玻璃纤维增强复合材料的设计

[英] F・A・魁恩 M・I・泼劳特 编著 支振徳 译 徐鹤梅 校

福建科学技术出版社

增强复合材料的设玻 璃 纤 维

支振德 译 徐鹤梅 校〔英〕F·A·魁恩 M·I·泼劳特

楊建科学技术出版社

责任编辑: 黄宗鋆

· (李)F·A·魁恩 M·I·发劳特 编著 支振德 译 谷鹤梅 杠

> 福建科学技术出版社出版 (福州得贵巷27号) 福建省业学专业发行 、福建新华印刷厂印刷

开本787×1092毫米 1/32 2 875印张 53千字

1987年 6 月第 1 版 1987年 6 月第 1 次印刷

印数: 1-1,300

ISBN **7**-5335-0015-6/TB·1 书号: 15211·98 定价: 0.65元

前 言

复合材料的概念是简单的。当单一材料不能满足使用要求时,就要把两种或两种以上的材料复合起来以满足需要。 广义地说,所有的材料都是复合材料,从古代的草筋泥墙, 到近代的钢筋混凝土都是如此。但目前复合材料的定义却是 狭义的,主要是指两种或两种以上材料在宏观尺度上的复合,有时更局限于以玻璃钢为始的玻璃纤维增强复合材料。

必须注意的是,这里的复合不是合成。复合材料中的组分材料不允许有化学腐蚀,而只能是物理组合,当然也希望它们的界面上有些化学反应以增强粘结力。就本质来讲,复合材料不仅作为材料,更应作为结构物来处理,这样就使得材料的应用有更大的自由度。例如,所有的玻璃纤维、树脂已确定,但不同的玻纤含量和不同的铺放方向,却可组成品种繁多、性能各异的复合材料。

按照使用要求选择合适的材料组成复合材料,以充分发挥组分材料的优点,人们称之为材料设计。但各组分材料的弱点也不可避免地带进来,应扬长避短。选择合适的玻璃纤维含量和铺放方向以满足强度、刚度要求,选择合适的树脂以满足耐温、耐腐蚀要求。

支振德、徐鹤梅两同志译、校的这本小册子,简明扼要 地说明了上述这些基本概念,使不熟悉复合材料的人花不多 的时间就能了解复合材料的概貌。

作为一种材料, 总有它的使用场合。国际上玻璃钢产品 已超过 4 万种, 自宇航到家具, 遍布各工业部门, 产量达200 万吨, 主要用于车辆、船舶、建筑和化工设备。国内近年来 玻璃钢生产发展较快,产品超过千种,产量达5万多吨。本 小册子结合船舶和化工设备举了不少例子,这些例子可以推 广到其他应用上。本小册子还提供了许多数据和图表,这些 都是英国资料,有些并不适合我国国情,只能作 参 考 或 借 鉴。例如,国外的玻璃纤维价格比通用聚酯树脂高得多,当 然少用些玻璃纤维是合理的; 而我国的通用聚酯树脂价格高 于玻璃纤维,则不宜套用英国资料。又如,国外的主要玻璃 纤维产品是无捻粗纱和短切纤维毡, 而国内却以织物为主, 短切纤维毡尚在创始阶段。要结合我国具体情况提供自己的 数据和图表,首先要有可靠的性能数据,这些数据只能在大 量测试数据基础上用统计分析获得,忽视这些平凡的重复测 试是错误的; 其次要有合理的设计方法。现在一般采用"等代 设计"法,即在不改变结构形式下作简单的等强度或等刚度 换算。过去的经验是宝贵的,也是应该借鉴的; 再次要有可信 的质量控制和检测手段。由于这类材料的历史还不到50年, 需要在实践中累积更丰富的经验, 所以不宜要求过分严密的 理论分析和过分精密的检测手段, 以免化费过大, 但解决问 题时要求概念上清楚、分析上正确、处理上简单。本小册子 中所贯穿的理论分析和处理方法是合理的, 值得我们学习。

顺便提一下,关于玻璃钢横向弹性模量的估算,国内学者做了较多工作,提出了实用简便的估算公式: $E_T = E_m/\overline{W}_m$ 。本小册于中提出的 E_T 估算值偏低 一 些,但 还 可 应 用。另

外,小册子中的一些数据是精确 过分的,如 玻璃 纤维的 $E_{n}=68948 MN/m^{2}$,聚酯树脂的 $E_{m}=3447 MN/m^{2}$,计及材料本身的变异性,取二位有效数字是足够精确的。这只能说是美玉微瑕,不掩其辉。

朱颐龄 1986年3月

序言

十年前,英国玻璃纤维(下面简称玻纤)有限公司出版了第一本有关玻纤增强复合材料的书。五年后,经修改和再版,该书成了与玻纤增强复合材料有关的工业标准参考书。

现在这本书,是在前两本书的基础上增编的最新版本。虽然书中有些数据还是原来的,但新增了许多内容,使之更能适应十多年来工业迅速发展的需要。

[英] F·A·魁恩 M·I·泼劳特

・目次・

序 言
一、玻纤复合材料简介1
(一) 玻璃 (二) 玻纤的分类 (三) 树脂
二、玻纤复合材料基本知识6
(一) 复合材料的厚度 (二) 质量含量与体积含
量的换算 (三) 复合材料的密度 (四) 复合材
料的孔隙含量
三、玻纤复合材料的力学性质14
(一) 复合材料强度增强的力学原理 (二) 复合
材料弹性模量 (三)复合材料的强度
四、玻纤复合材料性能预测23
(一) 用经验资料预测 (二) 用数学模型预测
五、玻纤复合材料的设计35
(一) 梁的弯曲应力与弯曲力矩 (二) 帽型截面
的几何特性 (三)圆柱形容器 (四)矩形容器
(五) 变形标准 (六) 安全系数 (七) 由不同
材料层组成的层合板弯曲 (八)夹层结构
六、玻纤复合材料的性能58
(一) 复合材料的物理性能 (二) 等效截面积、

质量、	厚度	(三)	吸音	(四)	使 度和	耐磨性	
(五)	透光和	传热	(六)	温度的	影响	(七).	电
性能	(/\)	耐腐蚀	性能	(九)	其他性	能	
七、	皮纤复	[合材	料性	能优主	选		74
(→)	材料性	能优选	(=)性能	优选设	计	
译后	记	•••••		•••••		•••••	··· 82

表现,他就是一个人,一个<mark>都</mark>有一点。

一、玻纤复合材料简介

(一)玻璃

当玻璃被拉成细纤维时,其强度大大地超过了块状玻璃。在英国的玻纤制造业中,原先用两种玻璃,现只用其中的一种——E玻璃生产玻纤,其是一种低碱硼硅酸盐玻璃。 拉成纤维的玻璃类型有:

- 1. E玻璃。其由钠和钾的氧化物组成,碱含量少于1%。 E玻璃拉成的纤维是一种高级绝缘纤维,也是世界上的树脂标准增强纤维。
- 2. C玻璃。其拉成的纤维可抗酸性腐蚀,常以表面 毡的形式作为化工设备的耐腐蚀层。
- 3. S、R玻璃。这两种玻璃拉成的纤维有很高的弹性模量,特别适于制造与空间工业有关的对性能要求很高的层合板。
- 4. Cem-FIL AR 玻璃。其拉成的玻纤具抗 碱 性, 适用于增强水泥。

Section 1

性能 東璃 英型	E	С	S	R
比 重 单纤维抗拉强度 GN/m ² 弹性模量 GN/m ²	2.56 3.6 75.9	2.45	2.49 4.5 86.2	2.58 4.4 84.8
软 化 点 ℃ 热膨胀系数 1/℃ 热传导系数 W/m・℃	850 4.9×10 ⁻⁶ 0.04	690		990

(二) 玻纤的分类

- 1. 粗纱。有各种号数,适于作包装物或结构物。
 - (1) 大型喷射: 用手工或机械连续短切的喷射粗纱。
- (2) 小型喷射: 用手工或机械连续短切的, 并经 铬 盐 处理的喷射粗纱。
- (3) 大型预浸胶,用于聚酯稀浆以生产团状和片状模塑料的短切粗纱。
 - (4) 大型缠绕: 用于高强度元件或杆材的缠绕。
 - (5) 大型编织:用于大量生产质地一致的织物。
 - (6) 等张力粗纱:用于缠绕或编织的粗纱。
- 2。短切纤维毡。有密度和宽度各不相同的多种品种。
- (1) 大型纤维毡:用于手工湿法敷层,有良好的 模 制 性。
- (2) 多层纤维毡, 易于湿透、松疏的多层而高度, 呈 整体的手糊毡。

- (3) 等纤维毡。由不同树脂、玻纤比例组成的多种长度的纤维毡。
- (4) S·M·C大型纤维毡:用于生产高质量的片状模塑材料。
- (5) F·W大型纤维**毡:** 用于缠绕高强度快速湿润纤维 毡。
- (6) P·B大型纤维毡: 其为粉粘纤维毡,可用手工 敷成半透明模塑料或供化工厂使用。
- (7) T·S大型纤维毡: 其为细纱、高强度粉 毡,用于 机械制造半透明片状模塑料。
- 3. FGCS系列短切纤维。用于增强聚酯、醇酸模塑材料以生产预成形制品,也可用于非塑性材料,如沥青、硅酸钙、石膏、灰泥等。其经设计还可用于增强热塑性聚合物,如尼龙、苯乙烯、聚丙烯等。
- 4. 粗纱布。其有各种密度和各种织法,其中也包括了单向布。
- 5. 纤维带。其有各种宽度和厚度,用于电器或用作增强物。
- 6. 连续纤维毡。其有各种密度和宽度,用于增强经热、 冷加工处理的对模模制品。
- 7. 组合产品。把两种增强材料复合成为应用广泛 的 结构材料,即称为组合产品。
- (1) 纤维织物毡: 粗纱织物与短切纤维毡复合, 用作触模模制品。
 - (2) 单向粗纱毡: 单向粗纱和短切纤维毡复合, 用于

拉挤法或触模法模型。

- 8. 表层毡。其为薄纤维纱毡,在对模模塑中易形铺放。
- 9. 表面毡。其为薄纤维纱毡,在触模模塑时,易于形成富含树脂的表面层。

聚酯树脂是玻纤复合材料使用最广泛的树脂。制造可完全固化的聚酯树脂有3个明显阶段。第一阶段由有机酸(通常是饱和或不饱和二元酸的混合物)和二元醇反应生成不饱和聚酯,第二阶段用单体溶剂(通常是苯乙烯)溶解不饱和聚酯,使之成为流体;第三阶段是层合阶段,即在树脂流体中加催化剂(有时称加速剂),在单体溶剂分子和不饱和酸的双链之间形成完全可固化的聚酯树脂。若改变组分比例和使用不同的酸、醇,则制得的聚酯树脂性质也不同。

4

- 1. 环氧树脂。其是直链聚合物,由环氧氯丙烷与.多元. 酚类缩聚而成。
- 2. 硅树脂。其是半有机化合物,具有交替的硅和 氧 原子键。 显然 上班 多 医神里含的 公司
 - 3. 呋喃树脂。其由糠醇和糠醛自缩聚而成。
- 是粉状的,其制品由模压而成。近年来已有适合于手工糊层 工艺的酚醛树脂问世。

表 2 给出了模塑复合材料中最为通用的已固 化 了 的 聚酯、环氧树脂的典型性能数据。可供设计时参考。

性	能	已固化聚酯树脂	已固化环氧树脂
比重		1.10~1.46	1.11~1.40
硬度 (洛氏) M		70~115	80~110
抗拉强度 MN/m ²		42~91	28~91
弹性模量 MN/m²		2~4.5	2.4
抗压强度 MN/m²		90~250	100~175
比 热 cal/g·℃		0.3	0.25
导热性 W/m·℃		0.21	0.21
线膨胀系数 1/℃		9.9~18×10 ⁻⁵	8.1~11.7×10 ⁻⁵
收缩率		0.004~0.008	0.001~0.004
吸水性 %		0.15~0.60	0.08~0.15

二、玻纤复合材料基本知识

(一) 复合材料的厚度

选用材料质量与成品厚度之间关系,是设计复合材料的 关键问题之一。这个关系可由每种所选用材料在复合材料中 所占的厚度得到。图1、图2为层合板厚度曲线。已知层合板的

材料密度与原度合物对照表

衣3	材料 省及与序及吊数对照衣			
材料	密度 Mg/m³	厚度常数 mm kg/m²		
E玻纤	2.56	0,391		
S玻纤	2.49	0.402		
C玻纤	2.49	0.402		
聚酯树脂	1.10	0,909		
聚酯树脂	1.20	0.833		
聚酯树脂	1.30	0.769		
聚酯树脂	1.40	0.714		
环氧树脂	1.1	0,909		
环氧树脂	1.3	0.769		
填充物碳酸钙	2.3	0.435		
填充物碳酸钙	2.5	0.400		
填充物碳酸钙	2.9	0.345		

玻纤质量含量及玻纤单位面积质量,即可从中查出其厚度。 表3中的厚度常数按下式计算。

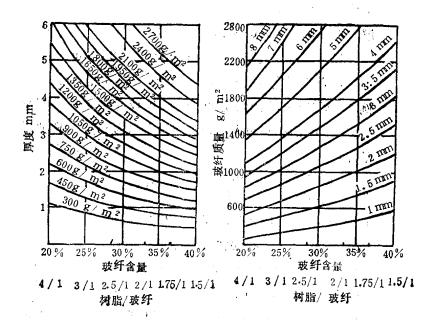
$$\frac{1}{\operatorname{密度}(Mg/m^3)} = 厚度常数\left(\frac{mm}{kg/m^2}\right) \qquad 2-1$$

对于任一材料,只要给出其密度,则厚度常数就能算出,故有:

