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Preface

The strength and damage resistance of parts and components, made from composite mate-
rials, determine the quality and reliability of machines and devices, used in many areas
of industry and in everyday life. The mechanical properties and strength of composites
depend on their microstructures, i.e. on the content, geometries, distribution and proper-
ties of phases and constituents in the composites. This dependence can be used to improve
the reliability, strength and damage resistance of the materials. For example, drilling
tools, produced from hard alloys with graded microstructures, exhibit four to five times
higher service life than the tools made from the alloys with homogeneous microstruc-
tures (Lisovsky, 2001). The fracture toughness and lifetime of tool steels are increased
by 30% if large primary carbides in the steels are replaced by dense dispersion of small
carbides (‘double dispersion’ structure) (Berns et al., 1998). The fracture toughness of
metal matrix composites can be doubled, if the reinforcing elements are localized in
layers, which alternate with layers of unreinforced metal matrix (McLelland et al., 1999).
The fracture toughness of Al2O3 ceramics can be increased 2.3 times by introducing
SiC nanoparticles in the ceramics (Tan and Yang, 1998). There are a lot of examples
of unusual properties of biomaterials, which are related to their peculiar microstructures.
For instance, nacre, mother of pearl, which consists of 95% CaCO3, has a work of frac-
ture that is 3000 times more than that of the monolithic CaCO3 (Ramachamndra Rao,
2003). The high fracture toughness of nacre is determined, among other factors, by the
brick-mortar, layered microstructure of nacre, and the interlocking of the mineral platelets
(Sarikaya et al., 2002; Katti et al., 2005).

Thus, service properties, strength and damage resistance of composites can be improved
by changing their microstructures. With the development of material technologies
(e.g. powder metallurgy, heat treatment technology, nanotechnology, etc.), the production
of materials with required, pre-defined microstructures became technologically possible.
Therefore, the problem of the determination of the optimal microstructures of composites
has acquired practical importance.
In order to investigate interrelationships between the microstructures and strength of

composites, a lot of experimental, theoretical and numerical investigations have been
carried out. In many cases, links between some averaged parameters of microstruc-
tures (e.g. grain size, volume content of phases and distance between inclusions) and
the overall properties or strength of composites were established experimentally or
theoretically. However, not only the volume content, and other averaged properties
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or properties of single microstructural elements influence the mechanical behavior
and strength of composites. The synergistic effects and interaction between many
microstructural elements, the gradation and localization of microstructural elements have
a strong influence on the mechanical behavior and strength of composite materials
as well.
The area of the mechanics of materials, which deals with the theoretical and numerical

analysis of the effect of microstructures on the material properties, taking into account the
interaction between many microstructural elements, their arrangement and heterogeneity,
is referred to as the mesomechanics of materials. Computational mesomechanics seeks
to develop and to employ numerical tools for the analysis of interrelationships between
microstructures and mechanical behavior of materials, and, ultimately, for the material
design.
The concepts and methods of the analysis of relationships between microstructures

and mechanical properties, strength and damage resistance of composites are the subject
matter of this book.
In Chapter 1, the classification of composites, and the mechanisms of their deformation,

damage and fracture are described. In Chapter 2, the concept of the mesoscale analysis
in the mechanics of materials is formulated. The microstructure-related mechanisms of
high strength and stiffness of biomaterials, as well as different concepts of the material
improvement by varying microstructures and the statistical methods of the microstructure
description are briefly reviewed.
Chapter 3 contains short overviews of the concepts of fracture mechanics of materials,

statistical models of failure and damage mechanics, and methods of numerical analysis
of damage and fracture in materials. The methods of the analysis of the microstructure–
strength relationships of composite materials (e.g. the shear lag model, homogenization,
variational bounds, etc.) are discussed in Chapter 4.
In Chapter 5, the concept of computational experiments as a basis for the numerical

optimization of materials is formulated. Several program codes, developed to automatize
the generation of three-dimensional (3D) mesomechanical models of composites, are
described. One of the programs, Meso3D, generates automatically 3D microstructural
FE models of material (multiparticle unit cells) with pre-defined (graded, clustered,
random, real, etc.) arrangements of inclusions on the basis of the geometrical description
of microstructures, and carries out the statistical analysis of generated microstructures.
Another program, ‘Voxel2FEM’, generates 3D microstructural models of materials on the
basis of the microstructure description, given in the form of voxel array data. The program
‘Voxel2FEM’ allows generation of 3D microstructural models of materials with not only
round or ellipsoidal inclusions, but with inclusions of arbitrary form and distributions.
Furthermore, a subroutine for the numerical modeling of void growth in the ductile phase
of composites and brittle damage in hard particles (with random scattering of properties)
was developed.
Both 2D and 3D numerical mesomechanical experiments, carried out with the use of

these numerical tools, are described in Chapters 6–10. The effects of the arrangements
of inclusions, their sizes, gradients, etc., on the deformation and damage evolution in
composites are analyzed numerically, using the numerical tools described in Chapter 5.
In Chapter 11, the methods of mesomechanical analysis are applied to the analysis of
the contact damage and wear of composite tool materials. Chapter 12 discusses possible
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applications of the methods of mesomechanics of composites to nanostructured materials.
The main conclusions are summarized in Chapter 13.
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1

Composites

1.1 Classification and types of composites

Composites are materials, which:

• consist of two or more chemically dissimilar constituents with different properties,
separated by interfaces;

• are artificially produced by physical combination of ingredient materials, and differ
therefore from alloys (where one or more phases result from phase transformation),
structures and natural materials.

The composites can be considered as homogeneous at the macroscale, but are heteroge-
neous at the microscale, i.e. at the scale comparable with the geometrical sizes of the
constituents. The properties of composites depend on the properties of the constituent
phases, their geometry and relative amounts.
There are two commonly used classifications of composites:

• classification according to the matrix materials: metal matrix composites, organic
matrix composites, ceramic matrix composites;

• classification according to the geometry of reinforcing phase and mechanisms of
reinforcements: particle, fiber, short fiber reinforced composites.

The materials can be further classified as continuously and discontinuously reinforced
composites. The first group includes the long fiber reinforced composites. Miracle and
Donaldson (Miracle and Donaldson, 2001) defined these materials, as composites with
reinforcement, the properties of which do not vary with fiber length, and are not improved
if the fiber or filament length is further increased.
Discontinuously reinforced composites include particulate and short fiber reinforced

composites.

Computational Mesomechanics of Composites L. Mishnaevsky Jr
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2 Classification and types of composites

An important group of composites, which has attracted growing interest from
researchers, is composites with interpercolating structures, where both phases form contin-
uous networks in the material (Clarke, 1992).
Fiber reinforced composites are often characterized by their high specific strength

and specific modulus parameters (i.e. strength to weight ratios), and are widely used
for applications in low-weight components. Three groups of fiber reinforcement are
used: whiskers, fibers and wires. Materials for wires include typically steel, molybdenum
and tungsten. Fine wires have relatively large diameters, as compared with fibers and
whiskers. Fibers are made usually from either polymers or ceramics, and tend to have
much higher strengths than bulk materials, thanks to their smaller diameters. Whiskers are
thin single crystals (such as graphite, silicon carbide, silicon nitride and aluminum oxide),
with almost no defects, and therefore, very high strength. They are often made from
ceramics (aluminum oxide, silicon carbide, silicon oxide, boron carbide and beryllium
oxide), graphite, etc.
In particle reinforced composites, small particles of one phase are randomly distributed

in the matrix of another phase. In many cases, the reinforcing phase (particles) is harder
and stiffer than the matrix. As the matrix materials, metals, alloys, polymers, ceramics,
etc. can be used. Particle reinforcement can be by ceramics, metallic or other particles
of different sizes and shapes.
Metal matrix composites (MMCs) combine the advantages of metals and composites,

in particular, high strength and high fracture toughness. They may be used at high temper-
atures, have high abrasion and creep resistances, as well as high thermal conductivity.
Often, composites with aluminium, magnesium, iron, copper or titanium matrices are
used. The reinforcement of MMCs can include silicon carbide, boron, alumina, refrac-
tory metals, carbon (continuous), or silicon carbide whiskers, chopped fibers of alumina
and carbon, and silicon carbide and alumina particles (discontinuous reinforcements).
A special case of particle reinforced composites is dispersion strengthened composites

(which are often considered either as a separate group, or even classified as alloys rather
than as composite materials). Dispersion strengthened composites are metals or alloys,
reinforced by small volume content (several volume percent) of fine hard particles. The
dispersed phases can be metallic or nonmetallic (often, metal oxides), with sizes of
the order 10–100 nm. High strength and high melting point dispersed particles, such
as carbides, nitrides, oxides and borides, present efficient obstacles for the dislocation
movement, which increase the strength of the particle reinforced material. An example
of this group of materials is aluminum reinforced by aluminum oxide particles.
Cermets, consisting of metal matrix and ceramic particles, can be considered as both

ceramic and metal matrix composites. The most commonly used cermets are the cemented
carbides, which are composed of hard particles of refractory carbide ceramic (tungsten
carbide, WC, or titanium carbide, TiC) and the metal matrix (cobalt or nickel). The
metal content in cermets is typically relatively low (below 20%). These composites are
used extensively in machining and drilling tools. The carbide particles ensure the shape
stability and sharpness of the tools, while the matrix ensures higher toughness of the
materials.
Ceramic matrix composites (CMCs) were developed with the purpose to retain the

advantages of ceramic materials (high strength, stiffness, resilience to oxidation and to
high temperatures), while compensating for their low fracture toughness by reinforcement
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with another ceramic or other material in the ceramic matrix. The increased fracture
toughness is achieved as a result of the interaction between cracks and reinforcement
phase, which impedes or hinders the crack growth. The fracture toughness of CMCs is
normally several times higher than the fracture toughness of ceramics. Typical examples
of matrix materials are silicon carbides and silicon nitrides �Si3N4� (nonoxide matrix),
reinforced by SiC particles, whiskers or fibers, and alumina �Al2O3�, reinforced by
carbon, Al2O3 or SiC.
The toughness of ceramic composites can be further increased by using transformation

toughening (i.e. introducing constituents, which exhibit phase transitions under mechan-
ical loading). The particles of partially stabilized zirconium, dispersed in the ceramic
matrix material undergo transformation to the stable monoclinic phase, when they are
subject to the stress field in front of a propagating crack. This transformation results in
some increase of the particle volume, and in the higher compressive stresses, which can
lead to the crack growth arrest.
Polymer matrix composites (PMCs) consist of polymer as the matrix, reinforced with

fibers, short fibers or particles. They have high tensile strength and stiffness, low density,
low temperature and electroconductivity. The main materials for the polymer matrix are:

• polyesters and vinylesters, which are widely used and inexpensive; these materials are
often reinforced by glass fibers;

• epoxies, which are more expensive and have better mechanical properties than the
polyesters and vinyl resins; they are also utilized extensively in PMCs for aerospace
applications;

• polyimide and thermoplastic resins, which are used for high temperature applications.

Examples of microstructures (SEM micrographs) of polymer (polypropylene) matrix
composites reinforced with short glass fibers and particles are given in Figure 1.1.
High strength glasses, carbon, boron and polymers, as well as some oxides, carbides,

nitrides and other chemical compounds are used as fiber materials in the polymer matrix
composites. Glass fiber reinforced polymer (GFRP) composites are widely used in

(a) (b)

Figure 1.1 SEM micrographs of polymer matrix composites reinforced with (a) short glass
fibers and (b) glass particles. Courtesy of Professor M. Levesque, École Polytechnique de
Montréal.
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low-weight constructions, due to the high strength of glass fibers, as well as due to the
availability of efficient and low cost production technologies of the materials. Carbon is
another fiber material which is often used in advanced PMCs. Carbon fibers have very
high specific modulus and specific strength, even at elevated temperatures and under the
high moisture conditions.
Aramid fibers have very high longitudinal tensile strengths and tensile moduli, even

at high temperatures, yet, relatively low compression strength. They are used often in
protective materials, pressure vessels, tires, ropes and sport goods. Among the most
common aramid materials, one can name Kevlar and Nomex. Aramid fibers are often
used in composites with epoxy or polyester matrices.
Some very promising properties have been achieved in carbon–carbon composites,

which are produced using the carbonization of the polymer matrix. Carbon–carbon
composites have high strength and stiffness, even at high temperatures, large fracture
toughness, low coefficients of thermal expansion and relatively high thermal conductivity
and thermal shock resistance, however, they are relatively expensive. The materials are
used as friction materials, turbine engine components, etc.
Hybrid composites are obtained by introducing two or more different kinds of reinforce-

ment in the matrix, and have often better properties than composites containing only one
reinforcement type. The most widely used system is the polymeric resin reinforced by
carbon and glass fibers. In this case, the strong but expensive carbon fibers are combined
with not so stiff but inexpensive glass fibers. These composites are stronger and tougher
than glass reinforced plastics, but are not as expensive as carbon reinforced composites.
The continuously reinforced composites are used most often in the form of laminates.

Composite laminates represent several unidirectional composite layers (plies, reinforced
by long fibers) stacked and bound together to ensure the high strength and stiffness
in several directions. A scheme of a cross-ply laminate is shown in Figure 1.2. The
composite laminates are widely utilized in areas where low weight as well as high
stiffness and strength of construction are required, notably, aircraft and space engineering,
automotive applications, energy-related applications, as elements of ships, aerospace and
other lightweight constructions.

Figure 1.2 Schematic diagram of a cross-ply laminate: two layers.
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1.2 Deformation, damage and fracture of composites:

micromechanisms and roles of phases

Depending on the microgeometry and type of the reinforcement of composites, the
deformation and failure mechanisms may vary strongly. Let us consider the mechanisms
and the role of microstructures in the deformation and destruction of different groups of
composites.

1.2.1 Particle and short fiber reinforced composites

When a particle reinforced composite is subject to a mechanical load, the entire load
is born initially by the matrix. The matrix is deformed, and its elastic deformation and
plastic flow lead to the load transfer to the particles. The hard particles restrain movement
of dislocations in the matrix phase, and therefore influence (increase) the strength and
stiffness of the composites. Thus, the main mechanisms of the influence of the particles
on the deformation of particle reinforced composites are the load transfer (i.e. the matrix
transfers some of the applied stress to the particles, which bear a part of the load), and
constraining the matrix deformation by the particles.
At some degree of deformation, the microcracks or voids form in particles, matrix or

on the interface. Depending on the properties of the phases, different damage mechanisms
become active:

• Particle cleavage. If brittle particles (e.g. ceramics) are placed in a ductile but strong
and tough matrix, particle cleavage is the main damage mode in the initial stages of
deformation.

• Debonding on the particle–matrix interface. If the bond strength of the interface is
low compared with the failure strengths of both the particles and the matrix, the initial
damage may occur at the interfaces. Often, the stress concentration on broken particles
causes the initiation of the void growth in the matrix and/or interface debonding.
Figure 1.3 shows the debonding and failure of glass particles and the formation of a
crack between the failed particles.

• Void growth. In metallic and polymer matrices, ductile fracture occurs, which involves
the nucleation, growth and coalescence of cavities. The cavity nucleation in the matrix
is associated with the inhomogeneity of plastic deformation in the vicinity of inclusions
(Rice and Tracey, 1969; Derrien, 1997), and takes place often near broken particles,
near microcracks formed at the particle–matrix interfaces or at the dislocation pile-ups
near inclusions. Once voids are formed in the ductile metallic or polymer matrix, they
grow and expand as a result of high local plastic strains and high stress triaxiality in
the matrix.

• Matrix cracking. In a brittle matrix, the formation of matrix cracks can be observed.
Similarly, the voids can coalesce and form large propagating cracks in a ductile
matrix.

In the polymer matrix, the crazing damage mechanism is observed, especially at high
strain rates. The crazes represent filaments, consisting of molecular chains and forming
bridges between two crack faces (Schirrer, 2001).
Figure 1.4 shows schematically three main mechanisms of damage in particle reinforced

composites: particle cracking, interface debonding and void growth in the matrix.
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Figure 1.3 SEM micrograph. Debonding and failure of glass particles and the formation of
a crack between the failed particles. Courtesy of Professor M. Levesque, École Polytechnique
de Montréal.

Voids

Interface
microcrack

Broken
particle

Figure 1.4 Schematic diagram of different damage mechanisms in particle reinforced
composites: particle breakage, interface debonding and void growth in the matrix.

After the initial stage of diluted microcracking at local heterogeneities in the material,
the defects begin to interact, join together and form large cracks. In the ductile matrix,
the voids begin to coalesce, which leads to the failure of the matrix ligaments between
them, and finally to the formation of a macrocrack in the volume. Pineau (Pineau, 2004)
identified two possible mechanisms of the cavity coalescence in metals: cavity growth
until the voids join together; and formation of shear bands between growing cavities (in
the shear bands, smaller voids form often on smaller precipitates).
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After the cracks form, the largest cracks begin to grow, and this growth is controlled
by a number of mechanisms: interaction and joining with microcracks in front of the
crack tip (e.g. microcracks on failed inclusions), by crack–void and crack–dislocation
interaction, by sequential rupture of atomistic bonds (Lawn, 1975a) and other atom-
istic, dislocational and micromechanical mechanisms. The microstructure of compos-
ites influences the mechanisms of crack propagation as well as damage and fracture
resistance. So, microcracks formed by particle cleavage or by particle–matrix inter-
face debonding may cause the crack path deviation (see, for instance, Broeckmann,
1994). A microcrack array, formed in brittle inclusions or weak interfaces, may amplify
or shield the stress concentration on the crack tip, and therefore delay or speed up
the fracture (Kachanov et al., 1990). The netlike or layered arrangements of brittle
inclusions in the matrix can cause the crack to follow the direction of highly rein-
forced regions, and to deviate from the initial mode I direction. Such a crack deviation
leads to an increase in the fracture toughness of the composite (Mishnaevsky Jr et al.,
2003a).
Figure 1.5 shows some examples of the toughening mechanisms in particle reinforced

composites: the crack path deviation (e.g. due to the crack–microcrack interaction or
crack shielding by a microcrack array) and crack branching. Further, the crack bridging
mechanisms can be operative, and lead to the toughening of the composites.
The deformation and damage mechanisms in short fiber reinforced composites are in

many ways similar to those in the particle reinforced composites (e.g. the load transfer
from the matrix to fibers, etc.). In metal matrix short fiber reinforced composites, the
matrix yielding starts in the vicinity of fiber ends. Following the local plastic deformation
in the matrix, the interface debonding begins in the vicinity of the fiber ends, and
that leads to the matrix crack initiation from the debonded fiber ends (Goh et al.,
2004).

(a) (b)

Figure 1.5 Mechanisms of toughening of particle reinforced composites: (a) crack deviation
and (b) crack branching.
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1.2.2 Long fiber reinforced composites

If a long fiber reinforced composite is subject to mechanical loading, the role of fibers
is to bear the applied load, whereas the matrix binds the fibers together and ensures the
load transfer and redistribution to and between the fibers.
Under longitudinal tensile loading, the main part of the load is born by the fibers, and

they tend to fail first in metal and polymer matrix composites. After the weakest fibers
fail, the load on the remaining intact fibers increases. This may cause the failure of other,
initially the neighboring, fibers. According to Cooper (Cooper, 1971), the mechanisms
of failure of the composites at this stage can be classified into ‘single fracture’ (after
one phase fails, another phase can not bear any load and fails instantly) and ‘multiple
fracture’ mechanisms (after one component fails, other components can bear the applied
load, but become progressively damaged and ultimately fail). In the case of multiple
failures, the stress–strain curve looks similar to the ductile stress–strain curve, with a
zigzag part corresponding to the stage of accumulation of the cracks before failure.
The cracks in the fibers cause higher stress concentration in the matrix, which can

lead to the matrix cracking. However, if the fiber–matrix interface is weak, the crack
will extend and grow along the interface. The crack deviation into the interfaces may be
beneficial for the fracture toughness of composites (Evans, 1997).
The failure of glass fibers in polymer matrix composites (SEM image) is shown in

Figure 1.6.

Figure 1.6 SEM micrograph. Failure and following deformation of glass fibers in the polymer
matrix composites, subject to tensile loading. Courtesy of Professor M. Levesque, École Poly-
technique de Montréal.
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In the case of ceramic and other brittle matrix composites, the crack is formed initially
in the matrix. If intact fibers are available behind the crack front and they are connecting
the crack faces, the crack bridging mechanism is operative. In this case, the load is shared
by the bridging fibers and crack tip, and the stress intensity factor on the crack tip is
reduced. A higher amount of bridging fibers leads to lower stress intensity factor on the
crack tip, and the resistance to crack growth increases with increasing crack length (R-
curve behavior) (Sørensen and Jacobsen, 1998, 2000). The extension of a crack, bridged
by intact fibers, leads to debonding and pull out of fibers that increase the fracture
toughness of the material.
Mechanisms, similar to the toughening mechanisms in particle reinforced composites

(crack branching, deflection), operate in fiber reinforced composites as well. While
the crack deflection, crack branching and bridging are the most important toughening
mechanisms for short fiber composites, the fiber debonding, fiber fracture and pull out
are observed most often in long fiber composites.
The main damage mechanisms in long fiber reinforced composites under tensile loading

are shown schematically in Figure 1.7.
Under tensile loading at an angle to the fiber direction, several failure mechanisms

are operative: tensile fiber failure (operative at low angles between the interface and
applied force), shear along the interface, tensile interface debonding and matrix cracking
(the latter two mechanisms are observed at high angles between the interface and applied
force) (Stölken and Evans, 1998).

Interface crack triggered
by fiber failure

Matrix
crack with

fiber
bridging

Multiple fiber
fractures

Figure 1.7 Schematic diagram of different damage mechanisms in fiber reinforced compos-
ites: fiber cracking, interface debonding and matrix cracking.
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The compressive strength of composites is often sufficiently lower than their tensile
strength (Budiansky and Fleck, 1993). Failure of the polymer matrix composites is
caused usually by localized buckling or kinking of fibers. Further, fiber crushing and
shear banding can be observed in the composites under compressive loading (Hahn and
Williams, 1984).

1.2.3 Laminates

The main mechanism of damage of laminates at the initial stages of failure is the matrix
cracking (called also transverse cracking in the case of 90� plies, or intralaminar cracking),
which is observed first of all in the plies with maximum angle between the fibers and
load direction (Nairn, 2000; Kashtalyan and Soutis, 2005). After a transverse crack in
the matrix initiates, it propagates quickly from one side of the ply to another (tunneling
mechanism). Other matrix cracks are formed in the ply (normally, at a constant distance
from one another). The delamination cracks are initiated at the tips of the transverse
microcracks (Varna and Berglund, 1991; Lundmark, 2005). Delaminations may lead in
turn to the fiber breakage in the main load-bearing layers, with fiber oriented along the
loading direction (Kashtalyan and Soutis, 2005). The crack system, which is formed in
the cross-ply laminates, is shown schematically in Figure 1.8.
The following mechanisms of damage initiation in composite laminates were further

described by Ladeveze et al. (Ladeveze et al., 2006): diffuse damage, associated with
fiber–matrix debonding, and diffuse delamination (formation of microvoids and microc-
racks at the interface between plies). The diffuse damage, which is observed often under

Transverse 
(matrix) cracks

Delamination cracks

Figure 1.8 Schematic diagram of crack systems in a cross-ply laminate.
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shear loading, leads to the reduction in the stiffness of plies, and therefore influences the
conditions of the formation of transverse cracks.

References

Broeckmann, C. (1994). Bruch karbidreicher Stähle – Experiment und FEM-Simulation unter
Berücksichtigung des Gefüges, Dissertation, Ruhr-Universitaet Bochum.

Budiansky, B. and Fleck, N. A. (1993). Compressive failure of fibre composites, Journal of the
Mechanics and Physics of Solids, 41 (1), 183–211.

Clarke, D. R. (1992). Interpenetrating phase composites, Journal of American Ceramic Society,
75, 739–759.

Cooper, G. A. (1971). The structure and mechanical properties of composite materials, Review of

Physics in Technology, 2, 49–91.
Derrien, K. (1997) Modélisation par des méthodes d’homogénéisation de l’endommagement et de

la rupture de composites Al/SiCp, PhD Thesis, ENSAM, Paris.
Evans, A. G. (1997). Design and life prediction issues for high-temperature engineering ceramics

and their composites, Acta Materialia, 45 (1), 23–40.
Goh, K. L., Aspden, R. M. and Hukins, D. W. L. (2004). Review: finite element analysis of

stress transfer in short-fibre composite materials, Composites Science and Technology, 64 (9),
1091–1100.

Hahn, H. T. and Williams, J. G. (1984). Compressive failure mechanisms in unidirectional
composites, NASA TM 85834.

Kachanov, M., Montagut, E. L. E. and Laures, J. P. (1990). Mechanics of crack– microcrack
interaction, Mechanics of Materials, 10, 59–71.

Kashtalyan, M. and Soutis, C. (2005). Analysis of composite laminates with intra- and interlaminar
damage, Progress in Aerospace Sciences, 41(2), 152–173.

Ladeveze, P., Lubineau, G. and Marsal, D. (2006). Towards a bridge between the micro- and
mesomechanics of delamination for laminated composites, Composites Science and Technology,
66, 698–712.

Lawn, B. R. (1975a). An atomistic model of kinetic crack growth in brittle solids, Journal of
Materials Science, 10 (3), 469–480.

Lundmark, P. (2005). Damage mechanics analysis of inelastic behaviour of fiber composites, Dr
Thesis, Lulea, LTU.

Miracle, D. B. and Donaldson, S. (2001). Introduction to composites, in: ASM Handbook: Vol.

21, Composites, Eds D. B. Miracle and S. Donaldson, ASM International, Material Park, OH,
pp. 3–17.

Mishnaevsky Jr, L., Lippmann, N. and Schmauder, S. (2003a). Computational modeling of crack
propagation in real microstructures of steels and virtual testing of artificially designed materials,
International Journal of Fracture, 120 (4), 581–600.

Nairn, J. (2000) Matrix microcracking in composites, in: Comprehensive Composite Materials, Eds
A. Kelly and C. Zweben, Elsevier, Amsterdam, Vol. 2 pp. 403–432.

Pineau, A. (2004) Physical mechanisms of damage, in: Local Approach to Fracture, Eds J. Besson
et al., ENSMP, Paris, pp. 33–77.

Rice, J. R. and Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields,
Journal of the Mechanics and Physics of Solids, 17, 201–217.

Schirrer, R. (2001). Damage mechanisms in amorphous glassy polymers: crazing, in: Handbook of
Materials Behavior Models, Elsevier, New York.



12 References

Stölken, J. S. and Evans, A.G. (1998). A microbend test method for measuring the plasticity length
scale. Acta Materialia, 46 (14), 5109–5115.

Sørensen, B. F. and Jacobsen, T. K. (1998). Large scale bridging in composites: R-curve and
bridging laws. Composites A, 29, 1443–1451.

Sørensen, B. F. and Jacobsen, T. K. (2000). Crack growth in composites – Applicability of R-curves
and bridging laws, Plastics, Rubber and Composites, 29, 119–133.

Varna J. and Berglund L. A. (1991). Multiple transverse cracking and stiffness reduction in cross-
ply laminates, Journal of Composites Technology Research, 13 (2), 97–106.



2

Mesoscale level in the mechanics of
materials

2.1 On the definitions of scale levels: micro- and mesomechanics

The following scale levels are usually recognized in the analysis of the material behavior:

• Macroscale (or a specimen scale), of the order of more than 1mm. Material behavior
at this scale level is analyzed using continuum mechanics methods.

• Micro- and mesoscale (or a microstructure scale), between 1�m and 1mm. Material
behavior at this scale level falls into the area of materials science, and is analyzed
using methods of both physics and mechanics of materials, including micromechanics
and fracture mechanics.

• Nano- and atomistic scales, less than 1�m. Material behavior at this scale level falls
into the area of the physics of materials.

The question arises as to what is the difference between ‘mesolevel’ and ‘microlevel’ in
the mechanics of materials.
The term ‘mesomechanics’ has gained relatively wide acceptance after it was intro-

duced by Panin and co-workers (Panin, 1998) as the name for a new area of research
(‘physical mesomechanics’), the main purpose of which has been defined as the develop-
ment of the theoretical basis of material improvement, using experimental and theoretical
studies of physical processes in loaded materials at the mesolevel.
Needleman (Needleman, 2000) defined ‘mesoscale continuum mechanics’ as ‘interme-

diate between direct atomistic and an unstructured continuum description of deformation
processes’. As a characteristic feature of this scale level, it was noted that ‘size matters’
at the mesoscale level.
Panin (Panin, 1998) suggested a more detailed classification, with meso I and meso II

levels (defined as related to the rotation modes inside structural elements of deformation,

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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and to the self-correlated rotations of many structural elements, respectively). The meso I
level corresponds to the level ‘inside microstructural elements’ (grains), while the meso II
level is related to the ‘conglomerates’ of microstructural elements. Actually, Needleman’s
‘mesoscale continuum mechanics’ corresponds to both Panin’s meso I and II levels, and
to both micromechanics and mesomechanics in the above classification.
Kocks (cited by Estrin, 1999) stated that ‘ “mesoscopic” should refer to cases where the

structural scale is, say, of the order of 100�m’ (scale between ‘microscopic’, associated
with the microscope and micrometer, and ‘macroscopic’).
Mishnaevsky Jr and Schmauder (Mishnaevsky Jr and Schmauder, 2001) defined the

mesolevel in the material structure as a range of scale levels which are two to three orders
of magnitude greater than defects of structure (which varied in the 10−9–10−5m scale
range) and one to three orders of magnitude smaller than a specimen or workpiece in the
following. The levels of the description can be related to the methods of the control of
material properties: whereas the improvement at macrolevel can be done by modifying
the specimen construction, the improvement of the strength and reliability of materials
at micro- and mesolevel is carried out by heat treatment, metal working, impregnation,
powder metallurgy methods, etc.
Following Mishnaevsky Jr (Mishnaevsky Jr, 2005b), one may state that the mesome-

chanics of materials studies quantitatively the interaction and synergistic effects of many

elements of microstructures (as inclusions, voids, shear bands, microcracks, etc., or
generally the heterogeneity of materials) on the strength and mechanical properties of
materials, whereas micromechanics deals with the effects of single elements and averaged
parameters of microstructures on the mechanical behavior of materials. Computational
mesomechanics seeks to create the necessary numerical tools for the analysis of the
mechanical behavior and degradation of materials, which allows the computational anal-
ysis of the interaction between many elements of microstructures and microstructure
evolution, and can serve as a basis for the material design.

2.2 Size effects

Needleman (Needleman, 2000) defined ‘mesoscale’ as a scale level at which ‘size
matters’. The influence of geometrical size of components on the mechanical behavior
and strength of materials was observed in numerous experiments, carried out on metals
(Fleck et al., 1994), ceramics (Xu and Rowcliffe, 2002), concretes (Bazant and Yavari,
2005) and polymers (Tjernlund, 2005). The common observation is that ‘smaller is
stronger’: the smaller a specimen or an element of the microstructure, the higher its
strength.

2.2.1 Brittle and quasi-brittle materials

The interest of the research community in the size effect in materials was first aroused
in connection with the testing of materials for civil engineering use. The necessity to
predict the strength of concretes for large-scale structures on the basis of testing much
smaller specimens led to intensive scientific efforts in this area.
Several explanations for the size effect in concretes, ceramics and other quasi-brittle

materials have been suggested. The oldest model of the size effect is based on Weibull’s
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statistical theory of strength (Weibull, 1939). It can be easily demonstrated in the frame-
work of the weakest link theory, that increasing the specimen volume leads to the
increased probability to find a crack in the volume, which may cause fracture at a given
stress. For the uniform uniaxial applied stress, this theory leads to the following formula
for the tensile strength of the material:

� ∝ V−1/m (2.1)

where V is volume and m is the Weibull modulus.
Another, deterministic size effect in quasi-brittle materials is related to the stress

redistribution and localization of damage during the crack growth. In these materials,
when a crack grows, a finite size fracture process zone forms and extends. Bazant and
Yavari (Bazant and Yavari, 2005) demonstrated that while ‘the rate of energy dissipated
at the front of a propagating fracture � � � is nearly independent of the structure size, the
rate of energy released from the structure into the front would increase with the structure
size if the nominal strength of the structure were assumed to be constant’ (Bundesen,
2004). They concluded that the nominal strength decreases with increasing structure size
under these conditions (Bazant, 2004).
Dyskin et al. (Dyskin et al., 2001) investigated the size effect in heterogeneous

materials by considering microscopic random stress fields in materials with random
microstructures under uniform and nonuniform macroscopic loading. Dyskin and
colleagues demonstrated that Gaussian stress fluctuations lead to a size effect in which
the tensile strength reduces as the square root of the logarithm of the sample size. For
the case of nonuniform loading, they suggested another model which accounts for the
linear part of the macroscopic stress distribution. Dyskin and colleagues concluded that
‘macroscopic stress nonuniformity plays a crucial role in the mechanism of size effect’.

2.2.2 Metals

The size effect in metals is controlled by the micromechanisms of plastic deformation,
and the damage initiation and growth in the materials. Yielding stress of metallic materials
increases with decreasing the grain size in the materials according to the Hall–Petch
relation:

� = �c+Cd−1/2 (2.2)

where � is the yielding stress, �c and C are parameters of the material, and d is grain size.
This effect is controlled by the inhibition of the dislocation glide due to the formation of
pile-ups of dislocations at the grain boundaries.
During the plastic deformation of ductile metallic matrix reinforced by hard inclusions,

the dislocations have to bow around the inclusions. The shear stress necessary for a
dislocation to bow around the inclusions, is inversely proportional to the distance between
inclusions. Due to this effect, the flow stress of composites increases with decreasing
particle size, when the volume content of reinforcement is kept constant (Lloyd, 1994;
Nan and Clarke, 1996).
Strong size effects are observed at the nano and submicrometer scale levels. The

indentation hardness in the micro-indentation hardness experiments may increase by
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a factor of two or even three as the indentation depth decreases to micrometers and
submicrometers (Xue et al., 2002). The special case of thin metallic films on a substrate, in
which the plastic flow in the films is constrained by the film surfaces, is discussed below.
A number of authors argued that the size effect in materials is caused by the gradients

of plastic shear in small zones, which result in the storage of geometrically necessary
dislocations (Fleck et al., 1994; Abu Al-Rub, 2004). Due to the complex geometry of
loading or material inhomogeneity, the plastic strain gradients are generated in the mate-
rial, and lead to the storage of the dislocations, necessary for the compatible deformation
in parts of the material. An increase of the dislocation density due to the strain gradients
lead to the increase of the yield stress of the material. According to Fleck and colleagues,
the size effect becomes pronounced when the grain size or particle spacing lie below
approximately 10�m.
The size effect, associated with the damage growth (e.g. void initiation at the local

inhomogeneities), influences the strength and damage of metals. In this case, the higher
density of brittle inclusions and other inhomogeneities, which are considered sites of the
potential defect initiation in the material, leads to the higher density of defects, and to
the higher likelihood of failure (similarly to the size effects in quasi-brittle materials).
Therefore, the characteristic lengths in metals can be associated with the grain sizes,

sizes of the dislocation cells, magnitude of the strain gradient, distances between inclu-
sions or inhomogeneities, etc.
In polymers, the structural length scale can be associated with molecular length (for

amorphous thermoplastics) or with the distance between adjacent cross-links (for ther-
mosets) (Tjernlund, 2005).

2.2.3 Thin films

An example of the realization of the concept ‘small is stronger’ is thin films, metallic or
polymer layers with thickness of 10–1000 nm, used often in microelectronics, photonics,
etc. According to Nix (Nix, 1989), thin films are commonly much stronger than corre-
sponding bulk materials. Shan and Sitaraman (Shan and Sitaraman, 2003) demonstrated
that the yield stress of Ti thin film is about three times the ‘bulk’ value, while the elastic
modulus did not change. The higher yield stress of thin films, as compared with bulk
materials, is caused by large strain gradients, as well as by constraints of the dislocation
movement by interfaces (Mishnaevsky Jr and Gross, 2004b; Trondl et al., 2006).

On the basis of investigations of the deformation of thin films, the concept of a ‘critical
film thickness’ has been formulated. In the framework of this concept, a film thickness
is determined, below which the strength of film is much higher than above. This critical
thickness is defined as the thickness at which the film on a ‘thick, lattice-mismatched
substrate can begin to accomodate misfit dislocations’ (Freund and Nix, 1996), or a
thickness ‘below which a dislocation-free coherently strained interface would be stable
and above which a misfit dislocation structure, semi-coherent interface, would be stable’
(Hirth and Feng, 1990). To determine the critical thickness of thin metallic films, several
theories of film deformation have been developed. Table 2.1 shows some models and
methods for the determination of critical film thicknesses.
More detailed reviews of the small scale effects in thin metallic films are given

elsewhere (Mishnaevsky Jr and Gross, 2004a,b, 2005).
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Table 2.1 Overview: yield strength of thin metallic films as a function of the film thickness.

Reference Main ideas Main results

Arzt, 1988 Shear stress necessary for yielding
by ‘the motion of dislocations
which are constrained to “channel”
through the film’ (dislocations
channeling mechanism of the
plastic deformation of films) can be
determined from the condition that
a dislocation loop (or one half of a
loop, for the case of the ‘free’ film
surface) fits inside the film (i.e. the
condition that the film surface is
inpenetrable to the dislocations)

Yield stress was shown to be
proportional to 1/h, where h
is the film thickness

Freund, 1987,
1994; Nix, 1989;
Thompson, 1993;
Freud and Nix,
1996

Yielding stress of thin metallic films
is determined by the analysis of the
energy changes related to the
extension of a misfit dislocation
(the equilibrium condition of the
dislocation growth in a film)

Yield stress is proportional
to �1/h� ln h (Freund),
�1/h� �lnh+ f � (Nix) or
A/h+B/d (Thompson),
where f is a function of the
elastic shear moduli of
components and the oxide
thickness, d – grain size and
A and B are parameters

von
Blanckenhagen
et al., 2001a,b

Plastic deformation in thin films is
simulated using the discrete
dislocation simulation method. The
formation of a dislocation pile-up
in a single grain and local stresses
on the grain boundary, which
determine the start of global plastic
deformation, were examined. The
authors demonstrated that the
smaller dimension (either grain
size or film thickness) controls the
flow stress of the film.

Yield stress is proportional to
√

K2
HP/d+�2source, where KHP is

a constant, d is the grain
diameter and �source is the
source activation stress

2.3 Biocomposites

Natural biological materials often demonstrate extraordinary strength, damage resistance
and hardness. For instance, nacre, which consists of 95% CaCO3, has a work of fracture
that is 3000 times higher than that of monolithic CaCO3 (Ramachamndra Rao, 2003). In
order to explore sources of the high strength and toughness of biomaterials, a number
of investigations of the microstructures, damage and deformation mechanisms and the
strength of different materials (bones, nacre, teeth, etc.) have been carried out. Let us
look at the results of some of these investigations.

2.3.1 Nacre

A relatively well investigated case of biocomposite is nacre, mother of pearl. As noted
above, nacre has a strength two times higher and a toughness thousands of times higher
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than its main constituent material, namely calcium carbonate. Many authors sought to
investigate the mechanisms, which determine the high toughness of nacre (Jackson et al.,
1988; Sarikaya et al., 2002).
Sarikaya et al. (Sarikaya et al., 2002) investigated nacreous mollusk shells, which

are built as a brick (aragonite)-and-mortar (polymer) structure at the microlevel. They
described the brick–mortar microstructure of nacre as follows: mineral platelets are
surrounded by a thin film organic matrix and successively stacked to form a layered
nanocomposite. The platelets are closely packed at each layer, and staggered through the
thickness. That leads to the following behavior under loading: ‘when the resolved stresses
are normal to the platelet plane, the organic matrix bridges between the platelets, keeping
them together and preventing uncontrolled crack growth; if the resolved stresses are shear,
then the platelets slide successively over the organic matrix.’ Sarikaya and colleagues
concluded that layered industrial composites could be further toughened and strength-
ened for use in practical applications by using the segmented design encountered in
nacre.
According to Smith et al. (Smith et al., 1999), the high fracture resistance of nacre is

determined by its polymer adhesive. The adhesive fibers elongate in a stepwise manner,
when nacre is loaded, as folded domains or loops are pulled open. The sawtooth pattern
of the force–extension curve in the protein is a result of the successive domain unfolding.
During the crack propagation in the nacre, the energy is absorbed by the interface
debonding and by the shearing of the protein layer (Smith et al., 1999). If the crack
propagates normally to the layers of bricks, it deflects around the aragonite bricks
(Okumura and de Gennes, 2001).
Qi et al. (Qi et al., 2005) investigated the mechanical behavior of nacre numerically,

using a micromechanical model. The mechanical behavior of the organic matrix was
modeled taking into account the unfolding of protein molecules. The nonlinear stress–
strain behavior was observed, with an apparent ‘yield’ stress (related to the unfolding
events in the organic layers and to the mitigation of load transfer to the aragonite tablets)
and hardening (related to the shear in the organic layers).
Katti et al. (Katti et al., 2005) demonstrated that the features observed in the microstruc-

ture of nacre, namely the relative rotation between platelet layers, platelet penetration
and the geometric peculiarities (e.g. elongated sides) determine the high toughness and
strength of nacre. Katti and colleagues observed interlocked platelets of nacre, and demon-
strated that interlocking is the key mechanism for the high toughness and strength of
nacre. The rotation between platelet layers is a necessary condition for the formation of
interlocks.
In the conch shell with a crossed-lamellar structure, the toughness is determined by the

complex structure of stacked laths, which cause the crack deflection and multiple cracking,
according to Currey (Currey, 1984), Currey et al. (Currey et al., 1995) and Kamat et al.
(Kamat et al., 2000).

2.3.2 Sponge spicules

Sarikaya et al. (Sarikaya et al., 2001) investigated the microstructures and mechanical
properties of the Antarctic sponge Rosella racovitzea. They observed that the spicules
are highly flexible and tough. While both the elastic modulus and nanohardness of
the spicules are about half that of fused silica, the fracture strength and fracture energy
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Figure 2.1 SEM images of the fractured surface of a Rosella racovitzea spicule showing
layering at (a) low and (b) high magnifications. (c) SEM image of a fractured spicule from a
3-point bend test. Reprinted from J. Mater. Res., 16(5), Sarikaya, M. et al., pp. 1420–1435,
Copyright (2001), with permission from Materials Research Society.

of the spicules are several times those of silica rods of similar diameter. The layered
structure of the spicules, with layers parallel to the axis of the spicule and randomly
distributed layer thicknesses, was observed. Further, it was observed that the stress–
strain curves from bulk testing of the spicules have a ‘sawtooth’ behavior. Figure 2.1
gives the SEM images of the fractured surface of a R. racovitzea spicule at different
magnifications. The authors assumed that the layered structure (seen in Figure 2.1) is
responsible for the high toughness of the spicules.

2.3.3 Bamboo

Amada (Amada, 1995) and Amada et al. (Amada et al., 1997) studied the microstructures
of the bamboo, which allow it to withstand high velocity winds. Amada and colleagues
demonstrated that bamboo can be considered as a functionally graded material and as
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a hierarchically designed composite. The microstructure of bamboo changes from the
outer to the inner of the material: it was shown that the density of distribution of the
vascular bundles, which act as the reinforcing component, is the highest in the outer
green layer. The nodes, which are placed periodically along the length of the bamboo,
ensure high tensile strength, stiffness and rigidity on the macroscale. An analysis of the
stresses experienced by the bamboo during bending indicates that the maximum stresses
are generated at the outer part of the culm as well.

2.3.4 Teeth

Teeth consist generally of an outer hard layer (enamel) and an inner tougher material
(dentine). The microstructures and properties of mammalian teeth have been investigated
by Fong et al. (Fong et al., 2000) and Sarikaya et al. (Sarikaya et al., 2002). According to
Sarikaya et al., a mammalian tooth is an intricately structured and functionally gradient
composite material, in which both enamel (on the outside) and dentine (on the inside) are
coupled through an interface region (called the dentine–enamel junction) (Figure 2.2).
Enamel is composed of long crystallites packed as bundles in enamel rods. The enamel

Figure 2.2 Image of a cross-section of a human incisor sample displaying pulp (P), dentine
(D) and enamel (E) regions. Reprinted from Mater. Sci. Eng., C, 7(2), Fong, H. et al.
‘Nanomechanical � � � ’, pp. 119–128, Copyright (2000), with permission from Elsevier.
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rods are organized unidirectionally normal to the surface of the tooth. This leads to the
high hardness and wear resistance of teeth. Dentine is primarily composed of mineralized
collagen fibrils that form a randomly intertwined, continuous network; such a structure
makes dentine a soft but extremely tough material. A tooth, consisting of a combination
of enamel and dentine, represents a functionally gradient composite material, which is
similar to cutting and grinding tools.

2.3.5 Bones

Bone consists of an organic matrix (mainly collagen I), mineral phase (crystalline hydrox-
yapatite) and living cells. While the organic matrix ensures high tensile strength of the
bone, the mineral phase is responsible for the stiffness and compressive strength (Pompe
and Gelinsky, 2001).
At the nanoscale level, bone matrix consists of mineralized collagen fibrils, in which

mineral nanocrystals are embedded (Jäger and Franzl, 2000). At this scale level, bones
demonstrate rather high strength and even insensitivity to damage (Gao et al., 2003).
At the microlevel, mineralized collagen fibers merge in lamellae (sheets), which can

form so-called osteons or a Haversian system. Osteons represent cylinders, formed from
several laminae wrapped in concentric layers around a central canal, and oriented roughly
parallell to the bone axis. The cracking in a bone under loading may occur at weak
interfaces between the lamellae. When the bones fail, an extensive microcracking is
observed.
At the macrolevel, long bones represent gradient materials, consisting of a dense

cortical (compact) layer at the outer surface, and a porous cancellous bone inside (Rho
et al., 1998). The deformation at which bones break can be up to 10% (Currey and
Kohn, 1976; Currey, 1984; Currey et al., 1995; Weiner and Wagner, 1998; Zioupos,
1998; Reilly and Currey, 2000).
Buskirk et al. (Buskirk et al., 2002) considered natural holes (foramina) in leg bones

of horses, which allow the blood vessels to pass through the hard outer surfaces. These
holes never appear as fracture sites of bones. Buskirk and colleagues found that the
holes are embedded in a stiffer region, and that the stiffness gradation around the holes
ensures the high strength of the bones with the natural holes. They demonstrated that the
composition in the vicinity of the natural hole reduces the stress concentration. Taking
into account the dependence of the Young modulus and strength on density and porosity,
the authors suggested a way to improve the strength of plates with a hole by using graded
properties distribution.
Peterlik et al. (Peterlik et al., 2006) investigated the influence of bone microstructure on

the toughness, and demonstrated that various toughening mechanisms are active in bones
(e.g. crack ligament bridging, crack deflection and multiple microcracking). Further, they
observed the transition from a brittle to a quasi-ductile fracture mode, at some angles
between the collagen and the crack. According to Peterlik and colleagues, the variation

of fibril angles across the bone tissue has several advantages over perfect alignment with
respect to the fracture resistance of bones. In particular, the variation of fibril angles
ensures higher fracture energy, and leads to a more ductile fracture behavior of bones.
Giraud-Guille (Giraud-Guille, 1998) analyzed the collagen networks in compact bone,

and concluded that superimposed, discrete layers of lamellae of fibrils ‘prove their
resistance to mechanical constraints’. She compared the cylindrical concentric lamellae
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consisting of collagen fibrils in bones with the chitin–protein networks in crustaceans,
and observed the strong similarity in the microgeometries of the tissues. In both cases,
as well as in many other biological tissues, the ‘plywood structure’ (i.e. the multilayered
microstructure, with laminae formed from fibrils) is observed.
The peculiarities of bone tissues at the nanoscale level were investigated by Jäger

and Franzl (Jäger and Franzl, 2000) and Gao and colleagues (Gao et al., 2003). Jäger and
Franzl (Jäger and Franzl, 2000) considered the structure of collagen fibrils as assemblies
of parallel collagen molecules arranged with a longitudinal stagger, and demonstrated
that the staggered arrangement of mineral platelets (which is observed in nature) ensures
much higher strength than the strictly parallel arrangement.
Gao et al. (Gao et al., 2003) and Ji and Gao (Ji and Gao, 2004) showed numerically

that the stress field becomes more and more uniform as the thickness of platelets, which
constitute the reinforcement of biomaterials at the nanolevel, decreases. They developed
the virtual internal bond (VIB) model–based finite element analysis (which incorporates
an atomic cohesive force law into the constitutive model of the material), and applied it
to analyze failure mechanisms in nanomaterials. The optimal aspect ratio of the mineral
platelets was determined from the condition that the protein and mineral fail at the same
time. It was shown that ‘the smaller the platelets, the larger the optimal aspect ratio;
the larger the aspect ratio, the larger the stiffening effect’. According to Gao et al. (Gao
et al., 2003), the strength of nanoscaled mineral platelets in biocomposites is maintained
despite defects. The nanometer size of the mineral crystals is therefore a result of fracture
strength optimization, which ensures the maximum tolerance of flaws.
On the basis of the short overview of these and other literature sources on the

microstructures and strength of biomaterials, some peculiarities of biomaterials, which
are responsible for their high strength and damage resistance, can be listed (Mishnaevsky
Jr, 2004c, 2005b):

• structural hierarchy (two to three orders of lamellar microstructures with different
microarchitectures);

• graded distributions of reinforcement, pores, etc.; distribution of reinforcement follows
the expected stress distribution;

• bundles of fibers as reinforcement;
• smallest nanometer-sized building blocks of biocomposites: the fracture strength for
the brittle material platelets is equal to the theoretical strength of a perfect material;

• low content of matrix/glue, and high volume content of reinforcement;
• large aspect ratio and staggered arrangement of reinforcing inclusions;
• fractal, smooth, multilevel interface from one material to another.

In this list, only microstructural and not chemical peculiarities of the materials are
included. Therefore, they can be transferred to the industrial composites.

2.4 On some concepts of the improvement of material properties

In the last decades, several new technologies and methods for the improvement of
composite materials have been developed: new coatings, gradation of properties, double
dispersion structures, interpenetrating phase composites, and so on. In the following, we
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present a brief overview of some directions of the improvement of composites, which
lead to the higher strength and damage resistance compared with the conventional homo-
geneous composites.

2.4.1 Gradient composite materials

These are composites with a smooth variation of phase properties, content or microstruc-
tural parameters in one or several directions (see, for instance, Miyamoto et al., 1999).
One of the oldest examples of a gradient material, mentioned above, is the blades of
ancient Japanese swords. The steel swords contained a tough core and hardened edge,
with a graded transition between them (Suresh and Mortensen, 1998; Suresh, 2001).
Initially, the materials with graded properties were produced with the use of special

casting and heat treatment regimes, or as multilayers using welding and facing tech-
nologies. With the development of powder metallurgy and other technologies (e.g. self-
spreading high-temperature synthesis), it became possible to produce new types of graded
materials, with smooth and controlled phase and properties distribution. The gradient
materials are employed in high temperature aerospace components, cutting tools, biomed-
ical devices, etc. The graded composition of materials makes it possible to influence
the thermal stress distribution and the local crack resistance, and to reduce the local
stress concentration. Compared with layered materials (coated composites, multilayers),
gradient materials allow to reduce high interfacial stresses and to exclude the debonding
on interfaces, and to increase the lifetime of materials under cyclic loading. Drilling tools
made from WC/Co hard alloys with gradient microstructures have four to five times
service life of similar tools with homogeneous microstructures (Lisovsky, 2001).

2.4.2 The application of coatings

This is one of the oldest technologies to improve the reliability and lifetime of materials
and components. In the aircraft industry, hard coatings are used to increase the corrosion
and thermal resistance of turbine blades. Various coatings are used to improve the quality
and lifetime of cutting tools, gas turbine blades, optical devices, and other devices and
components. The application of coatings can lead to the improvement of several orders
of magnitude in the performances of components: for instance, Berríos-Ortíza et al.
(Berríos-Ortíza et al., 2004) demonstrated that the fatigue life of stainless steels, coated
with ZrNx films, increases by 400–1100%, as compared with uncoated steels.

2.4.3 Layered metal matrix composites

These consist of alternate lamellae of reinforced and unreinforced metal matrix,
and exhibit much higher fracture toughness, as compared with homogeneously rein-
forced composites (Ellis and Lewandowski, 1994; McLelland et al., 1999). Ellis and
Lewandowski (Ellis and Lewandowski, 1994) demonstrated that layered discontinuously
reinforced composites have nearly two times higher fracture toughness, as compared
with conventional composites. McLelland and colleagues developed the technology of
production of layered aluminum matrix composites, based on thixoforming, and demon-
strated that these composites have only slighly improved fracture toughness under impact
loading, but strongly improved toughness under slow crack growth conditions.
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2.4.4 Surface composites

As developed by Singh and Fitz-Gerald (Singh and Fitz-Gerald, 1997), this is another
group of composite materials rather close both to the gradient and coated composites. In
these materials, the second phase is distributed in near surface regions, where the ‘phase
composition is linearly graded as a function of distance from the surface’. Differing
from functionally gradient materials (FGMs), the graded properties of surface composites
are achieved by transforming the surface of the bulk material into truncated cone-like
structures using a multiple pulse irradiation technique, followed by the deposition of the
surface phase. This leads to the uniform distribution of the surface phase as clusters on
the surface. The cluster size decreases as a function of depth from the surface. Surface
composites demonstrate higher adhesion of the surface phase with the bulk material, than
normal coated composites.
A schematic diagram of the phase arrangement and distribution in layered, graded and

surface composites is shown in Figure 2.3.

2.4.5 Agglomerates of small scale inclusions and the ‘double dispersion’

microstructures of steels

Berns et al. (Berns et al., 1998) developed a new tool material with a ‘double dispersion’
microstructure, in which the coarse hard phase (primary carbides) is replaced by a dense
dispersion of small carbides. This material ensures sufficiently (30%) higher fracture
toughness and lifetime than the standard materials for the cold forging tools. Figure 2.4
shows the primary carbide distribution in steel with fine carbides (randomly arranged),
coarse carbides and the double dispersion microstructure.
Peng et al. (Peng et al., 2001a) developed a composite with an Al matrix, reinforced

by agglomerates of saffil short fibers. The agglomerates (diameter 0.4–1mm) were
manufactured by tumbling fibers of length <200�m. Peng and colleagues carried out
the 3-point loading tests of the conventional homogeneous composites and the newly
developed composites. From their results, it follows that the energy absorbed by the
composite during the bending test is 28–70% higher for the composites reinforced
with the fiber agglomerates, than for the conventional homogeneous fiber reinforced
composites.

