S5)

Etaxxy5 =

-0.1064

>> Etaxxy6 = Etaxxy(S6)

Etaxxy6 =

0.9581

>> Etaxxy7 = Etaxxy(S7)

Etaxxy7 =

1.0226

>> Etaxxy8 = Etaxxy(S8)

Etaxxy8 =

0.6626

>> Etaxxy9 = Etaxxy(S9)

Etaxxy9 =

0.3142
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>> Etaxxy10 = Etaxxy(S10)

Etaxxy10 =

0

>> Etaxxy11 = Etaxxy(S11)

Etaxxy11 =

-0.3142

>> Etaxxy12 = Etaxxy(S12)

Etaxxy12 =

-0.6626

>> Etaxxy13 = Etaxxy(S13)

Etaxxy13 =

-1.0226

>> Etaxxy14 = Etaxxy(S14)

Etaxxy14 =

-0.9581

>> Etaxxy15 = Etaxxy(S15)

Etaxxy15 =

0.1064

>> Etaxxy16 = Etaxxy(S16)

Etaxxy16 =

0.5779

>> Etaxxy17 = Etaxxy(S17)

Etaxxy17 =

0.4591
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>> Etaxxy18 = Etaxxy(S18)

Etaxxy18 =

0.2333

>> Etaxxy19 = Etaxxy(S19)

Etaxxy19 =

8.1673e-017

>> y3 = [Etaxxy1 Etaxxy2 Etaxxy3 Etaxxy4 Etaxxy5 Etaxxy6 Etaxxy7

Etaxxy8 Etaxxy9 Etaxxy10 Etaxxy11 Etaxxy12 Etaxxy13 Etaxxy14

Etaxxy15 Etaxxy16 Etaxxy17 Etaxxy18 Etaxxy19]

y3 =

Columns 1 through 14

-0.0000 -0.2333 -0.4591 -0.5779 -0.1064 0.9581

1.0226 0.6626 0.3142 0 -0.3142 -0.6626

-1.0226 -0.9581

Columns 15 through 19

0.1064 0.5779 0.4591 0.2333 0.0000

>> plot(x,y3)

>> xlabel(‘\theta {degrees}’);

>> ylabel(‘\eta_{x,xy}’);

>> Etayxy1 = Etayxy(S1)

Etayxy1 =

1.0803e-016

>> Etayxy2 = Etayxy(S2)

Etayxy2 =

0.3142

>> Etayxy3 = Etayxy(S3)

Etayxy3 =

0.6626
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Fig. Variation of ηx, xy versus θ for Problem 6.10

>> Etayxy4 = Etayxy(S4)

Etayxy4 =

1.0226

>> Etayxy5 = Etayxy(S5)

Etayxy5 =

0.9581

>> Etayxy6 = Etayxy(S6)

Etayxy6 =

-0.1064

>> Etayxy7 = Etayxy(S7)

Etayxy7 =

-0.5779
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>> Etayxy8 = Etayxy(S8)

Etayxy8 =

-0.4591

>> Etayxy9 = Etayxy(S9)

Etayxy9 =

-0.2333

>> Etayxy10 = Etayxy(S10)

Etayxy10 =

0

>> Etayxy11 = Etayxy(S11)

Etayxy11 =

0.2333

>> Etayxy12 = Etayxy(S12)

Etayxy12 =

0.4591

>> Etayxy13 = Etayxy(S13)

Etayxy13 =

0.5779

>> Etayxy14 = Etayxy(S14)

Etayxy14 =

0.1064

>> Etayxy15 = Etayxy(S15)

Etayxy15 =

-0.9581
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>> Etayxy16 = Etayxy(S16)

Etayxy16 =

-1.0226

>> Etayxy17 = Etayxy(S17)

Etayxy17 =

-0.6626

>> Etayxy18 = Etayxy(S18)

Etayxy18 =

-0.3142

>> Etayxy19 = Etayxy(S19)