材料所占厚度 $(mm) = 材料质量 (kg/m²) × 厚 度 常 数 <math>\left(\frac{mm}{kg/m²}\right)$ 2—2

例 1 某种层合板含有600g/m²E玻纤的短切 纤维毡和密度为1.2Mg/m³的聚酯树脂,树脂与玻纤的质量比 为2.25 : 1,求此层合板的厚度。

解 玻纤厚度=0.6×0.391=0.235 mm树脂厚度=2.25×0.6×0.833=1.125 mm层合板厚度=0.235+1.125=1.360 mm


例 2 某种层合板由 5 层800g/m²E 玻纤无捻粗 纱和密度为1.3Mg/m³的树脂组成,玻纤质量含量为55%,求此层合板的厚度。

解 树脂质量 =
$$\frac{100-55}{55}$$
 = 0.818 树脂质量 = 0.818×5×0.8 = 3.272 kg/m² 玻纤厚度 = $5 \times 0.8 \times 0.391$ = 1.564 mm 树脂厚度 = 3.272×0.769 = 2.516 mm 层合板厚度 = $1.564 + 2.516 = 4.080$ mm

例 3 某种层合板由一层300g/m²E玻纤C·S·M(片状模塑复合材料)、4层600g/m²E玻纤C·S·M组成。树脂混

合物中有40%密度为 2.5Mg/m³的 填 充 物 和60% 密 度 为 1.2Mg/m³的聚酯树脂。树脂与玻纤的质量比 为 2.5:1,求此层合板的厚度。

解 玻纤总质量=1×0.3+4×0.6=2.7 kg/m²
树脂质量=2.7×2.5=6.75 kg/m²
填充物质量=6.75× 40/60 = 4.50 kg/m²
玻纤厚度=2.7×0.391=1.056 mm
树脂厚度=6.75×0.833=5.623 mm
填充物厚度=4.50×0.4=1.800 mm
层合板厚度=1.056+5.623 +1.800=8.479 mm

(二)-质量含量与体积含量的换算

复合材料的计算,大多基于其各组分材料的体积含量。 然而,在生产中为了简便,却按质量含量来计算的。但玻纤密度与树脂密度往往不相等,所以,其质量含量与体积含量 也就不相等。因此,为计算方便,就必须进行两种含量的换 算。下面给出两个换算公式,并将几种普通复合材料的质量 含量与体积含量换算绘成图 3 所示曲线,以便查找。

$$\overline{V}_1 = \frac{\overline{W}_1}{\overline{J}_1}$$

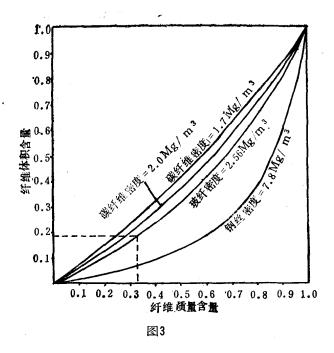
$$\overline{W}_1 + \frac{\overline{W}_2}{\overline{J}_2} + \frac{\overline{W}_3}{\overline{J}_3} + \cdots$$

$$\overline{W}_1 = \frac{\overline{J}_1 \overline{V}_1}{\overline{J}_1 \overline{V}_1 + \overline{J}_2 \overline{V}_2 + \overline{J}_3 \overline{V}_3 + \cdots}$$

$$\overline{Z} + \overline{V} - \overline{N}$$

$$\overline{W} - \overline{N}$$

$$\overline{W} + \overline{W}$$


例 4 某复合材料由体 积 为 20% 的玻纤(f)和 体积为 80%的聚酯树脂(r)组成。若玻纤密度为 2.56Mg/m³,树脂密度为1.2Mg/m³,那么这些组分的质量含量各为多少?

△——材料的密度。

解
$$\overline{W}_{f} = \frac{\Delta_{f} \overline{V}_{f}}{\Delta_{f} \overline{V}_{f} + \Delta_{r} \overline{V}_{r}} = \frac{2.56 \times 0.2}{2.56 \times 0.2 + 1.2 \times 0.8}$$

$$= 0.35 = 35\%$$

$$\overline{W}_{r} = 1 - \overline{W}_{f} = 1 - 35\% = 65\%$$

例 5 短切纤维毡层合板玻纤质量含量为33%, 请用图 3 求出玻纤的容积含量。

解 使用图 3 中的玻纤曲线。由质量含量为0.33可求得体积含量为0.187,即18.7%(如图 3 中虚线所示)。

例 6 某复合材料由玻纤、聚酯树脂和填充料碳酸钙组成。下表给出相应的配比和密度,试由此求出各组分材料的体积含量。

	质量含量	密度
玻 纤	$\overline{W}_{\rm f} = 20\%$	$\Delta_f = 2.56$
聚酯树脂	$\overline{W}_{\rm r} = 60\%$	$\Delta_r = 1.2$
碳酸钙	$\overline{W}_c = 20\%$	$\Delta_c = 2.7$

解 先求出玻纤体积含量:

$$\overline{V}_{f} = \frac{\frac{\overline{W}_{f}}{\Delta_{f}}}{\frac{\overline{W}_{f}}{\Delta_{f}} + \frac{\overline{W}_{r}}{\Delta_{r}} + \frac{\overline{W}_{c}}{\Delta_{c}}} = \frac{\frac{0.2}{2.56}}{\frac{0.2}{2.56} + \frac{0.6}{1.2} + \frac{0.2}{2.7}}$$
$$= 0.12 = 12\%$$

同样可求出树脂体积含量:

$$\overline{V}_{r} = \frac{\frac{\overline{W}_{r}}{A_{r}}}{\frac{\overline{W}_{f}}{A_{f}} + \frac{\overline{W}_{r}}{A_{r}} + \frac{\overline{W}_{c}}{A_{c}}} = \frac{\frac{0.6}{1.2}}{\frac{0.2}{2.56} + \frac{0.6}{1.2} + \frac{0.2}{2.7}}$$
$$= 0.77 = 77\%$$

显然,碳酸钙的体积含量为:

$$\overline{V}_c = 1 - \overline{V}_f - \overline{V}_r = 1 - 12\% - 77\% = 11\%$$

(三) 复合材料的密度

复合材料的密度可用混合定律求得。由两种材料组成的 复合材料密度为:

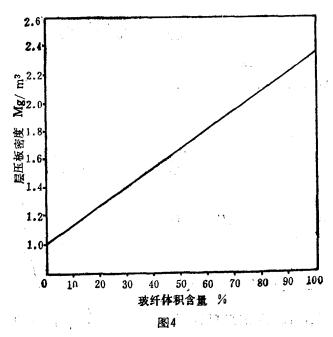
$$\Delta_K = \Delta_f \overline{V}_f + \Delta_m \overline{V}_m$$

式中 Δ_{κ} ——复合材料的密度;

 Δ_m —基体材料的密度:

 \overline{V}_m —基体材料的体积含量。

上式还可以写成:


$$\Delta_K = \Delta_f \overline{V}_f + \Delta_m \ (1 - \overline{V}_f)$$

其一般式为,

$$\Delta_{\mathbf{K}} = \Delta_1 \overline{V}_1 + \Delta_2 \overline{V}_2 + \Delta_3 \overline{V}_3 + \cdots$$

$$2-5$$

图 4 为聚酯树脂密度为1.2Mg/m³时,由不同玻纤体积含量组成的层合板密度图解。

而实际上则是由已知质量含量,而不是已知体积含量来 计算复合材料的密度的。所以,复合材料密度的一般式又 为:

$$\Delta_K = \frac{1}{\overline{W}_1 + \overline{W}_2 + \overline{W}_3 + \cdots}$$
 2—6

(四) 复合材料的孔隙含量

复合材料内部总存在有空隙,通常又称为孔隙。在要求 不高的情况下,这种孔隙是被忽略的。然而,一定量的孔隙 量却是衡量层合板抗化学性能和机械性能的一个指标。因此,通常用测定层合板的孔隙量作为控制层合板质量的方法。为此,就必须知道组成复合材料各组分材料的质量,而这些质量数据则是用烧灼法烧去复合材料中基体材料而得到的。已知数据不同,孔隙量的计算公式也就不同。

1. 已知复合材料的体积,则孔隙的体积含量为:

$$\overline{V}_{V} = 1 - \frac{W_{f}}{\Delta_{f} V_{K}} - \frac{W_{m}}{\Delta_{m} V_{K}}$$

式中 \overline{V}_{ν} — 复合材料试样孔隙体积含量:

 W_f ——复合材料试样玻纤质量;

W_m---复合材料试样基体质量;

□□ V_K——复合材料试样体积。

其一般式为:

$$\overline{V}_{V} = 1 - \frac{W_{1}}{2 \sqrt{V_{K}}} - \frac{W_{2}}{2 \sqrt{V_{K}}} - \frac{W_{3}}{2 \sqrt{V_{K}}} - \cdots$$
 2—7

2. 已知复合材料的密度,则孔隙体积含量为:

$$\overline{V}_{V} = 1 - \mathcal{A}_{K} \left(\frac{\overline{W}_{f}}{\mathcal{A}_{f}} + \frac{\overline{W}_{m}}{\mathcal{A}_{m}} \right)$$

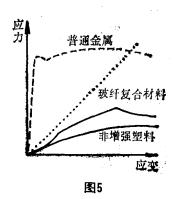
若已知复合材料及其各组分材料的质量,则

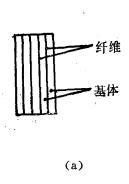
$$\overline{V}_{V} = 1 - \frac{\mathcal{A}_{K}}{W_{K}} \left(\frac{W_{f}}{\mathcal{A}_{f}} + \frac{W_{m}}{\mathcal{A}_{m}} \right)$$

式中 WK---复合材料试样质量。

其一般式为:

$$\overline{V}_{V} = 1 - \frac{\Delta_{K}}{W_{K}} \left(\frac{W_{1}}{\Delta_{1}} + \frac{W_{2}}{\Delta_{2}} + \frac{W_{3}}{\Delta_{3}} + \cdots \right)$$
 2—8


三、玻纤复合材料的力学性质


(一) 复合材料强度增强的力学原理

玻纤增强塑料 (F•R•P) 的应力—应变特性不同于大多数金属和塑料。经短期试验作出的应力—应变曲线表明,其没有屈服现象。图5的应力—应变曲线说明了上述的区别点。材料设计中使用F•R•P时,往往基于考虑安全因素和强度极限,而对于钢材,则又往往基于考虑安全因素和屈服极限。

现用简单的材料力学的观点加以说明。

若某一单向复合材料(见图6a) 承受载荷W产生弹性形变,那么复合材料中的基体和玻纤都有大小相同的应变(见图6b),则有:

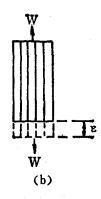


图6

$$\varepsilon_m = \varepsilon_f$$

$$E = \frac{\sigma}{\varepsilon}$$

$$\therefore \quad \frac{\sigma_m^{\circ}}{E_m} = \frac{\sigma_f^{\circ}}{E_f} \quad \text{if} \quad \frac{\sigma_f^{\circ}}{\sigma_m^{\circ}} = \frac{E_f}{E_m}$$
 3—1

式中 ϵ_m 、 ϵ_r —基体、玻纤材料的应变;

σω、σω—基体、玻纤材料的极限应力;

 E_m 、 E_f ——基体、玻纤材料的弹性模量。

总之,我们可以说,每种材料的应力可由其弹性模量来决定。高弹性模量材料具有高应力,而低弹性模量材料则有低应力。所以,要提高一种低强度材料的强度,就必须配以较高弹性模量的材料。这样,强度较高的材料由于弹性模量大而具有较高的应力,从而减小了强度较低的材料中的应力。

我们希望 σ_i^*/E_i 与 σ_i^*/E_m 尽可能接近,但实际上又不能过于苛求。然而,当复合材料中的玻纤含量较少时,如果玻纤的强度与基体的强度相差太大,比如说差10倍,则二者在性能上就会失调,从而基体得不到充分利用,又浪费了玻纤。显然,

如果复合材料中含有大量的玻纤,则上述问题就不很明显了。

上述的复合材料的 σ_i^o/E_i 与 σ_i^a/E_m 应当匹配,实际上是指基体破坏时的应变值 ε_i^a 应与玻纤破坏时的应变值 ε_i^a 匹配,即 ε_i^a 应等于或大于 ε_i^a 。玻纤弹性模量是聚酯树脂弹性模量的20倍,因而,玻纤的强度也几乎是聚酯树脂强度的20倍,这一械使玻纤的高强度能得到充分应用。

(二) 复合材料弹性模量

由图6b可知,引起复合材料产生应变的载荷W为:

$$W = \sigma_k A_k \qquad \qquad 3 -$$

式中 σ_k---复合材料的应力;

 A_k ——复合材料的横截面积。

而载荷W则由玻纤受到的载荷 W_i 与基体受到的载荷 W_m 组成,即有:

$$W = W_f + W_m$$

$$W_{f_i} = \sigma_i A_f, \quad W_m = \sigma_m A_m$$

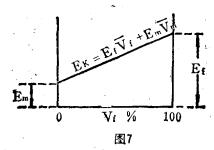
$$W = \sigma_f A_f + \sigma_m A_m = \sigma_h A_h$$

$$\vec{m}$$
 $\sigma = E \varepsilon$, $\varepsilon_f = \varepsilon_m = \varepsilon_k$

$$E_f \varepsilon_f A_f + E_m \varepsilon_m A_m = E_k \varepsilon_k A_k$$

$$\mathbb{H} \quad E_h = \frac{E_f A_f}{A_h} + \frac{E_m A_m}{A_h}$$

$$\overrightarrow{V}_f = \frac{A_f}{A_h}, \ \overrightarrow{V}_m = \frac{A_m}{A_h}$$


$$E_k = E_f \overline{V}_f + E_m \overline{V}_m$$

$$\overline{m} \quad \overline{V}_f = 1 - \overline{V}_m$$

则
$$E_b = E_f \overline{V}_f + E_m (1 - \overline{V}_f)$$

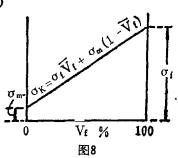
上述中的 E_k 、 ε_k 为复合材料的 弹 性 模 量、应变; A_f 、 A_m 为玻纤材料、基体材料的横截面积; σ_f 、 σ_m 为玻纤材料、基体材料的应力。

式3—3是混合定律的一个例子。此式虽非完**美无缺,但** 在一般可接受的精度下,其可用以估算复合材料的弹性模量。 图7为式3—3的图示。

例 某复合材料由弹性模量为 3.5GN/m²的环氧树脂基体和单向铺放的弹性模量为76GN/m²的玻纤组成。若玻纤的体积含量为30%,试按混合定律估算复合材料的弹性模量。