(a) (b) (c)

Figure 2.3 Schematic diagram of (a) gradient, (b) layered and (c) ‘surface’ composites.
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Fine primary carbides lead to 

higher strength and lower wear-
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Coarse primary carbides are brittle
and result in the higher wear-
resistance but lower strength 

Double dispersion structure 
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Figure 2.4 Schematic diagram of the ‘double dispersion microstructures’ of tool steels
(developed by Berns et al., 1998).

2.4.6 Inclusion networks

Raj and Thompson (Raj and Thompson, 1994) demonstrated that fracture toughness of
metal matrix composites can be increased if precipitates are not distributed randomly, but
form continuous networks in the composites. Tan and Yang (Tan and Yang, 1998) have
shown that dispersed Si nanoparticles distributed along the grain boundaries in nanocom-
posite alumina ceramics ensure higher toughness of the ceramics by the mechanism of
switching from intergranular to transgranular cracking. Broeckmann (Broeckmann, 1994)
and Gross-Weege et al. (Gross-Weege et al., 1996) studied numerically and experimen-
tally the damage and fracture in ledeburitic chromium steels. They demonstrated that the
fracture toughness of the steels can be increased by using netlike arrangements of primary
carbides instead of band-like microstructures of steels (which leads to the increasing
width of the crack path). Increasing the cell size in the netlike structure of steels leads
to larger crack path deviation and increased fracture toughness. In their computational
experiments, Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2003a, 2004a) demonstrated
numerically that the netlike arrangement of brittle primary carbides ensures the highest
fracture toughness of tool steels among all the considered microstructures (including clus-
tered, random and gradient). Figure 2.5 shows the simulated crack path in an artificial
netlike microstructure of tool steel. It can be seen that the crack path follows the layers
of high density of brittle carbides, and therefore deviates from the mode I crack path.

2.4.7 Interpenetrating phase composites (IPCs)

IPCs, in which each phase forms a completely interconnected contiguous network,
received widespread attention after the publication of the review by Clarke (Clarke,
1992). Examples of IPCs are DIMOX materials (Lanxide Corp.), and C4 materials
(interpenetrating Al/Al2O3 composite) (Clarke, 1992). Wegner and Gibson (Wegner and
Gibson, 2000) demonstrated that the elastic modulus, yield strength and effective thermal
expansion coefficient of IPCs are higher that those of non-IPCs (especially if the phase
properties are very different). Peng et al. (Peng et al., 2001b) observed an increase of
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(a) (b)

Figure 2.5 A designed netlike microstructure of (a) a tool steel and (b) the simulated crack
path in the microstructure. Black areas correspond to the primary carbides and the white
areas correspond to the ‘matrix’ phase. Reprinted from Int. J. Mater. Res., 94(6), Mishnaevsky
Jr, L. ‘Micromechanisms � � � ’, pp. 676–681, Copyright (2003), with permission from Carl
Hanser Verlag GmbH & Co. KG.

the order of 7–8 % in the elastic moduli of interpenetrating Al/Al2O3 composites, as
compared with conventional homogeneous composites. Among the main advantages of
IPCs, one can list isotropic properties (no weak direction), possibility to increase the
composite stiffness by making the stiff phase continuous, as well as possibility of syner-
gistic improvement of different material properties by using different interconnected
phase networks.

2.4.8 Hyperorganized structure control

In 1994, a consortium of several Japanese Universities and industrial firms started a
‘Synergy Ceramics Projects’ (Kanzaki et al., 1999), supported by the Ministry of Trade
and Industry of Japan. In the framework of this project, the idea to create a new family
of ceramic materials, by tailoring material properties using the ‘simultaneous control of
different structural elements, such as shape and size, at plural scale levels’ is realized.
The tailoring of materials properties is carried out in the framework of the concept of
‘Hyperorganized Structure Control’. The structural elements of ceramic materials are
classified by size at the four size levels: atomic, nanoscale (dislocations, grain boundaries),
microscale (dispersoids, pores, grains) and macroscale (layers, films). The idea is to
control microstructures both at the atomic and nanoscale levels, and on the microlevel to
optimize conflicting material properties.
Kanzaki et al. (Kanzaki et al., 1999) presented an example of the required combi-

nation of material properties which can be difficult to achieve by one-level change of
microstructure: strength and toughness. While the strength can be increased by homog-
enizing microstructures, the homogeneous microstructures have low fracture toughness.
However, by varying microstructures of ceramics at several scale levels, the improvement
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+

=
Figure 2.6 An example of the ‘hyperorganized structure control’: combination of the
oriented anisotropic grains with the intragranular dispersion of nanoparticles, leading to both
high strength and high toughness of the composite (after Kanzaki et al., 1999).

of the conflicting properties can be achieved. For instance, the toughness of a composite
can be improved at microlevel by using elongated grains aligned in the same direction.
The strength can be improved by placing dispersed nanoparticles inside grains. Thus, the
simultaneous improvement of both strength and fracture toughness can be achieved by
combination of aligned anisotropic grains with the intragranular dispersion of nanopar-
ticles. For instance, a material with elongated Al2O3 grains and LaAl11O18 platelets in
alumina matrix was developed, which demonstrated both high fracture toughness (6MPa
m1/2) and strength of over 600MPa. The idea of combining the aligned elongated grains
with the intragranular dispersion of nanoparticles in the grains, which ensure both high
strength and high toughness of the composite, is illustrated in Figure 2.6.

2.4.9 Summary

One can conclude that properties of composites may be improved by varying the arrange-
ments and distributions of their microstructural elements. The following microstructures
are shown to have a beneficial effect on the strength and/or fracture resistance of
composites:

• gradation of phase distribution or properties;
• coatings, or clusters of another phase on the surface;
• IPCs, netlike arrangement of inclusions;
• double dispersion microstructures;
• multiscale control of properties, e.g. combination of aligned anisotropic grains and
nano reinforcement in the grains.

2.5 Physical mesomechanics of materials

Strongly nonlinear effects, pattern formation and stability losses at different scale levels
have been observed during the deformation of materials in many experimental studies.
In order to analyze these effects, a series of experimental and theoretical studies of the
material behavior at the mesolevel has been carried out at the Institute of Strength Physics
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and Materials Science of the Russian Academy of Sciences (Tomsk, Russia). Panin
(Panin, 1998) modeled the destruction of materials, as a cooperative hierarchical self-
organization process, which is followed by competitive processes of the accumulation
and dissipation of energy. The main points of the concept of the physical mesomechanics
of materials, formulated by Panin and colleagues, are summarized in Table 2.2.
Several other research groups analyzed the deformation and fracture processes as

synergical, hierarchical processes. Ivanova (Ivanova, 1982) developed a synergetical
model of fatigue fracture of metals. She assumed that fatigue fracture is determined by the
cooperative behavior of two competitive mechanisms of microfracture, i.e. microshear and
microbreakage, each of them depending on critical density of dislocations or disclinations,
respectively. A parameter of the stability of the material microstructure was introduced,
and defined as:

�= �a

�HE
(2.3)

where � is shear modulus, a is critical elastic energy, E the Young modulus of
the material and �H the change in the enthalpy of the material. Depending on

Table 2.2 Main points of the physical mesomechanics of solids.

Concept Main points

Structural levels of
deformation

During the deformation of solids, the interaction between
deformation processes at many structural levels takes place. The
following scale levels can be recognized: microlevel (scale level
of dislocations and their ensembles), macrolevels, and
several mesolevels: mesolevel I (related to rotations inside
microstructural elements of the material, grains or dislocational
cells), and mesolevel II (related to self-consistent rotations of
blocks of microstructural elements)

Elementary process The elementary process of plastic deformation is a
translational–rotational vortex

Role of rotational
mode

The translational and rotational modes of deformation are
interrelated: a local shear in an element of a microstructure is
followed by the rotation (at higher and/or lower scale level).
The shears generate elastic and elastoplastic self-oscillations

Mechanisms of
plastic flow

Plastic deformation and fracture in materials are caused by loss
of shear stability in regions of high stress concentration at
different scales. These processes are of a relaxational nature.
Relaxation shear with constrained rotation leads to the
formation of local torsion-bending zones, which represent
secondary stress concentrators in materials, and cause
further relaxation shears with self-excited oscillations. The
shears, formed as a result of the local shear stability loss, can
be observed at several scale levels: as the formation of
macrobands at macroscale, localized deformation bands within
conglomerates of microstructural elements at mesolevel or as
nucleation of the dislocation core at the microlevel

Self-organization The interaction between relaxation shears at many scale levels
lead to self-organization effects, and to the formation of
dissipative structures and patterns of plastic deformation
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the value of this parameter, local instabilities of the material were investigated. It was
shown that the condition of the rotational local instabilities, corresponding to the local
fracture is:

�≤
( �

�

)2

where � and 	 are critical shear and tensile stresses, respectively. The condition of the
translational local instabilities can be written as:

�/E ≥ �

�

Bershadsky (Bershadsky, 1978) formulated the ‘principle of inertia of structure’, which
means that a structure of material is changed under loading in such a way that these
changes (e.g. damage degree) are minimal. He developed further a mathematical model
of the material failure as a two-level hierarchical system, which ensures the minimum of
changes of the material structure.
Summarizing, one may state that the physical mechanisms of deformation and strength

of materials are controlled by nonlinear, self-organizing processes, which are influenced
by the interaction of different scale levels and many microstructural elements in the
materials.

2.6 Topological and statistical description of microstructures of

composites

The influence of microstructures of materials on their strength and deformation behavior
goes far beyond the ‘rule-of-mixture’ and load redistribution effects. The spatial hetero-
geneity and localization of the elements of microstructures play important roles in the
deformation and damage of materials (Mishnaevsky Jr and Shioya, 2001). The spatial
arrangement of phases in composites can be characterized with the use of different
topological and statistical parameters and functions.
In the case of percolating (interpenetrating) microstructures of materials (for instance,

hard alloys with a carbide skeleton), the connectivity and contiguity parameters of
microstructure influence the strength of the composite. The connectivity of skeleton from
particles is defined as an average number of particles which are joined with some given
particle.
To characterize the microstructures of cemented carbides, Gurland (Gurland, 1958)

introduced the contiguity parameter, which is defined as an averaged ratio of the grain–
grain boundary surface to the total surface of a particle:

C
 =
2S



2S

+S
�
(2.4)

where C
 is the contiguity of phase � S

 is the surface area between the grains of the
� phase per unit volume, and S�� is the surface area between the � and � phases. Lee
and Gurland (Lee and Gurland, 1978) characterized the microstructure of interconnected
composites by the volume fraction of the continugous phase.
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Fan et al. (Fan et al., 1992) extended this approach and introduced several other
parameters, characterizing the microstructures of interconnected composites. In particular,
they introduced the degree of separation of phases Fs, defined as:

Fs = 1−f
c−f�c (2.5)

where f
c and f�c are the continuous volume fractions of the � and � phases �f
c =
C
f
 f�c = C�f�� and f
 and f� are the volume contents of the phases. To characterize
the interpenetrating microstructures, Lessle et al. (Lessle et al., 1998) introduced the
‘matricity’ parameter, defined as ‘the fraction of the skeleton lines of one phase S, and
the length of the skeleton lines of the participating phases’.
Ghosh and co-workers (Ghosh et al., 1995; Moorthy and Ghosh, 1998; Lee et al., 1999;

Li et al., 1999) used Dirichlet tessellation of real microstructures of materials to develop
microstructural finite element models of the materials. Boselli et al. (Boselli et al., 1999)
proposed the finite-body tessellation method, which represents a generalization of the
concept of a Dirichlet–Voronoi tessellation for the case of high volume fractions of
particles of various sizes and shapes. The finite-body tessellation method includes the
representation of a material as a network of cells, such that every point within a cell is
closer to the interface of the corresponding particle than to any other. Using this method,
Boselli and colleagues investigated numerically the influences of the particle morphology,
homogeneity and inhomogeneity on the fatigue behavior of composites. They found that
‘the coefficient of variation of the mean near-neighbor distance, derived from particle
interfaces using finite-body tessellation, was essentially independent of particle shape,
size distribution, orientation and area fraction in homogeneous (random) distributions,
but showed great sensitivity to inhomogeneity.’ The coefficient of variation was also
seen to be sensitive to anisotropic clustering, the presence of which was identified via
nearest-neighbor angles and cell orientations.
A number of statistical functions and parameters have been proposed to characterize

composite microstructures. In many works, the radial distribution function (RDF) is used
to characterize microstructures of materials. This function g�r� is defined as:

g�r�= n�r�

4��r2�r
(2.6)

where n�r� is the mean number of particles in a shell of width �r at distance r from
the center of a given particle and � is the mean particle density. Figure 2.7 shows an
example of determination of this function. In the case depicted, n�r�= 7.
Segurado et al. (Segurado et al., 2003) used the analysis of radial distribution func-

tions of sphere (particles) centers to characterize different clustered microstructures of
composites, and to generate particle dispersions with different levels of clustering. Gácsi
et al. (Gácsi et al., 2002) quantified the degree of particle clustering in real microstruc-
tures of aluminum-based SiC particle reinforced composites, using RDFs as well. Gácsi
and colleagues characterized the microstructures also using average cluster radii, the
mean distance from places with lowest particle probability to the cluster centers and the
mean intercluster distance regarding the clustered arrangement.
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r

r +   r

Figure 2.7 Determination of the RDF.

Further, the nearest-neighbor distribution (NND) function is widely used to characterize
microstructures of materials. This function is determined as the probability of finding
the nearest neighbor (particle) at some given distance from a given particle. A schematic
determination of the NND is shown in Figure 2.8, where three inclusions form a ‘cluster’
(with equal distances between inclusions), one inclusion is close to the ‘cluster’ and
the last one is far away from the ‘cluster’. The NND function is defined only for
nonpercolating, nontouching inclusion systems. Apewokin (Apewokin, 2004) applied the
NND and the RDFs to characterize quantitatively the relationship between clustering
and material properties. It was shown that the RDF takes into account the long range
microstructural heterogeneities in the composites.
Several comprehensive reviews of the statistical methods of characterization of inhomo-

geneous microstructures of composites have been published by Torquato (Torquato, 2000,
2002a,b). Some of the methods, discussed in the review by Torquato (Torquato, 2002b)
are summarized in Table 2.3. Torquato formulated the Unified Theoretical Approach,
based on the canonical n-point correlation function, which allows to generalize and to
relate different statistical correlation functions.

L1 L3 
L

Prob{L}

L2

0.50

0.33

0.16

L2

L1

L1

L3

L2

Figure 2.8 Schematic diagram of the determination of the NND function.



32 References

Table 2.3 Statistical characterization of inhomogeneous microstructures of composites
(Torquato, 2002b).

Concept Main points

n-point phase
probability functions

The function is defined as the probability that n points at given
positions x1� x2� � � � � xn can be found in the same phase i

Surface correlation
function

Surface correlation function is defined in the simplest case as
the specific surface s�x� (interface area per unit volume) at
point x

Lineal path function
L�z�

For statistically isotropic media, this function gives the
probability that a line segment of length z lies wholly in phase
j , when randomly thrown into the sample. According to
Torquato, this function ‘contains a coarse level of
connectedness information about phase’

Pore size probability
density function P���

Pore size probability density function is defined as the
probability that ‘a randomly chosen point is located at a
distance between � and �+�� from the nearest point on the
pore–solid interface’

Two-point cluster
function

Two-point cluster function C�x1� x2� is the probability of finding
two points x1 and x2 in the same cluster of phase i. A cluster of
phase i is defined as the part of phase i that can be reached
from a point in phase i without passing through phase j . In
contrast to the two-point probability function, this function
contains topological ‘connectedness’ information
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3

Damage and failure of materials:
concepts and methods of modeling

In this chapter, a brief overview of the main concepts of fracture and damage mechanics,
as well as the statistical theory of strength is given.
Consider some volume of an elastic material subject to a mechanical load. For a two-

dimensional problem, the stress and strain fields are described by the following set of
equations (plus the corresponding kinematic and static boundary conditions):

• kinematic equations �ij = 1
2

(

�ui
�xj

+ �uj

�xi

)

• constitutive equations �ij =
∑

k�l

Dijkl�kl

• equilibrium equations
∑

j

��ij

�xj
= Fi

where u is displacement, � is strain, � are the stress tensor components, F are body forces,
D are elastic material constants and xi� xj� xk are coordinates. In more complex cases
of plastic, viscoplastic and other nonlinear material behavior and/or dynamic loadings,
nonlinear, time-dependent versions of these equations are used to describe the material
deformation.

3.1 Fracture mechanics: basic concepts

Fracture mechanics is the basic approach used to describe failure behavior of materials
under loading. The subject of fracture mechanics is the analysis of conditions of the
formation, growth and stability of cracks in solids. Fracture mechanics includes a number
of concepts and approaches which were developed to analyze different aspects and
features of the material destruction, such as the Griffith energy theory of failure, analysis
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38 Fracture mechanics: basic concepts

of stress distribution near cracks and crack interaction, and the Dugdale model of the
plasticity effects in materials failure. If only cracks in a linearly elastic isotropic material
are considered, the term ‘linear elastic fracture mechanics’ (LEFM) is used.

3.1.1 Griffith theory of brittle fracture

The energy criterion of crack propagation has been derived by Alan Arnold Griffith
(Griffith, 1920) for the case of an ideal brittle material. If a crack of length 2l is introduced
into an infinite plate under tensile loading (Figure 3.1), the elastic stresses relax around
the crack and reduce the elastic potential energy �. To increase the crack length l by a
value dl, some work should be applied which is proportional to dl. According to Griffith,
this work is caused by the surface formation energy. The crack grows if the potential
energy �, which is released when the crack front moves by dl, is equal or greater than
the fracture work:

−�< 	dl (3.1)

where 	 is the specific work of fracture (per unit new surface).
From the energy analysis, one can derive:

d�

dl
=−2B
�2l

E
(3.2)

where B is the thickness, E is the Young modulus of the material and � is stress.
Substituting this formula into the condition for crack growth, one derives the Griffith

formula for the critical stress:

�c =
(

2�E


l

)1/2

(3.3)

Later, it was shown (Irwin, 1958) that the main part of the work of fracture is spent
on plastic deformation and other irreversible effects, and not on the formation of new

2l

σ

σ

Figure 3.1 A crack in an infinite plate under tensile loading.
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surfaces (different from the initial assumptions made by Griffith). For a ductile material,
the plastic work of deformation 	p is introduced into Equation (3.3):

�c =
[

�2�+�pE


l

]1/2

(3.4)

3.1.2 Stress field in the vicinity of a crack (Figure 3.2)

Since the destruction of a material is a local process, it is influenced first of all by the stress
distribution in the vicinity of the crack tips. Westergaard (Westergaard, 1939) derived
formulae for the stress distribution in the vicinity of a sharp crack in an elastic plate:

�ij�x� y=
K

�2
r1/2
fij�x� y (3.5)

where x, y are coordinates, i, j can be x,y, z, f(x,y) is a function of the coordinates, which
can be found elsewhere and K is the stress intensity factor, which for the Griffith problem
is determined as KI = ��
l1/2. (The subscript I here means that the tensile normal crack
is considered.)

3.1.3 Stress intensity factor and energy release rate

According to Irwin (Irwin, 1957), a crack starts to grow if the stress intensity factor

reaches or exceeds some critical level KIc:

KI = KIc (3.6)

Equations (3.3) and (3.6) are equivalent, if:

KIc =
(

�E

1−�2

)1/2

(3.7)

Equation (3.7) establishes the link between the energy approach by Griffith and the stress
analysis by Irwin.

y

X

τxy

σxx

Figure 3.2 Stress distribution near a crack.
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Taking into account the three main crack opening modes, the energy release rate (for
the plain strain case) can be calculated by:

G= 1−�2

E
�K2

I +K2
II+

1+�

E
K2

III (3.8)

where KI�II�III are the stress intensity factors for the three crack opening modes,
respectively, G is the energy of the system, which is released when a crack grows by a
unit surface (Yokobori, 1978).
In the general case, the stress intensity factor is determined by:

K = Y��
l1/2 (3.9)

where Y is a dimensionless function, depending on the loading conditions, shape of the
specimen and material properties.

3.1.4 J-integral and other models of plastic effects

The linear elastic fracture mechanics can be generalized to the case of nonlinear elastic,
elastoplastic and plastic materials with the use of the method of invariant integrals. The
J-integral, which represents a generalization of G for an elastoplastic case, is calculated
as the energy absorbed per unit area as the crack grows:

J =
∫

C

�Wdy−�jknk

duj
dx

ds (3.10)

where C is some contour around the crack tip, nk is the normal vector to the contour,
uj are displacements and W is the strain energy density within the contour. The most
important property of the J -integral is that it is invariant with respect to the shape of the
contour C (as long as it contains the same singularity).
An approach to the analysis of the plastic effects of fracture was suggested by Irwin

(Irwin, 1958, 1960) and Dugdale (Dugdale, 1960). A small plastic zone is introduced near
the crack tip, where all the plastic effects are localized. Outside this zone, the material
is supposed to be linear-elastic. The stress �y�x�0 inside some zone of size � near the
crack tip is constant and equal to the yield stress ��0. The size of the plastic zone,
according to the Irwin model, is given by:

r = 1

2


(

KI

�t

)2

(3.11)

where �t is the yield stress of the material.
Still another parameter of the fracture resistance of elastoplastic materials is the crack

tip opening displacement (CTOD). A crack begins to grow when the CTOD � reaches
some critical value �c: �= �c. For the case of a round crack, the crack opening displace-
ment can be determined on the basis of the Dugdale model by the formula:

�= 8�l


E
ln sec

(


�

2�0

)

(3.12)
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Cohesive zone

δn

σ

Γ

σ̂

λ

λ2λ1

Figure 3.3 Cohesive zone model. Traction–separation law is embedded into the model as
the boundary condition along the interface. Here �n is the normal component of the relative
displacement of the crack face across the interface, � is stress and � is energy.

If � << �0, this formula can be reduced to the Griffith equation by assuming 	 = �0�c.
The idea of Dugdale to consider the area ahead of crack tips as a cohesive zone

with nonzero tractions was further used by Needleman (Needleman, 1987), Tvergaard
(Tvergaard, 1990) and Tvergaard and Hutchinson (Tvergaard and Hutchinson, 1992,
1994, 1996) in their cohesive zone models (CZMs). In the framework of a CZM, the
constitutive behavior of the cohesive zone is described by a so-called traction–separation
law. A traction–separation law is embedded into the model as the boundary condition
along the expected fracture path. Figure 3.3 shows schematically the CZM and the simple,
widely used traction–separation law. The relation is such that with increasing crack
opening, the traction reaches a maximum, then decreases and eventually vanishes so that
complete decohesion occurs. In the model, developed by Tvergaard and Hutchinson, this
law is described by:

���n� �t= �cn

�
∫

0

���′d�′
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(3.13)

where � is the potential from which the tractions �Tn� Tt are derived, � is the nondi-
mensional separation measure, �n� �t are normal and tangential components of relative
displacements of crack faces across the interface and �cn, �

c
t are critical values of the

components. The CZMs are widely used in the numerical analysis of fracture.
The concepts and methods of fracture mechanics represent the basis of any analysis of

the strength of materials, including the analysis of the microstructure–strength relation-
ships of materials.

3.2 Statistical theories of strength

Mechanical properties of materials, their fracture resistance and strength feature a high
degree of variability. The variability of material properties at the microlevel influences the
macroscopic properties of materials to a large degree. A number of statistical and prob-
abilistic models of material destruction, which relate the statistical variation of material
properties at the microlevel with the material characteristics at macrolevel (e.g. likelihood
of failure, stiffness or strength), have been developed.

3.2.1 Worst flaw and weakest link theories

The most famous paper on the statistical theory of strength was published by Waloddi
Weibull in 1939 (Weibull, 1939). Weibull sought to explain the statistical variability of
failure strengths of materials. He considered a material as consisting of many volume
elements, with given independent (and randomly varied) ‘risks of rupture’. The failure
condition is that one of the cracks in a specimen reaches the critical (Griffith’s) size
(worst flaw theory). The strength of a specimen is calculated as the stress at which the
biggest crack in the material propagates. Assuming a probability distribution law of the
volume element strengths (using the probability law, which is now called the Weibull
distribution), Weibull calculated the strength as a function of the volume of the specimen.
The ‘probability of rupture’ for a given volume V is calculated by:

PF = 1− exp

[

−V
(

�

�o

)m]

(3.14)

where � is stress and �0 and m are constants of the material. It was shown that ‘ultimate
stress and the standard deviation increase as the volume V increases’. Figure 3.4 shows
schematically the ‘worst flaw concept’, which also illustrates the limitations of this
concept: the effect of other, ‘nonworst’ flaws is neglected in this model.
The weakest link concept has been further analyzed by Freudenthal (Freudenthal,

1968). The weakest link concept means that the fracture of a specimen is determined by
the local strength of its weakest element. If the strength of elements is determined by the
single flaws available in the elements, the weakest link concept is reduced to the worst
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=

Figure 3.4 Worst flaw theory. A specimen fails if the biggest crack reaches a critical size.

flaw concept. Using the simple probabilistic reasoning, Freudenthal derived the following
formula for the probability of fracture of a given volume V of material:

PF�V = 1− exp�−cV (3.15)

where c is the mean density of defects. The formula was derived for the case when the
volume fails if only one (critical) defect is available there.
If the volume fails when n (and not just 1) defects are there, Equation (3.15) takes

the form:

PF�V = 1− ��n+1−��cV�n+1

��n+1
(3.16)

where n = n0�s/� is the amount of inhomogeneities (defects) in a unit volume, � is
stress, n0� �s are material parameters, �� is the gamma function, c = 1/v0� v0 is the
average volume per heterogeneity in the material and V is volume. Introducing the
Cauchy probability distribution for the defect sizes, Freudenthal derived the following
formula for the failure probability:

PF = 1− exp

[

−
(

�

�c

)2�
]

(3.17)

where � is a parameter of the Cauchy probability distribution for the defect sizes and �c

is critical stress. Further, Freudenthal considered the weakest link concept on the basis
of the asymptotic theory of extreme values, and derived the Weibull-type probability
strength distributions using the statistics of extremes.
In order to generalize the statistical theories of strength to the case of multiaxial loading,

the normal stress averaging method (based on the integration of the stresses normal to
the tangential areas of a spherical unit surface), and principle of independent actions as
well as some fracture mechanics based approaches have been used. In the framework
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of the principle of independent actions, the total failure probability is determined as a
function of all tensile principal stresses ��1� �2� �3:

PF = 1− exp

{

−
∫

V

[

(

�1

�01

)m1

+
(

�2

�02

)m2

+
(

�3

�03

)m3
]

dV

}

(3.18)

where �01� �02� �03� m1� m2 and m3 are Weibull parameters (Tripp et al., 1989). The
principle of independent action is the statistical formulation of the maximum stress failure
criterion.
Both the normal stress averaging method and the principle of independent action

neglect the shear stresses in the material.
Batdorf and Crose (Batdorf and Crose, 1974) developed a statistical theory of failure

on the basis of the weakest link statistics and the linear elastic fracture mechanics.
Assuming that the failure occurs if a crack is subject to some critical stress (depending
on its orientation), they calculated the probability of failure Pi due to the ith crack in
the critical stress range (between �c and �c+��c) as the product of the probabilities P1

and P2:

Pi = P1P2 (3.19)

where P1 is the probability that a crack having a critical stress in a given range exists in
the volume element and P2 is the probability that the normal to the crack plane lies in
some range.
The failure probability of a volume with many cracks was calculated as:

PF = exp

(

−
∑

i

Pi

)

= exp

(

−
∫

dV
∫ dN

d�c

�

4

d�c

)

(3.20)

where N is the number of cracks, �c is the critical stress for a given crack, � is the angle
at which the fracture occurs at �c. The theory was generalized by Batdorf and Heinisch
(Batdorf and Heinisch, 1978) to take into account the shear on the crack planes.
A number of other probabilistic and statistical theories of strength and failure have

been developed on the basis of the weakest link model. Often, this model includes the
critical defect density condition. Chudnovsky (Chudnovsky, 1973) proposed a model of
a body as an ensemble of elements, grouped into layers, which can fail if a critical
amount of elements in the layer fails. In the framework of the statistical theory of
macroscopic failure, he determined the probability of material failure using the formula
of conditional probabilities. Mishnaevsky Jr (Mishnaevsky Jr, 1996b, 1998a) modeled
the formation of cracks as an aggregation of randomly formed microdefects, and used the
percolation threshold as a parameter of the critical defect density, necessary for the crack
formation.

3.2.2 Random processes and stochastic equations

Takeo Yokobori (Yokobori, 1978) applied the theory of random processes to the analysis
of strength and fracture of solids. Considering local failure as a n-step random process
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with n possible states, he derived a system of differential equations for the probabilities
of transition of ith into jth state (e.g. from the material state without a crack, to the
material state with a crack or to the material state after failure). For the model of failure
as a three-state process, the formulae are as follows:

dP1

dt
=−m12P1�t

dP2

dt
=m12P1�t−m23P2�t

dP3

dt
=m23P2�t

∑

i

Pi = 1

(3.21)

where P1�P2�P3 are probabilities that the material is in one of the three states (1 = no
defects, 2= the volume contains a crack, 3= the failed volume after crack propagation),
respectively, mij is the probability of a transition from ith into jth state. In order to
illustrate the transition of the system from one state to another, Yokobori used the
Shannon diagrams. Figure 3.5 shows failure as a three-state random process.
For cyclic loading, the differentiation on t is substituted by the differentiation by the

number of cycles. That leads to the following (simplified) formula for the lifetime N of
a material under cyclic loading:

N = 1/m12+1/m23� (3.22)

Determining the values mij on the basis of the physical analysis of failure mechanisms,
Yokobori derived formulae for the crack growth rate under cyclic loading, failure prob-
ability, and analyzed the effects of creep and statistical variations of the crack sizes on
the material fracture.
Xing (Xing, 1996) developed nonequilibrium statistical fracture mechanics, based on

the methods of the stochastic theory. The microcrack evolution is described with the
use of the generalized Langevin equation. Taking into account the micromechanisms
of microfracture, Xing determined the probability function of microcrack distribution
and the probability of fracture. Mishnaevsky Jr and Schmauder (Mishnaevsky Jr and
Schmauder, 1997b) employed the stochastic differential equations and Fokker–Planck
equation to analyze the damage localization in materials under mechanical loading. They
observed the increasing damage localization as the microcrack density in the material
increased.
Bogdanoff and Kozin (Bogdanoff and Kozin, 1985) analyzed the cumulative damage

in materials under cyclic loading, using the Markov chain model, and obtained the
cumulative distribution functions of the time to failure and crack sizes. A Markov process
model of R-curve behavior was suggested by Xi and Bazant (Xi and Bazant, 1997).

321

1st state: no defects
      in the material

2nd state: a
       microcrack has
      been formed

3rd state: failure 

m12 m23

Figure 3.5 Failure as a three-state random process.
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Dolinski (Dolinski, 1998) modeled the fatigue crack growth in metals as a Markov
stochastic process. Taking into account the crack growth retardation (reduction of crack
growth rate after an overload), he determined the probability distribution of fatigue life-
times. Mishnaevsky Jr and Schmauder (Mishnaevsky Jr and Schmauder, 1997a) suggested
to consider the local failure event as a fuzzy, smooth transition from the nondamaged,
intact material to the failed state of a material, and employed the fuzzy set theory to
analyze the effect of the material heterogeneity on the degree of failure (fuzzy damage
parameter) of the heterogeneous material. In their simulations, they observed that the
material becomes more heterogeneous due to the localized damage growth, as the damage
evolution goes on.

3.2.3 Fiber bundle models and chains of fiber bundles

Many feature of the interrelationships between microfailure and macrostrengths of disor-
dered materials and the load redistribution after the local failure in composites, in partic-
ular, fiber reinforced composites, can be investigated with the use of fiber bundle models.
This model was developed initially by Daniels (Daniels, 1945), and then expanded,
modified and generalized by other authors.
Daniels considered a bundle of N fibers with identical elastic properties under uniform

tensile stress (Figure 3.6). When a fiber breaks, the load from the broken fiber is
distributed equally over all the remaining fibers (global load sharing). The tensile
response of the fiber bundle is given by:

� = �1−PF�E (3.23)

where E is Young modulus of the fibers, � is applied strain and PF is probability of fiber
failure. The strength of fibers is a random value, which is described most often by the
Weibull probability distribution:

PF = 1− exp

[

− L

L0

(

�f

�0

)m]

(3.24)

(a) (b)

Figure 3.6 Fiber bundle model (a) without and (b) with a failed fiber.
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where L is fiber length, m is the Weibull modulus, L0 and �0 are parameters and �f

is stress on a fiber. Differentiating the formula �d�/d� = 0, one may determine the
maximum stress on the bundle (at which the decreasing branch of the force–displacement
curve begins) (Calard, 1998; Zok, 2000):

�max = �0�meL/L0
−1/m (3.25)

Gücer and Gurland (Gücer and Gurland, 1962) developed a model for ‘dispersed fracture’
as a chain of elements, each of them considered as a fiber bundle. The strength of the
bundles was analyzed using Daniels’ theory, while the failure of the chain was studied
using the weakest link theory. The probability of failure of a chain of n bundles in the
stress interval from � to �+�� is calculated as the probability of failure of a bundle
multiplied by the probability of nonfailure of the remaining �n−1 bundles:

PF = nf ���1−F���n−1 (3.26)

where f�� is the probability distribution of the bundle breaking strength and F�� =
∫ �

0 f��d� is the associated cumulative function. The theoretical predictions of strength
of composites, made with this theory, are generally higher than the corresponding exper-
imental values. The model of Gücer and Gurland (Gücer and Gurland, 1962) was
developed further by Rosen (Rosen, 1964, 1965), who studied the damage in compos-
ites as a failure of chains of bundles with fibers of limited (critical) length. Zweben
(Zweben, 1968) studied the influence of the stress concentration from a broken fiber on
its closest neighbors, and demonstrated that failure of even a few fibers can lead to the
failure of the whole specimen. Several recently developed versions of the fiber bundle
models, which take into account the nonlinear behavior of fibers and the matrix, interface
effects and real micromechanisms of composite failure, are discussed in more detail in
Chapter 10.
The statistical models of strength allow the scattering and random variations of material

properties at the microlevel and the inhomogeneities of the material microstructure to be
taken into account. Generally, the basic ideas of the statistical theories of strength and
failure (as the two-scale approach, the concepts of defect accumulation at the microscale
and material weakening at the macroscale, etc.) are rather close to the ideas of the
continuum damage theory.
The interrelation between the continuum damage theory and the statistical theories of

strength was analyzed by Krajcinovic and Silva (Krajcinovic and Silva, 1982). Krajci-
novic and Silva derived a damage evolution law for brittle and brittle–ductile materials
on the basis of the probabilistic analysis of the damage growth as a failure of bars in a
system of parallel bars under loading. Krajcinovic and Rinaldi (Krajcinovic and Rinaldi,
2005) studied the damage process in quasi-brittle materials using the methods of statistical
mechanics and lattice models. On the basis of the scaling procedures, they derived a set
of analytical relations which relate micro- and macro-scale damage processes. Continuum
damage mechanics can be applied to relate micro- and macroproperties of materials, as
well as locally, to describe local damage growth. Various concepts and methods of the
damage mechanics are discussed in the next section.



48 Damage mechanics

3.3 Damage mechanics

The most traditional approach to the modeling of failure processes – linear and nonlinear
fracture mechanics – was developed initially for the macroscopic analysis of failure of
parts and specimens. In order to take into account the complex microgeometries of the
materials, the analysis of local failure (damage) processes is necessary. This is done in
the framework of damage mechanics.
According to Becker and Gross (Becker and Gross, 1987), there are two main directions

in continuum damage mechanics: ‘phenomenological damage models, usually embedded
in a rational thermodynamical framework, containing free parameters’ (which have to be
determined); and a ‘micromechanically oriented way’. The first direction is presented in
works by Lemaitre (Lemaitre, 1992), Lemaitre and Chaboche (Lemaitre and Chaboche,
1985) and Krajcinovic (Krajcinovic, 1996); the second is done by Kachanov (Kachanov,
1980, 1987a,b).
Krajcinovic and Silva (Krajcinovic and Silva, 1982) proposed the following classifi-

cation for damage models:

(1) “purely phenomenological models featuring a-priori legislated damage law” (Davison
and Stevens, 1973; Lemaitre, 1992);

(2) “theories based on the generalization of the materials science models” (Leckie and
Hayhurst, 1974);

(3) “models based on the statistical approach”.

The damage models can be further classified according to the damage mechanisms and
materials, which they are applicable to. Failure processes in composite materials are
controlled by two main mechanisms: brittle fracture (low energy consuming) and ductile
fracture (high energy consuming). While the brittle mechanism of fracture can be well
described in the framework of fracture mechanics and/or probabilistic approaches, ductile
fracture is apparently a more complex nonlinear process, which includes several stages
(e.g. void nucleation, void growth and coalescence) and is influenced by plastic flow,
interaction between dislocations and obstacles, hardening behavior of the material and
other material-dependent factors.
Let us look at some models of damage initiation and evolution in materials.

3.3.1 Models of elastic solids with many cracks

While the formation of a single macro- or microcrack in an elastic brittle material is
adequately described by the methods of fracture mechanics, an analysis of the effect of
the distribution of microcracks and their interaction on effective elastic properties and
fracture resistance of microcracked solids requires much more sophisticated approaches.
The methods which enable this problem to be simplified and to solve it for some cases
have been developed by M. Kachanov (Kachanov, 1980, 1987a,b), Horii and Nemat-
Nasser (Horii and Nemat-Nasser, 1986), Kemeny and Tang (Kemeny and Tang, 1990)
and Hornby et al. (Hornby et al, 1996).

Mark Kachanov (Kachanov, 1987a,b; Kachanov et al., 1990) developed a method of
stress analysis in elastic solids with many cracks, based on the superposition technique
and the application of the self-consistency method applied to the average tractions on
the individual cracks. Using this method, it is possible to derive approximate analytical
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solutions for stress intensity factors, and to construct full stress field in solids with many
cracks.
Dong and Denda (Dong and Denda, 1996; Denda and Dong, 1997) developed a model

and a boundary element code for the growth analysis of multiple cracks in isotropic
elastic solids, and analyzed the critical failure conditions of microcracked solids. In their
model, the crack opening displacement of each crack is represented by the distribution
of dislocation dipoles along the crack line.
A detailed review of damage models, which considers the relations between damage

and microcrack arrays and the effective properties of elastic-brittle materials, is given by
Kachanov (Kachanov, 1987a).

3.3.2 Phenomenological analysis of damage evolution (continuum damage

mechanics)

The phenomenological approach to the modeling damage originates from the works
by L. Kachanov (Kachanov, 1968) and Rabotnov (Rabotnov, 1966). Lazar Kachanov
(Kachanov, 1968) introduced the concept of the damage parameter, which is defined as
the ratio of the effective area of the intersections of all microcracks/cavities in a section
of a representative volume element (RVE) with a given plane to the area of the section
of the RVE:

R= SD
S
� (3.27)

where SD is the effective area of the intersections of all microcracks/cavities in a section
of a RVE with a given plane and S is the area of the section of a RVE (Figure 3.7). The
initiation and accumulation of microcracks (damage) is described in the framework of
this concept by the damage evolution law, which presents (in a general case) a relation
between the damage parameter growth rate and loading conditions, accumulated damage

S
S – SD

Figure 3.7 Damage parameter and effective stress concept: reduction of the effective area
of a section due to microcrack formation.
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and properties of the material. The phenomenological damage evolution law, suggested
by L. Kachanov, is as follows:

�̇R =−AK

(

�

�R

)bk

(3.28)

where AK and bK are constants of the material and �R = 1−R, where R is the damage
parameter as defined above.
The interaction between microcracks or voids can be taken into account by using

the ‘effective stress concept’ (Rabotnov, 1966) and the ‘strain equivalence principle’
(Lemaitre, 1992). The ‘effective stress’ was defined by Rabotnov, as the ‘stress related to
the surface which effectively resists the load’ (i.e. S-SD in the above) (Lemaitre, 1992).
Using the above definition of the damage variable, the effective stress is determined (for
uniaxial tensile loading) as follows:

�eff =
�

1−R
(3.29)

The ‘strain equivalence principle’ means that ‘any strain constitutive equation for a
damaged material may be derived in the same way as for a virgin material except that the
usual stress is replaced by the effective stress’ (Lemaitre, 1992). The works by Lemaitre,
Chaboche and Krajcinovic, as well as many others, are based on the phenomenological
approach as well as on some kind of the effective stress concept.

3.3.3 Micromechanical models of void growth in ductile materials

Several micromechanical models of damage evolution in ductile materials are based on
the continuum mechanical analysis of the expansion of voids in ductile materials under
mechanical loading.
McClintock (McClintock, 1968) considered a plastic material, containing a regular

array of 3D cylindrical voids with elliptical sections. Assuming that fracture takes place,
if the neighboring voids touch, McClintock derived a criterion for the ductile fracture of
the voided material, and demonstrated that ‘the relative void expansion per unit applied
strain increment increases exponentially with the transverse stress’ (Rice and Tracey,
1969). The damage rate as a function of stresses was given in the form:

dR

d�eq
∼

√
3

2�1−n
sinh

[√
3�1−n

2

�a+�b
�eq

]

+ 3

4

�a−�b
�eq

(3.30)

where dR is the damage increment, a, b are two semiaxes of the cylindrical voids, �eq
is the equivalent strain, n is the hardening exponent and �a��b are two of the principal
stresses.
Rice and Tracey (Rice and Tracey, 1969) studied the effect of the triaxiality of the

stress state on the growth of a spherical void in a plastic material in a general remote
stress field. On the basis of the analysis of the spherically symmetric void expansion
field, Rice and Tracey derived an exponential relationship between the stress triaxiality
parameter and the average radial velocity of the surface of the growing void:
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ṙ ∼ exp

(

3

2

�m

�eq

)

(3.31)

where �m is the the mean stress and �eq is von Mises equivalent stress, the ratio �m/�eq

is referred to as the stress triaxiality parameter, r is the void radius. The spherical void in
a remote simple tension strain rate field, considered by Rice and Tracey, is presented in
Figure 3.8. Assuming that the failure strain is inversely proportional to the void growth
rate, Hancock and Mackenzie (Hancock and Mackenzie, 1976) determined the failure
strain of a material as follows:

�= � exp

(

−3

2

�m

�eq

)

(3.32)

where � is a material constant. The following damage criterion (or damage indicator)
(Fischer et al., 1995) has been derived on the basis of this model:

R=
�pl�c
∫

0

exp�3/2�d�pl (3.33)

where �pl is the effective plastic strain, �pl�c is the critical plastic strain and  is stress
triaxiality � = �m/�eq.
This criterion was tested and verified experimentally for the Al matrix of Al/SiC

composites by Wulf (Wulf, 1985) and Wulf et al. (Wulf et al., 1993), and will be used
in the simulations presented in the following chapters.

3.3.4 Thermodynamic damage models

In many works, the constitutive behavior of damaged (voided) materials is analyzed with
the use of thermodynamic potentials of the materials.
Gurson (Gurson, 1977) determined the yield surface for a material with voids using

the maximum plastic work principle. Materials with long cylindrical or spherical voids
were considered. The yield function for the material with spherical voids was determined
as a function of stresses and the volume of voids in the form:

� = �
�eq

�y

2+2f cosh�
3�m

2�y

−1−f 2 = 0 (3.34)

ε / 2

ε / 2

ε

Figure 3.8 Spherical void in a remote simple tension strain rate field (considered by Rice
and Tracey, 1969).
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where �y is yield stress, f is the void volume fraction, �eq is equivalent stress and �m is
mean stress. The growth of the void volume fraction is given by:

ḟ = ḟg+ ḟn� (3.35)

where ḟg is the rate of growth of available voids and ḟn is the void nucleation rate.
An improved version of the Gurson model for materials with strengthening was

suggested by Tvergaard (Tvergaard, 1981). In this model, two adjustable coefficients
�q1� q2 were introduced into the yield function:

� =
(

�eq

�y

)2

+2q1f cosh

(

3q2�m

2�y

)

− �1+ �q1f
2= 0 (3.36)

Introducing these coefficients makes it possible to bring predictions closer to the results
of the numerical analyses at small void volume fractions.
In order to describe the void coalescence, Needleman and Tvergaard (Needleman and

Tvergaard, 1984) introduced in this model a function, which takes into account the loss
of material stiffness due to the void coalescence:

f ∗�f=
{

f if f ≤ fc

fc− 1/q1−fc
ff−fc

�f −fc� if f > fc
(3.37)

where fc is the critical value of f� ff is the value of f at the final fracture stage. The
Gurson–Tvergaard–Needleman (GTN) model is the most widely used model of ductile
failure.
Rousselier (Rousselier, 1987) described the mechanical behavior of voided materials,

using thermodynamic and plastic potentials, and derived a yield function as follows:

� =
�eq

1−f
+ c1f exp �c2�m/�1−f�−�y = 0 (3.38)

where c1� c2 are constants. Kussmaul and colleagues (Kussmaul et al., 1993) applied the
Rousselier damage model to the analysis of the destruction of reactor pressure vessel
steels, and demonstrated that this model leads to the correct predictions of both the failure
loads and crack growth in fracture specimens.
Lemaitre (Lemaitre, 1992) developed the ‘state kinetic coupling theory’, which

describes the mechanical behavior of damaged materials, using two potentials: state
potential (a function of state variables) and the potential of dissipation (which accounts
for the ‘kinetic laws of evolution of the flux dissipative variables’). On the basis of
this approach, he derived an energy damage criterion and a constitutive equation for the
damage. The damage evolution law, derived by Lemaitre, is as follows:

Ṙ=−�dFd/dY �1−R
√

�2/3�̇p�i�j �̇p�i�j (3.39)

where R is the damage parameter, Fd is the potential of dissipation, which includes
a damage term and Y is the associated variable for a damage parameter, ṗ =
√

�2/3�̇p�i�j �̇p�ij – accumulated plastic strain rate.



Damage and Failure of Materials 53

For the case of plastic damage, this law takes the form:

Ṙ=
�2
eqHRv

2Ec�1−R2

√

�2/3�̇p�i�j �̇p�i�j (3.40)

where E is the young modulus of the material, c is the ‘energy strength of damage’
(material constant), H = 1 if the accumulated plastic strain reaches the damage threshold
and H= 0 otherwise, ! is Poisson’s ratio, Rv is the triaxiality function �Rv = 2�1+!/3+
3�1−2!��m/�eq

2�.
Fonseka and Krajcinovic (Fonseka and Krajcinovic, 1981) developed a damage model

for brittle materials, in which the damage surface is supposed to be a hyperbola in
the strain space. They derived incremental stress–strain law for a damaged material by
differentiating the Helmholtz free energy for small deformation. The coefficients of linear
relationships between components of the damage tensor and strain tensor were obtained
for different conditions of loading.
Many of the thermodynamical damage models have been implemented in finite element

(FE) and other codes, and are widely used in micromechanical simulations.
More detailed reviews of investigations in the area of continuum damage mechanics

are given in the books by Lemaitre (Lemaitre, 1992), Lemaitre and Chaboche (Lemaitre
and Chaboche, 1985) and Krajcinovic (Krajcinovic, 1996).

3.3.5 Nonlocal and gradient enhanced damage models

Often, damage models are based on local constitutive equations, which do not include
any material length scale. However, neglecting the effect of the material length scale in
the analysis of the material behavior, especially, in the case of strongly heterogeneous
strain fields, may lead to mesh sensitivity in the numerical analysis of the material failure.
In order to overcome this problem, nonlocal damage models were developed by several
authors (Bazant and Pijaudier-Cabot, 1989; Bazant, 1994; Bazant and Jirasek, 1995;
Tvergaard and Needleman, 1995).
In the framework of nonlocal damage models, the damage growth is described not as a

function of the local strain tensor in a point, but rather as a function of the strain averaged
over some representative volume around the point, and the delocalization is related to
the damage mechanisms. Tvergaard and Needleman (Tvergaard and Needleman, 1995)
suggested a nonlocal constitutive formulation of an elasto-viscoplastic version of the
Gurson damage model. The delocalization was incorporated ‘into the constitutive relation
in terms of an integral condition on the rate of increase of the void volume fraction’. The
rate of increase of void volume fraction was determined by:

ḟ �x= 1

W�x

∫

V

ḟlocal�x̂w�x− x̂dV̂ (3.41)

where ḟlocal is the local void growth density in the point x, given by Equation (3.35),

w�z=
[

1+
( z

L

)p]−q
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where L is the material characteristic length,

z=
√
z · z� p= 8 and q = 2 and

W�x=
∫

V

w�x− x̂dV̂�

The material length parameter L can be interpreted in this case as the average void
spacing. Using this approach, Tvergaard and Needleman investigated the localization
of plastic flow in shear bands, and plastic deformation of fiber reinforced metal matrix
composites, and demonstrated that the mesh sensitivity in the analysis of the problems
can be removed by using nonlocal damage models.
Bazant (Bazant, 1994) and Bazant and Jirasek (Bazant and Jirasek, 1995) developed a

nonlocal model of solids with interacting growing microcracks, which takes into account
the amplification and shielding of microcracks, and analyzed the damage localization
in loading of microcracked solids. In this model, the authors replaced M. Kachanov’s
matrix relations for crack interaction by an integral equation.
Fish and Yu (Fish and Yu, 2001) developed a nonlocal damage theory by introducing

the concept of nonlocal phase fields (stress, strain, etc.), defined as weighted averages
over the phases in the characteristic volume.
Another way to take into account the effect of strain gradient and the size effect in the

damage analysis is to include the second and higher gradients of strains and stresses into
the material models. Starting from the nonlocal theory, Peerlings et al. (Peerlings et al.,
1996) developed a gradient enhanced model of damage in quasi-brittle materials. Using
the strain-based continuum damage model proposed by Simo and Ju (Simo and Ju, 1987)
and the stress–strain relation for a damaged material in the form:

� = �1−R4H " � (3.42)

Peerlings and colleagues introduced the nonlocal equivalent strain in a certain point x as
a weighted average of local equivalent strains over surrounding volume V :

�eq�x=
1

V

∫

V

g�#�eq�x+#dV (3.43)

where 4H is the fourth order Hookean stress tensor, �eq is nonlocal equivalent strain,
� and � are linear strain and Cauchy stress tensors, g�$ is the weight function and $
is the relative position vector pointing to the volume dV . Expanding the local equiv-
alent strain into a Taylor series, and neglecting higher order terms, they transformed
Equation (3.43) into:

�eq�x= �eq+ c%2�eq (3.44)

where c is the dimension length squared. Thus, the averaging was replaced by a partial
differential equation for the nonlocal scalar measure of strain, which is considered as an
additional independent variable. By including the second order gradient terms of strain
in the material model, they introduced an internal length, which determines the width of
the localization zone in softening.
The detailed overview of nonlocal and gradient-enhanced models is given in Peerlings

et al. (Peerlings et al., 2001).
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3.4 Numerical modeling of damage and fracture

The numerical simulation of damage and fracture of materials with the use of different
discretization methods, in particular, finite elements, requires some specific solutions in
order to overcome the discrepancies between the quasi-continuum statement of a problem,
its discrete representation and the random, discontinuous nature of crack growth.
In many problems, the failure condition of a specimen, defined by the critical levels

of the stress intensity factors, J -integral or the energy release rate, should be determined.
The stress intensity factor (SIF) can be determined numerically with the use of the
following approaches (Petit et al., 1996; Mirzaei, 2006):

• Point matching: SIF is determined from the stress or displacement fields.
• Energy methods: SIF is calculated from the energy release rate, which is determined
in the framework of FE analyses.

The idea of the point matching approach is to correlate finite element method (FEM)
solutions with the analytical formulae for SIF. SIF is calculated from the nodal point
displacement field in the points close to the crack tip, by plotting SIF against the distance
r from the crack tip, and extrapolating the plot to r = 0 (‘displacement extrapolation’):

KI ∝ lim
r→0

u√
r

(3.45)

Instead of extrapolating the numerical results for the SIF–displacement field relationship,
the results for SIF–stress field can be extrapolated as well (‘stress matching’):

KI ∝ lim
r→0

��
√
2
r (3.46)

The energy release rate can be determined from the rate of change of the total potential
energy with crack growth. Carrying out two FE analyses for the cases of crack lengths a
and a+�a, one calculates the strain energies W for both cases. The energy release rate
is determined as �W1−W2/�a. This method ( finite or global crack extension method)
is rather efficient, since an estimation of the global energy does not require a very fine
mesh (Mirzaei, 2006) The disadvantage of this method is that it requires carrying out at
least two numerical analyses.
The virtual crack extension method (VCEM) requires only one analysis. By distorting

some elements (shifting nodal coordinates) between two contours around the crack tip,
one changes the stiffness of the elements. That makes it possible to calculate the energy
release rate as the derivative of the stiffness matrix with respect to the strength length
(‘stiffness derivative technique’, Parks, 1974). Further, the energy release rate in the
linear elastic case can be determined as the J -integral, calculated along a contour or a
surface surrounding the crack tip. Shih et al. (Shih et al., 1986) proposed the energy

domain integral method to determine the energy release rate, which was applied initially,
to the thermally stressed materials. The method is based on the determination of the
J -integral for two connected contours around the crack, consisting of a large external
contour and a very small contour around the crack tip. The implementation of the method
is based on VCEM techniques.
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One of the challenges of the numerical analysis of stress fields in cracked elastic
solids is the analysis of crack tip singularities. In order to simulate a crack tip singu-
larity numerically, the FE mesh is often refined near the crack tip. Alongside the mesh
refinement, special FEs have been developed to deal with the crack tip singularities.
FEs, in which stress or displacement variations around the crack tip are incorporated into
the shape functions of elements (Tracey, 1971), quarter point singular elements (8-node
isoparameteric quadrilateral elements, with mid-side nodes placed on a quarter of the
side) (Barsoum, 1976) or other special elements are placed at the crack front in the FE
mesh. This makes it possible to analyze the stress fields in cracked elastic solids.
In order to simulate the crack propagation in materials, various methods are applied.

