NOT MEASUREMENT SENSITIVE

MIL-HDBK-17-2F Volume 2 of 5 <u>17 JUNE 2002</u>

SUPERSEDING MIL-HDBK-17-2E Volume 2 of 5 24 MAY 1999

DEPARTMENT OF DEFENSE HANDBOOK

COMPOSITE MATERIALS HANDBOOK

VOLUME 2. POLYMER MATRIX COMPOSITES MATERIALS PROPERTIES

This handbook is for guidance only. Do not cite this document as a requirement.

AMSC N/A

AREA CMPS

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FOREWORD

- 1. This Composite Materials Handbook Series, MIL-HDBK-17, are approved for use by all Departments and Agencies of the Department of Defense.
- 2. This handbook is for guidance only. This handbook cannot be cited as a requirement. If it is, the contractor does not have to comply. This mandate is a DoD requirement only; it is not applicable to the Federal Aviation Administration (FAA) or other government agencies.
- Every effort has been made to reflect the latest information on polymer (organic), metal, and ceramic composites. The handbook is continually reviewed and revised to ensure its completeness and currentness. Documentation for the secretariat should be directed to: Materials Sciences Corporation, MIL-HDBK-17 Secretariat, 500 Office Center Drive, Suite 250, Fort Washington, PA 19034.
- 4. MIL-HDBK-17 provides guidelines and material properties for polymer (organic), metal, and ceramic matrix composite materials. The first three volumes of this handbook currently focus on, but are not limited to, polymeric composites intended for aircraft and aerospace vehicles. Metal matrix composites (MMC) and ceramic matrix composites (CMC), including carbon-carbon composites (C-C) are covered in Volume 4 and Volume 5, respectively.
- 5. This standardization handbook has been developed and is being maintained as a joint effort of the Department of Defense and the Federal Aviation Administration.
- 6. The information contained in this handbook was obtained from materials producers, industry, reports on Government sponsored research, the open literature, and by contact with research laboratories and those who participate in the MIL-HDBK-17 coordination activity.
- 7. All information and data contained in this handbook have been coordinated with industry and the U.S. Army, Navy, Air Force, NASA, and Federal Aviation Administration prior to publication.
- 8. Copies of this document and revisions thereto may be obtained from the Document Automation and Production Service (DAPS), Bldg. 4D, (DODSSP/ASSIST), 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.
- 9. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

ACKNOWLEDGEMENT

The services necessary for the development and maintenance of the Composite Materials Handbook (MIL-HDBK-17) are provided by the handbook Secretariat, Materials Sciences Corporation. This work is performed under contract with the US Army Research Laboratory (Contract Number DAAL01-97-C-0140).

The primary source of funding for the current contract is the Federal Aviation Administration. Other sources include NASA, Army, Department of Energy, and Air Force. Volunteer committee members from government, industry, and academia coordinate and review all the information provided in this handbook. The time and effort of the volunteers and the support of their respective departments, companies, and universities make it possible to insure completeness, accuracy, and state-of-the-art composite technology.

SUMMARY OF CHANGES IN REVISION MIL-HDBK-17-2F

<u>Chapter</u>	Section	<u>Title</u>	Change type
1	1.4	Presentation of Data	revision
	1.4.3	Individual data tables-normalized data	revision
	1.4.4	Individual data tables-unnormalized data	new
	1.4.5	Individual data tables-notched laminate data	new
	1.4.6	Individual data tables-bearing data	new
	1.4.7	Individual data tables-bearing/bypass data	new
4	4.2.27	T300 3k/EA 9396 8-harness satin fabric	new
	4.2.28	AS4 6k/PR500 5-harness satin fabric	new
	4.2.29	T650-35 12k/997 unidirectional tape	new
	4.2.31	IM7 6k/PR500 4 harness satin fabric	new
	4.2.32	T650-35 3k/976 8-harness satin fabric	new
	4.2.33	T700S 12k/3900-2 plain weave fabric	new
	4.2.34	T800H 12k/3900-2 unidirectional tape	new
	4.2.35	T650-35 3k/976 plain weave fabric	new
	4.4.5	IM7 6k/5250-4 RTM 4-harness satin fabric	new
	4.4.6	T650-35 3k/5250 8-harness satin fabric	new
	4.4.7	T650-35 3k/5250-4 plain weave fabric	new
	4.10	CARBON-CYANATE ESTER COMPOSITES	new
	4.10.1	M55J 6k/954-3 unidirectional tape new	
6	6.2.4	E-Glass 7781/EA 9396 8-harness satin weave	new

ARAGRAPH PAGE	PARAG
OREWORDii	FOREW
ummary of Changesxi	Summa
HAPTER 1 GENERAL INFORMATION 1	СНАРТ
1.1 INTRODUCTION 1 1.2 PURPOSE AND SCOPE OF VOLUME 2 1 1.3 ORGANIZATION OF DATA IN HANDBOOK. 2 1.3.1 Fiber properties 2 1.3.2 Matrix properties 2 1.3.3 Composite properties 2 1.3.4 PRESENTATION OF DATA 3 1.4.1 Data set description 3 1.4.2 Summary tables 4 1.4.3 Individual data tables - normalized data 11 1.4.4 Individual data tables - normalized data 11 1.4.4 Individual data tables - norched laminate data 14 1.4.5 Individual data tables - notched laminate data 14 1.4.5 Individual data tables - bearing data 15 1.4.7 Individual data tables - bearing/bypass data 15 1.5.1 Materials system codes 20 1.5.1 Materials system codes 20 1.5.2 Index of materials 20 1.6.3 MATERIAL ORIENTATION CODES 20 1.6.4 MATERIAL ORIENTATION CODES 20 1.	1.2 1.3 1.4 1.5 1.6 1.7
REFERENCES 55 HAPTER 2 FIBER PROPERTIES 1	
2.1INTRODUCTION.12.2CARBON FIBERS.12.3ARAMID FIBERS.12.4GLASS FIBERS.12.5BORON FIBERS.12.6ALUMINA FIBERS.12.7SILICON CARBIDE FIBERS.12.8QUARTZ FIBERS.1	2.2 2.3 2.4 2.5 2.6 2.7

PARAGRAPH PAGE **CHAPTER 3** 3.1 INTRODUCTION 1 3.2 3.2.1 3.2.2 3.3 POLYESTERS......1 PHENOLICS......1 3.4 SILICONES 1 3.5 3.6 POLYBENZIMIDAZOLES1 3.7 POLYIMIDES. THERMOSET 1 3.8 POLYETHERETHERKETONES 1 3.9 3.10 POLYPHENYLENE SULFIDES1 3.11 POLYETHERIMIDES 1 3.12 POLYAMIDE-IMIDES 3.13 3.14 **CHAPTER 4** 4.1 CARBON - EPOXY COMPOSITES 1 4.2 421 T-500 12k/976 unidirectional tape.....1 4.2.2 HITEX 33 6k/E7K8 unidirectional tape 6 4.2.3 AS4 12k/E7K8 unidirectional tape 15 4.2.4 4.2.5 426 4.2.7 Celion 12k/938 unidirectional tape......53 4.2.8 AS4 12k/3502 unidirectional tape63 429 Celion 3000/E7K8 plain weave fabric......78 4.2.10 AS4 3k/E7K8 plain weave fabric 105 4.2.11 4.2.12 AS4/3501-6 (bleed) unidirectional tape110 AS4/3501-6 (no bleed) unidirectional tape 120 4.2.13 AS4 3k/3501-6 plain weave fabric 129 4.2.14 4215 4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric.....144 4.2.17 T-300 15k/976 unidirectional tape..... 152 IM7 12k/8551-7A unidirectional tape 163 4.2.18 4.2.19 AS4 3k/3501-6 5-harness satin weave fabric 164 AS4 3k/3501-6 5-harness satin weave fabric 173 4.2.20 4.2.21 4.2.22 IM7 12k/8552 unidirectional tape...... 181 4.2.23 4.2.24 4.2.25 4.2.26 4.2.27 T300 3k/EA9396 8-harness satin weave fabric 205 4.2.28 T650-35 12k/976 unidirectional tape 227 4.2.29

PARAGRAPH

PAGE

	4.2.30 IM7 12k/PR381 unidirectional tape	. 235
	4.2.31 IM7 6k/PR500 4-harness satin weave fabric	
	4.2.32 T650-35 3k/976 8-harness satin weave fabric	
	4.2.33 T700S 12k/3900-2 plain weave fabric	. 243
	4.2.34 T800HB 12k/3900-2 unidirectional tape	. 249
	4.2.35 T650-35 3k/976 plain weave fabric	. 255
4.3	CARBON - POLYESTER COMPOSITES	
4.4	CARBON - BISMALEIMIDE COMPOSITES	
	4.4.1 T-300 3k/F650 unidirectional tape	
	4.4.2 T-300 3k/F650 8-harness satin weave fabric	
	4.4.3 T-300 3k/F652 8-harness satin weave fabric	
	4.4.4 AS4/5250-3 unidirectional tape	
	4.4.6 T650-35 3k/5250-4 8-harness satin weave fabric	
	4.4.7 T650-35 3k/5250-4 plain weave fabric	
4.5	CARBON - POLYIMIDE COMPOSITES	
	4.5.1 Celion 3000/F670 8-harness satin weave fabric	
4.6	CARBON - PHENOLIC COMPOSITES	
4.7	CARBON - SILICONE COMPOSITES	
4.8	CARBON - POLYBENZIMIDAZOLE COMPOSITES	. 302
4.9	CARBON - PEEK COMPOSITES	
	4.9.1 IM6 12k/APC-2 unidirectional tape	. 302
4.10	CARBON – CYANATE ESTER COMPOSITES	. 314
	4.10.1 M55J 6k/954-3 unidirectional tape	. 314
		220
REF	ERENCES	. 320
CHAPT	ER 5 ARAMID FIBER COMPOSITES	1
CHAP 1 5.1	ER 5 ARAMID FIBER COMPOSITES	1 1
CHAP 5.1 5.2	ER 5 ARAMID FIBER COMPOSITES INTRODUCTION ARAMID - EPOXY COMPOSITES	 1 1 1
5.1 5.2 5.3	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - POLYESTER COMPOSITES.	 1 1 1 1
5.1 5.2 5.3 5.4	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES.	1 1 1 1
5.1 5.2 5.3 5.4 5.5	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES.	1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES	1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7	FR 5 ARAMID FIBER COMPOSITES. INTRODUCTION ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - SILICON COMPOSITES ARAMID - PHENOLIC COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES.	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7	FR 5 ARAMID FIBER COMPOSITES. INTRODUCTION ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES.	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES ARAMID - PEEK COMPOSITES.	1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES.	1 1 1 1 1 1 1 1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. INTRODUCTION.	1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES.	1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape	1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1	ER 5 ARAMID FIBER COMPOSITES INTRODUCTION ARAMID - EPOXY COMPOSITES ARAMID - POLYESTER COMPOSITES ARAMID - BISMALEIMIDE COMPOSITES ARAMID - POLYIMIDE COMPOSITES ARAMID - PHENOLIC COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - SILICON COMPOSITES ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape 6.2.2 S2-449 17k/SP 381 unidirectional tape 5.2	1 1 1 1 1 1 1 1 1 1 1 1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - PULYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape 6.2.2 S2-449 17k/SP 381 unidirectional tape 6.2.3 7781G 816/PR381 plain weave fabric	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAP1 6.1 6.2	ER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 62.1 S2-449 43k/SP381 unidirectional tape. 6.2.2 S2-449 17k/SP 381 unidirectional tape. 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1 6.2	Ter 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape. 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric. GLASS - POLYESTER COMPOSITES. GLASS - POLYESTER COMPOSITES.	1 1 1 1 1 1 1 1 1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1 6.2 6.3 6.3 6.4	TER 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - PHENOLIC COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape. 6.2.2 S2-449 17k/SP 381 unidirectional tape. 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric. GLASS - POLYESTER COMPOSITES. GLASS - BISMALEIMIDE COMPOSITES.	1 1 1 1 1 1 1 1 1 1
CHAPT 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 CHAPT 6.1 6.2	Ter 5 ARAMID FIBER COMPOSITES. INTRODUCTION. ARAMID - EPOXY COMPOSITES. ARAMID - POLYESTER COMPOSITES. ARAMID - BISMALEIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - POLYIMIDE COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - SILICON COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - POLYBENZIMIDAZOLE COMPOSITES. ARAMID - PEEK COMPOSITES. ARAMID - PEEK COMPOSITES. INTRODUCTION. GLASS FIBER COMPOSITES. 6.2.1 S2-449 43k/SP381 unidirectional tape. 6.2.3 7781G 816/PR381 plain weave fabric. 6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric. GLASS - POLYESTER COMPOSITES. GLASS - POLYESTER COMPOSITES.	1 1 1 1 1 1 1 1 1 1

PARAGE	PAGE PAGE
6.7	GLASS - SILICONE COMPOSITES
6.8	GLASS - POLYBENZIMIDAZOLE COMPOSITES
6.9	GLASS - PEEK COMPOSITES
CHAPTI	ER 7 BORON FIBER COMPOSITES 1
7.1	INTRODUCTION1
7.2	BORON - EPOXY COMPOSITES 1
7.3	BORON - POLYESTER COMPOSITES 1
7.4	BORON - BISMALEIMIDE COMPOSITES 1
7.5	BORON - POLYIMIDE COMPOSITES 1
7.6	BORON - PHENOLIC COMPOSITES 1
7.7	BORON - SILICON COMPOSITES 1
7.8	BORON - POLYBENZIMIDAZOLE COMPOSITES 1
7.9	BORON - PEEK COMPOSITES 1
CHAPTI	ER 8 ALUMINA FIBER COMPOSITES 1
8.1	INTRODUCTION1
8.2	ALUMINA - EPOXY COMPOSITES
8.3	ALUMINA - POLYESTER COMPOSITES 1
8.4	ALUMINA - BISMALEIMIDE COMPOSITES 1
8.5	ALUMINA - POLYIMIDE COMPOSITES 1
8.6	ALUMINA - PHENOLIC COMPOSITES 1
8.7	ALUMINA - SILICON COMPOSITES 1
8.8	ALUMINA - POLYBENZIMIDAZOLE COMPOSITES 1
8.9	ALUMINA - PEEK COMPOSITES 1
СНАРТІ	ER 9 SILICON CARBIDE FIBER COMPOSITES 1
9.1	INTRODUCTION1
9.2	SILICON CARBIDE - EPOXY COMPOSITES 1
9.3	SILICON CARBIDE - POLYESTER COMPOSITES 1
9.4	SILICON CARBIDE - BISMALEIMIDE COMPOSITES 1
9.5	SILICON CARBIDE - POLYIMIDE COMPOSITES 1
9.6	SILICON CARBIDE - PHENOLIC COMPOSITES 1
9.7	SILICON CARBIDE - SILICON COMPOSITES 1
9.8	SILICON CARBIDE - POLYBENZIMIDAZOLE COMPOSITES 1
9.9	SILICON CARBIDE - PEEK COMPOSITES 1
СНАРТІ	ER 10 QUARTZ FIBER COMPOSITES 1
10.1	INTRODUCTION1
	QUARTZ - EPOXY COMPOSITES
	QUARTZ - POLYESTER COMPOSITES
	QUARTZ - BISMALEIMIDE COMPOSITES
10.1	10.4.1 Astroquartz II/F650 8-harness satin weave fabric
	QUARTZ - POLYIMIDE COMPOSITES
	QUARTZ - PHENOLIC COMPOSITES

PARAGRAPH PAGE	E
10.7QUARTZ - SILICONE COMPOSITES610.8QUARTZ - POLYBENZIMIDAZOLE COMPOSITES610.9QUARTZ - PEEK COMPOSITE6	
APPENDIX A1. MIL-HDBK-17A DATA 1	
A1.1 GENERAL INFORMATION	
A1.3.1 Objectives 2 A1.3.2 Preimpregnated materials 2 A1.3.3 Test panels 2 A1.3.4 Test panels 2	
A1.3.4 Test procedures	
A1.3.4.4Interlaminar shear3A1.3.4.5Flexural tests3A1.3.4.6Bearing strength3	
A1.3.5 Dry conditioning	
A1.4 DATA PRESENTATION A1.4.1 Epoxy-fiberglass laminates	
A1.4.4 Polyester-fiberglass laminates	

PAGE

<u>TABLE</u>

A1.3 Hexcel F-161/7743(550) Fiberglass Epoxy......A1-14 A1.4 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (26% resin)......A1-24 A1.5 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (31% resin)......A1-30 A1.6 Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (36% resin)......A1-36 A1.8 Narmco N588/7781 (ECDE-1/0-550) Fiberglass EpoxyA1-46 A1.40 Narmco N506/7781 (ECDE-1/0-A1100) Fiberglass PhenolicA1-56 A1.110 Narmco 5505 Boron-Epoxy (100%-0° Direction)......A1-64 A1.111 Narmco 5505 Boron-Epoxy (0°-90° Crossply)A1-68 FIGURE A1.1.1(a) Tensile stress-strain for E-720E/7781 fiberglass epoxy loaded in the 0° direction......A1-7 A1.1.2(a) Compressive stress-strain for E-720E/7781 fiberglass epoxy loaded in the 0° direction A1-9 A1.1.2(b) Compressive stress-strain for E-720E/7781 fiberglass epoxy loaded in the 90° directionA1-10 A1.1.3 0° - 90° rail shear for E-720E/7781 fiberglass......A1-11 A1.1.4 Poisson effects for E-720E/7781 fiberglass epoxy......A1-12 A1.3.1(a) Tensile stress-strain for F-161/7743 fiberglass epoxy loaded in the 0° directionA1-15 A1.3.1(b) Tensile stress-strain for F-161/7743 fiberglass epoxy loaded in the 90° directionA1-17 A1.3.2(a) Compressive stress-strain for F-161/7743 fiberglass epoxy loaded in the 0° directionA1-18 A1.3.2(b) Compressive stress-strain F-161/7743 fiberglass epoxy loaded in the 90° direction......A1-19 A1.3.3 0° - 90° rail shear for F-161/7743 fiberglass epoxy.....A1-20 A1.3.4 Poisson effects for F-161/7743 fiberglass epoxyA1-21 A1.3.5 Voids vs. resin content and specific gravity for F-161/7743 fiberglass epoxy......A1-22 A1.4.1(a) Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction

FIGURE

A1.4.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (26% resin)
A1.4.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (26% resin)
A1.4.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (26% resin)
A1.4.4 Po	bisson effects for F-161/7781 fiberglass epoxy (26% resin)A1-29
A1.5.1(a)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (31% resin)
A1.5.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (31% resin)
A1.5.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (31% resin)
A1.5.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (31% resin)
A1.5.4 Po	bisson effects for F-161/7781 fiberglass epoxy (31% resin)A1-35
A1.6.1(a)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (36% resin)
A1.6.1(b)	Tensile stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (36% resin)
A1.6.2(a)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 0° direction (36% resin)
A1.6.2(b)	Compressive stress-strain for F-161/7781 fiberglass epoxy loaded in the 90° direction (36% resin)
A1.6.3 Pi	cture frame shear for F-161/7781 fiberglass epoxy (26%, 315, 36% resin)A1-41
A1.6.4 Po	bisson effects for F-161/7781 fiberglass epoxy (36% resin)A1-42
A1.6.5 Vo	bids vs. resin content and specific gravity for F-161/7781 fiberglass epoxy (26%, 31%, 36% resin)A1-43
A1.6.6 Th	nickness vs. resin content for F-161/7781 fiberglass epoxyA1-44
A1.8.1(a)	Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 0° directionA1-47
A1.8.1(b)	Tensile stress-strain for N588/7781 fiberglass epoxy loaded in the 90° directionA1-48
A1.8.2(a)	Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 0° directionA1-49

FIGURE PAGE A1.8.2(b) Compressive stress-strain for N588/7781 fiberglass epoxy loaded in the 90° direction ... A1-51 A1.8.3 Rail shear for N588/7781 fiberglass epoxyA1-52 A1.8.5 Voids vs. resin content and specific gravity for N588/7781 fiberglass epoxyA1-54 A1.40.1(a) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 0° directionA1-57 A1.40.1(b) Tensile stress-strain for N506/7781 fiberglass phenolic loaded in the 90° directionA1-58 A1.40.2(a) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 0° directionA1-59 A1.40.2(b) Compressive stress-strain for N506/7781 fiberglass phenolic loaded in the 90° directionA1-60 A1.40.3 0° - 90° rail shear for N506/7781 fiberglass phenolic.....A1-61 A1.40.4 Poisson effects for N506/7781 fiberglass phenolicA1-62 A1.40.5 Voids vs. resin content and specific gravity for N506/7781 fiberglass phenolic......A1-63 A1.110.1 Tensile stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation/50.3% to 35% fiber volume) loaded in the 0° and 90° directionA1-65 A1.110.2 Compressive stress-strain for AVCO 5505 boron/epoxy (100% - 0° orientation loaded in the 0° directionA1-66 A1.110.3 Poisson effects for AVCO 5505 boron/epoxy (100% - 0° direction)A1-67 A1.111.1(a) Tensile stress-strain for AVCO 5505 boron/epoxy (0° - 90° crossply) loaded in the 0° directionA1-69 A1.111.1(b) Tensile stress-strain for AVCO 5055 boron/epoxy (0° - 90° crossply) loaded in the 45° directionA1-70 A1.111.3 Poisson effects for AVCO 5055 boron/epoxy (0° - 90° crossply)......A1-71 INDEX.....I-1 CONCLUDING MATERIALC-1

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION

The standardization of a statistically-based mechanical property data base, procedures used, and overall material guidelines for characterization of composite material systems is recognized as being beneficial to both manufacturers and governmental agencies. It is also recognized that a complete characterization of the capabilities of any engineering material system is primarily dependent on the inherent material physical and chemical composition which precede, and are independent of, specific applications. Therefore, at the material system characterization level, the data and guidelines contained in this handbook are applicable to military and commercial products and provide the technical basis for establishing statistically valid design values acceptable to certificating or procuring agencies.

This standardization handbook has been developed and is maintained as a joint effort of the Department of Defense and the Federal Aviation Administration. It is oriented toward the standardization of methods used to develop and analyze mechanical property data on current and emerging composite materials.

1.2 PURPOSE AND SCOPE OF VOLUME 2

A primary focus of this Handbook is guidance on the selection and use of composite materials. The data collected within this volume are presented to allow initial assessments of material adequacy for a particular application. It provides a common database that will allow significant reductions in the amount of validation data necessary to use the data for design purposes. This handbook cannot be cited as a DoD contractor requirement.

This handbook volume provides a standard source of statistically based mechanical property data for current and emerging polymeric matrix composite materials. Physical, chemical, and mechanical values of the composite constituents - the fibers, matrix material, and prepreg - are reported where applicable. Subsequent chapters include data summaries for the various composite systems. Individual chapters focus on particular type of reinforcement fiber. Strength and strain-to-failure properties are reported in terms of mean and A-values and/or B-values. The A and B statistical allowable values are determined by the procedures of Volume 1. Only mean values are reported for stiffnesses. Maximum and minimum data points, and coefficients of variation are reported for all data items.

The verification of the ability to attain equivalent statistical properties to the required level of risk (probability and confidence) is the responsibility of the user. The verification of the ability of a manufacturer to attain the same statistical properties should be performed as outlined in Volume 1, Chapter 2. The specific process to leverage the data in this volume is described in Volume 1, Section 2.3.7.

The source and context for much of the handbook data sets has historically come from experience with aerospace flight-critical structures. However, all transportation industries (aerospace, ground, rail, and marine), whether commercial or military, as well as other applications including civil infrastructure and general industrial products, will find the handbook useful. Incorporation of additional information related to broader applications is ongoing. Initial input has led to predominantly lamina mechanical properties of prepreg tape and fabric. The range of materials has expanded to cover resin transfer molded and repair materials. The range of properties covered has expanded to laminate mechanicals. Expansion of the ranges of both properties and material forms is expected to continue.

Statistically based strength properties are defined for each composite material system over the usable range of environment. The intent is to provide data at the upper and lower limits of the environmental range for a particular material. If intermediate environmental condition data are available, they are included to assist in defining the relationship over the environmental range. The statistically based strength data can be used as a starting point for establishing structural design allowables when stress and

strength analysis capabilities permit lamina and laminate level margin of safety checks. Depending on the application, some structural design allowables will have to be determined empirically at higher testing levels (element, sub-component, full-scale) as they may be dependent on design geometry and philosophies. Additional information and properties will be added to this Volume as they become available and are demonstrated to meet the handbook's criteria.

All statistical data included herein are based on test specimens only. Unless otherwise noted, test specimen dimensions conform to those specified for the particular test method that is used. Standard test methods are recommended in Volume 1. In Volume 2, data are limited to those obtained from recommended in Volume 1. The data contained in this volume may have been provided by more than one source. Where more than one source for data is used for a reported property, the variability of the data from source to source has been reviewed statistically in accordance with Volume 1, Chapters 2 and 8. If the variability has been sufficiently small for the data to be considered from the same population, the data sets are combined and treated as one data set. Where there are reasons for differences among the data sets, both data sets are presented (for example, Volume 2, Section 4.2.8).

The designer, manufacturer and all users are responsible for any translation of the data contained herein to other production sites, specimen dimensions, temperature, humidity, and other environmental conditions not specifically identified in this document. Issues not addressed in this document are scaleup effects and the influence of the selected test method on properties. In general, decisions concerning which properties to use for a specific application or design are the responsibility of the user and are outside the scope of this handbook. MIL-HDBK-17, Volume 3, addresses some of the relevant issues regarding design usage of the data in this volume. It is the responsibility of the handbook user to meet end use, customer and regulatory requirements.

An overview of the material, guidelines for its usage, and details of the statistical and technical analysis of the data are provided at the beginning of each section of Chapters 4 through 10. The format of all information in each data set is described in detail in Section 1.4. A more detailed description of fibers and/or matrix materials may be found in Volume 3, Chapter 2.

1.3 ORGANIZATION OF DATA IN HANDBOOK

The data in Volume 2 is divided into chapters of fiber properties, resin properties, and composite properties organized by fiber and then resin.

1.3.1 Fiber properties

Chapter 2 in Volume 2 will provide data for fiber properties. Sections are to be included for different types of fiber, e.g., glass fibers and carbon fibers. Fiber properties and methods for obtaining them are discussed in Volume 1, Chapter 3.

1.3.2 Matrix properties

Matrix or resin properties will be included in Chapter 3 which will be divided into sections according to the type of resin. For example, Section 3.2 will give data for epoxies and Section 3.3 will provide data for polyester resins. Resin properties and methods for obtaining them are presented in Volume 1, Chapter 4.

1.3.3 Composite properties

The remaining chapters of Volume 2 will provide data for prepreg, lamina, laminate, and joint properties. Methods for characterizing materials are discussed in Volume 1, Chapter 5, and properties and definitions for laminae and laminates are presented in Volume 1, Chapter 6. Properties for structural elements are presented in Volume 1, Chapter 7. The statistical methods used in determining these proper-

ties are discussed in Volume 1, Chapter 8. There will be individual chapters for each family of composites based on fiber type. For example, Chapter 4 describes carbon fiber composites.

1.4 PRESENTATION OF DATA

This section provides information on how the data are presented in this volume, both to help understand the data as presented and to ensure the data presentation is consistent. Information enclosed in {}'s represents data that should be included in a given field. Information that is not applicable or not available is omitted.

Each section is titled based on the following information.

{Fiber Commercial Name} {Filament Count}/{Matrix Commercial Name} {Tape/Weave Type/Weave Style} {Critical Processing Information}

Examples of the tape/weave type include unidirectional tape, plain weave, and five-harness satin weave. Weave styles are descriptive codes most commonly used for glass fabrics, such as 7781. Additional information is shown when it is necessary to discriminate between data sets. This includes material information such as glass surface finish or critical processing information, such as bleed or no-bleed. If a warning regarding data documentation is included for the data set, an asterisk follows the section title.

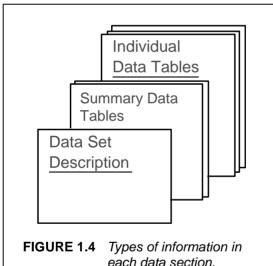
Each section contains three types of information (Figure 1.4). The data set description identifies the

specific material system, provides selected supplier information, and discusses any anomalies which appeared during data sets. The summary data tables give an overview of property types and data classes included in the section. The individual data tables provide the details of data analysis. A separate individual data table is included for each test type, loading direction, and lay-up in the data set. The following describe the content and format for each of these subsections.

1.4.1 Data set description

The first page of each section presents general information.

Material Description:


Material - {Fiber Commercial Name} {Filament Count}/ {Matrix Commercial Name} for the material tested.

Form - Description of material tested including unidirectional tape or weave type, nominal fiber areal weight, typical cured resin content, typical cured ply thickness, sizing, tackifier or binder (class, form, manufacturer, and common name), and/or scrim fiber class and scrim fabric style as relevant. This information is specific to the data set that follows it.

Processing - Description of processing including information listed under Process Description in Volume 1, Table 2.5.6.

General Supplier Information: This section presents information often provided by the material supplier. There are no requirements for substantiation of this information.

Fiber: Often includes precursor, surface treatment, twist, filament count, typical tensile modulus or modulus family, and typical tensile strength.

Matrix: Often includes resin type, cure temperature family, description of characteristics.

Maximum Service Temperature: For dry and wet conditions.

Typical Applications: Brief description of applications. May be as generic as "general purpose structural applications" or more specific based on critical characteristics.

Data Analysis Summary: This section contains pertinent information from the statistical analysis of the data. If no other information is included in this section, no data analysis.

Testing: Often includes information on documented deviations from standard test method.

Outliers: Often includes information on the outliers observed, particularly after pooling batches, and their disposition (see Volume 1, Sections 2.5.8 and 2.4.4).

Batch Definition: Often includes information on independence of fiber and matrix lots used in the composite batches.

Batch-to-Batch Variability and Pooling of Data Sets: Often includes information on decision-making for pooling based on batch-to-batch variability. May also contain information on relative batch behavior, such as one batch consistently providing results different from other batches.

Additional Information: For any notes or comments to highlight other concerns by the Secretariat or Data Review working group during analysis and review of the data.

Processing Trace: When available, a processing trace will be presented. Included will be the processing history based on the specification including ramp rates and relative timing of the application of the various processing parameters.

Lay-Up Schematic: When available, a sketch of the processing lay-up will be presented. Included will be bagging, damming, bleeder material, and so on.

The remaining pages in each data section represent data analyzed by the Secretariat, evaluated by the Data Review working group, and approved by the Coordination Group. These data are presented in tables that are described in more detail below. Tables in each section are organized in the same order the properties are listed in the summary tables.

1.4.2 Summary tables

The format for the first page of summary information is shown in Table 1.4.2(a). Details for different portions of the figure are indexed to descriptions in the text by numbered circles.

Û

The first set of information in a data section is a summary table containing information on the materials, processing, etc. The box with a heavy border in the upper right-hand corner identifies the first summary table.

> {Fiber Class}/{Matrix Class} {Nominal FAW} - {Tape/Weave Type} {Fiber}/{Matrix} Summary

0

This box contains the fiber/matrix class of the material, such as carbon/epoxy, identified using the material system codes in Section 1.5.1. With the fiber and matrix classes is the nominal fiber areal weight and the abbreviated tape/weave type. Abbreviations for tape and weave type include UT (unidirectional tape), PW (plain weave), or *n*HS (*n*-harness satin) The material identification is summarized by the fiber and matrix names.

Material information is presented for the composite, the preconsolidation form, the fiber, and the matrix. Composite material identification, presented in the Material slot, is the same as the section title.

The preconsolidation Form description depends on the form type. For prepregs, the Form description includes

{Manufacturer} {Commercial Name} {Weave pattern} {Tape/Weave Type} prepreg

For prepregged fabric, information such as warp and fill fiber spacing is included when it is available. For RTM and wet fabric lay-up, the Form description includes

{Weaver} {Fabric Style if glass} {Weave Pattern}{tow/in x tow/in} {Fabric Sizing Identification} {Fabric Sizing Content}, {Tackifier} tackifier + {liquid/film} resin

If a binder is used, information on the binder replaces information on a tackifier.

Fiber identification includes {Manufacturer} {Commercial Name} {Filament Count} {Sizing} {Sizing Amount} {Twist} {[not] surface treated/surface treatment type}. Resin identification is presented as {Manufacturer} {Commercial Name}.

- Overall processing information is presented as Reinforcement Application Process (how the fiber/preform was put together) followed by Cure Process Type (how the part was cured/molded) from Table 1.4.2(b). Basic processing information for one or more processing steps, including the type of processing step (from Table 1.4.2(b), temperature, pressure, duration, and any other critical parameters, is presented. A more complete description may be provided in graphical form as part of the summary information (see Section 1.4.1).
- Glass transition temperature under dry and wet conditions is presented with the test method used to obtain these data (See Volume 1, Section 6.6.3). These may be nominal values obtained from the matrix supplier.
- Any warning for limited data documentation is presented on each page of data presentation. On the first page of the data section, a warning is shown below the material identification block.
- 6 The block below the material identification block presents various dates relevant to the fabrication and testing of the material. The date of data submittal determines the data documentation requirements that were used for the data set (Volume 1, Section 2.5.6) and the date of analysis determines the statistical analysis that was used (Volume 1, Section 8.3). Ranges of dates are presented where appropriate, such as for a testing program that lasted several months.
- Lamina properties are summarized with the class of data provided for each property. The columns of the lamina property summary table define the environmental conditions. The first column contains room temperature ambient or dry data. Dry is used only if a drying procedure was used. Ambient refers to as-fabricated with subsequent storage in an ambient laboratory environment. The remaining columns are ordered from lowest to highest moisture content and within a given moisture content, from lowest to highest temperature. If there is enough space, a blank column separates the room temperature ambient/dry column from the other columns and each moisture condition from the others.

Volume 2, Chapter 1 General Information

The rows of the lamina summary table identify the type test and direction. The basic mechanical properties are included in each summary table. If data are available, additional properties are appended in the following order:

SB strength, 31-plane	GIC	CTE 1-axis
SB strength, 23-plane	G_{IIc}	CTE 2-axis
		CTE 3-axis

8 For each test type and direction, the symbol for each class of data for the strength, modulus, Poisson's ratio, and strain-to-failure is provided, in that order. The symbols are listed in Table 1.4.2(c). For example, if the entry under RTA and Tension, 1-axis is BI-S, there is room temperature ambient data for longitudinal tension strength, modulus, and strain-to-failure. The dash indicates that there are no Poisson's ratio data. The strength data are B30 (robust sampling), the modulus data are interim, and the strain-to-failure data are screening. Data classes are defined in Volume 1, Section 2.5.1, and summarized in Table 1.4.2(c). Certain test methods, for example, short beam strength, result only in screening data.

Date of prepreg manufacture

Date of composite manufacture

TABLE 1.4.2(a)Summary table format, first page.

MATERIAL:	{Fiber} {Filament-Count}/{Matrix} {Weave pattern} 2 {Tape/Fabric}				0	
FORM:	{input dep	ends on type	of preconsolida	ation form and pro	ocessing}	
FIBER:	{Manufacturer} {Commercial Name} MATRIX: {Manufacturer} {Commercial Name} {Filament Count} {Sizing} {Twist}					ercial Name}
PROCESSING:	{Reinforcer {Pressure}		tion}, {Mold Typ	e} {Type of Proce	essing Step}: {Temperatu	re}, {Duration},
T _g (dry):	XXX°F	T _g (wet):	XXX°F	Tg METHOD:	{Method}	
*{Warning} 5						
Date of fiber man	ufacture		MM/YY	Date of testing		MM/YY
Date of resin man	ufacture		MM/YY	Date of data su	Ibmittal	MM/YY

LAMINA PROPERTY SUMMARY

Date of analysis

MM/YY

6

MM/YY

MM/YY

	{RTA}	{Ambient/dry, coldest to hottest}	{Wet, coldest to hottest}
Tension, 1-axis			
Tension, 2-axis			
Tension, 3-axis			
Compression, 1-axis			
Compression, 2-axis		The data class is noted	
Compression, 3-axis		for each type test/direction/	
Shear, 12-plane		environmental-condition combination	
Shear, 23-plane			
Shear, 31-plane			
{Additional type test/direction}			

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: (a)A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c)).

Reinforcement Application Process	Cure Process Type	Type of Processing Step
automated fiber placement - tape automated fiber placement - towpreg automated fiber placement - wet automated lay-up - prepreg automated lay-up - wet hand lay-up - prepreg hand lay-up - wet preform - braid preform - braid preform - weave spray wound - dry wound - met wound - prepreg	compression molding diffusion bonding injection molding - vacuum assisted injection molding - vacuum assisted injection molding - reaction injection molding - liquid oven autoclave hydroclave trapped rubber pultrusion resin transfer molding VARTM [vacuum-assisted resin transfer molding] vacuum infiltration vapor deposition e-beam	age-harden anneal consolidate [pre-cure] cooldown cure - bleed cure - no bleed debulk densify injection isothermal dwell part insertion part removal postcure preform insertion preheat
	induction	

TABLE 1.4.2(b) Composite reinforcement application, cure process type, and processing step descriptions.

TABLE 1.4.2(c) MIL-HDBK-17 data classes and minimum sampling requirements.

			Minimum I	Requirements
Designation	Symbol	Description	Number of Batches	Number of Specimens
A75	А	A-basis – Robust Sampling	10	75
A55	а	A-basis – Reduced Sampling	5	
B30	В	B-Basis – Robust Sampling	5	30
B18	b	B-Basis – Reduced Sampling	3	18
М	М	Mean	3	18
I	I	Interim	3	15
S	S	Screening	1	5

Continuing on the second page of summary information (Table 1.4.2(d)):

- (1) Any warning is placed at the top of this page.
- The box at the top of the second page of summary information presents basic physical parameters for the data set. The first data column contains nominal values, typically specification information. This information may not match information directly applicable to this data set. For example, the nominal fiber volume according to the prepreg manufacturer may be one value, while the data are normalized to a different value based on Volume 1, Section 2.5.7, to provide consistency within the handbook. One or more of the nominal values can be calculated from other information if the values are not otherwise available. For example, if unavailable the nominal composite density will be calculated from nominal fiber density, matrix density, and fiber volume. In this case, a note describes the calculation. If the nominal fiber volume was not supplied by the data source, it was calculated based on resin content, fiber density and composite density, assuming void content is 0%.
- (3) The second data column presents the range of values for the data set submitted. These data may not correlate directly with each other. For example, fiber volume and fiber areal weight may be batch average measurements, while the cured ply thickness values are generally based on individual specimen measurements.
- (4) The last column presents the test method used to obtain these data. This information was not included in the early versions of data documentation requirements.
- (5) Laminate property data are summarized in the lower box in the same way as lamina property data are summarized on the previous page. Families of laminates are provided with properties listed below each laminate family. A laminate family is identified by square brackets surrounding a list of the ply orientations separated by commas. More specific lay-up information is included in the laminate summary table only if needed to differentiate among lay-ups. Specific lay-up information is provided in the detailed tables that follow. The type test and direction are included only if data are available and are based on Table 1.4.2(e).

Unless otherwise noted, the x-axis corresponds to the +0-direction of the laminate lay-up. Data included for this material are indicated by the data class symbol, identified in the footnote.

TABLE 1.4.2(d) Summary table format, second page.

{Warning} ①

		Nominal 2	As Submitted ③	Test Method
Fiber Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Resin Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Composite Density	(g/cm ³)	X.XX	{Minimum} - {Maximum}	{Method}
Fiber Areal Weight	(g/m ²)	XXX	{Minimum} - {Maximum}	{Method}
Fiber Volume	(%)	XX	{Minimum} - {Maximum}	{Method}
Ply Thickness	(in)	0.0XXX	{Minimum} - {Maximum}	{Method}

LAMINATE PROPERTY SUMMARY 5

	{RTA}	{Ambient/dry, coldest to hottest}			{Wet, coldest to hottest}				
{Laminate Family}									
{Type test/direction}									
			The c	lata class	s is noted				
{Laminate Family}			for eacl	h type tes	st/direction/				
{Type test/direction}		env	ironment	tal-condit	ion combina	tion			

Classes of data in Strength/Modulus/Poisson's ratio/Strain-to-failure order

A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c)).

Type Test	Dir	ection	
Tension	Filled Hole Tension (FHT)	x-axis	xy-plane
Compression	Filled Hole Compression (FHC)	y-axis	yz-plane
Shear	Compression After Impact (CAI)	z-axis	zx-plane
Open Hole Tension (OHT)	Bearing		-
Open Hole Compression (OHC)	Bearing/Bypass		
	CTE		

ABLE 1.4.2(e) Laminate type test and directions

1.4.3 Individual data tables - normalized data

The format for a data table containing normalized material property information is shown in Table 1.4.3(a). Requirements and procedures for normalization are found in Volume 1, Section 2.5.7 and 2.4.3.

- Warnings are shown on each page for data sets that do not meet the data documentation requirements. Many of the data sets were submitted before the establishment of the data documentation requirements. Data sets that do not meet the first version of data documentation requirements or the data documentation requirements that were current when the data were submitted will not be considered for B or A data classes.
- At the top right corner of each page is a box with a heavy border. This box contains information that identifies the data set, the type of test for which results are shown, specimen orientation, test conditions, and the classes of data. The tape/weave type abbreviations are described for the top right corner of the first summary page (circle-1), Specimen orientation is provided as a lay-up code with the loading direction used as the reference axis. For example, a unidirectional specimen is described as $[0]_n$ for 1-axis properties and $[90]_n$ for 2- axis properties. Lay-up codes are described in Section 1.6.

{Table Number}	
{Fiber Class}/{Matrix Class} {FAW}-{Tape/Weave Type}	- FAW, fiber areal weight
{Fiber Name}/{Matrix Name}	
{Test Type}, {Direction}	
{Lay-up}	
{Test Temperature}/{Moisture Content}	- repeated for each data column
{Data Classes }	- includes symbols for all data classes
	on this page in descending order
	(from A75 to S).

Material identification is provided for the composite material as

ß

{Fiber} {Filament-Count}/{Matrix} {Tape/Weave Type} {Critical processing parameters}

This information should be the same as the section title and the material identification on the first page of the summary tables. The range of physical parameters, resin content, fiber volume, ply thickness, composite density, and void content, for the *cured* material are presented for the data on this particular page. The endpoints of these ranges may not correspond directly as fiber volume, resin content, and so on are generally available as a batch or panel average while the cured ply thickness values are usually based on individual specimen measurements.

Volume 2, Chapter 1 General Information

a

TABLE 1.4.3 Format for normalized property table.

{Warning}							
MATERIA	L: {Fib	er} {Filament cou	unt}/{Matrix} {Ta	pe/weave t	ype} 3		
RESIN CO FIBER VO PLY THIC	DLUME: XX.)	< - XX.X wt% < - XX.X vol % XX - 0.0XXX in.	COMP: DE VOID CON		X.XX-X.XX g/cm ³ 0.X to X.X %		0
TEST ME	THOD:		MODULUS	CALCULA			
{Organiz	zation} {Number}	{Date}	{Method	}, XXXX - X	XXX		
NORMAL	IZED BY: {Met	hod}		6			
	Content (%) m at T, RH		7				
		Normalized	Measured	Normalize	d Measured	Normalized	Measured
Fl ^{tu} 🕄 (ksi)	Mean Minimum Maximum C.V.(%) B-value Distribution C_1 C_2		9				
	No. Specimens No. Batches Data Class						
$\mathbf{E}_1^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v ₁₂ ^t	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
ε ₁ ^{tu} (με)	B-value Distribution C ₁ C ₂			be equivale	es presented are "a ent to stress divide ear analysis)		
	No. Specimens No. Batches Data Class						

- The test method is identified with the organization, number, and date. For compression after impact, the nominal impact energy level used for the test is appended to the test method, since alternate levels are often used. See Tables 1.4.5 1.4.7 for additional information that describes testing parameters for notched laminates, bearing, and bearing/bypass.
- The method of calculating the modulus is presented for mechanical property data. This includes the calculation method, and the location or range of measurements used for the calculation. Unless otherwise stated (in a footnote), the same method and range is used for Poisson's ratio.
- 6 The normalization method is presented for data that have been normalized (See Volume 1, Section 2.4.3). The fiber volume to which the data are normalized is also included. This value is typically 60% for carbon-fiber-reinforced unidirectional material (tape) and 57% for carbon-fiber-reinforced fabric. The normalizing fiber volume for all glass-fiber-reinforced material is 50%. Types of normalization as entered are:

Normalized by fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber volume to XX% (0.0XXX in. CPT) Normalized by specimen thickness and batch fiber areal weight to XX% fiber volume (0.0XXX in. CPT)

Corresponding cured ply thickness (CPT) values, based on a nominal fiber areal weight, are included for reference for each method.

- At the top of each data column are the test conditions. Nominally dry conditions, for materials that are fabricated and stored under controlled conditions are noted. Wet conditions that are not conditioned to equilibrium are also noted. The source code provides a means for identifying data sets from the same source. No other source identification is provided.
- Specific properties are identified in the tables with symbols. These symbols are a combination of an initial letter with subscripts and super scripts added as appropriate. Components of the property symbols are shown in Table 1.4.3(b).

Initial letter(s)	Test type superscripts	Property descriptor superscripts	Test direction subscripts
F - strength ϵ - strain E - modulus G - shear modulus, strain energy release rate υ - Poisson's ratio CTE - coefficient of thermal expansion	t - tension c - compression s - shear sbs - short beam strength oht - open hole tension ohc - open hole compression fht - filled hole tension cai - compression after impact br - bearing byp - bypass	u - ultimate	1, 2, 3 12, 23, 31 x, y, z, xy, yz, zx

TABLE 1.4.3(b) Components used to construct property symbol	ols.
---	------

Property symbols are created by combining these components with test type superscripts preceding property descriptor super scripts. Thus, the symbol for ultimate tensile strength in the 1 direction is F_1^{tu} . The property descriptor superscripts are only used for strength and strain. Exceptions to this rule are strain energy release rates, for example, G_{1c} , and bearing/bypass data where "byp" is used as a subscript for the bypass strength.

Strength data and strain-to-failure data are presented in the handbook with a full set of statistical parameters. All statistical parameters are presented for normalized and as-measured strength data. All statistical parameters are presented for as-measured strain-to-failure data. Note that the strain values presented are "as measured" and may not be equivalent to stress divided by modulus (linear analyses). The normalized data column is listed first, followed by the measured data column. The data class using the designation from Table 1.4.2(c) is indicated for each property/condition combination. B-values are presented only for B and A data classes. A-basis values are presented for A data classes. The statistical distribution or method of analysis is presented. The constants, C₁ and C₂, correspond to the distribution as listed in Table 1.4.3 (c).

 C_1 for the Weibull distribution and C_1 and C_2 for the Normal distribution have the same units as the property (e.g., ksi for strength and $\mu\epsilon$ for strain). C_2 for the Weibull distribution and C_1 and C_2 for the Nonparametric method are dimensionless. For the Lognormal distribution, the units for C_1 and C_2 are log(property unit). For the ANOVA method, C_1 and C_2 are the square of the property units.

	C ₁	C ₂
Weibull	scale parameter	shape parameter
Normal	mean	standard deviation
Lognormal	mean of the natural log of the data	standard deviation of the natural log of the data
Nonparametric ANOVA	rank tolerance limit factor	data point (rank) estimate of the population stan- dard deviation

TABLE 1.4.3(c)	Distributions and associated constants.
----------------	---

Modulus data are presented with only mean, minimum, maximum, coefficient of variation, batch size, sample size, and data class. Values are presented for both normalized and as-measured data. Where available, Poisson's ratio data are presented with batch size, sample size, and data class information.

• Footnotes are presented wherever additional information is pertinent. Information frequently presented in footnotes include conditioning parameters, reasons for not presenting B-values, and deviations from standard test methods.

1.4.4 Individual data tables - unnormalized data

Table 1.4.4 shows an example table for material properties that are not normalized. The basic table format and information are identical to the table format and information for normalized data. Only asmeasured data are presented in each column of information. The statistical parameters are the same provided for normalized data.

1.4.5 Individual data tables - notched laminate data

Table 1.4.5 shows the format for notched laminate data, including data from open and filled hole tests. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. Properties in the index box (upper right-hand corner) are abbreviated OHT (open hole tension), OHC (open hole compression), FHT (filled hole tension), and FHC (filled hole compression). The headers and data for fastener type, torque, hole clearance, and countersink angle & depth appear only for filled hole tests. The data are normalized according to Volume 1, Section 2.5.7, with the descriptions noted with Table 1.4.3(a). Symbols are described in Tables 1.4.3(b), Open hole tension in the x-axis direction is shown as an example.