解
$$E_m = 3.5 \text{GN/m}^2$$
, $E_f = 76 \text{GN/m}^2$, $\overline{V_f} = 0.3$
则 $E_k = E_f \overline{V_f} + E_m (1 - \overline{V_f})$
= $76 \times 0.3 + 3:5(1 - 0.3) = 25.25 \text{ GN/m}^2$

(三) 复合材料的强度

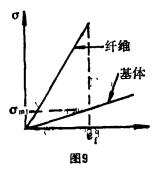

如果玻纤和基体选择适当,这时即使玻纤含量较少,复 合材料中的应力也能大部分由玻纤来承受。要**现估复合材料** 的实际强度绝非易事。若复合材料是单方向性的,且玻纤与基 体之间连结完好,则混合定律可作为复合材料强度计算的模 式。按此定律则有,

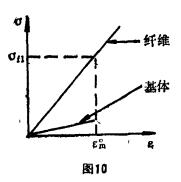
$$\sigma_{h} = \sigma_{f} \overline{V}_{f} + \sigma_{m} \overline{V}_{m}$$

$$\mathfrak{G}_{h}^{1} = \sigma_{f} \overline{V}_{f} + \sigma_{m} (1 - \overline{V}_{f})$$

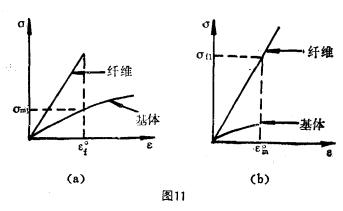
图8是式 3—4 的图示。 若已知各组分材料的应力— 应变描线,则式3—4就不是 理想的计算式。

图9为玻纤、基体在破 帮前都符合胡克定律的应力




一应变曲线。图中的 σ_m 1为玻纤破坏时基体的应力。

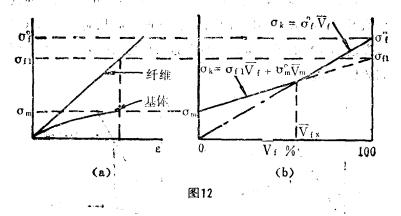
由此可见,基体虽然没有达到最大应力,但复合材料却破坏了,即玻纤破坏时的应变较之基体破坏时的应变小。玻 纤在极限应变e;时即破坏,而这时基体的应力只达到σ_{m1}。


图10表示另一种情况。此时基体破坏时的应变较之玻纤破坏时的应变小。因此,用混合定律计算复合材料的强度时,应用 E_{fe} °代替 σ_{ff} 、用 E_{me} °代替 σ_{mf} ,从而有:

$$\sigma_k = E_f \varepsilon^0 \overline{V}_f + E_m \varepsilon^0 \overline{V}_m \qquad 3-5$$

式3—5中的e^o为基体或玻纤的极限应变,取它们中的较低值者。然而,式3—5仅适用于在破坏前都服从胡克定律(完全弹性形变)的复合材料。而实际上常见的应力—应变图则如图11所示。

由于基体、玻纤特性的非线性,所以在计算复合材料强度时,式3--5应修正为:


若玻纤先破坏
$$\sigma_k = \sigma_f^* \overline{V}_f + \sigma_{m1} \overline{V}_m$$
 3—6...

若基体先破坏
$$\sigma_b = \sigma_{t1} \overline{V}_t + \sigma_m^2 \overline{V}_m$$

。由此可知,复合材料强度的计算有下列几种情况。

- 1. 在基体破坏时;
- 2. 在玻纤破坏时;
- 3. 在最大承载能力时。

不同的情况应用不同的公式。如某一单向复合材料,其组分的应力一应变曲线如图12a所示。若玻纤含量很低,那么复合材料的强度主要取决于基体的强度。当应变达到基体的极限应变时,载荷则由玻纤承受,但玻纤数量很少,不能

承受这些载荷而立即被坏。即用:

$$\sigma_{k, \mp}, \sigma_{f_1} \overline{V}_f + \sigma_m^{\circ} \overline{V}_m$$
 3—8

若玻纤含量很高,则基体的破坏几乎可以不予理会,此时基体承受的小载荷(相对于玻纤承受的载荷而言)传递给玻纤也是无关大局的。复合材料继续加载到玻纤的极限应变(理论值)时,复合材料强度计算则用;

$$\sigma_k = \sigma_i \circ \overline{V}_i$$
 3—9

这是一种非常简单的情况,因此时基体不能再在玻纤之 间传递应力,所以玻纤的破坏也将较早开始。

必须注意,可能误认为基体到达极限应变而破坏时,复合材料的承载能力不受影响。图12b表示复合材料的强度在此种情况下如何随玻纤体积含量变化而变化。两曲线的交点坐标之一下水可由下式求得.

$$\overline{V}_{fx} = \frac{\sigma_m^2}{\sigma_m^2 + \sigma_f^2 - \sigma_{fx}} \qquad 3-10$$

又如某一玻纤含量很低的复合材料,其应力一应变曲线如图 13a所示。玻纤破坏时,玻纤的极限应变 大大低于基体的极限应变。由于复合材料中的玻纤含量很低,所以玻纤对复合材料的承载能力没什么影响,复合材料将继续承载到基体的极限应变为止。

玻纤含量较低时,复合材料的强度也较低。玻纤破坏时,玻纤就象很多小孔存在于基体中,从而降低了基体的强度。因此,在玻纤含量达到某一数值前时,玻纤含量的增加会降低复合材料的强度。所以,玻纤含量有一临界值,低于此临界值,复合材料的强度比纯基体的强度还低,如图15b所示。

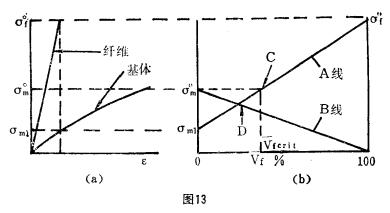
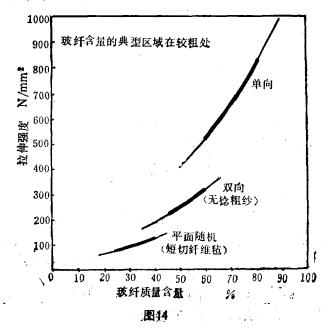


图13b中,A线表示方程 $\sigma_k = \sigma_f^o \overline{V}_f + \sigma_{m1} \overline{V}_m$,B线表示方程 $\sigma_k = \sigma_m^o \overline{V}_m$,玻纤含量在某一范围内,B线方程是 可行的。玻纤含量超出这一范围,则基体的强度将降低。

图13b中C为玻纤含量临界值 \overline{V}_{forit} 点,低于此值,复合材料的强度就低于基体的强度。D为复合材料强度最低时的玻纤体积含量 \overline{V}_{fmin} 点。 \overline{V}_{fmin} 可由下式求得:

$$\overline{V}_{f_{min}} = \frac{\sigma_m^\circ - \sigma_{m1}}{\sigma_f^\circ + \sigma_m^\circ - \sigma_{m1}}$$
3—11

把
$$\overline{V}_m = (1 - \overline{V}_f)$$
、 $\sigma_k = \sigma_m^o \mathcal{H} \setminus \Delta \sigma_k = \sigma_f^o \overline{V}_f + \sigma_{m1} \overline{V}_m$,则可得:


$$\overline{V}_{forst} = \frac{\sigma_m^{\circ} - \sigma_{m1}}{\sigma_f^{\circ} - \sigma_{m1}} \qquad 3-12$$

四、玻纤复合材料性能预测

可以用经验资料或数学模型较精确地预测复合材料的性能。

(一) 用经验资料预测

图14、图15分别为根据 U·T·U·S (极限拉 伸 单 位 强 度) 资料绘制的玻纤质量含量与拉伸强度、弹性模量的关系 曲线。极限拉伸单位强度相当于极限强度的概念,但其不是

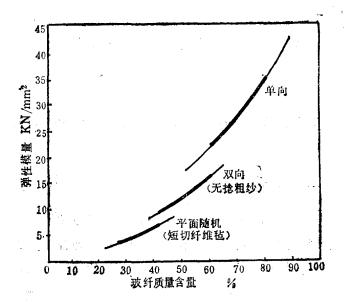


图 15

简单地按单位截面所受载荷,而是按每平方米复合材料中含有1Kg增强材料时,单位宽度(mm)复合材料所能承受的载荷来量度的。对于玻纤、聚酯树脂复合材料,U·T·U·S·较保守值可达。随机增强玻纤为200N/mm,双向增强玻纤为300N/mm,单向增强玻纤为490N/mm。

同样,复合材料的弹性模量可采用与 U·T·U·S·相同的单位,其通用值为,随机增强玻纤 12700N/mm,双向增强玻纤16200N/mm,单向增强玻纤21000N/mm(见图 15)。

当然,这种方法有其不足之处,即不论树脂实际含量的 多少,而总认为树脂的强度是相同的。但在玻纤含量较多的 情况下,用此法取值误差不会太大。

(二) 用数学模型预测

1. 增强效率系数。用混合定律可预测单向复合材料的弹性模量,这就是前述的一种非常简单而又方便的数学模型。

$$E_K = E_f \overline{V}_f + E_m \overline{V}_m$$

为预测非单向复合材料的弹性模量,上式可修正为:

$$E_K = E_f \overline{V}_f B + E_m \overline{V}_m \qquad 4-1$$

式中 B—— 玻纤增强效率系数,单向B=1,双向(无捻粗 纱)B=0.5,平面随机(短 切 纤 维 毡)B=0.375,空间随机 B=0.2。

例1 试估算短切纤维毡质量含量为33%的玻纤/聚酯树脂层合板的弹性 模量。已知 $E_f = 6.9 \times 10^4 \text{MN/m}^2$, $E_m = 3.4 \times 10^3 \text{MN/m}^2$ 。

解 若 $\Delta_f = 2.56 \text{Mg/m}^3$, $\Delta_m = 1.2 \text{Mg/m}^3$, $\overline{W}_f = 0.33$

得
$$\overline{W}_m = 1 - \overline{W}_f = 1 - 0.33 = 0.67$$

$$\overline{V}_{f} = \frac{\overline{W}_{f}}{\Delta_{f}} + \frac{\overline{W}_{m}}{\Delta_{m}} = \frac{\frac{0.33}{2.56}}{\frac{0.33}{2.56} + \frac{0.67}{1.2}} = 0.19$$

$$\vec{V}_m = 1 - \vec{V}_f = 1 - 0.19 = 0.81$$

M
$$E_K = E_f V_f B + E_m V_m$$

= $6.9 \times 10^4 \times 0.19 \times 0.375 + 3.4 \times 10^8 \times 0.81$
= 7710MN/m^2

2. 横向弹性模量。横向弹性模量可用下述算式预测*,

^{*}原文有误,这里引用《层压合成结构分析》,L·R卡尔脱著、 滨江译,国防工业出版社,1975年版。——译者

图16系这两个算式的图示。

(1) 当玻纤互相隔离时:

$$E_T = \frac{E_j E_m}{E_m \overline{V}_j + E_j \overline{V}_m}$$
 4—2

或 $E_T = 2\left[1 - \mu_f + (\mu_f - \mu_m) \overline{V}_m\right]$

$$\cdot \left(\frac{K_f(2K_m + G_m) - G_m(K_f - K_m) \overline{V}_m}{(2K_m + G_m) + 2(K_f - K_m) \overline{V}_m} \right)$$

这里 $K_f = E_f/2(1-\mu_f)$

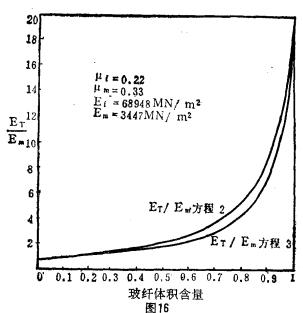
$$K_m = E_m/2(1-\mu_m)$$

$$G_f = E_f/2(1+\mu_f)$$

$$G_m = E_m/2(1+\mu_m)$$

上式中, E_T 为复合材料横向弹性模量, μ_I 为玻 纤 泊松 比, μ_m 为基体泊松比。

(2) 当玻纤相互接触时:


$$E_{T} = 2 \left(1 - \mu_{f} + (\mu_{f} - \mu_{m}) \overline{V}_{m} \right)$$

$$\cdot \left(\frac{K_{f} (2K_{m} + G_{f}) + G_{f} (K_{m} - K_{f}) \overline{V}_{m}}{(2K_{m} + G_{f}) - 2(K_{m} - K_{f}) \overline{V}_{m}} \right) 4 - 3$$

3. 随机层压板拉伸弹性模量。随机层合板,如短切纤维毡/聚酯层合板,可以假定为由多个不同方向的单向层组成,则任一方向的拉伸弹性模量为:

$$E_{K} = \frac{3}{8} E_{L} + \frac{5}{8} E_{T}$$
 4—4

式中 E_L — 假定为单向层组成的层合板纵向拉伸 弹 性 模量:

例2 短切纤维毡/聚酯树脂层合板的 \overline{V}_{f} =0.19, E_{f} =68948MN/m², E_{m} =3447MN/m², 试估算其拉伸弹性模量。

解 假定由单向层组成的层合板各层玻纤体积含量皆为 0.19,则层合板拉伸弹性模量可估算为:

$$E_L = E_f \overline{V}_f + E_m \overline{V}_m$$

$$= E_f \overline{V}_f + E_m (1 - \overline{V}_f)$$

$$= 68948 \times 0.19 + 3447 \times (1 - 0.19)$$

$$= 15864 \text{ MN/m}^2$$

由图16可知,在玻纤体积含量为0.2时。

$$E_{\tau} \approx E_{m} = 3447 \text{ MN/m}^{2} \quad$$
则有:
$$E_{K} = \frac{3}{8}E_{L} + \frac{5}{8}E_{T} = \frac{3}{8} \times 15892 + \frac{5}{8} \times 3447$$

$$= 8114 \text{ MN/m}^{2}$$

上述结果可与先前的例子作一比较:

由混合定律和增强效率系数模型估算的是7710MN/m-由图15经验资料得到的是6000MN/m²。

4. 泊松比。单向复合材料的泊松比可用下式计算:

$$\mu_{L} = \overline{V}_{f} \mu_{f} + \overline{V}_{m} \mu_{m}$$

$$\mu_{T} = \mu_{L} \frac{E_{T}}{E_{T}}$$

$$4-6$$

式中 μ_L 一 复合材料纵向泊松比;

