
http://www.cambridge.org/0521781256


This page intentionally left blank



Some of the greatest scientists, including Poisson, Faraday, Maxwell, Rayleigh, and
Einstein, have contributed to the theory of composite materials. Mathematically, it is
the study of partial differential equations with rapid oscillations in their coefficients.
Although extensively studied for more than 100 years, an explosion of ideas in the last
four decades (and particularly in the last two decades) has dramatically increased our
understanding of the relationship between the properties of the constituent materials, the
underlying microstructure of a composite, and the overall effective (electrical, thermal,
elastic) moduli that govern the macroscopic behavior. This renaissance has been fueled
by the technological need for improving our knowledge base of composites, by the
advance of the underlying mathematical theory of homogenization, by the discovery
of new variational principles, by the recognition of how important the subject is to
solving structural optimization problems, and by the realization of the connection with
the mathematical problem of quasiconvexification. This book surveys these exciting
developments at the frontier of mathematics and presents many new results.

Graeme W. Milton is a Distinguished Professor in the Mathematics Department at the
University of Utah. He has been awarded Sloan and Packard Fellowships and is on the
editorial board of the Archive for Rational Mechanics and Analysis. He has published
more than 70 papers on the theory of composite materials.
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Preface

This book is intended to be a self-contained introduction to the theory of composite materi-
als, encompassing the electrical, thermal, magnetic, thermoelectric, mechanical, piezoelectric,
poroelastic, and electromagnetic properties. It is intended not only for mathematicians, but
also for physicists, geophysicists, material scientists, and electrical and mechanical engineers.
Consequently, the results are not stated in the format of lemmas, propositions, and theorems.
Instead, the focus is on explaining the central ideas and providing proofs that avoid unneces-
sary technicalities. The book is suitable as a textbook in an advanced-level graduate course,
and also as a reference book for researchers working on composites or in related areas.

The field of composite materials is enormous. That’s good, because it means that there are
many avenues of research to explore. The drawback is that a single book cannot adequately
cover the whole field. The main focus of this book is on the relation between the microstruc-
ture of composites and the effective moduli that govern their behavior. This choice reflects my
research interests, and is also the starting point for many other avenues of research on com-
posites. Topics not treated here include fatigue, fracture, and plastic yielding in composites,
which are major factors in determining their strength (Sih and Tamuzs 1979; Sih and Chen
1981; Sih and Skudra 1985; Talreja 1994; Hull and Clyne 1996; Nemat-Nasser and Hori
1999); the propagation, localization, and scattering of waves in composites at wavelengths
comparable to or smaller than the size of the inhomogeneities (Sheng 1990, 1995; Chew
1995) [of particular recent interest is the study of photonic band gap materials (Joannopou-
los, Meade, and Winn 1995), which may lead to the development of new lasers and could
be important in photonic circuitry]; flow in porous media, which has obvious applications
to the management of oil and water reservoirs and to understanding the seepage of waste
fluids (Scheidegger 1974; Sanchez-Palencia 1980); geometrical questions such as the mi-
crostructures of rocks (Pittman 1984) and dense random packings of hard spheres (Cargill III
1984; Torquato, Truskett, and Debenedetti 2000); and the many aspects of percolation theory
(Kesten 1982; Stauffer and Aharony 1992; Grimmett 1999).

Other important topics, such as homogenization theory (discussed in chapter 1 on page 1),
numerical methods for solving for the fields in composites, and hence for determining their
effective moduli (discussed in section 2.8 on page 38), the nonlinear theory of composites
(discussed in section 13.7 on page 282), structural optimization (discussed in section 21.3 on
page 429), and quasiconvexification (discussed in chapter 31 on page 671) are not treated in
the depth that they deserve. The reader is encouraged to refer to the references cited in those
sections to gain a more complete understanding of these subjects.

The Contents gives a good indication of what topics the book covers. Briefly, the first
chapter discusses the motivation for studying composites and outlines homogenization the-

xxiii



xxiv Preface

ory from various viewpoints. The second chapter introduces some of the different equations
considered in the book, and numerical methods for solving these equations are mentioned.
Chapters 3 to 9 cover exact results for effective moduli, relations between (seemingly uncon-
nected) effective moduli and microstructures for which at least some of the effective moduli
can be exactly determined (such as coated sphere assemblages, laminates, and their general-
izations). Chapter 10 discusses some of the many approximations that have been developed
for estimating effective moduli and the asymptotic formulas that are valid in certain high-
contrast materials. Chapter 11 shows how wave propagation in composites, at wavelengths
much larger than the microstructure, can be treated by allowing the moduli, fields, and effec-
tive moduli to be complex, or alternatively by keeping everything real and doubling the size
of the system of equations being considered.

Chapters 12 to 18 cover the general theory concerning effective tensors: the formulation
as a problem in Hilbert space; various variational principles; convergent series expansions for
the effective tensor in powers of the variation in the local tensor field; how (for random com-
posites) the terms in the series expansion can be expressed in terms of correlation functions;
other perturbation solutions for the effective tensor; the general theory of exact relations in
composites; and, finally, the analytic properties of the effective tensor as a function of the ten-
sors of the constituent tensors. These chapters (due to their generality) are harder to read than
those in the first part of the book. The first part of chapter 12 is essential reading since it intro-
duces some of the basic notation used in subsequent chapters. Also, chapter 13, on variational
principles, should certainly be read, and will strengthen the reader’s understanding of the ma-
terial in chapter 12. Chapters 19 and 20 are optional. They introduce the Y -tensor, which in
a multicomponent composite gives information about the average fields in each phase, and
which in electrical circuits determines the response of the circuit. The theory of Y -tensors
parallels that of effective tensors, and many bounds on effective tensors take a simpler form
when expressed in terms of the Y -tensor.

Chapter 21 introduces the problem of bounding effective tensors and discusses its im-
portance in optimal design problems. Chapters 22 to 26 describe variational methods for
bounding effective tensors, including the Hashin-Shtrikman approach, the translation method
(or compensated compactness) approach, and those approaches based on classical variational
principles. Chapters 27 and 28 show how the analyticity properties of the effective tensor
lead to large families of bounds, which usually are the simplest rational approximants of the
function compatible with what is known about it. Chapter 29 outlines the parallel between
operations on analytic functions and operations on subspace collections, and shows how this
leads to bounds for multicomponent composites.

Chapter 30 discusses general properties and characterizations of the set of effective tensors
obtained as the microstructure is varied over all configurations. The set of elastic tensors that
can be made by mixing a sufficiently compliant isotropic material with a sufficiently stiff
isotropic material is shown to coincide with the set of all positive-definite fourth-order tensors
satisfying the symmetries of elasticity tensors. Chapter 31 shows how problems of bounding
effective tensors are equivalent to quasiconvexification problems, and vice versa. Finally,
by extending a famous example of Šverák, an example is given of a seven-phase composite
whose effective elastic tensor cannot be mimicked by any (multiple-rank) laminate material.

There are many other related books that present the theory of composites from other per-
spectives. Those that are closest in their scope include the following. The report of Hashin
(1972), the classic book of Christensen (1979), the books of Agarwal and Broutman (1990),
Matthews and Rawlings (1994), and Hull and Clyne (1996), and the recent book of Nemat-
Nasser and Hori (1999) cover the subject with an emphasis on the mechanical properties of
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composites. The book of Zhikov, Kozlov, and Oleinik (1994) covers the subject from a rig-
orous mathematical perspective. The volume edited by Cherkaev and Kohn (1997) contains
translations of many significant mathematical papers, which previously were only available
in French or Russian. The books of Allaire (2001) and Cherkaev (2000) cover the subject
with an emphasis on structural optimization. The book of Ball and James (2001) surveys
many problems where microstructure plays an influential role in determining macroscopic
behavior. The book of Beran (1968) covers the statistical theory, using an approach that is
different from the one presented in chapter 15 on page 313. The book of Torquato (2001)
covers many topics with an emphasis on the statistical aspects of composites. There are also
many review papers, including Willis (1981), Hashin (1983), Torquato (1991), Bergman and
Stroud (1992), and Markov (2000). Additionally, there are many books on homogenization
theory and on quasiconvexification, which are referenced in chapters 1 on page 1 and 31 on
page 671.

It is a great pleasure to thank those colleagues and friends who contributed in many ways
to this book. I would like to thank Ross McPhedran, who introduced me to the subject of
composite materials when I was an undergraduate at Sydney University. I am greatly in-
debted to Michael Fisher for his critical comments during my Ph.D., which have had a lasting
impact. I am grateful to George Papanicolaou for encouraging me to write this book. When
I started writing, more than 13 years ago, it was just meant to be one-third of a book and
certainly was not intended to be more than 700 pages in length. But I found it difficult to
resist the temptation to include topics that seemed to tie in closely with what I had already
written, and to include new developments such as novel families of neutral inclusions and
the associated exactly solvable assemblages (section 7.11 on page 134), the theory of par-
tial differential laminates (section 9.10 on page 177), the general theory of exact relations in
composites (chapter 17 on page 355), the optimal microstructures of Sigmund attaining the
Hashin-Shtrikman bounds (section 23.9 on page 481), an approach for finding suitable qua-
siconvex functions for obtaining bounds (section 25.7 on page 544), and a composite with
an effective tensor that cannot be mimicked by laminates (section 31.9 on page 690). John
Willis and François Murat are especially thanked for their help in arranging my visits to the
University of Bath, and to the Université Paris VI, where major portions of the text were
written, and where (in Paris) the counterexample of 31.9 on page 690 was discovered. I am
grateful to numerous people for their constructive comments on sections of the text, including
Leonid Berlyand, Andrei Cherkaev, Gilles Francfort, Ken Golden, Zvi Hashin, Robert Kohn,
Mordehai Milgrom, Vincenzo Nesi, Sergey Serkov, and Luc Tartar. I am thankful to Eleen
Collins for typing most of the references into BIBTEX. I am most indebted to Nelson Beebe
for the absolutely terrific job he did in developing the software for the book style and referenc-
ing style, for automating the conversion of references to BIBTEX, for solving many technical
problems, and for spotting many errors. I am also grateful to Thilagavathi Murugesan for her
substantial help in checking most of the equations, to Sergei Serkov for scanning many of
the figures, and to Elise Oranges for the great copyediting job she did. Additionally, I wish
to thank Bob Kohn for suggesting Cambridge University Press, and David Tranah and Alan
Harvey at Cambridge University Press for their continued interest and helpful suggestions. I
am grateful to my partner, John Patton, and my parents, John and Winsome Milton, for their
continued support throughout the whole work. It is a pleasure to dedicate this book to them.

I am exceedingly thankful to the Packard Foundation for support from a Packard fel-
lowship between 1988 and 1993. This generous award allowed me to spend more time on
research and on writing this book. I am also pleased to thank the National Science Foun-
dation for continued support, through grants DMS-9402763, DMS-9501025, DMS-9629692,
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and DMS-9803748, and the Centre National de la Recherche Scientifique for supporting my
visit to Université Pierre et Marie Curie in the fall of 1996.

While I hope that the derivations in the book are correct, and that work has been properly
referenced, it is inevitable that there are still some errors and omissions. I would be grateful
to learn about these. The Web site http://www.math.utah.edu/books/tcbook
contains a list of known errors in the book, as well as the BIBTEX bibliographic database.

Salt Lake City, Utah Graeme W. Milton
October, 2001
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1
Introduction

1.1. What are composites, and why study them?
Composites are prevalent in both nature and among engineered materials. Common metals
are composites. When one breaks a rod of metal the polycrystalline nature becomes evident
in the roughness of the surface of the break. The American Museum of Natural History in
New York has a wonderful meteorite collection. Some of the polished cross sections through
these meteorites clearly show the individual metal crystals. Martensite, which is typical of
a shape memory material, has a laminar-type structure comprised of alternating layers of the
two variants of martensite. Some rocks, such as sandstone, are aggregates of grains; other
rocks, such as granite, are aggregates of crystals. In porous rocks the pores are often filled
with a fluid such as salt water or oil. The study of composites in a geological context is
important to the oil industry and for the study of earthquakes. Construction materials such as
wood and concrete are composites. Bone is a porous composite. Fiberglass and lightweight
carbon fiber composites have found applications ranging from the aerospace industry to sports
equipment.

Colloidal suspensions, emulsions, foams, slurries, and clays are all examples of compos-
ites. Clouds, fog, mist, and rain are composites of air and water. High-altitude clouds are
composites of air and ice crystals. Suspensions of volcanic dust in the upper atmosphere are
known to significantly perturb temperatures around the earth. Air itself is an inhomogeneous
medium with fluctuations in density that cause the twinkling of stars. Sea ice is a composite
of ice and brine pockets, and modeling of its properties is important in global climate predic-
tion. Wool and cotton are composites of fiber and air. Ceramics are composites. Solid rocket
propellant is a composite of aluminum particles in an oxidizing matrix. Even chocolate chip
ice cream is a composite. Basically, composites are materials that have inhomogeneities on
length scales that are much larger than the atomic scale (which allows us to use the equations
of classical physics at the length scales of the inhomogeneities) but which are essentially (sta-
tistically) homogeneous at macroscopic length scales, or least at some intermediate length
scales. An alloy, having disorder on the atomic scale, is excluded from consideration (except
if it is one of the phases in a larger composite, in which case it is treated as a homogeneous
material). The book of Matthews and Rawlings (1994) gives many examples of natural and
man-made composites.

Why do we study composites? One obvious answer is their usefulness, which will be
discussed in the next section. A second, equally important reason is that what we learn from
the field of composites could have far-reaching implications in many fields of science. Sig-
nificant progress in improving our understanding of how microscopic behavior influences

1
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macroscopic behavior could impact our understanding of turbulence, of phase transitions in-
volving many length scales, of how quantum behavior influences behavior on classical length
scales, or, at the more extreme level, of how behavior on the Planck length scale, 10−33cm,
influences behavior on the atomic scale, 10−8cm. While that may seem unlikely, it is hard to
deny the impact that our understanding of classical physics had on the development of quan-
tum mechanics. Therefore it is conceivable that a better understanding of classical questions
involving multiple length scales could have large reverberations. A third compelling reason
for studying composites is simply that there are many beautiful mathematical questions beg-
ging for answers. The solutions of some questions have already led to the development of new
mathematical tools, and one can expect that the solution of the more challenging outstanding
questions will open new mathematical frontiers.

The study of composites is a subject with a long history, which has attracted the inter-
est of some of the greatest scientists. For example, Poisson (1826) constructed a theory of
induced magnetism in which the body was assumed to be composed of conducting spheres
embedded in a nonconducting material. Faraday (1839) proposed a model for dielectric ma-
terials that consisted of metallic globules separated by insulating material. Maxwell (1873)
solved for the conductivity of a dilute suspension of conducting spheres in a conducting ma-
trix. Rayleigh (1892) found a system of linear equations which, when solved, would give
the effective conductivity of nondilute square arrays of cylinders or cubic lattices of spheres.
Einstein (1905) calculated the effective shear viscosity of a suspension of rigid spheres in a
fluid. The main historical developments are summarized in the articles of Landauer (1978)
and Markov (2000).

1.2. What makes composites useful?
What gives composites their utility is that they often combine the attributes of the constituent
materials. For example, suppose that one is given two isotropic conducting materials: a metal
with high conductivity, and a plastic that is electrically insulating. If one places these two
materials in alternating layers in a laminate, one obtains a highly anisotropic composite that
has the conducting properties of the metal in directions parallel to the layers and the insulat-
ing properties of the plastic normal to the layers. Concrete is cheap and relatively light, but
it breaks apart easily under tension. By contrast, steel is strong but expensive and heavy. By
pouring the concrete around prestressed metal bars one obtains a composite, namely, rein-
forced concrete, that is cheap, relatively light, and strong. Wood is an example of a material
that is strong in the fiber direction, but the fibers pull apart easily. By alternating layers of
wood that are strong in the x1 direction with layers of wood that are strong in the x2 direction,
one obtains a plywood that is strong in two directions, that is, in the (x1, x2)-plane.

By combining a compliant isotropic material that has low bulk and shear moduli with a
stiff isotropic material that has high bulk and shear moduli, one can (with a judicious choice of
microstructure) produce an elastically isotropic composite that effectively has the bulk mod-
ulus of the compliant phase and the shear modulus of the stiff phase. Such low-bulk and
high-shear moduli materials are called negative Poisson’s ratio materials: A rod of the ma-
terial will expand laterally when stretched longitudinally. It was long a question of debate
as to whether such materials could actually exist. Now their existence has been confirmed
both experimentally and theoretically [see, for example, Lakes (1987) and Milton (1992) and
references therein, and also section 30.5 on page 652]. A very simple two-dimensional mi-
crostructure that expands laterally when stretched longitudinally was designed and fabricated
by Larsen, Sigmund, and Bouwstra (1997) and is illustrated in figure 1.1 on the facing page.
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Figure 1.1. The two-dimensional microstructure of Larsen, Sigmund, and Bouwstra (1997),
which will expand laterally when stretched longitudinally. Here the black region is relatively
stiff and is surrounded by a void or very compliant material.

Sometimes the properties of a composite can be strikingly different from the properties of
the constituent materials. To see this you can do the following experiment at home. Take a
wine glass filled with air and strike it on the top (but not too hard) with a knife. It rings clearly.
The same is true when it is filled with water. But add powdered Alka-Seltzer (or anything else
that makes lots of bubbles) to the water and one just hears a thud. The acoustic properties of
the bubbly fluid are quite different from those of either the air or the water. One application of
this is to use a screen of bubbles to mask the engine or propeller noise of a submarine; as the
oscillatory pressure in the sound wave compresses and decompresses each bubble, the water
near each bubble is sheared, which dissipates the energy of the sound. The shear viscosity
of the water is converted to the bulk viscosity of the bubbly fluid (Taylor 1954; see also
section 11.4 on page 233). As another example, the beautiful red glass that one sees in some
old church windows is a suspension of small gold particles in glass. The color arises not from
any chemical effect but rather from the effective complex dielectric constant of the suspension
at optical frequencies (Maxwell Garnett 1904). Opals consist of submicron spherical particles
of silica arranged in a face-centered cubic array, diffracting light to create the brilliant colors
that we see (Sanders 1964; Greer 1969). Similarly, the spines of a particular sea worm display
a wonderful iridescence caused by light diffracting off a hexagonal array of fibers within each
spine (Parker, McPhedran, McKenzie, Botten, and Nicorovici 2001).

By combining materials with positive thermal expansion coefficients it is possible to get a
composite with a negative thermal expansion coefficient (Lakes 1996; Sigmund and Torquato
1996, 1997). This is most easily seen in a two-dimensional context. Following Lakes (1996)
consider the structure of figure 1.2(b), where the cell walls consist of thin, stiff, curved metal
strips with a low thermal expansion coefficient coated on the outside with a thick compliant
strip of material with a high thermal expansion coefficient. As the composite is heated the
strips become more tightly curved, as illustrated in figure 1.2(a) and consequently the ma-
terial contracts, that is, it has a negative thermal expansion coefficient. Lakes also shows
that it is possible to construct a porous composite with a significantly larger thermal expan-
sion coefficient than either of the two phases. Bergman and Fel (1999) have shown that the
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thermoelectric power factor in a two-phase composite can be greater than the thermoelectric
power factors of both phases.

A composite of a piezoelectric material and an elastic material can have a dramatically
larger electrical response to hydrostatic compression than either phase alone. For example,
when a cylindrical rod of the piezoelectric material lead zirconate-titanate (PZT) is com-
pressed longitudinally, an electric field is generated parallel to the axis of the rod. When it
is compressed transversely an electric field is generated in the opposite direction. If the rod
is immersed in a fluid and hydrostatic pressure is applied, then the rod is compressed both
axially and transversely and the induced electric fields almost cancel out. This canceling is
avoided if an array of such rods is embedded in a polymer matrix, which restricts the amount
of transverse compression. The electric field generated in the composite can be measured and
thus small variations in the fluid pressure can be detected. Such composites are useful in the
design of piezoelectric hydrophones for detecting low-frequency underwater acoustic waves
(Klicker, Biggers, and Newnham 1981; Avellaneda and Swart 1998). The performance is
greatly enhanced by using a negative Poisson’s ratio material in place of the polymer (Smith
1991; Gibiansky and Torquato 1997; Avellaneda and Swart 1998; Sigmund, Torquato, and
Aksay 1998).

(a) (b)

Low Temperature

High Temperature

Length Decreases

Figure 1.2. Two materials with positive thermal expansion coefficients can be combined in
a porous structure to give a composite with a negative thermal expansion coefficient. The
key observation, illustrated in (a), is that a thin, stiff, curved metal strip with low thermal
expansion that is coated on the outside with a thick, compliant strip of material with high
thermal expansion will, when heated, tighten its curvature and thereby reduce its length. By
combining these elements as in (b), one obtains a porous structure with a negative thermal
expansion coefficient. After Lakes (1996).

Composites can also exhibit product properties as defined by Albers (1973). A two-phase
composite material exhibits a product property if the output from one phase acts as the input
for the other phase. For example, following Albers (1973); Harshé, Dougherty and Newnham
(1993a, 1993b); Avellaneda and Harshé (1994); and Nan (1994), consider a composite of the
magnetostrictive material CoFe2O4 and the piezoelectric material Barium Titanate, BaTiO3.
An applied magnetic field generates a strain in the CoFe2O4 phase, which in turn generates a
strain in the Barium Titanate phase, which thus produces an electric field. Thus the composite
as a whole exhibits a magnetoelectric effect, where an applied magnetic effect generates an
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electric field, although neither phase individually exhibits such an effect. As another example,
consider a composite of a phase with a large thermal expansion coefficient combined with
the piezoelectric material Barium Titanate. A temperature increase generates a strain in the
first phase, which in turn causes the Barium Titanate to generate an electric field. Thus the
composite as a whole exhibits a pyroelectric effect, where a temperature increase generates
an electric field.

Sometimes it is advantageous to have composites with structure on a hierarchy of length
scales. One sees such structural hierarchy in man-made structures such as the Eiffel tower and
in biological structures such as bones and tendons (Lakes 1993). In this book we will come
across many examples of optimal composites that have structural hierarchy. We will often
explore the limits of what is possible by considering composites with structure on infinitely
many length scales. These could be approximated by more realistic composites with structure
on finitely many length scales.

It is hard to look into the future, but undoubtedly it will become increasingly possible to
produce “designer composites,” where the microstructure has been tailored to produce desir-
able properties. Obviously a better understanding of the link between the microstructure and
the macroscopic properties will be essential in this endeavor.

1.3. The effective tensors of composites
At present, quantum mechanics and quantum field theory provide the best description of mat-
ter on atomic, or subatomic, length scales. Yet it is well beyond the capability of modern
computers to make a full simulation of the quantum mechanical equations to analyze the be-
havior of macroscopic bodies. The wave function for the electrons alone is described by a
function in a 3N-dimensional space, where N is the number of electrons in the body. (The
factor of three arises because each electron has three spatial degrees of freedom.) The situation
becomes worse when one brings the protons and neutrons into the picture, allowing for inter-
actions with the electromagnetic, strong, and weak fields. All of this complexity is avoided
when we use the equations of macroscopic physics, which can be regarded as homogenized
quantum mechanical equations.

The situation is quite similar in composite materials, where, instead of using the equations
of classical physics at the microscopic level, we use homogenized or effective equations at
the macroscopic level. For example, in the context of electrical conductivity in a periodic
microgeometry the microscopic equations, in the absence of internal current sources, take the
form

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0, (1.1)

where j(x) is the current field, e(x) = ∇φ(x) is the electric field, −φ(x) is the electrical
potential, and σ(x) is the conductivity tensor field. The first equation in (1.1) is called the
constitutive relation. It governs the relation between the fields j(x) and e(x), which satisfy
the differential constraints imposed by the last two equations in (1.1). To avoid carrying
around minus signs we will simply refer to φ(x) as the electrical potential, although it should
be kept in mind that it is actually −φ(x), which is the electrical potential. All of these fields
have rapid oscillations on the length scale of the microstructure, and possibly slow variations
on a much larger length scale. At the macroscopic level the equations take the same basic
form:

j0(x) = σ∗e0(x), ∇ · j0 = 0, ∇ × e0 = 0, (1.2)

where j0(x) and e0(x) are local averages of j and e over a cube centered at x, having size
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large compared with the microstructure (we will make this more precise in subsequent sec-
tions). These averaged fields have the oscillations on the length scale of the microstructure
smoothed out, but they retain slow variations. The first equation is the effective constitutive
relation. The tensor field σ∗ appearing in it is called the effective conductivity tensor of the
medium because on a macroscopic length scale the composite behaves exactly like a homo-
geneous medium with conductivity σ∗, which only has variations on the macroscopic scale.
It is defined through the solution to a cell problem. One looks for pairs of periodic fields j(x)
and e(x), which solve the conductivity equations in the periodic microgeometry. The relation

〈j〉 = σ∗〈e〉

between the volume averages 〈j〉 and 〈e〉 of each pair j and e; when evaluated for sufficiently
many pairs, it serves to define the effective tensor σ∗. Thus the problem of solving (1.1)
is decoupled into the problem of solving the macroscopic equations (1.2) and the problem
of solving the microscopic cell problem. This decoupling makes numerical solutions much
easier, and also allows one to intuitively think of the medium as effectively a homogeneous
medium with conductivity σ∗.

The effective tensor σ∗ is not just a simple local average of σ(x) but instead depends on
it nonlinearly. The problem of determining σ∗ from σ(x) is a nontrivial problem, even when
only two isotropic conducting materials are present, that is, when σ(x) only takes the two
values σ1I and σ2I , in which I is the identity tensor and σ1 and σ2 are both positive. One
might hope that if the two constituent materials were sufficiently “well mixed” there would
be a universal mean-field formula giving σ∗ in terms of σ1, σ2 and the volume fractions
occupied by the materials. However, this is not the case. In the mixing of materials there is
nothing equivalent to the Gibbs distribution in statistical physics. The probabilities of different
configurations are highly dependent on the process by which the composite is formed (of
which one typically has limited knowledge). An approximation for σ∗ that works well for
one class of materials will fail for another class of materials. The main focus of this book
is how the behavior of tensor fields, such as σ(x), on the microscopic scale influence the
behavior of the associated effective tensors, such as σ∗, on the macroscopic scale.

It may happen that the equations on a macroscopic scale take a different form than the
equations on the microscopic scale. For example, in a porous medium, and for low flow rates,
the Stokes equations describe the fluid flow on the microscopic level whereas Darcy’s law
(which says that the fluid velocity is a linear function of the pressure gradient) describes the
fluid flow on the macroscopic level. We do not investigate such equations in this book. We
instead focus on sets of equations that have the same form on the microscopic and macro-
scopic levels, consisting of fields linked by a constitutive equation, and satisfying appropriate
differential constraints. In the conductivity example, the constitutive equation is the relation
j = σe, and the fields j and e satisfy the differential constraints that∇ ·j = 0 and ∇×e = 0.

We now endeavor to clarify the concepts of homogenization and effective tensors from
various different viewpoints. For simplicity we confine our attention to the conductivity prob-
lem. The extension to the various other physical equations described in the next chapter is
straightforward. The descriptions given here are sketchy, and are not meant to be a substitute
for the many books on homogenization. On the other hand, a deep understanding of homoge-
nization theory is not necessary for following the rest of the book, so don’t worry if you can’t
understand some of the approaches outlined here.
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1.4. Homogenization from an intuitive viewpoint
Homogenization from an intuitive viewpoint is described in the review article of Hashin
(1983) and in the book of Nemat-Nasser and Hori (1999). We need to introduce three length
scales:

• The microscale is characterized by lengths less than �1, which must be chosen greater
than the maximum size of inhomogeneities in the microstructure.

• The mesoscale, which is some intermediate length scale, is characterized by some
length �2, at which the composite appears “statistically homogeneous,” and at which
the macroscopic fields have a slow variation. It is a convenient length scale for carrying
out the mathematical analysis.

• The macroscale is characterized by lengths greater than �3, which must be chosen less
than the relevant dimensions of the body � being examined and less than the scale of
variations in the macroscopic structure of the composite.

It is assumed that these three length scales are well-separated:

�1 � �2 � �3.

Inside the composite is a potential φ and an associated field ∇φ satisfying the elliptic
equation

∇ · σ∇φ = ρ within �, (1.3)

and subject to, say, the Dirichlet boundary condition φ(x) = ψ(x) at the boundary of the
body �, where ψ(x) is some prescribed potential. The length scales have been defined so
that the conductivity tensor field σ(x) has variations on the microscale and possibly on the
macroscale, but no significant variations on the mesoscale. It is assumed that the source term
ρ(x) and the prescribed values of ψ(x) at the boundary of the body have variations only on
the macroscale, that is, only on length scales greater than �3.

On the mesoscale we introduce the smoothing operation of local averaging. Let �(x)
denote a mesosized cubic window of side �2 and volume |�| = �3

2 centered at the point x.
Given a field P , we define

〈P 〉�(x) = 1
|�|
∫
�(x)

P (x′)dx′ = 1
|�|
∫
�(0)

P (x+ y)dy (1.4)

as the average of P over the window, where y = x′ − x. Suppose, for example, that we
have a curl free field e(x). Since the locally averaged field 〈e〉�(x) is an average over a set of
fields e(x+ y) parameterized by y, each of which is a translation of e(x) and therefore curl
free, it follows that 〈e〉�(x) is also curl free. Thus local averaging preserves the differential
constraints on the fields. The locally averaged field is defined by (1.4) only within a region� ′

inside � consisting of all points x such that �(x) lies entirely inside �. Since �2 � �3, the
boundary of �′ will be close to the boundary of � and the locally averaged fields will have
some smooth extension to the boundary of � (we are not trying to be too precise here).

The basic idea behind homogenization is that when the three length scales are well-
separated the elliptic equation decouples into an equation on the macroscopic scale and a
set of equations on the mesoscale. The expectation is that on the macroscopic scale the local
average 〈φ〉� of the potential φ satisfies

∇ · σ∗∇〈φ〉� = ρ within �, 〈φ〉� = ψ on ∂�,
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for some appropriate choice of the effective conductivity tensor field σ∗(x), which only has
variations on the macroscale, and which only depends on values of σ within the window
�(x), and not on ρ or ψ . Now, since the effective tensor σ∗(x) only has variations on the
macroscopic scale, we only need calculate it at a set of representative sample points (avoiding
those points where �(x) intersects the boundary of �) and then smoothly interpolate the
function between these points and to the boundary of �. Then, because σ∗(x) only depends
onσ within the window, we can calculate it at each representative sample point by considering
a periodic medium obtained by periodically extending the material within the box �(x) and
looking for solutions of the conductivity equation (1.3) with ρ = 0 and ∇φ being periodic.
The effective tensor is obtained through the relation between the average fields,

〈σ∇φ〉� = σ∗〈∇φ〉�, (1.5)

within this periodic medium. This relation defines the effective tensor at each representative
sample point.

The decoupling of the equations means that we can replace the composite that has rapid
oscillations in its moduli by an effective material with a slowly varying effective tensor field
σ∗(x) without changing the local averages of the fields. The idea is that this approximation
should be good when the scales are well-separated, and exact in the limit as �2/�1 and �3/�2
approach infinity.

Incidentally, notice that when ρ = 0 any solution to the conductivity equations (1.3)
remains a solution when σ(x) is replaced by σ′(x) = λσ(x). It then follows from (1.5) that
this medium with conductivity σ′ will have effective conductivity σ′

∗ = λσ∗. In other words,
the effective conductivity has the homogeneity property that

σ′
∗ = λσ∗ when σ′ = λσ. (1.6)

1.5. Periodic homogenization
The intuitive viewpoint, while making good physical sense, needs some mathematical justifi-
cation. A partial justification of the intuitive viewpoint is provided in the context of periodic
homogenization. Periodic homogenization is described in the books of Bensoussan, Lions,
and Papanicolaou (1978); Sanchez-Palencia (1980); Bakhvalov and Panasenko (1989); Pers-
son, Persson, Svanstedt, and Wyller (1993); and Zhikov, Kozlov, and Oleinik (1994). The
two-scale and multiscale treatments of Nguetseng (1989), Allaire (1992), and Allaire and
Briane (1996), provide a rigorous basis for the method. One considers a sequence of prob-
lems, parameterized by a variable ε that, roughly speaking, corresponds to the size of the
microstructure, and one examines what happens in the limit as ε tends to zero. The conduc-
tivity tensor field and the potential are assumed to be functions of both the variable x, called
the macroscopic or slow variable, and the variable y = x/ε, called the microscopic or fast
variable. Roughly speaking, the dependence of the fields on x captures their macroscopic
variation while the dependence on y captures their microscopic or local variation.

In each problem the body � is filled by a material with conductivity tensor

σε(x) = σ(x,x/ε), (1.7)

where for fixed x, σ(x,y) is periodic in the variable y, say, with a square unit cell of side
length h independent of x. When ε is very small this means that σε(x) is almost periodic
in x on the microscale, that is, on length scales of the order of h/ε. Some insight into the
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geometrical interpretation of this can be gained by considering the case when x and y are
one-dimensional variables. Then, as sketched in figure 1.3, σ(x,y) is defined on a cylinder
and σε(x) represents the values of σ(x,y) along a tightly wound spiral on the cylinder,
which gets tighter as ε → 0. (This geometrical interpretation was communicated to me by
Luc Tartar.)

h/ε

x

y

Figure 1.3. When x and y are one-dimensional, the functionσ(x,y) can be regarded as lying
on the surface of a cylinder of circumference h. As illustrated here, the function σ(x,y)
could, for example, take two different values, one value in the darker shaded region and a
different value in the lighter shaded region. The function σε(x) = σ(x,x/ε) represents the
values of the function along a tightly wound spiral on the cylinder.

To obtain the right homogenized equations one has to be careful. This is illustrated by
the following example. Consider a connected cubic network of thin conducting rods, which
is diagonally displaced from a second connected cubic network of conducting rods, with a
different effective tensor, so that the two networks do not touch each other. The surrounding
material is assumed to be nonconducting. It is clear that the electrical potential field on the
second network is independent of the potential field on the first network, and thus one would
expect the homogenized equations to be a pair of uncoupled conductivity equations, one for
each network. If there are suitably thin bridges linking the two networks, then Khruslov
(1978), Briane (1998), and Briane and Mazliak (1998) have shown that the homogenized
equations are coupled.

Some restrictions of the conductivity field σε(x) are needed to avoid such strange homog-
enized equations. For simplicity we assume that σε(x) is a symmetric matrix-valued function
satisfying the ellipticity condition

αI ≤ σε(x) ≤ βI for all ε and x, (1.8)

for some positive α and β independent of both ε and x. We then have a sequence of electrical
potentials φε(x) satisfying the elliptic equations

∇ · σε∇φε = ρ within �, φε = ψ on ∂�, (1.9)

where the source term ρ(x) and the potential ψ(x) at the boundary of � are prescribed and
assumed to be independent of ε.
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To solve for the potential in the limit ε → 0 one uses a multiple-scale analysis and looks
for a solution of the form

φε(x) = φ0(x,x/ε)+ εφ1(x,x/ε)+ ε2φ2(x,x/ε)+ · · · ,
where for fixed x the functions φi (x,y), i = 0, 1, 2, . . ., are periodic functions of y with the
same periodicity as σ(x,y). By substituting this expansion and (1.7) into (1.9) and separating
terms having coefficients sharing the same power of ε one obtains a series of equations. I will
not go through the analysis, since it is contained in the above-cited books. One finds that
φ0(x,y) depends only on x, that is, φ0(x,y) = φ0(x), where φ0(x) satisfies

∇ · σ∗∇φ0 = ρ within �, φ0 = ψ on ∂�,

in which the effective conductivity tensor field σ∗(x) is obtained at each point x by solving
the auxiliary “cell problem.” Given an applied field e0, the cell problem consists of finding
the function φ1(e0;y) periodic in y, which solves

∇y · σ(x,y)∇y[e0 · y + φ1(e0;y)] = 0,

where∇y · and∇y are the divergence and gradient with respect to y, keeping x fixed. Once the
cell problem is solved for a basis of applied fields e0, the effective tensor is obtained through
the relation

〈σ(x,y)∇y[e0 · y + φ1(e0;y)]〉 = σ∗〈∇y[e0 · y + φ1(e0;y)]〉,
where the averages are over y, keeping x fixed. Since φ1 is periodic in y, it follows that the
average value of ∇yφ1 is zero. Therefore we can rewrite the relation as

〈σ(x,y)∇y[e0 · y + φ1(e0;y)]〉 = σ∗e0.

The next function appearing in the series expansion is found to be

φ1(x,y) = φ1(∇φ0(x);y).
Thus the solution of the cell problem not only gives the effective tensor σ∗ needed to com-
pute φ0, but it also gives the leading correction φ1 to the potential in the series expansion. The
results of this multiple-scale analysis can be verified by more rigorous methods [see, for exam-
ple, Bensoussan, Lions, and Papanicolaou (1978); Tartar (1978); Nguetseng (1989); Allaire
(1992); Allaire and Briane (1996); and Murat and Tartar (1997)]. One can extend the analysis
to higher powers in ε and thereby obtain a solution that captures the correct asymptotic behav-
ior as ε → 0. A rigorous justification of the resulting higher order homogenized solutions has
been provided by Bakhvalov and Panasenko (1989). Smyshlyaev and Cherednichenko (2000)
show how the higher order homogenized solutions also can be justified variationally, by using
an energy that depends on higher order gradients.

Notice that while the potential φε(x) converges to φ0(x) as ε → 0, the electric field
∇φε(x) does not converge to ∇φ0(x). Indeed, ∇φε(x) has rapid oscillations on the mi-
croscale, whereas ∇φ0(x) does not. Nevertheless, there is convergence in a weak sense. A
sequence of fields eε(x) is said to weakly converge to e0(x) if

lim
ε→0

∫
g(x)eε(x)dx =

∫
g(x)e0(x)dx,
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for all square integrable test functions g(x). With this definition ∇φε(x) converges weakly
to ∇φ0(x). Roughly speaking, taking the weak limit of a sequence of functions smoothes
out the rapid oscillations; the weak limit represents the locally averaged function. To clarify
the concept of weak convergence, let us consider a simple mathematical example, which is
not intended to have any deeper physical significance: For any vector n �= 0 the sequence of
functions

fε(x) = 2 cos2(x · n/ε)
|x|4 + 1

converges weakly as ε → 0 to the function

f0(x) = 1
|x|4 + 1

.

Of course the assumption (1.8) is too strong since it excludes all composite materials
with voids. The homogenization of such perforated structures, including cellular materials, is
treated in the books of Oleinik, Shamaev, and Yosifian (1992); Zhikov, Kozlov, and Oleinik
(1994); and Cioranescu and Saint Jean Paulin (1999).

1.6. Homogenization in random media
In random media the analog of periodicity is statistical homogeneity or stationarity. Homog-
enization in random media is described with varying degrees of rigor in the books of Beran
(1968); Bensoussan, Lions, and Papanicolaou (1978); Bakhvalov and Panasenko (1989); and
Zhikov, Kozlov, and Oleinik (1994), and in the papers of Kozlov (1978), Papanicolaou and
Varadhan (1982), and Golden and Papanicolaou (1983).

The conductivity tensor field σ(x, ω) is a function of bothx and the particular microstruc-
ture realization ω in the ensemble being considered. It is stationary if, given any set of points
x1,x2, . . . ,xm and any vector h, the joint distribution of the set of tensors

σ(x1, ω),σ(x2, ω), . . . ,σ(xm, ω)

and the joint distribution of the set of tensors

σ(x1 + h, ω),σ(x2 + h, ω), . . . ,σ(xm + h, ω)
are the same as ω varies over all realizations weighted according to a probability measure
P(ω). This stationarity will be guaranteed if P(ω) is invariant under translations of the
microstructure, that is, if, roughly speaking, a given microstructure and the translated mi-
crostructure have the same probability of occurring. The case of periodic homogenization,
where σ(x) is periodic in x, can be treated in this framework by letting the ensemble consist
of σ(x) and all of its translates σ(x+ h) weighted with uniform probability density P .

The equations of interest are now

∇ · σ(x/ε, ω)∇φε(x, ω) = ρ(x), φε(x, ω) = ψ(x) on ∂�,

as ω varies over all microstructure realizations. Here ε can be regarded as a (continuous or
discrete) parameter that sets the scale of the microstructure but does not necessarily represent
a characteristic length. The homogenized fields are defined by the limits

φ0(x) = lim
ε→0

E{φε(x, ω)},
e0(x) = lim

ε→0
E{∇φε(x, ω)},

j0(x) = lim
ε→0

E{σ(x/ε, ω)∇φε(x, ω)},
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where E{·} denotes the expectation value, or ensemble average:

E{ f (x, ω)} ≡
∫
f (ω)P(ω)dω,

where the integration is over all realizations ω in the ensemble. The homogenized potential
φ0(x) satisfies the homogenized equation

∇ · σ∗∇φ0 = ρ within �, φ0(x) = ψ(x) on ∂�,

or, equivalently,

j0 = σ∗e0, ∇ · j0 = ρ, e0 = ∇φ0, φ0(x) = ψ(x) on ∂�,

where the effective tensor σ∗ is independent of x and ω and is determined by finding station-
ary potentials φ1(x, ω) that solve

∇ · σ(x/ε, ω)[e0 +∇φ1(x, ω)] = 0,

for various constant fields e0 (independent of x and ω), by calculating

j0 = E{σ(x/ε, ω)[e0 +∇φε(x, ω)]},
which gives σ∗ via the relation

j0 = σ∗e0.

When ε is small the potential φ0(x) is not just a good approximation to the expectation value
of φε(x, ω). Kozlov (1978) and Papanicolaou and Varadhan (1982) establish the stronger
result that ∫

�

E{|φε(x, ω)− φ0(x)|2}dx = 0,

which shows that when ε is sufficiently small φ0(x) is almost everywhere a good approxima-
tion to nearly every field φε(x, ω) in the ensemble.

Papanicolaou and Varadhan (1982) and Golden and Papanicolaou (1983) have established
that this definition of the effective conductivity tensor is consistent with the more usual def-
inition where a cubic sample of the composite is taken and then σ∗ is obtained in an infinite
volume limit as the size the cube tends to infinity.

1.7. Homogenization in the settings of G-, H-, and Γ-convergence
The sequences of microstructures associated with periodic homogenization and homogeniza-
tion in random media are rather special. Each element in the sequence σε(x) = σ(x,x/ε)
or the sequence σε(x, ω) = σ(x/ε, ω) has oscillations in the microstructure on lengths of
the order of ε. One might wonder if homogenization can be generalized in some way to es-
sentially arbitrary sequences of tensor fields. The frameworks of G-, H -, and �-convergence
provide such a generalization. Spagnolo (1968) first introduced G-convergence. It is asso-
ciated with the convergence of Green’s functions, which is what the G signifies. Murat and
Tartar (Tartar 1978; Murat and Tartar 1985, 1997) introduced H -convergence (H for homog-
enization), which permits problems with nonsymmetric conductivity tensors to be treated. De
Giorgi (1975) introduced �-convergence, which is an abstract notion of functional conver-
gence, not just limited to homogenization. These approaches provide a rigorous justification
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for the intuitive viewpoint of homogenization in a very general setting. They are described,
for example, in the articles of De Giorgi (1984), Allaire (1997), and Murat and Tartar (1997);
in the books of Buttazzo (1989), Dal Maso (1993), Zhikov, Kozlov, and Oleinik (1994), and
Attouch (1984); and in the lecture notes of Raitums (1997). Allaire (1997), in particular,
provides an excellent short summary of the different approaches.

To define G-, H -, and �-convergence consider a sequence of symmetric second-order
tensor fields σε(x) such that (1.8) is satisfied for some choice of positive constants α and β.
This sequence is said to G-converge to a symmetric tensor field σ∗(x) if and only if for any
ρ(x) (in an appropriate space) the potentials φε that solve the Dirichlet problem

∇ · σε∇φε = ρ within �, φε = 0 on ∂�,

converge to a potential ∇φ0 that satisfies

∇ · σ∗∇φ0 = ρ within �, φ0 = 0 on ∂�.

This definition is motivated by the theorem of Spagnolo (1968) that any sequence σε(x) sat-
isfying (1.8) has a subsequence that G-converges to a tensor field σ∗(x). Roughly speaking,
in those regions where σε(x) converges to a fixed tensor field, σ∗(x) equals that tensor field;
whereas in those regions where σε(x) develops oscillations on finer and finer length scales,
σ∗(x) equals the associated effective tensor. If in a subregion the value of σε(x) alternates
between two different fixed values as ε is decreased, one chooses the subsequence so that only
one of these fixed values is selected.

The sequence is said to H -converge to a symmetric tensor field σ∗(x) if and only if on
each bounded domain � all pairs of sequences of square integrable vector fields j ε and eε on
� for which

• jε = σεeε is satisfied for all ε;

• ∇ · jε and ∇ × eε remain within compact sets in appropriate Hilbert spaces (which
guarantees that ∇ · jε and ∇ × eε do not oscillate too much as ε → 0);

• jε and eε converge weakly as ε tends to zero;

have weak limits j0 and e0 satisfying

j0 = σ∗e0.

Again, any sequence σε(x) satisfying (1.8) has a subsequence that H -converges to a tensor
field σ∗(x) (Tartar 1978; Murat and Tartar 1985, 1997).

The definition of �-convergence is more abstract. In the current setting it is defined in
terms of the quadratic form (∇φε) · σε∇φε , which physically represents the electrical power
dissipation. The sequence σε is defined to �-converge to σ∗(x) if

• for any potential φ0(x) and any sequence ϕε(x) such that ϕε(x) converges to φ0(x),
we have

lim
ε→0

∫
�

(∇ϕε) · σε∇ϕε ≥
∫
�

(∇φ0) · σ∗∇φ0;

• for any potential φ0(x) there exists a sequence φε(x) that converges to φ0(x) such that

lim
ε→0

∫
�

(∇φε) · σε∇φε =
∫
�

(∇φ0) · σ∗∇φ0.
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Here ϕε(x) should be regarded as a sequence of trial potentials, and the first inequality arises
from variational principles for the effective tensor (see section 13.1 on page 271). The se-
quence ϕε (called a �-realizing sequence) can be taken to be the solution of

∇ · σε∇φε = ∇ · σ∗∇φ0 within �, φε = φ0 on ∂�.

Once again, any sequence σε(x) satisfying (1.8) has a subsequence that �-converges to a ten-
sor field σ∗(x) (Dal Maso 1993). One advantage of �-convergence is that it is not restricted
to linear equations. Using it, Braides (1985) and Müller (1987) have found that the homoge-
nized energy for nonlinear elasticity in a periodic material has to be computed from solutions
in increasingly large blocks of unit cells, not just from the solutions in a single unit cell of
periodicity, as in the linear case.

Various properties of G-, H -, and �-convergence have been established. For example,
the field σ∗(x) inside a window � within � is unaffected by the values that the sequence σε

takes outside the window. Also, σ∗(x) is independent of the source term ρ(x).
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Analysis and Numerical Analysis, pp. 469–481. Tokyo: Japan Society for the Promo-
tion of Sciences. {10, 12, 13, 18}

Taylor, G. I. 1954. The two coefficients of viscosity for an incompressible fluid containing
air bubbles. Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences 226:34–39. {3, 18, 234, 244}

Zhikov, V. V., S. M. Kozlov, and O. A. Oleinik 1994. Homogenization of Differential Op-
erators and Integral Functionals. Berlin / Heidelberg / London / etc.: Springer-Verlag.
xi + 570 pp. ISBN 3-540-54809-2 (Berlin), 0-387-54809-2 (New York). {xxv, xxviii,
8, 11, 13, 18, 47, 58, 200, 220}



2
Some equations of interest and numerical

approaches to solving them

2.1. The conductivity and related equations
The basic equations

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0, (2.1)

which we will refer to generically as the conductivity equations, arise in many different phys-
ical problems: electrical conductivity, dielectrics [see Scaife (1989) for an excellent introduc-
tion to the theory of dielectric materials], magnetism, thermal conduction, diffusion, flow in
porous media, and antiplane elasticity. In each of these contexts the vector fields j(x) and
e(x) and the tensor σ(x) entering the constitutive relation have the interpretations given in
the following table, which is adapted from a similar one of Batchelor (1974). In this table, for
flow in porous media, the weighted fluid velocity is the (locally averaged) fluid velocity v(x)
multiplied by the shear viscosity ηµ of the fluid, which is assumed to be constant.

Problem j e σ

Electrical Electrical Electric Electrical
conduction current j field e conductivity σ

Dielectrics Displacement Electric Electric
field d field e permittivity ε

Magnetism Magnetic Magnetic Magnetic
induction b field h permeability µ

Thermal Heat Temperature Thermal
conduction current q gradient −∇T conductivity κ

Diffusion Particle Concentration DiffusivityD
current gradient −∇c

Flow in Weighted fluid Pressure Fluid
porous media velocity ηµv gradient ∇P permeability k

Antiplane Stress Vector Vertical Displacement Shear
elasticity (τ13, τ23) gradient ∇u3 matrix µ

With the exception of antiplane elasticity (which will be discussed in section 2.7 on
page 35 below and for which only the two-dimensional setting is relevant) the three-dimen-
sional equations reduce to two-dimensional ones when the microstructure and fields are inde-
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20 2. Equations of interest & numerical approaches

pendent of x3 and the off-diagonal components σ13 and σ23 of the tensor σ(x) are zero. Then
the differential constraints on the fields j(x) and e(x) imply that

∂ j1
∂x1

+ ∂ j2
∂x2

= 0,
∂e2

∂x1
− ∂e1

∂x2
= 0, e3 = constant.

The scalar component j3(x1, x2) is not subject to any differential constraints at all. Defining
the two-dimensional fields

j ′(x1, x2) = ( j1(x1, x2), j2(x1, x2)), e′(x1, x2) = (e1(x1, x2), e2(x1, x2)), (2.2)

we see that these vector fields satisfy the two-dimensional conductivity equations

j ′(x) = σ′(x)e′(x), ∇ · j ′ = 0, ∇ × e′ = 0,

where now x is the two-dimensional vector x = (x1, x2), ∇· and ∇× are the two-dimensional
divergence and curl operators, and

σ′(x) =
(
σ11(x) σ12(x)
σ21(x) σ22(x)

)
. (2.3)

This dimension reduction to two-dimensional equations also arises in the analysis of the
three-dimensional conductivity equations in thin films or plates of constant or variable thick-
ness. Let us assume that the plate has surfaces at x3 = h/2 and at x3 = −h/2, where
h = h(x1, x2) has a slow variation with respect to x1 and x2 on length scales comparable with
the plate thickness. Let us also assume that the conductivity tensor field σ(x) within the plate
has a slow variation with respect to x1 and x2 but a possibly rapid variation with respect to
x3. For instance, the plate could be a laminate of several plates, each with a different con-
ductivity. In the medium surrounding the plate σ(x) is assumed to take comparatively small
values. For electric or thermal conductivity this means that the surrounding medium has to
be a good electrical or thermal insulator, like air or asbestos, respectively (although asbestos
is probably not the healthiest choice). For dielectric or magnetic materials it means that the
plate material must have a high electric permittivity or magnetic permeability, since the sur-
rounding medium can never have permittivity or permeability below that of free space. For
diffusion or flow in porous media it means that the plate must be surrounded by a barrier to
the diffusion of particles or to the flow of fluids.

At the upper and lower surfaces of the plate the vertical component j3 of the current
is negligible because it is approximately the normal component of the current at the plate
surface. The two-dimensional current field

j ′(x1, x2) =
∫ h/2

−h/2
( j1(x1, x2, x3), j2(x1, x2, x3))dx3

is then essentially divergence free because

∇ · j ′ =
∫ h/2

−h/2

[
∂ j1
∂x1

+ ∂ j2
∂x2

]
dx3 = −

∫ h/2

−h/2

∂ j3
∂x3

dx3

= j3(x1, x2,−h/2)− j3(x1, x2, h/2) ≈ 0.

It is convenient to make the additional simplifying assumption that the components σ13
and σ23 are zero. Then the component e3 = j3/σ33 will also be negligibly small at the plate
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surfaces. To a good approximation it can be treated as being zero throughout the plate, that
is, the potential can be treated as being independent of x3. Defining the two-dimensional curl
free vector field

e′ = (e′1(x1, x2), e′2(x1, x2)) = (e1(x1, x2, 0), e2(x1, x2, 0)),

we have

e(x1, x2, x3) ≈ (e′1(x1, x2), e′2(x1, x2), 0) for − h(x1, x2)/2 ≤ x3 ≤ h(x1, x2)/2.

By substituting the constitutive relation back into the defining equation for j ′ and using
the above approximation for e, we see that

j ′ ≈ σ′e′, where σ′(x1, x2) =
∫ h/2

−h/2

(
σ11 σ12

σ21 σ22

)
dx3.

Therefore the fields e′(x1, x2) and j ′(x1, x2) approximately satisfy the conductivity equations
in a two-dimensional medium with conductivity tensor σ ′(x1, x2).

2.2. Magnetotransport and convection enhanced diffusion
In the preceding examples the tensor σ entering the constitutive relation is symmetric. How-
ever, this need not always be the case. Consider first a three-dimensional homogeneous iso-
tropic body through which a constant uniform electrical current j flows. Because the body
is isotropic, j will be aligned parallel to the electric field e. Now suppose that we apply a
constant magnetic field h. The charge carriers of charge q and velocity v will then feel a
magnetic force proportional to qv × h that is perpendicular to both v and h. Since v is on
average parallel to j, this force will on average be perpendicular to both j and h. So if the
direction of j is to be maintained, we need to apply an additional electric field perpendicular
to both j and h to oppose this force. When the magnetic field is weak the relation between e,
j, and h takes the form

e = αj + Rh× j, (2.4)

where α is the resistivity of the medium in the absence of anymagnetic field and the coefficient
R is called the Hall coefficient. We can rewrite this equation as e = ρj, where

ρ =
(

α −Rh3 Rh2
Rh3 α −Rh1

−Rh2 Rh1 α

)

is the resistivity tensor of the medium. More generally, in an inhomogeneous, possibly aniso-
tropic body containing a possibly strong magnetic field h(x) [which may depend on x due to
variations in the magnetic permeability µ(x)], the equations of conduction take the form

e(x) = ρ(x)j(x), ∇ · j = 0, ∇ × e = 0,

where at any given point x the resistivity tensor field ρ(x) has a symmetric part that is an even
function of h(x) and a skew symmetric part that is an odd function of h(x) [see Landau and
Lifshitz (1960)]. We can also write the constitutive relation in the equivalent form j(x) =
σ(x)e(x), where σ = ρ−1 is the conductivity tensor. The resulting current field j(x) will
itself generate some magnetic field. We assume that the current is small enough to allow us to
ignore these contributions to h(x) and treat h(x) and hence ρ(x) as being fixed.
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Nonsymmetric conductivity tensors also enter the equations describing convection en-
hanced diffusion [see, for example, Fannjiang and Papanicolaou (1994)]. The temperature T
in a fluid satisfies the heat equation

∂T
∂t
= D�T + v · ∇T,

where t is the time, D is the diffusivity that is assumed to be constant (independent of both x
and t), and v ·∇T is the convective term, in which v(x) is the fluid velocity that is assumed to
be stationary (independent of t). We assume that the flow is periodic, has zero average value,
and is incompressible, that is, ∇ · v = 0. Then there exists a periodic antisymmetric matrix
potentialH(x) such that

v = ∇ ·H.

Consequently, the heat equation can be rewritten in the form

∂T
∂t
= ∇ · σ∇T, (2.5)

with a conductivity tensor
σ(x) = DI +H(x),

which is not symmetric. Indeed, by substituting this expression for σ(x) into (2.5) we obtain
the relation

∂T
∂t
= D�T + (∇ ·H) · ∇T + Tr(H∇∇T ),

which is easily identified with the heat equation once one realizes that the trace1 ofH∇∇T
vanishes becauseH is antisymmetric.

2.3. The elasticity equations
The books of Atkin and Fox (1980) and Fung (1965) provide good introductions to the theory
of linear elasticity, and Timoshenko (1983) provides a historical account of the subject. [Atkin
and Fox (1980) also provide an introduction to nonlinear elasticity that is easy to follow. More
comprehensive treatments of nonlinear elasticity can be found, for example, in the excellent
books of Antman (1995), Ciarlet (1988), Lurie (1990), Marsden and Hughes (1994), and
Ogden (1984).] In an elastic body at equilibrium and in the absence of body forces, the
equations of linear elasticity take the form

τ (x) = C(x)ε(x), ∇ · τ = 0, ε = [∇u+ (∇u)T ]/2,
where τ (x) is the stress field,2 ε(x) is the strain field that is the symmetrized gradient of the
displacement field u(x) that measures the displacement of the body relative to its original
stress free state (roughly speaking, neglecting thermal vibrations, an atom at x gets displaced
to x′ = x+u(x), where u(x) is in some sense small), and C(x) is the elasticity tensor of the
medium that relates the two fields through the constitutive relation. This constitutive relation
is sometimes written in the equivalent form

ε(x) = S(x)τ (x),

1Throughout the text we use Tr to denote the trace of a matrix or operator
2Often σ(x) is used to represent the stress field, but we use τ (x) because σ(x) denotes the conductivity tensor

field.
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where S = C−1 is called the compliance tensor. The stress field has the following physical
interpretation: Given the body in a stressed state, we can carve out a small cavity from inside
the body and keep the remaining part of the body in the same elastic state by applying a force
distribution τ (x) · n(x) to the surface of the cavity, where n(x) is the normal at the cavity
surface pointing toward the cavity.

In Cartesian coordinates τ (x) and ε(x) are represented as d × d symmetric matrices.
Alternatively, they are often represented as d(d + 1)/2-dimensional vectors, where each el-
ement of the vector is related to a corresponding element of the matrix. For example, in
three-dimensional elasticity the constitutive relation linking the stress and strain components
can be written in the form


τ11

τ22

τ33√
2τ23√
2τ13√
2τ12

 =


C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C1122 C2222 C2233
√

2C2223
√

2C2213
√

2C2212

C1133 C2233 C3333
√

2C3323
√

2C3313
√

2C3312√
2C1123

√
2C2223

√
2C3323 2C2323 2C2313 2C2312√

2C1113
√

2C2213
√

2C3313 2C2313 2C1313 2C1312√
2C1112

√
2C2212

√
2C3312 2C2312 2C1312 2C1212




ε11

ε22

ε33√
2ε23√
2ε13√
2ε12

 .

(2.6)

Thus in this representation the elasticity tensor is represented by a symmetric 6 × 6 ma-
trix. It has 21 independent elements. The above representation differs from the conventional
engineering representation, which does not involve factors of

√
2. We prefer to introduce

these factors because the matrix entering the constitutive relation is then symmetric and the
scalar product of the vectors representing the stress and strain matrices τ (x) and ε(x) then
has a direct physical interpretation as twice the elastic energy density stored in the body.
The conventional engineering notation is associated with taking an orthogonal basis on the
space of symmetric matrices, whereas the above representation is associated with taking an
orthonormal basis on the space of symmetric matrices.3 Other choices of basis give alternative
representations.

When the body is locally isotropic, the relation between the stress and the strain can be
written in various equivalent forms, including

τ = 2µε+ (κ − 2µ/d)Tr(ε)I
= 2µε+ λTr(ε)I,

ε = (1/2µ)τ + (1/d2κ − 1/2dµ)Tr(τ )I
= (1/E)τ − (ν/E)[Tr(τ )I − τ ], (2.7)

where µ(x) is the shear modulus, κ(x) is the bulk modulus, λ(x) is the Lame modulus, E(x)
is the Young’s modulus, ν(x) is Poisson’s ratio, and d is the dimensionality (d = 2 or d = 3).
These parameters satisfy the relations

λ = κ − 2µ/d, E = 2d2κµ/[2µ+ d(d − 1)κ], ν = [dκ − 2µ]/[2µ+ d(d − 1)κ].

With the exception of the Lame modulus, they arise as natural constants in different physical
experiments. The shear modulus measures the resistance of the material to shearing (i.e., to
a strain ε that has zero trace); the bulk modulus measures the resistance to compression (i.e.,

3Two matrices A and B are said to be orthogonal if the productATB has zero trace and the norm of a matrix
A can be taken to be the square root of the trace ofATA.
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to a strain ε that is proportional to the identity); and the Young’s modulus and Poisson’s ratio
measure, respectively, the longitudinal extension and ratio of lateral contraction to longitudi-
nal extension under uniaxial loading (i.e., the response to a stress τ that is a rank-1 tensor).
The Lame modulus is sometimes mathematically convenient because of the way in which its
introduction simplifies the constitutive relation, as in (2.7).

In two dimensions there is another way of rewriting the elasticity equations which involves
a scalar potential rather than the vector-valued potential u, provided that the elastic body is
simply connected (but possibly inhomogeneous). Since ∇ · τ = 0, we have

∂τ11

∂x1
+ ∂τ21

∂x2
= 0,

∂τ12

∂x1
+ ∂τ22

∂x2
= 0. (2.8)

It follows that there exist potentials ψ1 and ψ2 such that

τ11 = ∂ψ1

∂x2
, τ21 = −∂ψ1

∂x1
, τ12 = ∂ψ2

∂x2
, τ22 = −∂ψ2

∂x1
. (2.9)

The symmetry of the stress field gives τ21 = τ12, which implies that

∂ψ1

∂x1
+ ∂ψ2

∂x2
= 0.

Consequently there must exit a further potential φ(x) such that

ψ1 = ∂φ

∂x2
, ψ2 = − ∂φ

∂x1
. (2.10)

This potential is called the Airy stress function. By substituting (2.10) into (2.9), we see that

τ =
(
τ11 τ12

τ21 τ22

)
=
(

φ,22 −φ,12

−φ,12 φ,11

)
= R⊥

(
φ,11 φ,12

φ,12 φ,22

)
= R⊥∇∇φ, (2.11)

in which R⊥ is the fourth-order tensor whose action is to rotate a second-order tensor by 90◦.
It has Cartesian elements

R⊥
i jk	 = δi jδk	 − (δikδ j	 + δi	δ jk)/2.

Conversely, if τ (x) can be expressed in the form (2.11), then clearly ∇ · τ = 0.
Now consider the strain tensor components

ε11 = ∂u1/∂x1, ε12 = (∂u1/∂x2 + ∂u2/∂x1)/2, ε22 = ∂u2/∂x2.

These clearly satisfy the differential constraint

∂2ε22

∂x2
1
− 2

∂2ε12

∂x1∂x2
+ ∂2ε11

∂x2
2
= ∂

∂x1

[
∂ε22

∂x1
− ∂ε12

∂x2

]
+ ∂

∂x2

[
−∂ε12

∂x1
+ ∂ε11

∂x2

]
= 0,

which can be rewritten in the equivalent form

∇ · (∇ ·M) = 0, where M = R⊥ε =
(

ε22 −ε12
−ε12 ε11

)
, and {∇ ·M} j =

d∑
i=1

∂Mi j
∂xi

.
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Conversely, if this differential constraint is satisfied, and the body is simply connected, then
there exists a potential u such that ε is the symmetrized gradient of u. [For the proof of this
see, for example, Fung (1965), pages 99–103.] The two-dimensional elasticity equation can
now be rewritten as

M = D∇∇φ, ∇ · (∇ ·M) = 0, (2.12)

in which D(x) is the fourth-order tensor field

D(x) = R⊥S(x)R⊥.

When the elasticity tensor field is locally isotropic, with two-dimensional bulk and shear
moduli κ(x) and µ(x), these equations reduce to

∇ · {∇ · [(2/µ)∇∇φ]} +�[(1/κ − 1/µ)�φ] = 0, (2.13)

where� = ∇ · ·∇ is the Laplacian.
The two-dimensional equations of elasticity arise as special cases of the three-dimensional

elasticity equations. For example, consider the equations of three-dimensional elasticity in a
locally isotropic body with bulk modulus κ(x1, x2) and shear modulus µ(x1, x2), which are
independent of x3. We will call such materials “fibrous composites” because they are an
approximation to the important class of fiber-reinforced materials where one treats the fibers
as being infinitely long, perfectly aligned, and with a constant cross section. Suppose that we
are looking for solutions with u3 = 0 and u1 and u2 independent of x3, as may occur if a slab
of the fibrous composite is confined between two fixed horizontal plates. Then the body is
said to be in a plane strain state. The strain fields and hence the stress fields are independent
of x3. Consequently, the equilibrium relation ∇ · τ = 0 reduces to the equations (2.8), and
consequently the two-dimensional fields

τ ′ =
(
τ11 τ12
τ21 τ22

)
, ε′ =

(
ε11 ε12
ε21 ε22

)
=
(

u1,1 (u1,2 + u2,1)/2
(u1,2 + u2,1)/2 u2,2

)
(2.14)

satisfy the required differential constraints of two-dimensional stress and strain fields. The
three-dimensional constitutive relation implies that

τ ′ = 2µε′ + (κ − 2µ/3)Tr(ε′)I = 2µ′ε′ + (κ ′ − µ′)Tr(ε′)I,

where
µ′ = µ, κ ′ = κ + µ/3

are the shear and bulk moduli of the associated two-dimensional medium under plane strain
conditions.

Alternatively we can look for solutions in this fibrous composite with σ13 = σ23 = σ33 =
0. Then the body is said to be in a plane stress state. Again the two-dimensional fields (2.14)
satisfy the required differential constraints of two-dimensional stress and strain fields. The
three-dimensional constitutive relation now implies that

ε′(x) = (1/2µ)τ ′ + (1/9κ − 1/6µ)Tr(τ ′)I = (1/2µ′)τ ′ + (1/4κ ′ − 1/4µ′)Tr(τ ′)I,

where
µ′ = µ, κ ′ = 3

1/µ+ 4/(3κ)
= 9κµ

3κ + 4µ
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are the shear and bulk moduli of the associated two-dimensional medium under plane stress
conditions. If the body under consideration is a flat slab with surfaces at x3 = h/2 and at
x3 = −h/2, where the thickness h is independent of x1 and x2, then the constraint σ13 =
σ23 = σ33 = 0 automatically ensures that the normal component of the stress vanishes at the
slab surface. Therefore, plane stress solutions are appropriate for describing the stretching of
slabs of constant thickness that have no loadings on their surfaces.

The analysis changes when the slab is a thin plate that is bent, rather than stretched.
However the resulting plate equations are equivalent to those of two-dimensional elasticity
[see Timoshenko and Woinowsky-Krieger (1959), Fung (1965), and Ciarlet (1997)]. Let us
allow the plate to have variable thickness with surfaces at x3 = h/2 and at x3 = −h/2, where
h = h(x1, x2) has a slow variation with respect to x1 and x2 on scales comparable with the
plate thickness. Let us also assume, for simplicity, that the elasticity tensor field C(x) within
the plate is locally isotropic with bulk modulus κ(x1, x2) and shear modulus µ(x1, x2), which
are independent of x3 and which have a slow variation with respect to x1 and x2. One side
of the plate is extended under bending while the other side of the plate is compressed. It is
convenient to assume the existence of a neutral surface midway through the plate at x3 = 0
that has no compression or extension. On this neutral surface

u1 = u2 = 0, u3 = u(x1, x2).

As in plate stretching, the dominant stress components in the plate are τ11, τ12, and τ22

because the remaining stress components τ13, τ23, and τ33 must be vanishingly small at the
plate surfaces. (However, these remaining stress components cannot be ignored. As we will
see, they determine the equilibrium equation for the bending moments.) The components
ε13 = τ13/2µ, ε23 = τ23/2µ of the strain are therefore small in comparison to the other strain
components and to a first approximation we have

∂u1

∂x3
= 2ε13 − ∂u3

∂x1
≈ − ∂u

∂x1
,

∂u2

∂x3
= 2ε23 − ∂u3

∂x2
≈ − ∂u

∂x2
.

This implies that

u1 ≈ −x3
∂u
∂x1

, u2 ≈ −x3
∂u
∂x2

,

and consequently

ε11 ≈ −x3
∂2u
∂x2

1
, ε12 ≈ −x3

∂2u
∂x1∂x2

, ε22 ≈ −x3
∂2u
∂x2

2
.

Also, since τ33 is comparatively small, the remaining dominant strain component is

ε33 ≈ −3κ − 2µ
3κ + 4µ

(ε11 + ε22) ≈ (3κ − 2µ)x3

3κ + 4µ

[
∂2u
∂x2

1
+ ∂2u

∂x2
2

]
.

From the constitutive relation it follows that the dominant stress components are

τ11 ≈ −2µx3
∂2u
∂x2

1
− (3κ − 2µ)2µx3

3κ + 4µ

[
∂2u
∂x2

1
+ ∂2u

∂x2
2

]
,

τ12 ≈ −2µx3
∂2u

∂x1∂x2
,

τ22 ≈ −2µx3
∂2u
∂x2

2
− (3κ − 2µ)2µx3

3κ + 4µ

[
∂2u
∂x2

1
+ ∂2u

∂x2
2

]
. (2.15)
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Now consider the components of the stress field integrated through the plate:

τ ′
i j(x1, x2) =

∫ h/2

−h/2
τi j(x1, x2, x3)dx3.

The integrals of the dominant stress components through the plate are clearly zero, being
proportional to x3. These integrals are therefore insufficient to describe the stress state of the
plate. When a hole is made in the plate, one needs to apply not only forces independent of
x3 to the hole edge but also bending torques (which are forces proportional to x3) to keep the
remaining part of the plate in approximately the same stress state. In addition to the average
components τ ′

i j of the stress fields it is also necessary to keep track of the bending moments

Mi j (x1, x2) =
∫ h/2

−h/2
x3τi j(x1, x2, x3)dx3, for i, j = 1, 2,

which are components of a two-dimensional, second-order tensor fieldM(x1, x2). From the
approximation formulas (2.15) for the dominant stress components we have the constitutive
relation

M ≈ −(µh3/6)∇∇u − (3κ − 2µ)µh3

6(3κ + 4µ)
[Tr(∇∇u)]I, (2.16)

which relates the bending moment tensorM to the curvature tensor ∇∇u of the plate. (The
eigenvectors of ∇∇u give the axes of principle curvature, and the reciprocals of the associated
eigenvalues give the radii of curvature along those axes.)

It remains to find the equilibrium equation for the bending moment tensor. Since∇·τ = 0,
and because τ13 is zero at the plate surface, we have

∂M11

∂x1
+ ∂M12

∂x2
=
∫ h/2

−h/2
−x3

∂τ13

∂x3
dx3 = τ ′

13 − [x3τ13]
h/2
−h/2 = τ ′

13,

and similarly we have
∂M12

∂x1
+ ∂M22

∂x2
= τ ′

23.

Also, integrating the equilibrium relation ∇ · τ = 0 through the plate gives

∂τ ′
13

∂x1
+ ∂τ ′

23

∂x2
= −[τ33]

h/2
−h/2 = 0,

and this implies that the bending moments satisfy the equilibrium equation

∂2M11

∂x2
1
+ 2

∂2M12

∂x1∂x2
+ ∂2M22

∂x2
2
= 0 or, equivalently, ∇ · ∇ ·M = 0.

By substituting (2.16) into the equilibrium equation we see that u satisfies

∇ · [∇ · (h3µ∇∇u)]+�{h3[(3κ − 2µ)µ/(3κ + 4µ)]�u} = 0.

By comparing this with (2.13) we see that the equations of plate bending are equivalent to
those of two-dimensional elasticity, as is well known. The Airy stress function, which in
two-dimensional elasticity has only an indirect physical interpretation (as the potential for the
stress field) now has a direct physical significance. In plate bending its role is played by the
vertical displacement u(x1, x2) of the neutral surface, which is an easily measured quantity.
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2.4. Thermoelectric, piezoelectric, and similar coupled equations
In a conducting material the equations of electrical conductivity and thermal conductivity are
idealized equations. In practice there is usually some coupling. Because flowing electrons
carry some heat with them, an electrical current will be accompanied by a flow of heat even
in the absence of a temperature gradient. There is a lot of confusion, particularly in the
composite materials community, as to the appropriate form of the thermoelectric equations.
Here I follow the treatment of Callen (1960), which strikes me as the correct approach [see
also Ashcroft and Mermin (1976)].

The constitutive equations take the form(−jN
jU

)
=
(
L11 L12

L21 L22

)(∇(µ/T )
∇(1/T )

)
= L

(∇(µ/T )
∇(1/T )

)
, (2.17)

where T (x) is the temperature field, µ is the electrochemical potential per particle, and j N
and jU are current densities of the number of electrons and energy, respectively, which in a
steady state flow satisfy the differential constraints

∇ · jN = 0, ∇ · jU = 0, (2.18)

which are implied by the conservation of the number of electrons and the conservation of
energy. The electrochemical potential µ is the sum µ = µe + µc of two parts: an electrical
part µe(x) = eφ(x), where e represents the absolute value of the charge on an electron and
−φ(x) represents the electrostatic potential, and a chemical part µc(x), which is a function
of the temperature T (x), the electron concentration, and the type of material located at the
point x.

In the absence of magnetic fields, Onsager’s principle (Lifshitz and Pitaevskii 1980) im-
plies that the matrix L(x) entering the constitutive relation (2.17) is symmetric, that is,

L11 = LT11, L22 = LT22, L21 = LT12.

When a magnetic field h is present the symmetric part ofL(x) is an even function of h, while
the antisymmetric part is an odd function of h. In general, the coefficient matrix L(x) also
depends on T and µ. However, it is assumed that the variations in T and µ are sufficiently
small to allow us to treat L(x) as depending only on x [and h(x), if a magnetic field is
present].

The preceding equations are sometimes rewritten in the equivalent form(
j
q/T

)
=
(
L′

11 L′
12

L′
21 L′

22

)(∇(µ/e)
−∇T

)
,

where
j = −ejN , q = jU − µjN

are the electric and heat current densities and

L′
11 = e2L11/T, L′

12 = e(L12 + µL11)/T 2,

L′
21 = e(L21 + µL11)/T 2, L′

22 = [L22 + µ(L12 +L21)+ µ2L11]/T 3.

Again the matrix entering the constitutive relation is symmetric in the absence of a magnetic
field. However, the disadvantage of this form of the equations is that the field q/T , which is
also called the entropy current density, is not divergence free since

∇ · (q/T ) = [j · (∇µ/e)]/T − (q · ∇T )/T 2.
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For this reason we prefer to consider the thermoelectric equations in the form (2.17) and
(2.18).

When the coupling is negligible, that is, when L′
21 and L

′
12 are small, the thermoelectric

constitutive equation decouples into the constitutive equations of electrical and heat conduc-
tivity:

j = σ∇(µ/e), q = −κ∇T,
where

σ(x) = L′
11(x), κ(x) = TL′

22(x)

are the electrical conductivity tensor field and heat conductivity tensor field. The electrical
current density j is divergence free (because e is constant) and the heat current q will be
divergence free when the electrochemical potential µ is constant. When µ is not constant, the
equations of electrical conductivity need to be solved first; then the temperature field is found
as the solutions of the equations

q = −κ∇T, ∇ · q = j · ∇(µ/e),

where the term j · ∇(µ/e) represents the dissipation of electrical power into heat.
Notice that even in the absence of coupling the electrical current is driven not only by vari-

ations in the electrical potential φ(x) but also by variations in the chemical potential µc(x).
One sees this most clearly at junctions between different semiconductors. Each semiconduc-
tor has a different chemical potential µc, which is dependent on the level of doping. In the
absence of any applied currents the electrical potential adjusts itself so that the electrochemi-
cal potential µ = eφ + µc is independent of x. At the junction between the semiconductors
there will be a gradient in µc and hence an electric field e = ∇φ = −∇(µc/e) but no as-
sociated current because µ is constant. Thus the conductivity equation j = σ∇φ is only an
approximation valid when there are no significant spatial variations in µc(x) and when the
coupling matrices L′

21 and L
′
12 are negligible.

In piezoelectrics, such as Barium Titanate, BaTiO3, applied strains generate electric and/or
electric displacement fields (which is why piezoelectrics work as strain measuring devices)
and conversely applied electric fields generate strains and/or stresses (which is why piezo-
electrics generate ultrasonic sound when subject to an oscillating electric field). Mason (1950)
and Ikeda (1996) give excellent accounts of the theory of piezoelectricity. The constitutive re-
lation takes form (

ε
d

)
=
(

S D
DT ε

)(
τ
e

)
,

where S(x) is the compliance tensor under short-circuit boundary conditions (i.e., with e =
0),D(x) is the piezoelectric stress coupling tensor, and ε(x) is the free-body dielectric tensor
(i.e., with τ = 0). The strain field ε, electric displacement field d, stress field τ , and electric
field e satisfy the usual differential constraints:

ε = [∇u+ (∇u)T ]/2, ∇ · d = 0,
∇ · τ = 0, ∇ × e = 0.

Since the stresses and strains are symmetric matrices, D is a third-order tensor that maps
vectors to symmetric matrices. The only rotationally invariant third-order tensor with this
property is the trivial tensor D = 0. Therefore there is no piezoelectric coupling in isotropic
materials. Piezoelectric materials are necessarily anisotropic.



30 2. Equations of interest & numerical approaches

The constitutive relation can also be rewritten in either of the two equivalent forms(
τ
d

)
=
(

S−1 −S−1D
DTS−1 ε−DTS−1D

)(
ε
e

)
or (−τ

d

)
=
( −S−1 S−1D

DTS−1 ε−DTS−1D

)(
ε
e

)
to ensure that the fields on the right-hand side of the equation derive from gradients. The
disadvantage of these forms of the constitutive equation is that the matrix entering the consti-
tutive relation is either not symmetric or not positive-definite.

In magnetostrictive materials, such as CoFe2O4, the coupling is between elastic fields and
magnetic fields and the constitutive relation takes the form(

ε
b

)
=
(

S Q
QT µ

)(
τ
h

)
,

where S(x) is the compliance tensor with h = 0, Q is the third-order coupling tensor, and
µ(x) is the free-body magnetic permeability (with τ = 0). Again the fields satisfy the usual
differential constraints:

ε = [∇u+ (∇u)T ]/2, ∇ · τ = 0,
∇ · b = 0, ∇ × h = 0.

By combining a piezoelectric material and a magnetostrictive material together in a compos-
ite, we obtain a material where there is coupling between electric fields, magnetic fields, and
elastic fields. In such materials the constitutive relation takes the form(

ε
d
b

)
=
( S D Q

DT ε β
QT βT µ

)(
τ
e
h

)
,

where β(x) is the second-order magnetoelectric coupling tensor [see, for example, Avel-
laneda and Harshé (1994)]. The effective tensor of a composite can have a nonzero effective
magnetoelectric coupling tensor β∗ even when β(x) is zero for all x. This is the product
property mentioned in section 1.2 on page 2.

2.5. Thermoelasticity and poroelasticity
In the linear approximation thermal expansion is governed by the equations

ε(x) = S(x)τ(x)+α(x)θ, (2.19)

where θ = T − T0 is the change in temperature T measured from some constant base tem-
perature T0, ε(x) and τ(x) are the strain and stress fields, S(x) is the compliance tensor,
and α(x) is the symmetric second-order tensor of thermal expansion [see Fung (1965)]. The
average fields 〈ε〉 and 〈τ 〉 satisfy equations of the same form:

〈ε〉 = S∗〈τ 〉 +α∗θ, (2.20)

which serve to define the effective compliance tensor S∗ and the effective thermal expansion
tensor α∗.
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The equation (2.19) of thermal expansion is insufficient to describe the total thermoelastic
state of the composite. Within a linear theory the complete description is provided by the
equations(

ε(x)
ς(x)

)
=
(

S(x) α(x)
α(x) c(x)/T0

)(
τ(x)
θ

)
, with ∇ · τ = 0,

ε = [∇u+ (∇u)T ]/2, (2.21)

where ς(x) is the increase in entropy per unit volume over the entropy of the state where
τ = θ = 0, and c(x) is specific heat per unit volume at constant stress. This specific heat
measures the amount of additional heat energy or, more precisely, entropy that is stored in the
material when the temperature is increased at constant stress.

Macroscopically, the average fields satisfy( 〈ε〉
〈ς〉
)
=
(

S∗ α∗
α∗ c∗/T0

)( 〈τ 〉
θ

)
, (2.22)

and this serves to define the effective elasticity tensor S∗, the effective tensor of thermal
expansion α∗, and the effective constant of specific heat at constant stress c∗.

Because the entropy increment ς(x) does not satisfy any differential constraints, we need
not consider it when solving the equations of thermal expansion for the stress and strain fields.
Once the stress field is found, (2.21) implies that

ς(x) = Tr[α(x)τ(x)]+ θc(x)/T0,

and by taking averages of this expression we find that

Tr[α∗〈τ 〉]+ θc∗/T0 = 〈Tr[ατ ]〉 + θ〈c〉/T0, (2.23)

which provides an equation for determining c∗.
The thermoelastic equations (2.21) and the relation (2.22) between the average fields can

be manipulated into the equivalent forms(
τ(x)
−ς(x)

)
=
(

C(x) A(x)
A(x) −cε(x)/T0

)(
ε(x)
θ

)
, with ∇ · τ = 0,

ε = [∇u+ (∇u)T ]/2,
(2.24)

and ( 〈τ 〉
−〈ς〉

)
=
(

C∗ A∗
A∗ −cε∗/T0

)( 〈ε〉
θ

)
,

where C = S−1 and C∗ = S−1
∗ are the elasticity tensor field and effective elasticity tensor;

A(x) = −C(x)α(x), A∗ = −C∗α∗

are the thermal stress (eigenstress) tensor field and effective thermal stress tensor; and

cε(x) = c(x)− T0 Tr[α(x)C(x)α(x)] and cε∗ = c∗ − T0 Tr[α∗C∗α∗]

are the specific heat per unit volume at constant strain and the effective specific heat per unit
volume at constant strain. Written in this form, the tensor entering the constitutive law is not
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positive-semidefinite. However, by a slight modification it can be made positive-semidefinite.
One rewrites the equations in the form(

τ(x)
−τ ′(x)

)
=
(

C(x) A(x)
A(x) −c′ε(x)/T0

)(
ε(x)
θ

)
,

where
ς ′(x) = ς(x)− tθ/T0, c′ε(x) = cε(x)− t, (2.25)

and t is an arbitrary constant. Thus these fields solve the thermoelastic equations in a medium
having specific heat c′

ε(x). If we choose t sufficiently large, the matrix entering the new
constitutive relation will be positive-definite. Moreover, by taking averages of the fields, one
sees that this new medium will have the same effective tensor as the original medium, but
with effective specific heat

c′ε∗ = cε∗ − t . (2.26)

It was observed by Biot (1956), Rice and Cleary (1976), and Norris (1992) that the equa-
tions of poroelasticity are mathematically equivalent to those of linear thermoelasticity. These
equations are appropriate for describing the average fluid and solid displacement in a fluid-
filled porous medium subject to external stress and variations in the fluid pressure. Burridge
and Keller (1981) provide a rigorous justification for the equations using homogenization
theory.

We consider a material with variations in its microstructure on two widely separated length
scales, the smallest scale �1 being set by the pore size and the largest scale �3 being set by,
say, the variation in material moduli, or by the variation in porosity φ(x). The pore geometry
is described by the characteristic function

χ(x) = 1 within the pores,
= 0 within the solid,

which, when averaged on an intermediate length scale �2 with �1 � �2 � �3, defines the
porosity,

φ(x) = 〈χ〉�,
where the angular brackets 〈 〉� denote a local average, defined by (1.4), of the bracketed
expression over a cube of side �2 centered at x. The other fields that we consider are the fluid
pressure p f , which is constant; the confining stress

τ c(x) = 〈τ 〉�,
which includes contributions from the stress τ(x) in the solid and from the stress

χ(x)τ(x) = −p f χ(x)I
in the fluid-filled pores; the average solid and fluid displacements

us(x) = 〈(1− χ)u〉�
1− φ(x)

, u f (x) = 〈χu〉�
φ(x)

,

where u(x) is the microscopic displacement of fluid or solid; and the increment of fluid
content

ζ(x) = φ(x)∇ · [us(x)− u f (x)],
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which measures the net fluid flow per unit volume in or out of a region.
The constitutive relations take the form(

εs(x)
−ζ(x)

)
=
(

S(x) α(x)
α(x) c(x)

)(
τ c(x)
−p f

)
, (2.27)

where
εs = [∇us + (∇us)T ]/2, ∇ · τ c = 0, (2.28)

S(x) is now the compliance tensor of the drained porous frame, α(x) is now the tensor of
fluid pressure induced expansion (at constant confining stress), and c(x) is now the coefficient
relating the increment of fluid content to the fluid pressure (again at constant confining stress).

On a length scale much larger than �3, the behavior is governed by the equations( 〈εs〉
−〈ζ 〉

)
=
(

S∗ α∗
α∗ c∗

)( 〈τ c〉
−p f

)
,

which serve to define the effective moduli. These effective poroelastic moduli determine the
speeds of acoustic waves in poroelastic media. One interesting feature is that acoustic waves
can travel at three different speeds in an isotropic poroelastic medium. (By contrast, acoustic
waves travel at two different speeds in an isotropic elastic medium, depending on whether it
is a shear wave or a compressional wave.)

By comparing (2.27) and (2.28) with (2.21) it is clear that the equations of poroelasticity
are mathematically analogous to the equations of thermal expansion. Consequently, any re-
sults pertaining to thermoelasticity immediately extend to poroelasticity, and vice versa. The
equations of poroelasticity remain the subject of active research; see, for example, the recent
Biot memorial issue on poroelasticity edited by Cheng, Detournay, and Abousleiman (eds.)
(1998).

2.6. Pyroelectric equations and their relation to conductivity and
magnetotransport equations in fibrous composites

What distinguishes the thermoelastic and poroelastic problems is that a constant field, namely,
the temperature or pressure, enters the constitutive relation. We will refer to such problems
as thermoelastic-type problems. The equations of pyroelectricity (Landau and Lifshitz 1960)
fall into this category and take the form:

d(x) = ε(x)e(x)+α(x)θ, ∇ · d = 0, ∇ × e = 0, θ = constant, (2.29)

where d(x) and e(x) are the electric displacement and electric fields, ε(x) is the dielectric
tensor fields, θ is the constant temperature increment, and α(x)θ is the pyroelectric vector.

This type of equation also arises from the basic conductivity, elasticity, or coupled field
equations in fibrous composites, that is, when the microstructure and hence the fields are
independent of x3. In section 2.1 on page 19 we saw how the three-dimensional conductivity
equations reduce to two-dimensional conductivity equations in such a microgeometry when
the off-diagonal components σ13(x) and σ23(x) of the conductivity tensor σ(x) are zero.
When they are not zero, the constitutive relation can be expressed in the form(

j ′

j3

)
=
(
σ′ α
αT σ33

)(
e′

e3

)
, (2.30)
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where j ′(x) and e′(x) are the two-dimensional divergence free and curl free fields defined
by (2.2), σ′(x) is the two-dimensional conductivity tensor field defined by (2.3), and α(x)
(which we can think of as being like the tensor of thermal expansion) is the vector field

α(x) =
(
σ13(x)
σ23(x)

)
.

As mentioned earlier, the field component e3 is constant (we can think of it as being like
the temperature increment in the thermoelastic equations) while the field component j3(x1, x2)

is not subject to any differential constraints (we can think of it as being like the entropy in the
thermoelastic equations). Since j3(x1, x2) is not subject to any differential constraints, we can
ignore it when solving the equations and instead focus on the reduced system,

j ′(x) = σ′(x)e′(x)+α(x)e3, ∇ · j ′ = 0, ∇ × e′ = 0, e3 = constant, (2.31)

which is clearly mathematically equivalent to the pyroelectric equations (2.29).
Similar equations arise in certain magnetotransport problems in fibrous composites. Con-

sider a locally isotropic conducting medium with a microstructure independent of x3, which
is subsequently subject to a constant magnetic field h applied perpendicular to the x3-axis,
say, with h2 = h3 = 0. The constitutive relation (2.4) can be rewritten in the equivalent form(

j ′

j3

)
=
(
σ′ α
−αT σ33

)(
e′

e3

)
, (2.32)

where

σ′ =
(

1/α 0
0 α/(α2 + R2h2

1)

)
, α =

(
0

Rh1/(α
2 + R2h2

1)

)
, σ33 = α/(α2 + R2h2

1). (2.33)

Since j3(x1, x2) is not subject to any differential constraints, we arrive back at exactly the same
system of reduced equations (2.31) as we would have obtained from the system of equations
(2.30) with a symmetric conductivity matrix. A related conclusion was reached by Bergman
and Strelniker (1998) and Strelniker and Bergman (2000) through quite different arguments.
[See also Bergman and Strelniker (1994) and Tornow, Weiss, v. Klitzing, Eberl, Bergman,
and Strelniker (1996), where these equations are solved for square arrays of cylinders and
compared with experiments.]

It follows that if

σ∗ =
(
σ′

∗ α∗
αT∗ c∗

)
is the effective conductivity tensor associated with equations (2.30), then

σ∗ =
(
σ′

∗ α∗
−αT∗ 2〈σ33〉 − c∗

)
will be the effective conductivity tensor associated with the equations (2.32). The effective
constant of 2〈σ33〉 − c∗ arises because although j ′ and e′ are the same for both problems, the
average value of j3,

〈 j3〉 = 〈αTe′〉 + 〈σ33〉θ = αT∗ 〈e′〉 + c∗θ, (2.34)

in equations (2.30) differs from the average value of j3,

〈 j3〉 = −〈αTe′〉 + 〈σ33〉θ = −αT∗ 〈e′〉 + (2〈σ33〉 − c∗)θ, (2.35)
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in equations (2.32).
Pyroelectric type equations also arise from the analysis of coupled equations when certain

blocks of moduli are constant and of an appropriate form. For example, consider the following
coupled field equations:(

j1
j2

)
= L

(
e1

e2

)
, where ∇ · j1 = ∇ · j2 = 0, ∇ × e1 = ∇ × e2 = 0,

with a tensor L(x) of the form

L(x) =
(
σ(x) c1I
c1I c2I

)
,

where c1 and c2 are constants and I is the identity tensor. Since

j2(x) = c1e1(x)+ c2e2(x)

is both divergence free and curl free, it must necessarily be a constant field. Using this equa-
tion to express e2 in terms of j2 and e1, and substituting the result into the formula for j1
implied by the constitutive relation, gives

j1 = [σ(x)− (c2
1/c2)I]e1 + (c1/c2)j2.

Since j2 is a constant vector, while j1 and e1 are, respectively, divergence free and curl free,
this is clearly a pyroelectric-type equation.

2.7. The equivalence between elasticity in fibrous composites and
two-dimensional piezoelectricity and thermoelasticity

The relationship between three-dimensional elasticity in fibrous composites and two-dimen-
sional piezoelectricity has been studied by Milton (1997), Chen and Lai (1997), and Chen
(1998). Consider a lattice of aligned circular or square cylinders or, more generally, any mi-
crostructure that is invariant with respect to spatial translations in one direction. Let us choose
our coordinate-ordinate system so that this direction is the x3-axis. Then the elasticity tensor
field C(x) will depend only on the spatial coordinates x1 and x2, and not on x3. The periodic
stress and strain fields, being unique, must be similarly independent of x3. Consequently, the
differential constraints on the stress field τ (x) imply that

∂τ11

∂x1
+ ∂τ12

∂x2
= 0,

∂τ12

∂x1
+ ∂τ22

∂x2
= 0,

∂τ13

∂x1
+ ∂τ23

∂x2
= 0. (2.36)

Notice that the stress field component τ33 is not subject to any differential restrictions.
Since the strain components do not depend on x3, the displacement field (apart from overall
rotations) must be of the form

u(x) = u′(x1, x2)+ x3v,

that is, it depends linearly on x3 with a constant coefficient v. In terms of u′ and v the strain
field components are

ε11 = ∂u′
1/∂x1, ε12 = (∂u′

1/∂x2 + ∂u′
2/∂x1)/2, ε22 = ∂u′

2/∂x2,

ε13 = (v1 + ∂u′
3/∂x1)/2, ε23 = (v2 + ∂u′

3/∂x2)/2, ε33 = v3. (2.37)
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In particular, this implies that the strain field component ε33 must be constant.
Now observe that the constitutive relation (2.6) for elasticity can be rewritten in the equiv-

alent form:


τ11

τ22√
2τ12

e′
1

e′
2

τ33

 =


C1111 C1122

√
2C1112

√
2C1123 −√

2C1113 C1133

C1122 C2222
√

2C2212
√

2C2223 −√
2C2213 C2233√

2C1112
√

2C2212 2C1212 2C2312 −2C1312
√

2C3312√
2C1123

√
2C2223 2C2312 2C2323 −2C2313

√
2C3323

−√
2C1113 −√

2C2213 −2C1312 −2C2313 2C1313 −√
2C3313

C1133 C2233
√

2C3312
√

2C3323 −√
2C3313 C3333




ε11

ε22√
2ε12

d ′
1

d ′
2

ε33


(2.38)

where e′
1(x1, x2), e′2(x1, x2), d ′

1(x1, x2), and d ′
2(x1, x2) are components of the fields

e′ =
(
e′1
e′2

)
=
( √

2τ23
−√2τ13

)
, d′ =

(
d ′

1
d ′

2

)
=
( √

2ε23
−√2ε13

)
.

From the constraints (2.36) and (2.37) on the stress and strain components we see that

∂e′
1

∂x2
− ∂e′2

∂x1
= 0,

∂d ′
1

∂x1
+ ∂d ′

2

∂x2
= 0.

In other words, e′(x1, x2) and d′(x1, x2) are, respectively, curl free and divergence free fields.
We can think of e′(x) as an “electric field” and d′(x) as an “electric displacement field.”

Let us also introduce the two-dimensional stress field

τ ′ =
(
τ11 τ12
τ12 τ22

)
, (2.39)

which, according to (2.36), is divergence free, and let us introduce the two-dimensional strain
field

ε′ =
(
ε11 ε12

ε12 ε22

)
, (2.40)

which, according to (2.37), derives from the two-dimensional displacement field u′(x1, x2).
These strain and stress fields can be represented by the three-component vectors

ε′ =
(

ε11

ε22√
2ε12

)
, τ ′ =

(
τ11

τ22√
2τ12

)
.

In the case when there is no axial stretching, that is, when ε33 = 0, the constitutive relation
(2.38) implies that (

τ ′(x)
e′(x)

)
= L(x)

(
ε′(x)
d′(x)

)
,

where L(x) = L(x1, x2) is the 5× 5 symmetric matrix

L =


C1111 C1122

√
2C1112

√
2C1123 −√2C1113

C1122 C2222
√
2C2212

√
2C2223 −√2C2213√

2C1112
√
2C2212 2C1212 2C2312 −2C1312√

2C1123
√
2C2223 2C2312 2C2323 −2C2313

−√2C1113 −√2C2213 −2C1312 −2C2313 2C1313

 .
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This matrix, being a principal submatrix of C(x), is positive-definite when the elasticity tensor
C(x) is positive-definite. We have thus reduced the three-dimensional elasticity problem to
an equivalent two-dimensional piezoelectric problem. From the effective tensor L∗ of the
two-dimensional piezoelectric problem we can recover most of the components C ∗

i jk	 of the
effective elasticity tensor C∗ by using the identity

L∗ =


C∗

1111 C∗
1122

√
2C∗

1112

√
2C∗

1123 −√2C∗
1113

C∗
1122 C∗

2222

√
2C∗

2212

√
2C∗

2223 −√2C∗
2213√

2C∗
1112

√
2C∗

2212 2C∗
1212 2C∗

2312 −2C∗
1312√

2C∗
1123

√
2C∗

2223 2C∗
2312 2C∗

2323 −2C∗
2313

−√2C∗
1113 −√2C∗

2213 −2C∗
1312 −2C∗

2313 2C∗
1313

 .

If in the process of solving the two-dimensional piezoelectric problem we keep track of
the fields ε′(x) and d′(x), for five linearly independent choices of the applied fields, then by
averaging the formula

τ33 = C1133ε11 + C2233ε22 + 2C3312ε12 +
√
2C3323d ′

1 −
√
2C3313d ′

2,

which yields the identity

〈C1133ε11 + C2233ε22 + 2C3312ε12 +
√
2C3323d ′

1 −
√
2C3313d ′

2〉
= C∗

1133〈ε11〉 + C∗
2233〈ε22〉 + 2C∗

3312〈ε12〉 +
√
2C∗

3323〈d ′
1〉 −

√
2C∗

3313〈d ′
2〉,

we can recover all of the remaining elements of the effective elasticity tensor apart from
C∗

3333. For two-phase composites, and some polycrystalline materials, it turns out that one can
recover all elements of C∗ from L∗ (including C∗

3333) without keeping track of the fields ε
′(x)

and d′(x); this will be discussed further in section 5.9 on page 86.
Sometimes the symmetry of the elastic material may be such that it is invariant under

reflection in the (x1, x2)-plane, that is, invariant under the transformation x3 →−x3, implying
that all components of the elasticity tensor having an odd number of indices taking the value
3 are zero:

C1123 = C1113 = C2223 = C1123 = C2213 = C1312 = C2312 = C3313 = C3323 = 0. (2.41)

In this case the two-dimensional piezoelectric problem decouples into a two-dimensional elas-
tic problem (the plane strain problem):

τ ′ = C′ε′, where C′ =
( C1111 C1122

√
2C1112

C1122 C2222
√
2C2212√

2C1112
√
2C2212 2C1212

)
,

and a two-dimensional dielectric problem (the antiplane elasticity problem):

d′ = εe′, where ε =
(

2C2323 −2C2313

−2C2313 2C1313

)−1

. (2.42)

The equations for antiplane elasticity can be expressed alternatively in the form(
τ13
τ23

)
= µ

(
2ε13
2ε23

)
, where µ =

(
C1313 C2313
C2313 C2323

)
,
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in which the fields on the left and right of the constitutive relation are, respectively, diver-
gence free and curl free. The shear matrix µ(x) equals µ(x)I when the material is locally
isotropic with shear modulus µ(x). For more about antiplane elasticity see, for example,
Milne-Thomson (1962) or Atkin and Fox (1980).

From the associated two-dimensional effective elasticity tensor C ′
∗ and effective shear

matrix µ∗, and from the solution for the stress field ε′(x) in the two-dimensional elasticity
problem (with ε33 = 0) for three different applied fields, we obtain all nonzero elements of
the three-dimensional effective elasticity tensor apart from C∗

3333 by using the identities

C′
∗ =

 C∗
1111 C∗

1122

√
2C∗

1112
C∗

1122 C∗
2222

√
2C∗

2212√
2C∗

1112

√
2C∗

2212 2C∗
1212

 , µ∗ =
(
C∗

1313 C∗
2313

C∗
2313 C∗

2323

)
, (2.43)

and

〈C1133ε11 + C2233ε22 + 2C3312ε12〉 = C∗
1133〈ε11〉 + C∗

2233〈ε22〉 + 2C∗
3312〈ε12〉.

To recover C∗
3333 one needs to take nonzero values for the constant ε33. From (2.38) and

(2.41), the constitutive relation relating the two-dimensional stress and strain fields takes the
same basic form:(

τ ′

τ33

)
=
(

C′ A
AT C3333

)(
ε′

ε33

)
, where A(x) =

( C1133(x)
C2233(x)√
2C1233(x)

)
, (2.44)

as the constitutive relation for thermoelasticity in a two-dimensional medium, with the con-
stant field ε33 playing the role of the temperature increment θ and −τ33 playing the role of
the entropy ς . This connection is made more apparent if we use the representation where τ ′

and ε′ are represented by 2× 2 matrices as in (2.39) and (2.40). Then the constitutive relation
takes exactly the same form,(

τ ′

τ33

)
=
(

C′ A
A C3333

)(
ε′

ε33

)
, where A(x) =

(
C1133(x) C1233(x)
C1233(x) C2233(x)

)
,

(2.45)

as the thermoelastic constitutive relation (2.24). The elements C ∗
1133, C

∗
1233, and C

∗
2233 of the

effective elasticity tensor then can be identified with the elements of the effective tensor of
thermal stress

A∗ =
(
C∗

1133 C∗
1233

C∗
1233 C∗

2233

)
(2.46)

associated with the two-dimensional thermoelastic medium. The constant C ∗
3333 can be ob-

tained from the effective constant of specific heat at constant strain in the associated two-
dimensional thermoelastic medium, with, say, T0 = 1.

2.8. Numerical methods for finding effective tensors
Many numerical methods for calculating effective tensors have been developed. Ideally, a
whole book should be written about this important subject, and it is difficult to do it justice
here. This section is intended only as a brief introduction, and the interested reader is encour-
aged to refer to the papers referenced. The reader should also bear in mind that sometimes
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results are reported which give worse estimates than previous work, and in which errors occur
well before the last digit given in the result.

For the dielectric constant of periodic arrays of aligned circular cylinders and periodic
lattices of spheres Rayleigh (1892) developed an approach based on matching coefficients
in the multipole expansions, in cylindrical or spherical harmonics, of the electrical poten-
tial around a given cylinder or sphere. Once computers became sufficiently powerful, this
method provided accurate solutions for the effective dielectric constant (Doyle 1978; McKen-
zie, McPhedran, and Derrick 1978; McPhedran and McKenzie 1978; Perrins, McKenzie, and
McPhedran 1979). An alternative approach of Zuzovsky and Brenner (1977) was shown by
Sangani and Acrivos (1983) to yield exactly the same set of equations for the multipole coeffi-
cients. Rayleigh’s method failed to give accurate answers only when the cylinders or spheres
were close to touching and had a very high or very low dielectric constant compared with the
surrounding matrix. The extension of the method to other inclusion shapes, such as to arrays
of aligned elliptical cylinders (Yardley, McPhedran, Nicorovici, and Botten 1999), requires
care to ensure convergence. To calculate the elastic moduli of cubic lattices of spheres San-
gani and Lu (1987) matched coefficients in the expansion of the displacement field around a
given sphere in spherical harmonics. McPhedran and Movchan (1994) extended Rayleigh’s
method to planar elasticity. Lam (1986) applied it to calculate the dynamic magnetic perme-
ability of cubic lattices of conducting magnetic spheres, including the effects of eddy currents,
that is, the magnetic fields generated by induced electrical currents.

Bergman (1979) showed how the dielectric constant of a cubic array of spheres could be
obtained from calculations of the electrostatic resonances. This approach was extended to
elasticity by Kantor and Bergman (1982). McPhedran and Milton (1981), Sangani and Yao
(1988a, 1988b), Helsing (1994), and Tokarzewski and Telega (1997) show how the calculation
of high-order bounds can give accurate results for the effective conductivity of periodic arrays
of spheres or aligned cylinders containing from one to as many as 16 randomly placed inclu-
sions in the unit cell. Bonnecaze and Brady (1990, 1991) have developed another method that
includes both near-field and far-field interactions to compute the effective dielectric properties
of both periodic and random suspensions of spheres.

In a dielectric material, where only two isotropic phases are present, the fields within
each phase are generated by the uniform applied field and by the polarization charges on
the interfaces between the phases. Thus the density of polarization charges on the interfaces
should satisfy an integral equation. One can then use the fast multipole method (Rokhlin
1985; Greengard and Rokhlin 1987; Carrier, Greengard, and Rokhlin 1988) to solve the re-
sulting boundary integral equation. This is a fast way of computing the field due to a set of
charges. Also, integrals over the interface around any inclusion can be computed by using the
trapezoidal rule, which provides superalgebraic convergence. By this means the fields and ef-
fective coefficients in two-dimensional, two-phase microstructures have been computed with
unparalleled accuracy and efficiency (Greengard and Moura 1994; Helsing 1998). Bound-
ary integral equation methods have also been developed for two-phase composites containing
anisotropic conducting materials (Helsing 1995b, 1995c; Helsing and Samuelsson 1995); for
planar elasticity, with both isotropic and isotropic phases (Eischen and Torquato 1993; Hels-
ing 1995a; Helsing, Milton, and Movchan 1997); and for three-dimensional elasticity (Nunan
and Keller 1984). The fast multipole method has also been utilized to accelerate the solution
of the planar elasticity equations (Greengard and Helsing 1998; Helsing 2000), yielding re-
sults for the effective elastic moduli of incredible accuracy. Not so much progress has been
made for three-dimensional composites. However, a suitable three-dimensional fast multipole
method is now available (Cheng, Greengard, and Rokhlin 1999).
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To calculate the conductivity of a plate out of which randomly centered holes have been
cut Garboczi, Thorpe, DeVries, and Day (1991) treated the plate as a two-dimensional resis-
tor network [which is equivalent to solving the conductivity equations using a finite difference
scheme, as explained, for example, by Hornung (1997)]. They then successively simplified
the network using the Y − � algorithm of Frank and Lobb (1988) and thereby obtained the
effective conductivity. For planar elasticity Day, Snyder, Garboczi, and Thorpe (1992) and
Snyder, Garboczi, and Day (1992) treated a plate with circular inclusions as a spring network
which they then solved. Finite element methods [see, for example, Davis (1992) and Hels-
ing and Samuelsson (1995)] and multigrid methods (Eyre and Milton 1999) have also been
used. Hou and Wu (1997) used a multiscale finite element method to simulate solving the
homogenization problem directly.

Another approach to obtaining the effective conductivity has been developed and applied
by Schwartz and Banavar (1989a, 1989b); Kim and Torquato (1990, 1991, 1992, 1993); Mc-
Carthy (1990, 1993); and Torquato, Kim, and Cule (1999). The approach uses the equivalence
between the conductivity equations and the diffusion equations. Reasonable estimates of the
effective diffusion coefficient and hence of the effective dielectric constant are obtained from
the long-time behavior of the Brownian motion of a diffusing particle. The simulation time
is reduced by letting the particle make jumps with the time being updated using a known
first-passage time distribution.

Algorithms have been developed for treating high-contrast media with inclusions that have
sharp corners or which are nearly touching (Milton, McPhedran, and McKenzie 1981; Hels-
ing 1996, 1998; Cheng and Greengard 1997, 1998). For periodic composites, Fourier-based
methods have been used with varying degrees of success (Nemat-Nasser, Iwakuma, and He-
jazi 1982; Iwakuma and Nemat-Nasser 1983; Tao, Chen, and Sheng 1990; Bergman and Dunn
1992; Moulinec and Suquet 1994, 1998; Liu andWu 1997; Eyre andMilton 1999; Ma, Zhang,
Tam, and Sheng 2000; Michel, Moulinec and Suquet 2000, 2001). One advantage of these
methods is that they can make use of the fast Fourier transform. They are best suited to prob-
lems where the moduli vary smoothly over the unit cell. We will return in section 14.11 on
page 306 to discuss those Fourier methods associated with series expansions for the effective
tensor.
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3
Duality transformations in
two-dimensional media

3.1. Duality transformations for conductivity
Duality transformations were first applied to conductivity problems by Keller (1963), who
obtained an identity relating the transverse effective conductivity of a square array of non-
conducting cylinders with the transverse effective conductivity for the same array of per-
fectly conducting cylinders. Subsequently, Keller (1964) generalized this result to other two-
dimensional microgeometries of two isotropic phases. He obtained a phase interchange iden-
tity relating the effective conductivity with that obtained when the conductivities of the phases
are swapped. Matheron (1967) noticed that if a macroscopically isotropic two-dimensional
multiphase medium with local conductivity σ(x)I could not be statistically distinguished
from a medium with conductivity σ ′(x)I = cI/σ(x) for some choice of the constant c, then
the medium has effective conductivity σ∗ =

√
cI . A checkerboard is one example of such

a medium. Independently, Dykhne (1970) realized that a checkerboard with squares having
conductivities σ1 and σ2 would have effective conductivity

√
σ1σ2I . Dykhne also used duality

relations to obtain an exact formula for the effective conductivity of a macroscopically iso-
tropic two-dimensional polycrystal. Schulgasser (1977) showed that this exact formula was
a corollary of Keller’s phase interchange identity because each crystal could be replaced by
a laminate of two isotropic phases. Mendelson (1975) obtained the most general form of the
duality relation that is valid for any two-dimensional conducting medium, with possibly an-
isotropic local conductivity and possibly anisotropic effective conductivity [see also Nevard
and Keller (1985), the proof of Tartar in Francfort and Murat (1987), Theorem 4, and section
1.5 of Zhikov, Kozlov, and Oleinik (1994).]. Levy and Kohn (1998) extended these duality
relations to nonlinear conducting media.

Keller’s original analysis was based on the equations satisfied by the harmonic conju-
gates of the electrical potentials in each phase. Here we follow the more general approach of
Dykhne (1970) [see also Dykhne and Kaganova (1997)], who derived the duality relations by
noting that a two-dimensional divergence free field when rotated pointwise by 90◦ produces a
curl free field, and vice versa.

Consider conduction in a two-dimensional media, governed by the equations

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0. (3.1)

The key to understanding duality is the observation that pointwise rotations of fields by 90◦

convert curl free fields to divergence free fields, and vice versa. Thus if we introduce the
matrix

R⊥ =
(

0 1
−1 0

)
,

47
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for a 90◦ rotation, then the fields

j ′(x) ≡ R⊥e(x), e′(x) ≡ R⊥j(x) (3.2)

satisfy
∇ · j ′(x) = 0, ∇ × e′(x) = 0.

The proof of this is trivial. Indeed we have

∂ j ′1
∂x1

+ ∂ j ′2
∂x2

= ∂e2

∂x1
− ∂e1

∂x2
= 0,

∂e′2
∂x1

− ∂e′1
∂x2

= − ∂ j1
∂x1

− ∂ j2
∂x2

= 0.

Now how are the fields j ′(x) and e′(x) related? From their defining equations and from
the constitutive relation j = σe it is clear that

j ′(x) = σ′(x)e′(x),

where
σ′(x) ≡ R⊥[σ(x)]−1RT⊥ (3.3)

and RT⊥ = −R⊥ is the transpose of R⊥. In other words, j ′(x) and e′(x) solve the conduc-
tivity equations in a dual material with conductivity tensor σ ′(x) given by (3.3). That is quite
unexpected. Indeed, the media with tensors σ and σ ′ can be radically different. For exam-
ple, for an isotropic conductivity tensor field σ(x) = σ(x)I we have σ ′(x) = I/σ(x). So
regions that originally had high conductivity now have low conductivity in the dual material.

Due to this isomorphism we can link the effective conductivity tensor σ ′
∗ of the dual

material with the effective tensor σ∗ of the original material. Taking averages over x of (3.2)
gives

〈j ′〉 = R⊥〈e〉, 〈e′〉 = R⊥〈j〉.
From this and from the linear relation 〈j〉 = σ∗〈e〉 defining the effective tensor σ∗ it follows
that 〈j ′〉 and 〈e′〉 are linearly related through the equation

〈j ′〉 = R⊥(σ∗)−1RT⊥〈e′〉.
But the effective tensor σ′

∗ by definition governs this linear relation between 〈j ′〉 and 〈e′〉,
and so we make the identification

σ′
∗ = R⊥(σ∗)−1RT⊥. (3.4)

Thus under the duality transformation the effective tensor σ∗ is transformed in exactly the
same way as the local conductivity tensor σ(x). That the conductivity and effective conduc-
tivity of the dual material are in general given by (3.3) and (3.4) was noted by Mendelson
(1975).

A straightforward matrix computation shows that we can rewrite the duality transforma-
tion as simply

σ′(x) = [σ(x)]T / detσ(x), σ′
∗ = [σ∗]T / detσ∗. (3.5)

In particular, as applied to composites with both locally isotropic conductivity, σ(x) =
σ(x)I , and isotropic effective conductivity, σ∗ = σ∗I , this result implies Keller’s relation
that

σ′
∗ = I/σ∗ when σ′(x) = I/σ(x). (3.6)
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Thus if we replace the conductivity by its reciprocal, the effective conductivity is replaced by
its reciprocal.

Let us now examine some of the applications of the duality transformation.

3.2. Phase interchange identities for two-phase media
Consider a two-phase material with a locally isotropic conductivity tensor of the form

σ(x) = χ1(x)σ1I + χ2(x)σ2I,

where χ1 and χ2 are the characteristic functions

χ1(x) = 1− χ2(x) = 1 in phase 1,
= 0 in phase 2, (3.7)

describing the geometry of the composite. If we consider σ∗ as a function of σ1 and σ2, then
(3.5) implies that

σ∗(1/σ1, 1/σ2) = σ∗(σ1, σ2)/ detσ∗(σ1, σ2). (3.8)

Now, from the homogeneity of this function [see (1.6)], it follows that

σ∗(1/σ1, 1/σ2) = σ∗(σ2, σ1)/σ1σ2.

Substituting this back into (3.8) gives the formula of Keller (1964) for the effective tensor
when the phases are interchanged:

σ∗(σ2, σ1) = σ1σ2σ∗(σ1, σ2)/ detσ∗(σ1, σ2). (3.9)

Flaherty and Keller (1973) recognized that an analogous relation holds for the mathematically
equivalent problem of antiplane elasticity. Dykhne (1970) realized that for a particular class
of microgeometries, now called symmetric materials, the geometry is invariant under phase
interchange, and we have σ∗(σ2, σ1) = σ∗(σ1, σ2), which together with (3.9) implies that

detσ∗(σ1, σ2) = σ1σ2. (3.10)

A checkerboard, as illustrated in figure 3.1(a), is an example of such a material; because
it has square symmetry σ∗ is proportional to the identity tensor I and by virtue of (3.10) is
known exactly:

σ∗(σ1, σ2) = √σ1σ2I. (3.11)

What luck! We have obtained a precise formula for the effective conductivity σ∗ without
having to solve for the fields j(x) and e(x). Using complex analysis Berdichevskii (1985) has
obtained closed-form solutions for the fields and has directly verified Dykhne’s result. A way
to produce symmetric materials with a random microgeometry is to fill all space with cells,
of arbitrary and perhaps varying shape distributed in a periodic or statistically homogeneous
fashion, and assign each cell in a completely random uncorrelated way (for instance by the
toss of a coin) as phase 1 with probability p1 = 1/2 or otherwise as phase 2. Materials
produced in this way, generalized to allow for any probability p1 ∈ (0, 1), are called cell
materials.

Schulgasser (1992), inspired by one of Escher’s prints, noticed that there are some aniso-
tropic two-dimensional microstructures, such as the one illustrated in figure 3.1(b), for which
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(b)   (a)

Figure 3.1. A checkerboard, as shown in (a), or any isotropically conducting microstructure
that remains invariant under the interchange of the two phases, necessarily has effective con-
ductivity σ∗ = √σ1σ2. If the microstructure is not isotropic but is such that interchanging the
phases produces the same effect as rotating the structure by 90◦, as in (b), then the effective
conductivity is isotropic and given by the same formula.

interchanging the phases produces the same effect as rotating the microstructure by 90◦. For
such microstructures

σ∗(σ2, σ1) = R⊥σ∗(σ1, σ2)R
T
⊥,

which, together with the phase interchange identity (3.9), implies that the effective conduc-
tivity tensor is necessarily isotropic and given by (3.11), even though the microstructure is
anisotropic.

3.3. The conductivity of two-dimensional polycrystals
Dykhne (1970) realized that the duality formula also gives an explicit formula for the ef-
fective conductivity tensor of an isotropic two-dimensional polycrystal. A polycrystal is a
granular aggregate where the grains are crystallites solidified in different orientations from a
homogeneous melt. In a polycrystal the local conductivity tensor σ(x) takes the form

σ(x) = R(x)σ0R
T (x),

whereR(x) is a rotation matrix, giving the orientation of the crystal at each point x,

σ0 ≡
(
λ1 0
0 λ2

)
,

represents the conductivity tensor of the pure crystal fromwhich the polycrystal is formed, and
λ1 and λ2 are the principal conductivities (eigenvalues) of that crystal. Although in practice
R(x) will be essentially piecewise constant with discontinuities at grain boundaries, nothing
prevents us from considering geometries whereR(x) has a smooth variation with x.

The conductivity tensor of the polycrystal has the special property that

detσ(x) = detσ0 = λ1λ2

is independent of x. Thus the conductivity tensor

σ′(x) = σ(x)/λ1λ2
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of the dual material is the same as the conductivity tensor of the original polycrystal, aside
from the factor of 1/λ1λ2. Now whenever the local conductivity tensor is multiplied by a
constant factor then, by homogeneity, the effective tensor is also multiplied by this same
factor. But (3.5) says that the effective tensor is multiplied by the factor 1/ detσ∗. Equating
these two factors gives the result

detσ∗ = λ1λ2. (3.12)

In particular, if the polycrystal is macroscopically isotropic in the sense that σ∗ is propor-
tional to the identity tensor, then σ∗ is completely determined,

σ∗ =
√
λ1λ2 I,

and is independent of the precise details of the polycrystalline microstructure. Schulgasser
(1977) showed that this result for polycrystals is a corollary of the result for two-phase sym-
metric materials. (With negligible change to the overall effective conductivity, each grain in
the polycrystal can be replaced by a laminate of equal portions of two appropriately chosen
isotropic phases, where the layer thickness is chosen to be much smaller than the grain size
and the laminate has the same effective conductivity as the crystal grain.)

3.4. Duality transformations for pyroelectricity
These duality transformations directly extend to the two-dimensional pyroelectric equations

d(x) = ε(x)e(x)+ α(x)θ, ∇ · d = 0, ∇ × e = 0, θ = constant.

The fields
d′(x) ≡ R⊥e(x), e′(x) ≡ R⊥d(x)

satisfy the pyroelectric equations

d′(x) = ε′(x)e′(x)+α′(x)θ, ∇ · d′ = 0, ∇ × e′ = 0, θ = constant,

in a new dual pyroelectric medium with tensors

ε′(x) = [ε(x)]T / det ε(x), α′(x) = −R⊥[ε(x)]−1α(x).

By taking averages of the fields, we see that the effective tensors of this dual medium are
related to the effective tensors of the original medium via the transformations

ε′∗ = [ε∗]T / det ε∗, α′
∗ = −R⊥[ε∗]−1α∗.

This duality transformation was obtained by Bergman and Strelniker (1998) and Strelniker
and Bergman (2000), who instead of considering pyroelectricity analyzed the equivalent mag-
netotransport problem; see section 2.6 on page 33.

3.5. Duality transformations for elasticity
Elasticity duality transformations were first derived by Berdichevskii (1983) for incompress-
ible media. Following Helsing, Milton, and Movchan (1997), let us instead first consider a
two-dimensional medium that is locally orthotropic, having the crystal axes aligned with the
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coordinate axes, and which is locally rigid with respect to shears with τ11 = τ22 = 0 and
τ12 �= 0. The constitutive relation in such a medium takes the special form(

ε11
ε22√
2ε12

)
=
( S1111 S1122 0
S1122 S2222 0
0 0 0

)(
τ11
τ22√
2τ12

)
,

where the moduli S1111, S1122, and S2222 of the compliance tensor depend on x. This consti-
tutive relation imposes the differential constraint ε12 = 0 on the stress component ε12, and it
imposes no constraint on the strain component τ12. The remaining stress and strain compo-
nents are linked through the reduced constitutive relation(

ε11
ε22

)
= Sr

(
τ11
τ22

)
, where Sr (x) =

(
S1111(x) S1122(x)
S1122(x) S2222(x)

)
.

The associated effective tensor Sr∗, which governs the relation between the average fields,( 〈ε11〉
〈ε22〉

)
= Sr∗

( 〈τ11〉
〈τ22〉

)
,

determines the elements of the effective compliance tensor S∗:

S∗ =
(
Sr∗ 0
0 0

)
.

Now we ask, what are the differential constraints on the stress and strain components that
enter the reduced constitutive relation? Since ε12 = 0, the infinitesimal strain compatibility
relation

∂2ε11

∂x2
2
+ ∂2ε22

∂x2
1
− 2

∂2ε12

∂x1∂x2
= 0

reduces to
∂2ε11

∂x2
2
+ ∂2ε22

∂x2
1
= 0. (3.13)

To eliminate the stress component τ12 from the differential restrictions

∂τ11

∂x1
+ ∂τ12

∂x2
= 0,

∂τ12

∂x1
+ ∂τ22

∂x2
= 0

on the stress field components, we take the derivative of the first equation with respect to x1
and the derivative of the second equation with respect to x2 and subtract them. This yields the
differential constraint

∂2τ11

∂x2
1
− ∂2τ22

∂x2
2
= 0. (3.14)

Notice the similarity between the differential constraints (3.13) and (3.14). If we define
new fields (

ε ′
11
ε ′

22

)
= R⊥

(
τ11
τ22

)
=
(

τ22
−τ11

)
,

(
τ ′

11
τ ′

22

)
= R⊥

(
ε11
ε22

)
=
(

ε22
−ε11

)
,
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then the pair (ε ′
11, ε

′
22) satisfies the same differential constraints as the pair (ε11, ε22) while the

pair (τ ′
11, τ

′
22) satisfies the same differential constraints as the pair (τ11, τ22). These new fields

are linked by the constitutive relation(
ε ′

11
ε ′

22

)
= S′

r

(
τ ′

11
τ ′

22

)
, where S′

r (x) = R⊥[Sr (x)]RT⊥ = Sr (x)/ detSr (x).

Hence all of the duality results for the conductivity problem immediately extend to this
elasticity problem. In particular, a medium with elasticity tensor

S′(x) = S(x)/ detSr (x) (3.15)

will have effective tensor
S′

∗ = S∗/ detSr∗. (3.16)

It follows that if detSr (x) takes a value � independent of x, then necessarily detSr∗ takes
the same value:

detSr∗ = � when detSr (x) = � for all x. (3.17)

Also, if the medium is two-phase with Sr (x) taking the form

Sr (x) = (α1χ1(x)+ α2χ2(x))A (3.18)

for some choice of matrixA and constants α1 and α2, and we considerSr∗ andS∗ as functions
Sr∗(α1, α2) and S∗(α1, α2) of α1 and α2, then we have the relation

S∗(α2, α1) = α1α2 detA
detSr∗(α1, α2)

S∗(α1, α2), (3.19)

which gives the effective elasticity tensor when we interchange the phases.
If the geometry described by the characteristic function χ1(x) = 1 − χ2(x) is invariant

under phase interchange (like a checkerboard), then (3.19) implies that

detSr∗(α1, α2) = α1α2 detA. (3.20)

The duality relation (3.16) and the phase interchange identity (3.19) have been checked nu-
merically for a periodic array of amoeba-shaped inclusions (Helsing, Milton, and Movchan
1997).

3.6. Duality transformations for other elastic media
These duality relations extend to media where the compliance tensor S(x) is locally rigid
with respect to stresses proportional to a constant matrix v1, that is, for media such that

S(x)v1 = 0 for all x. (3.21)

One can assume without loss of generality (by rotating the coordinate system and multiplying
v1 by a constant, if necessary) that v1 is diagonal and of the form

v1 =
(
a1 0
0 a2

)
with a2

1 + a2
2 = 1.
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Let us introduce the matrices

v2 =
(
a2 0
0 −a1

)
, v3 = 1√

2

(
0 1
1 0

)
,

which together with v1 form an orthonormal basis on the space of symmetric matrices.
We expand the stress and strain fields in this basis with coefficients

ε1 = a1ε11 + a2ε22, ε2 = a2ε11 − a1ε22, ε3 =
√
2ε12,

τ1 = a1τ11 + a2τ22, τ2 = a2τ11 − a1τ22, τ3 =
√
2ε12,

which enter the expansions

ε(x) = ε1(x)v1 + ε2(x)v2 + ε3(x)v3, τ (x) = τ1(x)v1 + τ2(x)v2 + τ3(x)v3 (3.22)

of the stress and strain fields in this basis. These coefficients are linked through the constitutive
equation (

ε1
ε2

ε3

)
=
(
0 0
0 Sr

)( τ1
τ2

τ3

)
,

where

Sr (x) =
(
S1111(x)+ S2222(x)

√
2S1112(x)/a2√

2S1112(x)/a2 2S1212(x)

)
.

The reduced constitutive relation takes the form(
ε2

ε3

)
= Sr

(
τ2

τ3

)
.

Similarly, the associated reduced effective tensor Sr∗, which governs the relation between
the average values of these fields, through the equation( 〈ε2〉

〈ε3〉
)
= Sr∗

( 〈τ2〉
〈τ3〉

)
,

has matrix elements

Sr∗ =
(
S∗

1111 + S∗
2222

√
2S∗

1112/a2√
2S∗

1112/a2 2S∗
1212

)
.

The components of the strain and stress fields entering the reduced constitutive relation satisfy
the differential constraints[

a1
∂2

∂x2
1
− a2

∂2

∂x2
2

]
ε2 +

[√
2

∂2

∂x1∂x2

]
ε3 = 0,

[√
2

∂2

∂x1∂x2

]
τ2 −

[
a1

∂2

∂x2
1
− a2

∂2

∂x2
2

]
τ3 = 0.

If we introduce new fields(
ε ′

2
ε ′

3

)
= R⊥

(
τ2

τ3

)
=
(

τ3

−τ2

)
,(

τ ′
2
τ ′

3

)
= R⊥

(
ε2
ε3

)
=
(

ε3
−ε2

)
,
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then the pair (ε ′
2, ε

′
3) satisfies the same differential constraints as the pair (ε2, ε3) while the

pair (τ ′
2, τ

′
3) satisfies the same differential constraints as the pair (τ2, τ3). Consequently, all of

the duality results extend to this problem: A medium with compliance tensor (3.15) will have
effective tensor (3.16); the identity (3.17) will hold when detSr (x) is constant; and when the
material is two-phase with Sr (x) of the form (3.18), then (3.19) gives the effective elasticity
tensor of the phase interchanged geometry and (3.20) will hold if the material is interchange
invariant (Helsing, Milton, and Movchan 1997).

3.7. The effective shear modulus of incompressible two-dimensional
polycrystals and symmetric materials

A beautiful application of these duality transformations is to (two-dimensional) polycrystals
assembled from an incompressible crystal. The fourth-order compliance tensor of the poly-
crystal takes the form

S(x) = R(x)R(x)S0R
T (x)RT (x),

whereR(x) is a rotation matrix, giving the orientation of the crystal at each point x, and S0
is the compliance tensor of a single crystal. The single crystal incompressibility implies that

S(x)I = S0I = 0.

Thus the condition (3.21) for applying duality transformations is satisfied with v1 = I/
√
2.

Since I is an eigenvector of S0, the remaining eigenvectors must be orthogonal to I, that is,
they must have zero trace and they therefore represent pure shears.

Let us choose our spatial coordinates so that one of these eigenvectors is a diagonal matrix,
and let us choose v2 to be this matrix and v3 to be the remaining eigenvector. The condition
that v2 is trace free and diagonal, and the condition that v3 is trace free and orthogonal to v2,
implies that

v1 = 1√
2

(
1 0
0 1

)
, v2 = 1√

2

(
1 0
0 −1

)
, v3 = 1√

2

(
0 1
1 0

)
.

Since these are eigenvectors, the matrix representing S0 in this basis must necessarily be
diagonal and therefore can be expressed in the form

S0 =
( 0 0 0
0 1/(2µ(1)) 0
0 0 1/(2µ(2))

)
. (3.23)

The constants µ(1) and µ(2) entering this formula are called the shear moduli of the single
crystal with respect to the shears v2 and v3. When the shear stress τ = v2 (or the shear stress
τ = v3) is applied to the single crystal the strain field is exactly the same as in an isotropic
medium that has shear modulus µ(1) (respectively µ(2)). Notice that the compliance tensor
S0 represents a crystal with square symmetry. Under the reflection x1 → −x1 (or under
the reflection x2 → −x2) the basis (v1,v2,v3) transforms to (v1,v2,−v3) and S0 remains
invariant; while if we interchange x1 and x2 (corresponding to a reflection about the line
x1 = x2), the basis (v1,v2,v3) transforms to (v1,−v2,v3) and again S0 remains invariant.
Thus any incompressible two-dimensional material necessarily has an elasticity tensor with
square symmetry. In particular, the effective elasticity tensor of the polycrystal necessarily
has square symmetry, irrespective of the symmetry of the microgeometry.
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To obtain an expression for the compliance tensor S(x) in the basis (v1,v2,v3) notice
that the constitutive law ε = Sτ can be rewritten as

RT (x)τ (x)R(x) = S0[RT (x)τ (x)R(x)]. (3.24)

To evaluate this in the basis (v1,v2,v3) we need to compute the action of rotation on each
basis element. Setting

R(x) =
(

cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

)
,

where θ(x) represents the angle of crystal orientation at each pointx, direct calculation shows
that

RT (x)v1R(x) = v1,

RT (x)v2R(x) = cos[2θ(x)]v2 + sin[2θ(x)]v3,

RT (x)v3R(x) = − sin[2θ(x)]v2 + cos[2θ(x)]v3. (3.25)

Substituting (3.22) and (3.23) into (3.24), using (3.25), and equating the coefficients of
v1,v2, and v3 yields the constitutive relation(

ε1
ε2

ε3

)
=
(
0 0
0 Sr (x)

)( τ1
τ2

τ3

)
, (3.26)

in which Sr (x) is the matrix

Sr (x) =
(

cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

) (
1/2µ(1) 0

0 1/2µ(2)

) (
cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

)
,

where θ = θ(x) depends on x. From the constitutive relation (3.26) we see that

S(x) =
(
0 0
0 Sr (x)

)
must be the matrix representing the compliance tensor in the basis (v1,v2,v3).

Now observe that the determinant of Sr (x) takes a constant value

� = 1/(4µ(1)µ(2)),

independent of x. From the duality result (3.17) it follows that the effective tensor must share
the same value of the determinant of the reduced matrix. In other words, the two effective
shear moduli µ(1)

∗ and µ
(2)
∗ of the polycrystal must be such that

µ(1)
∗ µ(2)

∗ = µ(1)µ(2). (3.27)

This result was first obtained by Lurie and Cherkaev (1984). In particular, if the polycrystal
is elastically isotropic with shear modulus µ∗, then µ

(1)
∗ = µ

(2)
∗ = µ∗ and (3.27) implies that

µ∗ =
√
µ(1)µ(2).

Thus the planar effective shear modulus of an incompressible two-dimensional polycrystal is
independent of the microstructure. We will see in section 4.7 on page 69 that this is true even
when the crystal is compressible, so long as it has square symmetry.
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Another interesting application of these duality transformations is to two-phase isotropic
composites of two isotropic incompressible phases. In the basis (v1,v2,v3) the matrices
representing the compliance tensor S(x) and effective compliance tensor S∗ take the form

S(x) =
( 0 0 0

0 χ1(x)/2µ1 + χ2(x)/2µ2 0
0 0 χ1(x)/2µ1 + χ2(x)/2µ2

)
,

S∗ =
( 0 0 0

0 1/2µ∗ 0
0 0 1/2µ∗

)
,

where µ1, µ2, and µ∗ are the shear moduli of the two phases and composite, and χ1(x) =
1 − χ2(x) is the characteristic function (3.7) representing the geometry of phase 1. If we
consider the effective shear modulus as a function µ∗(µ1, µ2) of the shear moduli µ1 and µ2,
the duality result (3.19) implies the phase interchange identity

µ∗(µ2, µ1)µ∗(µ1, µ2) = µ1µ2, (3.28)

of Berdichevskii (1983). If the geometry is symmetric (i.e., phase interchange invariant) and
elastically isotropic, then this identity yields an exact formula for the planar effective shear
modulus:

µ∗(µ1, µ2) = √µ1µ2.
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4
Translations and equivalent media

There are sometimes certain tensors T , called translations, such that if T is added to the local
tensor fieldL(x), then the effective tensor will also be shifted by T . We saw a trivial example
of such a tensor in section 2.5 on page 30, where it was remarked that if the local specific
heat is shifted by a constant −t , the effective specific heat would also be shifted by that same
constant [see equations (2.25) and (2.26)]. Here we discuss other translations and show how
they lead to useful predictions about effective moduli. We will see later, in section 13.3 on
page 274, that such translations are connected with quadratic null Lagrangians, when T is
self-adjoint, and, more generally, with weakly continuous bilinear functions when T is not
necessarily self-adjoint. There is an extensive literature on the theory of such functions (see
section 13.3 on page 274 for some references) and the examples of this section fall under the
umbrella of the more general theory. In particular, it is easy to check that all of the constant
translations T discussed here satisfy the necessary and sufficient algebraic condition given by
Murat (1978), theorem 3; see also Tartar (1979).

4.1. Translations applied to conductivity
The duality transformation is clearly a discrete transformation. However, as we will now see,
it is just one example of a continuous group of fractional linear transformations, each having
the special property that the effective tensor undergoes the same transformation as the local
conductivity tensor.

An important first step is to understand a subgroup of transformations that are translations.
Following Dykhne (1970), suppose that we have a solution to the conductivity problem (3.1).
Then, for any choice of the constant c, the fields

e′(x) ≡ e(x), j ′(x) ≡ j(x)+ cR⊥e(x) = (σ(x)+ cR⊥)e′(x) (4.1)

clearly solve the equations of conductivity in a medium with conductivity tensor

σ′(x) = σ(x)+ cR⊥,

called the translated medium, because the conductivity tensor fieldσ(x) is shifted (translated)
by the constant tensor cR⊥. Moreover, by taking averages over x of (4.1), we see that

〈j ′(x)〉 = 〈j(x)〉 + cR⊥〈e(x)〉 = (σ∗ + cR⊥)〈e′(x)〉,
which implies that the translated medium has effective tensor

σ′
∗ = σ∗ + cR⊥. (4.2)

59
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Figure 4.1. The idea of translation applied to a two-dimensional, two-phase conducting com-
posite. When the component conductivity tensors σ1 and σ2 are translated in tensor space by
cR⊥, the effective tensor σ∗ is also translated in exactly the same way.

So the effective tensor translates in exactly the same way as the local conductivity tensor; see
figure 4.1.

Similarly, by considering the relations between the fields

j ′(x) = j(x), e′(x) = e(x)+ cR⊥j(x),

we establish that when the inverse conductivity tensor field [σ(x)]−1 is translated to

[σ′(x)]−1 = [σ(x)]−1 + cR⊥ (4.3)

the inverse of the effective tensor undergoes the same translation:

(σ′
∗)

−1 = (σ∗)−1 + cR⊥. (4.4)

More generally, we can combine translations of the conductivity tensor and inverse con-
ductivity translations with homogeneity transformations. In this way Dykhne (1970) recog-
nized that for any choice of parameters c1, c2, c3, and c4 a material with inverse conductivity
tensor

[σ′(x)]−1 = (c3 + c2c4/c1)[c1σ(x)+ c2R⊥]−1 + (c4/c1)R⊥

or, equivalently, with tensor

σ′(x) = [c1σ(x)+ c2R⊥][c3I + c4R⊥σ(x)]−1, (4.5)

would have effective tensor

σ′
∗ = [c1σ∗ + c2R⊥][c3I + c4R⊥σ∗]−1.

With the particular choice c1 = c3 = 0, c2 = c4 = 1 this transformation is precisely the
duality transformation (3.3).

4.2. A formula for the Hall coefficient in two-dimensional polycrystals
Unlike the duality transformation, these fractional linear transformations (4.5) can change the
symmetry of the tensor σ(x). The freedom in the choice of parameters c1, c2, c3, and c4 may
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sometimes be used to advantage to map to an equivalent conductivity problem where σ(x)
is not self-adjoint (due to the presence of a magnetic field) to a conductivity problems with
a self-adjoint tensor field σ′(x) (in effect removing the complications due to the magnetic
field).

From an experimental viewpoint it is desirable to express results in terms of the resistivity
tensor field ρ(x) = (σ(x))−1 and the effective resistivity tensor ρ∗ = (σ∗)−1, rather than in
terms of the conductivity. For conduction in a polycrystal in the presence of a fixed magnetic
field the local resistivity tensor field has the form

ρ(x) = R(x)ρ0R
T (x), ρ0 ≡

(
α1 µ

−µ α2

)
.

Onsager’s principle (Lifshitz and Pitaevskii 1980) implies that µ will be an odd function of
the magnetic field h applied perpendicular to the plane of conduction, while α1 and α2 will be
even functions of h. At low magnetic fields µ is proportional to the magnetic field h,

µ = Rh,

where the constant of proportionality R is called the Hall coefficient. In this section and in the
subsequent one we will obtain formulas for µ∗ or, equivalently, R in terms of other moduli.

Under the translation (4.3) the resistivity tensor field maps to

ρ′(x) = R(x)ρ′
0R

T (x), ρ′
0 ≡

(
α1 c + µ

−c− µ α2

)
.

By selecting c = −µ we completely eliminate the antisymmetric part of the resistivity tensor
field. Accordingly, the effective tensor ρ′

∗ must also be symmetric, of the form

ρ′
∗ =

(
α∗

1 0
0 α∗

2

)
,

with α∗
1α

∗
2 = ρ1ρ2. It then follows directly from (4.4) that

ρ∗ =
(

α∗
1 µ

−µ α∗
2

)
.

In other words, the polycrystal tensor ρ∗ and pure crystal tensor ρ0 share the same determi-
nant, α1α2 + µ2, and Hall coefficient, R, irrespective of the crystal structure.

4.3. A formula for the Hall coefficient in two-phase, two-dimensional
media†

As a second example of the usefulness of the transformation (4.5) in eliminating the skew part
of the tensor field ρ(x), let us consider conduction in the presence of a magnetic field in a
two-dimensional two-phase composite (Milton 1988). Although the ensuing analysis extends

†Throughout the book a dagger (†) is used to denote sections or chapters that can be skipped on a first reading of
the book. These sections or chapters contain material that is not central to the book, or they include more advanced
or more technical subject matter. However, they also sometimes address topics that are at the forefront of current
research.
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to the general case where both phases are anisotropic, let us assume, for simplicity, that the
phases are isotropic. Then the local resistivity tensor takes the form

ρ(x) = χ1(x)ρ1 + χ2(x)ρ2,

where the characteristic functions χ1 and χ2 are defined by (3.7), and because of isotropy of
the components, the tensors ρ1 and ρ2 have the form

ρ1 = !1I + µ1R⊥, ρ2 = !2I + µ2R⊥.

Now the fractional linear transformation (4.5) maps the resistivity tensor field ρ(x) to

ρ′(x) = [c3ρ(x)+ c4R⊥][c1I + c2R⊥ρ(x)]−1 (4.6)

and maps the effective resistivity tensor ρ∗ to

ρ′
∗ = [c3ρ∗ + c4R⊥][c1I + c2R⊥ρ∗]

−1.

Note thatR⊥ has the same algebraic properties as the complex number i , satisfying

(R⊥)2 = −I.
Consequently, the usual tricks that give the inverse of a complex number can be applied to
evaluate (4.6). For simplicity, and without loss of generality, we assume that

c3 = c2 = 1.

In effect this removes the trivial part of the transformation (4.6) that corresponds to multiply-
ing the tensor by constant factor. Then, using the algebraic properties of R⊥ we have, for
j = 1 or 2,

[c1I +R⊥ρ j ]
−1 = [(c1 − µ j )I −  jR⊥]{[(c1 − µ j )I +  jR⊥][(c1 − µ j )I −  jR⊥]}−1

= [(c1 − µ j )I −  jR⊥]/[(c1 − µ j )
2 + ( j )

2].

It follows from this analysis that the fractional linear transformation (4.5) preserves isotropy
and maps ρ(x) to the tensor field

ρ′(x) = χ1(x)ρ
′
1 + χ2(x)ρ

′
2,

where
ρ′

1 = !′
1I + µ′

1R⊥, ρ′
2 = !′

2I + µ′
2R⊥

and

!′
j = (c4 + c1)! j/[(c1 − µ j )

2 + !2
j ],

µ′
j = [(c4 + µ j)(c1 − µ j)− !2

j ]/[(c1 − µ j)
2 + !2

j ]. (4.7)

Luc Tartar (private communication) drew my attention to a beautiful geometrical way of
thinking about this transformation based on the fact thatR⊥ has the same algebraic properties
as the complex number i . We can represent the tensors ρ1 and ρ2 as points

ρ1 = !1 + iµ1, ρ2 = !2 + iµ2
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in the complex ρ-plane, and we can represent ρ′
1 and ρ

′
2 as points

ρ ′
1 = !′

1 + iµ′
1, ρ ′

2 = !′
2 + iµ′

2

in the complex ρ ′-plane. Then the transformation (4.6), with c3 = c2 = 1, is equivalent to the
fractional linear transformation

ρ ′ = (ρ + ic4)/(c1 + iρ),
which maps the complex ρ-plane to the complex ρ ′-plane. The points ρ ′

1 and ρ ′
2 are the

images of ρ1 and ρ2 under this mapping. The fractional linear transformation is special in
that the imaginary axis gets mapped to itself, and circles or straight lines symmetric about
the imaginary axis get mapped to circles or straight lines symmetric about the imaginary axis.
Now consider a circle symmetric about the imaginary axis passing through the points ρ1 and
ρ2, as illustrated in figure 4.2. One expects that it should be possible to find a fractional
linear transformation that maps this circle to the real axis, that is, a transformation that maps
the original problem to an equivalent one where the resistivity tensor is symmetric, in effect
converting it to a problem where the magnetic field is absent.

(ρ )ρ1 2ρ Re

ρ1

ρ2

Im (ρ)

ρ

ρ
*

*

Figure 4.2. To find the fractional linear transformation of the required form that maps ρ1 and
ρ2 to ρ ′

1 and ρ ′
2 on the real axis, one can look for a circle symmetric about the imaginary axis

that passes through ρ1 and ρ2 and then find the appropriate fractional linear transformation
that maps this circle to the real axis. When ρ ′

1 and ρ ′
2 are real ρ

′
∗ is also real, and therefore

the effective modulus ρ∗ must lie on the circle for all isotropic microstructures. If a formula
is available for ρ ′

∗ given ρ ′
1 and ρ ′

2, then one can determine ρ∗ through the inverse fractional
linear transformation.

In other words, let us adjust the two free parameters c1 and c4 until the antisymmetric
parts of the tensors ρ′

1 and ρ
′
2 vanish, that is, until µ

′
1 = µ′

2 = 0. From (4.7) this requires that
c1 and c4 satisfy

c1c4 + (c1 − c4)µ1 = �1,

c1c4 + (c1 − c4)µ2 = �2, (4.8)
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where�1 and �2 are the determinants

�1 ≡ !2
1 + µ2

1, �2 ≡ !2
2 + µ2

2 (4.9)

of the resistivity tensors ρ1 and ρ2. These equations are easily solved for c1 and c4, and it can
be established that the solutions

c1 = (�2 −�1)

2(µ2 − µ1)
± 1

2

√
(�2 −�1)2

(µ2 − µ1)2 +
4(µ2�1 − µ1�2)

(µ2 − µ1)
,

c4 = (�1 −�2)

2(µ2 − µ1)
± 1

2

√
(�2 −�1)2

(µ2 − µ1)2 +
4(µ2�1 − µ1�2)

(µ2 − µ1)
, (4.10)

(where the same choice of + or − must be made in each equation) are real so long as ρ1 and
ρ2 are both positive. With this choice of c1 and c4, the formulas (4.7) reduce to

!′
1 = !1/(c1 − µ1), !′

2 = !2/(c1 − µ2), µ′
1 = µ′

2 = 0. (4.11)

It follows that the effective tensor ρ′
∗ must necessarily be symmetric because ρ

′
1 and ρ

′
2

are symmetric tensors. In particular, if the effective properties of the composite are isotropic,
in the sense that ρ∗ has the form

ρ∗ = !∗I + µ∗R⊥,

then by analogy with (4.9) and (4.11) we have

c1c4 + (c1 − c4)µ∗ = �∗, where �∗ ≡ !2
∗ + µ2

∗, (4.12)

and
ρ′

∗ = !′
∗I + µ′

∗R⊥, where !′
∗ = !∗/(c1 − µ∗), µ′

∗ = 0. (4.13)

For (4.12) to be consistent with (4.8) the determinant

det

∣∣∣∣∣ 1 µ∗ �∗
1 µ1 �1

1 µ2 �2

∣∣∣∣∣ = 0,

must vanish, or, equivalently, the identity

µ2 − µ∗
µ2 − µ1

= �2 −�∗
�2 −�1

, (4.14)

must hold irrespective of the precise details of the microstructure.
We conclude that in the (�,µ)-plane the point (�∗, µ∗) representing the effective tensor

ρ∗ must lie on the straight line joining the points (�1, µ1) and (�2, µ2) that represent the
tensors ρ1 and ρ2 of the components. This relation (Milton 1988; Dykhne and Ruzin 1994)
is equivalent to saying that the point ρ∗ in the complex plane must lie on the circle that
is symmetric about the imaginary axis and which passes through the points ρ1 and ρ2; see
figure 4.2 on the preceding page. It has been numerically verified by Christiansson (1997)
and generalizes a relation

µ2 − µ∗
µ2 − µ1

≈ !2
2 − !2

∗
!2

2 − !2
1
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of Shklovskiı̆ (1977) [see also Bergman (1983)], who assumed that the magnetic field h was
small, that is, µ1 and µ2 were small compared with !1 and !1.

Moreover, the effective tensor ρ∗ can be computed exactly if we know the effective con-
ductivity function σ∗(σ1, σ2) in the absence of a magnetic field. Indeed, when c1 and c4 are
chosen so that µ′

1 = µ′
2 = µ′

∗ = 0, (4.10) implies that

!′
∗ =

1
σ∗(1/!′

1, 1/!
′
2)
=
[
σ∗
(c1 − µ1

!1
,
c1 − µ2

!2

)]−1

= σ∗
( !1

c1 − µ1
,

!2

c1 − µ2

)
, (4.15)

where we have used the duality relation (3.8) to obtain the last relation. Equating this ex-
pression for !′ with (4.13) and combining the result with (4.14) yields (after some algebra)
expressions for !∗ and µ∗ in terms of ρ1, ρ2 and the function σ∗(σ1, σ2):

!∗ = 1
!′∗ + 1/!′∗

√
(�2 −�1)2

(µ2 − µ1)2 +
4(µ2�1 − µ1�2)

(µ2 − µ1)
, µ∗ = c1 − !∗/!′

∗, (4.16)

in which !′
∗ is given by (4.15) and c1 is given by (4.10), while �1 and �2 are given by

(4.9). For example, we obtain the exact values of !∗ and µ∗ for a checkerboard geometry by
substituting

!′
∗ =

√
!1!2

(c1 − µ1)(c1 − µ2)

back into (4.16).

4.4. Inhomogeneous translations for three-dimensional conductivity
So far we have been considering translations of the two-dimensional conductivity tensor
field σ(x) or the associated resistivity field ρ(x) by a constant translation cR⊥. In three-
dimensional conductivity we can translate the conductivity tensor field σ(x) by any periodic
divergence free antisymmetric matrix-valued fieldA(x). (A matrix-valued field is divergence
free if each column is a divergence free vector field.) The essential observation to make is that
if e(x) is curl free, then the vector fieldA(x)e(x) is divergence free:

∂Aikek
∂xi

= ∂Aik
∂xi

ek + Aik ∂ek
∂xi

= 1
2 Aik

[
∂ek
∂xi

− ∂ei
∂xk

]
= 0,

where summation over the repeated indices i and k is implied. Also, the antisymmetry of
A(x) implies that each row ofA(x) is divergence free. Consequently we have

〈Aikek〉 = 〈Aik〉〈ek〉,

as can be seen by integrating by parts. In particular, suppose that the field e(x) solves the
conductivity equations (3.1) in the three-dimensional material σ(x). Then the fields

e′(x) = e(x), j ′(x) = j(x)+A(x)e(x) (4.17)

solve the conductivity equations in a medium with tensor

σ′(x) = σ(x)+A(x).
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By taking averages of the fields in (4.17) we deduce that this new translated material has
effective tensor

σ′
∗ = σ∗ + 〈A〉.

In particular, we conclude that when the conductivity tensor field σ(x) is translated by any
constant antisymmetric tensor, the effective tensor σ∗ of the medium is translated in exactly
the same fashion (Stroud and Bergman 1984). However, the same does not hold true for the
resistivity tensor since A acting on an arbitrary divergence free field does not produce a curl
free field. Such translations of the resistivity tensor are only valid in two dimensions.

4.5. Translations for elasticity
A translation for two-dimensional linear elasticity was found by Lurie and Cherkaev (1984)
in the context of the plate equation. Their work remained relatively unnoticed until Day, Sny-
der, Garboczi, and Thorpe (1992) numerically discovered that the effective Young’s modulus
of a metal plate with holes depends only on the Young’s modulus of the metal and not at all
on its Poisson’s ratio. I realized that this could be proved using the translation of Lurie and
Cherkaev. Our subsequent joint paper (Cherkaev, Lurie, and Milton 1992) received consid-
erable attention, and for isotropic planar composites of isotropic components, the result that
when −1/κ(x) and 1/µ(x) are shifted by given constant the moduli −1/κ∗ and 1/µ∗ un-
dergo the same shift has become known as the CLM theorem, although it really stems back
to the earlier paper of Lurie and Cherkaev. The theorem was linked by Thorpe and Jasiuk
(1992) to certain invariance properties of the stress in two-phase bodies and composites that
had been discovered by Dundurs (1967b, 1970). Dundurs had generalized a result of Michell
(1899), who found that the stress in a homogeneous body is independent of the Poisson’s
ratio provided that the body is singly connected, or the tractions over each hole give no net
force [see also Dundurs (1967a)]. Dundurs and Markenscoff (1993) and Chen (1995) [see
also He (1998)] found that the stress in an inhomogeneous body is also invariant for shifts in
the moduli that depend linearly on x. Stress invariance results were extended to anisotropic
inhomogeneous planar elastic bodies by Moran and Gosz (1994), to planar piezoelectric bod-
ies by Chen (1995) [see also Chen and Lai (1997)], and to planar Cosserat elastic bodies by
Ostoja-Starzewski and Jasiuk (1995).

The key property of the translation R⊥, essential for deriving (4.2), is that it maps the
fields on the right-hand side of the constitutive equation, in this case curl free fields, to fields
of the same type as those on the left-hand side of the constitutive equation, namely, divergence
free fields. In two-dimensional elasticity, there is a fourth-order tensor that acts in a similar
way to map stress fields to strain fields.

Let ε(x) and τ(x) be strain and stress fields that solve the two-dimensional equations of
elasticity,

ε(x) = S(x)τ(x), ∇ · τ(x) = 0, ε(x) = [∇u(x)+ (∇u(x))T ]/2, (4.18)

where S(x) is the fourth-order compliance tensor. By definition, the effective compliance
tensor, S∗, governs the linear relation between the averages of these fields:

〈ε(x)〉 = S∗〈τ(x)〉,
Now suppose that we take the stress tensor field,

τ =
(
τ11 τ12
τ12 τ22

)
=
(

φ,22 −φ,12
−φ,12 φ,11

)
,
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which we have expressed in terms of the Airy stress function φ(x) (see section 2.3 on page 22),
and rotate it locally by 90◦ at each point x to generate the field

ε′ ≡ R⊥τRT⊥ =
(

τ22 −τ12

−τ12 τ11

)
=
(
φ,11 φ,12

φ,12 φ,22

)
= ∇∇φ

=
(
τ22 + τ11 0

0 τ11 + τ22

)
−
(
τ11 τ12
τ12 τ22

)
= Tr(τ )I − τ . (4.19)

Thus we have
ε′(x) = [∇u′(x)+ (∇u′(x))T ]/2, where u′ = ∇φ.

In other words, ε′(x) can be treated as a strain field that derives from a “displacement field”
u′(x). So we see that 90◦ rotations convert stresses into strains in the same way that for the
conductivity problem they convert curl free fields into divergence free fields.

Clearly a 90◦ rotation acting on a second-order field is a linear operation and can be
represented by a fourth-order tensor R⊥. According to (4.19), the action of R⊥ on τ(x) is
simply given by

R⊥τ = Tr(τ )I − τ , (4.20)

and by applying the same arguments as in the conductivity problem it is clear that for any
constant c the strain field ε + cε′ and the stress field τ solve the elasticity equations in a
material with compliance tensor

S ′(x) = S(x)+ cR⊥. (4.21)

Consequently this material will have effective compliance tensor

S ′
∗ = S∗ + cR⊥. (4.22)

That one can translate the compliance tensor by a multiple of R⊥ and produce a similar
translation of the effective compliance tensor is tied with the fact that the quadratic form
Q(τ ) = τ ·R⊥τ = 2 detτ is a null Lagrangian satisfying 〈Q(τ )〉 = Q(〈τ 〉) for all periodic
2 × 2 symmetric matrix-valued functions τ satisfying ∇ · τ = 0. The explanation of this
connection requires the variational principle for the effective compliance tensor and therefore
will not be given until section 13.3 on page 274.

4.6. A proof that the Young’s modulus of a metal plate with holes does
not depend on the Poisson’s ratio of the metal

For locally isotropic materials the constitutive relation takes the form

ε = (1/E)τ − (ν/E)[Tr(τ )I − τ ],
where E = E(x) and ν = ν(x) are the Young’s modulus and Poisson’s ratio. In view of
(4.21) and (4.20), the constitutive relation in the translated medium is

ε′ = (1/E)τ − (ν/E − c)[Tr(τ )I − τ ] = (1/E ′)τ − (ν ′/E ′)[Tr(τ )I − τ ],
where

E ′(x) = E(x), ν ′(x) = ν(x)− cE(x) (4.23)
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are the moduli of the translated medium. So the Young’s modulus remains unchanged, while
the ratio of the Poisson’s ratio to the Young’s modulus is shifted uniformly by −c. Assuming
for simplicity that the composite is isotropic, (4.22) implies that the effectiveYoung’smodulus
E∗ and Poisson’s ratio ν∗ transform in a similar fashion:

E ′
∗ = E∗, ν ′

∗ = ν∗ − cE∗. (4.24)

Expressed in terms of the two-dimensional bulk and shear moduli, this result implies that

−1/κ ′
∗ = −1/κ∗ − 2c, 1/µ′

∗ = 1/µ∗ − 2c

when
−1/κ ′(x) = −1/κ(x)− 2c, 1/µ′(x) = 1/µ(x)− 2c.

So −1/κ ′
∗ and 1/µ∗ undergo precisely the same shift as −1/κ ′(x) and 1/µ(x).

A nice application of this result is to a metal plate with constant moduli E and ν that has
a statistically isotropic distribution of holes punched into it. Under the translation (4.23) the
holes remain holes (since the holes effectively correspond to a material with zero Young’s
modulus), while the Young’s modulus E of the metal is unchanged and its Poisson’s ratio
is shifted from ν to ν − cE . By dimensional analysis it is apparent that the ratio E∗/E can
depend only on ν and on the geometry. But (4.24) implies that this ratio remains invariant as c
and hence ν varies. We conclude that E∗/E depends only on the geometry, and is independent
of ν, confirming what was first observed numerically by Day, Snyder, Garboczi, and Thorpe
(1992). This independence does not extend to three-dimensional composites. However, Chris-
tensen (1993) has provided some evidence to show that E∗/E is relatively insensitive (but not
absolutely insensitive) to ν for values of ν in the range 0 ≤ ν ≤ 1/2.

A more striking result was found by Day, Snyder, Garboczi, and Thorpe in their numerical
simulations. When there are so many holes that the plate is about to fall apart, so that E∗ is
close to zero, they observed that the effective Poisson’s ratio takes a universal value that is
independent of both the Young’s modulus and the Poisson’s ratio of the plate; see figure 4.3.
Following Thorpe and Jasiuk (1992), we can see how this is a corollary of (4.24). In the
limit as E∗ approaches zero, ν ′

∗ must approach ν∗, implying that ν∗ is also independent of ν
in this limit. In fact, as follows from (4.24), the effective Poisson’s ratio ν∗ of a plate with

Figure 4.3. Plot of the effective Poisson’s ratio ν∗ against the volume fraction f occupied
by the metal in a plate containing circular holes in (a) a triangular network, (b) a honeycomb
network, and (c) a random arrangement. The different curves in each figure correspond to
metals having different Poisson’s ratios ν, given by the values at f = 1. The dashed line
corresponds to ν = 1/3. After Day, Snyder, Garboczi, and Thorpe (1992).
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holes depends linearly on the Poisson’s ratio ν of the plate, with a coefficient of E∗/E (Hu
and Weng 2001). It is hard to make any such general statements about the variation of the
Poisson’s ratio with volume fraction when the holes are filled with a second rigid or elastic
phase (Chen, Thorpe, and Davis 1995; Christiansson and Helsing 1996). Garboczi and Day
(1995) suggested that the effective Poisson’s ratio remains equal to 1/3 when both phases have
a Poisson’s ratio of 1/3, but Christiansson and Helsing (1996) disproved this.

If the plate has a anisotropic effective compliance tensor S∗, then it is convenient to intro-
duce the defect compliance tensor, H = S∗ − S, where

{S}i jk	 = [(1+ ν)/2E](δikδ j	 + δi	δ jk)− (ν/E)δi jδk	

is the compliance tensor of the plate. By dimensional analysis EH depends only on ν and on
the geometry. But (4.21), (4.22), and (4.23) show that EH remains invariant under translation,
that is, as the Poisson’s ratio of the plate is shifted from ν to ν−cE . Zheng and Hwang (1996,
1997) concluded that EH depends only on the geometry of the plate. A similar conclusion
was reached by Movchan and Serkov (1997) for plates containing a dilute concentration of
holes; see their theorem 4.2.

4.7. The elastic moduli of certain two-dimensional polycrystals and
symmetric materials

One can sometimes use the translation (4.21) to map to an equivalent elasticity problem where
one can apply the duality transformations discussed in sections 3.5 on page 51 and 3.6 on
page 53. The condition is that there must exist a symmetric matrix v and a constant c such
that

0 = S ′(x)v = S(x)v + cR⊥v = 0. (4.25)

This can be rewritten as
R−1

⊥ S(x)v = −cv.
In other words, R−1

⊥ S(x) must have an eigenvector v and an associated eigenvalue −c that
are both independent of x.

For example, consider a two-dimensional polycrystal manufactured from a crystal with
square symmetry. In the basis

v1 = 1√
2

(
1 0
0 1

)
, v2 = 1√

2

(
1 0
0 −1

)
, v3 = 1√

2

(
0 1
1 0

)
(4.26)

the compliance tensor is represented by the 3× 3 matrix

S(x) =
(
1/2κ 0
0 Sr (x)

)
,

in which

Sr (x) =
(

cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

) (
1/2µ(1) 0

0 1/2µ(2)

) (
cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

)
.

Here µ(1), µ(2), and κ are the two shear moduli and bulk modulus of the single crystal, and
θ = θ(x) is the angle of orientation of the crystal at each point x. Since a 90◦ rotation leaves
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the matrix v1 invariant but changes the sign of v2 and v3, R⊥ is represented in this basis by
the diagonal matrix

R⊥ =
( 1 0 0
0 −1 0
0 0 −1

)
.

Now the condition (4.25) is satisfied with c = −1/(2κ) and v = v1. By applying the
duality result (3.27) to the translated medium we deduce that the effective compliance tensor
S∗ associated with S(x) necessarily has square symmetry with effective bulk modulus κ∗ and
effective shear moduli µ(1)

∗ and µ
(2)
∗ satisfying the relations

κ∗ = κ, (1/µ(1)
∗ + 1/κ)(1/µ(2)

∗ + 1/κ) = (1/µ(1) + 1/κ)(1/µ(2) + 1/κ),

found by Lurie and Cherkaev (1984).
If the effective elasticity tensor of the polycrystal is isotropic, then this relation yields

exact formulas for the effective bulk and shear moduli of the polycrystal:

κ∗ = κ, µ∗ = µ(1)
∗ = µ(2)

∗ = κ

−1+
√
(1+ κ/µ(1))(1+ κ/µ(2))

. (4.27)

Now consider a two-phase composite comprised of two isotropic phases having the same
bulk modulus κ . Again the condition (4.25) is satisfied with c = −1/(2κ) and v = v1. By
applying the result (3.28) to the translated medium, one sees (Helsing, Milton, and Movchan
1997) that the effective shear modulus µ∗(µ1, µ2, κ) expressed as a function of the shear
moduli µ1 and µ2 of the two phases and their common bulk modulus κ satisfies the phase
interchange identity

[1/κ + 1/µ∗(µ1, µ2, κ)][1/κ + 1/µ∗(µ2, µ1, κ)] = (1/κ + 1/µ1)(1/κ + 1/µ2). (4.28)

If the geometry is symmetric (i.e., phase interchange invariant) and elastically isotropic, then
we obtain an exact result for the effective bulk and shear moduli of the structure

κ∗ = κ, µ∗ = κ

−1+√(1+ κ/µ1)(1+ κ/µ2)
.

Gibiansky and Torquato (1996) have derived phase interchange inequalities that general-
ize (4.28) when the two phases have unequal bulk moduli or when the composite is three-
dimensional.
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5
Some microstructure-independent exact

relations

Typically the properties of a composite are microstructure-dependent. So it comes as a nice
surprise to come across exact formulas for (or linking) effective moduli that are universally
valid no matter how complicated the microstructure. Many exact relations stem from a very
simple idea: Sometimes the medium and equations are such that an appropriate constant
or uniform field provides a solution. The idea dates back to papers of Hill (1952, 1964) and
Cribb (1968), and was subsequently generalized by Dvorak (1983, 1990) and Lurie, Cherkaev,
and Fedorov (1984), among others. We will see that one gets a lot of mileage, in terms of
applications, out of this simple idea.

5.1. The uniform field argument
Let us begin by considering the equations of conductivity in a composite. These have a simple
solution when the conductivity tensor field σ(x) is such that there exist constant vectors v
andw with

σ(x)v = w for all x.

Then the current and electric fields,

j(x) = w, e(x) = v,
solve the equations

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0. (5.1)

Since these fields are constant, and equal to their averages, it follows that the effective tensor
σ∗ necessarily satisfies

σ∗v = w. (5.2)

In particular, if it is a two-phase composite,

σ(x) = χ1(x)σ1 + χ2(x)σ2, (5.3)

and there exists a v �= 0 such that

(σ1 − σ2)v = 0,

then (5.2) implies that
(σ∗ − σ2)v = 0.

75
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In other words, σ∗ must be such that the right nullspace of (σ∗ − σ2) includes any right null
vector of (σ1 − σ2).

When the conductivity tensor field σ(x) is not symmetric and there exist vectors v ′ and
w′ such that

[σ(x)]Tv′ = w′ for all x,

then for any solutions j(x) and e(x) to the conductivity equations (5.1) we have

v′ · σ∗〈e(x)〉 = 〈 v′ · j(x) 〉 = 〈 v′ · σ(x)e(x) 〉
= 〈 ([σ(x)]Tv′) · e(x) 〉 = w′ · 〈e(x)〉,

which implies that
[σ∗]Tv′ = w′.

So, for example, in the two-phase composite of (5.3) the left nullspace of (σ∗ − σ2) must
include any left null vector of (σ1 − σ2).

As Lurie, Cherkaev, and Fedorov (1984) noticed [see also Lurie and Cherkaev (1986)]
similar considerations apply to the elasticity problem: If the elasticity tensor field C(x) is
such that there exist symmetric tensors V andW with

C(x)V =W for all x, (5.4)

then the effective tensor C∗ must satisfy

C∗V =W . (5.5)

Let us apply these results to several elasticity problems.

5.2. The bulk modulus of polycrystals with cubic symmetry
In a polycrystal the elasticity tensor field takes the form

C(x) = R(x)C0[R(x)]T ,

where C0 represents the elasticity tensor of the pure crystal and R(x) is the fourth-order
tensor field with Cartesian elements

Ri jk	(x) = Rik(x)R j	(x),

representing the action of a local rotationR(x) on C0. If the pure crystal has cubic symmetry,
then (within the approximation of linear elasticity) it responds isotropically to hydrostatic
compression, contracting equally in all directions. Mathematically this means that the second-
order identity I is an eigentensor of C0, that is,

C0I = dκ0I,

where d is the spatial dimension (2 or 3) and

κ0 = Tr(C0I)/d2

is the bulk modulus of the pure crystal.
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Since I commutes with rotations, C(x) satisfies

C(x)I = dκ0I,

and (5.5) implies that
C∗I = dκ0I. (5.6)

In particular, if the polycrystal is statistically isotropic, then (5.6) implies that its effective
bulk modulus κ∗ is exactly the same as the bulk modulus κ0 of the pure crystal, as noted by
Hill (1952)

5.3. The elastic moduli of a composite with a constant shear modulus
If the fluctuations in the tensor field C(x) are rank-1, that is, there exists a symmetric second-
order tensorA such that the field C(x) has the form

C(x) = α(x)A⊗A+ C0, (5.7)

where C0 is a constant fourth-order elasticity tensor, then (5.4) is satisfied for any symmetric
tensor V such that Tr(AV ) = 0. Hence (5.5) is satisfied for any symmetric tensor V such
that Tr(AV ) = 0, which implies that C∗ − C0 is rank-1 of the form

C∗ = α∗A⊗A+ C0. (5.8)

Thus C∗ is completely determined aside from the constant α∗. We can picture this in tensor
space as follows: Take any straight line oriented in a rank-1 direction in the space of fourth-
order elasticity tensors and suppose that the tensors C(x) lie along this line for all x; then
(5.8) implies that C∗ also lies along the same straight line.

One beautiful application of this result is to locally isotropic composites with constant
shear modulus. The local elasticity tensor takes the form

C(x) = λ(x)I ⊗ I + 2µI,

where I and I are the second-order and fourth-order identity tensors, λ(x) is the Lame mod-
ulus, and µ is the (constant) shear modulus. The Lame modulus can be expressed in terms of
the bulk modulus κ(x) through the equation

λ(x) = κ(x)− 2µ/d.

From (5.8) we see that the effective tensor C∗ necessarily has the form

C∗ = λ∗I ⊗ I + 2µI. (5.9)

So, as Hill (1964) first noticed, the composite is always elastically isotropic with shear modu-
lus µ, irrespective of whether the geometry is anisotropic or not; see also Francfort and Tartar
(1991).

What is more remarkable is that λ∗ can be computed exactly, independent of the mi-
crostructure. Let us suppose for simplicity that the microstructure is periodic. Following Hill
(1963), we look for a solution of the elasticity equations with a periodic displacement field
u(x) of the form

u(x) = αx+∇ϕ(x),
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where α is a constant and ϕ(x) is a periodic scalar potential that needs to be chosen so the
stress field has zero divergence. The associated strain and stress fields are

ε(x) = αI +∇∇ϕ(x), (5.10)

τ(x) = λ(x)[Tr ε(x)]I + 2µε(x) = λ(x)[dα +�ϕ(x)]I + 2µ[αI +∇∇ϕ(x)], (5.11)

where� = ∇ · ∇ denotes the Laplacian. The equilibrium equation for the stress field,

∇ · τ(x) = ∇{dλ(x)α + [λ(x)+ 2µ]�ϕ(x)} = 0, (5.12)

is satisfied when the bracketed expression in (5.12) reduces to a constant:

dλ(x)α + [λ(x)+ 2µ]�ϕ(x) = β − 2dµα, (5.13)

where β is arbitrary and the additional constant of −2dµα has been added to the right-hand
side to simplify subsequent equations.

By solving (5.13) it is clear that ϕ(x) must be chosen so that

�ϕ(x) = −dα + β[λ(x)+ 2µ]−1. (5.14)

Since ∇ϕ(x) is periodic, it follows, by a simple application of the divergence theorem within
a unit cell, that

〈∇∇ϕ(x)〉 = 0. (5.15)

In particular, by taking the trace of this equation, we see that 〈�ϕ(x)〉 must vanish. So for
(5.14) to have a solution for ϕ(x) we must choose β such that

dα/β = 〈 (λ+ 2µ)−1〉, (5.16)

and this guarantees that a solution exists.
Fortunately we do not need to solve for ϕ(x) to compute the effective Lame modulus λ∗.

Indeed, by taking averages of the strain and stress fields in (5.10) and (5.11), and using (5.13)
and (5.15) to simplify the resulting expressions, we see that

〈ε〉 = αI, (5.17)

〈τ 〉 = (β/α − 2dµ+ 2µ)αI. (5.18)

With this choice (5.17) of average strain, the average stress is given from (5.9) by

〈τ 〉 = (dλ∗ + 2µ)αI,

and equating this with (5.18) gives

λ∗ + 2µ = β/(dα).

Finally, by using (5.16) to eliminate β/(dα), we obtain Hill’s formula,

(λ∗ + 2µ)−1 = 〈 (λ+ 2µ)−1〉. (5.19)

This gives us an exact expression for λ∗ and, in view of (5.9), an exact expression for C∗.
Another result that follows from this analysis (D. L. Johnson, private communication) is that
the hydrostatic component of the stress, Tr τ(x), is constant within each phase. Indeed, it
follows from (5.11) and (5.14) that

Tr τ(x) = β[dλ(x)+ 2µ]/[λ(x)+ 2µ],

and so Tr τ(x) will be constant in any region where λ(x) is constant.
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5.4. The thermal expansion tensor and constant of specific heat in a
composite of two isotropic phases

Another well-known example where the existence of a uniform field solution leads to a non-
trivial relation amongst effective constants is in the problem of thermal expansion. In the
linear approximation thermal expansion is governed by the equations

ε(x) = S(x)τ(x)+α(x)θ, (5.20)

where θ = T − T0 is the change in temperature T measured from some constant base temper-
ature T0, while ε(x) and τ(x) are the strain and stress fields, S(x) is the compliance tensor,
andα(x) is the tensor of thermal expansion. The average fields 〈ε〉 and 〈τ 〉 satisfy equations
of the same form,

〈ε〉 = S∗〈τ 〉 +α∗θ, (5.21)

which serve to define the effective compliance tensor S∗ and effective thermal expansion
tensor α∗.

Following Cribb (1968), let us first give a physical argument that suggests why it is pos-
sible to find uniform fields that solve these equations when the composite has two isotropic
phases. Consider, for simplicity, the model problem, sketched in figure 5.1, of a bimetal

(c)(b)(a) (d)

T=T
p=p

0

0 p=p
T>T T=T T>T0

0

0 0

0p0pp  p

Figure 5.1. A bimetal strip (a) immersed in water at temperature T0 and pressure p0 will
bend when heated, as in (b), and will bend when the pressure of the water is changed, as in
(c). However, with the right combination of temperature increase and pressure change, as in
(d), both metals will expand at exactly the same rate, and the strip will expand as if it was a
homogeneous material. This argument extended to two-phase composites provides an exact
relation between the effective thermal expansion coefficient and the effective bulk modulus.

strip that is immersed in water. [Incidentally, bimetal strips have an interesting origin. John
Harrison invented them while developing a marine chronometer in his (ultimately successful)
effort to win the longitudinal prize (Sobel 1995; Sobel and Andrewes 1998). The bimetal
strip controlled the active length of a spring to minimize the influence of temperature on the
clock speed.] It is clear that if the temperature of the water is raised, the bimetal strip will
bend due to the mismatch in thermal expansion coefficients of the two metals. On the other



80 5. Microstructure-independent exact relations

hand, if the temperature is held fixed while pressure in the water is changed, the bimetal strip
will again bend due to the mismatch in bulk moduli of the two metals. Now one can imag-
ine applying a judicious combination of temperature increase and pressure change such that
both metals expand at exactly the same rate and no bending of the bimetal strip occurs. The
strip expands as if it was a homogeneous material. Of course this argument should apply to
composites and not just bimetal strips. By judiciously choosing the temperature increase and
pressure change both phases will expand at exactly the same rate. Then the composite will
expand uniformly at the same rate as the phases. This rate of expansion will be indepen-
dent of the composite geometry, implying that the effective moduli must have some universal
microstructure-independent relations.

Now for the mathematics. We look for a solution where the stress is a uniform hydrostatic
compression,

τ(x) = 〈τ 〉 = −pI for all x, (5.22)

where the pressure p is constant. Since the medium is locally isotropic, the thermal expansion
is proportional to the identity tensor, that is, α(x) = α(x)I , and the constitutive equation
(5.20) implies that the strain field is

ε(x) = [−p/dκ(x)+ θα(x)]I, (5.23)

where κ(x) is the local bulk modulus. In a two-phase medium the strain field given by (5.23)
will be piecewise constant, taking the values

ε1 = [−p/(dκ1)+ θα1]I, ε2 = [−p/(dκ2)+ θα2]I, (5.24)

in each phase. The requirement that the strain field be completely uniform,

ε1 = ε2 = 〈ε〉, (5.25)

is, according to (5.24), satisfied for any given temperature change θ if we adjust the pressure
p so that

p/θ = d(α1 − α2)

(1/κ1 − 1/κ2)
. (5.26)

In other words, at this particular ratio of p/θ the equations (5.21) of thermal expansion
are solved by constant fields τ and ε. Substitution of the expressions (5.22) and (5.25) for the
average fields 〈τ 〉 and 〈ε〉 into (5.21) yields the exact formula of Rosen and Hashin (1970) for
the effective thermal expansion tensor,

α∗ = d(α1 − α2)S∗I + (α2/κ1 − α1/κ2)I

1/κ1 − 1/κ2
, (5.27)

which is true in any dimension d and for any composite of two isotropic phases. If the com-
posite is also isotropic, then α∗ = α∗I and S∗I = I/(dκ∗), where κ∗ is the effective bulk
modulus and α∗ is the constant of effective thermal expansion. So (5.27) reduces to the for-
mula of Levin (1967),

α∗ = α1(1/κ∗ − 1/κ2)− α2(1/κ∗ − 1/κ1)

1/κ1 − 1/κ2
, (5.28)

for the effective thermal expansion coefficient. This is an example of a cross-property relation,
linking two different effective moduli.
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When three phases are present it is generally impossible to adjust the pressure and tem-
perature change so that all three phases expand at the same rate. Consequently there is no
general exact relation linking the effective thermal expansion coefficient and effective bulk
modulus of three-phase composites. Nevertheless, one can use measurements of the effective
bulk modulus to bound the effective thermal expansion coefficient; see Rosen and Hashin
(1970) and Gibiansky and Torquato (1997). Exact results for three-phase composites can be
obtained if there is another way of influencing the expansion of the phases, perhaps through
swelling due to an externally adjustable factor like humidity. Then it is possible to adjust
the temperature change, humidity content, and external pressure in such a way that all three
phases contract (or expand) by the same amount; see Schulgasser (1989) for a related analysis.

One can also obtain a formula for determining the constant of specific heat c∗. The relation
(2.23) giving c∗ must hold when τ(x) is the uniform hydrostatic compression (5.22) and p/θ
is given by (5.26). Upon making this substitution for the stress field, (2.23) implies that

c∗ − 〈c〉
Tr(α∗ − 〈α〉)T0

= p
θ
= d(α1 − α2)

1/κ1 − 1/κ2
,

which in view of (5.27) reduces to the exact expression

c∗ = 〈c〉 + d2(α1 − α2)
2

(1/κ1 − 1/κ2)2

[
Tr(S∗I)− 〈1/κ〉

]
T0 (5.29)

of Rosen and Hashin (1970) for the effective constant of specific heat at constant pressure,
where Tr(S∗I) should be identified with 1/κ∗ when the composite is isotropic.

5.5. The extension to nonlinear thermal expansion
These exact relations have a simple generalization to the nonlinear case as found by Berryman
and myself [see Milton (1997)]. Suppose that the two phases are isotropic so that a block of
phase 1 or phase 2 immersed in a fluid heat bath at temperature T and pressure p expands
or contracts isotropically as T and p are varied. Let ρ1(T, p) and ρ2(T, p) denote the mass
density of phase 1 or phase 2 relative to some base temperature T0 and base pressure p0; thus
1/ρ1(T, p) and 1/ρ2(T, p) measure the relative change in the volume of each phase as the
temperature and pressure change from (T0, p0) to (T, p). According to this definition we have

ρ1(T0, p0) = ρ2(T0, p0) = 1.

So the two surfaces ρ1(T, p) and ρ2(T, p) intersect at (T, p) = (T0, p0). Unless the surfaces
are tangent at this point, they will intersect along a trajectory passing through (T0, p0). Along
this trajectory (T (h), p(h)) parameterized by h both phases expand or contract at an equal
rate.

Now suppose that a composite is manufactured at the base temperature T0 and pressure p0
with no internal residual stress. When this composite is placed in the heat bath at temperature
T and pressure p there is no reason to suppose that the composite will expand or contract
isotropically as T and p are varied. Indeed by considering the example of a bimetal strip
it is clear that internal shear stresses and warping can occur. However, along the trajectory
(T (h), p(h)) the composite will expand isotropically, and its density relative to its density at
the base temperature and pressure will be

ρ∗(T (h), p(h)) = ρ1(T (h), p(h)) = ρ2(T (h), p(h)) for all h. (5.30)
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This is the nonlinear generalization of the relation (5.28). To see the connection we rewrite
(5.30) as

1/ρ∗(T (h), p(h)) = 1/ρ1(T (h), p(h)) = 1/ρ2(T (h), p(h)).

Differentiating this with respect to h gives

dα∗
dT (h)
dh

− 1
κ∗

dp(h)
dh

= dα1
dT (h)
dh

− 1
κ1

dp(h)
dh

= dα2
dT (h)
dh

− 1
κ2

dp(h)
dh

, (5.31)

where

αa(T, p) = 1
d
∂(1/ρa)

∂T
, κa(T, p) = −

{
∂(1/ρa)

∂p

}−1

, a = 1, 2, or ∗,

are the tangent bulk moduli and thermal expansion constants of the phases and composite
along the trajectory. By eliminating dp/dh and dT/dh from the linear equations (5.31) we
recover (5.28).

5.6. The thermal expansion tensor and specific heat in composites of
two anisotropic phases

When the compliance tensor S(x) and thermal expansion tensor α(x) take constant values
in each phase of a two-phase composite,

S(x) = S1χ1(x)+ S2χ2(x), α(x) = α1χ1(x)+α2χ2(x),

we can still derive an exact expression for the effective thermal expansion tensor α∗ in terms
of the effective compliance tensor S∗, even when the tensors α1, α2, S1, and S2 are not
isotropic. To do this we look for a constant stress field τ and a constant strain field ε, not
necessarily proportional to the identity tensor, which solve the constitutive equations in each
phase, that is, they satisfy

ε = S1τ +α1θ, ε = S2τ +α2θ. (5.32)

Since the fields are constant, they can be equated with their average values and the effective
constitutive law then implies that

ε = S∗τ + α∗θ. (5.33)

By eliminating ε from (5.32) and (5.33) we see that

τ = θ(S1 − S2)
−1(α2 −α1) = θ(S1 − S∗)−1(α∗ − α1), (5.34)

which provides the desired formula,

α∗ = α1 + (S1 − S∗)(S1 − S2)
−1(α2 −α1), (5.35)

for the thermal expansion tensor α∗ in terms of the effective compliance tensor S∗.
To obtain a formula for the effective specific heat c∗ we first observe that with field τ

being constant, and given by (5.34), the constitutive law and effective constitutive law imply
that

ς(x) = Tr[α(x)τ ]+ θc(x)/T0 = θ Tr[α(x)(S1 − S2)
−1(α2 −α1)]+ θc(x)/T0,

〈ς〉 = Tr[α∗τ ]+ θc∗/T0 = θ Tr[α∗(S1 − S2)
−1(α2 −α1)]+ θc∗/T0.
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By averaging the first equation and equating it with the second, we obtain the desired formula,

c∗ = f1c1 + f2c2 + Tr[( f1α1 + f2α2 −α∗)(S1 − S2)
−1(α2 −α1)]T0, (5.36)

for the effective specific heat at constant pressure. These formulas (5.35) and (5.36) are due
to Rosen and Hashin (1970).

5.7. Exact thermoelastic relations for polycrystals
In three-dimensional polycrystalline materials the local compliance tensor S(x), thermal ex-
pansion tensor α(x), and specific heat c(x) take the forms

S(x) = R(x)S0[R(x)]T , α(x) = R(x)α0[R(x)]T , c(x) = c0,

in which S0, α0, and c0 are the compliance tensor, thermal expansion tensor, and specific
heat of the pure crystal, while the second-order tensor field R(x) and its associated fourth-
order tensor R(x) = R(x) ⊗ R(x) represent the action of a local rotation on α0 and S0,
respectively. To derive a relation between the different effective moduli we assume that the
pure crystal is such that the second-order tensorsS0I andα0 are both uniaxial with a common
axis of symmetry. This is certainly ensured if the crystal has hexagonal, tetragonal, or trigonal
symmetry. By taking this axis as a basis vector, S0I and α0 can be represented by diagonal
matrices:

S0I =
(
µ1 0 0
0 µ2 0
0 0 µ2

)
, α0 =

(
λ1 0 0
0 λ2 0
0 0 λ2

)
.

Under a combination of uniform hydrostatic compression τ = −pI and temperature
increase θ , the strain in a sample of this pure crystal is

ε0 = −pS0I + θα0 =
(−pµ1 + θλ1 0 0

0 −pµ2 + θλ2 0
0 0 −pµ2 + θλ2

)
.

By a judicious choice of the ratio p/θ , namely,

p/θ = λ1 − λ2

µ1 − µ2
,

we see that the strain in the pure crystal reduces to a multiple of the identity

ε0 = λ2µ1 − λ1µ2

µ1 − µ2
θI,

and thus represents a dilation.
Under this combination of pressure and temperature change, each crystal in the polycrystal

undergoes the same uniform dilation in size, and so the polycrystal as a whole must dilate in
size by this same factor. The effective constitutive law implies that

〈ε〉 = λ2µ1 − λ1µ2

µ1 − µ2
Iθ

= S∗〈τ 〉 +α∗θ =
[
− λ1 − λ2

µ1 − µ2
S∗I +α∗

]
θ,
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which gives us the formula for the effective thermal expansion tensor in terms of the effective
compliance tensor:

α∗ = λ1 − λ2

µ1 − µ2
S∗I + λ2µ1 − λ1µ2

µ1 − µ2
I. (5.37)

For macroscopically isotropic polycrystals this formula reduces to the relation

α∗ = λ1 − λ2

dκ∗(µ1 − µ2)
+ λ2µ1 − λ1µ2

µ1 − µ2
, (5.38)

relating the effective coefficient of thermal expansion α∗ to of the effective bulk modulus κ∗.
This relation (5.38) is due to Hashin (1984). Subsequently, Schulgasser (1987) saw that it
could be generalized and obtained the formula (5.37).

The special combination of pressure and temperature change generates a uniform entropy
field

ς(x) = 〈ς〉 = −p Tr[α0]+ θc0/T0 = −p Tr[α∗]+ θc∗/T0,

implying that
c∗ − c0

Tr(α∗ −α0)T0
= p

θ
= λ1 − λ2

µ1 − µ2
.

In other words, the effective specific at constant pressure must be given by the formula

c∗ = c0 + λ1 − λ2

µ1 − µ2
Tr(α∗ − α0)T0.

5.8. The effective poroelastic moduli of two-phase media
Since the equations of thermoelasticity are equivalent to those of poroelasticity, all of the
results that we have derived for thermoelastic media immediately extend to poroelastic media.
The poroelastic equations take the form(

εs(x)
−ζ(x)

)
=
(

S(x) α(x)
α(x) c(x)

)(
τ c(x)
−p f

)
, (5.39)

where
εs = [∇us + (∇us)T ]/2, ∇ · τ c = 0, (5.40)

and, as explained in the introduction, us(x) is the average solid displacement, ζ(x) is the
increment of fluid content, τ c(x) is the confining stress, p f is the fluid pressure (which is
constant), S(x) is now the compliance tensor of the drained porous frame, α(x) is now the
tensor of fluid pressure induced expansion (at constant confining stress), and c(x) is now
the coefficient relating the increment of fluid content to the fluid pressure (again at constant
confining stress). The macroscopic behavior is governed by the equations( 〈εs〉

−〈ζ 〉
)
=
(

S∗ α∗
α∗ c∗

)( 〈τ c〉
−p f

)
,

which serve to define the effective moduli.
Because of the equivalence with the thermoelastic equations, the formulas (5.27) and

(5.29) also apply to poroelastic media built from two isotropic porous phases once we set
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T0 = 1. In particular, let us consider a poroelastic solid where phase 1 is entirely solid and
isotropic with poroelastic tensor

L1 =
(

S1 α1
α1 c1

)
=
(

S1 0
0 0

)
,

where
S1 =

( 1
9κ1

− 1
6µ1

)
I ⊗ I + I

2µ1

is the compliance tensor of the solid while κ1 and µ1 are its bulk and shear moduli.
Ultimately we want to take phase 2 as entirely liquid. However, to avoid infinite moduli

let us suppose that phase 2 is itself a poroelastic media, comprised of a skeletal porous frame
immersed in fluid with the frame occupying only an infinitesimal volume fraction and having
the same bulk modulus as the fluid (and with pore structure being much smaller than the
microstructure of the larger composite). When τ c = −p f I , the average solid displacement
us in phase 2 will exactly equal the average fluid displacement u f , implying that ζ = 0 and
εs = −(p f /3κ f )I , where κ f is the fluid (or frame) bulk modulus. Consequently in this phase
the poroelastic tensor is

L2 =
(

S2 α2

α2 c2

)
=
(

S2 (1/3κ f − 1/3κ2)I
(1/3κ f − 1/3κ2)I 1/κ2 − 1/κ f

)
,

where
S2 =

( 1
9κ2

− 1
6µ2

)
I ⊗ I + I

2µ2

is the effective elasticity tensor of the drained porous frame of phase 2, while κ2 and µ2 are
its effective bulk and shear moduli.

In the limit as the volume fraction of the porous frame in phase 2 approaches zero, the
effective moduli κ2 and µ2 approach zero. In this limit (5.27) and (5.29) reduce to

α∗ = −S∗I + I

3κ1
, c∗ = Tr(S∗I)− 1

κ1
+ φ∗

( 1
κ f
− 1

κ1

)
, (5.41)

where S∗ is the compliance tensor of the drained porous frame of the composite and φ∗ is
its porosity, that is, the volume fraction occupied by the pores. These formulas (5.41) for the
poroelastic moduli of a fluid-filled porous solid are equivalent to those derived by Gassmann
(1951). This equivalence was recognized by Berryman and Milton (1991) and Norris (1992),
who also extended the formulas to composites of two poroelastic phases.

Following Brown and Korringa (1975) it is convenient (from an experimental perspective)
to introduce three characteristic bulk moduli κ∗, κ s∗ , and κ

φ
∗ through the expressions

1
κ∗
= − 1

V

( ∂V
∂pd

)
p f

,
1
κ s∗
= − 1

V

( ∂V
∂p f

)
pd

,
1

κ
φ
∗
= − 1

Vφ

(∂Vφ
∂p f

)
pd

,

where V is the total volume of a jacketed fluid-filled sample of the composite, Vφ = φV is the
pore volume in that sample, p = −Tr(τ c)/3 is the external (confining) pressure applied to
the outside of the jacket, p f is the fluid pressure, and pd = p− p f is the differential pressure.
The definitions of these bulk moduli imply that

Tr(S∗I) = 1
κ∗

, Tr(α∗) =
( 1
κ s∗
− 1

κ∗

)
, c∗ =

( 1
κ∗
− 1

κ s∗

)
+φ∗

( 1
κ f
− 1

κ
φ
∗

)
, (5.42)
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and it is evident by comparing (5.42) with (5.41) that the Gassman equations, when expressed
in terms of these new moduli, reduce to

κ s∗ = κφ
∗ = κ1,

where κ1 is the bulk modulus of the solid phase.

5.9. The elastic moduli of two-phase fibrous composites
Consider a two-phase elastic fibrous composite where the phase boundaries are independent of
x3 and the two phases have fixed orientation with elasticity tensors C1 and C2. We assume that
these elasticity tensors are invariant under the reflection transformation x3 → −x3, implying
that their elements C1

i jk	 and C
2
i jk	 are zero whenever an odd number of indices take the value

3, that is,

C1
1123 = C1

1113 = C1
2223 = C1

1123 = C1
2213 = C1

1312 = C1
2312 = C1

3313 = C1
3323 = 0,

C2
1123 = C2

1113 = C2
2223 = C2

1123 = C2
2213 = C2

1312 = C2
2312 = C2

3313 = C2
3323 = 0.

The effective elasticity tensor C∗ will also be invariant under this reflection transformation
and so its elements C∗

i jk	 will vanish whenever an odd number of indices take the value 3.
We saw in section 2.7 on page 35 that for such a medium the three-dimensional elasticity

equations decouple into a two-dimensional dielectric-type problem [the antiplane-strain prob-
lem (2.42)], and a two-dimensional thermoelastic-type problem [with a constitutive law given
by (2.44)]. By applying uniform field arguments to the two-dimensional thermoelastic-type
problem one obtains the formulas

A∗ = A1 + (C′
1 − C′

∗)(C′
1 − C′

2)
−1(A2 −A1),

C∗
3333 = f1C1

3333 + f2C2
3333 + Tr[( f1A1 + f2A2 −A∗)(C′

1 − C′
2)

−1(A2 −A1)],
(5.43)

which are directly analogous to (5.35) and (5.36). In these formulas C ′
1, C′

2, and C′
∗ are

the two-dimensional, fourth-order elasticity tensors associated with the plane-strain problem
while A1, A2, and A∗ are the second-order coupling tensors. These can alternatively be
represented by the matrices and vectors

C′
i =
 C i1111 C i1122

√
2C i1112

C i1122 C i2222

√
2C i2212√

2C i1112

√
2C i2212 2C i1212

 , Ai =
 C i1133

C i2233√
2C i3312

 for i = 1, 2, ∗,

in which case the second relation in (5.43) takes the form

C∗
3333 = f1C1

3333 + f2C2
3333 + ( f1A1 + f2A2 −A∗) · (C′

1 − C′
2)

−1(A2 −A1).

In other words, all of the elements of the three-dimensional effective elasticity tensor C∗ can
be determined once the effective tensor C ′

∗ of the planar elasticity problem and the effective
shear matrix µ∗ of the antiplane elasticity problem are determined.

In particular, suppose that both phases are elastically isotropic with bulk moduli κ1 and κ2
and shear moduli µ1 and µ2, and that the cylindrical microgeometry is transversely isotropic.
Then the two-dimensional in-plane elasticity tensors and coupling tensors are

C′
i = κ ′

iI ⊗ I + 2µ′
i(I − I ⊗ I/2), Ai = λiI for i = 1, 2, ∗,
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where

µ′
1 = µ1, µ′

2 = µ2

κ ′
1 = κ1 + µ1/3, κ ′

2 = κ2 + µ2/3,
λ1 = κ1 − 2µ1/3, λ2 = κ2 − 2µ2/3.

Here κ ′
1, κ

′
2, µ

′
1, and µ′

2 are the bulk and shear moduli of the phases in the associated two-
dimensional medium under plane strain conditions, and κ ′

∗ and µ′
∗ are the associated two-

dimensional effective bulk and shear moduli, while λ1 and λ2 are the (three-dimensional)
Lame moduli of the two phases. By direct analogy with (5.28) and (5.29) [replacing α by λ,
1/(d2κ) by κ ′ and c/T0 by C3333] we have the relations

C∗
1133 = C∗

3311 = C∗
2233 = C∗

3322 = λ1(κ
′
∗ − κ ′

2) − λ2(κ
′
∗ − κ ′

1)

κ ′
1 − κ ′

2
,

C∗
3333 = 〈λ + 2µ〉 + (λ1 − λ2)

2

(κ ′
1 − κ ′

2)
2
(κ ′

∗ − 〈κ ′〉), (5.44)

due to Hill (1964), linking the various effective moduli.
The only other nonzero elements of the effective elasticity tensor are the nonzero elements

of the effective in-plane elasticity tensor C ′
∗, namely,

C∗
1111 = C∗

2222 = κ ′
∗ + µ′

∗, C∗
1122 = C∗

1122 = κ ′
∗ − µ′

∗, C∗
1212 = µ′

∗,

and the nonzero elements of the effective shear matrix µ∗,

C∗
1313 = C∗

2323 = µa∗,

in which µa∗ is the effective axial shear modulus. Due to the equivalence between the equa-
tions of antiplane elasticity and two-dimensional conductivity it is given by the formulas

µa∗ = σ∗(µ1, µ2),

in which σ∗(σ1, σ2) is the transverse effective conductivity when phase 1 has conductivity σ1
and phase 2 has conductivity σ2. He (1999) has shown how these results can be extended to
nonlinear elastic fibrous composites.

5.10. Exact relations for pyroelectric, conductivity, and
magnetotransport equations

The equations of pyroelectricity

d(x) = ε(x)e(x)+α(x)θ, ∇ · d = 0, ∇ × e = 0, θ = constant,

have basically the same structure as the equations of thermal expansion, and by applying the
same uniform field arguments one obtains the formula

α∗ = α1 + (ε1 − ε∗)(ε1 − ε2)
−1(α2 −α1)

for the effective pyroelectric vector α∗ in a two-phase medium, in terms of the pyroelectric
vectorsα1 andα2 and dielectric tensors ε1 and ε2 of the two phases and the effective dielectric
tensor ε∗ of the composite.
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Similarly, for the conductivity equations (2.30) or magnetotransport equations (2.32) in a
two-phase fibrous composite with microstructure independent of x3, the effective conductivity
tensors given respectively by (2.34) and (2.35) have components

α∗ = α1 + (σ′
1 − σ′

∗)(σ
′
1 − σ′

2)
−1(α2 −α1),

c∗ = 〈σ33〉 + ( f1α1 + f2α2 −α∗) · (σ′
1 − σ′

2)
−1(α2 −α1),

where the last equation follows from basically the same reasoning as led to (5.36). In par-
ticular it follows that the effective conductivity tensors are completely determined once one
has calculated the two-dimensional effective conductivity tensor σ ′

∗ associated with the diag-
onal conductivity tensor field σ′ given by (2.33). Surprisingly, this seems not to have been
previously observed, despite the many papers on magnetotransport.

5.11. The bulk modulus of a suspension of elastic particles in a fluid
You have probably noticed that the equation (2.21) describing thermoelasticity in two-phase
composites differs from the examples discussed earlier in the chapter in the sense that fluctu-
ations remain in the field ς(x) even when the fields τ(x), θ , and ε(x) are uniform. These
fluctuations do not matter as ς(x) is not subject to any differential constraints. A similar situ-
ation occurs when a suspension of elastic particles in a fluid, with bulk modulus κ0, is subject
to hydrostatic compression.

Let us suppose that the elasticity tensor field takes the form

C(x) = χ0C0 +
n∑
a=1

χaCa,

where the characteristic functions

χa(x) = 1 in phase a,
= 0 otherwise,

describe the geometry of the suspension and

C0 = κ0I ⊗ I
represents the elasticity tensor of the fluid. Note that within the fluid the curl of the dis-
placement field is not subject to any differential constraints. We assume that each of the n
suspended phases consists of isolated particles surrounded by fluid.

Since the fluid can flow and accommodate any change in the shape of each particle, it
follows that the elasticity equations will be satisfied with a uniform stress field

τ(x) = −pI,

where p is the pressure. Inside each suspended phase the corresponding strain will be

εa = −pSaI,

where Sa = (Ca)−1 is the associated compliance tensor, while in the fluid the strain has trace

Tr ε0 = −p/κ0,
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where κ0 is the fluid bulk modulus.
By taking averages of the strain we find that

Tr〈ε〉 = −p
[
f0/κ0 +

n∑
a=1

fa Tr(SaI)
]
, (5.45)

where fa = 〈χa〉 is the volume fraction occupied by phase a. Since the suspension is not
resistant to shear, it behaves as a fluid with elasticity tensor

C∗ = κ∗I ⊗ I,

where according to (5.45) its bulk modulus κ∗ is given by

1/κ∗ = f0/κ0 +
n∑
a=1

fa Tr(SaI).

For a suspension of isotropic phases this reduces to the harmonic mean average of the bulk
moduli of the phases,

1/κ∗ =
n∑
a=0

fa/κa, (5.46)

which is known as Wood’s formula (Wood 1955).
Wood applied this result to calculate the phase velocity of sound cs in water containing

bubbles of gas. Assuming that the wavelength of the sound is sufficiently large compared to
the inhomogeneities, and neglecting the shear viscosity of the water [which causes attenuation
and dispersion of the waves (see section 11.4 on page 233)] we have

cs =
√
κ∗/!∗,

where
!∗ = f1!1 + f2!2, κ∗ = ( f1/κ1 + f2/κ2)

−1

are the effective density and effective bulk modulus [given by (5.46)] expressed in terms of
the densities !1, !2; bulk moduli κ1, κ2; and volume fractions f1, f2 of the gas (phase 1) and
the water (phase 2). Neglecting the density of the gas and treating the water as incompressible
(i.e., taking the limit !1 → 0 and κ2 →∞) we obtain the estimate

cs ≈
√
κ1/( f1 f2!2).

This is dramatically less than either the speed of sound in the gas (
√
κ1/!1) or the speed of

sound in the water (
√
κ2/!2), both of which approach infinity in the limit as !1 → 0 and

κ2 →∞. The mixture transmits sound at much slower velocities than the pure phases.
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6
Exact relations for coupled equations

6.1. The covariance property of the effective tensor
Let us consider a problem with couplings. We suppose that there are m divergence free
fields j1(x), j2(x), . . . , jm(x) andm curl free fields e1(x),e2(x), . . . ,em(x) that are linked
through the constitutive relation

jiα(x) =
d∑
j=1

m∑
β=1

L iα jβ(x)e jβ(x), (6.1)

where α and β are field indices while i and j are space indices. This constitutive relation can
be rewritten either in the form

j1
j2
...

jm

 =

L11 L12 . . . L1m
L21 L22 . . . L2m
...

...
. . .

...

Lm1 Lm2 . . . Lmm



e1

e2
...

em

 , (6.2)

where the i j -th element of the matrix Lαβ is L iα jβ , or more concisely as

J(x) = L(x)E(x), (6.3)

in which J(x), L(x), and E(x) are identified with the terms in (6.2) in the obvious manner.
The averages of the fields J and E are linked through the linear equation

〈J 〉 = L∗〈E〉, (6.4)

which serves to define the effective tensor L∗.
We now note that any linear combination of divergence free fields is itself divergence free,

and that any linear combination of curl free fields is curl free. This simple observation has
profound consequences, as recognized by Straley (1981) and Milgrom and Shtrikman (1989).
Suppose that V and W are a pair of nonsingular matrices of the form

V =


v11I v12I . . . v1mI
v21I v22I . . . v2mI
...

...
. . .

...

vm1I vm2I . . . vmmI

 , W =


w11I w12I . . . w1mI
w21I w22I . . . w2mI
...

...
. . .

