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This book introduces fundamental and advanced fabric structure and mechanics.
There are 10 chapters covering the general features of textile structure and
mechanics. All the simple modes of deformation such as tensile, bending,
shear and compression, and the complex, particularly drape deformation of
fabrics (mainly woven), are discussed. Testing methods for the objective/
instrumental measurement of fabric mechanical properties and structure
parameters are also included.

I am grateful to my PhD supervisor, Dr Alan Newton, in the Textile
Department of UMIST. He introduced me to fabric structure and mechanics
and, through his extensive academic knowledge in this area, taught me the
fascinating science of fibre assemblies.

From my own point of view, mechanics is the most difficult science. I
achieved lower marks in this subject than in the other subjects I studied as a
bachelor degree student. Fabric mechanics must be the most difficult of all
areas of mechanics because all my predecessors and the people I have worked
with have said so. It is funny to think that I have picked this area for my
research. It is also a very rewarding area to work in for the following reasons:

1. I have benefited from the academic standards and professionalism of
many outstanding people: Prof. John Hearle, Prof. Ron Postle, Prof. Ning
Pan, Prof. George Stylios, Prof. Tongxi Yu and many more.

2. I have become more versatile and have been able to handle other areas of
research much more easily because of my understanding and experience
in fabric mechanics. This is because the challenges in this field have
helped me to solve problems in other areas such as Shape Memory Materials
and Textiles more conveniently and quickly.

3. I have made many friends by carrying out different projects and working
with different people from all over the world, from India to Europe, from
east to west, from students to outstanding scholars, from Hong Kong and
China, and across various disciplines ranging from physics, mechanics,
civil and structural mechanics, textiles and clothing, medicine, etc.

4. I feel I am a scientist rather than a textile technologist, and thus have no
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psychological barriers in regards to working with people from different
disciplines, such as chemistry and physics. This has helped me to open
new research areas the past few years.

5. Fabric mechanics has become one of the most popular subjects for research
students in the Institute of Textiles and Clothing in the Hong Kong
Polytechnic University. This is evidenced by the fact that students continue
to select this subject; I offer it every semester to different students.

Indeed, as I tell my students, mechanics is closely related to forces. Can
anybody tell me what materials or products are used without applying a
force? It is difficult to find any. Every researcher should know some basic
facts about mechanics; every research student in clothing and textiles should
know something about textile/fabric mechanics. Not only that, textiles have
been used for many, many areas because of their unique characteristics, as
introduced in Chapter 1. To apply textiles to these areas properly and optimally,
an understanding of the structures and mechanics of fabrics is required. This
book can be used by people working in many areas, including textile
composites, geotextiles, medical textiles, transportation textiles, etc.

Thus, I hope this book will be useful for many people and benefit many
sectors of scientific and technological development. In particular, people
working in the areas of textiles, clothing, materials, fibrous composites and
medical textiles will find this book useful as a reference and/or textbook for
studying, research and teaching.

Dr Jinlian HU
Institute of Textiles and Clothing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

tchujl@polyu.edu.hk
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1

1.1 Role of woven fabric mechanics

The science and engineering of textiles and clothing have played an important
role in one of the major technological transformations known to mankind:
the computer revolution. For example, the Jacquard principle of weaving
shares its basis with the binary system in the computer. Textile manufacture,
particularly the woven fabric computer-aided design (CAD) system, is one
of the earliest success stories in the development of CAD. Therefore, today’s
textile and clothing plant is significantly different from that of the past. The
integration of the principal functions carried out in the production of textile
materials and end products (fibres/yarns/fabrics/garments), namely product
design, production planning and scheduling, manufacturing, material handling,
and distribution, into a single entity is giving rise to the computer-integrated
textile enterprise. The implementation of management philosophies, such as
quick response and just-in-time, in the textile and apparel industries requires
increased flexibility, higher quality and faster response times in new
manufacturing systems. Automation and the linking of processes are two
ways to reduce labour, improve quality and increase productivity. This trend
towards automation and computerisation in textile and clothing manufacturing
is not only inevitable but also beneficial.

However, there are still many problems preventing automation and the
integration of processes for the textile and clothing industries. For example,
automation of the handling and transport of apparel fabrics is of vital interest
to researchers and industrialists, where the cost of labour is a significant
portion of the total product cost. However, automated handling of textile
materials is a difficult task because of their unique engineering properties
and the variability of these properties in diverse product applications.
Knowledge-based systems are required to control highly flexible automated
devices for handling limp materials. These computer systems must be able to
take fabric property information and predict the fabric bending behaviour or
other mode deformation properties during the handling process. The computer

1
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algorithm must be based on numerical models for predicting the deformations
of typical fabrics.

In addition, as consumers have become increasingly sophisticated in their
demand for quality textile products, this has led to a requirement for automatic
and objective evaluation of fabric appearance with respect to such characteristics
as pilling, hairiness, wrinkling, etc. All these issues add up to a need for
greater knowledge and more thorough understanding together with
mathematical models of fabric structure and mechanics, especially in low-
stress mechanical responses and their relationship with fabric structure.

Indeed, woven fabrics are the end products of spinning and weaving, but
they are also the raw materials for clothing and other industries such as
composites and medical textiles. The study of fabric mechanics under the
low-stress conditions which exist in ordinary manufacturing and wear/
application processes should be applicable to different sectors, namely apparel
manufacturing, wear performance and fabric formation, as well as technical
textiles.

An understanding of the formation mechanisms of fabrics is useful for
fabric design and process control, and includes investigation of the relationships
between fibre properties, yarn structure, fabric construction and fabric physical
properties. The constitutive laws of fabrics and other properties will be
indispensable to the investigation of clothing construction, automation of
clothing manufacturing, and computer-aided clothing design. In addition,
low-stress mechanical responses are related to fabric hand, quality and
performance; therefore, low-stress structural mechanics can be applied to
quality control, process control, product development, process optimisation
and product specification, clothing construction, automation of clothing
manufacturing, and computer-aided clothing design.

1.2 General features of woven fabric mechanical

behaviour

Textile materials differ considerably from conventional engineering materials
in many ways. They are inhomogeneous, lack continuity and are highly
anisotropic; they are easily deformed, suffering large strains and displacements
even at low stress, under ordinary conditions or in normal use; they are non-
linear and plastic even at low stress and at room temperature; they often
achieve success rather than failure through buckling into shapes with double
curvature without forming the sharp corners which appear in the case of
paper when it is folded (Amirbayat and Hearle, 1989; Amirbayat, 1991).
Thus they possess unique characteristics suitable especially for the human
being’s body movement, for the satisfaction of the human being’s eyes and
other physiological and psychological requirements.
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1.2.1 Complicated geometric structure

The geometric structure of a fabric is extremely complicated. Figures 1.1
and 1.2 show photos of cross-sectional and surface images of a woven fabric.
It is clear that each yarn in the fabric is crimped. The yarn cross-sectional

1.1 Cross-section image of a woven fabric.

1.2 Surface image of a woven fabric.
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shape is rather irregular. Moreover, there are also many fibres which protrude
from the yarn surfaces.

Every piece of woven fabric is an integration of warp yarns and weft
yarns through intersection. The extent of this intersection is largely dependent
on the friction between fibres and yarns together with fibre entanglement,
while the distance between two parallel adjacent yarns determines the porosity
of a fabric structure. The existence of such a discrete porous structure is what
differentiates a fabric from a continuum engineering structure such as a
metal sheet.

The simplest theoretical model of yarn configuration is that developed by
Peirce (1937). This contrasts with reality because in the theoretical study, the
cross-sectional shape and physical properties of a yarn are always simplified
and idealised. However, even for this simple model, the calculations required
by the geometrical parameters still involve transcendental functions (see
Chapter 3).

1.2.2 Large deformability

Figure 1.3 is a typical tensile stress–strain curve of woven fabrics, where the
applied tensile force per unit length is plotted against tensile strain. Because
fabric sheet is very thin, the usual practice of textile researchers is to use
force and moment per unit length rather than stresses in plotting stress–strain
curves. This figure shows that the membrane strain is quite large even at
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small forces, due to the straightening of the crimped configuration of the
yarns within the fabric. The initial tensile modulus of a typical fabric is of
the order of 10 MPa, compared to steel which has an elastic modulus of
2 ¥ l05 MPa.

Compared to tensile deformations, fabrics are even more susceptible to
bending deformations when under transverse loading, as shown by Fig. 1.4.
Assuming that slippage between fibres is not constrained, we can easily
work out the ratio of a yarn’s bending stiffness to that of a solid rod of the
same cross-section, i.e. a(g /R)2, where a is the porosity ratio (the ratio of the
summed area of fibres to that of the yarn cross-sectional area, and is always
smaller than 1), R and g are the radii of the yarn and its constituent fibres,
respectively. For a typical yarn which contains 100 fibres, this ratio is
~1:10 000. This makes it possible to produce a thick yarn with great flexibility.
In addition, due to the low thickness of fabric sheet, the ratio between bending
stiffness and membrane stiffness is small. These factors contribute to the
generation of a very low bending stiffness of fabrics, much lower even than
their corresponding membrane (stretching) stiffness.

While large deformations can often be neglected in the engineering design
of structures using stiff materials, at least in the service stage, they are
required in the engineering of fabrics. Fabric under its own weight and/or
external forces tends to move through these large deformations and buckle at
very small in-plane compressive stresses in order to approach a state of
membrane tension which it is better able to resist.
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1.5 Shear behaviour of a woven fabric.
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1.2.3 Non-linear stress–strain behaviour and inelasticity

Figures 1.3–1.5 show the typical stress–strain curves of woven fabrics
(produced from different fabrics). For conventional engineering materials,
low-stress deformations usually cause small strains which are related to
stresses in a linear manner. By contrast, stress–strain curves of fabrics are
complicated and generally non-linear in the low-stress range, becoming almost
linear beyond a certain critical stress level. This critical value varies for
different deformation modes. It is comparatively high for tension, but is very
low and can be near zero for bending and shear.

This unique stress–strain behaviour of fabrics can be attributed to the
porous, crimped and loosely connected structure of woven fabrics. Under
tension, straightening of crimped yarns occurs at low stresses, and this is
why the initial tensile stiffness is small. At high stresses when decrimping is
nearly complete and inter-fibre friction is increased, the fabric structure
becomes consolidated and the fibres better oriented. This leads to a stress–
strain relationship close to linear, which is similar to a solid. In the intermediate
range, the stress–strain curve is non-linear, reflecting the consolidation and
yarn reorienting process. This behaviour makes an interesting comparison
with the tensile behaviour of conventional engineering materials. For the
latter, the microstructure of the material changes from order to disorder as
the stresses increase. For fabrics, the applied stresses bring about order in the
microstructure.
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For bending and shear, when the applied stresses are low, inter-fibre friction
provides a high initial resistance. However, inter-fibre slippage gradually
dominates the behaviour once the frictional resistance between fibres is
overcome by applied stresses, and this leads to a reduction in the stiffness as
shown in Figs 1.4 and 1.5. Another interesting phenomenon observed from
Figs 1.3–1.5 is that loops between loading and unloading curves exist even
for low stresses, implying that irrecoverable deformations (inelasticity) occur
for fabrics at small stresses. This differs from the situation for most conventional
engineering materials for which inelastic deformations are usually associated
with stresses which are so high that failure of the material may be imminent.

However, it is by no means the case that textile materials differ from
conventional engineering materials in every way. For example, all terms
such as inhomogeneous, anisotropical and non-linear come directly from
conventional mechanics rather than being invented by the textile scientist.
This suggests that such characteristics as non-linear, viscoelastic and
inhomogeneous are problems of engineering materials. The view can be
justified that the main difference between textile materials and conventional
engineering materials is that the former show very complicated mechanical
responses to external loads, even under ordinary conditions of low stress and
at room temperature, while this happens to the latter usually under large
stress, high temperature or other specific conditions. After recognition of
this double identity of textile materials, it is reasonable to import conventional
mechanical treatments into the study of textile in some circumstances.

1.3 Study of woven fabric mechanics

1.3.1 Summary of previous study

The study of woven fabric mechanics dates from very early work reported
by Haas in the German aerodynamic literature in 1912 at a time of worldwide
interest in the development of airships. In the English literature, the paper by
Peirce (1937) presented a geometrical and a mathematical force model of the
plain-weave structure, both of which have been used extensively and modified
by subsequent workers in the field.

Considerable progress has been made over the last century in the
development of the theory of geometrical structure and mechanical properties
of fabrics. Responding to demands from industry, the investigation of the
geometry and mechanical behaviour of fabrics has moved successively through
observation, explanation and prediction. The main advances were included
in the two books (Hearle et al., 1969; 1980) edited by the leading figures:
Hearle, Grosberg, Backer, Thwaites, Amirbayat, Postle, and Lloyd. The maturity
of textile mechanics, and thus of fabric mechanics, was highlighted at the
workshop at the NATO Advanced Study Institute held in 1979 (Hearle et al.,
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1980). One of the major achievements in this process has been the development
of the Kawabata Evaluation System (KES) for fabric testing, which proved
to be beneficial for the objective measurement of fabric and clothing
manufacturing control as well as the development of new materials for apparel
fabrics. Since the 1980s the focus for research has been empirical investigations
examining the relationship between the parameters obtained from the KES
(Kawabata, 1980; Kawabata et al., 1982; Postle et al., 1983; Barker et al.,
1985, 1986, 1987) and characteristics such as fabric handle and tailorability.
The KES system can provide five modes of tests under low-stress conditions,
17 parameters with 29 values in warp and weft and five charts consisting of
nine curves for one fabric. This large amount of data was intended to provide
a full description of the fabric. As a whole, it can suit a wide range of
purposes in research and applications.

Research in this field in terms of methods and emphasis has taken three
directions. These are:

(1) Component-oriented: this direction was led by Hearle, Grosberg and
Postle and starts from physical concepts and assumptions which are
used to facilitate further deductions and for which the theoretical basis
is Newton’s third law, minimum energy principles and mathematical
analysis of construction. The aim is to predict the mechanical responses
of fabrics by combining yarn properties, inter-yarn interactions and
fabric structures with these assumptions. Many pages of mathematics
and personalised programs are involved.

(2) Phenomena-oriented: responses of fabrics to applied loads involve
elastic, viscoelastic, frictional and plastic parts. Therefore, rheological
models consisting of different combination of components, such as the
spring that represents the elastic part or the dashpot which represents
the frictional part, simulate combined responses of fabrics to applied
forces. From these, general relationships of stress–strain could be
deduced.

(3) Results-oriented: this can be contrasted with the component-oriented
direction in that it starts not from assumptions and concepts but from
a hypothesis – a function or a statement to describe the experimental
results. It then goes back to find the relationship of this function with
fabric components such as spacing, dash pot and simulated combined
responses before finally subjecting it to further analysis. The theoretical
background of this approach is more concerned with pure mathematics,
especially numerical methods and statistics. This type of theory is
helpful in the ordering of observations. It allows estimates to be made
of purely mathematical operations, thus avoiding many subjective
assumptions that may be misleading. As the analysis develops, further
and more complex phenomena may be revealed and an effective and
realistic approach may be developed from this.
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There are several questionable features which have been noticed in previous
analysis of woven fabric mechanics:

(1) In general, along with the well-established exchange of ideas and the
qualitative consideration of experimental results, there is a perceptible
worsening of the mutual communications and practical applications as
mathematical models become more and more complicated and implicit.
This can lead to misunderstandings and redundancy in theoretical
research.

(2) There exist few specific investigations of the explicit mathematical
expression of the stress–strain relationships (constitutive laws) of fabrics.

(3) In particular, although the KES system has received wide attention for
fabric objective measurement in which the investigation and application
of the system are confined to the parameters extracted from the test
equipment (Kawabata, 1980, Barker et al., 1985, 1986, 1987), the
interpretation of the charts recorded from each tester is strictly ignored.
This apparent neglect of an area of important technological interest
stems from the difficulties inherent in the complexity of curves themselves
which are intrinsically non-linear.

Additionally, in practice, the information from the KES system is so
comprehensive and extensive that it is too complicated to handle or to interpret.
A technique of extracting information from massive amounts of data of this
type is needed to explain the main features of the relationship hidden or
implied in the data and charts.

1.3.2 Constitutive laws of fabric as a sheet

Fabric is a type of textile material and it shares the complexity characteristic
of other textile materials. In order to reduce the complexity of fabric behaviour
to manageable proportions, deformation must be separated into different
modes.

To the first approximation, a fabric may be simulated as a sheet. In some
cases, a fabric is approximated to an elastica – this was discussed by Lloyd
et al. (1978). In engineering treatments, a simplified sheet can be subjected
to four different modes of deformations which can be superposed by simple
addition to give any more complicated form of deformation at a point on a
sheet. In addition to two independent in-plane strains, i.e. tensile and shear
strains, there are two out-of-plane deformations generated by bending and
twist. In an orthogonally woven fabric, it is convenient to make use of
structural axes. The desirable features of textile materials, such as double
curvature, may be synthesised from the above mentioned modes of
deformations. No matter how complex a fabric deformation is, constitutive
laws always apply. A stress–strain relationship is usually called a constitutive
equation, or constitutive law.
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1.3.2.1 Basic framework

One of the simplest constitutive equations is the linear equation from the
infinitesimal-elasticity theory that is applicable to the Hookean elastic body
under the assumption of infinitesimal strain. Woven fabrics, however, as
pointed out above, are not Hookean bodies but accord typical non-linear
stress–strain relationships. Nevertheless, based on the basic frame of the
infinitesimal elastic theory of a sheet, the complicated mechanical behaviour
of fabric can be explored.

In the most general case, the stress–strain relationships, or constitutive
laws, of a linearly elastic plate (an initially flat) sheet are as follows:
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Æ
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In equation 1.1, where T1, T2, e1 and e2 are the tensile stresses and strains
respectively in the plane of the fabric, and T12 and e12 are the shear stress and
shear strain in the fabric plane, M1, M2, K1 and K2 are the bending stresses
and curvatures, M12 and K12 are twisting stress and strain, and the submatrices
Aij and Dij represent the membrane and bending (and twisting) stiffness
respectively. The Bij is coupling stiffness that connects the membrane and
bending modes of deformation. In short, as in equation 1.2, [s] is the stress
matrix, [S] the stiffness matrix and [e] the strain matrix. Thus, in the general
case 21 stiffnesses are required to specify the elastic behaviour of an originally
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flat sheet: six for membrane deformations, six for bending and twisting, and
nine for coupling between the two modes.

Fabrics are usually assumed to be orthotropic, i.e. they have lines of
symmetry along their two constructional directions, and the stiffness matrix
[S] for linear elastic situation becomes
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where directions 1 and 2 are assumed to coincide with the principal directions
of orthotropy, i.e. the warp and weft directions in a woven fabric. As summarised
by Lloyd, this has 13 independent stiffnesses, reducing to 12 if the coupling
matrix is symmetric; to eight if the fabric is symmetric; to eight if the fabric
is symmetrical about its central plane so that the Bij disappears; to 6 for a
square fabric such as a plain-weave with the same yarns in each direction; to
four for an isotropic sheet with bending behaviour unrelated to planar behaviour;
and to two plus the thickness for an isotropic solid sheet. However, if the
relationship were non-linear, many of the interaction terms would reappear.
The interpretation of the parameters is made by Lloyd (1980) using the
special case of an orthotropic fabric, initially flat, with no elastic coupling
between membrane strain and bending/twisting modes.

1.3.2.2 Extensions to basic framework

The treatment of low-strain, linear elastic deformations is unrealistic in relation
to textile materials. However, the framework outlined above opens up more
realistic possibilities. Lloyd (1980) discussed various modifications to deal
with the non-linearities common in fabric deformations: non-linear material
properties, large strains and large displacements. Particularly for non-linear
material properties, if the form of non-linear stress–strain laws is already
known, the tangential elasticity matrix [ST]

[ ] = 
d[ ]
d[ ]TS
s
e [1.4]

can be used in the continuum analysis. Alternatively, if [S] is kept constant,
the resulting linear elastic solution will require corrections to the stresses
calculated from the previous step. If the initial stresses are zero at zero
displacement, then the non-linearities can be contained in [s0] and used to
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apply the necessary corrections. This is known as the initial stress method in
such analysis as finite element methods.

1.3.2.3 Mathematical modelling of fabric constitutive laws

As can be seen in the above treatment of non-linear fabric properties, finding
non-linear stress–strain relationships of any single deformation mode is
necessary for the general continuum analysis. The widespread use of computers
and the development of numerical techniques such as the finite element
method opens up new possibilities: attempting problems such as fitting woven
fabrics to a three-dimensional surface becomes feasible; other complex fabric
deformations can be predicted; and clothing CAD systems can be developed.
All these need the relationships between the constitutive laws governing
fabric extension, shear and bending. However, the mathematical modelling
of fabric stress–strain relationships is a very tough topic. During the last 60
years, many outstanding textile scientists, including F.T. Peirce, J.W.W. Hearle,
P. Grosberg and R. Postle, have devoted their talents to this field. However,
their theories are self-contained, that is it is difficult to apply the results of
one piece of research work to another. For example, even though there are
many papers and books on fabrics, it is well known that fabrics are non-
linear and elasto-plastic in nature. In the investigation of fabric complex
deformations, like drape (Collier et al., 1991) or ballistic penetration (Lloyd,
1980), one also assumes that basic deformation behaviour, like tensile, obeys
the Hookean law of solid materials. The reasons for this stem from the
complex procedures of prediction or, basically, the fact that the development
of mathematical models for woven fabrics is an extremely complicated and
difficult task due to the large numbers of factors on which the behaviour of
the fabric depends. Usually, a mathematical model is based on a large number
of assumptions, covering missing knowledge or inability to express some of
the relevant factors. It is not surprising that, out of the huge bulk of works
published in the area, a considerable amount appears to be of theoretical
interest only and largely inadequate to cope with real fabrics. Therefore, it is
necessary to introduce a different approach for the mathematical modelling
of fabric constitutive equations.

With fabric, fundamental distinctions may be made between three kinds
of modelling, namely: predictive, descriptive and fitting or numerical models.
The predictive models, as developed by Hearle et al. (1969) and Postle et al.
(1988), which form most of the existing research into fabric mechanics, are
based on the consideration of at least the most important of the relevant
factors, while the effect of the remaining ones is covered by suitable
assumptions, defining the limits of validity and the accuracy of the resulting
theories. Under these restrictions, the predictive models are directly
characteristic of the physics of the fabric and permit the evaluation of the
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effects of the various parameters involved and the development of design
procedures. Models of this form may provide a basis for evaluation of the
internal state of the fabric at a microscopic level, for example, the state of
stress developed between warp and weft yarns under strictly determined
fabric geometries and loading conditions.

The transition from the microscopic level to the macroscopic one is usually
obtained through the concept of the representative unit cell. In this way, it is
possible to derive a stress–strain curve for the fabric in any of these modes
of deformation and to evaluate the build-up in the level of internal forces or
lateral pressures acting within the fabric as it is deformed. A detailed study
of the mechanisms of fabric deformation is therefore possible, yielding
relationships between the structural parameters of a woven fabric and its
important mechanical properties. The number of assumptions, for models of
this kind, required for an exact theory is obviously high. It is necessary to
include a number of initial assumptions relating to the nature of yarn contacts
and yarn cross-sectional shape within the unit cell of the fabric. Such
assumptions are usually based on a great degree of simplification and they
are liable to introduce large errors in any analysis of fabric mechanical or
rheological properties.

However, the treatment of this relationship is usually too complicated
either to understand or to apply. The increased mathematical complexity of
the better solutions has made them less accessible to those who might use
them, or even to other specialists. These approaches all require several pages
of mathematics. Some of it is interesting, but a good deal of messy algebra
has made them difficult or impossible to apply to more realistic situations.

The descriptive models (Paipetis, 1981), on the other hand, are largely
empirical and reflect the need for simple mathematical relations, expressing
the phenomenological behaviour of a fabric from the point of view of a
particular property. For example, linear viscoelastic materials can be modelled
by means of properly connected spring-and-dashpot elements. However,
such models completely ignore the physics of the material, need adjustment
to reality through a number of experimental values and operate within a
specific range of the relevant parameters only. Still, they are undoubtedly
useful, if no rigorous models are available.

In contrast to the complexity of the predictive models and the subjectivity
of the descriptive models, some sort of simple mathematical equation may
be used to relate stress–strain. Even if no sensible physical relationship
exists between variables when introducing the function and even although
the equation might be meaningless, it may nevertheless be extremely valuable
for predicting the values of fabric complex deformation from the knowledge
of stress or strain. Furthermore, by examining such a function we may be
able to learn more about the underlying relationship and to appreciate the
separate and joint effects produced by changes in certain important parameters.
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These are fitting or numerical models. The modelling of this group, at the
first stage, may ignore the exact mechanism taking place within the structure
but emphasise the numerical relations of two variables such as stress–strain
relations. This method is based on statistical considerations; it needs fewer
assumptions and provides, perhaps, an approach more relevant to real situations.

There exist various methods for fitting a curve in many industrial or
science fields. Constitutive laws are often estimated by using a polynomial,
which contains the appropriate variables and approximates to the true function
over some limited range of the variables involved. Spline, especially the
cubic spline interpolation method, is also widely used for this purpose. The
research work in this field, which has received comparatively little attention,
can be seen in Kageyama et al. (1988).

1.3.3 Computational fabric mechanics

Section 1.3.2 has in fact touched on the content of computational fabric
mechanics. In this section, a more specific introduction to this technique is
given. Since the workshop at the NATO Advanced Study Institute (Hearle
et al., 1980), progress in fabric mechanics has begun to slow down. The
hindrance to further development of fabric mechanics stems from the
complexity of the mathematical equations used to describe the complex
behaviour of fabrics. The very limited solvability of these equations by
traditional analytical techniques has caused much frustration among the research
community, which is increasingly losing confidence in the significance of
fabric mechanics in practical applications. As the mathematics becomes more
complicated and less transparent, there is also a perceptible worsening of
communication between theoreticians and experimentalists, leading to
misunderstandings on both sides and redundancy of theoretical research.
Even Hearle, who has worked in textile mechanics for about 50 years, advocated
the application of advanced computational techniques as the way forward
(Hearle, 1992).

Computational fabric mechanics presents a unique opportunity where
cooperation between researchers with different backgrounds will be most
effective. The many challenging numerical problems will be of interest to
the computational mechanics community, while the participation of textile
material scientists will ensure a balanced and practically useful approach.
The final product should be an intelligent CAD system, the development of
which relies heavily on the contribution of computer graphics experts.

1.3.3.1 General

The application of computational techniques in fabric mechanics first appeared
in the late 1960s. Konopasek, Hearle and Newton at the University of
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Manchester Institute of Science and Technology (UMIST) first launched a
project to use computer programs to approach textile mechanics problems
including fabric behaviour (Hearle et al., 1972). Computational techniques
have in fact gained wide application in many engineering areas: airplane
designing, machine manufacturing, civil engineering, etc. One key algorithm
used in computational techniques is the numerical method, particularly the
finite element method, which enables the possibility of accurately predicting
the behaviour of an engineering structure under a certain loading condition.
Therefore, in this section, particular emphasis is put on the finite element
method as well as on fabric deformation analysis.

Continuum models
As the name says, in these models, the fabric is treated as a continuum
without explicit reference to its discrete microstructure. Established
mathematical methods in continuum mechanics can then be applied to the
analysis of fabric deformations. In the first attempt at using computers to
obtain continuum solutions to fabric deformation problems, numerical solutions
were adopted after differential equations had been set up. However, this
approach was difficult to apply to complex non-linear deformations of fabrics
as specific equations needed to be established and a computer program needed
to be written for a given problem. Representative work may be found in
Konopasek (1972), Lloyd et al., (1978), Shanahan et al., (1978), Brown et
al. (1990), Clapp and Peng (1991).

A more versatile and powerful approach is the finite element method
which can be applied to predict fabric behaviour under complex conditions.
The finite element method was initially developed for engineering structures
made of steel and other stiff materials. It has been developed since the 1950s
and is now an essential analysis tool in many engineering fields (Zienkiewicz
and Taylor, 1989, 1991). In this approach, the cloth is divided into many
small patches which are called the finite elements. The cloth needs to be
modelled using flat or curved shell elements, as both bending and stretching
are involved.

Several researchers have attempted the finite element approach with varying
degrees of success. The earliest attempt was made by Lloyd (1980) who
achieved some success in dealing with in-plane deformations. Collier et al.
(1991) developed a large-deflection/small-strain analysis using a 4-noded
shell element and treated the fabrics as orthotropic sheets with properties
determined from KES testers. They analysed the draping of a circular piece
of fabric over a pedestal as in a traditional drape test. Their numerical draping
coefficients agreed reasonably well with experimentally determined values.
Gan et al. (1991) produced a similar analysis employing a curved shell
element which belongs to the degenerated isoparametric family (Surana,
1983). They presented numerical results for the draping of a circular piece of
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cloth over a circular surface and a square piece over a square surface. No
comparisons with results from other sources were presented. Kim (1991)
also treated fabrics as orthotropic sheets in his large-deflection analysis
using shell elements and presented several examples of fabric draping. He
was also the only researcher to provide quantitative comparisons which
demonstrated that the deformed positions of the draped fabric predicted by
his analysis differ from those from physical tests by about 10 %. Another
similar study is described briefly by Yu et al. (1993) and Kang et al. (1994).

The above facts show that it is possible to simulate fabric drape by non-
linear finite element analysis treating fabrics as two-dimensional orthotropic
sheets with both bending and membrane stiffnesses. These studies have only
been able to analyse simple draping tests. Analysis of deformations is more
difficult for fabrics than for other conventional engineering materials. Much
work needs to be done before an accurate, reliable and efficient analysis can
be developed to model all possible deformation modes in fabrics. In the
immediate future, more work should be carried out to produce more precise
comparisons between numerical results and physical experiments for a variety
of draping cases. This will further establish the validity of the continuum
approach in modelling fabric deformations.

Another area that has not been touched upon is the effect of non-linear
stress–strain relationships on fabric deformations. This is partly due to the
lack of explicit non-linear constitutive equations of woven fabrics in the
past. Recently, Hu and Newton (1993) and Hu (1994) described a
comprehensive study of the structures and mechanical properties of woven
fabrics in which they established a whole set of non-linear constitutive equations
for woven fabrics in tension, bending, shear and lateral compression. The
inclusion of these equations in finite element simulation is expected to improve
prediction accuracy in many cases and shed light on the effect of non-linear
properties of fabrics on garment appearance and performance.

Discontinuum models
In contrast to the continuum model, fabrics may be modelled as an assemblage
of their constituent yarns. Grosberg and his co-workers (Grosberg and Kedia,
1966; Nordy, 1968; Leaf, 1980), Hearle and Shananhan (1978), Postle et al.
(1988) and Ghosh et al. (1990) adopted discrete models to predict mechanical
responses of fabrics by combining yarn properties, inter-yarn interactions
and fabric structures. Their work is analytical, rather than numerical, involving
many pages of mathematics with the aid of personalised programs in the
solution phase. In the textile literature, this work is usually referred to as
structural mechanics of fabrics (Hearle et al., 1969).

Viewing the yarns as curved or straight rod elements with frictional
connections at the crossing points between the warp and weft yarns, the
finite element method can be extended to study fabrics using discontinuum
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models. Torbe (1975) defined a cruciform element with arms in the directions
of the threads in woven fabrics. In the same paper, the element stiffness
matrix was derived, but no example of its actual application was given.
Leech and Abood (1991) dealt with the dynamic response of fabric subject
to tensile and tearing loads.

A discontinuum model by itself has limited value in predicting complex
fabric deformations due to the prohibitive number of yarns present, but may
be useful in predicting fabric mechanical properties from yarn properties,
because only a small patch of cloth needs to be modelled. The problem is
thus computationally feasible. Realistic constitutive laws required for fabric
deformation analysis at present are only obtainable in laboratory tests. However,
such laboratory tests are not possible before a particular fabric is actually
manufactured. The discontinuum method may enable the accurate modelling
of fabric deformations before they are manufactured.

1.3.3.2 Other approaches

Researchers in the computer graphics community are interested in producing
cloth-like behaviour for computer animation. They have produced various
models based on a geometric process and/or a simplified physical model, but
their purpose is not to produce accurate deformation predictions of a particular
deformable material. Geometric processes, together with simple physical
constraints, have also been applied successfully in the composites
manufacturing field.

Breen et al. (1994) proposed a particle-based model to simulate the draping
behaviour of woven cloth. In their physical model, the cloth is treated not as
a continuous sheet but as a collection of particles that conceptually represent
the crossing points of warp and weft threads in a plain weave. The various
constraints and interactions between particles are represented by energy
functions which are defined using KES test data. Some promising results
have been obtained. This kind of model has now become almost standard for
various systems of cloth simulation.

1.3.3.3 Future of computational fabric mechanics

Dictated by fashion trends, textile and clothing products move through fast
cycles of renovation. Just-in-time and quick response systems are becoming
increasingly important in the textiles and clothing industries. Consequently,
new technologies such as automation of production processes for textiles
and clothing are attracting much attention. Computational fabric mechanics
and understanding of fabric structure have much to offer in realising these
new technologies. This section provides a brief examination of some of
these areas, particularly those related to fabric deformations and clothing
CAD, where application of computational fabric mechanics should be fruitful.
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Complex fabric deformation and clothing CAD
In practical use, textile fabrics are subject to a wide range of complex
deformations such as drape, handle and wrinkling or buckling. If textile
technologists and clothing designers are to be able to make a rational
engineering design of a new fabric or garment, then these complex deformations
of fabrics must first be understood. With improved understanding of the
deformation characteristics of various fabrics, it is then possible to design
new fabrics targeted to the needs of specific end uses.

The ultimate aim is to enable a future garment designer to carry out the
whole design and simulate the final product using a computer. The computer
will automatically produce completed patterns based on a vivid picture drawn
freehand by the designer and a few comments on the requirements of fabrics
and clothing styles. The designer can then see the garment dressed up on a
body simulated using computational fabric mechanics and computer graphics.
In this way, a designer or customer can survey the scene as if it were a
fashion show (a virtual reality fashion show!).

Automation of clothing industry
Automation and the linking of processes are two ways to reduce labour,
improve quality and increase productivity in a modern enterprise. For example,
automation of the handling and transport of apparel fabrics is of vital interest
to industrialised nations, where the cost of labour is a significant portion of
the total product cost. However, automated handling of textile materials is a
difficult task because of their unique engineering properties and the variability
of these properties in diverse product applications. To automate the handling
process, computer software must be developed which can predict fabric
bending behaviour and other modes of deformation during the handling
process based on fabric property information. Such computer software will
only come with developments in computational fabric mechanics.

Other applications
Computational fabric mechanics may be interpreted to include many other
aspects apart from fabric deformations, although they are the most important
in developing clothing CAD systems. It may be expected that computational
fabric mechanics will be equally useful in studying thermal behaviour, fatigue
and wear behaviour, and air and water permeability, and dynamic problems
such as the ballistic penetration behaviour of fabrics for military garments.
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2.1 Significance of Fabric Objective Measurement

technology

Fabric Objective Measurement of mechanical, geometrical, surface and large
deformation properties represents a very powerful tool for the quality control
of fabric manufacturing, finishing and refinishing operations. It presents the
possibility of an integrated computerised scientific database incorporating in
objective terms the enormous wealth of experience of numerous experts who
have worked in the textile and clothing industries over many years in different
countries throughout the world. The application of this technology is becoming
more crucial due to three important factors:

(1) the increasing level of automation in both textile and clothing
manufacture;

(2) the gradual disappearance of personnel with traditional textile knowledge
based on many years of experience and the simultaneous emergence
within industry of conventionally trained engineers to carry out the
production, research, development and quality control functions;

(3) the widespread use of the internet and all kinds of digital communication
tools, as well as the large number of product varieties due to shorter
terms of seasonal products and the need for quick response to maintain
competitiveness in business.

The development of Fabric Objective Measurement of mechanical properties
for apparel products originated with Peirce in the 1920s and 1930s (Peirce,
1930, 1937). He investigated the basic equilibrium structure of a plain-
weave fabric in terms of force equilibrium and tried to build up the basic
theory of fabric mechanics. His work was further developed by a number of
other researchers. Grosberg and his co-workers Park and Swani at Leeds
University during the 1960s pioneered the theoretical analysis of fabric
mechanical properties such as tensile, bending, buckling, shear and compression
(Grosberg, 1966; Grosberg and Park, 1966; Grosberg and Swani, 1966).

2
Objective measurement technology of

woven fabrics
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Their contributions led to a relatively clear picture of the physical and
mechanical description of woven fabric and deformation properties.

The Swedish research team headed by Lindberg et al. (1960) during the
late 1950s and 1960s, extensively studied the mechanical behaviour of fabrics
and related the basic mechanical properties of fabric to the tailorability and
appearance of manufactured clothing. Their investigations become the focus
of serious work by other researchers. Experimental techniques for the
measurement of these mechanical properties have been evolved over a number
of years by many researchers. A variety of equipment and test methods are
now available.

Although much research was aimed at developing Fabric Objective
Measurement techniques and various methods for measuring these properties
were developed, these techniques were practised only by academics or research
institutes. Their widespread use in the textile and clothing industries was
still hindered by the unavailability of a coherent system with sophisticated
and sensitive instruments for measuring the low-stress mechanical properties
of fabrics. In addition, without a standardised testing method, further
development and applications of these low-stress mechanical properties in
the apparel industry would be limited. A research leader in Fabric Objective
Measurement technology was Sueo Kawabata, who developed a testing device
called the Kawabata Evaluation System (KES) that, within 10 years, was to
become a standard textile test facility around the world. The KES fabric
evaluation system is a sophisticated computer testing facility that enables a
variety of fabric tests to be carried out (Kawabata, 1982).

The KES system enables accurate and reproducible measurement of fabric
low-stress mechanical properties, which facilitates the extensive comparison
of experimental findings by apparel engineers and researchers all over the
world and efficient communication between various manufacturing sectors,
buyers and apparel designers. However, criticisms still exist due to the high
cost of the instrument. The system also requires experts for the interpretation
of the resulting data. These deficiencies led to the development of another
testing device called the FAST (Fabric Assurance by Simple Testing) system
by CSIRO in Australia. The FAST system is much cheaper and is becoming
more attractive to the industry. Undoubtedly, these developments coincided
with an increase in the level of automation which demanded prediction and
control of fabric behaviour during production. In this chapter, the development
of the principles and instrumentation of both systems will be introduced.

The Virtual Image Display System (VIDS) and more recently the intelligent
Fabric Surface Analysis System (FabricEye®) are new objective measurement
tools based on image analysis and artificial intelligence technologies, which
have been developed specially for the analysis of fabric geometrical and
surface properties. The VIDS image system is a two-dimensional image
analysis system which combines the video output from a TV camera with the
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graphics display of the computer so that measurements may be made directly
from the TV image, but the general measurement using the VIDS image
system still depends on manual mouse clicking and dragging. However,
FabricEye® is an automatic three-dimensional image analysis system; it can
generate a 3D profile of fabric surface and give specimens an objective
grade automatically.

Other objective measurement technologies are also included in this chapter,
such as Scanning Electron Microscopy (SEM) for surface effect and cantilever
and drapemeter for complex deformation. It seems that the most important
consequence of the introduction of fabric objective measurement technology
is the promotion of technological communication between various sectors of
the textile and clothing industries, research and development workers and all
other areas (e.g. fibre production, retailing, merchandising) concerned with
fibres, textiles and clothing. Consequently, production control and quality
assurance within textile and clothing companies should become much more
rational and efficient, leading to products of higher and more consistent
quality. In practical terms, the fabric objective data will allow manufacturers
to anticipate and overcome problems before they appear. In summary, fabric
objective measurement technology provides the key for scientific and
engineering as well as production principles:

(1) optimisation of fabric properties to engineer new fabrics of desirable
quality and performance attributes for particular end-uses;

(2) development of new finishes, finishing agents and finishing machinery
for textile materials;

(3) control of fabric finishing/refinishing to meet fabric mechanical, surface
and dimensional property goals;

(4) fabric specification and process control for clothing manufacture;
(5) total fabric development from raw material to tailored garments.

2.2 Mechanical properties measurement

2.2.1 The KES system

The KES system is the first advanced and unique solution to the problem of
user-friendly testing of fabric mechanical properties, and it has acquired
great popularity in many countries due to the high precision and reproducibility
in measurement which it offers. With the information provided by this system,
it is possible to achieve effective communications and cooperation among
the various sectors (e.g. researchers, industry sectors and traders) of the
textile and clothing industries by specifying performance requirements and
transactions based on fabric properties data. Generally speaking, the KES
system has the following features:
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2.1 Measuring principles of the KES system.

(1) The testing is very comprehensive. Five charts and 16 parameters in
the warp and weft directions can be obtained in one system, which
covers almost all aspects of the physical properties of a fabric, in
contrast to those testers which test single deformation modes.

(2) The tested strain regions are very similar to what happens when the
fabrics are handled or when they are spread, cut, fused, sewn, or shaped
and worn.

(3) A sample of the same size (20 cm ¥ 20 cm) can be tested through the
whole system. Particularly, the size of samples used for tensile testing
is different from the conventional large length/width ratio such as is
used on the Instron® machine.

(4) It is highly automated, and results from testing can be shown accurately
on the computer attached to it, with charts and printouts of property
parameters.

Detailed information on the KES instruments and the principles of measurement
as shown in Fig. 2.1 can be found in KES manuals (1–4).

2.2.1.1 Configuration of the KES system

In practical terms, the extension or stress applied to woven fabrics during
manufacturing, finishing, garment construction and wear is generally within
the low-stress region of their characteristic stress–strain behaviour. The major
stresses involved in fabric deformation under low-stress conditions are tensile,
shear, bending and compression, and the KES system is a device capable of
realising the testing of these low-stress deformations. It consists of four
precision instruments originally designed to measure key mechanical properties
related to the hand, drape and formability of fabrics, as shown in Table 2.1.
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KES-FB1 Tensile and shear tester
Just as the title suggests, this tester is for tensile and shear properties. With
this tester, the tensile indices like extensibility and tensile rigidity can be
obtained simply by applying a tensile strain to a sample held by two chucks.
In the determination of shear property, the sample will be subjected to a
preset shear deformation of ±8∞ shear angle under a constant tensile force.

KES-FB2 Pure bending tester
This instrument uses the principle of pure bending whereby a fabric sample
is bent in an arc of constant curvature which is changed continuously. The
minute bending moment of the sample is detected and the relationship between
the bending moment and the curvature is recorded on an X-Y recorder.

KES-FB3 Compression tester
The instrument is designed to measure the fabric lateral compressional
deformation properties which are important in the assessment of fabric handle.
In the compression testing, a standard area of the fabric is subjected to a
known compressive load and then the load is gradually relieved. The load is
applied through a movable plunger that moves up and down and compresses
the fabric on a stationary platform. Fabric compressibility can be obtained
by calculating the percentage reduction in fabric thickness resulting from an
increase in lateral pressure (from 50 Pa to 5 kPa). Moreover, the relationship
between compressional strain and stress is automatically recorded on an X-
Y recorder or computer linked with the tester.

KES-FB4 Surface tester
The instrument measures fabric surface properties which are closely related
to hand feel of fabrics. The fabric frictional coefficient and the mean deviation
of the coefficient of friction are detected by the friction contactor, which is
directly connected to a frictional force transducer. Geometrical surface
roughness is detected by the contactor for roughness. All of the measured
parameters can be obtained directly from the calculation circuit of the
instrument.

Table 2.1 The properties measured on the KES-F system

Instrument Properties measured

KES-FB1 Tensile and shear
KES-FB2 Pure bending
KES-FB3 Compression
KES-FB4 Surface characteristics, i.e. fabric surface profile and coefficient

of friction
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2.2.1.2 Information obtained from the KES-F system

A total of 16 parameters can be obtained from this system. These are:

Tensile parameters
EMT – percentage tensile elongation which is the ratio of actual extension

to the original sample length, expressed as a percentage;
WT – tensile energy or work done in tensile deformation represented

by area under the stress–strain curve;
RT – tensile resilience which is the ratio of work recovered to work

done in tensile deformation, expressed as a percentage;
LT – tensile linearity which is a measure that defines the extent of non-

linearity of the stress–strain curves. LT value below 1.0 indicates
that the stress–strain curve rises below a 45∞ straight line while
LT values greater than 1.0 indicate that the stress–strain curve
falls above a 45∞ straight line.

Shear parameters
G – shear modulus which is the slope of the shear curve that falls

between shear angles 0.5∞ and 5∞;
2HG and – hysteresis width at shear angle 0.5∞ and 5∞, respectively.
2HG5

Bending parameters
B – bending stiffness which is the slope of the bending curve that

lies between the radius of curvature of 0.5 cm–1 and 1.5 cm–1;
2HB – hysteresis width at a bending curvature of 0.1 cm–1.

Compressional parameters
T0 – fabric thickness (mm) at a very low compressive stress of

0.5 gf/cm2;
Tm – fabric thickness (mm) at a maximum compressive stress of

50 gf/cm2;
WC – compressional energy or work done in compression represented

by the area under the compressive curve;
RC – compressive resilience which is the work recovered to the work

done in compression deformation, expressed as a percentage;
LC – compression linearity which is a measure of the deviation of the

deformation curve from a straight line. Higher values of LC
imply a higher initial resistance to compression. In general, all
fabrics have low values for linearity compared with tensile testing.
Values range from 0.25–0.36.
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Table 2.2 The parameters measured on the KES-F system

Property Symbol Parameter measured Unit

Tensile EMT Extensibility, the strain at 500 gf/cm [%]
LT Linearity of tensile load–extension curve [–]
WT Tensile energy per unit area [gf·cm/cm2]
RT Tensile resilience, the ability of recovering from [%]

tensile deformation

Bend B Bending rigidity, the average slope of the linear [gf·cm2/cm]
regions of the bending hysteresis curve to
± 1.5 cm–1 curvature

2HB Bending hysteresis, the average width of the [gf·cm/cm]
bending hysteresis loop at ± 0.5 cm–1 curvature

Shear G Shear rigidity, the average slope of the linear [gf/cm·
region of the shear hysteresis curve to ± 2.5∞ degree]
shear angle

2HG & Shearing hysteresis, the average widths of the [gf/cm]
shear hysteresis loop at ± 0.5∞ shear angle

2HG5 Shearing hysteresis, the average widths of the [gf/cm]
shear hysteresis loop at ±5∞ shear angle

Surface MIU Coefficient of fabric surface friction [–]
MMD Mean deviation of MIU [–]
SMD Geometrical roughness [mm]

Compres- LC Linearity of compression-thickness curve [–]
sion WC Compressional energy per unit area [gf·cm/cm2]

RC Compressional resilience, the ability of [%]
recovering from compressional deformation

Thickness T Fabric thickness at 50 N/m2 [mm]

Weight W Fabric weight per unit area [mg/cm2]

Surface parameters
MIU – coefficient of surface friction as measured over 3 cm length of

fabric;
MMD – mean deviation of coefficient of friction;
SMD – surface roughness (mean deviation of surface peaks representing

thick and thin places).

All mechanical properties measured on the KES system are summarised in
Table 2.2.

2.2.2 The FAST system

FAST is a set of instruments and test methods developed by the CSIRO
Division of Wool Technology (Australia) for measuring those properties
which affect the tailoring performance of the fabric and the appearance of
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the garment in wear. It consists of three simple instruments and a test method,
requiring a specific sample size for both the instrumental tests and the
dimensional stability test. In practice, about half a metre of fabric at full
width is adequate to carry out the full range of tests.

FAST was developed to provide the industry with a simple, robust and
relatively inexpensive system for the objective measurement of those fabric
properties important in garment manufacture; it is thus mainly used by fabric
manufacturers, finishers and garment makers. However, FAST has potential
applications at all stages of fabric manufacture and use. As a result of these
wide ranging applications another of the objectives of FAST can be achieved.
This is to provide a language with which garment makers and fabric producers
can communicate about cloth and garment properties and performance.

2.2.2.1 Configuration of the FAST system

The system comprises three simple instruments and a test method, listed as
in Table 2.3.

To ensure error-free calculations, the system is connected to a computer
where measurements are recorded directly and displayed on the monitor.

FAST-1 Compression meter
FAST-1 is a compression meter which can enable the measurement of fabric
thickness and surface thickness at two predetermined loads. Surface thickness
is defined as the difference between the values of thickness at the two
predetermined loads of 0.2 kPa and 10 kPa. The measurement principle is
shown in Fig. 2.2. The pressure at which thickness is measured is controlled
by adding weights to the measuring cup.

FAST-2 Bending meter
FAST-2 is a bending meter which measures the bending length of the fabric.
From this measurement the bending rigidity of the fabric may be calculated.
The instrument uses the cantilever bending principle described in British
Standard method (BS: 3356 (1990)). However, in FAST-2 the edge of the
fabric is detected using a photocell, and not by eye as in some other test

Table 2.3 Configuration of the FAST system

Instrument Properties measured

FAST-1 Compression
FAST-2 Bending
FAST-3 Extension
FAST-4 (test method) Dimensional stability
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2.2 Measuring principle of the FAST-1 compression meter.

Bending
length

2.3 Measuring principle of the FAST-2 bending meter.

instruments. As well as making the instrument simpler to use, the elimination
of this source of operator error makes FAST-2 more accurate than alternative
instruments. The values of the bending length are read directly from a display
on the instrument. Figure 2.3 gives the measuring principle.

FAST-3 Extension meter
FAST-3 is an extension meter which operates on a simple lever principle as
shown in Fig. 2.4. By removing weights from the counterbalancing beam,
the extensibility of the fabric can be measured at three different loads, thereby
simulating the kind of deformation the fabric is likely to undergo during

Extension

2.4 Measuring principle of the FAST-3 extension meter.
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2.5 Measuring principle of the FAST-4 bending meter.

garment manufacture. The extensibility of the fabric can, in theory, be measured
at any angle to the warp (or weft) threads. In practice, it is normal to measure
the extensibility in only the warp, weft and bias directions.

FAST-4 Dimensional stability test
The final component of FAST is a test method which measures the changes
in the dimensions of fabrics that occur when the fabric is exposed to changing
environmental conditions. The test is a modification of the conventional
wet–dry test. The FAST-4 test can be completed in less than two hours and
does not require a conditioned atmosphere. A schematic diagram of the test
procedure is shown in Fig. 2.5.

2.2.2.2 Information obtained from the FAST system

Using the FAST system, 14 parameters can be measured or calculated; these
are listed in Table 2.4. The measured parameters are plotted on a control
chart from which a good prediction of the performance of the fabric during
garment manufacture can be derived. The importance of these parameters
varies according to the end use of the fabric being tested. The system provides
simple but reliable and quick response information for the control of fabric
finishing and tailoring. The following section provides a detailed explanation
of the properties measured by the FAST system.

Dimensional stability (FAST-4)
This term is used to describe the change in the dimensions of fabrics that
occurs when the fabric is exposed to changing environmental conditions. For
wool and wool-containing fabrics, there are two important components of
dimensional stability.
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Relaxation shrinkage
The irreversible change in fabric dimensions (shrinkage or expansion) that
occurs when the fabric is wet out or exposed to steam. Relaxation shrinkage
is caused by the release of cohesively- or temporarily-set strains which are
imposed on fabrics during the late stages of finishing. In the FAST system,
relaxation shrinkage is defined as the percentage change in dry dimensions
of the fabric measured after relaxation in water at room temperature.

Hygral expansion
Hygral expansion is the reversible change in the dimensions of the fabric
that occurs when the moisture content of the wool fibres is altered. Using
FAST, hygral expansion is defined as the percentage change in dimensions
of the relaxed fabric from wet to dry. These two components are described
mathematically as follows:

Relaxation shrinkage = 
L L

L
1 3

1

 –  

Hygral expansion = 
L L

L
2 3

3

 –  

where L1 = length of dry, relaxed fabric, L2 = length of wet fabric after
relaxation in water and L3 = length of dry, unrelaxed fabric.

Other measures of relaxation shrinkage are available such as the WIRATM

steam cylinder or open press shrinkage test. These correlate well with the
FAST wet–dry method.

Other methods of measuring dimensional stability are also available, and
these include the DIN test, the HESC test and locked press shrinkage. However,

Table 2.4 The parameters measured on the FAST system

Property Symbol Parameter measured Unit

Tensile E5 Extension at 5 N/m [%]
E20 Extension at 20 N/m [%]
E100 Extension at 100 N/m [%]
EB5 Bias extension [%]

Bending C Bending length [mm]
B Bending rigidity [mN·m]

Shear G Shear rigidity [N/m]
Compression T2 Thickness at 2 gf/cm2 [mm]

T100 Thickness at 100 gf/cm2 [mm]
ST Surface thickness [mm]
STR Released surface thickness [mm]

Dimensional stability RS Relaxation shrinkage [%]
RC Hygral expansion [%]

Derived parameter F Formability %·mm2
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these tests do not separate the two components of dimensional stability and
can give misleading results on some fabrics.