Etayxy19 =

-1.0803e-016

>> y4 = [Etayxy1 Etayxy2 Etayxy3 Etayxy4 Etayxy5 Etayxy6 Etayxy7

Etayxy8 Etayxy9 Etayxy10 Etayxy11 Etayxy12 Etayxy13 Etayxy14

Etayxy15 Etayxy16 Etayxy17 Etayxy18 Etayxy19]

y4 =

Columns 1 through 14

0.0000 0.3142 0.6626 1.0226 0.9581 -0.1064

-0.5779 -0.4591 -0.2333 0 0.2333 0.4591

0.5779 0.1064

Columns 15 through 19

-0.9581 -1.0226 -0.6626 -0.3142 -0.0000

>> plot(x,y4)

>> xlabel(‘\theta {degrees}’);

>> ylabel(‘\eta_{y,xy}’);
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Fig. Variation of ηy, xy versus θ for Problem 6.10

Problem 7.1

EDU>> epsilon1 = Strains(500e-6,0,0,0,0,0,-0.300)

epsilon1 =

1.0e-003 *

0.5000

0

0

EDU>> epsilon2 = Strains(500e-6,0,0,0,0,0,-0.150)

epsilon2 =

1.0e-003 *

0.5000

0

0

EDU>> epsilon3 = Strains(500e-6,0,0,0,0,0,0)

epsilon3 =

1.0e-003 *
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0.5000

0

0

EDU>> epsilon4 = Strains(500e-6,0,0,0,0,0,0.150)

epsilon4 =

1.0e-003 *

0.5000

0

0

EDU>> epsilon5 = Strains(500e-6,0,0,0,0,0,0.300)

epsilon5 =

1.0e-003 *

0.5000

0

0

EDU>> Q = ReducedStiffness(50.0, 15.2, 0.254, 4.70)

Q =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

EDU>> Qbar1 = Qbar(Q,0)

Qbar1 =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

EDU>> Qbar2 = Qbar(Q,90)

Qbar2 =

15.5041 3.9380 -0.0000

3.9380 51.0003 0.0000

-0.0000 0.0000 4.7000
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EDU>> Qbar3 = Qbar(Q,90)

Qbar3 =

15.5041 3.9380 -0.0000

3.9380 51.0003 0.0000

-0.0000 0.0000 4.7000

EDU>> Qbar4 = Qbar(Q,0)

Qbar4 =

51.0003 3.9380 0

3.9380 15.5041 0

0 0 4.7000

EDU>> sigma1a = Qbar1*epsilon1*1e3

sigma1a =

25.5001

1.9690

0

EDU>> sigma1b = Qbar1*epsilon2*1e3

sigma1b =

25.5001

1.9690

0

EDU>> sigma2a = Qbar2*epsilon2*1e3

sigma2a =

7.7520

1.9690

-0.0000

EDU>> sigma2b = Qbar2*epsilon3*1e3

sigma2b =

7.7520

1.9690

-0.0000
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EDU>> sigma3a = Qbar3*epsilon3*1e3

sigma3a =

7.7520

1.9690

-0.0000

EDU>> sigma3b = Qbar3*epsilon4*1e3

sigma3b =

7.7520

1.9690

-0.0000

EDU>> sigma4a = Qbar4*epsilon4*1e3

sigma4a =

25.5001

1.9690

0

EDU>> sigma4b = Qbar4*epsilon5*1e3

sigma4b =

25.5001

1.9690

0

EDU>> y = [0.300 0.150 0.150 0 0 -0.150 -0.150 -0.300]

y =

0.3000 0.1500 0.1500 0 0 -0.1500

-0.1500 -0.3000

EDU>> x = [sigma4b(1) sigma4a(1) sigma3b(1) sigma3a(1) sigma2b(1)

sigma2a(1) sigma1b(1) sigma1a(1)]

x =

25.5001 25.5001 7.7520 7.7520 7.7520 7.7520

25.5001 25.5001
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EDU>> plot(x,y)

EDU>> xlabel(‘\sigma_x (MPa)’)

EDU>> ylabel(‘z (mm)’)

Fig. Variation of σx versus z for Problem 7.1

EDU>> x = [sigma4b(2) sigma4a(2) sigma3b(2) sigma3a(2) sigma2b(2)

sigma2a(2) sigma1b(2) sigma1a(2)]

x =

1.9690 1.9690 1.9690 1.9690 1.9690 1.9690

1.9690 1.9690

EDU>> plot(x,y)