 μ_I — 玻纤泊松比;

 μ_m ——基体材料泊松比;

 μ_T 一 复合材料横向泊松比。

例3 已知复合材料的 $\overline{V}_i = 0.6$, $\mu_i = 0.22$, $\mu_m = 0.33$, 试求其纵向泊松比 μ_L 。

解
$$\mu_{L} = \overline{V}_{f} \mu_{f} + \overline{V}_{m} \mu_{m}$$

$$= \overline{V}_{f} \mu_{f} + (1 - \overline{V}_{f}) \mu_{m}$$

$$= 0.6 \times 0.22 + (1 - 0.6) \times 0.33$$

$$= 0.264$$

5. 剪切弹性模量。单向复合材料的剪切弹性模量可用 下式计算。

$$G = G_m \left(\frac{\frac{G_f}{G_m} (1 + \overline{V}_f) + \overline{V}_m}{\frac{G_f}{G_m} \overline{V}_m + 1 + \overline{V}_f} \right)$$

式中 G — 复合材料剪切弹性模量;

G,, ——基体材料剪切弹性模量;

G1---玻纤剪切弹性模量。

通常, G_m 、 G_l 可由下式计算:

$$G_m = \frac{E_m}{2(1+\mu_m)}, \quad G_f = \frac{E_f}{2(1+\mu_f)}$$

但当基体材料及玻纤的压缩、拉伸弹性模量不等时,则 有:

$$G_{m} = \frac{E_{mt}E_{mc}}{E_{mt}(1 + \mu_{mc}) + E_{mc}(1 + \mu_{mt})}$$
 4—8

$$G_f = \frac{E_{ft}E_{fc}}{E_{ft}(1 + \mu_{fc}) + E_{fc}(1 + \mu_{ft})}$$
 4—9

式中 E_{mi} 、 E_{mc} —基体材料的拉伸、压缩弹性模量;

 E_{ft} 、 E_{fo} — 玻纤的拉伸、压缩弹性模量;

μmi、μmc ——基体材料的拉伸、压缩泊松比;

 μ_{ft} 、 μ_{fc} ——玻纤的拉伸、压缩泊松比。

例 4 已知单向复合材料的 $\overline{V}_f = 0.6$,

 $E_f = 68948 \text{ MN/m}^2$, $E_m = 3447 \text{ MN/m}^2$, $\mu_f = 0.22$,

 $\mu_m = 0.33$, 试计算复合材料的剪切模量。

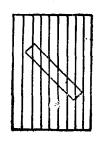
解
$$G_m = \frac{E_m}{2(1+\mu_m)} = \frac{3447}{2(1+0.33)} = 1296 \text{ MN/m}^2$$

$$G_f = \frac{E_f}{2(1 + \mu_f)} = \frac{68948}{2(1 + 0.22)} = 28257 \text{MN/m}^2$$

则
$$G = G_m \left(\frac{\frac{G_f}{G_m} (1 + \overline{V}_f) + \overline{V}_m}{\frac{G_f}{G_m} \overline{V}_m + 1 + \overline{V}_f} \right)$$

$$= 1296 \left[\frac{\frac{28257}{1296} \times (1+0.6) + 0.4}{\frac{28257}{1296} \times 0.4 + 1 + 0.6} \right]$$

 $= 4430 \text{ MN/m}^2$


6. 各向性能。设计中,要经常预测复合材料在与玻纤不同方向上的性能。图17a 为 从单向层合板中切出的与玻纤方向成某一角度 θ 的试样。可以证明,试样在与玻纤方向成 θ 角方向(X方向)上的拉伸弹性模量 E_X 为:

$$E_X = \frac{E_L}{\cos^4\theta + \frac{E_L}{E_T}\sin^4\theta + \frac{1}{4}\left(\frac{E_L}{G} - 2\mu_L\right)\sin^22\theta}$$

$$4-10$$

同样
$$E_{Y} = \frac{E_{L}}{\sin^{4}\theta + \frac{E_{L}}{E_{T}}\cos^{4}\theta + \frac{1}{4}\left(\frac{E_{L}}{G} - 2\mu_{L}\right)\sin^{2}2\theta}$$
4—11

例 5 岩单向层合板的 $\overline{V}_f = 0.6$, $E_f = 68948$ MN/m², $E_m = 3447$ MN/ m^2 ,试求与玻纤方向成30°的X方向的拉伸弹性模量(见图17b)。

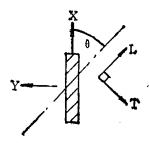


图17a

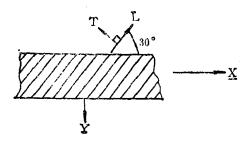


图176

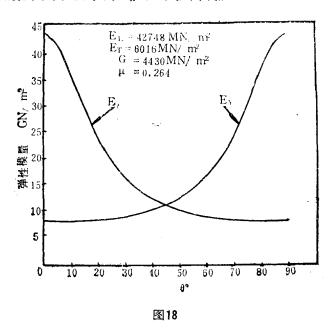
解 利用例3、例4结论,则 $G=4430~{
m MN/m^2}$, $\mu_L=0.264$

$$E_L = E_f \overline{V_f} + E_m (1 - \overline{V_f})$$

= 68948 × 0.6 + 3447 × (1 - 0.6)
= 42748 MN/m²

若用
$$E_T = \frac{E_t E_m}{E_m \overline{V}_f + E_t \overline{V}_m}$$

$$E_T = \frac{68948 \times 3447}{3447 \times 0.6 + 68948 \times 0.4}$$
$$= 8016 \text{ MN/m}^2$$


$$\cos^4 \theta + \frac{E_L}{E_T} \sin^4 \theta + \frac{1}{4} \left(\frac{E_L}{G} - 2\mu_L \right) \sin^2 2\theta$$

$$= \cos^4 30^\circ + \frac{42748}{8016} \sin^4 30^\circ + \frac{1}{4} \left(\frac{42748}{4430} - 2\times 0.264 \right) \sin^2 60^\circ$$

$$= 2.61$$

$$E_x = \frac{E_L}{2.61} = 16403 \text{ MN/m}^2$$

图18系单向层合板拉伸弹性模量与玻纤方向关系图。图 中点绘出了例4所求的 E_x 与 E_y 值曲线。

7. 多向层合板。对由多个不同方向的单向层压板组成的多层层合板的分析,是极其复杂的,且超出了本书的范围。但有一种非常简单的情况,不要计算机的帮助就能计算,此可作比较时用。

对于由多层厚度相同且玻纤方向与载荷方向成相同角度 的平衡层合板,则有:

$$E_{x} = \frac{V}{t(\Sigma B_{22}t_{n})(\Sigma B_{33}t_{n})} 4-12$$

$$V = (\Sigma B_{11}t_{n})(\Sigma B_{22}t_{n})(\Sigma B_{33}t_{n}) - (\Sigma B_{23}t_{n})(\Sigma B_{12}t_{n})^{2}$$
式中 t — 层合板总厚度;

 B_{ii} — 耦合模量分量 (i, j) 耦合矩阵行与列, i, j = 1, 2, 3);

t, ——层合板第n层厚度。

若层合板只由两层组成,且这两层 厚度相等,载荷方向如图 19 所示,则 有:

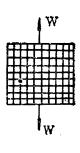


图19

$$\Sigma B_{11} t_n = \frac{E_L t_n + E_m t_n}{1 - \mu_L \mu_T}$$
 4—13

此上述特殊情况下, $B_{12}\rightarrow 0$,且无 B_{13} 项,则

$$E_x = \frac{E_L + E_T}{2(1 - \mu_L \mu_T)}$$
 4—14

例 6 若无捻粗纱/聚酯树脂层合板的 \overline{W}_f =0.5, E_f =68948 MN/m², E_m =3447 MN/m², μ_f =0.22, μ_m =0.33, 试求其在载荷方向(见图19)上的拉伸弹性模量。

解 假设层合板是由互成90°的两层组成。由图3 \overline{V}_f 、 \overline{V}_f 关系曲线可知, \overline{V}_f =0.32。

则
$$E_L = E_f \overline{V_f} + E_m (1 - \overline{V_f})$$

 $= 68948 \times 0.32 + 3447 \times (1 - 0.32)$
 $= 24407 \text{ MN/m}^2$
 $E_T = \frac{E_f E_m}{E_m \overline{V_f} + E_f (1 - \overline{V_f})}$
 $= \frac{68948 \times 3447}{3447 \times 0.32 + 68948 \times (1 - 0.32)}$
 $= 4953 \text{ MN/m}^2$

$$\mu_{L} = \overline{V}_{f} \mu_{f} + (1 - \overline{V}_{f}) \mu_{m}$$

$$= 0.32 \times 0.22 + (1 - 0.32) \times 0.33 = 0.295$$

$$\mu_{T} = \mu_{L} \frac{E_{T}}{E_{L}}$$

$$= 0.295 \times \frac{4953}{24407} = 0.06$$

$$E_X = \frac{E_L + E_T}{2(1 - \mu_L \mu_T)} = \frac{24407 + 4953}{2 \times (1 - 0.295 \times 0.06)}$$
$$= 14944 \text{ MN/m}^2$$

可用增强效率系数计算,以比较上述计算的结果。由假设可知,该复合材料的增强效率系数 B=0.5,则有:

$$E_X = E_f \overline{V}_f B + E_m (1 - \overline{V}_f)$$
= 68948 × 0.32 × 0.5 + 3447 × (1 - 0.32)
= 13375 MN/m²

也可由图15中求出,该图是根据经验数据 给 出 的。当 \overline{W}_{i} = 0.5时,由图中可求得 E = 13.5 GN/m^{2}

$$= 13500 MN/m^{2}$$

若由图16求 E_T , 则有:

$$\frac{E_T}{E_m} = 1.5$$

$$E_T = 1.5E_m = 1.5 \times 3447 = 5170 \text{ MN/m}^2$$

$$E_X = \frac{E_L + E_T}{2(1 - \mu_L \mu_T)} = \frac{24407 + 5170}{2(1 - 0.295 \times 0.06)}$$

$$= 15056 \text{ MN/m}^2$$

五、玻纤复合材料的设计

玻纤复合材料的使用,给有关设计者提供了施展才能的一个新天地。他们不仅可以设计通用的新构件,还可以设计 满足特殊用途需要,且性能又是最佳的构件。当然,要实现 这些,还需要生产部门的配合、协调。

(一) 梁的弯曲应力与弯曲力矩

表4

首先应了解下列基本关系式及表4至表6的有关内容。

常用平面图形的几何特性

形		面 积A	形心惯性矩/	抗弯截面模量乙
В-]D	BD	BD ³	$\frac{BD^2}{6}$
d 7//// - B -	Z T	B(D-d)	$\frac{B}{12}(D^3-d^3)$	$\frac{B}{6} \frac{(D^3 - d^3)}{D}$
	T D L	0.7854 <i>D</i> ²	$\frac{\pi}{64}D^4 = \cdot 049D^4$	$\frac{\pi}{32}D^3 = \cdot 098D^3$

D d d	BD – bd	$\frac{1}{12}(BD^3-bd^3)$	$\frac{1}{6} \frac{(BD^3 - bd^3)}{D}$
D d D D	bD + Bd	$\frac{1}{12}(bD^3+Bd^3)$	$\frac{1}{6} \frac{(bD^3 + Bd^3)}{D}$

$$\frac{M}{J} = \frac{\sigma}{\nu} = \frac{E}{\rho}$$
 5—1

式中 M --- 弯曲力矩;

J ---- 惯性矩;

σ——弯曲应力;

y---离中性轴的距离;

ρ---曲率半径。

最大弯曲应力omax可用如下公式计算:

$$\sigma_{max} = \frac{WL}{I} \cdot \frac{y}{K}$$
 5—2

式中 W --- 总载荷;

L——梁总长度;

K——计算系数,由表6中查得。

(二) 帽型截面的几何特性

表7给出了帽形截面的中性轴位置(y)、面积(A)、抗弯 截面模量(Z)及形心惯性矩(J)。

例1 一块厚4mm, 顶部尺寸为长×宽= $1\times0.5m$ 的 短 36

	·	WL^3 $192\overline{EJ}$	WL3 384EJ	$0.00932 \frac{WL^3}{EJ}$	0.00542 WL3
面梁的最大热度	支持方式和载荷				1 — Mulli — 端固定 f — Ma自由 0.4421 均布载荷
均匀截	烧废	$\frac{WL^3}{3EJ}$	$WL^3 \over 8EJ$	WL^3	$\frac{5WL^3}{384EJ}$
表 5	支持方式和载荷	N N N N N N N N N N	M	上上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上	

		<u></u>		
樂型	W W L		W = W L	
×	7.8	△5.3 8 ▷	8	\rangle 8.6 \rangle 100
繁型	$W = W \frac{L}{L}$	m 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	W W=WL	W W = W 1
樂型]]]]]]]]]]]]]]]]]]]	w W = w L	$W = w^{\frac{1}{L}}$	W W W L
Ϋ́	\(\tilde{\rightarrow} \) \(\tilde{\rightarrow} \) \(\tilde{\rightarrow} \)	2 5 2 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Q0 S
樂型		W = W L	$W = w^{\frac{1}{2}}$	W W.L.

切纤维毡帽形截面板, 承受如图 20 所示均布载荷。若 载 荷为1KN/m², 问帽形截面的几何尺寸应如何才能使 其 最 大弯曲挠度为2mm?

解 设
$$E = 6500 \text{N/mm}^2$$
 $W = 1 \times 0.5 \times 1 = 0.5 \text{KN}$
 $= 500 \text{N}$
由表5可知, $f = \frac{5WL^3}{384EJ}$
则 $J = \frac{5WL^3}{384Ef}$
图20
$$= \frac{5 \times 500 \times 1000^3}{384 \times 6500 \times 2} = 500000 \text{ mm}^4$$

查表7可知,此帽形截面的高度大约为60mm,底板宽为90mm。也可以用 J=250000mm⁴ 的两个帽形截面板重叠起来,这时其高度大约为40mm,底板宽为90mm。

例2 若F•R•P的 [σ]=100N/mm², 用两个厚 4mm、高 50mm、底板宽 60mm 的帽形截面板重叠承载。若所受载荷如例1, 问此板的安全系数是多少?