Extensibility (FAST-3)
The extensibility of a fabric measures the increase in fabric dimensions
which occurs when it is subjected to an applied load. Using the FAST system,
extensibility is measured as a percentage increase in length at sample loadings
of 5 gf/cm, 20 gf/cm and 100 gf/cm width (98.1 N/m). The quoted value for
fabric extensibility is that measured at 100 gf/cm. The extensibilities in the
warp and weft directions measured at 5 gf/cm and 20 gf/cm are used to
calculate fabric formability. Bias extensibility is measured only at 5 gf/cm
width.

Bending rigidity (FAST-2)
The bending rigidity of a fabric is defined as the couple required to bend that
fabric to unit curvature. The FAST system determines bending rigidity from
the cantilever bending length of the fabric, measured using the principle
described in BS: 3356 (1990), and fabric weight. Bending rigidity is given
by:

Weight ¥ (Bending length)3 ¥ 9.807 ¥ 10–6

with bending rigidity in mN·m, bending length in mm and fabric weight in
g/m2.

Shear rigidity (FAST-3)
Shear deformation of a fabric can be described as a trellising motion in
which the angle between warp and weft threads is changed (from 90∞) without
imposing an extension on either set of threads. The shear rigidity of a fabric
is a measure of the force required to deform the fabric in shear. In the FAST
system, shear rigidity is calculated from the bias extensibility of the fabric
under a load of 5 gf/cm and is given by:

123
Bias extensibility

with shear rigidity in N/m and bias extensibility in %.

Thickness/surface thickness (FAST-1)
Using the FAST system, the thickness of the fabric is measured at 2 gf/cm2.
The thickness of the fabric is also measured at 100 gf/cm2 and the surface
thickness, defined as the difference between the thicknesses at the two loads,
is calculated from the measured data:

Surface thickness = Thickness (2) – Thickness (100)



Objective measurement technology of woven fabrics 33

Relaxed thickness/surface thickness (FAST-1)
The relaxed thickness and surface thickness of the fabric are measured
after the fabric has been relaxed in steam (open press for 30 sec) or water
(at 20 ∞C for 30 min). Naturally the samples must be reconditioned to the
standard atmosphere before the fabric is retested using FAST-1.

Formability
The FAST system uses the derived parameter, formability, in the analysis of
fabrics. Formability is a measure of the extent to which a fabric can be
compressed in its own plane before it will buckle. This parameter, as the
product of the bending rigidity and the extensibility of the fabric at low
loads, is defined in the FAST system as:

Formability = Bending rigidity ¥ 
Extension (20) –  Extension (5)

14.7

with formability in mm2, bending rigidity in mN·m and extension in %.

2.2.3 Comparison of the two measuring systems

Both the KES-F and the FAST systems were originally designed for measuring
low-stress mechanical properties in an accurate and reproducible manner,
but they differ in several ways. First, the FAST system uses standard fabric
strips 5 cm long whereas the KES system uses 20 cm ¥ 20 cm strips. Second,
the two systems also adopt different testing principles: the KES set of
instruments measures the entire deformation-recovery behaviour while the
FAST system determines the amounts of deformation to a single point on the
deformation curve (Ly et al., 1988). For example, the KES bending tester
employs the principle of pure bending in measuring the bending property.
The constantly changing curvatures of the fabric specimen are recorded
allowing both elastic and frictional components for the bending moment to
be measured separately. The FAST bending tester, on the other hand, is
based on the cantilever principle. In the case of measuring the shear property,
the principle of bias extension measurement is adopted by the FAST shear
tester whereas the KES-F system measures the simple shear with sides at
constant length.

A number of workers also compared the results measured by both systems.
Ly et al. (1991) found the results measured by the two systems to be highly
correlated with each other, even though significant difference in values may
exist between them. The approach used in the KES system seems more
similar to the actual fabric deformation in shearing and bending and it allows
continuous measurement of deformations. In addition, the shape of the load–
extension curve, which can reveal the actual deformation characteristics of
fabrics more clearly and accurately, is attainable. On the one hand the FAST
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system is simpler to use and cheaper. The price of the FAST system is only
about one eighth of the price for the KES-F system. Therefore, the FAST
system can be more easily applied in industry. On the other hand, for more
in-depth research and development work on the low-stress mechanical
properties of fabrics, the KES system is preferred. Therefore, the general
opinion was that FAST data could be swiftly applied to commercial production,
but the KES system was said to be an ideal laboratory tool and a precise
factory testing facility.

2.3 Geometrical and surface properties

measurement

2.3.1 The VIDS image analysis system

Most of the geometrical parameters can be measured by the VIDS image
analyser (manual for VID system). Figure 2.6 is a systematic diagram of the
VIDS image analysis system. The VIDS system combines the video output
from a TV camera with the graphics display of an Apple® computer so that
measurements may be made directly from the TV image. A CalComp® digitising
tablet allows the operator to ensure a range of feature parameters using
VIDS software packages. VIDS software packages contain general
measurement, area fractions measurement, four-dot measurement, two-dot
measurement, linear measurement, twist angle and point count programs.
The results of these measurements may be displayed on the computer screen,
printed using a printer or stored on floppy disk.

Monitor

Printer

Television
camera

Connected to optical microscope
on which a sample is mounted

Control

Apple® computer
main board

Stylus

CalComp® graphic
tablet

2.6 Schematic illustration of the image analysis system.
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The VIDS general measurement program allows the user to draw round
features displayed on the computer screen using the digitising tablet and
four-button cursor. The following results may be obtained for each feature as
well as the mean and the standard deviation of each:

∑ Area, perimeter, form factor, maximum projected horizontal and vertical
lengths. This program was used to measure area of yarn cross-section and
crimp height of yarns in the present case.

∑ The VIDS Two-Dot measurement program allows the rapid measurement
of features which can be defined by two points. This program was used
for measuring major and minor diameters of yarns in a fabric.

∑ The twist angle program allows the user to measure the angle of a feature
to the horizontal line. It was employed to measure the weave angle of
warp and weft yarns in a fabric.

2.3.1.1 Preparation of samples

In examining fabric structure, it is first necessary to set the fabric in resin.
This is done by cutting a small piece of fabric such that its length and width
are 25 ¥ 25 mm, and sticking this sample on a stiff paper frame with a square
hole of about 20 ¥ 20 mm in the middle. The stiff paper with the sample
fabric is inserted vertically into a rubber mould. A liquid mixture of epoxy
resin ARALDITE MY753 and ARALDITE HARDENER HY951 (ratio 10:1)
is poured into a mould. After 24 hours, the resin block is cut into very thin
slices on a slow speed saw. The thickness of a slice is usually larger than Å
(major diameter of thread values of 1 and 2 for warp and weft). So it is about
100–300 microns in the case of fabrics used in the present investigation.
Transparent embedding agents are commercially available. The slices are
then employed for the observation and measurement of various geometrical
parameters and SEM.

To prepare good samples, care should be taken with the following
problems:

∑ The solution ratio of the mixture liquid must not be less than 1:10. If it is,
the sample block containing the fabric will be too soft. When cutting, it
may cause distortion of the yarns in the fabric, producing incorrect
data.

∑ Drying time of less than 24 hours or a holding force of the sample for
cutting which is too large could cause the same problem.

∑ The thickness of a slice also must be appropriate. If the slice of a sample
is too thick, the adjacent yarns may not be separated from each other; if
it is too thin, the yarn may be cut into pieces.

All of these affect the measurability of a sample.
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2.3.1.2 Measurement of geometrical parameters

Sett, thread-spacing
The number of warp and weft threads per centimetre was determined by
using parallel-line gratings as described in British Standard BS 2862: 1984.
Five readings of every sample were taken to represent the threads per unit
length of one material. The average number of threads per cm and the thread-
spacing were then calculated. If n stands for the threads per unit length, the
spacing p can be calculated using the following formula

p
ni

j
 = 1       i, j = 1–2 [2.1]

The tested sett and thread-spacing are listed in Table 2.5.

Yarn crimp
Two methods, namely the image analysis method and the tension method,
were used for yarn crimp in a woven fabric.

Table 2.5 Sett and space of sample fabrics

Sample Sett (threads/cm) Space (mm)

n1 n2 p1 p2

2 58.7 28.7 0.170 0.348
3 52.8 26.8 0.189 0.373
4 57.9 27.6 0.173 0.362
5 59.5 29.5 0.168 0.339
6 52 27.2 0.192 0.368
7 66.9 34.7 0.149 0.288
9 67.7 33.5 0.148 0.299

10 72.84 37.4 0.137 0.267
11 72.84 37.4 0.137 0.267
12 71.7 37.4 0.139 0.267
13 59 28.7 0.169 0.348
14 59 29 0.169 0.345

16 19.69 13.39 0.508 0.747
18 19.69 13.39 0.508 0.747
20 21.65 13.19 0.462 0.758
21 22.64 20.08 0.442 0.498
22 23.23 16.54 0.431 0.605
23 36.22 26.77 0.276 0.374
24 28.35 20.87 0.353 0.479
25 24.8 21.65 0.403 0.462
26 31.1 21.85 0.323 0.458
27 28.74 25.98 0.348 0.385

1 51.2 41.7 0.195 0.24
8 37.8 33.86 0.265 0.295
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l

2.7 Measurement of yarn.

Tested by image analysis
The determination of 1, the yarn length per unit, is a key parameter for crimp
calculation. The image of the cross-section of a yarn in a fabric is displayed
on the computer screen through a magnified system. The length of the central
line of a yarn was measured using the linear measurement program of a
VIDS system as shown in Fig. 2.7. Then, the crimp C is calculated as equation
(2.2).

c
p

pi
j

j
 = 

1 –  
  100%¥    i, j = 1–2 [2.2]

Tested by tension method
Yarn crimp was also measured by applying a specified tension to a length of
yarn and measuring the resultant extension, which may be dependent on the
particular tension used in testing. The testing method referred to British
Standard BS 2862: 1984.

The tested data for every fabric using these two methods are listed in
Tables 2.6 and Table 2.7.

Crimp height
As shown in Fig. 2.8, the crimp height of yarns was measured using the
general measurement program introduced above. The sample is positioned

Table 2.6 Measured crimp using image method

Sample c1 c2 Sample c1 c2

2 11.93 23.27 16 15.15 6.33
3 9.88 16.16 18 4.44 14.20
4 13.16 14.18 20 18.25 19.07
5 18.00 19.00 21 16.46 15.46
6 14.24 24.80 22 0.89 16.15
7 14.51 20.42 23 20.47 19.53
9 17.25 15.09 24 6.44 21.91

10 12.20 16.54 25 6.08 4.16
11 12.20 16.54 26 11.44 8.85
12 15.94 14.72 27 6.52 9.21
13 11.93 18.00 1 12.59 22.88
14 18.90 12.00 8 15.12 9.62
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to ensure that the surface of the fabric touches the horizontal line. In order
to do this, peaks of the weave of the tested fabric are positioned on the
horizontal line. We need only spot three places to form a close triangle. The
height of the triangle is read by the maximum vertical projected length,
which is the crimp height of a yarn within the fabric. The measured results
are listed in Table 2.8.

Table 2.7 Measured crimp using tension method

Sample c1 c2 Sample c1 c2

2 9.19 6.27 16 4.36 6.06
3 8.91 5.93 18 6.64 7.86
4 8.43 5.36 20 1.82 18.57
5 9.29 5.50 21 2.21 9.43
6 7.14 3.64 22 3.15 6.43
7 9.75 6.21 23 4.25 14.38
9 9.56 5.16 24 2.86 4.30

10 7.31 4.50 25 4.30 6.79
11 8.41 5.56 26 3.57 8.14
12 8.21 4.00 27 4.14 10.55
13 7.86 5.04 1 6.36 11.44
14 9.79 5.75 8 11.00 16.89

hh

2.8 Measurement of crimp height.

Table 2.8 Measured crimp heights

Sample h1 (mm) h2 (mm) Sample h1 (mm) h2 (mm)

2 0.144 0.081 16 0.193 0.181
3 0.144 0.089 18 0.111 0.22
4 0.154 0.086 20 0.153 0.328
5 0.151 0.079 21 0.164 0.217
6 0.167 0.082 22 0.145 0.195
7 0.15 0.068 23 0.147 0.153
8 0.131 0.074 24 0.164 0.244

10 0.118 0.061 25 0.136 0.129
11 0.107 0.064 26 0.129 0.122
12 0.106 0.064 27 0.134 0.13
13 0.134 0.07 1 0.103 0.098
14 0.159 0.081 8 0.084 0.134
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Yarn diameters
Minor and major diameters of yarns, as shown in Fig. 2.9, were measured
using the two-dot program. The measurements are made by positioning the
screen cursor over the first point to be marked and pressing down a button
on the cursor so that a dot appears on the screen in the middle of the cursor.
The button on the cursor is then lifted, moved and pressed down again to
give a second dot and also a beep which indicates that a complete two-dot
measurement has been made. The tested minor and major diameters and
flattening coefficients are shown in Table 2.9.

b

a

2.9 Measurement of yarn diameters in fabric.

Table 2.9 Measured diameters for samples

Sample Major diameters Minor diameter Flatten coeff.

a1 a2 b1 b2 e1 e2

2 0.21 0.24 0.08 0.1 2.63 2.4
3 0.18 0.2 0.09 0.1 2 2
4 0.17 0.19 0.09 0.09 1.89 2.11
5 0.21 0.21 0.08 0.09 2.63 2.33
6 0.22 0.23 0.1 0.09 2.2 2.56
7 0.2 0.18 0.07 0.07 2.86 2.57
9 0.21 0.18 0.07 0.09 2 1.86

10 0.19 0.15 0.06 0.06 3 2
11 0.16 0.16 0.06 0.06 3.17 2.5
12 0.15 0.16 0.06 0.06 2.67 2.67
13 0.19 0.21 0.08 0.09 2.5 2.67
14 0.2 0.2 0.08 0.09 2.38 2.33

16 0.19 0.2 0.13 0.14 1.46 1.43
18 0.29 0.31 0.25 0.21 1.16 1.48
20 0.3 0.45 0.22 0.19 1.36 2.37
21 0.25 0.31 0.17 0.15 1.47 2.07
22 0.18 0.29 0.15 0.12 1.2 2.42
23 0.2 0.25 0.14 0.12 1.43 2.08
24 0.22 0.27 0.12 0.14 1.83 1.93
25 0.32 0.32 0.11 0.12 2.91 2.67
26 0.21 0.3 0.13 0.1 1.62 3
27 0.23 0.27 0.09 0.09 2.56 3

1 0.16 0.18 0.09 0.08 1.78 2.25
8 0.16 0.13 0.08 0.07 2 2.4
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Table 2.10 Measured and calculated areas of yarns

Sample Calculated Measured

A1 = A2 = A A1 A2 A1/A2

2 0.013 0.01419 0.01717 0.826
3 0.01306 0.012 0.01445 0.830
4 0.01306 0.01236 0.01517 0.815
5 0.01306 0.01395 0.01441 0.968
6 0.01628 0.01463 0.01487 0.984
7 0.01093 0.01111 0.01113 0.998
9 0.01093 0.01087 0.01474 0.737

10 0.00817 0.0084 0.00922 0.911
11 0.00818 0.0784 0.0791 0.991
12 0.00817 0.00878 0.0096 0.915
13 0.01306 0.0125 0.01406 0.889
14 0.01306 0.01434 0.01542 0.930

16 0.01628 0.0178 0.02013 0.884
18 0.0543 0.06393 0.06479 0.987
20 0.04635 0.05177 0.07174 0.722
21 0.0543 0.02719 0.04157 0.654
22 0.02163 0.02099 0.03355 0.626
23 0.02163 0.01589 0.0201 0.791
24 0.03109 0.02644 0.03355 0.788
25 0.02716 0.0229 0.02846 0.805
26 0.01862 0.01919 0.02095 0.916
27 0.02163 0.01591 0.01847 0.861

1 0.01093 0.01005 0.01038 0.968
8 0.01649 0.0078 0.01009 0.773

Area of yarn cross-section in a fabric
To measure the area of yarn cross-section, one draws round the border of the
cross-section of a yarn using the general measurement program. When the
beginning and the end of the borderline are overlapped, the complete
measurement of area of a yarn has been made. The measured and calculated
areas from calculated diameters are listed in Table 2.10.

Weave angle
The twist-angle program in the VIDS system was used for testing the weave
angle of yarns in a fabric as shown in Fig. 2.10. The line formed by connecting
two dots which are on the central line of the yarn has an angle with the
horizontal line. This is weave angle q. The measured results are listed in
Table 2.11.

The cross-section photographs shown in this chapter were taken using a
camera attached to the eyepiece of an ordinary optical microscope. Two
photographs of each direction of a sample were obtained.

There are several points which need to be noted for an accurate measurement:
boundary clearness in contact area of warp and weft yarns; hairiness of a
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yarn; positioning the sample before measuring; irregularity of yarn structure;
and calibration before testing.

2.3.2 Scanning electron microscope

The scanning electron microscope (SEM), as its name suggests, is an electron
optical instrument: it uses a beam of electrons to illuminate the specimen.
The electron beam is generated with a gun, accelerated by a high voltage,
and formed into a fine probe by a series of electromagnetic lenses. The
electron-optical column through which the beam passes is held under a high
vacuum to allow a free path for the electrons, and to prevent a high voltage
discharge. The electron beam is rastered across the surface of the specimen
by means of a series of deflection coils, and this raster is synchronous with
that of a cathode ray tube (CRT). The signals produced, as a result of the
beam being rastered across the specimen surface, are collected by an appropriate
detector, amplified and displayed upon the CRT. The magnification of the
image is the relationship between the length of the scan line on the specimen
and the length of the scan line CRT.

The electron beam striking a specimen surface requires a conducting path
to earth in order to remove any electron charge that results. Conducting

2.10 Measurement of weave angle.

y

Table 2.11 Measured weave angle

Sample �1 �2 Sample �1 �2

2 35.6 34.7 16 18.8 20
3 41.1 43.4 18 32.7 39.1
4 37.1 39.5 20 19.9 40.5
5 45.9 39.7 21 24.5 35.1
6 43 41.2 22 10.2 34.9
7 37.8 37.6 23 31.1 43
9 40.4 35 24 27.2 45.3

10 34.2 33.6 25 35.5 37.7
11 33.3 33.8 26 31.4 34.9
12 38.4 33.3 27 30.3 33.2
13 35.6 37.3 1 36.5 44.4
14 42.1 35.9 8 25.3 37.1
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materials do not produce problems, but non-conducting materials may need
a conducting coating applied to the surface to simplify operation. This second
CRT is used specifically for photography. It has a much faster image decay
rate than the viewing CRT, such that only a single scan line is visible at any
one time. The screen itself is photographed, using Polaroid, 35 mm, 120 or
220 films; a conventional camera is used. Each line of the image is exposed
to the emulsion, the camera shutter being held open for the duration of a
single frame scan.

2.3.2.1 Experiment on fabric surface image

As shown in Fig. 2.11, a sample is stuck to a metal stub, the diameter of
which is 15 mm, using adhesive double-sided tapes. The specimen must be
coated with gold before testing. There are two reasons why we coat specimens
prior to insertion into the SEM. First, because non-conducting specimens
build up a surface charge through which secondary electron information is
unable to penetrate, the image we view may be distorted both in signal level,
and image form. Second, it is necessary in order to provide a surface layer
that produces a higher secondary electron yield than the specimen material.
To make the specimen easier to handle in the microscope (less charge and
distortion), a sputter coating was used. In sputter coating a gold target is
bombarded with heavy gas atoms. Metal atoms ejected from the target
cross the discharge to deposit onto the surface of a specimen. A low
vacuum environment is used (0.1–0.05 mbar), which, with the modern low
voltage sputter coaters, enables metal to be deposited at up to 1 mm/s–1. A
photographic image of the fabric surface was taken with the magnification
around 50.

15 mm

Copper tape (folded)Fabric

Metal

2.11 Preparation of sample for SEM.
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2.12 FabricEye®.

2.3.3 FabricEye®

2.3.3.1 Introduction

Pilling, wrinkle and hairiness on fabrics or garments are well-known
phenomena, and these unpleasant appearance attributes can seriously
compromise the fabric’s acceptability. Currently, all pilling, wrinkle and
hairiness testing systems available on the market are manual and subjective.
These cannot provide an accurate, reliable and consistent assessment.

FabricEye® (shown in Fig. 2.12) was developed by the Institute of Textile
and Clothing of the Hong Kong Polytechnic University led by Dr Jinlian Hu
and Professor Edward Newton. It is an intelligent and comprehensive fabric
surface inspection system which aims at tackling the inconsistency created
by various subjective evaluations. The initial objective was pilling evaluation.
Two patents applications have already been submitted for the mechanical
design.

Quality grading standards, such as those described by AATCC and ASTM
for pilling appearance evaluation, are subjective. There is always inconsistency
among different experts due to different physical and psychological factors,
such as fatigue and personal preference. Such evaluation is time- and money-
consuming but unreliable. In today’s business  environment, quality is becoming
more and more important; such subjective, old-fashioned, non-scientific
evaluation is no longer effective and needs to be replaced.

FabricEye® is a system which was built with edge lighting capturing
technology. It consists of a specially designed belt-driven machine together
with intelligent software composed of several modules. Pilling, wrinkling,
seam-puckering, hairiness and fuzziness were the analysis modules for objective
evaluation.
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2.3.3.2 Traditional subjective assessments

Traditional assessments for fabric appearances like pilling, hairiness and
wrinkle are basically subjective, with grading carried out by comparison
between the fabric sample and the standard rating photographs as shown in
Fig. 2.13. The process is thus rather reliant on the observers’ experience.
Assessment of fabric hairiness is even more arbitrary since there are no
criteria which can be referred to. The process is thus rather subjective and
the results generated are lacking in accuracy. The only way to improve the
accuracy of the results is to have the specimen assessed by as many people
as possible, and thus a fabric sample usually has to be inspected by at least
three people, an evaluator, a supervisor and an approver, which means at
least three times for one fabric. If a dispute arises, more people and laboratories
will be involved. The process is rather time-consuming and the test results
obtained are seemingly neither reliable/nor generally accepted.

Other quality standards for pilling or wrinkle evaluation, based on subjective
evaluation like ASTM and AATCC, also suffer the many disadvantages listed
below:

(1) Inexperience: people may lack the experience to appreciate and control
the quality of the fabrics or garments. This will increase the incidence
of rejection and the costs associated with it.

(2) Lack of accuracy: the evaluation will have bias and will not be accurate,
due to the human factors involved.

(3) Slow process: humans may easily get weary after working for a long
period of time and so the assessment process will be affected by human
fatigue.

(4) Inconsistency: different people and environments will give rise to
different opinions, preferences and results.

(5) Other: damaging and fading of the photographic standards will affect
the result.

2.13 Subjective evaluation of fabric appearance.
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For visual assessment the data analysis confirmed that significant variations
do exist within laboratories, and there are even larger variations between
different laboratories. Thus, subjective evaluation does not give results which
are consistent among different parties, at different places and at different
times. All these factors can adjust perception and grading ability. In turn
these can all affect the costs which arise from wrong decisions being made.

2.3.3.3 Overview of the FabricEye® system

Background
Since the 1950s, researchers attempted to investigate the characteristics of
fabric appearance using computer and image technologies (Serra, 1982; Xu
et al., 1998; Tsai and Hsieh, 1999; Hu, 2001; Hu et al., 2001, 2002a,b. They
usually processed greyscale images, which were captured using change coupled
device (CCD) camera. However, anisotropic light intensity with colour-
patterned fabrics presented a problem with these pictures. Thus, other
researchers began to develop new approaches to capture fabric images which
are not affected by fabric patterns, such as the laser technique (Xu, 1998).

By using the laser technique, the three-dimensional profile of a fabric
surface could be extracted; however, its limitations in the form of difficulty
in practical operation and high instrumental cost combined with low precision
hindered commercial development.

Because the above three techniques – manual, image technology and laser
scanner – cannot fulfil the requirements of industry, Dr Hu Jinlian in the
Institute of Textiles and Clothing of the Hong Kong Polytechnic University
led her team to develop a digital system for the objective evaluation of fabric
appearance. They were able to prove that the digital evaluation of fabric
appearance is possible and feasible based on the following points:

∑ image processing techniques applied to many fields
∑ decrease in hardware costs
∑ improvement in quality and reliability of cameras
∑ powerful and effective tools for the evaluation
∑ user-friendly

Configuration of the FabricEye® system
FabricEye® includes five basic components as shown in Fig. 2.14: a lighting
panel which supplies a constant amount of light; a closed black box where
capture takes place avoiding the interruption from external lighting; a
programmed electronic component to control the signals of several pieces of
hardware; a high-speed industrial type CCD camera; and a standard personal
computer equipped with analysis software.
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FabricEye® system specification and requirements
The Fabric Eye® system specification and requirements are shown in Table
2.12.

Information obtained from the FabricEye® system
In general, FabricEye® can provide a surface profile for the user. The surface
profile can be displayed in two modes: a two-dimensional greyscale mode
and a corresponding three-dimensional false-colour mode as shown in Fig.
2.15.

In the pilling evaluation modules, six features will be evaluated from the
surface profile. They are the ‘Average Measured Thickness’, ‘Average Pilling
Counts’, ‘Pilling Size’, ‘Pilling Area’, ‘Pilling Height’ and ‘Pilling Circularity’.

1 2
4

Sample
box CCD

Lighting
box

Control
system3

5

1. Lighting box
2. Sample box
3. Control system
4. CCD camera
5. Personal computer

2.14 System structure of FabricEye®.

Table 2.12 Fabric Eye® system specification and requirements

System specification

CCD camera Resolution: (640 ¥ 480) pixels
Shutter speed: 1/8000 seconds

Step motor Phase number: 2
Dimension [610 (L) ¥ 310 (H) ¥ 240 (W)] mm
Scanning and analysis time ~ 25 seconds and ~ 10 seconds

Computer requirements
CPU 800 MHz
Memory 256 MB
Disk space 1 GB
Operating system Microsoft Windows® 98/2000

Fabric sample requirements
Dimension [105 ¥ 105] mm

(Standard size for ASTM D3512)
Thickness [0.2–10] mm
Type Knitted and woven
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According to Xin et al., (1999, 2002), these six parameters have very high
correlation factors with the subjective grading and were thus the ones chosen
to be summarised.

The principle of FabricEye®

The hardware of the instrument consists of lighting sources, sample mounting
mechanism, sample running mechanism, high-speed CCD camera and scanner,
image analysis software package, a commercial personal computer, and a
specially designed control unit. Several patents and a trade mark have been
registered.

In order to construct the three-dimensional profiles of fabrics, a CCD
camera was used which has resolution of 640 ¥ 480 pixels and took several
periodically grabbed images to produce the image map.

To eliminate the effect of colour, a special lighting and sample holding
system was developed, with new algorithms for the evaluation of fabric
appearance attributes such as pilling, wrinkling, polar fleece fabrics, etc.
Very good results have been achieved. Among them, one patent has been
filed.

The software of the instrument consists of image capture, image display,
image analysis and results output. The scanning time is below 25 sec and the
analysis time is below 10 sec.

FabricEye® can produce a three-dimensional map of the fabric surface
and extract prominent digital features to give a quantified description of
fabric appearance. It can carry out grading as well as an experienced judge.

Evaluation procedure
FabricEye® was intentionally designed with the following features:

(1) automatic analysis with detailed report;
(2) ease of use so that minimum training would be required;
(3) measurement free of the effect from colours;

2.15 Displaying mode.

2D Greyscale mode 3D False-colour mode

16.00
15.60
15.20
14.80
14.40
14.00
13.60
13.20
12.80
12.40
12.00
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2.16 Evaluation procedure of FabricEye®.

Mounting Scanning Analysis Report

(4) reading generated quickly but repeatable;
(5) grading decision should be compatible with standards.

Considering the five issues above, fabric analysis by FabricEye® was reduced
to only four steps, simply illustrated in the flow diagram given in Fig. 2.16,
and outlined below.

Step 1 – mounting sample
Mount fabric sample on the testing belt (Fig. 2.17).

2.17 Mounting a fabric sample on the testing belt.
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2.18 Generated fabric map.

Step 2 – 3D surface map generation
Run the step motor to move the sample and simultaneously capture the
images of fabric profile. Both processes are controlled by computer. Image
software will automatically generate a three-dimensional surface map of
fabric sample, shown in Fig. 2.18.

Step 3 – feature analysis
Automatic background balance, automatic threshold, automatic feature
extraction and related image analysis techniques are applied in this step.
Features of fabric surface, for example, pill number, pill size, pill height, and
so on are extracted accurately. The quality grade of the sample is intelligently
determined by these features. Feature analysis is illustrated in Fig. 2.19.

Step 4 – result report
In this step, the statistical result of these features is reported automatically;
the user can easily open a special database to record these features or export
them into a document. Figure 2.20 shows a results report.

The analysis of thickness in FabricEye®

One of the important features provided by FabricEye® is the analysis of
surface roughness. The roughness measurement on fabrics characterises the
fabric’s surface from its nature and properties. This is actually an effective
method to study the washing effect.

The analysis includes the following parameters: (1) average thickness, (2)
relative smoothness, (3) surface skewness, and (4) relative flatness. These
parameters will be illustrated in the following sections.
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2.19 Feature analysis.

Fabric pilling evaluation report
Sample ID: sample 001
Objective grade: 1.0

Statistics
(All dimensions in mm)
Average pilling count: 4.2813
Average thickness: 3.85
Pilling density: 1.33e–008

Maximum Minimum Average
Pill size: 1.49 0.16 0.52
Pill height: 4.76 3.97 4.23
Pill area: 7.01 0.08 1.23
Pill circ.: 53.53 0.02 8.69

2.20 Result report.
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Average thickness
The traditional method using a clamping device is a kind of compressive
measurement taken over a relatively large area. FabricEye® takes more than
2 million uncompressed measurements over the entire sample surface:

thickness = S n
N

, [2.3]

where n is the value of sampling points and N the total number of sampling
points over the surface.

The difference between measurements obtained manually and those obtained
using FabricEye® can be used to describe the hairiness and fuzziness of
fabrics.

Suppose that TF is the average thickness measurement by FabricEye® and
TM is the average thickness measurement by manual device. There are three
possible situations:

∑ Situation 1 (TF > TM): The measurement by FabricEye® is greater than
by manual. This is the most frequently observed situation. For most of the
common fabrics, hairiness and fuzziness exist. Since the reading from
FabricEye® is non-compressive, the hairiness and fuzziness contributed
to the height. The clamping device pressed down the hairs and thus the
reading taken from it is lower than from FabricEye®.

In other words, in studying the washing effect, the value of the difference
is meaningful. The more the difference, the more hairy and fuzzy the
fabric is. The washing effect is relatively effective.

∑ Situation 2 (TF = TM): The measurements from FabricEye® and manual
are equal or almost the same. This indicates that the fabric is quite flat. It
could be either a woven fabric or an unwashed fabric in which the celluloses
have not yet been digested. It implies that the washing method is ineffective
and should be revised.

∑ Situation 3 (TF < TM): The situation in which the FabricEye® reading is
smaller than the manual measurement rarely occurs. It has nothing to do
with the washing, but is probably due to the physical structure and
components of the fabric. It is usually a knitted fabric with large loop. The
yarn loop density is comparatively low. Figure 2.21 could explain the
phenomenon.

The contact area of the clamp of the thickness measuring device is
usually relatively large and the force from the device is not sufficient to
press the loop structure but only the hairiness and fuzziness. The relatively
harder loop structure blocks the in-depth measurement. However,
FabricEye® takes numerous sample readings over the entire surface. The
thickness is an averaged height value from the sampling points. Therefore,
the measurement from FabricEye® would be lower than the manual one in
this case.
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Relative smoothness
The relative smoothness is a global analysis of the surface roughness, as
shown in Fig. 2.22. It provides an overall idea of how much variation there
is on the surface. More rough or strongly patterned fabrics will give a greater
value. The value is useful in comparative studies between fabrics. Equation
2.4 governs the relative smoothness:

relative smoothness = 1 –  1
1 + 2s

[2.4]

where s 2 is the variance of the height of sampling points.

Thickness measuring device

n(1...9): FabricEye® measurement

Manual reading
n9

n8

n7n5

n6n4

n3

n2

n1

Loops Fabric surface

2.21 Difference of measurement between manual and FabricEye®.

ST149 – High value of relative smoothness
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TJ1492SC – Low value of relative smoothness

2.22 Relative smoothness demos. Left: sample showing high degree
of relative smoothness. Right: sample showing low degree of relative
smoothness.
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2.23 Surface skewness demos. Left: (negative value) few raised
peaks appear in light grey. Right: (positive value) few sunken zones
appear in dark grey.

Surface skewness
Surface skewness is a study of the third degree of the height response as
shown in Fig. 2.23. Its value indicates if any extrema exist on the surface. A
positive value indicates the presence of some sunken zone, while a negative
value indicates a raised zone. Equation 2.5 governs surface skewness:

skewness = E n n(  –  )
3s

, [2.5]

where E is the expected value, n  is the average value of sampling points and
s is the standard deviation of the height of sampling points.

Relative flatness
Relative flatness is a localised study of the amount of extrema as shown in
Fig. 2.24. It is actually a fourth degree of the height response. Its value
indicates if the amount of extrema present is serious. The greater the value,
the more corresponding extrema would be observed. Equation 2.6 governs
relative flatness:

2.24 Relative flatness demos. Left: (lower value) fewer extrema (in
white) could be observed. Right: (higher value) more extrema (in
white) could be observed.
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relative flatness = 
E n n(  –  )

4s
, [2.6]

where E is the expected value and s is the standard deviation of the height
of sampling points.

Applications
FabricEye® further summarised the evaluation process by giving the specimens
an objective grade. The rapid results from the equipment allow the fabric
buyers to make decisions quickly. Furthermore, quality evaluation laboratories
can release manpower to carry out other experiments with a higher requirement
for technical input. Manufacturers can further utilise the other data obtained
for product development and characterisation.

With future integrated modules, FabricEye® can be applied to the fashion
and textile industry, laundry services, and custom inspection for the different
appearance evaluation of pilling, wrinkling, surface hairiness, texture/density,
seam puckering and polar fleece fabrics and garments.

To summarise, FabricEye® brings many benefits to the industry in terms
of better quality management, with quick response and lower production
costs, as well as quality production, with efficient quality control and
informative and objective statistics. It can also eliminate arguments due to
different subjective judgments from different inspectors.

2.4 Complex deformation measurement

2.4.1 Introduction

The drape of a fabric in a broader sense refers to the manner in which the
fabric hangs, shapes and flows on the model form, such as on the body and
furniture, by gravity when only part of it is directly supported. In some
literature, wrinkling, buckling, handle and bending may mean drape. In the
present context, the dominant role played by the gravity of the fabric in
drape is emphasised. The folding from fabric drape which takes up a complex
three-dimensional form with double curvature is unique for drape, but single
curvature of fabric deformation, such as the cantilever test, is also included
in the present review, as long as fabric deformation results from its own
weight.

Research into this theoretically complicated and practically important
topic originated with Peirce in 1930. For several decades, this paper has been
regarded as a benchmark and a source of investigation for many researchers.
Particularly since the year 2000, the investigation of fabric drape has attracted
the attention of many researchers, partly because of the attempt to realise the
clothing CAD system by introducing fabric properties in which the fabric
drape is the key element. The intention here is to make a comprehensive
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survey of the existing research into fabric drape and its application to the
textiles and clothing industries since Peirce. The contents consist of:
experimental study and evaluation methods; empirical study of the relationship
between fabric drape and mechanical properties; assembling methods,
theoretical investigation, analytical and numerical prediction; current status
and future trends of research in this area are also included. It consists of two
parts. The first part of this review deals with test and evaluation of drape,
and empirical study carried out by textile specialists. The second part will
discuss theoretical aspects and numerical simulation as well as its applications.

2.4.2 Cantilever methods

In the past, the cantilever test was mainly used to determine fabric stiffness,
e.g. bending rigidity (constant and whole bending curve) and/or possibly
frictional couple. Its association with fabric drape and extensive discussion
here are due to the following reasons: first, the cantilever test utilises the
response of a fabric under its own weight, which is essentially the drape
behaviour of a fabric, but in only two dimensions; second, bending properties
obtained for this test are the key element for predicting fabric drape generally;
third, many numerical or theoretical investigations into fabric drape used the
standard fabric cantilever test to verify their mechanics models and/or the
accuracy of their software programmes. Finally, some investigations for
fabric handling related to fabric drape are based on Peirce’s cantilever theory
(Postle and Postle, 1992).

Cantilever methods for the evaluation of fabric drape were first introduced
to textile specialists by Peirce (1930), based on the recognition that stiffness
has a large effect on drapeability. In his original paper, nine types of cantilever
were proposed for different types of fabrics.

The standard tester, called a flexometer, which has now become the standard
Shirley Stiffness Tester, was described in detail by Peirce (1930). On this
tester, the angle through which a specimen of cloth droops when a definite
length is held out over an edge can be measured. The specimen is a rectangle
with a large length to width ratio (6:1). By means of a mathematical formula,
this angle is converted into a term called ‘bending length’, which is a measure
of fabric drapeability in two dimensions; Peirce even called it ‘drape stiffness’.

Peirce mentioned in the same paper another eight types of fabric cantilevers
to compensate for the shortness of the rectangle cantilever. Various
modifications of the method had been worked out to deal with those fabrics
which were unsuitable for the standard method. For example, for very stiff
such as starched and ironed fabric, a weight can be added to the free-end of
the specimen, called a weighted rectangle. For a very flimsy fabric, a triangle
cantilever may be used. A material too stiff, but curling badly when tested as
a weighted rectangle, may be better dealt with as a triangle weighted at the
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tip. Because the curling is not so pronounced in a broader strip, Peirce also
suggested another cantilever with a wider (6 in) strip. With the broader
instrument, it is also possible to test a specimen cut in circular form. For
fabrics where the tendency to curl is so pronounced that the strip takes a
complete twist, a long specimen of 20 cm is cut, with the middle marking a
dot, and the two ends placed together to form a pear- or ring-shaped loop.
The depression of the middle point is much the same as for a strip of the
same length.

F.R.L. Testing Machines Inc. (1980) reported that the F.R.L. Cantilever
Bending Tester is capable of testing thin sheet material, textiles and other
flexible materials, including carpets. After Peirce and F.R.L. Cantilever, several
versions of the tester were designed. Some improvements in this test were
made, particularly in terms of automation.

Kalyanaraman and Siveramakrishnan (1984) designed an electronic
cantilever meter based on optoelectronic principles. Their instrument has the
same accuracy as the Shirley Stiffness Meter and works on the same principle,
but the measurement is objective and could easily be automated.

The FAST system developed by CSIRO in 1993 consists of a cantilever
bending meter. The principle for FAST-2 is very similar to that of the Shirley
Stiffness Tester in which the fabric bends under its own weight until its
leading edge intercepts a plane at an angle of 41.5∞ from the horizontal.
Compared with the Shirley Stiffness tester, the FAST-2 was designed to test
a wider specimen (50 mm), even though any sample width from the standard
2.45 cm up to 50 mm can be employed. In addition, this instrument encloses
totally the electronics and detection apparatus. The fabric leading edge is
detected, as it is moved across to the measurement cavity, initiating the
length measurement, then as it cuts a light beam inclined at 41.5∞ to the
horizontal. After a settling and adjustment period the bending length is displayed
digitally.

Russell (1994) reported an alternative instrument for the measurement of
fabric bending length in contrast with the commercial Shirley Stiffness Tester
and the FAST-2 bending meter. He pointed out that both instruments use a
sliding bar and encounter problems with some fabrics, such as pile fabrics or
those made of filament yarns. For these slippery or easily deformed fabrics,
with this simultaneous weighting and sliding procedure, the slider can slip
over the surface of filament fabrics and cause the fabric to cockle as it is slid
along the platform, leading to wrong bending lengths. In addition, they
cannot be used at all on slivers, rovings or yarns. For this purpose, he developed
a testing instrument that combines the principles of the Shirley and FAST-2
testers with elements of a comb sorter apparatus used for fibre distribution.

Clapp et al., developed an indirect method of measuring the moment–
curvature relationship for fabrics (Clapp et al., 1990; Clapp and Peng, 1991).
At the same time, they developed a method to measure the draped profile of
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the cantilever. Deformed co-ordinates were recorded as a fabric sample was
cantilevered under its own weight from a fixed support. The advantage of
this method is that fabric non-linear bending behaviour, inherent in most
fabrics, is readily obtained, unlike in the traditional cantilever beam test.
Moreover, the draped image obtained by using a laser sensor can be used for
the verification of the numerical simulation results.

Potluri et al. (1996) also developed an experimental technique to verify
their numerical method for the capability to compute for general situations.
A laser triangulation sensor, attached to a robot arm, was used for measuring
the cantilever profile of the fabric samples. A manipulating device positions
the fabric sample as a cantilever of specified length. The laser scans along
the centre line of the fabric cantilever. The x co-ordinates are obtained from
the robot position and the y co-ordinates are obtained from the output signal
of the triangulation sensor.

2.4.3 Drapemeter

Cusick (1961) and Chu et al. (1950) made a great contribution to the practical
measurement of fabric drape. The current standard so-called drapemeter is
the result of their effort, in which the drape coefficient, the ratio of projected
area to specimen’s original area, is determined. The drape coefficient can
provide an objective description of the deformation, although it is not a
complete description. A low drape coefficient indicates easy deformation of
a fabric. The advantage of this method over the cantilever is its capability to
test the three-dimensional drape feature, and it can thus differentiate between
the paper and a textile fabric. Further investigations or changes on this type
of drapemeter are limited, but advances in this method can also be traced.

Vangheluwe and Kiekens (1993) measured the drape coefficient using
image analysis. A CCD camera is mounted centrally above the drapemeter.
This camera sends the image to a monitor and a frame grabber in a personal
computer. The frame grabber digitises the image. The drape coefficient is
calculated using a ratio not of masses but of areas. Calibration is carried out
by recording the image of the drape tester without a test sample. The image
analysis system presents a number of advantages, which makes it preferable
to the traditional measuring method. A test using the suggested method will
take no more than 10 sec, whereas the cut-and-weigh method easily requires
more than 5 min. Moreover, the results obtained when using the cut-and-
weigh method are subjective because the drawing and cutting are influenced
by the laboratory assistant. By using this system, the authors investigated the
time dependence of drape coefficient at 10 min intervals.

Collier et al. designed a digital drapemeter to measure fabric drape coefficient
by using photovoltaic cells (Collier and Collier, 1990; Collier, 1991; Collier
et al., 1991a, b). This drapemeter utilises the principle of the standard
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experimental drapemeter and applies a bottom surface of photovoltaic cells
to determine the amount of light blocked by a fabric specimen draped on a
pedestal. A digital display gives the amount of light being absorbed by the
photovoltaic cells, which is related to the amount of drape of the fabric
specimen. This principle was quickly adapted by textile researchers in China.

Stylios et al. (1996) developed a new drapemeter, which measures the
drape of any fabric both statically and dynamically, in true three-dimensions,
by using a CCD camera as a vision sensor. This system, called the Marilyn
Monroe Meter (M3), has been used to measure real fabric drape behaviour,
and is being used to verify their theoretical prediction model. The draped
profile of the specimen can be taken and presented on a computer.
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3.1 Theories of woven fabric structure

3.1.1 Introduction

The geometry of fabrics has considerable effects on their behaviour. For
example, the weft dimension decreases and weft crimp increases when the
cloth is stretched in the warp direction; cloth shrinks when the fibres swell
on wetting. Therefore, studies of fabric geometry have played an important
role in the following areas:

(1) prediction of the maximum sett of fabric which should be woven, and
fabric dimensional properties;

(2) derivation of relationship between geometrical parameters, such as
crimp and weave angle;

(3) prediction of mechanical properties by combining fabric geometry with
yarn properties such as Young’s modulus, bending rigidity and torsional
rigidity;

(4) help in understanding fabric performance, such as in handle and surface
effects.

3.1.2 Geometry theories

3.1.2.1 Yarn configuration in plain-weave fabrics

As we know, fabrics are not regular structures capable of description in
mathematical forms based on geometry; but many believe that we can idealise
the general characters of the materials into simple geometrical forms and
physical parameters in order to arrive at mathematical deductions. To represent
the configuration of threads in woven fabrics, many different forms of geometry
have been put forward by textile researchers.

In conventional approaches, the general character of fabrics was idealised
into simple geometrical forms. These studies were often based on the

3
Structural properties of fabric
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assumption of arbitrary geometrical models for the weave crimp and yarn
cross-sectional shapes. They treated the micromechanics of fabrics on the
basis of the unit-cell approach, i.e. fabrics are considered as a repeating
network of identical unit cells in the form of crimp waves and constant yarn
cross-section in the woven structure. By combining this kind of geometry
with or without physical parameters, mathematical deductions could be
obtained. The yarn configuration in fabric is mainly determined by the form
of crimp waves and the cross-sectional shape of yarns in a given position.
The cross-sectional shape of yarns in four existing models is reviewed below.

For convenience, the symbols used throughout are listed as follows:

d – free circular-thread diameter
D – sum of circular diameters (d1 + d2)
a – major diameter of flattened thread
b – minor diameter of flattened thread
e – thread flattening coefficient (a/b)
h – height of crimp wave
T – fabric thickness (h1 + b1 or h2 + b2, whichever is greater)
p – average thread spacing for the fabric as a whole
n – average number of threads per unit length (n = 1/p)
c – thread crimp
K – cover factor
q  – maximum angle of the thread axis to plane of cloth in radius
l – length of thread axis between planes containing the axes of consecutive

cross threads
lc – contact length of yarn
N – cotton count of yarn

Subscripts 1 and 2 are used to denote warp and weft. If in any relation no
subscript is used it is to be understood that either 1 or 2 may be inserted
throughout.

The systematic study of woven fabric geometry was started in 1937 when
Peirce’s paper (Peirce, 1937) was published. Notable examples of geometrical
models include Peirce’s model of plain-weave fabrics (Peirce, 1937) as shown
in Fig. 3.1.

In this model, a two-dimensional unit cell (or repeat) of fabric was built
up by superimposing linear and circular yarn segments to produce the desired
shape. His model of plain-weave fabrics could be obtained if the yarns were
assumed to be circular in cross-section and highly incompressible, but at the
same time perfectly flexible so that each set of yarns had a uniform curvature
imposed upon it by the circular cross-sectional shape of the interlacing yarns.
Derivation of the relationships between the geometrical parameters and such
parameters as thread-spacing, weave crimp, weave angle and fabric thickness
forms the basis of the analysis. This model is convenient for calculation, and
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has been found useful in the ordering and interpretation of observation; it is
especially valid in very open structures. But the assumptions of circular
cross-section, uniform structure along the longitudinal direction, perfect
flexibility, and incompressibility are all unrealistic, which leads to the limitations
on the application of this model.

In more tightly woven fabrics, however, the inter-thread pressures set up
during weaving cause considerable thread flattening normal to the plane of
the cloth. Peirce recognised this and proposed an elliptic section theory as
shown in Fig. 3.2. Because such geometry would be too complex and laborious
in operation, he adopted an approximate treatment, which involved merely
replacing the circular thread diameter in his circular-thread geometry with
the minor diameter of the appropriate elliptic section as shown in Fig. 3.3.

p2

q1

q1

d 1
d 2

l1

h 2
/2

h 1
/2

3.1 Peirce’s circular cross-section geometry of plain-weave fabrics.

b 2 a2

b 1

3.2 Peirce’s elliptic cross-section geometry of plain-weave fabrics.

b 2 a2

3.3 Peirce’s approximate treatment of flattened yarn geometry of
plain-weave fabrics.
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This treatment was adequate for reasonably open fabrics, but it still does
not permit of application to jammed structure. To overcome this difficulty,
Kemp (1958) proposed a racetrack section as shown in Fig. 3.4 to modify
cross-sectional shape; this consisted of a rectangle enclosed by two semi-
circular ends and had the considerable advantage that it allowed the relatively
simple relations of circular-thread geometry, already worked out and tabulated
by Peirce, to be applied to a comprehensive treatment of flattened threads. In
the paper on ‘An energy method for calculations in fabric mechanics’, a
lenticular geometry was proposed by Hearle and Shanahan (1978) as shown
in Fig. 3.5.
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3.4 Kemp’s racetrack section geometry of plain-weave fabrics.
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3.5 Hearle’s lenticular section geometry of plain-weave fabrics.
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3.1.2.2 Mathematical description of the models

Among the four models mentioned above, it was found by the author that
lenticular geometry developed by Hearle et al. and illustrated in Fig. 3.5 is
the most general model mathematically. We can establish equations for this
model and derive equations for other ones.

The equations for lenticular geometry established by Hearle et al. are:

pi = (lj – Djqj) cos qj + Dj sin qj

hii = (li – Diqi) sin qi(1 – cos qi)

Di = 2Rj + bi

aii = 2Rj sin qi

bii = 2Ti cos qi [3.1]

ei = ai/bi

sin  = 2 /(1 + )2fi i ie e

h1 + h2 = b1 + b2

lcj = Diqi

where Rj, is the lenticular radius and qi is the lenticular angle.

By substituting f  = 90∞, ai = bi = 2Ri = di, D1 = D2 = d1 + d2 = D into the
above equations, the Peirce’s geometry as shown in Fig. 3.1 can be obtained.
The equations are as follows:

p1 = (l2 – Dq2) cos q2 + D sin q2

p2 = (l1 – Dq1) cos q1 + D sin q1

h1 = (l1 – Dq1) sin q1 + D(1 – cos q1)

h2 = (l2 – Dq2) sin q2 + D(1 – cos q2) [3.2]

h1 + h2 = d1 + d2 = D

lc2 = D1q1 £ l1

lcl =  D2q2 £ l2

Therefore, Peirce’s geometry can be regarded as a special case of Hearle’s
lenticular one. And race-track geometry as shown in Fig. 3.4 as a modification
of this model, gives the following equations:

p a b l D Di i i j j j =  –   + (  –   +  sin )¢ q q
h l D Di i i i i = (  –  ) sin  + (1 –  cos )¢ q q q

¢l l a bi i i i =  –   + 
[3.3]

h1 + h2 = b1 + b2 = D

lcj = Diqi + ai – bi

ei = ai/bi
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3.6 Bowshaped geometry of plain-weave fabrics.

Including elliptic geometry, the four kinds of geometry are symmetrical
ones.

As can be seen in Fig. 3.6, a horizontally asymmetrical geometry which
is called bowshaped geometry is also observed frequently. Its geometrical
parameters can also be formulated according to the principles of lenticular
geometry (Newton and Hu, 1992; Hu and Newton 1993; Hu, 1994) as shown
in equation 3.4. The basic equations are identical to those in lenticular geometry
except for the two in the square brackets.

pi = (lj – Djqj) cos qj + Dj sin qj

hi = (li – Diqi) sin qi (1 – cos qi)
Di = 2Rj + bi

ai = 2Ri sin fi

[bi = Ri cos fi] [3.4]
ei = a i /bi

[sin  = 4 /(4 + )]2fi i ie e
h1 + h2 = b1 + b2

lcj = Diqi

3.2 Structural parameters of woven fabrics

From the previous research on the geometric theories introduced above,
several parameters could be extracted to characterise the fabric geometry. In
this section, a general description of every parameter will be given. Some of
them need not be calculated but can only be measured.
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3.2.1 Yarn diameter

According to the Peirce’s (1937) circular yarn section, 1/d, and the number
of diameters per inch in the cotton system:

1  = 
29  3

d
N

v
◊

[3.5]

1  = 28
d

N [3.6]

and

d
N N N N

 = 1
28

 = 0.0357 (inch) = 36  (mils) = 0.91 (mm) [3.7]

where v, the specific volume, is the ratio of the volume occupied by a material
to that of the same weight of water under compression. Of the woven structure,
v = 1.1 for cotton yarn.

3.2.2 Thickness

Fabric thickness is given by t1 or t2 whichever is greater, where t1 = h1 + d1,
t2 = h2 + d2. When yarn diameters are assumed to be circular:

t = max (t1, t2) [3.8]

For flattening section yarns, fabric thickness

t1 = h1 + b1      t2 = h2 + b2 [3.9]

The condition that the two threads project equally produces a smooth surface
and gives the minimum thickness, tmin

t h d h d h h d d Dmin 1 1 2 2 1 2 1 2 =  +  =  +  = 1
2

(  +  +  + ) = [3.10]

where h1 = D – d1. So the minimum thickness is the sum of the thread
diameters.

The maximum thickness is attained when one or other of the threads is
straightened as far as possible. In an open cloth, where either may be
straightened to zero crimp, this thickness should be

tmax = D + dmax [3.11]

dmax is the diameter of the thicker thread, and it is attained by straightening
the thinner threads. If d1 = d2 = d:

tmin = 2d = D

tmax = 3d [3.12]



Structure and mechanics of woven fabrics68

3.2.3 Cover factor

Fabric cover is defined by Hamilton (1964) geometrically as the proportion
of fabric area covered by actual yarns. In practice, cover factors are normally
calculated for warp and weft independently. For example, a fabric having 50
warp threads per centimetre, each 0.01 cm in major diameter, would have a
warp cover factor (K1) of 0.5 or 50 %. In the case of circular section threads,
warp and weft cover factors are given by

K1 = n1d1      K2 = n2d2 [3.13]

For flattened threads, warp and cover factors for plain weave are thus given
by

K1 = n1a1      K2 = n2a2 [3.14]

And overall cover factor K is calculated from K1 and K2 as follows:

K = K1 + K2 – K1K2 [3.15]

The cover factor thus indicates the degree of closing or cover. Increasing the
projection of the area covered by threads through using yarn with greater
‘ooziness’, or by flattening in finishing and more regularity will improve the
cover of cloth.