...

wm1I wm2I . . . wmmI

 . (6.5)

93
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Then the fields
E′(x) = VE(x), J ′(x) = WJ(x) (6.6)

have the forms

E ′(x) =


e′

1(x)
e′

2(x)
...

e′
m(x)

 , J ′(x) =


j ′

1(x)
j ′

2(x)
...

j ′
m(x)

 ,

where
∇ × e′

α = 0, ∇ · j ′
α = 0, for α = 1, 2 . . . ,m.

The old constitutive relation (6.3), when expressed in terms of these new fields, becomes

J ′(x) = L′(x)E ′(x),

where
L′(x) = WL(x)V−1. (6.7)

In other words, the new fields solve the coupled equations in a material with moduliL′(x)
given by (6.7). By taking averages over x of the relations (6.6) and using (6.4) we see that the
averages of J ′(x) and E′(x) are linked through the equations

〈J ′〉 = L′
∗〈E ′〉,

where
L′

∗ = WL∗V−1 (6.8)

is the effective tensor of the new material. Thus the effective tensor L∗ undergoes exactly the
same transformation as the local tensor L(x).

To see the implications of this result more clearly let us consider an n-phase composite.
Then the local tensor L(x) takes the form

L(x) =
n∑
a=1

χa(x)La,

where the characteristic functions

χa(x) = 1 in phase a,
= 0 otherwise,

represent the geometry of the composite. If we keep the geometry fixed and consider the
effective tensor L∗ as a function of the tensors La, a = 1, 2, . . . , n representing the moduli
of the phases, then (6.7) and (6.8) imply that this function satisfies

L∗(WL1V−1,WL2V−1, . . .WLnV−1) =WL∗(L1,L2, . . .Ln)V−1 (6.9)

for all nonsingular matrices W and V of the form (6.5). This property, called covariance by
Milgrom (1990) , is a generalization to coupled field problems of the homogeneity property
of the effective conductivity function.
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6.2. The reduction to uncoupled equations for two-phase composites
with isotropic phases

These transformations have an important application when the tensor fieldL(x) is symmetric,
positive-definite, and only two isotropic components are present in the composite. As Straley
(1981) discovered, we can use them to reduce the coupled equations to a set of uncoupled
equations. In effect this decoupling transformation simplifies the system of equations (6.1) to
a set of independent conductivity problems.

The symmetry and rotational invariance (in the space indices) of the tensors L1 and L2

implies that they take the form

La =


La11I La12I . . . La1mI
La12I La22I . . . La2mI
...

...
. . .

...

La1mI La2mI . . . LammI

 for a = 1, 2. (6.10)

To diagonalize these, following Milgrom and Shtrikman (1989), we select

W =Q(L2)
−1/2, V−1 = WT ,

where Q is the orthogonal matrix (satisfying QQT = I) that diagonalizes L−1/2
2 L1L−1/2

2 .
Under this transformation L1 and L2 are mapped to

L′
1 =


λ1I 0 . . . 0
0 λ2I . . . 0
...

...
. . .

...

0 0 . . . λmI

 , L′
2 =


I 0 . . . 0
0 I . . . 0
...

...
. . .

...

0 0 . . . I

 .

So the coupling between the fields has been completely eliminated, and the equations
reduce to a set of m uncoupled conductivity equations. This implies that the effective tensor
L′

∗ necessarily has the form

L′
∗ =


σ∗(λ1) 0 . . . 0

0 σ∗(λ2) . . . 0
...

...
. . .

...

0 0 . . . σ∗(λm)

 , (6.11)

whereσ∗(λ) represents the effective conductivity tensor when phase 1 has conductivity tensor
σ1 = λI and phase 2 has conductivity tensor σ2 = I . Thus if we know σ∗(λ) as a function
of λ, we can determine L′

∗ and from (6.8) also determine

L∗ = (L2)
1/2QTL′

∗Q(L2)
1/2.

Milgrom and Shtrikman (1989) recognized that the original effective tensor L∗ must satisfy
some exact relations to have the form (6.11) after the transformation (6.8). In particular,
because the matrices L′

1, L′
2, and L′

∗ commute, it follows that

L∗(L2)
−1L1 −L1(L2)

−1L∗ = W−1[L′
∗(L′

2)
−1L′

1 −L′
1(L′

2)
−1L′

∗]V = 0. (6.12)

This gives us a set of linear relations that must be satisfied by the matrix elements of L∗.
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These exact relations can be cast in other equivalent forms. Let us assume that the micro-
geometry is isotropic so that L1, L2, and L∗ all have the block structure (6.10). Then they
can be represented by m × m matrices with elements Lai j , for a = 1, 2, ∗, which by an abuse
of notation we also denote as L1, L2 and L∗. Chen (1995, 1997) has shown that when the
m ×m matrix (L2)

−1L1 has nondegenerate eigenvalues (6.12) holds if and only if L∗ can be
expressed as the linear combination

L∗ = a0L1 + a1L2 + a2L1(L2)
−1L1 + · · · + am−1L1[(L2)

−1L1]m−2, (6.13)

where the scalar-valued coefficients a0, a1, . . . , am−1 depend on the microgeometry and on
the moduli of the tensors L1 and L2. Milgrom (1997), whose proof we now follow, rederived
and generalized Chen’s results, allowing for nonconsecutive powers in the expansion (6.13).

For simplicity, we will just consider the case of consecutive powers. One can easily check
by substitution that (6.12) holds if L∗ has the form (6.13). Conversely, to show that (6.12)
implies (6.13) we choose a basis where the m × m matrix A = (L2)

−1L1 is diagonal. Then
(6.12), multiplied on the left by (L2)

−1, implies that (L2)
−1L∗ is also diagonal. Setting

A = diag(λ1, λ2, . . . , λm) we see that the m × m diagonal matrices I, A, A2, . . . ,Am−1

(regarded as vectors of length m) are independent because the Vandermonde determinant

det

∣∣∣∣∣∣∣∣
1 λ1 λ2

1 . . . λm−1
1

1 λ2 λ2
2 . . . λm−1

2
...

...
...

. . .
...

1 λm λ2
m . . . λm−1

m

∣∣∣∣∣∣∣∣ =
∏
i< j

(λ j − λi )

is nonzero when the eigenvalues λi are all distinct. Therefore they form a basis for the m-
dimensional space of m ×m diagonal matrices. Any m ×m diagonal matrix and in particular
(L2)

−1L∗ can be expressed as a linear combination of them, which implies (6.13). Both
(6.12) and (6.13) express the fact that only m numbers are needed to determine all of the
elements of the effective tensor L∗.

When only two fields are present (m = 2) and the composite is isotropic, L1, L2, and L∗
have the forms

L1 =
(
α1I β1I
β1I γ1I

)
, L2 =

(
α2I β2I
β2I γ2I

)
, L∗ =

(
α∗I β∗I
β∗I γ∗I

)
.

The condition (6.13) then implies that L∗ must be a linear combination of L1 and L2. Thus
the moduli must satisfy the relation

det

∣∣∣∣∣ α∗ γ∗ β∗
α1 γ1 β1

α2 γ2 β2

∣∣∣∣∣ = 0 (6.14)

of Milgrom and Shtrikman (1989).
In other words, if the diagonal elements α∗ and γ∗ of L∗ have been determined through

a set of experiments, then (6.14) provides a formula for obtaining the coupling β∗. [More
generally, when m ≥ 3, Milgrom (1997) has shown that (6.13) implies that any particular
off-diagonal element of L∗ can be expressed in terms of the m diagonal elements of L∗ and
the moduli of L1 and L2.] This has obvious applications to the effective thermoelectric co-
efficients of isotropic composites of two isotropic phases. Similar sorts of relations among
piezoelectric moduli were found by Schulgasser (1992) and Benveniste (1994) for two-phase
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fibrous composites and polycrystals with a columnar microstructure. Benveniste (1995b) ex-
tended these relations to the moduli of two-phase fibrous composites where one phase is
piezoelectric and the other is magnetostrictive.

Associated with isotropic thermoelectric materials are two numbers (dependent on the
three moduli) called the thermoelectric figure of merit and the thermoelectric power factor,
which govern the performance and efficiency of practical thermoelectric devices such as heat
pumps [see, for example, Harman and Honig (1967)]. Using the decoupling transformation,
Bergman and Levy (1991) have shown that the thermoelectric figure of merit of any isotropic
two-phase composite must be less than the thermoelectric figure of merit of at least one of the
two phases. Subsequently, Bergman (1997) proved that the figure of merit in multiphase com-
posites can never be greater than the largest figure of merit of any of the phases. His proof was
based on an argument of Avellaneda and Olson (1993), who established that the largest elec-
tromechanical coupling factor of a piezoelectric composite cannot exceed the largest coupling
factor of the phase with the strongest electromechanical coupling.

Also using the decoupling transformation, Bergman and Fel (1999) have shown that the
thermoelectric power factor can be greater in a coated sphere assemblage than in either of
the two phases. Moreover, once the definition of the thermoelectric power factor is adjusted
to allow for anisotropy, they find (subject to some minor technical assumptions) that simple
laminates of the two phases have the largest possible thermoelectric power factor compared
to any other microstructure.

6.3. Translations for coupled equations
In section 2.5 on page 30 we already encountered the idea of translation, whereby the lo-
cal conductivity or compliance tensor field undergoes a shift by a (possibly inhomogeneous)
translation tensor field and the effective tensor undergoes precisely the same shift. For this
property to hold the translation tensor involved in this shift cannot be arbitrary, but instead
must have a special property: When applied to the field appearing on the right-hand side of
the constitutive equation it must produce a field satisfying the same differential constraints
as the field appearing on the left-hand side of the constitutive equation. In the context of the
coupled equations (6.2) it is clear that in a three-dimensional medium any translation of the
form

T (x) =


A11(x) A12(x) . . . A1m(x)
A21(x) A22(x) . . . A2m(x)

...
...

. . .
...

Am1(x) Am2(x) . . . Amm(x)

 ,

where
∇ ·Ai j(x) = 0 and Ai j(x) = −[Ai j(x)]T for all i and j, (6.15)

has this property, because any divergence free antisymmetric matrix field Ai j(x) acting on a
curl free field produces a divergence free field. Since the application of T (x) to a vector of
m curl free fields produces a vector of m divergence free fields, it follows that a medium with
tensor

L′(x) = L(x)+ T (x)

has an effective tensor
L′

∗ = L∗ + 〈T 〉.
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If the tensor L is symmetric and we want this symmetry to be preserved under the trans-
lation, then we should choose a translation T that is itself symmetric, of the form

T (x) =


0 A12(x) . . . A1m(x)

−A12(x) 0 . . . A2m(x)
...

...
. . .

...

−A1m(x) −A2m(x) . . . 0

 ,

where the blocksAi j(x) satisfy (6.15). Sometimes such translations can be used to convert a
problem where the matrix entering the constitutive law is not positive-definite to an equivalent
problem where a strictly positive-definite matrix enters the constitutive law. We will see an
application of this in the next section.

6.4. Elasticity as a special case of coupled field equations
Some of the preceding formulas could have been written in a more concise form by repre-
senting the fields J and E not as vectors but as d × m matrices, which respectively have the
fields j1, j2, . . . , jm and e1,e2, . . . ,em as columns, while L(x) is represented as a tensor
with elements L iα jβ(x). With this notation, the constitutive relation (6.1) governs the relation
between the matrix elements jiα of J(x) and the matrix elements e jβ of E(x). The formulas
(6.5) and (6.6) take the form

E ′(x) = VE(x) = E(x)V T , J ′(x) = WJ(x) = J(x)W T ,

where V andW are m ×m matrices with elements vαβ and wαβ . Thus V and W act simply
to multiply the matrix fields E and J on the right by V T andW T . Also note that the fields
J(x) and E(x) satisfy

∇ · J(x) = 0, ∇ ×E(x) = 0, (6.16)

where the divergence and curl act only on the first (space) index of the matrix.
By writing the elasticity equations in the form

τ (x) = C(x)∇u(x), where ∇ · τ = 0, (6.17)

it is evident that elasticity equations are just a special case of the coupled field equations with
d coupled fields, where J(x), E(x), and L(x) can be identified with the stress field τ (x),
displacement gradient ∇u(x), and elasticity tensor field C(x), respectively. In particular,
two-dimensional elasticity can be regarded as equivalent to a two-dimensional thermoelectric
problem. The elasticity tensor field C(x), when regarded as a tensor field L(x) of a coupled
field equation, is rather special. It is self-adjoint and positive-semidefinite rather than positive-
definite, with its nullspace comprised of all antisymmetric matrices. We have

CT = C and CA = 0 wheneverAT = −A,

implying that the matrix elements of C satisfy

Ci jk	 = Ck	i j , Ci jk	 = Ci j	k, Ci jk	 = C j ik	.
Due to the last of these symmetry relations (which is a consequence of the first two), any
matrix-valued field τ (x) solving the equations (6.17) must necessarily be symmetric. Hence
the symmetry of the stress field τ (x) can be regarded as a consequence of the constitutive
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relation; it is not necessary to impose it as an additional constraint on the field. (Conversely,
from a physical viewpoint, the symmetry of the elasticity tensor can be regarded as being a
consequence of the symmetry of the stress tensor field.)

Despite this mathematical equivalence between elasticity and coupled field problems, it
is important to bear in mind that the tensors have different tensorial properties, that is, they
transform differently under a rotation of the coordinate system. When the coordinate system
is rotated from x to x′ = Rx, whereR is a rotation matrix, the matrix elements representing
the coupled fields and moduli undergo the transformation

Jiα(x) →
d∑
m=1

Rmi Jmα(x′), E jβ(x)→
d∑
n=1

Rn jEnβ(x′),

L iα jβ(x) →
d∑

m,n=1

Rmi Rn jLmαnβ (x′),

whereas the matrix elements representing the elastic fields and moduli undergo the transfor-
mation

τi j(x) →
d∑

m,n=1

Rmi Rn jτmn(x′), εk	(x)→
d∑

o,p=1

RokRp	εop(x′),

Ci jk	(x) →
d∑

m,n,o,p=1

Rmi Rn j RokRp	Cmnop(x′).

Naturally the same transformation rules apply if we keep the coordinates fixed but globally
rotate the material and the fields that it contains.

Now suppose that we are given an elasticity tensor field C(x). If we change coordinates to
x′ and map the elasticity tensor field to the equivalent coupled field tensor L(x) in these new
coordinates and then change back to the original coordinates, we obtain a different coupled
field problem than if we had mapped to the equivalent coupled field problem without changing
coordinates. The two coupled field problems are however mathematically equivalent; their
moduli are linked through a relation of the form (6.7).

Due to this difference in transformation under rotation, a two-dimensional elasticity ten-
sor of an isotropic material does not usually map to an isotropic thermoelectric tensor, and
conversely a thermoelectric tensor of an isotropic material does not usually map to an iso-
tropic elasticity tensor. Also, a two-dimensional polycrystalline elastic material comprised
of grains of a single crystal in different orientations does not correspond to a thermoelectric
material constructed from a single crystal, but instead corresponds to a multiphase thermo-
electric material where the number of phases is determined by the number of different grain
orientations. Consequently, the correspondence between elasticity and coupled field problems
is most useful when only a finite number of phases are present in the material, each with a
fixed orientation.

It is possible to transform the elasticity problem into an equivalent coupled field problem
where the matrix entering the constitutive law is symmetric and strictly positive-definite. To
see this, let us consider three-dimensional elasticity and suppose that the elasticity tensor field
is strictly positive-definite on the space of symmetric matrices, that is, there exists a constant
α > 0 such that

P (x) · C(x)P (x) ≥ αP (x) ·P (x),
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for all x, and for all P (x) with P (x) = P T (x), where

P (x) · C(x)P (x) ≡
d∑

i jk	=1

Pi j(x)Ci jk	(x)Pk	(x),

P (x) ·P (x) ≡
∑
i j

Pi j (x)Pi j(x).

Now consider the following translation T , which acts on any matrix-valued field P (x) to
produce the 3× 3 matrix-valued field P ′(x) with elements



P ′
11

P ′
21

P ′
31

P ′
12

P ′
22

P ′
32

P ′
13

P ′
23

P ′
33


=



0 0 0 0 1 0 0 0 1
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
1 0 0 0 1 0 0 0 0





P11

P21

P31

P12

P22

P32

P13

P23

P33


=



P22 + P33

−P12

−P13

−P21

P11 + P33

−P23

−P31

−P32

P11 + P22


.

(6.18)

From this relation we see that T acts on a matrix-valued fieldP (x) to produce the matrix-
valued field

P ′(x) = T P (x) = I Tr[P (x)]− P T (x),
implying that T itself is a rotationally invariant fourth-order tensor with matrix elements

Ti jk	 = δi jδk	 − δi	δ jk. (6.19)

Moreover, because the 3× 3 off-diagonal blocks of the matrix T are antisymmetric matrices,
it follows from the observation made in the previous section that the three columns of P ′(x)
will be divergence free vector fields whenever the columns of P (x) are curl free vector fields.
In particular it follows that T acting on the gradient of the displacement field produces a
divergence free matrix-valued field

J ′(x) = T ∇u(x) satisfying ∇ · J ′ = 0.

This can also be verified by direct computation:

∂ J ′
i j(x)

∂xi
= ∂

∂xi

[
δi j

∂uk(x)
∂xk

− ∂ui (x)
∂x j

]
= ∂2uk(x)

∂x j∂xk
− ∂2ui (x)

∂xi∂x j
= 0.

Consequently, in a medium with a coupled field tensor

L = C + cT ,

the differential constraints (6.16) are solved with fields

J(x) = τ (x)+ cJ ′(x), E(x) = ∇u(x),
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and conversely from any solution to this coupled field problem we can generate solutions to
the original elasticity problem with stress and displacement gradients

τ (x) = J(x)− cT E(x), ∇u(x) = E(x),

where the symmetry of τ (x) follows from the constitutive relation. By taking averages of
these equations we see that the effective coupled field tensor is just a translation of the effective
elastic tensor:

L∗ = C∗ + cT .

We still need to check that L is self-adjoint and positive-definite, at least for some values
of c. The self-adjointness of L is an obvious consequence of the self-adjointness of C and T .
To examine the positive-definiteness we take an arbitrary matrix P and represent it as a sum
of a hydrostatic part pI proportional to the identity matrix, a shear part P s that is symmetric
and trace free, and an antisymmetric part P a:

P = pI + P s + P a with P s = P Ts , TrP s = 0, P a = −P Ta ,
in terms of which the quadratic form associated with L is

P ·LP = (pI + P s) · C(pI + P s)+ c(pI + P s + P a) · (2pI − P s + P a)
≥ α(3p2 + P s ·P s)+ c(6p2 − P s ·P s + P a · P a)
≥ 3(α + 2c)p2 + (α − c)P s · P s + cP a · P a . (6.20)

This expression is clearly nonnegative provided c is chosen with

α > c > 0,

and for such choices of c, L is strictly positive-definite:

P ·LP ≥ α′(3p2 + P s · P s + P a · P a) = α′P · P , where α′ ≡ min{c, α − c} > 0.

Thus we have succeeded in transforming the elasticity problem into an equivalent coupled
field problem with a positive-definite tensor L. One consequence that follows from (6.20),
with α > c > 0, is the inequality

〈∇u〉 ·L∗〈∇u〉 ≥ c〈(∇u)a · (∇u)a〉, where (∇u(x))a = [∇u(x)− (∇u(x))T ]/2,
which shows that the fluctuations in the antisymmetric part of ∇u(x) are bounded. In the
more general setting of minimizing sequences of fields, Bhattacharya (1991) has used T to
bound the fluctuations in the antisymmetric part of ∇u(x) in terms of fluctuations of the
symmetric part of ∇u(x). Such bounds are called Korn-type inequalities and are important
for establishing the existence of solutions to boundary value problems in elasticity; see Kon-
dratiev and Oleinik (1988) and Oleinik, Shamaev, and Yosifian (1992) and references therein.

6.5. Equivalent coupled field problems in two dimensions
In two dimensions we can enlarge the class of equivalent problems. Specifically, because a
local 90◦ rotation acting on a divergence free field produces a curl free field, and vice versa
(see section 3.1 on page 47), we are free to add to the divergence free fields any linear com-
bination of R⊥ acting on the curl free fields, and similarly we are free to add to the curl free
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fields any linear combination of R⊥ acting on the divergence free fields. In other words, if
we let V and W denote the 2m × 2m matrices as given by (6.5), and we let Ṽ , W̃ , and R⊥
denote the 2m × 2m matrices

Ṽ =


ṽ11I ṽ12I . . . ṽ1mI
ṽ21I ṽ22I . . . ṽ2mI
...

...
. . .

...

ṽm1I ṽm2I . . . ṽmmI

 , W̃ =


w̃11I w̃12I . . . w̃1mI
w̃21I w̃22I . . . w̃2mI
...

...
. . .

...

w̃m1I w̃m2I . . . w̃mmI

 ,

R⊥ =


R⊥ 0 . . . 0
0 R⊥ . . . 0
...

...
. . .

...

0 0 . . . R⊥

 , where R⊥ =
(

0 1
−1 0

)
,

then the two sets of fields

E ′(x) = VE(x)+ ṼR⊥J(x),
J ′(x) = W̃R⊥E(x)+WJ(x) (6.21)

are curl free and divergence free, respectively. (The entries ṽi j and w̃i j of Ṽ and W̃ can be
arbitrary and unrelated to the entries vi j and wi j of V and W .) These relations between the
new fields and old fields can be rewritten as a single matrix equation:(

E ′

J ′

)
= K

(
E
J

)
, where K =

(
V ṼR⊥

W̃R⊥ W

)
. (6.22)

We assume that the 4m×4m matrix K entering this equation is nonsingular to ensure that the
old fields can be recovered from the new fields.

Next we look for the constitutive relation between these new fields. The old constitutive
relation J(x) = L(x)E(x) in conjunction with (6.21) implies that

J ′(x) = [WL(x)+W̃R⊥]E(x) = [WL(x)+W̃R⊥][V+ ṼR⊥L(x)]−1E ′(x), (6.23)

where it has been assumed that the matrix V + ṼR⊥L(x) is nonsingular for all x. From
(6.23) we see that the new sets of fields satisfy the constitutive relation

J ′(x) = L′(x)E ′(x),

in a medium with tensor

L′(x) = [WL(x)+ W̃R⊥][V + ṼR⊥L(x)]−1. (6.24)

This transformation fromL(x) toL′(x) is the generalization to coupled field problems of the
fractional linear transformation (4.5).

Since the relation (6.21) between the new and old fields is linear, it immediately follows
that the effective tensors in the two media are linked in the same way that the local tensor
fields L′(x) and L(x) are linked:

L′
∗ = [WL∗ + W̃R⊥][V + ṼR⊥L∗]−1. (6.25)

While this text was being written, Benveniste (1995a) independently recognized that the ef-
fective tensor L∗ would undergo the transformation (6.25) when the local tensor L(x) under-
went the transformation (6.24). He applied this result to obtain phase interchange identities
for two-phase piezoelectric fibrous composites (i.e., with microgeometry independent of x3);
see also Chen (1995), who used a different approach to obtain exact results for the moduli of
two-phase piezoelectric symmetric materials with columnar microstructure.
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6.6. The two-dimensional equations as a system of first-order partial
differential equations

The transformations (6.24) and (6.25) relating the tensor field L′(x) with L(x) and the ef-
fective tensor L′

∗ with L∗ take an even simpler form when expressed in terms of certain ma-
trices, known as fundamental matrices. These matrices arise when the governing equations
are rewritten as a system of first-order partial differential equations for the potentials. For
conductivity and related problems this form of the equations is well known; see, for example,
chapter 2 of Bers (1958). The first-order form of the elasticity equations was introduced by
Ingebrigtsen and Tonning (1969).

The differential constraints that E(x) is curl free and that J(x) is divergence free imply
that there exist m-component potentials φ and ψ such that

E = ∇φ, J = R⊥∇ψ. (6.26)

Substituting these expressions into the constitutive relation J = LE gives the system of
equations

∂ψ

∂x2
= L11 ∂φ

∂x1
+ L12 ∂φ

∂x2
,

− ∂ψ

∂x1
= L21 ∂φ

∂x1
+ L22 ∂φ

∂x2
,

in which the Li j are m ×m matrices with elements

{Li j(x)}αβ = L iα jβ(x).

Further algebraic manipulation of these equations yields a system of equations where the
partial derivatives involving ∂/∂x1 are on the right-hand side, while the partial derivatives
involving ∂/∂x2 are on the left-hand side:

∂η

∂x2
= N (x)

∂η

∂x1
, where η =

(
φ
ψ

)
, (6.27)

in which the 2m × 2m matrix N (x) entering this equation is given by

N =
( −(L22)−1L21 −(L22)−1

L11 − L12(L22)−1L21 −L12(L22)−1

)
.

This matrix is called the fundamental matrix.
Similar manipulation of the effective equation leads to the relation

〈∂η/∂x2〉 = N ∗〈∂η/∂x1〉, (6.28)

where

N ∗ =
( −(L22

∗ )−1L21
∗ −(L22

∗ )−1

L11
∗ −L12

∗ (L22
∗ )−1L21

∗ −L12
∗ (L22

∗ )−1

)
is the effective fundamental matrix, in which the Li j∗ are m ×m matrices with elements

{Li j∗ }αβ = L∗
iα jβ .
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6.7. The covariance property of the fundamental matrix
The fields E ′(x) and J ′(x) defined by (6.22) being curl free and divergence free can be
expressed in terms of potentials φ′ and ψ′ through the relations

E ′ = ∇φ′, J ′ = R⊥∇ψ′, (6.29)

which are analogous to (6.26). By substituting (6.26) and (6.29) back into (6.22) we see that
the potentials φ′ and ψ′ are related to the potentials φ and ψ through the equation(

φ′

ψ′

)
= M

(
φ
ψ

)
, where M =

(
V −Ṽ
W̃ W

)
.

Hence the governing equation (6.27), when expressed in terms of the new potentials, becomes

∂η′/∂x2 =N ′(x)∂η′/∂x1, where η′ =
(
φ′

ψ′

)
, (6.30)

in which the fundamental matrix is now

N ′(x) =MN (x)M−1. (6.31)

In other words, the fundamental matrix undergoes a similarity transformation. Similarly,
the effective equation (6.28), when expressed in terms of the new potentials, becomes

〈∂η′/∂x2〉 =N ′
∗〈∂η′/∂x1〉,

in which the effective fundamental matrix is now

N ′
∗ =MN ∗M−1. (6.32)

We are free to choose all of the matrix elements of M subject only to the constraint that M
be kept nonsingular.

Now consider an n-phase composite where the fundamental matrix N (x) takes the form

N (x) =
n∑
a=1

χa(x)N a,

where the characteristic functions χa(x) represent the geometry of the composite. If we keep
the geometry fixed and consider the effective fundamental matrix N ∗ as a function of the
tensorsN a, a = 1, 2, . . . , n representing the fundamental matrices of the phases, then (6.31)
and (6.32) imply that this function satisfies the covariance relation

N ∗(MN 1M
−1,MN 2M

−1, . . .MN nM
−1) =MN ∗(N 1,N 2, . . .N n)M

−1

for all nonsingular choices of the 2m × 2m matrix M. In other words, if the fundamental
matrices of all of the phases undergo the same similarity transformation, then the effective
fundamental matrix must also undergo this similarity transformation.
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6.8. Linking special classes of antiplane and planar elasticity problems
One useful application of these transformations is to provide a link between certain planar
elasticity problems and pairs of antiplane elasticity problems (Milton and Movchan 1995,
1998; Helsing, Milton, andMovchan 1997). This example is a little artificial in that it assumes
a constant orientation of the phases, but it does show how the transformation can lead to
unexpected connections.

Consider a simply connected, planar, locally orthotropic medium, with the axes of or-
thotropy aligned with the coordinate axes. The constitutive law takes the form( u1,1

u2,2

(u1,2 + u2,1)/
√
2

)
= S

(
σ11

σ22√
2σ21

)
, S =

( s1 s2 0
s2 s4 0
0 0 s6

)
,

and the equilibrium constraint ∇ · σ = 0 implies that there exist stress potentials ψ1(x) and
ψ2(x) such that (

σ11 σ12

σ21 σ22

)
=
(

ψ1,2 ψ2,2

−ψ1,1 −ψ2,1

)
.

We substitute these expressions back into the constitutive law and into the relation σ12 = σ21,
which are implied by symmetry of the stress field. Subsequent manipulating of the resulting
four equations so that the terms involving derivatives with respect to x2 appear on the left
while terms involving derivatives with respect to x1 appear on the right gives the fundamental
form of the elasticity equations, ∂η/∂x2 = N ∂η/∂x1, where

η =


u1

u2
ψ1

ψ2

 , N =


0 −1 −2s6 0

s2/s1 0 0 s2
2/s1 − s4

1/s1 0 0 s2/s1
0 0 −1 0

 .

The effective fundamental elasticity matrix N ∗ governs the relation between the average
fields, 〈∂η/∂x2〉 = N ∗〈∂η/∂x1〉, and is related to the effective compliance matrix S∗ in
the same way that the fundamental elasticity matrix N (x) is related to the local compliance
matrix S(x).

For simplicity let us assume that the moduli are such that for all x

�(x) = (s2(x)+ s6(x))2 − s1(x)s4(x) > 0.

Then the eigenvalues of N (x) at each point x are

λ1 = −λ2 = −iα1, λ3 = −λ4 = −iα2,

where α1(x) and α2(x) are the two real positive roots of the polynomial

s1(x)α4 − 2(s2(x)+ s6(x))α2 + s4(x) = 0.

The corresponding eigenvectors are

v1 =


−p1
iα1 p2

iα1
1

 , v2 =


−p1
−iα1 p2

−iα1
1

 , v
( j)
3 =


−p2
iα2 p1

iα2
1

 , v
( j)
4 =


−p2
−iα2 p1

−iα2
1

 ,
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in which
p1(x) = −s6(x)+

√
�(x), p2(x) = −s6(x)−

√
�(x).

Now suppose that p1 and p2 do not depend on x. (This holds if and only if s6 and �

are both independent of x.) Then v1 and v2 will span a two-dimensional space that does not
depend on x, and similarly v3 and v4 will span a two-dimensional space that does not depend
on x. Thus, with an appropriate choice of M−1, the matrix N ′(x) = MN (x)M−1 will be
block-diagonal. Specifically, the choice

M−1 =


−p1 0 0 −p2

0 p2 p1 0
0 1 1 0
1 0 0 1

 gives N ′ =


0 −1 0 0
α2

1 0 0 0
0 0 0 α2

2
0 0 −1 0

 .

As a consequence, the equation ∂η ′/∂x2 =N ′∂η′/∂x1 decouples into a pair of equations that
can be expressed in the forms(

∂η′
2/∂x2

−∂η′
2/∂x1

)
=m1

(
∂η′

1/∂x1
∂η′

1/∂x2

)
,

(
∂η′

3/∂x2
−∂η′

3/∂x1

)
=m2

(
∂η′

4/∂x1
∂η′

4/∂x2

)
,

wherem1(x) andm2(x) are the 2× 2 matrix-valued fields

m1 =
(
α2

1 0
0 1

)
, m2 =

(
α2

2 0
0 1

)
.

These can be regarded as equations of antiplane elasticity in two different inhomogeneous
anisotropic media, with m1(x) and m2(x) being the antiplane shear matrix fields of these
media. In other words, when s6 is constant and � is constant and positive, the original planar
elasticity equations can be reduced to a pair of uncoupled antiplane elasticity equations. The
uniform field argument implies that when s6 is constant the effective compliance matrix S∗ is
necessarily orthotropic with its axes aligned with the coordinate axes having s∗6 = s6. From
the effective antiplane shear matrices

m∗1 =
(
α2

∗1 0
0 1

)
, m∗2 =

(
α2

∗2 0
0 1

)
associated withm1(x) andm2(x) we can compute the remaining elements s∗1, s∗2, and s∗4

of the effective compliance matrix S∗ associated with S(x) by solving the three equations

(s∗2 + s∗6)
2 − s∗1s∗4 = �, s∗1α

4
∗ j − 2(s∗2 + s∗6)α

2
∗ j + s∗4 = 0, j = 1, 2.

This correspondence between the moduli of the effective antiplane shear matrices and the
moduli of the effective compliance tensor has been verified numerically (Helsing, Milton,
and Movchan 1997). When s6 is constant and � is constant and negative there is still a
correspondence with antiplane elasticity. The original planar elasticity equations can then be
reduced to a single viscoelastic antiplane problem, with a complex shear matrix fieldm(x).

6.9. Expressing the fields in each phase in terms of analytic functions†
Any potential that satisfies the two-dimensional harmonic equation can be expressed as the
real part of an analytic function. In particular, the electrical potential in each isotropic phase
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in a multiphase composite can be expressed as the real part of an analytic function. This
representation is useful, for example, when one seeks a numerical or analytic solution of
the conductivity equations. Similarly, the solutions of the elasticity equations in any two-
dimensional homogeneous body can be expressed in terms of two analytic functions as noted
by Muskhelishvili (1963) in the context of isotropic elasticity [see also Kolosov (1909), who
introduced one of the analytic functions to solve certain elastostatic problems] and by Lekhnit-
skii (1968) in the context of anisotropic elasticity. Many two-dimensional elasticity problems
have been solved through the use of this representation [see, for example, England (1971)].
It is well-known that the representation extends to the more general coupled equations (6.2)
in two dimensions. We can express the fields in any homogeneous, possibly multiconnected,
body in terms of a set of analytic functions. In particular we can express the field inside a
single phase in a multiphase material in terms of a set of analytic functions.

To see this, let us assume that the fundamental matrix N is constant, real, and has distinct
eigenvalues. Unfortunately this excludes elastically isotropic materials from consideration,
but it has the advantage of simplifying the analysis. (If a set of eigenvalues are equal, then
we can recover the relevant results by treating it as the limit of a sequence of problems where
these eigenvalues are distinct but close.)

The eigenvalues are necessarily complex when the tensor L is positive-semidefinite. By
eliminating the vector v from the relations

N
(
u
v

)
=
( −(L22)−1L21u− (L22)−1v
(L11 −L12(L22)−1L21)u− L12(L22)−1v

)
= µ

(
u
v

)
,

defining an eigenvalue µ and an associated eigenvector, we arrive at the equation

[L11 + µ(L12 +L21)+ µ2L22]u = 0, (6.33)

which has a solution for u if and only if µ is a root of the characteristic polynomial

det[L11 + µ(L12 +L21)+ µ2L22] = 0. (6.34)

Now the positive-definiteness of the tensor L implies that the inequality

a1L
11a1 + a1L

12a2 + a2L
21a1 + a2L

22a2 > 0

holds for all nonzero choices of the vectors a1 and a2. In particular, by setting a2 = µa1

we see that the matrix entering the relation (6.34) is strictly positive-definite when µ is real,
implying that µ must be complex for the equation to have a solution. Hence the eigenvalues
of N are complex and because N is real they occur in complex conjugate pairs.

Since these eigenvalues by assumption are distinct, we can choose a complex-valued ma-
trix M so that N ′ = MNM−1 is diagonal of the form

N ′ =



µ1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . µm 0 . . . 0
0 . . . 0 µ1 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . µm


,
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in which µα is the complex conjugate of µα for α = 1, 2, . . . ,m. The governing equation
(6.30) now reduces to a set of 2m uncoupled equations:

∂φ′
α

∂x2
= µα

∂φ′
α

∂x1
,

∂ψ ′
α

∂x2
= µα

∂ψ ′
α

∂x1
,

which have the solutions

φ′
α = fα(x1 + µαx2), ψ ′

α = gα(x1 + µαx2),

involving m analytic functions f1(z), . . . , fm(z) and m analytic functions g1(z), . . . , gm(z).
Having established that the coupled equations in a homogeneous medium have a solution

in terms of analytic functions, we can look for this solution directly without reference to the
fundamental matrix. Accordingly, let us look for a solution with m curl free fields eβ(x) of
the form

eβ(x) = uβ∇[ f (c · x)] = uβc f ′(c · x), (6.35)

where the amplitude factors uβ for β = 1, 2, . . . ,m are a set of complex constants, dependent
on L, c = (c1, c2) is a complex two-dimensional vector with complex numbers c1 and c2 as
elements, f ′ is the derivative of the analytic function f , and

c · x ≡ c1x1 + c2x2.

Notice that this scalar product does not represent the usual inner product of two complex
vectors, in particular, c · c is not generally real.

From the constitutive relation (6.2) the associated current fields are

jα(x) =
m∑

β=1

Lαβcuβ f ′(c · x).

Since these are divergence free, it follows that

∇ · jα(x) = ∇ · [
m∑

β=1

Lαβcuβ f ′(c · x)] =
m∑

β=1

c · Lαβcuβ f ′′(c · x) = 0,

and this will be guaranteed provided that

m∑
β=1

c ·Lαβcuβ = 0 for α = 1, 2, . . . ,m. (6.36)

This gives us a set ofm complex linear equations for them complex amplitude factors uβ . The
complex two-dimensional vector c should be chosen so that these equations have a nontrivial
solution, that is, so that the determinant associated with the equations vanishes.

The positive-definiteness of the matrix L22 implies that (6.36) only has the trivial solution
u1 = u2 = . . . = um when c1 = 0. Therefore we can assume that c1 is nonzero. Since we
are free to multiply c by any nonzero complex number λ and in particular λ = 1/c1 while
redefining the function f to absorb the factor of 1/λ, it follows that we can assume that c1 = 1
without any loss of generality. Substituting

c =
(
1
µ

)
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into (6.36) we obtain (6.33), which has a nontrivial solution if and only if µ is a root of
the characteristic polynomial (6.34). For a given µ and u satisfying (6.33) the fields (6.35)
represent a particular solution. Other choices for µ and u generate additional solutions. In
particular, the pair µ and u will generate the solution

eβ(x) = uβ∇[g(c · x)] = uβcg′(c · x),
in which g is another analytic function with derivative g ′. The most general solution will
be a superposition of all possible solutions, which total 2m in number, corresponding to the
2m roots of the characteristic polynomial (which can be grouped into m complex conjugate
pairs). If we are seeking real-valued fields, then the analytic function g associated with µ and
u should be set equal to the analytic function f associated with µ and u.

The form of the solution (6.35) closely resembles a wave solution. In particular, for the
choice of analytic function f (c · x) = eic·x the vector c can be interpreted as a complex
wavevector. Accordingly, in the same way that wave solutions extend to three-dimensional
problems, so too do solutions of the form (6.35) extend to three-dimensional coupled field
problems. The three-dimensional complex vector c is taken so that the equations (6.36) have
a solution for the m-dimensional vector u.

In particular, solutions to the three-dimensional Laplace equation �φ(x) = 0 can be
generated in this manner. The following is a calculation that I did with François Murat,
although I suspect that we were not the first. Making the substitution L = I , we see that
(6.36) has a nontrivial solution when the components of the complex vector c are chosen with

c2
1 + c2

2 + c2
3 = 0.

For example, we could take a real value of α between 0 and 2π and set

c1 = 1, c2 = i cosα, c3 = i sinα,
where α is real and between 0 and 2π . Since 1/z is analytic for all z �= 0, it follows that
1/(c · x) is a solution of the Laplace equation when c · x �= 0 and consequently so is

φ(x) =
∫ 2π

0

dα
x1 + i x2 cosα + i x3 sinα

for all x1 �= 0.

To integrate this we introduce the complex variable w = ρeiα . Then the integral becomes
a contour integral

φ(x) =
∫
C

dw
iw[x1 + i x2(w +w−1)/2+ x3(w −w−1)/2]

=
∫
C

2dw
[i x3 − x2][w + i(r + x1)/(i x3 − x2)][w − i(r − x1)/(i x3 − x2)]

around the contour C representing the unit circle |w| = 1 in the complex w-plane, where
r = |x|. This integral can then be evaluated using the method of residues. Depending on the
sign of x1, either one pole or the other is inside the unit circle and we have

φ(x) = 2π/r when x1 > 0
= −2π/r when x1 < 0.

Thus there is a discontinuity in the potential across the plane x1 = 0. On one side of the plane
the potential is precisely the same as that generated from a single charge at the origin. Across
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the other side the potential is the same as that generated from a single charge at the origin of
the same magnitude but opposite sign. The discontinuity at the plane x1 = 0 arises from the
singularity of the function 1/(c · x) along the line x1 = 0, x2 = −x3 tanα.

More generally, the potential in a region � where �φ(x) = 0 can be treated as arising
from source charges lying outside that region. The potential generated by each source charge
can then be mimicked by a superposition of analytic functions, provided that there exists a
plane which separates the source charge from the region �. In this way we see that analytic
functions can be used to solve the three-dimensional Laplace equation in any convex domain.
An extension of this result should have applications to boundary value problems in three-
dimensional elasticity. Suppose that a convex domain contains a homogeneous anisotropic
medium that does not have a closed form expression for its Green’s function in real space.
To generate a numerical solution one could use a superposition of a finite number of plane
waves, but it would be better to use a superposition of analytic function solutions, since the
wider choice of functions will allow for a better fit to the boundary data, particularly if the
boundary data are almost singular.
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7
Assemblages of spheres, ellipsoids, and

other neutral inclusions

Since the effective properties of a composite depend in a complicated way on the microstruc-
ture, it is useful to have realistic model composites for which the effective properties can be
computed exactly. One such model, called the coated sphere assemblage, was introduced by
Hashin (1962) as a model of a composite comprised of spherical grains of one phase embed-
ded in a matrix of a second phase. This model and its generalizations are the subject of this
chapter.

7.1. The coated sphere assemblage
Hashin (1962) found that the effective bulk modulus of the assemblage could be computed
exactly for all volume fractions of the phases. Using a similar analysis, Hashin and Shtrikman
(1962) found an exact expression for the effective conductivity of the assemblage. To see
how their argument works, consider a coated sphere consisting of a spherical core of phase
1 of isotropic conductivity σ1I fitting snugly inside a concentric spherical shell of phase
2 of isotropic conductivity σ2I , with a core radius rc and exterior radius re. This coated
sphere is inserted as an inclusion in an infinite matrix of conductivity σ0I within which a
uniform current field flows from infinity. Suppose for the moment that σ1 > σ2. From a
physical standpoint it is clear that when σ0 = σ1 the inclusion has lower conductivity than
its surroundings and current will tend to flow around this obstacle. On the other hand, if
σ0 = σ2, then the inclusion has higher conductivity and current will be attracted towards
it. This suggests, but by no means proves, that there may be an intermediate value of σ0 at
which the current is neither attracted nor diverted around the inclusion but remains completely
unperturbed in the exterior region. In other words, inserting this coated sphere into the matrix
would not disturb the uniform current outside the sphere, as illustrated in figure 7.1 on the
next page.

Since the equations of conductivity are local equations, we could continue to add similar
coated spheres without disturbing the electric or current fields in the surrounding matrix. By
adding coated spheres of various sizes ranging to the infinitesimal we could completely fill all
space, aside from a set of measure zero, with a periodic assemblage of these coated spheres.
In this way we obtain a two-phase composite. Each coated sphere in the assemblage is taken
as a scaled version of the original prototype coated sphere, as illustrated in figure 7.2 on
the following page. For simplicity, let us assume that the coated spheres do not overlap the
boundary of the unit cell of periodicity. Then during the process of adding the coated spheres
the flux of current and electrical potential at the boundary of the unit cell remains unaltered.
Consequently, the effective conductivity does not change at any stage. At the end of the

113
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1σ 2σσ0

Figure 7.1. When the conductivity σ0 of a medium is chosen appropriately one can insert a
coated sphere, with core conductivity σ1 and coating conductivity σ2, into the mediumwithout
disturbing the surrounding uniform current field.

Figure 7.2. Cross section of the Hashin coated sphere assemblage. Each coated sphere is
identical up to a scale factor to any other coated sphere in the assemblage. The figure is
schematic in that the coated spheres should fill all space and in that the spheres are not neces-
sarily centered on the cross-sectional plane.

construction procedure we can identify the initial conductivity σ0I with the final effective
conductivity σ∗I of the sphere assemblage.

It remains to see if we can find this special value of σ0 = σ∗. Accordingly, we consider a
single coated sphere centered at the origin and look for a solution to the conductivity equations
with a uniform field in the exterior region, denoted here by phase ∗, and traditionally called the
effective medium. Using polar coordinates, we look for a solution with the electric potentials

φ1(x) = a1r cos θ in the core,
φ2(x) = (a2r + b2/r 2) cos θ in the coating,
φ∗(x) = a∗r cos θ in the effective medium, (7.1)

where r = |x| and θ measures the angle between the unit vector v representing the direction
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of the applied field and x. These potentials generate uniform electric and current fields

e1 = ∇φ1 = a1v = a1[cos θ vr − sin θ vθ ],
e∗ = ∇φ∗ = a∗v = a∗[cos θ vr − sin θ vθ ],
j1 = σ1a1v = σ1a1[cos θ vr − sin θ vθ ],
j∗ = σ∗a∗v = σ∗a∗[cos θ vr − sin θ vθ ] (7.2)

inside the core and effective medium, and a combination of uniform and dipolar fields,

e2 = ∇φ2 = [a2 − 2b2/r 3] cos θ vr − [a2 + b2/r 3] sin θ vθ ,
j2 = σ2∇φ2 = σ2[a2 − 2b2/r 3] cos θ vr − σ2[a2 + b2/r 3] sin θ vθ (7.3)

inside the shell, where vr is the unit radial vector and vθ is the unit vector perpendicular to vr
lying in the plane containing x and v, in terms of which v = cos θ vr − sin θ vθ .

Since these potentials satisfy Laplace’s equation in each of the three regions, we only need
to satisfy the required compatibility conditions at the interfaces. Substituting the conditions

a1 = a2 + b2/r 3
c , a∗ = a2 + b2/r 3

e (7.4)

for continuity of potential at rc and re into the conditions

σ1a1 = σ2[a2 − 2b2/r 3
c ], σ∗a∗ = σ2[a2 − 2b2/r 3

e ]

for continuity of the normal component of the flux j · vr , gives
a2 = −b2[σ1 + 2σ2]/[r 3

c (σ1 − σ2)] = −b2[1+ 3σ2/(σ1 − σ2)]/r 3
c ,

a2 = −b2[σ∗ + 2σ2]/[r 3
e (σ∗ − σ2)] = −b2[1+ 3σ2/(σ∗ − σ2)]/r 3

e . (7.5)

Clearly these equations have a nontrivial solution for a2 and b2 if and only if the right-hand
sides of (7.5) match, that is,

f1σ2

σ∗ − σ2
= σ2

σ1 − σ2
+ f2

3
(7.6)

or, equivalently, if and only if σ∗ is given by the Hashin-Shtrikman formula

σ∗ = σ2 + 3 f1σ2(σ1 − σ2)

3σ2 + f2(σ1 − σ2)
, (7.7)

where
f1 = 1− f2 = r 3

c /r
3
e (7.8)

is the volume fraction occupied by phase 1 in the coated sphere. The remaining set of coated
spheres inserted into the matrix is chosen to have the same ratio (7.8) of inner to outer radius
to ensure that they too can be inserted without disturbing the field. Thus f1 is the actual
proportion of phase 1 in the resulting coated sphere assemblage and σ∗ represents its effective
conductivity.

It might be argued that such models are unrealistic. Clearly such periodic assemblages
could never be built in practice because the construction of a single unit cell requires the
addition of infinitely many coated spheres ranging to infinitesimal sizes. However, we could
stop the construction process once, say, less than 1% of the effective medium remains. This
remaining effective medium could then be replaced with phase 2 with typically little change
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to the effective conductivity. Indeed (7.7) is easily extended to the two-dimensional case and
the transverse effective conductivity σ∗ of an assemblage of coated cylinders,

σ∗ = σ2 + 2 f1σ2(σ1 − σ2)

2σ2 + f2(σ1 − σ2)
, (7.9)

agrees remarkably well with the transverse conductivity of a hexagonal array of conducting
cylinders in a conducting matrix over a wide range of volume fractions f1 and conductivity
ratios σ1/σ2. Such an array can be viewed as a hexagonal array of touching coated cylinders,
comprised of a core of phase 1 and a coating of phase 2 surrounded by a remaining small
fraction of phase 2 (occupying about 4% of the total area). The approximation (7.9) breaks
down only when the ratio σ1/σ2 is large and the cylinders are close to touching. More accurate
approximation formulas are provided by Perrins, McKenzie, and McPhedran (1979), among
others.

We will see later, in sections 16.5 on page 346 and 23.1 on page 457, that the effective
conductivity σ∗ of any isotropic composite of phases 1 and 2 satisfies the bounds of Hashin
and Shtrikman (1962):

σ1 + d f2σ1(σ2 − σ1)

dσ1 + f1(σ2 − σ1)
≥ σ∗ ≥ σ2 + d f1σ2(σ1 − σ2)

dσ2 + f2(σ1 − σ2)
, (7.10)

where d = 2 or 3 is the dimensionality of the composite and it is assumed that the phases have
been labeled so that σ1 > σ2. Thus the coated sphere and coated cylinder assemblages with
phase 1 as core and phase 2 as coating attain the lower bound and the coated sphere, and coated
cylinder assemblages with phase 2 as core and phase 1 as coating attain the upper bound. Thus
they represent isotropic materials that, for fixed volume fractions f1 and f2 = 1 − f1, have
the minimum or maximum possible effective conductivity.

Following Hashin (1962) let us now find a formula for the effective bulk modulus of the
coated sphere assemblage. The two components are assumed to be elastically isotropic. Again
one considers a prototype coated sphere with a central core radius rc of phase 1, with bulk
and shear moduli κ1 and µ1, surrounded by a concentric coating radius re of phase 2, with
bulk and shear moduli κ2 and µ2. The coated sphere is embedded in a stress free state in an
effective medium with nonzero bulk and shear moduli κ∗ and µ∗. The bulk modulus κ∗ needs
to be selected carefully so that there exists a solution to the elasticity equations with a purely
hydrostatic constant stress field τ = −pI in the region outside the coated sphere. We look
for a solution with a radial displacement field

u1(x) = (a1r)vr in the core,
u2(x) = (a2r + b2/r 2)vr in the coating,
u3(x) = (a3r)vr in the effective medium, (7.11)

in which vr is the unit vector in the radial direction. This displacement is simply a dilation
in the core and effective medium, and consequently the stress and strain fields in these two
regions are uniform and hydrostatic.

The conditions for continuity of the displacement field,

a1 = a2 + b2/r 3
c , a∗ = a2 + b2/r 3

e ,

and the conditions for continuity of the radial stress τ · vr ,
κ1a1 = κ2a2 − 4µ2b2/3r 3

c , κ∗a∗ = κ2a2 − 4µ2b2/3r 3
e ,
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have a nonzero solution for the coefficients a1, a2, b2, and a∗ if and only if

f1
κ∗ − κ2

= 1
κ1 − κ2

+ 3 f2
3κ2 + 4µ2

(7.12)

or, equivalently, if and only if

κ∗ = κ2 + f1
1/(κ1 − κ2)+ f2/(κ2 + 4µ2/3)

. (7.13)

Provided that the conditions (7.12) and (7.13) are fulfilled, the effective bulk modulus does
not change as additional coated spheres are inserted in the effective medium. By applying the
same reasoning as before we conclude that κ∗ given by (7.12) or (7.13) represents the effective
bulk modulus of the sphere assemblage. Prior to Hashin’s work, Kerner (1956) proposed a
formula equivalent to (7.13) as an approximation to the effective bulk modulus of a suspension
of spherical inclusions of phase 1 in a matrix of phase 2.

Hashin (1985) has shown that these arguments apply even when the phases are nonlinear
and the assemblage undergoes a finite elastic deformation under hydrostatic compression. The
key point is the symmetry of the problem. Under hydrostatic compression each coated sphere
remains spherical, and each will deform in proportion to its size. Therefore the deformation
of the assemblage can be obtained from the deformation of a single coated sphere, which is
easy to calculate numerically.

7.2. Multicoated sphere assemblages
It is clear from (7.2) that the field inside the core region of each coated sphere is uniform.
Accordingly,we can treat it as an effectivemedium into which other families of coated spheres
could be inserted. For example, suppose that we have three isotropic phases with conductivity
tensors σ1, σ2, and σ3. A coated sphere with a core of phase 1 of radius rc and coating of phase
2 of radius re can, according to (7.7), be inserted into an effective medium of conductivity

σ0 = σ2 + 3p1σ2

p2 − 3σ2/(σ2 − σ1)
, (7.14)

where p1 = 1 − p2 = r 3
c /r

3
e . Now consider an assemblage built from coated spheres each

consisting of a core of the effective medium σ0 surrounded by an outer shell of phase 3.
According to (7.7), this assemblage has effective conductivity

σ∗ = σ3 + 3(1− f3)σ3

f3 − 3σ3/(σ3 − σ0)
, (7.15)

where f3 is the volume fraction of component 3.
Now we can replace the cores of material 0 with coated spheres of phase 1 surrounded

by phase 2. The easiest way to do this is to replace each core entirely by a single coated
sphere, thereby generating a space filling assemblage of doubly coated spheres, as illustrated
in figure 7.3 on the next page, each consisting of a core of phase 1 surrounded by a coating of
phase 2 that is in turn surrounded by a coating of phase 3. By substituting (7.15) into (7.14)
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we see that this doubly coated sphere assemblage has conductivity

σ∗ = σ3 + 3(1− f3)σ3

f3 −
3σ3

σ3 − σ2 −
3 f1σ2

f2 −
3(1− f3)σ2

σ2 − σ1

, (7.16)

where f1 = p1(1 − f3), f2 = p2(1 − f3), and f3 are the volume fractions of the three
phases in the composite. By repeating this construction procedure one can generate continued
fraction expressions for the conductivity of assemblages of multicoated spheres (or cylinders)
with an arbitrary number of coatings. The idea of considering multicoated sphere or cylinder
assemblages is a natural one. It was proposed by Schulgasser (1977); see also Milton (1981a,
1981b), Lurie and Cherkaev (1985), and Milgrom (1989) among other papers.

Figure 7.3. Cross section of the doubly coated sphere assemblage for a three-component
material. The doubly coated spheres should be densely packed and so fill all space. Reprinted
with permission from Milton (1981b). Copyright 1981, Springer-Verlag.

7.3. A phase interchange identity and inequality
For two-phase assemblages of multicoated spheres each with a core of phase 1 (or phase
2) surrounded by successive shells alternating between phase 1 and phase 2, the effective
conductivity satisfies the phase interchange identity

σ∗(σ1, σ2)σ∗(σ2, σ1)

σ1σ2
+ σ∗(σ1, σ2)+ σ∗(σ2, σ1)

σ1 + σ2
= 2, (7.17)

which relates the effective conductivity σ∗(σ1, σ2) of the assemblage to the effective conduc-
tivity σ∗(σ2, σ1) when the phases are interchanged while keeping the microgeometry fixed.
This is proved by induction (Milton 1981a).
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We assume that (7.17) is satisfied for an assemblage of spheres with m coatings ; This is
certainly true when m = 0, since then the assemblage consists purely of phase 1 or phase
2, and σ∗(σ1, σ2) equals σ1 or σ2. Let σ0(σ1, σ2) denote its effective conductivity and sup-
pose that we now coat each multicoated sphere in this assemblage with phase 2 to form an
assemblage with effective conductivity σ∗(σ1, σ2). The key step is to rewrite (7.17) applied to
σ0(σ1, σ2) in the equivalent form

σ2(2σ1 + σ2)

σ2 − σ0(σ1, σ2)
+ σ1(2σ2 + σ1)

σ1 − σ0(σ2, σ1)
= σ1 + σ2. (7.18)

Now from our formula (7.6) for the effective tensor of a coated sphere assemblage we have

σ2

σ2 − σ0(σ1, σ2)
= p1σ2

σ2 − σ∗(σ1, σ2)
+ p2

3
, (7.19)

where p1 = 1− p2 is the volume fraction occupied by the last coating in the composite.
Interchanging the roles of σ1 and σ2 in this expression gives

σ1

σ1 − σ0(σ2, σ1)
= p1σ1

σ1 − σ∗(σ2, σ1)
+ p2

3
. (7.20)

A direct substitution of (7.19) and (7.20) into (7.18) produces

σ2(2σ1 + σ2)

σ2 − σ∗(σ1, σ2)
+ σ1(2σ2 + σ1)

σ1 − σ∗(σ2, σ1)
= σ1 + σ2,

thereby verifying that σ∗(σ1, σ2) satisfies (7.17). Coating with phase 1 instead of phase 2
would have produced the same result because (7.18) is symmetric with respect to σ1 and
σ2. Hence an assemblage with m + 1 coatings satisfies (7.17) and by induction the phase
interchange relation must be true for assemblages with arbitrarily many coatings.

In particular, if the multicoated sphere is built from infinitesimally thin, equally spaced
concentric layers, alternating between phase 1 and phase 2, then the function σ∗(σ1, σ2) is
symmetric in its arguments,

σ∗(σ2, σ1) = σ∗(σ1, σ2), (7.21)

and by substituting this into (7.17) we obtain the formula of Schulgasser (1983),

σ∗ =
√
2σ1σ2(σ1 + σ2)2 + σ 2

1 σ
2
2 − σ1σ2

σ1 + σ2
, (7.22)

for the conductivity of this phase interchange invariant sphere assemblage. Unlike the formula
(3.9), which implies that

√
σ1σ2 is the effective conductivity of any isotropic two-dimensional

symmetric material (such as a checkerboard), (7.17) is not universally valid for isotropic three-
dimensional symmetric materials. For example, if the symmetric material is biconnected (like
a porous conducting rock filled with conducting fluid), then both σ∗(σ1, σ2) and σ∗(σ2, σ1)

become asymptotically proportional to σ1 in the limit as σ1 tends to infinity, with σ2 held
fixed, and in this limit the left-hand side of (7.17) is proportional to σ1/σ2 and so is clearly
greater than the right-hand side.

In fact, it has been established that the inequality

σ∗(σ1, σ2)σ∗(σ2, σ1)

σ1σ2
+ σ∗(σ1, σ2)+ σ∗(σ2, σ1)

σ1 + σ2
≥ 2 (7.23)
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is universally valid for two-phase materials with isotropic components and isotropic effec-
tive conductivity tensors. This phase interchange inequality was first conjectured by Milton
(1981a). Avellaneda, Cherkaev, Lurie, and Milton (1988) proposed a proof, but there was
an error in the published analysis [following equation (138)]. This error was corrected by
Nesi (1991), who also derived interchange inequalities for multiphase media, and by Zhikov
(1991). It follows from (7.23) and (7.21) that if the material is phase interchange invariant
(like a three-dimensional checkerboard), then

σ∗ ≥
√
2σ1σ2(σ1 + σ2)2 + σ 2

1 σ
2
2 − σ1σ2

σ1 + σ2
, (7.24)

with equality holding for the phase interchange invariant sphere assemblage.
Another phase interchange inequality that is universally valid for two-phase materials

with isotropic components and isotropic effective conductivity tensors is the inequality of
Schulgasser (1976),

σ∗(σ1, σ2)σ∗(σ2, σ1) ≥ 1.

This turns out to be weaker than the inequality (7.23), given that σ∗(σ1, σ2) satisfies the
Hashin-Shtrikman bounds (7.10).

7.4. Assemblages of spheres with varying radial and tangential
conductivity

Since we are able to find the effective conductivity of multicoated spheres with arbitrarily
many coatings, it must naturally be possible to solve for the effective conductivity when the
conductivity varies smoothly with the radius. Consider a radially symmetric spherical inclu-
sion with radial conductivity λn(r), tangential conductivity λt(r), and exterior radius re. We
want to find an effective medium with constant conductivity σ∗ chosen so that inserting the
spherical inclusion does not disturb a uniform field outside the inclusion.

The solution (7.1) suggests that we should try a potential of the form

φ(x) = ϕ(r)r cos θ, for r ≤ re,
= ϕ(re)r cos θ, for r > re. (7.25)

We could of course absorb the factor r into ϕ(r) but it is helpful, for later comparison with
the results for ellipsoidal assemblages, to write the potential in the form (7.25). This potential
generates an electric field

e = ∇φ = d
dr

(
rϕ(r)

)
cos θ vr − ϕ(r) sin θ vθ , for r < re,

= ϕ(re)[cos θ vr − sin θ vθ ], for r > re,

and a current field

j = σ∇φ = λn(r)
d
dr

(
rϕ(r)

)
cos θ vr − λt (r)ϕ(r) sin θ vθ , for r < re,

= ϕ(re)[λn(r) cos θ vr − λt (r) sin θ vθ ], for r > re,

which has divergence

∇ · σ∇φ =
{
1
r2

d
dr

[
r2λn(r)

d
dr

(
rϕ(r)

)]
− 2

λt(r)ϕ(r)
r

}
cos θ, for r < re,

= 0, for r > re.
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Setting the divergence of the current to zero inside the sphere gives the second-order differ-
ential equation

d
dr

[
r2λn(r)

d
dr

(
rϕ(r)

)]
= 2rλt (r)ϕ(r) (7.26)

for ϕ(r). Also, continuity of the normal component of the flux j · vr through the exterior
surface of the sphere implies that

σ∗ϕ(re) = λn(re)
[
d
dr

(
rϕ(r)

)]
r=re

. (7.27)

Now let us introduce for r ≤ re the function

σ∗(r) ≡ λn(r)
ϕ(r)

d
dr

(
rϕ(r)

)
, (7.28)

which according to (7.27) represents the effective conductivity of an assemblage of spherical
inclusions the prototype of which is formed by removing all material outside the radius r
from the original sphere of radius re; all of the other spherical inclusions in the assemblage
are scaled versions of this prototype. From the definition (7.28) of σ∗(r) we have

d
dr

[
r2λn(r)

d
dr

(
rϕ(r)

)]
= rϕ(r)

d
dr

[
rσ∗(r)

]
+ rσ∗(r)

d
dr

(
rϕ(r)

)
= rϕ(r)

d
dr

[
rσ∗(r)

]
+ rϕ(r) [σ∗(r)]2

λn(r)
.

By substituting this into (7.26) and canceling out the common factor of ϕ(r) we see that σ∗(r)
solves the Ricatti equation

d
dr

[
rσ∗(r)

]
+ [σ∗(r)]2

λn(r)
= 2λt (r),

which is the continuum analog of the continued fraction expansion (7.16). Once the function
σ∗(r) has been found we can recover the potential ϕ(r) from the formula

log[rϕ(r)] = log[reϕ(re)]−
∫ re

r
dr ′ σ∗(r ′)

λn(r ′)
,

implied by (7.28). This result, that σ∗(r) satisfies a Ricatti equation, is due to Luc Tartar
(private communication).

7.5. The conductivity of Schulgasser’s sphere assemblage
The second-order differential equation (7.26) can be explicitly solved when λn(r) and λt (r)
are constants independent of r . Physically this means that the spherical inclusion is formed
from a single uniaxial crystal phase with the crystal axis directed radially outward, as illus-
trated in figure 7.4 on the following page. This polycrystalline composite is called a Schul-
gasser sphere assemblage because it was Schulgasser (1983) who realized that an exact ex-
pression could be obtained for its effective conductivity. Suppose that we set λn(r) = λ1 and
λt (r) = λ2, where λ1 and λ2 denote the axial and transverse conductivity of the crystal phase.
If we look for a solution of the form

ϕ(r) = rα−1,
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then (7.26) will be satisfied provided α is a root of the quadratic

α2λ1 + αλ1 − 2λ2 = 0. (7.29)

Only the solution
α = 1

2 [−1+
√
1+ 8(λ2/λ1) ]

gives an associated electric field that is square integrable. The effective conductivity is, from
(7.27),

σ∗ = λ1

ϕ(re)

[
d
dr

(
rϕ(r)

)]
r=re

= αλ1 = λ1

2

[
−1+

√
1+ 8(λ2/λ1)

]
. (7.30)

λ1

λ1

Figure 7.4. The prototype sphere in the Schulgasser sphere assemblage. The sphere has
conductivity λ1 in the radial direction and conductivity λ2 in the tangential direction. When
various sized spheres of this type are packed to fill all space the resulting composite has
effective conductivity given by (7.30).

Following Schulgasser (1983) we can use this result as a check on the formula (7.22)
for the effective conductivity of the phase interchange invariant sphere assemblage. In this
material the concentric layers in each sphere are finely spaced, and we can homogenize the
conductivity equations on an intermediate length scale with no change to the overall effective
conductivity of the assemblage. In other words, the microstructure of the phase invariant
sphere assemblage can be replaced locally by a uniaxial radially oriented crystalline material
with radial and tangential conductivities

λ1 = 2σ1σ2/(σ1 + σ2), λ2 = (σ1 + σ2)/2, (7.31)

given by the lamination formula applied at volume fraction f1 = f2 = 0.5. By a simple
substitution of (7.31) into (7.30) we recover the formula (7.22). We will see in section 24.8
on page 510 that the Schulgasser sphere assemblage has the lowest effective conductivity
amongst all isotropic polycrystalline microgeometries. When λ2 > λ1 we can also derive this
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result from the phase interchange inequality (7.23). Given any periodic isotropic microgeom-
etry we replace each crystal grain by a laminate with finely spaced layers of equal proportions
of two isotropic materials. The conductivities

σ1 = λ2 +
√
λ2

2 − λ1λ2, σ2 = λ2 −
√
λ2

2 − λ1λ2,

of these isotropic materials are chosen so that (7.31) is satisfied. Since the resulting composite
is a symmetric material, σ∗(σ2, σ1) = σ∗(σ2, σ1) and equation (7.23) implies the bound

σ∗ ≥ −σ1σ2/(σ1 + σ2)+
√
[σ1σ2/(σ1 + σ2)]2 + 2σ1σ2 = λ1

2

[
−1+

√
1+ 8(λ2/λ1)

]
.

This establishes that the conductivity of the given microgeometry is greater than or equal to
the conductivity of the Schulgasser sphere assemblage.

7.6. The conductivity of an assemblage of spheres with an isotropic
core and polycrystalline coating

Let us extend Schulgasser’s model slightly and allow a spherical isotropic core of conductivity
σ0 and radius rc positioned at the center of the inclusion. In other words, we assume that the
radial and tangential conductivity functions have the forms

λn(r) = λt (r) = σ0 for r < rc, λn(r) = λ1 and λt (r) = λ2 for rc < r < re.

Then inside the core and polycrystalline phase (7.26) is solved by

ϕ(r) = a1 for r < rc,

= c1rα1−1 + c2rα2−1 for rc < r < re,

where
α1 = 1

2 [−1+
√
1+ 8(λ2/λ1) ], α2 = 1

2 [−1−
√
1+ 8(λ2/λ1) ]

are the roots of (7.29). The equations of continuity of radial flux and potential at rc and re,

λ1[c1α1rα1−1
c + c2α2rα2−1

c ] = σ0a1 = σ0[c1rα1−1
c + c2rα2−1

c ],
λ1[c1α1rα1−1

e + c2α2rα2−1
e ] = σ∗[c1rα1−1

e + c2rα2−1
e ],

imply that

σ∗ = α1λ1 + 3K f K0 λ1(σ0 − α1λ1)

3Kλ1 + (σ0 − α1λ1)(1− f K0 )
, (7.32)

where f0 = r 3
c /r

3
e is the volume fraction occupied by the core of phase 0 material and

K = 1
3 (α1 − α2) = 1

3

√
1+ 8(λ2/λ1). (7.33)

When λ1 = λ2 = σ2 we have α1 = 1, α2 = 1 − d , and K = 1, and so (7.32) reduces to the
formula (7.7) for the conductivity of a coated sphere assemblage of two isotropic phases.

This example illustrates that the dependence of σ∗ on the volume fraction f0 need not be
linear in the limit where f0 is small. Indeed we see from (7.32) that the correction to σ∗ due
to the presence of a small fraction f0 � 1 of core material is of order f K0 . This has a simple
physical interpretation. When λ1 � λ2 current prefers to flow toward the center of each sphere
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and accordingly σ∗ has a strong dependence on σ0, whereas when λ1 � λ2 it is difficult for
current to penetrate into the coated sphere because of the high resistivity in the radial direction
and accordingly σ∗ has a weak dependence on σ0. These field concentration effects become
more pronounced as the volume fraction of the core decreases, and this accounts for the f K0
algebraic dependence of the correction to σ∗ on f0. When the core material is absent ( f0 = 0)
the fields e(x) and j(x) become singular at the sphere center and either grow to infinity or
damp to zero, depending on whether the ratio λ1/λ2 is greater or less than 1.

There is an obvious analogous microgeometry in two dimensions with effective conduc-
tivity

σ∗ =
√
λ1λ2 + 2K f K0 λ1(σ0 −

√
λ1λ2)

2Kλ1 + (σ0 −
√
λ1λ2)(1− f K0 )

, where K =
√
λ2/λ1. (7.34)

Nesi (1996) has shown that this expression is in fact the lowest possible effective conductivity
amongst all two-dimensional isotropic composites obtained by mixing a polycrystalline ma-
terial with principal conductivities λ1 and λ2 > λ1 with a proportion f0 of isotropic material
with conductivity σ0 ≥

√
λ1λ2 (see section 23.8 on page 480).

One can generalize the two-dimensional Schulgasser model and allow the conductivity
tensor in each circular inclusion to have a radially varying antisymmetric part. Avellaneda
(1991) used such models for studying convection enhanced diffusion.

7.7. Assemblages of ellipsoids and their associated Ricatti equations†
Most of the above treatment can be generalized to assemblages of ellipsoids. I first introduced
assemblages of coated elliptical cylinders in a paper originally submitted to Nature and later
published in Applied Physics Letters (Milton 1980). Figure 7.5 on the next page shows an
example of such an assemblage. The following analysis is based on some unpublished notes
that I wrote in early 1980 while analyzing the conductivity of coated ellipsoidal assemblages
of arbitrary eccentricity [the results of which were published in Milton (1981a)].

We need to introduce ellipsoidal coordinates ρ,µ, and ν, which are defined implicitly
[see, for example, Kellogg (1953)] as the solution to the set of equations

x2
1

c2
1 + ρ

+ x2
2

c2
2 + ρ

+ x2
3

c2
3 + ρ

= 1 (confocal ellipsoids),

x2
1

c2
1 + µ

+ x2
2

c2
2 + µ

+ x2
3

c2
3 + µ

= 1 (hyperboloids of one sheet),

x2
1

c2
1 + ν

+ x2
2

c2
2 + ν

+ x2
3

c2
3 + ν

= 1 (hyperboloids of two sheets), (7.35)

subject to the restrictions

ρ > −c2
1 > µ > −c2

2 > ν > −c2
3,

where c1, c2, and c3 are fixed positive constants that determine the coordinate system. These
equations can be solved explicitly for the Cartesian coordinates in terms of the ellipsoidal
coordinates. For all permutations j, k, � of 1, 2, 3 we have

x2
j =

(c2
j + ρ)(c2

j + µ)(c2
j + ν)

(c2
j − c2

k)(c
2
j − c2

	)
.
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Figure 7.5. Cross section of the coated elliptical cylinder assemblage. The inner and outer
boundaries of each coated ellipse are confocal and all are identical apart from a scale fac-
tor. Reprinted with permission from Milton (1981a). Copyright 1981, American Institute of
Physics.

The coordinate ρ plays the role that the radius plays in spherical coordinates.
Our prototype ellipsoid is defined by the region ρ < ρe. Within the ellipsoid the con-

ductivity depends only on the coordinate ρ but may take different values λn(ρ) and λt (ρ) in
the directions normal and tangential to the elliptical surfaces of constant ρ. The ellipsoid is
embedded in a medium with isotropic conductivity tensor λ∗

1I , where the value of λ
∗
1 needs

to be chosen so that the conductivity equations have a solution with a uniform field aligned in
the x1 direction in the region exterior to the ellipse. Once this is done it follows by the usual
argument that λ∗

1 represents the effective conductivity in the x1 direction of an assemblage
of aligned ellipsoids, each identical within a scale factor to the given prototype. Written in
ellipsoidal coordinates the conductivity equations become

0 = ∇ · σ∇φ = 4
√
g(ρ)

(ρ − µ)(ρ − ν)

∂

∂ρ

[
λn
√
g(ρ)

∂φ

∂ρ

]
+ 4

√
g(µ)

(µ− ν)(µ− ρ)

∂

∂µ

[
λt
√
g(µ)

∂φ

∂µ

]
+ 4

√
g(ν)

(ν − ρ)(ν − µ)

∂

∂ν

[
λt
√
g(ν)

∂φ

∂ν

]
,

(7.36)

where
g(t) = (c2

1 + t)(c2
2 + t)(c2

3 + t). (7.37)

The form of the potential (7.25) suggests that we should look for a solution of the form

φ(x) = ϕ(ρ)x1 for ρ < ρe,

= ϕ(ρe)x1 for ρ > ρe, (7.38)

corresponding to an external field aligned with the x1-axis. Since the Laplacian of x1 is zero,
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(7.36) implies that

0 = ∇ · σ∇φ − ϕλt∇ · ∇x1 = 4
√
g(ρ)

(ρ − µ)(ρ − ν)

∂

∂ρ

[
λn
√
g(ρ)

(
x1
dϕ
dρ
+ ϕ

∂x1

∂ρ

)]
− 4ϕλt

√
g(ρ)

(ρ − µ)(ρ − ν)

∂

∂ρ

[√
g(ρ)

∂x1

∂ρ

]
. (7.39)

We next eliminate x1 from this equation, by first repeatedly substituting the identity

∂x1

∂ρ
= x1

2(c2
1 + ρ)

into (7.39) and then dividing the resulting expression by x1. This gives

d
dρ

[
λn
√
g(ρ)

(
dϕ
dρ
+ ϕ

2(c2
1 + ρ)

)]
+ λn

√
g(ρ)

2(c2
1 + ρ)

(
dϕ
dρ
+ ϕ

2(c2
1 + ρ)

)
= ϕλt

d
dρ

( √
g(ρ)

2(c2
1 + ρ)

)
+ ϕλt

2(c2
1 + ρ)

( √
g(ρ)

2(c2
1 + ρ)

)
,

which simplifies to the second-order differential equation

2
d
dρ

[
λn
√
g(ρ)

d
dρ

(
ϕ(ρ)

√
c2

1 + ρ

)]
= ϕ(ρ)λt

d
dρ

[√
g(ρ)
c2

1 + ρ

]
, (7.40)

where g(ρ) is given by (7.37).
The continuity of the normal component of the current through the outer boundary of the

ellipse,

λn(ρ)

[
d
dρ

(
ϕ(ρ)

√
c2

1 + ρ

)]
ρ=ρe

= λ∗
1

[
d
dρ

(
ϕ(ρe)

√
c2

1 + ρ

)]
ρ=ρe

= λ∗
1

ϕ(ρe)

2
√
c2

1 + ρe

, (7.41)

allows us to determine the appropriate value of λ∗
1 from the solution ϕ(ρ) of the differential

equation (7.40). If we define for ρ < ρe the function λ∗
1(ρ) via

d
dρ

(
ϕ(ρ)

√
c2

1 + ρ

)
= λ∗

1(ρ)ϕ(ρ)

2λn(ρ)
√
c2

1 + ρ

, (7.42)

then (7.41) implies that λ∗
1(ρe) can be identified with the effective conductivity λ∗

1 in the x1
direction of our original ellipsoid assemblage. More generally, λ∗

1(ρ) represents the conduc-
tivity in the x1 direction of an assemblage of ellipses the prototype of which is obtained by
removing all material from the original ellipse outside the elliptical surface parameterized by
ρ.

By substituting (7.42) into (7.40) we find that the second-order differential equation re-
duces to

(c2
1 + ρ)

{
d
dρ

[
2λ∗

1(ρ)h1(ρ)

]
−2λt(ρ) ddρ

[
h1(ρ)

]}
= h1(ρ)

{
λt (ρ)− [λ∗

1(ρ)]
2

λn(ρ)

}
, (7.43)
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where

hi (ρ) =
√
g(ρ)

c2
i + ρ

=
√
(c2

1 + ρ)(c2
2 + ρ)(c2

3 + ρ)

c2
i + ρ

, i = 1, 2, 3.

It is easy to see that when the conductivity has a constant value λn(ρ) = λt (ρ) = σ0 indepen-
dent of ρ then (7.43) has the expected solution λ∗

1(ρ) = σ0. The differential equation can be
rewritten as

√
g(ρ)

[
d
√
g(ρ)
dρ

]−1 dλ∗
1

dρ
= λt − λ∗

1 − k1(ρ)

[
λt − 2λ∗

1 +
[λ∗

1(ρ)]
2

λn

]
,

in which

ki(ρ) = hi (ρ)
2

[
d
√
g(ρ)
dρ

]−1

= hi(ρ)
h1(ρ)+ h2(ρ)+ h3(ρ)

, i = 1, 2, 3. (7.44)

Upon introducing the new variable

t = c + log
√
g(ρ),

where c is an arbitrary constant, this differential equation further simplifies to the Ricatti
equation

dλ∗
1

dt
= λt − λ∗

1(t)− k1(t)
[
λt − 2λ∗

1 +
[λ∗

1(t)]
2

λn

]
. (7.45)

The effective conductivities λ∗
2(t) and λ∗

3(t) in the x2 and x3 directions similarly solve Ri-
catti equations, obtained by substituting 2 or 3 for the index 1 into (7.45) and (7.44). The
coefficients k1(t), k2(t), and k3(t) are nonnegative and satisfy

k1(t)+ k2(t)+ k3(t) = 1 for all t . (7.46)

The variable t has a natural interpretation. If t1 and t2 denote two values of t with t1 > t2,
while ρ1 and ρ2 denote the corresponding values of ρ, then we have

t1 − t2 = −log[
√
g(ρ2)/

√
g(ρ1)] = −log fr ,

in which fr < 1 is the volume fraction occupied by the ellipse with surface ρ = ρ2 inside the
larger ellipse with surface ρ = ρ1.

7.8. The conductivity of an assemblage of coated ellipsoids†
As a particular example of an assemblage of elliptical inclusions let us consider an assem-
blage where the ellipsoids have a core of phase 1 with an isotropic conductivity tensor σ1I
surrounded by a coating of phase 2 with an isotropic conductivity tensor σ2I . The prototype
ellipsoid has confocal elliptical interior and exterior surfaces, parameterized in ellipsoidal
coordinates by ρ = ρc and ρ = ρe.

In an isotropic material with λn = λt independent of ρ, (7.40) reduces to

dq
dρ
= − q

c2
1 + ρ

, where q ≡ dϕ
dρ

√
g(ρ),
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which has a solution in terms of elliptic integrals:

ϕ(ρ) = a + b
∫ ρ

0

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

,

where a and b are arbitrary constants. Accordingly, in our coated ellipsoid we look for a
solution with uniform fields in the core and exterior regions of the forms

ϕ(ρ) = a1 for ρ ≤ ρc, ϕ(ρ) = a∗ for ρ > ρe,

ϕ(ρ) = a2 + b2

∫ ρ

ρc

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

for ρc < ρ ≤ ρe, (7.47)

where, because the potential is continuous at ρc and ρe, we have

a2 = a1, a∗ = a1 + b2

∫ ρe

ρc

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

. (7.48)

The continuity of the normal component of the current at ρe implies that (7.41) must hold
with λn = λt = σ2. A similar condition holds at the interface ρc. These conditions lead to the
equations

a1 = 2b2σ2

(σ1 − σ2)
√
g(ρc)

, a∗ = 2b2σ2

(λ∗
1 − σ2)

√
g(ρe)

, (7.49)

which when substituted in (7.48) directly give a formula for the conductivityλ∗
1 of the ellipsoid

assemblage in direction x1. To express this formula in a convenient form we introduce the
lengths

�cj =
√
c2
j + ρc, �ej =

√
c2
j + ρe, j = 1, 2, 3, (7.50)

which represent the semi-axis lengths of the core and exterior surfaces of the coated ellipsoid,
the volume fraction

f1 =
√
g(ρc)/g(ρe) = �c1�c2�c3/�e1�e2�e3 (7.51)

occupied by phase 1, and the depolarizing (or demagnetizing) factors

dcj = d j(�c1, �c2, �c3), dej = d j(�e1, �e2, �e3), j = 1, 2, 3, (7.52)

where

d j(�1, �2, �3) = �1�2�3

2

∫ ∞

0

dy

(�2
j + y)

√
(�2

1 + y)(�2
2 + y)(�2

3 + y)
(7.53)

is the depolarization factor in direction j = 1, 2, or 3 of an ellipsoid with semi-axis lengths
�1, �2, and �3. In terms of these depolarization factors we have∫ ρe

ρc

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

=
∫ ∞

ρc

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

−
∫ ∞

ρe

dρ√
(c2

1 + ρ)3(c2
2 + ρ)(c2

3 + ρ)

= 2dc1√
g(ρc)

− 2de1√
g(ρe)

,
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and the formula for the conductivity of the ellipsoid assemblage in the x1 direction implied by
(7.48) and (7.49) becomes

f1σ2

λ∗
1 − σ2

= σ2

σ1 − σ2
+ dc1 − f1de1

or, equivalently,

λ∗
1 = σ2 + f1σ2(σ1 − σ2)

σ2 + (dc1 − f1de1)(σ1 − σ2)
.

Of course the conductivities in the x2 and x3 directions are given by similar expressions,
and taking these into account we obtain the formula

f1σ2(σ∗ − σ2I)
−1 = σ2(σ1 − σ2)

−1I + f2M (7.54)

for the effective conductivity tensor

σ∗ =
(
λ∗

1 0 0
0 λ∗

2 0
0 0 λ∗

3

)

of the coated ellipsoid assemblage, where

M = (Dc − f1De)/ f2 (7.55)

and

Dc =
( dc1 0 0

0 dc2 0
0 0 dc3

)
, De =

( de1 0 0
0 de2 0
0 0 de3

)
are the depolarization tensors of the core and exterior elliptical surfaces of the confocal coated
ellipsoids. We will see later [equations (7.61) and (7.70)] that the matrix M has trace 1.
That the effective conductivity tensor of the coated ellipsoid assemblage is given by (7.54),
where TrM = 1, andM is positive-semidefinite was established by Milton (1981a) [see also
Bergman (1982)]. Tartar (1985) independently arrived at this same result, and moreover estab-
lished thatM ranges over all positive-semidefinite symmetric matrices satisfying TrM = 1
as the shape of the coated ellipsoid is varied while keeping the volume fraction f1 = 1− f2
fixed.

The two depolarization tensorsDc andDe are not independent of each other because the
core and exterior surfaces of the coated ellipse are confocal. Indeed, suppose that the semi-
axis lengths �cj , j = 1, 2, 3 of the elliptical core and the volume fraction f1 are known. Then
from (7.37), (7.50), and (7.51) we have

�ej =
√
�2
cj + α, j = 1, 2, 3, (7.56)

where α = ρe − ρc is the positive root of the cubic equation

α3 + (�2
c1 + �2

c2 + �2
c3)α

2 + (�2
c1�

2
c2 + �2

c2�
2
c3 + �2

c3�
2
c1)α + (1− f 2

1 )(�
2
c1�

2
c2�

2
c3) = 0.

In other words, the semi-axis lengths �ej , j = 1, 2, 3 of the exterior surface of the coated
ellipsoid, and hence the depolarization tensorDe, are completely determined in terms of the
volume fraction f1 and the semi-axis lengths of the elliptical core.
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7.9. A solution of the elasticity equations in the coated ellipsoid
assemblage†

We can use the solutions of the conductivity equations in the coated ellipsoid assemblage
to construct a solution to the elasticity equations in the same geometry with a uniform and
hydrostatic field inside the ellipsoid cores. This was first recognized by Grabovsky and Kohn
(1995) using an indirect but powerful argument. Here we verify their result directly. Consider
the prototype ellipsoid described in the previous section, and let φi(x) for i = 1, 2, and 3
denote the solution for the potential when the applied field is directed parallel to the x i -axis,
and adjusted in magnitude so that φi (x) = xi/(σ1 − σ2) inside the ellipsoid core.

The first claim is that these potentials are in fact components of a vector field u(x) =
(φ1(x), φ2(x), φ3(x)), which itself is the gradient of a scalar potentialψ(x), that is,u = ∇ψ .
Inside the ellipsoid coating (i.e., for ρc < ρ ≤ ρe) the potentials are given by the formulas

φi(x) = xi
σ1 − σ2

+ xi
√
g(ρc)
2σ2

∫ ρ

ρc

dρ

(c2
i + ρ)

√
(c2

1 + ρ)(c2
2 + ρ)(c2

3 + ρ)

,

as follows from (7.38), (7.47), (7.48), and (7.49). Consequently, for i �= j we have

∂φi

∂x j
− ∂φ j

∂xi
=
[

xi
c2
i + ρ

∂ρ

∂x j
− x j
c2
j + ρ

∂ρ

∂xi

] √
g(ρc)

2σ2

√
(c2

1 + ρ)(c2
2 + ρ)(c2

3 + ρ)

. (7.57)

Also, differentiating the first formula in (7.35) with respect to x i gives

∂ρ

∂xi
= 2xi
c2
i + ρ

[
x2

1

(c2
1 + ρ)2

+ x2
2

(c2
2 + ρ)2

+ x2
3

(c2
3 + ρ)2

]−1

. (7.58)

By substituting this back into (7.57) we see that inside the ellipsoid coating ∇ × u = 0 or,
equivalently, ∇u is a symmetric matrix. Also, a direct computation shows that u is curl free
inside the core and outside the ellipse. Finally, the continuity of the potential at ρ = ρc and
at ρ = ρe implies the continuity of u, and hence the tangential components of u, across the
boundaries of the core and ellipsoid. Therefore u(x) is the gradient of some potential ψ(x).

The second claim is that

Tr(∇u) = ∇ · u = �ψ = 3/(σ1 − σ2)+ 1/σ2 = (σ1 + 2σ2)/σ2(σ1 − σ2), (7.59)

for all x inside the ellipsoid coating. It is easy to prove that �ψ must be constant inside the
coating; since the potential φi is harmonic for i = 1, 2, 3 it follows that

∇(�ψ) = �(∇ψ) = �u = (�φ1,�φ2,�φ3) = 0, (7.60)

implying that �ψ = ∇ · u is constant there. Also, as ρ → ρc we have

∂φi(x)

∂xi
→ 1

σ1 − σ2
+ xi

2σ2(c2
i + ρ)

∂ρ(x)

∂xi
.

By making the substitution (7.58) and summing over i to get ∇ · u we see that the value of
the constant must be 3/(σ1 − σ2)+ 1/σ2. Incidentally, by taking the limit ρ → ρe, applying
a similar analysis, and using (7.59) one obtains the corollary that

TrM = 1. (7.61)
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Now let us set σ2 = 1 and define the strain field

ε = ∇u = [∇u+ (∇u)T ]/2 = I/(σ1 − 1) in the core,
= ∇∇ψ in the coating,
= ε0 outside the ellipsoid, (7.62)

where, as follows from (7.49), (7.51), and (7.54),

ε0 = f1(σ∗ − I)−1 = I/(σ1 − 1)+ f2M .

Let us also define the stress field

τ = (κ1 − 2µ1/3)I Tr ε+ 2µ1ε in the core,
= (κ2 − 2µ2/3)I Tr ε+ 2µ2ε in the coating,
= τ 0 outside the ellipsoid,

where κ1, µ1, and κ2, µ2 are the bulk and shear moduli of the core and coating, respectively,
and τ 0 is a constant symmetric matrix to be determined from the conditions of stress compati-
bility. This stress is clearly symmetric and being constant in the core and outside the ellipsoid
satisfies ∇ · τ = 0 inside those regions. Inside the coating, where

τ = (κ2 − 2µ2/3)I�ψ + 2µ2∇∇ψ = (κ2 − 2µ2/3)(σ1 + 2)I
(σ1 − 1)

+ 2µ2∇∇ψ,

it also has zero divergence because of the relations (7.60).
The continuity of the normal component of the current σ(x)∇φi (x) across the core

boundary implies the continuity ofn·σ(x)∇u, where n is the normal to the interface. There-
fore the hydrostatic stress

τ = 3κ1I/(σ1 − 1)

inside the core will be compatible with the stress inside the coating, provided that we take

σ1 = 1+ 9(κ1 − κ2)/(3κ2 + 4µ2),

and with this value of σ1 we have

ε0 = (3κ2 + 4µ2)I/9(κ1 − κ2)+ f2M . (7.63)

Similarly the continuity of n · σ(x)∇u across the outer boundary of the ellipsoid implies
that the stress inside the coating will be compatible with the stress τ 0 outside the ellipsoid,
provided that we take

τ 0 = (κ2 − 2µ2/3)(σ1 + 2)I/(σ1 − 1)+ 2µ2σ∗ε0

= [κ2(κ1 + 4µ2/3)/(κ1 − κ2)+ 4µ2 f1/3]I + 2µ2 f2(M − I/3). (7.64)

Thus we have obtained a solution for the elasticity equations for the prototype ellipsoid,
and by extension a solution for the elasticity equations with average strain ε0 and average
stress τ 0 in the associated coated ellipsoid assemblage. The effective elasticity tensor C∗ of
the ellipsoid assemblage depends on how the coated ellipsoids are packed together but must
be such that

τ 0 = C∗ε0.
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When the coated ellipsoids are coated spheres thenM = I/3 and the elasticity tensor C∗ is
isotropic with bulk modulus κ∗ and shear modulus µ∗. We have τ 0 = 3κ∗ε0 with

κ∗ = κ2(κ1 + 4µ2/3)/(κ1 − κ2)+ 4µ2 f1/3
(κ2 + 4µ2/3)/(κ1 − κ2)+ f2

= κ2 + f1
1/(κ1 − κ2)+ f2/(κ2 + 4µ2/3)

,

in agreement with (7.13).
Incidentally, in the two-dimensional context of a single coated confocal elliptical cylinder

subject to a uniform applied field, Ru, Schiavone, and Mioduchowski (1999) and Ru (1999)
have generalized the solutions (7.47) and (7.62) to allow for an arbitrary isotropic conduct-
ing or elastic medium surrounding the inclusion. For conductivity (or, equivalently, antiplane
elasticity) they show that the field inside the core remains uniform even though the field out-
side the inclusion is generally not uniform. For planar elasticity they show that a solution
exists where the field inside the core is uniform and hydrostatic.

7.10. Expressions for the depolarization factors†
The articles of Stoner (1945) and Osborn (1945) [see also the book of Kellogg (1953)] provide
useful summaries of results concerning the depolarization factors d1, d2, and d3 given by
(7.53). They provide a way of characterizing the shape of an ellipsoid and can be evaluated
explicitly when the ellipsoid is a spheroid with �2 = �3 (Maxwell 1873).

For prolate spheroids (with �1 ≥ �2 = �3) the expressions for the depolarization factors
d1 and d2 = d3 reduce to

d1 = 1− d2/2 = 1− ε2

ε2

{
1
2ε
ln
(
1+ ε

1− ε

)
− 1
}
, where ε =

√
1− (�2/�1)2, (7.65)

while for oblate spheroids (with �1 ≤ �2 = �3) they reduce to

d1 = 1− d2/2 = 1
ε2

{
1−

√
1− ε2

ε
sin−1 ε

}
, where ε =

√
1− (�1/�2)2, (7.66)

where in both cases the quantity ε is called the eccentricity of the spheroid.
They can also be evaluated explicitly when the ellipsoid is an elliptical cylinder. In the

limit as �3 approaches∞, with �1 and �2 being held fixed, we have

d1 = �2/(�1 + �2), d2 = �1/(�1 + �2), d3 = 0. (7.67)

By substituting these expressions into (7.55) one finds after some algebraic manipulation that
assemblages of confocal coated elliptical cylinders have a tensor

M = 1
�c1�e1 + �c2�e2

(
�c1�e1 0 0
0 �c2�e2 0
0 0 0

)
.

For ellipsoids of arbitrary shape the depolarization factors can be reexpressed in terms of
Legendre’s elliptic integrals of the first and second kind:

F(k, φ) =
∫ φ

0

dψ√
1− k2 sin2 ψ

=
∫ x

0

dz√
(1− z2)(1− k2z2)

,

E(k, φ) =
∫ φ

0
dψ
√
1− k2 sin2 ψ =

∫ x

0

dz
√
(1− k2z2)√
(1− z2)

,
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where x = sinφ and z = sinψ . To accomplish this, let us suppose that the axes have been

labeled so that �1 ≥ �2 ≥ �3. Then introducing the variable z =
√
(�2

1 − �2
3)/(�

2
1 + y), the

formula (7.53) for the depolarization factors becomes

d j = �1�2�3

(�2
1 − �2

3)
3/2

∫ x

0

z2dz

[1− z2(�2
1 − �2

j)/(�
2
1 − �2

3)]
√
(1− z2)(1− k2z2)

,

where
k2 = (�2

1 − �2
2)/(�

2
1 − �2

3), x2 = 1− �2
3/�

2
1.

The expression for d1 in terms of elliptic integrals is then obtained by using the identity

z2√
(1− z2)(1− k2z2)

= 1
k2

{
1√

(1− z2)(1− k2z2)
−
√
(1− k2z2)√
(1− z2)

}
, (7.68)

while for d2 and d3 an integration by parts is required, using respectively the relations

d
dz

{
z
√
(1− z2)√

(1− k2z2)

}
=

√
(1− z2)√
(1− k2z2)

− (1− k2)z2√
(1− z2)(1− k2z2)3

,

d
dz

{
z
√
(1− k2z2)√
(1− z2)

}
=
√
(1− k2z2)√
(1− z2)

+ (1− k2)z2√
(1− z2)3(1− k2z2)

,

and for d2 the additional identity√
(1− z2)√
(1− k2z2)

= 1√
(1− z2)(1− k2z2)

− z2√
(1− z2)(1− k2z2)

in conjunction with (7.68). We thereby obtain the desired formulas

d1 = �1�2�3[F(k, φ)− E(k, φ)]
(�2

1 − �2
2)

√
(�2

1 − �2
3)

,

d2 = �1�2�3[E(k, φ)− F(k, φ)]
(�2

1 − �2
2)

√
(�2

1 − �2
3)

+ �1�2�3E(k, φ)

(�2
2 − �2

3)

√
(�2

1 − �2
3)

− �2
3

�2
2 − �2

3
,

d3 = −�1�2�3E(k, φ)

(�2
2 − �2

3)

√
(�2

1 − �2
3)

+ �2
2

�2
2 − �2

3
(7.69)

for the depolarization factors in terms of elliptic integrals, in which

k2 = (�2
1 − �2

2)/(�
2
1 − �2

3), sin2 φ = x2 = 1− �2
3/�

2
1.

From these formulas one can see that the depolarization factors always sum to unity,

d1 + d2 + d3 = 1, (7.70)

leading again to the result (7.61). Clearly the integral expressions imply that they are pos-
itive quantities. Conversely, one can always find an ellipsoid corresponding to every triplet
(d1, d2, d3) of positive numbers satisfying (7.70). Triplets with one zero depolarization factor
correspond to elliptical cylinders. Triplets with two zero depolarization factors correspond to
flat slabs.
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7.11. Neutral coated inclusions
Mansfield (1953) found that certain reinforced holes, which he called neutral inclusions, could
be cut out of a uniformly stressed plate without disturbing the stress surrounding the hole. In
this sense a single Hashin coated sphere is an example of a neutral coated inclusion: One can
insert it into an isotropic medium with conductivity σ0 = σ∗ or with bulk modulus κ0 = κ∗
without disturbing the uniform current or the hydrostatic pressure field outside the inclusion.
Similarly, the coated confocal ellipsoidal inclusion is a neutral coated inclusion. If one has an
isotropic elastic medium with bulk and shear moduli

κ0 = κ2 + f1
1/(κ1 − κ2)+ f2/(κ2 + 4µ2/3)

, µ0 = µ2,

chosen so that τ 0 = C0ε0, where ε0 and τ 0 are given by (7.63) and (7.64), then when the
strain field in this medium is uniform and equal to ε0 one can insert the coated confocal
ellipsoidal inclusion into this medium without disturbing the surrounding uniform strain and
stress fields ε0 and τ 0. Here f1 and f2 are the volume fractions of the two phases within the
coated inclusion.

In the same way that assemblages can be built from coated spheres or coated ellipsoids,
so too can assemblages be built from neutral coated inclusions, and the fact that they are
neutral allows us to determine some of the effective moduli of the assemblages. [When the
coated inclusions are not neutral, it is still possible to bound the moduli of the associated
assemblages (Bornert, Stolz, and Zaoui 1996).] Neutral coated inclusions are easiest to find
when the inclusion coating is thin with large or small moduli of the coating to compensate for
its thinness. The coating is called the interphase region and can be treated as a single interface
with new jump conditions on the fields across the interface. This single interface is called an
imperfect interface.

If the interphase consists of poorly conducting material between two closely separated
smooth boundaries, then it can be replaced by a single interface, across which the normal
component n · j of the current is continuous but the electrical potential φ has a jump [φ]
proportional to n · j [for a proof see, for example, Sanchez-Palencia (1970) or Miloh and
Benveniste (1999)]. For an interphase region of thickness εγ (x) and conductivity σ(x, ε)
parametrized by ε one has

β[φ] = n · j, (7.71)

in the limit ε → 0, where the nonnegative parameter

β(x) = lim
ε→0

σ(x, ε)/[εγ (x)]

measures the transverse conductance of the interface. Here σ(x, ε) is assumed to approach
zero linearly in ε. For thermal conductivity the resistance of the imperfect interface is known
as the Kapitza resistance (Kapitza 1965).

For example, if we consider a Hashin coated sphere with thickness re−rc = ε and coating
conductivity σ2 = εβ, then (7.4) and (7.5) imply that in the limit ε → 0

a1 = −3b2σ2/[r 3
c (σ1 − σ2)]→−3b2εβ/(r 3

c σ1),

a∗ = −b2[1− r 3
c /r

3
e − 3σ2/(σ1 − σ2)]/r 3

c → −3b2ε[1/rc + β/σ1]/r 3
c .

Thus in this limit we have the relation

a∗ = a1[1+ σ1/(βrc)].
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At the imperfect interface boundary r = rc the jump in the potential is
[φ] = φ∗ − φ1 = (a∗ − a1)rc cos θ = σ1a1 cos θ/β,

while the normal component of the current at the interface from (7.2) is

n · j = vr · j1 = σ1a1 cos θ.

Thus, as expected, the boundary condition (7.71) is satisfied at the imperfect interface.
The neutral spherical inclusions of Torquato and Rintoul (1995), Lipton and Vernescu

(1995, 1996), and Lipton (1997a, 1997b) with an imperfect interface correspond to the Hashin
coated spheres with a thin coating having large or small moduli. [See also Bigoni, Serkov,
Valentini, and Movchan (1998), who show that dilute concentrations of certain circular inclu-
sions with imperfect interfaces do not influence the effective bulk and shear moduli to first
order in the volume fraction.] Lipton and Talbot (1999) extend these results to nonlinear
spherical inclusions with an imperfect interface in a nonlinear matrix.

Most interesting are the two-dimensional neutral elastic inclusions of Ru (1998) and
the two-dimensional and three-dimensional neutral conducting inclusions of Benveniste and
Miloh (1999) with an imperfect interface. They show that a wide variety of inclusion shapes
are possible if one is free to vary the interphase properties (or, equivalently, the thickness of
the interphase region) around the boundary of the inclusion. Let us suppose that the interphase
is isotropic and poorly conducting, so that j · n is continuous across the imperfect interface
and the jump [φ] in the potential is given by (7.71). The inclusion is taken to have constant
isotropic conductivity σ1 in its interior. Since j(x), by assumption, takes a constant value j0
outside the inclusion, the potential φ1(x) inside the inclusion satisfies the Neuman boundary
condition

σ1n · ∇φ1 = n · j(x) = n · j0

at the inclusion boundary. Since φ1(x) is harmonic, the solution to the Neuman problem is
simply

φ1(x) = (j0 · x)/σ1 + c,
where the constant c remains to be determined. The associated current j(x) is constant, taking
the value j0 everywhere. By assumption the electric field e(x) also takes a constant value e0
outside the inclusion, where e0 and j0 are not necessarily parallel if the exterior medium is
anisotropic. Therefore the potential φ∗(x) outside the inclusion is simply

φ∗ = e0 · x+ c′,
where c′ is constant. Since we are free to add a constant to the potential, and since we are
free to shift the origin of our spatial coordinates by a vector proportional to j0, we can set
c = c′ = 0 without any loss of generality.

At the imperfect interface the boundary condition (7.71) then implies that

β(φ∗ − φ1) = −βp0 · x/σ1 = n · j0, where p0 = j0 − σ1e0.

This has the solution
β = −σ1n · j0

p0 · x
,

which will be nonnegative provided n · j0 and p0 · x always take opposite signs around
the boundary of the neutral inclusion. Without loss of generality, by rotating the coordinate
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system if necessary, we can assume j0 points along the direction of the positive x1-axis. Then
the boundary of the interface must be such that

n1(p0 · x) ≤ 0, (7.72)

that is, such that n1 is positive in the half-space p0 · x < 0 and negative in the half-space
p0 · x > 0 for all points x along the interface. (By considering a point x = λj0 on the
interface where λ > 0 and n1 > 0, we see that a necessary condition for this to be possible
is that p0 · j0 < 0.) The criterion (7.72) for neutrality is a slight generalization of the one
found by Benveniste and Miloh (1999), who assumed that the medium outside the inclusion
was isotropic, that is, p0 was parallel to j0. Figure 7.6(a) shows an example of an inclusion
that satisfies the condition (7.72) and which therefore can be made neutral for an appropriate
choice of β(x), while figure 7.6(b) shows an example of an inclusion that violates this condi-
tion (no matter where we place the origin) and which therefore can never be made neutral for
any choice of β(x) ≥ 0. If the inclusion is convex and two-dimensional, the condition can
always be satisfied by finding the two points on the boundary where n1 changes sign, choos-
ing the origin on the line joining these two points, and taking p0 perpendicular to this line
and such that p0 · j0 < 0. An assemblage of these neutral inclusions must have conductivity
tensor σ∗ such that j0 = σ∗e0.

p

j

0

0

(a) (b)

Figure 7.6. The inclusion shown in (a), containing an isotropic material with conductivity
σ1, is neutral for an appropriate choice of the interface resistance. The current j0 is constant
everywhere, and the electric field takes the constant value e0 = (j0 − p0)/σ1 outside the
inclusion. The component n1 of the interface normal n is positive to the right of the dashed
line and negative to the left of it. The inclusion shown in (b) cannot be made neutral for any
choice of the interface resistance.

In two dimensions, one can find neutral conducting coated inclusions with perfect inter-
faces that are not coated cylinders or coated elliptical cylinders (Milton and Serkov 2001).
Let us suppose that we are given a homogeneous two-dimensional medium in which there is
a uniform electric field e0 = (e1, e2) and a uniform current field j0 = ( j1, j2), not necessarily
parallel to e. We want to insert into this medium a coated inclusion without disturbing the
surrounding field. The following analysis applies to the case where the core of the inclusion is
insulating, that is, the core has zero conductivity σ1 = 0. (Using duality the analysis can easily
be extended to the case where the core has infinite conductivity.) We assume that the coating
is isotropic and its conductivity can then be taken to be σ2 = 1, without loss of generality.
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Since the fields e(x) and j(x) are, respectively, curl free and divergence free, there exist
continuous potentials φ(x) and ψ(x) such that e = ∇φ and j = R⊥∇ψ . Also, because
σ2 = 1, the constitutive relation j(x) = σ(x)e(x) within the coating phase reduces to the
Cauchy-Riemann equation R⊥∇ψ = ∇φ, which implies that w = φ + iψ is an analytic
function of z = x1 + i x2 inside the coating. Since no current flows into the core, ∇ψ must
be perpendicular to the core surface at that boundary, that is, ψ must be constant around the
boundary of the core, and without loss of generality we can take that constant to be zero. In
other words, w satisfies the boundary condition

w −w = 0 (7.73)

at the core boundary, where the bar denotes complex conjugation. In order to generate the
constant fields e0 and j0 outside the inclusion the potentials there must take the form

φ = e1x1 + e2x2 + φ0, ψ = − j2x1 + j1x2 + ψ0,

where φ0 and ψ0 are constants. Since we are free to shift the origin of our spatial coordinates
x1 and x2, we can assume that φ0 = ψ0 = 0. Finally, since the potentials φ and ψ are
continuous, they must take these values at the outer boundary of the inclusion, that is, the
potential w satisfies the boundary condition

w = gz + hz, (7.74)

on the outer boundary of the inclusion, in which

g = (e0 + j0)/2, h = (e0 − j0)/2, where e0 = e1 + ie2, j0 = j1 + i j2.
In any conducting medium with bounded positive-definite conductivity tensor the electrical
energy dissipation e0 ·j0 is strictly positive, which implies the constraint that e0 j0+ j0e0 > 0
or, equivalently, that

|g| > |h|. (7.75)

The task is to find a coated inclusion such that in the coating there exists an analytic
function w(z) satisfying the boundary conditions (7.73) and (7.74). This task is simplified if
we conformally map the region in the z-plane occupied by the coating to an annulus with outer
radius 1 and inner radius r < 1 located in a complex plane, which we label as the p-plane,
parameterized by the complex variable p. A one-to-one conformal mapping from a doubly
connected region to a annulus always exists [see, for example, Ahlfors (1966)]. The functions
z(p) and w(p) can be expanded in Laurent series:

z(p) =
∞∑

j=−∞
anzn, w(p) =

∞∑
j=−∞

bnzn.

The boundary conditions (7.73) and (7.74), which must hold, respectively, for p = re iθ and
for p = eiθ for all θ , are satisfied if and only if for all n

bnrn − b−nr−n = 0, bn = gan + ha−n . (7.76)

Substituting the second relation into the first gives

a−n = −qnan, where qn = h − r 2ng
g − r 2nh

, (7.77)
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and the condition (7.75) ensures that the denominator g + r 2nh is nonzero. A necessary
condition for this equation with n = 0 to have a nonzero solution for a0 is that |q0| = 1. By
setting q0 = eiα we see that this can occur if and only if |h| = |g|, which is excluded by
(7.75). Therefore we take a0 = 0 and regard the coefficients an with n > 0 as parameterizing
all possible neutral inclusions. The formula (7.77) then gives the coefficients an with n < 0
and (7.76) gives the field coefficients bn.

In this way one finds the inner and outer boundaries of the neutral inclusion, through
the trajectories traced by z(reiθ ) and z(eiθ ) as θ is varied, and the potential w(z) is given
implicitly through the series expansions for w(p) and z(p). Figure 7.7 shows two examples
of these neutral inclusions. Of course some restrictions on the choice of coefficients an with
n > 0 are needed to ensure that the series expansions converge and that the mapping from
the annulus to the coating region of the inclusion is one-to-one. These inclusions are neutral
for the given applied field e0. An assemblage of these neutral coated inclusions must have
conductivity tensor σ∗ such that j0 = σ∗e0. If one wants a coated inclusion (with insulating
core and isotropic coating surrounded by a possibly anisotropic homogeneous matrix) to be
neutral for two independent applied fields, then one can prove that the inclusion is necessarily
a coated circle or coated confocal ellipse (Milton and Serkov 2001).

(a) (b)

Figure 7.7. Examples of two neutral coated conducting inclusions with perfect interfaces and
an insulating core, showing the lines of current flow. The only nonzero coefficients of the
conformal map are chosen to be a1, a−1, am , and a−m , where m = 3 in (a) and m = 5 in (b).

At present the problem of finding all neutral inclusions with perfect interfaces having
finitely conducting isotropic materials as core and coating is still open. One would expect that
coated circles or coated ellipses are not the only such neutral inclusions. However, coated
circles and coated confocal ellipses are the only two-dimensional neutral inclusions where the
electric and current fields in the core are uniform. To see this, assume that the electric and
current fields and current fields in the core are uniform. Then the potential w must satisfy the
boundary condition

w = g0z + h0z (7.78)

at the core boundary for appropriate values of the complex constants g0 and h0, corresponding
to the values of the fields inside the core. Again one maps the region occupied by the coating
to the annulus. The boundary conditions (7.78) and (7.74), which must hold respectively for
p = reiθ and for p = eiθ for all θ , are satisfied if and only if for all n

bn = g0an + h0r−2na−n, bn = gan + ha−n .
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By eliminating bn and by also considering the associated equation obtained by taking complex
conjugates and replacing n with −n, one obtains the pair of equations

(g − g0)an + (h − r−2nh0)a−n = 0, (h − r 2nh0)an + (g − g0)a−n = 0.

These have a nontrivial solution if and only if the determinant vanishes:

(g − g0)(g − g0) = (h − r−2nh0)(h − r 2nh0) = |h|2 + |h0|2 − r−2nh0h − r 2nh0h.

This equation can be satisfied for at most two values of n because when multiplied by a = r 2n

it is a quadratic function of a that can have at most two solutions for a. If n = m is one
solution, then n = −m is the other solution. The coefficients an must then be zero except for
n = m and n = −m. Furthermore, we must have m = 1 to ensure that the mapping from the
annulus to the coating region of the inclusion has a possibility of being one-to-one. It is then
easy to check that the associated mapping z = a1 p + a−1/p maps the annulus to the coating
of a coated confocal ellipsoid.
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8
Tricks for generating other exactly solvable

microgeometries

This section presents a sampling of general techniques for using solutions of the conductivity
or elasticity equations in a given microgeometry to generate associated solutions in related
microgeometries. In addition to the methods discussed here, it should be mentioned that
conformal transformations are useful for finding exact solutions for the fields, in particular,
two-dimensional geometries: See Berdichevskii (1985), who found the exact solution for the
fields in a regular checkerboard geometry; Obnosov (1996, 1999), who obtained the explicit
solution for rectangular and triangular checkerboards, as well as for certain rectangular ar-
rays of rectangles at a volume fraction of 1/4; the many papers of Vigdergauz referred to in
section 23.9 on page 481, who found various periodic microstructures where the field was
constant within one phase; and Reuben, Smith, and Radchik (1995).

8.1. Modifying the material moduli so the field is not disturbed
Consider the formula (7.13) for the effective bulk modulus κ∗ of the coated sphere assemblage.
It does not depend on the shear modulus µ1 of the core material. The physical reason for this
is quite clear: Under an externally applied hydrostatic loading the displacement field (7.11) in
the core of each coated sphere is a pure dilation with no shear component, and so the effective
bulk modulus is not influenced by the shear modulus of phase 1. This is an example of a more
general principle, which says that if we modify the material moduli in any way that leaves
the field undisturbed, then the response of the composite to that average field will remain
unchanged. Applied to elasticity, the principle says that if periodic stress fields τ(x) and
strain fields ε(x) are found that solve the elasticity equations

τ(x) = C(x)ε(x), ∇ · τ(x) = 0, ε(x) = [∇u(x)+ (∇u(x))T ]/2,
in a medium with a periodic elasticity tensor C(x), then these same fields solve the elasticity
equations

τ(x) = C′(x)ε(x), ∇ · τ(x) = 0, ε(x) = [∇u(x)+ (∇u(x))T ]/2
in a new material with elasticity tensor

C′(x) = C(x)+A(x)

for any choice of the tensor field A(x) such that

A(x)ε(x) = 0. (8.1)

143
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In addition, since the effective tensors govern the relation between the average fields, we
deduce that the effective elasticity tensor C ′

∗ of the new material satisfies

C′
∗〈ε〉 = C∗〈ε〉, (8.2)

where 〈ε〉 denotes the average over space of the known field ε(x).
In the coated sphere geometry we may, for example, take

A(x) = 2(µ′
1 − µ1)χ1(x)

[
I − 1

3
I ⊗ I

]
. (8.3)

Then (8.1) is satisfied because the strain generated by the displacement field (7.8) is propor-
tional to I in phase 1 and (8.3) implies that

A(x)I = 0.

It follows from (8.2) that the effective bulk modulus κ∗ does not change when the shear mod-
ulus of phase 1 is shifted from µ1 to µ′

1.
In the special case where C(x) is independent of x, the elasticity equations are satisfied

with a constant strain field ε(x) = V . The uniform field relation implied by (8.2), that
C′

∗V = C∗V , also follows from the uniform field argument discussed in section 5.1 on
page 75, becauseW = C′(x)V is independent of x. Conversely, any uniform field relation
can be regarded as a corollary of the fact that we are free to modify the material so that the
field is not disturbed.

8.2. Assemblages of coated spheres and coated ellipsoids with
anisotropic cores

Naturally we can apply these same arguments to the conductivity problem. In particular,
consider the assemblage of coated spheres each consisting of a core of conductivity σ1I sur-
rounded by a shell of conductivity σ2I . Since the field inside the core is uniform and aligned
with the applied field, there will be no change to the effective conductivity in the direction of
the applied field e0 if the conductivity tensor of the core is modified from σ1I to

σ1 = σ1I +A, provided Ae0 = 0. (8.4)

In other words, we can consider coated sphere geometries where the core is anisotropic with
the same orientation in each coated sphere. Let σ1 denote the conductivity tensor of the core
phase, and let σ2 = σ2I denote the conductivity of the matrix phase. Then, when the applied
field e0 is an eigenvector of σ1 with eigenvalue σ1, (8.4) implies that the effective tensor σ∗
of this coated sphere geometry satisfies

σ∗e0 = σ∗e0,

where the eigenvalue σ∗ is given by (7.6). Since this same argument applies to all three choices
of the eigenvector e0, we deduce that the effective tensor σ∗ is given implicitly by the formula

f1σ2(σ2I − σ∗)−1 = σ2(σ2I − σ1)
−1 − f2I/3.

Additional care is required to apply the above arguments to an assemblage of coated el-
lipsoids when the eigenvectors of the conductivity tensor σ1 of the core phase are not aligned
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with the axes of the ellipse. However, the basic idea remains the same: A solution of the
conductivity equations in an ellipsoid assemblage with isotropic core conductivity σ1I is also
a solution of the conductivity equations in an assemblage with anisotropic core conductivity
σ1, provided that the uniform field inside the core of the ellipsoids is an eigenvector of σ1

with eigenvalue σ1.
Since the field inside the core phase is obviously important in this problem, it is useful to

introduce the polarization field

p(x) = (σ(x)− σ2I)e(x) = j(x)− σ2e(x), (8.5)

which takes the values

p(x) = (σ1 − σ2I)e(x) in the ellipsoid cores,
= 0 in the ellipsoid coating.

By averaging both sides of (8.5) we see that

〈p(x)〉 = (σ∗ − σ2I)〈e(x)〉.
One often selects the average field 〈e〉 and then measures the average polarization 〈p〉. How-
ever, one could equally well select 〈p〉 and measure the average field

〈e〉 = (σ∗ − σ2I)
−1〈p〉.

Let us choose the average polarization aligned with an eigenvector of σ1,

σ1〈p〉 = σ1〈p〉, (8.6)

where here σ1 represents the associated eigenvalue. As the field inside the ellipsoidal core is
uniform, it follows that when the average polarization field is chosen so that (8.6) is satisfied
then the solution to the field equations remains unperturbed when we change the moduli inside
the core from σ1I to σ1. Accordingly, the average field 〈e〉 does not change, implying that
σ∗ satisfies

(σ∗ − σ2I)
−1〈p〉 = [(σ1 − σ2)

−1I + f2M/σ2]〈p〉/ f1, (8.7)

whereM is given by (7.55). Thus the action of (σ∗ − σ2I)
−1 on any eigenvector of σ1 is

given by (8.7), where σ1 is the associated eigenvalue. By considering all eigenvectors of σ1
we see that (σ∗ − σ2I)

−1 and hence σ∗ are completely determined by (8.7). In fact there is a
simple expression for σ∗,

f1(σ∗ − σ2I)
−1 = (σ1 − σ2I)

−1 + f2M/σ2, (8.8)

which is easy to verify by noting that (σ∗ − σ2I)
−1 given by (8.8) satisfies (8.7).

8.3. Making an affine coordinate transformation
Let us consider how the conductivity equations

j(x) = σ(x)e(x), ∇ · j(x) = 0, e(x) = ∇φ(x),
transform under an affine change of coordinates from x to

x′ = Ax,



146 8. Tricks for exactly solvable microgeometries

where the transformation matrix A does not depend on x. Using the chain rule of differenti-
ation, we have

∂φ

∂xi
= ∂x ′

k

∂xi

∂φ

∂x ′
k
= Aki

∂φ

∂x ′
k
,

∂ ji
∂xi

= ∂x ′
k

∂xi

∂ ji
∂x ′
k
= Aki

∂ ji
∂x ′
k
, (8.9)

where sums over repeated indices are implied. Thus we have

∇φ(x) = AT∇ ′φ(x), ∇ · j = ∇ ′ · (Aj),

in which ∇ ′ is the differential operator

∇ ′ =
(

∂

∂x ′
1
,

∂

∂x ′
2
,

∂

∂x ′
3

)
.

Consequently the fields

j ′(x′) ≡ Aj(x), e′(x′) ≡ (AT )−1e(x), φ′(x′) ≡ φ(x), where x = A−1x′, (8.10)

satisfy the conductivity equations

j ′(x′) = σ′(x′)e′(x′), ∇ ′ · j ′(x′) = 0, e′(x′) = ∇ ′φ′(x′)

in a medium with conductivity tensor

σ′(x′) = Aσ(x)AT . (8.11)

Also by averaging the fields in (8.10) we see that

〈j ′〉′ = σ′
∗〈e′〉′,

where
σ′

∗ = Aσ∗AT (8.12)

is the effective tensor of the new medium and the angular brackets 〈·〉′ denote an average over
x′. In other words, if a material with conductivity tensor σ(x) has effective tensor σ∗, then
a material with conductivity tensor σ′(x′) given by (8.11) will have effective conductivity
tensor σ′

∗ given by (8.12).
For example, consider a two-phase medium with conductivity tensor

σ(x) = χ1(x)σ1 + χ2(x)σ2,

where χ1(x) = 1−χ2(x) is the usual characteristic functions representing the microstructure
of phase 1. By taking

A = (σ2)
−1/2,

we transform to a conductivity problem with conductivity tensor

σ′(x′) = χ1(x)σ
′
1 + χ2(x)I, where x = σ1/2

2 x′,
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which is isotropic in phase 2, and takes the value

σ′
1 = (σ2)

−1/2σ1(σ2)
−1/2

in phase 1. Thus in a two-phase composite (with each phase having a constant orientation) we
can always transform to an equivalent conductivity problem where one of the phases has an
isotropic conductivity tensor. Conversely, if the conductivity equations have an exact solution
for a two-phase composite with an isotropically conducting phase 2, then we can use these
affine transformations to generate a family of associated microstructures where the conduc-
tivity equations have an exact solution but phase 2 is anisotropic.

Following, for example, Olver (1988); Milgrom and Shtrikman (1992); and Alphutova,
Movchan, and Nazarov (1991) we can also apply affine transformations to the elasticity equa-
tions. Introducing the new displacement field,

u′(x′) = (A−1)Tu(x), where x′ = Ax,

the associated strain field

ε′(x′) = [∇ ′u′(x′)+ (∇ ′u′(x′))T ] = (A−1)T ε(x)A−1,

and the new stress field
τ ′(x′) = Aτ (x)AT ,

we see that these fields solve the elasticity equations

τ ′ = C′ε′, ∇ ′ · τ = 0, ε′ = [∇ ′u′ + (∇ ′u′)T ],

in a medium with elasticity tensor

{C′(x′)}i jk	 = {A}im{A} jn{A}ko{A}	p{C(x)}mnop. (8.13)

Also by averaging the fields we see that

〈τ ′〉′ = C′
∗〈ε′〉′,

where
{C′

∗}i jk	 = {A}im{A} jn{A}ko{A}	p{C∗}mnop. (8.14)

Therefore, if a material with elasticity tensor C(x) has effective tensor C∗, then a material with
elasticity tensor C′(x′) given by (8.13) will have effective elasticity tensor C ′

∗ given by (8.14).
In a two-phase composite it is generally impossible to transform to an equivalent problem
where one of the phases is elastically isotropic. Milgrom and Shtrikman (1992) note that this
is possible if and only if the elasticity tensor of one of the phases can be expressed in the form

{C}i jk	 = µ({D}ik{D} j	 + {D}i	{D} jk)+ λ{D}i j{D}k	
for some choice of constants µ, λ and some choice of positive-definite symmetric matrixD.
To transform such a tensor to an isotropic tensor one takes A = D−1/2. In two dimensions
Olver (1988) and Alphutova, Movchan, and Nazarov (1991) have shown that one can trans-
form an arbitrary positive-definite elasticity tensor to one with orthotropic symmetry [see also
Milton and Movchan (1995)].
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8.4. The conductivity of an assemblage of coated ellipsoids with an
anisotropic core and coating

Suppose that we want an exact solution for the conductivity equations in an assemblage of
coated ellipsoids where the core and coating have symmetric positive-definite conductivity
tensors σ′

1 and σ
′
2. Then starting from an assemblage of confocal coated ellipsoids each with

an isotropic coating of conductivity σ2 = I surrounding an anisotropic core of conductivity
σ1 given by

σ1 = (σ′
2)

−1/2σ′
1(σ

′
2)

−1/2,

we can set
A = (σ′

2)
1/2

and transform to an assemblage of coated ellipsoids with a coating of conductivity σ ′
2 sur-

rounding a core of conductivity σ′
1. In this process the effective conductivity of the assem-

blage is transformed from σ∗ to

σ′
∗ = (σ′

2)
1/2σ∗(σ′

2)
1/2.

So from the formula (8.8) for σ∗ we see that σ′
∗ satisfies

f1(σ′
∗ − σ′

2)
−1 = (σ′

1 − σ′
2)

−1 + f2(σ′
2)

−1/2M (σ′
2)

−1/2, (8.15)

where M is given by (7.55) and depends only on the geometry of the original prototype
confocal coated ellipsoid. The core and exterior surfaces of this confocal coated ellipsoid are
described by the equations

x · (Lc)−1x = 1, x · (Le)−1x = 1,

where the matricesLc andLe depend on the semi-axis lengths of the ellipsoid in the following
way:

Lc =
(
�2
c1 0 0
0 �2

c2 0
0 0 �2

c3

)
, Le =

(
�2
e1 0 0
0 �2

e2 0
0 0 �2

e3

)
. (8.16)

These transform to the surfaces

x′ · (L′
c)

−1x′ = 1, x′ · (L′
e)

−1x′ = 1,

describing the core and exterior surfaces of the ellipsoid in the x ′ coordinates, where

L′
c = ALcA = (σ′

2)
1/2Lc(σ

′
2)

1/2, L′
e = ALeA = (σ′

2)
1/2Le(σ

′
2)

1/2. (8.17)

From (7.56) and (8.16) we see that

Le = Lc + αI,

which implies that the matrices L′
c and L

′
e satisfy

L′
e = L′

c + ασ′
2. (8.18)

In other words, an assemblage of coated ellipsoids in which both the core material and
coating are anisotropic, with conductivity tensors σ ′

1 and σ′
2, has an exact solution for its

effective conductivity tensor σ′
∗ [given by (8.15)] provided the matricesL

′
c and L

′
e describing
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the core and exterior surfaces of the prototype ellipsoid satisfy (8.18) for some positive choice
of α. Every other coated ellipsoid in the assemblage must be similar to the prototype aside
from a scale factor and must have the same orientation. The core and exterior surfaces of the
coated ellipsoid are not in general confocal (except when σ ′

2 is isotropic) and need not have
the same principal axes (see figure 8.1). The geometry of the prototype coated ellipsoid is
completely determined from (8.18) if we specify the conductivity tensor σ ′

2, the orientation
and semi-axis lengths of the elliptical core (which determine L′

c), and the volume fraction
f1 occupied by the core (which determines α). The tensorM entering the expression (8.15)
for the effective tensor σ′

∗ is obtained from the formula (7.55), in which the lengths �cj and
�ej , j = 1, 2, 3 (that determine the depolarization tensorsDc andDe) are obtained from the
tensors Lc and Le given implicitly by (8.17).

Figure 8.1. The stretched confocal coated ellipsoid assemblage. In each ellipsoid phase 1
occupies the cross-hatched core, while phase 2 occupies the coating. The symmetric conduc-
tivity tensors σ′

1 and σ′
2 of the phases and the eccentricity and orientation of the ellipsoid

cores can be independently and arbitrarily chosen. When the coated ellipsoids fill all space,
(8.15) provides an exact formula for the effective conductivity tensor.

The assemblage can of course be regarded as a suspension of ellipsoids embedded in a
matrix of the coating material. With this interpretation, (8.15) gives an exact formula for the
effective conductivity tensor of a special configuration of anisotropically conducting ellip-
soidal inclusions of phase 1 embedded in an anisotropically conducting matrix of phase 2,
where the tensorM entering this formula just depends on the volume fraction f1, and on the
orientation and shape of the elliptical inclusions. The ellipsoidal inclusions (which all have
the same orientation and shape) need to have a variety of sizes ranging to the infinitesimal
and need to be positioned so that the composite can be regarded as an assemblage of coated
ellipsoids satisfying (8.18)

8.5. Making a curvilinear coordinate transformation†
Instead of making an affine transformation, let us make a general curvilinear coordinate trans-
formation from x to a new set of coordinates,

x′(x) = Bx+ v(x), (8.19)
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where B is a fixed matrix and v(x) is a periodic function of x with the same periodicity as
the composite such that the matrixA = (∇x′)T with elements

Aki = ∂x ′
k

∂xi
= Bki + ∂vk

∂xi
(8.20)

is nonsingular for all x. (This ensures that the transformation is one-to-one.) The equations
(8.9) still hold, but ∇ · j can no longer be identified with ∇ ′ · (Aj) becauseA depends on x′.
Instead we use the identity

∂

∂x ′
k

(
a−1 ∂x

′
k

∂xi

)
= 0, where a = detA, (8.21)

which results because a−1AT is the matrix of cofactors of A−1. Specifically, in a three-
dimensional medium we have

a−1 ∂x
′
k

∂xi
= εk	mεirs

∂xr
∂x ′

	

∂xs
∂x ′
m
,

in which εi jk is the completely antisymmetric Levi-Civita tensor with elements

εi jk = 1 if i, j, k are an even permutation of 1, 2, 3,
= −1 if i, j, k are an odd permutation of 1, 2, 3,
= 0 otherwise.

It then follows that

∂

∂x ′
k

(
a−1 ∂x

′
k

∂xi

)
= εk	mεirs

(
∂2xr

∂x ′
k∂x

′
	

∂xs
∂x ′
m
+ ∂2xs

∂x ′
k∂x ′

m

∂xr
∂x ′

	

)
= 0,

which establishes (8.21). This now allows us to write

Aki
∂ ji
∂x ′
k
= a ∂

∂x ′
k

(
Aki ji/a

)
,

and consequently (8.9) implies that

∇φ = AT∇ ′φ, ∇ · j = a∇ ′ · (Aj/a).
So the fields

j ′ ≡ Aj/a, e′ ≡ (AT )−1e, φ′ ≡ φ,

when expressed as functions of x′ satisfy the conductivity equations

j ′ = σ′e′, ∇ ′ · j ′ = 0, e′ = ∇ ′φ′

in a medium with conductivity tensor

σ′ = AσAT / detA. (8.22)

In this medium the average over x′ of the k-th component the current field j ′ is

〈 j ′k〉′ = 〈aj ′k〉/ detB = 〈(∇x ′
k) · j〉/ detB = 〈∇x ′

k〉 · 〈j〉/ detB = Bki 〈 ji〉/ detB.
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The potential φ = φ ′ is the sum of a part 〈e〉·x linear in x and a part periodic in x. By making
the substitution (8.19) we see that it can be re-expressed as the sum of a part 〈e〉·B−1x′ linear
in x′ and a part periodic in x′. Since the coefficient of the linear part can be identified with
the average over x′ of the electric field e′, we conclude that

〈e′〉′ = (BT )−1〈e〉.

From these expressions for the average fields, it follows that 〈j ′〉′ = σ′
∗〈e′〉′, where

σ′
∗ = Bσ∗BT / detB (8.23)

is the effective tensor of the new medium. Moreover we see from (8.20) that B = 〈A〉, in
which the average is over x.

These coordinate transformations provide equivalences between a large family of conduc-
tivity problems. If the original medium has a locally isotropic conductivity tensor σ(x) =
σ(x)I , then the new medium will not be locally isotropic since this would require the trans-
formation to be conformal, and there are no nontrivial periodic conformal mappings that do
not have singularities.

As a simple example of these transformations, consider a two-dimensional homogeneous
conducting medium with conductivity tensor σ(x) = I and take new coordinates

(x ′
1, x

′
2) = (x1 + h(x1), x2 + h(x2)),

where h(y) is the periodic function

h(y) = y/2 for 0 ≤ y ≤ 1,
= 1− y/2 for 1 ≤ y ≤ 2,
= h(y − 2) for all y.

ThenB = I andA(x) is periodic taking the four values(
3/2 0
0 3/2

)
,

(
3/2 0
0 1/2

)
,

(
1/2 0
0 3/3

)
,

(
1/2 0
0 1/2

)
.

The associated conductivity field σ ′(x′) is periodic and within the unit cell of periodicity
0 ≤ x ′

1 ≤ 2, 0 ≤ x ′
2 ≤ 2 takes the four values(
1 0
0 1

)
,

(
3 0
0 1/3

)
,

(
1/3 0
0 3

)
,

(
1 0
0 1

)
in respectively the square 0 ≤ x ′

1 ≤ 3/2, 0 ≤ x ′
2 ≤ 3/2; the rectangle 0 ≤ x ′

1 ≤ 3/2,
3/2 ≤ x ′

2 ≤ 2; the rectangle 3/2 ≤ x ′
1 ≤ 2, 0 ≤ x ′

2 ≤ 3/2; and the square 3/2 ≤ x ′
1 ≤ 2,

3/2 ≤ x ′
2 ≤ 2. According to (8.23), the effective conductivity of this new medium is σ ′

∗ = I .
For this particular example the same result can be deduced from symmetry and duality: By
symmetry σ′

∗ must be proportional to the identity tensor, and by duality (see section 3.3 on
page 50) detσ∗ = 1 because detσ′(x′) = 1 for all x′. Other choices of the transformation
also yield composites having detσ∗ = 1 since (8.22) implies that detσ′(x′) = 1 when
σ(x) = I for all x.
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8.6. Quasiconformal mappings
In the example of the previous section we saw how the conductivity problem in a certain
two-dimensional anisotropic medium is equivalent to a trivial conductivity problem in a ho-
mogeneous medium. What is more surprising is the result of Astala and Nesi (2001) that
(subject to minor technical assumptions) the conductivity problem in any two-dimensional
anisotropic medium can be transformed to an equivalent problem in a locally isotropic con-
ducting medium. Only a brief outline of the proof will be given here; for more details the
reader is referred to the original paper, and the related papers of Nesi (1996, 1998). In those
papers the transformation was used to obtain optimal bounds on the effective conductivity of
a two-dimensional composite containing an isotropic phase mixed in fixed proportion with a
polycrystalline phase (see section 23.8 on page 480).

Suppose that we are given a problem with a real, symmetric matrix-valued periodic con-
ductivity tensor field σ(x) having eigenvalues λ2(x) ≥ λ1(x) > 0 and with

K = sup
x

√
λ2(x)/λ1(x) ≥ 1

being finite. An associated conductivity tensor field

σQ(x) = σ(x)/
√
detσ(x) (8.24)

is introduced, which has unit determinant. From a pair of potentials φQ(x) and ψQ(x) that
solve the affiliated conductivity problem

R⊥∇ψQ = σQ∇φQ (8.25)

(and which are such that ∇φQ and ∇ψQ are periodic and nonzero) we construct the mapping
x′(x) = (φQ(x), ψQ(x)).

It turns out that this mapping is one-to-one and continuous and that its inverse is also one-
to-one and continuous, that is, it is a homeomorphism. Moreover, it is a K-quasiconformal
mapping. To show the latter, following Alessandrini and Nesi (2000), one observes that (8.25)
and the fact that detσQ(x) = 1 imply that

σQ∇ψQ = −R⊥∇φQ .
This can be combined with (8.25) to form the single equation

σQAT = R⊥ATRT⊥ = A−1 detA, where A(x) = [∇x′(x)]T , (8.26)

in which the second identity is true for any 2 × 2 matrix A. (This identity was also used in
section 3.1 on page 47.) Equivalently we have

[A(x)]TA(x) = [σQ(x)]−1 detA(x). (8.27)

By definition, K -quasiconformal mappings are two-dimensional homeomorphisms such that

∇x′(x)[∇x′(x)]T = G(x) det∇x′(x)

for some real positive-definite symmetric matrixG(x)with unit determinant having its eigen-
values not greater than K for all x. (The appearance of the transpose on the first term rather
than the second term is a matter of notation. We have chosen to define ∇x′ as the matrix
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having ∇x ′
1 and ∇x ′

2 as columns rather than as rows, so that σQ∇x′(x) is the matrix σQ

times the matrix ∇x′(x).) Since [σQ(x)]−1 has a unit determinant and the largest eigenvalue√
λ2(x)/λ1(x) ≤ K , we see that the mapping is K -quasiconformal. Quasiconformal map-

pings have been studied extensively; for an introduction see Lehto and Virtanen (1973). The
geometrical interpretation of K is roughly speaking the following. Away from singularities,
infinitesimal circles are mapped to infinitesimal ellipses and K gives the maximum value of
their eccentricity (the ratio of the longest axis to the shortest axis).

Now substituting (8.24) and (8.26) into (8.22) gives

σ′ = AσA
T

detA
=
√
detσ

AσQAT

detA
=
√
detσI. (8.28)

Thus we have mapped to a problem where the conductivity tensor is locally isotropic. To
obtain the relation between σ′

∗ and σ∗ from (8.23) we need to determineB = 〈A〉, where the
average is over x. Associated with σQ(x) is an effective conductivity tensor σQ∗ (x) that by
definition governs the relation

R⊥〈∇ψQ〉 = σQ∗ 〈∇φQ〉
between the average gradients. By manipulating this equation in the same way that (8.27) was
obtained from (8.25) we find that

BTB = (σQ∗ )
−1 detB, where B = [〈∇x′(x)〉]T = 〈A〉.

This implies that
B = RQ(σQ∗ )−1/2

√
detB

for some choice of rotation matrix RQ satisfying (RQ)TRQ = I . Thus the effective tensor
σQ∗ determines the overall distortion of the unit cell of periodicity. Substituting this back into
(8.23) gives

σ′
∗ = RQ(σQ∗ )−1/2σ∗(σQ∗ )

−1/2(RQ)T . (8.29)

Since detσQ(x) = 1 for all x, we have detσQ∗ = 1. One immediate consequence of this,
which follows from the fact that detσQ∗ = 1 (because detσQ(x) = 1 for all x), is that
detσ∗ = detσ′

∗.
Thus, aside from a rotation, the problem of determining σ∗ has been broken into two:

the problem of determining the effective conductivity tensor σQ∗ of an anisotropic medium
with local conductivity tensor having unit determinant, and the problem of determining the
effective conductivity tensor σ′

∗ of a locally isotropic medium. Of course to solve the second
problem we need to know the microgeometry, which requires determining the mapping x′(x),
that is, obtaining a pair of potentials φQ(x) and ψQ(x) that solve (8.25).

8.7. Generating microgeometries from fields
There is one other approach to finding conductivity tensor fields σ(x) for which a formula
for the effective conductivity tensor σ∗ can be easily obtained. The idea dates back to a paper
of Marino and Spagnolo (1969). Here, in the context of three-dimensional conductivity, we
begin with a generalization due to Dufour, Fabre, and Mossino (1996). The key step is to note
that the fields

e(x) =
( c1a1(x1)

c2a2(x2)

c3a3(x3)

)
j(x) =

( c1b1(x2, x3)

c2b2(x1, x3)

c3b3(x1, x2)

)
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are respectively curl free and divergence free for all choices of the constants c1, c2, and c3 and
for all choices of the functions ai (z) and bi(y, z), i = 1, 2, 3, which we take to be periodic and
positive-valued. The constitutive law will be clearly satisfied if we choose our conductivity
tensor to be

σ(x) =
( b1(x2, x3)/a1(x1) 0 0

0 b2(x1, x3)/a2(x2) 0
0 0 b3(x1, x2)/a3(x3)

)
. (8.30)

Then by taking averages of the fields it is clear that this medium will have the effective con-
ductivity tensor

σ∗ =
( 〈b1(x2, x3)〉/〈a1(x1)〉 0 0

0 〈b2(x1, x3)〉/〈a2(x2)〉 0
0 0 〈b3(x1, x2)〉/〈a3(x3)〉

)
. (8.31)

Of course an even wider range of exactly solvable microgeometries can be obtained by apply-
ing curvilinear coordinate transformations to these solutions.

In the particular case considered by Marino and Spagnolo, the locally isotropic conduc-
tivity tensor field σ(x) = c1(x1)c2(x2)c3(x3)I has effective conductivity

σ∗ =
( 〈c2(x2)c3(x3)〉/〈1/c1(x1)〉 0 0

0 〈c1(x1)c3(x3)〉/〈1/c2(x2)〉 0
0 0 〈c1(x1)c2(x2)〉/〈1/c3(x3)〉

)
.

The two-dimensional version of this result has an application to a periodic composite with a
square unit cell, divided into four equal subsquares with conductivities labeled, in clockwise
order, as σ1, σ2, σ3, and σ4. The effective conductivity tensor is diagonal, and when σ4 =
σ2σ3/σ1 the result of Marino and Spagnolo implies that its eigenvalues are

λ∗
1 =

σ2(σ1 + σ3)

σ1 + σ2
, λ∗

2 =
σ3(σ1 + σ2)

σ1 + σ3
.

For other values of σ4 Mortola and Steffé (1985) obtained upper and lower bounds on λ∗
1 and

λ∗
2, and they conjectured that the exact values would be given by the square root of the product
of their upper and lower bounds, resulting in the formulas

λ∗
1 =

√
σ1σ2σ3σ4(1/σ1 + 1/σ2 + 1/σ3 + 1/σ4)(σ1 + σ4)(σ2 + σ3)

(σ1 + σ2 + σ3 + σ4)(σ1 + σ2)(σ3 + σ4)
,

λ∗
2 =

√
σ1σ2σ3σ4(1/σ1 + 1/σ2 + 1/σ3 + 1/σ4)(σ1 + σ2)(σ3 + σ4)

(σ1 + σ2 + σ3 + σ4)(σ1 + σ4)(σ2 + σ3)
. (8.32)

Recently this conjecture was proved by Craster and Obnosov (2001), and Milton (2001). In
the particular case when σ4 = σ3 = σ2, the composite reduces to a square array of squares
of conductivity σ1 occupying a volume fraction f1 = 0.25 in a matrix of conductivity σ2.
According to (8.32), the effective conductivity of this array is

σ∗ = σ2
√
(σ2 + 3σ1)/(3σ2 + σ1). (8.33)

Mortola and Steffé provided some numerical and analytical evidence in favor of this formula,
and subsequently Obnosov (1999) proved that the effective conductivity is given exactly by
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this expression. When σ1 = 100 and σ2 = 1, the formula gives σ∗ = 1.7094824061942.
Johan Helsing (private communication), using formulas (7) and (8) of Helsing (1998), has
numerically calculated the result to be σ∗ = 1.7094824061(8) (digit within parenthesis not
converged). So theory and numerical experiment certainly agree! For the square array of
squares at other volume fractions, Kozlov and Vucans (1992) have obtained an implicit for-
mula for σ∗ when σ1 = 0.

Other nonsymmetric forms of σ(x) yielding an exact result for σ∗ were obtained by Du-
four, Fabre, and Mossino (1996). More generally, following ideas of Tartar (1979) we might
take periodic 3×3 matrix-valued fieldsE(x) and J(x) that are periodic and nonsingular and
such that

E(x) = ∇u(x), ∇ · J(x) = 0,

for some choice of the vector potential u, that is, the columns of E(x) are curl free and the
columns of J(x) are divergence free. Then, for any choice of the vector c, the conductivity
equations are solved with

e(x) = E(x)c, j(x) = J(x)c, σ(x) = J(x)[E(x)]−1,

and consequently the effective tensor is

σ∗ = 〈J〉〈E〉−1.

This approach is an excellent way of generating exactly solvable microgeometries with con-
ductivity tensor fields σ(x) that are not symmetric. However, it is hard to find matrix-valued
fieldsE(x) and J(x) that result in symmetric tensor fields σ(x). These satisfy the additional
constraint that ETJ = J TE.
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9
Laminate materials

9.1. The history of laminates and why they are important
The simplest conceivable composite is a stratified material, such as the one illustrated in fig-
ure 9.1 on the next page, where the material properties vary only in one direction, called the
direction of lamination, represented by a unit vector n. Of course lamination in direction n is
equivalent to lamination in direction−n. This chapter is devoted to obtaining formulas for the
effective tensors of such laminates (called simple or rank-1 laminates), and also laminates of
laminates (called multiple-rank laminates) where there is a large difference in the length scales
of the successive laminations and the subsequent laminations are in different directions; see
figure 9.2 on the following page. Laminates of laminates were introduced by Maxwell (1873),
who provided a formula for the effective conductivity tensor of certain third-rank laminates,
and later by Bruggeman (1930) for estimating the elastic moduli of polycrystalline aggre-
gates. Beginning with the work of Schulgasser (1976), the effective tensors of appropriately
designed multiple-rank laminates were found to attain many bounds on effective tensors. Nu-
merous examples of such optimal laminate microstructures will be given in the latter part of
this book. When one is trying to get some idea of the range of properties that composite mate-
rials can exhibit as the microstructure is varied, it is usually best to first examine the range of
properties that multiple-rank laminate materials can exhibit. If in the course of exploring what
is achievable in laminate microgeometries one finds desirable properties, then one can subse-
quently look for more realistic microgeometries exhibiting these properties. Backus (1962)
found a general method for solving for the fields and effective tensors.

Some of the analysis presented in this chapter could be circumvented. It is included be-
cause it provides a useful stepping stone toward developments in subsequent chapters.

9.2. Elementary lamination formulas
The key to finding the effective tensors of laminate materials is to look for solutions to the
field equations where the fields vary only in the lamination direction and to recognize that
the differential constraints on these fields imply that certain components of the fields are
constant or, equivalently, that certain projections of the fields are uniform fields. For example,
consider the conductivity problem. We look for periodic fields j(x) and e(x) that solve the
conductivity equations

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0,

159
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n

Figure 9.1. A three-dimensional, two-phase laminate that is laminated in direction n. One
phase occupies the shaded region while the other occupies the unshaded region.

Component 1 (shaded) Component 2

h h1 2

Figure 9.2. An example of a two-dimensional, two-phase, second-rank laminate. The widths
h1 and h2 of the slabs should be much larger than the thicknesses of the layers within each
slab.
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where σ(x), j(x), and e(x) vary only in the direction of lamination, that is,

σ = σ(y), j = j(y), e = e(y), where y = n · x.
By resolving the differential operator ∇ into its components in the direction of lamination and
orthogonal to the direction of lamination, we see that, for any function f (y),

∇ f (n · x) = nd f (y)
dy

= d
dy

[
n f (y)

]
.

In particular, the equation ∇ · j = 0 implies that

d
dy

[
n · j(y)

]
= 0,

and so n · j(y) must be constant or, equivalently,
n · j = n · 〈j〉,

which just says that there are no variations in the component of the current field parallel to n.
Also, since e(x) is curl free and periodic, we have

e = 〈e〉 + ∇ϕ(n · x) = 〈e〉 + ndϕ(y)
dy

,

where ϕ(y) is a periodic potential. This just says that the only variation in the electric field is
in the component parallel to n.

In summary, we have

e(x)− 〈e〉 ∈ En, j(x)− 〈j〉 ∈ Jn, for all x, (9.1)

in which
En = {αn | α ∈ }, and Jn = {a ∈ d | n · a = 0}

denote, respectively, the spaces comprised of vectors parallel and perpendicular to n. Thus
the fluctuating components of the fields appearing on the right- and left-hand sides of the
constitutive equation take values in two mutually orthogonal spaces En and Jn. We will see
that this is true not just for conductivity, but also for a wide variety of physical problems.
Introducing the matrices

Γc1(n) = n⊗ n, Γc2(n) = I − n⊗ n, (9.2)

representing projections onto the spaces En and Jn, respectively, (9.1) implies that

Γ1(n)j = Γ1(n)〈j〉, Γ2(n)e = Γ2(n)〈e〉, (9.3)

where we have tentatively dropped the superscript c (which signifies that these are the expres-
sions for Γ1 and Γ2 for the conductivity problem). At this point Γ1(n) and Γ2(n) should
be equated with Γc1(n) and Γc2(n). Later in this chapter expressions for Γ1 and Γ2 will be
given for elasticity, thermoelasticity, thermoelectricity, and piezoelectricity. Note that these
matrices satisfy the expected properties

Γi(n)Γ j(n) = δi jΓi (n), Γ1(n)+ Γ2(n) = I (9.4)
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of projections onto mutually orthogonal spaces.
One elegant approach to obtaining a formula for the effective tensor is to rewrite the

constitutive relation j(x) = σ(x)e(x) in a form where the components of the fields that are
constant appear on the right-hand side of the equation. Then, as we will see, the effective
conductivity tensor can be found by just averaging both sides of this equation. This idea is
due to Backus (1962): see also Tartar (1979).

For simplicity, let us suppose that we are in three dimensions and that the coordinates are
chosen so that n is directed along the x1-axis, that is, n = (1, 0, 0). [In geophysics it is more
conventional to take n = (0, 0, 1) since one frequently considers materials that are layered in
the vertical direction. Taking n directed along the x1-axis is more convenient mathematically
because then the selected index does not change when we consider two- rather than three-
dimensional composites.] The components of the fields that are constant are j1, e2, and e3.
By rewriting the constitutive law so that these components are on the right-hand side we obtain
the equivalent set of equations:(−e1

j2
j3

)
=
(−1/σ11 σ12/σ11 σ13/σ11

σ12/σ11 σ22 − σ 2
21/σ11 σ23 − σ21σ13/σ11

σ13/σ11 σ23 − σ21σ13/σ11 σ33 − σ 2
31/σ11

)( j1
e2

e3

)
. (9.5)

Similar algebraic manipulation of the effective constitutive law 〈j〉 = σ∗〈e〉 yields(−〈e1〉
〈 j2〉
〈 j3〉

)
=
(−1/σ ∗

11 σ ∗
12/σ

∗
11 σ ∗

13/σ
∗
11

σ ∗
12/σ

∗
11 σ ∗

22 − (σ ∗
21)

2/σ ∗
11 σ ∗

23 − σ ∗
21σ

∗
13/σ

∗
11

σ ∗
13/σ

∗
11 σ ∗

23 − σ ∗
21σ

∗
13/σ

∗
11 σ ∗

33 − (σ ∗
31)

2/σ ∗
11

)( 〈 j1〉
〈e2〉
〈e3〉

)
. (9.6)

But since the field on the right-hand side of (9.5) is constant, we can average both sides of this
equation and compare the result with (9.6). The resulting relations,(−1/σ ∗

11 σ ∗
1 j/σ

∗
11

σ ∗
i1/σ

∗
11 σ ∗

i j − σ ∗
i1σ

∗
1 j/σ

∗
11

)
=
(−〈1/σ11〉 〈σ1 j/σ11〉
〈σi1/σ11〉 〈σi j − σi1σ1 j/σ11〉

)
,

which hold for all i �= 1, j �= 1, imply the following formulas of Tartar (1979) for the
components of the effective conductivity tensor σ∗:

σ ∗
11 = 〈1/σ11〉−1,

σ ∗
1 j = 〈1/σ11〉−1〈σ1 j/σ11〉,
σ ∗
i j = 〈σi j − σi1σ

−1
11 σ1 j 〉 + 〈σi1/σ11〉〈1/σ11〉−1〈σ1 j/σ11〉 (9.7)

for all i �= 1, j �= 1.
In particular, if the off-diagonal elements of σ(x) are zero, we obtain the well-known

result that the effective conductivity perpendicular to the layers is the harmonic mean of the
conductivities in that direction, while the effective conductivity along any axis parallel to the
layers is the arithmetic average of the conductivities in that direction; that is, when σi j = 0
for all i �= j we have

σ ∗
11 = 1/〈1/σ11〉, σ ∗

ii = 〈σii 〉 for all i �= 1, σ ∗
i j = 0 when i �= j.

This procedure of averaging the form of the constitutive law where the constant field com-
ponents are on the right-hand side is easily generalized to elasticity, piezoelectricity, and other
equations. For example, if we consider three-dimensional elasticity and choose coordinates so
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thatn is directed along the x1-axis, that is,n = (1, 0, 0), then in the constitutive relation (2.6)
the field components that are constant are τ11,

√
2τ12,

√
2τ13, ε22, ε33, and

√
2ε23. Associated

with this division of the field components is a separation of the elasticity matrix C(x1) into
blocks comprised of the matrices

A11 =
( C1111

√
2C1113

√
2C1112√

2C1113 2C1313 2C1312√
2C1112 2C1312 2C1212

)
,

A12 =
( C1122 C1133

√
2C1123√

2C2213
√
2C3313 2C2313√

2C2212
√
2C3312 2C2312

)
,

A22 =
( C2222 C2233

√
2C2223

C2233 C3333
√
2C3323√

2C2223
√
2C3323 2C2323

)
,

together with A21 ≡ AT12. The associated blocks of the effective tensor C∗ (obtained by
replacing the elasticity moduli with the effective elasticity moduli in the above definitions)
are then given by the expressions

A∗
11 = 〈A−1

11 〉−1,

A∗
12 = 〈A−1

11 〉−1〈A−1
11 A12〉,

A∗
22 = 〈A22 −A21A

−1
11A12〉 + 〈A21A

−1
11 〉〈A−1

11 〉−1〈A−1
11A12〉 (9.8)

of Backus (1962), which are similar in form to the conductivity relations (9.7).
In a locally isotropic laminate the blocks take the forms

A11 =
(
λ+ 2µ 0 0

0 2µ 0
0 0 2µ

)
,

A12 = AT21 =
(
λ λ 0
0 0 0
0 0 0

)
,

A22 =
(
λ+ 2µ λ 0

λ λ+ 2µ 0
0 0 2µ

)
,

and consequently (9.8) implies that the nonzero elements of the effective elasticity tensor C∗
are given by Backus’s formulas,

C∗
1111 = 〈1/(λ+ 2µ)〉−1, C∗

1212 = C∗
1313 = 〈1/µ〉−1, C∗

2323 = 〈µ〉
C∗

1122 = C∗
1133 = 〈λ/(λ + 2µ)〉〈1/(λ+ 2µ)〉−1,

C∗
2222 = C∗

3333 = 〈4µ(λ+ µ)λ/(λ+ 2µ)〉 + 〈1/(λ+ 2µ)〉−1〈λ/(λ + 2µ)〉2,
C∗

2233 = 〈2µλ/(λ+ 2µ)〉 + 〈1/(λ+ 2µ)〉−1〈λ/(λ + 2µ)〉2. (9.9)

For a laminate of two isotropic materials, these latter formulas reduce to those of Postma
(1955).

Avellaneda and Olson (1993) have used a similar approach to evaluate the moduli of a
laminated piezoelectric composite [see also Gibiansky and Torquato (1999), who calculate
the moduli of higher rank piezoelectric laminates]. Berryman (1998) has given formulas that
are analogous to those of Backus for the effective moduli of laminar poroelastic media.
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9.3. Lamination formulas when the direction of lamination is arbitrary
The method described in the previous sections, although straightforward and simple in many
cases, becomes rather algebraically messy for three-dimensional composites when n is not
directed along the coordinate axes. Here we follow another approach, which leads to a concise
but equivalent formula for the effective tensor σ∗ (Milton 1990; Zhikov 1991). The idea is to
solve the conductivity equations for the polarization field

p(x) = (σ(x)− σ0I)e(x) = j(x)− σ0e(x), (9.10)

where the reference constant σ0 can be freely chosen. From (9.10) we can express the electric
field e(x) and its average 〈e〉 in terms of the polarization field p(x) and its average 〈p〉:

σ0e(x) = −S(x)p(x), σ0〈e〉 = −S∗〈p〉,

where, for convenience, we have introduced the tensors

S(x) = σ0(σ0I − σ(x))−1, S∗ = σ0(σ0I − σ∗)−1, (9.11)

which will be important in later analyses. Applying Γ1(n) = I − Γ2(n) to both sides of
(9.10) gives

Γ1(n)p(x) = −σ0e(x)+ σ0〈e〉 + Γ1(n)〈j − σ0e〉 = S(x)p(x)+ v, (9.12)

where v is the uniform field

v = σ0〈e〉 + Γ1(n)〈p〉 = −[S∗ − Γ1(n)]〈p〉. (9.13)

Equation (9.12) is easily solved for the polarization field, giving

p(x) = −[S(x)− Γ1(n)]−1v, (9.14)

and by averaging this equation and noting the relation (9.13) we deduce that

〈p〉 = −[S∗ − Γ1(n)]−1v = −〈[S(x)− Γ1(n)]−1〉v; (9.15)

since this holds for all applied fields or, equivalently, for all choices of v, (9.15) implies the
general lamination formula

[S∗ − Γ1(n)]−1 = 〈[S(x)− Γ1(n)]−1〉, (9.16)

which gives the effective tensor σ∗ through equations (9.2) and (9.11). An alternative formula
for the effective conductivity of an n-phase laminate, laminated in a single direction, has been
given by Tartar (2000).

The lamination formula (9.16) is written in this form rather than directly in terms of σ∗
andσ(x) to emphasize the simplicity of the formula when expressed in terms ofS∗ andS(x).
This is not just cosmetic. If one wanted to calculate the effective tensor σ∗ of multiple-rank
laminates (i.e., laminates of laminates), then it is more convenient to work with the tensors
S∗ obtained at each stage of the lamination process and only compute σ∗ at the end of the
calculation.
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When the composite is three-dimensional and the coordinates are chosen so n is directed
along the x1-axis, that is, n = (1, 0, 0), then the matrix Γ1(n) entering this formula is simply

Γ1 =
( 1 0 0
0 0 0
0 0 0

)
.

Upon substituting this into (9.16) one recovers the formulas (9.7) for the components of the
effective conductivity tensor.

If the laminate is almost homogeneous, say, close to a tensor S1, then to the second order
in δS = S(x)− S1 we have

[S∗ − Γ1(n)]−1 = [S1 − Γ1(n)]−1 − [S1 − Γ1(n)]−1〈δS〉[S1 − Γ1(n)]−1

+[S1 − Γ1(n)]−1〈δS[S1 − Γ1(n)]−1δS〉[S1 − Γ1(n)]−1 + · · · ,
implying, to the second order in δS, that

S∗ = 〈S(x)〉 + 〈δS〉[S1 − Γ1(n)]−1〈δS〉 − 〈δS[S1 − Γ1(n)]−1δS〉 + · · · . (9.17)

9.4. Tartar’s lamination formula for two-phase simple and coated
laminates

Tartar (1985) found an elegant formula for the conductivity tensor of two-phase simple lami-
nates and of an important class of two-phase, multiple-rank laminates, which we call coated
laminates. Let us consider a two-phase laminate material with conductivity tensor

σ(x) = χ1(y)σ1 + χ2(y)σ2, where y = n · x,
in which χ1(y) = 1− χ2(y) is a characteristic function that is periodic in y. From (9.16) we
have

[S∗ − Γ1(n)]−1 = f1[S1 − Γ1(n)]−1 + f2[S2 − Γ1(n)]−1, (9.18)

where f1 and f2 = 1 − f1 are the volume fractions of the two phases in the laminate. For
simplicity, let us suppose that phase 2 is isotropic, that is, σ2 = σ2I. Later we will see that it
is easy to generalize all of the formulas to the case where σ2 is anisotropic. Since we are free
to choose the reference constant σ0, let us take the limit as σ0 tends to σ2. Then S2 tends to
infinity and the second term in (9.18) vanishes. By taking the inverse of both sides of (9.18)
we obtain the formula

f1σ2(σ2I − σ∗)−1 = σ2(σ2I − σ1)
−1 − f2Γ1(n) (9.19)

of Tartar (1985) for the effective tensor σ∗.
Following Maxwell (1873) and Tartar (1985), let us now consider the class of coated

laminates. A third-rank laminate of this type is illustrated in figure 9.3 on the next page. They
are obtained by a process of sequential lamination and, as Braidy and Pouilloux observed
[see Tartar (1985)], the formula for their effective conductivity tensor happens to coincide
with the formula for the effective conductivity tensor of the coated ellipsoid assemblages. We
start with phase 1 having conductivity σ0

∗ = σ1, which is called the core phase, and we first
layer in direction n1 with phase 2, called the coating phase, to form a simple laminate with
conductivity σ(1)

∗ . Then we slice this laminate on a much larger length scale in a different
direction n2 and layer it again with phase 2 to form a rank-2 laminate with conductivity
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tensor σ(2)
∗ . (The rank of a laminate refers to the minimum number of widely separated length

scales needed in its construction.) This process is continued until we obtain a rank-m coated
laminate having conductivity σ∗ = σ(m)

∗ : At the j -th stage the rank-( j − 1) laminate is sliced
in directionn j on a length scale much larger than the existing microstructure and layered with
phase 2 to form a rank- j laminate of conductivityσ( j)

∗ . These coated laminates have also been
called “matrix laminates” and “sequentially laminated microstructures.” I have adopted the
name coated laminate because it is simple and emphasizes the similarity with coated ellipsoid
and coated sphere assemblages.

)

(

(

( )(

( )

)(

)

) f1
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ε2 ε2=
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f 1

f =3 f 2

0

1

Figure 9.3. The third-rank coated laminate introduced by Maxwell (1873). Here the coat-
ing phase, phase 2, occupies the shaded region while the core phase, phase 1, occupies the
unshaded region. The parameter f ( j), for j = 0, 1, 2, 3, with f (0) = 1 and f (3) = f1 rep-
resents the volume fraction of phase 1 in the rank- j laminate obtained in the construction
process. In the limit ε → 0, the conductivity of this laminate is given by (9.20). By choosing
f (1) = (2 + f1)/3 and f (2) = (1 + 2 f1)/3 one obtains a coated laminate with the same
conductivity as the Hashin-Shtrikman coated sphere assemblage.

Now let f ( j) denote the proportion of phase 1 in the rank- j laminate, which monotoni-
cally decreases with increasing j because we are always adding phase 2. To form the rank- j
laminate we need to layer the rank-( j−1) laminate with phase 2 in proportions p j and 1− p j ,
where p j = f ( j)/ f ( j−1). Because of the wide separation of length scales we can calculate
σ

( j)
∗ by treating the rank-( j−1) laminate as a homogeneous material with conductivityσ( j−1)

∗ .
Then the lamination formula (9.19) implies that

f ( j)σ2(σ2I − σ( j)
∗ )−1 = f ( j−1)σ2(σ2I − σ( j−1)

∗ )−1 − ( f ( j−1) − f ( j))Γ1(n j ).

Recalling that f 0 = 1, it follows by induction that

f1σ2(σ2I − σ∗)−1 = σ2(σ2I − σ1)
−1 − f2M , (9.20)

where f1 = 1 − f2 = f m is the volume fraction occupied by phase 1 in the final composite
and

M =
m∑
j=1

c jΓ1(n j),
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in which the constants

c j = f ( j−1) − f ( j)

1− f1
(9.21)

satisfy
m∑
j=1

c j = 1, c j ≥ 0 for all j. (9.22)

When phase 1 is isotropic, that is, σ1 = σ1I , and there are three mutually orthogonal di-
rections of lamination, as in figure 9.3 on the facing page, Tartar’s formula (9.20) reduces to
the equations for the principal conductivities given by Maxwell (1873) [see also Lurie and
Cherkaev (1986)].

Conversely, for any choice of constants c j satisfying (9.22) and for any choice of volume
fraction f1 = f m ∈ (0, 1), one can find a set of intermediate volume fractions f ( j) given via

f ( j) = f1 + (1− f1)
m∑

k= j+1

ck, j = 1, 2, . . . ,m − 1, f m = f1,

such that (9.21) is satisfied. Consequently one can construct a coated laminate of rank-m with
intermediate volume fractions f ( j) that reproduce this given set constants c j and total volume
fraction f1 (Tartar 1985). In other words, as the geometry varies over all rank-m coated
laminates with fixed core volume fraction f1, the set of constants (c1, c2, . . . , cm) ranges over
all m-tuplets satisfying (9.22).

A comparison of Tartar’s formula (9.20) with the formula (8.8) for the conductivity of the
coated ellipsoid assemblage with an anisotropic core and isotropic coating shows that they
coincide, and in both cases the matrixM is positive-semidefinite and satisfies TrM = 1.
This is not just coincidental, but as we will see later it is a consequence of the fact that the
field inside the core phase is uniform in both microgeometries.

Moreover, as Tartar (1985) and Lurie and Cherkaev (1986) observed, given any matrix
M ≥ 0 with TrM = 1 one can find a rank-d laminate, where d is the spatial dimension, such
that its effective tensor is given by (9.19). The lamination directions n1,n2, . . . ,nd can be
taken as the eigenvectors ofM and c1, c2, . . . , cd can be taken as the eigenvalues ofM . Thus
we have a complete characterization of the set of all possible effective conductivity tensors of
these coated laminates.

If the coated laminate is almost homogeneous (and σ2 is not necessarily isotropic), then
we can keep σ0 a free parameter. By repeatedly applying (9.17) one finds to the second order
in (S1 − S2) that in the coated laminate S∗ = σ0(σ0I − σ∗)−1 is given by

S∗ = f1S1 + f2S2 − f1 f2(S2 − S1)N(S2 − S1)+ · · · , (9.23)

where

N =
m∑
j=1

c j [S1 − Γ1(n j)]−1, (9.24)

in which the weights c j are given by (9.21).

9.5. Lamination formulas for elasticity, thermoelasticity,
thermoelectricity, and piezoelectricity

All of the preceding analysis generalizes quite easily to the elastic, thermoelastic, thermo-
electric, or piezoelectric problems. For example, consider the elasticity equations in a simple
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rank-1 laminate,

τ(x) = C(x)ε(x), ∇ · τ = 0, ε = [∇u+ (∇u)T ]/2, (9.25)

where the elasticity tensor C(x), the stress field τ(x) and the strain field τ(x) have only
oscillations in the direction of lamination,

C = C(y), τ = τ (y), ε = ε(y), where y = n · x. (9.26)

To simplify the analysis let us choose our coordinates so that n is directed along the x1-axis.
Then (9.26) and the differential restrictions (9.25) imply that the stress and strain fields have
the forms

τ =
(
τ11 τ12 τ13
τ12 τ22(y) τ23(y)
τ13 τ23(y) τ33(y)

)
, ε =

(
ε11(y) ε12(y) ε13(y)
ε12(y) ε22 ε23

ε13(y) ε23 ε33

)
, (9.27)

where those elements that are not written with an explicit y dependence are in fact constant.
So if we define Γ1(n) and Γ2(n) by their action on an arbitrary symmetric second-order
tensorA through the equations

Γ1(n)A =
( a11 a12 a13
a12 0 0
a13 0 0

)
, Γ2(n)A =

( 0 0 0
0 a22 a23

0 a23 a33

)
, (9.28)

where the ai j are the matrix elements of A, then it is easy to see that Γ1(n) and Γ2(n)
are projections onto mutually orthogonal subspaces [namely, those subspaces spanned by all
matrices of the form of the right-hand side of the respective equation in (9.28)] and so satisfy
the properties (9.4). Also (9.27) implies

Γ1(n)τ = Γ1(n)〈τ 〉, Γ2(n)ε = Γ2(n)〈ε〉,

and therefore all of the preceding analysis carries through directly to the elasticity problem.
In particular, the general lamination formula

[S∗ − Γ1(n)]−1 = 〈[S(x)− Γ1(n)]−1〉

applies with
S∗ = σ0(σ0I − C∗)−1, S(x) = σ0(σ0I − C(x))−1,

where I is the fourth-order identity tensor. This gives an explicit formula for the effective
elastic tensor C∗ of the laminate for any choice of the reference constant σ0.

More generally, if n is not directed along the x1-axis, then Γ1(n) and Γ2(n) can be
defined through their action on a second-order tensorA by the equations

Γ1(n)A = (An)⊗ n+ n⊗ (An)− (n ·An)n⊗ n, Γ2(n)A = A− Γ1(n)A,

(9.29)

and it is easy to check that Γ1(n) defined in this way projects onto the subspace of symmetric
second-order tensors

En = {B = n⊗ b+ b⊗ n | b ∈ d },
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while Γ2(n) projects onto the subspace

Jn = {B | n ·B = 0}.
Since Γ1(n) and Γ2(n) are linear transformations on second-order tensors, they can be rep-
resented by fourth-order tensors. Indeed from (9.29) it can be seen that the elements of these
tensors in Cartesian coordinates are

{Γe1(n)}i j	m = 1
2

(
niδ j	nm + niδ jmn	 + n jδi	nm + n jδimn	

)
− nin jn	nm,

{Γe2(n)}i j	m = 1
2

(
δi	δ jm + δimδ j	

)
− {Γe1(n)}i j	m, (9.30)

where the superscript e signifies that these are the expressions for the elasticity problem.
For a two-phase coated laminate with a core of phase 1 with elasticity tensor C1 coated

by phase 2 with the rather special elasticity tensor C2 = σ0I , in which I is the fourth-order
identity tensor, we have by direct analogy with (9.20) the formula

f1σ2(σ2I − C∗)−1 = σ2(σ2I − C1)
−1 − f2

m∑
j=1

c jΓ1(n j)

for the effective elasticity tensor C∗ in which the constants c j are given by (9.21) in terms of
the intermediate volume fractions f ( j). The restriction that C2 = σ0I is quite unnatural in
the elasticity problem since it is stronger than the assumption of isotropy of phase 2. In fact
we will see in the next section that this restriction is not needed.

For thermoelasticity, poroelasticity, thermoelectricity, or piezoelectricity, the constitutive
law and effective constitutive law take the generic forms

J(x) = L(x)E(x), 〈J〉 = L∗〈E〉. (9.31)

For thermoelasticity (or, equivalently, poroelasticity) the fields

J(x) =
(
ε(x)
ς(x)

)
, E(x) =

(
τ(x)
θ

)
satisfy the differential constraints

∇ · τ = 0, ε = [∇u+ (∇u)T ]/2, θ = constant.

Consequently, when these fields only depend on n · x the differential constraints imply

E − 〈E〉 ∈ En, J − 〈J〉 ∈ Jn, (9.32)

in which En and Jn are the orthogonal subspaces

En = {
(
B
0

)
| n ·B = 0},

Jn = {
(
n⊗ b+ b⊗n

α

)
| b ∈ d , α ∈ }.

Equivalently, the fields J = J(n · x) andE = E(n · x) satisfy
Γ1(n)J = Γ1(n)〈J〉, Γ2(n)E = Γ2(n)〈E〉, (9.33)
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in which Γ1 and Γ2 are the projections onto En and Jn, respectively:

Γ1(n) =
(

Γe2(n) 0
0 0

)
, Γ2(n) =

(
Γe1(n) 0
0 1

)
.

Here Γe1(n) and Γe2(n) are the �-operators for elasticity given by (9.30).
For thermoelectricity or similar coupled problems where two divergence free fields are

coupled with two curl free fields the constitutive relation and effective constitutive relation
take the forms of (9.31) with fields

J(x) =
(
j1
j2

)
, E(x) =

(
e1
e2

)
, where ∇ · j i = 0, ∇ × ei = 0, i = 1, 2,

and when these fields only depend on n · x, (9.32) and (9.33) hold with

En = {
(
αn
βn

)
| α, β ∈ },

Jn = {
(
a
b

)
| a, b ∈ d , n · a = n · b = 0},

and

Γ1(n) = I − Γ2(n) =
(

Γc1(n) 0
0 Γc1(n)

)
, where Γc1(n) = n⊗ n.

Again, Γ1(n) and Γ2(n) represent the projections onto the subspaces En and Jn, respec-
tively. These formulas have an obvious generalization to the case where more than two diver-
gence free and curl free fields are coupled.

For piezoelectricity the constitutive relation and effective constitutive relation take the
forms of (9.31) with fields

J(x) =
(
ε
d

)
, E(x) =

(
τ
e

)
, where ε = [∇u+ (∇u)T ]/2, ∇ · τ = 0,

∇ · d = 0, ∇ × e = 0,

and when these fields only depend on n · x, (9.32) and (9.33) hold with

En = {
(
B
αn

)
| n ·B = 0, α ∈ },

Jn = {
(
n⊗ b+ b⊗ n

a

)
| a, b ∈ d , n · a = 0},

and

Γ1(n) = I − Γ2(n) =
(

Γe2(n) 0
0 Γc1(n)

)
,

where Γe2(n) and Γc1(n) are given by (9.30) and (9.2).
In summary it is clear that equations (9.31) and (9.33) apply to conductivity, thermoelas-

ticity, poroelasticity, thermoelectricity, and piezoelectricity with an appropriate choice of the
projections Γ1(n) and Γ2(n). Since the derivation of the lamination formulas only uses these
equations, it follows that the effective tensor L∗ of a simple laminate in all of these problems
is given by

[S∗ − Γ1(n)]−1 = 〈[S(x)− Γ1(n)]−1〉, (9.34)
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with
S∗ = σ0(σ0I −L∗)−1, S(x) = σ0(σ0I −L(x))−1. (9.35)

Similarly, the effective tensor L∗ of a coated laminate with a core of phase 1 with tensor L1

and coating of phase 2 with the special tensor L2 = σ2I is given by

f1σ2(σ2I −L∗)−1 = σ2(σ2I −L1)
−1 − f2

m∑
j=1

c jΓ1(n j), (9.36)

where the constants c j are given by (9.21) in terms of the intermediate volume fractions f ( j).

9.6. The lamination formula for a coated laminate with anisotropic
coating and anisotropic core

The lamination formula (9.36) for the effective conductivity, elastic, thermoelastic, thermo-
electric, or piezoelectric tensor of a coated laminate is applicable only when the coating of
phase 2 has tensor L2 proportional to the identity tensor. A more general formula that is valid
for arbitrary choices of the tensor L2 is obtained if we recast the simple lamination formula
(9.34) in another equivalent form. This is done by introducing a possibly anisotropic reference
tensor L0 and considering the equation satisfied by the polarization field

P (x) = J(x)−L0E(x) = (L(x)−L0)E(x). (9.37)

From (9.33) we have

Γ1(n)(〈E〉 −E(x)) = 〈E〉 −E(x),

Γ1(n)[P (x)− 〈P 〉 −L0(〈E〉 −E(x))] = Γ1(n)[J(x)− 〈J〉] = 0. (9.38)

Now let us define a new matrix Γ(n) defined through its action on a tensor A: We say
that

B = Γ(n)A if and only if Γ1(n)B = B and Γ1(n)(A−L0B) = 0, (9.39)

which gives a linear set of equations that can be solved for B. Using standard manipulations
of linear algebra it is clear that Γ(n) is in fact given by the formula

Γ(n) = Γ1(n)[Γ1(n)L0Γ1(n)]−1Γ1(n), (9.40)

in which the inverse is to be taken on the subspace En onto which Γ1(n) projects. [Note that
we can identify Γ(n) with Γ1(n) when L0 = I .] With this definition of Γ(n), (9.38) and
(9.37) imply that

Γ(n)(P (x)− 〈P 〉) = 〈E〉 −E(x) = 〈E〉 − (L(x)−L0)
−1P (x).

Solving this linear equation for P (x) and averaging gives

〈P 〉 = 〈[(L(x)−L0)
−1 + Γ(n)]−1〉V , (9.41)

where V is the constant field
V = 〈E〉 + Γ(n)〈P 〉. (9.42)
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Also from (9.37) and the definition (9.31) of the effective tensor L∗ we see that

〈P 〉 = (L∗ −L0)〈E〉,

which in conjunction with (9.42) implies that

〈P 〉 = [(L∗ −L0)
−1 + Γ(n)]−1V . (9.43)

Since (9.41) and (9.43) hold for all choices of the constant fieldV , we deduce that the effective
tensor L∗ of a simple laminate must be given by the lamination formula

[(L∗ −L0)
−1 + Γ(n)]−1 = 〈[(L(x)− L0)

−1 + Γ(n)]−1〉. (9.44)

This formula holds for any choice of the reference tensor L0 and in particular reduces to
the lamination formula (9.34) when L0 = σ0I . In a two-phase simple laminate we can let L0
approach the tensor L2 of phase 2, and in this limit the lamination formula (9.44) reduces to

f1(L∗ −L2)
−1 = (L1 −L2)

−1 + f2Γ(n), (9.45)

which leads to the expression

f1(L∗ −L2)
−1 = (L1 −L2)

−1 + f2
m∑
j=1

c jΓ(n j ) (9.46)

for the effective tensor of a coated laminate with a core of phase 1 with tensor L1 coated with
phase 2 with tensorL2, where the constants c j are given by (9.21) in terms of the intermediate
volume fractions f ( j) and Γ(n) is given by (9.40). (Phase 2 is assumed to have a fixed
orientation relative to the spatial coordinates at each stage of lamination.)

9.7. Reference transformations
There is another simple way to derive the lamination formula (9.44), and by extension (9.46),
when the tensor L0 of the reference medium is symmetric and self-adjoint. This is accom-
plished by transforming to a problem where the fields satisfy different differential restrictions
and the material constants are (L0)

−1/2L(x)(L0)
−1/2 and then applying the lamination for-

mula given by (9.34) and (9.35). This alternative approach provides a good opportunity to
introduce the idea of these transformations, which are called reference transformations

The basic idea (Milton and Kohn 1988) is to rewrite the constitutive law and effective
constitutive law

J(x) = L(x)E(x), 〈J 〉 = L∗〈E〉 (9.47)

in the form
J ′(x) = L′(x)E ′(x), 〈J ′〉 = L′

∗〈E ′〉,
where

L′(x) = (L0)
−1/2L(x)(L0)

−1/2, L′
∗ = (L0)

−1/2L∗(L0)
−1/2, (9.48)

and
J ′(x) = (L0)

−1/2J(x), E ′(x) = L1/2
0 E(x). (9.49)

Clearly these fields J ′(x) and E ′(x) satisfy a new set of differential constraints.
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Now consider a simple rank-1 laminate where L(x) and hence L′(x) depend only on
n · x. The conditions (9.47) satisfied by J and E imply that

J(x)− 〈J〉 ∈ Jn, E(x)− 〈E〉 ∈ En, (9.50)

where Jn and En are the mutually orthogonal subspaces onto which Γ2(n) and Γ1(n)
project. It then follows directly from the definitions (9.49) of J ′(x) and E′(x) that

J ′(x)− 〈J ′〉 ∈ J ′
n = (L0)

−1/2Jn, E ′(x)− 〈E ′〉 ∈ E ′
n = L1/2

0 En, (9.51)

in which J ′
n is obtained by multiplying each element of Jn by (L0)

−1/2 and E ′
n is obtained

by multiplying each element of En by (L0)
1/2. These new subspaces J ′

n and E ′
n are clearly

orthogonal becauseJn and En are orthogonal; the inner product of (L0)
−1/2J with (L0)

1/2E
is the same as the inner product of J with E because the factors of (L0)

−1/2 and (L0)
1/2

cancel. Therefore the projections Γ′
2(n) and Γ′

1(n) onto these subspaces satisfy

Γ′
i(n)Γ

′
j(n) = δi jΓ′

i(n), Γ′
1(n)+ Γ′

2(n) = I,
and (9.51) implies that

Γ′
1(n)J

′ = Γ′
1(n)〈J ′〉, Γ′

2(n)E = Γ′
2(n)〈E ′〉.

Since (9.50) and (9.51) are the only ingredients needed to derive the lamination formula,
we immediately deduce from (9.34) and (9.35) that the effective tensor L′

∗ satisfies

[(L′
∗ − I)−1 + Γ′

1(n)]
−1 = 〈[(L′(x)− I)−1 + Γ′

1(n)]
−1〉, (9.52)

where we have chosen to take σ0 = 1. Furthermore, as E ′
n is the range of the operator

L
1/2
2 Γ1(n), it follows from a standard result in linear algebra that the projection Γ′

1(n) onto
E ′
n is given by the formula

Γ′
1(n) = L1/2

2 Γ1(n)[Γ1(n)L2Γ1(n)]−1Γ1(n)L
1/2
2 , (9.53)

in which the inverse is to be taken on the subspace En. Substituting (9.48) and (9.53) into
(9.52) gives

[(L∗ −L0)
−1 + Γ(n)]−1 = 〈[(L(x)−L0)

−1 + Γ(n)]−1〉,
in agreement with (9.44).

In a two-phase laminate we can again take L0=L2 and thereby obtain (9.45), which leads
directly to the formula (9.46) for the effective tensor L∗ of a coated laminate. In other words,
the seemingly restrictive original assumption that the coating phase had a tensor proportional
to I is in fact only a mild assumption since we can use a reference transformation of the
equations so that the tensor L2 of the coating phase transforms to a tensor L′

2 = I , provided
that L2 is self-adjoint and positive-definite.

9.8. Explicit formulas for the conductivity and elasticity tensors of a
coated laminate

For conductivity (9.46) with Γ(n) given by (9.2) and (9.40) reduces to the lamination formula

f1(σ2 − σ∗)−1 = (σ2 − σ1)
−1 − f2

m∑
j=1

c j
n j ⊗n j
n j · σ2n j

(9.54)
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of Tartar (1985), which can be rewritten in the equivalent form

f1(σ2 − σ∗)−1 = (σ2 − σ1)
−1 − f2(σ2)

−1/2M (σ2)
−1/2,

where

M =
m∑
j=1

c j
m j ⊗m j

m j ·m j
with m j = (σ2)

1/2n j .

So the conductivity formula of a coated laminate again turns out to have exactly the same
form as the conductivity formula (8.15) of the coated ellipsoids with an anisotropic core and
an anisotropic coating, and in both cases the matrixM is positive-semidefinite and satisfies
TrM = 1.

For elasticity the lamination formula, due to Francfort and Murat (1986) and Gibiansky
and Cherkaev (1987), is

f1(C2 − C∗)−1 = (C2 − C1)
−1 − f2

m∑
j=1

c jΓ(n j ), (9.55)

where to obtain an explicit expression for the matrix B that results from the action of Γ(n)
on a symmetric matrix A we need to solve the equations (9.39). For elasticity we have that
Γ1(n)B = B if and only if there exists a vector b such that

B = n⊗ b+ b⊗n. (9.56)

We also have that Γ1(n)(A− C2B) = 0 if and only if

n · (A− C2B) = 0. (9.57)

Substituting (9.56) into (9.57) and solving for the vector b gives

b = C(n)−1An/2,

in which C(n)−1 is the inverse of the acoustic tensor, which is the 3×3 matrix C(n) = n·C2n
with elements

{C(n)}i j =
∑
p,q

n pC
(2)
pi jqnq ,

where the C (2)
pi jq are the tensor elements of C2. The acoustic tensor gets its name from its role

in the equations governing the propagation of acoustic waves (see section 11.3 on page 230).
By inserting this back in (9.56) we obtain an expression for the matrix B = ΓA, which in
turn implies that the fourth-order tensor Γ(n) has matrix elements

{Γ(n)}i j�m = 1
4

(
ni{C(n)−1} j�nm + ni {C(n)−1} jmn� + n j{C(n)−1}i�nm + n j {C(n)−1}im n�

)
. (9.58)

In particular, when phase 2 is isotropic, we have

{Γ(n)}i j�m = ni n j n�nm

λ2 + 2µ2
+ 1

4µ2

(
niδ j�nm + niδ jmn� + n jδi�nm + n jδim n� − 4ni n j n�nm

)
.

(9.59)
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These equations (9.58) and (9.59) give the correct formulas for Γ(n) in d-dimensional elas-
ticity. The tensor Γ(n) can also be obtained directly from the formula (9.40), but we chose
not to do so because it involves more work.

In two dimensions the formula (9.55) is best expressed in terms of the compliance tensors
S i = C−1

i , i = 1, 2, ∗ or, equivalently, in terms of the tensors entering the plate equations.
To do this, one repeats the analysis but with the role Γ1(n) replaced by Γ2(n). We have that
Γ2(n)B = B if and only if there exists a constant β such that

B = βt⊗ t, (9.60)

where t = R⊥n is the vector perpendicular to n. We also have that Γ2(n)(A − S2B) = 0,
if and only if

t · (A− S2B)t = 0. (9.61)

By substituting (9.60) into (9.61) and solving for β we see that

B = (1/4κ2 + 1/4µ2)(t ·At)t⊗ t,
where we have assumed that phase 2 is isotropic. Using this one obtains the lamination
formula

f1(S2 − S∗)−1 = (S2 − S1)
−1 − f2(1/4κ2 + 1/4µ2)M (9.62)

of Gibiansky and Cherkaev (1987) [see their equations (2.37) and (2.38)], where

{M}hik	 =
m∑
j=1

c j {t j }h{t j }i{t j }k{t j}	 (9.63)

and t j = R⊥n j is the vector perpendicular to n j . An earlier paper of Lurie, Cherkaev, and
Fedorov (1982) contains an alternative, but not as concise, formula.

Clearly M is positive-semidefinite, satisfying

{M}ii j j = 1, {M}i j i j = 1.

Conversely, given any positive-semidefinite tensor M satisfying these conditions, one can
find a positive set of weights c j summing to 1 such that (9.63) holds (Avellaneda and Milton
1989). This gives a complete characterization of the set of all possible effective compliance
tensors of two-dimensional coated laminates. As yet there is no similar algebraic characteriza-
tion in three dimensions. However, considerable progress has been made by Francfort, Murat,
and Tartar (1995), who show that the set of all possible effective compliance tensors of three-
dimensional coated laminates is generated by laminates of rank 6 or less. Also, Lipton (1991,
1994) has given complete algebraic characterizations of the set of all effective compliance ten-
sors that have transverse or orthotropic symmetry. The reason that such characterizations are
important is that, when C1 − C2 is a positive- or negative-definite tensor, Avellaneda (1987)
has shown that coated laminates are the stiffest or most compliant composites amongst all
composites with the two phases occupying given volume fractions f1 and f2 = 1 − f1 (see
sections 23.3 on page 462 and 23.4 on page 465).

9.9. Ordinary differential laminates†
Doubly and multicoated laminates can be built in a similar way to the way in which doubly
and multicoated sphere assemblages were built. One uses the coated laminate as the core
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phase in another coated laminate to obtain a doubly coated laminate, and so forth. Repeated
substitutions of (9.20) then generate a continued fraction expansion for the effective conduc-
tivity tensor σ∗ of such laminates.

Also, laminates with continuously varying coating conductivity can be built in a similar
way to the way in which sphere assemblages with continuously varying radially conductivity
are built. Starting from a core material with possibly anisotropic conductivity σ0, suppose
that we have already used a differential process to arrive at a continuously coated laminate
with effective conductivity tensor σ∗(t) parametrized by t = −log f0, in which f0 is the
volume fraction occupied by the core material at that stage. Now suppose that we layer this
material in a fixed directionn1(t) with an infinitesimal proportion εc1(t) of a material that has
conductivity λn parallel to n1(t) and a conductivity λt perpendicular to n1(t). This increases
t by εc1(t) and, to first order in ε, (9.54) implies that

σ∗(t + εc1(t))− σ∗(t)
≈ εc1(t)[σ2 − σ∗(t)− (σ∗(t)− σ2)n1(t)⊗ n1(t)(σ∗(t)− σ2)/λn],

where
σ2 = λtI + (λn − λt )n1(t)⊗n1(t)

is the conductivity tensor of the material that we have added. Next we repeat this process,
changing the direction of lamination to successively n2(t),n3(t), . . .,nm(t) and adding pro-
portions εc2(t),εc3(t), . . .,εcm(t) with

m∑
i=1

ci(t) = 1.

Then to the first order in ε we have

σ∗(t + ε)− σ∗(t) = ε[λtI − σ∗ − (λt − λn)M − (σ∗ − λnI)M (σ∗ − λnI)/λn], (9.64)

where

M =M(t) =
n∑
i=1

ci(t)ni ⊗ ni . (9.65)

The whole procedure is then repeated, laminating the material in the different directions in
cyclical order, until the desired volume fraction is reached. In the limit ε → 0 (9.64) reduces
to the Ricatti equation

dσ∗
dt

= λtI − σ∗ − (λt − λn)M − (σ∗ − λnI)M(σ∗ − λnI)/λn

= λtI − σ∗ + σ∗M +Mσ∗ − λtM − σ∗Mσ∗/λn, (9.66)

governing the evolution of the effective tensor of the continuously coated laminate. In general
we are free to choose any trajectoryM (t) in the space of symmetric matrices with

M (t) ≥ 0, TrM(t) = 1.

To ensure that (9.65) holds, we can take m = 3 and set n1(t), n2(t), and n3(t) equal to the
normalized eigenvectors ofM(t) and set c1(t), c2(t), and c3(t) equal to the eigenvalues of
M(t). Associated with this trajectoryM (t) will be an effective conductivity tensor σ∗(t)
obtained by integrating (9.66) with the initial condition σ∗ = σ0 when t = 0. Of course, if
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one takes λt = λn = σ2 and m = 1 and choosesM(t) = n ⊗ n to be independent of t ,
then, after integration, one recovers the lamination formula (9.19) of Tartar. It is interesting
that this is the way in which Tartar first obtained this formula [or more precisely the formula
(9.54): see Tartar (2000)].

If we orient our Cartesian axes so that the basis vectors are eigenvectors of σ0, and if we
take m = 3 and n1(t), n2(t), and n3(t) as the basis vectors aligned with the x1-, x2-, and
x3-axes, then (9.66) implies that the effective conductivity λ∗

1(t) in the x1 direction evolves
according to the differential equation

dλ∗
1

dt
= λt (t)− λ∗

1 + {2λ∗
1 − λt (t)− [λ∗

1(t)]
2/λn(t)}c1(t),

where we have allowed the normal and tangential conductivities λn(t) and λt (t) to depend on
t . This is exactly the same as the Ricatti equation (7.45) of the ellipsoid assemblage once we
choose c1(t) = k1(t). The example is indicative of how laminate microstructures can mimic
the effective conductivity tensors of a wide variety of different microgeometries.

The construction scheme can obviously be generalized. For example, instead of laminat-
ing the material with conductivity tensor σ∗(t) at each stage with a homogeneous material,
one could laminate it at each stage with a multiple-rank laminate of many different phases.
We will call materials obtained through such construction processes ordinary differential lam-
inates. They are a subclass of a family materials, which we call ordinary differential mi-
crostructures, that are associated with the generalized differential scheme for estimating the
properties of a composite. This scheme will be discussed in section 10.7 on page 201.

9.10. Partial differential laminates†
Multiple-rank laminates are represented by a discrete tree structure as illustrated in figure 9.4
on the next page. Partial differential laminates, like ordinary differential laminates, are a
continuum generalization. Often ordinary differential laminates are optimal composites in
the sense that they attain bounds on effective tensors. The motivation for introducing partial
differential laminates is the expectation (not yet realized) that they too may form an important
class of optimal composites. Let us begin with a relatively simple example. Suppose that we
are given a trajectoryL(y) of initial materials, parameterized by a parameter y. For simplicity
let us suppose thatL(y) is twice differentiable and that the trajectory forms a continuous loop
in tensor space, so that L(y) is periodic in y. We want to construct a two-parameter family
L∗(y, t) of effective tensors of partial differential laminates with L∗(y, 0) = L(y). Here t
is a continuous parameter generalizing the integer-valued rank r of a multiple-rank laminate.
In the same way that the structure of a finite-rank laminate is determined by the directions
of lamination and volume fractions assigned to each node in the tree structure, so too is the
structure of the partial differential laminate (in our example) determined by a unit vector
valued field n(y, t) and by a scalar field f (y, t) taking values between 0 and 1. Rather than
working with L(y) and L∗(y, t) it is convenient to introduce the tensors

S(y) = σ0[σ0I − L(y)]−1, S∗(y, t) = σ0[σ0I −L∗(y, t)]−1,

where σ0 is a fixed constant.
Let us introduce the discrete values of the parameters,

yi = iε, t j = jδ,
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Figure 9.4. Any finite-rank laminate is represented by a tree structure. The tensors L1, L2,
and L3 of the constituent phases are at terminating nodes of the tree. Every other node has
an effective tensor L∗

j , volume fraction p j , and direction of lamination n j associated with it.
The parameters p j and n j determine the structure of the laminate. For example, the material
with effective tensor L∗

2 is obtained by laminating in direction n2 the materials with tensors
L∗

4 and L∗
5 in proportions p2 and 1 − p2. At the final stage of lamination one obtains the

laminate with effective tensor L∗
1.

indexed by the integers i and j ≥ 0, where ε and δ are infinitesimal. Associated with
S∗(yi , t1) is a simple laminate of three materials with tensors S(yi−1), S(yi), and S(yi+1)

laminated in direction n in proportions f/2, 1 − f , and f/2, where n = n(yi , t1) and
f = f (yi , t1). More generally, for j ≥ 1, associated with S∗(yi , t j+1) is a rank-( j + 1) lam-
inate obtained by taking the three rank- j laminates associated with S∗(yi−1, t j ), S∗(yi , t j ),
and S∗(yi+1, t j ) and laminating these three materials together in direction n in proportions
f/2, 1 − f , and f/2, where n = n(yi , t j) and f = f (yi , t j ). It is important to take equal
proportions of S∗(yi−1, t j ) and S∗(yi+1, t j ) to obtain a sensible equation in the continuum
limit. From the lamination formula (9.16) we have

[S∗(yi , t j+1)− Γ1(n)]−1 = ( f/2)[S∗(yi−1, t j )− Γ1(n)]−1

+(1− f )[S∗(yi , t j )− Γ1(n)]−1 + ( f/2)[S∗(yi+1, t j )− Γ1(n)]−1. (9.67)

This algorithm serves to define S∗(yi , tk) for all i and k ≥ 0. Strictly speaking, we should
write S∗(yi , tk, ε, δ) instead of S∗(yi , tk) to emphasize the dependence on ε and δ. As ε and δ
approach zero in an appropriate way, we expect to find that at those points where it is defined
S∗(y, t, ε, δ) approaches S∗(y, t), where S∗(y, t) depends smoothly on y and t . Then to the
second order in ε and to the first order in δ,

S∗(yi−1, t j ) ≈ S∗ − ε
∂S∗
∂y

+ ε2

2
∂2S∗
∂y2 , S∗(yi , t j+1) ≈ S∗ + δ

∂S∗
∂t

,

S∗(yi+1, t j ) ≈ S∗ + ε
∂S∗
∂y

+ ε2

2
∂2S∗
∂y2 ,

where the right-hand sides of these formulas are to be evaluated at the point (yi , t j ). Substi-
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tuting them into (9.67) and expanding both sides we see that to the leading order

δ
∂S∗
∂t

≈ (ε2/2) f
{
∂2S∗
∂y2 − 2

∂S∗
∂y

[S∗ − Γ1(n)]−1 ∂S∗
∂y

}
.

Taking δ = ε2/2 is an appropriate scaling, and then in the limit ε → 0 we obtain the partial
differential equation

∂S∗
∂t

= f
{
∂2S∗
∂y2 − 2

∂S∗
∂y

[S∗ − Γ1(n)]−1 ∂S∗
∂y

}
, (9.68)

which, given n(y, t) and f (y, t) and the initial condition S∗(y, 0) = S(y), can be solved for
S∗(y, t). We have found the effective tensor for an ensemble of composites parameterized by
y and t > 0.

δ

ε

S(y i)

S
*
(y + ,t ) S

*
(y + ,t )41 22i i

Figure 9.5. A lattice of laminates which is a discrete approximation to a partial differential
laminate. The tensors S(yi) of the constituent phases are at the nodes at the bottom of the
lattice. Every other node represents a laminate, obtained by laminating together the three ad-
jacent materials on the row below it. To signify this, lines have been drawn which connect the
node to these three materials. Shown in bold are two paths in the lattice linking S∗(yi+1, t4)
to S(yi).

Figure 9.5 shows the lattice structure associated with the discrete approximation to the
partial differential laminate. In the fourth-rank laminate associated withS∗(yi+1, t4) the phase
with tensor S(yi) has been used many times, and consequently the field in this phase takes a
distribution of values, indexed by each path in the lattice linking S∗(yi+1, t4) to S(yi) along
which t always decreases. Two such paths are marked by bold lines in the figure. Similarly,
the fourth-rank laminate associated with S∗(yi+2, t2) has been used twice in the laminate
associated with S∗(yi+1, t4) [once for each of the two allowable paths joining S∗(yi+1, t4)
to S∗(yi+2, t2)]. Rather than keeping track of the whole distribution of field values, it is
simpler to keep track of the average polarization field P 0(yi , t j ) in the region occupied by the
rank- j laminate associated with S∗(yi , t j ). This laminate is used in the construction of the
three rank-( j + 1) laminates associated with S∗(yi−1, t j+1), S∗(yi , t j+1), and S∗(yi+1, t j+1).
Again, strictly speaking, we should write P 0(yi , t j , ε, δ) instead of P 0(yi , t j ) to emphasize
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the dependence on ε and δ. As ε and δ = ε2/2 approach zero and the applied field is scaled
in an appropriate way, we expect to find that at those points where it is defined P 0(y, t, ε, δ)
approaches P 0(y, t), where P 0(y, t) depends smoothly on y and t . From equations (9.14)
and (9.15) it follows that

P 0(yi , t j ) = ( fi−1/2)[S∗ − Γ1(ni−1)]−1[Si−1 − Γ1(ni−1)]P i−1

+(1− fi )[S∗ − Γ1(ni)]−1[Si − Γ1(ni)]P i
+( fi+1/2)[S∗ − Γ1(ni+1)]−1[Si+1 − Γ1(ni+1)]P i+1,

where we have introduced the abbreviated notation f i = f (yi , t j ), ni = n(yi , t j ), S∗ =
S∗(yi , t j ), Si = S∗(yi , t j+1), and P i = P 0(yi , t j+1). In the limit as ε and δ = ε2/2 tend
to zero, one can show (after some algebraic manipulation) that this reduces to the parabolic
differential equation

−∂P 0

∂t
= ∂2

∂y2 ( fP 0)+ 2
∂

∂y

{
f [S∗ − Γ1(n)]−1 ∂S∗

∂y
P 0

}
. (9.69)

Since the right-hand side is the derivative with respect to y of a function that tends to zero
as y→∞, it follows that

d〈P 〉
dt

≡
∫ ∞

−∞

∂P 0

∂t
dy = 0.

Thus 〈P 〉 is constant for all t , as expected. The equation (9.69) is to be solved backwards in
t with the boundary condition

P 0(y, t∗) = δ(y − y∗)〈P 〉

representing an average polarization field 〈P 〉 applied to the differential laminate associated
with S∗(y∗, t∗). Then P 0(y, 0)dy represents the average polarization field within the region
occupied by the phases associated with S(z), with z falling between y and y + dy.

One can also determine the relative volume fractions occupied by the phases. Let θ(yi, t j )
denote a quantity that is proportional to the relative volume fraction occupied by the rank- j
laminate associated with S∗(yi , t j ). Taking the limit δ = ε2/2→ 0 in the relation

θ(yi , t j ) = ( fi−1/2)θ(yi−1, t j+1)+ (1− fi )θ(yi , t j+1)+ ( fi+1/2)θ(yi+1, t j+1)

yields the parabolic differential equation

−∂θ

∂t
= ∂2

∂y2 ( f θ),

which is to be solved backwards in t with the boundary condition θ(y, t∗) = δ(y − y∗). Then
θ(y, 0)dy represents the volume fractions occupied by the phases associated with S(z), with
z falling between y and y + dy, in the differential laminate associated with S∗(y∗, t∗). The
average of θ(y, t) with respect to y remains independent of t , as expected.

Again this construction can be generalized in many ways. For example, instead of combin-
ing the materials with tensors S∗(yi−1, t j ), S∗(yi , t j ), and S∗(yi+1, t j ) in a simple laminate
to obtain S∗(yi , t j+1), one could combine them in a multiple-rank structure in proportions
f/2, 1− f , and f/2. One only needs a formula for S∗(yi , t j+1) that is accurate to the second
order in the differences S∗(yi−1, t j ) − S∗(yi , t j ) and S∗(yi+1, t j ) − S∗(yi , t j ) to obtain the
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governing partial differential equation. Alternatively, instead of combining the materials in
a multiple-rank laminate structure, one could combine them together in any microstructure,
and in this way generate partial differential microstructures that are not necessarily partial
differential laminates.

Another generalization is to assume that we are given another family of materials with ten-
sors S0(y, t) that depend continuously on y and t . Then, for example, we could take the ma-
terial associated with S0(yi , t j ) and the three rank- j laminates associated with S∗(yi−1, t j ),
S∗(yi , t j ), and S∗(yi+1, t j ) and laminate these four materials together in direction n in pro-
portions qδ, (1−qδ) f/2, (1−qδ)(1− f ), and (1−qδ) f/2 to obtain the rank-( j+1) laminate
associated with S∗(yi , t j+1), where n = n(yi , t j ), q = q(yi, t j ), and f = f (yi , t j ). [The
continuous functions n(y, t), q(y, t) ≥ 0, and f (y, t) are assumed to be given.] In the limit
δ = ε2/2→ 0 we obtain the partial differential equation

∂S∗
∂t

= q
{
S∗ − Γ1(n)− [S∗ − Γ1(n)][S0 − Γ1(n)]−1[S∗ − Γ1(n)]

}
+ f
{
∂2S∗
∂y2 − 2

∂S∗
∂y

[S∗ − Γ1(n)]−1 ∂S∗
∂y

}
.