1.4.6 Individual data tables - bearing data

Table 1.4.6 presents the format for bearing data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing. The data are not normalized according to Volume 1, Section 2.5.7. Symbols are described in Tables 1.4.3(b). Bearing in the x-axis direction is shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

1.4.7 Individual data tables - bearing/bypass data

Table 1.4.7 shows the format for bearing/bypass data. The numbered circles refer to the notes for Table 1.4.3(a) with the following additional information. The property in the index box (upper right-hand corner) is Bearing/Bypass. The data are not normalized according to Volume 1, Section 2.5.7. If data are available for more than one bearing/bypass ratio, they are presented in columns ordered from lowest to highest ratio for each environment. Symbols are described in Tables 1.4.3(b). Tensile bypass and bearing in the x-axis direction are shown as an example. Information on hole clearance, and countersink angle & depth appear as a footnote if applicable and available.

Volume 2, Chapter 1 General Information

{Warning}

Û

TABLE 1.4.4 Format for as-measured property table.

{Warning}						
MATERIAL:	{Fiber} {Filament co	ount}/{Matrix} {Ta	pe/weave type	e} 3		
RESIN CONTE FIBER VOLUM PLY THICKNE	1E: XX - XX vol %	X-X.XX g/cm ³ (to X.X %		2		
TEST METHO	D: 4	MODULUS	CALCULATIO	_{DN:} 6		
{Organiz	zation} {Number} {Date}	{Meth	nod}, XXXX - X	ΚΧΧΧ με		
NORMALIZED		6			1	
Temperature (Moisture Conte Equilibrium at Source Code	ent (%) T, RH	Ø				
Mi	ean inimum aximum V.(%)	Θ				
juu	value stribution					
No Da	o. Specimens o. Batches ata Class ean					
Mi Mi	inimum aximum V.(%)					
No Da	o. Specimens o. Batches ata Class					
V ^t ₂₁ No Da	ean p. Specimens p. Batches ata Class					
Mi	ean inimum aximum V.(%)					
_{ctu} B-	value stribution		"as measured	strain values p i" and may not ivided by modu analysis)	be equivalent	
No	o. Specimens o. Batches ata Class					

TABLE 1.4.5 Format for notched laminate strength property table.

Volume 2, Chapter 1 General Information

0

{Warning}							
MATERIA	L: {Fib	er} {Fil. Count}/	{Matrix} {tape/	weave type}	3		
RESIN CO FIBER VO PLY THIC	DLUME: XX-	XX wt% XX %)XX - 0.00XX in.	COMP. DEN VOID CONT	ENT: X.X - >	-0.0XX lb/in ³ K.X %	2	
TEST ME	THOD:	{Org. Method	- Date}	4			
SPECIME FASTENE TORQUE		t = {thickness} { } { }	· · ·	} in., d = {diame HOLE CLEARA COUNTERSINI		{if app PTH: {if app	licable} licable}
NORMAL		{Method}			U		
	Content (%) m at T,RH(°F, %)		7				
		Normalized	Measured	Normalized	Measured	Normalized	Measured
8	Mean Minimum Maximum C.V.(%)		9				
F _x ^{oht} (ksi)	B-value Distribution C ₁ C ₂						
	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
F _x ^{ohc}	B-value Distribution						
(ksi)	C ₁ C ₂						
	No. Specimens No. Batches Data Class	;					

TABLE 1.4.6 Format for bearing strength property table.

Volume 2, Chapter 1 General Information

Ð

{Warning}								
MATERIAL	: {	{Fiber}	{Fil. Count} /	{Matrix	} {tape/weave	type}	8	
RESIN CON FIBER VOL PLY THICK	UME: >	XX-XX v XX-XX 9 0.00XX			P. DENSITY: CONTENT:	0.0XX X.X - X	-0.0XX lb/in ³ <.X %	2
TEST MET	HOD:		{Org. Metho	d - Dat	e} ④			
TYPE OF B	BEARING TE	EST:	{single or do	ouble la	p shear}			
Member 1		:	{thickness, v {thickness, v { } { } Not normaliz	vidth, la	ay-up } THICKI EDGE PITCH	DISTAN DISTAN	IAMETER: CE RATIO: ICE RATIO: OFFSET:	{ } { } { }
Temperatur				Leu	TIELD	JINAIN		1]
Moisture Co	ontent (%) at T, RH (°F	=, %)	v					
	Mean Minimum Maximum C.V.(%)		9					
8 F ^{bru}	B-value Distributior	n						
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$							
	No. Specin No. Batche Data Class	es						
Epry	Mean Minimum Maximum C.V.(%)							
F ^{bry} (ksi)	B-value Distributior C ₁ C ₂	n						
0	No. Specin No. Batche Data Class	es						

Ð

MATERIAL: {Fiber} {Fil. Count} / {Matrix} {tape/weave type} Image: Constant in the image: Constant	{Warning}		
FIBER VOLUME: XX-XX % VOID CONTENT: X.X - X.X % PLY THICKNESS: 0.00XX - 0.00XX in. TEST METHOD: {Org. Method - Date} 4 JOINT CONFIGURATION Member 1 (t,w,lay-up): {thickness, width, lay-up} Member 2 (t,w,lay-up): {thickness, width, lay-up} FASTENER TYPE: {} THICKNESS/DIAMETER: TORQUE: {} EDGE DISTANCE RATIO: MORMALIZED BY: Not normalized Temperature (°F) Moisture Content (%) Equilibrium at T, RH (°F, %) Image: Content (%) Source Code Mean	MATERIAL: {Fiber}	Fil. Count} / {Matrix} {tape/weave type}	
JOINT CONFIGURATION Member 1 (t,w,lay-up): {thickness, width, lay-up} Member 2 (t,w,lay-up): {thickness, width, lay-up} FASTENER TYPE: {} TORQUE: {} EDGE DISTANCE RATIO: {} NORMALIZED BY: Not normalized Temperature (°F) Not normalized Moisture Content (%) Image: Content (%) Equilibrium at T, RH (°F, %) Image: Content (%) Source Code Image: Content (%) Bearing/Bypass Ratio Image: Content (%) Fbyp-tu Image: Content (%)	FIBER VOLUME: XX-XX	VOID CONTENT: X.X - X.X %	0
Member 1 (t,w,lay-up): {thickness, width, lay-up} Member 2 (t,w,lay-up): {thickness, width, lay-up} FASTENER TYPE: {} TORQUE: {} EDGE DISTANCE RATIO: {} NORMALIZED BY: Not normalized Temperature (°F) for normalized Moisture Content (%) for normalized Equilibrium at T, RH (°F, %) for normalized Bearing/Bypass Ratio mean	TEST METHOD:	{Org. Method - Date}	
NORMALIZED BY: Not normalized Temperature (°F) Image: Content (%) Moisture Content (%) Image: Content (%) Equilibrium at T, RH (°F, %) Image: Content (%) Source Code Image: Content (%) Bearing/Bypass Ratio Image: Content (%) Fbyp-tu Image: Content (%)	Member 1 (t,w,lay-up): Member 2 (t,w,lay-up): FASTENER TYPE:	{thickness, width, lay-up} { } THICKNESS/DIAMETER: { } EDGE DISTANCE RATIO:	{ }
Temperature (°F) Moisture Content (%) Equilibrium at T, RH (°F, %) Source Code Bearing/Bypass Ratio F ^{byp-tu} ③ Mean	NORMALIZED BY:	Not normal-	
E ^{byp-tu} 8 Mean	Moisture Content (%) Equilibrium at T, RH (°F, %)		
F ^{byp-tu} 8 Mean	Bearing/Bypass Ratio		
A Minimum (ksi) Maximum C.V.(%) Image: Close of the second	^F x ⁵¹ Minimum (ksi) Maximum	9	
Mean Minimum Maximum C.V.(%) B-value B-value Distribution (ksi) C ₁ C ₂ No. Specimens No. Batches Data Class	$\begin{array}{c} \text{Mean}\\ \text{Minimum}\\ \text{Maximum}\\ \text{C.V.(\%)}\\\\ \text{B-value}\\ \text{Distribution}\\\\ (\text{ksi}) \qquad \begin{array}{c} C_1\\ C_2\\\\ \text{No. Specimens}\\ \text{No. Batches}\\ \text{Data Class}\\ \end{array}$		

 TABLE 1.4.7
 Format for bearing/bypass property table.

1.5 MATERIALS SYSTEMS

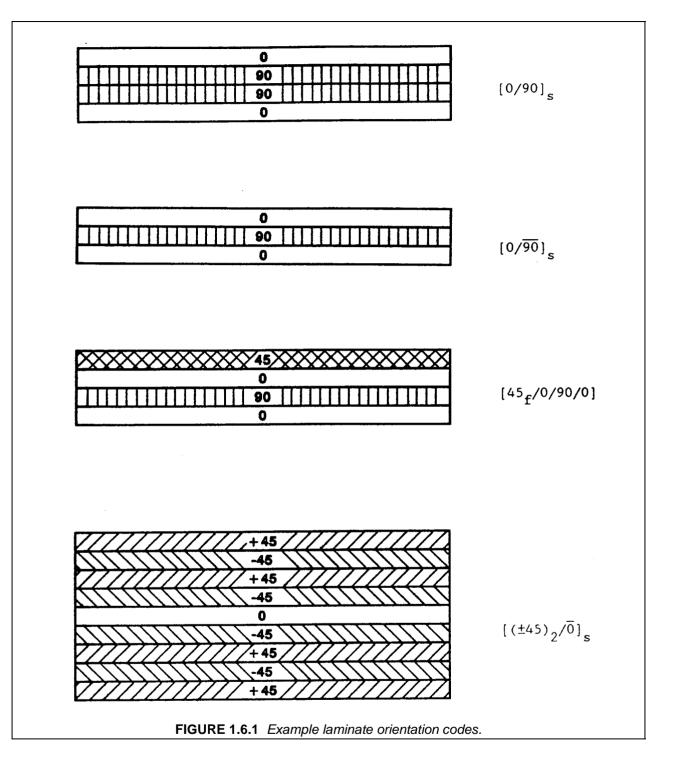
1.5.1 Materials system codes

The materials systems codes which are used in the handbook consist of a fiber system code and a matrix material code separated by a virgule (/). The codes for the fiber and matrix materials appear in Tables 1.5.1(a) and (b).

TABLE 1.5.1(a) Fiber system codes.

TABLE 1.5.1(b)Matrix material codes.

R	
BMI	Bismaleimide
CE	Cyanate Ester
EP	Ероху
FC	Fluorocarbon
Р	Phenolic
PAI	Polyamide-imide
PBI	Polybenzimidazole
PEEK	Polyetheretherketone
PEI	Polyetherimide
PES	Polyethersulfone
PI	Polyimide
PPS	Polyphenylene sulfide
PSU	Polysulfone
SI	Silicone
TPES	Thermoplastic polyester


1.5.2 Index of materials

This section is reserved for future use.

1.6 MATERIAL ORIENTATION CODES

1.6.1 Laminate orientation codes

The purpose of a laminate orientation code is to provide a simple, easily understood method of describing the lay-up of a laminate. The laminate orientation code is based largely on the code used in the Advanced Composites Design Guide (Reference 1.6.1(a)). The following information and the examples in Figure 1.6.1 describe the laminate orientation code used in MIL-HDBK-17.

- 1. The orientation of each lamina with respect to the x-axis is indicated by the angle between the fiber direction and the x-axis. Positive angles are measured counter-clockwise from the x-axis when looking toward the lay-up surface (right-hand rule).
- 2. When indicating the lay-up of a weave, the angle is measured between the warp direction and the x-axis.

- 3. Orientations of successive laminae with different absolute values are separated by a virgule (/).
- 4. Two or more adjacent laminae with the same orientation are indicated by adding a subscript, to the angle of the first such lamina, equal to the number of repetitions of laminae with that orientation.
- 5. Laminae are listed in order from the first laid up to the last. Brackets are used to indicate the beginning and the end of the code.
- 6. A subscript of 's' is used if the first half of the lay-up is indicated and the second half is symmetric with the first. When a symmetric lay-up with an odd number of laminae is shown, the layer which is not repeated is indicated by overlining the angle of that lamina.
- 7. A repeated set of laminae are enclosed in parentheses and the number of repetitions of the set indicated by a subscript.
- 8. The convention used for indicating materials is no subscript for a tape ply and a subscript "f" for a weave.
- 9. The laminate code for a hybrid has the different materials contained in the laminate indicated by subscripts on the laminae.
- Since the majority of computer programs do not permit the use of subscripts and superscripts, the following modifications are recommended based on ASTM Committee E-49 guidelines (Reference 1.6.1(b)).
 - a. Subscript information will be preceded by a colon (:), e.g., [90/0:2/45]:s.
 - b. A bar over a ply (designating a non-repeated ply in a symmetric laminate) should be indicated by a backslash (\) after the ply, e.g., [0/45/90\]:s.

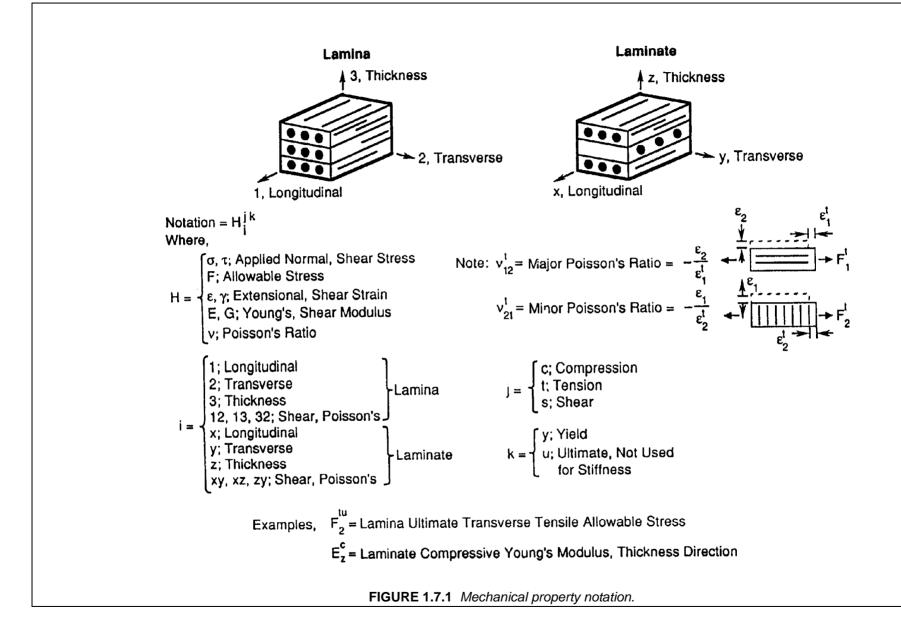
1.6.2 Braiding orientation codes

This section is reserved for future use.

1.7 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS

This section defines the symbols and abbreviations which are used within MIL-HDBK-17 and describes the system of units which is maintained. Common usage is maintained where possible. References 1.7(a) - (c) served as primary sources for this information.

1.7.1 Symbols and abbreviations


The symbols and abbreviations used in this document are defined in this section with the exception of statistical symbols. These latter symbols are defined in Chapter 8. The lamina/laminate coordinate axes used for all properties and a summary of the mechanical property notation are shown in Figure 1.7.1.

- The symbols f and m, when used as either subscripts or superscripts, always denote fiber and matrix, respectively.
- The type of stress (for example, cy compressive yield) is always used in the superscript position.
- Direction indicators (for example, x, y, z, 1, 2, 3, etc.) are always used in the subscript position.

- Ordinal indicators of laminae sequence (e.g., 1, 2, 3, etc.) are used in the superscript position and must be parenthesized to distinguish them from mathematical exponents.
- Other indicators may be used in either subscript or superscript position, as appropriate for clarity.
- Compound symbols (such as, basic symbols plus indicators) which deviate from these rules are shown in their specific form in the following list.

The following general symbols and abbreviations are considered standard for use in MIL-HDBK-17. Where exceptions are made, they are noted in the text and tables.

А	- (1) area (m²,in²)
	- (2) ratio of alternating stress to mean stress
	- (3) A-basis for mechanical property values
а	- (1) length dimension (mm,in)
	- (2) acceleration (m/sec ² ,ft/sec ²)
	- (3) amplitude
	- (4) crack or flaw dimension (mm,in)
В	- (1) B-basis for mechanical property values
	- (2) biaxial ratio
Btu	- British thermal unit(s)
b	 width dimension (mm,in), e.g., the width of a bearing or compressive panel normal to load, or breadth of beam cross-section
С	- (1) specific heat (kJ/kg °C,Btu/lb °F)
	- (2) Celsius
CF	- centrifugal force (N,lbf)
CPF	- crossply factor
CPT	- cured ply thickness (mm, in.)
CG	- (1) center of mass, "center of gravity"
	- (2) area or volume centroid
E	- centerline
c	- column buckling end-fixity coefficient
c	- honeycomb sandwich core depth (mm,in)
cpm	- cycles per minute
D	- (1) diameter (mm,in)
	- (2) hole or fastener diameter (mm,in)
	- (3) plate stiffness (N-m,lbf-in)
d	 mathematical operator denoting differential
Е	 modulus of elasticity in tension, average ratio of stress to strain for stress below propor- tional limit (GPa,Msi)
E'	- storage modulus (GPa,Msi)
E"	- loss modulus (GPa,Msi)
E _c	 modulus of elasticity in compression, average ratio of stress to strain for stress below pro- portional limit (GPa,Msi)
, Ec	 modulus of elasticity of honeycomb core normal to sandwich plane (GPa,Msi)
E ^{sec}	- secant modulus (GPa,Msi)
\mathbf{E}^{tan}	- tangent modulus (GPa,Msi)
e	- minimum distance from a hole center to the edge of the sheet (mm,in)
e/D	- ratio of edge distance to hole diameter (bearing strength)
F	- (1) stress (MPa,ksi)
	- (2) Fahrenheit
F^{b}	- bending stress (MPa,ksi)
F ^{ccr}	 crushing or crippling stress (upper limit of column stress for failure) (MPa,ksi)
F ^{su}	 ultimate stress in pure shear (this value represents the average shear stress over the cross-section) (MPa,ksi)

FAW	- fiber areal weight (g/m ² , lb/in ²)
FV	- fiber volume (%)
f	- (1) internal (or calculated) stress (MPa,ksi)
1	- (2) stress applied to the gross flawed section (MPa,ksi)
f ^c	- (3) creep stress (MPa,ksi)
	- internal (or calculated) compressive stress (MPa,ksi)
f_c	- (1) maximum stress at fracture (MPa,ksi)
	 - (2) gross stress limit (for screening elastic fracture data (MPa,ksi)
ft	- foot, feet
G	 modulus of rigidity (shear modulus) (GPa,Msi)
GPa	- gigapascal(s)
g	- (1) gram(s)
C	- (2) acceleration due to gravity (m/s ² ,ft/s ²)
H/C	- honeycomb (sandwich)
h	- height dimension (mm,in) e.g. the height of a beam cross-section
hr	- hour(s)
I	- area moment of inertia (mm ⁴ ,in ⁴)
i	
_	- slope (due to bending) of neutral plane in a beam, in radians
in.	- inch(es)
J	- (1) torsion constant (= I_p for round tubes) (m ⁴ ,in ⁴)
	- (2) Joule
K	- (1) Kelvin
	- (2) stress intensity factor (MPa/m,ksi/in)
	- (3) coefficient of thermal conductivity (W/m °C, Btu/ft ² /hr/in/°F)
	- (4) correction factor
	- (5) dielectric constant
$\mathbf{K}_{\mathrm{app}}$	- apparent plane strain fracture toughness or residual strength (MPa/m,ksi/in)
K _{app} K _c	- critical plane strain fracture toughness, a measure of fracture toughness at point of crack
IX _C	
	growth instability (MPa/m,ksi/in)
K _{Ic}	- plane strain fracture toughness (MPa/m,ksi/in)
K_N	 empirically calculated fatigue notch factor
Ks	 plate or cylinder shear buckling coefficient
Kt	 (1) theoretical elastic stress concentration factor
	- (2) t _w /c ratio in H/C sandwich
Kv	- dielectric strength (KV/mm, V/mil)
K _x ,K _y	• ()
k	- strain at unit stress (m/m,in/in)
L	- cylinder, beam, or column length (mm,in)
Ľ'	- effective column length (mm,in)
lb	- pound
M	- applied moment or couple (N-m,in-lbf)
Mg	- megagram(s)
MPa	- megapascal(s)
MS	- military standard
M.S.	- margin of safety
MW	- molecular weight
MWD	- molecular weight distribution
m	- (1) mass (kg,lb)
	- (2) number of half wave lengths
	- (3) metre
	- (4) slope
Ν	- (1) number of fatigue cycles to failure
	- (2) number of laminae in a laminate
	- (3) distributed in-plane forces on a panel (lbf/in)
	- (4) Newton
	- (4) Newton - (5) normalized

NA	- neutral axis
n	- (1) number of times in a set
	- (2) number of half or total wavelengths
D	- (3) number of fatigue cycles endured
Р	- (1) applied load (N,lbf)
	- (2) exposure parameter
	- (3) probability
- 11	- (4) specific resistance (Ω)
P^{u}	- test ultimate load, (N,lb per fastener)
$\mathbf{P}^{\mathbf{y}}$	- test yield load, (N,lb per fastener)
р.	- normal pressure (Pa,psi)
psi	- pounds per square inch
Q	- area static moment of a cross-section (mm ³ ,in ³)
q	- shear flow (N/m,lbf/in)
R	- (1) algebraic ratio of minimum load to maximum load in cyclic loading
DA	- (2) reduced ratio
RA	- reduction of area
RH	- relative humidity
RMS	- root-mean-square
RT	- room temperature
r	- (1) radius (mm,in)
	- (2) root radius (mm,in) - (3) reduced ratio (regression analysis)
S	- (1) shear force (N,lbf)
5	- (2) nominal stress in fatigue (MPa,ksi)
	- (3) S-basis for mechanical property values
Sa	- stress amplitude in fatigue (MPa,ksi)
S_e^a	- fatigue limit (MPa,ksi)
S _m	- mean stress in fatigue (MPa,ksi)
S_{max}	- highest algebraic value of stress in the stress cycle (MPa,ksi)
S _{min}	- lowest algebraic value of stress in the stress cycle (MPa,ksi)
S _R	- algebraic difference between the minimum and maximum stresses in one cycle (MPa,ksi)
S.F.	- safety factor
S	- (1) arc length (mm,in)
	- (2) H/C sandwich cell size (mm,in)
Т	- (1) temperature (°C,°F)
	- (2) applied torsional moment (N-m,in-lbf)
T_d	 thermal decomposition temperature (°C,°F)
$T_{\rm F}$	 exposure temperature (°C,°F)
Tg	 glass transition temperature(°C,°F)
T_m	- melting temperature (°C,°F)
t	- (1) thickness (mm,in)
	- (2) exposure time (s)
	- (3) elapsed time (s)
V	- (1) volume (mm ³ ,in ³)
	- (2) shear force (N,lbf)
W	- (1) weight (N,lbf)
	- (2) width (mm,in)
	- (3) Watt
X V	- distance along a coordinate axis
Y	- nondimensional factor relating component geometry and flaw size
У	- (1) deflection (due to bending) of elastic curve of a beam (mm,in)
	- (2) distance from neutral axis to given point
	(3) distance along a coordinate axis
7	- (3) distance along a coordinate axis
${}^{\rm Z}_{lpha}$	 (3) distance along a coordinate axis section modulus, I/y (mm³,in³) coefficient of thermal expansion (m/m/°C,in/in/°F)

$\gamma \\ \Delta \\ \delta \\ \varepsilon^{e} \\ \varepsilon^{p} \\ \varepsilon \\ \mu \\ \eta \\ [\eta] \\ \eta^{*} \\ \nu \\ c$	 shear strain (m/m,in/in) difference (used as prefix to quantitative symbols) elongation or deflection (mm,in) strain (m/m,in/in) elastic strain (m/m,in/in) plastic strain (m/m,in/in) permeability plasticity reduction factor intrinsic viscosity dynamic complex viscosity Poisson's ratio (1) density (kg/m³,lb/in³)
ρ ,	- (1) density (kg/m ,ib/m) - (2) radius of gyration (mm,in) - H/C sandwich core density (kg/m ³ ,lb/in ³)
ρ_{c} Σ σ σ_{ij}, τ_{ij} T ω ∞	 total, summation standard deviation stress in j direction on surface whose outer normal is in i direction (i, j = 1, 2, 3 or x, y, z) (MPa,ksi) applied shear stress (MPa,ksi) angular velocity (radians/s) infinity

1.7.1.1 Constituent properties

The following symbols apply specifically to the constituent properties of a typical composite material.

- E^f Young's modulus of filament material (MPa,ksi)
- E^m Young's modulus of matrix material (MPa,ksi)
- E^g_X Young's modulus of impregnated glass scrim cloth in the filament direction or in the warp direction of a fabric (MPa,ksi)
- E_y^g Young's modulus of impregnated glass scrim cloth transverse to the filament direction or to the warp direction in a fabric (MPa,ksi)
- G^f shear modulus of filament material (MPa,ksi)
- G^m shear modulus of matrix (MPa,ksi)
- G_{Xy}^{g} shear modulus of impregnated glass scrim cloth (MPa,ksi)
- $\dot{G_{cx}}$ shear modulus of sandwich core along X-axis (MPa,ksi)
- G_{cv} shear modulus of sandwich core along Y-axis (MPa,ksi)
- 1 filament length (mm,in)
- $\alpha^{\rm f}$ coefficient of thermal expansion for filament material (m/m/°C,in/in/°F)
- α^{m} coefficient of thermal expansion for matrix material (m/m/°C,in/in/°F)
- α^g_X coefficient of thermal expansion of impregnated glass scrim cloth in the filament direction or in the warp direction of a fabric (m/m/°C,in/in/°F)
- α^g_y coefficient of thermal expansion of impregnated glass scrim cloth transverse to the filament direction or to the warp direction in a fabric (m/m/°C,in/in/°F)
- $v^{\rm f}$ Poisson's ratio of filament material
- $v^{\,\mathrm{m}}$ Poisson's ratio of matrix material
- v_{Xy}^{g} glass scrim cloth Poisson's ratio relating to contraction in the transverse (or fill) direction as a result of extension in the longitudinal (or warp) direction

- ν_{yx}^{g} glass scrim cloth Poisson's ratio relating to contraction in the longitudinal (or warp) direction
 - as a result of extension in the transverse (or fill) direction
- σ applied axial stress at a point, as used in micromechanics analysis (MPa,ksi)
- τ applied shear stress at a point, as used in micromechanics analysis (MPa,ksi)

1.7.1.2 Laminae and laminates

The following symbols, abbreviations, and notations apply to composite laminae and laminates. At the present time the focus in MIL-HDBK-17 is on laminae properties. However, commonly used nomenclature for both laminae and laminates are included here to avoid potential confusion.

A_{ij} (i,j = 1,2,6)	- extensional rigidities (N/m,lbf/in)
B_{ij} (i,j = 1,2,6)	- coupling matrix (N,lbf)
C_{ij} (i,j = 1,2,6)	- elements of stiffness matrix (Pa,psi) - flexural rigidities (N-m,lbf-in)
$\mathbf{D}_{\mathbf{x}}, \mathbf{D}_{\mathbf{y}}$ $\mathbf{D}_{\mathbf{x}\mathbf{y}}$	- twisting rigidity (N-m,lbf-in)
D_{xy} D_{ij} (i,j = 1,2,6)	- flexural rigidities (N-m,lbf-in)
E_{1} E_{1}	- Young's modulus of lamina parallel to filament or warp direction (GPa,Msi)
E_2	- Young's modulus of lamina transverse to filament or warp direction (GPa,Msi)
Ēx	- Young's modulus of laminate along x reference axis (GPa,Msi)
Ey	- Young's modulus of laminate along y reference axis (GPa,Msi)
G ₁₂	- shear modulus of lamina in 12 plane (GPa,Msi)
G _{xy}	- shear modulus of laminate in xy reference plane (GPa,Msi)
h _i	- thickness of i th ply or lamina (mm,in)
M_x, M_y, M_{xy}	 bending and twisting moment components (N-m/m, in-lbf/in in plate and shell analy- sis)
n _f	- number of filaments per unit length per lamina
Q_x, Q_y	 shear force parallel to z axis of sections of a plate perpendicular to x and y axes, re- spectively (N/m,lbf/in)
$Q_{ij}(i, j = 1, 2, 6)$	- reduced stiffness matrix (Pa,psi)
u_x, u_y, u_z	 components of the displacement vector (mm,in)
$u_x^o,\ u_y^o,\ u_z^o$	- components of the displacement vector at the laminate's midsurface (mm,in)
V_v	- void content (% by volume)
V _f	- filament content or fiber volume (% by volume)
V _g	- glass scrim cloth content (% by volume)
V _m	- matrix content (% by volume)
V _x , V _y W _f	 edge or support shear force (N/m,lbf/in) filament content (% by weight)
W _g	- glass scrim cloth content (% by weight)
$\mathbf{W}_{\mathrm{m}}^{\mathrm{g}}$	- matrix content (% by weight)
Ws	- weight of laminate per unit surface area (N/m ² ,lbf/in ²)
α_{1}	 lamina coefficient of thermal expansion along 1 axis (m/m/°C,in/in/°F)
α_{2}	 lamina coefficient of thermal expansion along 2 axis (m/m/°C,in/in/°F)
$\alpha_{\rm x}$	 laminate coefficient of thermal expansion along general reference x axis (m/m/°C, in/in/°F)
α, γ	 laminate coefficient of thermal expansion along general reference y axis (m/m/°C, in/in/°F)
α_{xy}	 laminate shear distortion coefficient of thermal expansion (m/m/°C,in/in/°F)
θ	- angular orientation of a lamina in a laminate, i.e., angle between 1 and ${f x}$ axes (°)
λ_{xy}	- product of v_{xy} and v_{yx}
v_{12}	 Poisson's ratio relating contraction in the 2 direction as a result of extension in the 1 direction¹

¹The convention for Poisson's ratio should be checked before comparing different sources as different conventions are used.

<i>v</i> ₂₁	- Poisson's ratio relating contraction in the 1 direction as a result of extension in the 2 direction ¹
$\nu_{\rm xy}$	 Poisson's ratio relating contraction in the y direction as a result of extension in the x direction¹
ν _{yx}	- Poisson's ratio relating contraction in the x direction as a result of extension in the y direction ¹
$ ho_{ m c}$	- density of a single lamina (kg/m ³ ,lb/in ³)
$\bar{ ho}_{\rm c}$	- density of a laminate (kg/m ³ ,lb/in ³)
φ	- (1) general angular coordinate, (°) - (2) angle between x and load axes in off-axis loading (°)

1.7.1.3 Subscripts

- axial

1, 2, 3

А

The following subscript notations are considered standard in MIL-HDBK-17.

- laminae natural orthogonal coordinates (1 is filament or warp direction)

A	- axiai
а	- (1) adhesive
	- (2) alternating
app	- apparent
byp	- bypass
c	- composite system, specific filament/matrix composition. Composite as a whole, contrasted
	to individual constituents. Also, sandwich core when used in conjunction with prime (')
cf	- (4) critical - centrifugal force
e	- fatigue or endurance
eff	- effective
eq	- equivalent
f	- filament
g	- glass scrim cloth
Н	- hoop
i	- i th position in a sequence
L	- lateral
m	- (1) matrix
	- (2) mean
max	- maximum
min	- minimum
n	- (1) n th (last) position in a sequence
	- (2) normal
р	- polar
s	- symmetric
st	- stiffener
Т	- transverse
t	- value of parameter at time t
x, y, z	- general coordinate system
Σ^{-}	- total, or summation
0	- initial or reference datum
()	- format for indicating specific, temperature associated with term in parentheses. RT - room
	temperature (21°C,70°F); all other temperatures in °F unless specified.
1711 0	uporporinte
1.1.1.4 30	uperscripts

The following superscript notations are considered standard in MIL-HDBK-17.

b - bending

Volume 2, Chapter 1 General Information

br	- bearing
c	- (1) compression
-	- (2) creep
сс	- compressive crippling
cr	- compressive buckling
e	- elastic
f	- filament
flex	- flexure
g	- glass scrim cloth
is	- interlaminar shear
(i)	- i th ply or lamina
lim	- limit, used to indicate limit loading
m	- matrix
ohc	- open hole compression
oht	- open hole tension
р	- plastic
pl	- proportional limit
rup	- rupture
S	- shear
scr	- shear buckling
sec	- secant (modulus)
so	- offset shear
Т	- temperature or thermal
t	- tension
tan	- tangent (modulus)
u	- ultimate
У	- yield
'	- secondary (modulus), or denotes properties of H/C core when used with subscript c
CAI	- compression after impact

1.7.1.5 Acronyms

The following acronyms are used in MIL-HDBK-17.

AA	- atomic absorption
AES	 Auger electron spectroscopy
AIA	 Aerospace Industries Association
AIO	- alumina
ANOVA	- analysis of variance
Ar	- aramid
ARL	- US Army Research Laboratory - Materials Directorate
ASTM	 American Society for Testing and Materials
В	- boron
BMI	- bismaleimide
BVID	 barely visible impact damage
С	- carbon
CAI	 compression after impact
CCA	 composite cylinder assemblage
CE	- cyanate ester
CFRP	 carbon fiber reinforced plastic
CLS	- crack lap shear
CMCS	- Composite Motorcase Subcommittee (JANNAF)
CPT	- cured ply thickness
CTA	 cold temperature ambient
CTD	- cold temperature dry
CTE	- coefficient of thermal expansion

CV CVD DCB DDA DGI DLL DMA DOD DSC DTA DTRC EGI ENF EOL EP	 coefficient of variation chemical vapor deposition! double cantilever beam dynamic dielectric analysis D-glass design limit load dynamic mechanical analysis Department of Defense differential scanning calorimetry differential thermal analysis David Taylor Research Center E-glass end notched flexure end-of-life epoxy
ESCA ESR ETW FAA	 electron spectroscopy for chemical analysis electron spin resonance elevated temperature wet Federal Aviation Administration
FC FFF FGRP	- fluorocarbon - field flow fractionation - fiberglass reinforced plastic
FMECA FOD FTIR FWC GC	 Failure Modes Effects Criticality Analysis foreign object damage Fourier transform infrared spectroscopy finite width correction factor gas chromatography
GI Gr GSCS	- glass - graphite - Generalized Self Consistent Scheme
HDT HPLC ICAP IITRI	 heat distortion temperature high performance liquid chromatography inductively coupled plasma emission Illinois Institute of Technology Research Institute
IR ISS JANNAF LC	 infrared spectroscopy ion scattering spectroscopy Joint Army, Navy, NASA, and Air Force liquid chromatography
Li LPT LSS MMB	 lithium laminate plate theory laminate stacking sequence mixed mode bending
MOL MS MSDS MTBF	 material operational limit mass spectroscopy material safety data sheet Mean Time Between Failure
NAS NASA NDI NMR	 National Aerospace Standard National Aeronautics and Space Administration nondestructive inspection nuclear magnetic resonance
P PAI PAN PBI PBT	- phenolic - polyamide-imide - polyacrylonitrile - polybenzimidazole - polybenzothiazole
PEEK	- polyether ether ketone

PEI- polyetherimidePES- polyethersulfonePI- polybenylene sulfidePPS- polysulfoneQ- quartzRDS- rheological dynamic spectroscopyRH- relative humidityRT- room temperatureRTA- room temperature ambientRTD- room temperature dryRTM- resin transfer moldingSACMA- Suppliers of Advanced Composite Materials AssociationSAE- Society of Automotive EngineersSANS- small-angle neutron scattering spectroscopySEC- size-exclusion chromatographySE- supercritical fluid chromatographySi- siliconSI- International System of Units (Le Système International d'UnitSiC- silicon carbideSGI- S-glassSIMS- secondary ion mass spectroscopyTEM- transmission electron microscopyTEM- transmission electron microscopyTEM- transmission electron microscopyTEM- transmission electron microscopyTGA- thermogravimetric analysisTI- tittaniumTLC- thin-layer chromatographyTMA- thermal mechanical analysisTOS- thermal nechanical analysisTOS- thermal mechanical analysisTOS- thermal mechan	és)
TOS - thermal oxidative stability	
TVM - transverse microcrack	
UDC - unidirectional fiber composite	
VNB - V-notched beam W - tungsten	
XPS - X-ray photoelectron spectroscopy	

1.7.2 System of units

Volume 2, Chapter 1 General Information

To comply with Department of Defense Instructive 5000.2, Part 6, Section M, "Use of the Metric System," dated February 23, 1991, the data in MIL-HDBK-17 are generally presented in both the International System of Units (SI units) and the U. S. Customary (English) system of units. ASTM E 380, Standard for Metric Practice, provides guidance for the application for SI units which are intended as a basis for worldwide standardization of measurement units (Reference 1.7.2(a)). Further guidelines on the use of the SI system of units and conversion factors are contained in the following publications (References 1.7.2(b) - (e)):

- (1) DARCOM P 706-470, Engineering Design Handbook: Metric Conversion Guide, July 1976.
- (2) NBS Special Publication 330, "The International System of Units (SI)," National Bureau of Standards, 1986 edition.
- (3) NBS Letter Circular LC 1035, "Units and Systems of Weights and Measures, Their Origin, Development, and Present Status," National Bureau of Standards, November 1985.

Volume 2, Chapter 1 General Information

(4) NASA Special Publication 7012, "The International System of Units Physical Constants and Conversion Factors", 1964.

English to SI conversion factors pertinent to MIL-HDBK-17 data are contained in Table 1.7.2.

To convert from	to	Multiply by
Btu (thermochemical)/in ² -s	watt/meter ² (W/m ²)	1.634 246 E+06
Btu-in/(s-ft ² -°F)	W/(m K)	5.192 204 E+02
degree Fahrenheit	degree Celsius (°C)	T = (T - 32)/1.8
degree Fahrenheit	kelvin (K)	T = (T + 459.67)/1.8
foot	meter (m)	3.048 000 E-01
ft ²	m ²	9.290 304 E-02
foot/second	meter/second (m/s)	3.048 000 E-01
ft/s ²	m/s ²	3.048 000 E-01
inch	meter (m)	2.540 000 E-02
in. ²	meter ² (m ²) m ³	6.451 600 E-04
in. ³	m ³	1.638 706 E-05
kilogram-force (kgf)	newton (N)	9.806 650 E+00
kgf/m ²	pascal (Pa)	9.806 650 E+00
kip (1000 lbf)	newton (N)	4.448 222 E+03
ksi (kip/in ²)	MPa	6.894 757 E+00
lbf-in	N-m	1.129 848 E-01
lbf-ft	N-m	1.355 818 E+00
lbf/in ² (psi)	pascal (Pa)	6.894 757 E+03
lb/in ²	gm/m ²	7.030 696 E+05
lb/in ³	kg/m ³	2.767 990 E+04
Msi (10 ⁶ psi)	GPa	6.894 757 E+00
pound-force (lbf)	newton (N)	4.488 222 E+00
pound-mass (lb avoirdupois)	kilogram (kg)	4.535 924 E-01
torr	pascal (Pa)	1.333 22 E+02

* The letter "E" following the conversion factor stands for exponent and the two digits after the letter "E" indicate the power of 10 by which the number is to be multiplied.

1.8 DEFINITIONS

The following definitions are used within MIL-HDBK-17. This glossary of terms is not totally comprehensive but it does represent nearly all commonly used terms. Where exceptions are made, they are noted in the text and tables. For ease of identification the definitions have been organized alphabetically.

A-Basis (or A-Value) -- A statistically-based material property; a 95% lower confidence bound on the first percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 99% of a specified population.

Volume 2, Chapter 1 General Information

A-Stage -- An early stage in the reaction of thermosetting resins in which the material is still soluble in certain liquids and may be liquid or capable of becoming liquid upon heating. (Sometimes referred to as **resol**.)

Absorption -- A process in which one material (the absorbent) takes in or absorbs another (the absorbate).

Accelerator -- A material which, when mixed with a catalyzed resin, will speed up the chemical reaction between the catalyst and the resin.

Accuracy -- The degree of conformity of a measured or calculated value to some recognized standard or specified value. Accuracy involves the systematic error of an operation.

Addition Polymerization -- Polymerization by a repeated addition process in which monomers are linked together to form a polymer without splitting off of water or other simple molecules.

Adhesion -- The state in which two surfaces are held together at an interface by forces or interlocking action or both.

Adhesive -- A substance capable of holding two materials together by surface attachment. In the handbook, the term is used specifically to designate structural adhesives, those which produce attachments capable of transmitting significant structural loads.

ADK -- Notation used for the k-sample Anderson-Darling statistic, which is used to test the hypothesis that k batches have the same distribution.

Aliquot -- A small, representative portion of a larger sample.

Aging -- The effect, on materials, of exposure to an environment for a period of time; the process of exposing materials to an environment for an interval of time.

Ambient -- The surrounding environmental conditions such as pressure or temperature.

Anelasticity -- A characteristic exhibited by certain materials in which strain is a function of both stress and time, such that, while no permanent deformations are involved, a finite time is required to establish equilibrium between stress and strain in both the loading and unloading directions.

Angleply -- Same as Crossply.

Anisotropic -- Not isotropic; having mechanical and/or physical properties which vary with direction relative to natural reference axes inherent in the material.

Aramid -- A manufactured fiber in which the fiber-forming substance consisting of a long-chain synthetic aromatic polyamide in which at least 85% of the amide (-CONH-) linkages are attached directly to two aromatic rings.

Areal Weight of Fiber -- The weight of fiber per unit area of prepreg. This is often expressed as grams per square meter. See Table 1.7.2 for conversion factors.

Artificial Weathering -- Exposure to laboratory conditions which may be cyclic, involving changes in temperature, relative humidity, radiant energy and any other elements found in the atmosphere in various geographical areas.

Aspect Ratio -- In an essentially two-dimensional rectangular structure (e.g., a panel), the ratio of the long dimension to the short dimension. However, in compression loading, it is sometimes considered to

be the ratio of the load direction dimension to the transverse dimension. Also, in fiber micro-mechanics, it is referred to as the ratio of length to diameter.

Autoclave -- A closed vessel for producing an environment of fluid pressure, with or without heat, to an enclosed object which is undergoing a chemical reaction or other operation.

Autoclave Molding -- A process similar to the pressure bag technique. The lay-up is covered by a pressure bag, and the entire assembly is placed in an autoclave capable of providing heat and pressure for curing the part. The pressure bag is normally vented to the outside.

Axis of Braiding -- The direction in which the braided form progresses.

B-Basis (or B-Value) -- A statistically-based material property; a 95% lower confidence bound on the tenth percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 90% of a specified population. (See Volume 1, Section 8.1.4)

B-Stage -- An intermediate stage in the reaction of a thermosetting resin in which the material softens when heated and swells when in contact with certain liquids but does not entirely fuse or dissolve. Materials are usually precured to this stage to facilitate handling and processing prior to final cure. (Sometimes referred to as **resitol**.)

Bag Molding -- A method of molding or laminating which involves the application of fluid pressure to a flexible material which transmits the pressure to the material being molded or bonded. Fluid pressure usually is applied by means of air, steam, water or vacuum.

Balanced Laminate -- A composite laminate in which all identical laminae at angles other than 0 degrees and 90 degrees occur only in ± pairs (not necessarily adjacent).

Batch (or Lot) -- For fibers and resins, a quantity of material formed during the same process and having identical characteristics throughout. For prepregs, laminae, and laminates, material made from one batch of fiber and one batch of resin.

Bearing Area -- The product of the pin diameter and the specimen thickness.

Bearing Load -- A compressive load on an interface.

Bearing Yield Strength -- The bearing stress at which a material exhibits a specified limiting deviation from the proportionality of bearing stress to bearing strain.

Bend Test -- A test of ductility by bending or folding, usually with steadily applied forces. In some instances the test may involve blows to a specimen having a cross section that is essentially uniform over a length several times as great as the largest dimension of the cross section.

Binder -- A bonding resin used to hold strands together in a mat or preform during manufacture of a molded object.

Binomial Random Variable -- The number of successes in independent trials where the probability of success is the same for each trial.

Birefringence -- The difference between the two principal refractive indices (of a fiber) or the ratio between the retardation and thickness of a material at a given point.

Bleeder Cloth -- A nonstructural layer of material used in the manufacture of composite parts to allow the escape of excess gas and resin during cure. The bleeder cloth is removed after the curing process and is not part of the final composite.

Volume 2, Chapter 1 General Information

Bobbin -- A cylinder or slightly tapered barrel, with or without flanges, for holding tows, rovings, or yarns.

Bond -- The adhesion of one surface to another, with or without the use of an adhesive as a bonding agent.

Braid -- A system of three or more yarns which are interwoven in such a way that no two yarns are twisted around each other.

Braid Angle -- The acute angle measured from the axis of braiding.

Braid, Biaxial -- Braided fabric with two-yarn systems, one running in the $+\theta$ direction, the other in the $-\theta$ direction as measured from the axis of braiding.

Braid Count -- The number of braiding yarn crossings per inch measured along the axis of a braided fabric.

Braid, **Diamond** -- Braided fabric with an over one, under one weave pattern, (1 x 1).

Braid, **Flat** -- A narrow bias woven tape wherein each yarn is continuous and is intertwined with every other yarn in the system without being intertwined with itself.

Braid, Hercules -- A braided fabric with an over three, under three weave pattern, (3 x 3).

Braid, Jacquard -- A braided design made with the aid of a jacquard machine, which is a shedding mechanism by means of which a large number of ends may be controlled independently and complicated patterns produced.

Braid, Regular -- A braided fabric with an over two, under two weave pattern (2 x 2).

Braid, Square -- A braided pattern in which the yarns are formed into a square pattern.

Braid, Two-Dimensional -- Braided fabric with no braiding yarns in the through thickness direction.

Braid, Three-Dimensional -- Braided fabric with one or more braiding yarns in the through thickness direction.

Braid, Triaxial -- A biaxial braided fabric with laid in yarns running in the axis of braiding.

Braiding -- A textile process where two or more strands, yarns or tapes are intertwined in the bias direction to form an integrated structure.

Broadgoods -- A term loosely applied to prepreg material greater than about 12 inches in width, usually furnished by suppliers in continuous rolls. The term is currently used to designate both collimated uniaxial tape and woven fabric prepregs.

Buckling (Composite) -- A mode of structural response characterized by an out-of-plane material deflection due to compressive action on the structural element involved. In advanced composites, buckling may take the form not only of conventional general instability and local instability but also a micro-instability of individual fibers.

Bundle -- A general term for a collection of essentially parallel filaments or fibers.

C-Stage -- The final stage of the curing reaction of a thermosetting resin in which the material has become practically infusable and insoluble. (Normally considered fully cured and sometimes referred to as **resite**.)

Capstan -- A friction type take-up device which moves braided fabric away from the fell. The speed of which determines the braid angle.

Carbon Fibers -- Fibers produced by the pyrolysis of organic precursor fibers such as rayon, polyacrylonitrile (PAN), and pitch in an inert atmosphere. The term is often used interchangeably with "graphite"; however, carbon fibers and graphite fibers differ in the temperature at which the fibers are made and heat-treated, and the amount of carbon produced. Carbon fibers typically are carbonized at about 2400°F (1300°C) and assay at 93 to 95% carbon, while graphite fibers are graphitized at 3450 to 5450°F (1900 to 3000°C) and assay at more than 99% elemental carbon.

Carrier -- A mechanism for carrying a package of yarn through the braid weaving motion. A typical carrier consists of a bobbin spindle, a track follower, and a tensioning device.

Caul Plates -- Smooth metal plates, free of surface defects, the same size and shape as a composite lay-up, used immediately in contact with the lay-up during the curing process to transmit normal pressure and to provide a smooth surface on the finished laminate.

Censoring -- Data is right (left) censored at M, if, whenever an observation is less than or equal to M (greater than or equal to M), the actual value of the observation is recorded. If the observation exceeds (is less than) M, the observation is recorded as M.

Chain-Growth Polymerization -- One of the two principal polymerization mechanisms. In chaingrowth polymerization, the reactive groups are continuously regenerated during the growth process. Once started, the polymer molecule grows rapidly by a chain of reactions emanating from a particular reactive initiator which may be a free radical, cation or anion.