3.2.4 Crimp

Crimp is the percentage of excess of length of the yarn axis over the cloth
length:
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2
2

2

1
 =  –  1   100 %       =  –  1   100 %Ê
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ˆ
¯ ¥ Ê

Ë
ˆ
¯ ¥ [3.16]

The primary geometrical parameter is the crimp magnitude. It provides a
good basis for investigating many complicated phenomena, such as stress–
strain relations, hand and creasing. And, in particular, crimp has been used
as a fundamental parameter for calculating other geometrical parameters
such as crimp height or weave angle which are not easy to measure. Therefore,
to study fabric structure or related problems, measuring yarn crimp in fabric
is essential. But the actual difficulty in measuring this parameter is not
entirely solved or recognised, perhaps, by many researchers.

3.2.5 General problems

In previous research, much effort has been devoted to the geometry of woven
fabrics and related problems under the assumption of constant yarn
configuration in fabric. For example, since Peirce, the inter-thread pressure
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set up during weaving, which causes considerable thread compression, has
been recognised as only uniform flattening normal to the fabric plane. His
elliptic cross-section model has been regarded as a little bit closer to the
actual structure than the circular cross-section due to compressibility. However,
the other factors were still not given proper consideration, especially in that
it does not permit of any variation along both lateral and longitudinal directions.
Adding other models such as Kemp’s race-track cross-section and Hearle’s
lenticular one, the principles on which all these models are based remain
unaltered. In particular, it is always assumed either explicitly or implicitly
that geometric shape is constant for each model of the unit cell, that is, the
variation of the fabric structure was considered insignificant in the analysis.
It may not be justified to look only at constant structure and ignore investigation
of variation in the structure in the study in fabric geometry.

Firstly, it is a fact that fabrics are extremely complicated materials that do
not conform even approximately to any of the ideal features normally assumed
in engineering structural analysis and mechanics. Secondly, the measurement
of geometrical parameters is not easy in practice. Nobody has measured the
full set of geometrical parameters so far, but many rely on the calculations
of some formula derived from the geometrical model, mainly from Peirce’s
model. As we know, there are problems in the model itself. So we have a
right to doubt the validity of simplified formulae derived from this model.
Therefore, the measurement techniques need to be developed.

Thirdly, a thorough and precise understanding of the effects of fabric
geometry on fabric mechanical properties is a precondition for the development
of total fabric engineering which will enable a fabric with the right combination
of performance characteristics for a particular end use to be designed and
manufactured without lengthy and costly trials. But these important effects
of fabric construction on fabric mechanical properties tested on the KES
system remain almost unexplored.

3.3 Twist redistribution of folded yarns in

woven fabrics

Figure 3.7 shows the surface images of several woven fabrics made of folded
yarns. From Fig. 3.7a, which represents a very open woven fabric, it can be
seen that the length of a folded yarn in one twist is inserted into one repeat
of plain weave fabric. Other samples shown in Figs 3.7b and c exhibit a
similar effect. For very close fabrics with few turns of twists, one turn of
twist may be inserted into one and a half or two repeats of a plain-weave
fabric. There is no literature reporting that a designer would match sett and
twists exactly in this way. The phenomenon is here called ‘twist redistribution’
in a woven fabric because twists of a folded yarn are subjected to adjustment
when a woven fabric is formed. It may suggest the contraction of folded
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yarns in the longitudinal direction and expansion in the diametrical direction
in a woven fabric in most cases. It can be explained in the following ways.

From the above figures, it is also very clear that the two folds of a yarn
become parallel with each other and to the fabric plane at the contact region
of the two yarn systems of a woven fabric in most cases. This can be explained
by the principle of minimum energy when a system reaches an equilibrium
state. Figure 3.8 shows a two-cylinder system with the constraints of walls,
in which the equilibrium state must be the (b) state.

3.7 Surface images of woven fabrics with folded yarns: (a) surface
image of an open fabric with folded yarns; (b) surface image of a
poplin fabric with folded yarns; (c) surface image of a canvas fabric
with folded yarns.

Front side Back side

(a)

Front side Back side

(b)

Front side Back side
(c)
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There may be many states between (a) and (b); whatever the state of the
two-cylinder system at the beginning, eventually they will reach the (b) state
if there is little friction present. In the case of a folded yarn in a woven
fabric, which is constrained by the twists and the adjacent yarns, the parallel
state of two folds is enforced by the compression force between warp and
weft yarns, and this will increase the twist angle of the folded yarn; thus it
contracts the folded yarns per centimetre length of fabric, and the measurement
in the diametrical direction will increase if the density of yarns remains the
same as that before weaving. Therefore more yarns are contained in 1 cm
length of fabric when folded yarns are used. We may think it is similar to the
increase of yarn twists.

Figure 3.9 shows the dimensional changes of folded yarns in a certain
section of a woven fabric: (a) represents the length of folded yarns before
weaving, in which g is the twist angle of the two folds; (b) represents the
length of yarns within a fabric with the assumption that no twist redistribution
happens, in which case the twist angle and the width of yarns remain the
same as before weaving; (c) describes the actual length of a folded yarn due
to the twist redistribution, in which the length of the folded yarn becomes
shorter and thicker than before weaving because twist angle g is increased
by s.

(a) (b)

3.8 Equilibrium condition of two cylinder system.

g

g g + d

(c)(b)(a)

3.9 Dimensional changes of folded yarn in a woven fabric with twist
redistribution.
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In addition, the twist redistribution might affect the sett of a woven fabric,
or make the spacing smaller than designed. But the tested geometrical and
mechanical data listed later suggest that while this possibility may exist, it is
not very large. In addition, the rule of twist redistribution described above is
the general trend; it is not necessarily always exactly true in any segment of
yarn because the actual twists may not be exactly matched with the sett even
after twist redistribution. This finding, with the other phenomena discussed
in other sections, may be useful for understanding the geometrical, mechanical
and quality differences between two fabrics, for example two poplin fabrics
of which one is made of folded yarns and the other of single yarns, other
industrial specifications being similar.

3.4 Relationship between fabric structure and

surface properties

3.4.1 Introduction

The properties of a fabric surface are very important in terms of both
psychological and physical effects on the human being’s appreciation of that
fabric. For example, the sensations perceived from the contact of clothing
with the skin can greatly influence our overall feeling of comfort. The KES
system has a testing machine especially designed for assessing fabric surface
properties.

The KES instrument measures the height of a surface of a fabric over a
2 cm length (forwards and backwards) along principal directions. This gives
two values for geometrical roughness, SMD1 and SMD2. The geometrical
roughness (SMD) is a measure of the surface contour of the fabric, an increase
in SMD suggests an increase in surface variation of a fabric. Figure 3.10
shows the principles of the measurement process.

Interest in studying the geometry of fabric surfaces by objective means
goes back to 1955, when Butler et al. (1955) reported the design and
implementation of their instrument known as the cloth profile recorder. The
main objective of the design was the assessment of fabric faults such as
repping and the differences in pick spacing along the warp direction. Since
this early work, there has been no reported work that describes the objective
measurement of surface roughness until the KES system was introduced by
Kawabata (1980). Later in 1985, an instrument was introduced which moves
the fabric by means of a turnable in order to measure the heights around a
360∞ rotation. At the same time, a multi-purpose tester was designed by
Amirbayat which, in addition to measuring the drape or bending stiffness of
fabrics, measures the surface properties and their variation during wear (Hearle
and Amirbayat, 1988, Amirbayat and Cooke, 1989). Having realised that
there is a force imposed when testing, which affects the measurement of the
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roughness in the KES surface tester, Ramgulam reported a non-contact method
of surface assessment using laser triangulation techniques in 1990 (Ramgulam
et al., 1993).

The friction coefficient (MIU) is another property measured by the KES
surface tester; it is accompanied by its deviation (MMD). Kawabata and
Mooroka (Barker et al., 1985–1987) separated the coefficient of surface
friction into two parts: the first part is associated with the friction between
the fabric and the surface of a rigid body. The second component comes
from other sources. It is assumed to be related to energy losses caused by
inter-fibre friction from compressional deformations occurring when a fabric
is subjected to rubbing, denting and crushing. The relative importance of
these two terms varies with the type of the surface contact and with the
applied load. The deviation of the coefficient of friction (MMD) is a measure
of slip stick behaviour. The principles involved are shown in Figs 3.10a and
b. As the probe sticks and binds on the irregular fabric surface the frictional
force changes, giving deviations from the mean friction value.

Except for some qualitative explanations as above, existing research on
surface properties is generally concerned with the three parameters related
with fabric hand or tailorability (Kawabata, 1980; Barker et al., 1985–1987).
To the best of the author’s knowledge, there exists little investigation of the
charts from the KES surface testing and the quantitative relationship between
surface properties and fabric geometry.

3.10 (a) Principles for the measurement of geometrical roughness
SMD; (b) principles for the measurement of fabric friction coefficient
MIU.
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An investigation will be presented of the characteristics of the geometrical
roughness and friction properties of woven fabrics tested by the KES surface
tester together with theoretical explanations for these phenomena. A brief
discussion will also be provided about the effects of the warp yarn hardening,
indicated in Chapter 4, on the surface properties through the comparison of
the warp and the weft direction values. Models for the prediction of geometrical
roughness and friction properties of woven fabrics will also be developed.

3.4.2 Characteristics of surface geometrical roughness
curves

Figure 3.11 is an example of the charts from the KES surface roughness
testing. In this figure, the troughs represent the lowest places on the fabric
surface, and the peaks the crowns of the yarns in a fabric. The waves on the
chart are not very regular, but it was found that the number of the waves
generally equals the sett of fabric in the cross direction. The definition of the
geometrical roughness in the KES system is included in equation 3.17 and
shown in Fig. 3.12.

SMD
X

T T x
x

 = 1 |  –   | d
0Ú [3.17]

0 1 2L, cm

Thickness variance – 1 (warp direction)
mm
20

0

–20

Wave numbers/cm = sett of the weft direction

3.11 Surface roughness chart measured by the KES system.

SMD = Area / X

T

x(cm) XO

T
hi

ck
ne

ss
 T

 (
cm

)

3.12 The definition of geometrical roughness (SMD).
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3.4.3 Modelling of fabric geometrical roughness

One of the cross-sectional images of fabric containing two consecutive yarns
can be seen from Fig. 3.13. The fabric roughness depends on yarn spacings,
irregularity, fabric design and other fabric geometrical factors. If the irregularity
of yarns and hairiness are not considered, the geometrical roughness of a
woven fabric can be simplified into what is shown in Fig. 3.14, where y is
the distance between the lowest places and the highest places on the fabric
surface on the tested side. The average thickness of the fabric is located at
the centre of y; the geometrical roughness is a measure of the variation of
fabric thickness around the central point of y. From the definition of the KES
parameter, SMD, it is obvious that the roughness measured is the average
height of the area constructed by the average line and the zigzag curves.

If the same principle is used, and the simplified regular roughness change
is introduced as in Fig. 3.15, the relationship between fabric roughness and
geometrical parameters is as in equations 3.18 and 3.19, where the symbols
are the same as in Fig. 3.15; Rt is the theoretical roughness. The average
height of the isosceles triangle is:

3.13 Cross-section image of plain-weave fabric containing two
consecutive yarns.

1 / 2
( h

1 
+

 b
1)

h 1

B

Central plane

Second warp

q1

b1

xA

y

First warp

h 2

b 2

B¢

3.14 Geometrical roughness of woven fabrics.
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where i = 1 and 2.

3.4.4 Theoretical and measured fabric
geometrical roughness

The data obtained from the KES surface testing is called measured roughness
to distinguish it from the theoretical roughness as described in equation 3.19.
It is found that the theoretical values are always smaller than the measured
values and the difference is quite large in some cases. An explanation for this
phenomenon is given as follows:

(1) the simplification of the model is the main reason leading to the smaller
calculated values – as can be seen from Figs 3.14 and 3.15, the straight
line B¢A simply includes a smaller area than the curved line B¢A;

(2) lack of knowledge of the hairiness of yarns and the variation of the
fabric structure;
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y
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3.15 Simplified geometrical roughness cycle of woven fabrics.
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(3) difficulty in measuring the geometrical parameters may also be
responsible for this difference.

3.4.5 Friction properties of woven fabrics

It is interesting to note that, for many fabrics, their friction property charts
are closely related to their roughness charts. It can be clearly seen as shown
in Fig. 3.16 that they consist of waves, whose number is equal to the sett of
the cross-section. Furthermore, the correlation coefficient for the deviation
of friction coefficient (MMD) and the measured geometrical roughness (SMD)
is always high. This may suggest that the geometrical roughness contributes
to the measured fabric frictional coefficient. We may make use of Fig. 3.14
again to give a description of this relationship.

In Fig. 3.17, we assume the slip stick of the KES surface tester is at
different places at different times. B¢, O¢, A, O, B are several representative
positions. Figure 3.18 is the force analysis which takes the position of O¢ as
an example to derive the relationship between the fabric friction properties
and the positions.

The coefficient of the friction between fabric surface and the slip stick is
defined as the ratio of the sliding force to the compressional load. The
mathematical definition of the MMD is as follows:

MMD
X

X
x

 = 1  |  –   | d
0Ú m m [3.20]

where X is the testing difference and m  the average function coefficient.

The equilibrium conditions in the x and y axes give the following equations:
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[3.23]

where P is a predetermined constant pressure, F the sliding force along the
fabric plane, which can be sensed as friction force in the KES surface tester,
N reacting perpendicular to the actual fabric surface, my is the friction coefficient
of yarns with the solid stick or the fabric friction coefficient when the
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geometrical roughness is assumed to be zero; and f is the friction force along
the actual fabric surface, a the angle of actual fabric surface with the horizontal
plane at the position O¢ in Fig. 3.17. mf is the fabric friction coefficient which
is equivalent to MIU measured on the KES system. If a < 0, the slip stick is
in the AOB section, mf increases with the increase of |a |; if a > 0, the stick
in the B¢O¢A section, mf decreases with the increase of a; if a = 0, the
stick is at the crown of the yarn wave, the friction coefficient is equal to
my (mf = my).

Table 3.1 shows an example of the application of equation 3.23. It is
assumed that my = 0.2, the maximum value of a is 8∞. From this table we can
find that the average fabric friction coefficient mf is 0.201448, which is
equivalent to definition of MIU measured on the KES system, the deviation
of mf is 0.073029, which may be regarded as MMD. In addition, Fig. 3.19
indicates that the variation of the friction coefficient is a periodic function.
It needs to be noticed that the values of a are very small in this example,

Second warp

First warp Central plane

h 1

B

O
A

O¢

B¢

h 2

3.17 Positions of friction stick on the fabric surface.

P = 50g

F

a

y

xN

f

a

Parallel to the fabric plane

3.18 Force analysis of slip stick.
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only 8∞. If we increase a, the calculated results are usually larger than the
measured ones. Meanwhile, if the average value of my is small, say 0.15, the
calculated fabric friction variation tends to be larger than the measured one,
as shown in Table 3.2. In a word, the calculated MMD will be far larger than
the measured one when the value of MIU is around 0.15 since the usual

Table 3.1 Predicted friction variation when my = 0.2

Position � (degree) � (radian) �f �f –   �

B¢ 0 0 0.2 0.001448
1 0.017444 0.181919 0.019529
2 0.034889 0.163952 0.037496
3 0.052333 0.146088 0.055360
4 0.069778 0.128315 0.073133
5 0.087222 0.110621 0.090827
6 0.104667 0.092996 0.108452
7 0.122111 0.075427 0.126021

Both sides of A 8 0.139556 0.057905 0.143543
–8 –0.139556 0.350310 0.148862
–7 –0.12211 0.330842 0.129394
–6 –0.10467 0.311597 0.110149
–5 –0.08722 0.292561 0.091113
–4 –0.06978 0.273717 0.072269
–3 –0.05233 0.255053 0.053605
–2 –0.03489 0.236554 0.035106
–1 –0.01744 0.218208 0.016760

B 0 0 0.2 0.001448

Averages 0.201448 0.073029
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3.19 Predicted friction variation when my = 0.2.
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values of MMD are generally less than 0.02. In addition, if we increase the
value of a, the values of mf are even less than zero. Of course this will never
be reflected in the actual charts. The reasons for this discrepancy may be
caused by the fact that the width of the slip stick is larger (0.5 mm) than we
assumed (< 1/2p = 0.1 mm–0.15 mm), which means that the slip stick need
not go through every point as we described in Fig. 3.17.

Table 3.2 Predicted friction variation when my = 0.15

Position � (degree) � (radian) �f �f –   �

B’ 0 0 0.15 0.001068
1 0.017444 0.132208 0.018860
2 0.034889 0.114498 0.036570
3 0.052333 0.096858 0.054210
4 0.069778 0.079278 0.071790
5 0.087222 0.061746 0.089322
6 0.104667 0.044252 0.106816
7 0.122111 0.026785 0.124283

Both sides of A 8 0.139556 0.009335 0.141733
–8 –0.139556 0.296721 0.145653
–7 –0.12211 0.277836 0.126768
–6 –0.10467 0.259134 0.108066
–5 –0.08722 0.240600 0.089532
–4 –0.06978 0.222221 0.071153
–3 –0.05233 0.203984 0.052916
–2 –0.03489 0.185876 0.034808
–1 –0.01744 0.167886 0.016818

B 0 0 0.15 0.001068

Averages 0.151068 0.071746

3.4.6 Comparison between warp and weft surface
properties

The comparison between the warp and weft direction surface properties
suggests that the warp values of the measured geometrical roughness are
likely to be larger than the weft ones; and the warp values of measured
friction coefficient, MIU, seem to be smaller than those of the weft ones.
This may indicate that the strain hardening of the warp direction affects the
surface properties of a woven fabric. It can be explained as follows.

The surface test on the KES system involves a compression load; the
work-hardened warp yarns may have higher resistance to compression than
the non-hardened weft yarns. Thus, the measured geometrical roughness in
the warp direction is likely to be higher than in the weft one. As for the
difference in MIU, the plastic strain of warp yarns in the longitudinal direction
increases the orientation of fibres in a yarn; thus it reduces the denting and
crushing effect when friction occurs.
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3.5 Relationship between compression behaviour

and fabric structure

The low-load compression behaviour of woven fabrics is very important in
terms of hand and comfort. It is also useful for fabric handling during garment
manufacturing. In addition, it is found that the analysis of the pressure–
thickness relationship may shed light on the structure of fabrics, which may
be useful for automatic inspection and image analysis of woven fabrics.

3.5.1 Compression behaviour of fibrous assemblies

Before we deal with fabrics, it is necessary to have a look at the compression
behaviour of fibrous assemblies. If a loose sample of wool fibres is compressed,
the pressure P exerted on the sample is generally inversely proportional to
the cube of the volume v of the sample:

P
v

 = 3
l [3.24]

where l is a constant of proportionality (Postle et al., 1988).
Research on the mechanics of the compression of fibre assemblies was

initiated by Van Wyk (1946) and reviewed by Carnaby (1980). The compression
curve of pressure versus specific volume was derived in his review paper,
and the exact relationship describing the compression behaviour of the fibrous
mass is

P
v v

 = 
1

 –  
1

3
0
3l

Ê
ËÁ

ˆ
¯̃

[3.25]

where v is the volume of the mass, and v0 is the value of v when pressure
P = 0.

In addition to the above relationship for the load–compression of fibrous
assemblies, Van Wyk (1946) also suggested a correction to it for assemblies
which have been compressed to a volume small enough for the incompressible
volume of the fibres to become significant, and for assemblies at zero pressure.
The corrected relationship is described in equation 3.26:
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[3.26]

where v¢ represents its limiting volume at large pressure. For very loose
structure, v¢ may be negligible and the equation taken the form of equation
3.25.

For over 50 years, this relationship has been examined both experimentally
and theoretically for fibrous masses. Despite its shortcomings, Van Wyk’s
original model has not been superseded. A number of developments have
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been reported, which extend its application to assemblies in which the fibres
have particular orientations, and finally to fabrics (De Jong et al., 1986;
Postle et al., 1988).

3.5.2 Compression behaviour of woven fabrics

3.5.2.1 Application of Van Wyk’s law

The process of applying Van Wyk’s law to woven fabrics is actually the
modelling of pressure–thickness curves. In equation 3.26, if the value of P
represents the pressure on a unit area of a fabric, v is equal to the fabric
thickness t. With this fact, Postle et al. (1988) applied the relationship defined
by equation 3.26 and its simplified form to the fabric pressure–thickness
curves as a particular case of the fibrous assembly problem.

They began by using the three-parameter equation 3.26 to fit the compression
curves of wool fabrics tested on the KES-F compression tester. The fitted
curves were in many cases very close to the measured pressure–thickness
curves. The incompressible thickness of the fabrics t¢ is generally between
0.5 and 0.9 of the fabric thickness t at a pressure of 50 gf/cm2. They concluded
that, in contrast to the application of equation 3.26 to loose wool or silk, the
value of t¢ is not negligible. They also reported that the value of l(v0 – v¢)3

in equation 3.26 was small in relation to the maximum pressure P = 50 gf/cm2

employed in the test. By using this finding and neglecting the last term, they
employed a simplified equation:

P
t t

 = 
(  –  )3

l
¢

[3.27]

where the thickness t or volume per unit area of fabric is large and undefined
at zero pressure.

Furthermore, by utilising the measured thickness Tm of the fabric at a
pressure of 50 gf/cm2 and the energy WC underneath the pressure–thickness
curve between 0.5 and 50 gf/cm2; it was found that the two parameters in
equation 3.27 may be calculated:

¢t t
E

P
E
P

 =  –  
2

,    = 
8

m

3

2l [3.28]

It is assumed that the energy E absorbed by the fabric with the pressure
between 0 and 50 gf/cm2 equals WC. Thus, on substitution of the measured
values of WC for E, and the thickness at 50 gf/cm2 for tm in equation 3.27,
the limiting fabric thickness t¢ and the parameter l may be determined.

The application of this method to wool fabrics (Postle et al., 1988) showed
that the fitted values for l and t¢ are in many cases close to the measured
KES curves, with some deviation at pressures less than 20 gf/cm2. In addition,
the measured thickness of a range of fabrics at 1000 gf/cm2 and the thickness
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extrapolated from equation 3.24, fitted over the range from 0.5–50 gf/cm2,
correlating well (r = 0.99) with slope 1 and an intercept of 0.

3.5.2.2 Interpretation for fabric structure

de Jong et al. (1986) also used equation 3.27 to analyse the mechanics of
wool fabric compression in order to interpret the results obtained on wool
during finishing. In return, the feedback information could be used for the
maintenance of consistent quality in finished fabrics due to the fact that the
lateral compression properties of some fabric groups (e.g. wool fabrics) are
generally altered by the finishing procedure.

In their analysis, a model, as shown in Fig. 3.20 considers the fabric to
consist of three layers: a relatively incompressible core layer in contact with
much more compressible surface layers on either side. These two surface
layers (the face and back of the fabric) follow Van Wyk’s law. As indicated
above, the value of l for these layers is negligibly small. The value of
constant t ¢ therefore represents the thickness of the incompressible core of
the fabric.

3.5.3 Statement of the problems

Figure 3.21 shows a typical compression curve recorded on the KES system,
according to which we may find a close-to-linear relationship between pressure
and thickness at the latter part of the curve under a pressure larger than 20
gf/cm2. This section of curve is also characterised by a very steep slope
which indicates that fabrics are extremely incompressible. Thus the general
shape of the curve is largely governed by pressure in the range from 0–20
gf/cm2. The values of tm and WC provided by the KES system are not very
reliable for predicting the whole curve because they do not usually match the
data read off the curves. Therefore, the universality of the model used by De
Jong needs to be proved and its accuracy improved.

t ¢t

P

3.20 The proposed model of a woven fabric under lateral
compression.



Structural properties of fabric 85

In the following section, equation 3.27 will be extended to cotton fabrics.
As we all know, wool fabric is very different from cotton fabric in structure.
As shown in Fig. 3.12, cotton poplin fabrics have very few protruding fibres
on their surface while wool fabrics are apparently very hairy. Therefore,
although equation 3.27 can be successfully applied to wool fabrics, its
applicability to cotton fabrics still awaits confirmation. The method we used
is again non-linear regression. Moreover, an alternative method is also
introduced to make equation 3.27 easier to use.

In addition, an analysis of equation 3.27 will be given together with a
comparison with the measured geometrical thickness. This analysis reveals
a clearer picture of fabric structure in which a five-layer structure is suggested.

3.5.4 Fitting of compression curves for cotton fabrics

Inspired by the success of tensile modelling and the comparison of the two
kinds of curves (tensile and compression), an attempt was made to use an
exponential function to model the pressure–thickness curves. The proposed
function is as follows:

P = eat–b – 1 [3.29]

where P is pressure and t thickness; two constants a and b need to be estimated.
However, the results fitted by equation 3.29 were not very successful.

Therefore, equation 3.27 used by De Jong et al. was adopted. We first used
two parameters, obtained on the KES system, namely Tm and WC, to fit the

P, (gf/cm2)
50

40

30

20

10

0
0 0.1 0.2 0.3 0.4 0.5

T (Thickness)

3.21 Typical compression (pressure–thickness) curve of woven fabrics.
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curves. Similar results to wool fabrics can be observed, i.e. good agreement
with measured results when the pressure is larger than 20 gf/cm2 with deviations
under pressure less than 20 gf/cm2. In other cases, there exist large deviations
between the predicted data and the tested results, due to the original deviations
of WC and Tm from the data read off the curves or for other unknown
reasons.

Therefore, a non-linear regression method was employed to improve the
goodness of fit of equation 3.27. Three approaches, namely exponential
function, power function with two estimations using Tm and WC, and a
power function with non-linear regression, are compared. The representative
results are shown in Fig. 3.22 together with a comparison of using WC and
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3.22 Comparison of compression curve fitted by non-linear
regression method and using WC and Tm.
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Tm. Sometimes the results fitted using WC and Tm are close to those regressed
but, in most cases, the regressed results are much better than those using WC
and Tm. Figure 3.23 shows two other examples of comparisons of the results
using the three methods, in which cases the results using WC and Tm are
comparatively good. However, even here, it is clear that the regression method
is more accurate. The residuals or deviations produced by the non-linear
regression method are very small, on average only about 1/4 and 1/5 of those
produced by using WC and Tm.

From these figures, one can see that the goodness of fit of equation 3.27
to the tested curves may be improved considerably by the non-linear regression
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3.23 Comparison of compression curve fitted by three methods.
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method. By contrast, the data predicted using WC and Tm demonstrate various
degrees of deviation from the tested results.

3.5.5 Mechanical and geometrical thickness

According to equations 3.8 and 3.9 above, the fabric thickness with no
external pressure, t, may be calculated from the measured geometrical
parameters, namely, crimp height h and minor diameter b of yarn. We call
this the geometrical thickness. At the same time, one can obtain the fabric
thickness from the KES system T0, when pressure is at 0.5 gf/cm2; and the
thickness Tm when pressure equals 50 gf/cm2; these are called mechanical
thicknesses. In addition, from equations 3.8 and 3.9, incompressible thickness
t¢ is also introduced. The comparisons of these thicknesses may be very
interesting; in fact, they provide a deeper insight into the fabric structure.

Generally, the geometrical thickness of all woven fabrics lies between T0

and Tm, or T0 and t¢. The geometrical thickness is actually much smaller than
T0. This is beyond expectation because the geometrical thickness was measured
principally under zero pressure, but T0 was measured under a pressure of 0.5
gf/cm2. Therefore, theoretically, T0 should be smaller than the geometrical
thickness t.

The underlying mechanism for this phenomenon might lie in the fact that
during geometrical measurement, crimp height h and minor diameter b were
determined by excluding protruding fibres of the yarn surface. Thus the
geometrical thickness excludes the hairs on the yarn surface and the crimp
crowns above the average thickness. However, the KES compression tester
can output everything it can sense, including the hairs and the crimp crowns
above the average height of woven fabrics. Therefore, the difference between
T0 and t results from this, and the actual structure of woven fabrics, as shown
in Fig. 3.24, is revealed. In it a five-layer structure is still valid but the two
outlayers consist of crimp crowns and not only protruding hairs.

In this structure, the furthest outlayers on either side of a fabric contain
hairy fibres and crowns above the average geometrical thickness; the secondary

3.24 Five-layer structure of woven fabrics.
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layers on either side on a fabric represent another two compressible layers
which form the firm structure of the fabric; the t¢ represents the incompressible
core of a fabric. The outlayers and secondary layers of this structure obey
Van Wyk’s law. The incompressible core layer possesses about 40 % of the
whole fabric thickness, which indicates that fabrics are highly incompressible;
the two secondary layers have more than 20 %; the first layer about 40 %,
which shows that the irregularity of the fabric surface is very large.

3.5.6 Conclusions

Generally speaking, the two-parameter function described by equation 3.27
can quite accurately describe pressure–thickness curves for cotton fabrics
provided that the estimation methods are appropriate. It is suggested that the
incompressible thickness t¢ and the parameter l in equation 3.27 be evaluated
or modified by a non-linear regression method. This improves the predictability
of the proposed model to a considerable extent. Or, alternatively, in a similar
way to what will be described in Chapter 6, they can be evaluated by solving
the following two simultaneous equations:
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In addition, the relationship between the mechanical and geometrical thickness
is found. Comparison of the fabric geometrical and mechanical thickness not
only supports the layers theory of fabrics proposed by De Jong, et al. but
also allows the derivation of a five-layer fabric structure.
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4
The tensile properties of woven fabrics

4.1 General tensile behaviour of woven fabrics

4.1.1 Introduction

Tensile properties are one of the most important characteristics governing
fabric performance in use. Their study involves many difficulties due to the
great degree of bulkiness in fabric structure and the strain variation during
deformation. In particular, each piece of fabric consists of a large quantity of
constituent fibres and yarns and hence any slight deformation of the fabric
will give rise subsequently to a chain of complex movements of these. This
makes the situation more complicated since both fibres and yarns behave in
a non-Hookean way during deformation and present hysteresis with time
effect (Konopasek, 1970).

4.1.2 Tensile stress–strain curve of woven fabrics

Figure 4.1 illustrates a typical tensile stress–strain curve of a woven fabric
derived on the KES-F apparatus. For this curve, the initial region demonstrates

Stress d

Strain e

4.1 Tensile stress–strain curves.
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4.2 Loading and unloading cycle in the tensile stress–strain curve.

e0

em Strain, (%)

Stress, (gf/cm)

a low slope due to decrimping and crimp-interchange. After that, the slope of
the stress–strain curve rises steeply until its summit is reached, an effect
which can be assumed to stem from the induced fibre extension. In addition,
the magnitude of the summit of the stress–strain curve is governed by the
level of yarn crimp and the relative ease of distortion of the yarn per se.

If what the fabric undergoes is a cyclic loading process, i.e. the fabric was
first stretched from zero stress to a maximum and then the stress was fully
released, then an unloading process will follow the loading process. As a
result, a residual strain, e0, will be observed since textile materials are
viscoelastic in nature. Due to the existence of residual strain, the recovery
curve will never return to the origin, as shown in Fig. 4.2. This is the hysteresis
effect, which denotes the energy lost during the loading and unloading cycle.
Due to the existence of hysteresis, a deformed fabric cannot resume its
original geometrical state. In Fig. 4.2, the shift to the right from the origin of
the unloading curve depicts the magnitude of the hysteresis effect and indicates
the amount of permanent set resulting from the loading history.

4.1.3 Extension in the principal directions

Usually, when a plain woven fabric is extended in either of the principal
directions, a straightening of the crimped yarns will also occur in the direction
of force. The interaction between the two sets of yarns must therefore be
considered. A drop in the yarn amplitude and the weave angle will thus be
found when the contact of two sets of yarns in the warp and weft directions
grows. During tensioning, these yarns appear to become less flattened due to
their consolidation into a rounder or more circular cross-section (Hearle et
al., 1969). In addition, the crimp-interchange will take place at the crossover
point, i.e. one set of yarns increases in crimp level, while the other decreases.
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When the fabric is further extended by an applied force, yarn and fibre
extensions will occur, but the yarn extension only accounts for a small portion
of the total extension as compared with the effect of decrimping. Individual
fibre movement within the yarns also occurs at the contact point of two sets
of yarns. This movement allows the fibre to avoid the high strains that might
be induced by extension. Energy loss will also take place during tensioning
due to the restriction of fibre movement posed by inter-fibre strains.

Regarding the uniaxial tensile properties of plain woven fabrics, De Jong
and Postle (1977a,b) stated that there are six independent dimensionless
parameters to be considered in the case of a balanced woven fabric (produced
from identical warp and weft yarns). The six parameters include: (a) the ratio
of warp to weft yarn length per crossing yarn; (b) the ratio of yarn diameter
to yarn modular length; (c) the ratio of yarn compression rigidity to bending
rigidity; (d) the yarn compression index; (e) the ratio of yarn extension
rigidity to bending rigidity; and (f) the degree of set. They also stated that the
effect of the ratio of yarn compression rigidity to bending rigidity on the
relative fabric extension can be accounted for by the yarn extension. Thus,
a large part of the fabric extension can be explained by yarn extension when
this ratio is lower. In addition, the average of Poisson’s ratios can be explained
in the selected range where the inter-yarn distance can increase to allow the
yarns to turn into a rounder or more circular cross-section during tensioning.

4.1.4 Extension in bias directions

When a plain woven fabric is extended to its final state in bias direction, it
can be seen from Fig. 4.3 that the warp yarn will rotate which brings the
maximum elongation close to the direction of force (F). There is a deviation

4.3 Fabric extension in bias directions (arrow within square
indicating the warp direction): (a) initial position before extension;
(b) final position after extension.
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in the direction (q1 > q2) at the final position. If a force is applied, the fabric
will suffer a strain to reach its final position. The magnitude of the strain is
governed by the deviation of the angle to the warp direction, and the diagonal
direction (± 45∞) presents the maximum changes in length. As a result, the
maximum elongation will occur at one diagonal and the other diagonal direction
demonstrates the maximum contraction. Thus the characteristics of the Poisson
effect should be identified by the changes in length parallel and perpendicular
to the direction of force.

If stress is applied at an angle to the warp or weft direction, the mode of
deformation will become rather complicated, presented as a combination of
extension and shear. If the unit cell of the plain woven fabric is regarded as
a trellis, it will be extended by rotating the numbers of the trellis relative to
each other in bias directions (Weissenberg, 1949).

During KES-F tensile and shear testing, if a fabric is prepared in bias
directions, for some yarns, only one or neither of their ends will be clamped.
As a result, three cases need to be considered in this event:

(1) both ends of the yarns are held between two clamps for the extension
of the warp or weft direction;

(2) only one end of the yarns is held for the extension from ± 15∞ to ± 75∞
(bias directions) to the warp direction;

(3) both ends of yarns are free for the extension of 0∞ or 90∞ to the warp
direction corresponding to the warp or weft direction.

When deformation takes place in bias directions, little tension will exist in
the yarns. However, due the existence of the frictional restraint between the
interlaced yarns at their contact points, there is still some tension in the yarns
between two neighbouring crossovers and a bending couple in deforming
the crossed yarns (Spivak and Treloar, 1968). In addition, shear properties
will lead to an increase in the tension of individual yarns between the contact
points.

Due to the above reasons, a higher magnitude of tensile properties will be
recorded in the bias directions than in the warp and weft directions. As
higher crimp is usually obtained in the warp yarns, the values of tensile
properties in the warp direction are comparatively higher than those in the
weft direction. All these observations are discussed with reference to the
experimental findings in the following sections.

4.2 Modelling of tensile behaviour of woven

fabrics

4.2.1 Introduction

The pioneer in the investigation of tensile deformation of woven fabrics is
Peirce (1937). His model assumed that the cross-section of the yarns in the
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fabrics is circular, but this assumption of circular yarn cross-section in the
fabric is highly theoretical. Therefore, many researchers modified his
geometrical model to analyse tensile behaviour. Based on Peirce’s rigid
thread model (1937), Grosberg and Kedia (1966) analysed the small strain
within the initial load–extension curve. Three approaches are reported by
Leaf (1980) in order to analyse the tensile behaviour of plain woven fabrics.
His first approach is based on Gastigliano’s theorem for small deformation
only. A force equilibrium method and an energy approach are used for the
analysis of large deformation.

In an attempt to define theoretically the planar stress–strain relationships
of woven fabric, Weissenberg (1949) introduced the trellis model. He treated
the yarns as rods which are inextensible and inflexible. The yarns are pinpointed
at their nodal points with lines of zero elongation in the pattern by offering
no resistance to the allowed changes in the orientation of the lines. With
these assumptions, the theory of strain, stress and the relationship between
them is clearly defined. He also stated that the Poisson effect and evading
action are observed when external forces are applied. Textile material in its
nature and applied state is anisotropic, and the orientation of the framework
of the trellis to the direction of the pull would vary with the direction of pull
in the material. The Poisson’s ratio could be found from a given lengthwise
extension and a given widthwise contraction. He indicated that the experiments
made on the model would predict a modified Poisson effect with maximum
elongations and contractions occurring not parallel and perpendicular to the
direction of the pull but along the bisectrices. In addition, there would be a
rotation of the directions of maximum elongation and contraction, which
would bring, in the terminal position, the direction of maximum elongation
nearer to that of the pull. He described the material as taking an ‘evading
action’ by rotating round and having its maximum extension in a direction
different from that of the pull.

Chadwick et al. (1949) investigated the bias deformation of a woven
fabric with the application of the trellis model under a simple pull. They
showed that the warp and weft yarns underwent changes not only in length
and spacing under bias extension, but also in their orientation to one another
and to the direction of pull. In their experimental work, rectangular specimens
are cut out in various directions. Each specimen is subjected to a series of
simple pulls of increasing amount in a direction lengthwise to the rectangle.
In the experiments, the behaviour of the model showed directly the various
characteristics of the strains from the initial to the terminal position. They
found good agreement between the mode of deformation of the trellis model
and the fabrics in bias directions.

Cooper (1963) investigated the relationship between bias extension and
bias shear. Kilby (1963) examined the planar stress–strain relationships of a
simple trellis which is different from that discussed by Weissenberg (1949).
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He suggested that a fabric might be regarded as being equivalent to an
anisotropic lamina which shows the Poisson effect and has two planes of
symmetry at right angles to one another. Kilby was the first to derive the
fabric tensile modulus in any direction other than the warp and weft directions.
He indicated that the bias extension involved the shear modulus.

Later, an analysis of the geometrically similar tests of bias extension and
simple shear for plain woven fabrics was carried out by Spivak and Treloar
(1968). They showed that the bias extension test involved a reduction in area
and hence did not correspond to pure shear; on the contrary, simple shear had
a constant-area deformation. They concluded that it is impossible to predict
the complete stress–strain properties of a fabric in simple shear from
measurements of bias extension.

De Jong and Postle applied an energy analysis to the woven fabric structure
to investigate deformation (De Jong and Postle, 1977a,b). The independence
of the fabric construction is advantageous in using energy analysis of fabric
behaviour. They observed that there are some difficulties encountered when
applying a generalised force analysis to fabric structure. Thus, when using
force analysis, it is found necessary to divide the unit cell of the structure
into segments, at the ends of which forces and/or couples might act. The
length of each segment had to be varied because the point of action of the
internal forces is not fixed. In their study, the fabric load–extension curves
and yarn-decrimping curves for the plain-weave construction are computed
for a realistic range of input parameters. They tested the tensile properties of
plain woven fabrics in both the grey and the finished state, and the computed
results are employed to explain the behaviour of yarns during fabric extension.

Skelton (1971) compared the mechanical properties of triaxial and
orthogonal fabrics. He found that the tensile strength of the triaxial fabric is
dependent upon the amount of shear distortion sustained by the fabric at
rupture, but it seemed probable that the variation of strength with direction
would be less than the variation found in orthogonal fabrics. More recently,
Anandjiwala and Leaf (1991a,b) studied large-scale tensile deformation of
plain woven fabrics. Their investigation used the approximation of non-
linear yarn bending behaviour for both the undeformed fabric state and the
stress analysis. They found that the agreement between experiment and theory
is sometimes reasonable, but it is better during extension than during recovery.

Anandijawala and Leaf mainly concentrated on the tensile and shear modulus
of plain woven fabrics. No numerical models are found to predict the anisotropy
of fabric tensile properties, such as tensile work (WT), tensile elongation
(EMT), tensile linearity (LT) and tensile resilience (RT), measured using
Kawabata’s system (KES-F).

The majority of previous research into the tensile behaviour of woven
fabrics concentrated on predictive modelling, which always involved very
complicated mathematical relations between stresses and strains (Grosberg
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and Kedia, 1966; Shanahan et al., 1978; Anandjiwala and Leaf, 1991a,b). In
addition, the predictability of these models is not always satisfactory.

In particular, Kawabata and Bassett used numerical modelling methods
for fitting the tested tensile curves. Kawabata et al. reported a linearisation
method to model the biaxial tensile stress–strain relation of fabrics, and
verified its validity in a paper by Kageyama et al. (1988).

In Bassett’s Ph.D thesis (1988), the determination of constitutive laws of
fabrics and the use of these properties in calculating stress–strain in fabric in
garment-like systems were studied. For this purpose, the least squares method
was used to fit multivariate polynomial curves to experimental data from
woven worsted fabrics.

From the work of both Kawabata and Bassett it is clear that very complicated
procedures were still involved for obtaining the constants and strain
transformation. Thus, to date, there exists no practical explicit function between
stress and strain for tensile deformation of woven fabrics. Therefore, better
models for tensile stress–strain relations are needed in terms of both accuracy
and practicality.

What is presented here is an attempt to establish an equation for the
tensile stress–strain relationship for woven fabrics. An exponential function
with two parameters was selected to describe tensile stress–strain curves. A
non-linear regression technique was first used to estimate the unknown
parameters in the proposed function. Using the proposed function, the predicted
results of tensile stress–strain relationships show excellent agreement with
experimental data. In addition, several methods which may be used to estimate
the unknown parameters in the proposed function are suggested.

4.2.2 Modelling of tensile loading curves

To obtain a satisfactory model for the tensile stress–strain relationship of a
fabric, some principles must be followed:

(1) The proposed function should belong to the correct function group, for
example exponential or power function.

(2) It should have a format which is easy to compute or interpret. Usually
a function with more than four parameters can rarely be evaluated
satisfactorily using the non-linear regression method.

(3) It should satisfy the initial conditions of a physical process, e.g. when
force equals zero, strain equals zero.

(4) Hopefully, the parameters in the selected function will be related,
especially to the yarn physical properties and fabric structure for the
intended purpose.

An exponential function with two parameters is chosen to depict the tensile
curve of a woven fabric:
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f er = e – 1 + 
ae

b [4.1]

where f is stress and e strain, a and b are unknown parameters, er the error
term.

The SPSS non-linear regression programme can be used to fit the tested
tensile curve with the proposed model, in which f and e can be read off
tensile stress–strain curves tested on the KES system while a and b are
unknowns to be estimated.

4.2.3 Estimates of the two constants

The two unknown parameters in the chosen function can be estimated in a
non-linear regression technique using data read off the tested curves of woven
fabrics on the KES tensile tester. The determined values are very useful for
the estimation of initial values. Another three methods of estimating the two
parameters follow.

4.2.3.1 Estimation of a and b using WT and EMT

From tensile testing of a fabric on the KES tensile tester, there are two
parameters extracted from the chart which are WT – work done during tension
– and EMT – strain when stress is equal to 500 gf/cm. We can use these to
construct two equations which can be solved for a and b:
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4.2.3.2 Estimation of a and b taking two points

If the error term in equation (4.1) is ignored and two sets of test data can be
obtained, say (e1, f1) and (e2, f2), the following simultaneous system of
equations can be solved for a and b:

f1 = e – 11ae

b [4.4]

and

f2  = e – 12ae

b [4.5]
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4.2.3.3 Estimation of a and b by the least squares method
(more points method)

Another method for the estimation of a and b is the more points method.
This is in fact the least squares as in linear regression. Suppose we have n
sets of data from a tensile curve of a fabric (e1, f1), (e2, f2), . . . (en, fn), then
we can write

f ei ri
i

 = e – 1 + 
ae

b [4.6]

so that the sum of squares of deviation from the true line is

s e f
i

n

ri i

n

i
i

 =   =  – e – 1
=1 =1

2

S S
ae

b
Ê
ËÁ

ˆ
¯̃ [4.7]

We can differentiate the above equation first with respect to a and then b,
setting the results equal to zero, and hence we get two normal equations:
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The solution of a and b can thus be given by:
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If n = 2, the results are equal to the two equations used in the two-point
method. Theoretically, more data would provide more accurate estimates.
However, this is not always true because it may cause a big residual due to
the difficulty of reading data off a curve, in which case more data can result
in a more biased subjective measurement. Therefore, n is not necessarily
very big. It is found that n = 13 is big enough for good results; n = 4 or 5 may
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result in accurate estimates of parameters. When n is not very big, say 5, it
can be calculated on a package like TK Solver as long as initial guesses are
not far beyond the expected results.

4.2.4 Interpretation of the selected function

4.2.4.1 Young’s modulus

A particularly important part of the stress–strain curve is the initial portion;
starting at zero stress in most cases it could be seen that the first portion of
the curve is fairly straight, indicating a linear relationship between the stress
and the strain. The tangent of the angle between the initial part of the curve
and the horizontal axis is the stress/strain ratio, which is termed initial Young’s
modulus E0. It describes the initial resistance to extension of a textile material.
From equation 4.1, the derivative of f with respect to e yields the modulus
curve of tensile deformation:

E
f

 = 
d
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 =  ee
a
b

ae [4.12]

when e = 0, E = E0 = a /b. Thus a /b is the initial Young’s modulus. The
above equation can be written as follows:

E = E0 · eae [4.13]

Because the tangent of the angle between the initial part of the curve and the
horizontal axis is the stress/strain ratio, E carries a unit of gf/cm in the case
of the KES system. Again from equation 4.1, b carries a unit of cm/gf while
a is a dimensionless quantity. We can use the Maclaurin expansion formula:
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where Rne is the remainder.
If e is infinitesimal,

f ( ) = e a
b e [4.15]

which is a straight line with residual of

R1(e) = a2eaqe(1 – q)e2    (0 < q < 1) [4.16]

This indicates that the initial portion of the stress–strain curve starting at
zero stress is close to a linear line. Besides, if we further differentiate E with
respect to e, the following equation can be obtained:

d
d

 =    or   d  = dE E E
Ee a a e [4.17]
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From this equation, it appears that a is a reinforcing factor for the increase
of Young’s modulus E. This relation is frequently found in many physical
phenomena.

The initial region of very low slope for the fabric tensile stress–strain
curves represents the region of decrimping and crimp-interchange in woven
fabrics for which only very small fibre stresses are developed within the
fabric when the weave crimp has been fully extended. This means that further
extension of the fabric is possible by extension of fibres with the interlaced
yarns.

4.2.4.2 Relationship of a with crimp

According to equation 4.1, it may be assumed that there exist two different
groups of factors which affect the stress–strain relation. One group affects a
while the other influences b.

First it was hypothesised that the larger the yarn crimp the higher the
value of b since larger b denotes larger stress induced for a given strain. The
analysis, however, reveals that parameter a is correlated with crimp reversely
and b has no obvious relation with crimp c. In fact, it is found that an
obvious linear relationship exists between a and crimp c. This linear relationship
between a and c agrees with the existing recognition that the larger the
crimp, the more extensible a fabric. Moreover, this relationship is also consistent
with the above interpretation of the selected function, in which a is a
dimensionless factor.

In addition, it is also demonstrated that the tangents of stress–strain curves
differ with the direction even for the same woven fabric. This fact indicates
that there exists an anisotropy for the tensile properties of woven fabrics, as
reported in the next section. Another focus of this chapter, the strain hardening
effect, can also provide a strong explanation.

4.3 Anisotropy of woven fabric tensile properties

4.3.1 Introduction

One of the difficulties in analysing the tensile behaviour of woven fabrics
lies in the fact that any extension occurring at an angle to the warp or weft
direction usually involves a different mechanism of deformation. For example,
in the 45∞ direction to the warp and weft, the modulus is almost completely
determined by the shear behaviour of the fabric, while if it is extended in the
warp or weft direction, the shear behaviour has no part to play (Hearle et al.,
1969). Therefore, the tensile performance of a fabric is apparently an integration
of a multi-directional effect. We term this phenomenon the ‘anisotropy’ of
tensile properties of woven fabrics and it becomes the subject of the following
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section. This topic is very meaningful in that little literature about the anisotropy
phenomenon can be found despite the fact that there is already a sea of
publications dealing with fabric tensile properties; but most of these have
concentrated on what happens to the warp and weft directions.

As the term indicates, the word ‘anisotropy’ means that there is great
variation in fabric tensile properties with changes in direction. Firstly, this is
because a woven fabric is highly anisotropic in nature. Secondly, most fabric
structures are asymmetrical, like twill and satin woven fabrics, and thus the
force needed to stretch fabrics in different directions will vary a lot from one
to another. This is basically a reflection of the different underlying deformation
mechanism. For example, when a woven fabric is under bias extension,
shear deformation will occur and thus shear property comes into play to
influence the tensile behaviour of a fabric. In this case, the tensile behaviour
of a fabric will apparently differ from what occurs when the extension happens
merely in two principal directions (Hearle and Amirbayat, 1986a,b).

The work covers all the four parameters measured on Kawabata’s system
(KES-F): tensile work (WT), tensile elongation (EMT), tensile linearity
(LT) and tensile resilience (RT) based on Kilby’s Young’s Modulus model
(1963).

4.3.2 Modelling the anisotropy of tensile properties

4.3.2.1 Tensile work (WT)

Kilby (1963) firstly introduced the Young’s modulus in any direction other
than warp and weft as follows:

1  = cos  + 1  –  
2

 sin   cos  + sin4

1

pt 2 2
4

2E E G E Eq

q s
q q qÈ

ÎÍ
˘
˚̇

[4.18]

where E1, E2 and Eq are the Young’s moduli to the warp, weft and q directions
respectively, G denotes the shear modulus, and spt indicates the Poisson’s
ratio relating the contraction in the weft direction to the strain in the warp
direction. In order to simplify the calculation, he rearranged the above equation
into:

1  = cos  + 3  –  1  –  1  cos  sin   + sin4

1 45 1 2
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or 1  = cos  + cos  sin   + sin4

1

2 2 4

2E E G Eq

q q q q
¢ [4.19]

where

1  = 4  –  1  –  1
45 1 2¢G E E E
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Equation (4.19) is very useful for predicting the full form of the polar diagram
of modulus against angle, when values of the parameters in only warp, weft
and q directions are known. Rearranging equation 4.1, the following relation
is obtained:

e b
a e

a
b

ae = 
ln (  + 1)

        = d
d

 =  e
F

E Ffi [4.20]

The tensile work, WT, is thus

WT F = ( ) d
0

me
e eÚ [4.21]

where em is the strain at the upper-limit load Fm = 500 gf/cm, and F denotes
the tensile load, a function of strain. Combining equations (4.20) and (4.21),
we have

WT E F
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ln(  + 1) + 1
2

m
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b

a b
È
ÎÍ

˘
˚̇

[4.22]

Fm is a constant (= 500 gf/cm) which is directly obtained from the stress–
strain curve on the KES-F apparatus. a and b are variables and will have
different values in different directions. To simplify the procedure, the term
[ln (bF + 1) + 1]/a b is set to be K. Then WT may be written, and if E varies
with angle q, WT will also vary with q and the above equation becomes

WT E K =  –  2a
    fi    Eq = (WTq + K)a2 [4.23]

Putting Eq = (WTq + K)a 2 into equation (4.19) gives
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where
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Substituting 1/G¢ = 1/a 2 (1/G≤) into equation (4.24), the tensile energy (WT)
of the tensile parameters is derived as follows:
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1
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Principally, K varies with a and b which are different values in various
directions. K is taken as a constant, due to the linear relationship found in its
numerator and the denominator in various directions. In order to simplify the
calculation of tensile energy (WT), a and b can be recorded directly from the
warp direction. Thus, the tensile work in any direction can be obtained using
equation (4.25) when values of the tensile work at the warp, weft and 45∞
directions are known.

4.3.2.2 Tensile elongation (EMT)

EMT reflects the extensibility of a fabric. It is a measure of a fabric’s ability
to be stretched under tensile load. The larger the EMT value, the more extensible
the fabric. A similar approach to that of tensile work (WT ) is adopted in the
derivation of a tensile elongation (EMT ) model. The model for the prediction
of Young’s modulus in any direction other than the warp and weft directions
is derived by Kilby (1963), and a mathematical rearrangement is made to
form equation (4.26):
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where E1, E2 and Eq are the Young’s moduli to the warp, weft and q directions
respectively, G is the shear modulus, spt the Poisson ratio. Equation (4.26) is
useful for predicting the full form of the polar diagram of modulus against angle,
when values of the parameters in the warp, weft and 45∞ directions are known.