An alternative generalization is to suppose that we are given a k-dimensional manifold of
tensors S(y), parameterized by y = (y1, y2, . . . , yk) and which is periodic in y. To obtain
S∗(y, t j+1) one could first take a material with tensor S∗(y, t j ) as the core phase in a coated
laminate, and for i = 1, 2, . . . , � coat it first with an infinitesimal volume fraction f pi/2 of
the material with tensor S∗(y − εmi , t j ) and second with an identical coat of the material
with tensor S∗(y + εmi , t j ). Here the mi = mi (y, t) are a set of � unit vectors and the
constants pi = pi(y, t) are positive and bounded but do not necessarily sum to unity. By
repeatedly applying the formula (9.23) we see that to the leading order

δ
∂S∗
∂t

≈ ( f ε2/2)
n∑
i=1

pi [�yS∗ − 2(mi · ∇yS∗)N i(mi · ∇yS∗)],

where

N i =N i(t) =
∫

|n|=1
[S∗ − Γ1(n)]−1dµi,t (n),

∫
|n|=1

dµi,t (n) = 1,

in which the positive measure dµi,t (n) characterizes the way in which each infinitesimal
coating was added. [This is merely the continuum analog of (9.24).] Here, �y = ∇y · ∇y
and ∇y are the Laplacian and gradient with respect to y. By taking f = 2ε and δ = ε3 and
taking the limit ε → 0 we obtain the governing partial differential equation

∂S∗
∂t

=
n∑
i=1

pi [�yS∗ − 2(mi · ∇yS∗)N i(mi · ∇yS∗)],

which is to be solved for S∗(y, t) given pi(y, t), mi (y, t), the positive measures dµi,t (n),
and the initial condition that S∗(y, 0) = S(y).
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10
Approximations and asymptotic formulas

Countless approximations for estimating effective moduli have been introduced; some are
semi-empirical, some are based on ad-hoc assumptions, and some have a reasonable theoreti-
cal basis. Here we will only review those well-known approximations that have a reasonable
theoretical foundation, and which have withstood the test of time; see also the reviews of Van
Beek (1967), Landauer (1978), Willis (1981), Markov (2000), and Buryachenko (2001). In
addition, we discuss various asymptotic formulas that are applicable in high-contrast media.

10.1. Polarizability of a dielectric inclusion
Many approximations for the effective moduli of composites are based on the solution for
dilute suspensions. For simplicity, let us suppose that we are interested in approximating
the effective dielectric constant and require the solution for a dilute suspension of inclusions
embedded in an isotropic matrix of dielectric constant ε0I . Since the grains are well-separated
from each other, the field acting on each inclusion will be approximately uniform. To a good
approximation we can solve for the field in the neighborhood of any such inclusion by treating
it as if it was embedded in an infinite homogeneous medium of dielectric constant ε0 and
subject to a uniform applied field at infinity. The analysis of this problem is the focus of the
this section.

Consider an isolated, possibly inhomogeneous, inclusion that is embedded in an isotropic
matrix of dielectric constant ε0 and subject to a uniform applied electric field a at infinity. The
dielectric tensor field is assumed to be isotropic, of the form ε(x)I, where the local dielectric
constant ε(x) takes the value ε0 outside the inclusion. The electric potential ϕ outside any
sphere containing the inclusion has an expansion in spherical harmonics (Jackson 1975), the
leading terms of which are

ϕ(x) = a · x− b · x/(4πε0r3)+ · · · (10.1)

and the associated electric field e = ∇ϕ is

e = ∇ϕ = a− b/(4πε0r3)+ 3x(b · x)/(4πε0r5)+ · · · . (10.2)

So we see that at large distances the dominant correction to the uniform field comes from
terms involving the vector b; this vector is known as the induced dipole moment. The factor
of 4πε0 has been introduced into the above expansions so that b has a physical interpretation
when inclusion is in free space and ε0 represents the dielectric constant (or, more precisely,
the electrical permittivity) of free space. As we will see shortly, b can then be identified with
the first moment of the induced charge density.

185
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Since the equations for the fields are linear, there must be a linear relation between the
induced dipole moment b and the applied field a. This linear relation,

b = αa,

defines the polarizability tensorα of the inclusion. This tensor has also been called the Pólya-
Szegő matrix; see Pólya and Szegő (1951) and Movchan and Movchan (1995).

For a fixed applied field a the vector b is determined by the integral of the polarization
field,

p(x) = (ε(x)− ε0)e(x) = d(x)− ε0e(x),

over the volume of the inclusion. To see this, consider a ball� of very large radius containing
the inclusion. Since the polarization field is zero outside the inclusion, we can equate the
integral of the polarization field over the inclusion with the integral of the polarization field
over the ball �. Since the displacement field d(x) has zero divergence, and since e(x) is the
gradient of the electrical potential ϕ(x), it follows that for any vectorm∫

�

m · p(x) =
∫
�

d(x) · ∇(m · x)− ε0m ·
∫
�

∇ϕ(x)

=
∫
∂�

(m · x)d(x) · n− ε0ϕ(x)m · n

= ε0m ·
∫
∂�

x(∇ϕ(x) · n)− ϕ(x)n,

where n is the outward normal to the surface ∂� of the ball �. When the radius r of the ball
� is sufficiently large we can use the asymptotic formulas (10.1) and (10.2) to estimate these
integrals,∫

∂�

x(∇ϕ(x) · n) ≈
∫
∂�

x[(a · x)/r + 2(b · x)/(4πε0r4)] = 4
3
πr 3a+ 2

3ε0
b,∫

∂�

ϕ(x)n ≈
∫
∂�

x[(a · x)/r − (b · x)/(4πε0r4)] = 4
3
πr 3a− 1

3ε0
b,

with these approximations becoming increasingly accurate as the radius r of the ball � ap-
proaches infinity. By subtracting these expressions and taking the limit as r approaches infin-
ity we see that ∫

�

p(x) = b. (10.3)

As an example, suppose that the inclusion is a sphere of dielectric constant σ1 and radius
r1. The solution for the electrical potential is

ϕ(x) = a · x− r3
1 (ε1 − ε0)

r3(ε1 + 2ε0)
a · x in the matrix ,

= 3ε0

ε1 + 2ε0
a · x in the sphere,

and it follows that

b = 4πr 3
1ε0(ε1 − ε0)a

ε1 + 2ε0
. (10.4)
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The associated polarization field is

p(x) = (ε(x)− ε0)∇ϕ(x) = 0 in the matrix ,

= 3ε0(ε1 − ε0)a

ε1 + 2ε0
in the sphere, (10.5)

and since this is constant within the sphere and zero outside, its integral over any ball �
containing the sphere is simply∫

�

p(x) = 4πr 3
1ε0(ε1 − ε0)a

ε1 + 2ε0
.

In view of the formula (10.4) for b we see that the relation (10.3) is satisfied.
Also note from (10.4) that the polarizability tensor of the sphere is

α = 4πr 3
1ε0(ε1 − ε0)I

ε1 + 2ε0
. (10.6)

When the inclusion is an ellipse with its axes aligned with the coordinate axes the polarizabil-
ity tensor α is diagonal with diagonal elements

αi = V ε0(ε1 − ε0)

ε0 + (ε1 − ε0)di
, i = 1, 2, 3,

in which V is the volume of the ellipse and the di are the depolarizing (or demagnetizing)
factors given by (7.65) and (7.66) for prolate and oblate spheroids, by (7.67) for elliptical
cylinders, and by (7.69) for ellipsoids of arbitrary eccentricity. In section 12.5 on page 252
we will see how the polarizability tensor of an ellipsoidal inclusion can be computed for
elasticity, thermoelasticity, piezoelectricity, or related problems, even when the inclusion or
surrounding matrix material is anisotropic.

For a sphere containing an anisotropic crystal with dielectric tensor ε1 embedded in an iso-
tropic matrix with dielectric constant ε0, the formula for the polarizability tensor is especially
simple:

α = 4πr 3
1ε0(ε1 − ε0I)(ε1 + 2ε0I)

−1. (10.7)

This formula can be easily deduced from (10.6) by applying the arguments of section 8.2 on
page 144. A collection of such spheres with uniformly distributed random orientations will
have an average polarizability tensor

〈α〉 = 4πr 3
1ε0I

3∑
i=1

λi − ε0

3(λi + 2ε0)
. (10.8)

in which λ1, λ2, and λ3 are the eigenvalues of ε1. To show this we consider six spheres, each
in one of the six different orientations such that the principal axes of the anisotropic material
are aligned with the coordinate axes. From (10.7) it follows that the average polarizability of
these six spheres is given by the above expression. Since this is proportional to I , it remains
unchanged if we average over orientations.

When the inclusion is not ellipsoidal the polarizability tensor generally has to be computed
numerically. For pairs of spheres or pairs of circles (in two dimensions) expressions for
the polarizability tensor have been given by Peterson and Hermans (1969); Jeffrey (1973);
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Love (1975); McPhedran and Perrins (1981); Djordjević, Hetherington, and Thorpe (1996);
and Choy, Alexopoulos, and Thorpe (1998), among others. [See also Honein, Honein, and
Herrmann (1990), who solve the problem of two circles in an arbitrary external field.] For
the two-dimensional problem of a polygonal or arbitrary shaped hole or inclusion in a plate,
Hetherington and Thorpe (1992); Thorpe (1992); Jasiuk, Chen, and Thorpe (1994); Kachanov,
Tsukrov, and Shafiro (1994); and Movchan and Serkov (1997) show how the electric and
elastic polarizability tensors can be easily computed. Greengard and Moura (1994) show
how the fast multipole method provides an especially fast way of computing the fields and
accompanying polarizability tensors, even when numerous inclusions of arbitrary shape are
present. Lipton (1993) obtains bounds on electric and elastic polarizability tensors.

Returning to the general case and using integration by parts, (10.3) can be rewritten in the
form

b = −
∫
�

x∇ · p(x) = ε0

∫
�

x∇ · e(x) =
∫
�

xρ(x),

where ρ(x) = ε0∇ · e(x) corresponds to the physical charge density when ε0 is chosen as
the dielectric constant (more precisely the electrical permittivity) of free space. This charge
density, called the polarization or induced charge density, is confined to the boundary of the
inclusion when the dielectric constant ε(x) is constant within the inclusion. Thus, in this case,
the dipole moment b has the physical interpretation of being the first moment of the induced
charge density, which accounts for its name.

10.2. Dielectric constant of a dilute suspension of inclusions to the first
order in the volume fraction

Let us return to the problem of estimating the effective dielectric constant tensor of a dilute
suspension of identical inclusions embedded in an isotropic matrix of dielectric constant ε0.
We suppose that there are N inclusions per unit volume, each occupying a volume V and
having polarizability α. It is assumed that the inclusions are well-separated from each other.
Then to a first approximation the coefficient a in the expansion of the field around any given
inclusion can be equated to the average field 〈e〉. The average polarization field per unit
volume is

〈p〉 = Nb = fαa/V ≈ fα〈e〉/V,
in which f = NV � 1 is the volume fraction occupied by the inclusions. We also have

〈p〉 = 〈d〉 − ε0〈e〉 = (ε∗ − ε0I)〈e〉. (10.9)

Equating these two expressions gives an approximation formula for the effective dielectric
tensor,

ε∗ ≈ ε0I + fα/V . (10.10)

In particular, if the inclusions are spheres of radius r1 and volume V = 4πr 3
1/3, then from

the expression (10.6) for the polarizability we obtain the approximation formula

ε∗ ≈ ε0I + 3 f ε0(ε1 − ε0)I

ε1 + 2ε0
(10.11)

for the effective dielectric tensor of a dilute suspension of spheres. For this approximation
to be valid it is important that the spheres be well-separated. If, for example, the spheres
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remained clustered in pairs as the volume fraction f approaches zero, then the average polar-
izability of these sphere pairs would enter the approximation formula for the effective tensor.

If we uniformly shrink each inclusion by a constant scale factor while keeping the center
of each inclusion fixed and plot the effective tensor as a function of the volume fraction f ,
then the approximations (10.10) and (10.11) hold to the first order in the volume fraction f .

10.3. Dielectric constant of a suspension of well-separated spheres to
the second order in the volume fraction

The approximation (10.11) is only correct to the first order in the volume fraction f . To
improve this estimate we need to improve on our estimate for the factor a in the expansion
of the field e(x) around each inclusion. This factor is called the local field. Evaluating the
local field requires special care, because of the long range nature of the dipolar field. Often it
is assumed that the local field acting on each inclusion is the same for all inclusions, but this
is an oversimplification that is not generally valid.

Let us assume that the suspension is periodic and that the period cell � contains a large
number n of well-separated spheres, which are not necessarily all of the same radius. Within
the period cell we define the characteristic functions

χi(x) = 1 when x is in sphere i,
= 0 elsewhere, (10.12)

for i = 1, 2, . . .n. We extend the definition of these characteristic functions outside of� using
periodicity. The arguments in the previous two sections show that to a first approximation the
polarization field inside each inclusion is constant and given by the formula

p(x) =
n∑
i=1

3ε0(ε1 − ε0)χi (x)〈e〉
ε1 + 2ε0

. (10.13)

The polarization charge density ρ(x) = ∇ · p(x) associated with this polarization field
perturbs the electric field e(x) in the unit cell. The perturbing field e′(x) = e(x)−〈e〉, having
zero average value, must be the gradient of a periodic potential φ ′(x), that is, e′(x) = ∇φ′(x).
Since ∇ · p(x) = −ε0∇ · e(x), it follows that this potential satisfies Poisson’s equation,

∇2φ′(x) = −ρ(x)/ε0.

By solving this equation in Fourier space one sees that the Fourier components ê′
(k) and p̂(k)

of the fields e′(x) and p(x) are related through the formula

ê′
(k) = −Γ(k)p̂(k), (10.14)

where

Γ(k) = k ⊗ k/(ε0k2) when k �= 0,
= 0 when k = 0, (10.15)

in which k = |k|. Since the relation between the fields e′ and p is linear, let us write

e′ = −Γp. (10.16)



190 10. Approximations and asymptotic formulas

This serves to define the operatorΓwhose action in real space is nonlocal and whose action in
Fourier space is given by (10.14) and (10.15). The operator −Γ gives the perturbing electric
field e′ generated by a periodic polarization field p.

Associated with sphere i in the unit cell is a local field ai . Its value is essentially the aver-
age field 〈e〉 plus the perturbing electric field due to polarization charges on the surrounding
spheres, not including the contribution due to the i-th sphere in the unit cell under considera-
tion. In view of the relations (10.13) and (10.16), ai is to a good approximation the value of
the field

e(i) = 〈e〉 − 3ε0(ε1 − ε0)

ε1 + 2ε0

n∑
j=1
j �=i

Γχ j〈e〉,

evaluated at the center of sphere i . This approximation is accurate only when the unit cell is
very large, that is, when n � 1. When n is small one has to account for the perturbing electric
field due to the copies of the i -th sphere in the surrounding unit cells. Since the spheres are
well-separated, the field e(i) will be approximately constant in the vicinity of sphere i and its
value at the center of sphere i can be replaced by the average over sphere i . Thus we have

ai ≈ 〈e〉 − 3ε0(ε1 − ε0)

ε1 + 2ε0

n∑
j=1
j �=i

〈χiΓχ j 〈e〉〉/ fi ,

where
fi = 〈χi 〉

is the volume fraction occupied by sphere i in the unit cell. We rewrite this as

ai ≈ 〈e〉 − 3ε0(ε1 − ε0)

ε1 + 2ε0
Λi〈e〉/ fi ,

where for any vector v the relation

Λiv =
n∑

j=1
j �=i

〈χiΓχ jv〉

defines the action of the matrix Λi on v.
This improved estimate for the local field ai gives an improved estimate for the polariza-

tion field,

p(x) ≈
n∑
i=1

3ε0(ε1 − ε0)χi (x)ai

ε1 + 2ε0

≈ 3ε0(ε1 − ε0)

ε1 + 2ε0

n∑
i=1

χi(x)〈e〉 −
[
3ε0(ε1 − ε0)

ε1 + 2ε0

]2 n∑
i=1

χi(x)Λi〈e〉/ fi ,

which should be accurate to the first order in the volume fraction. From the average value of
this field we obtain, via (10.9), an improved estimate for the effective dielectric tensor:

ε∗ ≈ ε0I + 3 f ε0(ε1 − ε0)I

ε1 + 2ε0
−
[
3ε0(ε1 − ε0)

ε1 + 2ε0

]2 n∑
i=1

Λi . (10.17)
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If the spheres are distributed isotropically, then ε∗ and hence
∑n
i=1 Λi are proportional to

the identity tensor and we have

n∑
i=1

Λi = I
n∑
i=1

Tr[Λi ]/3. (10.18)

The trace of the matrix Λi is easily evaluated in Fourier space:

Tr[Λi ] =
n∑

j=1
j �=i

∑
k �=0

χ̂i(k)Tr[Γ(k)]χ̂ j(k) =
n∑

j=1
j �=i

∑
k �=0

χ̂i(k)χ̂ j(k)/ε0

=
n∑

j=1
j �=i

〈(χi − fi )(χ j − f j )〉/ε0

=
n∑

j=1
j �=i

− fi f j/ε0 = − fi( f − fi )/ε0 ≈ − fi f/ε0, (10.19)

where the final approximation becomes increasingly accurate as the number n of spheres in
the unit cell tends to infinity, that is, as fi/ f approaches zero, where f is the total volume
fraction occupied by all spheres within the unit cell. Substituting this back into (10.17) gives
the desired expression for the effective dielectric constant of a dilute isotropic suspension of
spheres:

ε∗ ≈ ε0 + 3 f ε0

[
(ε1 − ε0)

ε1 + 2ε0

]
+ 3 f 2ε0

[
(ε1 − ε0)

ε1 + 2ε0

]2

. (10.20)

It should be emphasized that this formula is only valid (to the second order in f ) for
suspensions of well-separated spheres. Unfortunately, many dilute suspensions are not well-
separated. For example, we do not obtain a well-separated distribution if we shake a suspen-
sion of spheres in a fluid until it is well-mixed. In general, to evaluate the f 2 coefficient we
need to know the pair correlation function P(x|0) giving the probability density of finding a
sphere centered at x, given that there is sphere centered at the origin, and we need to know
the expression for the polarizability of such sphere pairs. Jeffrey (1973) [see also Finkel’berg
(1963)] gives an explicit formula for this f 2 coefficient in terms of P(x|0), which Choy,
Alexopoulos, and Thorpe (1998) have generalized to d-dimensional composites. For elas-
ticity Willis and Acton (1976) give an approximate expression for the f 2 coefficient of the
effective bulk and shear moduli in terms of P(x|0), based on an approximation for the elastic
polarization tensor of sphere pairs. The exact expression was subsequently derived by Chen
and Acrivos (1978). In well-separated distributions P(x|0) is approximately zero for |x| less
than distances of the order of r1 f −1/3, where r1 is the sphere radius. By contrast, in well-
stirred distributions P(x|0) is often taken to be zero for |x| ≤ 2r1 and constant for |x| > 2r1;
that is, the spheres are forbidden to overlap, but otherwise their positions are uncorrelated.
This choice of P(x|0) is appealing because of its simplicity, but Markov and Willis (1998)
have shown that it violates rigorous bounds when f > 1/8.

When the spheres are well-separated but not isotropically distributed, the formula (10.20)
is not applicable. There is no universal formula for the effective dielectric tensor that does
not include higher order statistical information, or assumptions about these statistics. For
anisotropic distributions the statistics characterizing the sphere configuration become evident
at the second order in the volume fraction.
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To see this, consider two dilute suspensions of well-separated, isotropically distributed
spheres. According to the above formula these suspensions have effective conductivities

ε(1)∗ ≈ ε0 + 3 f (1)ε0

[
ε1 − ε0

ε1 + 2ε0

]
+ 3( f (1))2ε0

[
ε1 − ε0

ε1 + 2ε0

]2

,

ε(2)∗ ≈ ε0 + 3 f (2)ε0

[
ε1 − ε0

ε1 + 2ε0

]
+ 3( f (2))2ε0

[
ε1 − ε0

ε1 + 2ε0

]2

, (10.21)

where f (1) � 1 and f (2) � 1 are the volume fractions occupied by the spheres in the two
suspensions. Note that the difference ε(1)∗ − ε

(2)
∗ is small and proportional to f (1)− f (2) to the

leading order. Now let us take these two suspensions as the phases in some larger anisotropic
macrostructure. For simplicity, let us laminate the two suspensions together, choosing the
layer separation to be significantly larger than the sphere separation in each suspension. The
effective dielectric tensor ε∗ of this mixture will be a function of ε

(1)
∗ , ε(2)∗ , and the geometry

of the macrostructure. By replacing σ1, σ2, and σ∗ with ε
(1)
∗ I , ε

(2)
∗ , and ε∗ in the lamination

formula (9.19) and expanding to the second order in the difference ε(1)∗ − ε
(2)
∗ we see that

ε∗ ≈ ( f1ε(1)∗ + f2ε(2)∗ )I − f1 f2(ε(1)∗ − ε(2)∗ )2A/ε(2)∗ , (10.22)

where f1 and f2 = 1− f1 are the volume fractions of the two suspensions in the laminate and
A is the matrix

A = Γ1(n) = n⊗ n,
which depends on the direction of lamination n.

By substituting the expressions (10.21) for ε(1)∗ and ε(2)∗ into (10.22) we see that the overall
effective tensor takes the value

ε∗ ≈ ε0I + 3[ f1 f (1) + f2 f (2)]Iε0

[
ε1 − ε0

ε1 + 2ε0

]
+3[( f1( f (1))2 + f2( f (2))2)I − 3 f1 f2( f (1) − f (2))2A]ε0

[
ε1 − ε0

ε1 + 2ε0

]2

(10.23)

to the second order in the volume fractions f (1) and f (2). In particular, if we choose

f1 = f2 = 1/2, f (1) = 3 f/2, f (2) = f/2,

so that the overall volume fraction f1 f (1) + f2 f (2) of the spheres in the laminate macrostruc-
ture equals f , then it is clear that the overall effective tensor ε∗ depends on the matrix A to
the second order in f . If we had considered a different macrostructure, other than a laminate,
then the formulas (10.22) and (10.23) would hold with a different value for A. We will see
in section 15.5 on page 323 [equations (15.24) and (15.25)] that A depends on the reduced
two-point correlation function characterizing the macrostructure.

10.4. The Maxwell approximation formula
The Maxwell formula has a long and colorful history. Faraday in 1837 had proposed a
model for dielectric materials, consisting of metallic globules separated by insulating material.
Mossotti analyzed this model in two papers, published in 1847 and 1850, basing his analysis
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on earlier work by Poisson in 1826 on a closely related problem for magnetic media. The pub-
lication of Mossotti’s 1850 paper was delayed because after it was submitted in 1846 Mossotti
fought at the head of a battalion of students and was taken prisoner by Austrians in 1848. The
duties of professors were quite different in those days! The actual approximation formula for
the effective dielectric constant of conducting spheres in a dielectric medium appears to have
been first published by Clausius in 1879. Independently, Lorenz in 1869 and, around the same
time, Lorentz (there seems to be some question as to whether it was 1868 or 1870) obtained
the approximation formula as it relates to the frequency-dependent effective refractive index
of a suspension of polarizable molecules. Maxwell in 1873 obtained the approximation for-
mula as it relates to the effective conductivity of a dilute suspension of conducting spheres
in a conducting matrix. Rayleigh in 1892 provided some rigorous justification of the formula
as a first approximation to the conductivity of a cubic array of spheres. Maxwell-Garnett in
1904 obtained the approximation formula as it relates to the optical properties of suspensions
of metallic spheres.

Due to its origins in these different contexts the approximation sometimes goes by the
name of the Clausius-Mossotti formula, the Lorenz-Lorentz formula, or the Maxwell-Garnett
formula. Gillispie (1971), Landauer (1978), and Scaife (1989) give excellent accounts of the
history with extensive references.

Many derivations of the Maxwell formula assume that the local field takes the same value
for each spherical inclusion. This is reasonable for cubic arrays of spheres, but for more
random (still well-separated) distributions it is tantamount to assuming that the field produced
by a distribution of dipoles is uniform, and this is clearly false. The following derivation
avoids this assumption.

To calculate the local field in the preceding section we assumed that the polarization field,
to a first approximation, is given by the formula (10.13). Instead we could have made the
weaker initial assumption that the polarization field is constant inside each sphere:

p(x) ≈
n∑
i=1

χi(x)v, (10.24)

where the value of the vector v remains to be estimated. The estimate for the local field then
becomes

ai ≈ 〈e〉 −Λiv/ fi , (10.25)

and this leads to an improved estimate of the polarization field:

p(x) ≈ 3ε0(ε1 − ε0)

ε1 + 2ε0

n∑
i=1

χi(x)(〈e〉 −Λiv/ fi ). (10.26)

Ideally one should find an improved estimate for the local field based on this improved
estimate for the polarization field and iterate this procedure until successive estimates for
polarization field become close [we are prevented from actually doing this because of the
difficulty in evaluating the local field associated with the polarization field (10.26)]. One
would expect the convergence of this scheme to be accelerated if the vector v was chosen so
that the initial estimate (10.24) and subsequent estimate (10.26) for the polarization field were
somehow close. At least it would be desirable if the average values of these fields are close,
since it is the average value of the polarization field that determines the effective dielectric
tensor. Let us therefore choose v so that both estimates for the polarization field have the



194 10. Approximations and asymptotic formulas

same average value 〈p〉. If we take

v = 3ε0(ε1 − ε0)[(ε1 + 2ε0)I + 3ε0(ε1 − ε0)

n∑
i=1

Λi/ f ]−1〈e〉,

then both estimates for 〈p〉 equal f v, and equating this with (ε∗ − ε0I)〈e〉 gives the approxi-
mation formula

ε∗ = ε0I + 3 f ε0(ε1 − ε0)[(ε1 + 2ε0)I + 3ε0(ε1 − ε0)

n∑
i=1

Λi/ f ]−1

for the effective dielectric tensor.
When the spheres are distributed isotropically, ε∗ = ε∗I and we may use (10.18) and

(10.19). Making these substitutions gives the Maxwell formula for the effective dielectric
constant:

ε∗ ≈ ε0 + 3 f ε0(ε1 − ε0)

ε1 + 2ε0 − f (ε1 − ε0)
= ε0 + 3 f ε0(ε1 − ε0)

3ε0 + (1− f )(ε1 − ε0)
. (10.27)

Notice that this coincides with the formula (7.7) for the effective dielectric constant of the
Hashin-Shtrikman coated spheres geometry, which accounts for why the approximation (for
two-phase composites) makes sense even at large volume fractions. Experimentally (10.20) is
found to work well for many suspensions. For example, Fricke and Morse (1925) consider the
analogous formula for conductivity and apply it to estimate the conductivity of cream consist-
ing of suspensions of (nonconducting) butter fat in (conducting) skim milk. They verify that
the approximation works extremely well for volume fractions of cream up to 62% and suggest
that this as a method for determining the butter fat content in milk and cream. Presumably the
fat globules remained fairly well-separated, even though the mixture was stirred. However, it
is unwise to put too much faith in the approximation since it is not even correct to the second
order in f when the spheres are well-mixed, as discussed in the previous section.

The approximation formula is easily extended to nonspherical inclusions, provided that
their centers are well-separated and distributed isotropically, and provided that each inclusion
has the same polarizability per unit inclusion volume. Let us consider a periodic suspen-
sion with a period cell � containing a large number n of well-separated inclusions. These
inclusions occupy volumes V1, V2, . . . , VN and have polarizabilities α1,α2, . . . ,αn with
αi = Viα0 for all i for some constant tensor α0. Associated with inclusion i is a dipole
moment bi . To estimate the local field we assume that the dipole moments are aligned and
proportional to the volume of the associated inclusion,

bi = Viv, (10.28)

in which the vector v remains to be determined. This assumption certainly holds in the very
dilute limit, provided that there is no clustering.

The dipole moment bi is exactly the same as the dipole moment produced by a sphere
of volume Vi centered on the inclusion with a constant polarization v inside the sphere. We
call this sphere “sphere i ,” and we let χi given by (10.12) denote the characteristic function
associated with these spheres. Since the spheres and the inclusions have the same set of dipole
moments (and since higher order terms in the expansion of the field around each inclusion die
off rapidly), the local field ai acting on the inclusion i will be well-approximated by (10.25).
This leads to the improved estimate,

bi = αiai = Viα0ai = Viα0〈e〉 − V�α0Λiv, (10.29)
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for the dipole moment of the field around inclusion i , in which V� is the volume of the period
cell. From these dipole moments we can calculate the average of the polarization field:

〈p〉 = (ε∗ − ε0I)〈e〉 =
n∑
i=1

bi/V�.

The vector v is determined by equating the values for the average polarization obtained
using the expressions (10.28) and (10.29) for the dipole moments. This value of v,

v = [1+ α0

n∑
i=1

Λi/ f ]−1α0〈e〉,

in which f is the volume fraction occupied by the inclusions, gives 〈p〉 = f v, which leads to
the estimate

ε∗ ≈ ε0I + f [I + α0

n∑
i=1

Λi/ f ]−1α0

for the effective dielectric tensor.
If the centers of the inclusions are distributed isotropically, then

∑n
i=1 Λi ≈ − f 2I/(3ε0)

and we obtain the approximation formula

ε∗ ≈ ε0I + f [I − fα0/3ε0]−1α0

for the effective dielectric tensor of a dilute suspension of nonspherical inclusions. This is
often written in the equivalent form

(ε∗ − ε0I)(ε∗ + 2ε0I)
−1 ≈ fα0/3ε0,

which for spherical inclusions reduces to the formula

ε∗ − ε0

ε∗ + 2ε0
≈ f (ε1 − ε0)

ε1 + 2ε0
, (10.30)

in agreement with (10.27).

10.5. The effective medium approximation for the dielectric constant of
an aggregate with spherical grains

Another widely used estimate is the effective medium approximation formula introduced by
Bruggeman (1935). (It has also been called the coherent potential approximation, because of
its similarity to the coherent potential approximation in solid state physics for estimating the
properties of random alloys.)

Consider an aggregate comprised of grains that fill all space. Each grain either has dielec-
tric constant ε1 or dielectric constant ε2 and is approximately spherical in shape. The phase-1
grains with dielectric constant ε1 occupy a volume fraction f1, while the phase-2 grains oc-
cupy a volume fraction f2 = 1 − f1. To obtain the effective medium approximation for
the effective dielectric constant ε∗ of this assemblage we pick out a representative sample of
grains occupying a small volume fraction ε in the assemblage. The grains in the representa-
tive sample are chosen to be well-separated from each other and are chosen so that the sample
contains the same proportion of phase 1 and phase 2 as in the aggregate.
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The essence of the effective medium approximation is the “self-consistency” assumption
that the effective dielectric constant of the aggregate remains equal to ε∗ to the first order
in ε when we replace the medium surrounding the representative grains by a homogeneous
effective medium with dielectric constant ε∗. After making this replacement we can treat the
representative grains as a dilute suspension of spherical inclusions embedded in a matrix of
dielectric constant ε∗. To the first order in ε the effective dielectric constant of this suspension
is

ε∗ + ε f1
3ε∗(ε1 − ε∗)
ε1 + 2ε∗

+ ε f2
3ε∗(ε2 − ε∗)
ε2 + 2ε∗

,

and by the “self-consistency” assumption this should equal ε∗, giving rise to the equation

f1
ε1 − ε∗
ε1 + 2ε∗

+ f2
ε2 − ε∗
ε2 + 2ε∗

= 0, (10.31)

which has the solution

ε∗ = 1
4

[
γ + (γ 2 + 8ε1ε2)

1/2] with γ = (3 f1 − 1)ε1 + (3 f2 − 1)ε2.

This solution represents the effective medium approximation for ε∗.
There is of course an analogous formula,

σ∗ = 1
4

[
γ + (γ 2 + 8σ1σ2)

1/2] with γ = (3 f1 − 1)σ1 + (3 f2 − 1)σ2, (10.32)

for the effective conductivity σ∗ of a granular aggregate of spherical grains with conductivities
σ1 and σ2, in proportions f1 and f2. The solution has an interesting behavior in the limit as σ2

approaches zero. In this limit we have

σ∗ = (3 f1 − 1)σ1/2 when f1 ≥ 1/3,
= 0 when f1 ≤ 1/3.

So we see that there is a critical volume fraction, namely, f1 = 1/3, below which the effective
conductivity is predicted to be zero and above which the effective conductivity is strictly
positive. In actual granular aggregates such a conductivity threshold does occur and coincides
with the percolation threshold fc. It is the volume fraction of phase 1 above which the grains
of phase 1 form a connected path through the aggregate and below which the grains of phase
1 lie in isolated clusters. The existence of the conductivity threshold in the effective medium
scheme is one reason why the approximation and its generalizations have been favored by
experimentalists, although the percolation threshold in an actual granular aggregate may be
quite different from 1/3.

A rigorous basis for Bruggeman’s effective medium approximation was provided by the
result that it is a realizable model (Milton 1984, 1985a). The realizability holds in the strong
sense that the microgeometry realizing the approximation is independent of the values of ε1

and ε2 (or σ1 and σ2) and has the correct morphology, consisting of an assemblage of spheres
of the two phases packed together to fill all space. Roughly speaking, there exists an aggre-
gate of spheres, with a distribution of sphere sizes so wide that spheres of comparable size
are well-separated, that has an effective dielectric constant arbitrarily close to the estimate of
the effective medium approximation. Basically this is a hierarchical material with large well-
separated spheres of the two phases, surrounded by a sea of much smaller well-separated
spheres of the two phases which in turn are surrounded by a sea of still smaller well-separated
spheres of the two phases, and so on, ad-infinitum; see figure 10.1. Even though there is only
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a small volume fraction of spheres of any given size, the spheres of all sizes combine to es-
sentially fill all space. The realizability explains why the effective medium approximation is
always found to be compatible with known bounds and exact relations. Avellaneda (1987) ex-
tended this result, proving the realizability of the generalized effective medium approximation
for the effective properties (including the elastic properties) of possibly anisotropic aggregates
of arbitrarily shaped grains, each containing one or more possibly anisotropic phases.

Figure 10.1. The first few stages in the construction of a material that has an effective dielec-
tric constant arbitrarily close to the estimate of the effective medium approximation. Material
0 is chosen arbitrarily, otherwise material j = 1, 2, . . . , consists of equisized spheres, called
j -spheres, embedded in material j − 1. The sphere radii, r j , asymptotically increase faster
than exponentially with j . The spatial distribution of the j -spheres must satisfy a mild homo-
geneity condition, and the minimum spacing 2s j between the j -spheres is such that the ratio
r j/s j diverges. Also, the volume fraction of material 0 remaining in material j must tend to
zero as j → ∞. On the basis of these and some further ancillary conditions the effective
dielectric constant of material j (defined in terms of the electrostatic energy stored in a suffi-
ciently large test cube �) converges to the effective medium estimate as j → ∞. Reprinted
with permission from Milton (1985a). Copyright 1985, Springer-Verlag.

The approximation always requires that the effective moduli be chosen so that the average
polarizability of the grains in the effective medium vanishes. For an isotropic polycrystalline
material containing spherical grains of crystal in random orientations, the expression (10.8)
for the average polarizability of the grains leads to the effective medium approximation

λ1 − ε∗
λ1 + 2ε∗

+ λ2 − ε∗
λ2 + 2ε∗

+ λ3 − ε∗
λ3 + 2ε∗

= 0 (10.33)

for the effective dielectric constant ε∗ of the crystal, in which λ1, λ2, and λ3 are the eigenvalues
of the dielectric tensor of the constituent crystal. This formula of Helsing and Helte (1991)
corrects an earlier result of Bolotin and Moskalenko (1967). For a uniaxial crystal in which
λ3 = λ2 the formula reduces to the one given by Stroud (1975):

ε∗ = 1
4

[
λ2 + (λ2

2 + 8λ1λ2)
1/2]. (10.34)

The effective medium approximation is easily extended to resistor networks where the
resistances are randomly (and independently) assigned one of two values (Kirkpatrick 1973)
and to spring networks where the spring constants are randomly (and independently) assigned
one of two values (Feng, Thorpe, and Garboczi 1985; Garboczi and Thorpe 1985; Schwartz,
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Feng, Thorpe, and Sen 1985). In the context of such networks the approximation works
surprisingly well, in general agreeing with numerical simulations except very close to the
conductivity threshold when the ratio of the resistances is large, or very close to the rigidity
threshold when the ratio of the spring constants is large.

10.6. Average field approximations†
The effective medium approximation is not the only approximation based on an assumption of
“self-consistency.” Average field approximations use self-consistency arguments to estimate
the average field within inclusions. Often average field approximations are confused with
the effective medium approximation discussed in the previous section because they give the
same formula when the phases are isotropic and the grains are spherical or aligned ellipsoids.
However, it is important to recognize that they are different approximations based on different
assumptions. The average field approximations were introduced by Polder and Van Santen
(1946). They are essentially mean-field theories and have been frequently applied to estimate
the elastic properties of composites. In this context they are known as the “self-consistent
estimates.”

As in the previous section, let us consider a granular aggregate comprised of nearly spher-
ical grains that either have dielectric constant ε1 or dielectric constant ε2. Let

〈e〉1 = 〈χ1e〉/ f1 and 〈e〉2 = 〈χ2e〉/ f2
denote the partial averages of the electric field, averaged over phases 1 and 2, respectively.
Clearly the total average electric field is itself an average of these two partial averages,
weighted in proportion to the volume fractions of the phases:

〈e〉 = f1〈e〉1 + f2〈e〉2. (10.35)

To estimate 〈e〉1 and 〈e〉2 we make a self-consistent approximation. We assume that
these partial averages are the same as the partial averages of the electric fields in the chosen
representative grains when the surrounding medium is replaced by a homogeneous medium
of dielectric constant ε∗ and the average field 〈e〉 is held fixed. From the solution (10.5) for
the polarization field inside a spherical grain in a uniform applied field a = 〈e〉 embedded in
a matrix of dielectric constant ε0 = ε∗ we obtain the estimates

〈e〉1 ≈ 3ε∗〈e〉
ε1 + 2ε∗

, 〈e〉2 ≈ 3ε∗〈e〉
ε2 + 2ε∗

.

Substitution of these estimates in (10.35) yields the identity

1 = 3 f1ε∗
ε1 + 2ε∗

+ 3 f2ε∗
ε2 + 2ε∗

, (10.36)

which may be solved for ε∗. By subtracting 1 = f1+ f2 from both sides this formula reduces
to (10.31). In other words, when the grains are spherical the effective medium approximation
and average electric field approximation yield identical formulas for the effective dielectric
constant.

Alternatively one can define partial averages of the displacement field,

〈d〉1 = 〈χ1d〉/ f1 and 〈d〉2 = 〈χ2d〉/ f2,
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and base an approximation on the identity

〈d〉 = f1〈d〉1 + f2〈d〉2,

estimating 〈d〉1 and 〈d〉2 by assuming that these partial averages are the same as the partial
averages of the displacement fields in the chosen representative grains when the surrounding
medium is replaced by a homogeneous medium of dielectric constant ε∗ and the average
displacement field 〈d〉 is held fixed. For spherical grains this yields the approximation formula

1 = 3 f1ε1

ε1 + 2ε∗
+ 3 f2ε2

ε2 + 2ε∗
, (10.37)

which is again equivalent to the effective medium approximation (10.31) for ε∗, as can be
seen by subtracting 1 = f1 + f2 from both sides.

More generally, one can base an approximation on the partial averages of the polarization
field p(x) = d(x)− ε0e(x), assuming that these partial averages are the same as the partial
averages of the polarization fields in the chosen representative grains when the surrounding
medium is replaced by a homogeneous medium of dielectric constant ε∗ and the average
polarization field 〈p〉 is held fixed. In particular, by taking ε0 = ε2, one avoids having to
estimate the average field within phase 2 because the polarization field vanishes there. One
has

〈p〉 = f1〈p〉1, where 〈p〉1 = 〈χ1p〉/ f1.
For spherical grains of phase 1 this yields the formula

ε∗ − ε2 = 3 f1(ε1 − ε2)ε∗
ε1 + 2ε∗

, (10.38)

which again coincides with the effective medium approximation (10.31), being a linear com-
bination of the equations (10.36) and (10.37). Because this approach does not require an
estimate of the average field within phase 2, it has been argued that it applies to suspensions
of grains of phase 1 embedded in a matrix of phase 2. Of course the grains in the suspension
must be in contact when f1 > 1/3 to account for the fact that ε∗ →∞ as ε1 →∞.

Some caution must be used when applying average field approximations, since they are
not necessarily realizable. Consider, for example, the average polarization approximation
applied to a three-phase composite comprised of cubic grains of dielectric constant ε1 (with
random orientations) and spherical grains of dielectric constant ε2 embedded in a matrix of
dielectric constant ε3. The approximation yields the formula

ε∗ − ε3 = f1α(ε∗)(ε1 − ε3)

ε1 − ε∗
+ 3 f2(ε2 − ε3)ε∗

ε2 + 2ε∗
, (10.39)

in which f1 and f2 are the volume fractions of phases 1 and 2 and α(ε∗)I is the polarizability
tensor of a cube of unit volume of dielectric constant ε1 embedded in a matrix of dielectric
constant ε0 = ε∗. According to this approximation the dependence of ε∗ on ε3 does not
disappear in the limit when f3 → 0. In other words, this approximation predicts that the
matrix has a significant influence on the effective dielectric constant, even when it occupies
an infinitesimally small volume fraction.

Contrary to what Kerner (1956b) and Walpole (1969) have argued, one can rigorously
prove that this is impossible when the matrix has a fixed finite, nonzero dielectric constant.
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Suppose that we are given constants β > α > 0 and two composites having dielectric tensor
fields ε(x)I and ε′(x)I satisfying

β > ε(x) > α, β > ε′(x) > α, for all x,

and which (for simplicity) are such that the effective dielectric tensors are isotropic, having
values ε∗I and ε′

∗I . It has been established by Zhikov and Kozlov [see Zhikov, Kozlov, and
Oleinik (1994)] that

|ε′
∗ − ε∗| ≤ k0〈|ε′ − ε|p〉1/p, (10.40)

where the constants k0 > 0 and p > 0 depend only on α and β. The proof of this result
relies on a theorem of Meyers (1963) on the higher integrability of the gradient of solutions
of elliptic systems of partial differential equations. Now consider any isotropic three-phase
medium and let

ε(x) = ε′(x) = εi in phase i = 1, 2,
ε(x) = ε3, ε′(x) = ε′

3 in phase 3.

Then the bound (10.40) reduces to

|ε′
∗ − ε∗| ≤ k0 f

1/p
3 |ε′

3 − ε3|,

and implies that ε′
∗ must approach ε∗ as f3 → 0. Thus the average polarization approximation

(10.39) is inappropriate when the volume fraction of the matrix is small because it violates
this bound. More generally this example serves to warn of the danger of blindly applying
average field approximations.

Willis (1981) has shown that the three average field approximations give three different
predictions for the effective properties when the grains are not spherical (or aligned ellip-
soids). One can regard the average electric field, average displacement field, and effective
medium approximation as corresponding to the average polarization approximation in the
limit in which ε0 approaches infinity, approaches 0, and equals ε∗, respectively. When the
composite is a granular aggregate, rather than a suspension, there are no apparent physical
reasons for favoring a particular choice of ε0. However, from a mathematical perspective
the choice ε0 = ε∗ is favored because the effective medium approximation is realizable in
the sense that it is the limiting value of the effective dielectric constant of a sequence of ac-
tual granular microstructures. The effective medium approximation will never be found to
violate constraints applicable to formulas for the effective dielectric constant of arbitrary mi-
crostructures, whereas the preceding example shows that other average field approximations
may indeed violate these constraints.

Clearly the assumptions of the average field approximations must be violated in some way
in the microgeometries that attain the effective medium approximations when the inclusions
are not spheres or aligned ellipsoids. A close examination shows that the largest inclusions
in these microgeometries have a field acting on them that can be identified with the average
applied field, but smaller inclusions have a field acting on them that is influenced by the prox-
imity of larger inclusions, but which on average is smaller in magnitude than the average
applied field. This is why the average field approximation is not valid for these microgeome-
tries. Additional reasons for favoring the effective medium approximation over average field
approximations have been given by Noh, Song, and Sievers (1991).
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10.7. The differential scheme for the effective conductivity of a
suspension of spheres

Bruggeman (1935) also introduced another popular approximation formula that is now widely
known as the differential scheme. (It has also been called Bruggeman’s unsymmetrical effec-
tive medium theory or the iterated dilute limit approximation.)

Suppose that we want an approximation formula for the effective conductivity σ∗( f0) of
a suspension of spheres of conductivity σ1 in a matrix of conductivity σ0, where the matrix
occupies a volume fraction f0. The idea of the differential scheme is as follows. If the
volume fraction of the matrix is decreased from f0 to f0 − δ by carving out of the composite
a volume fraction δ/ f0 of large spherical cavities [thereby removing a volume fraction δ of
the matrix and a volume fraction δ(1 − f0)/ f0 of the existing spheres] and inserting large
solid spheres of conductivity σ1 into these cavities, then the medium surrounding these new
inclusions can be treated as a homogeneous medium with conductivity σ∗( f0), provided that
the cavities were placed well apart from each other and provided that their radius was chosen
to be sufficiently large compared with the scale of inhomogeneities present in the original
composite. To calculate the effective conductivity σ∗( f0 − δ) of the new suspension we can
treat it as a dilute suspension of large spheres of conductivity σ1, occupying a volume fraction
δ/ f0 in a matrix of conductivity σ∗( f0). It follows from (10.11) that to the first order in δ,

σ∗( f0 − δ) ≈ σ∗( f0)+ 3σ∗( f0)(σ1 − σ∗( f0))δ
(σ1 + 2σ∗( f0)) f0

. (10.41)

At the next stage we increase the volume from f1 − δ to f1 − 2δ by inserting even larger
spheres of conductivity σ1. By iterating this procedure, starting from a homogeneous medium
with conductivity σ0 containing no spherical inclusions, that is, with f0 = 1, we build up a
material with any desired volume fraction of spheres of conductivity σ1 for which the effec-
tive conductivity can be estimated by repeated use of (10.41). Taking the limit where δ is
infinitesimally small, this relation reduces to a first-order differential equation

dσ∗
d f0

= −3σ∗(σ1 − σ∗)
(σ1 + 2σ∗) f0

for the effective conductivity σ∗( f0) with the condition

σ∗(1) = σ0.

Integrating gives the equation(
σ1 − σ∗
σ1 − σ0

)(
σ0

σ∗

)1/3

= f0, (10.42)

which may be solved numerically for σ∗ for given values of σ1, σ0, and f0. The solution
represents the differential approximation for the effective conductivity of a suspension of
spheres. The arguments underlying its derivation suggests that the approximation best applies
to a suspension containing spheres with a very wide distribution of sizes. Ideally, the size
distribution should be so wide that any two spheres of comparable size are well-separated
from each other.

When the spheres have zero conductivity, σ1 = 0, the approximation (10.42) gives the
estimate

σ∗ = σ0 f
3/2
0 .
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Sen, Scala, and Cohen (1981) have compared this estimate with experimental measurements
of the effective conductivity of a porous medium of electrically insulating fused glass beads
immersed in a conducting brine solution. The agreement is remarkably good; see figure 10.2.
The significance of this result, however, is not clear since the approximation was designed to
apply to suspensions of spherical grains in a matrix, as described above, rather than to porous
materials. For real brine-filled rocks, the relation between the effective conductivity, σ∗, and
the conductivity σ0 of the brine is found empirically to be well-approximated by the formula

σ∗ = σ0 f m0 ,

where the exponentm depends on the particular rock being studied. This is known as Archie’s
law. Archie (1942) found that clean, unconsolidated sandstones are characterized by an ex-
ponent m ≈ 1.3, which is quite close to the value m = 1.5 predicted by the differential
scheme.

Figure 10.2. Effective conductivity of a fluid-filled porous medium of fused glass beads as a
function of the volume fraction f0 occupied by the conducting fluid, showing the σ∗ = σ0 f

3/2
0

behavior. The bead size ranges from 210 to 250 microns. After Sen, Scala, and Cohen (1981).

Bruggeman’s differential scheme is also realizable (Milton 1985b). Roughly speaking,
there exists a suspension of spheres in a matrix, with a distribution of sphere sizes so wide
that spheres of comparable size are well-separated, which has an effective dielectric constant
arbitrarily close to the estimate of the differential scheme. Norris, Callegari, and Sheng (1985)
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recognized that the differential scheme can easily be generalized to allow for suspensions con-
taining inclusions with a variety of shapes and compositions that possibly depend on the level
in the hierarchy. Avellaneda (1987) proved the realizability of this generalized differential
scheme for the effective properties (including the elastic properties) of possibly anisotropic
suspensions of arbitrarily shaped inclusions, each containing one or more possibly anisotropic
phases embedded in a possibly anisotropic matrix. We call such materials ordinary differen-
tial microstructures. They are a generalization of the ordinary differential laminates discussed
in section 9.9 on page 175.

10.8. The effective medium approximation as the attractor of a
differential scheme

Instead of filling the spherical cavities with spheres of phase 1 at each stage of the differential
process, we could of course fill some cavities with spheres of phase 1 and some cavities with
spheres of phase 2. Let us suppose that a fixed proportion p1 of the cavities are filled with
phase 1 and a fixed proportion p2 = 1 − p1 are filled with phase 2, so that the two phases
occupy volume fractions f1 = p1(1 − f0) and f2 = p2(1 − f0) in the resulting composite,
in which f0 is the volume fraction occupied by the matrix. The resulting differential equation
describing the evolution of the effective conductivity σ∗ as a function of the variable

t = −log f0, (10.43)

which ranges between zero and infinity, now takes the form

dσ∗
dt

= g(σ∗), where g(σ∗) = p1
3σ∗(σ1 − σ∗)
(σ1 + 2σ∗)

+ p2
3σ∗(σ2 − σ∗)
(σ2 + 2σ∗)

. (10.44)

This equation defines a flow on the real line. There are stationary points of this flow where
dσ∗/dt = 0, namely, the trivial point σ∗ = 0 and the point σ∗ = σ 0

∗ , where σ
0
∗ is the value of

the effective conductivity given by the effective medium approximation (10.32) with f1 = p1

and f2 = p2. Since the derivative

dg(σ∗)
dσ∗

∣∣∣∣
σ∗=σ 0∗

= −p1
9σ1σ

0
∗

(σ1 + 2σ 0∗ )2 − p2
9σ2σ

0
∗

(σ2 + 2σ 0∗ )2

is negative, it follows that g(σ∗)must be positive when σ∗ is slightly less than σ 0
∗ . Hence g(σ∗)

must be positive for all σ∗ between zero and σ 0
∗ because σ∗ = 0 is the only other nonnegative

root of the equation g(σ∗) = 0. Similarly, g(σ∗) must be negative for all σ∗ between σ 0
∗ and

infinity. This implies that

dσ∗
dt

≥ 0 when 0 ≤ σ∗ ≤ σ 0
∗ ,

≤ 0 when σ 0
∗ ≥ σ 0

∗ .

In other words, the flow is always towards the point σ 0
∗ . As t approaches infinity, σ∗ must

approach σ 0
∗ , that is,

lim
t→∞ σ∗(t) = σ 0

∗ .

Thus the effective medium approximation corresponds to this differential scheme in the
limit in which the volume fraction f0 of the matrix tends to zero. Norris (1985) realized the
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effective medium approximation is a fixed point of the differential scheme and argued that it
should always be the attractor, not only for the effective conductivity properties but also for
the effective elastic properties. One needs to show that the effective properties predicted by
the differential scheme are independent of the properties of the matrix in the limit as f0 → 0.
A rigorous proof of this, for the generalized differential scheme, was given by Avellaneda
(1987) based on results of Meyers (1963).

10.9. Approximation formulas for effective elastic moduli
The effective medium, average field, and differential approximation schemes can also be ap-
plied to estimate the effective elastic moduli of composite materials. Let us suppose that the
composite is an elastically isotropic granular aggregate, comprised of grains of phase 1 with
bulk modulus κ1 and shear modulus µ1 occupying a volume fraction f1 mixed with grains of
phase 2 with bulk modulus κ2 and shear modulusµ2 occupying the remaining volume fraction
f2 = 1 − f1. If one treats the grains as spherical, then the effective medium approximation
and the average field approximations yield exactly the same formulas for the effective elastic
moduli of the aggregate. The estimates for the effective bulk modulus κ∗ and effective shear
modulus µ∗ are taken to the unique nonnegative solutions of the coupled equations

f1
κ1 − κ∗

κ1 + 4µ∗/3
+ f2

κ2 − κ∗
κ2 + 4µ∗/3

= 0,

f1
µ1 − µ∗
µ1 + F∗

+ f2
µ2 − µ∗
µ2 + F∗

= 0, F∗ = µ∗(9κ∗ + 8µ∗)
6(κ∗ + 2µ∗)

. (10.45)

Kerner (1956a) first derived these approximation formulas for both κ∗ and µ∗, essentially
using an average polarization field approximation. He took the moduli κ0 and µ0 of the
reference medium equal to κ∗ and µ∗. Thus his treatment is equivalent to an effective medium
approximation. However, his approach is confusing since along the way he derives another
approximation formula using arguments that are difficult to justify. Budiansky (1965) and
Hill (1965) provided cleaner derivations using average field approximations.

The predicted value of µ∗ has an interesting behavior when phase 2 is a fluid, with µ2 = 0
and κ2 �= 0, and phase 1 is a solid with finite nonzero moduli. When f1 ≤ 2/5 one finds that

κ∗ = 1/( f1/κ1 + f2/κ2), µ∗ = 0,

which is consistent with the exact results for the bulk and shear moduli of a suspension of
particles of phase 1 in a fluid of phase 2. When f1 is greater than 2/5, but sufficiently close to
2/5 so that we can assume that µ∗ << κ∗ and hence that F∗ ≈ 3µ∗/2, one finds that

κ∗ ≈ 1/( f1/κ1 + f2/κ2), µ∗ ≈ (5 f1 − 2)µ1/3.

Thus the volume fraction f1 = 2/5 is predicted to be the fluidity threshold, that is, the transi-
tion point between fluid- and solid-like behavior for the composite.

The predicted behavior is quite different when phase 2 is vacuous, with zero moduli.
Suppose that we let κ2 and µ2 both approach zero while keeping the ratio κ2/µ2 fixed. In this
limit we find that

κ∗ = 0, µ∗ = 0 for f1 ≤ 1/2,

while when f1 is greater than 1/2, but still close to 1/2, we find that

κ∗ ≈ 8(2 f1 − 1)
5/µ1 + 4/3κ1

, µ∗ ≈ 6(2 f1 − 1)
5/µ1 + 4/3κ1

.
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So as f1 approaches 1/2 the ratio κ∗/µ∗ approaches the constant value 4/3. Thus the volume
fraction f1 = 1/2 is predicted to be the rigidity threshold.

It is rather striking that when f1 is between 2/5 and 1/2 the predicted value of the ef-
fective shear modulus becomes nonzero when the void region occupied by phase 2 is filled
with a fluid with zero shear modulus. We would not expect such an unusual effect in any
ordinary microgeometry. Indeed, the microgeometry corresponding to the effective medium
approximation (when all of the moduli are finite and nonzero) is far from ordinary, having
its microstructure on an infinite range of length scales. This warns of the danger of blindly
applying the predictions of the effective medium approximations to ordinary microgeometries
when there is a large ratio between the moduli of the phases. Except in special microstructures
the conductivity, fluidity, and rigidity thresholds should be coincident. They should all equal
the geometric percolation threshold fc marking the volume fraction where phase 1 begins to
have a connected component spanning the composite.

Korringa, Brown, Thompson, and Runge (1979) and Berryman (1980) have extended the
effective medium approximation to obtain estimates of the effective bulk modulus and effec-
tive shear modulus of elastically isotropic aggregates of randomly oriented spheroidal grains
of two or more isotropic phases. Wu (1966) and Walpole (1969) extended the average field
approximation (10.38) to an elastically isotropic suspension of randomly oriented spheroidal
inclusions of one or more isotropic phases embedded in an isotropic matrix. Because the
spheroids are not aligned, the results of the average field approximation differ from those of
the effective medium approximation, and in particular have an unphysical dependence on the
moduli of the matrix when grains of more than one phase are present and the volume fraction
occupied by the matrix goes to zero.

Van der Poel (1958); Smith (1974; 1975), correcting an error in Van der Poel’s analysis;
and Christensen and Lo (1979) have used an effective medium approximation to estimate the
effective shear modulus of a coated sphere assemblage, or more generally, the effective shear
modulus of a suspension of well-separated spheres in a matrix. Following Mackenzie (1950),
who used a similar idea applied to a solid containing a dilute concentration of spherical holes,
they consider a coated sphere in an effective medium and adjust the moduli of the effective
medium so that the leading coefficient in the far-field expansion vanishes or, equivalently, so
that the insertion of the coated sphere into the effective medium does not change the overall
elastic energy. The estimate for the bulk modulus agrees with the exact expression. The
estimate for the shear modulus is the solution of a quadratic equation. Since the coefficients of
this quadratic are given by quite lengthy expressions, we do not provide them here, but instead
refer the interested reader to the paper of Christensen (1990), which corrects some errors
in the earlier paper of Christensen and Lo. This approximation generally gives reasonable
estimates for the effective shear modulus for a suspension of spheres when the spheres are
well-separated.

Incidentally, the realizability of the effective medium approximation provides a strong
argument to suggest that the effective shear modulus of the Hashin-Shtrikman sphere assem-
blage depends on the way in which the coated spheres are arranged to fill all space. One
realizable value of the effective shear modulus is the value µ∗, provided by the above ap-
proximation. However, the calculation, and the resulting value of the effective shear modulus,
would surely change if one were to consider a pair of coated spheres at fixed separation in an
effective medium and then average the leading coefficient in the far-field expansion over all
orientations of the pair, requiring that the shear modulus of the effective medium be chosen
so that this average vanishes. This would provide another realizable value of the effective
shear modulus. One expects this value to be different because the “shear polarizability” of a
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pair of coated spheres is not the same as the sum of the shear polarizabilities of the individual
coated spheres taken separately. Even when the effective medium has shear modulus µ∗ the
field in the surrounding matrix is nonuniform and there will be interaction between the coated
spheres.

An alternative estimate for the elastic moduli of a suspension of spheres is provided by
the differential scheme. It gives estimates for the effective bulk and shear moduli κ∗( f0)
and µ∗( f0) of a suspension of spheres with bulk and shear moduli κ1 and µ1 in a matrix with
moduli κ0 and µ0, where the matrix occupies a volume fraction f0. These estimates of Roscoe
(1973) [see also McLaughlin (1977)] are found by integrating

dκ∗
d f0

= − (κ∗ + 4µ∗/3)(κ1 − κ∗)
(κ1 + 4µ∗/3) f0

,

dµ∗
d f0

= − (µ∗ + F∗)(µ1 − µ∗)
(µ1 + F∗) f0

, where F∗ = µ∗(9κ∗ + 8µ∗)
6(κ∗ + 2µ∗)

,

with κ∗ = κ0 and µ∗ = µ0 at f0 = 1. (When f0 approaches zero κ∗ approaches κ1, and µ∗
approaches µ1, so the right-hand sides of the above equations remain finite.) This approxima-
tion should give reasonable estimates when there is a wide distribution of sphere sizes in the
suspension and the spheres are not well-separated.

When the spheres are voids, with κ1 = µ1 = 0, the integration can be done explicitly.
Norris (1985) finds that

κ∗ = 4µ0

3R

(
R − 1

4µ0/3κ0 − 1

)5/3

, µ∗ = µ0

(
R − 1

4µ0/3κ0 − 1

)5/3

,

where R is the root of the equation(
R − 1

4µ0/3κ0 − 1

)5(4µ0/3κ0 + 1
R + 1

)
= f 6

0 .

Clearly R approaches 1 as f0 approaches 0, and consequently the moduli vanish in the limit
as f0 → 0 while the ratio κ∗/µ∗ approaches 4/3, that is, the same value it approaches at the
transition point in the effective medium approximation.

If the inclusions are randomly oriented plates (or thin spherical shells) rather than spheres,
the differential equations become

dκ∗
d f0

= − (κ∗ + 4µ1/3)(κ1 − κ∗)
(κ1 + 4µ1/3) f0

,

dµ∗
d f0

= − (µ∗ + F1)(µ1 − µ∗)
(µ1 + F1) f0

, where F1 = µ1(9κ1 + 8µ1)

6(κ1 + 2µ1)
,

with κ∗ = κ0 and µ∗ = µ0 at f0 = 1. Upon integration (using separation of variables) these
yield the formulas

κ∗ = κ1 + f0
1/(κ0 − κ1)+ (1− f0)/(κ1 + 4µ1/3)

,

µ∗ = µ1 + f0
1/(µ0 − µ1)+ (1− f0)/(µ1 + F1)

for the effective bulk and shear moduli. As Roscoe (1973) recognized [see also Norris (1985)
and Milton (1986)] these formulas coincide with the Hashin-Shtrikman (1963) bounds on the
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effective bulk and shear moduli of a two-phase composite with (κ1 − κ0)(µ1 − µ0) ≥ 0, as
discussed in section 23.5 on page 468. Roscoe also argued that one could utilize this result
to prove the Hashin-Shtrikman bounds. However, there is an error in his analysis (where
he assumed a particular value of an integration constant) and the correct statement is that
one can use the Hashin-Shtrikman bounds for dilute composites to obtain them for nondilute
composites (Milton and Nesi 1999).

10.10. Asymptotic approximation formulas
Sometimes one can obtain good estimates for the effective conductivity of a mixture of two
isotropic phases with conductivities σ1 and σ2 in the asymptotic limit where σ1 � σ2. For ex-
ample, a three-dimensional checkerboard (i.e., a face-centered cubic array of touching cubes
of phase 1 surrounded by phase 2) has effective conductivity

σ∗ ≈ 2
√
σ1σ2 when σ1 � σ2, (10.46)

as shown by Keller (1987). To see this, consider the checkerboard array of square prisms of
the two phases with σ1 � σ2, with the average current flowing perpendicular to one prism
face. In this situation the electrical potential is essentially constant within each prism of phase
1, except near the edges, and the current in phase 2 is negligibly small, except near the edges
where two prisms of phase 1meet. Thus the regions near the edges of the prisms form the main
impedance to current within the material. We could even associate a resistance with each edge
between the prisms. For the three-dimensional checkerboard there would be twice the number
of these edges through which the current could flow. Thus it would have twice the conductivity
of the checkerboard array of square prisms in the asymptotic limit. Hence (10.46) follows
from the duality result (3.11) that the transverse effective conductivity of the checkerboard
array of square prisms is exactly

√
σ1σ2. Keller also extended this asymptotic analysis to

two-dimensional checkerboard patterns of rectangles or parallelepipeds [thereby providing a
simple derivation of earlier results of Gautesen (1988) for the rectangular checkerboard] and
to three-dimensional checkerboard patterns of rectangular blocks or parallelepipeds. Obnosov
(1996) provided the exact solution for the fields in rectangular checkerboards.

Kozlov (1989) and Berlyand and Golden (1994) applied variational principles to rigor-
ously justify the asymptotic behavior of the conductivity of periodic and random checkerboard
arrays. [See Torquato, Kim, and Cule (1999) for numerical simulations of the conductivity
of random checkerboards.] Curiously, as anticipated by Sheng and Kohn (1982), the random
checkerboard array has two conductivity thresholds. It consists of a square lattice of touching
squares where the squares are randomly chosen to have conductivity σ1 with probability f ,
with the remaining squares having conductivity σ2. As the volume fraction f of phase 1 is in-
creased one encounters a critical volume fraction, f Lc ≈ 0.41 (the site percolation threshold),
at which corner connected paths of phase 1 first span the composite. Then one encounters
a second critical volume fraction, f Uc = 1 − f Lc , at which edge connected paths of phase 1
first span the composite, that is, when corner connected paths of phase 2 cease to span the
composite. When σ1 � σ2, the effective conductivity σ∗ is asymptotically proportional to
σ2,
√
σ1σ2 and σ1, respectively, in the three regimes 0 ≤ f < f Lc , f

L
c < f < f Uc , and

f Uc < f ≤ 1. Golden and Kozlov (1999) show that there is a generalization of this model
which has infinitely many conductivity thresholds.

Berlyand and Kozlov (1992) have analyzed the effective elastic moduli of two-dimen-
sional checkerboards when one phase is considerably stiffer than the other. Interestingly they
found that the effective Poisson’s ratio is close to zero when the material is stretched in the
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direction of a diagonal of the checkerboard, even when both phases have Poisson’s ratios equal
to, say, 1/3. The physical explanation is quite simple: Most of the deformation occurs near
the corners, and this deformation does not have much influence on the width of the material.
See figure 10.3.

(a) (b)

Figure 10.3. A checkerboard composed of a very stiff material occupying the black squares
and a very compliant material occupying the white squares, as shown in (a), when stretched
in the direction of a checkerboard diagonal, as in (b), has little change to its overall width and
thus has an effective Poisson’s ratio close to zero. After Berlyand and Kozlov (1992).

Another microstructure that can be analyzed asymptotically is a cubic array of spheres of
phase 1, having infinite conductivity, that are close to touching and surrounded by phase 2,
having finite conductivity σ2. (The analogous dielectric problem is of an array of conducting
spheres surrounded by a dielectric medium). The electrical potential is constant within each
sphere and the current in phase 2 is negligibly small, except near where the spheres touch.
Following Keller (1963), we consider two adjacent spheres, at, say, potentials φ = −Vg/2 and
φ = +Vg/2, where Vg is the voltage across the gap. We center the origin midway between
the spheres and use cylindrical coordinates (x1, ρ), where the x1-axis is along the line joining
the sphere centers and ρ measures the distance to this line. Near the gap the surfaces of the
spheres can be approximated by the parabolas

x1 = ±(h/2+ ρ2/2r0),

where r0 is the sphere radius and h is the width of the gap between the spheres. To a first
approximation the potential φ(x1, ρ) in the gap should be just a linear function of x1; since it
takes the values φ = −Vg/2 and φ = +Vg/2 on the sphere surfaces, we have

φ(x1, ρ) ≈ Vgx1/[h + ρ2/r0],

and the associated current j = σ2∇φ will have a component

j1(0, ρ) ≈ σ2Vg/[h + ρ2/r0]

flowing normal to the mid-plane between the cylinders. Thus the total current flowing between
the spheres is

Ig ≈ 2πσ2

∫ ρc

0
j1(0, ρ)ρdρ ≈ 2πσ2Vg

∫ ρc

0

ρdρ
h + ρ2/r0

≈ −πσ2Vgr0log(h) ≈ πσ2Vgr0log(r0/h),

where ρc is a cutoff radius beyondwhich the preceding approximations are poor. This estimate
has neglected the contributions from the region ρ > ρc and also the contributions from terms
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like log(r0) and log(h + r 2
c /r0), which remain finite as h → 0. Thus the gap behaves like a

resistor with resistance
Rg = Vg/Ig ≈ 1

πσ2r0log(r0/h)
.

In the array of spheres the unit cell of periodicity is a cube of side length 2r0 + h. To ensure
that Vg is the voltage across the gap, we set the average electric field 〈e〉 along the x1-axis
with magnitude Vg/(2r0 + h). The average current 〈j〉 is then also directed along the x1-axis
and has magnitude Ig/(2r0+ h)2, where (2r0+ h)2 is the area of the cube face of the unit cell
of periodicity. Thus the effective conductivity is

σ∗ = Ig/[(2r0 + h)Vg] ≈ σ2(π/2)log(r0/h).

Batchelor and O’Brien (1977) show how this analysis can be extended to arbitrarily shaped
inclusions with smooth boundaries that are close to contact. The x1-axis is placed where it is
perpendicular to both surfaces. Then the distance g separating the surfaces can be approxi-
mated by the quadratic

g = h + x2
2/a + x2

3/b

for an appropriate choice of the x2- and x3-axes (perpendicular to the x1-axis), where a and b
depend on the curvatures of the surfaces. They show that the gap behaves like a resistor with
gap resistance

Rg ≈ 1
πσ2(ab)1/2log[(ab)1/2/h]

. (10.47)

Thus, as illustrated figure 10.4, any assemblage of almost touching, smoothly shaped, per-
fectly conducting inclusions can be replaced by an equivalent resistor network. A rigorous
basis for this approximation, for a two-dimensional assemblage of perfectly conducting disks
in a matrix, was given by Berlyand and Kolpakov (2001).

Figure 10.4. An assemblage of almost touching, perfectly conducting, inclusions embedded
in a matrix of finite conductivity can be replaced by an equivalent resistor network. Each gap
between neighboring inclusions is replaced by a resistance given by (10.47), and the electrical
potentials at the nodes in the network correspond to the potentials in each inclusion. Of course,
the assemblage should fill all space and the equivalent resistor network should have infinite
extent.

Batchelor and O’Brien also consider touching spheres with finite conductivity and for
large values of σ1/σ2 find that a current

Ig = Vg/Rg, where Rg ≈ 1
2πσ2r0log(σ1/σ2)
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flows between them, in which Vg is now the voltage drop between the sphere centers. This
leads to the estimate

σ∗ ≈ 1/(2r0Rg) ≈ πσ2log(σ1/σ2), when σ1 � σ2,

for the effective conductivity of a touching cubic array of spheres.
In two dimensions, Keller (1963) finds that a pair of almost touching, perfectly conducting

circular disks at potentials −Vg/2 and Vg/2 have a total current

Ig ≈ πσ2Vg
√
r0/h

flowing across the gap [see also Flaherty and Keller (1973) for the equivalent result in an-
tiplane elasticity]. O’Brien (1977) finds that for finitely conducting touching disks

Ig ≈ πσ1Vg
2log(σ1/σ2)

when σ1 � σ2.

McPhedran, Poladian, and Milton (1988) consider finitely conducting disks separated by
a small gap and find an expression for the current Ig that is uniformly valid throughout the
whole asymptotic region:

Ig ≈ πVg(c − 1)
2slog(c)+ 1− 2s[γ + ψ(1+ s)] ,

where ψ is the psi or digamma function and γ ≈ 0.57722 is Euler’s constant (Davis 1972),
while

c = 2r0 + h√
h(4r0 + h)

≈
√
r0/h, s = log[(σ1/σ2 − 1)/(σ1/σ2 + 1)]

log[(c− 1)/(c + 1)]
≈ cσ2/σ1.

Thus c is a parameter that measures how close the circles are to touching (small values of h
correspond to large values of c), while s is a parameter that measures the relative magnitudes
of c and the conductivity ratio σ1/σ2. The above approximation is good for sufficiently high
values of c and σ1/σ2 for all values of s (including s = 0 and s = ∞). It is derived by
using the method of images and approximating the discrete distribution of image charges by
a continuous distribution. McPhedran, Poladian, and Milton (1988) and Helsing (1994) find
good agreement with numerical simulations of the conductivity of square arrays of disks in the
asymptotic regime. The approach has been extended by McPhedran and Movchan (1994) to
two-dimensional elasticity. They use it to estimate the stiffness of the junction between pairs
of almost rigid, circular disks separated by a small gap. The case of completely rigid, nearly
touching, circular disks was treated by Davis, Hass, Chen, and Thorpe (1994), and the case of
completely rigid, nearly touching, spheres was treated by Nunan and Keller (1984). Accurate
numerical methods for treating almost touching conducting inclusions in two-dimensional
microstructures have been developed by Helsing (1996), Cheng and Greengard (1997), and
Cheng and Greengard (1998).

Another class of media that can be treated using asymptotic analysis was introduced by
Kozlov (1989). The conductivity tensor is assumed to be locally isotropic with σ(x) =
σ(x)I , where σ(x) takes the form

σ(x) = σ0eS(x)/ε,
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where S(x) is some smooth periodic function of x. When ε is very small the regions near
where S(x) has its maximum have comparatively high conductivity. The path of least resis-
tance connecting two neighboring regions of high conductivity passes through a saddle point
of the function S(x). It is the region near this saddle point which forms the main bottleneck
to current flow between the highly conducting regions. Kozlov shows through rigorous anal-
ysis that in the limit ε → 0 one can model conduction in the composite by a discrete resistor
network. For example, in two-dimensional conductivity a saddle at the point x = xs can be
replaced by a resistor with resistance

Rs ≈ [1/σ(xs)]
√
k+/k−,

where k+ and −k− are the eigenvalues of the matrixM , appearing in the approximate ex-
pression

S(x) ≈ S(xs)+ (x− xs) ·M(x− xs)/2,
for S(x) near the saddle point.

Kozlov’s work and the subsequent work of Golden and Kozlov (1999) gave a rigorous
foundation for the critical path analysis of Ambegaokar, Halperin, and Langer (1971). They
proposed that conduction in a medium with a very broad range of local conductivities σ is
dominated by a critical conductivity σc that is the smallest conductivity such that the set
{σ | σ > σc} forms a connected path that spans the material. Borcea and Papanicolaou (1998)
extended Kozlov’s analysis to the complex conductivity of certain high-contrast materials and
proved that they can be modeled (in the quasistatic limit: see section 11.1 on page 222) as
suitable networks of resistors and capacitors.

Quantum effects can lead to additional corrections to these asymptotic formulas. This is
most evident in a granular medium consisting of metal grains surrounded by a dielectric. If the
grains are separated, then classical theory predicts that the effective conductivity will be zero.
However, if there is a connected path of short gaps between adjacent grains, then electrons
will tunnel through these gaps. This hopping of electrons from grain to grain is known as
hopping conductivity. Once one allows for it, the predicted effective conductivity is nonzero
and in excellent agreement with experiment (Sheng, Abeles, and Arie 1973; Sheng 1978).

10.11. Critical exponents and universality
In the previous section we saw how conduction in a high-contrast medium is sometimes equiv-
alent to conduction in a resistor network. In random resistor networks conduction in the vicin-
ity of the percolation threshold is characterized by some remarkable features. For example,
consider the bond percolation problem where adjacent points, called sites, on a cubic (or
square) lattice are connected by bonds (aligned with the coordinate axes) chosen randomly to
have conductance σ1, with probability f , or conductance σ2, with probability 1 − f . When
σ1 is nonzero and finite and σ2 = 0, there is a threshold concentration fc, the percolation
threshold, such that for f < fc no conduction occurs, while for f > fc there is a connected
cluster of bonds of conductance σ1 having infinite extent. Thus the effective conductivity σ∗
of the lattice is zero for f < fc and nonzero for f > fc. In the vicinity of fc one has

σ∗ ∼ σ1( f − fc)t for f > fc,

where the symbol ∼ means asymptotically proportional to, as f → fc.
The striking discovery [see the review of Kirkpatrick (1973)] was that the critical exponent

t (unlike fc) apparently had a universal value [approximately 2.0 in three dimensions and
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1.3 in two dimensions; see, for example, Normand and Herrmann (1995) and Frank and
Lobb (1988) and references therein] independent of the underlying lattice (e.g., square and
triangular lattices had the same value of t) and independent of the presence of short-range
correlations between the conductances of the resistors in the lattice. The value of t was found
to be the same (within numerical error) for the site percolation problem where sites (and those
bonds connected to them) are removed at random from a complete lattice of bonds having
conductance σ1.

This universality of t has its explanation in renormalization group theory, which has its
origins in quantum field theory and in the theory of second-order phase transitions in statis-
tical physics. Unfortunately, a detailed explanation of this theory is beyond the scope of this
book. The interested reader is urged to read, for example, the introductory book of Creswick,
Farach, and Poole, Jr. (1998) and the many references cited in the historical review of Fisher
(1998). There are still many open questions regarding the application of this theory to the
conductivity of random resistor networks. Although calculations based on approximate (real
space) renormalization group transformations give reasonable estimates of t , the existence
of an exact renormalization group transformation is still uncertain. Such a transformation
would provide a partial homogenization (“coarse graining”) of the system; only fluctuations
on the smallest length scales are averaged, and then the system is spatially rescaled so that
the remaining fluctuations have oscillations down to the same length scale as were originally
present. Repeated applications of the transformation effectively average over fluctuations on
successively larger length scales in the original system. The hypothesis is that there exists an
unstable fixed point of this transformation (in some appropriate space) with only a few un-
stable directions. Then one can show that the eigenvalues characterizing the linearization of
the transformation at this fixed point determine the critical exponents. Specifically, only those
eigenvalues with modulus greater than 1 (corresponding to the unstable directions) are rele-
vant. After suitably many applications of the renormalization group transformation, different
systems near percolation are mapped to the vicinity of the same fixed point, which explains
the universality of the exponents.

Besides the exponent t there are other universal critical exponents that describe how the
effective conductivity varies in the neighborhood of the critical point where f = fc and
σ2/σ1 = 0. These other critical exponents are observed by approaching the critical point in
different ways. When σ1 = ∞ and σ2 is nonzero and finite, the effective conductivity diverges
as the conductivity threshold is approached from below, as

σ∗ ∼ σ2( fc − f )−s for f < fc,

which defines the exponent s. When both σ1 and σ2 are nonzero and finite, and σ2/σ1 ap-
proaches zero, one has

σ∗ ∼ σ 1−u
1 σ u2 for f = fc,

which defines the exponent u. These three exponents are not all independent. Due to the
homogeneity property of the function σ∗(σ1, σ2) one has the relation (Straley 1977)

u = t/(s + t).

In two dimensions the duality transformation discussed in section 3.1 on page 47, adapted to
the discrete case of a resistor network (Straley 1977), provides the exact result that for bond
percolation σ∗ = √σ1σ2 when f = fc = 1/2. Thus in two dimensions the exponent u equals
1/2, and consequently s = t .
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Because of universality the hope was that the same exponent t would characterize con-
duction in two-phase random media in the vicinity of the percolation threshold, with phase
1 occupying a volume fraction f having conductivity σ1, and phase 2 being void. In their
experiment on conduction and percolation Last and Thouless (1971) measured the effective
conductivity of conducting paper with holes randomly punched into it. As the holes were cen-
tered at lattice points on a square grid, this was essentially a site percolation problem and they
would have observed the same value of t ≈ 1.3 had they measured it. However, the hope was
dashed when Feng, Halperin, and Sen (1987) showed that different exponents occur in “Swiss
cheese models” where uniformly sized circular or spherical holes are randomly centered any-
where in the material. Due to the variation in the “neck” widths between holes, this corre-
sponds to a discrete resistor network with the resistors having a distribution of conductances
ranging to zero. The nature of this distribution places the problem in a different universality
class with different exponents. Thus the exponents can depend on the microstructure of the
random composite.

There are also many investigations of the critical exponents associated with elastic net-
works [see, for example, Feng and Sen (1984); Bergman (1985); Schwartz, Feng, Thorpe,
and Sen (1985); Zabolitzky, Bergman, and Stauffer (1986) and references therein]. Of par-
ticular note is the result of Bergman (1985) that the effective Poisson’s ratio takes a universal
value at the percolation threshold.
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11
Wave propagation in the quasistatic limit

Until now we have assumed the fields to be independent of time t . In this section we will
see that our analysis can easily be extended to treat fields that oscillate with time, provided
that the wavelengths and attenuation lengths associated with the fields are much larger than
the microstructure. This limit, where the size of the microstructure goes to zero, is called the
quasistatic limit. Our analysis will be restricted to periodic composites. In contrast to the
previous sections, where the assumption of periodicity was made purely for convenience, the
analysis of the present section does not extend directly to random composites. In particular,
the phenomena of localization (which only pertains to random composites) is not treated in
the ensuing analysis. Nevertheless, the results given here can usually be applied as an approx-
imation to wave propagation in random composites, especially if the effects of localization
are small.

Our objective is to show that the equations of electromagnetic wave propagation and elas-
tic wave propagation in the quasistatic limit reduce to the usual equations of conductivity and
elasticity, but with complex fields and complex tensors. In the course of this analysis we
will make whatever assumptions are necessary, avoiding mathematical technicalities. Rather
than providing a rigorous proof, we merely aim to give an understanding of how wave prop-
agation in the quasistatic limit reduces to a set of equations with complex-valued fields and
complex-valued moduli. For a more complete analysis the reader is referred to the books of
Bensoussan, Lions, and Papanicolaou (1978) and Sanchez-Palencia (1980) and to the paper
of Conca and Vanninathan (1997). See also the paper of Avellaneda, Berlyand, and Clouet
(2000), who make a careful study of corrections to the quasistatic approximation for a wave
incident on a slab cut from a laminate, with the layers oriented at some angle to the slab bound-
ary. In addition see the papers of Allaire and Conca (1995a, 1995b, 1996, 1998), who study
Bloch wave homogenization in media with moduli having variations on both microscopic and
macroscopic length scales and make no assumptions about the size of the wavelengths relative
to the microstructure.

Following Cherkaev and Gibiansky (1994) we will then show how these quasistatic equa-
tions can be transformed into a set of real equations with a symmetric positive-definite tensor
entering the constitutive law. Subsequently we will see that in two dimensions complex elec-
trical permittivity problems can be mapped to equivalent thermoelectric problems. Finally we
will discuss the phenomena of resonance in composites.
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11.1. Electromagnetic wave propagation in the quasistatic limit
Let us examine electromagnetic wave propagation in a sequence of three-dimensional periodic
composite materials with successively smaller and smaller microstructures. We let the index
η label the materials in the sequence. This index can be viewed as representing the size of the
unit cell of periodicity. The index η will also be used to label the fields associated with each
material in the sequence.

The relevant fields are the electric field eη, the electric displacement field dη, the magnetic
field intensity hη, and the magnetic induction field bη. In the absence of any free unbound
charges, these satisfy Maxwell’s equations,

∇ · dη = 0, ∇ · bη = 0,

∇ × eη + ∂bη

∂t
= 0, ∇ × hη − ∂dη

∂t
= 0. (11.1)

The field dη(x, t), roughly speaking, measures the average displacement of the bound electri-
cal charges from their equilibrium positions. Therefore its time derivative is associated with
the motion of charges, that is, with the electrical current

jη =
∂dη

∂t
. (11.2)

In a linear medium the constitutive relation between dη and eη is nonlocal in time and
takes the form of an integral relation,

dη(x, t) =
∫ +∞

−∞
dνη(x, τ )eη(x, t − τ), (11.3)

where dνη(x, τ ) is a real symmetric, matrix-valued measure. This integral relation implies
that the electric displacement field dη depends on the value of the electric field not only at the
present time, but also on its values at previous times. This makes good physical sense: The
electric displacement field does not respond immediately to changes in the applied electric
field because the electrical charges take some time to change their velocity due to their inertia.
Of course the relation (11.3) must be compatible with the principle of causality, which says
that dη cannot be influenced by the values that eη takes at times in the future. This imposes
the constraint

dνη(x, τ ) = 0, for τ < 0.

Strictly speaking, the constitutive relation (11.3) is only an approximation to a more gen-
eral constitutive relation that allows the dependence of dη on eη to be nonlocal both in time
and in space. The use of (11.3) rather than the more general constitutive relation is justified
provided that the spatial variation of eη is large compared with the atomic scale.

Similarly, the relation between the induction field bη and the magnetic field intensity hη

is governed by an integral relation,

bη(x, t) =
∫ +∞

−∞
dρη(x, τ )hη(x, t − τ), (11.4)

where the real symmetric, matrix-valued measure dρη(x, τ ) satisfies the constraint

dρη(x, τ ) = 0, for τ < 0,
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implied by causality. Since the materials are periodic, the measures dνη(x, τ ) and dρη(x, τ )
are likewise periodic functions of x. In accordance with the usual treatment of periodic ho-
mogenization, let us assume that each material in the sequence is similar, apart from a scale
factor set by the parameter η; that is, let us assume that the dependence on η takes the simple
form

dνη(x, τ ) = dν(x/η, τ ), dρη(x, τ ) = dρ(x/η, τ ), (11.5)

where dν(y, τ ) and dρ(y, τ ) are real matrix-valued measures that are periodic functions
of y. The periodicity in y implies that there exists a set of primitive lattice vectors w i ,
i = 1, 2, . . . , d , such that

dν(y +wi , τ ) = dν(y, τ ), dρ(y +wi , τ ) = dρ(y, τ ), for all y and i.

Let us now examine solutions of the field equations that correspond to Bloch waves of
wavevector k and frequency ω, where the wavevector k is possibly complex. These are
solutions of the forms

eη(x, t) = Re[ei(k·x−ωt)êη(x)], dη(x, t) = Re[ei(k·x−ωt)d̂η(x)],

jη(x, t) = Re[ei(k·x−ωt)ĵη(x)],

hη(x, t) = Re[ei(k·x−ωt)ĥη(x)], bη(x, t) = Re[ei(k·x−ωt)b̂η(x)], (11.6)

where Re(z) and Im(z) denote the real and imaginary parts of a complex quantity z, and where
the complex-valued vector fields êη(x), d̂η(x), ĥη(x), and b̂η(x) have the same periodicity
as the material constants,

êη(x+ ηwi ) = êη(x), d̂η(x+ ηwi ) = d̂η(x), ĵη(x+ ηwi) = ĵη(x)
ĥη(x+ ηwi ) = ĥη(x), b̂η(x+ ηwi ) = b̂η(x).

Of course, the relation (11.2) implies that

ĵη(x) = −iωd̂η(x). (11.7)

Crudely speaking, the Bloch wave solutions are periodic functions that have been mod-
ulated by solutions of the wave equation in a homogeneous material. The existence of such
solutions is guaranteed by Bloch’s theorem, which in the one-dimensional setting is known as
Floquet’s theorem. All other sufficiently regular solutions of the electromagnetic wave equa-
tions in a composite can be expressed as a linear combination of the Bloch wave solutions
[see the original paper of Bloch (1928), the mathematical proofs of Gelfand (1950), Odeh and
Keller (1964), and Wilcox (1978), and the books of Ashcroft and Mermin (1976) and Reed
and Simon (1978)].

By substituting the expressions (11.6) into the field equations (11.1) we see that the com-
plex fields satisfy

∇ · [eik·xd̂η] = 0, ∇ · [eik·xb̂η] = 0,

∇ × [eik·xêη]− iωeik·xb̂η = 0, ∇ × [eik·xĥη]+ iωeik·xd̂η = 0. (11.8)

Furthermore, the constitutive relations (11.3) and (11.4) imply that

d̂η(x) = εη(x, ω)êη(x), b̂η(x) = µη(x, ω)ĥη(x), (11.9)
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where the tensors

εη(x, ω) =
∫ ∞

−∞
eiωτ dνη(x, τ ), µη(x, ω) =

∫ ∞

−∞
eiωτ dρη(x, τ ) (11.10)

are called the complex electrical permittivity tensor and complexmagnetic permeability tensor
of the medium, respectively. By dividing the complex electrical permittivity tensor by the
electrical permittivity of free space one obtains the complex dielectric tensor of the medium.
We will assume that our dimensions have been chosen so that the permittivity of free space is
1. Then there is no distinction between the permittivity tensor and the dielectric tensor, and
we use the same symbol to denote both. From (11.7) one also has

ĵη(x) = ση(x, ω)êη(x), where ση(x, ω) = −iωεη(x, ω), (11.11)

which serves to define the complex conductivity tensor ση(x, ω).
Within a homogeneous isotropic phase one has εη(x, ω) = ε(ω)I , where the complex

dielectric constant ε(ω) depends on the material being studied. A typical model for the de-
pendence of ε(ω) on frequency for ionic crystals and metals is the single oscillator model
[see, for example, equation (7.129) in Jackson (1975)]:

ε(ω) ≈ ε∞ + A
ω2
r − ω2 − iωγ , (11.12)

where A is determined by the oscillator strength, ωr is the resonant frequency, γ is the damp-
ing constant, and ε∞ is the high-frequency dielectric constant (at frequencies high compared
with ωr but low compared with other resonances that may be present at frequencies beyond
the validity of the model; these other resonances influence the value of the constant ε∞).

In a metal one has ωr = 0 and the approximation reduces to the Drude model,

ε(ω) ≈ ε∞ + iσ0

ω(1− iωτ),

where σ0 = A/γ is the electrical conductivity at ω = 0, ε∞ represents the contribution to the
dielectric constant from bound electrons, and τ = 1/γ is a characteristic relaxation time. At
very low frequencies the Drude model simplifies to ε(ω) ≈ ε∞ + iσ0/ω.

In ionic crystals one can usually neglect γ for frequencies not close to ωr and the approx-
imation reduces to

ε(ω) ≈ ε∞ + ε0 − ε∞
1− ω2/ω2

r
,

where ε0 is the low-frequency dielectric constant (Ashcroft and Mermin 1976). These approx-
imations break down at sufficiently high frequencies. For many substances, such as water, the
single oscillator approximation is too crude: The dependence of ε(ω) on ω is quite compli-
cated, with a rich spectrum of resonances.

According to (11.5), the dependence on η of the complex electrical permittivity tensor and
complex magnetic permeability tensor takes the simple form

εη(x, ω) = ε(x/η, ω), µη(x, ω) = µ(x/η, ω),
where

ε(y, ω) =
∫ ∞

−∞
eiωτ dν(y, τ ), µ(y, ω) =

∫ ∞

−∞
eiωτ dρ(y, τ ). (11.13)
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As the measures dν(y, τ ) and dρ(y, τ ) vanish when τ < 0, these integrals converge when
Im(ω) > 0. Moreover, because eiωτ is an analytic function of ω, it follows that for any value
of x both εη(x, ω) and µη(x, ω) are analytic functions of ω in the upper half ω-plane. Also,
since the measures dνη(x, τ ) and dρη(x, τ ) are symmetric and real, (11.10) implies that the
complex tensors satisfy

εη(x, ω)
T = εη(x, ω), µη(x, ω)

T = µη(x, ω),

εη(x,−ω) = εη(x, ω), µη(x,−ω) = µη(x, ω), (11.14)

where z denotes the complex conjugate of z.
The complex electrical permittivity tensor and complex magnetic permeability tensor sat-

isfy an additional important physical restriction. Specifically, when the frequency ω is real
and positive, their imaginary parts must be positive-semidefinite tensors, that is,

ε′′
η(x, ω) ≥ 0, µ′′

η(x, ω) ≥ 0 for all x and all real ω > 0, (11.15)

in which ε′′
η(x, ω) and µ

′′
η(x, ω) denote the imaginary parts of the permittivity and permeabil-

ity tensors,

εη(x, ω) = ε′
η(x, ω)+ iε′′

η(x, ω), µη(x, ω) = µ′
η(x, ω)+ iµ′′

η(x, ω),

while ε′
η(x, ω) and µ

′
η(x, ω) denote their real parts. To see why these constraints arise we

need to examine the average power dissipation, averaged over a cycle of oscillation.
At each point x the average electrical power dissipated into heat is

W (x) = ω

2π

∫ 2π/ω

0

[
eη(x, t) · ∂dη(x, t)

∂t
+ hη(x, t) · ∂bη(x, t)

∂t

]
dt .

By substituting the expressions (11.6) into this formula and integrating the result over time
we find that

W (x) = ω

2
e−2 Im(k·x)[Re(êη) · Im(d̂η) − Im(êη) · Re(d̂η)

+Re(ĥη) · Im(b̂η) − Im(ĥη) · Re(b̂η)]
= ω

2
e−2 Im(k·x)[Re(êη) · ε′′

η Re(êη) + Im(êη) · ε′′
η Im(êη)

+Re(ĥη) · µ′′
η Re(ĥη) + Im(ĥη) · µ′′

η Im(ĥη)],
(11.16)

where the last relation is obtained by using the fact, implied by (11.14), that ε′
η andµ

′
η are self-

adjoint tensors. According to the second law of thermodynamics, the net power dissipation
in the composite must necessarily be a nonnegative quantity. By examining (11.16) it is clear
that the conditions (11.13) are necessary and sufficient to ensure the nonnegativity of W (x)
for all fields êη(x) and ĥη(x). When the frequency ω is real and negative, the relations
(11.14) imply that ε′′

η(x, ω) and µ
′′
η(x, ω) are negative-semidefinite tensors. It then follows

from (11.11) that the complex conductivity tensor ση(x, ω) has a positive-semidefinite real
part for all real ω.

At any given value of η and any fixed wavevector k the set of equations (11.8) and (11.9)
will not have a solution unless ω takes one of a discrete set of values, that is, ω = ω

j
η(k),
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where the superscript j = 1, 2 . . . indexes each of the possible solution branches. The relation
between ω and k is known as a dispersion relation. Let us examine what these Bloch wave
solutions reduce to in the limit where the wavelength λ = 2π/|Re(k)| and attenuation length
δ = 1/| Im(k)| are much larger than the size of the unit cell of periodicity, that is, in the limit
where 2π/|k| � |ηwi | for all i . This limit is called the quasistatic limit. To this end let
us consider what equations the fields satisfy in the limit as η → 0. Following the standard
multiple-scale analysis, let us assume that the periodic complex fields have a perturbation
expansion of the form

êη(x) = ê0(y)+ ηê1(y)+ η2ê2(y)+ · · · ,
d̂η(x) = d̂0(y)+ ηd̂1(y)+ η2d̂2(y)+ · · · ,
ĥη(x) = ĥ0(y)+ ηĥ1(y)+ η2ĥ2(y)+ · · · ,
b̂η(x) = b̂0(y)+ ηb̂1(y)+ η2b̂2(y)+ · · · , (11.17)

where y = x/η, and êi (y), d̂i (y), ĥi (y), and b̂i (y), for i = 0, 1, 2 . . . , are periodic functions
of y. Also let us assume that the dependence of ω = ω

j
η(k) on η and k has an expansion of

the form
ω = ω jη(k) = ω

j
0(k)+ ηω

j
1(k)+ η2ω

j
2(k)+ · · · . (11.18)

Substituting these expansions into the field equations (11.8) and collecting terms of order
η−1 gives the relations

∇y · d̂0(y) = 0, ∇y · b̂0(y) = 0,

∇y × ê0(y) = 0, ∇y × ĥ0(y) = 0, (11.19)

where ∇y denotes the gradient with respect to the y variable. Continuing one step further and
collecting terms of order η0 gives the set of equations

ik · d̂0(y)+∇y · d̂1(y) = 0,

ik · b̂0(y)+ ∇y · b̂1(y) = 0,

ik× ê0(y)+ ∇y × ê1(y)− iω j0 b̂0(y) = 0,

ik × ĥ0(y)+∇y × ĥ1(y)+ iω j0 d̂0(y) = 0. (11.20)

Since d̂1(y), b̂1(y), ê1(y), and ĥ1(y) are periodic functions of y, it follows that

〈∇y · d̂1〉 = 0, 〈∇y · b̂1〉 = 0,

〈∇y × ê1〉 = 0, 〈∇y × ĥ1〉 = 0.

So in order for the equations (11.20) to have a solution we necessarily must have

k · 〈d̂0〉 = 0, k · 〈b̂0〉 = 0, (11.21)

k × 〈ê0〉 − ω
j
0〈b̂0〉 = 0, k × 〈ĥ0〉 + ω

j
0〈d̂0〉 = 0. (11.22)

Amongst these equations we need only consider the latter pair as (11.21) is a direct conse-
quence of (11.22). Finally, it is clear that substitution of the expansions (11.17) and (11.18)
in the constitutive equations (11.9) leads to the relations

d̂0(y) = ε(y, ω j0)ê0(y), b̂0(y) = µ(y, ω j0)ĥ0(y). (11.23)
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Notice that the field equations (11.19) together with the constitutive equations (11.23) are
exactly the same as the usual equations for conductivity in a composite medium, with the
roles of j(x),e(x), and σ(x) replaced by d̂0(y), ê0(y), and ε(y, ω

j
0) or alternatively re-

placed by b̂0(y), ĥ0(y), and µ(y, ω
j
0). The only difference is that now the fields and material

constants take complex values. So it is quite clear that solutions of the usual conductivity
equations generalized to complex fields and complex conductivities have important applica-
tions to electromagnetic wave propagation in composite materials. In other words, the Bloch
wave solutions reduce to solutions of the complex conductivity equations in the quasistatic
limit. Associated with the complex dielectric tensor field ε(y, ω j0) will be a complex effective
dielectric tensor ε∗(ω

j
0), and associated with the complex magnetic permeability tensor field

µ(y, ω
j
0) will be a complex effective magnetic permeability tensorµ∗(ω

j
0). These are defined

through the usual relations between the average fields,

〈d̂0〉 = ε∗(ω
j
0)〈ê0〉, 〈b̂0〉 = µ∗(ω

j
0)〈ĥ0〉. (11.24)

By substituting these relations back into (11.22) we see that

k × 〈ê0〉 − ω
j
0µ∗(ω

j
0)〈ĥ0〉 = 0, k × 〈ĥ0〉 + ω

j
0ε∗(ω

j
0)〈ê0〉 = 0,

and by eliminating 〈ĥ0〉 we arrive at the equation

A∗(k, ω
j
0)〈ê0〉 = (ω

j
0)

2〈ê0〉, (11.25)

whereA∗(k, ω
j
0) is that matrix whose action on a given vector v is given by

A∗(k, ω
j
0)v = −[ε∗(ω

j
0)]

−1{k × {[µ∗(ω
j
0)]

−1(k × v)}}. (11.26)

From this equation we can determine the dispersion relation ω j0(k) and the possible values of
〈ê0〉, and hence 〈ĥ0〉, associated with each Bloch wave mode. In practice, for a given value
of k it is necessary to plot the eigenvalues of A∗(k, ω

j
0) as a function of ω j0 to find those

frequencies ω j0 where the eigenvalues take the value (ω
j
0)

2. Notice that A∗(k, ω
j
0) has one

trivial eigenvector, v = k, with a zero eigenvalue. So it is necessary to examine only the two
remaining eigenvalues to see if either one equals (ω j0)

2.
When either ε∗(ω

j
0) or µ∗(ω

j
0) has a strictly positive-definite imaginary part, the dissipa-

tion of electromagnetic energy in the composite is necessarily positive [see equation (11.16)].
Consequently, any wave propagating into the material will be damped, that is, the attenuation
length δ = 1/| Im(k)| will be finite. In other words, if ω j0 is real, then k will necessarily be
complex. So to find solutions such that ω j0 is real we would need to examine the eigenvalues
of the matrixA∗(k, ω

j
0) for complex wavevectors k.

In summary, in order to correspond to a Bloch solution of wavevector k and frequency ω j0
the average field 〈ê0〉 must be an eigenvector of the matrixA∗(k, ω

j
0), and (ω

j
0)

2 must be the
associated eigenvalue. More general quasistatic solutions of the Maxwell equations can be
obtained by taking linear superpositions of these Bloch wave solutions.

As an example, let us consider electromagnetic wave propagation in a composite that is
isotropic. In an isotropic composite medium the effective tensors take the forms

ε∗(ω
j
0) = ε∗(ω

j
0)I, µ∗(ω

j
0) = µ∗(ω

j
0)I.
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Let us further assume, for simplicity, that the moduli ε∗(ω
j
0) and µ∗(ω

j
0) are real. Physically

this implies that there is no dissipation of electromagnetic energy into heat, at least in the
frequency range under consideration. With these assumptions the expression (11.26) reduces
to

A∗(k, ω
j
0)v = [(k · k)v − (k · v)k]/[ε∗(ω

j
0)µ∗(ω

j
0)].

So if we exclude the trivial solution with ω j0 = 0, (11.25) implies that

k · 〈ê0〉 = 0, (ω
j
0)

2 = (k · k)/[ε∗(ω
j
0)µ∗(ω

j
0)]. (11.27)

If we assume that k = (2π/λ + i/δ)n, where the wavelength λ and attenuation length δ are
real and n is a real unit vector, then this latter relation implies that

2π/λ+ i/δ = ω
j
0

√
ε∗(ω

j
0)µ∗(ω

j
0).

In other words, for a wave of a given frequencyω j0 the complex dielectric constant ε∗(ω
j
0) and

the complex magnetic permeability µ∗(ω
j
0) determine the wavelength and attenuation length

of the associated electromagnetic radiation in the quasistatic limit.

11.2. Electromagnetic signals can propagate faster in a composite than
in the constituent phases

We saw in section 5.11 on page 88 that sound can propagate slower in a bubbly fluid than it
propagates in either the fluid or in the air. Here we will see that for electromagnetic waves
the opposite phenomena can occur: The speed at which a signal propagates in a two-phase
composite can be faster than it propagates in either of the two phases (Sølna and Milton
2000, 2001). We assume that the composite is such that ε∗(ω

j
0) and µ∗(ω

j
0) are both real and

positive. Observe that the modulating factor u(x, t) = ei(k·x−ωt) associated with the Bloch
solution (11.6) is a plane wave solution to the scalar wave equation

∂2u
∂t2

= c2
p�u,

with a wave velocity
cp = ω/|k|.

This in conjunction with (11.27) suggests that we can interpret 1/
√
ε∗(ω

j
0)µ∗(ω

j
0) as the speed

that electromagnetic waves of frequency ω
j
0 propagate in an isotropic composite material.

However, some caution must be exercised. We need to distinguish this velocity c p, called the
phase velocity, from the group velocity cg, which determines the speed at which a wave packet
can propagate. It is the group velocity that generally reflects the speed at which information
can be propagated, and hence it is the group velocity that is the more physically meaningful
quantity. A localized wave packet is a superposition of waves with a range of frequencies. A
more detailed analysis, such as that given in section 7.8 of Jackson (1975), for example, shows
that a wave packet comprised of waves with a distribution of frequencies sharply peaked
around ω j0 propagates at the group velocity

cg =
[
d|k|
dω j0

]−1

=
{
d

dω j0

[
ω
j
0

√
ε∗(ω

j
0)µ∗(ω

j
0)

]}−1

. (11.28)
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This is not the same as the phase velocity because of the dependence of ε∗(ω
j
0) andµ∗(ω

j
0)

on the frequency ω j0 . The point to emphasize in this discussion is that the dispersion relation
ω
j
0(k) is determined once we know the dependence of the effective parameters ε∗(ω

j
0) and

µ∗(ω
j
0) on frequency. Then from the dispersion relation we can compute the wavelength,

phase velocity, and group velocity of waves of a given frequency ω j0 .
To simplify notation, let us drop the superscript and subscript from ω

j
0 . Also let us assume

that the magnetic permeability µ(y, ω) is independent of y and ω, taking a constant isotropic
valueµI . The associated effective magnetic permeability will then be µI and (11.28) implies
that

1
cg
√
µ
=
√
ε∗(ω)+ ω

2
√
ε∗(ω)

dε∗(ω)
dω

. (11.29)

Thus the group velocity depends on both the effective electrical permittivity and on its vari-
ation with frequency. The idea is that by combining a material with high permittivity but
slow frequency variation with a material with low permittivity but high frequency variation
one might obtain a composite that has comparatively low permittivity and comparatively slow
frequency variation, having a faster group velocity than either phase.

We take two phases having the same frequency-independent magnetic permeability µ but
different electrical permittivities,

ε1 = 1/�, ε2(ω) = 1+
√
�

1− ω2 ,

where � is a sufficiently small fixed parameter. Thus phase 1 has a high frequency-
independent dielectric constant 1/� and the group velocity within phase 1 is cg1 = √�/µ.
[Strictly speaking, we should modify ε1(ω) at very high frequencies so that it approaches 1
as ω → ∞, but this is a minor technicality.] The functional form of ε2(ω) is the standard
Lorentzian model given by (11.12) with ε∞ = 1 and γ = 0, that is, with no damping. Thus
phase 2 has a dielectric constant that is close to 1 except in the near vicinity of the sharp reso-
nance at ω2 = 1. We consider what happens near this resonance, in particular at the frequency
ω = 1−√�. At this frequency, in the limit when� is very small, we have

ε2 ≈ 1.5,
dε2

dω
= 2ω

√
�

(1− ω2)2 ≈
1

2
√
�
,

and thus the group velocity within phase 2 is cg2 ≈
√
24�/µ.

Now consider an electromagnetic signal propagating through a laminate of these two
phases, with phase 1 occupying a small volume fraction that we take to be f1 =

√
�. The

direction of propagation is chosen to be normal to the layers. The electric field is then parallel
to the layer boundaries and the effective dielectric constant in this direction is the arithmetic
average

ε∗ = f1ε1 + (1− f1)ε2 = 1/
√
�+ (1−

√
�)+ (1−√�)

√
�

1− ω2 .

Therefore at the frequency ω = 1−√�, in the limit when� is very small, we have

ε∗ ≈ 1√
�
,

dε∗
dω

≈ 1

2
√
�
.

Thus the group velocity within the composite is cg ≈ 4�1/4/(5
√
µ), and when� is small this

is much larger than the group velocities cg1 and cg2 in the two phases.
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Bounds have been derived on the group velocity in isotropic and anisotropic two-phase
composites and these bounds show that laminates, among all anisotropic composites, achieve
the largest and smallest possible group velocities (Sølna and Milton 2001). To obtain a small,
rather than a large, group velocity one can use the same phases but with phase 1 laminated
with a small volume fraction of phase 2 and with the signal propagating parallel to the layer
interfaces, polarized so that the electric field is normal to the layers. In this way one can
achieve a group velocity cg in the laminate that is much less than the group velocities cg1 and
cg2 in the two phases.

11.3. Elastic wave propagation in the quasistatic limit
A similar analysis can be applied to the propagation of elastic waves in periodic composite
materials in the quasistatic limit. Let us consider a sequence of periodic composites with
successively smaller microstructures. Again we let the index η label each composite in this
sequence. In the absence of body forces, the divergence of the stress field ∇ · τ η(x, t) deter-
mines the force acting on each element of the body and governs the resultant acceleration of
that element through the equation of momentum conservation,

!η(x)
∂2uη(x, t)

∂t2
= ∇ · τ η(x, t), (11.30)

in which !η(x) represents the mass density of the body at the point x and uη(x, t) repre-
sents the displacement of the body at that point, which we are assuming is infinitesimal, in
accordance with the standard theory of linearized elasticity. In linear viscoelastic media it is
assumed that the stress field τ η(x, t) depends on the strain field

εη(x, t) = [∇uη(x, t) + (∇uη(x, t))T ]/2 (11.31)

through the integral relation

τ (x, t) =
∫ +∞

−∞
dKη(x, τ )εη(x, t − τ), (11.32)

in which dKη(x, τ ) is a real fourth-order tensor valued measure with Cartesian elements
dKη(x, τ )i jkl satisfying the usual symmetries

dKη(x, τ )i jkl = dKη(x, τ )i jlk = dKη(x, τ )kli j (11.33)

of elasticity tensors, and satisfying the constraint

dKη(x, τ ) = 0 for τ < 0,

which is implied by causality.
This nonlocal time dependence of stress on strain or, equivalently, the nonlocal time de-

pendence of strain on stress is most evident if we release a stretched piece of rubber. The
rubber does not relax to its original length immediately, but instead takes some time to con-
tract. Other materials also exhibit this property, but the relaxation time is usually much shorter
or much longer and less noticeable. The books of Lakes (1999) and Christensen (1971) pro-
vide good introductions to the theory of viscoelasticity.
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We again assume that each composite material in the sequence is similar, apart from a
scale factor set by the parameter η. Specifically we assume that the dependence of dKη(x, τ )
on η has the simple form

dKη(x, τ ) = dK(x/η, τ ), (11.34)

where dK(y, τ ) is a real fourth-order tensor valued measure that is periodic in y = x/η. We
also assume that the mass density !η(x) has a similar dependence on η,

!η(x) = !(x/η).

The solutions of these elastodynamic equations that correspond to Bloch waves of wave-
vector k and frequency ω take the forms,

τ η(x, t) = Re[ei(k·x−ωt)τ̂ η(x)],

uη(x, t) = Re[ei(k·x−ωt)ûη(x)],

εη(x, t) = Re[ei(k·x−ωt)ε̂η(x)], (11.35)

where the fields τ̂ η(x), ûη(x), and ε̂η(x) have the same periodicity as the material constants
and satisfy the equations

0 = ∇ · (eik·xτ̂ η)+ ω2!ηeik·xûη,

eik·xε̂η = {∇(eik·xûη)+ [∇(eik·xûη)]T }/2,
τ̂ η(x) = Cη(x, ω)ε̂η(x), (11.36)

which are implied by (11.30), (11.31), and (11.32), in which

Cη(x, ω) =
∫ ∞

−∞
eiωτ dKη(x, τ ).

This tensor is called the complex elasticity tensor, and (11.34) implies that its dependence
on η is given by

Cη(x, ω) = C(x/η, ω),
in which C(y, ω) is the periodic fourth-order tensor field

C(y, ω) =
∫ ∞

−∞
e−iωτ dK(y, τ ).

Since the measures dKη(x, τ ) are real, satisfying the symmetry properties (11.33), it follows
that the complex elasticity tensors satisfy

Cη(x, ω)i jkl = Cη(x, τ )i jlk = Cη(x, τ )kli j , Cη(x,−ω) = Cη(x, ω). (11.37)

In addition, physical considerations imply that when the frequency ω is real and positive
the complex elasticity tensor must have a negative-semidefinite imaginary part,

C′′
η(x, ω) ≤ 0 for all x and all real ω > 0, (11.38)

where C′′
η(x, ω) denotes the imaginary part of the elasticity tensor

Cη(x, ω) = C′
η(x, ω)+ iC′′

η(x, ω),
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while C′
η(x, ω) denotes its real part. Indeed, in one cycle of oscillation, the elastic forces do

an average amount of mechanical work,

W (x) = ω

2π

∫ 2π/ω

0

[
τ η(x, t) · ∂εη(x, t)

∂t

]
dt . (11.39)

Since the body is in the same state at the end of a cycle as it was in at the beginning of
the cycle, this mechanical work must be dissipated into heat. It follows from the second law
of thermodynamics that this heat dissipation W (x) must always be a positive quantity. By
substituting (11.35) into (11.39) and using the symmetry properties (11.37) we see that

W (x) = ω

2
e−2 Im(k·x)

[
Re(τ̂ η) · Im(ε̂η)− Im(τ̂ η) · Re(ε̂η)

]
= −ω

2
e−2 Im(k·x)

[
Re(ε̂η) · C′′

η Re(ε̂η)+ Im(ε̂η) · C′′
η Im(ε̂η)

]
.

From this expression it is clear that the condition (11.38) is necessary and sufficient to ensure
the nonnegativity of W (x) for all fields ε̂η(x).

The Bloch wave equations have a solution provided that the frequency ω takes one of
a discrete set of values, ω jη(k), j = 1, 2, . . . . Following the same approach as before, we
assume that the fields have a perturbation expansion in powers of η,

τ̂ η(x) = τ̂ 0(y)+ ητ̂ 1(y)+ · · · ,
ûη(x) = û0(y)+ ηû1(y)+ · · · ,
ε̂η(x) = ε̂0(y)+ ηε̂1(y)+ · · · ,

in which y = x/η, and τ̂ i (y), ûi (y), and ε̂i (y), for i = 0, 1, 2, . . . , are periodic functions of
y. We also assume that the dependence of the frequency ω = ω

j
η(k) on η has an expansion

ω = ωη(k) = ω jη(k) = ω
j
0(k)+ ηω

j
1(k)+ · · · .

Substitution of these expansions back in the field equations (11.36) and collecting terms
of order η−1 and of order η0 yields the equations

∇yû0(y) = 0, (11.40)

∇y · τ̂ 0(y) = 0, (11.41)

ε̂0(y) = {ik⊗ û0 +∇yû1(y)+ [ik⊗ û0 + ∇yû1(y)]T }/2, (11.42)

τ̂ 0(y) = C(y, ω j0)ε̂0(y), (11.43)

ik · τ̂ 0(y)+∇y · τ̂ 1(y)+ (ω
j
0)

2!(y)û0 = 0. (11.44)

The first equation (11.40) implies that û0(y) is a linear function of y and, since û0(y) is
periodic in y, it forces

û0(y) = û0 = a constant. (11.45)

For this reason the dependence on y of û0(y) has been deleted from the subsequent equations
(11.41)–(11.44).

Next note that by using (11.45) we can rewrite (11.42) in the form

ε̂0(y) = {∇yû(y)+ [∇yû(y)]T }/2, (11.46)
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with
û(y) = i(k · y)û0 + û1(y).

Clearly (11.41), (11.43), and (11.46) are exactly the same as the usual static equations of
elasticity in a composite material, except that now the fields and elastic tensor are complex.
The complex effective elasticity tensor C∗(ω

j
0), by definition, links the volume averaged fields

〈τ̂ 0〉 and 〈ε̂0〉 through the equation
〈τ̂ 0〉 = C∗(ω

j
0)〈ε̂0〉. (11.47)

By taking averages of (11.42) and (11.44) over the volume of the unit cell of periodicity we
obtain the additional relations

〈ε̂0〉 = (ik⊗ û0 + i û0 ⊗ k)/2, ik · 〈τ̂ 0〉 + (ω
j
0)

2〈!〉û0 = 0. (11.48)

In contrast to the static equations of elasticity, where no restriction is imposed on the aver-
age strain field, we see that in the Bloch elastodynamic solutions the field 〈ε̂0〉 is necessarily
a rank-1 or a rank-2 tensor. Furthermore, by combining (11.47) with (11.48) we obtain

A∗(k, ω
j
0)û0 = (ω

j
0)

2û0,

whereA∗(k, ω
j
0) is the matrix whose action on a vector v is given by

A∗(k, ω
j
0)v = {k · [C∗(ω

j
0)k ⊗ v]}/〈!〉.

This equation gives us the dispersion relation ω
j
0(k), found by computing the eigenvalues of

the matrix A∗(k, ω
j
0) as a function of frequency ω

j
0 and locating those frequencies where an

eigenvalue takes the value (ω j0)
2. The associated eigenvector gives the value of û0 associated

with that Bloch wave mode. Notice that 〈!〉A∗(k, ω
j
0) depends only on k · C∗(ω

j
0)k, that is,

on the effective acoustic tensor.

11.4. The correspondence principle and the attenuation of sound in a
bubbly fluid

We have seen that in the quasistatic limit the Bloch solutions of electrodynamics and elasto-
dynamics satisfy equations directly analogous to the usual conductivity or elasticity equations
but with complex fields and complex tensors. In this context the effective tensors play an
important role since they determine the dispersion relation ω

j
0(k) and hence the phase and

group velocities. In chapter 18 on page 369 we will prove that in an n component composite
the dependence of the effective tensor on the local component tensors is analytic. This means
that if we have a formula for the effective tensor as a function of the component tensors, valid
when the component tensors are real, then by analytic continuation we can use the same for-
mula when the component tensors take complex values. This is called the correspondence
principle [see, for example, Hashin (1965) and Christensen (1979)]. It implies, for instance,

that the complex permittivity ε∗(ω
j
0) of a checkerboard structure is

√
ε1(ω

j
0)ε2(ω

j
0) when the

two component phases have complex permittivities ε1(ω
j
0) and ε2(ω

j
0).

As another example, consider an assemblage of coated spheres of phase 1 in a matrix
of phase 2. When the bulk and shear moduli of the two phases are real it has an effective
bulk modulus κ∗ that is given by (7.13). By the correspondence principle this formula should
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also be valid when the moduli are complex. In particular, suppose that phase 1 is gas while
phase 2 is water, so that the assemblage is a bubbly fluid. Then the water can be treated as
incompressible and in the limit κ2 →∞ (7.13) reduces to

κ∗ ≈ κ1 + 4 f2µ2/3
f1

. (11.49)

To a good approximation the complex bulk modulus κ1 of the air is independent of fre-
quency. Now consider a plane shear wave propagating into water at a real frequency ω and
being spatially attenuated with a complexwavevector k. The associated strain and stress fields
are given by

ε(t) = Re[eik·x−ωt ε̂], τ (t) = ηµ
dε(t)
dt

= Re[−iωηµeik·x−ωt ε̂],

where ε̂ is a constant trace free matrix and ηµ is the shear viscosity of the water, which we
assume to be frequency-independent (which is reasonable at sufficiently low frequencies). We
deduce from this relation that water has a complex shear modulus µ2 = −iωηµ. Substituting
this into (11.49) gives

κ∗ ≈ κ1/ f1 − iη∗
κω, where η∗

κ ≈ 4 f2ηµ/(3 f1).

In particular, when the volume fraction occupied by the gas is small, the bulk viscosity
η∗
κ of the bubbly fluid approaches 4ηµ/(3 f1), which is the result of Taylor (1954). Thus the
shear viscosity of the water has been converted to the bulk viscosity of the bubbly fluid. This
explains why sound is so strongly damped in bubbly fluids, as was mentioned in section 1.2
on page 2. Of course in a real bubbly fluid the bubbles are unlikely to have a very wide
distribution of sizes, and therefore the coated sphere assemblage is not realistic. Neverthe-
less, formula (11.49) should be a reasonable approximation for κ∗, provided that the volume
fraction is not too large and not too small. At large volume fractions the bubbles interact
through the fields surrounding them, they oscillate nonradially, there are pressure gradients
inside the bubbles, and there is a drift between the bubbles and the water (Caflisch, Miksis,
Papanicolaou, and Ting 1985b). At very small volume fractions the compressibility of the
water and nonlinear effects come into play and the formula has to be modified (Taylor 1954;
Van Wijngaarden 1968, 1972; Caflisch, Miksis, Papanicolaou, and Ting 1985a).

11.5. Transformation to real equations
Despite the obvious advantages for keeping the equations in complex form, where the cor-
respondence principle can be directly applied, there are important reasons for desiring to
transform the equations to an alternative form where the tensor that enters the constitutive law
is real, symmetric, and positive-definite. Such a transformation of the equations was found by
Cherkaev and Gibiansky (1994). They used it to develop variational principles for the com-
plex effective tensor, which as we will see in sections 22.6 on page 450 and 23.7 on page 476
are useful for deriving bounds.

Consider, for example, the equations

d(x) = ε(x)e(x), ∇ · d = 0, ∇ × e = 0, (11.50)

which determine the effective complex permittivity tensor ε∗ through the relation between the
average fields

〈d〉 = ε∗〈e〉. (11.51)
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These are the same as equations (11.19), (11.23), and (11.24), except that to avoid cumber-
some notation we have dropped the hat and subscript 0 from the fields, replaced y by x, and
suppressed the dependence of ε(x) and ε∗ on the frequency ω.

Let us replace the constraint (11.15) by the slightly more stringent assumption that ε′′(x)
is bounded and coercive for all x, that is, there exist constants α and β such that

αI > ε′′(x) > βI > 0, for all x. (11.52)

This assumption is not as restrictive as it may seem. If the fields d(x) and e(x) solve the above
set of equations with a permittivity tensor ε(x), then for any constant λ the fields λd(x) and
e(x) will solve the same set of equations when ε(x) is replaced by the permittivity tensor
field λε(x). It follows, by taking λ = eiθ , that we are free to shift the phase of the tensor field
ε(x). In other words, (11.52) can be replaced by the less restrictive assumption that there
exists an angle θ and constants α and β such that

αI > Im[eiθε(x)] > βI > 0, for all x.

For example, by this trick one can consider materials where ε(x) is real within one or more
phases.

Taking the real and imaginary parts of the equations (11.50) gives(
Re(d)
Im(d)

)
=
(−ε′′ ε′

ε′ ε′′

)(
Im(e)
Re(e)

)
,

∇ · Re(d) = 0,
∇ · Im(d) = 0,

∇ × Re(e) = 0,
∇ × Im(e) = 0. (11.53)

Written in this form the constitutive relation incorporates a tensor that is symmetric but not
positive-definite. Indeed, in view of (11.52), the associated quadratic form

f (Im(e),Re(e)) =
(
Im(e)
Re(e)

)
·
(−ε′′ ε′

ε′ ε′′

)(
Im(e)
Re(e)

)
(11.54)

takes negative values when Im(e) �= 0 and Re(e) = 0, and takes positive values when
Im(e) = 0 and Re(e) �= 0. Nevertheless, f (Im(e),Re(e)) is closely related to a quantity
that is strictly positive. To see this notice from (11.54) and (11.53) that

f (Im(e),Re(e)) =
(
Im(e)
Re(e)

)
·
(
Re(d)
Im(d)

)
= Im(e) · Re(d)+ Re(e) · Im(d). (11.55)

Although this quantity is not positive, (11.16) and (11.52) imply that

−Re(d) · Im(e)+ Re(e) · Im(d) = Re(e) · ε′′ Re(e)+ Im(e) · ε′′ Im(e) ≥ 0. (11.56)

A comparison of (11.55) and (11.56) suggests that we might try rewriting the constitutive
law in the form (

Im(e)
Im(d)

)
= L

(−Re(d)
Re(e)

)
, (11.57)

where the role of Im(e) is replaced by that of its dual field, −Re(d), and the role of Re(d)
is replaced by that of the dual field Im(e). [This is a natural transformation to make be-
cause the quadratic form associated with L is a partial Legendre transform of the saddle-
shaped quadratic function f (Im(e),Re(e)) and it is well-known that such partial Legendre
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transforms convert saddle-shaped functions into convex functions; see, for example, Callen
(1960).] It remains to find the tensor L. The constitutive law in (11.53) implies that

Im(e) = −[ε′′]−1 Re(d)+ [ε′′]−1ε′ Re(e),
Im(d) = ε′ Im(e)+ ε′′ Re(e) = −ε′[ε′′]−1 Re(d)+ ε′[ε′′]−1ε′ Re(e)+ ε′′ Re(e),

from which it follows that

L =
(

[ε′′]−1 [ε′′]−1ε′

ε′[ε′′]−1 ε′′ + ε′[ε′′]−1ε′

)
. (11.58)

This matrix L is clearly symmetric. It is also positive-definite because the associated
quadratic form(−Re(d)

Re(e)

)
·L
(−Re(d)

Re(e)

)
=
(−Re(d)

Re(e)

)
·
(
Im(e)
Im(d)

)
= −Re(d) · Im(e)+ Re(e) · Im(d),

is nonnegative by virtue of the result (11.56), and zero only when Re(e) = Im(e) = 0, that
is, when −Re(d) = Re(e) = 0. Alternatively, necessary and sufficient conditions for a
symmetric matrix

L =
(
A B
BT D

)
(11.59)

to be positive-definite are that the submatrix A be positive-definite, and that the Schur com-
plement

S =D −BTA−1B (11.60)

be positive-definite. In the case of the matrix L given by (11.58), the submatrix A = [ε′′]−1

is clearly positive-definite and the Schur complement

S = ε′′ + ε′[ε′′]−1ε′ − ε′[ε′′]−1[ε′′][ε′′]−1ε′ = ε′′ (11.61)

is also positive-definite.
We can apply the same transformation to the effective constitutive law (11.51) to obtain

the relation ( 〈Im(e)〉
〈Im(d)〉

)
= L∗

(−〈Re(d)〉
〈Re(e)〉

)
, (11.62)

where

L∗ =
(

[ε′′
∗]

−1 [ε′′
∗]

−1ε′
∗

ε′
∗[ε

′′
∗]

−1 ε′′
∗ + ε′

∗[ε
′′
∗]

−1ε′
∗

)
. (11.63)

Since the fields appearing on the left- and right-hand sides of (11.62) are the averages of the
fields appearing on the left- and right-hand sides of (11.57), we see that L∗ is in fact the
effective tensor associated with the constitutive law (11.57) in which the fields satisfy the
differential constraints

∇ × Im(e) = 0,
∇ · Im(d) = 0,

∇ · Re(d) = 0,
∇ × Re(e) = 0. (11.64)

In other words, one can calculate the effective tensor ε∗ by working with the transformed
equations (11.57) and (11.64) to compute L∗, and then use the relation (11.63) to recover ε∗.
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Following Cherkaev and Gibiansky (1994), we can also apply this same transformation to
the complex elasticity equations,

τ(x) = C(x)ε(x), ∇ · τ = 0, ε = [∇u+ (∇u)T ]/2
and the complex effective equation

〈τ 〉 = C∗〈ε〉.
The constitutive equation and the effective constitutive equation become(

Im(ε)
Im(τ )

)
= L

(−Re(τ )
Re(ε)

)
,

( 〈Im(ε)〉
〈Im(τ )〉

)
= L∗

(−〈Re(τ )〉
〈Re(ε)〉

)
,

where L and L∗ are the tensors

L =
(

[C′′]−1 [C′′]−1C′

C′[C′′]−1 C′′ + C′[C′′]−1C′

)
,

L∗ =
(

[C′′
∗]

−1 [C′′
∗]

−1C′
∗

C′
∗[C′′

∗]
−1 C′′

∗ + C′
∗[C′′

∗]
−1C′

∗

)
.

and the fields have components that satisfy the differential constraints,

Im(ε) = {∇ Im(u)+ [∇ Im(u)]T }/2,
∇ · Im(τ ) = 0,

∇ · Re(τ ) = 0,
Re(ε) = {∇ Re(u)+ [∇ Re(u)]T }/2.

Once again the tensor L is symmetric and will be positive- or negative-definite according to
whether Im[C(x)] is positive- or negative-definite.

11.6. Correspondence with thermoelectricity in two dimensions
The equations (11.53) describing complex electrical permittivity are clearly directly analo-
gous to the equations of thermoelectricity:(

j1
j2

)
= L′

(
e1

e2

)
, where ∇ · j1 = 0,

∇ · j2 = 0,
∇ × e1 = 0,
∇ × e2 = 0.

This can be seen by making the identifications

j1 = Re(d), j2 = Im(d), e1 = Im(e), e2 = Re(e)

between the fields, and the identification

L′ =
(−ε′′ ε′

ε′ ε′′

)
(11.65)

between the tensors entering the constitutive law. From a physical viewpoint this correspon-
dence is not so interesting, because the tensorL given by (11.65) is not positive-definite when
ε′′ is positive-definite. In other words, it cannot correspond to a thermoelectric tensor of a real
material.

In two dimensions there is a direct correspondence with a thermoelectric problem, in
which the tensor entering the constitutive law is in fact self-adjoint and positive-definite. In the
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reformulated equations (11.57) the tensor L entering the constitutive law is positive-definite
and self-adjoint, but the fields on the left-hand side of the constitutive law are not divergence
free and the fields on right-hand side are not curl free. In two dimensions this can be corrected
by rewriting the constitutive law in the form

Q
(
Im(e)
Im(d)

)
= QLQTQ

(−Re(d)
Re(e)

)
,

where Q is the unitary matrix

Q =
(
R⊥ 0
0 I

)
in which R⊥ =

(
0 1
−1 0

)
.

In other words, the constitutive law now takes the form(
R⊥ Im(e)
Im(d)

)
= L′

(−R⊥ Re(d)
Re(e)

)
,

where the tensor

L′(x) = QL(x)QT =
(
R⊥[ε′′]−1RT⊥ R⊥[ε′′]−1ε′

ε′[ε′′]−1RT⊥ ε′′ + ε′[ε′′]−1ε′

)
entering this constitutive law is clearly positive-definite and self-adjoint when the tensor ε′′(x)
is positive-definite. Furthermore, since R⊥ converts curl free fields to divergence free fields,
and vice versa (see section 3.1 on page 47), it follows that the fields

j1 = R⊥ Im(e), j2 = Im(d), e1 = −R⊥ Re(d), e2 = Re(e)

entering this new constitutive relation satisfy the differential constraints

∇ · j1 = 0, ∇ · j2 = 0, ∇ × e1 = 0, ∇ × e2 = 0.

So we see that the equations take exactly the same form as those of thermoelectricity,
with a positive-definite tensor entering the constitutive law. The converse is not however true:
Not all thermoelectric problems correspond to complex electrical permittivity problems. If
the composite is locally isotropic, that is, ε(x) = ε(x)I , then the associated tensor L′(x) is
unusual in that the off-diagonal blocks are proportional toR⊥.

11.7. Resonance and localized resonance in composites†
At a fixed frequency the complex dielectric constant ε of an isotropic material has a positive
imaginary part, but the real part can take either positive or negative values. Now consider the
effective dielectric constant

ε∗ = ε2 + 3 f1ε2(ε1 − ε2)

3ε2 + f2(ε1 − ε2)

of the Hashin-Shtrikman sphere assemblage. Suppose for simplicity that ε2 is fixed, real, and
positive, and that ε1 = −(3− f2)ε2/ f2 + iδ. Then as δ → 0 the value of the denominator in
the above expression for ε∗ approaches zero and consequently the effective dielectric constant
blows up to infinity. Thus even a very small applied electric field e0 = 〈e〉 can induce an
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enormous average electric displacement field d0 = 〈d〉 = ε∗e0 when δ is sufficiently small.
For a fixed applied field e0, the local fields e(x) and d(x) blow up almost everywhere in the
material as δ → 0. The integral of the squares of these fields over any ball ( approaches
infinity. This is the phenomena of resonance, which in the Hashin-Shtrikman sphere assem-
blage occurs as the ratio ε1/ε2 approaches the value −(3 − f2)ε2. The resonance accounts
for the beautiful ruby red color of glass containing a suspension of minute spherical gold
particles (Maxwell Garnett 1904). Blue light is absorbed because at those frequencies ε1/ε2

approaches the value −(3− f2)ε2.
As was discussed in section 10.4 on page 192, the Hashin-Shtrikman formula coincides

with the Maxwell (i.e., the Clausius-Mossotti) approximation for the effective dielectric con-
stant of a dilute suspension of spheres. In a random dilute dispersion of spheres there are local
fluctuations in the volume fraction, and accordingly one expects to see a broadening of the
resonance. Such broadening is seen experimentally, for example, by Gittleman and Abeles
(1976). The spectral broadening has been investigated theoretically by Felderhof and Jones
(1985, 1986a, 1986b) and Hinsen and Felderhof (1992), among others.

More generally, depending on the microstructure, resonance can occur at other negative
real values of ε1/ε2. These values occur at the poles of ε∗/ε2 when expressed as a function
of ε1/ε2. For example, for a regular cubic array of spheres or square array of cylinders with
fixed volume fraction, resonance occurs at an infinite number of ratios ε1/ε2 because this
function has an infinite number of poles accumulating at an essential singularity at ε1/ε2 =
−1 (Bergman 1979; McPhedran and McKenzie 1980). At the poles a solution to the field
equations can still be obtained if one prescribes the average electric displacement field d0

rather than the average electric field e0. McPhedran and Perrins (1981) show that similar
sorts of resonances also occur in the polarizability of cylinder pairs.

The fields e(x) and d(x) can lose their square integrability in other ways. For example,
consider the Schulgasser assemblage, discussed in section 7.5 on page 121, where each sphere
has dielectric constant λ1 in the radial direction and dielectric constant λ2 in the tangential
direction. Suppose that the constant α, which is the solution of the quadratic α2λ1 + αλ1 −
2λ2 = 0, approaches the imaginary axis. This occurs when λ2/λ1 approaches some real value
less than −1/8. Let us set α = δ + iγ and see what happens as δ → 0. Inside the prototype
sphere the electric field is

e(x) = rα−1(αvr cos θ − vθ sin θ)
= r δ−1[cos(γ log r)+ i sin(γ log r)][(δ + iγ )vr cos θ − vθ sin θ ].

Thus as δ→ 0 the integral of the square of the electric field over a ball ( blows up if the ball
contains the sphere center, but it remains finite if the ball does not contain the sphere center.
In this example σ∗/λ1, when expressed as a function of λ2/λ1,

σ∗/λ1 = [−1+
√
1+ 8λ2/λ1]/2,

has a branch cut along the negative real axis for λ2/λ1 < −1/8
There is another, more surprising, phenomena (Nicorovici, McPhedran, and Milton 1993,

1994). To illustrate it let us consider the two-dimensional problem of a coated circular inclu-
sion centered at the origin, consisting of a circular core of phase 1 with dielectric constant ε1

and radius ri surrounded by a annular shell of phase 2 with dielectric constant ε2 and exterior
radius re, embedded in a material that we assume has dielectric constant ε3 at least within a
radius rm of the cylinder center. In the exterior shell and core regions the complex electrical
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potential φ is an analytic function of z = x + iy and takes values

φ3(z) = A0 +
∞∑
	=1

A	z	 + B	z−	 for re < |z| < rm,

φ2(z) = C0 +
∞∑
	=1

C	z	 + D	z−	 for rc < |z| < re,

φ1(z) = E0 +
∞∑
	=1

E	z	 for |z| < rc.

It is convenient to introduce the parameters

ηe = ε3 − ε2

ε3 + ε2
, ηc = ε2 − ε1

ε2 + ε1
,

in terms of which the relations between the coefficients A	, B	, C	, D	, and E	 implied
by the continuity of potential and the continuity of the normal component of the electrical
displacement across |z| = rc and |z| = re take the forms

B	 = [ηe + ηc(rc/re)2	]r 2	
e A	/�,

C	 = (1+ ηe)A	/�,

D	 = ηc(1+ ηe)r 2	
c A	/�,

E	 = (1+ ηc)(1+ ηe)A	/�,

where
� = 1+ ηcηe(rc/re)2	.

In the limit as the ratio ε2/ε3 approaches −1, that is, as ηe approaches infinity, the relation
between B	 and A	 reduces to

B	 = ε3 − ε1

ε3 + ε1
a2	A	, where a = r 2

e /rc.

This is exactly the same relation as would be attained for a single homogeneous circular
inclusion of dielectric constant ε1 and radius a = r 2

e /rc embedded in a matrix of dielectric
constant ε3. In this limit, and assuming that rm > a, the response of the coated circular inclu-
sion with exterior radius re approaches the response of the homogeneous circular inclusion of
radius a. The coated inclusion and the solid inclusion are equivalent inclusions. The radius
of this equivalent single inclusion will be much larger than the radius of the coated inclusion
when the ratio re/rc is large. By taking ε3 = ε1 we see that the coated inclusion can be in-
serted into a homogeneous body with dielectric constant ε1 without disturbing the surrounding
nonuniform field. This is an example of a neutral inclusion (see section 7.11 on page 134)
that is neutral (in the quasistatic limit) to any applied field, not just to uniform fields.

One can apply this equivalence (in the general case, with ε3 �= ε1) to bodies containing
many such coated circular inclusions. In particular, consider a composite consisting of these
coated inclusions placed on a square lattice, with lattice spacing slightly larger than 2r 2

e /rc,
and embedded in a matrix of dielectric constant ε3. It will have an effective dielectric constant
ε∗ that approaches the effective dielectric constant ε ′

∗ of a square lattice of nearly touching
homogeneous circular inclusions of dielectric constant ε1 embedded in a matrix of dielectric
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constant ε3 as the ratio ε2/ε3 approaches−1. This striking result has been verified numerically
(Nicorovici, McPhedran, and Milton 1993). In this square lattice, let us consider the field
around the homogeneous circular inclusion centered at the origin. The potential ! ′

3(z) outside
the inclusion will have some analytic extension inside the inclusion. Let rs < a denote the
radius at which singularities in this analytically extended field first appear. The Laurent series

φ′
3(z) = A′

0 +
∞∑
	=1

A′
	z

	 + B ′
	z

−	

for the potential !′
3(z) will have an inner radius of convergence equal to rs . It may happen that

rs is greater than re. Then the potential φ3(z) will converge to φ ′
3(z) for |z| > rs . Based on

the solution for the Green’s function, that is, the solution when a single pole is placed outside
the coated circular inclusion (Nicorovici, McPhedran, and Milton 1994), we conjecture that
the gradient of the potential φ(z) blows up to infinity within an entire region contained in and
touching the boundary of the domain |z| < rs or, equivalently, that the integral of the square
of the electric field over a ball( within the unit cell blows up if and only if the ball intersects
this region. This blowing up of the field within an entire region, and the convergence of the
field outside the region, is what I call localized resonance.

Let us return to the square lattice of nearly touching homogeneous circular inclusions of
dielectric constant ε1 in a matrix of dielectric constant ε3 = 1. When ε1 is very large and
positive, the effective dielectric constant can be determined from an analysis of the fields in
the vicinity of where the cylinders almost touch (see section 10.10 on page 207 and references
therein). This makes good physical sense when one thinks of the equivalent conductivity
problem of highly conducting cylinders separated by small gaps: The potential will be almost
constant within each cylinder and the electrical current in the matrix will be concentrated in
the gaps. Now, as illustrated in figure 11.1, consider the (almost) equivalent problem of the

Figure 11.1. A periodic lattice of coated cylinders, with the core, coating, and surrounding
matrix having dielectric constants ε1, ε2, and ε3 has, in the limit ε2/ε3 → −1, the same
transverse effective dielectric constant as a lattice of solid cylinders of dielectric constant ε1

embedded in a matrix of dielectric constant ε3. As ε2/ε3 → −1 the fields outside the coated
cylinders develop enormous short wavelength oscillations near the inclusions, but converge to
smooth fields in the regions away from the inclusions. These smooth fields match the fields
between the cylinders in the lattice of solid cylinders.

coated circular inclusions in a square array, with lattice spacing slightly larger than 2r 2
e /rc.

By analogy, one sees that when ε1 is very large the effective dielectric constant is dominated
by the behavior of the fields in the vicinity of where the locally resonant regions almost touch.
The physical reason for this remains unclear.
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Further work on equivalent responses has been done. Levy (1995) recognized that a coated
cylinder comprised of a nonlinear core surrounded by a linear shell and matrix materials, with
dielectric constants ε2 and ε3 = −ε2, has the same response to a uniform applied field as a
solid cylinder of radius r 2

e /rc filled with a different nonlinear material. In other words, both
have the same nonlinear polarizability. Liu and Li (1996) observed that coated spheres and
solid spheres can have the same response to uniform applied fields.
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Allaire, G. and C. Conca 1996. Bloch-wave homogenization for a spectral problem in
fluid-solid structures. Archive for Rational Mechanics and Analysis 135(3):197–257.
{221, 242}

Allaire, G. and C. Conca 1998. Bloch wave homogenization and spectral asymptotic anal-
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12
Reformulating the problem of finding

effective tensors

So far we have been treating conductivity, elasticity, thermoelectricity, piezoelectricity, ther-
moelasticity, and poroelasticity separately from each other. Yet it is evident that certain for-
mulas, such the formula (9.44) for the effective tensor of a laminate material, take much the
same form irrespective of what problem we are considering. This suggests that we can avoid
duplicating proofs by treating the different problems under the one umbrella. Then if we
come across a new problem that also fits under this umbrella, the results that we have derived
immediately extend to it. Of course, the disadvantage is that one has to represent the fields
and tensors by some sort of generic notation, and it requires some interpretation to express the
results in familiar terms that are applicable to the specific problem of interest. This dilemma
is nothing new. We already used the electrical conductivity equations as a generic example
for the equations of thermal conduction, diffusion, magnetic permeability, and dielectric be-
havior, and one has to make appropriate substitutions to reexpress results in the language of
the problem of direct interest. In what follows, we are just carrying this generic representation
one step further.

12.1. Resolving a periodic field into its three component fields: The
Γ-operators

In the problems studied so far the constitutive law takes the form

J(x) = L(x)E(x), (12.1)

with appropriate definitions of the fields J(x), E(x), and the tensor L(x). Let us define
T as the m-dimensional space in which the fields J(x) and E(x) take their values. For
conductivity this space consists of all d-dimensional vectors, while for elasticity it is the
d(d+1)/2-dimensional space of symmetric d-dimensional second-order tensors. We assume
that there is a natural scalar product A ·B between any two elementsA and B of T , which
is a real-valued bilinear form such that A ·B = B · A and A · A > 0 for all A �= 0. For
example, the scalar products A ·B = ATB and A ·B = Tr(AB) are convenient choices
for conductivity and elasticity, respectively. In the applications of interest T will be a tensor
space, which means that for every d-dimensional rotation R there exists an associated linear
operator Q = Q(R) acting on T such that (QA) · (QB) = A · B for any two elements
A and B of T (i.e., such that QTQ = I). For conductivity we have QA = RA, while for
elasticity we haveQA = RART .

In each example we considered there exists, for every unit vector k ∈ d , a pair of

245
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orthogonal subspaces Ek and Jk spanning T ,

Ek ⊕ Jk = T , (12.2)

such that the relations

J(x)− 〈J 〉 ∈ Jk, E(x)− 〈E〉 ∈ Ek, for all x, (12.3)

hold for all periodic fields J(x) andE(x) that are compatible with the appropriate differential
constraints, and which oscillate only in the direction k, so that J(x) = J(k ·x) andE(x) =
E(k · x). In the general setting the orthogonality of Ek and Jk means thatA ·B = 0 for all
A ∈ Ek and allB ∈ Jk.

Clearly any function of k · x is also a function of −k · x and this implies that

J−k = Jk, E−k = Ek. (12.4)

When k is not a unit vector, but k �= 0, it seems natural to define Ek and Jk so that (12.3)
remains valid for all fields J(x) andE(x) that satisfy the appropriate differential constraints
and which are functions of k · x. This is ensured if we set

Jk = Jk/|k|, Ek = Ek/|k|, for all k �= 0. (12.5)

These spaces have an important significance even when the fields J(x) and E(x) have
oscillations in more than one direction. To see this, let us first define the complex extension
of T to consist of those tensorsA = A1 + iA2, whereA1 ∈ T andA2 ∈ T . We callA1 the
real part of A and A2 the imaginary part of A. On the complex extension the scalar product
ofA with any other tensorB = B1 + iB2 is taken to be

A ·B = (A1 + iA2) · (B1 + iB2)

= A1 ·B1 −A2 ·B2 + i(A1 ·B2 +A2 ·B1).

The complex extension of Jk, or Ek, is defined to be the subspace consisting of all tensors
whose real and imaginary parts lie in Jk, or Ek. By an abuse of notation we denote a space
and its complex extension by the same symbol. Now notice that the Fourier expansions of the
fields J(x) andE(x),

J(x) =
∑
k

eik·xĴ(k), E(x) =
∑
k

eik·xÊ(k), where Ĵ(0) = 〈J〉, Ê(0) = 〈E〉,

effectively decompose them into a sum of (possibly complex-valued) fields, each with oscilla-
tions only in one direction. Furthermore, since the differential constraints are local in Fourier
space, each of these component fields must also satisfy the same differential constraints as
J(x) and E(x). So clearly (12.3) implies that the Fourier components of J and E lie re-
spectively in the complex extensions of the spaces Jk and Ek for each nonzero wavevector
k:

Ĵ(k) ∈ Jk, Ê(k) ∈ Ek for all k �= 0. (12.6)

We view this as defining the differential constraints on the fields J(x) and E(x). The con-
straints on the subspaces Jk and Ek are that they are orthogonal, span T , satisfy (12.4) and
(12.5), and have dimensions, say, m − � and �, that are independent of k.
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A useful corollary follows from (12.6). It implies that the scalar product of J(x) with
E(x) can be integrated over the unit cell� of periodicity and equated with the scalar product
of 〈J 〉 with 〈E〉. Indeed, by applying Plancherel’s theorem, we have

1
|�|
∫
�

J(x) ·E(x) = 〈J〉 · 〈E〉 +
∑
k �=0

Ĵ(−k) · Ê(k) = 〈J 〉 · 〈E〉, (12.7)

where we have used the fact that the scalar product of Ĵ(−k) with Ê(k) vanishes because the
real and imaginary parts of these fields lie in the orthogonal subspaces Jk and Ek. In physical
terms, half this scalar product usually represents the energy density, or power dissipation rate,
and (12.7) expresses the fact that the average energy, or average power dissipation rate, can
also be expressed as the scalar product between the average fields. For linear elasticity, this re-
sult was proved independently by Hill (1963) and Hashin (1964), not just for composites, but
for any inhomogeneous body subject to either uniform tractions at the boundary or affine dis-
placement boundary conditions [see also the average virtual work theorems of Hashin (1972)
for elasticity and for conductivity].

Moreover, the decomposition (12.2) implies that there is a natural splitting of any square
integrable periodic field P into three component fields:

P = P 0 + P 1 + P 2, (12.8)

where P 0 is a constant field, P 1 is a field with zero mean over the unit cell satisfying the
same differential constraints as the fieldE, and P 2 is a field with zero mean over the unit cell
satisfying the same differential constraints as the field J . This is evident if we expand P (x)
in a Fourier series,

P (x) =
∑
k

eik·xP̂ (k),

and set

P 0 = Γ0P ≡ 〈P 〉 = P̂ (0),

P 1(x) = Γ1P ≡
∑
k �=0

eik·xΓ1(k)P̂ (k),

P 2(x) = Γ2P ≡
∑
k �=0

eik·xΓ2(k)P̂ (k), (12.9)

in which Γ1(k) and Γ2(k) denote the projections onto the spaces Ek and Jk. In the various
problems considered in sections 9.2 on page 159 and 9.5 on page 167, expressions for Γ1(k)
and Γ2(k) have been obtained for k a unit vector. These expressions can be extended to
arbitrary k �= 0 using the relations

Γ1(k) = Γ1(k/|k|), Γ2(k) = Γ2(k/|k|),
which are implied by (12.5). For example, for conductivity we have

Γ1(k) = k⊗ k|k|2 , Γ2(k) = I − k⊗ k|k|2 .

The equations (12.9) serve to define the � operators Γ0, Γ1, and Γ2 that, when applied
to P (x), produce the fields P 0, P 1(x), and P 2(x). For the conductivity problem the com-
ponents P 0, P 1(x), and P 2(x) can be identified with the constant component, the curl free
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mean zero component, and the divergence free mean zero component of the vector fieldP (x).
Thus the field decomposition (12.8) is simply a generalization of the Helmholtz decomposi-
tion of a vector field into its constant, curl free, and divergence free parts.

The three field components are mutually orthogonal in the sense that

〈P 0 · P 1〉 = 0, 〈P 0 ·P 2〉 = 0,
〈P 1 · P 2〉 =

∑
k �=0

[Γ1(−k)P̂ (−k)] · [Γ2(k)P̂ (k)]

=
∑
k �=0

[P̂ (−k)] · [Γ1(k)Γ2(k)P̂ (k)] = 0,

where we have used the fact that Γ1(−k) = Γ1(k) and Γ1(k)Γ2(k) = 0. In other words, Γ0,
Γ1, and Γ2 are projections satisfying

ΓiΓ j = δi jΓi , Γ0 + Γ1 + Γ2 = I.
They project, respectively, onto the space U of uniform fields, onto the space E of square
integrable fields with zero mean over the unit cell satisfying the same differential constraints
as the field E, and onto the space J of square integrable fields with zero mean over the unit
cell satisfying the same differential constraints as the field J . In summary, the differential
constraints provide a natural decomposition of the Hilbert spaceH of square integrable fields
into three orthogonal subspaces of fields,

H = U ⊕ E ⊕ J , (12.10)

and the operators Γ0, Γ1, and Γ2 represent the projections onto these subspaces.
In this Hilbert space the inner product between any two (possibly complex-valued) fields

P ′(x) and P (x) is taken to be the usual one,

(P ,P ′) = 〈P · P ′〉, (12.11)

and the norm of a field P (x) is

|P | = (P ,P )1/2 = 〈P · P 〉1/2,

in which the bar denotes complex conjugation. This setting (Milton 1987, 1990) involving
three mutually orthogonal subspaces U , E , and J is one of many possible Hilbert space
settings for the problem; other settings have been introduced by Fokin (1982); Kohler and
Papanicolaou (1982); Papanicolaou and Varadhan (1982); Golden and Papanicolaou (1983);
Kantor and Bergman (1984); and Dell’Antonio, Figari, and Orlandi (1986). As we will see
in section 12.7 on page 260, it provides a framework for defining effective tensors in a more
general context.

12.2. A wider class of partial differential equations with associated
effective tensors†

We have talked about treating different problems under one umbrella but have not given any
indication as to what other problems come under this umbrella; we need to define an appro-
priate class of equations for which effective tensors can be defined. We will not refer to this



12.2. A wider class of partial differential equations 249

general class of equations elsewhere in the book, so this section can be safely skipped by those
not interested in getting a more precise idea of what class of equations we are considering.

Let us consider a generalized problem where J(x) is a tensor field that in some repre-
sentation has m components Js(x), s = 1, 2, . . . ,m that satisfy a set of � homogeneous
h-th–order linear partial differential equations,

m∑
s=1

d∑
a1,...,ah=1

∂

∂xa1

∂

∂xa2

. . .
∂

∂xah

Aa1...ah
qs Js(x) = 0 for q = 1, 2, . . . , �, (12.12)

in a space of dimension d with real-valued constant coefficients Aa1...ah
qs . The tensor field

E(x) in the same representation has m components Er (x), r = 1, 2, . . . ,m and with the
subtraction of a constant field E0 it derives from a (possibly nonunique) periodic potential
U (x), with � components U1(x), . . . ,U	(x), through the equations

Er (x) = {E0}r +
	∑
q=1

d∑
a1,...,ah=1

Aa1...ah
qr

∂

∂xa1

∂

∂xa2

. . .
∂

∂xah

Uq(x) for r = 1, 2, . . . ,m.

(12.13)
The tensorL(x) linking the fields via the constitutive law is then represented by a periodic

m × m matrix-valued field of material constants. Since the order of differentiation in (12.12)
and (12.13) does not matter, we may as well assume that the coefficients Aa1...ah

qs are symmetric
with respect to the interchange of any of the indices a1, a2, . . . , ah . In many problems of
physical interest the constant field E0 = 〈E〉 can be absorbed into the potential U (x). [An
exception is the thermoelasticity equations (2.24), where the temperature increase θ cannot
be absorbed into the potential.] Without going into the technical details, the constant field can
be absorbed into the potential if and only if the dh� × m matrix with coefficients Aa1...ah

qr has
rank m.

At first sight this formulation appears to be much more general than necessary, since in
most physical equations the fields satisfy first-order differential constraints, corresponding to
h = 1. However, it is sometimes advantageous to rewrite the equations in conjugate form,
where the field J(x) derives from a potential, and these conjugate equations may be of higher
order. For example, the conjugate equations of two-dimensional elasticity are of order h = 2
[see equation (2.12)].

A convenient way to represent the set of coefficients Aa1...ah
qs is through the � × m matrix

A(k) with elements

Aqs(k) =
d∑

a1,...,ah=1

ka1ka2 . . . kah A
a1...ah
qs (12.14)

that are homogeneous polynomials of degree h in the variables k1, k2, . . . kd . There is clearly
a one-to-one correspondence between such matrices and sets of coefficients Aa1...ah

qs that are
symmetric with respect to the interchange of any of the indices a1, a2, . . . , ah .

The differential constraints can be rewritten symbolically in the more compact form,

∇h ·AJ = 0, E = E0 +AT∇hU , (12.15)

where ∇h is the h-th–order tensorial differential operator with elements

(∇h)a1a2...ah =
∂

∂xa1

∂

∂xa2

. . .
∂

∂xah

, (12.16)
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and the dot in (12.15) denotes a full contraction of the spatial indices a1, a2, . . . , ah of ∇h
with the associated spatial indices of the tensorAJ .

With these differential constraints on the fields it is easy to check that Jk and Ek can be
identified with the nullspace and range ofA(k):

Jk = {J ∈ m |A(k)J = 0},
Ek = {E ∈ m | E = AT (k)U for some U ∈ 	 }. (12.17)

Then (12.6) holds and furthermore Jk and Ek are mutually orthogonal and span m :

Jk ⊕ Ek = m . (12.18)

We need to assume that the rank ofA(k) does not change with k for all k �= 0. Otherwise, the
dimensionality of the spaces Jk and Ek would change discontinuously with k and then the
effective tensor of a simple laminate would also change discontinuously withn. For example,
the choice of coefficients corresponding to the matrix

A(k) =
(
k1 k2 k1

k2 k1 k2

)
(12.19)

is excluded since the rank changes from 2 to 1 at k1 = k2. This assumption of constancy of
the rank was introduced by Murat (1978, 1981) in a related context.

If we make the additional simplifying assumption that A(k)AT (k) is nonsingular for all
k �= 0, then the projection onto En, which is the range of the matrix AT (n), is given by the
formula

Γ1(n) = AT (n)[A(n)AT (n)]−1A(n), (12.20)

as is well known from linear algebra. The associated tensor Γ(n) defined by (9.40) is

Γ(n) = AT (n)[A(n)L0A
T (n)]−1A(n). (12.21)

The effective tensor L∗ for this generalized problem is defined through the linear relation

〈J〉 = L∗〈E〉 (12.22)

between any periodic fields J(x) andE(x) that solve (12.1), (12.12), and (12.13). Of course
this definition is meaningful only if the equations have a unique solution for 〈J〉 given 〈E〉.
We will prove in section 14.6 on page 298 that the equations do have unique periodic solutions
J(x) andE(x) for any choice of 〈E〉 provided thatL(x) satisfies the appropriate constraints.

12.3. A related Γ-operator
The operator Γ1 has the natural interpretation as the projection onto the subspaces E of square
integrable fields with zero mean satisfying the same differential constraints as the field E.
Given a reference mediumL0 one can introduce a closely related nonlocal operator Γ defined
through its action: We say that

E′ = ΓP if and only if E′ ∈ E and P − L0E
′ ∈ U ⊕ J . (12.23)

From this definition it is clear thatΓ can be identified withΓ1/σ0 whenL0 = σ0I . Even when
L0 �= σ0I there is still a simple expression for the action of Γ in Fourier space. According to
(12.23), the Fourier components Ê

′
(k) and P̂ (k) of E ′(x) and P (x) satisfy

Γ1(k)Ê
′
(k) = Ê′

(k) and Γ1(k)(P̂ (k)−L0Ê
′
(k)) = 0 for all k �= 0,
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and (9.39) and (9.40) imply that

E ′(x) =
∑
k �=0

eik·xÊ
′
(k) =

∑
k �=0

eik·xΓ(k)P̂ (k), (12.24)

where, as in (9.40),
Γ(k) = Γ1(k)[Γ1(k)L0Γ1(k)]−1Γ1(k),

and the inverse is to be taken on the space Ek.
It follows that the operator Γ satisfies

ΓL0Γ = Γ, (12.25)

as observed by Dederichs and Zeller (1972) and Kröner (1972). Also, since L1/2
0 Γ(k)L1/2

0

is a projection onto the space L1/2
0 Ek, its trace is precisely the dimensionality of this space,

which is the same as the dimensionality � of the space Ek. So we see that

Tr[L0Γ(k)] = � for all k �= 0,

and this implies that the operator Tr(L0Γ) has a very simple action on periodic scalar fields
p(x):

Tr(L0Γ)p =
∑
k �=0

eik·x Tr[L0Γ(k)] p̂(k) = �(p − 〈p〉), (12.26)

in which the p̂(k) are the Fourier components of p(x).

12.4. The equation satisfied by the polarization field
The operator Γ is particularly useful for finding the equation solved by the polarization field

P (x) = (L− L0)E(x) = J(x)−L0E(x). (12.27)

From the definition of Γ we have

ΓP = 〈E〉 −E, (12.28)

implying that
[I + (L− L0)Γ]P = (L−L0)〈E〉. (12.29)

Alternatively this can be rewritten as an equation for E,

[I + Γ(L− L0)]E = 〈E〉,
which, as observed by Kröner (1977), has the same form as the Lippmann-Schwinger equation
of quantum mechanical scattering theory.

In principle, the fieldP can be found by taking the inverse of the operator [I+(L−L0)Γ]
and applying it to both sides of (12.29), giving

P = [I + (L−L0)Γ]−1(L−L0)〈E〉. (12.30)

Once P is found, we can compute the action of L∗ on 〈E〉 from the relation

〈P 〉 = (L∗ − L0)〈E〉, (12.31)
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which is implied by (12.27).
Now a linear operatorA that acts on any field taking values in T producing a field taking

values in T has a natural extension to an operator, which we will also call A, acting on any
field Q(x) taking values in T ⊗ T and producing a field R(x) taking values in T ⊗ T .
Specifically we say thatR = AQ if

RE0 = A(QE0) for all E0 ∈ U . (12.32)

For example, ifA acts locally in Fourier space, then

R(x) =
∑
k

eik·xA(k)Q̂(k),

where the Q̂(k) are the Fourier components ofQ(x). WhenA(k) and Q̂(k) are represented
by matrices,A(k)Q̂(k) is represented as the product of these matrices. By combining (12.30)
and (12.31) we see that

L∗ = L0 + 〈[I + (L− L0)Γ]−1(L−L0)〉, (12.33)

where the operatorA = [I + (L− L0)Γ]−1 (which is not local in Fourier space) acts on the
field L(x)−L0 taking values in T ⊗ T .

12.5. The effective tensor of dilute suspensions of aligned ellipsoids
To calculate the effective tensor of a dilute suspension of aligned ellipsoids we need to solve
the problem of a single ellipsoid in a uniform external applied field. The solution to this prob-
lem has a long history. For an isotropic conducting (or dielectric or magnetic) ellipsoid in an
isotropic matrix, Poisson (1826) recognized that the field inside the ellipsoid must be uniform.
Explicit expressions for this field were obtained by Maxwell (1873). The problem of comput-
ing the elastic fields around an isotropic ellipsoid in an isotropic matrix was solved much later
by Eshelby (1957). For an elastically anisotropic ellipsoid in an elastically anisotropic matrix,
the solution follows from the paper of Khachaturyan (1966) [see also Khachaturyan (1983)].
Using Fourier analysis he effectively considers the thermoelastic problem (actually a phase
transition problem) with a constant applied temperature difference and no applied external
elastic field, and with the inclusion and matrix having the same elasticity tensor C0 but dif-
ferent thermal expansion coefficients. Since the stress and strain fields within the ellipsoidal
inclusion turn out to be constant, one can modify the elastic moduli of the ellipsoid so that
the field is not disturbed (see section 8.1 on page 143), and this leads directly to the general
solution associated with an elastically anisotropic ellipsoid in an elastically anisotropic matrix
with a constant applied field.

Let us first obtain the solution to the field equations for a single spherical inclusion with
tensorL1 centered at the origin and with radius rc embedded in an infinite mediumwith tensor
L0 such that the field E(x) approaches a constant field E0 as x approaches infinity. Willis
(1976, 1981, 1982) has shown that a general solution to this problem can be obtained based on
a plane-wave decomposition of the delta function and the associated solution for the infinite
body Green’s function for the potential. Here we take a different but related approach that
avoids the need for introducing Green’s functions.

With L0 as our reference medium the polarization field P (x) = (L(x) − L0)E(x) is
clearly zero outside the inclusion. Guided by the solution to the conductivity problem one
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might suspect that P (x) takes a constant value P 1 inside the inclusion and is zero outside the
inclusion. We decompose P (x) into its plane-wave expansion:

P (x) = 〈 f (x · n)P 1〉n,

where the angular brackets 〈·〉n denote an average over the surface |n| = 1 of the unit ball,
that is,

〈 f (x · n)P 1〉n = 1
4π

∫
|n|=1

f (x · n)P 1,

in which 4π is the surface area of the unit ball. The function f (y) appearing here is given by

f (y) = f (−y) = h(y)− rcδ(y − rc)− rcδ(y + rc),

in which δ(y − rc) and δ(y + rc) are Dirac delta functions centered at y = rc and at y = −rc,
and h(y) is the characteristic function

h(y) = 1 when |y| < rc,
= 0 when |y| ≥ rc.

Although the plane waves have delta function singularities when |x · n| = rc, these singu-
larities are washed out when the average over n is taken. Letting θ parameterize the angle
between n and x, the form of f (y) guarantees that

P (x) = 〈 f (x · n)P 1〉n = P 1

2

∫ π

0
f (|x| cos θ) sin θ dθ = P 1

2|x|
∫ |x|

−|x|
f (y)dy

takes the value P 1 when |x| < rc and is zero when |x| > rc, as desired.
From (12.24) (generalized to allow for Fourier transforms and not just Fourier series) and

from the plane-wave expansion for P (x) we deduce that E = E0 −ΓP and J = P +L0E
have the plane-wave expansions

E(x) = E0 − 〈 f (x · n)Γ(n)P 1〉n,
J(x) = L0E0 + 〈 f (x · n)(I −L0Γ(n))P 1〉n, (12.34)

which guarantee that they satisfy the required differential constraints. The constitutive law
is automatically satisfied outside the sphere because P (x) = 0 there. Inside the sphere the
fieldsE(x) and J(x) take constant values,

E1 = E0 − γP 1 and J 1 = L0E0 + (I −L0γ)P 1,

where
γ = 〈Γ(n)〉n (12.35)

is the average of Γ(n) over all directions of the unit vector n. So the constitutive relation
J1 = L1E1 will be satisfied provided that we choose

P 1 = [(L1 − L0)
−1 + γ]−1E0, (12.36)

where we have assumed, for simplicity, that L1 −L0 is nonsingular.
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The solution forE(x) has one property that follows from the fact that 〈 f (x ·n)〉n is zero
when |x| > rc. This implies that with n held fixed the average of f (x · n) and hence of
E(x)−E0 around the ball |x| = r > rc must vanish:∫

|x|=r
E(x)−E0 = 0 when r > rc. (12.37)

Thus we have constructed fieldsE(x) and J(x) given by (12.34) that satisfy the required
differential constraints and the constitutive relation both inside and outside the sphere. For
an anisotropic elastic spherical inclusion in an anisotropic elastic matrix this is the solution
of Kneer (1965). From the solution we conclude that the field inside the sphere is uniform
when the applied field is uniform [see also Korringa, Lin, and Mills (1978), who provide a
direct explanation of the uniformity of the field based on properties of the Green’s function].
More generally, for an elastically isotropic ellipsoidal inclusion in an elastically isotropic
matrix, Eshelby (1961) showed that the field in the ellipsoid is polynomial when the applied
field is polynomial. Kunin and Sosnina (1971) extended this result to elastically anisotropic
ellipsoidal inclusions in an elastically anisotropic matrix; see also Asaro and Barnett (1975)
and Willis (1975).

Since f (y) is zero when y > 1, only those plane-wave fields with x · n ≤ rc contribute
to E(x). When x is large this forces n to be almost perpendicular to x, and to a good
approximation we have

E(x) ≈ E0 − (4πr 3
c /3)Γ∞(x)P 1 when |x| � rc, (12.38)

where

Γ∞(x) = −1
4π |x|5 〈x ·

d2Γ(n/|n|)
dn2 x〉n⊥x, (12.39)

in which the average is over all unit vectors n perpendicular to x. Clearly E(x) approaches
E0 as x approaches infinity.

As an example, consider a sphere of radius rc with conductivity tensor σ1I embedded in
a matrix with conductivity tensor L0 = σ0I . The electric field e(x) can be found explicitly
and is a combination of uniform and dipolar fields. It is given by the formula

e(x) = P 1/(σ1 − σ0) when |x| < rc,

= [1/(σ1 − σ0)+ 1/3σ0]P 1 + r 3
c [3x⊗ x− |x|2I]P 1/3σ0|x|5 when |x| ≥ rc,

when expressed in terms of the constant polarization field P 1 = (σ1−σ0)e inside the sphere.
Now, since Γ(n/|n|) = n⊗ n/σ0|n|2, we have 〈Γ(n)〉n = I/3σ0 and

x · d
2Γ(n/|n|)
dn2 x = 2x⊗ x/σ0 − 2n⊗n|x|2/σ0

for all unit vectors n perpendicular to x. Averaging over n perpendicular to x gives

Γ∞(x) = |x|2I − 3x⊗ x
4πσ0|x|5 .

Thus we see that

e(x) = [I/(σ1 − σ0)+ 〈Γ(n)〉n]P 1 − (4πr 3
c /3)Γ∞(x)P 1 when |x| ≥ rc.
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Hence for the conductivity problem relation (12.36) holds and (12.38) is satisfied as an equal-
ity for all |x| ≥ rc.

If the inclusion is not a sphere but instead an ellipsoid with boundary |Bx| = 1, then
following Willis (1981, 1982) we make an affine transformation from x to x′ = Bx in
order to transform the ellipsoid to the unit sphere. Any field that is constant in the plane
x ·n = k transforms to a field that is constant in the plane x′ ·n′ = k, where n′ = (B−1)Tn.
Consequently the operator Γ(n) transforms to

Γ′(n′) = Γ(BTn′).

The solutions E ′(x′) and J ′(x′) for the fields associated with the spherical inclusion in the
transformed problem give us the solutions

E(x) = E ′(Bx), J(x) = J ′(Bx)

for the fields associated with the ellipsoidal inclusion. Inside the ellipse the fields are constant
and the polarization field P (x) = (L1 − L0)E(x) takes the value

P 1 = [(L1 − L0)
−1 + γB ]−1E0,

in which E0 is the value of E(x) as x approaches∞ and

γB = 〈Γ′(n′)〉n′ = 〈Γ(BTn′)〉n′, (12.40)

where the average is over the surface |n′| = 1 of the unit ball.
For an isotropic matrix with conductivity σ0I containing an isotropic ellipsoidal conduct-

ing inclusion aligned with the coordinate axes it is well known that

γB =
D

σ0
≡ 1

σ0

( d1 0 0
0 d2 0
0 0 d3

)
,

where D is the depolarization tensor and d1, d2, and d3 are the depolarization factors of
the ellipsoid given by (7.53) or (7.69). Explicit formulas for γ B have been calculated by
Eshelby (1957) for an elastically isotropic ellipsoidal inclusion in an elastically isotropic ma-
trix; by Deeg (1980), Dunn and Taya (1993), and Wang (1992) for ellipsoidal inclusions in
a piezoelectric matrix; and by Berryman (1997) for ellipsoidal inclusions in a poroelastic or
thermoelastic matrix. Walpole (1991) considered the problem of a rigid ellipsoidal inclusion
rotated in an elastic medium.

Now consider a composite comprised of a well-separated dilute suspension of these ellip-
soids embedded in a matrix with tensor L0, and let E0 = 〈E〉 denote the average field in the
composite. As a first approximation, the field acting on each ellipsoid can be equated withE0

and the average of the polarization field in the composite can be equated with f1P 1, where
f1 is the volume fraction occupied by the ellipsoids. Since the average polarization field can
also be equated with (L∗ −L0)E0, we obtain from (12.36) the formula

L∗ ≈ L0 + f1[(L1 − L0)
−1 + 〈Γ(BTn′)〉n′]−1 (12.41)

for the effective tensor L∗, which is correct to the first order in the volume fraction. For
comparison, a coated laminate with a core of phase 1 with tensorL1 coated by a material with
tensor L0 has to the first order in the volume fraction f1 an effective tensor L∗ given by

L∗ ≈ L0 + f1[(L1 − L0)
−1 +

m∑
j=1

c jΓ(n j )]−1.
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So we see that coated laminates can mimic the effective tensor of a dilute suspension of
ellipsoids to the first order in the volume fraction.

Having obtained the effective tensor for a dilute suspension of ellipsoids one can immedi-
ately write the formula

n∑
i=1

fi [(Li −L∗)−1 + 〈Γ∗(BTi n
′)〉n′]−1 = 0

of Willis (1977), which when solved for L∗ with

Γ∗(n) = Γ1(n)[Γ1(n)L∗Γ1(n)]−1Γ1(n)

gives the effective medium approximation for the effective tensor of an aggregate of el-
lipsoidal grains of n different phases with tensors L1,L2, . . . ,Ln mixed in proportions
f1, f2, . . . , fn . The ellipsoidal grains of phase i are assumed to all have the same eccen-
tricity and orientation with surfaces described by the equation |B i (x− x j )| = a j , where the
center x j and size parameter a j vary from grain to grain, while the matrix B i only varies
from phase to phase. For aggregates of spherical grains this reduces to the formula

n∑
i=1

fi [(Li − L∗)−1 + 〈Γ∗(n)〉n]−1 = 0. (12.42)

As an example, consider a dilute suspension of spherical grains of an isotropic material
with bulk modulus κ1 and shear modulus µ1 embedded in an isotropic matrix with bulk mod-
ulus κ0 and shear modulus µ0. The fourth-order tensor 〈Γ(n)〉n is rotationally invariant with
elements

〈�i j	m(n)〉n = 3〈nin jn	nm〉n
3κ0 + 4µ0

+ 1
4µ0

〈ni δ j	nm + niδ jmn	 + n jδi	nm + n jδimn	 − 4nin jn	nm〉n
= α1δi jδ	m/3+ α2(δi	δ jm + δimδ j	)/2, (12.43)

where the constants α1 and α2 can be determined by contracting indices in the above equation,
giving

α1 = −(3κ0 + µ0)

5µ0(3κ0 + 4µ0)
, α2 = 3(κ0 + 2µ0)

5µ0(3κ0 + 4µ0)
. (12.44)

Consequently (12.41), with B = I , implies that to the first order in volume fraction the
effective bulk and shear moduli are given by the formulas

κ∗ ≈ κ0 + f1

1/(κ1 − κ0) + 3(α1 + α2)
= κ0 + f1

1/(κ1 − κ0) + 3/(3κ0 + 4µ0)
,

µ∗ ≈ µ0 + f1

1/(µ1 − µ0) + 2α2
= µ0 + f1

1/(µ1 − µ0) + 6(κ0 + 2µ0)/5µ0(3κ0 + 4µ0)

of Bruggeman (1937) and Oldroyd (1956), respectively. [Oldroyd considered an elastic body
containing a dilute concentration of spherical cavities filled with viscous fluid, but due to the
correspondence principle (see section 11.4 on page 233) his result extends immediately to
spherical elastic inclusions.] For ellipsoidal inclusions of an isotropic phase in an isotropic
matrix the analogous approximation for the effective elasticity tensor was obtained by Eshelby
(1957). The effectivemedium approximation (12.42) for elasticity with 〈Γ∗(n)〉n being given
by (12.43), but with κ0 and µ0 being replaced by κ∗ and µ∗, yields the formulas (10.45).
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12.6. Expressions for the action of the Γ-operators in real space
The formula (12.24) for computingE ′ = ΓP requires one to evaluate the Fourier components
of P (x), apply Γ(k) to each Fourier component, and then sum the resulting Fourier series.
Rather than doing these computations it is sometimes preferable to work directly in real space.

Clearly the value of the field E ′ at a point x depends on the value of P , not just at the
point x but also on its value at surrounding points x′. In other words, Γ acts nonlocally in real
space. Since Γ is a linear operator, we deduce that there must exist an tensor-valued integral
kernel, Γ�(x,x

′), that is periodic both in x and in x′ with unit cell �, and such that

E′(x) =
∫
�

dx′Γ�(x,x
′)P (x′). (12.45)

In fact, this integral kernel can depend only on the difference y = x− x′, that is,

Γ�(x,x
′) = Γ�(y), where y = x− x′,

because the action of Γ on the shifted field P (x+ a) will produce a correspondingly shifted
fieldE ′(x+a) for all choices of the shift a. Special care is required to evaluate the integral in
(12.45) due to the singular behavior of Γ�(x−x′) near x = x′. As a result of this singularity
the integral should be interpreted in the sense of generalized functions.

There is some freedom in the choice of our unit cell of periodicity, since a function that is
periodic with a unit cell � will also be periodic in a unit cell k� with the same center as �
obtained by multiplying all of the dimensions of � by some large odd integer k. Let us use
this freedom to our advantage and replace � by k� in the above equations, keeping x inside
�. Also, since Γ annihilates constant fields, let us replace P (x′) with P̃ (x′) = P (x′)−〈P 〉.
Then the contribution to E ′(x) from unit cells outside k� will be negligible for large enough
k. Finally, let us assume that P (x′) is smooth, or at least piecewise smooth.

To evaluate the action of Γ on P̃ (x′) we follow an argument that is similar to one used
by Bruno, Reitich, and Leo (1996) to numerically evaluate the action of Γ. We subdivide
k� into small spherical regions ranging to the infinitesimally small and filling all of k�.
We choose the spherical regions sufficiently small so that P (x′) is essentially constant over
each sphere and so that one sphere ((ε) with radius ε is centered at x and is surrounded by
spheres with radii much smaller than ε (see figure 12.1 on the following page). Since Γ is a
linear operator, we can add the contributions from each sphere separately. When appropriately
translated and rescaled, the field −E(x) in (12.34) with E0 = 0 gives the contribution from
each sphere provided that P 1 is set equal to the polarization field in that sphere. Since the
spheres surrounding ((ε) have radii much less than ε, we can use approximation (12.38) to
evaluate their contribution. The sphere ((ε) will give a contribution γP̃ (x).

In the limit as k goes to infinity and the sphere radii shrink to zero we find that (12.45)
reduces to the formula

E ′(x) = γP̃ (x)+ lim
ε→0

∫
d\�(ε)

dy Γ∞(y)P̃ (x− y), (12.46)

where
P̃ (x) = P (x)− 〈P 〉, y = x− x′, γ = 〈Γ(n)〉n.

Here the integral is now over all space excluding the sphere ((ε) of radius ε centered at the
origin y = 0. The leading term γP̃ (x) represents the contribution from this sphere ((ε).



258 12. Reformulating the problem

x

Figure 12.1. To calculate, at the point x, the field E ′ resulting from the action of Γ on a
smooth periodic field P̃ with zero average value, we partition the space into spheres that
fill all space and then add the contributions from each sphere. The sphere centered at x has
radius much smaller than the length scale of variation of P̃ and is surrounded by much smaller
spheres. The partitioning is periodic, with periodicity much larger than the periodicity of P̃ .

The tensor-valued integral kernel Γ∞(y) given by (12.39) satisfies the symmetry and scaling
relations,

Γ∞(−y) = Γ∞(y), Γ∞(y) = |y|−dΓ∞(y/|y|), (12.47)

and has the additional property that its average over the surface of the unit ball vanishes:∫
|η|=1

Γ∞(η) = 0, where η = y/|y|. (12.48)

This last property is a corollary of (12.37) and (12.38). These relations satisfied by Γ∞(y)
turn out to have a natural significance: We will see shortly that they ensure that the action of
Γ is scale and reflection invariant, in the sense that Γ applied to P (x/λ) produces the field
E ′(x/λ) for all choices of the constant λ �= 0.

As an example, if we consider the problem of three-dimensional conductivity and take an
isotropic reference medium of conductivityL0 = σ0I , then we have

γ = I

3σ0
, Γ∞(y) = |y|2I − 3y ⊗ y

4πσ0|y|5 , (12.49)

and consequently the operator Γ acting on a polarization field P (x) produces an electric field

e′(x) = P̃ (x)

3σ0
+ lim

ε→0

∫
d\�(ε)

dy
[ |y|2I − 3y ⊗ y

4πσ0|y|5
]
P̃ (x− y).

For three-dimensional elasticity with an isotropic reference medium with bulk modulus κ0
and shear modulus µ0, the fourth-order tensor γ = 〈Γ(n)〉n is given by (12.43) and (12.44),
and Willis (1987) and Torquato (1997) among others provide a formula for Γ∞(y).

In order for Γ to satisfy the trace constraint (12.26), the tensor γ and the integral kernel
Γ∞(y) must have the additional property that

Tr(L0γ) = �, Tr[L0Γ∞(y)] = 0 for all y.
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In our conductivity example (12.49), the tensor γ and the integral kernel Γ∞(y) clearly have
this property, with � = 1.

It is vitally important when evaluating the integral in (12.46) to exclude the infinitesimal
ball ((ε). Indeed the scaling behavior (12.47) of Γ∞(y) implies that this integral is condi-
tionally convergent: If we had taken((ε) to be an infinitesimal ellipse or other shaped region,
then the value of integral would change, and accordingly γ would also take a different value
to compensate for this change. The only exception to this occurs at those points x where
P (x) = 〈P 〉. At such points the scaling relation (12.47) implies that the integrand has an
integrable singularity of order |y|d−1 at those points x where P (x) = 〈P 〉, assuming that
P (x) has a Taylor series expansion around these points.

There is a simple way to avoid these problems of conditional convergence that necessitate
writing (12.46) as a limit. In view of the property (12.48) of Γ∞(y) we can rewrite (12.46) as

E ′(x) = γP̃ (x)+
∫

d
dyΓ∞(y)[P (x− y)−Q(|y|,x)],

in whichQ(r,x) is any smooth normalizing function satisfying

Q(0,x) = P (x), lim
r→∞Q(r,x) = 〈P 〉.

Now the dependence on the matrix γ arises not because of conditional convergence, but rather
because of the radially symmetric form of the normalizing function.

For example, a suitable choice of the normalizing function is

Q(r,x) = 〈P 〉 + e−αr2
[P (x)− 〈P 〉],

where α is a positive constant. Thus, in a three-dimensional medium with conductivity tensor
σ0I the operator Γ acting on a smooth polarization field P (x) produces an electric field

e′(x) = P̃ (x)

3σ0
+
∫

d
dy
[ |y|2I − 3y ⊗ y

4πσ0|y|5
][
P̃ (x− y)− e−α|y|2P̃ (x)

]
.

Of course there are many alternative choices for the normalizing function, and these will lead
to other integral expressions.

Now that we have an absolutely convergent expression we can perform the integral over
r = |y| before computing the integral over η = y/|y|. This gives

E ′(x) = γ[P (x)− 〈P 〉]+
∫

|η|=1
Γ∞(η)P̆ (η,x), (12.50)

where P̆ (η,x) is obtained by integrating, with an appropriate weighting factor, the normal-
ized polarization field along rays issuing from the point x:

P̆ (η,x) = V (x)+
∫ ∞

0
dr
P (x− rη)−Q(r,x)

r
, (12.51)

where we have added the field V (x) to compensate for the freedom in the choice in the
normalizing functionQ(r,x). The value of the field V (x) does not contribute to the integral
in (12.50) because the integral of Γ∞(η) over the unit ball vanishes [c.f. (12.48)]. So if we
choose V (x) so that ∫

|η|=1
P̆ (η,x) = 0 for all x,
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then P̆ (η,x) will be independent of the choice of the normalizing functionQ(r,x).
We are now in a position to check that the action of Γ is scale invariant. Suppose that we

replace the field P (x) by P (x/λ). By changing variables and normalizing functions in the
integration (12.51) it is evident that P̆ (η,x)will be replaced by P̆ (η,x/λ)when λ is positive
and by P̆ (−η,x/λ) when λ is negative. Accordingly, from (12.50) and from the symmetry
property Γ∞(η) = Γ∞(−η) it follows that Γ applied to P (x/λ) produces the field E ′(x/λ).
So we see that the properties (12.47) and (12.48) of the integral kernel Γ∞(η) are connected
with the scale and reflection invariance associated with the action of the operator Γ.

12.7. A framework for defining effective tensors in a more general
context

The differential constraints on the fieldsE and J are equivalent to the requirement that

J ∈ U ⊕ J , E ∈ U ⊕ E, (12.52)

and the constitutive relation implies that

J = LE. (12.53)

This reformulation suggests that we can generalize the notion of “effective tensors” in the
following way. Suppose that we are given any three mutually orthogonal subspaces U , E , and
J that span a Hilbert space H as in (12.10) and a linear operator L that acts in H. Then for
any elements J and E of H that satisfy (12.52) and (12.53) the effective operator L∗ can be
defined as the linear operator that acts in U and which governs the relation

J0 = L∗E0

between the components
J0 = Γ0J , E0 = Γ0E, (12.54)

which represent the projections onto the subspace U of J and E. In particular, U , E , and J
could represent finite-dimensional orthogonal vector spaces, rather than infinite-dimensional
spaces of fields. We will see that this is applicable to the study of electrical networks.

An illustrative example is whenH is a three-dimensional vector space and U , E , and J are
a triad of orthogonal one-dimensional subspaces. Let us choose a basis of three orthonormal
vectors v1, v2, and v3 such that v1 ∈ U , v2 ∈ E , and v3 ∈ J . This ensures that the operators
Γ0, Γ1, and Γ2 have a particularly simple representation in this basis:

Γ0 =
( 1 0 0
0 0 0
0 0 0

)
, Γ1 =

( 0 0 0
0 1 0
0 0 0

)
, Γ2 =

( 0 0 0
0 0 0
0 0 1

)
. (12.55)

Now let us suppose that L is represented in this basis by a matrix

L =
( a00 a01 a02
a10 a11 a12

a20 a21 a22

)
. (12.56)

The constraints (12.52) imply that J and E are represented by three-dimensional vectors,

J =
( j0
0
j2

)
, E =

( e0

e1
0

)
,
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and the constitutive relation (12.53) implies that

j0 = a00e0 + a01e1, 0 = a10e0 + a11e1, j2 = a20e0 + a21e1.

From these equations we see that the components j0 and e0 are related via

j0 = (a00 − a01a10/a11)e0,

and we conclude that the effective operator L∗ in this trivial example is simply the scalar

L∗ = a00 − a01a10/a11.

More generally, when U , E , and J have dimension greater than 1, but are still finite-
dimensional, then we can choose an orthonormal basis of H in which the first set of basis
vectors span U , the next set of basis vectors span E , and the remaining set of basis vectors
spanJ . Thus, generalizing (12.55), the projections onto these three subspaces are represented
in this basis by three matrices with block structures

Γ0 =
(
I 0 0
0 0 0
0 0 0

)
, Γ1 =

( 0 0 0
0 I 0
0 0 0

)
, Γ2 =

( 0 0 0
0 0 0
0 0 I

)
,

in which each of the three identity matrices appearing along the block diagonals may have a
different dimension, according to the dimensionality of the subspaces U , E , and J . The linear
operator L, as represented in this basis by the matrix with block structure

L =
(
L00 L01 L02

L10 L11 L12

L20 L21 L22

)
,

has an associated effective operator

L∗ = L00 −L01L
−1
11 L10. (12.57)

The ensuing analysis will apply irrespective of whether the spaces U , E , and J have
finite dimension or not. However, because our primary interest is in the effective moduli of
composites, we will call the elements of the spaces of H fields rather than vectors, and we
will call L∗ an effective tensor rather than an effective operator.

12.8. Various solutions for the fields and effective tensor
Naturally we need to ensure that equations (12.52) through (12.54) actually define L∗ in a
unique way, without contradictions. When E and J have infinite dimension it is straightfor-
ward to show that the formula (12.57) for the effective tensor L∗ generalizes to

L∗ = Γ0LΓ0 − Γ0LΓ1(Γ1LΓ1)
−1Γ1LΓ0, (12.58)

where the inverse of Γ1LΓ1 is to be taken on the subspace E . When E is finite-dimensional
this only entails inverting a matrix, which will be no problem for almost all choices of the
linear map L. However, when E is infinite-dimensional the existence of the inverse of the op-
erator Γ1LΓ1 on the subspace E is not so clear. A sufficient condition to ensure the existence
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of an inverse is that the operator L be bounded and coercive on the subspace E , that is, there
exist positive constants α and β such that

β > sup
E ∈ E
|E| = 1

|LE|, and (E,LE) > α|E|2 for all E ∈ E with E �= 0,

where |P | = (P ,P )1/2 is the norm of any field P .
An even simpler formula for the effective tensor L∗ results by applying the operator Γ0+

Γ2 (which projects on the space U ⊕ J ) to both sides of the constitutive law E = L−1J .
Solving the resulting equation,

Γ0E = (Γ0 + Γ2)L
−1(Γ0 + Γ2)J ,

for J gives
J = [(Γ0 + Γ2)L

−1(Γ0 + Γ2)]−1Γ0E,

where the last inverse is to be taken on the subspace U ⊕ J . By applying Γ0 to both sides of
this equation we see that

L∗ = Γ0[(Γ0 + Γ2)L
−1(Γ0 + Γ2)]−1Γ0. (12.59)

To obtain other formulas for the fields and effective tensor let us choose an operator L0

that commutes with Γ0. Then by direct analogy with (12.28) we have

Γ(L−L0)E = E0 −E, Γ0(L−L0)E = (L∗ −L0)E0,

where the operator Γ, defined by (12.23), is given by

Γ = Γ1(Γ1L0Γ1)
−1Γ1,

in which the inverse is to be taken on the space E . Solving these equations yields the formulas

E = [I + Γ(L−L0)]−1E0, L∗ = L0 − Γ0(L−L0)[I + Γ(L− L0)]−1Γ0 (12.60)

for the field and effective tensor. (The L0 appearing at the beginning of the second formula,
L∗ = L0−· · · , should be interpreted as the restriction ofL0 to the subspace U , i.e., as Γ0L0.)

We will see in the next chapter that these formulas are very useful for developing series
expansions for the fields and effective tensor. In the special case where L0 is proportional to
the identity tensor, that is, L0 = σ0I , and L0 −L has an inverse, then (12.60) reduces to

L∗ = σ0Γ0 − σ0Γ0(S − Γ1)
−1Γ0, (12.61)

where
S = σ0(σ0I −L)−1.

12.9. The duality principle
The equations

J ∈ U ⊕ J , E ∈ U ⊕ E, J = LE, Γ0J = L∗Γ0E (12.62)
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can be rewritten in the forms

E ∈ U ⊕ E, J ∈ U ⊕ J , E = L−1J , Γ0E = L−1
∗ Γ0J . (12.63)

Now notice that equations (12.62) are identical to equations (12.63) once we make the re-
placements

J → E, E → J ,

U → U, J → E, E → J ,

L→ L−1, L∗ → L−1
∗ . (12.64)

Therefore any general result pertaining to all sets of equations of the form (12.62) will
remain true if we make the above replacements. The replacement corresponds to applying
the original result to the second set of equations (12.63). Of course if the result involves the
operators Γ0, Γ1, and Γ2, which project onto U , E , and J , respectively, then we should also
make the replacements

Γ0 → Γ0, Γ1 → Γ2, Γ2 → Γ1. (12.65)

If an arbitrary constant like σ0 enters a formula, then we are free to either leave it unchanged,
or to replace it everywhere by σ−1

0 . For example, this duality principle applied to the expres-
sion (12.61) gives an alternative formula:

L−1
∗ = σ−1

0 Γ0 − σ−1
0 Γ0(T − Γ2)

−1Γ0 (12.66)

for the effective tensor L∗, in which

T = σ−1
0 (σ−1

0 I −L−1)−1 = L(L− σ0I)
−1 = I − S.

The duality principle is useful because it provides a quick means of obtaining results like
(12.66) without having to go through a detailed analysis. In any case, such an analysis would
just be a repetition of the proof of the original result; the only change needed would be to
make the above replacements (12.64) and (12.65) at each step in the argument.

12.10. The effective tensor of the adjoint equation
The adjoint L† of L is defined as the linear operator such that

(P ′,LP ) = (L†P ′,P ) for all P ′,P ∈ H.

If H is finite-dimensional, then L† is represented in an orthonormal basis as the transpose of
the matrix representing L, unless the matrix representing L happens to be complex, in which
case we should take the Hermitian conjugate rather than the transpose to obtain L†.

Our assumption that L has bounded norm and is coercive clearly implies that the adjoint
operatorL† has bounded norm and is coercive. So it makes sense to ask if the effective tensor
L′

∗ of L
† is related to the effective tensor L∗ of L. Given any two fields E0 and E′

0 in U , let
E and J denote the solutions of the equations

J = LE, J ∈ U ⊕ J , E ∈ U ⊕ E, Γ0E = E0,
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and letE ′ and J ′ denote the solutions of the adjoint equations

J ′ = L†E ′, J ′ ∈ U ⊕ J , E ′ ∈ U ⊕ E, Γ0E
′ = E ′

0. (12.67)

Also, from the definition of the effective tensors we have

J0 = Γ0J = L∗E0, J ′
0 = Γ0J

′ = L′
∗E

′
0.

Now let us evaluate the inner product

(E ′,LE) = (L†E′,E) (12.68)

in two different ways and compare the answers. It follows directly from the orthogonality of
the subspaces U , E , and J and from the above equations that

(E ′,LE) = (E ′,J) = (E ′
0,J0) = (E ′

0,L∗E0),

and similarly we have

(L†E′,E) = (J ′,E) = (J ′
0,E0) = (L′

∗E
′
0,E0).

So from (12.68) we deduce that

(E′
0,L∗E0) = (L′

∗E
′
0,E0) for all E ′

0,E0 ∈ U .

In other words, we can identify L′
∗ with the adjoint of L∗, that is,

L′
∗ = L†

∗. (12.69)

In particular, if L is self-adjoint, then we can equate L† with L and L′
∗ with L∗, which in

conjunction with (12.69) implies that L∗ must also be self-adjoint.
One other important result follows from the identity

(E0, (L∗ +L†
∗)E0) = (E0,J0)+ (J 0,E0) = (E,J)+ (J ,E) = (E, (L+ L†)E).

Defining
L∗
S = (L∗ +L†

∗)/2, LS = (L+L†)/2

as the self-adjoint parts of L∗ and L, we see that L∗
S is positive-definite on U wheneverLS is

positive-definite onH.

12.11. Magnetotransport and its equivalence to thermoelectricity in
two dimensions

Although the adjoint equations (12.67) are of secondary interest in physical problems, they
are of primary importance from the mathematical viewpoint because of the relation (12.69)
linking the effective tensor of the adjoint equation with the effective tensor of the original
equation. In other words, the adjoint equations should be considered in conjunction with the
original set of equations.

This set of equations can easily be written in a self-adjoint form. The complex conductiv-
ity equations are non-self-adjoint equations, and Cherkaev and Gibiansky (1994) showed how
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these could be recast in a self-adjoint form. It is a simple matter to generalize their approach to
other non-self-adjoint equations [see Milton (1990) and Fannjiang and Papanicolaou (1994)].

As an example, consider the equations of conductivity in the presence of a magnetic field:

j(x) = σ(x)e(x), ∇ · j(x) = 0, e(x) = ∇φ(x), 〈j〉 = σ∗〈e〉,

in which the conductivity field σ(x) and the effective tensor σ∗ are real but not necessarily
symmetric. They have symmetric and antisymmetric parts:

σs(x) = σ(x)+ σT (x), σa(x) = σ(x)− σT (x), σ∗
s = σ∗ + σT∗ , σ∗

a = σ∗ − σT∗ .

The equations for the adjoint problem are

j ′(x) = σT (x)e′(x), ∇ · j ′(x) = 0, e′(x) = ∇φ′(x), 〈j ′〉 = σT∗ 〈e′〉.

By adding and subtracting the constitutive equations j = σe and j ′ = σTe′ and letting

js = (j + j ′)/2, ja = (j − j ′)/2, es = (e+ e′)/2, ea = (e− e′)/2,

we obtain an equivalent set of equations(−js
ja

)
=
(−σs −σa
σa σs

)(
es
ea

)
, (12.70)

where now the tensor that relates the field on the left to the field on the right is self-adjoint.
However, the tensor is not positive-definite. The quadratic form,

f (es ,ea) = (es,−σses)+ (es,−σaea)+ (ea,σaes)+ (ea,σsea),

associated with the matrix in (12.70) takes negative values when es �= 0 and ea = 0 and
positive values when es = 0 and ea �= 0, that is, it represents a saddle-shaped function.

Following the approach taken in section 11.5 on page 234 we re-express the constitutive
relation (12.70) and the constraints on the associated fields in the form(

es
ja

)
= L

(
js
ea

)
,

∇ × es = 0,
∇ · ja = 0,

js = ∇ ×ψs,
ea = ∇φa . (12.71)

A straightforward calculation shows that

L =
(
σ−1
s −σ−1

s σa
σaσ

−1
s σs − σaσ−1

s σa

)
. (12.72)

Evidently this matrix is symmetric because the transpose of−σ−1
s σa is σaσ

−1
s . Furthermore,

it is positive-semidefinite when σs is positive-semidefinite because the associated quadratic
form, (

js
ea

)
·L
(
js
ea

)
=
(
js
ea

)
·
(
es
ja

)
= (js,es)+ (ea, ja)

= (σses + σaea,es)+ (ea,σaes + σsea)
= (es,σses)+ (ea,σsea) ≥ 0,
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is positive when σs is positive-definite and ea and es are not both zero.
Of course we can perform the same sort of algebraic manipulations on the effective consti-

tutive equations 〈j〉 = σ∗〈e〉 and 〈j ′〉 = σT∗ 〈e′〉, and thereby obtain the transformed equations( 〈es〉
〈ja〉

)
= L∗

( 〈js〉
〈ea〉

)
, where L∗ =

(
(σ∗
s )

−1 −(σ∗
s )

−1σ∗
a

σ∗
a(σ

∗
s )

−1 σ∗
s − σ∗

a(σ
∗
s )

−1σ∗
a

)
. (12.73)

Thus σ∗
s and σ

∗
a can be determined from the symmetric effective tensor L∗ associated with

the system of equations (12.71). Of course this analysis extends to other non-self-adjoint
problems. In summary, there is no loss of generality in restricting one’s attention to self-
adjoint problems. A problem with a non-self-adjointL, withLs = (L+L†)/2 being positive-
definite, can be embedded in a larger problem with a self-adjoint, positive-definite tensor L
entering the constitutive law.

In two dimensions there is direct correspondence between these equations of conductivity
and those of a thermoelectric problem with a real self-adjoint, positive-definite tensor entering
the constitutive law. This is made evident by rewriting the constitutive law in the form(

j1
j2

)
= L′

(
e1
e2

)
,

with tensor

L′(x) =
(
R⊥σ−1

s R
T
⊥ −R⊥σ−1

s σa
σaσ

−1
s R

T
⊥ σs − σaσ−1

s σa

)
,

which is self-adjoint and positive-definite when σs(x) is positive-definite for all x, and with
the fields

j1 = R⊥es, j2 = ja, e1 = R⊥js, e2 = ea
satisfying the differential constraints

∇ · j1 = 0, ∇ · j2 = 0, ∇ × e1 = 0, ∇ × e2 = 0,

which are appropriate to thermoelectricity. From the associated effective thermoelectric tensor
L′

∗ we can recover the effective conductivity tensor through the relation

L′
∗ =

(
R⊥(σ∗

s )
−1RT⊥ −R⊥(σ∗

s )
−1σ∗

a
σ∗
a(σ

∗
s )

−1RT⊥ σ∗
s − σ∗

a(σ
∗
s )

−1σ∗
a

)
,

which is implied by (12.73).
When the two-dimensional material is locally isotropic, σ(x) takes the form

σ(x) = [ρ(x)]−1 = [!I + µR⊥]−1 = !I − µR⊥
!2 + µ2 ,

where ! = !(x) and µ = µ(x) depend on x. The formula for L′(x) then simplifies to

L′ =
(
(! + µ2/!)I −(µ/!)I
−(µ/!)I (1/!)I

)
,

and represents the thermoelectric tensor of a locally isotropic material.
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13
Variational principles and inequalities

Variational principles have long been known in the context of both conductivity type prob-
lems and elasticity problems. Their application to composites was initiated by Hill (1952),
who used them to show that the Voigt (1889, 1910) and Reuss (1929) estimates of the elastic
moduli of polycrystals were in fact bounds. A new type of variational principle was discov-
ered by Hashin and Shtrikman (1962a, 1962b, 1963), which become famous because it lead
to optimal bounds on the conductivity, bulk, and shear moduli of isotropic composites of two
isotropic phases. Hill (1963b) gave rigorous proof of their variational principles, showing how
they could be derived from the classical variational principles. Subsequently, Hashin (1967)
generalized the variational principles to inhomogeneous elastic bodies (not just composites)
subject to body forces and mixed boundary conditions. Cherkaev and Gibiansky (1994) ex-
tended all of these variational principles to media with complex moduli. Talbot and Willis
(1985) extended the Hashin and Shtrikman variational principles to nonlinear media. Other
variational inequalities1 for nonlinear media, based on comparisons with linear inhomoge-
neous media, were obtained by Ponte Castañeda (1991). In a development that falls outside
the range of this book, Smyshlyaev and Fleck (1994, 1996) extended the Hashin and Shtrik-
man variational principles to elastic composites, where the elastic energy depends not only on
the strain, but also on the strain gradient.

13.1. Classical variational principles and inequalities
We have seen how to manipulate equations into a form where the tensor entering the constitu-
tive law is self-adjoint and positive-definite. The main motivation for doing this is that it leads
to a variational expression for the effective tensor through energy minimization principles.
The following derivation of these energy minimization principles is nonstandard but parallels
the subsequent derivation of the Hashin-Shtrikman variational principles.

Let us suppose that L is self-adjoint and positive-definite. Then the effective tensor L∗
will also be self-adjoint and is determined once we know the values that the quadratic form

W (E0) = 1
2E0 · L∗E0 (13.1)

takes asE0 varies over all fields in U . Physically, this quadratic form usually represents either
the average field energy stored in the composite, or the rate at which average field energy is

1In this book we use the term variational inequality to mean an expression that provides a bound when evaluated
for any choice of admissible trial field. If the bound becomes an equality for some choice of trial field, the variational
inequality can be rewritten as a variational principle.
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dissipated into heat. For example, for elasticity 1
2ε0 · C∗ε0 represents the average elastic

energy per unit volume; for dielectrics 1
2e0 · ε∗e0 represents the average electrical energy per

unit volume; while for conductors 1
2e0 · σ∗e0 represents the average dissipation of electrical

energy into heat per unit volume. The identification of the quadratic form with the average
energy or average energy dissipation is a corollary of (12.7) and was proved by Hill (1963a)
and Hashin (1964, 1972).

Now any variational principle should reduce to an inequality involving a trial field that
becomes an equality when the trial field equals the actual field. This suggests that variational
principles might stem naturally from quadratic forms involving the difference between the
actual field and the trial field. Of course this quadratic form should also incorporate the tensor
L, which we know to be self-adjoint and positive-semidefinite. These considerations indicate
that a variational principle might arise from an analysis of the quadratic form

〈(E −E) · L(E −E)〉 ≥ 0, (13.2)

whereE is the actual solution of the usual equations

E ∈ U ⊕ E, 〈E〉 = E0, J = LE ∈ U ⊕ J , (13.3)

and E is a trial field. We have not yet imposed any constraints on the trial field E; these will
be introduced as needed.

By expanding (13.2) and using (13.3) and the self-adjointness of L, we obtain

2〈E · J〉 − 〈E · J〉 ≤ 〈E · LE〉. (13.4)

We would like the left-hand side of this equation not to depend on the explicit form of the
fields E and J (since these fields might be unknown) but rather to depend on their average
values. This is ensured if we require that the trial fieldE is in the subspace U ⊕ E , that is,

E ∈ U ⊕ E .

Then the orthogonality of the subspaces E and U ⊕ J implies that

〈E · J〉 = E0 · J0, 〈E · J〉 = E0 · J0, (13.5)

in which
J0 = 〈J〉 = L∗E0 and E0 = 〈E〉. (13.6)

Substitution of (13.5) and (13.6) back into (13.4) gives the inequality

(2E0 −E0) ·L∗E0 ≤ 〈E ·LE〉. (13.7)

This inequality holds for all choices of E0 and for all choices of E ∈ U ⊕ E . As such it
is useful for bounding L∗E0 for a given E0 when the average value of the trial field is not
aligned with E0, that is, when 〈E〉 is not proportional to E0.

If our interest is in bounding the effective tensor L∗, then for a given choice of trial field
E we should choose E0 to maximize the quadratic form on the left-hand side of (13.7). This
choice of E0, namely,E0 = E0, generates the inequality

E0 ·L∗E0 ≤ 〈E ·LE〉, where E0 = 〈E〉. (13.8)
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For a given choice of trial field E this provides a linear constraint on the matrix elements of
L∗. Furthermore, since

〈E · LE〉 −E0 ·L∗E0 = 〈(E −E) ·L(E −E)〉, (13.9)

it follows that the difference between the energy computed with a trial field and the actual
energy is a quadratic function of the difference between the trial field and the actual field.
Therefore a reasonable approximation of the field should typically produce a very good esti-
mate of the energy.

