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Series Preface

The field of aerospace is wide ranging and covers a variety of products, disciplines and
domains, not merely in engineering but in many related supporting activities. These combine to
enable the aerospace industry to produce exciting and technologically challenging products. A
wealth of knowledge is contained by practitioners and professionals in the aerospace fields that
is of benefit to other practitioners in the industry, and to those entering the industry from
University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering
professionals, operators, users and allied professions such as commercial and legal executives
in the aerospace industry. The range of topics is intended to be wide ranging, covering design
and development, manufacture, operation and support of aircraft as well as topics such as
infrastructure operations, and developments in research and technology. The intention is to
provide a source of relevant information that will be of interest and benefit to all those people
working in aerospace.

The use of composite materials for acrospace structures has increased dramatically in the last
three decades. The attractive strength-to-weight ratios, improved fatigue and corrosion
resistance, and ability to tailor the geometry and fibre orientations, combined with recent
advances in fabrication, have made composites a very attractive option for aerospace
applications from both a technical and financial viewpoint. This has been tempered by
problems associated with damage tolerance and detection, damage repair, environmental
degradation and assembly joints. The anisotropic nature of composites also dramatically
increases the number of variables that need to be considered in the design of any aerospace
structure.

This book, Design and Analysis of Composite Structures: With Application to Aerospace
Structures, provides a methodology of various analysis approaches that can be used for the
preliminary design of aerospace structures without having to resort to finite elements.
Representative types of composite structure are described, along with techniques to define
the geometry and lay-up stacking sequence required to withstand the applied loads. The value
of such a set of tools is to enable rapid initial trade-off preliminary design studies to be made,
before using a detailed Finite Element analysis on the finalized design configurations.

Allan Seabridge, Roy Langton,
Jonathan Cooper and Peter Belobaba
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This book is a compilation of analysis and design methods for structural components made of
advanced composites. The term ‘advanced composites’ is used here somewhat loosely and
refers to materials consisting of a high-performance fiber (graphite, glass, Kevlar®, etc)
embedded in a polymeric matrix (epoxy, bismaleimide, PEEK etc). The material in this book is
the product of lecture notes used in graduate-level classes in Advanced Composites Design and
Optimization courses taught at the Delft University of Technology.

The book is aimed at fourth year undergraduate or graduate level students and starting
engineering professionals in the composites industry. The reader is expected to be familiar with
classical laminated-plate theory (CLPT) and first ply failure criteria. Also, some awareness of
energy methods, and Rayleigh—Ritz approaches will make following some of the solution
methods easier. In addition, basic applied mathematics knowledge such as Fourier series,
simple solutions of partial differential equations, and calculus of variations are subjects that the
reader should have some familiarity with.

A series of attractive properties of composites such as high stiffness and strength-to-weight
ratios, reduced sensitivity to cyclic loads, improved corrosion resistance, and, above all, the
ability to tailor the configuration (geometry and stacking sequence) to specific loading
conditions for optimum performance has made them a prime candidate material for use in
aerospace applications. In addition, the advent of automated fabrication methods such as
advanced fiber/tow placement, automated tape laying, filament winding, etc. has made it
possible to produce complex components at costs competitive with if not lower than metallic
counterparts. This increase in the use of composites has brought to the forefront the need for
reliable analysis and design methods that can assist engineers in implementing composites in
aerospace structures. This book is a small contribution towards fulfilling that need.

The objective is to provide methodology and analysis approaches that can be used in
preliminary design. The emphasis is on methods that do not use finite elements or other
computationally expensive approaches in order to allow the rapid generation of alternative
designs that can be traded against each other. This will provide insight in how different design
variables and parameters of a problem affect the result.

The approach to preliminary design and analysis may differ according to the application and
the persons involved. It combines a series of attributes such as experience, intuition, inspiration
and thorough knowledge of the basics. Of these, intuition and inspiration cannot be captured in
the pages of abook or itemized in a series of steps. For the first attribute, experience, an attempt
can be made to collect previous best practices which can serve as guidelines for future work.
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Only the last attribute, knowledge of the basics, can be formulated in such a way that the reader
can learn and understand them and then apply them to his/her own applications. And doing that
is neither easy nor guaranteed to be exhaustive. The wide variety of applications and the
peculiarities that each may require in the approach, preclude any complete and in-depth
presentation of the material. It is only hoped that the material presented here will serve as a
starting point for most types of design and analysis problems.

Given these difficulties, the material covered in this book is an attempt to show representative
types of composite structure and some of the approaches that may be used in determining the
geometry and stacking sequences that meet applied loads without failure. It should be
emphasized that not all methods presented here are equally accurate nor do they have the
same range of applicability. Every effort has been made to present, along with each approach,
its limitations. There are many more methods than the ones presented here and they vary in
accuracy and range of applicability. Additional references are given where some of these
methods can be found.

These methods cannot replace thorough finite element analyses which, when properly set
up, will be more accurate than most of the methods presented here. Unfortunately, the
complexity of some of the problems and the current (and foreseeable) computational
efficiency in implementing finite element solutions precludes their extensive use during
preliminary design or, even, early phases of the detailed design. There is not enough time to
trade hundreds or thousands of designs in an optimization effort to determine the ‘best’
design if the analysis method is based on detailed finite elements. On the other hand, once the
design configuration has been finalized or a couple of configurations have been down-
selected using simpler, more efficient approaches, detailed finite elements can and should be
used to provide accurate predictions for the performance, point to areas where revisions of
the design are necessary, and, eventually, provide supporting analysis for the certification
effort of a product.

Some highlights of composite applications from the 1950s to today are given in Chapter 1
with emphasis on nonmilitary applications. Recurring and nonrecurring cost issues that may
affect design decisions are presented in Chapter 2 for specific fabrication processes. Chapter 3
provides a review of CLPT and Chapter 4 summarizes strength failure criteria for composite
plates; these two chapters are meant as a quick refresher of some of the basic concepts and
equations that will be used in subsequent chapters.

Chapter 5 presents the governing equations for anisotropic plates. It includes the von
Karman large-deflection equations that are used later to generate simple solutions for post-
buckled composite plates under compression. These are followed by a presentation of the
types of composite parts found in aerospace structures and the design philosophy typically
used to come up with a geometric shape. Design requirements and desired attributes are also
discussed. This sets the stage for quantitative requirements that address uncertainties during
the design and during service of a fielded structure. Uncertainties in applied loads, and
variations in usage from one user to another are briefly discussed. A more detailed discussion
about uncertainties in material performance (material scatter) leads to the introduction of
statistically meaningful (A- and B-basis) design values or allowables. Finally, sensitivity to
damage and environmental conditions is discussed and the use of knockdown factors for
preliminary design is introduced.

Chapter 6 contains a discussion of buckling of composite plates. Plates are introduced
first and beams follow (Chapter 8) because failure modes of beams such as crippling can
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be introduced more easily as special cases of plate buckling and post-buckling. Buckling
under compression is discussed first, followed by buckling under shear. Combined load
cases are treated next and a table including different boundary conditions and load cases
is provided.

Post-buckling under compression and shear is treated in Chapter 7. For applied compression,
an approximate solution to the governing (von Karman) equations for large deflections of plates
is presented. For applied shear, an approach that is a modification of the standard approach for
metals undergoing diagonal tension is presented. A brief section follows suggesting how post-
buckling under combined compression and shear could be treated.

Design and analysis of composite beams (stiffeners, stringers, panel breakers, etc.) are
treated in Chapter 8. Calculation of equivalent membrane and bending stiffnesses for cross-
sections consisting of members with different layups are presented first. These can be used with
standard beam design equations and some examples are given. Buckling of beams and beams
on elastic foundations is discussed next. This does not differentiate between metals and
composites. The standard equations for metals can be used with appropriate (re)definition of
terms such as membrane and bending stiffness. The effect of different end-conditions is also
discussed. Crippling, or collapse after very-short-wavelength buckling, is discussed in detail
deriving design equations from plate buckling presented earlier and from semi-empirical
approaches. Finally, conditions for inter-rivet buckling are presented.

The two constituents, plates and beams are brought together in Chapter 9 where stiffened
panels are discussed. The concept of smeared stiffness is introduced and its applicability
discussed briefly. Then, special design conditions such as the panel breaker condition and
failure modes such as skin—stiffener separation are analyzed in detail, concluding with design
guidelines for stiffened panels derived from the previous analyses.

Sandwich structure is treated in Chapter 10. Aspects of sandwich modeling, in particular the
effect of transverse shear on buckling, are treated first. Various failure modes such as wrinkling,
crimping, and intracellular buckling are then discussed with particular emphasis on wrinkling
with and without waviness. Interaction equations are introduced for analyzing sandwich
structure under combined loading. A brief discussion on attachments including ramp-downs
and associated design guidelines close this chapter.

The final chapter, Chapter 11, summarizes design guidelines and rules presented throughout
the previous chapters. It also includes some additional rules, presented for the first time in this
book, that have been found to be useful in designing composite structures.

To facilitate material coverage and in order to avoid having to read some chapters that
may be considered of lesser interest or not directly related to the reader’s needs, certain
concepts and equations are presented in more than one place. This is minimized to avoid
repetition and is done in such a way that reader does not have to interrupt reading a certain
chapter and go back to find the original concept or equation on which the current derivation
is based.

Specific problems are worked out in detail as examples of applications throughout the book
Representative exercises are given at the end of each chapter. These require the determination
of geometry and/or stacking sequence for a specific structure not to fail under certain applied
loads. Many of them are created in such a way that more than one answer is acceptable
reflecting real-life situations. Depending on the assumptions made and design rules enforced,
different but still acceptable designs can be created. Even though low weight is the primary
objective of most of the exercises, situations where other issues are important and end up
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driving the design are also given. For academic applications, experience has shown that
students benefit the most if they work out some of these exercises in teams so design ideas and
concepts can be discussed and an approach to a solution formulated.

It is recognized that analysis of composite structures is very much in a state of flux and new
and better methods are being developed (for example failure theories with and without
damage). The present edition includes what are felt to be the most useful approaches at this
point in time. As better approaches mature in the future, it will be modified accordingly.



1

Applications of Advanced
Composites in Aircraft Structures

Some of the milestones in the implementation of advanced composites on aircraft and
rotorcraft are discussed in this chapter. Specific applications have been selected that highlight
various phases that the composites industry went through while trying to extend the application
of composites.

The application of composites in civilian or military aircraft followed the typical stages that
every new technology goes through during its implementation. At the beginning, limited
application on secondary structure minimized risk and improved understanding by collecting
data from tests and fleet experience. This limited usage was followed by wider applications,
first in smaller aircraft, capitalizing on the experience gained earlier. More recently, with the
increased demand on efficiency and low operation costs, composites have being applied widely
on larger aircraft.

Perhaps the first significant application of advanced composites was on the Akaflieg Phonix
FS-24 (Figure 1.1) in the late 1950s. What started as a balsa wood and paper sailplane designed
by professors at the University of Stuttgart and built by the students was later transformed into a
fiberglass/balsa wood sandwich design. Eight planes were eventually built.

The helicopter industry was among the first to recognize the potential of the composite
materials and use them on primary structure. The main and tail rotor blades with their beam-like
behavior were one of the major structural parts designed and built with composites towards the
end of the 1960s. One such example is the Aerospatiale Gazelle (Figure 1.2). Even though, to
first order, helicopter blades can be modeled as beams, the loading complexity and the multiple
static and dynamic performance requirements (strength, buckling, stiffness distribution, fre-
quency placement, etc.) make for a very challenging design and manufacturing problem.

In the 1970s, with the composites usage on sailplanes and helicopters increasing, the first all-
composite planes appeared. These were small recreational or aerobatic planes. Most notable
among them were the Burt Rutan designs such as the Long EZ and Vari-Eze (Figure 1.3). These
were largely co-cured and bonded constructions with very limited numbers of fasteners.
Efficient aerodynamic designs with mostly laminar flow and light weight led to a combination
of speed and agility.

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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Figure 1.1 Akaflieg Phonix FS-24 (Courtesy Deutsches Segelflugzeugmuseum; see Plate 1 for the
colour figure)

Figure1.2 Aerospatiale SA 341G Gazelle (Copyright Jenny Coftey printed with permission; see Plate 2
for the colour figure)

Figure 1.3 Long EZ and Vari-Eze. (Vari-Eze photo: courtesy Stephen Kearney; Long EZ photo:
courtesy Ray McCrea; see Plate 3 for the colour figure)

Up to that point, usage of composites was limited and/or was applied to small aircraft with
relatively easy structural requirements. In addition, the performance of composites was not
completely understood. For example, their sensitivity to impact damage and its implications for
design only came to the forefront in the late 1970s and early1980s. At that time, efforts to build
the first all-composite airplane of larger size began with the LearFan 2100 (Figure 1.4). This
was the first civil aviation all-composite airplane to seek FAA certification (see Section 2.2).
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Figure 1.4 Lear Avia LearFan 2100 (Copyright: Thierry Deutsch; see Plate 4 for the colour figure)

It used a pusher propeller and combined high speed and low weight with excellent range and
fuel consumption. Unfortunately, while it met all the structural certification requirements,
delays in certifying the drive system, and the death of Bill Lear the visionary designer and
inventor behind the project, kept the LearFan from making it into production and the company,
LearAvia, went bankrupt.

The Beech Starship I (Figure 1.5), which followed on the heels of the LearFan in the early
1980s was the first all-composite airplane to obtain FAA certification. It was designed to the
new composite structure requirements specially created for it by the FAA. These requirements
were the precursor of the structural requirements for composite aircraft as they are today.
Unlike the LearFan which was a more conventional skin-stiffened structure with frames and
stringers, the Starship fuselage was made of sandwich (graphite/epoxy facesheets with
Nomex® core) and had a very limited number of frames, increasing cabin head room for a
given cabin diameter, and minimizing fabrication cost. It was co-cured in large pieces that were
bonded together and, in critical connections such as the wing-box or the main fuselage joints,
were also fastened. Designed also by Burt Rutan the Starship was meant to have mostly laminar
flow and increased range through the use efficient canard design and blended main wing. Two
engines with pusher propellers located at the aft fuselage were to provide enough power for
high cruising speed. In the end, the aerodynamic performance was not met and the fuel

Figure 1.5 Beech (Raytheon Aircraft) Starship I (Photo courtesy Brian Bartlett; see Plate 5 for the
colour figure)
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Figure 1.6 Airbus A-320 (Photo courtesy Brian Bartlett; see Plate 6 for the colour figure)

consumption and cruising speeds missed their targets by a small amount. Structurally however,
the Starship I proved that all-composite aircraft could be designed and fabricated to meet the
stringent FAA requirements. In addition, invaluable experience was gained in analysis and
testing of large composite structures and new low-cost structurally robust concepts were
developed for joints and sandwich structure in general.

With fuel prices rising, composites with their reduced weight became a very attractive
alternative to metal structure. Applications in the large civilian transport category started in the
early 1980s with the Boeing 737 horizontal stabilizer which was a sandwich construction, and
continued with larger-scale application on the Airbus A-320 (Figure 1.6). The horizontal and
vertical stabilizers as well as the control surfaces of the A-320 are made of composite materials.

The next significant application of composites on primary aircraft structure came in the
1990s with the Boeing 777 (Figure 1.7) where, in addition to the empennage and control
surfaces, the main floor beams are also made out of composites.

Despite the use of innovative manufacturing technologies which started with early robotics
applications on the A320 and continued with significant automation (tape layup) on the 777, the

Figure 1.7 Boeing 777 (Photo courtesy Brian Bartlett; see Plate 7 for the colour figure)
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Figure 1.8 Airbus A-380 (Photo courtesy Bjoern Schmitt — World of Aviation.de; see Plate 8 for the
colour figure)

cost of composite structures was not attractive enough to lead to an even larger-scale (e.g. entire
fuselage and/or wing structure) application of composites at that time. The Airbus A-380
(Figure 1.8) in the new millennium, was the next major application with glass/aluminum
(glare) composites on the upper portion of the fuselage and glass and graphite composites in the
center wing-box, floor beams, and aft pressure bulkhead.

Already in the 1990s, the demand for more efficient aircraft with lower operation and
maintenance costs made it clear that more usage of composites was necessary for significant
reductions in weight in order to gain in fuel efficiency. In addition, improved fatigue lives and
improved corrosion resistance compared with aluminum suggested that more composites on
aircraft were necessary. This, despite the fact that the cost of composites was still not
competitive with aluminum and the stringent certification requirements would lead to
increased certification cost.

Boeing was the first to commit to a composite fuselage and wing with the 787 (Figure 1.9)
launched in the first decade of the new millennium. Such extended use of composites, about
50% of the structure (combined with other advanced technologies) would give the efficiency
improvement (increased range, reduced operation and maintenance costs) needed by the
airline operators.

Figure 1.9 Boeing 787 Dreamliner (Courtesy of Agnes Blom; see Plate 9 for the colour figure)
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Figure 1.10 Applications of composites in military and civilian aircraft structures

The large number of orders (most successful launch in history) for the Boeing 787 led Airbus
to start development of a competing design in the market segment covered by the 787 and the
777. This is the Airbus A-350, with all-composite fuselage and wings.

Another way to see the implementation of composites in aircraft structure over time is by
examining the amount of composites (by weight) used in various aircraft models as a
function of time. This is shown in Figure 1.10 for some civilian and military aircraft. It
should be borne in mind that the numbers shown in Figure 1.10 are approximate as they had
to be inferred from open literature data and interpretation of different company
announcements [1-8].

Both military and civilian aircraft applications show the same basic trends. A slow start
(corresponding to the period where the behavior of composite structures is still not well
understood and limited low risk applications are selected) is followed by rapid growth as
experience is gained reliable analysis and design tools are developed and verified by testing,
and the need for reduced weight becomes more pressing. After the rapid growth period, the
applicability levels off as: (a) it becomes harder to find parts of the structure that are amenable to
use of composites; (b) the cost of further composite implementation becomes prohibitive; and
(c) managerial decisions and other external factors (lack of funding, changes in research
emphasis, investments already made in other technologies) favor alternatives. As might be
expected, composite implementation in military aircraft leads the way. The fact that in recent
years civilian applications seem to have overtaken military applications does not reflect true
trends as much as lack of data on the military side (e.g several military programs such as the B-2
have very large composite applications, but the actual numbers are hard to find).

Itis still unclear how well the composite primary structures in the most recent programs such
as the Boeing 787 and the Airbus A-350 will perform and whether they will meet the design
targets. In addition, several areas such as performance of composites after impact, fatigue, and
damage tolerance are still the subjects of ongoing research. As our understanding in these areas
improves, the development cost, which currently requires a large amount of testing to answer
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questions where analysis is prohibitively expensive and/or not as accurate as needed to reduce
the amount of testing, will drop significantly. In addition, further improvements in robotics
technology and integration of parts into larger co-cured structures are expected to make the
fabrication cost of composites more competitive compared with metal airplanes.
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Cost of Composites: a Qualitative
Discussion

Considering that cost is the most important aspect of an airframe structure (along with the
weight), one would expect it to be among the best defined, most studied and most optimized
quantities in a design. Unfortunately, it remains one of the least understood and ill-defined
aspects of a structure. There are many reasons for this inconsistency some of which are: (a) cost
data for different fabrication processes and types of parts are proprietary and only indirect or
comparative values are usually released; (b) there seems to be no well-defined reliable method
to relate design properties such as geometry and complexity to the cost of the resulting
structure; (c) different companies have different methods of book-keeping the cost, and it is
hard to make comparisons without knowing these differences (for example, the cost of the
autoclave can be apportioned to the number of parts being cured at any given time or it may be
accounted for as an overhead cost, included in the total overhead cost structure of the entire
factory); (d) learning curve effects, which may or may not be included in the cost figures
reported, tend to confuse the situation especially since different companies use different
production run sizes in their calculations.

These issues are common to all types of manufacturing technologies and not just the
aerospace sector. In the case of composites the situation is further complicated by the relative
novelty of the materials and processes being used, the constant emergence of new processes or
variations thereof that alter the cost structure, and the high nonrecurring cost associated with
switching to the new processes that, usually, acts as a deterrent towards making the switch.

The discussion in this chapter attempts to bring up some of the cost considerations that may
affect a design. This discussion is by no means exhaustive, in fact it is limited by the lack of
extensive data and generic but accurate cost models. It serves mainly to alert or sensitize
a designer to several issues that affect the cost. These issues, when appropriately accounted
for, may lead to a robust design that minimizes the weight and is cost-competitive with
the alternatives.

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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The emphasis is placed on recurring and nonrecurring cost. The recurring cost is the cost that
isincurred every time a part is fabricated. The nonrecurring cost is the cost that is incurred once
during the fabrication run.

2.1 Recurring Cost

The recurring cost includes the raw material cost (including scrap) for fabricating a specific
part, the labor hours spent in fabricating the part, and cost of attaching it to the rest of the
structure. The recurring cost is hard to quantify, especially for complex parts. There is no
single analytical model that relates specific final part attributes such as geometry, weight,
volume, area, or complexity to the cost of each process step and through the summation over
all process steps to the total recurring cost. One of the reasons for these difficulties and, as a
result, the multitude of cost models that have been proposed with varying degrees of accuracy
and none of them all-encompassing, is the definition of complexity. One of the most rigorous
and promising attempts to define complexity and its effect on recurring cost of composite
parts was by Gutowski et al. [1, 2].

For the case of hand layup, averaging over a large quantity of parts of varying complexity
ranging from simple flat laminates to compound curvature parts with co-cured stiffeners, the
fraction of total cost taken up by the different process steps is shown in Figure 2.1 (taken
from [3]).

It can be seen from Figure 2.1 that, by far, the costliest steps are locating the plies into the
mold (42%) and assembling to the adjacent structure (29%). Over the years, cost-cutting and

Prepare mold

0.40% Cut material
Assemble to 5.10%
adjacent structure
29.10%

Trim Collect & locate
0.20% into mold
Remove from 41.80%
mold & clean
(deflash)
1.50%

Remove bag
(debag)

0,
6.10% Cure

7.30%

Debulk
2.40%
Apply vacuum bag

6.10%

Figure2.1 Process steps for hand layup and their cost as fractions of total recurring cost [3] (See Plate 10
for the colour figure)
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optimization efforts have concentrated mostly on these two process steps. This is the reason
for introducing automation. Robots, used for example in automated tape layup, take the cut
plies and locate them automatically in the mold, greatly reducing the cost associated with that
process step, improving the accuracy, and reducing or eliminating human error, thereby
increasing consistency and quality. Since assembly accounts for about one-third of the total
cost, increasing the amount of co-curing where various components are cured at the same
time, reduces drastically the assembly cost. An example of this integration is shown in
Figure 2.2.

These improvements as well as others associated with other process steps such as
automated cutting (using lasers or water jets), trimming and drilling (using numerically
controlled equipment) have further reduced the cost and improved quality by reducing the
human involvement in the process. Hand layup and its automated or semi-automated
variations can be used to fabricate just about any piece of airframe structure. An example
of a complex part with compound curvature and parts intersecting in different directions is
shown in Figure 2.3.

Further improvements have been brought to bear by taking advantage of the experience
acquired in the textile industry. By working with fibers alone, several automated techniques
such as knitting, weaving, braiding and stitching can be used to create a preform, which is then
injected with resin. This is the resin transfer molding(RTM) process. The raw material cost can
be less than half the raw material cost of pre-impregnated material (prepreg) used in hand layup
or automated tape layup because the impregnation step needed to create the prepreg used in
those processes is eliminated. On the other hand, ensuring that resin fully wets all fibers
everywhere in the part and that the resin content is uniform and equal to the desired resin

Figure 2.2 Integration of various parts into a single co-cured part to minimize assembly cost (Courtesy
Aurora Flight Sciences)
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Figure 2.3 Portion of a three-dimensional composite part with compound curvature fabricated using
hand layup

content can be hard for complex parts, and may require special tooling, complex design of
injection and overflow ports, and use of high pressure. It is not uncommon, for complex RTM
parts to have 10-15% less strength (especially in compression and shear) than their equivalent
prepreg parts due to reduced resin content. Another problem with matched metal molding RTM
is the high nonrecurring cost associated with the fabrication of the molds. For this reason,
variations of the RTM process such as vacuum-assisted RTM (VARTM ) where one of the tools is
replaced by a flexible caul plate whose cost is much lower than an equivalent matched metal
mold, or resin film infusion (RFI) where resin is drawn into dry fiber preforms from a pool or
film located under it and/or from staged plies that already have resin in them, have been used
successfully in several applications (Figure 2.4). Finally, due to the fact that the process
operates with resin and fibers separately, the high amounts of scrap associated with hand layup
can be significantly reduced.

Introduction of more automation led to the development of automated fiber or tow
placement. This was a result of trying to improve filament winding (see below). Robotic
heads can each dispense material as narrow as 3 mm and as wide as 100 mm by manipulating
individual strips (or tows) each 3 mm wide. Tows are individually controlled so the amount of
material laid down in the mold can vary in real time. Starting and stopping individual tows also
allows the creation of cutouts ‘on the fly’. The robotic head can move in a straight line at very
high rates (as high as 30 m/min). This makes automated fiber placement an ideal process for
laying material down to create parts with large surface area and small variations in thickness or
cutouts. For maximum efficiency, structural details (e.g. cutouts) that require starting and
stopping the machine or cutting material while laying it down should be avoided. Material
scrap is very low. Convex as well as concave tools can be used since the machine does not rely
on constant fiber tension, as in filament winding, to lay material down. There are limitations
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Figure 2.4 Curved stiffened panels made with the RTM process

with the process associated with the accuracy of starting and stopping when material is laid
down at high rates and the size and shape of the tool when concave tools are used (in order to
avoid interference of the robotic head with the tool). The ability to steer fibers on prescribed
paths (Figure 2.5) can also be used as an advantage by transferring the loads efficiently across

Figure 2.5 Composite cylinder with steered fibers fabricated by automated fiber placement (made in a
collaborative effort by TUDelft and NLR; see Plate 11 for the colour figure)



14 Design and Analysis of Composite Structures

the part. This results in laminates where stiffness and strength are a function of location and
provides an added means for optimization [4, 5].

Automated fiber placement is most efficient when making large parts. Parts such as stringers,
fittings, small frames, that do not have at least one sizeable side where the advantage of the high
lay-down rate of material by the robotic head can be brought to bear, are hard to make and/or not
cost competitive. In addition, skins with large amounts of taper and number of cutouts may also
not be amenable to this process.

In addition to the above processes that apply to almost any type of part (with some exceptions
already mentioned for automated fiber placement) specialized processes that are very efficient
for the fabrication of specific types parts or classes of parts have been developed. The most
common of these are filament winding, pultrusion, and press molding using long discontinuous
fibers and sheet molding compounds.

Filament winding, as already mentioned is the precursor to advanced fiber or tow
placement. It is used to make pressure vessels and parts that can be wound on a convex
mandrel. The use of a convex mandrel is necessary in order to maintain tension on the filaments
being wound. The filaments are drawn from a spool without resin and are driven through a
resin bath before they are wound around the mandrel. Due to the fact that tension must be
maintained on the filaments, their paths can only be geodetic paths on the surface of the part
being woven. This means that, for a cylindrical part, if the direction parallel to the cylinder axis
is denoted as the zero direction, winding angles between 15° and 30° are hard to maintain
(filaments tend to slide) and angles less than 15° cannot be wound at all. Thus, for a cylindrical
part with conical closeouts at its ends, it is impossible to include 0° fibers using filament
winding. 0° plies can be added by hand if necessary at a significant increase in cost. Since the
material can be dispensed at high rates, filament winding is an efficient and low-cost process.
In addition, fibers and matrix are used separately and the raw material cost is low. Material
scrap is very low.

Pultrusion is a process where fibers are pulled through a resin bath and then through a heated
die that gives the final shape. It is used for making long constant-cross-section parts such as
stringers and stiffeners. Large cross-sections, measuring more than 25 x 25 cm are hard to
make. Also, because fibers are pulled, if the pulling direction is denoted by 0°, it is not possible
to obtain layups with angles greater than 45° (or more negative than — 45°). Some recent
attempts have shown it is possible to obtain longitudinal structures with some taper. The
process is very low cost. Long parts can be made and then cut at the desired length. Material
scrap is minimal.

With press molding it is possible to create small three-dimensional parts such as fittings.
Typically, composite fittings made with hand layup or RTM without stitching suffer from
low out-of-plane strength. There is at least one plane without any fibers crossing it and thus
only the resin provides strength perpendicular to that plane. Since the resin strength is very
low, the overall performance of the fitting is compromised. This is the reason some RTM
parts are stitched. Press molding (Figure 2.6) provides an alternative with improved out-of-
plane properties. The out-of-plane properties are not as good as those of a stitched RTM
structure, but better than hand laid-up parts and the low cost of the process makes them very
attractive for certain applications. The raw material is essentially a slurry of randomly
oriented long discontinuous fibers in the form of chips. High pressure applied during cure
forces the chips to completely cover the tool cavity. Their random orientation is, for the
most part, maintained. As a result, there are chips in every direction with fibers providing
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Figure 2.6 Portion of a composite fitting made by press molding

extra strength. Besides three-dimensional fittings, the process is also very efficient and
reliable for making clips and shear ties. Material scrap is minimal. The size of the parts to
be made is limited by the press size and the tool cost. If there are enough parts to be made,
the high tooling cost is offset by the low recurring cost.

There are other fabrication methods or variations within a fabrication process that specialize
in certain types of parts and/or part sizes. The ones mentioned above are the most representa-
tive. There is one more aspect that should be mentioned briefly; the effect of learning
curves. Each fabrication method has its own learning curve which is specific to the process,
the factory and equipment used, and the skill level of the personnel involved. The learning
curve describes how the recurring cost for making the same part multiple times decreases as a
function of the number of parts. It reflects the fact that the process is streamlined and people find
more efficient ways to do the same task. Learning curves are important when comparing
alternate fabrication processes. A process with a steep learning curve can start with a high unit
cost but, after a sufficiently large number of parts, can yield unit costs much lower than another
process, which starts with lower unit cost, but has shallower learning curve. As a result, the first
process may result in lower average cost (total cost over all units divided by the number of units)
than the first.

As arule, fabrication processes with little or no automation have steeper learning curves and
start with higher unit cost. This is because an automated process has fixed throughput rates
while human labor can be streamlined and become more efficient over time as the skills of
the people involved improve and ways of speeding up some of the process steps used in making
the same part are found. The hand layup process would fall in this category with, typically, an
85% learning curve. An 85% learning curve means that the cost of unit 2n is 85% of the cost of
unit n. Fabrication processes involving a lot of automation have shallower learning curves and
start at lower unit cost. One such example is the automated fiber/tow placement process with,
typically, a 92% learning curve. A discussion of some of these effects and the associated
tradeoffs can be found in [3].

An example comparing a labor intensive process with 85% learning curve and cost of unit
one 40% higher than an automated fabrication process with 92% learning curve, is given here to
highlight some of the issues that are part of the design phase, in particular at early stages when
the fabrication process or processes have not been finalized yet.
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Assuming identical units, the cost of unit n, C(n), is assumed to be given by a power law:

(2.1)

where C(1) is the cost of unit 1 and is an exponent that is a function of the fabrication process,
factory capabilities, personnel skill etc.
If p % is the learning curve corresponding to the specific process, then

C(2n)
=7 0D (2.2)
Using Equation (2.1) to substitute in (2.2) and solving for r, it can be shown that,
Inp

For our example, with process A having p, =0.85 and process B having pg =0.92,
substituting in Equation (2.3) gives ro =0.2345 and rg =0.1203. If the cost of unit 1 of
process B is normalized to 1, Cg(1) =1, then the cost of unit 1 of process A will be 1.4,
based on our assumption stated earlier, so C(1) = 1.4. Putting it all together,

1.4
1
Cp(n) = 1201203 (25)

The cost as a function of n for each of the two processes can now be plotted in Figure 2.7.
A logarithmic scale is used on the x axis to better show the differences between the two curves.

It can be seen from Figure 2.7 that a little after the 20th part, the unit cost of process
A becomes less than that of process B suggesting that for sufficiently large runs, process A
may be competitive with process B. To investigate this further, the average cost over a
production run of N units is needed. If N is large enough, the average cost can be accurately
approximated by:

Process B

Process A

Average cost
o
5
1

0+ R
10 100 1000

Production run, N

Figure 2.7 Unit recurring cost for a process with no automation (process A) and an automated process
(process B)
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Note that to derive Equation (2.7) the summation was approximated by an integral. This
gives accurate results for N > 30. For smaller production runs (N<30) the summation in
Equation (2.6) should be used. Equation (2.7) is used to determine the average cost for Process
A and Process B as a function of the size of the production run N. The results are shown in
Figure 2.8.

As can be seen from Figure 2.8, Process B, with automation, has lower average cost as
long as less than approximately 55 parts are made (N<55). For N > 55, the steeper
learning curve of Process A leads to lower average cost for that process. Based on these
results, the less-automated process should be preferred for production runs with more than
50-60 parts. However, these results should be viewed only as preliminary, as additional
factors that play a role were neglected in the above discussion. Some of these factors are
briefly discussed below.

Process A, which has no automation, is prone to human errors. This means that: (a) the part
consistency will vary more than in Process B; and (b) the quality and accuracy may not always
be satisfactory requiring repairs, or scrapping of parts. In addition, process improvements,
which the equations presented assume to be continuous and permanent, are not always
possible. It is likely that after a certain number of parts, all possible improvements have been
implemented. This would suggest that the learning curves typically reach a plateau after a while
and cost cannot be reduced below that plateau without major changes in the process (new
equipment, new process steps, etc.). These drastic changes are more likely in automated
processes where new equipment is developed regularly than in a nonautomated process.
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08+
0.6 - Process B
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Normalized cost

Unit number, n

Figure 2.8 Average recurring cost for a process with no automation (process A) and a fully automated
process (process B)
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Therefore, while the conclusion that a less-automated process will give lower average cost over
a sufficiently large production run, is valid, in reality may only occur under very special
circumstances favoring continuous process improvement, consistent high part quality and part
accuracy, etc. In general, automated processes are preferred because of their quality, consis-
tency, and potential for continuous improvement.

The above is a very brief reference to some of the major composite fabrication processes. It
serves to bring some aspects to the forefront as they relate to design decisions. More in-depth
discussion of some of these processes and how they relate to design of composite parts can be
found in [6, 7].

2.2 Nonrecurring Cost

The main components of nonrecurring cost follow the phases of the development of a program
and are the following.

Design. Typically divided in stages (for example, conceptual, preliminary, and detail) it is
the phase of creating the geometry of the various parts and coming up with the material(s) and
fabrication processes (see Sections 5.1.1 and 5.1.2 for a more detailed discussion). For
composites it is more involved than for metals because it includes detailed definition of each
ply in a layup (material, orientation, location of boundaries, etc.). The design of press-molded
parts would take less time than other fabrication processes as definition of the boundaries of
each ply is not needed. Material under pressure fills the mold cavity and the concept of a ply is
more loosely used.

Analysis. In parallel with the design effort, it determines applied loads for each part and
comes up with the stacking sequence and geometry to meet the static and cyclic loads without
failure and with minimum weight and cost. The multitude of failure modes specific to
composites (delamination, matrix failure, fiber failure, etc.) makes this an involved process
that may require special analytical tools and modeling approaches.

Tooling. This includes the design and fabrication of the entire tool string needed to produce
the parts: Molds, assembly jigs and fixtures etc. For composite parts cured in the autoclave,
extra care must be exercised to account for thermal coefficient mismatch (when metal tools
are used) and spring-back phenomena where parts removed from the tools after cure tend to
deform slightly to release some residual thermal and cure stresses. Special (and expensive)
metal alloys (e.g. Invar) with low coefficients of thermal expansion can be used where
dimensional tolerances are critical. Also careful planning of how heat is transmitted to the
parts during cure for more uniform temperature distribution and curing is required. All these
add to the cost, making tooling one of the biggest elements of the nonrecurring cost. In
particular, if matched metal tooling is used, such as for RTM parts or press-molded parts, the
cost can be prohibitive for short production runs. In such cases an attempt is made to combine as
many parts as possible in a single co-cured component. An idea of tool complexity when local
details of a wing-skin are accommodated accurately is shown in Figure 2.9.

Nonrecurring fabrication. This does not include routine fabrication during production that is
part of the recurring cost. It includes: (a) one-off parts made to toolproof the tooling concepts;
(b) test specimens to verify analysis and design and provide the data base needed to support
design and analysis; and (c) producibility specimens to verify the fabrication approach and avoid
surprises during production. This can be costly when large co-cured structures are involved with
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Figure2.9 Co-cure of large complex parts (Courtesy Aurora Flight Sciences; see Plate 12 for the colour
figure)

any of the processes already mentioned. It may take the form of a building-block approach where
fabrication of subcomponents of the full co-cured structure is done first to check different tooling
concepts and verify part quality. Once any problems (resin-rich, resin-poor areas, locations with
insufficient degree of cure or pressure during cure, voids, local anomalies such as ’pinched’
material, fiber misalignment), are resolved, more complex portions leading up to the full co-
cured structure are fabricated to minimize risk and verify the design.

Testing. During this phase, the specimens fabricated during the previous phase are tested.
This includes the tests needed to verify analysis methods and provide missing information for
various failure modes. This does not include testing needed for certification (see next item). If
the design has opted for large co-cured structures to minimize recurring cost, the cost of testing
can be very high since it, typically, involves testing of various subcomponents first and then
testing the full co-cured component. Creating the right boundary conditions and applying the
desired load combinations in complex components results in expensive tests.

Certification. This is one of the most expensive nonrecurring cost items. Proving that the
structure will perform as required, and providing relevant evidence to certifying agencies
requires a combination of testing and analysis [8—10]. The associated test program can be
extremely broad (and expensive). For this reason, a building-block approach is usually
followed where tests of increasing complexity, but reduced in numbers follow simpler more
numerous tests, each time building on the previous level in terms of information gained,
increased confidence in the design performance, and reduction of risk associated with the full-
scale article. In a broad level description going from simplest to most complex: (a) material
qualification where thousands of coupons with different layups are fabricated and tested under
different applied loads and environmental conditions with and without damage to provide
statistically meaningful values (see Sections 5.1.3-5.1.5) for strength and stiffness of the
material and stacking sequences to be used; (b) element tests of specific structural details
isolating failure modes or interactions; (c) subcomponent and component tests verifying how
the elements come together and providing missing (or hard to otherwise accurately quantify)
information on failure loads and modes; (d) full-scale test. Associated with each test level,
analysis is used to reduce test data, bridge structural performance from one level to the next and
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justify the reduction of specimens at the next level of higher complexity. The tests include static
and fatigue tests leading to the flight test program that is also part of the certification effort.
When new fabrication methods are used, it is necessary to prove that they will generate parts of
consistently high quality. This, sometimes, along with the investment in equipment purchasing
and training, acts as a deterrent in switching from a proven method (e.g. hand layup) with high
comfort level to a new method some aspects of which may not be well known (e.g. automated
fiber placement).

The relative cost of each of the different phases described above is a strong function of the
application, the fabrication process(es) selected and the size of the production run. It is,
therefore, hard to create a generic pie chart that would show how the cost associated with each
compares. In general, it can be said that certification tends to be the most costly followed by
tooling, nonrecurring fabrication and testing.

2.3 Technology Selection

The discussion in the two previous sections shows that there is a wide variety of fabrication
processes, each with its own advantages and disadvantages. Trading these and calculating the
recurring and nonrecurring cost associated with each selection is paramount in coming up with
the best choice. The problem becomes very complex when one considers large components
such as the fuselage or the wing or entire aircraft. At this stage is it useful to define the term
’technology’ as referring to any combination of material, fabrication process and design
concept. For example, graphite/epoxy skins using fiber placement would be one technology.
Similarly, sandwich skins with a mixture of glass/epoxy and graphite/epoxy plies made using
hand layup would be another technology.

In a large-scale application such as an entire aircraft, it is extremely important to determine
the optimum technology mix, i.e. the combination of technologies that will minimize weight
and cost. This can be quite complicated since different technologies are more efficient for
different types of part. For example, fiber-placed skins might give the lowest weight and
recurring cost, but assembling the stringers as a separate step (bonding or fastening) might
make the resulting skin/stiffened structure less cost competitive. On the other hand, using resin
transfer molding to co-cure skin and stringers in one step might have lower overall recurring
cost at a slight increase in weight (due to reduced strength and stiffness) and a significant
increase in nonrecurring cost due to increased tooling cost. At the same time, fiber placement
may require significant capital outlays to purchase automated fiber/tow placement machines.
These expenditures require justification accounting for the size of the production run,
availability of capital, and the extent to which capital investments already made on the factory
floor for other fabrication methods have been amortized or not.

These tradeoffs and final selection of optimum technology mix for the entire structure of an
aircraft are done early in the design process and "lock in’ most of the cost of an entire program.
For this reason it is imperative that the designer be able to perform these trades in order to come
up with the ’best alternatives’. As will be shown in this section these ’best alternatives’ are a
function of the amount of risk one is willing to take, the amount of investment available, and the
relative importance of recurring, nonrecurring cost and weight [11-14].

In order to make the discussion more tractable, the airframe (load-bearing structure of an
aircraft) is divided in part families. These are families of parts that perform the same function,
have approximately the same shapes, are made with the same material(s) and can be fabricated
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Table 2.1 Part families of an airframe

Part family Description

Skins and covers Two-dimensional parts with single curvature

Frames, bulkheads, beams, ribs, intercostals Two-dimensional flat parts

Stringers, stiffeners, breakers One-dimensional (long) parts

Fittings Three-dimensional small parts connecting other
parts

Decks and floors Mostly flat parts

Doors and fairings Parts with compound curvature

Miscellaneous Seals, etc.

by the same manufacturing process. The simplest division into part families is shown in
Table 2.1. In what follows the discussion will include metals for comparison purposes.

The technologies that can be used for each part family are then determined. This includes the
material (metal or composite, and, if composite, the type of composite), fabrication process
(built-up sheet metal, automated fiber placement, resin transfer molding, etc) and design
concept (e.g. stiffened skin versus sandwich). In addition, the applicability of each technology
to each part family is determined. This means determining what portion in the part family can
be made by the technology in question. Usually, as the complexity of the parts in a part family
increases, a certain technology becomes less applicable. For example, small skins with large
changes in thickness across their length and width cannot be made by fiber placement and have
low cost. Or pultrusion cannot be used (efficiently) to make tapering beams. A typical
breakdown by part family and applicability by technology is shown in Table 2.2. For
convenience, the following shorthand designations are used: SMT = (built-up) sheet metal,
HSM = high-speed-machined aluminum, HLP =hand layup, AFP = automated fiber place-
ment, RTM =resin transfer molding, ALP = automated (tape) layup, PLT = pultrusion. The
numbers in Table 2.2 denote the percentage of the parts in the part family that can be made by
the selected process and have acceptable (i.e. competitive) cost.

It is immediately obvious from Table 2.2 that no single technology can be used to make an
entire airframe in the most cost-effective fashion. There are some portions of certain part
families that are more efficiently made by another technology. While the numbers in Table 2.2
are subjective, they reflect what is perceived to be the reality of today and they can be modified
according to specific preferences or expected improvements in specific technologies.

Given the applicabilities of Table 2.2, recurring and nonrecurring cost data are obtained or
estimated by part family. This is done by calculating or estimating the average cost for a part of

Table 2.2 Applicability of fabrication processes by part family

Part family SMT HLP HSM AFP RTM PLT ALP
Skins and covers 100 100 15 80 100 0 50
Frames, etc. 100 100 65 55 100 10 30
Stringers etc. 100 100 5 0 100 90 0
Fittings 100 85 5 0 100 0 0
Decks and floors 90 100 35 40 90 10 20

Doors and fairings 80 100 5 35 90 5 10
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Figure 2.10 Distribution of recurring cost of HLP skins

medium complexity in the specific part family made by a selected process, and determining the
standard deviation associated with the distribution of cost around that average as the part
complexity ranges from simple to complex parts. This can be done using existing data as is
shown in Figure 2.10, for technologies already implemented such as HLP, or by extrapolating
and approximating limited data from producibility evaluations, vendor information, and
anticipated improvements for new technologies or technologies with which a particular factory
has not had enough experience.

In the case of the data shown in Figure 2.10, data over 34 different skin parts made with hand
layup shows an average (or mean) cost of 14 hr/kg of finished product and a standard deviation
around that mean of about 11 hr/kg (the horizontal arrows in Figure 2.10 cover approximately
two standard deviations). This scatter around the mean cost is mostly due to variations in
complexity. A simple skin (flat, constant thickness, no cutouts) can cost as little as 1 hr/kg while a
complex skin (curved, with ply dropoffs, with cutouts) can cost as high as 30 hr/kg. In addition to
part complexity, there is a contribution to the standard deviation due to uncertainty. This
uncertainty results mainly from two sources [12]: (a) not having enough experience with the
process, and applying it to types of part to which it has not been applied before; this is referred
to as production-readiness; and (b) operator or equipment variability. Determining the portion of
the standard deviation caused by uncertainty is necessary in order to proceed with the selection
of the best technology for an application. One way to separate uncertainty from complexity is to
use areliable cost model to predict the cost of parts of different complexity for which actual data
are available. The difference between the predictions and the actual data is attributed to
uncertainty. By normalizing the prediction by the actual cost for all parts available, a distribution
is obtained the standard deviation of which is a measure of the uncertainty associated with the
process in question. This standard deviation (or its square, the variance) is an important
parameter because it can be associated with the risk. If the predicted cost divided by actual cost
data were all in a narrow band around the mean, the risk in using this technology (e.g. HLP) for
this part family (e.g. skins) would be very low since the expected cost range would be narrow.
Since narrow distributions have low variances, the lower the variance the lower the risk.

It is more convenient, instead of using absolute cost numbers to use cost savings numbers
obtained by comparing each technology of interest with a baseline technology. In what follows,
SMT is used as the baseline technology. Positive cost savings numbers denote cost reduction
below SMT cost and negative cost savings numbers denote cost increase above SMT costs.
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Also, generalizing the results from Figure 2.10, it will be assumed that the cost savings for a
certain technology applied to a certain part family is normally distributed. Other statistical
distributions can be used and, in some cases, will be more accurate. For the purposes of this
discussion, the simplicity afforded by assuming a normal distribution is sufficient to show the
basic trends and draw the most important conclusions.

By examining data published in the open literature, inferring numbers from trend lines, and
using experience, the mean cost savings and variances associated with the technologies givenin
Table 2.2 can be compiled. The results are shown in Table 2.3. Note that these results reflect a
specific instant in time and they comprise the best estimate of current costs for a given
technology. This means that some learning curve effects are already included in the numbers.
For example, HLP and RTM parts have been used fairly widely in industry and factories have
come down their respective learning curves. Other technologies such as AFP have not been
used as extensively and the numbers quoted are fairly high up in the respective learning curves.

For each technology/part family combination in Table 2.3, two numbers are given. The first
is the cost savings as a fraction (i.e. 0.17 implies 17% cost reduction compared to SMT) and
the second is the variance (square of standard deviation) of the cost savings population.
Negative cost savings numbers imply increase in cost over SMT. They are included here
because the weight savings may justify use of the technology even if, on average, the cost is
higher. For SMT and some HLP cases, the variance is set to a very low number, 0.0001 to reflect
the fact that the cost for these technologies and part families is well understood and there is little
uncertainty associated with it. This means the technology has already been in use for that part
family for some time. Some of the data in Table 2.3 are highlighted to show some of the
implications: (a) HLP skins have 17% lower cost than SMT skin mostly due to co-curing large
pieces and eliminating or minimizing assembly; (b) ALP has the lowest cost numbers, but
limited applicability (see Table 2.2); (c) the variance in some cases such as ALP decks and
floors or AFP doors and fairings is high because for many parts in these families additional
nonautomated steps are necessary to complete fabrication . This is typical of parts containing
core where core processing involves manual labor and increases the cost. Manual labor
increases the uncertainty due to the operator variability already mentioned.

Table 2.3 Typical cost data by technology by part family [14]

Part family SMT HLP HSM AFP RTM PLT ALP
Skins and covers 0.0 0.17 0.2 0.25 0.08 0.08 0.32
0.0001 0.0061 0.02 0.009 0.003 0.06 0.01
Frames, etc. 0.0 0.1 0.28 0.1 0.18 0.40
0.0001 0.0001 0.006 0.06 0.008 0.08
Stringers, etc. 0.0 —0.05 (in skins) 0.05 0.40 0.35
0.0001 0.0001 0.002 0.001 0.09
Fittings 0.0 0.2 —-0.10
0.0001 0.005 0.015
Decks and floors 0.0 —0.01 0.15 —0.15 0.20
0.0001 0.0001 0.01 0.008 0.02
Doors and fairings 0.0 0.1 0.25 —0.10 0.35

0.0001 0.0021 0.026 0.01 0.05
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Figure 2.11 Combining different technologies to an airframe and expected cost distribution

Given the data in Tables 2.2 and 2.3, one can combine different technologies to make a part
family. Doing that over all part families results in a technology mix. This technology mix has an
overall mean cost savings and variance associated with it that can be calculated using the data from
Tables 2.2 and 2.3 and using the percentages of how much of each part family is made by each
technology [12, 13]. This process is shown in Figure 2.11. Obviously, some technology mixes are
better than others because they have lower recurring cost and/or lower risk. An optimization
scheme can then be set up [13] that aims at determining the technology mix that minimizes the
overall recurring cost savings (below the SMT baseline) keeping the associated variance (and thus
the risk) below a preselected value. By changing that preselected value from very small (low risk)
to very high (high risk) different optimum mixes can be obtained. A typical result of this process is
shown in Figure 2.12 for the case of a fuselage and wing of a 20-passenger commuter plane.
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Figure 2.12 Recurring cost savings as a function of risk
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The risk is shown in Figure 2.12 on the x axis as the square root of the variance, or standard
deviation of the cost savings of the resulting technology mix. For each value of risk, the
optimization process results in a technology mix that maximizes cost savings. Assuming that
the cost savings of each technology mix is normally distributed, the corresponding probabili-
ties that the cost savings will be lower than a specified value can be determined [13]. These
different probabilities trace the different curves shown in Figure 2.12. For example, if the risk is
set at 0.05 on the x axis, the resulting optimum mix has 1% probability of not achieving 11.5%
savings, 2.5% probability of not achieving 13.5% savings, 5% probability of not achieving 15%
savings and so on. Note that all curves, except the 50% probability curve go through a
maximum. This maximum can be used for selecting the optimum technology mix to be used.
For example, if a specific factory/management team is risk averse it would probably go with the
1% curve which goes through a maximum at arisk value slightly less than 0.05. The team would
expect savings of at least 11.5%. A more aggressive team might be comfortable with 25%
probability that the cost savings is lower and would use the 25% curve. This has a maximum at
arisk value of 0.09 with corresponding savings of 22.5%. However, there is a 25% probability
that this level of savings will not be met. That is, if this technology mix were to be implemented
alarge number of times, it would meet or exceed the 22.5% savings target only 75% of the time.
It is up to the management team and factory to decide which risk level and curve they should
use. It should be noted that for very high risk values, beyond 0.1, the cost savings curves
eventually become negative. For example the 1% curve becomes negative at a risk value of
0.13. This means that the technology mix corresponding to a risk value of 0.13 has so much
uncertainty that there is 99% probability that the cost savings will be negative, i.e. the cost will
be higher than the SMT baseline.

Once a risk level is selected from Figure 2.12, the corresponding technology mix is known
from the optimization process. Examples for low and high risk values are shown in Figures 2.13
and 2.14.

SMT
8%

Misc.
15%

ALP
7%
PLTl%
HLP
41%
RTM 1204

AFP

13%
HSM

Figure 2.13 Optimum mix of technologies for small airplane (low risk)
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SMT
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ALP
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PLT 50
RTM
20%
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Figure 2.14 Optimum mix of technologies for small airplane (high risk)

For the low risk optimum mix of Figure 2.13, there is a 10% probability of not achieving
12.5% cost savings. For the high risk optimum mix of Figure 2.14 there is a 10% probability of
not achieving 7% cost savings. The only reason to go with the high risk optimum mix is that, at
higher probability values (greater than 25%) it exceeds the cost savings of the low-risk
optimum mix.

A comparison of Figures 2.14 and 2.13 shows that as the risk increases, the percentage usage
of baseline SMT and low-risk low-return HLP and RTM decreases while the usage of higher-
risk high-return AFP and ALP increases. ALP usage doubles from 6 to 12% and AFP usage
increases by a factor of almost 7, from 3 to 20%. The amount of PLT also increases (in fact
doubles) but since PLT is only limited to stringers in this example, the overall impact of using
PLT is quite small. It should be noted that there is a portion of the airframe denoted by ‘Misc’.
These are miscellaneous parts such as seals, or parts for which applicability is unclear, and
mixing technologies (for example pultruded stringers co-bonded on fiber-placed skins) might
be a better option, but no data were available for generating predictions.

Finally, the breakdown by part family for one of the cases, the low-risk optimum mix of
Figure 2.13 is shown in Table 2.4. For example, 21.1% of the frames are made by HLP, 32.4% by

Table 2.4 Low-risk technology mix by part family and technology

%SMT J%HLP %HSM 9% AFP %RTM 9%PLT %ALP

Skins +... 0 81 0 4.9 3.6 0 10.5
Frames + ... 0 21.1 324 0 40.5 0 6
Stringers 79.3 0 0 0 0 20.7 0
Fittings 44.1 0 55.5 0 0 0 0.4
Decks + ... 0 76.5 0 8.4 3.1 0 12

Doors + ... 0 81 0 10 0 0 9
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HSM, 40.5% by RTM and 6% by ALP. Note that SMT is only used for three quarters of
the stringers and almost half the fittings. Note that these percentages are the results of the
optimization mentioned earlier and do not exactly determine which parts will be made with what
process, only that a certain percentage of parts for each part family is made by a certain process.
It is up to the designers and manufacturing personnel to decide how these percentages can be
achieved or, if not possible, determine what the best compromise will be. For example, 6% of the
frames and bulkheads made by ALP would probably correspond to the pressure bulkheads and
any frames with deep webs where automated layup can be used effectively.

The above discussion focused on recurring cost as a driver. The optimum technology mixes
determined have a certain weight and nonrecurring cost associated with them. If weight or
nonrecurring cost were the drivers different optimum technology mixes would be obtained.
Also, the optimized results are frozen in time in the sense that the applicabilities of Table 2.2
and the cost figures of Table 2.3 are assumed constant. Over time, as technologies improve,
these data will change and the associated optimum technology mixes will change. Results for
the time-dependent problem with different drivers such as nonrecurring cost or optimum return
on investment can be found in the references [11, 14].

It should be kept in mind that some of the data used in this section are subjective or based on
expectations of what certain technologies will deliver in the future. As such, the results should
be viewed as trends that will change with different input data. What is important here is that an
approach has been developed that can be used to trade weight, recurring cost and nonrecurring
cost and determine the optimum mix of technologies given certain cost data. The interested user
of the approach can use his/her own data and degree of comfort in coming up with the optimum
mix of technologies for his/her application.

2.4 Summary and Conclusions

An attempt to summarize the above discussion by fabrication process and collect some of
the qualitative considerations that should be taken into account during the design and
analysis phases of a program using composite materials is shown in Table 2.5. For
reference, sheet metal built-up structure and high-speed-machining (aluminum or titanium)
are also included. This table is meant to be a rough set of guidelines and it is expected
that different applications and manufacturing experiences can deviate significantly from
its conclusions.

As shown in the previous section, there is no single process that can be applied to all
types of parts and result in the lowest recurring and/or nonrecurring costs. A combination
of processes is necessary. In many cases, combining two or more processes in fabricating a
single part, thus creating a hybrid process (for example automated fiber-placed skins with
staged pultruded stiffeners, all co-cured in one cure cycle) appears to be the most efficient
approach. In general, co-curing as large parts as possible and combining with as much
automation as possible seems to have the most promise for parts of low cost, high quality
and consistency. Of course, the degree to which this can be done depends on how much risk
is considered acceptable in a specific application and to what extent the investment
required to implement more than one fabrication processes is justified by the size of the
production run. These combinations of processes and process improvements have already
started to pay off and, for certain applications [15] the cost of composite airframe is
comparable if not lower than that of equivalent metal structure.



Table 2.5 Qualitative cost considerations affecting design/analysis decisions

Process Application Comments
Sheet metal All airframe structure Assembly intensive, relatively heavy. Moderate tooling costs including fit-out and
assembly jigs
High-speed machining Frames, bulkheads, ribs, Very low tooling cost. Very low recurring cost. Can generate any desired thickness
beams, decks and greater than 0.6 mm. Moderate raw material cost due to the use of special alloys.
floors. In general, parts Extremely high scrap rate (more than 99% of the raw material ends up recycled
with one flat surface as machined chips). Limited due to vibrations to part thicknesses greater than
that can be created via 0.6-0.7 mm. Issues with damage tolerance (no built-in crack stoppers) repair
machining methods, and low damping; Size of billet limits size of part that can be
fabricated
Hand Layup All airframe structure Weight reductions over equivalent metal of at least 15%. Recurring cost

competitive with sheet metal when large amount of co-curing is used. Moderate
scrap. High raw material cost. High tooling cost. Hard to fabricate 3-D fittings.
Reduced out-of-plane strength (important in fittings and parts with out-of-plane

loading)

Automated fiber/tow placement Skins, decks, floors, doors, Weight reductions similar to hand layup. Recurring cost can be less than metal
fairings, bulkheads, baseline if the number of starts and stops for the machine are minimized (few
large ribs and beams. cutouts, plydrops, etc.). Less scrap than hand layup,. High tooling cost. For parts
In general, parts with made on concave tools, limited by size of robotic head (interference with tool).
large surface area Fiber steering is promising for additional weight savings but is limited by

maximum radius of curvature the machine can turn without buckling
the tows
RTM All airframe structure Weight reductions somewhat less than hand layup due to decreased fiber volume for

complex parts. Combined with automated preparation of fiber performs it can
result in low recurring fabrication cost. Relatively low scrap rate. Very high
tooling cost if matched metal tooling is used. Less so for vacuum-assisted RTM
(half of the tool is a semi-rigid caul plate) or resin film infusion. To use
unidirectional plies, some carrier or tackifier is needed for the fibers, increasing
the recurring cost somewhat
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Pultrusion Constant cross-section
parts: stiffeners,
stringers, small beams

Filament winding Concave parts wound
on a rotating mandrel:
pressure vessels,
cylinders, channels
(wound and then cut)

Press molding Fittings, clips, shear ties,
small beams, ribs,
intercostals

Weight reductions somewhat less than hand layup due to the fact that not all layups

are possible (plies with 45° orientation or higher when 0 is aligned with the long
axis of the part). Very low recurring cost and relatively low tooling cost

compared with other fabrication processes. Reduced strength and stiffness in
shear and transverse directions due to inability to generate any desired layup

Weight reductions somewhat less than hand layup due to difficulty in achieving the

required fiber volume and due to inability to achieve certain stacking sequences.
Low scrap rate, low raw material cost. Low recurring fabrication cost. Moderate
tooling cost. Only convex parts wound on a mandrel where the tension in the
fibers can be maintained during fabrication. Cannot wind angles shallower than
geodetic lines (angles less than 15° not possible for long slender parts with O
aligned with the long axis of the part). Reduced strength and stiffness

Weight reductions in the range 10-20% over aluminum baseline (weight savings

potential limited due to the use of discontinuous fibers). Very low recurring cost
with very short production cycle (minutes to a couple of hours). Low material
scrap. Limited by the size of the press. Very high tooling cost for the press mold.
Reduced strength due to the use of long discontinuous fibers, but good out-of-
plane strength due to interlocking’ of fibers
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Exercises

2.1 Hand layup, resin transfer molding and press molding are considered as the candidate
processes for the following part:

OoN

\_

Discuss qualitatively how each choice may affect the structural performance and the weight
of the final product. Include size effects, out-of-plane load considerations, load path continuity
around corners, etc.

2.2 Hand layup, automated fiber placement, and filament winding are proposed as candidate
processes for the following part:

00V

Discuss qualitatively how each choice may affect the structural performance and the
weight of the final product. Include size effects, load path continuity, etc. in your discussion.
Assume there are no local reinforcements (e.g. around window cutouts) or attachments to
adjacent structure.
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3

Review of Classical Laminated
Plate Theory

This chapter gives some basic laminate definitions and a brief summary of the classical
laminated-plate theory (CLPT). Aspects of CLPT, in particular the laminate stiffness matrices
are used throughout the remainder of this book.

3.1 Composite Materials: Definitions, Symbols and Terminology

A composite material is any material that consists of at least two constituents. In this book, the
term ‘composite material’ refers to a mixture of fibers and matrix resulting in a configuration
that combines some of the best characteristics of the two constituents. There is a large variety of
possible combinations. For fibers, some of the options include, E- or S-glass, quartz, graphite,
Kevlar®, boron, silicon, etc, appearing in long continuous or short discontinuous form. The
matrix materials, cover a wide range of thermoset (epoxy, polyester, phenolics, polyimides,
bismaleimids) or thermoplastic resins, or metals such as aluminum or steel. The building block
of a composite material is the ply or lamina. Plies or laminae are stacked together (different
orientations and materials can be combined) to make a laminate.