Ingraffea (Ingraffea, 2006) and Ingraffea and Wawrzynek (Ingraffea and Wawrzynek,
2004) classified the methods of FE implementation of fracture models as follows:

(1) nongeometrical representation, which includes methods based on the local reduction
of element stiffness used to represent the crack path [‘constitutive methods’, as
computational cells, smeared crack, element elimination] and kinematic methods
(extended finite element method (XFEM), enriched elements);

(2) geometrical representation, which includes constrained shape (i.e. if the crack path is
prescribed by the faces of existing elements or by some theory-based assumptions)
and arbitrary shape methods (meshfree, adaptive FEM/boundary element method
(BEM), lattice methods, etc.).

Taking this classification into account, we present here a short overview of the methods
of the numerical implementation of fracture models.
Cracking of a specimen changes its geometry; thus, the corresponding continuum

mechanical problem must be modified. The FE mesh modification, which follows the
crack advancement, is considered to be the most straightforward way to represent the
crack growth.
The oldest methods of fracture modeling are those, in which the crack path has to follow

the faces of FEs (Ingraffea, 2006). In the framework of the node decoupling/splitting

approach, nodes are duplicated, decoupled along the crack path and assigned to two
faces of the crack (Figure 3.9). Its disadvantage is that the crack path is constrained to
boundaries of FEs, and the results are therefore mesh-dependent.

Figure 3.9 Schematic diagram of nodal decoupling. The crack follows the faces of FEs.
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The problem of the mesh-dependency in the nodal decoupling can be overcome by
using the remeshing approach. After each iteration of the crack extension, the FE mesh
is constructed anew or corrected, according to the new geometry of the body. Most often,
only small regions of the body, where the crack extends, are remeshed. This approach
was implemented in the Frac2D and Frac3D finite element software, developed in the
Cornell Fracture Group.
Another approach to the modelling of the crack growth, which involves the modifica-

tion of the FE mesh, is the element elimination technique (EET). This technique is based
on the removal of FEs, which satisfy some local failure condition. Figure 3.10 shows
FE elimination. In the framework of the commercial software ABAQUS, the removal of
elements from the mesh can be implemented using the subroutine VUMAT of ABAQUS
Explicit (Mishnaevsky Jr, 2004b), or with the MODEL CHANGE and RESTART options
of ABAQUS standard. The second approach was realized by Mishnaevsky Jr et al.
(Mishnaevsky Jr et al., 2004a) as well, and enabled the simulations of the crack growth
in tool steels. The apparent weakness of this method is that not only the geometry, but also
the mass and volume of the domain under consideration are changed (reduced) during
the fracture simulations. Further, the iteration steps in the analysis must be kept very
low, to take into account the interaction between evolving microcracks in a correct way.
The element elimination method is sometimes confused with the element weakening

method (EWM). In the framework of this method, elements in which the damage param-
eter or any other failure criterion exceeds the critical level, are not removed from the
mesh, but weakened. This is done by setting their stiffness to a very low value. In order
to avoid numerical problems related to strong local loss of equilibrium, the stresses may
be set to be equal to zero in several steps (called ‘relaxation steps’). Wulf (Wulf, 1985)
used this method to simulate the crack growth in composites, and demonstrated that the
simulated crack path corresponds well to the experimental path.
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2004a) compared the element elimination

and element weakening methods, and demonstrated that they yield very close results
when employed to simulate the crack propagation in microstructures of steels.
One should note that element weakening differs in principle from element removal:

while the element elimination is in fact a kind of mesh modification, the element weak-

Stiffness of an element is
reduced, or the element is

removed

Figure 3.10 Element elimination approach to the damage modeling (Mishnaevsky Jr
et al., 2004a).
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ening approach belongs to the group of properties modification approaches (‘constitutive
methods’, according to Ingraffea and Wawrzynek, 2004).
Another way to model the crack path by changing element properties and not the

mesh itself, is realized in the framework of smeared crack models (Weihe et al., 1998;
Weihe and Kroeplin, 1995). In these models, a crack is considered as a continuous
degradation (reduction of strength/stiffness) along the process zone. The displacement
jump is smeared out over some characteristic distance across the crack, which is correlated
with the element size. The degradation of individual failure planes is described by the
constitutive law. In the fixed crack model (Rashid, 1968), which presents the classical
version of the smeared crack model, the degradation is controlled by the maximum
tensile stresses only; other versions of the smeared crack model (rotating crack model,
multiple fixed model) allow to take into account the variations of crack growth direction
during crack propagation, and the formation of secondary cracks. The disadvantage of the
smeared crack model (as well as other properties modification approaches, like element
weakening) is that the model does not exclude the stress transfer across a widely open
crack in some cases (Jirasek, 1998b). A detailed review and analysis of different smeared
crack models, which are often used in simulations of the fracture of concrete, is given
by Weihe et al. (Weihe et al., 1998).
Fracture of materials is a multiscale process, which includes the interaction between

the large growing cracks, voids or microstructure heterogeneities (available or evolving
along the crack path) and the fracture zone. This can be simulated by placing some unit

cells, or special elements along the expected crack path.
Andersson (Andersson, 1977) simulated crack propagation by analyzing the void

growth and coalescence ahead of a crack tip. He used axisymmetric cylindrical unit cells
from a rigid perfectly plastic material, with a spherical void, and varied the ratio between
the size of void and the radius of the cell. Andersson has shown that the dissipation of
energy per unit of fracture surface during the void growth is proportional to the distance
between voids.
In the framework of the computational cell method (CCM), developed by Xia and

Shih (Xia and Shih, 1995, 1996) and Xia et al. (Xia et al., 1995), crack propagation
is assumed to be a result of the void growth in front of the crack tip (Figure 3.11).
Void growth is confined to a layer, the thickness of which is equal to the mean distance
between inclusions which cause void initiation. The layer consists of cubic cells, each
of them contains a cavity of given size. The void growth in each cell may be described,
e.g. with the Gurson–Tvergaard model. When the void volume fraction in a cell reaches
some critical level, the cell is removed and therefore the crack grows.
A generalized formulation of cell models is given by Broberg (Broberg, 1997) in his

cell model of materials. In this model, a material is represented as a number of cells,
defined as the ‘smallest material unit that contains reasonably sufficient information
about crack growth in the material’. A cell is characterized by its size and cohesion–
decohesion relation. The cell model of materials bears some fundamental similarity with
the Voronoi cell approach by Moorthy and Ghosh (Moorthy and Ghosh, 1998). In both
cases the material is divided into the smallest representative material units, different by
their sizes and properties, which serve as elements in FE mesh.
The simulation of crack growth can be further realized using finite elements with the

special constitutive behavior, notably, cohesive elements, which can be placed in the
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L

Figure 3.11 Schematic diagram of the computational cell model of fracture (after Xia and
Shih, 1995, 1996). The crack path is modeled as failure of cells with voids placed in front of
the crack tip. The cells become damaged when the voids grow.

FE mesh in sites of potential damage initiation (e.g. on the interfaces). The consti-
tutive behavior of the cohesive elements is described by the traction–separation law
(cf. Section 3.1).
Recently, several methods were developed, in which the FE formulations with

embedded discontinuity or enriched shape functions are used. Their advantage is that
the path of a displacement discontinuity (crack) is in this case fully independent of the
FE mesh.
FEs with embedded discontinuities, proposed and described by Belytschko et al.

(Belytschko et al., 1988), Jirasek (Jirasek, 1998) and Jirasek and Zimmermann (Jirasek
and Zimmermann, 2001), make it possible to analyze the cracks or other discontinu-
ities running with an arbitrary trajectory across FEs. This approach seeks to combine
strong points of both discrete and smeared approaches to the crack simulation using
the corresponding choice of the kinematic representation of localized fracture. The
discontinuity, which crosses the element and divides it into two parts, is repre-
sented by additional degrees of freedom, corresponding to the normal and tangen-
tial components of the displacement jump. The displacement field is decomposed into
two parts, a continuous and a ‘discontinuous part due to the opening and sliding
of crack’ (Jirasek and Belytschko, 2002), and only the part of the nodal displace-
ment related to the continuous deformation is used to calculate the strains in the bulk
material.
The generalized finite element method (GFEM), based on the partition of unity, was

presented by Babuska and Mellenk (Babuska and Mellenk, 1996; Babuska et al., 2004).
This method combines the advantages of the meshless methods and the standard FEM.
Taking into account that the nodal shape functions sum up to unity in the modeled area,
Babuska and colleagues suggested to enrich the element shape functions by assumed
local functions. The same concept is used in the XFEM. In the framework of this method,
‘part of the displacement field is approximated by a discontinuous displacement enrich-
ment based on a local partition of unity’ (Xi and Belytschko, 2003). The displacement
field is presented as the sum of the regular displacement field (for the case without any
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discontinuities) and the enriched displacement field. Discontinuous enrichment func-
tions are added to take into account cracks, and singular enrichment functions are
added to account for the crack tips. The XFEM allows to simulate 3D cracks as well
as crack branching and intersection (Sukumar et al., 2000). Jirasek and Belytschko
(Jirasek and Belytschko, 2002) compared the XFEM and the embedded discontinuity
model, and came to the conclusion that the XFEM ensures some advantages over the
embedded discontinuity model, e.g. better numerical robustness and superior kinematic
properties.
Further, meshfree and other connectivity-free as well as adaptive methods are used for

the analysis of crack propagation. Askes et al. (Askes et al., 2000) applied the element

free Galerkin method (EFGM) for the discretization of structures, which are described
by the gradient-dependent damage models. Since the shape functions in the EFGM are
formulated on the basis of the moving least squares principle, not on the basis of element
connectivity, one can easily obtain higher order continuity shape functions. Askes et al.
(Askes et al., 2000) demonstrated that the EFGM is a rather efficient tool for the analysis
of higher order continua, and employed it for the comparison of different gradient damage
models (second and fourth order explicit and implicit models).
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4

Microstructure–strength
relationships of composites: concepts

and methods of analysis

The methods of the analysis of relationships between microstructures, and overall prop-
erties and strength of composites have been developed from the simplest relationships
between averaged values (e.g. Voigt/Reuss estimations) to the complex multiscale numer-
ical models, which take into account the nonlinear behavior of components, evolving
microstructures and real inhomogeneous phase arrangements.
In this Chapter, we consider several approaches and methods of the analysis of the

interrelations between the microstructures and the mechanical behavior and strength of
materials, in particular:

• models of the interaction between inclusions and dislocations in the matrix;
• shear lag model and its versions and generalizations;
• homogenization and multiscale models of materials;
• elastic solutions for the overall properties, variational bounds, effective field and
effective medium methods;

• unit cell models and the incorporation of material microstructures into discrete numer-
ical models.

4.1 Interaction between elements of microstructures: physical and

mechanical models

As discussed in Section 1.2, there are two main mechanisms of interaction between
elements of microstructures of composites: load transfer and sharing (e.g. when the matrix

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd



66 Interaction between elements of microstructures

transfers some of the applied stress to the particles, which bear part of the load), and
constraining the matrix deformation by the particles or fibers (in the cases of particle or
short fiber reinforced composites). In this section, we discuss methods of modeling the
mechanisms of interaction between microstructural elements in composites.

4.1.1 Theories of constrained plastic flow of ductile materials reinforced by

hard inclusions

In order to investigate the effect of hard nondeformable reinforcing inclusions on the
plastic flow in the matrix, physical (dislocational) mechanisms of the matrix deformation
and the interaction of dislocations with inclusions are analyzed. The physical mechanisms
of the size effects in material, in particular, the effect of the grain size on the flow stress
(Hall–Petch effect), dispersion strengthening (Orowan effect) and the strain gradient
effect have been discussed in Chapter 2. In this section, we list several approaches to the
mathematical modeling of the constraining effects.

4.1.1.1 Orowan effect

The Orowan effect (i.e. bowing of moving dislocations between inclusions) can be
responsible for the hardening of a composite with ductile matrix and many small particles.
In this case, the influence of an array of hard particles on the yield stress of the composite
can be described by the Orowan formula (Wilkinson et al., 2001):

� =Gb/L (4.1)

where G is the shear modulus, b is the Burgers vector and L is the interparticle spacing.
This formula is derived by considering the force balance on a segment of a dislocation,
bowing between two inclusions (Shtremel, 1997).

4.1.1.2 Strain gradient theory

In the deformation of the plastic matrix reinforced by hard nondeforming particles, local
strain gradients are generated between the particles (Fleck et al., 1994). The plastic
strain gradients lead to the storage of the geometrically necessary dislocations, which are
required to ensure the compatible deformation of the matrix. The density of the geomet-
rically necessary dislocations is proportional to the magnitude of the strain gradient.
The total density of dislocations, which is presented as a sum, or a harmonic sum of
the densities of statistically stored and geometrically necessary dislocations, increases
with increasing the strain gradient. Thus, the material is hardened due to the storage
of the geometrically necessary dislocations, caused by the strain gradient between the
inclusions.
A phenomenological model for the hardening effect was developed by Fleck et al.

(Fleck et al., 1994). According to Fleck and colleagues, ‘the magnitude of the plastic
strain gradient is of the order of the average shear strain in the crystal divided by the local
length scale � of the deformation field’. In the case of metals containing nondeformable
particles, the local length scale can be calculated as follows:

�= r/vp (4.2)
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where r is the radius and vp is the volume content of the particles. Plastic strain
gradient with magnitude � requires the storage of geometrically necessary dislocations

of density �G:

�G ≈ 4�

b�
(4.3)

where b is the Burgers vector and � is the plastic shear strain. The macroscopic shear
yield stress can be written in the form:

� = CGb
√

�G+�S (4.4)

where C is a constant of the order of 0.3, G is the shear modulus and �s is the density
of the statistically stored dislocations.
Taking into account Equations (4.2) and (4.3), one derives for the case of metal,

containing nondeformable particles:

� = CGb
√

�S+4�vp/br (4.5)

This formula relates the volume content of the hard inclusions and their radius to the
shear stress in the material. Fleck and colleagues demonstrated that ‘the greater is the
imposed strain gradient the greater the degree of hardening’.
Following this work by Fleck and colleagues, a number of the strain gradient theories

have been developed, which account for the size effect in the materials (Fleck and
Hutchinson, 1997; Aifantis, 1999; Gao et al., 1999).

4.1.1.3 Constitutive models based on the dislocation density analysis

Several constitutive models of metal deformation are based on the structure evolution
equation, expressed in terms of the dislocation density in the material. This approach
was proposed by Kocks (Kocks, 1966, 1976), and developed further by other researchers
(Estrin and Mecking, 1984; Estrin, 1998; Roters et al., 2000).
In the one parameter model of Kocks (Kocks, 1966, 1976), the kinetic equation, which

relates the equivalent plastic strain rate and the equivalent stress in the power law, is
written as:

	̇p = 	̇0
�/�̂�m (4.6)

where 	̇p is the equivalent plastic strain rate, 	̇0 and m are material parameters, and �
and ⁀� are equivalent stress and the internal variable, characterizing the microstructural
state of the material.
The internal variable �̂ is related to the total dislocation density � by:

̂ =M�Gb√� (4.7)

where b is the Burgers vector, M is the average Taylor factor, G is shear modulus and
� is a coefficient. Considering the storage and recovery of dislocations as competing
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effects influencing the variation of the dislocation density, Kocks derived the equation
for the evolution of the dislocation density in the material:

d�

d�p
=M

(

1

bL
−k2�

)

(4.8)

where L is the spacing between obstacles (nondeforming particles) (in a more general
case, the mean free path of dislocations), �p is the plastic strain and k2 is a recovery
coefficient.
Equations (4.6)–(4.8) describe the isotropic hardening of the material, related to the

immobilization of mobile dislocations on obstacles (particles). These formulae take into
account the recovery (annihilation of stored dislocations) as well [second term of the
right-hand side of Equation (4.8)]. If a single phase material is modeled and only the
dislocation structure is considered as an obstacle to moving dislocations, the term M/bL

is transformed into Mk1
√
�, where k1 is a proportionality coefficient.

According to Estrin (Estrin, 1998), the one internal variablemodel provides the prototype
for the description of the material behavior, but is not sufficient for the adequate descrip-
tion of the material microstructures evolution. The two internal variables model, which
considers the density of mobile and forest (relatively immobile) dislocations, was proposed
by Estrin (Estrin, 1998), and verified experimentally. An even more sophisticated model,
which considers three dislocation populations (mobile dislocations, immobile dislocations
insidecells andon thecellwalls),wasdevelopedbyRotersetal. (Rotersetal., 2000).Consid-
ering the evolution of the density of each group of dislocations, they calculated the effective
shear stress and the macroscopic flow stress in materials. The equation for the evolution of
the dislocation density [in the simplest case, Equation (4.8)] together with Equations (4.6)
and (4.7) describes the constrained plastic deformation of metals.

4.1.1.4 Polycrystal plasticity

The deformation of material is considered at the level of grains/crystals. In the simplest
version of this approach, the deformation of metal is assumed to be due to the slips
(dislocations motion) through the crystal lattices. Different slip systems can be active in
different grains: for instance, FCC crystals have 12 potential slip systems of type (1 1 1)
<1 1 0>.
The slip process on a slip plane is controlled by the shear stress resolved along the slip

direction (this concept is referred to as the Schmid law). For the case of uniaxial tensile
loading of a crystal, the potential slip system of which is defined by a slip plane normal
and slip direction, the resolved shear stress is calculated as:

� =  cos� cos� (4.9)

where cos� cos� is called the Schmid factor,  is applied stress, � is the angle between
the loading direction and the slip plane normal and � is the angle between the loading
direction and the slip direction. When the value reaches some critical level, a slip occurs
on the slip system. If slips occur on multiple slip systems, the corresponding plastic
velocity gradient tensor is calculated as a sum of contributions from all slip systems. The
nonuniqueness of the solution, related to the possible choice of different active systems,
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was addressed by Taylor (Taylor, 1938), and Bishop and Hill (Bishop and Hill, 1951).
According to Taylor, the preferred solution should correspond to the minimum of the
internal plastic work.
The crystal plasticity concept was formulated for the case of finite deformations in

the works by Asaro and Rice (Asaro and Rice, 1977) and Asaro (Asaro, 1983a,b). The
formulation is based on the multiplicative decomposition of the total deformation gradient
into inelastic (flow of the material through the lattice without distorting the lattice) and
elastic (rigid body rotation and elastic deformation) components. The overall properties
of the material are determined by averaging procedures. Assuming some grains to be
rigid, one can employ the crystal plasticity approach to analyze the deformation behavior
of metal matrix composites.

4.1.1.5 Discrete dislocation analysis

Van der Giessen and Needleman (Van der Giessen and Needleman, 1995) developed a
method of modeling the material plasticity as the collective motion of a large number
of discrete dislocations, which are represented as displacement discontinuities in a linear
elastic medium. The stress and displacement fields are determined in the framework of the
analysis of the linear elastic boundary value problem, as superpositions of the fields due
to the discrete dislocations and image fields, corresponding to the boundary conditions.
The model includes lattice resistance to dislocation motion, dislocation nucleation and
annihilation, as well as the effect of obstacles. The long range interactions between
dislocations are taken into account via the continuum elasticity fields. Van der Giessen
and Needleman applied this method to analyze the deformation behavior of a composite
reinforced by a periodic array of square particles.

4.1.2 Shear lag model and its applications

The shear lag model is widely used to analyze the fiber–matrix stress transfer in undam-
aged and damaged composites. This model was developed initially by Cox (Cox, 1952)
and then expanded and modified by many authors. Assuming that the load transfer from
matrix to fiber occurs via shear stresses on the interface between them, Cox considered
the force balance in a section of the fiber, and derived the formula which relates the rate
of change of the stress along the fiber length, and the interfacial shear stress (Figure 4.1):

d

2dx
=−�

r
(4.10)

where r is the radius of the fiber, � is the interface shear stress and x is the coordinate
along the fiber length. This formula is referred to as the basic shear lag equation.

After some manipulations, this model leads to the following second order differential
equation:

d2

dx2
−�2 =−�2� (4.11)

where � is the so-called shear lag parameter, � is the far-field fiber stress and � is fiber
stress.
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dx

  σ + dσσ

τ

Figure 4.1 Shear lag model.

Solving this equation, one determines the stress distribution along the axis x of the fiber:

 = E��1− cosh
�x� sech
�xr�� (4.12)

where E is the Young modulus of the fiber and 	 is the strain in the composite. Cox
derived a formula for the shear lag parameter � for the case of a cylindrical fiber of
radius r , embedded into a cylindrical layer of matrix:

�= 1

r

√

2Gm

E ln
s/r�
(4.13)

where Gm is the matrix shear modulus, s is the average distance between the fiber axes,
r is the fiber radius and E is the axial modulus of the fiber.
Using Equations (4.10)–(4.12), one can determine the critical fiber length lcr, at which

both the matrix and fiber fail at the same strain. Assuming constant shear stress � in
Equation (4.10), Kelly and Tyson (Kelly and Tyson, 1965) derived the following formula
for the critical fiber length:

lc =
cr

�c
(4.14)

where �c is the fiber failure stress and �c is the matrix fiber interfacial shear strength.
Figure 4.2 shows the effect of the fiber length of the stress distribution in the fiber under
tensile loading. If l< lc (the case of discontinuous reinforcement), the stress in the fiber
is below the critical level, and the fiber is not utilized fully. If l > lc (longer fibers), a
large part of the fiber is overloaded, and multiple cracking can be observed in the fiber.

(a) (b)

σσ σ

(c)

Figure 4.2 Stress distribution in the fiber (subject to the tensile loading) along the length:
(a) short fiber (discontinuous reinforcement, l< lc); (b) critical fiber length �l= lc�; (c) longer
fiber �l> lc�.
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If the fiber length is equal to the critical size 
l = lc�, both the matrix and fiber fail
at the same load, ensuring the most efficient reinforcement of the composite. Kelly and
Tyson used this model to explain the experimental observation that the fiber breaking
strength is a linear function of the wire content in different composites.
Nairn (Nairn, 1997) carried out a rigorous theoretical analysis of a model, for which the

shear assumptions are exact. Using axisymmetric elasticity equations, he demonstrated
that the rigorous analysis leads to Equation (4.11) as well. Nairn demonstrated further
that the shear lag method gives reasonably good estimations of average axial stress in
the fiber and total strain energy in the specimen, yet, the method is not applicable for
low fiber volume fractions. For the case of a broken fiber embedded into the ductile
matrix, the shear-lag model was generalized by Landis and McMeeking (Landis and
McMeeking, 1999). They derived the shear lag equation for this case, and verified the
model by comparing it with FE analysis.
The application of the shear lag model to the analysis of the load transfer and damage

evolution in fiber reinforced composites is discussed in Chapter 10.

4.2 Multiscale modeling of materials and homogenization

One of the challenges of the theoretical analysis of the microstructure–strength relation-
ships of materials is the necessity to consider several different length scales. While the
geometry of a problem and boundary conditions are usually given on the macroscale, the
microstructure of material is defined on the micro-mesoscale, and the damage and defor-
mation mechanisms are controlled by atomistic, nanoscale and dislocational processes.
Direct numerical analysis of the material behavior, which takes into account both macro-
scopic boundary conditions and microgeometries, would require very large computational
resources. To overcome this problem, several strategies are employed:

• Multiscale modeling: the material behavior is modeled at the scale levels of both
microstructures and the sample; the lower scale model is subject to the boundary condi-
tions, acting via the macromodel, while the mechanical behavior of the material in the
macromodel is determined taking into account finer microscale features incorporated
into the micromodel. In the simplest models, upper scale–lower scale relationships are
one-sided, while more sophisticated models allow simultaneous global-local analysis
at several levels.

• Homogenization and averaging of properties and microfields: the material is considered
as a homogeneous equivalent medium at the macrolevel, and the effective properties
of the medium are determined on the basis of the analysis of the microstructure,
microgeometry and properties of the materials.

Another approach can be the direct incorporation of the microgeometries into macroscale
models of the deformation and/or failure of the specimen (Silberschmidt and Werner,
2001). This approach may be employed only if the dimensions of the specimen are
comparable with the dimensions of microstructural elements (e.g. in thin films or other
small scale objects), and requires considerable computational sources.
Figure 4.3 shows schematically two methods of introducing microstructures of mate-

rials into macroscopic models of materials: homogenization and multiscale modeling.
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< X >

(a)

(b)

Figure 4.3 Methods of introducing the microstructures of materials into macroscopic models
of materials: (a) homogenization of material properties on the basis of the analysis of a RVE
of the microstructure; (b) multiscale modeling.

4.2.1 Multiscale modeling

Different techniques are used to establish the links between the micro- and macromodels
in the framework of multiscale modeling.
In the simplest case, submodelling techniques are used to analyze the material behavior

at two or more scale levels. A small region is taken as a submodel of the considered
domain, and analyzed taking into account fine features (e.g. microstructure) of the mate-
rial. The homogeneous boundary conditions for the submodel are determined on the basis
of the finite element analysis of the macromodel.
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 1999a) simulated the deformation of a

compact tension (CT) specimen of AlSi cast alloy, and determined boundary conditions
for a microstructural model (displacement distribution at the surfaces of a 100×100�m
cube at the notch of the specimen). The 3D real microstructure of the cast alloy was
reconstructed on the basis of the serial sectioning, and introduced into the micromodel of
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the small cube. As a result, the local stress and strain distributions were obtained from the
microstructural model of the region in the vicinity of the notch of the CT specimen, and
compared with experiments. A similar approach was employed by Mishnaevsky Jr et al.
(Mishnaevsky Jr et al., 2001, 2003a,b) to determine the failure conditions of primary
carbides in tool steels and to analyze the crack propagation in short rod specimens.
The submodelling techniques are often used to analyze the mechanical behavior of

materials with complex multilevel microstructures. In this case, ‘meso-micro’ or ‘meso-
meso’ linkage, rather than ‘macro-meso’ modeling is dealt with. Some hierarchical micro-
and mesomechanical unit cell models of materials are discussed in Section 4.4.1.
The upper scale–lower scale relationships in the case of the submodelling techniques

are one-sided: the macromodel determines the boundary conditions of the micromodel,
while the micromodel does not influence the macromodel. Alternatively, the micromodel
delivers the constitutive law for the macromodel, but, again, the models are not coupled.
A lot of scientific effort was directed at the development of truly multiscale computational
techniques, where upper scale models can include finer microscale features, while the
lower scale model is subject to the boundary conditions, acting via the macromodel.
The term global-local finite element was introduced in the pioneering work by Mote

Jr in 1971 (Mote Jr, 1971). Mote Jr combined the conventional and finite element Ritz
methods by coupling global and local dependent variable representation, which led to
increased solution accuracy. Following this work, many versions of the global-local
method were developed (Noor, 1986; Mao and Sun, 1991).
Different multiscale computational techniques can be grouped as follows (Haidar

et al., 2003):

• domain decomposition techniques;
• multiple scale expansion (homogenization) methods;
• superposition based methods.

In the framework of the domain decomposition techniques, a macroscale model is decom-
posed into a series of connected subdomains. This approach was employed by Zohdi
et al. (Zohdi et al., 2001). They carried out large-scale micromechanical simulations
by decomposing the global problem into a set of computationally smaller, decoupled
problems, which deal with subdomains of the global domain. According to Zohdi and
colleagues, the computational costs of the global microstructural solution, obtained by
assembling the solutions of boundary value problems of nonoverlapping subdomains, can
be thousands and even millions times less than the global exact solution. Zohdi et al.
(Zohdi et al., 2001) investigated the partitioning error in the substructuring approach,
and methods to lower the error.
Using the two-scale expansion techniques, Fish and Yu (Fish and Yu, 2001) developed

a model of damage in brittle composites. The idea was to carry out simultaneously both
homogenization and the analysis of the evolution of damage (instead of doing first the
homogenization, and then the damage analysis, as in macromechanical studies, or vice
versa, as in micromechanical analysis). This was done by using a double-scale asymptotic
expansion of the damage parameter. Fish and Yu generalized the homogenization method
based on double-scale asymptotic expansion to take into account the damage effects.
They derived a closed form equation relating local fields to overall strains and damage.
The superposition based methods are based on the hierarchical decomposition of the

solution space into global and local effects. In 1990, Belytschko et al. (Belytschko
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et al., 1990) proposed to overlay arbitrary local mesh on the global mesh to enhance
the accuracy of solutions of problems with high gradients. Fish (Fish, 1992) developed
a s-version of the finite element method (FEM), based on the adaptive FEM and error
estimation. The idea of the s-version is to increase the resolution by superimposing an
additional, refined local mesh on a coarse global mesh. Several other adaptive versions
of the FEM have been developed recently: h-version (where convergence is achieved
by mesh refinement), p-version (in which the convergence is achieved by increasing
polynomial degree), hp-d version (combination of h- and p-extensions in a hierarchical
domain decomposition), generalized FEM.
A further superposition technique, called the composite grid method was suggested

by Fish and colleagues (Fish et al., 1996, 1997a). Using the decomposition of a hybrid
system into a hierarchical global-local problem and an indefinite local system, they
analyzed the deformation of laminated composite shells. In so doing, some regions of the
laminate were modeled as a 3D solid model, and for the rest, the shell model was used.
Takano et al. (Takano et al., 1999) developed the finite element mesh superposition

technique, which allows to overlay arbitrarily local fine mesh on the global rough mesh.
Using this approach together with the asymptotic homogenization method, Takano and
colleagues developed a four level hierarchical FE model of textile composite materials,
and carried out the stress analysis in these materials.
In the framework of the multiscale finite element approach (called FE2), developed

by Feyel and Chaboche (Feyel and Chaboche, 2000), the microstructure of a material is
introduced into the macroscopic models of the material at the level of the Gauss points.
The material behavior in each Gauss point of the macroscopic mesh is determined in finer
FE simulations. The method is implemented on the basis of interleaved FE algorithms,
which constitute a sequence of Newton–Raphson algorithms, and includes local steps
on macroscopic and microscopic scales. The authors applied the method to analyze the
deformation of long fiber SiC/Ti composites under four point bending loading. The
simulations are carried out using the FETI (domain decomposition) method and parallel
computation.
Ghosh and co-workers (1995), Lee et al. (Lee et al., 1999) and Moorthy and Ghosh

(Moorthy and Ghosh, 1998) developed the hierarchical multiple scale model, based on
coupling the Voronoi cell FEM (VCFEM) for the mesoscopic analysis and the conven-
tional displacement based FEM for macro-analysis. In the framework of the hierarchical
model, the authors used the adaptive schemes and mesh refinement strategies to divide
the considered volume into subdomains with periodic and nonperiodic microstructures.
In the periodic microstructure areas they used the asymptotic homogenization. In the
nonperiodic microstructure subdomains, the VCFEM is used. This approach was used
to simulate the damage initiation (by particle cracking or splitting) in discontinuously
reinforced MMCs.

4.2.2 Homogenization

Suquet (Suquet, 1987, 1997) formulated the concept of homogenization as follows (Ponte
Castañeda and Suquet, 1998; Bornert et al., 2001; Lévesque, 2004). In order to determine
the constitutive equations for the averaged effective or macroscopic properties of a
heterogeneous material, one should go though the following steps:



Microstructure–Strength Relationships 75

• Definition of a volume element, which is statistically representative for the whole mate-
rial microstructure under consideration. The size of the representative volume element
(RVE) should be large enough compared with the size of microstructural elements to
contain a sufficient number of microinhomogeneities. However, RVE should be small
enough to allow a micromechanical analysis of the RVE in the framework of available
computational resources. The heterogeneous material is considered as an equivalent
homogeneous medium, the properties of which are assumed to be the same as those
determined in the analysis of the RVE.

• Localization (macro–micro transition): microscopic boundary conditions (e.g. strain
tensor) are determined on the basis of the macroscopic strain tensor, taking into account
the geometry, prescribed macroscopic quantities, constitutive laws, etc.

• Homogenization (micro–macro transition): macroscopic output variables are deter-
mined on the basis of the analysis of the microscopic behavior of the RVE. As a result,
macroscopic properties of the equivalent homogeneous medium are evaluated.

The concept of homogenization is applicable only if at least two length scales in the
problem can be defined.

4.3 Analytical estimations and bounds of overall elastic properties of

composites

In this section, we list some analytical concepts and approaches used to predict the
macroscopic overall properties and the mechanical response of materials.
The macroscopic response or effective/overall properties of composite materials repre-

sents the constitutive properties of materials at the scale level much higher than the
size of microstructural elements, and depends on the microstructure of the compos-
ites, i.e. on the volume content, local properties and spatial distributions of phases
(constituents).
According to Hori and Nemat-Nasser (Hori and Nemat-Nasser, 1999), there exist two

basic mathematical strategies to obtain the overall response of a heterogeneous material:

• Mean field theory (or average field theory). In the framework of this theory,
‘macrofields are defined as the volume [weighted] averages of corresponding
microfields’, and the effective properties are determined as ‘relations between aver-
aged microfields’. This theory uses the concept of the RVE (‘simple microstruc-
ture models’), which models the statistically homogeneous microstructure of the
material.

• Asymptotic homogenization theory (or mathematical homogenization theory). This is
based on the asymptotic expansions of displacement and strain fields about macroscale
values, and was formulated by Bensoussan et al. (Bensoussan et al., 1978) and
Sanchez-Palencia (Sanchez-Palencia, 1980). The material is modeled as an infinite
series of unit cells under far field load. The big difference in the characteristic sizes of
the microstructure and the considered volume makes it possible to carry out asymp-
totic series expansion of the variables. The theory allows high order terms in the
singular perturbation expansion, and the analysis of micro–macro relationships can be
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carried out more rigorously than in the case of the mean field theory. The asymp-
totic homogenization theory was developed initially for linearly elastic materials, and
then generalized to nonlinear elastic, plastic and viscoelastic materials (Suquet, 1987;
Fish et al., 1997b; Yu and Fish, 2002; Searcy, 2004). The asymptotic homogeniza-
tion approach was further used to study the overall properties of fiber reinforced metal
matrix composites (Jansson, 1992), and composites with interfacial damage (Lene,
1986). Hori and Nemat-Nasser (Hori and Nemat-Nasser, 1999) developed a hybrid
theory, which combines the mean field and homogenization theory.

In the following, we briefly review some techniques, bounds and estimations used to
establish relationships between the overall properties of composites and their microscopic
properties and microstructures.

4.3.1 Rule-of-mixture and classical Voigt and Reuss approximations

The intuitive answer to the question about the macroscopic response of a material
consisting of phase A with Young modulus EA and volume content vA, and phase B with
Young modulus EB and volume content vB is the ‘rule of mixture’. A rule-of-mixture-
type formula was derived by Woldemar Voigt in 1889 (Voigt, 1889), initially for the
estimation of the elastic constants of polycrystals. The idea of the Voigt approach was
to determine elastic moduli by averaging stresses (expressed in terms of strains) over
all possible lattice orientations (or phases), assuming strain uniformity throughout the
material.
Considering Figure 4.4, one can derive the rule-of-mixture-type formula for Young

modulus of the composite, assuming that the average strain of each phase is equal to the
applied strain:

�f = �m = �comp (4.15)

where 	 is strain and subscripts f, m and comp denote fiber, matrix and the composite,
respectively. Both the fibers and matrix are considered as linear-elastic materials:

Figure 4.4 A special case for which the Voigt formulae are exact.
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f = Ef�comp and m = Em�comp. The force balance in the fiber direction can be
written as:

Pcomp = compAcomp = Pf +Pm (4.16)

where Pf = fAf and Pm = mAm� Af and Am are cross-sectional areas of the fiber and
matrix, Pf�m�comp are forces acting on the fiber, matrix and composite, respectively and �
is stress (in the fiber, matrix or averaged over the composite). Taking Equations (4.15)
and (4.16) into account, one can derive the relationship:

Ecomp = Efvf +Emvm (4.17)

where Ef�m�comp are the Young moduli of the fiber, matrix and composite, respectively.
Reuss (Reuss, 1929) proposed to determine the elastic moduli by averaging strains,

expressed in terms of stresses, assuming stress uniformity. For the case shown in
Figure 4.5, the Reuss estimates can be calculated as follows. It is assumed that the
average stress of each phase is equal to the applied stress:

f = m = comp (4.18)

If both fibers and matrix are linearly elastic, it follows from the force balance that:

E = EfEm

Efvf +Emvm
(4.19)

In their works, both Voigt and Reuss sought to provide exact estimations of the elastic
moduli of materials with random microgeometries. However, as shown by Hill (Hill,
1964), these estimations give only upper and lower bounds for the elastic moduli of a

Figure 4.5 A model material for which the Reuss formula is applicable.
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composite with an arbitrary random geometry. The Reuss estimation gives the lower
bound of the elastic moduli for the composite, and the Voigt estimation gives the
upper bound:

EfEm

Efvf +Emvm
≤ E ≤ Efvf +Emvm (4.20)

The Voigt and Reuss estimations correspond to the exact solution only for the special
cases shown in Figures 4.4 and 4.5, respectively. For the cases vf = 0 or vm = 0, the
Voigt and Reuss estimations are reduced to the same values.
Hill’s analysis was based on the results by Bishop and Hill (Bishop and Hill, 1951).

Bishop and Hill demonstrated that the volume average of the strain energy density of an
inhomogeneous material is equal to the product of the averaged stresses and strains, if the
material contains a sufficiently large number of grains and is statistically homogeneous:

< � >=<  >< � > (4.21)

One should note that Hill’s bounds are rather wide, and are therefore of limited usefulness
for the practical determination of material properties.

4.3.2 Hashin–Shtrikman bounds

The most widely used bounds for the overall properties of composites have been proposed
by Hashin and Shtrikman (Hashin and Shtrikman, 1962a,b, 1963). Hashin and Shtrikman
formulated a variational principle for nonhomogeneous linear elasticity. The volume
integral:

Up = U0−
1

2

∫

[

pijH
pij�−pij�′ij−2pij�
0
ij

]

dV (4.22)

subject to the subsidiary and boundary conditions Lo
�
′
ij��j+pij�j = 0 and u′i
S� = 0, is

stationary for pij = L
�ij�−Lo
�ij�. Here pij = Lo
�ij�−ij is the stress polarization
tensor, Lo
�ij� is the function relating the stress and strain tensor in Hooke’s law, V and
S are the volume and surface of the body, u′i = ui−uoi � uoi 
S� is surface displacement,
superscript prime means differentiation, H is the operator given by H = 
L−Lo�

−1� o
ij

and ij are the known and unknown stress fields in the deformed elastic body, �′i = �i−�oi
and U0 = 1

2

∫

o
ij�

o
ijdV .

Using this variational principle, they derived analytical expressions which provide
bounds for the elastic constants of a heterogeneous material with a random isotropic
distribution of phases. For the case of spherical particles randomly distributed in the
matrix, the formulae are:

k− = km +
vp

1

kp−km
+ 3vm

3km +4Gm

k+ = kp+
vm

1

km −kp
+

3vp
3kp+4Gp

(4.23)
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G− =Gm +
vp

1

Gp−Gm

+ 6
km +2Gm�vm
5Gm
3km +4Gm�

G+ =Gp+
vm

1

Gm −Gp

+
6
kp+2Gp�vp

5Gp
3kp+4Gp�

(4.24)

where kp� Gp and km� Gm are the bulk and shear moduli for the particles and the matrix,
respectively, vm� vp are the volume fractions and subscripts − and + mean the lower and
upper bounds, respectively. The lower bound is obtained with the softer phase taken as the
matrix, and the upper bound is derived for the case of the harder phase taken as the matrix.
Figure 4.6 gives an example of the variation of the estimations of bulk modulus

for a model material (with the bulk moduli 10GPa for spherical particles and
100GPa for the matrix), obtained with the use of Voigt, Reuss and Hashin–
Shtrikman formulae. Both lower and upper Hashin–Shtrikman bounds (− and +) are
presented.
Using the classical energy principles, Walpole (Walpole, 1966) suggested variational

bounds of the Hashin–Shtrikman type for the overall elastic behavior of composites with
aligned ellipsoidal reinforcements, which take into account both the aspect ratios of the
fibers and the volume fractions of the fibers. Later, Walpole (Walpole, 1969) obtained
results for infinitely long fibers and thin disks, oriented randomly or aligned. Willis
(Willis, 1977) developed general bounds for transversally isotropic composites reinforced
by aligned ellipsoidal inclusions.
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Figure 4.6 Estimations of bulk modulus of a model material with the use of Voigt, Reuss
and Hashin–Shtrikman formulae.
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4.3.3 Dilute distribution model

If the volume fraction of inclusions is very small, the interaction between reinforcing
elements can be neglected. In this case, the dilute distribution model can be used to
analyze the effective elastic properties of composites.
The dilute distribution model, as well as many other micromechanical approaches, is

based on the theory developed by Eshelby (Eshelby, 1957). Eshelby considered the stress
and strain fields in a medium with an elliptical region which undergoes a transformation
and changes its shape or size. He has shown that uniform stress and strain states are
induced in the transformed elastic homogeneous inclusion (‘elliptical region’), embedded
into an infinite matrix subject to uniform strain. Eshelby introduced a so-called Eshelby
tensor S, which relates the strains in an inclusion in the infinite elastic matrix 
�constr�
with the strain of the same inclusion, placed outside the matrix and free of the stresses
imposed by the matrix 
�unconstr�:

�constr = S�unconstr (4.25)

where S is the Eshelby tensor. The tensor S is a function of the elastic properties of the
bodies, and the inclusion shape.
In order to determine the elastic moduli of a material reinforced by very few inclusions,

the problem of a single spherical or ellipsoidal inclusion in an infinite matrix medium,
subjected to homogeneous boundary conditions at infinity, is solved on the basis of the
Eshelby approach. For the case of isotropic spherical particles in an isotropic matrix,
subject to homogeneous stress boundary conditions, the analysis yields the following
formulae for the effective bulk and shear moduli:

k= km
[

1+vp
kp−km

km +�
kp−km�

]

G=Gm

[

1+vp
Gp−Gm

Gm +�
Gp−Gm�

]

(4.26)

where � = 
1+�m�/3
1−�m�� � = 2
4–5�m�/15
1−�m�� �m = 
3km −2Gm�/
6km +
2Gm�� �� � are coefficients and �m is Poisson’s ratio of the matrix. Apparently, the
estimations obtained with the use of the dilute distribution model become less exact when
the volume content of the reinforcement increases above a few percent.

4.3.4 Effective field method and Mori–Tanaka model

In the approach, suggested by Mori and Tanaka (Mori and Tanaka, 1973), each inclusion
behaves as an isolated inclusion, subject to the averaged stress fields acting on it from
all the other inclusions (cf. Figure 4.7). The stresses, acting on an inclusion and caused
by the presence of other inclusions, are superimposed on the applied stress. The idea of
Mori and Tanaka was to combine the Eshelby approach and the effective field concept.
This is done by defining the strain concentration tensor, which relates the strain in the
inclusion to the unknown strain in the matrix (instead of the applied strain, as in the case
of the dilute distribution model). Benveniste (Benveniste, 1987) expanded the relations
suggested by Mori and Tanaka, and provided a general method for determining the
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ε0 <ε>

<ε>ε0

Figure 4.7 Mori–Tanaka model. The interaction between inclusions is taken into account
by averaging strain fields acting on a given inclusion from all the other inclusions.

effective properties, based on this theory. The Mori and Tanaka approach belongs to the
group of effective field methods (Levin, 1976; Kanaun, 1983).
This model leads to the same formulae as the lower Hashin–Shtrikman bound (i.e. when

the matrix is the softer phase) for spheres and many other inclusion shapes. According to
Böhm (Böhm, 1998), the estimations of overall Young and shear moduli of composites
with spherical particles and aligned reinforcement based on the Mori–Tanaka method are
somewhat lower than the experimental results, but are still very close.

4.3.5 Composite sphere and composite cylinder assemblage

A geometrical model of composites, called composite sphere assemblage (CSA) was
developed by Hashin (Hashin, 1962). A volume is filled with composite spheres, each
of them consisting of a spherical particle surrounded by a concentric matrix shell.
The spheres can be of any size, but the volume fractions of the spherical particle
and matrix layer are the same for all the spheres. Figure 4.8 schematically shows the
CSA model. Hashin analyzed this model by variational methods, and derived a closed-
form exact solution for the effective bulk modulus and bounds for the effective shear

 

Matrix

Particle (CSA)

or fiber (CCA) 

Figure 4.8 Schema of the CSA or CCAmodel of a composite, introduced by Hashin (Hashin,
1962) and Hashin and Rosen (Hashin and Rosen, 1964).
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modulus. The formula for the effective bulk modulus is written as (Hashin, 1962; Chris-
tensen, 1979):

k= km +
vp
kp−km�

1+

1−vm�
kp−km�

km + 4

3
Gm

(4.27)

Following this work, Hashin and Rosen (Hashin and Rosen, 1964) proposed a so-called
composite cylinder assemblage (CCA) model for the analysis of long fiber reinforced
composites with an overall transversely isotropic behavior. The CCA model consists of
an assembly of randomly distributed composite cylinders (each consists of a long inner
circular fiber surrounded by an outer concentric matrix) with different radii which fill the
whole volume of a representative element (similarly to CSA). Hashin and Rosen obtained
bounds for the transverse shear modulus on the basis of the variational analysis of this
model. One should mention that the Hashin and Shtrikman bounds for fiber reinforced
composites are different from the Hashin and Rosen bounds.
An improved version of the CCA, called the generalized self-consistent method, was

suggested by Christensen and Lo (Christensen and Lo, 1979). Christensen and Lo consid-
ered a cylindrical fiber surrounded by a matrix shell, which is placed into a material with
effective properties of the composite (Figure 4.9). Using the exact elastic solutions for
cylindrical geometries, they analyzed the elastic response of this cell, and derived differ-
ential equations for the effective transverse shear modulus of a unidirectional composite.
A generalized self-consistent schema gives very good results for the composites with
spherical particles and aligned reinforcement.

4.3.6 Self-consistent models and other effective medium methods

The self-consistent model (SCM) (Figure 4.10) was suggested initially by Hershey
(Hershey, 1954) and Kröner (Kröner, 1958) for single crystals and polycrystals, and
then extended by Budiansky (Budiansky, 1965). In the framework of the self-consistent
approach, a microstructure of a polycrystal or a composite is modeled as a single crystal
or single inclusion, embedded into some equivalent medium, which represents the influ-
ence of all other microstructural elements on this single inclusion. The effects of other
microstructural elements on a given inclusion are smeared over the equivalent medium
(matrix). The properties of the equivalent medium are determined in a self-consistent way.

Inclusion

Matrix

Equivalent

homogeneous medium

Figure 4.9 Generalized self-consistent model by Christensen and Lo (Christensen and Lo,
1979).
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ε0

ε0

ε0

ε0

Figure 4.10 Self-consistent model. The influence of other particles or defects on a given
particle is smeared over the equivalent medium.

The principal difference with the Mori–Tanaka (effective field) method is that the
effective properties of the embedding material with inclusions (instead of effective stress
and/or strain fields) are considered.
For the case of isotropic spherical particles, isotropically distributed in an isotropic

matrix, the effective bulk and shear moduli can be calculated by the formulae:

k= km +vp
kp−km�
[

1+�1

(

kp

k
−1

)]−1

G=Gm +vp
Gp−Gm�

[

1+�1

(

Gp

G
−1

)]−1

(4.28)

where �1 = 3k/
3k+4G� and �1 = 6
k+2G�/5
3k+4G� (Seelig, 2000). The effective
moduli obtained by applying the homogeneous stress or strain boundary conditions are
equivalent.
According to Norris (Norris, 1985), the SCMs can be grouped into symmetric models

(where the phases are interchangeable) and asymmetric (where one phase is taken as a
matrix phase, and all other phases as inclusions). The asymmetric SCM were considered
by Wu (Wu, 1966) and Boucher (Boucher, 1974). If spherical inclusions in a matrix are
considered, the formulae (4.28) hold for both classes of the self-consistent theories, and
are symmetric with respect to changing the ‘m’ to ‘p’.
According to Hill (Hill, 1965) and Berryman (Berryman, 1980), the results of SCMs

are always within the Hashin–Shtrikman bounds. The self-consistent approach allows
microstructures with some degree of regularity to be described well, but not clustered
structures or microstructures with large differences between properties of the phases.
The SCMs lead to apparently false estimations of the elasticity moduli for some specific
cases. For instance, if kp = 0� Gp = 0 and km = � (i.e. incompressible matrix with
holes), the SCM estimation gives zero stiffness 
k= 0� for the material with 50% hole
content vp (Budiansky, 1965). In reality, however, a material with 50% holes still has
nonzero stiffness.
The model developed by Christensen and Lo (Christensen and Lo, 1979), mentioned

above, represents in fact a generalized CCA model. However, it is called the general-
ized self-consistent method, because the outer cylindrical layer is assigned the effective
properties of the material.
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Another approach, which belongs to the group of effective medium methods, is the
differential effective medium approximation. The idea of the differential effective medium
approximation (Roscoe, 1973; Boucher, 1974; McLaughlin, 1977) is to add a given inclu-
sion volume iteratively, in ‘small portions’, to the effective material (initially homoge-
neous matrix). Then, the new effective properties of the effective matrix are re-calculated
after each addition of small inclusions volumes, using the dilute approximation. For
spherical inclusions, this approach leads to the following differential equations for the
elastic moduli of the composite:

dk

dvp
=

k+4G/3�
k−kp�
vp
kp+4G/3�

dG

dvp
=

5G
k+4G/3�
G−Gp�

vp�3G
k+8G/9�+2Gp
k+2G��
(4.29)

Norris (Norris, 1985) demonstrated that the effective properties of a composite, calculated
with this method, may depend not only on the volume fractions of phases, but also on
the ‘construction path’ of the composite.

4.3.7 Method of cells and transformation field analysis

Physical fields in multiphase materials can be described using piecewise approximations,
where the fields or some components of the fields are assumed to be uniform in the
phases, subcells or small volumes of materials. This idea was realized in the framework
of the transformation field analysis (TFA), developed by Dvorak (Dvorak, 1992). In this
approach, a microstructure is divided into subvolumes, in which local fields are presumed
to be uniform. The stress and strain fields and overall thermomechanical properties of
multiphase materials are presented in the form of piecewise uniform approximations in
subvolumes of discretized unit cells. The total strains and stresses in the phases are
decomposed into the elastic strains/stresses due to the certain surface tractions, and an
eigenstrain/eigenstress in phases. The eingenstrain and eigenstrain are referred to as
transformation fields (Dvorak et al., 1994), and are further decomposed into terms related
to the inelastic and thermal effects. The local stress fields in the subvolumes can be
evaluated as follows:

p
t�= Bp
t�+
N
∑

k=1

Fpk�p (4.30)

where Bp is the concentration factor tensor for phase p� �p
t� is the local stress at time
t� �
t� is the overall stress at time t, N is the amount of subvolumes, �p is the eigenstress
in the pth subvolume and Fpk is the transformation concentration factor tensor, defining
the stress in a pth subvolume due to the unit eigenstress in the kth subvolume. The
transformation factor tensor can be determined in terms of compliances of phases, the
vector of linear thermal expansion coefficients and the mechanical strain concentration
factor matrix. The overall response can be expressed in terms of overall elastic compliance
M or stiffness L:

�
t�=M
t�+�
t� (4.31)
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where M = L−1 and �
t� is the uniform overall strain, when the volume is free of
surface tractions. Dvorak and colleagues noted that the unit cell models, Mori–Tanaka,
self-consistent or Eshelby approaches can be considered as special cases of TFA. The
transformation field approach was generalized by Chaboche et al. (Chaboche et al.,
2001), who introduced the damage effects into the model.
In the framework of the method of cells (MOC), suggested by Aboudi (Aboudi, 1989,

1999), a periodic square array of fibers is represented as a unit cell, consisting of four rect-
angular subcells. Three subcells are assigned the matrix behavior and the fourth subcell
represents the fiber.Approximating thedisplacement fields in the subcells in termsof a linear
expansion in local coordinates, and taking into account the equilibrium conditions, Aboudi
obtained the expansion coefficients and estimated the macro- and microscopic stresses and
strains. Figure 4.11 shows the model of a unidirectional fiber reinforced composite as a
double periodic array of fibers, and its representation as a unit cell in the framework of
the MOC.
The generalized method of cells (GMC) (Paley and Aboudi, 1992) uses the first order

representation of the displacement field in each subcell. Therefore, the piecewise uniform
strain and stress fields in the cell are determined. In the generalized version, the repeating
unit cells are subdivided into several subcells, to which phase properties are assigned.
This method can be applied to the analysis of more complex microgeometries, than can
be analyzed with the use of MOC (Aboudi, 1999).
Later, Aboudi et al. (Aboudi et al., 2001) proposed a new method, called the high

fidelity generalized method of cells (HFGMC). In this method, the displacement fields in
subvolumes are approximated by quadratic functions of local coordinates. This led to the
linear (and not piecewise uniform) strain and stress fields at the subvolume level (Aboudi
et al., 2003). The approach, used by Aboudi and colleagues, is based on asymptotic
homogenization techniques and on the higher order theory for functionally gradient
materials, developed by Aboudi et al. (Aboudi et al., 1999). The HFGMC produces
excellent results not only in the analysis of the overall properties of composites (already
achieved in the framework of GMC), but also in the analysis of local strain and stress
fields.

h2

h1

l1

l2

h1

h2

l2 l1

Figure 4.11 Method of cells. Model of a unidirectional fiber reinforced composite as double
periodic array of fibers, and its representation as a unit cell (after Aboudi and Pindera, 1992).
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4.3.8 Incorporation of detailed microstructural information: three-point

approximation

The incorporation of more detailed microstructural information into the bounds or estima-
tions of overall properties could improve the estimations. Several research groups carried
out analytical investigations in order to include more detailed and realistic microstructural
description into analytical and numerical–analytical models of the material behavior.
Using the truncated perturbation series as trial fields in the variational analysis, Beran

(Beran, 1965) obtained three-point bounds on the effective conductivity. On the basis
of Beran’s approach, Beran and Molyneux (Beran and Molyneux, 1966) and McCoy
(McCoy, 1970) developed bounds for the effective shear and bulk moduli of elastic
composites. The microstructure of a material is taken into account via the three-point
correlation function, which is defined as:

Ŝ3
r1� r2� r3�= �f
x+ r1�f
x+ r2�f
x+ r3�� (4.32)

where f
x�= 1 in material 0, and f
x�= 1 in material 1, x is the point location, r1� r2� r3
are coordinates and < � � � > gives the volume average over the spatial coordinate x.