Notice that because L is positive-definite, equality in (13.2), and hence equality in (13.8),
is achieved if and only ifE = E, that is, if and only if the trial field equals the actual field. It
follows that we can rewrite (13.8) as a variational principle,

E0 ·L∗E0 = min
E ∈ U ⊕ E
〈E〉 = E0

〈E · LE〉, (13.10)

or, equivalently,
W∗(E0) = min

E ∈ U ⊕ E
〈E〉 = E0

〈W (x,E(x))〉, (13.11)

where W (x,A) = A · L(x)A/2 gives the energy density (or energy dissipation density) at
the point x when the field there takes the valueA. This variational principle is usually called
the classical energy minimization principle; it says that the energy is minimized when the trial
field E equals the actual field E.

By applying the duality principle, we also have the complementary energy minimization
principle,

J0 · L−1
∗ J0 = min

J ∈ U ⊕ J
〈J 〉 = J 0

〈J · L−1J〉. (13.12)

These variational principles can be applied to obtain bounds on the effective tensor L∗. For
example, the simplest choice of trial fields, namely,E = E0 and J = J 0, gives the elemen-
tary bounds

E0 · L∗E0 ≤ 〈E0 · LE0〉, J0 · L−1
∗ J0 ≤ 〈J0 ·L−1J0〉.

In particular, as applied to a composite material, since these relations hold for all constant
fieldsE0 and J0, they imply the arithmetic and harmonic mean bounds

〈L−1〉−1 ≤ L∗ ≤ 〈L〉 (13.13)

of Hill (1952). We will examine the question of bounds in more detail later.
In the above derivation we assumed that the operator L is self-adjoint and positive-semi-

definite. In fact this is a much stronger assumption than is actually needed. Indeed, since
E −E ∈ E , the inequality (13.2) and hence the variational principle (13.10) holds, provided
that

Γ1LΓ1 ≥ 0,

that is, provided that L is positive-semidefinite on the subspace E . For example, the matrix L
given by (12.56) satisfies this condition when a11 ≥ 0. Similarly, the dual variational principle
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(13.12) holds provided that L−1 is positive-semidefinite on the subspace J , that is, provided
that

Γ2L
−1Γ2 ≥ 0.

Of course, for these statements to have meaning we need to show that the effective tensor
L∗ exists when L is positive-semidefinite on E , and when L−1 is positive-semidefinite on J .
One approach is to take (13.10) or (13.12) as the definition of L∗. Alternatively, L∗ can be
defined through formula (12.58) or its dual, or, as will be seen in section 14.8 on page 301,
L∗ can be defined through convergent series expansions.

13.2. Monotonicity of the effective tensor
The variational principles imply that in composite material L∗ is a monotonic function of
L(x) in the sense that

L′
∗ ≥ L∗ when L′(x) ≥ L(x) > 0 for all x,

where both L′(x) and L(x) are self-adjoint and positive-definite tensor fields while L′
∗ and

L∗ are their associated effective tensors. This is easy to establish [as shown, for example, by
Tartar (1979b)]. Since L′(x) ≥ L(x) for all x, it follows that

〈E · L′E〉 ≥ 〈E · LE〉
for every field E ∈ H and in particular for every fieldE ∈ U ⊕ E . Consequently we have

E0 · L′
∗E0 = min

E ∈ U ⊕ E
〈E〉 = E0

〈E ·L′E〉 ≥ min
E ∈ U ⊕ E
〈E〉 = E0

〈E ·LE〉 = E0 · L∗E0,

which establishes that L′
∗ ≥ L∗. This makes good physical sense. For example, in a con-

ducting locally isotropic material one expects the overall effective conductivity σ∗ to increase
when the local conductivity σ(x) is increased.

13.3. Null Lagrangians
Suppose that we have a scalar-valued function Q(A), independent of x, such that

〈Q(E)〉 = Q(〈E〉) for all E ∈ U ⊕ E . (13.14)

Now consider a composite material with energy density (or energy dissipation density)

W ′(x,A) = W (x,A)− cQ(A),

in which c is a fixed constant. From the variational principle (13.11) it has an associated
average energy density,

W ′
∗(E0) = min

E ∈ U ⊕ E
〈E〉 = E0

〈W ′(x,E(x))〉

= min
E ∈ U ⊕ E
〈E〉 = E0

〈W (x,E(x))〉 − c〈Q(E(x))〉

= W∗(E0)− cQ(E0).
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In other words, when the local energy density function is shifted by cQ, the average energy
density function is also shifted by cQ. In particular, if the functions are quadratic, then

W (x,A) = A · L(x)A/2, W∗(E0) = E0 ·L∗E0/2, Q(A) = A · TA/2
W ′(x,A) = A · L′(x)A/2, W ′

∗(E0) = E0 ·L′
∗E0/2,

where T is a real-valued symmetric tensor. We see that a medium with tensor L′(x) =
L(x) − cT will have effective tensor L′

∗ = L∗ − cT ; that is, if we translate L(x) by a
multiple of T , then the effective tensor will be translated in exactly the same way.

Functions satisfying (13.14) are called null Lagrangians or, equivalently, weakly continu-
ous functions. More precisely, a function Q is weakly continuous if for any sequence of fields
Eε(x) satisfying the required differential constraints and having a weak limitE0(x), one has
that Q(Eε(x)) convergesweakly to Q(E0(x)). Necessary and essentially sufficient algebraic
conditions to determine whether a (quadratic or nonquadratic) function is a null Lagrangian
have been given by Murat (1978, 1981, 1987) [see also Pedregal (1989)]. In the important
case where the fields are constrained to be gradients of an �-component potential u, that is,
E(x) = ∇u(x), Q(E) is a null Lagrangian if and only if it is a linear combination of the
subdeterminants (minors) of any order p (1 ≥ p ≥ min{d, �}) of the d × � matrix E. Such
functions can be expressed as the divergence of a vector field, which explains why they are
null Lagrangians. For references see Ball, Currie, and Olver (1981), who also show that when
E(x) = ∇ku(x) there are no new null Lagrangians Q(E) beyond those obtained by applying
the result for k = 1 to the d�k−1-component potential U (x) = ∇k−1u(x).

When Q is quadratic, the necessary and sufficient conditions can be determined quite
simply through an argument that lies at the heart of the compensated compactness method
(Murat 1978, 1981, 1987; Tartar 1979a). By expanding E(x) in a Fourier series

E(x) = 〈E〉 +
∑
k �=0

eik·xÊ(k),

we see that (13.14) holds if and only if the expression

〈E · TE〉 − 〈E〉 · T 〈E〉 =
∑
k �=0

Ê(−k) · T Ê(k)

=
∑
k �=0

Re[Ê(k)] · T Re[Ê(k)]+
∑
k �=0

Im[Ê(k)] · T Im[Ê(k)]

(13.15)

is zero where Ê(−k) is the complex conjugate of Ê(k) because E(x) is real. Also, the
constraint that E ∈ U ⊕ E is satisfied if and only if the real and imaginary parts of Ê(k) lie
in the subspace Ek for all k �= 0. Now we are free to choose E(x) so that only one Fourier
component is nonzero and real, that is,

Ê(k) = B, if k =m or k = −m,

= 0, otherwise. (13.16)

Substituting this into (13.15) and relabelingm as k we see that a necessary condition for the
quadratic form associated with T to be a null Lagrangian is that for all k �= 0,

B · TB = 0 for all realB ∈ Ek. (13.17)
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Conversely, if this condition holds, then for an arbitrary choice of field E ∈ U ⊕ E each
term in the sum (13.15) is zero and hence the quadratic function associated with T is a null
Lagrangian. For simplicity we will just say that T is a null Lagrangian.

Since T is real-valued and symmetric, we deduce that (13.17) holds if and only if

TEk ⊂ Jk for all k �= 0

or, equivalently, if and only if TE ⊂ J . Thus T , like the translations encountered in chap-
ter 4 on page 59, maps fields on the right side of the constitutive equation to fields satisfying
the same differential constraints as those fields on the left side of the constitutive equation.
Conversely, if T has this property and is self-adjoint, then the quadratic form associated with
T is a null Lagrangian.

When T is not self-adjoint, the orthogonality of the spaces U , E , and J implies that

〈E′ · TE〉 = 〈E ′〉 · T 〈E〉 for all E,E ′ ∈ U ⊕ E . (13.18)

if and only if TE ⊂ J , that is, if and only if T maps fields on the right side of the constitutive
equation to fields satisfying the same differential constraints as those fields on the left side of
the constitutive equation. By expanding the fields E(x) and E ′(x) in Fourier series we see
that the condition (13.18) holds if and only if for all k �= 0,

B′ · TB = 0 for all realB′,B ∈ Ek. (13.19)

Functions E ′ · TE satisfying (13.18) are weakly continuous bilinear forms. For any two
sequences of fields Eε(x) and E ′

ε(x) satisfying the required differential constraints and
having weak limits E0(x) and E′

0(x), one has that E ′
ε(x)TEε(x) converges weakly to

E ′
0(x)TE0(x). For fields satisfying first-order differential constraints, the condition (13.19)

is equivalent to the one given by Murat (1978), theorem 3, which he found was necessary and
sufficient to ensure weak continuity of the bilinear form; see also Tartar (1979a).

13.4. Variational principles for problems with a complex or other
non-self-adjoint tensor

If the tensor L(x) is complex, but with a positive-definite imaginary part, we have seen in
section 11.5 on page 234 how to transform the equations to an equivalent set of equations
where the associated tensor L(x) is real and positive-definite. By applying the classical vari-
ational principles to L(x) one obtains variational principles for the complex effective tensor
L∗ = L′

∗+iL′′
∗. For example, in the context of the dielectric problemwe obtain the variational

principle of Cherkaev and Gibiansky (1994)(−d′
0

e′
0

)
·
(

[ε′′
∗]

−1 [ε′′
∗]

−1ε′
∗

ε′
∗[ε

′′
∗]

−1 ε′′
∗ + ε′

∗[ε
′′
∗]

−1ε′
∗

)(−d′
0

e′
0

)
= min

d′(x)
∇ · d′ = 0
〈d′〉 = d′

0

min
e′(x)

∇ × e′ = 0
〈e′〉 = e′

0

〈(−d′

e′

)
·
(

[ε′′]−1 [ε′′]−1ε′

ε′[ε′′]−1 ε′′ + ε′[ε′′]−1ε′

)(−d′

e′

)〉
,

(13.20)

with equality when d′(x) equals the real part of the electric displacement field d(x) and the
real part of the electric field e(x). Thus one applies these variational principles by substituting
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estimates of the real parts of the electric displacement field and electric field into this formula.
There is also the complementary variational principle,(

e′′
0
d′′

0

)
·
(
ε′′

∗ + ε′
∗[ε

′′
∗]

−1ε′
∗ −ε′

∗[ε
′′
∗]

−1

−[ε′′
∗]

−1ε′
∗ [ε′′

∗]
−1

)(
e′′

0
d′′

0

)
= min

e′′(x)
∇ × e′′ = 0
〈e′′〉 = e′′

0

min
d′′(x)

∇ · d′′ = 0
〈d′′〉 = d′′

0

〈(
e′′

d′′

)
·
(
ε′′ + ε′[ε′′]−1ε′ −ε′[ε′′]−1

−[ε′′]−1ε′ [ε′′]−1

)(
e′′

d′′

)〉
,

but this turns out to be equivalent to the original variational principle (13.20), as can be seen
by making the substitutions e′′

0 → e′
0, d

′′
0 → d′

0, e
′′ → e′, d′′ → d′ and comparing the

quadratic forms.
I first learned of these variational principles from Cherkaev and Gibiansky during a trip

to Russia in 1986, although it was not until eight years later that their work was published
(Cherkaev and Gibiansky 1994). Their variational principles are easily extended to other
non-self-adjoint problems when the tensor L(x) is real but not symmetric, having a positive-
definite symmetric part [see Milton (1990) and also Fannjiang and Papanicolaou (1994) and
Norris (1997)]. In the context of conduction in a magnetic field one obtains from (12.71),
(12.72), and (12.73) the variational principle(

js0
es0

)
·
(

(σ∗
s )

−1 −(σ∗
s )

−1σ∗
a

σ∗
a(σ

∗
s )

−1 σ∗
s − σ∗

a(σ
∗
s )

−1σ∗
a

)(
js0
es0

)
= min

j
s
(x)

∇ · j
s
= 0

〈j
s
〉 = js0

min
es(x)

∇ × es = 0
〈es〉 = es0

〈(
j
s
es

)
·
(
σ−1
s −σ−1

s σa
σaσ

−1
s σs − σaσ−1

s σa

)(
j
s
es

)〉
,

with equality when j
s
= (j + j ′)/2 and es = (e+ e′)/2, where j and e are solutions of the

conductivity equations, while j ′ and e′ are solutions of the adjoint conductivity equations.
Besides these “energy minimization” principles, we also mention that there are saddle-

point variational principles,(
e′′

0
e′

0

)
·
(−ε′′ ε′

ε′ ε′′

)(
e′′

0
e′

0

)
= max

e′′(x)
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〈e′〉 = e′

0

min
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〈e′′〉 = e′′

0
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e′′

e′

)
·
(−ε′′ ε′

ε′ ε′′
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and (
es0
ea0
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·
(−σ∗

s −σ∗
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σ∗
a σ∗

s

)(
es0
ea0
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= max

es(x)
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min
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es
ea
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·
(−σs −σa
σa σs

)(
es
ea
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,
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which follow from the equations (11.53) and (12.70). These saddle-point variational princi-
ples have proven useful in asymptotic analysis (Fannjiang and Papanicolaou 1994). It should
also be mentioned that Borcea (1999) has obtained a saddle-point variational principle for
the quasistatic electromagnetic problem, which does not assume that the electric field is curl
free. Variational principles for a wide class of non-self-adjoint equations can be formulated in
terms of the equations and their adjoints [see, for example, Finlayson (1972)], although these
are not usually minimum principles.

13.5. Hashin-Shtrikman variational principles and inequalities
To obtain a variational inequality based on a choice of trial polarization field P ∈ H, let us
look at the equations satisfied by the polarization field P (x) and its average P 0 = 〈P 〉:

[(L−L0)
−1 + Γ]P = E0, P 0 = (L∗ −L0)E0, (13.21)

which were derived in section 12.4 on page 251. Since (13.21) only involves the operator
(L − L0)

−1 + Γ, any variational principle for the polarization field must naturally involve
this operator. The operators (L − L0)

−1 and Γ will both be positive-semidefinite when the
reference tensor L0 is such that

L > L0, Γ1L0Γ1 ≥ 0. (13.22)

Hence (L−L0)
−1 + Γ will surely be positive-definite when these constraints are satisfied.

Of course, we would want any variational inequality involving the polarization field to
reduce to an equality when the trial polarization field P equals the true polarization field P .
This suggests that a variational principle might arise from the inequality

〈(P − P ) · [(L− L0)
−1 + Γ](P − P )〉 ≥ 0, (13.23)

implied by the positive-definiteness of the operator [(L−L0)
−1+Γ] when (13.22) holds. By

expanding this inequality and using (13.21) we see that

2〈E0 ·P 〉−E0 · (L∗−L0)E0 = 2〈E0 ·P 〉−〈E0 ·P 〉 ≤ 〈P · [(L−L0)
−1+Γ]P 〉, (13.24)

which gives the Hashin-Shtrikman variational inequality,

E0 ·L∗E0 ≥ E0 · L0E0 + 2〈E0 ·P 〉 − 〈P · [(L− L0)
−1 + Γ]P 〉, (13.25)

which holds for all choices of applied field E0 ∈ U and all choices of trial polarization field
P ∈ H.

Another variational inequality arises when L is positive-definite and the reference tensor
is chosen with moduli

L0 > L > 0.

Since L1/2
0 ΓL1/2

0 is a projection, we have

L
1/2
0 ΓL1/2

0 ≤ I, implying that Γ−L−1
0 ≤ 0. (13.26)

Also, by taking the inverse of both sides of the inequality L0 > L0 − L (which is allowed
because each side is positive-definite), we have

(L−L0)
−1 +L−1

0 < 0. (13.27)
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Adding (13.26) and (13.27) allows us to conclude that (L − L0)
−1 + Γ is negative-definite

when L0 > L > 0. As a consequence, equations (13.23)–(13.25) hold, but with the sign of
the inequalities reversed. In particular, the Hashin-Shtrikman variational inequality takes the
form

E0 ·L∗E0 ≤ E0 · L0E0 + 2〈E0 ·P 〉 + 〈P · [(L0 −L)−1 − Γ]P 〉. (13.28)

Hashin and Shtrikman (1962b) derived these variational principles in the context of mag-
netic permeability or, equivalently, electrical conductivity. Their variational principles quickly
became famous because they led to optimal bounds on the effective conductivity, bulk, and
shear modulus of isotropic composites of two isotropic phases mixed in fixed proportions
(see chapter 23 on page 457). Brown played an influential role in the development of the
variational principles; see Brown (1965) for some interesting historical remarks.

If we are interested in bounding the energy W = E0 · L∗E0/2 for a particular value of
E0, then it is preferable to work with the variational inequalities (13.25) and (13.28) since
they provide a direct bound on W . But if our interest is in bounding the effective tensor L∗,
then for a given trial polarization field it is best to choose E0 to optimize the bounds. [This
is directly analogous to way in which the standard classical variational principle (13.8) was
obtained from (13.7).] Since the inequality (13.24) holds for all choices of E0, we may as
well choose E0 to minimize the left-hand side, that is, to make the inequality as sharp as
possible. With this optimal choice of E0, namely,

E0 = (L∗ −L0)
−1〈P 〉, (13.29)

the inequality reduces to

P 0 · (L∗ −L0)
−1P 0 ≤ 〈P · [Γ+ (L−L0)

−1] P 〉, with P 0 = 〈P 〉, (13.30)

and holds for all choices of trial polarization field P ∈ H. This will surely provide a bound
that is at least as good as the bound provided by (13.25). Specifically, for a given choice of
E0 and P the inequality (13.25) provides a linear constraint on the matrix elements of L∗:
In a multidimensional space where the matrix elements are the axes, the inequality (13.25)
constrains L∗ to lie on one side of a hyperplane. For a different choice of E0 one obtains a
different plane. AsE0 is varied, with P held fixed, the effective tensorL∗ must lie within the
region enveloped by the collection of all such hyperplanes. This region is precisely what one
would obtain by directly applying the variational inequality (13.30).

Since equality holds when P = P , the variational inequality (13.30) can be rewritten as
a variational principle:

P 0 · (L∗ −L0)
−1P 0 = min

P ∈ H
〈P 〉 = P 0

〈P · [Γ+ (L−L0)
−1] P 〉,

when L > L0, Γ1L0Γ1 ≥ 0. (13.31)

Similarly, (13.28) yields the variational principle

P 0 · (L0 −L∗)−1P 0 = min
P ∈ H
〈P 〉 = P 0

〈P · [(L0 − L)−1 − Γ] P 〉,

when L0 > L > 0. (13.32)
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These simplified forms of the Hashin-Shtrikman variational principles were derived indepen-
dently by Milton and Kohn (1988) and Zhikov (1991a). By applying the duality principle we
obtain the complementary pair of variational inequalities,

P 0 · (L−1
∗ −L−1

0 )−1P 0 = min
P ∈ H
〈P 〉 = P 0

〈P · [∆+ (L−1 −L−1
0 )−1] P 〉,

when L−1 > L−1
0 , Γ1L

−1
0 Γ1 ≥ 0 (13.33)

and

P 0 · (L−1
0 −L−1

∗ )−1P 0 = min
P ∈ H
〈P 〉 = P 0

〈P · [(L−1
0 −L−1)−1 −∆] P 〉,

when L−1
0 > L−1 > 0, (13.34)

where

∆ = Γ2(Γ2L
−1
0 Γ2)

−1Γ2.

It appears that there are four different variational principles. However, when L0 is posi-
tive-definite (13.31) and (13.34) are essentially the same, as are (13.32) and (13.33). To see
this equivalence let us suppose without loss of generality (by making a reference transforma-
tion if necessary) that L0 = σ0I . Then the pair of variational principles (13.31) and (13.34)
takes the form

P 0 · S∗P 0 = max
P ∈ H
〈P 〉 = P 0

〈P · (S − Γ1)P 〉, when L > I > 0,

and

P 0 · T ∗P 0 = min
P ∈ H
〈P 〉 = P 0

〈P · (T − Γ2)P 〉, when L > I > 0,

where

S = σ0(σ0I −L)−1, T = σ0(σ0I − L−1)−1,

S∗ = σ0(σ0I −L∗)−1, T ∗ = σ0(σ0I − L−1
∗ )−1. (13.35)

The equivalence of these pair of variational principles is easily seen to be a consequence of
the relations

S + T = I, S∗ + T ∗ = I, Γ0 + Γ1 + Γ2 = I,

satisfied by the various operators. The equivalence of the pair of variational principles (13.32)
and (13.33) follows by similar analysis.

When L0 is not positive-definite the validity of the variational principles (13.32) and
(13.34) is uncertain. Instead one should use the variational principles (13.31) and (13.33).
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13.6. Relation between the Hashin-Shtrikman and classical variational
inequalities†

Hill (1963b) found that there is a close relation between the Hashin-Shtrikman and classical
variational inequalities when the reference tensor L0 is positive-definite. Let us rewrite the
classical variational principle in the form

E0 ·L∗E0 ≤ 〈E · L0E〉 + 〈E · δLE〉, where δL = L−L0.

Now, given any field P , we are free to make the substitution

〈E · δLE〉 = 〈(P − δLE) · (δL)−1(P − δLE)〉 + 2〈E · P 〉 − 〈P · (δL)−1P 〉,
to yield an equivalent form of the classical variational inequality that is easier to compare with
the Hashin-Shtrikman inequality, namely,

E0 ·L∗E0 ≤ 〈E ·L0E〉 + 2〈E ·P 〉 − 〈P · (δL)−1P 〉 + 〈(P − δLE) · (δL)−1(P − δLE)〉.
(13.36)

Suppose that we are given a trial polarization field P and that L0 > L. Substituting the trial
field

E = E0 − ΓP (13.37)

into the classical variational inequality (13.36), using the fact that ΓL0E0 = 0, and recalling
from (12.25) that ΓL0Γ = Γ generates the bound

E0 · L∗E0 ≤ E0 ·L0E0 + 2〈E0 · P 〉 − 〈P · [(δL)−1 + Γ]P 〉
+〈(P − δLE) · (δL)−1(P − δLE)〉. (13.38)

This is almost the same bound as would be obtained from the Hashin-Shtrikman variational
inequality (13.28). The only difference is the appearance in (13.38) of the last term, which
is surely negative or zero because δL is negative-definite when L0 > L. In other words,
the classical variational inequality is guaranteed to produce a better bound than the Hashin-
Shtrikman variational inequality when the trial field E is given by (13.37). Of course the
last term in (13.38) might be more difficult to evaluate than the remaining terms, and for this
reason it may be preferable to use the Hashin-Shtrikman variational inequality.

Conversely, suppose that a trial fieldE ∈ U ⊕ E has been given, with 〈E〉 = E0, and that
we take a trial polarization field

P = δLE. (13.39)

Substitution of this in (13.36) gives

E0 · L∗E0 ≤ 〈E ·L0E〉 + 2〈E · P 〉 − 〈P · (δL)−1P 〉.
To make a comparison with the Hashin-Shtrikman inequality we re-express this result in the
form

E0 ·L∗E0 ≤ E0 ·L0E0 + 2〈E0 · P 〉 − 〈P · [(δL)−1 + Γ]P 〉
+〈(E −E0 + ΓP ) · L0(E −E0 + ΓP )〉.

Again, this is almost the same bound as would be obtained from the Hashin-Shtrikman varia-
tional inequality (13.28), except for the appearance of the last term, which is surely nonneg-
ative when L0 is positive-definite. Therefore the Hashin-Shtrikman inequality will produce a
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better bound than the classical variational inequality when we take a trial polarization field of
the form (13.39).

This suggests that, given a fieldE0 ∈ U , we could consider a sequence of associated trial
fields,

E(k) =
k∑
j=0

(−ΓδL) jE0, P (k) =
k∑
j=0

δL(−ΓδL) j−1E0.

Since these are related via

E(k+1) = E0 − ΓP (k), P (k) = δLE(k),

they will produce a sequence of successively better upper bounds on the energy W = E0 ·
L∗E0/2, with the Hashin-Shtrikman bounds interlaced between the classical bounds (Kröner
1977). In the next chapter we will see that these fields converge to the actual fields in the
composite when L0 is appropriately chosen. In a similar fashion, by using the duality prin-
ciple, one can obtain a sequence of successively better lower bounds on the energy, with the
Hashin-Shtrikman bounds interlaced between the classical bounds.

In the case when L0 is not positive-definite, the relation between the Hashin-Shtrikman
and classical variational inequalities has not yet been explored.

13.7. Variational inequalities for nonlinear media
The classical energy minimization principle (13.10) has a natural extension to nonlinear me-
dia,

W∗(E0) = inf
E ∈ U ⊕ E
〈E〉 = E0

〈W (x,E(x))〉, (13.40)

where the potentialW (x,A) gives the energy density at the point x when the field there takes
the valueA. For example, in a two-phase nonlinear composite this potential takes the form

W (x,A) = χ1(x)W1(A)+ χ2(x)W2(A),

where χ1(x) and χ2(x) = 1 − χ1(x) are the characteristic functions associated with the
phases, while W1(A) and W2(A) are the energy functions of the phases, which are not nec-
essarily quadratic functions of A. The definition of the subspace E has to be modified if the
functions W1(A) and W2(A) do not have quadratic growth as |A| → ∞. If these functions
both grow as |A|p, then E should be taken as the space consisting of all functionsE ′(x) satis-
fying the appropriate differential constraints, and which are such that 〈E ′〉 = 0 and |E′(x)|p
is integrable. Otherwise, 〈W (x,E(x))〉 will not necessarily be finite when E = E0 + E ′.
If the functions W1(A) and W2(A) have different power law growths, then, by considering
the example of a checkerboard microstructure, Zhikov (1991b) has shown that the function
W∗(E0) can depend on the choice made for E . To avoid getting lost in the details, we will not
explicitly mention these technicalities again. However, the reader should keep in mind that
they exist.

Depending on the form of W (x,A) the infimum in (13.40) might not be achieved by any
field E ∈ U ⊕ E . Instead there might be a minimizing sequence that achieves the infimum.
However, if the infimum is achieved by some smooth field E(x) = E(x), then the Euler-
Lagrange equation implies that

J(x) = ∂W (x,A)

∂A

∣∣∣∣∣
A=E(x)

(13.41)
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lies in the subspace U ⊕ J . The minimizing field E(x) may represent, for instance, the
strain field ε(x) in a nonlinear elasticity problem (assuming that the displacements are still
small, so the problem is geometrically linear) or it may represent the electric field e(x) in
a nonlinear dielectric problem. Of course for this variational problem to have any relevance
the physics of the problem must be such that the field E(x) adjusts itself to minimize the
average energy. Then the effective energy function W∗(E0) represents the average energy
density in the composite when the applied field is E0. In a nonlinear media the variational
principle (13.40) (rather than the associated nonlinear constitutive equation) is often taken as
the starting point upon which all subsequent analysis is based. We will see that variational
inequalities analogous to the dual classical variational inequality and the Hashin-Shtrikman
variational inequality can be derived from this starting point.

The key idea is to realize that in a nonlinear setting Legendre transforms play the role that
inverses of matrices play in the linear setting. Consider, for example, the Legendre transform
W ◦(x,B) of W (x,A) as defined by the equation,

W ◦(x,B) = sup
A

[A ·B − W (x,A)],

where the circle superscript is used to denote a Legendre transform. If W (x,A) = A ·
L(x)A/2 and L(x) > 0, then it is easy to show that W ◦(x,B) = B · L(x)−1B/2. It
follows directly from the definition of the Legendre transform that

W ◦(x,B) ≥ A ·B −W (x,A) for all A andB. (13.42)

In particular we have

W (x,E(x)) ≥ E(x) · J(x)−W ◦(x,J(x)), (13.43)

where E(x) and J(x) are arbitrary periodic trial fields. Substituting this into the classical
variational principle (13.40) gives

W∗(E0) ≥ −〈W ◦(x,J)〉 + inf
E ∈ U ⊕ E
〈E〉 = E0

〈E · J〉. (13.44)

If we choose J ∈ U ⊕ J , then we obtain the inequality

E0 · J0 −W∗(E0) ≤ 〈W ◦(x,J)〉, (13.45)

where J 0 = 〈J 〉. Since this holds for all E0, we can take the maximum over E0 of the
left-hand side and thereby obtain the complementary classical variational inequality

W ◦
∗ (J0) = sup

E0

[E0 · J0 −W∗(E0)] ≤ 〈W ◦(x,J)〉, (13.46)

which holds for all J ∈ U ⊕ J with 〈J〉 = J 0.
Although it is not always physically justified, it is often mathematically convenient to

assume that W (x,A) is a strictly convex function of A for each value of x and grows suf-
ficiently rapidly as |A| → ∞ to guarantee that W ◦(x,B) is finite for all B. This latter
condition requires that W (x,A)/|A| → ∞ as |A| → ∞. Then the infimum in (13.40) will
be achieved and equality holds in (13.42) when

B = ∂W (x,A)

∂A
.
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Therefore, if we take E = E and J = J , where J(x) is given by (13.41), we have equality
in (13.43), (13.44), and (13.45). In other words, for this fixed value of J 0 = 〈J〉, there is
no other choice of E0 having a greater left-hand side of (13.45) because it would violate the
inequality. It follows (Suquet 1987; Willis 1989) that

W ◦
∗ (J0) = E0 · J0 −W∗(E0), (13.47)

when J 0 = 〈J 〉, E0 = 〈E〉.
Let us next establish that E0 can be chosen so that J 0 takes any desired value. To do

this we need to show that W∗(E0) is a strictly convex function of E0. This property (Ponte
Castañeda and Willis 1988) can be seen from the relations,

W∗(pE′
0 + (1− p)E ′′

0)

= inf
E ′ ∈ U ⊕ E, E′′ ∈ U ⊕ E
p〈E ′〉 + (1− p)〈E ′′〉
= pE′

0 + (1− p)E ′′
0

〈W (x, pE′(x)+ (1− p)E′′(x))〉

< inf
E ′ ∈ U ⊕ E
〈E ′〉 = E′

0

inf
E ′′ ∈ U ⊕ E
〈E ′′〉 = E ′′

0

p〈W (x,E ′(x))〉 + (1− p)〈W (x,E ′′(x))〉

< pW∗(E ′
0)+ (1− p)W∗(E ′′

0),

which hold for any E ′
0 �= E′′

0 and for any p between 0 and 1, where the inequality arises
because of the convexity of W and because the infimum is taken over a smaller set of fields.
Now let us consider other values of J 0 that are not necessarily equal to 〈J〉. Given any J 0,
the inequality (13.46) with J = J 0 implies that W ◦

∗ (J0) is finite. Therefore there exists an
E0 [namely, the value that achieves the supremum in (13.46)] such that equality in (13.47)
holds, and for this value of E0 the convexity of W∗(E0) implies that the equality holds only
for one value of J0, namely,

J0 = ∂W∗(E0)

∂E0
, (13.48)

which therefore must be identified with the given J 0. Associated with E0 is the minimizing
field E(x) and the field J(x) given by (13.41). From the uniqueness of J 0 in (13.47) it
follows that 〈J〉 = J0.

Therefore for any choice of J 0 we can find a field J(x) with 〈J〉 = J 0 that achieves
equality in (13.46). We conclude that W ◦

∗ (J0) is given by the complementary energy mini-
mization principle,

W ◦
∗ (J0) = inf

J ∈ U ⊕ J
〈J 〉 = J 0

〈W ◦(x,J(x))〉, (13.49)

as shown by Willis (1989) [see also Toland and Willis (1989) for the precise technical restric-
tions]. Thus there is a complete symmetry between the original variational problem and the
complementary variational problem. The variational principles (13.40) and (13.49) can be
used to obtain rigorous bounds on the potentials W∗(E0) and W ◦

∗ (J0), as was recognized by
Bishop and Hill (1951a, 1951b) and Drucker (1966).

The derivation of nonlinear variational inequalities analogous to those of Hashin and
Shtrikman follows a similar route. It also parallels Hill’s derivation of the Hashin-Shtrikman
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variational inequalities from the classical variational inequalities discussed in the previous
section. Here we follow Talbot and Willis (1992), who generalize earlier treatments of Talbot
and Willis (1985) and Ponte Castañeda (1991). We begin by choosing a reference energy
function W0(x,A), possibly dependent on x, that in the linear case can be identified with
A · L0(x)A/2. Then the classical variational principal is rewritten in the form

W∗(E0) = inf
E ∈ U ⊕ E
〈E〉 = E0

〈W (x,E(x))−W0(x,E(x))〉 + 〈W0(x,E(x))〉. (13.50)

Next the Legendre transform of W − W0 is introduced,

(W −W0)
◦(x,B) = sup

A
A ·B − [W (x,A)−W0(x,A)],

the definition of which implies that

W (x,E(x))−W0(x,E(x)) ≥ E(x) · P (x)− (W −W0)
◦(x,P (x)), (13.51)

for all x and for all fields E(x) and P (x). The function W0(x,A) should be chosen so that
(W −W0)

◦(x,B) is finite for all x andB, which requires that

[W (x,A)−W0(x,A)]/|A| → ∞ as |A| → ∞. (13.52)

Substituting the inequality into (13.50) gives the variational inequality

W∗(E0) ≥ −〈(W −W0)
◦(x,P (x))〉+ inf

E ∈ U ⊕ E
〈E〉 = E0

〈W0(x,E(x))+E(x) ·P (x)〉. (13.53)

This is the generalization of the Hashin-Shtrikman variational inequality (13.25). The
difficulty in its application is in the evaluation of the term involving the infimum over E. If
we choose W0(x,A) = A · L0A/2 and L0 does not depend on x, then the infimum over E
can be evaluated explicitly, giving the variational inequality

W∗(E0) ≥ E0 ·L0E0/2+E0 · 〈P 〉 − 〈(W −W0)
◦(x,P )+ PΓP 〉

of Talbot and Willis (1985). The condition (13.52) will be satisfied for some choice ofL0 > 0
provided that W (x,A) grows at least as fast as quadratically as |A| → ∞.

Another approach is to keep the reference medium inhomogeneous and to set P (x) = 0.
Then the variational inequality (13.53) implies the bound

W∗(E0) ≥ W ∗
0 (E0)+ 〈inf

A
[W (x,A)− W0(x,A)]〉

of Ponte Castañeda (1991), in which W ∗
0 (E0) is the effective potential associated with the

reference energy function W0(x,A). For linear reference media we have

W0(x,A) = A · L0(x)A/2, W ∗
0 (E0) = E0 · L∗

0E0/2,

where L∗
0 is the effective tensor associated with L0(x). Therefore any lower bound on the

effective tensor of a linear comparison composite can provide us with a lower bound on the
effective potential of a nonlinear composite.



286 13. Variational principles and inequalities

Alternatively we can introduce the function

(W0 −W )◦(x,B) = sup
A
{A ·B − [W0(x,A)−W (x,A)]},

the definition of which implies that

W (x,E(x))−W0(x,E(x)) ≤ (W0 −W )◦(x,−P (x))+E(x) · P (x)

for all x and for all fields E(x) and P (x). Substituting this inequality into the classical
variational principle gives a second variational inequality,

W∗(E0) ≤ 〈(W0 −W )◦(x,−P )〉 + inf
E ∈ U ⊕ E
Γ0E = E0

〈W0(x,E(x))+E ·P 〉. (13.54)

This is the generalization of the Hashin-Shtrikman variational inequality (13.28). If we
choose W0(x,A) = A ·L0A/2, we obtain the Talbot-Willis variational inequality,

W∗(E0) ≤ E0 · L0E0/2+E0 · 〈P 〉 + 〈(W0 −W )◦(x,−P )− PΓP 〉.
For this to be useful (W0 − W )◦ must be finite, that is, W (x,A) must not grow faster than
quadratically as |A| → ∞. Taking an inhomogeneous reference medium and setting P = 0
gives the other bound

W∗(E0) ≤ W ∗
0 (E0)+ 〈sup

A
[W (x,A)−W0(x,A)]〉

of Ponte Castañeda (1991). By taking W0(x,A) to be quadratic we now see that any upper
bound on the effective tensor of a linear comparison composite can provide us with an upper
bound on the effective potential of a nonlinear composite.

We will not discuss the application of these nonlinear variational inequalities to specific
bounding problems for nonlinear composites. Instead the interested reader is referred to the
recent review of Ponte Castañeda and Suquet (1998) and references therein.
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14
Series expansions for the fields and

effective tensors

Here we derive series expansions, which when truncated form good approximations for the
fields and effective tensors in a nearly homogeneous material. Such series expansions, and
related perturbation solutions, were derived by Brown (1955), Beran and Molyneux (1963),
Beran (1968), Fokin and Shermergor (1969), Beran and McCoy (1970), Dederichs and Zeller
(1973), Hori (1973), Zeller and Dederichs (1973), Gubernatis and Krumhansl (1975), Kröner
(1977), and Willis (1981), among others.

14.1. Expanding the formulas for the effective tensors and fields in
power series

Let us assume that the tensor L is close to a reference tensor L0. In section 12.8 on page 261
we obtained expressions for the field E and effective tensor L∗, which we rewrite here as

E = [I + ΓδL]−1E0, L∗ = L0 + Γ0δL[I + ΓδL]−1Γ0, where δL = L−L0,

and the action of the projection Γ0 is just to take average values. Now when the operator
ΓδL is small we can expand [I + ΓδL]−1 in powers of ΓδL and obtain the following series
expansions for the fields and effective tensor:

E =
∞∑
j=0

(−ΓδL) jE0, J = LE =
∞∑
j=0

L(−ΓδL) jE0,

L∗ = L0 +
∞∑
j=0

Γ0δL(−ΓδL) jΓ0. (14.1)

These fields E and J satisfy Γ2E = 0 and Γ1J = 0, as demanded by the requirement that
E ∈ U ⊕ E and J ∈ U ⊕ J . In these formulas δL is to be regarded as an operator that,
when applied to a field P (x), produces the fieldQ(x) = (L(x)−L0)P (x). Thus (−ΓδL) j

should not be interpreted as −Γ acting on the field δL(x) raised to the j -th power. Rather, it
should be interpreted as the operator −ΓδL applied j times.

The series expansion for L∗ can be rewritten in the equivalent form

L∗ = L0 +
∞∑
j=0

〈(−δLΓ) jδL〉,

291
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where the operator (−δLΓ) j acts on the field δL(x), taking values in T ⊗T according to the
extension prescribed by (12.32). The first few terms in this expansion form a good approxi-
mation to the effective tensor L∗ when L is close to L0. To the third order in perturbation we
see that

L∗ = 〈L〉 − 〈δLΓδL〉 + 〈δLΓδLΓδL〉 − · · · . (14.2)

So to the first order the effective tensor L∗ can be equated with the average of L(x).
When L is the tensor field

L(x) = χ1(x)L1 + χ2(x)L2 = χ1(x)(L1 −L2)+L2, (14.3)

associated with a two-phase composite, and the reference tensor L0 is set equal to L2, this
expansion reduces to

L∗ = f1L1 + f2L2 − 〈(L1 −L2)χ1Γ(L1 −L2)χ1〉
+ 〈(L1 −L2)χ1Γ(L1 −L2)χ1Γ(L1 − L2)χ1〉 − · · · , (14.4)

and the associated expansion for the fieldE(x) is

E(x) = E0 − Γ(L1 −L2)χ1E0 + Γ(L1 − L2)χ1Γ(L1 −L2)χ1E0 − · · · . (14.5)

14.2. The series expansion in a composite to second order
Let us consider a composite material with a real symmetric tensor field L(x) and examine
the second-order term in the expansion (14.2). This is easily evaluated in Fourier space. By
expressing the field L(x) as a Fourier series,

L =
∑
k

eik·xL̂(k),

recalling that Γ acts locally in Fourier space, and applying Plancherel’s theorem, we see that

〈(L0 − L)Γ(L0 −L)〉 =
∑
k �=0

L̂(−k)Γ(k)L̂(k).

Avellaneda (1987) and, in a more general setting, Tartar (1989, 1990) independently rec-
ognized that because Γ(k) depends only on ξ = k/|k|, this sum can be broken into a sum
over rays in Fourier space and a sum along each ray. To the second order in perturbation we
have that

{L∗}i j = {〈L〉}i j −
∑
ξ

|ξ|=1

{H(ξ)}ik	j {Γ(ξ)}k	 + · · · , (14.6)

in which sums over repeated indices are implied and the tensorH(ξ) has matrix elements

{H(ξ)}ik j	 =
∑
k �=0

k/|k|=ξ

{L̂(−k)}ik{L̂(k)} j	 =
∑
k �=0

k/|k|=ξ

{L̂(k)}ik{L̂(k)} j	, (14.7)

where we have assumed thatL(x) is real to allow us to equate L̂(−k)with L̂(k), the complex
conjugate of L̂(k). In this equation the sum extends over all points in Fourier space such that
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the vectork is parallel and pointing in the same direction as the unit vector ξ, whereas in (14.6)
the sum is over those unit vectors ξ that are aligned with some vector k in the reciprocal lattice
in Fourier space.

Following Tartar (1989) we call H(ξ) the H -measure associated with L(x). Tartar de-
fines H -measures more generally, using them to give a partial characterization of oscillations
associated with subsequences of tensor fields Lε(x) in the limit as ε → 0. In this more
general setting the H -measureH(x, ξ) depends on both x and ξ, and for small ε it roughly
characterizes the degree to which Lε(x) oscillates in the direction ξ in the vicinity of a point
x. More precisely, because it is a measure, it is associated with integrals over a small volume
in space centered at the point x and over a small cone in Fourier space with its axis aligned
with the vector ξ. The interested reader is referred to the paper of Tartar (1990) for a com-
plete definition and also to the work of Gérard (1989, 1994), who independently introduced
H -measures under the name of microlocal defect measures. It suffices to say that if L(x) is
periodic and Lε(x) = L(x/ε), then the more general definition of an H -measure coincides
with the simpler one given here [see also Kohn (1991)].

Our assumption that the moduli L(x) are real and symmetric implies that the H -measure
H(ξ) has the symmetry properties,

{H(ξ)}ik j	 = {H(ξ)}ki j	 = {H(ξ)}ik	j ,
{H(ξ)}ik j	 = {H(ξ)} j	ik = {H(−ξ)} j	ik

and is positive-semidefinite for all ξ in the sense that

Aik{H(ξ)}ik j	A j	 ≥ 0 for all ξ,

in which sums over repeated indices are implied and the Aik denote elements of an arbitrary
m × m complex matrix A. This latter property can be seen by substituting (14.7) into the
above expression.

Now consider a two-phase composite. Then the tensor L = L(x) takes the form (14.3)
and consequentlyH(ξ) has elements

{H(ξ)}ik j	 = f1 f2c(ξ){L1 −L2}ik{L1 −L2}	j , (14.8)

where

c(ξ) = 1
f1 f2

∑
k �=0

k/|k|=ξ

χ̂∗
1 (k)χ̂1(k)

and χ̂1(k) is the Fourier component of χ(x). The factor of f1 f2 has been introduced into the
definition of c(ξ), so that the sum of c(ξ) over ξ is unity:

∑
ξ

|ξ|=1

c(ξ) = 1
f1 f2

∑
k �=0

χ̂∗
1 (k)χ̂1(k) = 1

f1 f2

〈
(χ1 − 〈χ1〉)(χ1 − 〈χ1〉)

〉
= 1.

Also, from this definition it is evident that the constants c(ξ) are real and

c(ξ) ≥ 0 for all ξ.
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So by substituting (14.8) back into (14.6) we obtain an expression,

L∗ = 〈L〉 − f1 f2(L1 −L2)
[∑
ξ

|ξ|=1

c(ξ)Γ(ξ)
]
(L1 −L2)+ · · · , (14.9)

for the effective tensor that is correct to the second order in the difference L1 − L2. The
geometry of the composite enters through the set of positive weights c(ξ).

Remarkably, as Avellaneda (1987) and Tartar (1989, 1990) observed [see also Lipton
(1992)] no matter what the geometry of the composite happens to be, there exists a coated
laminate that has exactly the same expansion of its effective tensor to the second order. Indeed,
by expanding formula (9.46) for the effective tensor of a sequential coated laminate to the
second order in L1 −L2, we see that

L∗ = 〈L〉 − f1 f2(L1 −L2)
[ m∑
j=1

c jΓ(n j )
]
(L1 −L2)+ · · · . (14.10)

So if we take the limit m → ∞, let the lamination directions n j range over every vector ξ
that is aligned with some vector k in the reciprocal lattice, and choose lamination constants
c j = c(ξ), then (14.10) coincides with (14.9). In other words, sequential laminates can mimic
the functional dependence of the effective tensor L∗ on L1 and L2 to the second order in
L1 −L2. Following Avellaneda (1987) we will see later in section 23.3 on page 462 that this
has applications to bounding the effective tensor of two-phase composites.

If the two-phase composite is geometrically isotropic, in the sense that one cannot statis-
tically distinguish χ1(x) from χ1(Rx) for any given rotation matrixR, then the weights c(ξ)
are distributed evenly over the surface of the sphere |ξ| = 1 and the series expansion (14.9)
reduces to

L∗ = 〈L〉 − f1 f2(L1 −L2)γ(L1 −L2)+ · · · , where γ = 〈Γ(n)〉n. (14.11)

Strictly speaking, geometric isotropy applies only to random composites since for periodic
composites c(ξ) is nonzero only when ξ is aligned with some vector k in the reciprocal
lattice. We will discuss series expansions for two-phase geometrically isotropic materials
in more detail in section 15.6 on page 327. For a geometrically isotropic three-dimensional
composite of two isotropic phases with conductivities σ1I and σ2I and effective conductivity
σ∗I we have γ = I/3σ2 and the above expansion implies that

σ∗ = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2/3σ2 + · · · . (14.12)

14.3. Thermoelastic composites for which the third and higher order
terms in the expansion vanish

For certain classes of thermoelastic composites an exact expression for the effective tensor can
be obtained once we know its expansion to the second order. The equations of thermoelasticity
take the form(

ε(x)
ς(x)

)
= L(x)

(
τ(x)
θ

)
, with ∇ · τ = 0, ε = [∇u+ (∇u)T ]/2,
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where L(x) is the thermoelastic tensor. We confine our attention to those thermoelastic com-
posites where

L(x) =
(

S α(x)
α(x) c(x)/T0

)
,

that is, for which the compliance tensor S is independent of x. A natural choice for the
reference tensor is then

L0 =
(

S 0
0 c0/T0

)
,

where c0 is a positive constant. The associated operator Γ is

Γ =
(

Γe2[Γ
e
2SΓe2]

−1Γe2 0
0 0

)
, (14.13)

in which Γe2 is the projection onto the space of divergence free stress fields with zero average
value. [The Fourier components Γe2(k) of Γ

e
2 are given by (9.30).] By directly computing the

product

ΓδL =
(
0 Γe2[Γ

e
2SΓe2]

−1Γe2α(x)
0 0

)
and squaring it, we see that (ΓδL)2 = 0. This implies that

(ΓδL)n = 0 for all n ≥ 2.

Thus all terms beyond second order vanish in the expansions (14.1) and in particular we
obtain an exact expression for the effective tensor

L∗ = 〈L〉 −
(
0 0
0 〈α(x) · Γe2[Γe2SΓe2]

−1Γe2α(x)〉
)

(14.14)

once we know the second-order term 〈α(x)·Γe2[Γe2SΓe2]
−1Γe2α(x)〉. For two-phase compos-

ites we have a complete characterization through H -measures of what second-order terms are
possible and therefore a complete characterization of what effective tensors L∗ are possible.
This explains why Khachaturyan (1966, 1983) found that two-phase simple laminates mini-
mize the thermoelastic energy or, equivalently, the energy under phase transformations, which
like the temperature field θ cause additional stresses and strains within the composite. [See
Kohn (1991) for a complete discussion and other pertinent references.] For three-phase com-
posites Kohn (1991) and Firoozye and Kohn (1993) give a partial characterization of possible
H -measures. Smyshlyaev and Willis (1999) use this to identify three-phase, multiple-rank
laminate microstructures minimizing the thermoelastic energy in some cases.

14.4. A large class of exactly solvable materials with complex moduli†
There is a large class of materials with complex-valued tensors L(x) for which all but the
first term in the series expansion vanishes and an exact expression for the effective tensor L∗
is easily obtained. To see this suppose that there exists (a possibly complex) matrix L0 and
a vector n �= 0 such that the Fourier components δ̂L(k) of the field δL(x) = L(x) − L0
satisfy

δ̂L(k) = 0 whenever k · n ≤ 0. (14.15)

Under this assumption the associated field δL(x), if nonzero, is necessarily complex-valued.
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Now consider the various terms in the series expansion (14.2). The first term, 〈L〉, can be
equated with L0 because δ̂L(k) = 0 when k = 0. The second term,

〈δLΓδL〉 =
∑
k �=0

δ̂L(−k)Γ(k)δ̂L(k),

is zero because if δ̂L(k) is nonzero, that is, k · n > 0, then δ̂L(−k) is necessarily zero. The
third term,

〈δLΓδLΓδL〉 =
∑
k �=0

∑
m �=0

δ̂L(−m)Γ(m)δ̂L(m− k)Γ(k)δ̂L(k), (14.16)

is also zero, because otherwise if δ̂L(−m), δ̂L(m−k), δ̂L(k)were all nonzero, then−m·n,
(m − k) · n, and k · n would all be strictly positive, which is impossible because their sum
is zero. By a similar argument, all successive terms in the series expansion are zero too.
Therefore we have an exact formula for the effective tensor:

L∗ = L0.

Despite this very simple expression the fields in the material are nontrivial. In particular, the
Fourier components P̂ (k) of the polarization field P (x) = (L(x)−L0)E(x) are necessarily
zero only when k · n ≤ 0.

As an example, consider a three-dimensional, locally isotropic composite where the com-
plex dielectric constant takes the form

ε(x) = ε(x1, x2, x3) = ε0 + f (x1, x2, x3),

where ε0 is a complex number. The function f (x1, x2, x3) is required to be periodic with, say,
the unit cube C as a unit cell, implying that

f (x1, x2, x3) = f (x1 + 1, x2, x3) = f (x1, x2 + 1, x3) = f (x1, x2, x3 + 1)

for all x1, x2, and x3. In addition, let us assume that for each fixed real x1 and x2, f (x1, x2, x3)

is a bounded analytic function of x3 in the upper half plane Im(x3) > 0 with∫ 1

0
dx3 f (x1, x2, x3) = 0, (14.17)

where the integral is over one period along the real axis. For instance, we could take

ε(x) = ε0 + h(x1, x2)[cos(2πcx3)+ i sin(2πcx3)],

where c is an integer and h(x1, x2) is a real- or complex-valued periodic function of x1 and
x2, not necessarily analytic in these variables. Associated with ε(x) is the dielectric tensor
field ε(x) = ε(x)I . Taking L0 = ε0I , the Fourier components δ̂L(k) satisfy the required
condition (14.15) with n = (0, 0, 1) because when k3 ≤ 0 we have

∫
C

dxe−ik·xδL(x) =
∫ 1

0
dx1

∫ 1

0
dx2e−i(k1 x1+k2 x2)

[∫ 1

0
dx3e−ik3 x3 f (x1, x2, x3)

]
I = 0,
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where the expression in the square brackets vanishes for k3 = 0 by our assumption (14.17)
and vanishes for k3 < 0 because we can equate it with a contour interval in the upper half
x3-plane, around the rectangle enclosed by the real axis, the lines Re(x3) = 0, Re(x3) = 1,
and the line Im(x3) = t in the limit as t →∞. We conclude that the composite has ε0I as its
effective dielectric tensor.

Of course we can easily generalize this example to obtain exactly solvable, locally aniso-
tropic tensor fields ε(x) that have special analytic properties along each line parallel to the
x3-axis. By making a subsequent curvilinear coordinate transformation, as described in sec-
tion 8.5 on page 149, we obtain an even wider class of exactly solvable materials with ε(x)
having special analytic properties along each curve amongst a certain family of curves. In
two dimensions we can then generate an associated family of exactly solvable thermoelectric
materials by applying the transformation discussed in section 11.6 on page 237.

14.5. Reducing the dimensionality of the problem†
If instead of requiring that the Fourier components δ̂L(k) vanish whenever k · n ≤ 0 we
impose the weaker constraint that

L̂(k) = 0 whenever k · n < 0,

then the problem of calculating the effective tensor L∗ can be reduced from a three-dimen-
sional problem to an equivalent two-dimensional problem, or from a two-dimensional prob-
lem to an equivalent one-dimensional problem (which can be exactly solved).

Indeed, if the above condition is satisfied, then, for example, the only nonzero con-
tributions to the third-order term (14.16) come from those m and k such that δ̂L(−m),
δ̂L(m−k), and δ̂L(k) are nonzero. By assumption this forces−m ·n, (m−k) ·n, and k ·n
to be nonnegative. Since the sum is zero, each term must be zero, that is, k · n =m · n = 0.
By such considerations we see that every term in the series expansion remains unchanged if
we replace δ̂L(k) with

δ̂L(k) = δ̂L(k) when k · n = 0,
= 0 otherwise.

Suppose that the coordinates have been chosen so that n = (0, 0, 1). Then the effective
tensor L∗ remains unchanged if we replace L(x) by

L(x) = L(x1, x2) = 〈L(x1, x2, x3)〉x3 ,

where the angular brackets 〈 〉x3 denote an average over x3, keeping x1 and x2 fixed. Since
L(x) does not depend on x3, we have effectively reduced the problem of calculating L∗ to
the problem of calculating the effective tensor of an associated two-dimensional problem. If
we had started with a two-dimensional problem, then we would have effectively reduced it to
a one-dimensional problem.

For example, it follows that the formulas (9.7) for the components of the effective con-
ductivity tensor σ∗ of a laminate also apply to materials for which σ(x1, x2, x3) is a bounded
analytic function of x2 and x3 in the upper half-planes Im(x2) > 0 and Im(x3) > 0. Alter-
natively, for the formulas to apply, σ(x1, x2, x3) could be bounded and analytic in the lower
half-planes Im(x2) < 0 and Im(x3) < 0, or it could be bounded and analytic in the upper
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half-plane Im(x2) > 0 and the lower half-plane Im(x3) < 0. In particular, we could take

σ(x1, x2, x3) =
s(x1)[a2 + cos(2πc2x2)+ i sin(2πc2x2)][a3 + cos(2πc3x3)+ i sin(2πc2x3)],

where s(x1) is a complex matrix-valued function, and a2 and a3 are complex numbers while
c2 and c3 are (positive or negative) real numbers. To ensure that the medium is physically
realistic (and to ensure that the series expansions for the fields converge) the function s and
the parameters a1 and a2 should be chosen so that the real part of σ(x) is positive-definite
for all x. [More precisely, we require that there exist positive constants α and β such that
βI ≥ Re[σ(x)] ≥ αI for all x.]

We remark in passing that a related simplification extends to nonlinear equations when
the coefficients vanish in half of Fourier space. For example, Caflisch (1993) has obtained
a reduction in dimensionality for complex-valued solutions of the three-dimensional incom-
pressible Euler equations.

14.6. Convergence of the expansions and the existence and uniqueness
of the fields and effective tensors

The convergence of the expansions (14.1) for the fields and effective tensors was investigated
for a dielectric composite material by Fokin (1982) [see also Fokin (1996)], and for an elastic
composite material by Bruno (1991b) and Michel, Moulinec, and Suquet (2001). The subject
of convergence is an important issue, because if the expansions for the fields converge, then
the limiting fields provide us with a solution to the equations

J = LE, J ∈ U ⊕ J , E ∈ U ⊕ E .

In other words, this constitutes a constructive proof of the existence of fields E and J that
solve these equations. To establish convergence we need to make some assumptions about the
linear map L. To simplify the mathematics let us begin by assuming (by making a reference
transformation if necessary) that the reference tensor L0 is proportional to the identity tensor,
that is, L0 = σ0I , and that L is self-adjoint with

βI ≥ L ≥ αI (14.18)

for some choice of positive constants β and α. In other words, we assume the ellipticity
condition that the eigenvalues of L lie between α and β.

The question of convergence of the series expansion for the field E is clearly equivalent
to the question of whether the sequence of fieldsE1,E2, . . . defined via

Em =
m∑
j=0

(−ΓδL) jV =
m∑
j=0

[Γ1(I −L/σ0)] jV (14.19)

converges when we set V = E0. We shall prove convergence of this series for any choice
of V ∈ H under the assumption that σ0 > β/2. Recall that in section 12.1 on page 245 we
defined

|P | = (P ,P )1/2 = 〈P ·P 〉1/2
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as the norm of any (possibly complex-valued) field P ∈ H. Here (P ′,P ), given by (12.11),
denotes the inner product of any two fields P ′ and P inH. Now let us define

‖A‖ = sup
P ∈ H
|P | = 1

|AP | (14.20)

as the norm of any linear operator A acting on fields in H. WhenA is self-adjoint the norm
is just the supremum of the absolute values of the eigenvalues of A. Hence the constraint
(14.18) implies that

‖I −L/σ0‖ ≤ γ with γ = max{|β/σ0 − 1|, |α/σ0 − 1|}, (14.21)

which is strictly less than 1 when σ0 > β/2. In particular we have

γ = (β/α − 1)/(β/α + 1) when σ0 = (α + β)/2.

This is the value of σ0 that minimizes γ .
From the definition (14.20) it is evident that the norm ‖AB‖ of two linear maps A and

B is at most equal to the product ‖A‖‖B‖ of the norms of the individual maps. Since Γ1 is
a projection, its norm is simply ‖Γ1‖ = 1, and so it follows that for all m,

‖[Γ1(I − L/σ0)]m‖ < γ m, (14.22)

which in turn implies that

|Em −Em−1| = |[Γ1(I −L/σ0)]mV | < γ m|V |.

Since γ < 1, we deduce that the sequence Em, m = 1, 2, 3, . . . is a Cauchy sequence that
necessarily converges because a Hilbert space by definition is complete. The limitE satisfies

[I + Γ1(L/σ0 − I)]E = V .

To prove uniqueness of this solution E when σ0 > β/2, we examine the homogeneous
equation

[I + Γ1(L/σ0 − I)]E′ = 0.

From (14.21) and recalling that |Γ1| = 1 we have

|E′| = |Γ1(I −L/σ0)E
′| ≤ γ |E ′|,

and because γ < 1 it follows that E ′ = 0. Since there are no nontrivial solutions to the
homogeneous equation, we conclude that the solution E of the inhomogeneous equation is
unique. This establishes that the inverse operator (I + Γ1(L/σ0 − I))−1 exists.

The above analysis shows that the fieldE can be computed as the limit as m →∞ of the
sequence of fields Em defined by (14.19) when we set V = E0. Moreover, using (14.22) we
can obtain an estimate of the error incurred by replacing L∗ by the approximant

L(m)
∗ = σ0Γ0 +

m∑
j=0

Γ0(L− σ0I)[Γ1(I −L/σ0)] jΓ0, (14.23)
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obtained by truncating the series expansion (14.1) for L∗ at some finite number of terms m.
Using the fact that the norm of any two linear mapsA andB satisfies the triangle inequality
‖A+B‖ ≤ ‖A‖ + ‖B‖, we have the following bound on the error:

‖L∗ −L(m)
∗ ‖ < σ0

∞∑
j=m+1

‖Γ0(I −L/σ0)[Γ1(I −L/σ0)] jΓ0‖

< σ0

∞∑
j=m+1

γ j+1 = σ0γ
m+2

1− γ
, (14.24)

where γ = (β/α − 1)/(β/α + 1) when σ0 = (α + β)/2. This error clearly tends to zero as
m tends to infinity. Setting σ0 = (α + β)/2 and considering the worst case scenario, which
occurs when the ratio β/α is very large, we see that M iterations where

M ≈ −β/α
2

log(4εα/β)

are sufficient (and likely more than necessary) to ensure that ‖L∗ −L(M)
∗ ‖ ≤ εβ, where ε is a

measure of the desired tolerance. For example, this shows that 74,000 iterations will certainly
achieve a ε = 0.1% tolerance when β/α = 10, 000. Less extreme ratios of β/α achieve much
faster convergence.

14.7. Convergence when L is not self-adjoint†
If the map L is not self-adjoint but has a finite norm, that is, there exists a constant β such
that

β > ‖L‖, (14.25)

and in addition is coercive, that is, there exists a positive constant α > 0 such that

(P ,LP ) > α|P |2 for all P ∈ H with P �= 0, (14.26)

then the series still converges for sufficiently large values of σ0. As in the previous analysis,
it suffices to establish that the norm of (I −L/σ0) is strictly less than 1.

Given any fieldQ let us set

Q′ = (I − L/σ0)Q.

Then we have
LQ = σ0(Q−Q′),

and (14.26) with P = Q implies that

σ0

[
|Q|2 − (Q,Q′)

]
> α|Q|2, (14.27)

while (14.25) implies that
β2|Q|2 > σ 2

0 |(Q−Q′)|2

or, equivalently, that

2(Q,Q′) >
[
1− (β2/σ 2

0 )
]
|Q|2 + |Q′|2. (14.28)
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By substituting (14.28) into (14.27) we see that

(σ0 + β2/σ0 − 2α)|Q|2 > σ0|Q′|2,
implying that when σ0 is positive

|I −L/σ0| ≤ γ ≡
[
1+ β2

σ 2
0

− 2α
σ0

]1/2
, (14.29)

which is strictly less than 1 when σ0 > β2/2α. In particular,

γ =
√
1− α2/β2 when σ0 = β2/α, (14.30)

which is the value that minimizes γ . For given values of α and β, this bound on |I − L/σ0|
is not as tight as the bound when L is self-adjoint, but nevertheless is sufficiently restrictive
to guarantee convergence of the series. The bound

‖L∗ −L(m)
∗ ‖ < σ0γ

m+2

1− γ

implied by (14.24) still holds, where now γ is given by (14.29).

14.8. Extending the domain of convergence†
The expansions (14.1) typically have a larger domain of convergence than indicated by the
preceding analysis. Clearly a sufficient condition for convergence is that the operator Γ(L0−
L) has norm less than 1. Let us take a reference tensor of the form

L0 = σ0I + L′
0,

where the tensor L′
0 is assumed to be bounded and self-adjoint but need not be positive-

definite. The preceding analysis suggests that we should choose a large positive value of σ0

to ensure that the domain of convergence is as large as possible. Expanding the operator Γ in
powers of 1/σ0 gives the series expansion

Γ = Γ1(Γ1L0Γ1)
−1Γ1 =

∞∑
j=0

(−1) jΓ1(L
′
0Γ1)

j/σ
j+1

0 ,

which certainly converges for σ0 > ‖L′
0‖. When σ0 is sufficiently large it suffices to keep

the first few terms in this expansion, and we obtain the following estimate for the norm of the
operator Γ(L0 −L):
‖Γ(L0−L)‖ ≈ ‖Γ1[I+(L′

0−Γ1L
′
0Γ1−L)/σ0]‖ ≤ ‖I+(L′

0−Γ1L
′
0Γ1−L)/σ0‖. (14.31)

Also, the definition (14.20) of the norm implies that

‖I + (L′
0 − Γ1L

′
0Γ1 −L)/σ0‖ ≈ 1− 2 max

P ∈H
|P |=1

(P , (LS −L′
0 + Γ1L

′
0Γ1)P )/σ0, (14.32)

where LS = (L + L†)/2 is the self-adjoint part of the operator L. The approximations
in (14.31) and (14.32) become increasingly accurate as σ0 tends to infinity. They are made
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merely for mathematical expediency and can be turned into rigorous inequalities by estimating
the norm of the remainder of the series expansion and adding a term proportional to 1/σ 2

0 to
the right-hand sides of (14.31) and (14.32).

By combining (14.31) and (14.32) we see that the series expansion converges for suffi-
ciently large values of σ0 provided that the operator LS − L′

0 + Γ1L
′
0Γ1 is coercive, that is,

provided that there exists a constant α′ > 0 such that

LS −L′
0 + Γ1L

′
0Γ1 > α′I. (14.33)

This condition can only be satisfied when the operator L is positive-definite on the subspace
E , that is, when there exists a constant α′ > 0 such that

Γ1LSΓ1 ≥ α′Γ1,

as can be seen by projecting the inequality on the subspace E , in effect multiplying (14.33)
on the left and right by Γ1. Conversely, if there exists a constant tensor L′

0 that is positive-
semidefinite on the subspace E , and a positive constant α ′ such that

Γ1L
′
0Γ1 ≥ 0, LS > L

′
0 + α′I,

then (14.33) is surely satisfied, and the series expansion will converge for that choice of L′
0

when σ0 is sufficiently large. Such tensors L′
0 will be called quasiconvex.

14.9. A series with a faster convergence rate
There are many other useful series expansions for the effective tensor. Here we will consider
a series expansion that has a much faster rate of convergence than (14.1).

Let us return to the formula (12.29) for the polarization field P and rewrite it in the form

P = [I + (L−L0)Γ]−1(L−L0)E0

= [I + (L−L0)M + (L−L0)(Γ−M )]−1(L−L0)E0

= (I −KΥ)−1KE0,

where
K = [I + (L− L0)M ]−1(L−L0), Υ =M − Γ

andM is an arbitrary tensor that remains to be chosen. Expanding (I −KΥ)−1 in powers
ofKΥ then gives the series expansions

P =
∞∑
j=0

K(ΥK) jE0, L∗ = L0 +
∞∑
j=0

Γ0K(ΥK) jΓ0, (14.34)

for the polarization and effective tensor. The convergence of these series is enhanced when
M is chosen to make the norm of Υ small. Since 0 ≤ Γ ≤ L−1

0 , one natural choice is
M = L−1

0 /2, which gives

K = 2L0(L+L0)
−1(L−L0), Υ = (I − 2ΓL0)L

−1
0 /2.

The convergence rate of the expansions can then be estimated from the norm of the oper-
ator

ΥK = (I − 2ΓL0)(L+L0)
−1(L−L0).
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Let us again assume that the operator L is self-adjoint, satisfying the bounds (14.18). The se-
ries converge for any positive-definite choice ofL0, but to simplify the analysis let us suppose
that L0 = σ0I , where σ0 is a positive constant. (By making a reference transformation we
can easily extend this proof to allow for any positive-definite choice of L0.) Then we have

‖(L+L0)
−1(L−L0)‖ = ‖(L+ σ0I)

−1(L− σ0I)‖ < γ ′,

where
γ ′ = max{|(β − σ0)/(β + σ0)|, |(α − σ0)/(α + σ0)|}

is surely less than 1. In particular it follows that

γ ′ = (
√
β/α − 1)/(

√
β/α + 1) when σ0 =

√
αβ, (14.35)

which is the value of σ0 that minimizes γ ′. The operator Γ1, being a projection, has eigenval-
ues of 0 and 1. Therefore I−2ΓL0 = I−2Γ1 has eigenvalues of−1 and 1, and consequently
has norm 1. We conclude that ΥK has norm less than γ ′.

The approximant

L′
∗
(m) = σ0I + σ0

m∑
j=0

Γ0K(ΥK) jΓ0, (14.36)

obtained by truncating the series expansion forL∗ at m+1 terms, differs from the exact value
of L∗ by at most

‖L∗ −L′
∗
(m)‖ < 2σ0(γ

′)m+1

1− γ ′ . (14.37)

A comparison of expression (14.30) for the optimal value of γ with the expression (14.35) for
the optimal value of γ ′ suggests that the series expansion (14.23) with β/α = r will have a
comparable rate of convergence as the series expansion (14.36) with β/α = r 2. This indicates
that if a numerical calculation of the series (14.23) converges satisfactorily for a contrast ratio
β/α of, say, 100, then the series (14.36) should converge satisfactorily for a contrast ratio β/α
of about 10,000. Of course this is by no means certain, as the estimates given here are bounds
on the convergence rate, not calculations of the actual rate of convergence. Moreover, the
expansion (14.36) converges for any choice of σ0 < 0, irrespective of the values that β and α

take, so long as β > α > 0. By contrast, for a given value of σ0 > 0, the expansion (14.23) is
not generally guaranteed to converge when β > 2σ0.

Setting σ0 =
√
αβ and considering the worst case scenario, where the ratio β/α is very

large, we see that M iterations with

M ≈ −√β/α

2
log(ε)

are sufficient (and likely more than necessary) to ensure that ‖L∗ − L′
∗
(M)‖ ≤ εβ. For

example, this shows that 346 iterations will certainly achieve a ε = 0.1% tolerance when
β/α = 10, 000. This is considerably less than the 74,000 iterations that guarantee conver-
gence to same level of tolerance using the standard series expansion.

A series expansion of this type for conducting composites of n isotropic phases was first
suggested by Milton and Golden (1990). However, they did not investigate the rate of conver-
gence; this was done by Eyre and Milton (1999) and Michel, Moulinec, and Suquet (2001).
For isotropic composites of two isotropic phases with conductivities σ1 and σ2 there is an
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approach of Bruno and Reitich (1994) that yields the same expansion for the effective tensor.
Without loss of generality let us suppose that σ2 = 1. As we will see in section 18.3 on
page 375, the effective conductivity σ∗ considered as a function σ∗(σ1) of σ1 with the geome-
try held fixed is analytic in the cut complex plane. Its singularities can lie anywhere along the
negative real σ1-axis. The function σ∗(σ1)/

√
σ1 is also analytic in this cut complex plane and

is introduced to make the connection with the expansion (14.34). Now it would be desirable
to have a series expansion that converges in this entire domain of analyticity as such an ex-
pansion should converge faster than a series expansion with a smaller domain of convergence.
Since a series expansions in powers of z converges only within a circle in the z-plane, we
introduce the transformation

z =
√
σ1 − 1√
σ1 + 1

,

which maps the cut complex σ1-plane to the unit circle in the z-plane. From the series expan-
sion for σ∗/

√
σ1 in powers of z we obtain the expansion

σ∗(σ1)/
√
σ1 = 1+

∞∑
k=1

ak
(
√
σ1 − 1)k

(
√
σ1 + 1)k

, (14.38)

which will converge in the entire cut complex plane and have an especially fast rate of con-
vergence.

Now let us compare this expansion with the expansion (14.34). When σ1 is fixed, real,
and positive we can take α and β as the minimum and maximum of σ1 and σ2 = 1 and set
σ0 =

√
αβ = √σ1. With L0 = σ0I andM = I/2σ0 we have

K = (2χ1 − 1)
2
√
σ1(
√
σ1 − 1)√

σ1 + 1
, ΥK = (I − 2Γ1)(2χ1 − 1)

√
σ1 − 1√
σ1 + 1

.

Making these substitutions we see that the expansions (14.34) and (14.38) are equivalent with

2〈(2χ1 − 1)[(I − 2Γ1)(2χ1 − 1)] j〉 = a j+1I.

Moreover we see that with this choice of σ0 the expansion (14.34) converges for complex and
not only real values of σ1 and σ2. Convergence is assured unless σ1/σ2 is zero, infinite, or real
and negative.

14.10. A related series that converges quickly
The formula (14.34) gives an expansion for L∗ in powers ofK. We will see in section 17.3
on page 359 that for establishing microstructure-independent relations and links between ef-
fective tensors it proves useful to consider the expansion of

K∗ = [I + (L∗ −L0)M ]−1(L∗ −L0)

in powers of K . To derive this expansion we return to the formula (12.29) satisfied by the
polarization field P (x) and express it as

[I + (L−L0)M − (L−L0)A]P = (L−L0)V , (14.39)

whereM is an arbitrary tensor,

V = 〈E〉 +M 〈P 〉,
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andA is the nonlocal operator defined by

AP =M(P − 〈P 〉)− ΓP .

Equivalently, we have
A =M(I − Γ0)− Γ = Υ(I − Γ0).

The action of A is local in Fourier space. The fieldAP has Fourier componentsA(k)P̂ (k)
where

A(k) = M − Γ(k) for k �= 0,
= 0 for k = 0. (14.40)

Multiplying both sides of (14.39) on the left by [I + (L − L0)M ]−1 gives a simple
equation for the polarization field:

[I −KA]P =KV . (14.41)

By considering the average fields we obtain the relation

(L∗ −L0)V = 〈P 〉 + (L∗ − L0)M〈P 〉,
which can be expressed as

〈P 〉 =K∗V . (14.42)

Combining this with (14.41) gives the formula (Grabovsky, Milton, and Sage 2000)

K∗ = 〈[I −KA]−1K〉, (14.43)

where the operator [I −KA]−1 acts on the field K(x), taking values in T ⊗ T according
to the extension prescribed by (12.32). Expanding [I −KA]−1 in powers ofKA gives the
expansion

K∗ =
∞∑
j=0

〈(KA) jK〉. (14.44)

Now sinceA = Υ(I −Γ0) and I −Γ0 is a projection with norm 1, the norm ofA will at
most be equal to the norm of Υ. Therefore one can expect this series expansion to converge
as fast as the series expansion (14.34). For a two-phase composite the expansion reduces to

K∗ = f1K1 + f2K2 +
∞∑
j=0

〈[χ1(K1 −K2)A] jχ1(K1 −K2)〉,

where

K1 = [I + (L1 −L0)M ]−1(L1 − L0), K2 = [I + (L2 −L0)M ]−1(L2 −L0).

A somewhat similar expansion was derived by Torquato (1997a, 1997b, 1998), who takes
L0 = L2 and M = γ, where γ is given by (12.35). His expansion is for K−1

∗ rather
than K∗. If for simplicity we consider an isotropic composite of two isotropic phases with
conductivities σ1 and σ2, we have L1 = σ1I , L2 = σ2I , andM = I/3σ2 and his expansion
takes the form

σ∗ + 2σ2

σ∗ − σ2
= 1
f1z
+

∞∑
j=0

a j z j , where z = σ1 − σ2

σ1 + 2σ2
. (14.45)
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This expansion has the appealing property that the first term gives the Maxwell (i.e., the
Clausius-Mossotti) approximation formula (10.27) and so succeeding terms can be regarded
as corrections to this approximation formula. By keeping a few more terms in the expansion
Torquato obtains good estimates of the moduli for some suspensions of spheres. Unfortu-
nately this expansion will often not converge when σ1 and σ2 are real, positive, and σ1 > 4σ2.
With σ2 = 1 the possible singularities of the function on the left of (14.45) are at σ1 = 1
and at negative real values of σ1, that is, at z = 0 or at real values of z outside the interval
(−1/2, 1). If R denotes the distance from the origin to the nearest singularity in the z-plane,
excluding the singularity at z = 0, the series will not converge when |z| > R > 1/2. If
the composite is a suspension of spheres, the precise value of R will depend on the sphere
configuration but will be close to 1/2 if there are spheres that come close to touching other
spheres [see McPhedran and Perrins (1981) and Bruno (1991a).]

It should be remarked that one has to be careful taking truncated series expansions as
approximation formulas for effective tensors. For example, for an isotropic conducting com-
posite of two isotropic conducting phases, the approximate to the function σ∗(σ1, σ2) that one
obtains from truncated series expansions is generally not compatible with the known analytic
properties of effective conductivity functions discussed in section 18.3 on page 375. In par-
ticular, such approximations typically predict that σ∗ can have a negative real part when σ1

and σ2 are appropriately chosen with positive real parts, that is, the composite would turn heat
into electrical energy when both phases dissipate electrical energy into heat. In other words,
for a given truncated series expansion one can find values of σ1 and σ2 for which the predicted
value of σ∗ is not just a bad approximation but is physically impossible. Truncated series
expansions give reasonable approximations when σ1/σ2 is restricted to a limited domain in
the complex plane. As more and more terms are added to the truncated series expansion this
domain approaches the domain of convergence of the series expansion.

14.11. Numerical computation of the fields and effective tensor using
series expansions

Moulinec and Suquet (1994, 1998) recognized that the series expansions provide a convenient
iterative procedure for numerically computing the fields and effective tensor. Consider the
approximants

Em =
m∑
j=0

(−ΓδL) jE0 (14.46)

for the field E. These satisfy

Em+1 = E0 − ΓδLEm = Em − ΓLEm, (14.47)

where the last relation follows from the identity ΓL0E
m = Em − E0, which holds because

Em −E0 lies in the space E . Associated with each field Em is the approximate

Jm = L0E0 + (I −L0Γ)(L−L0)E
m = LEm +L0(E

m+1 −Em)

to the field J . This approximant to J necessarily lies in the space U ⊕ J because Γ1(I −
L0Γ) = 0. As the fields converge the last term in the above expression for Jm becomes
negligible and we have Jm ≈ LEm+1, that is, the constitutive relation is nearly satisfied by
the approximate fields.
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Now the action of L on Em is easy to compute in real space. The field LEm can then be
transformed to Fourier space, where the action of Γ on it is easily computed. After transfor-
mation back to real space the resulting field ΓLEm can be added to Em to obtain Em+1. By
discretizing the fields, using fast Fourier transforms, and iterating the procedure one obtains
a workable scheme for calculating the field E. At each stage it is necessary to keep track
of only the current and the most recent iterates of the field, such as ΓLEm and Em . After
the iteration has stopped, at say m = M , one has an approximant EM for the field E. As-
sociated with this approximant EM ∈ E to E is the approximant JM ∈ J to J . When the
reference medium L0 is set equal to (α + β)I/2 an analysis similar to that in the previous
section [see (14.24)] shows that |E − EM | is at most of the order of γ M [see (14.24)] with
γ = (β/α − 1)/(β/α + 1).

One can then calculate selected elements of the effective tensor either from the constitutive
relation

〈LEM〉 ≈ L∗〈EM〉,
in which 〈EM〉 can be identified with E0, or (assuming that L and L0 are self-adjoint) from
the expression

〈EM ·〉L∗〈EM〉 ≈ 〈EM ·LEM〉
for the energy. Using the constitutive relation yields (for each choice of E0) many elements
of L∗, each accurate to at least the order of γ M . Using the energy approximation yields a
single element of L∗ that is accurate to at least the order of γ 2M [see (13.9)]. If one needs to
determine only a single element of L∗, such as the effective shear modulus of an elastically
isotropic composite, then it is best to work with the energy approximation. However, if two
or more elements ofL∗ are needed, then it is probably best to use the constitutive relation and
to double the number of iterations to achieve the same order of accuracy as would be obtained
using the energy approximation.

Faster convergence can be expected if one works with the approximants

P m =
m∑
j=0

K(ΥK) jE0

to the polarization field, which are based on the series expansion (14.34). These satisfy the
recursion relations

P m+1 =KE0 +KΥP m .

The action of Υ on the field P m is easy to compute in Fourier space whereas the action ofK
onΥP m is easy to compute in real space. Therefore the same procedure of swapping between
real space and Fourier space using fast Fourier transforms can be used to numerically compute
a high-accuracy approximation to the true polarization field. Associated with the approximant
P m for the polarization field is the approximant

Em = E0 − ΓP m =K−1P m+1 −MP m

= (L− L0)
−1P m+1 +M(P m+1 − P m)

for the field E. This approximant lies in U ⊕ E . As the approximants to the polarization
field converge, the last term in the above expression becomes negligible and we have (L −
L0)E

m ≈ P m+1 ≈ P m . Also associated with P m is the approximant

Jm = L0E0 + (I − L0Γ)P m = P m +L0E
m



308 14. Series expansions

for the field J . This approximant lies in U ⊕ J . The relation P m ≈ (L − L0)E
m , which

holds as the approximants to the polarization field converge, implies that Jm ≈ LEm . Thus
the constitutive law will be nearly satisfied by these approximate fields when m is large.

When the reference medium L0 is set equal to
√
αβI an analysis similar to that in the

previous section [see (14.24)] shows that |E − EM | is at most of the order of (γ ′)M [see
(14.37)] with γ ′ = (

√
β/α − 1)/(

√
β/α + 1). Eyre and Milton (1999) as a test example

applied this scheme to calculating the transverse conductivity of a square array of cylinders
and verified that it converged substantially faster than the iterative scheme based on (14.46).
Even faster convergence rates were obtained by first solving the equations on a coarse grid
and then successively refining the grid. Michel, Moulinec, and Suquet (2001) found a similar
acceleration of convergence for two-dimensional elasticity computations.

One advantage of these approaches to computing the fields and effective tensors is that
they are easily generalized to nonlinear materials (Moulinec and Suquet 1998). For example,
consider an n-phase composite where the constitutive relation takes the form

J(x) = F i(E(x)) when x is in phase i = 1, 2, . . . , n.

We rewrite this as J = F (E), that is, the field J is some nonlinear function of the field E.
Now the recursion relation (14.47) clearly has a natural generalization to nonlinear compos-
ites:

Em+1 = Em − ΓF (Em). (14.48)

To get some idea of when this iteration scheme will converge let us suppose thatL0 = σ0I .
This implies that Γ = Γ1/σ0, and from (14.48) we have

Em+2 −Em+1 = Em+1 −Em − Γ1[F (Em+1)− F (Em)]/σ0

= Γ1{[Em+1 −Em]− [F (Em+1)− F (Em)]/σ0}.

Since Γ1 is a projection operator, it follows that

|Em+2 − Em+1|2 ≤ |Em+1 −Em − [F (Em+1)− F (Em)]/σ0|2
≤ |Em+1 −Em |2 − 2(Em+1 −Em,F (Em+1)− F (Em))/σ0

+|F (Em+1)− F (Em)|2/σ 2
0 .

To bound the terms appearing here, let us assume that there exist positive constants α and β

such that

(P − P ′,F (P )− F (P ′)) ≥ α|P − P ′|2, |F (P )− F (P ′)| ≤ β|P − P ′|, (14.49)

for any fieldsP andP ′ inH. [When the material is linear, i.e.,F (P ) = LP , these conditions
reduce to the conditions (14.25) and (14.26).] Then we have the inequality

|Em+2 −Em+1|2 ≤ (1− 2α/σ0 + β2/σ 2
0 )|Em+1 −Em|2.

When σ0 is chosen sufficiently large, so that

|1− 2α/σ0 + β/σ 2
0 | < 1,

this inequality guarantees that the sequence of fieldsEm(x) is Cauchy and hence convergent.
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In our n-phase composite, the condition (14.49) will be satisfied if and only if the functions
F i are such that

(A−A′) · [F i (A)− F i(A′)] ≥ α|A−A′|2, |F i (A)− F i (A′)| ≤ β|A−A′|, (14.50)

for all choices of the tensors A and A′. The first condition holds only when F i(A) is a
monotone function ofA. The second condition holds only when F i(A) does not grow faster
than linearly with A. To get some more insight into the first condition, suppose that the
function F i (A) derives from an energy, that is,

F i (A) = ∂Wi(A)

∂A
,

for some choice of the function Wi (A). Let us consider the line of matrices A′(λ) = A −
λB parameterized by λ, where without loss of generality we can assume that |B| = 1, by
rescaling λ if necessary. Then, defining Wi (λ) = Wi (A′(λ)), the first condition becomes

λ

[
dWi (λ)
dλ

− dWi (λ)
dλ

∣∣∣∣∣
λ=0

]
≥ αλ2, (14.51)

which in the limit λ→ 0 implies that

d2Wi (λ)
dλ2 ≥ α, (14.52)

at λ = 0. In other words, the function Wi (A) must have some minimum positive curvature at
the pointA in the directionB. SinceA andB, with |B| = 1, are arbitrary, we conclude that
Wi (A)must be a convex function ofA with some minimum curvature. Conversely, if (14.52)
holds for all λ (and all A and B), then by integrating it we deduce that (14.51) holds, and
hence that the first condition in (14.50) must also hold. Of course, if the conditions in (14.50)
are not satisfied, then the iteration scheme might still converge, as shown in the linear case in
section 14.8 on page 301.

These iteration schemes generally fail to converge when the material contains voids or
rigid inclusions. To overcome this difficulty Michel, Moulinec, and Suquet (2000, 2001) have
introduced an iteration method based on augmented Lagrangians that works rather well even
when voids or rigid inclusions are present.

References
Avellaneda, M. 1987. Optimal bounds and microgeometries for elastic two-phase compos-

ites. SIAM Journal on Applied Mathematics 47(6):1216–1228. {175, 181, 292,
294, 309, 463–465, 468, 471, 473, 491}

Beran, M. J. 1968. Statistical Continuum Theories. New York: Interscience Publishers. xv
+ 424 pp. ISBN 0-470-06861-2. {xxv, xxvi, 11, 15, 291, 309, 489, 491}

Beran, M. J. and J. J. McCoy 1970. Mean field variations in a statistical sample of heteroge-
neous linear elastic solids. International Journal of Solids and Structures 6:1035–1054.
{291, 309}

Beran, M. J. and J. Molyneux 1963. Statistical properties of the electric field in a medium
with small random variations in permittivity. Nuovo Cimento 30:1406–1422. {291,
309}



310 14. Series expansions

Brown, W. F. 1955. Solid mixture permittivities. Journal of Chemical Physics 23:1514–
1517. {291, 310, 313, 336}

Bruno, O. P. 1991b. Taylor expansions and bounds for the effective conductivity and the
effective elastic moduli of multicomponent composites and polycrystals. Asymptotic
Analysis 4(4):339–365. {298, 310, 372, 392}

Bruno, O. P. 1991a. The effective conductivity of strongly heterogeneous composites. Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
433(1888):353–381. {306, 310, 373, 392, 569, 597}

Bruno, O. P. and F. Reitich 1994. Approximation of analytic functions: A method of en-
hanced convergence. Mathematics of Computation 63(207):195–213. {304,
310}

Caflisch, R. E. 1993. Singularity formation for complex solutions of the 3D incompressible
Euler equations. Physica. D, Nonlinear Phenomena 67(1–3):1–18. {298, 310}

Dederichs, P. H. and R. Zeller 1973. Variational treatment of the elastic constants of disor-
dered materials. Zeitschrift für Physik 259:103–116. {291, 310, 553, 565}

Eyre, D. J. and G. W. Milton 1999. A fast numerical scheme for computing the response
of composites using grid refinement. The European Physical Journal. Applied Physics
6(1):41–47. {40, 42, 303, 308, 310}

Firoozye, N. B. and R. V. Kohn 1993. Geometric parameters and the relaxation of multi-
well energies. In D. Kinderlehrer, R. D. James, M. Luskin, and J. L. Ericksen (eds.),
Microstructure and Phase Transition, pp. 85–109. Berlin / Heidelberg / London / etc.:
Springer-Verlag. ISBN 0-387-94112-6 (New York), 3-540-94112-6 (Berlin). {295,
310}

Fokin, A. G. 1982. Iteration method in the theory of nonhomogeneous dielectrics. Physica
Status Solidi. B, Basic Research 111:281–288. {248, 267, 298, 310}

Fokin, A. G. 1996. Macroscopic conductivity of random inhomogeneous media. calcu-
lational methods. Uspekhi Fizicheskikh Nauk 166:1069–1093. English translation in
Physics-Uspekhi 39:1009–1032 (1996). {298, 310}

Fokin, A. G. and T. D. Shermergor 1969. Calculation of effective elastic moduli of com-
posite materials with multiphase interactions taken into account. Journal of Applied
Mechanics and Technical Physics 10:48–54. {291, 310}

Gérard, P. 1989. Compacité par compensation et régularité 2-microlocale. (French) [Com-
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15
Correlation functions and how they enter

series expansions†

What information about the composite material is needed to compute the effective tensor?
Since the series expansion converges to the effective tensor, this is clearly equivalent to the
question of what geometrical information is relevant to determining the successive terms in
the series expansion (14.2). Brown (1955) found that the terms in the series expansion of
the effective conductivity depend on the correlation functions characterizing the composite
microgeometry.

15.1. Expressing the third-order term of the series expansion in terms
of correlation functions

To see how the terms in the series expansion (14.2) depend on correlation functions let us look
at a particular term, say the third-order term,

δL(3)
∗ ≡ 〈(L− L0)Γ(L−L0)Γ(L−L0)〉.

We could of course examine the second-order term, but then the generalization of the ensuing
analysis to higher order terms in the expansion would be less transparent.

We assume that a basis for T has been chosen so that δL(3)
∗ , L, and L0 are represented by

m×m matrices. From formula (12.45), which expresses the action of the operator Γ in terms
of the integral kernel Γ�(x,x

′), it follows that

{δL(3)
∗ }a1b3 =

1
|�|
∫
�

dx3

∫
�

dx2

∫
�

dx1

{δL(x1)}a1b1{Γ�(x1,x2)}b1a2{δL(x2)}a2b2{Γ�(x2,x3)}b2a3{δL(x3)}a3b3 ,

(15.1)

where
δL(x) = L(x)−L0

is assumed to be smooth or piecewise smooth and where, following the Einstein summation
convention, sums over repeated indices are implied. Special care must be taken when eval-
uating these integrals because Γ�(y) has a singularity of order |y|−d at y = 0 (and similar
singularities at points periodically displaced from the point y = 0). Accordingly, the inte-
grals should be treated in the manner discussed in section 12.6 on page 257. Bypassing this
technical question, let us make the change of variables from x1, x2, and x3 to y1 = x1 −x2,
y2 = x2 − x3, and x3. Due to the periodicity we can integrate y1 over the region � rather
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than over the region �− x3 − y2, and we can integrate y2 over � rather than over � − x3.
Performing the integral over x3 first and noticing that relation (15.1) holds for all choices of
the field E0 leads to

{δL(3)
∗ }a1b3 =

∫
�

dy2

∫
�

dy1{F 3(y1 + y2,y2)}a1b1a2b2a3b3{Γ�(y1)}b1a2{Γ�(y2)}b2a3 ,

(15.2)

in which F 3(z1,z2) is a tensor with six indices with elements

{F 3(z1,z2)}a1b1a2b2a3b3 =
1
|�|
∫
�

dx{δL(z1 + x)}a1b1{δL(z2 + x)}a2b2{δL(x)}a3b3 .

This object is called a three-point correlation function because it involves an average over x
of a quantity that depends on the value of material moduliL at the three points z1+x, z2+x,
and x. It is a periodic function of z1 and z2 because L(x) is a periodic function of x.

This result can clearly be generalized to other terms in the series expansion. The ex-
pansion of the effective tensor to the p-th order in perturbation can be computed once we
know the appropriate p-point correlation function. Specifically, we need to know the p-point
correlation function F p(z1,z2, . . . ,z p−1) defined as the tensor with elements

{F p(z1,z2, . . . ,z p−1)}a1b1a2b2...apbp =
1
|�|
∫
�

dx{δL(z1 + x)}a1b1{δL(z2 + x)}a2b2 · · · {δL(z p−1 + x)}ap−1bp−1{δL(x)}apbp .

Such correlation functions provide a partial description of the composite geometry.
The terms in the series expansion can also be expressed in terms of the integral kernel

Γ∞(y) of the free-space �-operator. The key is to rewrite (15.2) in a form where Γ�(y1)

and Γ�(y2) are integrated against a function that has zero average value over y1 and over
y2. Notice that we can subtract from F 3(y1 + y2,y2) any function that is independent of
y1, or any function that is independent of y2, without altering the value of the integral. This
is permitted because Γ acting on any constant field gives zero. In particular we can subtract
fromF 3(y1+y2,y2) its average over y1 and then subtract the average over y2 of the resultant
expression. In other words, we can replace F 3(y1 + y2,y2) by the function

F ′
3(y1 + y2,y2) = F 3(y1 + y2,y2)−

1
|�|
∫
�

dy1F 3(y1 + y2,y2)

− 1
|�|
∫
�

dy2F 3(y1 + y2,y2)+
1
|�|2

∫
�

dy2

∫
�

dy1F 3(y1 + y2,y2),

(15.3)

which has the property that

1
|�|
∫
�

dy1F
′
3(y1 + y2,y2) = 0,

1
|�|
∫
�

dy2F
′
3(y1 + y2,y2) = 0.

A similar operation can be performed on higher order correlation functions. Once this
substitution is made, these integral kernels can be replaced by Γ∞(y1) and Γ∞(y2) while the
regions of integration can be extended to all space, that is,
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{δL(3)
∗ }a1b3 =

∫
d

dy2

∫
d

dy1{F ′
3(y1 + y2,y2)}a1b1a2b2a3b3{Γ∞(y1)}b1a2{Γ∞(y2)}b2a3 .

(15.4)

Some care still must be taken in evaluating these integrals because Γ∞(y) has a singularity of
order |y|−d at y = 0.

15.2. The terms in the series expansion for random media
These formulas can be extended to random media that are statistically homogeneous with no
long-range correlations. Rather than going through a detailed mathematical derivation, let
us dispense with rigor and apply a simple argument that yields the result directly from the
preceding formulas. The absence of long-range correlations in the random composite implies
that if a set of p points can be divided into a first cluster of p′ points and a second cluster
of p − p′ points that is separated from the first cluster by a distance that is much larger than
the microstructure, then the p-point correlation function is approximately a product of the
p′-point correlation function for the first cluster and the (p − p′)-point correlation function
for the second cluster.

In particular, consider the three-point correlation function in the random composite, de-
fined by

{F 3(z1,z2)}a1b1a2b2a3b3 = lim
λ→∞

1
λd |�|

∫
λ�

dx{δL(z1 + x)}a1b1{δL(z2 + x)}a2b2{δL(x)}a3b3,

(15.5)

in which λ� is a cube of side length λ centered at the origin (rather than a unit cell of period-
icity). The absence of long-range correlations implies that

{F 3(z1,z2)}a1b1a2b2a3b3

≈ {F 1}a1b1{F 2(z2)}a2b2a3b3 when |z1| and |z1 − z2| � microstructure,
≈ {F 1}a2b2{F 2(z1)}a1b1a3b3 when |z2| and |z1 − z2| � microstructure,
≈ {F 1}a3b3{F 2(z1 − z2)}a1b1a2b2 when |z1| and |z2| � microstructure,
≈ {F 1}a1b1{F 1}a2b2{F 1}a3b3 when |z1|, |z2|, and |z1 − z2| � microstructure,

(15.6)

in which F 1 and F 2(z) are the one-point and two-point correlation functions in the random
composite:

{F 1}ab = lim
λ→∞

1
λd |�|

∫
λ�

dx{δL(x)}ab,

{F 2(z)}a1b1a2b2 = lim
λ→∞

1
λd |�|

∫
λ�

dx{δL(z + x)}a1b1{δL(x)}a2b2 . (15.7)

These correlation functions are of course no longer periodic in z1 and z2. The next step is
to recognize that the effective tensor of a random composite is perturbed only slightly when
the random composite is replaced by a periodic composite obtained by periodically extending
a sufficiently large cubic sample. The dimensions of this cubic sample must of course be
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much larger than the size of the microstructure of the random composite. Now consider, for
example, the third-order term in the series expansion for this periodic material. Since the size
of the period cell is much larger than the microstructure, the dominant contributions to the
integrals in (15.3) come from points where we can use the approximations (15.6) to simplify
the integrands.

For example, we have that

1
|�|
∫
�

dy1{F 3(y1 + y2,y2)}a1b1a2b2a3b3 ≈
1
|�|
∫
�

dy1{F 1}a1b1{F 2(y2)}a2b2a3b3

≈ {F 1}a1b1{F 2(y2)}a2b2a3b3,

with this approximation becoming increasingly accurate as the size of the cubic sample is
increased, where F 3(z1,z2), F 2(z), and F 1 are the correlation functions of the periodic
material. When z1, z2, and z all lie within the unit cell, these are approximately the same
as the correlation functions in the random composite. Consequently, for z1 and z2 within
the unit cell, the correlation function F ′(z1,z2) of the periodic material will be negligible
whenever |z1| or |z2| is much larger than the microstructure. In other words, the correlation
function differs significantly from zero only when both z1 and z2 lie within a relatively small
region of the unit cell (and in those regions periodically displaced from this region). This
region becomes increasingly more localized in comparison with the size of the unit cell when
we take successively larger cubic samples of the random composite. Since the tensor field
L(x) is bounded for all x, the correlation function is also bounded and it follows that the
contribution to the integral (15.4) comes almost entirely from points z1 and z2 within the unit
cell, and in fact comes predominantly from points z1 and z2 close to the origin.

Hence the integral (15.4) is perturbed only slightly if we make the second step of replacing
the correlation function in the periodic composite by the associated correlation function in the
original random composite, namely,

{F ′
3(y1 + y2,y2)}a1b1a2b2a3b3 = {F 3(y1 + y2,y2)}a1b1a2b2a3b3

− {F 1}a1b1{F 2(y2)}a2b2a3b3 − {F 2(y1)}a1b1a2b2{F 1}a3b3 + {F 1}a1b1{F 1}a2b2{F 1}a3b3 ,

(15.8)

in which F 3(z1,z2), F 2(z), and F 1 are now the correlation functions in the random compos-
ite, as defined by (15.5) and (15.7). The error incurred in each step in this argument becomes
negligible in the limit in which the size of the cubic sample tends to infinity. It follows that
the final expression for δL(3)

∗ , given by substituting (15.8) into (15.4), provides an exact for-
mula for the third-order term in the series expansion in the random composite. This formula
simplifies if we choose a reference tensor L0 = 〈L〉. Then F 1 = 0 and as a consequence
F ′

3(z1,z2) can be identified with F 3(z1,z2).
In a two-phase random composite there are many natural choices for the reference tensor

L0, such as L0 = L1, L0 = L2, L0 = 〈L〉, and L0 = (L1 + L2)/2. To simplify the series
expansion let us make the choice L0 = L2. Then we have

δL(x) = χ1(x)(L1 −L2),

which when substituted in (15.5) and (15.7) gives correlation functions

{F 3(z1,z2)}a1b1a2b2a3b3 = f111(z1,z2){L1 −L2}a1b1{L1 −L2}a2b2{L1 −L2}a3b3,
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{F 2(z)}a1b1a2b2 = f11(z){L1 −L2}a1b1{L1 −L2}a2b2,

{F 1}ab = f1{L1 −L2}ab, (15.9)

where f1, f11(z), and f111(z1,z2) are the scalar-valued correlation functions

f1 = lim
λ→∞

1
λd |�|

∫
λ�

dx χ1(x),

f11(z) = lim
λ→∞

1
λd |�|

∫
λ�

dx χ1(z + x)χ1(x),

f111(z1,z2) = lim
λ→∞

1
λd |�|

∫
λ�

dx χ1(z1 + x)χ1(z2 + x)χ1(x), (15.10)

associated with the characteristic function χ1(x). By changing the variable of integration
from x to x′ = z + x in the definition of f11(z) and from x to x′ = z1 + x or x′ = z2 + x
in the definition of f111(z1,z2), one sees that these correlation functions have the symmetry
properties

f11(z) = f11(−z),
f111(z1,z2) = f111(z2,z1) = f111(z2 − z1,−z1) = f111(z1 − z2,−z2).

(15.11)

The correlation functions have a simple geometrical interpretation that is evident from
their definitions (15.10). The one-point correlation function f1 is simply the probability that
a point lands in phase 1 when it is dropped randomly in the composite: It is the volume frac-
tion of phase 1. The two-point correlation function f11(z) is the probability that a rod, with
endpoints at the origin and at z, lands with both endpoints in phase 1 when it is translated and
dropped at a random position in the composite. Similarly, the three-point correlation function
f111(z1,z2) is the probability that a triangle with vertices at the origin and at the points z1 and
z2 lands with all three vertices in phase 1 when it is translated and dropped randomly in the
composite. Thus the value of the correlation function for triangles or rods lying within a given
plane can be determined by taking a cross section of the composite geometry in that plane and
randomly dropping rods or triangles in it to see what proportion land with all their vertices in
phase 1. In other words, the one-point, two-point, and three-point correlation functions can
be determined from cross-sectional photographs. If the geometry of the composite is statis-
tically isotropic, so that the cross-sectional statistics are independent of the orientation and
positioning of the cross section, then it suffices to take a single cross-sectional photograph.
By this means Berryman (1988) has developed image processing techniques to determine the
one-point, two-point and three-point correlation functions from photographs of the composite
microstructure.

For dilute suspensions of spheres Weissberg and Prager (1962) obtained approximate ex-
pressions for these correlation functions. For nondilute suspensions of spheres Torquato and
Stell (1982) have derived a formula giving the n-point correlation function in terms of the
correlation functions characterizing the distribution of sphere centers. For suspensions of
possibly nonspherical inclusions of phase 1 in a matrix of phase 2, a triangle with all ver-
tices in phase 1 may have all vertices lying within a single inclusion, or two vertices in one
inclusion and the third in a second inclusion, or three vertices in three different inclusions.
Accordingly, as Gillette and McCoy (1986) show [see also McPhedran and Milton (1981)],
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there is a decomposition of f111(z1,z2) [and similarly f11(z) ] into correlation functions
depending on these different possibilities. The single inclusion probabilities that all points
lie within a specific inclusion given that a particular point lies within that inclusion can be
expressed in terms of certain areas of intersection for the two-dimensional problem and vol-
umes of intersection for the three-dimensional problem (Gillette and McCoy 1986, 1987). For
polycrystalline materials the evaluation of the three-point correlations requires one to know
the crystal orientation at each point in the cross-sectional photograph. Adams, Wright, and
Kunze (1993) have developed an experimental technique for accurately obtaining maps of the
cross-sectional crystal orientation. See also Etinghof and Adams (1993), who show how poly-
crystalline correlation functions can be represented concisely using symmetry considerations
and group theory.

The four-point correlation function cannot be determined from a single cross-sectional
photograph, since four points typically do not lie within a plane. For this reason, the ex-
perimental measurement of four-point correlation functions is difficult, and this usually pro-
hibits the evaluation of the terms in the series expansion beyond the third order in real three-
dimensional composites.

By substituting the formulas (15.9) back into (15.8) we see that

{F ′
3(y1 + y2,y2)}a1b1a2b2a3b3 =

[
f111(y1 + y2,y2)− f1

(
f11(y1)+ f11(y2)

)
+ f 3

1

]
×{L1 −L2}a1b1{L1 −L2}a2b2{L1 −L2}a3b3,

(15.12)

which when inserted into (15.4) gives an expression for the third-order term in the series ex-
pansion in terms of integrals that involve the correlation functions f1, f11(z), and f111(z1,z2).
The usual care is required when evaluating these integrals because of the singularity ofΓ∞(y)
at y = 0. This singularity must be treated in the manner discussed in section 12.6 on page 257.
There are no convergence problems at large values of y1 and y2 since the absence of long-
range correlations ensures that F ′

3(y1 + y2,y2) approaches zero when either |y1| → ∞ or
|y2| → ∞.

We can also introduce correlation functions f2, f22(z), and f222(z1,z2) associated with
the characteristic function χ2(x) = 1 − χ1(x). These are easily expressed in terms of the
correlation functions f1, f11(z), and f111(z1,z2). Indeed, by replacing χ1(x) by 1 − χ1(x)
in (15.10) and expanding the expressions we see that

f2 = 1− f1, f22(z) = 1− 2 f1 + f11(z),

f222(z1,z2) = 1− 3 f1 + f11(z1)+ f11(z2)+ f11(z1 − z2)− f111(z1,z2).

There are also mixed correlation functions, such as the correlation function

f12(z) = lim
λ→∞

1
λd |�|

∫
λ�

dx χ1(z + x)χ2(x) = f1 − f11(z),

giving the probability that a rod with endpoints at the origin and at z lands with these end-
points in phase 2 and phase 1, respectively, when it is translated and dropped at a random po-
sition in the composite. When the rod is sufficiently short, relative to the microstructure, the
only way that this can happen is if the rod straddles the interface between the two phases. The
probability of this happening, averaged over all orientations of the rod, should be proportional
to the specific surface area A of the interface. (The specific area is the internal surface area per
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unit volume.) The precise result, derived by Debye, Anderson, Jr., and Brumberger (1957) for
isotropic composites and generalized to anisotropic composites by Berryman (1987), is that

A = lim
r→0

4〈 f12(rn)〉n
r

= lim
r→0

−4d〈 f11(rn)〉n
dr

,

where the averages 〈·〉n are over all orientations of the unit vector n.

15.3. Correlation functions for penetrable spheres
To give some insight into the nature of these correlation functions, let us look at a specific
example, for which the correlation functions take a particularly simple form. In a footnote,
Weissberg (1963) attributes this model to W. F. Brown. The composite is constructed as
follows. First we take a large cubic region and successively drop seed points into it in a
random fashion, so that each successive seed point is equally likely to land anywhere in the
cubic region, irrespective of where the previous points are positioned. This is continued until
the desired density of points is reached. Taking the limit in which the size of the cubic region
goes to infinity gives us a distribution of seed points known as a Poisson-point distribution.
Then spheres of, say, uniform radius r are inscribed around each of these seed points and
phase 2 is taken to be the union of these spherical regions, while phase 1 is taken to be the
remaining region. Thus phase 1 consists of all points that are at least a distance r away from
the seed points.

Let us suppose that λ represents the average density of seed points per unit volume, and
let us ask the question: Given a region V with volume |V |, what is the probability P(V ) that
V does not contain any seed points? To answer this, let us enlarge the region V to V ∪ δV
by adding a region δV with infinitesimal volume |δV | such that V ∩ δV = 0. Since the
probability that the region V is devoid of points is independent of whether the region δV
contains any points or not, it follows that

P(V ∪ δV ) = P(V )P(δV ) = P(V )(1− λ|δV |).

By integrating this equation, and noting that P(V ) = 0 when |V | = 0, we deduce that

P(V ) = e−λ|V |.

Now let us consider any correlation function, say the three-point correlation function
f111(z1,z2). It is the probability that the origin and the points z1 and z2 all lie in phase
1 when a triangle with vertices at these points is thrown randomly into the composite. In the
context of the model it is the probability that the region Vr (z1,z2), consisting of the union of
three spheres of radius r centered, respectively, at the origin and at the points z1 and z2, does
not contain any seed points. In other words, the three-point correlation function is

f111(z1,z2) = P(Vr (z1,z2)) = e−λ|Vr (z1,z2)|.

Weissberg and Prager (1962) give a formula for the total volume |Vr (z1,z2)| occupied
by three, possibly overlapping, spheres of radius r . More generally, the p-point correlation
function f11...1(z1,z2, . . .z p−1) is related in a similar fashion to the volume occupied by the
union of p spheres of radius r centered at the points 0,z1,z2, . . .z p−1. Helte (1994) has
derived an explicit formula for the volume occupied by the union of four spheres, and thereby
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obtains the four-point correlation function. Specializing to the one-point correlation function,
we obtain a formula for λ in terms of the volume fraction f1:

λ = − log( f1)
|Vr | ,

where Vr is the volume occupied by a single sphere of radius r , which is of course 4πr 3/3
when d = 3 and πr 2 when d = 2.

The penetrable sphere model can be generalized in various ways. The simplest general-
ization is to stretch the geometry by making an affine transformation. In this way one obtains
a penetrable ellipse model where all of the ellipses are aligned. Alternatively, one can take
the original Poisson distribution of seed points and place an inclusion at each seed point. This
inclusion might be a sphere, ellipse, cylinder, plate, or some other shaped object such as a
cube. The inclusion shape, size, orientation, and position relative to the seed point are se-
lected randomly from a probability distribution that is uncorrelated with the position of the
surrounding seed points and uncorrelated with the shapes, sizes, orientations, and positions
of the surrounding inclusions. Phase 1 is then taken to be the region that is not occupied by
any inclusion, while phase 2 consists of those points that lie in at least one inclusion. The
calculation of the p-point correlation function then requires one to compute the total vol-
ume occupied by p possibly intersecting inclusions. For the two-dimensional penetrable disk
model, Helsing (1998) has obtained accurate numerical results for the effective conductivity.

15.4. Correlation functions for cell materials
Another class of composites for which the correlation functions take a special form was intro-
duced independently by Frisch (1965), Matheron (1968), and Miller (1969b), in varying de-
grees of generality. Miller called them “symmetric cell materials” and also introduced another
class of materials, which he called “asymmetric cell materials.” The existence of asymmetric
cell materials was questioned by Brown (1974) and explored further by Hori (1975). Since
their relevance is unclear, we will not discuss them. Accordingly we will refer to symmetric
cell materials as simply cell materials.

A two-phase cell material is constructed as follows. The first step is to divide space into an
infinite number of cells in a statistically homogeneous fashion. For example, one could divide
space into a stack of irregularly spaced layers, or into a network of tubes, or into a periodic
array of boxes. One can even divide space into a space-filling assemblage of spherical cells,
with radii ranging to the infinitesimally small. The cells do not have to be finite in extent,
nor of the same shape or topology. Each cell could even be a cluster of disconnected regions.
But the division into cells does have to made in a statistically homogeneous fashion. The
probability of finding a cell of a particular shape and size in a sufficiently large test region
cannot depend on where that test region is positioned.

The second and key step is to randomly assign each cell as phase 1 or phase 2 in a way that
is uncorrelated both with the shape of the cell and with the phases assigned to the surrounding
cells. In other words, we could go around to each cell and flip a “loaded” coin that gives heads
with probability f1 and tails with probability f2 = 1 − f1: If the coin lands heads, then we
assign the cell as phase 1; and if it lands tails, we assign it as phase 2. Ultimately this gives a
two-phase cell material where phase 1 occupies a volume fraction f1.

Now consider, for example, the three-point correlation function. Suppose that we take
a triangle with vertices at the origin, z1 and z2, and place it a random position in the cell
material. Now if g3(z1,z2) denotes the probability that all three vertices lie in the same cell,



15.4. Correlation functions for cell materials 321

then f1g3(z1,z2) is the probability that all three vertices lie in the same cell and that the cell
is phase 1. Similarly, if g1,2(z1,z2) denotes the probability that any two of the three vertices
lie in the same cell, while the remaining vertex lies in a different cell, then f 2

1 g1,2(z1,z2)

is the probability that this holds and that both cells are phase 1. Finally, if g1,1,1(z1,z2)

denotes the probability that the vertices lie in three different cells, then f 3
1 g1,1,1(z1,z2) is

the probability that this holds and that all three cells are phase 1. Since one of these three
possibilities necessarily occurs, it follows that

g3(z1,z2)+ g1,2(z1,z2)+ g1,1,1(z1,z2) = 1,

and that
f111(z1,z2) = f1g3(z1,z2)+ f 2

1 g1,2(z1,z2)+ f 3
1 g1,1,1(z1,z2).

Since each of the three probabilities g3(z1,z2), g1,2(z1,z2), and g1,1,1(z1,z2) do not
depend on f1, we conclude that f111(z1,z2) has a polynomial dependence on f1 of degree
3. More generally, it is evident from this reasoning that the p-point correlation function
f11...1(z1,z2, . . . ,z p−1) has a polynomial dependence on f1 of degree p with no constant
term. Provided that the reference tensor L0 is chosen independent of f1, we conclude that the
p-th–order term in the series expansion has a polynomial dependence on f1 of degree p. In
light of this, it is natural to take L0 = (L1 + L2)/2 as a reference tensor, since this tensor
does not depend on f1 and remains unchanged when L1 and L2 are swapped, reflecting the
symmetry between the two phases in the cell material. Then the p-th–order term in the series
expansion for L∗ − 〈L〉 has a polynomial dependence on f1 of degree p. Furthermore, this
polynomial can have no constant term because L∗ − 〈L〉 is zero to all orders in δL when
f1 = 0. Consequently, the polynomial can be factored into f1 times a polynomial of degree
p − 1.

There is one other important consideration: Since both phases are treated on an equal
basis (aside from the assigning of different probabilities f1 and f2 for a cell to be of phase 1
or phase 2) it follows that the effective tensor L∗ should remain unchanged if the tensors L1

and L2 are interchanged and at the same time the volume fractions f1 and f2 are swapped.
Consequently, with the choice L0 = (L1 + L2)/2 of reference tensor the p-th–order term in
the perturbation expansion must be an even polynomial function of f1 − f2 when p is even
(since this term is an even function of L1 − L2) and it must be an odd polynomial function
of f1 − f2 when p is odd (since then the term is an odd function of L1 − L2). Moreover,
because f1 is a factor of these polynomials, it follows that f2 must likewise be a factor. So
each polynomial must be divisible by f1 f2 = [1− ( f1− f2)2]/4. These considerations imply
that the effective tensor to, say, the fifth order in perturbation has an expansion of the form

{L∗}ab = { f1L1 + f2L2}ab + f1 f2 Ab1a2�ab1�a2b + f1 f2( f1 − f2)Bb1a2b2a3�ab1�a2b2�a3b

+ f1 f2[Cb1a2b2a3b3a4 + ( f1 − f2)
2C ′

b1a2b2a3b3a4
]�ab1�a2b2�a3b3�a4b

+ f1 f2( f1 − f2)[Db1a2b2a3b3a4b4a5 + ( f1 − f2)
2 D′

b1a2b2a3b3a4b4a5
]�ab1�a2b2�a3b3�a4b4�a5b

+· · · , (15.13)

in which the �i j denote the matrix elements �i j = {L1 − L2}i j and the tensorsA, B, C, C ′,
D, and D′ depend only on the reference tensor L0 = (L1 + L2)/2 and on the geometrical
configuration of the cells.

Since the terms in the series expansion have such a simple dependence on f1, we can
determine the coefficientsA,B,C +C ′, andD+D′ once we know the effective tensor L∗
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to the first order in the volume fraction f1. Since these combinations of parameters depend
only on the polarizability of individual cells, and thus on the cell shape, they are called cell
shape parameters or simply shape factors. We can determine the remaining coefficients in
the fifth-order expansion once we know the effective tensor to the second order in the volume
fraction. These remaining parameters typically depend on both the cell shape and on how they
are packed together.

For a macroscopically isotropic cell material of two isotropic phases with conductivities
σ1I and σ2I and effective conductivity σ∗I the above expansion reduces to

σ∗ = f1σ1 + f2σ2 + f1 f2aδ2
σ/σ + f1 f2( f1 − f2)bδ3

σ/σ
2

+ f1 f2[c + ( f1 − f2)2c′]δ4
σ/σ

3 + f1 f2( f1 − f2)[d + ( f1 − f2)2d ′]δ5
σ/σ

4 + · · · ,
where δσ = σ1−σ2 and σ = (σ1+σ2)/2. The six parameters a, b, c, c′, d , and d ′ depend only
on the geometrical configuration of the cells. From the second-order series expansion (14.12)
we see that a = −1/3. Thus only five parameters depend on the cell configuration. An equiv-
alent fifth-order expansion in terms of five parameters was obtained by Elsayed (1974). For
two-dimensional cell materials (which have a = −1/2) the analogous fifth-order expansion in
terms of five parameters was derived by Elsayed and McCoy (1973); see also Milton (1982),
where it is shown that Keller’s relation (3.6) implies that c and c′ can be expressed in terms of
b. A similar result for random resistor networks was obtained by Bruno and Golden (1990),
who moreover proved that σ∗ is an analytic function of f1 = 1 − f2 in a suitable domain
containing the interval [0, 1].

The general polynomial dependence of the coefficients on the volume fraction was estab-
lished by Bruno (1990) by regarding them as infinitely interchangeable materials. Instead of
considering correlation functions Bruno realized that a two-phase cell material with conduc-
tivities σ1 and σ2 and f1 = p/q being rational could be regarded as a q-phase cell material
with each phase occupying a volume fraction 1/q and with p of the phases having conduc-
tivity σ1 and the remaining q − p phases having conductivity σ2. The effective conductivity
of the q-phase cell material is symmetric with respect to the interchange of any pair of the q-
phases. Bruno shows that this interchangeability, in the limit q →∞, implies the polynomial
dependence of the coefficients on the volume fraction. Using this Bruno and Golden (1990)
proved that for fixed positive real σ1 and σ2 the effective conductivity is an analytic function of
f1 in a suitable domain containing the interval [0, 1]. Avellaneda and Bruno (1990) extended
the interchangeability argument to cell polycrystals, that is, cell materials where each cell is
filled by a crystallite whose orientation is independent of the cell shape and the orientation of
neighboring crystallites.

The concept of a cell material can easily be extended to encompass multiphase composites
that are possibly polycrystalline. The tensor fieldL(x) is taken to be constant within each cell,
with a valueM in each cell that is selected from some probability distribution. Specifically,
let us suppose that there exists a positive measure µ(M) on the space of tensors such that

P(() =
∫
�

dµ(M) (15.14)

gives the probability that the tensorM assigned to given cell takes a value in the set (. The
definition of a cell material requires that this probability be uncorrelated with the cell shape
and with the moduli assigned to surrounding cells. To compute the correlation functions
it is convenient to consider a configuration of points in a given position relative to the cell
geometry and to ensemble average over the possible moduli that these cells can take. The



15.5. Reduced correlation functions 323

result of this ensemble average depends only on the grouping of the points relative to the
cells, that is, on which sets of points occupy the same cell. Next the configuration of points is
translated to a new position and the same ensemble average is performed. Finally, a volume
average is performed over all of these translates.

The analysis is simplest when we choose a reference medium

L0 = 〈L〉 =
∫
dµ(M)M .

Then, for example, the ensemble average of {δL(x1)}a1b1{δL(x2)}a2b2{δL(x3)}a3b3 will be
zero unless all three points x1, x2, and x3 lie within the same cell. This reasoning shows that
the effective tensor to the third order in perturbation depends on the distribution µ(M), on
the probability g2(y) that a rod with endpoints at the origin and at y lands with both endpoints
in a single cell when translated to a random position in the composite, and on the probability
g3(z1,z2) that a triangle with vertices at the origin and at z1 and at z2 lands with all vertices
in a single cell.

Specifically, to the third order, we have

{L∗}ab = {〈L〉}ab −
[∫

d
dy g2(y){Γ∞(y)}b1a2

]
{W 2}ab1a2b

+
[∫

d
dy2

∫
d

dy1 g3(y1 + y2,y2){Γ∞(y1)}b1a2{Γ∞(y2)}b2a3

]
{W 3}ab1a2b2a3b + · · · ,

(15.15)

in whichW 2 andW 3 are tensors representing the second and third moments of the distribu-
tion when it is centered at L0:

{W 2}a1b1a2b2 =
∫
dµ(M) {M −L0}a1b1{M − L0}a2b2

=
∫
dµ(M ′ +L0) M ′

a1b1
M ′
a2b2

,

{W 3}a1b1a2b2a3b3 =
∫
dµ(M) {M −L0}a1b1{M − L0}a2b2{M −L0}a3b3

=
∫
dµ(M ′ +L0) M ′

a1b1
M ′
a2b2
M ′
a3b3

, (15.16)

in which the M ′
i j are the matrix elements ofM

′ =M −L0.
To calculate g2(y) [or g3(z1,z2)] it is helpful to first determine the probability that both

endpoints of the rod [all vertices of the triangle] all lie within a specific cell given that a
particular endpoint [vertex] lies within that cell. Gillette and McCoy (1986, 1987) show how
these probabilities can be calculated in terms of certain areas of intersection for the two-
dimensional problem and volumes of intersection for the three-dimensional problem. By
averaging these probabilities over all cells one obtains g2(y) and g3(z1,z2).

15.5. Reduced correlation functions
A quick examination of (15.1) shows that we can compute the third-order term in the series
expansion once we know the function

{G(x1,x2,x3)}a1b1a2b2a3b3 = {δL(x1)}a1b1{δL(x2)}a2b2{δL(x3)}a3b3 .
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This function contains a tremendous amount of information, not all of which is relevant to the
determination of the third-order term. Indeed, we saw that the third-order term depends only
on the three-point correlation function F ′(z1,z2). This reduction from a function of three
variables to a function of two variables of information is possible because the periodic Green’s
function Γ�(x,x

′) = Γ�(x − x′) remains invariant under translation, that is, it remains
unchanged if we shift x and x′ to x+a and x′+a. A further reduction of information can be
achieved by using another invariance property, namely, the invariance of |y|dΓ∞(y), under a
change of scale from y to λy. This reduction can be made without specifying the problem
under consideration, that is, without specifying Γ∞(y). The scale invariance reflects the
fact that the effective tensor remains unchanged if we rescale the geometry of our composite
material. Consequently, it makes sense to introduce a set of correlation functions that also
remain invariant when we rescale the geometry. Although simply stated, this task requires
some care.

Let us examine expression (15.4) for the third-order term in the series expansion. Rewrit-
ing it in a form that removes the conditional convergence gives

{δL(3)
∗ }a1b3 = {F ′

3(0, 0)}a1b1a2b2a3b3γb1a2γb2a3

+
∫

d
dy1{F ′

3(y1, 0)−Q(|y1|)}a1b1a2b2a3b3{Γ∞(y1)}b1a2γb2a3

+
∫

d
dy2{F ′

3(y2,y2)−Q′(|y2|)}a1b1a2b2a3b3{Γ∞(y2)}b2a3γb1a2

+
∫

d
dy2

∫
Rd
dy1{F ′

3(y1 + y2,y2)−Q(|y1|,y2)−Q′(|y2|,y1)}a1b1a2b2a3b3

×{Γ∞(y1)}b1a2{Γ∞(y2)}b2a3 ,

(15.17)

in which the γi j denote the matrix elements of the tensor γ defined by (12.35) and Q(r),
Q′(r),Q(r,y), andQ′(r,y) are normalizing functions chosen so that the above integrals are
absolutely convergent: This requires that they approach zero when either r or |y| goes to
infinity and that they satisfy

Q(0) = Q′(0) = F ′
3(0, 0),

Q(0,y2)+Q′(|y2|, 0) = F ′
3(y2,y2),

Q(|y1|, 0)+Q′(0,y1) = F ′
3(y1, 0).

For example, we could take

Q(r) = Q′(r) = e−αr2
F ′

3(0, 0),

Q(|y1|,y2)+Q′(|y2|,y1) = e−α|y1|2F ′
3(y2,y2)+ e−α|y2|2F ′

3(y1, 0)

−e−α(|y1|2+|y2|2)F ′
3(0, 0),

where α is any positive constant.
An inspection of (15.17) shows that the third-order term in the series expansion depends

on a function F̆ 3(w1,w2) defined as follows: Its argumentsw1 and w2 can be either zero or
a unit vector, and accordingly its components are given by

F̆ 3(0, 0) = F ′
3(0, 0),
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F̆ 3(η1, 0) = V +
∫ ∞

0
dr
F ′

3(rη1, 0)−Q(r)
r

,

F̆ 3(0,η2) = V ′ +
∫ ∞

0
dr
F ′

3(rη2, rη2)−Q′(r)
r

,

F̆ 3(η1,η2) = V (η2)+ V ′(η1)

+
∫ ∞

0
dr2

∫ ∞

0
dr1
F ′

3(r1η1 + r2η2, r2η2)−Q(r1, r2η2)−Q′(r2, r1η1)

r1r2
,

where η1 and η2 are unit vectors andV , V ′, V (η), and V ′(η) are compensating terms chosen
so that ∫

|η1|=1
F̆ 3(η1, 0) = 0,

∫
|η2|=1

F̆ 3(0,η2) = 0,∫
|η2|=1

F̆ 3(η1,η2) = 0,
∫

|η1|=1
F̆ 3(η1,η2) = 0,

to ensure that F̆ 3(w1,w2) does not depend on the choice of normalizing functions. We call
this function a third-order reduced correlation function. In terms of it, the expression for the
third-order term in the series expansion becomes

{δL(3)
∗ }a1b3 = {F̆ 3(0, 0)}a1b1a2b2a3b3γb1a2γb2a3

+
∫

|η1|=1
{F̆ 3(η1, 0)}a1b1a2b2a3b3{Γ∞(η1)}b1a2γb2a3

+
∫

|η2|=1
{F̆ 3(0,η2)}a1b1a2b2a3b3{Γ∞(η2)}b2a3γb1a2

+
∫

|η2|=1

∫
|η1|=1

{F̆ 3(η1,η2)}a1b1a2b2a3b3{Γ∞(η1)}b1a2{Γ∞(η2)}b2a3 .

(15.18)

Higher order terms in the series expansion involve higher order reduced correlation func-
tions, which can be defined in a similar manner. For example, the fourth-order reduced cor-
relation function is obtained from the four-point correlation function F ′(y1 + y2 + y3,y2 +
y3,y3) by setting a (possibly empty) subset of the three variables {y1,y2,y3} to zero, and
letting the other variables range along rays issuing from the origin. The correlation function
is integrated along these rays (with the appropriate weighting factor). Normalizing functions
are introduced so that the integrals converge, and compensating terms are added to ensure
that the resulting reduced correlation function is independent of the choice made for these
normalizing functions.

In a two-phase composite we can introduce second- and third-order reduced correlation
functions associated with the composite geometry:

f̆11(η) = v +
∫ ∞

0
dr

f11(rη) − q(r)

r
,

f̆111(η1,η2) = v(η2) + v′(η1)

+
∫ ∞

0
dr2

∫ ∞

0
dr1

f111(r1η1 + r2η2, r2η2) − q(r1, r2η2) − q ′(r2, r1η1)

r1r2
,
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= v(η2) + v′(η1)

+
∫ ∞

0
dr2

∫ ∞

0
dr1

f111(r1η1,−r2η2) − q(r1, r2η2) − q ′(r2, r1η1)

r1r2
,

(15.19)

where (15.11) has been used to simplify the last equation and q(r), q(r,y), and q ′(r,y) are
scalar-valued normalizing functions chosen so that the above integrals are absolutely conver-
gent, while v, v(η), and v′(η) are compensating terms chosen so that∫

|η|=1
f̆11(η) = 0,

∫
|η2|=1

f̆111(η1,η2) = 0,
∫

|η1|=1
f̆111(η1,η2) = 0. (15.20)

Thus the third-order reduced correlation function involves weighted averages of the three-
point correlation function f111 over all triangles with two sides having a given orientation.
Similarly the n-th–order reduced correlation function involves weighted averages of the n-
point correlation function over all configurations of points such that the n − 1 lines joining
successive points have given orientations.

The matrix-valued reduced correlation F̆ 3(w1,w2) can easily be expressed in terms of
these scalar reduced correlation functions. For instance, if we take a reference tensor L0 =
L2, then (15.12) implies that

{F̆ 3(0, 0)}a1b1a2b2a3b3 = f1 f 2
2 {L1 −L2}a1b1 {L1 −L2}a2b2 {L1 −L2}a3b3,

{F̆ 3(η1, 0)}a1b1a2b2a3b3 = f2 f̆11(η1){L1 −L2}a1b1 {L1 −L2}a2b2 {L1 −L2}a3b3,

{F̆ 3(0,η2)}a1b1a2b2a3b3 = f2 f̆11(η2){L1 −L2}a1b1 {L1 −L2}a2b2 {L1 −L2}a3b3,

{F̆ 3(η1,η2)}a1b1a2b2a3b3 = f̆111(η1,η2){L1 − L2}a1b1{L1 − L2}a2b2{L1 − L2}a3b3 ,

which when substituted in (15.18) give

δL(3)
∗ = f1 f 2

2 (L1 −L2)γ(L1 −L2)γ(L1 −L2)

+
∫

|η1|=1
f2 f̆11(η1)(L1 −L2)Γ∞(η1)(L1 −L2)γ(L1 −L2)

+
∫

|η2|=1
f2 f̆11(η2)(L1 −L2)γ(L1 −L2)Γ∞(η2)(L1 −L2)

+
∫

|η2|=1

∫
|η1|=1

f̆111(η1,η2)(L1 −L2)Γ∞(η1)(L1 −L2)Γ∞(η2)(L1 −L2).

(15.21)

Similarly, the second-order term in the series expansion (14.2) is

δL(2)
∗ = −〈(L−L2)Γ(L−L2)〉 = −〈(L1 −L2)χ1Γχ1(L1 −L2)〉
= − f1 f2(L1 −L2)γ(L1 −L2)−

∫
|η|=1

f̆11(η)(L1 −L2)Γ∞(η)(L1 −L2).

(15.22)

In particular, if we consider a two-phase conducting composite where both phases are iso-
tropic, that is, where L1 = σ1I and L2 = σ2I , then from (12.49) it follows that

γ = I

3σ2
, Γ∞(η) = I − 3η ⊗ η

4πσ2
. (15.23)
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Consequently the series expansion of σ∗ to the second order in σ1 − σ2 is

σ∗ = ( f1σ1 + f2σ2)I − f1 f2(σ1 − σ2)
2A/σ2, (15.24)

where
A = 1

3I +
1

4π f1 f2

∫
|η|=1

f̆11(I − 3η ⊗ η). (15.25)

The averaging of suitably normalized correlation functions along rays in real space to
obtain reduced correlation functions is somewhat analogous to the averaging along rays in
Fourier space used to obtain the H -measuresH(ξ) in (14.7). However, there is a difference
because a ray in Fourier space corresponds to a set of parallel planes in real space. We pre-
ferred to work in real space, rather than in Fourier space, in the hope that it may ultimately
provide some physical intuition regarding the reduced correlation functions. The disadvan-
tage is that one needs to introduce the normalizing functions and the associated compensating
terms. Another approach is to compute the action of the operators Γ on the correlation func-
tion by using Radon transforms. For example, using this second approach it follows from the
work of Willis (1977) that in three-dimensional random composites the second-order term in
the series expansion is

δL(2)
∗ = 1

8π2

∫
|ξ|=1

Γ(ξ)
∂2 f̌11(ξ, p)

∂p2

∣∣∣∣
p=0

,

in which f̌11(ξ, p) is the Radon transform of the two-point correlation function f11(y).

15.6. Expansions for two-phase random composites with geometric
isotropy

In periodic composites isotropy often refers to the invariance of an effective tensor under ro-
tation. For instance, a periodic composite with cubic symmetry has a rotationally invariant
conductivity tensor, but it does not necessarily have a rotationally invariant elasticity tensor.
In random composites isotropy usually refers to a stronger rotational invariance, namely, the
invariance of all correlation functions when the material is rotated. In such a material any
effective property remains unchanged when the material is rotated. One can also say that
the composite is reflection invariant about a plane when all correlation functions remain un-
changed when the microstructure is reflected about that plane. Of course reflection invariance
about one plane coupled with geometric isotropy is enough to ensure reflection invariance
about an arbitrary plane.

In multiphase composites and cell materials we can also speak about a less restrictive
form of rotational (or reflection) invariance, namely, the invariance under rotation (or reflec-
tion) of all correlation functions associated with the geometry represented by the characteristic
functions (Willis 1977). The tensors assigned to the phases need not be isotropic, and as a
consequence the effective tensor is not necessarily rotationally (or reflection) invariant. Nev-
ertheless, as we will see, the terms in the series expansion take an especially simple form. We
will call such materials geometrically isotropic. Willis (1977) has shown that such simplifi-
cations also occur if one makes the weaker assumption that the composite is geometrically
isotropic after an appropriate affine transformation. We will suppose that this affine transfor-
mation has been made, so we are left considering geometrically isotropic materials.

For example, let us consider two-phase materials. Then geometric isotropy and reflection
invariance imply that f11(y) depends only on |y| and that f111(y1 + y2,y2) depends only
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on the reflection and rotational invariants |y1|, |y2|, and y1 · y2. Moreover the second-order
reduced correlation function f̆11(η) must be constant, and in fact zero by virtue of (15.20),
while the third-order reduced correlation function f̆111(η1,η2) can depend only on η1 · η2,
that is,

f̆11(η) = 0, f̆111(η1,η2) = f̆111(u), where u = −η1 · η2. (15.26)

To find an expression for f̆111(u) we first notice that

f111(r1η1,−r2η2) = f111(r1, r2, θ),

in which f111(r1, r2, θ) is the probability that a triangle with sides r1, r2 and included angle
θ = cos−1 u lands with all vertices in phase 1. Substituting this into (15.19) and choosing
q ′(r2, r1η1) = 0 and q(r1, r2η2) = q(r1, r2) to be independent of η2 gives

f̆111(u) = f̆111(cos θ) = v +
∫ ∞

0
dr2

∫ ∞

0
dr1

f111(r1, r2, θ)− q(r1, r2)

r1r2
, (15.27)

where q(r1, r2) is chosen so that the integral is absolutely convergent and the compensating
constant v is chosen so that∫

|η2|=1
f̆111(η1,η2) =

∫
|η1|=1

f̆111(η1,η2) = 2π
∫ 1

−1
du f̆111(u) = 0.

This single scalar-valued function f̆111(u) contains all of the information needed to com-
pute the effective tensor to the third order in perturbation, irrespective of whether we happen
to be studying the conductivity, elasticity, thermoelastic, or piezoelectric problem, and ir-
respective of whether the phases and reference media happen to be anisotropic or not. As
an example, consider the problem of conductivity in a three-dimensional, geometrically iso-
tropic, two-phase composite. For simplicity, let us suppose that the conductivity tensor σ2 of
phase 2 is isotropic, and let us choose σ2 = σ2I as a reference tensor so that γ and Γ∞(η) are
given by (15.23). Also, the particular form that any rotationally invariant fourth-order tensor
must take implies that

∫
|η2|=1

∫
|η1|=1

f̆111(−η1 · η2){Γ∞(η1)}i j {Γ∞(η2)}k� = α1δi j δk� + α2δikδ j� + α3δi�δ jk, (15.28)

where the constants α1, α2, and α3 can be determined by contracting indices in the above
equation. This gives

α2 = α3 = −3α1/2 = 1
10

∫
|η2|=1

∫
|η1|=1

f̆111(−η1 · η2){Γ∞(η1)}i j{Γ∞(η2)}i j

= 3
160π2σ 2

2

∫
|η2|=1

∫
|η1|=1

f̆111(−η1 · η2)[3(η1 · η2)
2 − 1]

= 3
10σ 2

2

∫ +1

−1
du f̆111(u)P2(u), (15.29)

in which P2(u) is the second Legendre polynomial: P2(u) = (3u2 − 1)/2.
Higher order terms in the series expansion can be evaluated in a similar fashion, using

the fact that (in Cartesian coordinates) any rotationally invariant tensor is represented as a
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linear combination of products of Kronecker delta functions. By substituting (15.28) back
into (15.21) and recalling that γ = I/(3σ2), we deduce that the expansion of the effective
conductivity tensor to the third order in perturbation is

σ∗ = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2/3σ2 + f1 f 2

2 (σ1 − σ2)
3/9σ 2

2

+ f1 f2ζ1[(σ1 − σ2)
3 + 3(σ1 − σ2)

2 Tr(σ1 − σ2)]/45σ 2
2 + · · · , (15.30)

in which ζ1 is the geometric parameter

ζ1 = 9
2 f1 f2

∫ +1

−1
du f̆111(u)P2(u), where P2(u) = (3u2 − 1)/2. (15.31)

The prefactor of 9/(2 f1 f2) is introduced into this definition so that the constant ζ1 satisfies
relations similar to those satisfied by the volume fraction f1, namely,

0 ≤ ζ1 ≤ 1 and ζ1 + ζ2 = 1, where ζ2 = 9
2 f1 f2

∫ +1

−1
du f̆222(u)P2(u), (15.32)

and f̆222(u) is the third-order reduced correlation function associated with phase 2. The iden-
tity ζ1 + ζ2 = 1 can be established by various means. One way is to suppose that both phases
have isotropic conductivity tensors σ1 = σ1I and σ2 = σ2I . Then the effective tensor is also
isotropic, that is, σ∗ = σ∗I , and from (15.30) the effective conductivity σ∗ has the third-order
expansion (Brown 1965)

σ∗ = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2/3σ2 + f1 f2( f2 + 2ζ1)(σ1 − σ2)

3/9σ 2
2 + · · ·

= 〈σ 〉 − f1 f2δ2
σ

3〈σ 〉 + f1 f2[( f2 − f1)δσ + 2(ζ1 − f1)δσ ]δ2
σ

9〈σ 〉2 + · · · . (15.33)

A comparison of this expansion with the equivalent expansion obtained by swapping the in-
dices 1 and 2 in the second expression in (15.33) shows that ζ1 − f1 = f2 − ζ2, that is,
ζ1 + ζ2 = 1.

To prove that ζ1 is nonnegative, let us introduce the vector-valued field

g(x) =
∫
dyΓ∞(y)[χ1(x− y)− q(|y|,x)]u, (15.34)

in which u is a constant vector and q(r,x) is a normalizing function satisfying

q(0,x) = χ1(x), lim
r→∞ q(r,x) = f1,

to ensure that the integral in (15.34) converges. Since the scalar field g(x) · χ1(x)g(x) takes
only nonnegative values for all x and Γ∞(y) = Γ∞(−y), it follows that

0 ≤ 〈g · χ1g〉 =
∫

|η|=1

∫
|η′|=1

f̆111(η,η
′)u · Γ∞(η)Γ∞(η′)u

= (α1 + α2 + 3α3)|u|2 = f1 f2ζ1|u|2/9σ 2
2 ,

and this clearly implies that ζ1 must be nonnegative. By interchanging the roles of the phases
we deduce that ζ2 = 1− ζ1 must also be nonnegative.
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Now suppose that we are given a fixed value of the volume fraction f1. A comparison of
(15.33) with the series expansion for the effective conductivity tensor of the Hashin-Shtrikman
coated sphere geometry shows that for the given volume fraction f1 this geometry attains the
maximum possible value of ζ1, namely, ζ1 = 1, when the spheres have a core of phase 2 and
a coating of phase 1, and achieves the minimum possible value of ζ1, namely, ζ1 = 0, when
the spheres have a core of phase 1 and a coating of phase 2. By continuity it follows that
assemblages of doubly coated spheres achieve all values of ζ1 in the interval between 0 and
1, at the given volume fraction f1. In other words, every parameter pair ( f1, ζ1) in the square
defined by the inequalities 0 < f1 < 1 and 0 ≤ ζ1 ≤ 1 corresponds to a geometry; there can
be no further restrictions on the possible values of these parameter pairs.

A similar analysis can be applied to the effective elasticity tensor of a three-dimensional,
geometrically isotropic, two-phase material. When the two phases have isotropic elasticity
tensors, with bulk moduli κ1 and κ2, and shear moduli µ1 and µ2, then the effective elasticity
tensor is also isotropic. With a choice of reference tensor C0 = 〈C〉 the effective bulk modulus
κ∗ and the effective shear modulusµ∗ to the third order in perturbation are given (Milton 1982)
by the formulas

κ∗ = 〈κ〉 − 3 f1 f2δ2
κ

〈3κ + 4µ〉 +
3 f1 f2[3( f2 − f1)δκ + 4(ζ1 − f1)δµ]δ2

κ

〈3κ + 4µ〉2 + · · · ,

µ∗ = 〈µ〉 − 6 f1 f2〈κ + 2µ〉δ2
µ

5〈µ〉〈3κ + 4µ〉 +
6 f1 f2γ δ2

µ

25〈µ〉2〈3κ + 4µ〉2 + · · · , (15.35)

in which δκ = κ1 − κ2, δµ = µ1 − µ2,

γ = [5〈µ〉〈2κ + 3µ〉(ζ1 − f1)+ 6〈κ + 2µ〉2( f2 − f1)+ 〈3κ + µ〉2(η1 − f1)]δµ
+10〈µ〉2(ζ1 − f1)δκ ,

and

η1 = 5ζ1

21
+ 150

7 f1 f2

∫ +1

−1
du f̆111(u)P4(u), where P4(u) = (35u4 − 30u2 + 3)/8. (15.36)

Here P4(u) is the fourth-order Legendre polynomial.
So we see that to the third order in perturbation the expansion for the effective bulk mod-

ulus involves exactly the same geometric parameter ζ1 that appears in the expansion for the
effective conductivity. In other words, one could compute the series expansion for the bulk
modulus to the third order in perturbation if one knew the series expansion for the effective
conductivity. The expansion for the shear modulus involves only one additional geometric
parameter, namely, the constant η1, which satisfies

η1 ≥ 5ζ1/21, η2 ≥ 5ζ2/21, η1 + η2 = 1,

in which

η2 = 5ζ2

21
+ 150

7 f1 f2

∫ +1

−1
du f̆222(u)P4(u)

is defined in the same way as η1 except that the roles of the two phases are interchanged. In
view of these inequalities it would seem natural to introduce the parameter

ξ1 = 21
16

(η1 − 5
21

ζ1) = 225
8 f1 f2

∫ +1

−1
du f̆111(u)P4(u), which satisfies 0 ≤ ξ1 ≤ 1,



15.6. Expansions for composites with geometric isotropy 331

and to take ( f1, ζ1, ξ1), rather than ( f1, ζ1, η1), as the triplet of geometric parameters that
describe the effective bulk and shear moduli to the third order in perturbation. However, we
choose not to do this because the existing bounds are usually expressed in terms of f1, ζ1, and
η1, and there are many tabulations of ζ1 and η1 for various microstructures. Also, it is still not
known what region in three-dimensional space the triplet ( f1, ζ1, η1) covers as the geometry
varies over all geometrically isotropic configurations, so it may be premature to decide what
parameter is most natural.

For three-dimensional cell materials the expansions (15.33) and (15.35) are implicit in
the results of Miller (1969a, 1969b) and Silnutzer (1972). Their expansions involve two cell
shape parameters G and E , dependent on the cell shape, in terms of which

ζ1 = f1 + ( f2 − f1)ζ 0
1 , where ζ 0

1 = (9G − 1)/2,
η1 = f1 + ( f2 − f1)η0

1, where η0
1 = 4(5E − 1)− 5(9G − 1) (15.37)

(see Milton 1982). The parameters ζ 0
1 and η0

1 take values between 0 and 1, depending on the
cell shape. Miller and Silnutzer find that for spherical cells G = 1/9, E = 1/5; for platelike
cells G = 1/3, E = 1; and for needlelike cells G = 1/6, E = 3/8. Thus for spherical cells
ζ 0

1 = η0
1 = 0, for platelike cells ζ 0

1 = η0
1 = 1, and for needlelike cells ζ 0

1 = 1/4 and η0
1 = 1/6.

Expressions for ζ 0
1 and η0

1 for spheroidal cells with arbitrary eccentricity have been given by
Hori (1973) and McPhedran and Milton (1981). Helsing (1994b) calculates G for cubic cells.

The three-dimensional parameter ζ1 has been computed by McPhedran and Milton (1981)
for simple cubic, body-centered cubic, and face-centered cubic arrays of spheres [see also
Miller and Torquato (1990)], and by Helsing (1993) for face-centered cubic lattices of cubes.
Both parameters ζ1 and η1 have been computed by Torquato and Stell (1985); Torquato, Stell,
and Beasley (1985); and Berryman (1985) for the penetrable sphere model, that is, for ran-
domly dispersed, penetrable, uniformly sized spheres; by Stell and Rikvold (1987) for ran-
domly dispersed, penetrable, nonuniformly sized (polydispersed) spheres; by Torquato and
Lado (1986) and Sen, Lado, and Torquato (1987) using a superposition approximation for the
three-particle distribution function; by Sangani and Yao (1988a) for periodic arrays contain-
ing 16 randomly dispersed spheres in the unit cell; and by Miller and Torquato (1990) using
Monte Carlo simulations for randomly dispersed, impenetrable, uniformly sized spheres; by
Thovert, Kim, Torquato, and Acrivos (1990) for randomly dispersed, impenetrable, nonuni-
formly sized (polydispersed) spheres; and by Roberts and Teubner (1995) and Roberts and
Knackstedt (1996a, 1996b) for media defined by the level cut, or level cuts, of a Gaussian
random field. Many of these results for ζ1 and η1 are summarized in the review article of
Torquato (1991). Helsing (1995) shows how ζ1 and η1 can be computed from cross-sectional
photographs for an arbitrary microgeometry in an efficient manner using interface integral
techniques and the fast multipole method.

The expansions (15.35) are useful when the differences δκ = κ1 − κ2 and δµ = µ1 − µ2

are both small. Phan-Thien and Milton (1983) obtained an alternative series expansion, which
is superior in the sense that it only requires δµ to be small. To the first order in δµ the effective
bulk modulus has the expansion

κ∗ = 〈κ〉 − 3 f1 f2δ2
κ

3( f1κ2 + f2κ1)+ 4〈µ〉 +
12 f1 f2(ζ1 − f1)δ2

κδµ

[3( f1κ2 + f2κ1)+ 4〈µ〉]2 + · · · , (15.38)

and to the second order in δµ the expansion of the effective shear modulus is

µ∗ = 〈µ〉−6 f1 f2{〈κ + 2µ〉[3( f1κ2 + f2κ1) + 4〈µ〉] − 3 f1 f2δ
2
κ − 2〈µ〉(ζ1 − f1)δκ }δ2

µ

5〈µ〉(3κ1 + 4〈µ〉)(3κ2 + 4〈µ〉) +· · · . (15.39)
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These expansions are valid even when the bulk moduli of the two phases are not close to each
other. When the shear moduli of both phases are equal, that is, when δµ = 0, the formula
(15.38) for κ∗ coincides with that given by Hill’s formula (5.19).

By eliminating the parameter ζ1 from (15.38) and (15.39) we see that there is a linear
microstructure-independent relation

5(〈µ〉 − µ∗)(3κ1 + 4〈µ〉)(3κ2 + 4〈µ〉)〈µ〉
3 f1 f2δµ

− (〈κ〉 − κ∗)[3( f1κ2 + f2κ1) + 4〈µ〉]2〈µ〉
3 f1 f2δκ

≈ [3( f1κ2 + f2κ1) + 4〈µ〉](2〈κ + 2µ〉δµ − 〈µ〉δκ ) − 6 f1 f2δ
2
κδµ,

between κ∗ and µ∗ that holds in the limit when δµ is small, to the first order in δµ.
The expansions (Schulgasser 1976; Milton 1982) analogous to (15.33) and (15.35) for the

effective conductivity σ∗, the effective bulk modulus κ∗, and the effective shear modulus µ∗
of a two-dimensional composite are

σ∗ = 〈σ 〉 − f1 f2δ2
σ

2〈σ 〉 + f1 f2[( f2 − f1)δσ + (ζ1 − f1)δσ ]δ2
σ

4〈σ 〉2 + · · · ,

κ∗ = 〈κ〉 − f1 f2δ2
κ

〈κ + µ〉 +
f1 f2[( f2 − f1)δκ + (ζ1 − f1)δµ]δ2

κ

〈κ + µ〉2 + · · · ,

µ∗ = 〈µ〉 −
f1 f2〈κ + 2µ〉δ2

µ

2〈µ〉〈κ + µ〉 + f1 f2γ δ2
µ

4〈µ〉2〈κ + µ〉2 + · · · , (15.40)

in which σκ = σ1 − σ2, δκ = κ1 − κ2, δµ = µ1 − µ2,

γ = [〈κ + 2µ〉2( f2 − f1)+ 〈κ〉2(η1 − f1)]δµ + 2〈µ〉2(ζ1 − f1)δκ ,

and

ζ1 = 4
π f1 f2

∫ π

0
dθ f̆111(cos−1 θ) cos(2θ),

η1 = 16
π f1 f2

∫ π

0
dθ f̆111(cos−1 θ) cos(4θ). (15.41)

For two-dimensional cell materials these expansions are implicit in the results of Silnutzer
(1972). His expansions involved two cell shape parameters G ′ and H dependent on the cell
shape in terms of which

ζ1 = f1 + ( f2 − f1)ζ 0
1 , where ζ 0

1 = (4G ′ − 1),
η1 = f1 + ( f2 − f1)η0

1, where η0
1 = (8H − 3)− 4(4G ′ − 1)

(see Milton 1982).
It follows from the work of Beran and Silnutzer (1971) and Silnutzer (1972) that for

circular cells ζ 0
1 = η0

1 = 0, while for flat cells ζ 0
1 = η0

1 = 1. Expressions for G ′ for
elliptical cells with arbitrary eccentricity have been given by Hori and Yonezawa (1975).
Milton (1982) givesG ′ for square cells and Le Coënt and Jeulin (1996) give G ′ for rectangular
cells. Le Coënt and Jeulin also give G ′ for a dead-leaves cell material obtained by taking
rectangular leaves, randomly assigned to be phase 1 or phase 2, with probabilities f1 and
f2 = 1 − f1, and randomly positioning them one at a time on a plate replacing whatever
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material is beneath them until all of the original plate is covered by such leaves. The cells in
this cell material have a variety of shapes and some are not even connected. The model obtains
its name from the similarity with the process where dead leaves fall on a forest floor during
autumn, where of course the leaves are irregularly shaped. Suquet and Moulinec (1999) give
numerical results for the effective shear modulus of two-dimensional cell materials with a
honeycomb cell structure.

The two-dimensional parameter ζ1 (also called ζ ′
1) has been computed by McPhedran and

Milton (1981) for square and hexagonal arrays of disks, and for incomplete arrays where a
certain proportion of disks in the complete array are randomly removed and replaced by the
matrix. Helsing (1994a) showed how η1 can be expressed as an integral over the interfaces and
evaluated it for a hexagonal array of disks. Both parameters ζ1 and η1 (also called ζ ′

1 and η′
1)

have been computed by Torquato and Beasley (1986a, 1986b) and Joslin and Stell (1986a) for
randomly dispersed, penetrable, uniformly sized disks [see also Babos and Chassapis (1990)];
by Joslin and Stell (1986b) for randomly dispersed, penetrable, nonuniformly sized (polydis-
persed) disks; by Torquato and Lado (1988, 1992), by Sangani and Yao (1988b), and, with
high accuracy (for ζ1), by Greengard and Helsing (1995), for randomly dispersed impenetra-
ble uniformly sized disks; by Miller and Torquato (1991) for the penetrable disk model, that
is, for randomly dispersed, impenetrable, nonuniformly sized (polydispersed) disks; and by
Christiansson and Helsing (1995) for hexagonal arrays of concentric circular shell structures.
Le Coënt and Jeulin (1996) give ζ1 for randomly dispersed, penetrable squares, rectangles,
and random polygons.

Torquato (1998) has generalized the third-order series expansions for the effective moduli
σ∗, κ∗, and µ∗ and the definitions of ζ1 and η1 to d-dimensional, two-phase composites.
He also showed how knowledge of these parameters can lead to reasonable approximation
formulas for the effective moduli.

15.7. Series expansions for cell materials with geometric isotropy
In a cell material with geometric isotropy all correlation functions associated with the cell
geometry are isotropic. In particular, this implies that the two-point correlation function g2(y)
depends only on |y| and implies that the three-point correlation function g3(y1 + y2,y2)

depends only on |y1|, |y2|, and y1 · y2. Consequently, to the third order in perturbation the
effective tensor L∗ depends only on the third-order reduced correlation function

ğ3(η1,η2) = v(η2) + v′(η1)

+
∫ ∞

0
dr2

∫ ∞

0
dr1

g3(r1η1 + r2η2, r2η2) − q(r1, r2η2) − q ′(r2, r1η1)

r1r2
,

which in turn depends only on the rotational invariant u = −η1 ·η2. Here q(r,y) and q ′(r,y)
are scalar-valued normalizing functions chosen so that the above integrals are absolutely con-
vergent, while v(η) and v′(η) are compensating terms chosen so that∫

|η2|=1
ğ3(η1,η2) = 0,

∫
|η1|=1

ğ3(η1,η2) = 0.

Specifically, when we choose a reference tensor L0 = 〈L〉 it follows from (15.15) that the
matrix elements of the effective tensor have the expansion
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{L∗}ab = {〈L〉}ab − γb1a2{W 2}ab1a2b + γb1a2γb2a3 {W 3}ab1a2b2a3b

+
[∫

|η2|=1

∫
|η1|=1

ğ3(η1,η2){Γ∞(η1)}b1a2{Γ∞(η2)}b2a3

]
{W 3}ab1a2b2a3b + · · · ,

(15.42)

in whichW 2 andW 3 are the tensors defined by (15.16) and the γi j are the matrix elements
of the tensor γ defined by (12.35).

For simplicity let us consider the three-dimensional conductivity problem. The cells are
assigned conductivity tensors σ chosen from a probability measure µ(σ). For simplicity we
suppose that this distribution is concentrated on symmetric matrices and such that the average
value of the conductivity is an isotropic tensor, that is,∫

dµ(σ)σ = 〈σ〉 = σ0I, where σ0 = 〈Tr(σ)〉/3.

With a choice of reference tensor σ0 = σ0I the rotational invariance implies that∫
|η2|=1

∫
|η1|=1

ğ3(η1 · η2){Γ∞(η1)}b1a2{Γ∞(η2)}b2a3

= ζ 0
1

15σ 2
0

[
δb1b2δa2a3 + δb1a3δa2b2 −

2
3
δb1a2δb2a3

]
, (15.43)

where

ζ 0
1 = (9G − 1)/2 = 9

2

∫ +1

−1
du ğ3(u)P2(u) (15.44)

and G is the cell shape parameter of Miller (1969a, 1969b). By substituting (15.43) back into
(15.42) and recalling that γ = I/3σ0, we see that the effective conductivity tensor has the
expansion

σ∗ = 〈σ〉 − 1
3σ0

∫
dµ(σ)(σ − 〈σ〉)2 + (5+ ζ 0

1 )

45σ 2
0

∫
dµ(σ)(σ − 〈σ〉)3

+ ζ 0
1

15σ 2
0

∫
dµ(σ)(σ − 〈σ〉)2 Tr(σ − 〈σ〉)+ · · · . (15.45)

For example, suppose that the measure is concentrated on two isotropic conductivity ten-
sorsσ1 = σ1I andσ2 = σ2I with weights f1 and f2 = 1− f1. Then the effective conductivity
tensor σ∗ is also isotropic, that is, σ∗ = σ∗I , and∫

dµ(σ)(σ − 〈σ〉)2 = f1(σ1 − f1σ1 − f2σ2)
2I + f2(σ2 − f1σ1 − f2σ2)

2I

= f1 f2(σ1 − σ2)
2I,

and similarly, ∫
dµ(σ)(σ − 〈σ〉)3 = f1 f2( f2 − f1)(σ1 − σ2)

3I,∫
dµ(σ)(σ − 〈σ〉)2 Tr(σ − 〈σ〉) = 3 f1 f2( f2 − f1)(σ1 − σ2)

3I,
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in which f1 and f2 = 1− f1 are the respective probabilities for finding phase 1 or phase 2 in
a given cell. Consequently, (15.45) implies that the effective conductivity has the expansion

σ∗ = f1σ1 + f2σ2 − f1 f2δ2
σ

3〈σ 〉 + f1 f2( f2 − f1)(1+ 2ζ 0
1 )δ

3
σ

9〈σ 〉2 + · · · ,

in which δσ = (σ1 − σ2). This is in agreement with (15.33), with ζ1 = f1 + ( f2 − f1)ζ 0
1 as in

(15.37).
As another example, suppose that the material is a cell polycrystal, that is, each cell is oc-

cupied by a crystal with conductivity tensor having eigenvalues λ1, λ2, and λ3, with the crystal
orientation varying randomly from cell to cell. The measure µ(σ) is uniformly distributed on
the set of symmetric matrices having these eigenvalues, and we have

〈σ〉 = σ0I, where σ0 = (λ1 + λ2 + λ3)/3,∫
dµ(σ)(σ − 〈σ〉)2 = I

3

∫
dµ(σ)Tr[(σ − 〈σ〉)2]

= 2(λ2
1 + λ2

2 + λ2
3 − λ1λ2 − λ1λ3 − λ2λ3)I/9,∫

dµ(σ)(σ − 〈σ〉)3 = I

3

∫
dµ(σ)Tr[(σ − 〈σ〉)3]

= [2(λ3
1 + λ2

3 + λ3
3) − 3λ2

1(λ2 + λ3) − 3λ2
2(λ1 + λ3) − 3λ2

3(λ1 + λ2) + 12λ1λ2λ3]I/27,∫
dµ(σ)(σ − 〈σ〉)2 Tr(σ − 〈σ〉) = 0.

The third-order expansion for the effective conductivity σ∗ of the polycrystal is obtained by
substituting these expressions back into (15.45), giving

σ∗ ≈ (λ1 + λ2 + λ3)/3 − 2(λ2
1 + λ2

2 + λ2
3 − λ1λ2 − λ1λ3 − λ2λ3)

9(λ1 + λ2 + λ3)

+ (5 + ζ 0
1 )[2(λ3

1 + λ2
3 + λ3

3) − 3λ2
1(λ2 + λ3) − 3λ2

2(λ1 + λ3) − 3λ2
3(λ1 + λ2) + 12λ1λ2λ3]

135(λ1 + λ2 + λ3)2
.

(15.46)

This is the expansion obtained by Willemse and Caspers (1979); see also Avellaneda and
Bruno (1990), who give an alternative derivation.
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16
Other perturbation solutions

16.1. Effect of a small variation in the material moduli
Whenever one has a solution for the fields and effective tensor for a given set of material
constants, it is natural to examine how the effective tensor is changed when the material
constants are perturbed. Here we consider the question of how the effective tensor L∗ is
perturbed in response to a small variation in the tensor field L. Specifically, let us suppose
that this tensor field depends smoothly on a continuous parameter η, that is, L = Lη, but that
the unit cell of periodicity remains fixed independent of η. We first consider the case where
the tensor field L(x) is symmetric. This implies that the tensor L∗ is symmetric, and so to
calculate the derivative dL∗/dη of the effective tensorL∗ it suffices to consider the derivative
of the energy,

d
dη
E0 ·L∗E0 = d

dη
〈Eη · LηEη〉 = 〈Eη · dLη

dη
Eη〉 + 2〈dEη

dη
· LηEη〉, (16.1)

for all constant fields E0, whereEη(x) solves the field equations

Eη ∈ U ⊕ E, 〈Eη〉 = E0, Jη = LηEη ∈ U ⊕ J for all η. (16.2)

Since Eη remains in U ⊕ E for all η, and since its component E0 in the space U remains
fixed independent of η, it follows that

dEη

dη
∈ E for all η,

which in turn implies, because of the orthogonality of the subspaces E and U ⊕ J , that the
last term in expression (16.1) vanishes. Hence the derivative of the energy with respect to η is

d
dη
E0 · L∗E0 = E0 · dL∗

dη
E0 = 〈Eη · dLη

dη
Eη〉, (16.3)

which is the expression obtained by Bergman (1978). At any fixed value of η it depends only
on the field Eη at that value of η, and on the derivative of the moduli Lη with respect to η. In
other words, if we have a fieldE(x) solving the field equations and vary the material moduli
by a small amount δL(x), while maintaining the value of the applied field 〈E〉, the energy
changes by an amount

〈E〉 · δL∗〈E〉 ≈ 〈E · (δL)E〉, (16.4)
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in which δL∗ is the associated change in the effective tensor L∗. By using (16.4) to estimate
the change in the energy for a sufficient number of average fields 〈E〉, we obtain an expression
for δL∗ that is correct to the first order in the variations δL(x).

If the tensor field L(x) is not symmetric, then we consider the derivative of the bilinear
form

d
dη
E ′

0 ·L∗E0 = d
dη
〈E ′

η · LηEη〉

= 〈E ′
η ·
dLη

dη
Eη〉 + 〈

dE′
η

dη
· LηEη〉 + 〈(LTηE ′

η) ·
dEη

dη
〉, (16.5)

for pairs of constant fields E0 and E′
0, where Eη(x) solves (16.2) while E ′

η(x) solves the
adjoint problem

E′
η ∈ U ⊕ E, 〈E ′

η〉 = E ′
0, J ′

η = LTηE ′
η ∈ U ⊕ J for all η.

Since dEη/dη and dE ′
η/dη both lie in the space E , it follows that the last two terms in (16.5)

are zero and we have

d
dη
E ′

0 ·L∗E0 = E ′
0 ·
dL∗
dη
E0 = 〈E ′

η ·
dLη

dη
Eη〉. (16.6)

In other words, if we have a field E(x) solving the field equations and a field E ′(x)
solving the adjoint equations and vary the material moduli by a small amount δL(x), while
maintaining the values of 〈E〉 and 〈E ′〉, the associated bilinear form changes by an amount

〈E ′〉 · δL∗〈E〉 ≈ 〈E ′ · (δL)E〉. (16.7)

By using (16.4) to estimate the change in the bilinear form for a sufficient number of average
fields 〈E〉 and 〈E ′〉, we obtain an expression for δL∗ that is correct to the first order in the
variations δL(x).

16.2. Application to weakly coupled equations of thermoelectricity or
piezoelectricity

The preceding analysis has immediate application to weakly coupled problems since when the
coupling is weak it can be treated as a perturbation to an uncoupled problem. For example,
let us consider the coupled problem,

Jη = LηEη, with Jη =
(
j
η

1
j
η

2

)
, Eη =

(
e
η

1
e
η

2

)
, and Lη =

(
L11 ηL12
ηLT12 L22

)
,

where the matrix Lη(x), and hence the matrices L11(x) and L22(x), are symmetric and the
fields satisfy the differential restrictions,

∇ · jη1 = 0, ∇ · jη2 = 0, ∇ × eη1 = 0, ∇ × eη2 = 0.

The constitutive relation between the average fields,

〈Jη〉 = Lη
∗〈Eη〉,
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then defines the effective tensor Lη
∗. These equations could, for example, represent the equa-

tions of thermoelectricity.
When the coupling constant η is zero, these reduce to an uncoupled set of equations,

j0
1(x) = L11e

0
1, ∇ · j0

1 = 0, ∇ × e0
1 = 0,

j0
2(x) = L22e

0
2, ∇ · j0

2 = 0, ∇ × e0
2 = 0,

and the effective tensor becomes block diagonal,

L0
∗ =

(
L∗

11 0
0 L∗

22

)
,

with matrices L∗
11 and L

∗
22 along the diagonal that correspond to the effective tensors of the

uncoupled equations,

〈j0
1〉 = L∗

11〈e0
1〉, 〈j0

2〉 = L∗
22〈e0

2〉.

When the coupling constant η is small but nonzero, we can treat the coupling as a pertur-
bation to the uncoupled problem and (16.4) gives an approximation to the energy( 〈e0

1〉
〈e0

2〉
)
·Lη

∗

( 〈e0
1〉

〈e0
2〉
)
≈ 〈e0

1〉 ·L∗
11〈e0

1〉 + 〈e0
2〉 ·L∗

22〈e0
2〉 + 2η〈e0

1 · L12e
0
2〉, (16.8)

which is correct to the first order in η. Since it is usually simpler to solve the uncoupled
problem, (16.8) provides a useful formula for estimating the effective tensor Lη

∗ when the
coupling is small, as is frequently the case.

A similar analysis can of course be applied to the piezoelectric equations(
εη

dη

)
= Lη

(
τ η

eη

)
, in which Lη =

(
S ηD

ηDT ε

)
,

where the strain field εη(x), the stress field τ η(x), the electric displacement field dη(x), and
the electric field eη satisfy the usual differential constraints. When η = 0 these reduce to a set
of uncoupled equations

ε0 = Sτ 0, d0 = εe0,

and the relation between the average fields

〈ε0〉 = S0
∗〈τ 0〉, 〈d0〉 = ε0

∗〈e0〉

is governed by an effective compliance tensor S0
∗ and effective dielectric tensor ε

0
∗. When the

coupling η is small, the energy associated with the effective tensor Lη
∗ is approximately( 〈τ 0〉

〈e0〉
)
·Lη

∗

( 〈τ 0〉
〈e0〉

)
≈ 〈τ 0〉 · S0

∗〈τ 0〉 + 〈e0〉 · ε0
∗〈e0〉 + 2η〈τ 0 ·De0〉.

In other words, we can compute the effective tensor Lη
∗ to the first order in η if we know the

stress and electric fields that solve the uncoupled elasticity and dielectric equations.
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16.3. Application to computing the effective Hall coefficient
Let us consider, for simplicity, an isotropic composite comprised of isotropic conducting
phases subject to a magnetic field h directed parallel to the x3-axis, that is, with h1 = h2 = 0.
To the first order in h3 the local resistivity tensor and effective resistivity tensor are given by

ρ(x) =
(

α(x) −R(x)h3 0
R(x)h3 α(x) 0

0 0 α(x)

)
, ρ∗ =

(
α∗ −R∗h3 0
R∗h3 α∗ 0
0 0 α∗

)
,

whereR(x) and R∗ are local and effective Hall coefficients. Treating this as a perturbation of
the problem with no magnetic field present, that is, with h3 = 0, we have

δρ(x) =
( 0 −R(x)h3 0
R(x)h3 0 0

0 0 0

)
, δρ∗ =

( 0 −R∗h3 0
R∗h3 0 0
0 0 0

)
.

We now let j ′(x) and j(x) be the current fields that have the prescribed average values

〈j〉 =
( 1
0
0

)
, 〈j ′〉 =

( 0
1
0

)

and which solve the conductivity equations

e(x) = α(x)j(x), ∇ · j = 0, ∇ × e = 0,
e′(x) = α(x)j ′(x), ∇ · j ′ = 0, ∇ × e′ = 0,

with no magnetic field present. From the relation

〈j ′〉 · δρ∗〈j〉 ≈ 〈j ′ · (δρ)j〉,
which is implied by (16.7), and which holds as an equality to the first order in h3, we obtain
the result of Bergman (1983) that

R∗ = 〈[ j1(x) j ′2(x)− j ′1(x) j2(x)]R(x)〉.
Thus the effective Hall coefficient R∗ can be obtained from the local Hall coefficient R(x) and
a knowledge of the two current fields j(x) and j ′(x) that solve the conductivity equations in
the absence of a magnetic field.

16.4. The variance of the electric field in a two-phase conducting
composite

Bobeth and Diener (1986) and Axell (1992) [see also Beran (1980)] recognized that (16.4) is
useful for determining the variances of the fields in two-phase composites. To illustrate this
let us consider a two-phase composite with a locally isotropic conductivity tensor. Then the
conductivity equations take the forms

j = σe, ∇ · j = 0, ∇ × e = 0, σ(x) = χ1σ1I + χ2σ2I,

in which χ1 and χ2 are the characteristic functions of the two phases. To compute the variance
of the field e we need to first compute its average value in each of the phases.
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By resolving the fields e and j into their components in each phase,

e = e1 + e2, where e1 = χ1e, e2 = χ2e,

j = j1 + j2 = σ1e1 + σ2e2, where j1 = χ1j, j2 = χ2j,

and using the relation σ∗〈e〉 = 〈j〉 we see that
σ∗〈e〉 = σ1〈e1〉 + σ2〈e2〉 = (σ1 − σ2)〈e1〉 + σ2〈e〉 = σ1〈e〉 + (σ2 − σ1)〈e2〉.

This gives us the expressions

〈e1〉 = (σ1 − σ2)
−1(σ∗ − σ2I)〈e〉, 〈e2〉 = (σ2 − σ1)

−1(σ∗ − σ1I)〈e〉
for the average values of the field components e1 and e2.

The next step is to determine the average of the square of the fields in each phase, which
is where the relation (16.4) is helpful. To see the connection let us perturb the conductivities
σ1 and σ2 of the components by small amounts δσ1 and δσ2 while leaving the geometrical
configuration of the phases fixed (i.e., while leaving the characteristic function χ1 unchanged).
Then, to the first order in these variations, (16.4) implies that the resultant change δσ∗ in the
effective conductivity tensor σ∗ is given by

〈e〉 · δσ∗〈e〉 ≈ δσ1〈e · χ1e〉 + δσ2〈e · χ2e〉 = δσ1

〈
|e1|2

〉
+ δσ2

〈
|e2|2

〉
. (16.9)

In other words, if the effective conductivity tensor σ∗ = σ∗(σ1, σ2) is known as a function of
σ1 and σ2, then (16.9) gives us formulas〈

|e1|2
〉
= 〈e〉 · ∂σ∗

∂σ1
〈e〉,

〈
|e2|2

〉
= 〈e〉 · ∂σ∗

∂σ2
〈e〉 (16.10)

for the averages of the square of the field components e1 and e2. The derivatives that enter
these formulas are not independent. Indeed, by differentiating the homogeneity relation [see
equation (1.6)]

σ∗(λσ1, λσ2) = λσ∗(σ1, σ2),

with respect to λ, and then setting λ = 1, we see that

σ1
∂σ∗
∂σ1

+ σ2
∂σ∗
∂σ2

= σ∗.

Now, from the expressions (16.10) it follows that the total field e has average variance

V =
〈∣∣∣e− 〈e〉∣∣∣2〉 = 〈|e1|2 + |e2|2

〉
− 〈e〉2 = 〈e〉 ·

[∂σ∗
∂σ1

+ ∂σ∗
∂σ2

− I
]
〈e〉.

Next, by using (16.10) in conjunction with the expression for the average field 〈e1〉, we find
that the electric field in phase 1 has an average variance over phase 1 of

V1 = 1
f1

〈∣∣∣e1 − χ1

f1
〈e1〉

∣∣∣2〉 = 1
f1
〈e〉 ·

[∂σ∗
∂σ1

− (σ∗ − σ2I)
2

f1(σ1 − σ2)2

]
〈e〉, (16.11)

where the factors of 1/ f1, where f1 = 〈χ1〉 denotes the volume fraction of phase 1, have been
introduced to allow for the fact that the angular brackets represent an average over the entire
composite, rather than an average over phase 1.



346 16. Other perturbation solutions

Similarly, the electric field in phase 2 has an average variance over phase 2 of

V2 = 1
f2

〈∣∣∣e2 − χ2

f2
〈e2〉

∣∣∣2〉 = 1
f2
〈e〉 ·

[∂σ∗
∂σ2

− (σ∗ − σ1I)
2

f2(σ2 − σ1)2

]
〈e〉,

in which f2 = 1 − f1 is the volume fraction occupied by phase 2. So if the conductivity
function σ∗(σ1, σ2) and the average electric field 〈e〉 are known, then we can determine the
variance of the electric field in each of the phases and in the composite. Using this result Axell
(1992) derived bounds on the field variance. An alternative approach has been taken by Lipton
(2000, 2001), who uses a Stieltjes integral representation formula to bound the covariance
tensor. Higher order moments of the field distributions, and the field distributions themselves,
have been numerically computed by Cheng and Torquato (1997) for two-dimensional random
dispersions of disk-shaped, needle-shaped, and square-shaped inclusions.

16.5. Bounds on the conductivity tensor of a composite of two isotropic
phases

The expression for the average variance of the electric field over phase 1 leads to well-known
bounds on the effective tensor σ∗, as shown by Matheron (1993) [see also Markov (2000)].
Let us suppose that the conductivities of the two phases have been labeled so that σ1 > σ2.
We treat σ2 as being fixed and consider σ∗ as a function σ∗(σ1) of σ1 for σ1 > σ2. Since the
average variance over phase 1 is necessarily always positive, it follows from (16.11) that

∂σ∗
∂σ1

≥ (σ∗ − σ2I)
2

f1(σ1 − σ2)2 . (16.12)

(Such an inequality between matrices means that the left-hand side minus the right-hand side
is a positive-definite matrix.) This implies that

f1
∂(σ∗ − σ2I)

−1

∂σ1
= − f1(σ∗ − σ2I)

−1 ∂σ∗
∂σ1

(σ∗ − σ2I)
−1 ≤ −I

(σ1 − σ2)2 .

Integrating this inequality with respect to σ1 from σ1 = σ2 + δ, where δ is infinitesimal and
positive, to σ1 = σ ′

1 gives

f1(σ∗(σ ′
1)− σ2I)

−1 − f1(σ∗(σ2 + δ)− σ2I)
−1 ≤ (σ ′

1 − σ2)
−1I − δ−1I.

Now when δ is infinitesimal we have

σ∗(σ2 + δ) = σ2I + f1δI − f1 f2δ2M/σ2 +O(δ3).

By substituting this back into the inequality and taking the limit δ→ 0 we obtain the bound

f1(σ∗ − σ2I)
−1 ≤ (σ1 − σ2)

−1I + f2M/σ2, (16.13)

where the prime on σ ′
1 has been dropped.

This is a lower bound on the effective conductivity tensor σ∗ that depends on the two-
point correlation function through the matrixM . Notice that the conductivity tensor of the
coated ellipsoid assemblage, given by (7.54), and the conductivity tensor of the sequentially
layered laminate, given by (9.20), are such that they achieve the bound. This is no surprise.
Since the field in phase 1 is constant in both of these geometries for all values of σ1 and σ2,
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it follows that the average variance over phase 1 must vanish, implying that equality holds in
(16.12).

If the two-point correlation function is unknown, then we can still obtain a useful bound
by utilizing the fact that Tr(M) = 1. Taking the trace of (16.13) yields the inequality

f1 Tr[(σ∗ − σ2I)
−1] ≤ d(σ1 − σ2)

−1 + f2/σ2, (16.14)

where d denotes the dimensionality of the composite.
A similar analysis based on the positivity of the average variance over phase 2 gives an

upper bound on the effective conductivity tensor σ∗,

f2(σ1I − σ∗)−1 ≤ (σ1 − σ2)
−1I − f1M/σ1, (16.15)

and by taking the trace of this we obtain a bound,

f2 Tr[(σ1I − σ∗)−1] ≤ d(σ1 − σ2)
−1 − f1/σ1, (16.16)

that is independent of the two-point correlation function. The bounds (16.13) and (16.15)
(generalized to multiphase composites) were first derived by Willis (1977). At the time,
the problem of obtaining correlation function independent bounds was not considered. The
correlation function independent bounds (16.14) and (16.16) were derived independently by
Murat and Tartar (1985) and Lurie and Cherkaev (1986) using the translation method (see
section 24.6 on page 506). When the composite is isotropic, that is, σ∗ = σ∗I , these bounds
reduce to the well-known Hashin-Shtrikman (1962) bounds

σ1 + d f2σ1

dσ1 + f1(σ2 − σ1)
≥ σ∗ ≥ σ2 + d f1σ2

dσ2 + f2(σ1 − σ2)
, (16.17)

which will be discussed again in section 23.1 on page 457.

16.6. The change in the effective tensor due to a shift in the phase
boundary†

We have answered the question of how the effective tensor L∗ changes when the there is a
small perturbation that shifts the moduli L(x) by a small amount at each point x. Here we
analyze a different type of small perturbation, namely, a slight shift in the position of a phase
boundary, or any interface that marks a discontinuity in the tensor fieldL(x). As the interface
is shifted there is a finite jump in the moduli L(x) at points x in the vicinity of the interface,
and the previous perturbation analysis is no longer applicable.

Specifically, let us suppose that this interface depends on a continuous parameter η, that
is, � = �η. Let us assume, for simplicity, that as η is increased the tensor field L = Lη(x)
changes only at any given point xwhen the interface �η passes through that point. To simplify
the analysis let us further assume that the fieldsE = Eη and J = Jη are matrix-valued fields
satisfying the differential constraints,

∇ · Jη = 0, E = ∇uη, 〈E〉 = E0,

for some vector (or scalar) potential uη, where E0 is chosen to be independent of η. At the
interface �η the appropriate continuity conditions are

uη and n · Jη are continuous across �η, (16.18)
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where n(x) is the normal to the interface. It is convenient to suppose that the interface �η

has two sides and to label the fields adjacent to one side of the interface by a plus superscript
and to label the fields adjacent to the other side by a minus superscript. With this notation the
interface condition (16.18) can be rewritten as,

u+
η (x) = u−

η (x), n · J+
η (x) = n · J−

η (x), for all x ∈ �η, (16.19)

where n is taken to be directed outward from the + side of the interface, pointing toward the
− side.

Let us also introduce, for all points x along the interface �η, the scalar quantity γη(x)
representing the speed at which the interface �η moves in the direction of the outward normal
n as η is increased. In other words, if η is increased to η + ε, then the set of points

�′
η,ε = {x′ | x′ = x+ εγη(x)n, x ∈ �η} (16.20)

represents a first-order approximation to the interface �η+ε in the limit ε → 0; see figure 16.1.

Γη
Γη+ε

γη(x)ε
+ side

side n

Figure 16.1. Perturbation of an interface separating two phases or marking a discontinuity
in the tensor field L(x). When ε is small ε|γη(x)| is a first approximation to the distance
between the interfaces �η and �η+ε .

The key step is to recognize that the derivative of the energy with respect to η is

d
dη
〈E0 · L∗E0〉 = d

dη
〈Eη · LηEη〉

= 2
|�|
∫
�\�η

dEη

dη
·LηEη + 1

|�|
∫
�η

γη[E+
η ·L+E+

η −E−
η · L−E−

η ].

(16.21)

The origin of the terms in this expression requires some explanation. The first integral is
over the unit cell �, excluding the interface �η, and represents the change in the energy due
to variations dEη/dη in the field, treating the interface as if it remained fixed. The second
integral represents the change in the energy due to movement of the interface, treating the
field Eη(x) as if it remained fixed outside the neighborhood of the interface and within the
neighborhood of the interface was analytically extended to the new position of the interface
so that the discontinuity in the field remains at the interface.
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The first integral in (16.21) can be integrated by parts,∫
�\�η

dEη

dη
· LηEη =

∫
�η

∂u+
η

∂η
· (n · J+

η )−
∂u−

η

∂η
· (n · J−

η )

=
∫
�η

[
∂u+

η

∂η
− ∂u−

η

∂η
] · (n · J+

η ), (16.22)

in which we have used the continuity condition (16.19) on the field J to simplify the result.
Here the partial derivatives ∂u+

η /∂η and ∂u−
η /∂η are partial derivatives of u

+
η (x) and u

−
η (x)

with respect to η keeping x fixed. They should be evaluated at a point x slightly away from
the interface, and then the limit should be taken as x approaches the interface �η from, respec-
tively, the plus and minus sides of the interface. Now notice that (16.20) and the continuity
condition (16.19) on the potential imply that to the first order in ε,

u+
η+ε(x+ εγη(x)n) ≈ u−

η+ε(x+ εγη(x)n).

By expanding this and equating the terms of order ε we see that

∂u+
η

∂η
+ γηn · ∇u+

η =
∂u+

η

∂η
+ γηn · ∇u−

η ,

which in conjunction with (16.22) implies that∫
�\�η

dEη

dη
·LηEη =

∫
�η

γη[n · (∇u−
η −∇u+

η )] · (n · J+
η )

=
∫
�η

γη(∇u−
η −∇u+

η ) · (n⊗ n) · J+
η . (16.23)

Since the potential is continuous across the interface, it follows that the tangential deriva-
tive of the potential is also continuous across the interface. So if w1(x), w2(x),. . . ,wd−1(x)
and n(x) form an orthonormal set of basis vectors at each point x on the interface, then we
have

wi · [∇u−
η −∇u+

η ] = 0 for i = 1, 2, . . . , d − 1.

This enables us to rewrite (16.23) as∫
�\�η

dEη

dη
·LηEη =

∫
�η

γη(∇u−
η − ∇u+

η ) · (n⊗ n+
d−1∑
i=1

wi ⊗wi) · J+
η

=
∫
�η

γη[∇u−
η −∇u+

η ] · J+
η

=
∫
�η

γη[E−
η −E+

η ] ·L+E+
η .

(16.24)

Of course we could have equally well replaced n · J+
η by n · J−

η in the expression (16.22).
This would have lead to the identity∫

�\�η

dEη

dη
·LηEη =

∫
�η

γη[E−
η −E+

η ] ·L−E−
η . (16.25)



350 16. Other perturbation solutions

By substituting (16.24) and (16.25) back into (16.21) we arrive at the result

〈E0 · dL∗
dη
E0〉 = 1

|�|
∫
�η

γη[E−
η · L+E+

η −E+
η · L−E−

η ]

= 1
|�|
∫
�η

γη[E+
η · (L+ −L−)E−

η ]

= 1
|�|
∫
�η

γη[E− · J+ −E+ · J−]. (16.26)

In other words, the derivative of the energy depends only on the values that the fields E and
J take along that interface. If we perturb the position of the interface by a distance εγ (x) in
the direction normal to the interface, keeping 〈E〉 fixed, then (16.26) implies that the resultant
change in the energy to the first order in ε will be

〈E〉 · (δL∗)〈E〉 ≈ 1
|�|
∫
�η

εγ (x)[E−(x) · J+(x)−E+(x) · J−(x)], (16.27)

where δL∗ is the associated change in the effective tensor L∗. Thus δL∗ can be computed to
the first order in ε by evaluating the change in energy (16.27) for sufficiently many average
fields 〈E〉.

As an example, consider what happens when we change the volume fraction in the Hashin-
Shtrikman (1962) coated sphere geometry by increasing the core radius rc in each coated
sphere by an amount proportional to rc, that is, by an amount δrc = εrc, while keeping the
outer radius re fixed. The resultant change in the overall volume fraction of phase 1 will then
be

δ f1 = 3r 2
c δrc
r3
e

= 3ε f1.

Now from formulas (7.2) and (7.3) for the fields in the coated sphere geometry we see that
the electric field at the interface between the core and coating takes values

e1 = a1[cos θ vr − sin θ vθ ]

on the core side of the interface and values

e2 = ∇φ2 = [a2 − 2b2/r 3
c ] cos θ vr − [a2 + b2/r 3

c ] sin θ vθ

on the coating side of the interface, where vr is the unit radial vector and vθ is the unit vector
perpendicular to vr in the plane containing r and 〈e〉. Also, according to formulas (7.4) and
(7.5), the constants entering these equations satisfy

a1 = − 3σ2b2

r3
c (σ1 − σ2)

, a2 = − (σ1 + 2σ2)b2

r3
c (σ1 − σ2)

,

and b2 is related to the magnitude of the average electric field through the equation

|〈e〉| = |a∗| = |a2 + b2/r 3
e | =

∣∣∣ [3σ2 + f2(σ1 − σ2)]b2

(σ1 − σ2)r 3
c

∣∣∣.
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According to (16.27), the resultant change δσ∗ in the effective conductivity should be
given, to the first order in ε, by the formula

δσ∗ ≈ 3
4πr 3

e 〈e〉2
∫ π

0
δrc[e1 · (σ1 − σ2)e2]2πr 2

c sin θ dθ

≈ 3ε f1(σ1 − σ2)

2〈e〉2
∫ π

0
a1(a2 − 2b2/r 3

c ) cos
2 θ sin θ + a1(a2 + b2/r 3

c ) sin
3 θ dθ

≈ 3ε f1(σ1 − σ2)a1a2

〈e〉2 = 3σ2(σ1 − σ2)(σ1 + 2σ2)

[3σ2 + f2(σ1 − σ2)]2
δ f1.

This implies that the derivative of σ∗ with respect to f1 must be

∂σ∗
∂ f1

= 3σ2(σ1 − σ2)(σ1 + 2σ2)

[3σ2 + f2(σ1 − σ2)]2
,

which agrees with the result obtained by direct differentiation of the formula

σ∗ = σ2 + 3 f1σ2(σ1 − σ2)

3σ2 + f2(σ1 − σ2)

for the effective conductivity as a function of f1. Of course we can use (16.27) to treat quite
general perturbations to the interface. For instance, in the coated sphere geometry one could
analyze the first-order effect of nonspherical perturbations to the shape of the core in each
coated inclusion.

If we are aiming to find multicomponent composites that, for a given applied field E0 =
〈E〉, have maximum or minimum energy amongst all composites constructed from the same
set of component materials, then (16.27) tells us that at each interface � the fields must satisfy
the constraint

E−(x) · J+(x) = E+(x) · J−(x) for all x ∈ �. (16.28)

This provides a necessary but not sufficient condition for optimality. It turns out that optimal
microstructures frequently have structure on widely separated length scales. In that event con-
dition (16.28) also applies to the interfaces separating two different types of microstructure,
that is, to interfaces between composites constructed from the component materials. At such
interfaces the fields E−, E+, J−, and J+ appearing in (16.28) should be taken to be local
averages of the associated fields E and J on each side of the interface.

16.7. Perturbing the lamination directions in a multiple-rank laminate†
Suppose that we are searching amongst multiple-rank laminate materials for optimal lami-
nates that for a given applied field E0 have maximum or minimum energy. The condition
(16.28), applied at each level of lamination, is necessary for the energy of an optimal lam-
inate to be stable under small variations in the relative widths of the laminae, that is, under
small variations in the relative proportions of the materials laminated together at each level
of lamination. Here we will derive conditions that are necessary for the energy of an optimal
laminate to be stable under small variations in the directions of lamination.

To begin, consider a simple two-phase laminate, of phases with symmetric tensorsL1 and
L2, laminated in direction n in proportions f1 and f2 = 1− f1, and subject to an applied field
E0. From (9.45), the effective tensor L∗ of such a laminate is given by the formula

L∗ = L2 + f1[(L1 −L2)
−1 + f2Γ(n)]−1,
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where
Γ(n) = Γ1(n)[Γ1(n)L2Γ1(n)]−1Γ1(n).

A necessary condition for the energyE0 ·L∗E0 to be minimized, or maximized, with respect
to variations in n (while E0, L1, L2, and the proportions f1 and f2 = 1− f1 are kept fixed)
is that

∂(E0 ·L∗E0)

∂n

= − f1 f2E0 · [(L1 −L2)
−1 + f2Γ(n)]−1 dΓ(n/|n|)

dn
[(L1 −L2)

−1 + f2Γ(n)]−1E0

= −( f2/ f1)[(L∗ −L2)E0] · dΓ(n/|n|)
dn

[(L∗ −L2)E0] = 0. (16.29)

Let E1 and E2 denote the values that the field E(x) takes within phases 1 and 2. Then
the field J(x) takes the value L1E1 in phase 1 and L2E2 in phase 2 and we have

(L∗ −L2)E0 = 〈J〉 −L2〈E〉 = f1L1E1 + f2L2E2 −L2( f1E1 + f2E2)

= f1(L1 −L2)E1.

Hence (16.29) reduces to the condition

E1 · (L1 − L2)
dΓ(n/|n|)

dn
(L1 −L2)E1 = 0. (16.30)

In a multiple-rank laminate subject to an applied field E0, the relation (16.4) implies that
the condition (16.30) must necessarily hold at each level in the laminate if the energy is to be
stable under small variations in the directions of lamination. At any given level in the multiple-
rank laminate L1 and L2 should be identified with the effective tensors of the materials that
are laminated together, and E1 should be identified with the average of the field E(x) taken
over the material with effective tensor L1.

The conditions (16.28) and (16.30) provide equalities that must necessarily be satisfied
at each level in a multiple-rank laminate if the structure is to minimize the overall energy.
Cherkaev (2000) found that there are additional inequalities that the fields must necessarily
satisfy. These arise when one considers how the energy changes when a portion of one phase
is replaced by another phase or by a composite of several phases.
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17
The general theory of exact relations and

links between effective tensors

So far we have been considering exact relations and links between effective tensors on a case-
by-case basis. Grabovsky (1998) recognized that there should be some general theory of exact
relations. Utilizing the fact that an exact relation must hold for laminate materials, he derived
restrictive constraints on the form that an exact relation can take. This reduced the search
for candidate exact relations to an algebraic question that was analyzed by Grabovsky and
Sage (1998). Subsequently sufficient conditions were found for an exact relation to hold for
all composite microgeometries, and not just laminates or multiple-rank laminates (Grabovsky
and Milton 1998a; Grabovsky, Milton, and Sage 2000). A measure of the success of this
approach is that it has produced complete lists of all (rotationally invariant) exact relations
for three-dimensional thermoelectricity and for three-dimensional thermopiezoelectric com-
posites that include all exact relations for elasticity, thermoelasticity, and piezoelectricity as
particular cases (Grabovsky, Milton, and Sage 2000). At present the general theory of exact
relations is still not finished. There is an apparent gap between the known necessary con-
ditions and the known sufficient conditions for an exact relation to hold. In addition, the
associated algebraic questions have only begun to be investigated.

17.1. Links between effective tensors as exact relations: The idea of
embedding

Any exact microstructure-independent relation satisfied by an effective tensorL∗ implies that
L∗ lies on smooth manifoldM with an empty interior in tensor space. For example, we have
seen that the effective conductivity tensor σ∗ of a two-dimensional polycrystal formed from
a single crystal with conductivity σ0 lies on the manifold detσ∗ = detσ0 (see section 3.3 on
page 50). Besides this type of exact relation, there are also various links between effective
tensors or effective moduli (which are also known as cross-property relations ). For example,
given a two-dimensional material with a (possibly nonsymmetric) conductivity tensor σ(x)
and effective tensor σ∗, we have seen that the dual material with conductivity tensor σ ′(x) =
[σ(x)]T / detσ(x) has effective conductivity tensor σ′

∗ = [σ∗]T / detσ∗ (see section 3.1 on
page 47). This result can be regarded as an exact relation if we embed the problem in a
coupled field setting. The idea of embedding was initially introduced as a tool for bounding
effective tensors using the translation method. It will be discussed again in section 24.5 on
page 505.

355
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Consider the coupled field problem(
j(x)
j ′(x)

)
= L(x)

(
e(x)
e′(x)

)
, where ∇ · j = 0,

∇ · j ′ = 0,
∇ × e = 0,
∇ × e′ = 0.

Define our manifoldM as the set of tensors L expressible in the form

L =
(
σ 0
0 [σ]T / detσ

)
,

for some σ with a positive-definite symmetric part. In this setting, the duality result is equiv-
alent to saying that L∗ lies inM wheneverL(x) lies inM for all x, that is, the manifoldM
defines an exact relation.

We have seen in chapter 4 on page 59 that when a tensor fieldL(x) is translated by certain
constant tensors T (with the property that TE ⊂ J ) the effective tensorL∗ undergoes exactly
the same translation. This result can also be regarded as an exact relation in a coupled field
setting. Consider the coupled field problem(

J(x)
J ′(x)

)
= L(x)

(
E(x)
E′(x)

)
, where E,E ′ ∈ U ⊕ E and J ,J ′ ∈ U ⊕ J ,

and let L∗ denote the associated effective tensor. Let T be fixed and define our manifold
M =M(T ) as the set of positive-definite tensors L expressible in the form

L =
(
L 0
0 L+ T

)
,

for some choice of L. The statement that the effective tensor L∗ is translated by T when
L(x) is translated by T is equivalent to saying that this manifoldM defines an exact relation.

Similarly, the covariance property (6.9) associated with coupled equations can be regarded
as being equivalent to an exact relation in an extended coupled equation setting, with twice
the number of fields. Given fixed, nonsingular matrices V and W of the form (6.5) we define
our manifoldM =M(V,W) to consist of positive-definite tensors expressible in the form(

L 0
0 WLV−1

)
,

for some choice of L. Then the covariance property is equivalent to saying thatM defines an
exact relation.

Hill’s formula,
(λ∗ + 2µ)−1 = 〈 (λ+ 2µ)−1〉 (17.1)

(see section 5.3 on page 77), for the effective Lame modulus λ∗ of a locally isotropic compos-
ite with constant shear modulus can be reinterpreted as a link between effective moduli, and
hence as an exact relation in a coupled field setting. Consider the equations of thermoelasticity
in the absence of coupling,(

τ(x)
θ

)
= L(x)

(
ε(x)
ς(x)

)
, where L(x) =

(
C(x) 0
0 T0/c(x)

)
,

in which θ is the (constant) change in temperature measured from the base temperature T0,
ς(x) is the entropy increase per unit volume over the entropy of the state where θ = 0, and
c(x) is the specific heat. Since θ is constant, the associated effective specific heat is simply

c∗ = 〈c〉.
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So in a locally isotropic composite with constant shear modulus µ, Hill’s result implies that
if for some constant k,

c(x) = T0/k[λ(x)+ 2µ], then c∗ = T0/k[λ∗ + 2µ].

Thus the effective moduli c∗, λ∗, and µ∗ = µ are linked in this medium. Equivalently,
an exact relation is defined by the one-dimensional manifold M = M(µ, k) consisting of
thermoelastic tensors expressible in the form

L =
(
λI ⊗ I + 2µI 0

0 k(λ+ 2µ)

)
,

for some choice of λ.
These examples show that an understanding of exact relations is also key to understanding

the links between effective tensors.

17.2. Necessary conditions for an exact relation
Assume that we are looking for a manifoldM that defines an exact relation. Let us make the
simplifying assumption that the tensors inM are symmetric. Naturally this manifold must be
stable under lamination; that is, if we take any two tensors A and B in the manifold M and
laminate them together in proportions f and 1 − f , then the effective tensor A∗ must also
lie in the manifold. This stability under lamination imposes rather stringent conditions on the
nature of the manifold.

Let us take L0 to be a positive-definite tensor in the manifold and introduce the transfor-
mation

Wn(L) = [I + (L−L0)Γ(n)]−1(L−L0) =K, (17.2)

and the associated inverse transformation

W−1
n (K) = L0 + [I −KΓ(n)]−1K = L.

It then follows from formula (9.44) (adapted to the case where L − L0 is possibly singular)
that

Wn(A∗) = f Wn(A)+ (1− f )Wn(B).

So, as f is varied from 0 to 1,Wn(A∗) varies along the straight line in tensor space joining
Wn(A) with Wn(B). Therefore, stability under lamination implies that Wn(M) must be
convex. Since it is has an empty interior, it follows that for a fixed value of n, Wn(M) lies
in a hyperplaneK. (Strictly speaking, we should label this hyperplane as Kn, but we will see
shortly that Kn does not vary with the choice of n.) The hyperplane K must pass through
the origin because Wn(L0) = 0, that is, K is a subspace in the space of symmetric tensors.
Moreover, Wm(W−1

n (K)) must also be a subspace for each choice of unit vectorm. Now,
given some tensorK ∈ K and expanding Wm(W−1

n (εK)) in powers of ε gives

Wm(W−1
n (εK)) = εK{I − [Γ(n)− Γ(m)]εK}−1

= εK + ε2KA(m)K + ε3KA(m)KA(m)K

+ε4KA(m)KA(m)KA(m)K + · · · ,
whereA(m) is the symmetric matrix

A(m) = Γ(n)− Γ(m). (17.3)
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Since the linear term is εK, the subspace Wm(W−1
n (K)) must in fact be K itself, that is, K

does not depend on n. From an examination of the quadratic term we then see that

KA(m)K ∈ K for allm and for allK ∈ K. (17.4)

Higher order terms in the expansion do not yield any additional constraints. Indeed, sub-
stitution ofK =K1 +K2 in (17.4), whereK1 andK2 both lie in K, yields the corollary,

K1A(m)K2 +K2A(m)K1 ∈ K for allK1,K2 ∈ K. (17.5)

Applying this with K1 = K and K2 = KA(m)K shows that the cubic term lies in the
space K. Similarly, all of the remaining higher order terms must also lie in K once (17.4) is
satisfied. Therefore condition (17.4) suffices to ensure the stability under lamination of the set
of all positive-definite symmetric tensors in W−1

n (K).
For example, consider two-dimensional conductivity and take L0 = σ0I . ThenA(m) =

(n⊗n−m⊗m)/σ0 is a trace free 2×2 symmetric matrix. Now trace free 2×2 symmetric
matrices have the property that the product of any three such matrices is also trace free and
symmetric. So (17.4) will be satisfied when K is the space of trace free 2 × 2 symmetric
matrices. ThenW−1

n (K) consists of 2×2 symmetric matricesσ∗ such that Tr[(σ0I−σ∗)−1] =
1/σ0. Equivalently, it consists of matrices σ∗ such that detσ∗ = σ 2

0 . Thus the manifoldM of
two-dimensional conductivity tensors with constant determinant is stable under lamination.

This suggests a way of narrowing the search for candidate exact relations. Namely, one
should look for tensors L0 and tensor subspaces K such that the algebraic constraint (17.4) is
satisfied. Then anymultiple-rank laminate constructed frommaterials with tensors inW−1

n (K)

will necessarily have an effective tensor in W−1
n (K). One important class of exact relations

is those in which the manifold M is rotationally invariant, that is, such that when a tensor
L∗ lies in M, so too does the rotation of the tensor L∗. When L0 is chosen to be isotropic,
that is, rotationally invariant, the subspace K containing Wn(M) must be also rotationally
invariant, because it is independent of n. Therefore in the search for rotationally invariant
exact relations one can restrict attention to rotationally invariant subspacesK satisfying (17.4).
The fact that rotationally invariant subspaces of tensors have been completely characterized
makes the systematic search for such subspaces K numerically feasible.

One of the many nontrivial candidate exact relations found in this way by Grabovsky and
Sage (1998) is for three-dimensional elasticity. The manifold M = M(µ0) consists of all
positive-definite elasticity tensors C expressible in the form

C = 2µ0T +A⊗A, (17.6)

for some choice of symmetric second-order tensor A, where T is the fourth-order isotropic
tensor with elements

Ti jk	 = (δi jδk	 + δi jδk	)/2− δi jδk	.

The elasticity tensor C will be positive-definite if and only µ0 is positive and A is chosen so
that

[Tr(A)]2 − 2 Tr(A2) ≥ 4µ0 ≥ 0. (17.7)

In section 17.4 on page 361 we will establish that this manifold M does in fact define
an exact relation valid for all composites and not just laminates. The condition (17.7) is
important because the relation does not extend to arbitrary positive-semidefinite matrices C
of the form (17.6). As noticed by Leonid Gibiansky (private communication), laminating two
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rank-1 elasticity tensors with tensors C1 = n1n1n1n1 and C2 = n2n2n2n2 in proportions
f1 and f2 = 1 − f1 in direction n3, where n1, n2, and n3 are three mutually orthogonal
vectors, produces an effective elasticity tensor C∗ = f1C1+ f2C2 that is rank 2, and therefore
not of the form (17.6).

For two-dimensional elasticity the stability under homogenization of the manifold M
was established by Grabovsky and Milton (1998b) using elliptic partial differential theory.
Gibiansky (1998) subsequently found a much simpler proof using quasiconvexity.

17.3. Sufficient conditions for an exact relation
Naturally we would like to ensure that the set of all positive-definite tensors in W−1

n (K) is
stable under homogenization and not just lamination, that is, to ensure that any composite
with L(x) ∈ W−1

n (K) always has an effective tensor L∗ ∈ W−1
n (K). Here we will prove that

it is sufficient that there exist a larger space K such that

K1A(m)K2 ∈ K for allm and for allK1,K2 ∈ K, (17.8)

and such that K equals the subspace of all symmetric matrices in K. This condition is suf-
ficient to guarantee the stability under homogenization of not just the set of positive-definite
tensors in W−1

n (K), but also of the larger set of tensors in W−1
n (K) that have positive-definite

symmetric parts.
To establish this consider the series expansion (14.44), which we rewrite here as

K∗ =
∞∑
j=0

〈Q j〉, (17.9)

where the fieldsQi (x) are given by the recursion relations

Q0 =K, Q j+1 =KAQ j , whereA =M(I − Γ0)− Γ, (17.10)

in which

K(x) = [I + (L(x)−L0)M ]−1(L(x)− L0),

K∗ = [I + (L∗ −L0)M ]−1(L∗ −L0),

andM is now not necessarily equal to Γ(n), although we will see shortly that there are good
reasons for takingM = Γ(n). Our objective is to prove by induction that all of the fields
Qi(x) take values in the space K when Q0(x) = K(x) takes values in the space K and
condition (17.8) is satisfied with

A(m) =M − Γ(m). (17.11)

Let us assume that for some j the field Q j(x) takes values in K. This is certainly true
when j = 0. The real and imaginary parts of the Fourier coefficients Q̂ j(k) of Q j (x) natu-
rally will also take values in K. Then, sinceQ j+1 =KAQ j , we have

Q j+1(x) =
∑
k �=0

eik·xK(x)A(k)Q̂ j (k), (17.12)
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whereA(m) is given by (17.11). Applying (17.8) withK1 =K(x) ∈ K and withK2 equal
to the real and imaginary parts of Q̂ j (k), we conclude thatQ j+1(x), being real, takes values
in K. By induction it follows that all of the fields Qi(x) take values in K. Provided that the
series expansion converges, this implies thatK∗ lies in K.