The most common plies used are unidirectional plies (where all fibers are aligned in one
direction) or fabric plies (plain weave, satins, etc.) where fibers are oriented in two mutually
perpendicular directions. If each ply in the stacking sequence or layup making up a laminate
is denoted by its orientation 0 (in degrees) relative to a reference axis (—90° <0 < +90°),
as shown for example in Figure 3.1, then a laminate can be denoted by its stacking sequence

(or layup):
[01/02/05..]

where 0}, 0, etc are the angles of successive plies starting from the top of the laminate.

If more than one material types are used in the same laminate the angular orientation can
be followed by a symbol that denotes the material type. For example, in the following
stacking sequence,

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
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Figure 3.1 Laminate axes and definition of positive 6 orientation

[0:1(T)/02(F)/05(T) .. ]

the first and third plies are made with unidirectional tape material and the second with
fabric material.

When fabric material is used, it is also common to indicate the two orientations in each ply
in parentheses such as

(0/90), (£45), (20/ — 70)

where the first denotes a fabric ply with fibers oriented in the 0° and 90° directions, the second
denotes a ply with fibers in the +45° and —45° directions and the third a ply with fibers in the
+20° and —70° directions.

There are several special laminate types often encountered in practice some of which are:
(a) symmetric, (b) balanced, (c) cross-ply, (d) angle-ply and (e) quasi-isotropic laminates.

Symmetric laminates are laminates that have a symmetric stacking sequence with respect to
the laminate mid-plane (see Figure 3.1). This means that the material, thickness and orientation
of each pair of plies located symmetrically with respect to the laminate mid-plane are the same.
A symmetric stacking sequence is usually denoted by writing half of it and using the subscript s:

[35/20/40], is the same as [35/20/40/40/20/35]

This contracted notation has the advantage of simplicity, but requires caution when the total
number of plies is odd. In such a case, the center ply, half of which lies on one side of the
midplane and half on the other, is denoted with an overbar:

[35/20/40], is the same as [35/20/40/20/35]

Balanced laminates are laminates in which for each +0 ply there is a —0 ply (of the same
material and thickness) somewhere in the stacking sequence. Special properties of balanced
and/or symmetric laminates related to their structural response will be presented in subse-
quent sections.

Cross-ply laminates consist only of 0° and 90° plies. Angle-ply laminates do not contain any
0° or 90° plies.

Finally, quasi-isotropic laminates have the same stiffness in any direction in their plane
(xy plane in Figure 3.1). One way to create a quasi-isotropic stacking sequence of n plies is to
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require that there is no direction that has more fibers than any other direction. A simple
procedure to accomplish this, is to divide the range of angles from 0° to 180° in n equal
segments and, assign to each ply one angle increment corresponding to these segments.

For example, if there are 8 plies the angle increment is 180/8 =22.5°. Then, mixing the
following angles in any order creates a quasi-isotropic laminate:

0, 22.5, 45, 67.5, 90, 112.5 (or —67.5), 135 (or —45), 157.5 (or — 22.5)

Taking this one step further, for a symmetric laminate, the rule is only applied to half the
laminate since the other half is automatically created by symmetry. For the same case of n =8,
the angle increment is now 180/(8/2) =45°. The following angles, in any order and repeated
symmetrically give a quasi-isotropic, symmetric, 8-ply laminate.

0°, 45°, 90°, 135° (or —45°)
Some possible quasi-isotropic stacking sequences in this case are:
[0/45/90/ — 45],, [45/ —45/0/90], [45/90/0/ — 45];, etc.

To complete the discussion of stacking sequence notation, other shorthand methods include
the use of parentheses with subscripts to denote a repeating pattern within the stacking
sequence and the use of numerical subscripts or superscripts outside the brackets. Examples of
these are:

[(15/ — 15),/0/30), is the same as [15/ — 15/15/ — 15/15/ — 15/0/30/30/0/ — 15/15/
—15/15/ — 15/15]

[15/ —15/0/30],, is the same as [15/—15/0/30/15/ —15/0/30/30/0/ —15/15/30/0/
—15/15]

[15/ — 15/0/30]. is the same as [15/ — 15/0/30/30/0/ — 15/15/15/ — 15/0/30/30/0/
—15/15]

3.2 Constitutive Equations in Three Dimensions

Composite materials are, by their nature, anisotropic. In three dimensions, the engineering
stresses and strains describing completely the state of deformation in a composite are denoted
in matrix form respectively:

(04 0y 0 Tyz Tag Tay

[SX gy 124 yyz sz ny]

The first three are the normal stresses (strains) and the last three are the shear stresses
(strains). It is customary, for two-dimensional problems to use x and y as the in-plane
coordinates (see Figure 3.1) and z as the out-of-plane coordinate (perpendicular to the plane
of Figure 3.1).

Stresses and strains are related through the generalized stress—strain relations (Hooke’s
law) [1-5]:
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Eg

Eyp
Ex»
E3
Eyp
Esp
Een

Ey
Ex;
E33
Ey
Es3
Egs

Ey
Eny
E3y
Es
Es4
Ee4

Eys
Es
Ess
Eys
Ess
Ees

E6
Ex
Es6
Eus
Esq
Ess |

Y vz
Vxz

ny

Note that there is an apparent mix-up of subscripts in Equation (3.1) where the stiffness

components E;; have numerical indices while the stress and strain components have letter
indices. This is done on purpose to keep the engineering notations for stresses and strains
and the usual (contracted tensor) notation for the stiffness terms, which uses numbers
instead of letters.

Equation (3.1) relates the strains to stresses through the fourth order elasticity tensor E. It can
be shown, based on energy considerations [6] that the elasticity tensor is symmetric, i.e.
E;=E;. Thus, for a general anisotropic body, there are 21 independent elastic constants,
as highlighted by the dashed line in Equation (3.1a).

[o,] ‘::_Ell__‘ E, E; E, E; Em]:- £y
o, E, |E, E; E, Ej Ezﬁi y independent elastic
o E; Ey :L_E;z3_1 Ey Ey Eyyl | € constants (3.12)
7.[ |Es Ey Ey 1 Ey_ Eus E“i Ve
Te Es Ey Ey Egs :L_E_»s_ Ei| | 7
To| LB Eyx Ez Eg Ese!__@_ei Yy

The discussion in this book is further confined to orthotropic materials. These are materials
that possess two planes of symmetry. In such a case, some of the coupling terms in
Equation (3.1a) are zero:

Ewy=E\s = E\¢ = Ey = Eys = Eyg = E34 = B35 = E36 =0 (3.2)

In addition, for an orthotropic body, shear stresses in one plane do not cause shear strains in
another. Thus,

Eys =FE4=Es =0 (3.3)

With these simplifications, the stress—strain relations for an orthotropic material have
the form:

Ox Enw Ep Ez 0 0 O &
ay En Epn Ex 0 0 0 &
7 | _ E3 Exp Es 0 O &, (34)
Tyz 0 Ey 0 O Vyz
Txz 0 0 Es O Vaz
Ty L 0 0 0 Eel 7y
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A ply of unidirectional composite material, with the x axis of Figure 3.1 aligned with the fiber
direction and the y axis transverse to it, possesses two planes of symmetry and is thus described by
Equation (3.4). The same holds true for a fabric ply with the x axis aligned with one fiber direction
and the y axis aligned with the other. Such plies form the building blocks for composite parts
discussed in this book. Note that, in the laminate coordinate system, different plies stacked
together, which are not 0, 90, or (0/90) will no longer possess two planes of symmetry and some of
the coupling terms in Equation (3.1a) are nonzero. However, it is always possible to find an axis
system (principal axes), in general not coinciding with the laminate axes, in which the laminate is
orthotropic. In general, the entire laminate can be described by a stress—strain relation of the form:

Oy [Eyn Enn Ejz O 0 Ep]| ( &
ay Epn Exn Exn 0 0 Exp &y
g; Eyz Ex Eypa 0 0 Ej &
= (3.5)
Tyz 0 0 0 E44 E45 0 yyz
Tas 0 0 0 Es Ess O Vxz
Tay LEwe Ex Ezs 0 0 Eegl 7y

where Ej; are now laminate and not ply quantities.
The inverse of Equation (3.5), expressing the strains in terms of the stresses via the
compliance tensor Sj; is also often used:

&x [S11 Sz Sz 0 0 Sp Ox
&y Sz S» Sxn 0 0 Sy oy
| _ Sz S23 Sz 0 0 Sy o; (3.6)
Vyz 0 0 0 Saa Sus 0 Tyz
Vxz 0 0 0 S5 S5 O Taz
Vay [St6 S26 S36 0 0 Ses| 1y
where the compliance matrix is the inverse of the stiffness matrix:
N 3.7)

Note that Equations (3.5)—(3.7) refer to laminate quantities while Equation (3.4) refers to an
orthotropic material such as a ply. The underlying assumptions are that: (a) at the laminate and,
often, the ply scales, the fiber/matrix combination can be treated as a homogeneous material
with smeared properties; (b) plane sections remain plane during deformation; (c) there is a
perfect bond between fibers and matrix; and (d) there is a perfect bond between plies.

3.2.1 Tensor Transformations

If the stiffness (or compliance) properties are known in one coordinate system they can be
obtained in any other coordinate system through standard tensor transformations. These can be
expressed concisely if the tensor notation is used (each index ranges from 1 to 3 and repeating
indices sum). Defining ¢;; to be the (direction) cosine of the angle between axes i and j, the
compliance tensor Sy,,pq in one coordinate system is obtained in terms of the compliance tensor
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Figure 3.2 Coordinate system transformation

Sijkr in another via the relation:
Smnpq = émiénjgpqursijkr (38)

with an analogous relation for the stiffness Epypq.

If the two coordinate systems have the z axis (out-of-plane in the case of a laminate) in common,
Equation (3.8) simplifies and can be expanded relatively easily. If the original coordinate system
coincides with the ply axis system (x along fibers, y perpendicular to the fibers, as shown in
Figure 3.2), then the compliance matrix in a coordinate system whose axis X forms an angle 0 with
the x axis of the original coordinate system, can be shown to be given by Equations (3.9).

Si1 = 89 cos*0 + (289, + 8% ) sin*O cos0 + S9,sin*6

S1o = (89, + 89, — 8% )sin*0cos?0 + SY, (sin*0 + cos*0)

Sy3 = 89,0820 + §9;sin*0

Sp = 89, sin*0 + (289, + S% ) sin*0 cos?0 + S9,cos*0

S»3 = $95in?0 + 89,0520

S35 = 555

Si6 = 2S‘1)lcos3(?sin9 — ZS(Z)ZCOSB sin®6 + (25(2)2 + 526) (cosG sin’6 — cos3Hsin0)
Sr6 = 259 cosOsin*0 — 259, cos3Osinb + (259, + % ) (cos*Osin — cosBsin®6)
S36 = 2(89; — 895 ) cosOsind

(3.9)

Suq = $%ssin?0 + S9,cos%0
Sas = (825 — 89, )sin0cosd
Sss = $%cos?0 + S, sin*0
Se = 4(S9, + 59, — 259, ) sin’0 cos?6) + SY (sin*0 + cos*0 — 2sin* cos®0)
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where the quantities in the xyz coordinate system (basic ply) have a superscript 0 and are given
in terms of the corresponding stiffnesses of the basic ply by:

S(l)lzL

Ey
Sh= _%21
SgﬁzGiu

1
S(2)2:E_22
5?3:_%31 (3.10)
Sg3 = _%32

1
5(3)3:15_33

1
524:G_23
SQSZGL13

where Ej; are stiffnesses of the basic (0°) ply with subscripts 1, 2, and 3 corresponding to the
coordinates x, y, and z.

3.3 Constitutive Equations in Two Dimensions: Plane Stress

When dealing with thin composites, where the thickness of the laminate is much smaller than the
other dimensions of the structure, the laminate is often assumed to be in a state of plane stress.
This is usually the case of a composite plate that is thin compared with its in-plane dimensions.
Then, the out-of-plane stresses o, y,, and 7, are negligible compared to the in-plane stresses:

0, R Ty, R Ty &0 (3.11)

For an orthotropic material such as a single ply in the ply axes or a symmetric and balanced
laminate in the laminate axes, placing Equation (3.11) in Equation (3.5) gives:

oy =E1&;+ Ee, + Eze;
oy = Epe, + Exnt, + Exe;
0= Ei3¢¢ + Exzey + Esze,
(3.12a-f)
0= E44Vyz
0 = E55sz

‘[’-X_V = E66VJ(y
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From equations (3.12d) and (3.12e),
Vye =V =10 (3.13)

Equation (3.12c) can be solved for ¢, and the result substituted in Equations (3.12a)
and (3.12b). This gives the equations

oy = Ennex+Epey,+E —Ee—%s
X 11ox 120y 13 E33 X E33 'y
(3.14)
oy = Epe+Epng, +E —E'—%s
y 12¢0x 226y 23 E33 X E33 'y
which, upon collecting terms can be rewritten as:
Ei3? E3Ey
= |E31—— |¢ Epn————|¢
Ox 1 Exs x 12 Exs y
(3.13)
E3Ex Ex?
oy = | En2— et | Exx— —— ¢
33 33

Equations (3.14) and (3.15) along with Equation (3.12f) form the constitutive relations
(stress—strain equation) for composite materials undergoing plane stress. Redefining

E5?
Qxx = Ell - E—’%3
E;3Ex
Qxy = El - E
33 (3.16)
Ex?
= Ey—
Qy_\ 22 E33
Oss = Ees

the equations for plane stress can be rewritten in matrix form:

Ox Qxx Qxy 0 x
o r=10s 0y 0[5 (3.17)
Txy 0 0 st yxy

It should be emphasized that the form of Equations (3.17) is the same irrespective of whether
one deals with a single ply or a laminate, provided that the coordinate system is such that both
the ply and the laminate are orthotropic. However, the values of the stiffnesses Qyy, Qyy, €tc.,
differ between ply and laminate.
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GX
slope = By
GX
deformed
£X
undeformed

\ gy

slope = vyt

Q4

Figure 3.3 Quantities measured in a uniaxial tension test of a single unidirectional ply

The easiest way to use Equations (3.17) is to start from basic ply properties as measured from
simple coupon tests, calculate the values for Qyy, Qx,y, €tc., then determine the corresponding
values for any (rotated) ply and, finally, an entire laminate.

Let Ey, Et, Gi1, and vt be the Young’s modulus along the fibers (longitudinal direction),
Young’s modulus transverse to the fibers, shear modulus, and (major) Poisson’s ratio
respectively. These values can all be obtained from standard coupon tests.

Now in a uniaxial tension test (see Figure 3.3), where the applied load is parallel to the fibers
of a unidirectional ply (which define the x direction), the slope of the applied stress g, versus
longitudinal strain &, is the Young’s modulus Ej. and the slope of the transverse strain —é,
versus longitudinal strain & is the Poisson’s ratio vyt

__5 (3.18)

Ex

vLr

Using this to substitute for ¢y in the first of Equations (3.17) gives:
Ox = Queby — QxvaTgx (319)

For the same uniaxial tension test, o, =0 and the second of Equations (3.17) gives

va &y
0= Q0ntr+ Oty = 2= — 2

; (3.20)
y X
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Comparing, Equations (3.18) and (3.20)
Oy

Vi = (3 21 )
Oy
and substituting in Equation (3.19),
2
oy = (gm _ % >gx (3.22)
Q)’)’
Equation (3.22) implies that the slope Ey of the o, versus ¢, curve (see Figure 3.3) is given by:
2
E, = Qxx - Ql (323)
Oy

In a completely analogous fashion, but now considering a uniaxial tension test transverse to
the fibers, and noticing that vy is the Poisson’s ratio that describes contraction in the x direction
when a tension load is applied in the y direction, Equations (3.24) and (3.25) are obtained as
analogues to Equations (3.21) and (3.23):

VI = % (3.24)
2
Er = Q) — %“ (3.25)

Note that Equations (3.21) and (3.24) imply that
VLTny = V72 Qxx (326)

Equations (3.23), (3.25) and (3.26) form a system of three equations in the three unknowns
Oxx> Oxy» and Qy,. Solving gives,

Ep

xx — 3.27
Q L—virvn (3:27)
Er
= 3.28
Oy L —vrrvrr (3.28)
E E
Oy = VerEr VrLEL (3.29)

IL—virvee 1—=virvp

Considering now a pure shear test of a unidirectional ply where Gyt is the slope of the shear
stress (Tyy) versus the shear strain () curve, the last of equations (3.17) implies that

st = GLT (330)
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Equations (3.27)—(3.30) can be used to substitute in Equations (3.17) to obtain the final form
of the stress—strain equations for an orthotropic ply under plane stress:

r Er virET 0
oy L=vprve, 1 —virvn &
ay = VLTET ET 0 Ey (331)
L—virvie 1 —virvm
Txy yxy
L 0 0 Grrd

The next step is to obtain the stress—strain relations for any ply rotated by an angle 6. In
general the stress strain Equations (3.17) now become:

a1 Ou Qi Qs &
oy p= |01 0Oxn O & (3.32)
Ti2 Oi6 O Qs Y12

To relate these quantities to the corresponding ones for an orthotropic ply requires
transforming stresses, strains, and stiffnesses by the angle 6.

The stiffness transformation follows the standard tensor transformation (Equations (3.8)),
which, for a ply rotated in its plane, as is the case of interest here, are simplified to the equations
analogous to Equations (3.9) that were obtained for the compliances. For the plane stress case,
Equations (3.8) or (3.9) applied to the stiffness tensor give the stiffnesses in the 1-2 coordinate
system of Figure 3.4 as:

Qﬁ) = m4Qxx + n4ny + 2m2n2Qxy + 4m2n2st

Q;g) - n4QXX + m4Q)’)’ + 2m*n? Qxy + 4m2n2st

Qgg) =m?’n?Qy +m?*n2Qy, + (m* +n*)Qyy — 4m*n* Qs 3.33)
3.33

Qé? = mzanxx + mzan.V.V - zmzanxy + (m2 - nz)zst
Q(l? =mnQu —mn’ Qyy + (mn® — m’n) Qy, +2(mn* — m*n) Qs
Q(Z? = mn’ Qe — m*nQyy + (m*n — mn®) Oy + 2(m’n — mn*) Qs

where m =cos 0 and n=sin 0

The stresses and strains transform using second-order tensor transformation equations
instead of the fourth-order tensor transformation for stiffnesses and compliances given by
Equation (3.8). Using #; to denote the direction cosines between axes i and j, the stress
transformation equations can be written as:

Gmn = LuplngOpq (3.34)
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X
A

¥

2

Figure 3.4 Coordinate system for ply rotated by an angle 6

which, expanded out for the case shown in Figure 3.4 reads:

o1 cos?0 sin%6 2sin0cosd Oy
6y p = sin*0) cos?0 — 2sinf cos0 ay (3.35)
T12 —sinfcosf  sin0cosl (cos20 — sin20) Tyy

An analogous expression is obtained for the strain transformation. However, since here
engineering notation is used (instead of tensor notation) the form of Equation (3.35) for the
(engineering) strains is:

& cos?0 sinZ0 sinfcos0 &y
& o= sin’0 cos?0 — sinfcos & (3.36)
Y1a —2sinfcosf  2sinfcosd (cos?6) — sin®0) Vay

Note the changes in the factors of 2 in the last row and column of the transformation matrix.
These come from the fact that the engineering shear strain is twice the tensor strain: y,, = 2¢15.
While the equations in terms of stresses and strains can be (and often are) used, in practice it is
convenient to define force and moment resultants by integrating through the thickness of a
laminate. For a laminate of thickness / as shown in Figure 3.5, the following quantities are defined:

h
T

h
2
h
2

Ny = J aydz (3.37)

h
2
h
T

h
2
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Figure 3.5 Force and moment resultants applied to a laminate (arrows indicate sign convention for
positive values)

which are the force resultants and

h
>
M, = Joyzdz (3.38)

which are the moment resultants.
Note that the units of force and moment resultants are force per unit width and moment

per unit width respectively.
Using the force resultants in Equation (3.37), average laminate stresses can be defined

as follows:
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<

Oyay =

Zz ==

. (3.39)
Txyav = ]’l

where Equations (3.37) are used to substitute for the integrals involved.

The relation between force resultants and laminate strains can be obtained by using
Equation (3.32) and integrating through the laminate thickness. Since the stiffnesses are
constant in each ply (but not necessarily the same from one ply to the next), the z integrations
become summations over all the plies in the laminate. In the laminate coordinate system xy,
Equation (3.32) integrated with respect to z gives

Ny A A Ag &y
Ny p = |Ann Ap Ay &y (3.40)
Ny A Az Asgs Vxy
where "
A =3 0yla— ) (3.41)
=1

where i,j = 1,2,6, the summation is carried over all n plies of the laminate and z, z;_ are the
upper and lower z coordinates of the kth ply, as shown in Figure 3.6.

Equations (3.40) and (3.41) describe the membrane deformations of a laminate under in-
plane loads. For a laminate under bending loads, the standard Kirchoff plate theory
assumptions are used: Plane sections remain plane and perpendicular to the neutral axis.
Denoting the out-of-plane displacement by w, the curvatures k,, k,, and K, are defined as:

K e — 82—W
T ox2
Pw
Ky= — a7 (3.42)
Pw
Koy = _2(9x8y

ply k T
.
. Zg-1
. vy o,
L[]
3
2
ply 1

Figure 3.6 Ply numbering system
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It can be shown that c, and x, are inversely proportional to the local radii of curvature in the x
and y directions respectively. Note that w is only a function of the in-plane coordinates x and y
and is not a function of the out-of-plane coordinate z.

In a pure bending situation with small deflections, the strains are proportional to the
curvatures and are assumed to vary linearly through the laminate thickness (see also
Section 5.2.2). They are then given by

&y = TKy
&y = 7Ky (3.43)
ny = IKxy

Now writing the first of Equations (3.32) in the laminate coordinate system xy, multiplying
both sides by z and integrating through the thickness of the laminate, gives:

=

OnZ’r,dz+ | Qiekndz (3.44)

—
I ——
| —

(SIS

3
o.2dz = J 017K, dz +

h

(ST

h
2 2

According to the first of Equations (3.38), the left-hand side of Equation (3.44) is M,.
Denoting

—

h
2
Dy = J 0nz’dz, D=

I ——

lezzdz, and D¢ = Q1612dZ
_h _h h
2 2 2
Equation (3.44) can be rewritten in the form:
Pw Pw Pw
M, = D1k + Diyky+ Digkyy = — D1 — —D1n— — 2D ——— 3.45
11Kx + Doy + DigKyy a0 12552 16 5xdy (3.45)

where Dy, Dj,. and D¢ are laminate bending stiffnesses.
Operating on the second and third of Equations (3.32) in an analogous fashion, the following
constitutive equations for pure bending of a laminate can be obtained:

M, D11 Dy Dy Ky
My 3 = | D1 Dxn Dy Ky (3.46)
M, Dig Dy Degs Kxy
where
=Y %3 (.47
k=1

with i,j = 1,2,6, the summation carried over all plies n of the laminate, and z;, z;_; the upper and
lower z coordinates of the kth ply, as shown in Figure 3.6.
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Equations (3.40) describe the pure membrane deformations of a laminate and
Equations (3.46) the pure bending deformations. In this decoupled form, in-plane strains ¢,,
¢,, and yy, can only be caused by in-plane loads N, N,, and N,,, while curvatures k,, i, and Ky,
can only be caused by bending moments M,, M,, and M,,. However, for a general laminate, it is
possible to have coupling between the membrane and bending behaviors, with strains caused
by bending moments and/or curvatures caused by in-plane loads. In such a case the strains are
given by a superposition of the membrane strains and the curvatures. The membrane strains
are constant through the thickness of the laminate and equal to the mid-plane strains &y, &yo,
and yyy,. Therefore,

Ex = &xo T Ky
&y = Eyo + 2Ky (3.48)
ny = nyo + ZKX}’

Reducing Equations (3.32) to a format in terms of force and moment resultants and
combining Equations (3.40), (3.46), and (3.48) the generalized constitutive relations for any
laminate (including membrane-bending coupling) have the form:

N; (A1 A Ais Bu Biz Bis] [ éxw
N, App Ay Ax Bin Bxn By &yo
Ny A Ax Aes Bis B Bes | | Vaye
- (3.49)
M, Byy Bz Bis Dii D Dy Kx
M, By By By D Dx»n D Ky
M, LBis By Bes Dis Dy Dgsl | Kyy
where A;; and D;; were defined by Equations (3.41), and (3.47) and
n Q
1
By=) 5 G —5 ) (3.50)

withi,j = 1,2,6, the summation carried over all plies n of the laminate, and z;, z;_ | the upper and
lower z coordinates of the kth ply, as shown in Figure 3.6.

It is important to note that if the order of plies in a stacking sequence is changed the A matrix
remains unaffected but the B and D matrices change. This can be of particular importance for
buckling-critical designs and provides an option of optimizing a layup without increasing its
weight by reordering the plies.

If the midplane strains and curvatures of a laminate are known, direct substitution in
Equations (3.49) will give the applied forces and moments. Usually, however, the forces and
moments are known and the strains and curvatures are sought for. They can be obtained by
inverting relations (3.49). The result is [4, 5]:
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&x0 a2 o6 Pu P Bie N,
Eyo a2 w6 P P P | | Ny
Vxyo we w6 %6 Por Ber  Beo Ny
= (3.51)
Kx Bii B Bt Ou 12 die M,
Ky Bio Bn Ber 012 022 O M,
Koy L Bie B Bos 016 026 Je6 | \ My
where .
(o] =[] "+ 141 '[B]|1D] — [BlIA]~"[BI] [BIIA] (3.52)
8= — A1) 1p] - [Blia] 8] (3.53)
—1 71
6] = [1D] - [B}A)~'[B]] (3.54)

with square brackets denoting a matrix and the exponent —1 denoting the inverse of a matrix.
Note that the f# matrix at the top right of Equation (3.51) need not be symmetric. Its transpose
appears at the lower left of the matrix in the right-hand side of Equation (3.51).

The most important laminate layup is that of a symmetric laminate (see also Section 3.1). For
such a laminate, the coupling matrix B is zero. This can be seen from Equation (3.50) where the
contributions to each entry of the matrix coming from two plies located symmetrically with
respect to the midplane subtract each other (Q;; are the same because the laminate is symmetric
and the coefficients z% —z2_, are equal and opposite). With the B matrix zero, there is no
membrane-stretching coupling in the laminate behavior. Also, Equations (3.52), (3.53), (3.54)
simplify. Denoting the inverse of the A matrix by a and the inverse of the D matrix by d,
Equations (3.52)—(3.54) become:

] =A]"" =1d (3.52a)

p]=0 (3.53a)

[6]=[D] " = [d] (3.54a)

and substituting in Equation (3.51)

Exo [fann an ais 0 0 0] (N
&yo ap ap axy O 0 0 N,
Vayo ag ax as O 0 0 Ny

= (3.51a)
Kx 0 0 0 dy dp dgs M,
Ky 0 0 0 do dn dy|| M,
Koy L0 0 0 dis dy des| | My

valid for a symmetric laminate.
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Laminate symmetry will be invoked often in subsequent chapters. It should be emphasized
here that, in designing composite structures, symmetric and balanced laminates are preferred.
They decouple membrane from bending behavior and stretching from shearing deformations,
thus avoiding unwanted failure modes that may occur under some loading conditions.

Very often used in design, are the so-called engineering constants. These are stiffness
properties that can be measured in the laboratory using simple tests. For example, a uniaxial test
of a symmetric and balanced laminate would provide a value for the membrane stiffness E-
(or £, if 1-2 are the laminate axes) of the laminate. For such a laminate under uniaxial loading
N, (with N, =0), the first two of Equations (3.49) read

Ny =A118x0 +A125y0
0 :AIngo +A228yo

The second equation can be used to solve for &y,:

App

e 3.55
i (3.55)

Eyo =

which, substituted in the first equation, gives
A2
Nx = (All — £> Exo (356)
A

Now using the first of Equations (3.39) to substitute for the stress o.,, measured in a uniaxial
test, the following relation is obtained

1 A2
Oxav = 7 <A11 - l) Exo (357)
h 2

It can also be shown that the 11 entry of the inverse of the A matrix for a symmetric and
balanced laminate is

Axn

= 3.58
AjAp — AL, ( )

ar

Equations (3.57) and (3.58) imply that the laminate Young’s modulus for membrane
deformations of a symmetric and balanced laminate is given by:

_1AnAp—Af 1

m 3.59
! h Ay hay, ( )

Also, from Equations (3.18) and (3.55), the Poisson’s ratio for a symmetric and balanced
laminate undergoing membrane deformations is
Ap

Viogm = —— 3.60
o = (3.60)

An analogous expression can be derived for the bending modulus E4;, of a laminate. For
the special case of a laminate with B matrix zero and D = D¢ = 0, the fourth and fifth
equations of relations (3.49) and (3.51) can be used to eliminate x, and obtain the relation
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D 2
M, = <D“ - 1—2) Ky (3.61)
Do

In a pure bending test, such as a four-point bending test, the moment curvature relation has
the form:

1
= _ElbIKx (362)

M, = b

==

where I is the moment of inertia bi>/12.
Comparing Equations (3.61) and (3.62) it can be seen that

12 Dyy?
Ey = w <D11 - i) (3.63)

which, using d;;, can be shown to be

12Dy Dy,—D;, 12
s D  Wdy

Eu (3.64)

In general, the stiffness calculated by Equation (3.59), corresponding to stretching of a
laminate, is not the same as that calculated by Equation (3.64), which corresponds to bending of
a laminate. This will be shown later on to cause some problems on the selection of the stiffness
value to be used for certain problems (see, for example, Section 8.2). In general, for bending
problems the bending stiffnesses are used and for stretching problems the membrane stiffnesses
are used. However, in situations where both behaviors occur simultaneously it is not always
clear what values should be used and it is not uncommon to use the values that give the most
conservative results.

Relations (3.59) and (3.64) were derived for special laminates to avoid algebraic complexity
and to emphasize the underlying physical models. In general, the laminate stiffness properties
in all directions for symmetric laminates can be found to be [5]:
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Exercises

3.1

32

Assume a layup consists of n plies of the same material, all at the same orientation (not
necessarily 0°). Let E be the Young’s modulus of a single ply at that orientation, G the
corresponding shear modulus, and vy,, v,; the two Poisson’s ratios. Derive analytical
expressions for Ay, A1z, Az, Aes, D11, D12, D22, Deg as functions of E, G, vy, V21, and the
thickness 4 of the laminate (still having all plies with the same fiber orientation).

By mistake, the layup of a specific laminate fabricated in the factory was not labelled and
the stacking sequence is unknown. The laminate was fabricated using a graphite/epoxy
material with the following basic ply properties:

E, =131 GPa

E,=11.7GPa
G, = 4.82GPa
Vey = 0.29

tpy = 0.3048 mm

To avoid throwing the expensive laminate away an engineer cuts a small strip of material
from the edge. The strip is 152.4 mm long by 25.4 mm wide and has a thickness of
1.83 mm. First he/she tests this in a three-point bending configuration and then in tension as
shown in the Figure below:

A

A
/]\ &—— 101.6 mm ——3
83

3 pt bending l

tension

In the three-point bending test he/she notices that the specimen undergoes pure bending
and in the tension test the specimen only elongates (and contracts by a small amount
transversely to the load).

Using the results of the three-point bending test, the engineer notices that when plotting
the center deflection as a function of the applied load at the center, he/she obtains (for low
loads) an (almost) straight line with slope 0.03826 mm/N. Unfortunately, this information
is not sufficient to determine the stacking sequence conclusively. Part of the problem is that
itis hard to measure the center deflection of the three-point bending test accurately. During
the uniaxial tension test the engineer notices that a maximum load of 2225 N results in
a specimen elongation of 0.0941 mm. Now the engineer is confident he/she knows the
stacking sequence. What is the stacking sequence? (In this factory only laminates with
0,45,-45, and 90 plies are used)
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4

Review of Laminate Strength
and Failure Criteria

If the loads applied to a laminate are sufficiently high then the strength of the material
is exceeded and the laminate fails. It is, therefore, very important to be able to use the stresses
and/or strains calculated in the previous chapter to predict failure. This, however, is compli-
cated by the fact that final failure of a laminate does not always coincide with onset of damage.
Depending on the laminate layup and loading, damage may start at a load significantly lower
than the load at which final failure occurs. Being able to predict when damage starts and how it
evolves requires individual modeling of the matrix and fibers. Usually, damage starts in the
form of matrix cracks between fibers in plies transverse to the primary load direction. As the
load increases the crack density increases and the cracks may coalesce into delaminations
(where plies locally separate from one another) or branch out to adjacent plies [1]. In addition,
local stress concentrations may lead to failure of the fiber—matrix interphase. Further increase
of the load accumulates this type of damage and causes some fibers to fail until the laminate can
no longer sustain the applied load and fails catastrophically. The detailed analysis of damage
creation and evolution accounting for the individual constituents of a ply is the subject of
micromechanics [2, 3].

In an alternate simplified approach, each ply is modeled as homogeneous, having specific
failure modes which are characterized by tests. For a unidirectional ply the following failure
modes are usually recognized:

Tension failure along the fibers with strength symbol X"
Compression failure along the fibers with strength symbol X°
Tension failure transverse to the fibers with strength symbol ¥*
Compression failure transverse to the fibers with strength symbol ¥*
Pure shear failure of a ply with strength symbol S

These strength values, obtained experimentally, are already one step away from the
individual failures of fiber and matrix and their interphase. The details of damage onset,

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd



56 Design and Analysis of Composite Structures

such as matrix cracks leading to fiber failure or failure of the fiber—matrix interphase
leading to fiber failure, are lumped into a single experimentally measured value. This value
is a macroscopic value that describes when a single ply will fail catastrophically given
a specific loading.

In parallel to, or instead of, the five strength values just mentioned, ultimate strain values can
be used for the same loading situations, again obtained experimentally. Using ultimate stress
values is interchangeable with ultimate strain values (in terms of obtaining the same failure load
at which the ply fails) only for loading situations for which the stress—strain curve is linear to
failure or very nearly so. This means that for tension and compression along the fibers, going
from predictions obtained with a strength-based model to predictions from a strain model
requires only the use of a constant of proportionality which is the Young’s modulus (in the
direction of the load) divided by a Poisson’s ratio term. For shear loading and transverse tension
or compression, where the stress—strain curves are, usually, nonlinear, simply multiplying
strain-based predictions with a constant of proportionality does not give the correct strength
failure values. A model that accounts for nonlinearities in the stress—strain curve must be used.

Consider now the case of alaminate in which all the plies are the same with the same arbitrary
orientation 6. An arbitrary in-plane loading applied to this laminate, results in the same
combined state of stress (and strain) in each ply. This state of stress or strain must be
transformed to the principal axes for the ply, which are the ply axes (one axis parallel to
the fibers and one transverse to them). The resulting principal stresses (or strains) are compared
with their respective maximum values (strength or ultimate strain). Obviously, in this special
case, all plies fail simultaneously. The approach where the principal stresses in a ply are
compared with the ultimate strength values in the respective directions is the maximum stress
theory. The approach where principal strains in a ply are compared with the ultimate strain
values in the respective directions is the maximum strain theory. Note that, for generalized
loading, even if all stress—strain curves are linear, the predictions from the two methods will
differ slightly due to a Poisson’s ratio effect.

The situation becomes more complicated when the plies in a laminate do not all have the
same ply orientation. The procedure is as follows:

1. Given the applied loads, the corresponding laminate midplane strains and curvatures are
computed using Equations (3.51).

2. These are then used along with Equations (3.48) to determine the individual strains within
each ply in the laminate axes (see Figure 4.1).

3. Ply strains in the laminate axes can be translated to ply stresses in the laminate axes using
Equations (3.32).

4. Depending on the type of failure criterion used (stress- or strain-based) the ply stresses
and/or strains in the laminate axes are transformed to ply stresses and/or strains in the ply
axes (see Figure 4.1) using Equations (3.35) and/or (3.36). For each ply, the ply axis system
has one axis parallel to the fibers and the other perpendicular to them.

5. Using the results of the previous step, a failure criterion is applied to determine which ply
fails. This determines first-ply failure.

6. If desired, post-first-ply failure analysis can follow. The stiffness and strength properties of
the failed ply are adjusted accounting for the type of failure that occurred and steps 1-5 are
repeated until the next ply fails.

7. Step 6 is repeated until all plies in the laminate have failed.
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fiber orientation in

kth ply with ply axes xy

K
1

laminate with laminate axes 1-2

Figure 4.1 Laminate and ply axes systems

The failure predictions obtained with the procedure just described may vary significantly
depending on the failure criterion used. There is a large number of failure criteria, stress-
based, strain-based, or energy-based. A few representative ones are briefly discussed in
subsequent sections.

4.1 Maximum Stress Failure Theory

In this case, the principal stresses in each ply are compared with their corresponding strength
values X', X%, Y, Y°, and S. In a design situation these strength values are adjusted through
statistical analysis (see Sections 5.1.3-5.1.6) to obtain reduced values that account for material
scatter and adverse environmental effects. In some cases, the effect of damage is also included
in these reduced strength values. These reduced values are also termed allowables. The
maximum stress failure criterion can be expressed as:

o, < X' or X° depending on whether o, is tensile or compressive
oy, <Y or Y° depending on whether g, is tensile or compressive (4.1)

[Ty] < S

where o, 0,, and 7, are ply stresses in the ply coordinate system (x parallel to fibers and y
perpendicular to fibers). Note that the sign of the shear stress is immaterial as its magnitude is
compared with the shear allowable S. If all left-hand sides of Equation (4.1) are less than the
right-hand sides there is no failure. Failure occurs as soon as one (or more) of the left-hand sides
equals the right-hand side. The failure mode is the one for which Equation (4.1) is met. For
example, if o, is compressive and the first of Equations (4.1) is met, then the failure mode is
compressive failure along the fibers.
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4.2 Maximum Strain Failure Theory

In a manner analogous to the maximum stress failure theory, the maximum strain failure
criterion can be stated as:

& < &y' or &,° depending on whether g, is tensile or compressive

g < &' or &,° depending on whether ¢, is tensile or compressive (4.2)

|ny| < yxyu

where ¢,, &, and y,, are ply strains in the ply coordinate system (x parallel to fibers and y
perpendicular to fibers). Also, &y, &, &' &y, and Vxyu are allowable strains in the
corresponding direction and loading (tensile or compressive). Note that the sign of the
shear strain is immaterial as its magnitude is compared to the shear allowable y,,,,. If all left-
hand sides of Equation (4.2) are less than the right-hand sides there is no failure. Failure
occurs, in a specific failure mode, as soon as one (or more) of the left-hand sides equals the
right-hand side.

4.3 Tsai—Hill Failure Theory

In the two previous failure criteria, each stress or strain is individually compared with its
respective allowable. In general, however, stresses (or strains) may interact with each other and
lead to failure, even if each compared individually with its respective allowable suggests that
there is no failure. Hill [4] was among the first to propose a combined failure criterion for
composite materials. For a single ply under plane stress, with ply axes xy as shown in Figure 4.1,
the criterion has the form:

FxO')zc +Fy0'§+FXyGXGy+FS1:xy2 =1 (4.3)

The form of Equation (4.3) is exactly analogous to the von Mises yield criterion in isotropic
materials:

0y’ 0y’ _0% 31y

-1 (4.4)
O-yield2 avw'eldz O-yield2 O-yield2

with oy;e1q the yield stress of the material. In fact, Equation (4.3) was proposed by Hill (for
a three-dimensional state of stress) as a model of yielding in anisotropic materials. For
composite materials, where the concept of macroscopic yielding (at the laminate or the ply
level) is not really valid, failure replaces yielding.

Equation (4.3) recognizes the fact that the failure strengths of a composite ply are different in
different directions. Tsai [5] determined the stress coefficients in Equation (4.3) by considering
three simple loading situations: (a) only o, acts on a ply with corresponding strength X; (b) only
o, acts with corresponding strength Y; and (c) only 1, acts with corresponding strength S. For
example, if only o, acts, Equation (4.3) reads:

Fo? =1 (4.5)
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It is also known that if only o, acts, which is parallel to the fibers, failure will occur when o,
equals X or

0’ =X (4.6)
Comparing Equations (4.5) and (4.6) it can be seen that:

1
Considering the remaining two load cases would give another two conditions to determine
two of the three remaining unknowns F\, F,,, and F,. One more condition is obtained by
considering the original three-dimensional form of the Hill yield criterion [4] in which F,,F,, and
F,, are interdependent through distortional deformations of a representative volume of material.
This gives one additional equation. The final form of the Tsai—Hill failure criterion is:
2 2 2
0. 0.0 o T
I e S AT | (4.8)

X

Xz X2 Yz §?

4.4 Tsai—-Wu Failure Theory

The Tsai-Wu failure criterion [6] was a result of an attempt to mathematically generalize the
Tsai—Hill failure criterion creating a curve fit based on tensor theory and accounting for the fact
that composites have different strengths in tension and compression. This means that the
Tsai—Wu failure theory is not entirely based on physical phenomena, but includes a curve-
fitting aspect. In fact, one of the unknown coefficients in the criterion is obtained by requiring
that the von Mises yield criterion be recovered if the material were isotropic. As was mentioned
in the previous section, yielding and, more so, distortional energy theory on which the von
Mises criterion is based, are not applicable to composites so the Tsai—Wu criterion should be
viewed as a convenient (and useful) curve fit more than a physics-based model of failure. The
form of the criterion is:

2 2 2
o2 o [1 1 11 11 Ty
xixe Ty XchYfYC'G"Gy+<)7_)7 oty )t e =t 49

Note that tensile and compressive strengths are input as positive values (magnitudes) in the
above equation. With the exception of biaxial compression situations where the predictions are,
at best, unrealistic, the Tsai—Wu criterion gives predictions that range from acceptable to
excellent when compared with test results.

4.5 Other Failure Theories

In the discussion of some of the failure criteria presented in the previous sections some
of the shortfalls of these failure theories were mentioned. Many attempts have been made
in the past to propose improved failure criteria [7-9] that do not suffer from the shortfalls
mentioned and are in closer agreement with experimental results. This is still an open
subject of research and the sometimes heated discussion [10, 11] has yet to reach
definitive conclusions.
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One of the major problems of interaction failure criteria such as the Tsai—Wu and Tsai—Hill is
the physical meaning of interaction terms (in addition to difficulty of experimentally obtaining
them). Related to that, but more generic as a problem of some of the failure criteria already
presented, is the smearing of properties and treating each ply as homogeneous with single
values to represent failure strengths in different directions [10]. Failure theories [12] that
account for the individual failure modes of fiber and matrix are more promising in that respect.
Specifically, the Hashin—Rotem failure criterion has the form [12]:

Ox

X 1 when o, is tensile

. fiber failure
X

xXc 1 when 0, 1s compressive

4.10
O'yz + ‘nyz -1 ( )
(Yt)2 S2 when g, is tensile
matrix failure
o 2 T 2
Y 4+ 2 — 1 wheng,is compressive
(ry 8

More recently (see for example [13]), failure criteria based on micromechanics analysis of
the composite constituents under different loading situations have emerged and appear to be the
most promising, but at a significant increase in complexity and computational cost.

In view of the difficulties of failure theories to accurately predict first-ply failure, extending
to subsequent ply failure and final laminate collapse is even harder. In fact, other than
disregarding very early failures of plies with fibers transverse to the main tensile load in
a laminate, there is no reliable method for performing post-first-ply failure analysis other than
the approach by Davila et al. [13] implemented in a finite element environment. Several
attempts have been made [14, 15] with varying degrees of success.

In the general case where a laminate is under a three-dimensional state of stress, modified
criteria accounting for out-of-plane stresses and their interaction with in-plane stresses have
to be used, or, in some cases, individual criteria for in-plane and out-of-plane loads are
used [16].

Which failure criterion or criteria will be used in a specific application is very much a matter
of preference, available resources, and test data. The simpler failure criteria such as maximum
strain or Tsai—Hill and Tsai—Wu (despite their shortcomings) can be very useful for preliminary
design if supported by test data covering the load situations of interest. In other cases, emphasis
is placed on test data, and laminate strength is obtained from test rather than failure criteria. In
what follows in this book, wherever laminate strength is needed (for example for crippling
calculations in Section 8.5) it is assumed that the reader will use whichever method to predict
laminate strength that he/she considers more reliable and accurate.
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Composite Structural Components
and Mathematical Formulation

5.1 Overview of Composite Airframe

A section of a fuselage structure, showing some of the typical parts that make it up, is shown in
Figure 5.1. Similar part types are used to make up a wing structure.

The types of parts that make up an airframe (fuselage and/or wing) are the same for metal and
composite structure. In fact, it is possible to replace, part for part, an aluminum airframe by an
equivalent composite airframe. This would typically be a skin-stiffened built-up structure with
fasteners connecting the different parts. In general, such a one-for-one replacement does not
make full use of composite capabilities and results in minor weight reductions (<15%) with
relatively high fabrication cost because the different parts are made separately and assembled
together with fasteners. Such a construction, especially when the skin layup is quasi-isotropic is
referred to as ‘black aluminum’ to emphasize the fact that the design imitates or closely
matches the aluminum design, and little or no attempt is made to use composites to their
fullest potential.

Each part or component in an airframe structure serves a specific purpose (or, sometimes,
multiple purposes) so that the ensemble is as efficient as possible. Efficiency typically refers to
the lowest weight, given a set of applied loads, but it can be any combination of desired
attributes such as weight, cost, natural frequency, etc. With reference to Figure 5.1, the parts
used in a composite (also metal) airframe can be broken into the part families or types shown in
Table 5.1. Note that a less detailed breakdown was given in chapter 2, Table 2.1 for the purposes
of the cost discussion.

Each part must be designed so that it does not fail under the applied loads and it meets all
other design requirements (see Section 5.1.1). Usually, the main objective is to keep the weight
as low as possible but, as already mentioned, additional objectives such as minimum cost (see
Chapter 2) are also incorporated in the design process.

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
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stringers

bulkhead

Figure 5.1 Typical fuselage part break-down

5.1.1 The Structural Design Process: The Analyst’s Perspective

The objective of the structural design process is to create a structure that meets specific
requirements and has certain desirable attributes. The typical design requirements can be
summarized into: (1) fit, form, and function; (2) applied loads; (3) corrosion resistance and

Table 5.1 Part families in a composite airframe

Part family Description Usage

Skins Two-dimensional thin structures covering Fuselage
the outside of fuselage or wing; usually
single curvature

Stringers, stiffeners, One dimensional beam-like structures Fuselage
panel breakers

Frames, bulkheads Two-dimensional ring-like structures at Fuselage
specific intervals along fuselage

Beams Two-dimensional plate-like structures Fuselage

Spars Two-dimensional plate-like structures
along the length of wing

Ribs Two dimensional plate-like structures at
specific intervals along wingspan

Intercostals Two-dimensional plate-like structures Fuselage
acting as supports

Fittings Three-dimensional structures connecting Fuselage
adjacent parts

Decks, floors Two-dimensional flat structures Fuselage

Doors, fairings Two-dimensional structures usually with Fuselage

compound curvature

Wing

Wing

Wing
Wing

Wing

Wing

Wing
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resistance to fluids; (4) thermal expansion coefficient placement; (5) frequency placement.
Briefly, each of these is discussed below.

Fit, form, and function. The structure to be designed must fit within the allowable
envelope, i.e. avoid interference with adjacent structure, must have the appropriate material
and generic shape so it performs optimally and must perform the assigned function without
flaws. The latter includes providing attachment points for other structure as needed and
access (through-paths for example) for intersecting parts such as electrical and hydraulic
equipment or ducts.

Applied loads. The structure to be designed must not fail under the applied static loads and
must have the desired life under the applied fatigue loads. In addition, the structure must be able
to withstand certain static and fatigue loads in the presence of damage without jeopardizing the
operation of the remainder of the structure (e.g. if the structure is damaged and load is
transferred to the adjacent structure the adjacent structure should still be able to perform
without failure).

Corrosion resistance, resistance to fluids (jet fuel, etc). Exposure to water vapors or water
or other fluids such as fuel and hydraulic fluids is unavoidable during the service life of many
parts. The amount of corrosion and/or the associated reduction of strength or stiffness must
be minimized.

Thermal expansion coefficient placement. Airframe structures are exposed to wide
variations in ambient temperature, either due to their location on the airframe (e.g. parts
near the exhaust of an engine) or due to the environment (e.g. satellites). Such structures must
be designed to have low thermal expansion coefficients so that any deformations resulting
from temperature changes do not compromise the performance of the structure and do not
lead to premature failure.

Frequency placement. Airframe structures operate in a vibration environment with specific
driving frequencies (from the engines) or random vibrations (gusts, etc). The natural frequen-
cies of the main structural modes such as the first few bending and torsional modes must be
sufficiently far from the driving frequencies to avoid large deflections and premature failure.

Depending on the application, some or all of these design requirements must be met. In some
cases additional requirements may be imposed. What makes the problem more challenging is
that these requirements must be met while specific desirable attributes are also achieved. The
most common desirable attributes are: (1) minimum weight; (2) minimum cost; (3) low
maintenance; (4) replaceability across assemblies, etc. These are discussed briefly below.

Minimum weight. Minimizing the structural weight increases the amount of payload or
weight of fuel that can be carried (for a given gross weight). Or, if the weight reduction is not
translated to payload or fuel increase, it translates to overall size reductions (engines are
smaller, wings are smaller, etc.), which, in turn, reduces fuel consumption and acquisition and
maintenance cost.

Minimum cost. This can be: (a) the recurring fabrication cost (labor and materials to build
each part or aircraft); (b) the nonrecurring cost which is the cost incurred once in each program
and includes development/research cost, tooling cost, cost for testing and certification, cost for
developing drawings and doing analysis, etc.; (c) acquisition cost (cost incurred by the
customer in purchasing the part or aircraft); (d) operating cost, etc. See also Chapter 2 for
a brief discussion on cost of composite airframe structures.

Low maintenance. This is related to the minimum cost described above, but merits special
mention. Over the long life of an aircraft, maintenance cost (including inspection, disposition
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of problems found and associated repair) can become a very significant portion of the life-cycle
cost of the aircraft. Designing structure that minimizes this cost is very desirable and attractive
to customers.

Replaceability across assemblies. This is also (indirectly) related to the cost and low
maintenance items mentioned earlier. Depending on the part geometry, adjacent structure, and
fabrication and assembly methods selected, the accuracy of the part geometry and how closely
it mates with adjacent structure can vary widely, to the point that exchanging nominally the
same parts between two different assemblies can be almost impossible without significant
rework to eliminate interferences or fill in gaps (shimming). If, however, the design and
fabrication process yield parts of acceptable cost and high accuracy, then replacing a part will
only require simple disassembly of the part to be replaced and assembly of the replacement
part. This drastically reduces repair and maintenance costs and minimizes turn-around times so
that aircraft grounded for inspection and repairs can be returned to service very quickly.

The design process applied to a specific geometry is shown schematically in Figure 5.2.

Given the applied loads and the available space (the shaded area on the left of Figure 5.2), the
structural analyst/designer has to come up with a shape that fits the given space, provides hard
points for load applications and attachments, and includes cutouts for any equipment that
passes through. Some of the cutouts may be included as ‘lightening holes’ to reduce weight. In
addition, the designer uses local reinforcements, doublers or flanges, around the cutouts and the
attachment points for better load transfer across the part and for increased stability. The
geometry (thicknesses, widths, heights, etc.) are selected so that the weight is minimized (for
most cases minimum weight is one of the desirable attributes). This results in the structure
shown on the right of the figure.

In terms of the sequence of steps and decision flow, the design process can be summarized in
the chart of Figure 5.3. The analyst obtains the applied loads and local design requirements and
uses the available materials to select the preliminary design. Use of simple analysis methods
and experience (if available) with similar parts in the past firms up the geometry, and this
becomes the structural configuration. The structural configuration is a combination of
geometry, material, and fabrication process. Typically, at this point the requirements are met
or are close to being met (for example the applied loads may cause failure, but the reserve factor
isclose to 1). A series of iterations, as shown by the loops in Figure 5.3, follows in order to fine-
tune the design. They consist of more detailed analysis to minimize the weight (or meet other
desirable attributes) without failing under the applied loads and, if needed, fabrication or
producibility trials to verify that the design is manufacturable at acceptable cost. Tests may also

Envelope to avoid interferences
with surrounding structure

applied
displacement

Figure 5.2 Designing a part to meet specific requirements
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Figure 5.3 Simplified flow diagram of the design/structural analysis process

be used to verify the analysis predictions and to check that there are no issues that were not
satisfactorily addressed by the design process.

At this point it is worthwhile to go through some order of magnitude calculations to see
what this process implies in terms of time required. A typical aircraft is designed for a series
of flight maneuvers (takeoff, climb, turn, approach, land, etc) and taxi maneuvers. These are
done for a variety of speeds, accelerations, load factors, etc. and correspond to a large number
of static and fatigue load combinations for which each part of the aircraft must be designed. In
addition, there are crash load cases that must be included in the design of each part (or at least
the parts that see substantial loads during a crash). Nowadays, with the advanced simulation
software available and our improved understanding of structural behavior during different
maneuvers, the total number of load cases (static and fatigue) that have to be analyzed is of the
order of 1000.

Assume now that the structural analyst has, on average, three design concepts to consider for
each part to be designed. For example, for a skin structure, the three design concepts can be:
(a) stiffened panel; (b) sandwich panel; and (c) isogrid panel as shown in Figure 5.4a. Also
assume that for each of the three design concepts there are, on the average, three fabrication
processes/material combinations. For the case of the stiffened panel for example, these could
be co-cured, fastened, or bonded as shown in Figure 5.4b. Note that all these options, so far,
assume one choice of layup for each of the components.

In order to determine the optimum solution, i.e. the solution that meets the design
requirements and optimizes the desired attribute(s) such as weight, cost, etc., a certain
optimization algorithm must be used. Genetic algorithms are one of the most effective
optimization schemes because they are very efficient in dealing with discontinuous variables
such as the laminate thickness and multiple optima [1]. A genetic algorithm optimization
scheme works by generating a certain number of designs during each iteration (or generation)
and evaluating each design against the constraints and objective function. This evaluation
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Figure 5.4 Options to be considered during design/analysis of a part (See Plate 13 for the colour figure)

implies detailed analysis of each design to determine if it meets the applied loads. The worst
performers are eliminated from the design pool while the best performers are recombined to
create new designs for the next generation. Typically, to converge to an optimum solution a
genetic algorithm will need approximately 1000 iterations (or generations) with approximately
15 designs per generation. With these assumptions, the number of analyses needed to optimize
a single part is of the order of:

1000 (load cases or maneuvers) x 3 design concepts x 3 process/material
combinations per concept x 1000 generations x 15 designs analyzed per generation
= 135 million analyses!

Of course there are shortcuts one can use by eliminating less critical load cases for example,
but if one considers: (a) additional analyses that are needed for convergence checks if the finite
element method is used for each analysis; (b) load redistribution runs to account for the fact that
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as the design changes load transfer through the part and around it changes and thus the applied
loads change; and (c) applied load changes (mostly increases) that invariably occur during the
design effort, the above estimate of 135 million analyses is probably representative of what
would be needed.

Clearly, this number of analyses for each part to be designed is prohibitive if the analysis
method is time consuming such as the finite element or finite difference method. For example,
to finish 135 million analyses in one year working for 365 days 24 hours per day one would have
to complete more than 4 analyses per second. In practice the number of analyses is reduced by
reducing the design concepts and process/material combinations per part, and limiting the
number of parts to be optimized to a subset of the entire structure. But this, in turn, means that
the structure is by necessity suboptimal since not all options are considered nor are all parts
optimized. Even with those shortcuts, the number of finite element or finite difference analyses
required is still prohibitive.

Therefore, until the computation time for the more accurate analysis methods such as finite
elements improves by at least a factor of 50, extensive optimization of large quantities of
parts or assemblies is not economically feasible. For this reason, simpler, reasonably
accurate, and much faster methods of analysis are necessary. In the following chapters,
some of these simpler analysis methods are presented. In general, they lend themselves to
automation and can be combined with efficient optimization schemes to optimize large
quantities of parts. However, it is important to note, and it will be stressed time and again
throughout this text, that in order to simplify the analysis approximations have to be made
which lead to results that are not as accurate as more detailed methods would generate and do
not apply to all cases. If used judiciously, they can help hone in on the final design (or close to
it) in terms of finalizing process, material, design concept, and most of the geometry so that
more detailed (and more time consuming) methods need only be used once (or few times) per
part to firm up the final design.

5.1.2  Basic Design Concept and Process/Material Considerations
for Aircraft Parts

This section gives some of the top-level alternatives a designer/analyst has to consider when
designing a composite part. This is summarized in Table 5.2 and is by no means an exhaustive
discussion, but helps in understanding the process one has to go through before even analyzing
a part. The relation of some of these decisions to the analysis methodology that must be done is
highlighted. The different types of analysis are only mentioned here and presented in detail in
subsequent chapters. The types of parts discussed here follow the listing of Table 5.1.

As shown in Table 5.2, the different options for design concepts for each type of part make it
difficult to know a priori the optimum configuration for each application and type of loading.
At times, a compromise is necessary in order to better blend the structure to be designed with
adjacent structure where some geometry, for example the stiffener spacing, is fixed. Also,
knowledge of the fabrication options and corresponding process capabilities is necessary in
order to fully exploit the potential of a design concept. For example, maintaining fiber
continuity in all three directions in a three-dimensional structure such as a fitting may not
be possible, thereby creating interfaces where only resin is available to carry loads if fasteners
are not used. This is the case in Figure 5.5 where there are no fibers across planes a—a and b-b.



Table 5.2 Design considerations, alternatives, and implications for analysis

Part

Configuration

Alternatives to be considered

Implications for analysis

Skins

Stringers, Stiffeners
panel breakers

Frames and bulkheads

Monolithic with stiffeners

o Stiffeners co-cured, fastened,
secondarily bonded?

e Cutouts molded in or cut afterwards?
Reinforced with doublers or flanged?
Reinforcement co-cured, fastened or
secondarily bonded?

e Full-depth core everywhere or with

rampdown for attachments?
» Assembly via co-curing, fastened or

secondarily bonded?

e Confine buckling pattern between
stiffeners (panel breakers)?

e Co-cured with skin, fastened or
secondarily bonded?

« Single piece or multiple pieces?

e Cutouts flanged or with doublers?

e Cutouts molded-in or cut afterwards?

Material strength
Notched strength”
Buckling
Delamination

Material strength (facesheet, core,
adhesive), notched strength(l)

Buckling

Wrinkling (symmetric, antisymmetric)

Shear crimping

Intracellular buckling

Delamination, disbond

Material strength

Notched strength(l)
Column buckling
Crippling

Skin/stiffener separation
Inter-rivet buckling

Material strength

Notched strength

Buckling of web$"

Crippling of stiffeners or caps
Crippling of reinforcements
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Beams, spars, ribs,

intercostals
Fittings = s®
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Decks and floors

Doors and fairings

e Co-cured with skin, fastened or
secondarily bonded?

 Single piece or multiple pieces?

o Cutouts flanged or with doublers?

o Cutouts molded-in or cut afterwards?

¢ How to mold a 3-D piece with
continuous fibers in all directions?

o Stiffened, grid-stiffened or sandwich?

o Stiffened or sandwich?
¢ How does compound curvature change
fiber orientation locally?

Material strength, notched strength”

Web buckling

Crippling of flanges

Crippling of reinforcements around
cutouts

Material strength, notched strength”
Lug failure®

Bearing failure

Delamination

Material strength, notched strength”

Stiffened panel failure modes
Sandwich failure modes

Material strength, notched strength®
Stiffened panel failure modes
Sandwich failure modes

(1) Notched strength: OHT =open hole tension; OHC = open hole compression; TAI = tension after impact; CAI = compression after impact; SAI = shear

after impact
(2) Net section failure, shear-out failure, bearing failure
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View A-A (exploded)

Figure 5.5 Schematic of a three-dimensional connection of parts without fiber continuity in all primary
load directions

As summarized in Table 5.2, apart from the basic strength and notched strength failure
modes, different parts may have different failure modes that must be analyzed separately.
It is important to note that if these failure modes are not anticipated in advance, they
cannot be picked up by analysis methods that are not set up to accurately capture them.
For example, a finite element method may not pick up failure of a lug if the mesh is
not fine enough at the three different locations where net tension, shear-out, or bearing
failure may occur (Figure 5.6). Or, without proper mesh size and boundary conditions,
long-wave (global) and short-wave (e.g. crippling or wrinkling) buckling modes cannot be
accurately quantified.