Chromatogram -- A plot of detector response against peak volume of solution (eluate) emerging from the system for each of the constituents which have been separated.

Circuit -- One complete traverse of the fiber feed mechanism of a winding machine; one complete traverse of a winding band from one arbitrary point along the winding path to another point on a plane through the starting point and perpendicular to the axis.

Cocuring -- The act of curing a composite laminate and simultaneously bonding it to some other prepared surface during the same cure cycle (see **Secondary Bonding**).

Coefficient of Linear Thermal Expansion -- The change in length per unit length resulting from a one-degree rise in temperature.

Coefficient of Variation -- The ratio of the population (or sample) standard deviation to the population (or sample) mean.

Collimated -- Rendered parallel.

Compatible -- The ability of different resin systems to be processed in contact with each other without degradation of end product properties. (See **Compatible**, Volume 1, Section 8.1.4)

Composite Class -- As used in the handbook, a major subdivision of composite construction in which the class is defined by the fiber system and the matrix class, e.g., organic-matrix filamentary laminate.

Composite Material -- Composites are considered to be combinations of materials differing in composition or form on a macroscale. The constituents retain their identities in the composite; that is, they do not dissolve or otherwise merge completely into each other although they act in concert. Normally, the components can be physically identified and exhibit an interface between one another.

Volume 2, Chapter 1 General Information

Compound -- An intimate mixture of polymer or polymers with all the materials necessary for the finished product.

Condensation Polymerization -- This is a special type of step-growth polymerization characterized by the formation of water or other simple molecules during the stepwise addition of reactive groups.

Confidence Coefficient -- See Confidence Interval.

Confidence Interval -- A confidence interval is defined by a statement of one of the following forms:

(1) $P\{a < \theta\} # 1 - \alpha$ (2) $P\{\theta < b\} # 1 - \alpha$ (3) $P\{a < \theta < b\} # 1 - \alpha$

where $1-\alpha$ is called the confidence coefficient. A statement of type (1) or (2) is called a one-sided confidence interval and a statement of type (3) is called a two-sided confidence interval. In (1) a is a lower confidence limit and in (2) b is an upper confidence limit. With probability at least $1-\alpha$, the confidence interval will contain the parameter θ .

Constituent -- In general, an element of a larger grouping. In advanced composites, the principal constituents are the fibers and the matrix.

Continuous Filament -- A yarn or strand in which the individual filaments are substantially the same length as the strand.

Coupling Agent -- Any chemical substance designed to react with both the reinforcement and matrix phases of a composite material to form or promote a stronger bond at the interface. Coupling agents are applied to the reinforcement phase from an aqueous or organic solution or from a gas phase, or added to the matrix as an integral blend.

Coverage -- The measure of the fraction of surface area covered by the braid.

Crazing -- Apparent fine cracks at or under the surface of an organic matrix.

Creel -- A framework arranged to hold tows, rovings, or yarns so that many ends can be withdrawn smoothly and evenly without tangling.

Creep -- The time dependent part of strain resulting from an applied stress.

Creep, Rate Of -- The slope of the creep-time curve at a given time.

Crimp -- The undulations induced into a braided fabric via the braiding process.

Crimp Angle -- The maximum acute angle of a single braided yarn's direction measured from the average axis of tow.

Crimp Exchange -- The process by which a system of braided yarns reaches equilibrium when put under tension or compression.

Critical Value(s) -- When testing a one-sided statistical hypothesis, a critical value is the value such that, if the test statistic is greater than (less than) the critical value, the hypothesis is rejected. When testing a two-sided statistical hypothesis, two critical values are determined. If the test statistic is either less than the smaller critical value or greater than the larger critical value, then the hypothesis is rejected. In both cases, the critical value chosen depends on the desired risk (often 0.05) of rejecting the hypothesis when it is true. **Crossply** -- Any filamentary laminate which is not uniaxial. Same as Angleply. In some references, the term crossply is used to designate only those laminates in which the laminae are at right angles to one another, while the term angleply is used for all others. In the handbook, the two terms are used synonymously. The reservation of a separate terminology for only one of several basic orientations is unwarranted because a laminate orientation code is used.

Cumulative Distribution Function -- See Volume 1, Section 8.1.4.

Cure -- To change the properties of a thermosetting resin irreversibly by chemical reaction, i.e., condensation, ring closure, or addition. Cure may be accomplished by addition of curing (cross-linking) agents, with or without catalyst, and with or without heat. Cure may occur also by addition, such as occurs with anhydride cures for epoxy resin systems.

Cure Cycle -- The schedule of time periods at specified conditions to which a reacting thermosetting material is subjected in order to reach a specified property level.

Cure Stress -- A residual internal stress produced during the curing cycle of composite structures. Normally, these stresses originate when different components of a lay-up have different thermal coefficients of expansion.

Debond -- A deliberate separation of a bonded joint or interface, usually for repair or rework purposes. (See **Disbond**, **Unbond**).

Deformation -- The change in shape of a specimen caused by the application of a load or force.

Degradation -- A deleterious change in chemical structure, physical properties or appearance.

Delamination -- The separation of the layers of material in a laminate. This may be local or may cover a large area of the laminate. It may occur at any time in the cure or subsequent life of the laminate and may arise from a wide variety of causes.

Denier -- A direct numbering system for expressing linear density, equal to the mass in grams per 9000 meters of yarn, filament, fiber, or other textile strand.

Density -- The mass per unit volume.

Desorption -- A process in which an absorbed or adsorbed material is released from another material. Desorption is the reverse of absorption, adsorption, or both.

Deviation -- Variation from a specified dimension or requirement, usually defining the upper and lower limits.

Dielectric Constant -- The ratio of the capacity of a condenser having a dielectric constant between the plates to that of the same condenser when the dielectric is replaced by a vacuum; a measure of the electrical charge stored per unit volume at unit potential.

Dielectric Strength -- The average potential per unit thickness at which failure of the dielectric material occurs.

Disbond -- An area within a bonded interface between two adherends in which an adhesion failure or separation has occurred. It may occur at any time during the life of the structure and may arise from a wide variety of causes. Also, colloquially, an area of separation between two laminae in the finished laminate (in this case the term "delamination" is normally preferred.) (See **Debond, Unbond, Delamination**.)

Volume 2, Chapter 1 General Information

Distribution -- A formula which gives the probability that a value will fall within prescribed limits. (See **Normal**, **Weibull**, and **Lognormal Distributions**, also Volume 1, Section 8.1.4).

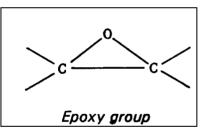
Dry -- a material condition of moisture equilibrium with a surrounding environment at 5% or lower relative humidity.

Dry Fiber Area -- Area of fiber not totally encapsulated by resin.

Ductility -- The ability of a material to deform plastically before fracturing.

Elasticity -- The property of a material which allows it to recover its original size and shape immediately after removal of the force causing deformation.

Elongation -- The increase in gage length or extension of a specimen during a tension test, usually expressed as a percentage of the original gage length.


Eluate -- The liquid emerging from a column (in liquid chromatography).

Eluent -- The mobile phase used to sweep or elute the sample (solute) components into, through, and out of the column.

End -- A single fiber, strand, roving or yarn being or already incorporated into a product. An end may be an individual warp yarn or cord in a woven fabric. In referring to aramid and glass fibers, an end is usually an untwisted bundle of continuous filaments.

Epoxy Equivalent Weight -- The number of grams of resin which contain one chemical equivalent of the epoxy group.

Epoxy Resin -- Resins which may be of widely different structures but are characterized by the presence of the epoxy group. (The epoxy or epoxide group is usually present as a glycidyl ether, glycidyl amine, or as part of an aliphatic ring system. The aromatic type epoxy resins are normally used in composites.)

Extensometer -- A device for measuring linear strain.

F-Distribution -- See Volume 1, Section 8.1.4.

Fabric, Nonwoven -- A textile structure produced by bonding or interlocking of fibers, or both, accomplished by mechanical, chemical, thermal, or solvent means, and combinations thereof.

Fabric, Woven -- A generic material construction consisting of interlaced yarns or fibers, usually a planar structure. Specifically, as used in this handbook, a cloth woven in an established weave pattern from advanced fiber yarns and used as the fibrous constituent in an advanced composite lamina. In a fabric lamina, the warp direction is considered the longitudinal direction, analogous to the filament direction in a filamentary lamina.

Fell -- The point of braid formation, which is defined as the point at which the yarns in a braid system cease movement relative to each other.

Fiber -- A general term used to refer to filamentary materials. Often, fiber is used synonymously with filament. It is a general term for a filament of finite length. A unit of matter, either natural or manmade, which forms the basic element of fabrics and other textile structures.

Volume 2, Chapter 1 General Information

Fiber Content -- The amount of fiber present in a composite. This is usually expressed as a percentage volume fraction or weight fraction of the composite.

Fiber Count -- The number of fibers per unit width of ply present in a specified section of a composite.

Fiber Direction -- The orientation or alignment of the longitudinal axis of the fiber with respect to a stated reference axis.

Fiber System -- The type and arrangement of fibrous material which comprises the fiber constituent of an advanced composite. Examples of fiber systems are collimated filaments or filament yarns, woven fabric, randomly oriented short-fiber ribbons, random fiber mats, whiskers, etc.

Fiber Volume (Fraction) -- See fiber content.

Filament -- The smallest unit of a fibrous material. The basic units formed during spinning and which are gathered into strands of fiber, (for use in composites). Filaments usually are of extreme length and of very small diameter. Filaments normally are not used individually. Some textile filaments can function as a yarn when they are of sufficient strength and flexibility.

Filamentary Composite -- A composite material reinforced with continuous fibers.

Filament winding -- See Winding.

Filament Wound -- Pertaining to an object created by the filament winding method of fabrication.

Fill (Filling) -- In a woven fabric, the yarn running from selvage to selvage at right angles to the warp.

Filler -- A relatively inert substance added to a material to alter its physical, mechanical, thermal, electrical, and other properties or to lower cost. Sometimes the term is used specifically to mean particulate additives.

Finish (or Size System) -- A material, with which filaments are treated, which contains a coupling agent to improve the bond between the filament surface and the resin matrix in a composite material. In addition, finishes often contain ingredients which provide lubricity to the filament surface, preventing abrasive damage during handling, and a binder which promotes strand integrity and facilitates packing of the filaments.

Fixed Effect -- A systematic shift in a measured quantity due to a particular level change of a treatment or condition. (See Volume 1, Section 8.1.4.)

Flash -- Excess material which forms at the parting line of a mold or die, or which is extruded from a closed mold.

Former Plate -- A die attached to a braiding machine which helps to locate the fell.

Fracture Ductility -- The true plastic strain at fracture.

Gage Length -- the original length of that portion of the specimen over which strain or change of length is determined.

Gel -- The initial jelly-like solid phase that develops during formation of a resin from a liquid. Also, a semi-solid system consisting of a network of solid aggregates in which liquid is held.

Gel Coat -- A quick-setting resin used in molding processes to provide an improved surface for the composite; it is the first resin applied to the mold after the mold-release agent.

Gel Point -- The stage at which a liquid begins to exhibit pseudo-elastic properties. (This can be seen from the inflection point on a viscosity-time plot.)

Gel Time -- The period of time from a pre-determined starting point to the onset of gelation (gel point) as defined by a specific test method.

Glass -- An inorganic product of fusion which has cooled to a rigid condition without crystallizing. In the handbook, all reference to glass will be to the fibrous form as used in filaments, woven fabric, yarns, mats, chopped fibers, etc.

Glass Cloth -- Conventionally-woven glass fiber material (see Scrim).

Glass Fibers -- A fiber spun from an inorganic product of fusion which has cooled to a rigid condition without crystallizing.

Glass Transition -- The reversible change in an amorphous polymer or in amorphous regions of a partially crystalline polymer from (or to) a viscous or rubbery condition to (or from) a hard and relatively brittle one.

Glass Transition Temperature -- The approximate midpoint of the temperature range over which the glass transition takes place.

Graphite Fibers -- See Carbon Fibers.

Greige -- Fabric that has received no finish.

Hand Lay-up -- A process in which components are applied either to a mold or a working surface, and the successive plies are built up and worked by hand.

Hardness -- Resistance to deformation; usually measured by indention. Types of standard tests include Brinell, Rockwell, Knoop, and Vickers.

Heat Cleaned -- Glass or other fibers which have been exposed to elevated temperatures to remove preliminary sizings or binders which are not compatible with the resin system to be applied.

Heterogeneous -- Descriptive term for a material consisting of dissimilar constituents separately identifiable; a medium consisting of regions of unlike properties separated by internal boundaries. (Note that all nonhomogeneous materials are not necessarily heterogeneous).

Homogeneous -- Descriptive term for a material of uniform composition throughout; a medium which has no internal physical boundaries; a material whose properties are constant at every point, in other words, constant with respect to spatial coordinates (but not necessarily with respect to directional coordinates).

Horizontal Shear -- Sometimes used to indicate interlaminar shear. This is not an approved term for use in this handbook.

Humidity, Relative -- The ratio of the pressure of water vapor present to the pressure of saturated water vapor at the same temperature.

Hybrid -- A composite laminate comprised of laminae of two or more composite material systems. Or, a combination of two or more different fibers such as carbon and glass or carbon and aramid into a structure (tapes, fabrics and other forms may be combined).

Hygroscopic -- Capable of absorbing and retaining atmospheric moisture.

Hysteresis -- The energy absorbed in a complete cycle of loading and unloading.

Inclusion -- A physical and mechanical discontinuity occurring within a material or part, usually consisting of solid, encapsulated foreign material. Inclusions are often capable of transmitting some structural stresses and energy fields, but in a noticeably different manner from the parent material.

Integral Composite Structure -- Composite structure in which several structural elements, which would conventionally be assembled by bonding or with mechanical fasteners after separate fabrication, are instead laid up and cured as a single, complex, continuous structure; e.g., spars, ribs, and one stiffened cover of a wing box fabricated as a single integral part. The term is sometimes applied more loosely to any composite structure not assembled by mechanical fasteners.

Interface -- The boundary between the individual, physically distinguishable constituents of a composite.

Interlaminar -- Between the laminae of a laminate.

Discussion: describing objects (e.g., voids), events (e.g., fracture), or fields (e.g., stress).

Interlaminar Shear -- Shearing force tending to produce a relative displacement between two laminae in a laminate along the plane of their interface.

Intermediate Bearing Stress -- The bearing stress at the point on the bearing load-deformation curve where the tangent is equal to the bearing stress divided by a designated percentage (usually 4%) of the original hole diameter.

Intralaminar -- Within the laminae of a laminate.

Discussion: describing objects (for example, voids), event (for example, fracture), or fields (for example, stress).

Isotropic -- Having uniform properties in all directions. The measured properties of an isotropic material are independent of the axis of testing.

Jammed State -- The state of a braided fabric under tension or compression where the deformation of the fabric is dominated by the deformation properties of the yarn.

Knitting -- A method of constructing fabric by interlocking series of loops of one or more yarns.

Knuckle Area -- The area of transition between sections of different geometry in a filament wound part.

k-Sample Data -- A collection of data consisting of values observed when sampling from k batches.

Laid-In Yarns -- A system of longitudinal yarns in a triaxial braid which are inserted between the bias yarns.

Lamina -- A single ply or layer in a laminate.

Discussion: For filament winding, a lamina is a layer.

Laminae -- Plural of lamina.

Laminate -- for fiber-reinforced composites, a consolidated collection of laminae (plies) with one or more orientations with respect to some reference direction.

Laminate Orientation -- The configuration of a crossplied composite laminate with regard to the angles of crossplying, the number of laminae at each angle, and the exact sequence of the lamina lay-up.

Lattice Pattern -- A pattern of filament winding with a fixed arrangement of open voids.

Lay-up -- A process of fabrication involving the assembly of successive layers of resin-impregnated material.

Lognormal Distribution -- A probability distribution for which the probability that an observation selected at random from this population falls between a and b (0 < a < b < B) is given by the area under the normal distribution between $\log a$ and $\log b$. The common (base 10) or the natural (base e) logarithm may be used. (See Volume 1, Section 8.1.4.)

Lower Confidence Bound -- See Confidence Interval.

Macro -- In relation to composites, denotes the gross properties of a composite as a structural element but does not consider the individual properties or identity of the constituents.

Macrostrain -- The mean strain over any finite gage length of measurement which is large in comparison to the material's interatomic distance.

Mandrel -- A form fixture or male mold used for the base in the production of a part by lay-up, filament winding or braiding.

Mat -- A fibrous material consisting of randomly oriented chopped or swirled filaments loosely held together with a binder.

Material Acceptance -- The testing of incoming material to ensure that it meets requirements.

Material Qualification -- The procedures used to accept a material by a company or organization for production use.

Material System -- A specific composite material made from specifically identified constituents in specific geometric proportions and arrangements and possessed of numerically defined properties.

Material System Class -- As used in this handbook, a group consisting of material systems categorized by the same generic constituent materials, but without defining the constituents uniquely; e.g., the carbon/epoxy class.

Material Variability -- A source of variability due to the spatial and consistency variations of the material itself and due to variation in its processing. (See Volume 1, Section 8.1.4.)

Matrix -- The essentially homogeneous material in which the fiber system of a composite is embedded.

Matrix Content -- The amount of matrix present in a composite expressed either as percent by weight or percent by volume. Discussion: For polymer matrix composites this is called resin content, which is usually expressed as percent by weight

Mean -- See Sample Mean and Population Mean.

Mechanical Properties -- The properties of a material that are associated with elastic and inelastic reaction when force is applied, or the properties involving the relationship between stress and strain.

Median -- See Sample Median and Population Median.

Micro -- In relation to composites, denotes the properties of the constituents, i.e., matrix and reinforcement and interface only, as well as their effects on the composite properties.

Microstrain -- The strain over a gage length comparable to the material's interatomic distance.

Modulus, Chord -- The slope of the chord drawn between any two specified points on the stress-strain curve.

Modulus, initial -- The slope of the initial straight portion of a stress-strain curve.

Modulus, Secant -- The slope of the secant drawn from the origin to any specified point on the stress-strain curve.

Modulus, Tangent -- The ratio of change in stress to change in strain derived from the tangent to any point on a stress-strain curve.

Modulus, Young's -- The ratio of change in stress to change in strain below the elastic limit of a material. (Applicable to tension and compression).

Modulus of Rigidity (also Shear Modulus or Torsional Modulus) -- The ratio of stress to strain below the proportional limit for shear or torsional stress.

Modulus of Rupture, in Bending -- The maximum tensile or compressive stress (whichever causes failure) value in the extreme fiber of a beam loaded to failure in bending. The value is computed from the flexure equation:

$$F^{b} = \frac{Mc}{I}$$
 1.8(a)

where M = maximum bending moment computed from the maximum load and the original moment arm, c = initial distance from the neutral axis to the extreme fiber where failure occurs,

 ${\rm I}$ = the initial moment of inertia of the cross section about its neutral axis.

Modulus of Rupture, in Torsion -- The maximum shear stress in the extreme fiber of a member of circular cross section loaded to failure in torsion calculated from the equation:

$$F^{s} = \frac{Tr}{J}$$
 1.8(b)

where T = maximum twisting moment,

r = original outer radius,

J = polar moment of inertia of the original cross section.

Moisture Content -- The amount of moisture in a material determined under prescribed condition and expressed as a percentage of the mass of the moist specimen, i.e., the mass of the dry substance plus the moisture present.

Moisture Equilibrium -- The condition reached by a sample when it no longer takes up moisture from, or gives up moisture to, the surrounding environment.

Mold Release Agent -- A lubricant applied to mold surfaces to facilitate release of the molded article.

Molded Edge -- An edge which is not physically altered after molding for use in final form and particularly one which does not have fiber ends along its length.

Molding -- The forming of a polymer or composite into a solid mass of prescribed shape and size by the application of pressure and heat.

Monolayer -- The basic laminate unit from which crossplied or other laminates are constructed.

Monomer -- A compound consisting of molecules each of which can provide one or more constitutional units.

NDE -- Nondestructive evaluation. Broadly considered synonymous with NDI.

NDI -- Nondestructive inspection. A process or procedure for determining the quality or characteristics of a material, part, or assembly without permanently altering the subject or its properties.

NDT -- Nondestructive testing. Broadly considered synonymous with NDI.

Necking -- A localized reduction in cross-sectional area which may occur in a material under tensile stress.

Negatively Skewed -- A distribution is said to be negatively skewed if the distribution is not symmetric and the longest tail is on the left.

Nominal Specimen Thickness -- The nominal ply thickness multiplied by the number of plies.

Nominal Value -- A value assigned for the purpose of a convenient designation. A nominal value exists in name only.

Normal Distribution -- A two parameter (μ, σ) family of probability distributions for which the probability that an observation will fall between a and b is given by the area under the curve

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 1.8(c)

between a and b. (See Volume 1, Section 8.1.4.)

Normalization -- A mathematical procedure for adjusting raw test values for fiber-dominated properties to a single (specified) fiber volume content.

Normalized Stress -- Stress value adjusted to a specified fiber volume content by multiplying the measured stress value by the ratio of specimen fiber volume to the specified fiber volume. This ratio may be obtained directly by experimentally measuring fiber volume, or indirectly by calculation using specimen thickness and fiber areal weight.

Observed Significance Level (OSL) -- The probability of observing a more extreme value of the test statistic when the null hypotheses is true.

Offset Shear Strength --- (from valid execution of a material property shear response test) the value of shear stress at the intersection between a line parallel to the shear chord modulus of elasticity and the shear stress/strain curve, where the line has been offset along the shear strain axis from the origin by a specified strain offset value.

Oligomer -- A polymer consisting of only a few monomer units such as a dimer, trimer, etc., or their mixtures.

One-Sided Tolerance Limit Factor -- See Tolerance Limit Factor.

Orthotropic -- Having three mutually perpendicular planes of elastic symmetry.

Volume 2, Chapter 1 General Information

Oven Dry -- The condition of a material that has been heated under prescribed conditions of temperature and humidity until there is no further significant change in its mass.

PAN Fibers -- Reinforcement fiber derived from the controlled pyrolysis of poly(acrylonitrile) fiber.

Parallel Laminate -- A laminate of woven fabric in which the plies are aligned in the same position as originally aligned in the fabric roll.

Parallel Wound -- A term used to describe yarn or other material wound into a flanged spool.

Peel Ply -- A layer of resin free material used to protect a laminate for later secondary bonding.

pH -- A measure of acidity or alkalinity of a solution, with neutrality represented by a value of 7, with increasing acidity corresponding to progressively smaller values, and increasing alkalinity corresponding to progressively higher values.

Pick Count -- The number of filling yarns per inch or per centimeter of woven fabric.

Pitch Fibers -- Reinforcement fiber derived from petroleum or coal tar pitch.

Plastic -- A material that contains one or more organic polymers of large molecular weight, is solid in its finished state, and, at some state in its manufacture or processing into finished articles, can be shaped by flow.

Plasticizer -- A material of lower molecular weight added to a polymer to separate the molecular chains. This results in a depression of the glass transition temperature, reduced stiffness and brittleness, and improved processability. (Note, many polymeric materials do not need a plasticizer.)

Plied Yarn -- A yarn formed by twisting together two or more single yarns in one operation.

Poisson's Ratio -- The absolute value of the ratio of transverse strain to the corresponding axial strain resulting from uniformly distributed axial stress below the proportional limit of the material.

Polymer -- An organic material composed of molecules characterized by the repetition of one or more types of monomeric units.

Polymerization -- A chemical reaction in which the molecules of monomers are linked together to form polymers via two principal reaction mechanisms. Addition polymerizations proceed by chain growth and most condensation polymerizations through step growth.

Population -- The set of measurements about which inferences are to be made or the totality of possible measurements which might be obtained in a given testing situation. For example, "all possible ultimate tensile strength measurements for carbon/epoxy system A, conditioned at 95% relative humidity and room temperature". In order to make inferences about a population, it is often necessary to make assumptions about its distributional form. The assumed distributional form may also be referred to as the population. (See Volume 1, Section 8.1.4.)

Population Mean -- The average of all potential measurements in a given population weighted by their relative frequencies in the population. (See Volume 1, Section 8.1.4.)

Population Median -- That value in the population such that the probability of exceeding it is 0.5 and the probability of being less than it is 0.5. (See Volume 1, Section 8.1.4.)

Population Variance -- A measure of dispersion in the population.

Volume 2, Chapter 1 General Information

Porosity -- A condition of trapped pockets of air, gas, or vacuum within a solid material, usually expressed as a percentage of the total nonsolid volume to the total volume (solid plus nonsolid) of a unit quantity of material.

Positively Skewed -- A distribution is said to be positively skewed if the distribution is not symmetric and the longest tail is on the right.

Postcure -- Additional elevated temperature cure, usually without pressure, to increase the glass transition temperature, to improve final properties, or to complete the cure.

Pot Life -- The period of time during which a reacting thermosetting composition remains suitable for its intended processing after mixing with a reaction initiating agent.

Precision -- The degree of agreement within a set of observations or test results obtained. Precision involves repeatability and reproducibility.

Precursor (for Carbon or Graphite Fiber) -- Either the PAN or pitch fibers from which carbon and graphite fibers are derived.

Preform -- An assembly of dry fabric and fibers which has been prepared for one of several different wet resin injection processes. A preform may be stitched or stabilized in some other way to hold its A shape. A commingled preform may contain thermoplastic fibers and may be consolidated by elevated temperature and pressure without resin injection.

Preply -- Layers of prepreg material, which have been assembled according to a user specified stacking sequence.

Prepreg -- Ready to mold or cure material in sheet form which may be tow, tape, cloth, or mat impregnated with resin. It may be stored before use.

Pressure -- The force or load per unit area.

Probability Density Function -- See Volume 1, Section 8.1.4.

Proportional Limit -- The maximum stress that a material is capable of sustaining without any deviation from the proportionality of stress to strain (also known as Hooke's law).

Quasi-Isotropic Laminate -- A balanced and symmetric laminate for which a constitutive property of interest, at a given point, displays isotropic behavior in the plane of the laminate.

Discussion: Common quasi-isotropic laminates are $(0/\pm 60)$ s and $(0/\pm 45/90)$ s.

Random Effect -- A shift in a measured quantity due to a particular level change of an external, usually uncontrollable, factor. (See Volume 1, Section 8.1.4.)

Random Error -- That part of the data variation that is due to unknown or uncontrolled factors and that affects each observation independently and unpredictably. (See Volume 1, Section 8.1.4.)

Reduction of Area -- The difference between the original cross sectional area of a tension test specimen and the area of its smallest cross section, usually expressed as a percentage of the original area.

Refractive Index - The ratio of the velocity of light (of specified wavelength) in air to its velocity in the substance under examination. Also defined as the sine of the angle of incidence divided by the sine of the angle of refraction as light passes from air into the substance.

Reinforced Plastic -- A plastic with relatively high stiffness or very high strength fibers embedded in the composition. This improves some mechanical properties over that of the base resin.

Release Agent -- See Mold Release Agent.

Resilience -- A property of a material which is able to do work against restraining forces during return from a deformed condition.

Resin -- An organic polymer or prepolymer used as a matrix to contain the fibrous reinforcement in a composite material or as an adhesive. This organic matrix may be a thermoset or a thermoplastic, and may contain a wide variety of components or additives to influence; handleability, processing behavior and ultimate properties.

Resin Content -- See Matrix content.

Resin Starved Area -- Area of composite part where the resin has a non-continuous smooth coverage of the fiber.

Resin System -- A mixture of resin, with ingredients such as catalyst, initiator, diluents, etc. required for the intended processing and final product.

Room Temperature Ambient (RTA) -- 1) an environmental condition of 73±5°F (23±3°C) at ambient laboratory relative humidity; 2) a material condition where, immediately following consolidation/cure, the material is stored at 73±5°F (23±3°C) and at a maximum relative humidity of 60%.

Roving -- A number of strands, tows, or ends collected into a parallel bundle with little or no twist. In spun yarn production, an intermediate state between sliver and yarn.

S-Basis (or S-Value) -- The mechanical property value which is usually the specified minimum value of the appropriate government specification or SAE Aerospace Material Specification for this material.

Sample -- A small portion of a material or product intended to be representative of the whole. Statistically, a sample is the collection of measurements taken from a specified population. (See Volume 1, Section 8.1.4.)

Sample Mean -- The arithmetic average of the measurements in a sample. The sample mean is an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Median -- Order the observation from smallest to largest. Then the sample median is the value of the middle observation if the sample size is odd; the average of the two central observations if n is even. If the population is symmetric about its mean, the sample median is also an estimator of the population mean. (See Volume 1, Section 8.1.4.)

Sample Standard Deviation -- The square root of the sample variance. (See Volume 1, Section 8.1.4.)

Sample Variance -- The sum of the squared deviations from the sample mean, divided by n-1. (See Volume 1, Section 8.1.4.)

Sandwich Construction -- A structural panel concept consisting in its simplest form of two relatively thin, parallel sheets of structural material bonded to, and separated by, a relatively thick, light-weight core.

Saturation -- An equilibrium condition in which the net rate of absorption under prescribed conditions falls essentially to zero.

Volume 2, Chapter 1 General Information

Scrim (also called **Glass Cloth, Carrier**) -- A low cost fabric woven into an open mesh construction, used in the processing of tape or other B-stage material to facilitate handling.

Secondary Bonding -- The joining together, by the process of adhesive bonding, of two or more already-cured composite parts, during which the only chemical or thermal reaction occurring is the curing of the adhesive itself.

Selvage or Selvedge -- The woven edge portion of a fabric parallel to the warp.

Set -- The strain remaining after complete release of the force producing the deformation.

Shear Fracture (for crystalline type materials) -- A mode of fracture resulting from translation along slip planes which are preferentially oriented in the direction of the shearing stress.

Shelf Life -- The length of time a material, substance, product, or reagent can be stored under specified environmental conditions and continue to meet all applicable specification requirements and/or remain suitable for its intended function.

Short Beam Strength (SBS) -- a test result from valid execution of ASTM test method D2344.

Significant -- Statistically, the value of a test statistic is significant if the probability of a value at least as extreme is less than or equal to a predetermined number called the significance level of the test.

Significant Digit -- Any digit that is necessary to define a value or quantity.

Size System -- See Finish.

Sizing -- A generic term for compounds which are applied to yarns to bind the fiber together and stiffen the yarn to provide abrasion-resistance during weaving. Starch, gelatin, oil, wax, and man-made polymers such as polyvinyl alcohol, polystyrene, polyacrylic acid, and polyacetatates are employed.

Skewness -- See Positively Skewed, Negatively Skewed.

Sleeving -- A common name for tubular braided fabric.

Slenderness Ratio -- The unsupported effective length of a uniform column divided by the least radius of gyration of the cross-sectional area.

Sliver -- A continuous strand of loosely assembled fiber that is approximately uniform in cross-sectional area and has no twist.

Solute -- The dissolved material.

Specific Gravity -- The ratio of the weight of any volume of a substance to the weight of an equal volume of another substance taken as standard at a constant or stated temperature. Solids and liquids are usually compared with water at 39°F (4°C).

Specific Heat -- The quantity of heat required to raise the temperature of a unit mass of a substance one degree under specified conditions.

Specimen -- A piece or portion of a sample or other material taken to be tested. Specimens normally are prepared to conform with the applicable test method.

Spindle -- A slender upright rotation rod on a spinning frame, roving frame, twister or similar machine.

Standard Deviation -- See Sample Standard Deviation.

Staple -- Either naturally occurring fibers or lengths cut from filaments.

Step-Growth Polymerization -- One of the two principal polymerization mechanisms. In sep-growth polymerization, the reaction grows by combination of monomer, oligomer, or polymer molecules through the consumption of reactive groups. Since average molecular weight increases with monomer consumption, high molecular weight polymers are formed only at high degrees of conversion.

Strain -- the per unit change, due to force, in the size or shape of a body referred to its original size or shape. Strain is a nondimensional quantity, but it is frequently expressed in inches per inch, meters per meter, or percent.

Strand -- Normally an untwisted bundle or assembly of continuous filaments used as a unit, including slivers, tow, ends, yarn, etc. Sometimes a single fiber or filament is called a strand.

Strength -- the maximum stress which a material is capable of sustaining.

Stress -- The intensity at a point in a body of the forces or components of forces that act on a given plane through the point. Stress is expressed in force per unit area (pounds-force per square inch, mega-pascals, etc.).

Stress Relaxation -- The time dependent decrease in stress in a solid under given constraint conditions.

Stress-Strain Curve (Diagram) -- A graphical representation showing the relationship between the change in dimension of the specimen in the direction of the externally applied stress and the magnitude of the applied stress. Values of stress usually are plotted as ordinates (vertically) and strain values as abscissa (horizontally).

Structural Element -- a generic element of a more complex structural member (for example, skin, stringer, shear panels, sandwich panels, joints, or splices).

Structured Data -- See Volume 1, Section 8.1.4.

Surfacing Mat -- A thin mat of fine fibers used primarily to produce a smooth surface on an organic matrix composite.

Symmetrical Laminate -- A composite laminate in which the sequence of plies below the laminate midplane is a mirror image of the stacking sequence above the midplane.

Tack -- Stickiness of the prepreg.

Tape -- Prepreg fabricated in widths up to 12 inches wide for carbon and 3 inches for boron. Cross stitched carbon tapes up to 60 inches wide are available commercially in some cases.

Tenacity -- The tensile stress expressed as force per unit linear density of the unstrained specimen i.e., grams-force per denier or grams-force per tex.

Tex -- A unit for expressing linear density equal to the mass or weight in grams of 1000 meters of filament, fiber, yarn or other textile strand.

Thermal Conductivity -- Ability of a material to conduct heat. The physical constant for quantity of heat that passes through unit cube of a substance in unit time when the difference in temperature of two faces is one degree.

Volume 2, Chapter 1 General Information

Thermoplastic -- A plastic that repeatedly can be softened by heating and hardened by cooling through a temperature range characteristic of the plastic, and when in the softened stage, can be shaped by flow into articles by molding or extrusion.

Thermoset -- A class of polymers that, when cured using heat, chemical, or other means, changes into a substantially infusible and insoluble material.

Tolerance -- The total amount by which a quantity is allowed to vary.

Tolerance Limit -- A lower (upper) confidence limit on a specified percentile of a distribution. For example, the B-basis value is a 95% lower confidence limit on the tenth percentile of a distribution.

Tolerance Limit Factor -- The factor which is multiplied by the estimate of variability in computing the tolerance limit.

Toughness -- A measure of a material's ability to absorb work, or the actual work per unit volume or unit mass of material that is required to rupture it. Toughness is proportional to the area under the load-elongation curve from the origin to the breaking point.

Tow -- An untwisted bundle of continuous filaments. Commonly used in referring to man-made fibers, particularly carbon and graphite fibers, in the composites industry.

Transformation -- A transformation of data values is a change in the units of measurement accomplished by applying a mathematical function to all data values. For example, if the data is given by x, then y = x + 1, x, 1/x, log x, and cos x are transformations.

Transition, First Order -- A change of state associated with crystallization or melting in a polymer.

Transversely Isotropic -- Descriptive term for a material exhibiting a special case of orthotropy in which properties are identical in two orthotropic dimensions, but not the third; having identical properties in both transverse directions but not the longitudinal direction.

Traveller -- A small piece of the same product (panel, tube, etc.) as the test specimen, used for example to measure moisture content as a result of conditioning.

Twist -- The number of turns about its axis per unit of length in a yarn or other textile strand. It may be expressed as turns per inch (tpi) or turns per centimeter (tpcm).

Twist, Direction of -- The direction of twist in yarns and other textile strands is indicated by the capital letters S and Z. Yarn has S twist if, when held in a vertical position, the visible spirals or helices around its central axis are in the direction of slope of the central portion of the letter S, and Z twist is in the other direction.

Twist Multiplier -- The ratio of turns per inch to the square root of the cotton count.

Typical Basis -- A typical property value is a sample mean. Note that the typical value is defined as the simple arithmetic mean which has a statistical connotation of 50% reliability with a 50% confidence.

Unbond -- An area within a bonded interface between two adherends in which the intended bonding action failed to take place. Also used to denote specific areas deliberately prevented from bonding in order to simulate a defective bond, such as in the generation of quality standards specimens. (See **Disbond**, **Debond**).

Unidirectional Fiber-Reinforced Composite -- Any fiber-reinforced composite with all fibers aligned in a single direction.

Volume 2, Chapter 1 General Information

Unit Cell -- The term applied to the path of a yarn in a braided fabric representing a unit cell of a repeating geometric pattern. The smallest element representative of the braided structure.

Unstructured Data -- See Volume 1, Section 8.1.4.

Upper Confidence Limit -- See Confidence Interval.

Vacuum Bag Molding -- A process in which the lay-up is cured under pressure generated by drawing a vacuum in the space between the lay-up and a flexible sheet placed over it and sealed at the edges.

Variance -- See Sample Variance.

Viscosity -- The property of resistance to flow exhibited within the body of a material.

Void - Any pocket of enclosed gas or near-vacuum within a composite.

Warp -- The longitudinally oriented yarn in a woven fabric (see **Fill**); a group of yarns in long lengths and approximately parallel.

Weibull Distribution (Two-Parameter) -- A probability distribution for which the probability that a randomly selected observation from this population lies between a and b (0 < a < b < 4) is given by Equation 1.8(d) where α is called the scale parameter and β is called the shape parameter. (See Volume 1, Section 8.1.4.)

$$\exp\left[-\left(\frac{a}{\alpha}\right)^{\beta}\right] - \exp\left[-\left(\frac{b}{\alpha}\right)^{\beta}\right]$$
 1.8(d)

Wet Lay-up -- A method of making a reinforced product by applying a liquid resin system while or after the reinforcement is put in place.

Wet Strength -- The strength of an organic matrix composite when the matrix resin is saturated with absorbed moisture. (See Saturation).

Wet Winding -- A method of filament winding in which the fiber reinforcement is coated with the resin system as a liquid just prior to wrapping on a mandrel.

Whisker -- A short single crystal fiber or filament. Whisker diameters range from 1 to 25 microns, with aspect ratios between 100 and 15,000.

Winding -- A process in which continuous material is applied under controlled tension to a form in a predetermined geometric relationship to make a structure.

Discussion: A matrix material to bind the fibers together may be added before, during or after winding. Filament winding is the most common type.

Work Life -- The period during which a compound, after mixing with a catalyst, solvent, or other compounding ingredient, remains suitable for its intended use.

Woven Fabric Composite -- A major form of advanced composites in which the fiber constituent consists of woven fabric. A woven fabric composite normally is a laminate comprised of a number of laminae, each of which consists of one layer of fabric embedded in the selected matrix material. Individual fabric laminae are directionally oriented and combined into specific multiaxial laminates for application to specific envelopes of strength and stiffness requirements.

Yarn -- A generic term for strands or bundles of continuous filaments or fibers, usually twisted and suitable for making textile fabric.

Yarn, Plied -- Yarns made by collecting two or more single yarns together. Normally, the yarns are twisted together though sometimes they are collected without twist.

Yield Strength -- The stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain. (The deviation is expressed in terms of strain such as 0.2 percent for the Offset Method or 0.5 percent for the Total Extension Under Load Method.)

X-Axis -- In composite laminates, an axis in the plane of the laminate which is used as the 0 degree reference for designating the angle of a lamina.

X-Y Plane -- In composite laminates, the reference plane parallel to the plane of the laminate.

Y-Axis -- In composite laminates, the axis in the plane of the laminate which is perpendicular to the x-axis.

Z-Axis -- In composite laminates, the reference axis normal to the plane of the laminate.

REFERENCES

- 1.6.1(a) DOD/NASA Advanced Composites Design Guide, Vol. 4, Section 4.0.5, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.6.1(b) ASTM Guide E1309, "Identification of Composite Materials in Computerized Material Property Databases," *Annual Book of ASTM Standards*, Vol. 15.03, American Society for Testing and Materials, West Conshohocken, PA.
- 1.7(a) Military Standardization Handbook, *Metallic Materials and Elements for Aerospace Vehicle Structures*, MIL-HDBK-5D, Change Notice 2, May, 1985.
- 1.7(b) DOD/NASA Advanced Composites Design Guide, Air Force Wright Aeronautical Laboratories, Dayton, OH, prepared by Rockwell International Corporation, 1983 (distribution limited).
- 1.7(c) ASTM Terminology E206, "Definitions of Terms Relating to Fatigue Testing and the Statistical Analysis of Fatigue Data," *Annual Book of ASTM Standards*, Vol. 03.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled March 27, 1987; replaced by ASTM E 1150).
- 1.7.2(a) ASTM Practice E380, "Metric Practice," Annual Book of ASTM Standards, Vol. 14.01, American Society for Testing and Materials, West Conshohocken, PA. (canceled April 28, 1997; now sold in book form called "Metric 97").
- 1.7.2(b) Engineering Design Handbook: Metric Conversion Guide, DARCOM P 706-470, July 1976.
- 1.7.2(c) *The International System of Units (SI)*, NBS Special Publication 330, National Bureau of Standards, 1986 edition.
- 1.7.2(d) Units and Systems of Weights and Measures, Their Origin, Development, and Present Status, NBS Letter Circular LC 1035, National Bureau of Standards, November 1985.
- 1.7.2(e) *The International System of Units Physical Constants and Conversion Factors*, NASA Special Publication 7012, 1964.

CHAPTER 2 FIBER PROPERTIES

This section is reserved for future use.

- 2.1 INTRODUCTION
- 2.2 CARBON FIBERS
- 2.3 ARAMID FIBERS
- 2.4 GLASS FIBERS
- 2.5 BORON FIBERS
- 2.6 ALUMINA FIBERS
- 2.7 SILICON CARBIDE FIBERS
- 2.8 QUARTZ FIBERS

CHAPTER 3 MATRIX PROPERTIES

This section is reserved for future use.

3.1 INTRODUCTION

3.2 EPOXIES

- 3.2.1 General Characteristics
- 3.2.2 Index of Supplies, Designations, and Abbreviations
- 3.3 POLYESTERS
- 3.4 PHENOLICS
- 3.5 SILICONES
- 3.6 **BISMALEIMIDES**
- 3.7 POLYBENZIMIDAZOLES
- 3.8 POLYIMIDES, THERMOSET
- 3.9 POLYETHERETHERKETONES
- 3.10 POLYPHENYLENE SULFIDES
- 3.11 POLYETHERIMIDES
- 3.12 POLYSULFONES
- 3.13 POLYAMIDE-IMIDES
- 3.14 POLYIMIDES, THERMOPLASTICS

CHAPTER 4 CARBON FIBER COMPOSITES

4.1 INTRODUCTION

4.2 CARBON - EPOXY COMPOSITES

4.2.1 T-500 12k/976 unidirectional tape

Material Description:

Material: T-500 12k/976

Form: Unidirectional tape, fiber areal weight of 142 g/m², typical cured resin content of 28-34%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 240°F, 85 psi, 1 hour; 350°F, 100 psi for 2 hours.

General Supplier Information:

- Fiber: T-500 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35.5 x 10⁶ psi. Typical tensile strength is 575,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

4.2.1 T500 12k/976 unidirectional tape*

MATERIAL:	T-500 12k/976 unidirectional tape	C/Ep 145-UT T-500/976 Summary		
FORM:	Fiberite Hy-E 3076P unidirectional tape prepreg			
FIBER:	Union Carbide Thornel T-500 12k	MATRIX:	Fiberite 976	
T _g (dry):	361°F T _g (wet):	T _g METHOD:		
PROCESSING:	240°F, 1 hour, 85 psi; 350°F, 2 hours, 100 psi			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	Π
Date of resin manufacture	Date of data submittal 6/8	8
Date of form manufacture 12/83	Date of analysis 1/9)3
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	250°F/A		
Tension, 1-axis	II-I	II-I	II-I		
Tension, 2-axis	II-I	II-I	II-I		
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.57 - 1.61	
Fiber Areal Weight	(g/m ²)	142	142 - 146	
Fiber Volume	(%)			
Ply Thickness	(in)	0.0053	0.0050 - 0.0057	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: T-50	0 12k/976 unidi	rectional tape				4.2.1(a) 142-I IT	
RESIN CONTENT: 28-34 wt% FIBER VOLUME: 59-64 % PLY THICKNESS: 0.0050 - 0.0057 in.			COMP: DENSITY: 1.57-1.61 g/cm ³ VOID CONTENT: 0.3-1.7%		C/Ep 142-UT T-500/976 Tension, 1-axis [0] ₈ 75/A, -65/A, 200/A			
		MODULUS CALCULATION:				erim		
	M D 3039-76	imen thickness		, 20-40% of ultir er volume to 60%		(0.0052 in. CPT	.)	
Tempera	ture (°F)	7	5	-6	5	25	-	
Moisture Content (%) Equilibrium at T, RH		ambient		ambient		ambient		
Source C	Code	1: Normalized		1: Normolizod		13 Normalized Massure		
	Mean	Normalized 295	Measured 298	Normalized 213	Measured 213	Normalized 273	Measured 276	
	Minimum	257	270	163	196	236	258	
	Maximum	329	328	243	235	302	310	
	C.V.(%)	6.41	5.74	9.78	5.02	7.39	6.05	
F ₁ ^{tu}	B-value Distribution	(1) ANOVA		(1) Weibull		(1) Weibull		
-		20.5		221		282		
(ksi)	C ₁ C ₂	20.5 4.64		13.1		15.7		
	No. Specimens	15 3		15 3		15 3		
No. Batches Data Class		Interim		Interim		Inte		
	Mean	21.9	22.0	19.0	19.1	22.2	22.4	
	Minimum	20.9	20.5	15.9	17.7	18.6	21.0	
	Maximum	24.7	24.0	21.5	21.5	25.1	23.8	
E_1^t	C.V.(%)	4.42	4.15	8.11	5.76	6.91	4.17	
(Msi) No. Specimens No. Batches Data Class		15		15		15		
		3 Interim		3 Inte		3 Interim		
	Mean							
v_{12}^{t}	No. Specimens No. Batches							
12	Data Class							
	Mean		13000		10700		11800	
	Minimum		11700		9300		10800	
	Maximum C.V.(%)		13900 4.98		12000 5.98		12900 5.32	
<i>4</i> 11	B-value		(1)		(1)		(1)	
$arepsilon_1^{ ext{tu}}$	Distribution		ANOVA		Weibull		Weibull	
(με)	C ₁ C ₂		706 4.75		11000 18.8		12100 21.6	
	02		4.73		10.0		21.0	
	No. Specimens	1		1:		15		
	No. Batches Data Class	3 Inte		3 Inte		3 Inte		
	Dala Olass	inte	1011	inte		Interim		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

						TATION REQUIREMENTS ED FOR THIS MATERIAL.	
MATER	RIAL: T-50	0 12k/976 unid	irectional tape			Table 4.2.1(b)	
RESIN CONTENT: 28-34 wt% FIBER VOLUME: 59-64 % PLY THICKNESS: 0.0050-0.0057 in.			COMP: DI VOID COI		57-1.61 lb/in ³ 3-1.7%	C/Ep 142-UT T-500/976 Tension, 2-axis [90] ₈ 75/A, -65/A, 200/A	
TEST N	METHOD:		MODULU	S CALCULATI	ON:	Interim	
AS	STM D 3039-76		Chord,	20 - 40 % of u	ultimate load		
NORM	ALIZED BY: Not	normalized					
Tempe	rature (°F)	75	-65	250			
	e Content (%) rium at T, RH	ambient	ambient	ambient			
Source	Code	13	13	13			
	Mean	10.2	10.3	7.90			
	Minimum	9.40	9.40	7.00			
	Maximum C.V.(%)	11.3 5.59	12.1 6.61	8.80 5.35			
	0. v.(/0)	5.58	0.01	0.00			
	B-value	(1)	(1)	(1)			
F_2^{tu}	Distribution	ANÓVA	Lognormal	Weibull			
(ksi)	C ₁	0.594	2.33	8.09			
(101)	C_2	3.48	0.0636	19.7			
	No. Specimens	15	15	15			
	No. Batches	3	3	3			
	Data Class	Interim	Interim	Interim			
	Mean Minimum	1.3 1.3	1.5 1.4	1.2 1.1			
	Maximum	1.7	1.4	1.3			
E_{2}^{t}	C.V.(%)	7.8	4.8	7.0			
22							
(Msi)	No. Specimens	15	15	15			
. ,	No. Batches	3	3	3			
	Data Class	Interim	Interim	Interim			
v_{21}^{t}	Mean No. Specimens No. Batches						
· 21	Data Class						
	Mean	7750	7110	6930			
	Minimum	5800	6200	5900			
	Maximum	8900	8600	8000			
	C.V.(%)	10.3	8.28	8.32			
	B-value	(1)	(1)	(1)			
$\varepsilon_2^{ m tu}$	Distribution	Weibull	Weibull	Weibull			
- (με)	C ₁	8080	7390	7180			
¥ -7	C ₂	12.4	11.5	13.7			
	N O İ	4-	4-	4-			
	No. Specimens	15 3	15 3	15 3			
	No. Batches Data Class	3 Interim	3 Interim	3 Interim			
	Data Oldoo						

(1) Basis values are presented only for A and B data classes.