The results by Beran and Molyneux and McCoy were simplified by Milton (Milton,
1981), who derived simple relations between three-point functions, which enabled the
Beran–Molyneux three-point bounds to be obtained in concise form. Milton introduced
the following averages of any physical property ⊓ of a composite:
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where v1 and v2 are the volume contents of the first and second phases and � and � are
geometric parameters of the microstructures which are defined via the three-point function:
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Using the formulae in (4.33), Milton presented the Beran–Molyneux–McCoy bounds in
the following form:

k− =
[

�1/k�− 4v1v2
1/k1−1/k2�
2

4�1/k̃�+3�1/G��

]−1

k+ = �k�− 3v1v2
k1−k2�2

3�k̃�+4�G��

G− =
[

�1/G�− v1v2
1/G1−1/G2�
2

�1/G̃�+6 

]−1

G+ =
[

�G�− 6v1v2
G1−G2�
2

6�G̃�+!

]

(4.34)



Microstructure–Strength Relationships 87

where k1� G1 and k2� G2 are the bulk and shear moduli for the phases, and:

" =
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10�k�2�1/k�� +5�G��3G+2k��1/G�� +�3k+G�2�1/G��
]

/�9k+8G�2

! =
[

10�G�2�k�� +5�G��3G+2k��G�� +�3k+G�2�G��
]

/�k+2G�2

The determination of the microstructural parameters � and � still presents a major
challenge. A number of studies on the estimation of these parameters have been carried
out (Milton and Phan-Thien, 1982; Berryman and Milton, 1988).
Torquato (Torquato, 1998) developed a new exact perturbation expansion approach

to the estimation of the effective stiffness tensor of macroscopically anisotropic compos-
ites. The approach is based on the exact series expansion for the effective stiffness
tensor of two-phase composites, truncated after third order terms. Using this method,
Torquato derived accurate approximate relations for the effective elastic moduli of
different 2D and 3D composite media. For the 3D case, the formulae, derived by Torquato,
take the form:

k

km
=

1+ 4Gm

3km
kmpvp−

10Gm

3
km +2Gm�
kmp�vm�

1−kmpvp−
10Gm

3
km +2Gm�
kmp�vm�

(4.35)

G

Gm

=
{

1+ 9km +8Gm

6
km −2Gm�
�vp−

2kmp�Gm

6
Km −2Gm�
vm�

− �
2

6

(

3km +Gm

km +2Gm

)2

vm�+5Gm

[

2km +3Gm


km +2Gm�
2

]

vm�

}

/
{

1−�vp

−
2kmp�Gm

3
km −2Gm�
vm�−

�2

6

(

3km +Gm

km +2Gm

)2

vm�

+5Gm

[

2km +3Gm


km +2Gm�
2

]

vm�

}

(4.36)

where � and � are parameters of the three-point approximation, kmp = 
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.
According to Böhm (Böhm, 1998), the estimates developed by Torquato (Torquato,

1998), ‘give the best analytical predictions currently available for the overall thermoelastic
response of inhomogeneous materials’.

4.3.9 Generalized continua: nonlocal and gradient-enhanced models

Classical continuum models do not reflect properly the effects of strain localization in
materials, neither the scale effects. That leads often to the mesh dependence of numerical
solutions, in particular, in the analysis of material degradation. In order to describe
the material behavior, influenced by small scale microstructures, a number of enriched
(generalized) continuum models have been developed, in which ‘nonstandard deformation
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and/or stress quantities account for the influence of the microstructure on deformation
process’ (Peerlings et al., 2001). The generalization of the continuum models is carried
out by adding nonlocal or gradient terms to the constitutive equations.
A nonlocal constitutive model of composites was developed by Drugan and Willis

(Drugan and Willis, 1996). According to them, ‘the leading-order correction to a macro-
scopically homogeneous constitutive equation consists of an additional term proportional
to the second gradient of the ensemble average of strain’ for two-phase composites
with isotropic and statistically uniform phase distribution. On the basis of the Hashin–
Shtrikman variational approach, Drugan and Willis derived an explicit closed-form
expression of the nonlocal constitutive equation, which includes an integral of the two-
point distribution function of the phases. Drugan and Willis demonstrated, that the
minimum RVE size (which the ‘effective modulus’ constitutive models of composites
may be applied to) is rather small (of the order of two reinforcement diameters).
In the following works by Willis (Willis, 2001) and Luciano and Willis (Luciano and

Willis, 2000, 2001a,b) the nonlocal constitutive responses of random composites subject
to deterministic and random body forces were analyzed, and bounds for the nonlocal
effective relations were derived.
In the gradient-enhanced models, which originate from the classical works by Toupin

(Toupin, 1962), and Mindlin (Mindlin, 1964, 1965), second and higher gradients of the
stress and strains are included in the constitutive models of materials. Aifantis (Aifantis,
1999) proposed gradient-enhanced elasticity and plasticity theories, and applied them to
the analysis of size effects in materials. Kouznetsova (Kouznetsova, 2002) developed a
second-order computational homogenization procedure, in which the deformation tensor,
and the first and second gradient of the displacement field are used to define the boundary
conditions on a RVE. At the microstructural scale, standard first-order equilibrium and
constitutive equations were used. Kouznetsova applied this method to simulate the size
effects in the deformation behavior of elasto-viscoplastic porous aluminum.
The nonlocal and gradient-enhanced damage models, in particular, the nonlocal Gurson

model developed by Tvergaard and Needleman (Tvergaard and Needleman, 1995) are
briefly discussed in Chapter 3.

4.3.10 Nonlinear material behavior

Several approaches have been developed for the determination of the overall properties
of nonlinear composites.
For the case of nonlinear polycrystals, Sachs (Sachs, 1928) and Taylor (Taylor, 1938)

derived estimations, which are similar to the Voigt and Reuss estimations for the linear
elastic materials, respectively. Bishop and Hill (Bishop and Hill, 1951) demonstrated that
the Taylor and Sachs estimates provide bounds of the material behavior, similar to the
Hill bounds for the linear case.
Later, several approaches were proposed, which are based on the estimations of prop-

erties of nonlinear composites in terms of properties for linear or nonlinear comparison
media with the same microgeometry.
Talbot and Willis (Talbot and Willis, 1985, 1996) suggested a generalization of the

Hashin–Shtrikman approach to the nonlinear composites. Considering a linear and homo-
geneous comparison material, they constructed trial fields using the corresponding Green
functions. The trial fields were substituted into the energy and complementary energy
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functionals, allowing the bounds for the energy to be determined. In some cases, the
nonlinear comparison medium should be considered to solve the problem.
Ponte Castañeda (Ponte Castañeda, 1991, 1992) developed a new variational approach,

which leads to the effective energy potentials of nonlinear composites defined in terms
of the corresponding energy potential for fictitious ‘linear comparison composites’ with
the same microgeometries. The resulting bounds are given as functions of the bounds for
the linear comparison composite. This procedure can be used to obtain nonlinear bounds
and estimates from any bounds and estimates for linear composites.
Further, Ponte Castañeda (Ponte Castañeda, 1998) developed three-point bounds for

the effective response of nonlinear composites. These three-point bounds were obtained
on the basis of the Milton bounds, and the variational procedure for the derivation of
nonlinear bounds presented by Ponte Castañeda in 1991 ( Ponte Castañeda, 1991).
Detailed reviews of analytical models of micromechanics can be found in the literature

(Christensen, 1979; Hashin, 1983; Mura, 1987; Nemat-Nasser and Hori, 1993; Böhm,
1998; Markov, 1999; Buryachenko, 2001; Torquato, 2002a; Milton, 2002).

4.4 Computational models of microstructures and strength of

composites

Real microstructures of materials are very complex, inhomogeneous and often localized.
The analytical estimation of the overall properties of composites is a nontrivial problem
even in the case of linear-elastic components and relatively simple microstructures.
Therefore, the generalization of the analytical estimations and bounds on the complex
microstructures (e.g. via three-point correlation function) and nonlinear phase behavior
presents an even bigger challenge for specialists. In such complex cases, the interrela-
tionships between microstructures and the strength and overall properties of composites
can be analyzed with the use of discretized numerical models, which incorporate discrete,
real or generic microstructures of materials.
Böhm (Böhm, 1998) classified the theoretical approaches toward the analysis of

discrete microstructures as follows:

• Periodic microfield approaches or unit cell methods: assuming the periodic phase
arrangement, one analyses a repeating unit cell in the microstructure (e.g. Li, 1999).

• Embedded cell approach: the material is represented as a cut-out (unit cell) with a real
microstructure, embedded into a region of the material with effective properties (e.g.
Dong and Schmauder, 1996).

• ‘Windowing approach’: microstructure samples, chosen using ‘mesoscale test
windows’, randomly placed in a heterogeneous material, are subject to homogeneous
boundary conditions. By averaging the results for several ‘windows’, one can obtain
bounds for the overall behavior of the material (Nemat-Nasser and Hori, 1993).

• Modeling the full microstructure of a sample (Silberschmidt and Werner, 2001).

The unit cell approach is most widely used in the mechanics of materials. In the next
section, the techniques and areas of the application of the unit cell approach are reviewed.
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4.4.1 Unit cell models of composites

Fiber reinforced composites subject to transverse loading present the simplest object of the
numerical unit cell analysis of the mechanical behavior of materials, taking into account
their microstructures. The statistical periodicity of the fiber arrangement is apparent, and
the problem is simply reduced to the 2D version (Figure 4.12).
The most widely used 2D unit cells for unidirectional fiber reinforced composites are

designed on the basis of the assumption of a squared or hexagonal arrangement of fibers.
When designing unit cells, the symmetries of the model geometry should be taken into
account to determine the minimized, but representative unit cells. Li (Li, 1999) proposed
the following procedure for the selection of a unit cell model for a composite. First, a peri-
odic element (whose translations in the x- and y-directions cover and reproduce all the
microstructure) is chosen. The examples of different periodic elements for unidirectional
fiber reinforced composite are shown in Figure 4.13. Then the representative part of the peri-
odic element is reduced by taking into account the symmetry about the x = 0 and y = 0
axes. Finally, the remaining quarter of the periodic element is further reduced using the 180�

rotational symmetry transformation (Figure 4.14). Applications of the unit cell approach to
unidirectional fiber reinforced composites are discussed in more detail in Chapter 10.
For the analysis of unidirectional fiber reinforced composites under nontransverse

loading, as well as short fiber and particle reinforced composites, axisymmetric unit cells
are often applied (Figure 4.15). Shen et al. (Shen et al., 1994) developed unit cells
with cylinder, truncated cylinder, double-cone and spherical reinforcements (plane strain
and axisymmetric models) to study the effect of shapes, concentration and distribution

Figure 4.12 Plane strain unit cell model of a fiber reinforced composite.

Figure 4.13 Different periodic elements in a composites with hexagonal and cubic arrange-
ment of fibers (after Li, 1999).
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Figure 4.14 Selection of the minimal unit cell of a composite, using symmetry analysis (after
Li, 1999).

(a)

(b)

Figure 4.15 Axisymmetric unit cell models of (a) particle and (b) short fiber reinforced
composites.

of inclusions on the mechanical response of the composites. Søvik (Søvik, 1996) employed
an axisymmetric model of a unit cell with a round particle to analyze the relations between
stresses in particles and averaged macrostresses in AlMgSi alloys. Figure 4.15 shows two
examples of axisymmetric unit cellmodels of short fiber and particle reinforced composites.
A more detailed analysis of 3D effects of the inclusion shapes on the material behavior

can be carried out using 3D unit cells. Figure 4.16 gives two examples of the most
often used cells: cubic and hexagonal/cylindrical. The cylindrical unit cells are used as
approximations of the hexagonal cells (Kuna and Sun, 1996).
Fang et al. (Fang et al., 1996) studied the effect of particle shapes, orientation and

volume fraction on the elastic moduli and stress–strain curves of Al alloy reinforced with
Al2O3 particles, using many various 3D hexagonal and cubic unit cells with spherical,
cylindrical, cubic and rectangular particles with different orientations. It was shown that
the higher the aspect ratio of particles in a given direction, the more effective is the
reinforcement in that direction.
Both types of widely used unit cell models, cubic and hexagonal/cylindrical cells,

have some disadvantages even when applied to the ideal periodic microstructures of
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(b)

(a)

Figure 4.16 Typical unit cells: (a) cubic and (b) hexagonal/cylindrical (Bao et al., 1991).

composites. Cylindrical unit cells can not fill the space fully, and, therefore, the assump-
tion about the 10% porosity of the materials is implicitly made in the analysis. This is the
case for the squared axisymmetric cells as well, which represent cylindrical cells, and,
therefore, can not fill the volume. Cubic cells can fill space, and, therefore, no porosity of
the material is implicitly assumed. However, maximum volume content of the spherical
reinforcement in the cells can be only up to 54%, while the volume content of rein-
forcement in the case of random dense packing of spheres can reach 60–64% (Mozhev
and Garishin, 2005). Thus, cubic unit cells are not applicable for the analysis of the
mechanical behavior of composites with high volume content of reinforcing particles.
The unit cell models of materials can be used also to analyze the damage initiation

and evolution in materials. Unit cells with damaged elements [for instance, broken or
debonded inclusion (Michel, 1993; Mozhev and Kozhevnikova, 1996, 1997) or damaged
matrix (Mishnaevsky Jr et al., 1999a)] have been used to analyze the effect of the
microcracks on the mechanical behavior of composites, and the inclusion–microcrack
interaction. Figure 4.17 shows several examples of unit cell models of a damaged material:
a material with voids, and cracked and partially debonded particles.
Bao (Bao, 1992) studied the effect of cracks in particles and interfacial debonding

on the strength and creep resistance of composites (Al, Ti and Ni alloys reinforced
with Al2O3�. A three phase damage cell model (hexagonal unit cell with a fractured
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Debonding

Crack in the
particle 

(a)

Void

(b)

(c)

Figure 4.17 Unit cells with damage: (a) axisymmetric unit cell, with partial interface
debonding (Mozhev and Kozhevnikova, 1997); (b) cell with cracked particle; (c) void in the
matrix (Steglich and Brocks, 1997).

particle with the crack plane perpendicular to the direction of load; the cell is transformed
into an axisymmetric one), embedded into the composite with undamaged particles was
used. Further, a unit cell model with debonding at the end of cylindrical particles was
considered. The effects of the total particle volume fraction, fraction of failed particles
and the hardening exponent of the matrix on the stress–strain behavior were studied.
Llorca et al. (Llorca et al., 1991) studied the effect of the void nucleation in the

matrix on the deformation of Al/SiC composites (particles and whiskers reinforced), using
axisymmetric cylindrical unit cells with reinforcements of different shapes (cylinders,
whiskers and spheres). Llorca and colleagues obtained the overall stress–strain response,
and distributions of void volume fraction, stress and strain distribution in matrix for
MMCs with different reinforcements. It was shown that the factors which increase the
constraints on plastic flow (e.g. hydrostatic stress) tend to decrease the overall strain to
matrix failure. Michel (Michel, 1993) studied the effect of particle cracking and debonding
on the void growth in the matrix of Al/SiC composites, using axisymmetric unit cells with
ellipsoidal, broken or debonded particles. He obtained stress–strain curves for different
particle shapes, and for broken or debonded particles. It was observed that the debonding
initiates at the pole of elliptical particles, and propagates toward the ‘equator’. Kuna and
Sun (Kuna and Sun, 1996, 1997) studied the void growth in ductile materials, using 3D
hexagonal and cubic unit cells. They demonstrated that the spatial arrangement of periodic
arrays of voids influences the deformation behavior only weakly, but affects strongly the
plastic collapse. Mozhev and Kozhevnikova (Mozhev and Kozhevnikova, 1996, 1997)
studied the mechanical behavior of elastomeric, particle reinforced composites with
weak interfaces, using cylindrical unit cells with a rigid spherical inclusion and partial
debonding. It was shown that the failure strain of composites decreases quickly with
increase of the volume content of particles.
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Steglich and Brocks (Steglich and Brocks, 1997) used axisymmetric cylindrical unit
cells with spherical or ellipsoidal cavities (void), particle cracking or particle–matrix
debonding to analyze the effect of the different modes of damage on the mechanical
behavior of nodular iron and Al/Al3Ti composite. The unit cell simulations were carried
out to calibrate the Gurson–Tvergaard–Needleman damage model. It was observed that
the critical strain increases in the following order: unit cell with cracked particle → unit
cell with debonding → unit cell with void and without any particle.
Thus, the unit cell approach permits the analysis of different mechanisms of damage

initiation (void growth, interfacial debonding, particle cracking) in heterogeneous mate-
rials and of their effect on material behavior. The application of the unit cell approach
in modeling the damage initiation and evolution is based on a very strong assumption:
namely, voids or microcracks are supposed to be uniformly distributed (i.e. no localization
of microcracks) and the interaction between them is neglected.
Some boundary effects can be observed in the unit cells, due to the fact that the load

is applied to the cell (periodic element), instead of the whole sample. In order to exclude
the boundary effects in the vicinity of the loading points of the cells and to take into
account the interaction between the cutout of microstructure and the rest of the material,
the embedded cell approach is used. In the framework of this approach, a unit cell is
embedded into a volume of the material with effective properties of the whole composite.
Figure 4.18 shows unit cell models of a material with and without embedding. The
properties of the embedding can be determined experimentally (Wulf, 1985) or by using
homogenization methods (averaging, self-consistent procedures; Dong and Schmauder,
1995, 1996). Axelsen (Axelsen, 1995), and Axelsen and Pyrz (Axelsen and Pyrz, 1995)
developed a unit cell model of a fiber reinforced composite, which consists of a sample
area (with different types of random distributions of fibers) and boundary area. The
boundary area interacts with the sample area, and its size is determined on the basis of
‘zone of influence’ calculations.
The embedded cell model developed by Dong and Schmauder (Dong and Schmauder,

1995, 1996) presents a fiber surrounded by a matrix layer, which is embedded in the
squared or cubic volume of the ‘equivalent composite material’. The properties of the
equivalent material are determined in a self-consistent manner. The embedding allows for
the effect of the rest of material and the influence of the interaction of other inclusions with
a given inclusion on the behavior of the cell. One can observe the similarity between this
approach and the generalized self-consistent method by Christensen and Lo (Christensen
and Lo, 1979) (Figure 4.9). Dong and Schmauder used the embedded cell model to study
the effect of fiber volume fraction and matrix strain hardening parameters on the limit
flow stress and stress–strain behavior of Al alloys with boron fibers under transverse
loading. The authors have obtained stress–strain curves for square and hexagonal fiber
arrangement and for different shapes of the embedded cells. The embedded cell model
allows to simulate also more complex structures of materials: Lessle et al. (Lessle et al.,
1999) and Schmauder (Schmauder, 2002) have developed the so-called ‘matricity model’,
which allows to simulate the behavior of a material consisting of two interpercolating
continuous phases with the use of the unit cell approach.
The analysis of the interaction between reinforcing inclusions in the material under

loading is possible in the framework of multi-inclusion unit cells (Segurado et al., 2003;
Mishnaevsky Jr, 2004a,b). In these models, an assumption about the regular arrangement
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(a)

(b)

Figure 4.18 Schematic diagram of unit cell models (a) without and (b) with embedding.

of groups of fibers or particles instead of the regular arrangement of single reinforcing
elements is used. This version of the unit cell approach allows to simulate more realistic
distributions of particles or fibers than the traditional single element unit cell models.
Siegmund et al. (Siegmund et al., 1993) used the unit cell consisting of an array of
ideal equal-sized hexagons to simulate the plastic flow of two-phase alloys with different
contiguities of phases. The hexagons represented randomly distributed grains of the alloy.
The authors studied the effect of contiguity of the phases on the plastic flow of a model
two-phase material with coarse structure.
Axelsen (Axelsen, 1995), and Axelsen and Pyrz (Axelsen and Pyrz, 1995) analyzed

the effect of the random distribution of fibers on the mechanical properties and damage
behavior of composites using multifiber unit cells with 200 fibers. In so doing, the specific
parameters of random microstructures (second-order intensity function, pair distribution
of fibers, etc.) have been taken into account.
The application of 3D multi-element unit cells is limited due to the high computational

costs of 3D simulations with many degrees of freedom. Therefore, the question arises of
how many microstructural elements can and should be placed into a 3D unit cell in order
to ensure both reliability and stability of results. Many groups sought to develop numerical
techniques for the generation and numerical analysis of 3D multi-element unit cells.
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Andrei Gusev (Gusev, 1997) developed a method and a program for the generation
of 3D multi-element unit cell models of short fiber reinforced composites. The method,
proposed by Gusev, was realized in the FE software package Palmyra (developed by
MatSim GmbH, a spin-off of the Swiss Federal Institute of Technology). The program
allows to design and mesh complex 3D realistic microstructures of short fiber reinforced
composites, and to compute elastic constants and stiffness of composites, as well as
other physical properties. Using this software package, Gusev and colleagues carried
out a number of studies of the effect of the microstructure on the elastic properties
of composites. Gusev (Gusev, 1997) generated 3D unit cells with elastic components
and up to 64 nonoverlapping statistically distributed particles, using the Monte-Carlo
method. He analyzed the overall behavior of elastic particle reinforced composites, using
a ‘constant-strain-tetrahedra displacement-based finite element code’.
Hine et al. (Hine et al., 2002) determined the elastic and thermoelastic properties of

short fiber reinforced composites. They generated unit cells with 100 nonoverlapping
aligned spherocylinders, and compared the results of their simulations with Halpin–Tsai,
Tandon–Weng and shear lag models.
Gusev et al. (Gusev et al., 2000) generated unit cells, which consisted of 100 nonover-

lapping parallel fibers with different diameters, using the Monte-Carlo procedure and
taking into account the measured distribution of diameters. The microstructural parame-
ters of unidirectional glass/epoxy composites were determined using image analysis. As
a result, Gusev and colleagues determined elastic constants of the unit cell models. They
demonstrated that the effect of the randomness of the composite microstructures on the
elastic properties is much more significant than the effect of the distribution of the fiber
diameters.
Han and Böhm (Han and Böhm, 2001), Böhm and Han (Böhm and Han, 2001) and

Eckschlager et al. (Eckschlager et al., 2002) developed FE models of unit cells with
15–20 randomly arranged spherical inclusions, and applied them to the modeling of the
damage of brittle particles in composites. Meshing of the models was carried out using
the preprocessor PATRAN. They used the commercial FE solver ABAQUS, which made
it possible to model nonlinear component behavior and damage evolution (not realized in
the FE code Palmyra). In contrast to Gusev’s approach, based on the Monte-Carlo method,
Böhm and colleagues used the so-called random sequential absorption (RSA) scheme
(Rintoul and Torquato, 1997). In the framework of the RSA scheme, the coordinates of
inclusions are generated using the random number generator; if the new particle overlaps
with an available inclusion, its location is accepted. Otherwise, a new location of the
inclusion is generated. Böhm et al. (Böhm et al., 2002) noted that the RSA approach
does not allow to generate unit cells with high volume concentrations of inclusions.
Segurado and Llorca (Segurado and Llorca, 2002) used the modified RSA algorithm

to generate multiparticle unit cells with 30 nonoverlapping identical spheres and particle
volume fractions of up to 50%. The unit cells with high volume content of the particles
were obtained by placing a given amount of particles in the unit cell, and then compressing
the unit cells in several steps, so that the volume content of the particles reached 50%.
The 3D multi-element unit cells can be further generated by placing nuclei of the

second phases, and simulating the evolution of microstructures and the growth of nuclei
according to some growth laws (Romanova et al., 2005).
Zohdi et al. (Zohdi et al., 2001) and Zohdi and Wriggers (Zohdi and Wriggers, 1999,

2001a,b) carried out finite element simulations of complex microstructures, using the
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domain decomposition approach. The subdomains contained from 2 up to 64 particles.
Zohdi and colleagues demonstrated that a subdomain with 20 particles is large enough to
calculate the effective response which is independent of the particle number, and a mesh
density of 2200–3000 degrees of freedom for the vector-valued balance of momentum per
particle delivers (macroscopically) mesh independent results. The responses calculated
for the subdomains with 16, 32 and 64 particles differed from one another by less
than 1%.
In many cases, complex, multiscale microstructures of materials can not be analyzed

in the framework of single unit cells. In these cases, hierarchical unit cell models or
combined multiscale models of materials are used.
Geni and Kikuchi (Geni and Kikuchi, 1998) and Kikuchi and Geni (Kikuchi and Geni,

1998) developed a two-level model of the deformation and damage in Al/SiC alloys,
which includes an axisymmetric (cylindrical) unit cell model with an elliptical particle
(lower level), and a box-shaped ‘super element’ (i.e. a model, consisting of many unit
cells with different particle volume fractions and shapes). The ‘super element’, consisting
of many axisymmetric unit cells, allows both the nonregularity of the material structure
and 3D effects to be taken into account. The authors studied the effects of shapes, volume
content, interaction between particles and their spatial distribution on the damage forma-
tion and strength of the materials, and derived the stress–strain relationships for alloys with
different particle aspect ratios, volume fractions, and uniform and nonuniform particle
distributions.
In several works, unit cell models have been combined with other numerical or analyt-

ical approaches to model the behavior of materials with regular microstructure on only
one scale level and without any periodicity of the microstructure on the other levels.
Böhm et al. (Böhm et al., 1993), Böhm and Rammerstorfer (Böhm and Rammerstorfer,
1993), Plankensteiner et al. (Plankensteiner et al., 1996, 1998) and other members of their
group developed several very sophisticated hierarchical models of metal matrix compos-
ites and steels. In order to study the overall response and mechanisms of local failure of
high speed steels with netlike microstructures, they used the hierarchical approach, which
included a discrete microstructure model, constructed on the basis of the image anal-
ysis of micrographs of the steels and the statistical averaging of properties at mesolevel,
and the transformation field approach or the incremental Mori–Tanaka approach at the
microscale. The authors studied the effect of progressive carbide cleavage on the stress–
strain curve, and showed that the regions of high particle density are ‘more highly loaded
than regions with low particle volume fraction’.
Plankensteiner et al. (Plankensteiner et al., 1996) developed the so-called ‘micro–

meso–macro model’ of high speed steels (HSSs) with layered microstructures. In the
framework of this model, each carbide string was treated as a particle reinforced matrix–
inclusion composite with the use of statistical averaging techniques (multiparticle effec-
tive field method). At the mesolevel, HSS was modeled as a laminated composite. With
this model, Plankensteiner and colleagues analyzed the mechanisms of damage and stress
distribution in the steels.
A schema of a hierarchical model of tool steel with a layered arrangement of primary

carbides is given in Figure 4.19: carbide strings are modeled as the homogeneous layers
with properties of carbide rich and carbide free materials, while the material inside the
strings is considered as a statistically homogeneous particle reinforced material.
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 1999a) presented a two-level model of

the damage propagation in Al/Si cast alloys. The stress–strain curves of the composite
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Micromodel Mesomodel

Figure 4.19 An example of the hierarchical model of a material (after Plankensteiner et al.,
1996, 1998). The microstructure of a high speed steel with carbide strings is modeled as
a layered material at the mesolevel and as a statistically homogeneous two-phase material
inside the strings.

with damageable Si inclusions were determined from the embedded unit cell analysis of
the deformation and damage in Al/SiC cast alloys. Then, the obtained stress–strain curves
were assigned to each finite element in the macromodel of a tensile specimen. Using
this hierarchical model, the damage initiation and evolution, caused by the cleavage of
Si particles, was simulated.
Summarizing, one may state that the unit cell approach, which was initially devel-

oped for the analysis of strictly periodic microstructures, is steadily expanded and has
been generalized to deal with less regular, heterogeneous and therefore more realistic
microstructures. This generalization is realized by introducing multi-element (multipar-
ticle and multifiber), embedded, self-consistent, hierarchical unit cells. Therefore, the
unit cell method is approaching the discrete microstructure simulations, with a view to
the analysis of real and generic microstructures of materials.

4.4.2 How to incorporate real microstructures of materials

into numerical models

The problem of the incorporation of information about microstructures into numerical
models of materials is one of the challenges of computational mesomechanics of materials.
Let us look at the different methods of incorporating the microstructural information

into computational models of materials.
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4.4.2.1 Microgeometry-based mesh design

A finite element model of a material microstructure is designed in such a way that
the element boundaries coincide with the phase boundaries. Figure 4.20 shows the
microstructure-based mesh generation from a digitized image of a microstructure. The
disadvantage of this method is that it can be rather difficult to align the element boundaries
along complex fractal phase boundaries and interfaces, and to fill complex, interpene-
trating phases with simple-shaped finite elements. However, this approach is straightfor-
ward and has been widely used to model real and generic microstructures of materials.
Ljungberg et al. (Ljungberg et al., 1986) obtained various structures of WC/Co hard

alloys from micrographs, idealized them and produced 2D FE meshes from these struc-
tures. Then, Ljungberg and colleagues analyzed the growth of the plastic zone in front of
a crack. To model the grain–grain interfaces, the authors used so-called ‘nodal-tie dislo-
cation elements’. It was shown that the plastic zone size in front of the crack is much
larger than the single mean free path in the binder phase.
Fischmeister et al. (Fischmeister et al., 1988) studied plastic deformation of the binder

in front of a crack in WC/Co hard metals with the use of an area microstructure
model, embedded in a homogeneous surrounding. The authors have shown that liga-
ments between carbides fail by nucleation and growth of pores at the points where the
crack from carbides enters the ligament. Tack (Tack, 1995) simulated the deformation
of coarse two-phase materials (steels) with the use of the FE code FINEL. The areas
with real structures were embedded in the coarsely meshed homogeneous surrounding.
The local refinement of the FE mesh in the vicinity of hard inclusions was carried out.
The effect of relationships between mechanical properties of inclusions and the matrix
on the local stress concentration, and deformation in the real structure was studied.
Broeckmann (Broeckmann, 1994), Gross-Weege et al. (Gross-Weege et al., 1996) and

Berns et al. (Berns et al., 1998) studied particle cracking and damage evolution in front
of a large crack in ledeburitic steels. The effects of the inclusion distribution and local
stress triaxiality on the stress state and fracture of these steels were investigated. The
authors took into account the decohesion between carbides and the matrix, which occurs
if the stresses normal to the interface reach a critical value.
One of the most efficient (and widely used) programs for the automatic microstructure-

based meshing and microstructural analysis of materials is the C++-based, object-
oriented FEM software OOF (‘object-oriented finite element analysis’), developed by

Figure 4.20 Microstructure-based FE mesh design: from digitized micrographs to the FE
mesh. Edges of FEs correspond to interfaces in the material.
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a group of scientists at NIST (USA) (Carter et al., 1997; Garcia et al., 2004). In fact, the
software package includes several programs: PPM2OOF (which reads image files in the
PPM format and creates automatically a FE mesh for OOF on the basis of a microstructure
image), OOF solver (which calculates stress and strain distribution in the material, a
recent version also includes the damage; Cannillo et al., 2002) and OOF2ABAQUS
(which converts the geometrical information of the data files created by PPM2OOF or
OOF into input files for ABAQUS). Recently, the new version of OOF (OOF2) was made
available on the Website of the group. OOF2 contains a new set of C++ classes for finite
elements and material properties, is more flexible and easily expandable, incorporates
nonlinear solver and is scriptable in Python.
While the PPM2OOF software produces the microstructure-based FE models for

the OOF solver, there exist several other programs which generate FE models from
microstructural images directly to the commercial FE programs (e.g. ABAQUS).
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2003a, 2004a) presented a program of

automatic microstructure-based mesh generation, and employed the program to simulate
the crack propagation in artificial microstructures of tool steels. The program reads the
pgm image files of real or artificial microstructures, and produces a command file for the
Pre-Processing FE software MSC/Patran, which generates the microstructural FE model.
Using this technique, Mishnaevsky Jr and colleagues tested a series of generic artificial
microstructures, and compared different (netlike, layered, clustered) arrangements of
primary carbides in tool steels with a view to their effect on the fracture toughness of
the steels.
In order to incorporate a quantitative description of real complex 3D microstructures

into micromechanical models of materials, Shan and Gokhale (Shan and Gokhale, 2001)
employed the surface rendering approach. Using serial sectioning, they generated a 3D
microstructural image, which was then embedded into a FE model. The coordinates of
the points on the surfaces of all the micropores from the images of sections were used
as input to recreate the 3D geometry of pores in the pre-processor I-DEAS. Shan and
Gokhale used this method to simulate the growth of voids in Al alloys.
Chawla et al. (Chawla et al., 2006) developed a method for the reconstruction of 3D

real microstructures of materials from sectional sectioning. The 3D microstructures were
reconstructed using the vectorial format software SurfDriver, and meshed using 10-node
modified quadratic tetrahedral elements, with subsequent mesh refinement. Chawla and
colleagues compared the 3D real microstructure models with 3D multiparticle unit cells
with spherical and ellipsoidal particles, and analytical (Hashin–Shtrikman and Halpin–
Tsai) estimations, and demonstrated that the 3D real microstructure models give the most
accurate results compared with experiments.

4.4.2.2 Voronoi cell finite element method

Ghosh and co-workers (Ghosh et al., 1995; Lee et al., 1999) developed a very sophis-
ticated and efficient approach to the modeling of deformation and damage initiation in
MMCs, called the Voronoi cell finite element method (VCFEM). In this method, FE
meshes are created by Dirichlet tessellation of real microstructures of material. Each
polygon formed by such tessellation (i.e. ‘Voronoi cell’) contains one inclusion at most
and is used as a FE. Figure 4.21 shows the Dirichlet tessellation of a microstructure and
the subsequent use of each polygon as a FE. Further, Ghosh and co-workers developed a
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Figure 4.21 Voronoi cell finite element method. A microstructure is divided into (a) Voronoi
polygons, which are then used as (b) hybrid FEs (after Moorthy and Ghosh, 1998).

‘hierarchical multiple scale’ model, which combines VCFEM (in nonperiodic microstruc-
ture subdomains) with asymptotic homogenization (in the periodic microstructure areas).

4.4.2.3 Pixel- and voxel-based mesh generation

A microstructural FE model of a composite is generated by assigning the properties of
composite phases to the FEs in a regular FE mesh, consisting of squared or cubic FEs.
This approach allows direct introduction of real microstructure images into FE models:
taking each pixel of a digitized micrograph of a microstructure as a FE, one can transform
an image of microstructure directly into a FE model. This approach has often been used
with digital image based (DIB) microstructure reconstruction.
The DIB modeling technique was developed by Hollister and Kikuchi (Hollister and

Kikuchi, 1994) to include the effects of microstructural morphology of bone in the FE
simulations of the mechanical behavior of bones. Tareda et al. (Tareda et al., 1997)
have used the DIB method together with the FEM-based asymptotic homogenization
method to simulate the overall mechanical behavior of a composite, as dependent on the
geometry of the microstructure and properties of the components. Tareda and colleagues
have shown that the actual stress–strain curve for the unit cell model obtained with the
use of DIB (and reflecting a real microstructure) is quite different from that obtained
in an idealized unit cell model (elastic response more compliant, different trend of the
strain hardening, etc.).
Garboczi and Day (Garboczi and Day, 1995) developed an algorithm and a model to

incorporate the microstructural information into FE models using a pixel-based approach,
and to determine the effective linear elastic properties of random, multiphase materials.
The algorithm treats each pixel of the digital image of microstructure as a linear FE.
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The authors investigated the effective Poisson’s ratio of two-phase random isotropic
composites numerically and compared the results with the effective medium theory
estimations.
Iung et al. (Iung et al., 1996) studied the strain heterogeneity in two-phase materials

(Ti alloys, dual-phase steels) on the basis of a developed FORTRAN program which
automatically generates 2D FE meshes (to be used by the ABAQUS code) representing
the image of a real microstructure. The mesh is generated ‘in an iterative way by superim-
posing on the boundaries square grid of growing size’, and is refined automatically at the
interfaces.
Telaeche Reparaz et al. (Telaeche Reparaz et al., 1997) used their own Verborde and

Digit codes to generate FE models of real structures of duplex (ferrite and austenite)
steels for ABAQUS on the basis of the image analysis of micrographs. Square elements
in the FE mesh were automatically associated with the corresponding materials. The
authors obtained stress–strain curves of two-phase steels, and compared them with the
stress–strain curves of the components.
Using the pixel/voxel based meshing, Kim and Swan (Kim and Swan, 2003a,b) devel-

oped and verified a new automated meshing technique that ‘starts from a hierarchical
quad-tree (in 2D) or oc-tree (in 3D) mesh of pixel or voxel elements’, and then successive
element splitting and nodal shifting are carried out in order to create mesh, which accu-
rately reflects the microgeometry of the cell. The method was applied to the generation
of multi-element unit cells, and verified.
A disadvantage of the simple versions of the pixel- or voxel-based approaches to

the model generation is that the smooth interfaces, observed in real microstructures, are
transformed into ragged interfaces in the pixel- and voxel-based models. An example of
the representation of an ideal geometric figure using the voxel based method is given
in Figure 4.22. One can see the ragged interface between the spherical particle and the
matrix, which is not available in the input microstructure. However, in the later versions
of the method, this problem is solved (e.g. by adaptive remeshing).

Figure 4.22 Example of the voxel-based representation of a microstructure: ragged phase
boundaries.
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4.4.2.4 Multiphase finite element method

The main idea of the multiphase finite element method is that the phase properties
are assigned to individual integration points in the element independently of the phase
properties assigned to other points in the element (cf. Figure 4.23). Interfaces in the
material can run through the FEs in the mesh. Contrary to the microgeometry-based
finite element mesh design, a FE mesh in this case is independent of the phase structure
of the material, and one can use relatively simple FE meshes in order to simulate the
deformation in a complex microstructure. The disadvantage of the multiphase finite
element method is that it does not allow fine interface effects to be taken into account.
One should note that this limitation can be even useful and could help to reflect better the
local material properties in some specific cases (e.g. WC/Co hard metals, where there is
no sharp interface, but a rather smooth transition from pure WC through solid solutions
with different concentrations to practically pure Co is observed).
Wulf (Wulf, 1985) and Lippmann et al. (Lippmann et al., 1996) simulated crack

initiation and propagation in real structures of multiphase materials (Al-SiC composites,
and AlSi cast alloy, respectively) with the use of multiphase finite elements and element
elimination techniques. Wulf compared the results of the simulations with experiments,
and demonstrated that the numerical and experimental results are in very good agreement.
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2004a) carried out micromechanical

simulations of the crack growth in tool steels, using multiphase and single phase FEs. In
the second case, the microstructural meshes were produced in such a way that the element
boundaries were placed along the interfaces. It was demonstrated that the simulations
with these methods yield very close results: a similar crack path and force–displacement
curve of the model were obtained in the comparison case.
Lippmann et al. (Lippmann et al., 1997) and Mishnaevsky Jr et al. (Mishnaevsky

Jr et al., 1999a) simulated the deformation of compact tension specimens from AlSi
cast alloys, taking into account the 3D real microstructures of the alloys. In order to
reconstruct 3D real microstructures of the material, serial section images of a cubic cut-
out of the samples were produced, digitized and transformed into a 3D model of the

phase boundary

integration

points

FE edges

Figure 4.23 Multiphase finite elements. The matrix–inclusion interface may run across FEs,
while integration points of one and the same element can be assigned to different phases.
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Figure 4.24 3D reconstruction of microstructures of particle reinforced composites from
serial sections, and the generation of a microstructural model in the framework of the multi-
phase finite element method (schema) (after Mishnaevsky Jr et al., 1999a).

composite. Figure 4.24 shows the schema of the reconstruction of a 3D multiphase FE
model of a composite from serial sectioning images and the generation of the microstruc-
tural model of the material using the multiphase FE method. The 3D FE simulations
were verified by Mishnaevsky Jr and colleagues by comparison with experimental results
(strain distribution in the small area near the specimen notch, observed experimentally).
In the micromechanical simulations carried out by Zohdi et al. (Zohdi et al., 2001)

and Zohdi and Wriggers (Zohdi and Wriggers, 1999, 2001a,b), microstructures of the
material were included in the models on the basis of the Gauss point method.
Approaches based on other discretization methods and solvers and used in micro-

and mesomechanical analysis, include boundary elements (Achenbach and Zhu, 1989),
discrete Fourier transforms and lattice models. In some of these methods, the
microstructural information can be incorporated into numerical models more simply or
more efficiently than in the framework of the FEM.

4.4.2.5 Lattice models

Ostoja-Starzewski (Ostoja-Starzewski, 2002) discussed the potential of lattice or spring
network models for micromechanical simulations, and demonstrated that spring network
models are an attractive alternative to the micromechanical finite element analyses. He
analyzed the mechanical behavior of composites with different shapes of inclusions and
ratios of the matrix/inclusion strengths (in planar case), using the spring network method.
The inclusions were modeled as single pixels or as finite regions, which made it possible
to take into account the anisotropy. As advantages of this method over the FEM, the
author cites the lack of need of remeshing and constructing of a stiffness matrix, and the
simplicity of the assignment of local material constants to the springs in the mesh.

4.4.2.6 Fast Fourier transforms

Moulinec and Suquet (Moulinec and Suquet, 1998) developed an iterative numerical
method of analysis of effective properties of composites, based on fast Fourier trans-
forms. By using the exact expression of the Green function for an elastic homogeneous
comparison material, the problem is reduced to an integral equation which is solved iter-
atively. According to the authors, this method provides an alternative to the FEM, and is
easy to parallelize. The microstructures of materials are introduced into the model using
digital images of real microstructures. The rate of convergence of this method depends
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on the contrast of properties between phases, and becomes slow for composites with high
contrast (e.g. materials with voids or rigid inclusions). To overcome the convergence
problem, Michel et al., (Michel et al., 1999) extended the method to composites with
high contrast of properties, using the numerical scheme for the computing response of
composites by grid refinement suggested by Eyre and Milton (Eyre and Milton, 1999).
The incorporation of discrete microstructures of materials into numerical models opens

the possibility of numerical testing of different discrete, real and generic microstructures
of materials. The numerical testing of microstructures can serve as a basic tool for the
optimization of materials, combined either with step-by-step, trial-and-error optimization
procedures or a statistical genetic algorithm, as proposed by Zohdi (Zohdi, 2003).
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5

Computational experiments in the
mechanics of materials:

concepts and tools

5.1 Concept of computational experiments in the mechanics of

materials

At one time, improvement of materials was triggered by the development of new tech-
nologies, such as the development of the Bessemer process of steel making, or the
discovery of vulcanization, which led to the industrial use of rubber and rubber-based
materials. Then, the progress went so far, that not only limitations of available tech-
nologies dictated the limits of the material performances, but also a predefined, required
microstructure of a material could be produced (using different methods, like powder
metallurgy, control of heat treatment regimes, nanotechnology, etc.). The question was
raised as to which microstructures of materials could ensure the required properties.
One of the ways to determine the optimal microstructures of materials is to carry out

the ‘virtual testing’ of different microstructures, using the micro- and mesomechanical
models of the materials behaviour.
According to Mishnaevsky Jr and Schmauder (Mishnaevsky Jr and Schmauder, 2001),

a possible scheme of the computational optimization/design of materials should include
the following steps:

• Problem definition: definition of necessary properties to be improved on the basis
of the analysis of service conditions, and the analysis of the available means of
the microstructure control; analysis of the effects of the material manufacturing and
processing on the microstructures (e.g., effect of the duration and temperature of

Computational Mesomechanics of Composites L. Mishnaevsky Jr
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sintering on the grain sizes and contiguity of hard alloys, or effect of hot working on
the type of structures in high speed steel).

• Determination of the input properties for the mesomechanical simulations, in particular:

– micrographing of cut-outs of the materials, image analysis, statistical descriptions of
microstructures, determination of microstructural parameters of microstructures;

– determination of the micromechanisms of deformation and damage in the materials
(e.g. debonding, particle failure);

– determination of the mechanical properties of the components, phases and interfaces.

• Choice of the appropriate simulation approaches: unit cell approach, multiscale simu-
lations, real structure simulation, cohesive concepts or element elimination, etc.

• Development of numerical models of the materials with real microstructures and
verification of the model by comparing the calculated and experimental results.

• Design of different artificial microstructures; virtual (computational) testing of the
microstructures; comparison of the output parameters of the simulations, iterative
step-by-step optimization and development of recommendations for the improvement
of the microstructures of materials. By testing typical idealized microstructures of a
considered material in numerical experiments, one determines the directions of the
material optimization and preferable microstructures of materials under given service
conditions. Such simulations should be carried out for the same loading conditions
and material, as the real structure simulations, which proved to reflect adequately the
material behavior.

• Producing and testing of the materials with improved microstructures in laboratory and
service conditions; verification of results.

While the suggested approach can serve as a general framework for the improve-
ment and design of structural materials, the typical path of the material improvement
has been the phenomenological/experimental/analytical way: namely, some assumptions
about the possibility of a material improvement are made on the basis of experiments
or general physical principles, are verified experimentally, and then realized as a new
material.
When designing the artificial microstructures of materials, which will be tested in the

numerical experiments, it can be useful to take into account some hints on the optimal
microgeometries of materials, using the analysis of biomaterials or experimental studies
(cf. Chapter 2).

5.2 Input data for the simulations: determination of material properties

The correct determination of input data for the simulations is the prerequisite for the
successful numerical analysis of the materials. The main challenge in this case is that
the required input data represent properties of small-scale volumes, embedded and
constrained by other phases, with complex geometry and some internal heterogeneity. In
many cases, the properties cannot be directly measured or tested, or might be different
from the properties of macrospecimens (due to the scale and size effects, constraints by
other components, effects of treatment regimes, etc.). The extraction of the data for the



Computational Experiments 117

phases from the standard or modified tests of materials can become a nontrivial problem,
which requires both rather complex experiments and an inverse analysis step.
In the following, we list some methods of experimental and experimental–numerical

determination of the mechanical properties of phases of multiphase materials.

5.2.1 Nanoindentation

Nanoindentation can be used to determine the elastic constants and the constitu-
tive behavior of phases. This method was used, for instance, by Trubitz (Trubitz,
1998) to determine the Young modulus of primary carbides in cold work steels.
The indentation with the Vickers indenter was carried out with simultaneous obser-
vation in the built-in microscope and recording the force–displacement (loading and
uploading) curves. By analyzing the force–displacement curves for loading and unloading,
the elastic constants of the constituents (primary carbides) of tool steels have been
determined.
An efficient method of extraction of the required material properties from the indenta-

tion data is the application of the neural networks (which can be trained on the basis of
experimental data or numerical simulations; Mukherjee et al., 1995; Huber, 2000; Huber
and Tsakmakis, 2001).

5.2.2 In-situ experiments using a scanning electron microscope

In order to determine the micromechanisms and conditions of the damage and fracture in
multiphase materials (Al cast alloys, tool steels), Mishnaevsky Jr et al. (Mishnaevsky Jr
et al., 1999b, 2001, 2003b) carried out a series of in-situ experiments using a scanning
electron microscope (SEM). While the small regions near the specimen notch were
observed under the SEM, the force–displacement curves were recorded during the loading
(Figure 5.1). The mechanisms of damage (particle cleavage, shear bands leading to the
cracking) were observed in the SEM. The points on the force–displacement curve, which
corresponded to the start of inelastic deformation and to the particle cracking, were

F

u

Figure 5.1 Schema of the analysis of damage mechanisms in composites by correlating the
SEM observations with the force–displacement curve (Mishnaevsky Jr et al, 2001, 2003b).
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registered. The effects of the microstructure on the strength and damage behavior have
been investigated by comparing the local deformation and damage distribution, observed
by the SEM, and the recorded force–displacement curves (local deviations of the curves,
start of the falling branch; cf. Figure 5.1) for different materials and microstructures (tool
steels, AlSi cast alloys with Si particles of globular and lamellar shapes).

5.2.3 Inverse analysis

In order to determine local properties of constituents (e.g. damage parameter, local
failure condition), simulations of the damage and crack growth in real microstruc-
tures of materials are carried out and compared with the experimental observations.
This technique can be applied, for instance, if all the data (microstructure of mate-
rials, expected response and crack path, boundary conditions, material properties)
are known from experiments, and only the condition of the local failure of one of
constituents has to be determined from the simulations. Wulf (Wulf, 1985) carried
out a number of simulations of the crack path in a compact tension (CT) specimen
from the Al/SiC composite using different local damage criteria. He compared the
stress–strain curves and the simulated crack paths, obtained with the use of different
damage criteria (critical plastic strain, parameter of triaxiality, Rice–Tracey damage
criterion) with the corresponding experimental data. As a result, Wulf determined the
correct damage parameter for the Al matrix in Al/SiC composites, and demonstrated that
both the stress–strain curves and the simulated crack paths correspond exactly to the
experimental data, if one uses the Rice–Tracey damage criterion with a critical value
of 0.2.
Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2003a) determined the failure condition

of the ‘matrix’ of cold wok steels (i.e. the steel material without primary carbides)
by carrying out the FE simulations of crack growth on real microstructures of the
steels, and the inverse analysis. Figure 5.2 shows a schema of the determination of the
damage condition for one phase of the material by comparing the experimental and
numerical crack paths, when all the other parameters of the material (microstructure,
elastic properties of the phases) are known.
Another version of the application of inverse analysis has been realized by

Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2001, 2003b) as an experimental–numerical
method combined with hierarchical simulations. The authors carried out SEM in-situ

experimental investigations of the damage evolution in tool steels, using three-point
bending specimens with inclined notch. The inclined notch ensured the high localization
of the stress concentration: the highest stress level was observed in only a small area,
which was simple to observe under the SEM.
Mishnaevsky Jr and colleagues recorded the force–displacement curves, and

photographed the areas of the specimens (in the notch), where the first microcracks were
expected and appeared (in primary carbides). Then, a macroscopic FE model of the
notched specimen was developed, and used to determine the local stress and strain fields
in these areas. The stress and strain distributions were used as input data for a microscopic
(micromechanical) FE model of the region, which incorporated the real microstructure
of the material (observed in the experiments), taken from the micrographs. Simulating
the deformation of the real microstructure and comparing the calculated stress and strain
distributions with the experimental results, Mishnaevsky Jr et al. (Mishnaevsky Jr et al.,
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Determination of
phase properties

(e.g., by 
nanoindentation)

Micrographs of a
real micro-
structure

FE modeling of
crack growth in a

real structure

Experimental analysis
of crack growth in the

real material

Comparison and
verification of the
model and used

parameters

Figure 5.2 Schema of the incorporation of microstructural parameters and local properties
of composite into a FE model, and its verification by comparison with experiments.

2001, 2003b) determined the conditions of failure of primary carbides of several types
of tool steels.
An interesting approach to determine mechanical properties of a complex material

(iron with secondary carbides) was employed by Muro et al. (Muro et al., 2002) (see
also Balladon et al., 2004). The purpose of this work was to determine the aver-
aged properties of the ‘matrices’ of a number of tool steels, which consist of iron
and different secondary carbides and oxides. Iturriza, Rodriguez Ibabe, Muro and other
scientists from the Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT,
Spain) produced materials, which are chemically and microstructurally identical to the
‘matrix’ of cold work steels, using powder metallurgy technology. Using hot isostatic
pressing (HIP), different sintering and heat treatment technologies (as austenitizing,
multitempering), they produced materials with predefined properties and microstruc-
tures. The materials were tested to determine the constitutive law and fracture toughness
of the ‘matrix’ of multiphase materials (tool steels). As a result, the fracture tough-
ness and constitutive law of the ‘matrix’ were determined, and used in mesomechanical
simulations.
One can see that all the listed methods include as a step some kind of modeling

of the constituents (either numerical simulations, or production of a model material
using powder metallurgy methods), which helps to interpret the experimental testing
data and determine from them material parameters, required for the micromechanical
simulations.



120 Program codes for the automatic models generation

5.3 Program codes for the automatic generation of 3D microstructural

models of materials

The concept of the optimal design of materials on the basis of the numerical testing of
microstructures can be realized if a large series of numerical experiments for different
materials and microstructures can be carried out quickly, in a systematic way, automati-
cally. This can be done, if labor costs of the numerical experiments, a significant part of
which are the efforts of the generation of micromechanical models, are kept very low. To
solve this problem, a series of programs was developed, which should automate the step
of the generation of 3D microstructural models of materials. After a 3D microstructural
model of a material with a complex microstructure is generated, the numerical testing of
the microstructure is carried out with the use of commercial FE software.
In this Section, we present several recently developed programs for the automatic

generation of 3D microstructural models of heterogeneous materials.

5.3.1 Program Meso3D for the automatic geometry-based generation of 3D

microstructural FE models of materials

As discussed in the Chapter 4, microstructure–strength and microstructure–damage resis-
tance relationships of composites can be analyzed numerically with the use of the unit
cell approach. In particular, multiparticle unit cells make it possible to analyze the overall
response, nonlinear behavior and damage evolution in composites, taking into account
both the interaction between phases, between elements of each phase (e.g. particles) as
well as with evolving microcracks and cracks.
In order to simplify and automate the generation of 3D multiparticle unit cell models

of composite materials, a program Meso3D was developed (Mishnaevsky Jr, 2004a). The
program defines the geometry, mesh parameters and boundary conditions of different
multiparticle unit cell models of materials, and generates a command file (session file) for
the commercial FE pre- and post-processing software MSC/PATRAN. A multiparticle
unit cell model of a representative volume of a composite material is created automat-
ically, when the session is played with MSC/Patran. Both 2D and 3D versions of the
program are available. Figure 5.3 shows some examples of the generated unit cells.
The program contains the following subroutines:

• Interactive definition of the parameters of the multiparticle unit cell.
• Design of the cell: arrangement of the inclusions in the box using the random number
generator.