5.1.3  Sources of Uncertainty: Applied loads, Usage and Material Scatter

It should be recognized that in any large-scale design problem, such as that of an airframe,
there are sources of uncertainty. As a result, several input quantities in the design process
are not accurately known and the design/analysis process must take these uncertainties
into account to make sure that the worst case scenario, however improbable, if it were to
occur, would not lead to failure. The three most important sources of uncertainty are:
(1) knowledge of applied loads; (2) variability in usage; and (3) material scatter. These are
examined briefly below.

ElENE

Net section: material fails Shear-out: material fails Bearing: Lug hole

in tension between lug in shear at hole edge along  elongates and material

hole and edge of part two planes parallel to load  fails in bearing/compr.
ahead of hole

Figure 5.6 Three of the failure modes in a lug
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5.1.3.1 Knowledge of Applied Loads

As mentioned in Section 5.1.1 the structure of an aircraft must be designed for a large variety of
maneuvers. For each of those maneuvers the externally applied loads (e.g. aerodynamic loads)
must be known accurately. However, it is difficult to determine exactly these applied loads
because of the complexity of the phenomena involved (e.g. flow separation), the complexity of
the structure (e.g. wing—fuselage interaction) and the limitations in computational power
available. Typically, some approximations are necessary in the computer simulation and it is
not uncommon to introduce safety factors to provide a degree of conservatism in determining
the applied loads. This is one of the reasons for the use of the 1.5 multiplicative factor between
limit and ultimate load. The structure is not designed to the highest expected load during its
service life, which is called the limit load, but to that load multiplied by a safety factor of 1.5,
which is the ultimate load.

5.1.3.2 Variability in Usage

Even if the applied loads were accurately known for a certain maneuver, there is uncertainty in
practice in performing the maneuver. Nominally the same maneuver (e.g. 3g turn) will have
differences in the transient loads exerted on the aircraft from one operator to the next. For this
reason, each maneuver is simulated many times while varying different parameters (rate of
control action for example) but staying within the parameters defining the maneuver, and the
peak load(s) calculated during the simulation are recorded. Then, the loads corresponding to
this maneuver are selected so as to cover most loads recorded (for example, the 95th percentile
may be selected). This process is shown schematically in Figure 5.7.

Depending on the maneuver, there are, in general more than one load that may be of interest,
corresponding to different load types or load directions and different times during the
maneuver, such as maximum power, maximum or minimum control stick input, etc. The
situation shown in Figure 5.7 is simplified in that it isolates one load type and shows one
maximum load of interest, the peak load recorded during the simulation. Each of the peak loads
can be plotted in a frequency plot as shown at the bottom of the figure. Standard statistical
methods are then used to determine the percentile of interest. Note that the statistical
distribution of the peak load is not necessarily a normal distribution and the one shown in
Figure 5.7 is just an example.

5.1.3.3 Material Scatter

The strength of the material used in fabricating a specific design is not a single well-defined
number. Inherent variability in the microstructure of the material, material variability from one
material batch to another, fluctuations in the fabrication method (e.g. curing cycle), variations
in geometry within tolerances (e.g. thickness variation within the same specimen) lead to a
range of strength values when the same nominal geometry and layup are tested. This variability
is shown for typical unidirectional graphite/epoxy in tension and compression in Figure 5.8.

A design must account for this variation and protect against situations where the strength of
the material used may be at the low end of the corresponding statistical strength distribution.
For this purpose, specific statistically meaningful values are selected that are guaranteed to be
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Load nominally same maneuver
simulated many times

» max load during one simulation

Entry @ Exit Time

Max Load g5t
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Figure 5.7 Selection of applied load (95th percentile used here as an example) to be used in designing
for a specific maneuver

Typical Uni-directional Gr/E (0 deg)

Strength (MPa)

Figure 5.8 Typical ranges for tension and compression strength values for 0° unidirectional graphite/
epoxy
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lower than most of the strength population. The two most commonly used values are the
B-Basis and the A-Basis strength values [2]. The A-Basis value is the one percentile of
the population: 99% of the tests performed will have strength greater than or equal to the
A-Basis value. The B-Basis value is the tenth percentile of the population: 90% of the tests
performed will have strength greater than or equal to the B-Basis value.

In general, the A-Basis value is used with single load path primary structure, where failure
may lead to loss of structural integrity of a component. The B-Basis is used with secondary
structure or structure with multiple load paths, where loss of one load path does not lead to loss
of structural integrity of the component. The A- and B-Basis values are calculated on the basis
of statistical methods accounting for batch-to-batch variation, the type of statistical strength
distribution, and the number of data points [2, 3].

Stiffness has a similar variability to that of strength. However, one should be careful in using
low percentile values for stiffness because they may not represent a conservative scenario. If the
material used in a structure has stiffness at the low end of the stiffness statistical distribution,
this means that surrounding structure, being stiffer will absorb more load. This would require
appropriate adjustment of applied loads and it opens up a series of scenarios that may or may
not be realistic. Instead, using the average or mean stiffness everywhere in the structure would
not unduly transfer load from one part to its neighbors and is more representative. So stiffness-
sensitive calculations such as buckling do not, usually, require the lowest stiffness values (B- or
A-Basis) but the mean values.

5.1.4 Environmental Effects

Composites are susceptible to environmental effects. In general, as the temperature and/or the
moisture content increase beyond room temperature ambient conditions, the strength and
stiffness properties degrade. Also, at temperatures lower than room temperature, most strength
properties are also lower than at room temperature. An example for a typical graphite/epoxy
material is shown in Figure 5.9.

Typical Uni-directional Gr/E

. 2000y ambient
Strength tension Y

(MPa) . 16004

compression 1400/
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800
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200 RT ET

-70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80

Temperature (deg C)

Figure 5.9 Variation of tension and compression strength as a function of temperature and moisture
content
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Two sets of curves are shown in Figure 5.9. The continuous lines correspond to the ‘dry’ or
ambient condition. The exposure of the specimens to moisture has been minimal. The dashed
lines correspond to the wet condition where the specimens are fully saturated with moisture.
Increasing the moisture level decreases the strength. Increasing the temperature beyond room
temperature decreases the strength. Depending on the property and the material, decreasing the
temperature below room temperature may increase or decrease the strength. Typically, a
decrease is observed, as shown in Figure 5.9.

Given the type of behavior shown in Figure 5.9, complete characterization of a material would
require knowledge of its properties over the entire range of anticipated temperature and moisture
environments during service. In general this is accomplished by doing tests at representative
conditions thatidentify extreme points of the trends and interpolating in between. The number of
such key conditions depends on material loading and application (e.g. civilian versus military
application). The minimum number is three. These are: (1) the cold temperature (CT in
Figure 5.9) condition (usually CTA for cold temperature ambient); (2) the room temperature
(RT) condition which is split into RTA, the room temperature ambient, and RTW, the room
temperature wet condition where the specimens are fully saturated; and (3) the elevated
temperature (ET) condition which is split into ETA (elevated temperature ambient) and ETW
(elevated temperature wet) condition.

For design purposes, the most conservative strength properties across all conditions are used.
It is important to keep in mind, however, that when trying to match specific test results, the
properties corresponding to the test environment and material condition at the time during test
should be used. Stiffness also shows a similar sensitivity to environment, and it is customary to
perform preliminary design using the lowest stiffness across environments.

5.1.5 Effect of Damage

Composites exhibit notch sensitivity. A notch can be any form of damage, such as impact or
crack or cutout. The strength in the presence of damage is significantly lower and varies with
the damage size and type. Typical trends of compression strength in the presence of damage are
shown in Figure 5.10, adjusted from reference [4].

Undam/damaged
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Figure 5.10 Sensitivity of compression strength of composites to various types of damage
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While the trends shown in Figure 5.10 are representative of the behavior of most composites,
the specific values shown are only applicable to specific layups and materials. For other
materials and/or layups, specific analysis supported by tests must be carried out for each type of
damage in order to accurately quantify the residual strength in the presence of damage.

The types of damage shown in Figure 5.10 are the most common types encountered in
practice. Of those, the most critical is impact damage. Impact damage is caused by a large
variety of sources, ranging from tool drops and foot traffic to impact with large objects (e.g.
luggage) and hail damage.

This strength reduction in the presence of damage must be taken into account in the design
process. The approach is dependent on the inspection method used and its reliability. First, the
type and size of damage or flaw that the chosen inspection method can find consistently and
reliably must be determined. Then, the threshold of detectability is defined as the damage size
above which all damage can be found by the inspection method with a certain confidence (e.g.
99% of the time). This threshold of detectability divides the damage that may occur during
manufacturing or service in two categories: (a) nondetectable damage; and (b) detectable
damage. These are then tied to specific load levels the structure must withstand. As already
mentioned in Section 5.1.3 the two main load levels of interest in structural design of airframe
structures are the limit and ultimate load. The limit load is the highest load the structure is ever
expected to encounter during service. The ultimate load is the limit load multiplied by 1.5.

A structure with damage below the threshold of detectability of the selected inspection
method must be capable of withstanding ultimate load without failure. A structure with damage
above the threshold of detectability level of the selected inspection method must be capable of
withstanding limit load without failure.

In practice, the most common inspection method used is visual inspection. This is because it
combines low cost with ease of implementation. This does not mean that more accurate and
more reliable inspection techniques such as ultrasound, X-rays, etc. are not used at different
times in the life of an aircraft. Usually, however, these methods are applied during planned
detailed inspections at the depot level where an aircraft is taken out of service and specially
trained personnel with appropriate equipment conduct a thorough inspection of the structure.
On a more regular basis, the structure is inspected visually.

With visual inspection the preferred method of inspection during service today, the structural
requirements in the presence of damage become:

e structure with damage up to barely visible impact damage (BVID) must withstand ultimate
load without failure

e structure with damage greater than BVID, i.e. structure with visible damage (VD) must
withstand limit load without failure

The VD is usually defined as damage that is clearly visible from a distance of 1.5 meters
under ambient light conditions. Then BVID is damage just below the VD. It is recognized that
the definition of BVID is subjective and dependent on the inspector and his/her experience
level. For this reason attempts to more accurately define BVID have been made by tying the
BVID to a specific indentation size. Usually, 1 mm deep indentation is considered to
correspond to BVID.

It should be emphasized that besides limit and ultimate load, other load levels may be used in
practice, albeit less frequently. One example is the ‘safe return to base load’, which is usually a
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fraction of the limit load (typically 80%) and limits the structure to loads that will not cause
catastrophic failure in the presence of larger damage levels such as those caused by bird or
lightning strike, etc.

In view of the experimentally measured strength reductions shown in Figure 5.10, the design/
analysis process must use analytical methods that allow determination of the reduced strength
in the presence of various types of damage. Usually, a conservative approach is selected and the
structure is designed for the worst type of damage (impact) since this will cover all other cases.
Due to the complexity of the analysis for determining the amount of damage caused by a
specific threat and the subsequent complexity of the analysis for determining the strength of the
structure in the presence of damage, simplified methods are commonly used for preliminary
design [5-11].

A conservative approach is usually followed that avoids computationally intensive analysis
methods that model damage creation and its evolution under load. The method consists of
designing the structure to meet (a) limit load in the presence of a 6 mm diameter hole (VD)
and (b) ultimate load in the presence of low-speed impact damage (BVID). It is important to
note, however, that this approach has its limitations because it is not applicable to all threat
scenarios. For example, it can be extremely conservative in cases of thick composite structures.
The typical damage scenarios based on common threats during manufacturing and service
should not include a 6 mm through hole for example because it is a very unlikely event.
Designing for damage must be done with care on a case-by-case basis after careful examination
of threats and requirements. And, most importantly, it should be supported by tests that
verify the analysis method and its applicability to the loading, layups, and configurations
under consideration.

5.1.6 Design Values and Allowables

The discussion in Sections 5.1.3-5.1.55.2.4 indicated that the strength of a composite structure
takes a range of values as a result of material variability, environmental effects, and sensitivity
to damage. As a result, the strength value used in a design must be such that if the ‘worst of all
situations’ is combined in service, the resulting structure will still meet the load requirements
without failure. The ‘worst of all situations’ combines material at the low end of the strength
distribution (Figure 5.8) operating at the worst environment (Figure 5.9) with the worst type of
damage present (Figure 5.10). Therefore, sufficiently conservative strength values must be
used. A procedure that leads to such design values for strength is shown schematically in
Figure 5.11.

The mean RTA strength at the far right of the figure is reduced by a ‘knockdown’ factor
representing the worst environment for the loading and material selected. This is further
reduced by another factor that represents the worst type of damage (usually impact
damage). This value is treated as the mean with the effect of damage and environment
already included. Around this mean value the statistical distribution representing the
material scatter for the property in question (tension, compression, shear, etc.) is created.
The design value is determined as a value to the left end of the statistical distribution (e.g.
A- or B-Basis value as described in Section 5.1.3), which is expected to be lower than a
certain high percentage (90% for B-Basis and 99% for A-Basis) of all test results for the
property of interest at the most degrading environment and with the highest permissible
amount of damage.
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Figure5.11 Determination of design strength values accounting for effects of damage, environment and
material scatter

This approach can be done rigorously by determining the worst type of damage, which
usually is BVID, and the worst type of environment, which, usually, is ETW for the strength
property of interest. Then, a sufficient number of specimens with this damage is conditioned in
that environment and strength tests are carried out. The number of specimens is selected so
expected batch-to-batch variation is reproduced and the results give sufficient statistical
confidence in the conclusions. Statistical analysis methods [3] are then used to determine
the design values which, when they are statistically significant values are called allowables.

To save time and reduce cost during preliminary design is is customary to test a limited
number of specimens at various environments to obtain a percentage reduction between mean
strengths at various environments. This is done with and without damage to determine the
reduction due to the presence of damage at different environments. Finally, a sufficient number
of tests (six per batch) from at least three batches in one of the environments gives the material
scatter. This gives design values that can be used in preliminary design.

An example follows. Assume that the compression failure strain for undamaged quasi-
isotropic layup of a material at RTA environment is 11000 microstrain (is). And that tests have
shown that the environment with the biggest reduction in strength is ETW with a mean failure
strain equal to 80% of the RTA mean strain. Also, tests at RTA have shown that the mean failure
strain with BVID is 65% of the mean RTA strain. Finally, tests of undamaged specimens at RTA
have shown a B-Basis value that is 80% of the mean RTA value (this corresponds to a normal
distribution with coefficient of variation, i.e. standard deviation divided by the mean, of about
11%). Following the procedure described above and shown in Figure 5.11, a design value that
can be used for preliminary design is

taes=11000x 08 x 065 x ({8 =4576 s (5.1)
mean BVID 1
RTA  WOISL  pro  mal
envir. scatter

(ETW) effect
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It should be noted that this corresponds to a B-Basis value with environment and damage
effects included and should, therefore, be used in situations where B-Basis is applicable (see
Section 5.1.3). It is also of interest that this value of approximately 4500 us is typical of many
(first-generation) thermoset materials and layups that do not depart significantly from quasi-
isotropic, and has been used widely for preliminary sizing of structure. Of course, once designs
are almost finalized and most likely layups have been selected, additional testing for spot-
checking the validity of this value and more rigorous statistical analysis are necessary to verify
or update this value.

Equation (5.1) demonstrates that the design values for composite materials may be less than
half the RTA mean undamaged values. This is an important consideration in anticipating the
weight savings that can result from use of composites because the significant reduction in
strength offsets a lot of the weight savings one would expect on the basis of density difference
alone. A simple comparison between aluminum and graphite/epoxy (Gr/E) composites is
shown in Table 5.3. This is a simple comparison to show the relative differences. For aluminum
the yield strain is used as the failure strain. The failure stress (yield stress in the case of
aluminum) is approximated in Table 5.3 as the product of the Young’s modulus times the failure
strain. The failure strain and stress for the second Gr/E layup (last column) are approximate.

It can be seen from Table 5.3 that the strength of aluminum can be significantly higher than
that of Gr/E. This means that in order to carry the same load with Gr/E, as with aluminum, one
has to use higher thickness. For a plate-type application, the weight is calculated as

W = pt(Area)
where p is the density, ¢ the thickness and Area the planform area of the plate.

If the structure fails exactly when the required applied load is reached, the thickness needed
is calculated from

F,
Ofait = — =1 = —~
wt WO fail
where F, is the applied load, oy, is the failure strength of the material and w is the width of the
cross section over which F), acts.
Using this expression for the thickness ¢ to substitute in the weight expression,

Fq
W=p (Area)
WO f4il

Table 5.3 Comparison of compression strength values (aluminum versus Gr/E)

Aluminum Quasi-isotropic Gt/E layup used in

(7075-T6) Gr/E compression“ )
Density (kg/m®) 2777 1611 1611
Young’s modulus (GPa) 68.9 48.2 71.7
Compressive (yield) failure strain (Us) 5700 4576 ~4500
Compressive failure stress (MPa) 392.7 220.8 ~322.6

(1) [45/-45/0/0/90/0/0/—45/45]
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Table 5.4 Weight comparison for plate application based on strength

Quasi-isotropic design/Al [45/ —45/0,/90],/Al

Wor

1.03 0.706
Wai

Note: The overbar over the 90° ply in the stacking sequence in the third column
denotes a ply that does not repeat symmetrically with respect to mid-plane, i.e. 90° is
the mid-ply in this case.

Then, the ratio of the weight W, of a graphite/epoxy panel to that of aluminum W, for
the same applied load F, and the same planform area, can be found after some rearranging
to be:

P
WGr _ (‘Tfail) Gr

Wai o
Ofail ) A 1

Using the values from Table 5.3 gives the weight ratios in Table 5.4.

As can be seen from Table 5.4, the quasi-isotropic composite design (column 2) is
approximately the same weight as the aluminum counterpart, in fact it is 3% heavier. The
more tailored [45/—45/0,/90]; layup is approximately 30% lighter than the aluminum
counterpart. This case serves as an example that shows the advantages of tailoring designs
for maximum use of composite capabilities instead of using quasi-isotropic layups that lead to
so-called ‘black aluminum’ designs.

5.1.7 Additional Considerations of the Design Process

The analysis methods used are always a tradeoff between accuracy and cost and ease of
use. In a preliminary design stage where many candidate designs must be traded quickly,
especially if formal optimization is introduced early in the design process, using
conservative ‘reasonably accurate’ methods is preferred over very accurate computation-
ally intensive approaches. This allows the examination of many more options than would
not be possible with more detailed methods. The term ‘reasonably accurate’ is, of course,
subjective and, usually, is tied to how conservative one can afford to be before the design
weight starts increasing beyond acceptable levels. Often, approximate analytical methods
are modified based on test results, and adjusted accordingly to give accurate predictions
over a limited range of applicability. In addition, test methods are often used to
circumvent problems with analytical modeling of structural details present in the
structure, the detailed modeling of which would make the entire analysis very expensive.
Two such examples are: (a) modeling of fasteners in bolted structures; and (b) knowing
the exact type of boundary conditions provided by the edge supports or intermediate
structure present.

Typical airframe structures have a large variety of failure modes. Which failure mode starts
failure and which one eventually leads to catastrophic failure of the structure is a function of the
material, layup, and geometry used. Changing any of these can alter the failure mode scenario.
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One example is sandwich structure where each of the skins may fail in: (1) material strength,
(2) wrinkling (symmetric or unsymmetric), (3) dimpling or intracellular buckling, (4) shear
crimping (precipitated by core failure). In addition, the adhesive connecting core and
facesheets may fail in (5) adhesive strength (tension, compression, or shear), or the core
itself may fail in (6) core strength (tension, compression, or shear), and finally the entire
sandwich may fail in (7) sandwich buckling. And these do not include additional failure modes
specific to sandwich rampdown if there is one present. See Chapter 10 for a detailed discussion
of sandwich structures.

In general, a priori knowledge of the possible failure modes is necessary for a good design.
Different failure modes may interact, which makes their analytical simulation without the use
of extensive very detailed analysis tools, such as finite elements, very difficult. This is a case
where tests are used to adjust the simpler analysis methods or suggest how the existing methods
must be modified to more accurately match test results.

The most efficient design is the one that just fails when the applied design load (ultimate or
limit depending on the requirement) is reached. Trying to implement this during preliminary
design may not be advisable since the analysis methods may not be sufficiently accurate, test
results with allowables may not be completed, loads may increase, etc. So there may be a
difference between the failure load of the design and the applied load. The relative
magnitudes of failure load and applied loads are related through the loading index, the
reserve factor, or the margin of safety. All three refer to the same thing in a slightly different
way. The loading index is the ratio of the applied load to the failure load. If less than one,
there is no failure. The reserve factor is the inverse of the loading index and equals the ratio of
the failure load to the applied load. If greater than one it implies the structure does not fail and
the applied load must be increased by a factor equal to the reserve factor for failure to occur.
Finally, the margin of safety is the reserve factor minus one. Expressed in percent, if it is
positive it implies no failure and denotes by what percentage the applied load must be
increased to cause failure. If negative, it implies failure and denotes by what percentage the
applied load must be decreased to prevent failure. It is customary to maintain positive (but not
very high) margins of safety during preliminary design and, later on, as the design is
finalized, detailed analysis supported by testing increases confidence in the design, and the
applied loads are ‘frozen’, can be driven as close to zero as possible by fine-tuning the design
to increase its efficiency.

5.2 Governing Equations

The starting point are the governing equations for a composite plate. These are: (a) the
equilibrium equations; (b) the stress—strain equations; and (c) the strain—displacement equa-
tions. Versions of the stress—strain and strain—displacement equations have been used already
in Sections 3.2 and 3.3. The reader is referred to the literature for detailed derivation of these
equations [12—14]. Only the final form of these equations is given here.

5.2.1 Equilibrium Equations

With reference to Figure 5.12, the equilibrium equations (no body forces) have the form,
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Figure 5.12 Coordinate system and force and moment sign convention
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5.2.2  Stress—Strain Equations

In terms of stresses, the stress—strain equations for an orthotropic material can be written as (see
also Equation 3.5),

Ox En En Esz 0 0 Eg]| (&
o E, En Ex 0 0 Ex||&
o | _ E3 Ex E 0 0 Ex & (5.4)
Ty 0 0 0 Eu Es 0]
- 0 0 0 Es Ess 0] |7
Tay |El6 Ex Ex 0 0 Eg| 7y

Note that, for convenience, the subscripts used with the stiffnesses in Equation (5.4) are 1-6
with 1,2 and 3 coinciding with x, y, and z and 4, 5, and 6 used for the shear moduli as shown in
Equation (5.4).

In terms of force and moment resultants, the stress—strain equations can be written as,

Ny (A1 Az Ais Bu Bz Bis| (éw
Ny A Ap Ax Bip Bxn By &y0
Ny, _ Aig Ay Aes Bis By Bes Vxyo (5.5)
M, Biy Bz Bis D Dz Dig Ky
M, Bias By»n By D1z Dy Dy Ky
M,, Bis By Bes Dis Dy Des| \ Ky

where A;; are the elements of the membrane stiffness matrix for a laminate, B;; are the elements
of the membrane-bending coupling matrix for a laminate, and D;; are the elements of the
bending matrix of the laminate (see also Chapter 3).

The vector multiplying the stiffness matrix in the right-hand side of Equation (5.5) consists of
the midplane strains and curvatures of the laminate. The curvatures k,, k,, and k,,, are given by

oo O
T ox2
Pw
Ky = — 8—))2 (5.6)
o Pw
o OxQy

The strains at any through-the-thickness location of a laminate are obtained assuming the
standard linear variation with the out-of-plane coordinate z as

Ex = &xp T IKy
&y = &y, + 7K, (5.7

ny = yxyo + Ky
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5.2.3  Strain-Displacement Equations

For small displacements and rotations, the equations relating midplane strains to
displacements are,

8 e %
X0 — 8x
v
by =5 (5.8)
y
ooy
Tayo = dy Ox

Similarly, the out-of-plane strains are given by,

ow
&, = 8—Z
v ow
yyz - aZ ay (59)
o ow
T =8, T ox

Since the three midplane strains in Equation (5.8) are expressed in terms of only two
displacements, a strain compatibility condition can be derived by eliminating the displace-
ments from Equations (5.8). Differentiate the first of (5.8) twice with respect to y and the second
of (5.8) twice with respect to x. Finally differentiate the last of (5.8) once with respect to x and
once with respect to y. Combining the results leads to

82 éxo 82 Syo 82 nyu

_ = .1
0y? Ox? OxOy 0 (5.10)

Similarly, two more compatibility relations can be obtained by combining corresponding
equations from (5.8) and (5.9) or using cyclic symmetry:

Peyy %, Oy,

072 + o?  0Oyoz -

(5.11)

e, | Pewy Oy

Ox? 02 oxdz

(5.12)

Depending on which quantities are used as variables, equations (5.2)—(5.12) form a system
of equations in these unknown variables. For example, if stresses, strains, and displacements
are used as unknowns, equations (5.2), (5.4), (5.8) and (5.9) form a system of 15 equations in the
15 unknowns: 6., Gy, G2, Tyz, Txzs Tays Exos Eyos €25 Vyzs Vazs Vavos Us V> and w. Alternatively, for a plate
problem, if forces, moments, strains and displacements are used, Equations (5.3), (5.5), (5.6)
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and (5.8) form a system of 17 equations in the 17 unknowns, Ny, N, Ny, M, My, M, O, O, &xo,
€305 Vxyor Kxs Ky Kxyy U, V, and w.

These systems of equations can be reduced all the way to one equation in some cases, by
eliminating appropriate variables according to the needs of specific problems. Some of these
reductions will be shown in later chapters.

5.2.4 von Karman Anisotropic Plate Equations for Large Deflections

The case of large deflections merits special attention since they become important in some
problems such as post-buckling of composite plates. The von Karman equations for large
deflections are derived in this section. Consider the case of a plate undergoing large deflections
with distributed loads p,, p,, and p, (units of force/area). The basic assumptions that: (a) the out-
of-plane stress o, is negligible compared with the in-plane stresses; and (b) plane sections
remain plane and normal to the midplane after deformation (leading to zero out of plane shear
strains 7y, and y,.) are still valid. To keep the resulting equations relatively simple (and still
covering a wide variety of applications) it is also assumed that: (a) the laminate is symmetric
(coupling matrix B = 0); (b) the coupling terms D¢ and D¢ terms of the bending matrix D are
zero; and (c) the laminate is balanced (shearing—stretching coupling terms A = A, =0). The
deformed and undeformed state of a plate element dx in the xz plane is shown in Figure 5.13.

With reference to Figure 5.13 the coordinates of any point A’on the left edge of element d.x,
are given by:

ow
A,x: 0 — 05
X, +u C@x

A, =w+{
z
A
ow
T
o
OX > \g
i N
Ox A deformed o $dx—
oX OX
[<—u > W
<—Xo > B ¢
undeformed T

< dx—>

Figure 5.13 Deformation pattern for a plate element dx in the xz plane
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The x coordinate of any point B'on the right edge of element dx is given by a Taylor series
expansion (truncated after the second term) of the coordinate at the left end shifted by the length
of the element dx:

ow 0 ow ow 0 ow
U — [ — - — ([ — — - — - - —
B,=x,+u Cax—&—ax{xo—&—u Cax}dx—kdx Xo+ U Cax—l—ax[u Cax}dx—i—dx

The z coordinate of any point B’ on the right edge of element dx is given by

0
B’Z:w+dxa—;v +¢{

The x and z components of the deformed element A’B’ are then given by

9 9
AB, =B, —A, = dit+ — |u—¢ 2 dx
Ox Ox
ow
AB. =B, - A, =y
Ox

Therefore, the length of the deformed element A’B’ is given by

ou Pw 2 ow\ 2
o 1o \2 pr N2 -~ S35 Iy ’
AB = \/(AB) + (AB.) = (dx+<8x Cax2>dx> +(3X> "

— 1+ 8M7C_W 2+2 @7C82—W + 8_W ’
o Ox Ox? Ox Ox? Ox

The second term under the square root is small compared with the remaining terms and is
neglected. The remaining expression is expanded using the binomial theorem:

(a+b) =a +ra" 'b+ ...

and letting a =1 in the expression for A’B’ and keeping only leading terms:

1 ou _O*w ow\ >
'p! __ _ — - -
AB = 1+2{2<6x aﬂ)*(&” dx =

ou 0w 1 [ ow\?
'l __ - - _ 0
AB = 1+8x C8x2+2(8x> d



88 Design and Analysis of Composite Structures

Then, the axial strain ¢, is given by

ou 0w 1 [ow\’
R ST (it _
" ox Cax”z(ax”dx o w1\
- g8)cz_|—§<('9)c>

Using now the first of Equations (5.7) and (5.6), and noting that in this case z — {

2
gx:8xo+c<_8—w)

A'B'—AB
AB dx T Ox

& =

Ox?

Comparing the two expressions for ¢, it follows that,

ou 1 [ow\?
L (5) (5.13a)

which is a nonlinear strain displacement equation because of the square of the slope Ow/0x.
In a similar fashion, it can be shown that the other two midplane strains are given by:

Y9y 2\ dy
ou v (0w (m
V"y"_@y Ox Ox Oy

The curvatures x,, x,, and k,, are still given by Equations (5.6).
Now the first two of Equations (5.3), which represent force equilibrium along the x and y
axes, are the same as before, with the addition of the distributed loads p, and p,:

(5.13b,¢)

ON,  ON,y
) N — 0
ox + dy tp
(5.3a,b)
Oy + ony +p,=0
Ox y Py =

For force equilibrium along the z axis, the situation is as shown in Figure 5.14.
Angles are sufficiently small so that

tan ¢ ~ ¢
sing ~ ¢

cos¢p ~ 1

With ¢ = 0w/0x or Ow/0y (respectively), summation of forces in the z direction gives

00, 00, 0
-0 dy+ | O+ Q dx |dy — Q,dx+ Qy+—Q’dy dx—NX—Wdy
Ox dy Ox
ow 0 ow ow

(eq continued in next page)
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Figure 5.14 Force equilibrium of plate element in x and z directions
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Cancelling and collecting terms,

00, aQy *w 0*w Pw
IW on. I aw
Ox Oy TNy Ox0y Ny Oy?

Ow 8NX+BNXY +8l 8ny+% =0
Ox \ Ox Qy Oy \ Ox Oy p==

_|_

But, from Equations (5.3a) and (5.3b) the quantities in parentheses in the equation above are
equal to —p, and —p, respectively. Substituting leads to the nonlinear equation:

00, 00, Pw Pw Pw ow ow
= 4+Ny—5 +2Ny——+Ny— —pr— — py—
Ox + Oy + Ox? TNy Oxdy +0 0y? Prigy 7P Oy

+p. =0 (5.14)

The moment equilibrium equations (5.3d) and (5.3e) are the same as before. Equations
(5.3a), (5.3b), (5.3d), (5.3e), (5.14), (5.13a—c), (5.5), and (5.6) form the new nonlinear system
of 17 equations in the 17 unknowns N,, N, Ny, M\, My, M, O, Oy, €xos Ey0s Vayos Kxs Ky Ky, Uy V,
and w. The nonlinear equations are the three strain—displacement equations (5.13a—c) and the
force equilibrium equation (5.14).
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In addition to these equations, following the same procedure as for Equation (5.10), the strain
compatibility condition can be shown to give the nonlinear equation:

(5.10a)

828):0 azgyn azyxyo aZW : 82w 62w
0y? Ox? oxdy

- OxQy 7@8—)/2

The 17 equations can be reduced to two equations as follows: first, use Equations (5.3d),
(5.3e) to substitute in Equation (5.14). This gives

PM PM,, O*M, Pw Pw Pw ow ow
S Rl Y 4 Ny 2Ny Ny o — pre — py
+ * Ox? TNy T 0y? Pxgy =Py Oy

Ox? OxOy * 6’y2y Ox0y tp:=0 (5.15)

Then, use the moment—curvature relations from (5.5) and recall that B;;= D¢ =D, =0:

Pw Pw
M= -Dn2 Y —p,2Y
53 1253
Pw Pw
M)’__Dlzaz 255
0w
M, = —2Dgg ——
66 OxQdy
to substitute in Equation (5.15):
D 84—W+2(D +2D )ﬂ AL
e 12 %) 5x20y2 250
5.16
P P Pw ow 0w 1
- o2 Poxoy 7 0y? Prgy ~Py Oy Pz

Equation (5.16) is the first von Karman equation, describing the bending behavior of the
plate (left-hand side) and how it couples with stretching (right-hand side). As can be seen from
the first three terms in the right-hand side, it is nonlinear.

For the second von Karman equation, the Airy stress function F is introduced so that the
equilibrium equations (5.3a) and (5.3b) are satisfied:

PF
Ny=2+V
0y? +
0PF
N)':W +V (5.17)
O0°F
NX‘ = —
Y OxQy

with V the potential function for the distributed loads p, and p,,
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oV
= T o

oV (5.18)
Py = — (’Ty

From Equation (5.5), the in-plane portion
Ny =Aq16x +A128y0
Ny = Apéyo +Anéy,
ny = A66’yxy0

can be solved for the midplane strains,

o A N Ap N
Exo = 24Vx 24Vy
AjAyn —Ap AjAxyn — Ay
o _ A N+ Ay N 510
" AnAp —Ap* " ApAn —Ap? Y (5-19)
yxyo _A66 xy

which, in turn, can be substituted in the strain compatibility relation (5.10a) to give,

1 O*N, O*N, O’N, O*N,
AiAn AL (Azz By _A]2—8y2 +Aq 2 Arga )
LN, (e Py

Ags OxOy  \OxOy Ox% 0y?

Now (5.17) is used to express N,, N,, and N,,, in terms of F and V:

1 O*F o'F O'F *v >’V
AL 24 AL (A —An) 2t (A —Ap) 2o
AAy AL ( 25 125,252 +An o + (A2 —Ap) oy + (A1 —Ap) B +

(5.20)

1 oF () Pwitw
Ags Ox20y2  \ OxOy Ox? 0y?

This is the second von Karman equation, relating the membrane behavior of the plate (left-
hand side) with the out-of-plane curvatures (right-hand side). The terms in the right-hand side
are nonlinear.

5.3 Reductions of Governing Equations: Applications to Specific
Problems

This section shows two examples where the governing equations are solved exactly and the
results are used in the design of specific applications.
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Figure 5.15 Model for a stiffener termination

5.3.1 Composite Plate Under Localized In-Plane Load [15]

The situation is shown in Figure 5.15. In practice, besides the obvious case where an in-plane
point load is applied on a plate, this case arises when a stiffener is terminated. This happens
when the axial load applied to a stiffened panel is reduced to the point that a monolithic panel
may be sufficient to take the load, or in cases with moderate loads where there is not enough
room to accommodate the stiffeners.

The situation shown in Figure 5.15 represents the load from a single stiffener introduced in a
rectangular panel and reacted by a uniform load at the other end. It is assumed that the stiffener
spacing is such that there is no interaction between stiffeners (which covers most cases of
realistic stiffener spacing, which is at least 6 cm). Also, to simplify the derivation, the length of
the panel a is assumed to be sufficiently long that the details of the concentrated load
introduction at one end have died down before the other end is reached. This is also a realistic
assumption since the typical panel length, such as that corresponding to the frame spacing in a
fuselage, is much longer than the distance required for the transient effects to die out.

It is exactly these transients that the designer is required to design for. In the vicinity of the
point of introduction of the concentrated load high normal and shear stresses develop that
converge to their far-field (uniform stress) values fairly quickly. The size of this transition
region both along the x axis and along the y axis defines the size of reinforcement or doubler that
must be added to help transition the local load without failure. Determining the stresses in the
vicinity of the load application will help determine the dimensions ¢ x w of the required
reinforcement as shown in Figure 5.16.

In addition to the assumptions already mentioned, the following conditions are imposed:

¢ Plate is homogeneous and orthotropic
e Layup is symmetric (B matrix =0) and balanced (A=A, =0)
» No bending/twisting coupling (D¢ = D¢ =0)
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Figure 5.16 Doubler dimensions

Under these assumptions, the stress—strain equations (5.5) can be solved for the midplane
strains to give the relations (5.19). The average stresses through the plate thickness are
given by

Ny
Oy :ﬁ
N,
O-y_ﬁ
Nyy
Ty = I-}}

where H is the plate thickness.
Placing these into eqs (5.19) and dropping the subscript o for convenience,

o HAzzO’x - HA]sz
* ApAs — AP

Yy = HZXY (5.21)
N HA[]O'),—HA]QO'X 66

&
y 2
A11A22—A12

These expressions for the strains can now be placed into the (linear) strain compatibility
condition (5.10):

A11A22—A122 BQTxy —A 82ax 7A12820-y

a%y B &%a,
Ags oxdy 2 0y? 0y?

Ox?

+ A

(5.22)

Now, for a plane stress problem the out-of-plane stresses o, 1., and 1, are zero. Then, the
stress equilibrium condition (5.2a) gives,

Pty Do,

Oxdy Ox?

(5.23)
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Similarly, from (5.2b),

%262” S gzg‘y (5.24)
y xXoy
which, in view of Equation (5.23), gives
% _ % (5.25)
Substituting in (5.22) gives
—A“AZ;AIZZ%?ZX = 22882—;2)( —A12% +A11% - 12% (5.26)

Now differentiate (5.25) twice with respect to x and (5.26) twice with respect to y to obtain

2 2
0°c, 00,

. 5.27
Ox20y?  Ox* (527)
and
A11A22—A122 84O'x 84O'X 64Gx O'y 84O'x
— =A —A A —A 5.28
Ags Ox20y? 2oyt 12 9x20y2 +Au Ox20y? 12 9x20y2 (5:28)

The stress g, can be eliminated from Equation (5.28) with the use of Equation (5.27). Then,
collecting terms gives the governing equation for o,;

oo [AnAn—ApR?  _Ap] 0'c.  Andie,

8x4 A11A66 h A_“ 8x28y2 A_ll 6y4 -
or defining
ﬁ:AnAzz—Auz LA
Aq1Aes Ay
y =22 5.29
An (5.29)

840'X 840')( 84O-x

ox* +ﬁ8x2€)y2 +Y oy* =0
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Equation (5.29) must be solved subject to the following boundary conditions:

—h b+h
0(x=0)=0 0<y<-—— and %< <b
F b—h b+h
= = — <y<
ox(x =0) =0y o Sor 7 SyYs—
5.30a-
F (5.30a-e)
ax(x:a)—oo—ﬁ

‘Exy(x 0) :‘Exy(x:a) :Txy(y:()) :Txy(y:b) =0

Conditions (5.30a) and (5.30b) define the applied concentrated load on one end (x = 0) of the
plate. The stress g, is zero there except for the narrow region of width / at the center where it
equals F/(Hh). Condition (5.30c) defines the uniform stress applied at the other end of the plate
(atx = a). Finally, conditions (5.30d) and (5.30e) state that the transverse stress o, and the shear
stress T, are zero at the corresponding plate edges.

The solution of Equation (5.29) can be obtained using separation of variables [16].
Following this procedure, it is expedient to assume a solution of the form,

Oy R ,1(x)cosT (5.31)

Substituting in the governing equation (5.29), the y dependence cancels out and the
following ordinary differential equation for f, is obtained:

) () 0 s

From the theory of linear ordinary differential equations with constant coefficients, the
solution to (5.32) is found as

fo=Ce? (5.33)

(f):i%(%)\/ﬁi\/ﬁz—&y (5.34)

Note that Equation (5.34) implies four different values of ¢ to be used in Equation (5.33)
yielding four different solutions for f;, as should be expected from the fourth order differential
equation (5.32). It is also important to note that the quantities under the square roots in
Equation (5.34) can be negative, leading to complex values for ¢. In such a case the four
different right-hand sides of Equation (5.34) appear in pairs of complex conjugates leading to a
real solution for the stress o,.

with
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If the real part of ¢ given by Equation (5.34) is positive, the stress o, will increase with
increasing x. And for a long plate (value of a in Fig 5.15 is large) this would lead to unbounded
stresses. So, if the plate is long enough for the effect of the load introduction at x =0 to have
died down, the two solutions for ¢ with positive real parts must be neglected. The remaining
two solutions (with negative real parts) are denoted by ¢, and ¢, and can be combined with
Equations (5.31) and (5.33)) to give the most general expression for o, as a linear combination
of all the possible solutions (all possible values of n in Equation (5.31):

o =K, + ZA,, [ + Cpe?] cos? (5.35)

n=1

A constant K,,, which is also a solution to Equation (5.29) has been added in Equation (5.35)
to obtain the most general form of the solution. The right-hand side of Equation (5.35) is a
Fourier cosine series.

Now, as mentioned earlier, the out-of-plane stresses o, T,,, 7, are assumed to be zero, which
eliminates the last term in each of the equilibrium equations (5.2a) and (5.2b) and identically
satisfies Equation (5.2c). Then, from Equation (5.2a),

Oty B 0o,
dy Ox

(5.36)

Differentiating Equation (5.35) with respect to x and then integrating the result with respect
to y to substitute in Equation (5.36) leads to

o b . nn
Ty = = > Au[$re” + Cocpre?'] %sm% +Gi(2) (5.37)
n=1

Applying now the boundary condition (5.30e) at y =0 eads to the following condition
‘Exy(y =0)=0=Gi(z) =0
Then, (5.30e) at x=0 leads to

_h

2

Txy(.x:O>:O:>¢1+Cn¢2:():cn:

Note that the condition (5.30e) at x =a is satisfied as long as a is large enough and the
exponentials in Equation (5.37) have died out. Incorporating these results in Equation (5.37),
Tyy 1S Obtained as:

Ty = — Z ¢ 1A, [e" — ] %Sin@

The last of the conditions (5.30e) is at y = b and it leads to

To(y = b) = 0 = sinnn = 0 = satisfied for any n
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The final expression for t,, is, therefore,

2n7rsn b

Ty = = > A et — o] b n 2 (5.38)
n=1

Note that 2n is substituted for n; this is needed in order to satisfy (5.30d).
This, in turn implies that Equation (5.35) for g, has the form,

o0
2
o, = Ko+ ZA” [e(p‘x + Cne%"]cos% (5.35a)

n=1

In an analogous manner, oy is determined from (5.2b), with 7,, =0

Jay OTyy
— = — 5.39
dy Ox ( )
which, combined with (5.38) and condition (5.30d) leads to
< b\’ . . 2nmy
oy = Z <2> 01A, (qﬁle‘b' — e ) (1 —cos— ) (5.40)
‘= \2nn

At this point all unknowns in the stress expressions (5.35a), (5.38), and (5.40) have been
determined except for K, and A,,. These are determined as Fourier cosine series coefficients
using conditions (5.30a) and (5.30b). The constant K, is the average of stress g, at any
x value,

F

Ko =—
bH

(5.41)

For the A, coefficients, multiplying both sides of (5.30a) by cos 2¢my/b and integrating from
0 to b leads to

b

b

2 2 2
Jax(x = 0)cos$dy = J (KO + ZA" <e""x — Z—;e‘/’lx> xzocos %) cos%dy
0 0 ’

(5.42)

Now o,(x = 0) is zero everywhere except at the center of the plate where it equals the applied
load F divided by the area over which F acts. This is shown in Figure 5.17.

Substituting in Equation (5.42) and carrying out the integrations leads to the final expression
for A,:

F 2 . nnh
n= ﬁ(bzqﬁ_z(blgcosnnmnT (5.43)

This completes the determination of the stresses in the plate. It is in closed form and exact
within the assumptions made during the derivation. Since the solution is in terms of infinite
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0x(x=0)

F/(Hh)

Figure 5.17 Applied normal stress o, at one end of the plate

series, see Equations (5.35), (5.37) and (5.40), some guidelines on selecting the number of
terms after which they can be truncated and still give sufficient accuracy in the results is needed.
One way to do that is to evaluate Equation (5.35) at x =0 and compare it with the applied load.
This is shown in Figure 5.18.

The laminate selected in Figure 5.18 has the layup (£45), consisting of four plies of plain
weave fabric material each at 45° with the load direction. The geometry and applied loading
information are shown in Figure 5.18. The basic material properties are as follows:

E,=E,=73GPa
G,y=5.3GPa
Vi =0.05
ply thickness (f,,) =0.19 mm

It can be seen from Figure 5.18 that, even with 160 terms in the series in Equation (5.35a), the
step function behavior of the applied load is not exactly reproduced. In addition, outside the
region of the applied load, i.e. (b — h)/2 <y < (b + h)/2, the o, stress at x =0 is very small, but
not exactly zero as it should be. More terms would be necessary for even better accuracy. In
what follows, predictions of the method are compared with finite element results (obtained with
ANSYS) using n=80.

The axial stress g, as a function of x obtained from Equation (5.35a) is compared with the
finite element prediction in Figure 5.19. Very good agreement between the two methods is
observed. The shear stress t,, as a function of y is compared with the finite element results at
x/a=0.0075 in Figure 5.20. Excellent agreement between the two methods is observed. Finally
the transverse stress g, is compared with the finite element predictions in Figure 5.21 where the
stress is plotted as a function of y at x/a =0.0075. Again, very good agreement is observed.

It appears from the results in Figures 5.19-5.21 that, even though the applied ¢, is not exactly
reproduced at x =0 (see Figure 5.18), n =80 gives sufficient accuracy for predicting the in-
plane stresses in this problem. The good agreement of the method with the finite element results
gives confidence in its use for the design of reinforcements in composite plates with localized
loads, such as those coming from stiffener terminations shown in Figure 5.15.
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Stress/Far field stress
- 0O = N W B th 3 ~ o O

Normalized distance y/b

Figure5.18 Applied stress at panel edge (x = 0) and approximation as a function of the number of terms
in the series

There are two main issues that need to be addressed. The first is which layup minimizes the
peak stresses that develop in the vicinity of the point-load introduction. It should be noted that
the peak o, stress is F/(Hh) where F is the applied load, H is the laminate thickness and 4 is the
width over which the concentrated load is applied.

The peak o, and t,, stresses are not as obvious and only through methods like the one
presented here can they be calculated and their potentially deleterious effect on panel
performance be mitigated. The second issue is the size (in terms of length £ and width w)
(Figure 5.16) of the reinforcement needed to transition the applied concentrated load to the far-
field uniform load without failure. Some results showing how the method can be applied to
specific problems are shown in Figures 5.22-5.24.

The effect of layup on the peak stress o, is shown in Figure 5.22. Only a few representative
layups are used here to show trends. The material used is the same plain weave fabric
mentioned earlier. The geometry is the same as that shown in Figure 5.18.

Of the three layups shown in Figure 5.22, the softest, (+45), has the highest peak stress and
is, therefore, to be avoided in such applications. The remaining two layups, the quasi-isotropic
[(£45)/(0/90)]; and the orthotropic (0/90), have much lower peak stresses. Also of interest is
the fact that the region over which the o, stress is appreciable in the y direction is much narrower
for the (£45)4 layup than for the [(£45)/(0/90)]; or the (0/90), layup. This means that the width
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Figure5.19 Axial stress at the center of the panel (y = b/2) compared with finite element results (FEM)
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Figure 5.20 Shear stress as a function of the transverse coordinate y at x/a =0.0075
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* +45)4

FEM Prediction
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Transverse stress/far-field stress
w
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1] x/a=0.0075
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Normalized transverse distance y/b
Figure 5.21 Transverse stress as a function of y at x/a =0.0075

w of the reinforcement or doubler needed (see Figure 5.16) must be wider for the last two
layups, extending possibly from y/b = 0.3 to y/b = 0.7 than for the (£45), layup where it can be
confined in the region 0.4 < y/b < 0.6.

The axial stress g, is shown in Figure 5.23 as a function of distance from the load
introduction point for the three layups (£45)4, [(£45)/(0/90)];, and (0/90)4. All three layups
start with the same peak value at x = 0 which is the applied load F divided by the area (Hh) over

(0/90)4

x/a=0.005

Transverse stress/far field stress

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized transverse distance y/b

Figure 5.22 Transverse stress gy, as a function of y for different layups (x/a = 0.005)
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Figure 5.23 Axial stress as a function of distance from load introduction for three different layups

which it acts. However, the rate of decay to the far-field value is different for each layup. The
(0/90)4 layup has the slowest rate of decay suggesting a longer doubler (length £ in Figure 5.16)
is needed with ¢ ~ 0.5a compared with the other two layups for which a length ¢ ~ 0.3a
would suffice.

Finally, the shear stress t,, is shown in Figure 5.24 for the same three layups. The stress is
shown as a function of the transverse coordinate y at a specific x/a value. Of the three layups,
(£45)4 shows the highest peaks followed by [(£45)/(0/90)];. For all three layups, the range of y
values over which 7, is significant is 0.35 < y/b < 0.65. This range gives an idea of the width w

I —

: l +45)
3 /
X/a [(+45)/(0/90)]s
& 2'5 (0/90)4
g
R
g b L
” s } A ' ; ,
® 05 0,1 0,2 0,3 0,5 0,6 0,7 08 0,9 ]
T 11
E I
S
. x/a=0.005
3 _
-4 ;

Normalized transverse distance (y/b)

Figure 5.24 Shear stress versus y for three different layups
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needed for the doubler. Note that this value is less than the value found by examining the o,
stress in Figure 5.22. This means that the value found in examining Figure 5.22 should be used
as it covers both cases.

The results presented in Figure 5.22-5.24 are only a subset of the cases that should be
examined for a complete assessment of the doubler requirements. Other locations in the panel
should also be checked so that the extreme values and locations of all three stresses o, 0, and T,
canbe determined so the doubler characteristics can be defined. The results in Figures 5.22-5.24
giveagoodideaofthe basic trends. Based on these results, the basic characteristics of the doubler
needed from the analysis so far are as follows:

¢ Axial stresses in (0/90)4 panels decay more slowly (require longer doublers) than (£45), or
[(£45)/(0/90)]s panels

¢ On the other hand, transverse and shear stresses in (£45),4 or [(£45)/(0/90)], panels are more
critical than in (0/90)4 panels

e Preliminary doubler (reinforcement dimensions): £ = 0.5a for (0/90), and 0.3a for (+45), or
[(£45)/(0/90)]; panels and w = 0.3b for all panels

While the analysis so far is very helpful in giving basic design guidelines, it is by no means
complete. It should be borne in mind that once a doubler is added to the panel, the load
distribution changes and additional iterations are necessary. The previous discussion is a good
starting point for a robust design. Finally, for the specific case of a stiffener termination, the
analysis presented assumed that the concentrated load acts at the midplane of the plate. For a
terminating stiffener, the load in the stiffener acts at the stiffener neutral axis and is, therefore,
offset from the center of the plate. This means that, in addition to the axial load examined here, a
moment equal to the axial load times the offset from the stiffener neutral axis to the plate
midplane should be added.

5.3.2  Composite Plate Under Out-of-Plane Point Load

The situation is shown in Figure 5.25. The plate of dimensions a x b is loaded by a vertical force
F. The coordinates of the point where the load is applied are x, and y,. Besides the obvious
application of a point load on a plate, this problem can be used to obtain the basic trends in
structural response of a plate under low-speed impact damage (Figure 5.26).

The plate is assumed to have zero out-of-plane deflection w all around its boundary (simply
supported). It is also assumed that the plate is symmetric (B matrix =0) and there is no
bending twisting coupling (D¢ = D¢ = 0). Finally, the out-of-plane stresses 7, 7., and 1,
are neglected.

The goal is to determine the out-of-plane displacement w of the plate as a function of
location. Since the B matrix of the layup of the plate is zero, the out-of-plain behavior of the
plate decouples from the in-plane behavior. Then, the governing equation is (5.16) with
px=py=0 and the nonlinear terms neglected since we are interested in a linear (small
deflections) solution:

o*w *w O*w
Dy —+ +2(D 2D¢6) === + D — =
11 +2(D12 + 66)ax26y2 + D2 oy Pz

e (5.16a)
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Figure 5.25 Composite plate under point load

The out-of-plane applied load p, in this case can be expressed with the use of delta
functions as

P = Fé(x _xu)é(y _yo) (544)
where

0(x—x,)=1 when x=x,
=0 otherwise

Then, the governing equation is
O*w o*w

O*w
Dy =5 +2(D12+2D¢s) === + D —+
11 + ( 12 66) BXZayz + Dy ay4

Oox*

with D;; the bending stiffness terms for the plate layup.
Since w =0 at the plate boundary, a solution to Equation (5.45) is sought in the form

. MUX . nmy
= E g Apmsin— sin—— 5.46
w sin——sin (5.46)

“

= Fo(x—x,)d(y = ¥o) (5.45)

with A,,,, unknown coefficients.

Figure 5.26 Low-speed impact modeled as point load
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It can be seen that if Equation (5.46) is placed in ((5.45) the left-hand side will contain terms
multiplied by sin (mmnx/a)sin (nmy/b). In order to proceed, the right-hand side of Equation (5.45)
must also be expanded in a double Fourier series in order to be able to match terms in the left-
and right-hand side. Setting,

Fo(x—x,)0(y —¥,) ZZansm 51 nTny (5.47)

where B,,,, are unknown coefficients, one can multiply both sides of (5.47) by sin (prx/a)sin
(gmy/b) and integrate over the plate domain (x from O to @ and y from 0 to b) to obtain,

JJFé(x —x,)0(y — y,,)smlﬂ sm?dxd
a

JJ Z Z Bm,lsm — smp sin Zy sdexd

Now the integral of a function multiplied by the delta function is equal to the function
evaluated at the location where the delta function is nonzero. So, carrying out the integrations
in (5.48),

(5.48)

. MmmX, . ATy, ab
F =B — 5.49
sin——sin— ) (5.49)
from which
4F o . o
B, = —sin M%o sin 222 (5.50)

ab a b

Equation (5.50) can be placed in (5.47) which, along with (5.46), can be placed in (5.45)
to give

oo OO

)Y Doy (e 4+2(D F20e) " p (1 | in ™ Y _
mn | D — 12 66) 27 2( P b

m=1n=1

(5.51)

mnx,, . mry,, MAX .| NIy
E E —sm —sin——sin ——
b a b

m=1n=

and matching coefficients of sin(mmnx/a)sin(nmy/b) the coefficients A,,, are determined as

A = ab___a b (5.52)
mmn mn-m nm\ 4
Dy, (7) +2(D12+2D66)T + Dy (?)
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Combining Equation (5.52) with (5.46) gives the complete expression for w for this case:

4F | mnx, . nmy, . mnx . nmy
SIHTSIH—SIH—

—sin
b b
= ZZ m;lr 4 ‘ mzngn4 nm\ 4 (5:33)
Du(7g) 20+ 2D0) " D ()

For the case where F acts at the center of the plate, the maximum out-of-plane deflection ¢ at
the plate center is obtained by substituting x = x,/2 and y =y,/2 in Equation (5.53),

R > ab” 2 2 (5.54)

mm\ 4 mnm nm\ 4
D (—) 2(Diy +2Des) "2 1 p (—)
() * (D12 +2Dss) a2 TPz

Once the deflections are determined, classical laminated-plate theory can be used to obtain
bending moments and, in turn, strains and stresses to check the plate for failure.

As in the previous section, this is an exact solution to the problem within the context of the
assumptions made. It should also be kept in mind that because of the linearization in
Equation (5.16a), the solution is only valid for small out-of-plane deflections w.

5.4 Energy Methods

For most practical problems, the governing equations described in the previous section cannot
be solved exactly and, in some cases, approximate solutions are hard to obtain. As a powerful
alternative, energy methods can be used. Minimizing the energy stored in the system or
structure can yield useful, approximate, and reasonably accurate solutions.

Two energy minimization principles are of interest here: (1) minimum potential energy; and
(2) minimum complementary energy. In both cases, some of the governing equations are
satisfied exactly and some approximately through energy minimization. They both derive from
the following two theorems [17]:

Minimum potential energy: Of all geometrically compatible displacement states, those
which also satisfy the force balance conditions give stationary values to the potential energy.

Minimum complementary energy: Of all self-balancing force states, those which also
satisfy the requirements of geometric compatibility give stationary values to the complemen-
tary energy”.

The governing equations, given in the previous section can be split into: (a) equilibrium
equations; (b) compatibility equations (which are the strain compatibility equations obtained
once the displacements are eliminated from the strain—displacement equations); and (c) the
constitutive law or stress—strain equations.

In the case of the principle of minimum potential energy, if the strain compatibility relations
and displacement boundary conditions are exactly satisfied, then minimization of the potential
energy results in a solution that satisfies the equilibrium equations in an average sense. In the
case of the principle of minimum complementary energy, if the stress equilibrium equations
and force boundary conditions are exactly satisfied, then minimization of the complementary
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Table 5.5 Approximate and exact evaluations of field equations during energy minimization

Equilibrium Strain Force Displacement  Energy Solution is
equations compatibility boundary boundary
condition conditions  conditions
Exactly Exactly Exactly Exactly Minimized Exact
Approximately  Exactly (In an Exactly Minimize Approximate
average potential
sense) (displacement-
based)
Exactly Approximately  Exactly (In an average Minimize Approximate
sense) complementary

energy results in a solution that satisfies strain compatibility in an average sense. Both
approaches yield approximate solutions whose accuracy depends on the number of
terms assumed in the displacement (minimum potential energy) or stress expressions
(minimum complementary energy) and how well the assumed functions approximate the
sought-for response.

The two situations as well as the situation corresponding to the exact solution are shown in
Table 5.5.

The energy methods are not limited to the two approaches just described. Hybrid approaches
where combinations of some stresses and displacements are assumed are also possible [18].

5.4.1 Energy Expressions for Composite Plates

According to the principle of virtual work for linear elasticity, the incremental internal energy
stored in a body equals the incremental work done by external forces:

oU = oW, + W,

where W is the work done by surface forces and W, is the work done by body forces.
Then, if we define the total incremental energy JI1 as the difference between internal energy
and external work,

ST = 8U — W, — W, (5.55)

the exact solution would make the energy variation oIl zero or would minimize the total
energy II:

N=U-W,-W,=U-W (5.56)

5.4.1.1 Internal Strain Energy U

The increment in the internal potential energy oU is obtained by integrating all contributions of
products of stresses and incremental strains
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o= JJJ {UX5SX + O-yésy + 008+ T)’Zéyyz + 07 + Tx)’5ny}dXdde (5.57)
\%4

where the integration is over the entire volume V of the body in question.
For a plate, Equation (5.57) reduces to

oU = HJ {006, + 0,06, + ‘cxyéyxy}dxdydz (5.58)
v

Using equations (5.7) to substitute for the strains in terms of curvatures and midplane
strains gives

SU = ”J {0x(08r0 + 20K) 4 0 (0ey0 + 20Ky) + Tay (87,0 + 20K1y) pdxdydz (5.59)
v

For a plate of constant thickness A, the z integration in Equation (5.59) can be carried
out using

(ST

Oy N, 20 M,

oy |dz= [ N, | and zoy |dz= | M,

Zn LTy Nyy Zn L2y M,y
2 2

to give
oU = ﬂ {N:bero + NyOeyo + Niydyy + Mid, + MySky + My 0Ky, pdxdy (5.60)
A

where A is the area of the plate.

At this point, several options are available depending on which version of energy minimi-
zation principle (e.g. displacement-based or stress-based) is to be used.

For a displacement-based formulation, Equations (5.5) can be used to express

OU = [[{(A1186x0 + A126y0 +At6)0 + Brikix + .. .) dexe
+ (A126r0 + Ax26yo + A267 4y + Brakx + ..)Ogy
+ (At68ro + Az6yo +As6Y1y0 + Bioks 4 - )07y
+ (Bllﬁxo + Bi2éyo + Bi6Vxyo + Diikx + ...)5Kx
+ (Bi2éwo + Bty + Ba67yyo + Di2kx + - )oKy
+ (Bi6two 1 Baseyo + BtV ryo + D16k + -..) Oty hdxdy (5.61)

forces and moments in terms of midplane strains and curvatures.
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It is now observed that
1
8}:058)50 - 55(8)6{7)2
Ex008y0 + £y008r0 = 0 (Exotyo)
£200Kx + Kx08r = 0(&x0cy)

with analogous expressions for the other midplane strains and curvatures.
These expressions are substituted in Equation (5.61) and integrated term by term. For
example, the first term of (5.61) becomes

1 1
JJA] 1 (Sxo)égxodXdy = 5 JJA] 1 5(8)50)2(1)“1)’ - 5 JJAI 1 (gxo)dedy

A A A

This substitution leads to the following expression for the internal strain energy U:

U= l ” {All (qu)z + 2A12(8x0) (5)‘1)) + 2A16(8x1)) (”/xy(,) + A22 (5371))2 + 2A26 (5yn) (’ny()) + }
=3 2 dxdy
JJA A66 (ny())

+ By (Sxo)’cx + BIZ((gyo)Kx + (gxo)Ky) + Bl6(('}'xy(;)7€x + (axo)lcxy) +
N dxdy
By (Syv) 1y + Bag ( (nyo) Ky + (*?VO) ny) + Bes (“/xyo) Ky

1
+2JJ {D]]K + 2Dk, Ky + 2D 6Ky Kxy +D22K + 2D26K)K)0 +D66K }dxdy (562)

Finally, to express the internal strain energy in terms of displacements u, v, and w, the
strain—displacement equations (5.6) and (5.8) are used to obtain:

Ou Ou Ov Ou (Ou  Ov v
Au( ) +2An - +2A16 - ( + 4 )+A22( )
. o axay " Moax oy T ox 5) \ vy
2 compg 2 (D O (DY
268y dy  Ox 66 dy  Ox

OuO*w NPw  Oudw ou O\ Pw _OuPw
2 B + 2 ) 4 Bie v +2

" 0x 0x2 dy Ox2 | Ox Oy? dy ' Ox) 0x2 "~ 0x0xdy
_ dxdy
v Pw ou v\ Pw v Pw ou
A [FBugiaa +B26|:(0y+6x>8y2+28y8x8:| (5 7>8x8y
0w\ 2 Pw Pw Pw Pw
! J DII(W) +2D12W8_yz +4Dy6s 2 Oy ay ( ) dxdy
Pw Pw

2 4D T s 2dxd 5.63
A + 2687))2@4’ 66(8}68) y (5.63)
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The first set of terms in Equation (5.63) involves the membrane stiffnesses A;; (i,j = 1,2,6)
and represents stretching (or membrane) energy. The last set, involving bending stiffnesses D;;
(ij = 1,2,6) represents energy stored in bending of the plate. The remaining terms, involving B;;
(ij =1,2,6) represent energy stored through bending—membrane coupling. If the plate has
symmetric layup, B;; = 0 and Equation (5.63) decouples in two parts, the membrane (involving
the A matrix) and the bending (involving the D matrix) portion.