4.2.2 HITEX 33 6k/E7K8 unidirectional tape

Material Description:

- Material: HITEX 33-6k/E7K8
- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 34% typical cured ply thickness of 0.0057 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.2 HITEX 33 6k/E7K8 unidirectional tape*

MATERIAL:	HITEX 33 6k/E7K8 unidirectional ta	C/Ep 145-UT HITEX 33/E7K8 Summary						
FORM:	U.S. Polymeric HITEX 33 6k/E7K8	U.S. Polymeric HITEX 33 6k/E7K8 unidirectional tape, grade 145 prepreg						
FIBER:	Hitco HITEX 33 6k, no twist	MATRIX:	U.S. Polymeric E7	[.] K8				
T _g (dry):	T _g (wet):	T _g METHOD:						
PROCESSING: Autoclave cure: 300 - 310°F, 120 - 130 min., 55 psi								

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/83
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°F/A	180°F/A		75°F/W	180°F/W	
SSSS		SS-S			SSS-	SSS-	
SS							
SS-S		SS-S			SS	SS	
S			S		S	S	
	SSSS SS SS-S	SSSS SS SS-S	SSSS SS-S SS SS-S SS-S SS-S SS-S	SSSS SS-S SS SS-S SS-S SS-S SS-S	SSSS SS-S SS SS-S SS-S SS-S	SSSS SS-S SS-S SS- SS SS-S SS-S SS SS SS	SSSS SS-S SSS- SSS- SSS- SS SS-S SS-S SS SS

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59	1.56 - 1.61	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	58.0	57 - 64	
Ply Thickness	(in)	0.0057	0.0053 - 0.0058	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: HITE	X 33 6k/E7K8 ι	PRESENTLY	ape		Table 4	
FIBER V			Comp: De Void Con		3 g/cm ³ %	Tensior [0]	3/E7K8 n, 1-axis
TEST ME	ETHOD: M D 3039-76	Scree					
-		r volume to 60%	6 (0.0057 in. C	PT)			
Tempera		75		-6		75	
	Content (%) um at T, RH	amb 20		amb 20		1.5 (1 20)
Source C	JOUE	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	313	304	296	288	318	310
	Minimum	292	283	267	259	280	272
	Maximum	339	330	327	319	345	335
	C.V.(%)	4.80	4.84	9.19	9.20	7.63	7.65
F ₁ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	320 22.2	311 21.9	296 27.2	288 26.5	318 24.3	310 23.7
	No. Specimens No. Batches	20 1		5		5	
	Data Class	Scree	ening	Scree	ning	Screening	
	Mean	18.2	17.7	18.5	18.0	18.5	18.0
	Minimum	17.5	17.0	18.1	17.7	18.3	17.8
nt	Maximum C.V.(%)	19.0 2.58	18.5 2.60	18.6 1.06	18.1 1.07	18.7 0.79	18.2 0.79
E_1^t	0. V.(70)	2.50	2.00	1.00	1.07	0.79	0.79
(Msi)	No. Specimens	18		5		5	
	No. Batches Data Class	1 Scree		1 Scree		1 Scree	
	Mean	00100	0.310	00100	inig	00100	0.310
	No. Specimens	5				5	
v_{12}^{t}	No. Batches	1				1	
12	Data Class	Scree				Scree	ning
	Mean		15900		16100		
	Minimum Maximum		15200 17100		15500 17000		
	C.V.(%)		4.81		3.61		
	B-value		(2)		(2)		
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		
(με)	C ₁		15900		16200		
(με)	C ₂		765		582		
	No. Specimens	5		5			
	No. Batches	1		1			
	Data Class	Scree		Scree		1	

Volume 2, Chapter 4 Carbon Fiber Composites

							NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERI		X 33 6k/E7K8		•		2	Table 4.2.2(b) C/Ep 145-UT
FIBER V	RESIN CONTENT:34 wt%COMP: DENSITY:1.58 g/cm3FIBER VOLUME:58 %VOID CONTENT:0.0%PLY THICKNESS:0.0057 in.0.0057 in.					/cm³	HITEX 33/E7K8 Tension, 1-axis [0] ₁₀ 180/1.5%
TEST ME AST	ETHOD: M D 3039-76		MODULU	S CALCULA	ATION:		Screening
		r volume to 60%	6 (0.0057 in. C	PT)			
Tempera Moisture Equilibriu Source C	Content (%) um at T, RH	18 1. (1 2)				
		Normalized	Measured	Normaliz	ed I	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	308 296 318 2.65	300 288 309 2.65		·		
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	308 8.17	300 7.95				
	No. Specimens No. Batches Data Class	t Scree					
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	18.7 17.8 19.5 3.64	18.2 17.3 19.0 3.65				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
	Mean	00100	0.300				
v_{12}^{t}	No. Specimens No. Batches Data Class	5 1 Scree	5				
	Mean Minimum Maximum C.V.(%)		<u>-</u>				
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

	TA WERE SUBMITT JNE 1989). ALL DOC						
MATEF	RIAL: HITE	X 33 6k/E7K8 ur	nidirectional ta	аре			4.2.2(c)
FIBER	RESIN CONTENT:34 wt%FIBER VOLUME:58 %PLY THICKNESS:0.0058 in.			COMP: DENSITY: 1.58 g/cm ³ VOID CONTENT: 0.39%			145-UT 33/E7K8 n, 2-axis 0] ₂₀ 5/A
	METHOD: STM D 3039-76		MODULU	S CALCULAT	ION:		ening
NORM	ALIZED BY: Not r	normalized					
Moistur Equilibr	rature (°F) e Content (%) ium at T, RH	75 ambient					
Source	Code Mean	20 6.90					
	Minimum	5.58					
	Maximum	8.07					
	C.V.(%)	11.2					
	B-value	(1)					
F ₂ ^{tu}	Distribution	Weibull					
(ksi)	C ₁	7.23					
	C ₂	10.9					
	No. Specimens	20					
	No. Batches	1					
	Data Class	Screening					
	Mean Minimum	1.25 1.23					
	Maximum	1.27					
E_2^t	C.V.(%)	0.977					
_							
(Msi)	No. Specimens No. Batches	20 1					
	Data Class	Screening					
	Mean						
t	No. Specimens No. Batches						
v_{21}^t							
	Data Class Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$arepsilon_2^{ ext{tu}}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC							
MATERI		X 33 6k/Ε7K8 ι				Table 4	4.2.2(d)	
FIBER V	ONTENT: 34-3 OLUME: 57-5 CKNESS: 0.00	C/Ep 145-UT HITEX 33/E7K8 Compression, 1-axis [0] ₁₀ 75/A, -65/A, 75/1.5%						
TEST ME	ETHOD:		A, 75/1.5% ening					
SACMA SRM 1-88								
NORMAL	IZED BY: Fiber	r volume to 60%	6 (0.0057 in. C	PT)				
Tempera		7:		-6		75		
	Content (%) Im at T, RH	amb	ient	amb	ient	1.: (1		
Source C	ode	20 Normalized	0 Measured	20 Normalized		20 Normalized)	
	Mean	209	204	230	Measured 224	198	Measured 193	
	Minimum	168	164	209	204	178	174	
	Maximum C.V.(%)	234 9.41	228 9.41	254 7.98	248 8.04	217 8.13	211 8.03	
		-	-					
F_1^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	218 13.7	212 13.7	230 18.3	224 17.9	198 16.1	193 15.7	
	No. Specimens No. Batches	20 1		5		5		
	Data Class	Scree	ening	Scree	Screening		Screening	
E_1^c	Mean Minimum Maximum C.V.(%)	17.1 16.1 17.8 2.89	16.2 15.2 16.8 2.94	17.9 17.5 18.1 1.23	16.9 16.5 17.1 1.35	18.0 17.5 18.8 3.04	17.0 16.6 17.8 5.59	
(Msi)	No. Specimens		20			5		
	No. Batches Data Class	1 Scree		1 Scree	ening	1 Screening		
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches							
	Data Class Mean		12600		13600			
	Minimum Maximum C.V.(%)		12000 13400 2.92		13600 13700 0.48			
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Weibull		(2) Normal			
ε ₁ (με)	C ₁		12800		13600			
(με)	C_2		35.7		65.7			
	No. Specimens No. Batches	20 1		5				
	Data Class	Scree		Scree	ening			

Volume 2, Chapter 4 Carbon Fiber Composites

							NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERIA		X 33 6k/E7K8 ι		•	4 57	4.50	Table 4.2.2(e) C/Ep 145-UT
FIBER V	OLUME: 57-5	85 wt% 8 % 57 in.	Comp: De Void Con		1.57 0.0%	-1.58 g/cm ³ 6	HITEX 33/E7K8 Compression, 1-axis [0] ₁₀ 180/1.5%
TEST ME		N:	Screening				
SAC	CMA SRM 1-88						
NORMAI	LIZED BY: Fibe	r volume to 60%	5 (0.0057 in. C	PT)			
	Content (%) um at T, RH	18 1.: (1 20	5)				
Source C	Joue	Normalized	Measured	Normaliz	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	136 111 161 13.4	132 108 157 13.6				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	136 18.3	132 17.8				
	No. Specimens No. Batches Data Class	5 1 Scree					
E_1^c	Mean Minimum Maximum C.V.(%)	17.6 17.0 18.0 2.47	16.6 16.1 17.0 2.47				
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches	00100					
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C_1 C_2						
	No. Specimens No. Batches Data Class						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	•	EX 33 6k/E7K8			Table 4.2.2(f)	
FIBER	VOLUME: 62-0	80 wt% 64 % 053 in.	COMP: D VOID CO		C/Ep 145-UT HITEX 33/E7K8 Shear, 12-plane [(±45)₂/45]s 75/A, 180/A, 75/1.5%, 180/1.5%	
	METHOD:	Screening				
AS	STM D 3518-76					
NORM	ALIZED BY: Not	normalized				
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75 ambient	180 ambient	75 1.5 (1)	180 1.5 (1)	
Source	Mean	20 15.0	20 13.2	20 16.3	20 11.7	
	Minimum Maximum	13.5 15.8	13.1 13.3	15.8 16.7	11.5 11.9	
	C.V.(%)	3.52	0.655	2.20	1.27	
F ₁₂ ^{su}	B-value Distribution	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	15.2 34.8	13.2 0.0865	16.3 0.357	11.7 0.148	
	No. Specimens No. Batches Data Class	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening	
	Mean Minimum Maximum C.V.(%)	Coreening	Ocreening	Ocreening	Ocreening	
γ_{12}^{su}	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					
G _s ¹²	Mean Minimum Maximum C.V.(%)					
(Msi)	No. Specimens No. Batches Data Class					

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

4.2.3 AS4 12k/E7K8 unidirectional tape

Material Description:

Material: AS4-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 32-37%, typical cured ply thickness of 0.0054 inches.
- Processing: Autoclave cure; 300-310° F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.3 AS4 12k/E7K8 unidirectional tape*

MATERIAL:	AS4 12k/E7K8 unidirectional tape			C/Ep 145-UT AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4 12k/E7K8 unidire	ctional tape prepreg		
FIBER:	Hercules AS4 12k	MATRIX:	U.S. Polymeric E7K8	5
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 13	0 min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal 1	/88
Date of form manufacture	Date of analysis 1	/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°F/A	180°F/A		75°F/W	180°F/W	
SSSS		SS-S			SSSS	SSSS	
SS							
SS-S		SS-S			SS	SS	
S			S		S	S	
	SS SS-S	SS SS-S	SS SS-S SS-S	SS SS-S SS-S	SS SS-S SS-S	SS SS-S SS SS	SS SS-S SS-S SS SS

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.52 - 1.59	
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	59.6	53 - 60	
Ply Thickness	(in)	0.0054	0.0054 - 0.0057	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

(JUN	A WERE SUBMITT NE 1989). ALL DOC	UMENTATION	PRESENTLY			LIED FOR THIS	MATERIAL.	
MATERI		12k/E7K8 unidi			. 3	C/Ep 1	4.2.3(a) I45-UT	
FIBER V	OLUME: 53-6		COMP: DE VOID CON		8-1.59 g/cm ³ I-2.2%	Tensior	E7K8 1, 1-axis	
TEST ME		54 in.		S CALCULATIO	N	75/A, -65/A] ₁₀ A, 75/0.77% ening	
-	M D 3039-76			of initial linear p			g	
NORMAI	_IZED BY: Fibe	r volume to 60%	curve 5 (0.0054 in. C	PT)				
Tempera		75		-6		75		
	Content (%) Im at T, RH	amb	ient	amb	ient	0.7 (1		
Source C		20		20		20)	
	Maria	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	303 253	293 252	291 255	273 239	304 286	294 276	
	Maximum	345	347	327	306	317	306	
	C.V.(%)	8.26	8.94	8.93	8.90	4.16	4.22	
F ₁ ^{tu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁	26.7	32.4	291	273	304	294	
	C ₂	4.40	7.49	26.0	24.4	12.7	12.2	
	No. Specimens No. Batches	20 2		5		5		
	Data Class	Screening			Screening		Screening	
	Mean	19.3	18.7	20.1	18.8	19.6	18.9	
	Minimum Maximum	18.5 21.3	17.4 21.4	19.7 20.6	18.4 19.3	19.0 20.1	18.4 19.4	
E_1^t	C.V.(%)	3.79	6.10	1.67	1.79	2.04	1.96	
(Msi)	No. Specimens	20		5		5		
	No. Batches Data Class	2 Scree		1 Screening		1 Scree		
	Mean		0.320				0.288	
v_{12}^{t}	No. Specimens No. Batches	5				5		
• 12	Data Class	Scree	ening			Scree	ening	
	Mean		13900		13500		14600	
	Minimum Maximum		12500 16000		12000 14800		13700 15000	
	C.V.(%)		11.0		8.24		3.83	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
ε ₁ (με)	C ₁		13900		13500		14600	
(με)	C_2		1530		1110		561	
	No. Specimens	5	i	5		5		
	No. Batches	1		1		1		
	Data Class	Scree	ening	Scree	ening	Scree	ening	

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS
	ONTENT: 32-3	12k/E7K8 unid 7 wt%	irectional tape COMP: DE VOID CON	INSITY: 1	I.53-1.59 g/cm ³).64-2.2%	Table 4.2.3(b) C/Ep 145-UT AS4/E7K8
FIBER V PLY THI		0 % 54 in.	VOID CON	IIEINI. (J.04-2.2%	Tension, 1-axis [0] ₁₀ 180/0.77%
TEST ME				S CALCULA		Screening
AST	M D 3039-76		curve	of initial linea	ar portion of load-	displacement
NORMAI	LIZED BY: Fibe	r volume to 60%	6 (0.0054 in. C	PT)		
Tempera Moisture Equilibriu	iture (°F) Content (%) ım at T, RH	18 0.1 (1				
Source C		2	0			
	Mean	Normalized 310	Measured 296	Normalize	d Measured	Normalized Measured
	Minimum Maximum C.V.(%)	284 326 5.87	230 274 306 4.76			
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal			
(ksi)	C ₁ C ₂	310 18.2	296 13.9			
	No. Specimens No. Batches Data Class	5 1 Scree	l			
E_1^t	Mean Minimum Maximum C.V.(%)	20.1 19.1 21.8 5.65	19.2 18.5 20.4 4.01			
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree	l			
v_{12}^{t}	Mean No. Specimens No. Batches	Ę				
	Data Class	Scree				
	Mean Minimum Maximum C.V.(%)		14600 13900 15400 4.21			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		14600 616			
	No. Specimens No. Batches Data Class	5 1 Scree				

Volume 2, Chapter 4 Carbon Fiber Composites

	* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.						
MATER		12k/E7K8 unidi	rectional tape			C/Ep	4.2.3(c) 145-UT
FIBER	VOLUME: 53-6	8 wt% 0 % 57 in.	COMP: DENSITY: 1.54-1.59 g/cm ³ AS4/E7K8 VOID CONTENT: 0.64-0.75% Tension, 2-axis [90] ₂₀ 75/A				
	TEST METHOD: MODULUS CALCULATION: Screening						
AS	STM D 3039-76		Slope curve	of initial line	ear portion of load-o	displacement	
	NORMALIZED BY: Not normalized						
Moistur	rature (°F) e Content (%) rium at T, RH	75 ambient					
Source	Mean	20 5.47					
	Minimum Maximum C.V.(%)	4.10 7.01 13.2					
F ₂ ^{tu}	B-value Distribution	(1) Weibull					
(ksi)	C ₁ C ₂	5.79 8.04					
	No. Specimens No. Batches Data Class	20 1 Screening					
E_2^t	Mean Minimum Maximum C.V.(%)	1.23 1.16 1.32 3.76					
(Msi)	No. Specimens No. Batches Data Class	20 1 Screening					
v_{21}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_2^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC							
FIBER V	ONTENT: 35-4 OLUME: 51-5	12k/E7K8 unidi 0 wt% 7 % 54 in.	rectional tape COMP: DE VOID CON		2-1.58 g/cm ³ -2.3%	C/Ep AS4 Compress	4.2.3(d) 145-UT /E7K8 sion, 1-axis)] ₁₀	
TEST ME	ETHOD:					75/A, -65// Scre	A, 75/0.77% ening	
	CMA SRM 1-88 LIZED BY: Fibe	r volume to 60%	curve		portion of load-o	displacement		
	Content (%) um at T, RH	7: amb	ient	amt	65 bient 0	7 0.` (1 2	77 I)	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	245 207 269 8.00	209 176 229 7.80	276 251 299 6.57	235 213 254 6.60	215 196 238 7.78	182 166 202 7.75	
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	254 16.3	216 16.3	276 18.1	235 15.4	215 16.7	183 14.2	
	No. Specimens No. Batches Data Class	20 1 Screening			5 1 Screening		5 1 Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)	19.0 17.3 20.4 4.58	17.9 16.3 19.2 4.54	17.6 16.6 18.0 3.16	16.5 15.7 17.0 3.14	18.5 17.7 19.0 2.95	17.4 16.7 17.9 2.86	
(Msi)	No. Specimens No. Batches Data Class	2 1 Scree	l		5		5 1 Screening	
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches Data Class				~~~~		5 ming	
	Mean Minimum Maximum C.V.(%)		11700 10800 13100 4.81		14400 13900 15100 3.89			
$arepsilon_1^{ m cu}$	B-value Distribution		(2) Normal		(2) Normal			
(με)	C ₁ C ₂		11700 564		14400 559			
	No. Specimens No. Batches Data Class	2 1 Scree			5 1 ening			

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	12k/E7K8 unidi	rectional tape					4.2.3(e) 145-UT
FIBER V	OLUME: 51-5	0 wt% 7 % 54 in.	Comp: De Void Con		1.52 1.4-2	-1.58 g/cm ³ 2.3%	AS4 Compress [(/E7K8 sion, 1-axis)] ₁₀ 0.77%
TEST METHOD: MODULUS CALCULATION:							Scre	ening
SAC	CMA SRM 1-88		Slope curve		ear po	ortion of load-	displacement	
NORMAI	LIZED BY: Fibe	r volume to 60%						
Moisture Equilibriu	tture (°F) Content (%) um at T, RH	18 0.7 (1 20	77)					
Source C	Jode	Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	150 125 176 14.8	127 106 150 15.0					
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal					
(ksi)	C ₁ C ₂	150 22.2	127 18.9					
	No. Specimens No. Batches Data Class	5 1 Scree						
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.0 17.4 18.4 2.46	17.0 16.4 17.3 2.41					
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree						
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
ε_1^{cu}	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER		AS4 12k/E7K8 unid				Table 4.2.3(f)
FIBER	VOLUME: 5	33-36 wt% 55-57 % 0.0055 in.	COMP: D VOID COI	ENSITY: 1.5 NTENT: 1.9	4-1.55 g/cm ³ -2.3%	C/Ep 145-UT AS4/E7K8 Shear, 12-plane [(±45) ₂ /45] ₈ 75/A, 180/A, 75/0.77%,
	//ETHOD: STM D 3518-76		MODULU	S CALCULATI	ON:	180/0.77% Screening
		Not normalized				
Moistur	rature (°F) e Content (%) ium at T, RH Code	75 ambient 20	180 ambient 20	75 0.77 (1) 20	180 0.77 (1) 20	
	Mean Minimum Maximum C.V.(%)	16.5 13.8 17.0 6.41	14.6 14.2 14.9 1.90	15.1 13.5 15.8 6.04	13.4 13.0 13.8 2.44	
F ₁₂ (ksi)	B-value Distribution C ₁ C ₂	(2) ANOVA 2.46 7.58	(2) Normal 14.6 0.277	(2) Normal 15.1 0.905	(2) Normal 13.4 0.328	
	No. Specimens No. Batches Data Class	20 2 Screening	5 1 Screening	5 1 Screening	5 1 Screening	
G ^s ₁₂	Mean Minimum Maximum C.V.(%)					
(Msi)	No. Specimens No. Batches Data Class	,				
	Mean Minimum Maximum C.V.(%)					
γ_{12}^{su}	B-value Distribution C ₁					
(με)	C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned for 14 days at 160°F, 85% RH.

(2) Basis values are presented only for A and B data classes.

4.2.4 Celion 12k/E7K8 unidirectional tape

Material Description:

Material: Celion-12k/E7K8

- Form: Unidirectional tape, fiber areal weight of 280 g/m², typical cured resin content of 29-33%, typical cured ply thickness of 0.011 inches.
- Processing: Autoclave cure; 300-310°F, 55 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical Applications: Primary and secondary structural applications on commercial and military aircraft.

4.2.4 Celion 12k/E7K8 unidirectional tape*

MATERIAL:	Celion 12k/E7K8 unidirectional tape			C/Ep 280-UT Celion 12k/E7K8 Summary
FORM:	U.S. Polymeric Celion 12k/E7K8 unidir	rectional tape, grade	e 280 prepreg	
FIBER:	Celanese Celion 12k, no twist	MATRIX:	U.S. Polymeric	E7K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: 300 - 310°F, 120 - 130) min., 55 psi		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°F/A	180°F/A		75°F/W	180°F/W	
SSSS		SS-S			SSS-	SSSS	
SS							
SS-S		SS-S			SS	SS	
S			S		S	S	
	SSSS SS SS-S	SSSS SS SS-S	SSSS SS-S SS SS-S SS-S SS-S SS-S	SSSS SS-S SS SS-S SS-S SS-S SS-S	SSSS SS-S SS SS-S SS-S SS-S	SSSS SS-S SS-S SS-S SS SS-S SS-S SS-S	SSSS SS-S SSS- SSSS SS SS-S SS-S SS SS-S SS-S SS-S SS

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.59	1.59 - 1.61	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	59.6	59 - 64	
Ply Thickness	(in)	0.011	0.010 - 0.011	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

(JUN MATERI	NE 1989). ALL DOC	OMENTATION on 12k/E7K8 uni			AS NOT SUPP	LIED FOR THIS	
RESIN C FIBER V	CONTENT: 29 w	C/Ep 2 Celion Tensior [0	80-UT E7K8 , 1-axis]₅				
TEST ME	-		MODULUS	S CALCULATIO	N:	75/A, -65/A Scree	., 75/0.77% ening
AST	TM D 3039-76						
NORMAI	LIZED BY: Fibe	r volume to 60%	5 (0.011 in. CP	T)			
	Content (%) um at T, RH	75 amb 20	ient	-6 amb	ient	75 0.7 (1 20	7)
Source C	2006	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	293 265 317 4.52	309 285 332 4.52	281 268 307 5.44	302 287 330 5,44	300 292 315 3.22	314 306 330 3.60
F ₁ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	299 25.6	316 25.9	281 15.3	302 16.4	300 9.67	314 10.1
	No. Specimens20No. Batches1Data ClassScreen		1			5 1 Screening	
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	20.0 18.7 21.9 4.48	21.1 20.1 23.0 4.25	19.2 18.6 20.3 3.40	20.6 20.0 21.8 3.80	19.0 18.5 20.0 3.22	19.9 19.4 21.0 3.60
(Msi)	No. Specimens No. Batches	20 1		5		5	
	Data Class	Scree	ening	Scree		Scree	
v_{12}^t	Mean No. Specimens No. Batches	5 1				5 1	
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ening 14300 13500 14700 3.34		14800 14200 15800 3.87	Scree	ning
$\varepsilon_1^{ m tu}$	B-value Distribution		(2) Normal		(2) Normal		
(με)	C ₁ C ₂		14300 478		14800 573		
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree			

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERIA	AL: Celic	on 12k/E7K8 uni	directional tap	е		Table 4.2.4(b)
FIBER V	ONTENT: 29 w OLUME: 63-6 CKNESS: 0.01	C/Ep 280-UT Celion E7K8 Tension, 1-axis [0]₅ 180/0.77%				
TEST ME	ETHOD:	Screening				
AST	M D 3039-76					
NORMAL	LIZED BY: Fibe	r volume to 60%	(0.011 in. CP	Т)		
	Content (%) um at T, RH	18/ 0.7 (1) 20	7)			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	293 269 316 6.43	311 286 335 7.19			
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal			
(ksi)	C ₁ C ₂	293 18.9	311 20.0			
	No. Specimens No. Batches Data Class	5 1 Scree				
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	19.8 19.4 20.1 1.61	21.0 20.6 21.4 1.81			
(Msi)	No. Specimens No. Batches	5				
	Data Class Mean	Scree	ning 0.322			
v_{12}^{t}	No. Specimens No. Batches	5 1				
	Data Class Mean	Scree				
	Mean Minimum Maximum C.V.(%)		13800 12300 15400 10.4			
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		13800 1440			
	No. Specimens No. Batches Data Class	5 1 Scree				

Volume 2, Chapter 4 Carbon Fiber Composites

	TA WERE SUBMITT JNE 1989). ALL DOC						
MATER		on 12k/E7K8 unid				Table	4.2.4(c) 280-UT
RESIN CONTENT:31-33 wt%FIBER VOLUME:59-61 %PLY THICKNESS:0.011 in.			COMP: DENS VOID CONTE	SITY: 1.59- NT: 0.68-	-1.60 g/cm ³ -0.74%	Celior Tensio [9	n /E7K8 n, 2-axis 0] ₁₂ 5/A
	METHOD:		MODULUS C	ALCULATIO	N:		ening
AS	STM D 3039-76						
NORM	ALIZED BY: Not r	normalized					
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75 ambient					
Source	Code Mean	20 6.00					
	Minimum Maximum C.V.(%)	5.21 6.89 8.79					
F_2^{tu}	B-value Distribution	(1) Weibull					
(ksi)	C ₁ C ₂	6.24 12.6					
	No. Specimens No. Batches Data Class	20 1 Screening					
E_2^t	Mean Minimum Maximum C.V.(%)	1.28 1.19 1.36 4.52					
(Msi)	No. Specimens No. Batches Data Class	20 1 Screening					
v_{21}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_2^{\mathrm{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERI		on 12k/E7K8 uni	idirectional tap COMP: DE		. 3	C/Ep 2	4.2.4(d) 280-UT
FIBER V		0-1.61 g/cm ³ 8-0.79%	Compress	n E7K8 sion, 1-axis)]₅			
PLY THICKNESS: 0.010 in. [0]₅ TEST METHOD: MODULUS CALCULATION: 75/A, -65/A, 75/0.7							
	CMA SRM 1-88			· T)			
Tempera		r volume to 60%	·	-6	5	7!	-
Moisture	Content (%) Im at T, RH	amb	ient	amb	pient	0.7 (1 20	77)
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	206	213	221	229	207	214
	Minimum	171	177	198	205	198	205
	Maximum	247	255	267 12.2	276	219	227
	C.V.(%)	8.62	8.62		12.2	5.06	5.06
F_1^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	214 12.1	221 12.1	221 27.0	228 28.0	207 10.5	214 10.8
	No. Specimens No. Batches	20 1			5 1		i
	Data Class	Scree	ening	Screening		Screening	
	Mean	19.9	21.1	22.9	24.3	21.6	22.3
	Minimum	18.1 21.7	19.2	20.8	22.0	20.2	21.0
E_1^c	Maximum C.V.(%)	4.95	22.3 5.08	23.8 5.28	25.1 5.90	22.8 5.25	23.6 5.86
(Msi)	No. Specimens	20)	5		5	
	No. Batches Data Class	1 Scree		1 Screening		1 Screening	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean		11200		9870		
	Minimum		10800		9210		
	Maximum C.V.(%)		11800 3.59		10600 5.32		
	B-value		(2)		(2)		
ε_1^{cu}	Distribution		Normal		Normal		
(με)	C ₁		11200		9870		
	C ₂		401		526		
	No. Specimens	5		5	5		
	No. Batches	1	ning				
	Data Class	Scree	ening	Scree	ening		

Volume 2, Chapter 4 Carbon Fiber Composites

							ITATION REQUIREMENTS IED FOR THIS MATERIAL.
MATERI	· · · · · · · · · · · · · · · · · · ·		nidirectional tap				Table 4.2.4(e)
FIBER V			Comp: De Void Con		1.60-1.61 0.78-0.79	g/cm ³ 9%	C/Ep 280-UT Celion E7K8 Compression, 1-axis [0]₅ 180/0.77%
TEST ME	ETHOD:		MODULU	S CALCUL	ATION:		Screening
SAC	CMA SRM 1-88						
NORMAI	IZED BY: Fibe	r volume to 60%	% (0.011 in. CP	ΥT)			
	Content (%) Im at T, RH	0. (1	80 77 1) 20				
		Normalized	Measured	Normali	zed Me	asured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	185 158 220 12.9	192 164 228 12.9				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	185 24.0	192 24.8				
	No. Specimens No. Batches Data Class		5 1 ening				
E_1^c	Mean Minimum Maximum C.V.(%)	21.1 19.5 23.1 6.80	22.3 20.6 24.5 7.63				
(Msi)	No. Specimens No. Batches Data Class		5 1 ening				
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class		Ŭ				
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{\mathrm{cu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	RIAL: C	elion 12k/E7K8 ur	nidirectional tap	е			4.2.4(f) 280-UT
FIBER	VOLUME: 6	0-31 wt% 1-62 % .011 in.	Comp: d Void Co		Celio Shear, [±4! 75/A, 180/	n E7K8 12-plane 5/45] ₈ A, 75/0.77%,	
TEST	METHOD:		MODULU	S CALCULATI	ON:		/077% ening
AS	STM D 3518-76						
NORM	ALIZED BY: N	lot normalized					
Moistur	rature (°F) re Content (%) rium at T, RH	75 ambient	180 ambient	75 0.77 (1)	180 0.77 (1)		
Source		20	20	20	20		
	Mean Minimum Maximum C.V.(%)	9.9 9.3 11.1 4.16	10.0 8.1 11.1 11.7	12.0 11.3 12.3 3.41	10.0 8.2 11.4 11.7		
F ₁₂ ^{su}	B-value Distribution	(2) Nonpara.	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	10 1.25	10.0 1.17	12.0 0.407	10.0 1.17		
	No. Specimens No. Batches Data Class	20 1 Screening	5 1 Screening	5 1 Screening	5 1 Screening		
G ^s ₁₂	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\gamma_{12}^{ m su}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches						

(1) Conditioned for 14 days at 160°F, 85% RH.

Data Class

(2) Basis values are presented only for A and B data classes.

4.2.5 AS4 12k/938 unidirectional tape

Material Description:

Material: AS4-12k/938

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 35-49%, typical cured ply thickness of 0.0055 inches.
- Processing: Autoclave cure; 350°F, 85 psi for 2 hours.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications

4.2.5 AS4 12k/938 unidirectional tape*

MATERIAL:	AS4 12k/938 unidirectional tape	C/Ep 145-UT AS4/938 Summary
FORM:	Fiberite Hy-E 1338H unidirectional tape, grade 145 prepreg	
FIBER:	Hercules AS4 12k, unsized, no twist MATRIX: Fiberite 938	
T _g (dry):	T_g (wet): 260°F T_g METHOD:	
PROCESSING:	Autoclave cure: 350 ± 10°F, 120 - 135 min., 100 ± 15 psi	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/85
Date of resin manufacture	Date of data submittal	4/89
Date of form manufacture 7/85	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	II	II		
Tension, 2-axis	II		II		
Tension, 3-axis					
Compression, 1-axis	II			II	
Compression, 2-axis	S				
Compression, 3-axis					
Shear, 12-plane	S		I		
Shear, 23-plane					
Shear, 31-plane					

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.77 - 1.79	
Resin Density	(g/cm ³)	1.30	1.30	
Composite Density	(g/cm ³)	1.60	1.55 - 1.58	
Fiber Areal Weight	(g/m ²)	145	144 - 146	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)	0.0055	0.0048 - 0.0065	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC								
RESIN C FIBER V PLY THI	MATERIAL:AS4 12k/938 unidirectional tapeRESIN CONTENT:35-41 wt%COMP: DENSITY:1.55-1.57 g/cm³FIBER VOLUME:52-57 %VOID CONTENT:0.0-<1.0%					Table 4.2.5(a) C/Ep 145-UT AS4/938 Tension, 1-axis [0] ₈ 75/A, -65/A, 200/A Interim			
	ASTM D 3039-76 (1) NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0053 in. CPT)								
	Content (%) um at T, RH	75 ambient 12		-65 ambient 12		200 ambient 12			
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	314 270 351 7.45	272 230 330 8.79	296 198 363 14.4	238 174 287 11.0	321 263 356 7.79	274 229 322 8.10		
F_1^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) Weibull		
(ksi)	C ₁ C ₂	324 16.5	26.3 4.12	49.1 4.64	249 11.1	26.9 3.78	284 13.3		
	No. Specimens No. Batches Data Class	22 3 Interim		22 3 Interim		20 3 Interim			
E_1^t	Mean Minimum Maximum C.V.(%)	22.4 18.8 26.9 9.88	19.4 17.1 21.0 4.66	19.5 18.5 21.5 4.07	19.0 16.9 22.0 5.13	20.4 18.4 24.0 7.23	20.8 18.4 22.4 6.06		
(Msi)	No. Specimens No. Batches Data Class	2 3 Inte	3	22 3 Interim		20 3 Interim			
v_{12}^{t}	Mean No. Specimens No. Batches Data Class								
	Mean Minimum Maximum C.V.(%)								
$arepsilon_1^{ ext{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

(1) Gage length 2.0 inches.
 (2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	TA WERE SUBMIT JNE 1989). ALL DO							
MATER	RIAL: AS4		4.2.5(b) 45-UT					
FIBER	RESIN CONTENT: 35-40 wt% FIBER VOLUME: 52-58 % PLY THICKNESS: 0.0053-0.0063 in.		COMP:DENSITY: VOID CONTENT:		1.56-1.58 g/cm ³ 0.0-<1.0%	AS4 Tensior [90	C/Ep 145-UT AS4/938 Tension, 2-axis [90] ₁₆ 75/A, 200/A	
	IETHOD:		MODULU	IS CALCU	LATION:		erim	
AS	STM D 3039-76 (1)							
NORMA	ALIZED BY: Not	normalized						
Moistur Equilibr	rature (°F) e Content (%) ium at T, RH	75.0 ambient	200 ambient					
Source		12	12					
	Mean Minimum Maximum C.V.(%)	8.96 6.50 12.0 15.2	8.84 6.85 10.3 12.2					
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) ANOVA					
(ksi)	C ₁ C ₂	9.54 7.10	1.18 3.96					
	No. Specimens No. Batches Data Class	19 3 Interim	17 3 Interim					
E_2^t	Mean Minimum Maximum C.V.(%)	1.29 0.970 1.72 7.89	1.23 1.05 1.40 7.81					
(Msi)	No. Specimens No. Batches Data Class	19 3 Interim	17 3 Interim					
v_{21}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_2^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Gage length 2.0 inches.
 (2) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERI		12k/938 unidire	ectional tape			Table 4.2.5(c) C/Ep 145-UT
FIBER V	RESIN CONTENT: 33-38 wt% COMP: DENSITY: 1.55-1.58 g/cm ³ FIBER VOLUME: 54-60 % VOID CONTENT: 0.0-<1.0%					AS4/938 Compression, 1-axis [0]₀
TEST ME	ETHOD: CMA SRM 1-88		MODULUS	S CALCULATIC	N:	75/A, 200/W Interim, Screening
		cimen thickness	and batch fibe	er volume to 60%	% (0.0053 in. C	PT)
	Content (%) um at T, RH	79 amb 12	ient	20 (1 140°F 1) , 95%	
	2000	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	228 186 265 9.31	211 172 251 10.2	190 158 223 8.96	168 138 194 9.29	
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) ANOVA	(2) ANOVA	(2) ANOVA	
(ksi)	C ₁ C ₂	224 12.5	22.4 3.31	19.0 4.40	17.6 4.57	
	No. Specimens No. Batches Data Class	25 3 Interim		24 3 Interim		
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.2 15.7 21.0 9.13	18.4 15.9 22.5 12.4	19.1 16.9 24.0 12.8	18.4 16.6 21.0 9.10	
(Msi)	No. Specimens No. Batches	1: 2	2	1	2	
v_{12}^{c}	Data Class Mean No. Specimens No. Batches Data Class	Inte		Scree		
	Mean Minimum Maximum C.V.(%)					
$\varepsilon_1^{ m cu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

Specimens conditioned for one month.
 Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER	,	S4 12k/938 unidirec	IED FOR THIS MATERIAL. Table 4.2.5(d)			
FIBER	VOLUME: 56	3 wt% 3 % 0058 in.	COMP: DENSITY: VOID CONTENT:	C/Ep 145-UT AS4/938 Compression, 2-axis [90] ₈ 75/A		
	METHOD: ACMA SRM 1-88		MODULUS CALCU	LATION:	Screening	
NORM	ALIZED BY: No	ot normalized				
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75.0 ambient				
Source	Mean Minimum Maximum C.V.(%)	12 30.4 26.2 39.7 16.4				
F ₂ ^{cu} (ksi)	B-value Distribution C ₁	(1) Nonpara. 6				
	C ₂ No. Specimens No. Batches Data Class	2.14 10 1 Screening				
E_2^c	Mean Minimum Maximum C.V.(%)					
(Msi)	No. Specimens No. Batches Data Class					
v_{21}^{c}	Mean No. Specimens No. Batches					
	Data Class Mean Minimum Maximum C.V.(%)					
ε ₂ ^{cu} (με)	B-value Distribution C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATER		12k/938 unidire		Table 4.2.5(e)		
FIBER	VOLUME: 54-5	37 wt% 57 % 951-0.0063 in.	COMP: D VOID CO		C/Ep 145-UT AS4/938 Shear, 12-plane [±45] _{2s} 75/A, 200/A	
	IETHOD:	LATION:	Interim, Screening			
AS	STM D 3518-76					
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75.0	200			
Equilibr	e Content (%) ium at T, RH	ambient	ambient			
Source	Mean	12 13.0	12 13.9			
	Minimum	13.0	13.9			
	Maximum	13.9	16.0			
	C.V.(%)	6.36	7.63			
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) ANOVA			
(ksi)	C ₁ C ₂	13.4 25.4	1.26 4.96			
	No. Specimens No. Batches Data Class	13 3 Screening	18 3 Interim			
G ^s ₁₂	Mean Minimum Maximum C.V.(%)					
012	()					
(Msi)	No. Specimens No. Batches Data Class					
	Mean Minimum Maximum C.V.(%)					
$\gamma_{12}^{\rm su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Basis values are presented only for A and B data classes.

4.2.6 T-300 3k/934 plain weave fabric

Material Description:

Material: T-300 3k/934

- Form: Plain weave fabric, fiber areal weight of 196 g/m², typical cured resin content of 34%, typical cured ply thickness of 0.0078 inches.
- Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶. Typical tensile strength is 530,000 psi.
- Matrix: 934 is a high flow, epoxy resin with good hot/wet properties and meets NASA outgassing requirements.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Aircraft primary and secondary structure, critical space structure.

4.2.6 T300 3k/934 plain weave fabric*

MATERIAL:	T-300 3k/934 plain weave fabric			C/Ep 194-PW T-300/934 Summary
FORM:	Fiberite HMF-322/34 plain weave fabri			
FIBER:	Toray T-300 3k	MATRIX:	Fiberite 934	
T _g (dry):	410°F T _g (wet):	T _g METHOD:	DSC	
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 130			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing
Date of resin manufacture	Date of data submittal 6/88
Date of form manufacture 2/84	Date of analysis 1/93
Date of composite manufacture	

	75°F/A	-65°F/A	250°F/A	160°F/W	250°F/W	
Tension, 1-axis	IS-I	IS-I	SS-S	II	II	
Tension, 2-axis	II-I	II-I	SS-S	II	II	
Tension, 3-axis						
Compression, 1-axis	II	II	SI	I	I	
Compression, 2-axis	II	II	SI	I	I I	
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
SB Strength, 31-plane	S	S	S			

LAMINA PROPERTY SUMMARY

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)		1.73 - 1.74	
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)	1.55	1.54 - 1.57	
Fiber Areal Weight	(g/m ²)	194	1.92 - 2.00	
Fiber Volume	(%)		58 - 60	
Ply Thickness	(in)		0.0073 - 0.0084	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.											
MATERIA		0 3k/934 plain v				Table 4	4.2.6(a)				
FIBER V	OLUME: 58-6	5 wt% 0 % 74-0.0082 in.	COMP: DE VOID CON	NSITY: 1.54 TENT: <0.9	4-1.57 g/cm ³ 5-1.2%	C/Ep 194-PW T-300/934 Tension, 1-axis [0 ₁] ₁₂ 75/A, -65/A, 250/A					
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		Screening				
AST	M D 3039-76 (2)		Chord	between 20 an	d 40% of typica	al ultimate load					
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0077 in. CPT)										
	ture (°F) Content (%) ım at T, RH	7! amb		-6 amb		25 amb					
Source C		12		1		12					
	Mean	Normalized 91	Measured 94	Normalized 83	Measured 85	Normalized 109	Measured 113				
	Minimum	82	85	78	79	109	109				
	Maximum	99	100	87	90	114	118				
	C.V.(%)	4.1	4.0	3.2	3.3	3.54	3.42				
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal				
(ksi)	C ₁	93.0	96	83.7	86	86.0	113				
	C ₂	28.2	31	35.8	36	2.86	3.87				
	No. Specimens	20		2		5					
	No. Batches Data Class	4 Inte		2 Inte		1 Scree					
	Mean	9.1	9.4	10. 10.		9.3	9.7				
	Minimum	8.4	8.7	8.6	9.0	9.1	9.4				
-t	Maximum	9.5	9.9	12	12 10.	10.0	10.7				
E_1^t	C.V.(%)	3.3	3.6	11	10.	4.6	5.6				
(Msi)	No. Specimens	20	0	2	0	5					
	No. Batches Data Class	4 Inte		2 Inte	l rim	1 Screening					
	Mean	inte		inte		00000					
v_{12}^{t}	No. Specimens No. Batches										
	Data Class Mean		9780		8990		11300				
	Minimum		8880		7990		10900				
	Maximum		11200		9800		11800				
	C.V.(%)		5.61		6.07		3.11				
$arepsilon_1^{ ext{tu}}$	B-value (1) Distribution ANOVA		(1) ANOVA		(1) Normal						
(με)	C ₁		577		592		11300				
	C ₂		3.12				351				
	No. Specimens	20		20		5					
	No. Batches	4		4	-	1					
	Data Class	Inte	rım	Inte	rim	Scree	Screening				

Basis values are presented only for A and B data classes.
 Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC	-		-				
RESIN C FIBER V	MATERIAL: T-300 3k/934 plain w RESIN CONTENT: 33-35 wt% FIBER VOLUME: 58-60 % PLY THICKNESS: 0.0074-0.0082 in.			eave fabric COMP: DENSITY: 1.54-1.57 g/cm ³ VOID CONTENT: <0.5-1.2%			4.2.6(b) 194-PW 0/934 n, 1-axis /ɪ] ₁₂	
	TEST METHOD:			S CALCULATIO		160/W, 250/W Interim		
ASI	M D 3039-76 (2)		Chord	between 20 an	d 40% of typica	al ultimate load		
	•			er volume to 57%				
	Content (%) um at T, RH	16 (1 1:)	25 (1)			
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	96 84 104 5.7	98 88 106 5.11	79 61 95 14	82 66 97 11			
F ₁ ^{tu}	B-value Distribution	(2) ANOVA	(2) Weibull	(2) ANOVA	(2) Weibull			
(ksi)	C ₁ C ₂	6.0 4.8	101 24	12 5.3	86 11			
	No. Specimens No. Batches Data Class	3	15 15 3 3 Interim Interim		3			
E_1^t	Mean Minimum Maximum C.V.(%)	9.8 8.1 11.0 8.7	10.0 8.6 11.7 8.7	9.4 6.8 12.0 17.	9.7 7.1 13.0 18			
(Msi)	No. Specimens No. Batches Data Class	11 3 Inte	5	15 3 Interim				
v_{12}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.
 Width 0.5 inch, speed of testing 0.05 in./in./min, gage length below recommendation.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	<u>NE 1989). ALL DOC</u> AL: T-30	0 3k/934 plain v				Table 4	4.2.6(c)	
FIBER V	OLUME: 58-6	5 wt% 0 % 74-0.0082 in.	COMP: DE VOID CON		4-1.57 g/cm ³ 5-1.2%	C/Ep 194-PW T-300/934 Tension, 2-axis [90 _f] ₁₂ 75/A, -65/A, 250/A		
	ETHOD: M D 3039-76			S CALCULATIO		Interim, S	Screening	
		cimen thickness		between 20 and er volume to 57%				
Tempera Moisture	ture (°F) Content (%) um at T, RH	7t amb		-6 amb	-	25 amb		
Source C	Code	1:	2	1:	2	12	2	
	-	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	88 80. 97 5.7	91 82 99 5.5	80. 70. 91 6.2	82 72 95 6.5	94 90. 97 2.6	98 94 101 2.7	
F ₂ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	5.4 3.5	5.4 3.4	5.2 3.3	5.7 3.4	93.7 2.47	97.8 2.59	
	No. Specimens No. Batches Data Class	20 4 Inte	Ļ	20 4 Inte	ŀ	5 1 Scree		
E_2^t	Mean Minimum Maximum C.V.(%)	9.0 8.3 9.9 5.0	9.3 8.7 10.3 4.8	9.1 8.1 10.8 9.3	9.5 8.3 11.1 9.2	8.1 8.0 8.2 1.1	8.5 8.3 8.6 1.5	
(Msi)	No. Specimens No. Batches	20 4	Ļ	20 4	ŀ	5		
v_{21}^{t}	Data Class Mean No. Specimens No. Batches Data Class	Inte		Inte	1011	Scree	a in 19	
	Mean Minimum Maximum C.V.(%)		9630 8680 11100 6.18		9100 7750 10700 7.44		11400 10400 12400 8.59	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Normal	
(με)	C ₁ C ₂		616 2.82		710 3.08		11400 981	
	No. Specimens No. Batches Data Class	20 4 Inte	Ļ	20 4 Inte	ŀ	5 1 Scree		

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC								
MATERI		0 3k/934 plain v				Table	4.2.6(d)		
RESIN CONTENT: 33-35 wt% FIBER VOLUME: 58-60 % PLY THICKNESS: 0.0074-0.0082 in.				COMP: DENSITY: 1.54-1.57 g/cm ³ VOID CONTENT: <0.5-1.2%			C/Ep 194-PW T-300/934 Tension, 2-axis [90 _f] ₁₂ 160/W, 250/W		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		, 250/W erim		
AST	M D 3039-76		Chord	between 20 an	d 40% of typica	al ultimate load			
NORMAI	LIZED BY: Spec	imen thickness	and batch fibe	er volume to 57%	% (0.0077 in. C	PT)			
Equilibriu	Content (%) um at T, RH	16 (1)	25)				
Source C	Code	12 Normalized	2 Measured	1. Normalized	2 Measured	Normalized	Measured		
	Mean	97	100	81	83	Normalized	MEASUIEU		
	Minimum	90.	92	73	75				
	Maximum	111	113	89	91				
	C.V.(%)	6.8	6.3	5.1	4.8				
F_2^{tu}	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA				
(ksi)	C ₁	7.3	6.8	4.4	4.2				
	C ₂	4.8	4.5	4.5	4.2				
	No. Specimens	15		1					
	No. Batches		3 3		3 3 Interim Interim				
	Data Class Mean	10.	10.	9.9	10.				
	Minimum	8.0	8.2	8.2	8.5				
	Maximum	11.8	12.1	11.9	12.1				
E_2^t	C.V.(%)	11	11	11	11				
(Msi)	No. Specimens	15	5	1	5				
~ /	No. Batches	3		3	3				
	Data Class Mean	Inte	rim	Inte	rim				
v_{21}^{t}	No. Specimens No. Batches								
	Data Class								
	Mean Minimum								
	Minimum Maximum C.V.(%)								
	B-value								
$arepsilon_2^{ ext{tu}}$	Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC								
FIBER V	CONTENT: 33-3 OLUME: 58-6	0 3k/934 plain v 5 wt% 0 % 74-0.0082 in.	veave fabric COMP: DENSITY: 1.54-1.57 g/cm ³ VOID CONTENT: <0.5-1.2%			C/Ep 1 T-30 Compress [0	Table 4.2.6(e) C/Ep 194-PW T-300/934 Compression, 1-axis [0 _f] ₁₂		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		75/A, -65/A, 250/A Interim, Screening		
SAC	CMA SRM 1-88		Chord	between 20 an	d 40% of typica	al ultimate load			
NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0077 in. CPT)									
Equilibriu	Content (%) um at T, RH	7: amb	ient	-6 amb	ient	25 amb	ient		
Source C	Code	1: Normalized	2 Measured	12 Normalized	2 Measured	1: Normalized	2 Measured		
	Mean Minimum Maximum C.V.(%)	95 83 120 10.	98 97 125 10.	104 87 133 13	108 90. 139 14	100. 94 107 5.6	105 98 111 5.1		
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	10. 3.9	11 3.9	15 3.7	16 3.8	100. 5.64	105 5.4		
	No. Specimens No. Batches Data Class	20 4 Inte		20 4 Interim		5 1 Screening			
E_1^c	Mean Minimum Maximum C.V.(%)	8.4 7.7 9.0 5.1	8.8 8.0 9.4 5.3	8.2 7.4 8.9 5.1	8.6 7.8 9.7 5.7	8.4 7.9 10.0 6.3	8.9 8.1 10.1 6.4		
(Msi)	No. Specimens No. Batches	20 4		20 4	Ļ	19 4			
<i>v</i> ^c ₁₂	Data Class Mean No. Specimens No. Batches Data Class	Inte		Inte	1011	Inte			
	Mean Minimum Maximum C.V.(%)								
ε_1^{cu}	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Basis values are presented only for A and B data classes.
 Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.
 Specimen thickness of 0.09 - 0.10 inch is less than nominal 0.12 inch thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

	* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.									
MATERIA RESIN CO FIBER VO	ONTENT: 33-3 DLUME: 58-6		veave fabric COMP: DE VOID CON		4-1.57 g/cm ³ 5-1.2%	C/Ep T-30 Compress	4.2.6(f) 194-PW 0/934 sion, 1-axis			
PLY THIC		74-0.0082 in.	MODULUS	S CALCULATIO	N:	160/W	[0 _f] ₁₂ 160/W, 250/W Interim			
	MA SRM 1-88			between 20 an		I ultimate load				
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	% (0.0077 in. C	PT)				
	Content (%) m at T, RH	16 (1 12)	25 (1 12)					
	000	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean	74	76	44	46					
	Minimum Maximum C.V.(%)	67 81 6.9	68 84 5.6	40 49 6.2	41 51 6.2					
F ₁ ^{cu} (3)	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) Weibull	(2) Weibull					
(ksi)	C ₁ C ₂	5.6 4.9	6.2 5.0	45.4 17.4	46.8 16.9					
	No. Specimens No. Batches Data Class	15 3 Inter		15 3 Interim						
E_1^c	Mean Minimum Maximum C.V.(%)									
(Msi)	No. Specimens No. Batches Data Class									
v_{12}^{c}	Mean No. Specimens No. Batches Data Class									
	Mean Minimum Maximum C.V.(%)									
ε_1^{cu}	B-value Distribution C1									
(με)	C_1 C_2									
	No. Specimens No. Batches Data Class									

(1) Immersed in water at 160°F for 14 days.