解 由表7可查得: y=19.69mm, J=260677mm⁴。

则
$$\sigma_{max} = \frac{WLy}{KJ}$$

$$= \frac{WLy}{8J} = \frac{500 \times 1000 \times 19.69}{8 \times 2 \times 260677} = 2.36 \text{ N/mm}^2$$
安全系数 $n = \frac{(\sigma)}{\sigma_{max}} = \frac{100}{2.36} = 42$

这表明,对于 F·R·P 的设计,常常是基于 许用变形,而不是基于许用应力。

上述例子还可以用多于两个的帽形截面板进行计算,最 后也都可从表7中找到所需的尺寸。

(三) 圆柱形容器

直立或水平放置的 F·R·P 圆柱形容器的设计,可用 英国的 B·S·4994 规范。该规范不按单位截面积上载 荷,而按单位载荷的概念设计。两者的区别在于:单位载荷是指每单位宽度上每单位质量所受的载荷,而不是每单位面积所受的载荷。所以,极限抗拉强度(U·T·S)的单位是 N/mm²,而相应的极限抗拉单位强度(U·T·U·S)单位则为N/mm。

同样,弹性模量也可以表示为与上述相同的形式。

B•S•4994 规范要求玻纤复合材料的强度、变形都 应满足要求, 因此,设计中应同时进行其应力、变形的计算,并取其中的大者。

B•S•4994 规范设计有下列两种方法,可根据具体 情况任选一种。

- 1. 按极限强度设计。
- (1) 确定周向单位载荷:

$$Qc = \frac{PD}{2}$$

式中 Qc---容器周向单位长度上载荷;

P——容器所受均布压力;

D----容器中径。

- (2) 确定设计系数K。
- (3) 确定材料许用拉伸单位强度:

$$(\sigma_L) = \frac{\sigma_L^{\bullet}}{K}$$

- 式中 $[\sigma_L]$ 按应力考虑的材料许用拉伸单位应力; σ_L ° 按应力考虑的材料极限拉伸单位应力。
 - (4) 计算材料质量m:

$$m = \frac{Q_C}{\lceil \sigma_L \rceil}$$

- 2、按应变设计。
- (1) 确定ε值:

 $\varepsilon = 0.1\varepsilon$,或 $\varepsilon = 0.2\%$,取其中小值。

(2) 确定材料许用拉伸单位强度:

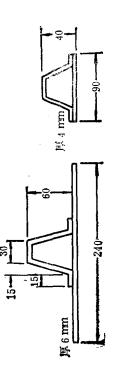
$$(\sigma_s) = X_x \cdot \varepsilon$$

- 式中 $[\sigma_s]$ 按应变考虑的材料许用拉伸单位应力, X_x 按矩阵计算的材料刚度。
 - (3) 计算材料质量m:

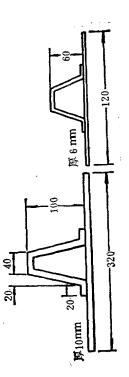
$$m = \frac{Q_c}{\sigma_s}$$

容器材料质量取 $\frac{Q_c}{[\sigma_L]}$ 与 $\frac{Q_c}{[\sigma_s]}$ 中的大值。

(四) 矩形容器


矩形容器的设计是十分复杂的,这主要是由于建造方式不同引起的。主要结构形式如下:

- 1. 自撑、单层结构;
- 2. 自撑、夹层结构;
- 3. 单层、垂直支骨加强;


ı	1	c	מ	-			6		. α	2		'n			າດ					ايي									
Ì	4 60	50	777.	1324	2606	40	15.6	669	9787	1.040	39 39	11.	623	6504	7749	20	8.22	220	3742	3078									
									7824	- 1						!				[小范围								
	$\frac{2}{60}$	50	396	7374	187358	40	14.50	357	5576	11000	30	10.61	318	3896	41320	20	7.03	289	2333	15408	-	,							
	4 100	50	985	18145	302387	40	13.06	859	13542	00017	30	9.74	783	9212	89769	20	6.82	711	5246	35798						 - 8	₹		
	$\frac{3}{100}$	50	708	14338	231780	40	12.55	649	10823	1001	30	9.21	593	7487	99689	20	6.26	538	4365	27333									•
特性	$\frac{2}{100}$	50	12.01 476	10050	158068	40	12.03	437	7713	24010	30	8.69	398	5443	47250	20	5.70	362	3281	18704						Ų		e F	
向	$\frac{4}{120}$	50	10.51	20524	318345	40	12.12	937	15343	10.033	30	9.03	863	10439	94229	20	6.31	291	5 9 31	37578						1	厚21		
面几	$\frac{3}{120}$	50	20.61	16226	243722	40	11.61	109	12274	144040	30	8.50	653	8497	72251	20	5.78	598	4945	28602		•	۳		- 6	ş			
截	$^2_{120}$	50	516	11426	165019	40	11.11	477	8758	31737	30	. 98	438	6191	49408	20	5.23	402	3728	19514	_						7		
帽形	4 160	50	13.07	25143	343793	40	11.64	1099	18300	Z0002	၂၈ ၂၈	7.93	1023	12754	101107	20	5.61	951	7167	40293	20 20 20 4		1		=	=	7		1 1 1 1 1 1 1 1
	3 150	50	23.19	19817	262785	40	10.15	829	15084	100110	30	7.42	773	10426	77312	20	5.07	718	6023	30526			2	•			厚 4 mm		
	$\begin{vmatrix} 2\\160 \end{vmatrix}$	50	12.71	14057	178795	40	9.26	557	10802	104320	3.0	6.90	518	7637	52732	20	4.53	482	4575	20737							直	U_	Ł
	uu uu	mm	### ###	mm _s	un u	mm	шш	mm ²	mm.	mm.	mm	mm	mm ²	mm3	mm4	mm	шш	mm 2	mm ₃	mm 4									
表 7	厚 底板宽	幝	₽́A	;N	! ~		۲۱	7	7	۱ م	極	ς,	7	Z	اس	恒	ح ١	7	Z	J									

بمثلا	
11/4	
12.1/	
ūψ.	
57	

厚度	mm	4	2	9	4	55	9	4	5	9	4	22	9
底板宽	mm	240	240	240	130	180	180	150	150	150	06	(80	0.5
恒	mm	09	09	0.9	09	99	09	0.9	09	09	0.9	C9	9.0
4	mm	14.98	15.47	15.96	17,17	17,67	18,17	18.56	19.07	19,59	2230	22,84	23,38
Z!	mm^2	1664	2070	2473	1424	1770	2113	1304	1620	1933	1064	1370	1573
Z	mm^3	46325	55287	63450	37650	45029	51781	33186	39720	45704	23993	28714	33031
ſ	mm ⁴	693879	693879 855337	1012987 646318 795677 941083 616015 757648 895237	646318	795677	941083	616015	757648	895237	535008	535008 655870	772427
垣	mm	20	20	20	50	20	50	50	20	50	50	50	50
3	mm	12,18	12,68	13,19	13,99	14.51	15,03	15,17	15,69	16,22	18,37	18,62	19.48
A	mm^2	1587	1.974	2358	1347	1674	1898	1227	1524	1818	287	1224	1458
Z	mm^3	36880	43641	49713	20083	35580	40630	26405	31366	35849	18569	22541	29762
٥	mm ⁴	449213	449213 553579 655708	655708	419589	516258	610512	400478	419589 516258 610512 400478 492182 581362 34843 $2 426559 501867 $	581362	348432	426559	501867
喧	mm	40	40	140	40	40	40	40	40	40	40	40	40
'n	mm	9.62	10,14	10,66	11,06	11,59	12,12	12,00	12.54	13,08	14,63	15,20	15,78
Y	mm^2	1512	1881	2246	1272	1581	1886	1152	1431	1706	912	1131	1346
Z	mm^3	27679	32386	36547	22553	26484	29976	19861	23355	26465	14195	16706	18834
J	mm4	266245	266245 328335	38951124936430688636329	249364	306886	36329	288336	288336 292886 346202 20770¢ 253995 29874	346202	207700	253995	298744
							,				中	中等范围	

$\frac{10}{120}$	100	40.43	3344	125780	0.5471	30 30 31	32.21	3456	92072	9 2971027	03	34 60			ı	102800110	
	100				4117082	96 96 96 96 96 96	31.10	2796	78296	3 244124	0.0	93 74				123991	大范围
6 120	100	38.31	2353	83778	9 320986	2 2 2 3	30.03	2120	62294	9188368		20 00				0.958833	
10 200	100	34.33	4644	172556	4592343	; 200	77.14	4256	127500	37 3 46073	200	000			•	21175885	
8 200					37 483819	080	[26.12]	3436	108336	9282938	9	90				191143631	
<u>ي</u> 200	100	32.33	2833	3 1114703	35 370848	08	(25.09)	2600	1 86580	47/217241		99				261110344	
$\frac{10}{2^{4}0}$						80	25.24	4656	14434	35 36433	3 I	09				72 184992	
8 240	Į				9	08	24.23	3755	12274	827428	1000	09				7115076	
6 240						80						20	17.01	2611	67976	112601	
10 320						08	22.27	5456	176435	025057	4:037010	09	16.88	5077	3 1117932	14 199060	
320	100	27 35	47706	20114	5955006	80	21,29	4396	150405	74220153	04.0201.00	09					
1320	100	26 39	200	15933	42045	08	20 30	3350	150676	0140754	74431	09	14.83	3091	83405	123699	
an E	min.		2 11 11	. mm	m m	mm	THE THE	2	111111	11111111111111111111111111111111111111	mm.	m m	m cm	mm,	mu 3	mm.	
阿斯斯斯	対対	₹ 7	م م	; N	, t	呵	?	J _A	;	٦-	>	100	>	'A	\ 	٠,	
ı	I					1						I					•

- 4. 单层、水平支骨加强;
- 5. 单层、垂直并水平支骨加强;
- 6. 由平板预制件分段组装。

上述结构虽然各异,但设计时考虑的问题却大同小异。 板的刚度、板的强度、凸缘与加强件的刚度。

(五) 变形标准

变形的极限规定,常引起激烈的争论。下面的标准虽有 一定的局限性,但仍可适用。

1. 板材。板材主要是考虑其许用挠度值〔f〕。 短跨度板 〔f〕= $\frac{跨度}{200}$

短跨度防挠材及其凸缘 [f]=___<u>跨度___</u>500

长跨度防挠材及其凸缘 [f]= <u>跨度</u> 1200

防挠材及其凸缘〔f〕取上述二者中较大者。

2. 管材。管材设计要考虑到其承受的真空 度 及 外 压力。表 8 给出了管径、壁厚与许用压力之间的关系,可供设计时参考。

表8

管材与承压关系

内 径	壁厚	许用事	文 度	许 用	压 力
mm	mm	cm水柱	KN/m ²	cm水柱	KN/m²
50	3	1030	100	1910	185
100	3	530	50	1040	100
150	3	160	16	890	87
250	3	40	4	560	55
400	3,	15	1.5	740	72.5

600	4.5	22	2,25	360	35
7 50	4.5	17	1.75	250	25
900	4.5	12	1.25	180	17.5
1200	6	22	2.25	250	25
1600	6	15	1.5	150	15

3. 船舶。由 S·B·B·N·F和 劳 埃 德 船 级 协会 (Lloyds) 发 布的规范,可用以指导船舶的设计。图 21、图 22分别为船底层合板质量与船全长关系曲 线、船 底 层 合

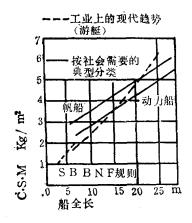
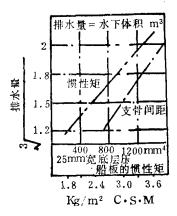
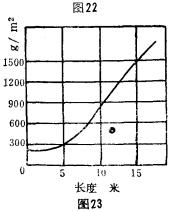




图21

板惯性矩和支骨间 距 与 排 水 量关系曲线,可作 设 计 时 参 考。

4. 覆盖层。玻纤复合材料覆盖层可以提高木质或金属船壳的使用寿命。图23为覆盖层质量与船舶长度关系曲线,可作设计时参考。

(六) 安全系数

在所有的设计中,总要引入安全系数的概念,以保证安全。设计者具有的材料性能、生产作业知识,对设计的成功和由此取得的经济效益将起重要作用。

许用应力值是建立在足够多的试验及其统计分析基础上的。试验用的层合板应在与模塑车间相同的正常条件下制作,即尽可能与生产条件一致。最大工作应力(设计应力)可由实施的有关规范中得到。设计者在设计中必须记住下述各点:

1. 安全系数定义。实际上前述的例子中已经涉及到了 这个定义。

安全系数
$$n = \frac{\ddot{\mu} + \ddot{\mu} + \ddot{\mu}}{\ddot{\mu} + \ddot{\mu}} = \frac{\sigma}{\sigma_{max}}$$
 5—3

- 2. 在下列不同情况下,安全系数有不同的取值范围。
- (1) 载荷性质不同时, n的最小值为:

静止短时间载荷 n=2,

静止长时间载荷 n=4,

变化载荷 n=4,

重复载荷 n=6,

疲劳或循环载荷 n=6,

重复冲击载荷 n=10。

- (2) 工作载荷估算精度越低, n取值应越大。
- (3) 不能作应力分析或只能作粗略、近似分析的场合, n取较大值。

- (4) 若试验表明,材料性能变化较大,则n应取大值。
- (5) 材料性能由于环境的变化而降低是可能的。因此, 在设计中应取该环境下的许用应力值,或n取较大值。
- (6) 若材料破坏后会损伤人、设备,或产生其他严重的 后果,则n应取大值。

B•S•4994规范对设计中诸要素的要求,是基于制造方法、长时间的性能、温度、循环载荷、固化过程等参数提出的。该规范是专为F•R•P容器而定的,可供设计不同容器产品的参考。

(七) 由不同材料层组成的层合板弯曲

- F•R•P设计中常遇到的一个问题,是对由不同材料层组成的层合板的分析,其主要指弯曲刚度和弯曲强度。可用下述简单的材料力学方法加以近似分析。
- 1. 层合板的弯曲刚度。下面举个例子说明层合板弯曲 刚度的计算。
- 例 3 假设层合板是由如图 24 所示的短切纤维毡 (C·S·M) 和无捻粗纱织物 (W·R) 组成的,每层又可由同种材料构成的若干层组成。短切纤维毡弹性模量为 7500 MN/m², 无捻粗纱织物弹性模量为15000MN/m²。