EDU>> ylabel(‘z (mm)’)

EDU>> xlabel(‘\sigma_y (MPa)’)

EDU>> x = [sigma4b(3) sigma4a(3) sigma3b(3) sigma3a(3) sigma2b(3)

sigma2a(3) sigma1b(3) sigma1a(3)]

x =

1.0e-015 *

0 0 -0.2102 -0.2102 -0.2102 -0.2102

0 0
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Fig. Variation of σy versus z for Problem 7.1

Fig. Variation of τxy versus z for Problem 7.1

EDU>> plot(x,y)

EDU>> ylabel(‘z (mm)’)

EDU>> xlabel(‘\tau_{xy} (MPa)’)

EDU>> Nx = 0.150e-3 * (sigma1a(1) + sigma2a(1) + sigma3a(1) +

sigma4a(1))
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Nx =

0.0100

EDU>> Ny = 0.150e-3 * (sigma1a(2) + sigma2a(2) + sigma3a(2) +

sigma4a(2))

Ny =

0.0012

EDU>> Nxy = 0.150e-3 * (sigma1a(3) + sigma2a(3) + sigma3a(3) +

sigma4a(3))

Nxy =

-6.3064e-020

EDU>> Mx = sigma1a(1)*((-0.150e-3)^2 - (0.300e-3)^2) + sigma2a(1)*(0 -

(-0.150e-3)^2) + sigma3a(1)*((0.150e-3)^2 - 0) +

sigma4a(1)*((0.300e-3)^2 - (0.150e-3)^2)

Mx =

0

EDU>> My = sigma1a(2)*((-0.150e-3)^2 - (0.300e-3)^2) + sigma2a(2)*(0

- (-0.150e-3)^2) + sigma3a(2)*((0.150e-3)^2 - 0) +

sigma4a(2)*((0.300e-3)^2 - (0.150e-3)^2)

My =

0

EDU>> Mxy = sigma1a(3)*((-0.150e-3)^2 - (0.300e-3)^2) + sigma2a(3)*(0

- (-0.150e-3)^2) + sigma3a(3)*((0.150e-3)^2 - 0) +

sigma4a(3)*((0.300e-3)^2 - (0.150e-3)^2)

Mxy =

0

EDU>> T1 = T(0)

T1 =

1 0 0

0 1 0

0 0 1
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EDU>> T2 = T(90)

T2 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000

EDU>> T3 = T(90)

T3 =

0.0000 1.0000 0.0000

1.0000 0.0000 -0.0000

-0.0000 0.0000 -1.0000

EDU>> T4 = T(0)

T4 =

1 0 0

0 1 0

0 0 1

EDU>> eps1a = T1*epsilon1

eps1a =

1.0e-003 *

0.5000

0

0

EDU>> eps1b = T1*epsilon2

eps1b =

1.0e-003 *

0.5000

0

0

EDU>> eps2a = T2*epsilon2
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eps2a =

1.0e-003 *

0.0000

0.5000

-0.0000

EDU>> eps2b = T2*epsilon3

eps2b =

1.0e-003 *

0.0000

0.5000

-0.0000

EDU>> eps3a = T3*epsilon3

eps3a =

1.0e-003 *

0.0000

0.5000

-0.0000

EDU>> eps3b = T3*epsilon4

eps3b =

1.0e-003 *

0.0000

0.5000

-0.0000

EDU>> eps4a = T4*epsilon4

eps4a =

1.0e-003 *

0.5000

0

0
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EDU>> eps4b = T4*epsilon5

eps4b =

1.0e-003 *

0.5000

0

0

EDU>> sig1 = T1*sigma1a

sig1 =

25.5001

1.9690

0

EDU>> sig2 = T2*sigma2a

sig2 =

1.9690

7.7520

-0.0000

EDU>> sig3 = T3*sigma3a

sig3 =

1.9690

7.7520

-0.0000

EDU>> sig4 = T4*sigma4a

sig4 =

25.5001

1.9690

0
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