At the other extreme, a stress-based energy formulation starts with Equation (5.60) and uses
the inverse of the stress—strain equations (5.5) to substitute for the strains. For simplicity, only
the case of a symmetric layup is shown here. The inverted stress—strain equations,

&’ [ann an as 0 0 O N,
&y’ ap axp ay 0 0 0 Ny
T’ _ | %6 a2 de 0 0 0 Ny (560
Kx 0 0 0 di dip ds M,
Ky 0 0 0 dpn dn dgl|| M,
Ky L0 0 0 dig d des) My

where [a] and [d] are the inverses of the laminate [A] and [D] matrices, can be used to substitute
in Equation (5.60):

OU = [[,{N:6(ar1 Ny + aiaNy + a16Nxy) + Ny (aroNy + anNy + azNyy)
+ ny(s (a16Nx + a26]vy + a66ny) + Mx5 (dllMx + dlZMy + d16Mxy>

+ Zuv(S (dlex + dZZMy + dZGMxy) + Mxyé (d16Mx + d26My + d66Mxy) }dxdy
(5.65)

A completely analogous procedure as in deriving Equation (5.63) from (5.61) leads to the
final expression for the stress-based (complementary) energy:

1
U= ﬂ {@11N2 201NNy + 2016V Nz + a22N2 + 226N, Noy + agsV2, fdxdy
A
1
+3 ﬂ {anf + 2d MM, + 2d16M Moy + dnsM? + 2doM, M, + dsM?, }dxdy
A

(5.66)

Equation (5.66) has the stretching and bending portions already decoupled because the
laminate was assumed symmetric.

5.4.1.2 External Work W

The derivation for the external work does not have any difference between composite and
noncomposite plates. It is derived for a general plate and included here for completeness. With
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reference to Equation (5.55), the incremental work 6 W;, done by applied body forces on a body
is given by

ow, = J” V{fxéu +fyov +fz(5w}dxdydz
where Vis the volume of the body, f., f,. f; are forces per unit volume in the x, y and z directions

respectively, and ou, ov, and ow are incremental displacements in the x, y and z directions.
For a plate, the body forces can be integrated through the thickness

[ fidz = pw
nydZ - p_\’b
[fdz = pap

with the subscript » denoting that these contributions to surface forces come from integrating
the body forces.

Combining these with any surface forces applied over the plate surface and the contribution
from any forces or moments applied on the plate edges, gives

OW = W), + W, = J {pcdu+ pydov+p.ow}dxdy +
Ap
J Nt + Nyyov + Qrdw — M8 Z_w dy +
0L * Jdx=0
afl qy=b
J NyyOu+ Nyov + Q0w — Mo Z—;V dx
oL dy=0

where a and b are the plate dimensions and A,, is the plate area. The contributions from p,, pys.
and p_,, are included in the first term within p,, p,, and p, respectively. The second and third
terms in the right-hand side of the above expression include contributions from applied forces
Ny, N,, and N,, (in-plane) or (transverse shear) forces O, and Q, (out-of-plane) or bending
moments M, and M, at the plate edges (x=0,a and/or y =0,b).

Integrating the incremental contributions on left- and right-hand sides gives

bT x=a
ow
W= J {qu +pyv +pzw}dxdy + J N+ Nyv+ Oow — M, e dy +
Ap 0L x=0
(5.67)
a 9 y=b
ow
Nyu —|—Nyv+Qyw—Mya—y dx

0 ly=o

For the case of plate buckling problems, p, and p, in Equation (5.67) can be evaluated further.
Assuming there is no stretching or shearing of the plate midplane during buckling, the
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mid-plane strains &y, &y, and yy, are zero. Then, for large deflections, Equations (5.13a—c) imply
Ou n 1/ 0w\ _0
ox 2\ ax /)
o 1 /ow\?
— 4+ - — — O
dy 2\ Oy
@ + @ + a_w 8W =0
dy  Ox Ox (‘3y

Consider now the first term of Equation (5.67) with p, =0 for a buckling problem. Using
Equations (5.3a,b) to substitute for p, and p,,

- ON, N, LN, 0N,
JJ (pxtt + pyv)dxdy = JJ { ( o P >u + ( B o )v}dxdy

Integrating by parts, for a rectangular plate of dimensions a and b, gives

b a
X=a a a
ﬂ (pxu—i—pyv)dxdyzj [—qu—nyv]xzo—&—J N, a“+nya dx pdy
A 0 0
a b P P
v=b u v
+ {4 [~ Ngu—Ny]i~ +J NX_\,a—y—kNya—y dy pdx
0 0

a

b
e e [ A ™
0

0
a
+

0

NxV N, dxd
ox oy Ty | Y

b

J au ov Ou ov
Ny

0

The derivatives u/Ox, Ov/Qy, and the sum Ou/Jy + Jv/Ox can be substituted for derivatives
of w, as shown in the large deflection equations above. Then, combining everything in
Equation (5.67), canceling terms and noting that for a typical buckling problem Q.= Q,=
M, =M, =0 leads to

b

1 ow\? 1 ow\? ow\ [ow
J{ (5 -a%(5) () (5) }dxdy
0

W =

O —
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) ) @ G o

valid for plate buckling problems.

or

Exercises

5.1 A certain composite material is proposed for use at two different locations of the same
application. Location 1 is designed by tension with a design (ultimate) load of 1750 N/mm.
Location 2 is designed by shear with a design (ultimate) load of 2450 N/mm. The proposed
material has been tested in tension and shear with the results shown in Table ES5.1.

Table E5.1 Test data for proposed composite material

Specimen Tension (Pa) Shear (Pa)

1 3.0918E + 08
2 6.7217E + 08 4.0789E + 08
3 6.1025E + 08 3.2922E + 08
4 6.3263E + 08 2.9084E + 08
5 6.5498E + 08 3.6868E + 08
6 5.3391E + 08 3.3140E + 08
7 6.5647E + 08 3.6039E + 08
Mean 6.2673E + 08 3.4251E + 08

Originally, the two parts at the locations of interest were made with aluminum with the
following properties:

Table E5.2 Aluminum properties (7075 Al from [19])

Tension (Pa) Shear (Pa)
Mean 5.1016E + 08 3.2815E + 08
B-Basis 4.9637E + 08 3.2402E + 08
A-Basis 4.7569E + 08 3.1712E + 08

An aspiring engineer looks at the two tables of properties, in particular the mean
values, and claims that he/she can save at least 30% of the weight at both locations by
switching from aluminum to composite. You are to check if the engineer is right in his/her
claim for both locations considering: (a) a single load path application and (b) a multiple
load path application.

You are to assume that the test data in Table E5.1 follows a normal distribution for both
tension and shear. Note that for a normal distribution the B- and A-Basis values are given by

B = Mean — kgo
A = Mean — kyo

where ¢ is the standard deviation of the test results and k4, kp are the so-called one-sided
tolerance limit factors given by (see for example [2] chapter 9).
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Table E5.3 One-sided tolerance limit factors for normal distribution

Number of specimens koo™ koo
6 3.006 5.741
7 2.755 4.642

@90 and 99 refer to the % of tests that will be stronger than the
corresponding Basis value

In your calculations consider ONLY the material scatter. Do not include effects of
damage and environment.

5.2 The tension strength data for a specific composite material and layup at RTA conditions is
given in the table below:

Specimen Value (MPa)

538.8
475.6
4479
461.7
495.4
483
479.3
442.5
471.6
0 525.5

— O 00 1O LN B W

Assuming that the experimental data are normally distributed, it can be shown that the
fraction of the population with strength less than any given value (cumulative probability)
is given by the following graph:

1 \
0.9 ==
0.8 7
0.7 7
0.6
0.5
0.4
0.3 r
0.2 7

0.1 ?'}

O : T T T
400 420 440 460 480 500 520 540 560 580

Strength (MPa)

Probability that value is lower than x
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Assume that at any other environmental condition, the tension strength is given as a
fraction of its corresponding value at RTA condition and that fraction can be obtained from
the material covered in this chapter.

This composite material and layup are to be used in a wing-box (single load path
primary structure). The best available aluminum is 7075-T6 with the following properties
(from reference [19]):

RTA ETW
Mean (MPa) 586.0 562.5
B-Basis (MPa) 551.5 529.4
A-Basis (MPa) 537.7 516.2
Density (kg/m?) 2773.8 2773.8

Determine the weight savings of using the composite instead of aluminum if: (a) the
design is based on RTA properties and (b) the design is based on ETW properties. Looking
at your results, are the weight savings resulting from using composites in this application
worth the extra material and processing cost associated with composites?

5.3 A simply-supported rectangular composite plate (Figure ES5.1) with dimensions
152.4 x 508 mm is loaded at x = 127 mm and y =38.1 mm by a force F perpendicular
to the plate. The layup of the plate is (£45)/(0/90);/(£45) and the basic material
properties are as shown in Figure E5.1.

(a)
(b)

()

y
A
A
152.4 mm
\I/T--—*I-F E,=E,=73 GPa
> X Gyy=53GPa
127 mm Vyy = 0.05
38.1 mm toy = 0.19 mm
&«<—508 mm ——>

Figure ES.1

Determine the location in the plate where each of the three stresses o, oy, and 1.,
is maximized.

Since the three stresses do not reach their peak values at the same location, discuss how
one would go about predicting the load F at which the plate would fail (assume that the
ultimate strength values such as X', XC, Y, Y, and S with X strength along fibers or warp
direction for a plain weave fabric and Y strength perpendicular to the fibers or fill
direction for a plain weave fabric, and superscripts t and ¢ tension and compression
respectively, are known).

Determine the maximum values of the through the thickness averaged out-of-plane
shear stresses .., and t,, and their locations for a unit load = 1N. Compare these
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values with the maximum values for o,, o,, and 1., from part (a) and comment on
whether the assumption made in section 5.3.2 that t,,, and 7,, can be neglected
is valid.
5.4 For a composite rectangular panel simply supported all around under pressure loading,
determine if the linear solution for the out-of-plane deflections is sufficient to use in design.
The applied pressure corresponds to an overload pressure case of a pressurized composite
fuselage of almost 1.4 atmospheres or 20 psi. (Note: the units are British (Imperial) in this
problem because you are to use the ESDU data sheets which have charts in these units). The
situation is shown in Figure E5.2.

Figure E5.2

(a) Derive an expression for the deflection at the center of the plate J.

(b) For the case a=b =50 in, D{; =D,, =347 000 in 1b, D;, =110 000 in 1b, Dgg =
120 000 in 1b and = 0.5 in, the solution for ¢ as a function of p, can be found in the
ESDU data sheets. The ESDU solution is a large-deflection, moderate-rotation solution
that will be more accurate as the applied pressure increases. Find the ESDU solution and
plot d versus applied pressure for pressures from 0 to 20 psi for your solution and the
ESDU solution. Compare the two solutions and determine when your (linear) solution
departs significantly from the ESDU (nonlinear) solution. Can your linear solution be
used for the overpressure case of 20 psi? Before you give your final answer on this, keep
in mind that this is a design problem so you do not always have to be accurate as long as
you are conservative (and can afford the associated increase in weight).

(c) In view of your comparison in Exercise 5.4, and the ESDU curves you found, what
exactly does ‘simply supported plate’ mean in this case? (discuss in-plane and out-of
plane boundary conditions that your linear solution satisfies versus the cases that ESDU
provides)
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6

Buckling of Composite Plates

Composite plates under compression and/or shear loading are sensitive to buckling failures.
A typical situation where a stiffened composite plate has buckled between the stiffeners is
shown in Figure 6.1.

Unlike beams, where buckling is, typically, very close to final failure, plates may have
significant post-buckling ability (see Chapter 7). However, post-buckling of composite plates
requires accurate knowledge of the possible failure modes and their potential interaction. For
example, in a stiffened panel such as that of Figure 6.1, the portion of the skin buckling away
from the reader tends to peel off the stiffeners. The skin—stiffener separation mode is fairly
common in post-buckled stiffened panels and may lead to premature failure. Depending on the
application, designing for buckling and using any post-buckling capability as an extra degree
of conservatism is one of the possible approaches. Even in post-buckled panels, accurate
calculation of the buckling load for different loading combinations and boundary conditions is
paramount in the design.

6.1 Buckling of Rectangular Composite Plate under Biaxial Loading

The derivation of the buckling equation follows the approach described by Whitney [1].
A rectangular composite plate under biaxial loading is shown in Figure 6.2.
The governing equation is obtained from Equation (5.16) by setting N,, =p,=p,=p,=0:
O*w o*w O*w O*w

Fw
Dy — +2(D 2D¢g) =———= + D3y —— = N,—
e T 20+ 2De) 555 + DG =Nga +N 55

(6.1)
where w is the out-of-plane displacement of the plate.

Note that the governing equation (6.1) assumes that the bending—twisting coupling terms
D¢ and D¢ are negligible compared with the remaining terms D, D15, D»,, and Dgg. The
plate is assumed simply supported all around its boundary and the only loads applied are N, and
N, as shown in Figure 6.2. Then, the boundary conditions are,

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd



120

Design and Analysis of Composite Structures

strain gage
wires

test machine
frame

stiffeners

buckling pattern half-waves (skin
deflection alternates between away
from and towards the reader)

Figure 6.1 Composite stiffened panel buckling under shear (See Plate 14 for the colour figure)
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Figure 6.2 Rectangular composite panel under biaxial loading
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o? o?
W:Mx:_Dnd—):; Dlzd—v;—O atx=0andx =a

Pw Pw (62)
w=M,=—-Djp— 2 — Dy —— a2 =0 aty=0andy=2»

An expression for w that satisfies all boundary conditions (Equations (6.2)) is,

w= Z ZA,,,,, sm—m ? (6.3)

Substituting in Equation (6.1) and rearranging and defining the plate aspect ratio AR = a/b
gives,

72 Apn[D1im* + 2(D12 + 2Dgs)m?*n*(AR)* + Dyyn*(AR)*] = —A,ma®[Nem* + Nyn® (AR)?)
(6.4)

When buckling occurs, the out-of-plane deflection w of the plate is nonzero. This means that
the coefficients A,,, of Equation (6.3) are nonzero and cancel out in Equation (6.4). It is
convenient to let k= N,/N, and to let the buckling load N, be denoted by —N,, (minus sign to
indicate compression). Then, from Equation (6.4),

2| Dyym* +2(Dy 4 2Dgs)m*n®(AR)* + Dyyn* (AR)*
N, = - (6.5)
a*(m? + kn*(AR)")

The buckling load N, is a function of the number of half-waves m in the x direction and 7 in
the y direction and thus, changes as m and n, which define the buckling mode, change. The
sought-for buckling load is the lowest value of Equation (6.5) so the right-hand side of (6.5)
must be minimized with respect to m and n.

As an application of Equation (6.5), consider a square plate with quasi-isotropic layup
[(45/-45),/0,/90,] with basic ply properties (x parallel to fibers):

E,=137.9GPa
E,=11.7GPa
vy =031

G, = 4.82GPa

tpy = 0.1524 mm

where 1), is the (cured) ply thickness.
Determine the compressive buckling load N, for various values of .
Using classical laminated-plate theory (CLPT) the bending stiffness terms are found to be:

Dy = 65.4kN/mm
D66 =38.6 kN/mm
D =5.40kN/mm
D26 =540 kN/mm



122 Design and Analysis of Composite Structures

1200
1100
1000 +
900 A

800 -

700 A

600 A

500 A

400 A

300 A

200 A

100 <

0

0 100 200 300 400 500 600 700

Plate length a, (mm)

Buckling load No (N/mm)

Figure 6.3 Buckling load of a square quasi-isotropic plate as a function of plate size and biaxial loading
ratio N,/N,

The bending—-twisting coupling terms D¢ and D¢ are less than 15% of the next larger term
so using Equation (6.1) will give accurate trends and reasonable buckling predictions.

For a given value of k, Equation (6.5) is evaluated for successive values of n and m until the
combination that minimizes the buckling load N, is obtained. This load is shown in Figure 6.3
as a function of the plate size and different ratios k.

As expected, increasing the plate size decreases the buckling load, which varies with the
inverse of the square of the plate size. Both positive and negative values of k are shown in
Figure 6.3. Positive values mean that the sign of N, is the same as N,. And since N, is
compressive, k>0 implies biaxial compression. Then, negative values of k correspond to
tensile N, values. As is seen from Figure 6.3, a tensile N,, (k < 0) tends to stabilize the plate and
increase its buckling load. Compressive N, (k>0) tends to precipitate buckling earlier
(material is pushed from both x and y directions) and decreases the buckling load. The case
of k=0 corresponds to uniaxial compression (see below).

It is interesting to note that the minimum buckling load was obtained for n =1 in all cases.
It can be shown [2, 3] that for a rectangular plate under biaxial loading the number of half-
waves n in one of the two directions will always be 1.

Finally, Equation (6.5) also gives negative values of N, when k < 0. This means that N, is
tensile and, since k < 0, N, is compressive. So the plate still buckles, but now the compressive
load is in the y direction while the load in the x direction is tensile.

6.2 Buckling of Rectangular Composite Plate under
Uniaxial Compression

This case was derived as a special case in the previous section when k = 0. The buckling load
when the plate is under compression is given by Equation (6.5) with k set to zero:

7'[2 D11m4 + 2(D12 + 2D66)m2n2(AR)2 +D22n4(AR)4

N() = a2m2 (66)
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Figure 6.4 Dependence of buckling load on plate aspect ratio

The right-hand side is minimized when n =1, i.e. only one half-wave is present in the
direction transverse to the applied load. Setting n =1 and rearranging,

n’ 2 2 (AR)4
N, = a_2 Dyym” + 2(D12 + 2D66)(AR) + Dy 7 (6.7)

The value of m that minimizes the right-hand side of Equation (6.7) gives the buckling load
of a simply supported rectangular composite plate under compression.

As can be seen from Equation (6.7), in addition to the bending stiffnesses Dy, D1, D7;, and
D¢, the buckling load is also dependent on the aspect ratio (AR = length/width) of the plate.
This dependence is shown in Figure 6.4 for a plate with fixed length 508 mm.

As is seen from Figure 6.4, as the aspect ratio increases, the number of half-waves m in the
direction of the load increases. Typically, for each m value, there is a value of AR that
minimizes the buckling load. Points of intersection of curves corresponding to successive m
values indicate that the plate may buckle in either of the two modes (differing by one half-wave)
and have the same buckling load. In practice, due to eccentricities and inaccuracies due to
fabrication, these cusps cannot be reproduced. The plate will tend to buckle in one of the two
modes and will not switch to the other.

The results in Figure 6.4 correspond to a quasi-isotropic layup (45)/(0/90)/(£45) with
D matrix values as shown in the same figure. The laminate thickness for this laminate is
0.5715 mm. It is of interest to compare with an aluminum plate of the same thickness, length
and aspect ratio. This is done in Figure 6.5. Note that the buckling loads for aluminum can be
obtained using the same Equation (6.7) with proper redefinition of the D matrix terms.

As is seen from Figure 6.5, the buckling load of an aluminum plate of the same thickness
can be as much as 20% higher (for AR ~0.5) than that of an equal thickness quasi-isotropic
composite plate. Based on this result, to match the buckling load of the aluminum plate at the
worst case (AR =0.5) the quasi-isotropic plate thickness must be increased by a factor of
(1.2)"3. The one-third power is because the D matrix terms are proportional to thickness to the
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Figure 6.5 Comparison of buckling loads for equal thickness aluminum and quasi-isotropic composite
plates (length = 508 mm)

third power (see also Equation 3.47). It is recognized here that typical composite materials are
not available at any desired thickness, but only in multiples of specific ply thicknesses.
Therefore, this calculation would have to be rounded up to the next integral multiple of ply
thicknesses. Assuming, for now, continuity of thickness for the composite plate so that
preliminary comparisons can be obtained, the required increase in thickness for the composite
plate would be

thickness increase = 1.2/ = 1.063

Therefore, for the same size plate, the weight ratio between a composite (graphite/epoxy)
and an aluminum panel is

Were 0582058 _0616

e (6.8)

/
density \thickness
ratio ratio

Equation (6.8) implies that a quasi-isotropic composite with the same buckling load under
compression as an aluminum plate, is approximately 62% of the aluminum weight or results in,
approximately, 38% weight savings. It is important to keep in mind that this result assumes
that any thickness is achievable with a composite material (which is not true, as mentioned
above) and that there are no other factors that may affect the design such as material scatter,
environmental effects, and sensitivity to damage. Accounting for these effects tends to decrease
the weight savings.

6.2.1 Uniaxial Compression, Three Sides Simply Supported, One Side Free

The discussion so far in this section has been confined to a simply supported plate. The effect
of the boundary conditions can be very important. As a special case, of interest in future
discussion (Section 8.5 on stiffener crippling) the case of a rectangular composite plate under
compression with three sides simply supported and one (not loaded) side free, is discussed here.
The situation is shown in Figure 6.6.
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Figure 6.6 Plate under compression with one (unloaded) edge free and three edges simply-supported

An approximate solution is obtained following the same steps as for the plate simply
supported all around. Analogous to Equation (6.3) an expression for w is assumed in the form,

A
W= Z ZA’”” sianMSin nbny (6.9)

where A is a parameter appropriately selected to satisfy the boundary conditions of the problem.
The governing equation is the same as (6.1) with N, =0:

O*w *w *w 0w
Dy —+ +2(D 2D¢s) === + Do — =Ny — 6.10
pasw +2(Dix + 66)8x28y2 + D oy ) ( )
The boundary conditions for Equation (6.10) are
wx=0)=wx=a)=0
w(y=0)=0
O*w 0w
Mx:—D”W—Dua—yz:O at x=0,a (6.11)
O*w 0w
Myi—Dlzﬁ_DzzaiyZ:O at y:(),b

The value of A must be chosen such that w given by Equation (6.9) is free to attain any value
at the free edge y = b. For example, if A=1, w at y="> is zero and the simply supported case
discussed earlier is recovered. A plot of w as a function of y for different 4 values is shown in
Figure 6.7.

- A=1/2
in Anzy A=1

N b
1=

A=5/12

0.5 1 y/b

Figure 6.7 Shape of w deflection for various values of the parameter 4
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It appears from Figure 6.7, that A values in the vicinity of 1/2 would give a reasonable
representation of w. It should be noted that 4 = 1/2 gives a slope of w at y =b that equals zero
which is unlikely to be the case since w is arbitrary at y = b and there is no reason for its slope
to be equal to zero all along the edge y =b.

The results obtained with this expression for w are approximate for another reason: The last
of the boundary conditions (Equation 6.11), is not satisfied. The moment M, aty = b will not be
zero and its value will depend on A.

Following the same procedure as for the simply supported case above, the expression for the
buckling load corresponding to Equation (6.7) is,

’ (AR)"

T
No=— D11m? 4 2(D12 4+ 2Dgs) 2> (AR)* + Doy 2

— (6.12)

The exact solution to this problem is [4]

Dgs 1 Dy
N, = 122% 4 Yt 6.13
b (AR)* V Dy (6.13)

The approximation of Equation (6.12) and the exact solution (6.13) are compared in
Figure 6.8 for the same quasi-isotropic layup (45)/(0/90)/(£45) of Figure 6.4.

The approximate solution is very close to the exact answer especially for A=5/12. In
particular, for infinitely long plate, the exact solution (6.13) becomes

12D
b2

Nyeris = (6.13a)

and the approximate solution becomes

4n?
ﬂ2D66 + —2D12 (6.12a)

Nierie = ?/L
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Figure 6.8 Comparison of approximate (two /4 values) and exact solutions for buckling load of a
rectangular composite panel under compression with three simply supported edges and one (unloaded)
edge free
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Note that since the plate is infinitely long, the two expressions are only dependent on the plate
width b now.

Setting b = 508 mm, for 4 = 1/2 the two answers differ by 46.9%, but for 4 =15/12 the two
differ by only 12.5%. Obviously, if an exact solution to a problem such as the one under
discussion exists and does not require expensive computation (e.g. solution of a large eigenvalue
problem), it will be preferred over an approximate solution. Unfortunately, in most cases,
approximate solutions may be all that is available during design and preliminary analysis. The
example given is meant to show the potential and the drawbacks of approximate methods.

6.3 Buckling of Rectangular Composite Plate under Shear

A rectangular composite plate under shear is shown in Figure 6.9. As before, the layup of the
plate is assumed symmetric (B matrix =0) and with negligible bending—twisting coupling
(D16~ D36~ 0). The approach to determine the buckling load parallels the Galerkin solution
given in [5].
The governing equation is again derived from Equation (5.16) with Ny=N,=p,=p, =
p.=0:
M*w M*w M*w Pw

Dy —+ +2(D 2D¢6) === +Dypy—— = 2N,y ———
11 +2(Dy2 4 2Dgs) + Dy Oy )axay

ox* Ox20y? (6.14)

In the Galerkin approach, an assumed expression of the solution is substituted in the
governing equation which, in turn, is multiplied by characteristic (usually orthogonal)
functions and then integrated over the domain of the problem. This results in algebraic
equations for the unknown coefficients in the assumed expression for the solution and, at the
same time, minimizes the error [6].

To solve Equation (6.14) by the Galerkin method, the following expression for w is used
which is the same as Equation (6.3):

w= Z ZA,nnsin@sin% (6.3)
a

where A,,,,, are unknowns to be determined.

As the terms in Equation (6.3) comprise orthogonal sine functions, the same characteristic
functions are used. Multiplying Equation (6.14) by the characteristic functions sin (mnx/a)sin
(nmy/b) and integrating gives

—~  Nxy X

QD

Figure 6.9 Rectangular composite plate under shear
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*w Fw w Pw MRX . Nmy
Dy, — +2(D 2D¢6) === + D ——+ — 2N,y ———|sin——sin——dxdy = 0
JJ{ 1 ox +2(Di2+ 66)6x23y2 + 02 oyt Y Oxdy s a s b Y

(6.15)

where the integrations are carried over the entire plate (0 <x <a and 0 <y <b)

Note that each set of m,n values gives a different equation to be solved where
all unknowns A,,,, appear. Substituting for w from Equation (6.3) and carrying out the
integrations gives

7 [D, \m* +2(Dys +2Dgs)m*n*(AR)? + Dypn* (AR)qun —32mn(AR) BN, SN T4 =0

ij

D) —p) for m+j odd and n+j odd (6.16)

T =

T;; =0 otherwise

with AR = a/b the aspect ratio of the plate
Equation (6.16) uncouples to two independent sets of homogeneous equations, one for
m + n odd and one for m + n even. The form of each set of equations is:

with [E] a coefficient matrix with ijth entry given by

Ej = —32mn(AR)*b*N,, T;; +
R A (6.18)
7| Dyym* 4 2(D12 + 2Dgs )m*n*(AR)” + Dyan* (AR)* | 6(m — i)d(n — j)

where 0(m —i)=1 when m=i and O otherwise, and d(n —j)=1 when n=j and zero
otherwise.

Equations (6.17) have coefficients A,,, that are a function of the shear load N, as shown in
Equation (6.18). For each of the independent sets of Equations (6.17), a nontrivial solution
(A, #0) is obtained when the determinant of the coefficient matrix is set equal to zero,

=0
0

det[E]m+n:0dd
det[E]m+11:even =
Each of these two equations results in an eigenvalue problem where the eigenvalue is the
buckling load N,, and the eigenvector gives the buckling mode. The lowest eigenvalue across
both problems is the sought-for buckling load. For symmetric and balanced (specially
orthotropic) plates, the eigenvalues appear in pairs of positive and negative values, indicating
that if the load direction changes the plate will buckle when the applied load reaches the
same magnitude.
The approach just described gives very accurate buckling loads, provided sufficient terms in
Equation (6.3) are used and an accurate eigenvalue solver is available. The following is a less
involved, approximate method to obtain the buckling load under shear.
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For 0.5 < a/b < 1, the buckling load is given by
b
@

nyEcr =
\/14.28 40.96  40.96

with (6.19)

D1? + D1D2 * D1D3

4 2
D1 =Dy, +D22(%> +2(D12+2D66)(%)
)2

4 2
a a
D3 =81Dy; +D22<E> + 18(D12 4 2D¢s) (E)

4
D2=Dy, +81D22(%> + 18(D12+2D66)(

SR

For a/b =0, use the results of the next section for long plates. Finally, for 0 <a/b < 0.5,
interpolate linearly between the result for a/b = 0 and a/b = 0.5. The accuracy of this approach
depends on the bending stiffnesses of the plate and its aspect ratio a/b, and ranges from less than
one percent to 20% for typical layups used in practice.

6.4 Buckling of Long Rectangular Composite Plates under Shear

The Galerkin-based derivation of the previous section can be simplified significantly if one
of the plate dimensions is long compared with the other. In such a case, the long dimension
does not affect the buckling load and the buckling pattern is confined over a length L,
which is significantly lower than the panel long dimension. The situation is shown in
Figure 6.10.

Following Thielemann [7], and assuming a simply supported plate, an expression for the out-
of-plane displacement w can be assumed in the form:

w = wy sin ™ sin 7Y A0 %) (6.20)
a L
T y
L _>‘ Odegrees
X v

Figure 6.10 Buckling pattern in a long rectangular plate under shear
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This expression satisfies the conditions that w is zero along the long sides (x =0 and x =a)
and along lines inclined by an angle « to the x axis separated by distance L, as shown in
Figure 6.10. It should be noted that in the actual buckling pattern these inclined lines of zero w
are not perfectly straight as Equation (6.20) implies, but the error in assuming perfectly straight
lines is small.

The buckling load is obtained by minimizing the energy stored in the plate. It is assumed
that the laminate is symmetric so the internal potential energy (Equation 5.63) decouples in a
membrane (in-plane) portion (the terms involving the A matrix) and a bending (out-of-plane)
portion (the terms involving the D matrix). For the buckling problem under consideration,
only w is of interest and, therefore, only the terms involving the D matrix are used. In addition,
it is assumed that D¢ = D¢ =0. Then, the internal potential energy has the form:

1 a2w 2 62W azw 82W 2 82W 2
U= 3 JJ {Dll <_6x2> +2Dy; Fe) _8y2 ~+4Dgs <_8x8y) + Doy (8—))2> dxdy (6.21)
A

Using Equation (6.20) to substitute for w in Equation (6.21) and carrying out the integrations
gives:

2

2_4 2 24 2_4 2
W 1 tan” o woT W 1 tan” o
D 2 — 4+ — tan® o 2D, —2 —
Ty a2+ 2 + 2L +2D12 a2 a2+ 2
y_
2 24 24 24
Dy 2o apge [ Lol f Yo a2y,
2y 66\ 4q212 " 4r1#

which, after rearranging and simplifying, becomes:

Dy (1+ 6 tan” xAR? +tan* xAR*) +2(Dy 4 2Des ) (AR* + AR* tan® o) +
Dy AR?

2,4
_w,m L
8a3

(6.22)

where AR =a/L
Now the work done by the applied load N,, is given by Equation (5.68) with N, =N, =0

=3[ () ()

Using Equation (6.20) to substitute for w and carrying out the integrations gives:

ZAR 2
W = %tan 0Ny (6.24)

Minimizing the total potential energy

M=U-W (6.25)
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with respect to the unknown coefficient w, implies,

on
ow,

0 (6.26)

which, using Equations (6.22) and (6.24) results in:

o i [P (1+ 6 tan® xAR? + tan* xAR*) +2(Dy + 2Dgs) (AR? + AR* tan” o) +
8a3

Dy AR?

2w,AR7? tan o
— foy =0 (6.27)

The obvious (trivial) solution to Equation (6.27) is w, = 0 which corresponds to the in-plane
pre-buckling situation (out-of-plane displacement w is zero). For w, # 0, N, must attain a
critical value which corresponds to the buckling load. Therefore, solving Equation (6.27) for
Ny, = Nyyerie gives the buckling load:

2 Dy (1 + 6tan? 0AR? + tan* zAR*) +

S S— (6.28)
2AR’@ an o | 5(Dy, + 2Dgq) (AR? + AR* tan® ) + Dy AR?

Nrycrit =

Equation (6.28) shows that the buckling load is a function of the angle  and the length L
through the aspect ratio AR. Since the buckling load is the lowest load at which out-of-plane
displacements w are permissible, the values of tan « and AR must be determined for which the
right-hand side of Equation (6.28) is minimized. This is done by differentiating with respect
to the two parameters tan « and AR and setting the result equal to zero. Then,

anycrit Dll 14
9(AR) Dy tan* o+ 2(Dyp + 2Dgg ) tan? o + Doy ( )
and
Nx cri
ONsyert _ 0 = 3D;; AR tan* o + (6D AR? +2(Dy, + 2Dg) AR" ) tan” o
3(tan OC) (630)

—(D112(D12 +2Des)AR? + D ARY) =0

Equations (6.29) and (6.30) are solved simultaneously for AR and tan «. The results are
substituted in Equation (6.28) to obtain the buckling load Ny

The accuracy of this approach is compared with a solution obtained by Seydel [8] where the
governing differential equation (6.14) is solved as a product of an exponential function in y and
an unknown function of x. For the comparison, a (0/90)g laminate with basic ply properties:
E,=E,=68.9 GPa, v,,=0.05, G,, =4.83 GPa, and ply thickness =0.1905 mm is selected.
The result is shown in Figure 6.11 where the two methods are shown to be in excellent
agreement (largest difference is less than 7%).
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80 +
70 Present =
60 a I\
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Plate dimension a (mm)

Figure 6.11 Buckling load of a long simply supported plate under shear: comparison of two approaches

6.5 Buckling of Rectangular Composite Plates under Combined Loads

A composite plate under compression and shear is shown in Figure 6.12. Its edges are assumed
to be simply supported.
The out-of-plane displacement w is assumed to be of the form

2 2
W= w sin ™ sin = —&—wzsinﬂsinﬂ (6.31)
a b a b

The two terms in the right-hand side of Equation (6.31) are two of the terms in the w
expressions in previous sections (see Equation 6.3). Equation (6.31) satisfies the simply
supported boundary conditions on w,

wx=0)=wx=a)=0
w(y=0)=w(y=1>0)=0

and the fact that the bending moments at the plate boundary are also zero

Pw Pw
M,=-Dy1— —Dp—=0
x 11 2 12 8y2
Pw Pw
M,=—-Di,— —Dy—=0
y 12 axz 22 (9y2
Nxy «
T — = —
- —
- =
b - = ss -—
JL — ss “—
_> 4—
Nx ~ Nxy Nx
a
y

Figure 6.12 Simply supported plate under compression and shear
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However, substituting in the last two of Equations (5.3) shows that Equation (6.31)
results in nonzero transverse shear forces V (= Q, — OM,,/Ox and Q, — OM,,/0y) at the
plate boundary. This solution is, therefore, an approximation since there are no transverse
shear forces applied on the plate boundaries. In an energy minimization approach, which
is the method that will be used in this case, it is not necessary to satisfy the force
boundary conditions when the problem is formulated in terms of displacements. This was
discussed in Section 5.4. The more terms are used in the w expression (6.31) the higher
the accuracy and the force boundary conditions will, in the limit, be satisfied in an
average sense.

Minimization of the total potential energy of the plate will lead to two equations for the two
unknowns wy and w; in the assumed expression for w. It is important to note that for shear
loading cases, assuming a single term for w will not work (see Exercise 6.5). The assumed
shape using one term is quite different from the plate deformations caused by the shear
loading when the plate buckles. At least two terms are necessary to begin capturing the
buckling mode.

For a displacement-based approach, Equations (5.63) and (5.68) can be used. Since the plate
is symmetric (B matrix terms are equal to zero) the in-plane and out-of-plane contributions
to the energy decouple. To determine the out-of-plane displacement w, therefore, the total
energy to be minimized, strain energy minus work done, has the form:

Pw\? 0w Pw Pw\? 9w \?
D11<TW> +2D1 = d +D22< yw) +4D66<—M;> +

) Ox? ox2 Oy? 0y? 0x0
ch—” dxdy
2 D Pw Pw 4 Pw 0w
‘GWax—aer 265—}123)6—3)) (6.32)

1 ow owow
5[ (8x> aty— v oy M

It is further assumed that the bending-twisting coupling terms D1~ Dy~ 0.
Equation (6.31) is substituted in the expression (6.32) for Il.. As an example, the first term is
shown below:

82_w 2:W2”_4 l—coszﬂ l—cos22 —&-wzﬁ 1—cos4ﬂ l—cos@
Ox2 U apt a b * 4pt a b

4 4n*1 X 3mx Ty 3wy
wiwy, —— | cos— —cos— | | cos—— —cos——
b g a a b b

with similar expressions for the remaining derivatives present in Equation (6.32).
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Carrying out the integrations gives

ab

Pw\* ,4nt
JJ(W) dxd _Wl ab+w2 a—ab
00
ab

Pw 2 -l 44
“(aﬁ) dsdy = wi gz ab+ e’ b
00

ab

Pw Pw ’ 7 , 4n 4
[] (G Byt st = i e 0 e
00

8_w8_w dxd _wlwz77:2 2_a+2_a %_& +w1wzn2 %__ 2b+2b
Ox Oy YT 3T 7)) \Gr & 2ab  \3m 3n

So the final form for I1, is

S — s
S —

4 4 4 4
2 T 241 ) T ,4n
1 Pu {W' @HWZ?% +2(D1a2+2Dec) [WI 4ab +W2%] "
c 2 4 247'64
Doa Wi gyza+wya (6.32a)

N, 27I2 2n2 16 16
_ it Z bl —kN _ )=
> {wl 4ab—|—W2 P b|—kN,wiw, 9 9

where, for simplicity,

Ny

Yk

N,
and N, = N, the value of N, which, simultaneously with N,, = kN, causes buckling of the
plate.
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The energy expression (6.32a) is minimized with respect to the unknown coefficients wy
and w,. This leads to,

oIl,

=0
aWI
OTl,
=0
8W2
and substituting,
1 wi*h 7wy wita wit?b 32
<D 2(D 2D D —-N, —kN,w, =0
2 Pn—a t (D12 +2Dss) 2, TP2 50 1a T w
1 8wo*b 8wy 8womta wom?b 32
<D 2(D 2D D —N,—— + —kN,w; =0
7\ Pn a3+(12+ 66)ab+22 b g kNowt
(6.33)
Setting, for simplicity,
1 b nt n*a
Ky =-|Dy— +2(D 2D¢6) — + Doy —
1 4[11a3+(12+ 66)ab+ 22[93]
Equations (6.33) can be recast in the following generalized eigenvalue problem:
n’b 32
Kl 0 w1 4a 9 w1
=N, (6.33a)
0 16K | | wa 32, n*b W)
9 a

which, with terms appropriately defined, is of the form

Ax=oaBx

The solution is obtained by premultiplying both sides of the equation by B~! the inverse of
B to obtain the standard eigenvalue problem,

B 'Ax=ualx

where [ is the identity matrix.
With

b 32

9 4da
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the standard eigenvalue problem has the form:

2
1632 )

a 9 wi N 71'4b2_ gk i Wi
32 7%b wy [ %\ 442 9 K, | w2
—k —16

9 da

o

where the quantity premultiplying the vector {w; w,} " on the right-hand side is the eigenvalue o..

By bringing the right-hand side to the left of the above equation, a system of homogeneous
equations is obtained. For a nontrivial solution, the determinant of the resulting left-hand side
must be set equal to zero. Then, the eigenvalues are obtained as solutions to

det [B—l A— oc[] =0
which leads to the following equation for the eigenvalue o:

2p 47%b 12(32
b N (A, 5 (3)k2:0
a a 81

Solving for o and recovering N,, leads to

a? at
(Dn +2(D12 4 2D¢s) 2 + Dy —)
7

b4

2
Ny, =—
a? 8192 a* ,

h 272
81 b2n?

65536 a2
T 2
51\/9+ 3 n4b2k] (6.34)

Of the two solutions given by Equation (6.34) the one giving the lowest buckling load (in
absolute value) is selected.

Before proceeding with the general case where both N, and N,, are nonzero, two special
cases, those of pure compression and pure shear, are examined. This will give insight to how
accurate or inaccurate this two-term solution is.

For pure compression, N,, =0 and, therefore, kK =0. Substituting in Equation (6.34), the
buckling load under compression is given by

n? a’ a*
N, :Z <D11 +2(D12+2D66)ﬁ +D22F) (635)

Comparison of this expression with the general expression (6.7) for buckling under
compression shows that the current expression coincides with the exact solution given by
that equation when the number of half-waves m parallel to the loading direction equals 1. If the
panel aspect ratio is large and/or the difference in bending stiffnesses D;; and D, is large, the
present approximate solution will depart from the exact solution. The approximate expression
just derived and the exact solution are compared in Figure 6.13. In this comparison, the bending
stiffness values were taken to be D;; = D,, =0.66 Nm, D, =0.47 Nm, Dgs = 0.49 N m, and
D¢ = Dy5=0. Asis seen from Figure 6.13, the two solutions are identical up to aspect ratios of
approximately 1.5. For greater aspect ratios, the approximate solution gives higher buckling
loads than the exact solution.
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35 ¢ .
3 Buckling load = =
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Figure 6.13 Approximate and exact buckling loads as a function of panel aspect ratio

For pure shear, the ratio k= N,,/N, is allowed to become large (implying N, is negligible
compared with N,,). Then, Equation (6.34) simplifies to

a a*
2 (Dn +2(Dj2+2Dg¢s) »” + Dy E)
Nok = :i:a—2 " a (6.36)
9 bn?
By recognizing that Nok = N,, and rearranging,
9n*b a? a*
Nyeit = + Sy (Du +2(Di2 4 2D¢s) 2 + Dy, ﬁ) (6.37)

Equation (6.37) gives an approximate expression for the buckling load of a rectangular
composite panel under shear. The &+ sign indicates that buckling can be caused by either
positive or negative shear loads. This expression is, typically, 27-30% higher than the exact
solution one can obtain using the procedure in Section 6.3. The accuracy of Equation (6.37) can
be improved if more terms are included in Equation (6.31) at considerable increase in algebraic
complexity [9].

For the combined load case, Equation (6.34) will provide an approximation to the buckling
load. However, for combined loading, the accuracy of this equation is higher than what was
obtained for the compression and shear acting alone, as was seen in Equations (6.35) and (6.37).
The reason is that, even though the individual buckling loads may be approximate, the
interaction between the two loading types is accurately captured by Equation (6.34).
A comparison of Equation (6.34) with the interaction curve [10] that has been found to be
very accurate for this type of load combination,

N, +< Ny )2 . (6.38)

N xcrit N xycrit

is shown in Figure 6.14. The approximate and ‘exact’ solutions are very close to each other.
Interaction curves such as the one shown in Figure 6.14 can be very useful in design. They
provide a means for determining: (a) if a panel fails under combined loads N, and N,,; or (b) the
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Figure 6.14 Interaction curve for buckling of composite rectangular plate under combined compression
and shear

maximum allowable in one direction (compression or shear) given the applied load in the other.
Load combinations inside the interaction curve imply that the panel does not buckle. Load
combinations corresponding to points outside the interaction curve correspond to a panel that
has buckled already. As an example, consider a case where the applied compressive load is half
the buckling load of the panel when only compression is applied (NV/Nc; = 0.5). This point
gives the x coordinate in Figure 6.14. The corresponding y coordinate is (approximately) 0.67.
This means that if the applied shear load is less than 67% of the shear buckling load when shear
acts alone, the panel will not buckle under this load combination.

6.6 Design Equations for Different Boundary Conditions
and Load Combinations

Approaches similar to those presented in the three previous sections can be used to obtain
expressions for the buckling loads of rectangular composite panels with different boundary
conditions and/or applied loads. A brief summary for the most common cases [4, 10-12] is
given in Table 6.1. Note that, in all cases, in Table 6.1, the panel is assumed to have no
bending—twisting coupling (D¢ = D, =0).

As an example of using Table 6.1, examine the effect of various boundary conditions on a
square composite plate under uniaxial compression. The side of the plate is a and the bending
stiffnesses are D1, = D5, = 660.5 N mm, D, =467.4 N mm, and Dgs = 494.5 N mm. Normali-
zing the results to the case of a plate simply supported all around, the results shown in
Figure 6.15 are obtained. The notation CCL implies the loaded sides are clamped. The notation
CCU implies the unloaded sides are clamped. An analogous notation scheme is used for the
simply supported boundary condition.

As is seen from Figure 6.15, the clamped-all-around plate has the highest buckling load. As
expected, the simply supported all-around plate has the lowest buckling load and the clamped/
simply supported combinations lie in between the two extremes. It should be noted that, unlike
beams where the ratio of clamped to simply supported buckling load is 4, for plates, the
corresponding ratio is significantly less (less than 2.5 for the case of Figure 6.15).
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Figure 6.15 Effect of boundary conditions on buckling load of a square composite plate under compression

Exercises

6.1

6.2

Consider a composite plate with bending stiffnesses D1, D12, D25, and Dgg (D16 = D26 =0)
and dimensions a, b as shown below (Figure E6.1). Use the derivation shown in Section 6.5
and assume the compression load N,=0. Verify the approximate expression for the
buckling load under shear shown in that section by deriving the new 2 x 2 eigenvalue
problem and solving for all the eigenvalues. What does the sign of the eigenvalue mean?
(Hint: start either from the energy expression or from the two equations obtained after
differentiation, and set N, =0).

One of the spars of awing is 101.6 cm deep. A bending moment M = 11290.3 N m s acting
on the spar web (Figure E6.2).

The manufacturer of the spar has automated the process of laying up the following
stacking sequence: [45/-45/0/90/0/-45/45] with the intent of simply stacking up multiples
of this base laminate everywhere to keep the fabrication costs low. The basic material
properties are:

E|;=131GPa
E22 =11.37 GPa
G12: 4.82 GPa
i1,=0.29

tpry = 0.1524 mm

— Nx

T — «— —>X
— SS Pra—
— <
b —» |[5S ss -«
R — SS -—
Nx Nx NXx

<—— a

(Nx=0)

Figure E6.1 Composite plate under shear



142 Design and Analysis of Composite Structures

M M

0 dir
101.6cm

Figure E6.2 Spar web under in-plane bending moment M

To keep the number of basic laminates stacked together in the spar web low, the
manufacturer/designer intends to use ribs to break up the spar. The rib spacing is a.

Create a graph that shows how the maximum allowable rib spacing a varies with the
number n of basic laminates used for the spar not to buckle. What is the value of a when
n=73, i.e. when the web layup is: [45/-45/0/90/0/-45/45]5?

6.3 Prove that for a simply supported square composite panel for which D = D,,, the number
of half-waves m into which the panel buckles under compression is always 1. What should
the condition be between Dy, and D,, for the square panel to buckle in two half-waves?
(Assume D= D»=0.)

6.4 Arectangular composite plate with simply supported sides all around is under compression
and shear. A Gr/E unidirectional composite material is available with basic (single ply)

properties:
Ty

E, =137.9GPa
E, =11.72GPa
Ve = 0.29

Gy, = 5.171 GPa

tply = 0.1524 mm

Nxy y

T > SS F )

., —

., —
b Ss ss -—

., o —

., —

Nx ~ Nxy Nx

a

y
a=558.8 mm; b=304.8 mm

Figure E6.3 Composite plate under combined loading



Buckling of Composite Plates 143

“Gamax “Gamax

AA

O,
amax Camax

Figure E6.4 Composite plate with linearly distributed edge stress

The application is a wing skin (bending upwards as shown in Figure E6.4) with the
following four loading conditions (note that here, Nx >0 means compression):

Load case 1 2 3 4
N, (N/mm) 4.99 31.54 23.84 34.34
N,, (N/mm) 0.50 25.23 35.76 171.69

For ease of manufacture you want to only use layups of the form [45,/-45,/0,/90,].

(a) If the Dj; terms of the D matrix for the basic layup [45/—45/0/90]; are known and
denoted by Dy, determine the Dj; for any value of n as a function of Dy,

(b) Useyourresultin (a) to determine the lowest value of n such that all load conditions are
met without buckling of the plate. Do not use any knockdowns for environment,
material scatter or damage.

(c) Foryour final answer in (b), determine the maximum applied stress 0,m.x for alinearly
distributed applied normal stress as shown in Figure E6.4 that causes buckling of

the plate.

6.5 Use only the first term of Equation (6.31) to determine the buckling load of a composite
rectangular plate of dimensions a x b under shear. Do this by: (a) energy minimization
and (b) solution of the governing equation. Discuss the merits of this approach and
its disadvantages.
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Post-Buckling

Post-buckling is the load regime a structure enters after buckling (Figure 7.1). In several
situations, dictated by robust design practices, externally imposed requirements, or even the
degree of comfort a designer is willing to accept, especially for single load path critical
structures, buckling may be taken to coincide with final failure. However, in general, there may
be considerable load capacity beyond buckling before final failure occurs. This is true in
particular for plates, which, in contrast with beams (Figure 7.2) may have significant load-
carrying ability beyond buckling. This ability is often capitalized on to generate designs of
lighter weight.

As is seen from Figure 7.2, after buckling (P/P.. > 1) the center deflections of a beam
increase rapidly compared with those of a plate. This means that, in a beam, high bending
moments develop early in the post-buckling regime and will lead to failure. In a plate on the
other hand, the deflections increase more slowly with increasing load and the panel can
withstand significant excursion in the post-buckling regime before the resulting bending
moments become critical.

This ability of plates to withstand load in the post-buckling regime without failing makes
such configurations very attractive for design. Thinner skins can be used in wings and
fuselages, resulting in lighter structure. However, designing in the post-buckling regime
requires knowledge and accurate quantification of failure modes that are not present below the
buckling load. One such failure mode is the skin—stiffener separation in stiffened panels shown
schematically in Figure 7.3.

The buckled pattern consists of a number of half-waves as shown in Figure 7.3. Depending
on which way the skin deforms locally, there will be locations such as the one shown in
Figure 7.3 where the skin tends to peel away from the stiffeners. Out-of-plane normal and
shear stresses develop which may exceed the material strength and lead to separation and
final failure.

Even if the out-of-plane stresses that develop during post-buckling do not lead to
skin—stiffener separation under static loading, they may lead to the creation of delaminations
under repeated loading. Designing post-buckled panels that perform well under fatigue loading
requires accurate knowledge of internal loads and the use of geometries and layups that delay
the creation and growth of delaminations.

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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Figure 7.1 Post-buckled curved composite stiffened panel (See Plate 15 for the colour figure)

- | ZEEE

Weenter

Figure 7.2 In-plane load versus center deflection for plates and beams

skin/stiffener
separation

Figure 7.3 Post-buckled skin between stiffeners in a stiffened panel
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The tendency for the stiffeners to separate from the skin or, more generally, for delaminations
to form, is higher for higher values of the ratio of the applied load to the buckling load. This ratio
is referred to as the post-buckling ratio (PB) and, for post-buckled structures, is greater than 1.
The PB ratio to be used in a design must be carefully selected, especially for load situations that
include shear. Note that the post-buckling ratio should not be confused with the post-buckling
factor defined later in Section 7.2.

At the conservative end of the design spectrum, PB is not allowed to exceed 1.5. This means
that the structure would buckle at limit load and fail at ultimate load. This protects against
fatigue loading as the fatigue loads are lower than the limit load and, therefore, the structure
does not buckle repeatedly during service. At the other end of the design spectrum, PB values
greater than 5 are very challenging because the loads in the post-buckling regime, both static
and fatigue, are significant and it is hard to design efficient structure that will not fail after a
relatively low number of cycles.

In a typical structure, such as a stiffened panel, a number of components or structural details
may buckle. Selecting the sequence in which the various components of a structure will buckle
is crucial for creating a lightweight design. For example, for the stiffened panel of Figure 7.4 the
following buckling modes can be identified: (a) panel buckles as a whole, the stiffeners serve to
mainly increase the bending stiffness of the panel; (b) skin between stiffeners buckles and
stiffeners remain straight, stiffeners carry significant axial loads; (c) stiffeners buckle as
columns; and (d) stiffener flanges buckle locally (crippling).

The panel in Figure 7.4 is loaded under compression, but the buckling modes mentioned are
valid, with minor changes for any load situation that may induce buckling. For a panel under
compression, it is usually more efficient to carry most of the compressive load by the stiffeners.
The stiffener cross-sectional area required to carry compressive load is a smaller fraction of the
total weight than the skin cross-section required to carry significant amounts of compressive
load. This means that the stiffeners must remain straight (no column buckling and no crippling
see Sections 8.3 and 8.5) and the panel should not buckle as a whole which would force the

AARAR,

4 :

frame

stiffeners

= skin

frame —

i R
A 44444

Figure 7.4 Stiffened panel under compressive load
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stiffeners to bend out-of-plane and lose axial load capability. Therefore, usually, the buckling
scenario for a post-buckled panel under compression requires that buckling of the skin between
stiffeners happens first.

For a panel buckling under shear load, forcing the skin between stiffeners to buckle first is
also desirable. For judiciously chosen stiffener spacing and with sufficient bending stiffness in
the stiffeners, the buckling load of the skin between stiffeners can be increased or, more
importantly, the amount of skin thickness required to have the skin between stiffeners buckle
at a required PB ratio can be decreased. This decrease in skin thickness decreases the
panel weight.

After the skin between stiffeners buckles the load can be increased until the desired PB value
is reached. At that point the next failure mode occurs which can be any of the buckling and
failure modes mentioned above, or material failure of any of the constituents. The preferred
failure mode is skin material failure and/or crippling of the stiffeners. (Global) buckling of the
panel as a whole or column buckling of the stiffeners is avoided because this would overload
adjacent panels in the structure and might lead to catastrophic failure. Local skin or stiffener
failures still leave some load-carrying ability in the panel and the load redistributed in adjacent
panels is less. This results in a more damage tolerant overall structure.

In addition to the failure modes and their sequence, the boundary conditions of the panel as
a whole, but also of the skin between stiffeners, can be very important and, at least for the
skin, is directly related to when skin buckling occurs. As was shown in Section 6.6, the
boundary conditions can increase the buckling load by more than a factor of 2 (clamped versus
simply supported conditions in Figure 6.15). This is directly related to the stiffener cross-
section selected. A schematic of the two extreme behaviors is shown in Figure 7.5

In both cases in Figure 7.5 it is assumed that the stiffeners have sufficient bending stiffness
to stay straight and force the panel to buckle between them. This means that they act as
panel breakers (see Section 9.2.1 for related discussion). In Figure 7.5a the torsional rigidity
of the stiffeners is negligible (open cross-section stiffeners). As a result, they rotate with
the skin locally and the corresponding boundary condition they impose is that of a simple
support (zero deflection but nonzero rotation). In Figure 7.5b, the closed-cross-section
stiffeners have very high torsional rigidity and they locally force the skin to remain nearly
horizontal. In such a case, the imposed boundary condition approaches that of a fixed support
(zero deflection and slope).

e S S

(a) Stiffeners provide simple support

Q/\D\_/A/\O

(b) Stiffeners provide fixed support

Figure 7.5 Skin buckling between stiffeners — effect of stiffener support
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Figure 7.6 Square composite panel under compression

7.1 Post-bucking Analysis of Composite Panels under Compression

The specific case of a square simply supported plate with three edges immovable and one
loaded in compression (Figure 7.6) will be used as the example to bring out the most important
characteristics of the behavior.

The in-plane deflections u and v of the panel at the three edges y =0, x =0, y =a are zero
(immovable edges). This means that an in-plane transverse force P, must develop at y =0 and
y=a in order to keep the panel edges from moving. The out-of-plane deflection w of the panel
is zero all around its boundary (simple-support condition). The applied load P, (units of force)
at x=a is a result of a uniformly applied deflection —C at that location. The boundary
conditions of the problem can then be written as:

w=0atx=y=0andx=y=a
u=0atx=0
(7.1)
v=0aty=0andy=a
u=—-Catx=a

As the plate may undergo moderate to large deflections once it buckles, the governing
equations are the two von Karman large-deflection equations (5.16) and (5.20) repeated here
for convenience:

tw tw *w 0w Pw Pw
DS 12Dy +2Dg) o 4 D S =N Y pon, T N, Y
gt (D12 + 66)8x28y2 +Dx Byt a2+ Y oxdy +N, B2
(5.16)
ow w n
—Px4 O —Py dy Pz
1 O'F O*F O'F >’V >’V
—— A —-2A A Apn—Apn)—+(A11—An)—=
ArAn AL’ < 2 2520y tAngz +(A2—A12) By + (A1 —Ar) B ) +
4 2 2. 2
L OF (0w Owdw (5.20)
Age Ox20y? Oxdy Ox2 Oy?

For the present case where the distributed loads p,, p,, and p, are zero (and the potential V'is
zero), these equations simplify to:
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O*w O*w O*w O*w Pw Pw
Dy, — +2(D 2D¢¢g) —— + Dyp— =N,— +2N,,—— + N, — 5.16
Dew +2(Di2 + 66)8x28y2 + Dy Byt o2 " xdy +N, 72 (5.16a)
and
1 O*F *F PP\ 1 O'F Pw\> PwdPw
A A,z \A2ga Ay aas tAn g ) T o555 = \aray) " a2 o
A11An—AT, Oy Ox20y Ox* | Agg Ox20y Ox0y Ox2 Oy
(5.20a)

The solution to equations (5.16a) and (5.20a) can be obtained using infinite series. Here, for
simplicity, the series are truncated after the first few terms. The results will be of sufficient
accuracy to show the basic trends.

The following expressions are assumed for w and F:

X |, Ty

w = wysin—sin— (7.2)
a a
Py’ P, x? 27mx 2wy
F=——"—-_-"2— + K>pcos — + Kppcos —— (7.3)
a2 a? a a

with wy;, Ky, Ko, and P, unknowns.

It is readily seen that the expression for w satisfies the first of boundary conditions
(Equations (7.1)). The expression for the Airy stress function F is constructed such that the
average loads P,, at any station x, and P,, at any station y, are recovered. This can be seen by
integrating the first two of equations (5.17) with V=0. The first is integrated with respect to y
and the second with respect to x.

Using Equations (7.2) and (7.3) to substitute in Equation (5.20a) gives,

A I% 167* 21y n Al I% 167* 2nx
cos—= cos —
AnAn—Ap? " d a AnAp—AR2 2 b a
4 2 4 2
:w112%cos? +w1122n—a4005% (7.4)
Matching coefficients of cos 2nx/a and cos 2ry/a gives
AnAn—ApR*wi?

Ky = 7.5
02 Ax 32 (75)
Kxo :14111‘\22—14122 wii? (7.6)

Aq 32

With these expressions for the coefficients K,y and Ky, the second von Karman
equation (5.20a) is satisfied exactly.