可用"等效截面"的概念来分析截面的弯曲刚度。理论 截面的形状是假定的,其厚度不变,宽度则由各层材料的弹 性模量决定,这样,截面的形心惯性矩即可计算出。例如, 假设层合板皆由无捻粗纱组成,图24就可以用图25的等效截 面代替,那么中性轴位置、形心惯性矩、弯曲刚度则可由图

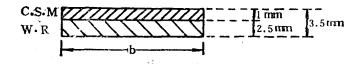


图24

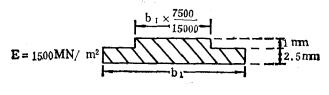


图25

解
$$y = d - \frac{d^2b_2 + d_1^2(b_1 - b_2)}{2(b_1d_1 + b_2d_2)}$$

 $= d - \frac{0.5d^2 + 0.5d_1^2}{2(d_1 + 0.5d_2)}$
 $= 3.5 - \frac{0.5 \times 3.5^2 + 0.5 \times 2.5^2}{2(2.5 + 0.5 \times 1)} = 1.958 \text{ mm}$
 $J = \frac{1}{3} [b_2 y^3 + b_1 (d - y)^3 - (b_1 - b_2)(d - y - d_1)^3]$
 $= \frac{1}{3} [0.5 \times 1.958^3 + (3.5 - 1.958)^3 - (1 - 0.5)$
 $\times (3.5 - 1.958 - 2.5)^3)$

$$= 2.619 \text{ mm}^4$$

则实际截面的弯曲刚度为:

$$EJ = 15000 \times 2.619 = 39285 \text{ Nmm}^2$$

2. 层合板的弯曲应力。若层合板承受弯曲载荷,那么 层合板中的应力又将是如何分配,其破坏情况又将如何呢? 如图27所示,距中性轴距离为c处的应力为: Ţ

$$\sigma_c = \frac{McE_c}{EJ}$$

式中 *E*。——距中性轴距离c处材料的弹性模量; *EJ*——层压板的弯曲刚度。

位置 1
$$\sigma_1 = \frac{M \times 1.958 \times 7500}{39285} = 0.374 M \text{ N/mm}^2$$

位置 2
$$\sigma_2 = \frac{M(1.958-1) \times 7500}{39285} = 0.183 \ MN/mm^2$$

位置 3
$$\sigma_3 = \frac{M(1.958-1) \times 15000}{39285}$$

 $= 0.366 M \text{ N/mm}^2$

位置 4
$$\sigma_4 = \frac{M(3.5 - 1.958) \times 15000}{39285}$$

 $= 0.589 M \text{ N/mm}^2$

可见,最大应力在 4 处,但这位置并不一定 会 破 坏。 因此处材料是无捻粗纱,其比短切纤维毡强度要大得多。

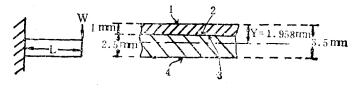


图27

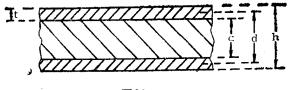
假设短切纤维毡极限强度 $\sigma^{\circ}_{o} = 100 \text{N/mm}^{2}$, 无捻 粗纱极限强度 $\sigma^{\circ}_{w} = 280 \text{N/mm}^{2}$, 令 $\sigma = \sigma^{\circ}$, 可求出层合板 发 生破坏时的弯曲力矩 M°_{o} 。

$$\sigma_{1} = \sigma_{c}^{\circ}, \quad M_{1}^{\circ} = \frac{\sigma_{c}^{\circ}}{0.374} = \frac{100}{0.374} = 267 \quad \text{N·mm}$$

$$\sigma_{2} = \sigma_{c}^{\circ}, \quad M_{2}^{\circ} = \frac{\sigma_{c}^{\circ}}{0.183} = \frac{100}{0.183} = 546 \quad \text{N·mm}$$

$$\sigma_{3} = \sigma_{w}^{\circ}, \quad M_{3}^{\circ} = \frac{\sigma_{w}^{\circ}}{0.366} = \frac{280}{0.366} = 765 \quad \text{N·mm}$$

$$\sigma_{4} = \sigma_{w}^{\circ}, \quad M_{4}^{\circ} = \frac{\sigma_{w}^{\circ}}{0.589} = \frac{280}{0.589} = 475 \quad \text{N·mm}$$


由上可知,当弯矩达267N·mm时,最早破坏发生在1处,即短切纤维毡的外表面。必须注意,上述是在假定抗拉与抗压强度相同的条件下计算的。这也不尽然,就是在上述的例子中,若改变弯曲方向,危险位置依然不变,而与是否受拉伸或压缩载荷无关。

(八) 夹层结构

1. 夹层结构的弯曲刚度。夹层结构是一种极其有用的结构,可利用来制造刚性、轻型、廉价的F·R·P构件。下述的一些公式,将有助于减少夹层结构设计的复杂性,并说明一些设计中的问题。

在重量和价格不变的情况下,板材或桁材采用夹层结构可提高弯曲刚度,此对 $F \cdot R \cdot P$ 特别有效。

可以用各种表达式确定为图28所示层合板的弯曲刚度, 但必然都有它们的局限性。

弯曲刚度
$$EJ = \frac{E_s b(h^3 - c^3)}{12}$$
 5—4

式5-4中E,为外层材料弹性模量,b 为梁的宽度。此式忽略了芯子的弯曲刚度,但对泡沫芯子的结构是合理的,对于轻木芯子结构却是不适用的,因轻木芯具有不小的 抗 弯 刚度。

若将芯子的弯曲刚度计算在内,则表达式为:

$$EJ = \frac{E_s b t^3}{6} + \frac{E_s b t d^2}{2} + \frac{E_c b c^3}{12}$$
 5—5

式5-5中E。为芯子材料的弹性模量。其前二项是式5-4 的又一种表达式,第三项是有关芯子的弯曲刚度。若外层很 薄,第一项可以略去,而获得合理的近似计算式:

$$EJ = \frac{E_{\bullet}btd^2}{2}$$
 5—6

因此,若芯板有相当大的弯曲刚度且外层很厚,则用式 5—5,若芯板很厚,但弯曲刚度可忽略,则用式5—4,若外 层很薄,且芯板弯曲刚度可忽略,则用式5—6。

2. 夹层结构的剪切变形。设计者往往忽略了剪切变形 问题,对于夹层结构材料来讲,尤应注意这一点。

对于集中载荷作用于中点的简支梁, 其剪切变形为:

$$\delta = \frac{WLc}{4bd^2G}$$
 5—7

对于受均布载荷作用的简支梁, 其剪切变形为:

$$\delta = \frac{WL^2c}{8bd^2G}$$
 5—8

上式中的L是梁的跨度,G是芯子剪切模量。

例4 试求图29所示夹层结构简支梁的总 变形 量。已知 L=1000mm, 其他参数如图示。

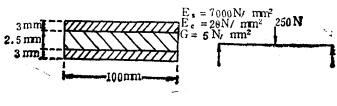
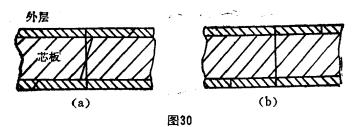


图 29

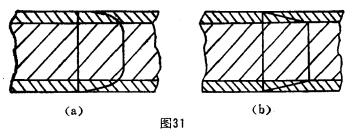
解 采用较为精确的弯曲刚度公式计算。

t = 3mm, b = 100mm, c = 25mm, d = 28mm

$$EJ = \frac{E_{s}bt^{3}}{6} + \frac{E_{s}btd^{2}}{2} + \frac{E_{c}bc^{3}}{12}$$


$$= \frac{7000 \times 100 \times 3^{2}}{6} + \frac{7000 \times 100 \times 3 \times 28^{2}}{2} + \frac{20 \times 100 \times 25^{2}}{12}$$

 $= 828 \times 10^6 \ N \,\mathrm{mm}^2$


注意,在此情况下,略去前、后两项计算的 结果 只 有 1%的误差。

总变形量 =
$$f + \delta = \frac{WL^3}{48EJ} + \frac{WLc}{4bd^2G}$$

= $\frac{250 \times 1000^3}{48 \times 828 \times 10^6} + \frac{250 \times 1000 \times 25}{4 \times 100 \times 28^2 \times 5}$
= 10.276 mm

3. 夹层结构梁的应力。夹层结构梁实际的弯曲应力如图30a所示。若合理地假设芯板没有弯曲应力,而外层在厚度方向上应力不变,则夹层结构梁的弯曲应力可假定为如图30b那样。

夹层结构梁实际的剪应力如图31a所示,也可以合理 地 假定为如图31b 所示的那样。

若取 $EJ = \frac{E_sbtd^2}{2}$, 则外层弯曲应力为:

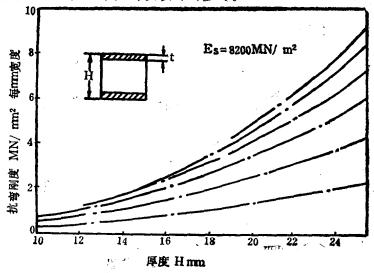
$$\sigma_{\rm S} = \frac{MhE_{\rm S}}{2EJ} = \frac{Mh}{btd^2}$$

芯板中实际剪应力为:

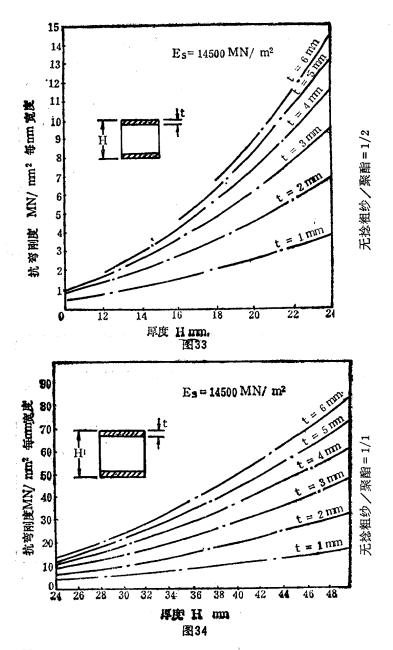
$$\tau_{c} = \frac{Q}{EJ} \left[E_{S} t \frac{d}{2} + \frac{E_{c}}{2} \left(\frac{c^{2}}{4} - y^{2} \right) \right]$$

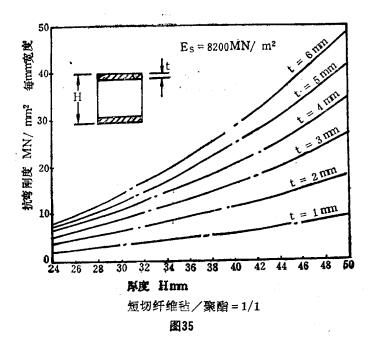
上式中Q为剪力。若认为E。= 0, $EJ = \frac{E_s bt d^2}{2}$,则芯板中的剪应力又可表示为:

$$\tau_{\rm c} = \frac{\ddot{Q}}{bd}$$


例5 试就例4的简支梁受力情况,计算该梁外层的弯曲 应力和芯板的剪切应力。

解
$$M = \frac{250}{2} \times \frac{1000}{2} = 62500 \text{ N·mm}$$


$$\sigma_{S} = \frac{Mh}{btd^{2}} = \frac{62500 \times 31}{100 \times 3 \times 28^{2}} = 8.24 \text{ N/mm}^{2}$$


$$\tau_{c} = \frac{Q}{bd} = \frac{250}{2 \times 100 \times 28} = 0.045 \text{ N/mm}^{2}$$

假定短切纤维毡弹性模量为8200MN/m², 无捻粗纱的弹性模量为14500MN/m², 且忽略芯板的弯曲刚度,则由各种材料、各种厚度芯板组成的短切纤维毡、无捻粗纱夹层结构梁的抗弯刚度与其外层厚度关系,业已计算出并用曲线表示于图32至图35中,可供设计时参考。

短切纤维毡/聚酯=1/2 图32

: 六、玻纤复合材料的性能

F•R•P包括众多的材料,即使在应用相同的树脂、玻纤情况下,也还存在着各种各样的树脂、玻纤比例问题。因此,这里有关F•R•P的性能资料,就不可能包罗万象,也不能满足设计者过于特殊的要求。复合材料的性能,是建立在大量可信的试验基础上,因此,这些资料可以使设计者少做大量的试验工作。

(一) 复合材料的物理性能

果	0
иx	•

复合材料热性能

材	料	玻纤质量 含量 %	热膨胀系数 10⁻6/℃	导热系数 W/m・℃	耐 C
单向					
缠绕环氧		60~90	4~11	0.3~0.35	260
挤压聚酯		50~75	5~14	0.3~0.35	260
双向					-
缎织聚酯		50~70	9~11	0.3~0.35	175
无捻粗纱聚酯		45~60	11~16	0.2~0.3	175
————— 无规则					
预塑聚酯		25~50	18~33	0.2~0.3	200
手涂/喷射		25~40	22~36	0.2~0.23	175

(4)				
模压复合物				
D, M, C 聚酯	10~40	24~34	0.2~0.25	230
S. M. C 聚酯	20~35	18~33	0.2~0.25	230
玻纤填充尼龙	20~40	13~33	0.2~0.22	200
热塑				
H·D聚乙烯		110~130	0.11	120
耐冲击聚苯乙烯		40~100	0.8~0.11	80
聚丙烯		100~200	0.11	160
尼龙		100~114	0.2~0.25	150
金属				
低碳钢		11~14	46	820
铝		22~23	140~190	350
不锈钢		16~18	110	1150
表10	复合材	料抗冲击性	能	
材 料	厚度 质量	}r‡1	击能量 J	
3r4 4T	$mm g/m^2$	4	8 16	20