• Writing the command file for the commercial MSC/Patran FE software.
• Statistical analysis of the generated microstructures.

Figure 5.3 Examples of the unit cells generated with the use of the program Meso3d.
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5.3.1.1 Definition of parameters

The geometry and parameters of the unit cell are defined during a short interactive session,
in which the parameters are introduced into the program either directly or by multiple
choice. The microstructures to be generated are defined by the sizes of the considered
cell, the shape, volume content and amount of inclusions, the kind of the inclusion
distribution (random, predefined, clustered, graded, etc.), the probability distribution of
the inclusion sizes, etc. The radii, form and positions of the inclusions can be read
from the input text file (for the cases of predefined or regular particle arrangements) or
generated with the use of random number generators. In the latter case, there are options
for the random, clustered, gradient arrangements or dense packing of particles. The model
is further defined via the fineness of the meshing, availability or nonavailability and sizes
of embedding, boundary conditions (uniaxial tension or triaxial loading).
Due to the fact that the models are geometry based, only simple shapes of the inclusions

(round and ellipsoidal) can be taken into account in this model.

5.3.1.2 Design of the cell

After the main parameters of the microstructure (volume content of reinforcement, shape
of reinforcement, type of the particle arrangement – random, graded, etc.) are introduced
interactively, the unit cell is designed as a box containing a given amount of round or
ellipsoidal particles of different sizes. Both embedded and nonembedded unit cells can
be produced.
The particles in the cell with an artificial microstructure are arranged using the random

sequential absorption (RSA) scheme. Each coordinate of the particle center is generated
independently, using the random number generator. After the coordinates of a first particle
are defined, the coordinates of each new particle are determined both by using the random
number generator, and from the condition that the distance between the new particle and
all available particles is no less than e.g. 0.1 of the particle radius. If this condition is
not met, the seed of the random number generator is changed, and the coordinates of
the new particle are determined anew. In order to avoid the boundary effects, the distance
between a particle and the borders of the box is set to be no less than 0.05 of the particle
radius.
In order to generate the localized particle arrangements, like clustered, layered and

gradient particle arrangements, the coordinates of the particle centers were calculated as
random values distributed by the Gauss law. The mean values of the corresponding normal
distribution of the coordinates of particle centers were assumed to be the coordinates of
a center of a cluster (for the clustered structure), or the y- or z-coordinate of the border
of the box (for the gradient microstructures). Figure 5.4 shows schematically examples
of such a design of the microstructures. The standard deviations of the distribution can
be varied, allowing generation of different particle arrangements from highly clustered
or highly gradient arrangements (very small deviation) to fast uniformly random particle
arrangements (a deviation comparable with the box size).
Another procedure is used to create multiparticle unit cells with high volume content

of particles. In this case, the dense packing algorithm is used, in which the unit cell is
filled by the particles ‘layer after layer’ with a predefined distance between the particles.
With this procedure, a volume content of particles of about 40% can be achieved.
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(a) (b)

Figure 5.4 Schema of the design of artificial (a) clustered and (b) gradient microstructures.

5.3.1.3 Command file

The program writes the command file for the automatic generation of the designed
model. When the command file is played with the commercial MSC/Patran software, the
geometrical model is first created, and then meshed with tetrahedral elements using the
free meshing technique (Thompson et al., 1999) (cf. Figure 5.5). After that, the mesh
is automatically improved, and finally the boundary conditions and material properties
are defined. The model can be further modified or run with different commercial or
noncommercial FE programs (such as ABAQUS and NASTRAN).
The FE models of both artificial and simplified real microstructures (with particles

approximated, e.g. by the ellipsoids) can be generated with this program. In the case of
real microstructures, either experimentally determined coordinates and radii of inclusions
are given in the input file, or the experimentally determined probability distributions of
these values can be used to generate quasi-real microstructures.

5.3.1.4 Statistical analysis of the generated microstructure

This subroutine carries out the statistical analysis of generated microstructures. It deter-
mines the average nearest-neighbor distances between particles, as well as the radial
distribution functions and the probability distributions of the distances between particles.
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Figure 5.5 Schema of the generation and meshing of different artificial microstructures on
the basis of predefined probability distribution of particle parameters.
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The accurate determination of these parameters requires a much larger number of
particles in a unit cell than necessary to compute the mechanical behavior. Further, the
limitations on the maximum amount of degrees of freedom in a FE model, related to
the hardware and software constraints, limit the amount of particles in a cell far below
the level required for statistical analysis. To overcome these limitations, we followed the
idea of Segurado et al. (Segurado et al., 2003), who generated much larger unit cells than
those used in their numerical experiments, using the same algorithms, and determined
the statistical parameters of the microstructures with the use of the larger cells. They
suggested that ‘� � � the cubic unit cells used for the simulation of the mechanical behavior
can be understood as small representative volume elements taken at random from the
larger cell.’ The program generates test unit cells of size 100× 100× 100mm with
predefined particle arrangements using the same algorithms as for the simulated cells, and
calculates the statistical parameters of microstructures for these cells. Figure 5.6 shows
examples of the radial distribution functions for different generated microstructures.
Lévesque et al. (Levesque et al., 2004) compared the results of numerical simulations

of the mechanical behavior of glass bead-reinforced polypropylene, carried out with the
use of this program, with analytical studies, based on the homogenization approach in the
affine formulation. The matrix (polypropylene) was modeled as a nonlinear viscoelastic
material, using the Shapery nonlinear law. The authors observed very good agreement
between the numerical and analytical results.
A version of the program Meso3D, called Meso3DFiber, generates 3D unit cells for

unidirectional fiber reinforced composites. The FE meshes were generated by sweeping
the corresponding 2D meshes on the surface of the unit cell (see Chapter 10).

5.3.2 Program Voxel2FEM for the automatic voxel-based generation of 3D

microstructural FE models of materials

The program Meso3D, presented above, allows the automatic generation of 3D FE
microstructural models of representative volumes of materials, using the exact geometric
description of microstructures and the free meshing method. However, the geometry-
based approach, used in this program, is applicable only for relatively simple geometrical
forms of microstructural elements in composites.
In order to carry out the numerical analysis of arbitrarily complex 3D microstructures,

another approach was suggested, which has to complement the program Meso3D. The
approach, based on the voxel array description of material microstructures, was realized
in the framework of a new program Voxel2FEM (Mishnaevsky Jr, 2005a).
The representative volume is presented as an Nx ×Ny ×Nz array of points (voxels),

each of them can be either black (particle) or white (matrix) (for a two-phase material).
This approach can be generalized on multiphase materials simply as well. In the inter-

active session, a user determines the way the microstructure information is introduced
into the model: either by reading input file(s) containing the voxel array, or by gener-
ating artificial microstructures (e.g. multiparticle unit cells or 3D random chessboards),
using the random number generator. Then, the parameters of the microstructure are intro-
duced. The program defines the geometry and boundary conditions of the model, and
produces a command (session) file for the commercial software MSC/PATRAN, which
generates a 3D FE microstructural model of the representative volume of material. The
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Figure 5.6 The radial distribution functions for different microstructures: (a) random;
(b) clustered and (c) graded particle arrangements.
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designed microstructures are meshed with brick elements, which are assigned to the
phases automatically according to the voxel array data.
The program Voxel2FEM is applicable both for the design of artificial microstruc-

tures of materials, and for the reconstruction and analysis of real 3D microstructures
(Figure 5.7). The input data (voxel array) necessary for the reconstruction of the 3D real
microstructures can be obtained by using computational tomography or serial sectioning
(Ljungberg et al., 1986; Povirk, 1994; Pyrz, 1999).
Several built-in subroutines in the program allow reading of the microstructure data

from an external file (for the case of real microstructures), generation of different prede-
fined phase arrangements, as well as the percolation theory analysis of the microstructures.

5.3.2.1 Subroutine for generating random microstructures and multiparticle

unit cells

The program can generate voxel arrays for multiparticle unit cells with different arrange-
ments of round particles in a matrix, or for the random and percolating structures (3D
random chessboard). The voxel array data for 3D random microstructure models (3D
random chessboards) are produced with the use of random number generators. The

SEM micrograph 

FE model of real
microstructure

Figure 5.7 Section of a real microstructure of a two-phase material, and a FE model, gener-
ated with the program Voxel2FEM.
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voxel arrays for multiparticle unit cells with many round particles are generated, using
the algorithms described in Section 5.3.1.

5.3.2.2 Subroutine for generating graded composite microstructures

In order to analyze the effect of graded microstructures on the strength and damage in
composites, a subroutine for the automated generation of random graded microstructures
was included in the program Voxel2FEM.
This subroutine defines the distribution of black voxels as a random distribution both

in X and Z directions, and a graded distribution in Y direction. The graded distribution
of black voxels along the axis Y follows the formula:

vc�y�= 2 vc0
1+ exp�g−2 gy/L�

where vc�y� is the probability that a voxel is black at this point, vc0 is the volume content
of the black phase, L is the length of the cell, g is a parameter of the sharpness of the
gradient interface and y is the Y coordinate (Section 7.6). This formula allows to vary the
smoothness of the gradient interface of the structures (highly localized arrangements of
inclusions and a sharp interface versus a smooth interface), keeping the volume content
of inclusions constant.

5.3.2.3 Subroutines for the percolation theory analysis of 3D microstructures

When generating the representative unit cells, the availability of infinite percolation
clusters in the generated microstructure is checked using the burning algorithm (Garboczi
et al., 2006). The subroutine (based on the program developed by Garboczi et al.) searches
all three directions. The subroutine allows either periodic or hard boundary conditions.
The information about the availability/nonavailability of percolation clusters for both
phases and all the directions, is printed out in the session file.
Another subroutine, built-in in the program, carries out the percolation analysis of

generated or reconstructed microstructures with the use of the alternative algorithm of the
cluster labeling, suggested by Martín-Herrero and Peón-Fernández (Martín-Herrero and

(a) (b) (c)

Y

X

Figure 5.8 Examples of different generated microstructures: (a) random 3D chessboard
microstructure; (b) a round particle; (c) multiparticle unit cell.
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Peón-Fernández, 2000). This subroutine carries out the labeling of clusters of voxels,
calculates the average and maximum cluster dimensions in all three directions and detects
the existence or nonexistence of the percolation in all directions. These subroutines allow
the complete percolation analysis of the microstructures to be carried out, as well as the
comparison of results obtained using different techniques.
Figure 5.8 shows examples of different generated microstructures: random 3D chess-

board microstructure (only one phase is shown), a round particle and a multiparticle
unit cell.
(Demo versions of the programs Meso3D and Voxel2FEM are available from the

author on request.)
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6

Numerical mesomechanical
experiments: analysis of the effect of
microstructures of materials on the
deformation and damage resistance

As stated in Chapter 2, the subject of the mesomechanics of materials is the analysis
of interrelationships between microstructures and mechanical properties of materials,
taking into account not only characteristics of single elements or averaged parameters of
microstructures, but also the synergistic effects and interaction between many elements
of microstructures.
In this and following chapters, we carry out systematic numerical experiments to

investigate the effect of the composite microstructure on the mechanical behavior, strength
and damage resistance of the composite. The computational experiments are carried
out, using the programs of automatic generation of microstructural models of materials,
described in Chapter 5. As a test material, the aluminum matrix reinforced by ceramic
(SiC) particles is considered.
First, the comparison of different types of microstructures is carried out. The following

questions should be answered: how does a particle arrangement (e.g. graded, clustered,
random, etc.) influence the stiffness, strength and damage resistance of the composite?
Which arrangement of particles ensures the highest damage resistance?
Then, different types of microstructures are investigated in more detail. In particular,

the effects of parameters of graded, clustered and interpenetrating microstructures on the
deformation, stiffness and damage resistance of composites are analyzed in numerical
experiments.

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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6.1 Finite element models of composite microstructures

A number of 3D multiparticle unit cells with different arrangements of particles were
generated automatically with the use of the program Meso3D and the commercial FE
code MSC/PATRAN. Unit cells with different amounts of particles, different volume
contents of the inclusion phase (from 2.5 to 15%) and different particle arrangements
have been considered.
The cells were subject to a uniaxial tensile displacement loading (1mm). The sizes of

the 3D unit cells were 10×10×10mm, and of the 2D cells (considered in Chapters 7
and 8) were 10×10mm. The micromechanical problems were solved in the framework
of the embedded cell approach.
The models, considered in this Chapter, contained about 30000 elements. Each

particle contained about 400 FEs. The radii of particles were calculated from the
predefined volume content (VC) and the number of particles in the box, and
were as follows: 1�1676mm�VC = 10%�N = 15�, 0.9267mm �VC = 5%�N = 15�,
1�3365mm(VC = 10%�N = 10� and 1�0608�VC = 5%�N = 10�.
The embedding was 14×14×14mm. The nodes at the upper surface of the box were

connected, and the displacement was applied to only one node. The simulations were
done with ABAQUS/Standard.
Figure 6.1 gives the schema of the model.

6.2 Material properties used in the simulations

As a test material, SiC particle reinforced Al matrix composites were used. This material
is widely used in industry (e.g. in aviation and the automobile industry). Furthermore, the
deformation and damage mechanisms of this material are very well investigated, and the
properties, damage criteria and conditions are well known (Wulf, 1985; Wulf et al., 1993;
Derrien, 1997; Baptiste, 1999; Derrien et al., 1999). This allows us to omit the initial

Figure 6.1 Schema of the embedded multiparticle unit cell.
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steps of the program of the computational testing and optimization of materials, outlined
in Section 5.1 (i.e., determination of components properties and damage mechanisms),
and go directly to the virtual testing and comparison of microstructures.
In the simulations, the following material properties have been used. The inclusions

(SiC particles) behaved as elastic isotropic damageable solids, characterized by Young
modulus Ep = 485GPa and Poisson’s ratio 0.165. The Al matrix was modeled as an
isotropic elastoplastic solid, with Young modulus Em = 73GPa and Poisson’s ratio 0.345.
The experimental stress–strain curve for the matrix (provided by Dr E. Soppa, personal
communication) was approximated by the deformation theory flow relation (Ludwik
hardening law):

�y = �yn+h�pl
n

where �y is the actual flow stress, �yn is the initial yield stress, �pl is the accumulated equiv-
alent plastic strain and h and n are the hardening coefficient and the hardening exponent.
The parameters of the curve for thematrixwere as follows:�yn = 205MPa� h = 457MPa�
n = 0�20.
The embedding zone behaved as a composite with averaged properties, i.e. as an

elastoplastic material (Al/SiC), with Young modulus Eav = 75�7GPa (for VC = 10%)
and Eav = 88�4GPa (for VC = 15%), and Poisson’s ratio 0.323 taken from Wulf
(Wulf, 1985) and Wulf et al. (Wulf et al., 1993). The elastoplastic stress–strain curve
for the composite (embedding) was also taken from the publications by Wulf. For
the composite (embedding), the parameters of the Ludwik law were: �yn = 216MPa�
h= 525�4MPa� n= 0�25.
Damage growth in the particles and in the matrix was simulated using the subroutine

User Defined Field, described in the next section. In the simulations described in this
Chapter (3D comparison of different types of microstructures), only the particle failure
(and not the void growth in matrix or interface debonding) was considered, in order to
separate out the effect of the interaction of failed particles via the stress fields, and not
via the formation of microcracks in the matrix.
As output parameters of the numerical testing of the microstructures, the effective

response of the materials and the amount of failed particles, the fraction of failed elements
in particles and in matrix versus the far field strain, as well as the stress, strain and
damage distributions in the material were determined.

6.3 Damage modeling in composites with the User Defined Fields

6.3.1 Damage mechanisms and failure conditions

Let us summarize briefly the experimental observations about the micromechanisms of
damage evolution in SiC particle reinforced Al matrix composites under mechanical
loading. First, some particles become damaged and fail or debond from the matrix; after
that, cavities and voids nucleate in the matrix (initially, near the broken particle), grow
and coalesce, and that leads to the failure of the matrix ligaments between particles, and
finally to the formation of a macrocrack in a volume (Derrien, 1997; Baptiste, 1999).
The damage mechanisms in composites are strongly influenced by the particle sizes: if

the SiC particles are bigger than 10�m, particle cracking is the main damage mechanism
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at the early stages of loading, which leads then to void nucleation in the matrix in the
vicinity of the broken particles (Mummery and Derby, 1993). Otherwise, for smaller
particles, the decohesion at the particle–matrix interface becomes the main damage
mechanism.
The quantitative damage criteria for the components of Al/SiC composites have been

analyzed, tested and verified in many works. According to Hu et al. (Hu et al., 1998)
and Derrien et al. (Derrien et al., 1999), the SiC particles in Al matrix become damaged
and fail, if the critical maximum principal stress in the particles exceeds a critical level.
The critical maximum principal stress is a random value, with an average of 1500MPa.
Damage growth in the Al matrix occurs by the mechanism of formation and growth of

voids. The void growth in the Al matrix of Al/SiC composites can be modeled with the
use of different criteria: the critical equivalent plastic strain, triaxiality factor, different
damage parameters and indicators, including the Gurson damage model and the nonlocal
version of this model (Reusch et al., 2003), as well as the Rice–Tracey damage parameters
indicator. Wulf (Wulf, 1985) carried out numerical studies of mechanical behavior and
the crack path in the composites with these criteria, and compared the results with experi-
ments. The simulations with the Rice–Tracey damage indicator produced excellent results
for Al/SiC composites: both the crack paths in a real microstructure of the material and the
force–displacement curves were practically identical in the experiments and simulations.
The damage indicator, used by Wulf, is based on the model of a spherical void growth in
a plastic material in a general remote stress field with high stress triaxiality, developed
by Rice and Tracey (Rice and Tracey, 1969). The local damage condition is given by:

D =
�pl�c
∫

0

e3	/2d�pl =Dcr

where D is the damage indicator, �pl is effective plastic strain, �pl�c is critical plastic
strain, 	 is stress triaxiality, 	= �H/�V� �H is hydrostatic stress, �V is von Mises equiva-
lent stress and Dcr is the critical value of the damage indicator �Dcr = 0�2�. According to
Fischer et al. (Fischer et al., 1995), the results of the FE simulations with the Rice–Tracey
damage indicator were ‘in surprisingly good agreement with experimental observations’.
A possible alternative to the Rice–Tracey damage indicator for the simulation of crack

growth in the Al matrix is the approach based on the constitutive equations for porous
plasticity developed by Gurson (Gurson, 1977) and improved by Tvergaard (Tvergaard,
1981). According to Geni and Kikuchi (Geni and Kikuchi, 1998), the simulations with
the Gurson model give results which are very close to the experimental data as well.
Good results can be obtained by using the nonlocal version of the Gurson model (Reusch
et al., 2003).
In our further simulations, we use the critical maximum principal stress as a criterion

of the failure of SiC particles, and the Rice–Tracey damage indicator, as a parameter of
the void growth in the Al matrix.

6.3.2 Subroutine User Defined Field

In the following numerical analysis of the microstructure–strength interrelationships of
composites, we simulate the initiation and growth of damage and cracks both in ceramic
inclusions and in the matrix of the composite, using the FE weakening approach.
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Figure 6.2 Algorithm of the modeling of damage evolution in multiphase materials using
element weakening approach (ABAQUS Subroutine User Defined Field).

The ABAQUS Subroutine User Defined Field (USDFLD), which allows simulation
of the local damage growth in both phases of Al/SiC composites as a weakening of
FEs, was employed. In this subroutine, the phase to which a given FE in the model
is assigned, is defined through the field variable of the element. Depending on the
field variable, the subroutine calculates either the Rice–Tracey damage indicator (in the
matrix) or the maximum principal stress (in particles). Another field variable charac-
terizes the state of the element (‘intact’ versus ‘damaged’). If the value of the damage
parameter or the principal stress in the element exceeds the corresponding critical level,
the second field variable of the element is changed, and the stiffness of the elements
is reduced. The Young modulus of this element is set to a very low value (50 Pa,
i.e. about 0.00001% of the initial value). The critical level of the maximum principal
stress can be either a constant value, or a random value with a predefined probability
distribution. The number of failed elements are printed out in a file, which can be
used to visualize the calculated damage distribution. Figure 6.2 gives a schema of the
subroutine.

6.3.3 Interface debonding

Along with the particle cleavage and void growth in the Al matrix, the interface debonding
between the SiC particles and the Al matrix plays an important role in the destruction of
Al/SiC composites in many cases. According to Clyne and Withers (Clyne and Withers,
1993) and Mummery and Derby (Mummery and Derby, 1993), the interface debonding
becomes the leading damage mechanism in the case of relatively small particles �∼<

10�m�.
In order to simulate the interface debonding in composites, the cohesive zone

and interphase layer models are most often used. Needleman (Needleman, 1987)
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suggested to apply the cohesive crack model to analyze the interface decohesion.
Schneider and Brocks (Schneider and Brocks, 2003) and Brocks (Brocks, 2004) imple-
mented the cohesive zone model with the traction–separation law, as a User Element
in ABAQUS. Segurado and Llorca (Segurado and Llorca, 2004) developed a 3D
quadratic interface FE for the simulation of fracture in composites. The element
can include any traction–separation law at the interface, and can be used to simu-
late both the interface decohesion and cleavage. Segurado and Llorca applied this
interface element to simulate damage evolution in multiparticle unit cell models of
composites.
Another approach is the interphase layer model, in which the interface is considered

as a layer of finite thickness between two phases (Robertson and Mall, 1992; Jayaraman
et al., 1993). Recently, Tursun et al. (Tursun et al., 2006) employed this approach to
analyze the interface damage in Al/SiC particle reinforced composites. Chaboche et al.
(Chaboche et al., 1997) compared these two types of models (interphase layer and
cohesive zone), and demonstrated that they lead to similar results, if the friction effects
do not play a significant role.
Chandra and Ananth (Chandra and Ananth, 1995) proposed the spring layer model

in which ‘the interphase region is replaced by an interface of negligible thickness
possessing the required strength’. The interface nodes are duplicated, and connected by
springs, which can fail under some conditions. Chandra and Ananth modeled the interface
debonding using the stress based failure theory.
In the following sections, we study Al/SiC composites with relatively large SiC inclu-

sions and strong interfaces (Wulf, 1985). Therefore, only the particle cracking and void
growth mechanisms of damage will be taken into account. In Chapter 10, we analyze the
interface damage in unidirectional long fiber reinforced composites, using the interphase
layer model.

6.4 Stability and reproducibility of the simulations

At this stage of the work, we seek to clarify whether the ‘random’ particle arrange-
ments have peculiarities as compared with regular or localized particle arrangements,
and whether these peculiarities are stable, reproducible and typical for the random
arrangements.
Since the random particle arrangements were generated from a predefined random

number seed parameter (idum) (which should ensure the reproducibility of the random
number series), variations of this parameter lead to the generation of new microstructures.
Five realizations of the random microstructures with 15 spherical particles and volume
content of ceramic phase 10% (produced with different random numbers seeds) were
generated and tested.
Figure 6.3 shows the equivalent plastic strain distribution on the boundaries of the box

and on the matrix–particle interfaces as well as in a vertical section in a unit cell with
randomly arranged particles (VC= 5% and 10%).
Figure 6.4 (a) shows the tensile stress–strain curves for the five different random

arrangements (15 particles, VC= 10%). For comparison, we also included the curve for
the regular and gradient particle arrangements. Figure 6.4(b) gives the amount of failed
particles plotted versus the far field applied strain.
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Figure 6.3 Distribution of equivalent plastic strains (a) on the box boundary, (b) on the
matrix–particle interface and (c) in a vertical section in a microstructure with random particle
arrangements (15 particles, VC = 10%). Total strain= 0�25. Reprinted from Acta Mater.,
52 (14), Mishnaevsky Jr, ‘Three-dimensional� � � ’, pp.4177–4188, Copyright (2004), with
permission from Elsevier. (See Plate 1)

One can see from Figure 6.4 that the effective responses of the materials with random
microstructures in different realizations lie very close to one another and differ from
that for the regular or localized microstructures. However, some variations of both flow
stress and damage behavior of different random microstructures are observed as well,
especially after the far field strain exceeds 0.1. The difference between the stresses for
different realizations of the same random structure falls in the range of 2% even at
the rather high far field strain �� = 0�2�. For comparison, the difference between the
regular and gradient particle arrangement is about 16% at the far field strain 0.2, and
9% at the far field strain 0.1 (Figure 6.4). Therefore, although the stress–strain curves
diverge a little when the strain is higher than 0.1, the differences between realizations of
the random microstructure are still much smaller than the difference of the mechanical
response between the different types of microstructures. In the following, at least three
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Figure 6.4 (a) Stress–strain curves and (b) the fraction of failed particles plotted versus
the far field strain for the five random arrangements (15 particles, VC = 10%) and for the
regular particle arrangement. Reprinted from Acta Mater., 52 (14), Mishnaevsky Jr, ‘Three-
dimensional � � � ’, pp. 4177–4188, Copyright (2004), with permission from Elsevier.

to five realizations of random microstructures will be simulated and averaged when a
random microstructure is compared with other microstructures.
The rate of particle failure is lower for all the considered random particle arrangements

than for the regular and clustered microstructures: the fraction of failed particles increases
from 40 to 80%, when the far field strain increases 2.8 times in the case of the random



Numerical Mesomechanical Experiments 137

particle arrangement, and increases from 20 to 86% when the far field strain increases
1.5 times for the regular particle arrangement.
One can see that the flow stress for the regular microstructure of the composite is

higher than that for the random microstructures (in the following paragraphs, the regular
microstructure ensures highest flow stress among all considered microstructures). It is of
interest that in the simulations by Segurado et al. (Segurado et al., 2003) the flow stress
for the regular BCC particle arrangement was significantly lower than for the random
particle arrangement. The difference between our result and the results by Segurado and
colleagues can be caused by the fact that the model, used by the authors, does not take
into account the stress redistribution in the composite due to the reinforcement fracture.
The varied distance between particles together with the effect of the interaction of cracks
in neighboring particles in the case of the random particle arrangement can lead to the
formation of weakened regions with high density of failed particles. The deformation of
the weakened regions determines the low stiffness of the whole cell. This is not the case
if the particles are placed equidistantly, as in the regular microstructures, and the local
weakening in a particle is averaged over the entire specimen. Therefore, the constant
large distance between particles, typical for the regular microstructures, can prevent
the formation of weakened areas in our case, but not in the model by Segurado and
colleagues.

6.5 Effect of the amount and volume content of particles on the

deformation and damage in the composite

At this stage of the work, the effect of the volume content of hard phase and the
amount of particles on the effective response and damage behavior of the composite were
considered.
Figure 6.5 shows the tensile stress–strain curves for the random particle arrangements

with varied amount of particle [VC = 5%, amount of particles 5, 10 and 15, Figure 6.5(a),
and the same for VC = 10%, Figure 6.5(b)]. Figure 6.6 gives the tensile stress–strain
curves for the regular particle arrangement with varied volume content of particles [10
particles, VC varied from 2.5 to 15%, Figure 6.6(a), and 15 particles, VC varied from
5 to 15%, Figure 6.6(b)]. Figure 6.7 shows the amount of failed particles in the box
plotted versus the far field applied strain [10 particles, varied VC, Figure 6.7(a), and 15
particles, varied VC, Figure 6.7(b)].
In this case, the difference between the response of the composite with 5, 10 and 15

particles increases with increasing load, and the flow stress is higher for a composite
with a higher amount of particles.
The curves of the amount of failed particles plotted versus the applied strain have an

(almost) linear part (up to 10–12 particles of 15 fail) and an ‘asymptotic’ part (when
the amount of failed particles slowly approaches the total amount of particles). Since
the last part of the curve (‘asymptotic’) hardly reflects the real damage growth process,
one may define a ‘critical applied strain’ as a far field applied strain at which the
linear part of the curve goes into the ‘asymptotic’ part of the curve. In most cases, this
takes place when approximately 80% of particles (12 particles of 15, or 8 particles of
10) fail.
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Figure 6.5 Stress–strain curves for the random particle arrangement, [VC = 5% (a) and
10% (b); amount of particles 5, 10 and 15]. Reprinted from Acta Mater., 52 (14), Mish-
naevsky Jr, ‘Three-dimensional � � � ’, pp. 4177–4188, Copyright (2004), with permission from
Elsevier.
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Figure 6.6 Stress–strain curves for the regular particle arrangement: (a) 10 particles; (b)
15 particles, (varied volume content). Reprinted from Acta Mater., 52 (14), Mishnaevsky Jr,
‘Three-dimensional � � � ’, pp. 4177–4188, Copyright (2004), with permission from Elsevier.

The critical applied strain depends on the volume content of particles as well. One
can see from Figure 6.7, that the higher the volume content of particles, the lower
is the critical applied strain. An increase in the volume content of particles by 5%
leads to a decrease of the critical applied strain by 4–5%, for cells with both 10 and
15 particles.
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6.6 Effect of particle clustering and the gradient distribution of

particles

At this stage of the work, the effects of particle arrangement and localization on the
deformation and damage evolution in the composite were considered.
Two types of gradient particle arrangements were considered: an arrangement of

particles with the vector of gradient (from the high particle concentration region in
the upper part of the cell to the low particle concentration region in the lower part of
the cell) coinciding with the loading direction (called in the following a ‘gradient Y’
microstructure), and a microstructure with the gradient vector perpendicular to the loading
vector (called in the following a ‘gradient Z’ microstructure). The standard deviations
of the normal distribution of the Y or Z coordinates of the particle centers (for the Y
and Z gradient microstructures, respectively) were taken as 2mm, ensuring a rather high
degree of gradient. The same standard deviations were taken for the clustered particle
arrangements.
Figure 6.8 shows the tensile stress–strain curves for the random, regular and gradient

microstructures [for 10 particles, VC= 5%, Figure 6.8(a)] and for the random, regular,
clustered and gradient microstructures [for 15 particles, VC = 10%, Figure 6.8(b,c)].
Figure 6.9 shows the amount of failed particles in the box plotted versus the far field
applied strain, for the same microstructures (15 particles, VC= 5% and 10%).
It can be seen from Figure 6.9, that the particle arrangement hardly influences the

effective response of the material in the elastic area or at small plastic deformation. The
influence of the type of particle arrangement on the effective response of the material
becomes significant only at the load at which the particles begin to fail (cf. Figures 6.8
and 6.9). However, after the particle failure begins, the effect of particle arrangement
increases with increasing applied load. (One should note here the difference with the
case when only the amount of particles and neither their content nor the arrangement
vary: in this case, the difference becomes sufficiently large only when most particles fail,
see Figure 6.5; in the case of the different particle arrangements, the influence of the
arrangement becomes strong when the first particle fails.)
After the first particle fails, the flow stress of the composite and the strain hardening

coefficient increase with varying the particle arrangement in the following order:

gradient<random<clustered<regular microstructure

(see Figure 6.8).
In order to analyze the effect of particle arrangement on the strain hardening quantita-

tively, we determined the stress hardening coefficients for the stress–strain curves shown
in Figure 6.8. The strain hardening coefficients were calculated as the power in the
power-like equation for the true stress-true strain curves, using the regression analysis.
Table 6.1 shows the strain hardening coefficients �n� for all the considered curves.
For all the levels of volume content, the particle failure rate is two to three times higher

for the cells with 15 particles, than for the cells with 10 particles: 18–29 particles mm−1

(for the cells with 15 particles and regular particle arrangement) and 45–90 particles
mm−1 (for the cells with 10 particles).
One can see from Figure 6.8 that the critical applied strain decreases in the

following order: gradient (10 %)>gradient (5%)> random (5%)>regular (5%), random
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Figure 6.8 Stress–strain curves for the unit cells with different particle arrangements: (a) 10
particles, VC = 5%; (b, c) 15 particles, VC = 10%. Reprinted from Acta Mater., 52 (14),
Mishnaevsky Jr, ‘Three-dimensional � � � ’, pp. 4177–4188, Copyright (2004), with permission
from Elsevier.
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Table 6.1 Calculated strain hardening coefficients for different particle arrangements.

Particle
arrangement

Random Regular Clustered Grad. (Y) Grad. (Z)

n 0�1284 0�193 0�1676 0�1227 0�1543

(10%)>cluster (5%) and regular (10 %)>clustered (10%) (the volume contents of the
SiC phase are given in parentheses).
Separating the effects of the volume content and the particle arrangements, one can

see that the critical applied strain increases in the following order:

clustered regular<random<gradient particle arrangements

The strength and damage resistance of a composite with a gradient microstructure strongly
depends on the orientation of the gradient in relation to the direction of loading. In the
case of the ‘gradient Y’ microstructure, the rate of particle failure is very low (about 6.35
particles mm−1) and the particle failure begins at relatively high displacement loading,
0.2mm. In the case of the ‘gradient Z’ microstructure, the rate of particle failure is the
same as for random microstructures.
One should note that the high gradient distributions of particles, considered here,

constitute just one snapshot of many possible arrangements. Apparently, if the arrange-
ment of particles changes from the high gradient arrangement, considered here, to the
arrangements with more slow gradients, the properties of the material will be changed.
This is the subject of the investigations presented in the next sections.
To characterize quantitatively the arrangements of particles and the degree of

localization in different microstructures, we determined the nearest-neighbor distances
(NNDs) between the particle centers, the nearest-neighbor index (NNI, ratio of
observed to expected NND) and the statistical entropy of the nearest-neighbor distance
(SENND).
The accurate determination of these parameters requires a much larger amount of

particles than those necessary to compute the mechanical behavior and those considered
in the unit cells above.
To overcome this limitation, we generated unit cells of the size 100×100×100mm

with random, clustered and uniform particle arrangements using the same algorithms as
for the simulated cells (s. §5.3.1.4). The values of NND, NNI and the SENND, determined
from the cells, are given in Table 6.2. The scattering of the distribution of the NND,
characterized by the statistical entropy of the distribution, decreases with decreasing the
average value of the NND. One can see that the generated random microstructure is
really close to the ideal random (NNI = 1�17 versus 1.0 in the ideal case) and that the
degree of clustering/localization in the generated gradient and clustered microstructures
is rather high.
From the simulations presented, one may draw the following conclusions. The arrange-

ment of particles influences first of all the strain hardening rate and the damage behavior
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Table 6.2 Nearest-neighbor distance between particle
centers in the considered microstructures.

Microstructure Average NND (mm) SENND NNI

Random 12�69 2.55 1.17
Clustered 2�70 1.26 0.25
Gradient 5�85 2.31 0.54

of composites. This is a remarkable difference from the effect of the volume content of
inclusions, which influences the flow stress, not just its slope, i.e. strain hardening rate.
The regular particle arrangement ensures the highest flow stress of a composite,

especially, after the particle failure begins. The discrepancy between our results and the
results by Segurado and colleagues (Segurado et al., 2003) is discussed above.
The clustered particle arrangement leads to a very high damage growth rate, and to

a low critical applied strain. However, no negative effect of particle clustering on the
effective response of the composite was noted. This conclusion is in agreement with
the numerical conclusions by Segurado and colleagues (‘the increase in strength due to
clustering is almost negligible for the matrix and reinforcement properties typically found
in metal matrix composites’).

6.7 Effect of the variations of particle sizes on the damage evolution

At this stage of the work, the effects of the scattering of the particle sizes on the
effective response and damage behavior of the composite were investigated. The radii of
particles were taken as random values, following the normal probability distribution law.
Microstructures with randomly arranged particles of random sizes were generated, using
the program Meso3D. The degree of scattering of particle sizes, which was characterized
by a standard deviation of the normal distribution law, was varied at the level of 0.1,
0.25 and 0.5 of the average particle radius (which was 1.1676mm for the cell with 15
particles and VC= 10%). In order to keep the volume content of particles constant, the
randomly distributed radii of particles were normalized. Table 6.3 gives the maximum
and minimum sizes of particles for the considered values of the standard deviations.

Table 6.3 Maximum and minimum sizes of particles for considered probability distributions
of the particle radii.

Standard deviation of radii
distribution/mean radius,
�r/r

Standard
deviation of r� �r

Maximum
particle radius,
rmax

Minimum particle
radius, rmin

0.10 0.1168 1.6595 0.7021
0.25 0.2919 1.8506 0.6282
0.50 0.5838 1.9951 0.1582
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Figure 6.10 (a) Stress–strain curves and (b) the amount of failed particles plotted versus the
far field strain for the microstructures with particles of randomly distributed sizes. Reprinted
from Acta Mater., 52 (14), Mishnaevsky Jr, ‘Three-dimensional � � � ’, pp. 4177–4188, Copy-
right (2004), with permission from Elsevier.

Figure 6.10 shows the tensile stress–strain curves and the amount of failed particles
plotted versus the far field strain for these microstructures.
One can see from Figure 6.10 that the variations of the particle sizes result in a strong

decrease in the strain hardening rate of the composite during the elastoplastic deformation
with damage. The differences in the effective responses of the composites with different
degrees of scattering of particle sizes are negligible in the elastic region, but become
rather large when the particles begin to fail, and increase with increasing density of failed
particles.
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From Figure 6.10 it can be seen that the damage evolution in the particles begins
at some lower applied strain when the particle sizes vary (0.069mm versus 0.175mm,
when the particle radii are constant). Also, the critical applied strain is about 22% lower
for the random particle sizes with standard deviation 0�5r, and about 60% lower for the
random particle sizes with standard deviation 0�25r , than for the homogeneous particle
radii. The difference between the cases of the constant particle radii and the randomly
distributed with deviation 0�1r is negligible, but becomes rather large for the deviations
of 0�25r and 0�5r . Therefore, the scattering of particle sizes leads generally to quicker
and earlier damage growth in the composites.

6.8 Ranking of microstructures and the effect of gradient orientation

Figure 6.11(a) shows values of flow stresses, corresponding to the applied displacement
u = 0�15mm, for all the unit cells with 15 particles and VC = 10%. For comparison
purposes, the values of flow stresses for the regular particle arrangements with VC =
5% and 15% are shown. The column charts of the critical applied strain, shown in
Figure 6.11(b), illustrates the effect of the particle arrangement on the damage growth
in the composites. Comparing Figure 6.11(a) and (b), one may see the general tendency:
the higher the stiffness and the flow stress of a composite, the lower the critical failure
strain. (There are, however, some deviations from this.)
Figure 6.12 shows the critical applied strain (at which the linear ‘quick growth’ part of

the curve of the fraction of failed particles versus far-field strain goes into the ‘asymptotic’
part of these curves) plotted versus the flow stress of the composite at displacement
0.15mm for all the cells with 15 particles.
Considering the ranking of the microstructures in Figure 6.11, one can see that the

gradient microstructures demonstrate a very high damage resistance as compared with
the isotropic (random, uniform and clustered) microstructures. The isotropic (random,
uniform or clustered) microstructures are grouped in the left part (low critical strain) of
the figure. From all the isotropic microstructures, the clustered microstructure ensures
the lowest damage resistance.
The big difference between the mechanical behavior of the gradient Y (gradient particle

arrangement with a gradient vector coinciding with the loading vector) and gradient
Z (gradient particle arrangement with a gradient vector normal to the loading vector)
composites is of interest. Both microstructures (gradient Z and gradient Y) show high
damage resistances, but the flow stress of these structures differs. The effect of the orien-
tation of the gradient vector on the flow stress and damage resistance of the composite
can be explained by using an (oversimplified) illustrative representation of the gradient
material as a bilayer material, consisting of a plastic layer (i.e. the part of the composite
with a low content of particles) and a stiff layer (i.e. the part of composite with a very
high content of particles). If the material is loaded along the gradient direction, the stiff-
ness of the material is controlled by the stiffness of the high particle density region
(which is rather firm, according to the results of Section 6.5). Therefore, the stiffness of
the gradient Z composite is quite high, and particle failure goes rather quickly. In the case
of gradient Y, the plastic flow of the material is controlled by the lower sections of the
cell, with small density of particles. Therefore, the flow stress of such a material is quite



148 Ranking of microstructures and the effect of gradient orientation

(a)

 

(b)

7,0E+02

6,5E+02

6,0E+02

5,5E+02

5,0E+02

8,E–02

6,E–02

4,E–02

2,E–02

0,E+00

G
ra

d
ie

n
t 

Y

G
ra

d
ie

n
t 

Y

G
ra

d
ie

n
t 

Z

G
ra

d
ie

n
t 

Z

C
lu

s
te

r

C
lu

s
te

r

R
e
g

u
la

r 
1
0
%

R
e
g

u
la

r 
1
0
%

R
e
g

u
la

r 
1
5
%

R
e
g

u
la

r 
1
5
%

R
e
g

u
la

r 
5
%

R
e
g

u
la

r 
5
%

R
a
n

d
o

m

R
a
n

d
o

mC
ri

ti
c
a
l 
fo

r 
fi

e
ld

 a
p

p
li
e
d

 s
tr

a
in

F
lo

w
 s

tr
e
s
s
 (

a
t 

th
e

d
is

p
la

c
e
m

e
n

t 
u

 =
 0

.1
5

 m
m

)

Figure 6.11 (a) Flow stress (at the displacement u = 0�15mm) and (b) critical far field applied
strain for different particle arrangements. Reprinted from Acta Mater., 52 (14), Mishnaevsky Jr,
‘Three-dimensional � � � ’, pp. 4177–4188, Copyright (2004), with permission from Elsevier.

low (close to the flow stress of the pure matrix). One can draw a conclusion that if the
regions of high particle density are arranged in such a way that they form a load-bearing
construction (gradient Z structure) or play a role of a ‘super-reinforcement’ (clustered
structure), that leads to a quick failure of many particles in the regions. Otherwise, if
the high particle density region does not form a load-bearing construction (gradient Y
microstructure), the flow stress of the material is relatively low (since the plastic flow is
controlled by the regions of low particle density), yet, the intensity of damage failure is
relatively low as well.
Summarizing the results of the numerical experiments presented in this chapter, one

may state that:
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Figure 6.12 Critical applied strain (at which 80% of particles fail) plotted versus the flow
stress of the composite (at the far field strain 0.15mm) for all the cells with 15 particles.
Reprinted from Acta Mater., 52 (14), Mishnaevsky Jr, ‘Three-dimensional � � � ’, pp. 4177–
4188, Copyright (2004) with permission from Elsevier.

• The particle arrangement influences the effective response of the material only at the
load at which the particles begin to fail. In this case, the flow stress of the composite

and the strain hardening coefficient increase with varying the particle arrangement in

the following order: highly gradient < random < clustered < regular microstructure.

The critical applied strain decreases in almost the reverse order: highly gradient >

random > regular > clustered.

• The variations of the particle sizes lead to the strong decrease in the strain hardening
rate, and to the quicker and earlier damage growth in the composites.
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7

Graded particle reinforced
composites: effect of the parameters
of graded microstructures on the

deformation and damage

In Chapter 6 it has been demonstrated that particle reinforced metal matrix composites
with graded particle arrangement ensure highest damage resistance, as compared with
other arrangements of particles (homogeneous, random, clustered). Furthermore, it has
been shown that while the damage resistance of graded composites remains the highest
among all the considered microstructures independently of the orientation of the gradient
vector with regard to the loading vector, the actual value of the critical applied strain
does depend on the orientation.
Here we investigate the effects of the parameters of graded microstructures of compos-

ites (degree of gradient, shape and orientations of particles, etc.) on the deformation
behavior and the damage resistance, using the mesomechanical FE simulations of the
deformation and damage evolution in different microstructures of graded composites.
In order to simplify the simulations and to take into account statistical effects (which
requires models and analyses with a high amount of inclusions), the simulations have
been carried out two-dimensionally.
The problems of the computational analysis of functionally gradient materials (FGMs)

and the optimal numerical design of FGMs have attracted great interest from the scientific
community over the last few decades. Many authors studied the deformation and strength
of the gradient materials using analytical and numerical micromechanical methods.
Table 7.1 gives a short overview of some of the work in this area.
On the basis of Table 7.1, one may identify the following two groups of models

of strength and reliability of graded materials: one group generalizes and pushes the

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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Table 7.1 Micromechanical analysis of deformation and strength of graded materials.

Reference Main concepts and results

Hirano et al.,
1990

Rule-of-mixture: Hirano et al. used the rule-of-mixture and the fuzzy set
model of the transition from the region of high content of the filler to the
matrix to develop an inverse design procedure for the determination of
the synthesis method for required properties of FGMs

Zuiker and
Dvorak,
1994a,b

Mori–Tanaka method of the estimation of overall properties of statistically
homogeneous composites is applied to linearly variable overall and local
fields. It was shown that the linear and constant field approaches
‘provide different estimates of overall properties for small representative
volumes, but nearly identical estimates for large volumes’

Reiter et al.,
1997

Micromechanical FE model of graded C/SiC composites consisting of
up to thousands of inclusions. In the simulations, planar gradient
arrangements of hexagonal inclusions with a linear volume gradient, and
different transitions between the phases (i.e. microstructures with a
distinct threshold between two matrix phases, with the skeletal transition
zones, and mixed microstructures) were considered. Further, Reiter et al.
presented the FGM as a number of piecewise homogeneous layers, and
determined the properties of the layers using the Mori–Tanaka and
self-consistent methods. It was shown that the averaging methods can be
well used to characterize the graded materials in the framework of the
model of piecewise homogeneous layers.

Weissenbek
et al., 1997

Micromechanical numerical and analytical (mean-field approach
involving an incremental Mori–Tanaka analysis and the rule-of-mixture)
models were used to analyze elastoplastic deformation due to thermal
and mechanical loading of layered metal/ceramic Ni/Al2O3 composites
with compositionally graded interfaces. Planar geometries with perfectly
periodic arrangements of the constituent phases were considered using
the square-packing and hexagonal-packing unit cell formulations for the
graded material. Then, unit cells, containing large numbers of randomly
placed microstructural units of two phases were used. It was found that
square-packing arrangements provide the best possible bounds for the
thermal strains and coefficient of thermal expansion of the graded
multilayer, among the different unit cell models examined

Buryachenko
and
Rammerstorfer,
1998

Generalized multiparticle effective method (Buryachenko, 1996): FGMs
were simulated as linear thermoelastic composites with elliptical
inclusions, arranged in a way that the concentration of the inclusions is a
function of the coordinates. Assuming that the effective field near the
inclusion is homogeneous, and taking into account the binary interaction
effects of the inclusions, the authors considered the joint actions of
nonlocal effects, caused by the inhomogeneous inclusion number density
and inhomogeneous average applied stress and temperature fields, and
derived a general integral equation for the FGMs

Aboudi et al.,
1999

Higher-order theory for functionally graded materials, which explicitly
couples the microstructural (local) and global effects, without using the
concept of RVE, is developed on the basis of Aboudi’s method of cells.
The microstructure of the composite is discretized into a lattice of cells,
which are divided in turn into subcells. The approximate solutions for
temperature and displacement fields are obtained by approximating the
fields in each subcell using a quadratic expansion centered at the subcell
mid-point. The authors obtained the stress distributions in the FGMs and
carried out the optimization of the fiber distribution in the composite
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Cannillo et al.,
2002

FE software OOF and the probabilistic model of brittle fracture were used
to study the crack growth in graded alumina glass. The authors analyzed
the effect of stochastic placement of the second phase on the hardness
and toughness of the material. The variations of the damage parameter
versus applied strain curves for different random realizations of the
microstructures are determined

Becker Jr
et al., 2002

The nonlocal brittle fracture model [Ritchie–Knott–Rice (RKR) fracture
model], based on Weibull statistics, was used to analyze the fracture
initiation (‘first activated flaw’) near a crack in FGMs. The dependencies
of the initiation fracture toughness (i.e. the stress intensity factor that will
result in a stated first failure probability) on the phase angle of crack tip
as well as on the parameters of the Weibull law, were determined using
FEM. Becker Jr et al. demonstrated numerically and analytically that the
gradient in Weibull scaling stress leads to a decrease of initiation fracture
toughness, and that ‘gradients normal to the crack result in a crack
growing toward the weaker material’. It was shown that the distribution
of damage near a crack tip depends strongly on the Weibull modulus: for
a high Weibull modulus, ‘failure is dominated by the very near-tip
parameters, and effects of gradients are minimized. With low m,
distributed damage leading to toughening can be exaggerated in FGMs’

Gasik, 1995,
1998

3D model of FGMs with ‘chemical’ gradient as an array of subcells
(local RVEs) was implemented as new software, which allows elastic and
thermal properties of the composite to be calculated

limits of analytical micromechanical models, developed initially for nongradient materials
(rule-of-mixture, Mori–Tanaka method, multiparticle effective method); another group is
based on the methods of numerical experiments, in particular, multiparticle unit cells and
FEM.
In this chapter, we use the second approach to analyze the effect of microstructures of

graded composites on their strength and damage resistance.

7.1 Damage evolution in graded composites and the effect of the degree

of gradient

The purpose of this part of the investigation was to clarify how the degree of gradient
influences the strength and damage evolution in the composites. The deformation and
damage evolution of Al/SiC composites with gradient SiC particle arrangements (with
different degrees of gradient) were simulated numerically.
A number of 2D unit cells with graded arrangement of SiC inclusions have been

generated, using the program Meso3D (2D version). As noted in Chapter 5, the program
Meso3D controls the gradient degree of a particle arrangement by varying the standard
deviation of the normal probability distribution of the distances between the Y-coordinates
of the particle centers and of the upper boundary of the cell. Since the X-coordinates
of particles are generated with a predefined random number seed parameter (idum)
(which should ensure reproducibility of the simulations), the variation of this parameter
leads to the generation of new realizations of microstructures with the same gradient.
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Many graded microstructures with different standard deviations of the distributions of Y-
coordinates (which ensured different gradient degrees) and with different random number
seed parameter for random X-coordinates were generated, meshed and tested. At this
stage of the analysis, only round particles were considered. Both the failure of SiC
particles (critical maximum stress criterion) and the void growth in the Al/SiC matrix
(Rice–Tracey damage criterion) were simulated, using the element weakening approach.
The generated unit cells were subject to a uniaxial tensile displacement loading (1mm)

(see Figure 7.1).
Figure 7.2 shows several examples of the generated microstructures. The degree of

gradient characterized by the standard deviation (SD) of the normal distribution of
distances between the particle centers and the upper rand of the cell, is denoted as follows:
for instance, Grad3 means that the SD 0.3 of the cell size �= 3mm� (Mishnaevsky Jr,
2005c, 2006). Similarly, Grad8 means SD = 0�8 of the cell size or 8mm. In order to

Figure 7.1 Schema of the loading.

Grad2 Grad5 Grad8 Grad10

Figure 7.2 Some examples of the generated microstructures with different degrees of
gradient.
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avoid confusion (in fact, ‘a high degree of gradient’ means a low SD), the term ‘degree
of gradient’ will be used for the value 1/SD.
Figure 7.3 shows some typical tensile stress–strain curves and the fraction of failed

elements in the particles plotted versus the far field applied strain for the graded particle
arrangements with different degrees of gradient.
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Figure 7.3 (a) Tensile stress–strain curves and (b) the fraction of failed particles plotted
versus the far field applied strain for the graded particle arrangements with different degrees
of gradient. Reprinted from Compos, Sci. Technol., 66 (11–12), Mishnaevsky, Jr, ‘Function-
ally � � � ’, pp. 1873–1887, Copyright (2006), with permission from Elsevier.
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Table 7.2 Critical (failure) strains and statistical parameters
of some graded microstructures.

Grad Failure strain Flow stress
�u = 0�15mm�

NND SENND

1 0�038 515�49 0�44 0�83
2 0�025 515�59 0�48 0�90
3 0�028 517�07 0�49 0�36
5 0�033 518�01 0�54 0�54
6 0�030 519�01 0�55 0�54
8 0�030 520�26 0�58 0�75

12 0�025 521�66 0�58 0�43

Table 7.2 gives the critical strains, as well as statistical parameters of the microstruc-
tures (NND and SENND see Section 6.7). One can see that the gradient degree correlates
with the averaged NND: the lower degrees of gradient lead to the higher average NNDs.
No correlation between the degree of gradient and the SENND was found.
Figure 7.4(a) shows the failure strain (critical applied strain) plotted versus the degree

of gradient in the composites. Figure 7.4(b) shows the flow stress of the composite (at
the far field strain u= 0�15) as a function of the gradient degree.
It is of interest that the flow stress and stiffness of composites decrease with increasing

gradient degree. Apparently, the more homogeneous the distribution of hard inclusions
in the matrix, the stiffer the composite. If the particles are localized in one layer in
the composite, the regions with low particle density determine the deformation of the
material, and that leads to the low stiffness.
One can see from Figure 7.3(b) that all the microstructures have rather low damage

growth rate at the initial stage of damage evolution. At some far field strain (called here
‘failure strain’), intensive (almost vertical) damage growth takes place and the falling
branch of the stress–strain curve begins. For all the graded microstructures, the failure
strain is higher than for the homogeneous microstructures.
Thus, failure strain of the graded composites increases with increasing gradient (local-

ization) degree of the particle arrangement.
Figure 7.5 shows the von Mises stress distribution in a highly gradient (Grad3)

microstructure. One can see that the stresses are lower in the low part of the microstruc-
ture (particle-free region), than in the particle-rich regions. If two particles are placed
very close to one another, the stress level in the particles is much higher than in other
particles, especially if these particles are arranged along the gradient (vertical) vector.
Then, the stress level is rather high in particles which are located in the transition region
between the high particle density and particle-free regions. One could expect these parti-
cles to begin to fail at the later stages of loading, and that was observed in the damage
simulations. Figure 7.5(b) shows the damage distribution in the particles and in the matrix
(Grad3 microstructure, far field strain 0.29). That the particles begin to fail not in the
region of high particle density but rather in the transition region between the particle-rich
and particle-free regions, is similar to our observations for the case of clustered particle
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Figure 7.4 (a) Failure strain and (b) flow stress of the composite (at the far field strain
= 0�15) plotted versus the degree of gradient in the composites. SD means the standard
deviation of the normal distribution of distances between the particle centers and the upper
rand of the cell (see Chapter 6). Reprinted from Compos. Sci. Technol., 66 (11–12),
Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with permission from
Elsevier.

arrangement: in the case of clustered particle arrangement, the damage begins in the
particles which are placed at the outer boundaries of clusters (see Chapter 8). One can
see from Figure 7.5(b) that the damage in the matrix begins near the damaged parti-
cles or between particles which are arranged closely in the direction of the gradient
vector.