Before proceeding to the first von Karman equation (5.16a), the transverse load Py, and the
displacement —C at x = a corresponding to the applied load P, are determined. The nonlinear
strain displacement equation (5.13a) is rearranged:
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u_ . 1(0w\?
ax_g’“’ 2\ Ox

and the first of the inverted strain—stress equations (5.19) is used to substitute for the midplane
strain &,,. This gives

aI/L_ Azz N A12 1 aW 2
Ox  AnAn—Ap? " AnAn—Ap? Ox

Now the first two equations of (5.17) can be used to substitute for N, and N, in terms of F’
(with V=0 as mentioned earlier):

8u o A22 82F A12 82F 1 <8W>2

g _ gr_ gr (% 7.7
Ox  AAn—ApR?2 0y AnAn—Ap?oy* 2\ 0x 7.7)

Integrating over the entire plate,

e

F
Ja—dxd
0

a

Ou
—dxdy = y—
J Ox A11A22 3 y2 A11A22 4

O t—
(=}

oh:
Oh‘.g

(F 1T (oY
— —— — ) dxd

J x2 ZJ J <8x> Y

0 00

Equations (7.2) and (7.3) can be used to substitute for ' and w. This leads to

afulay)-u(0,)) = A2 (P*)—A”“Z (—Py)

A11A22—A12 a A11A22—A212 a
- = w 0] sm 7.
2 11 a

But u(a,y) = —C and u(0,y) =0 from (7.1). Substituting, performing the integration on the
right-hand side, and rearranging,

CZA22 Px CZA12 P, 7'[2
= T 2 2z W%] o (7'9)
A11A22—A12 a A11A22—A12 a 8a
In an exactly analogous fashion, but starting this time from (5.13b):
ov L+ 1 [ow\*
go=7+=|5
Y9y 2\ 0y
and using the third of Equations (7.1), the transverse load P, is obtained as:
Ap 5, TP ALAn—AL,
P, =P =y} = T2 7.10
y Al Wi 8a Al ( )

It is interesting to note that for in-plane problems, where w;; =0, Equation (7.10) gives
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Also, for isotropic plates, it can be shown that A,/A;; equals the Poisson’s ratio v and thus,
P, =vP,
as expected.
At this point, P, is known from Equation (7.10) and one can substitute in the first von
Karman equation (5.20a). To do this, the following intermediate results are used:
Mtw w w o\ mx . y
— == =W sin— sin—
ox*  Ox20y* oy " a a

Pw  Pw n\’ . mwx . my
== =~ ) sin—sin—
Ox2  0Oy? AP

a a
PF P, [(2n\ AjAn-ALwl,  2nx
_ = —— | — - & COS——
Ox? a a Al 32

PF P [(2n\*ApAn—AL W}, 2my
— ) ———————=—-cos—
a A22 32

In addition, the following trigonometric identities are used:

. X 2nx 1/ . 3nx . mx
sin— cos — = — [ sin— —sin—
a a 2 a a

sin—cos—— = — | sin—— —sin—
a a a

ny 2my 1 (. 3mny . my
2 <S a >
Upon substituting in Equation (5.20a) there will be terms multiplying sin (nx/a)sin (ny/a)
and terms multiplying sin(37x/a) sin(ny/a) or sin (nx/a)sin (3ry/a). The terms involving 3mx/a
or 31y/a are higher-order terms that would lead to additional equations if additional terms in the
w expression (7.2) had been included. For the current expression for w with only one term, only
coefficients of sin (nx/a)sin (ny/a) are matched giving the following equation:

n* (AnApn—Af)An 34y n? A
— E —(D 2(D 2D Dy)—P, [ 1+— =0
; 164, Ay wy + (a (D114+2(D1242Dg6) + D22) ( +A22>>W11

which can be solved for wy; to give:

B 16A11A2% (D11 +2(D12 4+ 2Dss) + D) P, 1 (7.11)
H (A11An—A3,) (A1 +3A2) %2(011 T 2(D12 + 2Dgo) + D2a) :
14312

Ay

With wy; known from Equation (7.11), P, can be obtained from (7.10) and Ko, K>y can be
obtained from (7.5) and (7.6). This completely determines the displacement w and the Airy
stress function F from Equations (7.2) and (7.3).
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Equation (7.11) has certain important implications. The denominator in the quantity in
brackets under the square root is the buckling load (units of force) for a square plate with simply
supported and immovable edges. This expression is exact for a square plate. By denoting this
buckling load by P,,:

7% (D11 + 2(D12 + 2Degs) + D22)

P, = 7.12
“ (1 + /2> 7
Ap
Equation (7.11) can be rewritten as:
16A11Axn (D 2(D 2D D P,
Wi = 1142 (D + 2( 12+2De6) + D22) {1} (7.11a)
(A11An—AT,) (A1 + 3A2) P,

It can be seen from Equaion (7.11a) that the quantity under the square root is negative if the
applied load P, is less than the buckling load P,.. In such a case, w{; does not exist. Out-of-plane
deflections, corresponding to a positive value of wq; are possible only after the plate has
buckled and the applied load P, is greater than the buckling load P..,.

Additional implications are better understood through an example. Consider a square plate
with layup (£45)/(0/90)/(£45) made of plain weave fabric plies. Note that for such a
symmetric layup D;g and D,¢ are always zero. The basic material properties are given below:

E, = E, = 68.94 GPa
Vi = 0.05

G,y = 5.17GPa

tpry = 0.19 mm

With these properties the pertinent quantities in Equation (7.11) can be calculated:

D, 4669 Nmm A, 1249143  N/mm
Dy, 6597 Nmm A, 2891244  N/mm
Des 494.0 Nmm Ase 13468.58 N/mm

and a plot of applied (normalized) load versus (normalized) center deflection is given in
Figure 7.7. The plate thickness is denoted by #.

As already discussed, the center deflection wy; is zero for applied loads P, lower than the
buckling load P,.. Once the applied load P, exceeds the buckling load P.,, the plate deflects out-
of-plane and wy; > 0. As already suggested by the qualitative discussion of Figure 7.2, the
load versus deflection curve is nonlinear and, for a plate, starts relatively flat and increases
rapidly only after the center deflection becomes significantly larger than the plate thickness
wi1/h>1).

The distribution of the in-plane load N, is also very interesting. N, can be obtained from the
first of equations (5.17) with V=0 after substituting into (7.3) with P,, K(», and K5, given by
Equations (7.10), (7.5), and (7.6) respectively. A plot of N, as a function of the transverse
coordinate y is shown in Figure 7.8. N, is normalized by the average N, value which equals P,/a,
and the y coordinate is normalized by the plate dimension a. The peak value of N, occurs at the
panel edge, suggesting that failure of a post-buckled plate under compression will initiate there.
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Figure 7.7 Load versus deflection for a square plate with layup (£45)/(0/90)/(+45)

The variation of N, is shown for different load ratios P,/P,,, starting with P, = P, which is
the case when the plate just buckles under compression. In that case, the in-plane force N, is
constant across the plate, as indicated by the vertical line in Figure 7.8. As the applied load
increases beyond the buckling load (P,/P,, > 1) the N, distribution is no longer uniform. More
load concentrates at the edges of the panel while the load at the center is much lower. Already at
P./P.,.=?2 the load at the panel edge is approximately twice the value at the center as can be
seen from Figure 7.8. At P,/P.. =5, the load at the edge is, approximately, four times the load at
the panel center.

The reason for this nonuniform distribution is that once the plate buckles, its center is softer
than the edges where the supports are. So load is diverted from the center to the edge of the
panel. This difference between the load at the center and the edges of the panel becomes more
and more pronounced as the load ratio P,/P,, increases.

This load redistribution can be used in design to generate simpler (conservative) design
equations. The approach is based on approximating the actual N, distribution by a step function
that is zero at the panel center and generates the same total applied force. This is shown
schematically in Figure 7.9. At each of the loaded edges of the panel, the load N, is localized at
the two edges, is constant, and is acting over an effective width b4 The magnitude of N, equals
the maximum magnitude of N, shown in Figure 7.8 for the respective P,/P..,.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

yla

0 1 2 3 4 5 6 7 8
Nx/(Pcr/a)

Figure 7.8 In-plane axial load N, as a function of location and post-buckling ratio
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Figure 7.9 Equivalent in-plane compression in the post-buckling regime

The total force applied by this step-wise distribution must equal the applied load P,. In terms
of the force per unit width N, this requirement can be expressed as:

JNxdy = Z(Nxmax)beﬁ (713)

Now from equation (5.17),

T2 a An 32 ST

_PF Py AnAn—-ALw (2n>2 2my
a

which is maximized when y =a/2, i.e. at the edge of the panel. Then,

P, AnAp-ALwh (@)2

7.14
a A22 32 a ( )

Also, by the definition of P,,
JNxdy = —P,

Using this result and Equation (7.14) to substitute in (7.13), with wy; given by (7.11a), gives
an equation for b Solving for b gives:

1
A12 Pcr All
df1+2(1422) (1oter) A
< < A11> ( Px> Aqq +3A22)

This b,4can be viewed as the effective portion of the skin over which applying the maximum
N, value given by Equation (7.14) gives a loading that is equivalent to the applied load P,, but
also conservative. It is conservative because a larger portion of the plate is exposed to the
maximum value N,,.x than the exact N, distribution suggests. As a result, designing a
compressive panel in the post-buckling regime is equivalent to checking if the stress
Nimax/h (Where h the plate thickness) exceeds the allowable compression stress for the layup
used and if so, reinforcing the panel edges over a distance given by Equation (7.15) so that there
is no failure.

byy = a (7.15)
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It should be noted that for a quasi-isotropic layup,

Ap y
— ="V
An
An 1
Al +34Ay, 4
vi2 ~ 0.3
and substituting in Equation (7.15) gives
1
by =a (for quasi—isotropic layup) (7.15a)

PCV
2+413(1-=-2
+ ( PX)

For cases with large loading ratios where P, > P, Equation (7.15a) becomes
bey = 0.303a  (for quasi—isotropic layup with P, /P, > 1)

Equation (7.15) suggests a dependence of b, on the ratios A1,/A;; and A,/A;. The first
ratio, is a measure of Poisson’s ratio and the second a measure of degree of orthotropy.
While these ratios are independent, for typical composite materials they lie within a range
(for example a 0° ply of unidirectional material has a high degree of orthotropy, and A,,/A;; can
be as low as 0.1, but the corresponding Poisson’s ratio A,/A; is typically between 0.25 and
0.35). Based on typical composite material values, the three curves shown in Figure 7.10 can
be constructed. The upper and lower curves correspond to extreme cases of high
degree of orthotropy and the middle curve corresponds to a quasi-isotropic laminate. The
two extreme curves give an idea of the range of variation of b4 for typical composite
materials. Note that as expected, all curves go through b.4/a=0.5 when P./P,=1. This
means that at buckling the entire skin is effective so the strip on each edge equals half the
plate thickness.

It should be emphasized that the preceding discussion and derivation were based on
single- or two-term expansions of the deflection w and Airy stress function F. The resulting
post-buckled shape has a single half-wave across the entire plate. As such, while the basic
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Figure 7.10  Variation of b, as a function of loading fraction and material properties
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conclusions of the present analysis are valid, the absolute numbers may not be sufficiently
accurate for detailed analysis (but they are for preliminary design). This is particularly true for
plates with aspect ratios different from 1, where the post-buckled shape involves more than the
one half-wave assumed here. In such a case, more terms should be included in the analysis (see
also Exercise 7.3).

Once w and F are known the internal forces (V,, N,, and N,,) and moments (M, M, and M)
can be determined. Based on these, ply strains and stresses can be calculated and a failure
criterion invoked. This can be a first-ply failure criterion (see Chapter 4) or a semi-empirically
derived criterion based on test results.

7.1.1 Application: Post-Buckled Panel Under Compression

Consider a square plate simply supported all around (w = 0) with three edges immovable (no
displacement perpendicular to them in the plane of the plate) and one edge loaded by a force of
2152 N, as shown in Figure 7.11.

Two candidate layups are proposed using plain weave fabric material: Layup A with stacking
sequence (£45)/(0/90)3/(£45) and Layup B with stacking sequence (0/90)/(45)/(0/90)/
(£45)/(0/90). Note that the two layups have exactly the same thickness and plies used. Only the
ordering of the plies is different.

The basic material (ply) properties are given by:

Property Value
E, 69 GPa
E, 69 GPa
Vay 0.05
Gy 5.1GPa
toly 0.19 mm

It is required to determine the location and magnitude of the highest N, value and which of
the two proposed layups is better for this application.

y
T immovable

w=0, u=0

200 mm

immovable

w=0, v=0
immovable

Figure 7.11 Square plate under compression
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The boundary conditions and loading are the same as the post-buckling under compression
situation analyzed earlier in this section and the solution just derived applies. From classical
laminated-plate theory the following properties are obtained for each of the two layups:

Layup A Layup B
a 200 200 mm
b 200 200 mm
Ay 55265 55265 N/mm
A 13821.5 13821.5 N/mm
Asn 55265 55265 N/mm
Acs 15452.5 15452.5 N/mm
Dy, 3412.967 4560.031 Nmm
Dy, 1809.787 662.723 N mm
Dyy 3412.967 4560.031 N mm
Des 1932.848 785.784 Nmm
t 0.9525 0.9525 mm
E10 5.44E + 10 5.44E + 10 N/m?
E20 5.44E + 10 5.44E + 10 N/m?
E60 1.62E + 10 1.62E + 10 N/m?

Applying Equation (7.12), the buckling load for Layup A is found to be 718 N and for
Layup B 536 N, which is 25% smaller than Layup A. This is due to the rearranging of the
stacking sequence. It is interesting to note that placing (£45) plies on the outside as in Layup A
increases the buckling load. This can be seen from Equation (7.12) where the coefficient of Dgg,
which is 4, is higher than the coefficients of the remaining D;; terms in the buckling load
expression. Thus, increasing D¢ increases the buckling load more than does the same
percentage increase in other D;; terms. And placing £45° plies on the outside of a layup
maximizes Dgg.

Since the applied load is 2152 N, both layups have buckled and the post-buckling ratio PB for
Layup A is 2152/718 =3.0 and for Layup B is 2152/536 =4.0 Using Equation (7.11a) the
corresponding maximum center deflections wy; for the two layups are found to be:

wiia = 1.67 mm

wiip = 1.78 mm

These deflections are about twice the plate thickness and justify the use of large deflection
theory. Even though Layup B has 25% lower buckling load, its center deflection is only 6.5%
higher than Layup B, showing that increased bending stiffness has less of an effect in the post-
buckling regime.

Using Equations (7.5) and (7.6), the constants K, and K, are found to be:

Layup A Layup B
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Figure 7.12 Axial force as a function of location

The in-plane force N, now be determined from Equations (5.17) and (7.3) as:

P, 4n? 2
Ny=—|—+ izKozcosﬂ
a a a

where P, is the applied load 2152 N and a is the side of the plate, 200 mm.

The expression for N, is independent of x so it is the same for any x location along the plate.
Substituting values, the plot of N, as a function of y can be obtained and it is shown for both
layups in Figure 7.12.

As can be seen from Figure 7.12 and as expected from the expression for N, above and the
earlier discussion, N, reaches its maximum compressive values at the edges of the panel. It is
also evident from Figure 7.12 that the maximum N, values for the two layups differ only by
3.7%. Thus, a significant difference (25%) in the buckling load leads to a negligible difference
in the maximum in-plane force in the plate. This suggests that the failure loads in the post-
buckling regime for the two layups will be close to each other. Thus, significant differences in
buckling performance do not translate to analogous differences in post-buckling performance.

7.2 Post-buckling Analysis of Composite Plates under Shear

A post-buckled stiffened composite plate under shear is shown in Figure 7.13. The buckling
pattern consists of half-waves confined between the stiffeners. These half-waves make an angle
o with the stiffener axis.

test fixture imposing
edge boundary
conditions and
introducing load

half-waves at
an angle oo with
the stiffener
axis

stiffeners

Figure 7.13 Stiffened composite panel in the post-buckling regime (See Plate 16 for the colour figure)
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Figure 7.14 Stiffened skin under shear

The situation of Figure 7.13 is idealized in Figure 7.14.
Assuming that the bending loads are taken by the two frames, the skin between stiffeners is
under pure shear. The constant (applied) shear in each skin bay is then given by:

v
 ht
When the applied shear load Vis low, the skin does not buckle and the shear stress t, can be
resolved into a biaxial state of stress consisting of tension stress o along a 45° line (see last bay

in Figure 7.14) and a compression stress o.. It can be shown that the magnitudes of ¢, and o are
equal. This can be derived from the standard stress transformation equations (3.35):

T4 (7.16)

-0, cos?0 sin?6) 2 sin 0 cos 0 Oy
o, p = |sin%0 cos?0 —2sinfcos0 | S oy (7.17)
Ti2 —sinfcosf sinfcosf cos?H—sin’0 Txy

In Equation (7.17), the original coordinate system x,y (see Figure 7.14) is rotated through the
angle 0 to the new 1,2 (or c,t) coordinate system. A minus sign appears in front of o on the left
hand side to stay consistent with the orientation of ¢, in Figure 7.14 (the sign convention
requires tensile normal stresses to be positive; g is compressive). Given the sign convention in
the xy coordinate system, 7., = —1,.

Also, in the same coordinate system, ,=0,=0. And for 6=45°, Equation (7.17)
simplifies to:

0, =T,
O =T, (7.18)
T12 =0

The fact that the shear stress 7}, is zero in the 1-2 coordinate system implies that the 1-2 axes
are principal axes. This is expected from the fact that the skin is under pure shear, which
translates to pure biaxial loading (tension and compression) in a coordinate system rotated by
45° with respect to the original.
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Equation (7.18) describes the situation until the skin buckles. Once the skin buckles, it is
assumed that, the compression direction of the skin cannot support any higher stress. So as the
applied load is increased beyond the load that causes skin buckling, the compressive stress o,
stays constant and equal to its value at buckling. Letting 7., be the value of 7, when the skin
buckles, the compressive skin stress after the skin buckles is given by

O = Terforty, > tq0rV >V, (7.19)

where V., is the applied shear load at which the skin buckles.

The stresses in the skin after it buckles can be determined by considering equilibrium of the
triangular piece of skin with base length dx shown in detail B in Figure 7.14. The free-body
diagram of that detail is shown in Figure 7.15.

With reference to Figure 7.15, if the length of segment AC is dx, then, by Pythagoras’
theorem, the two segments AB and BC are:

dx
AB =BC =— 7.20
7 (7.20)
As already mentioned, sides AB and BC are under pure compression and pure tension
respectively (x and y axes are principal axes). On the other hand, both a shear stress 7, and a

normal stress ¢ are applied on side AC. Considering force equilibrium in the x direction,

tdx tdx
oi| — |sind5+ 0. — |sin45—7,tdx =0 =
’<\/§ ) <\/§ )

7.21
o+ 0, ( )
= ‘L'u
2
Similarly, considering force equilibrium in the y direction,
tdx tdx
—o,(—)cos 45 + o, (—)cos 45+ otdx =0 =
V2 V2
(7.22)
0,—0c
5=
e ——
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Figure 7.15 Free-body diagram of triangular skin element after buckling
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Now g, is constant and given by Equation (7.19) while 7, is proportional to the applied load V
and given by Equation (7.16). Therefore, Equations (7.21) and (7.22) form a system of two
equations in the two unknowns ¢ and ¢. Solving:

o, = 21,—0,

0 =1,—0,
and using Equations (7.16) and (7.19),
2V
o, T —Ter (7.23)
1%
=——T¢ 7.24
¢=4--T (7.24)

As mentioned earlier, 7, is the shear stress at which the skin buckles. This can be determined
following the procedures of Sections 6.3—6.5 (for example Equation 6.28 for long plates or 6.37
with appropriate adjustment to improve its accuracy).

Designing a composite skin under shear in the post-buckling regime would then require
the determination of a layup that will not fail when stresses ¢, and o are applied. Note that these
are along the axes 1,2 in Figure 7.14 and, therefore, the resulting layup would be in that
coordinate system and would have to be rotated in order to express it in the original
xy coordinate system. In addition to the skin, the stiffeners and flanges would have to
be designed taking into account the stresses ¢ and t, (for stiffener and flange design see
Sections 8.3-8.7).

It is important to note that the preceding derivation only gives the average stresses in the skin
and assumes that the angle of the principal axes remains constant and equal to 45° after
buckling. Inreality, the angle changes as the applied load increases. The solution given above is
conservative and mainly underlines the fact that the skin is under increasing tension along
diagonal lines (hence the term ‘diagonal tension’ for such situations) and constant compression
perpendicular to these diagonal lines. For sufficiently high applied loads the effect of the
compression stress o is very small and can be neglected.

An improved analytical approach for post-buckled panels under shear was proposed
by Wagner for isotropic materials [1, 2]. In this analysis the effect of stiffener spacing,
flange geometry, and skin dimensions is taken into account and an iterative set of equations
is derived for the post-buckling angle o (Figure 7.16) and the stresses in the skin, stiffeners
and flanges.

Figure 7.16 Post-buckled skin under shear showing post-buckling angle o
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The analysis by Wagner was further improved by Kuhn ez al. [3, 4] who accounted more
accurately for the relative stiffnesses of skin, stiffeners and flanges and used test results to
derive some of their semi-empirical equations. In fact, the analysis by Kuhn et al. forms
even today, with minor modifications, the basis for designing isotropic post-buckled panels
under shear.

For the case of composite materials, the analysis by Kuhn et al. was modified by Deo et al.
[5, 6]. The basic results from their work form the starting point for the discussion in
Section 7.2.1. In what follows, the mathematical aspects of their method are improved upon
in order to minimize or eliminate the need for iterations.

7.2.1 Post-buckling of Stiffened Composite Panels under Shear

The situation is shown in Figure 7.16.

Before going into the equations that describe the state of stress in the panel of Figure 7.16, a
qualitative discussion of how loads are shared between the different components might help
visualize what happens. Consider that the panel of Figure 7.16 is a portion of a fuselage, with
the two flanges (above and below) being frames and the vertical stiffeners being stringers.

It is simpler to visualize what happens if only a shear load is applied as in Figure 7.16. This
could be the result of torsion in the fuselage. Combined load cases are briefly discussed in the
next section. If the load is low enough and the skin does not buckle, the skin is under pure shear
and there is no load in the stringers or the frames.

After the skin buckles in shear, it resists the applied load in diagonal tension along lines
forming an angle o with the frames. A small amount of compression (see Equation (7.19)) is
also present. As the skin pulls away from the stiffeners it exerts both a tension load along each
stiffener and a transverse load that would bend the stiffener in the plane of Figure 7.16. This is
shown in Figure 7.17 where detail A from Figure 7.16 is put in equilibrium.

At the interface between skin and stringer a normal stress g5 and a shear stress 7, must
develop to put the skin in equilibrium. These, in turn, are exerted on the stringer. In order for the
stringer to be in equilibrium axial loads P and P, and bending moments must develop. In an

A

P: 4—/] v
> <_/ g
\’I =

Pstl
stringer skin

Figure 7.17 Equilibrium of detail A from Figure 7.16
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analogous fashion, axial and bending loads develop in the frames. Therefore, determining the
stresses or strains not only in the skins, but also in the stringers and frames becomes crucial for
designing such structures in the post-buckling regime.

The best analytical solution for composite panels in the post-buckling regime was developed
by Deo, Agarwal and Madenci [5] and Deo, Kan and Bhatia, [6]. In that work, the original
methodology for metal panels developed by Kuhn, Peterson and Levin [3, 4] was modified to
account for the anisotropy of composite panels and the additional failure mode of skin/stiffener
separation, typically not present in metal structures.

This work relates the strains in the skin, stiffener and frame to the post-buckling angle o,
which is the angle formed by the buckled shape of the skin and the stiffener axis (see
Figures 7.16 and 7.17). The equations are transcendental, and iterations are needed to eliminate
o in order to obtain strains as a function of geometry and stiffness. An approach to simplify the
algebra and solve the equations presented in [5] and [6] is presented below.

The governing equations are as follows:

Post-Buckling Factor k

1. [N
= tanh|=In | —2 7.2
k an |:2 ! (NX)'”> :| ( 5)

The post-buckling factor (not to be confused with the post-buckling ratio PB introduced at
the start of this chapter) ranges between O and 1 and gives a measure of how much of
the applied shear load is taken by in-plane shear and how much by diagonal tension. A
value of k =0 denotes pure shear. A value of k=1 denotes all the applied load is taken by
diagonal tension.

Post-Buckling Angle a

o = tan~ (7.26)
E—¢&f
Skin Strain ¢ in Diagonal Tension Direction:
Nxy [ 2k E.. .
e = 1—k)sin 2 7.27
¢ E,. Lin 200 2Gg ( )sin oc] ( )
Stiffener Strain &
—kN,y cot
gy = e COLD (7.28)
B awe
Dty + 5( B ) v
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Frame strain &
—kNjy, tan o

& =
T Lk
—(1—K)E,
hrtsk+2( )E.s

N,, = applied shear load (force/length)
N,yer = buckling load under shear of skin between adjacent stiffeners and frames
¢ = skin strain in diagonal tension direction
& = strain in the stringer averaged over its length
& = strain in the frame averaged over its length
tg = skin thickness
hs = stiffener spacing
hy = frame spacing
E, = skin (or web) modulus in diagonal tension direction
E,,s = skin (or web) modulus along stiffener direction
E¢ = skin (or web) modulus along frame direction
G4 = skin shear modulus
EA; = axial stiffness of stiffener (= EA(EI)/EIL)
EA; = axial stiffness of frame (= EAEI,)/Ely)
EI,El; = bending stiffness about stiffener, frame neutral axis
EI, EI; = corresponding bending stiffnesses about skin midsurface

(7.29)

where:

It is important to note that the axial stiffnesses EA (= Young’s modulus E multiplied by
area A) are corrected by the bending stiffnesses EI (= Young’s modulus E multiplied by
moment of inertia 7). This is done to account for the fact that, in general, for a composite beam,
the membrane stiffness and the bending stiffnesses are different (see Sections 3.3 and 8.2).

It can be seen from Equations (7.26)—(7.29) that trigonometric functions of o and the strains
&, &, and ¢pall appear in the governing equations. Traditionally, the approach to solving them is
to assume a value of o (about 40° is a good starting value), and substitute in Equa-
tions (7.27), (7.28) and (7.29) to get the strains ¢, &, and &. These strains are then substituted
in Equation (7.26) to obtain an updated value for o. The procedure is repeated until two
successive values of o are equal to within some preset tolerance value.

This approach is not very efficient because it involves iterations. These iterations would be
repeated for each candidate design during an optimization run and would slow the process
tremendously. It would be advantageous if these iterations were minimized and another way to
solve Equations (7.26)—(7.29) were found.

It turns out that if E,, the skin modulus in the direction of the diagonal tension angle o is
assumed constant, Equations (7.26)—(7.29) can be solved exactly without iterations. First, the
trigonometric expressions involving o are expressed in terms of tan o:

5 tan® o
sin” ot = ————
1+4tan o
1
cos’ o =

1 4 tan? o
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tan o

sin20 =2————
14 tan? o

Then, using these expressions, the three strains from Equations (7.27)—(7.29) are written as:

1 +tan o 2 tan o
+ 2
2tan o 1 + tan® o

C
& =
tan o
g = Dtano
where
A N2k
tskEwa
5 No(1-K)
tsstk
_ —kNy,y
- [EA, 1
ta| — + = (1-k)E,;
k (hstsk + 2 ( ) )
—kNyy

FA, 1
ta |l — + = (1—-k)E,,
‘k<hrlsk + 2( ) Wf>

(7.27a)

(7.28a)

(7.29a)

(7.30)

(7.31)

(7.32)

(7.33)

If Equation (7.26) is now used to solve for tana and substitute in (7.27a)—(7.29a), the angle «
is eliminated and three equations in the three unknowns ¢, ¢, and & are obtained. After some

manipulation, ¢ and & can be eliminated and a single equation in

-

is obtained as follows:

; ,2D-A—4B A-2C+4B A-2C

7tz +z

2D—A 2D—A + 2D—A

(7.34)

(7.35)

From the theory of cubic equations, (see for example [7]), it can be shown that since A and B
have the same sign as N,, and C and D have sign opposite to that of N,,, Equation (7.35) has

three real and unequal solutions. The solutions are given by
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az

71 = 2\/—Qcos§— 3

0+2n a

72 = 24/—Qcos 3 3 (7.36)

0+47Z an

73 = 24/ —Qcos

with

. R

Vo

R— 9a1a2—27a0—2a3
B 54

0 = cos™

(7.37)

2
_ 3a,—a;

="

and

A-2C
a, o a——

“2D-A

_A-2C+4B
“=T3bA (7.38)

 2D-A-4B
2= DA

Of the three solutions in Equation (7.36), only the positive ones are acceptable
because, otherwise, the right-hand side of Equation (7.34), which is positive, would be a
negative number. If there are more than one positive solutions, the lowest one should
be selected.

As was mentioned earlier, the solution of Equation (7.36)—(7.38) assumes that the stiffness of
the skin in the direction of o, E,,, is constant. However, without knowing « a priori E,,, is not
known exactly. A small number of iterations (typically significantly fewer than those required
with the traditional approach mentioned earlier) is required after all. To determine the skin
stiffness along any direction o, it is assumed that a tension load is applied in that direction and
the stress—strain equations are solved for. This parallels the derivation of Equations (5.19)
in chapter 5. For a symmetric and balanced skin, the normal stresses ¢;; and g5, in a
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coordinate system with the 1 axis aligned with o are given by the following expressions (see

Equation 3.32):
a o1 = Qnén + Onén

022 = Qe + O0néx

But g5, =0 since only a tension load is applied in the 1 (or «) direction. Therefore, solving
for &,,:

& = ———

O»

and substituting in the equation for o;:

2
o1 = (Qu-%)ﬁu

from which,

E,, =0 — =12 7.39
On Or ( )

with the standard transformation giving the stiffnesses Q11, Q1,, and Q,, (see Equations 3.33):

Q11 = Qucosta + Oy, sin*o + 2sin*acos?e(Qyy + 20s)
02 = Qysin*a + Oy cos*a + 2sinacos?a(Qyy + 20ss) (7.40)

On = sinzzxcos%c(Qxx + 0,,—40,) + (sin4oc + cos4zx)Qxy
and, from Equations (3.27)—(3.29):

E
Q.X.X 1 ad
ViyVyx
E,,
O = 1=Viy vy (7.41)
_ VyxExx
On = L=V Vyy
st = Gvk

where E,.E\,,Gg Vs, Vy, are engineering constants for the entire skin laminate with x
coinciding with the stiffener direction and y coinciding with the frame direction.
The solution procedure is then as follows:

Select a value of E,,,. Typically, since o ~ 45° select E,, corresponding to the 45° direction.
Calculate the coefficients in Equation (7.35) using Equations (7.37) and (7.38).
Calculate zy, z, z3 from Equation (7.36).

Pick the positive z value from step 3. If there are more than one positive values, use the
lowest one.

5. Calculate a new value of Ej,, using Equations (7.39)—(7.41). If it is equal to the previous
value of E,,, within a preset tolerance, the diagonal tension analysis is complete. If not, go to
step 2 above and repeat the process.

bl NS
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Figure 7.18 Stiffened skin under shear load
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7.2.1.1 Application: Post-Buckled Stiffened Fuselage Skin under Shear

Consider the portion of fuselage skin enclosed by two adjacent stiffeners and frames as shown
in Figure 7.18. The skin is under pure shear N,,.

A notional sketch of the post-buckling shape with the half-waves inclined at an angle o to the
stiffener axis is also included in Figure 7.18. The length of the stiffeners and frames are set at
typical values of 508 x 152.4 mm respectively. Two different skin layups of the same thickness
are used: (a) (£45)s and (b) (£45)/(0/90)5/(£45). The material used for the skin is plain weave
fabric with properties:

E, =E, = 68.9GPa
Gy, = 4.82GPa

Ve = 0.05

tpry = 0.1905 mm

The details of the stiffener and frame layups are of no interest at this point other than the
fact that, for both skin layups, EA for the stiffener is 6953 kN and for the frame is
75 828 kN. The buckling load for the skin of case (a) is determined to be 10.82 N/mm and
for the skin of case (b) 10.88 N/mm. Note that the buckling loads are essentially the same for
the two cases.

The results for the post-buckling behavior for both cases are shown in Figures 7.19-7.21.
The post-buckling angle o (see Figure 7.18) for the two different skin layups is given in
Figure 7.19 as a function of the applied load normalized by the buckling load.

For both cases, the post-buckling angle starts at 45° when the applied load N,, equals
the buckling load N, and decreases towards an asymptote around 25° for high values of
Nyy/N,yerie- The post-buckling angle for the (£45)/(0/90)3/(£45) skin is slightly higher.

The strains in the skin, stiffener and frame for the (£45)s skin layup are shown as a function
of the applied load in Figure 7.20. It is seen that the stiffener and frame are always in
compression. While the skin strains are relatively linear, the stiffener and frame strains are
nonlinear and they increase more rapidly than the skin strains. If now the cutoff strain of
4500 ps calculated in Section 5.1.6 is used for the stiffener and frame, which are in
compression, and a corresponding value of 6000 s is used for the skin, which is in tension,
(tension allowable is higher than compression allowable for most layups used in practice) it can
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Figure 7.19 Postbuckling angle as a function of applied shear load

be seen from Figure 7.20 that the stiffener will fail first at a value of N,,/N,rit, slightly higher
than 11. This is interesting because at lower loads the skin has higher strains than the stiffener,
but they are increasing more slowly as the load increases.

It is important to note that the use of cutoff strains does not explicitly account for the
layup. This is a conservative approach for generating or evaluating a preliminary design.
A more detailed analysis would require knowledge of the specific layups and geometries
for the skin and stiffener. Also, additional failure modes such as crippling of the stiffener or
frame (see Section 8.5) and skin-stiffener separation (see Section 9.2.2) would have to be
included in the evaluation. The present discussion gives a good starting point for generating a
viable design.

The corresponding strains for the second case with skin layup (3:45)/(0/90)5/(+45)
are shown in Figure 7.21. Again, the stiffener and frame are in compression while the
skin is in tension. Unlike the case of the (£45)s skin where the stiffener strains rapidly
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Figure 7.20 Strains in the post-buckling regime for (+45)s skin
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Figure 7.21 Strains in the post-buckling regime for (£45)/(0/90)5/(£45) skin

exceeded in magnitude the skin strains, here the skin strains are always higher in magnitude.
This is due to the fact that the skin in this case is significantly stiffer and absorbs more load,
thus unloading the stiffeners to some extent. However, the stiffeners are still critical as the
cutoff value of 4500 us for the stiffeners is reached before the cutoff value of 6000 ps is reached
for the skin.

Comparing the results in Figures 7.20 and 7.21 it is seen that, even though the dimensions,
the stiffeners, and the frames are identical and the skin buckling loads are the same, the post-
buckling behavior in the second case is significantly different. For example, at low applied
loads the skin strains are twice as high for the second case. This difference decreases as the
applied load increases, but is still at least 25% at high applied loads.

7.2.2  Post-buckling of Stiffened Composite Panels under Combined
Uniaxial and Shear Loading

When both shear and an axial load (tension or compression) act on a stiffened panel, the state of
stress developing in the post-buckling skin is quite complicated and very hard to obtain without
a good computational model, usually based on finite elements. Also, the situation changes if the
axial load is tension instead of compression.

A stiffened composite panel under combined shear and compression is shown in Figure 7.22.
A typical half-wave of the buckled pattern is also shown. Note that, unlike the pure shear
case where the post-buckling angle o starts at 45° at buckling and decreases slowly with
increasing load (see example in previous section) the presence of a compressive load
keeps the half wave closer to the 90° orientation, i.e. the post-buckling angle o starts higher
than 45° at buckling.

The load combination that leads to buckling can be obtained following the procedures of
Sections 6.5 and 6.6. The conservative approach for designing in the post-buckling regime is to
assume that all the compressive load beyond the buckling load is absorbed by the stiffeners.



172 Design and Analysis of Composite Structures

Ny stiffeners
_’ 4_
— // —
NX NX
_> 4_
_> 4_
_’ . \ 4_
— AN «—
_’ 4_
_> 4_
. =
o>45° at buckling Nyy

Figure 7.22 Post-buckled panel under compression and shear

This extra compressive load would increase the stiffener strains and make them more critical
than in the case where no compressive load is applied. The load in the skin would be a
combination of the strains obtained when only the shear is applied, and the (constant)
compressive strains corresponding to the buckling load. That is, beyond buckling, the
compression load in the skin is constant and equal to its buckling value, but the shear is
increasing according to the post-buckling analysis given in the previous section. The fact that
the skin is loaded by the compressive strains that were exerted at the buckling load in addition to
the diagonal tension strains resulting from the shear load, is more critical than in the case where
only shear load was applied.

In contrast to the combined compression and shear case, a tension and shear case is, usually,
less critical. First, the magnitude of the buckling load under tension and shear is lower. Then, in
the post-buckling regime, the tension strains caused by the applied tensile load are split
between skin and stiffeners according, roughly, to their respective EA ratios. This means that
the compression strains in the stiffeners caused by the shear load are relieved and the stiffeners
are less critical. In the skin, the diagonal compression strains are relieved while the diagonal
tension strains are increased. However, since in most designs the stiffeners are much stiffer than
the skin (have much higher FA) the amount of tension left in the skin is small and most of it is
taken by the stiffeners.

The procedure for preliminary design and analysis of a composite stiffened panel under
combined uniaxial load and shear is summarized in Figure 7.23. Note that in this figure N, >0
corresponds to tension. This procedure should be viewed as approximate because it requires
combining skin strains caused by shear load applied alone and a portion of strains from
compression applied alone. This implies some kind of superposition is being used. However,
linear superposition is not valid in the post-buckling regime because the deflections are large
and the problem is nonlinear. Only for applied loads that do not exceed the buckling loads
significantly, is superposition (approximately) valid. Therefore, the results of this process are
approximate. They can be very useful in determining a good starting design for further more
detailed analysis.
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Exercises

7.1

7.2

7.3

7.4

Refer to the application discussed in Section 7.1. A fabric material is made available that
has the basic properties given in the following table:

Property Value
E, 69 GPa
E, 69 GPa
Vay 0.05

G, 5.1GPa
toly 0.19 mm

The material is to be used in a skin application. The skin panel of interest is square of
dimensions 200 x 200 mm and the applied ultimate load is 2152 N. The following two
skin layups are proposed for this application: (a) (£45)/(0/90);/(£45) and (b) (0/90)/
(£45)/(0/90)/(£45)/(0/90). Given the highest value of N, determined in Section 7.1 and
its location, comment on or discuss the following. Based on the highest N, value, which of
the two layups is stronger and why? What is better, placing plies with fibers aligned with
the load away from the laminate midplane, or placing plies with fibers at 45° to the load
away from the laminate midplane?

The layup for the skin in a certain application is dictated to be: [(45/—45),/0/90], (total of
11 plies). The basic material properties are given below:

E;;=131GPa

Ey=1137GPa N P=r
Gi>=4.82GPa NS

v12=0.29 :

tpry = 0.1524 mm ifmnovable

This skin is square and under compression and is allowed to post-buckle. Three of the
edges of the skin are immovable and the fourth one is under load P (N). If the maximum
deflection of the skin is not allowed to exceed 6.35 mm (to avoid interference with adjacent
structure) determine: (a) the largest dimension a the skin can have and (b) the corresponding
maximum allowable load P if the axial strain in the plate is not to exceed 5000 microstrain
(this includes scatter, environmental effects and damage). In order to correlate load to strain,
use the effective width concept and assume that ¢ = E¢ is the constitutive relation (Hooke’s
law) with E the engineering membrane stiffness of the laminate at hand.

Using the same assumed expressions for w and F' (Equations (7.2) and (7.3)) re-derive the
post-buckling solution for a non-square plate, i.e. determine wy; and b for a rectangular
plate of dimensions a x b. Once you derive the expression for the center deflection, verify
that it coincides with the expression (7.11) for the case a = b. Determine the range of aspect
ratios a/b for which the buckling mode has only one half wave (m = 1). Use this result to
suggest over what range your post-buckling solution in this problem is accurate.

A square composite plate of side 254 mm simply supported all around is loaded on one side
by a force F. The remaining three edges are fixed so they do not move in-plane. Determine
the location and magnitude of the maximum strains &,, and &y,
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7.5 For the case of Exercise 7.4, a composite material with properties

E, = 137.9GPa
E, = 11.72GPa
Vi = 0.29

Gy, = 5.171 GPa
toly = 0.1524 mm

is made available. If the applied load is F =31.1 kN determine the 10-ply symmetric and
balanced laminate consisting of only 45, —45, 0, and 90° plies that has the lowest value of
maximum é&,, found in Exercise 7.4. Do not use more than two 0° or two 90° plies per half-
laminate. You do not have to use all four ply orientations. Accounting for damage,
material scatter, and environmental effects, determine either the margin of safety, or the

loading factor, or the reserve factor.

SEEEREE.

X or ribbon
dir for core

50cm

100cm

rrrrrret

7.6 (May be done in conjunction with Exercise 10.5). You are to design a composite panel

under compressive load using a skin—stiffener configuration. The panel dimensions are

100 x 50 cm and the applied load is 1750 N/mm acting parallel to the 50 cm dimension.
Two composite materials are available, with properties as follows:
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Unidirectional tape

Plain weave fabric

graphite/epoxy graphite/epoxy
E.=131GPa 68.9 GPa
E,=11.4GPa 68.9 GPa
vy =0.31 0.05
G,y,=5.17GPa 5.31 GPa
tpoy =0.1524 mm 0.1905 mm
X, =2068 MPa 1378.8 MPa
X.=1723 MPa 1378.8 MPa
Y, =68.9 MPa 1378.8 MPa
Y. =303.3 MPa 1378.8 MPa
S=124.1 MPa 119.0 MPa
p=1611kg/m’ 1611 kg/m®

Once you determine any strength values needed for any of the layups selected you are
to assume the same knockdowns mentioned in Section 5.1.6 for environment, material

scatter and damage.

Of the seven shapes below select one for the stiffeners.

L
Il

:
L

You are to select the layup for the skin and each member of the stiffener cross-section for a
post-buckling factor of 2.5 and a post-buckling factor of 5. You may use one of the two
composite materials or a combination of both. You will need to decide on a stiffener
spacing and use the solution to Exercise 7.3. It is up to you to decide if you want to
reinforce the skin at the edges (near the stiffeners) over the effective width in order to get a
lighter design or simply use the same layup for the skin everywhere. Note that the stiffener
height cannot exceed 10 cm and no horizontal flange of the stiffener can exceed 5.5 cm.
The skin or any member of the stiffener cannot be thinner than 0.57 mm. Make sure that
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you account for all failure modes that apply in this case. Assume that the stiffeners are co-
cured with the skin.

Determine the layup of each member of each stiffener and its dimensions observing the
following design rules: (a) laminates are symmetric and balanced; (b) at least 10% of the
fibers are in each of the four principal directions 0, 45, —45, and 90°; (c) no more than four
unidirectional plies of the same orientation may be next to each other; (d) use only 0, 45,
—45, and 90° plies. Provide a simple sketch of the cross-section of stiffeners that shows
the plies, layup, dimensions, etc. Calculate the corresponding weights for skin/stiffened
panel with PB =2.5, skin/stiffened panel with PB = 5.0 and, if available, compare with
the results from Exercise 10.5.
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Design and Analysis of
Composite Beams

The term beams is used here as a generic term referring to all one-dimensional parts that may be
used in a structure. These include stiffeners, stringers, panel breakers, etc. There are many
cross-sectional shapes that are used in practice. Of those, the ones used most frequently are
(Figure 8.1): L or angle, C or channel, Z, T or blade, I, J, and Hat or omega.

8.1 Cross-section Definition Based on Design Guidelines

For a composite beam such as the one shown in Figure 8.2, each member may have a different
layup. This would result in different stiffnesses and strengths for each of the flanges and web,
and would allow more efficient usage of composite materials through tailoring. Typically, the
letter b with appropriate subscript is used to denote the longer dimension of each member and
the letter ¢ the shortest (the thickness).

Asbeams tend to be used in stability-critical situations, cross-sections with high moments of
inertia are preferred. Besides the obvious implications for the beam geometry (high b, value for
example in Figure 8.2), there are certain guidelines that relate to the layup, which, when
implemented, also contribute to robust performance.

With reference to Figure 8.2, stiff material must be located as far from the neutral axis as
possible. Defining the O direction to be aligned with the beam axis (perpendicular to the plane of
Figure 8.2), this stiffness requirement would result in the two flanges, the one next to the skin
and the one away from the skin, being made up of mostly 0° plies.

Another clue can be deduced from the theory of joints (see for example [1, 2]). It has been
demonstrated that as the thickness of the adherends decreases, the strength of the joint increases
because the peak stresses at the end of each adherend, where the load transfer to the adhesive is
completed, are lower. This implies that the stiffness mismatch caused by the adherend
termination is less and the associated stress concentration is reduced. A similar situation
occurs in testing coupons (in tension) using beveled tabs. The bevel in the tabs reduces the local
stresses and helps eliminate the possibility of specimen failure at the tab termination. With this
background, it is easy to deduce that, by decreasing the stiffness mismatch between the flange

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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Figure 8.1 Typical beam cross-sections

next to the skin and the skin itself, the possibility of skin failure or flange/skin separation is
reduced. This means that: (a) the flange should be made as thin as possible, still meeting
other load requirements; and (b) the stiffness of the flange should be as close as possible to that
of the skin.

Finally, to improve performance against shear loads (parallel to the web axis) the web
must have high strength and stiffness under shear loads, which means it should consist mostly
of 45° plies. The importance of 45° plies is discussed later in Section 8.5.1 where the pertinent
stiffness term Qgg is shown to be maximum for 45° plies.

Combining these into a design would result in the preliminary configuration shown in
Figure 8.3. The flange away from the skin consists of only 0° plies (for increased stiffness away
from the neutral axes). The flange next to the skin consists of a combination of some 0° plies, for
increased stiffness, sandwiched between the two halves of the skin layup in order to minimize
the stiffness mismatch between skin and flange. The web consists of 45 and — 45° plies for
increased shear stiffness and strength.

le—b; ——]

t t flange
|l| [

(]

web\ b.
neutral »
axis 1
y
,
X
ta flange
v
< bs 4 skin¢

Figure 8.2 ] stiffener cross-section
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Figure 8.3 Preliminary design of stiffener cross-section based on first (crude) guidelines

As it stands, the design of Figure 8.3 is inadequate. There are several issues readily apparent:
(a) at the two corners where the web meets the flanges, dissimilar plies meet and load transfer
would rely on the matrix, which is grossly inefficient; (b) the layup of the flange next to the skin
may be too thick if the number p of 0° plies is too high and/or still have very different stiffness
from the skin; (c) using only one ply orientation in the flange away from the skin and the web to
satisfy the respective requirements results in less than adequate performance of the beam when
(secondary) conditions or requirements other than the ones used here are considered.

To improve on this design, additional guidelines, developed on the basis of experience and
good engineering practice, are implemented. In order to get better load continuity, some plies in
the web must continue into the flanges. Also, to protect against secondary load cases, ply
orientations that cover the basic possible load directions, 0, 45, — 45, and 90 are used. Usually a
very small number of load conditions (quite often a single one) are the critical conditions that
size a structure. This does not mean that there are no other load conditions, only that their
corresponding loads are lower (see for example Section 5.1.1 for the implications of multiple
design load cases). If the layup selected were optimized for a single load case (or few load
cases) it might not have enough fibers in other load directions where the loads may be
significantly lower, but could still lead to premature failure if not enough fibers are present in
those directions. Finally, robust performance under impact requires + 45/—45° plies to be
placed on the outside of laminates susceptible to impact. (This is more a consequence of the
observation that layups with 45° fabric material on the outside tend to more effectively contain
impact damage and minimize ply splitting).

Introducing these requirements to the design of Figure 8.3, results in the improved
configuration of Figure 8.4.

In this case, a 45/—45 pair is on the outside to improve impact resistance. It is not, however,
clear whether this is sufficient especially in view of the complete layup of, say, the top flange
where four 0° plies are stacked next to the two outer 45° plies. Also, it is known that stacking too
many plies of the same orientation next to each other leads to the creation of sizeable
microcracks during cure or during loading perpendicular to the fibers. The reason is that a
matrix crack forming between fibers in a ply can progress easily to the next ply since there are
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Figure 8.4 Improved stiffener cross-section design (See Plate 17 for the colour figure)

no fibers perpendicular to it in the next ply to stop or slow down its growth. So the improved
design of Figure 8.4 still has issues associated with the layup of the flanges.

Furthermore, the continuity of plies around the corners may or may not be sufficient and it
will depend on the applied loads. At the top and bottom of the web several plies terminate
causing stress concentrations. In particular, adjacent to the terminated plies are plies turning
away from the web and into the flange. Typically, it is very hard to force the turning plies to
conform perfectly to the 90° turn, and a small radius as shown in the enlarged detail of
Figure 8.4 will be present. The resulting gap between terminated and turned plies is usually
filled with resin, creating a weak spot for the entire cross-section.

Finally, reaching a compromise layup for the flange next to the skin so that the stiffness
mismatch at the flange termination is minimized, is difficult and more information about
applied loading and skin layup is needed for further improvement. The design configuration of
Figure 8.4 will be periodically revisited and improved upon in future chapters as a better
understanding of designing to specific requirements is developed.

8.2 Cross-sectional Properties

The axial (EA) and bending (EI) stiffnesses of a beam are very often used in design and analysis
of such structures and, therefore, accurate determination of their values for a composite cross-
section is very important. There are some significant differences from metal cross-sections
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stemming from the fact that, for a cross-section made using composite materials, the different
members may have different layups and thus stiffnesses.

These differences become evident in the calculation of the location of the neutral axis for a
cross-section made up of composite materials. With reference to Figure 8.2, the neutral axis is

located at
- § (EA)’),'
S, .

Note that E here is either the membrane or bending modulus of each member (see
Section 3.3 and Equations 3.65). The two moduli are, in general, different. This means that
one should differentiate between axial and bending problems and use the appropriate
moduli. In what follows, the axial stiffness EA (= modulus X cross-sectional area), which
is a quantity needed in uniaxial loading situations, is calculated first and the bending
stiffness EI (= modulus x moment of inertia), which is used in bending problems, is
calculated afterwards.

In order to determine the axial stiffness (EA) of a cross-section, assume, for simplicity, that
the layup of each member is symmetric and balanced. Then, denoting the beam axis as the x
axis, a uniaxial loading situation for member i is represented by:

(Nx); = (Ann)i(ex); + (A12)(ey);

(Ny); = (Ar2)(&x); + (A22),(&y);

(8.2)

where the subscript i denotes the ith member. This is the same as Equation (3.49) adjusted to
uniaxial loading (N,, = 0) and symmetric and balanced layups (B matrix =A s =As = 0).

If now only load N, is applied, N, =0 and substituting in Equation (8.2) and solving
for (ey); gives

Ap
= - (52) @) (83)
22/
This result can now be substituted into the first of Equations (8.2) to obtain:
A2
w0, = (a0 -52) ) (8.4)
22 /i

If both sides of Equation (8.4) are divided by the thickness of the member ¢; the left-hand side
becomes the applied stress:

2
(‘TX)i = tl (All - 1211—222> ‘(8x),~ (8.5)
~—

It can be seen by inspection of Equation (8.5) that the quantity multiplying the strain on
the right-hand side is the equivalent axial modulus of the member, which was also given in
Section 3.3, Equation (3.59), as a slightly different (but equivalent) expression:
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1 A2 1
Ei — — A _ 2 = 8.6
fi( ! Azz) (an) (86)

with ay; the 11 entry of the inverse of the A matrix.
The axial or membrane stiffness EA of member i can now be written as

(EA)l = E;b;t; (87)

with b; and ¢; the width and thickness of the member, respectively.

Consider now that an axial force Fror is applied to the entire cross-section. Because of the
different EA values for each member, the corresponding forces acting on each member will be
different. For the three-member cross-section of Figure 8.2, the total force equals the sum of the
forces acting on the individual members,

Fror =Fi1+F,+F3 (8.8)

but the force F acting on each member is related to the corresponding force per unit width N, via
F;

(V=5 (8.9)

Now for a uniaxial loading case with the load applied at the neutral axis, uniform extension or
compression results, which means the strains in all members of the cross-section are equal:

(8x); = (&x)y = (&x)3 = €a (8.10)
Combining equations (8.4), (8.6), (8.7), (8.9) and (8.10) it can be shown that

F F F Fror
(), = (E0), ~ (EA), ~ (EA),, (8.11)

with (EA).q the equivalent membrane stiffness for the entire cross-section.

Combining Equations (8.11) with equation (8.8) and solving for the individual forces on
each member it can be shown that the force on member i is given by,

EA). Eb;t;
3(7)11;‘]"0]" = 3 FTOT (812)
) (EA); Zl Ejbjt;
- j=

Fi=

J
with (EA); given by Equation (8.7).

Equations (8.11) and (8.12) can be combined in order to determine the equivalent axial
stiffness for the entire cross-section. Eliminating the forces gives,

(EA),, =Y (EA); (8.13)

J

The situation for pure bending is shown in Figure 8.5. Each member contributes to the EI
calculation for the entire cross-section according to

(width), (height)?

El). =FE
( )l b 12

+ Aid}? (8.14)
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Figure 8.5 Definition of pertinent quantities for a beam cross-section in bending

where A; is the area of the ith member (= b;t;) and d; is the distance of the neutral axis of the ith
member from the neutral axis of the entire cross-section determined by Equation (8.1) and the
bending modulus is given by Equation (3.63),

L1
Y t3(dn);

If a bending moment Mot is applied to the beam, the individual bending moments and
overall bending stiffness of the cross-section are calculated in a manner analogous to the case of
uniaxial loading. However, instead of the strain compatibility condition that required that the
strains in all members be equal, here the requirement is that the radii of curvature R; for all
members are all equal to that of the neutral axis of the entire cross-section. Therefore,

Rcl = RCZ = Rc?a = Rca (816)

(8.15)

In addition,
Mror = My + M, +M; (8.17)

Also, the local radius of curvature is given by the well-known moment—curvature relation of
simple beam theory,
EI),
R = EDi (5.18)
M;
Combining Equations (8.16)—(8.18) and solving for the moments acting on each individual
member, gives

v - _(ED

L Mror (8.19)

(D),

3
=1

J

with (EI); given by Equation (8.14). This relation is the analogous relation to Equation (8.12)
for the axial forces on the members of the cross-section.
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With the individual moments given by Equation (8.19), the overall bending stiffness of the
cross-section can be obtained from Equations (8.16), (8.18), (8.19):

(EI),, =Y _ (EI), (8.20)

J

In the preceding discussion, axial and bending behaviors were completely uncoupled, which
was very convenient since the same layup would undergo each type of deformation (axial
or bending) exhibiting a different modulus value. Care must be exercised if both modes
of deformation occur simultaneously and are coupled. This issue was first mentioned in
Section 7.2.1 and points to a problem associated with attempting to oversimplify the design and
analysis of composite structures. In such cases it is better to resort to the constitutive relations
involving the A, B, and D matrices (see for example Equation 3.49). As a simpler, less accurate,
but conservative approach, one may select the one of the two moduli (membrane or bending)
that leads to more conservative results (for example higher post-buckling deflections which are
caused by using the lower of the two moduli).

As an example showing the implications of the equations presented so far in this section
consider a comparison of the cross-section of Figure 8.4 with an aluminum cross-section with
the same dimensions. The (graphite/epoxy) composite cross-section with the flange next to the
skin completely defined now is shown in Figure 8.6. For this configuration, the pertinent
quantities are shown in Table 8.1.

Using Equation (8.1) the neutral axis is found to be located 7.17 mm away from the outer
edge of the bottom flange (Figure 8.6). Using Table 8.1 and Equations (8.13) and (8.20) the
membrane (EA) and bending (EI) stiffnesses of the cross-section of Figure 8.6 are found and
compared with the case of aluminum with the exact same geometry in Table 8.2.

Figure 8.6 Baseline J stiffener cross-section made out of composite materials (See Plate 18 for the
colour figure)
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Table 8.1 Properties for baseline composite configuration of Figure 8.6

Member b (mm) t (mm) E., (GPa) Ey, (GPa)
1 12.7 1.2192 75.6 324
2 31.75 1.2192 18.2 17.9
3 38.1 1.8288 56.5 47.9

Table 8.2 Composite versus same geometry aluminum

A Comp A(%)
EA (kN) 8525 5803 46.9
EI (Nm?) 1401 631 121.8

Table 8.2 shows that the same geometry made with aluminum has significantly higher
stiffness both in-plane (47% higher) and bending (122% higher). Since the geometries are
identical between aluminum and composite, it is easy to compare the respective weights.
The weight ratio will equal the density ratio. The density of aluminum is 2774 kg/m> while
the density of graphite/epoxy is 1609 kg/m>. This means that the aluminum configuration is
72% heavier.

For a more insightful comparison, design the graphite/epoxy cross-section to have the same
stiffnesses as the aluminum design and then compare the weights. Since EA for aluminum is
46.9% higher (see Table 8.2), the ply thickness of the graphite/epoxy material is increased by
46.9% and a minor reshuffling of the stacking sequence of the flange away from the skin is
done. The changes are shown in Table 8.3.

The only change in layup is in the flange away from the skin where the starting 45/—45
combination is now split by moving the pair of O plies between them. The b values stay the same
but the thicknesses are all increased by a factor of 1.67. As a result the bending stiffness of the
flange away from the skin is now increased from 32.4 to 62.7 GPa. It should be noted that
simply scaling the ply thickness as was suggested here is not usually possible. The raw material
is available only in limited ply thicknesses, so increasing to a specified value would require
rounding up to the next integral multiple of ply thickness. So the results of this example are
only approximate.

With the changes of Table 8.3, the graphite/epoxy cross-section now matches (or is very
close to) the stiffnesses of the aluminum cross-section as is shown in Table 8.4.

Table 8.3 Revised Gr/Ep configuration to match aluminum stiffnesses

Member Layup Layup now b (mm) t (mm) E., (stays E, Ey, now
before same) before (GPa)
(GPa)
1 [45/-45/0,] [45/0,/—45]; 12.7 1.791 75.6 32.4 62.7
2 [(45/-45),] [(45/—5),] 31.75 1.791 18.2 17.9 17.9
3 [45/-45/0,/ [45/—45/0,/ 38.1 2.687 56.5 479 47.9

45/-45]; 45/—45),
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Table 8.4 Comparison of Aluminum and G/E stiffnesses for revised configuration

Al Comp A(%)
EA (kKN) 8525 8525 0.0
EI (Nm?) 1401 1441 238

Now the weight comparison includes both the density and thickness difference. The weight
ratio of the two configurations is given by:

Warey _ 581499 _ 85
S8 .

Wai 0

density ratio for carbon/epoxy

or, the composite design is, approximately, 15 % lighter.

The previous example points to the important fact that, once the design and best-practices
rules and other constraints are imposed on the composite design, the weight savings are
drastically reduced compared with the nominal savings one would obtain based on the tension
or compression strength of a unidirectional ply. The savings of 15% found here is typical of the
performance of modern composite materials when used on airframe structures. A somewhat
higher value of 38% savings was found in Section 6.2 for a buckling application. In general, the
weight savings rarely exceeds 30% and not without detailed evaluation of all possible failure
modes and use of a good, robust optimization scheme.

8.3 Column Buckling

In column buckling a beam under compression suddenly deflects perpendicular to its axis. With
EI defined in the previous section, the standard buckling expressions can be used for the two
cases shown in Figure 8.7. It should be noted that, for buckling load calculations, the membrane
modulus E,, given by Equation (8.6) should be used.

P Vi Sa P
?r #;;
* L ™

,,,,,

b. both ends fixed

Figure 8.7 Buckling of simply supported (pinned) and clamped (fixed) beams
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Table 8.5 Buckling load coefficient for various boundary conditions and loadings

Configuration BC at left, right end c
=P — pinned, pinned 1.88
*m ﬁxed, fixed 7.56
- i

-3 - <= fixed, pinned 2.05
- m— fixed, pinned 5.32
->03 < fixed, free 0.25
- fixed, free 0.80

<< <

The solutions for the buckling loads are well known and can be found elsewhere in the
literature, e.g. [3, 4]. For convenience, they are provided here without derivation.

*El
P. = % (pinned ends) (8.21)
4m’El , .
P, = Iz (fixed ends) (8.22)

As is seen from the coefficient in the right-hand side of Equations (8.21) and (8.22), the
boundary conditions at the beam ends play a big role in the value of the buckling load. A brief
compilation of buckling load values for different boundary conditions and loadings is given in
Table 8.5. In all cases the buckling load is given by
cn’El

P, = 12

(8.23)

and the coefficient c is given in Table 8.5.
The physical meaning of the boundary conditions in Table 8.5 is as follows:

o free: free rotation and free translation
¢ pinned: free rotation and fixed translation
o fixed: fixed rotation and fixed translation

8.4 Beam on an Elastic Foundation under Compression

The situation is shown in Figure 8.8. A beam rests on an elastic foundation which has a spring
constant k. In general, the beam ends have linear (K; and K5) and torsional (G| and G5) springs

| |
G | L 1G,
P Bending stiffness El——> \‘p P

==

353

$==J4
=3

e
v
A
WX
v
A
X
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WX
v
A
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WX
v
A
WX
v
A

Spring constant k

Figure 8.8 Beam on an elastic foundation
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restraining them. Depending on the spring stiffnesses, the end boundary conditions can range
from free to clamped, and can achieve any intermediate value.

To gain insight to the problem, the case of a simply supported beam (G, =G, =0,
K =K, =0) is solved first in detail. This is done using energy methods.

Referring to the discussion of Section 5.4 the one-dimensional counterpart of the energy

expression is
1T (w2 1 dw\ 2 1
w w
M.==|El|— ) dx+ = [(=P)| — ) dx+ = | kndx 8.24
=3 <dx2> w3l )<dx> +5] (8:24)
0 0 0

where w is the out-of-plane displacement of the beam.

The first term in the right-hand side of Equation (8.24) is the potential energy stored in
bending the beam. The second term is the work done by the external force P and the third term is
the energy stored in the spring foundation. The units of k are force/area.