材 料	厚度	质量		冲击能	量」	
113 144	mm	g/m²	4	8	16	20
18 S•W• G低碳钢	1.3	9800	无损坏	微凹	凹陷	弯曲
14S•W•G铝	2.0	5400	微凹.	凹陷弯曲	凹陷弯曲	严重弯曲
石棉水泥板	6.3	10700	破坏	粉碎	ļ	
硬质纤维板	3.2	3400	无损坏	无损坏	破坏	
4mm胶合木 板	4	1800	无损坏	多层破坏	粉碎]
6mm 胶合木板	6	3100	无损坏	底层破坏	多层破坏	粉碎
F•R•P*						
2层-2:1	1.9	2700	无损坏	无损坏	微裂	微裂
$450 \mathrm{g/m}^{2}$						
2层一3:1	3.9	4900	微裂	裂纹	裂纹	常见裂纹
$600g/m^2$						

^{*}F·R·P层合板由E玻纤短切纤维毡和普通树脂组成。

形11

复合材料的力学性能

本	按 版 合	御展	抗强	拉度	旗車	抗强压废	田瀬	<u> </u>	长强 变 皮	海海田山	平面打剪切强	平旗数量回回
	%	Mg/m	³ MN/	'm²	GN/m ²	Mg/m ³ MN/m ² GN/m ² MN/m ²	GN/m		N/m²	GN/m²	GN/m ² MN/m ² GN/m ² MN/m ²	GN/m²
单向 缠绕环氧	60~901,7~2,2530~	1.7~2	2530~	1730	28~62	28~62 310~480		69	690~ 1860	34~48		
单向聚酯	50~751.6~2.0410~	1.6~2.	0410~	1180	21~41	21~41 210~480		69	690~ 1240	27~41		
双向 鍛织聚酯 无捻粗纱聚酯	50~70 45~60	1,6~1, 1,5~1,	9250	~400 ~340	50~701.6~1.9250~400 14~25 45~601.5~1.8230~340 13~17	50~701.6~1.9250~400 14~25 210~280 45~601.5~1.8230~340 13~17 98~140		7 20	7~450	9~17 207~450 17~23 8~17 200~270 10~17	62~83 3.5~4 55~76 3~3	3.5~4
无规则 预塑聚酯 手涂/喷涂	25~50 25~40	25~501.4~1.6 70~170 25~401.4~1.5 63~140	6 70	~170 ~140	,	6~12 130~160 6~12 130~170	6~9		70~240 140~250	5~8	69~83	

	玻纤	船風	<u> </u>	抗拉	-	拉角	**	H	服		抗離	御	扭	平面抗		国
	阿里		- INF	强度		模量	開	闽	模量		強凍	~	鲥	剪切强	歡	冠
本	今日													関	模	
	%	Mg/m	<u>∑</u>	N/m	-2 G	'N/m²	MN/n	72	H/NE	Z Z	N/m	<u>5</u>	N/m²	$Mg/m^3 MN/m^2 GN/m^2 MN/m^2 GN/m^2 MN/m^2 GN/m^3 MN/m^2 $		GN/m²
模压复合物 D·M·C 聚酯	10~40	10~40 1.8~2.0 34~70		34~7(12~14 140~180	140∼	180			40~140	9		41~69	·	
S·M·C 聚酯	$20 \sim 35 1.8 \sim 1$	1.8~ 1.8	3.85	50~30		6	240~310	310		<u> </u>	140~210		9~14	65~83		
玻璃填充尼龙	20~40	20~401.3~1.5120~200	.51	20~2(00	6~14	110~170	170				_				1
 連 連 連 を を の の の で が が が が が が が が が が	00000	0.95 1.08 0.90 1.08 0.035		31 45 40 80 0.3		0.6~1 3.5 1.1~1.8 60~70 1.4~1.8 35~90 0.0041 0.15~	0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0014~		7 90 34~55 55~97	10.62	0.7 0.8~1.8 1.4~2.8	8 8 172	0.0	0.0015
金 () () () () () () () ()		7.8 4.3 7.92		$410 \sim 480$ $80 \sim 430$ $480 \sim$ 1580	-480 -430 1580	210 70 200	410~480 84	480								

(二) 等效截面积、质量、厚度

材料的刚度是其弹性模量的函数,当材料受 弯 曲 载 荷时,材料的截面积对刚度有明显的影 响,表 12 说明 了这一点。且指明, F•R•P承受拉伸载荷是很 困难 的,因 此设计时应以拉伸强度为准。

表12

材料性能相同时的截面积比较

材	料	相同伸长	相同弯曲	相同承载能力
钢		1.0	1.0	1.0
铝合金	į	2.3	1.3	2.0
单向杆(70%)	5.2	1.7	0.6
玻纤层合	板(60%)	12.0	2.3	1.6
层合毡((30%)	30.0		2.6

由于 $F \cdot R \cdot P$ 的密度较小,因此,若以质量为基础比较它们的性能,可能会较为有利,详见表13。

表13

材料性能相罔时的质量比较

材料	相同伸长	相同弯曲	相同承载能力
钢	1.0	1.0	1.0
铝合金	0.8	0.4	0.7
单向杆 (70%)	1.2	0.4	0.2
玻纤层合板(60%	6) 2.5	0.5	0.5
层合毡(30%)	5.7	0.6	0.9

若材料的弹性模量已知,则在相同抗弯能力情况下,F,R.P的厚度计算如下式,其计算结果列于表14中。

	era.	F	短七	刀纤维毡层台	
	钢	铝	玻纤含 25%	サ纤含 33%	玻纤含 50%
弹性模量 GN/m²	210	68	6.2	8.3	12.4
质量 g/m ²			850	1050	1650
厚度 mm	8.0	1.1	2.5	2.3	2
质量 g/m²			1050	1350	2000
厚度 mm	1.0	1.4	3.2	2.9	2.5
质量 g/m²			1350	1700	2500
厚度 mm	1.3	1.8	4.1	3,7	3.3
质量 g/m ²			1700	2250	3200
厚度 mm	1.6	2.3	5.2	4.7	4.2
质量比较	1.0	0.5	0.67	0,65	0.66

(三) 吸音

F•R•P是轻质材料,具有一定的消音能力,详见表15。

表	15
---	----

吸音性能比较

材	料	厚 度	近似质量	平均降音
1/3	1 17	mm	kg/m ²	100∼3200H: dB
F•R•P		3	4.8	22
纤维层合板		3	3.2	20
层合木板		6	3.6	21
砖墙		25	14.6	27
石棉水泥板		6	12.2	26
石膏板		10	9.7	25
玻璃		3	7.3	23
铝		1.6	4.8	22

(四) 硬度和耐磨性

聚酯和环氧树脂为硬质塑料,故加入玻纤对其硬度影响不大。但对其他塑料,加入玻纤则能明显地提高它们的硬度。而耐磨性与硬度、韧性有关。表16列出了一些常见材料的耐磨性能和耐污性能。

表16

材料的耐磨、耐污性能比较

++	, stort	表面粗糙	度 μm	磨损量	71)=14.
材 _	料	试验前	试验后	μm	耐污性
层含板上	良好面漆	0.25~0.76	1.0	64	44
层合板不	上面漆	0.25~0.76	5.3	192	81
钢表面涂	瓷料	0.25~0.71	4.0	5	20
高压装饰	层合板	1.02~2.04	2.8	128	68
瓷砖		1.02			40
可塑聚苯	乙烯砖				42
水磨石		9.53			91

注: 试验采用耐磨清洁器1200循环试验。耐污性好,则表中数值越低。

(五) 透光和传热

 $F \cdot R \cdot P$ 板能透射大部分的光,但 $F \cdot R \cdot P$ 板的颜色不同,则有不同的透光、传热性能,见表17。

当光线透过F·R·P板时,短波紫外线多被吸收,而长波光线则大量透射。要使F·R·P板大量吸收紫外线,则应使用紫外线吸收剂。

一般讲, F·R·P板的树脂含量越高, 则透光性越好。

图36为未经曝光的半透明C·S·M/树脂材料在不同树脂含量情况下,光线波长与透光率的关系曲线。

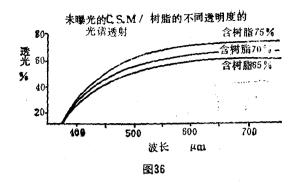


表17

材料的太阳热传导比较

			温					度		c			透光率
太阳下温度	4	19			43		3	8	3	2	2	7	%
阴 影 中温度 窗玻璃	16 42	27 45	38 47	16 38	27 40	38 42	16 33	27 36	16 29	27 31	16 25	21 26	90
干净半透明板	37	41	45	33	37	41	30	34	26	30	23	24	84
黄 色	36	40	45	33	37	41	29	33	26	30	22	24	65
红宝石色	35	40	45	32	37	41	29	33	26	30	22	24	24
绿宝石色	34	39	44	31	36	41	28	33	25	30	22	24	65
不透明板													{
白 色	18	28	38	17.	28	38	17	27	17	28	16	22	6
浅蓝色	16	27	38	16	27	38	16	27	16	27	16	21	2

(六) 温度的影响

F·R·P同其他塑料一样,温度对它的性能有较大的影响。由于玻纤的耐热性,使之较不增强的塑料有更大的热稳定性,其典型结论为图37所示。

在低温情况下,往往会提高F·R·P的性能,详见表18。

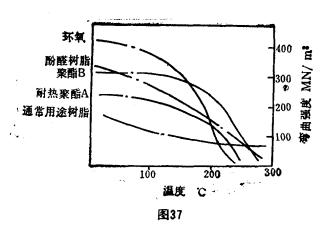


表18

玻纤层合板的低温性能

	温度 ℃	环氧树脂	酚醛树脂	聚酯树脂
	22.8	440	310	
极限强度	– 55	350	370	310
MN/m^2	- 197		480	
	- 253	600	490	300
	22.8	24	24.4	
拉伸弹性模量	- 55	25	30	
GN/m ²	- 197		33	
•	- 253	27	25	

(七) 电性能

各种玻纤复合材料的电性能见表19。

(八) 耐腐蚀性能

玻纤复合材料的耐腐蚀性能完全取决于树脂。即使是同 66

玻纤复合材料的电性能

增强材料	4	圣处理 的	り无捻粗	1纱玻纤	:	随机玻 纤毡
树 脂	硅 树脂	环氧 树脂	三聚	粉醛 树脂	聚酯	树脂
功率因数(1MHz) tgδ	0.0025	0.025	0.03		0.03	0.014
功率因数(100MHz) tgδ	0.0025		ĺ			
介电常数(1MHz)	3.8	4.7	6.3		4.1	4.3
耐压强度(90℃油中)						
KV/mm	11	15	13	6	13	10
V/mil	200	400	350	150	350	250
绝缘 (干) MΩ	5 × 10 ⁶	3 × 10 ⁶	10 ⁶	104	10 ⁶	104
绝缘(在水中24小时)						
$\mathbf{M}\mathbf{\Omega}$	5×104	5×104	10 ³	10 ²	10	10 ²
温度等级	Н	В	В	В	В	В

一类树脂,玻纤复合材料的耐腐蚀性能也会大不相同。表20、图38为树脂及其他塑料对化学药品的耐腐蚀性能。这些资料只能供参考,具体问题应参阅有关生产厂的说明书。

(九) 其他性能

图39为A碱性玻纤和E玻纤层合板在试验条件下的弯曲 强度。

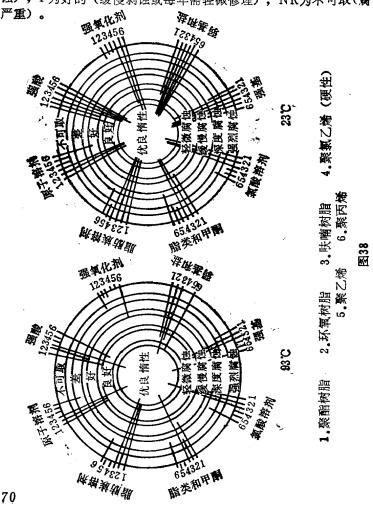
图40为不同树脂含量的C·S·M/聚酯树脂层合板的老化 程度与透光率关系曲线。

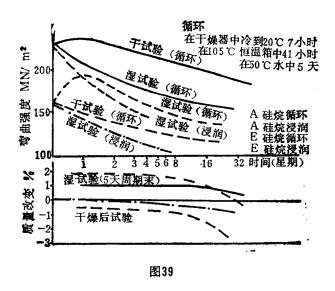
图41为普通、自熄玻纤层合板在不同波长光波下的透光率。

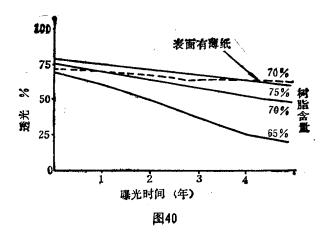
图42为聚酯和环氧树脂的抗疲劳特性。

图43为硅烷成品毡/聚酯树脂层合板的断裂应力。

各种塑料耐化学腐蚀性能


化学药品	呋喃树脂	聚酯树脂	环氧树脂	聚氯乙烯
醋酸	G	I ⁷	NR	G
丙酮	- G	NR	NR	NR
脂链族烃	E	E	E	E
氟化铝	E	NR	_	E
硫酸铝	E	E	E	E
氢氧化铵	E	NR	E	E
硝酸铵	E	E	E	E
苯胺	G	NR	NR	NR
盐酸苯胺	E	_		NR
轻质汽油	E	F	E	NR '
苯磺酸	E	E		_
苯甲酸	E	E	E	E
丁醇	E	E	E	G
丁酸	E	G	F	E
氯化钙	E	E	E	E
二硫化碳	E	NR		NR
氯苯	E	F		NR
三氯甲烷	E	NR	E	NR
氯(气态)	G	E	NR	F或G*
铬酸	G(冷稀溶液)	G(冷稀溶液)	NR	E
柠檬酸	E	E	E	E
氯化铜	E	E	E	E
硫酸铜	E	E	E	E
醚	E	NR		NR
醋酸乙酯	E	NR	NR	NR
乙醇	E	E	E	E
二氯乙烯	E	NR	F	NR ·
氯化铁	E	E	Е	E