158 Damage evolution in graded composites

(a)

(b)

xz

y

182+03

1.71+03

1.59+03

1.47+03

1.36+03

1.24+03

1.13+03

1.01+03

8.96+02

7.80+02

6.64+02

5.48+02

4.32+02

3.16+02

2.01+02

8.48+01
default Fringe:
Max 1.82+03@Nd 3056
Max 8.48+01@Nd 546

Figure 7.5 (a) Von Mises stress distribution in a highly gradient (Grad3) microstructure and
(b) damage distribution in the particles and in the matrix (Grad3 microstructure, far field strain
0.29). Reprinted from Compos. Sci. Technol., 66 (11–12), Mishnaevsky Jr, ‘Functionally � � � ’,
pp. 1873–1887, Copyright (2006), with permission from Elsevier. (See Plate 2)

Figure 7.6 shows the mechanism of damage formation in the composite, observed
in our simulations: the void growth begins near the failed particles, and the damaged
area expands in the direction to the nearest damaged particle. This mechanism has been
observed experimentally as well (Derrien, 1997; Derrien et al., 1999).
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(b)(a)

Figure 7.6 (a) Mechanism of void initiation near a failed particle and (b) of the expansion
of the damaged area, observed in the simulations. Reprinted from Compos. Sci. Technol.,
66 (11–12), Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with
permission from Elsevier.

7.2 ‘Bilayer’ model of a graded composite

To verify the numerical results related to the influence of the degree of gradient on the
stiffness and failure behavior and obtained in the previous section, we use the following
analytical model. The gradient material is represented as a two-layer material (Figure 7.7).
The Young modulus of the gradient material is calculated using the Reuss model. The
upper layer, which represents the region of the gradient composite with high particle
density, is taken here as a homogeneous material. The thickness of this upper layer is
equal to the thickness of the region with high particle density. The lower layer represents
the particle-free regions of the composite. The degree of gradient of microstructures in
this model is characterized by two parameters: the thickness and the Young modulus
of the upper layer (i.e. of the highly reinforced region of the gradient composite). The
thinner and the stiffer the upper ‘layer’, the more localized are the particles in the gradient
material.
A highly graded material (like Grad 1) is represented in this model as a bilayer with

a thin and hard upper layer, and a lower layer with properties of the matrix, whereas a
material with low gradient degree is considered as a bilayer with a thick upper layer,
which has properties close to those of the matrix. Since the total amount and volume
content of particles in the cell are assumed to be constant, the volume content of the SiC
particles in the upper layer is inversely proportional to the layer thickness. The degree of
gradient can be characterized in this model by the ratio of the cell size to the thickness of
the upper layer. In Section 6.5, the effect of the volume content of SiC particles on the
flow stress and stiffness of Al/SiC composites was analyzed. Approximating the results
from Section 6.5, one can obtain the following relationship between the Young modulus
of the composite and the volume content of SiC particles:

Eup = 4�25×104+242�1VC (7.1)

where Eup is the Young modulus of the Al/SiC composite (in this case, the ‘upper layer’
material) (in MPa) and VC is the volume content of the SiC particles. Assuming that the
average volume content of SiC particles in the upper layer is 50%, if the thickness of the



160 ‘Bilayer’ model of a graded composite

(a)

(b)

Thickness of upper layer degree of gradient Wup/cell size l
(1/degree of gradient)

R
e
la

ti
v
e
 Y

o
u

n
g

 m
o

d
u

lu
s
 o

f 
th

e
c
o

m
p

o
s
it

e
, 
M

P
a

2

1.2

1.4

1.6

1.8

2.2

2.4

2.6

2.8

3

0.3 0.4 0.5 0.6 0.7 0.8

Figure 7.7 (a) Model of a gradient material as a bilayer (highly graded and almost homoge-
neous composites) and (b) the normalized Young modulus of the composite plotted versus
the ratio wup/l.

upper layer is 0.1 (i.e. 10% of the total height of the cell), one obtains the relationship
between the thickness of the region of the cell with high particle density (i.e. of the upper
layer) and the volume content of SiC particles in this layer: wup = 0�05/VC. Substituting
these formulae into the Reuss formula for the Young modulus of the bilayer:

E = 1/��wup× l/Eup�+ �l2−wup× l�/Ematr� (7.2)

where l is the size of the cell and Eup and Ematr are the Young modulus for the highly
reinforced part (upper layer) and the matrix, respectively, one can determine the Young
modulus of the composite as a function of the degree of gradient (i.e. the ratio l/wup).
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Figure 7.7(b) shows the normalized Young modulus of the composite as a function of
the degree of gradient. One can see that the stiffness of the composite decreases with
increasing degree of gradient of the composite. Furthermore, as observed in Section 6.8,
the failure strain of a SiC particle reinforced Al composite is inversely proportional to
the stiffness of the composite. Taking into account this result and Figure 7.7(b), one
can conclude that the degree of gradient has the following effect on the failure strain
of composites: the failure strain increases when the gradient degree of the composite
increases, and the particles are highly localized in a layer. This result, obtained with
the use of a simple analytical model, confirms our results obtained in the simulations
(Figure 7.4).

7.3 Effect of the shape and orientation of elongated particles on the

strength and damage evolution: nongraded composites

As noted in Chapter 2, the microstructures with staggered gradient arrangement of
platelets or elongated mineral particles are rather typical for many biomaterials at micro-
and nanolevel, e.g. nacre, teeth and bones. The materials with such microstructures show
rather high damage resistance and strength, and it has been shown that the high perfor-
mances of the biomaterials can be attributed to this kind of microstructure (Mishnaevsky
Jr, 2004c).
At this stage of the work, the effect of the arrangement of elongated particles, their

shapes (aspect ratio) and orientations on the effective response and damage behavior of
graded and homogeneous composites was studied numerically.
The following microstructures of composites were generated and tested numerically:

composites reinforced with elongated ellipsoidal particles (aspect ratios 0.3 and 0.5),
aligned horizontally and vertically, and oriented randomly, with graded and homogeneous
arrangements. Figure 7.8 shows some examples of the designed microstructures.
First, consider nongraded microstructures with elongated reinforcing particles, with

different aspect ratios and orientations of particles. Figure 7.9 shows the stress–strain
curves and the damage–strain curves for nongraded microstructures with different orien-
tations of particles (aligned vertically and horizontally, and randomly oriented).
One can see from Figure 7.9 that the failure strain of the composites with elongated

particles increases in the following order:

(a) (b) (c) (d)

Figure 7.8 Examples of the designed microstructures with elongated particles.
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Figure 7.9 (a) Stress–strain curves and (b) damage–strain curves for nongraded microstruc-
tures with different orientations of particles (randomly arranged spheres, and aligned vertically
and horizontally, and randomly oriented ellipsoides, aspect ratio rr = 0�3). Ell3 means Ellip-
tical particles with rr = 0�3. Reprinted from Compos. Sci. Technol., 66 (11–12), Mishnaevsky
Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with permission from Elsevier.

vertical aligned < randomly oriented < horizontal aligned particles

The failure strain of the microstructures with round particles is always higher than that
for elongated particles.
Let us consider the effect of the aspect ratio of the particles on the strength and failure

strain of the composite. Figure 7.10 shows the stress–strain curves and the damage–strain
curves for the nongraded microstructures with different aspect ratios of particles (where
rr = smaller particle radius divided by bigger particle radius, rr = 0�3, 0.5, 0.7 and 1).
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Figure 7.10 (a) Stress–strain curves and (b) damage–strain curves for nongradedmicrostruc-
tures with different aspect ratios of particles. Reprinted from Compos. Sci. Technol., 66 (11–
12), Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with permission
from Elsevier.

It can be seen that the higher the aspect ratio of particles, the higher (slightly) the flow
stress and stiffness of the composites. An increase in the value of rr by 0.2 (0.3 to 0.5
or 0.5 to 0.7) (i.e. an increase of the aspect ratio by 40–60%) leads to an increase of the
flow stress by 1.4%.
The failure strain increases with increasing the aspect ratio of the particles: when the

value of rr increases by 0.2 (0.3 to 0.5 or 0.5 to 0.7, which again corresponds to an
increase of the aspect ratio by 40–60%), the failure strain increases by 13%.
In order to analyze the mechanisms of deformation and damage evolution in the

composites reinforced by elongated or platelet-like particles, one may look at the von
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Figure 7.11 (a) Von Mises stress �u = 0�18mm� and (b,c) damage distributions in a
composite with randomly oriented elongated particles (rr = 0�3� u = 0�18mm and u =
0�29mm). Repriented from Compos. Sci. Technol., 66 (11–12), Mishnaevsky Jr, ‘Function-
ally � � � ’, pp. 1873–1887, Copyright (2006), with permission from Elsevier. (See Plate 3)

Mises stress and damage distributions in a composite with randomly oriented elon-
gated particles �rr = 0�3� (Figure 7.11). It can be seen that the damage in the matrix
begins most often in the places between two particles which are arranged closely along
the vertical direction (i.e. along the loading and gradient direction). The void growth
in the matrix begins near the sharp ends of the particles. Then, the damaged areas
extend and link with other voids, formed near other particles [Figure 7.11(c)], rather
similar to the mechanism of the damage growth in the composites with round particles
(Figure 7.5).
Figure 7.12 shows the damage distribution in microstructures with aligned (vertical

and horizontal) elongated particles. One can see that the damage in the matrix often
begins between closely placed particles, which are arranged one above another in the
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(a) (b) (c)

Figure 7.12 Damage distribution in a composite with aligned (a, b) vertical and (c) hori-
zontal elongated particles �rr = 0�3� u= 0�135� 0�30 and 0.20mm, respectively). Reprinted
from Compos. Sci. Technol., 66 (11–12), Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887,
Copyright (2006), with permission from Elsevier.

loading direction. This is similar to the mechanism observed in the case of randomly
oriented particles.

7.4 Effect of the shape and orientation of elongated particles on the

strength and damage evolution: graded composites

Now, we consider the effect of the graded arrangement of elongated particles on the
strength and damage evolution in graded composites.
Figure 7.13 shows the stress–strain curves and the damage–strain curves for the graded

and (for comparison) nongraded microstructures with different aspect ratios and orienta-
tions of particles.
The shapes of the stress–strain and damage-strain curves for graded and non–graded

composites are similar. Yet, the damage growth rates, and the stiffnesses and flow stresses
of the composites are much lower, and the failure strains are sufficiently higher for the
graded microstructures than for the homogeneous microstructures. Whereas the damage
growth rate, calculated as an increase in the fraction of failed particles divided by the
increase in the far field applied strain, for a homogeneous microstructure (elongated parti-
cles, aspect ratio 0.3, randomly oriented) is 19.4, for the same but graded microstructure,
it is equal to 5.3.
One can see that the failure strain for the graded composite increases in the same order,

as in the case of homogeneous microstructures: vertical aligned < randomly oriented <

horizontal aligned elongated particles. The stiffness of the composite is a little bit higher
for aligned (vertical or horizontal) ellipsoids, than for the randomly oriented ellipsoids.
It is of interest that the curves of the fraction of failed elements plotted versus the far

field applied strain for the random orientation of ellipsoidal particles (both graded and
homogeneous arrangements) have different shape from the curves for the microstructures
with aligned particles: whereas the fraction of failed particles increases monotonically
with increasing applied strain for the case of aligned particle microstructures, the curves
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Figure 7.13 (a) Stress–strain curves and (b) damage–strain curves for the graded and (for
comparison) nongraded microstructures with different orientations of elongated particles.
Aspect ratio 0.3, Gr3 and Grad3 mean the graded distribution of particles with standard devi-
ation of the Gauss probability distribution of particle centers = 0�3 of the cell size. Reprinted
from Compos. Sci. Technol., 66 (11–12), Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887,
Copyright (2006), with permission from Elsevier.

of the fraction of failed particles versus strain for the randomly oriented particles have
plateaux. After the intensive damage evolution begins and continues for some time, it
slows down and goes on at a much slower rate. At some strain level (approximately, two
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times the strain level of the first intensive damage growth), the intensive damage growth
starts again.
It can be seen from Figure 7.13 that whereas the more localized and highly gradient

microstructures have lower stiffness and higher failure strain than the homogeneous
microstructures, the first critical strain (i.e. the critical strain, at which the falling branch of
the stress–strain curve begins) is the same for both gradient and nongradient microstruc-
tures in the case of microstructures with randomly oriented elongated particles. After
the damage growth slows down, the damage growth rate is much less for the graded
microstructure than for the homogeneous microstructure. The second critical strain for
these microstructures is much lower for the homogeneous than for the graded version of
these microstructures.
Now let us consider the mechanism of deformation and damage in the graded compos-

ites. Figure 7.14 shows the damage distribution in the matrix in the case of a graded
composite reinforced by aligned horizontal and randomly oriented ellipsoids (aspect ratio
0.3). It can be seen that both in the case of the aligned and randomly oriented ellipsoids
(and similarly to the case of graded microstructure with round particles), the density
of damaged particles in the area where the high particle density region passes into the
particle-free region is rather high, and much higher than in the region of high particle
density. Apparently, the particles which are located in the ‘transition’ area begin to fail
first. The matrix is damaged not in the region of high particle density but rather in the area
where the region of high particle density passes into the region of low particle density
(similar to the mechanism of damage initiation in the graded composites reinforced by
graded particles). In the case of the randomly oriented particles, the damage initiation
in particles takes place rather often if the ‘noses’ of two or three elliptical particles are
placed close to one another.
One should note that the microstructures with particles aligned along the direction

normal to the loading direction, which demonstrated the highest failure strain results
in our simulations, are rather similar to the microstructures of many biomaterials (see

(a) (b)

Figure 7.14 Damage distribution in the matrix in the case of a graded composite rein-
forced by (a) aligned horizontal and (b) randomly oriented ellipsoids (rr=0.3). Reprinted
from Compos. Sci. Technol., 66 (11–12), Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887,
Copyright (2006), with permission from Elsevier.
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Section 2.3), where the platelets or fibers are arranged with a gradient, and aligned
normally to the expected loading direction.
On the basis of the simulations, one may draw the following conclusions. The failure

strain of the composites with elongated particles increases in the following order: vertical

aligned < randomly oriented < horizontal aligned particles. The failure strain decreases
with increasing aspect ratio of the particles. The particles located in the area where the
high particle density region passes into the particle-free region begin to fail first. The
damage in the matrix begins most often between failed particles or between two particles
which are arranged closely along the vertical direction (i.e. along the loading and gradient
direction). The effect of the gradient on the flow stress, stiffness and failure strain for
the microstructures with elongated particles are similar to the effect for the case of round
particles: the more localized and highly gradient microstructures have lower stiffness and
higher failure strain, than the homogeneous microstructures.

7.5 Effect of statistical variations of local strengths of reinforcing

particles and the distribution of the particle sizes

Real reinforcing materials have always some statistical variations of the mechanical
properties and strengths, which strongly influence the failure and strength of composites.
At this stage of the work, we study the effect of the statistical variations of strengths of
the particles in the Al/SiC graded composite on the failure behavior of the composite.
The stress–strain and fraction of failed particles versus strain curves were calculated

numerically for different microstructures of the composites (random nongradient, Grad1,
Grad5) with different degrees of scattering of the strength of particles. The critical
maximum stress of SiC particles, which was assumed to be a constant value (1500MPa)
in all the above simulations, was a random value in these simulations. It was assumed
that the critical maximum principal stress is distributed by the Gauss probability law,
with mean value 1500MPa (as above) and with standard deviations 0, 50, 200, 500 and
1000MPa. In the simulations, the random critical maximum stress was calculated in
each element and compared with the current value of maximum principal stress in the
element; if the current principal stress exceeded this random critical value, the element
was considered to fail, and its stiffness was reduced.
Figure 7.15(a) shows the failure strain for the different graded microstructures plotted

versus the degree of scattering (standard deviation) of the local strength of parti-
cles. Figure 7.15(b) shows the damage–strain curves for the homogeneous and graded
microstructures with different degrees of gradient and different standard deviations of
the critical principal stress.
One can see that the failure strain of composites decreases rapidly when the degree

of scattering of local strength of particles increases. However, the negative effect of the

scattering of the particle strength on the failure strain of the composite is weakened if

the microstructure is graded. The degree of reduction of the failure strain of composite
due to the randomness of local strength depends on the microstructure of the composite
as well: an increase of the standard deviation of the critical stress from 0 to 500MPa
leads to a 2.7 times reduction of the failure strain in the nongraded microstructure; the
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Figure 7.15 (a) Failure strain of composites plotted versus the standard deviation of the
particle strength distribution and (b) the damage–strain curves for the graded microstructures
with random variations of local strength of particles. d is the standard deviation of the
critical stress distribution. Reprinted from Compos. Sci. Technol., 66 (11–12), Mishnaevsky
Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with permission from Elsevier.

same change leads to only 68% and 39% decrease in the failure strain of the graded
composites (Grad5 and Grad1, respectively).
Consider now the effect of the variation of the particle sizes on the strength and failure

of composites. It has been shown in Section 6.7 that composite materials with randomly
distributed particle sizes have much lower failure strain than the materials reinforced
with particles of a constant radius. An interesting case of a composite material with
both varied sizes of reinforcing particles and the directional gradient is a composite
reinforced by particles with radii that depend on the position of the particle. Figure 7.16(a)
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Figure 7.16 (a) Examples of the particle size gradient ‘small/big’/’big/small’ microstruc-
tures, (b) fraction of failed particles plotted versus applied strain for the microstructures with
random variations of the local strength of particles and (c) the ratio of failure strains for the
‘small/big’/’big/small’ microstructures plotted versus the standard deviation of the probability
distributions of the particle strengths. Reprinted from Compos. Sci. Technol., 66 (11–12),
Mishnaevsky Jr, ‘Functionally � � � ’, pp. 1873–1887, Copyright (2006), with permission from
Elsevier.
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shows examples of microstructures where the radius of a particle is proportional to
the Y-coordinate of the particle. Such microstructures, where the size of the particles
is proportional to the vertical coordinate, will be referred to as ‘particle size gradient
microstructures’.
Two types of microstructures with graded distributions of sizes of reinforcing parti-

cles were considered: ‘small/big’ size gradient, with small round particles near the
upper boundary of the cell and big particles at the lower boundary (also called ‘south’
microstructures, according to the location of big particles in the lower or southern part
of the cell); and ‘big/small’ size gradient (or ‘north’ microstructures). The radius of the
particles was taken to be proportional to the Y-coordinate of the particles, radius ∼ L

(‘north’ size gradient) or radius ∼ �L-Y�, where L is the cell size (‘south’ size gradient).
After the radii of the particles were calculated, they were normalized to keep the total
volume content of the SiC particles constant.
The numerical testing of these microstructures was carried out for the constant strength

of particles, as well as for the case of the random (Gaussian) distribution of the critical
stress in particles, with standard deviations 200, 500 and 1000MPa. (The average critical
principal maximum stress was the same as above, 1500MPa.)
Figure 7.16(b) shows some typical functions of the fraction of failed elements in the

particles plotted versus far field applied strain for the ‘small/big’ and ‘big/small’ size
gradient microstructures.
One can see that the ‘small/big’ and ‘big/small’ size gradient microstructures have

very similar damage growth curves and the same failure strain, when the critical stress
of particles does not vary. However, when the statistical variations of the strength of
SiC particles are taken into account, the failure strain of the composite is drastically
reduced: by 11% for the ‘small/big’ microstructure and by 30% for the ‘big/small’
microstructure. This decline hardly depends on the degree of the variation of the local
strength. Figure 7.16(c) shows the ratio of the failure strains for the ‘small/big’ and
‘big/small’ size gradient microstructures as a function of the standard deviation of the
probability distribution of the particle strength. Apparently, when the statistical variations
of the strength of particles are included in our continuum mechanical model, the size
effects of particles begin to influence the damage evolution. Therefore, the larger particles
placed near the upper border of the cell in the ‘big/small’ gradient microstructures begin
to fail earlier, and that leads to the quicker failure of the composites, whereas this effect
does not take place in the ‘small/big’ microstructures.
On the basis of the simulations, one may draw the following conclusions. The statistical

variations of the strength of particles in composites lead to the decrease of the failure
strain in the composites. However, this negative effect is weakened, if the microstructures
of composites are graded. In the case of the size gradient microstructures (with particles
where the strength is varied randomly), the ‘small/big’ microstructures ensure higher
failure strains than the ‘big/small’ microstructures.
It can be seen that the graded particle distribution has a very beneficial impact on

the damage resistance of the composites: it increases the failure strain, weakens the
negative effect of the heterogeneity of particles and slows down the damage growth rate
in the particles. These positive effects become stronger when the degree of the particle
localization increases.
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7.6 Combined Reuss–Voigt model and its application to the estimation

of stiffness of graded materials

In this section, a simple method to estimate the stiffness of materials with arbitrarily
complex and irregular microstructures is suggested, and applied to study the effect of
parameters of gradient composite microstructures on the material stiffness. This approach
is based on the combined Reuss–Voigt model for the stiffness evaluation.

7.6.1 Estimation of the stiffness of materials with arbitrarily complex

microstructures: combined Reuss–Voigt model

Let us consider a 2D complex microstructure of a material. The microstructure is repre-
sented as an array of white and black pixels (irregular chessboard). The color (white
or black) denotes one of two phases. Let us assume that the ‘black’ phase represents
inclusions and the ‘white’ phase represents matrix.
In order to calculate the stiffness (Young modulus) of the microstructure consisting of

N ×N pixels, we employ the combined Reuss–Voigt model. The considered microstruc-
ture is represented as a layered body consisting of N layers. In turn, each layer consists
of N subcells (pixels) (Figure 7.17).
In order to estimate the Young modulus of the microstructure, one calculates first the

Young modulus Elayer= j of the jth layer, using Voigt averaging:

Elayer=j = �1/N�
∑

i
E�i� j� (7.3)

where E(i, j) is the Young modulus of a i, jth cell. Then, the total Young modulus of the
model Etotal is calculated as a modulus of a layered material, using the Reuss equation:

Etotal = 1/
[

∑

j
1/�NElayer=j�

]

(7.4)

Figure 7.17 shows the schema of the stiffness calculation. This approach was realized in
the framework of the program code Microstructure Designer and Tester (or MicroDTest)
(Mishnaevsky Jr, 2007).

7.6.2 Effect of the degree of gradient on the elastic properties of the composite

Let us consider the effect of the gradient microstructure of composites on their stiffness.
For the sake of definiteness, we consider the glass/alumina composites. The properties
of the phases were taken from Cannillo et al. (Cannillo et al., 2002), and are as follows:
alumina E = 386GPa (‘black’ phase) and glass E = 72GPa (‘white’ phase).
In order to study the effect of the interface sharpness of the stiffness of the materials,

we generated different graded random microstructures (graded version of the random
chessboard model of materials; see Ostoja-Starzewski, 1999) using the random number
generator.
The glass inclusions (which are represented by black cells/pixels) are distributed

uniformly in the X direction, and with a gradient in the Y direction. The graded distri-
bution of black cells along the axis Y is described by:

vc�y�= 2vc0
1+ exp�g−2gy/L�

(7.5)
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Figure 7.17 Schema of the stiffness calculation of a lattice from pixels, using the combined
Reuss–Voigt approach.

where vc(y) is the probability that a pixel is black at this point, vc0 is the volume content
of the black phase, L is the length of the cell, g is parameter of the sharpness of the
gradient interface and y is the Y-coordinate. Equation (7.5) allows to vary the smoothness
of the gradient interface of the structures (highly localized arrangements of inclusions and
a sharp interface versus a smooth interface), keeping the volume content of inclusions
constant. If g < 2��3 the transition between regions of high content of black or white
phases is rather smooth, and if g > 10 the transition between the regions is rather sharp.
Figure 7.18 gives the shapes of the curves for different g.
Figure 7.19 shows examples of the generated cells with different degrees of sharpness

of the gradient interface.



174 Combined Reuss–Voigt model and its application

g = 5

g = 10
g = 100

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

Distance from the upper border of the cell

V
o

lu
m

e
 c

o
n

te
n

t 
o

f 
b

la
c
k
 p

ix
e
ls

Figure 7.18 Shapes of the curves of the distribution of the volume content of black phase
in graded composites for different g. Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky
Jr, ’Automatic Voxel � � � ’, pp. 11–23, Copyright (2005), with permission from Elsevier.

(a) (b) (c) (d)

Figure 7.19 Examples of the graded ‘random chessboards’ models of a material with
different degrees of sharpness of the gradient interface: (a) very smooth transition (g=1);
(b, c) smooth �g = 2� g = 3�; (d) stepwise transition �g = 10�. Reprinted from J. Compos.
Mater., 41(1), Mishnaevsky Jr, pp. 73–87, Copyright (2007), with permission from Sage
Publications, Inc.

The stiffness of the modeled materials was calculated for different g of the particle
distribution, using the above approach.
Figure 7.20 gives the Young modulus of the material plotted versus the parameter g of

the smoothness of the transition. One can see that the stiffness of the material increases
when the transition between the black and white regions becomes smoother and decreases
when this transition becomes sharp. Whereas the Young modulus of the cell is close to
its Reuss estimation at g = 1, it decreases and approaches the Voigt estimation when g

approaches 10 and the transition becomes sharp.
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Figure 7.20 Effect of the smoothness of the graded interface on the Young modulus of the
composite (from 1, very smooth transition, to 10, almost stepwise transition). (a) VC= 10%;
(b) VC = 50%. Reprinted from J. Compos. Mater., 41 (1), Mishnaevsky Jr, pp. 73–87,
Copyright (2007), with permission from Sage Publications, Inc.

Now, let us investigate the effect of damage in a phase of a composite on the stiffness
of graded composites. The ‘black’ cells, which are arranged with gradient, were made
randomly damaged. The density of failed cells was varied from 10 to 50%. The damaged
cells were assumed to have zero stiffness. The stiffness of the composite was calculated
using the method described in Section 7.6.1. Figure 7.21 shows the Young moduli of
materials with different densities of failed particles plotted versus the gradient parameter
g. Figure 7.22 shows the ratio of the Young moduli of damaged and undamaged materials
(with the same parameter g) plotted versus the gradient parameter g.
One can see from the Figures 7.20 and 7.21 that the effect of damage on the stiffness

of gradient materials is much stronger for the graded composites with a sharp transition,

than for the composites with a smooth transition.
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Figure 7.21 Young moduli of materials with different densities of failed particles plotted
versus the gradient parameter g. Reprinted from J. Compos. Mater., 41 (1), Mishnaevsky Jr,
pp. 73–87, Copyright (2007), with permission from Sage Publications, Inc.
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Thus, the smoother the transition between the regions of high content of each
phase, the greater is the stiffness and the less the damage sensitivity of the graded
composites.

7.6.3 Inclined interface: effect of the orientation of interfaces on the elastic

properties

Now let us analyze the effect of the inclined interface between the materials in a bilayer
on the stiffness of a two-phase composite. A two-phase cell with inclined interface is
considered. The properties of the components were as in the previous section. The angle
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Figure 7.23 (a) Examples of cells with inclined interface and (b) Young modulus of the cell
plotted versus the angle of the interface with the horizontal line. Reprinted from J. Compos.
Mater., 41 (1), Mishnaevsky Jr, pp. 73–87, Copyright (2007), with permission from Sage
Publications, Inc.

of the interface line with the horizontal was varied from 0 to 42 grad. Figure 7.23(a)
gives two examples of the cell: with angle 5� and 40�. The volume content of the phases
was kept constant (50%).
The microstructures were represented as arrays of 1000×1000 subcells, with the black

subcells placed below the interface, and white subcells above it. The Young moduli of
the cells with different inclinations of the straight interface were calculated using the
approach described in Section 7.6.1.
Figure 7.23(b) gives the Young modulus of the cell plotted versus the angle of the

interface with the horizontal line. One can see that the stiffness of the material increases
when the angle between the interface and horizontal line increases. At the angle 40�, the
stiffness of the material is 12% higher than for the case of the horizontal interface.
Practically, that means that the stiffness of a composite, reinforced by fibers or

whiskers, can be increased just by reorienting the elongated particles or whiskers: if the
whiskers are arranged not normal to the load (which corresponds to the horizontal inter-
face in our case), but at some angle to the load (inclined interface), that can lead to the
higher stiffness of the material. This result is confirmed also by the results of FE analysis
in Section 7.3.
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8

Particle clustering in composites:
effect of clustering on the mechanical

behavior and damage evolution

8.1 Finite element modeling of the effect of clustering of particles on

the damage evolution

The effect of reinforcement clustering on the strength, damage and fracture of compos-
ites has been studied by many researchers. Table 8.1 gives a brief overview of some
works in this area. Apparently, there are some contradictions in the results on the
effect of particle clustering on the strength and mechanical behavior of composites.
Whereas Berns et al. (Berns et al., 1998) demonstrated both theoretically and exper-
imentally that replacing the large primary carbides by clusters of small carbides in
tool steels leads to the increase of the fracture resistance and strength of materials,
Geni and Kikuchi (Geni and Kikuchi, 1998) have shown that the particle clustering
decreases the failure strain of composites as compared with the uniform particle
distribution case.
In this section, we analyze the effects of the parameters of the clustered microstructures

on the deformation and damage resistance of composites, using the numerical experiments
approach.

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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Table 8.1 Effect of reinforcement clustering on the strength, damage and fracture resistance
of composites.

Author; materials, method Main results

Srensen and Talreja, 1993;
unidirectionally fiber
reinforced ceramic matrix
composites subject to cool
down from stress-free
temperature FEM, 3D unit cell
models

The effect of nonuniformity of fiber distribution on the
residual stresses is studied. It was demonstrated that
the stresses around the fibers show significant
dependence on the nonuniformity of fiber distribution.
The radial compressive stress is very sensitive to the
nonuniformity, and is maximum, when fibers are in
contact. The enhancement of the stress increases with
increasing the amount of fibers in contact

Bush, 1997; elastic analysis of
Al/SiC composite, BEM (dual
boundary integral method)

The interaction between a crack and a particle cluster
is investigated numerically. It was shown that the
energy release rate (ERR) is reduced, when a crack
approaches the cluster (increasing the effective
fracture toughness), and amplified, when the crack
leaves the cluster (reducing the toughness). The
pre-existing interface flaws can attract the crack, and
increase the ERR

Llorca and Gonzalez, 1998;
Al/SiC composite, FEM

The authors have shown that the vertical clustering of
whiskers lowers the overall flow strength and
promotes a slower rate of void growth as compared
with the uniform arrangement. Vertical clustering
leads to the smaller hardening exponent and larger
ductility as well, but the difference with the case of
the uniform arrangement is smaller. The influence
of reinforcement clustering is significantly less
pronounced for particulate and sphere reinforced
composites, than for the whiskers reinforced
composites

Geni and Kikuchi, 1998;
Kikuchi and Geni, 1998;
Al/SiC composites, 3D FEM

The fracture strain of composites is much higher when
the particle are distributed uniformly than when they
are clustered

Berns et al., 1998; tool steels,
FEM, experiments

A new material, in which clusters of small primary
carbides replace large carbides (‘double dispersion’
microstructure), ensures sufficiently higher fracture
toughness and lifetime, than the usual steels

Mishnaevsky Jr et al., 2003a,
2004a; tool steels, FEM

The fracture toughness of tool steels with clustered
microstructures is much higher than that for the steels
with uniform or random microstructures

Segurado et al., 2003; model
MMC, FEM model (3D
multiparticle cubic cells)

The influence of the reinforcement clustering on the
macroscopic composite behavior is weak, but the
average maximum principal stresses in the particles
are appreciably higher in the inhomogeneous
materials. The presence of clustering greatly increased
(by a factor of 3–6) the fraction of broken spheres,
leading to a major reduction of the composite flow
stress and ductility
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8.1.1 Numerical models of clustered microstructures and statistical

characterization of the microstructures

A number of 2D unit cells with random uniform and clustered arrangements of SiC
particles have been generated automatically, using the 2D version of the programMeso3D.
The volume content (VC) of inclusions was taken as 6, 10 and 18%. The microstructure
with VC = 10% and amount of particles N = 100 was taken as a basic microstructure.
The microstructures with VC = 6 and 18% were designed on the basis of one of two
rules: either keeping the amount of particles constant �N = 100� but varying the particle
radius, or keeping the particle radius constant �r = 0�178mm� but varying the amount of
particles. Therefore, we were able to consider separately the effects of the amount and
the volume content of particles in the materials with clustered microstructures.
The mechanical properties of the materials used in these models correspond to the

properties described in Section 6 (AL matrix reinforced with SiC particles).
Table 8.2 gives the amount and radii of particles for the considered microstructures.
To characterize quantitatively the arrangements of the particles and the degree of

localization in different microstructures, we determined the radial distribution function
of sphere centers as well as the nearest neighbor distances (NNDs) between the particle
centers and the nearest neighbor index (NNI, ratio of observed to the expected NND) for
the considered microstructures. The scattering of the distribution of the NNDs between
particles was characterized by the statistical entropy of the NND (SENND). The entropy
was calculated by:

H =−�p�L� logp�L� (8.1)

where p�L� is the probability distribution of the NNDs between particles.
Figure 8.1 shows the FE meshes in the microstructure areas with the uniform (random)

and clustered particle arrangements.
Figure 8.2 gives examples of the determined radial distribution functions of particle

centers for the clustered and uniform (random) particle arrangements. The radial distri-
bution functions for the random particle distributions have one wide peak, and then
the curve falls slowly, demonstrating the large scattering of distances. The distribution
functions for the clustered microstructure have two peaks: the first peak corresponds to
the distance between the particles in a cluster, and the second peak corresponds to the
distance between particles from different clusters.
The values of NND, NNI and SENND, determined for the generated microstructures,

are given in Table 8.3

Table 8.2 Amount �N� and radii �r� of particles for the considered microstructures.

VC

10% 6% 18%

N = const. r = const. N = const. r = const.

N 100 100 60 100 180
r 0.178 0.138 0.178 0.24 0.178
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(a) (b)

Figure 8.1 Examples of (a) the uniform (random) and (b) clustered particle arrangements
and FE meshes. Reprinted from Compos. Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect of
Microstructures � � � ’, pp. 1805–1818, Copyright (2004), with permission from Elsevier.
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Figure 8.2 Radial distribution functions of sphere centers for the clustered and uniform
(random) particle arrangements. (a) VC = 10%, 100 particles, r = 0�178mm; (b) VC =
18%, 180 particles, r = 0�178mm; (c) VC = 6%, 100 particles, r = 0�138mm. Reprinted
from Compos. Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect of microstructures � � � ’,
pp. 1805–1818, Copyright (2004), with permission from Elsevier.
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Table 8.3 NND between particle centers for the considered microstructures.

VC

Microstructure Parameter 10% 6% 18%

N = const. r = const. N = const. r = const.

Random NND 0�807 0�702 0�937 0�614 0�55
SENND 0�895 1�15 0�8 0�613 0�9
NNI 1�614 1�404 1�09 1�23 1�48

Clustered NND 0�417 0�339 0�419 0�411 0�319
SENND 0�607 0�652 0�574 0�531 0�374
NNI 0�83 0�68 0�65 0�82 0�86

One can see from Table 8.3, that the NND, SENND and the NNI are much higher for
the random particle arrangement than for the clustered particle arrangement.

8.1.2 Simulation of damage and particle failure in clustered microstructures

The deformation and damage evolution in composites with clustered and uniform
particle distributions were simulated, using the above described models. Figure 8.3 gives
the von Mises stress distributions for composites with clustered and uniform particle
arrangements. The damage in the phases was simulated using the ABAQUS subroutine
described in Section 6.3.
One can see from Figure 8.3 that the stresses in particles are much higher in the

case of the clustered than in the case of the uniform particle arrangement. The stress
distribution in the matrix is more homogeneous in the uniform than in the clustered
microstructure. The stresses between clusters are typically lower than inside the clusters.
One may expect therefore that after some particles fail, the ductile failure of ligament
between particles inside clusters proceeds at relatively low load, yet, the propagation
of cracks between clusters will require much higher energy than in the case of the
uniform particle distribution. Figure 8.4 shows the elements which were weakened in the
clustered microstructure as a result of damage initiation. From the simulations, one can
see that the particles placed at the outer boundary of clusters (and not the particles inside
clusters) become damaged at the beginning of the damage evolution. After a particle
becomes damaged (i.e. an element from the particle is removed), other elements from the
same particle are removed further. Simultaneously, other (mostly neighboring) particles
become damaged (including the particles inside clusters).
Figure 8.5 shows the tensile stress–strain curves for composites with clustered and

uniform (random) particle arrangements. Figure 8.6 shows the fraction of failed particles
plotted versus the far field applied strain.
One can see from the Figures 8.5 and 8.6 that the clustered particle arrangement leads

to a small increase in the flow stress and stiffness of the composite as compared with
the uniform (random) particle arrangement. The difference between the flow stress for
the clustered and uniform (random) particle arrangements is no more than 2–3%. Such
a small difference lies apparently in the limits of the experimental error, and therefore
can not be observed in experiments (Derrien, 1997).
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Figure 8.3 Von Mises stress distributions for composites with (a) clustered and (b) uniform
particle arrangements. Reprinted from Compos. Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect
of microstructures � � � ’, pp. 1805–1818, Copyright (2004), with permission from Elsevier.
(See Plate 4)

The failure strain of the composite with the cluster particle arrangement is significantly
lower than that for the uniform arrangement. These results correspond to the results from
the 3D FE analysis in Section 6.6.
From Figure 8.6 it can be seen that many particles fail at almost the same external

load, which is characteristic of the type of microstructure (clustering, volume content of
particles). For instance, for the clustered particle arrangement �VC= 18%� N = const��,
the fraction of failed particles increases from 0.2 to 1%, when the far field applied strain
is about 0.02mm. This can be explained by the fact that the particle failure occurs due
to the plastic energy accumulated in the matrix during the previous deformation, and
not just as a quick response to the load. Many particles in the matrix are subject to the
similar local loads due to the high deformation energy in the matrix, and, therefore, many
particles fail at the same load.
Table 8.4 gives the failure strains for the different microstructures of the composites,

and the relations of the failure strains for random/clustered microstructures.
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Boundary
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Figure 8.4 Weakened finite elements in the particles: (a) scattered microcracks formed in
the particles, mostly at the outer boundaries of the particle clusters; (b) intensive particle
failure. Reprinted from Compos. Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect of microstruc-
tures � � � ’, pp. 1805–1818, Copyright (2004), with permission from Elsevier.

Now, we can analyze the effect of the microstructure on the strength, stiffness and
failure behavior of the composites with clustered microstructures.
The values of the failure strains are presented in Figure 8.7 as a column chart,

in order to illustrate the effect of microstructures on the failure strain. From
Figure 8.7 it can be seen that the random arrangement of particles ensures much
higher failure strain than the clustered microstructure for all cases. Only the clus-
tered microstructure with a very low volume content (6%) and small amount
of particles �N = 60� gives a failure strain comparable with that of the random
microstructures.
The ratio of the random versus clustered arrangement failure strains depends strongly

on the volume content of the particles. The effect of an increased amount of particle in
a cluster on the failure strain is much stronger than the effect of particle radius: While
an increase of the particle number, corresponding to an increase of SiC volume content
from 6 to 18%, leads to a reduction of the failure stress by 50%, a similar increase in
the particle radius leads to a reduction of the failure stress by 3–20%.
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Figure 8.8 gives the failure strain of the composites, determined in the simulations,
plotted versus the average NND (nearest neighbor distance) between the particles in the
composites. The trend line shows that the higher the values of the average NND, the
higher the failure strain of the composite. An increase in the NND by 35% leads to a
decrease of the probability of failure by 40%.
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Figure 8.5 Tensile stress–strain curves for composites with uniform (random) and clustered
arrangements of particles: (a) VC = 10%� N = 100� r = 0�178mm; (b) N = 100, varied
volume content (6% and 18%) and particle radii; (c) r = 0�178mm and varied volume
content and amount of particle. Reprinted from Compos. Sci. Technol., 64, Mishnaevsky Jr
et al., ‘Effect of microstructures � � � ’, pp. 1805–1818, Copyright (2004), with permission from
Elsevier.
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Figure 8.5 (Continued)

8.2 Analytical modeling of the effect of particle clustering on the

damage resistance

8.2.1 Cell array model of a composite

Let us consider the damage accumulation in composites with uniform (random) and
clustered particle arrangements. For the sake of definiteness, we consider the SiC particle
reinforced Al matrix composite again. The composite material may be presented as an
array of cells (Mishnaevsky Jr. et al., 2004b), each the size of a particle cluster. Figure 8.9
shows such a material representation. If N is the amount of particles in the material, M
the amount of cells in the model and K the amount of clusters in a model, the total amount
of particles in each cell is m = N/M for the case of the uniform particle arrangement,
and m= N/K (in a cell with particle cluster) and m= 0 (in a cell without a cluster) for
the case of the clustered microstructure.
The probability of macroscopic fracture in a clustered microstructure can be defined

as a probability of the formation of a crack of the size of a cluster (Baptiste, 1999).
Let us determine the probability of the failure of a cell. Failure in Al/SiC composites

proceeds as follows (see Chapter 6): first, some particles fail; after that, cavities and
microvoids nucleate in the matrix near the broken particles, grow and coalesce, and that
leads to the failure of the matrix ligaments between particles, and finally to the formation
of a macrocrack (Hu et al., 1998; Derrien et al., 1999). Derrien et al. (Derrien et al., 1999)
considered the failure of matrix ligament between failed particles. They demonstrated
that the growth rate of cavities in the ligament between particles is a decreasing function
of the distance between particles. A ligament fails, when the growth rate of cavities in
the ligament exceeds some critical value. Figure 8.10 shows this mechanism of damage
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in the composite. Using the model of the formation of a plastic zone between two broken
particles, developed by Evensen and Verk (Evensen and Verk, 1981), Derrien et al.
(Derrien et al., 1999) derived a formula for the critical distance between neighboring
failed particles, at which the matrix ligament between them fails by the mechanism of
the progressive void growth:

ll = lcr = a�
√

2�/3f −
√

8/3� (8.2)
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Figure 8.6 Fraction of failed particles plotted versus the far field strain for composites with
uniform (random) and clustered arrangements of particles: (a) VC = 10%� r = 0�178mm,
random particle arrangement; (b) N = 100, varied volume content and particle radii; (c) r =
0�178mm and varied volume content and amount of particle. Reprinted from Compos. Sci.
Technol., 64, Mishnaevsky Jr et al., ‘Effect of microstructures � � � ’, pp. 1805–1818, Copyright
(2004), with permission from Elsevier.
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Table 8.4 Failure strains for the different microstructures of the composites.

Microstructure VC(%) Random Clustered Ratio of failure strains
(random /clustered)

Ratio of failure
strains (18%/6%)

N r Random Clustered

100 0�178 10 0�042 0�022 1�90 —
100 0�138 6 0�043 0�022 1�95 0�97 0�8

0�24 18 0�042 0�0176 2�39
60 0�178 6 0�062 0�032 1�94 0�51 0�47

180 18 0�032 0�015 2�13

where a is particle radius, f is particle volume content, ll and lcr are the length and
critical length of the ligament (i.e. the distance between particles). When some amount
n particles in a cell fail, the average distance between failed particles is:

lav = 0�5
√

v/n (8.3)

where v is the volume of a cell. The condition of the cell failure can be stated as
a condition that the average distance between failed particles lav exceeds the critical
distance, calculated by Equation (8.2):

lav = ll (8.4)

and

ProbF = Prob�lav = ll	 (8.5)
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Figure 8.7 Failure strains for different microstructures. Reprinted from Compos. Sci.
Technol., 64, Mishnaevsky Jr et al., ‘Effect of microstructures � � � ’, pp. 1805–1818, Copyright
(2004), with permission from Elsevier.
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Figure 8.8 Failure strain plotted versus the average NND (nearest neighbor distance)
between particles. Reprinted from Compos. Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect
of microstructures � � � ’, pp. 1805–1818, Copyright (2004), with permission from Elsevier.
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Figure 8.9 Schema of a clustered material presented as an array of cells.

L

Figure 8.10 Mechanism of damage in the Al/SiC composites: failure of matrix ligaments
between the damaged SiC particles.

where ProbF is the probability of the specimen failure.
The critical amount of failed particles in a cell, at which the average distance between

failed particles is equal to the critical length of the ligament between particles, can be
calculated by:

ncr =
v

4a�
√
2
/3f −

√
8/3�2

(8.6)

Thus, the condition (8.4) is met if the amount of failed particles in a cell is equal to ncr.

8.2.2 Probabilistic analysis of damage accumulation in a cell

Consider the density of failed particles in a cell. The probability, that ncr particles fail in
a cell (which is considered here as the probability of the cell failure) can be determined
as a probability of realizing this event (i.e. particle failure) ncr times in m independent
repeated trials, where m = N/K for the clustered microstructure and m = N/M for the
random microstructure. Assuming that the particles fail independently with a probability
p, one may describe such a probability distribution by the binomial law:

ProbF = Prob�n= ncr�= Cncr
m pncr �1−p�m−ncr (8.7)

where p is the the probability of particle failure (or the density of failed particles). The
probability of particle failure can be determined, for instance, by the equation suggested
by Maire et al. (Maire et al., 1997):

p= 1− exp�−�a/a0�
3���−�cr�/�0�

h	 (8.8)
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Figure 8.11 Probability of the formation of a crack calculated by Equations (8.7) and (8.8)
as a function of the density of failed particles Reprinted from Compos. Sci. Technol., 64,
Mishnaevsky Jr et al., ‘Effect of microstructures� � � ’, pp. 1805–1818, Copyright (2004), with
permission from Elsevier.

where � is stress on a particle, a is particle size, �cr is stress below which no particle
failure occurs, �0� a0 and h are material constants, i.e. representative stress, representative
dimension and Weibull modulus, respectively.
Figure 8.11 shows the probability of the formation of a crack calculated by Equa-

tions (8.7) and (8.8) as a function of the density of failed particles. The calculations were
made for the following parameters: N = 100� M = 10� K = 5� ncr = 7. The parameters
of the material were taken from Maire et al. (Maire et al., 1997), and are as follows:
�cr = 580MPa��0 = 1700MPa� a0 = 11�5m� h= 3�8.
One can see that the density of failed particles must be three times higher for the

random, than for the clustered particle arrangement, to ensure equal failure probability.
Similarly, the stress on a particle must be 15–16% higher for the random, than for
the clustered particle arrangement, to ensure equal failure probability. For the same
density of failed particles, the failure probability for the clustered particle arrange-
ment is 10–100 times higher than for the random particle arrangement, depending
on the density of failed particles and their strength. The ratio between the proba-
bility of failure for clustered and uniform microstructures is very high for relatively
strong particles (i.e. low density of failed particles). For the weaker particles, the ratio
decreases.
Now, consider the effect of the degree of clustering on the probability of a crack

formation. The degree of particle clustering can be characterized in our model by the
ratio M/K (i.e. the total amount of cells divided by the amount of cells with clusters).
The higher M/K, the more particles are located in one cell, and the bigger the volume
of the particle-free material in the composite.
Figure 8.12 shows the ratio of the probabilities of specimen failure for random

and clustered arrangements plotted versus the degree of particle clustering M/K. The
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Figure 8.12 Ratio of the probabilities of macrocrack formation for random and clustered
arrangements plotted versus the degree of particle clustering M/K. Reprinted from Compos.
Sci. Technol., 64, Mishnaevsky Jr et al., ‘Effect of microstructures � � � ’, pp. 1805–1818,
Copyright (2004), with permission from Elsevier.

probabilities were calculated for the average density of failed particles p = 0�1, and
N = 100� M = 10� K varied from 10 (no clustering) to 2 (very high clustering). One
can see that the probability of failure of a composite with clustered particle arrangement
increases with increasing the degree of particle clustering.
The curve in Figure 8.12 can be interpreted also as a relationship between the ratio

of the probabilities of macrocrack formation and the NND (nearest neighbor distance)
between particle centers. The average NND for the clustered microstructure can be
calculated by:

lNND = 0�5
√

vK/M (8.9)

One can see from Figure 8.12, that the decrease in the NND between particle centers by
50% (from 0.15 for K = 9 to 0.1 for K = 4 and v= 0�5) leads to the increase of the ratio
of the failure probabilities of clustered/random microstructures from 0.01 to 3.66.
A similar result was obtained numerically in Section 8.1.2. One can draw a conclusion

from the above analysis that the clustered arrangement of particles leads to a much
higher likelihood of crack formation, as compared with the uniform (random) particle
arrangement (for the same density of failed particles and the same applied load).

8.2.3 Effect of particle clustering on the fracture toughness

The conclusion drawn from the above analysis, is that the critical strain, at which the
intensive damage growth begins and a first crack forms, decreases if the damageable
particles in the composite are arranged in clusters, as compared with uniform and random
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particle arrangement. This conclusion is confirmed by the experimental results by Derrien
(Derrien, 1997), Derrien et al. (Derrien et al., 1999) and by the numerical results by Geni
and Kikuchi (Geni and Kikuchi, 1998) and Segurado et al. (Segurado et al., 2003).
It is of interest to discuss here the difference between these results, and the results by

Berns et al. (Berns et al., 1998) and Mishnaevsky Jr et al. (Mishnaevsky Jr et al., 2003a,
2004a), who have shown that the clustering of particles ensures higher fracture toughness
of brittle particle reinforced materials as compared with homogeneous microstructures.
One should note that the deformation and damage evolution in the model presented
here are considered up to the point, where the falling branch of the force–displacement
curve begins. This corresponds to the point, when a mesoscale crack (i.e. a crack of the
size of a cluster) forms, or the density of failed particles exceeds some critical value.
This approach is natural for the materials used in the automobile and aviation industry,
for instance. If we however look at the specimen failure defined as a formation of a
percolating macrocrack in the specimen (running both through the particle clusters and
the particle-free zone), the fracture resistance of the material becomes dependent on the
toughness of the particle-free regions of the material (which is much higher than the
toughness of the composite with particles). In this case, the specific fracture energy can
be calculated in the framework of the cell model of the material as follows:

Gav =
√

K/M Gclust + �1−
√

K/M�Gmatrix (8.10)

where Gav is the specific fracture energy of the material, Gclust and Gmatrix are the specific
fracture energies of the formation of a new surface in a particle cluster and in the matrix,
respectively, M is the amount of the cells (with or without clusters) in the model and
K is the amount of clusters in the model. Denoting � = Gclust/Gmatrix, one can rewrite
Equation (8.10) in the form:

Gav =Gmatrix�1−
√

K/M �1−��� (8.11)

The ratio M/K characterizes the degree of the particle clustering: M/K = 1 for a homo-
geneous material, and increases with increasing localization of particles for a clustered
particle arrangement. For a ductile metal matrix composite with brittle damageable parti-
cles, Gclust << Gmatrix and � < 1. One can see from Equation (8.11) that the specific
fracture energy increases with increasing the degree of the particle clusteringM/K. Thus,
whereas the strain, at which the critical density of failed particles in the material is

achieved, is much higher for the material with the uniform particle arrangement than for

the clustered arrangement, the total fracture toughness of the materials increases with

increasing the degree of particle clustering. This conclusion is supported by the numer-
ical and experimental results by Berns et al. (Berns et al., 1998) and Mishnaevsky Jr
et al. (Mishnaevsky Jr et al., 2004a).
Summarizing, one may state that the clustered arrangement of brittle particles in a

ductile matrix leads to lower failure strain than that in the case of a homogeneous
inclusion arrangement. It is shown that the higher the values of the average NND, the
higher the failure strain of the composite. However, the total fracture toughness of the
composites increases with increasing the degree of particle clustering.
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9

Interpenetrating phase composites:
numerical simulations of deformation

and damage

In Chapters 4–8, composites with relatively low volume content of reinforcement were
considered. In such materials, the reinforcing elements are surrounded by the matrix
phase, and interact via stress and strain fields. However, with increasing volume content
of the reinforcing elements, the reinforcing particles start to touch each other and to form
aggregates. At some density of reinforcement, the particles form interconnected networks
(finite or infinite percolation clusters), which strongly influence mechanical properties
and strength of composites.
The materials, in which one or both phases forms an interconnected network, present

a rather large and important group, and many of the materials are widely used industri-
ally. This group of materials includes, for instance, various biomaterials, tool materials
(e.g. WC/Co cemented carbides with the WC skeleton, compare Figure 9.1) (Loshak,
1984; Mishnaevsky Jr, 1995a), other sintered composites (Purohit and Sagar, 2001),
porous materials and foams, polymer composites, containing conducting filler particles
(e.g. graphite), as well as other dielectric composites. Some graded composite materials
have regions with interpercolating phases between the regions of high concentration of
each of the phases.
If both phases of a composite form completely interconnected networks (infinite perco-

lation clusters), the material is referred to as interpenetrating phase composite (IPC)
(Clarke, 1992).
The interest in the modeling of materials with interpenetrating phases has increased in

the last few years, as a result of the development of new materials: nanocomposites with
nanoscale reinforcement, which forms percolating networks (Buxton and Balazs, 2004),
foams and porous materials, etc.

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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Figure 9.1 Schema of a skeleton from carbide particles in a sintered composite.