In general, the tensile stress–strain relationship for textile materials is
non-linear and characterised by a simple concave shape. However, in order
to simplify the analysis, the author assumed that a tensile curve is linear to
derive a model for EMT in different directions relative to its warp or weft
direction. With this assumption, EMT of a woven fabric may be derived very
conveniently from the simple relation as E = F/e.

Since F is kept constant at 500 gf/cm during experiments, tensile modulus
is inversely proportional to extension when the tensile curve is assumed to
be linear. Then we can write Eq = Fq /eq in terms of q and substitute into
equation (4.26). Thus:

e e q e e e q q e qq
F F F F F F
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4
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[4.27]
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where

¢G
F

 = 1  (4e45 – e1 – e2)

e45 is the mean value of eq of ± 45∞ and G¢ is a constant. After rewriting
equation (4.27),

e e q q q e qq  =  cos  + cos  sin  + sin1
4

2 2

2
4

¢G
[4.28]

Replacing e by EMT, the tensile strain of the tensile parameters is derived as
follows:

EMT EMT
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EMTq q q q q =  cos  + cos  sin  + sin1
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where

¢G
EMT EMT EMT

 = 4  –  1  –  1
45 1 2

In the previous case, E is considered to vary linearly with e and EMTq is
derived based on this linear relationship. In this case, however, a more precise
model for EMT is derived based on the non-linear relationship from Hu
(1994). Her model described the tensile stress–strain curve with an exponential
function with two parameters shown as follows.

F = e – 1ae

b [4.30]

where F is stress, e is strain, a and b are unknown parameters. The unknown
parameters a and b can be solved by using the SPSS non-linear regression
method or TK Solver. F and e are read off from tensile stress–strain curves
tested on a particular fabric on the KES-F apparatus. a and b are obtained from
the warp direction. Now, E is treated as the derivative of F with respect to e:

1  =  1
eE

b
a a e [4.31]

a and b are taken as constant regardless of the different directions so that
they are obtained from the warp direction. When E changes with angle, and
this is the case for e, then 1/Eq = (b /a)(1/ e )a eq  and substituting it into
equation (4.26) yields equation (4.32).
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Substituting 1/G = (b /a) (1/G≤ ) into equation (4.26) gives
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Replacing e by EMT,

EMTq = – 1  e cos  + cos   sin   + e sin– 4
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The tensile strain (EMT) in any direction can be obtained by using the above
models (equations 4.22 and 4.24) when values of the tensile strains at warp,
weft and 45∞ directions are known. The polar diagram of EMT of different
woven fabrics can also be predicted by this model (Lo and Tsang, 1999).

4.3.2.3 Linearity (LT)

Linearity is a measure of the extent of non-linearity of the tensile stress–
strain curve. It depends on the ratio between tensile work (WT) and tensile
elongation (EMT) from the stress–strain curve. The model of tensile linearity
(LT) can thus be denoted as follows:

LT
WT

cons t EMTq
q

q
 = 

 tan * 
[4.35]

4.3.2.4 Tensile resilience (RT)

Tensile resilience (RT), which is the ratio of work recovered to the work
done in tensile deformation, is expressed as a percentage (RT = WT ¢/WT).
Work recovery (WT ¢) is the tensile force at the recovery process while tensile
energy (WT ) in tensile deformation is represented by the area under the
stress–strain curve in the loading process. And thus the existing WT model
and the proposed W T ¢ model for the loading and unloading processes
respectively can be used to predict the tensile resilience (RT) of woven
fabrics.

For the loading process of the tensile stress–strain curve, a model is
derived by Hu and Newton (1993) for the loading stress–strain curve. Their
approach is to establish a model with an exponential function, in which two
parameters are derived by using a non-linear regression method.
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As the tensile recovery curve is followed by a very rapid decrease in the
fabric stress in the unloading process, function 4.36 is thus established:

F ¢ = aebe – c [4.36]

where F ¢ is stress, e is strain, a, b and c are unknown parameters.

Work recovery model (WT¢)
The work recovery (WT ¢ ) of the tensile stress–strain curve could also be
described with the proposed exponential function with two unknown
parameters. The unknown parameters a, b and c in function 4.36 can be
solved using the SPSS non-linear regression program and F ¢ and e can be
directly recorded from tensile stress–strain curves tested on the KES system.
The derivative of F ¢ with respect to e yields tensile modulus,
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Tensile recovery (WT ¢ ) as defined in the KES system is work recovery in
tensile deformation represented by the area under the stress–strain curve.
Combining equations 4.36 and 4.37, we get
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If E ¢ varies with an angle q, WT ¢ will also vary with q and the above
equation becomes
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where ( )  and ( )m 0¢ ¢E Eq q  are the Young’s moduli of the tensile recovery
curve in various directions. All can be calculated from the Kilby Young’s
modulus model (equation 4.18). As the two parameters b and c vary with
angle q, they will give different values in various directions. To simplify the
calculation of W T ¢ by statistical mean of least squares analysis, b and c take
their average in the warp, weft and ± 45∞ directions rather than the value of
their corresponding individual direction (Lo et al., 1999a,b).
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Tensile resilience model (RT)
With the work recovery model (WT ¢), tensile resilience (RT ) of woven
fabrics could be easily predicted from the work recovery (WT ¢ ) and tensile
work (W T ) models. Tensile resilience (RT) is the ratio of work recovered to
work done in tensile deformation expressed as a percentage:

RT WT
WT

 =   100 %¢ ¥ [4.40]

If RT varies with angle q, equation 4.40 becomes

RT
WT
WTq

q

q
 =   100 %

¢ ¥ [4.41]

4.3.3 Polar diagrams of the tensile model

4.3.3.1 General features

The values of tensile parameters (WT, EMT, LT and RT) usually differ in
direction; thus some points in the polar diagram have to be normalised in the
warp direction to simplify the comparison and analysis. When the value of
these parameters in the warp direction is fixed, changes in the bias directions
can be easily observed from the polar diagram. The normalised tensile
parameters can be obtained by dividing each parameter by their averaged
value.

As shown by Figs 4.4–4.7, many similarities can be found in the polar
diagrams of different tensile parameters:

(1) The pattern is symmetrical to the warp and weft directions.
(2) The value of each parameter differs with the angle and the maximum

happens exactly at either the warp (WT of satin, LT ) or weft directions

4.4 Typical polar diagram of tensile work (WT).
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4.5 Typical polar diagram of tensile extension (EMT).

4.6 Typical polar diagram of tensile linearity (LT ).

4.7 Typical polar diagram of the tensile resilience model (RT ).
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Table 4.1 Classification of polar diagrams of tensile parameters

Types Conditions Shape of polar diagram

1 WT1 ª WT2 ª WTq Circular shape (isotropic)
(WT1 ª WT2) > WTq Butterfly or Hexagonal Shape
(WT1 ª WT2) < WTq Rhombus shape

2 WT1 > WTq > WT2 Gourd or elliptic shape (maximum
value in warp direction)

WT1 < WTq < WT2 Gourd or elliptic shape (maximum
value in weft direction)

or at ± 45∞ angle (WT, EMT) corresponding to the warp and weft
directions.

(3) For some tensile parameters, the polar diagram generated from satin
woven fabrics might differ somewhat from that of plain and twill woven
fabrics due to its long floats, examples of which include the WT polar
diagram.

(4) The polar diagrams of each parameter can be classified into two types
on the basis of their general shapes. If the value of the parameter
between the warp and weft directions is similar, the polar diagram will
display a circular, rhombus or butterfly shape. We name this pattern
Type 1. Type 2 refers to those featuring a gourd shape with their maximum
value either in the warp or in the weft direction, as shown in Table 4.1.

4.3.3.2 Factors influencing tensile parameters

Influence of fabric weaves on WT
Twill and satin woven fabrics usually demonstrate lower tensile work (WT )
as compared with plain woven fabrics, due to the presence of floats, but no
apparent difference can be observed in the WT values of plain, 2/2 twill and
3/3 twill woven fabrics in the warp direction if their warp densities are kept
constant. In addition, the value of WT will increase with the rise in weft
densities, indicating that more work is needed to extend the fabric with high
weft density.

Due to the frictional force between the contact points of the warp and weft
yarns, several factors will contribute to the amount of energy loss, including
the ratio of the yarn counts in the warp and weft yarns, the ratio of the yarn
spacing, the average yarn spacing, the type of weaves, the direction of force
applied to the fabrics, etc. The experimental data of WT indicates that the
tensile work of plain woven fabrics is generally higher than that of the twill
and satin woven fabrics. As the ratio of yarn spacing and the average yarn
spacing of plain woven fabrics are comparatively smaller than those of twill
and satin woven fabrics, greater energy is needed to overcome the frictional
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restraint existing at the interlacing points of the warp and weft yarns. As
neighbouring yarns cross over interlacing points, the yarns are prevented
from moving, especially when extension occurs in bias directions. In such a
case, the yarns are extended by rotating the unit cell in the direction of the
pull. Thus, larger energy consumption results in the extension of plain woven
fabric in bias directions.

In contrast with this, lower yarn crimp is exhibited in the looser weave
construction of twill and satin woven fabrics, especially in the weft direction.
Consequently, yarn extension is no longer the main factor affecting fabric
deformation, viz. fibre extension also comes into play. As a result, an increase
in the work in bias directions occurs due to the addition of fibre extension.
This also explains why the tensile work in the weft direction is found to be
higher than that in the warp direction.

Influence of weft density on EMT
Weft density is an important factor governing EMT values. With the increase
in weft density for any fabric type, a rise in the magnitude of EMT in all
directions will be observed. A direct image of this is an outward spreading
along any direction for all woven fabrics. As the width of a fabric is usually
fixed, the yarns will jam and come into contact when the weft density has
reached its limit. Hence, an increase in the inter-yarn friction will be found
when the weft yarns are closely packed together.

For a unit cell of a plain woven fabric, the warp and weft yarns interlace
with each other in a format of one up and the other down. Thus, when a
fabric is under tension, the yarn bending rigidity in this lattice structure will
restrict yarn movement by producing frictional force. Generally, this restriction
will increase with the rise in the weave density. In addition, the yarn crimp
will also grow with the increase in weave density and, in the meantime, a
reduction in the modular length will be found. Therefore, more energy is
needed to extend a fabric with high density.

A twill woven fabric usually exhibits larger elongation than plain woven
fabrics due to its loose structure, despite its low yarn crimp. In addition, the
extension of a loose-structured fabric usually involves yarn slippage or even
fibre extension when large tension is applied. Thus, a broadening effect can
also be found in the contour of its polar diagram when the weft density is
increased.

Influence of Poisson’s ratio on EMT
When a fabric is extended lengthwise in one direction, widthwise contraction
will be found in the other as revealed by our experiments, made on the KES-
F apparatus using all specimens. Poisson’s ratio is such a measure of the
relative changes in length in the directions of the pull to that in a direction
perpendicular to it (Chadwick et al., 1949). Therefore, it can be predicted
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that a relationship exists between the Poisson effect and the anisotropy of
tensile elongation (EMT) and tensile work (WT ) of woven fabrics.

For a woven fabric, it seems that its Poisson’s ratio differs considerably
from one direction to another. In addition, the maximum elongation can be
experimentally proven at ± 45∞ directions as discussed in the previous section.
It is also evident that maximum widthwise contraction and evading action
happen at ± 45∞ directions. These maxima at ± 45∞ might be attributable to
the increased internal friction in the perpendicular direction and maximum
pressure existing at the warp and weft interlacing points. Also observed in
tensile testing is a necking effect, which might stem from yarn migration
towards both ends of the clamps.

For a clear picture of the Poisson effect on widthwise contraction, the
lengthwise extension is kept constant. Consequently, in common with the
situation with EMT and WT, a similar effect is found in the Poisson’s ratio of
woven fabrics. For woven fabrics, their Poisson’s ratios in the two principal
directions are very close to each other. However, an apparent difference
exists in the Poisson’s ratios of twill and satin woven fabrics. This indicates
that a lower crimp interchange effect appears in loose fabric structures.

During uniaxial extension, only one set of yarns is firmly held at both
ends, while both ends of the other set of yarn are free of tension; this leads
to the great similarity in its Poisson’s ratios in the two principal directions.
However, in the bias directions, only one end of the yarns will be clipped
during extension. The yarns can thus easily move along each other, especially
in a loose structure such as in twill and satin weaves. These yarns also
present a tendency to move towards the clamps due to the lack of pinpointing
effect. Also proved is a higher ratio of lengthwise elongation to widthwise
contraction in bias directions.

Figure 4.8 shows the unit cell of a uniaxially stretched plain woven fabric.
It is quite clear that the lengthwise extension in ± 45∞ direction (length y¢ in
Fig. 4.8b) is larger than that in either of the two principal directions (length
y in Fig. 4.8a). If the lengthwise extension is kept constant, a higher widthwise
contraction of woven fabric will also be observed in the ± 45∞ direction as
indicated by x¢.

Although the above results were developed on apparel fabrics, it has been
experimentally confirmed that their validity can also be extended to industrial
woven fabrics.

4.4 Strain-hardening of warp yarns in woven

fabrics

4.4.1 Introduction

From intuition, it would be expected that a square plain woven fabric should
exhibit similar extensibility in its two principal directions. For poplin fabrics,
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a fabric type with prominent larger crimp level in warp yarns, the extensibility
of warp yarn should be far superior to that of weft yarns. However, KES
testing reveals that against our expectation, the square fabric possesses greater
variation in extension in its two principal directions than the poplin. In
addition, tensile resilience, RT, seems to have a larger value in the warp
direction than that in the weft for many fabrics while WT, the tensile energy,
always exhibits a lower value in the warp. These facts reveal that a woven
fabric is more extensible in the weft direction. A direct image of this
phenomenon is that the shape of the tensile stress–strain curve of a woven
fabric is usually steeper in the warp direction than that in the weft, as shown
in Fig. 4.9. This phenomenon is apparently due to the repeated loading and
unloading a woven fabric experiences during manufacturing and processing.

x

Fy

y

Fy

(a)
(b)

Fy

y ¢

i

x ¢

Fy

4.8 Unit cell of plain woven fabric after uniaxial tension: (a)
Extension in the warp or weft direction; (b) Extension in 45∞
direction.

Weft

Warp

e

s

4.9 Comparison of the tensile stress–strain curves in principle
directions of woven fabrics.
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4.10 Cyclic tensile stress–strain curves of textile materials.

4.4.2 Theory of plasticity

4.4.2.1 Work-hardening

Figure 4.10 shows the cyclic tensile stress–strain curves of textile materials.
It is obvious that when an inelastic material like a yarn or a fabric is subjected
to cyclic loading, the loops will get narrower and narrower as cyclic loading
and unloading goes on. As a result, the energy needed to stretch the material
gets less and less while the strain becomes smaller and smaller at the same
maximum strain.

In Fig. 4.11, the tensile curve of a general engineering material is presented.
If at any point between the elastic limit B and the maximum load point C the
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C D

s

C¢
e

e
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4.11 Stress–strain curve for a conventional engineering material.
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tensile stress in the material is removed, unloading will take place along a
line parallel to the elastic line, as shown in the figure by B¢C¢. Part of the
strain is thus recovered and part remains permanently. Upon reloading, the
unloading line B¢C¢ is retracted with very minor deviations. Actually a very
thin hysteresis loop is formed, which is usually neglected. Plastic flow does
not start again until the point B¢ is reached. With further loading, the stress–
strain curve is continued along B¢C¢ as if no unloading had occurred. Point
B¢ can thus be considered as a new yield point for this material. From this.
fact, it appears that the Young’s modulus in this second cycle would be equal
to or larger than that of the first cycle. Three conclusions follow from this,
Firstly we can infer that the modulus at any point is the smallest in the first
loading cycle. The modulus of a later cycle is generally larger than that of
the immediately previous cycle, or the extension of the material in the first
cycle is the largest among all cycles for a given cyclic stress. For example,
the Young’s modulus of the third cycle is larger than that of the second cycle;
in turn, the modulus of the fifth cycle may be larger than that of the fourth
cycle … Secondly, when a constant stress is given for two cycles, for example
at B¢, we can see that the energy to extend the material during the first cycle
is much larger than that in the second cycle, which is only a part of that in
the first cycle; in turn, energy in the first cycle will be larger than that in the
second one. Thirdly, if we release the loading at B¢ it is obvious that the
tensile resilience of the second cycle is 100 %, but the first cycle has only a
fraction of it; that is, the tensile resilience of the second cycle will be larger
than that of the first cycle and consequently the energy resilience in the later
cycle may be larger than in all the previous ones. This is caused by plastic
strain in the previous steps. The effect of this strain is called work–hardening
or strain-hardening.

In plasticity theory, when a real material is deformed plastically, it ‘work-
hardens’. That is, as the material deforms, its resistance to further deformation
increases. The degree of hardening is a function of the total plastic work and
is otherwise independent of the strain path. This is sometimes known as the
equivalence of plastic work. In other words, the resistance to further distortion
depends on the amount of the work. The effect of different discontinuous
processing procedures of woven fabrics, namely the extension stresses in the
warp direction, can be simulated at irregular cyclic loading. They produce
accumulated plastic strains in yarns of woven fabrics. The effect of plasticity
is a permanent deformation. Even though a fabric is fully relaxed, the
deformation caused by processing cannot be removed entirely.

Thus when a final product, a fabric, is tested on a tensile tester in a
laboratory, this causes the EMT difference between warp direction and weft
direction, even though the other conditions are the same for warp and weft
yarns; WT in the weft direction is larger than that in the warp direction; the
recovered energy is larger in the warp direction; and it can be observed that
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the warp yarns in a woven fabric are harder to extend than those in the weft
direction.

4.4.2.2 Plastic strains

From the above section, plastic strain in woven fabrics before tensile testing
is recognised by the comparison of the warp and weft tensile properties of a
woven fabric and it is suggested by comparing cross-sectional areas of warp
and weft yarns.

If it is assumed that yarn density remains unchanged before and after
fabric manufacturing and processing, the difference in the yarn areas between
warp and weft directions in a fabric can be attributed as a warp yarn extension
along its axis direction.

The value of warp yarn extension may be calculated using a plastic
deformation principle, assuming that plastic strain involves no volume change,
thus:

exp + eyp + ezp = 0 [4.42]

where exp, eyp, ezp are logarithmic plastic strain changes in the x, y, z direction
respectively.

The logarithmic strain is defined as:

e l
l

 = ln 
0

[4.43]

In the case of the KES system, we use engineering strain e ¥ 100 %:

e = 
 –  0

0

l l
l

[4.44]

These two strains have the following relation:

e = ln (l + e) [4.45]

The definition of logarithmic strain was suggested by Ludwik. For small
extensions, the engineering strain, e (first defined by Cauchy), is approximately
equal to the logarithmic strain e.

Under the condition of volume constancy, the relationship of three principal
engineering strains can be expressed:

(1 + ex)(1 + ey)(1 + ez) = 1 [4.46]

For infinitesimal strains, we may neglect the products of the strains and
equation 4.46 reduces to

ex + ey + ez = 0 [4.47]

In the case of yarns in woven fabrics, for elliptic yarn cross-section, the z
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axis represents yarn axial direction, the x axis the major diameter direction
and the y axis the minor diameter direction. Then equation 4.42 can be
written as:

ln  + ln  +  = 0
0 0

p
a

d
b

d
ez

Ê
Ë

ˆ
¯
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ˆ
¯ [4.48]

where a and b are major and minor diameters of yarn in a woven fabric, d0

is the original diameter of the yarn.
If the cross-sections of yarn are regarded as circular and the equivalent

diameter, d, is calculated using measured yarn area, the relation can be
expressed:
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One piece of evidence of the effects of the plastic strain on different directions
of a woven fabric is that the cross-sectional areas of warp yarns are generally
smaller than those of weft when made of the same yarns, as shown in Fig.
4.12. Statistical calculations of the plastic strains in the longitudinal direction
of yarns in a fabric show that the warp yarns in a woven fabric have a
positive or extended plastic strain before testing and the weft yarns a negative
one, which makes warp yarns in a woven fabric harder to stretch than weft
yarns. The difference of plastic strains in warp and weft directions is shown
to have linear relationships with EMT, WT and RT.
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4.12 Comparison of yarn cross-section areas of warp and weft yarns.
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4.4.3 Relationship between plastic strain and
tensile properties

It has been shown qualitatively that the tensile properties of a woven fabric
are closely related to the strain-hardening effect. In this section, the quantitative
relations between them will be provided.

Figure 4.13 shows the relationship between the EMT difference and the
plastic strain difference of warp and weft yarns in woven fabrics. From Fig.

4.13 Relationship between DEMT and De for (a) circular cross-section
and (b) elliptic cross-section.
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4.13a, whose plastic strain is calculated using equation 4.49 for the equivalent
circular cross-sectional diameter of measured yarn area, it appears that a
good linear relationship exists. Figure 4.13b, whose calculation is based on
elliptic cross-section, shows similar trends.

Figure 4.14 plots the relationships between WT difference and plastic
strain difference of warp and weft yarns in woven fabrics. It is clear that a
good linear relationship also holds. Figure 4.15 depicts the relationships
between RT difference and plastic strain difference of warp and weft yarns
in woven fabrics. It is apparent that the larger e produces the larger RT.

4.5 Summary

This chapter introduces the author’s contribution to the study of the tensile
properties of woven fabrics. It starts with an introduction of the general
concept of tensile properties with the focus placed on the features of tensile
stress–strain curves of woven fabrics as well as the complexity of the
deformation of woven fabrics under tensile load. This is followed by modelling
the tensile behaviour of woven fabrics. Also presented is a study of the
anisotropy of the tensile properties of woven fabrics together with an in-
depth investigation of the strain-hardening effect observed from tensile stress–
strain curves. The conclusions reached include:

(1) A woven fabric’s tensile property is very difficult to study due to the
great bulkiness in fabric structure in addition to the complexity in the
structure and strain distribution of its constituent fibres and yarns and
of the fabric itself as well as the strain variation during deformation. A
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4.14 Relationship between DWT and De.



Structure and mechanics of woven fabrics120

deformed fabric cannot resume its original geometrical state due to the
existence of hysteresis. This is inherent since textile material is
viscoelastic.

(2) The tensile stress–strain relationship of a woven fabric can be successfully
described by an exponential function, f = [(eae – 1)/b ] + er, in which a
is a reinforcing factor for the increase of Young’s modulus E. There is
also found an obvious linear relationship between a with the crimp
level c of the fabric.

(3) Regarding the various tensile parameters (WT, EMT, LT, RT), a great
deal of similarity is found in their polar diagrams: their shapes are all
symmetrical to the warp and weft directions; the value of each parameter
differs with the angle; and the maximum happens exactly at either the
warp (WT of satin, LT ) or weft directions or at ± 45∞ angle (WT, EMT)
corresponding to the warp and weft directions. The polar diagram of
each parameter can be classified into two similar groups depending on
the relationship of parameter values between the warp and weft directions.

(4) The strain-hardening phenomenon is found in woven fabrics. This
phenomenon has a significant effect on the tensile properties of a woven
fabric, as reflected by the variation in the Young’s modulus value between
warp and weft directions. It is believed that this phenomenon could be
associated with the repeated loading and unloading a woven fabric
experiences during manufacturing and processing.

4.15 Relationship between DRT and De.
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5
The bending properties of woven fabrics

5.1 General bending behaviour of woven fabrics

5.1.1 Introduction

The bending properties of fabrics govern many aspects of fabric performance,
such as hand and drape, and they are an essential part of the complex fabric
deformation analysis. Thus, the bending of woven fabrics has received
considerable attention in the literature. Computational models for solving
large-deflection elastic problems from theoretical models have been applied
to specific fabric engineering and apparel industry problems, for example,
the prediction of the robotic path for controlling the laying of fabric onto a
work surface (Brown et al., 1990, Clapp and Peng, 1991).

The most detailed analyses of the bending behaviour of plain-weave fabrics
were given by Abbott et al. (1973), de Jong and Postle (1977), Ghosh et al.
(1990a,b,c), Lloyd et al. (1978) and Hu et al. (1999, 2000). Modelling the
bending of a woven fabric requires knowledge of the relationship between
fabric bending rigidity, the structural features of the fabric, and the tensile/
bending properties of the constituent yarns, measured empirically or determined
through the properties of its constituent fibres and the yarn structure. It
requires a large number of parameters and is very difficult to express in a
closed form. Thus, the applicability of such models is very limited. Konopasek
(1980a) proposed a cubic-spline-interpolation technique to represent the fabric
moment–curvature relationship.

5.1.2 Moment–curvature curve of bending behaviour

Fabrics are very easy to bend. Their rigidity is usually less than 1/10 000 that
of metal materials and about 1/100 that of tensile deformation. Bending
properties of a fabric are determined by the yarn-bending behaviour, the
weave of the fabric and the finishing treatments applied. Yarn-bending
behaviour, in turn, is determined by the mechanical properties of the constituent
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fibres and the structure of the yarn. The relationships among them are highly
complex. Figure 5.1 illustrates a typical bending curve of woven fabrics.

For this curve, it is normally thought that there is a two-stage behaviour
with a hysteresis loop within low-stress deformation: (a) an initial higher
stiffness non-linear region, OA; within this region the curve shows that the
effective stiffness of the fabric decreases with increasing curvature from the
zero-motion position, as more and more of the constituent fibres are set in
motion at the contact points; (b) a close-to-linear region, AB; since all the
contact points are set in motion, the stiffness of the fabric seems to be close-
to-constant.

It should be noted that when a woven fabric is bent in the warp or weft
direction, the curvature imposed on the individual fibres in the fabric is
almost the same as the curvature imposed on the fabric as a whole. As high
curvatures meet when fabrics are wrinkled, the coercive couple or hysteresis
is affected by viscoelastic decay of stress in the fibre during the bending
cycle (Postle et al., 1988). However, in applications where the fabric is
subjected to low-curvature bending, such as in drapes, the frictional component
dominates the hysteresis. Thus, if the strain in the individual fibres is sufficiently
small that viscoelastic deformation within the fibres can be neglected, the
hysteresis in Fig. 5.1 is attributed to non-recoverable work done in overcoming
the frictional forces. The effect of the fibre’s viscoelasticity in this section
will not be considered because the bending of fabrics on the KES tester is
within low-stress regions.

5.1.3 Bending stiffness

The primary concern with the conventional research in fabric bending is the
bending stiffness. Bending stiffness is one of the main properties that control

A

O
Curvature

BBending moment

5.1 Typical bending curve of woven fabrics.
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fabric bending. It should be defined as the first derivative of the moment–
curvature (M–r) curve. If the structure of the bending curve is linear, M is
directly proportional to the curvature produced. Some studies have been
conducted to predict fabric bending stiffness. It has proved very difficult to
calculate bending stiffness explicitly, due to the numerous factors that affect
its value if the stiffness of the whole bending process is considered. In
reality, the bending stiffness of fabrics is usually approximated to a constant
which can be considered as steady-state-average-stiffness and the initial
non-linear region is ignored. This is a low-order approximation to the actual
non-linear bending properties present in most fabrics. Clapp and Peng (1991)
have shown that the approximation to a constant stiffness may yield inaccurate
values when calculating the fabric-buckling force in the initial buckling
stage (Brown, 1998). As we can see in Fig. 5.1, the actual experimental M–
r curves are non-linear, at least in the initial region in which the slope of the
M–r curve for small values of r is greater than that for larger values of r.
Thus, the bending-stiffness, B, should be a non-linear, continuous function
of curvature.

5.1.4 Relationship between bending stiffness and
bending hysteresis

The effect of friction on the steady-state-stiffness, known as ‘elastic stiffness’
in the literature, of fabric bending is well known to us and has been studied
by a number of workers, including Peirce, Platt, Kleine and Hamburger, and
Cooper before Liversey and Owen. But different researchers have different
views on the manner and extent of this effect. Peirce suggested that a theoretical
minimum warpway or weftway stiffness for a fabric might be calculated by
summing the bending stiffness of the yarns; this was examined more fully by
Cooper who found that friction or binding between the fibres causes the
observed stiffness to exceed this minimum. The contribution of inter-fibre
friction to the stiffness of a fabric has usually been studied by subjecting the
specimen to a bending cycle and examining the resulting hysteresis curves.
Liversey and Owen (1964) derived a mathematical formula for the minimum
fabric bending stiffness, neglecting interactions between the fibres; this formula
took account of the twist and crimp in the yarns. An instrument was described
in their classical paper titled ‘Cloth stiffness and hysteresis in bending’ to
assist in determining the nature of the interactions between fibres which
cause the observed fabric bending stiffness to exceed the theoretical minimum.

In Grosberg’s conclusion (1980), however, there is no friction present in
the region of the close-to-linear portion of the bending curves; friction only
affects the coercive moment. Postle el al. (1988) also thought that the internal
friction has no effect on elastic bending or shear stiffness but did not mention
whether friction exists during this period of deformation. Skelton (1974 and
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1976) thought internal friction is always present during deformation but is
independent of elastic stiffness. They all agreed that hysteresis is a measure
of internal friction.

5.2 Modelling the bending behaviour of

woven fabrics

5.2.1 Modelling the bending curves using non-linear
regression

The modelling of the bending (moment–curvature) curve of woven fabrics
started with the work of Peirce (1930). The theoretical modelling can be
divided into three categories: predictive modelling, descriptive modelling
and numerical modelling. The majority of the existing research work has
been in the area of predictive modelling, in which the analytical relationship
between fabric bending properties, yarn-bending behaviour and constituent-
fibre behaviour, on the assumption of a given geometrical disposition of
fibres or yarns in the fabric, is obtained. This kind of model was very difficult
to solve in a closed form and thus very difficult to apply. A review of the
research in this field was carried out by Ghosh et al. (1990a,b,c). It is not
intended to re-review here due to its limited relevance.

Many numerical modelling methods are used in mechanical engineering,
and they are useful for the stress–strain analysis of a structure. Konopasek
(1980) proposed the use of the cubic-spline-interpolation technique to represent
the stress–strain relationship of fabric bending. The cubic-spline-interpolation
technique is useful when the mathematical relationship between moment
and curvature is not available, but it is rather cumbersome in computation
and application. When the relationship of moment–curvature of fabric bending
is available, a non-linear regression method may be used to estimate constants
in the equation. The following introduces the descriptive model established
by Oloffson (1967). It is expected that this model can be fitted using the non-
linear regression technique.

There are examples scattered through the literature of rheological studies,
or descriptive modelling, including sliding elements that are in accordance
with Oloffson’s study, in which a simple non-viscous combination consists
of a sliding element (fN) in parallel with an elastic element (EN) in Fig. 5.2
or a block connected by a spring to a wall.

If the initial strain is equal to zero and s ≥ sN, the conditions exist for the
displacement eN| as a function of the external stress s. If a series of coupled
elements of the type is considered arranged in the sequence:

sf 1 < s f 2 < sf 3 < . . . < s f N < . . . [5.1]

the force on all the elements is then the same:
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s1 = s2 = s3 . . . sN = s [5.2]

and the total deformation can be found by summing:

e1 + e2 + e3 + . . . eN + . . . = e [5.3]
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If a continuous model considered by changing the step function

sf 1 < s f 2s f 3 < . . . < s f N < . . . [5.5]

corresponding to finite elements of Fig. 5.2 into a continuous function s
which increase with F (differential elements), then a continuous function for
EN can we expressed as a function of s:
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where the infinitesimal range ds is introduced and b is the curvature of the
fabric. The equation can thus be obtained:
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where m is the conditional coefficient.
For an assembly of identical or nearly identical elements m = 0, hence a

stress–strain relationship of the form:

e = As 2 [5.10]

or

s e = B
1
2 [5.11]

Frictional element

Elastic element

5.2 Assembly of frictional and elastic elements.
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where A and B are two arbitrary constants. Equation (5.11) has been used in
several cases for bending and shear initial behaviour. From the derivation
conditions, this equation could be valid for the whole range of the deformation.
But in practice, we can see that only the initial part was thought to obey this
law. The principal range of m for fabric bending was reported to be
– 0.1 > m > – 0.9.

In conventional studies, the Oloffson’s model has only been applied when
m = 0 and been used in the initial region of the moment–curvature curve; the
latter stage has been considered as a linear relationship and even independent
of the frictional element. The present work makes an attempt to modify
equation 5.11 into a two-parameter function and to extend it to fit to the
whole curve of experimental results using a non-linear regression method.
The modified function including two constants a and b is as follows:

M = arb [5.12]

where M is the bending moment and r the curvature.

5.2.2 Bending stiffness

Considering bending stiffness as a constant, the bending curve of fabrics can
be described using equation 5.12. If the B–K (bending stiffness, B, versus
curvature, K) curve is defined as the first derivative of the M–K curve,

B = abr(b–1) [5.13]

the simulated bending stiffness now is a continuous, non-linear function of
the curvature.

5.2.3 Estimation of two constants

Similar to the methods in Chapter 4, there are several ways to estimate the
two constants a and b, but the most reliable one should be the non-linear
regression method. The second choice may be the application of a general
least squares method using more than two points. Suppose there are n sets of
data from a bending curve of a woven fabric (r1, M1), (r2, M2), . . . , (rn, Mn),
then we have:

Mi i = arb [5.14]

So the sum of the squares of deviation from the true line is

S M
i

n

i i =  (  –  )
=1

2S arb [5.15]

By mathematical operation using the least squares principle, the following
two equations can be obtained:
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5.3 Modelling the bending properties of woven

fabrics using viscoelasticity

5.3.1 Introduction

The bending performance of fabrics is characterised through parameters
such as bending rigidity and hysteresis. However, the problem of how to
separate the viscoelastic and frictional components in hysteresis remains
unsolved. A detailed investigation of the bending of woven fabrics that
determines the frictional couple through the cyclic bending curve of the
fabric is needed. Hence, a theoretical model composed of a standard-solid
model in parallel with a sliding element is proposed. The bending properties
of woven fabrics are quantitatively studied.

Linear viscoelasticity is in fact applicable to many viscoelastic materials
like wool, polyester, nylon and so on. In the study of fabric rheology from
the phenomenological viewpoint, two simple rheological models consisting
of linearly elastic and frictional elements, proposed by Oloffson (1967), are
most popular in the textile literature (Grosberg 1966; Hamilton and Postle,
1974; Gibson and Postle, 1978; Hu, 1996). These models do not account for
fibre viscoelastic processes which occur during fabric deformation and recovery.
Chapman proposed a theoretical model in which the material is termed as
‘generalized linear viscoelastic’ and showed that the result fits single wool
and nylon fibres at low strains (1 %) under changing temperature and relative
humidity (Chapman, 1973; 1974a, 1975). The fabric has been shown to
behave as a GLVE sheet in bending with an internal frictional moment
(Chapman, 1974b). The frictional couple associated with each fibre in bending
is principally considered as a function of strain and absolute time (Chapman,
1974c, 1980; Grey and Leaf, 1975, 1985; Ly, 1985). One of the fundamental
ways to characterise the rheology of viscoelastic material is to bend the
sample to a designated curvature and observe its transient behaviour. The
recovery of fabrics from bending (Chapman, 1976), shear (Asvadi and Postle,
1994), creasing (Chapman, 1974d; Shi et al., 2000a,b,c) and wrinkling (Denby,
1974a,b; Denby, 1980; Postle et al., 1988) can be calculated through the
knowledge of stress relaxation.
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5.3.2 The linear viscoelasticity theory in the modelling
of bending behaviour

Deformation, stress relaxation and subsequent recovery of fabrics can be
studied quantitatively using the rheological model of linear viscoelasticity.
Linear viscoelasticity is applicable for many viscoelastic materials when
they are deformed to low strain (Postle et al., 1988). Modelling the viscoelastic
behaviour of materials may involve using simple multiple-element models
or generalised integrated forms.

In order to simplify the calculation, the fibre is assumed to be linearly
viscoelastic and its bending behaviour can be described by the standard solid
model. The fabric is considered to be a viscoelastic sheet with internal frictional
constraint. Its bending behaviour can be described by a three-element linear
viscoelastic model in parallel with a frictional element, as shown in Fig. 5.2.
The model is governed by the following equation (Chapman, 1974a):

M k M k k k M( ) = ( ) + /| |  v f
˙ ˙ ¥ [5.17]

In equation (5.17), M(k) is the bending moment of the fabric, k is the curvature
of the fabric at time t, Mf is the frictional constraint and mv is the viscoelastic
bending moment of the fabric. k̇  is the rate of change of curvature (cm/s).
The factor ˙ ˙k k/| |  is the sign of the curvature change, which means that any
curvature change of the fabric is opposed by the frictional constraint Mf. The
frictional constraint interacts with the viscoelastic behaviour of single fibres
to impose a limit on the recovery a fabric may eventually attain.

Frictional constraint restricts free movement of the fibres in fabric during
bending. It is supposed that the fabric in bending acts like a linear spring in
parallel with a frictional element and the frictional constraint is assumed to
be a constant M0 (Grosberg, 1966; Oloffson, 1967).. The couple of the frictional
sliding element is termed the ‘coercive couple’. The coercive couple for
fabrics in bending is half the distance between the cut-offs on the vertical or
moment axis of the cyclic bending curve.

The intercept has been interpreted as being entirely due to the frictional
moment and equal to 2M0 in the past (Grosberg, 1966). However, the frictional
moment, in fact, only accounts for a portion of this intercept. Another portion
of the intercept will be due to viscoelastic effects because the fibres are
viscoelastic in nature (Konopasek, 1980b). In fact, the frictional constant
varies with the maximum curvature imposed on the fabric (Ly, 1985). Since
constant frictional constraint will lead to greater error and reduce the
applicability of the model and the intercept on the bending moment axis
made by the hysteresis loop is smaller than the 2HB from the Pure Bending
Tester in Kawabata’s Evaluation System, we assume that the frictional constraint
is proportional to the curvature imposed on the fabric, as depicted in Fig. 5.3.
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If a fabric is bent at a constant rate of change of curvature r, the viscoelastic
bending moment of the fabric of unit length can be expressed as

M t B
t

v
0

( ) =  ( )dr t tÚ [5.18]

where B(t) is relaxation modulus of the fabric. For a standard solid model,
B(t) is given by

B E
E E
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where the constant T = h/(E1 + E2) is the relaxation time of the model, E1 and
E2 are elasticity moduli of the springs, h is the viscosity coefficient of the
damper. Substituting equation (5.19) into equation (5.18), the viscoelastic
bending moment of the fabric can be written as follows:
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= at + b(1 – e–t/T)

In equation (5.20),
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When the fabric is cycled between curvature k* and – k*, a typical hysteresis
curve for bending deformation is as shown in Fig. 5.4. The cyclic bending
curve can be separated into regions where alternate positive and negative
rates of change of curvature are inserted. By applying equation (5.20) the
complete bending hysteresis cycle due to the viscoelasticity of the sample
can be calculated. Using the Boltzman superposition principle to add the
effects caused by the component strain rate for each portion of the hysteresis
curve of the viscoelastic component, we can calculate the moment at points
1, 2, 3 and 4 in Fig. 5.4. For bending at a constant rate of r and limiting
curvature k*, k = rt, t* = k*/r, the viscoelastic bending moment at time t*,
2t*, 3t* and 4t*, is respectively obtained as

k

–k*k*

Mf

M fh

M

E2

E1

Mv

5.3 A three-element-plus-frictional viscoelastic model for bending of
fabric.
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Mv1 = Mv(t*) (t = t*) [5.21]

Mv2 = Mv(2t*) – 2Mv(t*) (t = 2t*) [5.22]

Mv3 = Mv(3t*) – 2Mv(2t*) (t = 3t*) [5.23]

Mv4 = Mv(4t*) – 2Mv(3t*) + 2Mv(t*) (t = 4t*) [5.24]

where Mv1, Mv2, Mv3 and Mv4 are viscoelastic components of the bending
moment at points 1, 2, 3 and 4 in Fig. 5.4. Substituting equation (5.22) into
equation (5.23), the viscoelastic moments at time t*, 2t*, 3t* and 4t* can be
expressed as, respectively

Mv1 = at* + b(1 – g) (t = t*) [5.25]

Mv2 = –b(1 – g)2 (t = 2t*) [5.26]

Mv3 = –at* – b(1 – 2g 2 + g 3) = –M v1 + gM v2 (t = 3t*) [5.27]

Mv4 = b(1 – g 2)(1 – g )2 (t = 4t*) [5.28]

where
g h = e  = e– */ –( + ) */1 2t T E E t [5.29]

For cyclic bending between curvature k* and – k*, as depicted in Fig. 5.4,
the frictional constraint at points 1, 2, 3 and 4 varies and the total moments
at each point can be defined in the following manner:

M1 = Mv + mk* = at* + b(1 – g) + mk* (t = t*) [5.30]

M2 = Mv2 = – b(1 – g)2 (t = 2t*) [5.31]

M3 = Mv3 – mk* = – Mv1 + gMv2 – mk* (t = 3t*) [5.32]

M4 = Mv4 = b(1 – g 2)(1 – g )2 (t = 4t*) [5.33]

However, there are only three independent equations in equations (5.30–
5.33). Another equation must be established in order to find the solution to

Bending moment
M

–k*

2

3
2HB –

2HB +

Curvature  k

k*

1

4

5.4 An idealised hysteresis loop for fabric bending.
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the other two unknown variables. One of the parameters used to characterise the
bending properties of the fabric in the KES-FB-2 Bending Tester is 2HB, as
depicted in Fig. 5.4, which is independent of equation (5.33) and is given by:

2HB+ = M+(k) – M–(k) = Mv+(k) – Mv–(k) + 2Mf(k)

= 2 –  e  –  2e  + e  + 2
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[5.34a]

and

2HB– = M+(–k) – M–(–k) = Mv+(–k) – Mv–(–k) + 2Mf (– k)
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where, the subscript + means the fabric is bent forward and the subscript –

means the fabric is bent backwards. 2HB+ and 2HB– are the width of the
hysteresis loop at a specific curvature ± k. In the KES-FB Pure Bending
Tester, it is defined at curvature ± 1 cm–1. Their average can be obtained as

2HB = (2HB+ + 2HB–)/2 = bQ + 2mk [5.35a]

where
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Equation (5.33) can be merged as
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Solving simultaneous equations (5.35) and (5.36), the parameters are given by
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Then, three parameters of the standard solid model can be obtained as follows:

E aT b
T

E
a aT b

b

T E E
aT b

b

1

2

1 2

2

 =  + 

 = 
(  + )

 = – (  + ) = –
(  + )

r

r

h r

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô
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Thus, the proposed bending model for a fabric can be established through
three points in the moment–curvature curve and a hysteresis parameter.

5.4 Modelling the wrinkling properties with

viscoelasticity theory

5.4.1 Introduction

When a fabric is creased and then released, the residual forces in the fibres
enable the fabric to unfold or recover. Wrinkle recovery is thus defined as
the property of a fabric that enables it to recover from folding deformations.
The most common method of testing crease recovery (ISO 2313, IWTO
Drift TM 42) and wrinkle recovery (AATCC 66-1990) is to bend a strip of
fabric by heavy loading at controlled time and air conditions and measure
the angle of recovery after releasing the load.

During wrinkling deformation, all fabrics show a varying degree of
inelasticity, such as viscoelasticity and inter-fibre friction, because of the
viscoelastic nature of the constituent fibres and the rearrangement within the
fibre assembly. Their responses to applied loads are rate- or time-dependent.
At any time, the state of stress within a fabric depends on the entire loading
history. The viscoelastic nature of the constituent fibre is responsible for the
phenomenon of stress relaxation, and the inter-fibre friction provides the
fabric frictional stress during deformation and is responsible for the irreversible
deformation. Studying these inelastic effects in fabrics enables us to understand
and eventually predict important performance characteristics.

In this section the modelling of wrinkling, wrinkle recovery and set of
fabrics are established using the rheological model of linear viscoelasticity
based on the bending model developed in Section 5.3. The recovery of the
fabrics after release from wrinkling is analysed and the wrinkle recovery
angle of the fabrics is calculated using the model parameters derived from
pure bending test.
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5.4.2 Modelling the wrinkle recovery angle of
woven fabrics

Assume that a woven fabric is simply folded in the warp or weft direction
and pressed together by a uniform pressure normal to the surface of the
fabric, as shown diagrammatically in Fig. 5.5.

When a fabric is held at a fixed curvature k0 for a period of time t, and if
the fabric is considered as viscoelastic sheets with internal constraints, which
follow the three-element model in parallel with a sliding element and the
frictional constraint is considered to be proportional to the curvature of the
fabric as shown in Figs 5.1 and 5.2, the relaxation stress for the standard
solid model may expressed as (Creus, 1986; Yan, 1990)

M t E k
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E E
kt T t T

v 1 0
– / 1 2

1 2
0

– /( ) = e + 
 + 

 (1 –  e ) [5.39]

It can be found that the relaxation moment decreases progressively when the
fabric is held at a constant curvature. That is to say, the residual moment in
the fibre drops with time or the moment needed to maintain the fabric at a
constant curvature reduces gradually as indicated in Fig. 5.6(a).

The fabric is creased for a length of time w and then released against a
restraining couple Mf. Based on the Boltzmann superimposition principle,
removing the applied force that maintains constant curvature k0 is equivalent
to a –Mr being exerted in the opposite direction on the fabric, that is, Mr(t)
(t > w) equal to Mv(t) (t > w) in magnitude, but opposite in direction, as
shown in Fig. 5.6(b). Mr acts on the fabric and makes it recover from wrinkling
or creasing deformation. Mr can be divided into two portions. One portion,
Mrv acts on the standard solid element. Another portion, Mrf is assumed in
the frictional element. The frictional constraining couple is directly proportional
to the curvature of the fabric according to the assumption above. If the fabric
has a curvature kr from curvature k0 under the action of Mr, then the frictional
constraining couple is equal to mk r.

h

H

h

5.5 Wrinkling of a fabric for testing of wrinkle recovery angle.
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At instant t after the fabric is released, the moment can be expressed as

Mr(w + t) = ¢Mv(t) + mkr [5.40]

where kr is the curvature of the fabric produced by Mr. To calculate wrinkle
recovery of the fabric after release from a fixed curvature, we consider now
the curvature change of the fabric under a stress –Mr. The constitutive equations
for the standard solid element can be established as follows:
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Substituting equation (5.40) into and rearranging equation (5.41) gives
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Solving equation (5.42), the recovery deformation of the fabric is given by
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The remnant curvature of the fabric at moment t after the applied force is
removed can be expressed as

5.6 Stress and strain relation of the model during insertion of
wrinkles and wrinkle recovery (a) step curvature applied during
insertion of wrinkles and stress relaxation; (b) residual stress and
curvature recovery of the fabric after releasing.
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k(t) = k0 – kr(t) [5.44]

We assume that the bent portion of the fabric takes a semi-circular profile
during the insertion of wrinkles and a circular arc profile during recovery
from wrinkles, as shown in Fig. 5.7. If the length of the circular arc is
constant and equal to that of the semi-circle, that is

p p a
k k0

 =  –  [5.45]

then, the wrinkle recovery angle of the fabric can be expressed as
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The instantaneous wrinkle recovery angle a0 and the maximum wrinkle
recovery angle a• at time t = 0 and t = • can be derived respectively as
follows:
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It can be seen that the wrinkle recovery angle is completely determined once
we know the values of k0, w, t and the parameters of the elements in the
model. Thus, the wrinkle recovery angle of the fabric can be predicted using
the model parameters derived from the pure bending test.

5.5 Anisotropy of woven fabric bending properties

5.5.1 Introduction

Bending behaviour of a woven fabric can be characterised by bending rigidity
(B) and bending hysteresis (2HB). Bending rigidity is the resistance of a

5.7 The proposed model for the wrinkle recovery angle of a fabric.

b

a
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fabric to bending, which can be defined as the first derivative of the moment–
curvature curve. Bending hysteresis is the energy loss within a bending cycle
when a fabric is deformed and allowed to recover, denoting the difference in
bending moment between the loading and the unloading curves when the
bending curvature is fixed.

Postle et al. and Hu have proved the close relationship between bending
rigidity and bending hysteresis. In particular, Postle et al. reported very good
correlation between the bending and the hysteresis parameters measured
from fabric bending deformation recovery curves (1988). Moreover, the
research done by Chung and co-workers (Chung et al., 1990; Chung and Hu,
2000) indicates that the correlation coefficient of bending stiffness and bending
hysteresis is quite high, 0.9333 for cotton fabric. For worsted and Schengen
woven fabrics, B and 2HB are also very high, 0.7872 and 0.7596 respectively.
This implies that bending stiffness and bending hysteresis are not independent,
but have a linear relationship (Hu, 1994).

There may be some differences in the mechanism operating in bending
rigidity and bending hysteresis of woven fabrics but, based on the above
findings, it is assumed that they have similar mechanisms. Thus this section
discusses an attempt to apply the existing models for bending rigidity to
bending hysteresis of plain woven fabrics. Also presented is an attempt to
examine which of the existing models is the best for predicting bending
hysteresis.

5.5.2 Directionality of fabric bending rigidity

Peirce (1930) produced a formula for calculating the stiffness of a fabric in
any direction in terms of the stiffness in the warp and weft direction. This
was derived from the theory for homogenous elastic material and it was
found to be empirically satisfactory. It is suggested that the reason for this is
that most of the fabrics which Peirce tested were made from cotton. In
addition, he also reported a formula to predict the bending stiffness in various
directions, in which the values in the warp and weft directions were known.

Go et al. (1958) measured the bending stiffness of fabrics using the heart
loop method. They indicated that the bending stiffness of the fabric is dependent
on the bending model of the test piece. The bending stiffness of fabric
having long floats on its surface was smaller in face-to-face bending than
back-to-back. The effect of the crimp of the component yarn of fabric on the
fabric bending stiffness was generally small. Later, Go and Shinohara (1962)
reported that on the polar diagram of bending stiffness there was minimum
presented at 45∞ to the warp when the fabric was bent. Their formula neglected
the restriction at the interaction of the warp and weft directions. They concluded
that the stiffness of textile fabrics depended upon their bending directions
and that, in general, the stiffness in bias directions was relatively small.
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Cooper (1960) used cantilever methods to determine fabric stiffness and
stated that there was no evidence to suggest that there was any appreciable
shearing of the fabric caused by its own weight. He concluded that the
stiffness of a fabric may vary with direction of bending in different ways, but
for most practical purposes measurement along warp, weft and one other
direction was sufficient to describe it.

Cooper conducted a detailed study of the stiffness of fabrics in various
directions and has produced polar diagrams of bending stiffness. He found
that some fabrics had a distinct minimum value at an angle between the warp
and weft direction while others had similar values between the warp and
weft. In general, viscose rayon fabrics provided an example of the former
and cotton fabrics an example of the latter.

These effect were explained in terms of the fabric bending stiffness in the
warp and weft direction and the resistance offered by the yarns to the torsional
effects which are inseparable from bending at an angle to warp and weft
(Cooper, 1960). He concluded that the resistance offered by the yarns to the
torsional deformation is low when the interaction between the yarns is low
and vice versa.

Shinohara et al. (1980) derived an equation empirically which is similar
to the equation introduced by Peirce and analysed the problems using three-
dimensional elasticas. They assumed the constituent yarns of woven fabrics
to be perfectly elastic, isotropic, uncrimped and circular in cross-section,
and to behave in a manner free from inter-fibre friction. In addition, they
also presented another equation containing a parameter n which was related
to V introduced by Cooper (1960) in order to predict the shape of a polar
diagram.

5.5.3 Theoretical study of fabric bending properties

Peirce first introduced the bending rigidity of a fabric by applying an equation
in his classical paper as follows:

B = wc3 [5.49]

where B is the bending rigidity, w is the weight of the fabric in grams per
square cm and c is the bending length. He also introduced another equation
for bending rigidity in various directions. This formula enabled the value for
any direction to be obtained when the values in the warp and weft directions
were known:
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where B1, B2 and Bq are bending rigidities in warp, weft and q directions,
respectively.
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A similar equation could also be considered empirically by Shinohara et
al. (1980):

B B Bq q q = (  cos  +  sin )1
2

2
2 2 [5.51]

Go et al. also reported an equation which was theoretically derived by neglecting
twist and frictional effects from equation (5.50):

Bq = B1 cos4 q + B2 sin4 q [5.52]

(Go et al. 1958; Go and Shinohara 1962).
Later, Cooper (1960) presented an equation including twist effect. The

results of the twisting effect were found to be valuable in practical applications
and so equation (5.53) was derived:

Bq = B1 cos4 q + B2 sin4 q + (J1 + J2) cos2 q sin2 q [5.53]

where J1 and J2 are constants due to torsional moment.
Chapman and Hearle (1972) also derived a similar equation by energy

analysis of helical yarns as follows:

BT = n1v1 sin2 q (B sin2 q + Jy cos2 q)

  + n2v2 cos2 q (B cos2 q + Jy sin2 q) [5.54]

BT = n1q + h cos2 q + n2v2 cos2 q (B cos2 q + J)

where BT is an expression for the bending rigidity per unit width of a thin
fibre web of linearly elastic fibres and there are n1 yarns per unit length in
the warp direction, each containing v1 number of fibres, and n2 yarns per unit
length in the weft direction, each containing v2 number of fibres. They
assume that they have a two-dimensional assembly of very long straight
fibres of the same type, with bending rigidity B and torsional rigidity Jy.
Their approach utilises energy considerations instead of the ‘force method’.
Chapman and Hearle’s model involves many variables which will complicate
the mathematical calculation. Their approach is, in fact, very similar to
Cooper’s so Cooper’s model is chosen for the study.