(2) Basis values are presented only for A and B data classes.
(3) Tab thickness of 0.112 - 0.120 inch is larger than 0.070 inch nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT E 1989). ALL DOC									
MATERIA RESIN CO FIBER VO PLY THIC	ONTENT: 33-3 DLUME: 58-6	00 3k/934 plain weave fabric 35 wt% COMP: DENSITY: 1.54-1.57 g/cm ³ 60 % VOID CONTENT: <0.5-1.2% 074-0.0082 in.			C/Ep 1 T-30 Compress [90	Table 4.2.6(g) C/Ep 194-PW T-300/934 Compression, 2-axis [90 _f] ₁₂				
TEST ME				S CALCULATIO		Interim,	75/A, -65/A, 250/A Interim, Screening			
	MA SRM 1-88			between 20 an						
-	NORMALIZED BY:Specimen thickness and batch fiber volume to 57% (0.0077 in. CPT)Temperature (°F)75-65250									
Moisture	Content (%) m at T, RH	amb		amb		amb				
Source C	ode	12		1		1				
	Mean	Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Minimum	90. 81	93 85	103 94	106 98	82 77	85 81			
	Maximum	100.	104	116	121	84	88			
	C.V.(%)	5.9	6.0	6.2	6.1	3.4	3.4			
F ₂ ^{cu} (2)	B-value Distribution	(4) ANOVA	(4) ANOVA	(1) Normal	(1) Normal	(1) Normal	(1) Normal			
(ksi)	C ₁ C ₂	5.6 3.2	5.9 3.2	103 6.18	106 6.4	81.7 2.74	85.3 2.86			
	No. Specimens No. Batches Data Class	20 4 Interim		4	20 4 Interim		ening			
E ^c ₂ (3)	Mean Minimum Maximum C.V.(%)	8.3 7.4 9.3 7.0	8.6 7.7 9.5 6.6	8.4 7.5 9.0 5.1	8.8 7.7 9.4 5.5	8.8 7.9 10.2 8.4	9.0 8.1 10.6 8.9			
(Msi)	No. Specimens No. Batches Data Class	20 4 Interim		20 4 Interim		20 4 Interim				
v_{21}^{c}	Mean No. Specimens No. Batches	inte				inte				
	Data Class Mean Minimum Maximum C.V.(%)									
$\varepsilon_2^{\mathrm{cu}}$	B-value Distribution									
(με)	C ₁ C ₂									
	No. Specimens No. Batches Data Class									

(1) Basis values are presented only for A and B data classes.

(2) Tab thickness of 0.112-0.120 inch is larger than 0.070 inch nominal thickness per method.

(3) Specimen thickness of 0.09-0.10 inch is less than nominal 0.120 inch thickness per method.

(4) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT IE 1989). ALL DOC						
MATERIA		0 3k/934 plain v				Table	4.2.6(h)
RESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.54 FIBER VOLUME: 58-60 % VOID CONTENT: <0.5						T-30 Compress [90	194-PW 0/934 sion, 2-axis 0 _f] ₁₂ , 250/W
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		erim
SAC	MA SRM 1-88		Chord	between 20 an	d 40% of typica	al ultimate load	
NORMAL	IZED BY: Spec	imen thickness	and batch fibe	er volume to 57%	% (0.0077 in. C	PT)	
	Content (%) m at T, RH	16 we (1 12	et)	25 we (1	et)		
	••	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	75 63 81 7.2	77 66 83 6.5	46 38 59 11	47 39 60 11		
F ₂ ^{cu} (3)	B-value Distribution	(2) ANOVA	(2) ANOVA	(2) ANOVA	(2) ANOVA		
(ksi)	C ₁ C ₂	6.0 5.0	5.4 4.7	5.9 5.1	5.8 5.0		
	No. Specimens No. Batches Data Class	15 3 Inte	1	1: 3 Inte	3		
E_2^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
v_{21}^{c}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_2^{\mathrm{cu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Immersed in water at 160°F for 14 days.
 Basis values are presented only for A and B data classes.
 Tab thickness of 0.112-0.120 inch is larger than 0.070 nominal thickness per method.

Volume 2, Chapter 4 Carbon Fiber Composites

				ESTABLISHMENT			
MATERIAI	L:	T-300 3k	/934 plain weav	e fabric			le 4.2.6(i) o 194-PW
RESIN CONTENT: 33-35 wt% FIBER VOLUME: 58-60 % PLY THICKNESS: 0.0074-0.0082 ir			COMP: DENSITY: VOID CONTENT:	1.54-1.57 g/cr <0.5-1.2%	n ³ T- SBS	300/934 , 31-plane [0 _f] ₁₂ 65/A, 250/A	
TEST MET	THOD:			MODULUS CALCI	JLATION:		reening
ASTM	/I D-2344-68	(1)		Chord between	20 and 40% of t	ypical ultimate loa	d
NORMALI	ZED BY:	Not norm	alized				
Temperatu Moisture C Equilibrium	Content (%)		75 ambient	-65 ambient	250 ambient		
Source Co			12	12	12		
	Mean Minimum Maximum C.V.(%)		12.0 10.5 13.4 6.89	11.9 10.0 13.9 8.38	9.2 9.1 9.5 2.1		
F ₃₁ ^{sbs}	B-value Distribution	n	(2) ANOVA	(2) ANOVA	(2) Normal		
(ksi)	C_1 C_2		1.07 3.41	0.901 3.71	9.2 0.20		
	No. Specir No. Batche Data Class	es	20 4 Screening	20 4 Screening	5 1 Screening		

(1) Length-to-thickness ratio is approximately 11.

(2) Short beam strength test data are approved for Screening Data Class only.

4.2.7 Celion 12k/938 unidirectional tape

Material Description:

Material: Celion-12k/938

- Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28-40%, typical cured ply thickness of 0.0040-0.0073 inches.
- Processing: Autoclave cure; 355°F, 85-100 psi for 2 hours.

General Supplier Information:

Fiber: Celion fibers are continuous carbon filaments made from PAN precursor. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi.

Matrix: 938 is an epoxy resin. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 200°F (wet)

Typical applications: Commercial and military structural applications.

4.2.7 Celion 12k/938 unidirectional tape*

MATERIAL:	Celion 12k/938 unidirectional tape			C/Ep 145-UT Celion 938 Summary
FORM:	Fiberite Hy-E 1638N unidirectional tap			
FIBER:	Celanese Celion 12k, EP06, no twist	MATRIX:	Fiberite 938	
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: 355 ± 10°F, 120 - 130	min., 85 - 100 psig		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

5/85	Date of testing	7/85
	Date of data submittal	6/88
	Date of analysis	1/93
	5/85	Date of data submittal

	75°F/A	-67°F/A	250°F/A	180°F/W	
Tension, 1-axis	IIII	SSSS	IISI	IISI	
Tension, 2-axis	II-I	II-I	SS-S	II-I	
Tension, 3-axis					
Compression, 1-axis	II	II	II	II	
Compression, 2-axis	II	II	SI	I	
Compression, 3-axis					
Shear, 12-plane	I	S	S	I	
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	I				

LAMINA PROPERTY SUMMARY

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.30		
Composite Density	(g/cm ³)		1.54 - 1.61	
Fiber Areal Weight	(g/m ²)	145	144 - 147	
Fiber Volume	(%)		52 - 65	
Ply Thickness	(in)		0.0040 - 0.0073	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT IE 1989). ALL DOC							
MATERIA		on 12k/938 unid				Table	4.2.7(a)	
FIBER V	OLUME: 56-6	6 wt% 5 % 40-0.0063 in.	Comp: De Void Con		5-1.61 g/cm ³ 1%	Celion Tensior [(145-UT 12k/938 n, 1-axis 0] ₇	
TEST ME	THOD:		7/A, 250/A Screening					
AST	M D 3039-76		Secar	it at 25% of typic	al ultimate loa	d		
NORMAL	IZED BY: Fiber	r volume to 60%	6 (0.0053 in. C	PT)				
	ture (°F) Content (%) m at T, RH		5 pient	-6 amb		25 amb		
Source C		1	2	12	2	1:	2	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	273 223 324 7.56	271 207 319 9.76	262 235 290 7.67	278 254 303 6.25	309 295 328 3.00	319 306 337 2.82	
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Weibull	(1) Weibull	
(ksi)	C ₁ C ₂	21.0 2.42	29.3 4.36	25.1 18.0	20.9 16.2	314 34.5	323 36.1	
	No. Specimens No. Batches Data Class	102 3 Interim		2	10 2 Screening		5 rim	
E_1^t	Mean Minimum Maximum C.V.(%)	19.7 16.9 23.1 5.22	19.5 16.5 21.8 5.59	19.0 17.3 20.3 4.94	20.2 18.1 22.0 5.94	20.1 16.9 23.4 9.12	20.7 17.9 23.4 7.49	
(Msi)	No. Specimens No. Batches)2 3	1(2		15 3		
	Data Class	Inte	erim	Scree	0	Inte		
v ₁₂ ^t (2)	Mean No. Specimens No. Batches		0.317)2 3	1(2		10 2		
	Data Class	Inte	erim	Scree		Inte		
	Mean Minimum Maximum C.V.(%)		13100 10600 14800 6.95		12800 11500 14000 6.72		14800 12900 16100 5.81	
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) ANOVA		(1) ANOVA		(1) Weibull	
(με)	C ₁ C ₂		946 3.14		1060 17.2		15100 21.4	
	No. Specimens No. Batches Data Class	3)2 3 erim	10 2 Scree		15 3 Inte		

Basis values are presented only for A and B data classes.
 Poisson's ratio measured at 25% of typical ultimate load.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT IE 1989). ALL DOC						
MATERIA	AL: Celic	on 12k/938 unidi	rectional tape				4.2.7(b)
FIBER V	OLUME: 56-6	6 wt% 4 % 44-0.0063 in.	Comp: De Void Con		C/Ep 145-UT Celion 938 Tension, 1-axis [0] ₇ 180/W		
TEST ME	THOD:	ION:		Screening			
AST	M D 3039-76		Secan	t at 25% of ty	pical ultimate loa	d	
NORMAL	IZED BY: Fiber	r volume to 60%	(0.0053 in. C	PT)			
	Content (%) m at T, RH	18 1. (1 12	1) 2				
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	277 236 307 8.89	282 219 328 14.3				
F ₁ ^{tu}	B-value Distribution	(3) ANOVA	(3) ANOVA				
(ksi)	C ₁ C ₂	27.7 5.36	46.7 5.89				
	No. Specimens No. Batches Data Class	15 3 Inter					
E_1^t	Mean Minimum Maximum C.V.(%)	18.9 17.7 20.5 4.81	19.2 16.4 21.9 9.74				
(Msi)	No. Specimens No. Batches	15					
	Data Class Mean	Inter	<u>.im</u> 0.345				
v_{12}^{t} (2)	No. Specimens No. Batches	14 3					
	Data Class Mean	Scree	ning 14000				
	Minimum Maximum C.V.(%)		11800 15700 8.13				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(3) ANOVA				
(με)	C ₁ C ₂		1180 3.36				
	No. Specimens No. Batches Data Class	15 3 Inter					

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Poisson's ratio measured at 25% of typical ultimate load.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS
MATER	RIAL: Celie	on 12k/938 unid	lirectional tape			Table 4.2.7(c) C/Ep 145-UT
FIBER	VOLUME: 55-6		COMP: D VOID CO	ENSITY: 1.5 NTENT: <1.	5-1.58 g/cm ³ 3%	Celion 938 Tension, 2-axis
PLY TH	ICKNESS: 0.00	53-0.0064 in.				[90] ₂₀ 75/A, -67/A, 250/A,
TEST N	METHOD:		MODULU	S CALCULATIO	ON:	180/W Interim, Screening
AS	STM D 3039-76		Secan	t at 25% of typi	cal ultimate load	d
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75	-67	250	180	
	e Content (%)	ambient	ambient	ambient	1.1	
Source	ium at T, RH Code	12	12	12	(1) 12	
	Mean	9.6	9.5	8.8	5.8	
	Minimum	7.5	8.5	7.1	5.0	
	Maximum	13.9	10.4	10.7	6.6	
	C.V.(%)	13	6.6	11	8.4	
F ₂ ^{tu}	B-value Distribution	(2) ANOVA	(2) Weibull	(2) Weibull	(2) ANOVA	
(ksi)	C ₁	1.3	9.8	9.2	0.54	
(-)	C ₂	2.7	18	10	5.1	
	No. Specimens No. Batches	101 3	15 3	10 2	15 3	
	Data Class	Interim	Interim	Screening	Interim	
	Mean	1.35	1.35	1.22	1.19	
	Minimum	1.14	1.25	0.94	1.03	
-t	Maximum	1.82	1.51	1.52 12.5	1.36	
E_2^t	C.V.(%)	9.29	4.96	12.5	8.65	
(Msi)	No. Specimens	101	15	10	15	
	No. Batches	3	3	2	3	
	Data Class	Interim	Interim	Screening	Interim	
	Mean No. Specimens					
v_{21}^{t}	No. Batches					
V 21	Data Class					
	Mean	7200	6700	7600	4900	
	Minimum	1300	5500	6900	4200	
	Maximum	9500	7900	9300	5800	
	C.V.(%)	15	9.2	9.5	8.6	
$\boldsymbol{\varepsilon}_2^{\mathrm{tu}}$	B-value Distribution	(2) Nonpara.	(2) Weibull	(2) Normal	(2) Weibull	
_	C ₁	5	7000	7600	5100	
(με)	C_1 C_2	5	12	7000	12	
	No. Specimens	97	15	10	15	
	No. Batches	3	3	2	3	
	Data Class	Interim	Interim	Screening	Interim	

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERIA	AL: Celic	on 12k/938 unid	irectional tape		_	C/Ep [·]	4.2.7(d) 145-UT
FIBER V	CONTENT: 26-33 OLUME: 57-6 CKNESS: 0.004	6-1.61 g/cm ³ 5%	Compress	on 938 sion, 1-axis)1 ₇			
TEST ME		DN:	[0] ₇ 75/A, -67/A, 250/A Interim				
SAC	CMA SRM 1-88		Chord	modulus betwe	en 20% and 40	0% of typical ult	imate load
NORMAL	LIZED BY: Fiber	r volume to 60%	6 (0.0053 in. C	PT)			
	tture (°F) Content (%) um at T, RH	7: amb		-6 amb	67 bient	25 amb	
Source C		1:	2		2	1:	2
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	201 166 255 9.88	198 172 246 8.99	240 204 286 11.3	240 216 276 8.25	195 180 214 5.48	201 179 229 7.26
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	21.4 3.93	18.7 3.35	31.1 5.59	21.9 4.97	11.9 5.07	16.7 5.59
	No. Specimens No. Batches Data Class	102 3 Interim		3	5 3 erim	15 3 Inte	6
E ₁ ^c	Mean Minimum Maximum C.V.(%)	17.2 14.7 21.0 6.87	18.2 15.0 21.5 7.64	18.8 16.6 21.7 7.14	19.1 16.6 22.5 9.74	18.1 17.1 19.1 3.73	18.1 16.3 20.3 7.07
(Msi)	No. Specimens No. Batches Data Class	9 3 Inte	5	15 3 Interim		15 3 Interim	
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε_1^{cu}	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT IE 1989). ALL DOC	-							
MATERIA	AL: Celic	on 12k/938 unid				C/Ep	4.2.7(e) 145-UT		
RESIN CONTENT:28-34 wtFIBER VOLUME:58-65 %PLY THICKNESS:0.0044-0			COMP: DENSITY: 1.58-1.60 g/cm ³ VOID CONTENT: <1.0%			Compress [Celion 938 Compression, 1-axis [0] ₇ 180/W		
TEST ME	ETHOD:		MODULUS	S CALCUL	ATION:		Interim		
SAC	MA SRM 1-88		Chord	l modulus b	etween 20% and 4	10% of typical ult	imate load		
NORMAL	IZED BY: Fibe	r volume to 60%	6 (0.0053 in. C	PT)					
	Content (%) m at T, RH	18 1. (1 1:	1) 2						
		Normalized	Measured	Normaliz	ed Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	185 157 206 7.40	188 160 217 7.55						
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull						
(ksi)	C ₁ C ₂	191 16.3	194 14.4						
	No. Specimens No. Batches Data Class	1: 3 Inte	5						
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.2 15.7 22.3 8.88	19.2 15.8 23.7 10.5						
(Msi)	No. Specimens No. Batches Data Class	15 3 Inte	5						
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
$arepsilon_1^{ m cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS

Volume 2, Chapter 4 Carbon Fiber Composites

*

(JUN	E 1989). ALL DOCUM	ENTATION PRE	ESENTLY REQUIR		JPPL <mark>IED FOR T</mark>	HIS MATERIAL.
MATERIA	L: Celion 1	2k/938 unidirecti	onal tape			ble 4.2.7(f) Ep 145-UT
RESIN CO FIBER VC PLY THIC	DLUME: 58-65 %		COMP: DENSITY: VOID CONTENT:	1.57-1.61 g/cm <1.4%	n ³ Co Shea	elion 938 ar, 12-plane [±45] ₂₈ -65/A, 250/A,
TEST ME	THOD:		MODULUS CALC	ULATION:	Interir	180/W n, Screening
	M D 3518-76					.,
NORMALI	IZED BY: Not norn	nalized				
Temperati	ure (°F)	75	-67	250	180	
Moisture C	Content (%)	ambient	ambient	ambient	1.1	
	n at T, RH	10	10	10	(1)	
Source Co	ode Mean	12 14	12 16	12 14	12 14	
	Minimum	14	14	14	14	
	Maximum	16	18	15	14	
	C.V.(%)	7.3	10.	6.1	3.6	
	B-value	(2)	(2)	(2)	(2)	
F_{12}^{su}	Distribution	ANOVA	ANOVA	Weibull	ANOVA	
(ksi)	C ₁	1.1	1.8	14	0.53	
	C ₂	4.4	5.8	19	4.6	
	No. Specimens	102	14	14	15	
	No. Batches	3	3	3	3	
	Data Class Mean	Interim	Screening	Screening	Interim	
	Minimum					
	Maximum					
G_{12}^s	C.V.(%)					
(Msi)	No. Specimens					
	No. Batches Data Class					
	Mean					
	Minimum					
	Maximum					
	C.V.(%)					
	B-value					
$\gamma_{12}^{\rm su}$	Distribution					
(με)	C ₁					
	C ₂					
	No. Specimens					
	No. Batches Data Class					
	Dala Cidoo					

Conditioned at 160°F, 88% RH until weight gain was between 1.0 and 1.2%.
 Basis values are presented only for A and B data classes.

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA			2k/938 unidirecti	onal tape		Tab	le 4.2.7(g)	
RESIN CO FIBER VO PLY THIC	DLUME:	31-40 wt 52-62 % 0.0051-0		COMP: DENSITY: 1.54-1.59 g/cm ³ VOID CONTENT: <1.0%			C/Ep 145-UT Celion 938 SBS, 31-plane [0] ₁₄ 75/A	
TEST ME	THOD: /I D 2344-67	7		MODULUS CALCI	JLATION:	So	creening	
NORMALI	ZED BY:	Not norm	nalized					
Equilibriur	Content (%) n at T, RH		75 ambient					
Source Co	Mean Minimum Maximum C.V.(%)		12 18.3 16.6 19.7 3.29					
F ₃₁ (ksi)	B-value Distributio C ₁ C ₂	on	(1) ANOVA 0.619 2.76					
	No. Spec No. Batcl Data Clas	nes	102 3 Screening					

(1) Short beam strength test data are approved for Screening Data Class only.

4.2.8 AS4 12k/3502 unidirectional tape

Material Description:

Material: AS4-12k/3502

- Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32-45%, typical cured ply thickness of 0.0052 inches.
- Processing: Autoclave cure; 275° F, 85 psi for 45 minutes; 350°F, 85 psi, hold for 2 hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

- Fiber: AS4 fibers are continuous high strength, high strain, standard, modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties, offering good drape. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶psi. Typical tensile strength is 550,000 psi.
- Matrix: 3502 is an epoxy resin. Good tack; up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary

1. Where noted, only normalized data were made available for analysis.

4.2.8 AS4 12k/3502 unidirectional tape*

MATERIAL:	AS4 12k/3502 unidirectional tape	C/Ep 147-UT AS4/3502 Summary
FORM:	Hercules AS4/3502 unidirectional tape prepreg	
FIBER:	Hercules AS4 12k, surface-treated, MATRIX: Hercules 3502 no twist	
T _g (dry):	407°F T _g (wet): T _g METHOD: TMA	
PROCESSING:	Autoclave cure: 280 ± 5°F, 90 min, 85+15-0 psi; 350°F, 120 min.	

Additional data set found on p. 73.

Date of fiber manufacture	4/83 - 6/83	Date of testing	11/83 - 7/84
Date of resin manufacture	6/83	Date of data submittal	12/93, 5/94
Date of form manufacture	6/83 - 7/83	Date of analysis	8/94
Date of composite manufacture	8/83 - 5/84		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/W	250°F/W	
Tension, 1-axis	BM	BM	BM	BM	
Tension, 2-axis	BM	BM	BM	BM	
Tension, 3-axis					
Compression, 1-axis	BM	II	BM	BM	
Compression, 2-axis	BM	II	BM	BM	
Compression, 3-axis					
Shear, 12-plane	BM	bM	BM	II	
Shear, 23-plane					
Shear, 31-plane					

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77 - 1.80	
Resin Density	(g/cm ³)	1.26	1.24 - 1.29	
Composite Density	(g/cm ³)	1.57	1.56 - 1.59	
Fiber Areal Weight	(g/m ²)	147	146 - 150	
Fiber Volume	(%)	58	55 - 60	
Ply Thickness	(in)	0.0055	0.0049 - 0.0061	

LAMINATE PROPERTY SUMMARY

MATERI	AL: AS4	12k/3502 unidi	rectional tape			Table C/Ep	4.2.8(a) 147-UT	
FIBER VOLUME: 59-6		33 wt% COMP: DENSITY: 1.56-1.59 g/cm ³ 61 % VOID CONTENT: 0.0-1.0% 049-0.0061 in. 0.00000000000000000000000000000000000			AS4/3502 Tension, 1-axis [0]₀			
TEST ME				S CALCULATIO	N	75/A, -65 B30	/A, 180/W Mean	
	M D 3039-76			portion of curve		D 30,	Mean	
7.01			Eniour		•			
	-			er volume to 60%				
Tempera		7:		-6		18		
	Content (%) um at T, RH	amb	ient	amb	ient	1.1 - (1		
Source C		49	9	49	9	49		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	258		231		261		
	Minimum Maximum	191 317		162 285		140 317		
	C.V.(%)	9.83		13.4		14.8		
tu	B-value	205	(0)	173	(0)	200	$\langle 0 \rangle$	
F_1^{tu}	Distribution	Weibull	(2)	Weibull	(2)	Weibull	(2)	
(ksi)	C1 C2	269 11.2		244 8.82		276 9.39		
	No. Specimens	30		38	3	40		
	No. Batches Data Class	5 B30		5 B3		5 B3		
	Mean	19.3		19.2		19.7	0	
	Minimum	15.6		16.8		15.1		
 t	Maximum C.V.(%)	21.0 5.74	(2)	23.2 6.31	(2)	23.3 6.87	(2)	
E_1^t	0.0.(%)	5.74		0.51		0.07		
(Msi)	No. Specimens	30		38		40		
	No. Batches Data Class	5 Me		5 Mean		5 Mean		
	Mean							
t	No. Specimens No. Batches							
v_{12}^t	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
	C ₁							
(με)	C_1 C_2							
	No. Specimens No. Batches							
	Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(2) Only normalized data were made available for analysis.

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA	AL: AS4	12k/3502 unidi	rectional tape		4.2.8(b)			
FIBER VOLUME: 59-6		33 wt% COMP: DENSITY: 1.56-1.59 g/cm ³ 61 % VOID CONTENT: 0.0-1.0% 055-0.0059 in. VOID CONTENT: 0.0-1.0%			C/Ep 147-UT AS4/3502 Tension, 1-axis [0] ₈ 250/W			
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:	B30,	Mean	
AST	M D 3039-76		Linear	portion of curve	е			
NORMAL	NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)							
Tempera		25						
	Content (%)	1.1 -						
Equilibriu Source C	um at T, RH	(1						
Source C	JOUE	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	256	MEASUIEU	Normalized	Measured	Normalized	MEASUIEU	
	Minimum	200						
	Maximum	301						
	C.V.(%)	9.39						
	B-value	191						
F_1^{tu}	Distribution	ANOVA	(2)					
(ksi)	C ₁	25.0	()					
(101)	C_2	2.61						
	No. Specimens	3	n					
	No. Batches	5						
	Data Class	Ba						
	Mean	20.1						
	Minimum	17.8	(0)					
Et.	Maximum C.V.(%)	23.9 7.32	(2)					
E_1^t	0.0.(70)	1.02						
(Msi)	No. Specimens	3	0					
	No. Batches Data Class	5 Me						
	Mean	ivie	~~~					
	No. Specimens							
v_{12}^{t}	No. Batches							
	Data Class							
	Mean							
	Minimum Maximum							
	C.V.(%)							
	D volue							
ctu	B-value Distribution							
$\varepsilon_1^{\text{tu}}$								
(με)	C ₁ C ₂							
	U 2							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
(2) Only normalized data were made available for analysis.

MATER	IAL: AS4	12k/3502 unidire	ectional tape		1	able 4.2.8(c) C/Ep 147-UT
FIBER \	/OLUME: 59-6	33 wt% 60 % 052-0.0059 in.	COMP: DENSIT VOID CONTEN		rm ³ Te	AS4/3502 ension, 2-axis [90] ₂₄ A, -65/A, 180/W, 250/W
TEST M	ETHOD:		MODULUS CAL	CULATION:		250/W B30, Mean
	TM D 3039-76		Linear portio			200,
		normalized				
Temper	ature (°F)	75	-65	180	250	
	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3	
	um at T, RH	ambioint	ambiont	(1)	(1)	
Source		49	49	49	49	
	Mean	7.76	6.65	4.39	2.68	
	Minimum	6.26	2.48	3.52	2.13	
	Maximum	10.2	8.93	5.20	3.40	
	C.V.(%)	10.7	18.0	8.44	12.3	
	B-value	6.28	4.57	3.46	1.65	
E t	Distribution	Normal	Weibull	ANOVA	ANOVA	
F_2^t						
	C ₁ C ₂	7.76 0.832	7.09 7.20	0.380 2.43	0.348 2.94	
	\mathbf{O}_2	0.052	7.20	2.45	2.94	
	No. Specimens	30	30	30	30	
	No. Batches	5	5	5	5	
	Data Class	B30	B30	B30	B30	
	Mean	1.35	1.44	1.21	0.958	
	Minimum Maximum	1.28 1.49	1.32 1.58	1.14 1.35	0.912 1.06	
ъt	C.V.(%)	4.26	4.16	4.02	3.61	
E_2^t	0. (.(/0)	4.20	4.10	4.02	0.01	
(Msi)	No. Specimens	30	30	30	30	
(10131)	No. Batches	5	5	5	5	
	Data Class	Mean	Mean	Mean	Mean	
	Mean					
v_{21}^{t}	No. Specimens					
	No. Batches					
	Data Class					
	Mean					
	Minimum					
	Maximum C.V.(%)					
	U . v . (70)					
	B-value					
$\varepsilon_2^{\mathrm{t}}$	Distribution					
(με)	C ₁					
W/	C ₂					
	No. Specimens					
	No. Batches					
	Data Class					1

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

MATERI	AL: AS4	12k/3502 unidi	rectional tape			Table C/Ep	4.2.8(d) 147-UT
FIBER V	OLUME: 55-5	37 wt% COMP: DENSITY: 1.56-1.57 g/cm ³ 59 % VOID CONTENT: 0.0% 054-0.0060 in. 0.0%				AS4/3502 Compression, 1-axis [0] ₁₉	
		04 0.0000 m.				75/A, -65	/A, 180/W
TEST ME				S CALCULATIO		B30, Mea	in, Interim
AST	M D 3410A-75		Linear	portion of curve	9		
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	r volume to 60%	% (0.0055 in. C	PT)	
Tempera		7		-6		18	
	Content (%) um at T, RH	amb	lient	amb	ient	1.1 - (1	
Source C		4	9	4	9	4	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	204		233		176	
	Minimum Maximum	168 226		207 252		146 200	
	C.V.(%)	6.45		5.63		6.31	
CU	B-value	171	(2)	(2)	(2)	145	(0)
F_1^{cu}	Distribution	ANOVA	(3)	Weibull	(3)	ANOVA	(3)
(ksi)	C ₁ C ₂	13.5 2.44		238 23.0		11.5 2.65	
	No. Specimens	3	0	1	5	3	0
	No. Batches		5		5	5	
	Data Class Mean	B3 18.0	30	Inte 18.8	rim	B3 18.6	30
	Minimum	16.9		17.1		17.5	
	Maximum	19.4	(3)	20.5	(3)	20.0	(3)
E_1^c	C.V.(%)	3.19		5.43		3.36	
(Msi)	No. Specimens	3		10		30	
	No. Batches Data Class	5 Mean		5 Interim		5 Mean	
C	Mean No. Specimens						
v_{12}^{c}	No. Batches Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
cu	B-value Distribution						
ε_1^{cu}							
(με)	C ₁ C ₂						
	No. Specimens No. Batches						
	Data Class	5 100% relative					

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Basis values are presented only for A and B data classes.

(3) Only normalized data were made available for analysis.

MATERI	AL: AS4	12k/3502 unidi	rectional tape				4.2.8(e)
FIBER V	OLUME: 55-5	7 wt% 9 % 54-0.0060 in.	Comp: De Void Con	AS4 Compress [(C/Ep 147-UT AS4/3502 Compression, 1-axis [0] ₁₉ 250/W		
TEST ME	ETHOD:		MODULU	S CALCULATIO	ON:		Mean
AST	M D 3410A-75		Linea	r portion of curv	/e		
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60	% (0.0055 in. C	CPT)	
Tempera		25					
	Content (%)	1.1 -					
-	um at T, RH	(1					
Source C	Code	4					
	Moon	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	147 118 170 9.42					
F ₁ ^{cu}	B-value Distribution	119 Weibull	(2)				
г ₁ (ksi)	C_1 C_2	153 12.5	(-)				
	No. Specimens No. Batches Data Class	3) 5 B3	5				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	18.7 17.3 20.6 3.99	(2)				
(Msi)	No. Specimens No. Batches Data Class	3) 5 Me	5				
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε ₁ ^{cu} (με)	B-value Distribution C ₁						
	C ₂ No. Specimens No. Batches Data Class						

Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Only normalized data were made available for analysis.

MATER	RIAL: A	S4 12k/3502 unic	directional tape			ole 4.2.8(f)	
RESIN CONTENT: 31-33 wt% FIBER VOLUME: 59-60 % PLY THICKNESS: 0.0054-0.0058 i		60 %	COMP: DENSITY: 1.56-1.59 g/cm ³ VOID CONTENT: 0.0-1.0%		n ³ A Compr	C/Ep 147-UT AS4/3502 Compression, 2-axis [90] ₂₄ 75/A, -65/A, 180/W, 250/W	
TEST N	METHOD:		MODULUS CALC	ULATION:		Mean, Interim	
	STM D 695M (1) (4)			ortion of curve			
		normalized	<u> </u>				
	rature (°F)	75	-65	180	250		
	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3		
-	rium at T, RH			(2)	(2)		
Source		49	49	49	49		
	Mean	34.6	49.8	24.7	18.4		
	Minimum Maximum	27.5 40.4	42.5 57.2	23.0 26.7	17.0 19.9		
	C.V.(%)	40.4 9.53	10.4	3.23	4.99		
	0. (/0)	0.00	10.4	0.20	4.00		
	B-value	26.6	(3)	22.3	15.3		
F_2^{cu}	Distribution	ANOVA	Weibull	ANOVA	ANOVA		
(ksi)	C ₁	3.37	52.1	0.836	0.990		
(-)	C ₂	2.38	11.3	2.80	3.18		
	No. Specimens	30	15	30	30		
	No. Batches	5	5	5	5		
	Data Class	B30	Interim	B30	B30		
	Mean	1.41	1.68	1.24	1.09		
	Minimum	1.29	1.57	1.14	0.973		
-6	Maximum	1.60 4.86	1.95 6.07	1.41 4.90	1.41 9.44		
E_2^c	C.V.(%)	4.00	0.07	4.90	9.44		
(Msi)	No. Specimens	30	15	30	30		
	No. Batches	5	5	5	5		
	Data Class	Mean	Interim	Mean	Mean		
	Mean No. Specimens						
1, ^c	No. Batches						
v_{21}^{c}	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
cu	B-value Distribution						
ε_2^{cu}							
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

Tabbed specimen - length 3.12 inch, width 0.50 inch, gage length 0.50 inch.
 Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
 Basis values are presented only for A and B data classes.
 The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

MATER	IAL: AS4	12k/3502 unidired	ctional tape			able 4.2.8(g)		
FIBER VOLUME: 59-6		33 wt% 60 % 053-0.0059 in.	COMP: DENSITY: 1.56-1.59 g/cm ³ VOID CONTENT: 0.0-1.0%		cm ³ Sh	C/Ep 147-UT AS4/3502 Shear, 12-plane [±45] _{4S} 75/A, -65/A, 180/W,		
TEST M	IETHOD:		MODULUS CAL	CULATION:	B3	250/W 0, B18, Mean		
AS	TM D 3518-76		Linear portio	n of curve				
NORMALIZED BY: Not normalized								
Temper	ature (°F)	75	-65	180	250			
-	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3			
	um at T, RH			(1)	(1)			
Source		49	49	49	49			
	Mean	14.8	15.3	13.5	11.5			
	Minimum	13.7	13.3	12.5	10.5			
	Maximum	15.8	16.2	14.1	12.4			
	C.V.(%)	3.18	4.58	3.39	4.27			
	B-value	13.4	13.9	11.8	10.3			
F_{12}^{su}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA			
(ksi)	C ₁	0.503	0.706	0.502	0.503			
(-)	C ₂	2.91	2.04	3.24	2.32			
	No. Specimens	36	23	37	42			
	No. Batches	5	5	5	5			
	Data Class	B30	B18	B30	B30			
	Mean	0.543	0.769	0.217	0.141			
	Minimum	0.496	0.738	0.169	0.103			
C [§]	Maximum C.V.(%)	0.593 5.16	0.863 3.69	0.260 9.25	0.205 17.9			
G_{12}^s	0. v.(70)	5.10	5.05	5.25	17.5			
(Msi)	No. Specimens	33	23	33	41			
(11101)	No. Batches	5	5	5	5			
	Data Class	Mean	Mean	Mean	Mean			
	Mean							
	Minimum Maximum							
	C.V.(%)							
	B-value							
γ_{12}^{su}	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class					1		

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

MATERIAL:	AS4 12k/3502 unidirectional tape*	C/Ep 147-UT AS4/3502 Summary							
FORM:	Hercules AS4/3502 unidirectional tape	e prepreg	-						
FIBER:	Hercules AS4 12k, surface-treated	MATRIX:	Hercules 3502						
T _g (dry):	460°F T _g (wet):	Tg METHOD:	ТМА						
PROCESSING:	Autoclave cure: 275°F, 45 min.; 350°F	Autoclave cure: 275°F, 45 min.; 350°F, 2 hours, 85 psig; Postcure: 400°F, 4 hours							

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. REFER TO PAGE 4-64 TO VIEW ADDITIONAL DATA SETS ON THIS MATERIAL SYSTEM.

Date of fiber manufacture	12/80 - 2/82	Date of testing	
Date of resin manufacture		Date of data submittal	6/90
Date of form manufacture	12/80 - 2/82	Date of analysis	1/93
Date of composite manufacture			

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	265°F/A	75°F/W	265°F/W	
Tension, 1-axis	IIII		IIII		IIII	
Tension, 2-axis	II-I			II-I	II-I	
Tension, 3-axis						
Compression, 1-axis		II-I	II-I		II-I	
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.78 - 1.81	
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.58		
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	63 - 68	
Ply Thickness	(in)		0.0047 - 0.0062	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.									
MATERIA		12k/3502 unidii			4 00 / ³	C/Ep	4.2.8(h) 147-UT		
FIBER VO	OLUME: 63-68	9 wt% 8 % 55-0.0058 in.	COMP: DE VOID CON	ITENT: 1.59	9-1.62 g/cm ³	AS4/3502 Tension, 1-axis [0]₀			
TEST ME			MODULUS	S CALCULATIO	N:	75/A, 265/Å, 265/W Interim			
AST	M D 3039-76								
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0056 in. CPT)									
Temperat Moisture	ture (°F) Content (%)	7: amb		26 amb		26 W			
	m at T, RH	(1)	(1)	(2	<u>?)</u>		
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean	253	275	269	292	251	273		
	Minimum Maximum	212 294	226 323	148 314	165 358	183 287	196 315		
	C.V.(%)	8.35	9.49	15.2	16.5	9.09	10.4		
F ₁ ^{tu}	B-value Distribution	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA	(3) ANOVA		
(ksi)	C ₁ C ₂	21.5 2.20	27.2 2.60	24.0 2.83	30.2 3.01	24.0 2.83	30.2 3.01		
No. Specimens No. Batches Data Class		30 5 Interim		20 4 Interim		25 5 Interim			
	Mean	18.7	20.4	18.4	20.0	19.0	20.6		
	Minimum	17.3	18.9	17.4	19.1	18.0	19.2		
E_1^t	Maximum C.V.(%)	20.2 3.88	22.2 3.37	19.7 3.52	20.8 2.59	19.7 3.53	22.1 3.22		
(Msi)	No. Specimens	29	9	20)	25			
. ,	No. Batches Data Class	5 Interim		4 Interim		5 Interim			
	Mean	0	0.340		0.356	0.280			
v_{12}^t	No. Specimens30No. Batches5			20 4		25 5			
12	Data Class	Inte		Inte		Inte	rim		
	Mean		12400		13900		12400		
	Minimum Maximum		10200 14400		10400 15700		9220 13900		
	C.V.(%)		8.65		12.0		8.95		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(3) ANOVA		(3) ANOVA		(3) ANOVA		
(με)	C ₁		1120	1850			1170		
(100)	C ₂		2.62		3.92		2.87		
	No. Specimens	30		20		2			
	No. Batches Data Class	5 Inte		4		5 Inte			
	Dala Cidoo	inte	1111	Inte		inte	11111		

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 10 days.

(3) Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* AL	L DOCUMENTATIO	N PRESENTLY	REQUIRED W	AS NOT SUPP	LIED FOR THIS	MATERIAL.
MATEF	RIAL: AS4	12k/3502 unidi	rectional tape			Table 4.2.8(i) C/Ep 147-UT
			COMP: D VOID CO		AS4/3502 Tension, 2-axis [90] ₁₅	
TEST	TEST METHOD: MODULUS CALCULATION:				ON:	75/A, 75/W, 265/W Interim
AS	STM D 3039-76					
NORM	ALIZED BY: Not	normalized				
	rature (°F)	75	75	265		
	re Content (%) rium at T, RH	ambient	wet (2)	wet (2)		
Source		(1) 26	26	26		
	Mean	8.04	3.27	3.29		
	Minimum Maximum	5.93 10.6	2.54 4.15	2.62 4.15		
	C.V.(%)	13.5	4.15 16.3	4.15		
F_2^{tu}	B-value Distribution	(3) ANOVA	(3) ANOVA	(3) ANOVA		
(ksi)	C ₁	1.11	0.560	0.452		
	C ₂	2.36	3.79	3.16		
	No. Specimens	30	15	20		
	No. Batches Data Class	5 Interim	3 Interim	4 Interim		
	Mean	1.50	1.04	1.04		
	Minimum	1.43	0.95	0.95		
E_2^t	Maximum C.V.(%)	1.58 2.76	1.10 5.1	1.10 4.3		
L ₂			•••			
(Msi)	No. Specimens	30	15	20		
	No. Batches Data Class	5 Interim	3 Interim	4 Interim		
v_{21}^{t}	Mean No. Specimens No. Batches					
r 21	Data Class					
	Mean	5500	3320	3440		
	Minimum Maximum	4000 7390	2750 4200	2840 4200		
	C.V.(%)	13.7	13.3	12.1		
$arepsilon_2^{ ext{tu}}$	B-value Distribution	(3) Weibull	(3) ANOVA	(3) ANOVA		
(με)	C ₁	5820	506	456		
· · · /	C ₂	7.67	5.66	3.79		
	No. Specimens	30	15	20		
	No. Batches Data Class	5 Interim	3 Interim	4 Interim		
		intonin	intorini	intorini	ļ	

Conditioned at 180°F, ambient relative humidity for 2 days.
 Conditioned at 180°F, 75% relative humidity for 63 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: AS4 12k/3502 unidirectional tape Table 4.2.8(i) C/Ep 147-UT 1.59-1.62 g/cm³ **RESIN CONTENT:** 25-29 wt% COMP: DENSITY: AS4/3502 FIBER VOLUME: 63-68 % VOID CONTENT: Compression, 1-axis PLY THICKNESS: 0.0047-0.0062 in. **[0]**6 -65/A, 265/A, 265/W TEST METHOD: MODULUS CALCULATION: Interim **ASTM D 3410C** NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT) Temperature (°F) -65 265 265 Moisture Content (%) ambient ambient wet Equilibrium at T, RH (1)(1)(2) Source Code 26 26 26 Normalized Measured Normalized Measured Normalized Measured Mean 226 253 228 249 176 192 Minimum 173 206 142 150 139 146 Maximum 307 325 275 292 208 228 C.V.(%) 16.8 14.1 15.0 15.1 11.5 13.3 **B-value** (3) (3) (3) (3) (3) (3) Distribution Wèibull Weibull Wèibull Wèibull Wèibull Wèibull F₁^{cu} 242 269 241 203 (ksi) C₁ 264 184 C_2 6.23 7 45 8.66 9.19 10.6 9.32 No. Specimens 15 15 15 No. Batches 3 3 3 Interim Data Class Interim Interim Mean 19.3 21.1 21.2 23.2 21.4 19.6

MIL-HDBK-17-2F

	Minimum Maximum	17.1 21.8	19.3 23.7	17.1	19.3 26.3	18.5 20.6	20.5 22.5
E_1^c	C.V.(%)	6.63	7.30	9.53	9.70	3.85	3.70
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		15 3 Interim	
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		16200 11100 21200 17.4		13400 7370 16000 16.2		10500 7770 12800 14.1
$\varepsilon_1^{ m cu}$	B-value Distribution		(3) Weibull	(3) Weibull		(3) Weibull	
(με)	C ₁ C ₂		17400 6.39		14200 8.53		11100 8.71
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		15 3 Interim	

(1) Conditioned at 180°F, ambient relative humidity for 2 days.

(2) Conditioned at 150°F, 98% relative humidity for 14 days.

(3) Basis values are presented only for A and B data classes.