An expression for w is assumed such that the boundary conditions that w = 0 at the two ends
of the beam are satisfied:

mmx
= A, sin— 8.25
w Z sin— (8.25)
where L is the length of the beam and A, are unknown coefficients.
Substituting in the energy expression (8.24) and performing the integrations results in,

(ENm*n*  Pm’n* kL] ,
I, = — —|A 8.26
e 826
The energy must be minimized with respect to the unknowns A,, which leads to
oIl,
=0 8.27
8Am ( )

Carrying out the differentiation and setting the result equal to zero yields the following
equation:
(ENm*n*  Pm’n® kL
- —|A,=0 8.28
413 4L + 4 ( )

This is a matrix equation with a diagonal matrix multiplying the vector A:

[EIT* kL Pr? A,
Ay
EI(16)n* kL P(4)n?
. (6 kL _ P 0 .
413 4 4L 3
0 0 EI(81)n* N kL P(9)7’ Ay

413 4 4L

The obvious possibility, A,,, = 0 corresponds to the uniform compression pre-buckling case.
Therefore, for out-of-plane deflections to be possible (4, must be different from zero) the
determinant of this matrix must equal zero. Defining,
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2El kL*
Ky = 2 8.29
2 (m * n4(EI)m2> (8.29)

the matrix equation can be rewritten in the form:

"Ku—P 0 0 0 07 (A
0 Kn-P 0 0 0|4
0 0 Kun—-P 0 0{..%=0 (8.30)
0 0 0

L 0 i

Since the matrix on the left-hand side is diagonal, setting its determinant equal to zero is
equivalent to setting the product of the diagonal terms equal to zero:

(Kiy — P)(K2 — P)(Ks33 — P) ... = 0 (8.31)

There are as many solutions to Equation (8.31) as there are terms. Of them, the solution that
results in the lowest buckling load P = P, is selected:
PC,~ = min(Ki,-) (832)
From Equations (8.31) and (8.29), the buckling load has the form,
P, 2 kL 1
= m —_—
n*El T El m?
12

(8.33)

where K ,,,, from Equation (8.29) was rearranged to bring the term 7EI/L? to the left-hand side.
As a special case of Equation (8.33) consider the situation in which k = 0. This would be the
case of a pinned beam under compression. Then, the critical buckling load would be given by

P — n*El 2
12

(8.34)

which is minimized for m = 1. If m =1, Equation (8.34) is identical to (8.21) and the exact
solution for this case is recovered.

In the general case when k#0, the value of m that minimizes the right-hand side of
Equation (8.32) or (8.33) depends on the value of k itself. This can be seen more easily
graphically where the normalized buckling load (left-hand side of Equation 8.33) is plotted as a
function of the parameter kL*/(n*EI) which appears on the right-hand side of Equation (8.33).
This plot is shown in Figure 8.9.

For each value of m, the right-hand side of Equation (8.33) is a straight line. The straight lines
corresponding to different values of m are shown in Figure 8.9. The bold black line giving the
envelope of the lowest values of the buckling load defines the critical buckling load for a given
value of the parameter kL*/(7*EI). 1t is seen that for low values of this parameter, m =1 (one
half-wave over the entire length of the beam) gives the lowest buckling load. As the value of this
parameter increases, the buckling mode progressively switches to m = 2 (two half-waves along
the beam length), m = 3, etc. Unlike the case of no elastic foundation where the beam always
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Figure 8.9 Buckling load of a beam on elastic foundation

buckles in one half-wave (m = 1), the presence of an elastic foundation changes the buckling
mode. The higher the value of kL*/(m*EI), the hi gher the number of half-waves (value of m) into
which the beam buckles.

For boundary conditions other than pinned ends, the governing equation

d*w d*w
can be solved. The solution has the form
w = Ae’ (8.36)
with the exponent p given by
P 2
_P, (P> 4k
EI EI EI
p=+= (8.37)
2
Thus, there are four solutions of the form (8.36):
w = A" + Arel + Azel’* 4+ Agel*” (838)

The four coefficients A;—A, are determined from the boundary conditions at the two ends of
the beam:

dw dw
CEISL 4G 2 =
2 -‘rGldx 0
8.39a-d
EId3—W+Pd—W+Kw—O ( 0
i T
d>w dw
) i =
2 +G2dx 0
a8 p L w0
e " dx T

Equations (8.39) and (8.39¢) are statements of moment equilibrium at the two beam ends
respectively, i.e. the moment caused by the torsional spring G(dw/dx) equals the beam bending
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Figure 8.10 Buckling load of beam on elastic foundation pinned at one end and with variable rotational

restraint at the other

moment at that end. Equations (8.39b) and (8.39d) express shear force equilibrium at the

same locations.

Detailed results for various values of the spring constants Gy, G,, K, and K, can be found
in [5]. Following the approach in that reference, the following parameters are defined (subscript

i=1,2 denotes end x=0 or end x=L):

GiL
R =
EI
1
pi=—73
1 —
TR

(8.40)

Then, p; =0 implies no torsional stiffness at end i, or the beam is free to attain any slope
locally (pinned end). Also, p; =1 implies infinite torsional stiffness at end 7, or the beam has
zero slope at that end (fixed end). As an example, the case where the beam is pinned at the left

end and has variable stiffness at the other end is shown in Figures 8.10 and 8.11.

0:""i""i

0 5 10

Figure 8.11 Buckling load of beam on elastic foundation pinned at one end and with variable rotation

restraint at the other (detail of Figure 8.10 for low values of x)
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Table 8.6 Buckling load y as a function of elastic foundation stiffness x and boundary rigidity

p1=0

02 X y * (goodness of fit)
0 0<x<20 0.0099x> + 0.0041x + 1 1.0000

0 20 < x <100 0.0004x> + 0.1517x + 1.6658 0.9987

0.5 0<x<20 0.0004x> + 0.0169x + 1.4069 1.0000

0.5 20 < x < 100 0.0002x> + 0.1714x + 1.4518 0.9988

1 0<x<20 0.0069x> + 0.01134x + 2.046 1.0000

1 20<x <100 7 x 107 5x2 + 0.1924x + 1.2722 0.9998
pP1=p2 X y P (goodness of fit)
0.2 0<x<20 0.099x” + 0.0039x + 1.28 1.0000

0.2 20 < x < 100 0.0004x* + 0.1517x + 1.9512 0.9987

0.5 0<x<20 0.0099x% + 0.0019x + 1.916 1.0000

0.5 20 < x < 100 0.0003x> + 0.1539x + 2.5361 0.999

1 0<x<20 0.0051x> + 0.0265x + 4 1.0000

1 20 < x <100 —0.0003x2 + 0.2385x + 2.3368 0.9943

In addition to Figures 8.10 and 8.11, approximate equations for a range of values of the
parameters were obtained by best-fitting the results in [5]. These approximate equations are given
in Table 8.6.

8.5 Crippling

Crippling is a stability failure where a flange of a stiffener locally buckles and then collapses.
This is shown graphically in Figure 8.12. Under compressive load one (or more) of the flanges
buckles locally with a half-wavelength ¢, which is much smaller than the length L of the
stiffener. Once the flange buckles it can support very little load in the post-buckling regime and
fails (collapses). Its load is then shared by other members of the cross-section (if they have not
failed) until the entire cross-section collapses.

Crippling is one of the most common failure modes in a composite airframe. It may occur on
stiffeners, stringers, panel breakers, beams, ribs, frame caps, and all other members that are

—

\<E>\L /

Figure 8.12 Stiffener flange crippling
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Figure 8.13 Failure modes in a composite airframe

stability critical and do not fail by global buckling. An approximate distribution of failure
modes for fuselage and wing of an aircraft is shown in Figure 8.13.

It can be seen from Figure 8.13 that crippling designs as much as one quarter of the parts in a
composite airframe. The distribution in Figure 8.13 should not be viewed as exact and it will
vary significantly from one application to the next. The main message however, about the
importance of certain failure modes such as crippling, carries over to most applications.

In a one-dimensional structure under compression such as a stiffener, crippling competes with
(at least) two other failure modes: material failure and column buckling. Typically, for a robust
design, material failure (not preceded by some stability failure) is not the driver because it leads to
heavy designs. Between crippling and column buckling failure, crippling is preferred as the
primary failure mode. The reason is that it typically occurs on one member (or portion of a
member in bending situations as will be discussed in Section 8.5.3) and when the crippled flange
collapses there is a good chance that the remaining members of the cross-section may be able to
absorb some or all of the load originally in the failed flange, thus precluding or delaying complete
failure of the stiffener. In column buckling the whole stiffener fails. As a result, crippling has a
better chance of leading to a robust design, and is preferred as the designing failure mode. This
does not mean that there are no cases where column buckling is the driver, especially in long
beams. In such cases, if a weight-competitive design can be generated, the approach is to either
increase the bending stiffness of the entire cross-section or shorten the unsupported length of the
beam so that column buckling happens at a higher load than flange crippling.

To analyze crippling in detail one would first have to obtain the portion of the total load that acts
on each flange and then determine the corresponding buckling load. The flange in that case would
be modeled as a long plate with three edges simply supported and one edge free. Then, a post-
buckling solution similar to that in Chapter 7 would have to be carried out to determine deflections
strains and stresses and some failure criterion applied to determine the load for final collapse.
Such an approach is cumbersome and relies on many simplifying assumptions to make the
solution tractable. As a result the solution is not accurate enough. In addition, there are issues with
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Figure 8.15 One-edge-free and no-edge-free flanges in a cross-section

modeling the boundary condition at the root of the flange. Typically there is a radius region
(Figure 8.14) and there is some finite stiffness, meaning the boundary condition is somewhere
between simply supported and clamped. The exact type of boundary condition depends on the
radius, thickness, layup, and in- and out-of-plane stiffnesses in a complex way further compli-
cating the possibility of generating accurate analytical predictions for this failure mode.

For isotropic configurations, attempts have been made [6] to account for the local specifics of
the boundary conditions, in particular for beams that are nominally cantilevered. But more
work is needed in this area with an extension to composites before more accurate analytical
models for crippling analysis can be developed.

A semi-empirical approach has been favored instead. Two cases are distinguished as shown
in Figure 8.15: (a) one-edge-free (OEF) and (b) no-edge-free (NEF). In the OEF case, one end
of the flange is constrained, for example by being attached to a web or other member, and the
other end is free. In the NEF case, both flange ends are constrained from moving.

8.5.1 One-Edge-Free (OEF) Crippling

Consider the situation shown in Figure 8.16. The cross-section has three OEF flanges, one at the
top and two at the bottom on either side of the vertical web. The buckling load for each flange
corresponds to that of a long plate with three sides simply supported and one side free. This case
was addressed in Chapter 6 for finite and infinite flange length (see Equations 6.12a and 6.13a).



Design and Analysis of Composite Beams 197

OEF

==

OEF OEF

=

Figure 8.16 OEF flanges in a “J” stiffener

For convenience, the buckling load (infinitely long flange) is repeated here:

12Dgs

xcrit = 7 (6138.)

Looking at Equation (6.13a), for a given flange width b, to maximize the buckling load one
should maximize the twisting stiffness Dgs. One way to see how Dgg can be maximized for a given
laminate thickness is to consider how each ply contributes to the Dgg term for the entire laminate.

Consider the situation shown in Figure 8.17 for a symmetric and balanced laminate.

The equation that determines the contribution of the ith ply to the Dgg term for that laminate
(Equation 3.47) can be recast into the form

(Des), = 2Des"") + 2446V} (8.41)

where the superscript (i) denotes quantities for the ith ply with respect to its own midplane.
Equation (8.41) is essentially the same as Equation (8.14) per unit width with the first term
of (8.14) being replaced by the corresponding D term of the ith ply and the second term replaced by
the EA term of the ith ply. The factors of 2 on the right-hand side of Equation (8.41) account for the
contribution of two plies symmetrically located with respect to the midplane of the laminate.

Figure 8.17 Section cut of a symmetric and balanced laminate
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Based on Equation (8.41), the biggest contribution to the D¢g term for the entire laminate
comes from the second term in the right-hand side of Equation (8.41) because of the presence of
the distance d;. Terms away from the midplane contribute more. Therefore, one should place
material with the high Agg term as far away from the midplane as possible. Now maximizing Agg
for a single ply amounts to maximizing the corresponding expression for Qgq (see
Equation 3.33d repeated below):

Q66 = (Qux + Qyy — 2(Quy + Oy)sin?0 c0s?0 + Qg6 (sin*0 + cos*0) (3.334d)

By differentiating the right-hand side with respect to 6 and setting the result equal to zero, it
can be shown that Qg and, therefore, Agg, is maximized when 0 = 45°. Therefore, on the basis
of Equation (6.13a), to maximize crippling performance one should select a flange layup that
has the 45° plies as far from the midplane as possible.

This conclusion contradicts another of the design guidelines, stated in Section 8.1, that the 0°
plies should be placed as far from the midplane as possible. This is not an inconsistency as the 0°
ply guideline is for increasing the bending stiffness D and applies to column buckling while the
45° ply guideline is for increasing the bending stiffness Dgg and applies to crippling. This
situation occurs frequently in practice where different design requirements point to different
directions and a compromise between them must be reached. In addition, as will be discussed
below, the requirement of as many 45° plies away from the midplane as possible is not sufficient
to guarantee optimum crippling performance and other ply orientations are also necessary.

Equation (6.13a) is compared with test results for various layups and stiffener geometries in
Figure 8.18. It is customary and insightful to plot crippling stress normalized by the
compressive strength of the respective layup as a function of the ratio b/t (width divided by
thickness) for the respective flange. For low b/t values the crippling strength is essentially the
same as the compressive strength of the flange. This would be the case of a thick flange where
buckling is delayed because of the high bending stiffness and material strength is the operative
failure mode. For high b/t values the crippling strength drops rapidly as b/t increases, showing
the sensitivity to reduced bending stiffnesses of the flange.

As is seen from Figure 8.18, the theoretical prediction of Equation (6.13a) is higher than the
test results for low b/t values (b/t < 6) but close to them. However, it becomes very conservative
for high b/t values. The reasons for this, as already mentioned above, are related to the boundary
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Figure 8.18 OEF crippling test results compared to buckling predictions
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conditions at the edge of the flange that are not captured by Equation (6.13a), which assumes a
simply supported edge, and to the post-buckling capability of the flange, which becomes more
and more pronounced for larger b values. This would be the case where the flange stops
behaving as a one-dimensional structure and behaves more like a plate, which, as was discussed
in relation to Figure 7.2 in the previous chapter, would result in improved post-buckling load
carrying ability.

In view of these differences between analysis and experimental results and the difficulties
associated with improving the analysis without resorting to expensive computational
approaches, a semi-empirical approach has been adopted where the crippling strength is
correlated with the b/t ratio. Over a large set of test results with different materials and layups, it
has been found [7] that the following expression fits the data well:

ot /p\0T1
t

valid for b >2.91¢; for b <2.91¢, 0ip = o}

The two constants in Equation (8.42) are determined by best-fitting the data. For design,
Equation (8.42) is modified to guarantee that at least 90% of the tests are higher than the
prediction (see B-Basis definition in Section 5.1.3 and Figure 5.8). The design equation is, then:

oM - b 0.717
9

valid for b > 1.98t; for b < 1.98¢, o¢ip = 0.

In Equations (8.42) and (8.43) o}, is the ultimate compressive strength of the flange which can
be determined, for example, as the first-ply failure of the flange under compression (see
Chapter 4 for first-ply-failure criteria). The predictions of these two equations are also shown in
Figure 8.18. It can be seen that Equation (8.42) fits the present data well while Equation (8.43) is
below most of the data and thus could be used as a design equation. It is important to note that
the test results shown in Figure 8.18 were not used in generating the semi-empirical curves of
Equations (8.42) or (8.43) so the agreement seems to reinforce the usefulness and applicability
of these two equations.

An important note on applicability: As the test data on which Equations (8.42) and (8.43) are
based come from laminates with at least 25% 0° plies and 25% 45° plies, these equations should
be used only with layups that fall in this category. Extending to other layups with less 0° and/or
45° plies is not recommended. In any case, most flange designs do obey this requirement of at
least 25% 0° and at least 25% 45° plies as a compromise between the two design requirements,
already presented, of 0° plies for high Dy, and 45° plies for high D¢ and respective high
EA x d* contribution.

A final point relating to the presence of 0° and 45° plies is in order. As was mentioned above,
45° plies away from the laminate midplane maximize Dg¢g and thus the buckling load of the
flange as given by Equation (6.13a). However, especially for large b/t values where the flange
behaves as a plate and has significant post-buckling capability, using mostly 45° plies in the
flange is not recommended. 0° plies are also required to increase the post-buckling strength.
This is captured in Equation (8.43) in ¢, the compression strength of the flange. As a result, in

(8.42)

(8.43)
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Figure 8.19 NEF web in a J stiffener

practice flange layups with at least 25% 0° and 25% 45° plies are used. They have been
demonstrated by test to have better crippling performance.

8.5.2 No-Edge-Free (NEF) Crippling

The situation is shown in Figure 8.19. The vertical web in this Figure is supported at the two
ends by the flanges and is treated as no-edge-free (NEF) web.

The web in this case can be modeled as a long plate that is simply supported all around its
boundary. This case was examined in detail in Section 6.2. Starting from the buckling load
given by Equation (6.7),

2

AR)*
— D11m2+2(D12+2D66)(AR)2+D22( )

N, =
o m2

(6.7)

the corresponding expression for a very long plate (¢ — o0) can be determined as follows: The
term a” is brought inside the brackets and a factor b is factored out using the fact that AR = a/b.
Also, the square root of the product D;;D,, if factored out, giving

N xcrit =

2(D12 4 2Dgs) Dy d?
T /DuD» Y 8.44
b e / \/D“Dzz * D11 b2m? ( )

To determine the number of half-waves m that minimizes Equation (8.46), the right-
hand side is differentiated with respect to m and the result set equal to zero. This results in
the equation,

me Cl2 D22

2 D22 - b2m3 Dill
a2 ==
V Dy
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and solving for m,

a D22 174
(== 8.45
n=5(52) (8.45)

Note that, since m is an integer, the right-hand side of Equation (8.45) must be rounded up or
down to the next (or previous) integer, whichever minimizes the right-hand side of Equa-
tion (8.44). For a long plate, (dimension a is large) m is large and using Equation (8.45) instead
of the nearest integer that minimizes Equation (8.44) is justified. Then, using Equation (8.45) to
substitute in Equation (8.44) gives,

2n?
Nyerie = o [VD11Dx + (D12 + 2D | (8.46)

Equation (8.46) gives the buckling load of a long plate under compression, and can be used to
correlate with NEF crippling test results. It is the counterpart of Equation (6.13a), which was
used to predict buckling of OEF flanges in the previous section. It is interesting to note that, in
terms of laminate stiffnesses, the right-hand side of Equation (8.46) is most sensitive to Dgg
because of the factor of 2 multiplying that term. A fractional change in any other of the terms,
D1, Dy, or Dy, will result in smaller increase of the buckling load for the same fractional
change in Dgs. Thus, similar to the OEF case, to maximize the crippling load one should
maximize the D¢ term which, as was shown in the previous section is equivalent to maximizing
the number of 45°/-45° plies and locating them as far from the midplane as possible.

Equation (8.46) is compared with test results for NEF crippling in Figure 8.20. Just as for the
OEF case, the test results are slightly lower for low b/t values (b/t < 15) and significantly higher
at high b/t values. The same arguments presented in the previous section for OEF flanges are
also valid here. The post-buckling ability of the web or flange (not accounted for by
Equation 8.46) and the specifics of the boundary condition at the roots of the web or flange
are two of the main reasons for the discrepancy between the prediction and test results in
Figure 8.20.

1 . . P

: \\ D‘tes‘tdate‘l |
XL E—ef+H
\\eq. (8.47)
/\\\\

0.1 + eq. (8.46) N

eq. (8.48)

crippling stress/ultimate stress

0.01

1 10 b/t 100

Figure 8.20 NEF crippling test results compared to buckling predictions
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Fitting a curve to the test data [8] results in the expression:

Corp 1492

oM - b 1.124
t

where o} is the compression strength of the flange. Equation (8.47) is valid for b > 11.07¢. For
b < 11.07t, 6¢ip = ot

For design, a curve that is lower than 90% of the test results (B-Basis value) is used and is
given by [8]:

(8.47)

Ocrip - 11.0

gl I\ 2
t

for b > 8.443t and 6, = o} for b < 8.4431.

Both Equations (8.47) and (8.48) give improved predictions over Equation (8.46). Equa-
tion (8.47) matches test results well up to b/t of 25 but then becomes conservative. Equation 8.48
has all test data lying above it and is, therefore, a good equation to use for design. It should be
emphasized that the test data in Figure 8.20 were not included in the creation of the semi-
empirical Equations (8.47) and (8.48) so the agreement between test results and these equations
suggests that the equations have a fairly wide range of applicability. It should be noted that, as
Equations (8.47)and (8.48) were derived for flanges with atleast 25% 0° and 25% 45° plies, use of
these equations for layups that do not fall in this category should be avoided. The tradeoff
between 0° and 45° plies that was discussed for OEF flanges in the previous section carries over to
this section also. Adding 45° plies away from the midplane increases Dgg and thus the buckling
load. Adding 0° plies increases the compression strength. Both are needed for an optimum
design. The final mix of 0° and 45° plies will be a function of applied load and geometry.

Finally, by comparing the test results between Figures 8.18 and 8.20, it can be seen that a
NEF flange has always greater crippling strength (as a fraction of the compression strength)
than a OEF flange with the same b/ ratio.

(8.48)

8.5.3 Crippling Under Bending Loads

If bending loads are applied to a stiffener (Figure 8.21), then some of the flanges or portions of
flanges may still be under compression and can still be crippling-critical.

The recommended approach is to determine the portion of the flange that is under compressive
loads and use that portion as the b value in the crippling analysis. Also, as applied load, the
average compressive load exerted on that portion is used. This is shown in Figure 8.22 for a case of
combined compression and bending loading. For this case, the portion that is under compression
is a fraction of the entire flange and is denoted by b in Figure 8.22. Also, the minimum
compressive stress o.mi, 1S zero. Then, the average compressive stress acting over b is given by:

Ocmax T Ocmin __ Ocmax

c = = 8.49
The analysis then would consist of determining the crippling stress o, for a NEF or OEF

flange (depending on the case; it is NEF for the example of Figure 8.22) and comparing it with
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tension

compression

Figure 8.21 Stiffener under bending loads

the applied stress o, given by Equation (8.49). If the crippling stress exceeds o, then there is
no failure.

Note that the example of Figure 8.22 assumes that the bending moment M is large enough to
create high tension on the upper end of the flange which exceeds the compression stress due to
the applied load P. If M were not high enough the entire flange would be under compression. In

.. Oemin=0

—

Ocmax

Figure 8.22 Stiffener cross-section under combined compression and bending
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N i Ex=137.9 GPa M M
T N Ey=11.0 GPa
b2 Gxy=4.83 GPa
Viy=0.29
tply=0.1524 mm

[45/-45/0,/90]s

edge view

Figure 8.23 Stiffener under bending moment

that case g.n;, 1S not zero, but equal to
P Mc
Ocmin = K - T

with A and [ the area and moment of inertia of the entire cross-section and ¢ half the height.
Also, in this case b is equal to the entire width of the web and not a portion of it.

8.5.3.1 Application: Stiffener Design Under Bending Loads

Consider the L stiffener under bending moment M =22.6 Nm shown in Figure 8.23. The
stiffener layup is the same for both members: [45/—45/0,/90], with the 0° fibers aligned with the
axis of the stiffener (perpendicular to the plane of Figure 8.23). The ultimate strain for this
layup at room temperature ambient (RTA) conditions is 12000 us. The width b, of the
horizontal flange is fixed at 17.78 mm. Determine the maximum value of b, so that the stiffener
does not fail in crippling.

Using classical laminated-plate theory, the elastic properties of the stiffener flange and web
are as follows:

Ay; (N/mm) 113015 D;; (Nmm) 12893.18 Eymemb 752 GPa
Ay, (N/mm) 23327.5 D;» (Nmm) 6219.661

A,y (N/mm) 54670 Dy, (Nmm) 8265.409 Ebend  38.1 GPa
Ags (N/mm) 25532.5 Des (Nmm) 6564.006 t 1.3716 mm

where axis 1 is aligned with the stiffener axis and axis 2 is in the plane of the web or flange
accordingly.
Using Figure 8.24, the stiffener cross-sectional properties are determined as follows:

b t b by?
b2t<t—|— 72) +bit= t(b2+ —l) + =

2 2 2
y pr— =
bit+ byt b1+ by
[b23 b, _ 2 b1l3 _ t 2
I?+b2t(1+7)’ +W+blt y*E

with ¢ the thickness of the laminate used (=1.3716 mm).
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Figure 8.24 Stiffener geometry and neutral axis location

Assuming engineering bending theory is valid, the maximum compressive stress and strain
in the stiffener can be shown to be:

M(bz +1t— )_/)
Ocomp = f

O comp _ M(bZ +t_)_})
Elbend Elbendl

Ecomp =

Note that for small ¢ values, using Ej,,,,.;, is more representative than E,,,4.

The upper portion of the web in Figure 8.24 is under compression and the lower portion,
along with the flange, are under tension. Therefore, only the portion above the neutral axis in
Figure 8.24 can fail in crippling. This means that the length of the web that may fail in
crippling is (see insert of Figure 8.24) b, + t—7y. The linear strain distribution shown in
Figure 8.24 is approximated as a constant compressive strain equal to the average compres-
sive strain over the portion of the stiffener web that is under compression (see insert of
Figure 8.24).

The portion of the stiffener web that is under compression is stabilized at the neutral axis and
free at the top so it is OEF. Using Equation (8.43),

O'? - b 0.717
()

By multiplying numerator and denominator by the axial stiffness E, the crippling equation in
terms of strains can be obtained:
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Ocrip Eecrip _ Cerip 1.63
o Eewr  Eun (1 L - y> 0717

where b =b, + t —y was substituted in the equation.

The design ultimate strain can be obtained from the ultimate strain at RTA conditions using
the knockdowns provided in Section 5.1.6 for material scatter, environmental sensitivity and
impact damage. This gives:

eur = (0.8)(0.8)(0.65)12000 = 4992 pis

The not-to-exceed strain at which the web cripples is then given by

1.63(0.004992)

by — o\ 0717
<1+ zt y)

which is a function of the web height b,.

The applied strain &.omp Was calculated earlier as a function of the applied moment M
and stiffener geometry. That strain must be below the crippling strain &, to avoid failure.
A plot of the applied and crippling strains is shown in Figure 8.25 as a function of the web
height b,.

As can be seen from Figure 8.25, the crippling strain is lower than the applied strain for small
b, values. In that range, the applied strain exceeds the crippling strain and failure occurs. This is
because the moment of inertia / of the stiffener is low and, as a result, the bending strains are
high. Now as b, increases, the crippling strain is reduced, which would be expected from the
form of the crippling strain equation with b, in the denominator. Therefore, the situation would
get ‘worse’ from a crippling perspective. However, the rate at which the crippling strain
decreases is much lower than the rate at which the applied strain decreases. This is because a
change in b, increases the moment of inertia (and thus decreases the applied strain) to a larger

Ecrip =

0.009 —r
0.008 1 |\  max applied
0.007 A \strain
0.006 -

-E 0.005 \\\

- 0.004 ~

0.003 _:crippling N
0.002 {Stan____| D

0.001 F——r
I I I 1 T O P

"I: ’
10 15 20 25 30 35 40 | 45 50
Web height b2 (mm) b,=43.2 mm

Figure 8.25 Comparison of maximum applied strain to the crippling strain of a stiffener under bending
moment
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NEF

OEF

I A
a. Hollow b. filled

Figure 8.26 Closed cross-section stiffeners (crippling considerations)

extent than the same change decreases the crippling strain. As a result, a value of b, can be
found, 43.2 mm beyond which the applied strain is lower than the crippling strain and no failure
occurs. Therefore, the minimum allowable value of b, is 43.2 mm.

8.5.4 Crippling of Closed-Section Beams

For closed-section beams such as the hat stiffener shown in Figure 8.26, two cases are
distinguished: (a) the beam is hollow, and (b) the beam is filled by foam or other material. In
the first case, the crippling analysis proceeds as in the previous sections by analyzing each
flange of the closed section as NEF. In the second case, an analysis of a beam on an elastic
foundation can be carried out (provided a reliable post-buckling analysis is available) or,
which is preferred, each flange is treated as a facesheet of a sandwich failing in wrinkling
(see Section 10.3).

8.6 Importance of Radius Regions at Flange Intersections

It was briefly mentioned in Section 8.1 (see also Figure 8.4) that turning plies around 90°
corners at flange/web intersections is very difficult without the creation of a ‘pocket’.
This happens irrespective of the fiber orientation, but is most pronounced in the case of
90° plies and least in the case of 0° plies (where 0° is the direction perpendicular to the
page of Figure 8.27). This situation is shown (exaggerated and not to scale) in
Figure 8.27.

Wavy fibers in the radius region compromise the strength of the cross-section. Resin-rich
areas in the radius region suggest that there are resin-starved areas in adjacent plies, again
leading to reduced strength and stiffness, especially under compression or shear. The size of the
‘pocket’ is a function of the layup (plies with fibers aligned with the turn are harder to turn 90°
corners following a tight radius), tooling (concave tooling into which the material is placed
results in larger pockets, as opposed to convex tooling over which material is draped), cure
pressure (higher pressures tend to decrease the size of the pocket), resin flow and bleeding
during cure, etc.

Since the existence of the pocket is unavoidable in such configurations, efforts are usually
made to reinforce it by incorporating a piece of unidirectional tape or roving material. With
reference to Figure 8.28, the area of the ‘pocket’ is found to be:
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without special provisions, this region fills
with wavy fibers and/or pure resin

Figure 8.27 Resin pocket formed at web/flange intersection of a stiffener (See Plate 19 for the colour
figure)

A —2[R+T(1 > (8.50)
U R 4 '
where R; and #/2 are the inner radius and thickness of the turning flange respectively.

For the case of uniaxial tension or (pre-buckling) compression, strain compatibility requires
that the strain in the pocket be the same as the strain in every other member of the cross-section.
Then, using Equation (8.12) the force in the pocket can be found to be:

EpAy
==—F (8.51)
f TO0T
> EA;

The significance of the force absorbed by the filler material can best be seen through an

example. Consider the stiffener cross-section shown in Figure 8.29. It is assumed that the

filler material

Figure 8.28 Pocket geometry
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Figure 8.29 Stiffener cross-section with filler material at the interface of the web and bottom flange

material used is typical graphite/epoxy. Then, for typical layups, the axial stiffness of
the web and flanges is given by E; =89.6 GPa, E, =31.0 GPa, E3=48.3 Gpa, with the
subscripts referring to the three members in Figure 8.29. The filler material can be
anything from pure resin (no filler) whose stiffness is £,=3 GPa, to completely filled by
unidirectional material, in which case the stiffness would be E;= 138 GPa. Finally, the
inside radius R; of the turning flange (see Figure 8.28) is assumed to vary in a typical range
of 2.5-6.35 mm.

Using Equation (8.51) the force acting in the filler region can be determined as a fraction
of the total applied force. The results are shown in Figure 8.30. It can be seen that the force
on the filler can be a significant fraction of the total applied force, especially when it is filled
with unidirectional material. In general, even when unidirectional or roving material is
used, the force on the filler is neglected during the design phase. This increases the load
on the other members of the cross-section, making the design more conservative. For a
detailed analysis and for comparison with test results the force on the filler must be taken
into account.

0.35

o3 Hiller force/Total
force

Ri=6.35mm _—
0.25
0.2+ 4.8 mm —
0.15 -

0.1 4

0.05

0

0.E+0‘C\ 2.E+10 4.E+10 6.E+10 8E+10 1.E+11 1.E+11/'E+11
pure resin Filler stiffness (Pa) 100% UD mat’l

Figure 8.30 Force on filler region as a function of filler stiffness and flange inside radius
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filler

N/

filler

Figure 8.31 ] stiffener cross-section with filler material (See Plate 20 for the colour figure)

In view of the importance of the filler material in load sharing and alleviating some of the
load in the stiffener web and flanges, the design of the J cross-section from Figure 8.6 is now
revisited in Figure 8.31. Besides a filler material, the conclusions of the discussion on crippling
have been applied to the flange and an attempt has been made to combine, in the bottom flange,
45° plies (for increased Dgg) with 0° plies (for increased moment of inertia and compressive
strength which, in turn increases the crippling strength).

8.7 Inter-rivet Buckling of Stiffener Flanges

In addition to material failure, column buckling, and crippling, a flange under compression may
buckle in a mode where the half-wave is confined between adjacent fasteners. This is shown in
Figure 8.32.

In a design, efforts are made to avoid the use of fasteners because of the associated increase in
cost and, depending on the fastener type and spacing, increase in weight. However, in situations
where co-curing or bonding is not deemed sufficient, fasteners may be the only option. In
addition, for post-buckled panels, fasteners may be used (typically near the stiffener ends only)
to keep the skin from peeling away from the flange.
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/ L flange thickness t

Figure 8.32 Flange inter-rivet buckling

To obtain the design condition for this failure mode, the flange is treated as a beam with the
x axis running along its length (Figure 8.32). Also, the 0° direction is aligned with the x axis.
Assuming the flange to be symmetric and have D¢ = D,¢ =0, the governing equation for the
out-of-plane displacements w is given by Equation 5. 16 applied to a one-dimensional problem
(0/0y = 0) with no distributed loads (p,=p,= :

o*w
D1184+2Dlz+2D66;2(94+D%Z 82—|—2]%
+Ny§£y2 %{W (5.16)

which, for a compressive load N, = — N, simplifies to:

4 2
Z_xj VR (8.52)

D
11 o

which has the general solution:

N, N,
w= C(,+C1x+Czsin<,/—x> +C3cos<,/—x> (8.53)
Dy Dy,

Note that the partial derivatives of Equation (8.52) are, in fact, total derivatives in this case
because there is no dependence on y.

If the fasteners are assumed to provide simple support to the flange at x =0 and x =, the
boundary conditions are:

d? 8.54
—D”—W:M:0 at x=0,x=s ( )
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Substituting in Equation (8.54):
wx=0)=0=C,+C;=0

N, N, 8.55a-d
wx=s5)=0=C,+Cis+Cysin| [—s | +Cscos| [—s] =0 ( )
Dy Dy,

From Equation (8.55¢),

which substituted in (8.55a) gives
C,=0

Then, Equation (8.55b) can be used to obtain a relation between C; and C;:

1 N,
C = —Cz—SiI’l( s)
S D11
Finally, Equation 8.55d gives:

N N, 2.2
sin Zs) =0=4/ (s:n‘lrﬁNo:ﬂD”
Dy Dy 52

which gives the buckling load N, for the flange. The lowest buckling load (n = 1) is the one of
interest. Therefore, the inter-rivet (buckling) stress is

o No o 7I2D“
)

where ¢ is the flange thickness.

This equation corresponds to simply supported ends at the fasteners. However, depending on
the type of fastener, the support provided at the ends can be more restricting than a simple
support with the slope locally constrained to a degree. The edge condition can range from
simply supported (countersunk fasteners) to nearly fixed (protruding fasteners). This range of
boundary conditions is represented by a coefficient of fixity ¢ and the inter-rivet stress
expression is generalized to:

CTC2D11

ts2

(8.56)

Oijr

with ¢ =1 for countersunk fasteners and ¢ =3 for protruding-head fasteners.
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Figure 8.33 Flange failure modes as a function of fastener spacing

The fastener spacing and flange stiffness determine the failure mode of the flange.
Contrasting inter-rivet buckling with crippling for example, it can be seen that for relatively
wide fastener spacings and soft flanges (s large and D;; small) the flange will fail by inter-rivet
buckling. For narrow spacings and large bending stiffness the flange will fail in crippling. This
means that, given a flange layup, there is a threshold fastener spacing value that, if exceeded, the
failure mode switches from crippling to inter-rivet buckling. This is shown schematically in
Figure 8.33.

Typically, the flange attached to the skin that may fail by inter-rivet buckling is of the one-
edge-free (OEF) type. Then, Equations (8.43) and (8.56) can be combined to determine the
critical fastener spacing. Equating the inter-rivet buckling stress to the crippling stress and
solving for s gives,

C7L'2D11 b 0.717
max — T a4\ 57
s 1.63t0 " (t> (8:57)

which gives the maximum fastener spacing for crippling to occur.

The implications of Equation (8.57) can be seen more clearly through an example. Consider
the two flange layups given in Table 8.7. The first is a stiff flange and the second a very soft flange.

The maximum fastener spacing determined from Equation (8.57) is plotted in Figure 8.34 for
the first layup, [45/0,/—45/0,]s. As the width to thickness ratio b/t for the flange increases the
value of s,,,x Increases.

The maximum fastener spacing for the soft layup, [(£45)/(0/90)/[(£45)], is shown in
Figure 8.35. The trends are the same as in Figure 8.34, but an important problem not present in
the stiff flange of Figure 8.34 is now evident: The maximum allowed fastener spacing is too
small for typical b/t ratios. Fastener spacing values less than 20 mm are avoided in practice
because the interaction between adjacent fasteners leads to increased bearing loads. For a
(protruding-head) fastener spacing of 20 mm, Figure 8.35 suggests a b/t value of about 25
which corresponds to very low crippling failure loads (see Figure 8.18). The situation is even
worse for countersunk fasteners.

Table 8.7 Properties of two potential flange layups

Layup [45/0,/—45/04] [(£45)/(0/90)/[(£45)]
o; (MPa) 762 529
D;; (Nm) 67.5 0.66

t (mm) 2.032 0.572
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Figure 8.34 Fastener spacing to cause inter-rivet buckling for [45/0,/—45/0,] flange

This discussion brought to the surface some of the issues associated with fasteners and
fastener spacing. While the interaction between inter-rivet buckling and crippling suggests that
relatively large fastener spacings may be necessary, bolted joint analysis of multi-fastener
joints shows that, for composites, lower fastener spacings should be preferred because they
tend to maximize the net section strength [9]. As is often the case when multiple failure modes
and constraints come into play, design guidelines can be generated that, at times, conflict with
one another. Care must be exercised in such situations to generate designs that yield the best
compromise. While an exhaustive discussion of bolted joints is beyond the scope of this book,
some basic guidelines derived from the above discussion and more elaborate analyses of
fastener joints [9—11] are summarized below.

1. If no other requirements dominate, use a fastener spacing of 4-5D (where D is the diameter
of the fastener)

2. Minimum fastener spacing should be no less than 20 mm

3. Use skin thickness/diameter ratio < 1/3 to minimize fastener bending

4. Use skin thickness/countersunk depth >2/3 to avoid pulling countersunk fastener through
the skin when loads perpendicular to the skin are applied

5. Use at least 40% 45/-45 plies around fasteners for better load transfer

Max fastener

spacing (mm) protruding he
o
i
15 : countersunk fasteners
10 :
|
5 i
|
0 } I T : 11 1 : 111 : P T : I T Tt I: 11 1 : 111 : I T Tt
0 5 10 15 20 25 30 35 40

flange width/thickness ratio

Figure 8.35 Fastener spacing to cause inter-rivet buckling for [(£45)/(0/90)/[(£45)] flange
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8.8 Application: Analysis of Stiffeners in a Stiffened Panel
under Compression

A highly loaded stiffened panel is shown in Figure 8.36. The stiffener cross-section is the same,
in terms of layup, as in Figure 8.31. The effect of the filler material at the radius regions is
neglected. Skin and stiffener properties are summarized in Table 8.8. The axial stiffness of
the skin is found from Equation (8.6) to be Eg;,=41.15GPa. The portion of skin under
compression, b if the post-buckling load distribution is represented by a piecewise constant
distribution, is given by Equation (7.15), resulting in b.g=0.292a =4.45 cm.

Using Equation (6.7), the buckling load of the skin between the stiffeners is found to be
N, =182 N/mm. This corresponds to a total force of 182 x 457 =83 174 N. So, under the
applied load of 100 kN, the skin buckles and the PB ratio is 100/83.17 = 1.20. It is now assumed
that, once the skin buckles all the excess load (between 100 and 83 kN) is taken by the stiffeners
and b skin next to them. So the load on each cross-section of Figure 8.37 is the buckling load
on the b ¢ portion of the skin and the total load minus the buckling load acting on the stiffener
plus the b skin portion. Since there are four stiffener/skin combinations as in Figure 8.37, the
load in the skin due to skin buckling is 83 174/4 =20794 N. The load beyond buckling acting on

100 kN

Figure 8.36 Skin-stiffened panel under compression (See Plate 21 for the colour figure)
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Table 8.8 Skin and stiffener properties

SKIN
D1 1 659.7 Nmm
D, 466.9 Nmm
D22 659.7 Nmm
D(,(, 494.0 Nmm

skin thickness = 0.57mm

Ay 28912.44 N/mm
A 12491.43 N/mm
A 28912.44 N/mm
Ags 13468.58 N/mm
STIFFENER
Member b (mm) t (mm) Em (Gpa) Eb (GPa)
1 12.7 1.2192 75.6 324
2 31.75 1.2192 18.2 17.9
3 38.1 1.8288 56.5 47.9

each stiffener/skin combination is (100 000 — 83 174)/4 = 4207 N. The situation is shown in
Figure 8.38.

The skin buckling load of 20 794 N is shown in Figure 8.38 acting through the skin neutral
axis to emphasize the fact that it is caused by skin buckling and stays in the skin (does not
transfer into the stiffener). The remaining load of 4207 N is acting through the neutral axis of
the entire combination of stiffener and effective skin.

Using the geometry of Table 8.8 and the crippling equations (8.43) and (8.48) the crippling
stresses in each member of the cross-section can be determined as a fraction of the compression
strength of each member. Then, a first-ply failure criterion (Tsai—Wu failure theory, see Section
4.4) is used to determine the compression strength of each member and, from that, the crippling
failure stresses in each member. The results are shown in Table 8.9.

Equation (8.12) can be used to determine the applied load on each of the members of the
cross-section. This equation is applied to the 4207N load (see Figure 8.38) while the 20794 N

|
Dt i Dest |

Figure 8.37 Cross-section carrying load in the post-buckling regime
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Figure 8.38 Loads on representative cross-section after the skin buckles

load is added to the skin members 5 and 6 in addition to the contribution coming from the
4207 N load. The resulting loads are given in Table 8.10.

The last column of Table 8.9 gives the stress at which the corresponding member will fail
(allowable stress). The last column of Table 8.10 gives the applied stress. The ratio of the two
stresses is shown in Table 8.11. If the ratio of applied to allowable (also termed the loading
index) is greater than 1, the corresponding member fails. As can be seen from Table 8.11, the
last two members, i.e. the effective skin portion will fail in crippling.

Table 8.9 Crippling analysis of members of the cross-section

Member b (mm) t (mm) OEF/NEF blt ocrip/acu 6eo(N/mm?) a1 (N/mm?)

1 12.7 1.22 OEF 10.42 0.304 494.64 150.2344
2 31.75 1.22 NEF 26.04 0.282 283.88 80.04247
3 19.05 1.83 OEF 10.42 0.304 351.75 106.8331
4 19.0.5 1.83 OEF 10.42 0.304 351.75 106.8331
5 44.5 0.57 NEF 78.07 0.082 529.14 43.43236
6 44.5 0.57 NEF 78.07 0.082 529.14 43.43236

Table 8.10 Applied loads on the members of the cross-section

Member b (mm) #mm) E(N/m? A (@mm?>  EAN) Fi/F.o  Applied  Guppiica
F(N)  (N/mm?)

12.7 122 7.56E+10 15.48 L.17TE+05 0.148 623.42 40.26
31.75 122 1.82E+10 38.71 7.05E+04  0.089 375.20 9.69
19.05 1.83  5.65E+10 34.84 1.97E+05 0.249 1048.31 30.09
19.05 1.83  5.65E+10 34.84 1.97E+05 0.249 1048.31 30.09
44.5 0.57 4.12E+10 25.37 1.OAE+05 0.132  10952.88  431.81
44.5 057 4.12E+10 25.37 1.OAE+05 0.132 10952.88  431.81

AN N R W=
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Table 8.11 Failure index (applied/allowable stress) for
members of the cross-section

Member Applied/allowable
1 0.268
2 0.121
3 0.282
4 0.282
5 9.942
6 9.942

Exercises

8.1 AT stiffener is used in a compression application. It has the following configuration:

[p— — T [ ]+
by [ ]
| -

[ ]9

0 is along the axis of the
stiffener

< b, >

The material used has the properties:

E, = 137.9 GPa
E, =11.0GPa
G, = 4.82GPa
Vi = 0.29

tply = 0.1524 mm

The length L of the stiffener is 304.8 mm. The stiffener is pinned at the two ends and
rests on an elastic foundation of spring constant k. Manufacturing considerations do not
permit b, to be smaller than 19.05 mm or b to be smaller than 12.7 mm. (a) If k is allowed
to vary between 1378 800 N/m? and 5515 200 N/m?, create a plot that shows how b, and b,
vary with k so that the weight is minimized and the stiffener does not buckle below
31.115kN. (b) What is the optimum value of & to use in this application (taking ‘optimum’
to mean the value that minimizes the stiffener weight)?

8.2 A stiffener terminates in the middle of nowhere on a skin. The stiffener is loaded on one end
by a compressive load of 22.2 kN. The outer mold line of the stiffener cross-section (i.e. the
outer shape) is fixed because a tool to make it is already available. But the stiffener
thickness is variable. The situation is shown in the Figure below.
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The basic material properties are the same as in Exercise 8.1.

stiffener
le | )l
O | skin
F  Ee=====——————————————————=
S B / F
4 ] ——
fixed end . A
t pinned end
—_—
L=457.2 mm
F=120 kN
27.94 mm
I 2 R

o 15.24
mm
Use only 45, —45, 0, and 90° plies to create a symmetric and balanced laminate, which
includes at least one of each of these principal four orientations, to determine the lowest

thickness laminate that does not buckle under the applied load.
8.3 You are now given the basic strength values for the material of Exercise 8.2:

X' = 2068 MPa (tension strength parallel to the fibers)

X¢ = 1378 MPa (compression strength parallel to the fibers)

Y' = 103.4 MPa (tension strength perpendicular to the fibers)

Y¢ = 310.2 MPa (compression strength perpendicular to the fibers)
S = 124.1 MPa (shear strength

Check your solution of Exercise 8.3 for crippling of the upper flange (flange away from
the skin) and the vertical web. If your solution fails in crippling, discuss how you would go
about changing different parameters of the problem (layups, lengths, widths) to avoid
failure with the lowest possible weight increase. If your solution does not fail in crippling,
discuss what parameters of the problem (layups, length, widths, etc) you should change to
reduce the weight of the structure as much as possible without failing in crippling or
buckling. Do not run any numbers, simply discuss what you should change and why you
think it is the most effective.

8.4 The stiffener of Exercise 8.3 is riveted to the skin. Using the layup you obtained in Exercise
8.3, determine the maximum allowed rivet spacing for the rivets shown below. For this
problem, disregard the crippling failure.

77— lower flange of stiffener

RN skin

SN
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8.5 A C (or channel) stiffener is used in a compression application (see Figure)

|
: |
3
b2
tl - 2
+ | \ 4
P ole—u—

Member 1 is next to the skin and its layup is fixed to: [45/-45/0/90/0/-45/45] with O
running along the axis of the stiffener. The dimension b, is also fixed at 19.05 mm. The
basic material properties are as follows:

E. 13lE+11Pa X" 1.7235E 4 09 Pa
E, 1.14E+10Pa XC  1.379E + 09 Pa
G, 4.83E-+09Pa YT 8273E+07Pa
Vi 2.90E-01 Y® 3.033E+08 Pa
fyy 1.52E-01 mm S 8.809E+07 Pa

Dimensions b, and b3 are allowed to vary between 12.7 and 48.26 mm. Use the layup for
member 1 above and change it (if needed) according to the following rules:

(a) No fewer plies than the base layup are allowed

(b) Keep +45/—45 on the outside

(c) Layup is symmetric

(d) At least one 0° and one 90° ply are present in the layup
(e) Only 45, —45, 0, and 90° degree plies are used

(f) No layup has more than a total of 13 plies

to create candidate layups for members 2 and 3.

(a) (you will need access to do first ply failure analysis). If the total compressive load
applied to the cross-section is 26.67 kN, determine the optimum layup(s) and dimen-
sions for members 2 and 3 so that the cross-section does not fail in crippling. Note that
member 1, being next to the skin is reinforced by the effective skin and is assumed not to
fail in crippling (so you do not need to do any failure analysis for member 1). For
crippling equations, assume that the general equations given in this chapter are valid
even if, for some of your layups, the requirement of at least 25% 0, 25% 45° plies is not
satisfied. Optimum here means that for each set of layups that do not fail in crippling,
determine the one with the lowest cross-sectional area. Do not reduce the strength value
calculated to account for environmental effects, impact, and material scatter.

(b) Among the optimum layups determined in part (a) determine, as the best layup(s) to
use, the one(s) that make most sense from a robust design and manufacturing
perspective.
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8.6 You are to design the cross-sectional shape and layup for a composite stiffener for an
application under compressive load.

Of the seven shapes below select three (if the hat stiffener is not included in your
selection) or two (if the hat stiffener is one of them). Also note that you are not allowed to
include both the C and Z stiffeners in your selection. If you like both the C and the Z you
must only include one of them in your analysis.

60°

Hat

The stiffeners must fit within a rectangle of height 80 mm and width 50 mm. These are
the maximum dimensions, but they can be smaller than that.

stiffener must

fit within this
envelope \
80 mm

I

50 mm

The applied load is 35000 N (assume it is acting at the center of gravity of the selected
cross-section). The length ¢ of the stiffener is 550 mm.
Two composite materials are available, with properties as follows:

Unidirectional tape Gr/Epoxy Plain weave fabric Gr/Epoxy
E,=131GPa 68.9 GPa
E,=11.4GPa 68.9 GPa
Ve =0.31 0.05

G,y =5.17GPa 5.31GPa

tpory = 0.1524 mm 0.1905 mm

p=1611kg/m> 1611 kg/m®
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You are allowed to use any of the two graphit/epoxy materials or a combination thereof.
Finally, assume a compression strain allowable (accounting for environment, damage, and
material scatter) of 4500 s.

1. Determine the layup of each member of each stiffener and its dimensions, observing as
many of the design rules as possible.

2. Provide a simple sketch of the cross-section of stiffeners that shows the plies, layup,
dimensions, etc.

3. Calculate the corresponding weights for the stiffeners and compare. Based on the
comparison, select the ‘best’ design.
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9
Skin-Stiffened Structure

The individual constituents, skin and stiffeners have been examined in previous chapters.
Based on that discussion, the behavior and the design of a stiffened panel such as the one shown
in Figure 9.1 can be summarized as follows: The skin takes pressure loads via in-plane
stretching (membrane action) and shear loads. It also takes compression loads up to buckling.
Beyond buckling extra care must be exercised to account for the skin deformations and
additional failure modes, not examined so far, such as the skin/stiffener separation, which is
discussed in this chapter. The stiffeners take bending and compression loads. It is readily
apparent that the robustness and efficiency of a design will strongly depend on how one can
’sequence’ the various failure modes so benign failures occur first and load can be shared by the
rest of the structure, and how one can eliminate certain failure modes without unduly increasing
the weight of the entire panel.

In this chapter, some aspects that manifest themselves at the component level, with both skin
and stiffeners present, are examined. This includes modeling aspects such as smearing of
stiffness properties and additional failure modes such as the skin/stiffener separation.

9.1 Smearing of Stiffness Properties (Equivalent Stiffness)

If the number of stiffeners is sufficiently large and/or their spacing is sufficiently narrow,
accurate results for the overall panel performance can be obtained by smearing the skin and
stiffener properties in combined, equivalent stiffness, expressions. This can be done for both
in-plane (membrane) and out-of-plane (bending) properties.

9.1.1 Equivalent Membrane Stiffnesses

A composite stiffened panel is shown in Figure 9.2. The stiffener spacing is d and the width
of the panel is by,

As can be seen from Equation (8.13), the equivalent in-plane stiffness of the skin—stiffener
combination is the sum of the individual stiffnesses of skin and stiffeners. This means that the

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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AR AR RN

N\

NEC R

Figure 9.1 Stiffened panel under combined loads

A matrix for the entire panel, which is the membrane stiffness per unit width, is given by the sum
of the corresponding terms for skin and stiffeners considered separately:

(AU) eq = (AU) skin + (AU) stiffeners (9 1)
with the subscript ij denoting the ij element of the A matrix. Also, again from Equation (8.13),

(Aii)sttjfeners =1 (A”) sin glestiff (92)
where ng is the number of the stiffeners.

Determining the number of the stiffeners involves some approximation caused by the
presence or lack of stiffeners at the panel edges. If there are stiffeners right at the panel edges
as in Figure 9.2, the number of stiffeners is given by:

ng = int [ﬁ} +1 (9.3)
dy
where int[. . .] denotes the integer that is obtained when the quantity in brackets is rounded
down to the nearest integer.

If the stiffener spacing is sufficiently small, the second term in the right-hand side of
Equation (9.3) can be neglected and the number of stiffeners approximated by,

by
5 R —- 9.4
n d‘v ( )

panel

panel edge

edge

Figure 9.2 Section cut of a composite stiffened panel
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If there are no stiffeners at the panel edges, i.e. the skin overhangs on either side of the panel,
b, in Equation (9.3) must be reduced by the total amount of overhang. Again, for sufficiently
large b, and/or small d; Equation (9.4) can be used. Note that Equation (9.4) typically is a
rational number as the division b/d, is an integer only for judiciously chosen values of b, and d.
But, for the purpose of stiffness estimation, using the rational number obtained from
Equation (9.4) without round-off is a reasonable approximation.

Now the A;; term for a single stiffener can be estimated by averaging the corresponding
membrane stiffness of the stiffener over the skin width b,,. For the case of A;, this gives

(EA)si
(A11) in glesrir = b i (9.5)
p

Placing Equations (9.2), (9.4), and (9.5) into Equation (9.1) and recognizing that a one-
dimensional stiffener has negligible contribution to stiffnesses other than the one parallel to its
own axis, gives the A matrix terms:

(A11) og = (A1) gin +

(A12),g & (A12) g (9.6)

9.1.2 Equivalent Bending Stiffnesses

The derivation of the bending stiffnesses proceeds in a similar fashion. Based on
Equation (8.20) the bending stiffnesses per unit width can be written as:

(D’j>eq = (Dij).rkin + (D"j)stij_‘j"eners (97)
with

(Dij)sfiﬂéners =1 (Dij)sin glestiff (98)
The bending stiffness D;; for a single stiffener can be determined by smearing its
contribution over the entire width b

(Dn)singzem;ff = b—mf (9.9)
p

While there are no contributions to the D, and D,, terms because the bending stiffness
contribution from the stiffeners is negligible in these directions, the contribution to Dgg requires
a detailed derivation.

Consider the situation shown in Figure 9.3 where a laminate deforms under an
applied torque.
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6N

Figure 9.3 Laminate under applied torque

The angle « is given by

_Ow

0= (9.10)

From torsion theory [1], the rate of change of angle o as a function of y is given by
de T
—=— 9.11
dy GJ ( )

where T is the applied torque, G the shear modulus and J the polar moment of inertia.
Combining Equations (9.10) and (9.11) gives
do 0w T
dy 0x0y GJ

(9.12)

Now from classical laminated-plate theory (see Equation 3.49 and assuming no coupling is
present) the torque per unit width M, is given by

Pw
M., = —2D¢g ——— 9.13
y 5 Oxdly (9.13)
Since now
T
b = —M,, (9.14)

14
Equations (9.12), (9.13), and (9.14) can be combined and applied to a single stiffener to give:

(Dﬁé)singlestiﬁ = 2b o (915)
P

This equation is analogous to Equation (9.9), but there is a factor of 2 in the denominator.
Summing up the contributions of all stiffeners and using Equation (9.4), the contribution of
all stiffeners to Dgg for the combined skin/stiffener configuration is

(GJ)stif

Des = 1(De6) in giesrifr = 2d,

(9.16)

Finally, combining Equations (9.7)—(9.9) and (9.16) gives the final approximate expressions
for the bending stiffnesses of a stiffened panel:
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~ stif
(D11),q = (D11) g + .
(D12) oy = (D12) g 9.17)
(D2), ~ (D22) i .
(G‘] )stif
(Dé6)eg ~ (Do) gin + — .

which are analogous to Equations (9.6) in the previous section.

If the stiffeners have an open cross-section (such as L, C, Z, T, I, J, etc.) the polar moment of
inertia J in the last of Equations (9.17) is negligibly small and the stiffener contribution (second
term in that equation) can be neglected altogether. If the stiffeners have a closed cross-section
(such as a hat stiffener) the second term in the last of Equations (9.17) is significant and cannot
be neglected.

In addition to the approximation introduced by Equation (9.4) when the number of
stiffeners is small, there is an approximation in Equations (9.17) introduced by the fact
that stretching—bending coupling terms (B matrix contribution) were neglected. The skin—
stiffener cross-section in Figure 9.2 is asymmetric and there is a contribution to the bending
stiffnesses coming from the axial stiffnesses of the stiffeners and skin. These are analogous to
the B matrix terms of an asymmetric laminate and they become more significant as the
stiffeners become bigger (greater web heights for example). Only in a situation where the
stiffeners are mirrored to the other side of the skin, giving a symmetric configuration with
respect to the skin midplane, will these coupling terms be exactly zero and no additional
correction terms needed in Equation (9.17).

9.2 Failure Modes of a Stiffened Panel

Failure modes that are specific to the individual constituents, skin and stiffeners, were
examined in previous chapters. Here, a summary of all failure modes, including those
pertaining to the interaction between the skin and stiffeners, is given. The most important
failure modes are presented in Figure 9.4. Of these, the material strength failure modes
(either for the stiffener or for the skin) are typically covered by a first-ply failure analysis
(see Chapter 4) supported and modified by test results. They were also briefly invoked in the
discussion on crippling (Section 8.5) and skin post-buckling (see Sections 7.1 and 7.2). Flange
crippling was examined in Section 8.5. Inter-rivet buckling was discussed in Section 8.7. Panel
buckling failure modes were discussed in Chapter 6 for plates and Section 8.3 for beams.
Whichever buckling model occurs first, overall buckling of the panel or buckling of the skin
between stiffeners is a function of the relative stiffnesses and geometry of skin and stiffeners,
and conditions ensuring precedence of one buckling mode over another are discussed in this
chapter. Finally, the skin—stiffener separation mode was briefly mentioned in association with
post-buckling (at the start of Chapter 7) and will be examined in detail in this chapter.

As might be expected, unless explicitly designed for this, failure modes do not occur
simultaneously. In certain situations, designing so that some (or all) failure modes occur at the
same time gives the most efficient design in the sense that no component is over-designed. This
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stiffener mat’l
skin-stiffener

separation

stiffener inter-
rivet buckling

skin mat’l
failure

panel buckling
as a whole stiffener

crippling

between stiffeners
Figure 9.4 Failure modes of a stiffened panel

is not always true. It assumes that different components are used to take different types of
loading and fail in different failure modes that are independent from one another. In general,
formal optimization shows that the lightest designs are not always the ones where the critical
failure modes occur simultaneously.

Inview of this, knowing when one failure mode may switch to another is critical. In addition,
sequencing failure modes so they occur in a predetermined sequence is also very useful for the
creation of robust designs. For example, relatively benign failure modes such as crippling
(as opposed to column buckling) and local buckling between stiffeners as (opposed to overall
buckling) contribute to creating a damage tolerant design, in the sense that catastrophic failure
is delayed and some load sharing with components that have not yet failed occurs. One such
case of finding when one failure mode changes to another was examined in Section 8.7 where
the condition for switching from crippling to inter-rivet buckling was determined.

9.2.1 Local Buckling (Between Stiffeners) Versus Overall Panel
Buckling (the Panel Breaker Condition)

As mentioned in the previous section, confining the buckling mode between stiffeners is
preferable. In general it leads to lighter designs and keeps the overall panel from buckling,
which, typically, leads to catastrophic failure. From a qualitative point of view, as the bending
stiffness of the stiffeners increases, it becomes harder for them to bend. Then under
compressive loading for example, if the stiffeners are sufficiently stiff, the skin between the
stiffeners will buckle first. The stiffeners remain straight and act as ’panel breakers’. For a given
stiffener stiffness, this behaviour can be assured if the stiffener spacing is sufficiently wide.
Then, even for relatively soft stiffeners, the skin between them will buckle first. This means that
the panel breaker condition will involve both the stiffness and spacing of the stiffeners
compared with the skin stiffness and its overall dimensions.
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There are two main scenarios to quantify this sequence of events. In the first, a non-buckling
design is all that is required (no post-buckling capability). In such a case, the stiffeners must
have properties such that the buckling load of the panel as a whole equals the buckling load
of the skin between stiffeners. The two failure modes, local and global buckling, occur
simultaneously. In the second scenario, the skin is allowed to buckle. This means that the
stiffeners must stay intact and not bend, until the skin reaches the desired post-buckling load
and fails.