From equation (5.53), B1 and B2 may be obtained directly by experimental
work while J1 and J2 cannot. The theoretical treatment suggests that
measurements of stiffness in two directions are insufficient to define a fabric’s
bending properties, since different types of variation with direction are still
possible for fabrics with similar B1 and B2. An investigation into a third
direction is therefore necessary, and the most convenient in practice is at bias
direction (45∞). In this direction, twisting effects are small provided that B1

and B2 are similar in magnitude. Nevertheless, the sum (J1 + J2) may be
deduced from measurements in three different directions by considering
specimens cut along the warp, weft and 45∞ directions. Therefore, when
considering q = 45∞,
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B45 = B1 cos4 45∞ + B2 sin4 45∞ + (J1 + J2) cos2 45∞ sin2 45∞
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[5.55]

= 1
4

(B1 + B2 + J1 + J2)

where

J1 + J2 = 4B45 – (B1 + B2)

The term (J1 + J2) is replaced by the stiffness value at the warp, weft and 45∞
directions. We may use this result to calculate other bending rigidities over
all possible directions as in equation (5.56):

Bq = B1 cos4 q + B2 sin4 q + [4B45 – (B1 + B2)] cos2 q sin2 q [5.56]

In Cooper’s paper, he argued that the shape of polar diagrams of bending
rigidity B may show three types of variation between fabrics. The ratio (J1 +
J2)/(B1 + B2) = V is introduced to predict the trends in polar diagrams. When
the term (J1 + J2) is replaced by the stiffness values of warp, weft and 45∞
directions, the equation for the ratio V will change as follows:
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Cooper’s model for calculation of ratio V is dependent on bending rigidity
(B1 and B2) and torsional rigidity (J1 and J2). This leads to different shaped
polar diagrams. Furthermore, different ratios of bending rigidity in warp and
weft directions can also contribute different shapes of polar diagrams. When
the torsional rigidity is replaced by the bending rigidity of warp, weft and
45∞ directions, the calculation of ratio V is simplified.

From the results provided by Cooper (1960), it may be seen that the range
of ratio V is between 0 and 1. He found that some fabrics with very open
structure had a distinct minimum value at an angle between warp and weft
direction when V = 0. In this case, the model is identical to that derived by
Go et al. (1958). When V = 1, these minima are absent and the model is
qualitatively similar to that described by Peirce (1937) and Shinohara et al.
(1980).

In Cooper’s model (1960), the coefficient of cos2q sin2q was related to the
torsional rigidities of the yarn. It was found that the polar diagram of fabric
bending rigidity fitted reasonably with other models. However, there is a
limitation, which relates to ratio V (equation 5.57) introduced by Cooper
(1960). Since fibres display marked non-linear viscoelasticity, and this is
superimposed on a complicated yarn and fabric geometry, this also gives rise
to frictional restraints between fibres and between yarns. If the fabric is bent
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in the bias direction, high inter-yarn friction arises due to the relative movement
of the yarns (Chapman et al., 1972); it is, therefore, impossible to obtain
V = 0.

On Cooper’s theoretical polar diagram (1960), distinct minima are presented
in the polar diagram of fabric bending rigidity between the two principal
directions when a very open plain fabric is examined. Go et al.’s (1958)
model may be applicable to a very open structure fabric as the twist and
frictional effect in this type of fabric is small. However, their model cannot
be applied in the prediction of fabric bending rigidity of other types of
fabrics.

Since observed values do not always agree with the theoretical model
(equation 5.51) derived by Shinohara et al. (1972), they presented another
model containing a parameter n which relates to V introduced by Cooper
(1960) as follows:

Bq = B1 cos4 q + B2 sin4 q + 2 1 2n B B  cos2 q sin2 q [5.58]

and

V
n

B B
B B

 = 
2

 + 
1 2

1 2
[5.59]

where V/n is a ratio of geometrical mean to arithmetical mean of B1 and B2.
From experimental results on commercially available fabrics, Shinohara et
al. found that the values of n are in the range from 0 to 1 and minimum
values exist in 45∞ directions for certain types of fabrics. The term n presented
by Shinohara et al. (1980) is also used to predict the trends in polar diagrams,
and similar trends are observed in Cooper’s ratio V. They reported that tight
fabrics generally have larger values of n, and sleazy fabrics have a smaller
value of n.

5.5.4 Polar diagrams of the bending model

5.5.4.1 General features of the polar diagrams

Similar polar diagrams are observed from three of the existing models (Peirce’s
model, Shinohara et al.’s model, and Cooper’s model). These polar diagrams
and the diagram produced from Go et al.’s model can be classified generally
into two types according to their shape. The polar diagrams of various values
of B1/B2 in Types 1 and 2 models are shown in Fig. 5.8, which demonstrates
the theoretical polar diagrams of fabric bending rigidity in various directions.

It can easily be observed from Fig. 5.8 that the anisotropy of Type 2 omits
the resistance at the intersection of warp and weft. Therefore, distinct minima
are present between the warp and weft directions. However, a circular shaped
polar diagram is obtained when B1 equals B2 in anisotropy of Type 1. If the
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difference between the bending rigidity B1 and B2 becomes larger, an
ellipse or gourd shape is illustrated in the polar diagram of fabric bending
rigidity.

5.5.4.2 Comparison of four models

In this section, the predictability of the four models (Go et al., Peirce, Shinohara
et al. and Cooper) discussed above will be compared. Additionally, the effect
of ratio V on plain woven fabrics in different weave densities will be investigated
as will the shapes of the polar diagrams of bending hysteresis from different
values of ratio V on cotton plain woven fabrics.

For ease of comparison it is convenient to fix the bending hysteresis in the
warp direction so that changes occurring along any other directions can be
easily observed from the polar diagrams. This fixed bending hysteresis can
be obtained by averaging all results recorded in the warp direction, and then
multiplying or dividing the bending hysteresis of each fabric by this average
value. In this way, the points in the warp direction can be fixed and any
differences other than warp direction can be seen in the polar diagrams of
different fabrics. Trends in the ratio V can also be observed with different
types of plain woven fabrics.

Figure 5.9 illustrates the bending hysteresis of lighter (loose) and heavier
(tight) plain fabrics produced from the outputs of four models against the
experimental result. As Go et al.’s model neglects the twist and frictional
effect, the polar diagram of this model exhibits a cross shape with minima
around the 45∞ direction. Peirce’s, Shinohara et al.’s and Cooper’s models
show elliptic shapes.
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All experimental results on plain woven fabrics are close to values calculated
from Peirce’s, Shinohara et al.’s and Cooper’s models. It is also found that
the average deviation between Go et al.’s model and the experimental result
is the largest when compared with other models, which indicates that Go et
al.’s model cannot be applied to the prediction of polar diagrams of bending
hysteresis. Therefore, the twisting and frictional effects play significant roles
in the calculation of bending properties.

From Cooper’s theoretical polar diagram (Cooper, 1960), there are distinct
minima in the polar diagram of bending rigidity between warp and weft
directions when a very open plain light woven fabric is examined. Go et al.’s
model may also be applicable to loose fabrics as the twist and frictional
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effect in a very open plain fabric is small. In contrast, these minima are
absent in the polar diagrams of bending hysteresis. Bending hysteresis is a
measurement of inter-yarn friction. When the fabric is bent on the bias,
relative movement of the yarns occurs and is maintained by high inter-yarn
friction. Therefore, there are no minima present on the bias directions. In
Fig. 5.9(a), it is found that Peirce’s, Shinohara et al.’s and Cooper’s models
are well fitted to the polar diagrams of bending hysteresis of loose fabrics.
However, Go et al.’s model should not be applied to the prediction of the
shape of a polar diagram of bending hysteresis in loose fabric.

Another fact is that each model produces larger deviation on heavy fabrics
than on light fabrics. Besides, it is not difficult to see from Fig. 5.9(b) that
the highest value of the bending hysteresis of heavy fabrics is observed
around 15∞ to the warp. It also reveals that the component around this angle
contributes the highest bending hysteresis. However, beyond 15∞, the bending
hysteresis of these fabrics decreases with the increase in angle.

In addition, although Peirce’s, Shinohara et al.’s and Cooper’s models can
all be applied to the prediction of polar diagrams of bending hysteresis for
loose to tight plain woven fabrics, of the three, Cooper’s model presents the
lowest deviation from the experimental results. Therefore, it can be seen that
the twist and frictional effects in Cooper’s model play an important role in
the prediction of bending hysteresis on either loose or tight plain woven
fabrics. Moreover, when comparing the bending hysteresis of loose and tight
plain woven fabrics, the deviation in loose plain fabric is smaller than that in
tight plain fabric.

From the above analysis, we may conclude that Cooper’s model is the
most reliable in the prediction of bending hysteresis in both loose and tight
plain woven fabrics.

5.5.4.3 Effect of ratio V on bending hysteresis

Figure 5.10 illustrates the HB polar diagrams of eight different types of plain
cotton fabrics, from which we can see that the trends are spreading outwards
along the weft direction with the increase in ratio V. If the ratio V is larger
than 1.10, the maximum value of bending hysteresis will be observed at
around 15∞ to the warp.

The loose structure allows the movement of yarns along the warp and
weft directions. The floating yarns present in this structure may lead to lower
inter-yarn friction. As a result, the lowest bending hysteresis is obtained
from the loose fabrics. On the contrary, the tight structure avoids yarn movement
and this will increase the bending hysteresis of the fabrics. Therefore, larger
bending hysteresis leads to the expansion of the polar diagram along the weft
direction. The predicted shapes of the polar diagrams of bending hysteresis
from ratio V of cotton plain woven fabrics are given in Fig. 5.11.
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5.5.4.4 Effect of weft density on polar diagram

Similar to the effect of ratio V, with the increase in weft density, the HB
polar diagrams also exhibit a tendency to spread outwards, as shown in
Fig. 5.12.
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5.6 Summary

This chapter presents a comprehensive study of the bending properties of
woven fabrics. After an explanation of the general concept of bending
properties, two different methods, non-linear regression technique and
viscoelasticity theory, are introduced to model the bending behaviour of
woven fabrics. Finally, as in Chapter 4, a study of the anisotropy of the
bending properties of woven fabrics is also provided. We may draw the
following conclusions from this chapter:

(1) Non-linear regression techniques can be successfully used to model
the bending curves of woven fabrics based on Oloffson’s rheological
model. The estimates obtained using non-linear regression seem to be
different from those used in the existing research. In addition, bending
stiffness is thought to be continuous and can be obtained by the
differentiation of the moment–curvature curve with respect to curvature.

(2) The inelastic bending behaviour of woven fabrics can be quantitatively
analysed using linear viscoelasticity theory. With the rheological model
developed, it is found that the bending properties of the fabric under
low curvature can be characterised using a standard solid element in
parallel with a frictional element. Element parameters of the model can
be determined through three points in the bending curve and the bending
hysterisis. The difference between 2HB+ and 2HB– and the intercept
of the curve at moment axis should be attributed to friction between the
fibres.

(3) Based on Chapman’s assumption of a semi-circular form for a fabric

5.12 Effect of weft density of plain woven fabrics. Ranking of
weft density: E < F < G < H.
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bend, a simple rheological model consisting of a linearly elastic element
and a frictional element is successfully used to study creasing of the
fabric strips and the compression of the fabric loops. The relationship
between the creasing behaviour and deformation is established and
solutions are given for a linearly elastic material with constant internal
frictional constraint. In addition, the formula deduced by the authors
can provide a better fit than the formula given by Chapman.

(4) An extensive study of the existing bending hysteresis models reveals
that Peirce’s, Shinohara et al.’s and Cooper’s models can be applied to
predict the bending hysteresis anisotropy of various apparel woven
fabrics, but Go et al.’s model can be applied only to fabrics with very
open structure. This finding confirms the statement that the twisting
and frictional effects have a significant role in bending properties.
Moreover, all the four models are better used to predict light fabrics. In
particular, Cooper’s model is found to be the best one to predict the
anisotropy of bending rigidity and it is also the only one that can be
extended to industrial woven fabrics.
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6.1 General shearing behaviour of woven fabrics

6.1.1 Introduction

Textile fabrics in practical use are subjected to a wide range of complex
deformations. The shear properties of woven fabrics are of importance in
many applications. To understand the mechanisms of fabric shear behaviour,
Dreby (1941), Go et al. (1957), Morner and Eeg-Oloffson (1957), Kawabata
(1972, 1980) and Kawabata et al. (1972) introduced their shear apparatus to
measure fabric shear properties. Later, Cusick (1961), Lindberg et al. (1961)
and Grosberg and Park (1966) found a qualitative means of describing shear
properties using a model. They indicated that the hysteresis produced during
shearing is determined wholly by the frictional restraints arising during rotation
of the yarn from the intersecting points in the fabric. In addition, the existing
literature proved that shear mechanism is one of the important properties
influencing the draping, pliability and handle qualities of woven fabrics
(Kawabata, 1980; Oloffson, 1967; Lloyd et al., 1978). Shear deformation of
woven fabrics also affects the bending and tensile properties of woven fabrics
in various directions rather than in the warp and weft directions only (Chapman,
1980; Skelton, 1976).

6.1.2 Shear stress–strain curve

Shear behaviour of woven fabrics has received wide attention. Up to now
general stress–strain curve in shear has been considered as showing the
characteristics that are illustrated in Fig. 6.1. If a fabric is deformed at low
levels of strain, the OA region, the shear stiffness is initially large, and
decreases with increasing strain. In this region, the shear behaviour is dominated
by frictional mechanisms and the decreasing incremental stiffness is generally
attributed to the sequential movement of frictional elements. As soon as the
stress is large enough to overcome the smallest of the frictional restraints

6
The shear properties of woven fabrics
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that are acting at the intersection regions, the system starts to slip, and the
incremental stiffness falls – this is the AB region. At a particular amplitude
of stress, the incremental stiffness reaches a minimum level, point B, and
remains almost linear over a range of amplitudes with slopes that are thought
to be controlled by the deformation of the so-called ‘elastic elements’ in the
fabric. It is a commonly observed fact that above a relatively low level of
shear strain (5–10∞), the shear stiffness increases with increasing strain. At
amplitudes greater than a certain amount, point C, the incremental stiffness
again begins to rise, and the closed curves increase in width with increasing
amplitudes of shear angle. It seems that this is due to steric hindrance between
the two bent intersectioning yarns, leading to transverse distortion of the
yarns, or riding up of the intersection, or both.

There are two parameters used in most of the literature (three in the KES
system) which control the extent of the non-linear region and characterise
the general nature of fabric shear. These are the slope of the stress–strain
curve where it attains its minimum value, and the hysteresis. The minimum
slope of the curve represents the contribution of the so-called ‘purely elastic
elements’ of the assembly and, when this value is achieved, it is assumed
that all the frictional contact points are in motion. The decreasing stiffness
region of the curve is of interest since it is here that the hysteresis loss in the
cyclic deformation is determined.

6.1.3 Relationship between shear and bending
deformations

Some authors have reported that the shear and bending of woven fabrics
have a strong relationship. For example, it has been suggested that the shear
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6.1 Stress–strain curve of woven fabrics during shear deformation.
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energy loss is a good guide to the kind of behaviour that can be expected in
bending. Skelton thought that the shear and bending are not merely related
but essentially identical (Skelton, 1980).

In a paper by Dawes and Owen (1971), the correlation between the two
measurements of shear stiffness and bending stiffness is found to be quite
good and the overall changes in mechanical properties as the environmental
conditions change are very similar in the two modes of deformation. Thus it
was believed that they share a common origin.

Skelton further argued that, for instance, for a shear angle of a few degrees
(5∞), and a fabric with 20 threads/cm, the effective curvature in the yarn is:

5  20
57

  2 cm –1¥ ª [6.1]

This is typical of the curvature levels that have been investigated in studies
of fabric bending behaviour. Thus the magnitude and distribution of the
curvature in the yarns in the bent state are almost identical to those in the
sheared state.

6.2 Modelling of shearing behaviour of

woven fabrics

6.2.1 Theory

Several authors have attempted a structural analysis to predict shear properties,
but the conclusions reached differ in some respects and in addition the
calculations are not presented in a form that can be readily put to practical
use  (Mark and Taylor, 1956; Morner and Eeg-Olofsson, 1957; Lo, 2001; Lo
and Hu, 2002; Behre, 1961; Cusick, 1961; Postle et al., 1976; Skelton,
1976). It is recognised that the detailed mechanisms which are operating are
extremely complex and it is difficult to devise a convincing model that is
adequate to explain them. However, the shear behaviour, especially in the
initial region, is thought by some authors to be controlled by elastic and
frictional elements simultaneously. In a general sense the behaviour of an
array of elastic and frictional components has been studied by Oloffson
(1967), and by Skelton (1976) and Skelton and Schoppee (1976). As discussed
in the previous chapter, some of the existing literature put forward the belief
that the stress–strain behaviour of a series of assemblies similar to frictional–
elastic units can be reasonably represented in the initial, non-linear region of
shear by an expression of the form:

s = Ke1/2 [6.2]

where s and e are the shear stress and strain respectively and k is the material
constant. This is the simplified Oloffson formula which is the same as the
bending deformation.
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6.2.2 Relationship between shear stiffness and
hysteresis of woven fabrics

Figure 6.2 gives an example of the tested relationships between shear stiffness
G and shear hysteresis 2HG and 2HG5. It can be seen that, as in bending
deformation, their relations are linear. The correlation coefficients can be as
high as 0.9507 for G and 2HG, and 0.9683 for G and 2HG5. This may
indicate, as discussed in Chapter 5 on bending properties, that friction exists
during the whole shear process and not only in the initial region, because the
hysteresis is mainly caused by the frictional element, especially 2HG. In
addition, friction and elastic elements always exist simultaneously. Thus it
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may not be appropriate to say that there is a pure elastic region, but the
frictional effect is continuous throughout the entire shear process. The decreased
value of shear stiffness after the initial region is attributable to the value of
the dynamic friction coefficient being smaller than that of the static friction
one.

6.2.3 Fitting of shear curves using non-linear regression

Since the friction and elastic elements exist simultaneously in the whole
shear process before the steric hindrance occurs or in the earlier stage of
shear, the stress–strain curves are assumed to be controlled by the combination
of friction and elastic elements. As we saw Chapter 5, the application of the
Oloffson model, in which the friction and elastic elements are considered
simultaneously, is quite successful. In addition, in shear as in bending, it is
also observed that shear stiffness and shear hysteresis are very closely related.
This leads to the present attempt to extend the stress–strain relationship
described in equation 6.2 to the following for shear deformation before steric
hindrance occurs:

s = a e b [6.3]

where a and b are non-linear regression constants. The non-linear regression
method is again used for estimating the constants in the equation.

Some of the shear stress–strain curves tested on the KES system, which
are thought to be within the friction and elastic operating region or not
involved in steric hindrance, are chosen for fitting the model; their fitted
curves are given in Fig. 6.3, which shows that the tested and the calculated
data are in reasonably good agreement with each other. A typical plot of
tested stress and calculated stress is shown in Fig. 6.4, which indicates
clearly a straight line between them.

The correlation coefficients are close to 1; but it should be noted that
residuals from them are still larger than those we observed in the modelling
of bending curves. Equation 6.3 is good enough to model the initial part of
the shear curve of woven fabrics. In addition, shear angle also plays a part in
the modelling effect of equation 6.3. For example, equation 6.3 is better used
to model a KES shear curve with a maximum shear angle of 1∞ than 8∞.

However, in practice, in many cases, this initial region is so short that it
may be unnecessary to give an exact mathematical description. Thus, from
the above, the modelling of shear curves using equation 6.3 cannot be described
as a success. As a result, different methods for modelling a shear curve
should be adopted to meet different needs. For example, if an analysis is
confined to the small strain range, say, < 8∞, i.e. the tested shear curve of a
fabric within this is generally in the initial non-linear region or the maximum
stress is smaller than or close to the minimum stiffness point, it can be
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modelled using equation 6.3; if the shear stress–strain curve is much beyond
this minimum stiffness point, the curve cannot be modelled in this way, but
a numerical method such as cubic-spline-interpolation may be more applicable;
if the curve has a long close-to-linear range and the initial non-linear range
is difficult to define or the maximum shear angle for minimum stiffness
point is close to 0, it may be convenient to use the constant G provided by
the KES system in which a straight line can be found.

6.2.4 Shear stiffness

In view of the complexity of the observed shear behaviour it is perhaps
unreasonable to speak of shear stiffness as a single entity. We are concerned
rather with the overall stress–strain characteristic of the fabric, and with an
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understanding of the mechanisms operating when a fabric undergoes shear
deformation. However, for a fabric like sample 18, if the shear condition is
limited within 8∞ strain, the stress–strain curve may be modelled using the
power function proposed by Oloffson, equation 6.3. Thus the shear stiffness
may be found by differentiating the stress–strain function with respect to
strain as shown in Fig. 6.5. It should be noted that the stiffness calculated is
usually larger than that of the tested G. Therefore if the application needs
high accuracy and continuous shear stiffness, it may be reasonable to use
other numerical methods such as cubic-spline-interpolation to model it. In
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some cases, if a continuous stiffness is not strictly required, it may be convenient
to use the KES constant shear stiffness G.

Generally speaking, the initial part of the shear curve can be modelled
with a power function like equation 6.3. If continuous shear stiffness is
required in some cases in the initial region, the equation is still accurate
enough to be used for finding shear stiffness.

6.2.5 Comparison of warp and weft direction properties

The warp values of the shear properties, G, 2HG and 2HG5, can be compared
with those in the weft. The results indicate that the values of the warp and
weft 2HG and 2HG5 have no obvious differences if the warp and weft
direction have similar yarns and similar cover factors, but G has marginally
larger warp values. At the same time, the results also show that the larger the
cover factor the larger the values of G, 2HG and 2HG5. Unlike the situation
in bending, the hardening in the warp direction of woven fabrics seems to
have little effect on the shear properties. This contradicts the argument that
shear behaviour is identical in nature to bending properties. Perhaps a reasonable
explanation may be jamming in the warp direction for high-density fabrics.
That is, the larger values of G, 2HG and 2HG5 in the warp direction for the
high-cover-factor fabrics are caused by the jamming effect. However, this
jamming effect is not so prominent in fabrics with low-cover-factor or similar
cover factors in the two principal directions. This suggests that the jamming
effect may happen at a much earlier stage than the usually stated shear angle
of 5–8∞. The friction in shear exists mainly at the interface of the two systems
of yarns, but inter-fibre friction within a yarn occurs in bending. This can be
seen from the relationship between shear properties and cover factor.

6.2.6 Relationship between cover factor and
shear properties

Figure 6.6 shows the general relationship between cover factor and the shear
parameters G, 2HG and 2HG5, which is obtained from Fig. 6.7. According
to this figure, we may find that when the ratio of warp and weft cover factor
is smaller than 1.4, the increase in the ratio of cover factor causes an increase
in the ratio of shear hysteresis 2HG; when the ratio of cover factor is greater
than 1.5, the ratio of 2HG is almost certain to remain constant. This is
because when the actual cover factor is larger than 100 %, further increase
of the cover factor in most cases does not increase the actual contact area
between the two systems of yarns. Another factor is that the relation of G and
2HG to the cover factor is similar to that of 2HG.
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6.2.7 Relationship between bending and shear
behaviour

Figure 6.8 illustrates the plots of bending properties against shear properties
for cotton fabrics. It is clear that the dots have some trends, but these trends
seem rather obscure. All this may indicate that they do have some relationship
in some cases but not in all.

The comparison of warp and weft direction properties in Chapter 4 reveals
that strain-hardening in the warp direction in woven fabrics hardens the
bending behaviour as well; but it seems to have little significance for shear
behaviour because there are no trends showing that the warp values of G,
2HG and 2HG5 are larger than those of the weft when the cover factors and
the yarn properties are similar. This suggests that the mechanisms operating
in bending and shear may be different.

The results analysed above suggest that bending and shear may have
some relationship, but that this relationship is not always as strong as described
in some of the existing literature and that, in some cases, they are different
in nature. Mechanically speaking, the two deformation modes both involve
the friction and bending of yarns, but these two mechanisms are operating in
different ways, especially the frictional effect. The inter-fibre friction in
shear seems to be less important than it is in bending; thus the hardening of
warp yarns of woven fabrics, which affects the internal friction, has little
effect on shear behaviour.

6.3 Testing of shear properties

6.3.1 Introduction
The appearance of garments on human bodies has always been the prime
concern of both fabric and garment designers. Up to now, design of fabric
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and garments has relied heavily on past experience and trial-and-error. As
textiles and clothing products, dictated by modern fashion trends, move
through ever faster cycles of renewal, just-in-time and quick response are
becoming ever more important in the textiles and clothing industries.
Consequently, modern technologies such as computer-aided design (CAD)
are attracting increasing attention. The development of advanced CAD systems
capable of simulating complex fabric deformations on human bodies will
have great benefits for the textiles and clothing industries: faster industry
responses to market demands, higher product quality, more variety, and reduced
production costs.

While there have been a significant number of attempts to develop clothing
CAD systems (Okabe and Akami, 1984; Collier et al., 1991; Gan et al.,
1991; Kang et al., 1994), progress has been hindered by the lack of ability
to simulate the true appearance of fabrics on computers. No reliable and
efficient technique currently exists for the numerical prediction of complex
fabric deformations, which generally involve buckling and post-buckling
large deformations, large rotations, material non-linearities, and complex
interactions between the fabric and the human body. In this section, an
attempt will be reported to establish an appropriate non-linear constitutive
model for fabric materials in the analysis of fabric complex deformations, an
area in which several difficulties currently exist.

Fabrics are generally treated as orthotropic thin sheets in a numerical
model (e.g. finite-element shell model). The tensile membrane and bending
properties determined by existing test procedures, e.g. the KES system
(Kawabata, 1980), are suitable for direct use in constitutive models, but
there are difficulties in translating the shear modulus obtained from the KES
shear tester into a sensible figure for the true shear modulus.

Because fabrics are susceptible to buckling under external forces, it is
very difficult to design perfect shear test equipment. The KES shear tester is
the only commercialised one for fabrics so far, and it is widely used for
various applications, such as fabric hand and tailorability evaluation. This
existing test procedure for fabric shear modulus involves a piece of rectangular
cloth clamped along two opposite edges and free on the other two edges.
During the test, the cloth is pre-tensioned and then subjected to shear forces
on the clamped edges which undergo relative displacements as a result of the
applied shear forces as shown in Fig. 6.9. The deformations and forces in the
cloth so loaded do not correspond to a pure shear state as achieved in a
conventional shear test for other engineering materials in Fig. 6.10. Therefore,
the test result cannot lead directly to the determination of the fabric shear
modulus, particularly in the non-linear range of stress–strain relationship.

It is desirable to obtain an analytical solution for the problems advanced
above. In applied mechanics, there exists an analytical solution to the shear
stress or strain distribution on the specimen used, as shown in Fig. 6.9 for
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homogenous isotropic materials. However, no existing analytical solution
for orthotropic materials can be found in the literature. Textile fabrics are not
homogeneous isotropic materials, and no analytical solution has been presented
for the fabric specimen in the KES shear tester.

6.3.2 The KES shear test

A schematic diagram for a specimen under KES shear test has been shown
in Fig. 6.9. The size of the fabric specimen is 20 cm ¥ 20 cm and the tested
area is 20 cm ¥ 5 cm. On this specimen, a tension of 10 gf/cm is imposed
along the clamped sides of the fabric in the x direction to avoid buckling of
the fabric. During the test, the cloth is subjected to shear forces on the
clamped edges which undergo relative displacements along the y axis as a

h = 20 cm

A¢

j

C¢ D¢

w = 5 cm

B¢
y

Q (Shear forces)

P (Tensile force) = 200 gf

x

6.9 The KES shear testing apparatus.
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6.10 Conventional test to determine the shear modulus of a stiff
material.
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result of the applied shear forces. The angle j represents the rotation of a
point on the moving edge of the tested specimen, but not the shearing strain.
The maximum angle of rotation in this test is 8∞ which corresponds to the
wearing condition of fabrics. It is possible to find the forces exerted on the
specimen, although the general loading condition and shear stress distribution
of the specimen are complicated.

According to the equilibrium conditions in the X–Y plane in Fig. 6.9, the
following equations can be obtained:

Â Xi = 0 [6.4]

Â Yi = 0 [6.5]

and

Â Mi = 0 [6.6]

where Xi represents a force in the x direction, Yi a force in the y direction and
Mi a moment in the X–Y plane. From these relations, it is clear that the
specimen is subject to a tensile force of P, a pair of shear forces Q and
moments M1 = M2 = Qw. The forces and moments exerted on the specimen
in the KES shear tester are shown in Fig. 6.11.

From the above loading condition, shear stress distribution on the specimen
is not uniform. It is obvious that the shear stresses at the points on the left
and right edges of the specimen are always zero in the whole loading process.
Thus infinitesimal element B in Fig. 6.11 has only tensile stress, but element
A has shear stress t, and tensile stress s.

The conventional test to determine shear modulus for stiff engineering
materials is shown in Fig. 6.10, in which a circular rod is subject to torsional
deformations. Thus, the element in the circular rod is subjected to pure shear
deformation. By contrast, the KES shear tester does not produce a pure shear
state in the tested specimen.
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6.11 Forces exerted on fabric specimen under KES shear test.
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There are two ways in which fabric mechanics researchers obtain shear
modulus. One is the average slope of the shear curve when the shear angle
is from 0.5–5∞ and the shear stress–strain relationship is simplified as linear.
The other method is to find the derivative of the stress–strain curve when the
shear stress–strain relation is considered as non-linear. Because the data
obtained from the KES test does not correspond to pure shear, the force–
rotation relationship and shear modulus derived are not applicable for numerical
computation in the analysis of fabric complex deformations.

6.3.3 Finite-element analysis

From Fig. 6.11, it is clear that the shear stress distribution on the tested
specimen is not uniform. In order to find out the general pattern of the shear
stress (therefore strain) distribution, a finite-element analysis has been applied.
To examine the typical distribution of shear stress in a KES test specimen, a
finite-element analysis using 8-nodal plane-stress elements of the LUSAS
finite-element package was carried out (Lucas, 1994). A linear elastic
orthotropic material sheet was assumed and the constitutive law of orthotropic
materials is:
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[6.7]

where g is shear strain, c11 and c22 are related to the tensile moduli E1 and E2

in the x and y directions respectively, c33 is the shear modulus and c12 is
related to the Poisson’s ratio. In finite element analysis, the material properties
used are E1 = 0.1096 MPa, E2 = 0.0505 MPa, shear modulus C33 = 0.38 and
Poisson’s ratio n = 0.1. The shear force applied on the specimen is 0.1
N/mm, which correspond to the properties of an ordinary fabric and loading
condition in the KES shear test. The deformed shape of the specimen is
shown in Fig. 6.12. In this figure, the coarsely meshed area simulates the
clamping of the jaw of the KES shear tester in the longer direction, while the
finer mesh area simulates the fabric specimen. The stress distribution in the
x and y directions are shown in Figs 6.13 and 6.14. It can be seen from these
figures that the stress is close to constant along the shorter direction while
assuming a symmetrical curve in the longer direction.

6.3.4 Theory

6.3.4.1 Shear deformation of the specimen

The above finite-element analysis provides the general picture for the stress
distribution in the specimen. It is desirable to obtain an analytical solution
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for the problem so that the exact relationship between test data and those for
pure shear deformation can be obtained. The present study started with the
application of the virtual work principle.

Fabric shear stress–strain relationship is usually non-linear. In order to
simplify the equations, fabric material is considered to be linear and orthotropic,
within a small incremental loading range from Qn to Qn+1, or Q. In this way,
the results are applicable for non-linear material in the whole deformation
process, during which many incremental steps for loading are taken. According
to the principle of virtual work, the governing equations for plane stresses
must satisfy the condition:

Ú ÚÚ
v

x x y y xy xy V(  +  + )ds d e s d e t dg

– (  + )d  = 0

1

ÚÚ F u F v snx ny

S

d d [6.8]

In this equation, sx, sy are the stresses in the x and y directions respectively,
and txy the shear stress. dex, dey and dgxy are virtual strains. du and dv are the
virtual displacements along the x and y directions. Fnx, and Fny are external
distributed forces on the force boundaries. The first integral in the equation
is with respect to the whole volume, while the other one for the integration
on the force boundaries, ds, is related to fabric width and length.

In the case of a non-linear material, all stresses represent the values within
an infinitesimal range of Q(Qn, Qn+1), within which the stress–strain relationship
can be considered as linear.

6.3.4.2 Shear strain distribution

In order to apply the above governing equations to obtain the stress distribution
in the test specimen, it is necessary to set up the displacement field which
should satisfy the displacement boundary conditions and agree with the
results obtained from the finite-element analysis. u and v in the following
two equations form the displacement field in the x and y directions:

u u a u
i

n

i i =  +  0 =1
S [6.9]

and

v v b v
i

n

i i =  +  0 =1
S [6.10]

where u0 and v0 are the displacements on the prescribed displacement boundary,
and qi and bi are the projection values in the x and y directions, respectively.
In the present case, on boundary A¢ B¢ in Fig. 6.9, u0 and v0 are zero because



Structure and mechanics of woven fabrics168

the fabric edge is fixed during testing. In addition, because the two edges of
the fabric are clamped, the partial derivatives of the displacements on A¢ B¢
are also zero. Thus: u0 = v0 = 0. In order to facilitate the computation, the
following series are selected for trial functions:

u = u0 +  a1u1 [6.11]

and

v = v0 + b1v1 [6.12]

where

u1 = x [6.13]

and

v x
h

y1 = cos
pÊ

Ë
ˆ
¯ [6.14]

Therefore, the corresponding strains in the x–y plane can be expressed as
equations 6.15–6.17:
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Shear strain distribution follows the pattern described in equation 6.17. That
is, the shear strain along x axis is constant, in other words, there is no strain
variation along the x axis, while a cosine relation of strain holds along the y
axis.

6.3.4.3 Shear stress distribution

According to equation 6.7, plane stresses can be obtained as the following:
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From equation 6.20, the shear stress along the x axis is constant, or there is
no stress variation along the x axis, while a cosine relation holds along the
y axis. This agrees with the numerical results shown in Figs 6.13 and 6.14
from the above finite-element analysis.

6.3.4.4 Constants in the equation

The constants a1 and b1 in the above equations are unknown so far. They can
be obtained from the following analysis. According to the virtual displacement
principle represented in equation 6.8, the following equations can be obtained:
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Substituting equations 6.13–6.20 into equations 6.21 and 6.22, we get

a
P

c ht1
11

 = 
D

[6.23]

and

b
h Q

c th c tw1
33

3
22

2 2 = –
3

2(3  + )
p

p
D

[6.24]

where h is the width of the specimen, t the thickness of the fabric. P is the
amount of the increment of tensile force which corresponds to the pretension
applied to the specimen. Q is the shear force increment from (Qn, Qn+1), and
c11 and c22 can be tested from the KES tensile tester. However, c33, the shear
modulus cannot be determined directly from the KES shear tester, but needs
to be modified.

6.3.4.5 Shear modulus

The following procedure is used to find c33. The calculation of c33 needs the
values of the displacement increment v of the specimen corresponding to the
force increment Q. According to equations 6.12 and 6.14, the displacement
of the specimen is not uniform along the y axis; it is necessary to find out the
equivalent average displacement. This requires the unit force on the specimen
edge. If the total force applied on the specimen edge is Q, it can be found that
the distribution of unit force on the edge where x = w is
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According to the equivalency principle, the equivalent displacement increment,
v, of the points at x = w should be determined by
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According to equation 6.12, b1w is the displacement in the middle point of
the specimen where y = 0. Thus the equivalent v is p /4 times the displacement
of the middle point along the moving edge of the specimen.

The value of v so obtained is usually smaller than the actual one, thus a
factor is required to modify it. The average value is taken between the
maximum and the minimum:

k = 
4

 + 0.5 1 –  
4

p p◊ Ê
Ë

ˆ
¯ [6.27]

so

Dv = kb1w [6.28]

Substituting equation 6.24 into 6.28, c33 can be obtained:
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where v and Q can be obtained from the tested shear force–rotation relationship.
If v and Q are from the shear force–rotation curve of fabric in the warp
direction, c22 is the tensile modulus of fabric in the weft direction. Or if v and
Q are from the weft direction, c22 must be the tensile modulus of fabric in the
warp direction when stress is equal to P/20 = 10 gf/cm.

6.3.5 Numerical results

The above analysis has provided a picture of shear stress/strain distribution
in the test specimen and a close form solution for the calculation of shear
modulus of a fabric in terms of the data obtained from the KES tester. This
section will deal with numerical results calculated from this solution and the
accuracy and validity of the analytical solution will also be discussed.

6.3.5.1 Computation of c33

c33 is the main focus of this study and its relation with the KES test data has
been derived in equation 6.29. From equation 6.29, the computation of c33
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requires the value of c22 which is related to the tensile modulus. The tensile
modulus is the value when stress = 10 gf/cm in the y direction, which can be
obtained from the tensile curve. When the Poisson’s ratio is equal to zero, c22

can be found from the following relationship:

c
E
v v

E e22
2

12 21
2 = 

1 –  
 =  = a

b
a e [6.30]

and

s b
a e

 = e  –  1
[6.31]

where s is the tensile stress in gf/cm and e the tensile strain expressed as a
percentage. a and b are two constants which can be determined by the non-
linear regression technique (Hu, 1994). When s is equal to 10 gf/cm, c22 can
be obtained from the following equation;

c22  =  [(10  ) + 1](gf /cm) = 0.00098 [(10  ) + 1](MPa)a
b b a

b b¥ ¥

[6.32]

Or, alternatively, it can be measured on the tensile stress–strain curve when
stress = 10 gf/cm. In the following section, c22 is calculated from equation
6.32.

6.3.5.2 Modified shear modulus from tested shear curve

In equation 6.29, w, h and k are known. As shown in Fig. 6.9, h = 20 cm =
200 mm, w = 5 cm = 50 mm. If the material is considered as non-linear, the
modulus curve of c33 can be calculated from input data of v, Q, c22 and t
(fabric thickness). Also, in the following computation, two fabrics are used.
The values of v and Q can be obtained from the curves tested on the KES
tester. The loading process is divided into 140 steps; during each step, the
stress–strain relationship is assumed to be linear. When Q is given, f can be
read from the curve. From f, the value of v can be determined from Fig.
6.15. Figure 6.16 shows the shear force–rotation curves obtained from the
KES shear tester for one fabric in the warp and weft directions respectively.
c33 can be calculated from the tested curve for warp direction or for weft
direction. If the fabric is orthotropic as assumed, the modified moduli of
warp and weft directions should be the same.

Figure 6.17 shows the modified shear modulus curves from the calculation.
From this figure, the values from the warp and weft directions for shear
modulus vary with shear strain. When the shear strain is smaller than 0.01
rad, the values of shear moduli from the warp and weft directions are very
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6.15 Determination of Dn.
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6.17 Modified shear moduli.



The shear properties of woven fabrics 173

Orthotropic structure
Skewed structure

a b

6.18 Change of orthotropic structure.

close. However, at the later stage, the difference between the warp and weft
values becomes large when the strain increases. This may be due to the fact
that the orthotropic assumption is inapplicable during this later stage, but
valid when shear strain is very small in the initial stage.

This can be explained by Fig. 6.18. When the fabric specimen is subjected
to the deformation imposed by the KES shear tester, in the initial stage, warp
and weft yarns are perpendicular to each other and their rotation relative to
each other is limited by internal friction between warp and weft. By contrast,
in the later stage, the fabric structure is changed from state (a) to state (b), at
which the warp and weft yarns are no longer perpendicular to each other.
Thus the orthotropy is not held during this stage.

Therefore, the results from the present research are more accurate in the
initial part of the shear deformation. In the later part, the difference between
warp and weft becomes increasingly large as the shear strain increases. In
view of the complexity of the later stage, it is suggested that the average c33

of the warp and weft values is used for representing the shear modulus of
fabric sheet as shown in Fig. 6.17. Table 6.1 shows the deviations (d1 and d2)
of warp and weft values from their averages for the fabric. The largest
deviation when shear strain is 8∞ is around 10 % and 18 %.

6.3.5.3 Comparison of modified and tested shear moduli

From the force–rotation curve, the tangent modulus can also be derived by
differentiation of force with respect to rotation angle using spline fitting.
This is regarded as the tested shear modulus and represented by G, which is
frequently adapted in many computations. As discussed for modified shear
moduli from the warp and weft directions, tangent shear moduli directly
from tested curves for the warp and weft directions are also different, thus
the average values of warp and weft are used for comparison. c33 and G are
the averages of the warp and weft directions in Fig. 6.19. The differences
between the modified and tested shear moduli are listed in Table 6.2.
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From these two figures, the modified modulus c33 is consistently larger
than the one derived from the tested data which corresponds to the conventional
shear stiffness G. In other words, from Fig. 6.19, the shear modulus derived
from the test is always smaller than the modified ones. More than 25 % and
up to 32 % of error can be found in the later stage. Thus the error of the
tested shear modulus is very significant.

Table 6.1 Shear moduli of woven fabric (MPa)

ggggg, (rad) c33, weft c33, warp c33, average d1, % d2, %

–.0010 .4572 .4462 .4517 1.2 1.2
–.0060 .3750 .3629 .3689 1.63 1.63
–.0010 .2794 .2678 .2736 2.13 2.13
–.0160 .2335 .2214 .2274 2.68 2.68
–.0210 .2193 .2044 .2119 3.50 3.50
–.0260 .2128 .1970 .2049 3.87 3.87
–.0310 .2068 .1939 .2004 3.21 3.21
–.0360 .2026 .1942 .1984 2.11 2.11
–.0410 .1985 .1980 .1982 0.12 0.12
–.0460 .1952 .2033 .1992 2.03 2.03
–.0510 .1923 .2082 .2003 3.97 3.97
–.0560 .1904 .2130 .2017 5.61 5.61
–.0610 .1889 .2173 .2031 7.01 7.01
–.0660 .1882 .2211 .2046 8.05 8.05
–.0710 .1877 .2243 .2060 8.89 8.89
–.0760 .1882 .2272 .2077 9.41 9.41
–.0810 .1889 .2293 .2091 9.65 9.65
–.0860 .1900 .2319 .2109 9.94 9.94
–.0910 .1907 .2350 .2128 10.41 10.41
–.0960 .1913 .2387 .2150 11.02 11.02

c33 Average corrected shear modulus
G Average tested  shear modulus
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6.19 Comparison of simple and modified shear moduli.
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6.3.5.4 Modified shear modulus calculated from the tested parameter G

From the KES shear test, a single value of G is given for the shear stiffness,
which is the slope between shear angle of 0.5–5∞ as shown in Fig. 6.20. This
is equivalent to considering that the shear deformation of the fabric is linear

Table 6.2 Comparison of shear moduli for woven fabric

c33 G,

average average Difference, %

ggggg  (rad) (MPa) (MPa) (G – c33)/c33

.0010 .4517 .3361 –25.8

.0060 .3689 .2625 –28.8

.0110 .2736 .1932 –29.4

.0160 .2274 .1673 –26.5

.0210 .2119 .1600 –24.5

.0260 .2049 .1557 –24.0

.0310 .2004 .1536 –23.3

.0360 .1984 .1535 –22.6

.0410 .1982 .1543 –22.2

.0460 .1992 .1552 –22.1

.0510 .2003 .1562 –22.0

.0560 .2017 .1574 –22.0

.0610 .2031 .1585 –22.0

.0660 .2046 .1597 –22.0

.0710 .2060 .1609 –21.9

.0760 .2077 .1622 –21.9

.0810 .2091 .1637 –21.7

.0860 .2109 .1654 –21.6

.0910 .2128 .1674 –21.3

.0960 .2150 .1697 –21.1

S
he

ar
  

fo
rc

e 
(g

f/c
m

)

j1 – 0.5 j2 – 5

j1 j2

Rotation (degree)

6.20 Determination of G on the KES shear tester.
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Table 6.3 c33 calculated from G and related parameters

Sample Direction aaaaa bbbbb 0.2 ¥¥¥¥¥ c22 G t c33 (0.2 ¥¥¥¥¥ c22)/ c33/G

c33

2 weft 0.258 0.006 0.009 0.253 0.222 0.314 2.89 1.24
warp 0.451 0.034 0.003 0.223 0.296 1.18 1.33

3 weft 0.304 0.011 0.006 0.212 0.233 0.272 2.16 1.28
warp 0.526 0.040 0.004 0.195 0.258 1.40 1.32

4 weft 0.366 0.013 0.006 0.154 0.240 0.190 3.32 1.23
warp 0.435 0.027 0.004 0.136 0.173 2.28 1.28

5 weft 0.271 0.008 0.007 0.220 0.230 0.277 2.55 1.26
warp 0.474 0.035 0.004 0.200 0.265 1.35 1.32

6 weft 0.302 0.003 0.024 0.571 0.249 0.204 3.38 1.23
warp 0.715 0.006 0.026 0.580 0.708 3.66 1.22

7 weft 0.227 0.004 0.011 0.247 0.218 0.297 3.64 1.20
warp 0.450 0.030 0.004 0.227 0.300 1.27 1.32

9 weft 0.288 0.007 0.009 0.280 0.205 0.346 2.66 1.24
warp 0.404 0.038 0.003 0.277 0.373 0.76 1.35

10 weft 0.290 0.006 0.009 0.210 0.179 0.242 3.92 1.15
warp 0.556 0.033 0.004 0.185 0.235 1.87 1.37

11 weft 0.338 0.008 0.009 0.256 0.171 0.306 2.97 1.19
warp 0.485 0.033 0.004 0.217 0.281 1.37 1.30

12 weft 0.313 0.008 0.009 0.235 0.170 0.278 3.10 1.18
warp 0.483 0.026 0.005 0.218 0.278 1.64 1.28

13 weft 0.232 0.006 0.008 0.245 0.204 0.302 2.76 1.23
warp 0.604 0.077 0.003 0.220 0.295 0.92 1.34

14 weft 0.296 0.006 0.011 0.208 0.240 0.247 4.32 1.19
warp 0.509 0.047 0.003 0.192 0.255 1.22

after the initial stage. For simplification, in many applications, the value of
G is used for shear stiffness in place of c33.

As mentioned earlier, this is not the correct value for pure shear deformation.
It is desirable that an analytical solution can be used for calculating the shear
modulus from the value of G. According to the definition of G from KES
testing, equation 6.29 becomes:

c
f f

t
c G

t
c33

2 1

2 1
22 22 = 1.4

 –  
 –  

  1 –  0.2  = 1.4  –  0.2j j ◊ [6.33]

Data for G from 24 fabrics were used for the calculation of c33. The results
are shown in Table 6.3.

It can be seen from this table that the difference between tested and
modified moduli is also very large, about 25–30 %. The effect of c22 is not
very significant. From this table and equation 6.33, the error caused by
ignoring c22 is about 2 %. If the term containing c22 is ignored, the ratio of
the modified and tested shear moduli is equal to 1.4 which is also applicable
for continuous non-linear shear stiffness.



The shear properties of woven fabrics 177

6.21 Modified shear stress–strain curve.
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6.3.5.5 Stress–strain relationship

Because the shear force–rotation curve from the KES tester does not correspond
to the pure shear state, it needs to be modified. The modified version can be
obtained from the analytical solution for c33. Within the small range of force
increment, the shear stress and strain relationship is linear. Two fabrics were
examined as above. The whole loading process is also divided into 140
steps, thus non-linear stress–strain curves are obtained. The shear stress–
strain curves are shown in Fig. 6.21.

6.4 Shear properties of woven fabrics in

various directions

6.4.1 Introduction

Shear behaviour of woven fabrics in both principal directions has received
wide attention as it affects many types of fabric behaviour, but little attention
is paid to the shear properties in other directions, which is no less important
than that in the principal directions since garments in practical use deform in
various directions. Therefore, a quantitative knowledge of the shear properties
in bias directions becomes a must for garment design and new fabric
development, and this is the main topic of this section.

As we all know, the shear behaviour of a woven fabric can be characterised
by two shear parameters, i.e. shear rigidity (G) and shear hysteresis (2HG
and 2HG5). Shear rigidity is the resistance of a fabric to shear while shear
hysteresis is the energy loss within a shear deformation cycle. Existing literature
has suggested a strong relationship between shear rigidity and shear hysteresis
(Collier, 1991; Hu and Newton 1993; Hu, 1994; Jeong and Phillips, 1998).
The results obtained from Collier, Jeong and Phillips and Hu indicated that
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the correlation coefficients of shear rigidity and shear hysteresis can be as
high as 0.90 or more. Based on the assumption that shear rigidity and shear
hysteresis share a similar mechanism, a G-predicting model can be developed
through the KES data collected from a wide range of woven fabrics.
Furthermore, the proposed model can be further applied to predict shear
hysteresis. The validity of the model for shear hysteresis, which has been
visualised in the form of polar diagrams, will be confirmed, and the results
also indicate a linear relationship between shear rigidity and shear hysteresis
which not only holds in the principal directions, but is also present in bias
directions.

6.4.2 Modelling of the anisotropy of shear properties

The classical elasticity theory is developed by Kilby (1961, 1963) based on
the assumption that a fabric is an anisotropic lamina possessing a Poisson
effect and with two planes of symmetry at right angles to one another.
According to the elasticity theory (Hu, 1994), the behaviour of tensile and
shear properties from the theoretical transformation of various compliances
in the principal and bias directions can be used to yield the following equations:
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where ¢ ¢ ¢E E GX Y XY,  and  denote the tensile modulus in the X¢ and Y ¢ axes and
shear rigidity between both principal directions respectively with an angle q.

With equation 6.32, the shear rigidity in the X¢ and Y ¢ axes can be obtained
directly from experimental tensile modulus, while v12 cannot. The theoretical
treatment suggests that measurements of modulus in two directions are
insufficient to define a fabric’s shear rigidity, since variations with direction
are still possible for fabrics with similar E1 and E2. An investigation of the
third direction is therefore necessary, and the most convenient direction is
the 45∞. Thus, the sum (1/E1 + 1/E2 + 2v12/E1) may be deduced from
measurements in three directions by considering specimens cut along the
warp, weft and 45∞ directions. Therefore, when considering q = 45∞ values,
equation 6.32 gives
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and
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Substituting equation 6.37 into equation 6.32, we get
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Thus fabric shear rigidity in various directions can be predicted from
equation 6.39 when its values in the warp and ± 45∞ directions are measured.
As shear rigidity provides a measure of the resistance to the rotational
movements between the warp and weft yarns at the intersecting points when
the fabric is subjected to a small shear deformation, its relationship between
both principal directions should be determined. That is, a strong linear
relationship is obtained in the two principal directions by Mahar et al. (1989,
1990) and it is elucidated that the measurement on fabric shear properties
can be simplified and is necessary in only one principal direction. It is
further proved from equation 6.39 that the shear rigidity in either the warp or
weft direction with ± 45∞ directions gives a very satisfactory result in various
directions. However, if the differences in the values of shear rigidity between
the warp and weft directions are large, the average value will be taken in
both principal directions in the calculation of shear rigidity in various directions
given in equation 6.39.

Shear hysteresis of the fabric can be defined as the energy loss within the
shear cycle when the fabric is deformed and allowed to recover to its original
position. Since strong linear relationship between shear rigidity (G) and
shear hysteresis (2HG and 2HG5) has been proved by several researchers
(Collier, 1991; Hu, 1994; Jeong and Phillips, 1998), the proposed G-predicting
model in different directions can be applied to shear hysteresis (2HG and
2HG5) of different fabrics.

6.4.3 Polar diagrams of the shear model

6.4.3.1 General features

As shown by Figs 6.22 and 6.23, the shear parameters, i.e. shear rigidity G
and shear hystereses, 2HG and 2HG5, exhibit great similarities. First, the
shapes of their polar diagrams are all symmetrical to the warp and weft
directions. Second, the values of these parameters change with the angle
with their maxima exactly at ± 45∞ to the warp or weft direction. Therefore,
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6.22 Typical polar diagram of shear rigidity (G).

Eq. 6.22 2HG Eq. 6.22 2HG5

0

5

10
15

30
45

60

75

90

105

120

135
150

165180195
210

225

240

255

270

285

300

315
330

345

0

0

3.5

7 15
30

45

60

75

90

105

120

135
150

165180195
210

225

240

255

270

285

300

315

330
345

0

6.23 Typical polar diagram of shear hysteresis (2HG, 2HG5).
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the shape of these polar diagrams is mainly governed by their values at
± 45∞. Presumably, the anisotropy of the shear rigidity should be due to some
inherent difference in their physical behaviour, the types of finishes undergone
and the stiffness of the constituent yarns or fibres, the contact area at the
intersecting points of two sets of yarns, the fibre packing density in the
yarns, and so on. As a result, any combination of these factors can confer
different shear characteristics in woven fabrics even when produced in the
same material.