4.2.9 Celion 3000/E7K8 plain weave fabric

Material Description:

Material: Celion 3000/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-44%, typical cured ply thickness of 0.0075-0.0084 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 515,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.9 Celion 3000/E7K8 plain weave fabric*

MATERIAL:	Celion 3000/E7K8 plain weave fabric			C/Ep 195-PW Celion 3000/E7K8 Summary
FORM:	U.S. Polymeric Celion 3000/E7K8 plai	n weave fabric, Gra	de 195 prepreg	
FIBER:	Celanese Celion 3000	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture 2/86	- 3/86 Date of analysis	1/93
Date of composite manufacture		

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis	SS-S	SS		SSSS	SSS-	
Tension, 2-axis	SS-S	SS-S		SS-S	SS-S	
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis	SS-S	SS	SS	SS-S	SS	
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S	S	S	S	S	

LAMINA PROPERTY SUMMARY

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.28		
Composite Density (g/cm ³)		1.54	1.37 - 1.55	
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	50	51 - 56	
Ply Thickness	(in)	0.0075	0.0078 - 0.011	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT IE 1989). ALL DOC						
MATERIA	AL: Celic	on 3000/E7K8 p	lain weave fab	oric			4.2.9(a)
RESIN C FIBER VO PLY THIO	OLUME: 55-5	8 wt% 6 % 78-0.0085 in.	COMP: DE VOID CON		5 g/cm ³ %	Celion 3 Tensio [0	195-PW 000/E7K8 n, 1-axis ∱]₁₀ , -65/A
TEST ME AST	THOD: M D 3039-76	N:		ening			
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)	
Equilibriu	Content (%) m at T, RH	7: amb		-6 amb			
Source C	ode	20		20			
	Moon	Normalized	Measured 128	Normalized 110	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	132 120 143 4.7	128 115 140 5.8	101 118 6.2	106 98.4 113 5.4		
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	135 25.7	132 21.4	110 6.88	106 5.74		
	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree			
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.67 9.49 9.98 1.2	9.38 8.85 9.74 2.5	9.98 9.82 10.0 1.0	9.66 9.46 9.90 1.8		
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening			
v_{12}^{t}	Mean No. Specimens No. Batches	5	0.0580	30166			
	Data Class Mean	Scree	ening 13700		11000		
	Minimum Maximum C.V.(%)		12300 14800 4.5		10200 11600 5.4		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal		
(με)	C ₁ C ₂		14000 26.8		11000 592		
	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree			

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERI	AL: Celic	on 3000/E7K8 p	lain weave fab	oric			4.2.9(b)
FIBER V	CONTENT: 37 w OLUME: 55 % CKNESS: 0.00	Celion 3 Tensio [0	195-PW 000/E7K8 n, 1-axis ⊮]₁₀ 180/W				
TEST ME		N:		ening			
AST	TM D 3039-76						
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)	
Equilibriu	Content (%) um at T, RH	7: we (1	et)	18 we (1	et)		
Source C	Code	2 Normalized	0 Measured	20 Normalized) Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	125 111 130 6.3	122 105 129 8.1	123 114 131 6.5	120 112 127 6.3		
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	125 7.93	122 9.93	123 7.99	120 7.52		
	No. Specimens No. Batches Data Class	Batches 1		5 1 Screening			
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.23 8.93 9.53 2.5	9.01 8.81 9.20 1.7	9.55 9.37 9.84 1.9	9.33 9.15 9.63 2.0		
(Msi)	No. Specimens No. Batches	5		1	5		
	Data Class Mean	Scree	ening 0.0620	Scree	ning 0.0560		
v_{12}^{t}	No. Specimens No. Batches	5	i	5 1			
	Data Class Mean	Scree	ening 13700	Scree	ning 12800		
	Minimum Maximum C.V.(%)		12100 14300 6.9		11200 14100 9.6		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		
(με)	C ₁ C ₂		13700 939		12800 1230		
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree			

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. MATERIAL: Celion 3000/E7K8 plain weave fabric Table 4.2.9(c) C/Ep 195-PW 1.55 g/cm3 **RESIN CONTENT:** 39-44 wt% COMP: DENSITY: Celion 3000/E7K8 FIBER VOLUME: 51-54 % VOID CONTENT: 0.04-0.5% Tension, 1-axis PLY THICKNESS: 0.0079-0.0084 in. **[0**_f]₁₂ 75/A, -65/A TEST METHOD: MODULUS CALCULATION: Screening ASTM D 3039-76 NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0075 in. CPT) 75 -65 Temperature (°F) Moisture Content (%) ambient ambient Equilibrium at T, RH Source Code 20 20

	000	20		20	-		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum	132 106	122 100	122 117	115 111		
	Maximum	147	136	126	123		
	C.V.(%)	7.5	7.5	2.8	4.3		
	0.11(70)	1.0	1.0	2.0			
	B-value	(1)	(1)	(1)	(1)		
F_1^{tu}	Distribution	Weibull	Weibull	Normal	Normal		
(ksi)	C ₁	136	126	122	116		
()	C ₂	16.4	17.3	3.44	4.97		
	No. Specimens	20)	5			
	No. Batches	1		1			
	Data Class	Scree		Scree			
	Mean	9.96	9.21	9.29	8.82		
	Minimum Maximum	9.30 9.98	8.74 9.78	8.95 9.66	8.51 9.41		
ъt	C.V.(%)	1.2	2.5	2.8	4.0		
$\mathrm{E}_{1}^{\mathrm{t}}$	0. V.(70)	1.2	2.0	2.0	4.0		
(Msi)	No. Specimens	20)	5	5		
	No. Batches	1		1			
	Data Class	Scree	ning	Screening			
	Mean						
	No. Specimens						
v_{12}^{t}	No. Batches						
	Data Class						
	Mean		14100				
	Minimum		13600				
	Maximum		14600 2.6				
	C.V.(%)		2.0				
	B-value		(1)				
$arepsilon_1^{ ext{tu}}$	Distribution		Normal				
(με)	C ₁		14100				
(με)	C ₂		371				
	No. Specimens	5					
	No. Batches	1					
	Data Class	Scree	ning				

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS
MATERI	AL: Celic	on 3000/E7K8 p	lain weave fab	oric		Table 4.2.9(d)
FIBER V	CONTENT: 42 w OLUME: 51 % CKNESS: 0.00	5 g/cm ³ 9%	C/Ep 195-PW Celion 3000/E7K8 Tension, 1-axis [0 _f] ₁₂ 75/W, 180/W			
TEST ME AST	ETHOD: 「M D 3039-76		MODULUS	S CALCULATIO	N:	Screening
-		cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)
Tempera	ature (°F) Content (%)	75 We		18 we	-	
	um at T, RH	(1 20)	(1 20)	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	145 143 148 1.6	129 125 131 1.8	148 139 154 4.0	133 124 142 5.6	
F_1^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	145 2.23	129 2.37	148 5.94	133 7.50	
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Scree		
	Mean	10.6	9.42	10.3	9.21	
\mathbf{E}_{1}^{t}	Minimum Maximum C.V.(%)	10.1 11.4 4.9	8.79 10.0 5.0	10.1 10.5 1.3	8.91 9.53 2.7	
(Msi)	No. Specimens No. Batches	5 1		5		
	Data Class	Scree		Scree		
v_{12}^{t}	Mean No. Specimens No. Batches	5 1		5		
	Data Class	Scree		Scree	ening	
	Mean Minimum Maximum C.V.(%)		13400 12300 14300 5.30			
$oldsymbol{arepsilon_1^{ ext{tu}}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		13400 713			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERIA	AL: Celic	on 3000/E7K8 p	lain weave fab	oric		Table 4.2.9(e)
RESIN C FIBER VO PLY THIO		i g/cm ³ 6	C/Ep 195-PW Celion 3000/E7K8 Tension, 2-axis [0 _f] ₁₀ 75/A, -65/A			
TEST ME AST	ETHOD: M D 3039-76	N:	Screening			
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	% (0.0075 in. C	PT)
	Content (%) m at T, RH	75 amb 20	ient	-6 amb 20	ent	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	128 120 137 3.6	127 115 134 3.7	113 101 125 9.1	111 100 122 8.9	
F_2^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	$C_1 \\ C_2$	128 4.64	127 4.69	113 10.3	111 9.89	
	No. Specimens No. Batches Data Class	20 1 Scree		ing Screening		
E_2^t	Mean Minimum Maximum C.V.(%)	9.50 9.36 9.69 0.98	9.37 9.04 9.71 1.8	9.51 9.29 9.65 1.6	9.34 9.20 9.68 2.1	
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree		
v_{21}^{t}	Mean No. Specimens No. Batches				.9	
	Data Class Mean Minimum Maximum C.V.(%)		13400 12600 14200 3.5		11700 10700 12700 7.7	
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(1) Weibull		(1) Normal	
(με)	C ₁ C ₂		13600 32.5		11700 902	
	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Scree		

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERI	,	on 3000/E7K8 p				Table	4.2.9(f)
FIBER V	CONTENT: 36 w OLUME: 56 % CKNESS: 0.00	Celion 3 Tensio [9	195-PW 000/E7K8 n, 2-axis 0 _f] ₁₀ 180/W				
TEST ME			MODULUS	S CALCULATIO	N:		ening
AST	TM D 3039-76						
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)	
	Content (%) um at T, RH	7: we (1 20	et)	18 we (1 20	et)		
Source C	Joue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	119 105 130 7.8	117 104 126 7.3	130 129 132 0.89	128 125 131 1.8		
F_2^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	119 9.35	117 8.51	130 1.16	128 2.35		
	No. Specimens No. Batches Data Class	5 1 Scree		ing Screening			
E_2^t	Mean Minimum Maximum C.V.(%)	9.08 8.98 9.21 1.2	8.92 8.73 9.14 1.6	9.35 9.26 9.48 1.2	9.18 8.96 9.38 1.8		
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree	ning		
v_{21}^{t}	Mean No. Specimens No. Batches Data Class	00100					
	Mean Minimum Maximum C.V.(%)		13100 11400 14400 8.7		14200 13700 14800 3.5		
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		
(με)	C ₁ C ₂		13100 1135		14200 490		
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree			

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS *

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.MATERIAL:Celion 3000/E7K8 plain weave fabricTable 4.2.9(g)										
RESIN C FIBER V PLY THI	ONTENT: 36- OLUME: 53- CKNESS: 0.0	40 wt% 55 % 079-0.0084 in.	40 wt% COMP: DENSITY: 1.55 g/cm ³ 55 % VOID CONTENT: 0.0-0.75%			C/Ep 1 Celion 3 Compress [0 75/A, -65	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₀ 75/A, -65/A, 180/A			
TEST ME			MODULUS	S CALCULATIO	N:	Scre	ening			
SAC	MA SRM 1-88									
NORMAI	IZED BY: Sp	ecimen thicknes	s and batch fibe	er volume to 57%	% (0.0075 in. C	PT)				
Tempera			' 5	-6		18				
	Content (%) Im at T, RH	aml	pient	amb	ient	amb	ient			
Source C		2	20	2	0	2	0			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	104 90.5 122 8.3	101 87.7 120 8.7	121 113 132 5.9	118 111 126 4.7	97.4 87.5 105 7.2	94.5 85.1 100 7.1			
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal			
(ksi)	C ₁ C ₂	108 13.0	105 12.1	121 7.19	118 5.58	97.4 7.00	94.5 6.72			
	No. Specimens No. Batches		20 1	5		5 1				
	Data Class Mean	9.88	ening 9.02	Scree 9.83	ening 9.33	Scree 9.45	ening 9.16			
	Minimum Maximum	9.56 10.3	8.65 9.29	9.75 9.95	9.20 9.48	9.14 9.66	8.89 9.37			
E_1^c	C.V.(%)	2.3	2.0	1.0	1.1	2.3	2.0			
(Msi)	No. Specimens No. Batches Data Class		20 1 ening	5 1 Scree		5 1 Screening				
2	Mean No. Specimens									

No. Specimens	20	5	
No. Batches	1	1	
Data Class	Screening	Screening	

10900

10500

11200

2.2

(1)

Weibull

11000

54.2

12200

12000

12300

1.0

(1)

Normal

12200

122

10400

10200

10800

2.3

(1)

Normal

10400

239

5 1 Screening

(1) Basis values are presented only for A and B data classes.

 v_{12}^{c}

 $\varepsilon_1^{\mathrm{cu}}$

(με)

No. Batches Data Class

Mean Minimum

Maximum

C.V.(%)

B-value

 C_1

 C_2

Distribution

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERIA	AL: Celic	on 3000/E7K8 p	lain weave fab	ric			4.2.9(h) I95-PW
FIBER V	OLUME: 54-5	7 wt% 6 % 73-0.0086 in.	Comp: De Void Con		5 g/cm ³ 0.70%	Celion 3 Compress [0	195-FW 000/E7K8 sion, 1-axis f] ₁₀ 180/W
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening
SAC	CMA SRM 1-88						
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)	
Tempera		7		18			
	Content (%) um at T, RH	we (1		(1			
Source C		20	0	20)		
	Mean	Normalized 94.9	Measured 92.6	Normalized 78.9	Measured 77.6	Normalized	Measured
	Minimum	89.7	88.2	72.7	70.5		
	Maximum	102	98.8	83.2	82.3		
	C.V.(%)	5.5	4.9	5.7	6.0		
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁	94.9	92.6	78.9	77.6		
	C ₂	5.47	4.57	4.53	4.65		
	No. Specimens No. Batches			5			
	Data Class	Screening		Scree			
	Mean Minimum	9.39 8.80	8.92 8.12	8.97 8.45	8.52 8.18		
	Maximum	10.2	9.79	9.54	8.80		
E_1^c	C.V.(%)	6.3	6.8	4.4	3.5		
(Msi)	No. Specimens	5		5			
	No. Batches Data Class	1 Scree		1 Screening			
	Mean						
c	No. Specimens No. Batches						
v_{12}^{c}	Data Class						
	Mean		9800		8130		
	Minimum		8970 10400		7620 8600		
	Maximum C.V.(%)		6.0		4.4		
01	B-value		(2)		(2)		
$\varepsilon_1^{\rm cu}$	Distribution		Normal		Normal		
(με)	C ₁ C ₂		9800 590		8130 356		
	No. Specimens	5	i	5			
	No. Batches	1		1			
	Data Class	Scree	ening	Scree	ening		

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.										
MATERIA		on 3000/E7K8 p				Table	4.2.9(i)				
FIBER V	OLUME: 52-5	0 wt% 4 % 78-0.0084 in.	COMP: DE VOID CON		5 g/cm ³ %	C/Ep 195-PW Celion 3000/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A, -65/A, 180/A					
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		A, 180/A ening				
SAC	CMA SRM 1-88										
NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0075 in. CPT)											
	ture (°F) Content (%) ım at T, RH	7! amb		-6 amb		18 amb					
Source C	Code	20	-	20		20					
	Mean	Normalized 114	Measured 107	Normalized 133	Measured 122	Normalized 103	Measured 97.6				
	Mean Minimum Maximum C.V.(%)	86.4 128 9.5	84.4 121 9.1	133 127 139 3.9	122 116 129 4.6	96.0 114 6.8	97.6 89.2 107 7.2				
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal				
(ksi)	C ₁ C ₂	118 13.8	111 14.0	133 5.22	122 5.60	103 6.99	97.6 7.04				
	No. Specimens No. Batches Data Class	20 1 Screening		5 1 Scree		5 1 Scree					
	Mean	8.22	7.80	8.45	7.71	8.40	7.67				
E ₁ ^c	Minimum Maximum C.V.(%)	8.07 8.50 1.6	7.51 8.05 2.2	8.27 8.73 2.3	7.43 8.09 3.4	8.20 8.54 1.5	7.58 7.84 1.4				
(Msi)	No. Specimens No. Batches	20 1		5		5					
	Data Class Mean	Scree	ening	Scree	ening	Scree	ning				
<i>v</i> ^c ₁₂	No. Specimens No. Batches										
	Data Class Mean Minimum Maximum C.V.(%)		13500 13000 13700 1.6								
$\varepsilon_1^{ m cu}$	B-value Distribution		(1) Nonpara.								
(με)	C ₁ C ₂		10 1.25								
	No. Specimens No. Batches Data Class	20 1 Scree									

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERI		on 3000/E7K8 p				Table	4.2.9(j)
FIBER V	ONTENT: 38-4 OLUME: 52-5 CKNESS: 0.00	5 g/cm ³ 0.04%	Celion 3 Compress [0	195-PW 000/E7K8 sion, 1-axis f] ₁₂ 180/W			
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening
SAC	CMA SRM 1-88						
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	6 (0.0075 in. C	PT)	
Tempera		7		18			
Equilibriu	Content (%) um at T, RH	we (1		(1			
Source C	Code	20 Normalized	0 Measured	20 Normalized) Measured	Normalized	Measured
	Mean	96.1	90.7	80.2	75.7	Normalized	weasured
	Minimum	83.9	78.4	74.4	72.2		
	Maximum C.V.(%)	107 9.3	101 9.4	83.3 4.7	79.9 4.4		
	C.V.(%)	9.5	9.4	4.7	4.4		
5 01	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
F ₁ ^{cu} (ksi)		96.1	90.7	80.2	75.7		
	C ₁ C ₂	96.1 8.91	90.7 8.55	3.73	3.31		
	No. Specimens	5	;	5			
	No. Batches Data Class	1 Scree		1 Scree			
	Mean	9.08	8.30	9.36	8.54		
	Minimum Maximum	8.84 9.17	7.91 8.62	9.14 9.57	8.20 8.84		
E_1^c	C.V.(%)	1.5	3.2	2.0	2.9		
1							
(Msi)	No. Specimens No. Batches	5		5			
	Data Class	Scree		Scree			
_	Mean No. Specimens						
v_{12}^{c}	No. Batches Data Class						
	Mean		10700				
	Minimum		10600				
	Maximum C.V.(%)		11000 1.5				
	B-value		(2)				
ε_1^{cu}	Distribution		Normal				
(με)	C ₁ C ₂		10700 164				
	No. Specimens No. Batches Data Class	5 1 Scree					

Conditioned at 160°F, 85% relative humidity for 7 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

MATERIA RESIN CC FIBER VC PLY THIC	ONTENT: DLUME:	36-39 wt 54-56 %				Table 4.2.9(k) C/Ep 195-PW Celion 3000/E7K8 SBS, 31-plane [0 _f] ₁₄ 75/A, -65/A, 180/A, 75/W, 180/W		
TEST ME	THOD:		I	MODULUS CALCU	JLATION:		reening	
ASTN	/I D 2344-68							
NORMALI	ZED BY:	Not norm	alized					
Temperatu			75	-65	180	75	180	
	Content (%)		ambient	ambient	ambient	wet	wet	
	n at T, RH		20	20	20	(1)	(1)	
Source Co	Mean		20 10.3	20 11.6	20 9.70	20 9.81	20 6.92	
	Minimum		9.43	10.7	9.34	9.24	6.60	
	Maximum		11.4	13.6	9.94	10.4	7.22	
	C.V.(%)	•	5.7	10.8	3.0	7.0	3.4	
							••••	
	B-value		(2)	(2)	(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributio	on	Normal	Normal	Normal	Normal	Normal	
(ksi)	C ₁		10.3	11.6	9.70	9.81	6.92	
(101)	C ₂		0.446	1.25	0.293	0.505	0.237	
	_							
	No. Spec	imens	20	5	5	5	5	
	No. Batch		1	1	1	1	1	
	Data Clas	SS	Screening	Screening	Screening	Screening	Screening	

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

(2) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

ASTM D 2344-68 NORMALIZED BY: Not normalized	MATERIAL: RESIN CONTENT FIBER VOLUME: PLY THICKNESS:	: 39 wt% 54 %	V	eave fabric COMP: DENSITY: OID CONTENT:	Table 4.2.9(I) C/Ep 195-PW Celion 3000/E7K8 SBS, 31-plane [0 _f] ₁₂		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST METHOD: ASTM D 2344	l-68	Μ	10DULUS CALCI	JLATION:	75/	W, 180/W
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NORMALIZED BY	: Not norm	nalized				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Equilibrium at T, R		ambient	ambient	ambient	wet (1)	wet (1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		um					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0. v.(<i>(</i> 0 <i>)</i>	4.0	3.9	0.1	0.1	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B-valı		(2)	(2)	(2)	(2)	(2)
(ksi) C1 C2 9.76 0.470 10.2 0.395 9.72 0.591 9.72 0.591 8.72 0.591 No. Specimens No. Batches 20 1 5 1 5 1 5 1 5 1 5 1							
C2 0.470 0.395 0.591 0.591 0.247 No. Specimens 20 5 5 5 5 No. Batches 1 1 1 1 1							
No. Specimens20555No. Batches1111							
No. Batches 1 1 1 1 1	C ₂		0.470	0.395	0.591	0.591	0.247
No. Batches 1 1 1 1 1		naaimana	20	F	F	F	F
Data Class Screening Screening Screening Screening Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening Image: Screening					•		
	Dala	J1855	Screening	Screening	Screening	Screening	Screening

(1) Conditioned at 160°F, 85% relative humidity for 7 days.

(2) Short beam strength test data are approved for Screening Data Class only.

4.2.10 HITEX 33 6k/E7K8 plain weave fabric

Material Description:

Material: HITEX 33-6k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0085 inches.
- Processing: Autoclave cure; 310°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: HITEX 33 fibers are continuous carbon filaments made from PAN precursor. Filament count is 6000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 560,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 300°F (dry), 190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.10 HITEX 33 6k/E7K8 plain weave fabric*

MATERIAL:	HITEX 33 6k/E7K8 plain weave fabric			C/Ep 195-PW HITEX 33/E7K8 Summary
FORM:	U.S. Polymeric Hitex 33 6k/E7K8 plain			
FIBER:	Hitco HITEX 33 6k G'	MATRIX:	U.S. Polymeric E7	K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 310°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88
Date of form manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	75°F/W	180°F/W	
Tension, 1-axis						
Tension, 2-axis	SSSS	SS-S		SSSS	SSSS	
Tension, 3-axis						
Compression, 1-axis	SS-S	SS	SS	SS-S	SS	
Compression, 2-axis	SS-S	SS	SS	SS-S	SS	
Compression, 3-axis						
Shear, 12-plane						
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S	S		S	S	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	47 - 55	
Ply Thickness	(in)	0.0085	0.0077 - 0.0099	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC							
MATERI	AL: HITE	EX 33 6k/E7K8 p	olain weave fal	bric			.2.10(a) 95-PW	
FIBER V	OLUME: 51-5	41 wt% COMP: DENSITY: 1.53-1.55 g/cm ³ 55 % VOID CONTENT: 0.0% 087-0.0098 in.			Tensior [90	HITEX 33/E7K8 Tension, 2-axis [90 _f] ₁₂ 75/A, -65/A, 75/W		
			MODULUS	S CALCULATIC	N:		ening	
	M D 3039-76 LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 579	% (0.0076 in. C	PT)		
	iture (°F) Content (%) um at T, RH	7t amb		-6 amb		7! we (1	et)	
Source C	Code	20	-	2		20		
	Maar	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	131 120 139 4.3	124 103 136 6.8	126 122 131 3.1	122 111 131 6.7	134 130 137 2.8	119 114 125 3.8	
F_2^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	134 28.2	128 17.8	126 3.88	122 8.16	134 3.69	120 4.55	
	No. Specimens No. Batches	20 1 Screening		5		5 1 Servering		
	Data Class			Scree		Scree		
E_2^t	Mean Minimum Maximum C.V.(%)	8.65 8.01 9.65 6.2	8.14 7.52 8.62 3.1	8.10 7.73 8.29 2.7	7.82 7.54 8.26 3.4	9.61 9.26 9.94 2.8	8.55 8.20 9.13 4.1	
(Msi)	No. Specimens No. Batches	20		5 1		5 1		
	Data Class Mean	Scree	0.0460	Scree	ening	Scree	0.0540	
v_{21}^{t}	No. Specimens No. Batches	5 1	i			5 1		
	Data Class	Scree			45000	Scree		
	Mean Minimum Maximum C.V.(%)		14300 13700 14900 3.8		15600 14600 16500 4.4		10500 9930 10800 3.2	
$arepsilon_2^{ m tu}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
(με)	C ₁ C ₂		14300 541		15600 687		10500 335	
	No. Specimens No. Batches Data Class	5 1 Scree		5 Scree		5 1 Scree		

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS LIED FOR THIS MATERIAL.
MATERI	AL: HITE	X 33 6k/E7K8	plain weave fa	bric		Table 4.2.10(b)
FIBER V	CONTENT: 41 w OLUME: 51 % CKNESS: 0.00		COMP: DE VOID CON		C/Ep 195-PW HITEX 33/E7K8 Tension, 2-axis [90 _t] ₁₂ 180/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIC	N:	Screening
AST	M D 3039-76					
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 579	% (0.0076 in. C	PT)
	Content (%) um at T, RH	18 wi (1 2	et) 0			
	NA	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	138 120 155 10.2	122 107 135 9.1			
F ₂ ^{tu}	B-value Distribution	(2) Normal	(2) Normal			
(ksi)	C ₁ C ₂	138 14.1	123 11.1			
	No. Specimens No. Batches Data Class	5 1 Screening				
E_2^t	Mean Minimum Maximum C.V.(%)	9.91 9.11 10.7 7.2	8.80 8.23 9.23 5.3			
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree				
v_{21}^{t}	Mean No. Specimens No. Batches	5	0.0700			
	Data Class Mean	Scree	ening 10400			
	Minimum Maximum C.V.(%)		9840 10800 3.6			
$arepsilon_2^{ ext{tu}}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		10400 372			
	No. Specimens No. Batches Data Class	5 1 Scree				

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC							
MATERI	AL: HITE	X 33 6k/E7K8	olain weave fal	bric			.2.10(c)	
FIBER V			COMP: DE VOID CON		I g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A, -65/A, 180/A		
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening	
SAC	CMA SRM 1-88							
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	% (0.0076 in. C	PT)		
Tempera	ture (°F) Content (%)	7: amb		-6 amb		18 amb	-	
Equilibriu	um at T, RH	amu						
Source C	Code	2 Normalized	0 Measured	20 Normalized	0 Measured	20 Normalized) Measured	
	Mean	136	112	155	128	130	107	
	Minimum	111	98.4	147	118	118	94.9	
	Maximum	158	128	164	139	139	117	
	C.V.(%)	8.4	7.5	5.5	7.5	6.3	7.8	
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁	141	116	155	128	130	107	
	C ₂	13.3	14.5	8.51	9.57	8.21	8.22	
	No. Specimens No. Batches		20 1		5	5		
	Data Class	Scree		1 Scree		Screening		
	Mean	9.11	7.53	10.1	8.30	9.37	7.75	
	Minimum Maximum	8.64 9.63	6.83 8.17	9.72 10.8	7.74 8.76	9.15 9.66	7.38 8.66	
E_1^c	C.V.(%)	3.0	5.2	4.0	5.1	2.4	7.1	
(Msi)	No. Specimens	2		5	5	5		
	No. Batches Data Class	1 Scree		1 Scree	enina	1 Scree		
	Mean	00100	Jiiiig	00100	, in ig	00100		
2	No. Specimens							
v_{12}^{c}	No. Batches							
	Data Class Mean		14400					
	Minimum		13700					
	Maximum C.V.(%)		15200 3.1					
$\varepsilon_1^{\rm cu}$	B-value Distribution		(1) Weibull					
-	C ₁		14600					
(με)	C_2		34.7					
	No. Specimens	2	0					
	No. Batches	1						
	Data Class	Scree	ening					

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS
MATERI	AL: HITE	X 33 6k/E7K8	plain weave fal	bric		Table 4.2.10(d)
FIBER V			Comp: De Void Con		1 g/cm ³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/W, 180/W
TEST ME SAC	ETHOD: CMA SRM 1-88		MODULUS	S CALCULATIC	DN:	Screening
NORMAI	LIZED BY: Spec	cimen thickness	s and batch fibe	er volume to 579	% (0.0076 in. C	PT)
Tempera Moisture Equilibriu Source C	Content (%) um at T, RH	w (75 vet 1) 20	w (*	80 et 1)	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	133 130 139 2.8	110 100 116 5.8	68.5 54.2 75.8 13.6	56.4 46.7 62.2 12.0	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	133 3.71	110 6.36	68.5 9.31	56.4 6.79	
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Screening		
E_1^c	Mean Minimum Maximum C.V.(%)	8.78 8.41 9.07 3.2	7.24 7.04 7.51 2.5	9.43 9.32 9.64 1.4	7.78 7.69 7.89 9.5	
(Msi)	No. Specimens No. Batches Data Class		5 1 ening	5 1 Screening		
v_{12}^{c}	Mean No. Specimens No. Batches Data Class		U U			
	Mean Minimum Maximum C.V.(%)		14600 14000 15400 3.6			
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		14600 525			
	No. Specimens No. Batches Data Class		5 1 ening			

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC								
MATERI		X 33 6k/E7K8 p				Table 4	.2.10(e) 95-PW		
FIBER V	OLUME: 51-5	1 wt% 2 % 83-0.0087 in.	Comp: De Void Con		3 g/cm ³ %	HITEX : Compress [9	HITEX 33/E7K8 Compression, 2-axis [90 _f] ₆ 75/A, -65/A, 180/A		
TEST ME	ETHOD: CMA SRM 1-88		MODULU	S CALCULATIO	N:		ening		
		cimen thickness	and batch fibe	er volume to 57%	6 (0.0076 in. C	PT)			
Temperature (°F)75-651Moisture Content (%)ambientambientam									
Equilibriu Source C	ım at T, RH Code	20	0	20	0	20)		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	104 77.9 125 13.1	92.4 70.4 109 12.6	128 111 138 8.0	114 98.8 123 8.1	99.4 86.4 113 12.0	88.6 77.0 101 12.0		
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	110 9.70	97.4 10.5	128 10.3	114 9.18	99.4 11.9	88.6 10.6		
	No. Specimens No. Batches Data Class	20 1 Screening		1	5 1 Screening		ening		
E_2^c	Mean Minimum Maximum C.V.(%)	8.92 8.50 9.40 2.5	8.21 7.78 8.77 3.4	9.49 9.36 9.58 0.9	8.74 8.65 8.93 1.3	9.07 8.95 9.18 1.3	8.35 8.20 8.52 1.7		
(Msi)	No. Specimens No. Batches Data Class	20 1 Scree		5 1 Screening		5 1 Screening			
v_{21}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)		10900 10400 11400 2.4						
$\varepsilon_2^{ m cu}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		11100 46.5						
	No. Specimens No. Batches Data Class	20 1 Scree							

Volume 2, Chapter 4 Carbon Fiber Composites

						NTATION REQUIREMENTS
MATERI	AL: HITE	X 33 6k/E7K8	plain weave fal	bric		Table 4.2.10(f) C/Ep 195-PW
FIBER V	OLUME: 51-5	1 wt% 2 % 30-0.0083 in.	COMP: DE VOID CON	ENSITY: 1.5 ITENT: 0.0	3 g/cm ³ %	HITEX 33/E7K8 Compression, 2-axis [90 _r] ₆ 75/W, 180/W
TEST ME SAC	ETHOD: CMA SRM 1-88		MODULUS	S CALCULATIC	DN:	Screening
NORMAI	LIZED BY: Spec	imen thickness	s and batch fibe	er volume to 57°	% (0.0076 in. C	PT)
	Content (%) um at T, RH	w (*	75 vet 1) 20	w (*	30 et 1) 0	
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	99.2 80.9 112 12.1	88.5 72.2 100 12.1	84.0 74.2 88.8 7.0	74.9 66.1 79.2 6.9	
F ₂ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	99.2 12.0	88.5 10.7	84.0 5.8	74.9 5.20	
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Screening		
E ^c ₂	Mean Minimum Maximum C.V.(%)	9.30 8.74 9.56 3.5	8.56 7.98 8.78 3.9	8.96 8.69 9.31 2.9	8.25 8.03 8.43 2.0	
(Msi)	No. Specimens No. Batches Data Class		5 1 ening	5 1 Screening		
v_{21}^{c}	Mean No. Specimens No. Batches Data Class				U U	
	Mean Minimum Maximum C.V.(%)		10200 9910 10900 3.7			
$\varepsilon_2^{\rm cu}$	B-value Distribution		(2) Normal			
(με)	C ₁ C ₂		10200 381			
	No. Specimens No. Batches Data Class		5 1 ening			

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC							
MATERI		X 33 6k/E7K8 p				Table 4	.2.10(g)	
FIBER V			COMP: DE VOID CON		l g/cm³ %	C/Ep 195-PW HITEX 33/E7K8 Compression, 2-axis [90 _f] ₁₂ 75/A, -65/A, 180/A		
TEST ME	ETHOD:		MODULU	S CALCULATIO	N:		ening	
SAC	CMA SRM 1-88							
NORMAI	LIZED BY: Spec	imen thickness	and batch fibe	er volume to 57%	% (0.0076 in. C	PT)		
Tempera	ture (°F) Content (%)	7: amb		-6 amb		18 amb	-	
Equilibriu	im at T, RH							
Source C	Code	20 Normalized	0 Measured	20 Normalized	Measured	20 Normalized	Measured	
	Mean	132	110	147	122	132	110	
	Minimum Maximum	114 145	97.9 118	138 161	115 127	128 146	106 117	
	C.V.(%)	5.7	5.3	6.0	4.1	5.9	4.7	
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Normal	(1) Normal	(1) Normal	(1) Normal	
(ksi)	C ₁ C ₂	136 21.6	113 23.4	147 8.78	122 5.02	132 7.73	110 5.12	
	No. Specimens No. Batches	20 1		5		5		
	Data Class	Scree		Scree		Screening		
E_2^c	Mean Minimum Maximum C.V.(%)	8.74 8.41 9.20 2.6	7.27 6.70 8.06 4.7	9.09 8.12 10.1 9.1	7.54 7.07 7.90 5.6	9.11 8.61 9.49 3.8	7.57 7.41 7.71 1.5	
(Msi)	No. Specimens No. Batches	20 1			5			
	Data Class Mean No. Specimens	Scree	ening	Scree	ening	Scree	ening	
v_{21}^{c}	No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)		14100 13400 14700 2.6					
$\varepsilon_2^{\rm cu}$	B-value Distribution		(1) Weibull					
(με)	C ₁ C ₂		14300 46.4					
	No. Specimens No. Batches Data Class	20 1 Scree						

Volume 2, Chapter 4 Carbon Fiber Composites

	A WERE SUBMITT NE 1989). ALL DOC						
MATERI	AL: HITE	X 33 6k/E7K8	plain weave fal	bric		Table 4.2 C/Ep 19	
FIBER V			COMP: DE VOID CON		1 g/cm ³ %	HITEX 33 Compressic [90 _f] 75/W, 1	6/E7K8 on, 2-axis
TEST ME SAC	ETHOD: CMA SRM 1-88		MODULUS	S CALCULATIO	DN:	Screer	
NORMAI	LIZED BY: Spec	imen thicknes	s and batch fibe	er volume to 57	% (0.0076 in. C	PT)	
	Content (%) um at T, RH	w (22	75 vet 1) 20	w (*	80 vet 1) 20		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	117 107 132 9.1	97.4 88.4 105 6.9	61.1 52.2 66.4 9.9	50.8 44.1 57.2 9.9		
F_2^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	117 10.6	97.4 6.74	61.1 6.04	50.8 5.01		
	No. Specimens No. Batches Data Class	5 1 Screening			5 1 ening		
E ^c ₂	Mean Minimum Maximum C.V.(%)	8.99 8.48 9.54 4.5	7.48 7.08 7.8 4.0	9.26 8.76 9.69 4.0	7.71 7.32 8.39 6.2		
(Msi)	No. Specimens No. Batches Data Class		5 1 ening	5 1 Screening			
v_{21}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		13500 12700 14200 4.2				
$\varepsilon_2^{ m cu}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		13500 564				
	No. Specimens No. Batches Data Class		5 1 ening				

Conditioned at 160°F, 85% relative humidity for 14 days.
 Basis values are presented only for A and B data classes.

DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL. *

MATERIA			3 6k/E7K8 plain v	SENTLY REQUIR		Tab	le 4.2.10(i)
RESIN CONTENT:44 wt%COMP: DENSITY:1.5FIBER VOLUME:48 %VOID CONTENT:0.1PLY THICKNESS:0.0077-0.0093 in.0.1						HITE SBS	p 195-PW X 33/E7K8 , 31-plane [90 _f] ₆ -65/A, 180/A
TEST ME	THOD: /I D 2344-76	6	Ν	IODULUS CALCI	ULATION:		creening
NORMALI	IZED BY:	Not norm	alized				
Temperate			75.0	-65.0	75.0	180.0	
	Content (%) m at T, RH		ambient 20	ambient 20	wet (1) 20	wet (1) 20	
Source Co	Mean		8.67	8.83	9.40	8.35	
	Minimum		7.77	8.14	9.20	7.83	
	Maximum	ı	9.40	9.37	9.73	8.80	
	C.V.(%)		5.0	6.3	2.1	4.5	
	B-value		(2)	(2)	(2)	(2)	
F ₃₁ ^{sbs}	Distributio	on	Weibull	Normal	Normal	Normal	
(ksi)	C ₁		8.86	8.83	9.40	8.35	
, , ,	C ₂		23.6	0.554	0.202	0.379	
	No. Spec		20	5	5	5	
	No. Batch		1	1	1	1	
	Data Clas	SS	Screening	Screening	Screening	Screening	

Conditioned at 160°F, 85% relative humidity for 14 days.
 Short beam strength test data are approved for Screening Data Class only.

4.2.11 AS4 3k/E7K8 plain weave fabric

Material Description:

Material: AS4-3k/E7K8

- Form: Plain weave fabric, areal weight of 195 g/m², typical cured resin content of 37-48%, typical cured ply thickness of 0.0087 inches.
- Processing: Autoclave cure; 290°F, 85 psi for 2 hours. Low exotherm profile for processing of thick parts.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi. Good drape.
- Matrix: E7K8 is a medium flow, low exotherm epoxy resin. Good tack; up to 20 days out-time at ambient temperature.

Maximum Short Term Service Temperature: >300°F (dry), >190°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, jet engine applications such as stationary airfoils and thrust reverser blocker doors.

4.2.11 AS4 3k/E7K8 plain weave fabric*

MATERIAL:	AS4 3k/E7K8 plain weave fabric			C/Ep 195-PW AS4/E7K8 Summary
FORM:	U.S. Polymeric AS4/E7K8 plain wea	ave fabric prepreg		
FIBER:	Hercules AS4 3k	MATRIX:	U.S. Polymeric E	7K8
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave: 290°F, 2 hours, 85 psig			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	1/88, 6/90
Date of form manufacture 2/86 -	7/89 Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

- · · ·					
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	II-I				
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S				

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.56		
Fiber Areal Weight	(g/m ²)	195		
Fiber Volume	(%)	58	48 - 55	
Ply Thickness	(in)	0.0087	0.0074 - 0.0088	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	3k/E7K8 plain v	weave fabric					4.2.11(a) 195-PW		
FIBER V	OLUME: 48-5	8 wt% 5 % 74-0.0085 in.	Comp: De Void Con		1.52 0.0-1	-1.54 g/cm ³ I.9%	AS4/E7K8 Compression, 1-axis [0 _f] ₁₂ 75/A			
TEST ME			MODULU	S CALCUL	ATION	N:	Interim			
SAC	CMA SRM 1-88									
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to	o 57%	o (0.0076 in. C	PT)			
	ture (°F) Content (%) ım at T, RH	7: amb								
Source C		20,						T		
	Mean	Normalized 111	Measured	Normaliz	ed	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	64.4 138 11.7	988 58.0 122 11.3							
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA							
(ksi)	C ₁ C ₂	13.3 1.81	11.3 1.80							
	No. Specimens No. Batches Data Class	20 18 Inte	8							
E ₁ ^c	Mean Minimum Maximum C.V.(%)	9.02 7.87 10.5 5.24	8.07 7.07 9.04 4.28							
(Msi)	No. Specimens No. Batches Data Class	21 11 Inte	8							
v_{12}^{c}	Mean No. Specimens No. Batches									
	Data Class Mean		11600							
	Mean Minimum Maximum C.V.(%)		8820 15000 14.5							
$\varepsilon_1^{ m cu}$	B-value Distribution		(1) ANOVA							
(με)	C ₁ C ₂		1730 1.97							
	No. Specimens No. Batches Data Class	19 1 ⁻ Inte	7							

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

	AS4/E7K8 plain wea		Table 4.2.11(b)	
FIBER VOLUME:	38-48 wt% 48-55 % 0.0074-0.0085 in.	COMP: DENSITY: VOID CONTENT:	1.52-1.54 g/cm ³ 0.0-1.9%	C/Ep 195-PW AS4/E7K8 SBS, 31-plane [0 _f] ₁₂ 75/A
TEST METHOD:		MODULUS CALCUL	ATION:	Screening
ASTM D 2344-84				
NORMALIZED BY:	Not normalized			
Temperature (°F)	75			
Moisture Content (%) Equilibrium at T, RH	ambient			
Source Code	20,27			
Mean Minimum	9.68 7.53			
Maximum	14.2			
C.V.(%)	12.0			
B-value F ^{sbs} Distribution	(1) ANOVA			
F_{31}^{sbs} Distribution (ksi) C ₁	1.20			
C_2	1.95			
No. Specimen	s 170			
No. Batches	16			
Data Class	Screening			

(1) Short beam strength test data are approved for Screening Data Class only.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.12 AS4/3501-6 (bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 28%-34%, typical cured ply thickness of 0.0041-0.0062 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours; bleed system.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34×10^6 psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.12 AS4/3501-6 (bleed) unidirectional tape*

MATERIAL:	AS4/3501-6 unidirec	onal tape		C/Ep 145-UT AS4/3501-6 Summary
FORM:	Hercules AS4/3501-	unidirectional tape prep	reg	
FIBER:	Hercules AS4	MATE	RIX: Hercules	3501-6
T _g (dry):	390°F T _g (wet)	T _g ME	ETHOD: TMA	
PROCESSING:	Autoclave cure: 240 100 ± 10 psig, bleed) minutes,		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	II				
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	IS	II	SS	SS	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S	S	

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145		
Fiber Volume	(%)	60	58 - 65	
Ply Thickness	(in)		0.0041 - 0.0059	

LAMINATE PROPERTY SUMMARY

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	AS NOT SUPPL	LIED FOR THI	S MATERIAL.	
MATERI	AL: AS4	/3501-6 (bleed)	unidirectional	tape			4.2.12(a) 145-UT
FIBER V	OLUME: 58-6	8 wt% 5 % 48-0.0057 in.	Comp: De Void Con		AS4/3501-6 Tension, 1-axis [0] ₈ 75/A		
TEST M	ETHOD:		MODULU	S CALCULATIO	N:		erim
AST	M D 3039-76						
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	% (0.0053 in. C	PT)	
	Content (%)	7 amb					
Source C	um at T, RH Code	2	6				
000100		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	291 263 326 6.09	295 271 326 5.05				
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull				
(ksi)	$C_1 \\ C_2$	300 18.4	302 20.3				
	No. Specimens No. Batches Data Class	21 7 Interim					
E_1^t	Mean Minimum Maximum C.V.(%)	19.6 18.0 21.1 3.73	19.9 18.3 22.6 6.48				
(Msi)	No. Specimens No. Batches Data Class	2 7 Inte	7				
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ m tu}$ (µ $arepsilon$)	B-value Distribution C ₁						
(με)	C ₂ No. Specimens						
	No. Batches Data Class						

Volume 2, Chapter 4 Carbon Fiber Composites

				T SUPPLIED FOR TH	
MATEF	KIAL: AS4	1/3501-6 (bleed) u	inidirectional tape		Table 4.2.12(b) C/Ep 145-UT
FIBER	VOLUME: 63-6	29 wt% 64 % 048-0.0057 in.	COMP: DENSITY VOID CONTENT:	AS4/3501-6 Tension, 2-axis [90]₅ 75/A	
TEST	IETHOD:		MODULUS CALC	ULATION:	Screening
AS	STM D 3039-76				
NORM	ALIZED BY: Not	normalized			
Tempe	rature (°F)	75			
Moistur Equilibr	e Content (%) ium at T, RH	ambient			
Source		26			
	Mean Minimum	7.78 7.00			
	Maximum	9.50			
	C.V.(%)	12.1			
	B-value	(1)			
F_2^{tu}	Distribution	Normal			
(ksi)	C ₁	7.78			
	C ₂	0.941			
	No. Specimens	6			
	No. Batches	2			
	Data Class	Screening 1.48			
	Mean Minimum	1.40			
	Maximum	1.50			
E_2^t	C.V.(%)	2.75			
(Msi)	No. Specimens	6			
	No. Batches	2			
	Data Class	Screening			
	Mean No. Specimens				
v_{12}^{t}	No. Batches				
. 12	Data Class				
	Mean	1			
	Minimum				
	Maximum C.V.(%)				
					
	B-value				
$arepsilon_2^{ ext{tu}}$	Distribution				
(με)	C ₁				
	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				

Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	AS NOT SUPP	LIED FOR THI	S MATERIAL.		
MATERI	AL: AS4/	/3501-6 (bleed)	unidirectional	tape			.2.12(c)	
FIBER V	OLUME: 58-6	34 wt% COMP: DENSITY: 1.58-1.61 g/cm ³ 65 % VOID CONTENT: 041-0.0055 in. VOID CONTENT:				AS4/3 Compress [0	C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0] ₈ 75/A, 200/A, 75/W	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		D/A, 75/W Screening	
SAC	CMA SRM 1-88							
NORMAI	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	% (0.0053 in. C	PT)		
Tempera		7		20		75		
	Content (%) Im at T, RH	amb	lient	amb	lient	we (1		
Source C		2	6	2	6	20		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	210	214	196	201	202	213	
	Minimum Maximum	144 269	161 260	148 242	165 237	165 274	179 266	
	C.V.(%)	16.0	13.5	13.6	10.7	18.0	14.1	
	B-value	(2)	(2)	(2)	(2)	(2)	(2)	
F ₁ ^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Weibull	Weibull	
(ksi)	C ₁	34.7	27.7	27.7	22.3	217	226	
	C ₂	2.39	2.52	2.52	2.35	5.89	7.82	
	No. Specimens	2		2		1(
	No. Batches Data Class	7 Interim		7 Inte		2 Scree		
	Mean	17.8	18.8	16.3	17.4	17.4	18.5	
	Minimum	15.1	16.4	13.0	14.3	15.6	17.1	
E_1^c	Maximum C.V.(%)	20.3 7.50	20.0 7.18	18.7 10.7	19.6 10.1	20.3 9.14	20.6 5.84	
-					-			
(Msi)	No. Specimens No. Batches	1.		1		10 2		
	Data Class	Scree		Inte		Screening		
	Mean No. Specimens							
v_{12}^{c}	No. Batches							
	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_1^{\mathrm{cu}}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches Data Class							
	Dala Class							

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

Volume 2, Chapter 4 Carbon Fiber Composites

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e 4.2.12(d)	
TEST METHOD: MODULUS CALCULATION: SacMA SRM 1-88 SACMA SRM 1-88 NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0053 in. CPT) Temperature (°F) 200 Woisture Content (%) 200 Equilibrium at T, RH 200 Mean 169 179 Minimum 100 107 Maximum 212 226 Mean 108 179 Fi ^a Distribution ANOVA ANOVA B-value (1) (1) (1) (1) Kisi) C ₁ 41.7 46.6 26 No. Specimens 10 No. Batches 3 26 Mean 17.7 18.7 Minimum 12.1 13.4 Maximum 27.2 25.5 5 5 5 E ¹ No. Specimens 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 13.4 10 10 10 10 10 10	C/Ep 145-UT AS4/3501-6 Compression, 1-axis [0] ₈ 200/W	
SACMA SRM 1-88 NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0053 in. CPT) Temperature (°F) 200 Moisture Content (%) wet Equilibrium at T, RH 200 Mean 169 Normalized Measured Normalized Mean 169 179 Measured Normalized Measured Normalized Mean 169 179 Minimum 100 107 Maximum 212 226 22.2 22.9 4 4 4 Fi ^C Revalue (1) (1) (1) (1) (1) (1) (1) Mean 17.7 18.7 Mean 17.7 18.7 Mean 17.7 18.7 Mean 17.7 18.7 <th c<="" td=""><td>reening</td></th>	<td>reening</td>	reening
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{tabular}{ c c c c c } \hline F & 200 & wet & 26 & & & & & & & & & & & & & & & & & $		
$\begin{array}{c c c c c c c c } \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
Equilibrium at T, RH Source Code26NormalizedNormalizedMeasuredNormalizedMean169179Minimum100107Minimum100107Maximum212226C.V.(%)22.222.9VerticeVerticeB-value(1)(1)(1)DistributionANOVAANOVA(ksi)C141.746.6C25.285.72No. Specimens3Data ClassScreeningE1C.V.(%)21.6Minimum12.113.4Maximum27.225.5E1C.V.(%)21.6Misimum27.225.5Maximum27.221.615.8(Msi)No. Specimens Data Class10No. Batches3Data ClassScreeningMaximum21.6V1221.6Mean No. Specimens No. Batches3Data ClassScreeningV12Data ClassV12Data ClassNo. Specimens No. Specimens No. BatchesNo. Specimens No. BatchesNo. Specimens No. BatchesNo. Specimens No. BatchesNo. Specimens No. BatchesNo. Specimens No. BatchesNo. BatchesData ClassNo. Specimens No. BatchesNo. Specimens 		
Source Code26NormalizedMeasuredNormalizedMeasuredMormalizedMeasuredNormalizedMean169179Minimum100107Maximum212226C.V.(%)22.222.9B-value(1)(1)DistributionANOVAANOVA4NOVA(ksi)C141.7C25.285.72No. Specimens10No. Batches3Data ClassScreeningE1C.V.(%)21.6Minimum12.113.4Maximum27.225.5C.V.(%)21.615.8Minimum10No. SpecimensNo. SpecimensMinimum12.113.4Maximum27.225.5C.V.(%)21.615.8MeanNo. SpecimensNo. BatchesData ClassScreeningMeanNo. SpecimensNo. BatchesData ClassScreeningMeanNo. SpecimensNo. BatchesData ClassNo. BatchesData ClassNo. BatchesData ClassNo. BatchesData ClassNo. BatchesData ClassNo. BatchesData ClassNo. BatchesData ClassData ClassData ClassData Class		
$\begin{tabular}{ c c c c c } \hline $Normalized & Measured & Normalized & Measured & Measured & Measured & Normalized & Measured & Measur$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Measure	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c } & \text{No. Batches} & & & & & & & & & & & & & & & & & & &$		
$\begin{array}{c c c c c c c c } & \text{No. Batches} & & & & & & & & & & & & & & & & & & &$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$		
$\begin{array}{cccc} E_1^c & C.V.(\%) & 21.6 & 15.8 \\ (Msi) & No. Specimens & 10 & & \\ No. Batches & 3 & & \\ Data Class & Screening & & \\ \hline v_{12}^c & No. Batches & & \\ Data Class & & & \\ Data Class & & & \\ \end{array}$		
(Msi) No. Specimens No. Batches 10 3 Data Class 10 Mean Screening No. Specimens No. Specimens No. Batches 10 Data Class 10		
No. Batches 3 Data Class Screening Mean No. Specimens V12 Data Class		
Data Class Screening Mean No. Specimens V ^c ₁₂ No. Batches Data Class		
Mean No. Specimens V ^c ₁₂ No. Batches Data Class		
No. Specimens v_{12}^c No. Batches Data Class		
v_{12}^c No. Batches Data Class		
Data Class		
Mana		
Mean		
Minimum Maximum		
C.V.(%)		
B-value e ^{cu} Distribution		
$(\mu\epsilon)$ C_1 C_2		
No. Specimens		
No. Batches Data Class		