Now define WM as the fractional linear matrix transformation

WM (L) = [I + (L−L0)M ]−1(L−L0), (17.13)

W−1
M

as the associated inverse transformation

W−1
M (K) = L0 + [I −KM ]−1K,

and M as the manifold consisting of tensors in W−1
M

(K) with positive-definite symmetric
parts. We have established that the effective tensorL∗ necessarily lies inM whenL(x) takes
values inM, provided that at leastK(x) = WM (L(x)) is small enough (for all x) that the
series expansion converges.

By differentiating the constraint (17.8) with respect tom we see that it implies that

K1
dΓ(m)

dm
K2 ∈ K for allm and for allK1,K2 ∈ K. (17.14)

Conversely, if this condition holds, and in addition (17.8) is satisfied for any one value ofm,
saym = n, where n is a fixed unit vector, that is,

K1[M − Γ(n)]K2 ∈ K and for allK1,K2 ∈ K, (17.15)

then by integrating (17.14) we see that the condition (17.8) will be satisfied for all values of
m. Clearly this second condition is automatically satisfied if we takeM = Γ(n). Other
choices ofM satisfying (17.15) all lead to the same exact relation. To establish this it suffices
to show that W−1

M
(K) = W−1

n (K), in which Wn is the transformation defined by (17.2), that

is, Wn = WΓ(n)
. We omit the proof that WM (W−1

n (K)) equals K since it proceeds in the
same way as the proof given in the previous section thatWm(W−1

n (K)) equalsK when (17.4)
is satisfied: At each step it is only necessary to replace Γ(m) withM and K with K.

Even if the perturbation expansion does not converge, analytic continuation arguments
imply that the exact relation still holds provided L(x) is bounded and coercive. Briefly,
we can consider a one-parameter family of composite materials with K(x) replaced by
Kλ(x) = λK(x). The one-parameter family of associated tensors K∗, which we de-
note as Kλ∗, defines a matrix-valued function of λ that will be analytic for λ between zero
and 1. (One can check that Kλ∗ is bounded when the associated effective tensor Lλ∗ is
bounded and coercive.) So if we take any matrix K⊥ orthogonal to K, then the function
f (λ) = Tr(KT

⊥Kλ∗) is also an analytic function of λ for λ between zero and 1. For small
values of λ, say |λ| < λ+, the perturbation expansion converges and the exact relation holds.
Therefore we have f (λ) = 0 for |λ| < λ+. Analytic continuation then implies that f (λ) = 0
for all λ between zero and 1, and in particular for λ = 1. Since this holds for anyK⊥ orthog-
onal to K, the exact relation must hold when λ = 1; see also Grabovsky, Milton, and Sage
(2000).

This suggests the following way of generating exact relations. First find a subspace K
satisfying (17.14), and second pick a tensorM such that (17.15) holds. It certainly suffices to
takeM = Γ(n), but other choices ofM are also possible. Once this is done the set of tensors
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in W−1
M

(K) that have positive-definite symmetric parts will be stable under homogenization.
Since L∗ is symmetric when L(x) is symmetric for all x, we have the corollary that the set
of symmetric positive-definite tensors in W−1

M (K) is also stable under homogenization. For
example, given any vector v, the space K consisting of all matrices K such that Kv = 0
satisfies (17.14) and (17.15) holds withM = 0. The associated manifold M consists of all
tensors L∗ = L0 +K such that L∗v = L0v. Thus we easily recover the class of exact
relations established in section 5.1 on page 75 using the uniform field argument.

17.4. An exact formula for the shear modulus of certain
three-dimensional polycrystals

To illustrate the power of this method of generating exact relations, let us consider three-
dimensional elasticity and prove that the manifoldM consisting of all positive-definite tensors
expressible in the form (17.6) for some choice ofA defines an exact relation (Grabovsky and
Milton 1998a). We take L0 to be an arbitrary isotropic elasticity tensor with bulk modulus κ0
and shear modulus µ0. The associated tensor Γ(n), given by (9.59) with µ2 replaced by µ0

and λ2 replaced by κ0−2µ0/3, has the property that Tr[Γ(n)I] is independent ofn, implying
that

Tr{[Γ(n)− Γ(m)]I} = 0 for all n andm, (17.16)

in which I is the second-order identity tensor upon which the fourth-order tensor Γ(n) −
Γ(m) acts. Now consider the subspaceK consisting of all fourth-order tensorsK expressible
in the form

K = I ⊗B +B′ ⊗ I,
for some choice of symmetric second-order tensorsB andB ′. Given symmetric second-order
tensorsB1,B′

1,B2, andB′
2, (17.16) implies that

[I ⊗B1 +B′
1 ⊗ I]A(m)[I ⊗B2 +B′

2 ⊗ I] = I ⊗B3 +B′
3 ⊗ I,

with

B3 = [Tr(A(m)B1)]B2 + [Tr(BT
1A(m)B′

2)]I, B′
3 = [Tr(A(m)B′

2)]B
′
1.

Therefore the subspace K satisfies the desired property (17.8). The subspace K of sym-
metric fourth-order tensors within K is six-dimensional and is comprised of tensors of the
formK = I ⊗B +B ⊗ I , whereB is a symmetric second-order tensor. Since the relation
(17.16) also holds when we replace Γ(m) withM = I ⊗ I/3(3κ0 + 4µ0), we have that
W−1
n (K) = W−1

M
(K). This provides an easier way of calculating the manifold M because

the latter transformation is simpler. Explicit calculation shows that

W−1
M

(I ⊗B +B ⊗ I)

= L0 + {I − [(TrB)I + 3B] ⊗ I/3(3κ0 + 4µ0)}−1(I ⊗B +B ⊗ I)

= 2µ0(I − I ⊗ I) + [(3κ0 + 4µ0 − TrB)I + 3B] ⊗ [(3κ0 + 4µ0 − TrB)I + 3B]
3(3κ0 + 4µ0 − 2TrB)

,

in which I is the fourth-order identity tensor. A necessary condition for this to be positive-
definite is that 3κ0 + 4µ0 − 2 TrB be positive. The associated manifold M, which consists
of all positive-definite elasticity tensors C expressible in the form (17.6) for some choice of

A = [(3κ0 + 4µ0 − TrB)I + 3B]/
√
3(3κ0 + 4µ0 − 2 TrB),
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is therefore stable under homogenization.
As an example, consider a three-dimensional elastic polycrystal where the elasticity tensor

takes the form
C(x) = R(x)R(x)C0R

T (x)RT (x),

where R(x) is a rotation matrix, giving the orientation of the crystal at each point x, and C0

is the elasticity tensor of a single crystal that we assume has the form

C0 = 2µ0T +A0 ⊗A0, where [Tr(A0)]2 − 2 Tr(A2
0) ≥ 4µ0 ≥ 0.

The elasticity tensor field C(x) is of the required form (17.6) with A(x) = R(x)A0R
T (x)

and therefore the effective tensor C∗ of the polycrystal must lie on the manifoldM. In partic-
ular, if C∗ is isotropic, then its shear modulus is µ0, independent of the polycrystal microge-
ometry. A similar result also holds for two-dimensional polycrystals (Avellaneda, Cherkaev,
Gibiansky, Milton, and Rudelson 1996).

17.5. More exact relations for coupled equations†
Consider a coupled field problem where there are m divergence free fields j1(x), j2(x), . . . ,
jm(x) and m curl free fields e1(x), e2(x), . . . , em(x) that are linked through the constitutive
relation

jiα(x) =
d∑
j=1

m∑
β=1

L iα jβ(x)e jβ(x),

where α and β are field indices while i and j are space indices. Let us first look for exact
relations such that the manifoldM contains the identity tensor I . WithL0 = I as a reference
tensor the associated tensorA(m) = Γ(n)− Γ(m) has elements

Aiα jβ = δαβ(nin j − m im j).

Now take an r -dimensional subspaceR ofm×m matrices and an s-dimensional subspace
S of d × d matrices, and consider the rs-dimensional subspace K spanned by all tensorsK
that are tensor products of matricesR ∈ R and matrices S ∈ S, that is, which have elements

Kiα jβ = Rαβ Si j .

Given a tensor K1 that is the tensor product of R1 ∈ R and S1 ∈ S, and a tensorK2 that
is the tensor product of R2 and S2 ∈ S, the product K1A(m)K2 will certainly be in K
provided that

R1R2 ∈ R and S1(n⊗ n−m⊗m)S2 ∈ S. (17.17)

Moreover, if (17.17) holds for allR1,R2 ∈ R, all S1,S2 ∈ S, and all unit vectors n andm,
then K defines an exact relation because it is spanned matrices of the same form as K1 and
K2. This observation allows us to generate countless exact relations (Grabovsky and Milton
1998a). The condition on R just says that it is closed under multiplication, that is, it is an
algebra. The condition on S will be automatically satisfied if we take S to be the space of all
d × d matrices. Then (17.15) will be satisfied withM=0, and the manifoldM consists of all
matrices of the form L∗ = I +K, whereK ∈ K. Given fixed, nonsingular matrices V and
W of the form (6.5) the covariance property implies that the manifold M′ consisting of all
matrices that are of the form L∗ = W(I +K)V−1, whereK ∈ K, is also an exact relation.
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For example, in the case m = 2, by takingR to consist of all 2× 2 matrices of the form

R =
(
a b
−b a

)
,

which is clearly closed under multiplication, we see [using the representation of equation
(6.2)] that if the tensor L(x) takes the form

L(x) =
(
A(x) B(x)
−B(x) A(x)

)
,

withA(x) being positive-definite for all x, then the effective tensor L∗ should take a similar
form:

L∗ =
(
A∗ B∗
−B∗ A∗

)
.

This can be verified by rewriting the constitutive law in the equivalent form of a complex
equation

j1(x)+ ij2(x) = (A(x)+ iB(x))(e1(x)+ ie2(x)),

which will have an associated complex effective tensorA∗+ iB∗. In two dimensions we can
alternatively take S to be the space of trace free symmetric matrices.

The general question of which subspaces R are closed under multiplication is a difficult
algebraic question, whose general solution is not known. Therefore the general task of char-
acterizing which tensor subspacesK satisfy the condition (17.4) or which subspacesK satisfy
the condition (17.8) is at least as difficult and unlikely to be completely solved in the near
future.

17.6. Exact relations with limited statistical information
So far we have been considering exact relations that are microstructure-independent. There
are also exact relations that involve limited statistical information about the composite geom-
etry, such as Hill’s formula (17.1), which for multiphase composites involves only the moduli
and volume fractions of the phases. To see how this type of exact relation can arise consider
the condition (17.8) for an exact microstructure-dependent relation to hold. It can be rewritten
in the equivalent form

KAK ⊂ K,

in which A is the tensor subspace spanned by the tensors A(m) as m varies over all unit
vectors, and KAK is the product of K with AK while AK is the product of A with K, where
the product BC of two tensor subspaces B and C is defined as the space spanned by all possible
productsBC of tensorsB ∈ B and tensors C ∈ C. Thus KAK is spanned by tensors of the
formK1A(m)K2, whereK1,K2 ∈ K andm is a unit vector.

Now, following Grabovsky, Milton, and Sage (2000), suppose thatK is such that KAK is
contained within but does not equal K. Then there exists a nonempty subspace S1 that is the
orthogonal complement of KAK in the subspace K, that is,

K = KAK ⊕ S1. (17.18)

If Λ1 denotes the projection onto S1, we have

Λ1[K1A(m)K2] = 0
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for all K1,K2 ∈ K and all unit vectors m. Since the field Q j(x) given by the recursion
relations (17.10) takes values in K for all j ≥ 0, the projection Λ1 will annihilate the field
Q j+1 =KAQ j for all j ≥ 0, that is,

Λ1Q j+1 = 0 for all j ≥ 0.

It follows from the series expansion (17.9) that

Λ1K∗ = Λ1〈K〉. (17.19)

This is an exact relation that involves only the one-point statistics of the medium.
For example, consider three-dimensional elasticity and take L0 = C0 to be an isotropic

elasticity tensor with Lame modulus λ0 and shear modulus µ0. If K is the one-dimensional
space comprised of all fourth-order tensorsK that are multiples of I⊗I , then (17.16) implies
that KAK = 0. Thus (17.18) is satisfied with S1 = K and (17.19) implies that

K∗ = 〈K〉. (17.20)

The associated manifoldM consists of all positive-definite isotropic elasticity tensors

C = 2µ0I + λI ⊗ I,
with fixed shear modulus µ0 but variable Lame modulus λ. Using (9.59) we have

C − C0 = (λ− λ0)I ⊗ I, (C − C0)Γ(n) = [(λ− λ0)/(λ0 + 2µ0)]I ⊗ (n⊗ n),
giving

K = [I + (C − C0)Γ(n)]−1(C − C0)

= {I − [(λ− λ0)/(λ+ 2µ0)]I ⊗ (n⊗n)}(λ− λ0)I ⊗ I
= (λ0 + 2µ0)[1− (λ0 + 2µ0)/(λ+ 2µ0)]I ⊗ I.

By substituting this expression into (17.20) we recover Hill’s formula (17.1) for the effective
Lame modulus λ∗.

An exact relation that involves only the two-point statistics of the medium is obtained if
there exists a nonempty subspace S2 that is the orthogonal complement of KAKAK in the
subspace K, that is,

K = KAKAK⊕ S2.

If Λ2 denotes the projection onto S2, it is easy to see that

Λ2K∗ = Λ2〈K〉 +Λ2〈KAK〉, (17.21)

which is the desired exact relation incorporating the two-point statistics of the medium. An ex-
ample of an exact relation of this type for thermoelasticity is given in section 14.3 on page 294.
The subspace K consists of all tensors that can be expressed in the form

K =
(
0 b
b d

)
,

for some choice of second-order tensor b and constant d . From the formula (14.13) for Γ we
see that KAKAK = 0, so (17.21) implies that

K∗ = 〈K〉 + 〈KAK〉,
which is equivalent to (14.14).
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17.7. Additional necessary conditions for an exact relation†
In section 17.2 on page 357 we saw that a necessary condition for M to be stable under
homogenization is that Wn(M) lie in a subspace K such that (17.5) holds. Let us now
use series expansions to look for additional conditions that are necessary to ensure stability
under homogenization. Given L(x) taking values in M, let K = K(x) = Wn(L(x))
be the associated tensor field taking values in K. Stability under homogenization requires
K∗ = Wn(L∗) to also lie in K. Recall the series expansion (14.44) forK∗,

K∗ = 〈K〉 + 〈KAK〉 + 〈KAKAK〉 + 〈KAKAKAK〉 + · · · . (17.22)

The first-order term 〈K〉 clearly lies in K because K(x) takes values in K . Using the
fact thatA(k) = A(−k), the second-order term

〈KAK〉 =
∑
k �=0

K̂(−k)A(k)K̂(k)

= 1
2

∑
k �=0

[K̂(−k)A(k)K̂(k)+ K̂(k)A(k)K̂(−k)] (17.23)

also lies in K because the real and imaginary parts of the Fourier components K̂(k) take
values in K and K satisfies the condition (17.5).

Now let us examine the third-order term:

〈KAKAK〉 =
∑
k �=0

∑
m �=0

K̂(−m)A(m)K̂(m− k)A(k)K̂(k). (17.24)

For the manifold M to be stable under homogenization we require that this be in K for all
choices of K(x) taking values in K. Naturally there should be an analytic extension of the
exact relation which implies thatK∗ has real and imaginary parts lying in K whenK(x) has
real and imaginary parts lying in K. In other words, the third-order term should lie in K for
any choice of Fourier components K̂(k) with real and imaginary parts taking values in K. In
particular, let us take three vectors q1, q2, and q3 in Fourier space such that q1+ q2+ q3 = 0
and set

K̂(k) = K j when k = q j for j = 1, 2, 3,
= 0 otherwise,

whereK1,K2, andK3 are matrices in K. Then the requirement that the third-order term lie
in K implies that

K1A(q1)K2A(q3)K3 +K3A(q3)K2A(q1)K1

+ K2A(q2)K3A(q1)K1 +K1A(q1)K3A(q2)K2

+ K3A(q3)K1A(q2)K1 +K2A(q2)K1A(q3)K3 ∈ K. (17.25)

This condition, which must hold for any vectors q1, q2, q3 such that q1+q2+q3 = 0 and
any K1,K2,K3 ∈ K, is necessary for stability under homogenization. It does not appear
to be a consequence of the conditions for the stability under lamination, although it remains
an open question as to whether there exists a subspace K satisfying (17.5) but not satisfying
the above constraint. Other additional conditions can be obtained by considering higher order
terms in the expansion (Grabovsky, Milton, and Sage 2000).
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To ensure that all terms in the expansion lie in K it suffices that any chain of the form
K1A(q1)K2A(q2)K3A(q3) . . .K j−1A(q j−1)K j , which we will call a j -chain, satisfy the
“ j -chain property”: The symmetrized j -chain

K1A(q1)K2A(q2)K3A(q3) . . .K j−1A(q j−1)K j

+K jA(q j−1)K j−1 . . .A(q3)K3A(q2)K2A(q1)K1

lies in K for allK i , i = 1, 2, 3, . . . , j in K, and for all vectors q i , i = 1, 2, 3, . . . , j − 1. The
two-chain property is implied by the stability under lamination. If in addition the three-chain
and four-chain properties are satisfied, then the j -chain property is satisfied for all j .

To see this, we rewrite the two-chain property as

K1A(m)K2 = −K2A(m)K1 +K ′, (17.26)

for someK ′ ∈ K. This identity allows us to successively swap the positions of adjacentK in
any j -chain, leaving ( j − 1)-chains as the remainder. With the three-chain property it implies
that

K1A(q1)K2A(q2)K3 =K1A(q2)K2A(q1)K3 +K ′′ + a sum of two-chains,

for some K ′′ ∈ K. This allows us to successively swap the positions of adjacent A in any
j -chain, leaving ( j − 1)-chains and ( j − 2)-chains as the remainder. By first reversing the
order of theA and then reversing the order of theK we see that

K1A(q1)K2A(q2)K3A(q3) . . .K j−1A(q j−1)K j

+ (−1) j ( j−1)/2K jA(q j−1)K j−1 . . .A(q3)K3A(q2)K2A(q1)K1

+ a sum of ( j − 1)-chains and ( j − 2)-chains,

in which j ( j − 1)/2 is the number of swaps of adjacentK needed to achieve this reordering.
If the sign of (−1) j ( j−1)/2 is positive (as it is when j = 4), then we apply the four-chain
property once, replacing the chain header

K1A(q1)K2A(q2)K3A(q3)K4 with −K4A(q3)K3A(q2)K2A(q1)K1 +K ′,

whereK ′ ∈ K before swapping the A andK to obtain minus the reversed order chain plus
shorter chains. This allows us to identify the symmetrized j -chain with a sum of symmetrized
( j − 1)-chains, ( j − 2)-chains, and ( j − 3)-chains. By induction the j -chain property is then
satisfied for all j .

Now let K be the subspace spanned by j -chains of all lengths, j = 1, 2, 3, . . .. Clearly
we have

K1A(m)K2 ∈ K for allm and for allK1,K2 ∈ K, (17.27)

and the j -chain property holds if and only if we can equateK with the subspaceKS consisting
of all symmetric matrices in K. Conversely, if we are given a subspace K satisfying (17.27),
and we set K equal to KS , then the elements of K necessarily satisfy the j -chain property for
all positive integers j . Thus the task of finding subspaces K satisfying the two-chain, three-
chain, and four-chain properties is equivalent to the task of finding subspaces K satisfying
(17.27). Moreover, the two-chain, three-chain, and four-chain properties can be rephrased as
conditions on certain subspaces generated from A and K. The interested reader is referred
to theorem 3.6 of Grabovsky, Milton, and Sage (2000) for more details. These conditions
provide a practical way of determining whether or not a candidate exact relation, which is
stable under lamination, is also stable under homogenization.
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18
Analytic properties

18.1. Analyticity of the effective dielectric constant of two-phase media
Consider an isotropic composite of two isotropic phases. When the microgeometry is fixed
it has a complex effective dielectric constant ε∗(ε1, ε2), which is a function of the complex
dielectric constants ε1 and ε2 of the phases that depend on the frequencyω of the applied field.
As a prelude to the proof given in the next section, we will now present a strong argument
that shows why ε∗(ε1, ε2) should have some rather special analytic properties. The argument
is based on the premise that analyticity properties of the dielectric constant as a function of
the frequency ω should extend to composite materials.

The properties of the function ε1(ω) [or ε2(ω)] are well-known and are discussed, for
example, by Jackson (1975); see also section 11.1 on page 222. The function ε1(ω) is analytic
in the upper half ω-plane, Im(ω) > 0. When Re(ω) = 0 the function takes real values
of ε1(ω) ≥ 1, which decrease and approach 1 as |ω| → ∞. Positive imaginary values of
ε1(ω) occur when ω has a positive real part and negative imaginary values of ε1(ω) when ω

has a negative real part. As ω ranges over the upper half-plane ε1(ω) can in principle range
anywhere in the cut complex plane, where the cut extends along the real axis from −∞ to 1.
The actual range depends on the material being studied.

Let us assume that ε1(ω) is given by the single oscillator model (11.12) with γ = 0 and
ε∞ = 1, that is,

ε(ω) = 1+ A
ω2
r − ω2 ,

in which A and ωr are real and positive. Given any point a in the complex plane we can
choose ω to be complex and given by

ω =
√
ω2
r − A/(a − 1)

to ensure that ε(ω) = a. The value of ω will be in the upper half-plane and unique unless a is
real and less than 1 or greater than 1+ A/ω2

r . In other words, ε1(ω) is a one-to-one mapping
from the upper half complex plane onto a cut complex plane with the cut extending from−∞
to 1 and from 1 + A/ω2

r to∞. Let us assume that ε2(ω) is frequency independent and real
(except at very high frequencies, where it must tend to 1).

In order for these analyticity properties to automatically extend to the function

ε∗(ω) = ε∗(ε1(ω), ε2),

one sees that ε∗(ε1, ε2) should be an analytic function of ε1, except possibly when ε1 is real
and less than or equal to 1 or greater than or equal to 1+ A/ω2

r . Any nonanalyticity at other
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values of ε1 would propagate into nonanalyticity of ε∗(ω) at the corresponding values of ω in
the upper half-plane. Of course ωr could be arbitrarily small, and so it should be analytic for
any real value of ε1 greater than 1. Since this is true for any real value of ε2 ≥ 1, and since
the homogeneity of the function [see (1.6)] implies that

ε∗(ε1/ε2, 1) = ε∗(ε1, ε2)/ε2,

for all values of ε2, we deduce that ε∗(z, 1) should be analytic in the cut complex z-plane
where the cut extends along the negative real z-axis. Additionally, one knows that ε1(ω)

ranges over the entire upper half-plane as ω ranges over the quadrant Re(ω) > 0, Im(ω) > 0.
In order for ε∗(ω) to have positive imaginary values in this quadrant we see that the function
ε∗(z, 1) must have a positive imaginary part whenever z has a positive imaginary part.

For resistor networks the study of the analytic properties of the total resistance as a func-
tion of the resistances of the component resistors dates back at least to the work of Foster
(1924a, 1924b); see Storer (1957) for a summary of his work, and also Baker, Jr. (1975)
and Straley (1979). For composites Bergman (1978a, 1978b) pioneered the investigation of
analyticity and obtained a representation formula for the function ε∗(z, 1) that is similar to rep-
resentations proposed by Fuchs (1978) and Lysne (1983), which were based on models that
were valid for dilute suspensions. In 1979, while studying periodic two-phase composites,
I independently realized that ε∗(z, 1) should be analytic in the cut complex z-plane. David
McKenzie pointed me to Bergman’s work, which I found contained some erroneous assump-
tions (Milton 1979). Bergman assumed that the function should be a rational function of z
when the geometry is periodic (a checkerboard geometry is a counterexample) and assumed
that if there is not a solution for the fields when the average electric field 〈e〉 is prescribed,
then there is a solution when the average displacement field 〈d〉 is prescribed (sometimes nei-
ther problem has a solution, such as for a periodic array of cylinders of dielectric constant
−1 surrounded by a matrix of conductivity 1). To avoid these difficulties and still justify the
analyticity of ε∗(z, 1) one could approximate the composite by a large impedance network
(Milton 1981a). Subsequently, Golden and Papanicolaou (1983) gave a proof of the analytic
properties of ε∗(z, 1), thereby providing a rigorous basis for the integral representation of the
function. Moreover, they extended the representation to the matrix-valued function ε∗(z, 1),
giving the effective dielectric tensor of anisotropic composites of the two isotropic phases.

Integral representations were derived by Kantor and Bergman (1982) for the effective
elasticity tensor and by Avellaneda and Majda (1989, 1991) for the effective diffusivity in
convection-enhanced diffusion. Barrera and Fuchs (1995) derived an integral representation
for the frequency-dependent effective dielectric constant, which was valid at all wavelengths,
not just in the quasistatic limit. Lipton (2000, 2001) has obtained integral representation
formulas for the L2-norm and covariance tensor of the field. Golden (1995, 1997) has used
integral representations to draw parallels between conduction in two-phase composites and
phase transitions in statistical mechanics.

18.2. Analyticity of the effective tensor for problems involving many
eigenvalues

In many problems of interest the tensor L takes the form

L =
n∑
i=1

λiΛi , (18.1)
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where the λi , for i = 1, 2, . . . , n, represent its possibly complex eigenvalues and the Λi

represent projections onto the associated eigenspaces Pi , which we assume to be mutually
orthogonal and to spanH:

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ . . . ⊕ Pn.

One example, considered by Bergman (1978b), is the conductivity (or dielectric) tensor
of an n-component composite with isotropic phases that takes the form

σ(x) =
n∑
i=1

σiχi(x)I, (18.2)

where χiI projects onto the space of fields Pi that are nonzero only inside phase i .
A second example, considered by Milton (1981b) and Dell’Antonio, Figari, and Orlandi

(1986), is the conductivity (or dielectric) tensor of a three-dimensional polycrystal, which
takes the form

σ(x) = R(x)σ0R
T (x) = λ1Λ1(x)+ λ2Λ2(x)+ λ3Λ3(x), (18.3)

where the λi denote the eigenvalues of the conductivity tensor σ0 of the pure crystal and

Λi(x) = R(x)vi ⊗ viRT (x),
projects onto those fields that are aligned with the associated crystal eigenvector. Here v1, v2,
and v3 denote the eigenvectors of

σ0 =
3∑
i=1

λivi ⊗ vi .

We assume that these eigenvectors are real and mutually orthogonal.
A third example, considered by Kantor and Bergman (1982) and Dell’Antonio, Figari,

and Orlandi (1986), is the compliance tensor of a d-dimensional composite comprised of two
isotropic phases, which takes the form

S(x) = 1
dκ1

Λhχ1(x)+ 1
2µ1

Λsχ1(x)+ 1
dκ2

Λhχ2(x)+ 1
2µ2

Λsχ2(x), (18.4)

where κ1, κ2 and µ1, µ2 are the bulk and shear moduli of the phases, while Λh and Λs =
I −Λh are fourth-order tensors, with components

{Λh}i jk	 = 1
d
δi jδk	, {Λs}i jk	 = 1

2

[
δikδ j	 + δi	δ jk

]
− 1
d
δi jδk	

that project respectively onto the two orthogonal spaces of hydrostatic fields and shear fields,
that is, matrix-valued fields that are respectively everywhere proportional to the second-order
identity tensor I and everywhere trace free. These operators commute with χ1(x) and χ2(x),
implying, for example, thatΛhχ1 projects onto those fields that are proportional to the second-
order identity within phase 1 and zero in phase 2. Of course, the tensorL can always be repre-
sented in the form (18.1) when L is self-adjoint and the Hilbert spaceH is finite-dimensional.

The eigenvalues λi might depend on some parameter of the system, while the eigenspaces
Pi remain independent of this parameter. For example, in the case of wave propagation in
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the quasistatic limit, the complex dielectric constants, or complex bulk and shear moduli, de-
pend on the frequency ω of the incident wave, while the characteristic functions χi(x) do
not. These moduli may also depend on the temperature, whereas the characteristic functions
may be relatively insensitive to temperature changes, assuming that the effect of thermal ex-
pansion can be neglected. This provides a physical motivation for studying the dependence
of L∗ on the eigenvalues λ1, λ2, . . . , λn when the projections Λ1,Λ2, . . .Λn , and hence the
spaces P1,P2, . . .Pn, are held fixed. In the context of the conductivity problem (18.2) or the
elasticity problem (18.4) this amounts to studying the dependence of the effective conductiv-
ity tensor σ∗ or the effective compliance tensor S∗ on the conductivities, or on the bulk and
shear moduli of the phases, while the geometric configuration of the phases is held fixed. In
the context of the polycrystal problem (18.3) it amounts to studying how the effective conduc-
tivity tensor depends on the principal conductivities λ1, λ2, and λ3 of the pure crystal while
keeping the crystal orientation in the polycrystal fixed. In general, in the abstract setting of
section 12.7 on page 260, the function L∗(λ1, λ2, . . . λ3) is determined by the orientation of
the n-spaces P1,P2, . . . ,Pn with respect to the three spaces U , E , and J .

Let us establish that L∗(λ1, λ2, . . . λn) is an analytic function whenever the variables
λ1, λ2, . . . λn all have positive real parts. Here we follow a simple argument of Bruno (1991b)
[see also Bruno and Leo (1992)], which is based on considering the analyticity of each term in
the series expansion (14.2) for the effective tensorL∗. If the reference tensorL0 is taken to be
constant, it is clear that each term in the expansion is an analytic function, and in fact a poly-
nomial function, of the variables λ1, λ2, . . . λn . For example, with L0 = σ0I , the expansion
to the second order is the following polynomial of degree 2 in these variables:

L∗ = σ0Γ0 −
n∑
i=1

(1− λi/σ0)Γ0ΛiΓ0

− σ0

n∑
i, j=1

(1− λi/σ0)(1− λ j/σ0)Γ0ΛiΓ1Λ jΓ0 − · · · .

In subsection 14.6 on page 298 we proved that the expansion converges, for a sufficiently
large choice of σ0, whenever the tensor L is bounded and coercive, which in the current
context is whenever the variables λi all lie in the right half-plane H0 of the complex plane,
that is, whenever

λ1, λ2, . . . , λn ∈ H0, where H0 = {λ ∈ | Re(λ) > 0}.
We can rewrite this as

λ = (λ1, λ2, . . . λn) ∈ H n0 .
Moreover, it is easy to see from the bounds (14.29) that the convergence is uniform on any
compact subset of H n0 . Since a sequence of analytic functions that converge uniformly on any
compact subset of a domain is analytic in that domain [see theorem 10.28 of Rudin (1987)]
it immediately follows that L∗ is an analytic function of the eigenvalues λ1, λ2,. . .λn for all
λ ∈ H n0 , in the sense that each matrix element of L∗ is an analytic function of λ for all
λ ∈ H n0 .

In fact the function L∗(λ1, . . . λn) has a wider domain of analyticity. The linearity of the
equations implies that the function satisfies

The homogeneity property:

L∗(λ1, λ2, . . . λn) = 1
c
L∗(cλ1, cλ2, . . . cλn),
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for all choices of the constants c �= 0 and in particular for c = eiθ . Therefore analyticity in
the domain H n0 implies analyticity in the domain H nθ , where Hθ is obtained by a clockwise
rotation of the half-plane H0 through the angle θ :

Hθ = {λ ∈ | Re(eiθλ) > 0}.

Consequently, as noticed by Dell’Antonio, Figari, and Orlandi (1986), the function must be
analytic at least for

λ ∈
⋃
θ

H nθ . (18.5)

Sometimes this domain of analyticity can be enlarged even further without making any as-
sumptions about the composite geometry. For example, suppose that there exists a translation
T of the form

T =
n∑
i=1

τiΛi ,

such that wheneverL is translated by a multiple of T the effective tensor undergoes the same
translation, that is,

(L− cT )∗ = L∗ − cT for all c.

From this property we deduce that L∗(λ1, . . . λn) is analytic at least for those λ for which
there exists a constant c such that

λ− cτ ∈
⋃
θ

H nθ , where τ = (τ1, τ2, . . . τn).

For example, when the compliance tensor of a two-dimensional, two-phase composite is
shifted by the translation

R⊥ = Λhχ1(x)−Λsχ1(x)+Λhχ2(x)−Λsχ2(x),

the effective compliance tensor S∗ is shifted by the same translation. (c.f. section 4.5 on
page 66). It follows that S∗ is an analytic function of the bulk and shear compliances 1/κ1,
1/κ2, 1/µ1, and 1/µ2 whenever there exists a straight line in the complex plane such that 1/κ1

and 1/κ2 lie on one side of this line while −1/µ1 and −1/µ2 lie on the other side. Using the
translation R⊥ we can translate these four points so the line separating them goes through
the origin; after this translation the points 1/κ1, 1/κ2, 1/µ1, and 1/µ2 all lie in the same
half-plane Hθ .

More generally, the function L∗(λ1, . . . λn) will be analytic in any domain where it has a
uniformly convergent series expansion with analytic terms. This domain of convergence will
be especially large in the case of the series expansion discussed in section 14.8 on page 301.

Further enlargements of the domain of analyticity can be made if we have some infor-
mation about the composite microgeometry. Bruno (1991a) has shown that for composites
consisting of isotropic inclusions of conductivity σ1 embedded in a matrix of unit conductiv-
ity σ2 = 1 the function σ∗(σ1) is analytic for |σ1| ≤ 1/A and for |σ1| ≥ B, where the constants
A and B depend on the inclusion shape and on how well the inclusions are separated. Bruno
and Leo (1992) extended these results to elasticity.

When all of the eigenvalues λi lie in the right half-plane H0, the self-adjoint component
of L is positive-definite, that is, the real part of L is positive-definite. It follows from sec-
tion 12.10 on page 263 that the self-adjoint component of the effective tensor L∗ must be
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positive-definite, that is, the real part of L∗ must be positive-definite. In other words, the
function satisfies

The Herglotz property:

Im(L∗) > 0 when Im(λi ) > 0 for i = 1, 2, . . . , n,

which, when combined with the homogeneity property, implies that

Re(eiθL∗) > 0 when λ ∈ H nθ . (18.6)

Some elementary bounds on the symmetric complex effective tensor L∗ follow from these
equations. For example, consider the region

Wθ,θ ′ = Hθ ∩ Hθ ′,

which represents a wedge in the complex plane. From (18.6) we have

The wedge bounds: For all real E0,

E0 ·L∗E0 ∈ Wθ,θ ′ whenever λi ∈ Wθ,θ ′ for i = 1, 2, . . . , n. (18.7)

In particular, by taking θ = −θ ′ = π/2− ε and considering the limit ε → 0, this implies
that the symmetric tensor L∗ must be real and positive-definite when all of the eigenvalues λi
lie along the positive real axis. So the identity

L∗(λ1, λ2, . . . λn) = L∗(λ1, λ2, . . . λn) (18.8)

(where the bar denotes complex conjugation) holds whenever all of the λi lie along the positive
real axis, and by analytic continuation holds throughout the domain of analyticity defined by
(18.5). In fact the relation (18.8) follows directly from (18.1) on recalling from section 12.10
on page 263 that ifL is replaced by its adjoint tensor, then the effective tensorL∗ gets replaced
by its adjoint, that is, its Hermitian conjugate, which is its complex conjugate because L∗ is
symmetric. But we see that this is also a consequence of the homogeneity and Herglotz
properties.

There is one other property of the function L∗(λ1, . . . λn) that follows immediately from
the fact that L∗ = I when L = I . It is

The normalization property:
L∗(1, 1, . . . , 1) = I. (18.9)

These analytic properties can be generalized to a broader class of composite problems,
namely, those n-phase composites for which the tensor field L takes the form

L(x) = Q(R(x))

[
n∑
i=1

χi(x)Li

]
[Q(R(x))]T , (18.10)

in which Q(R) is the orthogonal matrix (satisfying QQT = I) associated with a rotation
R acting on elements in the tensor space, R(x) is a field of rotation matrices giving the
local orientation of each phase, and χi(x) represents the characteristic function that is 1 in
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phase i and zero elsewhere. For example, L(x) could represent the moduli in an n-phase
polycrystalline material. In that case the matricesL1, . . . ,Ln represent the moduli of the pure
crystalline phases, whileR(x) represents the field of rotation matrices required to account for
the different crystal orientations throughout space.

Now, what are the properties of the functionL∗(L1,L2, . . .Ln) when the geometry of the
composite, as represented by the fieldsR(x) and χi(x), is held fixed? Let us defineH0 to be
the set of m × m matrices that are bounded with a positive-definite self-adjoint part:

H0 = {M |M +M † > 0},
where the dagger superscript denotes the Hermitian conjugate, that is, the transpose of the
complex conjugate of the matrix. The series expansion for the effective tensor L∗ is uni-
formly convergent whenever all of the matrices L1,. . . ,Ln all lie in any compact subset of the
domainH0. Consequently, when these matrices all lie in this domain L∗(L1,L2, . . .Ln) is
an analytic function of them, in the sense that it is an analytic function of all elements of the
matricesL1,L2, . . .Ln . The homogeneity, Herglotz, and normalization properties generalize
in the obvious fashion:

L∗(L1,L2, . . .Ln) = 1
c
L∗(cL1, cL2 . . . cLn),

L∗ +L†
∗ > 0 when Li + L†

i > 0, for i = 1, 2 . . .n,

L∗(I, I, . . . , I) = I.

18.3. Integral representations for the effective tensor for problems
involving two eigenvalues

Let us focus on the simplest case, where the tensor L takes the form (18.1) and only two
eigenvalues are present, that is, n = 2. For example,L could represent the conductivity tensor
of a two-phase composite, with isotropic components, or it could represent the conductivity
tensor of a three-dimensional polycrystal constructed from a single uniaxial crystal. By taking
c = 1/λ2 we see that the homogeneity property implies

L∗(λ1, λ2) = λ2L∗(λ1/λ2, 1).

So without any loss of generality we can set λ2 = 1 and study the analytic properties of

L∗(λ) = L∗(λ, 1)

as a function of the single variable λ = λ1/λ2. From (18.5) we see that the function is
analytic whenever the points λ1 and λ2 lie in the same half-plane Hθ , that is, whenever λ
lies anywhere in the complex plane, except along the negative real axis. For example, if λ
represents the conductivity of the white squares in a checkerboard, while the black squares
have unit conductivity, then the effective conductivity σ∗ =

√
λI of the checkerboard has a

branch cut along the entire negative real axis and is analytic everywhere else in the complex
plane.

The wedge bounds (18.7) imply that

Im(L∗) = 0, Re(L∗) > 0, when Im(λ) = 0, Re(λ) > 0,
Im(L∗) > 0, when Im(λ) > 0,
Im(L∗) < 0, when Im(λ) < 0. (18.11)
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Furthermore, (18.8) implies that the function L∗(λ) is real symmetric:

L∗(λ) = L∗(λ), (18.12)

where the bar denotes the complex conjugation.
It is convenient, following Bergman (1978b) and Golden and Papanicolaou (1983), to

introduce a new variable,

s = λ2

λ2 − λ1
= 1

1− λ
, (18.13)

and a new matrix-valued function,

F (s) = I −L∗(λ) = I −L∗(1− 1/s),

and obtain an integral representation for the function F (s). This is convenient because the
normalization property (18.9) together with the analyticity at the point λ = (1, 1) implies that
F (s) approaches zero as s tends to infinity. One should remember that F (s) is introduced,
not because it has any special physical interpretation, but just because it is a mathematically
convenient parameterization of the function L∗(λ, 1). The fractional linear transformation
(18.13) maps the upper and lower halves of the complex λ-plane to the upper and lower
halves of the complex s-plane, and maps the negative real axis, including the points zero and
infinity, to the interval [0, 1]. So from (18.11) and (18.12) we see that F (s) is real symmetric
and has a negative-definite imaginary part when s lies in the upper half of the complex plane.

The Cauchy integral formula can be applied separately to each matrix element of F (s) or,
equivalently, it can be applied to the entire matrix-valued function. Suppose that we are given
a point s �∈ [0, 1]. Then we take a contour � comprised of two simply connected contours
�+ and �−. The contour �+ is a circle in the complex plane with a very large radius, while
�− loops tightly around, say, the interval [−a, 1+ a] on the real axis, remaining close to the
real axis. The constant a > 0 is chosen so that �− does not enclose the point s. Let w be a
complex variable on the contour �. Then, recalling that F (w) approaches zero as w tends to
infinity, and that F (w) is real symmetric, the Cauchy integral formula,

F (s) = 1
2π i

∫
�

dw
F (w)

w − s ,

reduces to

F (s) = lim
ε→0
ε>0

1
2π i

∫ 1+a

−a
dy
F (y + iε)− F (y − iε)

y − s

= lim
ε→0
ε>0

1
π

∫ 1

0
dy

Im(F (y + iε))
y − s .

This can be rewritten as the integral representation of Golden and Papanicolaou (1983)

F (s) =
∫ 1

0

dµ(y)
s − y , (18.14)

in which the integral of any smooth scalar test function g(y)with respect to this measureµ(y)
is given by ∫ 1

0
g(y)dµ(y) = − lim

ε→0
ε>0

1
π

∫ 1

0
g(y) Im(F (y + iε)) dy, (18.15)
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which serves to define the matrix-valued measure µ(y). It is a positive measure in the sense
that (18.15) is a positive-semidefinite matrix for all nonnegative test functions g(y), due to
the fact that F (y + iε) has a negative-definite imaginary part when ε > 0. The beauty of the
integral representation (18.14) is that it separates the dependence of F on the material moduli
(through the variable s) from the dependence of F on the geometry [through the measure
µ(y)]. Moreover, the dependence of F (s) on µ(y) is linear.

For example, when L∗(λ), and hence F (s), are rational functions the measure is concen-
trated at the poles s1, s2, . . . , sm of the rational function F (s) and (18.14) reduces to the form
proposed by Bergman (1978b),

F (s) =
m∑

α=1

Bα

s − sα , (18.16)

in which the poles sα lie in the interval [0, 1) and the residues Bα are positive-semidefinite
matrices, that is,

0 ≤ s1 ≤ s2 ≤ . . . ≤ sm < 1, andBα ≥ 0 for all α.

In particular we see from (7.54) that for conduction in a coated ellipsoid assemblage, with
core conductivity σ1 = λ and coating conductivity σ2 = 1, the function F (s) has three poles
with residues that are rank-1 matrices:

F (s) = I − σ∗ =
3∑
i=1

f1mi ⊗mi

s − f2m i
,

in which the mi and m i are the eigenvectors and eigenvalues of the matrixM defined by
(7.55) satisfying TrM = m1 + m2 + m3 = 1.

The poles sα and residues Bα were numerically computed by Bergman (1979) for a sim-
ple cubic array of spheres and by McPhedran and McKenzie (1980) for a square array of
circular cylinders. Their work indicated that F (s) had an infinite number of poles accumu-
lating at the point s = 1/2, corresponding to a conductivity ratio σ1/σ2 = −1. Liu and
Wu (1997) estimated the position of those poles with dominant residues for body-centered
and face-centered arrays of spheres. Reuben, Smith, and Radchik (1995) used conformal
transformations to find exact closed-form expressions for the poles and residues for certain
lattices of noncircular cylinders. Hinsen and Felderhof (1992) estimated the measure dµ(y)
for random suspensions of spheres by extrapolating the information contained in the series
expansion for F (s) in powers of 1/s. Thorpe, Djordjević, and Hetherington (1994) obtained
approximations for the measure dµ(y) for two-dimensional composites containing a dilute
concentration of polygonal or elliptic inclusions. Ma, Zhang, Tam, and Sheng (2000) devel-
oped a Fourier-based computational scheme for calculating the measure, which they applied
to two- and three-dimensional checkerboards, and to random suspensions of spheres. Day
and Thorpe (1996) calculated the measure for random resistor networks. In a major achieve-
ment Day, Thorpe, Grant, and Sievers (2000) and Day, Grant, Sievers, and Thorpe (2000) have
calculated the measure for KCl-diamond composites and RbCl-KCl composites from real re-
flectance data at different temperatures, using an algorithm developed by Day and Thorpe
(1999). These provide the first examples of real composites for which the measure has been
determined.

When the microstructure is periodic and the interface between the phases is a smooth
surface with radii of curvature that are bounded above, Bergman (1985) has shown that the
singularities of F (s) are all poles, apart from a possible essential singularity at s = 1/2,
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corresponding to an accumulation point of poles. When the interface has sharp corners the
following ingenious argument of Hetherington and Thorpe (1992) strongly suggests that it is
the angles at the corners that determine the position of the branch cuts of F (s).

Suppose that the composite is composed of two dielectric materials with permittivities ε1

and ε2 such that s = ε2/(ε2 − ε1) is close to the branch cut. Then both phases are very low
loss materials (i.e., ε1 and ε2 have very small imaginary parts) while the composite is quite
lossy (i.e., ε∗ has a significant imaginary part). The only way that this can occur is if the
field is enormous (i.e., only barely square integrable) in a region of the composite, so that the
electrical power dissipation given by (11.16) is significant in that region. The likely place for
enormous fields to occur is near a corner or edge, and an asymptotic analysis can determine
whether or not the field in this region can become close to being not square integrable. Then,
when s is close to the branch cut, essentially all of the power dissipation occurs within a
region of infinitesimal volume surrounding these corners and edges. For instance, consider a
two-dimensional composite and suppose that the interface has a corner with an included angle
of 2ψ radians. Suppose that the coordinate system has been chosen so that the corner is at the
origin, with the interface meeting the real axis at angles of ψ and −psi . Also suppose that
the phases have been labeled so phase 1 is immediately to the right of the origin and phase 2
is immediately to the left of the origin. Then in polar coordinates the electrical potential near
the corner will be

φ(r, θ) = a1rα cosαθ + b1rα sinαθ in phase 1,
= a2rα cosα(π − θ)+ b2rα sinα(π − θ) in phase 2.

Continuity of the potential and the normal component of the electric displacement field across
the interface leads to the constraints

a1 cosαψ = a2 cosα(π − θ), b1 sinαψ = b2 sinα(π − θ)

−ε1a1 sinαψ = ε2a2 sinα(π − θ), ε1b1 cosαψ = −ε2b2 cosα(π − θ).

These have a nontrivial solution if and only if

tan α(π − ψ)/ tan αψ = −ε1/ε2 (18.17)

or
tan α(π − ψ)/ tan αψ = −ε2/ε1. (18.18)

Now the field will become close to being not square integrable if and only if the exponent α
approaches the imaginary axis. But from (18.17) and (18.18) we see that values of α ranging
along the imaginary axis correspond to values of ε1/ε2 ranging along the interval between
−(π−ψ)/ψ and−1 or ranging along the interval between−1 and−ψ/(π−ψ), respectively.
Consequently, one expects F (s) to have a branch cut along the interval s ∈ [ψ/π, 1− ψ/π].
Hetherington and Thorpe (1992) provided numerical evidence supporting this claim for dilute
composites of polygonal inclusions. When the corner is a right angle, that is, when ψ = π/4,
one expects the branch cut to lie between s = 1/4 and s = 3/4, corresponding to ratios of
ε1/ε2 between −1/3 and −3. For example, the formula (8.33) for the effective conductivity
of a square array of squares aligned with the unit cell and occupying a volume fraction of 1/4
has a branch cut precisely along this interval. It is interesting to consider what must happen in
an square array of squares aligned at 45◦ to the unit cell. When the squares touch it becomes
a checkerboard, with F (s) = I−I√1− 1/s having a branch cut when s ∈ [0, 1]. Otherwise
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there is a branch cut when s ∈ [1/4, 3/4]. Clearly, when the squares almost touch the function
F (s)must have an enormous number of isolated singularities in the intervals s ∈ (0, 1/4) and
s ∈ (3/4, 1) in order to approximate the function I − I√1− 1/s.

There is another obvious constraint on the measure. Since L∗(λ) is real and positive-
definite along the positive real λ-axis, and in particular as λ → 0 or, equivalently, as s → 1,
it follows that

F (1) =
∫ 1

0

dµ(y)
1− y ≤ I.

In the case of rational functions this reduces to the constraint

F (1) =
m∑

α=1

Bα

1− sα ≤ I.

The moments of the measure µ(y) can be related to the series expansion coefficients in a
nearly homogeneous medium. Indeed, when λ is close to 1 or, equivalently, when s is large,
the denominator in (18.14) can be expanded in powers of 1/s to give

F (s) =
∞∑
j=0

A j

s j+1 , whereA j =
∫ 1

0
y j dµ(y),

which we can rewrite as

L∗(λ1, λ2) = λ2I −
∞∑
j=0

(λ2 − λ1)
j+1A j

λ
j
2

.

Thus knowledge of the leading terms in the series, such asA0 andA1, provides constraints
on the moments of the measure. These constraints are known as sum rules; see Bergman
(1978b) and Stroud (1979). For example, for two-phase conductivity with λ1 = σ1 and
λ2 = σ2 we haveA0 = f1I and TrA1 = f1 f2, which provides the two sum rules∫ 1

0
dµ(y) = f1I, Tr

∫ 1

0
y dµ(y) = f1 f2.

For rational functions these reduce to the constraints

m∑
α=1

Bα = f1I, Tr
m∑

α=1

sαBα = f1 f2.

For two-dimensional isotropic composites of two isotropic phases, Keller’s relation (3.6) im-
plies that all of the even-order moments can be expressed in terms of the lower odd-order
moments [see sections 27.7 on page 585 and also Milton (1981b) and Bruno and Golden
(1990)]. For phase interchange invariant composites of two isotropic phases, all of the odd-
order moments can be expressed in terms of the lower even-order moments (see section 27.8
on page 588).

There is a close connection between the integral representation formula (18.14) and in-
tegral representations for Stieltjes functions. Introducing the variable w and function G(w)

defined by

w = λ− 1 = −1/s, G(w) = [L∗(1+w)− I]/w = −F (−1/w)/w,
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we see directly from (18.14) thatG(w) has the integral representation

G(w) =
∫ 1

0

dµ(y)
1+ yw.

Aside from the fact that µ(y) is a positive-semidefinite matrix-valued measure, rather than
a positive scalar-valued measure, this is the usual representation for a Stieltjes function of
w with a radius of convergence of at least 1. So it is not surprising that various bounds on
the effective tensor function L(λ) correspond to bounds on Stieltjes functions. This will be
explored in chapter 27 on page 569.

As Bergman (1979) observed, the measure µ(y) also has a direct interpretation in terms
of the spectral measure associated with the operator Λ1Γ1Λ1. This operator is clearly self-
adjoint, positive-semidefinite, and has norm less than 1. For simplicity let us assume that it
has a discrete spectrum:

Λ1Γ1Λ1 =
m′∑
α=1

ϕαΦα, (18.19)

where

0 ≤ ϕ1 ≤ ϕ2 ≤ . . . ≤ ϕm′ ≤ 1 and
m∑

α=1

Φα = Λ1, ΦαΦβ = δαβΦα,

in which the ϕα are its eigenvalues and the Φα are projections onto the associated (possibly
infinite-dimensional) eigenspaces that span P1. The formula (12.61) for the effective tensor
L∗ with σ0 = λ2 = 1 implies that

L∗ = I − Γ0Λ1(sI −Λ1Γ1Λ1)
−1Λ1Γ0,

where the inverse is to be taken on the subspace P1. Substitution of (18.19) into this formula
gives the result that we are after:

F (s) =
m∑

α=1

Γ0ΦαΓ0

s − ϕα

. (18.20)

This provides an alternative justification of the representation formula (18.16), and by exten-
sion provides an alternative justification of (18.14). Moreover, by comparing the two formu-
las (18.16) and (18.20) we see that the eigenvalues ϕα can be identified with the poles sα and
that the orientation of the associated eigenspaces with respect to the space U determines the
residues through the equation

Bα = Γ0ΦαΓ0.

Notice that if ϕα = 1 for some α, then Φα projects onto a subspace of E , implying that the
associated residueBα is zero. In other words, the sum in (18.20) can be restricted to those α
such that ϕα �= 1.

The fields in the eigenspaces of Λ1Γ1Λ1 are associated with resonant solutions. Let P α

be an eigenfield corresponding to the eigenvalue ϕα, that is,

Λ1Γ1P α = ϕαP α. (18.21)

Then the associated fields

E = −Γ1P , J = (I − Γ1)P
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solve the equations

J = LE, L = λΛ1 +Λ2, E ∈ E, J ∈ U ⊕ J , (18.22)

with
λ = 1− 1/ϕα.

The field E solving (18.22) is called a resonant solution since the equations are solved with
Γ0E = 0, that is, with no applied field (see section 11.7 on page 238). Conversely, given
a resonant solution E, the field P α = (λ − 1)Γ1E satisfies (18.21) with ϕα = 1/(1 − λ).
It is only for certain values of λ that resonant solutions exist, and each such value (having
Γ0J �= 0) corresponds to a pole of the function F (s) at s = ϕα = 1/(1− λ). McPhedran and
McKenzie (1980) have pictures of some of the electrostatic resonant solutions for a square
array of circular cylinders.

18.4. The correspondence between energy functions and
microgeometries

Let us now focus on the effective conductivity function σ∗(σ1, σ2) of a two-component com-
posite comprised of two isotropic components with conductivities σ1 and σ2. We choose to
discuss the conductivity problem rather than the dielectric problem [which involves the same
analytic function, i.e., σ∗(σ1, σ2) = ε∗(σ1, σ2)] merely because the inverse of σ∗ has a name,
namely, the resistivity tensor, and because electrical currents are easier to think about than dis-
placement fields. We have seen that for every composite geometry, as represented by χ1(x),
there corresponds a positive-semidefinite measure µ(y) that characterizes the conductivity
function. But this leaves open the converse question: What measures correspond to geome-
tries? Ideally one would like a complete list of all constraints satisfied by the measure, and
a class of representative microgeometries that generate every measure compatible with these
constraints.

First let us address a simpler problem, namely, let us look for a class of representative
geometries associated with the function

σe(σ1, σ2) = e0 · σ∗(σ1, σ2)e0, where e0 · e0 = 1,

in which we take the applied electric field e0 to be fixed, real, and of unit magnitude, while the
component conductivities σ1 and σ2 are allowed to vary in the complex plane. For real values
of σ1 and σ2, we can think of σe/2 as representing the energy dissipation in the composite
when it is subject to the applied field e0. For complex values of σ1 and σ2, we can think of σe
as representing a diagonal element of the effective conductivity tensor σ∗ in a basis where e0
is chosen as one of the basis vectors.

The analytic properties of the effective conductivity function imply that σe(λ) = σe(λ, 1)
is an analytic function of λ, except possibly on the negative real axis; is real symmetric; and
maps the positive real axis onto itself, the upper plane onto itself, and the lower half-plane
onto itself. To simplify the analysis let us work in the (1/λ)-plane, and suppose that σe is a
rational function of 1/λ. This latter assumption can be made without loss of generality be-
cause it amounts to replacing the infinite-dimensional Hilbert spaceH by a finite-dimensional
approximant. Then by applying the Cauchy integral formula in the (1/λ)-plane, we see that
the function has the representation

σe(λ) = a0λ+ am+1 +
m∑

α=1

bα
cα + 1/λ

, (18.23)
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where the constants a0 and am+1, residues bα , and poles cα are all real, and in addition satisfy
the constraints

a0 ≥ 0, bα > 0 for all α, cm > cm−1 > . . . > c2 > c1 > 0,

am+1 = σe(0) ≥ 0, a0 + am+1 +
m∑

α=1

bα
cα + 1

= σe(1) = 1.

Notice that because all of the residues bα are positive and a0 is nonnegative, σe(λ) for real
values of λ is a real-valued monotonic increasing function of λ except at the poles. Therefore,
as Bergman (1978b) observed, a zero must lie between every pair of poles, that is, the zeros
and poles of σe(λ) alternate along the negative real λ-axis with a zero nearest or at the origin
and with a pole nearest or at infinity.

The representation (18.23) together with the homogeneity property of the conductivity
function yields a formula for the function σe(σ1, σ2) that we choose to write in the form

σe(σ1, σ2) =
m+1∑
α=0

aα
qα/σ1 + (1− qα)/σ2

, (18.24)

where the constants a0 and am+1 remain unchanged while

q0 = 1, qm+1 = 0, qα = 1
1+ cα , aα = bα

1+ cα , α = 1, 2, . . . ,m.

These parameters generally depend on the direction of the applied field e0. They satisfy the
constraints

1 = q0 > q1 > q2 . . . > qm > qm+1 = 0, aα ≥ 0 for all α,
m+1∑
α=0

aα = 1. (18.25)

Now consider the rank-2 laminate material illustrated in figure 18.1 on the facing page for
m = 3, which is constructed by the following two-step procedure. The first step is to make a
total of m + 2 simple rank-1 laminates: Laminate α for α = 0, 1, 2, . . . ,m + 1 is comprised
of phase 1 laminated with phase 2, in proportions qα and 1− qα, respectively. The laminates
are oriented so that the applied field e0 is in the direction of lamination. Hence their effective
conductivity σ (α)

e in this direction is the harmonic mean:

σ (α)
e = [qα/σ1 + (1− qα)/σ2]−1.

The second step is to layer together these simple laminates (on a much larger length scale)
in proportions a0, a1, . . . , am with the direction n of lamination taken perpendicular to e0,
(i.e., with e0 in the plane of slicing). Then the energy function is just an arithmetic average:

σe(σ1, σ2) =
m+1∑
α=0

aασ (α)
∗ =

m+1∑
α=0

aα
qα/σ1 + (1− qα)/σ2

. (18.26)

The agreement between (18.26) and (18.24) shows that these rank-2 laminates form a
representative class of microstructures: They can simulate, to an arbitrarily high degree of
approximation, the energy function of any composite geometry (Milton 1981b).

A similar analysis can be applied to the dual function

ρ j(ρ1, ρ2) = j0 · [σ∗(1/ρ1, 1/ρ2)]−1j0, where j0 · j0 = 1,
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Figure 18.1. A laminate microgeometry that when periodically extended has, in the limit as
ε → 0, the conductivity function σe(σ1, σ2) given by (18.26) with m = 3. The applied field
e0 is assumed to be parallel to the outermost layers. By considering the limit as m→∞, one
can use such second-rank laminates to mimic the conductivity function of any microstructure.

in which the applied current field j0 is now taken to be real, of unit magnitude, and held fixed
independent of the resistivities ρ1 = 1/σ1 and ρ2 = 1/σ2. For real values of ρ1 and ρ2, we
can again think of ρ j/2 as representing the energy dissipation in the composite when it is
subject to an applied current field j0. For complex values of σ1 and σ2, we can think of ρ j as
representing a diagonal element of the effective resistivity tensor σ−1

∗ in a basis where j0 is
chosen as one of the basis vectors. Supposing that the dual function is rational, we find that it
has a representation

ρ j (ρ1, ρ2) =
m+1∑
α=0

aα
qα/ρ1 + (1− qα)/ρ2

,

where the constants aα and qα that appear here depend on the direction of j0 and are not neces-
sarily the same as those in (18.24), but nevertheless satisfy the same constraints (18.25). The
same family of second-rank laminate geometries generates all possible rational dual functions.
However, now the applied current field j0 needs to be aligned parallel to the final direction of
lamination n.

18.5. The correspondence between effective conductivity functions and
microgeometries in two dimensions†

The class of second-rank laminate geometries is not sufficiently diverse to generate all ef-
fective conductivity functions. Indeed, in these geometries the axes of principal conductivity
remain fixed and independent of σ1 and σ2, whereas in many microstructures the axes of prin-
cipal conductivity rotate as σ1 and σ2 are varied; see figure 18.2 on the next page. One class
of microgeometry that exhibits this rotation is the class of multicoated laminate geometries.
These are constructed in stages. The first stage is to manufacture a coated laminate, taking,
say, phase 1 with conductivity tensor

σ0
∗ = σ1I (18.27)

as core and phase 2 as coating. At the second stage this composite, with effective conductivity
tensor σ(1)

∗ , is taken as the core phase in another coated laminate, now with phase 1 as the
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coating. This gives a doubly coated laminate with conductivity tensor σ(2)
∗ . One continues

this process, alternately taking phase 2 or phase 1 as coating, until one obtains a multicoated
laminate with, say, �-coatings, and effective conductivity tensor σ(	)

∗ .

Figure 18.2. A microgeometry for which the eigenvectors of σ∗(σ1, σ2) rotate as the ratio
σ1/σ2 is varied. When this ratio is close to 1 the eigenvectors of σ∗(σ1, σ2) almost align with
the axes of the ellipsoids. The filamentary threads of component 1 have little influence on the
effective conductivity. As this ratio is increased, the threads carry more current and thereby
cause the eigenvectors to rotate. After Milton (1986a).

The formula (9.20) for the effective conductivity of a coated laminate can be applied at
each stage in this construction to compute σ(	)

∗ . For integer values of j , from j = 0 up to the
largest integer less than or equal to (�+1)/2, one has

(1− p2 j+1)σ2

[
σ2I − σ(2 j+1)

∗
]−1

= σ2

[
σ2I − σ(2 j)

∗
]−1

− p2 j+1M 2 j+1,

(1− p2 j+2)σ1

[
σ1I − σ(2 j+2)

∗
]−1

= σ1

[
σ1I − σ(2 j+1)

∗
]−1

− p2 j+2M 2 j+1,

(18.28)

in which pi represents the volume fraction of coating material added at the i -th stage andM i

is a positive-semidefinite tensor satisfying Tr(M i ) = 1 that is determined by the directions
of layering and by the amounts layered in these directions at the i -th stage in the construction
process. As these directions and amounts are varied,M i ranges over the set of all positive-
semidefinite matrices satisfying Tr(M i) = 1 (see section 9.4 on page 165). By eliminating
the tensorsσ(i)

∗ for i = 0 up to i = �−1 from the set of equations (18.28) one obtains a formula
for the effective conductivity function σ(	)

∗ (σ1, σ2) as a continued fraction incorporating the
constants p1, p2, . . . , p	 and the matricesM 1,M 2, . . . ,M 	. The eigenvectors of σ

(	)
∗ rotate

as σ1 and σ2 are varied unless the matricesM 1,M 2, . . . ,M 	 happen to be simultaneously
diagonal in some basis.

Now, is this family of multicoated laminates sufficiently diverse to encompass all possible
effective conductivity functions? In two dimensions the answer is yes, it is! (Milton 1986b).
Specifically, there is a complete correspondence between the continued fractions generated
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from (18.27) and (18.28) and the set of all rational functions σ∗(σ1, σ2) satisfying homogene-
ity,

σ∗(cσ1, cσ2) = cσ∗(σ1, σ2), (18.29)

the Herglotz property,

Re (σ∗) > 0 when Re (σ1) > 0 and Re (σ2) > 0, (18.30)

normalization,
σ∗(1, 1) = I,

and the phase interchange identity,

σ∗(σ2, σ1)R⊥σ∗(σ1, σ2)R
T
⊥ = σ1σ2I, (18.31)

which is implied by (3.9).
To understand the key idea behind the ensuing analysis, suppose that we were given

a rational function σ∗(σ1, σ2) and wanted to find an associated multicoated laminate with
σ∗(σ1, σ2) as its effective tensor for all values of σ1 and σ2. Assuming that phase 2 was the
last coating in the construction of the laminate, we should get an indication of how much
of this component was layered and in what directions by setting σ1 = 0 (or σ2 = ∞). For
example, if σ∗(σ1, 0) has only one nonzero eigenvalue, then at the last stage phase 2 must
have been layered with the layers parallel to the direction of the associated eigenvector. By
subtracting from σ∗(σ1, σ2) the contribution of this layering (in effect removing the last layer-
ing) one would expect to get a rational function σ∗(σ1, σ2) of reduced degree, still satisfying
(18.29), (18.30), and (18.31). By repeating this procedure, alternately setting σ2 or σ1 to zero,
we would eventually obtain information about the entire sequence of layerings from which a
laminate with conductivity function σ∗(σ1, σ2) could be constructed.

The proof of the correspondence proceeds by induction. The first step is to define the
degree of rationality of a conductivity function in a way that is independent of the labeling
of the phases. To this end we define the degree g to be the number of poles of the function
σ∗(λ, 1) weighted in proportion to the rank of the associated residue, which is either a rank-1
or rank-2 matrix. Any pole at λ =∞ is to be excluded from this count.

Let us suppose that there exists some value of g such that any rational conductivity func-
tion of degree g or less satisfying (18.29) – (18.31) corresponds to the conductivity function
of some multicoated laminate with at most g coatings. This is certainly true for g = 0 since
the only rational functions of degree 0 satisfying these constraints are σ∗(σ1, σ2) = σ1 and
σ∗(σ1, σ2) = σ2, which correspond respectively to pure phase 1 or pure phase 2. Now con-
sider any rational function σ∗(σ1, σ2) of degree g + 1 that satisfies these constraints. When
σ2 = 0 and σ1 = 1, (18.31) implies that either σ∗(0, 1) or σ∗(1, 0) is a singular matrix. (It
may happen that both matrices are singular.) Let us assume that σ∗(1, 0) is singular; when
it is not singular, σ∗(0, 1) is singular and we need to swap the roles of the two phases in the
subsequent analysis.

Now examine the rational function

S∗(s) = [F (s)]−1 = [I − σ∗(1− 1/s, 1)]−1.

The restrictions (18.29) – (18.31) imply that S∗(s) satisfies

S∗(s)+RS∗(1− s)RT = I, S∗(s) = S∗(s),

S∗(s) ≥ I for all real s ≥ 1, S∗(s) ≤ 0 for all real s ≤ 0,

Im S∗(s) > 0 whenever Im s > 0, (18.32)
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and conversely any rational function S(s) satisfying these constraints produces a function

σ∗(σ1, σ2) = σ2I − σ2[S∗(σ2/(σ2 − σ1))]−1 (18.33)

satisfying (18.29) – (18.31). The constraints imply that S∗(s) has a pole at s = ∞ and all
other poles in the open interval (0, 1). The residues associated with these poles are negative-
semidefinite matrices, and this implies that elsewhere on the real s-axis S∗(s) is a mono-
tonic increasing function of s, in the sense that its derivative with respect to s is a positive-
semidefinite matrix. In particular, it follows that the eigenvalues of S∗(s) are monotonic
increasing functions of s except at the poles.

The degree g now refers to the total number of points s in the open interval (0, 1), where
S∗(s) has an eigenvalue equal to unity. Those points s where S∗(s) = I count double. From
(18.32) we see that S∗(0) is negative-semidefinite. It is certainly nonzero because otherwise
[using the fact that S(s) is rational] we could expand S∗(s) in a Taylor series about s = 0 and
(18.33) would imply that σ∗(1, 0) is nonsingular, in contradiction with our assumption. This
allows us to introduce the symmetric real matrix

M = S∗(0)/Tr[S∗(0)], which satisfies Tr(M) = 1, M ≥ 0.

The form of the relations (18.28) suggests that we should introduce the function

S′
∗(s) = (1− p)S∗(s)+ pM (18.34)

and study its analytic properties as a function of s for p in the interval

0 ≤ p ≤ p+ ≡ −Tr[S∗(0)]/{1− Tr[S∗(0)]}.
This constant p+ is positive and less than unity because S∗(0) is negative-semidefinite. It is
easy to check that this function S ′

∗(s) satisfies the required constraints (18.32) for any choice
of p in this interval. Moreover, the fact that for real values of s the eigenvalues of S∗(s) are
monotonic increasing functions of s, except at the poles, implies that the degree g remains
constant as p remains in the interval (0, p+). As p approaches p+ the matrix S ′

∗(0) ap-
proaches zero, and due to the phase interchange relationship it follows that S ′

∗(1) approaches
the identity matrix. In other words, if we consider those points s ∈ (0, 1) where S∗(s) has
unit eigenvalue, then at least one of those points approaches s = 1 as p approaches p+. Con-
sequently, in the limit p = p+, the degree of the rational function is reduced. Specifically it
is reduced by the rank of the matrix S∗(0). By hypothesis there exists a multicoated laminate
corresponding to this rational function, and from (18.34) we see that by constructing a sequen-
tial coated laminate with this composite as core and phase 2 as coating, in proportions 1− p+

and p+, we obtain a multicoated laminate corresponding to the given function σ∗(σ1, σ2). In
this last stage of lamination the matrix S∗(0) determines the directions of laminations and
amounts of phase 2 to be laminated in each direction.

This correspondence does not hold in three dimensions. The class of multicoated lami-
nates is not sufficiently diverse to mimic the behavior of the conductivity function of an ar-
bitrary three-dimensional, two-phase composite. Indeed there exist many three-dimensional
composites such that σ(1, 0) and σ(0, 1) are both nonsingular matrices. For example, this
occurs if phase 1 is the connected solid phase in an isotropic porous medium and phase 2 is
the connected fluid phase occupying the pore space. By contrast, in any multicoated laminate
of finite rank, at least one of the matrices σ(1, 0) or σ(0, 1) must be singular. For example,
if at the last stage in the construction of a multicoated laminate phase 2 was laminated in
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direction n, then σ(1, 0) will have n as a null vector because the current cannot flow across
a nonconducting layer.

A related correspondence holds for two-dimensional conducting polycrystals. In a two-
dimensional polycrystal the local conductivity tensor takes the form

σ(x) = R(x)σ0R
T (x),

where the rotation fieldR(x) [satisfyingR(x)RT (x) = I] gives the orientation of the crys-
tal at the point x. One can consider the effective conductivity tensor σ∗ as a function σ∗(σ0)

of the conductivity tensor σ0 of the underlying crystal. Clark and Milton (1994) have shown
that a certain family of coated laminates is sufficiently diverse to encompass all possible con-
ductivity functions σ∗(σ0). This is accomplished in a new way, by making a correspondence
between fields in the Hilbert space associated with the given polycrystal and fields in the
Hilbert space associated with an appropriate coated laminate.

18.6. Integral representations for problems involving more than two
eigenvalues: The trajectory method

For two-component composites the integral representation (18.14) provides a formula for L∗
in terms of a positive measure µ that derives from the values that Im[L∗(λ1, λ2)] takes as
λ1 and λ2 approach the real axis. For problems involving more than two eigenvalues, such
as conduction in a multicomponent composite or elasticity in a two-component composite,
one can similarly obtain an integral representation for L∗ in terms of a positive measure µ
that derives from the values that Im[L∗] takes as λ1, λ2, . . . , λn approach the real axis. Such
an integral representation was first obtained by Golden and Papanicolaou (1985). Other in-
tegral representations, which treated the phases symmetrically, were subsequently obtained
(Dell’Antonio and Nesi 1988; Milton and Golden 1990). Here we show that an integral rep-
resentation can be obtained simply by reducing the problem to one involving functions of a
single complex variable. This approach is known as the trajectory method. It is similar to one
taken by Bergman (1978b), who did not view it as a representation for the multivariable func-
tion L∗(λ1, λ2, . . . , λn), but rather regarded it only as a representation for L∗ along a certain
trajectory (λ1(s), λ2(s), . . . , λn(s)) parameterized by a variable s. To obtain the representa-
tion formula for the multivariable function it is necessary to introduce a suitable family of
trajectories that are sufficiently general so as to pass through any given point (λ1, λ2, . . . , λn).

Let us derive an integral formula for L∗ at a given point (λ1, λ2, . . . , λn). For simplicity
(by making a rotation in the complex plane if necessary) let us assume that

Im(λ j ) > 0 for j = 1, 2, . . . , n.

Our objective is to express L∗(λ1, λ2, . . . , λn) in terms of a measure that derives from the
values that Im[L∗(λ′

1, λ
′
2, . . . , λ

′
n)] takes as λ

′
1,λ

′
2, . . . , λ

′
n approach the real axis. To do this

we consider a trajectory

(λ′
1(s), λ

′
2(s), . . . , λ

′
n(s)), where λ′

j (s) = 1− 1/(a j + sb j), (18.35)

parameterized by the complex variable s. (Strictly speaking, this is a two-dimensional sheet
parameterized by the real and imaginary parts of s, but we call it a trajectory to conform with
the terminology used by Bergman.) The constants a j and b j are real and chosen so that the
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trajectory passes through the given point (λ1, λ2, . . . , λn) for one particular value of s, say,
s = i , that is, so that (λ′

1(i), λ
′
2(i), . . . , λ

′
n(i)) = (λ1, λ2, . . . , λn). This is ensured with

a j = Re[1/(1− λ j)], b j = Im[1/(1− λ j )] > 0.

The positivity of the constants b j (guaranteed by our assumption of the positivity of Im[λ j ])
ensures that

Im[λ′
j (s)] > 0 when Im[s] > 0, and Im[λ′

j (s)] < 0 when Im[s] < 0. (18.36)

It follows from this that the function

F (s) = I − L∗(λ′
1(s), λ

′
2(s), . . . , λ

′
n(s))

= I − L∗(1− 1/(a1 + sb1), 1− 1/(a2 + sb2), . . . , 1− 1/(an + sbn))

is real symmetric and has a negative-definite imaginary part when s lies in the upper half of
the complex plane. Since F (s) approaches zero as s tends to infinity, we deduce that F (s)
has the integral representation

F (s) =
∫ ∞

−∞

dµ(y)
s − y ,

in which the integral of any smooth scalar test function g(y)with respect to this measureµ(y)
is given by∫ ∞

−∞
dµ(y)g(y) = − lim

ε→0
ε>0

1
π

∫ ∞

−∞
dy Im[F (y + iε)]g(y)

= lim
ε→0
ε>0

1
π

∫ ∞

−∞
dy Im[L∗(λ′

1(y + iε), λ′
2(y + iε), . . . , λ′

n(y + iε))],

which serves to define the positive-semidefinite matrix-valuedmeasureµ(y). By setting s = i
in the integral representation for F (s) we obtain

L∗(λ1, λ2, . . . , λn) = I −
∫ ∞

−∞

dµ(y)
i − y . (18.37)

These are the desired formulas forL∗(λ1, λ2, . . . , λn) in terms of a measureµ that derives
from the values that Im[L∗(λ′

1, λ
′
2, . . . , λ

′
n)] takes as λ

′
1, λ

′
2, . . . , λ

′
n approach the real axis.

Notice that the dependence of L∗ on the complex variables λ1, λ2, . . . , λn is hidden in the
dependence of the measure on these variables.

The measure µ(y) certainly vanishes for y ≤ y− and for y ≥ y+, where

y− ≡ min{−a1/b1, . . . ,−an/bn}, and y+ ≡ max{(1− a1)/b1, . . . , (1− an)/bn},

since for y satisfying either one of these inequalities the parameters λ′
1(y), . . . , λ

′
n(y) are all

positive and the imaginary part ofL∗(λ′
1(y+ iε), λ′

2(y+ iε), . . . , λ′
n(y+ iε)) approaches zero

as ε approaches zero. Consequently, the integral in the representation formula (18.37) can be
restricted to the range between y− and y+:

L∗(λ1, λ2, . . . , λn) = I −
∫ y+

y−

dµ(y)
i − y .
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18.7. The lack of uniqueness in the choice of integral kernel:
Constraints on the measure†

We could have chosen trajectories other than (18.35). It is only required that they pass through
the given point and satisfy (18.36). These choices would have led to alternative integral rep-
resentations. To shed further light on this lack of uniqueness in the integral representation it
is helpful to introduce the variables

z j = (i − λ j )/(i + λ j ),

which take values in the unit disk when the λ j take values in the upper half-plane. Con-
sequently (z1, z2, . . . , xn) is said to take values in the polydisk. We now consider L∗ as a
function of the z j , that is, L∗ = L∗(z1, z2, . . . , zn). The integral representation (18.37) shows
that L∗ at a given point depends linearly on the values that Im[L∗] takes as λ′

1,λ
′
2, . . . , λ

′
n

approach the real axis. Therefore the integral representation (18.37) could be rewritten in the
equivalent form of a polydisk representation formula,

L∗(z1, z2, . . . , zn) =
∫
T n
K(z1, z2, . . . , zn, θ1, θ2, . . . , θn)dµ′(θ1, θ2, . . . , θn), (18.38)

incorporating an integral kernel K(z1, z2, . . . , zn, θ1, θ2, . . . , θn) and a positive measure µ′

that derives from the values that Im(L∗) takes as z1, z2, . . . , zn approach the edge of the unit
disk, that is, as z j approaches eiθ j for j = 1, 2, . . . , n. The integral in (18.38) is over the
n-dimensional torus T n, which is parameterized by the angular variables θ1, θ2, . . . , θn with
0 ≤ θ j < 2π for all j . The measure µ′ is defined through the integral of any smooth scalar
test function g(θ1, θ2, . . . , θn) with respect to it. We define∫
T n
g(θ1, θ2, . . . , θn)dµ′(θ1, θ2, . . . , θn)

= lim
r→1
r<1

∫
T n
g(θ1, θ2, . . . , θn) Im[L∗(reiθ1, reiθ2, . . . , reiθn )]dθ1dθ2 . . . dθn.

(18.39)

One advantage of rewriting the integral representation (18.37) in the polydisk form (18.38)
is that it separates the dependence of L∗ on the complex variables λ1, λ2, . . . , λn from the de-
pendence ofL∗ on the characteristic functions; the integral kernelK depends on the complex
variables but not on the characteristic functions, whereas the measure µ′ (unlike the measure
µ) depends on the characteristic functions but not on the complex variables. Interpreted in
this way, we see that the trajectory method has been wrongly criticized for failing to make
the separation between the dependence on the material properties and the dependence on the
geometry.

With some additional effort one could derive an explicit formula for the integral kernel
K(z1, z2, . . . , zn, θ1, θ2, . . . , θn). Even without this explicit formula at hand it is clear that
the support of the integral kernel is singular. For fixed values of z1, z2, . . . , zn it is nonzero
only along a trajectory on the torus T n . This trajectory corresponds to the trajectory traced by
(18.35) as s varies along the real axis. Other integral representations have been derived that
involve kernels with nonsingular support, such as the Sze̋go kernel. One such representation
formula is the one given by Milton and Golden (1990)

L∗(z1, z2, . . . , zn) =
∫
T n

[
−1+ 2

n∏
k=1

(1− zke−iθk )−1

]
dµ′(θ1, θ2, . . . , θn),
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which derives from a polydisk representation formula of Korányi and Pukánszky (1963). The
nonuniqueness in the choice of integral kernel stems from certain Fourier constraints on the
measure µ′. These arise (Rudin 1969) because the series expansion for L∗ in powers of the
variables z j ,

L∗(z1, z2, . . . , zn) =
∑

a1,a2,...,an

ca1,a2,...,an z
a1
1 z

a2
2 . . . zan

n ,

incorporates only positive powers. [Negative powers are not allowed because the function
L∗(z1, z2, . . . , zn) is nonsingular at the origin.] By substituting the test function

g(θ1, θ2, . . . , θn) = ei(k1θ1+k2θ2+···+knθn)

into (18.39) and noting that

Im[L∗(reiθ1, reiθ2, . . . , reiθn)]
=

∑
a1,a2,...,an

ca1,a2,...,anr
a1+a2+···+an [ei(a1θ1+a2θ2+···+anθn) − e−i(a1θ1+a2θ2+···+anθn)]/2,

we see that∫
T n
ei(k1θ1+k2θ2+···+knθn)dµ′(θ1, θ2, . . . , θn) = 0

unless k = (k1, k2, . . . , kn) ∈ n
+ ∪ n

−,

where + = {0, 1, 2, . . .} and − = − +. In other words, the Fourier coefficients of the
measure are zero whenever the k j have mixed signs.

Due to these Fourier constraints we are free to replace the integral kernel K(z,θ) with
the integral kernel

K ′(z,θ) =K(z,θ)+
∑

k �∈ n+∪ n−

f (k,z)eik·θ,

in which z = (z1, . . . , zn), θ = (θ1, . . . , θn), k = (k1, . . . , kn), and f is an arbitrary function
of k and z.

There are other linear constraints on the measure µ′. Due to the fact that L∗ is a homoge-
neous function of λ1, λ2, . . . , λn , the measure in the vicinity of the point (θ1, . . . , θn)must be
related to the measure in the vicinity of (2 tan−1{c tan(θ1/2)}, . . . , 2 tan−1{c tan(θn/2)}) for
all values of c (Milton and Golden 1990). Taking the derivative of this relation with respect
to c and (without loss of generality) setting c = 1 gives the constraint

n∑
k=1

sin θk
∂µ′

∂θk
= µ′

of Sawicz (1995). These constraints permit an even wider choice of integral kernel.
When L∗(λ1, λ2, . . . , λn) is rational, or at least has no branch cuts, then the measure

µ′ will be concentrated along the pole lines of the function L∗(λ1, λ2, . . . , λn) (Bergman
1978b). For a square array of dielectric coated cylinders, with one phase being the core
material, a second phase being the coating, and a third phase being the surrounding matrix
material, Nicorovici, McPhedran, and Milton (1993) have computed these pole lines for the
effective dielectric function ε∗(ε1, ε2, ε3). They also computed the zero lines, which provide
enough information for one to obtain the measure µ′. [From the poles and zeros of ε∗ along
a trajectory (ε1(s), ε2(s), ε3(s)) one can recover the residues at the poles and thereby obtain
the measure by considering a family of such trajectories.]
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18.8. Integral representations for a broader class of composite
problems†

When the tensor field L(x) has the form (18.10) we can still obtain integral representations
using the trajectory method. Generalizing (18.35) we consider a trajectory

(L′
1(s),L

′
2(s), . . . ,L

′
n(s)), where L′

j(s) = I − (A j + sB j )
−1

passing through the space of n-tuples of matrices parameterized by the complex variable s, in
which the tensorsA j and B j are chosen so that the trajectory passes through a chosen point
(L1,L2, . . . ,Ln) in this space at one particular value of s, say, s = i . This is ensured with

A j = Re[(I − L j )−1], B j = Im[(I − L j )−1].

We assume that the imaginary part of each tensor L j is positive-definite, by making a
rotation in the complex plane if necessary. Then each tensor B j is positive-definite and it
follows that the function

F (s) = I − L∗(L′
1(s),L

′
2(s), . . . ,L

′
n(s))

= I − L∗(I − (A1 + sB1)
−1, I − (A2 + sB2)

−1, . . . , I − (An + sBn)−1)

is real symmetric and has a negative-definite imaginary part when s lies in the upper half of
the complex plane. Since F (s) approaches zero as s tends to infinity, we deduce that F (s)
has the integral representation

F (s) =
∫ ∞

−∞

dµ(y)
s − y ,

in which the integral of any smooth scalar test function g(y)with respect to this measure µ(y)
is given by∫ ∞

−∞
g(y)dµ(y) = − lim

ε→0
ε>0

1
π

∫ ∞

−∞
g(y) Im[F (y + iε)] dy

= lim
ε→0
ε>0

1
π

∫ ∞

−∞
g(y) Im[L∗(L′

1(y + iε),L′
2(y + iε), . . . ,L′

n(y + iε))] dy,

which serves to define the matrix-valued measure µ(y). By setting s = i in the integral
representation for F(s) we obtain

L∗(L1,L2, . . . ,Ln) = I −
∫ ∞

−∞

dµ(y)
i − y .

This is the desired formula for L∗(L1,L2, . . . ,Ln) in terms of a measure µ that derives
from the values that Im[L∗(L′

1,L
′
2, . . . ,L

′
n)] takes as the imaginary part of each of the ten-

sors L′
1, L

′
2, . . . ,L

′
n approaches zero. In other words, we can recover the entire function

L∗(L1,L2, . . . ,Ln) from the values that its imaginary part takes when L1,L2, . . . ,Ln are
nearly real.
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19
Y -tensors

Affiliated with the effective tensor L∗ in multicomponent composites is another tensor Y ∗,
which is called the Y -tensor. Whereas the effective tensor L∗ gives us information about the
relation between the average fields in a composite, the tensor Y ∗ tells us about the average
values of the fields in each phase.

The realization that Y -tensors are natural objects to introduce came gradually. It was
recognized (Milton 1981) that many bounds on effective moduli of two-phase composites
could be reduced to a common form. Motivated by the form of these bounds Berryman
(1982) introduced a set of y-parameters, which were fractional linear transformations of the
effective conductivity, bulk, and shear moduli. The bounds took an especially simple form
when expressed in terms of these parameters. Interestingly, he found that his y-parameters
were also helpful in simplifying the form of the self-consistent equations satisfied by the
effective medium approximations for the effective moduli. The conductivity y-parameter and
effective conductivity were found to have essentially the same analytic properties as functions
of the component conductivities σ1 and σ2 (Milton and Golden 1985). A tensor related to
the Y -tensor made its appearance in continued fraction expansions of the effective tensor
[see equation (11.27) in Milton (1987), where N̂ (1)�(1) N̂ (1) should be identified with Y ∗].
Subsequently a variational formulation for the Y -tensor was found and the definition of Y ∗
was extended to multiphase materials (Milton 1991). Independent of these developments
Cherkaev and Gibiansky (1992) found that the translation bounds for two-phase composites
could be simplified if expressed in terms of the Y -tensor.

19.1. The Y -tensor in two-phase composites
In two-phase composites the tensor Y ∗ can be defined (Gibiansky and Milton 1993) as that
tensor that governs the linear relation〈

χ1(J − 〈J〉)
〉
= −Y ∗

〈
χ1(E − 〈E〉)

〉
(19.1)

between the average values within phase 1 of the fields J(x) − 〈J〉 and E(x) − 〈E〉 repre-
senting the fluctuating parts of the fields J(x) andE(x). By replacing χ1(x) with 1− χ2(x)
in (19.1) we see that Y ∗ also governs the linear relation〈

χ2(J − 〈J〉)
〉
= −Y ∗

〈
χ2(E − 〈E〉)

〉
between the average values within phase 2 of the fields J(x)−〈J 〉 andE(x)−〈E〉. So there
is appealing symmetry in the definition of Y ∗.

397
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In two-phase composites L∗ can be expressed in terms of the effective tensor Y ∗ through
the formula

L∗ = f1L1 + f2L2 − f1 f2(L1 −L2)[ f2L1 + f1L2 + Y ∗]−1(L1 −L2). (19.2)

The proof of this is a little indirect but straightforward. We observe that

L∗〈E〉 = 〈LE〉 = 〈L〉〈E〉 +
〈
L(E − 〈E〉)

〉
= ( f1L1 + f2L2)〈E〉 + (L1 − L2)

〈
χ1(E − 〈E〉)

〉
,

and that

[ f2L1 + f1L2 + Y ∗]
〈
χ1(E − 〈E〉)

〉
= f2L1〈χ1E〉 − f1L2〈χ2E〉 − f1 f2(L1 −L2)〈E〉 −

〈
χ1(J − 〈J〉)

〉
= − f1 f2(L1 −L2)〈E〉.

Combining these formulas gives (19.2), assuming that f2L1 + f1L2 + Y ∗ is nonsingular.
We will see in the next section that Y ∗ is positive-semidefinite when L1 and L2 are positive-
definite, which justifies this assumption. Due to the appearance of the factors of (L1−L2) in
(19.2), any term that enters the series expansion of Y ∗ in powers of L1 − L2 at order j will
first enter the series expansion of L∗ at order j + 2.

Assuming that L1−L2 and f1L1+ f2L2−L∗ are nonsingular, the relation (19.2) can be
inverted, giving a formula for Y ∗ in terms of L∗:

Y ∗ = Y (L∗,L1,L2)

= − f2L1 − f1L2 + f1 f2(L1 −L2)( f1L1 + f2L2 −L∗)−1(L1 −L2).

(19.3)

This defines the Y -transformation Y (L∗,L1,L2) of L∗. For example, if we consider the
conductivity of a three-dimensional isotropic composite of two isotropic phases, with con-
ductivity tensors L1 = σ1I and L2 = σ1I , and substitute the series expansion (15.33) for
the effective conductivity tensor L∗ = σ∗I into (19.3), we see that the tensor Y ∗, to the first
order in the difference σ1 − σ2, has an expansion

Y ∗ = 2(ζ1σ1 + ζ2σ2)I + · · · ,
in which ζ1 and ζ2 = 1− ζ1 are the geometric parameters given by (15.31) and (15.32), which
depend on the three-point correlation functions. These geometric parameters, which enter the
series expansion for σ∗ at the third order, enter the series expansion for Y ∗ at the first order.
In other words, the effect of the Y -transformation is to shift information contained at order k
in the series expansion ofL∗(L1,L2) in powers ofL1−L2 to information contained at order
k − 2 in the transformed function. By rewriting (19.1) in the form〈

χ1(E − 〈E〉)
〉
= −Y −1

∗
〈
χ1(J − 〈J〉)

〉
,

and applying the duality principle it is immediately evident that

Y −1
∗ = Y (L−1

∗ ,L−1
1 ,L−1

2 )

= − f2L−1
1 − f1L−1

2 + f1 f2(L−1
1 − L−1

2 )( f1L−1
1 + f2L−1

2 −L−1
∗ )−1(L−1

1 − L−1
2 )
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or, equivalently, that

L−1
∗ = f1L

−1
1 + f2L

−1
2 − f1 f2(L

−1
1 −L−1

2 )[ f2L
−1
1 + f1L

−1
2 + Y −1

∗ ]−1(L−1
1 −L−1

2 ).

(19.4)

In other words, the Y -transformation has the property that

Y (L−1
∗ ,L−1

1 ,L−1
2 ) = [Y (L∗,L1,L2)]−1. (19.5)

It is also clear from the definition (19.3) that the Y -transformation satisfies

Y (L∗ − L0,L1 −L0,L2 −L0) = Y (L∗,L1,L2)+L0, (19.6)

for any choice of the tensor L0. The scalar variant of (19.5) was used to obtain the simplified
bounds given in Milton (1981). Berryman (1982) subsequently used this relation to recast
the bounds in an equivalent form. This property of the Y -transformation was also noticed by
Cherkaev and Gibiansky (1992). Additionally they observed that

Y (L1,L1,L2) = −L1, Y (L2,L1,L2) = −L2.

The one-to-one correspondence between effective tensorsL∗ and tensorsY ∗ in two-phase
composites implies that the problem of finding bounds on L∗ is equivalent to the problem of
finding bounds on Y ∗. Moreover, as we will see in sections 23.6 on page 474, 24.10 on
page 516, 24.11 on page 518, 24.14 on page 522, 26.2 on page 554, and 26.3 on page 557,
the bounds on Y ∗ can be considerably simpler than the corresponding bounds on L∗. For
example, in an isotropic conducting composite one has Y ∗ = yσI , and the Hashin-Shtrikman
bounds (16.17) on the effective conductivity σ∗ reduce to the elementary bounds

(d − 1)σ1 ≥ yσ ≥ (d − 1)σ2

on the y-parameter yσ . Moreover, we will see in section 28.3 on page 610 that the Y -
transformation preserves many of the analytic properties of the effective tensor discussed in
chapter 18 on page 369.

19.2. The Y -tensor in multiphase composites
In multiphase composites the Y -tensor Y ∗ has a natural interpretation as a nonlocal linear
operator that when applied to a field that is constant in each phase, but having overall zero
average value, produces another field of the same type. While the effective tensor L∗ governs
the relation between average fields, the tensor Y ∗ governs the relations between the averages
of the fields over the individual phases. The definition of Y ∗ is a bit more abstract than for
two-phase composites, but we will see that there is a correspondence between the definitions
when only two phases are present. We also will see that there is a natural variational principle
for Y ∗.

Let us start with the variational expression for the effective tensor in an n-phase composite:

〈E0 ·L∗E0〉 = min
E ∈ U ⊕ E
〈E〉 = E0

〈E ·LE〉,



400 19. Y -tensors

where

L =
n∑
i=1

χiLi .

Now any field, such as the trial field E, has a natural decomposition as the sum of three
orthogonal fields:

E = E0 +E1 +E2,

comprised of a constant field
E0 = Γ0E ≡ 〈E〉,

a field

E1(x) = Π1E ≡
n∑
i=1

1
fi
〈χi(E − 〈E〉)〉χi (x) satisfying 〈E1〉 = 0, (19.7)

which is constant in each phase with overall average value zero, and a field

E2 =Π2E ≡ E −
n∑
i=1

1
fi
〈χiE〉χi (x) satisfying 〈χ jE2〉 = 0 for j = 1, 2, . . . , n,

which has average value zero within each phase. The above formulas serve to define the
projections Π1 and Π2, which when applied to E give the component fieldsE1 andE2. Not
only are these three component fields mutually orthogonal, but more significantly the field
L(E0 + E1) is constant within each phase and hence orthogonal to E2. Due to this latter
orthogonality the quadratic form associated with the trial field E splits into the sum of two
quadratic terms,

〈E · LE〉 = 〈(E0 +E1) ·L(E0 +E1)〉 + 〈E2 ·LE2〉,

and as a direct consequence the variational principle forL∗ splits into two separate variational
problems, namely, the computation of the function

f (E1) = min
E2

E1 +E2 ∈ E
〈χiE2〉 = 0

〈E2 ·LE2〉, (19.8)

for all fieldsE1 that are constant in each phase with 〈E1〉 = 0 (and in particular forE1 = E1)
and the subsequent evaluation of

〈E0 ·L∗E0〉 = min
E1∈V

〈(E0 +E1) · L(E0 +E1)〉 + f (E1), (19.9)

in which V is the space fields, which are constant in each phase with average value zero. We
will refer to the fields in V as piecewise constant average value zero fields (piecewise constant
will be taken to mean that the fields are constant throughout each phase).

By variation of the trial field E2 by an amount δE2 it can be seen that the minimum in
(19.8) is achieved when the identity

〈δE2 ·LE2〉 = 0
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holds for all fields δE2 with

δE2 ∈ E, 〈χiδE2〉 = 0 for i = 1, 2, . . . n.

In other words, the minimum in (19.8) is achieved by a field E2 = E2 enjoying the special
property that there exists a piecewise constant field J 1 with 〈J 1〉 = 0 and a field J 2 with
average value zero in each phase, that is, with 〈χiJ2〉 = 0 for i = 1, 2, . . . , n, such that

J2 = LE2, J1 + J2 ∈ J , E1 +E2 ∈ E . (19.10)

Since these are linear equations, we might expect that there exists some linear operator
Y ∗ that maps piecewise constant average value zero fields to piecewise constant average
value zero fields, such that

J1 = −Y ∗E1, (19.11)

where the minus sign is introduced to ensure that the quadratic form associated with Y ∗ is
nonnegative when L is positive-definite. Indeed the orthogonality of J and E implies that

0 = 〈(E1+E2) ·(J 1+J 2)〉 = 〈E1 ·J1〉+〈E2 ·J2〉 = 〈E2 ·LE2〉−〈E1 ·Y ∗E1〉; (19.12)

and since 〈E2 ·LE2〉 is nonnegative when L is positive-definite, it follows that 〈E1 ·Y ∗E1〉
must likewise be nonnegative for all choices of E1. The equations (19.10) and (19.11) define
the Y -tensor Y ∗. We will therefore call the problem of finding fields E1, E2, J1, and J 2
that solve (19.10) the Y -tensor problem. Following an argument similar to that used in sec-
tion 12.10 on page 263, to establish the self-adjointness of L∗ when L is self-adjoint, it is a
simple matter to check that the self-adjointness of L implies the self-adjointness of Y ∗.

From (19.8) and (19.12) we see that the function f (E1) is simply the quadratic form
associated with Y ∗:

f (E1) = 〈E1 · Y ∗E1〉. (19.13)

This in conjunction with (19.8) provides the variational principle for Y ∗.
The subsequent evaluation of (19.9) requires a minimization over a finite-dimensional

space, namely, the space V of all piecewise constant average value zero fields. By variation of
the trial fieldE1 it can be seen that the minimum in (19.9) is achieved by a fieldE1 = E1 ∈ V
enjoying the special property that there exists a constant field J 0 such that

J0 = L(E0 +E1)+ Y ∗E1. (19.14)

By combining this with (19.10) and (19.11) we see that

L(E0 +E1 +E2) = J0 − Y ∗E1 + J2 = J0 + J1 + J2.

In other words, the fields

J = J0 + J1 + J2 ∈ U ⊕ J , E = E0 +E1 +E2 ∈ U ⊕ E (19.15)

can be identified with the solutions to the original equations, and in particular J 0 can be
identified with the average value of J . To solve (19.14) we project the equation onto the
space V of piecewise constant average value zero fields, producing the relation

[Π1LΠ1 + Y ∗]E1 = −Π1LE0,
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where Π1 defined by (19.7) denotes the projection onto V , and Π1J0 = 0 because V is
orthogonal to the space U of constant fields. This has the solution

E1 = −[Π1LΠ1 + Y ∗]−1Π1LE0, (19.16)

where the inverse is to be taken on the subspace V . An additional relation is obtained by
multiplying (19.14) by the projection Γ0 onto the space of constant fields, giving

J0 = 〈L〉E0 + Γ0LE1.

Substitution of (19.16) into this gives us an expression for J 0 in termsE0 and hence a formula
for the effective tensor L∗ in terms of the Y -tensor:

L∗ = 〈L〉 − Γ0LΠ1[Π1LΠ1 + Y ∗]−1Π1LΓ0. (19.17)

Also notice that (19.16) gives us a formula for the average value of the field E within each
phase in terms of the Y -tensor:

〈χiE〉 = 〈χi (E0 +E1)〉 = fiE0 − Γ0χi [Π1LΠ1 + Y ∗]−1Π1LE0.

In general the relation (19.17) cannot be inverted to recover Y ∗ from L∗ because Y ∗
is represented by a higher dimensional matrix. In an n-phase composite the tensor L∗ is
represented by an m ×m matrix while the tensor Y ∗ is represented by (n − 1)m × (n − 1)m
matrix because the space V of piecewise constant average value zero fields has dimension
(n−1)m. The one exception is a two-phase composite, where bothL∗ and Y ∗ are represented
by m × m matrices. In two-phase composites there is a natural correspondence between
constant fields and piecewise constant fields with zero average value. Given a constant field
v ∈ U , the associated field V ∈ V is

V (x) = 1√
f1 f2

( f2χ1(x)− f1χ2(x))v = 1√
f1 f2

(χ1(x)− f1)v, (19.18)

where the prefactor of 1/
√
f1 f2 ensures that the inner product between two fields in V is the

same as the inner product between their associated fields in U .
Due to this correspondence between fields in V and fields in U (which implies a one-to-

one correspondence between basis fields) any operator that maps V to V , or which maps V to
U , or which maps U to V can be represented by an associated tensor that maps U to U . By an
abuse of notation, let us label the operator Y ∗ and its associated tensor by the same symbol.
If an operatorA maps V to V , its action on V given by (19.18) produces the field

AV = 1√
f1 f2

(χ1(x)− f1)Av,

where the associated tensor A appearing on the right of this equation maps U to U and rep-
resents the operator A. If an operator B maps V to U , its action on V produces the field
BV = Bv, where the associated tensor B on the right-hand side maps U to U and repre-
sents the operatorB. From the action of L on V ,

LV = 1√
f1 f2

( f2L1χ1(x)− f1L2χ2(x))v

=
√
f1 f2(L1 −L2)v + 1√

f1 f2
(χ1(x)− f1)[( f2L1 + f1L2)v],
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we see that

Γ0LV = Γ0LΠ1V =
√
f1 f2(L1 −L2)v,

Π1LV = Π1LΠ1V = 1√
f1 f2

(χ1(x)− f1)[( f2L1 + f1L2)v],

which implies that
√
f1 f2(L1−L2) and f2L1+ f1L2 are the tensors associated with Γ0LΠ1

and Π1LΠ1, respectively. Also from the action of L on the constant field v,

Lv = (χ1(x)L1 + χ2(x)L2)v

= ( f1L1 + f2L2)v + 1√
f1 f2

(χ1(x)− f1)[
√
f1 f2(L1 −L2)v],

which implies that

Π1Lv =Π1LΓ0v = 1√
f1 f2

(χ1(x)− f1)[
√
f1 f2(L1 − L2)v],

we see that
√
f1 f2(L1 −L2) is the tensor associated with Π1LΓ0. Since the relation (19.17)

remains true if we replace each operator by its associated tensor, it follows that L∗ and the
associated tensor Y ∗ are linked through the relation

L∗ = f1L1 + f2L2 − f1 f2(L1 −L2)[ f2L1 + f1L2 + Y ∗]−1(L1 −L2). (19.19)

in agreement with (19.2). Thus, for two-phase composites, we have established a correspon-
dence between the definition of Y ∗ as an operator and the definition of Y ∗ given in the
previous section.

19.3. A formula for the effective thermoelastic tensor in terms of the
elasticity Y -tensor

In section 5.6 on page 82 we considered a composite of two anisotropic phases and (following
Rosen and Hashin) derived explicit formulas for the effective tensorα∗ of thermal expansion,
and the effective specific heat c∗ at constant pressure, in terms of the effective compliance
tensor S∗ and the volume fractions and thermoelastic moduli of the two phases. In multicom-
ponent composites, there is no universal formula relating α∗ and c∗ to S∗, but instead there
is a formula giving α∗, c∗, and S∗ in terms of the tensor Y ∗ associated with the elasticity
problem. To obtain this relation we start with the thermoelastic classical variational principle:(

τ 0
θ

)
·L∗

(
τ 0
θ

)
= min

τ (x)
〈τ 〉 = τ 0

∇ · τ = 0

〈(
τ
θ

)
·L
(
τ
θ

)〉
,

in which

L∗ =
(

S∗ α∗
α∗ c∗/T0

)
,

L(x) =
(

S(x) α(x)
α(x) c(x)/T0

)
=

n∑
i=1

χi(x)

(
S i αi
αi ci/T0

)
.
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No minimization over temperature fields is needed in this variational principle because the
differential constraints imply that θ is constant. By expanding the quadratic forms, we see
that

τ 0 · S∗τ 0 + 2θα∗τ 0 + θ2c∗/T0 = min
τ (x)

〈τ 〉 = τ 0
∇ · τ = 0

〈τ · Sτ 〉 + 2θ〈ατ 〉 + θ 2〈c〉/T0.

As before, the next step is to express the trial field τ as a sum

τ = τ 0 + τ 1 + τ 2

of a constant field τ 0, a field τ 1 that is constant in each phase with 〈τ 1〉 = 0, and a field
τ 2 satisfying 〈χiτ 2〉 = 0 for i = 1, 2, . . . , n. Upon substitution, we see that the variational
principle splits into the computation of the quadratic form associated with the Y ∗ tensor,

〈τ 1 · Y ∗τ 1〉 = min
τ 2

∇ · (τ 1 + τ 2) = 0
〈χiτ 2〉 = 0

〈τ 2 · Sτ 2〉, (19.20)

for all fields τ 1 ∈ V , where V is comprised of all symmetric tensor fields that are constant in
each phase with 〈τ 1〉 = 0, and the subsequent determination of

τ 0 · S∗τ 0 + 2θα∗τ 0 + θ2c∗/T0 = 2θ〈ατ 0〉 + θ2〈c〉/T0

+ min
τ 1∈V

[
〈(τ 0 + τ 1) · S(τ 0 + τ 1)〉 + 〈τ 1 · Y ∗τ 0〉 + 2θ〈α · τ 1〉

]
.

The minimum in (19.20) is attained when τ 1 = τ 1, where τ 1 has the special property that
there exists a constant field ε0 such that

ε0 = S(τ 0 + τ 1)+ Y ∗τ 1 + θα. (19.21)

In the same way that the field J 0 appearing in (19.14) was identified with 〈J〉, so too can the
field ε0 appearing here be identified with the average strain 〈ε0〉. By projecting (19.21) onto
the spaces V we see that the minimizer of (19.20) is

τ 1 = −(Π1SΠ1 + Y ∗)−1Π1(Sτ 0 + θα), (19.22)

where the inverse is to be taken on the subspace V . Having determined τ 1, we next substitute
the expression for it into the formula

ε0 = 〈S〉τ 0 + Γ0Sτ 1 + θ〈α〉,
obtained by projecting (19.21) onto the space U . A comparison of the resultant expression
with the effective constitutive relation allows us to make the identifications

S∗ = 〈S〉 − Γ0SΠ1(Π1SΠ1 + Y ∗)−1Π1SΓ0,

α∗ = 〈α〉 − 〈SΠ1(Π1SΠ1 + Y ∗)−1Π1α〉,
c∗ = 〈c〉 − T0〈α ·Π1(Π1SΠ1 + Y ∗)−1Π1α〉. (19.23)
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So knowledge of the Y -tensor enables us to compute the effective compliance tensor S ∗, the
effective thermal expansion tensor α∗, and the effective specific heat c∗ at constant stress as a
function of the specific heats ci and thermal expansion tensors αi of the phases.

KnowingY ∗ we can also determine the average values of the stress within each phase. We
see from (19.22) that the average stress 〈χs(τ 0 + τ 1)〉/ fs within phase s depends linearly on
τ 0 and the thermal expansion tensors αr , r = 1, 2, . . . , n of each phase. Following Dvorak
and Benveniste (1992), let us write this relation as

〈χsτ (x)〉/ fs = 〈χs(τ 0 + τ 1)〉/ fs = Bsτ 0 +
n∑
r=1

F srλr , where λr = −θCrαr . (19.24)

Here λr is called the eigenstress of phase r . It enters the constitutive relation, implied by
(2.24), between the stress and strain in phase r :

τ (x) = Cr (ε(x)− θαr ) = Crε(x)+ λr when x is in phase r,

where Cr = S−1
r is the elasticity tensor of phase r . Eigenstresses can be caused not only

by thermal expansion but also, for example, by phase transformations. (They should not be
confused with eigenvectors of the compliance tensor.) The tensorB s is called the mechanical
stress concentration factor tensor of phase s. The tensors F ss and F sr are called the self-
induced and transmitted eigenstress concentration factor tensors. Now (19.22) and (19.24)
imply that

Bs = I − 〈χsΠ1(Π1SΠ1 + Y ∗)−1Π1S〉/ fs ,
F sr = 〈χsΠ1(Π1SΠ1 + Y ∗)−1Π1χr 〉Sr/ fs . (19.25)

These formulas are unwieldy, but from them we can see that the concentration factor
tensors satisfy the relations

n∑
r=1

F sr = I −Bs ,

fsF srCr = 〈χsΠ1(Π1SΠ1 + Y ∗)−1Π1χr 〉 = frCsF Trs,
n∑
r=1

F srCr = 〈χsΠ1(Π1SΠ1 + Y ∗)−1Π1I〉/ fs = 0 (19.26)

of Dvorak and Benveniste (1992), where the last relation holds because Π1 annihilates any
field that is constant.

Conversely, if the concentration factor tensors are known, we can easily compute the field
τ 1 as a function of the values of the thermal expansion tensors αi , for i = 1, 2 . . .n, with
S, τ 0, and θ held fixed. Then the linear relation (19.22) between τ 1 and α allows us to
obtain the operator (Π1SΠ1 + Y ∗)−1 and thereby determine Y ∗. Thus the Y -tensor and the
concentration factor tensors carry exactly the same information. From a physical perspective,
we should really think of the Y -tensor as being determined from the linear relation between
the average values of the stress (or strain) fields within each phase and the thermal expansion
tensors of the phases.
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19.4. The Hilbert space setting for the Y -tensor problem†
In our two-phase composite we can define the following spaces of fields:

• K, the Hilbert space of all square integrable periodic fields with mean value zero;

• E and J , the usual spaces associated with the differential equations of interest;

• V , the space comprised of all fields that are constant in each phase and with zero average
value,

V = {P ∈ K | P (x) =
n∑
i=1

viχi(x), vi ∈ T ,

n∑
i=1

fivi = 0};

• H(1), the space comprised of all fields that have zero average value in each phase,

H(1) = {P ∈ K | 〈χiP 〉 = 0 for all i}.

With the inner product of fields in K being the usual one, given by (12.11), the pair of sub-
spaces V and H(1), like the pair subspaces E and J , are clearly orthogonal and span K. This
suggests that we can define Y -tensors in a more general abstract setting, without reference to
composite materials. This abstract setting will be useful in chapter 29 on page 619, where we
will see that hierarchies of embedded subspace collections generalize the notion of continued
fraction expansions of analytic functions.

Suppose that K represents a vector or Hilbert space that is split into the sum of two or-
thogonal spaces in two different ways,

K = E ⊕ J = V ⊕H(1),

in which the subspace V is assumed to be finite-dimensional. LetL represent a linear operator
that mapsH(1) to itself. Given any vectors or fields J ′ and E ′ that solve the equations

E′ ∈ E, J ′ ∈ J , J2 = LE2, where J2 =Π2J
′, E2 =Π2E

′, (19.27)

in which Π2 denotes the projection ontoH(1), the tensor Y ∗, by definition, governs the linear
relation

J1 = −Y ∗E1, where J 1 = Π1J
′ and E1 = Π1E

′, (19.28)

in which Π1 denotes the projection onto V .
To obtain a formula for Y ∗ in this general setting notice that (19.27) and (19.28) imply

that
0 = Γ2E

′ = Γ2E1 + Γ2E2 = Γ2E1 + Γ2L
−1Π2Γ2J

′,

where the inverse of L is to be taken on the subspaceH(1). Solving for J ′ gives

J ′ = −(Γ2L
−1Π2Γ2)

−1Γ2E1,

where the inverse is to be taken on the subspace J . Then by applyingΠ1 to both sides of this
equation and equating Π1J

′ = J1 with −Y ∗E1 we obtain the desired formula

Y ∗ =Π1Γ2(Γ2L
−1Π2Γ2)

−1Γ2Π1 (19.29)

for Y ∗.
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From the structure of the equations (19.27) and (19.28) it is clear there is a duality prin-
ciple: Any general result pertaining to all equations of this form must remain valid once we
make the replacements

E′ → J ′, J ′ → E ′,
E → J , E → J , V → V, H(1) → H(1),

L→ L−1, Y ∗ → Y −1
∗ ; (19.30)

and if the relation involves the projections Γ1 and Γ2 onto the subspaces E and J , then in
accordance with (19.30) we should also make the replacements

Γ1 → Γ2, Γ2 → Γ1.

For technical reasons, to ensure that Y ∗ is bounded and strictly positive-definite, we will
assume that there exist positive constants α and β such that

βI ≥ L ≥ αI onH(1), (19.31)

and that there exists another pair of positive constants γ1 < 1 and γ2 < 1 such that

|Π2E| ≥ γ1|E|, |Π2J | ≥ γ2|J | for all E ∈ E and J ∈ J . (19.32)

In particular, since |Π2E| = 0 for any E ∈ E ∩ V and |Π2J | = 0 for any J ∈ J ∩ V , it is
clear that this assumption ensures that the space V has no field in common with either E or J :

E ∩ V = 0, J ∩ V = 0. (19.33)

Taking E to be the field E ′ = E1 + E2 that solves the equations (19.27), we see the
constraint (19.32) implies that

|E2|2 ≥ γ 2
1 |E1 +E2|2 = γ 2

1 |E1|2 + γ 2
1 |E2|2.

Combining this with the identity (19.12) and the constraint (19.31) on L gives a sequence of
inequalities:

(E1,Y ∗E1) = (E2,LE2) ≥ α|E2|2 ≥ αγ 2
1

1− γ 2
1

|E1|2,

which provides an elementary lower bound on the Y -tensor:

Y ∗ ≥ αγ 2
1

1− γ 2
1

I.

So we see that our assumptions (19.31) and (19.32) do indeed guarantee that Y ∗ will be
strictly positive-definite. By applying the duality principle we obtain a corresponding bound
on the inverse tensor:

Y −1
∗ ≥ γ 2

2

β(1− γ 2
2 )
I.

In certain composite materials both (19.33) and the conditions (19.32) can be violated.
For example, if we consider conduction in a laminate of two phases laminated in direction n,
the piecewise constant average value zero fields,

e(x) = [ f2χ1(x)− f1χ2(x)]n, j(x) = [ f2χ1(x)− f1χ2(x)]v with n · v = 0,
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are curl free and divergence free, respectively, and therefore lie in E ∩ V and J ∩ V , respec-
tively. Accordingly the tensor Y ∗ has a combination of infinite and zero eigenvalues: Its
associated tensor Y ∗, which maps U to U , has inverse

Y −1
∗ = ∞(n⊗ n).

Such extreme values of Y ∗ are exceptional, and a perturbation of the composite geometry
will most likely produce a tensor Y ∗ that is bounded and strictly positive-definite. In other
words, if the assumption (19.32) is not valid, then we can probably make a small perturbation
to the composite geometry with little change to the effective tensor L∗, to obtain a composite
for which the assumption is valid. The assumption is made merely for convenience, to avoid
mathematical technicalities.

19.5. The Y -tensor polarization problem†
We can recast the equations (19.27) in terms of polarization fields and thereby find another
formula for the tensor Y ∗. To this end we take a reference operator L0 that is self-adjoint and
commutes with Π2, and we define the polarization field

P ′ = J ′ −L0E
′, (19.34)

in which J ′ and E ′ solve (19.27). Applying the usual operator

Γ = Γ1[Γ1L0Γ1]−1Γ1

to P ′ gives
ΓP ′ = −E′ = −E1 −E2. (19.35)

To obtain an expression for E2 in terms of P ′ we apply Π2 to both sides of (19.34). This
gives

Π2P
′ = J2 −L0E2 = (L−L0)E2.

By combining these results we see that P ′ satisfies

[Γ+ (L−L0)
−1Π2]P ′ = −E1. (19.36)

The operator Γ + (L − L0)
−1Π2 is self-adjoint because Π2 commutes with both L0 and L.

Assuming that its inverse exists, the solution for P ′ is

P ′ = −[Γ+ (L−L0)
−1Π2]−1E1.

By applying Π1 = I −Π2 to both sides we find that

J1 −L0E1 = −(Y ∗ +L0)E1 = −Π1[Γ+ (L−L0)
−1Π2]−1E1.

Since this holds for all fields E1 ∈ V , we deduce that the tensor Y ∗ is given by the formula

Y ∗ = −L0Π1 +Π1[Γ+ (L−L0)
−1Π2]−1Π1. (19.37)

One technical point remains. We need to check that the inverse of Γ + (L − L0)
−1Π2

exists, at least for some choice of L0. Let us suppose that L0 is such that there exist positive
constants δ1, δ2, and ε such that

Γ1L0Γ1 ≥ δ1Γ1, Π2/ε ≥ (L−L0)Π2 ≥ δ2Π2.
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Then Γ and (L−L0)
−1 are both bounded positive-semidefinite operators satisfying

Γ1/δ1 ≥ Γ ≥ Γ1/β, Π2/δ2 ≥ (L−L0)
−1Π2 ≥ εΠ2, (19.38)

where β is the positive constant entering (19.31). It follows immediately that Γ + (L −
L0)

−1Π2 is a bounded positive-semidefinite operator. The existence of an inverse will be
assured if we can prove that this operator is coercive.

Since the bounds (19.38) imply the inequality

Γ+ (L−L0)
−1Π2 ≥ Γ1/β + εΠ2,

it suffices to prove the coercivity of Γ1+ kΠ2 for at least one value of k > 0, that is, we need
to establish that there exists a positive constant γ such that

(P , (Γ1 + kΠ2)P ) ≥ γ |P |2 for all P ∈ K.

It then follows that

(P , (Γ1/β + εΠ2)P ) ≥ (P ,min{1/β, ε/k}(Γ1 + kΠ2)P )

≥ min{1/β, ε/k}γ |P |2 for all P ∈ K.

It is convenient to take k = 1/2. By decomposing P into a sum P = E + J of its two
orthogonal component fieldsE ∈ E and J ∈ J , and using (19.32) to bound the norm ofΠ2J
(in which 1 > γ2 > 0), we see that

(P , (Γ1 +Π2/2)P ) ≥ (E,E)+ (E,Π2J)+ |Π2J |2/2
≥ |E|2 − γ2|E| |J | + γ 2

2 |J |2/2
≥ |E|2/4+ γ 2

2 |J |2/6+ (3|E|/2− γ2|J |)2/3
≥ γ 2

2 (|E|2 + |J |2)/6 = γ 2
2 |P |/6.

This establishes the coercivity of Γ+ (L−L0)
−1Π2 and thereby establishes the existence of

its inverse.

19.6. Variational inequalities and principles for Y -tensors†
One of the appealing features of the Y -tensor is that the classical and Hashin-Shtrikman varia-
tional principles have extensions that apply to Y ∗. In the Hilbert space context, the variational
principle for the Y -tensor implied by (19.8) and (19.13) takes the form

(E1,Y ∗E1) = min
E2 ∈ H(1)

E1 +E2 ∈ E

(E2,LE2),

and holds provided that L is bounded and positive-definite on E ∩H(1). It can be regarded as
a consequence of the positivity of the quadratic form

(E2 −E2,L(E2 −E2)) ≥ 0, (19.39)

whereE2 solves the equations (20.7), (20.8), and (20.9) and E2 is any field satisfying

E2 ∈ H(1), E1 +E2 ∈ E . (19.40)
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These constraints ensure that E2 − E2 ∈ E ∩ H(1). By expanding (19.39), and using the
identity (19.12), we arrive at the variational inequality

(E1,Y ∗E1) ≤ (E2,LE2), (19.41)

which implies the variational principle, by virtue of the fact that equality holds in (19.40) and
hence in (19.41) when E2 = E2.

Similarly we have the complementary variational principle,

(J1,Y
−1
∗ J1) = min

J2 ∈ H(1)

J1 + J2 ∈ J

(J2,L
−1J2),

which is valid provided that L−1 is bounded and positive-definite on J ∩H(1).
To obtain variational principles analogous to the Hashin-Shtrikman ones, we take a refer-

ence operator L0 that is self-adjoint, positive-definite on E , commutes with Π2, and satisfies
the inequalities

L0 > 0 on E and with L > L0 onH(1). (19.42)

The self-adjoint operator Γ + (L − L0)
−1Π2 is then positive-definite and by expanding the

inequality
(P ′ − P ′, [Γ+ (L−L0)

−1Π2](P ′ − P ′)) ≥ 0,

where P ′ is an arbitrary field inK, making the substitution (19.36), and choosingE1 to make
the inequality as sharp as possible, we arrive at the variational inequality

(P 1, (Y ∗ +L0)
−1P 1) ≤ (P ′ , [Γ+ (L−L0)

−1Π2]P ′), where P 1 = Π1P
′.

Since equality holds when P ′ = P ′, we can rewrite this as a variational principle:

(P 1, (Y ∗ +L0)
−1P 1) = min

P ′ ∈ K
Π1P

′ = P 1

(P ′ , [Γ+ (L−L0)
−1Π2]P ′), (19.43)

and similarly we have the complementary variational principle:

(P 1, (Y
−1
∗ +L−1

0 )−1P 1) = min
P ′ ∈ K

Π1P
′ = P 1

(P ′ , [∆+ (L−1 −L−1
0 )−1Π2]P ′), (19.44)

where
∆ = Γ2[Γ2L

−1
0 Γ2]−1Γ2.

This complementary variational principle is valid provided that L0 commutes with Π2 and
satisfies the constraints

L−1
0 > 0 on J and with L−1 > L−1

0 onH(1). (19.45)

The simplest choice of trial polarization field consistent with the constraint that Π1P
′ =

P 1 is of course P ′ = P 1. Substitution of this field in (19.43) gives an elementary lower
bound on Y ∗:

(Y ∗ +L0)
−1 ≤Π1ΓΠ1 on V, (19.46)
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and substitution of the same trial field in (19.44) gives an elementary upper bound on Y ∗:

(Y −1
∗ + L−1

0 )−1 ≤ Π1∆Π1 on V .

In a two-phase composite these elementary bounds still hold if we replace the operators
Y ∗, L0, and Π1ΓΠ1 acting in V by their associated tensors acting in U . Assuming that L0

represents a constant tensor that acts locally, the action of L0 on the field V given in (19.18)
is

L0V = 1√
f1 f2

(χ1(x)− f1)L0v.

In other words, the action of L0 on U is the same as that of the associated tensor representing
the action of L0 on V . Also, from the action of Π1Γ on this field V ,

Π1ΓV (x) = 1
f1 f2

(χ1(x)− f1)〈χ1ΓV 〉

= 1√
f1 f2

(χ1(x)− f1)[(Γ0χ1Γχ1)/( f1 f2)]v,

we deduce that (Γ0χ1Γχ1Γ0)/( f1 f2) is the associated tensor acting in U representing the
action of the operatorΠ1ΓΠ1 in V . By replacing the operators in (19.46) with their associated
tensors we see that the tensor associated with Y ∗ satisfies the lower bound

(Y ∗ +L0)
−1 ≤ 1

f1 f2
Γ0χ1Γχ1Γ0 (19.47)

for all choices of L0 satisfying (19.42). The corresponding upper bound,

(Y −1
∗ +L−1

0 )−1 ≤ 1
f1 f2

Γ0χ1∆χ1Γ0, (19.48)

holds for all choices of L0 satisfying (19.45). We will see in section 23.7 on page 476 that
these inequalities are useful for bounding the effective complex moduli (dielectric constant
and bulk and shear moduli) of two-phase composites.
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20
Y -tensors and effective tensors in electrical

circuits†

This section is largely based on notes that I prepared for a composite materials class given at
the Courant Institute in 1989. The idea was to show that electrical circuits have a Y -tensor
that has a direct physical significance. This allows one to develop some physical intuition
regarding Y -tensors. We have seen that in an n-phase composite material the tensor Y ∗ has
a physical interpretation that is somewhat abstract compared with the physical interpretation
of the effective tensor L∗. In electrical circuits, the situation is precisely the opposite: The
effective tensor Y ∗ is of primary physical significance, while the interpretation of the associ-
ated effective tensor σ∗ is less direct. We will see that in an electrical network σ∗ gives the
response of the network relative to the response when all of the conductances σi in the circuit
are set equal to 1.

This section also provides a stepping stone toward understanding the field equation recur-
sion method discussed in chapter 29 on page 619. A composite has an effective tensor L∗
that is obtained from the associated Y -tensor Y ∗ via a fractional linear transformation. The
tensor Y ∗ should have an associated effective tensor L(1)

∗ , obtained through a normalization
transformation [of the type given in (20.31) at the end of this section] that in turn will have
an associated Y -tensor Y (1)

∗ , and this will have an associated effective tensor L(2)
∗ , and so on,

ad-infinitum. By combining everything together we generate a continued fraction expansion
for L∗ that is useful for obtaining bounds. These ideas will be developed in chapter 29 on
page 619.

20.1. The incidence matrix and the fields of potential drops and
currents

An electrical circuit is represented by a graph consisting of, say, m bonds linking together,
say, � nodes. The circuit geometry is most easily described by an m × � incidence matrix
M . For example, the Wheatstone bridge circuit illustrated in figure 20.1 on the next page has
six bonds and four nodes and is represented [see, for example, Strang (1986)] by the 6 × 4
incidence matrix

M =


1 0 0 −1
1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1

 . (20.1)

413
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Each row in the incidence matrix represents a bond in the circuit, and each column in the
incidence matrix represents a node in the circuit. To obtain the elements of the incidence
matrix we first need to arbitrarily assign a direction to each bond, that is, an arrow to each
bond. Then the elements of the matrixM are assigned the values

Mi j = +1 if the arrow of bond i points towards node j,
= −1 if the arrow of bond i points away from node j,
= 0 if bond i and node j are not connected.

2 3

4

4

σ
3

1

2

2

2

3

1 Y∗

1
65

σ

σ

σσ

1

Figure 20.1. The Wheatstone bridge circuit referred to in the text. The numbering of the
nodes, the numbering of the bonds, and the direction of each arrow can be assigned as desired.
The choice made here produces the incidence matrix given in (20.1).

Electrical potentials in the network are represented by �-dimensional vectors. The compo-
nent ϕi of a potential ϕ represents the value of the electrical potential at node i . By contrast,
each field in the circuit is represented by an m-dimensional vector. The component P j of a
field P represents the value of the field in bond j with the convention that P j is positive if the
field is directed in the direction of the arrow associated with bond j and negative if the field
is in the opposite direction. These fields span an m-dimensional vector space K. This space
has a complex extension consisting of fields P = P 1 + iP 2, where P 1 and P 2 lie in the
space K. Such complex-valued fields are needed to describe the response of the circuit when
oscillating voltage or current sources are present and the circuit elements include capacitors or
inductors [see, for example, Brophy (1983)]. By an abuse of notation we denote a space and
its complex extension by the same symbol. The inner product between two fields P , P ′ ∈ K
is taken to be the standard one,

(P ,P ′) =
m∑
j=1

P j P ′
j ,
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where the bar denotes complex conjugation. This vector space K has a natural splitting,

K = J ⊕ E,

into the two orthogonal subspaces:

• J , the nullspace of the transposed incidence matrixM T ;

• E , the column space ofM , that is, the range of the matrixM .

The orthogonality of these subspaces is an immediate consequence of the fact that they are
the nullspace and row space of a matrix.

More importantly, these spaces have a natural physical interpretation. Associated with
any potential ϕ is the field

E′ = −Mϕ.

The definition of the incidence matrix ensures that the matrix element E j ofE ′ represents the
potential drop across the bond j . For example, in the Wheatstone bridge the vector E ′ takes
the value

E ′ =


ϕ4 − ϕ1
ϕ2 − ϕ1

ϕ3 − ϕ1

ϕ3 − ϕ2
ϕ4 − ϕ2

ϕ4 − ϕ3

 .

In other words, fields in the space E represent fields of potential drops.
Notice also that for any field P the element Q i of the vector Q =M TP represents the

net component of the field P directed toward node i . Hence any field J ′ in the nullspace J of
M T satisfies the conservation law for electrical currents, namely, Kirchoff’s law that the net
flow of current out of or into any node is zero in an electrical circuit. In other words, fields in
the space J represent fields of electrical current. For example, in the Wheatstone bridge the
constraint that

M TJ ′ =


J1 + J2 + J3

−J2 + J4 + J5
−J3 − J4 + J6

−J1 − J5 − J6

 = 0

clearly implies that the net flux of current into or out of any node is zero.

20.2. The subdivision of bonds in an electrical circuit
The bonds in an electrical circuit can typically be subdivided into two groups, according to
their electrical function. We will call one group the passive network: It consists of resistors,
and dissipates electrical energy. We will call the remaining group, of say d bonds, the active
network: It primarily consists of energy sources such as batteries, but may also include resis-
tive elements. The active network adjusts itself until the power produced in the active network
balances the power dissipated in the passive network. Associated with the division of bonds
in these two groups is a splitting of the vector space K into two orthogonal subspaces

K = V ⊕H(1), (20.2)
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where

• V is the d-dimensional space consisting of all fields V with elements V j that are nonzero
only when bond j is in the active network;

• H(1) consists of all fields P with elements P j that are nonzero only when bond j is in the
passive network.

The projection operator Π1 onto the space V is therefore a diagonal matrix with elements

{*0} jk = 1 if j = k and bond j is in the active network,
= 0 otherwise.

In the Wheatstone bridge circuit the active network is the battery, which is represented as
bond 1. Consequently the space V is one-dimensional (d = 1) and the operator Π1 is given
by

Π1 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Let us also introduce the diagonal matrix

Π2 = I −Π1,

which projects onto the orthogonal subspaceH(1).
I like to think of the passive network as being confined within a black box, with the nodes

that are attached to the active network being terminals on the surface of the box. The active
network is outside the box and can be regarded as a tool for measuring the response of the
passive network: The currents through each bond in the active network and the voltages across
them give us some information about the passive network.

For simplicity we will assume that each connected part of the active network consists of
a treelike graph with at most a single path connecting any pair of nodes. The absence of
biconnected nodes implies that there are no loops in the active network around which current
can flow. This is mathematically equivalent to requiring that the spaces J and V have no field
in common,

J ∩ V = 0. (20.3)

Let us also assume for simplicity that all nodes in the active network are also connected to the
passive network. This implies that if the potential drops are zero in the passive network, then
they are also zero in the active network. This is mathematically equivalent to requiring that
the spaces E and V have no field in common,

E ∩ V = 0. (20.4)

The bonds in the passive network are further subdivided into n groups representing the
different components, 1, 2, . . . , n, in the passive network. The bonds within a given group
have the same value of their electrical conductance. In other words, the spaceH(1) is split into
n orthogonal subspaces,

H(1) = P (1)
1 ⊕ P (1)

2 ⊕ . . . ⊕ P (1)
n ,
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where P (1)
i consists of all fields P ∈ K with elements P j that are nonzero only when bond j

is in group i .
Clearly the projection operator χi onto the space P

(1)
i is diagonal and has elements

{χi} jk = 1 if j = k and bond j is in group i,
= 0 otherwise. (20.5)

These projections satisfy

χiχ j = δi jχi ,
n∑
i=1

χi = Π2.

The total electrical conductance of the passive network is then represented by an operator σ
that acts on the spaceH(1) and takes the form

σ =
n∑
i=1

σiχi . (20.6)

In the passive part of the circuit the conductances σi are positive, which implies that the tensor
σ is positive-definite on the spaceH(1).

In the Wheatstone bridge of figure 20.1 on page 414, the operator σ takes the form

σ =


0 0 0 0 0 0
0 σ1 0 0 0 0
0 0 σ2 0 0 0
0 0 0 σ3 0 0
0 0 0 0 σ2 0
0 0 0 0 0 σ1

 ,

20.3. The Y -tensor of the electrical circuit
Due to the splitting of the Hilbert space K into the two orthogonal spaces V and H(1), it is
clear that any field can be split into components in V and H(1). In particular, for the actual
current field J ′ and the actual field E ′ of potential drops in the network we have

J ′ = J1 + J2 ∈ J , E′ = E1 +E2 ∈ E, (20.7)

where J 1 and E1 are fields in the active network, while J 2 and E2 are fields in the passive
network, that is,

J 1,E1 ∈ V and J2,E2 ∈ H(1). (20.8)

Ohm’s law implies that in each bond in the passive part of the network the current through
the bond is equal to the conductance multiplied by the potential drop across that bond. In
other words, Ohm’s law implies that the current fields and potential drops existing within the
passive part of the circuit are such that

J2 = σE2, (20.9)

where σ is given by (20.6).
We will see that when the potential dropsE1 ∈ V in the active network are specified, then

there exists a unique solution for the fields J ′ and E ′ satisfying (20.7), (20.8), and (20.9) so
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long as the assumption (20.3) is met. Furthermore, from the linearity of the equations it is
clear that J 1 must depend linearly on E1. This linear relation

J1 = −Y ∗E1, (20.10)

defines the Y -tensor Y ∗. Strictly speaking, we should call Y ∗ an operator (represented by a
matrix) rather than a tensor, but we choose not to do so because of the close connection with
the Y -tensors introduced in the previous chapter.

The quadratic form associated with Y ∗,

W (E1) = (E1,Y ∗E1)/2 = −(E1,J1)/2 = (E2,J2)/2 = (E2,σE2)/2, (20.11)

gives the electrical power that must be produced in the active network to maintain the poten-
tial drops E1. In the context of electrical networks, (20.11) is a restatement of the physical
fact that the production of electrical power in the active network balances the dissipation of
electrical power in the passive network.

The tensor Y ∗ can be computed from the formula

Y ∗ = −σ0Π1 − σ0Π1(S
′ − Γ1)

−1Π1, where S ′ = σ0Π2(σ0I −L)−1, (20.12)

which is implied by (19.37) with L0 = σ0I, once we identify

Γ1 =M (M TM)−1M T

with the projection operator onto the space E and recognize that S ′ is simply the diagonal
matrix

S′ =
n∑
i=1

siχi , where si = σ0/(σ0 − σi ).

In practice there are easier ways of obtaining the fields of potential drops and currents that
may be used to compute the tensor Y ∗ without introducing polarization fields. For example,
one could solve directly for the potential ϕ, fixing the potential at one node to be zero to
ensure uniqueness of the solution (This assumes that the circuit forms a connected graph; if
it does not, then it is necessary to set the potential to zero at one node in each connected
component of the graph.) The solution involving polarization fields is interesting, however,
because it highlights the close similarity between solving these network equations and solving
the conductivity problem in a composite.

20.4. The effective tensor of the passive network
The close similarity between the formula (12.61) for the effective tensor L∗ and the formula
(20.12) for the tensor Y ∗ suggests that there may be some deeper correspondence between
the two problems. However it is also clear that there are some differences. In particular, the
tensor Y ∗ does not take any special value when σ = I , whereas σ∗ always takes the value
σ∗ = I when σ = I .

There is an effective tensor σ∗ naturally associated with the passive network. To define it
let us introduce the spaces:

• E (1) = E ∩H(1), comprised of fields of potential drops that derive from potentials that
take the value zero on the nodes associated with the active network;
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• J (1) = J ∩H(1), comprised of those circulating currents that do not flow into the active
network;

• U (1), the orthogonal complement of E (1) ⊕ J (1) in the spaceH(1).

The spaces E (1) and J (1) are clearly orthogonal, being subspaces of the orthogonal spaces E
and J . Also, U (1) is clearly orthogonal to both E (1) and J (1). So we have

H(1) = U (1) ⊕ E (1) ⊕ J (1). (20.13)

Sinceσ acts in the spaceH(1), we can define an effective tensorσ∗ associated with the passive
network through the solution of the equations

J = σE with J ∈ U (1) ⊕ J (1), E ∈ U (1) ⊕ E (1). (20.14)

If Γ(1)
0 denotes the projection onto the vector space U (1), then the linear relation

Γ(1)
0 J = σ∗(Γ

(1)
0 E)

between the components of the fields J and E projected on the subspace U (1) defines the
effective tensor σ∗.

20.5. The interpretation of the subspace U (1)

While the subspaces E (1) and J (1) have been given rather direct physical interpretations, the
interpretation of U (1) given above is somewhat abstract. Here we seek a more direct physical
interpretation of U (1) in terms of solutions to the conductivity equations in the circuit when
σ = I , that is, when all of the conductances in the passive circuit are set equal to unity.

Let us first establish a rather basic feature of U (1) – that it has dimension d . It is helpful
to introduce the subspace

• W , the orthogonal complement of E (1) ⊕ J (1) in the space K.

The spaceW can be equivalently defined as the space spanned by Γ1V and Γ2V , in which
Γ1 and Γ2 are the projections onto the subspaces E and J , respectively. To prove that

W = (Γ1V)⊕ (Γ2V), (20.15)

we notice that the relation
K =W ⊕ E (1) ⊕ J (1) (20.16)

implies first that W contains V , since V is orthogonal to both E (1) and J (1), and second that
W is closed under the action of both Γ1 and Γ2, since K, E (1), and J (1) are each closed under
the action of these operators. It follows that

(Γ1V)⊕ (Γ2V) ⊂W .

Now suppose that these sets are not equal. Then there exists some field P ∈ W that is
orthogonal to (Γ1V) ⊕ (Γ2V). Therefore, Γ1P is orthogonal to (Γ1V) ⊕ (Γ2V), and in
particular orthogonal to V . Similarly, Γ2P is orthogonal to V , and consequently we have

Γ1P ∈ E (1), Γ2P ∈ J (1), implying that P ∈ E (1) ⊕ J (1).
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But asW is orthogonal to E (1) ⊕ J (1), we conclude that P must be zero. This completes the
proof of (20.15). From the definitions of the subspaces J (1) and E (1) it follows that

E = (Γ1V)⊕ E (1), J = (Γ2V)⊕ J (1).

The assumptions (20.3) and (20.4) imply that W is a 2d-dimensional space. Indeed if
v1,v2, . . . ,vd is a basis of V , then the existence of any nontrivial linear relation

d∑
i=1

civi + Γ1c′ivi = 0

either implies the existence of a vector

d∑
i=1

civi ∈ V ∩ E,

or, in the event that this vector is zero, implies the existence of a vector

d∑
i=1

c′ivi ∈ V ∩ J .

Both of these possibilities are excluded by our assumptions that V ∩ E and V ∩ J are empty
sets.

From (20.2), (20.13), and (20.16) we see that

W = V ⊕ U (1),

that is, U (1) is the orthogonal complement of V in the subspace W . Since W has dimension
2d and V has dimension d , it follows immediately that U (1) has dimension d .

As a basis for the physical interpretation of U (1), let us next establish that

U (1) = [Π2E] ∩ [Π2J ]. (20.17)

As a first step toward proving this notice that the relations Π2 = I −Π1 and Γ2E = 0 imply
that

Γ2[Π2E] = Γ2[(I −Π1)E] = Γ2[Π1E] ⊂ Γ2V ⊂W,

and by a similar argument we have Γ1[Π2J ] ⊂W . These equations imply that

[Π2E] ∩ [Π2J ] = (Γ1 + Γ2){[Π2E] ∩ [Π2J ]}
⊂ Γ1{[Π2E] ∩ [Π2J ]} ⊕ Γ2{[Π2E] ∩ [Π2J ]}
⊂ Γ1[Π2J ]⊕ Γ2[Π2E] ⊂W,

(20.18)

where we have used the fact that [Π2E]∩ [Π2J ] is contained both inΠ2E and inΠ2J . Also,
because Π2 projects ontoH(1), it is obvious that (20.18) implies

[Π2E] ∩ [Π2J ] ⊂W ∩H(1) = U (1). (20.19)

Now, to prove the converse, notice that all fieldsW ∈W have the form

W = V + Γ1V
′ with V ∈ V, V ′ ∈ V,
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as follows from the definition ofW as the closure of V under the action of the projection Γ1.
By applying Π2 to both sides of this identity we see that

Π2W = Π2Γ1V
′,

from which we deduce that U (1) ⊂ Π2E . Similarly it follows that U (1) ⊂ Π2J , and we
conclude that

U (1) ⊂ [Π2E] ∩ [Π2J ],

which in conjunction with (20.19) proves (20.17).
With this relation (20.17) established we can now identify the fields in U (1) with solutions

to the conductivity equations in the circuit with σ = I . To see this, notice that if U ∈ U (1),
then (20.17) implies that

U = Π2E = Π2J for some E ∈ E, J ∈ J .

So the equations (20.7), (20.8), and (20.9) are satisfied with

E2 = Π2E, J2 = Π2J, and σ = I.
Conversely, it is clear that any solution to these equations can be identified with fields in the
space U (1).

20.6. The relation between the effective tensor and the Y -tensor in an
electrical circuit

Now suppose that we have fields E ′ = E1 +E2 ∈ E and J = J 1 + J2 ∈ J satisfying both
(20.8) and Ohm’s law (20.9). The component field E2 satisfies

E2 = Π2E ⊂ Π2E ⊂ Π2(W ⊕ E (1)) = U ⊕ E (1), (20.20)

and similarly,
J 2 ⊂ U ⊕ J (1). (20.21)

So we have constructed a solution J = J 2 and E = E2 to the equations (20.14) from a
solution to the equations (20.7), (20.8), and (20.9).

It remains to find a relation between the tensor Y ∗ and the effective tensor σ∗. It turns
out that this is strikingly similar to the problem of finding the tensor Y ∗ given σ. To see this
connection let us define

E(1)
0 = Γ(1)

0 E2 ∈ U (1), J (1)
0 = Γ(1)

0 J2 ∈ U (1).

According to the definition of the effective tensor σ∗, these are related via

J (1)
0 = σ∗E

(1)
0 , (20.22)

and from (20.20) and (20.21) it is clear that

E(1)
0 −E2 ∈ E (1) ⊂ E, J (1)

0 − J2 ∈ J (1) ⊂ J .

Consequently we have

E1 +E(1)
0 = E ′ +E(1)

0 −E2 ∈W ∩ E, J 1 + J (1)
0 = J ′ + J (1)

0 − J2 ∈W ∩ J . (20.23)
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So if we define the subspaces

Ẽ =W ∩ E = Γ1W = Γ1V, J̃ =W ∩ J = Γ2W = Γ2V,

then (20.23) implies that

E1 +E(1)
0 ∈ Ẽ, J 1 + J (1)

0 ∈ J̃ . (20.24)

By comparing (20.9) with (20.22) and (20.7) with (20.24) we see that Y ∗ is the Y -tensor
associated with the operator σ∗ in the vector space

W = Ẽ ⊕ J̃ = V ⊕ U (1).

In other words, to find the tensor Y ∗ we can replace the passive network, represented by the
tensor σ acting in the space H(1), by an equivalent “network,” represented by the effective
tensor σ∗ acting in the space U (1).

Clearly (20.12) could now be applied to obtain an expression for Y ∗ in terms of σ∗.
However, there is another approach that yields a much simpler formula for Y ∗ in terms of
σ∗. The first observation to make is that given any vector J 2 ∈ U (1) there exists a unique
associated vector J 1 ∈ V such that J 1 + J2 ∈ J̃ . Uniqueness follows since by assumption
J ∩ V = 0. Existence follows because the equation

Γ1J1 = −Γ1J2 (20.25)

always has a solution for J 1 ∈ V because Γ1V spans all of Ẽ . Since J 1 must depend linearly
on J2, we can write

J1 =KJ 2, (20.26)

where K is a nonsingular operator that maps U (1) to V . This operator K provides a corre-
spondence between vectors in U (1) and vectors in V . To obtain an explicit expression forK
we project (20.25) onto the space V . This gives

Π1Γ1Π1J1 = −Π1Γ1Π2J2. (20.27)

The operator Π1Γ1Π1 = Π1Γ1Γ1Π1 is clearly positive-semidefinite. In fact, it is strictly
positive-definite because Γ1J1 is nonzero for all nonzero J 1 ∈ V , since otherwise V would
share a common vector with J , which is forbidden by our assumptions. Solving (20.27) for
J 1 and equating the result with (20.26) shows that

K = −[Π1Γ1Π1]−1Π1Γ1Π2, (20.28)

where the inverse is to be taken on V .
Similarly we have

E1 =K ′E2,

where
K ′ = −[Π1Γ2Π1]−1Π1Γ2Π2

is a nonsingular operator that also maps U (1) to V . Now notice that

K ′KT = [Π1Γ2Π1]−1Π1Γ2(I −Π1)Γ1Π1[Π1Γ1Π1]−1

= −[Π1Γ2Π1]−1Π1Γ2Π1Γ1Π1[Π1Γ1Π1]−1 = −I.
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In other words, −KT is the inverse ofK ′.
Now it follows directly from (20.22) that

J1 =KJ 2 =Kσ∗E2 =Kσ∗(K ′)−1E1 = −Kσ∗KTE1,

which according to the definition (20.10) of Y ∗ implies that

Y ∗ =Kσ∗KT . (20.29)

This equation has separated the dependence of Y ∗ on σ∗ from the dependence of Y ∗ on
the orientation of the subspace Ẽ with respect to the subspace V , which is embodied in the
operatorK.

Now suppose that we have chosen an orthonormal basis in each of the d-dimensional
subspaces U (1) and V . The operatorK, regarded as a map from U (1) to V , is then represented
by a d × d matrix K . Using the standard polar decomposition, this matrix can be factored
into the form

K =N 1/2Q withN =KKT andQQT = I, QTQ = I. (20.30)

Different choices of basis in the d-dimensional space U (1) will result in different values of
Q. A natural basis to take is one where Q = I . Let us therefore suppose without loss of
generality that the basis has been chosen so thatQ = I . Then (20.29) and (20.30) imply that
the d × d matrices representing σ∗ and Y in this basis are linked by the equation

σ∗ =N−1/2Y N−1/2.

Furthermore, since σ∗ takes the value I on U0 when σ = Π2, it follows that N can be
identified with the value of Y when σ = Π2. If we consider σ∗ and Y as functions of the
conductances σ1, σ2, . . . , σn , then we have

σ∗(σ1, σ2, . . . , σn) = [Y (1, 1, . . . , 1)]−1/2Y (σ1, σ2, . . . , σn)[Y (1, 1, . . . , 1)]−1/2. (20.31)

In other words, by a suitable normalization, determined by the normalization matrix

N = Y (1, 1, . . . , 1),

which is chosen to ensure that σ∗(1, 1, . . . , 1) = I , the tensor Y (σ1, σ2, . . . , σn) is reduced
through the formula (20.31) to the effective tensor σ∗(σ1, σ2, . . . , σn) for all conductances
σ1, σ2, . . . , σn . Thus the effective tensor σ∗(σ1, σ2, . . . , σn) measures the response of the
network relative to its response when all of the conductances are set equal to 1.
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21
Bounds on the properties of composites

21.1. Why are bounds useful?
Very efficient numerical algorithms are currently available for calculating the effective tensors
of quite complicated two-dimensional microgeometries. The numerical evaluation of effective
tensors for three-dimensional microgeometries is also progressing rapidly. In light of these
advances one might ask: Why is there a need for developing bounds on effective tensors? One
reason is that they often provide quick and simple estimates for the effective tensors.

Another reason for favoring bounds is that in most experimental situations we do not have
a complete knowledge of the composite geometry. Even when an accurate determination of
the three-dimensional composite microgeometry is possible, obtaining this information and
numerically parameterizing it (which may involve the triangulation of boundaries between
phases) can be a very time-consuming process. Cross-sectional photographs give only limited
information. For example, in a two-phase microgeometry it can be difficult to judge whether a
phase is connected if a cross-sectional photograph shows only islands of that phase surrounded
by the second phase. In the three-dimensional microgeometry, does the first phase consist
of connected wire-like filaments, or does it consist of isolated elongated inclusions? The
answer could have a large influence on one’s estimates for, say, the effective conductivity
when both phases have widely different conductivities. The problem of reconstructing the
three-dimensional microstructure from a cross-sectional photograph is the subject of active
research; see Yeong and Torquato (1998) and references therein.

In a two-phase composite the only available information might be the volume fractions of
the two phases, and the values of the tensorsL1 and L2. Approximation schemes can be used
to estimate the effective tensor fromwhat we do know about the composite geometry, but to be
assured that the approximation is a good one we need to have some estimate of the possible (or
probable) error involved in making this approximation. Bounds on effective tensors provide
such an estimate, and they serve as a benchmark to test approximation formulas: Clearly an
approximation formula should be amended when it predicts values for L∗ that lie outside the
bounds. Moreover, the bounds themselves can often be regarded as useful approximations.
For example, if a bound is derived by substituting a trial field into a variational principle, and
if for some physical reason the trial field is expected to be close to the actual field in the given
composite, then that bound should be close to the value of L∗. In other words, L∗ might be
close to a particular bound even when the complete set of bounds allows a very wide range of
tensor values [see, for example, Torquato (1991)].

Bounds are also important in problems of structural optimization, where one needs to
characterize the set of possible macroscopic responses of a composite as L(x) varies over a

425
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set of admissible tensor fields, and to identify fields L(x) that produce extremal responses.
We will clarify the role of bounds in this context in section 21.3 on page 429. For a more
comprehensive treatment, see the articles of Tartar (1975); Armand, Lurie, and Cherkaev
(1984); Kohn and Strang (1986); Kohn (1992); Bendsøe (1997); Cherkaev (1999); Tartar
(2000); the books of Bendsøe (1995); Kalamkarov and Kolpakov (1997); Cherkaev (2000);
and Allaire (2001) and references therein.

21.2. What are bounds?
Bounds are inequalities correlating various physical and/or microstructural quantities. To give
some idea as to what this means, let us consider the simple example of conduction in a two-
dimensional polycrystal. The admissible conductivity fields σ(x) for this problem are fields
of the form

σ(x) = R(x)

(
λ1 0
0 λ2

)
RT (x),

in which the eigenvalues λ1 and λ2 of the pure crystal are real and held fixed. No restrictions
will be placed on the field of crystal orientations, that is, the fieldR(x) of rotation matrices is
not subject to any constraints beyond periodicity. We already know from (3.12) and (13.13)
that the effective tensor σ∗ satisfies

det(σ∗) = λ1λ2, 〈σ−1〉−1 ≤ σ∗ ≤ 〈σ〉. (21.1)

One useful quantity to bound is the rate of energy dissipation W , given by

2W = 〈e〉 · 〈j〉 = 〈e〉 · σ∗〈e〉 = 〈j〉 · σ−1
∗ 〈j〉, (21.2)

when either the applied electric field 〈e〉 or the applied current field 〈j〉 is held fixed. Let us
suppose that the eigenvalues of the pure crystal have been labeled so that λ1 ≥ λ2. Then the
arithmetic and harmonic mean bounds in (21.1) imply that

λ2I ≤ σ∗ ≤ λ1I, I/λ1 ≤ σ−1
∗ ≤ I/λ2, (21.3)

and this in conjunction with (21.2) gives us the desired bound on the energy dissipation in
terms of 〈e〉,

λ2|〈e〉|2 ≤ 2W ≤ λ1|〈e〉|2, (21.4)

and the desired bound on the energy dissipation in terms of 〈j〉,

|〈j〉|2/λ1 ≤ 2W ≤ |〈j〉|2/λ2. (21.5)

These bounds are optimal in the sense that the upper and lower bounds in (21.4) and (21.5)
are achieved for a fixed value of 〈e〉 or 〈j〉 when the polycrystal is pure crystal oriented so
that the appropriate axis of principal conductivity is aligned with the field 〈e〉 or 〈j〉. Another
way to visualize the bounds (21.4) is to regard them as constraining the possible values of the
pair (W, 〈e〉) to a region in three-dimensional space with the two components of 〈e〉 as the
y1- and y2-axes and with W as the y3-axis. Similarly, one can regard (21.5) as constraining
the possible values of the pair (W, 〈j〉).

Another useful bound is on the possible values of the pairs (〈j〉, 〈e〉) or, equivalently, on
the possible values of the average current field 〈j〉 given an average electric field 〈e〉. Such
bounds tell us about what direction the average current can flow relative to the direction of the
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applied electric field. Letting λ∗
1 and λ∗

2 denote the eigenvalues of the effective tensor, these
average fields satisfy the relation

〈j〉 = R∗

(
λ∗

1 0
0 λ∗

2

)
RT∗ 〈e〉,

which implies that
|〈j〉|2 − (λ∗

1 + λ∗
2)〈e〉 · 〈j〉 + λ∗

1λ
∗
2|〈e〉|2 = 0. (21.6)

From (21.1) we see that λ∗
1λ

∗
2 = λ1λ2 and, under this constraint, (21.3) implies that λ∗

1 + λ∗
2

is at most equal to λ1 + λ2. Also, 〈e〉 · 〈j〉 = 〈e · σe〉 is clearly nonnegative. Therefore, we
have the inequality

|〈j〉|2 − (λ1 + λ2)〈e〉 · 〈j〉 + λ1λ2|〈e〉|2 ≤ 0, (21.7)

which we can rewrite in the form

|〈j〉 − (λ1 + λ2)〈e〉/2|2 ≤ (λ1 − λ2)
2|〈e〉|2/4. (21.8)

In other words, as illustrated in figure 21.1, if the applied electric field 〈e〉 is fixed, the
vector representing the average current field 〈j〉 has the property that its endpoint must lie
within a circle centered at (λ1 + λ2)〈e〉/2 and with radius (λ1 − λ2)|〈e〉|/2, no matter what
the microstructure of the polycrystal happens to be. In particular, this places constraints on
the angle between the vectors 〈j〉 and 〈e〉. The bounds are optimal: If we take a pure crystal
as our polycrystal, then (21.7) is satisfied as an equality, and as we vary the orientation of the
crystal with respect to 〈e〉 the endpoint of the vector 〈j〉 traces around the circle. Points in the
interior of the circle can be realized by suitably oriented simple laminates of the pure crystal
and rotated crystal.

j

e e eλ1λ2

Figure 21.1. When the average electric field vector 〈e〉 is prescribed, the average current field
vector 〈j〉 in a two-dimensional polycrystal can lie anywhere inside the circle. Here λ1 and λ2
are the principal conductivities of the pure crystal. Currents 〈j〉 touching the boundary of the
circle can be realized when the polycrystal is just the pure crystal, suitably oriented. Currents
〈j〉 in the circle interior can be realized in a simple laminate of the pure crystal with a rotation
of itself.

We can also consider bounds on the effective tensor σ∗. Since we are free to rotate any
polycrystal, it follows that if σ∗ is the effective tensor of some polycrystal, then so too are
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all rotations of σ∗. In other words, it suffices to bound the possible eigenvalue pairs (λ∗
1, λ

∗
2).

According to (21.1) and (21.3) these satisfy the constraints

λ∗
1λ

∗
2 = λ1λ2, λ2 ≤ λ∗

1 ≤ λ1. (21.9)

Again these bounds are optimal [as shown, for example, by Lurie and Cherkaev (1981, 1984)].
They provide a complete characterization of the set of possible effective tensors σ∗. The
relations (21.9) imply that the point (λ∗

1, λ
∗
2) lies on the arc of a hyperbola and the endpoints

of this arc correspond to pure crystal. By considering a simple laminate of the pure crystal
with a 90◦ rotation of itself, we can attain all points along the arc of the hyperbola.

In general one usually either considers an n-phase composite where the admissible fields
take the form

L(x) =
n∑
i=1

χi(x)Li ,

or an n-phase polycrystal where the admissible fields take the form

L(x) = Q(R(x))
[ n∑
i=1

χi(x)Li

]
[Q(R(x))]T ,

in which Q(R), satisfying Q(R)[Q(R)]T = I , is the orthogonal matrix representing the
action of a rotation R on tensors in T . The tensors L1, L2,. . . ,Ln are given, while the char-
acteristic functions and field of rotation matricesR(x) are periodic but otherwise free to vary
subject to the usual constraints:

χi (x)χ j (x) = δi jχi(x),
n∑
i=1

χi(x) = 1, R(x)[R(x)]T = I.

The bounds themselves can be regarded as inequalities that correlate different quantities of
interest in any given geometry. For instance, they may correlate a selection of one or more of
the following quantities: the energy (or energy dissipation)W ; the average field 〈E〉; the aver-
age field 〈J〉; the effective tensor L∗; and the volume fractions fi = 〈χi 〉, for i = 1, 2, . . . , n
or other descriptors of the composite geometry such as a set of parameters depending on the
reduced correlation functions. This list can be extended if we allow the tensorsL1, L2,. . . ,Ln
and the fields 〈E〉 and 〈J 〉 to depend on some parameter ω that might take a selection of
different values. For example, L1, L2,. . . ,Ln might represent the complex dielectric tensors
or complex elasticity tensors, and ω might represent the frequency of oscillation of the fields.
Then one might be interested in deriving bounds that correlate a selection of the quantities
W (ω), 〈E(ω)〉, 〈J(ω)〉, L∗(ω), and f = ( f1, f2, . . . , fn) for several different values of ω.
Alternatively, if L1, L2,. . . ,Ln are temperature-dependent, but the microstructure does not
change with temperature, then ω might represent the temperature.

The quantities to be correlated can typically be represented by some k-tuplet
(a1, a2, . . . ak)where various subsets of the ai represent the quantities to be correlated. For ex-
ample, for conductivity in a three-dimensional, two-phase medium the subsets {a1, a2, a3} and
{a4, a5, a6} could represent the components of the fields 〈j〉 and 〈e〉 while a7 could represent
the volume fraction f1 of component 1. Alternatively, {a1, a2, a3} could represent the diago-
nal elements of the tensor σ∗ while {a4, a5, a6} could represent the off-diagonal elements of
the tensor, a7 could represent the volume fraction, and a8 could represent the parameter ζ1
defined by (15.31).



21.3. Bounds in structural optimization: A model problem 429

The bounds can be visualized as defining a region in this k-dimensional space, within
which the k-tuplet (a∗

1 , a
∗
2 , . . . a

∗
k ) associated with any composite must lie. A set of bounds

is said to be optimal when every point within this region corresponds to a k-tuplet associated
with at least one microgeometry. In other words, optimal bounds give a complete character-
ization of the possible correlations that can occur in composite materials. Since the effective
tensor L∗ governs the relation between 〈E〉 and 〈J〉, and since these fields determine the
energy W = 〈E〉 · 〈J〉/2, it follows that optimal bounds on the effective tensor L∗ imply
optimal bounds on the set of (〈J〉, 〈E〉) pairs, which in turn imply optimal bounds on the set
of (W, 〈E〉) pairs and (W, 〈J 〉) pairs. However, the converse statements are not generally
true. Optimal bounds on the set of (W, 〈E〉) or (W, 〈J 〉) pairs do not usually contain enough
information to determine optimal bounds on the set of (〈J〉, 〈E〉) pairs, although they cer-
tainly do provide some bounds. Similarly, optimal bounds on the set of (〈J〉, 〈E〉) pairs do
not generally contain enough information to determine optimal bounds on the effective tensor
L∗.

Additional constraints, such as geometric isotropy, may sometimes be imposed on the
fields of characteristic functions and rotation matrices. From an experimental viewpoint it
might be useful to impose other restrictions. For instance, if it is known that a two-phase
composite consists of spheres of equal radius dispersed in a matrix of the other phase, then it
would be useful to incorporate this information into the bounds. It is difficult to do this unless
the spheres have some minimum separation. Thus not all geometric information is easy to
incorporate into bounds. Even in the two-dimensional case, for suspensions of aligned circular
cylinders of equal radius with conductivity σ1 in a matrix of conductivity σ2 < σ1, it is not
known which configurations with transverse isotropy have the lowest and highest transverse
effective conductivities for fixed-volume fractions of the phases. Some progress has been
made by Berlyand and Mityushev (2001), who show that simple periodic arrays have the
lowest conductivity amongst a certain class of random arrays. Probably the hexagonal array
has the lowest conductivity amongst all configurations. The configuration with the highest
conductivity might be the one obtained by first packing the cylinders together in a hexagonal
array of touching cylinders, and then using this material as the coating and phase 2 as the core
in a coated cylinder assemblage to achieve the desired volume fractions of the phases.

We will see in section 30.1 on page 643 that many bounding problems reduce to the G-
closure problem, which is the problem of determining the set GU of values that L∗ takes as
L(x) ranges over all fields taking values in a given set U . Thus GU represents the set of
all possible effective tensors built from composites with phases having tensors in the set U .
Following Lurie and Cherkaev (1981), the set GU is called the G-closure of U . For example,
in the case of two-dimensional conductivity where U consists of all symmetric conductivity
tensors with eigenvalues λ1 and λ2, the set GU consists of all symmetric conductivity tensors
with eigenvalues λ∗

1 and λ
∗
2 satisfying (21.9). The set GU is closed in the sense that if we form

composites from phases with tensors in the set GU , then the resulting effective tensor will still
remain in the set GU , that is, G(GU) = GU . Basically, each such composite can be regarded
as a “supercomposite” of phases, where the phases themselves are composites of materials
having tensors in U (with their microstructure being much smaller than the microstructure of
the supercomposite).

21.3. The role of bounds in structural optimization: A model problem
A classic model problem is the following one, analyzed by Murat and Tartar (1985); see also
Tartar (1975, 1987). Suppose that heat is produced at a uniform rate h throughout a region,
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which for simplicity we take to be a sphere ( of unit radius, and suppose that the sphere is
immersed in a fluid at a uniform temperature T0. Inside the sphere there is a fixed volume p
of good conductor, with thermal conductivity σ1, and a remaining volume of poor conductor,
with thermal conductivity σ2 < σ1. The question is: How should one configure the phases,
while keeping p fixed, to minimize, say, the average temperature throughout the sphere? In
mathematical terms one can consider a set Sp comprised of all temperature fields T (x), each
of which solves the equations

−∇ · [(σ1 − σ2)χ(x)+ σ2]∇T (x) = h for x ∈ (, T (x) = T0 for x ∈ ∂(,

for some choice of the characteristic function χ(x) satisfying

〈χ〉� = p,

in which the angular brackets denote averages over (. We can then ask which temperature
field T (x), and hence which characteristic function χ(x), is needed to achieve the infimum

T∗ = inf
T∈Sp

〈T 〉�. (21.10)

The answer is that the infimum is never achieved, at least not in the classical sense. The
physical explanation is quite simple, as illustrated in figure 21.2. The first idea would be to
put the poor conductor in a spherical core and surround it by a shell of the good conductor.
However, this is unstable. It is much better to take some of the material from the shell and
reshape it into fingers of good conducting material that protrude into the poor conducting
region to provide a conduit for the heat produced there. The improvement is enhanced if we
break the large fingers into finer ones still pointing in the radial direction. By continuing in
this way we obtain a sequence of characteristic functions with progressively finer and finer
microstructures. Only in the limit of infinitely fine microstructures is the limit in (21.10)
achieved.

0T=T

(a) (b) (c)

Figure 21.2. A model optimization problem. The black region is the poor heat conductor,
while the white region is the good conductor. To minimize the overall temperature when heat
is produced uniformly inside the sphere, a first guess is to put the good conductor outside of a
spherical core of the poor conductor, as in (a). However, this is unstable and it is better to have
fingers of the good conductor protruding into the poor conductor, as in (b). The best solution
is to allow composites (in this case laminates) into the design, as in (c).

Such “chattering” sequences are typical of nonconvex optimization problems and have to
be treated carefully. For example, if one seeks the optimal configuration by using the standard
finite-element numerical approach, the result will be a configuration with a microstructure
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on the same length scale as the finite elements, indicating that the finite-element approach
is unreliable. One cure is to penalize such configurations by adding to the quantity to be
minimized a small term proportional to the area of the interface between the phases, and then
take the limit as the mesh size and the penalizing term approach zero in a suitable way. Since
this is computationally inefficient, a better solution is to reformulate the original problem. The
appearance of microstructure on a small length scale signifies that the optimal configuration
involves composite materials. In other words, we should reformulate the original problem to
reflect this, allowing not just phase 1 or phase 2, but all possible composites of the two phases.
The reformulated problem is called the relaxed problem. The idea of introducing a relaxed
formulation based on composite materials originated in various different settings in the work
of Tartar (1975); Cheng and Olhoff (1981); Lurie, Cherkaev, and Fedorov (1982a, 1982b);
Murat and Tartar (1985); and Kohn and Strang (1986).

To formulate the relaxed problem one can introduce the set G fU representing the set of
all possible effective conductivity tensors associated with composites of phase 1 and phase 2,
with phase 1 occupying the volume fraction f . Specifically, σ∗ lies in the set G fU if and only
if there exists a composite of phases 1 and 2 mixed in proportions f and 1− f that has σ∗ as
its effective tensor. To compute the set G fU (or, more generally, to compute any G-closure)
it suffices to consider periodic composites; proofs of this are given by Raitums (2001) and
Allaire (2001). (There are also references in the literature to a theorem of Kohn and Dal-Maso,
but unfortunately their work was never published.) This set G fU is called the G-closure at a
constant volume fraction of the set U = {σ1I, σ2I} representing the conductivity tensors of
the initial component materials. In terms of the set G fU , the admissible temperature fields
T (x) are those for which there exists a pair of fields σ∗(x) and f (x), with 1 ≥ f (x) ≥ 0,
such that

σ∗(x) ∈ G f (x)U, and −∇ · σ∗∇T = h for all x ∈ (,

T (x) = T0 for x ∈ ∂(, 〈 f 〉� = p.

In fact, the set G fU contains more information than is needed to solve this problem.
Since σ∗ appears only in the combination −σ∗∇T , all we need to know, for each value of
a vector e0, is the set G fUe0 comprised of all vectors q0 such that q0 = σ∗e0 for some
σ∗ ∈ G fU (Raı̆tum 1978; Tartar 1995). Equivalently, q0 lies in G fUe0 if and only if there
exists a periodic composite of phases 1 and 2 mixed in proportions f and 1 − f , such that
the average heat flux is q0 when no heat sources are present and the temperature gradient is
periodic with average−e0. Thus knowledge of all possible (average flux, average temperature
gradient, volume fraction) triplets associated with composites of phases 1 and 2 provides
a characterization of G fUe0 for all f and all e0, and vice versa. The set G fUe0 can be
regarded as a projection of the set G fU .

Due to rotational invariance and linearity it follows that if q0 ∈ G fUe0, then

q′
0 ∈ G fUe′

0 for q′
0 = λq0 and e′

0 = λe0,

q′′
0 ∈ G fUe′′

0 for q′′
0 = Rq0 and e′′

0 = Re0,

for all constants λ and all rotation matrices R. Thus it suffices to determine the set G fUe0

for one value of e0. Whether q0 lies in G fUe0 is then governed by the values that the three
invariants q0 · e0/|e0|2, |q0|2/|e0|2, and f take.

In terms of these sets G fUe0, the admissible temperature fields are those for which there
exists a heat flux q0(x) and volume fraction distribution f (x), with 1 ≥ f (x) ≥ 0, such that
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q0(x) ∈ G f (x)Ue0(x), e0 = −∇T and ∇ · q = h, for all x ∈ (,

T (x) = T0 for x ∈ ∂(, 〈 f 〉� = p.

In the relaxed formulation the problem can be solved analytically (Murat and Tartar 1985;
Tartar 1987). As one might expect, the volume fraction distribution f1(x) and the minimizing
temperature field T (x) in the relaxed problem turn out to be radially symmetric, with

f1(r) = 0 for 2σ2c ≥ r ≥ 0
= (r/2c − σ2)/(σ1 − σ2) for min{R, 2σ1c} ≥ r ≥ 2σ2c

= 1 for R ≥ r ≥ min{R, 2σ1c},
and

dT/dr = −r/2σ2 for 2σ2c ≥ r ≥ 0
= −c for min{R, 2σ1c} ≥ r ≥ 2σ2c

= −r/2σ1 for R ≥ r ≥ min{R, 2σ1c},
where r = |x| and the positive constant c is determined by the constraint that 〈 f1〉� = p.
Thus the core of the sphere is filled with the poor conductor. This is surrounded by an annular
zone where we have a layered mixture of both materials where the proportion f1 of the good
conductor is a linear function of r . This annular zone may extend out to the radius R when
the total proportion p of the good conductor is small, that is, provided R ≤ 2σ1c; otherwise,
it is surrounded by a region filled with the good conductor. When the heat is not produced
uniformly within the sphere, or when the sphere is replaced by a body with a different shape,
an analytic solution is no longer generally possible and one must solve the relaxed problem
numerically.

A related problem is the “heat lens” problem of Gibiansky, Lurie, and Cherkaev (1988),
where the two phases in the body are distributed to maximize (or minimize) the heat flow
through a “window” at the boundary of the object. The optimal design has regions occupied
by the pure phases and regions occupied by layered mixtures of both phases, which serve to
channel the heat toward (or away from) the window. Knowledge of the sets G fUe0 allows
one to solve this problem.

Another closely related optimization problem is to maximize the torsional rigidity of a
bar made of two materials with given volume fractions. This has been considered by Lurie,
Cherkaev, and Fedorov (1982a, 1982b); Goodman, Kohn, and Reyna (1986); and Kawohl,
Stara, and Wittum (1991). There are regions in the cross section of the bar that are occupied
by the pure phases and regions occupied by layered mixtures of both phases.

Composites also appear in elastic plate optimization problems (Cheng and Olhoff 1981;
Lurie, Cherkaev, and Fedorov (1982a, 1982b); Gibiansky and Cherkaev 1984) and in two- and
three-dimensional elasticity problems involving the minimization of the total elastic or com-
pliance energy under single loading or multiple loading conditions (Diaz and Bendsøe 1992;
Allaire and Kohn (1993a, 1993b); Allaire and Francfort 1993; Jog, Haber, and Bendsøe 1994;
Cherkaev and Palais 1995; Allaire, Bonnetier, Francfort, and Jouve 1997; Cherkaev, Krog,
and Küçük 1998). In general, the relaxed problem has to be solved numerically. Grabovsky
(1996) gives examples where it can be solved analytically.

Often it is not possible to formulate the relaxed problem because we do not yet know the
range of composite behavior, for example, we do not yet have a complete characterization
of the appropriate set such as GU , G fU or G fUE0. Also, not all composites are easy to
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manufacture. Therefore, from an engineering perspective it makes sense to try to restrict
the type of composite microstructure in a design. Such partial relaxations were considered
by Rozvany, Olhoff, Cheng, and Taylor (1982); Rozvany, Ong, Szeto, Sandler, Olhoff, and
Bendsøe (1987); Bendsøe and Kikuchi (1988, 1989); and Suzuki and Kikuchi (1991), among
others.
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of variation and homogenization]. In Les méthodes de l’homogénéisation: théorie et
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22
Classical variational principle bounds

In section 13.1 on page 271 we saw how the substitution of constant fields into the classical
variational principles gave rise to the arithmetic and harmonic mean bounds,

〈L−1〉−1 ≤ L∗ ≤ 〈L〉,

on the effective tensor L∗. These elementary bounds hold when L(x) is symmetric and
positive-definite for all x. Besides being easy to calculate, they are sometimes attained. For
example, from the classical variational principle it follows that the upper bound is attained
when the actual field E(x) coincides with the trial field, that is, when E(x) = E0. What
is interesting is that this condition can sometimes be fulfilled in a variety of nontrivial mi-
crostructures. Briefly, L(x) must satisfy the differential constraint that LE0 ∈ U ⊕ J .

22.1. Multiphase conducting composites attaining energy bounds
Let us consider a multiphase composite comprised of n isotropic phases with real conductivi-
ties

σ1 > σ2 > σ3 > . . . σn .

The arithmetic and harmonic mean bounds on the effective conductivity tensor σ∗ imply that
for any given applied field e0 the energy W = e0 · σ∗e0/2 (representing the electrical power
dissipation) satisfies the inequality

(

n∑
i=1

fi/σi )−1e0 · e0/2 ≤ W ≤ (

n∑
i=1

fiσi )e0 · e0/2, (22.1)

where the fi , i = 1, 2, . . . , n are the volume fractions of the phases. Clearly the lower bound
is attained (in two or three dimensions) when the composite is a laminate of the n-phases
oriented so that the direction n of lamination is parallel to e0. The upper bound is attained
when the microgeometry does not vary along lines parallel to e0. In particular, it is attained by
laminate materials with n perpendicular to e0, and it is attained by microstructures consisting
of cylinders of the first n − 1 phases oriented with their cylinder axes directed parallel to e0

and embedded in the remaining phase.
Curiously, these are not the only microgeometries that attain the energy bounds when

more than two phases are present. Cherkaev and Gibiansky (1993) found that there are many
more. For example, consider two-dimensional, three-phase composites. Let us try to construct

437
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a different type of microgeometry that attains the upper bound on the energy. First note that
since σ2 lies between σ1 and σ3, there exists a positive weight p < 1 such that

σ2 = pσ1 + (1− p)σ3, p = (σ2 − σ3)/(σ1 − σ3).

Accordingly, a laminate of materials 1 and 3 mixed in volume fractions p and 1− p, oriented
with its lamination direction parallel to the x2-axis, has effective conductivity tensor(

pσ1 + (1− p)σ3 0
0 [p/σ1 + (1− p)/σ3]−1

)
=
(
σ2 0
0 σ1σ3/(σ1 + σ3 − σ2)

)
.

If we next laminate this composite together with phase 2 in proportions q and 1 − q with
the lamination direction now parallel to the x1-axis, the resulting mixture has conductivity
tensor

σ∗ =
(
σ2 0
0 qσ1σ3/(σ1 + σ3 − σ2)+ (1− q)σ2

)
.

Consequently, when e0 is aligned parallel to the x1-axis the energy

W = e0 · σ∗e0/2 = σ2e0 · e0/2 = [qpσ1 + (1− q)σ2 + q(1− p)σ3]e0 · e0/2

attains the upper bound in (22.1). Here qp, 1 − q , and q(1 − p) can be identified with the
volume fractions of the three phases. The discontinuity in microstructure in the x1 direction
does not matter because the effective conductivity of the laminate of materials 1 and 3 in the
direction x1 has been matched with the conductivity of phase 2. Of course this material is
rather special because the ratio p/(1 − p) of the volume fraction of phase 1 to the volume
fraction of phase 3 takes the particular value

qp/q(1− p) = p/(1− p) = (σ2 − σ3)/(σ1 − σ2).

However, we are free to take this material and laminate it together with slices of the three
phases, with this final lamination direction being parallel to the x2-axis. The resulting mate-
rial will again attain the upper energy bound, but will have no special relations amongst the
volume fractions of the phases.

A similar procedure can be followed to obtain nontrivial microgeometries attaining the
lower bound in (22.1). One first laminates phases 1 and 3 in the direction of the x2-axis in
proportions p′ and 1 − p′, where p′ is chosen so that 1/(p′/σ1 + (1 − p′)/σ3) = σ2. Then
one laminates this composite with phase 2 in the direction of the x1-axis, and finally one
laminates the resulting material with phases 1, 2, and 3 in the direction of the x2-axis. A
simple calculation shows that the lower bound on the energy is attained when e0 is aligned
parallel to the x2-axis.

There are countless other microgeometries that also attain these bounds. For example, at
the second step, instead of laminating σ2 with the mixture of σ1 and σ3, one could combine
these two materials in any configuration. Alternatively, one could combine two laminates,
each laminated in direction x1 and assembled from the three phases in proportions chosen so
that the effective conductivity tensors of the two laminates have a common diagonal element.

As we will see in the next section, this idea of Schulgasser (1977), of combining lami-
nates that have some common effective properties, allows one to construct three-dimensional
isotropic polycrystals with maximal conductivity or with minimal or maximal bulk modulus.



22.2. Bounds on the conductivity of polycrystals 439

22.2. Optimal bounds on the conductivity of isotropic polycrystals
In a three-dimensional polycrystal the local conductivity tensor field takes the form

σ(x) = R(x)σ0R
T (x), where σ0 =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
,

and the arithmetic and harmonic mean bounds imply that

σ∗ ≤ 〈σ〉, σ−1
∗ ≤ 〈σ−1〉.

For simplicity, let us suppose that the conductivity tensor σ∗ of the composite is isotropic, so
that σ∗ = σ∗I . Then by taking the trace of the above bounds we see that

3
1/λ1 + 1/λ2 + 1/λ3

≤ σ∗ ≤ λ1 + λ2 + λ3

3
. (22.2)

The lower bound is not optimal. In section 24.8 on page 510 we will see how to derive a
better bound. By contrast, the upper bound is the best that one can do without incorporating
additional information about the composite geometry. Schulgasser (1977) found that the upper
bound is achieved by a rank-3 laminate material. Here we show that a rank-2 laminate suffices
(Avellaneda, Cherkaev, Lurie, and Milton 1988).

Schulgasser’s key observation is that the effective conductivity tensor of a simple lam-
inate of two crystals is sometimes just a linear average of the crystal conductivity tensors.
Specifically, suppose that the crystals have conductivities

σ0 =
(
λ1 0 0
0 λ2 0
0 0 λ3

)
and σ′

0 =
(
λ′

1 0 0
0 λ′

2 0
0 0 λ′

3

)
,

and that they are laminated in proportions f and f ′ = 1− f with the direction of lamination
n parallel to the x1-axis. In the special case when λ′

1 = λ1, the effective conductivity tensor
of the laminate can be identified with the arithmetic average of the conductivity tensors of the
crystals:

σ∗ =
( 1/( f/λ1 + f ′/λ′

1) 0 0
0 f λ2 + f ′λ′

2 0
0 0 f λ3 + f ′λ′

3

)

=
(
λ1 0 0
0 f λ2 + f ′λ′

2 0
0 0 f λ3 + f ′λ′

3

)
= fσ0 + f ′σ′

0.

The physical explanation is that the electric field e(x) is constant irrespective of the direction
of the applied field e0 = 〈e〉.

So by laminating the pure crystal with conductivity tensor σ0 =Diag[λ1, λ2, λ3] with a
rotation of itself with conductivity tensor σ′

0 =Diag[λ1, λ3, λ2] we obtain a simple laminate
with effective conductivity

σ1 = fσ0 + f ′σ′
0 =

(
λ1 0 0
0 f λ2 + f ′λ3 0
0 0 f λ3 + f ′λ2

)
.
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The volume fraction f = 1− f ′ can be chosen so that the principal conductivity f λ3 + f ′λ2

equals the desired arithmetic average (λ1 + λ2 + λ3)/3. This value of f , namely,

f = λ1 + λ3 − 2λ2

3(λ3 − λ2)
,

lies between 0 and 1, if we assume, without loss of generality, that the principal axes have
been labeled so that λ3 ≥ λ1 ≥ λ2. The laminate is less anisotropic than the original crystal,
and the trace of its conductivity tensor is the same as in the original crystal. This simple
laminate is then laminated in the x3 direction with an equal proportion of a rotation of itself
with conductivity tensor

σ′
1 =

( f λ2 + f ′λ3 0 0
0 λ1 0
0 0 f λ3 + f ′λ2

)
.

The resulting rank-2 laminate, illustrated in figure 22.1 on the next page, will have an isotropic
effective conductivity tensor

σ∗ = (σ1 + σ′
1)/2 = (λ1 + λ2 + λ3)I/3.

In this construction the geometry of the composite is dependent on λ1, λ2, and λ3. In
other words, if we change the values of the principal conductivities, then the geometry must
also be modified to maintain the isotropy of the effective tensor σ∗. More significantly, the
construction fails when λ1, λ2, and λ3 are complex. At the cost of introducing another stage
of lamination one can construct a laminate material that achieves the upper bound (22.2) for
all combinations of λ1, λ2, and λ3. To do this we follow Schulgasser (1977) and repeat the
first stage of the above construction, now setting f = 1/2 to produce a rank-1 laminate with
effective tensor

σ1 =
(
λ1 0 0
0 (λ2 + λ3)/2 0
0 0 (λ2 + λ3)/2

)
.

We then take this laminate and a rotation of itself with conductivity tensor

σ′
1 =

(
(λ2 + λ3)/2 0 0

0 λ1 0
0 0 (λ2 + λ3)/2

)

and laminate them together in the x3 direction in proportions 1/3 and 2/3 to obtain a rank-2
laminate with conductivity tensor

σ2 = (σ1 + 2σ′
1)/3 =

(
(λ1 + λ2 + λ3)/3 0 0

0 (4λ1 + λ2 + λ3)/6 0
0 0 (λ2 + λ3)/2

)
.

At the final stage we take this rank-2 laminate and a rotation of itself with conductivity tensor

σ′
2 =

(
(λ1 + λ2 + λ3)/3 0 0

0 (λ2 + λ3)/2 0
0 0 (4λ1 + λ2 + λ3)/6

)

and we laminate them in equal proportions to obtain a material with effective conductivity
tensor

σ∗ = (σ2 + σ′
2)/2 = (λ1 + λ2 + λ3)I/3.



22.3. Bounds on the bulk modulus of polycrystals 441

λ
λ

λ1

2

3

x1

x
x3

2

f

f

λ
λ

λ1

2

3

f

λ
λ

λ

λ
λ

λ

3

2
1

3

1

2

f

Figure 22.1. A second-rank laminate polycrystal that has the largest effective conductivity
amongst all isotropic conducting polycrystals. The volume fractions f and f ′ = 1 − f are
chosen so that the conductivity in the x3 direction is the arithmetic average (λ1 + λ2 + λ3)/3.
The conductivities in the other two directions are then also the arithmetic average. After
Avellaneda, Cherkaev, Lurie, and Milton (1988).

22.3. Optimal bounds on the bulk modulus of isotropic polycrystals
Schulgasser’s arguments can be extended to the effective bulk modulus of isotropic polycrys-
tals (Avellaneda andMilton 1989; Rudelson 1989). The elasticity tensor C(x) and compliance
tensor S(x) = C−1(x) of a polycrystal take the form

C(x) = R(x)C0[R(x)]T , S(x) = R(x)S0[R(x)]T ,

in which C0 and S0 = C−1
0 are the elasticity tensor and compliance tensor of the pure crystal.

The arithmetic and harmonic mean bounds now imply the inequalities

〈ε〉 · C∗〈ε〉 ≤ 〈ε〉 · 〈C〉〈ε〉, 〈τ 〉 · S∗〈τ 〉 ≤ 〈τ 〉 · 〈S〉〈τ 〉,

which hold for choices of the average strain field 〈ε〉 and average stress field 〈τ 〉. In particular,
by choosing 〈ε〉 = I and 〈τ 〉 = I , respectively, we obtain the Voigt-Reuss-Hill bounds on
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the effective bulk modulus,

κR ≤ κ∗ ≤ κV , where κV = {C0}ii j j/9, κR = 1/{S0}ii j j .

These bounds are due to Hill (1952). Voigt (1889, 1910) and Reuss (1929) suggested that κV
and κR might be reasonable approximations for the effective bulk modulus, which is why they
are commonly referred to as the Voigt-Reuss bounds.

The key to proving that the Voigt-Hill bound is achievable is to realize that one can some-
times laminate together two crystals with elasticity tensors C0 and C′

0 so that the effective
elasticity tensor C∗ is such that the second-order tensor C∗I is just a linear average of the
tensors C0I and C′

0I . Specifically, suppose that the crystals have been oriented so that these
stress tensors are diagonal:

C0I =
(
λ1 0 0
0 λ2 0
0 0 λ3

)
and C′

0I =
(
λ′

1 0 0
0 λ′

2 0
0 0 λ′

3

)
,

and that they have been laminated in proportions f and f ′ = 1 − f with their direction of
lamination n along the x1-axis. Under the constraint that λ′

1 = λ1, the elasticity equations
have a solution with a uniform strain e = I and stresses C0I and C′

0I in each crystal phase.
The constraint λ′

1 = λ1 is needed to ensure the compatibility of the stresses across the inter-
faces between layers, that is, it is needed to ensure that n · (C0I) = n · (C′

0I). From the
definition of the effective elasticity tensor it follows that the average stress is

C∗I = f C0I + f ′C′
0I.

The above formulas and the constraint λ′
1 = λ1 are exactly the same as we encountered in

the conductivity problem, only now the role of the effective conductivity tensor σ∗ is played
by the tensor C∗I . So the same laminate constructions used in the conductivity problem also
produce rank-2 and rank-3 laminates with effective elasticity tensors C∗ such that C∗I =
3κVI . The first step in the constructions is to laminate the crystal with a rotation of itself
as shown in figure 22.2(a) and then subsequent steps proceed as before. At each stage of
lamination it suffices to keep track of C∗I , rather than the full elasticity tensor C∗. The
resulting composites, with C∗I = 3κVI , are not necessarily elastically isotropic, but we see
from section 5.2 on page 76 that any elastically isotropic polycrystal produced from them
necessarily has effective bulk modulus κ∗ = κV .

In contrast to the conductivity problem, there exist laminate constructions that achieve the
lower bound on the effective bulk modulus. The key to proving that the Reuss-Hill bound is
achievable is to realize that one can sometimes laminate together two crystals with compliance
tensors S0 and S ′

0 so that the effective compliance tensor S∗ is such that the second-order
tensor S∗I is just a linear average of the tensors S0I and S ′

0I .
We suppose that the crystals have been oriented so that these strain tensors take the form

S0I =
( e1 cos2 θ + e2 sin2 θ (e1 − e2) cos θ sin θ 0
(e1 − e2) cos θ sin θ e1 sin2 θ + e2 cos2 θ 0

0 0 e3

)
,

S ′
0I =

( e′1 cos2 θ ′ + e′2 sin2 θ ′ (e′1 − e′2) cos θ ′ sin θ ′ 0
(e′1 − e′2) cos θ ′ sin θ ′ e′1 sin

2 θ ′ + e′2 cos2 θ ′ 0
0 0 e′3

)
,
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Figure 22.2. When one laminates a crystal with a rotation of itself, one can choose the crystal
orientations so that either the strain field is constant and equal to I , as in (a), or the stress
field is constant and equal to I , as in (b). The axes shown in (a) are the eigenvectors of
the stress and λ1, λ2, and λ3 are the corresponding eigenvalues. The axes shown in (b) are
the eigenvectors of the strain and e1, e2, and e3 are the corresponding eigenvalues. With the
exception of the e3-axis, these are not aligned with the coordinate axes.

in which e1, e2, e3 and e′
1, e

′
2, e

′
3 are the eigenvalues of S0I and S ′

0I while the angles θ and
θ ′ remain to be chosen. We laminate these crystals in proportions f and f ′ = 1− f with the
direction of lamination n aligned with the x1-axis. Under the constraints that

e1 sin2 θ + e2 cos2 θ = e′1 sin2 θ ′ + e′2 cos2 θ ′ and e3 = e′3, (22.3)

there exists a solution to the elasticity equations in the laminate with a uniform stress field
τ = I and strains S0I and S ′

0I in each phase. The conditions (22.3) are required to ensure
that these strains are compatible, that is, to ensure that ε22, ε23, and ε33 are constant [see
(9.27)]. It follows that the average strain is

S∗I = f S0I + f ′S ′
0I. (22.4)

In particular, as illustrated in figure 22.2(b), when the second crystal is simply a rotation
of the first with e′

1 = e1, e′2 = e2, and e′
3 = e3, we can set

θ ′ = −θ, f = f ′ = 1/2,

to ensure that (22.3) holds and (22.4) then implies that

S∗I =
( pe1 + p′e2 0 0

0 pe2 + p′e1 0
0 0 e3

)
, with p = 1− p′ = cos2 θ ∈ [0, 1].

So now the angle θ plays an analogous role to the volume fraction f in the conductivity
problem. Aside from this difference, we can proceed as before and obtain rank-2 and rank-3
laminates with an effective compliance tensor S∗ such that S∗I = I/(3κR). Again, although
these laminates are not necessarily elastically isotropic, any elastically isotropic polycrystal
produced from them necessarily has effective bulk modulus κ∗ = κR .
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For two-dimensional polycrystals, a similar argument (Avellaneda and Milton 1989;
Rudelson 1989) shows that the lower Reuss-Hill bound

κ∗ ≥ 1/(S1111 + S2222 + 2S1122) (22.5)

on the effective bulk modulus is achieved. The translation method (see section 24.2 on
page 500) gives the optimal upper bound, which improves on the upper Voigt-Hill bound.

22.4. The complete characterization of the set GfUe0 for n-phase
composites and polycrystals

In section 21.3 on page 429 we saw that knowledge of the set G fUe0 allows one to solve a
variety of optimization problems. Here we consider n-phase, three-dimensional polycrystals
where the admissible conductivity tensor fields take the form

σ(x) =
n∑
i=1

R(x)χi (x)σiR
T (x), (22.6)

in which σi denotes the conductivity tensor of the i -th phase, which we assume to be real and
symmetric so that it can be represented in the form

σi =
 λ

(i)
1 0 0
0 λ

(i)
2 0

0 0 λ
(i)
3

 , with λ
(i)
1 ≥ λ

(i)
2 ≥ λ

(i)
3 . (22.7)

No restrictions are placed on the geometric configuration of the phases nor on the crystal
orientations, that is, there are no restrictions imposed on the characteristic functions χi (x)
nor on the field of rotation matricesR(x).

We seek bounds on the triplet (〈j〉, 〈e〉,f ), where f = ( f1, f2, . . . fn) denotes an n-
component vector representing the set of volume fractions of the phases. Equivalently, for
each value of the vector e0 and for each vector f satisfying the obvious constraints

fi = 〈χi 〉 ≥ 0 for all i,
n∑
i=1

fi = 1, (22.8)

we need to find the set G fUe0, which by definition is comprised of all values of 〈j〉 when
〈e〉 = e0 and when the volume fractions of the phases equal f . Here G fU is the G-closure
at constant f of the set U containing the n tensors σi , i = 1, 2, . . . , n and all rotations of
these tensors. This set G fU is comprised of all effective conductivity tensors σ∗ associated
with conductivity fields σ(x) of the form (22.6) when the volume fractions of the phases
equal f . With few exceptions (such as when only two isotropic phases are present) we do
not have a complete characterization of G fU . However, as we will now see, a complete
characterization of the projection G fUe0 is available (Tartar 1995). In the special case of
a conducting composite of two isotropic phases, this characterization was found by Raı̆tum
(1983) [see also Murat and Tartar (1985); Tartar (1987, 1994); and Gibiansky, Lurie, and
Cherkaev (1988) for related results].

Each tensor σi satisfies the inequalities λ
(i)
3 I ≤ σi ≤ λ

(i)
1 I . By combining these inequal-

ities with the arithmetic and harmonic mean bounds on the effective tensor σ∗ we see that for
all three-dimensional vectors v,

λ−|v|2 ≤ v · σ∗v ≤ λ+|v|2, where λ− ≡
[ n∑
i=1

fi/λ
(i)
3

]−1
, λ+ ≡

n∑
i=1

fiλ
(i)
1 . (22.9)
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Now suppose that 〈j〉 and 〈e〉 represent a pair of average current fields and average electric
fields that can coexist in the polycrystal. Let V represent a two-dimensional subspace con-
taining these two vectors, and let * denote the projection onto V . The fields 〈j〉 and 〈e〉
satisfy

〈j〉 = *σ∗*〈e〉,
and by direct analogy with (21.6) and (21.8) this implies that

|〈j〉 − (ν1 + ν2)〈e〉/2|2 = (ν1 − ν2)
2|〈e〉|2/4, (22.10)

where ν1 and ν2 represent the two nonzero eigenvalues of the matrix *σ∗*. Since the in-
equality (22.9) holds for all v and in particular for v ∈ V , it follows that these eigenvalues
must satisfy the constraints

λ− ≤ ν1 ≤ λ+, λ− ≤ ν2 ≤ λ+. (22.11)

The identity (22.10) constrains the endpoint of the vector 〈j〉 to lie on the boundary of a
sphere of radius (ν1 − ν2)|〈e〉|/2 centered at (ν1 + ν2)〈e〉/2. This sphere certainly lies inside
the sphere of radius (λ+ − λ−)|〈e〉|/2 centered at (λ+ + λ−)〈e〉/2. In other words, (22.10)
together (22.11) implies the bound

|〈j〉 − (λ+ + λ−)〈e〉/2|2 ≤ (λ+ − λ−)2|〈e〉|2/4 (22.12)

of Tartar (1995).
The bound (22.12) is illustrated in figure 22.3. In conjunction with the trivial bounds

(22.8) on the volume fractions, it gives us constraints on the set of possible triplets
(〈j〉, 〈e〉,f ). In particular, when 〈j〉 is parallel to 〈e〉, the bound implies that |〈j〉| is be-
tween λ−|〈e〉| and λ+|〈e〉|, as expected.

j

e eλ+eλ- 

Figure 22.3. When the volume fractions of the phases and the average electric field vector 〈e〉
are prescribed, the average current field vector 〈j〉 in a multiphase composite or multiphase
polycrystal can lie anywhere inside the sphere. Here λ− and λ+ are given by (22.9). Currents
〈j〉 touching the boundary of the sphere can be realized when the composite (polycrystal) is
just a simple laminate of the (suitably oriented) phases.

To show that these bounds are optimal we need to show that any triplet (〈j〉, 〈e〉,f ) com-
patible with them is realized in some microgeometry. We start by supposing that the volume
fractions f have been given. Also, without loss of generality, we can take 〈e〉 as a unit vector
and suppose that a coordinate system has been chosen so that 〈e〉 lies along the x1-axis while
〈j〉 lies in the (x1, x3)-plane. We first construct a simple rank-1 laminate of the n crystalline
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phases, with a direction of lamination n in the (x1, x3)-plane. Each phase is oriented so that
the axes of lowest and highest conductivity also lie in the (x1, x3)-plane, with the axis of low-
est conductivity aligned parallel to the direction of lamination n. In other words, the local
conductivity tensor σ(x) has n as an eigenvector and takes the form

σ(x) =
n∑
i=1

χi(n · x)
( cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

) λ
(i)
1 0 0
0 λ

(i)
2 0

0 0 λ
(i)
3

( cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

)
,

in which n = (sin θ, 0, cos θ)T and 〈χi 〉 = fi . This laminate has effective conductivity

σ∗ =
( cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

)(
λ+ 0 0
0 λ 0
0 0 λ−

)( cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

)
,

where

λ ≡
n∑
i=1

fiλ
(i)
2 ,

and λ− and λ+ are defined by (22.9). This implies that

〈j〉 = (λ+ cos2 θ + λ− sin2 θ, 0, (λ+ − λ−) sin θ cos θ)T when 〈e〉 = (1, 0, 0)T .

So as θ varies we see that 〈j〉 ranges over all vectors in the (x1, x3)-plane satisfying

|〈j〉 − (λ+ + λ−)〈e〉/2|2 = (λ+ − λ−)2|〈e〉|2/4.

Equivalently, 〈j〉 ranges over all vectors in the (x1, x3)-plane on the boundary of the region
defined by (22.12). By laminating together two of these simple laminates we obtain average
currents that correspond to any vector 〈j〉 in the interior of the region defined by (22.12).

These optimal bounds allow one to solve many structural optimization problems of prac-
tical importance. In particular, if the objective of the optimization is to try to channel current
into a particular region or, more generally, to optimize some functional of the locally averaged
current field, the locally averaged electric field, and the locally averaged volume fractions,
then it suffices to use these laminate geometries to construct an optimal solution.

It is interesting that the bounds on (〈j〉, 〈e〉,f ) triplets were derived from the energy
bounds (22.9) on (W, 〈e〉,f ) triplets. In other words, the two sets of bounds contain exactly
the same information, expressed in a different form. This is not true for the elasticity problem,
and at present the characterization of possible (average stress, average strain) pairs is still an
open problem, even for two-dimensional composites of two isotropic phases.

22.5. The G-closure in two dimensions of an arbitrary set of
conducting materials

There are very few examples where we have a complete characterization of the set GU of
effective tensors that can be produced by mixing together materials with tensors in a given set
U . An exception is two-dimensional conductivity, where the classical variational principles in
conjunction with the duality transformation [see section 3.1 on page 47] can be used to obtain
a complete characterization of GU for an arbitrary rotationally invariant set U of positive-
definite tensors, with eigenvalues bounded away from zero and infinity. [Another exception is
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for three-dimensional conductivity whenU consists of two isotropic tensors; see sections 23.2
on page 461 and 24.6 on page 506.] Here the rotational invariance of U means that we allow
the constituent phases to have any orientation; that is, if σ ∈ U , then RσRT ∈ U for
all rotations R satisfying RRT = I . Then GU will also be rotationally invariant since if
σ∗ ∈ GU , we can rotate the entire composite and thereby deduce thatRσ∗RT ∈ GU . Thus
whether a tensor σ lies in U or GU is determined solely by the eigenvalues λ1 and λ2 of σ.

For mixtures of two isotropic materials Tartar (1975) presented without proof the charac-
terization of GU . Working independently, Raı̆tum (1978) [see also Lurie and Cherkaev (1981,
1984)] gave a proof of this characterization. For mixtures of two anisotropic materials, Lurie
and Cherkaev (1981, 1984) provided a set of bounds on the G-closure. In the examples that
they considered these bounds were sharp and completely characterized GU . They claimed to
have completely solved the problem, but they failed to properly consider all cases. For some
orderings of crystal moduli there was a flaw in their arguments, and one of their proposed
bounds was violated. This was realized by Francfort and Murat (1987), who found the com-
plete characterization of GU for two anisotropic materials for all moduli orderings. Francfort
and Milton (1987) extended the characterization to an arbitrary number of materials, subject
to a minor technical correction mentioned below.

It is convenient to let σ be represented by the two points (λ1λ2, λ1) and (λ1λ2, λ2), where
the first coordinate represents the determinant of σ and the second coordinate represents an
eigenvalue of σ. We will call this the (d, λ) representation. In this representation U and
GU are represented by sets that we still label as U and GU . Let T denote the “reflection
transformation”

T (d, λ) = (d, d/λ),

corresponding to swapping eigenvalues. Clearly, both U and GU are invariant under this
transformation, that is, T (U) = U and T (GU) = GU . With these definitions in hand let us
define V as that simply connected region with the same outer boundary as the setUC∪T (UC),
where UC denotes the convexification of the set U in the (d, λ) representation. We will see
that GU = V , which provides the desired characterization of GU . Figure 22.4 on the next
page shows the construction of GU for a three-phase mixture.

The key to establishing this result is lemma 2 of Francfort and Murat (1987). Since their
complete proof was never published, I am grateful to Gilles Francfort (private communication)
for providing the details. The first step is to establish that, if for some choice of constants
a > 0, b > 0 and for all x we have

I ≥ aσ(x)+ bσ′(x), where σ′(x) = σ(x)/ det[σ(x)], (22.13)

then the effective tensor σ∗ satisfies a bound of the same form:

I ≥ aσ∗ + bσ′
∗, where σ′

∗ = σ∗/ det[σ∗]. (22.14)

To see this, we first notice that from duality (see section 3.1 on page 47)σ ′
∗ is the effective

tensor associated with a medium with conductivity σ ′(x). Therefore the arithmetic mean
bounds imply that

〈σ(x)〉 ≥ σ∗, 〈σ′(x)〉 ≥ σ′
∗. (22.15)

Now it follows from (22.13) that for all vectors e0,

e0 · e0 ≥ ae0 · σ(x)e0 + be0 · σ′(x)e0.
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Figure 22.4. Geometrical construction of the set GU of all possible eigenvalue pairs (λ1, λ2)

of the effective tensor of a three-phase, two-dimensional composite. First the eigenvalue pairs
associated with the conductivity tensors of the phases are plotted in the (d, λ)-plane as in (a).
Then the convex hull is taken as in (b), to give the set UC . Its image under the reflection
transformation is constructed as in (c), to give the set T (UC). Finally, the outer boundary
of the union of the sets in (b) and (c) is plotted as in (d). Then the set GU , in the (d, λ)-
plane, is the region enclosed by this curve. In each figure the dashed line is the line λ = √d ,
corresponding to isotropic materials with λ1 = λ2. After Francfort and Milton (1987).

By taking the average overx and making the substitutions (22.15) we obtain the desired bound
(22.14). Expressed in the (d, λ) representation this result says that if the set U lies above a
line � with positive slope and positive intercept (described by the equation λ = ad + b), then
the set GU also lies above this line. Since GU is invariant under T it must also lie below the
curve T (�).