From fabric geometry, there is a normal pressure acting at each intersecting
point of two sets of yarns in the unset fabric. As the shear force is applied to
the fabric and usually has a larger magnitude than the frictional restraint at
the intersecting point of yarns, the fabric will deform with hysteresis effect.
In this case, the fabrics woven with natural fibres will have larger value of
shear hysteresis than those with synthetic fibres due to the relatively low
contact area of synthetic fibres at each yarn intersecting point.

The values of shear properties will be decreased after the finishing process.
It is a fact that the residual bending stress existing in the yarns is released
with the drop of the normal reaction acting on the crossing over regions.
Thus commercially available woven fabrics usually have lower values of
shear properties than laboratory-produced woven fabrics.

As the shear deformation depends upon the frictional and elastic forces
within a fabric, elastic force will be built up rapidly if tightly woven fabric
is sheared where limited sliding of yarns over each other is allowed in their
crossing over points. On the contrary, the frictional forces will be very low
if the fabric is loosely constructed and produced in weaves such as twill and
satin.

6.4.3.2 Effect of weave density on fabric shear

In this section, our discussion is based on the analysis of plain and twill
fabrics. Because the warp densities of these fabrics are kept constant, any
changes in the trends of polar diagrams of shear properties can be considered
to be due to the different weft densities of these fabrics. The polar diagrams
of shear rigidity and shear hysteresis with different weft densities are plotted
in Fig. 6.24.

The highest shear rigidity and shear hysteresis are observed from the
plain fabrics while the lowest is found from the 3/3 twill fabrics shown in
Fig. 6.23. For different weft densities, the results obtained from Fig. 6.24
show that the values of shear rigidity and shear hysteresis increase with the
increase in the weft density of woven fabrics. From all experimental results,
the shape of the polar diagrams moves inward to outward when the fabric
weave density increases. This is because a loose structure has lower inter-
yarn friction and allows the relative movement of warp and weft yarns. As
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a result, loose fabrics have the lowest shear rigidity and shear hysteresis. On
the other hand, a tight structure avoids yarn movement, thus increasing the
shear hysteresis of the fabrics. Therefore, a larger value of shear rigidity and
shear hysteresis leads to an increase in the size of the polar diagram.

6.4.4 Relationship between shear rigidity and
hysteresis in various directions

Existing literature shows a strong relationship between shear rigidity and
shear hysteresis (Collier, 1991; Hu, 1994; Jeong and Phillips, 1998). The
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6.24 Effect of weft density on the polar diagrams of shear
parameters: (a) G; (b) 2HG; (c) 2HG5.
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6.25 Relationship between shear rigidity and hysteresis in various
directions: (a) 2HG and G; (b) 2HG5 and G; and (c) 2HG5 and 2HG.
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relationships between shear rigidity (G) and shear hysteresis (2HG and 2HG5)
of a fabric sample in various directions are illustrated in Fig. 6.25 parts (a)–
(c) respectively. It can be seen that a strong linear relationship exists between
shear properties in different directions. The coefficient of determination R2

for 2HG and G in various directions is 0.9727, for 2HG5 and G in various
directions is 0.9920 and for 2HG5 and 2HG in various directions is 0.9579.
These strong linear relationships between shear rigidity and shear hysteresis
at two angles, R2 > 0.90, are also held in many other types of woven fabrics.

From these facts, it can be assumed that a similar mechanism operates for
shear rigidity and hysteresis between both principal directions and bias
directions. As shear rigidity of a fabric is mainly caused by the frictional
forces existing in the yarns, shear hysteresis is also governed by its
corresponding frictional force and the occurrence of the frictional force is
continuous in the whole shear cycle. Higher values of shear rigidity appear
in the bias directions and larger magnitudes of shear hysteresis can be found
in these directions too.

6.5 Summary

Whenever bending occurs in more than one direction, so that the fabric is
subject to double curvature, shear deformations of the fabric are involved. It
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is thus not strange to find a strong relationship between the shear property
and the bending property. Shear deformation is very common during the
wearing process since the fabric needs to be stretched or sheared to a greater
or lesser degree as the body moves. This chapter provides a comprehensive
knowledge of the shear properties of woven fabrics and the conclusions
reached include:

(1) The statement that bending and shear have identical nature is doubtful.
The hardening of warp yarns has little effect on shear properties, but
cover factor has a definite influence. Generally, large cover factor will
produce large shear stiffness and shear hysteresis before the jammed
condition is reached. After that, this effect is not apparent. The relation
between bending and shear is not as strong as some literature has stated
and, for some fabric types, like shengosen fabrics, they are totally
different. This is because the two deformation modes operate in different
ways although they both involve friction and yarn bending.

(2) The shear modulus and curves obtained on the KES shear tester are
significantly different from those under the pure shear state, but they
are still a good reflection of the shear properties of woven fabrics.
Finite-element analysis can be successfully used to analyse the distribution
of shear stresses and strains determined on the KES tester. The exact
shear stress–strain relationship and actual shear modulus need
modification for complex fabric deformation.

(3) A model derived from Kilby’s work can be successfully used to predict
the shear rigidity in all directions and extended to predict the shear
hysteresis due to a strong linear relationship between them, which
exists not only in the warp and weft directions but also in the bias
directions. The shape of polar diagram of fabric shear properties is
symmetrical to the warp and weft directions and has a crest given the
maximum values in ± 45∞ directions. Moreover, the polar diagrams of
shear rigidity and shear hysteresis will move outwards with the increase
in weave density.
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7.1 Introduction

Drape can be generally classified into two categories, namely two-dimensional
drape and three-dimensional drape. A two-dimensional drape means that a
fabric bends under its own weight in one plane while three-dimensional
drape allows a fabric to be deformed into folds in more than one plane under
its own weight. The study of three-dimensional drape was begun by Chu et
al. (1950) when they established a measuring method for fabric drape using
the F.R.L. Drapemeter. Chu quantified the drapeability of a fabric into a
dimensionless value termed the drape coefficient which is defined as the
percentage of the area from an angular ring of fabric covered by a vertical
projection of the draped fabric. The apparatus was further studied by Kaswell
(1953) and later revised by Chu et al. (1960, 1962). Finally, Cusick (1968)
re-investigated the experimental method by using a parallel light source
which reflects the drape shadow of a circular specimen from a hanging disc
onto a paper ring (Fig. 7.1). He also modified the calibration of Chu’s drape
coefficient in terms of paper-weighing method. In recent years, the emphasis
has been on improving the efficiency and accuracy of Cusick’s drapemeter
by using digital readout of the drape shadow from photovoltaic cells (Collier,

7
Fabric complex deformation

analysis and simulation

Paper ring (W1)
(non-draped area)

Fabric shadow (W2)
(projected area)

7.1 Measurement of the drape coefficient using image analysis.
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1991), as well as computerised image analysis (Vangheluwe and Kiekens,
1993).

Both subjective and objective evaluations can be found in the literature on
fabric drape study. Objective evaluation of fabric drape involves the
measurement of the drapeability in terms of drape coefficient, drape profile
and node analysis from Cusick’s drapemeter (1962, 1965, 1968), and simulating
fabric drape by various mechanical methods such as finite-element analysis
(1962, 1965, 1968). On the other hand, fabric drape is also affected by
psychological factors which relate to human perceptions and fashion. Subjective
evaluation of the drape of a fabric involves the rating of drapeability on a
garment such as a skirt, and image analysis on circular fabrics (Dowlen,
1976). Generally, subjective evaluation of fabric drape can provide
understanding which relates to person, place, custom and fashion trends.
Thus, subjective evaluation of fabric drape is an investigation aimed at
understanding the human perception of drape of fabrics.

Basically, fabric drape is not an independent fabric property. It relates to
fabric bending, shear, tensile, fabric thickness and fabric weight (Niwa and
Seto, 1986; Collier, 1991; Hu and Chan, 1998). A fabric bends under its own
weight during draping. Fabrics bend differently according to different fabric
directions. Peirce (1930) also termed fabric bending under its own weight as
drape stiffness. Since drape behaviour in two dimensions can be evaluated
by a cantilever test in which bending length and bending rigidity are the
measurable objective values for describing the two-dimensional drapeability
of fabrics, the use of bending length and bending rigidity as the indices to
trace the drape properties is important.

7.2 Drape categories and fabric cantilever

7.2.1 Three-dimensional drape

7.2.1.1 Objective measurement

Chu et al. (1950) had quantified the drapeability of a fabric into a dimensionless
value termed the drape coefficient (DC%). The apparatus was further studied
by Kaswell (1953) and later revised by Chu et al. (1960, 1962). At last,
Cusick (1965, 1968) investigated again the experimental method by using a
parallel light source which reflects the drape shadow of a circular specimen
from a hanging disc onto a paper ring. In Cusick’s modified formula, the
drape coefficient is defined as the ratio of the paper weight from the drape
shadow W2 to the paper weight of the full specimen W1. The formula is
shown in dimensionless quantities in equation 7.1. The quantitative value of
DC% can represent the drapeability of fabrics in three dimensions. DC% is
high on stiff fabrics but DC% is low on limp fabrics.
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Cusick’s experimental method consists of hanging a 15 cm radius fabric
specimen over a 9 cm radius supporting disc, a parallel light source inside
the drapemeter will then form a shadow from the draping specimen on a
piece of paper. The shadow pattern on the paper can be traced out and
(DC%) can then be calculated. Alternative specimen sizes can be adopted
according to different fabric properties. An 18 cm radius specimen may be
used for a stiff fabric if its DC% on a 15 cm radius specimen is greater than
85 %. In another case, a 12 cm specimen may be used for a very limp fabric
if its DC% on a 15 cm radius specimen is smaller than 30 %.

More recently Collier et al. (1991) designed a digital drapemeter to evaluate
drape coefficient by using photovoltaic cells. Cusick’s experimental drapemeter
was used but photovoltaic cells were applied to the bottom surface of the
Cusick paper to determine the amount of light blocked by a fabric specimen
draped on a pedestal. A digital display gives the amount of light being
absorbed by the photovoltaic cells, which is related to the amount of drape
of the fabric specimen. The method is more convenient and accurate than the
paper tracing method.

Vangheluwe and Kiekens (1993) measured the drape coefficient using
image analysis. A charge coupled device (CCD) camera was mounted centrally
above the drapemeter. This camera sent the image to a monitor and a frame
grabber in a personal computer, and the frame grabber digitised the
image. Calibration of the drape coefficient was preceded by recording the
image from the drape tester in terms of area. The image analysis system
saves both time and paper. The drape coefficient can be evaluated accurately
within a few seconds. Because the measuring system is more time-efficient,
change of drape can be measured and comparisons made within a short
time.

Stylios et al. (1996) developed a new generation of drapemeter which
measured the drape of any fabric both statically and dynamically in three
dimensions by using a CCD camera as a vision sensor. This system, called
the Marlin Monroe Meter (M3), was used to measure the drape behaviour of
fabric without being restricted to small circular fabric specimens, and to
verify the theoretical prediction model. The draped profile of the specimen
was taken and presented on a computer. In addition to this, evaluation of
three-dimensional drape on a real garment can also be carried out using the
Moiré Camera System (Iwasaki and Niwa, 1983; Niwa and Suda, 1984). The
system can convert images into digital data; for example the three-dimensional
drape image of a flared skirt can be successfully predicted and presented on
paper.



Structure and mechanics of woven fabrics190

7.2.1.2 Subjective measurement

The numerical value from the drape coefficient is not sufficient to represent
drape behaviour. Drape is differentiated even when fabrics have the same
value of DC%. In practice, using only the numerical value of DC% drape
appearance cannot be fully described. Thus, Cusick’s drape study involves
not only objective measurement through a numerical value of drape coefficient,
but also subjective evaluation. Rating of drape profile is a very typical example
of subjective measurement of fabric drape; the rating result depends on
person, place, custom, fashion trends, etc. The node analysis will usually
involve the counting of node number, the measurement of the node length,
as well as the observation of drape behaviour (Hearle, 1969).

Cusick (1962) mounted semi-circular fabrics with various cottons and
rayons in the shape of a skirt on a model. The model was rated to see which
skirt could drape most. The results indicated that a good drape as assessed by
objective measurement almost matches one assessed by subjective selection.
The subjective rating of fabric drape is rather inconsistent. However, the
fabric with the most drape may not be the preferred one. The subjective
study pointed out that the drape of fabric is also a psychological phenomenon
which is related to human perceptions and fashion trends.

Collier (1991) reported that subjective drape is affected by the length of
draping fabric on the pedestal. He carried out experiments comparing the
subjective rating of drape as ‘not preferred’ with the objective experimental
results. He found that results can be accurately predicted by garment
professionals; however, he also pointed out that subjective measurement is
closely related to the fashion trends in certain time periods.

Ayada and Niwa (1991) found that fabric mechanical properties are highly
related to fabric drape. They made 24 skirts for subjective evaluation of total
quality and visual beauty of skirts. It was found that bending, shear and
fabric weight are the important factors influencing the garment appearance.
In addition, dynamic drape of fabrics is also related to the mechanical properties.
Subjective evaluation of dynamic drape (Izumi and Niwa, 1985; Mamiya
and Kanayama, 1985; Niwa and Seto, 1986) is found to be highly correlated
with dynamic bending and shear properties, as well as the hand feel. The
results of the investigation are important in targeting and responding to
customer demand.

7.2.2 Two-dimensional drape

7.2.2.1 Evaluation methods of fabric cantilever

Peirce (1937) initiated the study of fabric drape using the fabric cantilever in
1930. In this section, fabric drape can be evaluated using the cantilever test
in which bending length, a numerical term in equation 7.2 for evaluating
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fabric stiffness and drape of the cantilever, can be obtained. Bending property
can also be quantified into a series of mathematical functions such as flexural
rigidity and bending modulus in equations 7.3 and 7.4. In theory, the easier
the fabric is to drape, the shorter is the bending length. Thus, Peirce termed
the bending length drape stiffness. Peirce’s mathematical expressions of
bending length could not be solved analytically; thus Peirce used Hummel
and Morton’s (1927) approximation method to evaluate bending length. In
Peirce’s study, evaluation methods can be adopted for fabrics in the two
extreme categories – very stiff and very limp. For very stiff fabrics, a weight
can be added to the free-end of the specimen; the evaluation of bending
length for stiff fabric can be modified into equation 7.5. For very limp
fabrics, bending length can be obtained from equation 7.6 from a heart loop
test. Pierce assumed a general fabric cantilever, which deformed under its
own distributed weight, and a stiff fabric cantilever deformed by the
concentrated weight at the tip end.

Postle and Postle (1992) also provided a very detailed explanation for the
weight effect on drape of a fabric cantilever. They used bending length in the
drape study, and taking advantage of the wide availability of computers,
solved the differential equation by the finite-difference method.

Grosberg and Swani found that drape of a fabric cantilever is the combined
effect of both the distributed and concentrated weight (Grosberg, 1966;
Grosberg and Swani, 1966). A draped cantilever is divided into two sections.
The first section near the hanging edge bends under its own distributed
weight and a concentrated weight from the second section. They assumed
that the second section of the fabric cantilever is straight and will not bend
during draping. Also, fabric weight of the second section exists as a concentrated
point load at the centre of this section. The total deflection of the fabric
cantilever is the combined deflections of these two sections. The point O is
the junction of these two sections at which bending moment is equal to Mo.
If an applied moment M is greater than Mo, the fabric will bend. If an applied
moment M is smaller than Mo, the fabric will remain straight. The analytical
solution is obtained by Bickey’s approximated methods (1936). His frictional
couple theory is one of the non-linear models which can explain the bending
property in terms of bending rigidity, frictional couple and curvature of
cloth. The model can specify the real situation existing on the cantilever.

However, Peirce’s beam theory assumed a linear bending behaviour for
fabrics and is known as the classical linear model. In fact, most fabrics bend
in a non-linear way. Besides, Peirce’s evaluation method only provides an
average value for the fabric drape and bending behaviour. Therefore, other
non-linear models, including bilinear bending theory, indirect measurement
of moment–curvature and large deformation (Clapp et al., 1990; Grosberg
and Swani, 1966; Huang, 1979; Leaf and Anandjiwala, 1985; Potluri et al.,
1996), have been developed. They are all non-linear studies of bending
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behaviour. Equations for bending length C, bending rigidity B and bending
modulus q are given by:

c l =  
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8 tan 
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where l is fabric length, q is bending angle, t is fabric thickness and W is
distributed weight. Hence
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and
c = 0.1337L · f2(q) [7.6]
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and b is the width of the fabric strip, L is the length of the beam and f2

denotes a function of q.

7.2.2.2 Theories of fabric cantilever with different weight distributions

Classical beam theory
Potluri et al. (1996) conducted differential equations to describe the drape
profile of the fabric cantilevers having distributed weight and concentrated
weight at the tip. They reported that Peirce’s cantilever study is based on the
concept of the classical beam theory from which fabric beam is assumed to
satisfy the Bernolli–Euler law. The Euler law states that the bending moment
of a beam is proportional to the radius of curvature of the beam R caused by
that moment, as shown in equation 7.7. Two assumptions are made when the
theory is applied to a cantilever. It is assumed that the curvature is evaluated
by the approximate equation and change in length of moment arm during
beam deflection is ignored. Since 1/R � d2y/dx2

M B
y

x
 = 

d

d

2

2 [7.7]

By simple mechanical theory, the applied bending moment of the beam is
also equal to the product of the applied load on the cantilever to the
perpendicular distance of the line of action x. Two cases of applied loading
are studied: one with weight and one with distributed weight.
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7.2 Cantilever beam with concentrated load W.

Fabric cantilever with concentrated weight
In this case the applied load W is acting on the free tip end of the cantilever
as shown in Fig. 7.2, and equation 7.8 is developed:
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d
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2 [7.8]

By double integrating equation 7.8 and applying the boundary condition,
equation 7.9 is obtained where bending rigidity of the beam can be found
from the deflection angle.

tan  = 
3

2
q Wl

B
[7.9]

Peirce developed an empirical relation from his experimental results by
multiplying the right side of equation 7.9 by a factor of cos 0.93q. As a
result, the Peirce bending equation for a concentrated weight at the tip end
of the cantilever is formed in equation 7.10.

B
Wl 2  = cos 0.93

3 tan 
q

q [7.10]

Fabric cantilever with distributed weight
The deflection of a cantilever due to the distributed load from its own weight
can be seen in Fig. 7.3. A uniformly distributed weight w is applied along the
length of the cantilever and thus equation 7.9 can be rewritten to form
equation 7.11.
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Again, by double integrating equation 7.11 and applying the boundary
conditions, equation 7.12 is obtained where bending rigidity of the beam can
be found from the deflection angle.

tan  = 
8

3
q wl

B
[7.12]

Peirce developed an empirical relation from his experimental studies by
multiplying the right-hand side of equation 7.12 by a factor of cos 0.5q. As
a result, Peirce’s bending equation for the distributed weight is formed in
equation 7.13.

B
wl 3  = cos 0.5

8 tan 
q
q [7.13]

In Peirce’s paper (1930), he defined the term B/w as equal to the cube of the
bending length c where bending length is a quantitative value to measure a
strip’s drapeability in two dimensions. Equation 7.13 can be rewritten as
equation 7.14 from which bending length can be evaluated from the extended
fabric length l that bends to an angle q under its own weight. Peirce’s cantilever
formula as shown in equation 7.14 is extensively adopted to describe the
characteristics of fabric stiffness and fabric drape in two dimensions.

Since  c3 = B/w

c l3 3 =  cos 0.5
8 tan

q
q [7.14]

7.2.2.3 Testing methods of fabric cantilever

In Peirce’s theory, bending length c of the fabric cantilever can be evaluated
either by measuring the extended fabric length (l) under a fixed angle or by
measuring an angle from the extension of a fixed length l. The Flexometer
shown in Fig. 7.4 can be used as a testing instrument for measuring the

7.3 Cantilever beam with uniformly distributed load w.

l

q

ymax

w/unit length
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7.4 Flexometer.

bending angle q of a draped cantilever with a constant length l. Bending
length c can be evaluated from this bending angle by the mathematical
formula shown in equation 7.14.

A bending tester from the Shirley Institute (Booth, 1968; Feather, 1970)
is specially designed for measuring an extended length l with a fixed angle.
The extended fabric bends under its own weight until the free end intercepts
a plane at an angle of 41.5o from the horizon. Figure 7.5 shows the concept of
Shirley’s bending tester. With this fixed angle, the expression (cos 0.5q/8
tan q)1/3 in equation 7.14 will be equal to 0.5. Thus, the bending length is
calculated by a simple formula from equation 7.15. If q = 41.5∞,

c = 0.5l [7.15]

In recent years, the experimental process has been simplified more. The
Fabric Assurance by Simple Testing (FAST) system consists of cantilever
bending meter. The FAST-2 Bending meter can be used to measure the
bending length using the same concept as the Shirley Stiffness Tester. A
photocell detector for detecting the free end is used. The extended fabric l
bends under its own weight until the free end intercepts at an angle of 41.5∞

41.5∞

Fabric

7.5 Concept of Shirley’s and FAST bending meters.
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from the horizon. Then, a photocell detector inside the measuring cavity
detects the length of l. Experimental results are recorded directly in the
computer. Bending length evaluated from equation 7.15 can be displayed
digitally.

Clapp et al. (1990) developed an indirect method of measuring the moment–
curvature relationship for fabrics. At the same time, they developed a method
to measure the draped profile of the fabric cantilever. Deformed co-ordinates
were recorded as a fabric sample was cantilevered under its own weight
from a fixed support. The advantage of this method is that fabric non-linear
bending behaviour, inherent in most fabrics, is readily obtained, unlike in the
traditional cantilever beam test. The draped image obtained by using a laser
sensor can be used to verify the numerical simulation results.

Potluri et al. (1996) also developed an experimental technique to verify
their numerical method for the capability to simulate in general situations. A
laser triangulation sensor, attached to a robot arm, was used to measure the
cantilever profile of the fabric samples. A manipulating device positions the
fabric sample as a fabric cantilever of specified length. The laser scans along
the centre line of the fabric cantilever. The x co-ordinates are obtained from
the robot position and the y co-ordinates from the output signal of the
triangulation sensor.

7.2.3 Relationship between fabric drape and
mechanical properties

The drape coefficient provides an objective description of drape deformation
in three dimensions, but the study of three-dimensional fabric drape is not
independent. In general, fabric drape is closely related to fabric stiffness
(Hearle and Amirbayat, 1986a,b,c). Very stiff fabrics have drape coefficients
approaching 100 %; very limp, loose, or open-weave rayon fabrics have
DC% about 30 %. DC% is about 90 % for a starched cotton gingham. The
drape coefficient provides an objective description of drape deformation in
three dimensions, but the study of three-dimensional fabric drape is not
independent. In other words, the study of three-dimensional drape in terms
of DC% is empirically related to two-dimensional drape in terms of bending
properties.

Chu et al. (1960) found that drapeability is dependent on three basic
fabric parameters: Young’s modulus Y, the cross-sectional moment of inertia
I, and weight W. From their study, an equation was generated in which drape
coefficient is equal to f (YI/W). Later, Yamada et al. (1995) also reported that
the drape area changes positively to (EI/W)1/3 with a scale factor. When
bending rigidity per weight (EI/W) of fabric is similar to each other, DC%
and deflection angle obtain similar values.
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Cusick (1965) proved by statistical evidence the hypothesis that fabric
drape involves curvature in more than one direction, and that the deformation
is dependent on the shear angle A in addition to bending length c. He used
130 fabrics for his multiple regressions. Regression equations were formulated
for the relationship between drape coefficient, bending length and shear
angle:

DC = 35.6c – 3.61c2 – 2.59A + 0.0461A2 + 17 [7.16]

For this equation, residual sum of squares of the regression is the smallest
when c and A are both considered to be the main factors influencing the
DC%.

Mooraka and Niwa (1976) generated an equation to predict fabric drape
using data from the KES system and concluded that fabric weight and bending
rigidity were the most important factors. In their study, DC% is found to be
determined by (B/W)1/3. The correlation coefficient r between DC% and (B/
W)1/3 is 0.767 which is greater than the value of 0.686 for DC% and B only.
The use of bending rigidity from the warp, weft and bias on a regression
equation allows for better prediction of DC% than by using a mean bending
rigidity. Physical properties which contribute greatly to the DC% are bending
properties followed by weight and thickness, and then the shear properties.
When bending and shearing hysteresis is large, DC% would be large and
unstable.

Collier (1991) authored a paper in which six parameters were measured:
shear stiffness, bending hysteresis, bending stiffness, shear hysteresis at 0.5∞,
shear hysteresis at 5∞, from the KES testers, and bending rigidity from cantilever.
He found that both bending stiffness from the KES and bending rigidity
from the cantilever, as well as shear hysteresis and thickness, were significant
in the model predicting the drape coefficient. However, shear hysteresis and
bending stiffness from the KES explained most of the variation, with the
other two variables being less important. They concluded that shear hysteresis
is more important.

Niwa and Seto (1986) published a paper concerned with the relationship
between drapeability and mechanical properties of fabrics. They used
mechanical parameters (B/W)1/3, (2HB/W)1/3, (G/W)1/3 and (2HG/W)1/3 as
independent variables, where B, 2HB, W, G and 2HG are bending rigidity,
bending hysteresis, weight per unit area, shear stiffness and shear respectively.
These parameters were derived from the analysis of the bending of a cantilever
of fabric having hysteresis in bending and shear by applying the heavy
elastica theory. An equation to describe drape coefficient was then introduced.

From the above studies, three-dimensional drape in terms of DC% is
closely associated with two-dimensional drape study in terms of bending
length and bending rigidity. Nevertheless, DC% from three-dimensional drape
study is also influenced by other fabric physical properties which include
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shear and tensile properties as well as fabric weight and fabric thickness (Hu
and Chan, 1998; Hu et al., 2000; Suda et al., 1984a,b; Tanabe et al., 1975).
In addition, mechanical fabric properties also proved to be correlated to
subjective drape evaluation (Okabe and Akami, 1984; Yamakawa and Akiyama,
1996). Although two-dimensional drape study is only a partial measure of
drape behaviour, it is the most important index for predicting three-dimensional
drape behaviour. Many numerical and theoretical investigations of fabric
drape used the two-dimensional drape of a fabric cantilever to verify their
mechanics models or the accuracy of their software programs (Gan and
Steven, 1995).

7.3 Modelling of fabric drape profile

7.3.1 Background

Drape profile (DP) of a fabric is a projected two-dimensional image taken
from the Cusick Drapemeter. It is characterised in terms of drape coefficient,
node locations and node numbers of the projected image of a fabric. This
section will introduce an attempt made to develop a model for the prediction
of DP of fabrics using polar co-ordinates directly measured from the drapemeter.
Drape coefficient, node locations and number of the drape profile of a fabric
can all be determined by this model. Polar diagrams of the DP model will
also be provided. The constants in the DP model can be either estimated
using the polar co-ordinate fitting technique, or directly calculated from
fabric bending and shear properties using regression analysis.

7.3.2 Modelling

A fabric drape profile can be captured in a two-dimensional image projected
from a three-dimensionally draped fabric sample on the so-called Cusick
Drapemeter by digital camera. From this image, node locations and numbers
and the detailed shape of the drape profile can be observed from the computer
screen, and the fabric drape coefficient can be accurately and automatically
calculated by Leica QWin image analysis software. Although the nodes are
not uniform, the drape profile exhibits a cyclic change in polar co-ordinates.
Some assumptions, which have to be made to establish a mathematical model
for the description/prediction of fabric drape profile measured by the above
method using polar co-ordinates, are listed as follows:

(1) the fabric freely hangs under its own weight;
(2) nodes are evenly distributed around the plate and all node shapes are

identical;
(3) the average value of node numbers of one fabric sample is a positive

integer.
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A trigonometric function is selected for the modelling,

r = p + q sin (kq + a) [7.17]

where p is the average radial length taken between the peaks and troughs of
the draped profile, q is the half depth of the draped node, r is the radius of
the projected drape profile, k is the number of nodes (peaks) in the drape
profile while a is a constant which represents an angle between the fabric
warp direction and its neighbour peak. The details are demonstrated in Fig.
7.6b. Figure 7.6a illustrates the image analysis system used for the measurement
of fabric drape profile, in which a digital camera connected to a personal
computer is used to capture the projected two-dimensional draped image
directly from the drapemeter while the printer and digitiser are used to print
out the drape profile results. Computer software, Leica QWin image analyser,
serves the function of automatically calculating the drape coefficient from
the captured image.

The constants p, q and k in the model can be either estimated by polar co-
ordinate fitting technique or determined using multiple and stepwise regression
analysis from SPSS based on the relationship between fabric mechanical
properties and fabric drape. With the values of the constants known, the
drape coefficient, node locations, node numbers and node shape of the drape
profile of a fabric can be automatically predicted by this model. In particular,
the projected area A2 under the fabric drape profile is calculated in the
following:
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[7.18]

Drape coefficient (DC%) is defined as the ratio of the projected area of
draped fabric to the original non-draped area A1 multiplied by 100:

DC
A
A

% =   100 %2

1
¥ [7.19]

Node location is defined as the position of a peak found in the drape profile
(polar diagram) expressed in degrees. Node number is the number of nodes
(peaks) in the drape profile while node profile is defined as the shape of each
draped node.
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7.3.3 Prediction of DP using constants from polar
co-ordinate fitting

The three constants p, q and k in equation 7.17 can be determined by the
polar co-ordinate fitting technique using a computer program written in the
MATLAB software package. The input parameters of the computer program

Digital
camera

Printer

Digitiser

Cusick’s drapemeter Personal computer

(a)

7.6 The set up for the measurement of fabric drape profile: (a) image
analysis system; (b) captured image on the drapemeter.

(b)
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are the co-ordinates (r, q) of the draped profile with q from 0–352.5∞ at every
7.5∞. The predicted graphical drape profile is presented in the form of a polar
diagram.

7.3.3.1 Drape profile

The drape profiles (DP) of plain, twill and satin woven fabrics are illustrated
in Figs 7.7a–c. It can be seen that the theoretical model gives good agreement
with the experimental data with some deviations in the node numbers and
locations in the drape profile. The deviation between the theoretical and
experimental DP of different woven fabrics is not more than 10 %.

7.7 Theoretical and experimental results of drape profile of woven
fabrics: (a) plain weave; (b) twill weave; (c) satin weave.
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R 2 = 0.9928
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7.8 Relationship between theoretical and experimental DC%.

7.3.3.2 Drape coefficient

The validity of the model described above for the prediction of fabric drape
profile can be further verified using excellent agreement between the theoretical
and experimental results for drape coefficient (DC%) of 35 different types of
fabrics exemplified in Fig. 7.8. That is, the experimental and the theoretical
DC% have high coefficient of determination (R2 = 0.9928). This means that
over 99 % of experimental DC% can be explained by the theoretical DC%.
The deviation between the theoretical DC% predicted from the DP model
and the experimental DC% is smaller than 8.3 %.

7.3.3.3 Node number and location

As can be seen from Fig. 7.8, the theoretical model gives good agreement
with some of the experimental data with some deviations in the node numbers
and locations in the drape profile. This section shows that the model is
applicable in average terms. This is because, although node numbers and
their locations may vary from time to time, perhaps, on average a certain
fabric should have a certain number of nodes and node locations. Some
evidence is presented below.

The repetitions of the node numbers of one draped fabric sample under
different drape tests are shown in Figs 7.9a and b. The results obtained from
Fig. 7.9a imply that the drape node numbers of one fabric sample are 6, 7
and 8. The repetitions of 6, 7 and 8 nodes within 12 trials are 1, 9 and 2
respectively while 7 nodes give the majority in this sample. Therefore, in
this case, the mean value of node number calculated from 12 trials is equal
to 7.08. As the number of nodes in the fabric drape test must be a positive
integer, we round off the mean value of the node number to get 7 nodes for
this fabric sample. This result is very close to the mean value of node number,
7.08, with deviation 1.14 % and proves that the mean value obtained from
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constant k in the DP model is acceptable in the prediction of draped node
numbers.

If the same test is extended to a total of 35 woven fabrics, it is found that
8 nodes is the most frequent number to appear in the 35 woven fabrics, as
shown in Fig. 7.9b. Selecting those fabrics having 5–10 nodes for analysis,
a comparison is presented in Table 7.1 of their theoretical and experimental
node locations, where the peaks are found in the polar diagram, which indicates
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7.9 The repetitions of the node numbers within (a) one fabric sample
and (b) 35 woven fabrics.

Table 7.1 Correlation coefficient between each constant in DP model and all selected
fabric mechanical properties

Average of mechanical Average of mechanical

Mechanical property in the property in the warp,

properties warp and weft directions weft and ±45∞ directions

p q k p q k

B 0.497* 0.474* 0.556* 0.617* 0.604* 0.652*
2HB 0.542* 0.529* 0.551* 0.682* 0.632* 0.672*
G 0.672* 0.679* 0.678* 0.723* 0.723* 0.612*
2HG 0.715* 0.724* 0.625* 0.740* 0.724* 0.676*
2HG5 0.730* 0.721* 0.690* 0.780* 0.750* 0.682*
LT 0.451* 0.407 0.456* 0.408* 0.343 0.450*
WT 0.429* 0.482* 0.291* 0.388 0.444* 0.225
RT 0.206 0.239 0.159 0.258 0.298 0.172
EMT 0.040 0.107 0.085 0.085 0.159 0.067
W 0.415* 0.344 0.435* 0.415* 0.344 0.435*
T 0.265 0.321 0.236 0.265 0.321 0.236

    B W/3 0.370 0.290 0.481 0.444* 0.376 0.539*

    2 /HB W 0.600* 0.540* 0.615* 0.634* 0.582* 0.638*

    G W/3 0.487* 0.435* 0.470* 0.627* 0.583* 0.600*

    2 /H W 0.523* 0.474* 0.471* 0.663* 0.664* 0.511*

    2 5/HG W 0.636* 0.555* 0.616* 0.684* 0.636* 0.651*
Stepwise 0.684 0.664 0.700 0.847 0.750 0.782
regression

*Significant value at p < 0.005
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7.10 Node locations of 8 nodes in various directions.

a close relationship with deviation as low as 0.9∞. Figure 7.10 illustrates the
node location of each respective node for a fabric with 8 nodes, which
indicates clearly that the probability of node repetition is comparatively high
at 0∞, 45∞, 90∞, 135∞, 180∞, 225∞, 270∞ and 315∞ for 8 node numbers.
Undoubtedly, the above facts also indicate that constant k in the DP model
is not applicable only in predicting the node numbers, but also in determining
the node locations.

Another conclusion which can be reached is that the higher the value of
DC%, the lower the number of nodes: for stiffer or heavy fabrics with a
DC% value larger than 85 %, 2–5 node numbers are recorded; for those
medium fabrics whose DC% values fall in the range 50–85 %, they exhibit
6–8 node numbers; while for loose or light woven fabrics with a DC% value
between 30 % and 50%, 9 or 10 node numbers can be observed. These facts
confirm the findings of Cusick (1962) that the number of nodes is governed
by the fabric stiffness.

7.3.3.4 Node profile

Since a woven fabric is anisotropic and exhibits different values of mechanical
properties in different directions, each draped node may exhibit different
shape. However, it is found that the agreement between the theoretical and
experimental node profile has only minor deviations as demonstrated in Fig.
7.8. This may reveal that all node shapes in the drape profile can be assumed
to be similar to each other and the mean value of node profile assumed in the
DP model is acceptable in predicting the fabric drape profile.

7.3.4 Prediction of DP using fabric mechanical
properties from regression analysis

In addition to polar co-ordinate fitting, the fabric drape profile can also be
predicted from fabric mechanical properties using regression analysis. In
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addition, stepwise regression can be adopted to determine which combination
of mechanical properties gives the best description in predicting the fabric
drape profile.

7.3.4.1 Drape profile

Sixteen mechanical properties are used in regression analysis, including
bending (B and 2HB), shear (G, 2HG and 2HG5) and tensile (WT, EMT, LT
and RT) properties, fabric weight (W) and fabric thickness (T ). Among the
selected mechanical properties, bending and shear properties give significant
correlations with the constants p, q and k in the drape profile (DP) model
while bending hysteresis and shear hysteresis have higher correlation
coefficient, r, than their rigidities. In addition, the results indicate that the
values of mechanical properties taken in the warp, weft and ± 45∞ directions
have higher r than those taken only in the warp and weft directions. With all
correlation coefficients between the constants in the DP model and the
mechanical properties, the best combination in predicting the fabric profile
can be found by using stepwise regression. The criterion of stepwise regression
for entering a parameter was p = 0.05 and that for removal was 0.1.

After the removal of all variables that correlated with each other and were
within the same mechanical property group, the most important properties
are entered into the final equations given below:

p = 10.795 + 7.458(2HBT) + 0.1087(2HG5T) [7.20]

q = 0.5116 + 1.861(2HBT) – 0.122(2HGT) [7.21]

and

k = 2.753 + 0.8153(2HBT) – 0.469(2HG5T) [7.22]

where 2HB, 2HG and 2HG5 are the bending hysteresis, shear hysteresis at
0.5∞ and shear hysteresis at 5∞ respectively. Suffix T is the mean value of its
property obtained in the warp, weft and ± 45∞ directions. Equations 7.20–
7.22 show that these constants can be directly calculated from the bending
hysteresis and shear hysteresis along different directions.

As indicated by Fig. 7.11a–c, the constants p, q and k in the DP model can
be determined from bending hysteresis and shear hysteresis in various
directions. This indicates that draped nodes and locations of a fabric are
affected by these properties not only in the warp and weft directions but also
in other directions.

7.3.4.2 Drape coefficient

Substituting the experimental data of bending and shear hysteresis into
equations 7.20–22, constants p, q and k can be identified and thus the drape
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7.11 Theoretical and experimental results of drape profile of woven
fabrics: (a) plain weave; (b) twill weave; (c) satin weave.
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profile and drape coefficient can be predicted from the DP model. Figure
7.12 illustrates a comparison between the theoretical output of the DP model
and the experimental drape coefficient (DC%), which indicates a high
correlation between them (R2 = 0.9591). It further implies that the DP models
are applicable for the prediction of fabric drape profile from the values of
fabric bending and shear hysteresis in various directions using the regression
method.
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8.1 Introduction

A seam is the assembly method that joins fabric pieces together to form the
parts or whole of a garment. Seam assembly is the method most typically
used on garments. In order to create a seam, a fabric is cut into pieces and
sewn together with stitches. Various seams can be obtained by combining
different fabric cutting, joining and stitching parameters, and this will lead to
substantial variation in fabric drape performance. Thus, investigation of the
impact of a seam on fabric drape performance can help with understanding,
evaluation and assurance of the appearance of the final garment.

8.2 Effect of seams on fabric bending/drape

properties

8.2.1 Classification of fabric seams

The plain seam is the one most extensively found in apparel. It is the simplest
seam type – a single row of lockstitches joins two pieces of fabric together.
Thus, investigation of the effect of a plain seam on fabric drape has significant
value for both the textile and the clothing industries. Plain seams can be
classified into four types, i.e. vertical seam, horizontal seam, radial seam and
circular seam. A vertical seam is a plain seam lengthwise sewn in the middle
on a rectangular fabric strip, and is perpendicular to the bending axis as
shown in Fig. 8.1. A horizontal seam is a plain seam located in the direction
parallel to the bending axis of a fabric cantilever (see Fig. 8.2). Fabrics with
both vertical and horizontal seams will drape in two dimensions. Radial
seam refers to the kind of plain seam which is sewn across a circular specimen
through its centre, as illustrated in Fig. 8.3. Usually, a radial seam drapes
under its own weight perpendicular to the tangent of the pedestal, while a
circular seam is the kind of plain seam sewn around a circular specimen with
a radius from the specimen’s centre, as illustrated in Fig. 8.4. A circular seam

8
Mechanical properties of fabrics with seams
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can be located either in-plane or out-of-plane of the pedestal, depending on
the seam position. It drapes in a direction parallel to the circumference of the
pedestal. Fabrics with radial and circular seams thus usually drape in three
dimensions.

Another seam classification method is based on the direction of drape:
vertical seam drape is associated with vertical and radial seams while horizontal
seam drape is associated with horizontal and circular seams. Hence the
difference between vertical and radial seams lies in the fact that fabrics with
a vertical seam drape in two dimensions while fabrics with a radial seam
drape in three dimensions. In addition to this, measuring methods for drape
of fabrics with vertical and radial seams are also different. Usually, bending
length is used to evaluate drape of fabrics with a vertical seam while drape
of fabrics with radial seams can be evaluated using the drape coefficient.

(a) (b)

Bending axis

8.1 Fabric strip with vertical seams: (a) back side of fabric with seam
allowances; (b) front side of fabric with a plain seam at centre.

Bending axis

(a) (b) (c)

8.2 The horizontal seam at three positions from the free tip end
respectively: (a) 0 mm; (b) 25 mm; and (c) 5 mm.

(a) (b) (c)

8.3 Radial seams along different directions: (a) one radial seam on
the weft of a fabric; (b) two radial seams on the warp and weft of a
fabric; (c) four radial seams on the warp, weft, 45∞ and 135∞ bias
directions.
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Both horizontal and circular seams drape horizontally to the gravity. Similarly,
bending length is used to evaluate two-dimensional drape of fabrics with a
horizontal seam while the drape coefficient is used to evaluate three-dimensional
drape of fabrics with a circular seam. Therefore, horizontal and vertical
seams will greatly influence fabric bending properties while circular and
radial seams are more associated with drape properties.

8.2.2 Effect of seams on fabric bending properties

Dhingra and Postle (1980–81) measured bending rigidity by the KES system.
Two plain seams, one vertical (perpendicular) and one parallel (horizontal)
to the bending axis, were tested. With the introduction of the vertical seam,
bending properties were greatly increased and they were further increased
when the seam allowance was increased to 10 mm. Since the seam allowances
of the vertical seam are clamped by the fabric holders during testing, their
relative movement is restricted. Their results for bending rigidity from the
KES fabric tester may not reflect the real drapeability as measured by the
fabric cantilever test. Moreover, the range of seam allowances used in the
experiment was kept to 1–10 mm; a limitation which made it difficult to
fully trace out the drapeability of a seamed fabric. In contrast, they reported
that the parallel (horizontal) seam had little influence on the bending rigidity
of fabric. However, the experimental result cannot reflect the real drape
situation of the seamed cantilever because the parallel seam can be parallel
to any points from the free end to the hanging edge of the fabric cantilever.
Differences may exist on a fabric cantilever with a parallel seam on different
positions and with different seam allowances. Cantilever tests on fabrics

8.4 A circular seam on a circular fabric.
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with vertical and parallel seams with a wide range of seam allowances and
different seam positions are needed to investigate the validity of the argument.

8.2.3 Effect of seams on fabric drape properties

The study of fabric drape is undoubtedly very important for the appearance
of the final garment but fabrics must be sewn to form a garment. Thus in
practical situations, any assessment of the drape performance of a garment
must take into account the influence of seams.

From the work of Suda and Nagasaka (1984a,b), the effect of the seam
and hem of a flared skirt on the drape profile was studied by bonding narrow
strips of non-woven fabrics at the edge or along the radial directions of
circular fabrics. They observed that the bending rigidity of the bonded part
increased with the width and the number of bonded layers of the non-woven
fabric. In the samples with bonding only at their edge, the drape coefficient
increased, and there was a negative correlation between the number of nodes
formed and the rigidity of the bonded layers. In the case of samples with
bonded strips in radial directions, the fourth layer of non-woven fabric seemed
to have a distinctive influence on node formation. They concluded that the
bending coefficient of the bonded part increased with the width and number
of bonded layers of the non-woven fabrics.

Although thread balance during sewing, thread crimps, width, layers and
thickness of the seamed piles (Ajiki, 1985; Gupta, 1992; Mahar et al., 1982a,b)
are important factors affecting the drape of fabrics, the existence of seam
allowance is also a key factor. In fact, a seam with seam allowance is commonly
found on a garment. The effect of seam on fabric drape is not related only to
the thread characteristics of the seam, but is also influenced by variations in
seam allowance and seam directions (Suda and Nagasaka, 1984a,b). Suda
and Nagasaka developed a good three-dimensional fabric drape simulation
of the effect of seam directions and seam layers. However, the results were
limited due to the method used of sticking a fabric stripe on fabrics. Using
a real seam would make the tests more effective. Dhingra and Postle (1980–
81) on the other hand, demonstrated bending properties of seamed fabrics
with seam allowances in directions vertical and horizontal to the bending
axis. However, their experiments were restricted to the KES bending tester;
the results were also limited by the narrow range of tested specimens and
seam allowances. Real two-dimensional drape from the fabric cantilever is
not fully reflected in their results.

8.3 Effect of two-dimensional seams on fabric

bending/drape properties – horizontal seams

Peirce (1930) considered the evaluation of bending length in the case of
general and stiff fabrics. For general fabric, fabric weight is evenly distributed
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in the fabric cantilever. Another specific method is set up for very stiff fabric
in which the fabric weight is added and concentrated at the free end of the
fabric cantilever. Postle and Postle (1992) provided a very detailed explanation
of the distributed and concentrated weight effects of fabric bending. Grosberg’s
model (Grosberg and Swani, 1966) is able to specify the real situation existing
on the fabric cantilever with both distributed and concentrated weight. However,
their research was limited to the situation without seams. A parallel (horizontal)
seam will bring in an additional weight from seam allowance at any positions
of the fabric cantilever. The weight distribution on a seamed fabric is no
longer restricted to only the distributed weight and the weight concentrated
at the tip end. A method thus needs to be established to evaluate the fabric
deflections from a fabric cantilever with a parallel (horizontal) seam. Seam
allowances and seam positions can be varied on the seamed fabric cantilever.
Thus, the draped effect can be measured by using Peirce’s flexometer principle.

Horizontal seams play an important role in altering the drape of fabric,
and this is an essential factor to be considered in both the clothing and
upholstery industries. It affects the structural design of a garment with respect
to features such as the appearance in the shoulder joins and the waist line as
well as the hem. At the time of writing, only a few papers have been presented
in this area and they contribute valuable but limited findings. From the
scattered information, it has been found that the drape of fabric decreases
and stiffness increases when a vertical seam is introduced (Dhingra and
Postle, 1980–81; Suda and Nagasaka, 1984a,b). Nevertheless, literature on
the effect on drape of a horizontal seam is limited.

8.3.1 Theory

In Peirce’s mathematical expression (as shown in equation 8.1), bending
length c from the fabric cantilever can be evaluated either by measuring the
extended fabric length l with a fixed angle or by measuring an angle from the
extension of a fixed length:

c = l (cos 0.5q /8 tan q )1/3 [8.1]

A bending tester from the Shirley Institute (1957) is specially designed to
measure an extended length l with a fixed angle. The extended fabric bends under
its own weight until the free end intercepts a plane at an angle of 41.5∞ from
the horizon. With this fixed angle, the expression (cos 0.5q/8 tan q)1/3

in equation 8.1 will be equal to 0.5. Thus, the bending length is calculated by
a simple formula from equation 8.2. Since q = 41.5∞, (cos 0.5 q/8 tan q)1/3

= 0.5, then

c = 0.5l [8.2]

More recently, the experimental process has been further simplified. The
FAST-2 bending meter (De Boos and Tester, 1990) can be used to measure
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the bending length using the same concept as Shirley, but with a photocell
detector attached to detect the length of l and experimental results recorded
directly from the computer. The effect of the position of a horizontal seam on
a cantilever cannot be measured with either the Shirley or the FAST bending
meter when the seam position varies with the extended fabric length l in the
experiments. Peirce’s flexometer (Peirce, 1930) is an instrument for measuring
the drape of a fabric cantilever using bending angle q from the fixed extended
fabric length.

8.3.2 The flexometer

The flexometer can be used as a testing instrument for measuring the bending
angle of a fabric cantilever with a constant length l. In a fabric cantilever
with a horizontal seam, the seam can be placed in different positions on the
fabric cantilever. Thus, the numerical value of bending length obtained from
equation 8.2 is not applicable. On the other hand, a flexometer is a suitable
instrument for measuring the bending angle from a constant extended fabric
length l. To measure the bending angle and the chord l0 from the hanging
edge to the free end of a fabric cantilever, a modified flexometer is adopted
as shown in Fig. 8.5, in which a guide is used to fix the required fabric length
l from all specimens as shown in Fig. 8.6a. A hollow plate planted with a thin
ruler at the centre is used to measure the chord l0. The compass for measuring
the bending angle is attached to the plate and can be rotated as shown in Fig.
8.6b. The values of bending angle q and chord l0 from the extended fabric
length can thus be recorded. The horizontal x and vertical y displacements of

a
b

8.5 Modified flexometer: (a) a thin ruler for measuring the chord l0;
(b) a guide for fixing extended fabric length l.
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a fabric cantilever can be evaluated from the value of l0 as shown in equations
8.3 and 8.4 respectively:

x = l0 cos q [8.3]

and

y = l0 sin q [8.4]

8.3.3 Effect of seam allowance on drape of fabric
cantilevers with a horizontal seam

The effect of seam allowance on the drape of a fabric cantilever with a
horizontal seam can be represented by bending length – the smaller the value
of the bending length, the larger the drapeability of the fabric cantilever. It
has been found that the influence of seam allowances on drape of a fabric
cantilever is highly dependent on the seam position, as well as the warp and
weft directions of fabrics.

When a horizontal seam is added on a fabric cantilever, three situations
will arise. Firstly, there is a horizontal seam on the supporting plane of the
fabric cantilever when it is placed at the hanging edge as in the test of Fig.
8.7a. Then, in all other situations, the seam is out of the supporting plane. In
the second situation, the seam allowance of a horizontal seam may be partially
free hanging on the fabric cantilever as can be found from the test shown in

l Bending axis
x

y
q

l 0

(b)(a)

8.6 Measurement of bending angle q and chord l0; (a) before
deflection; (b) during deflection.

50 mm

Seam

Bending axis

(a) (b) (c) (d) (e) (f) (g)

50 mm 40 mm 30 mm 20 mm 10 mm 5 mm 1 mm

8.7 Extended fabric with a horizontal seam at different locations
(50 mm, 40 mm, 30 mm, 20 mm, 10 mm, 5 mm and 1 mm
respectively from the free tip end).
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8.8 Bending length against seam allowance of fabric cantilever with
a horizontal seam at the hanging edge (seam position: 50 mm from
the free end).

Fig. 8.7b. In the third situation the seam allowance may be just appended to
the hanging edge as can be found in Fig. 8.7c. Also, in the final situation, the
seam allowance of a horizontal seam may be totally free hanging on the
fabric cantilever as shown in Fig. 8.7d–g. Thus, different end results for the
drape of fabric cantilevers can be observed in each supporting situation.

8.3.3.1 Seam at the hanging edge

When the seam is put on the hanging edge, that is the bending axis, it is
located at 50 mm from the free end of the extended fabric as shown in Fig.
8.7a. The experimental result for fabric bending on the warp is shown in Fig.
8.8. It has been found that the increase in seam allowance in this position
increases the bending length. Fabrics are stiffer and drape less with increased
seam allowance. On the other hand, the result for fabric bending on the weft
is different, as can be seen from Fig. 8.9. It is found that when a horizontal
seam is introduced with a small seam allowance of 1 mm, the bending length
increases sharply. When the seam allowance is further increased from 1 mm,
the bending length does not change significantly. However, the bending
length decreases when the seam allowance is increased from 15 mm to
20 mm. As a result, fabric bending in different fabric directions behaves
differently when the seam allowance is changed.

8.3.3.2 Seam near the free tip end

When a horizontal seam is found near the free tip end of a fabric cantilever,
the seam will be entirely free hanging on the fabric cantilever as shown in
Figs 8.7d–g. No seam allowance is appended to the hanging edge in this
situation. In the example of Fig. 8.7f, the addition of a horizontal seam and
the increase in seam allowance cause a decrease in bending length and an
increase in drapeability of a fabric cantilever. From Figs 8.10a and b, it can
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8.9 The bending length against seam allowance of fabric cantilever
with a horizontal seam at the hanging edge (seam position: 50 mm
from the free end).

8.10 The bending length against seam allowance of fabric cantilever.
Seam allowance of a horizontal seam is free hanging (seam position:
20 mm from the free end).
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be seen that with increased seam allowance bending length reduces on fabric
cantilevers in both the warp and weft directions.

8.3.3.3 Seam near the hanging edge

When a seam is located near the hanging edge with a large value of seam
allowance, the seam allowance will partially append to the hanging edge.
Seam allowance placed at 40 mm from the free end in Fig. 8.7b represents
this situation. Figures 8.11a and b show the effects of seam allowance on
bending length of fabric cantilevers in the warp and weft directions respectively.
The seam is free hanging when SA is less than 10 mm. Thus, bending length
and stiffness of the fabric cantilever will decrease when the fabric cantilever
is seamed with 1 mm SA. Then, a gradual increase in seam allowance from

8.11 The bending length against seam allowance of fabric cantilever
with a horizontal seam at 40 mm from the free end.
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1 mm to 10 mm increases the bending length. Nevertheless, it is found that
bending length increases sharply at 10 mm SA on the weft direction of the
fabric cantilever where the edge of seam allowance is just appended to the
hanging edge. When SA is increased to 20 mm, the further increase moderates
the increased rate of bending length on the warp of the fabric cantilever, but
greatly reduces the bending length and increases the drapability on the weft
of the fabric cantilever.