Volume 2, Chapter 4 Carbon Fiber Composites

MATERIA		AS4/350	1-6 (bleed) unidi			C/E	le 4.2.12(e) Ep 145-UT	
RESIN CONTENT: 30-34 wt FIBER VOLUME: 58-62 % PLY THICKNESS: 0.0047-0			N N	COMP: DENSITY: 1.58-1.60 g/cm ³ VOID CONTENT:			AS4/3501-6 SBS, 31-plane [0] ₈ 75/A, 200/A, 75/W,	
			I	MODULUS CALCI	JLATION:	S	200/W creening	
	M D 2344 IZED BY:	Not norm	alized					
		Not norm					T	
Temperat			75	200	75	200		
	Content (%)		ambient	ambient	wet	wet		
Equilibriur Source Co	n at T, RH		26	26	(1) 26	(1) 26		
	Mean		17.3	13.0	13.9	9.0		
	Minimum		14.1	11.1	13.5	8.3		
	Maximun		19.4	14.9	15.5	10.1		
	C.V.(%)		7.63	11.6	6.13	6.4		
	B-value		(2)	(2)	(2)	(2)		
F ₃₁ ^{sbs}	Distributi	on	ANOVA	ANOVA	Normal	Normal		
(ksi)	C ₁		1.38	1.59	13.9	9.0		
(-)	C ₂		2.62	2.77	0.852	0.58		
	No. Spec	imens	21	21	6	9		
	No. Batcl		7	7	2	3		
	Data Cla	SS	Screening	Screening	Screening	Screening		

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

MATER	RIAL: AS4	/3501-6 (bleed)	unidirectional	tape		Table 4.2.12(f) C/Ep 145-UT
RESIN CONTENT: 29-32 wt% COMP: DENSITY: 1.59-1.60 g/cm ³ FIBER VOLUME: 60-63 % VOID CONTENT: PLY THICKNESS: 0.0055-0.0062 in.						AS4/3501-6 Tension, x-axis [0/45/90/-45] _s 75/A
TEST	METHOD:		MODULU	IS CALCULATIO	N:	Screening
AS	STM D 3039-76		Linear	portion of curve		
NORM	ALIZED BY: Nor	malized by spec	cimen thickness	and batch fiber	area weight to	o 60% (0.0059 in. CPT)
Moistur	rature (°F) re Content (%) rium at T, RH	amt	75 pient 26			
Source	Coue	Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	107 101 118 6.03	95.8 90.6 106 5.95			
F _x ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	7.51 15.5	29.9 14.5			
	No. Specimens No. Batches Data Class		6 2 ening			
E_x^t	Mean Minimum Maximum C.V.(%)	8.08 7.39 9.41 9.75	7.22 6.60 8.40 9.74			
(Msi)	No. Specimens No. Batches Data Class	:	6 2 ening			
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches Data Class					
	Mean Minimum Maximum C.V.(%)					
$\varepsilon_{\rm x}^{ m tu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MATER	IAL: AS	4/3501-6 (bleed	l) unidirectiona	ll tape		Table C/Ep	4.2.12(g) 145-UT
		·32 wt% ·63 %	AS4/3501-6 Open Hole Tension,				
PLY TH	ICKNESS: 0.0	055-0.0057 in.				[0/45	-axis /90/-45] _s 75/A
	ETHOD: CMA SRM 5-88 (1)		MODUL		Screening		
NORMA	LIZED BY: No	rmalized by spe	cimen thickne	ss and batch fib	er areal weight	to 60% (0.0056	in. CPT)
	ature (°F)	75					
Equilibri	e Content (%) um at T, RH	amb					
Source	Code	20 Normalized	Measured	Normalized	Maggurad	Normalized	Maggurad
	Mean	65.6	62.0	Normalized	Measured	Normalized	Measured
	Minimum	62.2	59.2				
	Maximum	69.0	65.1				
	C.V.(%)	3.42	3.13				
	B-value	(2)	(2)				
F_x^{oht}	Distribution	ANOVA	Normal				
(ksi)	C ₁	2.50	62.0				
()	C ₂	12.8	1.94				
	No. Specimens	6					
	No. Batches	2					
	Data Class	Scree	ning				
	Mean						
	Minimum Maximum						
E_x^{oht}	C.V.(%)						
(Msi)	No. Specimens						
、 ,	No. Batches						
	Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
	0. v.(70)						
	B-value						
$\varepsilon_{\rm x}^{\rm oht}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

(1) Note SACMA SRM 5-88 uses a $[+45/0/-45/90]_{2S}$ lay-up.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape

Material Description:

Material: AS4/3501-6

Form: Unidirectional tape, fiber areal weight of 145 g/m², typical cured resin content of 36%-39%, typical cured ply thickness of 0.0055-0.0063 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34×10^6 psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.13 AS4/3501-6 (no bleed) unidirectional tape*

MATERIAL:	AS4/3501-	6 unidirectional ta	De		C/Ep 145-UT AS4/3501-6 Summary				
FORM:	Hercules A	Hercules AS4/3501-6 unidirectional tape prepreg							
FIBER:	Hercules A	S4, unsized	MATRIX:	Hercules 3501-6					
T _g (dry):	390°F	T _g (wet):	T _g METHOD:	ТМА					
PROCESSING:		cure: 240 ± 10°F, sig; no bleed	60 minutes; 85 psig; 350 ± 10	0°F, 120 ± 10 minutes	З,				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	~12/82-8/89	Date of testing	~6/83 - ~4/91
Date of resin manufacture		Date of data submittal	6/90
Date of prepreg manufacture	1/83 - 11/89	Date of analysis	1/93
Date of composite manufacture			

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A	200°F/W	
Tension, 1-axis	II	SS	SS		
Tension, 2-axis	SS				
Tension, 3-axis					
Compression, 1-axis	II		I	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.59		
Fiber Areal Weight	(g/m ²)	145	142 - 149	
Fiber Volume	(%)	60	52 - 60	
Ply Thickness	(in)		0.0055 - 0.0063	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0/45/90/-45] family					
Tension, x-axis	S S				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	HS MATERIAL		
MATERI	AL: AS4/	/3501-6 (no blee	ed) unidirectior	nal tape			4.2.13(a)	
FIBER V	OLUME: 52-5	9 wt% 6 % 55-0.0060 in.	COMP: DE VOID CON		5-1.57 g/cm ³	AS4/ Tensio [145-UT 3501-6 n, 1-axis 0] ₈	
TEST M	ETHOD:		MODULUS	S CALCULATIC	DN:	75/A, -65/A, 200/A Interim, Screening		
	M D 3039-76			tangent				
NORMA	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60°	% (0.0053 in. C	PT)		
	iture (°F) Content (%) um at T, RH	7: amb			85 pient		00 bient	
Source C		2	-		6		6	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	290 262 322 5.62	262 235 286 5.38	261 207 300 12.4	237 187 274 12.8	315 278 330 4.89	286 247 297 5.59	
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Nonpara.	(1) Nonpara.	
(ksi)	C ₁ C ₂	16.5 2.05	14.3 2.01	34.9 4.69	33.1 5.05	6 2.25	6 2.25	
	No. Specimens No. Batches Data Class	30 10 Inte	0	9 3 Screening		9 3 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	18.9 17.0 20.3 4.0	17.1 15.5 17.9 3.20	21.1 19.7 22.3 4.60	19.2 17.7 21.4 5.78	20.8 19.4 22.0 4.72	18.9 17.4 20.2 4.70	
(Msi)	No. Specimens No. Batches Data Class	3 1 Inte	0		9 3 enina	Scree	3	
v_{12}^{t}	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATER	RIAL: A	S4/3501-6 (no blee	d) unidirectior	nal tape			4.2.13(b)
FIBER	VOLUME: 54	7 wt% 4-55 % 0060-0.0062 in.	COMP: D VOID CO		56 g/cm ³	C/Ep 145-UT AS4/3501-6 Tension, 2-axis [90] ₈ 75/A	
TEST	METHOD:		MODULU	S CALCULAT	ION:		ening
AS	STM D 3039-76		Initial	tangent			•
NORM	ALIZED BY: N	ot normalized					
Tempe	rature (°F)	75					
Moistu	re Content (%) rium at T, RH	ambient					
Source	Code	26					
	Mean	8.0					
	Minimum Maximum	6.8 9.3					
	C.V.(%)	9.3 10					
F ₂ ^{tu}	B-value Distribution	(1) Normal					
(ksi)	C ₁	8.0					
	C ₂	0.81					
	No. Specimens	9					
	No. Batches	3					
	Data Class	Screening					
	Mean	1.2					
	Minimum Maximum	1.1 1.4					
E_2^t	C.V.(%)	8.9					
E_2	0.1.()0)	0.0					
(Msi)	No. Specimens	9					
. ,	No. Batches	3					
	Data Class	Screening					
	Mean No. Specimens						
v_{21}^{t}	No. Batches						
V 21	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$arepsilon_2^{ ext{tu}}$	Distribution						
(με)	C ₁						
(µc)	C_2						
	No. Specimens						
	No. Batches						
	Data Class						

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	IIS MATERIAL.		
MATERIA	AL: AS4/	'3501-6 (no blee	ed) unidirectior	nal tape			.2.13(c) 145-UT	
FIBER V	OLUME: 52-5	9 wt% 6 % 56-0.0060 in.		COMP: DENSITY: 1.55-1.57 g/cm ³ VOID CONTENT:			AS4/3501-6 Compression, 1-axis [0]₀	
		50-0.0000 ml.		75/A, 20	0/A, 20/W			
TEST ME	ETHOD: CMA SRM 1-88			S CALCULATIO tangent	IN:	Inte	erim	
SAC	IVIA SKIVI 1-00		muar	langeni				
NORMAL	LIZED BY: Spec	imen thickness	and batch fibe	er volume to 60%	% (0.0053 in. C	PT)		
Tempera		7		20		20		
	Content (%) ım at T, RH	amb	ient	amb	lent	we (1		
Source C		2	-	2		2	6	
	Maan	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum	233 200	211 186	213 174	193 157	191 142	173 128	
	Maximum	260	234	267	243	220	201	
	C.V.(%)	6.39	6.16	9.74	10.0	11.0	11.4	
	B-value	(2)	(2)	(2)	(2)	(2)	(2)	
F_1^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁	15.2 2.21	13.4 2.23	21.0 2.00	19.6	22.4 4.17	21.1	
	C ₂	2.21	2.23	2.00	2.03	4.17	4.25	
	No. Specimens	3		3		1:		
	No. Batches Data Class	8 Interim		1 Inte		Inte		
	Mean	18.8	17.0			18.3	16.6	
	Minimum Maximum	17.9 19.7	16.2 17.8			17.5 19.1	15.7 17.3	
E_1^c	C.V.(%)	3.21	3.53			2.62	3.16	
			_				_	
(Msi)	No. Specimens No. Batches	1:				1:		
	Data Class	Inte				Inte		
	Mean No. Specimens							
v_{12}^{c}	No. Batches							
12	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_1^{ m cu}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class			Ļ		Į		

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

MATERIAL			1-6 (no bleed) un			R THIS MATERIAL. Table 4.2.13(d) C/Ep 145-UT)
RESIN CO FIBER VO PLY THICI	LUME:	36-39 wt ⁶ 52-56 % 0.0057-0	V	COMP: DENSITY: OID CONTENT:	1.55-1.57 g/cn)
TEST MET	THOD:		Ν	IODULUS CALCU	JLATION:	Screening	
ASTM	1 D 2344-76	;		Initial tangent			
NORMALI	ZED BY:	Not norm	alized				
Temperatu			75	200			
Moisture C Equilibrium	Content (%) n at T, RH		ambient	ambient			
Source Co	ode		26	26			
	Mean		17.9	14.0			
	Minimum		16.5	12.9			
	Maximum	1	19.0	15.4			
	C.V.(%)		4.46	4.73			
	B-value		(1)	(1)			
F ₃₁ ^{sbs}	Distributio	on	ANOVA	ANOVA			
(ksi)	C ₁		0.824	0.683			
(-)	C ₂		2.36	2.34			
	No. Spec No. Batch		30 8	30 10			
	Data Clas		o Screening	Screening			
	Data Olac		Corconing	Corconing			

(1) Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: AS4	/3501-6 (no blee	d) unidirection	al tape		Table (4.2.13(e) 145-UT	
FIBER	VOLUME: 54-5	37 wt% 56 % 957-0.0062 in.	Comp: De Void Com		56-1.57 g/cm ³	AS4/3501-6 Tension, x-axis [0/45/90/-45] _s 75/A		
			MODULU	S CALCULAT	ION:	Screening		
	STM D 3039-76							
NORM	ALIZED BY: NA							
Moistur	rature (°F) e Content (%) rium at T, RH	75 ambient						
Source		26						
	Mean Minimum Maximum C.V.(%)	87.4 83.2 92.8 3.43						
F _x ^{tu}	B-value Distribution	(1) Normal						
(ksi)	C ₁ C ₂	87.4 3.00						
	No. Specimens No. Batches Data Class	9 3 Screening						
E _x ^t	Mean Minimum Maximum C.V.(%)							
(Msi)	No. Specimens No. Batches Data Class							
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches							
	Data Class Mean				-			
	Minimum Maximum C.V.(%)							
$\varepsilon_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATER	IAL:	AS4/	3501-6 (no blee	ed) unidirection	al tape			4.2.13(f)
		36-37 54-56	7 wt% 5 %	COMP: D VOID COI		1.56-1.57 g/cm ³	AS4/ Open Ho	145-UT 3501-6 le Tension,
PLY TH	IICKNESS:	0.006	60-0.0064 in				[0/45/	axis 90/-45] _s 5/A
					S CALCULA	TION:		ening
SA	CMA SRM 5-88	(1)						
NORMALIZED BY: NA								
	ature (°F)		75					
	e Content (%) ium at T, RH		ambient					
Source			26					
	Mean		56.8					
	Minimum Maximum		54.4 60.8					
	C.V.(%)		3.75					
	Ducha		(0)					
F _x ^{oht}	B-value Distribution		(2) Normal					
(ksi)	C ₁		56.8					
()	C ₂		2.13					
	No. Specimen	9	9					
	No. Batches	C C	3					
	Data Class		Screening					
	Mean Minimum							
1.	Maximum							
E_x^{oht}	C.V.(%)							
(Msi)	No. Specimen	s						
(No. Batches	•						
	Data Class Mean							
	No. Specimen	s						
$\nu_{\rm xy}^{ m t}$	No. Batches							
	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_{\rm x}^{\rm oht}$	Distribution							
(με)	C ₁							
·· /	C ₂							
	No. Specimen	s						
	No. Batches	-'						
	Data Class							

(1) Note SACMA SRM 5-88 uses a [45/0/-45/90]_{2S} lay-up.

4.2.14 AS4 3k/3501-6 plain weave fabric

Material Description:

Material: AS4-3k/3501-6

- Form: Plain weave fabric, areal weight of 193 g/m², typical cured resin content of 37-41%, typical cured ply thickness of 0.0074-0.0086 inches.
- Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.14 AS4 3k/3501-6 plain weave*

MATERIAL:	AS4 3k/3501-6 plain weave fabric			C/Ep 193-PW AS4/3501-6 Summary
FORM:	Hercules AW193P plain weave fabric	prepreg	-	
FIBER:	Hercules AS4 3k W	MATRIX:	Hercules 3501-6	
T _g (dry):	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minute 100 ± 10 psig, no bleed	es, 85 psig; 350 ± 1	0°F, 120 ± 10 minutes	·,

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

75°F/A		-65°A/F	200°F/A		75°F/W	200°F/W	
SS		SS	SS				
II			II		II	II	
S			S		S	S	
	SS II	SS II	SS SS	SS SS SS II II	SS SS SS II II	SS SS SS II II II II	SS SS SS II II <th< td=""></th<>

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.54 - 1.56	
Fiber Areal Weight	(g/m ²)	193	193	
Fiber Volume	(%)	58	51 - 54	
Ply Thickness	(in)	0.0070	0.0074 - 0.0086	

LAMINATE PROPERTY SUMMARY

	75°F/A				
[0t/90f/±45f] Family					
Tension, x-axis	SS				
[±45 _f /0 _f /90 _f] Family					
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIAL:

AS4 3k/3501-6 plain weave fabric

 RESIN CONTENT:
 38 wt%

 FIBER VOLUME:
 53-54 %

 PLY THICKNESS:
 0.0074-0.0080 in.

COMP: DENSITY: 1.56 g/cm³ VOID CONTENT: Table 4.2.14(a) C/Ep 193-PW AS4/3501-6 Tension, 1-axis [0_f]₈ 75/A, -65/A, 200/A Screening

TEST METHOD: ASTM D 3039-76 MODULUS CALCULATION:

NORMALIZED BY:

Specimen thickness and batch fiber volume to 57% (0.0074 in. CPT)

	ture (°F) Content (%) ım at T, RH	7: amb	ient	-6 amb	pient	20 amb	ient	
Source C	Code	2		2		20		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	124 117 133 4.18	117 111 124 3.56	112 103 120 4.63	105 98.1 112 4.00	126 116 133 4.79	119 108 126 5.88	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	124 5.17	117 4.15	112 5.17	105 4.21	126 6.05	119 7.00	
	No. Specimens No. Batches Data Class	9 3 Screening		Scree	3	9 3 Screening		
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.8 9.4 10.2 3,0	9.2 8.8 9.5 2.5	10.5 9.7 11.1 4.6	9.9 9.1 10.4 4.2	10.1 7.1 10.7 11	9.5 6.7 10.1 11	
(Msi)	No. Specimens No. Batches Data Class	g 3 Scree	5	g 3 Scree	3	9 3 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERIAL:

AS4 3k/3501-6 plain weave fabric

 RESIN CONTENT:
 39-41 wt%

 FIBER VOLUME:
 51-52 %

 PLY THICKNESS:
 0.0081-0.0086 in.

COMP: DENSITY: 1.54-1.55 g/cm³ VOID CONTENT: Table 4.2.14(b) C/Ep 193-PW AS4/3501-6 Compression, 1-axis [0_f]₁₄ 75/A, 200/A, 75/W Interim

TEST METHOD:

SACMA SRM 1-88

MODULUS CALCULATION:

NORMALIZED BY:

Specimen thickness and batch fiber volume to 57% (0.0074 in. CPT)

Tomporo	ture (°E)	-	<i>"</i> 5	20	0	7:	-	
Tempera Moisture	Content (%)	/	5	20	0			
	um at T, RH	amh	pient	ambient		(1) wet		
Source C		26		26		26		
000100 0		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	130	117	108	97.3	112	101	
	Minimum	115	104	92.8	83.0	99.6	88.0	
	Maximum	140	127	121	109	122	109	
	C.V.(%)	6.45	6.49	7.44	7.71	5.56	5.65	
	B-value	(2)	(2)	(2)	(2)	(2)	(2)	
F ₁ ^{cu}	Distribution	Nonpara.	Nonpara.	Weibull	Normal	ANOVA	ANOVA	
(ksi)	C ₁	8	8	112	97.3	6.83	6.32	
	C ₂	1.54	1.54	15.1	7.51	4.85	5.09	
	No. Specimens	1	5	1	5	1:	5	
	No. Batches		3	3		3		
	Data Class		erim	Inte		Inte		
	Mean	9.2	8.3	9.8	8.8	9.4	8.4	
	Minimum	8.5	7.7	9.2	8.4	8.8	8.1	
	Maximum	9.8	8.8	10.2	9.1	9.9	8.8	
E_1^c	C.V.(%)	3.4	4.3	3.5	2.5	3.0	2.4	
(Msi)	No. Specimens	1	5	1	5	1:	5	
(10101)	No. Batches		3	3		3		
	Data Class		erim	Inte		Inte		
	Mean							
	No. Specimens							
v_{12}^{c}	No. Batches							
12	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_1^{\mathrm{cu}}$	Distribution							
(με)	C ₁							
()	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							
	2 414 01400	I		I		1		

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

MATERIAL:	AS4 3k/3501-6 plain weave fabric
-----------	----------------------------------

 RESIN CONTENT:
 39-41 wt%

 FIBER VOLUME:
 51-52 %

 PLY THICKNESS:
 0.0081-0.0086 in.

COMP: DENSITY: 1.54-1.55 g/cm³ VOID CONTENT: Table 4.2.14(c) C/Ep 193-PW AS4/3501-6 Compression, 1-axis [0_f]₁₄ 200/W Interim

TEST METHOD:

MODULUS CALCULATION:

SACMA SRM 1-88

NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.0074 in. CPT)

	Content (%) um at T, RH	200 (1) wet 26					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	58.7 51.7 65.4 7.27	52.7 46.2 59.7 7.58				
F ₁ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull				
(ksi)	C ₁ C ₂	60.6 15.6	54.5 15.2				
	No. Specimens No. Batches Data Class	3 Inte	15 3 Interim				
$\mathrm{E}_{1}^{\mathrm{c}}$	Mean Minimum Maximum C.V.(%)	9.1 8.7 9.4 2.4	8.1 7.8 8.5 2.9				
(Msi)	No. Specimens No. Batches Data Class	1: 3 Inte					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%) B-value						
$\varepsilon_1^{\rm cu}$	Distribution						
(με)	C_2						
	No. Specimens No. Batches Data Class						

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

MATERIAL: AS4 3k/3501-6 plain weave fabric							e 4.2.14(d) p 193-PW		
FIBER VO	ESIN CONTENT: 39-41 wt% COMP: DENSITY: 1.54-1.55 g/cm ³ IBER VOLUME: 51-52 % VOID CONTENT: LY THICKNESS: 0.0077-0.0082 in.					, ³ AS SBS 75/A, 1	AS4/3501-6 SBS, 31-plane [0 ₁] ₁₄ 75/A, 200/A, 75/W,		
TEST MET ASTM	ГНОD: 1 D 2344		I	MODULUS CALCI	JLATION:		200/W creening		
NORMALIZ	ZED BY:	Not norm	alized						
Temperatu	ıre (°F)		75	200	75	200			
	Content (%)		ambient	ambient	wet	wet			
Equilibrium Source Co			26	26	(1) 26	(1) 26			
Source Co	Mean		10.9	8.4	10.9	5.3			
	Minimum		9.7	8.1	10.0	5.2			
	Maximum	n	11.9	8.8	11.4	5.5			
	C.V.(%)		6.09	2.5	3.47	2.3			
	B-value		(2)	(2)	(2)	(2)			
F ₃₁ ^{sbs}	Distributio	on	(2) Weibull	Normal	Weibull	Nonpara.			
(ksi)	C ₁		11.2	8.4	11.0	7			
(101)	C_2		20.1	0.21	35.4	1.81			
	No. Spec		15	9	15	12			
	No. Batch		3	3	3	3			
	Data Clas	SS	Screening	Screening	Screening	Screening			

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		AL. AS4	2k/2501 6 plain	waaya fahria					
PLY THICKNESS: 0.0080-0.0085 in. Image: model of the second of the secon	RESIN C	ONTENT: 37-3	8 wt%	COMP: D		6 lb/in ³	C/Ep 193-PW AS4/3501-6		
TEST METHOD: Screening Screening ASTM D 3039-76 NORMALIZED BY: Normalized by specimen thickness and batch fiber areal weight to 60% (0.0083 in. CPT) Temperature (°F) 75 Moisture Content (%) ambient Normalized Measured Normalized Measured Normalized Measured Measured Normalized Measured Measured Normalized Measured Measured Normalized Measured Measured Measured Normalized Measured Measured Measured Measured Measured Normalized Measured					NIENI:	[0 _f /90 _f /±45 _f] _{2S}			
Normalized by specimen thickness and batch fiber areal weight to 60% (0.0083 in. CPT) Temperature (°F) Bioiture Content (%) Equilibrium at T, RH Source Code 75 ambient 26 Vormalized Measured Normalized Measured Normalized Measured Measured Normalized Measured Measured Normalized Measured Normalized Measured Normalized Measured Normalized Measured Measured <th< td=""><td>TEST ME</td><td>ETHOD:</td><td></td><td>MODULU</td><td>S CALCULATIC</td><td>N:</td><td></td></th<>	TEST ME	ETHOD:		MODULU	S CALCULATIC	N:			
Temperature ("F) Moisture Content (%) Equilibrium at T, RH75 ambientSource CodeNormalizedMeasuredNormalizedMeasuredMean Maximum (Ksi)76.068.5 62.0NormalizedMeasuredNormalizedMeasuredMinimum Maximum (ksi)83.475.1 7.6NormalNormalNormalFx bistribution (ksi)Distribution C_1 (1)(1) 76.068.5 68.5 5.78S.21No. Specimens Mo. Batches Data Class9 ScreeningScreeningImage: ScreeningMean 			nalized by spec	imon thickness	and batch fiber	areal weight t	co 60% (0 0083 in CPT)		
Equilibrium at T, RH 26 Normalized Measured Normalized Measured Normalized Measured Normalized Measured Measu			7	5					
weanNormalizedMeasuredNormalizedMeasuredNormalizedMeasuredMea	Equilibriu	im at T, RH							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source C	Jode			Normalized	Measured	Normalized Measured		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mean			Normalizeu	MEasureu			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Minimum	68.8	62.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$		C.V.(%)	7.6	7.60					
$ \begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	tu	B-value	(1)	(1)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F_{X}^{cu}								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(ksi)								
$ \begin{array}{c c c c c c c } \hline No. Batches & 3 & Screening & \\ \hline Data Class & Screening & \\ \hline Mean & 6.7 & 6.0 & \\ \hline Minimum & 6.2 & 5.6 & \\ \hline Maximum & 6.9 & 6.3 & \\ C.V.(%) & 3.5 & 3.6 & \\ \hline (Msi) & No. Specimens & 9 & \\ \hline No. Batches & 3 & \\ \hline Data Class & Screening & \\ \hline Mean & & \\ \hline & Mean & \\$		C ₂	5.78	5.21					
$ \begin{array}{c c c c c c c } \hline No. Batches & 3 & Screening & \\ \hline Data Class & Screening & \\ \hline Mean & 6.7 & 6.0 & \\ \hline Minimum & 6.2 & 5.6 & \\ \hline Maximum & 6.9 & 6.3 & \\ C.V.(%) & 3.5 & 3.6 & \\ \hline (Msi) & No. Specimens & 9 & \\ \hline No. Batches & 3 & \\ \hline Data Class & Screening & \\ \hline Mean & & \\ \hline & Mean & \\$		No. Specimens	g)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E_x^t								
No. Batches3 ScreeningMeanMean v_{xy}^{t} No. Specimens Data ClassMean Minimum Maximum C.V.(%) \mathcal{E}_{x}^{tu} B-value Distribution $(\mu\epsilon)$ \mathcal{E}_{2}^{tu} B-value Distribution \mathcal{L}_{2} No. Specimens No. Batches		0.0.(70)	0.0	0.0					
$\begin{array}{c c c c c c c } \hline Data Class & Screening & & & & & & & & & & & & & & & & & & &$	(Msi)								
Mean No. Specimens No. Batches Data Class Mean Minimum Minimum Maximum C.V.(%) C.V.(%) \mathcal{E}_x^{tu} B-value Distribution C1 (µɛ) C1 No. Specimens No. Batches									
v_{xy}^{t} No. Specimens No. Batches Data ClassMean Minimum Maximum C.V.(%) ε_{x}^{tu} B-value Distribution ($\mu\epsilon$) C_{1} C_{2} No. Specimens No. Batches			30100	5 mily					
v_{xy} No. Batches Data Class Mean Minimum Maximum C.V.(%) Kaximum \mathcal{E}_x^{tu} B-value Distribution Distribution ($\mu\epsilon$) C1 C2 No. Specimens No. Batches No. Batches	v ^t								
$ \begin{array}{c c} & Mean & & \\ Minimum & & \\ Maximum & \\ C.V.(%) & & \\ \\ \varepsilon_x^{tu} & B-value & \\ Distribution & \\ (\mu\epsilon) & C_1 & \\ C_2 & & \\ No. \ Specimens & \\ No. \ Batches & \\ \end{array} $	V _{xy}								
$ \begin{array}{c} \text{Minimum} \\ \text{Maximum} \\ \text{C.V.(\%)} \\ \\ \varepsilon_x^{\text{tu}} & \begin{array}{c} \text{B-value} \\ \text{Distribution} \\ (\mu\epsilon) & \begin{array}{c} \text{C}_1 \\ \text{C}_2 \\ \\ \\ \text{No. Specimens} \\ \text{No. Batches} \end{array} \end{array} $									
$ \begin{array}{c} Maximum \\ C.V.(\%) \\ \\ \varepsilon_x^{tu} \\ B-value \\ Distribution \\ (\mu\epsilon) \\ C_1 \\ C_2 \\ \\ No. Specimens \\ No. Batches \end{array} $									
$ \begin{array}{c} \mathcal{C}.V.(\%) \\ \mathcal{E}_{x}^{tu} & \begin{array}{c} \text{B-value} \\ \text{Distribution} \\ (\mu\epsilon) & \begin{array}{c} \text{C}_{1} \\ \text{C}_{2} \end{array} \\ \text{No. Specimens} \\ \text{No. Batches} \end{array} $									
 ^εx Distribution (με) C₁ C₂ No. Specimens No. Batches 									
 ^εx Distribution (με) C₁ C₂ No. Specimens No. Batches 	4-	R volue							
(με) C ₁ C ₂ No. Specimens No. Batches	$\varepsilon_{\rm x}^{\rm tu}$								
C ₂ No. Specimens No. Batches	(µɛ)								
No. Batches	(1.0)								
No. Batches		No. Constitution							
		NO. Specimens							
		Data Class							

MATERIA	AL: AS4	3k/3501-6 plain	weave fabric				4.2.14(f) 193-PW	
RESIN CONTENT:37-38FIBER VOLUME:53-54						AS4/3501-6 Open Hole Tension, x-axis		
PLY THICKNESS: 0.0080-0.0085 in.						[±45 _f /	D _f /90 _f] _{2S} 5/A	
TEST ME	THOD: MA SRM 5-88 (1)		MODULU	S CALCULATIO	N:	Scre	ening	
NORMALIZED BY: Normalized by specimen thickness and batch fiber areal weight to 60% (0.0083 in. 0								
NORMAL						·	-	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	57.0	51.4					
	Minimum	54.0	48.6					
	Maximum	59.7	53.8					
	C.V.(%)	3.4	3.40					
oht	B-value	(2)	(2)					
F_{x}^{oht}	Distribution	ANOVA	ANOVA					
(ksi)	C ₁	2.12	2.46					
()	C ₂	5.15	1.20					
	•2	00						
	No. Specimens	9						
	No. Batches	3						
	Data Class	Scree						
	Mean	00100	, in ig					
	Minimum							
t	Maximum							
$\mathbf{E}_{\mathbf{x}}^{t}$	C.V.(%)							
(Msi)	No. Specimens							
	No. Batches							
	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
$\varepsilon_{\mathrm{x}}^{\mathrm{tu}}$	B-value							
$c_{\rm X}$	Distribution							
(με)	C ₁							
(p.c)	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

Note SACMA SRM 5-88 uses a [45/0/-45/90]_S lay-up.
 Basis values are presented only for A and B data classes.

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6S

- Form: 5-harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 33-35%, typical cured ply thickness of 0.0106 -0.0107 inches.
- Processing: Autoclave cure; 240°F, 85 psi for 1 hour, 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6S is an amine-cured epoxy resin. This resin is a solvated material. It results in a more drapeable prepreg for use on highly complex parts. This resin is also amenable to cocuring. The hot/wet strengths are slightly lower than the non-solvated resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical Applications: General purpose structural applications.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.15 AS4 3k/3501-6S 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6S 5-harness satin weav	C/Ep 280-5HS AS4/3501-6S Summary		
FORM:	Hercules AW280 5-harness satin wear	ve fabric prepreg	-	
FIBER:	Hercules AS4 3k W			
T _g (dry):	T _g (wet):	Tg METHOD:		
PROCESSING:	Autoclave cure: $240 \pm 10^{\circ}$ F, 60 minute 100 ± 10 psig, no bleed	es, 85 psig; 350 ± 10	0°F, 120 ± 10 minutes	;,

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/88
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A			
Tension, 1-axis	II				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	I	I			
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.58	1.58 - 1.59	
Fiber Areal Weight	(g/m ²)	280	279 - 284	
Fiber Volume	(%)	58	57 - 60	
Ply Thickness	(in)		0.0106 - 0.0107	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	VERE NOT SUF	PLIED FOR T	HIS MATERIAL	
MATERIA		3k/3501-6S 5-			3	C/Ep 2	4.2.15(a) 280-5HS
FIBER V	OLUME: 57-6	5 wt% 0 % 06-0.0107 in.	COMP: DE VOID CON		8-1.59 g/cm ³	Tensio [(501-6S n, 1-axis 0 _f] ₆
TEST ME			MODULUS	S CALCULATIO	N:		5/A erim
AST	M D 3039-76						
NORMAL	IZED BY: Spec	cimen thickness	s and batch fib	er volume to 57	% (0.0107 in. C	CPT)	
Tempera Moisture	ture (°F) Content (%)	7 amb	5 bient				
	m at T, RH	2	e				
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	112	115				
	Minimum Maximum	97.6 123	100 126				
	C.V.(%)	5.78	5.55				
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA				
(ksi)	C ₁ C ₂	6.63 2.26	6.55 2.25				
	No. Specimens No. Batches Data Class	30 10 Interim					
E_1^t	Mean Minimum Maximum C.V.(%)	9.73 8.93 10.1 2.48	10.0 9.20 10.3 2.31				
(Msi)	No. Specimens No. Batches Data Class	3 1 Inte	0				
v_{12}^{t}	Mean No. Specimens No. Batches						
12	Data Class						
	Mean Minimum Maximum C.V.(%)						
$oldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL

AS4 3k/3501-6S 5-harness satin weave fabric

MATERIAL:

RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:

33-35 wt% 57-60 % 0.0106-0.0107 in.

1.58-1.59 g/cm³ COMP: DENSITY: VOID CONTENT:

Table 4.2.15(b) C/Ep 280-5HS AS4/3501-6S Compression, 1-axis [**0**_f]₆ 75/A, 200/A Interim

TEST METHOD: SACMA SRM 1-88 MODULUS CALCULATION:

NORMALIZED BY:

Specimen thickness and batch fiber volume to 57% (0.0107 in. CPT)

	Content (%)	75 amb		20 amb			
	um at T, RH	26		20	2		
Source Code		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	124 108 144 6.73	128 111 148 6.74	110 96.1 122 6.31	113 99.0 125 6.24		
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA		
(ksi)	$C_1 \\ C_2$	128 15.4	132 15.3	7.04 2.10	7.15 2.09		
	No. Specimens No. Batches Data Class	30 10 Interim		30 10 Interim			
E ₁ ^c	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

RESIN CONTENT: 33-35 wt% COMP: DENSITY: 1.58-1.59 g/cm ³ AS4/3 FIBER VOLUME: 57-60 % VOID CONTENT: SBS, 3 PLY THICKNESS: 0.0106-0.0107 in. [0	4.2.15(c)
TEST METHOD: ASTM D 2344 MODULUS CALCULATION: Screen NORMALIZED BY: Not normalized Temperature (°F) 75 200 ambient ambient ambient ambient ambient ambient ambient ambient ambient screen ambient ambient	280-5HS 3501-6S 31-plane [0 _f] ₆ 200/A
NORMALIZED BY:Not normalizedTemperature (°F)75200Moisture Content (%)ambientambientEquilibrium at T, RH2626Source Code2626Mean11.09.53Minimum9.008.40Maximum13.210.8C.V.(%)10.86.70B-value(1)(1)F $_{31}^{shs}$ DistributionKisi)C11.22C.22.182.32No. Specimens3030No. Batches1010	eening
Temperature (°F) 75 200 Moisture Content (%) ambient ambient Equilibrium at T, RH 26 26 Source Code 26 26 Mean 11.0 9.53 Minimum 9.00 8.40 Maximum 13.2 10.8 C.V.(%) 10.8 6.70 B-value (1) (1) F $_{31}^{sbs}$ Distribution ANOVA (ksi) C1 1.22 0.66 C2 2.18 2.32 No. Specimens 30 30 No. Batches 10 10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccc} B - value & (1) & (1) \\ F_{31}^{sbs} & Distribution & ANOVA & ANOVA \\ (ksi) & C_1 & 1.22 & 0.66 \\ C_2 & 2.18 & 2.32 \\ \hline No. Specimens & 30 & 30 \\ No. Batches & 10 & 10 \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(ksi) C1 1.22 0.66 C2 2.18 2.32 No. Specimens 30 30 No. Batches 10 10	
C2 2.18 2.32 No. Specimens 30 30 No. Batches 10 10	
No. Batches 10 10	
No. Batches 10 10	

(1) Short beam strength test data are approved for Screening Data Class only.

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric

Material Description:

Material: AS4-6k/3502-6S

- Form: 5 harness satin weave fabric, fiber areal weight of 365 g/m², typical cured resin content of 56-57%, typical cured ply thickness of 0.0142-0.0157 inches.
- Processing: Autoclave cure; 275°F, 85 psi for 45 minutes; 350°F, 85 psi, hold for two hours. Post cure at 400°F to develop optimum 350°F properties.

General Supplier Information:

- Fiber: AS4 fibers are continuous high strength, high strain, standard modulus carbon filaments made from PAN precursor. The fibers are surface treated to improve handling character-istics and structural properties. Filament count is 6,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3502 is an epoxy resin. This is a solvated resin formulated to improve drapeability over complex shapes. The hot/wet strengths will be slightly lower than the non-solvated resin. Good tack up to 10 days out-time at ambient temperature.

Maximum Short Term Service Temperature: 350°F (dry), 180°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Only normalized data were made available for analysis.

4.2.16 AS4 6k/3502-6S 5-harness satin weave fabric*

Date of composite manufacture

MATERIAL:	AS4 6k/350	AS4 6k/3502 5-harness satin weave fabric						
FORM:	Hercules A	370-5H/3502	, 5-harness sat	in weave fabric, 1	1 x 11 tow/in. prepreg			
FIBER:	Hercules AS4 6k, surface-treated "W"*, no twist			MATRIX:	Hercules 3502			
T _g (dry):	404°F	T _g (wet):	313°F	Tg METHOD:	ТМА			
PROCESSING:	Autoclave cure: 280 ± 5°F, 90 minutes			85+15-0 psi; 350	°F, 120 minutes.			
* now "G"								
Date of fiber man	ufacture		10/82-3/83	Date of testing		9/83-1/84		
Date of resin manufacture			5/83	Date of data submittal		12/93, 5/94		
Date of prepreg manufacture 5/8			5/83	Date of analysis	;	8/94		

LAMINA PROPERTY SUMMARY

8/83-9/83

	75°F/A	-65°F/A	180°F/W	250°F/W	
Tension, 1-axis	BM	BM	BM	BM	
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	BM	IS	BM	BM	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	BM	BM	BS	BS	
Shear, 23-plane					
Shear, 31-plane					

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, s = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.57	1.55 - 1.60	
Fiber Areal Weight	(g/m ²)	365	361 - 372	
Fiber Volume	(%)	58	56 - 57	
Ply Thickness	(in)	0.0145	0.0142 - 0.0158	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

FIBER V	CONTENT: 36-3 OLUME: 56-5	6k/3502 5-harn 7 wt% 7 % 46-0.0157 in.	ess satin weav COMP: DE VOID CON	NSITY: 1.55	5-1.56 g/cm ³ 0.2%	C/Ep 30 AS4, Tensior [0 _f /90 _f /0 _f /	I.2.16(a) 65 - 5HS /3502 n, 1-axis /90 _f /90 _f /0 _f] /A, 180/W	
TEST ME				S CALCULATIO			Mean	
BMS	S 8-168D		Linear	portion of curve)			
NORMAI	LIZED BY: Fibe	r volume to 57%	6 (0.0145 in. C	PT)				
Tempera Moisture	ture (°F) Content (%)	7 amb	-	-6- ambi		18 1.1 -	-	
Equilibriu	um at T, RH		_		_	(1		
Source C	Code	4 Normalized	-	49 Normalized		4 Normalized		
	Mean Minimum Maximum C.V.(%)	114 97.1 126 6.87	Measured	105 87.9 116 5.33	Measured	117 102 128 5.29	Measured	
F ₁ ^{tu}	B-value Distribution	91.9 ANOVA	(2)	95.0 Normal	(2)	102 ANOVA	(2)	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	8.15 2.70		104.9 5.59		6.31 2.33		
	No. Specimens No. Batches Data Class	30 5 B30		3(5 B3		30 5 B30		
E_1^t	Mean Minimum Maximum C.V.(%)	9.61 9.29 10.4 3.08	(2)	9.67 9.09 10.1 2.35	(2)	10.5 9.74 10.9 2.75	(2)	
(Msi)	No. Specimens No. Batches Data Class	3 t Me	5	30 5 Mea		30 5 Mean		
v_{12}^t	Mean No. Specimens No. Batches				**			
	Data Class Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ m tu}$ (µ $arepsilon$)	B-value Distribution C ₁							
(με)	C ₂							
	No. Specimens No. Batches Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(2) Only normalized data were made available for analysis.

MATERIA		6k/3502 5-harr				C/EP 3	l.2.16(b) 65 - 5HS
FIBER VO	OLUME: 56-5	7 wt% 7 % 50-0.0157 in.	COMP: DE VOID CON	ITENT:	1.55-1.56 g/cm ³ 0.0-0.2%	Tensio [0 _f /90 _f /0 _f /	/3502 n, 1-axis /90 _f /90 _f /0 _f] 0/W
TEST ME	THOD:		MODULU	S CALCULA	TION:		Mean
BMS	8-168D		Linear	portion of c	urve		
NORMAL	IZED BY: Fibe	r volume to 57%	% (0.0145 in. C	PT)			
Temperat	ture (°F) Content (%)		50 - 1.3				
	m at T, RH		1)				
Source C		4	9				
	Mean	Normalized 108	Measured	Normalize	d Measured	Normalized	Measured
	Minimum	96.8					
	Maximum	119					
	C.V.(%)	4.62					
F_1^{tu}	B-value Distribution	96.6 Weibull	(2)				
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	111 23.1					
	No. Specimens	3	0				
	No. Batches		5				
	Data Class Mean	В 10.1	30				
	Minimum	9.29					
E_1^t	Maximum C.V.(%)	10.7 3.65	(2)				
(Msi)	No. Specimens No. Batches		0				
	Data Class		an				
	Mean No. Specimens						
v_{12}^t	No. Batches						
	Data Class Mean						
	Minimum						
	Maximum C.V.(%)						
	B-value						
$arepsilon_1^{ ext{tu}}$	Distribution						
(με)	C ₁ C ₂						
	No. Specimens						
	No. Batches Data Class						

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(2) Only normalized data were made available for analysis.

FIBER V	ONTENT: 36- OLUME: 56- CKNESS: 0.0	4 6k/3502 5-harn 37 wt% 57 % 142-0.0157 in.	COMP: DE VOID CON	ENSITY: 1.	55-1.56 g/cm ³ 0-0.2%	Table 4 C/EP 36 AS4/ Compress [0 _f /90 _f /0 _f /9 75/A, -65/ B30, Mea	5 - 5HS 3502 ion, 1-axis 90 _f /90 _f /0 _f] /A, 180/W	
			B30, Mea	n, interim				
AST	M D 695M (1) (4)		Line	ar portion of cu	lrve			
NORMAL	IZED BY: Fib	er volume to 57%	6 (0.0145 in. C	PT)				
Tempera	ture (°F)	7			·65	18		
	Content (%)	amb	ient	am	bient	1.1 -		
	im at T, RH		_			(2)		
Source C	Code	49	-		49	49		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	104 79.7		108		65.9		
	Minimum	122		85.0 118		52.1 76.7		
	Maximum	10.1		8.62		9.81		
	C.V.(%)	10.1		0.02		9.01		
	B-value	83.7	(5)	(3)	(5)	52.4	(5)	
F ₁ ^{cu}	Distribution	Weibull	(0)	Weibull	(0)	Weibull	(0)	
(ksi)	C ₁	109		111		68.7		
	C ₂	12.1		16.4		11.7		
	No. Specimens	30	า		15	30)	
	No. Batches		5		5	5		
	Data Class	B30		Int	erim	B3		
	Mean	8.49		8.90		9.21		
	Minimum	8.15		7.70		6.25		
	Maximum	8.86	(5)	11.0	(5)	12.5	(5)	
E_1^c	C.V.(%)	2.13		10.3		18.2		
1								
(Msi)	No. Specimens				14	30		
	No. Batches	5			5	5		
	Data Class	Me	an	Int	erim	Mea	an	
	Mean							
c	No. Specimens							
v_{12}^{c}	No. Batches							
	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
-CII	Distribution							
ε_1^{cu}								
(με)	C ₁							
	C ₂							
	N. 6 .							
	No. Specimens							
	No. Batches							
	Data Class			gage length 0.				

Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.
 Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

(3) Basis values are presented only for A and B data classes.

(4) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.

(5) Only normalized data were made available for analysis.

MIL-HDBK-17-2F

MATERI	AL: AS	4 6k/3502 5-harn	ess satin weav		Table 4.2.16(d)				
FIBER V	OLUME: 56	-37 wt% -57 % 142-0.0157 in.	COMP: DE VOID CON		1.55-1.9 0.0-0.29	56 g/cm ³ %	C/EP 365 - 5HS AS4/3502 Compression, 1-axis [0 _f /90 _f /0 _t /90 _t /0 _f] 250/W		
TEST ME	ETHOD:		MODULUS CALCULATION: B30, Mean						
AST	M D 695M (1) (3)		Line	ar portion	of curve				
		per volume to 57%	-	PT)					
Tempera		25							
	Content (%)	1.1 -							
	um at T, RH	(2							
Source C	Code	4							
		Normalized	Measured	Normal	ized N	leasured	Normalized Measured		
	Mean Minimum	56.3 45.5							
	Maximum	45.5 75.2							
	C.V.(%)	16.0							
	0()0)	10.0							
F ₁ ^{cu}	B-value Distribution	30.5 ANOVA	(4)						
(ksi)	C ₁	9.41							
	C ₂	2.75							
	No. Specimens	3	0						
	No. Batches	5							
	Data Class	B3	30						
	Mean	10.3							
	Minimum	8.88							
0	Maximum	12.4	(4)						
E_1^c	C.V.(%)	6.60							
(Msi)	No. Specimens		30						
	No. Batches Data Class	5 Me							
	Mean								
_	No. Specimens								
v_{12}^{c}	No. Batches								
	Data Class								
	Mean								
	Minimum Maximum								
	C.V.(%)								
	0 (70)								
	B-value								
$arepsilon_1^{ m cu}$	Distribution								
(με)	C ₁								
(µc)	C_2								
	No. Specimens								
	No. Batches								
	Data Class								

(1) Tabbed specimen, length 3.12 inch, width 0.050 inch, gage length 0.50 inch.