^{*}为依赖于条件


化学药品	呋喃树脂	聚酯树脂	环氧树脂	聚氯乙烯
甲醛	Е	G	NR	G
甲酸	G	NR		G
氢溴酸	G	E	E	\mathbf{F}
盐酸	${f E}$	E	E	E
硫化氢	E	E	E	E
煤油	${f E}$	E		E
乳酸	E	E		E
石灰	E	NR	E	E
马来酸	E	E		E
醋酸甲酯	E	NR	NR	NR
甲基乙基酮	E	NR	NR	NR
氯化镍	E	E	E	E
硫酸镍	E	E	E	E
硝基苯	E	NR	-	→
硝酸	NR	G(冷稀溶液)	NR	${f E}$
油酸	E	E	Ε .	E
草酸	E	E	_	E
磷酸	E	E(到50%) G(到85%)	E	E
邻苯二甲 酸树脂	E	— —	_	NR
氯化钾	E	E	E	E
氢氧化钾	E	NR	E	E
吡啶	F	NR	_ -	·
重铬酸钠	E			E
亚硫酸氢钠	E	E	E	E
碳酸钠	E	F	E	E
氢氧化钠	E	NR	E	Е
硫酸钠	E	E	E	E
硫酸	E(达70%)	E(达30%)	E(达50%)	E(任 何%)

甲苯	E	Е	E	NR
三氯乙烯	E	F	_	NR
水	E	E	E	E
二甲苯	E	E	E	NR
氯化锌	E	E	E	E

注:表中E为优良(无腐蚀), G为良好(轻微脱色或非常缓慢腐蚀), F为好的(缓慢剥蚀或每年需轻微修理), NR为不可取(腐蚀严重)。

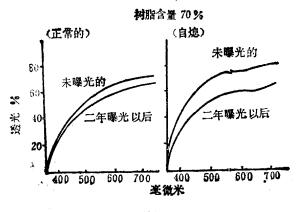


图41

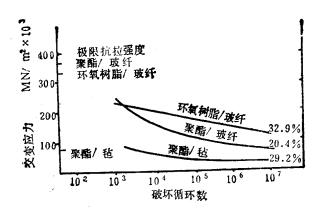
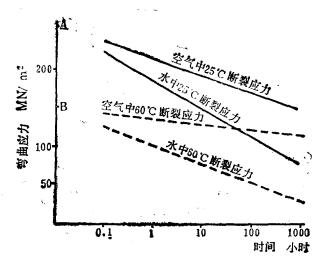
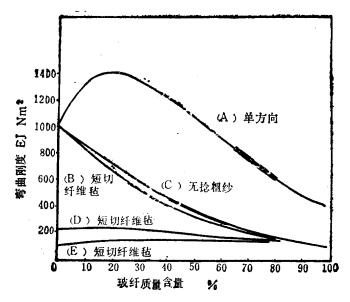



图42

A.25℃时短期弯曲强度 B.60℃时短期弯曲强度 图43


七、玻纤复合材料性能优选

(一) 材料性能优选

设计某一产品时,设计者很少注意到所用材料的质量和价格,但未必二者同时都能达到最小值。因此,设计中应把材料的质量和价格控制在一定范围内,而使其他指标达到最佳值。对于F•R•P层合板,弯曲刚度是最关键的设计参数,而组分材料的弹性、密度、类型(单向或双向)、含量及价格当然也是优化设计的参数。

设计中的玻纤和树脂含量的比例,受到生产工艺和玻纤在树脂中充填效率的限制。但在材料的质量和价格适中的情况下,该比例仍有较宽的范围供设计者选取,以满足结构上的要求。

- 图44、图45为F•R•P层合板玻纤含量与其弯曲刚度理论 值关系曲线。图44的玻纤价格为每平方米1英镑(1977年)。 由图中可以求得在此价格下玻纤层合板具有最佳弯曲刚度时 玻纤的含量。图中各种结构型式的优点是:
- 1. 单向玻纤(曲线A) 有最高的弯曲刚度,但这只是 在玻纤方向上。而在垂直玻纤方向上,则弯曲刚度很低。
- 2. 短切纤维毡(曲线B)的弯曲刚度虽比单向玻纤低得 多,但其在所有方向上的弯曲刚度都相同。

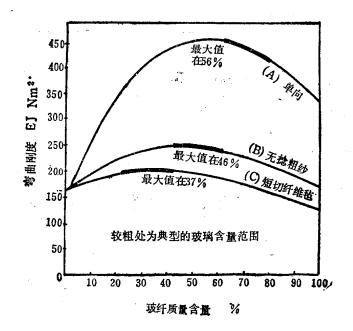
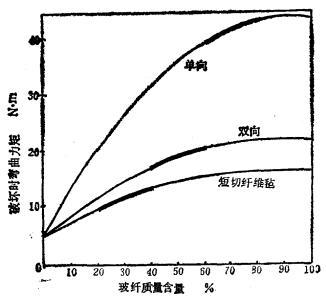

层合板价格:每平方米1英镑(1977年)

图44

3. 无捻粗纱(曲线C)与短切纤维毡(曲线B)在相同含量下,前者的弯曲刚度要比后者大,但前者是上述三种材料中价格最低的,因此其弯曲刚度受价格影响最小。

曲线D、E说明,对于每平方米价格为1英磅的复合材料,树脂价格对弯曲刚度的影响。由图中可以看出,当树脂价格与玻纤接近时,选择最佳的玻纤含量已不再是关键问题了。当玻纤和树脂的价格相同时,曲线几乎是一条水平线,这说明在一定的弯曲刚度范围内,玻纤的含量多少无甚作用。

图44只可作设计时的参考,以使设计者在选定使用的层合板时,确定这些层合板的玻纤含量是否达到了每单位价格最佳弯曲刚度。



层合板质量,每平方米1公斤 图45

图45为质量是每平方米1公斤的层合板的不同玻纤含量与其弯曲刚度的关系曲线。单向复合材料(曲线A)在玻纤含量为56%时,其弯曲刚度有一最大值,但其值却在适用的玻纤含量范围60~80%(图中较粗处)以外。因此,对于一定质量的层合板,应取其最低玻纤含量,即60%。对于无捻粗纱(曲线B)、短切纤维毡(曲线C)复合材料,最佳的玻纤含量应为46%、37%。但曲线B、C相当地平坦,这说明,在此情况下只要选定常用的玻纤含量,就能使每单位质量的层合板达到最佳的弯曲刚度。由图中也可以看出,无捻粗纱层合板的质量效果较之短切纤维毡高,这与图44中的价格效

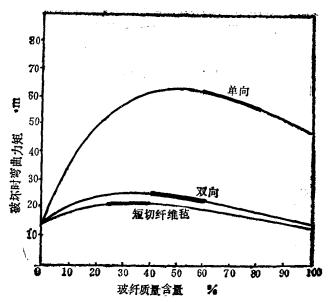

果相反。其结论应是: 若弯曲刚度是设计的依据, 质量是关键,则应选无捻粗纱; 若价格是关键,则应选短切纤维毡。

图46、图47为不同玻纤含量的层合板按其质量、价格的 弯曲承载能力曲线。图46说明,要达到最好的弯曲强度,就 应采用适用的(图中较粗处)最高玻纤含量。图47说明,要 达到最好的弯曲强度,就应采用适用的最低玻纤含量。

层合板质量:每平方米1公斤 图46

当然,对于玻纤复合材料的其他性能,如抗拉强度、弹性模量、剪切刚度等,也可以按上述方法加以研究。事实上,在单位质量和价格下,当层合板的玻纤含量为适用的最高值时,抗拉强度与弹性模量都达最佳值。因此,设计者在特定的设计条件下,应首先确定一个关键的参数,然后用优

层合板价格。每平方米1英镑(1977年)

选方法去满足设计要求。所以,可能在某种情况下要确定玻 纤的最大含量,但也可能在另一种情况下却要确定树脂的最 大含量。

(二) 性能优选设计

由表21可以比较各种层合板组分材料的价格。当 \overline{W}_i 为常数时,层合板弯曲刚度的最佳值由下列诸式计算:

$$W_f = \frac{C_k}{\left(C_f + \frac{1}{C_f} - 1\right)}$$

$$t = \frac{W_f}{\Delta_f} + \frac{W_f}{\Delta_r} \left(\frac{1}{\overline{W}_f} - 1 \right)$$

序号	名称	В	$rac{C_f}{ exttt{f}/ ext{kg}}$	Cr £/kg	M_{g/m^3}	$M_{g/m^3}^{\Delta_f}$	$\frac{E_f}{ ext{MN}/ ext{m}^2}$	Er MN/m²
1	U•D 层合板	1.0	0.965	0.55	1.2	2.56	68900	3445
2	C•S•M 层合板	0.375	1.135	0.55	1.2	2.56	68900	3445
8	W •R 层合板	0.5	1.21	0.55	1.2	2.56	68900	3445
4	C•S•M 层合板	0.375	1.135	0.90	1.2	2.56	68900	3445
5	C•S•M 层合板	0.375	1.135	1.135	1.2	2.56	68900	3445

注,上表中 C_t 为玻纤价格, C_t 为树脂价格, \mathfrak{t} 为英镑。

$$\overline{V}_{f} = \frac{\frac{\overline{W}_{f}}{\Delta_{f}}}{\frac{\overline{W}_{f}}{\Delta_{f}} + \frac{1 - \overline{W}_{f}}{\Delta_{m}}}$$

$$E_k = E_f \overline{V}_f B + E_r (1 - \overline{V}_f)$$

$$EJ = \frac{1000 E_k t^3}{12}$$

上式中, C_k 为层合板的价格(£/kg),t为层合板的厚度。

当价格为常数时,层合板弯曲刚度最佳值由下列诸式求 得:

$$W_{f} = \overline{W}_{f} W_{h}$$

$$t = \frac{W_{f}}{\Delta_{f}} + \frac{W_{f}}{\Delta_{f}} \left(\frac{1}{\overline{W}_{f}} - 1 \right)$$

表22

表22		į	各种材料在相同性能下价格比较	在相同	生能下{	介格比集	∜ ≪					
-	价	極	\$	岩	拉强	展	洪	公園	赵	坑	御	赵
	格 P./kg	度 kg/dm ²	春 P•/dm ²	厚度加加	质量 kg	分 P.	阿爾	形 wg x	介格 p.	厚度mm	质量kg	分格 P.
缠绕环氧	93.5	1.94	181	0.088	0.017	1,59	2.2	0.43	40.2	3.8	0.074	6.9
挤压緊酯	71,7	1,77	127	0.126	0,022	1,58	3,2	0.57	40.9	4.3	0.076	5,5
缎织聚酯	182,6	1.74	318	0.32	0.055 10.04	10.04	5.3	0.92	168	5.1	0.089 16.3	16.3
无捻粗纱聚酯	185.8	1,66	142	0.35	0.058	4.98	6.9	1,15	7.86	5.5	0.091	7.8
 页 型 聚 酯	55.0	1,58	87	0.85	0.134	7.37	12	1.9	105	2.9	0.106	ы 00 00
于蜘緊酯	69	1.47	101	1.00	0,147 10,1	10.1	12	1.8	124	2.9	0.095	6.5
喷涂聚酯	63	1,47	93	1.00	0.147	9.26	12	1.8	113	6.7	0.095	0.9
D·M·C緊盟	09	1.90	114	1.93	0.367 22.02	22.02	8	1.5	06	5.9	0.11	9.9
S·M·C緊船	80	1,84	147	1.53	0.278 22.24		11.6	2.1	163	6.6	0.12	9 . 6
低碳钢	20	7.68	154	0.22	0,169	3.38	0.48	0.37	7.4	2.3	0.16	3.2
铝	100	2,79	279	0.40	0.112 11.2	11.2	1.45	0.40	40	3.3	0.09	0.6
人 稅 對	113,2	8.02	806	0.097	0.078	8.8	0.52	0.42	47.5	2,35	0.18821.3	21.3
尼龙	130	1,15	150	1,26	0,145 18,85	18,85	48	5.5	715	11.6	0.133	17
聚乙落(HD)	44.7	0.97	43	3,3	0.32 14.3	14.3	125	12.1	540	14.7	0.143	6.4
聚丙落	49,1	0,91	45	2.5	0.228 11.2	11,2	73	9•9	324	12.0	0,11	5.4
聚苯乙烯	44.7	1.07	48	2.2	0.234 10.5	10.5	59	3,1	135	0.6	960.0	4.3
(南平击)												

注: 1. 此表价格为1977年3月价格。p.为便士,1便士 = 0.01英镑。

- 2. 抗拉强度及弹性模量值见表11。
- 3. 抗拉强度基于截面宽100mm,长1m,承受10kN截荷的梁。
- 4. 抗拉刚度基于截面宽 100mm, 长1m, 在 10kN 载 荷 下 伸 长 0.1%的梁。
- 5. 抗弯刚度基于截面宽100mm,长1m,在100N截荷下变形0.1 mm,截荷集中在100mm间距上的简支梁。

$$\begin{aligned} \overline{V}_f &= \frac{\overline{W}_f}{\Delta_f} \left(\frac{\overline{W}_f}{\Delta_f} + \frac{1 - \overline{W}_f}{\Delta_r} \right) \\ E_h &= E_f \overline{V}_f B + E_r (1 - \overline{V}_f) \\ EJ &= \frac{1000 E_h t^3}{12} \end{aligned}$$

上式中, w_k为层合板的质量 (kg/m²)。

可以从多方面来比较 F•R•P与其他材料的价格。由于 玻纤层合板加工方法的多样性以及各公司作价方法的不同, 所以价格的比较只可供参考。表22的数据表明, 当玻纤层合板以弹性模量为设计的关键时, 即其在应用中承受纯拉伸或 压缩载荷时, 玻纤层合板的价格难与金属竞争, 但以弯曲刚度为设计的关键时, 二者在价格上比较接近。与非增强塑料比较, F•R•P在多数场合在价格上还是占优势的。

译后记

本书是根据英国 $F \cdot A \cdot$ 魁恩、 $M \cdot I \cdot$ 泼劳特 所 著《玻 纤增强复合材料的设计》一书译出的。

书中简明扼要地阐述了玻纤增强复合材料的基本概念和 设计基本原理,并把基本原理与有用的经验数据、实用的数 学关系式以及应用实例融会贯通,同时又注意到近年来在这 方面的实验和理论的进展。

本书篇幅较少,通俗易懂,可供从事玻纤增强复合材料设计、生产的工程技术人员及大专院校有关专业师生参考。

本书译后,由上海玻璃钢研究所副所长兼总工程师朱颐龄教授撰写了前言,并对全书进行了审定,在此谨致谢意。

由于译者水平有限,译文的缺点和错误在所难免,热诚希望读者批评指正。

译 者 1986年6月