8.3.4 Effect of seam position on drape of fabric
cantilever with a horizontal seam

8.3.4.1 Completely free hanging of seam allowance

A horizontal seam with seam allowance 5 mm is generated at different
positions on a fabric cantilever. The seam allowances are free hanging along
the fabric cantilever when the seam is draping out of the platform. The
positional effect of a horizontal seam on the drape of the fabric cantilever
can be seen from Figs 8.12a and b. It has been found that the bending length
of the fabric cantilever increases when the horizontal seam is moved away
from the free tip end. A small value of bending length can be found when the
seam is placed near the free tip end and a large value can be observed when
the seam is positioned at the hanging edge of the fabric cantilever. The
increased seam position gives rise to an increase in bending length which is
steadier on the warp than on the weft of fabric cantilevers.

8.3.4.2 Partially free hanging of seam allowance

If either the seam allowance is too wide or the seam is too near the hanging
edge, then the horizontal seam is not completely free hanging on the fabric
cantilever. If the edge of seam allowance on a horizontal seam is too wide
and appended to the hanging edge, the bending length will not increase
markedly. A decrease in bending length can be seen on some fabrics as
shown in Fig. 8.13. For fabrics such as twill cotton, wool, polyesters and
silk, the bending length will be notably reduced from the seam positions of
40–50 mm from the tip end of the fabric cantilever since the seam with
allowance 15 mm is still appended to the hanging edge of the fabric cantilever.

On the other hand, if a horizontal seam on a fabric cantilever is set in a
position such that the edge of the seam allowance is just appended to the
hanging edge (i.e. the edge of the seam allowance is dabbed to the edge of
the hanging platform) the bending length of the fabric cantilever is increased
for heavy weight fabrics. In Fig. 8.14, a prompt increase in bending length
can be seen on the fabric cantilever with seam allowance of 10 mm at the
seam position 40 mm from the tip end. An increase in bending length at this
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8.12 Bending length against seam position on the weft of fabric
cantilever with a horizontal seam (seam allowance = 5 mm).
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8.13 Bending length against seam position of fabric cantilever with a
horizontal seam. Seam allowance is partially free hanging on the
fabric cantilever at the seam positions of 40–50 mm from the free
end (seam allowance = 15 mm).
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seam position is obviously found for the heavy weight fabrics such as wool,
linen and twill cotton.

8.3.4.3 Example using linen fabric

The linen fabric shown in Fig. 8.15 is an example which describes the effect
of seam position and seam allowance on drape of a fabric cantilever. The
bending length of linen with the seam position at 50 mm from the free end
is greater than that at 40 mm. Bending length measured from the seam

8.14 Bending length against seam position of fabric cantilever with a
horizontal seam. Bending length promptly increases on heavy weight
fabrics when seam allowance is dabbed to the hanging edge at the
seam position of 40 mm from the free end (seam allowance = 10
mm).
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8.15 The bending length against seam allowance of linen fabric.
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position at 30 mm is greater than that at 20 mm and 20 mm is greater than
10 mm. Nevertheless, it is difficult to compare the variance of bending
length when the seam positions are less than 10 mm from the free end.
Generally speaking, when a horizontal seam is positioned far from the hanging
edge of a fabric cantilever, bending length will be smaller.

On the other hand, increase in seam allowance will either increase or
decrease the drape of a fabric cantilever. Bending length of a fabric cantilever
with a horizontal seam increases when the seam allowance is positioned at
the hanging edge along the warp direction; otherwise, bending length decreases
when the seam allowance is freely hanging along both fabric directions.

Moreover, the seam with seam allowance just dabbed to the hanging edge
will markedly increase the stiffness of fabric. This situation can be seen at
points a and b from the example of a linen fabric shown in Fig. 8.15. The
seam allowance and seam position are 10 mm and 40 mm at point b, 20 mm
and 30 mm at point a, respectively. The two seams with seam allowances are
just dabbed to the hanging edge. Thus, bending length is instantly increased.

8.4 Effect of two-dimensional seams on fabric

bending/drape properties –  vertical seams

Dhingra and Postle (1980–81) studied the effect of a plain seam on bending
rigidity using the KES-F bending tester. It was found that a plain seam has
little effect on fabric shear rigidity and hysteresis, but has a great deal of
influence on bending rigidity. The effect was found to be especially significant
with the vertical seam. They also pointed out that the bending hysteresis and
the bending rigidity were strongly affected by seam allowances. When SA =
1 mm, the ratio of bending hysteresis of seamed fabric was 9–11 times that
of the no-seam fabric. This ratio was increased to 26–33 times the unseamed
fabric when SA was increased to 10 mm. The investigation provides useful
information for the study of fabric bending with a plain seam.

In another study by Shishoo et al. (1971), it was found that bending
rigidity of a seamed multi-layer fabric was about 4–10 times that of the
single one. The bending length of the multi-layer fabric was the approximated
sum of that of the individual single layer fabrics.

Ajiki (1985) found that bending rigidity was affected by the level of
sewing thread crimp in the seams. The sewing thread crimp is a linear
function of thickness multiplied by the stitch density of the composite fabric
layers. In addition, bending rigidity increased with the increase in the number
of layers of fabrics.

Mahar et al. (1982a,b) reported that bending rigidity of fabrics was related
to the balance of the thread tension. They joined two layers of fabrics with
a row of lockstitches without obtaining any seam allowance. The bending
properties were tested on both the top and bottom of the two-ply fabrics. An
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asymmetric bending moment was obtained on each side of the fabric sheets
if the thread tension was not balanced.

Among the studies, thread crimp, number of layers and thickness of the
seamed sheets are the the important factors affecting fabric bending. However,
the effect of seam on fabric bending is also related to the existence of seam
allowance. In practice, a seam with seam allowance is commonly found on
a garment. Dhingra and Postle’s (1980–81) study provides fundamental
understanding of the effect of a vertical seam on fabric bending of woven
fabrics.

8.4.1 Theory

8.4.1.1 Elastic bending theory

By simple bending theory, the moment of resistance of a strip to bending is
equal to the applied moment M at equilibrium. The total bending moment M
for the whole cross-sectional area about the neutral axis is shown in equation
8.5 where Young’s modulus E and radius of curvature R are assumed to be
constant along the material strip.

M E
R

I B
R

 =   = [8.5]

The function Úy2dA is called the second moment of area I of the cross-section
where dA is defined as the area of an element of the cross-section at a
distance y from the neutral axis. The neutral axis is a horizontal line which
passes through the centroid of the cross-section. The distance of the neutral
axis is a vertical distance from the fabric surface to the horizontal line of the
neutral axis of the cross-section.

It has been noted that the bending moment changes with second moment
of area of the cross-section. From equation 8.6, the bending rigidity of a strip
is a linear function of the second moment of area I of the cross-section when
Young’s modulus E is assumed to be constant along the strip:

B = EI [8.6]

Enlightened by this principle, we may attempt to find the relationship between
bending rigidity and the second moment of area for fabrics with a vertical
seam. It is assumed that B = bIl, where b and l are two constants and b may
be related to Young’s modulus E.

8.4.1.2 Second moment of area of seamed and unseamed fabrics

In order to find the difference between seamed and unseamed fabrics, their
cross-sections are magnified under the microscope as shown in Figs 8.16a
and b. Comparing the figures, a structural change can be seen for the seamed
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fabric in that seamed parts are forced to bend and seam allowances are
formed on the reverse of the fabric. Besides, two gap areas are found between
the top fabric and the bottom seam allowances. Both the cross-sectional area
and the cross-sectional thickness are significantly increased on the seamed
fabric. Sewing thread and seam structure are found to be the general elements
affecting the bending properties of a fabric strip.

Geometrical models of the fabric cross-sections for seamed and unseamed
fabrics are set up in Figs 8.17a and b. The assumptions followed in the
modelling include:

(1) the cross-section of an unseamed fabric is rectangular in shape and the
cross-section of the seamed fabric is I-shaped;

(2) free space areas between the top and the bottom plies of the seamed
fabric are rectangular in shape;

(3) no external force from the sewing thread, stitch tension and balance of
stitch tension is applied on the seamed model;

(4) the increased fabric weight due to the increased seam allowance is
assumed to be uniformly distributed along the fabric strip.

For the unseamed fabric, the distance of the neutral axis from the fabric
surface of the cross-section y is t0/2 in equation 8.7.

Thread

(a) (b)

8.16 Cross-section of a fabric strip (¥ 200) with (a) a vertical plain
seam and (b) no seam.

b b

t

N.A.

= A

t0

2t0

t0

s

(a) (b)

b = width of fabric strip, s = width of seam allowance,
t0 = fabric thickness, t = seam thickness,
A = cross-section area, N.A. = neutral axis.

t 0

N.A.

8.17 Geometrical models and cross-section areas of a fabric with
(a) a vertical seam and (b) no seam.
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y
t

 = 
2
0 [8.7]

The second moment of area I of the cross-section with width b and thickness
t0 can be evaluated from equation 8.8.

I
bt

 = 
12

0
3

[8.8]

However, the cross-section of an unseamed fabric strip shown in Fig. 8.16b
is different from a fabric strip with a vertical seam shown in Fig. 8.16a.

From Fig. 8.16a, formation of a vertical seam creates a seam thickness at
the cross-section and space areas are found between the top and bottom
sheets of a seamed fabric strip. Moreover, a larger cross-sectional area is
found for the seamed fabric than the unseamed fabric. Seam thickness t,
fabric thickness t0, width of fabric strip b, width of seam allowance s and the
distance of the neutral axis y are the important factors which determine the
cross-sectional area of the seamed fabric strip. According to equations 8.9
and 8.10, the distance of the neutral axis y and the second moment of area
Iseam of the cross-section of the seamed fabric strip can be evaluated respectively
using the measurable values of seam thickness t, fabric thickness t0, width of
fabric strip b and width of seam allowance s:

y
t s t b t t b

s t t b
 = 
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0

0
[8.9]

and

Iseam  = 1
3

[b(t – y)3– (b – 2t0)(t – t0 – y)3 + 2sy3 – 2(s – t0)(y – t0)
3]

[8.10]

Rewriting equation 8.10, equation 8.11 is formed.
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Iseam is a polynomial function of the seam thickness t in the third order. When
a seam is added on a fabric strip with a small seam allowance, the change of
Iseam is related to the change of t, y and s if t0 and b are constant. When the
seam allowance is small, the change in y will be mainly due to the change in
t. Thus, the increased bending moment of a fabric strip from an added seam
is mainly due to the increase in seam thickness t. When the seam allowance
of a seamed strip is increased and t0 and b are constant, the seam thickness
becomes a constant. Iseam changes with y and s only:
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8.18 Experimental bending rigidity with the increased fabric weight
due to the increase in seam allowance.

8.4.2 Relationship of bending rigidity B and second
moment of area (Iseam)

The bending rigidity B of a seamed fabric strip with various seam allowances
can be evaluated from experimental bending length c from B = Wc3 as shown
in Fig. 8.18 where W is the fabric weight. The calculated results of Iseam with
different seam allowances are shown in Table 8.1. The relations between the
bending rigidity and the second moment of area of different fabrics can be
expressed in equation 8.12

B I = seamb l [8.12]

where b and l are constants. The power relation of different fabrics is shown
in Table 8.2. The correlation coefficient r averages 0.95 with a high confidence
level for all fabrics.

From Table 8.2, it is found that the power l in equation 8.12 of all seven

Table 8.1 Second moment of area in mm4 of a seamed fabric strip with increased
seam allowance

SA, mm 0 1 2.5 5 10 15 20 25

Plain cotton 0.17 0.45 1.13 1.55 3.70 4.04 4.81 5.57
Cotton twill 0.41 2.04 4.02 3.80 6.24 8.92 10.21 13.60
Linen 0.37 1.06 1.60 2.92 3.50 4.91 6.32 7.52
Wool 0.65 2.24 3.50 4.56 9.21 11.94 18.95 20.49
Silk 0.00 0.04 0.08 0.11 0.17 0.28 0.23 0.42
Poly-satin 0.02 0.20 0.35 0.51 1.06 1.21 1.39 1.77
Polyester 0.01 0.08 0.18 0.15 0.39 0.50 0.72 0.74
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fabrics is close to 0.5. Thus, substituting 0.5 to the power l in equation 8.12,
equation 8.13 is formed.

B I = seamb [8.13]

Linear regressions of plot of bending rigidity against Iseam , where b is
a constant on a particular fabric, yield correlation coefficients of B in Table
8.3. The average correlation coefficient of all sample fabrics is 0.9 and the
relationship is significant at the 0.05 level. Thus, the bending rigidity from
various values of Iseam due to the change in seam allowance can be expressed
by a simple formula:

Table 8.2 Relation of bending rigidity and second moment of area of fabric
strip with various seam allowances

Fabric Relation of B and Iseam r

Plain cotton B = 5.33     I seam
0.52 0.91

Twill cotton B = 4.95     I seam
0.70 0.93

Linen B = 6.53     I seam
0.56 0.96

Wool B = 2.60     I seam
0.62 0.92

Silk B = 1.80     I seam
0.41 0.95

Polyester satin B = 4.24     I seam
0.38 0.98

Polyester B = 1.10     I seam
0.38 0.98

Average 0.95

B = Bending rigidity
Iseam = Second moment of area from SA = 0 to SA = 25 mm

Table 8.3 Linear relation of bending rigidity (B) and I seam
0.5  of a fabric strip

with various seam allowances

Fabric Relation of B and     I seam
0.5

r

in equation 8.10

Plain cotton B = 5.43 I seam
0.5 0.93

Twill cotton B = 7.34 I seam
0.5 0.89

Linen B = 6.98 I seam
0.5 0.94

Wool B = 3.30 I seam
0.5 0.90

Silk B = 1.98 I seam
0.5 0.82

Polyester satin B = 4.24 I seam
0.5 0.95

Polyester B = 1.18 I seam
0.5 0.90

Average 0.91

B = Bending rigidity
I seam

0.5  from SA = 0 to SA = 25 mm
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8.4.3 Relationship of bending length c and second
moment of area (Iseam)

The relationship between bending length c and bending rigidity B can be
expressed by equation 8.14.

B = Wc3 [8.14]

When equations 8.13 and 8.14 are combined, equation 8.15 is formed
which shows the relation between the second moment of area (Iseam) and the
bending length.

c W I = ( / )  
1
3

seam
1/6b [8.15]

The calculated results of bending length c2 from equation 8.15 are shown
in Table 8.4. As compared with a group of experimental data of bending
length c1 with various seam allowances (as shown in Table 8.5), we found
that the correlation coefficients r are high and the predicted slope is 1, that
is c1 = c2, for different fabrics as shown in Fig. 8.19. The overall correlation
coefficient is 0.89. Since the correlation coefficient exceeds the critical value
of 0.622 at the 0.05 level, the relation of bending length and second moment
of area of a vertical seam with various seam allowances shown in equation
8.15 can be accepted at the 0.05 significance level:

Table 8.4 Calculated bending length (c2) in mm

SA, (mm) 0 1 2.5 5 10 15 20 25

Plain cotton 24.85 28.14 32.84 33.67 37.03 36.17 35.65 35.14
Twill cotton 26.70 35.09 37.24 35.96 37.08 38.05 38.17 38.97
Linen 26.66 31.60 32.17 34.25 33.47 35.01 35.34 35.52
Wool 22.11 26.69 28.20 28.60 30.27 31.06 32.39 31.85
Silk 13.58 19.54 21.30 22.10 22.16 23.78 22.11 23.39
Polyester satin 16.86 24.68 26.89 27.85 29.82 30.06 29.17 29.86
Polyester 11.56 15.24 17.84 16.97 18.61 19.00 19.54 19.00

Table 8.5 Experimental bending length (c1) in mm

SA, (mm) 0 1 2.5 5 10 15 20 25

Plain cotton 21 34.5 33.25 33 36 35 35 36.5
Twill cotton 22 27 41.5 39.5 37 38.5 36.5 38.5
Linen 24 30.75 34.5 36 35 35.5 34.5 34
Wool 17 27.5 31 31.5 32 31.5 30.5 31
Silk 14.5 24.5 22.5 23 22 23.5 21.8 22.5
Polyester satin 20 25.5 28.5 30 28 29.5 28.5 30.5
Polyester 13 17.5 19.5 18 19 18.2 19.2 18.5
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8.4.4 Difference of vertical and horizontal seams on
drape of fabrics

The bending length of a fabric with a vertical seam is higher than that with
a horizontal seam. Fabrics with a horizontal seam drape more easily than
fabrics with a vertical seam. The effect of seam allowance on a horizontal
seam is different from that on a vertical seam.

When a horizontal seam is added on a fabric cantilever, three situations
are found. First, the seam allowance of a horizontal seam is supported on the
plane when it is placed at the hanging edge, which is 50 mm from the free
end in Fig. 8.2. In the second situation, the seam allowance of a horizontal
seam is just appended to the hanging edge, that is 25 mm seam allowance at
a seam position 25 mm from the free end. In the final situation, the seam
allowance of a horizontal seam is fully free hanging on the fabric cantilever,
which is 5 mm from the free end in Fig. 8.2. Different results for the drape
of fabric cantilevers can be observed.

When a seam is located 50 mm from the free end, it is attached to the
hanging edge. Bending length increases sharply when SA increases from
1 mm to 15 mm. Further increase in seam allowance brings a drop in bending
length. When a horizontal seam is free hanging in a fabric cantilever, the
addition of a horizontal seam and the increase in seam allowance cause a
decrease in bending length. However, if the seam allowance of a
horizontal seam is just appended to the hanging edge, bending length increases
instantly.
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R2 = 0.8912
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c2

8.19 Bending length of seven fabrics from experimental results c1
and calculated results c2.
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8.5 Effect of three-dimensional seams on fabric

bending/drape properties

8.5.1 Drape performance of fabrics with radial seams

8.5.1.1 Relation between vertical seams and radial seams in terms of
bending length and drape coefficient

From Fig. 8.20, it can be seen that a linear correlation exists between two-
dimensional and three-dimensional drape in terms of bending length c and
DC% respectively. For the no-seam fabrics shown in Fig. 8.20a, a linear
relation between c and DC% of different fabrics is shown in equation 8.16
with a correlation coefficient of 0.92.

DC% = 4.37c – 33.11 [8.16]

When a seam is added, a linear relation can also be seen between c and
DC% as shown in Fig. 8.20b. However, the linear regression becomes equation
8.17 with correlation coefficient of 0.88,

DC% = 3.45c – 42.6 [8.17]

which shows that both the slope and the constant from equation 8.16 are
changed with the addition of seams.

When seam allowance increases from 2.5 mm to 25 mm as shown in Fig.
8.20c, it is interesting to see that all the linear regressions in this SA range are
similar to each other. The regressions can be combined and presented in
equation 8.18 with correlation coefficient of 0.98.

DC% = 2.79c – 30.97 [8.18]

The linear regression shows that there is no significant change in relationship
between DC% and c with SA in the range 2.5–25 mm, which means the
change of seam allowance has little effect on the relation between DC% and
c. However, the linear relationship of this SA range is different from SA =
1 mm in equation 8.17.

8.5.1.2 Drape coefficient of fabrics with one and two radial seams

The changes in drape coefficients (DC%) for fabrics with one or two radial
seams are rather unstable when compared with those with four seams. However,
the trends of DC% corresponding to various seam allowances are similar to
each other. Generally speaking, drape coefficients increase rapidly with the
addition of a seam from SA 0 mm (no seam) to 1 mm. Further increase in
DC% is observed on some fabrics when SA is increased from 1 mm to
2.5 mm. However, DC% slightly increases after seam allowance is greater
than 2.5 mm. In addition, light weight fabrics such as 100 % silk and 100 %
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8.20 Relations between DC % and bending length c of different
fabrics: (a) no seam; (b) seam allowance = 1 mm; (c) seam allowance
= 2.5 ~ 25 mm.
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polyester exhibit a much smaller change in DC% with the addition of one or
two radial seams, which is different from heavy weight fabrics. Thus the
effects of both one and two radial seams on light weight fabrics are very
limited.

8.5.1.3 Drape coefficient of fabrics with four radial seams

Figure 8.21 shows that drape coefficient (DC%) increases when four seams
are sewn on the fabric. An increased seam allowance initially increases
DC% rapidly in the small region located between 1 and 5 mm SA; then, a
negligible increase in DC% occurs on any further increase in seam allowance.
The DC% of a fabric with four seams is relatively consistent and stable when
compared with the results for one or two seams. In an example of 10 mm
seam allowance, the change in DC% with respect to the seam number is
shown in Fig. 8.22. The increased DC% with the addition of seams is highest
when a fabric has four seams, and is minimal with one seam. In this case, the
effect of radial seams on three-dimensional drape is influenced by the increase
in seam numbers. Fabric weight also impacts on this effect. In Fig. 8.22
again, it can be shown that heavy weight fabrics have an increase in DC%
value when seam numbers increase, but the increased seam numbers are less
inclined to increase the DC% of light weight fabrics.

8.5.1.4 Drape profile of fabrics with radial seams

The instability of a draped fabric can be seen on fabrics with no seams,
where node numbers may vary on every drape. However, the drape profile is
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8.21 Drape coefficient (DC%) of four radial seams on the warp, weft
and two biases.
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Table 8.6 Node length of two radial seams with four nodes on various fabrics. Node
length in cm from the edge of the pedestal

SA mm Highest Seamed Seamed Seamed Seamed Lowest

node node 1 node 2 node 3 node 4 node

(a) Wool
0 5.4 – – – – 4
1 5.4 5.4 5.2 5.1 4.9 4.1
2.5 5.5 5.5 5.3 5.2 5.2 4.1
5 5.6 5.6 5.4 5.1 5 4

10 5.7 5.7 5.5 5.3 5.3 3.9
15 5.4 5.4 5.2 5.2 4.9 4.3
20 5.4 5.4 5.4 5.3 5 4.2

(b) Silk
0 4.2 – – – – 3
1 4.5 4.5 4.5 4.3 4.2 3
2.5 4.7 4.7 4.1 4 3.8 3.5
5 4.5 4.5 4.1 3.8 3.4 3.2

10 4.9 4.9 4.6 4.2 4.1 3.5
15 4.7 4.7 4.6 3.9 3.7 3.2
20 4.9 4.9 4.3 4 4 3.3

(c) Polyester
0 3.9 – – – – 2.1
1 4.1 4.1 3.9 3.8 3.6 2.6
2.5 4.4 4.4 4 3.6 3.6 2.9
5 4.2 4.2 4.1 3.8 3.5 2.7

10 3.8 3.8 3.6 3.6 3.3 2.5
15 4 4 3.6 3.5 3.5 2
20 4 4 3.6 3.3 3.3 2.6

Warp seam SA: 1 mm Warp seam SA: 5 mm Warp seam SA: 15 mm

Weft seam SA: 1 mm Weft seam SA: 5 mm Weft seam SA: 15 mm

8.23 The drape profiles of one seam on plain cotton fabric with
various seams.
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No seam One warp seam One weft seam

Two seams on warp & weft
Two seams on warp

weft & bias

8.24 The drape profile of plain cotton with various seam numbers.

be evenly distributed in an octagonal arrangement along the seam directions.
Increasing the seam allowances for four radial seams has little influence on
changing the orientation of the drape profile. Drape profiles of fabrics with
four radial seams are similar to those for fabrics with two seams, but the
former are more stable than the latter and are not affected by variations in
seam allowance. The drape profile of the specimen with four radial seams
shows no significant change between each drape no matter how many times
it drapes on the pedestal, because the free distribution of nodes is highly
restricted by the additions of four seams.

From Fig. 8.24, it can be seen that the drape profile of a fabric is greatly
affected by the number of radial seams. The more seams are added to a
fabric, the more stable is the drape profile. Thus, drape profiles of fabrics
with both two seams and four seams have a more regular node arrangement
than those with one seam. It is also noted that added seams have less influence
on the drape profiles of light weight fabrics: that is, the node number and
drape appearance of light weight fabrics cannot be altered significantly by
introducing seams and changes in seam allowance.

8.5.2 Drape performance of fabrics with circular seams

Two-dimensional and three-dimensional drape behave similarly when seam
positions are changed. Both bending length and DC% increase when the
seam is located just out of the hanging edge. Bending length and DC%
decrease when the seam is fully free hanging and far from the hanging edge.
In addition, bending length and DC% are lowest when the seam moves near
the free end.



Mechanical properties of fabrics with seams 237

According to Fig. 8.25, the drape coefficient is highest when a circular
seam is located just off the edge of the pedestal. This is because the seam
allowance is still hanging at the edge of the pedestal where a supporting path
is developed. If the seam is moved further outward from the pedestal, the
DC% will drop quickly from a 14 cm to a 15 cm seam radius. The DC% will
decrease continuously as the seam moves to the edge of a fabric. When the
seam is located near the edge of the specimen, the drape coefficient is lowest.
From these results, it can be seen that the effect of seam position on fabric
drape is significant with respect to the DC% for fabrics with a circular seam.

The drape profile of a fabric with a circular seam is entirely different from
the drape profile of a fabric with radial seams. Nodes do not stay at any
specific positions. Moreover, there is no consistent change of node number
in the fabric, as shown in Table 8.7.
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8.25 DC % and bending length c against ratio of seam position from
hanging edge of the extended fabric length to the free end (seam
allowance = 10 mm).

Table 8.7 The node number of drape shadow, highest and lowest node with respect
to different seam radii (r)

Seam radius, r

0 7 9 11 12 14 15 17

Node number 6 6 6 6 4 4 4 4
Highest node length, cm 7.8 8 7.5 8 8.4 8.2 8.5 8
Lowest node length, cm 6.1 5.3 6.5 6.2 7 6.5 6.8 7.2

r is the radius of a circular seam.
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8.6 Summary

This chapter has examined the effect of seams on the bending and drape
properties of woven fabrics. It is hoped that the results can provide a deeper
understanding of drape and bending of a seamed fabric. The following
conclusions have thus been reached:

(1) The bending of a fabric strip with a vertical seam is related to the
second moment of area of a seamed fabric. Fabric thickness, seam
thickness, distance of the neutral axis from the surface of the seam
cross-section, width of fabric strip and width of seam allowance are the
key elements involved in the analysis of seam structure. The effect of
the second moment of area on the bending rigidity of a fabric strip with
a vertical seam of various seam allowances can be presented as B =
b Iseam  from which b is a constant for a particular fabric. The
relationship of bending length to the second moment of area of a fabric
strip with a vertical seam can be expressed as c = (b/W)1/3 Iseam

1/6 .
(2) Bending of a fabric with a vertical plain seam is mainly affected by the

seam structure, which involves the study of fabric thickness, seam
thickness, seam allowance, distance of neutral axis from the surface of
fabric cross-section and width of the fabric strip. It is found that the
‘second moment of area’ of the seamed cross-section determines the
bending behaviour of a fabric strip with a vertical seam. Bending length
and bending rigidity of seamed fabrics are highly related to the second
moment of area of the fabric cross-section.

(3) In the cantilever test with a horizontal seam, it can be seen that the
bending length of a fabric with a horizontal seam is lower than that of
a vertical seam. The location of a horizontal seam is a significant factor
in determining the bending length. The nearer the seam is to the free
end, the smaller is the bending length. Seam allowance has different
effects on bending length according to seam locations.

(4) It has been found that drape coefficient is increased by the addition of
a radial seam. The effect of radial seams on fabric drape is clearly
shown by the dramatic increase in seam numbers. The DC% is highest
when a fabric has four seams. The drape profile of an unseamed fabric
is not stable and node numbers vary on every drape. The drape profiles
of fabrics with one radial seam have irregular node orientations at the
unseamed parts. However, the drape profiles of fabrics with four radial
seams are more stable and regular. The node numbers are normally
fixed at seven or eight in an octagonal arrangement. Increase in seam
allowance has little influence on changing the node orientation along
the seamed parts of four radial seams.

(5) With respect to fabric drape with a circular seam, the highest drape
coefficient has been found when a circular seam is located just out of
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the pedestal. Any outward movement of the seam causes DC% to fall.
The drape coefficient is lowest when the circular seam is located at the
edge of the fabric. Hence, varying the seam position of a circular seam
has a significant effect on fabric drape.
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9.1 Introduction

The key to developing CAD (computer-aided design) systems for clothing
products is the establishment of physically-based numerical models which
can efficiently and accurately simulate the drape and other complex
deformations of fabrics (Hu and Teng, 1996), in particular woven fabrics
which are the commonly used fabric material. Woven fabrics are complex
mechanisms made up of intersecting threads or yarns. Although they may be
treated as continuous sheet materials, when undergoing overall deformations
like draping, the complex and discrete microstructure and their very small
thickness lend these fabrics many special properties that differ from those of
other conventional sheet materials such as steel and glass. Fabrics have a
very small bending stiffness compared to their membrane stiffness and have
different mechanical properties in the warp and weft directions. They are
easily deformable, suffering large deflections and rotations even under their
own weight and in daily use. The maximum deflection involved in fabric
deformations may be of the order of hundreds of times the thickness, and the
final deformed shape may be extremely complicated, with many doubly-
curved folds. The deformations are large although the strains are generally
small. Analysis of complex fabric deformations is therefore a difficult task
and one that was impossible, except for a few very simple cases, before the
computer era.

Over the last two decades computer technology has made great advances.
These advances have made it possible to model complex fabric deformations
such as fabric draping using computer simulation techniques. There have
been many successes and considerable progress in this area during the period
(Hu and Teng, 1996; Ng and Grimsdale, 1996). Most early works (Weil,
1986; Dhande et al., 1993) in the area are geometrically based, with an
emphasis on reproducing the cloth-like appearance of a fabric sheet on a
computer. These models cannot simulate fabric behaviour physically since
no mechanical properties are included in them. Many other workers,

9
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fabrics and garments – theory
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however, have adopted various physically-based models (Hu and Teng,
1996).

Feynman (1986) proposed an energy-based physical model for simulating
the appearance of cloth. The simulations included hanging cloth and cloth
draped over a sphere. The total energy function of the model contains tensile
strain, bending strain and gravity terms, but shear deformations are not
considered. Terzopoulos et al. (1987) introduced an elastically deformable
model for generalised flexible objects including fabrics. Since the model
was developed for general use in computer graphics, it is not capable of
directly incorporating standard engineering parameters such as Young’s
modulus. The solution procedure for the equations arising from the model is
also computationally intensive. Many other works (Thalmann and Yang,
1991; Thalmann and Thalmann, 1991; Carignan et al., 1992) were
reported using and extending Terzopoulos et al.’s deformable model. These
works were focused on the computer visualisation and animation of
garments.

Breen et al. developed a particle-based model to simulate the draping
behaviour of woven cloth (Breen 1993; Breen et al. 1991, 1992, 1994). In
their model, the cloth is treated as a collection of particles that conceptually
represent the crossing points of warp and weft threads in a plain-woven
fabric. Separate empirical energy functions were proposed for yarn repelling,
stretching, bending and trellising deformations. These functions were tuned
using the KES, Kawabata Evaluation System (Kawabata, 1975), test data
empirically in their later works (Breen et al., 1992; Breen, 1993). The final
position of the draped fabric was determined based on the minimisation of
the total potential energy which is the sum of the deformation energy terms
mentioned above and the potential energy of the self weight. While the
model was conceptually based on the microstructure of cloth, continuum-
based macrostructure properties were used in the simulation. The particle
grid of 51 ¥ 51 used for a 1 m ¥ 1 m cloth in the numerical examples is also
far from that necessary for a microstructural or thread level model. In addition,
the solution procedure employing a stochastic searching process was reported
to be very time-consuming. Recently Eberhardt et al. (1996) extended Breen’s
particle-based model by using a different, faster technique to compute the
exact particle trajectories. Some promising simulations including cloth draped
over a square table, a circular table and a sphere were presented.

Stylios et al. (1995, 1996) presented a physically-based approach using
the deformable node-bar model (Schnobrich and Pecknold, 1973) to predict
complex deformations of fabrics. In their approach, the fabric sheet is assumed
to be a continuum shell with homogeneous, orthotropic and linearly elastic
properties. Their drape simulation was compared with results from a fabric
drape testing system. The modelling of a skirt attached to a synthetic lady
was also described.
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Several other researchers employed the finite-element method for the
simulation of fabric draping behaviour. Lloyd (1980) was probably the first
to apply the finite-element method to model fabrics and dealt only with in-
plane deformations. Collier (1991) developed a large deflection/small strain
analysis employing a 4-noded orthotropic flat shell element to predict the
drape coefficient of cotton fabrics. Their results were reported to be in
reasonably good agreement with experimental results. Gan et al. (1995)
produced a similar analysis employing a curved shell element and presented
simulation results for fabric sheets draped over square and circular pedestals.
Kim (1991) described drape simulations using a geometrically exact shell
theory proposed by Simo et al. (1989, 1990). Simo and Fox (1989), Deng
(1994) and Eischen et al. (1996) extended the work of Kim to buckling,
contact and materially non-linear problems.

Chen and Govindaraj (1995) predicted the draping of fabrics using a
shear flexible shell theory. The predicted results of a square fabric sheet
draped over a flat square surface and an animation sequence were presented.
Yu et al.(1993) and Kang and Yu (1995) also developed a non-linear finite-
element code to simulate the draping of woven fabrics. In their study, a flat
shell element model based on a convected co-ordinate system (Simo and
Fox, 1989; Simo et al., 1989, 1990; Bathe, 1982) was used. The fabric was
again assumed to be an elastic and orthotropic material. The predicted draped
shapes were shown to agree reasonably well with those obtained experimentally.

Ascough et al.. (1996) adopted a rather simple beam element model in
their cloth drape simulations and the simulation results for a piece of fabric
draped over a table corner do not appear to be close in shape to that seen in
a corresponding photo. They also presented simulation results of the falling
of a skirt from its initial position into contact with a human body. Their
simulations were carried out as a dynamic analysis using Newmark’s method.

As reviewed above, there exist basically two main approaches in the
existing modelling approaches of fabric drape deformations: (a) the finite-
element approach employing a shell element; (b) a more empirical approach
developed specifically for fabric deformation analysis, among which the
particle-based model of Breen et al. is representative and the most widely
quoted (Breen 1993; Breen et al. 1991, 1992, 1994).

The studies of Stylios et al. (1995; 1996) and Ascough et al. (1996) do not
fall neatly into either of the above two approaches, but both are closely
related to the first approach.

The finite-element approach employing a shell element has been used by
a number of researchers. It has a rigorous mechanical basis and can be easily
understood and further developed by the computational mechanics community.
As the method was not developed making use of the special characteristics
of fabric drape deformations, it has a number of disadvantages. First, the
method entails a high computational cost as high-order shape functions are
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used and very large displacements have to be followed in a step-by-step
manner. Second, when the popular degenerated shell elements are used, the
bending stiffness and the membrane stiffness of the shell surface will be
coupled, and this subsequently leads to difficulty in modelling fabric sheets
due to their independent membrane and bending stiffness. Thirdly, the method
is theoretically complex, making it more difficult to be readily accepted and
understood by its users.

On the other hand, the widely cited particle-based model of Breen and its
extension (Breen et al., 1991, 1992; Breen, 1993; Breen et al., 1994; Eberhardt
et al., 1996) contains much empiricism in the establishment of the energy
functions and uses definitions of deformations which do not follow a rigorous
mechanics approach. The computational cost may also be very high.

9.2 Finite-volume formulation

9.2.1 Discretisation scheme

Fabric drape deformations involve very large deflections, but the associated
strains are small. This is because fabric sheets are very thin and flexible, so
most of the gross deformations come from bending; the amount of in-plane
stretching is very small in comparison. This means that an initial patch of a
fabric sheet would retain its original surface area and volume after drape
deformations.

Based on this knowledge, the finite-volume method is adopted for simulating
the complex deformations of fabrics. In this method, an initially flat fabric
is first subdivided into a finite number of structured small patches finite
volumes (or control volumes). One control volume contains one grid node.
The deformations of a typical volume can be defined using the global co-
ordinates of its grid node and several neighbouring grid nodes surrounding
it. The strains and curvatures, and hence the in-plane membrane and out-of-
plane bending strain energies, of the whole fabric sheet are then calculated
very easily over all control volumes which retain their original surface areas
and thicknesses. The equilibrium equations of the fabric sheet are derived
employing the principle of stationary total potential energy. Geometric non-
linearity and linear elastic orthotropic material properties of the fabric are
considered in the formulation. This leads to a simple but rigorous way of
formulating the equilibrium equations of a grossly deformed fabric sheet.

The concept of finite volume or control volume was originally used for
the discretisation of differential equations, particularly in computational fluid
dynamics (Patankar, 1980; Versteeg and Malalasekera, 1995). Using this
discretisation approach, the calculation domain is first divided into many
non-overlapping control volumes such that there is one volume surrounding
each grid node. The differential equations are then integrated over each
control volume, resulting in discretisation equations containing variables for
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a group of grid nodes. The most attractive feature of the finite-volume
formulation is that the integral conservation of physical quantities such as
mass, momentum, and energy is exactly satisfied over any group of control
volumes (including the limiting case of a single finite volume) and, of course,
over the whole calculation domain (Patankar, 1980).

In recent years, the finite-volume method has also been applied to solid
and structural mechanics problems (Fryer et al., 1991; Demirdzic and
Martinovic, 1993; Demirdzic and Muzaferija, 1994; Onate et al., 1994; Bailey
and Cross, 1995; Wheel, 1996, 1997), particularly for solid body stress
analysis (Demirdzic and Martinovic, 1993; Demirdzic and Muzaferija, 1994;
Onate et al., 1994; Bailey and Cross, 1995; Wheel, 1996).

Here we attempt to extend the finite-volume method to model fabric
deformation, a highly non-linear problem of orthotropic sheet materials with
unique features. The deformations and energies are calculated over all control
volumes based on simple but reasonable assumptions. The discretised equations
containing the global co-ordinates of grid nodes as unknowns are derived
using the principle of stationary total potential energy. The proposed formulation
gives the finite-volume method an explicit physical interpretation in fabric
deformation modelling and extends the horizon for the application of the
finite-volume method.

There is another major difference between the analysis of fabric drape
deformation and a non-linear load-resisting structure. In fabric deformation
analysis, attention is given to the final shape of the deformed fabric sheet
under self weight with or without additional applied load, while in the analysis
of a non-linear load-bearing structure, the maximum load that the structure
can carry and the load-deflection response are of more interest. In addition,
both the displacements and the internal forces need to be carefully determined
in the analysis of load-bearing structures while, in fabric deformation analysis,
the final displacements are the only focus. These aspects are exploited here
in developing an efficient solution method.

9.2.2 Finite-volume discretisation

Before deformations, the fabric sheet is assumed to be flat. The whole fabric
surface is taken to be the computational domain of the problem, over which
an appropriate discretisation grid needs to be established.

9.2.2.1 General control-volume discretisation

Consider an initially flat fabric sheet, which consists of two orthogonal sets
of threads, warp and weft yarns. Figure 9.1 illustrates the domain discretisation
scheme of such a fabric sheet. The dashed lines in the two orthogonal directions
(warp and weft or x- and y-) divide the whole fabric area into a finite number
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of structured sub-domains, called finite volumes (or control volumes). The
solid lines are located midway between neighbouring dashed lines.
Consequently, the crossings of solid lines, which are called grid nodes, lie
exactly at the geometric centres of the control volumes, while the crossings
of dashed lines and solid lines, which are called face nodes, lie at the mid-
points of the respective finite-volume boundaries or faces.

A system of notation for each control volume is now established as shown
in Fig. 9.1 for a typical internal volume. It contains one grid node which is
identified by P and four face nodes which are identified by w, e, n and s,
denoting the west, east, north and south side faces, respectively. The same
letter P is also used to identify this typical volume. Four neighbouring grid
nodes, identified by W, E, N and S respectively, are connected directly with
the node P. Here nodes W and E are x direction neighbours of P, while N and
S are the y direction neighbours. The two axes are assumed to be aligned
with the two orthogonal directions of a woven fabric composed of warp and
weft yarns. For simplicity of presentation here, the x-axis is assumed to be
in the warp direction and the y-axis to be in the weft direction.

If the grid intervals (or finite-volume sizes) are non-uniform, the four face
nodes will not lie midway between the grid node P and its four neighbouring
grid nodes W, E, N and S, respectively. The positions of the four face nodes
are, however, simply determined by a linear interpolation between the adjacent
grid nodes. In particular, if a two-dimensional fabric drape problem is
considered, the initial grid will be one-dimensional. This discretisation scheme
is given in Fig. 9.2.

Boundary
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9.1 Two-dimensional non-uniform grid.
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9.3 A typical control volume P: (a) before and (b) after deformation.

9.2.2.2 Assumptions about deformation

Deformation will lead to a subsequent change in the location and the overall
shape of each control volume. For a typical control volume P (Fig. 9.3), this
means that the grid node P and the face nodes w, e, n and s will move from
their initial positions to their new positions. Since the fabric undergoes large
displacements and rotations but small strains during the process of deformations,
it may be reasonable to make the following assumptions in the analysis of
fabric deformations:

(1) The fabric is an elastic and orthotropic material whose two principal
directions of anisotropy coincide with the warp and weft directions of
the yarns, respectively. Although the displacements may be very large,
considering the small strains involved, the two directions of the warp
and weft yarns are assumed to remain orthogonal throughout the
deformation process.

(2) For a typical control volume, only uncoupled out-of-plane bending and
in-plane tension or compression and shearing are produced during the
deformation process. The contribution of twisting deformation to the
strain energy is ignored.

(3) The surface area and thickness of the fabric sheet, and hence those of
a control volume, do not change significantly during deformations.

(4) The strains and curvatures of a typical control volume can be determined
using the positions of its grid node and four face nodes.

(5) The deformed position of each face node can be determined using a
linear interpolation between its two adjacent grid nodes as in the
undeformed state. For example, the deformed position of the face node
e in Fig. 9.1 can be found by linear interpolation of the deformed
positions of nodes P and E.

(6) Each grid node has three degrees of freedom: three global coordinates
x, y and z.
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Under the above assumptions, the deformations of an internal control volume
will only depend on five grid nodes: the grid node of the volume itself and
its four neighbours surrounding it.

In assumption 2, the twisting shear strain energy is assumed to be negligible.
This assumption in fact has been involved in all fabric deformation models
based on approach b, although it has never been discussed or even mentioned
in these studies. Physically, the assumption may be justified by noting that
the warp and weft yarns of a woven fabric structure can slide against each
other under twisting shear stresses, a situation which also makes the in-plane
shear stiffness much smaller than the tensile stiffness. The assumption of
ignoring the resistance offered by twisting shear deformations is also supported
by numerical comparisons later (Press et al., 1992).

9.2.2.3 Boundary control volumes

So far, no discussion has been given on the control volumes that lie along the
edges or at the corners of the computational domain. Since boundary conditions
are usually imposed only on the grid nodes, the solid grid lines are placed
along the domain edges, leading to half volumes along edges and quarter
volumes at corners. That is, the typical edge volume P1 (Fig. 9.1) may be
viewed as a ‘half’ of an internal control volume and the corner volume P2

(Fig. 9.1) a ‘quarter’ of an internal volume. Therefore, the deformations of
the edge control volume P1 will depend on four grid nodes instead of five,
one of itself and three neighbours, and those of the corner control volume P2

depend only on three grid nodes.

9.2.3 Strain energy

The out-of-plane bending and in-plane membrane strain energies of a typical
control volume are considered in this section. The total strain energy of a
control volume is the summation of these two types of strain energy. The
total strain energy of the fabric sheet can be found by adding together the
contributions from all control volumes.

9.2.3.1 Out-of-plane bending

The bending deformations of a typical control volume P are in general
produced simultaneously in two directions: warp (or x) and weft (or y).
Figure 9.4a illustrates the x-direction bending. Although the draped shape of
a fabric sheet is in general a complicated curved surface, the radii of curvature
in both the warp and weft directions of a small surface area are still much
greater than its thickness. Therefore, if the control volume is sufficiently
small, it is not difficult to derive the equivalent bending curvatures in the
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two directions from the two bending angles formed by its grid node and the
four neighbours. For example, the radius of curvature of the deformed surface
in the warp direction is found as the radius of a circular arc which has two
end tangents coinciding with the deformed lines P¢w¢ and P¢e¢ for the control
volume P (Fig. 9.4a). Therefore, the curvatures of the control volume P in
the two directions are

k q k q
P

P
P P

P
Pl l1

1
1 2

2
2 = 2ctg

2
/    and    = 2ctg

2
/ [9.1]

where kP1 and kP2 are the bending curvatures in the warp and weft directions,
qP1 and qP2 are the corresponding bending angles (see Fig. 9.4a), lP1 and lP2

are the finite-volume sizes in the two directions, respectively. Based on
assumptions 1–6 as given in the previous section, the bending strain energy
is given as

U D D D AP P P P P Pb 1 1
2

12 1 2 2 2
2 = 1

2
(  + 2  + )  k k k k ◊ [9.2]

where D1 and D2 are the bending rigidities in the warp and weft directions,
respectively, D12 is the bending rigidity reflecting the Poisson’s effect, and
AP is the in-plane surface area of volume P which is assumed to remain
constant during deformations.

Based on the classical continuum bending theory which assumes that the
tensile and compressive Young’s moduli are the same and that they are also
the same regardless of the nature of deformations, these bending rigidities
can be related to the elastic moduli obtained from uniaxial tensile tests. For
a woven fabric, however, the situation is quite different in that the measured
bending rigidities are much smaller than those calculated using the conventional
continuum mechanics approach. That is, a fabric has independent bending
stiffness and stretching stiffness. Therefore, equation 9.2 is used directly
with measured bending rigidities.

9.4 Deformations of a typical control volume P: (a) out-of plane
bending in x-direction; (b) in-plane tension and shearing.
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9.2.3.2 In-plane tension and shearing

The in-plane (or membrane) deformations of a control volume include tension/
compression in the two principal directions and membrane shearing. In general,
the surface of a control volume is not plane after deformations, so subdivision
of the volume into smaller sections is desirable for a more accurate evaluation
of the in-plane strain energy. Referring to the typical volume P as shown in
Figs 9.1 and 9.3, the two lines ew and ns subdivide the whole volume into
four sections, nPe, nPw, sPe and sPw. The in-plane deformations of the
quarter section nPe are illustrated in Fig. 9.4b. The membrane strains of the
section can then be evaluated as
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where lPE, dPE and lPN, dPN are the distances between grid nodes P and E, and
P and N, before and after deformations, respectively; jnPe is the angle formed
by lines Pe and Pn after deformations (Fig. 9.4b).

As the fabric is assumed to be an orthotropic elastic material, the
corresponding stress resultants (force per unit length) in the section can be
easily obtained as
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where G is the shear rigidity and E1, E2, E12 are given by
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Here, Ewarp and Eweft are the membrane rigidities of the fabric sheet in the
warp and weft directions respectively determined from tensile tests, and
nwarp and nweft are the corresponding Poisson’s ratios. The in-plane strain
energy of section nPe is therefore given by
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where AnPe is the area of quarter section nPe.
The in-plane strain energy UnPw, UsPw and UsPe of the other three quarter sec-

tions can be found in a similar manner. The in-plane (or membrane) strain energy
of the whole control volume is the sum of the above four sections given by

UPm = UnPe + UnPw + UsPw + UsPe [9.7]

The total strain energy of the control volume P is the sum of bending and
membrane strain energies, i.e.

UP = UPb + UPm [9.8]

Consequently, the total strain energy of the whole fabric sheet consisting of
r control volumes Udf is

U Ud f P

r

P =  
=1

S [9.9]

9.2.4 Governing equations

Under its own weight and given boundary conditions, a fabric sheet always
deforms into a final stable equilibrium state and forms a complicated surface,
the process of which is called fabric draping. Complex deformations may
also occur under additional applied loads. The final equilibrium state of the
fabric can be determined by using the principle of stationary total potential
energy. The total potential energy P is the summation of the total strain
energy as given by equation 9.9 and the potential energy of gravitational
forces and other applied loads
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where Ug and Uex are the potential energies of gravitational forces and other
applied loads respectively, mP is the mass of the finite volume P, g is the
gravitational acceleration, and zP is the vertical co-ordinate. The equilibrium
equations can be obtained using the variational principle that the total potential
energy P must be stationary;

d P = d (Udf + Ug + Uex) = 0 [9.11]
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where xPi (i = 1, 2, 3) stands for the three global co-ordinates xP, yP and zP of
the position of node P at any point of time during deformation. Equation
9.12 leads to a set of non-linear algebraic equations with the global coordinates
of all grid nodes as unknowns, which can be cast in the following form
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where X = [LxW1 xW2 xW3 LxP1 xP2 xP3 L]T is the global nodal co-ordinate
vector, F is the global nodal internal force vector and R is the global nodal
load vector due to gravity and applied loads.

Using the Newton–Raphson iteration scheme (Bathe, 1996; Crisfield, 1991),
equation 9.13 can be rewritten in the following iterative form
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where K is the global tangent stiffness matrix of the fabric sheet, and X{i}

denotes the i-th iterative solution of the vector X. From equation 9.9, the
global internal force vector and the global tangent stiffness matrix may be
written in the form of summations as
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Since the strain energy function UP depends only on the co-ordinates of
node P and its four neighbours W, E, N and S, only 15 components in the
vector ∂UP /∂X are non-zero. Similarly, the matrix ∂ 2UP /∂X∂X contains
only 15 ¥ 15 non-zero elements. These non-zero elements form a sub-vector
Fe and a sub-matrix Ke, which are referred to as the element internal force
vector and the element tangent stiffness matrix, respectively. Once all the
element vectors Fe and matrices Ke are obtained, they can be assembled to
form the global vector F and matrix K, the procedure of which is similar to
that in the finite-element method.
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9.2.4.1 The element internal force vector

In this section, the internal force vector for a typical internal control volume
P (referred to as element internal force vector here) is formulated. The vector
is given by
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and the corresponding element nodal co-ordinate vector is

Xe = [xWi   xNi   xPi   xSi   xEi]
T [9.17]

In equations 9.16 and 9.17, each component denotes a 3 ¥ 1 vector, for
example
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From equations 9.7 and 9.8, it is easy to see that
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Noting that
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where fwPe and fnPs denote the cosines of the bending angles qP1 and qP2

respectively, the strain energies UPb, UnPw, UnPe, UsPw and UwPe can be expressed
as functions of the nodal co-ordinates, that is
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and
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where fbPa denotes the cosine of the angle formed by grid lines PA and PB
after deformations (A, B = W, E, N or S), while dPA and dPB are the distances
between grid nodes P and A, and P and B, respectively, after deformations.
In equation 9.21 above, if the control volume deforms into an anticlastic
surface, the second term on the right-hand side assumes the negative sign
and otherwise the positive sign. Using equations 9.21–9.23, the first partial
derivatives of the bending and membrane strain energy functions, namely
the components of the element internal force vector Fe, can be found as
follows:
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where
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(xj = xAi, xPi, xBi, i = 1, 2, 3) [9.26]

For simplicity, in deriving equation 9.26, the coupling of bending in the two
directions due to the Poisson’s effect has been neglected (i.e. D12 = 0) and AP

= lP1lP2 has been used. There is currently little information on the Poisson’s
ratio of fabrics and its accurate measurement is difficult (Chen and Govindaraj,
1996). The effect of the Poisson’s ratio is therefore ignored in almost all
models belonging to the second approach. In finite-element shell models,
while a non-zero Poisson’s ratio can be easily handled and is quite often
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included in numerical simulations, it has also been set to zero (Kim, 1991;
Eischen et al., 1996), a very small value (Kang and Yu, 1995) or not at all
mentioned in the material properties (Gan et al., 1995).

Collier (1991) compared the drape deformations of a circular piece of
cloth draped over a circular pedestal using two very different values for the
Poisson’s ratios, 0.12 and 0.54 respectively, and showed that they led to
some significant differences in the draped shape. A recent study by Chen and
Govindaraj (1996) has, however, shown that the Poisson’s ratio has no visible
effect on fabric drape deformations for values between 0 and 0.5. Chen and
Govindaraj (1996) also argued that Collier et al.’s results are not reliable due
to the particular modelling approach used for their circular cloth pieces. It is
also a pity that they did not include results for a Poisson’s ratio of 0.3 which
was used for other examples in their papers.

Even in the above two studies which give special attention to the effect of
the Poisson’s ratio, the definition of the Poisson’s ratios is a little loose.
Collier et al. does not even mention which of the two Poisson’s ratios he was
referring to when quoting the values, while Chen and Govindaraj define only
one Poisson’s ratio although the symmetry of the constitutive matrix is enforced.
It thus appears to be wise to set the Poisson’s ratios to zero. The theory
presented here is, however, not limited to the case of zero Poisson’s ratios,
although a more involved derivation is required if a non-zero value is used.
Numerical results given later in the section further justify the omission of the
Poisson’s effect.

In equations 9.24–9.26, the first derivatives of ePa (Pa = Pw, Pe, Pn, Ps)
and fbPa (bPa = wPe, nPs, nPw, nPe, sPw, sPe) with respect to the nodal co-
ordinates are given in the following four expressions
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By now, all components of the element internal force vector Fe have been
expressed as functions of the element nodal coordinate vector Xe. The global
internal force vector F can then be formed by placing these components at
appropriate positions according to the global grid-node numbering sequence.