The second step is to establish that, if for some choice of constants a, b, and c with ab < 0
and c ≥ 0 we have, for all x,

cI ≤ aσ(x)+ bσ′(x), where σ′(x) = σ(x)/ det[σ(x)], (22.16)

then the effective tensor σ∗ satisfies a bound of the same form:

cI ≤ aσ∗ + bσ′
∗, where σ′

∗ = σ∗/ det[σ∗]. (22.17)

Due to the symmetry it suffices to consider the case where a < 0 and b > 0. Now, given
an applied field e0, let e′(x) with 〈e′〉 = e0 be the electric field that solves the conductivity
problem associated with σ ′(x), that is, which is such that σ′(x)e′(x) is divergence free. Then
we have

〈e′(x) · σ(x)e′(x)〉 ≥ e0 · σ∗e0, 〈e′(x) · σ′(x)e′(x)〉 = e0 · σ′
∗e0, (22.18)
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where the first relation comes from the classical variational principle with e′(x) as a trial field.
Now from (22.16) we have

ce′(x) · e′(x) ≤ ae′(x) · σ(x)e′(x)+ be′(x) · σ′(x)e′(x).

Taking the average over x and using the relations (22.18) and the inequality

〈e′(x) · e′(x)〉 ≥ e0 · e0,

which expresses the fact that the variance of the field e′(x)must be positive, gives the desired
bound (22.17). Expressed in the (d, λ) representation this result, with c = 1, says that if the
set U lies below a line � with either positive slope and negative intercept, or negative slope
and positive intercept (described by the equation λ = ad+b), then the set GU also lies below
this line. Since GU is invariant under T , it must also lie above the curve T (�). The result
with c = 0 says that if the set U lies on one side of a vertical line, then the set GU also lies
on the same side of that vertical line.

The set GU therefore lies inside the region of intersection of the narrowest vertical strip
containing U and all sets bounded by � and T (�) as � varies both over all lines with positive
slope and positive intercept lying below U and over all lines with either positive slope and
negative intercept, or negative slope and positive intercept, lying above U . Omitting the
technical details, this region of intersection is the set V and the result implies that GU ⊂ V .
[The results and proofs in the paper of Francfort and Milton (1987) have to be modified
slightly because it was incorrectly assumed that UC ∪ T (UC) equals V . This is not always the
case, as happens when U consists of two isotropic materials. Then UC is a straight line and
T (UC) is its reflection under T . Thus UC ∪ T (UC) has an empty interior while V does not.]

To prove the opposite inclusion V ⊂ GU , we first show that points on the boundary
of V are associated with rank-1 laminates of two materials in U . Any point p∗ = (d∗, λ∗)
on the boundary of V , by the definition of V , must be either on the boundary of UC or on
the boundary of T (UC). If p∗ ∈ ∂UC , then there exist two points p′ = (d ′, λ′) ∈ U and
p′′ = (d ′′, λ′′) ∈ U such that p∗ lies on the line joining these two points, namely,

λ = ad + b, where a = λ′ − λ′′

d ′ − d ′′ , b =
d ′λ′′ − d ′′λ′

d ′ − d ′′ . (22.19)

Now we take two materials with conductivity tensors

σ′ =
(
λ′ 0
0 d ′/λ′

)
≡
(
λ′

1 0
0 λ′

2

)
, σ′′ =

(
λ′′ 0
0 d ′′/λ′′

)
≡
(
λ′′

1 0
0 λ′′

2

)
,

represented by the points pa , T (pa), pb, and T (pb) in the (d, λ) representation, and laminate
them together in proportions f and 1− f with the lamination directionn being directed along
the x1-axis. The resulting effective tensor σ∗ will have eigenvalues given by

1/λ∗
1 = f/λ′

1 + (1− f )/λ′′
1, λ∗

2 = f λ′
2 + (1− f )λ′′

2,

and as f is varied a linear relation between 1/λ∗
1 and λ∗

2 holds:

1 = aλ∗
2 + b/λ∗

1 or, equivalently, λ∗
1 = aλ∗

1λ
∗
2 + b,

where a and b are given by (22.19). Therefore the point (λ∗
1λ

∗
2, λ

∗
1) representing the tensor

σ∗ lies on the line joining p′ and p′′ in the (d, λ) representation. One chooses f so that this
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point coincides with p∗. If, alternatively, p∗ ∈ ∂T (UC), then T (p∗) ∈ UC and by applying
the previous arguments one obtains a laminate of two materials in U whose effective tensor
in the (d, λ) representation is represented by the two points T (p∗) and T [T (p∗)] = p∗.

In summary, all points on the boundary of V are associated with simple rank-1 laminates
of two materials in U . Given a point q∗ inside V one looks for the points p∗ and T (p∗) on the
boundary of V that have the same value of d as q∗. By laminating the laminate associated with
p∗ and T (p∗) with a 90◦ rotation of the same laminate, one obtains a rank-2 laminate whose
effective tensor is represented by the points q∗ and T (q∗). This shows that any polycrystalline
composite formed from an arbitrary (possibly infinite) number of phases can be replaced by
a rank-2 laminate formed from only two of the given phases without altering the effective
conductivity.

It would be wonderful if a similar construction gave the G-closure for an arbitrary number
of materials in three dimensions. Lurie and Cherkaev (1983) had claimed such a result, but
there was an error in their arguments. Even for conducting polycrystalsformed from a single
anisotropic material with uniaxial symmetry the complete G-closure is unknown, although
some progress has been made (Avellaneda, Cherkaev, Lurie, and Milton 1988). The fact
that infinite-rank laminates are sometimes needed in constructions suggests that the three-
dimensional G-closure cannot be obtained through a finite number of convexification steps.
It is not even known whether or not laminate microgeometries suffice to generate the entire
G-closure.

22.6. Bounds on complex effective tensors†
Another example that illustrates the usefulness of the arithmetic mean bounds is their applica-
tion to bounding the effective complex dielectric tensor ε∗ = ε′

∗ + iε′′
∗ of a three-dimensional

composite material. After making the Cherkaev-Gibiansky transformation to the analogous
problem (11.57) in which the tensor field L(x) given by (11.58) that enters the constitutive
relation is positive-semidefinite, the arithmetic mean bounds imply that L∗ ≤ 〈L〉. Equiva-
lently, the inequality(−d0

e0

)
·
(

[ε′′
∗]

−1 [ε′′
∗]

−1ε′
∗

ε′
∗[ε

′′
∗]

−1 ε′′
∗ + ε′

∗[ε
′′
∗]

−1ε′
∗

)(−d0

e0

)
≤
(−d0
e0

)
·
( 〈[ε′′]−1〉 〈[ε′′]−1ε′〉
〈ε′[ε′′]−1〉 〈ε′′ + ε′[ε′′]−1ε′〉

)(−d0
e0

)
(22.20)

of Cherkaev and Gibiansky (1992) must hold for all choices of the fields d0 = 〈Re(d)〉 and
e0 = 〈Re(e)〉. In particular, by setting

d0 = ε0e0,

where ε0 is any real symmetric tensor, (22.20) reduces to

ε0[ε′′
∗]

−1 − ε0[ε′′
∗]

−1ε′
∗ − ε′

∗[ε
′′
∗]

−1ε0 + ε′′
∗ + ε′

∗[ε
′′
∗]

−1ε′
∗

≤
〈
ε0[ε′′]−1 − ε0[ε′′]−1ε′ − ε′[ε′′]−1ε0 + ε′′ + ε′[ε′′]−1ε′

〉
,

which can be rewritten as

ε′′
∗ + (ε′

∗ − ε0)[ε′′
∗]

−1(ε′
∗ − ε0) ≤

〈
ε′′ + (ε′ − ε0)[ε′′]−1(ε′ − ε0)

〉
. (22.21)
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A further simplification can be made once one notices that the terms appearing in this
inequality can be identified with the inverses of the imaginary parts of the tensors (ε∗− ε0)

−1

and (ε(x)− ε0)
−1:

Im[(ε∗ − ε0)
−1] = −{ε′′

∗ + (ε′
∗ − ε0)[ε′′

∗]
−1(ε′

∗ − ε0)}−1,

Im[(ε(x)− ε0)
−1] = −{ε′′(x)+ (ε′(x)− ε0)[ε′′(x)]−1(ε′(x)− ε0)}−1,

(22.22)

in which we have used the matrix identity,

(M ′ + iM ′′)−1 = (M ′ + iM ′′)−1(M ′ − iM ′′)(M ′ − iM ′′)−1

=
[
(M ′ − iM ′′)(M ′)−1(M ′ + iM ′′)

]−1

− i
[
(M ′ − iM ′′)(M ′′)−1(M ′ + iM ′′)

]−1

=
[
M ′ +M ′′(M ′)−1M ′′

]
− i

[
M ′′ +M ′(M ′′)−1M ′

]
,

to separate the inverse of a complex symmetric matrixM ′+ iM ′′ into its real and symmetric
parts, without assuming that M ′ and M ′′ commute. With the aid of (22.22) we see that
(22.21) simplifies to the matrix inequality{

Im[(ε∗ − ε0)
−1]
}−1

≥
〈{
Im[(ε(x)− ε0)

−1]
}−1
〉
. (22.23)

This holds for all real symmetric tensors ε0 and for all symmetric complex fields ε(x)
such that ε′′(x) = Im[ε(x)] is positive-semidefinite (Milton 1990). Since we are free to
make rotations in the complex plane, (22.23) implies the more general bounds{

Im[(e−iθε∗ − ε0)
−1]
}−1

≥
〈{
Im[(e−iθε(x)− ε0)

−1]
}−1
〉
, (22.24)

which must hold for all real symmetric tensors ε0 and for all angles θ ∈ [0, 2π] such that

Im[e−iθε(x)] ≥ 0 for all x.

For instance, suppose that the composite is isotropic, that is, ε(x) = ε(x)I , and that the
real and imaginary parts of ε∗ commute. Then by taking an isotropic tensor ε0 = ε0I (22.24)
implies that any eigenvalue λ of ε∗ satisfies the inequality

1
Im[1/(e−iθλ− ε0)]

≥
〈

1
Im[1/(e−iθε − ε0)]

〉
, (22.25)

which for given values of θ and ε0 confines λ to lie inside a circle in the complex plane.
Consequently, as ε0 and θ are varied, subject to the constraint that Im[e−iθε(x)] ≥ 0, the
eigenvalues of ε∗ must lie inside the region of intersection of these circles. These bounds for
multicomponent composites were first conjectured by Golden and Papanicolaou (1985) and
Golden (1986) and were proved later (Bergman 1986; Milton 1987; Milton and Golden 1990).

In particular, consider a two-phase composite where the local complex dielectric constant
takes the form

ε(x) = ε1χ1(x)+ ε2χ2(x),
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and suppose that the phases have been labeled so that Im(ε1/ε2) ≥ 0. By first setting
θ =arg(ε2) and ε0 = e−iθε2 and then setting θ = π+arg(ε1) and ε0 = e−iθε1, we obtain
from (22.25) the pair of bounds (Bergman 1980; Milton 1980)

f1 Im[ε2/(λ− ε2)] ≤ Im[ε2/(ε1− ε2)], f2 Im[ε1/(λ− ε1)] ≥ Im[ε1/(ε2− ε1)], (22.26)

each of which confines λ to a circle in the complex plane. These circles can also be defined
geometrically by specifying three points through which each circle passes: The first circle
passes through the three points λ = ε1, λ = f1ε1 + f2ε2, and λ = 1/( f1/ε1 + f2/ε2),
while the second circle passes through the three points λ = ε2, λ = f1ε1 + f2ε2, and λ =
1/( f1/ε1 + f2/ε2). In other words, the bounds (22.26) constrain λ to lie within a lens-shaped
region of the complex plane (represented by the regionΩ′ in figure 27.1 on page 570).

In fact, this is an optimal set of bounds on the pairs (λ, f1); for a fixed value of f1 any
point on the circular arcs that form the boundary of this lens-shaped region can be achieved by
using either the assemblages of coated elliptical cylinders of figure 7.5 on page 125 or using
the coated laminate geometries of figure 9.3 on page 166. By varying the eccentricity of the
elliptical cylinders, or by varying the proportions laminated in each direction of lamination,
we can move λ along the circular arc, achieving the two endpoints λ = f1ε1 + f2ε2 and
λ = 1/( f1/ε1 + f2/ε2) when the geometry reduces to a simple laminate of the two phases.
By swapping the roles of the core and coating materials we can achieve any point on the
other circular arc. Bounds on the complex dielectric constant of two-phase composites will
be discussed in more detail in chapter 27 on page 569 (see also sections 23.7 on page 476
and 29.6 on page 638).

Analogous bounds apply to the complex effective elasticity tensor C∗ = C′
∗ + iC′′

∗ of
viscoelastic composite media. For every real, self-adjoint, fourth-order tensor C0, and for
every angle θ such that

Im[e−iθC(x)] ≥ 0 for all x,

we have the bounds{
Im[(e−iθC∗ − C0)

−1]
}−1

≥
〈{
Im[(e−iθC(x)− C0)

−1]
}−1
〉
. (22.27)

As an example, let us consider a two-phase composite where the complex elasticity tensor
takes the form

C(x) = C1χ1(x)+ C2χ2(x) with C2 real and Im(C1) ≥ 0.

By taking θ = 0 and C0 = C2, the bound (22.27) reduces to

f1 Im[(C∗ − C2)
−1] ≤ Im[(C1 − C2)

−1].

This is an attainable bound. From the lamination formula (9.55) we see that it is achieved
whenever the composite is a coated laminate with phase 1 as core and phase 2 as coating.
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23
Bounds from the Hashin-Shtrikman

variational inequalities

DeLoor (1956) studied experimental results for the effective dielectric constants of isotropic
two-phase composites and compared them with various approximation formulas. He found
that the results always fell between the Maxwell (i.e., the Clausius-Mossotti) approximation
formula with one phase as inclusion and the Maxwell approximation formula with the other
phase as inclusion. Hashin and Shtrikman (1962a), using their variational principles, proved
that these approximation formulas were in fact upper and lower bounds on the effective di-
electric constant, and were realizable by the Hashin coated sphere assemblages. Hashin and
Shtrikman, in their original paper, also provided bounds for isotropic multiphase media. They
subsequently extended their results to elasticity (Hashin and Shtrikman 1963b). The Hashin-
Strikman bounds for conductivity and elasticity have since become the benchmarks against
which most experimental results are compared.

23.1. Bounds on the effective conductivity of an isotropic composite of
n isotropic phases

Consider a d-dimensional composite of n isotropic phases with conductivities

σ1 > σ2 > σ3 > . . . > σn .

If we choose an isotropic reference tensor σ0 = σ0I, and assume that the conductivity tensor
of the composite is also isotropic, that is, σ∗ = σ∗I , then the Hashin-Shtrikman variational
inequality (13.30) implies that

〈P 〉 · 〈P 〉/(σ∗ − σ0) ≤ 〈P · (σ − σ0I)
−1P 〉 + 〈P · Γ1P 〉/σ0.

This holds for any choice of trial polarization field P and for any constant σ0 with σn > σ0 >

0 (which ensures that σ > σ0 and that Γ1σ0Γ1 ≥ 0). The simplest choice of polarization
field is one that is constant in each phase and, say, parallel to a constant unit vector v	 aligned
in the direction of the x	-axis for some choice of �:

P (x) =
n∑
i=1

αiχi (x)v	, (23.1)

where the χi (x) are the characteristic functions representing the geometry of the phases and
the amplitudes αi remain to be determined.

There are many alternative choices of trial polarization fields, which lead to other bounds.
For example, Bergman (1976) considers a two-phase medium and takes a trial polarization

457



458 23. Hashin-Shtrikman bounds

field that is a linear superposition of this piecewise constant field and one associated with the
exact solution when the phases have another pair of conductivities σ ′

1 and σ ′
2. Formulas for

the resulting cross-property bounds, correlating the two different effective conductivities, are
given later in equations (27.16) and (27.20). Kröner (1977) andMilton and Phan-Thien (1982)
take trial fields that are obtained from the series expansion for the polarization field in a nearly
homogeneous medium and obtain correlation function dependent bounds. Bornert, Stolz, and
Zaoui (1996) obtain bounds for assemblages of one or more types of coated inclusions by
taking polarization fields that are the same in each inclusion having a similar type (after spatial
translation and rescaling). They show that considerable simplifications result when, after an
affine transformation, the outer boundaries of the inclusions are all spherical with an isotropic
distribution of centers.

Substituting the trial polarization field (23.1) into the variational inequality gives

(

n∑
i=1

αi fi )2/(σ∗−σ0) ≤
n∑
i=1

α2
i fi/(σi−σ0)+

n∑
i=1

n∑
j=1

αiα j
∑
k �=0

χ̂∗
i (k)χ̂ j (k)k

2
	/(k

2σ0), (23.2)

where the last term involving Γ1 has been replaced by its equivalent expression in Fourier
space (using Plancherel’s theorem). This term looks difficult to evaluate, but since the in-
equality holds for each value of � = 1, 2, . . . , d , we are free to sum over � and use the
identity ∑

k �=0

χ̂∗
i (k)χ̂ j(k) = 〈(χi − 〈χi 〉)(χ j − 〈χ j〉)〉 = δi j fi − fi f j , (23.3)

which follows from Plancherel’s theorem. We thereby obtain the bound

d(
n∑
i=1

αi fi )2/(σ∗ − σ0) ≤ d
n∑
i=1

α2
i fi/(σi − σ0)+

n∑
i=1

n∑
j=1

αiα j (δi j fi − fi f j )/σ0,

which can be rewritten as

(

n∑
i=1

αi fi )2[d/(σ∗ − σ0)+ 1/σ0] ≤
n∑
i=1

α2
i fi [d/(σi − σ0)+ 1/σ0].

The amplitudes αi are now varied to minimize the right-hand side of this inequality while
keeping

∑n
i=1 αi fi fixed. By multiplying this latter constraint with a Lagrange multiplier−2λ

and adding it to the right-hand side, we see that the minimum occurs when

αi = λ[d/(σi − σ0)+ 1/σ0]−1. (23.4)

Making this substitution and letting σ0 approach σn gives the Hashin-Shtrikman (1962a)
bound:

σ∗ ≥ σ−
H S, (23.5)

where σ−
H S is given implicitly by the formula

1
d/(σ−

H S − σn)+ 1/σn
=
n−1∑
i=1

fi
d/(σi − σn)+ 1/σn

.

For a two-phase, three-dimensional medium the bound reduces to

σ∗ ≥ σ2 + 3 f1σ2(σ1 − σ2)

3σ2 + f2(σ1 − σ2)
= f1σ1 + f2σ2 − f1 f2(σ1 − σ2)

2

f2σ1 + f1σ2 + 2σ2
. (23.6)
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Comparing the right-hand side with (7.7) we see that this bound is attained for an assemblage
of coated spheres with phase 1 as the core and phase 2 as the coating. In fact, one can see
directly from the attainability criterion that the coated sphere assemblage necessarily must
attain the bound. Indeed, with σ0 = σ2 the polarization field in the coated sphere assemblage
is of the form (23.1), being zero in phase 2 and constant in phase 1. Therefore, since the trial
field matches the actual field, the Hashin-Shtrikman bound is attained.

The same reasoning can be applied (Milton 1981b) to show the optimality of the lower
bound (23.5) for n-phase composites whenever

σ−
H S ≤ σn−1. (23.7)

For three-phase mixtures the coated sphere assemblage that attains the bound is illustrated in
figure 23.1. To see the basic idea, consider a homogeneous matrix material, with conductivity

Figure 23.1. Cross section of the coated sphere assemblage that attains the Hashin-Shtrikman
bounds for three-phase mixtures. The coated spheres should fill all space. Phase 1 occu-
pies the cross-hatched region, phase 2 occupies the shaded region, and phase 3 occupies the
remaining portion of the coated spheres. Reprinted with permission from Milton (1981b).
Copyright 1981, Springer-Verlag.

σ∗ chosen to lie between σn−1 and σn , to which a uniform electric field e0 is applied. Coated
spheres of n − 1 different types are then inserted into the matrix, where type i has a core of
phase i surrounded by a coating of phase n, with its relative thickness chosen so that the field
in the matrix is not disturbed by the insertion. (The assumption that σ∗ lies between σn−1 and
σn ensures that this can be done.) The field within each core will then be uniform and parallel
to e0, and the overall effective conductivity will remain equal to σ∗ as more and more coated
spheres are added. Finally, when the coated spheres ultimately fill all space, the polarization
field with σ0 = σn will be of the form (23.1) with αn = 0. Therefore, the attainability criterion
implies that σ∗ must in fact equal σ−

H S for this microstructure. The flexibility that one has in
the choice of σ0 and in the choice of the proportions occupied by each type of coated sphere
in the final mixture guarantees that one can achieve any desired combination of the volume
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fractions f1, f2, . . . fn compatible with the condition (23.7). Lurie and Cherkaev (1985) found
that the bound was also attained by assemblages of multicoated spheres.

For two-dimensional, three-phase composites the condition (23.7) is satisfied if

f3 ≥ 2(1− f2)σ3(σ1 − σ2)

(σ2 + σ3)(σ1 − σ3)
.

In a recent development Gibiansky and Sigmund (2000) found two-dimensional, three-phase
microstructures that achieve the Hashin-Shtrikman lower bound under the less restrictive con-
dition that

f3 ≥ 2(
√
f2 − f2)σ3(σ1 − σ2)

(σ2 + σ3)(σ1 − σ3)
. (23.8)

Moreover, when this condition was not satisfied, they found microstructures that have the
lowest currently known conductivity.

From the other Hashin-Shtrikman variational principle (13.32) one obtains (by similar
analysis) an upper bound on the effective conductivity

σ∗ ≤ σ+
H S,

where σ+
H S is given implicitly by the formula

1
d/(σ1 − σ+

H S)− 1/σ1
=

n∑
i=2

fi
d/(σ1 − σi )− 1/σ1

.

Provided that
σ+
H S ≥ σ2, (23.9)

this bound is attained by assemblages of coated spheres of n − 1 different types, where type
i has a core of phase i + 1 and a coating of phase 1 (Milton 1981b) or, alternatively, by a
multicoated sphere assemblage (Lurie and Cherkaev 1985). For two-dimensional, three-phase
composites the condition (23.9) is satisfied if

f1 ≥ 2(1− f2)σ1(σ2 − σ3)

(σ1 + σ2)(σ1 − σ3)
.

Gibiansky and Sigmund (2000) found another class of two-dimensional, three-phase micro-
structures that achieve the Hashin-Shtrikman upper bound under the less restrictive condition
that

f1 ≥ 2(
√
f2 − f2)σ1(σ2 − σ3)

(σ1 + σ2)(σ1 − σ3)
.

When this condition was not satisfied, they found microstructures that have the highest cur-
rently known conductivity.

For a two-phase, three-dimensional medium, with σ1 > σ2, the upper bound reduces to

σ∗ ≤ σ1 − 3 f2σ1(σ1 − σ2)

3σ1 − f1(σ1 − σ2)
= f1σ1 + f2σ2 − f1 f2(σ1 − σ2)

2

f2σ1 + f1σ2 + 2σ1
, (23.10)

and is attained for an assemblage of coated spheres with phase 2 as the core and phase 1 as
the coating (Hashin and Shtrikman 1962a).
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There are two limits where the upper and lower Hashin-Shtrikman bounds coincide and
therefore uniquely determine the effective conductivity σ∗ of a d-dimensional isotropic com-
posite: when d = 1 the effective conductivity is the harmonic average,

σ∗ = σ−
H S = σ+

H S = [
n∑
i=1

fi/σi ]−1,

as expected, while in the limit as d →∞ the effective conductivity is the arithmetic average,

σ∗ = σ−
H S = σ+

H S =
n∑
i=1

fiσi ,

as noted, for example, by Torquato (1997).

23.2. Optimal bounds on the effective conductivity of an anisotropic
composite of two isotropic phases

The preceding analysis is easily generalized to anisotropic composites, for which the effective
conductivity tensor σ∗ is not necessarily proportional to the identity tensor. Instead of (23.2)
we have

(

n∑
i=1

αi fi )2v	 · (σ∗ − σ0I)
−1v	 ≤

n∑
i=1

α2
i fi

σi − σ0
+

n∑
i=1

n∑
j=1

αiα j
∑
k �=0

χ̂∗
i (k)χ̂ j(k)k

2
	

k2σ0
.

Summing this over �, making the substitutions (23.3) and (23.4), and letting σ0 approach σn
gives the lower bound

{Tr[(σ∗ − σnI)
−1]+ 1/σn}−1 ≥

n−1∑
i=1

fi {3/(σi − σn)+ 1/σn}−1. (23.11)

We also have the upper bound

{Tr[(σ1I − σ∗)−1]− 1/σ1}−1 ≥
n∑
i=2

fi {3/(σ1 − σi)− 1/σ1}−1, (23.12)

which follows analogously from the other Hashin-Shtrikman variational equality (13.32).
For a two-phase composite these bounds, after taking the inverses of both sides of the

inequalities, reduce to

f1
3∑
i=1

1
λ∗
i − σ2

≤ 3
σ1 − σ2

+ f2
σ2

, (23.13)

f2
3∑
i=1

1
σ1 − λ∗

i
≤ 3

σ1 − σ2
− f1

σ1
, (23.14)

where λ∗
1, λ

∗
2, and λ∗

3 are the eigenvalues of σ∗. Also, the arithmetic and harmonic mean
bounds imply that

f1σ1 + f2σ2 ≥ λ∗
i ≥ ( f1/σ1 + f2/σ2)

−1 for i = 1, 2, 3. (23.15)
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These bounds were first derived byMurat and Tartar (1985) and by Lurie and Cherkaev (1986)
using the translation method, which will described in the next chapter. As we see here, their
derivation from the Hashin-Shtrikman variational principles is straightforward [see also Kohn
and Milton (1986), Milton and Kohn (1988), and Zhikov (1988, 1991)].

The bounds can be pictured visually in a three-dimensional space where the axes represent
λ∗

1, λ
∗
2, and λ

∗
3. The effective tensor σ∗ is represented by one of at most six points in this space

(each being associated with a different permutation of the eigenvalues), which we also label as
σ∗. The arithmetic and harmonic mean bounds confine this point σ∗ to lie within a cube. The
additional bounds (23.13) and (23.14) further confine σ∗ to lie within a clam-shaped region
that intersects three faces of the cube [which are those faces touching the vertex (σa, σa, σa),
where σa = f1σ1 + f2σ2].

The bounds taken together completely characterize the G-closure at a fixed volume frac-
tion, that is, the set of all possible (conductivity tensor, volume fraction) pairs associated with
composites of phase 1 and phase 2. Tartar (1985) and Lurie and Cherkaev (1986) show that
any tensor σ∗ that is compatible with the bounds is in fact the effective conductivity tensor of
some composite obtained by mixing phases 1 and 2 in proportions f1 and f2. Points on the
lower or upper surface of the clam are attained by assemblages of ellipsoids of phase 1 coated
with phase 2 or ellipsoids of phase 2 coated with phase 1, respectively. The edges where the
clam surfaces meet the cube faces are attained by assemblages of coated elliptical cylinders
(which degenerate to simple laminate microstructures at the corners where these edges inter-
sect). One then takes pairs of diagonal effective tensors σ ′

∗ and σ
′′
∗ on the upper and lower

clam surfaces (each corresponding to a coated ellipsoid assemblage) such that σ ′
∗ − σ′′

∗ is
rank 1 (i.e., such that they both lie along a line parallel to the λ∗

i -axis for some i = 1, 2 or 3).
The effective tensor of any mixture of these two materials necessarily lies on the line joining
σ′

∗ and σ
′′
∗ (see section 5.3 on page 77, where the analogous result is discussed for elasticity)

and has the same volume fraction of phase 1. In this way one can reach any point allowed
by the bounds. Of course coated laminates can replace the assemblages of coated ellipsoids
since they have the same effective tensor; see section 7.8 on page 127. Conditions for the at-
tainability of the multiphase bounds (23.11) and (23.12) have been given by Milton and Kohn
(1988).

23.3. Bounds for two-phase, well-ordered materials
Now let us see how these variational principles apply to two-phase materials, without nar-
rowing our attention to conductivity problems alone, or assuming isotropy of the phases or
composite. For simplicity we assume that the tensor field L(x) takes the form

L(x) = L1χ1(x)+L2χ2(x), with L1 > L2 > 0.

Tensors L1 and L2 satisfying this condition are called well-ordered. To generate a bound we
need to choose a trial polarization field. The simplest choice is one that is constant in phase 1
and zero in phase 2:

P (x) = χ1(x)v. (23.16)

Substituting this into the Hashin-Shtrikman variational inequality,

〈P 0 · (L∗ − L0)
−1P 0〉 ≤ 〈P · [(L− L0)

−1 + Γ]P 〉 with P 0 = 〈P 〉, (23.17)

gives the bound

f 2
1 v · (L∗ −L0)

−1v ≤ f1v · (L1 − L0)
−1v + 〈v · χ1Γχ1v〉, (23.18)
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which holds for all choices ofL0 which are such thatL2 > L0 andΓ1L0Γ1 > 0. In particular,
by letting L0 approach L2 from below and noting that (23.18) holds for all choices of the
vector v, the bound reduces to

f1(L∗ − L2)
−1 ≤ (L1 −L2)

−1 + (1/ f1)Γ0χ1Γχ1Γ0, (23.19)

where now, because phase 2 is the reference medium,

Γ = Γ1(Γ1L2Γ1)
−1Γ1.

To evaluate the term Γ0χ1Γχ1Γ0 we apply Plancherel’s theorem, in the same manner as
was done in section 14.2 on page 292, and following Avellaneda (1987) we find that

Γ0χ1Γχ1Γ0 = f1 f2
∑
ξ

|ξ|=1

c(ξ)Γ(ξ), (23.20)

where the constants

c(ξ) = 1
f1 f2

∑
k �=0

k‖ξ

χ̂∗
1 (k)χ̂1(k) = 1

f1 f2

∑
k �=0

k‖ξ

χ̂∗
2 (k)χ̂2(k) (23.21)

satisfy ∑
ξ

|ξ|=1

c(ξ) = 1 and c(ξ) ≥ 0 for all ξ, (23.22)

as proved in section 14.2 on page 292. Since the harmonic mean bounds imply that L∗ > L2,
we can now rewrite the bound (23.19) in the equivalent form

L∗ > L2 + f1
[
(L1 −L2)

−1 + f2
∑
ξ

|ξ|=1

c(ξ)Γ(ξ)
]−1

. (23.23)

It follows directly from a simple argument [see, for example, Milton (1986)] that such
bounds are necessarily attained whenever the composite is a coated laminate with a core of
phase 1 and a coating of phase 2. In these geometries the attainability criterion is met. The
field E(x) is constant in the core phase, and consequently the trial polarization field (23.16)
matches the actual polarization field. What is more remarkable is what Avellaneda (1987)
observed, namely, that the constants c(ξ) of the coated laminate range over the entire set
allowed by (23.22). Given an arbitrary composite there exists a sequential coated laminate
that has the same volume fraction f1 of phase 1 and which has the same set of constants
c(ξ) as the given composite. In other words, no matter what the geometry of the composite
happens to be, there exists an associated coated laminate, with phase 1 as core and phase 2 as
coating, having an effective tensor L−

∗ such that

L∗ ≥ L−
∗ , (23.24)

which is just a restatement of the bound (23.23) once one realizes that the right-hand side
of (23.23) with the substitution (23.20) matches the effective tensor of the associated coated
laminate, as given by (9.46). (See also section 14.2 on page 292.)
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By applying the duality principle to obtain a lower bound on L−1
∗ we see that there exists

another associated coated laminate, with phase 2 as core and phase 1 as coating, having an
effective tensor L+

∗ such that L−1
∗ ≥ (L+

∗ )
−1 or, equivalently, such that

L+
∗ ≥ L∗. (23.25)

Again this coated laminate and the composite share the same volume fraction of phase 1,
and they share the same set of constants c(ξ). The bounds (23.24) and (23.25) are due to
Avellaneda (1987).

In particular, if we are interested in bounds on the energyW = E0 ·L∗E0/2, then (23.24)
and the corresponding dual bound imply the bounds

W+ ≥ W ≥ W− (23.26)

of Willis (1977), where

W− = W−(E0, {c}, f1)
= 1

2

{
E0 ·L2E0 + f1E0 ·

[
(L1 −L2)

−1 + f2
∑
ξ

|ξ|=1

c(ξ)Γ(ξ)
]−1
E0

}
,

W+ = W+(E0, {c}, f1)
= 1

2

{
E0 ·L1E0 + f2E0 ·

[
(L2 −L1)

−1 + f1
∑
ξ

|ξ|=1

c(ξ)Γ′(ξ)
]−1
E0

}
,

in which {c} represents the set of constants c(ξ) defined by (23.21) and

Γ(ξ) = Γ1(ξ)[Γ1(ξ)L2Γ1(ξ)]−1Γ1(ξ),

Γ′(ξ) = Γ1(ξ)[Γ1(ξ)L1Γ1(ξ)]−1Γ1(ξ).

The attainability of the bounds by coated laminates implies that these inequalities in con-
junction with (23.22) completely characterize all possible (W,E0, {c}, f1) quadruplets. In
other words, given any volume fraction f1 ∈ (0, 1), any set of constants c(ξ) compatible with
(23.22), an arbitrary applied field E0 ∈ U , and any value of W compatible with (23.26), one
can find a composite with f1 as the volume fraction of phase 1, with characteristic function
χ1(x) such that the right-hand side of (23.21) matches the given values of c(ξ) and with en-
ergy W for the given applied field E0. If the value of W coincides with one of the bounds
(23.26), then it suffices to take a coated laminate as our composite; otherwise, we need to
laminate together two such coated laminates.

In random composites these bounds can also be expressed in terms of the reduced second-
order correlation functions. An analysis essentially the same as that involved in the calculation
of the second-order term δL(2)

∗ in the series expansion [see (15.22)] shows that

Γ0χ1Γχ1Γ0 = f1 f2γ +
∫

|η|=1
f̆11(η)Γ∞(η), (23.27)

where f̆11(η) is the reduced second-order correlation function and γ = 〈Γ(n)〉n, in which
the average is over all unit vectors n. Substituting this back into (23.19) gives the optimal
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lower Willis bound

L∗ ≥ L2 + f1

[
(L1 − L2)

−1 + f2γ + 1
f1

∫
|η|=1

f̆11(η)Γ∞(η)

]−1

,

and similarly we have the upper Willis bound

L∗ ≤ L1 + f2

[
(L2 −L1)

−1 + f1γ ′ + 1
f2

∫
|η|=1

f̆11(η)Γ′
∞(η)

]−1

,

where γ ′ = 〈Γ′(n)〉n. Kim and Torquato (1993) found that these bounds were consistent
with numerical simulations of the conductivity of composites containing aligned spheroidal
inclusions. When the composite is geometrically isotropic, then f̆11(η) = 0 and the bounds
reduce to

L1 + f2
[
(L2 − L1)

−1 + f1γ ′
]−1

≥ L∗ ≥ L2 + f1
[
(L1 −L2)

−1 + f2γ
]−1

.

23.4. Bounds on the energy that involve only the volume fractions
One often seeks bounds that incorporate only the volume fraction f1 and tensors L1 and L2

but which do not depend on the set of constants c(ξ) or, equivalently, which do not depend on
the reduced correlation function f̆11(η).

If we are interested in bounds on the energy W = E0 · L∗E0/2, then from (23.26) we
obtain the bounds

max
{c}

W+(E0, {c}, f1) ≥ W ≥ min
{c}
W−(E0, {c}, f1) (23.28)

of Avellaneda (1987), where the maximum and minimum are to be taken over all sets of
constants {c} satisfying (23.22). Moreover, the optimality of the bounds (23.26) and (23.22)
implies the optimality of the bounds (23.28): They completely characterize the set of all possi-
ble (W,E0, f1) triplets. For the two-phase conductivity problem, with isotropic components
with tensors σ1I and σ2I , these bounds reduce to those obtained directly from the arithmetic
and harmonic mean bounds,

( f1σ1 + f2σ2)|e0|2 ≥ e0 · σ∗e0 ≥ ( f1/σ1 + f2/σ2)
−1|e0|2,

which is not surprising because these bounds are optimal.
For the elasticity problem, one does better with the bounds (23.28) as recognized by Kohn

and Lipton (1988), who used this approach to obtain optimal bounds on the energy of mixtures
of isotropic incompressible elastic materials. In two dimensions the formulas for the bounds
have been explicitly calculated and depend on the eigenvalues ε1 and ε2 of the average strain
tensor ε0. Allowing for the phases to be compressible, but assuming that the bulk and shear
moduli of the two phases are well-ordered with

κ1 > κ2 > 0 and µ1 > µ2 > 0,

the formula for the lower bound on the energy is
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ε0 · C∗ε0 ≥ (ε1 + ε2)
2/( f1/κ1 + f2/κ2)+ (ε1 − ε2)

2/( f1/µ1 + f2/µ2)

if (κ1 − κ2)( f1µ2 + f2µ1)|ε1 + ε2| ≤ (µ1 − µ2)( f1κ2 + f2κ1)|ε1 − ε2|;

ε0 · C∗ε0 ≥ (ε1 + ε2)
2( f1κ1 + f2κ2)+ (ε1 − ε2)

2( f1µ1 + f2µ2)

− f1 f2
[(κ1 − κ2)|ε1 + ε2| + (µ1 − µ2)|ε1 + ε2|]2

f1(µ2 + κ2)+ f2(µ1 + κ1)

if (µ2 + f1κ2 + f2κ1)|ε1 − ε2| ≥ f2(κ1 − κ2)|ε1 + ε2|
and (κ1 − κ2)( f1µ2 + f2µ1)|ε1 + ε2| ≥ (µ1 − µ2)( f1κ2 + f2κ1)|ε1 − ε2|;

ε0 · C∗ε0 ≥ µ2(ε1 − ε2)
2 + κ1κ2 + µ2( f1κ1 + f2κ2)

µ2 + f1κ2 + f2κ1
(ε1 + ε2)

2

if (µ2 + f1κ2 + f2κ1)|ε1 − ε2| ≤ f2(κ1 − κ2)|ε1 + ε2|, (23.29)

and the formula for the upper bound is

ε0 · C∗ε0 ≤ (ε1 + ε2)
2( f1κ1 + f2κ2)+ (ε1 − ε2)

2( f1µ1 + f2µ2)

− f1 f2
[(κ1 − κ2)|ε1 + ε2| − (µ1 − µ2)|ε1 + ε2|]2

f1(µ2 + κ2)+ f2(µ1 + κ1)

if (µ1 + f1κ2 + f2κ1)|ε1 − ε2| ≥ f1(κ1 − κ2)|ε1 + ε2|
and (κ1 + f1µ2 + f2µ1)|ε1 + ε2| ≥ f1(µ1 − µ2)|ε1 − ε2|;

ε0 · C∗ε0 ≤ µ1(ε1 − ε2)
2 + κ1κ2 + µ1( f1κ1 + f2κ2)

µ1 + f1κ2 + f2κ1
(ε1 + ε2)

2

if (µ1 + f1κ2 + f2κ1)|ε1 − ε2| ≤ f1(κ1 − κ2)|ε1 + ε2|;

ε0 · C∗ε0 ≤ κ1(ε1 + ε2)
2 + µ1µ2 + κ1( f1µ1 + f2µ2)

κ1 + f1µ2 + f2µ1
(ε1 − ε2)

2

if (κ1 + f1µ2 + f2µ1)|ε1 + ε2| ≤ f1(µ1 − µ2)|ε1 − ε2|. (23.30)

These bounds were first obtained by Gibiansky and Cherkaev (1984) using the translation
method in the context of the plate equation, and subsequently by Allaire and Kohn (1993a)
first using the Hashin-Shtrikman variational principles and then using the translation method.
Both papers also give explicit expressions for the optimal bounds when the moduli of the
phases are not well-ordered, that is, when (κ1 − κ2)(µ1 − µ2) < 0. This case is easily
treated using the translation method. Grabovsky (1996) has extended these energy bounds to
two-phase composites containing anisotropic phases.

Gibiansky and Cherkaev (1984) and Allaire and Kohn (1993a) have addressed the question
of what laminate microgeometries achieve these bounds. There are three different regimes in
each of the bounds, and the microstructures attaining the bounds change according to the
regime. The first regime of (23.29) corresponds to the Reuss-Hill bound and is achieved by
rank-1 laminates with two possible orientations relative to the applied strain ε0. The second
regime of (23.29) and the first regime of (23.30) are achieved by rank-1 laminates whose
layering direction is an eigenvector of ε0.

The bounds in the third regime of (23.29) and the second regime of (23.30) correspond
to the bounds of Zhikov (1988, 1991) and Milton and Kohn (1988) when mapped to bounds
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on the energy. These will be discussed in the following section. They are achieved by rank-2
laminates, by assemblages of coated ellipses, and by the Vigdergauz periodic microstructure
(Vigdergauz 1994; Grabovsky and Kohn 1995a, 1995b).

Finally, the third regime of (23.30) corresponds to a rank-2 laminate with its directions
of lamination matching two of the eigenvectors of ε0. One might wonder if there could be
some periodic microgeometry with no fine scale structure (like the Vigdergauz structure dis-
cussed in 23.9 on page 481) that could replace this second-rank laminate. By considering the
limiting case where one phase is void, Allaire and Aubry (1999) have shown that there is no
optimal periodic microgeometry in this regime. This is supported by analysis and numerical
calculations of Cherkaev, Grabovsky, Movchan, and Serkov (1998), who consider a periodic
microgeometry where there is one simply connected hole per unit cell occupying a fixed but
very small area of the unit cell. By examining the polarizability tensor, they investigated what
shaped hole minimizes the elastic energy when a fixed average stress τ 0 is applied. When
det(τ 0) is positive [which corresponds to the second regime in (23.30)] the optimal hole turns
out to be elliptical. However, when det(τ 0) is negative [which corresponds to the third regime
in (23.30)] they find the optimal hole is approximately rectangular and is not as effective at
minimizing the energy as a second-rank laminate.

The corresponding three-dimensional elastic energy bounds can be reduced to a form
requiring the maximization or minimization over all 3×3 symmetric matrices η. The analysis
simplifies if one assumes that the Lame moduli

λ1 = κ1 − 2µ1/3 and λ2 = κ2 − 2µ2/3

of both phases are positive. The optimal lower and upper bounds on the elastic energy are
those given by Allaire and Kohn (1993b),

ε0 · C∗ε0 ≥ (ε0,C2ε0)+ f1 maxη
[2ε0 · η − (η, (C1 − C2)

−1η)− f2g(η)],

ε0 · C∗ε0 ≤ (ε0,C1ε0)+ f2 minη
[2ε0 · η + (η, (C1 − C2)

−1η)− f1h(η)],

where g(η) and h(η) are functions of the eigenvalues η1, η2, and η3 of the symmetric matrix
η. Assuming that these are labeled with

η1 ≤ η2 ≤ η3,

we have

g(η) = (η1 − η3)
2

4µ2
+ (η1 + η3)

2

4(λ2 + µ2)
if η3 ≥ λ2 + 2µ2

2(λ2 + µ2)
(η1 + η3) ≥ η1,

g(η) = η2
1

λ2 + 2µ2
if η1 >

λ2 + 2µ2

2(λ2 + µ2)
(η1 + η3),

g(η) = η2
3

λ2 + 2µ2
if η3 <

λ2 + 2µ2

2(λ2 + µ2)
(η1 + η3),

and
h(η) = 1

λ1 + 2µ1
min{η2

1, η
2
2, η

2
3}.

An explicit expression for the optimal upper bound has been found for the case of a two-
phase composite where one of the phases is void (Allaire 1994a). It reduces to the expression
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obtained earlier using the translation method by Gibiansky and Cherkaev (1987), who also
obtained explicit expressions for the optimal lower bound when one of the phases is rigid.
In other cases the evaluation of the bounds currently requires a simple numerical calculation.
For phases that are not well-ordered, optimal lower bounds on the energy were obtained by
Allaire and Kohn (1994). The optimal upper bounds are not yet known.

This idea can be extended further, to obtain bounds on sums of energies when the com-
posite is successively subject to n applied fields,E (1)

0 ,E(2)
0 ,. . . E(n)

0 . Specifically, let

W� =
n∑
i=1

E(i)
0 · L∗E

(i)
0

denote this sum of energies. Then (23.26) implies the bounds

max
{c}

n∑
i=1

W+(E(i)
0 , {c}, f1) ≥ W� ≥ min

{c}

n∑
i=1

W−(E(i)
0 , {c}, f1). (23.31)

Again these are optimal bounds (Avellaneda 1987). For example, consider the lower bound,
and let {c−} denote a set of positive weights c−(ξ) that attains the minimum in (23.31). Since
the structure of the sequential coated laminate that attains the bounds (23.22) does not depend
on the choice ofE0, it follows that the geometry that attains the bounds when {c} = {c−} also
attains the lower bound (23.32). For a two-dimensional, two-phase elastic composite where
one of the phases is void, Cherkaev, Krog, and Küçük (1998) found a way to obtain an explicit
formula for the optimal lower bound on a sum of compliance energies. (To obtain the actual
formula it is necessary to correct some minor errors in their analysis.)

23.5. Bounds on the effective tensor that involve only the volume
fractions

Naturally the inequalities (23.31) imply bounds on the effective tensorL∗. Simpler, but equiv-
alent, bounds onL∗ can be obtained from (23.18). Taking n successive choices v1,v2, . . . ,vn
of v, setting L0 = L2, using (23.20), and adding the resulting inequalities gives

f1
n∑
i=1

vi · (L∗ −L2)
−1vi ≤

n∑
i=1

vi · (L1−L2)
−1vi + f2

∑
ξ

|ξ|=1

c(ξ)
n∑
i=1

vi ·Γ(ξ)vi , (23.32)

which can be rewritten in the equivalent form

f1 Tr[M(L∗ −L2)
−1] ≤ Tr[M(L1 − L2)

−1]+ f2
∑
ξ

|ξ|=1

c(ξ)Tr[MΓ(ξ)], (23.33)

whereM is the positive-semidefinite matrix

M =
n∑
i=1

vi ⊗ vi . (23.34)

This inequality is valid for all positive-semidefinite choices of M because any such M is
expressible in the form (23.34). The vi can be chosen to be the eigenvectors ofM multiplied
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by the square root of the corresponding eigenvalue. Since the attainability criterion implies
that (23.18) reduces to an equality for all choices of v when L0 = L2, and the composite is a
sequential coated laminate with a core of phase 1 and a coating of phase 2, it follows that the
bound (23.33) is attained for these geometries for all choices ofM ≥ 0.

There are special choices ofM for which Tr[MΓ(ξ)] is independent of ξ. These generate
a bound that depends only on f1 and the moduli L1 and L2. In particular, by takingM = L2

and using the fact that Tr[L2Γ(ξ)] = � we see the bound reduces to

f1 Tr[L2(L∗ −L2)
−1] ≤ Tr[L2(L1 −L2)

−1]+ f2�,

in which � is the rank of Γ1(k), that is, the dimension of the space onto which Γ1(k) projects.
This bound is attained whenever the composite is a sequential coated laminate with phase 1
as core and phase 2 as coating. Therefore all such sequential coated laminates are optimal
composites whose effective tensors lie on the “lower boundary” of the G-closure at constant
volume fraction. Similarly we have the complementary bound,

f2 Tr[L1(L1 − L∗)−1] ≤ Tr[L1(L1 −L2)
−1]− f1�,

which is attained whenever the composite is a sequential coated laminate with phase 2 as core
and phase 1 as coating. We see that these too are optimal composites whose effective tensors
lie on the “upper boundary” of the G-closure at constant volume fraction.

For example, in a two-phase composite with (possibly anisotropic) component conductiv-
ity tensors σ1 and σ2 having fixed orientation and satisfying σ1 ≥ σ2, the effective conduc-
tivity tensor σ∗ satisfies the bounds

f1 Tr[σ2(σ∗ − σ2)
−1] ≤ Tr[σ2(σ1 − σ2)

−1]+ f2,

f2 Tr[σ1(σ1 − σ∗)−1] ≤ Tr[σ1(σ1 − σ2)
−1]− f1 (23.35)

of Milton and Kohn (1988), which generalize the Murat-Tartar-Lurie-Cherkaev bounds
(23.13) and (23.14). In addition, the effective tensor σ∗ must of course also satisfy the arith-
metic and harmonic mean bounds,

f1σ1 + f2σ2 ≥ σ∗ ≥ [ f1σ−1
1 + f2σ−1

2 ]−1. (23.36)

In fact, the set of bounds (23.35) and (23.36) are optimal (Grabovsky 1993). They com-
pletely describe the set of all possible effective tensors σ∗. It is easy to see that the coated el-
lipsoid assemblages and the coated sequential laminates saturate either one of the two bounds
in (23.35), and it requires a little more work to show that any tensor σ∗ that is compatible
with (23.35) and (23.36) is in fact the effective conductivity tensor of a composite.

For the three-dimensional elasticity problem in a composite with two isotropic phases, the
bounds are correlation function independent for any isotropic fourth-order tensor

M = αhΛh + αsΛs with αh ≥ 0, αs ≥ 0, (23.37)

in which Λh and Λs = I −Λh are the isotropic fourth-order tensors, with elements

{Λh}i jk	 = 1
3δi jδk	, {Λs}i jk	 = 1

2 [δikδ j	 + δi	δk j ]− 1
3δi jδk	 (23.38)

that act as projections. The tensor Λh projects onto the one-dimensional space of matrices
proportional to the second-order identity matrix, while Λs projects onto the five-dimensional
space of trace free matrices.
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Let us suppose that the phases have bulk moduli κ1 and κ2 and shear moduli µ1 and µ2,
satisfying

κ1 ≥ κ2, µ1 ≥ µ2.

This ensures that the elasticity tensors

C1 = 3κ1Λh + 2µ1Λs and C2 = 3κ2Λh + 2µ2Λs

of the two phases are well-ordered with C1 ≥ C2. To evaluate Tr[MΓ(ξ)] it suffices to work
in a basis where the x1-axis is chosen aligned with ξ. When C2 is chosen as the reference
tensor we see from (23.38) and (9.59) that

Tr[ΛhΓ(ξ)] = 1
3κ2 + 4µ2

,

Tr[ΛsΓ(ξ)] = Tr[Γ(ξ)]− Tr[ΛhΓ(ξ)] = 3(κ2 + 2µ2)

µ2(3κ2 + 4µ2)
,

implying that

Tr[MΓ(ξ)] = αh

3κ2 + 4µ2
+ 3(κ2 + 2µ2)αs

µ2(3κ2 + 4µ2)
.

In particular, by settingM = Λh , we obtain the lower “bulk modulus type bound,”

f1 Tr[Λh(C∗ − C2)
−1] ≤ 1

3(κ1 − κ2)
+ f2

3κ2 + 4µ2
, (23.39)

and by settingM = Λs , we obtain the lower “shear modulus type bound,”

f1 Tr[Λs(C∗ − C2)
−1] ≤ 5

2(µ1 − µ2)
+ 3(κ2 + 2µ2) f2

µ2(3κ2 + 4µ2)
. (23.40)

When C1, C2, and C∗ are represented as 6 × 6 matrices as in (2.6), these bounds should be
applied with Λh and Λs represented as the 6× 6 matrices,

Λh =


1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Λs =


2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and the trace should be calculated as the usual trace of a 6 × 6 matrix. When the effective
elasticity tensor C∗ is isotropic these reduce to the familiar Hashin-Shtrikman (1963b) lower
bounds on the effective bulk modulus κ∗ and effective shear modulus µ∗, respectively,

f1
3(κ∗ − κ2)

≤ 1
3(κ1 − κ2)

+ f2
3κ2 + 4µ2

,

5 f1
2(µ∗ − µ2)

≤ 5
2(µ1 − µ2)

+ 3(κ2 + 2µ2) f2
µ2(3κ2 + 4µ2)

, (23.41)

which can be rewritten in the equivalent forms

κ∗ ≥ f1κ1 + f2κ2 − f1 f2(κ1 − κ2)
2

f2κ1 + f1κ2 + 4µ2/3
,

µ∗ ≥ f1µ1 + f2µ2 − f1 f2(µ1 − µ2)
2

f2µ1 + f1µ2 + µ2(9κ2 + 8µ2)/[6(κ2 + 2µ2)]
. (23.42)
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The bulk modulus bound was found independently by Hill (1963) using a different approach
[which did not depend on the sign of (κ1 − κ2)(µ1 − µ2)]. For two-dimensional composites
(fiber reinforced materials) analogous bounds on the effective elastic moduli were found by
Hill (1964) and Hashin (1965b).

Other choices of M of the form (23.37) do not generate any new bounds. They gen-
erate bounds that are linear combinations of the above ones, and therefore do not impose
any additional constraints on the possible values of C∗. Geometrically, in a 21-dimensional
space, where the axes label the different elements of the symmetric 6× 6 matrix representing
(C∗ − C2)

−1, the inequalities (23.39) and (23.40) each restrict (C∗ − C2)
−1 to lie on one side

of a hyperplane. The elastic tensors C∗ of coated laminate materials, with a core of phase
1 and a coating of phase 2, attain both bounds and therefore correspond to points within the
19-dimensional space at the intersection of both hyperplanes. In fact, Avellaneda (1987) has
shown that the elastic tensors C∗ of such laminates correspond to points in a 14-dimensional
linear space within this 19-dimensional space.

Similar expressions are obtained when C1 is chosen as a reference tensor, but with the
role of C2 replaced by C1 and with the signs of the inequalities reversed. We obtain the upper
“bulk modulus type bound,”

f2 Tr[Λh(C1 − C∗)−1] ≤ 1
3(κ1 − κ2)

− f1
3κ1 + 4µ1

, (23.43)

and the upper “shear modulus type bound,”

f2 Tr[Λs(C1 − C∗)−1] ≤ 5
2(µ1 − µ2)

− 3(κ1 + 2µ1) f1
µ1(3κ1 + 4µ1)

, (23.44)

which reduce to the Hashin-Shtrikman (1963b) upper bounds

κ∗ ≤ f1κ1 + f2κ2 − f1 f2(κ1 − κ2)
2

f2κ1 + f1κ2 + 4µ1/3
,

µ∗ ≤ f1µ1 + f2µ2 − f1 f2(µ1 − µ2)
2

f2µ1 + f1µ2 + µ1(9κ1 + 8µ1)/[6(κ1 + 2µ1)]
(23.45)

when the composite is isotropic. The upper and lower bulk and shear modulus type bounds
(23.39), (23.40), (23.43), and (23.44) for elastically anisotropic composites were obtained
independently by Zhikov (1988, 1991) and Milton and Kohn (1988).

Hashin and Shtrikman (1963b) noticed that the lower bulk modulus bound coincided with
the effective bulk modulus κ∗ of the coated sphere assemblage, as given by (7.13). They
also noticed that the upper bulk modulus bound is attained by a similar microgeometry,
but with the roles of the phases interchanged. Milton (1981b) found that the bulk modu-
lus bound for multiphase materials could also be realized by sphere assemblages in certain
parameter regimes. The realizability of the shear modulus bounds for two-phase media with
(κ1−κ2)(µ1−µ2) > 0 remained an open question until Roscoe (1973) [see also Norris (1985)
and Milton (1986)] found that they were attained by a hierarchical microstructure correspond-
ing to the differential scheme with randomly oriented platelike inclusions (see section 10.9 on
page 204). Francfort and Murat (1986) found that they were attained by finite-rank laminate
microstructures. The reason why these microstructures attain the bounds is simply, first, that
the strain field within one phase is constant and, second, that the structures have sufficient
symmetry to ensure that they are elastically isotropic (Milton 1986). Figure 23.2 on the next
page shows the first stages in the construction of an infinite-rank laminate attaining one of
the shear modulus bounds. Interestingly Lukkassen (1999) [see also Braides and Lukkassen
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Figure 23.2. The first stages in the construction of an infinite-rank laminate corresponding
to the stiffest elastically isotropic material that can be manufactured from two components
with bulk moduli κ1 > κ2 and shear moduli µ1 > µ2 mixed in fixed proportions f1 and
f2 = 1− f1. At each stage in the construction an infinitesimal volume fraction of component
1 is introduced until the desired volume fraction f1 of phase 1 is reached. The effective moduli
κ∗ and µ∗ of this structure, as calculated using the differential scheme (see section 10.9 on
page 204), coincide with the Hashin-Shtrikman bounds. Reprinted with permission from
Milton (1986). Copyright 1986, Springer-Verlag.

(2000)] proved that certain reiterated cell structures also attain the bounds. Instead of adding
layers with varying orientations at successively larger and larger length scales, one inserts ap-
propriate thin walled cell structures at successively larger and larger length scales. Inserting a
thin walled cell structure with, say, cubic cells has the same effect as layering in three orthog-
onal directions on three widely separated length scales. Gibiansky and Sigmund (2000) found
that the shear modulus bounds for multiphase materials could also be realized by hierarchical
or finite-rank microstructures in certain parameter regimes. Zhikov (1991) proved that the
Hashin sphere assemblage cannot attain the shear modulus bounds.

When both phases and hence the composite are incompressible, the lower and upper “shear
modulus type bounds” imply that

5∑
i=1

f2
2(µ∗i − µ2)

≤ 5
2(µ1 − µ2)

+ 3(κ2 + 2µ2) f2
µ2(3κ2 + 4µ2)

,

5∑
i=1

f2
2(µ1 − µ∗i )

≤ 5
2(µ1 − µ2)

− 3(κ1 + 2µ1) f1
µ1(3κ1 + 4µ1)

, (23.46)

in which the µ∗i , i = 1, 2, . . . , 5 are the five shear moduli of C∗ representing the eigenvalues
of C∗/2. Associated with each shear modulus µ∗i is a trace free average strain ε

(i)
0 such that

the resulting trace free average stress in the composite is

C∗ε
(i)
0 = 2µ∗iε

(i)
0 .

I presented these bounds (23.46) in 1986 at a symposium on nonclassical continuum mechan-
ics in Durham, England. They were also obtained by Lipton (1988, 1992), who proved that in
two dimensions they provide a complete set of bounds, characterizing the set of all possible
effective elasticity tensors.
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As another example, suppose that the composite has cubic symmetry, that is, C∗ takes the
form

C∗ = 3κ∗Λh + 2µ∗1Λs1 + 2µ∗2Λs2,

where κ∗ is the effective bulk modulus, µ∗1 and µ∗2 are the two effective shear moduli, and
Λs1 and Λs1 are the fourth-order projection tensors with elements

{Λs1}i jk	 = 1
2 [δikδ j	 + δi	δk j ]− δi jk	, {Λs2}i jk	 = δi jk	 − 1

3δi jδk	,

where δi jk	 equals one if i = j = k = � and is zero otherwise. The tensor Λs1 projects onto
the three-dimensional space of trace free matrices with zero diagonal elements while Λs2
projects onto the two-dimensional space of diagonal trace free matrices. The bounds on κ∗
remain the same as those given by Hashin and Shtrikman (1963b), while the bounds (23.40)
and (23.44) imply that

3 f1
2(µ∗1 − µ2)

+ f1
(µ∗2 − µ2)

≤ 5
2(µ1 − µ2)

+ 3(κ2 + 2µ2) f2
µ2(3κ2 + 4µ2)

,

3 f2
2(µ1 − µ∗1)

+ f2
(µ1 − µ∗2)

≤ 5
2(µ1 − µ2)

− 3(κ1 + 2µ1) f1
µ1(3κ1 + 4µ1)

. (23.47)

Thus a measurement µ∗1 can give information about µ∗2, and vice versa. Other uncoupled
bounds on the shear moduli µ∗1 and µ∗2 have been obtained by Avellaneda (1987). For
composites with transverse isotropy or orthotropic symmetry, various bounds on the moduli
have been obtained by Lipton (1991, 1992, 1994) and Lipton and Northrup (1994).

When more than two phases are present, or the phases are not well-ordered, or they are
anisotropic, the lower bulk modulus type bound (23.39) generalizes to

{(3κ0 + 4µ0)Tr[Λh(C∗ − C0)
−1]+ 1}−1

≥ 〈{(3κ0 + 4µ0)Tr[Λh(C(x)− C0)
−1]+ 1}−1〉, (23.48)

while the lower shear modulus type bound (23.40) generalizes to

{2µ0(3κ0 + 4µ0)Tr[Λs(C∗ − C0)
−1] + 6(κ0 + 2µ0)}−1

≥ 〈{2µ0(3κ0 + 4µ0)Tr[Λs(C(x) − C0)
−1]+ 6(κ0 + 2µ0)}−1〉, (23.49)

where the isotropic reference elasticity tensorC0 with bulk modulus κ0 > 0 and shear modulus
µ0 > 0 is chosen so that C(x) ≥ C0 for all x. By taking an isotropic reference tensor with
C0 ≥ C(x) for all x one obtains upper bounds that take the same form as (23.48) and (23.49)
but with the sign of the inequalities reversed; see Milton (1990) and Zhikov (1991) for further
details. We will refer to (23.39), (23.40), (23.48), and (23.49) and the corresponding upper
bounds as trace bounds.

When only two isotropic phases are present with non-well-ordered moduli

κ2 ≥ κ1 > 0, µ1 ≥ µ2 > 0,

one recovers the bounds of Hill (1963) and Walpole (1966) by setting κ0 = κ1 and µ0 = µ2 in
the bounds (23.48) and (23.49), and setting κ0 = κ2 and µ0 = µ1 in the corresponding upper
bounds. Hill’s bulk modulus bounds are given by the inequalities (23.42) and (23.45) and are
attained by assemblages of coated spheres. Walpole’s shear modulus bounds are given by

µ∗ ≥ f1µ1 + f2µ2 − f1 f2(µ1 − µ2)
2

f2µ1 + f1µ2 + µ2(9κ1 + 8µ2)/[6(κ1 + 2µ2)]
,

µ∗ ≤ f1µ1 + f2µ2 − f1 f2(µ1 − µ2)
2

f2µ1 + f1µ2 + µ1(9κ2 + 8µ1)/[6(κ2 + 2µ1)]
. (23.50)
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For two-dimensional composites (fiber reinforced materials) analogous bounds on the effec-
tive elastic moduli were found by Hill (1964) and Walpole (1969). In two dimensions it is still
not known whether these bounds of Walpole are attained or not, although Sigmund (2000) has
found microgeometries that come close to achieving the bound. In three dimensions Milton
(1981a) and Milton and Phan-Thien (1982) have obtained bounds that are always tighter than
those of Walpole but which do not include any additional information about the composite
microgeometry; see section 26.4 on page 558. Thus the three-dimensional Walpole bounds
can never be attained.

Other positive-semidefinite choices of the matrixM are also possible and generate ad-
ditional bounds. For a two-phase composite with well-ordered tensors L1 > L2 > 0, a
bound that is independent of the correlation functions for a general choice ofM can easily
be obtained. Following an idea of Khachaturyan (1966, 1983) and Kohn and Lipton (1988),
we take the infimum of the right-hand side of (23.33) as the set of positive weights c(ξ) are
varied over the entire set allowed by (23.22). Clearly the weights should be concentrated in
those directions ξ for which Tr[MΓ(ξ)] is at a maximum, giving

sup
{c}
c(ξ)Tr[MΓ(ξ)] = r(M), where r(M) = max

ξ
|ξ|=1

Tr[MΓ(ξ)]. (23.51)

This generates the lower trace bound

f1 Tr[M(L∗ −L2)
−1] ≤ Tr[M(L1 − L2)

−1]+ f2r(M) (23.52)

on the effective tensor L∗. By taking L1 as the reference tensor, we obtain the corresponding
upper trace bound. These generalized trace bounds (Milton and Kohn 1988) have been ex-
tended further by Allaire (1994b) to allow for matricesM that are not positive-semidefinite.

23.6. Bounds for two-phase composites with non-well-ordered tensors†
When the moduli L1 and L2 are not well-ordered, that is, when L1 − L2 is neither positive-
nor negative-semidefinite, we cannot setL0 = L1 or setL0 = L2 and maintain the inequality
L > L0. Consequently, it is necessary to consider other choices of L0. For such values of L0
there is no reason to restrict the choice of polarization fields to those that are zero in phase 2.
It is more appropriate to take a trial polarization field that is piecewise constant,

P (x) = χ1(x)w1 + χ2(x)w2. (23.53)

Then to obtain a bound we need to make three choices, namely, the choice of w1, the choice
of w2, and the choice of a reference tensor L0 satisfying

L1 > L0, L2 > L0, Γ1L0Γ1 ≥ 0.

This choice can be narrowed in an optimal way, down to the choice of L0 and the field
w1 − w2, once one recognizes that the only difficult term to evaluate in the variational in-
equality is the nonlocal term

〈P · Γ1P 〉 = (w1 −w2) ·
〈
χ1Γχ1(w1 −w2)

〉
,

which depends only on the difference w = w1 − w2. So we may as well vary w1 while
keeping w fixed to make the variational inequality as tight as possible. This is basically the
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same strategy as we employed in section 13.5 on page 278 to find the optimal choice of applied
field E0 for a given trial polarization field P .

Let us begin [followingGibiansky andMilton (1993)] by considering a completely general
trial polarization field P (x), which we express in the form

P (x) = P 0 + P ′(x), where 〈P ′〉 = 0.

Substituting this into the variational inequality (23.17) and placing the nonlocal term on the
left-hand side of the equation gives

〈P ′ · ΓP ′〉 ≥ P 0 · [(L∗ −L0)
−1 − f1(L1 −L0)

−1 − f2(L2 −L0)
−1]P 0

−2P 0 · 〈(L−L0)
−1P ′〉 − 〈P ′ · (L− L0)

−1P ′〉. (23.54)

The matrix [(L∗−L0)
−1− f1(L1−L0)

−1− f2(L2−L0)
−1] appearing here is clearly negative-

semidefinite, as can be seen by substituting P ′ = 0 into this inequality. For simplicity let us
assume that it is strictly negative-definite. Then the choice of P 0 that maximizes the right-
hand side of the above equation is

P 0 = [(L∗ −L0)
−1 − f1(L1 − L0)

−1 − f2(L2 −L0)
−1]−1〈(L−L0)

−1P ′〉.
Inserting this back in (23.54) gives the bound

〈P ′ · ΓP ′〉 ≥ −〈P ′ · (L−L0)
−1P ′〉

+ 〈(L−L0)
−1P ′〉 · [ f1(L1 −L0)

−1 + f2(L2 −L0)
−1 − (L∗ −L0)

−1]−1〈(L−L0)
−1P ′〉.

In particular, when the trial polarization field is given by (23.53), then

P ′(x) = (χ1(x)− f1)w = f2w in phase 1,
= − f1w in phase 2,

and it follows that

〈(L− L0)
−1P ′〉 = f1 f2[(L1 −L0)

−1 − (L2 −L0)
−1]w,

〈P ′ · (L− L0)
−1P ′〉 = f1 f2w · [ f2(L1 −L0)

−1 + f1(L2 −L0)
−1]w.

Consequently the bound becomes

1
f1 f2

〈w · χ1Γχ1w〉 ≥ w · Y ((L∗ −L0)
−1, (L1 −L0)

−1, (L2 − L0)
−1)w,

and in view of the identities (19.5) and (19.6) satisfied by the Y -transformation, this simplifies
to

1
f1 f2

〈w · χ1Γχ1w〉 ≥ w · (Y ∗ +L0)
−1w, (23.55)

where Y ∗ is the Y -tensor given by (19.3).
This bound is clearly equivalent to the bound (19.47) derived directly from the variational

principles for the Y -tensor.
We will prove in section 24.10 on page 516 that Y ∗ + L0 is necessarily positive-semi-

definite for all choices of L0 that are quasiconvex and such that L1 − L0 and L2 − L0 are
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positive-semidefinite. Using this fact and the relation (23.20) we see that (23.55) can be
rewritten as

Y ∗ +L0 ≥ [
∑
ξ

|ξ|=1

c(ξ)Γ(ξ)]−1,

where the inverse is to be taken on the space U .
For random composites, this bound can be expressed in terms of the reduced second-order

correlation function:

Y ∗ +L0 ≥
[
γ + 1

f1 f2

∫
|η|=1

f̆11(η)Γ∞(η)
]−1

,

and when the composite is geometrically isotropic this simplifies to the bound

Y ∗ + L0 ≥ γ−1.

Of course, instead of taking just one trial field, we can take a succession of trial fields and
add together the resulting inequalities. In the same way that (23.18) implies (23.33), so too
does (23.55) imply that the bound

Tr[M(Y ∗ +L0)
−1] ≤

∑
ξ

|ξ|=1

c(ξ)Tr[MΓ(ξ)]

is valid for all choices of positive-semidefinite matricesM . Again special choices ofM lead
to bounds that do not depend on the set of constants c(ξ). For example, by takingM = L0
we obtain the inequality

Tr[L0(Y ∗ +L0)
−1] ≤ �.

For other positive-semidefinite choices ofM we can use (23.51) to obtain a bound that does
not depend on the correlation functions:

Tr[M(Y ∗ +L0)
−1] ≤ r(M). (23.56)

This trace bound reduces to the trace bound (23.52) when L1 > L2 and L0 = L2.

23.7. Bounding the complex effective moduli of an isotropic composite
of two isotropic phases†

As an example of the application of the bounds in the previous section, let us use them to
bound the complex dielectric constant of an isotropic, three-dimensional composite of two
isotropic phases. We have seen in section 11.5 on page 234 that the Cherkaev-Gibiansky
transformation allows us to express the constitutive law for the complex dielectric equations
in the form(

Im(e)
Im(d)

)
= L

(−Re(d)
Re(e)

)
with L =

(
[ε′′]−1 [ε′′]−1ε′

ε′[ε′′]−1 ε′′ + ε′[ε′′]−1ε′

)
. (23.57)

In a composite comprised of two isotropic phases, with complex dielectric constants ε1 =
ε′

1 + iε′′
1 and ε2 = ε′

2 + iε′′
2 , the associated tensors

L1 =
(
I/ε′′

1 ε′
1I/ε

′′
1

ε′
1I/ε

′′
1 ε′′

1I + (ε′
1)

2I/ε′′
1

)
, L2 =

(
I/ε′′

2 ε′
2I/ε

′′
2

ε′
2I/ε

′′
2 ε′′

2I + (ε′
2)

2I/ε′′
2

)
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are not well-ordered, each having unit determinant. If the composite itself is isotropic, with
complex dielectric constant ε∗ = ε′

∗ + iε′′
∗ , one can show [following Gibiansky and Milton

(1993)] that the Y -tensor associated with L(x) is

Y∗ =
(

I/y ′′
ε −y ′

εI/y
′′
ε

−y ′
εI/y

′′
ε y ′′

ε I + (y ′
ε)

2I/y ′′
ε

)
,

where

yε = y ′
ε + iy ′′

ε = − f2ε1 − f1ε2 + f1 f2(ε1 − ε2)
2

f1ε1 + f2ε2 − ε∗
is the complex y-parameter associated with ε∗. (The formula for Y∗ in terms of yε is quite
similar to the formula for L1 and L2 in terms of ε1 and ε2, except for the appearance of the
minus signs in the off-diagonal blocks.)

Let us take as a reference medium the isotropic tensor

L0 =
(
α1I α2I
α2I α3I

)
,

where the parameters α1, α2, and α3 remain to be chosen. The differential constraints on the
fields appearing in the constitutive law (23.57) imply that

Γ1(ξ) =
(
I − ξ ⊗ ξ 0

0 ξ ⊗ ξ
)

for all unit vectors ξ. Consequently, the �-operator associated with the reference medium is

Γ(ξ) = Γ1(ξ)[Γ1(ξ)L0Γ1(ξ)]−1Γ1(ξ) =
(
(I − ξ ⊗ ξ)/α1 0

0 ξ ⊗ ξ/α3

)
,

and the quasiconvexity requirement that Γ1L0Γ1 be positive-semidefinite will be satisfied if
and only if α1 and α3 are both nonnegative.

With an isotropic tensor M of the form

M =
(

w2
1I w1w2I

w1w2I w2
2I

)
,

where w1 and w2 are arbitrary scalars, a simple calculation shows that

Tr[M(Y∗ +L0)
−1] = 3 ( w1 w2 )G

−1
(
w1

w2

)
, r(M) = ( w1 w2 )A

(
w1

w2

)
,

in whichG andA are the 2× 2 matrices

G =
(

α1 + 1/y ′′
ε α2 − y ′

ε/y
′′
ε

α2 − y ′
ε/y

′′
ε α3 + y ′′

ε + (y ′
ε)

2/y ′′
ε

)
, A =

(
2/α1 0
0 1/α3

)
.

Since the bounds (23.56) hold for every choice of w1 and w2, we have the matrix in-
equality 3G−1 ≤ A. The positive-semidefiniteness of G (which is implied by the positive-
semidefiniteness of Y∗ + L0 when L0 is quasiconvex and L1 − L0 and L2 − L0 are both
positive-semidefinite) allows us to rewrite this asG ≥ 3A−1 or, equivalently,(

1/y ′′
ε − α1/2 α2 − y ′

ε/y
′′
ε

α2 − y ′
ε/y

′′
ε y ′′

ε + (y ′
ε)

2/y ′′
ε − 2α3

)
≥ 0.
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This matrix inequality bears a close resemblance to the constraints(
1/ε′′

1 − α1 ε′
1/ε

′′
1 − α2

ε′
1/ε

′′
1 − α2 ε′′

1 + (ε′
1)

2/ε′′
1 − α3

)
≥ 0,(

1/ε′′
2 − α1 ε′

2/ε
′′
2 − α2

ε′
2/ε

′′
2 − α2 ε′′

2 + (ε′
2)

2/ε′′
2 − α3

)
≥ 0,

which are necessary and sufficient to ensure the positive-semidefiniteness of L1 − L0 and
L2−L0. This resemblance can be made closer by changing basis so that the matrix inequality
reads (

2/y ′′
ε − α1 y ′

ε/y
′′
ε − α2

y ′
ε/y

′′
ε − α2 y ′′

ε /2+ (y ′
ε)

2/2y ′′
ε − α3

)
≥ 0.

In other words, if

M(z) =
(
1/z ′′ − α1 z ′/z ′′ − α2

z ′/z ′′ − α2 z′′ + (z ′)2/z ′′ − α3

)
is positive-semidefinite for z = z ′′ + i z ′′ = ε1 and for z = ε2, then it is also positive-
semidefinite for z = yε/2. A necessary condition for positive-semidefiniteness is that the
determinant be nonnegative, which, assuming that z ′′ > 0, reduces to the inequality

(α1z′′ + α2
2 − α1α3)(1/α1 − z ′′)− α1(z ′ − α2/α1)

2 ≥ 0. (23.58)

It confines z to a lie inside a disk D centered along the line z ′ = α2/α1 and intersecting this
line at z ′′ = 1/α1 and at z ′′ = α3 − α2

2/α1. Conversely, given a disk D intersecting the upper
half-plane z ′′ > 0, we can find parameters α1, α2, and α3, with α1 > 0, such that the disk
lies below and tangent to the line z ′′ = 1/α1 (which determines α1), is centered on the line
z ′ = α2/α1 (which determines α2), and intersects this line at z ′′ = 1/α1 and at z ′′ = α3−α2

2/α1

(which determines α3). The idea now is to interpret the constraints and inequalities in terms of
the disk D. Since the leading diagonal element ofM(z) is positive when 1/α ′′

1 ≥ z ′′ ≥ 0, the
matrixM (z) will be positive-definite if and only if z is in the upper half-plane and inside the
disk D. The positivity of α1 and α3 is guaranteed provided that the disk D intersects the upper
half-plane and does not contain the origin; that is, (23.58) must be violated when z ′ = z ′′ = 0.

Thus we obtain a geometrical interpretation of the bounds: Any disk D containing the
points ε1 and ε2 and not containing the origin must necessarily contain the point yε/2. (Notice
that the disk must necessarily intersect the upper half-plane because ε1 and ε2 lie in the upper
half-plane.) It follows that yε/2 lies inside the region of intersection of all such disks, that
is, yε/2 must lie in the lens-shaped region bounded on one side by the straight line joining ε1

and ε2 and on the other side by the circular arc joining ε1 and ε2, which when extended passes
through the origin. This bound was first obtained using the analytic method (Milton 1980;
Bergman 1980); see figure 27.1 on page 570, where the region Ω represents this bound.

The advantage of the variational approach is that it can be easily applied to bounding the
complex bulk modulus κ∗ and complex shear modulus µ∗ of an isotropic, three-dimensional
composite of two isotropic viscoelastic phases with complex bulk moduli κ1 and κ2 and com-
plex shear moduli µ1 and µ2. The bounds are best expressed in terms of the y-parameters

yκ = − f2κ1 − f1κ2 + f1 f2(κ1 − κ2)
2

f1κ1 + f2κ2 − κ∗
, yµ = − f2µ1 − f1µ2 + f1 f2(µ1 − µ2)

2

f1µ1 + f2µ2 − µ∗
.

Gibiansky and Milton (1993) have shown that the bulk y-parameter yκ lies inside any disk
in the complex plane that contains the points 4µ1/3 and 4µ2/3 but which does not contain
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the origin and the points −κ1 and −κ2. To find the best bounds implied by these bounds one
should draw the straight line joining 4µ1/3 to 4µ2/3 and the three circular arcs joining 4µ1/3
and 4µ2/3, which when extended pass through the origin, the point −κ1, or the point −κ2.
The outermost pair of these four curves defines the boundary of a lens-shaped region within
which yκ is confined to lie; see figure 23.3. When the arc whose extension passes through

Figure 23.3. The construction of the bounds on yκ , as described in the text, for a three-
dimensional composite of two isotropic phases with complex elastic moduli (κ1, µ1) = (1+
2i, i) and (κ2, µ2) = (1, 1). The various points marked as solid dots on the straight line
and outermost circular arc correspond to the values of yκ for particular microgeometries.
Reprinted from Gibiansky and Milton (1993).

−κ1 (or−κ2) is outermost, then this bound is optimal, being attained by doubly coated sphere
assemblages. Various points on the straight line and on the circular arc whose extension passes
through the origin also correspond to specific microgeometries. When the volume fraction f1
of phase 1 is unknown one can take the union of the resulting lens-shaped regions in the κ∗-
plane as f1 ranges between 0 and 1. Gibiansky and Lakes (1993) showed that this union is
itself lens-shaped and given by a simple geometric construction with κ1 and κ2 at the corners
of the lens.

Milton and Berryman (1997) have shown that the shear y-parameter yµ lies inside any
disk that does not contain the origin but contains the four points γ (c)µ1, γ (c)µ2, γ (c)κ1/c,
and γ (c)κ2/c for some nonnegative value of c, where γ (c) = (8+ 9c)/6(2+ c). The region
of intersection of all such disks as c varies is not lens-shaped, but an algorithm is provided for
constructing it. Bounds on the complex bulk and shear moduli of two-dimensional, two-phase
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viscoelastic composites are also available (Gibiansky and Milton 1993; Gibiansky, Milton,
and Berryman 1999).

23.8. Using quasiconformal mappings to obtain bounds
Suppose that we have a two-dimensional isotropic composite composed of an isotropic mate-
rial, phase 0, with conductivity σ0I occupying a volume fraction f0 mixed with a polycrys-
talline material assembled from a crystal having a conductivity tensor with eigenvalues λ1
and λ2 such that λ2 > λ1 > 0 and σ0 ≥

√
λ1λ2. To obtain a lower bound on the effective

conductivity σ∗ = σ∗I of this mixture we follow an argument of Astala and Nesi (2001).
Briefly, the quasiconformal mapping introduced in section 8.6 on page 152 is used to map to
an equivalent conductivity problem where the conductivity tensor σ ′(x′) is locally isotropic
and then the Hashin-Shtrikman bounds are applied to this problem.

The isotropy of the original composite implies the isotropy of the effective tensorσQ∗ asso-
ciated with the conductivity tensor field σQ(x) = σ(x)/√detσ(x), and because detσQ∗ = 1
it follows that σQ∗ = I . Hence (8.29) implies that σ′

∗ = σ∗I . After the quasiconformal
mapping we see from (8.28) that phase 0 will maintain its conductivity σ0I while the poly-
crystalline phase will now have conductivity

√
λ1λ2I . We let f ′

0 denote the volume fraction
occupied by phase 0 after the quasiconformal mapping. Applying the Hashin-Shtrikman lower
bound (23.5) to this two-dimensional mixture of two isotropic conducting phases gives

σ∗ ≥
√
λ1λ2 + 2 f ′

0(σ0 −
√
λ1λ2)

√
λ1λ2

2
√
λ1λ2 + (σ0 −

√
λ1λ2)(1− f ′

0)
. (23.59)

For this bound to be useful we need to find some formula that relates the volume fractions
f ′
0 and f0. Astala and Nesi (2001) show that there is a maximal area distortion under such
K -quasiconformal mappings giving the inequality

f ′
0 ≤ f K0 , where K =

√
λ2/λ1 > 1. (23.60)

Substituting this back into (23.59) produces the bound of Nesi (1996):

σ∗ ≥
√
λ1λ2 + 2 f K0 (σ0 −

√
λ1λ2)

√
λ1λ2

2
√
λ1λ2 + (σ0 −

√
λ1λ2)(1− f K0 )

, (23.61)

which is optimal, being attained by an assemblage of circles with a core of phase 0 and a
polycrystalline coating [see equation (7.34)].

The above argument involves a little “cheating,” since Astala and Nesi use (23.61) [or
more specifically its generalization to anisotropic composites (Milton and Nesi 1999)] to
prove (23.60). However the argument shows the usefulness of formulas for the maximal
area distortion of quasiconformal mappings for establishing the bound (23.61). In a major
advance, Astala (1994) and Erëmenko and Hamilton (1995) obtained bounds on the area dis-
tortion associated with a certain large class of quasiconformal mappings: Astala, following a
conjecture of Gehring and Reich (1966), found a bound with the optimal exponent K while
Eremenko and Hamilton established the bound with the optimal exponent and optimal pref-
actor, under some normalization condition. Each mapping x′(x) = (φQ(x), ψQ(x)) in this
class is associated with the potentials that solve the conductivity equations (8.25) in a medium
containing a single circular disk with conductivity σQ(x) satisfying detσQ(x) = 1 and hav-
ing bounded eigenvalues surrounded by a material with conductivity σQ(x) = I subject to
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a uniform applied field at infinity. Nesi (1996) used these bounds to establish (23.61). It
is hoped that, at some time in the future, a direct proof of (23.60) will be found, thereby
validating the alternative argument of Astala and Nesi presented here.

23.9. Optimal two-dimensional microgeometries: Reduction to a
Dirichlet problem†

The microgeometries attaining the two-phase Hashin-Shtrikman conductivity bounds (23.6)
and (23.10) or the more general Murat-Tartar-Lurie-Cherkaev bounds (23.13) and (23.14) are
certainly not unique. The coated ellipsoid geometries are quite different than the sequential
laminate microgeometries, yet they both attain the bound. There is nonuniqueness even within
each class of microstructure: There are manyways to pack the coated ellipsoids to fill all space
and many possible orderings of the direction of lamination in the sequential laminate that lead
to the same effective tensor. In three dimensions the question of what other microgeometries
attain these bounds is still unresolved. However, in two dimensions there is a systematic
procedure for generating these optimal microstructures. The key idea is to reinterpret the
problem as a Dirichlet problem for x2 (with x1 being the conjugate harmonic function) on a
domain consisting of a periodic array of parallel slits, with appropriately chosen potentials
as coordinates, as illustrated in figure 23.4. This approach is commonly used to solve two-
dimensional free boundary problems; see, for example, Saffman and Taylor (1958).

w k

k

1

1

c c1 2

a1

a2

1Ω
Ω2

k2

k2
w1

Ω 2

Ω12

1x x2z= + i plane u1 u2u = + i plane

Figure 23.4. Finding a two-dimensional periodic microgeometry attaining the conductivity
bounds is equivalent to solving a Dirichlet problem on a domain consisting of a periodic
array of parallel slits, with a prescribed potential that varies linearly along each slit. In this
example the unit cell contains m = 2 inclusions of phase 1, within which the polarization
field p(x) = j(x)− σ2e(x) is uniform.

Let us look for a two-dimensional conducting composite of two isotropic phases that at-
tains the two-dimensional version of the bounds (23.13):

f1
2∑
i=1

1
λ∗
i − σ2

≤ 2
σ1 − σ2

+ f2
σ2

. (23.62)

We suppose that the composite geometry is periodic and such that a given unit cell� contains
(for example) m inclusions of phase 1, which we label as � j , j = 1, 2, . . . ,m. Without loss
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of generality let us suppose that phase 2 has conductivity σ2 = 1. The attainability criterion
tells us that the electric field within phase 1 must necessarily be constant no matter what the
direction of the applied field. Let us direct our applied electric field so that the electric field
within phase 1 is aligned parallel to the x1-axis. We then set z = x1 + i x2 and introduce two
complex numbers, w1 = w′

1 + w′′
1 and w2 = w′

2 + w′′
2 , representing the lattice vectors of

periodicity of the microstructure. The electric potential φ(z) within phase 2 is the sum of a
periodic function and a function that is linear in x1 and x2, that is, it satisfies the conditions

φ(z +w1) = φ(z)+ a ′
1(σ1 − 1)+w′

1α for all z,
φ(z +w2) = φ(z)+ a ′

2(σ1 − 1)+w′
2α for all z,

φ(z) = αx1 + c j(σ1 − 1) for z ∈ ∂� j for all j,

for appropriate choices of the real constants a ′
1, a

′
2, c1, c2, . . . , cm and α where ∂� j and

denotes the boundary of inclusion � j . Here the terms w′
1α, w

′
2α and the factors of (σ1 − 1)

have been introduced to simplify subsequent calculations.
Now, since the current field j(x) is divergence free, there exists a continuous potential

ψ(x) such that j = R⊥∇ψ . Within phase 2 this potential satisfies the conditions

ψ(z + w1) = ψ(z)+ a ′′
1 (σ1 − 1)+w′′

1α for all z,
ψ(z + w2) = ψ(z)+ a ′′

2 (σ1 − 1)+w′′
2α for all z,

ψ(z) = ασ1x2 + d j(σ1 − 1) for z ∈ ∂� j for all j,

for appropriate choices of the real constants a ′′
1 , a

′′
2 , and d1, d2, . . . , dm .

Also, because σ2 = 1 the constitutive relation j(x) = σ(x)e(x) within phase 2 reduces
to the Cauchy-Riemann equation, R⊥∇ψ = ∇φ, which implies that φ + iψ is an analytic
function of z = x1 + i x2 inside phase 2. The complex potential

u(z) = u1(z)+ iu2(z) = (φ + iψ − αz)/(σ1 − 1) (23.63)

is also an analytic function of z and satisfies the conditions

u(z +w1) = u(z)+ a1, u(z +w2) = u(z)+ a2 for all z,
u1(z) = c j , u2(z) = αx2 + d j for z ∈ ∂� j for all j,

where a1 = a′
1 + ia′′

1 and a2 = a′
2 + ia′′

2 .
Now assume that the function u(z) is univalent [i.e., that u(z1) = u(z2) implies z1 = z2]

and consider z = x1 + i x2 as an analytic function of u = u1 + iu2. It satisfies

z(u + a1) = z(u)+w1, z(u + a2) = z(u)+w2 for all u,
x2(u) = (u2 − d j)/α when u ∈ �̂ j for all j,

where �̂ j , for j = 1, 2, . . . ,m, is the slit

�̂ j = {u = iu1 + iu2 | u1 = c j and k+
j ≥ u2 ≥ k−

j }

parallel to the u2-axis in the complex u-plane and

k+
j = max

z∈∂� j

{u2(z)}, k−
j = min

z∈∂� j

{u2(z)}.
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The function x2(u) is not periodic. To obtain a periodic harmonic function with prescribed
values on the slits we introduce the analytic function

g(u) = (a ′
1a

′′
2 − a′′

1a
′
2)z(u)+ (w′′

1a2 −w′′
2a1)u, (23.64)

where a1 = a′
1 − ia′′

1 and a2 = a′
2 − ia′′

2 . It has an imaginary part

g2(u) = (a ′
1a

′′
2 − a′′

1a
′
2)x2(u)− (w′′

1a
′′
2 −w′′

2a
′′
1 )u1 + (w′′

1a
′
2 −w′′

2a
′
1)u2,

satisfying

g2(u + a1) = g2(u), g2(u + a2) = g2(u) for all u,
g2(u) = u2 − e j when u ∈ �̂ j for all j, (23.65)

where
e j = d j(a′

1a
′′
2 − a′′

1a
′
2)/α + c j (w′′

1a
′′
2 −w′′

2a
′′
1 ), (23.66)

and we have assumed without loss of generality (by adjusting the magnitude of the applied
field if necessary) that

α = (a′
1a

′′
2 − a′′

1a
′
2)/(1− w′′

1a
′
2 +w′′

2a
′
1), (23.67)

to ensure that the coefficient of u2 along the slits in (23.65) equals 1. Thus the function g2(u)
is harmonic and periodic in u (with lattice vectors a1 and a2) and has prescribed values on the
slits �̂ j for j = 1, 2, . . . ,m.

Finding g2(u) is a Dirichlet problem with the entire complex plane minus the slits as the
domain. The solution to such a Dirichlet problem is guaranteed to exist and can be found
numerically. After obtaining g2(u) and the conjugate harmonic function g1(u), one needs to
check that z(u) given implicitly by (23.64) is univalent. If it is, then the values of g1(u) and
g2(u) around the boundary of each slit provide us with a parameterization of the boundaries
of the inclusions � j . The parameterization of the boundary of inclusion � j is

x1(u2) = g1(c j + iu2)− u2(w
′′
1a

′′
2 −w′′

2a
′′
1 )− c j(w′′

1a
′
2 −w′′

2a
′
1)

a′
1a

′′
2 − a′′

1a
′
2

,

x2(u2) = u2(1−w′′
1a

′
2 + w′′

2a
′
1)+ c j(w′′

1a
′′
2 −w′′

2a
′′
1 )− e j

a′
1a

′′
2 − a′′

1a
′
2

, (23.68)

as u2 is varied between k−
j and k

+
j , where the value of g1(c j + iu2) depends on which side of

the slit one is on. The function u(z) gives the potential φ(z) in the phase 2, through (23.63).
Notice that we are free to vary σ1 while keeping u(z), the microgeometry, and all other

parameters fixed. In this way we see that there is a solution with the electric field constant
inside phase 1 and aligned parallel to the x1-axis for all values of σ1. By applying the duality
transformation of section 3.1 on page 47 we see that there is also a solution with the electric
field constant inside phase 1 and aligned parallel to the x2-axis for all values of σ1. Finally,
by superimposing these solutions we see that the electric field in phase 1 will be constant for
all σ1 and for all directions of the applied field. Thus the effective conductivity tensor of the
microstructure will attain the bound (23.62) for all values of σ1 > σ2 = 1.

Given a specific solution g2(u) to the Dirichlet problem one can change the lattice vectors
w1 and w2 while keeping g(u) and the parameters a1, a2, c j , k+

j , k
−
j , and e j fixed. The values

of α and the parameters d j must be adjusted so that (23.67) and the relation

d j = e j − c j (w′′
1a

′′
2 −w′′

2a
′′
1 )

1−w′′
1a

′
2 +w′′

2a
′
1

,
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implied by (23.66), remains valid. According to (23.68), the new boundary (x̃1(u2), x̃2(u2))

of inclusion � j is related to the old boundary (x1(u2), x2(u2)) of inclusion � j via a transfor-
mation of the form

x̃1(u2) = x1(u2)+ q jx2(u2)+ r j , x̃2(u2) = s j x2(u2)+ t j , (23.69)

where the constants q j , r j , s j , and t j do not depend on u2. Thus the shape of each inclusion
undergoes an affine transformation, which is different than the affine transformation that the
unit cell � undergoes. In this way one generates other microgeometries attaining the bound,
each with a different unit cell of periodicity.

The easiest case to solve is of course when there is just a single slit in the unit cell. In
particular, consider the square 1 ≥ u1 ≥ −1, 1 ≥ u2 ≥ −1 as a unit cell with a slit of
length 2�, with � < 1, positioned along the u2-axis and centered at the origin. We extend
this periodically. By symmetry the lines u2 = 0 and u2 = 1 are equipotentials of g2(u).
Without loss of generality we can assume that g2(u) = 0 there and that g2(u) = u2 along the
slit centered at the origin. We take as a domain the strip 1 > u2 > 0 cut by the slit regions
traced by u = 2m + iu2 as u2 varies between 0 and �, and as m ranges over all integers.
The potential g2(u) has prescribed values on the boundary of this simply connected domain.
In principle we could solve for g2(u) by using a Schwarz-Christoffel transformation to map
the domain to the unit disk and then apply Poisson’s formula to solve for the potential and
conjugate potential there. In this way we would obtain a periodic array of inclusions with an
effective conductivity tensor that attains the bounds and with a single inclusion in each unit
cell.

Such a microgeometry has already been found using a different approach by Vigdergauz
(1986, 1994). A somewhat simpler treatment was given by Grabovsky and Kohn (1995b),
who also gave an alternative parameterization of the inclusion boundary. When the unit cell
� is square with side length 1 (i.e., when w1 = 1 and w2 = i ) they found that the Vigdergauz
inclusion boundary depends on two constants m and mλ that must be chosen with

1 > m > 1/2, 1 > mλ > 1/2.

For a given choice of these constants the boundary has the parameterization

x1(t) = − (1− T )
2(1− hT )K (m)

F(
√
1− t|m),

x2(t) = (1− h)
2(1− hT )K (mλ)

F(
√
1− M/t |mλ),

where
h = K (1− m)

K (m)
, T = K (1− mλ)

K (mλ)
, M = (1− m)(1− mλ)

mmλ

,

and

F(y|m) =
∫ y

0

dt√
(1− t2)(1− mt2)

, K (m) = F(1|m)

are the incomplete and complete elliptic integrals of the first kind, respectively. As the pa-
rameter t is varied between M and 1, the point (x1(t), x2(t)) traces along one-quarter of the
inclusion boundary. The remaining portions of the inclusion boundary are obtained by reflec-
tion. Figure 23.5 on page 486 shows an example of the resulting microgeometry (which I am
grateful to Sergey Serkov for computing). The inclusion occupies a volume fraction
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f1 = (1− T )(1− h)/(1− hT ) = 1− (h + T )/(1− hT )

of the unit cell. The choice of m and mλ ensures that h and T are positive and less than 1.
This guarantees that f1 lies between 0 and 1. The “eccentricity” of the inclusion changes as
m and mλ are varied while keeping f1 fixed. As f1 tends to zero, the inclusion shape becomes
elliptical. Vigdergauz (1996) has also found the optimal inclusion shape when the inclusions
are in rhombic arrays. According to (23.69), this inclusion shape should be related to the one
for the square array by an affine transformation. For inclusions in triangular and hexagonal
arrays the problem of finding the optimal inclusion shape reduces to a system of algebraic
equations, which Vigdergauz (1999b) solves numerically; see also Vigdergauz (1999a).

Another quite different type of two-dimensional microstructure that achieves the bounds
was found by Sigmund (2000) and is illustrated in figure 23.6(a) on page 486. For simplicity
let us take the unit cell of periodicity � to be square with side length 1, which we divide into
four rectangular regions:

R1 = {x | 0 ≤ x1 ≤ p1, 0 ≤ x2 ≤ p2},
R2 = {x | 0 ≤ x1 ≤ p1, p2 ≤ x2 ≤ 1},
R3 = {x | p1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ p2},
R4 = {x | p1 ≤ x1 ≤ 1, p2 ≤ x2 ≤ 1}.

We then set

σ(x) = σ1I when x ∈ R1,

=
(
(1− q)σ1 + qσ2 0

0 σ1σ2/[qσ1 + (1− q)σ2]

)
when x ∈ R2,

=
(
σ1σ2/[(1− q)σ1 + qσ2] 0

0 qσ1 + (1− q)σ2

)
when x ∈ R3,

= σ2I when x ∈ R4,

where the anisotropic conductivities tensors in the regions R2 and R3 can be identified with
the effective tensors of laminates of σ1 and σ2 layered in proportions (1− q) and q in region
R2 and in proportions q and (1− q) in regionR3.

This conductivity tensor field has been chosen so that the conductivity equations are solved
with piecewise constant fields. One solution is

e(x) =
(
1
0

)
when x ∈ R1 ∪R2,

=
(
[(1− q)σ1 + qσ2]/σ2

0

)
when x ∈ R3 ∪R4,

j(x) =
(
σ1
0

)
when x ∈ R1 ∪R3,

= ( (1− q)σ1 + qσ2 ) when x ∈ R2 ∪R4,
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Figure 23.5. The periodic Vigdergauz microstructure.

(a)

(c)

(b)

(d)

Figure 23.6. Shown in (a) and (b) are the two-dimensional microstructures of Sigmund
(2000), which, when periodically extended, have exactly the same effective conductivity as
the Hashin-Shtrikman coated circle assemblage. Phase 2 occupies the black regions while
phase 1 occupies the remaining regions. Shown in (c) and (d) are generalizations to random
microstructures of the type suggested by Sigmund. However, it is not obvious that the struc-
ture of (d) can be extended in a statistically homogeneous way. Within each cell in (c) we
randomly choose one of the two basic substructures.
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and a second independent solution is

e(x) =
(
0
1

)
when x ∈ R1 ∪R3,

=
(

0
[qσ1 + (1− q)σ2]/σ2

)
when x ∈ R2 ∪R4,

j(x) =
(
0
σ1

)
when x ∈ R1 ∪R2,

=
(

0
qσ1 + (1− q)σ2

)
when x ∈ R3 ∪R4.

By taking averages of these fields one sees that the effective conductivity tensor σ∗ has
eigenvalues

λ∗
1 =

σ2[(1− q)σ1 + qσ2 + p2q(σ1 − σ2)]
(1− q)σ1 + qσ2 + p1(1− q)(σ2 − σ1)

= σ2 + f1σ2(σ1 − σ2)

(1− q)σ1 + qσ2 + p1(1− q)(σ2 − σ1)
,

λ∗
2 =

σ2[qσ1 + (1− q)σ2 + p1(1− q)(σ1 − σ2)]
qσ1 + (1− q)σ2 + p2q(σ2 − σ1)

= σ2 + f1σ2(σ1 − σ2)

qσ1 + (1− q)σ2 + p2q(σ2 − σ1)
,

where
f1 = p1 p2 + (1− q)p1(1− p2)+ q(1− p1)p2 = p2q + p1(1− q)

is the overall volume fraction of phase 1 in the composite whenR2 andR3 are filled with the
laminates.

One can easily check that λ∗
1 and λ

∗
2 attain the bounds (23.62) for all values of q . Moreover,

as one would expect, the field inside phase 1 is constant. By taking q = 1/2 and p1 = p2, one
obtains a composite with square symmetry with isotropic effective conductivity σ∗ attaining
the two-dimensional Hashin-Shtrikman bounds. The interesting feature of this microstructure
is its simplicity. Sigmund (2000) showed that it can be generalized in various ways, as illus-
trated in the examples of figures 23.6(b), (c), and (d) on page 486. The common feature in
these examples is that each laminated region within the microstructure is rectangular, contain-
ing equal proportions of the two phases, and is bounded on the sides by polygonal regions of
phase 1 and on the ends by polygonal regions of phase 2. Also, the polygonal regions of phase
1 and the polygonal regions of phase 2 touch only at vertices, not along edges. The field e(x)
takes a constant value e1 within the polygonal regions of phase 1 and an associated constant
value (σ1 + σ2)e1/2σ2 within the polygonal regions of phase 2. Sigmund also showed that
there are related microstructures attaining the three-dimensional Hashin-Shtrikman bounds.

23.10. Bounds for cell polycrystals
We saw in sections 22.2 on page 439 and 22.3 on page 441 that there are polycrystals that
achieve the classical (Wiener) upper bound on the effective conductivity and the classical
(Voigt-Reuss-Hill) bounds on the effective bulk modulus. Thus if we wish to tighten these
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bounds, we need to restrict the class of polycrystal microgeometries in some way. A natural
class of polycrystalline materials to consider are cell polycrystals, where each crystal orien-
tation in each cell is uncorrelated with the cell shape, the surrounding configuration of cells,
and the surrounding configuration of crystal orientations. To derive bounds on the effective
tensor, using the Hashin-Shtrikman variational principles we choose a trial polarization field
P (x) that is assumed to be constant within each cell and only correlated with the value that
the tensor field L(x) takes within that cell; that is, it is independent of the cell shape, the
surrounding configuration of cells, and the surrounding configuration of crystal orientations.
To evaluate the nonlocal term in the Hashin-Shtrikman variational principle (13.30), we use
the fact that Γ annihilates constant fields to rewrite it as

〈P · ΓP 〉 = 〈δP · ΓδP 〉, where δP = P − 〈P 〉.
The absence of correlations implies that to calculate volume averages we can hold the cell

configuration fixed and first do an ensemble average over all realizations of P (x) sharing that
cell geometry; that is, we effectively average over all crystal configurations sharing the same
cell geometry. Now the ensemble average of {δP (x1)}a{δP (x2)}b will be zero unless both
points x1 and x2 lie in the same cell. In the same way that the second-order term in (15.15)
was derived we see that

〈δP · ΓδP 〉 =
[∫

d
dy g2(y){Γ∞(y)}ba

] ∫
dµ(P ){δP (x1)}a{δP (x2)}b,

where µ(P ) is the positive measure characterizing the distribution of values that P takes in
each cell and g2(y) is the probability that a rod with endpoints at the origin and at y lands
with both endpoints in a single cell when translated to a random position in the composite.

Let us make the additional assumption that the cell configuration is geometrically iso-
tropic. Then g2(y) depends only on |y|, and by the same reasoning as led to the second-order
term in (15.42) we see that

〈δP · ΓδP 〉 =
∫
dµ(P )δP (x1) · γδP (x2) = 〈P · γP 〉 − 〈P 〉 · γ〈P 〉,

in which γ = 〈Γ(n)〉n, as in (12.35). Substituting this nonlocal term back into the Hashin-
Shtrikman variational inequality (13.30) gives

〈P 〉 · [γ + (L∗ −L0)
−1]〈P 〉 ≤ 〈P · [γ + (L−L0)

−1] P 〉,
which holds for all L0 with L > L0, Γ1L0Γ1 ≥ 0. The trial field P (x) is now varied
to minimize the right-hand side of this inequality while keeping 〈P 〉 fixed. By adding the
Lagrange multiplier term −2〈P 〉 · v to the right-hand side we see that the minimum occurs
when

P (x) = [γ + (L− L0)
−1]−1v.

Thus, as assumed, the value of P (x) is constant within any cell and depends only on the
value that L(x) takes within that cell. When substituted back in the above inequality this
choice of polarization field yields the lower bound

[γ + (L∗ −L0)
−1]−1 ≥ 〈[γ + (L−L0)

−1]−1〉. (23.70)

Similarly, when L0 is chosen with L0 > L, the variational principle (13.32) yields the upper
bound

[γ + (L∗ −L0)
−1]−1 ≤ 〈[γ + (L−L0)

−1]−1〉. (23.71)
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These general bounds of Watt and Peselnick (1980), Olson (1991), and Olson and Avel-
laneda (1992) are based on the pioneering work of Hashin and Shtrikman (1962b, 1963a).
In these papers of Hashin and Shtrikman it was unclear what assumptions were being made
about the polycrystal microstructure. This was partially clarified by Hashin (1965a) and Beran
(1968), page 229.

Let us consider a three-dimensional conducting cell polycrystal, with effective conduc-
tivity tensor L∗ = σ∗ having eigenvalues λ∗

1 ≥ λ∗
2 ≥ λ∗

3 > 0, and with local conductivity
tensor L(x) = σ(x) having eigenvalues λ1 ≥ λ2 ≥ λ3 > 0. Choosing an isotropic reference
medium with tensor L0 = σ0I gives γ = I/3σ0, and the upper bound (23.70) implies that
the inequality

v · [I/3σ0 + (σ∗ − σ0I)
−1]−1v ≥ 〈v · [I/3σ0 + (σ − σ0I)

−1]−1v〉
holds for any choice of the vector v. To obtain a bound that is independent of the distribution
of crystal orientations, we successively take v = v1,v2, and v3, where v1,v2, and v3 are
three orthonormal unit vectors, and then we sum the resulting three inequalities. This gives

Tr{[I/3σ0 + (σ∗ − σ0I)
−1]−1} ≥ 〈Tr{[I/3σ0 + (σ − σ0I)

−1]−1}〉,
which, upon taking σ0 = λ3, reduces to the lower bound

3∑
i=1

λ∗
i − λ3

λ∗
i + 2λ3

≥
2∑
i=1

λi − λ3

λi + 2λ3
, (23.72)

and similarly from (23.71) we have the upper bound,

3∑
i=1

λ∗
i − λ1

λ∗
i + 2λ1

≤
3∑
i=2

λi − λ1

λi + 2λ1
. (23.73)

In particular, when the polycrystal has an isotropic effective conductivity tensor, so that
λ∗

1 = λ∗
2 = λ∗

3 = σ∗, these bounds simplify to the bounds

λ1
4λ2

1 + 8λ1λ2 + 8λ1λ3 + 7λ2λ3

16λ2
1 + 5λ1λ2 + 5λ1λ3 + λ2λ3

≥ σ∗ ≥ λ3
4λ2

3 + 8λ3λ2 + 8λ3λ1 + 7λ1λ2

16λ2
3 + 5λ3λ2 + 5λ3λ1 + λ1λ2

(23.74)

of Hashin and Shtrikman (1963a) on the effective conductivity σ∗. Notice that our derivation
did not assume that the cell polycrystal was “equiaxed,” that is, the distribution of crystal
orientations is uniform in the sense that each crystal orientation is as likely as any other. The
important assumptions are, first, that the crystal orientation in each cell is uncorrelated with
the cell shape, the surrounding configuration of cells, and the surrounding configuration of
crystal orientations, and, second, that the cell configuration is geometrically isotropic.

In naturally occurring polycrystals one might expect some significant correlation between
the crystal orientation and cell shape, since the surface energy associated with an interface can
depend strongly on the angle of the interface with respect to the crystal axes, which accounts
for the characteristic Wulff shape of isolated crystals (Wulff 1901; Taylor 1974; Fonseca
1991; Dobrushin, Kotecký, and Shlosman 1992). Adams, Kinderlehrer, Livshits, Mason,
Mullins, Rohrer, Rollett, Saylor, Ta’asan, and Wu (1999) have shown how the correlations
between crystal orientations at triple junctions of grain boundaries can be used to determine
information about the surface energies of these grain boundaries. Thus there is good reason
to question whether these bounds for cell polycrystals apply to real polycrystals.
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The bounds (23.74) are not optimal. Tighter bounds, which do not incorporate any ad-
ditional information about the polycrystal microgeometry, have been obtained by Helsing
(1993a, 1993b, 1994) and Pham (1996a). Pham (1998) compared his bounds with the range
of effective conductivities achievable in a class of realizable models (corresponding to the ef-
fective medium approximation with ellipsoidal grains). Bounds that incorporate higher order
statistical information, such as the parameter ζ 0

1 defined by (15.44) appearing in the expansion
(15.46), have been obtained by Willemse and Caspers (1979) and Pham (1996b, 2000).

For elasticity Hashin and Shtrikman (1962b), Watt and Peselnick (1980) [see also (Pesel-
nick and Meister 1965) and Peselnick and Meister (1966)], and Watt (1979, 1980, 1986) gave
explicit expressions for the bounds (23.70) and (23.71) for polycrystals built from crystals
with cubic, hexagonal, trigonal, tetragonal, orthorhombic, and tetragonal symmetries. Watt
(1988) found that these bounds are generally, but not always, compatible with measured data
on the effective elastic moduli of polycrystals. The discrepancies could be due to correlations
between the crystal orientation and grain shape, due to correlations between the crystal orien-
tations of neighboring grains, or due to imperfections at the interface between grains. Pham
(1997, 1999) provided bounds for three- and two-dimensional elasticity that are potentially
tighter, but which do not incorporate any additional information about the polycrystal micro-
geometry. He also found substantially tighter bounds, assuming that the cells are spherical
(for three-dimensional elasticity) or circular (for two-dimensional elasticity). Beran, Mason,
Adams, and Olson (1996) have derived bounds that do not assume that the polycrystal is a
cell material, but which require measurements of two-point correlation functions. Using such
measurements they found good agreement between their bounds and experimental data for
copper.

For piezoelectricity Olson and Avellaneda (1992) give explicit expressions for the bounds
(23.70) and (23.71) for polycrystals built from crystals that belong to the orthorhombic 222
class.
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24
Bounds using the compensated

compactness or translation method

One of the most powerful methods for bounding the effective tensors of composites is what has
become known as the compensated compactness method or translation method. The method
was introduced by Murat and Tartar (Tartar 1979b; Murat and Tartar 1985; Tartar 1985); see
in particular theorem 8 of Tartar (1979b), and independently by Lurie and Cherkaev (1982,
1984a). While embodying many of the same ideas, there is a difference between their ap-
proaches. For nonlinear media the two approaches give different types of bounds, as discussed
in section 25.1 on page 529: the compensated compactness method of Murat and Tartar gives
bounds on the average fields, while the approach of Lurie and Cherkaev gives bounds on the
energy. Since both approaches yield identical results for linear media, the term translation
method [introduced in Milton (1990b)] will be used to encompass both. The name arises be-
cause the bounds can be obtained by shifting, that is, translating, the tensor field by a constant
tensor and applying the classical bounds. [This approach has the advantage that by applying
the same translation, but replacing the classical bounds by tighter correlation function depen-
dent bounds, one generates improved bounds that include more detailed information about
the composite microgeometry; see section 26.5 on page 560. It has the disadvantage that one
does not see why it is natural to consider bounds on the translated medium in the first place;
see section 25.1 on page 529.]

24.1. The translation bound and comparison bound
In chapter 4 on page 59 we encountered the idea of translations. In the applications encoun-
tered so far these translations are special tensors T with the property that when we translate
the local moduli by a multiple of T ,

L′(x) = L(x)− cT ,
then the effective tensor is also translated by the same multiple of T . In other words, the
translated material has effective tensor

L′
∗ = L∗ − cT , (24.1)

in which L∗ is the effective tensor of the original material.
For T to have this property, for all choices of L(x), it must map fields on the right side

of the constitutive equation to fields satisfying the same differential constraints as those fields
on the left side of the constitutive equation; that is, it must have the property that

T E ⊂ J . (24.2)
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Since T , being a constant operator, acts locally in Fourier space, a necessary and sufficient
condition for (24.2) to hold is that

TEk ⊂ Jk for all k �= 0

or, equivalently, that
Γ1(k)TΓ1(k) = 0 for all k �= 0, (24.3)

which is equivalent to the condition (13.19).
The translation method, in its simplest form, rests on a very simple idea, namely, that we

can obtain bounds on L∗ from elementary bounds on the effective tensor L′
∗ of the translated

medium. The arithmetic mean bound applied to L′
∗,

L∗ − cT ≤ 〈L− cT 〉,

does not yield any new information; by adding cT to both sides of the above equation, we see
that this bound reduces to the arithmetic mean bound on L∗. By contrast, the harmonic mean
bound applied to L′

∗ gives the translation bound

(L∗ − cT )−1 ≤ 〈(L− cT )−1〉, (24.4)

which is genuinely new, and depends nonlinearly on the choice of translation T . Of course
T and the constant c must be chosen so that the harmonic mean bounds are indeed applicable
to L′

∗. This is ensured provided that L(x) and T are self-adjoint and c is chosen so that the
tensor of the translated medium is positive-semidefinite:

L(x)− cT ≥ 0. (24.5)

Often we are interested in deriving bounds on L∗ that do not depend on the volume frac-
tions of the individual phases, or in the case of a polycrystalline material, which do not depend
on the distribution of grain orientations. Bounds of this type can be obtained using the trans-
lation method from a simple consideration. Since the effective tensor L′

∗ must be positive-
definite whenever L′(x) is self-adjoint and positive-definite, it follows that L∗ must satisfy
the comparison bound:

L∗ − cT ≥ 0, (24.6)

wheneverL(x) and T are self-adjoint and c is chosen so that

L(x)− cT ≥ 0, for all x. (24.7)

Those translations T that are self-adjoint and satisfy (24.3) are precisely those that are asso-
ciated with quadratic null Lagrangians; see section 13.3 on page 274.

24.2. Upper bounds on the bulk modulus of two-phase composites and
polycrystals in two dimensions

As an example of the translation bounds, consider a two-dimensional isotropic composite
comprised of two isotropic elastic phases. Let κ∗, κ1, κ2 and µ∗, µ1, µ2 denote the (two-
dimensional) bulk and shear moduli of the composite and phases, respectively, and let us
suppose that the phases have been labeled so that µ1 ≥ µ2. Taking L(x) as the compliance
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tensor S(x), and T as the translation R⊥ introduced in section 4.5 on page 66, we find that
the translated medium has bulk moduli κ ′

∗, κ
′
1, κ

′
2 and shear moduli µ

′
∗, µ

′
1, µ

′
2 given by

1/κ ′
i = 1/κi − 2c, 1/µ′

i = 1/µi + 2c, for i = 1, 2, ∗.
The harmonic mean bounds applied to the compliance tensor of the translated medium

are equivalent to the arithmetic mean bounds applied to the elasticity tensor of the translated
medium and imply that

κ ′
∗ ≤ f1κ ′

1 + f2κ ′
2, µ′

∗ ≤ f1µ′
1 + f2µ′

2. (24.8)

In particular, by taking the limit

c→− 1
2µ1

,

which is the minimum value allowed, while keeping the moduli κ ′
1, κ

′
2, µ

′
1, µ

′
2 all nonnegative

(µ′
1 becomes infinite in this limit), the first bound in (24.8) reduces to

1
1/κ∗ + 1/µ1

≤ f1
1/κ1 + 1/µ1

+ f2
1/κ2 + 1/µ1

.

This is precisely the upper Hashin-Shtrikman bound on the effective bulk modulus κ∗. The
above derivation follows Gibiansky and Cherkaev (1984) and Francfort and Murat (1986).
Coated cylinder assemblages, with a core of phase 2 surrounded by a coating of phase 2,
attain the bound.

As an example of the use of the comparison bounds (24.6), let us derive a sharp upper
bound on the effective bulk modulus κ∗ of a elastically isotropic, two-dimensional polycrystal
(Avellaneda and Milton 1989; Rudelson 1989). The compliance tensor takes the form

S(x) = R(x)R(x)S0R
T (x)RT (x),

in which S0 represents the compliance tensor of the pure crystal, while R(x) is the field of
rotation matrices giving the local crystal orientation. If we take R⊥ as our translation, then
the rotational invariance of R⊥ implies that the inequality

S(x)− cR⊥ = R(x)R(x)(S0 − cR⊥)RT (x)RT (x) ≥ 0 (24.9)

is satisfied if and only if c is chosen so that

S0 − cR⊥ ≥ 0,

and in this case (24.7) implies the bound

S∗ − cR⊥ ≥ 0. (24.10)

Working in the usual basis where R⊥, S0, and S∗ are represented by the matrices

R⊥ =
( 0 1 0
1 0 0
0 0 −1

)
, S0 =

( S1111 S1122
√
2S1112

S1122 S2222
√
2S2212√

2S1112
√
2S2212 2S1212

)
,

S∗ = 1
4

( 1/κ∗ + 1/µ∗ 1/κ∗ − 1/µ∗ 0
1/κ∗ − 1/µ∗ 1/κ∗ + 1/µ∗ 0

0 0 2/µ∗

)
,
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we see that we should choose c as the unique positive root of the cubic polynomial

det(S0 − cR⊥) =
∣∣∣∣∣ S1111 S1122 − c

√
2S1112

S1122 − c S2222
√
2S2212√

2S1112
√
2S2212 2S1212 + c

∣∣∣∣∣ = 0, (24.11)

to ensure that S0 − cR⊥ is positive-semidefinite. Then from the comparison bound we have

S∗ − cR⊥ = 1
4

( 1/κ∗ + 1/µ∗ 1/κ∗ − 1/µ∗ − 4c 0
1/κ∗ − 1/µ∗ − 4c 1/κ∗ + 1/µ∗ 0

0 0 2/µ∗ + 4c

)
≥ 0,

which on diagonalization implies that

1/κ∗ ≥ 2c. (24.12)

We will see in section 25.3 on page 535 that this bound is in fact optimal, being attained
when the polycrystal is a Schulgasser-type circle assemblage, where the crystal has a radially
symmetric orientation within each circle.

When the crystal is orthotropic, that is, S1112 = S2212 = 0, the value of c is

c = S1122 −
√
S1111S2222.

Written in terms of the moduli

C1111 = S2222

S1111S2222 − S2
1122

, C2222 = S1111

S1111S2222 − S2
1122

,

C1122 = −S1122

S1111S2222 − S2
1122

, C1212 = 1
4S1212

of the elasticity tensor C0 of the crystal, the lower and upper bounds (22.5) and (24.12) on κ∗
become

C1111C2222 − C2
1122

C1111 + C2222 − 2C1122
≤ κ∗ ≤

(√
C1111C2222 + C1122

)
/2. (24.13)

Schulgasser (1995) found that these bounds can be used to derive optimal bounds on the effec-
tive axial Young’s modulus of an axially oriented polycrystal, in effect giving a prescription
for constructing the stiffest composite wire constructed from such polycrystals.

The translation method can also be used (Avellaneda, Cherkaev, Gibiansky, Milton, and
Rudelson 1996) to bound the effective shear modulus µ∗ of two-dimensional polycrystals
built from an orthotropic crystal. It yields the optimal bounds

min{µ+, µ−} ≤ µ∗ ≤ max{µ+, µ−}, (24.14)

where

µ+ = C1111C2222 − C2
1122

2C1122 − 2C2222 + 2
√

C2222[C1111 + C2222 − 2C1122 + (C1111C2222 − C2
1122)/C1212]

,

µ− = C1111C2222 − C2
1122

2C1122 − 2C1111 + 2
√

C1111[C1111 + C2222 − 2C1122 + (C1111C2222 − C2
1122)/C1212]

.
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There are microstructures corresponding to every point (κ∗, µ∗) within the rectangle in the
(κ, µ)-plane defined by the bounds (24.13) and (24.14). Thus optimal bounds on the effec-
tive in-plane Young’s modulus and effective in-plane Poisson’s ratio follow from (24.13) and
(24.14). For sea ice, the bounds are quite tight (Schapery 1997). When the crystal has square
symmetry (i.e., C1111 = C2222) the upper and lower bounds both coincide with the exact
formula (4.27) for the effective shear modulus µ∗. The bounds also coincide and equal

µ∗ = C1212 when C1111C2222 − (C1122 + 2C1212)
2 = 0, (24.15)

which is the two-dimensional analog of the exact result discussed in section 17.4 on page 361.

24.3. Allowing quasiconvex translations
In the above formulation of the translation method we are limited in our choice of translations
T to those for which the equality (24.1) holds. If we weaken this equality to an inequality,

L′
∗ ≤ L∗ − cT , (24.16)

then the harmonic mean bounds on the translated medium still imply the translation bounds:

(L∗ − cT )−1 ≤ (L′
∗)

−1 ≤ 〈(L′)−1〉 = 〈(L− cT )−1〉, (24.17)

and the positive-definiteness of L′
∗ still implies the comparison bounds:

L∗ − cT ≥ L′
∗ ≥ 0.

Of course, to ensure that these bounds are applicable, we still require the self-adjointness of
both L(x) and T , and the positive-semidefiniteness of L(x)− cT .

It remains to find a suitable class of translations T for which the inequality (24.16) is
guaranteed to hold. By comparing the variational expressions for L′

∗ and L∗ − cT ,
E0 · L′

∗E0 = min
E ∈ U ⊕ E
〈E〉 = E0

〈E ·LE〉 − c〈E · TE〉, (24.18)

E0 · (L∗ − cT )E0 = min
E ∈ U ⊕ E
〈E〉 = E0

〈E ·LE〉 − c〈E〉 · T 〈E〉, (24.19)

we see that the first expression will certainly be less than the second expression, provided that
c is taken to be positive and the inequality

〈E · TE〉 ≥ 〈E〉 · T 〈E〉 (24.20)

is satisfied for all E ∈ U ⊕ E , and in particular for E = E. The latter is equivalent, by defi-
nition, to requiring that the quadratic form associated with T be quasiconvex (see chapter 31
on page 671). Consequently, we will call any T satisfying (24.20) a quasiconvex translation,
or more precisely, we will call T quasiconvex on E .

The idea of using quasiconvex translations, rather than only translations associated with
null Lagrangians, is an important component of the translation method. The idea is due to
Tartar (1979b). Murat and Tartar (Tartar 1979a; Murat and Tartar 1985; Tartar 1985) found a
simple test to determine if a given translation T is quasiconvex or not. Suppose that we are
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given a real fieldE ∈ U ⊕ E . By takingE(x) so that only one Fourier component is nonzero
and real, as in (13.16), we see from (13.15) that a necessary condition for T to be quasiconvex
is that, for all k �= 0,

B · TB ≥ 0 for all realB ∈ Ek. (24.21)

Conversely, if this condition holds, then for an arbitrary choice of field E ∈ U ⊕ E each
term in the sum (13.15) will be positive and hence 〈E · TE〉 − 〈E〉 · T 〈E〉 will be positive.
Therefore T is quasiconvex if and only if (24.21) holds for all k �= 0.

For example, if U ⊕ E is comprised of all periodic matrix-valued real fields E(x) such
that E = ∇u for some vector potential u, then

Ek = {B |B = k⊗ b},
and (24.21) tells us that T is quasiconvex if and only if the quadratic form associated with T
is positive on rank-1 matrices.

Thus the translation bounds (24.4) and comparison bounds (24.6) hold when c is positive
and T satisfies the quasiconvexity condition

Γ1(k)TΓ1(k) ≥ 0 for all k �= 0,

which is implied by (24.21).
The translation bound (24.17) can be written in the equivalent form

E0 ·L∗E0 ≥ E0 · [cT + 〈(L− cT )−1〉−1]E0, (24.22)

which holds for allE0, and thus corresponds to a lower bound on the “energy”E0 ·L∗E0/2.

24.4. A lower bound on the effective bulk modulus of a
three-dimensional, two-phase composite

As an example of the use of quasiconvex translations, let us follow Francfort andMurat (1986)
and derive a sharp lower bound on the effective bulk modulus of a three-dimensional isotropic
composite of two isotropic phases. By assumption, the elasticity tensors of the phases and
composite take the forms

Ci = 3κiΛh + 2µiΛs, i = 1, 2, ∗,
in which the κi and µi for i = 1, 2, ∗ represent the bulk and shear moduli of the two phases
and composite, and where Λh and Λs are isotropic fourth-order tensors with elements

{Λh}i jk	 = 1
3δi jδk	, {Λs}i jk	 = 1

2 [δikδ j	 + δi	δk j ]− 1
3δi jδk	.

The translation tensor T is taken to have a similar elastically isotropic form:

T = 3κ0Λh + 2µ0Λs .

Since for elasticity the space Ek consists of those second-order tensors B that can be
expressed in the formB = k⊗b+b⊗k, it follows that the quasiconvexity condition (24.21)
is fulfilled if and only if

B · TB = Tr{(k⊗ b+ b⊗ k)[2µ0(k⊗ b+ b⊗ k)+ 2I(κ0 − 2µ0/3)(b · k)]}
= 4[µ0|b|2|k|2 + (κ0 + µ0/3)(b · k)2]
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is nonnegative for all choices of the vectors b and k. By the Cauchy-Schwartz inequality this
is satisfied if and only if

µ0 ≥ 0, κ0 ≥ −4µ0/3. (24.23)

The harmonic mean bounds on the effective bulk modulus of the translated medium imply
that

(κ∗ − κ0)
−1 ≤ f1(κ1 − κ0)

−1 + f2(κ2 − κ0)
−1, (24.24)

and hold provided that the bulk moduli and shear moduli of the phases in the translated
medium remain positive, that is, provided that

κi − κ0 ≥ 0, and µi − µ0 ≥ 0 for i = 1, 2. (24.25)

Let us suppose that the phases have been labeled so that µ1 ≥ µ2. Then by taking µ0 = µ2
and κ0 = −4µ2/3, which are the extreme values allowed by the constraints (24.23) and
(24.25), we see that (24.24) reduces to the inequality

(κ∗ + 4µ2/3)−1 ≤ f1(κ1 + 4µ2/3)−1 + f2(κ2 + 4µ2/3)−1,

which is exactly the Hashin-Shtrikman-Hill lower bound on the effective bulk modulus κ∗.
Francfort and Murat also derived the upper Hashin-Shtrikman-Walpole bulk modulus bound.
The Hashin-Shtrikman-Walpole shear modulus bounds were subsequently also rederived us-
ing the translation method (Milton 1990a, 1990b).

24.5. Using the idea of embedding to extend the translation method
There is another important ingredient to the translation method of Murat and Tartar and Lurie
and Cherkaev. It is the idea of embedding, which enables us to derive bounds on sums of
energies rather than just on a single energy, as in (24.22). The key is to reinterpret a sum of
energies as a single energy but for a different problem in which a block-diagonal matrix enters
the constitutive law.

As an example let us consider the conductivity problem. When the composite is succes-
sively subject to n applied electric fields, e(1)0 , e(2)0 ,. . . e(n)0 , the sum of the resulting energies
can be reexpressed in the form

n∑
α=1

e(α)0 · σ∗e
(α)

0 = E0 ·L∗E0,

where

E0 =


e(1)0

e(2)0
...

e(n)0

 , L∗ =


σ∗ 0 . . . 0
0 σ∗ . . . 0
...

...
. . .

...

0 0 . . . σ∗

 , (24.26)

and can be regarded as a single energy of a thermoelectric-type problem with no couplings
between the fields. The constitutive relations linking the successive fields,

j(α)(x) = σ(x)e(α)(x), where 〈e(α)〉 = e(α)0 for α = 1, 2 . . . , n,

can be rewritten as a single thermoelectric-type constitutive law

J(x) = L(x)E(x), where 〈E〉 = E0,
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with fields

J(x) =


j(1)(x)
j(2)(x)

...

j(n)(x)

 , E(x) =


e(1)(x)
e(2)(x)

...

e(n)(x)


and a block-diagonal matrix

L(x) =


σ(x) 0 . . . 0
0 σ(x) . . . 0
...

...
. . .

...

0 0 . . . σ(x)


entering the constitutive law. We will call J(x) and E(x) the extended fields and L(x) a
supertensor (Gibiansky and Torquato 1993).

The translation bounds on the effective tensor L∗,

(L∗ − cT )−1 ≤ 〈(L − cT )−1〉,
provide, through the relation (24.26) between L∗ and σ∗, a constraint on the possible values
that the effective conductivity tensor σ∗ can take. These translation bounds now correspond
to bounds on sums of energies in the same way that (24.17) corresponds to the bound (24.22)
on a single energy.

Notice that the translation tensorT is not required to be block-diagonal. It is only required
to be quasiconvex in the sense that the inequality

〈E · T E〉 ≥ 〈E〉 · T 〈E〉
holds for all periodic fields of the form

E =


e(1)

e(2)
...

e(n)

 with ∇ × e(α) = 0 for α = 1, 2 . . . , n.

The constant c must still be positive and such that L(x)− cT remains positive-semidefinite
for all x.

24.6. Bounds on the conductivity tensor of a composite of two isotropic
phases

To see how this embedding works, let us follow Lurie and Cherkaev (1982, 1984a) and Murat
and Tartar (Murat and Tartar 1985; Tartar 1985) and consider a two-dimensional composite
of two isotropic phases with conductivities σ1 and σ2 mixed in fixed proportions f1 and f2 =
1− f1. Without loss of generality we assume that the phases have been labeled so that σ1 > σ2

and that the coordinates have been chosen so that σ∗ is diagonal:

σ∗ =
(
λ∗

1 0
0 λ∗

2

)
. (24.27)

Our objective is to seek bounds that constrain the possible values that the eigenvalue pair
(λ∗

1, λ
∗
2) can have. Since we need to apply two different electric fields to measure the effective

conductivity tensor, it is natural to take n = 2.
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A natural choice for T is then the null Lagrangian,

T =
(

0 −R⊥
R⊥ 0

)
, whereR⊥ =

(
0 1
−1 0

)
, (24.28)

which is self-adjoint and maps any pair of curl free fields to a pair of divergence free fields.
The translated tensor field

L(x)− cT =


σ1 0 0 c
0 σ1 −c 0
0 −c σ1 0
c 0 0 σ1

χ1(x)+


σ2 0 0 c
0 σ2 −c 0
0 −c σ2 0
c 0 0 σ2

χ2(x)

is positive-semidefinite for all x, provided that the absolute value of c is not greater than σ2.
From the block structure of the matrices

〈(L− cT )−1〉 = f1

(σ 2
1 − c2)


σ1 0 0 −c
0 σ1 c 0
0 c σ1 0

−c 0 0 σ1

 + f2

(σ 2
2 − c2)


σ2 0 0 −c
0 σ2 c 0
0 c σ2 0

−c 0 0 σ2

 ,

(L∗ − cT )−1 = 1
(λ∗

1λ
∗
2 − c2)


λ∗

2 0 0 −c
0 λ∗

1 c 0
0 c λ∗

2 0
−c 0 0 λ∗

1

 ,

we see that the translation bounds separate into a pair of uncoupled 2× 2 matrix inequalities,
one of which implies that the bound

1
(λ∗

1λ
∗
2 − c2)

( a1 a2 )

(
λ∗

2 −c
−c λ∗

1

)(
a1

a2

)
≤ f1

(σ 2
1 − c2)

( a1 a2 )

(
σ1 −c
−c σ1

) (
a1

a2

)
+ f2

(σ 2
2 − c2)

( a1 a2 )

(
σ2 −c
−c σ2

) (
a1

a2

)
holds for all choices of the constants a1 and a2.

In the extreme limit where c approaches its maximum allowed value, namely, σ2, the
right-hand side of the above equation approaches infinity unless a1 = a2. By setting a1 = a2
we obtain the nontrivial bound

λ∗
1 + λ∗

2 − 2σ2

2(λ∗
1λ

∗
2 − σ 2

2 )
≤ f1

σ1 + σ2
+ f2

2σ2
(24.29)

in the limit as c→ σ2. Subtracting 1/σ2 from both sides of this equation gives

(λ∗
1 − σ2)(λ

∗
2 − σ2)

2σ2(λ
∗
1λ

∗
2 − σ 2

2 )
≥ f1(σ1 − σ2)

2σ2(σ1 + σ2)
,

which after taking the inverse of both sides can be seen to be equivalent to (23.62). In partic-
ular, for isotropic composites with σ∗ = σ∗I we have λ∗

1 = λ∗
2 = σ∗, and the bounds reduce

to the Hashin-Shtrikman lower bound on the effective conductivity σ∗:

1
σ∗ + σ2

≤ f1
σ1 + σ2

+ f2
2σ2

.
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To obtain an upper bound we need to work with the inverse tensors L−1
∗ and [L(x)]−1,

rather than withL∗ andL(x). But we can still takeT given by (24.28) as our translation since
T also maps any pair of divergence free fields into a pair of curl free fields. The translation
bound

(L−1
∗ − cT )−1 ≤ 〈(L−1 − cT )−1〉

now holds provided that the absolute value of c is less than 1/σ1 and in the extreme limit as c
approaches 1/σ1 implies

1/λ∗
1 + 1/λ∗

2 − 2/σ1

2(1/(λ∗
1λ

∗
2)− 1/σ 2

1 )
≥ f1σ1

2
+ f2

1/σ1 + 1/σ2
,

which after some algebraic manipulation reduces to the bound

f2
2∑
i=1

1
σ1 − λ∗

i
≤ 2

σ1 − σ2
− f1

σ1
. (24.30)

It was the derivation of the bounds (23.62) and (24.30) by Lurie and Cherkaev (1984a) and
Murat and Tartar (Murat and Tartar 1985; Tartar 1985) that generated considerable interest in
the translation method. The bounds provided the complete characterization of the G-closure
at constant volume fraction. I first heard of Murat and Tartar’s results (for d-dimensional
composites) at a conference on the macroscopic properties of disordered media that was held
in New York in June 1981, and Lurie and Cherkaev’s results for two-dimensional composites
appeared shortly thereafter (Lurie and Cherkaev 1982). Lurie and Cherkaev’s proof used
the null Lagrangian (24.28). In 1983, Kohn visited them in Leningrad and told them about
the quasiconvex functions introduced by Tartar, which they used in their proof of the three-
dimensional conductivity bounds (Lurie and Cherkaev 1986).

Following Murat and Tartar (Murat and Tartar 1985; Tartar 1985) and Lurie and Cherkaev
(1986) let us now obtain bounds for three-dimensional conducting composites. Since we now
need to apply three different electric fields to measure the effective conductivity, we take
n = 3. Instead of representing the extended electric field E(x) and extended current field
J(x) as nine component vectors, it proves convenient (Tartar 1979b) to represent them as
3 × 3 matrices where the columns of E(x) are the fields e(1)(x), e(2)(x), and e(3)(x), and
the columns of J(x) are the fields j(1)(x), j(2)(x), and j(3)(x). Assuming that the composite
is isotropic, the tensors of the phases and the composite are then represented as fourth-order
tensors L1 = σ1I , L2 = σ2I , and L∗ = σ∗I , in which I is the fourth-order identity tensor.

The Hashin-Shtrikman lower bound on σ∗ is obtained with c = 1 and the translation

T = σ2(I − I ⊗ I). (24.31)

One can easily check that B · T B ≥ 0 for all matrices B = k ⊗ b, implying that T is
quasiconvex. Both

L1 − T = (σ1 − σ2)I + σ2I ⊗ I and L2 − T = σ2I ⊗ I (24.32)

are positive-semidefinite. From the translation bound we have

I · [(σ∗ − σ2)I + σ2I ⊗ I]−1I ≤ f1I · [(σ1 − σ2)I + σ2I ⊗ I]−1I + f2I · [σ2I ⊗ I]−1I,

which when evaluated gives the Hashin-Shtrikman bound

3
σ∗ + 2σ2

≤ 3 f1
σ1 + 2σ2

+ f2
σ2

.
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One can also obtain this bound using the null Lagrangian (6.19).
The Hashin-Shtrikman upper bound on σ∗ is obtained by working with the inverse tensors

L−1
1 , L−1

2 , and L−1
∗ and using the translation

T ′ = (I − 2I ⊗ I)/σ1,

with c = 1. As yet, no one has derived this bound using null Lagrangians, and so we see that
the idea of Tartar (1979b) of using quasiconvex functions rather than just null Lagrangians is
a key ingredient for deriving bounds. More generally, if the composite is not isotropic, one
obtains by this approach the bounds (23.13) and (23.14).

These bounds are just special cases of the trace bounds encountered in sections 23.5 on
page 468 and 23.6 on page 474. In section 24.11 on page 518 we will show how the trace
bounds can be recovered in general via the translation method.

24.7. The translation bounds as a corollary of the comparison bounds†
In typical applications the comparison bounds, unlike the translation bounds, do not incorpo-
rate information about the volume fractions of the constituents. However, by using the idea
of embedding, we can easily incorporate such information in the comparison bounds. As we
will see, the resulting bounds turn out to be identical to the translation bounds.

As an example, suppose that we have a quasiconvex translation T such that L(x) − T
is positive-definite for all x. We begin by supplementing the constitutive equation J = LE
with the scalar field equation

w(x) = c(x)v, where v = constant,

and where the scalar field w(x) is not subject to any differential restrictions. The comparison
bounds are applied to the embedded thermoelastic-type problem(

J(x)
w

)
= L(x)

(
E(x)
v

)
, where L(x) =

(
L(x) 0
0 c(x)

)
,

which has an associated effective tensor

L∗ =
(
L∗ 0
0 〈c〉

)
.

Thus in a two-phase composite, knowledge of L∗ and hence 〈c〉 allows us to determine the
volume fractions of the phases.

Let us take as translation the tensor

T =
(
T q
qT 0

)
,

which will be quasiconvex for the extended problem, because T is quasiconvex for the em-
bedded problem. We require thatL(x)−T be positive-definite for all x or, equivalently, that
for all x the associated quadratic form

P · (L(x)− T )P − 2vP · q + v2c(x)

be positive for all choices of P and v not both zero. By choosing the value

P = v(L(x)− T )−1q,
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which minimizes the quadratic form, we see that L(x)− T is positive-definite when

c(x)− q · (L(x)− T )−1q > 0. (24.33)

Once this constraint is satisfied for all x, the comparison bounds imply that L∗ − T is
positive-definite. Equivalently,L∗ − T must be positive-definite, and

〈c〉 > q · (L∗ − T )−1q, (24.34)

where the latter inequality is obtained by following the same argument that leads to (24.33).
By selecting c(x) so that the left-hand side of (24.33) equals a small positive constant ε, we
see that (24.34) will be satisfied for all ε > 0 if and only if

q · (L∗ − T )−1q ≤ q · 〈(L(x)− T )−1〉q.
Since the vector q is arbitrary, this is just the familiar translation bound.

24.8. Embedding in a higher order tensorial problem: A lower bound
on the conductivity tensor of a polycrystal

Section 24.5 on page 505 introduced the idea of embedding, whereby a set of conductivity
equations that arise as the composite is subject to a sequence of n applied fields are viewed as a
single thermoelectric-type problem with no coupling between the n fields. For the special case
n = d , the equations can also be interpreted as a problem involving second-order tensor fields
linked by a fourth-order tensor in the constitutive law. This connection between higher order
tensorial problems and thermoelectric-type problems was alluded to in section 6.4 on page 98.
There elasticity problems were shown to be equivalent to a subclass of thermoelectric-type
problems.

If we consider a three-dimensional composite and let the current fields j (1)(x), j(2)(x),
and j(3)(x) form the three columns of a 3 × 3 matrix-valued field J(x) and let the electric
fields e(1)(x), e(2)(x), and e(3)(x) form the three columns of a 3 × 3 matrix-valued field
E(x), then the constitutive law J = LE still holds with L(x) being a fourth-order tensor
with elements

L i jk	(x) = σik(x)δ j	.

The effect of L(x) acting on a matrix-valued field E(x) is simply to multiply E(x) on the
left by σ(x).

We are now in a position to forget about the original equations and deal exclusively with
the equations

J(x) = L(x)E(x), ∇ · J(x) = 0, ∇ ×E(x) = 0, (24.35)

in which the divergence and curl act on the first index of the second-order tensor fields J(x)
andE(x). Moreover, having established the mathematical equivalence in a particular coordi-
nate system, we are free to suppose that the fieldsJ(x),E(x), andL(x) transform as second-
and fourth-order tensor fields. In other words, under a rotation of the coordinate system from
x to x′ = Rx, where R is a rotation matrix, we are free to suppose that the elements of the
tensors undergo the transformations

Ji j(x)→
d∑

m,n=1

Rmi Rn j Jmn(x′), Ek	(x)→
d∑

o,p=1

RokRp	Eop(x′),

L i jk	(x)→
d∑

m,n,o,p=1

Rmi Rn j RokRp	Lmnop(x′).
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Such transformation laws are not appropriate to thermoelectric-type equations, but they are
appropriate to the equivalent higher order tensorial problem that we are now considering.

This change of viewpoint is not just cosmetic; it also has a real advantage. Transla-
tions that would not be regarded as being rotationally invariant from the perspective of the
thermoelectric-type equations are sometimes rotationally invariant from the perspective of the
higher order tensorial equations. For example, the translation

Ti jk	 = δi jδk	 − δi	δ jk, (24.36)

which we encountered in section 6.4 on page 98 (see equation (6.19) ) is of this type: It is
clearly rotationally invariant when regarded as a fourth-order tensor, but when regarded as a
thermoelectric-type tensor its matrix elements under rotation undergo the transformation

Ti jk	 →
d∑

m,n=1

Rmi RnkTmjn	 = R j i R	k − R	i R jk �= Ti jk	.

Clearly T does not correspond to an isotropic thermoelectric-type tensor.
As we have seen in (24.9), rotationally invariant translations are particularly useful for

deriving bounds on the effective tensors of polycrystals. As an example let us take σ(x) as
the conductivity tensor field of a polycrystal:

σ(x) = R(x)σ0R
T (x), where σ0 =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
with λ1 ≥ λ2 ≥ λ3.

The associated fourth-order tensor field L(x) also corresponds to a polycrystal:

L(x) = R(x)R(x)L0R
T (x)RT (x), where {L0}i jk	 = {σ0}ikδ j	 = λiδikδ j	.

Taking T given by (24.36) as our translation we see that the inequality

L(x)− cT = R(x)R(x)(L0 − cT )R(x)R(x) ≥ 0

holds if and only ifL0−T ≥ 0. In the representation where T is a 9×9 matrix, as in (6.18),
the constraint takes the form

L0 − cT =



λ1 0 0 0 −c 0 0 0 −c
0 λ2 0 c 0 0 0 0 0
0 0 λ3 0 0 0 c 0 0
0 c 0 λ1 0 0 0 0 0
−c 0 0 0 λ2 0 0 0 −c
0 0 0 0 0 λ3 0 c 0
0 0 c 0 0 0 λ1 0 0
0 0 0 0 0 c 0 λ2 0
−c 0 0 0 −c 0 0 0 λ3


≥ 0. (24.37)

By separating this into blocks we see that the inequality holds if and only if(
λ1 −c −c
−c λ2 −c
−c −c λ3

)
≥ 0 (24.38)
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and (
λ2 c
c λ1

)
≥ 0,

(
λ3 c
c λ1

)
≥ 0,

(
λ3 c
c λ2

)
≥ 0. (24.39)

By examining the various 2 × 2 sub-blocks of the 3 × 3 matrix in (24.38) it is evident that
the positivity of this matrix ensures the positivity of the matrices in (24.39). In other words,
we need only consider the matrix inequality (24.38). The maximum value of c for which this
holds is the unique positive root of the equation

λ1λ2λ3 − (λ1 + λ2 + λ3)c2 − 2c3 = 0. (24.40)

Without loss of generality we can suppose that the coordinates have been chosen so that
σ∗ is diagonal. Then the associated effective tensor L∗ has elements

{L∗}i jk	 = {σ∗}ikδ j	 = λ∗
i δikδ j	,

in which the λ∗
i , for i = 1, 2, 3 are the eigenvalues ofσ∗. Clearly whenL∗−cT is represented

as a 9× 9 matrix, it takes the same form as the matrix L0 − cT given in (24.37), but with λ1,
λ2, and λ3 replaced by λ∗

1, λ
∗
2, and λ∗

3. The positivity of L∗ − cT implied by the comparison
bounds then leads directly to the bound

λ∗
1λ

∗
2λ

∗
3 − (λ∗

1 + λ∗
2 + λ∗

3)c
2 − 2c3 ≥ 0, (24.41)

derived by Avellaneda, Cherkaev, Lurie, and Milton (1988) using essentially this approach.
In particular, if we consider a isotropic polycrystal, with λ∗

1 = λ∗
2 = λ∗

3 = σ∗, which
is constructed from a uniaxial crystal, with λ2 = λ3, then the positive root of the cubic
polynomial (24.40) is

c = λ1

4

[
−1+

√
1+ 8(λ2/λ1)

]
,

and the bound (24.41) factorizes and implies

σ∗ ≥ 2c = λ1

2

[
−1+

√
1+ 8(λ2/λ1)

]
. (24.42)

By comparing the expression with the formula (7.30) we see that the bound is attained when
the polycrystal is Schulgasser’s assemblage of spheres, each with the crystal oriented so that
its axis of conductivity λ1 is directed radially. Thus his assemblage has the minimum possible
effective conductivity. There also exist isotropic polycrystals that attain the bound (24.41)
even when the constituent crystal is not uniaxial. These microstructures will be described in
section 25.4 on page 537.

The interpretation of T as a rotationally invariant fourth-order tensor is implicit in the
paper of Avellaneda, Cherkaev, Lurie, and Milton (1988). Rotationally invariant eighth-order
tensors T were found to be useful for rederiving the three-dimensional Hashin-Shtrikman-
Walpole shear modulus bounds using the translation method (Milton 1990a, 1990b).

24.9. A geometric characterization of translations†
In this section we obtain an alternative characterization of translations that will allow us to
generate large classes of useful translations. Furthermore, we will see that finding translations
is like fitting a round peg into a square hole, or more precisely, like fitting an ellipsoid into a
nonellipsoidal cavity. The interesting translations are operators that are neither positive- nor
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negative-definite, but those that have both positive and negative eigenvalues. This suggests
that it might be useful to express T in the form

T = L0 − ρ,

in which L0 is positive-definite and ρ positive-semidefinite. Clearly this decomposition of
T is nonunique. Treating L0 as fixed, let us now examine what values ρ can take while still
maintaining the quasiconvexity of T .

First observe that T will be quasiconvex if and only if for all k �= 0 the inequality

B ·L0B ≥ 2P ·B − P · ρ−1P

holds for allB ∈ Ek and all P ∈ V , in which V denotes the range of ρ and ρ−1 is the inverse
of ρ on the subspace V . The equivalence of this and (24.21) can be verified by taking the
maximum over P ∈ V of the right-hand side. Rewriting this inequality as

P · ρ−1P ≥ 2P ·B −B · L0B,

and taking the maximum of the right-hand side overB ∈ Ek, we deduce that T is quasiconvex
if and only if, for all unit vectors k,

P · ρ−1P ≥ P · Γ(k)P for all P ∈ V, where Γ(k) = Γ1(Γ1L0Γ1)
−1Γ1. (24.43)

This condition is both necessary and sufficient for the quasiconvexity of T (Milton 1990b,
1994). [The above derivation, due to an anonymous referee of my 1994 paper, simplifies the
one given in my 1990 paper.]

Although we restricted L0 to be positive-definite, it is clear from this derivation that we
only need to assume that L0 is strictly quasiconvex on E . Curiously, equality in (24.21) does
not imply equality in (24.43). For example, if T is a null Lagrangian, then (24.21) is satisfied
as an equality for all k, whereas (24.43) cannot be satisfied as an equality for all k because
Γ(k) depends on k, whereas ρ does not.

An important class of translations are those that have only one negative eigenvalue. These
can be expressed in the form

T = L0 − ρ, with ρ = αv ⊗ v, (24.44)

where α is a positive constant and v is a unit vector satisfying v · v = 1. The subspace V is
one-dimensional, consisting of all multiples of v, and the condition (24.43) for quasiconvexity
reduces to a simple scalar constraint on the constant α,

1/α ≥ v · Γ(k)v for all k �= 0, (24.45)

and the largest value of α for which this holds is clearly

α = 1/r(v ⊗ v), where r(M) = max
ξ

|ξ|=1

Tr[MΓ(ξ)]. (24.46)

We will see in section 24.12 on page 519 that translations in this class are useful for deriving
the trace bounds that were obtained in sections 23.5 on page 468 and 23.6 on page 474 of the
last chapter, from the Hashin-Shtrikman variational inequalities.
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What is the geometrical interpretation of (24.43)? Let us suppose that a basis has been
chosen for the subspace V . In a space with the elements of the vector representing P as
coordinates let us define Φ and Ψ(k) as the solid ellipsoids

Φ = {P | P ∈ V, P · ρ−1P ≤ 1}, Ψ(k) = {P | P ∈ V, P · Γ(k)P ≤ 1},
centered at the origin P = 0. Depending on the orientation of V , the solid ellipsoid Ψ(k)
may in fact be more like an elliptical cylinder, with a “cylinder axis” possibly being a multi-
dimensional subspace: The “axis” is the subspace V ∩ Jk. Let us define Ψ as the region of
intersection of these solid ellipsoids or elliptical cylinders:

Ψ =
⋂
k

|k| = 1

Ψ(k).

In the important case whereL0 = σ0I and E is comprised of d×m matrix-valued fieldsE(x)
that are gradients of m-component periodic potentials u(x) [so that Γ(k) = k ⊗ k/σ0], we
have

Ψ = {P | PP T ≤ σ0I},
in which I is the d × d identity tensor.

Φ k1( )Ψ

Ψ

( k2)Ψ

)(f β
β 2

Figure 24.1. Finding translations is like finding ellipsoids Φ that lie in a nonelliptical cavity
Ψ, whereΨ is the intersection of the regionsΨ(k) as k varies over all unit vectors. Illustrated
is the case where V is two-dimensional and V ∩Jk is one-dimensional for all k, so thatΨ(k)
degenerates to a strip.

Clearly the inequality (24.43) implies that any P in Φ necessarily lies in Ψ. Due to the
quadratic nature of this inequality, the converse is also true. In other words, as illustrated in
figure 24.1, T is quasiconvex if and only ifΦ ⊂ Ψ. This is the precise sense in which finding
translations is like fitting an ellipsoid into a nonellipsoidal cavity; the ellipsoid is represented
by Φ and the cavity by Ψ.
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When V is two-dimensional there is another geometrical interpretation of (24.43) that is
due to Smyshlyaev and Willis (1999) and also Smyshlyaev (private communication). If we
introduce polar coordinates (r, θ) in the space V and let β = 2θ , then the equation of the
boundary of the ellipse Φ can be written in the form

(b+ a1)r 2 cos2(β/2)+ (b − a1)r 2 sin2(β/2)+ 2a2r2 cos(β/2) sin(β/2) = 1

or, equivalently,
1/r 2 = a1 cosβ + a2 sinβ + b.

The boundary of the cavity Ψ is then described by a curve r = f (β), as illustrated in fig-
ure 24.1 on the facing page, and the constraint that the ellipse lies inside the cavity reduces to
the inequality

a1 cos β + a2 sinβ + b ≥ 1/[ f (β)]2. (24.47)

If we introduce coordinates y1 = r cosβ and y2 = r sinβ and plot 1/[ f (β)]2 as a cut
cylinder sitting on the unit disk as in figure 24.2, the inequality (24.47) says that the plane

1/ [f( )]

1

1-

1 1- y

y

1

2

2

a a1y1+ y2 2+c

β

β

Figure 24.2. When V is two-dimensional and fixed, finding translations can also be inter-
preted as a problem of finding planes that lie above a cut cylinder. After Smyshlyaev and
Willis (1999).

corresponding to the linear function a1y1 + a2y2 + b lies above the cut cylinder. Moving
the plane is equivalent to adjusting ρ (while keeping V fixed). The nonnegativity of 1/ f 2

guarantees that any plane above the cut cylinder will correspond to a positive-semidefinite
matrix ρ. Often one expects to find certain special planes that are above the cut cylinder but
which touch it at three values of β. These correspond to ellipsoids Φ inside the cavity Ψ
that touch the boundary of Ψ at six points (if they touch at P they will also touch at −P ).
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Depending on the form of f there may only be planes that touch the cut cylinder at two values
of β, or there may be planes that touch it at more than three values of β, or possibly infinitely
many values of β, as happens when T is a null Lagrangian. The different possibilities are
easiest to visualize if one takes the convexification (convex hull) of the cut cylinder. The top
surface then has flat sections, corresponding to planes touching the cut cylinder at three or
more points, and ruled surfaces with each tie line being identified with a plane touching the
cut cylinder at the two endpoints of the tie line, as illustrated in figure 24.3.

P
P

P

1

0

2

Figure 24.3. The view from above the convexification of the cut cylinder. Shown are two
triangular regions, each corresponding to an ellipse touching the cavity walls at six points,
and various tie lines, each corresponding to an ellipse touching the cavity walls at four points.
There are also tie lines of zero length, such as atP 0, each corresponding to an ellipse touching
the cavity walls at just two points.

The constraint thatL(x)−cT ≥ 0 can also be given a geometrical interpretation. Without
loss of generality, let us suppose that c = 1 and L0 has been chosen sufficiently large so that
L0 ≥ L(x) for all x. Then the constraint reads as ρ ≥ L0 −L(x) or, equivalently,

[L0 − L(x)]−1 ≥ ρ−1. (24.48)

Let us define Θ(x) as the solid ellipsoid

Θ(x) = {P | P ∈ V, P · [L0 − L(x)]−1P ≤ 1}
and Θ as the inclusion that is the union of these ellipsoids,

Θ =
⋃
x

Θ(x).

Then the inequality (24.48) states that the ellipsoid Φ must contain the inclusion Θ. There
certainly exists at least one ellipsoid Φ inside the cavity Ψ yet containing Θ, corresponding
to the translation T = 0.

24.10. Translation bounds on the Y -tensor
In section 19.1 on page 397 we established a one-to-one correspondence between effective
tensorsL∗ and Y -tensors Y ∗ in two-phase composites (assuming thatL1−L2 is nonsingular).
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Consequently, in such media the problem of finding constraints on the values that L∗ can
take is equivalent to that of trying to obtain constraints on the values that Y ∗ can take. The
translation bounds on L∗ imply that

L∗ ≥ cT + [ f1(L1 − cT )−1 + f2(L2 − cT )−1]−1, (24.49)

and hold provided that

T ≥ 0 on E, L1 − cT ≥ 0, L2 − cT ≥ 0.

Rather than using (24.49) to obtain constraints on the values that the effective tensor L∗
can take, it is much easier to work with the equivalent bound on the Y -tensor Y ∗, which takes
a surprisingly simple form:

Y ∗ + cT ≥ 0. (24.50)

This form of the translation bounds was first obtained by Cherkaev and Gibiansky (1992),
assuming that the matrices L1 and L2 commute. This latter restriction was subsequently
removed (Milton 1991).

To prove the equivalence of these bounds, without assuming thatL1 and L2 commute, we
need the following identity, which holds for any matrixA:

f1A+ f2I − f1 f2(A− I)( f1I + f2A)−1(A− I)
= [( f1A+ f2I)( f1I + f2A)− f1 f2(A− I)2]( f1I + f2A)−1

= ( f1 + f2)2A( f1I + f2A)−1 = ( f1A−1 + f2I)−1.

Upon settingA = (L1 − cT )(L2 − cT )−1 and multiplying on the right by L2 − cT , we see
that

[ f1(L1 − cT )−1 + f2(L2 − cT )−1]−1

= f1L1 + f2L2 − cT − f1 f2(L1 −L2)[ f2L1 + f1L2 − cT ]−1(L1 − L2).

(24.51)

To proceed further we assume that L1 − L2 is nonsingular. Then substitution of (24.51)
in (24.49) followed by some straightforward manipulation produces the bound

cT − f2L1 − f1L2 + f1 f2(L1 −L2)( f1L1 + f2L2 − L∗)−1(L1 −L2) ≥ 0,

which in view of the formula (19.3) for Y ∗ in terms of L∗ reduces to (24.50).
A simpler approach is to directly derive this bound on the Y -tensor. Let E1 be any piece-

wise constant average value zero field andE2 the corresponding field with zero average value
within each phase that solves the Y -tensor problem (19.10). Since E1 + E2 ∈ E , the quasi-
convexity of T implies that

0 ≤ 〈(E1 +E2) · T (E1 +E2)〉 = 〈E1 · TE1〉 + 〈E2 · TE2〉,
where the latter identity follows from the orthogonality ofE2 and the piecewise constant field
TE1, and from the orthogonality of E1 and the field TE2, which has average value zero
within each phase. Recalling thatL ≥ cT and, from (19.12), that 〈E1 ·Y ∗E1〉 = 〈E2 ·LE2〉
and that L ≥ cT , we are lead to the string of inequalities

〈E1 · Y ∗E1〉 ≥ 〈E2 · cTE2〉 ≥ −〈E1 · cTE1〉, (24.52)
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which clearly imply that Y ∗ + cT ≥ 0. Notice that this derivation holds even when L1 −L2

is singular, and moreover proves that the bound on Y ∗ applies to multiphase composites and
not just two-phase composites, provided that we interpret Y ∗ and T as operators acting on
the space V of fields that are constant within each phase and which have zero average value.

If we are seeking to find the best bounds on Y ∗, then, because the bounds (24.52) depend
linearly on c, we should either translate as far as possible, that is, increase c to the point
where L− cT becomes singular, or choose c = 0, which corresponds to no translation at all.
By contrast, if one is bounding the energy using (24.22), then the best bound is sometimes
obtained with an intermediate value of c, as was emphasized by Allaire and Kohn (1993),
correcting a wrong assertion that I had made (Milton 1990b).

24.11. Deriving the trace bounds†
The trace bounds (23.56) can be derived using the translation method. For simplicity, let us
consider two-phase composites and take a translation of the form (24.44). The translation
bounds, expressed as a constraint on the Y -tensor, imply that

Y ∗ +L0 ≥ αv ⊗ v.

By taking the inverse of both sides of this equation, and setting α to its extreme value α =
1/r(v⊗ v), as in (24.46), we obtain the inequality

v · (Y ∗ +L0)
−1v ≤ r(v ⊗ v),

which corresponds to the trace bound (23.56) withM = v ⊗ v.
This derivation (Milton 1990b) has a significant advantage over the derivation using the

standard Hashin-Shtrikman variational principles: The condition for its validity, that L(x)−
T ≥ 0 or, equivalently, that

L1 −L0 ≥ −v ⊗ v/r(v ⊗ v), L2 −L0 ≥ −v ⊗ v/r(v ⊗ v),

allows a wider choice of L0 than is allowed in the derivation using the Hashin-Shtrikman
variational principle, which requires that L1 −L0 ≥ 0 and L2 −L0 ≥ 0.

To obtain bounds that correspond to other choices ofM ≥ 0, we embed the problem.
Taking

Y∗ =


Y ∗ 0 . . . 0
0 Y ∗ . . . 0
...

...
. . .

...

0 0 . . . Y ∗

 , Li =


Li 0 . . . 0
0 Li . . . 0
...

...
. . .

...

0 0 . . . Li

 for i = 1, 2,

and a translation

T =


L0 0 . . . 0
0 L0 . . . 0
...

...
. . .

...

0 0 . . . L0

− αV ⊗ V , with V =


v1

v2
...

vn

 and V · V = 1,

the bounds Y∗+T ≥ 0, which hold when L1−T ≥ 0, L2−T ≥ 0, and T is quasiconvex,
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imply that

V ·


(Y ∗ +L0)

−1 0 . . . 0
0 (Y ∗ + L0)

−1 . . . 0
...

...
. . .

...

0 0 . . . (Y ∗ +L0)
−1

V ≤ 1
α
. (24.53)

To ensure the quasiconvexity of T , the constant α is subject to the restriction, implied by
(24.45), that for all k �= 0

1
α
≥ V ·


Γ(k) 0 . . . 0
0 Γ(k) . . . 0
...

...
. . .

...

0 0 . . . Γ(k)

V = Tr[MΓ(k)], whereM =
n∑
i=1

vi ⊗ vi .

Clearly the maximum permissible value for α is α = 1/r(M), where r(M) is given by
(24.46), and on substituting this into (24.53) we see that this inequality reduces to the general
trace bounds [see (23.56)]

Tr[M(Y ∗ +L0)
−1] ≤ r(M)

on the tensor Y ∗, where now we can choose the vectors vi so thatM is equal to any given
positive-semidefinite matrix. (We can relax the constraint that V · V = 1 or, equivalently,
that TrM = 1, because the bounds remain unchanged when we multiplyM by a positive
constant.) Again the condition for the validity of the bound, thatL1−T ≥ 0 andL2−T ≥ 0,
allows for a wider choice of L0 than is allowed in the derivation using the Hashin-Shtrikman
variational principles.

24.12. Mixed bounds
We have seen that finding lower bounds on an effective tensor, such as the effective conduc-
tivity tensor σ∗, corresponds to finding lower bounds on the sum of energies

n∑
α=1

e(α)0 · σ∗e
(α)

0 ,

in which e(1)0 , e(2)0 ,. . . e(n)0 denote a succession of n applied electric fields. In a similar
fashion, finding upper bounds on σ∗ corresponds to lower bounds on an appropriate sum of
complementary energies,

p∑
α=1

j(α)0 · σ−1
∗ j

(α)

0 ,

in which j(1)0 , j(2)0 ,. . . j(p)0 denote a succession of p applied current fields. Such sets of lower
and upper bounds do not always suffice to characterize the set of all possible effective tensors.

To complete the characterization we typically need mixed bounds on σ∗. These corre-
spond to finding lower bounds on a sum of energies and complementary energies:

n∑
α=1

e(α)0 · σ∗e
(α)

0 +
p∑

α=1

j(α)0 · σ−1
∗ j

(α)

0 .
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We will see later in section 30.3 on page 647 that knowledge of the best possible lower bound
on this sum, for all combinations of nonnegative integers n and p with n + p ≤ m, and for
all possible sets of applied fields e(1)0 ,e(2)0 , . . .e(n)0 ∈ U and j(1)0 , j(2)0 , . . . j(n)0 ∈ U , provides a
complete characterization of the set of all possible effective tensors σ∗. Moreover, this type of
characterization of the G-closure is sufficient not just for conductivity, but also for elasticity,
thermoelectricity, piezoelectricity, thermal expansion, and so forth.

So if we seek mixed bounds on the effective conductivity tensor σ∗, it seems natural to
make an additional embedding, taking a tensor field L(x) and effective tensor L∗ given by

L(x) =


σ(x) 0 . . . 0 0

0 σ(x) . . . 0 0
.
..

.

..
. . .

.

..
.
..

0 0 . . . σ−1(x) 0
0 0 . . . 0 σ−1(x)

 , L∗ =


σ∗ 0 . . . 0 0
0 σ∗ . . . 0 0
...

...
. . .

...
...

0 0 . . . σ−1
∗ 0

0 0 . . . 0 σ−1
∗

 .

We can then apply the comparison or translation bounds to the tensor L∗, with a translation
T that is quasiconvex in the sense that the inequality

〈E · T E〉 ≥ 〈E〉 · T 〈E〉
holds for all periodic extended fields E(x) of the form

E =



e(1)

e(2)
...

e(n)

j(1)

j(2)

...

j(p)


with

∇ × e(α) = 0 for α = 1, 2 . . . , n,

∇ · j(β) = 0 for β = 1, 2 . . . , p.

24.13. Volume fraction independent bounds on the conductivity of a
mixture of two isotropic phases

As an elementary example, consider a two-dimensional composite of two isotropic phases
with conductivity tensors σ1 = σ1I and σ2 = σ2I , and let us find bounds on the range of
values that the effective tensor σ∗ takes as the geometry varies over all configurations, with
no restriction placed on the volume fractions of the two phases. To do this we apply the
comparison bounds, with tensors

L1 =
(
σ1 0
0 σ−1

1

)
, L2 =

(
σ2 0
0 σ−1

2

)
, L∗ =

(
σ∗ 0
0 σ−1

∗

)
, (24.54)

and a rotationally invariant translation

T =
(

t1I t2R⊥
−t2R⊥ t3I

)
,

with parameters

t1 = σ1σ2

σ1 + σ2
, t2 =

√
σ1σ2

σ1 + σ2
, t3 = 1

σ1 + σ2
,
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chosen so that L1 − T , L2 − T , and T are all singular and positive-semidefinite. Notice
that this provides an example of where it is useful to take a positive-semidefinite translation.
Without loss of generality, we can assume that the matrix σ∗ is diagonal with eigenvalues λ∗

1
and λ∗

2. Then it is a simple matter to check that the comparison bounds L∗ − T ≥ 0 imply
that

σ1σ2/λ
∗
1 + λ∗

2 ≤ σ1 + σ2, σ1σ2/λ
∗
2 + λ∗

1 ≤ σ1 + σ2. (24.55)

These bounds were presented by Tartar (1975) and proved by Raı̆tum (1978) [see also
Lurie and Cherkaev (1981, 1984a, 1984b)]. They provide a complete characterization of the
G-closure (see also section 22.5 on page 446). The first inequality is attained as an equality
when λ∗

1 = 1/( f1/σ1 + f2/σ2) and λ∗
2 = f1σ1 + f2σ2. Similarly, the second inequality is

attained as an equality when λ∗
1 = f1σ1+ f2σ2 and λ∗

2 = 1/( f1/σ1+ f2/σ2). Therefore, these
are the best possible bounds being attained by simple rank-1 laminates of the two isotropic
phases. An alternative way to obtain these inequalities is to recognize, as Lurie and Cherkaev
(1984a) did, that the arithmetic mean bound on λ∗

1 and the harmonic mean bound on λ
∗
2 imply

that
λ∗

1 − σ2 ≤ f1(σ1 − σ2) ≤ σ1 − σ1σ2/λ
∗
2,

which immediately gives the first inequality in (24.55). The second inequality similarly fol-
lows from the arithmetic mean bound applied to λ∗

2 and the harmonic mean bound applied to
λ∗

1.
In three dimensions, Cabib and Dal Maso (1988) have shown that the G-closure consists

of all conductivity tensors σ∗ with eigenvalues λ∗
1 ≥ λ∗

2 ≥ λ∗
3 satisfying

λ∗
1 − σ2 ≤ σ1 + σ2

1+ σ2/(λ
∗
2 − σ2)+ σ2/(λ

∗
3 − σ2)

,

and the elementary bounds σ1 ≥ λ1 and λ3 ≥ σ2, where σ1 and σ2 ≤ σ1 are the conductivities
of the two isotropic phases. They obtained these inequalities from the volume fraction depen-
dent bounds of Murat and Tartar (1985) and Lurie and Cherkaev (1986) by taking the union
of these bounds as the volume fraction is varied between 0 and 1.

There is still another way to derive the bounds (24.55). Consider the harmonic mean
bounds applied to the tensor L∗:

v ·L−1
∗ v ≤ f1v ·L−1

1 v + f2v ·L−1
2 v.

These bounds will be volume fraction independent if we choose v so that v·L−1
1 v = v ·L−1

2 v.
For the matrices L1 and L2 given by (24.54), this identity is satisfied with

v =


√
σ1σ2
0
0
1

 and with v =


0√
σ1σ2

−1
0

 ,

and for these choices of v the harmonic mean bounds are easily seen to be equivalent to the
bounds (24.55).

This approach, due to Leonid Gibiansky (private communication, 1990), is easily gener-
alized. In the context of other problems, we can obtain volume fraction independent bounds
from the translation bounds by looking for vectors v and constants α such that

v · (L(x)− cT )−1v ≤ α for all x. (24.56)
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Once this inequality is satisfied, the translation bounds (24.4) clearly imply that

v · (L∗ − cT )−1v ≤ α. (24.57)

Of course the constant c and the translation T still must be chosen so that the translation
bounds remain valid. One can alternatively derive the bounds (24.57) from the comparison
bounds. Without loss of generality let us assume that v is a unit vector with v · v = 1. Then
the comparison bounds L∗ − cT ′ ≥ 0 with

T ′ = T + 1
cα
v ⊗ v, (24.58)

imply that

L∗ − cT ≥ 1
α
v ⊗ v. (24.59)

By taking the inverse of both sides, we arrive at the bounds (24.57). Moreover, the conditions
for the validity of the translation bounds guarantee that T ′ is quasiconvex and that L(x) −
cT ′ ≥ 0. The quasiconvexity of T clearly implies the quasiconvexity of T ′, and the inequality
(24.56), coupled with the constraint that L(x)− T ≥ 0, ensures that L(x)− cT ′ ≥ 0.

24.14. Bounds correlating different effective tensors
Sometimes we seek bounds that correlate one effective tensor with another effective tensor.
Such bounds are called cross-property bounds. For example, one might want to derive bounds
correlating the effective bulk modulus and effective conductivity of an isotropic composite
material. Then one can utilize measurements of the electrical conductivity to obtain informa-
tion about the bulk modulus. Bounds of this sort were obtained by Milton (1984), Berryman
and Milton (1988), and Torquato (1992). Tighter bounds were obtained by Gibiansky and
Torquato (1993, 1995, 1996, 1998) using the translation method. Here we give an example of
their approach, which is based on the earlier work of Cherkaev and Gibiansky (1992) corre-
lating effective electrical and magnetic properties of two-phase, two-dimensional composites.

Let us consider a three-dimensional composite of two isotropic phases with conductivities
σ1 and σ2 and shear moduli µ1 and µ2 such that

(σ1 − σ2)(µ1 − µ2) ≤ 0. (24.60)

We subject the composite to an applied strain and write the elasticity constitutive law in the
form

τ (x) = [3κ(x)Λh + 2µ(x)Λs ]∇u(x), (24.61)

in which Λh and Λs are the fourth-order tensors given by (23.38), representing the projection
onto the one-dimensional space of matrices proportional to the second-order identity tensor
and the projection onto the orthogonal five-dimensional space of trace free matrices, respec-
tively. Here κ(x) is the local bulk modulus, taking the value κ1 in phase 1 and the value κ2 in
phase 2, while µ(x) is the local shear modulus taking the value µ1 in phase 1 and the value
µ2 in phase 2. We then subject the composite to a succession of three applied electric fields,
and as in section 24.6 on page 506 we let the three resultant current fields j (1)(x), j(2)(x), and
j(3)(x) form the columns of a 3 × 3 matrix-valued field J(x) and we let the three resultant
electric fields e(1)(x), e(2)(x), and e(3)(x) form the three columns of a 3 × 3 matrix-valued
field E(x). Then the constitutive law takes the form

J(x) = [σ(x)I]E(x), (24.62)
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in which I is the fourth-order identity tensor and σ(x) is σ1 in phase 1 and σ2 in phase 2.
We now embed the equations (24.62) and (24.61) in a larger problem where the constitu-

tive law takes the form (
τ
J

)
= (L1χ1 +L2χ2)

(∇u
E

)
,

where

Li =
(
3κiΛh + 2µiΛs 0

0 σiΛh + σiΛs + σiΛa

)
for i = 1, 2,

in which Λa = I − Λh −Λs is the projection onto the three-dimensional space of antisym-
metric matrices. The associated effective tensor L∗ takes a similar form to Li but with σi , κi ,
and µi being replaced by the effective conductivity σ∗, the effective bulk modulus κ∗, and the
effective shear modulus µ∗. The associated Y -tensor is

Y∗ =
(
3yκΛh + 2yµΛs 0

0 yσΛh + yσΛs + yσΛa
)
,

where the y-parameters

yκ = − f2κ1 − f1κ2 − f1 f2(κ1 − κ2)
2

κ∗ − f1κ1 − f2κ2
,

yµ = − f2µ1 − f1µ2 − f1 f2(µ1 − µ2)
2

µ∗ − f1µ1 − f2µ2
,

yσ = − f2σ1 − f1σ2 − f1 f2(σ1 − σ2)
2

σ∗ − f1σ1 − f2σ2

are the Y -transformations of the effective bulk and shear moduli and conductivity.
As our translation we take the null Lagrangian

T =
(−t1(2Λh −Λs +Λa) −t3(2Λh −Λs +Λa)
−t3(2Λh −Λs +Λa) −t2(2Λh −Λs +Λa)

)
,

where t1, t2, and t3 are scalar parameters and 2Λh −Λs +Λa is the familiar null Lagrangian
appearing in (24.36), written in terms of the projections Λh , Λs , and Λa . Since these pro-
jections project onto orthogonal subspaces, the constraint that Li − T is positive-definite for
i = 1, 2 or, equivalently, that

(
(3κi + 2t1)Λh + (2µi − t1)Λs + t1Λa t3(2Λh − Λs + Λa)

t3(2Λh − Λs + Λa) (σi + 2t1)Λh + (σi − t2)Λs + (σi + t2)Λa

)
≥ 0,

decouples into the constraints that(
3κi + 2t1 2t3

2t3 σi + 2t2

)
≥ 0,

(
2µi − t1 −t3
−t3 σi − t2

)
≥ 0,

(
t1 t3
t3 σi + t2

)
≥ 0,

for i = 1, 2. For these constraints to be satisfied it is necessary and sufficient for the leading
element of each matrix to be nonnegative, which demands that

0 ≤ t1 ≤ min{2µ1, 2µ2}, (24.63)
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and for the determinant of each matrix to be positive. This latter constraint requires t1, t2, and
t3 to be such that the inequality

(3y1/2− t1)(y2/2− t2)− t23 ≥ 0 (24.64)

is satisfied for the following six values of y = (y1, y2):

y1i = (−κi ,−σi ), y2i = (4µi/3, 2σi ), y3i = (0,−2σi), i = 1, 2.

The desired bound coupling κ∗ and σ∗ comes from the matrix inequality(
3yκ − 2t1 −2t3
−2t3 yσ − 2t2

)
≥ 0,

which is implied by the positivity of Y + T . By taking the determinant of this matrix we
conclude that the inequality (24.64) is satisfied for

y = (yκ, yσ ).

Let �T denote the region in the y-plane comprised of all points y = (y1, y2) satisfying
the inequality (24.64). The boundary of this region is a hyperbola. The constraint (24.63)
says that the vertical axis of this hyperbola must intersect the y1-axis between the origin and
the minimum value of 4µ1/3 and 4µ2/3. We can think of moving and resizing the region
�T as equivalent to varying the parameters t1, t2, and t3. The constraints on �T is that the
vertical axis of its hyperbolic boundary lies in the required range and that it contains the six
points yhi , h = 1, 2, 3, i = 1, 2. The bounds confine (yκ , yσ ) to lie inside the region �T .
This geometrical interpretation allows one to visually obtain the best bounds by positioning
and resizing �T , subject to the preceding restrictions. When the ordering condition (24.60)
is satisfied, it is best to position �T so that one branch of the hyperbolic boundary passes
through both y21 = (4µ1/3, 2σ1) and y22 = (4µ2/3, 2σ2), while the other branch of the
hyperbolic boundary passes through one of the four points y11,y12,y31, or y32, chosen so
that the remaining three points lie inside �T .

Another bound can be obtained by applying quasiconvex translations to the tensor L−1.
This bound confines (yκ , yσ ) to lie to the left of the straight line joining y21 = (4µ1/3, 2σ1)

and y22 = (4µ2/3, 2σ2). The prescription for constructing the bounds is therefore the follow-
ing. For any point w = (w1, w2) in the y-plane, let Hyp[w] denote the hyperbolic segment
in the y-plane that joins y21 and y22, and which when extended passes through w. It can be
described parametrically by the equations

y1 = 4[γµ1 + (1− γ )µ2]/3− 16γ (1− γ )(µ1 − µ2)
2

12[γµ2 + (1− γ )µ1]− 9w1
,

y2 = 2[γ σ1 + (1− γ )σ2]− 4γ (1− γ )(σ1 − σ2)
2

2[γ σ2 + (1− γ )σ1]−w2
,

with the parameter γ running from 0 to 1. (The points y21, y22, and w correspond to γ = 1,
γ = 0, and γ = ∞, respectively.) Inscribe in the y-plane the four segments of hyperbolas:

Hyp[(−κ1,−σ1)], Hyp[(−κ2,−σ2)], Hyp[(0,−2σ1)], Hyp[(0,−2σ2)],

and the straight line joining the points (4µ1/3, 2σ1) and (4µ2/3, 2σ2). The outermost pair
of these five curves is then the desired cross-property bounds on the possible (yκ , yσ ) pairs.
It turns out that the same procedure can be followed for constructing bounds when

(σ1 − σ2)(µ1 − µ2) ≥ 0.
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These arise from mixed bounds on the tensor L.
The points (yκ , yσ ) on the hyperbolic segments Hyp[(−κ1,−σ1)] and Hyp[(−κ2,−σ2)]

correspond to the moduli of assemblages of doubly coated spheres. Therefore, if a bound is
described by one of these hyperbolic segments, then that bound is optimal. There are also five
points along the line joining the points (4µ1/3, 2σ1) and (4µ2/3, 2σ2) that correspond to
microgeometries: Assemblages of coated spheres correspond to the endpoints, and the other
three points are attained by more complicated microgeometries; see Gibiansky and Torquato
(1996) and references therein.
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pp. 168–187. London: Pitman Publishing Ltd. ISBN 0-273-08680-4. {129, 141, 165,
167, 174, 183, 462, 496, 499, 503, 506, 508, 527, 529, 552, 683, 698}



528 24. Translation method bounds

Torquato, S. 1992. Connection between the morphology and effective properties of het-
erogeneous materials. In S. Torquato and D. Krajcinovic (eds.), Macroscopic Behav-
ior of Heterogeneous Materials from the Microstructure: Presented at the Winter An-
nual Meeting of the American Society of Mechanical Engineers, Anaheim, California,
November 8–13, 1992, pp. 53–65. New York: American Society of Mechanical Engi-
neers. ISBN 0-7918-1101-8. {522, 527}



25
Choosing the translations and finding

microgeometries that attain the bounds†

The main difficulty in applying the translation method is in choosing the translation T . This
is intimately tied with the question of what microgeometries attain a given bound, since one
typically wants to choose the translations so that the resulting bounds are attained by at least
some microgeometries. This chapter addresses these two issues.

25.1. Other derivations of the translation bounds and their extension to
nonlinear problems

The argument leading to the translation bounds (24.17) is appealing because it gives an in-
terpretation of the bounds in terms of the harmonic mean bounds applied to the translated
medium. Also, as will be discussed later in section 26.5 on page 560, one immediately sees
that tighter correlation function dependent bounds could be used instead of the harmonic mean
bounds. However, it is somewhat mysterious as it does not explain why it is natural to con-
sider bounds on the translated medium in the first place. Both the compensated compactness
approach (Tartar 1979a, 1979b, 1985; Murat and Tartar 1985; Murat 1987) and the variational
approach (Lurie and Cherkaev 1982, 1984 1986; Gibiansky and Cherkaev 1984; Firoozye
1991) provide this insight.

In the compensated compactness approach, which is outlined in theorem 8 in the paper
of Tartar (1979b), one seeks to find the possible values of the average field pair (〈E〉, 〈J 〉)
given the differential constraints on the fields and given that the fields satisfy the constitutive
relation. This latter constraint can be recast in the form

(E(x),J(x)) ∈ K(x), where K(x) = {(A,B) |B = L(x)A},
and similarly the effective constitutive law can be recast as

(〈E〉, 〈J 〉) ∈ K∗, where K∗ = {(E0,J0) | J0 = L∗E0}.
Now suppose that we have identified a quasiconvex function Q(E,J), which by definition

is such that

〈Q(E,J)〉 ≥ Q(〈E〉, 〈J 〉) for all E ∈ U ⊕ E and J ∈ U ⊕ J . (25.1)

This inequality provides a bound on the pair (〈E〉, 〈J 〉), provided that we can estimate the
expression on the left-hand side for fields E(x) and J(x) satisfying the constitutive law. If
we define

g(x) = sup
(E,J )∈K(x)

Q(E,J), g∗ = sup
(E0,J 0)∈K∗

Q(E0,J0), (25.2)

529
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then clearly (25.1) implies that

〈g〉 ≥ Q(E0,J0) for all (E0,J0) ∈ K∗,

and taking the supremum of the right-hand side over (E0,J 0) ∈ K∗ gives the compensated
compactness bound

〈g〉 ≥ g∗. (25.3)

Consider the function

Q(E,J) = 2J ′ ·E − J ·E + cE · TE,

where J ′ is a constant vector. The first term is a null Lagrangian because it is linear in E.
The second term is also a null Lagrangian because the subspaces J and E are orthogonal.
Therefore, the whole expression is quasiconvex for c ≥ 0 provided that T is quasiconvex on
E . The resulting formulas for g and g∗ are given by the expressions

g(x) = sup
E

[2J ′ ·E −E · (L− cT )E] = J ′ · (L− cT )−1J ′,

g∗ = sup
E0

[2J ′ ·E0 −E0 · (L∗ − cT )E0] = J ′ · (L∗ − cT )−1J ′,

where we have assumed that L− cT ≥ 0. The bound (25.3) then becomes

J ′ · 〈(L− cT )−1〉J ′ ≥ J ′ · (L∗ − cT )−1J ′,

which, because J ′ is arbitrary, is equivalent to the translation bounds (24.17).
Taking Q to be a sum of more general linear and quadratic terms generates the mixed

bounds discussed in section 24.12 on page 519. Nonquadratic choices of Q would presumably
lead to tighter bounds, but unfortunately this approach is currently limited by our rudimentary
knowledge of nonquadratic quasiconvex functions. The beauty of the compensated compact-
ness bounds (25.3) is that they also clearly apply to nonlinear composites (as was evident to
Murat and Tartar) once the set K(x) is redefined to be

K(x) = {(A,B) |B = F (x,A)},
in which F (x,A) is the nonlinear constitutive law at the point x. The bounds then restrict the
possible values of the average fieldsE0 = 〈E〉 and J0 = 〈J〉. In this way quite tight bounds
[generalizing the linear bounds (22.12)] were obtained on the possible values of the average
current for a prescribed average electric field in nonlinear conducting two-phase composites
(Milton and Serkov 2000).

In the variational approach one starts from the variational expression for L∗,

E0 · L∗E0 = min
E ∈ U ⊕ E
〈E〉 = E0

〈E ·LE〉,

and replaces the differential constraint that E ∈ U ⊕ E by the weaker integral corollary that
E satisfies (24.20). Since the minimum then extends over a larger class of fields, we obtain a
lower bound on E0 · L∗E0:

E0 · L∗E0 ≥ min
E ∈ H

(E,TE) ≥ (E0,TE0)

〈E〉 = E0

〈E ·LE〉. (25.4)
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We next introduce a Lagrange multiplier c ≥ 0 and rewrite (25.4) as

E0 · L∗E0 ≥ min
E ∈ H
〈E〉 = E0

max
c≥0

{
〈E · LE〉 − c[〈E · TE〉 −E0 · TE0]

}
, (25.5)

where the maximum over c ≥ 0 is infinite unless 〈E ·TE〉 ≥ E0 ·TE0. Now for any function
f (x, y) of two variables x and y we have

max
y′

f (x, y ′) ≥ f (x, y) ≥ min
x′
f (x ′, y),

for all choices of x and y. Taking the minimum over x of the left-hand side and the maximum
over y of the right-hand side gives

min
x
max
y
f (x, y) ≥ max

y
min
x
f (x, y).

Applied to (25.5) we see that swapping the order of the maximum over c and the minimum
overE either leaves unchanged or reduces the right-hand side, and so we have the inequality

E0 · L∗E0 ≥ max
c≥0

min
E ∈ H
〈E〉 = E0

{
〈E ·LE〉 − c[〈E · TE〉 −E0 · TE0]

}
. (25.6)

Naturally, if this is to provide a useful bound, the minimum over E should not be minus
infinity, that is, the choice of c should be restricted to those positive values for which L −
cT ≥ 0. Then, by introducing a Lagrange multiplier to take into account the constraint that
〈E〉 = E0, we see that the optimum choice of E that minimizes the right-hand side of (25.6)
is

E = (L− cT )−1v, where v = 〈(L− cT )−1〉−1E0 ∈ U .
By substituting this back into (25.6), and recalling that the inequality holds for all choices of
E0, we arrive at the inequality

L∗ ≥ cT + 〈(L− cT )−1〉−1, (25.7)

which is clearly equivalent to the translation bound (24.17).
This variational approach is also easily extended to the nonlinear case (Firoozye 1991;

Ponte Castañeda 1996; Bhattacharya and Kohn 1997; Nesi, Talbot, and Willis 1999). Starting
from the variational principle (13.40) one obtains the nonlinear translation bound

W∗ ≥ cQ + 〈(W − cQ)◦〉◦, (25.8)

where the circle superscipts denote Legendre transforms (as in section 13.7 on page 282) and
Q(A) is any quasiconvex function satisfying

〈Q(E)〉 ≥ Q(〈E〉) for all E ∈ U ⊕ E . (25.9)

Thus, in the nonlinear setting, the variational approach naturally produces bounds on the
effective energy potential W∗(E0), whereas the compensated compactness method naturally
produces bounds on the possible average fields, that is, on the derivative of W∗(E0) with
respect toE0 [see equation (13.48)]. The results are different since bounding a function is not
the same as bounding the derivative of a function.
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Even for linear problems it may prove fruitful to use (25.8) with a nonquadratic Q, but
again the problem is to find useful nonquadratic quasiconvex functions. One might ask
whether anything is lost by swapping the order of the maximum over c and the minimum
over E in (25.5), that is, whether the right-hand sides of (25.5) and (25.6) are always equal.
In fact nothing is lost, as has been established by Firoozye (1991), in the general nonlinear
setting.

25.2. Extremal translations
From the preceding derivation one can see that it is never advantageous to translate by a
positive-semidefinite translation T . For such choices of T the inequality

〈E · TE〉 −E0 · TE0 = 〈(E −E0) · T (E −E0)〉 ≥ 0

implies that to maximize the right-hand side of (25.6), and thereby produce the best bound,
we should take c = 0, which corresponds to no translation at all. This makes good sense:
When T is positive-semidefinite the constraint (E,TE) ≥ (E0,TE0) does not impose any
restriction on a fieldE satisfying 〈E〉 = E0. Similar conclusions do not directly extend to the
comparison bounds. As was seen in the example of section 24.13 on page 520, it is sometimes
advantageous to take translations that are not extremal.

For the same reason, if T can be decomposed into a sum of a quasiconvex operator T ′ and
a nonzero positive-semidefinite operatorA:

T = T ′ +A with T ′ ≥ 0 on E and A ≥ 0 onH withA �= 0, (25.10)

then the translation bounds produced with T ′ as our translation will be at least as good as those
produced with T . Therefore to bound L∗ using the translation bounds (25.7) we can restrict
our choice of T to those quasiconvex operators that cannot be decomposed in this way. We
call the translations in this special class extremal (Milton 1990). They have the property that
their quasiconvexity is lost whenever a nonzero positive-semidefinite tensor A is subtracted
from them.

This definition makes sense only when the subspaces Ek span all of tensor space as k
ranges over all unit vectors. Otherwise, the class of extremal translations is empty since we
can always subtract from T any multiple of the projection operator that projects onto the space
E⊥, which is the orthogonal complement of the span of these subspaces. In this case we need
to modify the definition of an extremal translation, and require that quasiconvexity be lost
for nonzero, positive-semidefinite tensors A that have E⊥ in their nullspace. To avoid these
complications let us assume that these subspaces span all tensor space.

In the context of the geometrical characterization of translations given in section 24.9
on page 512, the extremal translations are those T for which ρ cannot be increased without
destroying quasiconvexity. When L0 is chosen so that ρ is nonsingular, they correspond to
those ellipsoids Φ that fit tightly in the cavity Ψ. They cannot be enlarged and still remain
inside. (Here an enlarged ellipsoid is understood as any ellipsoid that contains the original
ellipsoid.)

One class of extremal translations are those for which there exist vectorsE1,E2, . . . ,Em
and associated directions n1,n2, . . . ,nm such that the vectors E i span the tensor space in
which the fields take their values and

Ei = Γ1(ni)Ei , Ei · TEi = 0 for all i.
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Since T is quasiconvex, and hence positive-semidefinite on Eni , this latter constraint implies
that

Γ1(ni)J i = 0, where J i = TEi .
To see that T is extremal, let us assume on the contrary that T can be expressed in the form
(25.10). SinceEi ·T ′Ei andE i ·AEi are nonnegative if T ′ is quasiconvex andA is positive-
semidefinite, and since their sum is zero, it follows thatE i ·AEi must be zero, implying that

AEi = 0.

As this must hold for all i and as the E i span all of the relevant tensor space we conclude
that A is zero. Therefore T must be extremal. Null Lagrangians are an example of extremal
translations in this class. We can take E i to be any vector in the subspace Eni and since, by
assumption, these subspaces span of all of tensor space as ni is varied, we can easily arrange
for the set of vectors Ei to span all of tensor space.

Many equations of interest can be expressed in the form

J = LE, E = ∇u, ∇ · J = 0,

in which u is an �-component vector while J and E are d × � matrix-valued fields. Exam-
ples include conductivity, thermoelectricity, elasticity, and piezoelectricity (see section 6.4 on
page 98). In this case the space Ek is comprised of all d× �matrices of the formB = k⊗ b,
where b is any �-dimensional vector, and the quasiconvexity condition (24.21) is satisfied if
and only if

(k ⊗ b) · T (k⊗ b) ≥ 0 for all k and b. (25.11)

If either d or � equals 1, then this condition holds if and only if T is positive-semidefinite, and
T = 0 is the only extremal translation. If either d or � equals 2, Terpstra (1938) has shown
that any tensor T satisfying this constraint can be expressed in the form

T = T ′ +A with T ′ = 0 on Ek for all k and A ≥ 0,

that is, as the sum of a null Lagrangian and a positive-semidefinite tensor. [See also Serre
(1981a, 1981b) and Marcellini (1984).] Thus in two dimensions (with � arbitrary) the only
extremal translations for gradient problems are null Lagrangians. This explains why null
Lagrangians have proved so useful for generating optimal bounds in two dimensions.

In three dimensions other extremal translations in this class can be constructed by look-
ing for sets of pairs of vectors E i and J i for i = 1, 2, . . . ,m and associated directions
n1,n2, . . . ,nm such that

Ei = Γ1(ni)Ei , Γ1(ni )J i = 0, (25.12)

and such that the E i span all of tensor space. Then the relation J i = TEi determines the
action of T . To ensure that T is self-adjoint we require that E i and J i be chosen so that

J i ·E j = Ei · J j . (25.13)

Also, because T is quasiconvex, it follows that for all n and all constants λ,

(Ei + λJ i) · Γ1(n)TΓ1(n)(Ei + λJ i) ≥ 0,
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with equality when n = ni . Expanding this inequality around n = ni yields the additional
identity

Ei · dΓ1(n/|n|)
dn

∣∣∣∣
n=ni

J i = 0. (25.14)

The other identity,

J i · dΓ1(n/|n|)
dn

∣∣∣∣
n=ni

J i = 0, (25.15)

which follows, is automatically satisfied: Because Γ1(n) is positive-definite we have

J i · Γ1(n)J i ≥ 0,

with equality when n = ni , and expanding this around n = ni gives (25.15). Once one
has found sets of pairs of vectors E i and J i for i = 1, 2, . . . ,m and associated directions
n1,n2, . . . ,nm such that the constraints (25.12), (25.13), and (25.14) are satisfied, one still
has to check that T defined by J i = TEi is quasiconvex.

With T = σ0I − ρ, where σ0 is chosen sufficiently large so that ρ is positive-definite, we
have

J i = TEi = σ0Ei − ρEi .
Hence P i = J i − σ0Ei satisfies

(ρ−1 − Γ1(ni )/σ0)P i = 0. (25.16)

Thus the ellipsoid Φ touches the cavity Ψ at some P proportional to P i . Also, the P i span
all of tensor space because sP i = −ρE i and ρ is nonsingular. Therefore, geometrically,
these extremal translations correspond to ellipsoids that touch the cavity walls in a set of
“directions” P i that span tensor space, as illustrated in figure 25.1(a).

P1

P2

(a) (b)
Ψ

ΦΦ

P

Ψ

0

Figure 25.1. Extremal translations may correspond to ellipsoids Φ that touch the walls of
the cavity Ψ at tensors P 1, P 2, . . . ,P m , which span all tensor space, as illustrated in (a).
Alternatively, they may correspond to ellipsoids Φ such that the curvatures of the ellipsoid
and cavity wall at the points where they touch prevent further enlargement of the ellipsoid, as
illustrated in (b).

There are likely other classes of extremal translations. The directions P i might not span
all tensor space, but instead the curvature of the ellipsoid and the curvature of the cavity at
the points where the ellipsoid touches the cavity might be such as to prevent enlargement of
the ellipsoid, as illustrated in figure 25.1(b). In the context of figure 24.3 on page 516, this
corresponds to a tie line of zero length. However, we conjecture that such extremal translations
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can be approximated by extremal translations for which the P i do span all of tensor space.
For example, each tie line of zero length in figure 24.3 on page 516 has a neighboring tie line
of finite length.

To motivate the conjecture, consider what happens when we replace the quasiconvexity
condition (24.43) by the weaker condition that the inequality

ρ−1 − Γ1(k)/σ0 ≥ 0 (25.17)

holds only for a finite set S of values, k1,k2, . . . ,k p of k. Consider the (possibly empty) set
of allP i and associatedni ∈ S for i = 1, 2, . . . , q such that (25.16) holds. Let us assume that
the subspace P of tensor space spanned by the P i has a nonempty orthogonal complement
P⊥. If Λ⊥ denotes the projection onto P⊥, the inequality

ρ−1 − Γ1(k)/σ0 ≥ ηΛ⊥

holds for all k ∈ S when η > 0 is chosen less than the lowest nonzero eigenvalue of ρ−1 −
Γ1(k)/σ0 as k ranges over S. [For any given k ∈ S, the matrix ρ−1 − Γ1(k)/σ0 is greater
than η(I−Λk), whereΛk is the projection onto the nullspace of ρ

−1−Γ1(k)/σ0 and I−Λk
in turn is greater than Λ⊥ because it projects onto a larger subspace.] It follows that ρ−1 can
be decreased while still maintaining the inequality (25.17). Thus in this weakened context the
only extremal translations T = σI − ρ are those for which the P i span all of tensor space.
This argument breaks down when k takes an infinity of values because the infimum of the
lowest nonzero eigenvalue of ρ−1 − Γ1(k)/σ0 could be zero. As S is enlarged to include
successively more values of k, two (or more) pairs (P i ,ni ) and (P j ,n j) could approach
each other. [See section 5 of Milton (1994) for a more complete analysis in a related context,
which suggests that extremal translations have an associated tree structure.] The conjecture
is that by slightly perturbing T we can avoid such accidental degeneracies while maintaining
extremality.

We remark that there are alternative definitions of extremal translations. Since the set of
quasiconvex translations with bounded norm ‖T ‖ ≤ k is compact and convex [i.e., if T 1 and
T 2 are in the set, then so is pT 1+ (1− p)T 2 for all p between 0 and 1], it follows that any T
within the set can be expressed as a linear combination with positive weights of the extreme
points of the set. These extreme points could be called extremal translations. However we
do not adopt this definition, first, because the set of extremal translations defined in this way
depends on the choice of norm (as can be seen by considering the set of null Lagrangians),
and second, because our definition is the one needed to obtain the relevant translations for
application in the translation bounds.

25.3. Attainability criteria for the comparison bounds
When one seeks composites that attain a particular bound the most important clues to the
microstructure come from finding the constraints on the field E(x) that are both necessary
and sufficient to guarantee that the bound will be achieved. Of course, there may not be a
single microstructure that supports a field E(x) compatible with the constraints, but if such
microstructures exist, then the constraints on the fields provide a helpful guide in the search
to find the microstructures.

From the variational principles (24.18) and (24.19) it is clear that the comparison bounds
will be attained if and only if the field E ∈ U ⊕ E lies in the nullspace of both L − cT and
Γ1TΓ1, that is, if and only if

LE = cTE, TE ∈ U ⊕ J , E ∈ U ⊕ E . (25.18)
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The first two constraints ensure that J = LE ∈ U ⊕ J . Given that L is constrained to take
values in a set U of given component materials, let us introduce the set of vectors

F0 = {P | LP = cTP for some L ∈ U}.
Also let us assume, for simplicity of argument, that T is nonsingular. Then from (25.18) we
see that the search for microstructures that attain the comparison bound is equivalent to the
search for fields E such that

E(x) ∈ F0 for all x and E ∈ U ⊕ (E ∩ T −1J ). (25.19)

These are the attainability criteria for the comparison bounds. The latter differential con-
straints on E imply that the Fourier components Ê(k) of E satisfy

Ê(k) ∈ Ek ∩ T−1Jk for all k �= 0.

For example [following Avellaneda and Milton (1989)], let us consider the lower bound
(24.10) on the compliance tensor of a two-dimensional polycrystal. In this context U ⊕ E is
the space of periodic stress fields τ (x). The space J consists of all strain fields that are the
symmetrized gradient of some periodic displacement field. Since the translation T = R⊥ is a
null Lagrangian, TE is contained in J and consequently U⊕(E∩T −1J ) equals U⊕E . When
c is chosen as the positive root of the cubic polynomial (24.11) there exists some symmetric
matrix v0 such that

(S0 − cR⊥)v0 = 0,

and the set F0 consists of all 2× 2 symmetric matrices P expressible in the form

P = aRTv0R,

for some choice of constant a and rotation matrixR satisfyingRTR. So the requirement that
τ (x) ∈ F0 is fulfilled if the eigenvalues of τ (x) are in the same ratio α as the eigenvalues of
v0. The ratio of these eigenvalues is necessarily positive because

det(v0) = v0 ·R⊥v0/2 = v0 · S0v0/2c

is positive as S0 is positive-definite and c > 0.
Therefore searching for polycrystalline microstructures that attain the bound is equiva-

lent to looking for periodic divergence free stress fields τ (x) that have a constant positive
eigenvalue ratio α. To construct a nontrivial field we first consider a stress field that takes the
constant value τ (x) = I . We then cut out from the unit cell a circle of radius ri centered at
x = 0 and replace the constant stress field with

τ (x) = [αI + (1− α)(x⊗ x)/|x|2]|x|α−1/rα−1
i

inside the circle, where the coordinate originx = 0 has been chosen at the center of that circle.
One can check that within the circle τ (x) has eigenvalues in the ratio α and is divergence free,
deriving from the Airy stress function ϕ(x) = |x|α+1/[(α+ 1)rα−1

i ]. Also at the boundary of
the circle we have τ (x) ·n = n = I ·n, when n is normal to the circle boundary. Therefore
the stress satisfies the required continuity condition.

One can continue to cut out nonoverlapping circular regions from the unit cell, replacing
the constant stress field in each of them according to the above prescription, until the circles



25.4. Isotropic polycrystals with minimum conductivity 537

fill all space and one has a periodic stress field with eigenvalues in the desired ratio almost
everywhere. Having obtained τ (x), one chooses the crystal orientation so that τ (x) is in
the nullspace of S(x) − cR⊥. Then ε(x) = S(x)τ (x) = cR⊥τ (x) is automatically the
symmetrized gradient of a displacement field. Therefore the bound (24.12) is sharp, being
attained by a Schulgasser-type assemblage of circular inclusions.

25.4. Isotropic polycrystals with minimum conductivity constructed
from a fully anisotropic crystal

We have already seen in section 24.8 on page 510 that the bound (24.42) on the eigenvalues
of the effective conductivity tensor of a three-dimensional polycrystal comprised of uniaxial
crystals (with λ2 = λ3) is attained when the polycrystal is Schulgasser’s sphere assemblage,
with the crystal axis oriented radially in each sphere.

When the crystal is not uniaxial, the microstructures that attain the bound (24.41) are
not at all trivial, being infinite-rank laminates with the lamination proceeding in a cyclic pat-
tern. The microstructures were first found numerically by Vincenzo Nesi and myself in 1987.
First, thousands of multiple-rank laminates were generated randomly, and features were found
that characterized those structures which came closest to attaining the bound. Then the ran-
dom generation process was weighted to favor these desirable features and the program run
again. At the next stage more desirable features of the microgeometry became apparent, and
the weighting of the random generation process was then modified accordingly. Ultimately,
after several further iterations, the optimal microstructure was clearly apparent. Unfortu-
nately, the algorithm was never published, even though an adaptation of it proved useful in
finding microstructures that attained the bounds on the possible bulk modulus, shear modulus
pairs (κ∗, µ∗) of two-dimensional polycrystals (Avellaneda, Cherkaev, Gibiansky,Milton, and
Rudelson 1996).