The oldest approach to the analysis of materials with a skeleton is based on the
parameters of continuity and contiguity (see Chapter 2). The contiguity parameter was
introduced by Gurland (Gurland, 1958) to characterize microstructures of cemented
carbides with a skeleton, and is defined as a ratio of the grain–grain boundary surface area
to the total interface area. Chermant and Osterstock (Chermant and Osterstock, 1979)
have shown that the yield stress of WC/Co hard alloys increases if the contiguity of
the skeleton from WC particles in the material increases. Using a probabilistic model of
joining particles in sintering, Mishnaevsky Jr (Mishnaevsky Jr, 1995a, 1998a) calculated
the continuity of the skeleton of a hard alloy as a function of the sintering conditions.
Using a probabilistic model of damage accumulation in intergrain necks in the wolfram
carbide skeleton of the hard alloys, Mishnaevsky Jr demonstrated that the yield strength
of the composite is proportional to the contiguity of the skeleton.
Fan et al. (Fan et al., 1992) expanded the concept of contiguity, and introduced several

other parameters of microstructure (the degree of separation of the phases, numbers of
intercepts of interfaces). Further, Fan and colleagues developed a method of estimation of
the young modulus of composites, based on the topological transformation of a two-phase
microstructure into a three-phase microstructural element body. Aldrich et al. (Aldrich
et al., 2000) applied this model to the analysis of nickel/alumina interpenetrating phase
composites, and demonstrated that the estimations of Young modulus, based on this
model, are in good agreement with experiments.
Several micromechanical unit cell models have been developed for the analysis of the

mechanical behavior of materials with percolating/interpenetrating microstructures.
Ravichandran (Ravichandran, 1994) proposed a simple cubic unit cell model of inter-

penetrating microstructures and employed it to study the deformation of composites with
two ductile phases. The 3D simple cubic model [Figure 9.2(a)] was used by Daehn et al.
(Daehn et al., 1996) to analyze the deformation behavior of the C4 materials (interpene-
trating mixture of elastic perfectly plastic Al and elastic Al2O3; see Breslin et al., 1994).
Lessle et al. (Lessle et al., 1999) introduced the ‘matricity’ parameter which is defined

as ‘the fraction of the skeleton lines of one phase S, and the length of the skeleton lines of
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matrix

sphere

Figure 9.2 Unit cell models of interpenetrating phase composites: (a) 3D cubic model
by Daehn et al. (Daehn et al., 1996); (b) and (c) two- and three–phase models by Feng
et al. (Feng et al., 2003, 2004); (d) triangular prism unit cell model by Wegner and Gibson
(Wegner and Gibson, 2000). (a) Reprinted from Acta Mater., 44 (1), Daehn et al., ‘Elastic
and plastic behavior � � � ’, pp. 249–261, Copyright (1996), with permission from Elsevier.
(b,c) Reprinted from Comput. Mater. Sci., 28 (3–4), Feng et al., ‘A micromechanical model
for � � � ’, pp. 496–493, Copyright (2003), with permission from Elsevier. (d) Reprinted from
Int. J. Mech. Sci, 42 (5), Wegner and Gibson, ‘The mechanical behavior � � � ’, pp. 943–964,
Copyright (2000), with permission from Elsevier.

the participating phases’. Using the approach, based on the combination of two unit cell
models, Lessle and colleagues incorporated the matricity parameter into the embedded
cell model, developed by Dong and Schmauder (Dong and Schmauder, 1996). In the
models, each phase is considered as an inclusion, surrounded by a layer of another phase,
so that the length of this layer corresponds to the length of the skeleton line of the phase.
Feng et al. (Feng et al., 2003, 2004) developed unit cell models for the estimation of

elastic moduli of interpenetrating multiphase composites, and considered special cases
of interpenetrating two- and three-phase composites. The unit cells for n phases are
decomposed into series and parallel subcells, and their elastic moduli are determined
using the Mori–Tanaka method, and the Reuss and Voigt estimations. Figure 9.2(b)
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and (c) shows the unit cells, used by Feng and colleagues for the analysis of two- and
three-phase composites.
Wegner and Gibson (Wegner and Gibson, 2000) modeled an interpenetrating phase

composite as a hexagonal array of intersecting spheres. The volume between the spheres
is filled with another material. The triangular prism unit cell model was designed by
analyzing symmetries of the close-packed array of spheres. Wegner and Gibson demon-
strated that the composites with interpenetrating phases have improved Young modulus,
strength and thermal expansion, as compared with composites with noninterpenetrating
microstructures.
The lattice models can be efficiently used for the analysis of composites with interpen-

etrating microstructures. Using the analogy between the electrical conductivity of resistor
networks and stiffness of phases in composite, Moukarzel and Duxbury (Moukarzel and
Duxbury, 1994) simulated the failure of composites with interpenetrating phases as failure
of random resistor networks on cubic lattices.
Another group of approaches is based on the methods of statistical physics and percola-

tion theory, utilized to determine scaling properties and critical exponents of percolating
composite materials (Bergman, 1978, 2002; Barta, 1994; Sarychev and Brouers, 1994).
In this Chapter, we seek to analyze the effect of the formation of interpenetrating

structures (percolation clusters) on the strength and mechanical behavior of compos-
ites. In order to model the near-percolating and percolating microstructures, we use the
voxel array based representation of microstructures of materials (realized in the program
Voxel2FEM, see Section 5.3). The advantage of this method (as compared with the unit
cell models, listed above) is that it allows to analyze both interpenetrating microstructures,
locally (gradient) interpenetrating microstructures and transition microstructures (close
to the percolation threshold) in the framework of one and the same approach. Further, it
allows to take into account the random arrangement of microstructural elements in the
interpenetrating microstructures. In the following, we carry out numerical simulations
of the deformation and damage behavior in several groups of materials with percolating
microstructures:

• interpenetrating phase composites with random distribution of phases (‘3D random
chessboards’);

• graded interpenetrating phase composites, where the regions of interpenetrating
microstructures are available between the regions of high content of each phase;

• porous ductile materials.

Results of simulations carried out with the use of the geometry-based and voxel array
based methods of the FE model generation are compared, in order to verify the compati-
bility of results in this and previous chapters. Further, we consider here the same materials
as in previous chapters to ensure the compatibility and comparability of the results.

9.1 Geometry-based and voxel array based 3D FE model generation:

comparison

Now, we seek to verify the compatibility of results obtained with the use of the geometry-
based and voxel-based methods of the model generation. Two multiparticle unit cell
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models for identical ideal 3D microstructures were generated using the program Meso3D
(i.e. exact geometrical shape based model generation plus free meshing) and the program
Voxel2FEM (voxel-based model generation). The cells �10× 10× 10mm� with five
spherical particles and volume content of particles 5% were considered in both cases.
The FE analysis of deformation and damage in a composite was carried out, and the
results of simulations were compared.
In total, the geometry-based model contained 7800 elements, and the voxel-based

model 15625 brick elements. Each particle contained 370 FEs in the geometry-based
model, and 156 FEs in the voxel-based model.
Figure 9.3 shows the considered unit cells, as well as the stress–strain curves and the

fraction of failed elements plotted versus applied strain curves, obtained numerically.
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Figure 9.3 (a) Considered unit cells, as well as (b) the stress–strain curves and (c) the
fraction of failed elements versus applied strain curves, obtained numerically. Reprinted from
Mater. Sci. Eng., A, 407, Mishnaevsky Jr, ‘Automatic voxel � � � ’, pp. 11–23, Copyright (2005),
with permission from Elsevier.



202 Gradient interpenetrating phase composites

One can see that the results obtained from the models, generated from the voxel data
arrays and from the exact geometrical description of microstructures, are very close: the
stress–strain curves differ only by 5%, and the damage–strain curves only by 3–4 %.
Let us compare our conclusions with the results of similar investigations carried out

in other groups. Guldberg et al. (Guldberg et al., 1998) tested the accuracy of digital
image based FE models in 2D and 3D cases, and concluded that the ‘solution at digital
model boundaries was characterized by local oscillations, which produced potentially
high errors within individual boundary elements’. The solution, however, oscillated about
the theoretical solution, and was improved by averaging the results over the region of
several elements. The observed absolute errors in different simulations were of the order
of 1–4%. Niebur et al. (Niebur et al., 1999) investigated the convergence behavior of FE
models depending on the size of elements used, the element polynomial order, and on
the complexity of the applied loads, and concluded that differences in apparent properties
at different resolutions were always less than 10%, when the ratio of mean trabecular
thickness to element size was greater than four. Therefore, our conclusions are rather
close to the results of other authors.

9.2 Gradient interpenetrating phase composites

In this section, we analyze the effect of microstructures of gradient composites on the
deformation and damage resistance. In contrast to the analysis in Chapter 7, we consider
the case of graded composite microstructures with high volume content of inclusions
(and, therefore, with regions of interpenetrating phases). In this case, the gradient of
the hard phase distribution can not be described by the probability distribution of the
distances between the particle centers and the upper border of the cell. Instead, we use
the more general approach to the generation of artificial microstructures of the materials,
based on the distribution of the volume content of hard phase and realized in the program
Voxel2FEM. Taking the volume content of the black voxels (hard phase), as a function
of the Y coordinate, proportional to 1/�1+exp�g−2∗g∗Y/L�� (where L is cell length and
g the gradient parameter, see §7.6.2), we generated a series of 3D FE models of graded
random arrangements of hard phase (with different gradient parameter g and different
volume contents of the inclusions).
Figure 9.4 shows some examples of the designed gradient interpenetrating phase

microstructures. The deformation and damage in the materials were simulated numer-
ically. The material properties were the same as in the above simulations. Figure 9.5
shows the stress–strain curves of composites with volume content of hard phase of 10%
and 20%, and with various values of the gradient parameter g.
One should note here that in the models, which are used in this section, the grains of

phases are represented as single bricks/voxels. While the brick model is a rather rough
approximation of the grain shape, the widely used representation of particles or inclusions
in materials as spheres is as far from the real shapes of particles as the brick model.
However, the analysis of statistical parameters of microstructures and their effects on the
damage resistance and strength of composites is possible only on the basis of relatively
big cutouts (windows) of materials. Given the available constraints on the numerical
analysis of complex systems, we opted for the larger material model at the expense of
the resolution of the modeling.
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(a) (b) (c)

Figure 9.4 Examples of the considered graded microstructures of the material: (a) g = 3;
(b) g= 6; (c) g= 100.

One can see from Figure 9.5 that the critical strain, at which the damage growth begins
in the material, does not depend on the parameter of the volume fraction gradient g.
Whether the transition from the region of the high density of the hard phase to the region
of low density is sharp or smooth, the critical applied strain remains constant. However,
the stiffness of the composite and the peak stress of the stress–strain curve increase with
increasing sharpness of the transition between the regions. A reduction of g from 20 to
1 can lead to a decrease of the peak stress by 6%.
Figure 9.6 shows the peak stress of the stress–strain curves plotted versus the parameter

g of sharpness of the transition between the regions of high and low content of hard phase.
In order to analyze the observed relationship between the peak stress and stiffness of

the composite and the degree of localization of hard phase grains, let us apply the bilayer
model of a gradient composite, described in Section 7.2. In the framework of this model,
the Young modulus of the upper layer (highly reinforced region in the ‘bilayer’ model
of a graded composite, which is assumed to be homogeneous in the first approximation)
can be calculated by (‘rule-of-mixture’):

Eup = Epvc
L

wup

+Em�1−vc
L

wup

� (9.1)

where Eup� Ep� Em are Young moduli of the ‘upper (highly reinforced) layer’ of the
gradient composite, of hard and ductile phases, respectively, L is the cell size, vc is the
total volume content of the hard phase and wup is the thickness of the highly reinforced
region of the composite. The ratio wup/L characterizes the function of the volume fraction
gradient: if g > 20 (sharp transition), wup/L = 0�5, and if g < 5 (smooth transition),
wup/L= 0�6–0�9.
The gradient degree of microstructures in this model is characterized by two parameters:

the thickness and the Young modulus of the upper layer (i.e. of the highly reinforced
region of the gradient composite) (see Section 7.2). Using the Reuss formula for the
Young modulus of a bilayer, one can calculate the total Young modulus of the gradient
material as a function of the degree of gradient (i.e. the ratio L/wup):
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Figure 9.5 Typical tensile stress–strain curves for the different gradient degree of the com-
posite: (a)VC= 10%, (b)VC= 20%. Reprinted fromMater. Sci. Eng., A, 407, Mishnaevsky Jr,
‘Automatic voxel � � � ’, pp. 11–23, Copyright (2005), with permission from Elsevier.

E =
(

wup

LEup

+
L−wup

LEm

)−1

(9.2)

where L is the size of the cell and Eup and Em are Young modulus for the highly
reinforced part (upper layer) and the matrix.
Figure 9.7 shows the Young modulus of the composite, calculated with the use of the

simplified model, as a function of the smoothness of the interface between the regions
wup/L. One can see that the increase in the width of the highly reinforced region in
the composite (even at a sacrifice of the stiffness of the region) leads to a proportional
increase in the stiffness of the whole composite. i.e. the stiffness of the composite
increases with increasing the smoothness of the transition from the highly reinforced
region of the composite to the hard phase free region. This result, obtained with the use
of the simple analytical model, confirms our numerical results (Figure 9.5).
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of hard phase (10% and 20%). Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky Jr,
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Thus, the stiffness of graded interpenetrating phase composites can be improved by

making the transition region between the highly reinforced and reinforced free regions

smoother.

It is of interest to compare this conclusion with the results from Chapters 6 and 7. In
Section 6.6, it was shown that the graded arrangement of hard particles in composites
ensures much higher damage resistance but lower stiffness than composites with random
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and homogeneous particle arrangements. Furthermore, the more localized is the particle
arrangement, the higher is the damage resistance of the composite (see Section 7.1).
Taking into account the result above, one may summarize that graded composites with

high gradient degree and smooth transition between the highly reinforced and particle-

free regions can ensure both high damage resistance and relatively high stiffness. The idea
of the graded composite with both high localization of hard phase and smooth transition
between the regions is shown schematically in Figure 9.8.

VC

X 

VC

(a) (b)

VC

X

(c)

Figure 9.8 Schema of the graded composite with both high localization of the hard phase
and smooth transition between the regions: (a) graded composite with highly localized
hard phase arrangement (high damage resistance, low stiffness); (b) nongraded particle
arrangement; (c) graded composite with smooth transition between the regions of high and
low density of particles.
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9.3 Isotropic interpenetrating phase composites

9.3.1 Effect of the contiguity of interpenetrating phases on the strength of

composites

At this stage of the work, we seek to analyze the effect of microstructures of isotropic IPCs
on their strength and damage resistance. In particular, the effect of the availability and
the size of contiguous (percolation) clusters of hard phase on the deformation, strength
and damage in the composites should be clarified. In order to solve this problem, a series
of 3D FE models of composites with random distribution of the hard phase grains and
different volume content of the inclusions (3D ‘random chessboards’) were generated
using the program Voxel2FEM. Cubic unit cells �10× 10× 10mm� were subject to
uniaxial tensile displacement loading, 1.0mm.
Figure 9.9 shows some typical tensile stress–strain curves and the fraction of failed

elements in the hard phase plotted versus the far field applied strain for the different
volume contents of the hard phase. The falling branches of the stress–stress curves begin,
when the intensive failure of the hard phase occurs. After some part of the hard material
fails, the damage growth slows down, and the stiffness of the materials is not reduced
further. The damage growth in the ductile matrix proceeds much more slowly than the
damage growth in the hard grains.
Apparently, the constant stress branches of the curves correspond to the stage of the

material behavior, when many hard grains failed and ceased to bear any load, while the
matrix remains almost intact, and only slow damage accumulation in the matrix occurs.
Figure 9.10 shows the critical applied strain (at which the falling branches of the

stress–strain curves and the intensive damage growth in the hard phase begin) plotted
as a function of the volume content of hard phase. One can see that the critical strain,
at which the falling branches of the stress–strain curve begin, decreases with increasing
volume content of the hard phase.
It is of interest to correlate the strength, deformation and damage resistance of the

composites with the formation of a contiguous, interpenetrating network of the hard phase.
When generating the FE models, the percolation analysis for all three directions (X, Y, Z)
and for both phases (hard grains, matrix) was carried out, and the availability or nonavail-
ability of the infinite percolation clusters of the hard grains and the matrix in each direction
in the considered representative volume was tested. As expected (Stauffer and Aharony,
1992), infinite percolation clusters of hard phase do not form at the volume content of hard
phase below 31%, but were detected (in one direction) at VC= 32%. Infinite clusters of
hard phase form in all three directions at VC= 70%, but infinite clusters of matrix can be
detected only in two directions at this volume content. If the volume content is between
32% and 69%, the microstructure is interpenetrating, and both phases form infinite
clusters.
Comparing these data with the results shown in Figure 9.9, one can draw a conclusion

that metal matrix composites (normally, elastoplastic damageable materials) start to

behave as an elastic-brittle material (i.e. the linear stress–strain dependence up to the

peak stress and then vertical falling branch of the stress–strain curve), when the infinite

percolation cluster from the hard phase is formed (i.e. at VC> 32%).
Figure 9.11 shows the peak stresses of the stress–strain curves plotted versus the

maximum size of a percolation cluster of hard phase. The linear sizes of all the hard phase
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Figure 9.9 (a) Typical tensile stress–strain curves and (b) the fraction of failed elements in
the hard phase plotted versus the far field applied strain for the different volume contents
of the hard phase. Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky Jr, ‘Automatic
voxel � � � ’, pp. 11–23, Copyright (2005), with permission from Elsevier.

clusters have been calculated for the generated 3D FE models, using the built-in percola-
tion analysis subroutine in the program Voxel2FEM. One can see from Figure 9.11 that
the stiffness and the peak stress of a composite increase almost linearly with increasing
the linear size of the largest hard phase cluster up to the percolation threshold. The
formation of clusters of hard grains therefore plays an important role in the stiffness and
strength of composites.
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Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky Jr, ‘Automatic voxel � � � ’, pp. 11–23,
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Summarizing, one can formulate the following conclusions. The increase in the volume
content of hard phase leads, as expected, to the proportional increase in the Young
modulus of the composites, and to the strong increase in the peak stress of the stress–
strain curves. However, it leads to the decrease in the critical applied strain, at which
the falling branch of the stress–strain curve begins. The stiffness and the yield stress
of a composite increase almost linearly with increasing the linear size of the largest
hard grain cluster up to the formation of an infinite percolation cluster of hard phase.
After an infinite percolation cluster of hard phase is formed, the material (consisting
of the ductile matrix and hard grains) starts to behave as a brittle material (i.e. linear
stress–strain dependence up to the peak stress and then vertical falling branch of the
stress–strain curve).
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9.3.2 Porous plasticity: open form porosity

In this part of the work, we seek to investigate numerically the effect of the void/pore
density and the formation of percolation clusters of voids in the material on the defor-
mation, stiffness and strength of ductile voided/porous materials in the 3D case.
3D numerical models of porous material with different porosity and random distri-

butions of pores were generated using the program Voxel2FEM. The relative porosity
(volume content of voids) was varied from 10 to 70%. The properties (constitutive law,
Young modulus, Poisson’s ratio) of the matrix of the porous material corresponded to
the properties of the aluminum in the above simulations. The location of each pore was
determined using the random number generator (random values in all three directions).
Figure 9.12 shows examples of the considered representative volumes of the material.

The calculated tensile stress–strain curves for the porous Al with different volumes of
porosity are given in Figure 9.13.
When generating the FE models, the percolation analysis for all three directions (X, Y,

Z) and for both phases (pores, matrix) was carried out. The probability of the formation of
infinite clusters of the pores in each direction in the considered representative volume was
calculated, as described above. There were the following critical points in the material:
VC = 32% (formation of a first infinite percolation cluster of pores) and VC = 69%
(infinite clusters of pores are available in all three directions, however, the infinite clusters
of matrix are available only in two directions X and Z). At the volume content of pores
between 32% and 68%, both infinite percolation clusters of matrix and of pores are
available in all three directions. The volume content of pores, at which the percolation
of matrix is lost (i.e. 69%), corresponds to the formation of a crack along the Z axis
(the material was loaded along the Y axis). At this volume content of pores, there is
no percolation of matrix phase, and the material does not bear any load. Practically, it
means that the volume consists of two unconnected parts.
The yield stress (at far field applied strain � = 0�03) was plotted versus the porosity

(Figure 9.14). As expected, the yield stress of the porous material decreases with
increasing porosity. However, looking at the points of formation of percolation clus-
ters, one can conclude that even a formation of a percolation cluster of pores (in one

(a) (b) (c)

X

Y

Figure 9.12 Examples of the considered representative volumes of the porous material:
(a) porosity 30%; (b) 50%; (c) 70%. Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky
Jr, ‘Automatic voxel � � � ’, pp. 11–23, Copyright (2005), with permission from Elsevier.



Interpenetrating Phase Composites 211

800

1000

600

400

200

0

0 0.02 0.04 0.06 0.08

Strain

S
tr

e
s
s
, 
M

P
a

vc = 10%

vc = 32%

vc = 50%

vc = 30%

vc = 35%

vc = 69%

Figure 9.13 Tensile stress–strain curves for porous Al with different volumes of porosity.
Reprinted from Mater. Sci. Eng., A, 407, Mishnaevsky Jr, ‘Automatic voxel � � � ’, pp. 11–23,
Copyright (2005), with permission from Elsevier.

0 20 40 60 80

No pore
percolation

Transition
point: pore
percolation

Pore
percolation

AND
material

percolation
No material
percolation

in X-
direction

Volume content of pores, %

1000

800

600

400

200

0

S
tr

e
s
s
, 
M

P
a

Figure 9.14 Yield stress (at far field applied strain �= 0�03mm) plotted versus the porosity.
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or two directions) in a ductile material does not lead to the stepwise loss of stiffness of
the material. Only the nonavailability of the infinite percolation cluster of matrix phase
corresponds to a stepwise loss of stiffness. Apparently, whereas clusters of connected
pores may serve as sites of crack initiation, the formation of a cluster of pores does not
necessarily correspond to the formation of a crack in the material.
The results of the simulations presented in this chapter, can be summarized as follows.

The stiffness and the yield stress of a composite containing infinite percolation clusters of
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hard phase, increases almost linearly with increasing linear size of the largest cluster up to
the formation of an infinite percolation cluster of hard phase. After an infinite percolation
cluster of hard phase is formed, the material (consisting of the ductile matrix and hard
damageable grains) starts to behave as a brittle material (i.e. linear stress–strain depen-
dence up to the peak stress and then vertical falling branch of the stress–strain curve).
It was shown that the stiffness of a graded interpenetrating phase composite and the

peak stress of the stress–strain curve increase with increasing smoothness of the transition
from the region of high density of hard phase to the region of low density.
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10

Fiber reinforced composites:
numerical analysis of damage

initiation and growth

In previous chapters, the mechanical behavior and strength of particle reinforced, gradient
and interpenetrating phase composites have been analyzed. Here, we consider the methods
of modeling and simulation of deformation and damage evolution of unidirectional fiber
reinforced composite (FRCs).

10.1 Modeling of strength and damage of fiber reinforced composites:

a brief overview

10.1.1 Shear lag based models and load redistribution schemas

The shear lag model, developed by Cox in 1952 (Cox, 1952) is one of the most often
used approaches in the analysis of strength and damage of FRCs. This model is often
employed to analyze the load redistribution in FRCs, resulting from failure of one or
several fibers. This redistribution is described in the framework of various load sharing

rules. In the fiber bundle model, developed by Daniels (Daniels, 1945), the global load

sharing (GLS) schema was assumed: i.e. the load, which was born by a broken fiber,
is equally redistributed over all the remaining intact fibers in the cross-section of the
composite. As noted by Zhou and Wagner (Zhou and Wagner, 1999), the GLS model is
applicable only to a loose fiber bundle, with no matrix between the fibers. In the case of
fibers which are bound together by the matrix, other models of the load sharing should
be used.

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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For the qualitative description of the load redistribution after the fiber failure, the stress
concentration factor (SCF) is introduced:

SCF = �local

�applied

= 1+ �extra

�applied

(10.1)

where �local and �applied are the local stress in an intact fiber and applied stress, and
�extra = �local

−�applied is the overload at the fiber related to the fiber break (Zhou and
Wagner, 1999).
Harlow and Phoenix (Harlow and Phoenix, 1978) proposed the local load sharing

(LLS) model, in which the extra load, related to the failed fiber(s), is transferred to
two nearest neighbors of the fiber(s). In this case, the stress concentration factor is
determined by:

SCF = 1+ k

2
(10.2)

where k is the amount of failed fibers. Figure 10.1 shows schematically the GLS and
LLS models, as well as the power law based model of load sharing, discussed below.
Hedgepeth (Hedgepeth, 1961) was first to apply the shear lag model to a multifiber

system. He studied the stress distribution around broken fibers in 2D unidirectional
composites with infinite array of fibers. Hedgepeth and van Dyke (Hedgepeth and van
Dyke, 1967) generalized the elastic model by Hedgepeth to the 3D case and included
the elastic-plastic matrix behavior into the model. Considering an array of parallel fibers,
bonded to the matrix and subject to axial loading, they determined the average SCF in a
fiber after the failure of k adjacent fibers:

SCF =
k
∏

i=1

2i+2

2i+1
(10.3)

Curtin (Curtin, 1991) noted that the problem of independent and successive fiber fractures
under GLS condition is reduced to the problem of failure of single fiber in the matrix.
Determining the cumulative number of defects in fibers from the Weibull distribution

of fiber strengths, he estimated the ultimate strength of the composite as:

�F =
�m+1�

�m+2�

[

2�m
0 � L0

�2+m�r

]
1

m+1

(10.4)

where m is Weibull modulus, � is sliding resistance, r is fiber diameter, L0 and �0 are
parameters of the Weibull distribution of the fiber strengths and �0 is defined as ‘the
stress required to cause one failure on average, in a fiber of length L0’.
The shear lag model was used by Wagner and Eitan (Wagner and Eitan, 1993) to study

the redistribution of stress from a failed fiber to its neighbors. They determined SCF and
derived the following formula for the case of load redistribution after one single fiber in
a 2D unidirectional composite is broken:

SCF = 1+ �

	

sinh 
���/2− z�

sinh���/2�
(10.5)
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Figure 10.1 Schemas of the stress redistribution in a fiber bundle model: (a) global load
sharing; (b) local load sharing; (c) power law of the load sharing.

where � is the Cox shear lag parameter, z is the distance from break along the fiber, � is
the shear transfer length, �= sin−1�r/d�� r is the fiber radius and d is the center-to-center
interfiber distance. On the basis of their model, Wagner and Eitan demonstrated that the
‘local effect of a fiber break on the nearest neighbors is much milder than previously
calculated, both as a function of the interfiber distance and of the number of adjacent
broken fibers’.
Zhou and Wagner (Zhou and Wagner, 1999) proposed a model of stress redistribution

after the fiber failure, which incorporated the effects of fiber/matrix debonding and
fiber/matrix interfacial friction. The interfacial friction in the debonding region was
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calculated as proportional to the far field longitudinal stress in the fiber. It was observed
that SCF can reach a maximum value of 1.33 for the case of one broken fiber.
The effects of multiple fiber breaks and their interaction on the stress distribution and

strength of composites can be analyzed with the use of the break influence superposi-

tion (BIS) technique. The BIS technique was developed by Sastry and Phoenix (Sastry
and Phoenix, 1993) on the basis of the Hedgepeth approach. In the framework of this
technique, an infinite lamina with N aligned breaks, each subject to the unit compressive
load, is considered. The fiber and matrix loads and displacement at an arbitrary point are
determined as weighted sums of the influences of N single breaks. The weighting factors
are calculated from a system of N equations. The unit tensile load is then superimposed
on the solution (Beyerlein et al., 1996).
This technique was employed and expanded in a series of works by Phoenix, Beyerlein,

Landis and colleagues (Beyerlein et al., 1996; Landis et al., 2000). Beyerlein and Phoenix
(Beyerlein and Phoenix, 1996) generalized the break influence superposition technique,
and developed the quadratic influence superposition (QIS) technique. The quadratic
influence superposition technique allows to analyze the deformation and damage of elastic
fibers in an elastic-plastic matrix, taking into account the interface debonding. Using this
method, Beyerlein and Phoenix studied stress distribution around arbitrary arrays of fiber
breaks in a composite subject to simple tension. The authors demonstrated that the size of
the matrix damage region increases linearly with applied tensile load. Using Monte-Carlo
method and shear lag based models, Beyerlein et al. (Beyerlein et al., 1996) and Beyerlein
and Phoenix (Beyerlein and Phoenix, 1997) studied the effects of the statistics of fiber
strength on the fracture process. They assigned randomly (Weibull) distributed strengths
to individual fibers, and simulated the evolution of random fiber fractures. It was observed
that variability in fiber strength can lead to a nonlinear deformation mechanism of the
composite.
Landis et al. (Landis et al., 1999) developed a 3D shear lag model, in which matrix

displacements were interpolated from the fiber displacements, and analyzed the stress
distributions around a single fiber break in square or hexagonal fiber arrays. The FE
equations were transformed into differential equations and solved using Fourier transfor-
mations and the influence function technique. Further, Landis et al. (Landis et al., 2000)
combined this approach with the Weibull fiber statistics and the influence superposition
technique, and applied it to analyze the effect of statistical strength distribution and size
effects on the strength of composites.
The BIS technique has been combined with FEM by Li et al. (Li et al., 2006). Li and

colleagues modeled the stress transfer from broken to unbroken fibers in fiber reinforced
polymer matrix composites. The damage evolution in composites, including the fiber
fracture, damage cracking and interface debonding, was simulated using FEM combined
with the Monte-Carlo technique. The special FE code was written on the basis of the
break influence superposition technique, to analyze multiple breaks. The authors observed
in the numerical experiments, that while both low and high interface sliding strengths
lead to the decrease of the composite strength (due to the large scale debonding and
matrix cracking), the moderate interface sliding strength weakens the negative effect of
the fiber fracture on the composite strength.
An approach to the analysis of the interaction between multiple breaks in fibers, based

on Green’s function model (GFM), was proposed by Curtin and colleagues (Ibnabdeljalil
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and Curtin, 1997a,b; Xia et al., 2001, 2002a,b). Stating that the axial stress �i in an
undamaged ith fiber can be determined as a product of the axial applied stress pj across
the jth cross-section of the fiber and a Green’s function Gij , Curtin and colleagues
determined the �i–pj relationships for the case of many broken fibers, transferring the
stress on the remaining unbroken fibers. The Green’s function Gij determines the stress
concentration factors at the remaining intact fibers. In this model, the stress state around
a single fiber break (which can be obtained from any micromechanical solution) is used
to determine the stress distribution in a composite with multiple fiber breaks.
Ibnabdeljalil and Curtin (Ibnabdeljalil and Curtin, 1997a,b) employed the 3D lattice

Green’s function model to determine the stress distribution and to simulate damage
accumulation in titanium matrix and ceramic matrix FRCs under LLS (local load sharing)
conditions. They analyzed the size effects and other statistical aspects of the failure of
composites, using the weakest link statistics. Further, Ibnabdeljalil and Curtin considered
damage evolution in FRCs with a cluster of initial fiber breaks. Using the Monte Carlo
technique, they determined the stress distribution, and simulated the damage evolution in
the composite. It was shown that the tensile strength decreases with increasing the size
of the initial cluster of broken fibers.
Xia and Curtin (Xia and Curtin, 2001), and Xia et al. (Xia et al., 2001) employed 3D

FE micromechanical analysis to study the deformation and stress transfer in FRCs. The
results of FEM (stress distribution around the broken fibers and the average axial stress
concentration factor on fibers around the break) were used to extract the appropriate
Green’s function in a larger scale model of stochastic fiber damage distribution. Xia et al.
(Xia et al., 2002a,b) compared the shear lag and 3D FE micromechanical models of stress
transfer in composites. In the 3D FE model, they assumed the same hexagonal geometry
and other microstructural parameters as in the shear lag model. Taking into account
the symmetry, they reduced the model to the 30 � wedge. The stress distribution, fiber
stress concentration factor and other parameters have been compared. Xia and colleagues
demonstrated that the shear lag model is accurate for the high fiber/matrix stiffness ratios
in high fiber volume fractions, but not for the low volume fractions of fibers.

10.1.2 Fiber bundle model and its versions

A group of models of damage and failure of FRCs is based on the fiber bundle model

(FBM). The classical FBM, proposed by Daniels in 1945 (Daniels, 1945), as well as
some early modifications of this model are discussed in Chapter 3. Recently, a number
of FBM-based models were developed, which take into account the roles of the matrix
and interfaces, nonlinear behavior of fibers and the matrix and the real micromechanisms
of composite failure.
The continuous damage fiber bundle model (CDFBM) as well as versions of this model

with creep rupture and interfacial failure were developed by Kun et al. (Kun et al., 2000).
In the CDFBM, the multiple failure of each fiber (i.e. continuous damage) is included in
the model. Using this approach, Kun, Herrmann and colleagues investigated the scaling
behavior of the composites, and observed that the multiple failures of brittle fibers can
lead to the ductile behavior of the composite.
In the creep rupture model, they described the fiber behavior by Kelvin–Voigt elements,

consisting of springs and dashpots in parallel. The failure condition was analyzed using
the strain failure criterion, with randomly distributed failure thresholds. The interfaces
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between fibers were described as arrays of elastic beams, which may be stretched and
bent, and fail, if the load exceeds some critical level. With this model, Kun, Herrmann
and colleagues investigated further the lifetime of the bundle as a function of the distance
to the critical stress point, and demonstrated that the scaling laws in the creep rupture
are analog to those in second order phase transitions.
Using the power law of stress redistribution in the form:

�add ∝ r−� (10.6)

Hidalgo et al. (Hidalgo et al., 2002) analyzed the effect of the range of interaction between
failed fibers on the fracture of material. (Here r is the distance from the crack tip, �add is
the stress increase due to the fiber failure at a distance r and � is the power coefficient).
The power law (10.6) is reduced to the case of global load sharing, if � → 0, and to
the local load sharing, if � → �. Hidalgo and colleagues observed in their numerical
experiments that the transition from the mean field regime of the load redistribution
(i.e. when the strength of the material does not depend on the system size) to the short
range behavior regime (when the correlated growth of clusters of broken fibers goes on)
takes place at � = 2�0.
Raischel et al. (Raischel et al., 2006) extended the FBM further for the case when

failed fibers carry a fraction of their load (i.e. the plasticity of fibers is included into
the model). Using the plastic fiber bundle model, they have shown that the failure
behavior of the material is strongly dependent on whether failed fibers still bear load:
the macroscopic composite response can become plastic, if the fibers are plastic and the
loads are redistributed according to GLS (global load sharing) schema.
Hemmer and Hansen (Hemmer and Hansen, 1992) analyzed the occurrence, statistics

and dynamics of bursts in the fiber bundle model with global load sharing. (A burst event
takes place when several fibers break simultaneously.) Considering statistical distribution
of burst events, they demonstrated that the histogram of burst events can be described in
the very general case by:

D���= �−2�5 (10.7)

where � is the number of fibers that break simultaneously during a burst event. This
law is independent of the strength distribution of the individual fibers, and the value
5/2 is therefore a universal critical exponent. Further, this law holds even if the load
redistribution does not follow the global load sharing schema, but the load is redistributed
to the neighboring fibers according to a power law. If, however, the load from a failed
fiber is distributed only to the two nearest neighbors, the burst histogram does not follow
the power law anymore. Hansen (Hansen, 2005) noted that the availability of universal
critical exponents should be considered as an argument supporting the assumption about
the fracture process as a self-organizing system.

10.1.3 Fracture mechanics based models and crack bridging

In connection with the development of ceramic and other brittle matrix composites,
the problem of material toughening by crack-bridging fibers gained in importance. In
the cracked composite with bridging fibers, the fiber/matrix bonding (frictional bonding
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Chemical bonding
/interface
damage Frictional sliding

Figure 10.2 Mechanisms of the interface bonding in fiber bridged composites (interface
sliding and chemical/physical bonding).

or chemical bonding) determine the fracture resistance of the composite. Figure 10.2
schematically shows the frictional and chemical bonding of bridging fibers in the
composite.
The classical fracture mechanics based model of matrix cracking was developed by

Aveston and colleagues in 1971 (Aveston et al., 1971). (The model is often referred to as
ACK ). Assuming that the fibers are held in the matrix only by frictional stresses, Aveston
and colleagues carried out an analysis of the energy changes in a ceramic composite due
to matrix cracking. On the basis of the energy analysis, they obtained the condition of
matrix cracking in composites.
Budiansky and colleagues (Budiansky et al., 1986) considered the propagation of

steady state matrix cracks in composites, and generalized some results of the ACK
theory, including the results for the initial matrix stresses. Considering the energy balance
and taking into account the frictional energy and potential energy changes due to the
crack extension, Budiansky and colleagues determined the matrix cracking stress for
composites with unbonded (frictionally constrained and slipping) and initially bonded,
debonding fibers.
In several works, continuum models of a bridged matrix crack are used. In these

models, the effect of fibers on the crack faces is smoothed over the crack length and
modeled by continuous distribution of tractions, acting on the crack faces. The schema of
the nonlinear spring bridging model, used by Budiansky et al. (Budiansky et al., 1995),
is shown in Figure 10.3. The relationships between the crack bridging stresses and the
crack opening displacement (bridging laws) are used to describe the effect of fibers on
the crack propagation. For the case of the constant interface sliding stress �, the crack
opening displacement u can be determined as a function of the bridging stress � (Aveston
et al., 1971; Zok, 2000):

u= ��2 (10.8)
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Figure 10.3 Spring bridging model: the crack bridging by fibers is represented by continu-
ously distributed nonlinear springs (after Budiansky et al., 1995).

where

�= 2r�1−Vf�
2E2

m

4V 2
f � EfE

2

E is the composite Young’s modulus, r is the fiber radius and indices f and m relate to the
fibers and matrix, respectively, V is the volume content of a phase, � is the sliding stress.
Marshall and colleagues (Marshall et al., 1985) and Marshall and Cox (Marshall and

Cox, 1987) used the stress intensity approach to determine the matrix cracking stress
in composites. The bridging fibers were represented by the traction forces connecting
the fibers through the crack. It was supposed that the fibers are held in the matrix by
frictional bonding. The matrix cracking stress was determined by equating the composite
stress intensity factor, defined through the distribution of closure pressure on the crack
surface, to the critical matrix stress intensity factor. Further, Marshall and Cox studied
the conditions of the transitions between failure mechanisms (matrix vs fiber failure) and
the catastrophic failure and determined the fracture toughness of composites as functions
of the normalized fiber strength.
McCartney (McCartney, 1987) used the continuum model of a bridged matrix crack, in

order to derive the ACK-typematrix cracking criterion on the basis of the crack theory anal-
ysis. McCartney considered the energy balance for continuum and discrete crack models,
and demonstrated that the Griffith fracture criterion is valid for the matrix cracking in the
composites. He determined further the effective traction distribution on the crack faces
resulting from the effect of fibers, and the stress intensity factor for the matrix crack.
Hutchinson and Jensen (Hutchinson and Jensen, 1990) used an axisymmetric cylinder

model to analyze the fiber debonding accompanied by the frictional sliding (both constant
and Coulomb friction) on the debonded surface. Considering the debonding as mode II
interface fracture, Hutchinson and Jensen determined the debonding stress and the energy
release rate for a steady-state debonding crack.
Slaughter (Slaughter, 1993) developed a self-similar model for calculation the equiv-

alent spring constant (i.e. the proportionality coefficient between the far field stress and
the part of the axial displacement related to the crack opening) (Budiansky and Amazigo,
1989) in the crack bridging problem. His approach is based on the load transfer model by
Slaughter and Sanders (Slaughter and Sanders, 1991), in which the effect of an embedded
fiber on the matrix is approximated by a distribution of axial forces and dilatations along
the fiber axis.
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Pagano and Kim (Pagano and Kim, 1994) studied the damage initiation and growth in
fiber glass-ceramic matrix composites under flexural loading. Assuming that an annular
crack surrounding a fiber (and lying in the plane normal to the fiber) extends only to
the neighboring fibers of the hexagonal array, they developed the axisymmetric damage
model and calculated the energy release rate as a function of the volume fraction of
fibers. Pagano (Pagano, 1998) employed the axisymmetric damage model to analyze the
failure modes of glass matrices reinforced by coated SiC fibers.
Using the shear lag model and the continuously distributed nonlinear springs model,

Budiansky and colleagues (Budiansky et al., 1995) determined the stresses in the matrix
bridged by intact and debonding fibers, and derived an equivalent crack-bridging law,
which includes the effect of debonding toughness and frictional sliding.
Zok et al. (Zok et al., 1997) studied the deformation behavior of ductile matrix

composites with multiple matrix cracks. Substituting the bridging law into the equation
of the crack opening profile and integrating, Zok and colleagues obtained an approximate
analytical solution for the COD profile for short and steady-state long cracks. For the
long cracks, it was demonstrated that ‘the crack area scales with the square of the stress’.
González-Chi and Young (González-Chi and Young, 1998) applied the partial-

debonding theory by Piggott (Piggott, 1987) to analyze the crack bridging. In the frame-
work of this theory (based on the shear lag model and developed for the analysis of
the fiber pull-out tests), the fiber/matrix interface is assumed to consist of a debonded
area (where the stress changes linearly along the fiber length) and the fully bonded, elas-
tically deforming area (Piggott, 1987). Considering each fiber and surrounding matrix
as a single pull-out test, González-Chi and Young determined stresses in the fiber and
on the interface. The model was compared with the experimental (Raman spectroscopy)
analysis of the stress distribution in the composites.

10.1.4 Micromechanical models of damage and fracture

In a series of works, the composite deformation and crack growth under transverse

loading was simulated using micromechanical FE models.
Brockenborough et al. (Brockenborough et al., 1991) used unit cell models for different

(square edge-packing, diagonal-packing and triangle-packing) periodic fiber arrangements
to study the effect of the fiber distribution and cross-sectional geometry on the defor-
mation (stress–strain response and stress distribution) in Al alloy reinforced with boron
fibers. Considering the random, triangle and square edge and square diagonal packing of
fibers, and different fiber shapes, they demonstrated that the fiber arrangement influences
the constitutive response of composites much more than the fiber shape.
Böhm and Rammerstorfer (Böhm et al., 1993) suggested a modified unit cell with an

off-center fiber, which enables the application of the unit cell model to composites with
nonstrict regularity of the fiber arrangement. Using this model, they studied the effect
of fiber arrangement and clustering on the stress field and damage initiation in Al alloy
reinforced by boron fibers, and computed microscale stress and strain fields for periodic,
modified periodic and clustered periodic fiber arrangements. Böhm et al. (Böhm et al.,
1993) used the unit cell approach with the perturbing periodic square array of fibers to
model deterministic but less ordered fiber arrangements in FRCs.
Asp et al. (Asp et al., 1996a,b) studied numerically the failure initiation (yielding

and cavitation-induced brittle failure) in the polymer matrix of composites subject to
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transverse loading. They considered unit cells with different fiber arrangements (square,
hexagonal, diagonal), and determined the zones of yielding and cavitation-induced brittle
fracture, using the von Mises yield criterion and the dilatational energy density criterion,
respectively. It was shown that failure by cavitation-induced cracks occurs earlier than
the matrix yielding. Further, Asp and colleagues studied the effect of the interphase layer
properties on the transverse failure of fiber reinforced epoxy. They demonstrated that the
transverse failure strain increases with increasing the thickness of the interphase layer
and Poisson’s ratio of the interphases.
Trias et al. (Trias et al., 2006a) simulated the transverse matrix cracking in FRCs.

Real microstructures of carbon fiber reinforced polymers were determined with the use
of the digital image analysis, introduced into FE models and simulated in the framework
of the embedded cell approach. In so doing, they used the results from Trias et al. (Trias
et al., 2006b), who determined the critical size of a statistical RVE for carbon fiber
reinforced polymers, taking into account both mechanical and statistical (point pattern)
criteria. Trias et al. obtained probability density functions of the stress, strain components
and the dilatational energy density in the loaded composites.
Vejen and Pyrz (Vejen and Pyrz, 2002) modeled the transverse crack growth in long

fiber composites. The criteria of pure matrix cracking (strain density energy), fiber/matrix
interface crack growth (bimaterial model) and crack kinking out of a fiber/matrix interface
were implemented into the automated crack propagation module of the FE package.
As a result, Vejen and Pyrz obtained numerically the crack paths for different fiber
distributions. The numerical results (crack paths) were compared with experimental data.
Micromechanical unit cell models have been widely applied to the analysis of the

composite failure under tensile loading along the fiber direction, or off-axis loading.
Megnis et al. (Megnis et al., 2004) employed the continuum damage mechanics to

develop thermodynamically consistent formulation for damageable FRCs. Fiber fracture
was included into the model by determining the corresponding internal state variable.
The damage tensor was determined using a unit cell model of a cracked fiber in the
matrix. The stiffness degradation of the composite as a function of the applied strain was
simulated numerically, and the results were compared with the experimental data.
Zhang et al. (Zhang et al., 2004) studied toughening mechanisms of FRCs using a

micromechanical model (‘embedded reinforcement approach’), taking into account both
fiber bridging and matrix cracking. They defined the cohesive law for the matrix cracking
as a linearly decreasing function of the separation. Bilinear traction–separation laws were
taken for fiber–matrix debonding and the following interfacial friction. For different
traction–separation laws of interfaces, R-curves were obtained. Zhang and colleagues
demonstrated that the strong interfaces can lead to the lower toughness of the composites.
Zhang et al. (Zhang et al., 2005) simulated unidirectional fiber reinforced polymers

under off-axis loading, using a 3D unit cell with nonlinear viscoelastic matrix and elastic
fibers. In order to model the matrix cracking, the smeared crack approach was used. The
matrix damage growth in the form of two ‘narrow bands’ near the interface and along
the fiber direction were observed in the numerical experiments.
González and LLorca (González and LLorca, 2006) developed a multiscale 3D FE

model of fracture of FRCs. The notched specimens from SiC fiber reinforced Ti matrix
composites subject to three-point bending were considered. Three damage mechanisms,
namely, plastic deformation of the matrix, brittle failure of fibers and frictional sliding
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on the interface were simulated. The fiber fracture was modeled by introducing interface
elements randomly placed along the fibers. The interface elements incorporated the
cohesive crack model (with random strengths). The fiber/matrix interface sliding was
modeled using the elastic contact model in ABAQUS. It was assumed that the interface
strength is negligible, and that the fiber/matrix interaction is controlled by friction.
The simulation results were compared with experiments (load–crack mouth opening
displacement curve), and a good agreement between experimental and numerical results
was observed.
Other important directions of the micromechanical analysis of the strength and failure

of FRCs are the compressive failure (controlled by different mechanisms, like kinking,
buckling, kink band formation, etc.) as well as fatigue damage. The overviews of the
compressive and fatigue damage mechanisms in FRCs and methods of their modeling
are given in the literature (Talreja, 1987; Budiansky and Fleck, 1993, 1994; Sutcliffe
et al., 1996; Fleck, 1997; Niu and Talreja, 2000).
Summarizing the short overview in this section, one may see that the main approaches

used in the analysis of the strength and damage of FRCs are based on the shear lag
model, fiber bundle model as well as micromechanical unit cell models. When analyzing
the strength, damage and fracture of FRCs, one has to overcome some challenges, among
them the problem of the correct representation of the load transfer and redistribution
between fibers and matrix, taking into account the interaction between multiple fiber
cracks, matrix and interface cracks, modeling the interface bonding mechanisms and
their effects on the composite behavior. The load transfer from failed fibers to the matrix
is modeled most often with the use of the shear lag model and its versions, direct
micromechanical analysis or phenomenological load redistribution laws. In many works,
micromechanical FE simulations are used to complement, verify or test the studies,
carried out with the use of other methods (Xia et al., 2001; Li et al., 2006). One can
observe that the points of interests of the mechanics of strength and failure of FRCs
lie in the area of mesomechanics (rather than micromechanics): the interactions between
many microstructural elements, and many microcracks/cracks play leading roles for the
strength of the FRCs.
In this chapter, several examples of 3D mesomechanical simulations of the deformation

and damage in unidirectional FRCs are given. With these models, we seek to demonstrate
some peculiarities of the modeling of unidirectional FRCs as compared with particle
reinforced composites (e.g. constant stress distribution along the fiber length, leading to
the special role of the variability of fiber strengths for the composite failure; effects of
interfaces; direct load transfer between the microstructural elements of the material rather
than via stress fields).

10.2 Mesomechanical simulations of damage initiation and evolution in

fiber reinforced composites

The purpose of this part of the investigation was to simulate the damage evolution in
FRCs, as well as to analyze the interaction between different damage modes.
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10.2.1 Unit cell model and damage analysis

A number of 3D multifiber unit cells were generated automatically with the use of the
program Meso3DFiber and the FE code MSC/PATRAN (see Chapter 5). The fibers in
the unit cells were placed randomly in X and Y directions. The dimensions of the unit
cells were 10× 10× 10mm. The cells were subject to a uniaxial tensile displacement
loading, 1mm, along the axis of fibers (Z axis). Figure 10.4 shows an example of a
multifiber unit cell with 50 fibers and random fiber radii. The FE meshes were generated
by sweeping the corresponding 2D meshes on the surface of the unit cell.
In order to model the fiber cracking, we employed the idea of predefined fracture

planes, suggested by González and Llorca (González and Llorca, 2006). González and
LLorca proposed to simulate the fiber fracture in composites by placing damageable
(cohesive/interface) elements along the fiber length and creating therefore potential frac-
ture planes in the model. The random arrangement of the potential failure planes in
this case reflects the statistical variability of the fiber properties. Following this idea,
we introduced damageable planes (layers) in several sections of fibers. The locations of
the damageable layers in the fibers were determined using a random number generator
(uniform distribution). These layers have the same mechanical properties as the fibers
(except that they are damageable). The damage evolution in these layers was modeled
using the subroutine User Defined Field, described in Chapter 6. The failure condi-
tion of fibers (in the damageable layers) was the maximum principal stress, 1500MPa.
Figure 10.5 shows a micrograph of the fracture surface of a unidirectional carbon fiber
reinforced polyester matrix composite (with failed fibers), and multifiber unit cells with
20 fibers, in which the layers of potential cracking have been removed.

Figure 10.4 3D unit cell model of a composite with 50 fibers.
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(a) (b)

Figure 10.5 (a) Micrograph of the fracture surface of a unidirectional FRC (with failed
fibers) and (b) an example of the generated FE models with 20 fibers, and removed layers of
potential fracturing. (a) Carbon fibers in the polyester matrix. (Courtesy of Dr S. Goutianos,
Risø National Laboratory, Denmark.)

In order to simulate the interface cracking of composites, the model of the interface
as a third material (interphase) layer is employed. The idea of the interface layer model

is based on the following reasoning. The surfaces of fibers are usually rather rough,
and that influences both the interface debonding process and the frictional sliding. The
interface regions in many composites contain interphases, which influence the debonding
process as well (Huang and Petermann, 1996; Downing et al., 2000). Thus, the interface
debonding does not occur as a 2D opening of two contacting plane surfaces, but is
rather a 3D process in some layer between the homogeneous fiber and matrix materials.
In order to take into account the nonplaneliness (but rather fractal or 3D nature) of
the debonding surfaces and the debonding process, the interface damage and debonding
are modeled as the damage evolution in a thin layer between two materials (fiber and
matrix). This idea was also employed by Tursun et al. (Tursun et al., 2006), who utilized
the layer model to analyze damage processes in interfaces of Al/SiC particle reinforced
composites. Figure 10.6 schematically shows the idealization of the rough interface as a
thin layer.

MIFM
F

Figure 10.6 Model of the rough interface as a third material layer. F, fiber; I, interface; M,
matrix.
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10.2.2 Numerical simulations: effect of matrix cracks on the fiber fracture

In this section, we investigate the effect of cracks in the matrix on the fiber fracture.
Unit cells with 20 fibers and VC= 25% have been generated. Further, three versions of
the unit cells were generated, with introduced matrix cracks (notches). The cracks were
oriented horizontally, normal to the fiber axis and loading vector. The lengths of the
cracks were taken as 1.6 (1/6 of the cell size), 4.1 (5/12 of the cell size) and 6.6mm
(8/12 of the cell size). The crack opening was taken as 1/12 of the cell size (0.8mm).
Figures 10.7 and 10.8 show the lengths of the cracks and the general appearance of
the cells with matrix cracks, respectively. At this stage of the work, the very strong
fiber/matrix interface bonding was assumed, and only the effect of the matrix cracks on
the fiber fracture was studied.
The damage evolution (fiber cracking) in the unit cells was simulated, using the damage

subroutine User Defined Field.
Figure 10.9 shows the von Mises stress distribution in the fibers (in the unit cell with

the matrix crack) after the fiber cracking. The stresses are rather low in the fiber regions
close to the cracks, but increase with distance from the cracks (apparently, due to the
load transfer via the shear stresses along the interface).

Figure 10.7 Relative lengths of the matrix cracks in the unit cells.

z

xy

Figure 10.8 Unit cells with cracks in the matrix and bridging fibers.
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Figure 10.9 Von Mises stress distribution in the fibers after the fiber cracking. (See Plate 5)

Figure 10.10 shows the von Mises strain distribution in the matrix after the fiber
failure. It is of interest to observe the shear bands, which tend to form in the matrix,
connecting the regions of high stress concentration near the fiber cracks.
Figures 10.11 and 10.12 give the stress–strain curves of the models (initial part) and the

damage (fraction of damaged elements in the damageable sections of the fibers) versus
strain curves. One can see that the fiber cracking begins much earlier in the composites
with matrix cracks, than in noncracked composites (apparently, due to the higher load
in the bridging fibers, than in the fibers embedded in the matrix). The fiber failure leads
to the much greater loss of stiffness in the composites with cracked matrix, than in
noncracked composites.
Figure 10.13 shows the von Mises strain distribution in the matrix with a long crack

after fiber failure. The regions of high strain level are seen along the surfaces of the
potential debonding (between the matrix crack and the fiber fractures).