9.2.4.2 The element tangent stiffness matrix

The element tangent stiffness matrix Ke is a 15 ¥ 15 symmetric matrix. For
the typical internal control volume P, the matrix is
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in which each component stands for a 3 ¥ 3 sub-matrix. For example
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Using equations 9.17 and 9.18, the second partial derivatives may be expressed
as
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The second partial derivatives of the bending strain energy UPb can be obtained
by differentiating equation 9.24 with respect to nodal co-ordinates once
more, which leads to
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The other four terms ∂2UPb /∂xPi∂xWk, ∂2UPb /∂xEi∂xWk, ∂2UPb /∂xEi∂xP k and
∂2UPb/∂xEi∂xEk can be found by appropriate permutations in the subscripts of
the nodal co-ordinates on both sides of equation 9.35. Similarly,
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Again, the terms ∂2UPb/∂xPi∂xNk, ∂2UPb/∂xSi∂xNk, ∂2UPb/∂xSi∂xPk and ∂2UPb /
∂xSi∂xSk can be obtained by permutations in the subscripts on both sides of
equation 9.36. The second derivatives of fbPa (bPa = wPs, nPs, nPw, nPe,
sPw, sPe) can be derived without difficulty. The second derivatives of the in-
plane strain energy function UbPa (bPa = nPw, nPe, sPw, sPe) can also be
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obtained by differentiating equation 9.25 once more with respect to the
nodal co-ordinates.

9.2.5 Boundary control volumes

In the previous sections, the element internal force vector Fe and the element
tangent stiffness matrix Ke for internal control volumes are established. The
corresponding matrices for boundary control volumes, such as the edge
volume P1 and the corner volume P2 as shown in Fig. 9.1, are now derived.
For an edge control volume such as the typical volume P1 in Fig. 9.1, the
strain energy UP1 only depends on four grid nodes. Therefore, the element
internal force vector Fe is a 12 ¥ 1 vector and the element tangent stiffness
matrix Ke is a 12 ¥ 12 matrix. They are expressed as follows
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Similarly, for a corner control volume, such as the typical volume P2 shown
in Fig. 9.1, the strain energy UP2 depends only on three grid nodes, so Fe is
a 9 ¥ 1 vector and Ke a 9 ¥ 9 matrix. These are given by
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The procedure of derivation for all components in equations 9.37–9.40 is the
same as that for internal control volumes as presented in the previous
sections.

9.2.6 Solution method for the non-linear equations

9.2.6.1 Existing solution procedures in fabric deformation analysis

A variety of algorithms have been employed for the solution of the non-
linear algebraic equations arising from a discretised fabric model. In Breen
et al.’s work (Breen, 1993; Breen et al., 1994) the deformed shapes of square
pieces of woven cloth draped over rectangular tables were simulated using
a particle-system model. They used a three-phase solution procedure. The
first phase accounts for the effect of gravity and the collisions between the
cloth and the interacting object. The second phase is an energy minimisation
phase in which a stochastic technique is used to reach a local minimum. In
the third phase, a stochastic perturbation technique is used to produce a more
natural final shape.

Eberhardt et al. (1996) used a Runge-Kutta method with adaptive step-
size control and the Bulirsch-Stoer method (Press et al., 1992) as a numerical
solver for the differential equations resulting from the particle-system model.
The simulation examples presented include cloth sheets draped over a square
table, a circular table and a sphere. Other researchers (Kim, 1991; Chen and
Govindaraj, 1995; Gan et al., 1995; Kang and Yu, 1995) employed the
incremental Newton–Raphson iteration method to solve the non-linear
equilibrium equations derived from a finite-element formulation. Their
simulation examples include the two-dimensional draping of fabric cantilevers,
square cloth sheets draped over cubic objects or circular tables. Deng (1994)
and Eischen et al. (1996) employed an adaptive arc-length algorithm (Riks,
1979; Schweizerhof and Wriggers, 1986) with an acceleration factor to deal
with non-linear effects including material non-linearity and contact. The
predicted results of fabric pieces draped over a block, hanging over a round
rod, draped over intersecting cylinders were presented.

In the existing literature, little discussion has been found on an appropriate
solution procedure for fabric deformation analysis which takes into account
the special characteristics of these problems. This issue is considered first
below, leading to the choice of the Newton–Raphson method (Crisfield,
1991; Bathe, 1996) in conjunction with the use of the line search technique
(Crisfield, 1991). The effectiveness and efficiency of the solution
procedure is then investigated, through comparison with the conventional
step-by-step incremental iterative Newton–Raphson procedure in a numerical
example.
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9.2.6.2 Special characteristics of fabric deformation analysis

Fabric deformations generally involve very large displacements, often of the
order of hundreds of times the thickness of the fabric sheet. This kind of
gross deformation is not encountered in the analysis of load-bearing structures.
The only obvious example in non-linear structural mechanics which is closely
related to this class of deformations is the elastica problem. There are also
some other major differences between a fabric drape deformation analysis
and a non-linear analysis of load-bearing structures. First, the aim of a fabric
deformation analysis is to determine the final deformed shape under self
weight with or without additional applied loading, while in the non-linear
analysis of load-bearing structures, the maximum load-carrying capacity and
the load-deflection response are of interest. Second, both the displacements
and the internal forces need to be carefully determined in the analysis of
load-bearing structures, while in a fabric deformation analysis, the final
displacements are the only item of interest.

It is easy to see that a step-by-step incremental iterative approach is well
suited for the analysis of load-bearing structures, as the load-deflection response
can be traced and internal forces and displacements can be computed at
different levels of loading. For a fabric deformation analysis, a more direct
and efficient approach is clearly desirable as the only information of interest
is the final displacements of the cloth sheet.

9.2.6.3 The Newton–Raphson method

Based on the above rationale, the full Newton–Raphson iterative method
(Crisfield, 1991; Bathe, 1996) is adopted for the solution of the non-linear
equations of the fabric sheet with all the loading applied in a single step,
instead of an incremental iterative approach. The solution process using the
Newton–Raphson iterative method (Crisfield, 1991; Bathe, 1996) in a single
step is described by the following two equations

K X R F

X X X

D

D

 =  –  

 =  + new old

¸
˝
˛

[9.41]

where X is the global nodal co-ordinate vector, K is the global tangent
stiffness matrix, F is the global nodal internal force vector and R is the
global nodal load vector due to gravity and other applied loads if any. Details
of the computational steps will be given later.

9.2.6.4 The line search technique

To accelerate the convergence of the Newton–Raphson iterative solution
process, the line search technique (Crisfield, 1991) is included in the iterative
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solution process. In this technique, the incremental co-ordinate vector DX
obtained from the first part of equation 9.41 is now defined as an iterative
direction for the actual co-ordinate increment. The co-ordinate vector is then
updated using

Xupdate = Xold + hDX [9.42]

in which the scalar h is the iterative step length and the only variable for the
line-search process. The scalar h can be determined using the linear
interpolation method until the defined inner product

s(h) = DXT(F – R) [9.43]

is small, i.e. until the following expression is satisfied

|s(h) | < bls | s(h = 0) | [9.44]

where bls is the line-search tolerance. In the numerical simulations to be
presented later, the line-search technique was employed in the solution process
for all-three dimensional cases and was found to be effective. For the two-
dimensional draping analysis of fabric cantilevers, this technique was not
used as it was not found to be useful.

9.2.6.5 Convergence criterion

A rational and realistic convergence criterion is an essential ingredient of an
effective iterative solution procedure. As stated by Bathe (1996), ‘if the
convergence tolerances are too loose, inaccurate results are obtained, and if
the tolerances are too tight, much computational effort is spent to obtain
needless accuracy’. A number of convergence criteria have been used in
non-linear analysis of load-bearing structures (Bathe, 1996), which may be
either displacement-based or load-based. Bearing in mind that the concern in
fabric drape deformation analysis is the final deformed shape, the convergence
criterion adopted is the iterative change of the position vector at a grid node
which is given by

b D D
D

b

D D

 = |  –  |  

 = (  +  + ) ,  = (  +  + )

new old

new d

new 2 2 2 new old 2 2 2 old

£ ¸

˝
Ô

˛
Ôx y z x y z

[9.45]

where bd is the displacement convergence tolerance, x, y and z are the three
co-ordinates of the grid node. This criterion has to be satisfied by each grid
node before convergence is deemed to have been reached. A value of 10–5

has been used and found to be satisfactory in all the numerical simulations
presented below.
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10.1 Introduction

Due to its inherent extreme thinness and high flexibility, the drape deformation
of a fabric sheet usually involves only very small strains even under very
large deflections; most of these come from bending and only a small amount
is due to in-plane stretching. As a result, a fabric sheet can still retain its
original surface area and volume after drape deformation. For this reason,
the finite-volume method is reasonably appropriate for simulating fabric
drape deformation. In Chapter 9, the theoretical analysis of this method was
developed, and in this chapter a detailed computational evaluation of the
model is reported whereby its predictability and accuracy can be confirmed.
In addition, a B-spline method is used to map fabric texture and colours to
a three-dimensional draped garment.

10.2 Computation

The analysis starts with an initially flat fabric sheet which has been discretised
into r control volumes. For a three-dimensional problem, the unknown vector
X in equation 9.14 contains 3r co-ordinate vector components, i.e. the degrees
of freedom of the problem are 3r. The computational procedure including
the line-search technique for a three-dimensional problem is as follows:

(1) Set up the initial grid and calculate the initial three-dimensional co-
ordinates of all grid nodes.

(2) Calculate the nodal forces due to gravity and external loading (if any)
and form the total load vector R.

(3) Begin iterative loops: steps (4)–(14).
(4) Check if the grid node to be dealt with is an internal node or a boundary

node.
(5) Form the element internal force vector, with appropriate different

treatments for internal and boundary grid nodes.

10
Modelling drape deformation of

woven fabrics and garments –
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(6) Form the element tangent stiffness matrix, with appropriate different
treatments for internal and boundary grid nodes.

(7) Form the global internal force vector F, the global tangent stiffness
matrix K and the out-of-balance force vector G = F – R.

(8) Calculate the old position vector at each grid node Dold.
(9) Impose the boundary conditions.

(10) Apply Crout factorisation to the tangent stiffness matrix K and then
solve the first part of equation (9.14) to obtain the incremental co-
ordinate vector DX.

(11) Compute the new co-ordinate vector Xnew = Xold + DX.
(12) If necessary, carry out line searches to obtain an iterative step length

h and then the updated co-ordinate vector Xupdate = Xold + hDX, otherwise
go to step (13). The line search procedure (Crisfield, 1997) is as follows:

(i) Compute s0 = s(h = 0) = DXT(Fold – R). If it is positive, set h =
1 and go to step (13).

(ii) Set h(1) = 0, h(2) = 1 and h =h(2).
(iii) Compute s(h) = DXT(F – R) = DXTg(h).
(iv) Check if the equation |rls| = |s(h)/s0| < bls is satisfied or the

maximum or minimum allowed step length has been reached
twice. If either condition is met, go to step (13).

(v) Find the step length h– which is the minimum of all previously
obtained step lengths with a negative ratio rls–. If such a step
length does not exist, go to step (viii).

(vi) Find the step length h+ which is the maximum of all previous
step lengths with a positive ratio rls+

 and is at the same time
smaller than h–

(vii) Calculate the new step length using the following linear
interpolation:

h h h
 = 

   –    
 –  

ls– + ls+ –

ls– ls+

r r
r r
◊ ◊

(viii) If the calculated step length h > h+ + 0.2(h– – h+), set h = h+

+ 0.2(h– – h+) and go to step (x).
(ix) Calculate the new step length using a linear extrapolation between

the current and previous step lengths.
(x) If the step length from (viii) h > alshmaxp, set h = alshmaxp,

where als is a predefined maximum amplification factor and
hmaxp is the maximum of all previous step lengths.

(xi) Calculate the updated co-ordinate vector Xupdate = Xold + hDX.
(xii) If the maximum number of line searches has not been reached,

return to step (iii), otherwise go to step (13).

(13) Calculate the updated position vector at each grid node Dupdate.
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(14) Convergence is checked by evaluating the iterative change of the position
vector at each grid node using equation 9.22. If b £ bd is satisfied at
all grid nodes, convergence is deemed to have been achieved; otherwise
more iterations need to be carried out.

(15) If convergence has not been achieved and the maximum number of
iterations specified at the beginning of the problem has not been reached,
return to step (4), otherwise stop.

10.3 Two-dimensional drape simulations

10.3.1 Cantilever cloth strips

Numerical simulations using two-dimensional drape deformations of cloth
cantilever strips are presented first. The simulations are for two cloth strips
made of the same wool fabric, with their long directions along either the
warp or the weft directions. These cloth strips have been experimentally
studied before (Kang and Yu, 1995) where their mechanical properties were
determined using the KES tester (Kawabata, 1975). The Poisson’s ratio is
assumed to be zero in the present study here and in all subsequent calculations.
Both cloth strips are 5 cm long and 1 cm wide. A mesh with 56 grid nodes
(or control volumes) was used in the simulations (Fig. 10.1a). The numerical
results for fabric cantilevers were obtained using the full Newton–Raphson
method without line searches as they were found not to be very useful for
these cases.

10.3.2 Deformed shapes

The predicted deflected shapes and the corresponding experimental data
(Kang and Yu, 1995) for the two strips are shown in Fig. 10.1b A close match
in the draped shapes is evident.

10.1 Fabric cantilevers: (a) geometry and mesh; (b) deflection curves.
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10.2 Load–displacement curves of fabric cantilevers: (a) warp
direction; (b) weft direction. (Solid line = vertical displacement (w);
dotted line = horizontal displacement (–u).)

10.3.3 Load–displacement curves

As discussed earlier, in conventional non-linear finite-element analysis of
load-bearing structures, the step-by-step incremental approach is widely
employed for solving the non-linear algebraic equations. As this method has
also been popular in finite-element modelling of fabric deformations, it is of
interest to examine the relative efficiency of the single-step full Newton–
Raphson method adopted here and the incremental iterative method.

In the incremental iterative approach, the self weight of the fabric is seen
as external loading and is applied to the fabric strip step-by-step. Figure 10.2
shows the load–displacement curves of the free end of the two fabric cantilevers
obtained using a 50-step incremental iterative procedure, where the vertical
axis represents the load factor with the self weight as the reference load. The
calculated final deflection curves for the fabric strips are identical to those
presented in Fig. 10.1b. The required computer time on a Pentium® II/266
personal computer for each simulation without line searches is listed as
follows:

∑ 50-step: warp direction 8.35 seconds and weft direction 5.77 seconds;
∑ single-step: warp direction 0.39 seconds and weft direction 0.38 seconds.

Although variations in the control parameters of the incremental solution
procedure may make it more efficient, the large difference in computer time
makes it clear that the method adopted here is more efficient.

In all previous finite-element simulations of drape deformations, even
though the step-by-step solution procedure was used, the load–displacement
curves were seldom plotted. This is understandable since the result which is
of practical interest is the final deformed shape. However, the shape of a
load–displacement curve has much bearing on the success of a particular
incremental solution procedure, so beneficial insight may be gained by plotting
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some load–displacement curves. It was necessary to plot the load–displacement
curves of the wool cantilevers here in order to explain the inefficiency of the
50-step approach. These load–displacement curves are of a geometrically
stiffening type. Similar curves have been obtained for three-dimensional
draping of fabrics by Kim (1991). This kind of curve is believed to be typical
of fabric drape deformations as fabric sheets transform themselves from a
bending deformation-dominant structure into a stretching deformation-
dominant membrane during the draping process. The behaviour is highly
non-linear in the initial stage of loading and then becomes more linear as
deformations progress. A great deal of computer time may thus be consumed
in tracing the early part of the load–displacement curve in a step-by-step
solution process, although information on this part of the deformation is of
no practical value in real fabric drape simulations. The single-step approach
is thus more rational and efficient.

There may be concern that the single-step procedure could lead to a
different final state from that determined by a step-by-step solution process
if the solution is non-unique. A number of the problems studied below were
checked by running the analysis using a step-by-step solution procedure and
the same final shape was reached.

10.3.4 Convergence of the grid scheme

So far, the issue of convergence of the solution as the grid is refined has not
been mentioned. This is considered here for the wool cantilever strip bent in
the warp direction. The results are given in Table 10.1, where solutions in
terms of the free end displacements are compared for different uniform
discretisation schemes. It is seen that a coarse grid leads to a softer structure,
and the solution converges towards the exact solution as more grid nodes are
employed. Compared to the rate of convergence of a uniform grid, a non-

Table 10.1 Displacements at the free end of a fabric cantilever (warp-direction)

Uniform grid Horizontal Vertical

displacement displacement

–u (cm) w (cm)

5 ¥ 1 3.6132 4.6698
10 ¥ 1 3.4798 4.5551
20 ¥ 1 3.3763 4.4671
40 ¥ 1 3.3100 4.4109
80 ¥ 1 3.2825 4.3791
160 ¥ 1 3.2527 4.3623
320 ¥ 1 3.2270 4.3537
Non-uniform grid 56 ¥ 1 3.2437 4.3552
Non-uniform grid 112 ¥ 1 3.2395 4.3506
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10.3 A non-uniform grid scheme for a square fabric sheet draped
over a square table.

uniform grid as employed above (Fig. 10.3) proves to be much more effective
for this problem. Doubling the grid density of the non-uniform grid employed
above (56 ¥ 1) leads to few differences (Table 10.1), indicating that the
results from the 56 ¥ 1 grid are accurate. The issue of grid convergence is not
further discussed in this section, but all the grid schemes employed for the
examples in this section are good enough to give accurate predictions.

10.4 Three-dimensional drape simulations

10.4.1 General

In this section, a number of three-dimensional drape simulations are presented.
They are all initially flat and have a square undeformed shape. All numerical
simulations were carried out on a Pentium® II/266 personal computer.

10.4.2 Square fabric sheet concentrically draped
over a square table

The case of a square fabric sheet with a width of 20 cm concentrically draped
over a 10 cm ¥ 10 cm square table is considered here. Since both the geometry
and the material properties are doubly symmetric about the axes of symmetry,
only a quarter of the fabric sheet was modelled in the numerical analysis.
Figure 10.4 shows the mesh used which features a non-uniform grid of
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31 ¥ 31 nodes (or control volumes) adopted for the numerical simulation.
The grid was finer near the edges of the table to cater for the more complex
deformations here. The nodes which are in contact with the table were fixed
in all directions.

Figure 10.4 shows the three-dimensional draped shape of the fabric sheet,
while Fig. 10.5 shows its projection onto the horizontal (or x–y) plane. The
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10.4 Shape of a fabric sheet draped over a square table.

10.5 Horizontal projection of a fabric sheet draped over a square table.
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10.6 Draped shape of a fabric sheet: comparison between theoretical
prediction and experiment.

projected image is compared in Fig. 10.6 with the experimental measurements
given by Dhande et al. (1993). It is clear from Fig. 10.6 that the predicted
draped shape matches the experimental result quite well. This further
demonstrates the validity of the proposed method.

It has been found that previous authors often gave qualitative information
(e.g. the appearance of the draped cloth sheet) rather than precise quantitative
information when carrying out comparisons or presenting results. This makes
precise numerical comparisons difficult, although such comparisons are
important in verifying numerical results. Table 10.2 thus provides the final
co-ordinates of the nodal points located on the two edges of the quarter
model of the wool fabric sheet. These results should be useful as benchmark
results for comparisons with predictions from other numerical methods.

10.4.3 Square fabric sheet eccentrically draped over a
square table

To evaluate the model, a 15 cm ¥ 15 cm fabric sheet eccentrically draped
over the corner of a square table was also analysed. The area of the table
corner in contact with the cloth is 7.5 cm ¥ 7.5 cm and a non-uniform grid
was adopted for the initially flat fabric sheet (Fig. 10.7). Again, the portion
of the fabric sheet lying on the table was prescribed to have no displacements
during the deformations. The predicted three-dimensional deformed shape
using a 31 ¥ 31 grid is given in Fig. 10.8.
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10.4.4 Square fabric sheet supported at two
diagonal corners

A numerical simulation was also carried out for the drape deformations of an
initially flat square fabric sheet 15 cm ¥ 15 cm in size fixed at two diagonal
corners. A uniform grid scheme of 41 ¥ 41 nodes was used in the simulation.
The final draped shape predicted is shown in Fig. 10.9.

Table 10.2 Co-ordinates of edge points on the wool fabric sheet before and
after deformations

Point No. Initial co-ordinates Co-ordinates after

(z = 0) deformations

x y x y z

1 0.0 10.0 0.0000 6.5289 4.5662
2 2.5 10.0 2.4892 6.7319 4.5169
3 5.0 10.0 4.8289 7.5258 4.2028
4 7.5 10.0 6.9641 8.7134 3.6763
5 10.0 10.0 9.3813 9.2186 3.6625
6 10.0 7.5 9.3281 6.8742 3.0236
7 10.0 5.0 8.2324 4.7471 3.7170
8 10.0 2.5 7.3465 2.4851 4.2436
9 10.0 0.0 7.1206 0.0000 4.3385
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10.7 A non-uniform grid scheme for a fabric sheet eccentrically
draped over a table.
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10.5 Fabric buckling simulation

Wrinkles often appear in cloth products in daily use. The phenomenon of
wrinkle formation is one of buckling and post-buckling deformations in

Table

z 
(c

m
)

0

2

4

6

8

0
2

4
6

8
10

12
12

10

8
6

4
2

0

x (cm)
y (

cm
)

10.8 Shape of a fabric sheet eccentrically draped over a table.

10.9 Draped shape of a fabric sheet supported at diagonal corners.
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terms of structural mechanics. Wrinkles appear easily because fabric sheets
are very flexible in bending and can easily buckle when compressive stresses
arise. It is therefore of interest to examine the ability of the model to simulate
buckling and post-buckling deformations in fabric sheets.

Suppose that a square fabric piece is placed on a flat surface and a pair of
pulling forces is exerted in the plane of the fabric surface on the two diagonal
corners, one may be able to intuitively expect that out-of-plane deformations
will arise. This kind of deformation can also be confirmed using simple
experiments. The reason for the appearance of out-of-plane deformations is
the non-uniformity of the applied stretching, which leads to compressive
membrane stresses in the perpendicular direction. Consequently, wrinkles
will appear unless the applied forces are very small. The following numerical
simulations were conducted to capture this type of post-buckling deformation
phenomenon.

The fabric considered here is a pure wool fabric with the properties of
wool material. The fabric sheet is 15 cm ¥ 15 cm, modelled by a 31 ¥ 31
grid. As the fabric sheet is assumed to be lying on a table, the gravitational
forces were assumed to be balanced by reactions from the table and were
neglected in the analyses. The top left corner was prevented from any in-
plane displacements and the top right corner was prevented from any horizontal
displacement. These in-plane restraints were specified to avoid rigid body
motions. In addition, the fabric sheet was supported vertically around its
edge. The applied pulling force is 50 gf (1 gf = 0.0098 N).

Under these idealised conditions, the problem is a typical plane-stress
problem and the model can predict only in-plane deformations (Fig. 10.10).
However, it is recognised that the equilibrium state predicted by the model
is not a stable one if the applied force is sufficiently large, and there exist
other more stable equilibrium positions as discussed above.

In order to find the more stable post-buckling state, a small perturbation
force was applied to the fabric sheet during the simulation. The perturbation
force used was a small concentrated force at the centre of the fabric sheet in
the negative direction of the z co-ordinate (upwards). Interestingly, different
deformation modes were obtained depending on the amount of perturbation
force (Fig. 10.11). When the perturbation force Qp is below 7.795 ¥ 10–5 gf,
the deformed shape assumes a wavy pattern (Fig. 10.11a). With a slightly
higher perturbation force (Qp = 7.800 ¥ 10–5 gf), the deformed shape assumes
a roughly asymmetric shape about the stretched diagonal, featuring one
major crest and one major trough. As the perturbation force is increased
further, this asymmetric pattern gradually transforms into a roughly symmetric
pattern (Figs 10.11c–h). The deformed shape is close to symmetric when the
perturbation force is greater than 0.5 gf and features a single major crest.

These deformed shapes deserve further investigation and verification from
other researchers in the future. In particular, the shape shown in Fig. 10.11a
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is difficult to produce by doing a simple experiment with a piece of cloth on
a table. The shapes shown in Figs 10.11b–h appear to be obtainable in a
simple experiment by appropriately perturbing the fabric cloth so that it is
guided into the appropriate mode. These shapes (Figs 10.11b–h) have a clear
load-path across the loaded diagonal and appear to be stable. The first mode
shown in Fig. 10.11a may be one which needs such a small disturbance that
it cannot be achieved in a simple experiment, although more elaborate
experiments may prove otherwise. In addition, the conditions assumed in the
numerical simulations are not exactly the same as those of a fabric sheet
resting on a table under diagonal pulling. Explanations aside, these different
modes do show that fabric deformations may be dependent on small
perturbations.

10.6 Circular fabric sheets over circular pedestals

Numerical simulation of two circular sheets of different sizes made of two
different fabrics (fabric A and fabric B) are presented in this section. The
Poisson’s ratio is taken as zero for both fabrics in the simulations.

10.6.1 Drape behaviour of a circular fabric sheet A

The circular fabric sheet made of fabric A is referred to as fabric sheet A and
is considered first. The radius of the sheet is 12.7 cm, and that of the supporting

10.10 In-plane deformations of a fabric sheet under diagonal tension.
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10.12 A grid scheme for fabric sheet A.

pedestal is 6.35 cm. A 65 ¥ 65 non-uniform grid with 2365 nodes (or control
volumes) was used in the simulation when the entire sheet was modelled.
The grid is symmetric about the x- and y-axes, as shown in Fig. 10.12. The
grid nodes which are in contact with the rigid pedestal were fixed in all
directions.

Since both the geometry and the fabric material properties are doubly
symmetric about the x- and y- (or warp and weft) axes, the deformed shape
is expected to be doubly symmetric under fully idealised conditions (i.e.
without any perturbation or initial imperfections). Consequently, a quarter
section of the fabric sheet was first modelled with symmetric boundary
conditions imposed along the two axes of symmetry. The same grid divisions
as those used for a whole sheet model were adopted for the quarter section
model, with a 33 ¥ 33 grid. The drape shape predicted using this model
features four curved folds (Fig. 10.13). It should be noted that Fig. 10.13, as
well as all other figures, shows only the vertical projections of the drape
shapes. It is believed that vertical projections can best illustrate the drape
patterns, at least in terms of the number of waves and the degree of symmetry.
Kang and Yu (1995) studied the same problem using the finite-element method,
also employing a quarter section model. Their simulated deformed shapes
together with their experimental shapes, both with four folds, are shown in
Fig. 10.14 for comparison with the theoretical prediction.
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10.13 Doubly symmetric drape pattern of fabric sheet A.

10.14 Comparison of doubly symmetric drape patterns of fabric
sheet A.
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It is clear from Fig. 10.14 that the present model presents a better fit with
the experimental curve than that of Kang and Yu (1995). The simulated
shape by Kang and Yu is too stiff as compared with the experimental shape.
In addition, no other drape patterns were predicted or discussed in their study.

It is well known from simple experiments or daily experiences that the
drape results of circular fabric sheets over circular pedestals are sensitive to
any small perturbations or initial imperfections/deviations. Different drape
patterns may appear in repeated experiments using the same fabric sheet on
the same supporting pedestal. Studies on the buckling of thin shells show
that the buckling and post-buckling deformations of shells are sensitive to
initial imperfections and disturbances (Teng, 1996). As the drape deformations
of circular fabric sheets are those of post-buckling deformations, it is expected
that the final deformed pattern is sensitive to small perturbations or initial
imperfections. This possibility has been briefly explored by Chen and
Govindranaj (1995) for a tensioned square fabric sheet. The effect of small
disturbances on the drape pattern of a circular fabric sheet is studied here in
order to explain the multiplicity of drape patterns observed in experiments.

When the quarter section model was used, the doubly symmetric deformation
pattern (Fig. 10.15) was ensured by imposing appropriate constraints along
the axes of symmetry. When the whole fabric sheet was modelled using a
65 ¥ 65 grid, the predicted drape pattern (Fig. 10.15a) featured six curved
folds rather than four, and was asymmetrical about the original axes of
symmetry. This asymmetric shape was obtained without applying any
disturbance to destroy the double symmetry of the problem. This may appear
surprising at first, but it should be realised that, although a bifurcation analysis
was not carried out, the fabric sheet can deform into an asymmetrical shape
through perturbations from numerical approximation and roundoff errors.
The asymmetric drape is thus predicted to be the preferred shape if the sheet
is not constrained during the deformation process.

So far two different drape patterns have been predicted for this fabric
sheet without adding external perturbations. In order to find out whether
other drape patterns exist for it, a small perturbation force was then applied
to the fabric sheet during the simulation. The perturbation force used is a
small concentrated force in the positive x-direction, applied at the point with
the following initial co-ordinates: x = 2.7 cm and y = 0. Figures 10.15b–e
show the drape patterns predicted with perturbation forces of different magni-
tudes. When the perturbation force is sufficiently small (Qp = 5 ¥ 10–5 gf),
the drape shape retains the six-fold pattern (Fig. 10.15b). However, when Qp

reaches 1 ¥ 10–4 gf or higher, the fabric sheet exhibits other drape patterns all
with seven curved folds (Figs 10.15c–e). Drape patterns with seven curved
folds appear to be more stable than other patterns since an increase in the
perturbation force from 1 ¥ 10–4 gf to 0.01 gf cannot change the number of
folds.
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10.15 Drape pattern of fabric sheet A with a horizontal perturbation
force.
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10.6.2 Drape behaviour of a circular fabric sheet B

The sheet made of fabric B, referred to as fabric sheet B, has a radius of
15 cm and is supported by a pedestal of radius 9 cm. When the whole fabric
sheet was modelled, a 69 ¥ 69 division grid with 2649 nodes was adopted.
The simulation procedure is similar to that for fabric sheet A discussed
above. Figures 10.16a–e show the drape patterns predicted with a horizontal
perturbation force of different magnitudes in the positive x-direction. The
concentrated perturbation force was applied at the point with initial co-
ordinates x = 15 cm and y = 0.

When the whole fabric surface was used in the simulation without a
perturbation force, the deformed pattern was predicted to be unsymmetrical
with nine folds instead (Fig. 10.16a). A similar deformed pattern with nine
folds was found when a horizontal perturbation force Qp = 5 ¥ 10–5 gf was
applied (Fig. 10.16b). Moreover, when Qp reaches 1 ¥ 10–4 gf, ten folds are
present in the drape pattern (Fig. 10.16c). When Qp = 1 ¥ 10–3 gf, the deformed
shape exhibits a different nine-fold pattern (Fig. 10.16d). When a relatively
high Qp of 1 ¥ 10–2 gf was applied, the deformed shape returns to an eight-
fold pattern (Fig. 10.16e) which is much closer to the doubly symmetric
pattern.

The drape patterns of the fabric sheet B are seen to have eight to ten
curved folds (Fig. 10.16), with nine-fold patterns appearing more often than
others. With a relatively high perturbation force, the drape shape usually
features eight folds, and the chance of seeing a ten-fold pattern is relatively
small. Gan et al. (1995) studied the same fabric drape problem using the
finite-element method and predicted an eight-fold drape pattern only for this
fabric sheet. They also pointed out that in experiments the drape pattern of
this fabric sheet had six to eight folds. This experimental observation does
not match the numerical results presented above. This does not mean, however,
that the numerical approach is flawed in any sense, as the discrepancy could
have been caused by some or all of the many possible factors including
deviations in shape, material properties and experimental conditions from
those assumed in the analysis. The important fact that has been demonstrated
is that small disturbances can change the drape patterns significantly.

10.7 Contact drape simulation of woven

fabrics and garments

10.7.1 Contact determination algorithm

The two main methods adopted for the treatment of contact problems in non-
linear finite-element analysis are the penalty method and the Lagrangian
multiplier method (Crisfield, 1997). The penalty method is closely related to
techniques which attempt to introduce a high stiffness for the contact region.
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10.16 Drape patterns of fabric sheet B with a horizontal perturbation
force.
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However, in this approach, the magnitude of the penalty constant may affect
the convergence of the iterative procedure. An excessively large constant
can cause divergence. On the other hand, in the Lagrangian multiplier method,
the number of equational unknowns must be increased, which leads to
complexity and difficulty in computer implementation. In this study, a simpler
but effective approach for dealing with the contact process between a cloth
falling from an initial flat position and a rigid object is developed. This is
described below.

Before deformation, the cloth is fully flat. The vertical distances between
the initial positions of all grid nodes and their possible contact points (if any)
are then calculated. The calculation is based on the plausible assumption that
the in-plane stretching of the cloth is very small and an initial control volume
retains its original surface area during the process of draping. Figure 10.17
shows a two-dimensional case of such a contact problem. During the numerical
iteration, if the current increment makes the total vertical displacement of a
grid node exceed its vertical gap, the condition that the vertical displacement
increment is equal to the difference of the vertical gap and the displacement
is imposed upon the grid node. As a result, the grid node is pulled back
vertically. In this approach, there is no need to increase the number of equational
unknowns or introduce large penalty constants which may cause numerical
convergence problems. Therefore, the approach is rather simple and easy for
computer implementation with the finite-volume method. Through the
numerical simulations described in the next section this contact determination
approach is proved to be both valid and efficient.

10.7.2 Simulation of contact drape

A number of numerical simulations of fabric pieces and simple garments are
presented in this section. We start with the drape prediction of a square piece
of full polyester fabric and a piece of pure wool fabric over a round rod; then
a square piece of pure wool fabric and a piece of pure cotton fabric draped
over a sphere are analysed. Finally the simulation results for a wool and a
cotton skirt draped over and in contact with a synthetic body form from their
initial flat positions are presented. The three types of fabric materials used
here, namely polyester, wool and cotton materials, have been experimentally
studied by Deng (1994) and Kang and Yu (1995), as listed in Table 10.3.

Rigid object

P : Initial grid node

gP : Vertical gap

P ¢: Possible contact point

10.17 Two-dimensional case of fabric contact with rigid object.
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10.7.2.1 Square fabric pieces draped over a round rod

Considering a fabric piece with the dimensions 20 cm ¥ 20 cm, the problem
involves the draping of the fabric piece on a round rod of radius 2.5 cm,
which is placed diagonally under it. The simulation was first carried out for
the polyester fabric material as the same problem was experimentally studied
and numerically predicted using the finite-element method by Deng (1994).
In his study, only bending rigidities in the warp and weft directions were
experimentally obtained, while the tensile rigidities were derived from the
bending rigidities using the approach in the classical plate/shell theory. In
his finite-element analysis, however, Deng (1994) used an isotropic and
geometrically non-linear shell element model, so only the warp-direction
rigidities were actually included in the numerical simulation. The shear modulus
was simply set equal to the tensile modulus, considering that the shear modulus
showed relative insensitivity to the drape deformations, and the Poisson’s
ratio was set to 0.3. We presume that the fabric material is assumed to be
linear elastic and orthotropic. The material properties in both the warp and
weft directions, as listed in the third column of Table 10.3, were all included
in the numerical simulation. The shear rigidity of the fabric was set to be
2800 gf/cm which is about 2 % of the weft-direction tensile rigidity, considering
that the shear rigidity of the fabric is in general much smaller than the tensile
rigidities. The effect of the Poisson’s ratio was neglected in all simulations
as mentioned earlier. A uniform grid of 33 ¥ 33 nodes (or control volumes),
as shown in Fig. 10.18, was adopted in the simulation.

Figure 10.19a shows the three-dimensional drape shape of this polyester
fabric. Table 10.4 lists the three deformed co-ordinates of corner point A and
compares them with the experimental data and those of the finite-element
method of Deng (1994). It is seen from Table 10.4 that the predicted co-
ordinates closely match the experimental results.

In order to compare the contact drape behaviour of different fabric materials,
a simulation was also carried out for a wool fabric sheet of the same size

Table 10.3 Material properties of fabrics

Property Notation Polyester Wool Cotton

Tensile rigidity Ewarp 235724.7 1118.2 2531.6
(gf/cm) Eweft 145680.8 759.5 1413.5
Bending rigidity Dwarp 0.322 0.083 0.068
(gfcm2/cm) Dweft 0.199 0.063 0.030
Shearing rigidity

(gf/cm) G 2800.0 41.8 250.7
Weight (gf/cm2) w 0.01715 0.019 0.0095
Thickness (cm) h 0.0254 0.0593 0.0469

1 gf = 0.0098 N
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draped over the same round rod. The simulated drape shape of the fabric is
shown in Fig. 10.19b. The wool fabric piece is seen to exhibit a greater
degree of draping than the polyester fabric counterpart. The calculated vertical
co-ordinate of the corner point A (or B) of the former is larger than that of
the latter and the corresponding horizontal co-ordinates of the former are
smaller than those of the latter (Fig. 10.19). This demonstrates that the wool
fabric has a better drapeability than the polyester fabric.

Both the above simulations were achieved on a Pentium® II/266 personal
computer. The computational times required for the two simulations, are
only 3 hours and 10 minutes for the polyester fabric and 28 minutes for the
wool fabric. This shows that the drape simulation for the wool fabric with a
greater drapeability is much faster than that for polyester fabric with stiffer
mechanical properties. Much faster simulations can be achieved if a more
powerful PC or workstation is used. Although precise comparison in computer
time with other methods is not possible as different grid schemes, different
computers and other variables are involved, the efficiency of the present
method together with the proposed contact determination approach is easily
demonstrated by noting that a draping simulation using a 51 ¥ 51 grid requires
one week on an IBM RS/6000 workstation.

10.18 A uniform grid scheme for square fabric pieces draped over a
rod.
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Table 10.4 Deformed co-ordinates of point A of the polyester fabric piece

Co-ordinates of points A x (cm) y (cm) z (cm)

Initial co-ordinate 10 10 0
Theoretical prediction 2.88 2.85 12.19
Finite element prediction

(Deng, 1994) 2.70 2.70 12.56
Experimental result (Deng, 1994) 3.27 3.27 12.25

10.19 Drape shapes of square fabric pieces over a rod: (a) polyester
fabric; (b) wool fabric.
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10.20 A uniform grid scheme for fabric pieces draped over a sphere.

10.7.2.2  Square fabric pieces draped over a sphere

In order to further investigate the validity and capacity of the present method
and further compare the drapeability of different fabric materials, two square
pieces of fabric 30 cm ¥ 30 cm in size, one of wool material and one of
cotton, concentrically draped over a sphere of 5 cm in radius were also
analysed. Their mechanical properties are listed in Table 10.3. Both fabric
pieces were modelled by a uniform grid of 31 ¥ 31 nodes, as shown in
Fig.10.20. The predicted drape shapes of the two fabric pieces are given in
Figs 10.21a and b. Both shapes feature four main folds with smaller curved
wrinkles between them. The wool fabric piece, however, is seen to exhibit a
significantly greater degree of draping than the cotton fabric. The cotton
fabric appears to be relatively stiff and does not drape so thoroughly over the
sphere as the wool fabric does. This verifies the good drapeability of the
wool fabric material in comparison with the cotton material.

The drape simulation of the two fabric pieces was again carried out using
a finer grid scheme of 51 ¥ 51 nodes, the results of which are shown in Fig.
10.22. The overall drape shapes of the two fabric pieces are similar to those
presented in Fig. 10.21, demonstrating the reliability of the present method
and the proposed contact determination approach. The northeast and southeast
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corners of the two fabric pieces in Fig. 10.22, however, undergo greater
drape deformations than those presented in Fig. 10.21. This demonstrates
that, using the present method, a fabric piece modelled by a coarse grid
generally appears stiffer than one modelled by a finer grid. More importantly,
the drape shapes predicted using a finer grid contain more detailed information
of deformations including small curved wrinkles as shown in Fig. 10.22,
particularly for the cotton fabric piece (Fig. 10.22b).

Naturally, the better results with a finer grid come with higher computational
cost. The simulation of the drape shape of the wool fabric piece using a
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10.21 Drape shapes of square fabric pieces over a sphere: (a) wool
fabric; (b) cotton fabric.

10.22 Drape shapes of square fabric pieces over a sphere using a
finer grid: (a) wool fabric; (b) cotton fabric.
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10.23 Modelling of a skirt attached to a human body: (a) non-
uniform grid scheme; (b) meridional profile of body form.

31 ¥ 31 grid as shown in Fig. 10.23a requires only 1 hour and 10 minutes,
while the corresponding simulation using a 51 ¥ 51 grid as shown in Fig.
10.22a requires 10 hours and 14 minutes, both on a Pentium® II/266 personal
computer. Therefore, the choice of a grid needs to strike a balance between
accuracy and computational time. For the cotton fabric, the simulations of
the drape shapes as shown in Fig. 10.21b require 1 hour and 12 minutes and
17 hours and 10 minutes respectively. A comparison between the computer
times required for the simulations of the wool and cotton fabric pieces again
confirms that drape simulation is faster for fabric materials with a better
drapability/softer mechanical properties, using the full Newton–Raphson
iteration method with line searches as adopted here.

10.7.2.3 Skirts attached to a body form

The problem of a skirt draping over and interacting with a synthetic body
form is considered here. The pre-drape configuration of the skirt is a flat
cloth. The circumference of the body form at any vertical position was
obtained by moving all points of the circumference at the top of the skirt (the
inner boundary of the mesh shown in Fig. 10.23a) in the normal direction by
the same amount. The distance between two corresponding points on any
two circumferences was determined by the meridional profile adopted, which
only had to be specified at one point around the circumference. Figure 10.23b
shows the circular arc meridional profile used in the simulations described
below.
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Figure 10.23a shows the finite-volume grid scheme of the flat cloth used
in the simulation. The non-uniform grid was used to suit the outer and inner
boundaries of the skirt cloth. Two fabric materials, pure wool and pure
cotton, with their mechanical properties as given in Table 10.3, were considered
in the simulations. Figure 10.24 shows the three-dimensional drape shapes
of the two skirts obtained using the present method, while Fig. 10.25 shows
the corresponding vertical projections of the final shapes. The outlines of the
two vertical projections are given in Fig. 10.26a and b, respectively. These
figures were all produced by directly joining the calculated positions of all

10.24 Three-dimensional drape shapes of skirts attached to a
synthetic body form: (a) wool fabric; (b) cotton fabric.

10.25 Vertical projections of skirts attached to a synthetic body form:
(a) wool fabric; (b) cotton fabric.
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grid nodes along the warp and weft directions by a straight line. Enhanced
images with better visual effect can be obtained by using some curve- or
surface-fitting plot software, which should be considered in future studies.
The simulations for the wool and the cotton skirts took 2 hours and 31
minutes and 5 hours and 47 minutes on a Pentium® II/266 personal computer,
respectively.

It is clear from Figs 10.24–26 that the two skirts exhibit complicated
drape surfaces characterised by curved folds and wrinkles of various sizes.
Although the initial geometry, material properties and boundary conditions
of the two skirts are doubly symmetric about the x- and y-axis (Fig. 10.23),
the deformed shapes do not retain the original symmetry again. Since
bifurcation/buckling phenomena can occur during the process of draping,
the skirts can deform into a preferred unsymmetrical shape through
perturbations from numerical approximation and roundoff errors (Hu and
Chung, 1998). It is seen from the comparison of parts (a) and (b) in Figs
10.24–26 that the wool skirt shows a greater degree of draping and a more
complex drape shape than the cotton skirt. This again demonstrates the good
drapeability of the wool fabric material studied here. Although there are no
other available theoretical or experimental results for comparison with the
present predictions, the results here do give realistic and reasonable shapes.
This gives us confidence in the capability of the present method to model
complicated contact drape problems of various clothing products including
garments. It is thus suitable for use in the development of powerful clothing
CAD systems.
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10.26 Outlines of vertical projections of skirts: (a) wool fabric;
(b) cotton fabric.
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10.8 Three-dimensional skirt simulation by

using B-spline surface

It is well known that space spline surface has wide applications, including
the modelling of objects such as robots, the design of cars, ships, aeroplanes,
and computer simulation of virtual animals and humans. The B-spline paradigm
for modelling smooth surfaces is limited by the requirement that the control
point mesh must be organised as a regular rectangular structure. Ignoring
this requirement by collapsing the control mesh edges leads to surfaces with
ambiguous surface normal and degenerated parameterisation (Peirce, 1937).
Many approximation approaches have been considered for modelling surfaces
of arbitrary topological type by smoothly approximating an irregular control
mesh. The limitation of this polishing method is that it does not satisfy the
interpolation condition. A local interpolation method has also been discussed
for constructing a piecewise smooth interpolation space surface (Hearle et
al., 1969, 1980; Skelton, 1974; Barker et al., 1985, 1986, 1987). A smooth
piecewise quartic surface was constructed with triangular Bézier patches by
Hearle et al. (1980). A cubic interpolation scheme for constructing GC1

surface over space triangles and space quadrangles has also been presented.
These methods are based on increasing the free-degrees of each surface
patch by using increasing polynomial order or refinement of space mesh. In
general, surface degree is not less quartic. In applying these methods, surface
shapes depend on determination of parameter and estimation of gradient. It
is concluded that local polynomial interplant generally produces unsatisfactory
shapes (Kawabata, 1980a, b).

In this section, we consider an application of smooth interpolation space
surface in clothing simulation. Combining both the fabric frame and the B-
spline method generates a trimming B-spline interpolation surface over space
mesh. The advantages of this technique are simplicity, efficiency and ease of
display. The surface, as a whole parameter surface, is smooth and interpolates
space mesh points.

The interpolation surface algorithm takes a space mesh as input. The
mesh is extended  to a regular rectangular mesh so that it fits into the product
B-spline surface representation. Next, a B-spline surface is generated for
interpolating the rectangular mesh vertices in which the boundary curves
divide the interpolation surface into two parts, the initial and the extended
surface. B-spline basis functions are chosen with equidistant knots and are
bi-cubic. To compute the control points of the B-spline, it is necessary to
solve the linear equation system which is recursively divided into small
subsystems. The three-dimensional skirt surface is constructed by trimming
the rectangular B-spline surface along with the boundary curves. Finally, a
three-dimensional texture mapping technique is used to put the image texture
on the skirt surface.
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10.8.1 Background

This section gives a brief review of B-spline curve and surface. Some details
can be found in Kawabata (1980), Oloffson (1967), Skelton and Schoppee
(1976).

10.8.1.1  B-spline curve and surfaces

Given m + p – 1 space points {pi Œ R3: i = 1, 2, . . . , m + p – 1} and a partition
of the interval [0, p], s1, s2, . . . , s2m+p–1, a degree m B-spline curve is defined
as
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are the basis function of B-spline.
The m ¥ n B-spline surface is the tensor product of a two direction B-

spline curve. Given space points {pij Œ R3 : i = 1, 2, . . . , m + p – 1, j = 1,
2, . . . , n + q – 1} and two partitions, s1, s2, . . . , s2m+p–1, t1, t2, . . . , t2n+q–1

a degree m ¥ n B-spline surface is defined as
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, ,S S       (s, t) Œ [0, p] ¥ [0, q].

B-spline surfaces, as a kind of parameter surface form, are widely applied in
space surface representation, geometric design and object modelling. Low
degree B-spline surface can be applied to surface rendering, shape control
and collision detection.

10.8.1.2 B-spline interpolation

The B-spline interpolation means the construction of a B-spline surface so
that it passes through the given space points. This can be described as follows.
Given space points {Qij Œ R3 : i = 0, 1, . . . , m + p – 1, j = 1, 2, . . . , n + q
– 1} and two partitions, s1, s2, . . . , s2m+p–1, t1, t2, . . . , t2n+q–1, a B-spline
surface p(s) with given knots can be constructed so that the surface satisfies
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the interpolation condition, that is
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k = 0, 1, . . . , m + p – 1, l = 1, 2, . . . , n + q – 1

To compute the control points of the surface, it is necessary to solve a
m + p – 1 ¥ n + q – 1 linear equation system. In fact, it can be translated to
solve curve interpolation recursively. This can be represented as:
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10.8.1.3 Texture mapping

Texture in graphics is an illumination function. It can be defined in both
forms – mathematical model and image. This section adopts the latter. Let T
be an M ¥ N digital image. Divide the texture space into an M ¥ N mesh and
define a map from digital image to mesh vertices. The texture value in the
mesh vertex takes the corresponding image value. The texture value inside
the mesh can be computed by using interpolation methods. This defines a
texture by digital image. Texture mapping is the process of building a mapping
function from texture space to object surface. When computing light brightness
in an illumination model, diffuse reflection shininess takes the texture function
value.

10.8.2 Mesh extension

The three-dimensional skirt data come from a drape simulation computed by
using a finite-volume method. It is deformed from a plane mesh. Because
this mesh is not rectangular, it is necessary to extend the mesh to a rectangular
one in order to construct an interpolation B-spline surface. This means adding
some data to the original mesh along with its boundary. These three-dimensional
space points are computed one by one from the boundary to the outside so
that the whole mesh has a smooth shape (Fig. 10.27). It can be represented
as follows.

If the extension point is connected with the boundary points in the vertical
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and horizontal directions, the point is set to be a linear combination of the
four points that are connected in the two directions. If the extension point is
connected with the boundary points in one direction, the point is set to be a
linear combination of the two points that are connected in that direction.

10.8.3 B-spline surface interpolation

The extension rectangle mesh consists of 47 rows and 41 columns. The
inside and outside boundaries are made up of 45 and 117 points respectively.
For the extension rectangle mesh, we choose a bi-cubic B-spline surface
with equidistant knots. The knots are the following:

∑ knots for parameter S:

(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, . . . , 42.0, 43.0, 44.0, 44.0, 44.0, 44.0)

∑ knots for parameter T:

(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, . . . , 36.0, 37.0, 38.0, 38.0, 38.0, 38.0)

Let

pij, i = 1, 2, . . . , 47, j = 1, 2, . . . , 41

be the rectangle mesh points. The parameter interpolation points are chosen
as:

∑ i-th column parameter points: 0, , 1, 2, . . . , 42, 43, , 441 2s si i

∑ j-th row parameter points: 0, t ti i
1 2, 1, 2, . . . , 36, 37, , 38

where

s
p p

p p p p
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10.27 Extension mesh and trimming surface.
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The B-spline parameter surface P(s, t) defined on [0,44] ¥ [0,38] is determined
by the interpolation condition.

P(si, tj) = pij, i = 1, 2, . . . , 47, j = 1, 2, . . . , 41

10.8.4 Trimming surface

The previous section shows the construction of an interpolation B-spline
surface for an extension mesh. To generalise the interpolation surface of
original mesh, it is necessary to determine the boundary curves on the
interpolation surface. A method of representing the boundary curves is to
determine the parameter curves in the parameter field of the previous
interpolation B-spline surface so that its mapping curves in the B-spline
function are the boundary curves of original mesh. The following presents
the construction of a precise representation of the boundary curves in the
parameter field of the previous interpolation B-spline surface.

The B-spline surface interpolates all vertices of the extension mesh, including
the boundary vertices of the original mesh. The parameter points of the
boundary vertices can be determined in the parameter field from the
interpolation parameter points. Two boundary curves can be computed by
using a method similar to the one introduced in the previous section. A cubic
B-spline curve with equidistant knots is chosen. The knots are the following:

∑ parameter knots for outside boundary curve:

(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, . . . , 112.0, 113.0,114.0, 114.0, 114.0, 114.0)

∑ parameter knots for inside boundary curve:

(0.0, 0.0, 0.0, 0.0, 1.0, 2.0, . . . , 40.0, 41.0, 42.0, 42.0, 42.0, 42.0)

10.8.5 Texture mapping for the skirt

For the skirt surface, using a map from digital image field to parameter field
of the surface can represent the texture mapping. This map can be constructed
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by a map from image field M ¥ N to the extension surface parameter field
(0,38) ¥ (0,42). To obtain texture mapping with different repeats in row and
column, we combine a new large image as a texture image by iteratively
combining the repeat image in row and column directions. Figure 10.28 is
the texture mapping of the skirt with a single repeat and with 6 ¥ 6 repeats.
The size of a single repeat texture image is 256 ¥ 256.

10.28 The texture mapping of skirt with a single repeat and 6 ¥ 6
repeats. The size of single repeat texture image is 256 ¥ 256: (a) skirt
surface; (b)–(g) texture mapping of skirt with a single repeat; (h)–(m)
texture mapping of skirt with 6 ¥ 6 repeats.

(a)
(b)

(c)
(d)
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(g) (h)

(f)(e)

(i) (j)

10.28 (cont.)
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(k)

(l)

(m)

10.28 (cont.)

10.8.6 Summary

This part of the chapter presents a scheme for constructing a three-dimensional
skirt surface with special texture. The scheme is an application of B-spline
and texture mapping techniques to clothing modelling. Beginning with an
initial three-dimensional skirt mesh, an extended regular rectangular mesh is
constructed which includes the initial mesh. A B-spline surface is generated
for interpolating the rectangular mesh vertices in which the boundary curves
divide the interpolation surface into two parts, the initial and the extended
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surface. Using B-spline curve in parameter field of B-spline interpolation
surface represents the two boundary curves. They are determined by
interpolating the boundary vertices. The three-dimensional skirt surface is
constructed by trimming the rectangular B-spline surface along with the
boundary curves. Finally, a three-dimensional texture mapping technique is
used to put the image texture on the skirt surface. The texture size is changeable
with repeating.
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