After the numerical work was completed we realized that the field attainability criteria
explained exactly why this cyclic infinite-rank laminate attained the bound (Nesi and Milton
1991). Since the translation T given by (24.36) is a null Lagrangian, U ⊕ (E ∩T −1J ) equals
U ⊕ E . Consequently, the bound L∗ − cT ≥ 0 will be sharp, if and only if there exists a
square integrable periodic field E = ∇u that lies in the nullspace of L(x) − cT for all x,
that is, which satisfies

σE = cT E. (25.20)

Using the rotational invariance of T we can rewrite this relation in the form

(L0 − cT )[RT (x)E(x)R(x)] = 0. (25.21)

Now when c is taken to be the positive root of the cubic (24.40), the operator L0 − cT when
represented as a 9× 9 matrix as in (24.37) has a null vector of the form

(L0 − cT )



s1
0
0
0
s2
0
0
0
s3


= 0. (25.22)
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To simplify the analysis it is convenient to suppose that this null vector has been normalized
so that

s1 + s2 + s3 = 1. (25.23)

Then on substituting (24.37) into (25.22), we see that

s1 = c
c + λ1

, s2 = c
c + λ2

, s3 = c
c + λ3

,

and having made these identifications (25.23) naturally turns out to be equivalent to the con-
straint (24.40) on c.

This null vector, when represented as a 3× 3 matrix, clearly corresponds to the positive-
definite diagonal tensor

s =
( s1 0 0
0 s2 0
0 0 s3

)
= c(cI + σ0)

−1,

and (25.21) holds if and only if there exists a scalar field α(x) such that

E(x) = α(x)s(x), where s(x) = R(x)sRT (x) = c(cI + σ(x))−1. (25.24)

This implies that E(x) must be a symmetric matrix-valued field, its eigenvalues must be in
the prescribed ratios s1 : s2 : s3, and its eigenvectors must be aligned with the eigenvectors of
σ(x) (Avellaneda, Cherkaev, Lurie, and Milton 1988).

Conversely, given a positive constant c and any periodic symmetric, positive-definite
matrix-valued field E that derives from a vector potential u, that is, E = ∇u, then there
is an associated conductivity tensor field,

σ(x) = c{[s(x)]−1 − I}, where s(x) = E(x)

Tr[E(x)]
, (25.25)

such that E solves the equations (25.20) in this medium with conductivity σ(x). So we can
think of the field E(x) as determining the conductivity tensor field. Also, since 〈E〉 lies in
the nullspace of L∗ − cT , it is clear that 〈E〉 determines the effective conductivity tensor σ∗
through the analogous relation

σ∗ = c{[s∗]−1 − I}, where s∗ = 〈E〉
Tr〈E〉 . (25.26)

This effective tensor has the property that

Tr s∗ = 1, where s∗ = c(cI + σ∗)−1. (25.27)

In particular, if E(x) has its eigenvalues in the prescribed ratios s1 : s2 : s3, then the
conductivity tensor field (25.25) corresponds to that of a polycrystal constructed from a pure
crystal with conductivity σ0 and (25.27) implies that the effective conductivity tensor of the
polycrystal attains the bound (24.41). In summary, the problem of finding a polycrystal that
attains this bound has been reduced to the problem of finding a vector potential u such that
E = ∇u is a positive-semidefinite, symmetric matrix-valued field having the special property
that the ratios between the eigenvalues of E(x) are independent of x and in the prescribed
ratios s1 : s2 : s3.
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By, if necessary, relabeling the eigenvalues of σ0, we may assume that s1 ≤ s2 ≤ s3. Let
us first focus on the special case where s2

2 = s1s3 and consider the symmetric matrix-valued
field

E(x) = s1
( s1 0 0
0 s2 0
0 0 s3

)
χ1(x1)+ s2

( s3 0 0
0 s1 0
0 0 s2

)
χ2(x1), (25.28)

where χ1(x1) = 1 − χ2(x1) is any characteristic function that is periodic in x1. The jump in
this field across any interface,

s1

( s1 0 0
0 s2 0
0 0 s3

)
− s2

( s3 0 0
0 s1 0
0 0 s2

)
= (s2

1 − s2s3)
( 1 0 0
0 0 0
0 0 0

)
,

is proportional to n ⊗ n, where n = (1, 0, 0) is the direction in which the field oscillates.
This is the compatibility condition appropriate to ensure that E(x) can be expressed as the
gradient of a vector potential.

Since the field is of the required form (25.24), it corresponds to a polycrystal which attains
the bound Tr(s∗) = 1. Specifically, it corresponds to a simple laminate of slices of pure
crystal. The associated tensor s∗ is determined from (25.26) and (25.28), giving

s∗ = 1
f1s2

1 + f2s2s3 + s1s2 + s2
2

( f1s2
1 + f2s2s3 0 0

0 s1s2 0
0 0 s2

2

)
.

It does not correspond to an isotropic effective conductivity tensor σ∗, but by a judicious
choice of volume fractions f1 = 〈χ1〉, namely,

f1 = s2(s3 − s1)
s2s3 − s2

1
and f1 = s2(s3 − s2)

s2s3 − s2
1
,

we obtain the uniaxial tensors

s∗ = 1
2s1 + s2

( s1 0 0
0 s1 0
0 0 s2

)
and s∗ = 1

2s2 + s1

( s2 0 0
0 s1 0
0 0 s2

)
.

To obtain an isotropic polycrystal that attains the bound we now laminate these two uni-
axial crystals together, orienting them so that their crystal axes are aligned with the direction
of lamination n, which we take to be the unit vector n = (1, 0, 0). The corresponding field
E(x) (averaged over an intermediate length scale that is larger than the layer width within
each uniaxial crystal, yet much smaller than the slices of the uniaxial crystals) takes the form

E(x) = s2
( s2 0 0
0 s1 0
0 0 s1

)
χ ′

1(x1)+ s1
( s1 0 0
0 s2 0
0 0 s2

)
χ ′

2(x1),

where χ ′
1(x1) = 1 − χ ′

2(x1) is a characteristic function that is periodic in x1, with variation
on a length scale much larger than the layer width within each uniaxial crystal. By setting the
volume fraction

f ′
1 = 〈χ ′

1〉 =
s1

s1 + s2 ,
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we ensure that 〈E〉 is proportional to the identity tensor. The corresponding effective conduc-
tivity tensor σ∗, given by (25.26), is then necessarily isotropic and attains the lower bound
(24.41). This polycrystal corresponds to an rank-2 laminate of the pure crystal.

Now let us consider the case where s2
2 > s1s3. To construct an isotropic polycrystal with

the lowest conductivity we use a cyclic lamination scheme. The basic idea is to introduce
an anisotropic seed material with conductivity σ∗ satisfying (25.27) such that by laminating
the seed material with pure crystal, we obtain a composite with effective conductivity tensor
sharing the same set of eigenvalues as the original seed material. In other words, we can
effectively produce more seed material by laminating the original seed material with the pure
crystal. By continuing this process ad infinitum, and sequentially adding more and more
pure crystal by lamination on well-separated length scales, we obtain a composite material
with the same effective conductivity tensor as the seed material but with the original seed
material occupying only an infinitesimal volume fraction of this composite. Replacing this
infinitesimal volume of original seed material by pure crystal causes little change to the overall
effective conductivity tensor. So we see that the seed material itself can be regarded as a
polycrystal, constructed from the pure crystal through a cyclic lamination scheme.

Consider the laminate of seed material and pure crystal. From (25.24) we see that the field
E(x) in this simple laminate is required to be of the form

E(x) = α1

( s1 0 0
0 s2 0
0 0 s3

)
χ1(x1)+ α2

( s∗3 0 0
0 s∗1 0
0 0 s∗2

)
χ2(x1),

where α1 and α2 are constants and s∗1 , s
∗
2 and s∗3 denote the eigenvalues of the tensor s∗

associated with the effective tensor σ∗ of the seed material, satisfying s∗1 + s∗2 + s∗3 = 1. To
ensure that the effective tensor of this laminate has the same eigenvalues as the seed material
we impose the constraint that

〈E〉 = α1 f1

( s1 0 0
0 s2 0
0 0 s3

)
+ α2 f2

( s∗3 0 0
0 s∗1 0
0 0 s∗2

)
=
( s∗1 0 0
0 s∗2 0
0 0 s∗3

)
, (25.29)

where f1 = 1− f2 = 〈χ1〉. Thus, lamination with the pure crystal permutes the eigenvalues
in a cyclical fashion corresponding to a rotation of the conductivity tensor of the seed material
through an angle of 60◦.

Next, to ensure that the jump in the field across any interface,

α1

( s1 0 0
0 s2 0
0 0 s3

)
− α2

( s∗3 0 0
0 s∗1 0
0 0 s∗2

)
= 1
f1

( s∗1 − α2s∗3 0 0
0 s∗2 − α2s∗1 0
0 0 s∗3 − α2s∗2

)
is proportional to n⊗ n, where n = (1, 0, 0), we impose the additional constraint that

α2 = s∗2
s∗1
= s∗3
s∗2

. (25.30)

These equations (25.29) and (25.30) have the solution

s∗1 =
s2

2

s2
2 + s2s3 + s2

3
, s∗2 =

s2s3
s2

2 + s2s3 + s2
3
, s∗3 =

s2
3

s2
2 + s2s3 + s2

3
,

f2 = 1− f1 = s2(s2
2 − s1s3)

s3(s2
3 − s1s2)

, α2 = s3
s2
, α1 = s3

s2 + s3 .
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Having obtained the anisotropic seed material through this cyclic lamination scheme, the
next step is to construct an isotropic polycrystal attaining the bound. This is easy because
the eigenvalues of the tensor s∗ of the seed material satisfy (s∗2 )

2 = s∗1 s
∗
3 . So by applying

the previous construction scheme, and laminating the seed material with itself in a rank-2
laminate, we obtain the desired isotropic polycrystal with minimum conductivity.

A similar infinite-rank lamination scheme can be used to construct isotropic polycrystals
with minimum conductivity in the case where s2

2 < s1s3.
One can also use the attainability criteria (25.24) to find simple anisotropic rank-1 lami-

nates attaining the bound (24.41). This was done by Nesi (1993), who found a set of equations
determining the two orientations that the crystal takes in the laminate relative to the direction
of lamination. As the relative thicknesses of the layers is varied, one traces out a trajectory on
the surface described by (24.41).

25.5. Attainability criteria for the translation bounds
Now let us examine the translation bounds. For the equality 〈E ·TE〉 = 〈E〉 ·T 〈E〉 to hold,
the field TE must again lie in U ⊕ J and this implies that the equations

J ′ = L′E ′, J ′ ∈ U ⊕ J , E ′ ∈ U ⊕ E,

in the translated medium, with tensor L′ = L − cT , are solved with fields J ′ = J − cTE
and E ′ = E. To ensure that the harmonic mean bounds on L′

∗ are sharp, we require that this
field J ′ be constant. In other words, the fieldE must satisfy the constraints that

(L− cT )E ∈ U, TE ∈ U ⊕ J , E ∈ U ⊕ E .

It is easy to check that these constraints are both necessary and sufficient to ensure that
the translation bound is achieved. Given a field v ∈ U , let us introduce the set of vectors

Fv = {P | (L− cT )P = v for some L with L(x) ∈ U for all x},
and assuming, for simplicity, that T is nonsingular, we see that the search for microstructures
that attain the translation bound

v · (L∗ − cT )−1v ≤ 〈v(L− cT )−1v〉
is equivalent to the search for fields E such that

E(x) ∈ Fv for all x and E ∈ U ⊕ (E ∩ T −1J ). (25.31)

These are the attainability criteria for the translation bounds. In particular, if Ek ∩ T−1Jk
happens to be empty for all but a finite set n1,n2, . . . ,nm of unit vectors k, then the nonzero
Fourier components Ê(k) must be concentrated in these directions. The likely candidates for
attaining the bound are multiple-rank laminates laminated in the directions n1,n2, . . . ,nm .

This attainability criteria (25.31) was also independently derived (in a less general set-
ting) by Grabovsky (1996) while this book was being written. He applied it to systematize
the search for microstructures attaining bounds on the overall elastic energy of a composite
comprised of two anisotropic phases, each with fixed orientation, mixed in given proportions.
In a certain parameter regime he found that the conditions on the strain field for the translation
bound on the energy to be attained implied that this field, when interpreted as a matrix-valued
electric field, solved the extended conductivity equations in an associated family of conduct-
ing media with two anisotropic phases. It followed that anymicrostructure attaining the elastic
energy bounds in this regime would also necessarily attain the associated conductivity bounds.
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25.6. Attainability criteria for the Hashin-Shtrikman-Hill bounds on
the conductivity and bulk modulus

In this section, as an example of the application of these attainability criteria, we follow
Grabovsky’s analysis and consider the Hashin-Shtrikman-Hill lower bound (23.41) on the ef-
fective bulk modulus κ∗ of a three-dimensional composite comprised of two isotropic phases
with bulk moduli κ1 and κ2 and shear moduli µ1 and µ2 such that µ1 > µ2. We obtained this
bound with c = 1 and the translation

T = −4µ2Λh + 2µ2Λs = −6µ2Λh + 2µ2I.

Now the space Ek consists of tensorsB that can be expressed in the formB = k⊗b+b⊗k.
If, in addition, TB ∈ Jk, then we have

0 = k · TB = k · [−4µ2(k · b)I + 2µ2(k⊗ b+ b⊗ k)]
= 2µ2[b|k|2 − k(k · b)],

which implies that b must be parallel to k. Consequently, in this example U ⊕ (E ∩ T −1J )

consists of all periodic strain fields ε(x) that are the double gradient of some scalar potential
ψ(x), that is,

ε(x) = ∇∇ψ(x).

We also have

C1 − T = (3κ1 + 4µ2)Λh + 2(µ1 − µ2)Λs, C2 − T = (3κ2 + 4µ2)Λh .

So with v = aI and c = 1 the setFv contains the matrix aI/(3κ1+4µ2) and all matrices that
have trace 3a/(3κ2 + 4µ2). Thus finding two-phase microstructures that attain the Hashin-
Shtrikman-Hill bulk modulus bound is equivalent to looking for periodic double gradients
that are constant and proportional to I in some region (which we identify as phase 1) and
have constant trace everywhere else (which we identify as phase 2), with the ratio of the
trace in the two regions being (3κ2 + 4µ2)/(3κ1 + 4µ2). The associated stress field τ (x) =
C(x)∇∇ψ(x) = T∇∇ψ(x) will then automatically have zero divergence.

Given ∇∇ψ(x) satisfying these conditions we can add to it a constant field proportional
to I to adjust the trace ratio to any desired value. In this way we see that microgeometries that
attain the bound for one set of moduli κ1, κ2, µ1, and µ2 will necessarily still attain the bound
when these moduli are varied while keeping µ1 > µ2. It is curious that the attainability
criteria obtained from the translation bounds differs from the attainability criteria obtained
from the Hashin-Shtrikman variational principles, which only requires that the strain field
in phase 1 is constant and proportional to I and that the usual differential constraints of the
stress and strain are satisfied. Consequently, if in any composite of the two isotropic phases
the stress in phase 1 is constant and proportional to I , then necessarily ε(x) = ∇∇ψ(x) for
some potential ψ(x).

As a second example, again following Grabovsky (1996), consider the Hashin-Shtrikman
lower bound on the effective conductivity σ∗ of a three-dimensional composite comprised of
two isotropic phases with conductivities σ1 and σ2, with σ1 > σ2. These were obtained with
the translation (24.31). WithB = k⊗b we have TB = σ2(k⊗b− (k ·b)I), which satisfies
k · T B = 0 only when b is parallel to k. So again U ⊕ (E ∩ T −1J ) consists of all periodic
fields E(x) that are the double gradient of some scalar potential ψ(x), that is,

E(x) = ∇∇ψ(x).
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Also, with v = aI and c = 1 we see from (24.32) that the set Fv contains the matrix
aI/(σ1 + 2σ2) and all matrices that have trace a/σ2. Thus finding two-phase microstructures
that attain the Hashin-Shtrikman conductivity bound is equivalent to looking for periodic
double gradients that are constant and proportional to I in some region (which we identify as
phase 1), and have constant trace everywhere else (which we identify as phase 2), with the
ratio of the trace in the two regions being 3σ2/(σ1 + 2σ2).

Again by adding a constant field proportional to I to adjust the trace ratio to any desired
value we see that microgeometries that attain the bound for one set of moduli σ1 and σ2 will
necessarily still attain the bound when these moduli are varied while keeping σ1 > σ2. More-
over, we see that microgeometries that attain the conductivity bound will necessarily attain
the bulk modulus bound, and vice versa, with the extended electric fieldE(x) being the same
as the strain field ε(x), modulo a proportionality factor and the addition of a constant field
proportional to I . The coupled conductivity bulk modulus bounds discussed in section 24.14
on page 522 also show that if the effective conductivity attains the Hashin-Shtrikman bound,
then the effective bulk modulus attains the Hashin-Shtrikman-Hill bulk modulus bounds, and
vice versa.

Attainability criteria can also be useful for proving that certain bounds cannot be attained
by any microstructure, and may also suggest a way to improve these bounds. Here we fol-
low an argument of Nesi (private communication) applied to an isotropic two-dimensional
composite of three isotropic conducting phases with conductivities σ1 > σ2 > σ3. The
Hashin-Shtrikman lower bound on the effective conductivity σ∗ will be attained if and only if
there exists a symmetric matrix-valued field E(x) = ∇∇ψ(x) taking values I/(σ1 + σ3) in
phase 1, I/(σ1 + σ3) in phase 2, having trace 1/σ3 in phase 3, and with average value

E0 = ( f1/(σ1 + σ3)+ f2/(σ2 + σ3)+ f3/2σ3)I,

where without loss of generality we have set a = 1. Since the determinant is a null Lagrangian
for such fields, we must have 〈detE〉 = detE0 or, equivalently,

f1
(σ1 + σ3)2 +

f2
(σ2 + 2σ3)2 + 〈χ3 detE〉 =

[
f1

σ1 + 2σ3
+ f2

σ2 + 2σ3
+ f3

2σ3

]2

, (25.32)

where χ3(x) is the characteristic function of phase 3.
Now Bauman, Marini, and Nesi (2001) have established that any solution E(x) of the

conductivity equations must be such that detE(x) is zero or takes the same sign as detE0

almost everywhere in the composite (no matter what the microstructure). Consequently, the
Hashin-Shtrikman lower bound for two-dimensional, three-phase composites will be certainly
unattainable when

f1
(σ1 + σ3)2 +

f2
(σ2 + σ3)2 >

[
f1

σ1 + σ3
+ f2

σ2 + σ3
+ f3

2σ3

]2

. (25.33)

Using the fact that detE(x) is necessarily positive, Nesi (1995) has obtained a new bound
that improves on the Hashin-Shtrikman bound when the above inequality holds. The above
inequality is sharp in the limit σ1 →∞, since in this limit it reduces to the inequality

√
f2 − f2

σ2 + σ3
≤ f3

2σ3
,

which fails to hold only when the attainability condition (23.8) of Gibiansky and Sigmund
(2000) is satisfied.
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25.7. A general procedure for finding translations that generate
optimal bounds on sums of energies

Let us consider the problem of finding appropriate translations T for bounding sums of en-
ergies, that is, for the embedded problem where the m × m matrix L(x) acts by matrix mul-
tiplication on the m × n matrix-valued extended field E(x), the columns of which lie in the
subspace U ⊕ E . Thus T represents a self-adjoint linear operator on the space of m × n
matrices. Associated with T is the set G(T ) that is comprised of all tensors L such that

Tr[ATLA] ≥ Tr[AT (T A)],

for all m×n matricesA, whereL acts onA by matrix multiplication. This set is stable under
homogenization. If we are seeking optimal bounds, and in particular bounds that are attained
by multiple-rank laminate microgeometries, we would like T to be such that the boundary
∂G(T ) of this set contains many trajectories of lamination. If a tensor L0 is on the boundary,
then there is at least one associated matrixE0 such that

J0 ≡ L0E0 = T E0. (25.34)

Now suppose that L0 is in fact the effective tensor of a multiple-rank laminate material
with a piecewise constant tensor field L(x) ∈ ∂G(T ), and suppose that E0 is the average
field in this laminate. Then the local field at any given point within the laminate takes the
form

E(x) = E0 +
q∑
i=1

λi(x)E i , (25.35)

where the functions λi (x) have zero average value and the matrices E i for i ≥ 1 are the
jumps in the average of the fieldE(x) across the interfaces between the layers. These satisfy
the constraint

Γ1(ni )Ei = Ei for i = 1, 2, . . . , q, (25.36)

in which the ni are the associated directions of laminations. We also expect that the equation
analogous to (25.34) holds locally, that is,

J(x) = L(x)E(x) = T E(x) for all x. (25.37)

Then each matrix
J i = T E i , for i = 1, 2, . . . , q, (25.38)

represents the jump in the average of the field J(x) = L(x)E(x) across the interfaces be-
tween the layers in direction ni , and therefore must satisfy the constraint

Γ1(ni )J i = 0 for i = 1, 2, . . . , q. (25.39)

From (25.37) and because L(x) is symmetric we have the matrix identity

E(x)T [T E(x)] = [T E(x)]TE(x).

For this to hold for all x it is sufficient that

ETi [T E j ]+ETj [T Ei ] = [T E i ]TE j + [T E j ]TEi
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or, equivalently, that

ETi J j +ETj J i = JTi E j + JTj Ei for all i, j = 0, 1, 2, . . . , q. (25.40)

More constraints on these matrices follow from the fact that T is self-adjoint, implying that

Tr[JTi E j ] = Tr[ETi J j ] for i, j = 0, 1, 2, . . . , q. (25.41)

Also, because T is quasiconvex, it follows by direct analogy with (25.14) that

Tr[ETi
dΓ1(n/|n|)

dn

∣∣∣∣
n=ni

J i ] = 0. (25.42)

This suggests the following approach for finding suitable translations for the comparison
bounds: First look for a set of unit vectors ni for i = 1, 2, . . . , q , and a set of matrices E i
and J i , for i = 0, 1, 2, . . . , q , such that the required algebraic constraints (25.36), (25.39),
(25.40), (25.41), and (25.42) are satisfied. Then (25.34) and (25.38) determine the action of
T on the space Q spanned by the matrices E i . The remaining elements of T are chosen so
that T is quasiconvex and self-adjoint.

A similar analysis applies when we seek suitable translations for the translation bounds.
Within a multiple-rank laminate with effective tensor L0 attaining the bounds the local field
E(x) again takes the form (25.35) and the associated field J(x) is

J(x) = L(x)E(x) = T E(x)+ V , (25.43)

in which V is a constant matrix and L(x) is the local symmetric tensor of the laminate. The
jumps J i and Ei , for i = 1, 2, . . . , q , in the field again satisfy (25.36), (25.38), and (25.39).
Also, the average field J 0 = 〈J 〉 = L0E0 satisfies

J0 = T E0 + V . (25.44)

Since L(x) is symmetric, we have the matrix identity

E(x)T [T E(x)+ V ] = [T E(x)+ V ]TE(x),

which will be satisfied when the conditions (25.40) are met. Also, because T is self-adjoint,
we have

Tr[J Ti E j ] = Tr[ETi J j ] for i, j = 1, 2, . . . , q, (25.45)

and
Tr[J Ti E0] = Tr[ETi (J0 − V )] for i = 1, 2, . . . , q. (25.46)

Additionally, the constraint (25.42) must be satisfied because T is quasiconvex.
Thus to obtain suitable translations for the translation bounds we look for a set of unit

vectors ni , for i = 1, 2, . . . , q , and a set of matrices E i and J i , for i = 0, 1, 2, . . . , q , and
a matrix V such that the required constraints (25.36), (25.39), (25.40), (25.45), (25.46), and
(25.42) are satisfied. Then (25.44) and (25.38) determine the action of T on the space Q
spanned by the matrices Ei . The remaining elements of T are chosen so T is quasiconvex,
self-adjoint, and preferably extremal.

For example, consider the three-dimensional conductivity problem. If we are looking for a
translation T for the comparison bounds that is rotationally invariant as a fourth-order tensor,
then symmetry considerations and the constraints (25.36) and (25.39) suggest the choice

E0 = I, J 0 = a1I, Ei = ni ⊗ ni , J i = a2(I − ni ⊗ ni ) for i = 1, 2, . . . , q,
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where a1 and a2 are constants and ni ranges over all vectors in the reciprocal lattice. The
constraint (25.41) forces us to take a1 = 2a2. The remaining constraints (25.40) and (25.42)
are then automatically satisfied and the relation T E i = J i specifies the action of T on the
space Q of symmetric matrices. Because of rotational invariance, the action of T on any
antisymmetric matrixA must take the form

TA = cA,

where the constant c is independent of A. Thus the action of T on an arbitrary matrix B
takes the form

TB = a2(2I Tr(B)−B −BT )/2+ c(B −BT )/2. (25.47)

A calculation similar to the one in section 24.4 on page 504 shows that T will be quasiconvex
for gradients provided that c is chosen with

c ≥ a2.

By setting a2 = c = 1 we recover the null Lagrangian (24.36) used to obtain lower bounds
on the effective conductivity tensor of a polycrystal.

If we are looking for a rotationally invariant translation T for the translation bounds, the
constraint (25.46) will be satisfied provided that we take

V = (a1 − 2a2)I,

where we no longer require that a1 = 2a2. The action of T on an arbitrary matrix B, as
determined by (25.44) and (25.38) whenB is symmetric, is still given by (25.47).

Notice that we can use the same set of pairs E i and J i to construct a translation T ′ that
is quasiconvex for divergence free fields and such that T ′J i = Ei for all i . The action of T ′

onB takes the form

T ′B = (I Tr(B)−B −BT )/2a2 + c′(B −BT )/2.
Since T ′ is rotationally invariant, it will be quasiconvex for divergence free fields if and only
if the quadratic form B · T ′B is nonnegative for all matrices B such that k · B = 0 for a
fixed choice of the unit vector k, say, k = (0, 0, 1)T . By explicitly calculating the quadratic
form with

B =
( b11 b12 b13
b21 b22 b23

0 0 0

)
,

one sees that T ′ is quasiconvex if and only if a2 is negative and c′ is nonnegative.
Choosing a2 = −1/2 and c′ = 0 gives the extremal translation

T ′B = B +BT − I Tr(B),

which is not a null Lagrangian. The quadratic formB · T ′B is zero if and only ifB has the
form

B = α(I − n⊗n)+ β(n⊥
1 ⊗ n⊥

2 − n⊥
2 ⊗ n⊥

1 ),

in which α and β are arbitrary constants while n⊥
1 and n⊥

2 are unit vectors perpendicular to
n. As n is varied matrices of this form span the space of 3 × 3 matrices. Therefore T ′ is
extremal. Also, for fixedn, this matrixB satisfiesn·B = 0, but not all matricesB satisfying
n ·B = 0 can be expressed in the above form. For example, the matrix n⊥

1 ⊗n is not of this
form. Therefore, T ′ is not a null Lagrangian.
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25.8. Translations for three-dimensional elasticity
We can apply this procedure to find candidate rotationally invariant translations for the com-
parison bound or translation bound for three-dimensional elasticity. The analysis is quite
involved, so we will just summarize the results of the search for translations for the compar-
ison bound. The purpose is to provide an example of how the results of the previous section
can be applied to a nontrivial problem. Presumably group theory would be a valuable tool in
extending and simplifying the approach.

We looked for jumps E i in the extended strain field with elements {E i} jk	m that were
linear combinations of

n jnkn	nm, n jnkδ	m and, n jδk	nm + n jδkmn	 + nkδ j	nm + nkδ jmn	,
and we looked for jumps J i in the extended stress field with elements {J i } jk	m that were
linear combinations of

(δ jk − n jnk)n	nm, (δ jk − n jnk)δ	m,
and (δ jm − n jnm)(δk	 − nkn	)+ (δ j	 − n jn	)(δkm − nknm).

(A more general approach might have been to look for subspaces of fourth-order tensors as-
sociated each vector n such that the each subspace is invariant under rotations having n as
the rotation axis. Motivated by our experience with the conductivity problem, we confined
our attention to the case where each individual tensor is invariant under such rotations. By
proceeding in this way it is quite possible that we are missing some useful rotationally in-
variant translations. Also, instead of considering extended strains, it may have been better
to consider extended displacement gradients and associated translations that act on them.) It
turns out that there are two types of families of fourth-order tensorsE i and J i that satisfy the
required conditions (25.36), (25.39), (25.40), (25.41), and (25.42).

For the first type of family the jumps in the extended strain field take the form

{Ei } jk	m = n jnkn	nm + bin jnkδ	m, (25.48)

and the associated jumps in the extended stress field take the form

{J i} jk	m = a(δ jk − n jnk)(n	nm + biδ	m), (25.49)

where a is a fixed constant that parameterizes the family while bi is an arbitrary positive or
negative variable that depends on i . (In other words, the possible values ofE i associated with
a given unit vector ni span a two-dimensional subspace.) The pair E0 and J 0 can be any
fourth-order tensors expressible in the form

{E0} jk	m = αδ jkδ	m + β(δ j	δkm + δ jmδk	),

{J0} jk	m = 2a(α + β)δ jkδ	m − aβ(δ j	δkm + δ jmδk	),

for some choice of α and β. For this family the fields E i span the 21-dimensional space Q
comprised of fourth-order tensors B expressible in the form

B = A+A⊗ I,
for some choice of symmetric second-order tensor A and for some choice of fourth-order
tensor A which is completely symmetric, that is, which has elements A jk	m with

A jk	m = Ak j	m = A	mjk = A	k jm . (25.50)
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It is simplest to look for translations that act on the 36-dimensional space of fourth-order
tensors B with elements B jk	m satisfying the symmetries

B jk	m = Bk j	m = B jkm	. (25.51)

The 15-dimensional subspace Q⊥ that is the orthogonal complement of Q is spanned by the
irreducible, rotationally invariant, five-dimensional subspace Q1 comprised of fourth-order
tensors B with elements expressible in the form

B jk	m = A jkδ	m + 2δ jkA	m − 3(A jmδk	 + A j	δkm + Akmδ j	 + Ak	δ jm)/4,
for some trace free, symmetric, second-order tensorAwith elements A jk (satisfying Ahh = 0)
and the ten-dimensional subspace Q2 comprised of all tensors B with elements satisfying

B jk	m = −B	mjk, Bhh	m = 0,

where the sum over the repeated index h is implied. The subspace Q2 can itself be split
into two irreducible rotationally invariant subspaces: The three-dimensional subspace Q3
comprised of all tensors B with elements expressible in the form

B jk	m = A′
jmδk	 + A′

j	δkm + A′
kmδ j	 + A′

k	δ jm,

for some choice of antisymmetric matrix A′ (i.e., with A′
mj = −A′

jm) and the remaining
seven-dimensional subspace comprised of all fourth-order tensors B in Q2 (with elements
B jk	m satisfying B jhhm = 0) that is the orthogonal complement of Q3 in the space Q2. Let
Λ1, Λ2, and Λ3 denote the projections onto the subspaces Q1, Q2 and Q3. When these pro-
jections are applied to a fourth-order tensor B satisfying the symmetries (25.51) they produce
fourth-order tensors with elements

{Λ1B} jk	m = A jkδ	m + 2δ jkA	m − 3(A jmδk	 + A j	δkm + Akmδ j	 + Ak	δ jm)/4,
{Λ2B} jk	m = (B jk	m − B	mjk)/2− (B jkhh − Bhh jk)δ	m/6+ δ jk(B	mhh − Bhh	m)/6,
{Λ3B} jk	m = A′

jmδk	 + A′
j	δkm + A′

kmδ j	 + A′
k	δ jm,

where

A jk = 2[2B jkhh + 4Bhh jk − 3B jhkh − 3Bkh jh + 2(Bghgh − Bgghh)δ jk]/33,
A′
jk = (B jhhk − Bkhh j )/10.

Associated with the first type of family is the rotationally invariant translationT that when
applied to a fourth-order tensor B satisfying the symmetries (25.51) produces a fourth-order
tensor T B with elements

{T B} jk	m = aδ jkBhh	m − aB jk	m + {(c1Λ1 + c2Λ2 + c3Λ3)B} jk	m,
where the constants a, c1, c2, and c3 need to be chosen so that T is quasiconvex for strains.
One can check that J i = T Ei . When the constants c1, c2, and c3 are all set equal to zero
(and a is taken to be negative to ensure quasiconvexity) the jumps E i and J i = T E i in the
extended fields can be taken to be any pair of fourth-order tensors with elements expressible
in the form

{Ei } jk	m = n jnk{Ai }	m, {J i } jk	m = a(δ jk − n jnk){Ai}	m,
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for some choice of the matrix Ai . The pair Ei and J i given by (25.48) and (25.49) is of this
form withAi = n⊗n+ biI . If both c1 and c2 are zero, but c3 is not zero, then the jumpsEi
and J i = T E i can be taken to be any pair of fourth-order tensors expressible in the above
form for some choice of the matrix Ai that has n as its eigenvector. This latter constraint is
needed to ensure that Λ3Ei = 0.

For the second type of family the jumps in the extended strain field take the form

{Ei } jk	m = (n jδk	nm + n jδkmn	 + nkδ j	nm + nkδ jmn	)/2− n jnkn	nm + a1n jnkδ	m,

and the associated jumps in the extended stress field take the form

{J i } jk	m = a2[(δ jm − n jnm)(δk	 − nkn	)/2
+ (δ j	 − n jn	)(δkm − nknm)/2+ a1(δ jk − n jnk)δ	m],

where a1 and a2 are fixed constants that parameterize the family. The pair E0 and J 0 can be
any fourth-order tensors expressible in the form

{E0} jk	m = αδ jkδ	m + β(δ j	δkm + δ jmδk	),

{J0} jk	m = a2{[(6a2
1 + a1 − 3)α + 6a1(a1 + 2)β]δ jkδ	m

+ [3(3a1 + 1)α + 2(−3a2
1 + a1 + 3)β](δ j	δkm + δ jmδk	)/2}/(3a2

1 + 2a1 + 3),

for some choice of α and β.
For this family the fields E i span the 21-dimensional space P comprised of fourth-order

tensors B that have elements B jk	m expressible in the form

B jk	m = A jk	m + (A′
jmδk	 + A′

j	δkm + A′
kmδ j	 + A′

k	δ jm)/2+ a1A′
jkδ	m,

for some choice of completely symmetric tensorAwith elements A jk	m satisfying (25.50) and
for some choice of symmetric second-order tensorA′ with elements A jk. The 15-dimensional
subspace P⊥ that is the orthogonal complement of P is spanned by Q2 and the rotationally
invariant five-dimensional subspace Q′

1 comprised of fourth-order tensors B with elements
expressible in the form

B jk	m = (1+ 2a1)A jkδ	m + (4a1 − 1)δ jkA	m

− 3a1(A jmδk	 + A j	δkm + Akmδ j	 + Ak	δ jm)/2,

for some trace free, symmetric second-order tensorAwith elements A jk (satisfying Ahh = 0).
The projection Λ′

1 onto the subspace Q′
1 when applied to a fourth-order tensor B satisfying

the symmetries (25.51) produces a tensor with elements

{Λ′
1B} jk	m = (1+ 2a1)A jkδ	m + (4a1 − 1)δ jkA	m

− 3a1(A jmδk	 + A j	δkm + Akmδ j	 + Ak	δ jm)/2,

where

A jk = [(1+ 2a1)B jkhh + (4a1 − 1)Bhh jk − 3a1B jhkh − 3a1Bkh jh
+ 2a1(Bghgh − Bgghh)δ jk]/3(11a2

1 − 4a1 + 1).
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Associated with the second type of family is the rotationally invariant translation T that
when applied to B produces the tensor T B with elements

{T B} jk	m = −a2B jk	m + {(d1Λ′
1 + d2Λ2 + d3Λ3)B} jk	m

+a2[a1δ jkδ	m + (δ j	δkm + δ jmδk	)/2][a1Bgghh + (Bghgh + Bghhg)/2]
3a2

1 + 2a1 + 3
,

where the constants a1, a2, d1, d2, and d3 need to be chosen to ensure that T is quasiconvex
for strains. Again one can check that J i = T E i .

In a similar way one can construct translations T ′ that are quasiconvex for stresses and
such that E i = T ′J i for all i . The question of what bounds can be generated from these
translations has not yet been explored.
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applications en physique, pp. 319–369. Paris: Eyrolles. English translation in Topics in
the Mathematical Modelling of Composite Materials, pp. 139–173, ed. by A. Cherkaev
and R. Kohn, ISBN 0-8176-3662-5. {12, 13, 17, 347, 353, 429, 431, 432, 435, 444, 454,
462, 495, 499, 503, 506, 508, 521, 527, 529, 551}

Nesi, V. 1993. On the G-closure in the polycrystalline problem. SIAM Journal on Applied
Mathematics 53(1):96–127. {541, 551}

Nesi, V. 1995. Bounds on the effective conductivity of two-dimensional composites made
of n ≥ 3 isotropic phases in prescribed volume fraction: The weighted translation
method. Proceedings of the Royal Society of Edinburgh 125A(6):1219–1239. {543,
551}

Nesi, V. and G. W. Milton 1991. Polycrystalline configurations that maximize electrical
resistivity. Journal of the Mechanics and Physics of Solids 39(4):525–542. {537,
551, 684, 697}



552 25. Choosing translations & finding geometries

Nesi, V., D. R. S. Talbot, and J. R. Willis 1999. Translation and related bounds for the
response of a nonlinear composite conductor. Proceedings of the Royal Society of Lon-
don. Series A, Mathematical and Physical Sciences 455(1990):3687–3707. {531,
552}
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26
Bounds incorporating three-point

correlation functions†

If cross-sectional photographs of a material are available and the microstructure is isotropic,
then one can determine the two- and three-point statistics of the material, in addition to the
volume fractions of the phases. This section shows how to utilize this information to obtain
improved bounds on the effective properties.

26.1. A brief history of bounds incorporating correlation functions
Beran (1965) first recognized that conductivity bounds incorporating three-point correlation
functions could be obtained by substituting appropriate trial fields into the classical varia-
tional principles. Beran and Molyneux (1966) obtained similar bounds on the effective bulk
modulus. For statistically isotropic two-phase cell materials Miller (1969a, 1969b) considered
these bounds and found that they reduced to expressions involving the cell shape parameter
G given by (15.44). McCoy (1970) used the same approach to obtain bounds on the effective
shear modulus. The conductivity, bulk modulus, and shear modulus bounds were tightened
and extended to multiphase three- and two-dimensional cell materials by Pham (1996, 1997).
Silnutzer (1972) extended the Beran conductivity bounds to fiber-reinforced materials, that is,
to two-dimensional composites. Beran and Silnutzer (1971) found simplified expressions for
these bounds for two-phase cell materials.

Schulgasser (1976) recognized that the two-dimensional bounds of Silnutzer (1972) could
be simplified for any two-phase composite, and not just cell materials, and found that they
only depended on a single geometric parameter. A similar simplification was found for the
three-dimensional Beran conductivity bounds (Torquato 1980; Milton 1981b; Torquato and
Stell 1985), for the Beran-Molyneux bulk modulus bounds, and for the McCoy shear modulus
bounds (Milton 1981a). The conductivity and bulk modulus bounds for two-phase compos-
ites were found to depend on the parameter ζ1 defined by (15.31) while the shear modulus
bounds depend on ζ1 and on the additional parameter η1 defined by (15.36). By taking a
better trial field Milton and Phan-Thien (1982) slightly improved the McCoy bounds on the
shear modulus. These improved bounds still only incorporated the geometric parameters ζ1
and η1. Simplified expressions for the two-dimensional bulk and shear moduli third-order
bounds were also found (Milton 1982). Torquato (1991) and Markov and Zvyatkov (1991)
give a comprehensive review of all of these bounds and related work.

Bounds depending on higher order point statistics have also been obtained. Elsayed and
McCoy (1973) and Elsayed (1974) obtained bounds that included five-point statistics for both
two- and three-dimensional cell materials. Dederichs and Zeller (1973) and Kröner (1977)
recognized that one could obtain bounds incorporating statistical information up to any given
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order. Milton and Phan-Thien (1982) and Phan-Thien and Milton (1982) obtained bounds in-
corporating four-point statistics that were expressed in terms of a set of geometric parameters.
These bounds were evaluated by Helte (1994, 1995) for dispersions of penetrable spheres and
compared with the numerical simulations of Kim and Torquato (1992). In the next chapter
we present bounds that incorporate a succession of J + 1 coefficients that appear in the series
expansion of the effective conductivity of a two-phase material in powers of the difference
σ1 − σ2 between the component conductivities. In principle, these coefficients could be cal-
culated from the J -point correlation function characterizing the microstructure, as explained
in chapter 15 on page 313. In this chapter we will focus on bounds involving three-point
statistics since we believe that these are the most useful bounds.

26.2. Three-point bounds on the conductivity of a two-phase mixture
To see how bounds involving three-point statistics can be derived, consider an isotropic com-
posite of two isotropic conducting phases, with conductivities σ1I and σ2I . In such a medium
the series expansions (14.4) and (14.5) for the effective tensor σ∗ = σ∗I and electric field
e(x) with L0 = σ2I become

σ∗ = ( f1σ1 + f2σ2)I − (σ1 − σ2)
2Γ0χ1Γ1χ1Γ0/σ2

+ (σ1 − σ2)
3Γ0χ1Γ1χ1Γ1χ1Γ0/σ

2
2 − · · · (26.1)

and

e(x) = e0 − (σ1 − σ2)Γ1χ1e0/σ2 + (σ1 − σ2)
2Γ1χ1Γ1χ1e0/σ

2
2 − · · · , (26.2)

where e0 is the constant applied field. The form of the expansion for e(x) suggests that a
suitable first choice of trial electric field might be

e = e0 + αΓ1χ1e0,

in which α is a constant that can be chosen to optimize the bound. This trial field is surely
curl free with average value e0 because Γ1 projects onto the space of curl free average zero
fields.

Inserting this trial field in the classical variational principle [see (13.10)],

e0 · σ∗e0 = min
e

∇ × e = 0
〈e〉 = e0

〈e · σe〉 = min
e

∇ × e = 0
〈e〉 = e0

〈e · [(σ1 − σ2)χ1 + σ2]e〉, (26.3)

gives the bound

σ∗|e0|2 ≤ min
α

[
e0 · 〈σ〉e0 + 2α(σ1 − σ2)e0 · 〈χ1Γ1χ1e0〉

+α2〈e0 · χ1Γ1(σ1χ1 + σ2χ2)Γ1χ1e0〉
]

≤ ( f1σ1 + f2σ2)|e0|2 − (σ1 − σ2)
2(e0 · Γ0χ1Γ1χ1Γ0e0)

2

σ2e0 · Γ0χ1Γ1χ1Γ0e0 + (σ1 − σ2)e0 · Γ0χ1Γ1χ1Γ1χ1Γ0e0
.

(26.4)



26.2. Three-point conductivity bounds 555

The tensors Γ0χ1Γ1χ1Γ0 and Γ0χ1Γ1χ1Γ1χ1Γ0 required to evaluate this bound are precisely
the second- and third-order terms that appear in the series expansion (26.1) for the effective
conductivity tensor σ∗. By comparing (26.1) with (15.30) we see that

Γ0χ1Γ1χ1Γ0 = f1 f2I/3,
Γ0χ1Γ1χ1Γ1χ1Γ0 = f1 f2( f2 + 2ζ1)I/9,

where ζ1 is the geometric parameter defined by (15.31) that depends on the third-order reduced
correlation function associated with χ1(x).

By substituting these expressions back into (26.4) we obtain the Beran upper bound on
the effective conductivity σ∗:

σ∗ ≤ f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(ζ1σ1 + ζ2σ2)
, (26.5)

in which ζ2 = 1 − ζ1. This is called a third-order bound on the effective conductivity σ∗,
because the expansion of the bound in powers of (σ1 − σ2) up to the third order agrees with
the series expansion (15.33) of σ∗ to the third order. This bound is attainable for five specific
values of ζ1, namely, for ζ1 = 0, f2/4, f2, 1− f2/4, and 1 (Avellaneda, Cherkaev, Lurie, and
Milton 1988). For other values of ζ1 it is still an open question as to whether the bound can
be improved.

Similarly, by substituting the trial current field

j = j0 + αΓ2χ1j0

into the dual variational principle (13.12), we obtain the Beran third-order lower bound on the
effective conductivity σ∗:

1/σ∗ ≤ f1/σ1 + f2/σ2 − f1 f2(1/σ1 − 1/σ2)
2

f2/σ1 + f1/σ2 + (ζ1/σ1 + ζ2/σ2)/2
,

which, after some algebraic manipulation, can be reexpressed in the equivalent form

σ∗ ≥ f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(ζ1/σ1 + ζ2/σ2)−1 . (26.6)

This bound is not optimal. Assuming that the components have been labeled so that σ1 ≥ σ2,
one has the tighter bound

σ∗ ≥ σ2

(
(2σ1 + σ2)(σ1 + 2 f1σ1 + 2 f2σ2)− 2 f2ζ1(σ1 − σ2)

2

(2σ1 + σ2)(2σ2 + f2σ1 + f1σ2)− 2 f2ζ1(σ1 − σ2)2

)
, (26.7)

obtained by Avellaneda, Cherkaev, Lurie, and Milton (1988) using the inequality (7.23) in
conjunction with the analytic method, discussed in the next chapter. This bound is the best
possible one, being attained when the composite is an assemblage of doubly coated spheres.

The Beran bounds were first compared with experimental measurements of effective ther-
mal conductivities by Corson (1974b). Kim and Torquato (1991, 1992) and Bonnecaze and
Brady (1991) compared them with numerical simulations of the effective conductivity of
suspensions of hard and overlapping spheres. Roberts and Teubner (1995) and Roberts and
Knackstedt (1996) compared them with numerical simulations of the effective conductivity
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of media defined by the level cut, or level cuts, of a Gaussian random field. The agreement in
all cases was good. Many papers that evaluate ζ1 for various microstructures, such as those
referred to in section 15.6 on page 327, also have graphs of the Beran bounds for particular
choices of component conductivities. By taking a more general trial field Prager (1963) ob-
tained bounds that are at least as tight, if not tighter. However, the computation of his bounds
requires the three-point correlation function, and not just knowledge of ζ1.

As Berryman (1982) observed, the bounds (26.5) and (26.6) simplify if we introduce the
y-parameter

yσ = − f2σ1 − f1σ2 + f1 f2(σ1 − σ2)
2

f1σ1 + f1σ1 − σ∗
= σ1σ2[σ∗( f1/σ1 + f2/σ2)− 1]

f1σ1 + f2σ2 − σ∗
,

in terms of which

σ∗ = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + yσ .
The parameter yσ is the scalar form of the conductivity Y -tensor defined by (19.3): In an
isotropic conducting material we have Y ∗ = yσI . The bounds, when expressed in terms of
yσ , reduce to simply

2(ζ1/σ1 + ζ2/σ2)
−1 ≤ yσ ≤ 2(ζ1σ1 + ζ2σ2). (26.8)

In other words, it is simpler to check that yσ satisfies these inequalities rather than verifying
that the effective tensor σ∗ satisfies the bounds (26.5) and (26.6).

Notice that the upper and lower bounds coincide when ζ1 = 1, implying that yσ = 2σ1
for all conductivity ratios σ1/σ2 > 0. Conversely, if yσ = 2σ1 for some positive conductivity
ratio σ1/σ2 �= 1, then ζ1 = 1. Since yσ = 2σ1 is the expression for the Hashin-Shtrikman
bound (23.6), we deduce that if the two-phase Hashin-Shtrikman bound is attained for one
conductivity ratio by a particular microgeometry (such as the coated sphere assemblage), then
it is necessarily attained for all conductivity ratios by the same microgeometry. This is a
particular feature of the two-phase bounds and does not generalize to the three-phase bounds.
The bounds also coincide when ζ1 = 0, giving yσ = 2σ2, which corresponds to the other
Hashin-Shtrikman bound.

When ζ1 > 1 or ζ1 < 0, the value of the lower bound is bigger than that of the upper
bound. Clearly this cannot happen and therefore for any microgeometry ζ1 must lie between
zero and one. A more direct proof of this was given in section 15.6 on page 327.

In section 23.4 on page 465 we saw how bounds that depend on the two-point correlation
functions could be used to generate correlation function independent bounds by taking the
union of the bounds as the geometric parameters c(ξ) vary over all possible combinations.
A similar approach can be used to obtain correlation function independent bounds from the
third-order Beran bounds. Using the fact that ζ1 lies between zero and one gives the following
correlation function independent bound on yσ :

min
ζ1

0 ≤ ζ1 ≤ 1

2(ζ1/σ1 + (1− ζ1)/σ2)
−1 ≤ yσ ≤ max

ζ1

0 ≤ ζ1 ≤ 1

2(ζ1σ1 + ζ2σ2)

or, equivalently,
2σ2 ≤ yσ ≤ 2σ1,

where we have assumed that the phases are labeled so that σ2 ≤ σ1. Thus the Hashin-
Shtrikman bounds on σ∗ can be recovered from the third-order Beran bounds on σ∗. This
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could have been anticipated. The nesting property of the bounds discussed in section 13.6 on
page 281 implies that for any given microstructure, and hence for any possible ζ1, the Beran
bounds lie inside the Hashin-Shtrikman bounds. Then, since the Hashin-Shtrikman bounds
on σ∗ are optimal, the union of the Beran bounds as ζ1 ranges over all possible combinations
must necessarily equal the Hashin-Shtrikman bounds.

We can carry the simplification that lead to (26.8) one (trivial) step further and define the
new “effective constant”

σ (1)
∗ = yσ/2,

in terms of which the bounds reduce to

(ζ1/σ1 + ζ2/σ2)
−1 ≤ σ (1)

∗ ≤ ζ1σ1 + ζ2σ2.

So we see that this new “effective constant” satisfies harmonic and arithmetic mean bounds
with the nonnegative parameters ζ1 and ζ2 = 1 − ζ1 now playing the role of the volume
fractions f1 and f2 = 1− f1.

26.3. Three-point bounds on the elastic moduli of a two-phase mixture
The same sort of analysis can be applied to bounding the effective bulk modulus κ∗ and
effective shear modulus µ∗ of a three-dimensional, elastically isotropic composite of two
isotropic elastic phases with bulk moduli κ1 and κ2 and shear moduli µ1 and µ2. The third-
order bounds on κ∗ and µ∗ (Beran and Molyneux 1966; Milton and Phan-Thien 1982) when
expressed in terms of the y-parameters

yκ = − f2κ1 − f1κ2 + f1 f2(κ1 − κ2)
2

f1κ1 + f1κ1 − κ∗
,

yµ = − f2µ1 − f1µ2 + f1 f2(µ1 − µ2)
2

f1µ1 + f1µ1 − µ∗
, (26.9)

reduce to

4/3〈µ−1〉ζ ≤ yκ ≤ 4〈µ〉ζ /3,

〈128/κ + 99/µ〉ζ + 〈45/µ〉η

〈30/µ〉ζ 〈6/κ − 1/µ〉ζ + 〈6/µ〉η〈2/κ + 21/µ〉ζ

≤ yµ ≤ 3〈µ〉η〈6κ + 7µ〉ζ − 5〈µ〉2
ζ

6〈2κ − µ〉ζ + 30〈µ〉η

,

(26.10)

where for any quantity h taking values h1 in phase 1 and h2 in phase 2 we define

〈h〉ζ = ζ1h1 + ζ2h2, 〈h〉η = η1h1 + η2h2,

in which ζ1 = 1 − ζ2 and η1 = η2 − 1 are the geometric parameters defined by (15.31) and
(15.36). The McCoy (1970) bounds on µ∗ can also be expressed in terms of ζ1 and η1 but are
not quite as tight as the bounds (26.10).

The bounds of Beran and Molyneux and McCoy were compared with experimental mea-
surements of the effective bulk and shear moduli by Corson (1974a). Davis (1991) and Davis,
Chen, and Thorpe (1992) used the bounds of Beran andMolyneux andMilton and Phan-Thien
[together with the results of Torquato and Lado (1986) and Sen, Lado, and Torquato (1987)
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for ζ1 and η1] to compute third-order bounds on the effective Young’s modulus of a suspen-
sion of hard spheres, which they compared with experimental results. They also compared the
Beran and Molyneux bounds with finite-element calculations for the effective bulk modulus
of cubic and face-centered cubic arrays of spheres. Roberts and Garboczi (1999) compared
the third-order effective Young’s modulus bounds with numerical simulations of media de-
fined by the level cut, or level cuts, of a Gaussian random field. In all cases the agreement
was good. Many of the papers referred to in section 15.6 on page 327 that evaluate ζ1 and η1

for various microstructures also give graphs of the third-order elasticity bounds for particular
choices of moduli.

The bounds on yκ coincide when ζ1 equals one or zero, giving yκ = 4µ1/3 and yκ =
4µ2/3, respectively. These values of yκ correspond to the Hashin-Shtrikman-Hill bounds
(23.42) and (23.45) on κ∗. Thus any microgeometry (such as the coated sphere assemblage)
that attains the Hashin-Shtrikman conductivity bounds for some positive conductivity ratio
σ1/σ2 �= 1 necessarily attains the Hashin-Shtrikman-Hill bulk modulus bounds because the
microgeometry must be such that ζ1 equals one or zero. In other words, an isotropic two-
phase microgeometry with an extremal effective conductivity necessarily has an extremal
effective bulk modulus. This result is also implied by the results of section 24.14 on page 522
bounding the possible (yκ , yσ ) pairs. An alternative proof was given by Grabovsky (1996);
see section 25.6 on page 542.

The bounds on yµ coincide when the geometric parameter pair (ζ1, η1) equals (1, 1),
(0, 0), (1, 5/21), and (0, 16/21), giving

yµ = µ1(9κ1 + 8µ1)

6(κ1 + 2µ1)
, yµ = µ2(9κ2 + 8µ2)

6(κ2 + 2µ2)
,

yµ = 8µ2(6κ1 + 7µ1)+ 15µ1κ1

2(21κ1 + 2µ1 + 40µ2)
, yµ = 8µ1(6κ2 + 7µ2)+ 15µ2κ2

2(21κ2 + 2µ2 + 40µ1)
.

The first pair of these expressions corresponds to the Hashin-Shtrikman bounds (23.42) and
(23.45) on the shear modulus µ∗ and are attained by sequentially laminated microstructures.
It is not known what significance (if any) can be attributed to the second pair of formulas.

The two-dimensional bounds analogous to (26.10) (Silnutzer 1972; Milton 1982;
Kublanov and Milton 1991) are given by the formulas

1/〈µ−1〉ζ ≤ yκ ≤ 〈µ〉ζ /3
[2〈1/κ〉ζ + 〈1/µ〉η]−1 ≤ yµ ≤ [2/〈κ〉ζ + 1/〈µ〉η]−1, (26.11)

in which yκ and yµ are defined in terms of the two-dimensional effective bulk and shear
moduli κ∗ and µ∗ via (26.10), and the two-dimensional geometric parameters ζ1 = 1 − ζ2
and η1 = η2 − 1 are defined by (15.41). Eischen and Torquato (1993) computed the bounds
on the bulk and shear moduli for hexagonal arrays of circular inclusions and found that the
bounds agreed well with their numerical simulations of the effective moduli. Again, many
of the papers referred to in section 15.6 on page 327 that evaluate ζ1 and η1 for various two-
dimensional microstructures also give graphs of the third-order elasticity bounds for particular
choices of moduli.

26.4. Correlation function independent elasticity bounds: Improving
the Hashin-Shtrikman-Hill-Walpole bounds

We saw in the last section how the Hashin-Shtrikman bounds on σ∗ could be recovered
from the Beran bounds. Applying a similar procedure to the third-order bounds on the bulk
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and shear moduli gives bounds that equal or improve on the Hashin-Shtrikman-Hill-Walpole
bounds on κ∗ and µ∗. One recovers the Hashin-Shtrikman-Hill bounds on the effective bulk
modulus by taking the union of the third-order bounds on yκ as ζ1 varies between zero and
one. To apply a similar procedure to the third-order bounds (26.10) on yµ requires some
knowledge of the possible (ζ1, η1) pairs. To obtain this information we use the fact that the
third-order lower bound on yµ must not be greater than the upper bound. In particular, the
denominators in the upper and lower bounds,

6〈2κ − µ〉ζ + 30〈µ〉η = 12〈κ〉ζ + 6(5〈µ〉η − 〈µ〉ζ ),
〈30/µ〉ζ 〈6/κ − 1/µ〉ζ + 〈6/µ〉η〈2/κ + 21/µ〉ζ

= 〈6/κ〉ζ (〈2/µ〉η + 〈30/µ〉ζ )+ 〈6/µ〉ζ (〈21/µ〉η − 〈5/µ〉ζ )
must not change sign as the bulk and shear moduli of the phases range over all positive finite
values. By considering the limits where κ1 and κ2 are small or large we see that 5〈µ〉η − 〈µ〉ζ
and 〈21/µ〉η−〈5/µ〉ζ must be nonnegative for all positive finite values ofµ1 andµ2, implying
(Milton and Phan-Thien 1982) that the geometric parameter η1 = 1−η2 must always be such
that

5ζ1/21 ≤ η1 ≤ 1− 5ζ2/21.

Let us assume that the phases have been labeled so that µ1 ≥ µ2. Then by letting η1 range
between these limits and ζ1 = 1− ζ2 range between zero and one, we obtain the correlation
function independent lower bound

yµ ≥ min
ζ1

0 ≤ ζ1 ≤ 1

8〈6/µ+ 7/κ〉ζ + 15/µ2

2(〈21/µ+ 2/κ〉ζ/µ2 + 40〈1/µ〉ζ 〈1/κ〉ζ ) , (26.12)

and the correlation function independent upper bound

yµ ≤ max
ζ1

0 ≤ ζ1 ≤ 1

8µ1〈6κ + 7µ〉ζ + 15〈µ〉ζ 〈κ〉ζ
2(〈21κ + 2µ〉ζ + 40µ1)

(26.13)

of Milton and Phan-Thien (1982). When

κ1 − κ2 ≥ − (3κ2 + 8µ2)
2

42κ2
2

κ1κ2

µ1µ2
(µ1 − µ2) (26.14)

the minimum over ζ1 in the lower bound is attained at the extreme limit ζ1 = 0 and the bound
reduces to

yµ ≥ µ2(9κ2 + 8µ2)

6(κ2 + 2µ2)
,

which is equivalent to the lower Hashin-Shtrikman bound (23.42) on the effective shear mod-
ulus µ∗. When

κ1 − κ2 ≥ − (3κ1 + 8µ1)
2

42µ2
1

(µ1 − µ2) (26.15)

the minimum over ζ1 in the upper bound is attained at the extreme limit ζ1 = 1 and the bound
reduces to

yµ ≤ µ1(9κ1 + 8µ1)

6(κ1 + 2µ1)
,
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which is equivalent to the upper Hashin-Shtrikman bound (23.45) on the effective shear mod-
ulus µ∗.

In other words, the Hashin-Shtrikman bounds on the effective shear modulus µ∗ are valid
not only when κ1−κ2 is positive but more generally when the inequalities (26.14) and (26.15)
are satisfied. When these conditions are not satisfied the bounds (26.12) and (26.13) are
always more restrictive than the well-known bounds (23.50) of Walpole:

µ2(9κ1 + 8µ2)

6(κ1 + 2µ2)
≤ yµ ≤ µ1(9κ2 + 8µ1)

6(κ2 + 2µ1)
,

which apply when κ1 − κ2 is negative.
If we know the effective bulk modulus κ∗ and µ1 �= µ2, then we obtain bounds on ζ1,

ζ+
1 (yκ) ≡ 3yκ/4− µ2

µ1 − µ2
≥ ζ1 ≥ 1/µ2 − 4/3yκ

1/µ2 − µ1
≡ ζ−

1 (yκ),

which in turn give improved correlation function independent bounds on the effective shear
modulus µ∗:

yµ ≥ min
ζ1

ζ−
1 (yκ) ≤ ζ1 ≤ ζ+

1 (yκ)

8〈6/µ+ 7/κ〉ζ + 15/µ2

2(〈21/µ+ 2/κ〉ζ (1/µ2)+ 40〈1/µ〉ζ 〈1/κ〉ζ ) ,

yµ ≤ max
ζ1

ζ−
1 (yκ) ≤ ζ1 ≤ ζ+

1 (yκ)

8µ1〈6κ + 7µ〉ζ + 15〈µ〉ζ 〈κ〉ζ
2(〈21κ + 2µ〉ζ + 40µ1)

.

Whereas the Hashin-Shtrikman-Hill-Walpole bounds confine (κ∗, µ∗) to lie inside a rectan-
gular box in the (bulk modulus, shear modulus)-plane, these bounds (Berryman and Milton
1988) confine (κ∗, µ∗) to lie within a smaller region within the box. The bounds, while they
are currently the best available three-dimensional bounds, are unlikely to be optimal. The
analogous two-dimensional bounds are not as tight as the bounds of Cherkaev and Gibiansky
(1993), which were derived using the translation method.

26.5. Using the translation method to improve the third-order bounds
The basic bounds (24.4) of the translation method are obtained by applying the harmonic
mean bounds to the effective tensor of the translated medium. Of course we can equally well
apply other bounds to the effective tensor of the translated medium. As an example, let us
follow Gibiansky and Torquato (1995a) and consider a two-dimensional, two-phase elastic
composite. We apply the third-order bulk modulus bounds to the translated medium with
moduli

1/κ ′
1 = 1/κ1 − 2c, 1/κ ′

2 = 1/κ2 − 2c, 1/κ ′
∗ = 1/κ∗ − 2c,

1/µ′
1 = 1/µ1 + 2c, 1/µ′

2 = 1/µ2 + 2c, 1/µ′
∗ = 1/µ∗ + 2c.

By rewriting the relation (26.9) between yκ and κ∗ in the equivalent form

1/yκ = − f2/κ1 − f1/κ2 + f1 f2(1/κ1 − 1/κ2)
2

f1/κ1 + f1/κ1 − 1/κ∗
,
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we see that the translated medium has a bulk y-parameter y ′
κ given by

1/y ′
κ = 1/yκ + 2c.

The third-order lower bound on y ′
κ does not yield any new information, however, the

third-order upper bound (26.11) applied to y ′
κ implies that

1/yκ ≥ [ζ1/(1/µ1 + 2c)+ ζ2/(1/µ2 + 2c)]−1 − 2c.

This inequality holds for all c such that the moduli of the translated medium are nonnegative.
In particular, by taking the limit as 2c approaches 1/κmax, where κmax is the maximum of κ1
and κ2, we obtain the bound

1/yκ ≥ [ζ1/(1/µ1 + 1/κmax)+ ζ2/(1/µ2 + 1/κmax)]−1 − 1/κmax

of Gibiansky and Torquato (1995a), which improves on the upper bound on yκ in (26.11).
They also improve on the upper bound on yµ, using a similar approach.

26.6. Third-order bounds from cross-property bounds
Since the parameter ζ1 arises in the third-order series expansion of σ∗ in powers of σ1 − σ2,
one can consider knowing ζ1 to be virtually equivalent to knowing the value of σ∗ when
σ1 − σ2 is sufficiently small. (Here we assume that the volume fraction f1 is given.) Follow-
ing Gibiansky and Torquato (1995a) this suggests that the third-order bounds correlating the
bulk y-parameter yκ and the parameter ζ1 could be obtained from the cross-property bounds
described in section 24.14 on page 522, which correlate the bulk y-parameter yκ with the con-
ductivity y-parameter yσ . These bounds were expressed by introducing Hyp[(w1, w2)], the
hyperbolic segment in the (y1, y2)-plane joining (4µ1/3, 2σ1) and (4µ2/3, 2σ2), which when
extended passes through the point (w1, w2). When σ1 − σ2 is small, Hyp[(w1, w2)] becomes
insensitive to the value of w2, and to the first order in σ1− σ2 can be described parametrically
by the equations

y1 = 4[γµ1 + (1− γ )µ2]/3− 16γ (1− γ )(µ1 − µ2)
2

12[γµ2 + (1− γ )µ1]− 9w1
, y2 = 2[γ σ1 + (1− γ )σ2],

with γ running from zero to one.
The bounds confine the point (yκ , yσ ) to lie between the outermost of the curves obtained

by setting w1 equal to 0, −κ1, −κ2, and −∞. Since y1 increases monotonically as w1 is
increased from −∞ to zero, the bounds are obtained by setting w1 equal to the extreme
values,−∞ and zero, at which

y1 = 4[γµ1 + (1− γ )µ2]/3, and y1 = 4[γ /µ1 + (1− γ )/µ2]−1/3,

respectively. Also, when σ1− σ2 is small, we have yσ ≈ 2[ζ1σ1+ ζ1σ2]. Therefore, y2 equals
yσ to the first order in σ1 − σ2 when γ = ζ1. Thus in the limit as σ1 − σ2 approaches zero the
cross-property bounds imply the third-order bounds

4[ζ1/µ1 + ζ2/µ2]−1/3 ≤ yκ ≤ 4[ζ1µ1 + ζ2µ2]/3,

in agreement with (26.10). Gibiansky and Torquato (1995a) used this idea to obtain improved
lower ζ1-dependent bounds on the two-dimensional effective shear modulus µ∗. They utilized
the bounds of Gibiansky and Torquato (1995b) couplingµ∗ with the effective conductivity σ∗.
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26.7. General third-order bounds for a two-phase composite
Let us consider a two-phase composite where the tensor field L(x) takes the form

L(x) = L1χ1(x)+L2χ2(x), (26.16)

in which χ1(x) = 1−χ2(x) is the characteristic function representing the geometry of phase
1, and the tensors L1 and L2 representing the moduli of the two phases are assumed to be
self-adjoint and positive-semidefinite. Motivated by the series expansion (14.5), a suitable
choice of trial field is

E = E0 + Γχ1V , where V ∈ U,

which clearly satisfies the requirement that it lies in the subspace U ⊕ E for all self-adjoint
choices of the reference medium L0: We only need to ensure that Γχ1V exists and do not
even need to require that L0 be positive-semidefinite on E . (Taking a trial field such that
E −E0 lies in the subspace spanned by Γχ1V as L0 varies would presumably lead to even
tighter bounds.) Substituting the trial field into the variational principle (13.10), optimizing
over V , and noting that the inequality holds for all choices of E0 gives the bound

L∗ ≤ 〈L〉 − (L1 − L2)Γ0χ1Γχ1Γ0(Γ0χ1ΓLΓχ1Γ0)
−1Γ0χ1Γχ1Γ0(L1 −L2), (26.17)

in which the inverse is to be taken on the subspace U .
For random, statistically homogeneous media the quantities appearing in this bound can

be expressed in terms of correlation functions. The procedure is basically the same as that
used in section 15.5 on page 323 to express in terms of correlation functions the quantities
δL(2)

∗ and δL(3)
∗ entering the series expansions. From (15.22) we see that

Γ0χ1Γχ1Γ0 = f1 f2U , (26.18)

where U is the positive-semidefinite matrix

U ≡ γ + 1
f1 f2

∫
|η|=1

f̆11(η)Γ∞(η), (26.19)

and by analogy with (15.21) we see that

Γ0χ1ΓLΓχ1Γ0 = Γ0χ1ΓL1χ1Γχ1Γ0 + Γ0χ1ΓL2χ2Γχ1Γ0

= f1 f2γ( f2L1 + f1L2)γ + γ( f2L1 + f1L2)

∫
|η|=1

Γ∞(η) f̆11(η)

+
∫

|η|=1
Γ∞(η) f̆11(η)( f2L1 + f1L2)γ

+
∫

|η2|=1

∫
|η1|=1

Γ∞(η1)[L1 f̆111(η1,η2)+L2 f̆222(η1,η2)]Γ∞(η2),

(26.20)

in which f̆11(η) and f̆111(η1,η2) are the first- and second-order reduced correlation functions
associated with χ1(x) while f̆222(η1,η2) is the third-order reduced correlation functions as-
sociated with χ2(x).
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Upon noticing that

f1 f2U ( f2L1 + f1L2)U = f1 f2γ( f2L1 + f1L2)γ

+ γ( f2L1 + f1L2)

∫
|η|=1

Γ∞(η) f̆11(η)+
∫

|η|=1
Γ∞(η) f̆11(η)( f2L1 + f1L2)γ

−
∫

|η2|=1

∫
|η1|=1

Γ∞(η1)(L1/ f1 +L2/ f2)Γ∞(η2) f̆11(η1) f̆11(η2), (26.21)

we see that the bound (26.17) reduces to

L∗ ≤ f1L1+ f2L2− f1 f2(L1−L2)[ f2L1+ f1L2+D1L1+D2L2]−1(L1−L2), (26.22)

in whichD1 andD2 are higher order tensors: Di acts linearly on Li to produce the matrix

DiLi = 1
f1 f2

U−1

{∫
|η2|=1

∫
|η1|=1

Γ∞(η1)LiΓ∞(η2)

[
f̆iii (η1,η2) − f̆ii (η1) f̆ii (η2)

fi

]}
U−1,

(26.23)

where we have assumed for simplicity that the matrixU , given by (26.19), has a well-defined
inverse. To obtain (26.23) we have used the identity f̆11(η) = f̆22(−η).

To obtain a lower bound on the effective tensor L∗ we can apply the duality principle,
making the replacements

L∗ → L−1
∗ , Li → L−1

i , γ → L0 −L0γL0, Γ∞(y)→−L0Γ∞(y)L0,

in (26.22) and (26.19) to obtain the bound

L−1
∗ ≤ f1L−1

1 + f2L−1
2

− f1 f2(L−1
1 − L−1

2 )[ f2L−1
1 + f1L−1

2 +D′
1L

−1
1 +D′

2L
−1
2 ]−1(L−1

1 − L−1
2 ),

in whichD′
1 andD

′
2 are higher order tensors: D

′
i acts linearly on L

−1
i to produce the matrix

D′
iL

−1
i = 1

f1 f2
(L0 −L0UL0)

−1
{∫

|η2|=1

∫
|η1|=1

L0Γ∞(η1)L0L
−1
i L0Γ∞(η2)L0

×
[
f̆iii (η1,η2)−

f̆ii (η1) f̆ii (η2)

fi

]}
(L0 − L0UL0)

−1,

where we have assumed that the tensor L0 −L0UL0 is nonsingular.
By recalling the relations (19.2) and (19.4) between the effective tensor L∗ and the Y-

tensor Y ∗ we see that the third-order bounds on L∗ are equivalent to the bounds

Y ∗ ≤D1L1 +D2L2, Y −1
∗ ≤D′

1L
−1
1 +D′

2L
−1
2

on Y ∗. Now (19.12) implies that the Y -tensor Y ∗ is positive-semidefinite. This allows us to
rewrite the bounds on Y ∗ in the form

(D′
1L

−1
1 +D′

2L
−1
2 )−1 ≤ Y ∗ ≤D1L1 +D2L2. (26.24)
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26.8. Third-order bounds for two-phase composites with geometrical
isotropy

In a composite with geometrical isotropy all correlation functions associated with the char-
acteristic functions χ1(x) and χ2(x) are rotationally invariant, and as we have seen in sec-
tion 15.6 on page 327 it follows that

f̆11(η) = f̆22(η) = 0, f̆111(η1,η2) = f̆111(u), f̆222(η1,η2) = f̆222(u),

where u = −η1 · η2. Consequently, the matrix U defined by (26.19) can be identified with
the matrix γ defined by (12.35). Let us first focus on obtaining bounds for the effective
conductivity tensor σ∗ of a geometrically isotropic two-phase material. For simplicity, let us
take an isotropic reference medium with conductivity tensor σ0 = σ0I . Then γ = I/(3σ0)

and from (15.26), (15.28), and (15.29) we see that∫
|η2|=1

∫
|η1|=1

Γ∞(η1)σiΓ∞(η2)
[
f̆iii (η1,η2)−

f̆ii (η1) f̆ii (η2)

fi

]
= f1 f2ζi [σi + 3I Tr(σi )]

45σ 2
0

,

in which ζ1 is the familiar geometric parameter defined by (15.31). This implies that

Diσi = ζi [σi + 3I Tr(σi )]/5, D′
iσi = ζi [σ−1

i + 3I Tr(σ−1
i )]/20.

So from (26.24) we see that the Y -tensor

Y ∗ = − f2σ1 − f1σ2 + f1 f2(σ1 − σ2)[ f1σ1 + f2σ2 − σ∗]−1(σ1 − σ2)

satisfies the bounds

Y ∗ ≥ 20[ζ1σ
−1
1 + ζ2σ

−1
2 + 3I Tr(ζ1σ

−1
1 + ζ2σ

−1
2 )]−1,

Y ∗ ≤ [ζ1σ1 + ζ2σ2 + 3I Tr(ζ1σ1 + ζ2σ2)]/5.

In particular, when the two phases are isotropic, with σ1 = σ1I and σ2 = σ2I , these inequal-
ities reduce to the Beran bounds (26.8).
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27
Bounds using the analytic method

27.1. A brief history of bounds derived using the analytic method
Bergman (1978) recognized that the analytic properties discussed in chapter 18 on page 369
provide a powerful tool for deriving bounds. He rederived the Hashin-Shtrikman bounds and
obtained new bounds correlating different properties of composites. A major success of the
approach was that it lead to tight bounds on the complex dielectric constant of a two-phase
composite (Milton 1979, 1980, 1981a; Bergman 1980, 1982). These bounds are illustrated in
figure 27.1 on the next page. [The first available bounds on complex dielectric constants were
those of Schulgasser and Hashin (1976), but they were limited to materials with low-loss con-
stituents, that is, with permittivities having small imaginary parts.] These complex dielectric
constant bounds have been directly compared with experimental measurements: Niklasson
and Granqvist (1984) applied them to bounding the optical properties of composite films;
Korringa and LaTorraca (1986) applied them to bounding the complex electrical permittiv-
ity of rocks; Golden (1995) applied them to bounding the complex permittivity of sea ice;
and Mantese, Micheli, Dungan, Geyer, Baker-Jarvis, and Grosvenor (1996) applied them to
bounding the complex dielectric constant and magnetic permeability of composites of Barium
Titanate and ferrite. In most cases the experimental measurements were consistent with the
bounds. However, it is important to recognize that these bounds apply only in the quasistatic
limit where the wavelength of the radiation is much larger than the inhomogeneities of the
microstructure; see Aspnes (1982). McPhedran, McKenzie, and Milton (1982); McPhedran
and Milton (1990); and Cherkaeva and Golden (1998) applied the bounds in an inverse fash-
ion to obtain quite tight bounds on the volume fraction from measurements of the complex
dielectric constant.

Bruno (1991) recognized that for dispersions of well-separated particles in a matrix one
could further restrict the class of admissible analytic functions and accordingly obtain tighter
bounds. Sawicz and Golden (1995) and Golden (1998) extended these bounds to media with
complex dielectric constants. Helsing (1994b) found that the analytic method could improve
existing bounds on the conductivity of a certain class of polycrystals. Kantor and Bergman
(1984) successfully applied a variant of the analytic method to obtain bounds on elastic mod-
uli. Bruno and Leo (1992) obtained tighter bounds for elastic materials containing well-
separated holes or rigid inclusions.

A systematic method for obtaining bounds using the analytic method was found by Mil-
ton (1981c). The method generated a whole hierarchy of bounds on the effective permittivity
or conductivity of two-phase composites, incorporating as many series expansion coefficients
and as many (real or complex) known values of the function as desired. The bounds were
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Figure 27.1. The bounds on a diagonal element εe (of the complex effective dielectric tensor
ε∗) of a composite of two isotropic phases with complex dielectric constants ε1 = −2+3i and
ε2 = 1+ i . If nothing else is known about the composite, then εe is confined to the region Ω,
the boundary of which is traced by the diagonal elements of a laminate microstructure as the
volume fraction is varied. If the volume fractions f1 = 0.6 and f2 = 1− f1 = 0.4 are known,
then εe is confined to the regionΩ′, the boundary of which is traced by a diagonal element of
the coated elliptical cylinder assemblage as the eccentricity is varied. If one knows f1 and f2
and that the composite is isotropic, then εe is confined to the region Ω′′, the construction of
which is different in two and three dimensions. In two dimensions (d = 2) the boundary is
traced by the effective dielectric constant of the doubly coated cylinder assemblage as the core
material is moved to the outer coating. The circular arcs are determined by their endpoints
and by the additional point on their extension. Here A and B are the arithmetic and harmonic
averages f1ε1 + f2ε2 and 1/( f1/ε1 + f2/ε2), X3 and Y3 correspond to the Hashin-Shtrikman
coated sphere assemblage with phase 1 and phase 2, respectively, as coating, while X 2 and
Y2 correspond to the Hashin-Shtrikman coated cylinder assemblage with phase 1 and phase
2, respectively, as coating. Reprinted with permission from Milton (1980). Copyright 1980,
American Institute of Physics.
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found to tightly bound numerically generated, effective moduli of periodic lattices of (nonin-
tersecting and intersecting) cylinders and of periodic arrays of spheres (Milton, McPhedran,
and McKenzie 1981; McPhedran and Milton 1981). Sangani and Yao (1988a, 1988b) found
that the high-order bounds also provided accurate estimates for the conductivity of lattices
of cylinders and arrays of spheres containing up to 16 cylinders or spheres in the unit cell.
Helsing (1994a) showed how the speed and accuracy of these calculations could be greatly
improved. When the moduli of the two phases are real the hierarchy of bounds incorporating
just the series expansion coefficients can be generated directly from the classical and Hashin-
Shtrikman variational principles by choosing an appropriate sequence of trial fields (Milton
and McPhedran 1982). Alternative derivations of this same set of bounds were given by
Golden and Papanicolaou (1983), Bergman (1986, 1993), and Tokarzewski (1994). Felderhof
(1984) reformulated the bounds to elucidate some of their mathematical structure.

In 1981, Jim Berryman and John Wilkins independently mentioned to me that the bounds
in the hierarchy reminded them of bounds on Stieltjes functions. These bounds were rational
approximants, known as Padé approximants. Prior to then, Padé approximants and Stieltjes
functions had not been discussed in the composite material literature. With knowledge of this
connection, many of the bounds (but not those incorporating known complex values of the
function) could have been obtained from existing bounds on Stieltjes functions; see in partic-
ular Gragg (1968); Baker, Jr. (1969); Field (1976); and the books of Baker, Jr. (1975); and
Baker, Jr. and Graves-Morris (1981). Here we will first describe the hierarchy of bounds and
then discuss methods of obtaining them. The bounds turn out to be the simplest possible ratio-
nal functions of the constituent moduli compatible with the available information. The search
for bounds thus reduces to the elementary problem of finding these rational approximants.

27.2. A topological classification of rational conductivity functions
Most of the analysis using the analytic method has been directed toward bounding the diagonal
element σe(σ1, σ2) of effective conductivity tensor of a composite of two isotropic phases with
conductivities σ1I and σ2I . For the moment we will ignore the fact that this function satisfies
the normalization constraint that σe(1, 1) = 1. In section 18.4 on page 381 we saw that
σe(σ1, σ2) can be approximated by a rational function that is homogeneous of the first degree
having finite values of σe(1, 0) and σe(0, 1), and with σe(σ1, 1) having its poles and zeros
alternating along the real σ1-axis with a zero nearest, or at, the origin and a pole nearest, or at,
infinity.

Such rational functions can be expressed as the ratio of two polynomials that have no
common factor:

σe(σ1, σ2) = a0σ
k+1
2 + a1σ

k
2 σ1 + a2σ

k−1
2 σ 2

1 + · · · + ak+1σ
k+1
1

b0σ
k
2 + b1σ

k−1
2 σ1 + b2σ

k−2
2 σ 2

1 + · · · + bkσ k1
, (27.1)

where b0 and bk must both be nonzero to ensure that σe(1, 0) and σe(0, 1) are finite. Since
we are free to multiply the denominator and numerator by a constant, we can assume without
loss of generality that b0 = 1. Rational functions of the form (27.1) can be grouped into
four distinct topological types, and within each type the functions can be ranked according to
the number r of free parameters that determine the rational function (not counting b0, which
as we have noted can be set equal to 1). Specifically, each function (possibly representing a
bound) can be classed as

• type I [r ], with r an even number, if k = r/2 and the numerator in (27.1) is divisible
by σ1σ2, that is, a0 = 0 and ak+1 = 0. The r = 2k free parameters can be taken as
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the constants a1, a2, . . . ak and b1, b2, . . . , bk . One could say that neither phase “perco-
lates” in the sense that conduction is blocked when either phase 1 or phase 2 has zero
conductivity, as occurs in a simple laminate when the direction of the applied field e0 is
parallel to the direction of lamination n. (Thus we have σe = 0 when σ1 = 0 or when
σ2 = 0.)

• type II [r ], with r an even number, if k = r/2 − 1 and the numerator in (27.1) is not
divisible by either σ1 or σ2, that is, a0 �= 0 and ak+1 �= 0. The r = 2k+2 free parameters
in the rational function are a0, a1, . . . , ak+1 and b1, b2, . . . bk . One could say that both
phases “percolate” in the sense that conduction occurs (for nonnegative values of σ1
and σ2) unless both phases have zero conductivity, as occurs in a simple laminate when
the direction of the applied field e0 is perpendicular to the direction of lamination n.

• type III [r ], with r an odd number, if k = (r − 1)/2 and the numerator in (27.1) is
divisible by σ2 but not by σ1, that is, a0 �= 0 and ak+1 = 0. The r = 2k + 1 free
parameters in the rational function are b1, b2, . . . bk and a1, a2, . . . , ak+1. One could
say that only phase 2 “percolates” in the sense that conduction is blocked when phase 2
has zero conductivity but is not blocked when phase 1 has zero conductivity, as occurs
in the Hashin-Shtrikman assemblages of coated spheres with phase 2 as coating and
phase 1 as core.

• type IV [r ], with r an odd number, if k = (r − 1)/2 and the numerator in (27.1) is
divisible by σ1 but not by σ2, that is, a0 = 0 and ak+1 �= 0. The r = 2k + 1 free
parameters in the rational function are a0, a1, . . . , ak and b1, b2, . . . bk . One could say
that only phase 1 “percolates” in the sense that conduction is blocked only when phase 1
has zero conductivity, as occurs in the Hashin-Shtrikman assemblages of coated spheres
with phase 1 as coating and phase 2 as core.

Notice that if we swap the labels of the two phases, in effect interchanging the roles
of σ1 and σ2, functions of type III [r ] transform to functions of type IV [r ], and vice versa,
while functions of type I [r ] and type II [r ] retain their identity. If instead we make a duality
transformation, replacing σ1, σ2, and σe by their reciprocals 1/σ1, 1/σ2, and 1/σe in (27.1),
then functions of type I [r ] transform to functions of type II [r ], and vice versa, while functions
of type III [r ] and of type IV [r ] retain their identity.

In practice it is easiest to recognize the type of a rational function σe(σ1, σ2) by first setting
σ2 = 1 (which can be done without loss of generality since the function is homogeneous) and
then expressing the resultant function in the form

σe(σ1, 1) = p(σ1)

q(σ1)
, (27.2)

where p(σ1) and q(σ1) are polynomials with no common factor. The function is of

• type I [r ], if p(σ1) and q(σ1) both have degree r/2 and p(0) = 0.

• type II [r ], if p(σ1) has degree r/2, q(σ1) has degree r/2 − 1, and p(0) �= 0.

• type III [r ], if p(σ1) and q(σ1) both have degree (r − 1)/2 and p(0) �= 0.

• type IV [r ], if p(σ1) has degree (r + 1)/2, q(σ1) has degree (r − 1)/2, and p(0) = 0.
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Figure 27.2. The different topological types of rational conductivity functions. Shown are
the positions along the negative σ1-axis of the poles and zeros of the function σe(σ1, 1).

In other words, as illustrated in figure 27.2, σe(σ1, 1) has a zero at σ1 = 0 if and only if it is
of type I or type IV, and has a pole at σ1 = ∞ if and only if it is of type II or type IV.

The simplest possible rational functions (i.e., those rational functions having the lowest
possible value of r ) that are of the appropriate type and which are compatible with what we
know about the conductivity function σe(σ1, σ2) often provide bounds on σe. The known in-
formation can take various forms: known values of the series expansion coefficients; known
values of the conductivity function σe(σ1, σ2) for various pairs of values of σ1 and σ2; the
constraint that the function satisfies Keller’s relation σe(1/σ1, 1/σ2) = 1/σe(σ1, σ2), appro-
priate to two-dimensional isotropic composites; or the constraint that the function satisfies
the identity σe(σ1, σ2) = σe(σ1, σ2), appropriate to symmetric materials. Let us first describe
the bounds in each of these cases. Then in the last two sections we will describe two ways
of proving these bounds. These are approaches that one would naturally attempt. In the
next chapter we will describe another powerful approach commonly used to obtain bounds on
Stieltjes functions and which is conceptually different.

27.3. Bounds that incorporate a sequence of series expansion
coefficients

Suppose that we know a succession of J + 1 coefficients r0, r1,. . . rJ that enter the Taylor
series expansion for σe(σ1, 1) in powers of σ1 − 1:

σe(σ1, 1) =
∞∑
i=0

ri(σ1 − 1)i =
∞∑
i=0

(−1)iri/si , where s = 1/(1− σ1). (27.3)



574 27. Bounds using the analytic method

In the case of conductivity functions we at least know the value of r0:

r0 = σe(1, 1) = 1.

However, it may happen that we want to consider problems where even r0 is unknown, which
we will call the J = −1 case. When σ1 and σ2 are real and positive the simplest rational
functions that could form bounds on σe and be compatible with the known information are
those with no remaining free parameters once their expansion is matched with (27.3) to the
J -th order. This imposes J + 1 constraints, and to satisfy them the rational function should
have r = J + 1 parameters.

The most elementary bounds are those that incorporate only the fact that r0 is positive. In
this J = −1 case the bounds are

U−1,0 = 0, V−1,0 =∞,

which restrict σe to be positive. [Here the first index in the bounds represents the value of
J , while the second index will represent the number K of independent known values of the
function aside from the possibly known value of r0 = σe(1, 1). The letter U signifies a
bound that is type I or type III, while the letter V signifies a bound that is of type II or IV
(Milton 1981c).] Strictly speaking, V−1,0 = ∞ is not in the class of rational functions that
we are considering, since V−1,0(1, 0) and V−1,0(0, 1) are no longer finite. It can, however, be
regarded as the limit of functions that take constant values.

If we do not know any information about the series expansion coefficients other than the
value of r0 = 1, then the corresponding bounds in this J = 0 case are the elementary bounds

U0,0 = σ2, V0,0 = σ1. (27.4)

These are the rational functions of type III [1] and type IV [1] having the required value of r0.
From only knowledge of the volume fraction f1 of phase 1 we can determine r1 = f1, and

the corresponding bounds in this J = 1 case are the Wiener (1912) arithmetic and harmonic
mean bounds,

U1,0 = [ f1/σ1 + f2/σ2]−1, V1,0 = f1σ1 + f2σ2, (27.5)

which are the rational functions of type I [2] and type II [2] having the required value of the
series expansion coefficients r0 and r1.

If in addition we know that the composite is three-dimensional and isotropic, then (14.12)
allows us to determine r2 = − f1 f2/3. The corresponding bounds in this J = 2 case are the
Hashin and Shtrikman (1962) bounds,

U2,0 = σ2 + 3 f1σ2(σ1 − σ2)

3σ2 + f2(σ1 − σ2)
, V2,0 = σ1 + 3 f2σ1(σ2 − σ1)

3σ1 + f1(σ2 − σ1)
, (27.6)

which are the rational functions of type III [3] and type IV [3] having the required value of the
series expansion coefficients r0, r1, and r2.

Going one step further, if we also know the value of the parameter ζ1, then (15.33) allows
us to determine r3 = f1 f2(2ζ1 + f2)/9, and the corresponding bounds in this J = 3 case are
the Beran (1965) bounds,

U3,0 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(ζ1/σ1 + ζ2/σ2)−1 ,

V3,0 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(ζ1σ1 + ζ2σ2)
, (27.7)
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derived in section 26.2 on page 554, which are the rational functions of type I [4] and type
II [4] having the required values of the series expansion coefficients r0, r1, r2, and r3.

More generally, for odd values of J the rational functions with no remaining free pa-
rameters are those of type I [J + 1] and type II [J + 1]. These rational functions, denoted as
UJ,0(σ1, σ2) and VJ,0(σ1, σ2), are lower and upper bounds on σe, respectively. For even values
of J the rational functions with no remaining free parameters are those of type III [J + 1] and
type IV [J + 1]. These rational functions, denoted as UJ,0(σ1, σ2) and VJ,0(σ1, σ2), respec-
tively, constitute lower and upper bounds or upper and lower bounds, according to whether
the value of σ1 − σ2 is positive or negative. These bounds have been graphed or tabulated for
various periodic arrays of cylinders and spheres (McPhedran and Milton 1981; Sangani and
Yao 1988a, 1988b; Tokarzewski and Telega 1997). Figure 27.3 on the next page shows the
bounds for a cubic array of spheres of phase 1 in a matrix of phase 2 at a volume fraction of
f1 = 0.495, which is fairly close to the critical volume fraction fc = π/6 at which the spheres
touch. The bounds converge rapidly as J increases. It should be remarked that, for random
composites, the utility of the bounds decreases rapidly as J increases, first because compu-
tation of the series expansion coefficient ri from correlation functions becomes increasingly
difficult as i increases, and second because these coefficients need to be known with high
accuracy to compute the high-order bounds.

The existence and uniqueness of rational functions of the required type satisfying the
required constraints is not obvious but will be established in the course of proving the bounds
in section 27.11 on page 592.

Suppose instead that we are interested in bounds on σe when σ1 and σ2 are complex. Such
bounds constrain σe to lie in a region of the complex plane, and accordingly the bounds must
be curves that enclose this region. To describe a curve we need at least one free parameter
to parameterize the points along it. Accordingly, the simplest conceivable rational functions
that could form bounds on σe are those with a single free remaining parameter once their
expansion is matched with (27.3) to the J -th order.

The most elementary bounds are those that incorporate only the fact that r0 is positive.
The bounds in this J = −1 case are the rays inscribed by the points

σb1(v) = vσ2, σb2(w) = wσ1

as the real parameters v and w vary between 0 and ∞. These are the rational functions of
type III [1] and type IV [1]. The value of σe must lie inside the wedge in the complex plane
bounded by these rays, as implied by the wedge bounds (18.7).

If we do not know any information about the derivatives, then the bounds in this J = 0
case are the line segment and circular arc inscribed by the points

σb1(v) = [v/σ1 + (1− v)/σ2]−1, σb2(w) = wσ1 + (1−w)σ2, (27.8)

respectively, as the real parameters v and w vary between 0 and 1. (Here the subscript b
signifies that these arcs are bounds.) These are the rational functions of type I [2] and type
II [2] having the required value of the leading series expansion coefficient r0 = 1.

An alternative way of describing these bounds is in terms of various points through which
the straight line or arc passes. Let Arc(z1, z2, z3) denote the arc of a circle joining the points
z1 and z2 that when extended passes through z3. Such an arc is described by the point

z(u) = z1 + 1− u
1/(z2 − z1)+ u/(z1 − z3)
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Figure 27.3. Plot of the lower and upper bound hierarchies UJ,0(σ1, 1) and VJ,0(σ1, 1) for
even values of J as a function of σ1, for a simple cubic lattice of spheres occupying a volume
fraction f1 = 0.495. After McPhedran and Milton (1981).

as the real parameter u varies between 0 and 1. Since the circular arc σb1(v) passes through
U0,0 = σ2, V0,0 = σ1, and the origin, while the straight line σb2(w) passes through U0,0 = σ2,
V0,0 = σ1, and infinity, we can say that the bounds constrain σe to lie within the lens-shaped
region bounded by Arc(U0,0, V0,0, 0) and Arc(U0,0, V0,0,∞). These bounds correspond to the
region Ω in figure 27.1 on page 570.

If we know the volume fraction f1 of phase 1, the bounds in this J = 1 case are the
circular arcs inscribed by the points

σb1(v) = σ2 + f1σ2(σ1 − σ2)

σ2 + v f2(σ1 − σ2)
, σb2(w) = σ1 + f2σ1(σ2 − σ1)

σ1 +w f1(σ2 − σ1)
(27.9)

as the real parameters v and w vary along the real axis between 0 and 1. These are the rational
functions of type III [3] and type IV [3] having the required value of the series expansion
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coefficients r0 = 1 and r1 = f1. Equivalently, we can say that σe must be contained in the
lens-shaped region bounded by Arc(U1,0, V1,0,U0,0) and Arc(U1,0, V1,0, V0,0). These bounds
correspond to the regionΩ′ in figure 27.1 on page 570.

If in addition we know that the composite is three-dimensional and isotropic, the bounds
in this J = 2 case are the circular arcs inscribed by the points

σb1(v) = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(v/σ1 + (1− v)/σ2)−1 ,

σb2(w) = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(wσ1 + (1−w)σ2)
(27.10)

as the real parameters v andw vary along the real axis between 0 and 1. These are the rational
functions of type I [4] and type II [4] having the required value of the series expansion coef-
ficients r0 = 1, r1 = f1, and r2 = − f1 f2/3. Equivalently, we can say that σe must be con-
tained in the lens-shaped region bounded by Arc(U2,0, V2,0,U1,0) and Arc(U2,0, V2,0, V1,0).
These bounds correspond to the shaded region Ω′′ in figure 27.1 on page 570 with d = 3.
The bounds (27.9) and (27.10) are the complex generalizations of the Wiener and Hashin-
Shtrikman bounds (Milton 1979, 1980; Bergman 1980). They reduce to the Wiener and
Hashin-Shtrikman bounds when σ1 and σ2 are real.

Going one step further, if we also know the value of the parameter ζ1, then we can
say that σe must be contained in the lens-shaped region bounded by Arc(U3,0, V3,0,U2,0)

and Arc(U3,0, V3,0, V2,0). These bounds are the complex generalization of the Beran (1965)
bounds (Milton 1981b). They have been evaluated by Jeulin and Savary (1997) for a variety
of random microstructures.

More generally, for odd values of J the rational functions with a single free parameters
are those of type III [J + 2] and type IV [J + 2]. As the remaining free parameter is varied,
while keeping σ1 and σ2 fixed, the value of each of these rational functions traces a circular
arc in the complex plane. The two circular arcs meet at the points UJ,0 and VJ,0, these being
the limits of rational functions of type III [J + 2] and type IV [J + 2] having the required
series expansion coefficients. The lens-shaped region of the complex plane bounded by these
two circular arcs contains σe.

For even values of J the rational functions with a single free remaining parameter are
those of type I [J + 2] and type II [J + 2]. As the remaining free parameter is varied, while
keeping σ1 and σ2 fixed, the value of each rational function traces out a circular arc. The two
circular arcs meet at UJ,0 and VJ,0, and the lens-shaped region of the complex plane bounded
by these two circular arcs contains σe. McPhedran and Milton (1981) and Tokarzewski and
Telega (1997) have plotted the lens-shaped regions in the complex plane representing these
bounds for periodic arrays of cylinders and spheres.

An equivalent way of expressing the bounds, for both odd and even values of J , is to say
that σe must be contained in the lens-shaped region bounded by Arc(UJ,0, VJ,0,UJ−1,0) and
Arc(UJ,0, VJ,0, VJ−1,0), where UJ,0 and VJ,0 are the bounds that are appropriate when σ1 and
σ2 are real and positive, while UJ−1,0 and VJ−1,0 are the bounds that are appropriate when σ1

and σ2 are real and positive and only the first J series expansion coefficients are known (i.e.,
when the value of rJ is not taken into account). Accordingly, as σ1 and σ2 become close to
being real and positive, the lens-shaped region in the complex plane reduces to the interval on
the real axis between VJ,0 and UJ,0. In other words, the complex bounds reduce to their real
counterparts.
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27.4. Relation between the bounds and Padé approximants
If one is familiar with Padé approximants, then it is clear from the preceding description
of the bounds that there should be a close relation between them and Padé approximants.
This connection has been made explicit, for example, in the papers of Torquato (1985) and
Tokarzewski (1994) [see also Milton (1986)].

Given a function f (z) with a power series expansion

f (z) =
∞∑
i=0

ci zi (27.11)

around the point z = 0, the [L/M] Padé approximant is the rational function

[L/M] = α0 + α1z + · · · + αL zL

β0 + β1z + · · · + βMzM
, (27.12)

in which the L + 1 constants α0,α1,..αL and the M + 1 constants β0,β1,..βM are chosen so
that the expansion of (27.12) in powers of z agrees with the series expansion (27.11) as far as
possible. Normally this agreement can be achieved up to and including terms of order z L+M .
Since one is free to multiply the numerator and denominator by a constant, without any loss
of generality we can suppose that β0 = 1. Padé approximants have found many applications
in physics, for example, to critical phenomena, to scattering physics, and to electrical circuits
as discussed, for example, by Baker, Jr. (1975).

Let us set z = σ1 − 1 so that the series expansion (27.3) takes the same form as (27.11).
Also recall that rational functions of type II and type III, when expressed in the form (27.2)
with σ2 = 1, are not subject to the constraint that p(σ1) = p(1+ z) = 0. Accordingly,

• the [L + 1, L] Padé approximant to the function f (z) = σe(1+ z, 1) can be identified
with the type II bound V2L+1,0(1+ z, 1);

• the [L, L] Padé approximant to the function f (z) = σe(1+ z, 1) can be identified with
the type III bound U2L ,0(1+ z, 1).

SinceUJ,0(σ1, σ2) and VJ,0(σ1, σ2) are homogeneous functions of σ1 and σ2, this prescrip-
tion allows one to recover the bound VJ,0 for odd values of J and the bound UJ,0 for even
values of J from the relevant Padé approximant. For example, consider a three-dimensional
isotropic composite where we know the value of the volume fraction f1 and consequently the
series expansion coefficients r0 = 1, r1 = f1, and r2 = − f1 f2/3. The [1/1] Padé approximate
to the function σe(1, 1) is

[1/1] = 3+ ( f2 + 3 f1)z
3+ f2z

= 1+ 3 f1z
3+ f2z

≈ 1+ f1z − ( f1 f2/3)z2 + · · · .

Identifying this with U2,0(1+ z, 1), making the substitution z = σ1/σ2 − 1, and multiplying
the resultant expression by σ2 gives

U2,0(σ1, σ2) = σ2 + 3 f1σ2(σ1 − σ2)

3σ2 + f2(σ1 − σ2)
,

which is in agreement with (27.6).
To recover the type I and type IV bounds from Padé approximates, let us swap the roles of

the two phases and then make a duality transformation, in effect letting 1/σe, 1/σ2, and 1/σ1
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play the roles that were played by σe, σ1, and σ2. Under this combined transformation rational
functions of types II and III transform to functions of type I and type IV, and vice versa, and
there is a corresponding interchange of bound types. To make this procedure explicit, we first
need to expand the function 1/σe(1, σ2) in powers of 1/σ2 − 1:

1
σe(1, σ2)

= 1
σ2σe(1/σ2, 1)

=
∞∑
i=0

r ′
i z
i , where now z = 1/σ2 − 1.

By substituting the expansion (27.3) into this expression we see that

r ′
0 = 1/r0, r ′

1 = (1− r1r ′
0)/r0, r ′

n = −
1
r0

n−1∑
i=0

r ′
irn−i for n = 2, 3, · · · . (27.13)

These recursion formulas allow us to determine the series expansion coefficients r ′
0, r

′
1,. . . r

′
J

from the known coefficients r0, r1,. . . rJ . The previous correspondence between Padé approx-
imates and bounds now implies that

• the [L + 1, L] Padé approximant to the function f (z) = 1/σe(1, 1/(1 + z)) can be
identified with the function 1/U2L+1,0(1, 1/(1+ z));

• the [L, L] Padé approximant to the function f (z) = 1/σe(1, 1/(1+z)) can be identified
with the function 1/V2L ,0(1, 1/(1+ z)).

This prescription allows us to recover the bound UJ,0 for odd values of J and the bound
VJ,0 for even values of J from the relevant Padé approximant. In our example of a three-
dimensional isotropic composite, where the volume fraction f1 is known, we deduce using
(27.13) and the known values of r0 = 1, r1 = f1, and r2 = − f1 f2/3 that r ′

0 = 1, r ′
1 = f2,

and r ′
2 = −2 f1 f2/3. Consequently, the [1/1] Padé approximate to the function f (z) =

1/σe(1, 1/(1+ z)) is

[1/1] = 3+ (2 f1 + 3 f2)z
3+ 2 f1z

= 1+ 3 f2z
3+ 2 f1z

≈ 1+ f2z − (2 f1 f2/3)z2 + · · · .

Identifying this with 1/V2,0(1, 1/(1+ z)), making the substitution z = σ1/σ2 − 1, and taking
the inverse of the expression and then multiplying it by σ1 gives

V2,0(σ1, σ2) = σ1 + 3 f2σ1(σ2 − σ1)

3σ1 + f1(σ2 − σ1)
,

in agreement with (27.6).

27.5. Bounds incorporating known real or complex values of the
function and series expansion coefficients

Besides the J+1 known series expansion coefficients, we might know the function σe(σ1, σ2)

for, say, K real positive-valued pairs of σ1 and σ2. This imposes K constraints:

σe(σ1n, σ2n) = σen, for n = 1, 2, . . . , K , (27.14)

where the (σ1n, σ2n) are the pairs of values of (σ1, σ2) at which we know the value of the
function, and the σen are the known values. Such information can typically be obtained from



580 27. Bounds using the analytic method

measurements of a related effective constant, such as the effective diffusivity, effective mag-
netic permeability, effective thermal conductivity, or effective dielectric constant. It would
be useful to repeat these measurements at different temperatures, provided that the structure
of the composite does not change. Thus the bounds incorporating this information can be
regarded as cross-property bounds.

When σ1 and σ2 are real the bounds on σe are those rational functions with no remaining
free parameters once the J + K + 1 constraints are taken into account. For instance, suppose
that we only know one value of the function

σe(σ
′
1, σ

′
2) = σ ′

e.

Then the most elementary bounds that do not even take into account the value of r0 are the
J = −1, K = 1 bounds,

U−1,1 = σ ′
eσ2/σ

′
2, V−1,1 = σ ′

eσ1/σ
′
1, (27.15)

which are the rational functions of type III [1] and type IV [1] taking the value σ ′
e when σ1 =

σ ′
1 and σ2 = σ ′

2.
If we take into account the value of σe(1, 1) = 1, then the bounds in this J = 0, K = 1

case are those of Bergman (1976),

U0,1 = [u/σ1 + (1− u)/σ2]−1, V0,1 = vσ1 + (1− v)σ2, (27.16)

where

u = 1/σ ′
e − 1/σ ′

2

1/σ ′
1 − 1/σ ′

2
, v = σ ′

e − σ ′
2

σ ′
1 − σ ′

2
. (27.17)

These bounds are the rational functions of type I [2] and type II [2] having the required value
of the series expansion coefficient r0 = 1 and taking the value σ ′

e when σ1 = σ ′
1 and σ2 =

σ ′
2. These bounds, together with the decoupling transformation discussed in section 6.2 on
page 95, were utilized by Bergman and Fel (1999) to bound the thermoelectric power factor
of composites built from two thermoelectric materials. The bounds are achieved when the
microstructure is a simple laminate

If in addition we know the volume fraction f1 of phase 1, then the bounds in this J = 1,
K = 1 case are those of Prager (1969),

U1,1 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + y ′σ2/σ
′
2
,

V1,1 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + y ′σ1/σ
′
1
, (27.18)

where

y ′ = − f2σ ′
1 − f1σ ′

2 +
f1 f2(σ ′

1 − σ ′
2)

2

f1σ ′
1 + f2σ ′

2 − σ ′
e
. (27.19)

These are the rational functions of type III [3] and type IV [3] having the required value of the
series expansion coefficients r0 = 1 and r1 = f1 and taking the value σ ′

e when σ1 = σ ′
1 and

σ2 = σ ′
2.
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If we also know that the composite is three-dimensional and isotropic, then the bounds in
this J = 2,K = 1 case are those of Bergman (1976, 1978),

U1,2 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(u/σ1 + (1− u)/σ2)−1 ,

V1,2 = f1σ1 + f2σ2 − f1 f2(σ1 − σ2)
2

f2σ1 + f1σ2 + 2(vσ1 + (1− v)σ2)
, (27.20)

where now

u = 2/y ′ − 1/σ ′
2

1/σ ′
1 − 1/σ ′

2
, v = y ′/2− σ ′

2

σ ′
1 − σ ′

2
,

and y ′ is given by (27.19). These are the rational functions of type I [4] and type II [4] having
the required value of the series expansion coefficients r0 = 1, r1 = f1 and r2 = − f1 f2/3 and
taking the value σ ′

e when σ1 = σ ′
1 and σ2 = σ ′

2.
More generally, for odd values of J + K the rational functions with no remaining free

parameters are those of type I [J + K + 1] and type II [J + K + 1]. These bounds on σe
are denoted by UJ,K (σ1, σ2) and VJ,K (σ1, σ2), respectively. For even values of J + K the
rational functions with no remaining free parameters are those of type III [J + K + 1] and
type IV [J + K + 1]. These bounds on σe are denoted by UJ,K (σ1, σ2) and VJ,K (σ1, σ2),
respectively.

This prescription should not be applied blindly, because we need to avoid including
redundant information. Since the function σe(σ1, σ2) is homogeneous, we deduce that
σe(λσ1n, λσ2n) has the value λσen for all choices of λ. To avoid including such information
already implied by homogeneity, we should consider only those pairs for which the ratio of
σ1n to σ2n takes distinct values. In other words, without loss of generality, we need to assume
that

σ1 j > 0, σ2 j > 0, σ1 j �= σ2 j and σ1i/σ2i �= σ1 j/σ2 j for all i �= j. (27.21)

The question arises as to which expression gives the upper bound and which gives the
lower bound. When the ratio σ1/σ2 is larger than σ1n/σ2n for all n it is clear that UJ,K must
be the lower bound and VJ,K the upper bound. As we decrease this ratio the character of each
bound changes from a lower bound to an upper bound, and vice versa, whenever σ1/σ2 passes
one of the values σ1n/σ2n , or whenever J is even and σ1/σ2 passes unity. This observation
allows one to determine the character of each bound for any given value of σ1/σ2.

Suppose instead that we are interested in bounds on σe when σ1 and σ2 are complex. The
simplest conceivable rational functions that could form bounds on σe are now those with a
single free remaining parameter once the J + K + 1 constraints are taken into account.

For example, in the J = 0, K = 1 case, where we take into account only the known
values σe(σ ′

1, σ
′
2) = σ ′

e and σe(1, 1) = 1, the bounds (Milton 1981c) are the circular arcs
inscribed by

σb1(v) = σ2 + vσ2(σ2 − σ1)(1− σ ′
e/σ

′
2)

(σ2/σ
′
2 − σ1/σ

′
1)− v(σ2 − σ1)

,

σb2(w) = σ1 + wσ1(σ1 − σ2)(1− σ ′
e/σ

′
1)

(σ1/σ
′
1 − σ2/σ

′
2)−w(σ1 − σ2)

(27.22)
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as the real parameter v varies between 1/σ ′
1 and 1/σ

′
e while the real parameter w varies be-

tween 1/σ ′
e and 1/σ

′
2. These bounds are the rational functions of type III [3] and type IV [3]

having the required value of the series expansion coefficient r0 = 1 and taking the value σ ′
e

when σ1 = σ ′
1 and σ2 = σ ′

2. Now notice that σb1(v) takes the values U0,1, V0,1, and U−1,1

when v equals 1/σ ′
1, 1/σ

′
e, and∞, respectively, while σb2(w) takes the values V0,1, U0,1, and

V−1,1 when w equals 1/σ ′
2, 1/σ

′
e, and ∞, respectively. Consequently, we can say that the

bounds are the arcs Arc(U0,1, V0,1,U−1,1) and Arc(U0,1, V0,1, V−1,1), where U0,1 and V0,1 are
given by (27.16) while U−1,1 and V−1,1 are given by (27.15).

If in addition we know the volume fraction f1, then the bounds are given by the two arcs
Arc(U1,1, V1,1,U0,1) and Arc(U1,1, V1,1, V0,1), whereU1,1 and V1,1 are given by (27.18) while
U0,1 and V0,1 are given by (27.16)

More generally, for odd values of J+K the rational functions with a single remaining free
parameter are those of type III [J+K +2] and type IV [J+K +2]. For even values of J+K
the rational functions with a single remaining free parameter are those of type I [J + K + 2]
and type II [J + K + 2]. As the free parameter is varied while keeping σ1 and σ2 fixed, the
values of these rational functions trace out arcs in the complex plane and the value of σe must
lie inside the lens-shaped region of the complex plane enclosed by these circular arcs. It turns
out these arcs are Arc(UJ,K , VJ,K ,UJ−1,K ) and Arc(UJ,K , VJ,K , VJ−1,K ), where UJ,K and
VJ,K are the bounds that are appropriate when σ1 and σ2 are real and positive, while UJ−1,K
and VJ−1,K are the bounds that are appropriate when σ1 and σ2 are real and positive and only
the first J series expansion coefficients are known (i.e., when the value of r J is not taken into
account).

An equivalent way of specifying the bounds is to say that they are given by the two arcs
Arc(UJ,K , VJ,K ,UJ,K−1) and Arc(UJ,K , VJ,K , VJ,K−1) in which UJ,K−1 and VJ,K−1 are the
bounds that are appropriate when σ1 and σ2 are real and positive and only the first K − 1
known values of the function are taken into account. In fact it does not matter which known
value is ignored in the computation of UJ,K−1 and VJ,K−1; the resultant circular arcs are
insensitive to this choice.

For example, in the J = 0, K = 1 case, notice that σb1(v) given by (27.22) takes the value
σ1 when v = 0, while σb2(w) takes the value σ2 when w = 0. In other words, the bounds
can alternatively be characterized as the arcs Arc(U0,1, V0,1,U0,0) and Arc(U0,1, V0,1, V0,0),
where U0,1 and V0,1 are given by (27.16) while U0,0 = σ2 and V0,0 = σ1 are as in (27.4).

It may happen that we also have information about the function σe(σ1, σ2) for, say, I
complex-valued pairs of σ1 and σ2. This imposes the constraint that

σe(σ1n, σ2n) = σen, for n from K + 1 to K + I, (27.23)

where the (σ1n, σ2n) are the pairs of values of (σ1, σ2) at which we know the value of the
function, and the σen are the known values. By taking complex conjugates we obtain the
value of the function at an additional set of I points:

σe(σ1n, σ2n) = σen, for n from K + I + 1 to K + 2I, (27.24)

where

σ1	 ≡ σ1n, σ2	 ≡ σ2n, σe	 ≡ σen for � = n + I from K + I + 1 to K + 2I,

in which the bar denotes complex conjugation. Since the function is homogeneous, knowing
its value at a point (σ1n, σ2n) where the ratio of σ1n to σ2n is real is equivalent to knowing its
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value at the point (σ1n/σ2n, 1), and this information can be incorporated into the original set
of K known real values. Therefore let us assume not only that (27.21) still holds but also that

Im(σ1n/σ2n) > 0 for n = K + 1, K + 2, . . . , K + I, (27.25)

where the inequality ensures that the information contained in (27.23) is not duplicated by
(27.24).

With these definitions the bounds take the same form as before (Milton 1981c). They are
the simplest rational functions of the appropriate type that have the required derivatives (27.3)
and which pass through the known points given by (27.14), (27.23), and (27.24). Specifically,
when σ1 and σ2 are real, σe lies between UJ,K+2I (σ1, σ2) and VJ,K+2I (σ1, σ2) while when σ1
and σ2 are complex, σe lies inside the region bounded by Arc(UJ,K+2I , VJ,K+2I ,UJ−1,K+2I )

and Arc(UJ,K+2I , VJ,K+2I , VJ−1,K+2I ). With a small modification, these bounds also apply
to the related problem of bounding the viscoelastic moduli of homogeneous materials at one
frequency, given the viscoelastic moduli at several other frequencies (Eyre, Milton, and Lakes
2001).

27.6. Numerical computation of the bounds†
The bounds described in the two previous sections are easily computed by numerically solving
a system of linear equations [see, for example, McPhedran and Milton 1981]. To obtain the
bounds it is convenient to introduce a new variable,

! = σ1 − σ2

σ1 + σ2
,

which has the appealing feature that it transforms to −! when we replace σ1 and σ2 by 1/σ1

and 1/σ2, or when we swap σ1 with σ2. For this reason the bounds for two-dimensional
isotropic composites and symmetric materials take a simpler form when expressed in terms
of ! rather than in terms of, say, the variable s = σ2/(σ2 − σ1). The usefulness of ! for these
problems motivates its introduction in a general context.

Since σe(σ1, σ2) is a homogeneous function, we can without any loss of generality suppose
that σ2 = 1 and consider σe as a function of !:

σe(!) ≡ σe(σ1, 1) = σe((1+ !)/(1− !), 1).

The J + 1 coefficients r0, r1,. . . rJ that enter the Taylor series expansion for σe(σ1, 1) in
powers of σ1 − 1 translate into known values of the coefficients q0, q1,. . . qJ that enter the
Taylor series for σe(!) in powers of !:

σe =
∞∑
i=0

qi!i . (27.26)

Specifically, by substituting σ1 − 1 = 2!/(1 − !) into (27.3) and expanding in powers of !
we see that

q0 = r0 and qn =
n∑
i=1

(n − 1)!2iri
(i − 1)!(n − i)! for n = 1, 2, . . . , J.

Also, the known values of the homogeneous function σe(σ1, σ2) = σe(σ1/σ2, 1)/σ2 translate
into known values of the function σe(!):

σe(!n) = gn for n = 1, 2, . . . , K + 2I, where !n = σ1n − σ2n

σ1n + σ2n
, gn = σen

σ2n
.
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The bounds are expressed in terms of the rational function

g(!) = p′(!)
q ′(!)

, (27.27)

where

p′(!) =
N∑
i=0

αi!
i and q ′(!) =

N∑
i=0

βi!
i

are polynomials with no common factor but are not necessarily of degree N , since αN or βN
might be zero. Since we are free to multiply both polynomials by a constant, we can suppose,
without loss of generality, that

β0 = 1.

The associated function σ2g((σ1−σ2)/(σ1+σ2)), when regarded as a function σ1 and σ2,
is of

• type I [r ], if p′(−1) = 0, q ′(1) �= 0, and N = r/2;

• type II [r ], if p′(−1) �= 0, q ′(1) = 0, and N = r/2;

• type III [r ], if p′(−1) �= 0, q ′(1) �= 0, and N = (r − 1)/2;

• type IV [r ], if p′(−1) = 0, q ′(1) = 0, and N = (r + 1)/2.

This places linear constraints on the coefficients αi and βi according to the type of bound that
we seek. We require that

p′(−1) =
N∑
i=0

αi (−1)i = 0 for bounds of type I or III,

q ′(1) =
N∑
i=0

βi = 0 for bounds of type II or III. (27.28)

The constraint that the function passes through the known points places another set of
K + 2I linear restrictions on these coefficients:

N∑
i=0

βi!
i
ngn =

N∑
i=0

αi!
i
n for n = 1, 2, . . . , K + 2I, (27.29)

while the constraint that the function has the required series expansion coefficients furnishes
a further set of J + 1 linear restrictions:

n∑
i=0

qn−iβi = αn for all n such that 0 ≤ n ≤ min{J, N},

= 0 for all n such that N + 1 ≤ n ≤ J. (27.30)

Obviously, the last case is relevant only when J > N , and when J = −1 we can forget about
the restrictions (27.30) altogether.
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If we seek bounds for real values of σ1 and σ2, then N should be chosen so that the number
of unknown coefficients αi and βi , which is 2N+1 (not counting β0 = 1), matches the number
of linear restrictions provided by (27.28), (27.29), and (27.30):

2N + 1 = J + K + 2I + 2 for bounds of type I or II,
= J + K + 2I + 1 for bounds of type III,
= J + K + 2I + 3 for bounds of type IV.

The set of linear equations can be solved using standard numerical packages, and once the
coefficients are found the bound is the function

UJ,K+2I (σ1, σ2) = σ2g((σ1 − σ2)/(σ1 + σ2)) for bounds of type I or III,

or the function

VJ,K+2I (σ1, σ2) = σ2g((σ1 − σ2)/(σ1 + σ2)) for bounds of type II or IV.

If we seek the arcs that bound σe when σ1 and σ2 are complex, then N should be chosen so
that the number of linear restrictions provided by (27.28), (27.29), and (27.30) is 2N .

27.7. Bounds for two-dimensional isotropic composites†
When the composite is two-dimensional and isotropic the effective conductivity function sat-
isfies Keller’s relation,

σe(1/σ1, 1/σ2) = 1/σe(σ1, σ2), (27.31)

implied by (3.6). Rational functions having this property are particularly easy to recognize.
They are either of type III or type IV and the polynomials p(σ1) and q(σ1) entering the
expression (27.2) for σe(σ1, 1) satisfy

p(σ1) = σ k1 q(1/σ1) for functions of type III,
p(σ1) = σ k+1

1 q(1/σ1) for functions of type IV,

in which m is the degree of the polynomial q(σ1). In other words, the polynomial p(σ1) has
the same set of coefficients as the polynomial q(σ1), but these coefficients appear in reversed
order:

ak+1 = 0 and ai = bk−i for functions of type III,
a0 = 0 and ai = bk+1−i for functions of type IV.

Now (27.31) implies that q0 = r0 = 1 and

σe(!)σe(−!) = 1. (27.32)

Accordingly, if we know the value of gn = σe(!n), then we can add

σe(!n+1) = gn+1, where !n+1 = −!n, gn+1 = 1/gn, (27.33)

to the collection of known values, where we have taken complex conjugates (denoted by the
bar) so that Im(!n+1) and Im(!n) have the same sign, to be consistent with (27.25). It may
happen that |σ1n| = |σ2n| or, equivalently, that Re(!n) = 0. In this case, !n = −!n , and we
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should not add (27.33) to the collection of known values since it duplicates existing informa-
tion. Notice that (27.31) implies an exact relation for the complex effective conductivity:

|σe| = |σ1| when |σ1| = |σ2|, (27.34)

and to be compatible with this we must have |gn| = 1 whenever |σ1n| = |σ2n|.
By substituting the series expansion (27.26) into (27.32) we see that for all even values of

n we can calculate the value of the series expansion coefficient qn in terms of the lower order
series expansion coefficients:

qn = 1
2

n−1∑
i=1

(−1)i+1qiqn−i for all even values of n. (27.35)

Due to the relations (27.33) and (27.35), we can assume that both J and K are even
integers. Whether I is even or odd depends on whether there is an even or odd number of
values of n for which |σ1n/σ2n| = 1.

Let us suppose that we are interested in bounds when σ1 and σ2 are real. If we know the
volume fraction f1 of phase 1, then we can determine the value of q1 = 2 f1 and using (27.35)
deduce the value of q2 = 2 f 2

1 . The corresponding bounds in this J = 2 case are the bounds
of Hashin and Shtrikman (1962),

U2,0 = σ2
f1σ1 + f2σ2 + σ1

f2σ1 + f1σ2 + σ2
, V2,0 = σ1

f1σ1 + f2σ2 + σ2

f2σ1 + f1σ2 + σ1
, (27.36)

which are the rational functions of type III(3) and type IV(3) having the required value of the
series expansion coefficients q0, q1, and q2.

If in addition we know the value of the parameter ζ1, then we can determine the value of
q3 = 2 f 3

1 + 2 f1 f2ζ1 and using (27.35) deduce the value of q4 = 2 f 4
1 + 2 f 4

1 + 4 f 2
1 f2ζ1. The

corresponding bounds (Milton 1981c, 1982) in this J = 4 case are

U4,0 = σ2
( f1σ1 + f2σ2 + σ1)(σ1 + σ2)− f2ζ1(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ2)(σ1 + σ2)− f2ζ1(σ1 − σ2)2 ,

V4,0 = σ1
( f1σ1 + f2σ2 + σ2)(σ1 + σ2)− f1ζ2(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ1)(σ1 + σ2)− f1ζ2(σ1 − σ2)2 , (27.37)

which are the rational functions of type III(5) and type IV(5) having the required value of the
series expansion coefficients q0, q1, q2, q3, and q4.

Torquato and Lado (1988) and Kim and Torquato (1990) have computed these bounds
for randomly dispersed impenetrable disks or, equivalently, aligned impenetrable cylinders,
and have compared them with numerical simulations. They found that the appropriate bound
(the lower bound for highly conducting cylinders and the upper bound for poorly conducting
cylinders) provides a remarkably good estimate of the effective conductivity. Torquato and
Beasley (1986) calculated the bounds for randomly dispersed penetrable disks, and Helsing
(1998) compared them with his numerical results. Torquato, Kim, and Cule (1999) found
that their numerical results for the conductivity of random checkerboards are consistent with
the bounds. Pham (1997) used the bounds to obtain cell shape independent bounds on the
conductivity of planar cell materials.

If instead we are only given one value of the function σe(σ
′
1, σ

′
2) = σ ′

e, where σ
′
1 and σ ′

2
are real, then we can determine the value of σe(1/σ ′

1, 1/σ
′
2) = 1/σ ′

e by using (27.33). The
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corresponding cross-property bounds (Milton 1981c) in this J = 0, K = 2 case are

U0,2 = σ2
k1σ1 + k2σ2 + σ1

k2σ1 + k1σ2 + σ2
, V0,2 = σ1

k1σ1 + k2σ2 + σ2

k2σ1 + k1σ2 + σ1
, (27.38)

where

k1 = σ ′
1[(σ

′
e)

2 − (σ ′
2)

2]
σ ′
e[(σ

′
1)

2 − (σ ′
2)

2]
, k2 = σ ′

2[(σ
′
e)

2 − (σ ′
1)

2]
σ ′
e[(σ

′
2)

2 − (σ ′
1)

2]
.

If we are given the volume fraction f1 in addition to the known value, then the correspond-
ing bounds in this J = 2, K = 2 case are

U2,2 = σ2
( f1σ1 + f2σ2 + σ1)(σ1 + σ2)− β2(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ2)(σ1 + σ2)− β2(σ1 − σ2)2 ,

V2,2 = σ1
( f1σ1 + f2σ2 + σ2)(σ1 + σ2)− β1(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ1)(σ1 + σ2)− β1(σ1 − σ2)2 , (27.39)

where

β1 = (σ ′
1 + σ ′

2)[( f2σ
′
1 + f1σ ′

2 + σ ′
1)+ 2 f2σ ′

1(σ
′
1 − σ ′

2)/(σ
′
e − σ ′

1)]
(σ ′

1 − σ ′
2)

2 ,

β2 = (σ ′
1 + σ ′

2)[( f2σ
′
1 + f1σ ′

2 + σ ′
2)− 2 f1σ ′

2(σ
′
1 − σ ′

2)/(σ
′
e − σ ′

2)]
(σ ′

1 − σ ′
2)

2 .

More generally, when σ1 and σ2 are real, the bounds are the simplest rational functions
satisfying (27.31) compatible with the known information. One bound is the type III function
UJ,K+2I (σ1, σ2), while the other bound is the type IV function VJ,K+2I (σ1, σ2). In the rational
expression (27.27) for these functions the polynomials p ′(!) and q ′(!) satisfy

p′(!) = q ′(−!),
and consequently their expansion coefficients αi and βi are related by

βi = (−1)iαi for i = 0, 1, 2, . . . , N.

When σ1 and σ2 are complex, the bounds are the simplest possible rational functions with
one free parameter that are compatible with the available information, including the constraint
(27.31). The most elementary bounds are those that incorporate only the fact that r0 = 1
[which is implied by (27.31) with σ1 = σ2 = 1]. The bounds in this J = K = 0 case are the
circular arcs inscribed by

σb1(v) = σ2
(1+ v)σ1 + (1− v)σ2

(1− v)σ1 + (1+ v)σ2
, σb2(w) = σ1

(1+w)σ2 + (1−w)σ1

(1−w)σ2 + (1+w)σ1
(27.40)

as v and w each vary between zero and one.
If in addition we know the volume fraction f1, then we can deduce the values of q1 = 2 f1

and q2 = 2 f 2
1 . The bounds in this J = 2 case are the circular arcs inscribed by

σb1(v) = σ2
( f1σ1 + f2σ2 + σ1)(σ1 + σ2)− f2v(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ2)(σ1 + σ2)− f2v(σ1 − σ2)2 ,

σb1(w) = σ1
( f1σ1 + f2σ2 + σ2)(σ1 + σ2)− f1w(σ1 − σ2)

2

( f2σ1 + f1σ2 + σ1)(σ1 + σ2)− f1w(σ1 − σ2)2 (27.41)
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as v and w each vary between zero and one (Milton 1980, 1981a). These bounds correspond
to the region Ω′′ in figure 27.1 on page 570 with d = 2.

In general, when σ1 and σ2 are complex, σe lies inside the lens-shaped region bounded by
Arc(UJ,K+2I , VJ,K+2I ,UJ−2,K+2I ) and Arc(UJ,K+2I , VJ,K+2I , VJ−2,K+2I ). Notice that in the
complex case (in contrast to the real case) the constraint (27.31) not only provides additional
known function values through (27.33) and additional known terms in the series expansion
through (27.35), but also restricts the functional form of the bounds.

An appealing feature of these real and complex bounds for two-dimensional isotropic
composites is that they are attained by multicoated cylinder assemblages. This is because of
the correspondence between the effective conductivity functions and the microgeometries dis-
cussed in section 18.5 on page 383. In particular, the bounds (27.36), (27.38), and (27.40) are
attained by assemblages of coated cylinders, while the bounds (27.37), (27.39), and (27.41)
are attained by assemblages of doubly coated cylinders. Bergman (1980) mistakenly com-
mented that he did not think that the bounds (27.41) could be attained by assemblages of
doubly coated cylinders.

27.8. Bounds for symmetric materials†
When the composite is symmetric, in the sense that interchange of the two phases does not
change the effective conductivity tensor, then the function σe(σ1, σ2) satisfies

σe(σ1, σ2) = σe(σ2, σ1). (27.42)

Rational functions compatible with this relation are either of type I or type II, and the polyno-
mials p(σ1) and q(σ1) entering the expression (27.2) for σe(σ1, 1) satisfy

p(σ1) = σ k+1 p(1/σ1), q(σ1) = σ kq(1/σ1),

in which k is the degree of the polynomial q(σ1). In other words, the polynomials p(σ1) and
q(σ1) remain invariant when the order of their coefficients is reversed:

ai = ak+1−i and bi = bk−i .
Now (27.42) implies that

(1− !)σe(!) = (1+ !)σe(−!). (27.43)

Accordingly, if we know the value of gn = σe(!n), then we can add

σe(!n+1) = gn+1, where !n+1 = −!n and gn+1 = (1− !n)g∗
n/(1+ !n),

(27.44)

to the collection of known values, where we have taken complex conjugates so that Im(!n+1)

and Im(!n) have the same sign, again to be consistent with (27.25). It may happen that
|σ1n| = |σ2n| or, equivalently, that Re(!n) = 0. In this circumstance !n = −!n , and we should
not add (27.33) to the collection of known values since it duplicates existing information.
Notice that (27.42) implies an exact relation:

argσe = (argσ1 + argσ2)/2 when |σ1| = |σ2|, (27.45)

and to be compatible with this, we must have 2arg(gn) =arg(σ1n/σ2n)whenever |σ1n| = |σ2n|.
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By substituting the series expansion (27.26) into (27.43) we see that

qn = qn−1 for all odd values of n. (27.46)

Due to the relations (27.44) and (27.46) we can assume that K is an even integer and that
J is an odd integer. Whether I is even or odd depends on whether there is an even or odd
number of values of n for which |σ1n/σ2n| = 1.

Let us suppose that we are interested in bounds when σ1 and σ2 are real. If we only know
the value of r0 = q0 = 1, then using (27.46) we determine that q1 = 1 or, equivalently, that
f1 = 1/2. The bounds in this J = 1 case are the arithmetic and harmonic mean bounds,

U1,0 = 2σ1σ2/(σ1 + σ2), V1,0 = (σ1 + σ2)/2,

which are the rational functions of type I [2] and type II [2] having the required values of q0

and q1.
If in addition we know that the composite is three-dimensional and isotropic, then q2 =

2/3 and from (27.46) we deduce that q3 = 2/3 or, equivalently, that ζ1 = 1/2. The bounds in
this J = 3 case are the bounds of Beran and Molyneux (1966),

U3,0 = 6σ1σ2(σ1 + σ2)

3(σ1 + σ2)2 − 2(σ1 − σ2)2 , V3,0 = 3(σ1 + σ2)
2 − (σ1 − σ2)

2

6(σ1 + σ2)
,

which are the rational functions of type I [2] and type II [2] having the required values of q0,
q1, q2, and q3. Schulgasser (1977) has established the optimality of the upper bound. The
lower bound can be improved. As discussed in section 7.3 on page 118, the optimal lower
bound is given by (7.24).

If we do not know that the composite is isotropic but instead know that σe(σ ′
1, σ

′
2) = σ ′

e,
where σ ′

1 and σ
′
2 are real, then we can determine the value of σe(σ

′
2, σ

′
1) = 1/σ ′

e using (27.33).
The corresponding bounds in this J = 1, K = 2 case are

U1,2 = 2σ1σ2(σ1 + σ2)

(σ1 + σ2)2 − k1(σ1 − σ2)2 , V1,2 = (σ1 + σ2)
2 − k2(σ1 − σ2)

2

2(σ1 + σ2)
,

where now

k1 = (σ ′
1 + σ ′

2)
2 − 2σ ′

1σ
′
2(σ

′
1 + σ ′

2)/σ
′
e

(σ ′
1 − σ ′

2)
2 , k2 = (σ ′

1 + σ ′
2)

2 − 2σ ′
e(σ

′
1 + σ ′

2)

(σ ′
1 − σ ′

2)
2 .

Elementary bounds on the complex conductivity of symmetric materials are also available
(Milton 1981a).

27.9. Reducing the set of independent bounds
Here we will show that the bounds that incorporate the series expansion coefficients r0,
r1,. . . ,rJ and K + 2I known values of the function can be recovered from the bounds that
incorporate r0 = σe(1, 1) and a set of K + 2I + J other known values of the function. The
additional set of J pairs (σ1n, σ2n) can be taken with σ2n = 1, for n = K + 2I + 1 up to
n = K + 2I + J , and the key idea, due to Prager (1969), is to take the limit of the bounds as
the values σ1n sequentially approach unity for n = K + 2I + 1 up to n = K + 2I + J . In
essence, one can regard knowledge of the series expansion coefficients as being equivalent to
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knowledge of the function value at a set of J points (σ1n, σ2n) in the near vicinity of the point
(1, 1).

For example, to recover the J = 1, K = 0 Wiener bounds (27.5) with r0 = 1 and r1 = f1,
we set σ ′

1 = 1+ z, σ ′
2 = 1 and substitute these values and the series expansion

σ ′
e = 1+

∞∑
i=1

ri zi ,

in the expressions (27.17) for u and v, giving

u = (1+ z)∑∞
i=1 ri z

i−1

1+∑∞
i=1 ri zi

, v =
∞∑
i=1

ri zi−1.

Upon taking the limit z → 0 we see that both u and v approach r1 = f1. As a consequence,
the J = 0, K = 1 bounds (27.16) reduce to the arithmetic and harmonic mean bounds.

Similarly, to recover the J = 2, K = 0 Hashin-Shtrikman bounds (27.6) with r0 = 1,
r1 = f1, and r2 = − f1 f2/3, we make the same substitution in the expression (27.19) for y ′.
In the limit as z→ 0 we see that

y ′ = −1− f2z − f1 f2∑∞
i=2 ri zi−2

approaches 2. Upon setting y ′ = 2 the J = 1, K = 1 bounds given by (27.18) reduce to the
Hashin-Shtrikman bounds. The J = 1, K = 1 bounds, in turn, can be recovered in a similar
fashion from the J = 0, K = 2 bounds.

This idea of Prager can be used to generate bounds that incorporate not just the known
values of the function, but also the derivatives of the function at the known points when this
information is available. Such bounds, incorporating series expansions of the function at
two or three different points, have been derived (using a different approach) by Tokarzewski,
Bławzdziewicz, and Andrianov (1994); Tokarzewski (1996); and Tokarzewski and Telega
(1998). Their bounds, which are related two- and three-point Padé approximants, give tight
estimates for the effective conductivity of square arrays of highly conducting cylinders.

27.10. Proving elementary bounds using the method of variation of
poles and residues

The method of variation of poles and residues was used by Bergman (1978) to derive some of
the elementary bounds. As an example of this method, let us consider the problem of finding
bounds when σ1 and σ2 are real and positive and the only information that we have is the
value of r0 = 1. We can further assume, by rescaling if necessary, that σ2 = 1. Rather than
examining the function σe(σ1, 1) we can equally well examine the function

Fe(s) = 1− σe(1− 1/s, 1), where s = 1/(1− σ1).

Now the problem is to bound Fe(s) for a given real value of s with s < 0 or s > 1. As we
have already noted, the conductivity function σe(σ1, σ2) can be approximated to an arbitrarily
high degree of accuracy by a rational function of sufficiently large degree having the required
analytic properties. Therefore it suffices to consider bounds on rational functions

Fe(s) =
m∑
i=0

Bi
s − si ,
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where

0 ≤ s0 ≤ s1 ≤ . . . ≤ sm < 1, Bi ≥ 0 for all i, and
m∑
i=0

Bi
1− si ≤ 1. (27.47)

The idea is to take a fixed but large value of m and find the maximum (or minimum) value
of Fe(s) as the poles si and residues Bi are varied subject to the constraints (27.47) while
holding s fixed. The resulting maximum (or minimum) could conceivably depend on m, and
we are interested in taking the limit asm tends to infinity. In fact it turns out that the extremum
is independent of m and consequently there is no need to take limits.

Since varying the poles si and residues Bi corresponds in some rough sense to varying the
geometry, this procedure can be compared to finding maximum (or minimum) value of σe as
the geometry is varied over all configurations. Note, however, that when we are interested in
a specific class of composites, such as three-dimensional isotropic composites, it might not
be known which combinations of poles and residues correspond to composites in this class
and which do not. As a consequence, the bounds obtained might not necessarily be the best
possible ones.

The important observation to make is that the quantity Fe(s) to be maximized (or mini-
mized) depends linearly on the m + 1 residues B0, B1,. . . Bm , as do the constraints (27.47).
Therefore, from the theory of linear programming [see, for example, Dantzig (1998)] we
know that it suffices to consider those combinations of residues for which m + 1 constraints
on the residues are satisfied as equalities. This means that either all of the residues are zero,
that is, Fe(s) = 0, which corresponds to the bound σe = 1 = σ2, or only one residue, say B0,
is nonzero and B0/(1 − s0) = 1, that is, B0 = (1 − s0). In the latter case, upon taking the
maximum or minimum value of

Fe(s) = 1− s0
s − s0 (27.48)

as the position s0 of the pole is varied between 0 and 1, we see that the other bound must be
Fe(s) = 1/s, which corresponds to σe = σ1. So we conclude that σe must lie between σ1 and
σ2.

If we are interested in elementary bounds on σe when σ1 and σ2 are complex and r0 = 1,
then this is equivalent to finding bounds on Fe(s) for complex values of s. (We can again
assume that σ2 = 1 by making a rotation in the complex plane and rescaling if necessary.) We
now focus on finding the maximum or minimum value of

Re[e−iθ Fe(s)] =
m∑
j=1

B j Re[e−iθ/(s − s j )], (27.49)

which corresponds to optimizing the component of Fe(s) in a direction at an angle θ to the
positive real axis in the complex Fe-plane. Again by the theory of linear programming it
suffices to consider functions Fe(s) of the form (27.48). This leaves one free parameter,
namely, s0, which may be varied to obtain bounds on the quantity given by (27.49). As θ is
varied these bounds imply that the value of Fe(s) is contained in the convex hull of the set of
points generated by (27.48) as s0 varies between 0 and 1. When translated to bounds on σe,
this implies that σe is confined to the region bounded by the circular arc Arc(σ1,σ2, 0) and the
straight line Arc(σ1,σ2,∞).

In principle this method can be extended to incorporate the J + 1 known series expansion
coefficients r0,r1,. . . ,rJ and the K+2I known values of the function. These impose J+K+2I
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additional linear constraints on the residues Bi , and the theory of linear programming implies
that all but J+K+2I+1 of the residues can be taken to be zero. This reduces the problem to a
finite-dimensional one, but complications arise because the quantity to be optimized depends
nonlinearly on the positions of the remaining poles. By allowing variations in their positions
one would like to show that approximately half of the remaining J + K + 2I + 1 residues
can be set equal to zero, but there seems to be no simple way of establishing this within
the framework of the method. So let us turn to another approach that is not beset by these
difficulties.

27.11. Proving the bounds using the method of variation of poles and
zeros

The method of variation of poles and zeros (Milton 1981a, 1981c) is a general method that can
be applied to bound any rational function of fixed degree, provided we have some information
concerning the location of the poles and zeros of the function. A recent novel application has
been to provide a generalization of the well-known Kramers-Kronig relations (Jackson 1975),
which for any isotropic material relate the real and imaginary parts of the complex electrical
permittivity ε(ω) as functions of the frequencyω. (The real and imaginary parts are essentially
Hilbert transforms over ω of each other.) The method has been used to obtain bounds on the
real part of ε(ω) over a frequency interval given measurements of the imaginary part over
the same frequency interval and given the real part at a few selected frequencies within this
interval (Milton, Eyre, and Mantese 1997). These bounds tighten and reduce to the familiar
Kramers-Kronig relations in the limit as the measured frequency interval extends over the
entire frequency range, from zero to infinite frequencies. Unfortunately a detailed discussion
of these bounds is beyond the scope of this book.

It is convenient to introduce the variable

τ = 1/! = 1− 2s = σ1 + σ2

σ1 − σ2
,

which (like ! but unlike s) has the appealing property that it transforms to −τ when we
replace σ1 and σ2 by 1/σ1 and 1/σ2 or when we swap σ1 with σ2, and has the additional
property (like s but unlike !) that negative real values of σ1/σ2 correspond to values of τ
along a finite interval of the real axis, namely, the interval between −1 and 1. This second
property is useful because it means that the poles and zeros of the rational approximate to the
function

σe(τ ) ≡ σe(σ1, 1) = σe((1+ τ)/(1− τ), 1) (27.50)

are confined to this finite interval. As usual, because of the homogeneity of the function, we
have chosen to set σ2 = 1.

Since the rational approximate takes the value r0 = 1 at τ =∞, it has the representation

σe(τ ) = r0
(τ − τ1)(τ − τ3) . . . (τ − τ2m−1)

(τ − τ2)(τ − τ4) . . . (τ − τ2m)
, where r0 = 1, (27.51)

in which the τi are the zeros, for odd i , and poles, for even i , of the function. Since the
imaginary part of the rational function σe(τ ) takes the opposite sign as the imaginary part of
τ , it follows that the poles and zeros must necessarily be simple and located on the real axis
[because Im(σe) changes sign around a pole or zero and the number of times it changes sign
is determined by the multiplicity of the pole or zero]. Also from this argument we deduce that
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the poles must have residues that are real and nonnegative and by continuity of the function
σe(τ ) there must be a zero located between every pair of poles. Finally, because σe(σ1, 1)
takes positive finite values whenever σ1 is positive, these poles and zeros must be located
between −1 and 1, with a pole nearest τ = 1 and a zero nearest τ = −1. In other words, the
poles and zeros are real and satisfy the inequalities

1 ≥ τ2m ≥ τ1 ≥ τ2m−2 ≥ τ3 . . . ≥ τ2m−3 ≥ τ2 ≥ τ2m−1 ≥ −1, (27.52)

where the unusual labeling of indices has been chosen to simplify subsequent formulas.
We remark in passing that when σe(τ ) is not a rational function the representation that

generalizes (27.51) is

log σe(τ ) = log r0 +
∫ +1

−1

dν(y)
τ − y , (27.53)

where ν(y) is a positive measure satisfying the constraint

0 ≤
∫ +1

−1
g(y)dν(y) ≤

∫ +1

−1
g(y)dy

for all smooth positive test functions g(y). In particular, if the measure is smooth and dν(y) =
h(y)dy for some function h(y), then this condition imposes the constraint that

0 ≤ h(y) ≤ 1 for all y.

The characteristic function measure dν(y) = h(y)dy, where

h(y) = 1 if τ2m−2i ≥ y ≥ τ2i+1 for some i = 0, 1, 2, . . . ,m − 1,
= 0 otherwise,

when substituted in (27.53) gives

log σe(τ ) = log r0 +
m−1∑
i=0

∫ τ2m−2i

τ2i+1

dy
τ − y

= log r0 +
m−1∑
i=0

log(τ − τ2i+1)− log(τ − τ2m−2i ),

which corresponds to the logarithm of the rational function (27.51).
Now the object is to find the range of values that σe can take, with τ held fixed, as the poles

and zeros are varied over all configurations compatible with (27.52) and any other known
constraints on the analytic function. We have already observed in section 27.9 on page 589
that it suffices to establish the bounds that incorporate r0 and a set of H = K + 2I + J
known values of the function, since the other bounds can be generated from these bounds.
The known values of the function translate into restrictions on the possible positions of the
zeros and poles:

gn = r0
(tn − τ1)(tn − τ3) . . . (tn − τ2m−1)

(tn − τ2)(tn − τ4) . . . (tn − τ2m)
, for n = 1, 2, . . . , H, (27.54)

where gn = σen/σ2n and tn = (σ1n + σ2n)/(σ1n − σ2n).
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Let us begin by considering the problem of finding bounds on σe when σ1 is real and
σ2 = 1. The goal is to find the supremum (or infimum) of σe as the poles and zeros are
varied over all configurations compatible with (27.52) and (27.54) with τ held fixed. Since
the set of points (τ1, τ2, . . . , τ2m) in 2m-dimensional parameter space where these constraints
are satisfied is a compact set, the supremum (or infimum) of σe is surely achieved at some
(not necessarily unique) point (τ ′

1, τ
′
2, . . . , τ

′
2m). Now if the position of a pole happens to

coincide with the position of a zero, we can cancel this common factor from the numerator
and denominator in (27.51) and reduce the degreem by 1. Accordingly, by reducing the value
of m as necessary, we can assume that

1 ≥ τ ′
2m > τ ′

1 > τ ′
2m−2 > τ ′

3 . . . > τ ′
2m−3 > τ ′

2 > τ ′
2m−1 ≥ −1. (27.55)

The next step is to explore the effect on σe when we perturb the positions of the poles and
zeros while still maintaining the constraints (27.54).

For simplicity, let us first consider the problem of finding bounds on σe for the case H = 1,
with real positive values of σen , σ1n and σ2n for n = 1. Thus we have g1 > 0 and |t1| > 1. Let
us choose τ1 as our dependent variable to be determined from the constraint (27.54) with n =
1. Accordingly we take (τ2, τ3, . . . , τ2m) as our set of 2m−1 independent variables. (There is
some freedom in the choice of independent and dependent variables, but we require that τ2m

and τ2m−1 be kept independent to make it easier to keep track of the constraints 1 ≥ τ2m and
τ2m−1 ≥ −1. We took an unusual indexing of the poles and zeros to ensure that the constrained
pole and constrained zero are last in the sequence.) The implicit function theorem implies that
the equation (27.54) with n = 1 has a solution for τ1 in terms of the independent variables, at
least for (τ1, τ2, . . . , τ2m) in a neighborhood of the point (τ ′

1, τ
′
2, . . . , τ

′
2m), provided that the

partial derivative

J = ∂g1

∂τ1
= −g1

t1 − τ1

is nonzero when we set (τ1, τ2, . . . , τ2m) equal to (τ ′
1, τ

′
2, . . . , τ

′
2m). Since g1 > 0, |t1| > 1,

and |τ1| ≤ 1, it is clear that this condition is always satisfied.
Now let us examine the derivative of σe with respect to one of the independent variables,

say, τi with i �= 1, while keeping the remaining independent variables fixed. By differentiating
(27.51) and the constraint (27.54) with respect to τi we obtain the pair of equations

Dσe
Dτi

+ σe

τ − τ1

Dτ1

Dτi
= (−1)iσe

τ − τi
,

g1

t1 − τ1

Dτ1

Dτi
= (−1)ig1

t1 − τi
,

where D/Dτi denotes the derivative with respect to τi while keeping the remaining inde-
pendent variables fixed and adjusting τ1 so that the constraint (27.54) with n = 1 remains
satisfied. From these equations we see that

Dσe
Dτi

= (−1)iσe(τ − t1)(τ1 − τi)

(τ − τi)(τ − τ1)(t1 − τi)
. (27.56)

The key point is that this derivative is never zero. For a maximum (or minimum) of σe to
occur at (τ ′

1, τ
′
2, . . . , τ

′
2m) we are left with two possibilities: either the independent variable is

constrained, that is,m = 1 and τ ′
2 = 1, or the dependent variable is constrained, that is,m = 1
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and τ ′
1 = −1. The remaining parameter, τ ′

1 or τ
′
2, is then determined by the constraint (27.54)

with n = 1. These two possibilities correspond to the bounds U0,1 and V0,1 given by (27.16).
When σ1 and hence τ is complex we look for points (τ ′

1, τ
′
2, . . . , τ

′
2m) such that σe is at

the boundary of its range of possible values. At such points, the derivatives Dσe/Dτi and
Dσe/Dτ j (where τi and τ j are two real independent variables), if both nonzero, must be such
that

arg
Dσe
Dτi

= arg
Dσe
Dτ j

,

since otherwise σe could be pushed outside the boundary by small variations in τi and τ j .
However, from (27.56) we see that the condition can never be satisfied because arg(τ − τi) �=
arg(τ − τ j) when τ is complex and i �= j . Therefore for σe to be on the boundary there can be
only one unconstrained independent parameter. Eitherm = 1 and the bound is generated as τ2

is varied (while adjusting the dependent variable τ1 so that the constraint remains satisfied) or
m = 2, τ4 = 1, τ3 = −1 and the bound is generated as τ2 is varied (while adjusting τ1 so that
the constraint remains satisfied). These two possibilities correspond to the bounds (27.22) as
v and w are varied.

The success of this method hinges on the factorization of the derivative Dσe/Dτi into a
product of nonzero factors as in (27.56). Remarkably, this factorization carries through even
when there are additional constraints on the function of the form (27.54), that is, when H > 1.

Let us now examine the general case and choose (τ1, τ2, . . . , τH ) as our set of H depen-
dent variables to be determined from the H equations (27.54) and (τH+1, τH+2, . . . , τ2m) as
our set of 2m−H independent variables. The implicit function theorem implies that the equa-
tions (27.54) have a solution for the dependent variables in terms of the independent ones, at
least for (τ1, τ2, . . . , τ2m) in a neighborhood of the point (τ ′

1, τ
′
2, . . . , τ

′
2m), provided that the

Jacobian

J =

∣∣∣∣∣∣∣∣∣

−g1
t1−τ1

g1
t1−τ2

−g1
t1−τ3

. . .
(−1)H g1
t1−τH

−g2
t2−τ1

g2
t2−τ2

−g2
t2−τ3

. . .
(−1)H g2
t2−τH

...
...

...
...

−gH
tH −τ1

gH
tH −τ2

−gH
tH −τ3

. . .
(−1)H gH
tH −τH

∣∣∣∣∣∣∣∣∣ (27.57)

is nonzero when we set (τ1, τ2, . . . , τ2m) equal to (τ ′
1, τ

′
2, . . . , τ

′
2m).

Aside from the factors of g1, g2,. . . , gH and the signs of each column, which are easily fac-
tored out, this is a Cauchy matrix for which an exact formula is available for the determinant
[see, for example, Noble (1969) and Lax (1997)] and we have

J =
h
[∏H

n=1 gn
] [∏H−1

n=1 pnqn
]

∏H
k=1
∏H

	=1(tk − τ	)
, (27.58)

where

pn =
H∏

k=n+1

(tn − tk), qn =
H∏

k=n+1

(τn − τk)

and h is the sign factor

h = −1 if H = 1 or 2 mod 4,
= +1 if H = 0 or 3 mod 4,

arising from the minus signs in the columns.
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From the inequalities (27.21) and (27.55) it is now clear that the Jacobian as given by
(27.58) is nonzero when we set (τ1, τ2, . . . , τ2m) equal to (τ ′

1, τ
′
2, . . . , τ

′
2m). Now by differen-

tiating (27.51) and (27.54) with respect to the independent variable τi , with i ≥ H + 1, we
obtain the set of equations

−1 −σe
τ−τ1

σe
τ−τ2

−σe
τ−τ3

. . . (−1)Hσe
τ−τH

0 −g1
t1−τ1

g1
t1−τ2

−g1
t1−τ3

. . .
(−1)H g1
t1−τH

0 −g2
t2−τ1

g2
t2−τ2

−g2
t2−τ3

. . .
(−1)H g2
t2−τH

...
...

...
...

...

0 −gH
tH −τ1

gH
tH −τ2

−gH
tH −τ3

. . .
(−1)H gH
tH −τH





Dσe/Dτi
Dτ1/Dτi
Dτ2/Dτi
Dτ3/Dτi

...

DτH/Dτi

 = (−1)i+1



σe
τ−τi
g1
t1−τi
g2
t2−τi

...
gH
tH −τi

 ,

(27.59)

where D/Dτi denotes the derivative with respect to τi while keeping the remaining inde-
pendent variables fixed and adjusting the dependent variables so that the constraints (27.54)
remain satisfied. Using Cramer’s rule, the solution to these equations for Dσe/Dτi can be
expressed as the ratio of two determinants of the form (27.57), and with the aid of the formula
(27.58) for such determinants we see that

Dσe
Dτi

=
(−1)iσe

[∏H
n=1(τ − tn)

] [∏H
n=1(τn − τi )

]
(τ − τi )

[∏H
n=1(tn − τi )

] [∏H
n=1(τ − τn)

] . (27.60)

This derivative is clearly never zero when (τ1, τ2, . . . , τ2m) is set equal to (τ ′
1, τ

′
2, . . . , τ

′
2m).

It follows that for a maximum (or minimum) of σe to occur when σ1 is real there can be no
unconstrained independent variables. If H is even, then either 2m = H and there are no
independent variables, or 2m = H+2 and the two independent variables must be constrained,
that is, τ ′

2m = 1 and τ ′
2m−1 = −1. If H is odd, then 2m = H + 1 and one variable must be

constrained, that is, τ ′
2m = 1 or τ ′

2m−1 = −1. In either case the rational functions correspond
to the upper and lower boundsU0,H and V0,H . Similarly, when σ1 is complex there can be only
one unconstrained independent variable when σe is at the boundary of its range of possible
values because arg(τ − τi) and arg(τ − τ j ) are different when i �= j . When some of the tn
and known values gn = σe(tn) are not real but occur in complex conjugate pairs the same
arguments apply because the product

∏H
n=1(tn − τi ) remains real. As a consequence, the

method of variation of poles and zeros yields all of the bounds discussed in this chapter.
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28
Fractional linear transformations as a tool

for generating bounds†

The method of variation of poles and zeros discussed in the previous chapter is a powerful tool
that can be applied to bound any rational function of fixed degree provided that we have some
information on the location of the poles and zeros of that function. For those special classes
of analytic functions appropriate to composites there is another approach based on the use of
fractional linear transformations. This approach has the advantage that it is easily generalized
to matrix-valued analytic functions, and in particular to the matrix-valued conductivity tensor
of anisotropic composites. Fractional linear transformations were used by Bergman (1978)
as a tool in deriving some of the elementary bounds. In 1980, following remarks of Jim
Berryman and John Wilkins (private communication), I became aware of the large body of
literature on bounding Stieltjes functions and realized that the fractional linear transformations
of Baker, Jr. (1969), among others, provided an alternative proof of many of the bounds
discussed in the previous chapter. Independently, Golden and Papanicolaou (1983), Kantor
and Bergman (1984), and Bergman (1986, 1993) recognized that one could use fractional
linear transformations to generate most of the hierarchies of bounds discussed in the last
chapter. Their fractional linear transformations are similar to the ones used by Baker, Jr.
(1969); see the appendix in Milton (1986).

The hierarchical structure of the bounds on σe, as a nested sequence of intervals on the real
line, or as a nested sequence of lens-shaped regions in the complex plane, suggests that there
may be some recursive method for deriving the bounds. We will see that certain fractional
linear transformations provide a one-to-one correspondence between analytic functions that
satisfy the required constraints (imposed by knowledge of the series expansion coefficients)
and the larger class of functions that satisfy one less constraint. There is no contradiction here
because there are an infinite number of such analytic functions. In some sense the situation is
analogous to the way the set of even integers can be bought into one-to-one correspondence
with the larger set of all integers through the mapping of halving them.

Affiliated with this correspondence between analytic functions is a correspondence be-
tween their associated bounds. We will see that knowledge of the appropriate fractional linear
transformations and the elementary bounds (that do not incorporate any series expansion co-
efficients or known function values) allows us to generate the entire set of bounds.

28.1. Eliminating the constraints imposed by known series expansion
coefficients

In this section we follow Golden and Papanicolaou (1983) and Bergman (1986, 1993). Let us
revisit the problem of deriving bounds on σe for fixed values of σ1 and σ2 when one knows the
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coefficients r0, r1, . . . , rJ in the series expansion (27.3). We begin by treating the case where
only r0 = 1 and r1 = f1 are known. Without loss of generality, let us assume that σ2 = 1.
Rather than examining the function σe(σ1, 1), it proves convenient, as in section 27.10 on
page 590 of the previous chapter, to study the function

Fe(s) = 1− σe(1− 1/s, 1), where s = 1/(1− σ1), (28.1)

which has the integral representation

Fe(s) =
∫ 1

0

dµ(y)
s − y , (28.2)

incorporating a positive measure dµ(y).
By substituting the series expansion (27.3) for σe(σ1, 1) into the expression (28.1), and

noting that r0 = 1, we obtain an expansion for Fe(s) in powers of 1/s:

Fe(s) = µ0

s
+ µ1

s2 +
µ2

s3 + · · · , where µi = (−1)i+1ri+1.

Also by expanding the denominator in (28.2) in powers of 1/s we see that the moments of the
measure can be identified with these series expansion coefficients:∫ 1

0
y idµ(y) = µi ≥ 0 for all i.

Consequently, knowing the series expansion coefficients r1, r2, . . . , rJ is equivalent to know-
ing the first J moments of the measure.

One other constraint on the measure follows from the nonnegativity of σe(σ1, 1) for all
nonnegative values of σ1, and in particular for σ1 = 0. This implies that Fe(1) ≤ 1 or,
equivalently, that

1 ≥
∫ 1

0

dµ(y)
1− y . (28.3)

One immediate consequence of this constraint is an upper bound on the magnitude of the
zeroth moment µ0:

µ0 =
∫ 1

0
dµ(y) ≤

∫ 1

0

dµ(y)
1− y ≤ 1.

We are ultimately interested in finding the range of values that Fe(s) takes for a fixed
value of s as the measure is varied subject to these constraints. Let us define F as the set
of all functions Fe(s) that can be expressed in the form (28.2) for some positive measure dµ
satisfying (28.3), and let us define F(µ0) as the set of those functions in F with their measure
having zeroth moment µ0.

Now consider the transformation T1 defined by its action on any function Fe(s):

F (1)
e (s) = T1[Fe(s)] =

[
1
µ0
− 1
sFe(s)

]
µ0

1− µ0
, (28.4)

where, following Bergman (1986, 1993), the positive post-factor µ0/(1−µ0) has been intro-
duced to ensure that the inequality F (1)

e (1) ≤ 1 holds if and only if Fe(1) ≤ 1. We want to
show that this transformation T1 provides a one-to-one correspondence between functions in
F(µ0) and functions in F .
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Our first objective is to establish that F (1)
e (s) necessarily lies in F when Fe(s) lies in

F(µ0). It is immediately clear from the integral representation (28.2) that Fe(s) maps the
upper half of the complex plane to the lower half-plane and maps the lower half-plane to the
upper half-plane. Indeed, Im(s) and Im[1/(s − y)] have opposite signs for all real values of
y. The key observation to make is that sFe(s) also shares this property. This is evident from
its integral representation,

sFe(s) =
∫ 1

0

dµ(y)
1− y/s , (28.5)

because Im(s) and Im[1/(1− y/s)] have opposite signs for all real values of y.
Therefore F (1)

e (s) maps the upper half of the complex plane to the lower half-plane and
maps the lower half-plane to the upper half-plane. Also, for real values of s we see from the
integral representation that Fe(s) is positive for s > 1 and negative for s < 0. Consequently,
sFe(s) is nonzero (and positive) for all s > 1 and for all s < 0. It follows that F (1)

e (s) is
analytic for all s �∈ [0, 1] and has an expansion

F (1)
e (s) = µ

(1)
0

s
+ µ

(1)
1

s2 + · · · (28.6)

in powers of 1/s, where

µ
(1)
0 = µ1

µ0(1− µ0)
, µ

(1)
1 = µ0µ2 − µ2

1

µ2
0(1− µ0)

. (28.7)

Notice that the effect of the transformation T1 is to shift information in the series expansion:
The coefficient µi , which enters the series expansion of Fe(s) at order i + 1, now enters the
series expansion of F (1)

e (s) at order i .
From the series expansion (28.6) it is evident that F (1)

e (s) approaches zero (as 1/s) as s
tends to∞. By applying the Cauchy integral formula as explained in section 18.3 on page 375,
we obtain an integral formula

F (1)
e (s) =

∫ 1

0

dµ(1)(y)
s − y , (28.8)

for F (1)
e (s) in terms of a positive measure dµ(1)(y). Also, from the inequality 1 ≥ Fe(1) we

deduce that 1 ≥ F (1)
e (1) or, equivalently, that

1 ≥
∫ 1

0

dµ(1)(y)
1− y .

Therefore F (1)
e (s) lies in F .

Conversely, let us suppose that we are given any function F (1)
e (s) ∈ F with a series

expansion

F (1)
e (s) = µ

(1)
0

s
+ µ

(1)
1

s2 + · · · (28.9)

in powers of 1/s. Let µ(1) denote the measure associated with F (1)
e (s) as in (28.8). Applying

the inverse transformation T −1
1 to F (1)

e (s) yields the function

Fe(s) = T−1
1 F (1)

e (s) = µ0

s − (1− µ0)sF
(1)
e (s)

. (28.10)
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Our objective now is to show that this function lies in F(µ0).
From the integral representation (28.8) for F (1)

e (s) we see that

sF (1)
e (s) =

∫ 1

0

dµ(1)(y)
1− y/s

maps the upper half of the complex plane to the lower half-plane and maps the upper half-
plane to the lower half-plane. Because Im(s) and − Im[sF (1)

e (s)] always have the same sign
and because 1 − µ0 is positive, it follows that Fe(s) defined by (28.10) maps the upper half
of the complex plane to the lower half-plane and maps the lower half-plane to the upper half-
plane. Also, the integral representation (28.8) tells us that for real values of s �∈ [0, 1] F (1)

e (s)
is less than F (1)

e (1) and this in turn is less than 1. Therefore the denominator in (28.10) does
not vanish for any s �∈ [0, 1], implying that Fe(s) is analytic for s �∈ [0, 1]. By applying the
Cauchy integral formula we obtain an integral representation for Fe(s) of the form (28.2) for
some positive measure dµ(y). From the inequality F (1)

e (1) ≤ 1 we deduce that Fe(1) ≤ 1,
and this implies that the measure satisfies the constraint (28.3). Finally, by substituting the
series expansion (28.9) for F (1)

e (s) into (28.10) we see that Fe(s) has an expansion

Fe(s) = µ0

s
+ µ0(1− µ0)µ

(1)
0

s2 + µ0(1− µ0)µ
(2)
0 + µ0(1− µ0)

2[µ(1)
0 ]2

s3 + · · · .

Therefore Fe(s) defined by (28.5) lies in F(µ0).
This proves that the transformation T1 provides a one-to-one correspondence between

functions in F(µ0) and functions in F . Therefore the problem of finding the range of values
that Fe(s) takes when s is held fixed and the function is varied over all candidate functions
in F(µ0) is equivalent to the problem of finding the range of values that F (1)

e (s) takes for
that value of s as the function is varied over all candidate functions in the larger set F . If R
represents the range of values that F (1)

e (s) takes, then T−1
1 R will represent the range of values

that Fe(s) takes.
To findR we need to use one of the methods discussed in the previous chapter, such as the

method of variation of poles and resides described in section 27.10 on page 590. This is easy
because there are few constraints on the function. For example, when s is real and greater
than 1 (i.e., when 1 = σ2 > σ1 > 0),R consists of those real values of F (1)

e satisfying

0 ≤ F (1)
e ≤ 1/s,

and T−1
1 R consists of those real values of Fe satisfying

µ0

s
≤ Fe ≤ µ0

s − (1− µ0)
. (28.11)

Upon making the substitutions µ0 = f1, s = 1/(1− σ1) and Fe = 1− σe, we see that (28.11)
implies the arithmetic and harmonic mean bounds:

f1σ1 + f2 ≥ σe ≥ ( f1/σ1 + f2)−1.

This procedure is easily extended to include higher order series expansion coefficients. For
example, let us suppose that the value of the moments µ0 and µ1 are known. If F(µ0;µ1)

denotes the set of those functions in F(µ0) with their measure having first moment µ1, then
from the series expansion (28.6) we see that T1 provides a one-to-one correspondence between
functions in F(µ0;µ1) and functions in F(µ

(1)
0 ).
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In the same way that we defined the transformation T1 through its action on the function
Fe(s) ∈ F(µ0), let us define a transformation T2 through its action on the function F (1)

e (s) ∈
F(µ

(1)
0 ):

F (2)
e (s) = T2[F (1)

e (s)] =
[

1

µ
(1)
0

− 1

sF (1)
e (s)

]
µ
(1)
0

(1− µ
(1)
0 )

.

The preceding analysis shows that T2 provides a one-to-one correspondence between func-
tions in F(µ

(1)
0 ) and functions in F . By combining these transformations we see that T2T1

provides a one-to-one correspondence between functions in F(µ0;µ1) and functions in F .
Consequently, for a given value of s, T −1

1 T−1
2 R represents the range of values that Fe(s)

takes as Fe varies over all functions in F(µ0;µ1).
The relation between Fe and

F (2)
e = T2T1Fe

is conveniently expressed as a continued fraction:

Fe = T−1
1 T−1

2 F (2)
e = µ0

s − (1− µ0)sT−1
2 F (2)

e
= µ0

s − (1− µ0)µ
(1)
0

1− (1− µ
(1)
0 )F (2)

e

. (28.12)

To obtain the lower and upper bounds on Fe when s is real and greater than 1, we just need
to make the substitutions F (2)

e = 0 and F (2)
e = 1/s into this continued fraction. Setting

s = 1/(1− σ1) and Fe = 1− σe in the resultant inequalities gives the bounds U2,0(σ1, 1) and
V2,0(σ1, 1).

By repeating this procedure successive moments can be eliminated. When the three mo-
mentsµ0, µ1, andµ2 are known, the lower and upper bounds on Fe for real s > 1 are obtained
by making the substitutions F (3)

e = 0 and F (3)
e = 1/s into the continued fraction

Fe = µ0

s − (1− µ0)µ
(1)
0

1− (1− µ
(1)
0 )µ

(2)
0

s − (1− µ
(2)
0 )sF (3)

e

,

where

µ
(2)
0 = µ

(1)
1

µ
(1)
0 (1− µ

(1)
0 )

,

and the moments µ(1)
0 and µ

(1)
1 are given by (28.7) in terms of µ0, µ1, and µ2. Setting s =

1/(1 − σ1) and Fe = 1 − σe in the resultant inequalities gives the bounds U3,0(σ1, 1) and
V3,0(σ1, 1).

28.2. Eliminating the constraints imposed by known real values of the
function

Let us begin by supposing that we know the value of σ ′
e = σe(σ

′
1, σ

′
2) for a pair of positive

real conductivities σ ′
1 and σ ′

2 with σ ′
1 �= σ ′

2. This information translates into a known value of
the function Fe(s),

Fe(s ′) = F ′
e, where F ′

e = 1− σ ′
e/σ

′
2, s

′ = σ ′
2/(σ

′
2 − σ ′

1). (28.13)
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The elementary bounds, that σ ′
e is positive and lies between σ ′

1 and σ ′
2, translate into the

inequalities
F ′
e ≤ 1, 0 ≤ s ′F ′

e ≤ 1. (28.14)

Let us define F(F ′
e, s

′) as the set of all functions Fe(s) satisfying Fe(s ′) = F ′
e that can

be expressed in the form (28.2) for some positive measure dµ. Our objective is to find a
fractional linear transformation T̃ such that T̃ provides a one-to-one correspondence between
functions Fe(s) in F(F ′

e, s
′) and functions F̃e(s) = T̃ Fe(s) in F .

Here we follow the analysis of Bergman (1993) and consider the transformation

F̃e(s) = T̃ Fe(s) =
[
1− (1− s ′/s)F ′

e

[F ′
e − Fe(s)]

]
1
β
, (28.15)

where the factor 1/β with

β = (1− s ′F ′
e)/(1− F ′

e) = 1− (s ′ − 1)F ′
e/(1− F ′

e) (28.16)

has been introduced to ensure that the inequality F̃e(1) ≤ 1 holds if and only if Fe(1) ≤ 1.
The inequalities (28.14) clearly ensure the positivity of β. Also, the positivity of s ′F ′

e implies
that F ′

e > 0 when s ′ > 1 and that F ′
e < 0 when s ′ < 0, that is, that (s ′−1)F ′

e is positive. Thus
β lies between 0 and 1.

The transformation (28.15) looks quite cumbersome, but it is simply a fractional linear
transformation of Fe(s). Also, as expected, the transformation T̃ reduces to T1 defined by
(28.4), in the limit as s ′ approaches infinity and Fe(s ′) approaches µ0/s ′. This reflects the
fact that knowledge of the zeroth moment µ0 is equivalent to knowledge of Fe(s ′) in the
asymptotic limit as s ′ approaches infinity.

Our first objective is to show that F̃e(s) ∈ F whenever Fe(s) ∈ F(F ′
e, s

′). Since Fe(s) can
be approximated arbitrarily closely by a rational function in F(F ′

e, s
′), it suffices to examine

the action of T̃ on rational functions Fe(s) of the form

Fe(s) =
m∑

α=1

Bα
s − sα ,

where

Fe(s ′) =
m∑

α=1

Bα
s′ − sα = F ′

e, Fe(1) =
m∑

α=1

Bα
1− sα ≤ 1, sα ∈ [0, 1), Bα ≥ 0 ∀ α.

Now, assuming that at least one residue Bα is nonzero, Fe(s) is real only when s is real because
Im[Fe(s)] > 0 when Im[s] > 0 and Im[Fe(s)] < 0 when Im[s] < 0. Also, Fe(s) for real s is a
strictly monotonic decreasing function of s except at the poles sα of Fe(s). Hence Fe(s) takes
the value F ′

e only at s
′ and at m − 1 selected points s̃α , α = 1, 2, . . . ,m − 1 in the interval

(0, 1) interlaced between the m poles of Fe(s).
It follows that the only poles of the rational function F̃e(s) are at these points s̃α and

possibly at s = 0, but not at s = s ′. In the neighborhood of any one of these points s̃α we have

Fe(s) ≈ F ′
e − Aα(s − s̃α), F̃e(s) ≈ B̃α

s − s̃α , where B̃α = (s ′ − s̃α)F ′
e

Aα s̃αβ
.

The monotonicity of Fe(s) implies that Aα > 0 and the positivity of s ′F ′
e implies that F

′
e > 0

when s ′ > 1 and that F ′
e < 0 when s ′ < 0, that is, that (s ′ − s̃α)F ′

e is positive. It follows that
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the function F̃e(s) has positive residues B̃α > 0 at the poles s̃α . If s = 0 is not a pole of Fe(s),
that is, Fe(0) is finite, then s = 0 will be pole of F̃e(s). Specifically in the neighborhood of
s = 0 we have

F̃e(s) ≈ B̃0

s
, where B̃0 = F ′

es
′

[F ′
e − Fe(0)]β

.

The monotonicity of Fe(s) implies the positivity of F ′
e − Fe(0) and with (28.14) implies the

positivity of the residue B̃0. If s = 0 is a pole of Fe(s), then F̃e(s) will be analytic at s = 0.
It is clear from these arguments that all of the poles of F̃e(s) lie in the interval [0, 1) and

have positive residues. To check that F̃e(1) ≤ 1 we examine the formula

F̃e(1) = 1− (s′ − 1)F ′
e(1− Fe(1))

(Fe(1)− F ′
e)(1− s ′F ′

e)

giving F̃e(1). Monotonicity implies the positivity of Fe(1) − F ′
e. The elementary bounds

(28.14) imply the positivity of 1− s ′F ′
e. Since 1− Fe(1) and (s ′ − 1)F ′

e are also positive, we
conclude that F̃e(1) ≤ 1. This establishes that F̃e(s) ∈ F .

Conversely, let us suppose that we are given any function F̃e(s) in F and real values of s ′

and F ′
e, with s

′ �∈ [0, 1] and F ′
e satisfying (28.14). Applying the inverse transformation T̃

−1

to F̃e(s) yields the function

Fe(s) = T̃−1 F̃e(s) = F ′
e −

(1− s ′/s)F ′
e

1− β F̃e(s)
, (28.17)

where the factor β given by (28.16) lies between zero and one. Our objective is to show that
this function lies in F(F ′

e, s
′) whenever F̃e(s) lies in F . Again it suffices to consider the

action of T̃−1 on rational functions F̃e(s). Clearly Fe(s) takes the value F ′
e at s = s ′. The

poles of Fe(s) are at those points s = sα where F̃e(s) = 1/β and possibly at s = 0. Since
1/β > 1 and F̃e(s) ≤ 1 for all s outside the interval [0, 1), it follows that these poles all lie
in the interval [0, 1). It is also easy to check that the monotonicity of F̃e(s) implies that these
poles have positive residues. From the formula

Fe(1) = 1− (1− s ′F ′
e)(1− F̃e(1))

(1− F ′
e)(1− β F̃e(1))

,

and the positivity of the various factors appearing in it, we deduce that Fe(1) ≤ 1. This
establishes that Fe(s) ∈ F(F ′

e, s
′) and completes the proof that T̃ provides a one-to-one

correspondence between functions in F(F ′
e, s

′) and functions in F .
To obtain bounds on Fe(s) that incorporate the known function value Fe(s ′) = F ′

e, we
first find the appropriate bounds on F̃e(s) and then substitute these bounds into the formula
(28.17) for Fe(s) in terms of F̃e(s). For example, when s is real with s �∈ [0, 1] we know that
F̃e ∈ [0, 1/s], and this implies that

Fe ∈ [s ′F ′
e/s, F

′
e(s

′ − 1)/(s − 1+ F ′
e(s

′ − s))]. (28.18)

Upon making the substitutions

Fe = 1− σe/σ2, s = σ2/(σ2 − σ1), F ′
e = 1− σ ′

e/σ
′
2, s

′ = σ ′
2/(σ

′
2 − σ ′

1), (28.19)

into (28.18) we recover the bounds V0,1 and U0,1 given by (27.16).
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When we have knowledge of the function Fe(s) at two real points s = s(1) �∈ [0, 1] and
s = s(2) �∈ [0, 1] then we introduce the functions

F̃ (1)
e (s) = T̃1Fe(s)

[
1− (1− s(1)/s)Fe(s(1))

[Fe(s(1))− Fe(s)]
]

1
β(1) ,

F̃ (2)
e (s) = T̃2 F̃ (1)

e (s) = T̃2T̃1Fe(s) =
[
1− (1− s(2)/s)F̃ (1)

e (s(2))

[F̃ (1)
e (s(2))− F̃ (1)

e (s)]

]
1

β(2) ,

where

β(1) = [1− s(1)Fe(s(1))]/[1− Fe(s(1))], β(2) = [1− s(2) F̃ (1)
e (s(2))]/[1− F̃ (1)

e (s(2))].

These relations can then be used to express Fe(s) as a continued fraction involving F̃ (2)
e (s):

Fe(s) = Fe(s(1))− (1− s(1)/s)Fe(s(1))

1− β(1) F̃ (1)
e (s(2))+ (1− s(1)/s)β(1) F̃ (1)

e (s(2))

1− β(2) F̃ (2)
e (s)

. (28.20)

The problem of bounding Fe(s) is then reduced to the problem of bounding the function
F̃ (2)
e (s) ∈ F . For example, when s is real and s �∈ [0, 1] we have F̃ (2)

e (s) ∈ [0, 1/s]. The
associated bounds on Fe(s) implied by (28.20) when expressed in terms of σe, σ1, and σ2 re-
duce to the bounds V0,2 andU0,2. Of course if we have knowledge of a set of series expansion
coefficients and knowledge of a set of function values, then we use transformations like T1

and T2 to first eliminate the known series expansion coefficients from consideration, and then
we use transformations like T̃1 and T̃2 to successively eliminate the known function values
from consideration. Elementary bounds applied to the resulting function when mapped back
give the desired bounds on the original function Fe(s).

When Fe(s) is known at a complex value of s, say, s = s (1), then we immediately know
Fe(s) at the complex conjugate value of s:

Fe(s(2)) = Fe(s(1)) for s(2) = s(1),
where the bar denotes complex conjugation. Thus knowing Fe(s) at a complex value of s is
equivalent to knowing the function at two points. If we apply the single transformation T̃1 to
Fe(s), then the resulting function F̃ (1)

e (s) does not lie in F . In particular, F̃ (1)
e (s) is not real

when s is real and greater than 1. However, Bergman (1993) has shown that if we apply the
combined transformation T̃2T̃1 to Fe(s), then the resulting function F̃ (2)

e (s) does lie in F . The
transformation T̃2T̃1 provides a one-to-one correspondence between functions in F having
a given value at a complex value of s and functions in F with no constraints. Using such
transformations one can recover the bounds (Milton 1981) discussed in the previous chapter,
which incorporate information about the function Fe(s) at an arbitrary number of complex
values of s.

28.3. An alternative approach that treats the components on a
symmetric basis

The preceding analysis, while it yields the bounds, does not treat the component conductivities
σ1 and σ2 in a symmetric way. Fractional linear transformations that treat the components in
a symmetric way were introduced by Milton and Golden (1985). From the definition (28.1)
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of the function Fe, we see that σ1 is singled out to play a special role. Yet, a quick inspection
of formulas like (27.5), (27.7), and (27.16) shows that the boundsU J,K and VJ,K , with J + K
being odd, show no intrinsic bias between the phases. This suggests that there might be
some transformation of the conductivity function σe(σ1, σ2) to a new function σ (1)

e (σ1, σ2)

that treats the phases on a symmetric basis, preserves the basic analytic properties of the
function, and eliminates some of the constraints imposed by the knowledge of a set of series
expansion coefficients and by the knowledge of a set of function values. This transformation
will then provide a correspondence between the bounds associated with σe(σ1, σ2) and the
bounds associated with σ (1)

e (σ1, σ2).
From the previous chapter we know that there is a fundamental topological difference be-

tween those functions of type I and type II, which correspond to the bounds U J,K and VJ,K
with J + K being odd, and the those functions of type III and type IV, which correspond to
the bounds UJ,K and VJ,K with J + K being even. Therefore, if we are to treat the com-
ponent conductivities in a symmetric way, it makes sense to first look for transformations of
σe(σ1, σ2) that eliminate an even number of constraints.

Let us focus on the case where we know only the expansion coefficients r0 = 1, r1, and
r2 in the series (27.3). A natural idea is to try to express the relation (28.12) between Fe and
F (2)
e in a form that displays the desired symmetry. By making the substitutions

Fe = 1− σe/σ2, s = σ2/(σ2 − σ1), F (2)
e = 1− σ (1)

e /σ2,

where the last identity serves to define σ (1)
e , we see after some straightforward algebraic ma-

nipulation that the relation (28.12) reduces to

σe = w1σ1 +w2σ2 − w1w2(σ1 − σ2)
2

w2σ1 +w1σ2 + nσ (1)
e

, (28.21)

where we have introduced the weights

w1 = µ0 = r1, w2 = 1− µ0 = 1− r1,

and the normalization factor
n = (1− µ

(1)
0 )/µ

(1)
0 .

In composites, w1 and w2 can be identified with the volume fractions f1 and f2. These
parameters satisfy the constraints

w1 +w2 = 1, w1 ≥ 0, w2 ≥ 0, n ≥ 0.

The relation (28.21) can be inverted to express σ (1)
e in terms of σe:

σ (1)
e (σ1, σ2) = 1

n

[
−w2σ1 −w1σ2 + w1w2(σ1 − σ2)

2

w1σ1 +w2σ2 − σe(σ1, σ2)

]
,

and this can be regarded as the product of two transformations: a Y -transformation, which
when applied to σe(σ1, σ2) yields the function

yσ (σ1, σ2) = Y [σe(σ1, σ2)] = −w2σ1 − w1σ2 + w1w2(σ1 − σ2)
2

w1σ1 +w2σ2 − σe(σ1, σ2)

= σ1σ2(σe − σh)

σh(σa − σe)
, (28.22)
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where
σa = w1σ1 +w2σ2 and σh = [w1/σ1 +w2/σ2]−1,

and a normalization transformation N , which when applied to yσ (σ1, σ2) yields the function

σ (1)
e (σ1, σ2) = N[yσ (σ1, σ2)] = yσ (σ1, σ2)/n. (28.23)

Now let S denote the set of functions σe(σ1, σ2) that are analytic functions of σ1 and
σ2, except possibly when σ1/σ2 is real and nonpositive, and which satisfy the homogeneity
property

σe(cσ1, cσ2) = cσe(σ1, σ2),

the Herglotz property

Im(σe(σ1, σ2)) > 0 when Im(σ1) > 0 and Im(σ2) > 0,

and the normalization property
σe(1, 1) = 1.

Also let S(r1) denote the subset of those functions in S that have the series expansion co-
efficient r1 and let S(r1, r2) denote the subset of those functions in S that have the series
expansion coefficients r1 and r2.

We could use the fact that T2T1 provides a one-to-one correspondence between functions
in F(µ1, µ2) and functions in F to establish that NY provides a one-to-one correspondence
between functions in S(r1, r2) and functions in S. There is however a more direct proof based
on our knowledge of the bounds on σe when σ1 and σ2 are complex and both r0 = 1 and
r1 = w1 are given (Milton 1991). As established in the previous chapter, we know that σe is
confined to the lens-shaped region �′ in the complex plane bounded by the two circular arcs
joining σa and σh that when extended pass through σ1 and σ2, respectively. Now let Y denote
the set of functions yσ (σ1, σ2) that are analytic functions of σ1 and σ2, except possibly when
σ1/σ2 is real and nonpositive, and which satisfy the homogeneity property

yσ (cσ1, cσ2) = cyσ (σ1, σ2), (28.24)

and the Herglotz property

Im(yσ (σ1, σ2)) > 0 when Im(σ1) > 0 and Im(σ2) > 0.

These properties imply, through (18.7), that yσ is confined to the convex wedge W in the
complex plane, bounded on one side by the ray from the origin that passes through σ1 and on
the other side by the ray from the origin that passes through σ2.

The Y -transformation has the property that it maps �′ to W , as illustrated in figure 28.1
on the facing page. Indeed, it is a fractional linear transformation of σe and therefore maps
circular arcs to circular arcs or straight lines. So to find the image under Y of the circular arc
that joins σa and σh and when extended passes through σ1 it suffices to find the image under
Y of the three points σa , σh , and σ1. Since these map to yσ = ∞, yσ = 0 and yσ = −σ1, Y
clearly maps this circular arc to the ray from the origin that passes through σ1. Similarly, Y
maps the other circular arc to the ray from the origin passing through σ2. This establishes that
Y maps �′ to W .

An elementary consequence of this result is that if σe(σ1, σ2) ∈ S(w1), then Y [σe(σ1, σ2)]
necessarily satisfies the Herglotz property, since if σ1 and σ2 are in the upper half of the
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Figure 28.1. When the first-order series expansion coefficient w1 = 1 − w2 is known, σe is
confined to the lens-shaped region �′. The Y -transformation given by (28.22) maps �′ onto
the wedge W and thus preserves the basic analytic properties of the function. The parameter
yσ = Y (σe) is confined to the wedgeW and therefore has a nonnegative imaginary part. After
Milton (1991).

complex plane, so too is W . It is also immediately apparent from (28.22) that Y [σe(σ1, σ2)]
satisfies the homogeneity property.

Conversely, if yσ (σ1, σ2) ∈ Y , then

σe(σ1, σ2) = Y−1[yσ (σ1, σ2)] = w1σ1 +w2σ2 − w1w2(σ1 − σ2)
2

w2σ1 +w1σ2 + yσ (σ1, σ2)
(28.25)

necessarily satisfies the Herglotz property, since if σ1 and σ2 are in the upper half of the
complex plane, so to is �′ since it is contained in W . It is also immediately apparent that
σe(σ1, σ2) defined by (28.25) satisfies the homogeneity and normalization properties.

This establishes that Y provides a one-to-one correspondence between functions in S(r1)

and functions in Y . Now let Y(n) denote those functions yσ (σ1, σ2) in Y satisfying the nor-
malization yσ (1, 1) = n. By substituting the series expansion (27.3) for σe(σ1, 1) into (28.22)
and recalling that w1 = r1, we see that yσ (σ1, 1) has the expansion

yσ = −
[
r1(1− r1)

r2
+ 1
]
+
[
r1(1− r1)r3

r2
2

− r2

]
(σ1 − 1)+ · · ·

in powers of σ1−1. It follows that Y provides a one-to-one correspondence between functions
in S(r1, r2) and functions in Y(n) with

n = −
[
r1(1− r1)

r2
+ 1
]
.
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Since the sets of functions Y(n) and S differ only in their normalization, it is immediately
clear that N provides a one-to-one correspondence between functions inY(n) and functions in
S. This completes the proof that NY provides a one-to-one correspondence between functions
in S(r1, r2) and functions in S.

28.4. The extension of the fractional linear transformations to
matrix-valued analytic functions

The analytic properties of Y -transformations and normalization transformations N for matrix-
valued analytic functions were considered by Clark and Milton (1933). Their analysis was re-
stricted to two-dimensional, two-phase conducting composites where the matrix-valued con-
ductivity function σ∗(σ1, σ2) satisfies the additional phase interchange analytic constraint,
(3.9), which fortunately turns out be preserved by the transformation NY . They also in-
troduced transformations Ỹ that, like the transformations T̃ given by (28.15), were useful for
eliminating known values of the function. These transformations were particularly well-suited
to generating optimal bounds coupling an arbitrary number of effective conductivity tensors
(at different conductivity ratios) of two-phase, two-dimensional conducting composites. In
particular, they recovered the optimal cross-property bounds coupling the effective electri-
cal permittivity and magnetic permeability tensors that Cherkaev and Gibiansky (1992) had
obtained using the translation method.

Here we generalize this approach for eliminating known series expansion coefficients of
matrix-valued conductivity functions, allowing for functions that do not necessarily satisfy the
phase interchange constraint (3.9). Therefore the ensuing analysis applies to the conductivity
functions σ∗(σ1, σ2) of both three- and two-dimensional composites. We will see that the
relation (28.22) between yσ (σ1, σ2) and σe(σ1, σ2) has a natural generalization to matrix-
valued analytic functions. Let Y denote those matrix-valued functions Y ∗(σ1, σ2) that are
analytic, except when σ1/σ2 is real and nonpositive, which satisfy the homogeneity property

Y ∗(cσ1, cσ2) = cY ∗(σ1, σ2),

and which satisfy the Herglotz property

Im(Y ∗(σ1, σ2)) > 0 when Im(σ1) > 0 and Im(σ2) > 0. (28.26)

We now let S denote those functions σ∗(σ1, σ2) in Y that in addition satisfy the normal-
ization property

σ∗(1, 1) = 1,

and we let S(R1) denote those functions in S that have the series expansion coefficient R1
and we let S(R1,R2) denote those functions in S that have the series expansion coefficients
R1 andR2, where

R1 = dσ∗(σ1, 1)
dσ1

∣∣∣∣
σ1=1

, R2 = 1
2
d2σ∗(σ1, 1)

dσ 2
1

∣∣∣∣
σ1=1

.

The form of the relation (28.22) suggests that its analog for matrix-valued functions should
be the Y -transformation:

Y ∗(σ1, σ2) = Y (σ∗(σ1, σ2))

= −W 2σ1 − W 1σ2 + (σ1 − σ2)
2(W 1W 2)

1/2[W 1σ1 +W 2σ2 − σ∗(σ1, σ2)]−1(W 1W 2)
1/2,

(28.27)
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whereW 1 andW 2 are the commuting weight matrices

W 1 = R1, W 2 = I −R1.

We will see that these matrices are necessarily positive-semidefinite. This ensures that the
matrix (W 1W 2)

1/2 appearing in (28.27) is real.
To prove that Y provides a one-to-one correspondence between functions in S(W 1) and

functions in Y it is helpful to set σ2 = 1 and to consider the analytic properties of

F ∗ = I − σ∗, S∗ = F −1
∗ = (I − σ∗)−1, and S0 = (I + Y ∗)−1

as a function of the variable s = 1/(1 − σ1). The fractional linear relation (28.27) between
Y ∗ and σ∗ reduces to a simple linear relation between S∗ and S0:

(W 1)
1/2S∗(W 1)

1/2 + (W 2)
1/2S0(W 2)

1/2 = sI, (28.28)

as can be seen by rewriting (28.27) in the form

(W 2)
−1/2S−1

0 (W 2)
−1/2 = s−1I − s−1[I − s(W 1)

−1/2S−1
0 (W 1)

−1/2]−1, (28.29)

taking the matrix inverse of both sides of this equation and applying the matrix identity

I − (I −A)−1 = (I −A−1)−1,

which holds for any matrixA and in particular forA = s(W 1)
−1/2S−1

0 (W 1)
−1/2.

Suppose that we are given a function σ∗(σ1, σ2) in S(W 1). From the analytic properties
of this function it follows that F ∗ has an integral representation

F ∗ =
∫ 1

0

dµ(y)
s − y , (28.30)

in terms of a matrix-valued measure dµ(y) that is positive-semidefinite for all y ∈ [0, 1].
From the constraint that σ∗(0, 1) ≥ 0 we deduce that F ∗(1) ≤ I or, equivalently, that

I ≥
∫ 1

0

dµ(y)
1− y . (28.31)

From the series expansion for (28.30) in powers of 1/s we deduce that

W 1 =
∫ 1

0
dµ(y).

This implies thatW 1 is a positive-semidefinite matrix. By substituting the inequality 1/(1−
y) ≥ 1 into (28.31) we deduce thatW 2 = I−W 1 is likewise a positive-semidefinite matrix.

From the integral representation (28.30) we see that F ∗ is nonzero for all s > 1 and for
all s < 1. From the expansion of S∗ in powers of 1/s,

S∗ = sW−1
1 −C + · · · , whereC =

∫ 1

0
W−1

1 ydµ(y)W −1
1 ,

we see that S∗(s) has a pole at s = ∞. Its remaining singularities must be confined to the
interval [0, 1]. An application of the Cauchy integral formula gives an integral representation
for S∗(s):

S∗ = sW 1
−1 −C +

∫ 1

0

dφ(z)
z − s
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in terms of a matrix-valued measure dφ(z). This measure is positive-semidefinite for all z
because if Im(s) is positive (negative), then ImF e is negative-definite (positive-definite), and
in this in turn implies that ImS∗ is positive-definite (negative-definite). By substituting this
integral representation into (28.28) we see that S0 has the integral representation

S0 =W 2
−1/2W 1

1/2
[
C +

∫ 1

0

dφ(z)
s − z

]
W 1

1/2W 2
−1/2, (28.32)

from which it is evident that Im(S0) = Im[(I + Y ∗)−1] is negative-definite when Im(s) =
Im[1/(1 − σ1)] > 0 and positive-definite when Im[1/(1 − σ1)] < 0. We conclude that
Im[Y ∗(σ1, 1)] is positive-definite when Im(σ1) > 0 and negative-definite when Im(σ1) < 0.

The homogeneity of the function Y ∗(σ1, σ2) [which is evident from (28.27)] allows us to
state a stronger result:

Im[σ−1
2 Y ∗(σ1, σ2)] > 0 (< 0) when Im(σ1/σ2) > 0 (< 0). (28.33)

Similarly, by interchanging the roles of the two phases, we see that

Im[σ−1
1 Y ∗(σ1, σ2)] > 0 (< 0) when Im(σ2/σ1) > 0 (< 0). (28.34)

To prove that Y ∗(σ1, σ2) satisfies the Herglotz property (28.26), let us suppose that we
are given two conductivities:

σ1 = |σ1|eiθ1, σ2 = |σ2|eiθ2 with π > θ1 ≥ θ2 > 0.

The results (28.33) and (28.34) imply that

Im[Y ∗(σ1, σ2)] cos θ2 − Re[Y ∗(σ1, σ2)] sin θ2 > 0,
− Im[Y ∗(σ1, σ2)] cos θ1 + Re[Y ∗(σ1, σ2)] sin θ1 > 0. (28.35)

Multiplying the first equation by sin θ1 > 0 and the second by sin θ2 > 0 and adding them
gives

sin(θ1 − θ2) Im[Y ∗(σ1, σ2)] > 0, (28.36)

which implies that Im[Y ∗(σ1, σ2)] > 0, because θ1 − θ2 ∈ [0, π). This proof also goes
through with θ2 ≥ θ1, but with the sign of the inequalities reversed in (28.35) and (28.36).

From (28.32) and the positivity of the matrixC it is also evident thatS0 is positive-definite
when s is real and greater than 1. Hence Y ∗(σ1, 1) is nonsingular for all real σ1 ∈ (0, 1]. By
interchanging the roles of the phases we see that Y ∗(1, σ2) must be nonsingular for all real
σ2 ∈ (0, 1]. Homogeneity then implies that Y ∗(σ1, 1) = σ1Y ∗(1, σ−1

1 ) is nonsingular for
all σ1 > 0. Hence Y ∗(σ1, σ2) is analytic except when σ1/σ2 is real and nonpositive. In con-
clusion, Y ∗(σ1, σ2) given by (28.27) is in the set of functions Y and so the Y transformation
given by (28.27) provides a one-to-one correspondence between matrix-valued functions in
S(R1) and matrix-valued functions in Y .

If the series expansion coefficient R2 is known, then it follows that the value of the nor-
malization matrix

N = Y ∗(1, 1) =W 1W 2
1/2R−1

2 W 1W 2
1/2 − I

is also known. Now let Y(N ) denote the set of functions in Y that satisfy Y ∗(1, 1) = N ,
whereN is assumed to be nonsingular. It follows immediately that Y provides a one-to-one



References 617

correspondence between matrix-valued functions in S(R1,R2) and matrix-valued functions
in Y(N ). The matrix-valued analog N of the normalization transformation (28.23) is simply

σ(1)
∗ = N[Y ∗(σ1, σ2)] =N−1/2Y ∗(σ1, σ2)N

−1/2,

and it is clear that this transformation N provides a one-to-one correspondence between
matrix-valued functions in Y(N ) and matrix-valued functions in S. We conclude that NY
provides a one-to-one correspondence between matrix-valued functions in S(R1,R2) and
matrix-valued functions in S. Therefore elementary bounds on the functions in S will gener-
ate bounds on the functions in S(R1,R2).
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29
The field equation recursion method†

The fractional linear transformations provide mappings between analytic functions satisfying
the homogeneity and Herglotz properties. The field equation recursion method provides map-
pings at a deeper level, namely, at the level of the underlying Hilbert space. The field equation
recursion method has two advantages over the analytic method: First, it has a natural gener-
alization to multiphase composites, and, second, the method provides matrix representations
for the relevant operators. Also, with the introduction of additional fields and operators, the
method allows one to incorporate the differential constraints on the fields in a direct fashion.

The original papers (Milton 1987a, 1987b) describing the field equation recursion method
are difficult to read, but fortunately many of the arguments have since been simplified. It is
hoped that the presentation given here will convey the main ideas; see also Milton (1991),
where a brief summary is given. We will focus on two-phase composites, since the analysis is
simpler and one can immediately see the connection with the analytic method. Another simple
case that we could have discussed is the conductivity of a two-dimensional polycrystal, where
Clark (1997) has shown that the field equation recursion method leads to an elegant continued
fraction expansion of the effective conductivity tensor as a function of the crystal conductivity.

29.1. Associations between operations on analytic functions and
operations on subspace collections

The main idea behind the field equation recursion method is that there is some sort of corres-
pondence between operations on m ×m matrix-valued analytic functions L∗(λ1, λ2, . . . , λn)

satisfying the homogeneity, Herglotz, and normalization properties and operations on what
we will call (3, n)-subspace collections comprised of sets (U, E,J ) and (P1,P2, . . . ,Pn) of
mutually orthogonal subspaces that span the same Hilbert spaceH:

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn,

where U ism-dimensional. Given a (3, n)-subspace collection and given an orthonormal basis
of U , the effective tensor [see (12.59)]

L∗(λ1, λ2, . . . , λn) = Γ0[(Γ0 + Γ2)(

n∑
i=1

Λi/λi )(Γ0 + Γ2)]−1Γ0,

represented in a basis u1,u2, . . . ,um of U and expressed as a function of the parameters
λ1, λ2, . . . , λn , can be taken as the corresponding analytic function, in which the inverse is

619
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to be taken on the subspace U ⊕ J . It is determined by the basis of U and, more impor-
tantly, by the orientation of the subspace set (P1,P2, . . . ,Pn) with respect to the subspace
set (U, E,J ). At present it is still an open (and interesting) question as to whether every
matrix-valued analytic functionL∗(λ1, λ2, . . . , λn) satisfying the homogeneity, Herglotz, and
normalization properties can be associated with a (3, n)-subspace collection.

The plan is to play with subspace collections rather than with analytic functions. Given a
familiar operation on matrix-valued n-variable analytic functions satisfying the homogeneity,
Herglotz, and normalization properties, one can look for the associated operation on (3, n)-
subspace collections, such that their corresponding matrix-valued analytic functions are re-
lated by the given familiar operation. Most of the following associations between operations
on analytic function and subspace collections are not needed for our subsequent analysis.
They are introduced to illustrate the connection between operations on analytic functions and
operations on subspace collections.

Suppose that L∗(λ1, λ2, . . . , λn) satisfies these properties. Then so does the function

L′
∗(λ1, λ2, . . . , λn) = [L∗(1/λ1, 1/λ2, . . . , 1/λn)]−1.

The associated operation on the subspace collection is to swap the subspaces E and J . Sim-
ilarly, swapping the subspaces Pi and P j is the operation associated with interchanging the
variables λi and λ j in the function. Replacing Pi and P j with the single subspace Pi ⊕ P j
is the operation associated with setting λi = λ j in the n-variable function to produce an
(n − 1)-variable function.

Also, given some positive integer k ≤ m and a m × k matrix Λ such that ΛTΛ = I, one
can construct the k × k matrix-valued function

L′
∗(λ1, λ2, . . . , λn) = ΛTL∗(λ1, λ2, . . . , λn)Λ, (29.1)

which satisfies the homogeneity, Herglotz, and normalization properties. The associated op-
eration on the subspace collection is as follows. Given the (3, n)-subspace collection and an
orthonormal basis u1,u2, . . . ,um for U , construct the vectors

u′
i =

m∑
j=1

* j iu j ,

and let U ′ denote the k-dimensional subspace spanned by these vectors. These new vectors
will form an orthonormal basis for U ′ because ΛTΛ = I. In the subspace collection we
replace U with U ′ and J with

J ′ = U ′
⊥ ⊕ J ,

where U ′
⊥ denotes the orthogonal complement of U ′ in the subspace U , that is, U = U ′ ⊕ U ′

⊥.
Given a field u ∈ U ′ we can look in the original subspace collection for the solution to the
field equations

J =
n∑
i=1

λiΛiE with J ∈ U ⊕ J , E ∈ U ⊕ E, Γ0E = u.

Since U ⊕J = U ′ ⊕J ′, this will also represent the solution to the field equations in the new
subspace collection. It follows that ifL∗(λ1, λ2, . . . , λn) is the effective tensor function of the
original subspace collection represented in the basis u1,u2, . . . ,um , then L′

∗(λ1, λ2, . . . , λn)
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will be the effective tensor function of the new subspace collection represented in the basis
u′

1,u
′
2, . . . ,u

′
k .

We can also consider operations on pairs of functions. If them×m matrix-valued function
L∗(λ1, λ2, . . . , λn) and the � × � matrix-valued function L′

∗(λ1, λ2, . . . , λn) both satisfy the
homogeneity, Herglotz, and normalization properties, then the (m+�)×(m+�)matrix-valued
function

L′′
∗(λ1, λ2, . . . , λn) =

(
L∗(λ1, λ2, . . . , λn) 0

0 L′
∗(λ1, λ2, . . . , λn)

)
(29.2)

clearly also satisfies the homogeneity, Herglotz, and normalization properties. The associated
operation, given a subspace collection (U, E,J ) and (P1,P2, . . . ,Pn) and a subspace collec-
tion (U ′, E ′,J ′) and (P ′

1,P ′
2, . . . ,P ′

n), is to form the subspace collection (U ′′, E ′′,J ′′) and
(P ′′

1 ,P ′′
2 , . . . ,P ′′

n ), where

U ′′ = U ⊕ U ′, E ′′ = E ⊕ E ′, J ′′ = J ⊕ J ′, P ′′
i = P ⊕ P ′ for all i.

When � = m, another operation that preserves the homogeneity, Herglotz, and normaliza-
tion properties is to take the weighted average,

L∗c(λ1, λ2, . . . , λn) = cL∗(λ1, λ2, . . . , λn)+ (1− c)L′
∗(λ1, λ2, . . . , λn),

where 0 ≤ c ≤ 1. Since the right-hand side can be identified with

ΛTL′′
∗(λ1, λ2, . . . , λn)Λ with Λ =

(
c1/2I

(1− c)1/2I

)
,

where L′′
∗(λ1, λ2, . . . , λn) is given by (29.2) and I is the m × m identity matrix, we see

that weighted averaging can be regarded as a sequence of two operations. Performing the
sequence of associated operations on the subspace collections gives the operation associated
with weighted averaging.