10.2.3 Numerical simulations: interface damage initiation and its interaction

with matrix cracks and fiber fractures

Let us consider the interaction between all three damage modes in composites: matrix
cracks, interface damage and fiber fracture.
In order to model the interface damage, the model of the interface as a ‘third layer’

was used (Downing et al., 2000). The interface layer was assumed to be a homogeneous
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Figure 10.10 Von Mises strain distribution in the matrix after the fiber failure. (See Plate 6)
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isotropic material, with Young modulus 273MPa (i.e. the mean value of the Young
moduli of fiber and matrix) and Poisson’s ratio of the matrix. The thickness of
the layer was taken as 0.2mm. Following Tursun et al. (Tursun et al., 2006),
we chose the maximum principal stress criterion for the interface damage (there-
fore, assuming rather brittle interface). Two values of the critical stress were taken:
2000MPa (i.e. strong, but still damageable interface) and 1000MPa (weak inter-
face). While the interface layer is considered as a homogeneous material in the
first approximation, the model can be further improved if the graded material model
is used to represent the interface layer, with properties to be determined from the
inverse analysis.
Unit cells (with 15 fibers and 25% fiber volume content) were generated, and tested

(with different strengths of interface layers). The unit cells without matrix cracks as well
as with matrix cracks (notches) of 0.3 (short crack) and 0.58 (long crack) of the cell size
were analyzed. The fiber arrangement in the cells with and without matrix cracks was
the same.
Figure 10.14 shows von Mises stress distribution in the fibers and in the interface

layer before and after fiber cracking (the case of the longer matrix crack, and of the
strong damageable interface). One can see that the fiber cracking leads to high stress
concentration at the interfaces of the composite in the vicinity of the fiber cracks.
Figure 10.15 gives stress–strain curves for the unit cells with and without the matrix

cracks, and with stronger (failure stress 2000MPa) and weaker (failure stress 1000MPa)
interfaces. It can be seen that the stress–strain curves in the unit cells without matrix
cracks are in fact identical for the cases of stronger and weaker interfaces. Thus, the
interfaces are subject to very low stresses in the composites under axial tensile loading
in the fiber direction, as long as both the fibers and matrix remain intact. For the case of
the cracked matrix, the interface properties do influence the stiffness and strength of the
composite: the stiffness of the composite decreases much quicker under loading if the
interface between the fiber and matrix is weak.
Figure 10.16 shows the damage (fraction of failed elements) in fibers and in the

interface plotted versus the applied strain, for the case of strong and weak interfaces,
and the cracked matrix (long crack). In the case of the strong interface, the interface
damage growth starts at a higher strain than the fiber cracking, and begins in the vicinity
of the fiber cracks. Apparently, the interface damage growth is triggered by the fiber
cracking. In the case of the weaker interface, the interface damage is not triggered by the
fiber cracking, but precedes the fiber cracking: while in the unit cells with the stronger
interfaces the interface damage begins only after the fibers fail (at strain 0.00543), in the
unit cells with weak interfaces the interface damage begins at strain 0.0026.
Thus, the interface properties influence the bearing capacity and damage resistance of

fibers: in the case of the weak fiber/matrix interface, fiber failure begins at much lower
applied strains than in the case of the strong interface.
Comparing the simulations presented in this section, with the conclusions of the

overview in the previous section, one can see that the mesomechanical FE simulations can
efficiently complement other methods in the analysis of strength and damage of FRCs,
mechanisms of the damage evolution and interaction between different damage modes. In
contrast to the analytical methods of the analysis of multiple fiber cracking (e.g. BIS), the
FE mesomechanical models make it possible to simulate the nonlinear behavior of phases
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(e.g. elastic-plastic matrix) and its effect on the damage in the composites. In some cases
(e.g. transverse loading of composites), 2D models can be successfully applied to the
analysis of the damage and fracture of FRCs. The results of 2D modeling of gradient
and clustered composites, presented in Chapters 7 and 8, are applicable to unidirectional
FRCs composites under transverse loading.
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11

Contact damage and wear of
composite tool materials:
micro–macro relationships

In this chapter, some ideas on the mesomechanical analysis of the surface damage and
the wear of composite materials under contact loading are discussed.
The wear and the volume damage evolution in composites have many common features,

including similar micromechanisms of damage initiation and growth. For instance, the
crack initiation by the inclusion failure, followed by the interface debonding and by the
damage and destruction of the matrix, adjacent to the inclusion, is observed both in the
volume fracture and in the surface wear of composites.
However, there are also many differences between the destruction processes under

volume and surface loading. In the volume loading, the stiffness of the specimen is
reduced due to the damage evolution; in the wear, shapes of the contacting bodies are
changed, whereas the physical parameters (overall stiffness) remain constant. The damage
accumulation under volume loading leads ultimately to the failure of the specimen. In the
case of wear, the damage accumulation on the surface of a tool may lead to the dulling
of the tool, which will make its further utilization impossible. However, the preferable,
and rather often observed situation, is when the wear becomes a stable dynamic process,
and leads to the self-sharpening of the tool.
The complex, multiscale and multiphysics nature of wear requires either a correspond-

ingly complex multilevel modeling approach or combining different techniques for the
analysis of different aspects of the process. In this chapter, we seek to analyse the aspects
of the wear of composites which are relevant to the mesomechanics of composites,
namely:
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• damage and failure of surface particles under contact loading (which is the leading wear
mechanism in many applications, such as diamond grinding or cutting with cemented
carbide tools);

• dynamic macro–micro relationships for the surface damage and wear of materials;
• interrelationships between the scattering of the mechanical properties of contacting
bodies at the micro level, and their damage resistance and shape stability at the
macro level.

11.1 Micromechanical modeling of the contact wear of composites: a

brief overview

According to Khrushchov and Babichev (Khrushchov and Babichev, 1970) and Garkunov
et al. (Garkunov et al., 1969), the mechanisms of wear can be classified as follows:

• mechanical wear: abrasive wear (roughnesses of contacting surfaces are cut, squeezed
out or failed in friction), erosion, wear due to the plastic deformation of surface layers,
wear due to the embrittlement of surface layers, fatigue wear (fatigue destruction of
surface layers);

• ‘molecular-mechanical’ wear: adhesion of contacting surfaces which leads to the
destruction of surface layers of the weaker material;

• corrosion wear, oxidation, fretting, etc.

For the case of the low sliding speed, the abrasive and other mechanical mechanisms
of wear control the rate of wear (Tjong et al., 1997; Kwok and Lim,1999). In turn,
these mechanisms include a number of interactions between elements (particles, matrix,
debris, etc.), and different micromechanisms of damage, which are in some cases very
similar to the mechanisms of damage in composites under volume loading: cracking in
particles and on interfaces, delamination, damage, related to the dislocation accumulation
and hardening, but also plowing and scratching of grains.
Numerically, the contact wear of materials is simulated by introducing some wear laws

into numerical models, complemented by some kind of the geometry or mesh update
algorithms. The phenomenological law, relating the wear rate, applied load and sliding
distance, was suggested by Archard (Archard, 1953). Assuming that the wear of materials
is controlled by the adhesion mechanisms, which cause the detachment of small volumes
of materials, Archard demonstrated that:

W ∝ Fx

h
(11.1)

where W is wear rate, F is normal load, x is sliding distance and h is hardness of the
soft surface.
Molinari et al. (Molinari et al., 2001) developed a FE model of dry sliding wear in

metals, which uses the generalized Archard’s law. In the framework of the generalized
Archard’s law, the hardness of the soft material is assumed to be a function of temperature.
The temperature dependence of the hardness incorporates indirectly the oxidation and
other chemistry effects by employing the idea of Lancaster (Lancaster, 1963) that the
transition from severe to mild wear is related to the level of oxidation of the contacting
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metals. This allows the transition from severe wear to mild wear at a critical sliding
speed to be described. This model takes into account the surface evolution due to wear
by using the continuous adaptive remeshing algorithm.
Archad’s model was implemented by Hegadekatte et al. (Hegadekatte et al., 2005) in

FE post-processor software. The wear on the interacting contact surfaces was computed
using the contact pressure distributions, which were determined in a series of static FE
simulations of the deformation of contact bodies. The wear simulations were carried out
in a loop, and the surface geometries were updated and refreshed after each simulation.
A formula for adhesive wear, similar to Archard’s law, was suggested by Shaw (Shaw,

1984). Usui et al. (Usui et al., 1978) introduced the analytical formula for the rate of
crater wear, derived from Shaw’s equation of adhesive wear, into a numerical (finite
difference) analysis of stress and temperature fields in cutting, and calculated the crater
wear of a cutter. Xie (Xie, 2004) implemented the Usui tool wear model into a FE model
of turning and milling, which included the numerical analysis of chip formation and
temperature distribution in the cutting tool. On the basis of calculated nodal tool wear
rates, the tool geometry was updated and the next tool wear calculation cycle was started.
Along with the numerical implementation of phenomenological material models, ques-

tions about the effect of the microstructures on the wear and numerical analysis of the
micromechanisms of wear attracted growing interest from researchers.
In their book, Khrushchov and Babichev (Khrushchov and Babichev, 1970) suggested

the inverse rule of mixture to analyze the effect of the microstructures on the wear:

1

W
= vcA

WA

+ vcB
WB

(11.2)

where W is wear rate of the composite, WA�B are the wear rates of each phase (A, B)
and vcA�B are the volume fractions of phases A and B. Other formulae, in which the
contribution of each phase of a composite to the wear rate is supposed to be proportional
to the volume content of this phase, were suggested by Zum Gahr (Zum Gahr, 1987) and
Axen and Jacobson (Axen and Jacobson, 1994a,b).
Lawn (Lawn, 1975b) employed the approach of the indentation fracture mechanics to

analyze the abrasion wear of brittle materials. Taking into account the volume removal
from both the lateral chip-forming cracks and ‘plastic’ deformation track, and carrying
out the summation over the microchips from all the inclusions at the contact surface,
Lawn derived a formula for the macroscopic abrasion wear rate of brittle solids. In
his formula, the wear rate is independent of the apparent contact area and number of
contacting particles, and determined uniquely by the material hardness.
Cho et al. (Cho et al., 1989) analyzed the grain size effect in the abrasive wear of

brittle ceramics (alumina). Considering the equilibrium condition of a flaw in a grain
in terms of stress intensity factors, they determined the stress necessary to cause wear-
associated grain spalling: � ∼ d−1/2+constant, where d is grain size. Cho and colleagues
concluded that the wear resistance increases with decreasing grain sizes and reducing
internal stresses in the ceramics.
Lee et al. (Lee et al., 2002) developed a micromechanical model for the abrasive wear

of composite (ductile matrix reinforced by brittle particles) materials, based on the ‘equal
wear rate assumption’, used by Khruschchov and Babichev. In the framework of this
model, a triangular abrasive medium particle acts on the composite material, containing
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rectangular hard reinforcements. The motion of the grain causes the plowing, cracking
on the matrix/reinforcement interface and in the reinforcement, as well as the particle
removal. The acting micromechanisms of wear are taken into account by analyzing the
ratio between the fracture toughnesses of the reinforcement/matrix interface and the
reinforcing material. Assuming that any portion of the reinforcement that is removed as
wear debris cannot contribute to the wear resistance of the matrix material, the authors
analyzed the influence of the parameters of the reinforcement, such as the relative size,
fracture toughness and the nature of the matrix/reinforcement interfaces, on the wear of
composites.
Another example of the micromechanical modeling of wear is given in the work by

Yan et al. (Yan et al., 2000). Yan et al. applied a multiscale micromechanical approach
to analyze the sliding wear of coated components. The authors used unit cell models to
study the localized deformation patterns at the mesoscale (scale of the coating thickness)
and calculated the rate of material removal due to the repeated sliding contact. Assuming
that the wear is controlled by the accumulation of plastic deformation in the coating
subsurface, Yan and colleagues proposed a wear equation, and carried out parametric
studies on the effect of the loading conditions on the wear rate.
A series of publications deals with the effect of microstructures of unidirectional fiber

reinforced composites (FRCs) on their wear resistance. On the basis of a number of
experiments, Tsukizoe and Ohmae (Tsukizoe and Ohmae, 1983) proposed an empirical
formula for the wear rate of polymer FRCs:

W ∼ �1/I���P/E�� (11.3)

where � is an empirical constant, � is the coefficient of friction, P is load, E is Young’s
modulus of the composite and I is the interlaminar shear strength.
Lhymn et al. (Lhymn et al., 1985) and Lhymn (Lhymn, 1987) analyzed the effect of

fiber orientations on the tribological properties of unidirectional polymer FRCs. They
derived several phenomenological equations for specific wear rates of composites on the
basis of the analysis of crack propagation, delamination physics and bond rupture in the
composites. In some cases, the Lhymn equations can be reduced to the empirical formula
by Tsukizoe and Ohmae (Tsukizoe and Ohmae, 1983).
Friedrich et al. (Friedrich et al., 2002) developed a series of micromechanical FE

models of wear of FRCs. Friedrich and colleagues used the displacement coupling
technique to link micro- and macrolevel models. On the basis of the micromechanical
modeling, dominant wear mechanisms in different cases were identified. It was shown
that fiber/matrix debonding as a result of shear stresses at the interface, shear failure in
the matrix and fiber thinning are the dominant sliding wear mechanisms in the case of the
parallel fiber orientation. In the case of the anti-parallel fiber orientation, matrix shear,
tension/compression type fiber/matrix debonding and fiber thinning, associated with fiber
cracking events, are the dominant wear mechanisms.
A special case in the analysis of the abrasive wear of composite materials is the wear

of grinding wheels, in particular, the diamond and cubic boron nitride (CBN) metal-bond
or polymer-bond grinding wheels (Mishnaevsky, 1982; Malkin, 1989). Schemas of the
main physical mechanisms of the wear of grinding wheels (chemical wear and dulling,
grain fracture and interface debonding) are shown in Figure 11.1.
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(a) (c) (b)

Figure 11.1 Schemas of some micromechanisms of the wear of the grinding wheels: (a)
chemical/oxidation wear and particle dulling; (b) grain cracking; (c) interface cracking,
leading to the grain falling out.

Mishnaevsky (Mishnaevsky, 1982, 1985) applied the methods of fracture mechanics
and the theory of reliability to the analysis of failure of diamond grains in grinding. On
the basis of the analysis of probability distributions of the reliability indices of diamond
and CBN grains on the surface of a grinding wheel, he derived a formula for the optimal
strength of grains for a given grinding condition. Considering the effect of the grain
shapes on their strength, he determined the failure conditions of the grains and the wear
rate of grinding wheels.
A comprehensive model of the grinding process, which includes the wear, was devel-

oped by Chen and Rowe (Chen and Rowe, 1996, 1998). They simulated the wear of
ceramic grinding wheels, taking into account the attrition of the peaks of grains (‘attri-
tious wear’) as well as the failure of grains and the bonds. The attritious wear was
represented as a local reduction of the wheel radius. The grain failure was simulated by
changing the grain shapes in grinding: the grain peaks were replaced by plane areas with
two to three small sinusoidal peaks. The bond failure was simulated by considering the
critical ratio between the cutting force and the bond strength. Using this model, Chen
and Rowe analyzed the effect of the grinding wheel wear on the efficiency of grinding.
Summarizing, one may state that main challenges in the numerical modeling of wear are

the complex interacting micromechanisms, multiscale and multiphysical nature of wear
processes, and the interaction between changing shapes and changing loading conditions.

11.2 Mesomechanical simulations of wear of grinding wheels

One of the areas where the analysis of wear is of great importance for industrial applica-
tions is the modelling and optimization of machining of materials. The wear resistance
of machining (turning, grinding, etc.) tools determines their life span and the costs of
machining to a large extent.
In this section, the mesomechanical simulations of the wear of diamond grinding

wheels were carried out using the numerical tools presented in Chapters 5 and 6.
We consider here straight grinding wheels with synthetic diamonds and bronze copper

bond. Such wheels are often used for machining ceramics. 3D FE models of cut-outs
of the work surface of a grinding wheel have been generated automatically using the
program Meso3D. On the contact surface 10×10mm, 15 diamond grains were randomly
placed. The FE model is shown in Figure 11.2. The radius of grains was 1.16mm
(therefore, 63% of the contact surface was taken by the diamond grains).
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Figure 11.2 Mesomechanical FE model of a cut-out of the surface of a grinding wheel.

The material properties were as follows: diamond: Young modulus E = 900GPa,
Poisson’s ratio v = 0�2, compressive yield strength 5MPa; bond: E = 93GPa, tensile
yield stress 125MPa, yield strain 0.2%, ultimate tensile strength 255MPa (Bauccio,
1994). The failure stress of the diamond grains was taken to be 20GPa (Mishnaevsky,
1982). The grain tips have been loaded by the inclined force, 70N grain−1. The force was
oriented at a 60� angle to the horizontal line. The temperature effect was neglected in
the first approximation, following the results of Mishnaevsky (Mishnaevsky, 1982), who
demonstrated that local heating up to 200–300 �C (i.e. the local temperatures observed
on the grain surfaces at relatively low cutting speeds) does not change the mechanisms
and critical parameters of the grain destruction. The damage in the diamond grains was
modeled using the subroutine User Defined Field, presented in Section 6.3. The critical
maximum stress was taken as a criterion of the FE failure.
The schema of the loading is shown in Figure 11.3.
Figure 11.4 shows von Mises strain distribution in the diamond grains and in the metal

bond in grinding. Figure 11.5 shows the fraction of FEs in the grains versus applied force.
One can see from Figure 11.4 that the high strains are localized near the peaks of the

diamond grains. This corresponds to the experimental observations made by Mishnaevsky
(Mishnaevsky, 1982): the damage in diamond grains in grinding has been observed in a
small region near the grain peaks.
It can be seen from Figure 11.5 that the damage growth in the diamond grains starts

at a force of 24N and becomes very intense at a force of about 45N.
The results, presented in this section, demonstrate the applicability of the computational

mesomechanics approach and the numerical tools developed in Chapter 5 to the analysis
of the wear of diamond grinding wheels.
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Figure 11.3 Schema of (a) the loading of diamond grains, in the diamond wheel/workpiece
contact zone and (b) the idealized model of the grain loading.

11.3 Micro–macro dynamical transitions for the contact wear of

composites: ‘black box modeling’ approach

11.3.1 Model of the tool wear based on the ‘black box modeling’ approach

In this section, we analyze the dynamical variations of the wear rate, contact stresses and
tool shapes, caused by the tool wear.
Let us consider the following case, which is rather important for a number of industrial

applications: a tool from a composite material, cutting another heterogeneous material
(Mishnaevsky Jr, 1994). The tool material consists of hard particles and a ductile matrix:
for example, metal bond diamond grinding wheels or drilling tools from WC/Co hard
alloys. Figure 11.6 shows a schema of a composite tool in cutting a sample of a hetero-
geneous material.
The mechanisms of the material removal from the tool contact surface in the mechanical

wear can be described as follows (Khrushchov and Babichev, 1970; Mishnaevsky, 1982):
The particles on the tool surface interact with the work material, plow, deform, cut it,
and are subject to the loading by the work material. The cyclic loading and damage
accumulation in the particles lead to their failure, debonding along the interface and/or
grains falling out. While the matrix on the tool surface does not contact with the work
material, it interacts with and is worn out by the debris (chips, failed grains, etc.), which
are accumulated between two contacting surfaces. The wear of the matrix speeds up the
grains falling out. However, at the high density of grains on the surface, the rate of the
matrix wear in the vicinity of a grain remains rather low, as long as the grain is intact.
After a particle fails or comes out, the ductile matrix is worn out quickly by the debris.
Thus, the rate of the wear of the tool is in fact controlled by the rate of the failure and
falling out of hard grains on the working surface. (One should note that the described
mechanisms can change drastically depending on the properties of materials and friction
conditions.)
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Figure 11.4 Von Mises strain distribution in the diamond grains and in the metal bond in
grinding: (a) isometric; (b) top view. (See Plate 8)
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Figure 11.5 Fraction of failed elements in the grains versus applied force.

Figure 11.6 Schema of a cutting tool from cemented carbide in cutting a work material.

As a result of the failure of grains and grains falling out on the contact surface, and
the following abrasion of the matrix layers, the tool shape is changed, the contact stress
redistribution takes place, and the wear rate changes as well. This can be considered as a
transient in a dynamical system with a feedback: the tool shape determines the distribution
of wear rates over the contact surface, and this distribution in turn influences the tool shape.
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In order to model such a dynamical, transient process, the methods of the control system
theory can be applied. In the framework of the ‘black box modeling’ approach to the
analysis of complex systems or processes (Mishnaevsky Jr, 1998a), a system or process
is described as a combination of several elementary physical processes/subsystems. The
acting physical mechanisms/elementary processes are represented as signal transformation
units (‘black boxes’), characterized by their input and output ‘signals’. As ‘signals’,
variations of the wear rate, contact stresses or the tool shape can be considered. The
relations between input and output signals of the units are determined by considering the
physical mechanisms of the ‘signal’ transformation.
In the framework of the ‘black box modeling’ approach, the tool is represented as a

dynamical system in the form of a block diagram (Van der Bosch and Van den Klauw,
1994). The system is presented in Figure 11.7. It is made up of three units which take
into account the following factors:

• the influence of the local wear rate on the tool shape (unit 1);
• the influence of the contact stress on the rate of local wear (unit 2);
• the influence of the tool shape on the contact stress distribution (unit 3).

A unit (‘black box’) can be characterized with the use of transfer functions. A transfer
function is defined as the Laplace transform of an output signal of the box, divided by
the Laplace transform of the input signal:

W�q�= L	output_signal�t�


L	input_signal�t�

(11.4)

where L() is the Laplace transform, q is the parameter of the Laplace transform and t
is time.
Let us determine the transfer functions of the system, presented in Figure 11.7. First,

consider ‘input–output relations’ of each of the units.

11.3.1.1 Unit 1 (input signal, local wear rate; output signal, shape variations of

the contacting bodies)

Let us describe the tool surface by the equation:

Z = f �X� Y� (11.5)

W2(q)W1(q)

i

Z0 Z

∆Z

σ

W3(q)

Figure 11.7 Block diagram of the ‘black box model’ of the tool wear system. Here: Wi(q)
is the transfer function of i-th unit, q is the parameter of the Laplace transform Z0 and Z are
the coordinates of the point at the initial moment of contact and in time t, △Z = Z−Z0, i is
the local rate of wear, � is the contact stress.
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where X, Y, Z are the Cartesian coordinates. Let the axis Z be directed so that the
function f�X�Y� is convex up.
The change in the Z-coordinate of a given surface point due to the wear can be

calculated by:

Z�t�= Zo−v

t
∫

0

idt (11.6)

where Zo is the Z-coordinate of the point at the initial moment of contact and v is the
sliding/cutting rate. From Equation (11.6) it is seen that unit 1 can be considered as
integrating (Van der Bosch and Van den Klauw, 1994).
The transfer function of unit 1 (integrating) presents the Laplace transform of function

Z�t�, which is given by Equation (11.6):

W1�q�= L	Z�t�
= v/q (11.7)

11.3.1.2 Unit 2 (input signal, contact stress �; output signal, local wear rate i)

In order to describe the local wear rate versus contact stress relationship, we may use the
analytical equation from Mishnaevsky Jr (Mishnaevsky Jr, 1995b, 1998a):

i= 0�78

Avn3/2
p

exp

(

B�

kT

)

(11.8)

where A,B are kinetic constants of the reinforcement material, np is the mean number
of reinforcement particles per unit contact area of the tool material, k is the Boltzmann
constant, T is temperature and v is the sliding (cutting) rate.
As a first approximation, unit 2 can be taken to be a proportional one (Mishnaevsky

Jr, 1998a). In this case, its transfer function W�q� = L	i���
/L��� is a constant value,
which is equal to di���/d� (i.e. the proportionality coefficient in a piecewise linear
approximation of the function (11.8)). We have:

W2�q�= L	i���
/L���= di���/d� = Ci (11.9)

where Ci is the coefficient proportionality, depending on the physical properties of the
materials. The parameter Ci = di���/d� can be calculated on the basis of Equation (11.8):

Ci ∼
0�78B

AvkTn3/2
p

exp�
B�m

kT
� (11.10)

where �m is the mean contact stress over the contact surface.

11.3.1.3 Unit 3 (input signal, the shape of the contacting bodies; output signal,

contact stress)

Presenting the stress-strain relation of the work material as piecewise linear, one can
write: d� = ��m/Zm�dZ, where Zm is the mean Z-coordinate over the contact surface.
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The transfer function of the proportional unit 3 can be determined as the proportionality
coefficient between �m and Zm:

W3�q�= �m/Zm (11.11)

With the scheme of Figure 11.7, we can obtain the transfer function of all the system.
The tool shape which is given by the equation of tool surface Zo = f�X�Y� is supposed
to be the input signal of the system in Figure 11.7. A function Z�t� = f�X�Y�Zo� t�

characterizes the tool shape after a time t, and can be taken as an output signal. The
transfer function of the system can be written as:

W�q�= 1

1+W1W2W3

(11.12)

where W1� W2� W3 are the transfer functions of units 1, 2, 3, respectively.
After some rearrangements, we have:

W�q�= 1/�1+Ci�mvq/Zm� (11.13)

Knowing the transfer function (11.12), one can determine a function, which describes
the variations of the tool shape due to the wear. Taking the reverse Laplace transform of
the product of the transfer function (11.12) by the Laplace transform of the input signal
�Zo = constant� W�q�= Zo/q�, we obtain:

Z�t�= Zo exp�−2Ci�mZovt/Zm
2� (11.14)

where Z�t� is the Z-coordinate of a given point of the contact surface at instant t.
From Equation (11.14) it follows that the greater the initial height of a point on the

tool surface, the greater is the wear rate in this point.

11.3.2 Effect of the loading conditions on the tool wear

In order to demonstrate the possible areas of application of the ‘black box modeling’
method, we consider the influence of the cutting conditions on the tool wear. Consider
two regimes of cutting: approach cutting (when the applied load increases linearly with
time) and steady state cutting (with constant applied load) (Figure 11.8). The approach
cutting corresponds usually to the initial stage of machining processes, whereas the steady
state regime corresponds to the ‘main’ part of the processes.
If the rate of increase of the applied load in the approach cutting is constant, one

can write:

�m = ut (11.15)

where u is the rate of the increase of the load in the approach cutting. To analyze the effect
of the variations of the cutting force on the tool wear, the block diagram model of the
system (Figure 11.7) is represented as shown in Figure 11.9. Here, the input signal is the
mean contact stress over the contact surface, and the output signal is the wear rate. In order
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Figure 11.8 Approach and steady state cutting regimes: cutting force plotted versus time.

to obtain the wear rate versus time relation, we have to determine the transfer function
of the system shown in Figure 11.9. The wear rate versus time relation is determined as
follows:

i�t�= L−1	W�q�L���
 (11.16)

where L() and L−1() are Laplace transform and inverse Laplace transform, respectively.
Substituting Equations (11.12)–(11.14) into (11.16), we have (for the case of the applied
load which increases in proportion to time, see Equation (11.15):

i1�t�=
uZm

v�m

	1− exp�−Civ�m

Zm

t�
 (11.17)

This function describes the time dependence of the wear rate in approach cutting.
In steady state cutting, the cutting force is assumed to be constant: �m = constant. The

manipulations, similar to those above, give:

i2�t�= Ci�m exp

(

−Civ�m

Zm

t

)

(11.18)

From Equations (11.17) and (11.18) it follows that:

W1(q)

W2(q)
Z

iσ0

∆σ

W3(q)

Figure 11.9 Block diagram of ‘black box model’ of variations of the wear rate, depending
on the applied load.
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• when the applied (cutting) force increases in proportion to time, the wear rate is
increasing as well;

• when the applied force is constant, the wear rate decreases slowly with time.

Thus, the tool wear can be controlled by varying the contact force in cutting.

On the basis of the model, we can further investigate the influence of tool-to-work
vibrations on the tool wear. Let the variations of the load be given in the following form:

�m�t�= �m0+�� sint (11.19)

where �� and  are the amplitude and the frequency of the tool vibrations. Taking
this function as the input signal of the system in Figure 11.9, we obtain after some
manipulations:

i�t�= i1�t�+
Ci��

�+2/�
	exp�−�t�+ ��/� sint− cost
 (11.20)

where �= Civ�m/Zm. From Equation (11.20) it follows that the lower the amplitude and
the greater the frequency of the vibrations, the lower is the tool wear rate.

11.3.3 Experimental verification: approach and steady state cutting regimes

In order to verify the results from this section, we use the experimental data by Vulf (Vulf,
1973). Vulf studied the cutting tool wear in interrupted cutting of steels. The following
experiments were carried out. Specimens from steel X8CrNiMo15.4 were machined by
hard alloy tools (hard alloy with 5% TiC and 10% Co), with the depth of cut 0.5mm,
cutting rate 150m min−1, and feed 0.21m rev−1. The cutting process was interrupted
every 1, 5 and 10min (first, second and third sets of experiments, respectively). Thus, the
total durations of approach cutting for the second and third sets of experiments were 5
and 10 times smaller, respectively, than for the first one. The total time of cutting in each
set of experiments was 30min. The flank wear of the tools was measured after every
period of cutting. To compare the experimental data with the above theoretical results,
we determined the dimensionless values of the tool wear. These values were calculated
as the tool wear, measured in the first and second series of experiments (duration of
cutting period 1 and 5min, respectively) divided by the tool wear, measured in the third
series (10min period):

tA
∫

0

i1�t�dt/

t0
∫

0

i1�t�dt (11.21)

where tA is the duration of approach cutting when the process is interrupted every 1 or
5min, t0 is the same, when the process is interrupted every 10min. Using dimensionless
values makes it possible to apply Equations (11.17) and (11.18) without calculating the
coefficient Ci, which depends on the physical mechanisms of wear. The values of tool
wear obtained experimentally and calculated with Equations (11.17) and (11.18) are
presented in Figure 11.10.
The difference between theoretical and experimental results is within limits of 20%.

Thus, although only a simple phenomenological model was used, the theoretical results
are in good qualitative agreement with the experiments.
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Figure 11.10 Variations of the wear rate in interrupted cutting of steels: experiments (Vulf,
1973) and simulations. Cutting interrupted (a) every 1min and (b) every 5min.

11.4 Microscale scattering of the tool material properties and the

macroscopic efficiency of the tool

In this section, we consider the effect of the scattering of local properties of contacting
bodies (e.g. strengths, wear resistances, shape parameters) on the damage and wear
resistances. First, we analyze the effect of the indenter shape on the damage growth and
fragmentation of materials under indentation, and demonstrate that shapes of tools that
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destroy, fragment or fracture a material can be characterized by a statistical parameter of
the probability distributions of contact stresses.
Then, we analyze the effect of statistical variations of local properties of the tool

material on the damage growth in the work material under indentation. Generalizing the
results of the studies, we will be able to formulate some ideas on the optimal design of
tools that destroy, fragment or fracture a material (e.g. drilling tools).

11.4.1 Statistical description of tool shapes

Now, we consider the effect of indenter shapes on the damage growth in the material
under indenter. Let us look at the three simplest forms of indenters: spherical, conical
and cylindrical ones (Figure 11.11). Although the shapes of indenters differ and the
peculiarities of destruction for each of the indenters have been well investigated, there is
no quantitative parameter (‘input’ or a priori characteristic) which can characterize the
form, serve as a criterion for their comparison and which may be generalized for more
complex cases of the tool/material interaction.
The experiments on the indentation of differently shaped indenters in rock specimens,

described by Zhlobinsky (Zhlobinsky, 1970), have shown that the volume of craters of
spalled rock ismaximal for conical,minimal for spherical andmedium for cylindrical inden-
ters (the ratio was about 2.1:1:1.56). If one compares the result with the contact stress
distributions for these cases (Galin, 1961), one can see that the maximal volume of the
indentation crater corresponds to themost sharp curve of contact stress distribution,whereas
the minimal volume corresponds to the most homogeneous contact stress distribution.
One can suppose that the degree of ‘sharpness’ (i.e. nonhomogeneity) of the contact

stress distribution can be taken as a parameter which determines the intensity of rock
fragmentation (in this case, the volume of crater). Mishnaevsky Jr (Mishnaevsky Jr, 1996a,
1998a,b) suggested to characterize the ‘sharpness’ of this distribution quantitatively by
the statistical entropy of the contact stress distribution.
Let us suppose that the contact stress distribution function is given in the following

general form:

�c = F�x� y� z� (11.22)

where �c is the contact stress in a point and x, y, z are the coordinates of a contact
point. The function (11.22) is determined by the tool shape and properties of contacting
materials. Peaks of this function correspond to stress concentrators on the tool (indenter)

Figure 11.11 Forms of indenters.
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surface. Discretizing the range of the contact stress variation, one can obtain from
Equation (11.22) the probability distribution of contact stresses over the contact surface:

p��c�=
1

NL

∑

j

Y 	F�x�y� z���c
 (11.23)

where p ��c� is the probability that the contact stress in a point is equal to the value
�c� NL is the amount of the discretization levels of �c� j is the number of contact points,
Y 	
 is the step function, Y 	X1�X2
= 1, when Xl = X2 and is equal to 0, otherwise.

The statistical entropy of the contact stress distribution can be calculated by:

Hc =−
∑

�c

p��c� ln p��c� (11.24)

The greater the parameter Hc, the less homogeneous the contact stress distribution. This
value characterizes the ‘sharpness’ (nonhomogeneity) of contact stress distribution for
arbitrary function F , and thus, for arbitrary tool shape. Table 11.1 shows the interrelations
between the tool shape, probability distributions of the contact stresses and the statistical
entropies of these distributions on a few examples.
Consider now the relation between the degree of the heterogeneity of the contact stress

distribution Hc and the damage in the work material. Let us suppose that some volume V
of a material is loaded by an intricately shaped tool. The damage growth under contact
loading of many (first of all, brittle) materials proceeds as follows: first, the defects
(microcracks) form at the contact surface, in the vicinity of stress concentrators, and then
the microcracks begin to grow, microcracks deeply under the contact surface form, they
coalesce, and that leads to spalling and to the fragmentation of the volume (Mishnaevsky
Jr, 1995c, 1998a). We assume that the initial defects are formed in the points on the
contact surface when the normal contact stress in the contact point exceeds some critical
level. Then, one can calculate the initial damage as follows:

Ro =
�
∫

�cr

p��c�d�c (11.25)

Table 11.1 Examples of the interrelation between the indenter shape and the probability
distribution of the contact stresses.

Shape of an indenter Type of the probability
distribution

Hc Meaning

low The stress is almost
constant over all the
contact surface

high The stress
distribution is very
heterogeneous on
the contact surface
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where Ro is the initial defect density on the contact surface and �cr is the critical contact
stress.
As a first approximation, one can suppose that the function p��c� is given by the

exponential function (more general cases will be considered below). For this case, the
statistical entropy and the expectation of the probability distribution are related by a linear
function (Wilson, 1970; Stratonovich, 1975). Substituting the formula of exponential
distribution into Equation (11.24) and taking into account the relation between the entropy
and expectation of the exponential distribution, one can obtain the following relation
between the surface damage Ro in the material and the statistical characteristics of
tool shape:

Ro ∼ exp�constant∗Hc� (11.26)

During the initial stage of the tool/material interaction, the surface damage Ro is equal
to the damage parameter in the material.
Consider now damage evolution in material. Using any appropriate damage evolution

law, one may determine the damage parameter (defect density in the material) from the
initial damage parameter �Ro�. For instance, integrating Lemaitre’s damage evolution
law (Lemaitre, 1992) (an oversimplification in this case), one can obtain after some
manipulations:

R= 1− 	�1−Ro�
3−3W
1/3 (11.27)

where W = �1/E�
∫

t
C�2dt is a function of loading conditions, E is the Young modulus,

C is a coefficient which includes the triaxility function, the damage threshold function,
strain rate and material constants. Apparently, R will be an increasing function of Ro in
the framework of any damage model.
Equations (11.25)–(11.27) relate the shape of a tool, which is characterized by the

statistical entropy of contact stress distribution, and the damage (defect density) in the
work material. From these equations it follows that the greater the statistical entropy

of the contact stress distribution over the contact surface, the greater the microcrack

density in the work material (at the same load), and therefore the greater the ability of

the tool to destroy, fragment or fracture a material.
Thus, parameter Hc can be considered a general (since it is independent of the tool

shape) characteristic of the tool shape.

In order to investigate the influence of the parameter Hc on the intensity of the material
destruction in the general case, a series of numerical experiments was carried out. A
number of contact stress distributions with different parameters Hc, each corresponding
to some indenter shape, was generated. Since the damage growth rate is an increasing
function of the damage parameter (Lemaitre, 1992), we used here the initial damage (in
this case, surface damage) as a characteristic of the intensity of the destruction of the
work material.
The contact stress distribution [i.e. function (11.22)] can be presented as a power

function in a rather general case:

�c�x�= q1�x/ac�
q
2 (11.28)
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Figure 11.12 Initial damage plotted versus the contact stress entropy.

where 2ac is the diameter of the contact area, q2 is a power coefficient which determines
the shape of the contact stress distribution (if q2 > 1, the tool is extremely sharp; the
case when 0 < q2 < 1 is more realistic: in this case, the tool has a convex surface), q1
is a coefficient which depends on the applied load and x is a distance between a point
and the axis of symmetry of the tool. The applied force is supposed to be constant. The
multiplier q1 is determined by integrating Equation (11.28):

q1 = �q2+1�P/�aq2+1
c � (11.29)

where P is the applied load. In the simulations, the values of initial damage Ro and the
contact stress entropy were calculated by Equations (11.26) and (11.24). The coefficient
q2 was varied from 0.25 to 1.8. The following input data were used: 2ac = 10� P = 25,
the number of quantifying levels for stress NL = 800, the step of discretization of contact
stress was 0.1, the contact surface was discretized for 1000 elements, the average local
strength of the material �cr was 170. The surface damage Ro plotted versus the contact
stress entropy is given in Figure 11.12. From Figure 11.12, one can see that the surface
damage increases monotonically with increasing statistical entropy of contact stresses.
Therefore, one can conclude, that the destruction ability of a tool increases with

increasing the statistical entropy of contact stress distribution.

11.4.2 Effect of the scattering of the tool material properties on the efficiency

of the tool

Now let us analyze the wear of the tool and its influence on the tool efficiency. Here
we consider a cutting tool, the wear of which is controlled by the mechanical processes
(surface fatigue). In Section 11.3, the mathematical model of the tool wear as a transient in
a control system with feedbacks was presented. In order to study variations of the contact
stress distribution during tool wear, the dynamical system which describes the wearing
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tool can be transformed in the following manner: the initial contact stress becomes the
input signal of the block diagram in Figure 11.7; the output signal is current local contact
stress; all elements of the system become feedback elements. Taking the initial contact
stress as an input and the current contact stress as an output signal of the system, one
may derive the following formula:

�c = �c0 exp �−Cw �c0� (11.30)

where �c0 is the initial contact stress in a point of the contact surface (before the tool
shape begins to change due to wear) and Cw is a coefficient, characterizing the local wear
resistance and depending on the local physical properties of the tool working surface,
cutting conditions, etc.
As seen from Equation (11.30), the contact stresses decrease due to the wear and

approach to some mean level. The rate of the approach is higher, the higher the initial
contact stress. It means that the degree of heterogeneity of the stress distribution on
the contact surface is reduced, and, after a lapse of time, the contact stresses will be
approximately the same over all the contact surface. As shown above, the intensity of
the destruction of the work material under mechanical loading depends on the degree of
heterogeneity of contact stresses on the contact surface: the efficiency of a tool is higher,
the higher the heterogeneity of the contact stress distribution on the surface (i.e. the high
stress concentration in some areas, and low stresses in other areas). Therefore, we come
to the evident conclusion that the wear of a tool will lead to a reduction in its efficiency.
This conclusion is, however, based on the assumption that the properties of the material

are constant over the contact surface: Cw = constant. For instance, if the value Cw

and contact stress are related by Cw ∼ 1/�c, the degree of the heterogeneity of stress
distribution on the contact surface will remain constant.
Let us analyze the redistribution of contact stresses in the case of constant and randomly

varied local properties of the material Cw. First, we consider the case of a homoge-
neous tool material: Cw = constant over all the contact surface. At the initial stage of the
loading, the contact stress distribution is supposed to be described by Equation (11.28).
The redistribution of contact stresses due to the wear is described with the use of Equa-
tion (11.30). The values of initial damage as well as the contact stress entropy are calcu-
lated with Equations (11.25) and (11.26). The power coefficient q2 characterizing the
shape of nonworn tool is taken to be 1. The average local strength �cr of the work mate-
rial is 15. The number of levels NL, the width of contact surface and the applied force
are the same as above. The coefficient Cw is varied from 2/30 to 7/30. The contact stress
entropy plotted versus the value Cw is given in Figure 11.13. One can see that the contact
stress entropy (which characterizes the sharpness of the tool, and determines the intensity
of the work material fragmentation) decreases with increasing the tool dulling rate.
Now we consider the case, when the tool is made from a heterogeneous material,

so that the wear resistances and strengths of different points on the contact surface are
randomly distributed. Calculations, similar to those above, but with randomly varied
coefficients Cw, have been carried out. It was supposed that the tool material consists
of four components, the parameters Cw of which differ and are equal to 0.05, 0.1, 0.15
and 0.2. The volume content of each component was varied from 0.1 to 0.7. In order
to characterize the degree of scattering/heterogeneity of the local properties of the tool
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Figure 11.13 Contact stress entropy plotted versus the coefficient Cw (for the case
Cw = constant).

surface, the statistical entropy of the probability distribution of phase volume contents
was used:

Hw =
∑

j

vcj logvcj (11.31)

where j = 1, 2, 3, 4 is the number of a constituent in the material and vcj is the volume
content of the jth component.
Figure 11.14 gives the statistical entropy of contact stress distribution (corresponding

to the instant of time t = 1) plotted versus the entropy of local properties of the tool
surface. One can see that the greater the heterogeneity/scattering of local properties on
the tool surface, the greater the contact stress entropy (i.e. the sharpness of the tool) even
after a lapse of time. One can conclude that the heterogeneity of local wear resistances

over the contact surface leads to the self-sharpening of the tool, and may ensure therefore

the long term high ability of the tool to destroy, fragment or fracture a material.

Practically, the high efficiency and the long term high ability of a tool to destroy,
fragment or fracture a material can be ensured, if the working surface of the tool consists
of a number of components with different wear resistances. An example of such a tool
is the ‘squirrel tooth’ type cutter (Mishnaevsky Jr, 1998a): the cutter consists of regions
with different strengths and wear resistances. Components, placed in the areas of expected
high stresses, are very strong, while other components are weak and have a low wear
resistance. The intensive wear of the weak regions ensures the constant shape and long
term sharpness of the teeth.

11.4.3 Principle of the optimal tool design

The conclusion that an increase in the statistical entropy of contact stress distribution
leads to the improvement of the destructing ability of tools was obtained in Section 11.4.1
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Figure 11.14 Contact stress entropy plotted versus the entropy of intensities of wear resis-
tances.

on the basis of the phenomenological analysis of the interrelations between this parameter
and the damage growth in indentation, and then verified in numerical experiments. In
Section 11.4.2, it was shown that the self-sharpening of a tool can be achieved, if
the mechanical properties of different points of the tool working surface are randomly
distributed.
Generalizing these results, one may assume that an improvement of the efficiency

of a tool in a general case can be achieved by introducing some heterogeneity into

the construction of the tool (for instance, uneven tool work surface, heterogeneous
arrangements of destructing elements on a tool, heterogeneity of local wear resistances
or distances between teeth).
In order to verify this assumption, we carried out an analysis of about 250 patents

in the area of drilling tool improvement, searching for common approaches and ideas
in different patents. As a result of the analysis, the patents were divided into seven
groups, corresponding to the main ideas used in the technical solutions. The results of the
analysis and some examples are given in Table 11.2. Correlating the ideas from all of the
groups, one can see that all the considered methods of the tool improvement consist of
introducing some heterogeneity (in other words, information) in the tool constructions. In
all the cases, a tool is improved by increasing the unevenness of distributions of different
local parameters (teeth orientations, distances between teeth, mechanisms of loading,
wear resistances, etc).
Generalizing the results of the patent analysis and the conclusions made in

Sections 11.4.1–11.4.3, one can formulate the following general principle of the optimal
design of destructing (e.g. drilling) tools: the efficiency of destructing tools can be

increased by increasing the heterogeneity (degree of scattering) of distributions of

different local parameters of the tool. In terms of the theory of information (Stratonovich,
1975), it can be formulated as follows: the efficiency of a complex tool can be improved
if the statistical entropies of distributions of local parameters of the tool are increased.
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Table 11.2 Technical solutions in the area of drilling tool design.

Main ideas Some examples

1. Unevenness of the tool work surfaces: convex or concave
cutting faces or prismatic or cylindrical lugs on cutting
face; stepped working surface; cavities, bevels, slopes on
the tool work surface

No. 1044765A,
1023062A, 1323706A1,
623958 (Russia/USSR)
No.1284539 (UK) No.
57–35357 (Japan)

2. Asymmetry of the tool working surface about the
direction of tool movement: a cutting face or its parts are
inclined to the cutting vector

No. 723123 and
1046465A (Russia/USSR)

3. Dissimilar shapes or orientations of different teeth on the
same bit: combination of radial and tangential cutters;
different cutting and wedge angles on different teeth on
the same tool; different materials of inserts; the strength of
inserts varies from the axis of the auger to periphery

No. 395559, 153680A1,
1366627 Al (Russia/USSR)

4. Irregular arrangement of teeth on a bit: clustered
arrangements of teeth or cutters, varied distances between
teeth

No. 3726350, 3158216
(USA) No. 1472623A1
(Russia/USSR)

5. Elements with different mechanisms of loading on the
same bit are combined: combination of mobile and fixed
elements, or rotating and progressively moving elements,
or cutting and impact elements

No. 52–48082 (Japan) No.
697711 (USSR)

6. Different wear resistances or different points or tool
working surface: layers with different strengths in a cutter;
cavities specially introduced in the tool surface

No. 714003, 281349,
145496, 693000, 609884
(USSR)

7. Self-sharpening and self-organization of a tool No. 4230193 (USA) No.
717327, 719192 (USSR)

Among the parameters are the contact stresses (for increasing the sharpness of the
tool), wear resistances local of tool work surface (durability of the tool, self-sharpening
of the tool and high efficiency of the drilling tool even after a lapse of time of drilling),
orientations of destructing elements (teeth) and distances between them, rates, directions
and mechanisms of loadings by each element of a multitoothed tool.
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Future fields: computational
mesomechanics and nanomaterials

Nanostructured materials demonstrate many unusual properties, which may be very
important for applications in different areas of industry. Among the peculiar properties
of the materials, one can mention the increased hardness and strength of nanocrys-
talline metals, improved ductility and toughness, and low temperature superplasticity in
nanocrystalline ceramics, and the combination of the increased toughness and strength in
multiphase nanomaterials. According to Gleiter (Gleiter, 2000), the differences between
the properties of nanostructured and coarse-structured materials are determined by both
the low dimensions of grains and the high volume content of the boundary surface
phase in nanomaterials. Some nanostructured materials demonstrate the inverse Hall–
Petch effect: their strength increases with increasing grain size. Generally, the discovery
and utilization of nanostructured components and phases opens many new opportunities
in the optimization of the material properties.
The theory of properties and strength of nanostructured materials is still in development.

However, it is remarkable that the methods of continuum mechanics, micromechanics
and mesomechanics of materials find their application in the analysis of nanostructured
materials.
In the case of pure metallic nanomaterials, the application of micromechanics in the

analysis of nanomaterials is based often on the two-phase model of a nanocrystalline
material, with grains and boundaries, as phases. Suryanarayana (Suryanarayana, 1995)
noted in his review that ‘nanocrystalline metals can be considered to consist of two struc-
tural components – the numerous small crystallites � � � and a network of intercrystalline
region.’.
The deformation and the inverse Hall–Petch effect have been studied using the ‘rule

of mixture’ in several works. Carsley et al. (Carsley et al., 1995) suggested a model
of the strength of nanomaterials which is based on the ‘rule of mixture’. A material is

Computational Mesomechanics of Composites L. Mishnaevsky Jr
© 2007 John Wiley & Sons, Ltd
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considered as consisting of two phases: grains with bulk props and the boundary phase,
which represent an amorphous glass material. With this model, Carsley and colleagues
studied the grain size softening in nanomaterials.
Kim (Kim, 1998), Kim et al. (Kim et al., 1998, 2000), Hong et al. (Hong et al., 2000)

and Kim and Bush (Kim and Bush, 1999) suggested a composite material model for the
analysis of the mechanical behavior of nanomaterials. The micromechanical (unit cell)
model of a nanostructured material developed by Kim (Kim, 1998), and consisting of
a crystallite, boundary phase and triple line junctions, is shown in Figure 12.1. Using
this model and the concept of a critical grain size, Kim and colleagues investigated
the plastic behavior of nanomaterials and explained the inverse Hall–Petch relation of
nanostructured materials. Further, they used the ‘rule of mixture’ to study the hardness
of nanocrystalline copper. Analyzing the effect of porosity on the elastic behavior and
stiffness of nanomaterials, Kim and colleagues concluded that the porosity effect is even
more strongly pronounced than the effect of the grain size.
Another interesting work is the area of the application of continuum/structural

mechanics for the analysis of nanomaterials was presented by Li and Chou (Li and Chou,
2002). They suggested to model the covalent nanostructures of materials as frame struc-
tures from atoms, while the atomic bonds are considered as load carrying elements and
the atoms as nodal points of this structure. The model was verified for the case of graphite
and carbon nanotubes. Li and Chou demonstrated that the mechanical properties of nano-
materials can be modeled with the use of continuum and structural mechanics methods,
although the physical nature of the bonds can be different from that of macroscale mate-
rials.
While the general framework of the micro- and mesomechanics of materials is appli-

cable to the analysis of nanostructured materials, the micromechanisms of the deformation
and strength of nanomaterials are different from those of bulk materials. In nanostructured

Boundary Surface

Crystallite

Triple Line

Quadratic Node

Figure 12.1 3D micromechanical (unit cell) model of a nanomaterial, consisting of a crys-
tallite, boundary phase, triple line junctions and quadratic nodes, developed by Kim (Kim,
1998). Reprinted from Scripta Mater., 39(8), Kim, ‘A composite model � � � ’, pp. 1057–1061,
Copyright (1998), with permission from Elsevier.



Future Fields 267

materials, plastic deformation is controlled not (only) by the lattice dislocation motion, as
in bulk materials, but rather by the grain boundary sliding and diffusional mass transfer
(occurring mostly via the grain boundary diffusion). These effects are associated with
the role of the grain boundary phase in nanocrystalline materials (Gutkin et al., 2001;
Gutkin and Ovid’ ko, 2001; Morris, 2001). To simulate the deformation of nanomaterials,
different models of plastic deformation are required.
Pozdnyakov and Glezer (Pozdnyakov and Glezer, 2002) developed an analytical model

of the initial stages of the deformation of nanomaterials, based on the analysis of the grain
boundary microsliding (GBM) in nanomaterials. This model made it possible to study the
effect of the grain size and temperature on the flow stress in the materials. Another model
of the deformation behavior of nanomaterials was suggested by Hahn and Padmanabhan
(Hahn and Padmanabhan, 1997). Assuming that the plastic flow of nanomaterials is
controlled by the mesoscopic grain boundary sliding, they derived an equation for the
shear strain rate, and studied the inverse Hall–Petch effect in nanomaterials.
Hasnaoui et al. (Hasnaoui et al., 2002) studied the plastic flow of nanomaterials

(nano nickel) using molecular dynamics simulations. In their numerical experiments, they
observed the formation of shear bands and the motion of grains, and identified the main
micromechanisms of deformation: grain–boundary migration, continuity of shear plane
via intragranular slip, and rotation and coalescence of grains.
Summarizing, one may state that the continuum mechanics, micromechanics (e.g. ‘rule

of mixture’) and computational micromechanics methods (e.g. micromechanical unit
cells) can be successfully employed in the analysis of the strength and mechanical
behavior of nanomaterials. One may expect therefore that the analysis of nanostructured
materials can become one of the very promising areas of further application of methods,
concepts and tools of the computational mesomechanics of composites.
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Conclusions

Performances of composite materials, their strength, toughness and damage resistance
can be improved by changing their microstructures. The improvement of microstructures
can be realized not only by varying averaged parameters and properties of phases, but
also using synergistic effects of the interaction between many microstructural elements
and by introducing some heterogeneities into the material microstructures, e.g. localized
or graded distributions of phases.
Some promising directions of the optimization of the material properties have been

demonstrated in earlier experimental and theoretical investigations. The advantages of
gradient microstructures, for instance, have been known for many centuries. Further, the
strength and fracture resistance of composite materials can be improved in some cases by
reducing sizes of microstructural elements, replacing large inclusions by clusters of small
inclusions (so-called ‘double dispersion’ microstructure), applying coatings, introducing
inclusion free layers, arranging the inclusions in networks or in clusters, introducing
nanoreinforcements and aligning elongated grains, etc.
Many ideas and hints on the improvement of the composite microstructures can be

obtained from the analysis of biomaterials, their structures and mechanical behavior
under loading. The review in Chapter 2 leads to some ideas in this direction: staggered
arrangement of reinforcing inclusions, reinforcement in the form of bundles of thin fibers,
or reinforcement distribution, which follows the expected loading distribution, are some
of the bio-inspired ideas on the material improvement.
Computational experiments represent an efficient way to determine optimal microstruc-

tures of composites. By systematic numerical testing of different artificial microstructures
of composites, one can determine the optimal microstructure which will ensure the
required material properties.
The concepts and techniques of the computational analysis of property–microstructure

relationships of composites, methods of the incorporation of complex real microstructures
of materials into numerical models, and different approaches to modeling damage and
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fracture are reviewed in Chapters 3 and 4. In Chapters 6–11, numerical investigations of
the effects of microstructures of different groups of composites on their strength, stiffness
and damage resistance are presented. In particular, the computational models of particle
reinforced composites with graded and clustered microstructures, interpenetrating phase
composites, unidirectional long fiber reinforced composites and machining tools materials
have been developed, and tested in numerical experiments. Various potential sources
of the improvement of the composite properties have been identified and analyzed:
clustered and gradient distribution of microstructural elements (in particular, in view
of the increased fracture toughness and damage resistance, respectively), smoothness of
the transitional layer in the gradient composites, dimensions of continuous phases in
the interpenetrating phase composites, homogeneity of reinforcing elements, etc. The
methods and techniques, presented in this book, can be used further in the computational
design of optimal composites.
However, some challenges have still to be met on the way to practical applications

of the computational mesomechanics in the optimal design of composites. The correct
incorporation of complex 3D heterogeneous microstructures of materials into numerical
models is still one of the main challenges of numerical testing of material microstructures.
The resolution of difficult compromises between the limited computational resources
and the required fineness of the microstructure representation, as well as between the
complex, multilevel, fractal geometries of phases and their discretized continuum models
will require further scientific efforts. The development of methods and subroutines for the
realistic modeling of different damage mechanisms in materials, including void growth,
cleavage of brittle inclusions and interface debonding, is still not a fully solved problem,
although some new and very efficient methods have been developed recently. Further,
the multiscale nature of the deformation and damage in composites, and the interaction
between many different physical mechanisms, require the application of multiscale and
multiphysical approaches in the modeling.
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