9.2.1.1 Global Buckling = Local Buckling (Compression Loading)

It is important to recognize that the total applied force Fror is distributed between the skin
and stiffeners according to their respective in-plane EA stiffnesses. This was expressed by
Equation (8.12). With reference to Figure 9.5, the membrane stiffness EA of the skin is
approximated by bA ;. Note that a more accurate expression would be b(Aj;—A3,/A), as is
indicated by Equations (8.5) and (8.6), but the second term is neglected here, assuming the skin
has at least 40% 0° plies aligned with the load so that A, < Ay;. If this requirement is not
satisfied, the equations that follow can be modified accordingly.
Using Equation (8.12), the force acting on the skin alone can be determined as

bA A
Fsin = 7HEAFTOT = 7HEAFTOT (9.18)

bA11+bd— A+ —

s )

QU

Then, the force per unit length acting on the skin alone is

F skin
b

Niskin = (9.19)

If the skin between stiffeners is assumed to be simply supported, its buckling load can be
obtained from Equation (6.7):
’ (AR)"

T .
Niskin = 2 Dy1k* 4+2(Dy + 2Dgs) (AR)* + D 2 (9.20)

|

<~m°‘>

]

| \

Figure 9.5 Stiffened skin under compression
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where kis the number of half-waves into which the skin buckles, D;; are skin bending stiffnesses
and AR is the aspect ratio a/d.
Combining Equations (9.18)—(9.20) and solving for the total force Fror, gives:

EA
An+ d, b

2
A11 a2

Fror = 2

D1 1k* +2(D1; +2Dgs ) (AR)* + Dy Oﬁf] (9.21)

where A, is the skin membrane stiffness and EA is the stiffener membrane stiffness.
Assuming now that the panel as a whole is simply supported all around its boundary, its
buckling load will also be given by Equation (6.7),

2

Npanel = —
par az

4
(D), m + z((plz)p n 2(066)[,) (AR + (D22), (f;fz) ] (9.22)

where m is the number of half-waves into which the entire panel would buckle (note that m for
the overall panel and k for the skin between the stiffeners can be different) and the subscript p
denotes the entire panel. The aspect ratio AR of the panel is a/b. The bending stiffnesses (D),
for the panel are given by Equation (9.17).

The force per unit length N, is given by

F
Npanel = ror (923)
b
Combining Equations (9.22) and (9.23) and solving for Fror gives:
bn? AR)*
Fror =5 | (Du),m* +2 ((Dlz)p + 2(D66)p) (AR)? + (D), ( m2) (9.24)

Equations (9.21) and (9.24) imply that the total load at which the skin between stiffeners
buckles and the panel as a whole buckles is the same. Therefore, equating the right-hand sides
of Equations (9.21) and (9.24) gives:

EA
An+ d_ 2 (_)4
s b — AR
— Dk +2(D 2Des)(AR)* + Dyp —2-
A |Pn +2(D12 +2Des) (AR)” + D 2
(9.25)
br? (AR)*

=7 (Dn)pm2 + 2<(D12)p + 2(D66)p) (AR)* + (D22), -

Equation (9.25) can be simplified by canceling out common factors and using
Equation (9.17) to express the panel bending stiffnesses EI. Here, it will be assumed that
the stiffener has an open cross-section so its GJ is very small and does not contribute to the
panel Dgg value. Then, Equation (9.25) reads,
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FA
Antrg R
’ 2 —5\2 (AR)
A Dy1k” +2(D12 +2Dgs) (AR) +D227
(9.26)

(AR)*

EI
= || D11+ = | m? +2(D12 +2Dgs) (AR)* + Dy "

dy

Note that, in Equation (9.26), EA and EI both refer to stiffener quantities.

Further simplification is possible if the values of k and m are approximated. As mentioned in
Section 6.2, k and m are the integer values of half-waves that minimize the corresponding
buckling loads (skin between stiffeners or entire panel). If k and m were continuous variables
(instead of only taking integer values) differentiating the corresponding buckling expressions
and setting the result equal to zero would give the values to use (see the derivation of
Equation 8.45 in the previous chapter). Since they are integers, the rational expression resulting
from differentiation would have to be rounded up or down to the nearest adjacent integer that
minimizes the buckling load.

Differentiating the right-hand side of Equation (9.20) with respect to k and setting the result

equal to zero gives:
deskin * D22 14 a
=0=k =(— — 9.27
dk <D11> d ( )

where k" denotes the continuous variable (k = k™ when the right-hand side of Equation (9.27) is
an integer).
Using Equation (9.27), the value of k is given by either,

k = int[k"]

or
k = int[k"] + 1
whichever of the two minimizes the right-hand side of Equation (9.20). The symbol int[x]
denotes the integer obtained if x is rounded down to the next integer.
Similarly for m,

1/4

m = | P2 (9) (9.28)

EI
D“—i_d_x

By necessity, if either of k* or m™ is less than 1, the corresponding value of k or m will be set
equal to 1.

Now for typical applications of panels under compression, the quantity Dy, + El/d; is
greater than D,, because of the contribution of the stiffeners EI/d; and the tendency to align

fibers with the load direction which would give D > D,,. So unless, a/b>> 1 the quantity
in the right-hand side of Equation (9.28) is less than 1 and m will be equal to 1.
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To proceed, set k=k* as obtained from Equation (9.27). Then, substituting for k and m in
Equation (9.26)

(E[>szif 2 4
Dy + % +2[Di> +2Dg6](AR)” + Da(AR)

s

A+ — (9.29)
d; D> —> ——\2 (ﬁ)4
= T Dy, TAR —|—2[D12 —|—2D66}(AR) + Dy ——

D Dy
Z2AR’
Dt Dy,

Denoting by A the term multiplying the quantity in brackets on the right-hand side,
solving for the stiffener EI, and dropping the subscript ‘stiff’, for convenience, gives the
final expression:

Dy (., —2 [Dy 4 2(D12+2D¢s) [, -2 ’
El = Dy d; —(2LAR" —,/—=(AR — —— (AAR —(AR)" ) -1
! [ Dll( Dll( ) >+ Dy, (/L (4R) )
(9.30)

Equation (9.30) gives the minimum bending stiffness EI that the stiffeners must have in order
for buckling of the skin between stiffeners to occur at the same time as overall buckling of the
stiffened panel. If EI is greater than the right-hand side of Equation (9.30), the skin between
stiffeners buckles first.

9.2.1.2 Stiffener Buckling = PB x Buckling of Skin Between Stiffeners
(Compression Loading)

This scenario covers the case where skin is allowed to post-buckle. It is assumed that the skin is
loaded over the b.g portion, which was determined in Section 7.1. The stiffener must stay
straight all the way up to the load that fails the skin. That load is given by the buckling load of the
skin between stiffeners multiplied by the post-buckling ratio PB.

In general, when the skin has buckled the compressive load on it is not constant (see
Figure 7.8 for example) and the skin strains are not constant across its width. If the skin is
replaced by the b.g portion shown in Figure 9.6, then, the skin load is constant over begr
and the strain, given by inverting Equation (8.4) is also constant. Thus, strain compatibility
can be applied.

Considering a 2b.¢ portion of skin and its corresponding stiffener as shown in Figure 9.6, and
using Equation (8.12), the individual forces on skin and stiffener can be found to be:

b
A11—2bgﬁr
' 2A1,b,
Fogin = 5 s 5 Fror = Fin = ﬁFTOT (9.31)
241 Tbey +EA— N7t
A s
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Figure 9.6 Effective skin in the vicinity of a stiffener in a post-buckled stiffened panel

beff beﬁ

EA

=  _F 9.32
241 by +EA T (9-32)

F stiffeners =
where FA is the membrane stiffness of each stiffener (=membrane modulus X cross-sectional
area)

For a single stiffener, dividing the right-hand side of Equation (9.32) by the number of
stiffeners given by Equation (9.4) gives,

d EA

" F 9.33
b 2A by +EA T (9.33)

Fstif:

Now, the column buckling load of a stiffener is, for simply supported ends, given by
Equation (8.21), repeated here for convenience:

w2El

Fipp =
stiffb a2

(9.34)

Equating the right-hand sides of Equations (9.33) and (9.34) relates the load in each
stiffener to the buckling load of that stiffener, and can be solved for the total force on the
panel Fror:

s EA F _ w2El ~F _ w?El b 2A11bey +EA
2Ahby +EA" T T @2 Tor =" q, EA

| &

(9.35)

Now it is postulated that final failure occurs when the required post-buckling ratio PB
is reached. At that point, the force in the skin F;, must equal the buckling load of the skin
between the stiffeners multiplied by PB:

Fskin = I skin buckling (PB) (936)

The skin buckling load Fyinbuckiing 18 given by Equation (9.20) multiplied by the panel width
b to convert the force per unit width N, into force:

TCZ 2 “p\2 (lﬁ)4
Fsin buckiing =bg (D11)k” 4-2[(D12) 4-2(De6)|(AR)” + (D22) 2

(9.37)

with all terms as defined before.
Combining Equation (9.31) with (9.36) and (9.37) relates the total force to the skin
buckling load:
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2A1]beﬁc+EAbn2
2A11beﬁf az

Fror = (D) +2[(D12) + 2D [(ARY + (D) (fi)] (¢)

(9.38)

Equations (9.35) and (9.38) can now be combined to yield the condition for column buckling
of the stiffeners occurring when the final PB is reached:

EI _ (PB)
d,EA  2A, by

(AR)"

D1 1K* 4 2[Dy> + 2Dgs) (AR)* + Doy 2

(9.39)

which relates stiffener properties on the left-hand side with skin properties on the right-
hand side.
Equation (9.39) can be further manipulated using the definition of the parameter /A that was
introduced when Equation (9.29) was derived. Using that definition, it can be shown that,
EA
An+—
) d; EA EA EA
=— = JAn-An=—=A1(1-1)=—=—= (A1-1)d; 9.40
A AL n—An =7 1( ) 4 ApL ( )d ( )
Introducing this result in Equation (9.39) and solving for the stiffener bending stiffness E/
results in the expression:

(AR)*

ds
EI = (J—1)(PB)d o

: Dy1K* +2[D1> + 2D (AR)* + D2
by

(9.41)

Also note that using the expression for b.¢, Equation (7.15) derived earlier (assuming the
boundary conditions for the skin between stiffeners reasonably approximate those used in
Section 7.1) the following can be shown:

d AIZ) ( 1 ) An }
=211+211+—|(1- 9.42
bey { ( An (PB)) Ay +3Ay (6.42)

which can be substituted in Equation (9.41).

Equation (9.41) determines the minimum bending stiffness of the stiffeners so that they do
not buckle until the final failure load in the post-buckling regime is reached. This would
guarantee that the stiffeners will stay straight, and thus act as panel breakers, all the way to the
failure load of the panel. It should be noted that EI in Equation (9.42) is related to the stiffener
EA through the parameter A so the two are not entirely independent and some iterations may be
needed between stiffener geometry and layup to arrive at the required bending stiffness.

9.2.1.3 Example

As an application of the two conditions (9.30) and (9.41) consider a skin panel with dimensions
a=>508 mm and b="762mm loaded in compression parallel to dimension a as shown in
Figure 9.7. The skin layup is [(£45)/(0/90)/(£45)] with stiffness properties given in Figure 9.7.
The stiffener spacing, geometry, and layup are unknown. The minimum E7 for the stiffeners
must be determined subject to conditions (9.30) and (9.41).
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» b=762mm «

skin bending |<— a=508mm —)I skin membrane

Dy 659.7 Nmm Aqq 28912.44  N/mm
D;» 466.9 Nmm Az 12491.43 N/mm
D5, 659.7 Nmm Ass 28912.44  N/mm
Degg 494.0 Nmm Aes 13468.58 N/mm

Figure 9.7 Example of stiffened panel under compression

The procedure is as follows: First a value of the parameter / is selected. Then, for that value,
the stiffener spacing d is varied between 75 and 300 mm. For each value of d; the aspect ratio
(AR) is calculated and the corresponding buckling load of the skin between the stiffeners
is determined using Equation (9.20). Finally, the minimum E/ required is determined using
Equations (9.30) and (9.41). When using Equation (9.41) a PB ratio of 5 is assumed. The results
are shown in Figure 9.8 for two different 1 values.

It can be seen from Figure 9.8 that the minimum bending stiffness for the stiffener decreases
as the stiffener spacing increases. This is due to the fact that, as the stiffener spacing increases,
the buckling load of the skin between the stiffeners decreases. This implies that the total load at
which the skin buckles is lower and the corresponding load applied to the stiffeners is lower.
So the stiffener requirement must be satisfied for a lower load and thus lower bending stiffness
is needed.

It is also evident from Figure 9.8 that as A decreases the required bending stiffness for the
stiffener decreases. This is because, for a given skin (and thus A;; value) the only way to
decrease 4 is by decreasing the stiffener FA (see Equation (9.40)). But if the stiffener FA
decreases, less load is absorbed by the stiffeners (see Equation (9.32)) and more by the skin.

500 E-I/(D11ds) .

[ A ___ panel buckling = bay
400 + N_sA=1.5 buckling

O N 4 stiffener buckles at
300 _é AN PB x bay buckling
200 f
100 f o TN~

ofb T e = ...
50 100 150 200 250 300 350

Stiffener spacing (mm)

Figure 9.8 Normalized minimum bending stiffness required for stiffeners of a stiffened panel under
compression (PB =5)
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Figure 9.9 Normalized minimum bending stiffness of stiffeners for various 4 values (PB =5)

Again, since the load carried by each stiffener is lower, the required bending stiffness will also
be lower.

The last observation related to the trends of Figure 9.8 is that a value of 4 is reached beyond
which the condition that the stiffeners buckle at PB x bay buckling dominates. This is
demonstrated by the fact that the continuous curve is above the dashed curve for A=1.1,
but below the dashed curve for A = 1.5. This means that, for a given stiffener spacing, there isa A
value between 1.1 and 1.5 at which the design driver switches from Equation (9.30) to
Equation (9.41). This means that one should check both conditions, (9.30) and (9.41), and use
the one that gives the more conservative results. Unless, of course, no post-buckling is allowed
in the design, in which case, only condition (9.30) should be used.

Selecting the more critical of the two conditions, for each value of 4, results in the curves
of Figure 9.9. The lowest 3 curves (/4 = 1.1, 1.5, 3.0) correspond to Equation (9.30) dominating
the design and the highest 2 curves (4 =5.0, 10.) correspond to Equation (9.40) dominating
the design.

9.2.2 Skin—Stiffener Separation

As load is transferred between skin and stiffeners, out-of-plane loads develop at their interface
or at the flange edges. These loads develop, even when the applied loads are in the plane of the
skin and they can lead to separation of the stiffener from the skins. There are two main
mechanisms for the development of these out-of-plane stresses. The first is associated with the
presence of any stress-free edges such as the flange edges [2—7]. Load present in one component
such as the flange has to transfer to the other as the free edge is approached. The local stiffness
mismatch caused by the presence of the free edge (and the differences in stacking sequence
between flange and skin) creates out-of-plane stresses which are the main culprit for separation
of the flange from the skin. This is shown in Figure 9.10.

Away from the flange edge, closer to the location where the stiffener web meets the flange,
a two-dimensional state of stress develops that can be determined with the use of classical-
laminated plate theory once the local loads are known. A section including the flange edge and
the skin below can be cut off and placed in equilibrium (bottom left part of Figure 9.10). If then,
the flange alone is sectioned off (bottom right of Figure 9.10), it is not in equilibrium unless
out-of-plane shear and normal stresses develop at the interface between the flange and skin.
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stiffened panel under
i-\ compression before any
component buckles
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Figure 9.10 Development of out-of-plane stresses at the interface between flange and skin prior
to buckling

This is the only location where this can happen since the top of the flange and the right edge of
the flange are, by definition, stress-free. Zooming to the sectioned detail at the bottom right of
Figure 9.10 gives the situation shown in Figure 9.11.

For the purposes of discussion, the skin and stiffener in Figures 9.10 and 9.11 are assumed
to be under compression. A local coordinate system is established in Figure 9.11 to facilitate
the discussion. As shown in Figure 9.11, to maintain force equilibrium in the y direction,
an interlaminar shear stress t,, must develop at the flange—skin interface (bottom of flange in
Figure 9.11). Also, the presence of in-plane shear stresses at the left end of the flange, as
predicted by classical laminated-plate theory leads to a net force in the x direction. In order to
balance that force, an interlaminar shear stress t,, must also develop at the flange—skin
interface. Finally, to balance the moments (about the bottom right corner of the flange say), an
out-of-plane normal stress o, must develop at the flange—skin interface. However, since there is
no net force in the z direction in Figure 9.11, the o, stress must be self-equilibrating. Thus, it will
be tensile over a portion of the region over which it acts and compressive over the remaining
portion. This is why o, is shown as both tensile and compressive in Figure 9.11.

z

ol

L
Classical Laminated- % i interlaminar shear stress 1,,
Plate Theory solution / i ‘3_’ H required to balance forces in
rising from compressive A =%z the x direction and moments
load along the axis of the M h about the y and z axis

stiffeners

*ll /nterlammar normal stress o,
to balance moments about the

x axis; from XZF,=0, it must be

self-equilibrating

interlaminar shear stress 1,
required to balance forces in
the y direction and moments
about the x axis

Figure 9.11 Free-body diagram of the flange
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skin buckling away z win./in,
from stiffener flanges 492
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Figure 9.12 Post-buckled shape of blade-stiffened panel under compression

The second mechanism that gives rise to these separation stresses is associated with the skin
deformation after buckling in a post-buckling situation. This is shown in Figure 9.12 based on
an example from reference [8].

The stiffened panel of Figure 9.12 is shown with the stiffeners at the bottom so the skin
deformations are more easily seen without stiffeners blocking the view. As shown in
Figure 9.12 a portion of the buckling pattern has the skin moving away from the stiffeners.
This would give rise to ‘peeling’ stresses at the skin—stiffener interface and could lead
to skin—stiffener separation. The resulting failure for this situation is shown in Figure 9.13.

separation of stiffener
from skin

Figure 9.13 Skin-stiffener separation failure mode (See Plate 22 for the colour figure)
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The separated stiffener is highlighted with a red ellipse. It is important to bear in mind that,
for this mechanism to occur, bucking of the skin (under compression, shear, or combined
loads) is a prerequisite [9].

Many different solutions to the problem of determining the stresses between the skin and
stiffener given a loading situation have been proposed [2—12]. The highest accuracy is obtained
with detailed finite element methods [8—12] at a relatively high computational cost. The
required mesh refinement in the region (or interface) of interest makes it difficult to use this
approach in a design environment where many configurations must be rapidly compared with
each other for the best candidates to emerge. Simpler methods [2—6] can be used for screening
candidate designs and performing a first evaluation. Once the best candidates are selected, more
detailed analysis methods using finite elements can be used for more accurate predictions.

In general, solutions that calculate the stresses at the skin—stiffener interface assume a
perfect bond between stiffener flange and the skin and require the use of some out-of-plane
failure criterion [13, 14] to determine when delamination starts. This can be quite conservative
as a delamination starting at the skin—stiffener interface rarely grows in an unstable fashion
to cause final failure. To model the presence of a delamination and to determine when it
will grow, methods based on energy release rate calculations [10-12] are very useful.
In what follows, only the problem of determining the out-of-plane stresses in a pristine
structure will be presented.

The approach is adapted from [3, 4] and can be applied to any situation for which the loads
away from the flange edge are known, irrespective of whether the structure is post-buckled
or not. The situation is shown in Figure 9.14. The flange end is isolated from the rest of the
stiffener and a portion of the skin below it is shown.

Two coordinate systems are used in Figure 9.14, one for the flange and one for the skin. They
have a common origin at the end of the flange where it interfaces with the skin. The z axis
(out-of-plane) for the flange is going up and it is going down for the skin. The y axis is moving
away from the flange edge towards the stiffener web and the x axis is aligned with the axis of
the stiffener. The stresses away from the origin of the coordinate systems, at the far left and
right end in Figure 9.14, are assumed known. They would be the result of classical laminated-
plate theory and/or other two-dimensional solutions. For the solution discussed here, these
far-field stresses are assumed to be only in-plane stresses. This means that the three-
dimensional stresses that arise in the vicinity of the flange termination die out in the
far-field so the known solution at the left and right end of Figure 9.14 can be recovered.

(0y(2)
z (for flange)

E

T (to(@)

Figure 9.14 Geometry and coordinate systems for the skin—stiffener separation problem
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Note that out-of-plane stresses at the far field can, if present, be added following the same
procedure as the one outlined below.

It is assumed that the structure shown in Figure 9.14 is long in the x direction (perpendicular
to the plane of the figure) so no quantity depends on the x coordinate, i.e.,

a...)
a

=0

With this assumption, the equilibrium equations (5.2) become

Oty | Ot

ay oz 0

doy Oty

By T a 0 (9.43a-c)
Oty N do,

ady oz

This means that the first equilibrium equation, (9.43a), uncouples from the other two. This, in
turn, suggests that if one of the stresses 7,y or 7, were somehow known, Equation (9.43a) could
be used to determine the other. Similarly, if one of the stresses o, 1., or ¢, were known, the
other two could be determined from Equations (9.43b) and (9.43c).

Pursuing this line of thought, a fairly general assumption is made for 7., and ¢, in the form:

oy = (0y(2)) ; +f(¥)F(2) (9.44)

Ty = (T0(2) ; +801)G(2) (9:45)

where f(y), g(), F'(z) and G(z) are unknown functions of the respective coordinates and (¢,(z) )¢
and (7,(2))¢r are the known far-field stresses away from the flange edge (i.e. at large positive
or negative y values).

The solution remains quite general if F(z) and G(z) are assumed to be Fourier sine and cosine
series. Concentrating on the flange, Equations (9.44) and (9.45) can be written as:

0, = (6(2) 5 +£0) |3 Ansin== + >~ B,cos ?} (9.44a)
Lm=1 1 n=1 1
- . Tz > Tz
Tyy = (Txy(Z))ﬂ- +&() Z C1ps1npt—] + Z Cy4c0s qf—}} (9.45a)
Lp=1 q=1

Here a simplification is introduced by truncating the infinite series in Equations (9.44a)
and (9.44b) after the first term. This will give good solutions in terms of trends and will simplify
the algebra considerably. Additional terms may be included for more accurate solutions. Then
the two stresses in the flange have the form:
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oy = (oy (Z))ff +£(y) {Al sin? + Bjcos 7;1 (9.44b)
1 1

Ty = (15(2)) ; +80) {C 1sin ? + Cxcos ﬂ (9.45b)
1 1

where, for simplicity, we set C; = Cy; and C, = C5;. The coefficients A;, B, C;, and C, and
the functions f(y) and g(y) are unknown at this point.
Now use Equation (9.44b) to substitute in (9.43b) to obtain

o1y =—f (Alsin7IZ —|—Blcosnz) (9.46)
0z il i}

where f = df/dy.
Integrating (9.46) with respect to z gives,

Ty, = — ’< A ;COSZ +BIESIHZ> +Pi(y) (9.47)

where P(y) is an unknown function of y.
Now the top of the flange is stress free, which means that 7,.(z=1,) =0 or,

t t
' (412) +Pi0) = 0= Pi(y) =F (412) (9.48)
and P,(y) is determined. This would give the following expression for t,,:
t t
T (Al o (1 +cos5) B, —lsinE> (9.49)
T 5] s 151

In a similar fashion, Equation (9.49) can be used to substitute for 1, in (9.43c) to obtain:

Ja, t
62"f”(A1;1<1+c ZZ) Blgsinf—lz> (9.50)

which can be integrated with respect to z to give:

G, = —f”(A 2(z+—snt )+Bl( )Zcost—> + Py (y) (9.51)

where f” = d*f/dy* and P,(y) is an unknown function.
Again, the requirement that the top of the flange be stress free leads to o (z=1,)=0 or,

f”<A1 (t])+B]( >2cos7r> £ P,(y) = 0= Pa(y) f”(A1 — (2) ) (9.52)

With P,(y) known, the final expression for ¢, can be obtained:

t t 11\ 2
0, :f//< 1;1 (tl—z——lsm’:]z> —B; (;1) (l—l—cos?:—lz)) (9.53)
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In a completely analogous fashion, placing Equation (9.45b) into (9.43a) and solving for
T., gives

t 4 1.
Te=g {Cl 1 (1 + cos ?) —C,Lsin ?} (9.54)
T 1

Equations (9.44b), (9.45b), (9.49), (9.51), and (9.54) determine the stresses o, Txy, Ty;, 0,
and T, to within some unknown constants and the two unknown functions f and g and their
derivatives. At this point the stress o, is unknown. It does not appear in the equilibrium
equations (9.43a—c) and other means must be invoked for its determination.

By inverting the stress—strain equations (5.4), the following relations are obtained:

&x [S11 Sz Si3 0 0 S| Oy
&y Si2 S S»3 0 0 Sy oy
& Sz S Sz 0 0 S3 g,
= 9.55)
Vyz 0 O 0 S44 S45 O Tyz
Vaz 0 0 0 S5 S5 O Tyz
Vxy [S16 S S36 0 0 Se | Try

where §;; (i,j = 1-6) are compliances for the flange as a whole. They can be computed as
thickness-averaged sums of the corresponding compliances for the individual plies, and the
compliances of the individual plies are obtained using standard tensor transformation equations
(Equations 3.8-3.10).

In addition, the strain compatibility relations (5.10) and (5.12) can be rewritten as:

82'ny o 828): @
oxdy  Oy*  Ox?

(9.56)

.. e 0%
0x0z 022 Ox?

(9.57)

As was mentioned earlier, there is no dependence on the x coordinate so all derivatives with
respect to x are zero and Equations (9.56) and (9.57) simplify to:

2
0= %;; (9.58)
O%e,
=57 (9.59)

The first of Equations (9.55) can be combined with Equations (9.58) and (9.59) to give:

2

0
aiyz[Sllo'x"f‘snay+Sl30z+sl6fxy] =0 (960)
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2

0
6_22[Sllax'i‘SlZUy+5130'z+S167:xy} =0 (961)

The quantity in brackets is the same for both Equations (9.60) and (9.61). The only way
these two equations can be compatible with each other is if the quantity in brackets has the
following form:

S110x + 8120y + 8130, + Si6Txy = ¥G1(2) + G2(z) (9.62)

with G,(z) and G,(z) unknown functions of z.
Using Equation (9.62) to substitute in (9.61) gives:

y&a@+¥@@

=0
dz? dz?

from which

Gi(z) =k, +kiz

Ga(z) = k3 + kaz

with k., ki, k3, and k4 unknown constants.
Using this result and Equation (9.62) to solve for o, gives

S12 S13 Si6

ox =K, +Ki\y+Kyz+Ksyz— —0y———0,——71
x o 1y 22 32 Sll y Sll z Sll Xy

(9.63)
with K, K, K5, and K3 new unknown constants (combinations of k, — k).

Equation (9.63) determines o, as a function of the other stresses o,, 7, and 1., which were
determined earlier. The unknown coefficients K, — K3 are determined from matching the
far-field solution. That is, Equation (9.63) is evaluated for large values of y and compared with
the known solution there.

At this point, all stresses in the flange have been determined to within some unknown
coefficients and two unknown functions f(y) and g(y). The stresses in the skin for y > 0 are
determined in a completely analogous fashion. One additional set of conditions is imposed
here, namely, stress continuity at the flange—skin interface. By using an overbar to denote skin
quantities, these conditions have the form:

T (2=0) = —T(z2=0)
1z = 0) = —F(z = 0) (9.64)
0:(z2=0)=7;(z=0)

Note that a minus sign is needed in front of the shear stresses on the right-hand side to account
for the orientation of the coordinate systems in Figure 9.14. As a result of Equations (9.64),
the unknown functions f(y) and g(y) have to be the same for both flange and skin. In addition,
the coefficients Ay, B;, etc. for the skin, corresponding to the coefficients present in
Equations (9.44b), (9.45b), (9.49), (9.51) and (9.54) for the flange, are also determined from
Equations (9.64).
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In order to determine the unknown functions f(y) and g(y), the principle of minimum
complementary energy (see Section 5.4) is invoked. This means that the quantity,

1 1 _ .
I = EJ”nggdydde E”JQTS_Edydxolz— ”zTg dydz (9.65)

must be minimized. Underscores denote vectors and matrices. Overbars, as already mentioned
denote skin quantities. Specifically,

QT = [O'x Oy Oz Ty; Txg Txy]
and S was given in Equation (9.55) above.

The last term of Equation (9.65) is the work term. It consists of the tractions 7 multiplying the
prescribed displacements u”.

The stress expressions already determined are used to substitute in Equation (9.65). The x
and z integrations can be carried out without difficulty because they only involve either powers
or sines and cosines of the variables. Thus, after x and z integration, an expression for the energy

is obtained in the form:
1 & df
IHc==|H d .66
C ) J <dy2 9 7fa 1 &8y ) y (9 )

The problem has thus been recast as one in which the functions f{y) and g(y) must be
determined such that the integral in the right-hand side of Equation (9.66) is minimized. This
can be done by using the calculus of variations [15]. The general form of the Euler equations
for f and g is as follows:

d> /6H OH OH

a2 (8f") <8f’)+ o =0 6-67)
OH d [oH
dg dy [0g’} - -68)

Using the detailed expression of H to substitute in Equations (9.67) and (9.68) yields the
two equations:

d* d? d?
d§+R1d£+RJ+R3d—)§ +Rig =0 (9.67a)
2 d2f

where R|—R; are constants obtained from the x and z integrations implied by Equation (9.65)
and can be found in [2].

It should be noted that Equations (9.67a) and (9.68a) are given as homogenous equations. In
fact, Equations (9.67) and (9.68) would yield a nonhomogeneous term, i.e. the right-hand side
of Equations (9.67a) and (9.68a) is, in general, nonzero. However, it can be shown [2] that the
nonhomogeneous terms affect only the far-field behavior of the stresses which is already
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incorporated in the stress expressions. So the nonhomogeneous part of the solution can be
neglected without loss of generality.

The two equations (9.67a) and (9.68a) are coupled ordinary differential equations
with constant coefficients. Following standard procedures the solutions can be written
using exponentials:

F() = Sipe™ " + Sype™ 9 4 Sype ™4 (9.69)

g(y) = Slgeiqﬁly +Szgg*¢2)’ +S3ge*¢3)' (970)
where the exponents ¢; are solutions to:
¢° + (R, + Rs—R3Rg)$* + (R\Rs + Ry—R3R;—R4Rs) > + RyRs—R4R7 = 0 (9.71)

There are, in general six solutions to Equation (9.71), but because only even powers of ¢ are
present, they will appear in positive and negative pairs. Positive values of ¢ (or ¢ values with
positive real parts) imply that f and g grow indefinitely as y increases, which implies that the
interlaminar stresses containing fand g and their derivatives will tend to infinity for large values
of y. This, however, is unacceptable as the interlaminar stresses must go to zero for large values
of y in order for the far-field solution to be recovered. This is the reason for the negative
exponents in Equations (9.69) and (9.70). It is assumed that ¢4, ¢, and @3 correspond to the
positive solutions of Equation (9.71) (or those with positive real parts) so that the expressions
for f and g are in terms of decaying exponentials.

One additional comment pertaining to the limits of the integral in Equation (9.66) is in order.
The lower limit is zero, the edge of the flange. The upper limit is any large but finite value of y,
corresponding to a point where the far-field stresses are recovered. Of course, if the flange of the
stiffener is very narrow, the negative exponentials in Equations (9.69) and (9.70) have not died
out and those two expressions for f and g must be modified to include the remaining three ¢
solutions of (9.71) which correspond to increasing exponentials. As already alluded to, some of
the solutions to Equation (9.71) may be complex, in which case, expressions (9.69) and (9.70)
will include complex conjugates.

Proceeding with the solution to the system of the two equations (9.67a) and (9.68a) it can be
shown that

Sie ¢;° +Rs

=—— 9.72)
Sig  Red/ +R; (
which relates the coefficients in function f(y) to those in function g(y).

At this pgint in the solution, the following unknowns remain: Si¢, So¢, S5, By, and C, in the
flange and C; in the skin. To determine these, the remaining boundary conditions, namely that
the flange edge is stress free are imposed:

Toy(y =0) =0 (9.73)
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which, using the expressions for the stresses and the solution to the governing equations for f
and g become:

o n
(S1r + Sor + S3r) (Alsmtz "’BICOS:) + (0>’(Z))ff =0
1 1

. TZ nz
(Slg + 8o +S3g) (Clsmt + Czcost> + (‘Exy(z))ff =0 (9.74a-c)
: | 1
t ! Hh . m
(¢1S1f+q52S2f+q53S3f) Algl 1+cost—Z —31;151nt—Z =0
1 1

Since Equations (9.74a—c) involve sines and cosines of the variable z, the far-field stresses
(0,(2))g and (1,,(2))g are expanded in Fourier series and the first terms used to match the
corresponding terms in Equations (9.74a—c). This introduces an additional approximation in
the solution, but the results are still accurate enough to give reliable trends of the behavior.

Once Equations (9.74a—c) are solved, all unknown constants in the stress expressions are
determined except for C, in the skin. This, again, is determined by energy minimization

om,

—=0
0C,

which yields a linear equation for C,. The details of the algebra can be found in [2].

The predictions of the method presented here have been compared with finite element
results [2-4] and shown to be in good to excellent agreement. Discrepancies and reasons for
them are discussed in the references. In what follows, the solution will be used to generate trend
curves and discuss the implications for design.

To gain insight on how different parameters affect the tendency of a stiffener to peel away
from a skin, a typical flange and skin portion of a stiffened panel is isolated in Figure 9.15. The
applied loading is simplified to an applied moment M. This could be the result of bending loads
(e.g. pressure) applied on the panel, or even post-buckling where local in-plane axial and/or
shear loads are neglected.

flange I 1

2 skin

Figure 9.15 Skin—flange configuration under bending load
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The basic material properties are as follows:

E,=137.9GPa E.=11.03GPa
E,=11.03GPa G,,=4.826GPa
G,,=4.826 GPa G,,=3.447GPa
Vi =0.29 vy =0.29
foiy=0.152mm vy, =0.4

Note that, for this type of problem where out-of-plane stresses are involved, the out-of-plane
stiffness properties E,, G,;, G,., vy, and v, of the basic ply are also needed.

For the first set of results, the skin and flange layup are assumed to be the same
[45/-45/-45/45]n in order to eliminate stiffness mismatch due to differences in moduli in
the flange and skin. Only the thicknesses of skin and flange are allowed to vary by specifying
different values of n. The normal stress o, at the interface between skin and flange is plotted
against distance from the flange edge for different values of the ratio #,/t, in Figure 9.16. It is
normalized with the maximum tensile value of o, at the far field which is given by

oM
(t+ 12)2

Oymax =

with M the applied moment per unit of stiffener length.

As expected from the qualitative discussion in association with Figure 9.11 at the beginning
of this section, the normal stress has a maximum value at the edge of the flange and then reduces
rapidly to negative values and decays to zero. The higher the value of #,/¢, the more rapidly the
stress decays to zero. The distance over which the normal stress decays to zero does not exceed
10 flange thicknesses as is shown in Figure 9.16.

Itis also apparent from Figure 9.16 that starting from low ¢,/¢, values and going up, the peak
stress at the flange edge increases. However, this trend is not monotonic. As is shown in
Figure 9.17, for the same skin and flange layups as in Figure 9.16, the highest peaks are reached
for #,/t, values between 1 and 1.5 and then decrease again. This means that flange thicknesses
close to the skin thickness should be avoided because they maximize the normal stresses
at the interface.

The discussion so far has attempted to isolate the effect of geometry by keeping the layup
of the flange and skin the same. Now, the thicknesses of the flange and skin are fixed to the

E92/° ymax —
o
M M

increasing ti/tz ) "
stress dies out within, at most,

. 10 flange thicknesses
0.05 £ —_—
0 z L L s L L s ; L L s L
-0.05 §§ R, 5 Sue=02 10 15
E1210 0.8 "06

Distance from flange edge (y/t1)

Figure 9.16 Normal stress as a function of distance from flange end for various thickness ratios
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Figure 9.17 Peak normal stress at the flange edge as a function of flange to skin thickness ratio

same value and the layup is varied. This is shown in Figure 9.18 where the case of [45/-45]s
flange and skin is compared with the extreme case of an all 0° flange, [04], on an all 90°
skin, [904]. This is the most extreme case because it has the largest stiffness mismatch
between skin and flange. Note that the O direction is taken to be parallel to the y axis for
this example.

The [04] flange on [90,4] skin has a peak normal stress that is twice as high as the peak stress
when skin and flange are both [45/—45];. And, because the peak value is higher, the stress
decays to zero faster than in the case of [45/—45]; skin and flange. An attempt to combine the
effect of layup and geometry is shown in Figure 9.19 where the peak stress is plotted as a
function of the ratio t,/, for the two layups of Figure 9.18.

Again, the highest peaks occur for #,/f, ratios between 1 and 1.5 In addition, the 0° flange on
90° skin has much higher peaks (as much as 2 times higher) than a situation where flange and
skin have the same layup. Only for #,/¢, values lower than 0.3 do the two cases approach each
other but, even for #,/t, = 0.2 the 0° flange on 90° skin has 40% higher peak normal stress at the
flange edge.

The results presented in Figures 9.16-9.19 were based on a case where only a bending
moment M was applied. Similar results are obtained for other types of loading (but see exercise
9.5 for some important differences). The trends can be summarized into the following
recommendations or guidelines for design.

06 £ Sy c;ymax
0.5 - -
0.4 £\ ..-0° flange on 90° skin !

0 diris parallel to y

0.2 F\\enrnnn [45/-45/-4545]

T flange and skin

01§

ofE N s
018 v 5 10 15
02 £

Distance from flange edge (y/t1)

Figure 9.18 Dependence of interface normal stress on layup
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Figure 9.19 Peak normal stress as a function of thickness ratio (#;/t,) for two different
layup configurations.

1. The interlaminar stresses die out within 10-15 flange thicknesses away from the
flanged edge.

2. The interlaminar normal stress peaks at the flange edge and decays rapidly to zero.

3. The flange thickness must be either less than the skin thickness or atleast 1.5 times greater to
minimize the peak stress at the flange edge.

4. The closer the stiffness of the flange is to that of the skin, the lower the interlaminar stresses
at the flange skin interface. Since the thicknesses have to be different, this suggests a
situation where the flange and skin have the same repeating base layup and only the number
of times it repeats in one is different than in the other.

These implications for design rely heavily on the peak value of the normal stress at the
flange—skin interface. This value occurs at the edge of the flange. It is important to note that the
exact value at that location is not easy to determine. While the method presented in this section
gives a well-defined value for the peak stress, the approximations and assumptions made in
the derivation suggest that it may not be sufficiently accurate. On the other hand, finite element
solutions show that the value at the edge itself is a function of the mesh size. In general, the finer
the mesh near the flange edge, the higher the value. This is a well-known problem associated
with free edges in composite materials [16, 17] and displacement-based formulations have
difficulty in obtaining accurate stresses because the stress-free boundary condition is im-
plemented in an average sense [17, 18]. In addition, exact anisotropic elasticity solutions for
simple laminates [19, 20] have shown that, indeed, the stresses are, in general, singular at the
free edge. However, in most cases, the strength of the singularity is so low that it becomes
significant over a range equivalent to a few fiber diameters. In such a case, the main assumption
of homogeneity in the elasticity solution breaks down and the two different constituents,
fiber and matrix must be modeled separately. As a result, the elasticity solution is no more
reliable than finite element solutions or the approach presented in this section.

From a design perspective, any method that gives accurate stresses near the free edge of the
flange (but not necessarily the flange edge itself) can be used to differentiate between design
candidates. Configurations with higher peak values at the edge are expected to have inferior
performance. Predicting the exact load at which a delamination will start requires the use of
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 require that the flange
and skin layups have
similar stiffnesses and
different thicknesses

10 x dropped thickness rule

Figure 9.20 Stiffener cross-section design incorporating guidelines from this section

some failure criterion [13, 14] and some test results to adjust any discrepancies between the
value predicted at the edge by the analysis method used and the actual test value.

The design guidelines presented in this section can now be used to revisit and upgrade the
design of the stiffener cross-section that was last reviewed in Figure 8.36. The revised design is
shown in Figure 9.20. The two main differences from Figure 8.36 are the stepped flange next
to the skin where plies are dropped with the distance between drops at least 10 times the height
of the dropped ply (or plies if more than one plies are dropped at the same location) and the
requirement that the skin and flange thicknesses be different #yange/tokin<1 or > 1.5) with
layups that are, if possible, multiples of the same base layup to keep the respective in-plane
stiffnesses as close as possible.

It is recognized, of course, that by using a stepped flange next to the skin the manufacturing
cost increases significantly. A tradeoff between the increased cost associated with the stepped
flange and the improvement in performance (and thus decreased weight) is necessary in such
cases. Alternatives to the stepped flange are shown in Figure 9.21. While they all improve the
performance of the skin-stiffened panel, they all carry a significant cost penalty with them.

portion of skin
covers flange

z-pins

fasteners at
stlffener ends

Figure 9.21 Different options for delaying skin—stiffener separation
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Figure 9.22 Local tension and compression regions in skin under shear

9.3 Additional Considerations for Stiffened Panels
9.3.1 ‘Pinching’ of Skin

With shear loads present, the skin between stiffeners goes into diagonal tension (see
Section 7.2). Resolving the shear load in biaxial tension and compression as was done in
Section 7.2 results in the situation shown in Figure 9.22. Only the base flanges of the stiffeners
are shown in this figure for clarity.

Of particular importance during testing of such configurations are the compression regions at
the top left and bottom right of each bay (the term bay here refers to the section between
stiffeners). Locally there, an originally rectangular piece of skin deforms such that the angle
at the corners of interest is less than 90° (Figure 9.22). If the applied load is sufficiently high,
this can cause the skin to fail in compression. This *pinching’ phenomenon is more pronounced
on components isolated from the surrounding structure during, for example, testing of
individual panels. In a complete structure such as a fuselage or wing skin, the conditions
at the edges of the panel in Figure 9.22 are different from when it is isolated in a test fixture and
the compliance of the adjacent structure relieves this phenomenon.

Pinching of skin at the corners may lead to a premature failure when testing in the laboratory.
This can happen even before the skin buckles and it can be exacerbated by local eccentricities
that may introduce additional bending moments in the region where the skin is under
compression. For this reason special fixtures and specimen geometries have been designed
to eliminate this problem [21].

9.3.2 Co-Curing Versus Bonding Versus Fastening

The discussion in this book has mostly been confined to generating designs that meet the
loads at low weights. Other than Chapter 2 and Sections 5.1.1, 5.1.2, and 9.2.2, little attention
has been paid to the cost associated with some of the designs that result from the approaches
presented. The subject of skin-stiffened structure is ideal for bringing up some additional
considerations relative to assembly cost and how different concepts can be traded with cost as
an additional driver.
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There are three major ways in which a stiffened panel can be assembled: (a) co-curing,
(b) bonding, (c) fastening. There are variations or combinations of those such as co-bonding
(where one or both of skin and stiffeners are staged and then cured with adhesive present),
bonding and fastening, etc., but these three major options are a good starting point for
cost tradeoffs.

To discuss these approaches some basic aspects and experience-based conclusions should be
laid down first:

1. In general, the larger the part the lower the cost per unit weight. There are economies of
scale, elimination of secondary process steps (such as off-line part preparation), and, most
importantly, elimination of assembly time required to put together the final product if it is
made in smaller pieces instead of one larger part.

2. Eliminating additional cure cycles reduces the cost. Ideally, one should have one cure cycle
(or cure at room temperature if materials and loads permit).

3. The higher the complexity of the part being made the higher the cost.

4. If the process requires additional inspection to assure structural integrity and to check that
tolerances are met, the cost increases.

5. The risk associated with something going wrong during fabrication adds to the cost. This
risk is higher for parts of greater complexity and size. Thus, complex parts have a higher
rework and scrap rate than simpler parts, which add to their cost.

6. Automated processes are more accurate and reliable and have lower recurring cost, but can
be limited by how complex a part they can make. Also, the nonrecurring cost associated with
acquiring the equipment (e.g. an automated fiber/tow placement machine) can be high and
not easily justifiable for relatively short production runs.

In co-curing, the skin and stiffeners are cured at the same time. This requires detailed (and
costly) tooling to accurately locate the stiffeners during cure, and to ensure uniform pressure
everywhere. So the nonrecurring cost associated with tooling is relatively high. The recurring
cost (labor hours) per unit weight is relatively low according to item (1) above. On the other
hand, the risk of something going wrong during cure of the combined skin and stiffeners is
relatively high, which, according to item (5) above, adds to the cost.

In a bonded configuration, skin and stiffeners are made separately which minimizes the risk.
But bonding requires the extra assembly step of skin and stiffeners thus adding to the cost.
In addition, there are currently no reliable consistent nondestructive inspection methods to
verify that the bond is everywhere effective and meets minimum strength requirements. This
means that additional process steps ensuring proper surface preparation of the surfaces to be
bonded, full coverage with adhesive, cleanliness and avoidance of contamination, etc. have to
be in place to guarantee a good bondline. This adds to the cost. In some cases, to protect against
defective bondlines that were missed during fabrication and inspection, it is required to
demonstrate that the structure can meet limit load with a significant portion of the bondline
ineffective, which adds to the weight of the structure.

Fastening of the stiffeners to the skin eliminates the problems associated with bonding and
improves the post-buckling performance. However, the extra assembly time associated
with fastening is a significant cost increase. In addition, the use of fasteners typically increases
the weight.
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It can be seen from the previous discussion that each of the three approaches has advantages
and disadvantages, and deciding which approach to follow is a function of the amount of risk to
be undertaken and which process steps a particular facility is more comfortable with and more
efficient in. It is possible, for example, if the assembly process steps are streamlined and
automated, that the cost associated with them is only a small fraction of the total and can lead to
overall cost savings compared with a co-cured configuration [22].

Exercises

9.1 Assume that the stiffener used in the application in Section 8.5.3.1 is to be used on a square
skin panel of dimensions 508 x 508 mm loaded in compression. The skin layup is
[45/-45]s (same material as the stiffener). Determine the largest stiffener spacing (and
thus the spacing that minimizes the number of stiffeners and therefore the fabrication cost)
such that the overall buckling load equals the buckling load of the skin portion between
the stiffeners.

—_ «—
—_ «—
— 3 as= —
—_ «—
—_ «—
_> 4_
—_ «—

stiffener

stiffener terminates in the
“middle” of the skin

skin

Further isolating the flange and skin portions included in the dashed rectangle above and
viewing them from the side (enlarged):
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(a)

(b)

©

(d)

location where AQ

stiffener terminates
\ ‘
flange or region 1 151 <4«—F

X O X,

—_— skin or region 2 193

Z

Note the following:

The load F applied to the stiffener in the first figure, when transmitted to the flange in the
second figure would, in general, also exert a moment. To simplify the calculations this
moment is neglected. There are applications where this is valid (when the stiffener is
also attached to a very stiff part which absorbs the bending moment). Similarly, going
from the applied F on the flange in the second figure to the reacting F on the skin on the
left would again, in general, result in a bending moment which is neglected for the
same reasons.

The flange is called region 1, meaning all the quantities relating to the flange will have a
subscript 1 from now on. Similarly, the skin is region 2 and all skin-related quantities
will have a subscript 2. Note there are two coordinate systems one in region 1 and one in
region 2. Also note that the z directions in these two coordinate systems are opposite
each other.

The left edge of the flange in the second figure above, where the stiffener terminates has
no loads applied and therefore stresses are zero there. All stresses in the flange transfer
to the skin as that edge is approached.

The flange and skin are assumed to be wide in the y direction (perpendicular to the plane
of the figure and, therefore, there is no dependence on y; or y,.

It is assumed that far from the terminating flange edge (i.e. for high values of x;) the

classical laminated plate theory is recovered according to which the average stress in the
flange g, is given by

F
op=—=A
L= b 1

where b, is the flange width.

It is now assumed that the normal stress o,; in the flange is given by the follow-

ing expression:

3
Oyl :f(sin;—tz1 +Dlsin2—7;1z> + A

where fis an unknown function of x; and D, is an unknown constant.
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9.3

9.4

Note that this expression can be viewed as consisting of the first few terms of a Fourier
series. The requirement, of course, is that f, for large x;, tend to zero so ¢,; — A; away
from the flange termination.

Use the equilibrium equations to determine the stresses ., and g, (all other stresses are
zero or close to zero in the flange). To do this you will also need to make sure that 7,,; =0
and o,; =0 at the top of the flange. Also, write the corresponding stress expressions for
region 2 (by analogy with region 1).

Require that 7,, and ¢, are continuous at the flange/skin interface (i.e. the value of t,,
obtained at the flange skin interface coming from the flange equals the value of 7.,
obtained at the same location coming from the skin, and similarly for ¢,) and obtain the
values of Dy and D,. (Watch out for the definition of the coordinate systems and
the z direction.)

Continuing from Exercise 9.2, the function f7is still unknown. To determine it you need to
minimize the energy in the flange/skin system. The energy has the form:

n=uv-w

where the internal potential energy U is the sum of U, and U, and W is the external work.
It turns out that W does not contribute to the solution so neglect it.
Now U, is given by

U, = %”J [S110:° +28130,0; + S336.° + S557,.” | dxdydz
where, all quantities in the right-hand side should have an additional subscript 1 to denote
the flange (omitted here for simplicity) and the quantities S;; are compliances (obtained
from inverting the stiffness matrix for the entire flange).

The y integration only yields a constant b;, the width of the flange since there is no
dependence on y.

Without substituting for D, (and D,) use your expressions for the stresses obtained in
Exercise 9.2 and perform the z integrations in the expression for U;. Note that, because
these involve sines and cosines, quite a few of the integrals are zero and you can derive
simple expressions for those that are not.

Write the analogous expression for U, and perform the z integration. Note that the y
integration in the skin will also yield a constant multiplier of b, because we are assuming
the the skin/flange portion we have isolated for analysis is of width b; both for the flange
and the skin.

If you substitute in the expression for [1 = U; 4+ U, you will now have a long integral
with respect to x only (y and z integrations already performed) which will be a function of
fand its first two derivatives.

Continuing from Exercise 9.3, using the calculus of variations write down the Euler
equation for this problem and derive the governing equation for f so that the energy is
minimized. Write the governing equation in the form

Ry (d"f/dx") + Ry(d""'ffax" ")+ ... =0

Start with R; with the highest derivative of f, and neglect the constant term (because it
does not contribute to the solution). Write down the expressions for Ry, R», .. ..



256

Design and Analysis of Composite Structures

9.5

Solve the equation obtained writing down the solution in the form:
f — Clemlx 4 Czemzx 4o

Also write down the expression for m;.
(Continuing from Exercise 9.4) At this point, the fact that none of the stresses can increase
with increasing x is invoked and only exponentials with negative real parts are used. In
addition, the boundary conditions that require t,,; =0 and g, = 0 at x = 0 are invoked (the
second one approximately only) and the constants Cy, C», . . .are determined. After that is
done, one notices that at x; = 0 at the flange skin interface, the interlaminar shear stresses
T.,1 and T,,, are zero and only the normal stress 7, or 6., are nonzero. Therefore, the only
stress that contributes to delamination is g, (or g, which is the same at the flange—skin
interface by stress continuity).

Substituting in the stress expressions and evaluating ¢, at x =z =0 show that

D,? f D;?
S (14 25 ) 4 (s0), 2 (1+ 2
() i (14 5) s 2 (1455

Y _371‘1 1) 5
2(833), | T + <t> p)
1

where the compliances for each laminate (flange or skin) can be obtained by averaging the
compliances over all plies (springs in series):

Ozcrit =

hH . t;
(Sip Z (Si/)nhpzy

with an analogous expression for region 2, and the compliances for each ply of orientation
0 are given by the following expressions where quantities with superscript O refer to a
0° ply of the material being used.

Si1 = 8% cos*0 + (259, + 5% ) sin*Ocos?0) + S3,sin*0
Si3 = 8%c0820 + 89, sin’0

S33 =%
Sss = S‘5)500520+Sg4sin26
1
S(l)l = E
1
__'n
12 Enl
1
SO =_—
6~ Gy
1
ng =T
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A material is made available with the following properties:
E;; = 137.88 GPa
Ey = E3; = 11.72 GPa
G, = Gj3 =4.825GPa

Gy = 4.0GPa
vip =vi3 =03
vy3 = 0.45

tply = 0.1524 mm
X' = 2068 MPa
X¢ = 1379 MPa
Y = 68.94 MPa
Y¢ =310.2 MPa

S = 124.1 MPa

It is also given that the skin at the location of interest has the following layup:

[45/-45/0/90]4.

9.6 (a) If the skin is not to exceed 4500 us, determine the value of F that barely fails the skin.
(b) Assume that the flange is made from one of the three layups: [0/90]., or [45/—45]. or
[45/-45/0/90],. Select a value of n,m, and p and plot the value of 7, as a function of #,/¢;.
Which value(s) of #,/t; would you recommend to use in this case and why? (c) Use your
results in (a) and (b) to select the lightest flange layup you should use.
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Sandwich Structure

A sandwich structure (Figure 10.1) typically consists of two facesheets separated by light-
weight core. Usually, the facesheets are bonded to the core with the use of adhesive but, under
certain circumstances (for example using X-cor® or K-cor® [1,2] it is possible to eliminate the
use of adhesive.

Composite laminates make up the facesheets. There is a variety of materials and config-
urations used for the core depending on the application and the desired properties: foam,
honeycomb, low density foaming aluminum, etc. Most core materials, in particular honey-
combs, are anisotropic. They have different stiffness and strength in different directions. In
general, the purpose of the core is to increase the bending stiffness of the sandwich by moving
material away from the neutral axis of the cross-section. The stiffness (and strength) of the core
are, typically, much lower than those of the facesheets. As a result, for general loading
situations such as that shown in Figure 10.1, with applied bending moment M and in-plane axial
and shear loads N and V, respectively, all the load is taken by the facesheets. The bending
moment (per unit width) is resolved into a force couple where one facesheet is loaded by
a positive force per unit width N,, and the other by an equal and opposite force per unit width
—N,,.. The magnitude of that force is such that the force couple generates a moment equal to M:

M
et

m

The axial load N and the shear load V are divided equally between the two facesheets.

The core must still have minimum strength and stiffness in certain directions so that: (i) the
sandwich does not collapse under pressure during cure; (ii) load can be transferred between
facesheets; and (iii) core ramp-downs, where the core gradually transitions to monolithic
laminate for attachment to adjacent structure, do not fail prematurely. With reference to
Figure 10.2, aside from the core thickness 7. which determines the overall bending stiffnesses of
the sandwich, the most important core properties are: The transverse shear stiffnesses G, and
G,., the corresponding transverse shear strengths Z,,, Z,, the out-of-plane Young’s modulus
E., and the corresponding (flatwise) tension and compression strengths Z' and Z° respectively.
Finally, for the case of honeycomb core such as that shown in Figure 10.2, the core cell size s

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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Figure 10.1 Sandwich configuration

plays a role in some of the failure modes. A thorough investigation of sandwich structures with
isotropic facesheets can be found in reference [3].

10.1 Sandwich Bending Stiffnesses

A sandwich can be treated as a laminate where the core is just another ply with negligible
stiffness and strength properties, and thickness equal to the core thickness. Standard classical
laminated-plate theory (see Section 3.3) can be used to determine the corresponding A, B and D
matrices. The presence of the core does not change the A matrix, but will affect the B (if the total
layup is unsymmetric) and D matrices significantly. This can be seen by applying Equation
(8.14) to obtain the D matrix of a sandwich. Rewriting Equation (8.14) it can be shown that for a
sandwich with identical facesheets,

to+ 1\ 2
i f) (10.1)

g

yz
deformation deformation

Figure 10.2 Honeycomb core geometry
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where the multiplicative factors of 2 appearing on the right-hand side account for the presence
of two facesheets. The first term on the right-hand side of Equation (10.1) is the same as the EI
term in Equation (8.14) with the stiffness £ incorporated in the corresponding D;; term. The
second term is the product of the stiffness and the distance from the neutral axis present in
Equation (8.14) with the modulus this time lumped in the A;; term.

To see the effect of the core on increasing the bending stiffness of a sandwich, consider two
facesheets of layup (£45)/(0/90)/(+45) separated by a core of varying core thickness. The
individual A and D matrices for each facesheet are given by:

A 12491.43 N/mm Dy, 466.9 Nmm
Ans 28912.44 N/mm Dys 659.7 Nmm
Ags 13468.58 N/mm Deg 494.0 Nmm

Using Equation (10.1), the ratio of Dy, for the entire sandwich divided by D, for each
facesheet can be determined as a function of varying core thickness. The result is shown in
Figure 10.3.

It can be seen from Figure 10.3 that even very small core thicknesses (5 mm) result in
a thousand-fold increase of the bending stiffness. The range of typical core thicknesses used in
many applications is also shown in Figure 10.3, indicating that, for such applications, the core
increases the bending stiffness anywhere between 4000 and 15000 times.

This kind of improvement at a relatively small increase in weight, due to the presence of the
core and adhesive, makes sandwich structure ideal for many stability-driven applications
where high buckling loads are important. In fact, judicious selection of facesheet material and
layup and core material and thickness would result in sandwich being the most weight-efficient
structure if it weren’t for a variety of new failure modes associated with such configurations.
Each of the components — facesheet, adhesive, or core, can fail and there are more than one
failure modes for each component. Some of these failure modes are quite limiting and tend to
drive the design. The result is that sandwich is not always more efficient than the alternative(s)
such as a skin-stiffened structure. It depends on the geometry, loading, and design philosophy
(e.g. whether post-buckling is allowed and at how high a post-buckling ratio). The most
important of these failure modes are examined in subsequent sections.

D11 sand /
D11 face

range typicaflly used
""""""""""""""""""""""""""""""" ) /in design |

0 5 10 15 20 25 30

core thickness (mm)

Figure 10.3 Variation of sandwich bending stiffness as a function of core thickness
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In addition, it should be pointed out that in many applications where sandwich is selected,
ramp-downs are used at the edges of the sandwich for attachment to adjacent structure. Ramp-
downs are briefly discussed in Section 10.6.1. They tend to increase cost and introduce
additional failure modes that must be checked to make sure they do not lead to premature
failure of the entire structure.

10.2 Buckling of Sandwich Structure

Buckling is one of the critical failure modes for sandwich structure in particular for relatively
large panels. The reason is that it is hard to design against all possible failure modes in the post-
buckling regime and, as a result, buckling is usually considered to coincide with final failure.

10.2.1 Buckling of Sandwich Under Compression

The procedure to determine the buckling load of a sandwich structure is very similar to that
presented in Chapter 6 for monolithic laminates, with one important difference. The presence
of the core makes the effects of transverse shear very important. If they are not properly
accounted for, the predicted buckling load is very unconservative (higher than the case where
transverse shear effects are accounted for).

In a uniform thickness plate where transverse shear effects are significant the Kirchoff
hypothesis is no longer valid. Plane sections remain plane, but are no longer perpendicular to
the plate midplane. This is shown schematically in Figure 10.4.

The sandwich under compression is treated as a wide beam. Following the derivation in [4]
for isotropic beams, the buckling load is given by:

N Ecrit

kN, Ecrit
1 =
+ t.G,

Neyis = (10.2)

In Equation (10.2), Ng.; is the buckling load N, of the sandwich if transverse shear
effects are neglected, given, for simply supported edges by Equation (6.7) repeated below
for convenience:

7'[2 2 2 (AR)4
NEcrit:? Dyim” +2(D12 + 2Des ) (AR)” + Dy p”" (6.7)

- 4= --

X

Figure 10.4 Bending of a sandwich panel under compression

angle = 90°
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Also, t. and G, are the core thickness and transverse shear stiffness respectively. It is
important to note that G, is the value of the shear modulus (typically G,; or G,) aligned with the
loading direction.

Finally, k in Equation (10.2) is the shear correction factor. The shear correction factor is
introduced to reconcile the inconsistency between the derived and assumed transverse shear
stress distributions through the thickness of the plate. Engineering bending theory leads to
a quadratic distribution of shear stress through the thickness while first-order shear deformation
theory assumes the shear strain (and thus the shear stress) is independent of the through-
thickness coordinate. This inconsistency [5] is reconciled by requiring that the work done
following either formulation is the same. This leads to an expression for the transverse shear
force (per unit width) of the form [5],

5
Oy = kG hy = 3 Gy hy

where the shear correction factor is k= 5/6 in this case, A is the plate thickness and 7y is the
transverse shear strain.