Another familiar operation that we can do with analytic functions is to make substitutions.
Thus if L∗(λ1, λ2, . . . , λn) is a m × m matrix-valued function satisfying the homogeneity,
Herglotz, and normalization properties and λ∗(λ′

1, λ
′
2, . . . , λ

′
p) is a scalar-valued function also

satisfying these properties, then

L′′
∗(λ

′
1, λ

′
2, . . . , λ

′
p, λ2, . . . , λn) = L∗(λ∗(λ′

1, λ
′
2, . . . , λ

′
p), λ2, . . . , λn)

will be another m ×m matrix-valued function satisfying the homogeneity, Herglotz, and nor-
malization properties. The associated operation on subspace collections is found by consider-
ing what happens in an electrical circuit when resistors within a given group (each having the
same resistance) are each replaced by a network of resistors.

Specifically, let us suppose that we are given a (3, n)-subspace collection (U, E,J )

and (P1,P2, . . . ,Pn) and a (3, p)-subspace collection (U ′, E ′,J ′) and (P ′
1,P ′

2, . . . ,P ′
n)

in which U is m-dimensional and U ′ is one-dimensional. Let L∗(λ1, λ2, . . . , λn) and
λ∗(λ′

1, λ
′
2, . . . , λ

′
p) denote the effective tensor functions associated with these subspace

collections. We take as our new (3, n + p − 1)-subspace collection, (U ′′, E ′′,J ′′) and
(P ′′

1 ,P ′′
2 , . . . ,P ′′

n+p−1), where

U ′′ = U ⊗ U ′, E ′′ = (E ⊗ U ′)⊕ (P1 ⊗ E ′), J ′′ = (J ⊗ U ′)⊕ (P1 ⊗ J ′)
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are mutually orthogonal subspaces and

P ′′
i = P1 ⊗ P ′

i for 1 ≤ i ≤ p,

= Pi+1−p ⊗ U ′ for p + 1 ≤ i ≤ n + p − 1

are mutually orthogonal subspaces. Fields in the Hilbert space

H′′ = U ′′ ⊕ E ′′ ⊕ J ′′ = (H⊗ U ′)⊕ (P1 ⊗ (E ′ ⊕ J ′))

spanned by these subspaces are represented as a pair [P , u′] added to a linear combination
of pairs of the form [P 1, P

′], where P ∈ H, u′ ∈ U ′, P 1 ∈ P1, and P ′ ∈ E ′ ⊕ J ′.
Now suppose that we are given solutions to the field equations

J =
n∑
i=1

λiΛiE with J ∈ U ⊕ J , E ∈ U ⊕ E,

J ′ =
p∑
j=1

λ′
iΛ

′
iE

′ with J ′ ∈ U ′ ⊕ J ′, E ′ ∈ U ′ ⊕ E ′,

where
λ1 = λ∗(λ′

1, λ
′
2, . . . , λ

′
p)

and Λi and Λ′
j are the projections onto Pi and P ′

j . Let us set

λ′′
i = λ′

i for 1 ≤ i ≤ p,

= λi+1−p for p + 1 ≤ i ≤ n + p − 1.

Then, in the new subspace collection, the fields

E ′′ = [E, Γ′
0E

′]+ [Λ1E, E ′ − Γ′
0E

′], J ′′ = [J , Γ′
0E

′]+ [Λ1E, J ′ − Γ′
0J

′]

solve the field equation

J ′′ =
n+p−1∑
i=1

λ′′
iΛ

′′
iE

′′ with J ′′ ∈ U ′′ ⊕ J ′′, E′′ ∈ U ′′ ⊕ E ′′,

in which

Λ′′
i = Λ1Λ′

i for 1 ≤ i ≤ p,

= Λi+1−pΓ′
0 for p + 1 ≤ i ≤ n + p − 1

is the projection onto P ′′
i . By projectingE

′′ and J ′′ onto the subspace U ′′ we obtain the fields

Γ′′
0E

′′ = [Γ0E, Γ′
0E

′], Γ′′
0J

′′ = [Γ0J, Γ′
0E

′] = [L∗(λ1, λ2, . . . , λn)Γ0E, Γ′
0E

′].

Given a basis u1,u2, . . . ,um for U and a unit vector u′ ∈ U ′ it is natural to take (u1,u
′),

(u2,u
′), . . . , (um,u′) as the basis for U ′′. With this choice of basis, and by choosing E ′ so

that Γ′
0E

′ = u′, it is evident that L∗(λ∗(λ′
1, λ

′
2, . . . , λ

′
p), λ2, . . . , λn) is the analytic function

corresponding to the effective tensor function of the new subspace collection.
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A second underlying idea is that there is some sort of correspondence between operations
on matrix-valued analytic functions Y ∗(λ1, λ2, . . . , λn) satisfying the homogeneity and Her-
glotz properties and operations on what we will call (2, n+1)-subspace collections comprised
of sets (E,J ) and (V,P1,P2, . . . ,Pn) of mutually orthogonal subspaces that span the same
Hilbert space K:

K = E ⊕ J = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn.
Given a (2, n + 1)-subspace collection and an orthonormal basis of V , the Y -tensor [see
(19.29)]

Y ∗(λ1, λ2, . . . , λn) = Π1[Γ2(

n∑
i=1

Λi/λi )Γ2]−1Π1,

represented in a basis v1,v2, . . . ,vm of V and expressed as a function of the λ1, λ2, . . . , λn ,
can be taken as the corresponding analytic function, in which the inverse is to be taken on the
subspace J . Again given a familiar operation on matrix-valued, n-variable analytic functions
satisfying the homogeneity and Herglotz properties one can look for the associated opera-
tion on (2, n + 1)-subspace collections, such that their corresponding matrix-valued analytic
functions are related by the given familiar operation.

For example, suppose that Y ∗(λ1, λ2, . . . , λn) satisfies these properties. Then so does the
function

Y ′
∗(λ

′
1, λ

′
2, . . . , λ

′
n) = Y ∗(cλ′

1, λ
′
2, . . . , λ

′
n), (29.3)

for any positive real choice of the constant c. The associated operation on the (2, n + 1)-
subspace collection (E,J ) and (V,P1,P2, . . . ,Pn) is a reference transformation. We intro-
duce the linear transformations

ψ+(P ) = (I −Λ1)P + c1/2Λ1P , ψ−(P ) = (I −Λ1)P + c−1/2Λ1P

on fields P ∈ K, whereΛ1 is the projection onto P1. This definition ensures that, for any two
fields P 1 and P 2 in K, the inner product of ψ+(P 1) with ψ−(P 2) is the same as the inner
product of P 1 and P 2, that is,

(ψ+(P 1), ψ
−(P 2)) = (P 1,P 2).

Consequently the spaces
E ′ = ψ+(E) and J ′ = ψ−(J )

are orthogonal because the spaces E and J are orthogonal.
Let (E ′,J ′) and (V,P1,P2, . . . ,Pn) be our new subspace collection. Given a solution to

the equations

E ∈ E, J ∈ J , (I −Π1)J =
n∑
i=1

λiΛiE

in the original subspace collection, in which Π1 is the projection onto V , the fields E ′ =
ψ+(E) and J ′ = ψ−(J) will be a solution to the equations

E ′ ∈ E ′, J ′ ∈ J ′, (I −Π1)J
′ =

n∑
i=1

λ′
iΛiE

′

in the new subspace collection with

λ′
1 = λ1/c, and λ′

i = λi for all i ≥ 2.
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Since Π1E
′ = Π1E and Π1E

′ = Π1E, it follows that Y -tensor functions of the two sub-
space collections are related by (29.3), as desired.

It remains an open question as to whether every analytic m × m matrix-valued function
Y ∗(λ1, λ2, . . . , λn) satisfying the homogeneity and Herglotz properties can be associated with
a given (2, n + 1)-subspace collection.

29.2. Hints of a deeper connection between analytic functions and
subspace collections

Given that there are these associations between operations on analytic functions and opera-
tions on (3, n)-subspace collections, one might wonder if there might be a one-to-one corre-
spondence between matrix-valued analytic functionsL∗(λ1, λ2, . . . , λn) satisfying the homo-
geneity, Herglotz, and normalization properties and (3, n)-subspace collections. Of particular
importance is the question of whether one can uniquely recover the relative orientations of the
subspaces from knowledge of the effective tensor functionL∗(λ1, λ2, . . . , λn). This would al-
low one to recover matrices representing the operators Γ0, Γ1, Γ2 andΛ1,Λ2, . . . ,Λn , which
could subsequently be used to solve coupled field equations.

At present this is still an open (and interesting) question. To provide some evidence, via
a counting argument, that one might be able to recover this information, let us consider a
(3, 3)-subspace collection (U, E,J ) and (P1,P2,P3) of finite-dimensional subspaces, where
U is one-dimensional, and let λ∗(λ1, λ2, λ3) denote the corresponding scalar-valued rational
function representing the effective parameter. Let p1, p2, and p3 represent the dimensions of
P1,P2, and P3, and let q1 and q2 represent the dimensions of E and J . The total dimension
of the Hilbert space is therefore

h = p1 + p2 + p3 = 1+ q1 + q2.

Let us also assume thatH is the smallest space containing U that is closed under the action
of Γ1, Λ1, and Λ2. [If it is not, then we should redefine H as this space because it is only
those fields arising from products of the operators Γ1, Λ1, and Λ2 applied to fields in U that
have a role in determining λ∗(λ1, λ2, λ3).] Now consider the subspace

[Λ1(U ⊕ E)]⊕ [Λ2(U ⊕ E)]⊕ [Λ3(U ⊕ E)].

This clearly contains U and is closed under the action of Λ1, Λ2, and Γ1 (because it contains
E). It therefore must be H and Λi(U ⊕ E), which has dimension of at most 1 + q1, must be
Pi for i = 1, 2, 3. Therefore we have the inequalities

p1 ≤ 1+ q1, p2 ≤ 1+ q1, p3 ≤ 1+ q1,

and by summing these we deduce that

q2 ≤ 2(1+ q1).

Similarly, by considering the subspace

[Λ1(U ⊕ J )]⊕ [Λ2(U ⊕ J )]⊕ [Λ3(U ⊕ J )],

which can also be identified withH, we arrive at the inequalities

p1 ≤ 1+ q2, p2 ≤ 1+ q2, p3 ≤ 1+ q2, q1 ≤ 2(1+ q2).
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Now let us pick some orthonormal basis for the subspace U ⊕ J ; let Ai for i = 1, 2, 3
denote the (1+q2)×(1+q2) symmetric matrix representing the operator (Γ0+Γ2)Λi (Γ0+Γ2);
and let u, with u · u = 1, represent the field that spans U . Since the basis is orthonormal, we
have

A1 +A2 +A3 = I, (29.4)

and because Λi(U ⊕ J ) can be identified with Pi , each matrix Ai must have rank pi . The
formula for the effective parameter implies that

λ∗(λ1, λ2, λ3) = u · [A1/λ1 +A2/λ2 +A3/λ3]−1u.

Thus if we express λ∗(λ1, λ2, λ3) as a function of 1/λ1, 1/λ2, and 1/λ3, then the denominator
of this function can be identified (to within a constant factor) with the polynomial

det[A1/λ1 +A2/λ2 +A3/λ3] =
∑
a,b,c

αabc/λ
a
1λ
b
2λ
c
3, (29.5)

where the sum extends over all integers a, b, and c, with

a + b + c = 1+ q2, 0 ≤ a ≤ p1, 0 ≤ b ≤ p2, 0 ≤ c ≤ p3.

If we know λ∗(λ1, λ2, λ3), then we should be able to determine this polynomial. From the
degree of the polynomial we recover the subspace dimension q2, and from the maximum
powers of 1/λ1, 1/λ2, and 1/λ3 we recover the subspace dimensions p1, p2, and p3. This
allows us to also determine q1 = p1+ p2+ p3− 1− q2. Thus all of the subspace dimensions
can be recovered from the function λ∗(λ1, λ2, λ3).

The matricesA1,A2, andA3 determine the orientation of the subspace U⊕J with respect
to the three subspaces P1, P2, and P3. Can we recover these, modulo changes of basis, from
the polynomial (29.5)? Each coefficient of the polynomial is a function of the elements of
these matrices and provides us with a nonlinear equation for these matrix elements. Howmany
coefficients are there? Without loss of generality let us suppose that the spaces P1, P2, and
P3 have been labeled so that p1 ≥ p2 ≥ p3. With a fixed in the regime 0 ≤ a < 1+ q2 − p2,
the constant b can take integer values from b = 1+ q2 − a − p3 to b = p2, that is, a total of
p2+ p3+ a− q2 different values. With a fixed in the regime 1+ q2− p2 ≤ a < 1+ q2− p3,
the constant b can take integer values from b = 1+ q2 − a − p3 to b = 1+ q2 − a, that is, a
total of p3+ 1 different values. Finally, with a fixed in the regime 1+ q2− p3 ≤ a ≤ p1, the
constant b can take integer values from b = 0 to b = 1+ q2 − a, that is, a total of 2+ q2 − a
different values. Therefore the total number of coefficients in the polynomial is

q2−p2∑
a=0

(p2 + p3 + a − q2)+
q2−p3∑

a=1+q2−p2

(p3 + 1)+
p1∑

a=1+q2−p3

(2+ q2 − a) = k + 1,

where
k = [2(1+ q2)q1 − p2

1 − p2
2 − p2

3 + h]/2.
These coefficients are not all independent. Since the value of the determinant is 1 when

λ1 = λ2 = λ3 = 1, we have the relation∑
a,b,c

αabc = 1.

Thus the number of independent constraints is k.
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Now how many independent elements are there in the matricesA1,A2, andA3? A given
(1 + q2) × (1 + q2) symmetric matrix Ai of rank pi has pi(3 + 2q2 − pi)/2 independent
elements. However, the identity (29.4) provides (1 + q2)(2 + q2)/2 constraints amongst the
elements of the three matrices. Therefore the total number of independent elements is

p1(3 + 2q2 − p1)/2 + p2(3 + 2q2 − p2)/2 + p3(3 + 2q2 − p3)/2 − (1 + q2)(2 + q2)/2

= k + q2(1 + q2)/2.

We still have the freedom to change the basis of U⊕J or, equivalently, the freedom to replace
each matrix Ai with QTAiQ, where QTQ = I . Since such matrices Q have q2(1 + q2)/2
independent elements, we see that once these degrees of freedom are subtracted, there are
precisely k unknowns that determine the orientation of the subspace U ⊕ J with respect to
the three subspaces P1, P2, and P3. Since this exactly matches the number of independent
coefficients in the polynomial, one might be tempted to conjecture that knowledge of the
polynomial uniquely determines the subspace orientation. An unpublished counterexample
of Alexander Movchan and myself shows that this is not true. In general one is left with a
discrete set of possible subspace orientations. By considering the numerator of λ∗(λ1, λ2, λ3)

as a function of λ1, λ2, and λ3, one similarly obtains a discrete set of possible orientations of
the subspace U ⊕ E with respect to the three subspaces P1, P2, and P3. It is hoped that the
information gained about the orientations of the subspaces U⊕E and U⊕J , coupled with the
orthogonality of the three subspaces U , E , and J , is enough to select amongst the different
possibilities and determine uniquely the orientation of U , E , and J with respect to P1, P2,
and P3. Whether it is remains an open question.

29.3. The field equation recursion method for two-phase composites
Given that there are some associations between operations on analytic functions and subspace
collections, it seems logical to try to find the manipulations of subspace collections that are
analogous to the fractional linear transformations of analytic functions found in the previous
chapter.

Let us consider a problem where the tensor L takes the form

L = λ1Λ1 + λ2Λ2,

where λ1 and λ2 represent the eigenvalues ofL, andΛ1 andΛ2 represent projections onto the
associated eigenspaces P1 and P2, which we assume to be mutually orthogonal and to span
H:

H = U ⊕ E ⊕ J = P1 ⊕ P2.

We let L∗ represent the effective tensor associated with L. In particular, L could represent
the conductivity tensor

σ = σ1χ1I + σ2χ2I

of a two-phase composite. In this context χ1I and χ2I represent projections onto the spaces
P1 and P2, which are nonzero only inside phase 1 or 2, respectively.

In the analytic method the fundamental object is the functionL∗(λ1, λ2), while in the field
equation recursion method the fundamental object is the (3, 2)-subspace collection (U, E,J )

and (P1,P2). In the analytic method one might assume, for example, that the first derivative

W 1 = R1 = dL∗(λ1, 1)
dλ1

∣∣∣∣
λ1=1



29.3. The method for two-phase composites 627

of the function L∗(λ1, λ2) is known. Applying the Y -transformation generates a function

Y ∗(λ1, λ2) = Y [L∗(λ1, λ2)]

= −W 2λ1 −W 1λ2 + (λ1 − λ2)
2(W 1W 2)

1/2[W 1λ1 +W 2λ2 −L∗(λ1, λ2)]−1(W 1W 2)
1/2,

(29.6)

satisfying the homogeneity and Herglotz properties, in which W 2 = I −W 1. When the
second derivative

R2 = d2L∗(λ1, 1)
dλ2

1

∣∣∣∣
λ1=1

is known, then this information translates into a known value for

N = Y ∗(1, 1) = −I −W 1/2
2 W

1/2
1 R

−1
2 W

1/2
1 W

1/2
2 .

One then applies the normalization transformation to generate a function

L(1)
∗ (λ1, λ2) =N−1/2Y ∗(λ1, λ2)N

−1/2, (29.7)

satisfying the homogeneity, Herglotz, and normalization properties.
In the field equation recursion method one performs the analogous sequence of operations

on subspace collections. The first step is to generate a (2, 3)-subspace collection (E,J ) and
(V,P (1)

1 ,P (1)
2 ) that span a Hilbert space

K = E ⊕ J = V ⊕ P (1)
1 ⊕ P (1)

2 , (29.8)

Then one generates a (3, 2)-subspace collection (U (1), E (1),J (1)) and (P (1)
1 ,P (1)

2 ) that span a
Hilbert space

H(1) = U (1) ⊕ E (1) ⊕ J (1) = P (1)
1 ⊕ P (1)

2 . (29.9)

With a suitable choice of the spaces, satisfying the inclusion relations

E (1) ⊂ E, J (1) ⊂ J , P (1)
1 ⊂ P1, P (1)

2 ⊂ P2,

and with the right choice of basis, the Y -tensor function of the (2, 3)-subspace collection
turns out to be Y ∗(λ1, λ2), and the effective tensor function of the second (3, 2)-subspace
collection turns out to be L(1)

∗ (λ1, λ2). In other words, the field equation recursion method
provides an interpretation for the functions arising in the analytic method and as a direct
corollary immediately explains why these functions satisfy the homogeneity and Herglotz
properties.

Notice from (29.9) and (29.8) that

H = U ⊕K, K = V ⊕H(1),

In particular, the space K is the orthogonal complement of U in H. In a two-phase composite
K is comprised of all square integrable fields with average value zero. For such a composite
we found in chapter 19 on page 397 that it is natural to take P (1)

1 and P (2)
2 as those fields that

are nonzero only in phase 1 or phase 2, respectively, and which have average value zero, that
is, P (1)

1 and P (2)
2 are comprised of those fields in P1 and P2 that are members of K:

P (1)
1 = P1 ∩K, P (1)

2 = P2 ∩K.
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Let us take this as our definition of P (1)
1 and P (2)

2 in the general setting. Then V is the orthog-
onal complement of H(1) = P (1)

1 ⊕ P (1)
2 in the space K. In a two-phase composite this space

is comprised of those fields that have a constant value in each phase and a zero average value.
The space V can be equivalently defined as the orthogonal complement of U in the space

spanned by Λ1U and Λ2U . To justify this assertion we need to prove that

U ⊕ V = Λ1U ⊕Λ2U . (29.10)

Since
H = (U ⊕ V)⊕ (P (1)

1 ⊕ P (1)
2 ),

and since the spacesH and P (1)
1 ⊕P (1)

2 are closed under the action of the self-adjoint operator
Λ1, it follows that U ⊕ V must be closed under the action of Λ1, implying that

Λ1U ⊂ U ⊕ V .

Similarly the space Λ2U must be contained in U ⊕ V , and we conclude that

Λ1U ⊕Λ2U ⊂ U ⊕ V .

Now suppose that the sets are not equal. Then there exists some field P in U ⊕ V that is
orthogonal toΛ1U⊕Λ2U . It follows thatΛ1P is orthogonal toΛ1U⊕Λ2U and in particular
orthogonal to U . Therefore Λ1P is in K. Similarly,Λ2P is in K. Consequently we have

Λ1P ∈ P (1)
1 , Λ2P ∈ P (1)

2 , implying that P ∈ P (1)
1 ⊕ P (1)

2 .

But as U ⊕ V is orthogonal to P (1)
1 ⊕ P (1)

2 , we conclude that P is necessarily zero. This
completes the proof of (29.10)

From section 20.4 on page 418 it seems natural to take

E (1) = E ∩H(1), J (1) = J ∩H(1).

In a two-phase conducting composite, E (1) consists of all curl free electric fields that have a
zero average value within each phase, and J (1) consists of all divergence free current fields
that have a zero average value within each phase. The space U (1) is then taken as the orthog-
onal compliment of E (1) ⊕ J (1) in the spaceH(1).

The space U (1) can be equivalently defined as the orthogonal complement of V in the space
spanned by Γ1V and Γ2V , that is, we have

V ⊕ U (1) = Γ1V ⊕ Γ2V . (29.11)

The proof of this is similar to the proof of (29.10); see also section 20.5 on page 419.
What is the relation between the effective tensor L∗ associated with H and the Y -tensor

Y ∗ associated with K? By direct analogy with (19.17) we have

L∗ = Γ0LΓ0 − Γ0LΠ1[Π1LΠ1 + Y ∗]−1Π1LΓ0, (29.12)

where Γ0 is the projection onto U and Π1 is the projection onto V .
To find a more explicit way of representing (29.12) let us suppose that we are given an

orthonormal basis u1,u2, . . .um of U . We define weight matricesW 1 andW 2 with matrix
elements

{W 1} jk = (u j ,Λ1uk), {W 2} jk = (u j ,Λ2uk).
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These matrices are clearly positive-semidefinite and sum to the identity matrix:

W 1 ≥ 0, W 2 ≥ 0, W 1 +W 2 = I.

Now consider the fields

ak = Λiuk −
m∑
	=1

{W 1}k	u	.

These span V but are not orthonormal. They have inner products

(a j ,ak) = {W 1W 2} jk .

To avoid mathematical technicalities, let us assume that the fields a1,a2, . . . ,am are lin-
early independent, that is, the matricesW 1 andW 2 are strictly positive-definite. Then the
fields

v j =
m∑
k=1

{(W 1W 2)
−1/2} jkak =

m∑
k=1

{(W 1W 2)
−1/2} jk[Λiuk −

m∑
	=1

{W 1}k	u	]

provide an orthonormal basis for V . From these formulas we see that

(u j ,Λ1uk) = {W 1} jk,
(u j ,Λ2uk) = {W 2} jk,
(u j ,Λ1vk) = {(W 1W 2)

1/2} jk,
(u j ,Λ2vk) = −{(W 1W 2)

1/2} jk,
(v j ,Λ1vk) = {W 2} jk,
(v j ,Λ2vk) = {W 1} jk. (29.13)

As in section 19.2 on page 399, let us equate each operator with the matrix that represents
its action with respect to the basis. Following this convention (29.13) implies that

Γ0Λ1Γ0 = W 1, Γ0Λ2Γ0 =W 2,

Γ0Λ1Π1 = (W 1W 2)
1/2, Γ0Λ2Π1 = −(W 1W 2)

1/2,

Π1Λ1Π1 = W 2, Π1Λ2Π1 =W 1, (29.14)

and it follows that

Γ0LΓ0 = λ1W 1 + λ2W 2, Γ0LΠ1 = (λ1 − λ2)(W 1W 2)
1/2,

Π1LΠ1 = λ1W 2 + λ2W 1.

With these substitutions the formulas (29.12) relating the effective tensorL∗ with the Y -tensor
Y ∗ takes the form

L∗ =W 1λ1 +W 2λ2 − (λ1 − λ2)
2(W 1W 2)

1/2[W 2λ1 +W 1λ2 + Y ∗]−1(W 1W 2)
1/2,

in which Y ∗ is now the matrix representing the action of the operator Y ∗ with respect to the
basis v1,v2, . . . ,vm . Thus the matrix Y ∗ given by (29.6) represents the action of the operator
Y ∗ associated with the (2, 3)-subspace collection (E,J ) and (V,P (1)

1 ,P (1)
2 ).
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Next, what is the relation between the Y -tensor Y ∗ associated with K and the effective
tensor L(1)

∗ associated withH(1)? By direct analogy with (20.29) and (20.28) we have

Y ∗ =KL(1)
∗ K

T , where K = −[Π1Γ1Π1]−1Π1Γ1Γ
(1)
0 , (29.15)

in which Π1 and Γ(1)
0 are the projections onto the spaces V and U (1). To obtain an explicit

expression for this relation we introduce the matricesG1 andG2 with matrix elements

{G1} jk = (v j ,Γ1vk), {G2} jk = (v j ,Γ2vk).

These are clearly positive-semidefinite and sum to the identity:

G1 ≥ 0, G2 ≥ 0, G1 +G2 = I.
To avoid mathematical technicalities we assume that these matrices are strictly positive-

definite. Then the fields

u(1)
j =

m∑
k=1

{(G1G2)
−1/2} jk[Γ1vk −

m∑
	=1

{G1}k	v	]

form an orthonormal basis for U (1) and we have

(v j ,Γ1vk) = {G1} jk,
(v j ,Γ2vk) = {G2} jk,

(v j ,Γ1u
(1)
k ) = {(G1G2)

1/2} jk,
(v j ,Γ2u

(1)
k ) = −{(G1G2)

1/2} jk,
(u(1)

j ,Γ1u
(1)
k ) = {G2} jk,

(u(1)
j ,Γ2u

(1)
k ) = {G1} jk. (29.16)

If we equate operators with the matrices that represent their action with respect to the
basis, then (29.16) implies that

Π1Γ1Π1 = G1, Π1Γ2Π1 = G2,

Π1Γ1Γ
(1)
0 = (G1G2)

1/2, Π1Γ2Γ
(1)
0 = −(G1G2)

1/2,

Γ(1)
0 Γ1Γ

(1)
0 = G2, Γ(1)

0 Γ2Γ
(1)
0 = G1, (29.17)

and it follows that the action ofK is represented by the matrix

K = −G−1
1 (G1G2)

1/2 = −G−1/2
1 G

1/2
2 ,

which is symmetric because the matrices G1 and G2 = I − G1 commute. Introducing the
symmetric positive-semidefinite normalization matrix

N = G−1
1 G2,

we see that the relation (29.15) can be rewritten in the form

L(1)
∗ =N−1/2Y ∗N−1/2,

in agreement with (29.7).
As in the analytic method, one bounds L∗ in the field equation recursion method by ob-

taining elementary bounds on Y ∗ or L(1)
∗ and then substituting these elementary bounds into

the expression for L∗ in terms of Y ∗(λ1, λ2) or L(1)
∗ .
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29.4. Representing the operators as infinite-dimensional matrices
Not all square integrable fields in H play a role in determining the function L∗(λ1, λ2). In-
deed, we saw in chapter 14 on page 291 that it is only necessary to consider those fields that
arise from products of the operators Γ1 and Λ1 applied to fields in U . In other words we can
restrict our attention to the Hilbert spaceH(0), which we define as the smallest subspace ofH
that contains U and which is closed under the action of both Γ1 and Λ1. Let us set

U (0) = U ∩H(0) = U, E (0) = E ∩H(0), J (0) = J ∩H(0),

P (0)
1 = P1 ∩H(0), P (0)

2 = P2 ∩H(0).

Since by definitionH(0) is closed under the action of both Γ and Λ, it follows that

H(0) = U (0) ⊕ E (0) ⊕ J (0) = P (0)
1 ⊕ P (0)

2 .

Based on the analysis of the previous section it seems natural to introduce a hierarchy of
spaces

K(i) = E (i−1) ⊕ J (i−1) = V (i) ⊕ P (i)
1 ⊕ P (i)

2

and
H(i) = U (i) ⊕ E (i) ⊕ J (i) = P (i)

1 ⊕ P (i)
2 ,

for i = 1, 2, 3, . . ., where

P (i)
1 = P1 ∩K(i), P (i)

2 = P2 ∩K(i), E (i) = E ∩H(i), J (i) = J ∩H(i),

V (i) is taken as the orthogonal complement of P (i)
1 ⊕P (i)

2 in the spaceK(i), and U (i) is taken as
the orthogonal complement of E (i) ⊕ J (i) in the spaceH(i). Equivalently, V (i) can be defined
as the orthogonal complement of U (i−1) in the space spanned by Λ1U (i−1) and Λ2U (i−1),

U (i−1) ⊕ V (i) = Λ1U (i−1) ⊕Λ2U (i−1),

and U (i) can be equivalently defined as the orthogonal complement of V (i) in the space
spanned by Γ1V (i) and Γ2V (i),

V (i) ⊕ U (i) = Γ1V (i) ⊕ Γ2V (i).

We assume that we are given an orthonormal basis u(0)
1 ,u(0)

2 , . . . ,u(0)
m of U (0) = U . We

can then sequentially introduce fields

v(i)j =
m∑
k=1

{(W (i−1)
1 W (i−1)

2 )−1/2} jk[Λ1u
(i−1)
k −

m∑
	=1

{W (i−1)
1 }k	u(i−1)

	 ]

that form an orthonormal basis for V (i), in which

{W (i−1)
1 } jk = (u(i−1)

j ,Λ1u
(i−1)
k ), {W (i−1)

2 } jk = (u(i−1)
j ,Λ2u

(i−1)
k ),

W (i−1)
1 ≥ 0, W (i−1)

2 ≥ 0, W (i−1)
1 +W (i−1)

2 = I,

and fields

u(i)
j =

m∑
k=1

{(G(i)
1 G

(i)
2 )−1/2} jk[Γ1v

(i)
k −

m∑
	=1

{G(i)
1 }k	v(i)	 ]
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that form an orthonormal basis for V (i), in which

{G(i)
1 } jk = (v(i)j ,Γ1v

(i)
k ), {G(i)

2 } jk = (v(i)j ,Γ2v
(i)
k ),

G(i)
1 ≥ 0, G(i)

2 ≥ 0, G(i−1)
1 +G(i−1)

2 = I.
In this process we assume that the matricesW (i−1)

1 ,W (i−1)
2 , G(i)

1 , and G(i)
2 are nonsingular

for all integers i ≥ 1 to avoid mathematical technicalities.
These fields u(i−1)

j and v(i)j for j = 1, 2, . . . ,m and i = 1, 2, 3, . . . ,∞ clearly span a
space that contains U and which is closed under the action of both Γ1 and Λ1. Moreover, it
is clearly the smallest such space with this property, and therefore must be the space H(0). In
other words, these fields constitute an orthonormal basis forH(0), that is,

H(0) = U (0) ⊕ V (1) ⊕ U (1) ⊕ V (2) ⊕ U (2) ⊕ V (3) ⊕ · · · .
This leads to the question: What matrices represent the operators Γ1, Γ2, Λ1, and Λ2 in

the new basis? Let Γ(i) denote the projection onto U (i) and let Π(i)
1 denote the projection onto

V (i). By direct analogy with (29.14) we have

Γ(i−1)
0 Λ1Γ

(i−1)
0 = W (i−1)

1 , Γ(i−1)
0 Λ2Γ

(i−1)
0 =W (i−1)

2 ,

Γ(i−1)
0 Λ1Π

(i)
1 = (W (i−1)

1 W (i−1)
2 )1/2, Γ(i−1)

0 Λ2Π
(i)
1 = −(W (i−1)

1 W (i−1)
2 )1/2,

Π(i)
1 Λ1Π

(i)
1 = W (i−1)

2 , Π(i)
1 Λ2Π

(i)
1 =W (i−1)

1 , (29.18)

and similarly, by direct analogy with (29.17), we have

Π(i)
1 Γ1Π

(i)
1 = G(i)

1 , Π(i)
1 Γ2Π

(i)
1 = G(i)

2 ,

Π(i)
1 Γ1Γ

(i)
0 = (G(i)

1 G
(i)
2 )1/2, Π(i)

1 Γ2Γ
(i)
0 = −(G(i)

1 G
(i)
2 )1/2,

Γ(i)
0 Γ1Γ

(i)
0 = G(i)

2 , Γ(i)
0 Γ2Γ

(i)
0 = G(i)

1 , (29.19)

where we have equated operators with the matrices that represent their action with respect to
the basis.

Now, because the subspaces U (i−1) ⊕ V (i) are closed under the action of the self-adjoint
projection operators Λ1 and Λ2, it follows that Λ1 and Λ2 couple together only “adjacent
pairs” U (i−1) and V (i) in the sequence U (0),V (1), U (1),V (2), U (2), V (3), . . . of subspaces. From
this observation and from (29.18) it follows that Λ1 and Λ2 are represented by the block-
tridiagonal matrices

Λ1 =



W (0)

1 (W (0)

1 W
(0)

2 )1/2 0 0 0 . . .

(W (0)

1 W
(0)

2 )1/2 W (0)

2 0 0 0 . . .

0 0 W
(1)

1 (W
(1)

1 W
(1)

2 )1/2 0 . . .

0 0 (W (1)

1 W
(1)

2 )1/2 W (1)

2 0 . . .

0 0 0 0 W (2)

1 . . .

..

.
..
.

..

.
..
.

..

.
. . .


and

Λ2 =



W (0)

2 −(W (0)

1 W
(0)

2 )1/2 0 0 0 . . .

−(W (0)

1 W
(0)

2 )1/2 W (0)

1 0 0 0 . . .

0 0 W (1)

2 −(W (1)

1 W
(1)

2 )1/2 0 . . .

0 0 −(W (1)

1 W
(1)

2 )1/2 W (1)

1 0 . . .

0 0 0 0 W (2)

2 . . .

...
...

...
...

...
. . .


.
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Conversely, an operator Λ1 = I −Λ2 that can be expressed in this form for some choice of
positive-semidefinite matricesW (i)

1 andW (i)
2 = I−W (i)

1 is necessarily a projection operator.
Similarly, Γ1 and Γ2 couple together only the adjacent pairs V (i) and U (i) in the subspace

sequence, and consequently from (29.19) we have

Γ1 =



0 0 0 0 0 . . .

0 G(1)

1 (G(1)

1 G
(1)

2 )1/2 0 0 . . .

0 (G(1)

1 G
(1)

2 )1/2 G(1)

2 0 0 . . .

0 0 0 G
(2)

1 (G
(2)

1 G
(2)

2 )1/2 . . .

0 0 0 (G(2)

1 G
(2)

2 )1/2 G(2)

2 . . .

...
...

...
...

...
. . .


and

Γ2 =



0 0 0 0 0 . . .

0 G(1)

2 −(G(1)

1 G
(1)

2 )1/2 0 0 . . .

0 −(G(1)

1 G
(1)

2 )1/2 G(1)

1 0 0 . . .

0 0 0 G(2)

2 −(G(2)

1 G
(2)

2 )1/2 . . .

0 0 0 −(G(2)

1 G
(2)

2 )1/2 G(2)

1 . . .

...
...

...
...

...
. . .


.

Of course since U (0) equals U , the operator Γ0 is simply

Γ0 =



I 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .

0 0 0 0 0 . . .
...

...
...

...
...

. . .

 .

29.5. The field equation recursion method for multiphase composites
with isotropic components

The field equation recursion method is easily generalized to multiphase composites. Let us
consider a problem where the tensor L takes the form

L =
n∑
i=1

λiΛi ,

where the λi , for i = 1, 2, . . . , n, represent the possibly complex eigenvalues of L and the
Λi represent projections onto the associated eigenspaces Pi , which we assume to be mutually
orthogonal and to spanH:

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn .

In an n-phase composite comprised of isotropic conducting phases we can identify λi with
the conductivity σi of component i , and we can identify Λi with the projection χiI onto the
space of fields Pi that are nonzero only in phase i .

We introduce the spaces

K = E ⊕ J = V ⊕ P (1)
1 ⊕ P (1)

2 ⊕ · · · ⊕ P (1)
n
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and
H(1) = U (1) ⊕ E (1) ⊕ J (1) = P (1)

1 ⊕ P (1)
2 ⊕ · · · ⊕ P (1)

n ,

where
P (1)
i = Pi ∩K, E (1) = E ∩H(1), J (1) = J ∩H(1),

V is taken as the orthogonal complement of P (1)
1 ⊕P (1)

2 ⊕ · · · ⊕P (1)
n in the space K, and U (1)

is taken as the orthogonal complement of E (1) ⊕ J (1) in the spaceH(1).
The space V can be equivalently defined as the orthogonal complement of U in the space

spanned by Λ1U , Λ2U, . . .ΛnU :

U ⊕ V = Λ1U ⊕Λ2U ⊕ · · · ⊕ΛnU .

The proof of this is basically the same as the proof of (29.10).
The space U (1) can be equivalently defined as the orthogonal complement of V in the space

spanned by Γ1V and Γ2V , as in (29.11).
The formula (29.12) relating the Y -tensor Y ∗ associated with the (2, n + 1)-subspace

collection (E,J ) and (V,P (1)
1 ,P (1)

2 , . . . ,P (1)
n ) to the effective tensor L∗ associated with the

(3, n)-subspace collection (U, E,J ) and (P1,P2, . . . ,Pn) remains valid, with Γ0 still being
the projection onto U and Π1 being the projection onto V .

Finding an explicit expression for this formula requires a representation for the various
operators. Since this is a little tedious, the reader not interested in the details can skip to
the next section. We start with a basis u1,u2, . . .um of U . Since there is no real need to
work with orthonormal bases, let us relax this requirement since it simplifies the subsequent
analysis. Instead let us assume that we know the m × m matrix U with elements

{U }i j = (ui ,u j ),

representing the inner products of the basis fields. We define weight matrices
W 1,W 2, . . .W n with matrix elements

{W i } jk = (u j ,Λiuk) for i = 1, 2, . . . , n. (29.20)

These matrices are clearly positive-semidefinite and sum to the matrixU :

W i ≥ 0 for all i,
n∑
i=1

W i = U .

To avoid mathematical technicalities let us assume that the weight matrices are strictly
positive-definite. This implies that each set of fields Λbuk for k = 1, 2, . . . ,m is linearly
independent. We next introduce the set of nm fields

vbk = (I − Γ0)Λbuk = Λbuk −
m∑
	=1

{U−1W b}	ku	,

parameterized by the indices b = 1, 2, . . . , n and k = 1, 2, . . . ,m. These fields span V , but
they are not independent. For any choice of integer h between 1 and n we have

vhk = (I − Γ0)(I −
∑
b �=h

Λb)uk = −
∑
b �=h
vbk .



29.5. The method for multiphase composites 635

To remove this degeneracy we take as our basis for V the (n − 1)m fields vbk , with b
running between 1 and n skipping the value b = h, and with k running between 1 and m.
These fields have inner products

(va j ,vbk) = {δabW a −W aU
−1W b} jk = {V }a j,bk, (29.21)

which defines the elements of the (n − 1)m × (n − 1)m matrix V . This matrix V has an
inverse V −1 with elements

{V −1}bk,ci = {W−1
h + δbcW

−1
b }ki .

To verify that this is indeed the inverse we calculate the product

∑
b �=h

m∑
k=1

{δabW a −W aU
−1W b} jk{W−1

h + δbcW
−1
b }ki

= {W aW
−1
h + δacI −W aU

−1 −
∑
b �=h
W aU

−1W bW
−1
h } j i

= {δacI +W aU
−1[U −W h −

∑
b �=h
W b]W−1

h } j i = δacδ j i,

and see that it is indeed the identity, where we have used the fact that the weight matrices sum
to the matrix U . Our assumption that the weight matrices are strictly positive-definite clearly
implies the positive-definiteness ofA−1 and hence the positive-definiteness ofA.

For all c �= h we have

(u j ,Λcuk) = {W c} jk,
(u j ,Λcvbk) = (vbk,Λcu j) = {V }cj,bk,

(va j ,Λcvbk) =
m∑
h=1

m∑
	=1

{V }a j,ch{W−1
c }h	{V }c	,bk .

It follows from this that

Γ0ΛcΓ0uk =
m∑
i=1

{U−1W c}ikui ,

Γ0ΛcΠ1vbk =
m∑
i=1

{U−1V c}i,bkui ,

Π1ΛcΓ0uk =
∑
a �=h

m∑
i=1

{V −1V T
c }ai,kvai =

∑
a �=h

m∑
i=1

{ITc }ai,kvai ,

Π1ΛcΠ1vbk =
∑
a �=h

m∑
i=1

{V −1V T
cW

−1
c V c}ai,bkvai =

∑
a �=h

m∑
i=1

{ITcW−1
c V c}ai,bkvai ,

(29.22)

in which V c and Ic are m × (n − 1)m matrices with elements

{V c} j,bk = {V }cj,bk, {Ic} j,bk = δcbδ jk. (29.23)



636 29. The field equation recursion method†

To represent the operators L∗ and Y ∗ let us introduce matrices L∗ and Y ∗ such that the
matrices L∗ and Y ∗ have elements

{L∗} j,k = (u j ,L∗uk), {Y ∗}a j,bk = (va j ,Y ∗vbk), (29.24)

where we have used the same symbol to denote the operator and its associated matrix. It
follows from these definitions that the action of the operators L∗ and Y ∗ on the basis fields is
given by

L∗uk =
m∑
i=1

{U−1L∗}ikui , Y ∗vbk =
∑
a �=h

m∑
i=1

{V −1Y ∗}ai,bkvai . (29.25)

If we equate operators with the matrices that represent their action with respect to the
basis, then (29.22) implies that

Γ0LΓ0 =
n∑
i=1

U−1W iλi , Γ0LΠ1 =
∑
a �=h

(λa − λh)U
−1V a,

Π1LΓ0 =
∑
b �=h

(λb − λh)I
T
b ,

Π1LΠ1 = V −1[λhV +
∑
c �=h
V T
cW

−1
c V c(λc − λh)] =ΥV ,

where Υ is the matrix with elements

{Υ}a j,bk = {λhW−1
h + δabλbW

−1
b } jk . (29.26)

By substituting these into (29.12) and recalling from (29.25) that the matrices U−1L∗ and
V −1Y ∗ represent the action of the operators L∗ and Y ∗, we obtain the relation

U−1L∗ =
n∑
i=1

U−1W iλi −
∑
a,b �=h

(λa − λh)U
−1V a[ΥV + V −1Y ∗]−1ITb (λb − λh),

which can be rewritten as

L∗ =
n∑
i=1

W iλi −
∑
a,b �=h

(λa − λh)Ia[Υ+ V −1Y ∗V −1]−1ITb (λb − λh), (29.27)

in which L∗ and Y ∗ are the matrices defined by (29.24)
To obtain a relation between Y ∗ and the effective tensor L(1)

∗ associated with the (3, n)-
subspace collection (U (1), E (1),J (1)) and (P (1)

1 ,P (1)
2 , . . . ,P (1)

n ) we introduce the (n − 1)m ×
(n − 1)m matricesG1 andG2 with elements

{G1}a j,bk = (va j ,Γ1vbk), {G2}a j,bk = (va j ,Γ2vbk).

satisfying
G1 ≥ 0, G2 ≥ 0, G1 +G2 = V .

We assume that these matrices are strictly positive-definite to avoid mathematical technicali-
ties. Then the fields

u(1)
bk = (I −Π1)Γ1vbk = Γ1vbk −

∑
c �=h

m∑
	=1

{V −1G1}c	,bkvc	,
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for b = 1, 2, . . . , h − 1, h + 1, . . . , n, k = 1, 2, . . . ,m, form a basis for U (1).
These fields have inner products

(u(1)
a j ,u

(1)
bk ) = {U (1)}a j,bk

described by the matrix

U (1) = G1 −G1V
−1G1 = G1V

−1G2 = G2V
−1G1,

and we have
(va j ,Γ1vbk) = {G1}a j,bk, (va j ,Γ1u

(1)
bk ) = {U (1)}a j,bk .

This implies that

Π1Γ1Π1vbk =
∑
a �=h

m∑
i=1

{V −1G1}ai,bkvai ,

Π1Γ1Γ(1)u(1)
bk =

∑
a �=h

m∑
i=1

{V −1U (1)}ai,bkvai , Γ(1)Γ1Π1u
(1)
bk =

∑
a �=h

m∑
i=1

{I}ai,bkvai .

Hence the action of the operators

K = −[Π1Γ1Π1]−1Π1Γ1Γ(1) and KT = −Γ(1)Γ1Π1[Π1Γ1Π1]−1

on the basis are represented by the matrices −G−1
1 U

(1) and −G−1
1 V , respectively. To repre-

sent the operator L(1)
∗ we introduce a matrix L(1)

∗ with elements

{L(1)
∗ }a j,bk = (u(1)

a j ,L∗u
(1)
bk ),

where we have used the same symbol to denote the operator and the matrix. The action of the
operator L(1)

∗ on the basis is then represented by the matrix (U (1))−1L(1)
∗ . If we equate oper-

ators with the matrices that represent their action with respect to the basis then the operator
identity Y ∗ =KL(1)

∗ K
T implies that

V −1Y ∗ = G−1
1 U

(1)[(U (1))−1L(1)
∗ ]G−1

1 V ,

which reduces to
Y ∗ = V G−1

1 L
(1)
∗ G

−1
1 V . (29.28)

Substituting this back into (29.27) gives a formula,

L∗ =
n∑
i=1

W iλi −
∑
a,b �=h

(λa − λh)Ia[Υ+G−1
1 L

(1)
∗ G

−1
1 ]−1ITb (λb − λh), (29.29)

linking the matrices L∗ and L(1)
∗ .

This procedure can be iterated. At the next stage we introduce the subspace

K(2) = E (1) ⊕ J (1) = V (2) ⊕ P (2)
1 ⊕ P (2)

2 ⊕ · · · ⊕ P (2)
n ,

where
P (2)
c = Pc ∩K(2), for c = 1, 2, . . . , n,
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and V (2) is taken as the orthogonal complement of P (2)
1 ⊕ P (2)

2 ⊕ · · · ⊕ P (2)
n in the space

K(2). We then let Y (2)
∗ denote the Y -tensor associated with the (2, n + 1)-subspace collection

(E (1),J (1)) and (V (2),P (2)
1 ,P (2)

2 , . . . ,P (2)
n ). The matrix representing L(1)

∗ is linked to the
matrix representing Y (2)

∗ via the formula

L(1)
∗ =

n∑
i=1

W (1)
i λi −

∑
a,b �=h

(λa − λh)I
(1)
a [Υ(1) + [V (1)]−1Y (2)

∗ [V (1)]−1]−1[I(1)b ]T (λb − λh),

(29.30)
with the matricesW (1)

i , V (1), I (1)c , andΥ(1) defined in an analogous way to the matricesW i ,
V , Ic, and Υ given by (29.20), (29.21), (29.23), and (29.26).

29.6. Bounds on the energy function of a three-phase conducting
composite

As an example of the field equation recursion method, let us apply it to bounding the energy
function

σe(σ1, σ2, σ3) = e0 · σ∗(σ1, σ2, σ3)e0,

where e0 is a fixed real unit vector, with |e0| = 1. For real values of σ1, σ2, and σ3 we think
of σe/2 as representing the energy dissipation in the composite when it is subject to the ap-
plied field e0. For complex values of σ1, σ2, and σ3 we think of σe as representing a diagonal
element of the effective conductivity tensor σ∗ in a basis where e0 is chosen as one of the
basis vectors. Elementary bounds on σe for complex component conductivities were first con-
jectured by Golden and Papanicolaou (1985) and Golden (1986) and later proved (Bergman
1986; Milton 1987b; Milton and Golden 1990). The field equation recursion method not only
established the conjectured bounds but also provided new bounds (Milton 1987b).

The relation between σe(σ1, σ2, σ3) and σ∗(σ1, σ2, σ3) takes the same form as the relation
(29.1) between L′

∗(λ1, λ2, . . . , λn) and L∗(λ1, λ2, . . . , λn) with Λ = e0. Therefore it is the
analytic function associated with the (3, 3)-subspace collection (U, E,J ) and (P1,P2,P3)

where U consists of all constant fields proportional to e0, E consists of gradients of periodic
scalar potentials, J consists of all divergence free fields j(x) such that the average value of
e0 · j(x) is zero, and Pi , for i = 1, 2, 3, consists of all periodic fields that are nonzero only
inside phase i .

The relation (29.27) between σe and Y ∗, with h = 3, now takes the form

σe = σe(Y ∗)

= f1σ1 + f2σ2 + f3σ3 −
(
σ1 − σ3

σ2 − σ3

)
· [Υ+ V −1Y ∗V −1]−1

(
σ1 − σ3

σ2 − σ3

)
,

(29.31)

in which f1, f2, and f3 = 1− f1 − f2 are the volume fractions of the phases and Υ and V −1

are the 2× 2 matrices

Υ =
(
σ1/ f1 + σ3/ f3 σ3/ f3

σ3/ f3 σ2/ f2 + σ3/ f3

)
, V −1 =

(
1/ f1 + 1/ f3 1/ f3

1/ f3 1/ f2 + 1/ f3

)
.

To bound σe we require some elementary bounds on Y ∗. When σ1, σ2, and σ3 are real
and positive we know that Y ∗ must be positive-semidefinite. As Y ∗ varies over all positive-
semidefinite matrices, σe given by (29.31) varies over all values in the interval

f1σ1 + f2σ2 + f3σ3 ≥ σe ≥ [ f1/σ1 + f2/σ2 + f3/σ3]−1,
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where the upper and lower limits correspond toY ∗ = ∞I andY ∗ = 0, respectively. Thus the
field equation recursion method recovers the standard arithmetic and harmonic mean bounds.

When σ1, σ2, and σ3 are complex and labeled so that

θ1 = arg(σ1) ≥ arg(σ2) ≥ arg(σ3) = θ3 > θ1 − π,

the matrix Y ∗ satisfies the wedge bounds,

θ1 ≥ arg(v · Y ∗v) ≥ θ3, (29.32)

for all real two-dimensional vectors v. Let Y1 denote the set of all 2 × 2 matrices Y 1 such
that

arg(v · Y 1v) ≥ θ3,

for all real vectors v, and let Y2 denote the set of all 2× 2 matrices Y 2 such that

θ1 ≥ arg(v · Y 2v),

for all real vectors v. Then the wedge bounds are equivalent to saying that Y ∗ lies in the
intersection of Y1 and Y2. As Y ∗ varies over all 2 × 2 matrices in the larger set Y1, an
analysis [the details of which can be found in Milton (1987b)] shows that σe ranges over all
values inside the circle in the complex plane defined by the inequality

1
Im[σ3/(σ3 − σe)]

≤ f1
Im[σ3/(σ3 − σ1)]

+ f2
Im[σ3/(σ3 − σ1)]

, (29.33)

which is also implied by the bounds (22.25) derived from the variational principles of Cher-
kaev and Gibiansky (1994). Similarly, as Y ∗ varies over all 2 × 2 matrices in the set Y2, σe
ranges over all values inside the circle defined by

1
Im[σ1/(σ1 − σe)]

≤ f2
Im[σ1/(σ1 − σ2)]

+ f3
Im[σ1/(σ1 − σ3)]

. (29.34)

The value of σe must lie within the lens-shaped region formed by the intersection of these
two circles. These are the bounds that Golden and Papanicolaou (1985) and Golden (1986)
had conjectured. As Y ∗ varies over all 2 × 2 matrices satisfying the wedge bounds (29.32),
σe takes values inside a subregion of this lens-shaped region. Some portions of the boundary
of the subregion coincide with the boundary of the lens-shaped region, as illustrated in the
example in figure 29.1 on the following page.

It turns out that the remaining portions of the boundary are generated by rank-1 matrices
Y ∗ with an infinite eigenvalue and varying eigenvector, giving the curve traced out by

σe(φ) = f1σ1 + f2σ2 + f3σ3

− [σ1 cos(φ)+ σ2 sin(φ)− σ3(cos(φ)+ sin(φ))]2

(σ1/ f1) cos2(φ)+ (σ2/ f2) sin2(φ)+ (σ3/ f3)(cos(φ)+ sin(φ))2
,

(29.35)

as φ is varied. The reason these portions of the curve contribute to the bounds is that the
mapping σe(Y ∗) given by (29.31) is such that

σe(Y1 ∩ Y2) �= σe(Y1) ∩ σe(Y2).
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Figure 29.1. Bounds on a diagonal element σe of the complex effective conductivity tensor
σ∗ of a composite of three isotropic phases with complex dielectric constants σ1 = 1 + 7i ,
σ2 = 4+ 5i , and σ3 = 5. If nothing else is known about the composite, then σe is confined to
the outermost lens-shaped region, the boundary of which is traced by the diagonal elements
of a laminate of phases 1 and 3 as the volume fraction is varied. When the volume fractions
f1 = 1/4, f2 = 1/2, and f3 = 1/4 are known, then σe is confined to the innermost region,
bounded by two circular arcs, given by (29.33) and (29.34), and by two portions of the figure
eight curve generated by (29.35) as φ is varied. The points A and H are the arithmetic and
harmonic averages f1σ1 + f2σ2 + f3σ3 and 1/( f1/σ1 + f2/σ2 + f3/σ3). Reprinted with
permission from Milton (1987b). Copyright 1987, Springer-Verlag.

This is a general feature of maps to lower dimensional spaces. For instance, consider the
mapping (x, y) → (x, 0), which projects the (x, y)-plane to the x-axis. The image of both
the line x = y and the line x = −y is the entire real axis. Therefore, the intersection of the
images is the entire real axis, whereas the image of the intersection of the two lines is just the



References 641

point x = 0.
Other methods such as the translation method can also be used to bound the tensor Y ∗. If

one seeks the best bounds on σe, one should first find the set of tensors Y ∗ consistent with all
of the constraints and then take its image under the mapping σe(Y ∗), rather than taking the
intersection of the bounds on σe that derive from each constraint taken separately.
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30
Properties of the G-closure and extremal

families of composites

30.1. An equivalence between G-closure problems with and without
prescribed volume fractions

When one is interested in finding bounds that correlate L∗ with the volume fractions of the
phases, there is a simple trick that reduces this to a problem in which the volume fractions
do not explicitly enter. For simplicity, let us consider the problem of bounding the effective
tensor σ∗ of a two-phase composite. The equations

j(x) = σ(x)e(x), ∇ · j = 0, ∇ × e = 0,

where
σ(x) = χ1(x)σ1 + χ2(x)σ2,

can be supplemented by a single scalar equation

w(x) = χ1(x)v, v = constant,

and rewritten as a single equation

J(x) = L(x)E(x), (30.1)

with

J(x) =
(
j(x)

w(x)

)
, E(x) =

(
e(x)

v

)
, L(x) = χ1(x)

(
σ1 0
0 1

)
+ χ2(x)

(
σ2 0
0 0

)
.

This equation (30.1) resembles a thermoelastic-type problem, but with the conductivity
tensor playing the role of the compliance tensor and with no coupling between the fields. By
taking averages of the fields J(x) and E(x) it is evident that the effective tensor associated
with the equation (30.1) is

L∗ =
(
σ∗ 0
0 f1

)
.

Clearly finding bounds that correlate σ∗ with the volume fraction f1 is exactly equivalent to
finding bounds on the effective tensor L∗.

More generally, suppose that the conductivity tensors σ1, σ2, . . . ,σn of the phases in an
n-phase medium depend on some parameterω, and we are interested in correlating the volume

643
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fractions f1, f2, . . . , fn with the values σ∗(ω1), σ∗(ω2), . . . ,σ∗(ωq) that the effective tensor
σ∗(ω) takes as ω takes q different values ω1, ω2,. . .ωq . Of course since the volume fractions
sum to unity, we can regard fn as being determined from the remaining volume fractions
f1, f2, . . . , fn−1. The system of equations

j(α)(x) = σ(α)(x)e(α)(x), ∇ · j(α) = 0, ∇ × e(α) = 0, for α = 1, 2 . . . , q
wi (x) = χi(x)vi , vi = constant, for i = 1, 2, . . . , n − 1,

where

σ(α)(x) =
n∑
i=1

χi(x)σi (ωα),

define the effective tensors and volume fractions through the relations

〈j(α)〉 = σ∗(ωα)〈e(α)〉, 〈wi 〉 = fi 〈vi 〉 = fivi . (30.2)

This system can be rewritten as a single equation,

J = LE, (30.3)

incorporating the extended fields

J(x) =


j(1)(x)
j(2)(x)

...

j(q)(x)
w(x)

 , E(x) =


e(1)(x)
e(2)(x)

...

e(q)(x)
v

 ,

and a tensor field

L(x) =
n∑
i=1

χi(x)Li ,

with block-diagonal component supertensors,

Li =


σi (ω1) 0 . . . 0 0

0 σi (ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . σi(ωq) 0
0 0 . . . 0 K i

 ,

where

K1 =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 , K2 =


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 0

 , . . . , Kn−1 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 1

 ,

andKn = 0.
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Also, (30.2) implies that the effective tensor associated with the equation (30.3) is the
supertensor

L∗ =


σ∗(ω1) 0 . . . 0 0

0 σ∗(ω2) . . . 0 0
...

...
. . .

...
...

0 0 . . . σ∗(ωq) 0
0 0 . . . 0 K∗

 ,

where

K∗ =


f1 0 . . . 0
0 f2 . . . 0
...

...
. . .

...

0 0 . . . fn−1

 ,

which has the volume fractions as its diagonal elements. Clearly the problem of correlating
the volume fractions f1, f2, . . . , fn−1 and effective tensors σ∗(ω1), σ∗(ω2), . . . ,σ∗(ωq) is
equivalent to finding the possible values that the effective tensor L∗ can take.

30.2. Stability under lamination and the convexity properties of the
G-closure

From the analysis of the previous section we see that many bounding problems boil down to
the task of characterizing the range GU of values that a suitably defined effective tensor L∗
takes as the local tensor field L(x) is varied over all periodic functions with

L(x) ∈ U for all x,

where U represents the set of tensors of the constituents:

U = {L1,L2, . . . ,Ln}.

Also from section 12.11 on page 264 we know that problems in which the field L(x) and
effective tensor L∗ are not self-adjoint can be mapped to an equivalent problem in which the
field and effective tensor are self-adjoint. Let us therefore suppose that the tensors in GU are
self-adjoint. This set GU , the G-closure of U , has the property that

G[GU ] = GU.

In other words, if we build a composite from tensors in GU , then its effective tensor must also
lie in GU .

In particular, if we take two tensors A and B in GU and laminate them together in pro-
portions f and 1− f with the layers orthogonal to a direction n, then the effective tensorA∗
must also lie in GU . This stability under lamination implies that GU has certain convexity
properties (Francfort and Milton 1994). To see these properties it is helpful to introduce the
transformation

Wn(L) = [I + (L−L0)Γ(n)]−1(L−L0),

as in (17.2). From the lamination formula (9.44) we have

Wn(A∗) = f Wn(A)+ (1− f )Wn(B).
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So, as f is varied from 0 to 1, Wn(A∗) varies along the straight line in tensor space joining
Wn(A) with Wn(B). This implies that Wn(GU) must be a convex set in tensor space for
all choices of the unit vector n. Specifically, if U consists of m × m symmetric matrices,
then any element of Wn(GU) will be a m × m matrix and we can represent it by a point
in an m(m + 1)/2-dimensional space where the first m coordinates represent the diagonal
matrix elements, while the remainingm(m−1)/2 coordinates represent the upper off-diagonal
elements. The region representing Wn(GU) in these coordinates will be convex.

The set GU itself is not necessarily convex, but it does nevertheless have some convexity
properties. To see this, suppose that the pointB is on the surface of GU and assume that the
surface is smooth at B. Let H (C) denote a scalar-valued parameterization of the surface of
GU such that

H (C) ≥ 0 if and only ifC ∈ GU,
with equality if and only if C is on the boundary of GU . The parameterization is assumed to
be chosen so that the matrix

HB = dH (C)

dC

∣∣∣∣
C=B

�= 0.

The matrix then represents the normal to the boundary of GU at B. The tensor A∗ of the
laminate must lie in GU for all choices of f ∈ [0, 1] and in particular for values of f close to
zero. From the lamination formula (9.45) we see that

A∗ = A+ (1− f )[(B −A)−1 + f Γ(n)]−1

= B + f [(A−B)− (A−B)Γ(n)(A−B)]+O( f 2),

where
Γ(n) = Γ1(n)[Γ1(n)AΓ1(n)]−1Γ1(n),

in which the inverse is to be taken on the subspace En onto which Γ1(n) projects. It follows
that, to the first order in f ,

H (A∗) = H (B)+ f Tr{HB[(A−B)− (A−B)Γ(n)(A−B)]} +O( f 2).

Now H (B) is zero becauseB is on the boundary of GU , and the requirement thatA∗ lies in
GU implies that H (A∗) must be nonnegative for all values of f and in particular for values
of f close to zero. Hence the bounds

Tr{HB[(A−B)− (A−B)Γ(n)(A−B)]} ≥ 0 (30.4)

must hold for all tensorsA ∈ GU (Francfort and Milton 1994). If we have partial knowledge
of GU , such as the knowledge of a tensor B ∈ ∂GU and its associated tangent plane giving
HB, then (30.4) provides a bound on the rest of GU . In this way Milton and Nesi (1999),
generalizing an approach of Roscoe (1973) [see also section 10.9 on page 204], were able
to prove a conjecture of Astala and Miettinen (1998) and establish optimal bounds on the
conductivity of an anisotropic, two-dimensional composite comprised of an isotropic phase
mixed in fixed proportion with an anisotropic polycrystalline phase. The required partial
knowledge of GU was provided by the optimal bound (23.61) of Nesi (1996) on the effective
conductivity of an isotropic composite.

The relation (30.4) must hold whenA is on the surface of GU and is close toB. Therefore
let us consider a trajectory of matrices A(t) on the surface of GU such that A(0) = B. By
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twice differentiating the constraint that H (A(t)) = 0 and setting t = 0 we see that the
matricesA′ andA′′ entering the expansion

A(t)−B = tA′ + t2A′′/2+O(t3) (30.5)

satisfy
Tr[HBA

′] = 0, Tr[HBA
′′] = −Tr[A′HBBA

′], (30.6)

where

HBB = d2H (C)

dCdC

∣∣∣∣
C=B

.

By substituting (30.5) back into (30.4) and using (30.6) we see that

Tr[A′HBBA
′]/2+ Tr{HB[A′Γ(n)A′]} ≤ 0 for allA′ such that Tr[HBA

′] = 0.
(30.7)

This provides a constraint on the second derivative tensor HBB .
Instead of considering GU we could have consideredU , and asked whenU itself is stable

under lamination. Clearly stability under lamination in directionn holds if and only ifWn(U)

is convex. This convexity is a local condition that can be expressed in terms of the positivity
of the curvature of the boundary of Wn(U), that is, as a condition that involves only first
and second derivatives of the function characterizing the boundary. Therefore a set U , whose
boundary is characterized by a function H , will be stable under lamination in direction n if
and only if the local condition (30.7) holds for all tensors B on the surface. If the condition
also holds for all vectors n, then U will be stable under lamination in any direction. This
condition (Francfort and Milton 1994) allows one to test the stability under lamination of
any set U . Notice that (30.7) bears a close resemblance to the condition (24.43) associated
with a translation T being quasiconvex. In fact, knowledge of HB and HBB at a point B
on the boundary of a set U (which is stable under lamination) allows one to generate various
associated quasiconvex translationsTB (Milton 1994). With the aid of the comparison bound
(24.6), these translations can often be used to prove thatB lies on the boundary of GU . If this
can be done for all pointsB on the surface ofU , thenU must be stable under homogenization,
that is, GU = U . This provides an algorithm for showing that certain sets stable under
lamination are also stable under homogenization. Sometimes the algorithm will fail because
there are sets stable under lamination that are not stable under homogenization, as we will see
in section 31.9 on page 690.

30.3. Characterizing the G-closure through minimums of sums of
energies and complementary energies

We have seen in section 24.12 on page 519 that the translation method bounds the effective
tensor L∗ through lower bounds on sums of energies and complementary energies. Here we
will show that minimums of sums of energies and complementary energies serve to character-
ize G-closures in much the same way that Legendre transforms serve to characterize convex
sets (Francfort and Milton 1994; Milton 1994; Milton and Cherkaev 1995).

Let us begin by supposing that B is a tensor on that portion of the surface of GU where
HB is positive-semidefinite. Then, because Γ(n) is also positive-semidefinite, it follows that

Tr[HB(A−B)Γ(n)(A−B)] = Tr[H 1/2
B

(A−B)Γ(n)(A−B)H 1/2
B

] ≥ 0,
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which in conjunction with (30.4) implies that

Tr[HBA] ≥ Tr[HBB] for allA ∈ GU.

In geometrical terms this says that the set GU must lie entirely on one side of the tangent
plane

P = {C | Tr[HBC] = Tr[HBB]} (30.8)

to the set GU at the point B. If this were true for all points B on the boundary of GU , and
not just those points where HB is positive-semidefinite, then GU would be convex.

Since the tensor HB is positive-semidefinite we can set

HB =
m∑
i=1

hi ⊗ hi ,

where m is the dimension of the matrices in U (i.e., each matrix in U is an m × m matrix),
each hi is an eigenvector of HB , and hi ·hi is the associated eigenvalue. By substituting this
formula for HB into (30.8) and setting A = L∗ we see that the minimum in the expression
for

W−(h1,h2, . . . ,hm) = min
L∗∈GU

[ m∑
i=1

hi · L∗hi

]
is achieved when L∗ = B. Each term hi ·L∗hi in this sum can be thought of as the “energy”
that is stored in the composite when it is exposed to a field with 〈E〉 = hi . Of course, whether
this interpretation makes physical sense or not depends on the nature of the tensors in the set
U . If they represent dielectric or elasticity tensors, then hi · L∗hi does indeed represent the
stored energy. If they represent electrical conductivity tensors, then hi · L∗hi represents the
energy dissipated into heat.

More generally, when HB is not positive-semidefinite, but has only k < m positive eigen-
values, then we can set

HB = H+
B
− H−

B
, (30.9)

where H+
B

is positive-semidefinite with rank k and H−
B

is positive-semidefinite with rank at
most m − k. This decomposition can be done in many ways. One way, which ensures that

H+
B(BH−

BB) = 0, (30.10)

is to first expressB1/2HBB
1/2 in terms of its eigenvalues and eigenvectors,

B1/2HBB
1/2 =

m∑
i=1

λivi ⊗ vi , where vi · v j = δi j,

with the eigenvalues ordered so that the positive eigenvalues come first,

λi > 0 for i ≤ k, λi ≤ 0 for i ≥ k + 1.

Then (30.9) and (30.10) are satisfied with

H+
B
=

k∑
i=1

λiB
−1/2vi ⊗ viB−1/2, H−

B
=

m∑
i=k+1

λiB
−1/2vi ⊗ viB−1/2.
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Using (30.9), the inequality (30.4) can be rewritten in the form

Tr{H+
B
[(A−B)− (A−B)A−1/2ΓA1 (n)A−1/2(A−B)]}

+ Tr{H−
B[(BA−1B −B)− (A−B)A−1/2ΓA2 (n)A−1/2(A−B)]} ≥ 0,

where

ΓA1 (n) = A1/2Γ(n)A1/2 = A1/2Γ1(n)[Γ1(n)AΓ1(n)]−1Γ1(n)A
1/2,

ΓA2 (n) = I − ΓA1 (n)

are the projections ontoA1/2En and its orthogonal complement A−1/2Jn. Since H+
B , H−

B,

ΓA1 (n), andΓA2 (n) are all positive-definite or positive-semidefinite matrices, we deduce that

Tr[H+
B
A]+Tr[H−

B
BA−1B] ≥ Tr[H+

B
B]+Tr[H−

B
BB−1B] for allA ∈ GU. (30.11)

Now, because H+
B

is positive-semidefinite with rank k and H−
B

is positive-semidefinite
with rank at most m − k, we can set

H+
B
=

k∑
i=1

hi ⊗ hi , BH−
B
B =

m∑
i=k+1

hi ⊗ hi , (30.12)

where each vector hi is an eigenvector of H+
B

for i ≤ k and is an eigenvector of BH−
B
B

for i ≥ k + 1, and hi · hi is the associated eigenvalue. It follows from (30.10) that these
eigenvectors are mutually orthogonal,

hi · h j = 0 for all i �= j. (30.13)

By substituting these formulas (30.12) into (30.11) we see that the tensor L∗ = B
achieves the minimum in the expression for

W−(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm)

= min
L∗∈GU

W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;L∗),

where

W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;L∗) =
k∑
i=1

hi ·L∗hi +
m∑

i=k+1

hi ·L−1
∗ hi (30.14)

represents a sum of “energies” and “complementary energies”: Each term hi · L∗hi or hi ·
L−1

∗ hi appearing in this sum can be thought of as the “energy” or “complementary energy”
that is stored in the composite when it is exposed to a field with 〈E〉 = hi , for i ≤ k or to a
field with 〈J 〉 = hi , for i ≥ k + 1.

It follows that the set

K(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm) = {C | W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C)

≥ W−(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm)}
(30.15)
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certainly contains GU and hasB on its boundary. Also, since this set has the property that

K(αh1, αh2, . . . , αhk; αhk+1, αhk+2, . . . , αhm)

= K(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm),

for all α �= 0, without loss of generality we can impose the normalization condition
m∑
i=1

hi · hi = 1. (30.16)

Therefore GU can be identified with the region of intersection of the sets

K(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm)

as k ranges from 0 to m and as the hi are varied over all sets of mutually orthogonal vectors
satisfying (30.16). In other words, stability under lamination ensures that the set GU has
sufficient “convexity” to guarantee that it can be recovered from knowledge of the function
W−(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm). Thus, as illustrated in figure 30.1, minimums of
sums of energies and complementary energies serve to characterize G-closures in much the
same way that Legendre transforms serve to characterize convex sets.

Sum of energies and
complimentary
energies

energies

Sum of energies

G-closure

Sum of complimentary

Figure 30.1. G-closures are characterized by minimums of sums of energies and complemen-
tary energies. The coordinates here represent the elements of the effective tensor L∗. Then
a plane represents a surface where a sum of energies is constant, and when this sum takes
its minimum value the plane is tangent to the G-closure. The convexity properties of the G-
closure guarantee that the surfaces corresponding to the minimums of sums of energies and
complementary energies wrap around the G-closure and touch each point on its boundary.

30.4. Characterization of the G-closure by single energy minimizations
The sum of “energies” and “complementary energies” appearing in (30.14) can itself be re-
garded as a single “energy” of an associated effective tensor. Consider the fields J (i)(x) and
E(i)(x) that solve the equations

J (i)(x) = L(x)E(i)(x), J (i) ∈ U ⊕ J , E(i) ∈ U ⊕ E,
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with

〈E(i)〉 = hi for i = 1, 2, . . . , k,
〈J (i)〉 = hi for i = k + 1, k + 2, . . . ,m.

This set of equations can be rewritten as

J̃ = LẼ, with J̃ ∈ Ũ ⊕ J̃ , Ẽ ∈ Ũ ⊕ Ẽ, 〈Ẽ〉 = E0,

with extended fields

J̃(x) =



J (1)(x)
...

J (k)(x)
E(k+1)(x)

...

E(m)(x)


, Ẽ(x) =



E(1)(x)
...

E(k)(x)
J (k+1)(x)

...

J (m)(x)


, Ẽ0 =



h1
...

hk
hk+1
...

hm


, (30.17)

and supertensor

L(x) =



L(x) . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . L(x) 0 . . . 0
0 . . . 0 [L(x)]−1 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . [L(x)]−1


,

where L(x) occurs k times along the block-diagonal of this matrix, and its inverse occurs
m − k times. The appropriate definitions of the three orthogonal spaces Ũ , Ẽ , and J̃ should
be self-evident from the form of the fields Ẽ and J̃ in (30.17). For example, Ẽ consists of
all fields Ẽ(x) of the form in (30.17), where E(i) ∈ E for i = 1, 2, . . . , k and J (i) ∈ J for
i = k + 1, k + 2, . . . ,m.

The effective tensor L∗ associated with these equations is clearly

L∗ =



L∗ . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . L∗ 0 . . . 0
0 . . . 0 L−1

∗ . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . L−1
∗


,

and the corresponding “energy” is

Ẽ0 ·L∗Ẽ0 =
k∑
i=1

hi ·L∗hi +
m∑

i=k+1

hi ·L−1
∗ hi

= W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;L∗).

Notice that the task of finding W−(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm) is equivalent to
finding the best possible lower bound on the single “energy” Ẽ0 · L∗Ẽ0. So the problem
of finding bounds on the G-closure is reduced to a family of single energy minimization
problems.
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30.5. Extremal families of composites for elasticity: Proving that any
positive-definite tensor can be realized as the effective elasticity

tensor of a composite†
Knowledge of the G-closure GU gives one a precise characterization of what effective tensors
can be produced by mixing phases having tensors in the set U . In practice there is a lot of
freedom in the choice of the set U , because the moduli of actual materials have an immense
range in their magnitudes. Thus it is of interest to study the limit in which the materials in U
have widely different properties. For example, given an isotropic positive-definite elasticity
tensor C0, we might consider the associated set

Uδψ = {δC0, ψC0}
containing two elasticity tensors, parametrized by ψ > δ > 0. When δ is very small and ψ is
very large these two tensors have widely differing moduli. One important question is whether
the union of the associated G-closures,

G+ =
⋃

ψ≥δ>0

GUδψ ,

equals the set of all positive-definite fourth-order tensors A satisfying the usual symmetries
of elasticity tensors (i.e. Ai jk	 = A j ik	 = Ak	i j ). More precisely, given an arbitrary positive-
definite tensor A > 0 satisfying the usual symmetries of elasticity tensors can one find pa-
rameters ψ ≥ δ > 0 such that A ∈ GUδψ? Sigmund (1994) provided some numerical
evidence indicating that it might always be possible to construct a composite with effective
elasticity tensor matching any prescribed positive-definite tensor A. Independently, Milton
and Cherkaev (1995) established that such a composite can always be constructed, in two and
three dimensions. Thus any given tensor that is positive-definite can be realized as the effec-
tive elasticity tensor of a mixture of a sufficiently stiff material and a sufficiently compliant
material.

We remark that for tensorsA that are isotropic the question reduces to the following. Can
one make an elastically isotropic composite with effective bulk modulus κ∗ and shear modulus
µ∗ matching any given pair of positive numbers? In particular, can one construct materials
where the ratio µ∗/κ∗ is very large? Such materials have effective Poisson’s ratios

ν∗ = [d − 2µ∗/κ∗]/[2µ∗/κ∗ + d(d − 1)],

which are very close to −1. Essentially all materials found in nature have positive Poisson’s
ratios, and the question of whether materials with negative Poisson’s ratio could exist was the
subject of debate for a long time.

Experimentally the question was settled when Lakes (1987) and Friis, Lakes, and Park
(1988) manufactured polymeric and metallic foams with negative Poisson’s ratios. Evidence
for negative Poisson’s ratios was also found in cracked granites by Homand-Etienne and
Houpert (1989). On the theoretical side, Almgren (1985) designed an elastically isotropic
structure with rods, hinges, and sliding collars having a Poisson’s ratio of −1. Bathurst and
Rothenburg (1988) showed that bonded disk assemblages would have a negative Poisson’s
ratio if the tangential stiffness at the disk contacts exceeds the normal stiffness, but did not
show how such contacts could be created. A variety of mechanisms leading to a negative
Poisson’s ratio were proposed by Lakes (1991). The rigorous analysis of several elastically
isotropic microstructures proved conclusively that continuum elastic composite materials can
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have a Poisson’s ratio arbitrarily close to −1 (Milton 1992; Berlyand and Promislow 1995).
One of these microstructures was a multiple-rank laminate and its Poisson’s ratio was almost
as low as theoretically possible. For a given ratio between the stiffnesses of the constituent
phases the Poisson’s ratio was close to the theoretical limit implied by the bounds of Cherkaev
and Gibiansky (1993); see figure 30.2. A related structure, shown in figure 1.1 on page 3, was
found numerically by Sigmund (1995) and subsequently manufactured (Larsen, Sigmund, and
Bouwstra 1997).

Figure 30.2. The solid line represents the lowest Poisson’s ratio obtained within the family
of elastically isotropic, multiple-rank laminates generated from materials of the herringbone
laminate type illustrated in figure 30.7. (To obtain elastic isotropy the herringbone laminate
is layered in equal portions with a reflection of itself about a suitable axis.) The phases
have moduli κ1 = 2/r , µ1 = 1/r , κ2 = 2, and µ2 = 1. The broken lines are bounds on
the Poisson’s ratio, valid for any isotopic microstructure, that follow from the constraints of
Cherkaev and Gibiansky (1993) on possible (κ∗, µ∗) pairs. Reprinted with permission from
Milton (1992). Copyright 1992, Elsevier Science.

Elastically anisotropic materials with a negative Poisson’s ratio were also investigated.
Herakovich (1984) showed that graphite-epoxy laminates could have a Poisson’s ratio through
the thickness as low as −0.21. Kolpakov (1985), Gibson and Ashby (1988), Warren (1990),
and Berlyand and Promislow (1995) analyzed, in varying degrees of rigor, inverted honey-
comb foams that (because of their anisotropy) can have a Poisson’s ratio less than −1. Cad-
dock and Evans (1989) and Alderson and Evans (1992) manufactured anisotropicmicroporous
polymers comprised of microscopic particles connected by fibrils having Poisson’s ratios as
low as −1.24.

We now address the larger question: What are the possible elasticity tensors of aniso-
tropic composites? We focus on two-dimensional composites and present a rigorous proof,
based on the arguments of Milton and Cherkaev (1995), that G+ includes all positive-definite
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tensors satisfying the usual symmetries of elasticity tensors. We first introduce the concept
of extremal families of composites. Suppose that we are given k, with m ≥ k ≥ 0, where
m = d(d − 1)/2 is the dimension of the space of symmetric d × d matrices, and suppose that
we have a family of composites, such that for every positive value of a parameter λ and ev-
ery k-dimensional subspace Vk of symmetric matrices there is an associated composite in the
family with effective tensor C∗(λ,Vk). This family is defined to be extremal if, given c > 0,
one can find a λk > 0 such that for every k-dimensional subspace Vk of symmetric matrices

W (Vk;C∗(λ,Vk)) < c for all λ > λk, (30.18)

where for any tensor C,

W (Vk;C) = Tr(ΠkC)+ Tr(Π⊥
k C−1), (30.19)

in which Πk is the fourth-order tensor that projects onto Vk and Π⊥
k = I −Πk is the fourth-

order tensor that projects onto V⊥
k , the (m − k)-dimensional orthogonal subspace.

In particular it follows that for any fixed subspace Vk , W (Vk;C∗(λ,Vk)) must approach
zero as λ tends to infinity. To get some idea of what this means consider, for example, the
sequence of tensors

Cλ = (1/λ)Πk + λΠ⊥
k .

For this sequence

W (Vk;Cλ) = (1/λ)Tr(Πk)+ (1/λ)Tr(Π⊥
k ) = k/λ+ (m − k)/λ = m/λ

tends to zero as λ tends to infinity. For large λ, a material with elasticity tensor Cλ behaves
like a very compliant material when it is subject to strains lying in the subspace Vk but behaves
like a very stiff material when it is subject to stresses lying in the subspace V⊥

k .
When k = 0, the materials in the extremal family are called nullmode, because for large

λ they have no easy modes of deformation. When k = 1, the materials in the extremal
family are called unimode, because for large λ they have only one easy mode of deformation:
They are only easily compliant to strains in the one-dimensional subspace V1. When k = 2,
the materials in the extremal family are called bimode, because for large λ they have only
two easy modes of deformation: They are compliant to strains in the subspace V2. In two
dimensions (d = 2), a simple laminate of the two phases is an example of a bimode material;
see figure 30.3 on the facing page. Two other examples of two-dimensional bimode materials
are illustrated in figures 30.4 on the next page and 30.5 on page 656. Similarly, for three-
dimensional elasticity, the materials in the extremal family with k = 3, 4, 5, or 6 are called
trimode, quadramode, pentamode, and hexamode, respectively. In three dimensions (d =
3) a simple laminate is an example of a trimode extremal material, while an array of stiff
cylindrical parallel rods in a soft matrix is an example of a pentamode extremal material.

Given an orthonormal set of tensors v1,v2, . . . ,vk that form a basis for Vk and given an
orthonormal set of tensors vk+1,vk+2, . . . ,vm that form a basis for V⊥

k we have

Πk =
k∑
i=1

vi ⊗ vi , Π⊥
k =

m∑
i=k+1

vi ⊗ vi .

By substituting these back into (30.19) we see that W (Vk;C) can be equated with a sum of
energies and complementary energies:
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Rigid  AgainstCompliant  Against

Figure 30.3. A simple laminate of a stiff phase and a compliant phase is an example of a
two-dimensional bimode extremal material. The laminate is compliant against two types of
loading and stiff against one. It supports a stress with zero determinant. After Milton and
Cherkaev (1995).

Figure 30.4. The honeycomb array of linkages. It is a two-dimensional bimode material that
supports a (compressive) stress with positive determinant. When the dotted material is very
compliant the material will remain stiff under an appropriate combination of horizontal and
vertical stretching. The unit cell of periodicity is marked by the dashed lines. Reprinted with
permission from Milton and Cherkaev (1995). Copyright 1995, ASME.

W (Vk;C) =
k∑
i=1

vi · Cvi +
m∑

i=k+1

vi · C−1vi

= W (v1,v2, . . . ,vk; vk+1,vk+2, . . . ,vm;C).

If we take any set of orthogonal symmetric matrices hi , such that hi is proportional to the
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Figure 30.5. The inverted honeycomb array of linkages. It is a two-dimensional bimode
material that supports a (shear) stress with negative determinant. When the dotted material is
very compliant the material will remain stiff under an appropriate combination of horizontal
stretching and vertical compression. Reprinted with permission from Milton and Cherkaev
(1995). Copyright 1995, ASME. See also Almgren (1985).

matrix vi for each i , and such that the normalization condition (30.16) is satisfied, then since
the normalization condition implies that |hi | ≤ 1 = |vi | for all i , it follows that

hi · Chi ≤ vi · Cvi and hi · C−1hi ≤ vi · C−1vi ,

for all i and for all positive-definite matrices C. Therefore we have the inequality

0 ≤ W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C) ≤ W (v1,v2, . . . ,vk;vk+1, vk+2, . . . ,vm;C),

(30.20)
which in particular implies thatW (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C∗(λ,Vk))must also
approach zero as λ tends to infinity.

Our aim is to look for extremal families of two-phase composites with microgeometries
dependent on Vk , and possibly on λ, built from materials with tensors ψ(λ)C0 and δ(λ)C0,
where ψ(λ) ≥ δ(λ) > 0 are appropriately chosen functions of λ > 0, independent of k and
Vk . If we can find such extremal families of composites for all k with m ≥ k ≥ 0, then any
positive-definite tensor can be obtained as the effective tensor of a multiple-rank laminate built
from materials in these extremal families, and hence G+ must include all positive-definite
tensors.
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To see this, suppose that we are given a positive-definite tensor A. Define

c = min
hi

W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;A), (30.21)

in which the minimum is to be taken over all orthogonal sets of symmetric matrices hi satis-
fying the normalization condition (30.16). The value of c is positive (and nonzero) because
A is positive-definite. Choose a fixed value of λ so that the inequality

W (v1,v2, . . . ,vk; vk+1,vk+2, . . . ,vm;C∗(λ,Vk)) < c (30.22)

is satisfied for all k and all sets of orthogonal symmetric d×d matrices v1,v2, . . . ,vm , where
Vk is the subspace spanned by v1,v2, . . . ,vk . This is always possible because

W (v1,v2, . . . ,vk; vk+1,vk+2, . . . ,vm;C∗(λ,Vk)) = W (Vk;C∗(λ,Vk)),

and from (30.18) we see that the right-hand side is surely less than c when λ > λk . Thus it
suffices to take

λ > max
k

λk,

as k ranges from 0 to m.
From (30.20) and (30.22), and because GUδ(λ),ψ(λ) contains the effective tensor C∗(λ,Vk)

for all Vk , we have

W−(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm)

= min
C∗ ∈ GUδ(λ),ψ(λ)

W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C∗) < c,

(30.23)

for all k and all orthogonal sets of symmetric matrices hi satisfying the normalization condi-
tion (30.16). Consequently, if we define

K′(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm)

= {C | W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C) ≥ c},

then (30.15) and (30.23) imply that

K′(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm) ⊂ K(h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm).

It follows that the intersection of the regions K′ as the hi are varied subject to (30.13)
and (30.16) must lie inside the intersection of the regions K, that is, inside GUδ(λ),ψ(λ). More
precisely, any set closed under lamination that contains the tensors C∗(λ,Vk) as k varies from
0 to m and as Vk varies over all k-dimensional subspaces of symmetric d × d matrices, must
at least contain all tensors C such that the inequality

W (h1,h2, . . . ,hk;hk+1,hk+2, . . . ,hm;C) ≥ c

is satisfied for all orthogonal sets of d×d symmetric matrices hi satisfying the normalization
condition (30.16). In particular, from (30.21) we conclude that GUδ(λ),ψ(λ) and hence G+

contains the tensor A.
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It remains to construct the extremal families of composites. An outline of how to do this
has been given for both two- and three-dimensional elasticity (Milton and Cherkaev 1995).
First we will provide a complete proof for the two-dimensional case, taking

ψ(λ) = λ, δ(λ) = 1/λ.

The extremal family of nullmode materials is trivial: V0 is the empty and the family contains
the single homogeneous material with elasticity tensor

C∗(λ,V0) = ψ(λ)C0 = λC0.

Similarly, the extremal family of trimode materials is trivial: V3 is the space of all 2 × 2
symmetric matrices and the family contains the single homogeneous material with elasticity
tensor

C∗(λ,V3) = δ(λ)C0 = C0/λ.

In the next two sections we describe extremal families of unimode and bimode composites.
We will see that it suffices to use third-rank laminates to achieve the extremal unimode mate-
rials and fourth-rank laminates to achieve the extremal bimode materials.

30.6. An extremal family of unimode materials for two-dimensional
elasticity†

This section is a bit technical, but the underlying idea is simple: To show that a particular
family of multiple-rank laminates is unimodal we consider each member in the family and
construct one trial strain field, designed so that it is nonzero only within the compliant phase,
and we construct two independent trial stress fields, designed so that they are nonzero only
within the stiff phase. Then the classical variational principles provide an upper bound on the
sum of two energies and one complementary energy, which goes to zero as λ→∞, thereby
establishing that the family is unimode. Those readers not interested in the details can refer
to figures 30.6 on the next page and 30.7 on page 661 and then skip to the next section.

Consider the following second-rank laminate. We take as core material the compliant
phase, having tensor C0/λ, and layer it in direction n (where |n| = 1) in equal proportions
with the stiff phase, having tensor λC0, and then we slice this laminate in a different direction
m �= n (where |m| = 1) and layer it again with an equal proportion of the stiff phase as
illustrated in figure 30.6 on the next page. Thus the resulting oblique box laminate, which we
will call material A, contains a volume fraction of the compliant phase of 1/4. Let C A denote
its effective elasticity tensor. To show that this is a unimode material, we first evaluate the
energy associated with a trial strain εA1 (x), which is zero inside the stiff phase, and inside the
compliant phase it takes the value

w1 = 1√
n2

1m2
1 + n2

2m2
2 + (n1m2 + n2m1)2/2

(
n1m1 (n1m2 + n2m1)/2

(n1m2 + n2m1)/2 n2m2

)
,

which has been chosen so that |w1| = 1 and n⊥ · w1n⊥ = m⊥ · w1m⊥ = 0, in which
n⊥ andm⊥ are unit vectors perpendicular to n andm. This latter constraint ensures strain
compatibility in the limit where the two laminations are on widely different length scales.

Strictly speaking we should modify the trial strain in a boundary layer to ensure that the
trial strain is the symmetrized gradient of a displacement field. However, for any fixed value
of λ > 0 the resulting change in the energy associated with the trial field will be negligible
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Figure 30.6. A unimode material that is an approximation to the second-rank oblique box
laminate discussed in the text. It is compliant under a shearing strain w1 with negative deter-
minant, which can be adjusted so that |w1| = 1. As θ and the orientation of the composite are
varied, w1 ranges over all matrices with negative determinant and unit norm. Reprinted with
permission from Milton and Cherkaev (1995). Copyright 1995, ASME.

when the two laminations are on sufficiently widely different length scales. The separation
between the length scales of successive laminations generally needs to be increased when λ

is increased to ensure that the contribution from the boundary layer remains negligible. What
is important is that the locally averaged value of the trial strain on one side of an interface
must be compatible with the locally averaged value of the trial strain on the other side of the
interface.

Since w1/4 is the average of this trial strain, the classical energy minimization principle
gives the bound

w1 · CAw1 ≤ 4w1 · C0w1/λ.

This inequality means that when λ is large the structure is compliant to strains proportional to
w1.

Next we evaluate the complementary energy associated with two trial stress fields τ A2 (x)
and τ A3 (x). The trial stress τ

A
2 (x) is taken to be zero except in the layers of the stiff phase in
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directionm, where we set it to have the value

w2 =m⊥ ⊗m⊥,

which has been chosen so that |w2| = 1, w1 ·w2 = 0, and w2m = 0. The latter constraint
ensures stress compatibility. Sincew2/2 is the average of this trial stress, the complementary
energy minimization principle gives the bound

w2 · C−1
A w2 ≤ 2w2 · C−1

0 w2/λ.

This inequality means that when λ is large the structure is stiff to stresses proportional tow2.
The trial stress τ A3 (x) is taken to be zero inside the compliant phase and to have the values

τ n(α) = αn⊥ ⊗ n⊥, τm(α, β) = αn⊥ ⊗ n⊥/2+ βm⊥ ⊗m⊥

inside the layers of the stiff phase that are layered in directions n andm, respectively. These
values have been chosen so that τ nn = 0 and τmm = τ nm/2 to ensure stress compatibility
in the limit where the two laminations are on widely different length scales. (The average of
the trial stress in the region occupied by the first laminate is τ n/2.) The parameter values

α = 2√
1− (n ·m)4

, β = −2(n ·m)2√
1− (n ·m)4

are chosen so that the average of the trial stress

w3 = τ n(α)/4+ τm(α, β)/2 = αn⊥ ⊗ n⊥/2+ βm⊥ ⊗m⊥/2

is orthogonal to w1 and w2 and has unit norm |w3| = 1. The complementary energy mini-
mization principle gives the bound

w3 · C−1
A w3 ≤ [τ n(α) · C−1

0 τ n(α)+ 2τm(α, β) · C−1
0 τm(α, β)]/4λ.

This inequality means that when λ is large the structure is stiff to stresses proportional tow3.
Letting W1 denote the one-dimensional subspace of symmetric matrices spanned by w1

we have
W (W1;CA) = w1 · CAw1 +w2 · C−1

A w2 +w3 · C−1
A w3,

and for any fixed unit vectorsm �= n our bounds imply that this energy sum approaches zero
as λ → ∞. Therefore the material is unimode. However, this class of materials is insuffi-
cient to form an extremal family. Since the determinant of the matrix w1 is always negative,
we cannot adjustm and n so that W1 matches an arbitrary prescribed one-dimensional sub-
space. In particular, sinceW1 never contains the identity tensor, we cannot generate negative
Poisson’s ratio materials that are easily compliant to compressive strains but resistant to shear
strains.

To obtain the desired extremal family of unimode materials we reflect the microstructure
of material A about the x2-axis to obtain a material A′ and then we layer (on a much larger
length scale) equal proportions of the materials A and A′ in the direction of the x1-axis, as
illustrated in figure 30.7 on the facing page. Let us call the resulting herringbone laminate
material B, and let CB denote its effective elasticity tensor. We take a trial strain εB1 (x) that
equals εA1 (x) inside material A, and which is the reflection of ε

A
1 (x) inside material A

′. (To
reflect a two-dimensional stress or strain field about any line parallel to the x2-axis one just
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Figure 30.7. A unimode material that is an approximation to the third-rank herringbone
laminate discussed in the text. It is compliant under a strain v1, which can be adjusted so
that |v1| = 1. As γ , θ , and the orientation of the composite are varied v1 ranges over all
matrices, with unit norm. This structure was also used as a building block for constructing an
elastically isotropic composite with negative Poisson’s ratio. Reprinted with permission from
Milton (1992). Copyright 1992, Elsevier Science.

changes the sign of the off-diagonal elements of the stress or strain at the reflected point.)
This ensures strain compatibility across the boundary between material A and A ′ in the limit
where the three laminations are on widely different length scales. Thus the trial strain inside
material A′ is nonzero only inside the stiff phase, where it takes the value

w′
1 = 1√

n2
1m2

1 + n2
2m2

2 + (n1m2 + n2m1)2/2

(
n1m1 −(n1m2 + n2m1)/2

−(n1m2 + n2m1)/2 n2m2

)
.

The average of the trial strain within material B is therefore

(w1 +w′
1)/8 =

v1

√
n2

1m
2
1 + n2

2m
2
2

4
√
n2

1m
2
1 + n2

2m
2
2 + (n1m2 + n2m1)2/2

,
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where

v1 = 1√
n2

1m
2
1 + n2

2m
2
2

(
n1m1 0
0 n2m2

)
(30.24)

has been defined so that |v1| = 1. Since C0 is an isotropic elasticity tensor, it follows that
w′

1 · C0w
′
1 = w1 · C0w1. Hence the classical energy minimization principle gives the bound

v1 · CBv1 ≤ 4[n2
1m

2
1 + n2

2m
2
2 + (n1m2 + n2m1)

2/2]w1 · C0w1

(n2
1m

2
1 + n2

2m
2
2)λ

. (30.25)

The trial stress field τ B2 (x) inside material A
′ is taken to be a reflection of the trial stress

τ B2 (x) inside material A, where it is chosen to have the same form as the trial stress field
τ A3 (x) with the coefficients α and β replaced by

α2 = 2m1m2

(n1m2 − n2m1)

√
n2

1m
2
1 + n2

2m
2
2

, β2 = −2n1n2

(n1m2 − n2m1)

√
n2

1m
2
1 + n2

2m
2
2

to ensure stress compatibility across the boundary between materials A and A ′ (which requires
that α2n1n2 + β2m1m2 = 0) and to ensure that the average stress

v2 = 1
2

(
α2n2

2 + β2m2
2 0

0 α2n2
1 + β2m2

1

)
= 1√

n2
1m

2
1 + n2

2m
2
2

(−n2m2 0
0 n1m1

)
(30.26)

has unit norm, |v2| = 1. The complementary energy minimization principle then gives the
bound

v2 · C−1
B v2 ≤ [τ n(α2) · C−1

0 τ n(α2)+ 2τm(α2, β2) · C−1
0 τm(α2, β2)]/4λ. (30.27)

The trial stress field τ B3 (x) inside material A
′ is taken to be minus the reflection of the trial

stress τ B3 (x) inside material A, where it is chosen to have the same form as the trial stress
field τ A3 (x) but now with the coefficients α and β replaced by

α3 =
√
2m2

n2(n1m2 − n2m1)
, β3 = −√2n2

m2(n1m2 − n2m1)
,

to ensure stress compatibility across the boundary between materials A and A ′ (which requires
that α3n2

2 + β3m2
2 = 0) and to ensure that the average stress

v3 = 1
2

(
0 −(α3n1n2 + β3m1m2)

−(α3n1n2 + β3m1m2) 0

)
has unit norm, |v3| = 1. The complementary energy minimization principle then gives the
bound

v3 · C−1
B v3 ≤ [τ n(α3) · C−1

0 τ n(α3)+ 2τm(α3, β3) · C−1
0 τm(α3, β3)]/4λ.

Notice that v1, v2, and v3 are a set of orthonormal matrices. Let V1 be the one-dimensional
subspace of symmetric matrices spanned by v1. We have established that, for any given λ > 0,
the energy sum

W (V1;CB) = v1 · CBv1 + v2 · C−1
B v2 + v3 · C−1

B v3
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is guaranteed to be finite provided that n andm are chosen with

n2 �= 0, m2 �= 0, n1/n2 �= m1/m2, n1 and m1 are not both zero.

It is convenient to set

n1 = sinφ, n2 = cosφ, m1 =
√
3/2, m2 = 1/2. (30.28)

Then, as φ is varied from −π/6 to π/6, the energy sum W (V1;CB) remains bounded and the
ratio

r = n1m1/n2m2 =
√
3 tanφ

of the eigenvalues of v1 takes all values r ∈ [−1, 1].
Conversely, if we are given an arbitrary one-dimensional subspace V1 spanned by a matrix

v1, with |v1| = 1, then the ratio r , with |r | ≤ 1, of the eigenvalue of v1 with the smallest
absolute value to the eigenvalue of v1 with the largest absolute value determines φ and hence
determines the associated microstructure of the unimode material. This unimode material
should be rotated so that the interface between materials A and A′ is normal to the eigenvector
of v1 that corresponds to the eigenvalue with the smallest absolute value. Let C B(λ,V1)

denote the effective tensor of the rotated material.
This defines the desired family of unimode materials. Since the upper bound on the sum

of energies W (V1;CB(λ,V1)) is proportional to 1/λ and remains bounded as V1 is varied
with λ held fixed, there exists some constant M1, depending only on C0, such that the sum
of energies is less than M1/λ for all λ and all v1. Therefore it suffices to take λ1 = M1/c to
ensure that for all one-dimensional subspaces V1,

W (V1;CB(λ,V1)) < c for all λ > λ1.

Thus this family of unimode materials is extremal.

30.7. An extremal family of bimode materials for two-dimensional
elasticity†

The idea underlying this somewhat technical section is again simple: To show that a particular
family of multiple-rank laminates is bimodal, we consider each member in the family and
construct two independent trial strain fields, designed so that they are nonzero only within the
compliant phase, and we construct one trial stress field, designed so that it is nonzero only
within the stiff phase. Then the classical variational principles provide an upper bound on the
sum of two energies and two complementary energies, which goes to zero as λ→∞, thereby
establishing that the family is bimode. We use the unimode materials as building blocks to
manufacture bimode materials as suggested by figure 30.8 on the next page. Those readers
not interested in the details can skip to the next section.

We first obtain material C , which is a simple laminate of the compliant phase, having
tensor C0/λ, and the stiff phase, having tensor λC0, mixed in equal proportions and layered in
the direction of the x2-axis. We then take materials B and C and layer them together in equal
proportions in the direction of the x1-axis, to form material D with effective tensor CD .

To show that this fourth-rank laminate is a bimode material, we first evaluate the energy
associated with a trial strain εD1 (x), which represents a vertical shear confined within the
simple laminate of material C . It is nonzero only within the compliant phase inside material
C , where it takes the value

v1 =
1√
2

(
0 1
1 0

)
,
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Figure 30.8. A bimode material that is an approximation to a third-rank laminate obtained
by laminating the oblique box structure of figure 30.6 with a simple laminate. It supports
a stress with positive determinant. A fourth-rank laminate, which is a bimode material and
supports any prescribed stress v3, can be obtained by replacing the oblique box structure with
the herringbone third-rank laminate of figure 30.7. This fourth-rank laminate is the structure
that is analyzed in the text. Reprinted with permission from Milton and Cherkaev (1995).
Copyright 1995, ASME.

which has been chosen so that |v1| = 1. Since the average of this trial strain is v1/4, the
energy minimization principle gives the bound

v1 · CDv1 ≤ 4v1 · C0v1/λ.

Next we choose a trial strain εD2 (x) that inside material B equals the actual strain that
would be present with an average strain inside material B equal to v1, as given by (30.24),
and inside material C is nonzero only inside the compliant phase, where it takes the value

εD = 2√
n2

1m
2
1 + n2

2m
2
2

(
0 0
0 n2m2

)
,

which has been chosen to ensure strain compatibility with the zero trial strain inside the stiff
phase of material C and to ensure compatibility between the average trial strain within mate-
rial C (which is half the above value) and the average trial strain v1 inside material B.

The overall average of this trial strain is therefore

1

2
√
n2

1m
2
1 + n2

2m
2
2

(
n1m1 0
0 2n2m2

)
=
v2

√
n2

1m
2
1 + 4n2

2m
2
2

2
√
n2

1m
2
1 + n2

2m
2
2

,

where

v2 =
1√

n2
1m

2
1 + 4n2

2m
2
2

(
n1m1 0
0 2n2m2

)
has been defined so that |v2| = 1. The energy minimization principle then gives the bound

v2 · CDv2 ≤
4(n2

1m
2
1 + n2

2m
2
2)[v1 · CBv1/2+ εD · C0εD/4λ]
n2

1m
2
1 + 4n2

2m
2
2

,
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and the inequality (30.25) in turn gives a bound on v1 · CBv1.
Finally we take a trial stress field τ D3 (x) that inside material B equals the actual stress that

would be present with an average stress inside material B equal to v2, as given by (30.26),
and inside material C is nonzero only inside the stiff phase, where it takes the value

τ D = 2√
n2

1m
2
1 + n2

2m
2
2

(−n2m2 0
0 0

)
,

which has been chosen to ensure stress compatibility with the zero trial stress inside the com-
pliant phase of material C and to ensure compatibility between the average trial stress within
material C (which is half the above value) and the average trial stress v2 inside material B.
The overall average of this trial stress is

1

2
√
n2

1m
2
1 + n2

2m
2
2

(−2n2m2 0
0 n1m1

)
=
v3

√
n2

1m
2
1 + 4n2

2m
2
2

2
√
n2

1m
2
1 + n2

2m
2
2

,

where

v3 =
1√

n2
1m

2
1 + 4n2

2m
2
2

(−2n2m2 0
0 n1m1

)
has been defined so that |v3| = 1. The complementary energy minimization principle then
gives the bound

v3 · C−1
D v3 ≤

4(n2
1m

2
1 + n2

2m
2
2)[v2 · C−1

B v2/2+ τ D · C−1
0 τ D/4λ]

n2
1m

2
1 + 4n2

2m
2
2

,

and the inequality (30.27) in turn gives a bound on v2 · C−1
B v2. Notice that v1, v2, and v3 are

a set of orthonormal matrices.
Let V2 be the two-dimensional subspace of symmetric matrices spanned by v1 and v2. It

is conveniently parameterized by v3, which is orthogonal to all matrices in V2. Again let us
choose the same parameter values (30.28) for the unit vectors n andm. Then as φ is varied
between − tan−1(2/

√
3) and tan−1(2/

√
3), the energy sum

W (V2;CD) = v1 · CDv1 + v2 · CDv2 + v3 · C−1
D v3

remains bounded and the ratio

r = −n1m1/2n2m2 = −
√
3(tanφ)/2

of the eigenvalues of v3 takes all values r ∈ [−1, 1]. Since W (V2;CD) approaches zero as λ
tends to infinity, material D is a bimode material.

Conversely, suppose that we are given an arbitrary two-dimensional subspace V2. We let
v3 denote the matrix with |v3| = 1, which is orthogonal to all matrices in V2. The ratio r , with
|r | ≤ 1, of the eigenvalue of v3 with the smallest absolute value to the eigenvalue of v3 with
the largest absolute value determines φ and hence determines the associated microstructure
of the bimode material. This bimode material should be rotated so that the interface between
materials B and C is normal to that eigenvector of v3 associated with the eigenvalue having
the largest absolute value. Let CD(λ,V2) denote the effective tensor of the rotated material.
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This defines the desired family of bimode materials. Since the upper bound on the sum of
energiesW (V2;CD(λ,V2)) is proportional to 1/λ and remains bounded as V2 is varied with λ
held fixed, there exists some constant M2, depending only on C0, such that the sum of energies
is less than M2/λ for all λ and all v1. Therefore it suffices to take λ2 = M2/c to ensure that
for all two-dimensional subspaces V2,

W (V2;CD(λ,V2)) < c for all λ > λ2.

Thus this family of bimode materials is extremal.
This completes the proof that in two dimensions any positive-definite tensor can be real-

ized as the effective tensor of a two-phase composite assembled from a sufficiently compliant
phase and a sufficiently stiff phase. The derivation shows that the subspace Vk , representing
the easy modes of deformation of a given multiple-rank laminate, can be determined recur-
sively. Laminating two materials that are easily compliant to strains in subspaces V 1

k and
V2
	 , respectively, produces a composite that is easily compliant to strains in a subspace V ∗

m .
Cherkaev (2000) gives a formula for calculating V ∗

m in terms of V1
k , V2

	 and the direction of
lamination n.

30.8. Extremal materials for three-dimensional elasticity
Here we briefly outline the strategy for constructing three-dimensional extremal materials;
for more details see Milton and Cherkaev (1995). The first step is to construct the pentamode
materials, which, when λ is large, are stiff with respect to a single stress v1 but compli-
ant with respect to any other stress not proportional to v1. These are generalizations of the
two-dimensional honeycomb and inverted honeycomb arrays of linkages in figures 30.4 on
page 655 and 30.5 on page 656 to three dimensions. Since a structure that is stiff with respect
to v1 is also stiff with respect to −v1, we can assume without loss of generality that v1 has at
most one negative eigenvalue.

The diamond structure lattice of linkages illustrated in figure 30.9 on the facing page is
stiff with respect to hydrostatic compression, that is, to v1 = I , and by making a suitable
affine transformation of the structure (but without changing the elasticity tensors of the two
phases) one obtains pentamode materials that are stiff with respect to any given positive-
definite tensor v1. By moving the point p, where the four linkages within the unit cell meet,
to the other side of the unit cell and making an appropriate affine transformation one obtains
pentamode materials that are stiff with respect to any given tensor v1 with one negative eigen-
value. Pentamode materials that are stiff with respect to any given tensor v1 having zero
determinant are obtained as follows. One moves p to the boundary of the unit cell, so three
of the four linkages are coplanar, and makes an appropriate affine transformation. The fourth
linkage can be removed, if desired, since it can support essentially no stress when λ is large.
Then the remaining linkages are in planes, and within these planes they are arranged in the
honeycomb and inverted honeycomb arrays of figures 30.4 on page 655 and 30.5 on page 656.

These pentamode materials are used as the basis for constructing the quadramode mate-
rials that, when λ is large, are stiff with respect to two independent stresses v1 and v2. We
construct the linkages of a pentamode material that is stiff with respect to v1, and we con-
struct the linkages of a pentamode material that is stiff with respect to v2. It is desirable to
use very thin linkages in each construction. Then we superimpose these two sets of linkages
to obtain a structure of two interpenetrating lattices of linkages, surrounded by a compliant
matrix, which, when λ is large, is stiff with respect to v1 and v2 but compliant with respect
to any stress not in the space spanned by v1 and v2. We use the freedom in the design of
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Figure 30.9. The diamond lattice of linkages is a pentamode material that can be used as
basis for constructing all of the three-dimensional extremal materials. Shown here are the
four linkages inside the primitive unit cell. The cell is outlined by the solid lines and has
basis vectors a1, a2, and a3. It sits inside the conventional unit cell of the face-centered cubic
lattice, outlined by the broken lines. Depending on which side of the unit cell the point p lies,
the material supports a stress with eigenvalues that all have the same sign, or that have mixed
signs. Reprinted with permission fromMilton and Cherkaev (1995). Copyright 1995, ASME.

the sets of linkages associated with the pentamode material to ensure that the lattices do not
intersect. For example, this may require replacing a linkage by a linkage with a hole in it. By
superimposing three, four, or five lattices of linkages, one obtains the trimode, bimode, and
unimode families of extremal materials, respectively. Of course, the nullmode and hexamode
materials are the stiff and compliant phase, respectively. In this way one obtains all of the
extremal materials for three-dimensional elasticity.

References
Alderson, K. L. and K. E. Evans 1992, October. The fabrication of microporous polyethy-

lene having a negative Poisson’s ratio. Polymer (Guildford) 33(20):4435–4438. {653,
667}

Almgren, R. F. 1985. An isotropic three-dimensional structure with Poisson’s ratio = −1.
Journal of Elasticity 15:427–430. {652, 656, 667}



668 30. G-closure properties, extremal composites

Astala, K. and M. Miettinen 1998. On quasiconformal mappings and 2-dimensional
G-closure problems. Archive for Rational Mechanics and Analysis 143(3):207–240.
{646, 668}

Bathurst, R. J. and L. Rothenburg 1988. Note on a random isotropic granular material with
negative Poisson’s ratio. International Journal of Engineering Science 26:373–383.
{652, 668}

Berlyand, L. and K. Promislow 1995. Effective elastic moduli of a soft medium with hard
polygonal inclusions and extremal behavior of effective Poisson’s ratio. Journal of
Elasticity 40(1):45–73. {653, 668}

Caddock, B. D. and K. E. Evans 1989. Microporous materials with negative Poisson’s
ratios: I. Microstructure and mechanical properties. Journal of Physics D: Applied
Physics 22:1877–1882. {653, 668}

Cherkaev, A. V. 2000. Variational Methods for Structural Optimization. Berlin / Heidel-
berg / London / etc.: Springer-Verlag. xxvi + 545 pp. ISBN 0-387-98462-3. {xxv,
xxvi, 352, 353, 426, 434, 666, 668}

Cherkaev, A. V. and L. V. Gibiansky 1993. Coupled estimates for the bulk and shear moduli
of a two-dimensional isotropic elastic composite. Journal of the Mechanics and Physics
of Solids 41(5):937–980. {560, 565, 653, 668}

Francfort, G. A. and G. W. Milton 1994. Sets of conductivity and elasticity tensors stable
under lamination. Communications on Pure and Applied Mathematics (New York) 47
(3):257–279. {645–647, 668}

Friis, E. A., R. Lakes, and J. B. Park 1988. Negative Poisson’s ratio polymeric and metallic
foams. Journal of Materials Science 23:4406–4414. {652, 668}

Gibson, L. J. and M. F. Ashby 1988. Cellular Solids. Structure and Properties, pp. 72–82.
New York: Pergamon. ISBN 0-08-035910-8 (hardback), 0-08-036607-4 (softcover).
{653, 668}

Herakovich, C. T. 1984. Composite laminates with negative through-the-thickness Pois-
son’s ratios. Journal of Composite Materials 18:447–455. {653, 668}

Homand-Etienne, F. and R. Houpert 1989. Thermally induced microcracking in granites:
characterization and analysis. International Journal of Rock Mechanics and Mining
Sciences and Geomechanics Abstracts 26:125–134. {652, 668}

Kolpakov, A. G. 1985. Determination of the average characteristics of elastic frameworks.
Prikladnaia matematika i mekhanika (Leningrad, R.S.F.S.R.) 49(6):969–977. {653,
668}

Lakes, R. 1987. Foam structures with a negative Poisson’s ratio. Science 235:1038–1040.
{2, 16, 652, 668}

Lakes, R. 1991. Deformation mechanisms in negative Poisson’s ratio materials: Structural
aspects. Journal of Materials Science 26:2287–2292. {652, 668}

Larsen, U. D., O. Sigmund, and S. Bouwstra 1997. Design and fabrication of compliant
micro-mechanisms and structures with negative Poisson’s ratio. Journal of Microelec-
tromechanical Systems 6:99–106. {2, 3, 16, 653, 668}

Milton, G. W. 1992. Composite materials with Poisson’s ratios close to −1. Journal of the
Mechanics and Physics of Solids 40(5):1105–1137. {2, 16, 653, 661, 668}



References 669

Milton, G. W. 1994. A link between sets of tensors stable under lamination and quasi-
convexity. Communications on Pure and Applied Mathematics (New York) 47(7):959–
1003. {513, 527, 535, 551, 647, 669}

Milton, G. W. and A. V. Cherkaev 1995. Which elasticity tensors are realizable? ASME
Journal of Engineering Materials and Technology 117:483–493. {647, 652, 653, 655,
656, 658, 659, 664, 666, 667, 669}

Milton, G. W. and V. Nesi 1999. Optimal G-closure bounds via stability under lamination.
Archive for Rational Mechanics and Analysis 150(3):191–207. {207, 218, 480, 495,
646, 669}

Nesi, V. 1996. Quasiconformal mappings as a tool to study certain two-dimensional
G-closure problems. Archive for Rational Mechanics and Analysis 134(1):17–51.
{124, 141, 152, 156, 480, 481, 495, 646, 669}

Roscoe, R. 1973. Isotropic composites with elastic or viscoelastic phases: General bounds
for the moduli and solutions for special geometries. Rheologica acta 12:404–411.
{206, 219, 471, 496, 646, 669}

Sigmund, O. 1994. Materials with prescribed constitutive parameters: An inverse homog-
enization problem. International Journal of Solids and Structures 31(17):2313–2329.
{652, 669}

Sigmund, O. 1995. Tailoring materials with prescribed elastic properties. Mechanics of
Materials: An International Journal 20(4):351–368. {653, 669}

Warren, T. L. 1990. Negative Poisson’s ratio in a transversely isotropic foam structure.
Journal of Applied Physics 67:7591–7594. {653, 669}





31
The bounding of effective moduli as a

quasiconvexification problem

31.1. Quasiconvexification problems in elasticity theory
Problems of quasiconvexification arise in nonlinear elasticity (Ball 1977) and, in particular,
in the study of shape memory materials (Ball and James 1987). We are given a scalar-valued
function W (E) that is continuous on the space T comprised of all d × � matrices E. The
quasiconvexification of W is the function

QW (E0) = inf
E(x)
E = ∇u

〈W (E)〉 = inf
E(x)
E = ∇u

1
|�|
∫
�

dxW (E(x)), (31.1)

where the angular brackets denote averages over a region� and the infimum is over all smooth
potentials u(x) defined in � satisfying the affine boundary conditions

u(x) = x ·E0 for all x ∈ ∂�. (31.2)

It follows from the boundary conditions (31.2) that

〈∇u〉 = 1
|�|
∫
�

dx∇u(x) = E0 + 1
|�|
∫
�

dx∇[u(x)− x ·E0] = E0.

Thus E0 can be identified with the average field in the body. When QW (E0) = W (E0) the
function W (E0) is said to be quasiconvex.

In three-dimensional elasticity theory d = � = 3 and W (E) is the microscopic elastic
energy associated with the deformation E = ∇u, while QW (E0) is the macroscopic energy
when the material is subject to affine boundary conditions. (Here u should not be confused
with the displacement, which was represented by u in previous chapters; under the mapping
x′(x), u should be identified with x′ and not with x′ − x.) Due to the fact, known as the
principle of material frame-indifference, that the energy does not change when we rotate the
body after making the deformation, these functions satisfy

W (ER) = W (E), QW (E0R) = QW (E0),

for all rotation matricesR, that is, they are functions ofEET . (The matricesER,E0R, and
EET appear here, rather than RE, RE0, and ETE, because we have chosen to define ∇u
as the matrix having ∇u1 and ∇u2 as columns rather than as rows.)

Typically, one expects that the macroscopic energy will be minimized when the displace-
ment is linear, that is, that the infimum in (31.1) will be achieved when u(x) = x · E0

671



672 31. Bounding and quasiconvexification

for all points x ∈ �. Accordingly, one has QW (E0) = W (E0). However, in some ma-
terials an instability develops, and it is energetically favorable for u(x) to develop oscilla-
tions, usually on length scales that are much shorter than the dimensions of �. Then one
has QW (E0) < W (E0). In particular, suppose that W (E) takes its minimum value W0

when EET equals one of a set S = {M 1,M 2, . . . ,M n} of n matrices. (By adding a con-
stant to the energy we can assume that W0 = 0 without loss of generality.) If u(x) satisfying
(31.2) can be constructed so that∇u(x)(∇u(x))T takes values in S almost everywhere, while
E0E

T
0 �∈ S, then QW (E0) = W0 < W (E0). The region where ∇u(x)(∇u(x))T takes the

valueM j is defined to be phase j and the pattern of phases occupying the region� is called
the microstructure. One of the most common microstructures is a twinned microstructure
where two phases are present in a laminated configuration. This is the theory that Ball and
James (1987, 1992) developed to explain phase transitions and microstructures in materials
where the energy driving the transition is predominantly elastic; see also Khachaturyan (1966,
1983) and Roytburd (1967, 1968, 1978, 1993), who analyzed the problem of phase transitions
in a linear elastic setting, and see Kohn (1991), Ball and James (1992), and Bhattacharya
(1993) for a comparison of the nonlinear and linear theories. James and Kinderlehrer (1989),
Ball (1996), Müller (1998), and Ball and James (2001) give a more complete account of the
nonlinear theory as well as extensive references. Luskin (1996) reviews numerical methods
that have been developed for computing the microstructure.

When the function W (E) is convex in the sense that the inequality

f W (E1)+ (1− f )W (E2) ≥ W ( fE1 + (1− f )E2) (31.3)

is satisfied for all f ∈ [0, 1] and for all pairs of d× k matricesE1 andE2, then the inequality

〈W (E)〉 ≥ W (〈E〉) (31.4)

holds for any field E(x), and in particular for E(x) = ∇u(x), where u(x) is any potential
satisfying the required boundary conditions (31.2). It follows that for convex functionsW (E)

the infimum in (31.1) is attained when u(x) = x ·E0, and consequently

QW (E0) = W (E0).

Thus convex functions are quasiconvex. However, convexity is not an appropriate as-
sumption for nonlinear elasticity (Coleman and Noll 1959). If one takes f1 = 1/2, E1 = I ,
and E2 = R = E1R, whereR is a 180◦ rotation about some axis, the inequality (31.3) will
be violated. The deformationE = (I +R)/2 corresponds to squeezing the material onto the
axis of rotation, which requires an enormous amount of energy, implying that W (E) must be
much larger than W (I) = W (R).

More generally, a function is quasiconvexwhen the inequality (31.4) holds for every func-
tion E(x) = ∇u(x) such that u(x) satisfies the affine boundary conditions (31.2). We
will see in section 31.3 on page 675 that the affine boundary conditions (31.2) on u(x) can
be replaced by periodic boundary conditions on E(x) = ∇u(x) with the constraint that
〈∇u〉 = E0. An important class of quasiconvex functions that are not necessarily convex
or quadratic are the polyconvex functions introduced by Ball (1977). A function W (E) is
polyconvex if it can be expressed as a convex function of the elements of E, det(E), and all
other subdeterminants ofE, that is, as a convex function of all the null Lagrangians associated
with the field E = ∇u. For example, if W (E) = +(E, det(E)), where + is convex in its
arguments, then by Jensen’s inequality and because det(E) is a null Lagrangian, we have

〈W (E)〉 = 〈+(E, det(E))〉 ≥ +(〈E〉, 〈det(E)〉) = +(〈E〉, det(〈E〉)) = W (〈E〉),
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which establishes the quasiconvexity of W (E).
Now suppose thatE(x) is a periodic function that oscillates in the direction n taking two

valuesE1 and E2. Specifically, let us suppose that

E(x) = χ(n · x)E1 + [1− χ(n · x)]E2, (31.5)

where χ(y) is the periodic characteristic function

χ(y) = 1 for 0 ≤ y < f,

= 0 for f ≤ y < 1,
= χ(y − 1) for all y.

By taking Fourier transforms it is clear that E(x) = ∇u(x) for some potential u(x) if and
only if

E1 −E2 = n⊗ v, (31.6)

for some vector v. With this choice of E(x) the quasiconvexity condition (31.4) reduces to
the convexity condition (31.3) with the constraint (31.6). Functions satisfying (31.3) for all
matricesE1 andE2 that are rank-1 connected (i.e., such thatE1−E2 is a rank-1 matrix) are
said to be rank-1 convex. Clearly rank-1 convexity is a necessary condition for quasiconvexity.
Šverák (1992) showed that rank-1 convexity is not sufficient to guarantee quasiconvexitywhen
k ≥ 3. A variant of his example of a function that is rank-1 convex but not quasiconvex will
be discussed in section 31.8 on page 684.

We will call the field (31.5), where E1 and E2 are rank-1 connected, a simple laminate
field. In the same way that one can construct multiple-rank laminates, so too can one construct
multiple-rank laminate fields. For example, the electric field e(x) solving the equations of
conductivity in a multiple-rank laminate is a multiple-rank laminate field. More generally,
one constructs a multiple-rank laminate field by taking a multiple-rank laminate and setting
the field E(x) to have a constant value in each individual layer in such a way as to ensure
compatibility across interfaces, with the possible insertion of appropriate boundary layers.
Thus the average ofE(x) on one side of an interface with normal n and the average ofE(x)
on the other side of this interface can differ only by a rank-1 matrix of the form n ⊗ v. Of
course successive laminations must be on widely separated length scales, as usual.

The rank-1 convexification of W is the function RW (E0) given by the right-hand side
of (31.1) when E(x) is restricted to range over all periodic multiple-rank laminate gradient
fields such that 〈E(x)〉 = E0. Equivalently, it is the largest rank-1 convex function that is
less than or equal to W (E0) for all E0. The convexification of W is the function CW (E0)

given by the right-hand side of (31.1) when E(x) ranges over all periodic fields (not just
gradients) such that 〈E(x)〉 = E0. Equivalently, it is the largest convex function that is less
than or equal to W (E0) for all E0. The polyconvexification of W is the function PW (E0)

given by the right-hand side of (31.1) when E(x) ranges over all periodic fields (not just
gradients) such that 〈Q(E(x))〉 = Q(E0) for all functions Q(E) that are null Lagrangians,
that is, the determinant and all other subdeterminants, including the individual elements of
E. Equivalently, it is the largest polyconvex function that is less than or equal to W (E 0)

for all E0. Firoozye (1991) showed that the optimal translation bound T Q(E0), with null
Lagrangians and quadratic quasiconvex functions as translations, is given by the right-hand
side of (31.1) when E(x) ranges over all periodic fields such that the identity 〈Q(E(x))〉 =
Q(E0) holds for all null Lagrangians Q(E) and, additionally, the inequality 〈Q(E(x))〉 ≥
Q(E0) holds for all quasiconvex quadratic functions Q(E). Of course, the function W is
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recoveredwhen one restrictsE(x) in the right-hand side of (31.1) to beE0. Since the infimum
of a function over a set of fields is either reduced or maintained when the set of fields is
enlarged, we have the string of inequalities,

W (E0) ≥ RW (E0) ≥ QW (E0) ≥ TW (E0) ≥ PW (E0) ≥ CW (E0), (31.7)

which are illustrated in figure 31.1.

E0

W

RW

CWPW

W

TW

QW

Figure 31.1. A schematic illustration of the relation between the convexification, CW , poly-
convexification, PW , translation bound, TW , quasiconvexification, QW , and rank-1 convex-
ification, RW , of a function W . Of course, the horizontal axis should be multidimensional
rather than one-dimensional, and in general the function W may have more than two local
minima.

31.2. The independence of the quasiconvexified function on the shape
and size of the region Ω

The function QW (E0) is clearly independent of the size of the region �, as can be seen by
making the change of variable x′ = λx in (31.1) and setting u′(x′) = λu(x′/λ). In fact,
QW (E0) is independent of the shape of �, as shown by Ball and Murat (1984) [see also Ball
(1996) and Müller (1998)]. The proof uses an idea similar to that used in the construction of
the sphere and ellipsoid assemblages in chapter 7 on page 113. Let �′ be a different shaped
region and let Q′W (E0) denote the quasiconvexification ofW with respect to this new region.
The first step is to prove that Q ′W (E0) ≤ QW (E0).

For simplicity, let us assume that � and �′ are each smooth and simply connected. For
any ε > 0 we can find a smooth potential uε(x) satisfying the boundary conditions (31.2)
such that

〈W (∇uε)〉 ≤ QW (E0)+ ε. (31.8)
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Now we take our region �′ and begin by setting the potential u(x) equal to x ·E0 inside it.
Then we carve out from inside �′ a region with the same shape as � but not necessarily of
the same size. Inside this region we set

u(x) = (1/λ)uε(λx+ c)+ d,
where the scale factor λ and the shifts c and d are selected according to the size and position
of the region that we have carved out, so that the potential is continuous at the boundary of
the region.

The average of W (u(x)) over this region then equals the average of W (uε(x)) over �,
which satisfies the bound (31.8). We continue carving out such regions of various sizes rang-
ing to the very small, making sure that they do not intersect each other, until they occupy a
proportion p of the total volume of �′. This results in a potential u(x) with

〈W (∇u)〉 ≤ p[QW (E0)+ ε]+ (1− p)W (E0), (31.9)

where the angular brackets now denote an average over �′. Strictly speaking, we should
smooth the potential near the boundaries of the regions that we have carved out to remove
the discontinuities in ∇u(x) that occur there. This can be done with negligible change to
〈W (∇u)〉. Since ε can be arbitrarily small and since p can be arbitrarily close to 1, (31.9)
implies that

Q′W (E0) ≤ QW (E0).

By switching the roles of � and �′ in the above argument it is evident that the reverse in-
equality must also hold. Hence Q ′W (E0) must equal QW (E0).

31.3. Replacing the affine boundary conditions with periodic boundary
conditions

For concreteness let us suppose that we are working in a three-dimensional space. Since the
shape of � does not matter, we can take it to be the cube

0 ≤ x1 ≤ h, 0 ≤ x2 ≤ h, 0 ≤ x3 ≤ h,
of side length h. Then u(x)−x ·E0 satisfies the periodic boundary conditions, being zero on
the boundary of the cube. This suggests that we can relax the boundary conditions on u(x),
allowing potentials u(x) such that

u′(x) = u(x)− x ·E0 is �−periodic.
We need to show that the infimum in (31.1) is not decreased when we admit this larger class
of potentials. Let us suppose that we are given any �-periodic potential u′(x). Our aim is to
construct a sequence of associated potentialsum(x) that satisfy the affine boundary conditions
(31.2) and are such that

lim
m→∞〈W (∇um)〉 = 〈W (∇u)〉, where u(x) = x ·E0 + u′(x).

To do this, we pick a large integer p and divide the cube � into p3 subcubes, each with
side length h/p. In those cubes that do not touch the boundary of � we set

up(x) = x ·E0 + (1/p)u′(px). (31.10)
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The average of W (∇up) within each of these subcubes is then the same as the average of
W (∇u). In those subcubes that touch the side of � we need to make a transition between
periodic and affine boundary conditions. This can be done by setting

up(x) = x ·E0

+ f
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where f (y) is some smooth function of y with

f (0) = 0, f (y) = 1 for y ≥ 1.

By making the change of variable x′ = px one can check that the average value of W (∇u p)
taken over any subcube varies according to whether the subcube touches a vertex, edge, or
face of � but does not depend on p. Hence the average value of W (∇u p) taken over any
subcube has a maximum value W+ independent of p. It follows that the average value of
W (∇up) taken over all of � satisfies the inequality

〈W (∇up)〉 ≤ (p − 2)3

p3 〈W (∇u)〉 + p3 − (p − 2)3

p3 W+,

in which (p − 2)3/p3 represents the proportion of subcubes which do not touch the side of
�. Clearly 〈W (∇u p)〉 approaches 〈W (∇u)〉 in the limit as p goes to infinity. Therefore the
infimum in (31.1) does not change when the affine boundary conditions on u(x) are replaced
by the requirement that u′(x) = u(x)−x ·E0 be�-periodic, that is, by the requirement that
∇u(x) be �-periodic.

This result suggests a natural generalization of quasiconvexification, which extends one
introduced by Dacorogna (1982) (called A-quasiconvexification) that has been extensively
investigated by Fonseca and Müller (1999) and Braides, Fonseca, and Leoni (2000). Given a
scalar-valued function W defined on the space of tensors T , we call

QW (E0) = inf
E ∈ U ⊕ E
〈E〉 = E0

〈W (E)〉

the quasiconvexification of W with respect to E . Here, as usual, U is the space of constant
fields and E is a subspace of �-periodic fields having zero average value and satisfying ap-
propriate differential constraints. At each point x the fields in U and E take their values in the
tensor space T . In a particular representation, U ⊕ E might contain, for example, the set of
all fieldsE(x) given by (12.13) asE0 is varied and U (x) ranges over all periodic potentials.
Again, a function is said to be quasiconvex if QW (E0) = W (E0) for allE0.

The analog of matrices E1 and E2 that are rank-1 connected are matrices such that

E1 −E2 = En for some n,

where En is the subspace onto which Γ1(n) projects. Following Tartar (1979) and Murat
(1987) we let * denote the set of all such matrices, and we say that E1 and E2 are *-
connected if their difference is a matrix in *. A function W (E) is then said to be *-convex
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if (31.3) holds for all f ∈ [0, 1] and for all E1 and E2 that are *-connected. Again, *-
convexity is a necessary condition for quasiconvexity. Tartar (1979) showed that*-convexity
is not sufficient to guarantee quasiconvexity in this generalized sense.

Now suppose that ∇u takes a finite number of values E1, E2, . . . ,En. Let fi be the
volume fraction of the region where ∇u takes the value E i . Then we have that

〈W (∇u)〉 −W (〈∇u〉) =
[
n∑
i=1

fiW (E i)

]
−W (

n∑
i=1

fiEi ).

Notice that the right-hand side only depends on the values E i and the volume fractions fi .
More generally, the right-hand side depends only on the distribution of values that ∇u takes.
This distribution is called the Young’s measure associated with the periodic gradient ∇u.
(Strictly speaking, Young’s measures are associated with sequences of functions, but for our
purposes we ignore the distinction.) In our example, the Young’s measure consists of n Dirac
delta functions located at the matrices E1, E2, . . . ,En , with masses f1, f2, . . . , fn . If the
right-hand side is nonnegative for all E0 and for all Young’s measures of periodic gradients,
then W is quasiconvex; conversely, if the right-hand side is negative for some Young’s mea-
sure, then W is not quasiconvex. Thus a characterization of Young’s measures of periodic
gradients would in principle allow us to identify whether a function W is quasiconvex or not
[see, for example, Kinderlehrer and Pedregal (1991)]. Unfortunately, little is known about the
possible Young’s measures of periodic gradients.

31.4. The equivalence of bounding the energy of multiphase linear
composites and quasiconvexification

Kohn (1991) recognized that bounding the energy of a linear composite reduces to a quasi-
convexification problem. Suppose that we are given a composite where the tensor field L(x)
is constrained to take values in a set U . The best possible lower boundW−(E0) on the energy

E0 ·L∗E0 = inf
E ∈ U ⊕ E
〈E〉 = E0

〈E · LE〉

is
W−(E0) = inf

L
L(x) ∈ U

inf
E ∈ U ⊕ E
〈E〉 = E0

〈E · LE〉. (31.11)

Switching the order of the infimums gives

W−(E0) = inf
E ∈ U ⊕ E
〈E〉 = E0

〈W (E)〉, (31.12)

where
W (E) = inf

L ∈ U E ·LE. (31.13)

In other words, the problem of finding the best possible lower bound on the energy of the
composite for all applied fields E0 is equivalent to the problem of finding the quasiconvex-
ification of the function W (E). In an n-phase composite where the set U consists of the n
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tensors L1, L2, . . . ,Ln , (31.13) implies that the function W (E) is the minimum of a set of
quadratic wells each centered at E = 0:

W (E) = min{E · L1E,E · L2E, . . . ,E · LnE}.
Thus the problem of bounding the energy of a linear inhomogeneous composite with no

restriction placed on the configuration of the phases is equivalent to bounding the energy of
a homogeneous nonlinear material. This equivalence is tied with the fact that the following
iterative procedure leads to the best possible bound on E0 · L∗E0. We begin with a trial
configuration and a trial field E(x) ∈ U ⊕ E that comes close to minimizing the energy
for that configuration. Then we improve the configuration by moving the phases to minimize
E(x)L(x)E(x) at each point x, holdingE(x) fixed. Then we improve our choice ofE(x) to
reflect the new microgeometry, and so on ad-infinitum. The freedom that we have to move the
phases according to the value ofE(x)means that we are effectively working with a nonlinear
homogeneous material with energyW (E).

Conversely, subject to some technicalities, quasiconvexification problems can be mapped
to essentially equivalent problems of bounding the energy of composites. To see this, consider
the thermoelastic-type problem of the form(

J(x)
ς(x)

)
= L(x)

(
E(x)
T

)
, J ∈ U ⊕ J , E ∈ U ⊕ E, (31.14)

where ς(x) is not subject to any differential constraint, T is constant, and L(x) has the form

L(x) =
(
L(x) A(x)

[A(x)]T k(x)

)
.

The field L(x) is constrained to take values in some set U . We take an applied field

E0 =
(
E0
1

)
.

From the analysis at the beginning of this section it follows that the best possible bound on
E0 ·L∗E0 can be identified with

QF(E0) = inf
E ∈ U ⊕ E
〈E〉 = E0

〈F(E)〉,

where

F(E) = inf
L ∈ U

(
E
1

)
·L
(
E
1

)
= inf

L ∈ U E · LE + 2E ·A+ k.

In the case where U consists of a set of n tensors L1, L2, . . . ,Ln , the function F(E) is the
minimum of a set of arbitrary quadratic wells. We just need to position these wells in the right
places, choosing sufficiently many of them, and choosing them to be sufficiently narrow, so
that F(E) almost matches W (E).

Specifically, suppose that a twice differentiable function W (E) is given and take U to
consist of all tensors of the form

L =
(

σ0I W ′(B)/2− σ0B
[W ′(B)/2− σ0B]T W (B)−B · W ′(B)+ σ0B ·B

)
,
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asB ranges over a set S in tensor space consisting, say, of tensorsB with |B| < r , where r is
large. Here W ′(B) = dW/dB and σ0 is a fixed large constant that remains to be determined.
The form of L has been chosen so that F(E) is simply

F(E) = inf
B ∈ S σ0(E −B) · (E −B)+ (E −B) · W ′(B)+W (B), (31.15)

where the quadratic function appearing in the infimum takes the value W (B) and has deriva-
tive W ′(B) at E = B. If forE ∈ S the infimum is achieved atB = E, then we can identify
F(E) with W (E). This will be the case if for allB ∈ S

σ0(E −B) · (E −B)+ (E −B) ·W ′(B)+ W (B) ≥ W (E).

We choose

σ0 > sup
E ∈ S, B ∈ S
B �= E

W (E)−W (B)− (E −B) ·W ′(B)

(E −B) · (E −B)
,

so this is satisfied for all E ∈ S. The assumption that W is twice differentiable ensures that
the expression on the right-hand side remains finite asB approachesE.

Outside the set S the function F(E) will have quadratic growth asE →∞. One expects
that pointwise QF(E) will approach QW (E) in the limit as r →∞, since F(E) converges
pointwise to W (E). In this case the problem of quasiconvexifying a twice differentiable
function W (E) can regarded as the limit of a sequence of generalized thermoelastic-type
composite problems involving energy minimization.

31.5. The link between the lamination closure and Λ-convexification
Given an n-phase composite with component tensorsL1,L2, . . . ,Ln, we have seen that find-
ing the best possible lower bound on the energy

E0 · L∗E0 = inf
E ∈ U ⊕ E
〈E〉 = E0

〈
n∑
i=1

χiE · LiE〉,

is equivalent to the problem of quasiconvexifying the function

W (E) = min{E ·L1E,E ·L2E, . . . ,E ·LnE}.

Moreover, we have seen in 30.3 on page 647 that knowing the best possible lower bounds on
the energy, or on sums of energies and complimentary energies, provides a complete charac-
terization of the G-closure, GU , of the set of tensors U = {L1,L2, . . . ,Ln}.

It turns out that there is also a connection between finding the lamination closure of the
set of tensors U and the *-convexification of W (E). For simplicity, let us assume that the
space U ⊕ E is comprised of periodic functions that are gradients of m-component potentials,
that is, E = ∇u for some potential u. Then *-convexification is equivalent to rank-1 con-
vexification. Now consider the “1-step lamination process” where we take a set of tensors U ,
pick a fixed direction n, and then laminate each pair of materials in U in volume fractions
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varying continuously from 0 to 1, to get a set of tensors U1. Associated with U and U1 are
energy functions

W (E) = min
L∈U

{E ·LE}, W1(E) = min
L∈U1

{E · LE}.

The “1-step lamination process” can then be applied to U1 with a different choice of the
direction n to obtain a set of tensors U2 having an associated energy function W2(E). By
repeating this process, and choosing the direction of lamination randomly at each stage, the
set U j as j tends to infinity ultimately converges to the lamination closure LU of the set U .

We can also consider a “1-step rank-1 convexification process” applied to the energy func-
tion W (E), where we take a fixed direction n and compute

W 1(E) = min
f

0 ≤ f ≤ 1

min
v

[ f W (E + (1− f )n⊗ v)+ (1− f )W (E − f n⊗ v)] .

(31.16)
Thus, given E we can find matrices Ea and Eb [namely, Ea = E + (1 − f )n ⊗ v and
Eb = E − f n ⊗ v where f and v achieve the minimum in (31.16)] such that Ea − Eb is
rank-1 of the form n⊗ v for some v and such that

W 1(E) = f W (Ea)+ (1− f )W (Eb), E = fEa + (1− f )Eb, (31.17)

for some value of f with 0 ≤ f ≤ 1. Moreover, W 1(E) is the lowest such function with
this property. The “1-step rank-1 convexification process” can then be applied to W 1(E) with
a different choice of the direction n to obtain a function W 2(E). By repeating this process,
and choosing the direction of lamination randomly at each stage, the function W j as j tends
to infinity ultimately converges to the rank-1 convexification of the function W (E). This
procedure is known as the Kohn-Strang algorithm for computing the rank-1 convexification
(Kohn and Strang 1986).

Our goal is to establish a correspondence between these two “1-step processes” specifi-
cally to show that W j (E) = W j (E) for all j . First we consider the case j = 1. GivenE we
can find matrices Ea and Eb such that (31.17) holds. Also, the definition of W (E) implies
that there exist tensors La,Lb ∈ U such that

W (Ea) = Ea ·LaEa, W (Eb) = Eb · LbEb.

By laminating materials a and b with tensors La and Lb in direction n in proportions f and
1− f we obtain a composite with effective tensor L∗ ∈ U1. Now the field

E(x) = Ea in material a,
= Eb in material b, (31.18)

can be expressed as the gradient of a potential (because Ea −Eb = n⊗ v) and is therefore
a perfectly good trial field for substituting into the classical variational principle, giving the
inequality

E0 ·L∗E0 ≤ fEa ·LaEa + (1− f )Eb · LbEb.
Also from the definition of W1(E) we have

W1(E0) ≤ E0 ·L∗E0.
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This, coupled with the previous few equations and (31.17), implies that

W1(E0) ≤ W 1(E0).

It remains to prove the inequality in the other direction. Given E0 there exists a L∗ ∈ U1

such that
W1(E0) = E0 · L∗E0.

Also, since L∗ ∈ U1, there exist tensors La,Lb ∈ U and a volume fraction f such that
L∗ is the laminate of two materials a and b with tensors La and Lb layered in direction n
in proportions f and 1 − f . Let E(x) be the actual field in the laminate when the average
field is prescribed to be E0. The field E(x) is piecewise constant, of the form (31.18) with
Ea −Eb = n⊗ v for some v. Also, the “energy” in the laminate is the sum of the energies
in the two phases, that is,

E0 ·L∗E0 = fEa · LaEa + (1− f )Eb ·LbEb,

and because the average of E(x) is E0 we haveE0 = fEa + (1− f )Eb. It follows that

W1(E0) = fEa · LaEa + (1− f )Eb ·LbEb
≥ f W (Ea)+ (1− f )W (Eb) ≥ W 1( fEa + (1− f )Eb) = W 1(E0),

where the last inequality follows from the definition of W 1. This establishes that W 1(E) =
W1(E).

Repetition of the same argument then implies that W j (E) = W j (E) for all j . Finally, by
taking the limit j →∞ we conclude that the energy function associated with LU equals the
rank-1 convexification of the energy function W (E) associated with U . This result was also
established independently by Allaire and Lods (1999) while this book was being written.

31.6. Quasiconvex hulls and rank-1 convex hulls
Suppose that a periodic gradient field ∇u(x) is such that it takes values in (or arbitrarily close
to) a set K, almost everywhere. The quasiconvex hull QK of K is, roughly speaking, the set
of all possible values of 〈∇u〉. More precisely, the quasiconvex hull is defined via

QK ≡ {E | Q(E) ≤ sup
E ′∈K

Q(E ′) for all quasiconvex functions Q}.

Thus if Q(E) is quasiconvex and less than a constant c on the set K, then it will also be
less than c on the set QK. Clearly this definition implies that QK contains K. Also, if the
quasiconvexity requirement on Q is replaced by the stronger condition of convexity, then the
resulting set would be CK, the closed convex hull of K. It follows that QK is contained in
CK.

To find QK it suffices to take a single test function W (E) that is nonnegative and zero if
and only ifE ∈ K; then QK is identified with the set of values ofE where QW (E) = 0. The
proof that this set is QK follows directly from Theorem 4.10 of Müller (1998), which is partly
based on unpublished lectures of Šverák. There it is shown that a matrix E0 is an element
of QK if and only if there exists a sequence of gradients ∇u j (x) each having average value
E0 (and satisfying affine or periodic boundary conditions) such that the distance between
∇u j (x) and the set K approaches zero almost everywhere as j →∞. In other words, given
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E0 ∈ QK, there must exist a gradient ∇u(x) taking values almost everywhere arbitrarily
close to the set K, and such that 〈∇u〉 = E0. Again one can see that QK contains K since,
givenE0 ∈ K, the constant gradient field ∇u = E0 is admissible and 〈∇u〉 = E0.

The rank-1 convex hull RK of K is the set of values taken by 〈∇u〉 as ∇u(x) ranges over
all laminate fields satisfying the constraint. Equivalently, it is the set of values of E where
RW (E) = 0.

More generally, if E(x) ∈ U ⊕ E is constrained to a take values arbitrarily close to a set
K almost everywhere, the quasiconvex hull is the set of all possible values of 〈E〉 while the
*-convex hull is the set of all possible values of 〈E〉 when E(x) is a laminate field.

In the shape memory material problem mentioned in section 31.1 on page 671, the set
K consists of n-components, called wells, where the j -th well for j = 1, 2, . . . , n consists
of the matrices M 1/2

j R as R varies over all rotations. Thus K can be identified with the
set of local deformations that cost no elastic energy and the set QK represents the set of
macroscopic deformations, each of which costs no elastic energy. Since they cost no energy,
these deformations are easily produced and are stress free: They are just as preferable as no
deformation, and the material looks like it has undergone plastic deformation. However, when
the material is heated the elastic energy function changes and consequently one deformation
is preferred and the material reverts to its original shape (hence the name shape memory
material). This is illustrated schematically in figure 31.2. In contrast to these recoverable
deformations, any stress free deformation outside the set QK must be associated with plastic
yielding (i.e., some slip in the arrangement of atoms) and therefore is not recoverable when
the material is heated.

(a) (b) (c)

< TcT

T > Tc

Figure 31.2. Schematic illustration that explains basically why shape memory materials re-
member their shape. Suppose that a square at high temperature deforms at low temperature to
one of two parallelogram “variants” at low temperature as in (a). Then a strip of squares will
deform as shown in (b), retaining its overall shape. This zig-zag strip can then be deformed
by switching from one variant to the other variant, as in (c) top. When the material is heated,
all of the variants revert to squares and the original shape is recovered, as in (c) bottom.

Quasiconvex hulls also arise naturally in the context of bounding the set of recoverable
strains of multiphase or polycrystalline shape memory materials [see, for example, Bhat-
tacharya and Kohn (1997)]. Then K can be identified with the local deformations that cost no
elastic energy for at least one choice of phase or crystal orientation and the set QK represents
the set of macroscopic deformations, each of which costs no elastic energy for at least one
microstructure.

Another context in which quasiconvex hulls arise is in bounding yield surfaces in poly-
crystalline plasticity. The role of the deformation ∇u(x) being replaced by that of the stress
τ (x) [see, for example, Kohn and Little (1999)] and the set K is identified with the set of
stresses each of which does not produce any plastic yielding in a crystal grain for at least one
choice of crystal orientation. The set QK is then the set of possible values of the average
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stress when the stress is periodic, divergence free, and takes values in the set K. It provides
a bound on the yield surface of the polycrystal. When the average stress lies outside QK, the
local stress field τ (x) must lie outside K in some region, that is, the material must have un-
dergone plastic yielding in that region. Nontrivial bounds on yield surfaces were first obtained
by Ponte Castañeda and DeBotton (1992), Suquet (1993), and Olson (1994).

At first sight the problem of finding the quasiconvex hull looks simple. However, this
is far from the truth. The G-closure problem can be recast as a quasiconvex hull-problem.
For example, following Tartar (1985), consider three-dimensional conductivity and suppose
that the three current fields j(1)(x), j(2)(x), and j(3)(x) and the three electric fields e(1)(x),
e(2)(x), and e(3)(x) solve the conductivity equations in a medium with conductivity tensor
σ(x) taking values in a setU . As in section 24.6 on page 506, let j (1)(x), j(2)(x), and j(3)(x)
form the columns of a 3 × 3 matrix-valued field J(x) and let e(1)(x), e(2)(x), and e(3)(x)
form the columns of a 3 × 3 matrix-valued field E(x). Then the constitutive law takes the
form J(x) = σ(x)E(x), where σ(x) acts on E(x) by matrix multiplication. Now define
Ũ ⊕ Ẽ as the set of all 3× 6 matrix-valued fields of the form

Ẽ(x) = (E(x) J(x) ) , (31.19)

where the three columns ofE(x) are curl free while the three columns of J(x) are divergence
free. The subspaces Ũ and Ẽ then consist of all fields in Ũ ⊕ Ẽ that are respectively constant
or which have zero average value.

We take K̃ as the set of all values taken by the 3× 6 matrix

Ṽ = (V σV ) ,

as σ ranges over all tensors in the set U and as V ranges over all 3× 3 matrices. If the field
in (31.19) takes values in K̃, then clearly the constitutive law

J(x) = L(x)E(x)

is satisfied for some choice of the tensor field L(x) taking values in U . Therefore, when
Ẽ ∈ Ũ ⊕ Ẽ , the possible values of

〈E〉 = ( 〈E〉 〈J〉 )

lie in the set QK̃ comprised of all 3× 6 matrices

W = (W σ∗W ) ,

as σ∗ ranges over tensors in the set GU and asW ranges over the tensor space T . Clearly
we can determine QK̃ if we know GU . Conversely, if we know QK̃, then the intersection of
QK̃ with the set of all 3× 6 matrices of the form (I A) gives us the set of all matrices of the
form (I σ∗), where σ∗ ∈ GU . In this way we determine GU .

31.7. Laminate fields built from rank-1 incompatible matrices
Calculating the rank-1 convex hull of a set of matrices is not as simple as one might expect, as
was found independently in different contexts by Aumann and Hart (1986); Casadio-Tarabusi
(1993); Tartar (1993); and Bhattacharya, Firoozye, James, and Kohn (1994). The underlying
idea of introducing an appropriate seed material was also discovered in the (cyclic laminate)
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construction of isotropic polycrystals having minimum conductivity amongst all polycrystals
formed from a fully anisotropic crystal (Nesi and Milton 1991); see section 25.4 on page 537.
Here we follow the example of Tartar (1993) as presented by Müller (1998).

Let u be a two-dimensional, two-component vector field, and suppose that we want to
construct a two-dimensional laminate field ∇u that equals one of the four matrices

A1 = −A3 =
(
1 0
0 3

)
, A2 = −A4 =

(−3 0
0 1

)
,

almost everywhere. One cannot laminateAi withA j when j �= i because det(Ai−A j) �= 0.
Since there are no rank-1 connections between any of these matrices, one might think that ∇u
would have to be constant. However, this is not the case.

It is helpful to consider the restricted space A of 2× 2 diagonal matrices

E =
(
r 0
0 s

)
.

Using r and s as coordinates, the matrices A1, A2, A3, and A4 are represent by the points
(1, 3), (−3, 1), (−1,−3), and (3, 1), as illustrated in figure 31.3 on the facing page. Rank-
1 connected matrices in A have the same value of r or the same value of s. The key idea
is to introduce a seed matrix J 1 = (1, 1) that is rank-1 connected with A2 (and A1). By
laminating J1 and A2 together in equal proportions in direction n = (1, 0) one obtains a
simple laminate field with average value J 2 = (−1, 1), which is rank-1 connected with A3,
as illustrated in figure 31.3 on the next page. By laminating this simple laminate field together
withA3 in equal proportions in direction n = (0, 1) one obtains a second-rank laminate field
with average value J 3 = (−1,−1), which is rank-1 connected with A4. We now continue
the process cyclically, laminating the second-rank laminate field with A4 to obtain a third-
rank laminate field with average value J 4 = (1,−1), laminating the third-rank laminate field
with A1 to obtain a fourth-rank laminate field with average value J 1, and so forth. At each
stage the volume fraction occupied by the original seed matrix decreases. Ultimately, in the
resulting infinite-rank laminate, illustrated in figure 31.4 on the facing page, the seed material
occupies an infinitesimal volume fraction and ∇u equals one of the four matrices A1, A2,
A3, orA4 almost everywhere. Depending at which stage one stops, 〈∇u〉 approaches one of
the four matrices J 1, J2, J3, or J4. By adding these four matrices to the original set, and
then laminating together matrices with the same value of r or the same value of s, one sees
that the rank-1 convex hull includes the square 1 ≥ r ≥ −1, 1 ≥ s ≥ −1 and the four arm
segments [J i ,Ai ], i = 1, 2, 3, 4.

31.8. Example of a rank-1 function that is not quasiconvex†
For functions W (∇u) of gradients of �-component potentials u in d-dimensions Morrey
(1952) conjectured that rank-1 convexity does not imply quasiconvexity when � ≥ 2 or
d ≥ 2. Later Morrey (1966) suggested that rank-1 convexity may in fact be equivalent to
quasiconvexity. However, a counterexample which showed that rank-1 convexity does not
imply quasiconvexity when � ≥ 3 and d ≥ 2 was given by Šverák (1992) [see also page
185 of Tartar (1979) for a closely related counterexample]. Whether rank-1 convexity equals
quasiconvexity when d = 2 and � ≥ 2 remains an open question (Parry 1995; Dacorogna and
Haeberly 1996, 1998; Pedregal 1996; Pedregal and Šverák 1998).

The following example of a rank-1 convex function that is not quasiconvex is an adapta-
tion of the example given by Šverák (1992) and of a variant of James and Kohn [discussed
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Figure 31.3. Although the four matrices represented by the points A1, A2, A3, and A4

have no rank-1 connections (corresponding to connections by vertical or horizontal lines in
this figure) one can nevertheless construct an infinite-rank laminate field such that ∇u takes
one of these four values almost everywhere. The key is to introduce a seed matrix J 1 that
is laminated with A2, A3, A4, and A1 in cyclic order until the seed matrix occupies an
infinitesimal volume fraction.
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Figure 31.4. The infinite-rank laminate field corresponding to the previous figure. Here J 3,
J2, J1, and J 4 are averages of ∇u within the corresponding region.
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by Pedregal (1996, 1997) and Müller (1998)], which is modified here to lay the basis for
constructing a composite with an effective elasticity tensor that cannot be mimicked by a
multiple-rank laminate material.

As a warmup exercise, consider the restricted space A of 3× 2 matrices E of the form

E =
(
r 0 t
0 s t

)
,

and the function
G(E) = (r + 1)2(s + 1)2(t + 1)2. (31.20)

The rank-1 matrices within A are of the form λY , where

Y =
(
1 0 0
0 0 0

)
, Y =

(
0 0 0
0 1 0

)
or Y =

(
0 0 1
0 0 1

)
.

Consequently, the function G(E) is rank-1 convex on the space A because G(E + λY ) is a
quadratic function of λ with a nonnegative coefficient in front of the λ2 term. More generally,
any function is rank-1 convex on A if and only if it is convex in each variable r , s, and t
separately.

Now consider the vector potential

u = ( h(x1), h(x2), h(x1 + x2 + 2) ) , (31.21)

in which h(y) is the periodic sawtooth function

h(y) = 3y for 0 ≤ y ≤ 1,
= 4− y for 1 ≤ y ≤ 4,
= h(y − 4) for all y. (31.22)

Clearly u is periodic with unit cell 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4. It is the superposition of
three sawtooth waves (h(x1), 0, 0), (0, h(x2), 0), and (0, 0, h(x1 + x2 + 2)) with oscillations
along the x1-axis, x2-axis, and at 45◦ to the axes, respectively. When three sawtooth waves
oscillating in three different directions are superimposed the gradient of the resulting function
typically takes either seven or eight different values. The function u has been chosen so that
∇u is piecewise constant taking only the seven values,

A1 =
(
3 0 −1
0 3 −1

)
, A2 =

(−1 0 −1
0 3 −1

)
, A3 =

(−1 0 3
0 3 3

)
,

A4 =
(
3 0 −1
0 −1 −1

)
, A5 =

(
3 0 3
0 −1 3

)
, A6 =

(−1 0 3
0 −1 3

)
,

A7 =
(−1 0 −1

0 −1 −1
)
, (31.23)

in the respective regions shown in figure 31.5 on the next page, each occupying volume frac-
tions f1, f2,. . . , f7, where

f1 = f3 = f5 = 1/16, f2 = f4 = f6 = 1/8, f7 = 7/16.

The phase of the sawtooth wave (0, 0, h(x1 + x2 + 2)) has been adjusted so that the matrix
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Figure 31.5. The unit cell of periodicity for ∇u, and three neighboring period cells. Shown
are the seven different regions within each of which ∇u is constant, taking the corresponding
value given in (31.23). This figure also represents the cross section of a three-dimensional,
seven-phase columnar microstructure, discussed in section 31.9 on page 690, whose elasticity
tensor cannot be mimicked by a multiple-rank laminate material.

with r = s = t = 3 does not appear as a value of ∇u. Each of these matrices Ai lie in the
space A and have G(Ai ) = 0. Consequently we have

〈G(∇u)〉 =
7∑
i=1

fiG(Ai ) = 0 < G(〈∇u〉) = G(0) = 1,

in which 〈∇u〉 = 0 because u is periodic. Therefore on the space A the function G(E) is
rank-1 convex but not quasiconvex.

One can now see that if a given multiple-rank (possibly infinite-rank) laminate field ∇u
takes the seven values A1, A2, . . .A7 almost everywhere, then the values that 〈∇u〉 can
take are quite restricted. We use a result established in lemma 9.9 of Pedregal (1997) that
the laminate field can be approximated by a sequence of finite-rank laminate fields ∇uk ,
k = 1, 2, . . . , each taking values in the convex hull of the matricesA1,A2, . . .A7 (and having
Young’s measures converging as k →∞ to the Young’s measure of the given laminate field).
Since these finite-rank laminate fields take values in the space A, we have the constraint
G(〈∇uk〉) ≤ 〈G(∇uk)〉 arising from rank-1 convexity. Taking the limit k → ∞ gives the
constraint G(〈∇u〉) ≤ 〈G(∇u)〉 = 0. On the other hand 〈∇u〉, being an average, must
lie in the convex hull of the matrices A1, A2, . . .A7, that is, where G(〈∇u〉) ≥ 0. These
constraints force 〈∇u〉 in a multiple-rank laminate field to lie on one of the three surfaces
r = −1, s = −1, or t = −1, where G(〈∇u〉) = 0, and to satisfy the inequalities 3 ≥ r ≥ −1,
3 ≥ s ≥ −1, and 3 ≥ t ≥ −1.

In other words, 〈∇u〉 for a laminate field must lie on one of the three cube surfaces illus-
trated in figure 31.6 on the following page, while 〈∇u〉 = 0 for the potential (31.21). This
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Figure 31.6. If a field ∇u in a multiple-rank laminate takes the seven valuesA1, A2, . . .A7

almost everywhere in the material, then the average field 〈∇u〉 must lie on one of the three
cube faces illustrated here. By contrast, the microstructure of 31.5 has 〈∇u〉 = 0, which lies
in the middle of the cube.

provides an example of a set K of seven matrices for which RK is not equal to QK. Another
example of a set of eight 6× 2 real matrices (or, equivalently, eight 3× 2 complex matrices)
for which RK is not equal to QK has been found by Šverák and is discussed in the lecture
notes of Müller (1998). His example is especially interesting because QK equals RK plus a
matrix, which is disconnected from RK.

We are now essentially finished due to an argument of Pedregal (1997). Take W (E) as
any nonnegative-valued function that is zero at and only at E = Ai , i = 1, 2, . . . , 7. Clearly
both RW (E) and QW (E) are nonnegative-valued functions. Also, by taking E(x) to be the
field ∇u where u is given by (31.21), the inequality

QW (〈E〉) ≤ 〈W (E)〉 =
7∑
i=1

fiW (Ai ) = 0

then implies that QW (0) = 0. However, if RW (0) = 0, then there would exist a laminate
field taking the valuesA1,A2, . . .A7 almost everywhere, and having 〈∇u〉 = 0. But we have
seen that this is impossible, implying that RW (0) > 0. Consequently, RW is an example of a
rank-1 convex function that is not quasiconvex.

To obtain an explicit example requires some extra work. Those readers not interested in
the details can skip to the next section. Here we adapt the example of Šverák (1992) to obtain
a rank-1 convex function that is not quasiconvex, having quadratic growth as |E| → ∞. (The
quadratic growth will be useful in the next section.) First one uses G(E) to obtain a function
G1(E) that is rank-1 convex and bounded on the set comprised of all 2× 3 matrices E with
|E| less than r . The radius r needs to be chosen sufficiently large so that each of the seven
matrices Ai have |Ai | < r . (Thus it suffices to take r >

√
28.) We let Π denote the natural
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projection onto matrices in the subspace A:

Π
(
a b c
d e f

)
=
(
a 0 (c + f )/2
0 e (c + f )/2

)
.

Then we select some positive number ε < 1/r 2 and set

G1(E) = G(ΠE)+ ε(|E|2 − r 2)+ k|E −ΠE|2.
The claim is that k can be chosen positive and large enough to ensure the rank-1 convexity
of G1(E) for |E| ≤ r . The rank-1 convexity is ensured if for all rank-1 matrices Y with
|Y | = 1 and all matrices |E| ≤ r , we have

d2G1(E + λY )

dλ2

∣∣∣∣∣
λ=0

= d2G(Π(E + λY ))

dλ2

∣∣∣∣∣
λ=0

+ 2ε + k|Y −ΠY |2 > ε. (31.24)

When k is very large the term involving k will be small only if ΠY ≈ Y , that is, only if
Y being rank-1 is close to one of the matrices in (31.23). But then G(Π(E + λY )) will
be close to becoming convex in λ and the term involving the second derivative of G will be
either positive or very small and negative. In the limit as k →∞, the left-hand side of (31.24)
approaches 2ε, so it is surely greater than ε for some finite value of k.

To obtain a function with quadratic growth at infinity, which is rank-1 convex on all 2× 3
matrices E but not quasiconvex, we find a convex quadratic function G2(E) that is below
G1(E) for E = Ai , i = 1, 2, . . . , 7 and for E = 0, but which is strictly above G1(E) when
|E| = r . We take our rank-1 convex function to be

W (E) = max{G1(E),G2(E)} for |E| ≤ r,
= G2(E) for |E| > r.

Then W (E) is clearly rank-1 convex for |E| < r and for |E| = r being equal to the convex
(and hence rank-1 convex) function G2(E). It is also rank-1 convex for |E| ≤ r being the
maximum of two rank-1 convex functions. It follows that W is rank-1 convex for all 2 × 3
matrices E.

There is a lot of freedom in the choice of the function G2(E). To be specific, we can
select radii r1, r2, and r3 with r > r1 > r2 > r3 and r3 such that each of the seven matrices
Ai have |Ai | < r3. (Thus it suffices to take r > r1 > r2 > r3 >

√
28.) We then set

G2(E) = c(|E|2 − r 2
2 ),

where c is chosen sufficiently large to ensure that

W (E) = G1(E) for |E| ≤ r3,

= G2(E) for |E| ≥ r1. (31.25)

This is guaranteed if we choose

c > max{M/(r 2
2 − r 2

3 ),M/(r 2
1 − r 2

2 )}, where M = max
|E|≤r

|G1(E)|. (31.26)

Finally, because each of the seven matricesAi have |Ai | < r3, (31.25) implies that

W (Ai ) = G1(Ai) < G(Ai ) = 0,
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as a result of which

〈W (∇u)〉 < 0, whereas W (〈∇u〉) = W (0) = 1− εr 2.

For small values of ε we conclude that 〈W (∇u)〉 < W (〈∇u〉). Thus W (E) is rank-1 convex
but not quasiconvex.

This example shows that rank-1 convexity is not sufficient to guarantee quasiconvexity;
that is, if 〈W (∇u)〉 ≥ W (〈∇u〉) for all periodic functions∇u(x) that have oscillations in only
one direction, then the inequality need not hold if ∇u(x) has oscillations in three directions.
Requiring the inequality to hold for functions that have oscillations in three directions leads
to additional necessary conditions for quasiconvexity (Pedregal 1996). It is not known what
conditions are sufficient to guarantee quasiconvexity, but Kristensen (1999) has shown that
they must be nonlocal.

31.9. A composite with an elasticity tensor that cannot be mimicked by
a multiple-rank laminate material†

In section 31.4 on page 677 we saw that problems of bounding the energy of multiphase
linear composites could be mapped to problems of quasiconvexification and, vice versa. In
section 31.5 on page 679 we saw that problems of constructing the lamination closure could
be mapped to problems of *-convexification of the associated energy function. Thus, since
Šverák’s example shows that there is a gap between *-convexification and quasiconvexifi-
cation, there should be an associated example where there is a gap between the lamination
closure and the G-closure. In principle one could map the function W (E) defined in the pre-
vious section to an associated problem of bounding the energy of a composite with infinitely
many phases. Then one would be essentially finished since if the lamination closure was equal
to the G-closure, the rank-1 convexification of W (E) would equal its quasiconvexification,
which contradicts the results of the previous section. To make the problem more challenging,
let us suppose that we want an example in linear elasticity with a relatively small number of
phases which does not involve a supplementary field that is constrained to be constant, like T
in (31.14). Instead of using T , we recall that when the microstructure is independent of x3 the
strain component ε33 is constant and thus behaves like T . This is the essential idea: To use
ε33 instead of T .

We consider an elastic material subject to an average strain

ε0 =
( 0 0 0
0 0 0
0 0 1

)
, (31.27)

with an elasticity tensor C(x) such that the elastic energy takes the form

ε · Cε = W0(E)+ W (E),

where ε = (∇u+ (∇u)T )/2 and E =D′u is the field

E =D′u =
(

ε11 ∂u2/∂x1 ε13

∂u1/∂x2 ε22 ε23
ε13 ε23 ε33 − 1

)
=
( f11 f12 f13

f21 f22 f23
f31 f32 f33

)
. (31.28)

This serves to define the differential operator D ′, which when applied to the displacement
field u produces the field E.
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We take large positive constants p and q and set

W0(E) = 2p f33 + 2q( f21 f12 − f11 f22)+ p

= 2pε33 + 2q[(∂u1/∂x2)(∂u2/∂x1)− (∂u1/∂x1)(∂u2/∂x2)]− p,

(31.29)

which is a null Lagrangian, that is, the identity

〈W0(E)〉 = W0(〈E〉)

is satisfied for all periodic fieldsE such that E =D′u for some u.
We take W (E) as the function

W (E) =
2∑
i=1

3∑
j=1

q(1+ δi j)( fi j − f33ai j − ai j)2 + p f 2
33, (31.30)

where the moduli ai j vary from phase to phase, a21(x) = a12(x) = 0 for all x, and δi j equals
1 if i = j and is zero otherwise. When ε33 = 1, that is, when f33 = 0, the function W (E) is
a quadratic well with its minimum at E = A, where

A =
( a11 0 a13

0 a22 a23

a13 a23 0

)
(31.31)

varies from phase to phase. This functionW (E) has been chosen in such a way thatW0(E)+
W (E) is a quadratic function of the strain. An explicit calculation (which we omit) shows
that

ε · Cε = W0(E)+W (E)

= q(ε11 − ε22)
2 + q(ε11 − 2ε33a11)

2 + q(ε22 − 2ε33a22)
2 + 4qε2

12

+q(ε13 − ε33a13)
2 + q(ε23 − ε33a23)

2 + ε2
33[p − 2q(a2

11 + a2
22)].

(31.32)

This serves to define the elasticity tensor C(x) of the material. To ensure that C(x) is positive-
definite, we choose p so that the last term in the above expression is positive for all ε33 �= 0,
that is, we choose p so that in each phase

p > 2q(a2
11 + a2

22). (31.33)

By considering the energy associated with the average strain (31.27), and using the fact
thatW0(E) is a null Lagrangian and thatW (E) is nonnegative, we obtain the following trivial
lower bound on the Cartesian element C∗

3333 of the effective elasticity tensor:

C∗
3333 = ε0 · C∗ε0 = min

E =D′u
〈E〉 = 0

〈W0(E)+W (E)〉 ≥ W0(0) = p.

We want to chooseA and the constants p and q so that this bound is attained, but not by any
laminate microstructure. The bound will be attained if there exists a displacement field u(x)
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such that E = D′u satisfies 〈E〉 = 0 and W (E) = 0. From (31.30) we see that W (E) is
zero if and only if

f33 = 0 and fi j = ai j for i = 1, 2 and j = 1, 2, 3.

Thus the condition for attainability of the bound becomes

〈E〉 = 0 and E =D′u = A for some u. (31.34)

This is certainly satisfied if the moduli ai j(x) are chosen so that

〈A〉 = 0 and A =D′u0,

for some vector potential u0. In particular, let us take

u0 = ( h(x1), h(x2), x3 + h(x1 + x2 + 2) ) ,

in which h(y) is the periodic function defined in (31.22). Then A = D ′u0 is piecewise
constant, taking seven values

Ai =
( ri 0 ti
0 si ti
ti ti 0

)
, i = 1, 2, 3, . . . , 7,

each corresponding to a different phase, where (referring to figure 31.5 on page 687, in which
the numbers represent the value of i indexing each phase)

(ri , si , ti ) = ( 3, 3,−1) when i = 1,
= (−1, 3,−1) when i = 2,
= (−1, 3, 3) when i = 3,
= ( 3,−1,−1) when i = 4,
= ( 3,−1, 3) when i = 5,
= (−1,−1, 3) when i = 6,
= (−1,−1,−1) when i = 7.

These equations, in conjunction with (31.32) and (31.31), give an explicit expression for the
(anisotropic) elasticity tensor of each of the seven phases. The composite attains the bound
C3333 ≥ p and has a microstructure that is independent of the x3 coordinate. By contrast each
phase has

C3333 = p + 2q(r 2
i + s2

i + t2i ) ≥ p + 6q,

and therefore does not attain the bound.
It remains to show that the bound is not achievable by any multiple-rank laminate, in-

cluding laminates that have a microstructure varying in the x3 direction. First let us define an
*-matrix (the analog of a “rank-1” matrix) to be any matrixE expressible in the form

E =
( k1v1 k1v2 (k1v3 + k3v1)/2

k2v1 k2v2 (k2v3 + k3v2)/2
(k1v3 + k3v1)/2 (k2v3 + k3v2)/2 k3v3

)
, (31.35)
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for some choice of vectors k = (k1, k2, k3) and v = (v1, v2, v3). We then call two matrices
E1 andE2 *-connected if the differenceE1−E2 is a*-matrix. We begin by restricting our
attention to the subspace A of 3× 3 matrices of the form

E =
( r 0 t
0 s t
t t 0

)
.

The only *-matrices in this subspace are of the form λY , where

Y =
( 1 0 0
0 0 0
0 0 0

)
, Y =

( 0 0 0
0 1 0
0 0 0

)
or Y =

( 0 0 1
0 0 1
1 1 0

)
,

and thus the function G(E) = (r + 1)2(s + 1)2(t + 1)2, as in (31.20), is *-convex on this
subspace and zero when E = Ai for i = 1, 2, . . . , 7.

Therefore, if in a multiple-rank laminate E = D′u takes the seven values A1,
A2, . . . ,A7 almost everywhere in the material, then the values that 〈E〉 can take are quite re-
stricted. On the one hand, G(〈E〉) must be negative since otherwise the condition G(〈E〉) ≤
〈G(E)〉 arising from *-convexity would be violated. On the other hand, 〈E〉, being an av-
erage, must lie in the subspace A in the convex hull of the matrices A1, A2, . . .A7. These
constraints force 〈E〉 in a multiple-rank laminate microstructure to lie on one of the three sur-
faces r = −1, s = −1, or t = −1, and to satisfy the inequalities 3 ≥ r ≥ −1, 3 ≥ s ≥ −1,
and 3 ≥ t ≥ −1. In other words, 〈E〉 for a laminate field must lie on one of the three cube
surfaces illustrated in figure 31.6 on page 688. In particular, 〈E〉 cannot be zero. Therefore the
conditions (31.34) for attainability cannot be met in any multiple- or infinite-rank laminate.

To find an explicit bound on C3333 for multiple- or infinite-rank laminates that is strictly
greater than p requires some extra work. Consider any two materials α and β with elasticity
tensors Cα and Cβ , which we laminate together in direction n in proportions θ and 1 − θ ,
where 0 < θ < 1, to form a simple laminate γ with effective tensor Cγ . Define

Wρ(E) = ε(E) · Cρε(E)−W0(E)

as the energy function corresponding to material ρ for ρ = α, β, and γ , where W0(E) is
given by (31.29) and

ε(E) = (E +ET + 2ε0)/2

is the strain associated with E, in which ε0 is given by (31.27).
Now suppose that we have found a comparison functionW−(E) that lies below the energy

functions of the materials α and β, that is,

Wα(E) ≥ W−(E) and Wβ(E) ≥ W−(E) for all E, (31.36)

and which is *-convex (the analog of “rank-1” convex) in the sense that the inequality

W−(θE1 + (1− θ)E2) ≤ θW−(E1)+ (1− θ)W−(E2) (31.37)

holds for all values of θ between 0 and 1 whenever E1 and E2 are *-connected. In the
laminate let us set the average value of the fieldE, given by (31.28), to some prescribed value
Eγ . Then E(x) is piecewise constant within the laminate taking a value Eα in material α
and a valueEβ in material β, and we have

Eγ = θEα + (1− θ)Eβ, Wγ (Eγ ) = θWα(Eα)+ (1− θ)Wβ(Eβ). (31.38)



694 31. Bounding and quasiconvexification

The differential constraints on the field E(x) imply that Eα and Eβ are *-connected [with
Eα − Eβ being of the form (31.35) with k matching the direction of lamination n]. The
inequalities (31.36) and (31.37), together with (31.38), then imply that

Wγ (Eγ ) ≥ θW−(Eα)+ (1− θ)W−(Eβ) ≥ W−(θEα + (1− θ)Eβ) = W−(Eγ ).

Thus the energy function of the laminate γ also lies above the comparison function.
By iterating this argument we see that if the comparison functionW−(E) is chosen so that

the energy functions Wρ(E) of each of the seven phases lie above it, then the energy function
of any multiple-rank laminate (but not necessarily every composite) of the seven phases must
also lie above W−(E).

Phase i , for i = 1, 2, . . . , 7, has an energy function given by (31.30) that is a quadratic
well, taking the value zero at the well center at E = Ai , and which grows rapidly away
from the well center when p and q are both very large. The composite of figure 31.5 on
page 687, because it attains the bound C3333 ≥ p, has an energy function that is zero at
E = 0. Therefore, to obtain a bound on C3333 for multiple-rank laminates that are strictly
greater than p we seek a *-convex comparison function W−(E) (with quadratic growth at
largeE) that is negative atE = Ai for i = 1, 2, . . . , 7 yet which is positive at E = 0.

Like in section 31.8 on page 684, one procedure is to useG(E) to obtain a functionG1(E)

that is rank-1 convex and bounded on the set comprised of all 3× 3 matricesE with |E| less
than r . The radius r needs to be chosen sufficiently large so that each of the seven matrices
Ai have |Ai | < r . (Thus it suffices to take r >

√
46.) We let Π denote the natural projection

onto matrices in the subspace A:

Π

( a b c
d e f
c f g

)
=
( a 0 (c + f )/2

0 e (c + f )/2
(c + f )/2 (c + f )/2 0

)
,

and we then select some positive number ε < 1/r 2 and set

G1(E) = G(ΠE)+ ε(|E|2 − r 2)+ k|E −ΠE|2,

where k is chosen positive and large enough to ensure the*-convexity of G1(E) for |E| ≤ r .
We next select radii r1, r2, and r3 with r > r1 > r2 > r3 >

√
46 (so that each of the seven

matricesAi have |Ai | < r3) and set

W−(E) = max{G1(E), c(|E|2 − r 2
2 )} for |E| ≤ r,

= c(|E|2 − r 2
2 ) for |E| > r,

in which c satisfies (31.26). Then W−(E) is clearly rank-1 convex for |E| ≥ r1 being equal
to the convex (and hence *-convex) function c(|E|2 − r 2

2 ). It is also *-convex for |E| ≤ r
being the maximum of two *-convex functions. Therefore, W−(E) is *-convex for all 3× 3
matrices E. Also, because W−(E) = G1(E) for |E| < r3 and because each of the seven
matricesAi have |Ai | < r3, it follows that

W−(Ai) = G1(Ai ) < ε(46− r 2) < 0, whereas W−(0) = G1(0) = 1− εr 2 > 0.

Having obtained the comparison function W−(E) we select p and q sufficiently large
[with p > 36q so that (31.33) is satisfied] to ensure that the energy function of each phase
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lies above W−(E). Then the element C∗
3333 of the effective elasticity tensor of any multiple-

rank laminate built from these seven phases satisfies the bound

C∗
3333 ≥ p + W−(0) ≥ p + 1− εr 2, (31.39)

which, for small values of ε, is strictly bigger than the value p attained by the composite
of figure 31.5 on page 687. The composite achieves an elastic energy that is lower than the
energy of any multiple-rank laminate.

In this example the phases have a fixed orientation. It would be interesting to see if it
is possible to construct a composite with an effective tensor that cannot be mimicked by a
multiple-rank laminate material, in which the phases are allowed to have any orientation.
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Pukánszky, L., 390, 393, see
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Reuss-Hill, 444
series expansion

dependent, 573, 579,
586, 589, 603

shear modulus, 470, 471,
473, 502

shear modulus
type, 470–473

sums of energies, 468, 505,
519, 544, 647, 679

trace, 473, 474, 476, 509,
518

translation, 500, 503, 504,
509, 530, 531

two-dimensional
conductivity, 446, 481,
585

two-phase
conductivity, 458, 481,
506, 520, 542, 554, 564,
569–596, 603–617

two-phase elasticity, 465,
470, 473, 542, 557, 558,
569

types I–IV, 571
using quasiconformal

mappings, 480
utility, 425
via fractional linear

transformations,
603–617

viscoelasticity, 452, 478,
583

Voigt-Hill, 442
Voigt-Reuss, 442
volume fraction, 569
well-ordered materials, 462

y-parameters, 478, 524,
556–558, 560

Y -tensor, 411, 475, 516,
519, 563, 564, 641

Brownian motion
simulations, 40

Bruggeman’s unsymmetrical
effective medium
theory, 201

Bruno bounds, 569
bubbly fluid, 3, 89
bulk modulus κ , 23

Cauchy integral formula, 376,
381, 605, 615

Cauchy sequence, 299
Cauchy-Schwartz

inequality, 505
cell materials, 320, 331–333,

553, 586
cell polycrystals, 322, 335, 487
cell problem, 10
cell shape parameters, 322,

331, 332, 334, 553
cellular materials, see

perforated structures
chain property, 366
characteristic functions, 49
characteristic polynomial, 107
chattering sequences, 430
checkerboard

conductivity, 49, 207, 377
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magnetotransport, 65
nonlinear, 282
random, 207, 586
three-dimensional, 207
see also symmetric

materials
Cherkaev-Gibiansky

transformation, 234,
450, 476

Cherkaev-Gibiansky
variational
principles, 276, 639

classical energy minimization
principle, 273, 282, 659

classical variational
principles, 271, 403, 571

Clausius-Mossotti formula, see
Maxwell formula

CLM theorem, 66

coarse graining, 212
coated ellipsoids, see ellipsoid

assemblages
coated laminates, see

laminates, coated
coated spheres, see sphere

assemblages
coercivity condition, 300
coherent potential

approximation, see
effective medium
approximation

columnar microstructures, see
fibrous composites

comparison bound, 500, 503,
509

attainability, 535
compensated compactness

bound, 530
compensated compactness

method, 275, 499–525,
529–550

compensating terms, 325
complementary classical

variational
inequality, 283

complementary energy
minimization
principle, 273, 284, 660

complex conductivity
equations, 227

complex dielectric constant, 3,
224

complex dielectric tensor, 224
complex elasticity tensor, 231
complex equations and

thermoelectricity, 237
complex equations

reformulated, 234
complex magnetic permeability

tensor, 224
complex permittivity, see

complex dielectric
constant

complex-valued tensors, 295
compliance tensor, 23, 371
composite not mimicked by a

laminate, 690
composites

examples, 1
extremal, 652
optimal, 5, 177, 469, 481
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tensors, 405
conductivity

cream, 194
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fibrous composites, 33, 87
fused glass beads, 202
hopping, 211
tensor, 5
tensors, nonsymmetric, 22

conductivity function, 383
classification, 571
degree, 385
eliminating values, 607
types, 571

conductivity threshold, 196
conformal transformations, 143
constant shear modulus

materials, 77
constitutive relation, 5, 23
constitutive relation,

reduced, 52
continued fraction

expansions, 384, 397,
406, 607, 610, 619

convection enhanced
diffusion, see
magnetotransport

convex functions, 283, 672
convexification, 673
correlation functions, 313–335

one-point, 315
two-point, 315
three-point, 314, 319, 553
four-point, 318, 320
cell materials, 320
geometrical

interpretation, 317
penetrable spheres, 319
polycrystals, 318
reduced, 323, 328
symmetry properties, 317

correspondence principle, 233
coupled equations, 28, 35, 93,

237, 264, 342, 356, 362
two-dimensional, 101

covariance property
effective tensor, 94, 356
fundamental matrix, 104

Cramer’s rule, 596
critical exponents, 211

cross-property bounds, 458,
522, 561, 580, 587, 607,
614

cross-property relations, 80,
355

curvature tensor, 27
curvilinear

transformation, 149, 297
cylinder arrays, 39, 116, 241,

333, 377, 390, 429, 575,
590

cylinder assemblages, 116,
429, 501, 570, 588

cylinder suspension, 429, 586

Darcy’s law, 6
dead-leaves model, 332
decoupling transformation, 95,

97, 580
defect compliance tensor, 69
demagnetizing factors, see

depolarizing factors
depolarization tensors, 129,

255
depolarizing factors, 128, 132,

187
dielectric equations, see

conductivity, equations
differential approximation, see

differential scheme
differential constraints, 5, 249
differential scheme

attractor, 203
conductivity, 201
elasticity, 206, 471
generalized, 177, 203
realizability, 202

diffusion equations, see
conductivity, equations

dilute suspension
dielectric constant, 188–195
elastic moduli, 256
ellipsoids, 252

dimension reduction, 20, 297
dipole moment, 185, 188
Dirichlet problem, 481
displacement field, 22
Drude model, 224
duality

conductivity, 47, 356
elasticity, 51, 53
magnetotransport, 51

nonlinear conductivity, 47
principle, 262, 398, 407
pyroelectricity, 51
transformation, 48, 60, 212

eddy currents, 39
effective conductivity tensor, 6
effective constitutive relation, 6
effective dielectric

constant, 191
effective dielectric tensor, 188
effective medium

approximation
as attractor, 203
conductivity, 195
elasticity, 204, 256
ellipsoidal grains, 256
polycrystals, 197
realizability, 196
y-parameters, 397

effective tensor
adjoint equation, 263
analytic

properties, 369–391
generalized, 260
monotonicity, 274
resistor network, 418
series expansions, 291–309,

313–335
solutions for, 261

eigenstress, 31, 405
eigenstress concentration factor

tensors, 405
Einstein summation

convention, 313
elastic energy minimizing

hole, 467
elastic moduli

fibrous composites, 25, 26,
35, 86

elastic waves, 230–233
elasticity

analyticity, 371
equations, 22
nonlinear, 22, 87, 671
planar, antiplane link, 105
tensor, 22
two-dimensional, 24

elasticity as coupled
equations, 98

electrical circuits
active network, 415
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passive network, 415
see also resistor network

electrical conductivity
equations, see
conductivity, equations

electrochemical potential, 28
electromagnetic signal

propagation, 228
electromagnetic

waves, 222–230
electrostatic resonances, see

resonances, electrostatic
ellipsoid assemblages

conductivity, 124, 129, 144,
148, 377, 462, 570

elasticity, 130, 467
ellipsoid suspension, 252
ellipsoidal coordinates, 124
ellipticity condition, 9, 298
embedding, 355, 505, 510, 520
energy functions, 381
energy sum as single

energy, 650
ensemble average, 12
entropy, 31
equiaxed polycrystal, 489
equivalent inclusions, 240
equivalent media, 59
Eshelby’s solution, 252
Euler-Lagrange equation, 282
exact relations, 75–110, 304,

332, 355–366
candidates for, 358
limited statistics, 363
necessary conditions, 357,

365
sufficient conditions, 359

exactly solvable
geometries, 113–181,
295

extended fields, 506, 508, 544,
547, 644

extremal composites, 652
extremal materials, 658, 663
extremal translations, 532, 545

fast Fourier transform, 40
fast multipole method, 39, 331
fast variable, 8
fibrous composites, 25, 33, 35,

86, 87, 97, 102
field decomposition, 248

field equation recursion
method, 619–641

fields
distributions, 346
series expansions, 291–309
solutions for, 261, 298
uniqueness, 299
variance, 344

fields in terms of analytic
functions, 106

finite difference scheme, 40
finite element methods, 40
Floquet’s theorem, 223
flow in porous media

equations, see
conductivity, equations

fluid suspensions, bulk
modulus, 88

fluidity threshold, 204
Fourier methods, 40
fractional linear

transformations, see
transformations,
fractional linear

Francfort-Murat formula, 174
fundamental matrix, 103

G-convergence, 12
G-closure, 429, 643, 679, 683,

690
characterization, 520, 647,

650, 679
constant volume

fraction, 431, 462, 508,
643

convexity properties, 645
three-dimensional

conductivity, 450, 521
two-dimensional

conductivity, 446, 521
�-operators, 245, 247, 250,

257, 314
conductivity, 161, 189
elasticity, 168, 174
piezoelectricity, 170
representation, 631
thermoelasticity, 170
thermoelectricity, 170

�-convergence, 12
�-realizing sequence, 14
gap resistance, 209
Gassman equations, 86

Gaussian random field, 331,
556, 558

geometric isotropy, 327
geometric parameter

η1, 330–333, 553, 557
geometric parameter

ζ1, 329–333, 398, 553,
555, 557, 574, 577, 586

geometrical isotropy, 294, 333,
488, 564

Gibiansky-Cherkaev energy
bounds, 466

Gibiansky-Cherkaev
formulas, 174, 175

Gibiansky-Sigmund
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Gibiansky-Torquato
bounds, 522
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bounds, 451, 639

group velocity, 228

H -convergence, 12
H -measures, 293, 295, 327
Hall coefficient, 21, 60, 344
Hashin coated spheres, see

sphere assemblages
Hashin formula, 84
Hashin-Shtrikman

bounds, 116, 207, 282,
347, 399, 458, 460,
470–472, 480, 481, 487,
489, 501, 507–509, 542,
556, 558, 569, 574, 577,
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realizability, 206
Hashin-Shtrikman coated

spheres, see sphere
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Hashin-Shtrikman
formula, 115, 239

Hashin-Shtrikman variational
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287, 309, 353, 409, 410,
457, 461, 462, 466, 488,
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heat lens problem, 432
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Herglotz property, 374, 385,

612, 614, 616, 619
hexamode materials, 654
high-contrast media, 40, 207
Hilbert space

decomposition, 248
Hill bounds, 471, 473, 505,

542, 558
Hill relations, 87
Hill’s formula, 78, 332, 356,

364
homogeneity property, 8, 212,

345, 372, 612, 614, 619
homogenization

Bloch wave, 221
G-convergence, 12
�-convergence, 12
H -convergence, 12
higher order, 10
intuitive viewpoint, 7
nonlinear elasticity, 14
periodic, 8
random media, 11
stability under, 359, 365,

544
hopping conductivity, 211
hyperbolic segment,

Hyp[(w1, w2)], 524

imperfect interface, 134
incidence matrix, 413
infinite volume limit, 12
infinitely interchangeable

materials, 322
inner product, 248, 299
integral equation, 39
integral representations, 346,

375, 387, 391, 605, 615,
616

interphase region, 134
iterated dilute limit

approximation, 201

Jacobian, 595

K -quasiconformal
mappings, 152

Kapitza resistance, 134
Keller’s relation, 48, 573, 585
Khachaturyan’s solution, 252
Kirchoff’s law, 415
Kohn-Strang algorithm, 680
Korn inequalities, 101
Kramers-Kronig relations, 592

Lagrange multiplier, 531
Lagrangian, null, 67, 274, 503,

507, 513, 516, 530, 533,
546, 672, 691

�-connected, 676, 693
�-convexification, 679
�-convexity, 676, 693
Lame modulus λ, 23
laminate fields, 673, 683
laminates, 159–181

coated, 165, 171, 173, 256,
294, 462, 463, 467, 471

conductivity, 162, 165, 174,
382, 570, 572

cyclic, 537, 540, 541, 683
elasticity, 163, 167, 174,

471
general formula, 164, 172,

645, 646
herringbone, 653, 660, 661
infinite-rank, 471, 537
mimicking ellipsoids, 256
multicoated, 383
multiple-rank, 159, 164,

544
oblique box, 658, 659
optimal, 351
ordinary differential, 175
partial differential, 177
perturbing lamination

directions, 351
piezoelectricity, 167
randomly generated, 537
signal propagation, 229
thermoelectricity, 97, 167
Y -tensor, 407

lamination closure, 679, 690
lamination closure and

�-convexification, 679
lamination trajectories, 544
lamination, stability

under, 357, 645, 647
Laplace equation

solution in terms of analytic
functions, 110

layered material, see laminates
Legendre polynomials, 328,

330
Legendre transforms, 236, 283,

531, 647, 650
lens-shaped region, 576, 603
Levin formula, 80
linear elasticity, see elasticity
linear programming, 591
linkage array
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honeycomb, 655, 666
inverted honeycomb, 656,

666
Lippmann-Schwinger

equation, 251
Lipton bounds, 473
local averaging, 7
local field, 189
Lorenz-Lorentz formula, see

Maxwell formula
Lurie-Cherkaev bounds, 347,

462, 508, 521

macroscale, 7
magnetism equations, see

conductivity, equations
magnetoelectric effect, 4, 30
magnetostrictive materials, 4,

30, 97
magnetotransport, 21, 33, 51,

124
relation to conductivity, 33,

87, 344
relation to

thermoelectricity, 264
Maxwell formula, 192–194,

239, 243, 306, 457
Maxwell’s equations, 222
Maxwell-Garnett formula, see

Maxwell formula
McCoy bounds, 553, 557
mean-field formula, 6
measure µ, 376, 388, 391

constraints on, 379, 389,
604

mechanical stress
concentration factor
tensor, 405

mesoscale, 7
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relations, see exact
relations
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moments of measure µ(y), 379
momentum conservation, 230
monotone function, 309
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tensor, 274
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multigrid methods, 40
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508, 521
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assemblage, 136, 138
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expansion, 81
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inequalities, 282
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norm of linear operator, 299
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385, 614, 619
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transformation, 413,
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normalizing function, 259, 324
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507, 513, 516, 530, 533,
546, 672, 691

nullmode materials, 654
numerical methods, 38, 306

Onsager’s principle, 28
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operator representations, 631
optimal composites, see
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optimization

average temperature, 430
elastic energy, 432
heat flow, 432
nonconvex, 430
plate elasticity, 432
structural, 425, 429, 446
torsional rigidity, 432

Padé approximants, 571, 578,
590

pair correlation function, 191
partial differential

microstructures, 181
penetrable disk model, 320,

333, 586
penetrable sphere model, 319,

331, 554
pentamode materials, 654, 666
percolation threshold, 196,

205, 211
perforated structures, 11
periodic homogenization, see

homogenization,
periodic

perturbation solutions
nonlinear media, 308
other, 341–352
see also series expansions

phase boundary shift, 347
phase interchange identities

conductivity, 49, 118, 385
elasticity, 53, 57, 70
piezoelectricity, 102

phase interchange inequalities
conductivity, 120
elasticity, 70

phase transitions, 672
phase velocity, 228
piezoelectricity

bounds, 490
equations, 28, 342
relation to elasticity, 35
see also coupled equations

piezoelectrics, 4, 29, 96
plane strain, 25, 37
plane stress, 25
plate equations

bending, 26, 466
conductivity, 20

plate with holes, 40, 66, 67
Poisson’s equation, 189
Poisson’s ratio, ν, 23, 68, 213,

652
polarizability

bounds, 188
circle pairs, 188
crystal sphere, 187
elastic, 188, 191, 254
ellipse, 187
hole, 188
inclusion, 185, 188
nonlinear, 242
piezoelectric, 255
poroelastic, 255
sphere, 187
sphere pairs, 187, 191
tensor, 186

polarization charge
density, 188

polarization field, 145, 171,
186, 457

equation for, 251
pole and residue variation

method, 590
pole and zero variation

method, 592
pole lines, 390
Pólya-Szegő matrix, see

polarizability tensor
polyconvex functions, 672
polyconvexification, 673
polycrystals

analyticity, 371
bulk modulus, 69, 76
cell, 322, 335, 487
conductivity, 50, 387, 619
conductivity bounds, 426,

439, 446, 450, 489, 510,
569, 646

conductivity
maximizing, 439

conductivity
minimizing, 512, 537

correlation functions, 318
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effective medium
approximation, 197

elasticity, 99
elasticity bounds, 441, 490,

500, 536
equiaxed, 489
Hall coefficient, 60
piezoelectricity bounds, 490
plasticity, 682
series expansions, 335
shear modulus, 55, 56, 69,

361
sphere assemblage, 121
thermoelasticity, 83

polydisk representation
formula, 389

polynomial applied field, 254
Ponte Castañeda bounds, 285
poroelasticity, 30, 84

see also thermoelasticity
Postma formulas, 163
power dissipation, 225, 232
Prager bounds, 580
product properties, 4, 30
projections, Λh , Λs , 371, 469
pyroelectric effect, 5
pyroelectric equations, 33, 51
pyroelectricity, relation to

conductivity, 33, 87

quadramode materials, 654,
666

quasiconformal mappings, 152,
480

quasiconvex function, 529, 671
quasiconvex hulls, 681
quasiconvex tensors, 302
quasiconvex translations, 503
quasiconvexification, 671–695

generalization, 676
quasiconvexity, 359

conditions for, 673, 677,
690

quasiconvexity test, 503, 513
quasistatic limit, 221, 370, 569

Radon transforms, 327
random media, 11, 315
rank constancy

assumption, 250
rank-1 connected, 673
rank-1 convex, 673

rank-1 convex function not
quasiconvex, 684

rank-1 convex hull not
quasiconvex, 688

rank-1 convex hulls, 681, 683
rank-1 convexification, 673,

679
rank-1 positivity, 504
rank-1 tensor fluctuations, 77
rational approximants, 571
Rayleigh’s method, 39
recoverable deformations, 682
reduced correlation

functions, 323, 328
reference tensor, 171, 278, 457
reference transformations, 172
reflection transformation, 447
relaxations, partial, 433
relaxed problem, 431
renormalization group

theory, 212
representation formulas, 370,

375, 382
representations of

operators, 631
resistance, gap, 209
resistivity tensor, 21
resistor network, 40, 197, 209,

370, 377, 413
effective tensor, 418

resonances
electrostatic, 39, 238, 381
localized, 238

resonant solutions, 380
Reuss-Hill bound, 444, 487
Ricatti equation, 121, 127, 176
rigidity threshold, 205
Rosen-Hashin formulas, 80,

81, 83
ruled surface, 516

saddle-point variational
principles, 277

Schulgasser formula, 84
Schulgasser inequality, 120
Schulgasser sphere

assemblage, 121, 512
Schulgasser-type circle

assemblage, 502, 537
Schur complement, 236
sea ice, 1, 569
seed material, 540, 683

self-consistency
assumption, 196, 198

self-consistent estimates, 198
series expansions

bounds incorporating, 573,
579, 586, 589, 603

conductivity, 329, 335, 586
convergence, 298–306
correlation

functions, 313–335
elasticity, 330, 331
eliminating terms, 603, 610
numerical computation, 306
second-order, 292
thermoelasticity, 294
truncated, 306
with fast

convergence, 302–309
shape factors, see cell shape

parameters
shape memory materials, 671,

682
shear matrix µ, 38
shear modulus µ , 23
shear viscosity, 2, 19, 234
Sigmund microstructures, 485,

486
single oscillator model, 224,

369
slow variable, 8
sound waves, see acoustic

waves, see elastic waves
spaces Ek, Jk, and T , 246
specific heat

constant strain, 31
constant stress, 31, 79, 82

spectral broadening, 239
spectral measure, 380
sphere arrays, 2, 39, 208, 331,

377, 558, 571, 575, 576
sphere assemblages, 134, 166,

238, 239
bulk modulus, 116, 471,

473, 525, 558
bulk viscosity, 233
conductivity, 115, 144, 194,

330, 350, 459, 525, 558,
570, 572

multicoated, 117, 460
Schulgasser’s, 121
shear modulus, 205, 472
thermoelectricity, 97
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256, 331, 377, 555, 558

spheroid suspension, 205
spring network, 40, 197
stability under

homogenization, 359,
365, 544

stability under lamination, 357,
645, 647

Stieltjes functions, 379, 380,
571, 573, 603

strain field, 22
stress field, 22
stress invariance, 66
structural hierarchy, 5
structural optimization, 425,

429, 446
subspace collections, 406, 619,

626
and analytic functions, 619,

624
operations on, 620

sum rules, 379
supertensor, 506, 644
suspension of ellipsoids, see

ellipsoid suspension
suspension of spheres, see

sphere suspension
suspension, dilute, see dilute

suspension
Šverák’s example, 673, 684,

690
swelling due to humidity, 81
Swiss cheese models, 213
symmetric materials, 49, 55,

69, 102, 123, 573, 588
Sze̋go kernel, 389

Talbot-Willis variational
inequality, 285, 286

Tartar’s formula, 165, 174, 177
tendons, 5
tensorial properties, 99
thermal conduction

equations, see
conductivity, equations

thermal expansion
negative, 3
nonlinear, 81
tensor, 30, 79, 82

thermal expansion coefficient
link with bulk modulus, 80

thermoelastic-type
problem, 33, 86, 509,
643, 678

thermoelasticity
equations, 30, 356, 364
relation to elasticity, 35
relation to Y -tensor, 403
series expansions, 294

thermoelectric
equations, 28, 237, 342
figure of merit, 97
power factor, 4, 97, 580

thermoelectric coefficients, 96
thermoelectricity

relation to complex
conductivity, 237

relation to
magnetotransport, 264

see also coupled equations
thin films, conductivity, 20
threshold

conductivity, 196, 207
fluidity, 204
percolation, 196, 205
rigidity, 205

tie line, 516
touching spheres, 210
trace bounds, 473, 474, 476,

509, 518
trajectory method, 387
transformations

affine, 145, 327
Cherkaev and

Gibiansky’s, 234
curvilinear, 149, 297
decoupling, 95, 97, 580
fractional linear, 59, 63,

102, 413, 603–617, 619
Legendre, 236
normalization, 413, 612,

614, 617, 627
quasiconformal, 152
reference, 172
reflection, 447
Y , 398, 611, 614, 627

translation bound, 500, 503,
504, 509, 530, 531

attainability, 541
nonlinear, 531

translation method, 462, 466,
499–525, 529–550, 560

translations, 59–70, 373

as exact relations, 356
conductivity, 65, 506, 510,

545
coupled equations, 97, 100
elasticity, 66, 500, 504, 547
extremal, 532, 545
finding them, 544
geometrical

characterization, 512,
532

one negative
eigenvalue, 513

quasiconvex, 503, 647
quasiconvexity test, 503,

513
trimode materials, 654, 667
twinned microstructure, 672
two-phase media

conductivity bound, 458,
460, 461, 481, 506, 520,
542, 554, 564, 569–596,
603–617

elastic energy bounds, 465
elastic moduli bounds, 470,

471, 500, 504, 542, 557,
558, 569

Hall coefficient, 61
specific heat, 81, 83
thermal expansion

coefficient, 80
thermal expansion

tensor, 82
thermoelectric

coefficients, 96
Y -tensor, 397

uniform field relations, 75, 144,
361

unimode materials, 654, 658,
667

universality, 211

Vandermonde determinant, 96
variance of fields, 344
Vigdergauz

microstructure, 467,
484, 486

viscoelasticity, 230
Voigt-Hill bound, 442, 487
Voigt-Reuss bounds, 442, 487

Walpole bounds, 473, 505, 558
wavelength, 226, 228
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waves, elastic, see elastic
waves

waves, electromagnetic, see
electromagnetic waves

weak convergence, 10
weak limit, 11
weakly continuous bilinear

forms, 276
weakly continuous

functions, 275
weakly coupled equations, 342
wedge bounds, 374, 375, 575,

639
weight matrices, 615, 628, 634
weights, 611
well-ordered materials, 462
well-separated

distributions, 191
well-separated spheres, 189,

205
well-stirred distributions, 191
Wheatstone bridge, 413
Wiener bounds, 487, 574, 577,

590, 601
Willis bounds, 464
Wood’s formula, 89
Wulff shape, 489

y-parameter
yκ , 523, 557
yµ, 523, 557
yσ , 399, 556

Y -tensor, 397–411, 413–423,
556, 627, 630, 638

bounds, 411, 475, 516, 519,
563, 564, 641

electrical circuit, 417
formula for, 406
laminates, 407
multiphase media, 399
polarization problem, 408
problem, 401, 406
two-phase media, 397
variational principle, 401

Y -transformation, 398, 611,
614, 627

yield surface bounds, 682
Young’s measure, 677, 687
Young’s modulus, E , 23, 66, 68

zero lines, 390
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