As mentioned earlier, most sandwich structures use core with very small shear stiffness G,,
compared with that of the facesheets. As a result, the shear stress through the thickness is very
nearly uniform. This is consistent with the fact that bending stresses are not linearly distributed
through the thickness of the core because, as was mentioned earlier, bending moments are
transmitted through a sandwich as a force couple. Thus, there is (almost) no inconsistency
between bending theory and first-order shear deformation theory and k ~ 1. Thus,

N Ecrit
N Ecrit
I Gc

Nevie = (10.3)

1+

An example would help illustrate the importance of transverse shear in a sandwich. The same
facesheet properties as those in Section 10.1 and Figure 10.3 are used here. The core material
is assumed to have a shear stiffness G, =42.1 N/mm?. Equation (10.3) is used to calculate
the buckling load of a square sandwich panel of side 508 mm and compare it with Equation (6.7),
i.e. without accounting for transverse shear. This is done for different core thicknesses and
the results are shown in Figure 10.5.

3000 + — «—

g Panel = =
2500 ; = =

£ buckling load = = no transv. shear
2000 (N/mm) —> «— effects

o a
1500 +

F with transv.
1000 -é shear effects
500 +

0 : f e S e B S
0 5 10 15 20 25 30

Core thickness (mm)

Figure 10.5 Buckling load of a sandwich with and without transverse shear effects as a function of core
thickness
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It can be seen that once the core thickness exceeds 5 mm, the buckling load including
transverse shear effects diverges drastically from the buckling load without transverse shear
effects. If transverse shear effects are included the buckling load is always lower. Even for
a core thickness of 3 mm the two buckling loads (with and without transverse shear effects)
differ by 21%.

10.2.2  Buckling of Sandwich Under Shear

The situation is shown in Figure 10.6. The form of the equation predicting buckling of a simply
supported sandwich under shear is the same as Equation (10.3):

nyc
1 + N\jvr

t:Gys

Nxvcrit - (104)

where N, is the shear buckling load without transverse shear effects (see for example
Sections 6.3-6.5) and Gys is the core shear modulus in the 45° direction, as shown in
Figure 10.6.

The shear modulus G5 is used because it is the one mostly opposing the tendency of the
panel to buckle. Since a pure shear loading is equivalent to biaxial loading with tension in one
direction and compression in the other (see for example Section 7.2), the tendency for buckled
half-waves to form is along the 45° line in Figure 10.6 (the direction of maximum compression)
and Gys, the core shear stiffness in that direction, opposes that tendency.

To determine Gy4s standard tensor transformation equations are used (Section 3.2,
Equation 3.8). The result is

Gyz + Gy

Gus = sin*45G,, + cos*45G,, = o (10.5)

Using this result to substitute in Equation (10.4) and rearranging leads to:

(ze =+ G,vz) I

Nyyerit = 10.6
T (Gt Gy) e (10.6)
i S
nyc
|
Ny
Gys GYZ [\ NXy
x € — G 2
ny\J
-
ny

Figure 10.6 Sandwich panel under shear load
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10.2.3  Buckling of Sandwich Under Combined Loading

For combined loading situations the same interaction curves as those presented in Sections 6.5
and 6.6 can be used, provided the individual buckling loads are corrected for transverse shear
effects as presented in the two previous sections.

10.3 Sandwich Wrinkling

Wrinkling is a local buckling phenomenon where the facesheet of a sandwich buckles over
a characteristic half-wavelength ¢, which is unrelated to the overall length or width of the panel.
There are three possible modes, symmetric, antisymmetric and mixed-mode wrinkling. These
are shown schematically in Figure 10.7 for applied compression, but can also occur under
applied shear or combined loads.

10.3.1 Sandwich Wrinkling Under Compression

The symmetric wrinkling case is examined here in detail (see also [6]). A sandwich
compression specimen, which failed in wrinkling, is shown in Figure 10.8.

The deformed shape after the facesheet has buckled in the wrinkling mode is idealized in
Figure 10.9. This shape extends through the width of the sandwich (perpendicular to the plane
of Figure 10.9). It is assumed that the sandwich is very long in the y direction. It is also assumed
that at the edges of the buckled shape, at x=0 and x = /¢, the boundary conditions on the
facesheet are those of simple support, i.e. w=0 there.

One important aspect of the formulation is modeling the behavior of the core. Assuming
perfect bonding between core and facesheet, it is obvious from Figure 10.9 that the core deforms
under the buckled facesheet. In the case shown in Figure 10.9, the core extends perpendicular to
the x axis. If the core were very thick, there would be aregion near the midplane of the core where

- = —p <

symmetric wrinkling

—p -

anti-symmetric wrinkling

— |

e

mixed mode wrinkling

Figure 10.7 Sandwich wrinkling modes
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Figure 10.8 Wrinkling failure of sandwich tested in compression

the core would not deform. So the core deformations are confined in a region close to the
facesheet. It is assumed that this region has width z. (Figure 10.9) where z. is unknown at this
point. It is also assumed that the core deflections in the z direction vary linearly with z.

Combining the assumption of simply supported ends for the deformed facesheet and linear
variation of deflection for the core, the following expression for w is introduced:

w=Asin" (10.7)
. /L

Equation (10.7) satisfies the requirement that w=0 at x =0 and x = £. It also satisfies the
linear variation of w as a function of z with w=0 at z=0 (i.e. at the interface where core
deformations seize to be significant) and reproducing the facesheet sinusoidal deformation at

7 =2, Which is the intersection of the core with the facesheet.
The wrinkling load is determined by energy minimization. During wrinkling, energy is
stored in bending the facesheet and extending the core. So the energy expression has the form:

M, = 2U; + U, —2W (10.8)

where Uy is the energy in each facesheet and U. is the energy stored in the core. W is the work
done by the applied load on one end of the sandwich. The factors of 2 in this equation account
for the presence of two (identical) facesheets.

Figure 10.9 Deformed configuration of sandwich undergoing symmetric wrinkling
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Neglecting deformations u and v in the plane of the facesheet, the strain and stress in the
facesheet can be obtained from Equations (5.6), (5.7), and (5.4):

. Pw

b= — 7 ——

' Ox? (10.9)
Oy = Efo

where E; is the facesheet membrane modulus obtained from Equation (8.6).

Then,
Pw\ >
x6x — E 2
78 /2 <8x2)

Thus, the facesheet energy can be written as,

o= [ee
2

L

waem o [(22)] o= [22)] e

=2 0

I=Zc

(10.10)

where I is the moment of inertia of the facesheet per unit width b. It should be noted that this
expression can also be obtained from Equation (5.62) assuming a symmetric facesheet and
noticing that only the Dy, term contributes with D, = EI/b where b is the width of the facesheet
perpendicular to the plane of Figure 10.9.

The strain—displacement and stress—strain equations (5.9) and (5.4) applied to the core, give

ow

&, = a—z
v, o
Vo = Ox Oz

0; = Ecgz

Txz = zeyxz
where E. is the core modulus in the z direction and G, is the transverse shear modulus of the

core for shearing in the xz plane (see Figure 10.9).
As already mentioned, the u deflection of the core is negligible. Then, the above equations

can be combined to
ow\?
0.6, =E, 8_2

ow\?
TxtVxz = Gy, (5)

which, in turn, can be substituted for in the core energy expression:
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Zc Ze

1 K ow\? ow\?
w w
U. = EJZJ (Eco6; + GrTary,. )dzdx = JJ (EC <3_Z) + Gy, (E) >dzdx (10.11)
0 0 0

Note the factor of 2 in front of the second integral, which is introduced to account for the
fact that there are two portions of the core (one above and one below the midplane) both of
thickness z. that contribute to the core energy.

The external work done by the applied load N, per facesheet per unit width is given by

W = N,

5 = - far

0

with ¢ the deflection at the edge of the sandwich portion considered, i.e. at x=0 and x = /.
Considering the deformed shape of the facesheet shown in Figure 10.10, the deflection é can
be calculated using Pythagoras’ theorem and assuming small deflections w.
By Pythagoras’ theorem,

(dx)* + (dw)* = (ds)* = dx = dsy /1 — <‘::>2

The quantity involving the square root can be expanded into the first two terms of a Taylor
series (valid for small (dw/ds)z) to give,

dw\? 1 /dw\? dw\?
1—-—) =~1—=— f I(—
(ds) 2<ds> or sma (ds)
and for small deflections w
aw _ dw
ds ~ dx

Therefore, substituting in the expression for J,

Figure 10.10 Deformed facesheet and local geometry
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l

N, [ [Ow 2
WZ?J(E)

0

dx

=2

At this point, the relevant w derivatives present in the energy expression are evaluated:

O\ _A2 R (o
ox) T 2 22\ Ty
ow\® A2 1 | g 2
5.) T222 cos 7

Pw\? At | cos 2mx
oxr) oz2 U ¢
and substituted in Equation (10.8). Evaluating the integrals gives,

I,

AR 1[Ef 1 2 A2
=—(ED,A’+ = |== + ~Gpz.—|A> =N, — 10.12
2 ED; +2[zc 3Gz e} N3 (10.12)

Equation (10.12) must be minimized with respect to the unknown amplitude A. This
implies,

oIl
0A

- 1[E4 1 72 72
= 0= 24| 2 (Bl + = | = 4 ~ Gz | — N | =0 10.13
[253( )f+2[zc T30k z] 26] (10.13)

For nonzero values of A, the quantity in brackets must be zero. This gives a condition for the
wrinkling load N,. Denoting the wrinkling load by N,

py
s (E]) E 02 Ze

xwr — / + ! + ze =
£2 n2z, 3

(10.14)

Examining Equation (10.14) it can be seen that the first term of the right-hand side is the
buckling load of a beam column (per unit width). The second term is the contribution to the
buckling load of a beam by an elastic foundation when the stiffness of the foundation k equals
E./z.. This can be readily seen by comparing this term with Equation (8.33) when m = 1. The
third term is the contribution of the elastic foundation when it consists of torsional instead of
extensional springs.

This expression for the wrinkling load is still in terms of two unknowns: ¢ the half
wavelength during wrinkling, and z. the portion of the core undergoing deformations during
wrinkling. Each of them is determined by noticing that if N, starts increasing from zero, then
wrinkling will occur at the lowest possible value that Equation (10.14) allows as a function of ¢
and z.. Therefore, minimizing N, with respect to ¢ gives:



270 Design and Analysis of Composite Structures

- 1/4
8]war (El)f
5 0;»£n< oG (10.15)

which gives a condition relating ¢ and z... Using it to eliminate ¢ from Equation (10.14) results in

2\/E.(EI); ¢
Nowr = [ ke (10.16)
VZe 3

which is only in terms of z... Differentiating now with respect to z. and setting the result equal to
0 gives,

WNewr _ oy 5, =321 <@>]/3 (10.17)
Dz ‘ G2, '
Now the moment of inertia per unit width

is used to substitute in Equation (10.17) to obtain the final expression for z.

323 (EEN'? E.EN"?

Xz

This expression can now be used to substitute in Equation (10.15) to get the final value for the
half-wavelength:

7r31/6 Ef 1/3 Ef 1/3
0= ——1tr| == = 1.648t¢ 10.19
12137 (x/Ech) / <\/E0ze> (10.19)

Finally, Equation (10.18) can be used to substitute in Equation (10.16) to obtain the
wrinkling load,

Nywr = 0.914 (E/E.Gy.)"* (10.20)

Equation (10.20) has been derived in many different ways [6,7]. In fact, depending on the
assumptions, the form of the equation remains the same and only the coefficient in the right-
hand side changes [7].

It is important to keep in mind that the derivation so far has assumed that the core was
sufficiently thick that the portion z. of the core undergoing deformations is less than or equal to
half the core thickness #./2. If z. given by Equation (10.18) is greater than half the core
thickness, then the entire core deforms during wrinkling and

ZCIE- (10188.)

With this new value of z. new values of £ and N,,,, must be calculated. Following the same
procedure as before, z. is substituted for in Equation (10.15) to get
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E 1/4 1,
¢ = 24?/4 (Ef tf3tc) for z. = 5 (10.19a)

Then, the new value of z. is substituted in Equation (10.16) to obtain

EfEct; 1.
Nowr = 0816\ |1+ G (10.20a)

The condition for the full depth of the core being involved in the wrinkling deformations
can be obtained from Equation (10.18). If the right-hand side of Equation (10.18) is greater than
t./2, then the entire core thickness deforms. Therefore, if

EEN'?
fe < 1.817tf((§ 2) (10.21)

Xz

the core deforms in its entirety, and Equations (10.18a), (10.19a), and (10.20a) are valid.
Otherwise, only a portion z. of the core deforms and Equations (10.18), (10.19) and (10.20)
are valid.

It should be noted that, according to Equation (10.20a), as the core thickness increases
the wrinkling load decreases. So it would be expected that wrinkling would become the
primary failure mode beyond a certain core thickness. However, this is only true as long as
Equation (10.21) is satisfied. Once the core thickness exceeds the right-hand side of
Equation (10.21) the governing Equation is (10.20), which is independent of the
core thickness.

For antisymmetric wrinkling, an analogous approach to that presented above, but with
a different expression for the w deflection of the core in order to satisfy the different boundary
conditions, leads to the following results [6,8]:

Gyate
Newr = 0511 (E/E.Gy2) ' + S (10.22)

Efz 1/6
=215t — 10.23
(k) (10.23)

3 (EEN'"?

=2t 10.24
=30 (25) (1024)

for sufficiently thick core, i.e. when

E/E, 1/3
fe > 37((-; 2‘) (10.25)

Xz

or, when the entire core thickness undergoes deformations (core is relatively thin),

EE.
Ny = 0.597 J; +0.378G . (10.22a)
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Ert, 1/4
0= 1.67rf( / ) (10.23a)
4 Ectf
valid when
EE, 1/3
te < 3tf( / 2) (10.25a)
"\ Gy

In practice, one would have to evaluate both symmetric and antisymmetric wrinkling loads
for a given application and use the lowest of the two. However, it can be demonstrated, (see
Exercise 10.1) that only for very thin cores is antisymmetric wrinkling possible. For typical
core thicknesses, symmetric wrinkling is the mode of failure.

Comparison of the predictions for symmetric and antisymmetric wrinkling with experi-
mental results is difficult to do with the equations presented so far. The main reason is that
sandwich structure is most often fabricated by co-curing core, adhesive, and facesheets all at
once. As a result of this process the facesheets are not perfectly flat, but have some waviness.
This waviness is not included in the analysis presented so far. Only if the facesheets
are pre-cured separately and then bonded on a perfectly flat core will the waviness be
(mostly) eliminated.

For this reason, the predictions presented so far are compared with finite element models in
which the facesheets are perfectly flat. Such a comparison can be found in reference [9] and its
conclusions are summarized here.

A sandwich with 25.4 mm honeycomb core and facesheets made with four plain weave
fabric plies and layup [(£45)(0/90),/(£45)] was modeled under compression using finite
elements. The facesheet stiffness Er was 64 GPa. Since the core was thick, only symmetric
wrinkling predictions were used. The pertinent core properties and a comparison or prediction
from Equations (10.19) and (10.20) are shown in Table 10.1 for three different core materials
with the same facesheet.

It can be seen that the predictions for the wrinkling stress N,,,/t; and the corresponding half-
wavelength ¢ are in good agreement with finite elements with the highest discrepancy being less
than 20%. It should be noted that the predicted wrinkling loads are always less than the finite
element result. Also, the greatest discrepancy in wrinkling stress (case 2) does not correspond
to the case with the greatest discrepancy in the half-wavelength (case 3). The discrepancies are
attributed to a combination of finite element modeling issues related to proper load introduction
and boundary conditions, and to the fact that Equation (10.7) is an approximation, especially
considering the assumed linear variation with out-of-plane coordinate z.

The discussion so far has not explicitly accounted for the fact that the facesheets are made of
composite materials. Only by substituting the appropriate value for the facesheet in-plane

Table 10.1 Analytical predictions versus FE results for sandwich wrinkling

E.(MPa) G, (MPa) N, /t;(MPa) N/t A% ¢ (mm) ¢ (mm)FE A%
present (MPa) FE present

133 42 646 658 —-1.8 11.3 114 -0.9

266 42 842 1033 —18.5 9.5 8.9 +6.7

133 84 808 821 -1.6 10.6 132 —-19.7
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stiffness E; in the equations derived does one account for composite laminates. For more
accurate values for Erin case of composite facesheets, the following expression can be used [7]:

_ 12(1 — nyvyx)Dllf
lf3

Ef (10.26)
where v,,, v,,, and D, are Poisson’s ratios and bending stiffness of the facesheet.

Other models explicitly incorporating composite layups can be found in the literature. For
example, symmetric wrinkling was determined by Pearce and Webber [10] as:

72 a

(0n)-+ 201 200, (@) +

war =

(D22)s (a)“} n 2E.a* (10.27)

a? m?2 \b m2n2t,

Comparing Equation (10.27) with Equation (8.33) suggests that the wrinkling load consists of
two parts, the buckling load of the facesheet and a contribution from the core acting as an elastic
foundation with spring constantk = 2E /.. Indeed, the first part of Equation (10.27) isidentical to
the buckling load of a simply supported plate under compression given by Equation (6.7).
Finally, comparing Equation (10.27) with the wrinkling expression (10.14) derived earlier
withoutexplicitly incorporating the fact that the facesheet is composite, itis seen that the first two
terms of Equation (10.14) have a one-to-one correspondence with the two terms of Equa-
tion (10.27). The first term corresponds to buckling of the facesheet and the second to the core
acting as an elastic foundation and storing energy in deformation in the z direction. However,
Equation (10.14) has an additional term dependent on the core shear stiffness which represents
core shear deformations. This term is not present in Equation (10.27). It is, therefore, expected
that Equation (10.27) may not be as accurate when the core shear deformations are appreciable.

As already alluded to, the fact that sandwich structures are usually co-cured results in
facesheet waviness, which may significantly affect the performance of the sandwich and limit
the usefulness of the design equations presented so far. One attempt to include the effect of
waviness can be found in [9]. A typical cross-section of a [(£45)/(0/90)/(£45)] facesheet on
honeycomb core is shown in Figure 10.11 (taken from [9]).

Using Figure 10.11, the waviness of the facesheet at that section cut through the specimen
was measured and plotted in Figure 10.12 (taken from [9]). It is evident from Figure 10.12 that
the waviness can be significant and its amplitude can approach one-quarter to one-third of the
facesheet thickness #; (=0.5717 mm in this case).

Even though there is an element of randomness in the waviness of Figure 10.12, a main
sinusoidal component of a specific amplitude and wavelength can be estimated. Assuming that
component is present everywhere in the facesheet, a new model of facesheet deformations
under compression accounting for the waviness can be created [9]. This model assumes
a sinusoidal shape of the facesheet shown schematically in Figure 10.13. This model permits
accounting for the presence of facesheet (light grey color in Figure 10.13), adhesive (dark grey
color in Figure 10.13), and core and their respective failure modes relatively easily. The model
assumes that the waviness shown in Figure 10.13 extends all the way to the edges of the
sandwich (perpendicular to the plane of the Figure).

Each of the failure modes shown in Figure 10.13, core tension, core compression, core
shear, adhesive tension, adhesive shear, and facesheet bending must be checked for, and
the most critical will give the failure prediction. This requires accurate knowledge of the
corresponding allowables.
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Top facesheet
outer surface

0.01 em

Figure 10.11 Sandwich cross-section showing facesheet and portion of the core (200 x magnification
from [9])

A comparison of this model to test results, taken from [9], is shown in Table 10.2. Here, three
different facesheet layups and three different cores were used. The predictions range from
excellent to barely acceptable (for the last case in Table 10.2). The main reasons for the
discrepancies from test results are: (a) not so accurate knowledge of all allowables for the
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Figure 10.12 Waviness of outer surface of facesheet of Figure 10.11 (from [9])
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Figure 10.13 Sandwich with waviness

failure modes mentioned above; and (b) in all cases, one amplitude and waviness were used
obtained from Figure 10.12, which is not sufficiently accurate for some of the cores and
facesheet layups in Table 10.2. Still, using a waviness model is promising and, combined with
accurate allowables, can yield very reliable predictions.

To account for the effect of (usually unknown) waviness and other complicating factors, it is
customary to knockdown the predictions of Equation (10.20) for symmetric wrinkling by
reducing the coefficient in the right-hand side [11]:

Newr = 043t (EfE.Gy.) (10.28)

Similarly, for antisymmetric wrinkling which, as already mentioned, occurs only in thin
cores, Equation (10.22a) is modified as follows [12]:

E.1
Nowr = 0334,y [—L (10.29)
’ Ef t.

Equations (10.28) and (10.29) have been shown to be (sometimes very) conservative over a
wide variety of facesheet and core materials, including metals.

What has been presented so far is only a small portion of sandwich wrinkling modeling
approaches. There are many more models, each with its own range of applicability. A
discussion of the accuracy of the various models and their applicability can be found
in [13].

Table 10.2 Comparison of wrinkling predictions obtained with a waviness model to test results

Facesheet Core Predicted Test wr. A%
wr. stress (MPa) stress (MPa)

(445)/(0/90) Nomex®HRH 10-1/8-3.0 295 313 —5.8
(£45)/(0/90)/(£45) Nomex®HRH 10-1/8-3.0 264 297 —11.2
(445)/(0/190),/(£45) Nomex®HRH 10-1/8-3.0 426 337 +26.4
(445)/(0/90) Phenolic HFT 3/16-3.0 344 350 —-1.8
(£45)/(0/90)/(£45) Phenolic HFT 3/16-3.0 255 349 —26.9
(445)/(0/190),/(£45) Phenolic HFT 3/16-3.0 309 382 —19.0

(£45)/(0/90)/(£45) Korex® 1/8-3.0 246 365 -32.7
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Xy

Figure 10.14 Sandwich under shear with shear load resolved into compression and tension loads

10.3.2  Sandwich Wrinkling Under Shear

Wrinkling of a sandwich structure can also occur under applied shear load. Since pure shear can
be resolved in compression in one direction and tension in the other, the compression portion
can cause wrinkling of the sandwich along a line at 45° to the applied shear load (see
Figure 10.14). A conservative way to estimate the wrinkling load under shear is to analyze the
sandwich as loaded under compression along the 45° line and neglect the tension load. The
reason is that in biaxial loading situations with compression and tension, the tension load tends
to stabilize the structure and the buckling load is higher than if only compression were applied.
This was demonstrated in Figure 6.3 where the buckling load was higher for compression and
tension than for biaxial compression.

Therefore, conservatively, the equations derived in the previous section for wrinkling under
compression can also be used here, provided the relevant quantities E¢, E., and G, are rotated to
the direction of applied compression. Of these, the core Young’s modulus in the z direction E,
remains unaffected. The facesheet modulus Eyis rotated by 45° by simply rotating the stacking
sequence by that angle and calculating the corresponding membrane modulus of the resulting
laminate in that direction using Equation (8.6). The core shear modulus G5 also changes if the
core is not isotropic in its plane. The corresponding transformation was given by Equa-
tion (10.5). So, in the coordinate system xy, with compression parallel to the x axis, the rotated
core shear stiffnesses are:

Gy, + Gy,
Gy, = SinzeGyZ +c0s20G,, = % for 0= —45°

Gt G (10.5a)
Gy, = c0s*0Gy, +sin*0G,, = % for 0= —45°

10.3.3  Sandwich Wrinkling Under Combined Loads

Wrinkling under combined loads is analyzed using interaction curves [7,14], which are very
similar to the interaction curves for buckling of monolithic plates presented in Sections 6.5 and
6.6. A summary of the most common cases is given in Table 10.3. To use Table 10.3 the
following ratios are defined:
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Table 10.3 Interaction curves for sandwich wrinkling under combined loads

Case Loading Design equation
MAAAAAAAL
NXH/"
Biaxial compression Ny = N /3
Nv)
I+ (=
N
AdAAAL y
. . . NXx Nx
Compression in x direction % % Ny = Nour
and tension in y direction WY
Ny
Nxy
_> 4_
. . —»> Nx
Combined compression in I\ £ R.+R*=1
and shear < \I <
N ——
Nxy
R+ Rsz =1
AAAAAAL R, = NX/ Nawr
—_—
l\ R, = NX)‘/NX)’W}’
Biaxial compression
and shear \I Nywr 1s wrinkling load in major

Compression in x direction,
tension in y direction, and
shear

PYVVVV
—_—

Ik

<—

AAAAAAS

core direction when biaxial
compression acts alone (1%
case in this table)

R+R =1

Rc = Nx/ N\fwr

Rs = ny/nywr

Nwr 1s wrinkling load in x
direction when compression
acts alone.

For compression alone,

Rc - Nx/war

where N, is the wrinkling load under compression

For shear alone,

Rs - ny/nywr

where N,y is the wrinkling load under shear

(10.30)

(10.31)
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Figure 10.15 Sandwich crimping

10.4 Sandwich Crimping

This failure mode is shown in Figure 10.15. It occurs when the core shear stiffness is very low
and is quite sensitive to the presence of eccentricities (e.g. when the core thickness is not
uniform or if there is an abrupt change in the facesheet thickness when many plies are dropped.

This is a failure mode that is similar to antisymmetric wrinkling with, essentially, zero
wavelength (¢ — 0).

10.4.1 Sandwich Crimping Under Compression

If the wavelength £ of the buckling mode tends to zero, the corresponding buckling load tends
to infinity since the buckling load is proportional to 1/¢%. Then, the basic buckling equation for
a sandwich under compression Equation (10.3) can be used,

N Ecrit

14 NEcrir
t.G,

Nepip = (10.3)

letting N tend to infinity.

It can be seen that Equation (10.3) is of the form co/oo as Ng.j¢ — 00, so I’Hopital’s rule can
be used to determine the limit of V.. Differentiating numerator and denominator with respect
to NEg.ic and, subsequently letting Vg, tend to infinity, the crimping load N, is shown to be:

Nyt = 1.G, (10.32)

where G, is either G,, or G,,, whichever is aligned with the direction of the load.

10.4.2  Sandwich Crimping Under Shear

A semi-empirical formula is used in this case, which is analogous to Equation (10.32):

nycrim =1 \Y4 zeGyz (1033)

10.5 Sandwich Intracellular Buckling (Dimpling) under Compression

This is a failure mode specific to honeycomb or other open-cell cores. Representative such
cores are shown in Figure 10.16. Flex and double-flex core are used in structures with single or
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flex core double flex core

Figure 10.16 Cores susceptible to dimpling

compound curvature to allow the sandwich to conform to the curved shape and eliminate
anticlastic curvature effects.

When cores as those shown in Figure 10.16 are used, if the cell size is big enough it is possible
for the unsupported facesheet between the cell walls to buckle. To analyze this intracellular
buckling or dimpling mode requires developing a buckling solution for a composite facesheet
with hexagonal or highly irregular (for flex or double-flex cores in Figure 10.16) boundaries.
The complexity of such solution is prohibitive. Instead, a one-dimensional column-buckling
type solution combining Equations (8.56) and (10.26) with a semi-empirical factor is used:

Efl‘f3 1
Nygim =2—— 10.34
xvd 1 — VyyVyy 82 ( 2)
or
D
Nyaim = 24— (10.34b)
5

where s is the core cell size shown in Figure 10.16.

10.6 Attaching Sandwich Structures

Asmentioned in Section 10.1, sandwich has superior bending stiffness properties and would be
the preferred design configuration had it not been for several failure modes such as wrinkling or
crimping that limit its performance. Another problem that limits the usage of sandwich
structure is the difficulty of attaching it to adjacent structure with adequate load transfer at
the attachment region without undue increase in weight and cost. While it is relatively easy to
attach sandwich structure when the applied loads are low, it is quite a challenge to do so
for highly loaded structure. Some considerations and options are discussed in the following
two sections.
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Figure 10.17 Attaching sandwich structure through the use of ramp-downs

10.6.1 Core Ramp-Down Regions

One of the most common methods of providing adequate means of attachment is through
the use of a ramp-down. By eliminating the core at the attachment region one does not have
to deal with the fact that core has low compression and shear strengths which would
compromise the strength of an attachment. As seen in Figure 10.17, the attachment can be
through fasteners or adhesive (or both) connecting monolithic laminates at the edge of the
ramp-down region.

The monolithic laminate created by eliminating the core (consisting of the two face-
sheets) may not be sufficient if the loads are high, and local reinforcement may be necessary
to transfer bearing and shear loads (Figure 10.18). This creates the additional problem of
deciding how and where the extra plies will be dropped off, transitioning to the full depth of
the core. Clearly, they cannot all terminate at the edge of the core ramp because the
resulting stiffness mismatch would lead to premature failure. In fact, a number of plies must
go up the ramp to stiffen it and thus attract some of the load to the upper facesheet in
Figure 10.18. This is of particular importance for relatively large values of the ramp angle 0
(15° < 0 <40°).

full-depth itransition( R
L_region __region 1o orithic

region

10 x dropped height-half 1-2 core thicknesses
core thickness

+}

more material must come
up the ramp to attempt to
load both facesheets

evenly

L~

t core machining at

plydroplocations?

Figure 10.18 Transitioning from monolithic laminate to full-depth core
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Consider a situation where some in-plane load, for example compression, is applied at the
edge where the monolithic laminate is. The loading is eccentric in that it acts at the neutral axis
of the monolithic laminate which is offset from the neutral axis of the full-depth core. This
causes a bending moment. At low loads, the entire compressive load stays in the flat facesheet,
the bottom facesheet in Figure 10.18. At higher loads, bending of the full-depth core is more
pronounced, and a significant fraction of the applied load starts to get transmitted up the ramp
into the ramped facesheet (top facesheet in Figure 10.18). This is the reason plies must go up the
ramp and into the upper facesheet, to transfer that load without failure. For typical designs of
ramped sandwich under compression, 60% of the load stays in the straight (bottom) facesheet
and 40% is transmitted up the ramp to the top facesheet.

Since the monolithic region is typically designed for bearing strength (at least when fasteners
are used to connect to adjacent structure) and the facesheets away from the ramped regions are
designed for buckling and notched strength requirements, the thickness of the monolithic
region is, usually, significantly higher than the sum of the thicknesses of the two facesheets.
This poses the problem of smoothly transitioning the thicker monolithic laminate to the thinner
facesheets. A typical transition with some guidelines is shown in Figure 10.18. Successive
plydrops are separated by at least 10 times the thickness of the dropped plies. This is in
agreement with the findings of Figure 9.16. At the same time, again consistent with the results
of Section 9.2.2, dropping a large number of plies should be avoided because of the high normal
and shear stresses created. In addition, dropping many plies at the same location may require
machining a step into the core, as shown in Figure 10.18, to accommodate them. Dropping no
more than 3—4 plies at one location usually does not require special provisions such as locally
machining the core.

If the thickness difference between the monolithic laminate at the panel edges and the
facesheets at the full-thickness portion of the core is large it will be necessary to have a number
of plydrop locations transitioning from the edge without core to the full-depth core. It is
customary to separate successive plydrops by distances roughly equal to the core thickness,
provided other requirements such as the minimum distance between drops = 10x plydrop
thickness are not violated. Also, plydrops along the ramped itself are usually avoided.

The discussion so far has been qualitative and draws mostly on previous results from
Chapter 9. A detailed analytical approach for evaluating ramp-down regions can be found
in [15]. The possibility of facesheet and/or core failures in the ramp region are examined in
that reference.

A final word related to the ramp-down angle 0 is in order. If the ramp angle is large
(Figure 10.19a) the ramp is closer to vertical and it is hard to transfer load to the upper facesheet.

core too thin to
handle and will

move during
cure pressure cure
4~ may crush core
4 L e \/
B\ !

a. 0 large b. 6 small

Figure 10.19 Steep versus shallow ramp-down regions
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Furthermore, the pressure during cure tends to crush the core. For ramp angles between 30° and
45°, curing an extra layer of adhesive prior to curing the facesheets stabilizes the core and
eliminates the crushing problem (at the expense of an extra cure cycle for the adhesive layer).
On the other hand, large ramp angles take up less space. If the ramp angle is shallow
(Figure 10.19b) the ramp is closer to the horizontal, and transferring load to the upper
facesheet is easier. However, small ramp angles result in long ramp-down regions which means
significant portions of the sandwich panel have core with lower thickness and thus lower
bending stiffness. This can cause stability problems. In addition, for small ramp angles, the end
of the core, where the monolithic laminate starts, ends up being very thin. This causes handling
problems during fabrication and it is hard to keep the core edge from moving and/or getting
crushed under pressure during cure.

The optimum ramp angle will depend on which of the factors mentioned above are
favored for a given design and by specific factory practices. Lightly loaded ramps and
situations with limited available space tend to favor larger values of 6, while more highly
loaded applications will favor lower values of 6 which approach a more even distribution of
load between the facesheets, provided the local loss of bending stiffness is not prohibitive.
For applied bending loads on small panels, where the ramped portions on either side of the
panel are a significant fraction of the total panel size, it can be shown that the optimum
value of 0 is 12-18° (depending on panel size) [15]. This is a result of two opposing
tendencies. For large values of 0 the core shear and normal stresses are high, and lead to
failure. For low values of 0, the core stresses are low, but the deformations are high due to
reduced bending stiffness, and they cause failure. The best compromise is reached at
intermediate 0 values.

10.6.2 Alternatives to Core Ramp-Down

While using a ramp-down has certain advantages, especially for highly loaded situations, it
does not come without a price, in particular because of the additional failure modes (core
compression or shear) in the ramp-down region that require detailed analysis. Alternatives have
been used for a long time and are based on the experience with metal cores [16].

These methods make use of inserts and bushings that span the full depth of the core so there is
no need for ramp-down (Figure 10.20). Locally, the core may be densified with higher-density
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Figure 10.20 Attachments of sandwich parts without ramp-downs

splice

plate \ -

i

core core close-
densification out




Sandwich Structure 283

adhesive

core densification
may be necessary
in these regions

Figure 10.21 Alternate means of joining sandwich structures (See Plate 23 for the colour figure)

core or other material that has the required compression and shear stiffness to meet the loads
exerted by clamp-up of bolts or other localized loads.

In addition to these, bonded configurations making use of special purpose joints such as
the “pi” and “F” joints shown in Figure 10.21 can be used. Again, local densification of the
core may be necessary. Due to the difficulty in accurately controlling the final thickness of
the parts to be connected, and the width of the opening of the “pi” or “F” joint (mainly due
to spring-back after cure), paste adhesive is used. Controlling the thickness of the bondline
and making sure it is within the required range (too thin leads to early failure, too thick
causes eccentricities that lead to high bending-induced loads) is the major challenge for
these configurations. In addition, the lack of a reliable nondestructive inspection (NDI)
technique, that determines whether the bond has the required strength or not, may either
force the designer to use fasteners or to build into the configuration sufficient strength and
alternate load paths so that, if a significant portion of the bond is compromised, the
remainder can still meet limit load requirements. Despite these issues, bonded joints similar
to those in Figure 10.21 have been used successfully in airframe structures (see for
example [17,18]).

Finally, for relatively thin cores, transitioning to a thick monolithic laminate that forms an
“F” joint is also a possibility and has been used successfully (Figure 10.22).

(Courtesy: Aurora Flight Sciences)

Figure 10.22 Core transitioning to monolithic laminate without ramp-down (Courtesy Aurora Flight
Sciences) (See Plate 24 for the colour figure)
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Exercises

10.1 Prove that for antisymmetric wrinkling to occur, the core thickness must satisfy the

following relation:
EE, 1/3
te < 1.047tf<é )

2

Xz

10.2a Prove that for a simply supported square composite panel for which D;; = D,,, the
number of half-waves m into which the panel buckles under compression is always 1.
What should the condition be between D1 and D,, for the square panel to buckle in two
half-waves?

10.2b Assume a layup consists of n plies of the same material all at the same orientation (not
necessarily 0°). Let E the Young’s modulus of a single ply at that orientation, G the
corresponding shear modulus, and vi,, v,; the two Poisson’s ratios. Derive analytical
expressions for A, A12,A22,Ass, D11, D12, D22, Deg as functions of E, G, v5, v, and the
thickness % of the laminates (still having all plies with the same fiber orientation).

10.2c A simply supported square sandwich panel of dimension a and core thickness ¢ is under
a compression load N, (units: force/width). Use the results of Exercises 10.2a and 10.2b
to express the buckling load N, as a function of E, G, vy5, Vo, h and .. Assume now that
the material used is plain weave fabric for which E, = E, and simplify the expression you
derived (vy5, v5; are replaced by a single Poisson’s ratio v).

_’ 4_
A h
< a—» 7]
Na a Na [ T7]

— > < [T
«—> [T
ribbon am
direction -

[ —c

10.2d In certain circumstances, optimizing a structure that is likely to fail in more than one
failure modes with corresponding loads ‘reasonably’ close to each other, is equiva-
lent to making sure that all failure modes occur simultaneously since this guarantees
that the structure is not over-designed (and thus heavier than it needs to be) for any
of the failure modes. This is not true in general, but it is true in quite a few cases.
Assuming that the wrinkling failure and the buckling failure for the simply
supported sandwich of Exercise 10.2c above occur at the same time, derive an
expression for the facesheet thickness i (independent of #.) and the core thickness 7.
(which will be a function of h).

10.2e Let a=381 mm, N,= 175 N/mm. For the facesheet material assume that £, =E, =
68.94 GPa, G,,=4.826 GPa, v,,=0.05, and f,, =0.1905mm. For the core assume
E.=133.05MPa, (out-of-plane stiffness) and G,,=42.05MPa (shear stiffness in the
ribbon direction). If the ribbon direction is aligned with the loading N, and the facesheet
consists exclusively of (£45) plies, use the results of Exercise 10.2d to determine the
minimum number of plies and minimum facesheet thickness needed. Is this the minimum
weight configuration (i.e. is there another pair of values of £, . that gives lower weight)?
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10.3a

10.3b

10.4

For the optimum solution you found are the crimping and intracellular buckling
requirements also satisfied? (For the latter assume a core cell size of 6.35 mm.)

A skin panel has dimensions 1270 x 1016 mm and is loaded in compression (along the
long dimension of the panel) with N, = 121.45 N/mm. A sandwich design is proposed
for this application. The skin layup has been fixed to [45/-45/0/core/0/—45/45]. The
facesheet material has the following properties:

E, =137.88 GPa

E, =11.03GPa
G, =4.826 GPa
vy = 0.29

tply = 0.1524 mm

Two Nomex honeycomb materials are proposed with the properties given below:

Material E. (MPa) G,, (MPa) (ribbon direction) G,. (MPa)
HRH-1/8-3.0 133.1 42.05 24.12
HRH-3/16-3.0 122.7 39.29 24.12

Note that in the core material designation, 1/8 and 3/16 denote the cell size (in
inches!) and the 3.0 the density (in units of 1b/ft®). The second material is cheaper than
the first and this is the only reason it is considered as a candidate.

Given the ribbon direction call-out shown below, determine the minimum core
thickness needed for each type of core material for the sandwich panel not to fail.

|<_1270 mm _>|

121.45

N/mm
P <« <= w0mm
ribbon direction

[T 3~ =

The manufacturing personnel in the factory who will fabricate this panel are very sloppy
and careless. The engineer designing the panel is concerned that they will mis-orient the
core in the panel and the ribbon direction will be perpendicular to the load. What is the
minimum core thickness needed in this case (which will cover all possible errors in core
placement during fabrication)? (Do this problem only for the first of the two core
materials).

(may be done in conjunction with Exercise 8.6 which has the exact same requirements
for a stiffener.) Design a sandwich configuration to represent a composite stiffener under
compression.
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The sandwich design for each stiffener must fit within a 50 x 50 mm rectangle.

sandwich must
fit within this
envelope

|

50 mm

I |

50 mm

The applied load is 35000 N (assume it is acting at the center of gravity of the selected
cross-section). The length ¢ of the stiffener is 550 mm.
Two composite materials are available, and one core material with properties as

follows:

Unidirectional tape Plain weave fabric Nomex core
graphite/epoxy graphite/epoxy

E,=131GPa 68.9 GPa

E,=11.4GPa 68.9 GPa

Vyy = 0.31 0.05
G,y =5.17GPa 5.31GPa

tpry = 0.1524 mm 0.1905 mm

p=1611kg/m’ 1611 kg/m® 48.2kg/m’

Also assume that the honeycomb core is attached to the facesheet (on either side)
with an adhesive layer of density 0.147 kg/m>. (Watch out for the units!) You are
allowed to use any of the two graphite/epoxy materials or a combination thereof. Do
not worry about any analysis for the adhesive, it is included here only for the weight
calculation. Finally, assume a compression strain allowable (accounting for environ-
ment, damage, and material scatter) of 4500 ps.

Determine the layup and core thickness of the sandwich, observing as many of the
design rules as possible. (Note that the core is only allowed to take thickness values
that are integral multiples of 3.175 mm; this is to save on machining costs.) Provide a
simple sketch of the cross-section of stiffeners and sandwich that shows the plies,
layup, dimensions, etc. Calculate the corresponding weight. If available, compare
with the answer from Exercise 8.6.

10.5 (may be done in conjunction with Exercise 7.6.) You are to design a composite panel
under compressive load, using sandwich construction. The panel dimensions are
100 x 50cm and the applied load is 1750N/mm acting parallel to the 50cm
dimension.
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Two composite materials are available, and one core material with properties as follows:

Unidirectional tape Plain weave fabric Nomex core
graphite/epoxy graphite/epoxy

E,=131GPa 68.9 GPa

E,=11.4GPa 68.9 GPa E.=133MPa
N,,=0.31 0.05
G,,=5.17GPa 5.31GPa G,,=42.0MPa
Tpiy=0.1524 mm 0.1905 mm Core cell size = 3.2 mm
X, =2068 MPa 1378.8 MPa

X.=1723MPa 1378.8 MPa

Y, =68.9 MPa 1378.8 MPa

Y.=303.3 MPa 1378.8 MPa

S=124.1MPa 119.0MPa

p=1611kg/m’ 1611 kg/m’ 48 2kg/m®

Once you determine any strength values needed for any of the layups selected you are to
assume the same knockdowns mentioned in Section 5.1.6 for environment, material scatter and
damage, i.e. any first-ply failure values should be reduced to the design (or allowable) values by
multiplying them by 0.8 x 0.65 x 0.8 =0.416.

Determine the facesheet layup and core thickness for the sandwich panel not to buckle or fail
in any other failure mode up to the applied load of 1750 N/mm. Also assume that the
honeycomb core is attached to the facesheet (above and below) with an adhesive layer of
density 0.147 kg/m?. (Watch out for the units!) For the facesheet, you are allowed to use any
of the two graphite/epoxy materials or a combination thereof. Do not worry about any analysis
for the adhesive, it is included here only for the weight calculation. The core thickness
cannot exceed 5 cm and cannot be any less than 6 mm. Each of the facesheets cannot be thinner

than 0.57 mm.
¢tc
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Determine the layup and core thickness of the sandwich, observing as many of the design

rules as possible. Provide a simple sketch of the cross-section of the sandwich that shows the
plies, layup, dimensions, etc. Calculate the corresponding weight and, if available compare
with the post-buckled design of Exercise 7.6.
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11

Good Design Practices and
Design ‘Rules of Thumb’

Throughout the previous chapters, several guidelines that result in robust designs have been
presented and, in some cases, analytical models that support them were given. In this chapter,
all the rules already mentioned in this book are collected and some new ones added to provide a
framework within which most composite designs can perform successfully.

Design guidelines are a result of analysis and trending, test results and experience. As such,
they typically have a range of applicability (especially in terms of the stacking sequences to
which they apply) outside of which they may or may not be as successful. There is no reason
why any and all of the guidelines should be closely followed. Deviations and departures from
them are often necessary. As long as the reasons for deviation are understood and test results
and accurate analysis are available to support that deviation, there is no reason to limit the
designs by following these guidelines. In fact, there is a motivation to open up or reformulate
some of these guidelines in order to generate more efficient and/or more robust designs in the
future [1].

The most important guidelines with a brief discussion are listed below. Other guidelines
and/or variations of the ones presented below can be found in the literature, for example, in
reference [2].

11.1 Layup/stacking Sequence-related

1. The layup (stacking sequence) of a laminate should be symmetric. This eliminates
unwanted (and difficult to analyze) membrane/bending coupling (B matrix is zero).

2. The layup should be balanced (for every +0 ply there should be a —0 ply of the same
material and thickness somewhere in the laminate). This eliminates stretching/shearing
coupling (A =A56=0).

3. Bending/twisting coupling should be avoided. One way to achieve this is to use antisym-
metric layups, but this violates guideline number 1. Another is to use fabric materials and
unidirectional materials exclusively in the 0 and 90° directions. When these options are not

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
© 2010 John Wiley & Sons, Ltd
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possible, layups where D¢ and D¢ are small compared with the remaining terms of the
D matrix should be preferred. To that end, +0 and —0 plies should be grouped together.
Also, special classes of laminates with negligible D¢ and D,¢ are possible [3].

The 10% rule. At least 10% of the fibers in every layup should be lined up with each of the
four principal directions: 0, 45, —45, and 90. This protects against secondary load cases,
which have small load magnitudes and thus are not included in the design effort, but could
lead to premature failure if there are no fibers in one of the four principal directions. In
some cases, instead of 10% other values (12, 15%) are also used.

. Minimization of the number of unidirectional plies with same orientation next to each

other. If there is a number of unidirectional (UD) plies of the same orientation next to
each other, then a matrix crack forming in them can grow easily in the matrix and extend
from one end of the identical ply stack to the other without being arrested. Such cracks
can be caused by thermal stresses during cure or due to transverse loading during service
(transverse to the orientation of the fibers in the ply stack in question). It is recommended
to avoid ply stacks of the same ply orientation that exceed 0.6—-0.8 mm (corresponding to
4-5 plies for typical UD materials). Interrupting the ply stack with plies of different
orientation (preferably with at least 45° difference from the plies in the ply stack)
provides a means to arrest microcracks. The probability of microcracks coalescing and/or
creating delaminations is minimized.

11.2 Loading and Performance-related

6.

7.

10.

11.

12.

13.

To improve the bending stiffness of a one-dimensional composite structure place 0° plies
as far away from the neutral axes as possible (this maximizes D).

Panel buckling and crippling improvement. Place 45/-45 plies as far away from the
neutral axis as possible (this maximizes Dgg).

Fastener rule 1. Maintain skin thickness/fastener diameter ratio <1/3 to minimize
fastener bending (Figure 11.1a).

Fastener rule 2 (countersunk fasteners). Maintain skin thickness/to countersunk depth
>2/3 to avoid pulling the fastener through the skin under out-of-plane loads
(Figure 11.1b).

45° fabric plies on the outside. To improve damage resistance, i.e. to limit the amount of
damage caused by low speed impact, fabric plies should be placed on the outside of a
stacking sequence. They limit the amount of fiber splitting and help contain splits created
in the first (impacted) or last ply.

Skin layup should be dominated by 45/—45 plies. Using 45 and —45° plies improves the
shear stiffness and strength of the layup. This is also a good rule to follow for beam or
stiffener webs under shear loads in the plane of the web.

Fastener rule 3. For improved load transfer around fasteners in bolted joints, at least
40% of the fibers should be in the +45° and —45° directions relative to the applied
axial load.

Fastener rule 4. To avoid interaction and increased stress concentrations fastener
spacing should be at least 4-5D where D is the fastener diameter (Figure 11.1c). This
only ensures that the full by-pass load is developed between fasteners, and the load
distribution around one fastener does not affect that around its neighbors. This decreases
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14.

15.

. ty
—1_ D>3 min(t,,t,) J T

t t<2t/3

(a) Fastener rule 1 (b) Fastener rule 2

2.5D+1.3mm

2.5D+1.3mm

2.5D+1.3mm D —PI L—

(c) Fastener rules 3 and 4

Figure 11.1 Fastener rules of thumb

the stress concentration effect. It does not account for other considerations such as inter-

fastener buckling (see Section 8.7) or potential improvements in bolted joint performance

with lower spacings alluded to in Section 8.7. Specific requirements of each design might
supersede this guideline

Fastener rule 5 (edge distance). To minimize edge effects (so that the load distribution

around the fastener approaches that of a fastener in an infinite plate) the edge distance

between a fastener and the edge of a part should be no less than 2.5D + 1.3 mm where D

is the fastener diameter (see Figure 11.1c). This includes the distance of a fastener from

the tangency point of the radius region of a web transitioning to a flange (see

Figure 11.1c).

Plydrop guidelines. See Figure 11.2.

a. Avoid external plydrops. The tendency to delaminate at the edge of the termi-
nating ply is high. Plydrops should be as close to the midplane of the laminate
as possible.

b. For more than one plydrop, try to drop plies symmetrically with respect to the
midplane of the laminate.

c. Avoid dropping more than 0.5 mm worth of plies at the same location to minimize the
interlaminar stresses created (see typical results in Section 9.2.2).

d. The distance between successive plydrops should be at least 10 or 15 times the dropped
height to avoid constructive interference (enhancement of stresses) between the
stresses at the different plydrop sites (see Section 9.2.2).

16. Anti-peel fasteners. For highly post-buckled stiffened panels with co-cured stiffeners,

using two fasteners at each stiffener end postpones or eliminates the skin—stiffener
separation failure mode (see Section 9.2.2 and Figure 9.21).
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> Good
design
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external plydrops %
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— close to each other
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)

too many plydrops at same location

Figure 11.2 Plydrop guidelines

11.3 Guidelines Related to Environmental Sensitivity and

17.

18.

19.

20.

Manufacturing Constraints

Minimum gage. For lightly loaded structure, the thickness should be no lower than
0.5-0.6 mm to keep moisture from seeping into the structure. For lower thicknesses,
additional coating protecting against moisture should be used.

Minimum flange width.

a. Fastener rule 6. If fastened, the minimum flange width is the sum of edge distances
from guideline 14: 5D + 2.6 mm from the flange edge to the tangency point of the web-
to-flange transition.

b. If co-cured or bonded the minimum flange width for lightly loaded structure is
12.7 mm and for highly loaded structure is 19 mm. These values are the minimum
required for the load shearing through the flange to reach at least 95% of its far
field value.

Minimum web height. To avoid damage during handling and to make fabrication

easier, the minimum web height should be 18 mm. This is particularly important

for stiffeners with flanges at both ends of the web (I, J, C, Z) where access to the web
is limited.

Bridging avoidance. Avoid 90° plies going around corners (see Figure 11.3) in particular

when convex tools are used during layup. It is very hard to make the stiff 90° fibers

conform to the shape of the tool and, usually, bridging occurs where a void and/or resin
pocket is created.

11.4 Configuration and Layout-related

21.

Preferred stiffener shapes. Unless the structure is lightly loaded, stiffeners with a one-
sided flange (L, C, Z) on the skin side should be avoided and stiffeners with flanges on
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22.

convex tool

90° ply going

around a corner\

/bridging with void
or resin pocket

Figure 11.3 Bridging at a corner

either side of the web should be preferred (T, I, J, Hat). This protects the resin pocket
present at the web flange corner (see Figure 11.4) from moisture and contamination and
minimizes the possibility that matrix cracks may develop there and coalesce into
delaminations under fatigue loading.

Stiffener and frame spacing. While the optimum spacing of frames and stiffeners will be
dictated by the design loads and cost and weight considerations, a configuration that has
been found to be robust and reasonably efficient is frame spacing of 500-510 mm and
stiffener spacing of 150-160 mm. This is, approximately, the same configuration used in
many metal structures and combines relatively low cost and weight. While lower stiffener
spacing can lead to lower weights the cost can be prohibitive as it increases rapidly with
the number of stiffeners. At the other end of the spectrum, using high stiffener spacing
reduces the cost, but increases the weight since the skin thickness must increase to meet
buckling and post-buckling requirements and the stiffener thickness must increase to
maintain the desired ratio of stiffener to skin loads.

At this point, with all the design guidelines in place, the J stiffener cross-section that has been
used all along as an example last discussed in Section 9.2.2, Figure 9.20, can be revisited and
the preliminary configuration can be finalized. This is shown in Figure 11.5. This is preliminary
in the sense that no specific load has been used to design it. The final dimensions and layup
would depend on the applied loads. What is shown in Figure 11.5 is just a good starting point

resin pocket

s

one-sided flange flanges on either side of the web

Figure 11.4 Exposed resin pockets may lead to delaminations easily
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move 0 plies away

from mid-plane improve flange ub or roving
crippling with (+45) material
12h,
10h,

UD or roving
material

L— 2x12.7=25.4 mm (min)

s *, change to
~ .~ (x45) fabric

Figure 11.5 Stiffener cross-section created on the basis of design guidelines

applicable to lightly loaded stiffeners. Note that what is shown in Figure 11.5 does not satisfy
the 10% rule.

Exercises

11.1 Consider three composite parts intersecting at right angles as shown in the figure below.
They are under tension and shear loads as shown.

AS

vl

o

Three different methods for assembling them together are proposed, shown below:

(a) bolted connections, (b) bonded connections, and (c) co-cured with the use of a
3-D preform.
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adhesive
fasteners .
adhesive

fasteners

(a) Bolted (b) Bonded (c) Co-cured

Discuss the merits and disadvantages of each of the three approaches from a weight and
cost perspective. Combine the material from this chapter with that from Chapter 2.
Include in your discussion (but do not limit it to) assembly cost associated with fastener
installation, weight impact of use of fasteners, bearing load requirements, bondline
thickness control, inspection issues of adhesive, use of RTM with 3-D preforms and
associated tooling cost, effect of process on final strength and stiffness, etc.

11.2 Referring to Figure 11.4, determine which of the design guidelines presented in this
chapter are not satisfied and discuss the implications. (For example, the web layup does
not satisfy the 10% rule.)
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closed-section beams, 148
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crippling, 207
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cost, 1,9,63-7,77,79, 81, 115, 143, 211, 250-3,
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assembly, 11, 251, 295
labor, 10, 15, 23, 65, 252
raw material, 10-1, 14, 28-9
cure cycle, 27, 252, 282
crimping (see shear crimping)
crippling, 70, 71, 147-8, 170, 194, 219-20, 229,
290, 294
one-edge-free crippling, 195-6
no-edge-free crippling, 196, 200
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cross-ply laminate, 34, 44
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223-5
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handling problems, 282, 292
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206

intercostals, 21, 29, 64, 71

interface of skin/stiffener, 236-49

interlaminar stresses, 245, 249, 258, 291

interphase of fiber/matrix, 55-6

inter-rivet buckling, 70, 210-4, 227-8

intracellular buckling, 70, 82, 278-9

K-cor®, 259
Kirchoff hypothesis, 46, 262

layup, 33-35, 77-81, 99-104, 157-9, 179-83,
249, 289-90

lightening holes, 66

limit load, 73, 77-8, 147, 252, 283

loading index, 82, 217

load transfer, 66, 69, 179, 181-2, 214,
279, 290

loads, 46, 48, 65-9, 72-5, 132, 137-9, 147,
162-3, 202, 276, 290

margin of safety, 82, 31, 175

material scatter, 57, 73-5, 78-9, 114, 124, 143,
175-6, 206, 222, 286-7

matrix cracks, 55-6, 293

matrix pocket, 208, 292-3

maximum strain failure criterion, 58

maximum stress failure criterion, 57

membrane deformations, 46, 48, 50

membrane stiffness of laminate, 50-1, 84, 110,
165, 184, 223-225, 233

microcracking, 181-2, 290

micromechanics, 55, 60, 61

midplane strains, 48, 56, 84-5, 88, 91, 93, 108-9,
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NDI (see nondestructive inspection)
no-edge-free (see crippling)
nondestructive inspection, 252, 283
notch, 70-2, 76, 281

notch sensitivity, 76
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one-edge-free (see crippling)

panel breaker condition, 228-36
part, 1,7, 10, 16-31, 63-72, 251-4, 294
part families, 20-27, 63
pinching of skin, 251
plates, 86, 107

buckling, 119-44

post-buckling, 145-62
plydrops, 28, 280-1, 291-2
post-buckling angle, 162, 164, 169-71
post-buckling factor, 147, 164, 176
post-buckling ratio, 147, 154, 158, 164, 232-3,

261

potential function, 90
press molding, 14-15, 29
pultrusion, 14, 21, 26-9

quasi-isotropic laminate, 34-6, 63, 80-1, 99,
121-6, 156

radius of curvature, 28, 185

rate of twist, 226

resistance to fluids, 65

resin film infusion, 12, 28

resin transfer molding, 11, 20-1, 29
reserve factor, 66, 82, 175

rib, 21, 28, 29, 64, 71, 142, 194
ribbon, 175, 284-6

risk, 1, 6, 19-27, 252

roving, 207, 209, 294

sandwich, 3-4, 20-1, 67, 71, 82, 207, 259-88,
272-83
scatter (see material scatter)
scrap rate, 28-9, 252
sequencing of failure modes, 228
shear correction factor, 263
shear deformation theory, 263
shear crimping, 70, 82
sheet molding compound, 14
sign convention (forces and moments),
45, 83
skin—stiffener separation, 119, 145, 170, 227,
236-51, 291
smeared properties (see equivalent properties)
sources of uncertainty, 72
applied loads, 73
usage, 73
material scatter, 73

spar, 64, 71, 141, 142
spring constant, 189, 193, 218,
273
stabilization (see core stabilization)
stacking sequence, 33-5,48,52,117, 157-8, 236,
289
steered fibers, 13
stiffener, 21, 29, 64, 92, 145-8, 169-77,
179-257, 290
stiffness, 33-51, 223-7, 2602
membrane, 50-1, 184, 223-5
bending, 47, 51, 183, 185, 225-7,
260-2, 290
stiffness mismatch, 179-82, 236, 247-8,
280
strain, 35-7
compatibility, 85,90-3, 106-7, 173, 185, 208,
232,242
cutoff 169, 170
engineering, 44
midplane strain, 48, 56, 84-93,
109, 151
tensor, 44
strain—displacement equations, 82, 85, 89, 106,
109
stress—strain equations, 43, 82, 84, 93, 106, 110,
167, 242, 267
stringer, 3, 14, 20-1, 23-4, 26-7, 29, 64, 70,
163-5, 179, 194, 258
structural configuration, 66-7
symmetric laminate, 34-5, 49, 51,
227

technology, 20-7

technology mix (optimum), 20, 24-7

applicability of a technology, 21, 23, 26
thermal expansion coefficient

placement, 65

threshold of detectability, 77
transverse shear effects, 262-5
Tsai—Hill failure criterion, 58-60
Tsai—Wu failure criterion, 59-60, 216

ultimate load, 73, 77-8, 113

usage, 64, 72-3

vacuum-assisted resin transfer molding,
12, 28

variability (see sources of uncertainty)

variational calculus (see calculus of
variations)



300

Index

void content, 76
von Karman plate equations, 86-91

waviness, 272-5
web of stiffener, 205, 210, 236, 239, 290

wrinkling, 70, 72, 82, 207, 265
symmetric, 265-71, 275
antisymmetric, 265, 271, 272, 275, 278, 284

X-cor®, 259, 288



Plate 1 Figure 1.1 Akaflieg Phonix FS-24 (Courtesy: Deutsches Segelflugzeugmuseum)

Plate 3 Figure 1.3 Long EZ and Vari-Eze (Vari-Eze, photo: courtesy Stephen Kearney; Long EZ,
photo: Courtesy Ray McCrea)

Plate 4 Figure 1.4 Lear Avia LearFan 2100 (Copyright: Thierry Deutsch)



Plate 5 Figure 1.5 Beech (Raytheon Aircraft) Starship I (Photo courtesy Brian Bartlett)

TR A L AT LI UL LA
oy aasnaapaent .

Plate 7 Figure 1.7 Boeing 777 (Photo courtesy Brian Bartlett)

Plate 8 Figure 1.8 Airbus A-380 (Photo courtesy Bjoern Schmitt — World-of-Aviation.de)



Plate 9 Figure 1.9 Boeing 787 Dreamliner (Courtesy of Agnes Blom)
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Plate 10 Figure 2.1 Process steps for hand layup and their cost as fractions of total recurring cost [3]

Plate 11 Figure 2.5 Composite cylinder with steered fibers fabricated by automated fiber placement
(made in a collaborative effort by TUDelft and NLR)



Plate 12 Figure 2.9 Co-cure of large complex parts (Courtesy Aurora Flight Sciences)
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Plate 13 Figure 5.4 Options to be considered during design/analysis of a part
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Plate 14 Figure 6.1 Composite stiffened panel buckling under shear
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Plate 16 Figure 7.13 Stiffened composite panel in the post-buckling regime
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Plate 17 Figure 8.4 Improved stiffener cross-section design



Plate 18 Figure 8.6 Baseline J stiffener cross-section made out of composite materials

1=l

without special provisions, this region fills
with wavy fibers and/or pure resin

Plate 19 Figure 8.27 Resin pocket formed at web/flange intersection of a stiffener
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Plate 20 Figure 8.31 J stiffener cross-section with filler material
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Plate 21 Figure 8.36 Skin-stiffened panel under compression
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Plate 22 Figure 9.13 Skin-stiffener separation failure mode
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Plate 23 Figure 10.21 Alternate means of joining sandwich structures

(Cl}lII'E:S)': Aurora Flight Sciences)

Plate24 Figure 10.22 Core transitioning to monolithic laminate without ramp-down (Courtesy Aurora
Flight Sciences)