- (2) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.
- (3) The test method, ASTM D 695M-96, was withdrawn on July 10, 1996.
- (4) Only normalized data were made available for analysis.

MATER	IAL: AS4	6k/3502 5-harnes	ss satin weave fab	ric		le 4.2.16(e) P 365 - 5HS		
FIBER \	/OLUME: 56-5	37 wt% 57 % 45-0.0158 in.	COMP: DENSI VOID CONTEN		cm ³ A Shea [±45	S4/3502 ar, 12-plane ₆ /±45 _f /±45 _f]		
TEST M	ETHOD:		MODULUS CAI	LCULATION:		75/A, -65/A, 180/W, 250/W B30, Mean, Screening		
AS	TM D 3518-76		Linear portion	on of curve				
NORMA	LIZED BY: Not	normalized						
Tempera	ature (°F)	75	-65	180	250			
	e Content (%)	ambient	ambient	1.1 - 1.3	1.1 - 1.3			
Equilibri Source (um at T, RH	49	49	(1) 49	(1) 49			
Source	Mean	12.6	14.0	49	9.30			
	Minimum	11.4	12.1	10.7	8.27			
	Maximum	13.7	15.4	12.9	10.5			
	C.V.(%)	5.61	7.47	5.24	6.76			
F ₁₂ ^{su}	B-value Distribution	10.1 ANOVA	10.1 ANOVA	9.53 ANOVA	6.95 ANOVA			
(ksi)	C ₁	0.775	1.16	0.669	0.698			
	C ₂	3.21	3.36	3.20	3.37			
	No. Specimens	36	36	36	36			
	No. Batches	5	5	5	5			
	Data Class	B30	B30	B30	B30			
	Mean Minimum	0.514 0.485	0.682 0.638	0.204 0.196	0.174 0.147			
	Maximum	0.553	0.731	0.212	0.203			
G_{12}^s	C.V.(%)	3.68	3.40	2.82	11.8			
(Msi)	No. Specimens	36	36	6	5			
	No. Batches Data Class	5 Mean	5 Mean	1 Screening	1 Screening			
	Mean Minimum Maximum C.V.(%)	IVICALI	IVICALI	Scieening	Screening			
γ_{12}^{su}	B-value Distribution							
712 (με)	C_1 C_2							
	No. Specimens No. Batches Data Class							

(1) Conditioned at 160°F, 95-100% relative humidity until the moisture content was between 1.1 and 1.3%.

4.2.17 T-300 15k/976 unidirectional tape

Material Description:

Material: T-300 15k/976

- Form: Unidirectional tape, fiber areal weight of 152 g/m², typical cured resin content of 25-35%, typical cured ply thickness of 0.0051 inches.
- Processing: Autoclave cure; 250°F, 100 psi for 45 mins.; 350°F, 2 hours.

General Supplier Information:

- Fiber: T-300 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 15,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications, good hot/wet properties.

4.2.17 T-300 15k/976 unidirectional tape*

MATERIAL:	T300 15k/9	300 15k/976 unidirectional tape								
FORM:	Fiberite T30	Fiberite T300/976 unidirectional tape prepreg								
FIBER:	Union Carbide T300 15k			MATRIX:	Fiberite 976					
T _g (dry):	518°F	T _g (wet):	493°F	Tg METHOD:	DMA					
PROCESSING:	Autoclave of	Autoclave cure: 250°F, 100 psi, 45 minutes; 350°F, 2 hours								

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	2/82
Date of prepreg manufacture 7/8	Date of analysis	9/94
Date of composite manufacture		

	72°F/A	-67°F/A	260°F/A	350°F/A		
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS		
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S		
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S		
Compression, 2-axis	SS-S	SS-S	SS-S	SS-S		
Compression, 3-axis						
Shear, 12-plane	SS	SS	SS	SS		
Shear, 23-plane						
Shear, 31-plane						
SB Strength, 31-plane	S	S	S	S		

LAMINA PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.62	1.58 - 1.65	
Fiber Areal Weight	(g/m ²)	152		
Fiber Volume	(%)	68	60 - 70	
Ply Thickness	(in)		0.0049 - 0.0053	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	1) 15k/976 unidire		REQUIRED WA			.2.17(a)		
RESIN CO FIBER VO PLY THIC	ONTENT: 35 w DLUME: 59 %	t%	COMP: DE VOID CON) g/cm ³ rox. 0.0%	C/Ep - UT T300 15k/976 Tension, 1-axis [0]₅ 72/A, -67/A, 260/A			
TEST ME	THOD:		MODULUS		/A, 260/A ening				
	M D 3039-76	Linear portion of curve							
NORMAL	IZED BY: Fiber	r volume to 60%	o (0.0053 in. C	PT)					
	ture (°F) Content (%) m at T, RH	72 ambi		-6 amb		26 amb			
Source C		48		48	-	4	-		
	M	Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	211 185 235 11.2	207 191 219 6.47	199 187 220 6.83	197 173 214 7.67	236 205 256 9.88	232 212 255 6.84		
F_1^{tu}	B-value Distribution	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal	(1) Normal		
(ksi)	C ₁ C ₂	211 23.6	207 13.4	199 13.6	197 15.1	236 23.3	232 15.9		
	No. Specimens No. Batches Data Class	5 1 Screening		5 1 Scree		5 1 Scree			
	Mean	19.6	19.3	20.8	20.4	22.6	22.4		
	Minimum	17.8	18.2	19.5	19.6	20.5	21.2		
\mathbf{E}_1^{t}	Maximum C.V.(%)	21.2 6.09	20.4 5.18	22.6 5.88	21.0 2.74	24.9 8.97	22.9 2.19		
(Msi)	No. Specimens No. Batches	5 1		5		5			
	Data Class	Scree		Scree		Scree	ening 0.312		
v_{12}^{t}	Mean No. Specimens No. Batches	5 1		5		5 1	i		
	Data Class	Scree		Scree		Scree			
	Mean Minimum Maximum C.V.(%)	10400 10000 10800 3.42			8600 8000 9000 5.29		9900 9500 10500 4.46		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal		(1) Normal		(1) Normal		
(με)	C ₁ C ₂		10400 356		8600 454		9900 442		
	No. Specimens 5 No. Batches 1			4		5			
	Data Class	Scree	ning	Scree	ening	Scree	Screening		

	E 1989). ALL DOC			REQUIRE	D WAS	NOT SUPP		
MATERIA	AL: T300) 15k/976 unidire	ectional tape					4.2.17(b)
RESIN CO FIBER VO PLY THIO			COMP: DE VOID CON		1.60 g approx	/cm ³ k. 0.0%	T300 ⁻ Tensio	o - UT 15k/976 n, 1-axis 0]₀ 60/A
TEST ME	THOD:		MODULU	S CALCUL	ATION:			ening
AST	M D 3039-76		Linear					
NORMAL	IZED BY: Fibe	r volume to 60%	6 (0.0053 in. C	PT)				
	Content (%) m at T, RH	35 ambi 48	ient					
	000	Normalized	Measured	Normaliz	ed I	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	232 212 248 7.11	228 219 242 3.77					
F ₁ ^{tu}	B-value Distribution	(1) Normal	(1) Normal					
(ksi)	C ₁ C ₂	232 16.5	228 8.63					
	No. Specimens No. Batches Data Class		ening					
E_1^t	Mean Minimum Maximum C.V.(%)	22.4 21.0 24.2 5.59	22.1 20.2 23.9 6.19					
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree						
v_{12}^{t}	Mean No. Specimens No. Batches	5	0.348					
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ning 9930 9600 10700 5.29					
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal					
(με)	C ₁ C ₂		9930 525					
	No. Specimens No. Batches Data Class	4 1 Scree						

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			LIED FOR THIS MATERIAL.				
RESIN CONTENT: 25 wt% COMP: DENSITY: 1.64 g/cm³ Tension, 2-axis PIER VOLUME: 69 % VOID CONTENT: approx.0.0% Tession, 2-axis PUT THICKNESS: 0.0049 in. WOID CONTENT: approx.0.0% Tession, 2-axis TEST METHOD: MODULUS CALCULATION: Enservation Screening Screening NORMALIZED BY: Not normalized ambient ambient <td>MATER</td> <td>RIAL: T300</td> <td>) 15k/976 unidir</td> <td>ectional tape</td> <td></td> <td></td> <td>Table 4.2.17(c)</td>	MATER	RIAL: T300) 15k/976 unidir	ectional tape			Table 4.2.17(c)
FIBER VOLUME: 69 % VOID CONTENT: approx. 0.0% Tension, 2-axis g091a PLY THICKNESS: 0.0049 in. MODULUS CALCULATION: Linear portion of curve 1000000000000000000000000000000000000		CONTENT: 25 1	rt0/_			$4 \mathrm{a/cm}^3$	
PLY THICKNESS: 0.0049 in. [90] ₁₅ 72/A. 67/A. 260/A. 350/A TEST METHOD: MODULUS CALCULATION: Linear portion of curve Screening Screening NORMALIZED BY: Not normalized ambient ambi							
TEST METHOD: ASTM D 3039-76 MODULUS CALCULATION: Linear portion of curve T2/A, -67/A, 260/A, Screening NORMALIZED BY: Not normalized						JOX. 0.070	
350/A Screening ASTM D 3039-76 Linear portion of curve NORMALIZED BY: Not normalized Temperature (°F) Moisture Content (%) Equilibrium at 7, RH 72 ambient 6-7 ambient 260 ambient 350/a ambient Screening Minimum 4.84 48 10 10 10 10 10 10 10 10 10 10							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST N	/IETHOD:		MODULU	S CALCULATI	ON:	Screening
	AS	STM D 3039-76		Linear	portion of curv	е	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NORMA	ALIZED BY: Not	normalized				
Equilibrium at T, RH Source Code 48 48 48 48 48 48 Mean Minimum 5.66 4.73 3.81 3.47 2.67 2.67 Maximum 6.52 6.29 4.68 3.83 3.23 2.67 2.67 V(%) 15.4 25.1 17.4 13.2 13.2 13.2 B-value (kii) C1 5.66 4.73 3.812 3.47 3.47 (kiii) C1 5.66 4.73 3.812 3.47 3.42 No. Specimens No. Specimens No. Batches 5 5 5 5 5 Minimum 1.28 1.49 1.16 1.25 1 1 L ¹ C.V.(%) 3.13 9.01 10.1 5.83 1 1 L ¹ Screening	Temper	rature (°F)	72		260	350	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ambient	ambient	ambient	ambient	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Source						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		O.V.(70)	10.4	20.1	17.4	13.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B-value	(1)	(1)	(1)	(1)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F ^{tu}						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5.66	4 72	2 012	2.47	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(KSI)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		02	0.070	1.15	0.004	0.400	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No. Specimens	5	5	5	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Data Class		Screening	Screening	Screening	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_2^t	C.V.(%)	3.13	9.01	10.1	5.83	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Msi)					5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Screening	Screening	Screening	Screening	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V ₂₁						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2000	2760	2640	2620	
$\begin{array}{c c} & \mbox{Maximum} & 4600 & 3300 & 3400 & 3000 \\ \hline C.V.(\%) & 14.6 & 20.4 & 19.1 & 13.3 \\ \hline \mathcal{E}_2^{tu} & \mbox{Distribution} & (1) & (1) & (1) & (1) \\ \hline Normal & \mbox{Normal} & \mbox{Normal} & \mbox{Normal} \\ \hline (\mu\epsilon) & \mbox{C}_1 & 3900 & 2760 & 2640 & 2620 \\ \hline C_2 & 570 & 564 & 503 & 349 \\ \hline & \mbox{No. Specimens} & 5 & 5 & 5 \\ \hline & \mbox{No. Batches} & 1 & 1 & 1 \\ \hline \end{array}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		//-/		_2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B-value	(1)	(1)	(1)	(1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\varepsilon_2^{\rm tu}$	Distribution					
C2 570 564 503 349 No. Specimens 5 5 5 No. Batches 1 1 1	_	C ₁	3900	2760	2640	2620	
No. Specimens 5 5 5 5 No. Batches 1 1 1 1	(με)						
No. Batches 1 1 1 1 1		\sim_2	010	004	000	0-10	
No. Batches 1 1 1 1 1		No. Specimens	5	5	5	5	
Data Class Screening Screening Screening Screening			1	1		1	
		Data Class	Screening	Screening	Screening	Screening	

	IE 1989). ALL DO							
MATERIA	al: 130	0 15k/976 unidir	ectional tape				.2.17(d) - UT	
RESIN C	ONTENT: 24 v	vt%	COMP: DE	NSITY 1.63	3 g/cm ³		5k/976	
FIBER V			VOID CON		rox. 0.0%		sion, 1-axis	
PLY THIC)50 in.				[0]20	
						72/A, -67	/A, 260/A	
TEST ME	THOD:		MODULUS	S CALCULATIO	N:	Scree	ening	
AST	M D 3410A-75		Linear	portion of curve	•			
NORMAL	IZED BY: Fibe	er volume to 60%	6 (0.0053 in. C	PT)				
Temperat	ture (°F)	72	2	-6	7	26	0	
	Content (%)	amb		amb		ambi		
Equilibriu	m at T, RH							
Source C	ode	4	-	48		48	-	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	188	218	192	223	147	171	
	Minimum	139	162	169	196	95.6	111	
	Maximum	214 15.9	248 15.9	218 9.76	254 9.76	177 21.7	205 21.7	
	C.V.(%)	15.9	15.9	9.70	9.76	21.7	21.7	
	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal	
(ksi)	C ₁	188	218	192	223	147	171	
(KSI)	C_1 C_2	29.9	34.7	18.8	22.5	31.9	37.1	
	02	20.0	01.7	10.0	21.0	01.0	07.1	
	No. Specimens	5	5	5		5		
	No. Batches	1		1		1		
	Data Class	Screening		Screening		Scree		
	Mean	18.7	21.8	18.8	21.9	18.4	21.4	
	Minimum Maximum	14.9 21.9	17.3 25.5	16.2 25.5	18.8 29.6	10.8 22.6	12.6 26.2	
E_1^c	C.V.(%)	13.4	13.4	20.1	20.1	26.5	26.5	
E ₁	0())	10.1	1011	2011	2011	20.0	20.0	
(Msi)	No. Specimens	5	:	5		5		
(10131)	No. Batches	1		1		1		
	Data Class		Screening		ning	Scree		
	Mean		~		Ŭ		Ŭ.	
	No. Specimens							
v_{12}^{c}	No. Batches							
12	Data Class							
	Mean		12500		14500		8860	
	Minimum		9500		9900		6300	
	Maximum		19600		20000		12600	
	C.V.(%)		32.2		31.5		30.2	
	B-value		(1)		(1)		(1)	
cu	Distribution		Normal		Normal		Normal	
ε_1^{cu}								
(με)	C ₁		12500		14500		8860	
	C ₂		404		4560		2670	
	No. Specimens	5		5		5		
	No. Batches	1		1		о 1		
	Data Class	Scree		Scree				
			<u> </u>		<u> </u>	Screening		

(JUN	NE 1989). ALL DOC	UMENTATION	PRESENTLY	REQUIRED	WAS	NOT SUPP	LIED FOR THIS	S MATERIAL.	
MATERI	AL: T300) 15k/976 unidir	ectional tape					4.2.17(e) o - UT	
RESIN CONTENT:24 wt%FIBER VOLUME:70 %PLY THICKNESS:0.0050 in.				COMP: DENSITY: 1.63 g/cm ³ VOID CONTENT: approx. 1.0%			T300 Compress [(T300 15k/976 Compression, 1-axis [0] ₂₀ 350/A	
TEST ME	ETHOD:		MODULU	S CALCULA	TION:			ening	
AST	M D 3410A-75		Linear	portion of c	urve				
NORMAL	LIZED BY: Fibe	r volume to 60%	‰ (0.0053 in. C	PT)					
	Content (%) um at T, RH	35 amb	ient						
		Normalized	Measured	Normalize	d N	<i>l</i> easured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	136 107 160 18.5	159 124 186 18.5						
F ₁ ^{cu}	B-value Distribution	(1) Normal	(1) Normal						
(ksi)	C ₁ C ₂	136 25.2	159 29.3						
	No. Specimens No. Batches Data Class	5 1 Screening							
E_1^c	Mean Minimum Maximum C.V.(%)	19.7 16.5 23.0 13.2	22.9 19.1 26.7 13.2						
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree							
v_{12}^{c}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Movimum		9400 5000						
	Maximum C.V.(%)		14000 39.7						
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal						
(με)	C ₁ C ₂		9400 3730						
	No. Specimens No. Batches Data Class	5 1 Scree							

		IED FOR THIS MATERIAL.				
MATER	RIAL: T	300 15k/976 unidi	rectional tape			Table 4.2.17(f)
FIBER	VOLUME: 70	4 wt%) % 0050 in.	COMP: D VOID CO		3 g/cm ³ prox 0.0%	C/Ep - UT T300 15k/976 Compression, 2-axis [90] ₂₀
						72/A, -67/A, 260/A, 350/A
TEST N	IETHOD:		MODULU	S CALCULATI	ON:	Screening
AS	STM D 3410A-75		Linear	portion of curv	e	
NORM	ALIZED BY: N	ot normalized				
Tempe	rature (°F)	72	-67	260	350	
Moistur	e Content (%) rium at T, RH	ambient	ambient	ambient	ambient	
Source		48	48	48	48	
	Mean	30.0	35.1	22.6	19.1	
	Minimum	26.7	26.7	19.4	17.3	
	Maximum	31.9	44.9	25.7	22.8	
	C.V.(%)	7.10	18.9	10.7	11.7	
	B-value	(1)	(1)	(1)	(1)	
F_2^{cu}	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	30.0	35.1	22.6	19.1	
(101)	C_2	2.13	6.62	2.42	2.24	
	No. Specimens	5	5	5	5	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	1.46	1.84	1.84	1.64	
	Minimum	1.32	1.46	1.37	1.25	
	Maximum	1.73 11.1	2.18 17.0	3.03 36.7	2.02 19.6	
E_2^c	C.V.(%)	11.1	17.0	30.7	19.0	
(Msi)	No. Specimens	5	5	5	5	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean No. Specimens					
v_{21}^{c}	No. Batches					
V 21	Data Class					
	Mean	32300	22100	14900	14200	
	Minimum	7900	13000	9600	6900	
	Maximum	46300	27700	21400	21300	
	C.V.(%)	44.7	31.1	40.1	47.2	
	B-value	(1)	(1)	(2)	(1)	
ε_2^{cu}	Distribution	Normal	Normal		Normal	
(με)	C ₁	32300	22100		14200	
., /	C ₂	14400	6880		6720	
	No. Specimens	5	5	3	5	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	

(1) Basis values are presented only for A and B data classes.

(2) The statistical analysis is not completed for less than four specimens.

	(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.									
MATERIA	L:	1300 15k	976 unidirection	ai tape			le 4.2.17(g) C/Ep - UT			
RESIN CO		25 wt%	ſ	OMP: DENSITY:	1.63 g/cm ³		00 15k/976			
FIBER VC		69 %		OID CONTENT:		ar, 12-plane				
PLY THIC		0.0052 in.		0.2 00		[±45] _{2S}				
						72/A,	-67/A, 260/A,			
						350/A				
TEST ME			N	IODULUS CALCU		S	creening			
ASTN	M D 3518-76			Linear portion of	of curve					
		Notnorm	alizad							
NORMALI		Not norma	alizeu							
Temperate	ure (°F)		72	-67	260	350				
	Content (%)		ambient	ambient	ambient	ambient				
	mat T, RH									
Source Co			48	48	48	48				
	Mean		11.1	13.7	8.25	8.30				
	Minimum		11.0	13.2	7.78	7.67				
	Maximum		11.4	15.5	8.72	9.36				
	C.V.(%)		1.23	6.99	4.78	7.80				
	B-value		(1)	(1)	(1)	(1)				
F_{12}^{su}	Distribution		Normal	Nonpara.	Normal	Normal				
(ksi)	C ₁		11.1	4	8.25	8.30				
. ,	C ₂		0.137	4.10	0.394	0.647				
	No. Specim		5	5	5	5				
	No. Batches	S	1	1	1	1				
	Data Class		Screening	Screening	Screening	Screening				
	Mean		0.91	1.0	0.89	0.77				
	Minimum		0.84	0.89	0.82	0.70				
- 8	Maximum		0.96	1.08	0.94	0.82				
G_{12}^s	C.V.(%)		5.1	7.1	5.3	7.4				
			-	_	_	-				
(Msi)	No. Specim		5	5	5	5				
	No. Batches	5	1 Serecuirer	1 Serecuirer	1 Serecuirer	1 Sereening				
	Data Class		Screening	Screening	Screening	Screening				
	Mean Minimum									
	Minimum Maximum									
	C.V.(%)									
	0. v.(70)									
	B-value									
γ_{12}^{su}	Distribution									
	C ₁									
(με)	C_1 C_2									
	02									
	No. Specim	ens								
	No. Batches									
	Data Class	-								
	Data Olass									

MATERIAL									
RESIN CON FIBER VOL PLY THICK	UME:	25 wt% 69 % 0.0052 in	C	OMP: DENSITY: OID CONTENT:	1.63 g/cm ³ approx. 0.1%	C/Ep - UT T300 15k/976 SBS, 31-plane [0]₁₅ 72/A, -67/A, 260/A,			
TEST METH	-IOD·		Ν	10DULUS CALCI			350/A creening		
	D 2344-76		10	Linear portion of			Jooning		
NORMALIZ		Not norm	alized						
Temperatur	e (°F)		72	-67	260	350			
Moisture Co Equilibrium			ambient	ambient	ambient	ambient			
Source Cod	le		48	48	48	48			
	Mean		12.9	16.6	9.36	8.60			
	Minimum		9.42	14.2	8.59	7.71			
	Maximum		17.1	19.6	10.8	9.56			
	C.V.(%)		18.4	12.8	10.1	8.06			
	B-value		(1)	(1)	(1)	(1)			
F ₃₁ ^{sbs}	Distributio	n	Weibull	Normal	Normal	Normal			
	C ₁		13.8	16.6	9.36	8.60			
(ksi)	C_1 C_2		6.17	2.12	0.949	0.693			
	02		0.17	2.12	0.343	0.035			
	No. Speci	mens	10	5	5	5			
	No. Batch		1	1	1	1			
	Data Clas	s	Screening	Screening	Screening	Screening			

4.2.18 IM7 12k/8551-7A unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 28-30%, typical cured ply thickness of 0.0099 -0.0109 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.19 AS4 3k/3501-6 5-harness satin weave fabric (bleed)*

MATERIAL:	AS4 3k/3501-6 5-harness satin weave		C/Ep 280-5HS AS4/3501-6 (Bleed) Summary				
FORM:	Hercules AW280-5H/3501-6 5-harness satin weave fabric prepreg						
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6				
T _g (dry):	T _g (wet):	Tg METHOD:					
PROCESSING:	Autoclave cure, 240 ± 10°F at 85 psig at 100 ± 5 psig	for 60 minutes; 350	± 10°F for 120 ± 10	minutes			

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	200°F/A	75°F/W	200°F/W	
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	SS	SS	SS	II	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)		1.59 - 1.60	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)		60 - 62	
Ply Thickness	(in)		0.0099 - 0.0171	

LAMINATE PROPERTY SUMMARY

	75°F/A				
0/±45/90 Family					
Tension, x-axis	SS				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

* ALL	DOCUMENTATION	PRESENTLY	REQUIRED W	ERE NOT SUPPL	LIED FOR TH	HIS MATERIAL.
FIBER V	CONTENT: 29 w OLUME: 61 v	t%	ed) 5-harness COMP: DE VOID CON		Table 4.2.19(a) C/Ep 280-5HS AS4/3501-6 (Bleed) Tension, 1-axis [0 _f] ₈ 75/A	
TEST MI AST	ETHOD: 「M D 3039-76		MODULUS	S CALCULATION:	:	Screening
NORMA	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57%	(0.019 in. CF	PT)
	Content (%) um at T, RH	4	oient 3			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	108 93.3 128 12.2	115 98.8 137 12.2			
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	14.9 5.74	15.8 5.72			
	No. Specimens No. Batches Data Class	Scree	3 ening			
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.83 8.25 12.0 9.88	10.4 8.80 13.1 10.8			
(Msi)	No. Specimens No. Batches Data Class	Scree	3			
v_{12}^{t}	Mean No. Specimens No. Batches Data Class					
	Mean Minimum Maximum C.V.(%)					
$arepsilon_1^{ ext{tu}}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:

AS4 3k/3501-6 (Bleed) 5-harness satin weave fabric ENT: 29 wt% COMP: DENSITY: 1.61 g

 RESIN CONTENT:
 29 wt%

 FIBER VOLUME:
 61 vol %

 PLY THICKNESS:
 0.0099-0.0104 in.

COMP: DENSITY: 1.61 g/cm³ VOID CONTENT: Table 4.2.19(b) C/Ep 280-5HS AS4/3501-6 (Bleed) Compression, 1-axis [0_f]₈ 75/A, 200/A, 75/W Screening

TEST METHOD: SACMA SRM 1-88 MODULUS CALCULATION:

NORMALIZED BY:

Specimen thickness and batch fiber volume to 57% (0.019 in. CPT)

	Content (%) Im at T, RH	75 ambient 43		20 amb	ient	75 wet (1) 43		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	106 91.0 115 6.52	113 97.7 123 6.65	80.8 67.6 93.1 8.84	86.1 73.7 99.9 8.69	95.8 79.3 106 9.43	102 84.7 113 9.42	
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) Weibull	(2) Weibull	(2) Weibull	(2) Normal	(2) Normal	
(ksi)	C ₁ C ₂	7.21 3.73	116 18.4	83.9 13.6	89.4 13.4	95.8 9.03	102 9.64	
	No. Specimens No. Batches Data Class	13 3 Screening		1: 3 Scree	5	9 2 Screening		
E ₁ ^c	Mean Minimum Maximum C.V.(%)	8.7 7.6 9.4 8.2	9.3 8.2 9.9 8.4	8.48 6.42 9.43 10.6	9.04 7.00 10.0 10.4	9.23 9.07 9.44 1.55	9.87 9.70 10.2 1.68	
(Msi)	No. Specimens No. Batches Data Class	1: 3 Scree		13 3 Screening		9 2 Screening		
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$\varepsilon_1^{\rm cu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) Conditioned at 140°F, 95% relative humidity for 30 days.

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TI	HIS MATERIAL	
MATERI	AL: AS4	3k/3501-6 (Blee	ed) 5-harness	satin weave fab	oric		4.2.19(c) 280-5HS
FIBER V	CONTENT: 29 w OLUME: 61 vo CKNESS: 0.01		Comp: De Void Con		AS4/350 Comprese	AS4/3501-6 (Bleed) Compression, 1-axis [0 _f] ₈ 200/W	
TEST M	ETHOD:		MODULUS	S CALCULATIO	DN:		0/W erim
SAC	CMA SRM 1-88						
NORMA	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 57	% (0.019 in. CF	PT)	
	Content (%) um at T, RH	20 we (1 4:	et)				
Source C	Joue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	57.0 49.8 67.8 8.85	60.8 53.8 72.2 8.82				
F ₁ ^{cu}	B-value Distribution	(2) ANOVA	(2) ANOVA				
(ksi)	C ₁ C ₂	5.46 4.57	5.761 4.38				
	No. Specimens No. Batches Data Class	11 3 Inte					
E_1^c	Mean Minimum Maximum C.V.(%)	8.1 6.5 9.0 10	8.6 7.0 9.4 10				
(Msi)	No. Specimens No. Batches Data Class	15 3 Inte	ł				
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

* ALL DOCUM	IENTATION PR	ESENTLY REQU	IRED WERE NO	T SUPPLIED FOR	R THI <u>S MATERIAL</u> .
MATERIAL:	AS4 3k/3	3501-6 (Bleed) 5-ł	narness satin wea	ave fabric	Table 4.2.19(d)
RESIN CONTEN FIBER VOLUME: PLY THICKNESS	OLUME: 60-62 vol % VOID CONTENT:				SBS, 31-plane [0 _f] ₈
TEST METHOD:		N	10DULUS CALCI	JLATION:	75/A, 200/A, 75/W Screening
ASTM D 234	4-84		N/A		
NORMALIZED B	Y: Not norm	nalized			
Temperature (°F)	1	75	200	75	
Moisture Content		ambient	ambient	wet	
Equilibrium at T,	RH			(1)	
Source Code		43	43	43	
Mea	n mum	9.93 8.50	7.94 7.60	9.35 9.00	
	mum	10.7	8.40	9.60	
C.V.		7.38	3.89	2.22	
	(,,,,		0.00		
B-va	lue	(2)	(2)	(2)	
F ₃₁ ^{sbs} Distr	ibution	Normal	ANOVA	Normal	
(ksi) C ₁		9.93	0.353	9.35	
C ₂		0.733	6.02	0.207	
			_		
	Specimens	9 3	9	6	
	Batches Class	3 Screening	3 Screening	2 Screening	
Data	Class	Screening	Screening	Screening	

Conditioned at 140°F, 95% relative humidity for 30 days.
 Basis values are presented only for A and B data classes.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

MATERI	AL: AS4	3k/3501-6 (Ble	ed) 5-harness	satin weave fat	oric	Table 4.2.19(e)
FIBER V	CONTENT: 29 w OLUME: 61 vo CKNESS: 0.01	C/Ep 280-5HS AS4/3501-6 (Bleed) Tension, x-axis [(0/±45/90) _f]₅ 75/A				
TEST ME AST	ETHOD: M D 3039-76		MODULU	S CALCULATIO	DN:	Screening
NORMAI	LIZED BY: Spec	cimen thickness	s and batch fibe	er volume to 57	% (0.019 in. Cl	PT)
Moisture	iture (°F) Content (%) um at T, RH Code	amt	5 bient 3			
		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	83.4 75.7 88.2 5.28	88.6 81.3 94.2 4.86			
F _x ^{tu}	B-value Distribution	(1) Normal	(1) Normal			
(ksi)	C ₁ C ₂	83.4 4.41	88.6 4.30			
	No. Specimens No. Batches Data Class		6 2 ening			
E_x^t	Mean Minimum Maximum C.V.(%)	6.9 6.6 7.0 2.8	7.3 7.0 7.5 2.9			
(Msi)	No. Specimens No. Batches Data Class		6 2 ening			
v_{xy}^t	Mean No. Specimens No. Batches Data Class	0016	<u></u>			
	Mean Minimum Maximum C.V.(%)					
$\varepsilon_{\rm x}^{ m tu}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

MATERI	DOCUMENTATIO	4 3k/3501-6 (Ble			Table	Table 4.2.19(f) C/Ep 280-5HS	
		30 wt% 62 vol % 105-0.0109 in.	COMP: DE VOID CON		9-1.60 g/cm ³	C/Ep 280-5HS AS4/3501-6 (Bleed) OHT, x-axis [(0/±45/90) _f]s 75/A	
TEST ME			MODULUS	S CALCULATIC	N:		ening
SAC	CMA SRM 5-88						
NORMAL	LIZED BY: Sp	ecimen thickness	s and batch fibe	er volume to 579	% (0.019 in. CF	PT)	
Equilibriu	Content (%) Im at T, RH	amb	5 bient				
Source C	Code	4 Normalized	3 Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	58.4 57.0 61.0 2.57	63.0 60.9 64.5 2.43	Normalized	WEASULED	Nomalized	Weasured
F _x ^{oht}	B-value Distribution	(1) Normal	(1) Normal				
(ksi)	C ₁ C ₂	58.4 1.50	63.0 1.53				
	No. Specimens No. Batches Data Class		6 2 ening				
$\mathrm{E}_{\mathrm{x}}^{\mathrm{oht}}$	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_{\rm x}^{\rm oht}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

4.2.20 AS4 3k/3501-6 5-harness satin weave fabric

Material Description:

Material: AS4-3k/3501-6

Form: 5 harness satin weave fabric, areal weight of 280 g/m², typical cured resin content of 36-39%, typical cured ply thickness of 0.0110 -0.0121 inches.

Processing: Autoclave cure; 240°F, 85 psi for 1 hour; 350°F, 100 psi for 2 hours, no bleed.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments per tow, no twist. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3501-6 is an amine-cured epoxy resin. It will retain light tack for a minimum of 10 days at room temperature.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose structural applications.

4.2.20 AS4 3k/3501-6 (no bleed) 5-harness satin weave fabric*

MATERIAL:	AS4 3k/3501-6 (No Bleed) 5-harn	C/EP 280-5HS AS4/3501-6 (No Bleed) Summary	
FORM:	Hercules AW280-5H/3501-6 5-ha	rness satin weave fabr	ic prepreg
FIBER:	Hercules AS4 3k, no twist	MATRIX:	Hercules 3501-6
T _g (dry):	T _g (wet):	T _g METHOD:	
PROCESSING:	Autoclave cure, $240 \pm 10^{\circ}$ F at 85 for 120 ± 10 minutes.	psig for 60 minutes; 35	0 ± 10°F at 100 ± 5 psig

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	6/90
Date of prepreg manufacture	Date of analysis	2/95-3/95
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	200°F/A		
Tension, 1-axis	SS	SS	SS		
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis	SS				
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.55	1.55 - 1.56	
Fiber Areal Weight	(g/m ²)	280		
Fiber Volume	(%)	53	52 - 55	
Ply Thickness	(in)	0.011	0.011 - 0.017	

LAMINATE PROPERTY SUMMARY

	75°F/A				
0/±45/90 Family					
Tension, x-axis	SS				
OHT, x-axis	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:

AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric 36-39 wt% COMP: DENSITY: 1.55-1.56

 RESIN CONTENT:
 36-39 wt%

 FIBER VOLUME:
 52-55 vol %

 PLY THICKNESS:
 0.0111-0.0171 in.

COMP: DENSITY: 1.55-1.56 g/cm³ VOID CONTENT: Table 4.2.20(a) C/EP 280-5HS AS4/3501-6 (No Bleed) Tension, 1-axis [0_f]₈ 75/A, -65/A, 200/A Screening

TEST METHOD: ASTM D 3039-76 MODULUS CALCULATION:

NORMALIZED BY:

Y: Specimen thickness and batch fiber volume to 57% (0.011 in. CPT)

To 100 0 10		71	-		F		0	
Temperature (°F) Moisture Content (%)		75 amb		-65 ambient			200 ambient	
	um at T, RH	ambient		ambient		ambient		
Source C		43		43		43	3	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	134	125	125	117	130	121	
	Minimum	129	117	120	109	124	116	
	Maximum	146	136	136	127	141	136	
	C.V.(%)	3.79	4.85	3.85	4.89	4.49	5.11	
tu.	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F_1^{tu}	Distribution	Normal	ANOVA	Normal	ANOVA	Lognormal	Nonpara.	
(ksi)	C ₁	134	6.56	125	6.07	4.86	6	
	C ₂	5.07	4.77	4.81	4.40	0.0440	2.25	
	No. Specimens	9		9)	g	1	
	No. Batches	3		3 Screening		3 Screening		
	Data Class	Scree						
	Mean Minimum	9.67 9.39	9.06 8.60	10.2 9.63	9.57 8.80	10.8 9.88	10.1 9.00	
	Maximum	9.39 9.88	8.60 9.50	9.63	8.80 10.3	9.88	9.00 11.3	
-	C.V.(%)	9.66 1.65	9.50 3.63	4.26	5.68	6.74	8.23	
$\mathrm{E}_{1}^{\mathrm{t}}$	0. v.(70)	1.05	5.05	4.20	5.00	0.74	0.25	
(Msi)	No. Specimens	9		9	1	9	1	
	No. Batches	3		3		3		
	Data Class	Scree	ning	Scree	ening	Scree	ening	
	Mean							
	No. Specimens							
v_{12}^{t}	No. Batches							
	Data Class							
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$arepsilon_1^{ ext{tu}}$	Distribution							
(με)	C ₁							
N 7	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

* ALL DOCUME	NTATION PRESENTLY RE	EQUIRED WERE NOT SUPPLIED FOR	THI <u>S MATERIAL</u> .
MATERIAL:	AS4 3k/3501-6 (No Bl	eed) 5-harness satin weave fabric	Table 4.2

MATERIAL:

RESIN CONTENT: 36-39 wt% FIBER VOLUME: 52-55 vol % PLY THICKNESS: 0.0114-0.0121 in.

1.55-1.56 g/cm³ COMP: DENSITY: VOID CONTENT:

Table 4.2.20(b) C/EP 280-5HS AS4/3501-6 (No Bleed) Compression, 1-axis **[0**_f]₈ 75/A Interim

TEST METHOD: SACMA SRM 1-88 MODULUS CALCULATION:

NORMALIZED BY: Specimen thickness and batch fiber volume to 57% (0.011 in. CPT)

	-				· ·		
Tempera		7:					
Moisture	Content (%) m at T, RH	amb	ient				
Source C		43					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	129	121				
	Minimum	121	111				
	Maximum	145	137				
	C.V.(%)	5.02	6.03				
	B-value	(1)	(1)				
F_1^{cu}	Distribution	Weibull	ANOVA				
(ksi)	C ₁	133	7.84				
. ,	C ₂	18.9	4.39				
	No. Coosimono	11	-				
	No. Specimens No. Batches	1t 3					
	Data Class	Interim					
	Mean	9.42	8.81				
	Minimum	8.71	8.30				
ъc	Maximum C.V.(%)	10.0 4.25	9.50 5.35				
E_1^c	0. v.(70)	4.20	0.00				
(Msi)	No. Specimens	15	5				
(11101)	No. Batches	3					
	Data Class	Inte	rim				
	Mean						
C	No. Specimens No. Batches						
v_{12}^{c}							
	Data Class Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
$\varepsilon_1^{ m cu}$	Distribution						
(με)	C ₁						
(1)	C ₂						
	No. Specimens No. Batches						
	Data Class						
L		1		1		1	

* ALL DOCUMENTA	TION PRESENTLY RE	QUIRED WERE NO	T SUPPLIED FOR	THIS MATERIAL				
MATERIAL: AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric Table 4.2 C/Ep 280								
FIBER VOLUME:	36-39 wt% 52-55 vol % 0.0110-0.0114 in.	COMP: DENSITY: VOID CONTENT:	1.55-1.56 g/cm ²	³ AS4/3501· SBS,	6 (No Bleed) 31-plane [0 _f]₅			
TEST METHOD:		MODULUS CALC	ULATION:		′5/A eening			
ASTM D 2344-84		N/A						
NORMALIZED BY:	Not normalized							
Temperature (°F)	75							
Moisture Content (%) Equilibrium at T, RH	ambient							
Source Code	43							
Mean Minimum	11.3 10.1							
Maximum	10.1							
C.V.(%)	5.05							
B-value	(4)							
F ₃₁ ^{sbs} Distribution	n (1) ANOVA							
(ksi) C ₁	0.611							
C ₂	4.35							
No. Specin	nens 15							
No. Batche								
Data Class	Screening							
<u> </u>								

(1) Short beam strength test data are approved for Screening Data Class only.

* ALL	DOCUMENTATION	I PRESENTLY	REQUIRED W	ERE NOT SUP	PLIED FOR TH	HIS MATERIAL.		
MATERI		fabric	Table 4					
FIBER VOLUME: 52-55		39 wt% COMP: I 55 vol % VOID CO 113-0.0116 in. VOID CO			5-1.56 g/cm ³	C/EP 280-5HS AS4/3501-6 (No Bleed) Tension, x-axis [(0/45/90/-45) _f] _s 75/A		
TEST M	ETHOD:		MODULU	S CALCULATIC	DN:	Screening		
AST	M D 3039-76							
NORMA	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 579	% (0.011 in. CF	PT)		
Equilibriu	Content (%) um at T, RH	7! amb	ient					
Source C	Jode	4: Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	80.4 77.1 86.4 3.85	75.3 68.8 82.0 5.41	Normalized	Medearou	Tormanzou	Modearoa	
F _x ^{tu}	B-value Distribution	(1) Normal	(1) ANOVA					
(ksi)	C ₁ C ₂	80.4 3.09	4.45 5.07					
	No. Specimens No. Batches Data Class	9 3 Scree	•					
E_x^t	Mean Minimum Maximum C.V.(%)	6.94 6.73 7.13 1.87	6.50 6.30 6.60 2.04					
(Msi)	No. Specimens No. Batches Data Class	9 3 Scree						
v_{xy}^t	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)							
$\boldsymbol{\varepsilon}_{\mathrm{x}}^{\mathrm{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MIL-HDBK-17-2F

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:

RESIN CONTENT: 3 FIBER VOLUME: 5

AS4 3k/3501-6 (No Bleed) 5-harness satin weave fabric : 36-39 wt% COMP: DENSITY: 1.55-1.56 : 26-55 web%

 FIBER VOLUME:
 52-55 vol %

 PLY THICKNESS:
 0.0113-0.0116 in.

COMP: DENSITY: 1.55-1.56 g/cm³ VOID CONTENT: Table 4.2.20(e) C/EP 280-5HS AS4/3501-6 (No Bleed) OHT, x-axis [(0/±45/90)_f]_s 75/A Screening

TEST METHOD: SACMA SRM 5-88 MODULUS CALCULATION:

NORMALIZED BY:

Specimen thickness and batch fiber volume to 57% (0.011 in. CPT)

Tempera	ature (°F)	7	5				
	Content (%)	amb					
	um at T, RH						
Source C		43					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	54.4 51.4 57.7 4.58	55.5 52.9 58.7 3.72				
F _x ^{oht}	B-value Distribution	(1) ANOVA	(1) Normal				
(ksi)	C ₁ C ₂	2.80 5.64	55.5 2.06				
	No. Specimens No. Batches Data Class	9 3 Screening					
$\mathrm{E}_{\mathrm{x}}^{\mathrm{oht}}$	Mean Minimum Maximum C.V.(%)						
(Msi)	No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_{\rm x}^{\rm oht}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

4.2.21 IM6 3501-6 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.22 IM7 12k/8552 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.23 T300 3k/977-2 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.24 T-300 3k/977-2 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.25 IM7 12k/977-2 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.26 AS4 6k/PR500 5-harness satin weave fabric

Material Description:

- Material: AS4 6k/PR500
- Form: 5 harness satin weave fabric, with 4% PT500 tackifier resin, fiber areal weight of 370 g/m², injected with PR500 resin by Resin Transfer Molding (RTM); typical cured resin content of 28-34%, typical cured ply thickness of 0.013 0.0145 inches.
- Processing: RTM injection at > 320°F, cure for 2 hours at 350°F

General Supplier Information:

- Fiber: Hercules/Hexcel AS4 fibers are continuous carbon filaments made from a PAN precursor woven into 5HS fabric. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.
- Matrix: 3M PR 500 is a one part, 350°F curing epoxy resin system especially suited to RTM processing. Characteristics include: excellent toughness with 300°F wet mechanical performance, several weeks of room temperature stability and low viscosity at recommended injection temperature.

Maximum Short Term Service Temperature: 350°F (dry), 300°F (wet)

Typical applications: Primary and secondary aircraft structure (commercial and military) and other applications requiring unusual hot/wet properties and impact resistance where RTM advantages such as precise dimensional tolerances, part consolidation, complex lay-ups and replicated surface finishes are desired.

4.2.26 AS4 6k/PR500 5-harness satin weave fabric*

MATERIAL:	AS4 6k/PF	C/Ep 370-5HS AS4/PR 500 Summary								
FORM:	Fiberite 5-	Fiberite 5-harness satin weave fabric 12 tows/in., 4% PT-500								
FIBER:	Hercules A	AS4 6K, GP s	izing, no twist	MATRIX:	3M PR 500 RTM					
T _g (dry):	378°F	T _g (wet):	340°F	Tg METHOD:	SRM 18-94, RDA	GN knee				
PROCESSING:	Resin transfer molding: 360±10°F, 120 minutes, press pressure 175 psi, internal cure pressure 80 psi, mold temperature during injection 320°F, pump plate temperature 140-5, pump hose tem perate 160-5									

Date of fiber manufacture	12/93-5/94	Date of testing	5/95-11/95
Date of resin manufacture	8/94-9/94	Date of data submittal	6/96
Date of prepreg manufacture	11/94-12/94	Date of analysis	8/96
Date of composite manufacture	1/95-10/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/ W	240°F/W	300°F/W
Tension, 1-axis	II-I		II-I	SS-S	IS-S	II-S	II-S	II-I
Tension, 2-axis								
Tension, 3-axis								
Compression, 1-axis	II	-I	II	I	S	I	S	S
Compression, 2-axis								
Compression, 3-axis								
Shear, 12-plane	II	II	SS	II	SS	II	SS	SS
Shear, 23-plane								
Shear, 31-plane	I		I	I		I		I
SB Strength, 31-plane	S		S	S		S		S

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 12-plane shear for four fluids in addition to water.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.787		ASTM C693
Resin Density (g/c		1.25		ASTM D 792
Composite Density	(g/cm ³)		1.55-1.60*	
Fiber Areal Weight	(g/m ²)	370	375	SRM 23-94
Fiber Volume	(% vol)		55.5-64.8	
Ply Thickness	(in)	0.014	0.0128-0.0149	

* Throughout this section, resin content and composite density have been calculated assuming zero void content.

	72°F/A	-75°F/A	180°F/A	300°F/A	350°F/A	180°F/W	240°F/W	300°F/W
[0/45/90/-45]								
OHT, x-axis	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	IS-S	BI-b
OHC, x-axis	BS-S		IS-S	II-I		IS-S	II-I	bI-I
CAI, x-axis	I							
G _{ic}	S							
G _{IIc}	b							

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for 240/W and five impact energy levels for CAI.

MATERIAL: AS4 6k/PR 500 RTM 5-harness satin weave fabric							4.2.26(a) 370-5HS			
FIBER VOLUME: 57.6		34 wt% COMP: DENSITY: 1.56 - 1.58 g/cm ³ 6 - 62.0 vol % VOID CONTENT: NA 133 - 0.0142 in. VOID CONTENT: NA			AS4/F Tensio [0	AS4/PR 500 Tension, 1-axis [0 _f] _{3s} 72/A, 180/A, 240/A				
TEST ME	THOD:		MODULUS CALCULATION: Interim, Screeni							
SRI	VI 4R-94		Chord between 1000 and 3000 με							
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight t	o 57% fiber vol	ume (0.0145 in	. CPT)			
	ture (°F) Content (%) ım at T, RH	7 amb			30 pient	24 amb				
Source C		6	1	6		6	1			
		Normalized	Measured	Normalized	Measured	Normalized	Measured			
	Mean Minimum Maximum C.V.(%)	115 105 124 4.50	120 111 129 4.74	115 102 126 5.48	118 105 128 4.94	117 103 125 4.79	122 106 133 5.15			
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA			
(ksi)	C ₁ C ₂	5.71 4.43	6.44 4.83	7.01 4.65	121 23.5	6.03 4.42	6.67 4.06			
	No. Specimens No. Batches Data Class	17 3 Interim		16 3 Interim		15 3 Interim				
E ₁ ^t	Mean Minimum Maximum C.V.(%)	9.54 9.15 9.86 1.78	9.97 9.46 10.5 3.64	9.44 9.01 9.80 2.62	9.73 9.09 10.2 3.35	9.53 9.26 9.88 2.13	9.94 9.46 10.2 2.43			
(Msi)	(Msi) No. Specimens No. Batches Data Class		5 3 erim		6 3 erim	15 3 Interim				
v_{12}^{t}	Mean No. Specimens No. Batches									
	Data Class Mean Minimum Maximum C.V.(%)		11900 10800 13700 6.17		11800 10200 16400 12.4		11600 10000 13100 7.68			

B-value

 C_1

 C_2

Distribution

No. Specimens No. Batches

Data Class

 $arepsilon_1^{ ext{tu}}$

(με)

(1)

Nonpara

8

1.54

15 3

Interim

(1)

ANOVA

1510

3.294

15 3

Interim

(1)

Weibull

12000

16.2

13 3

Screening

AS4 6k/PR 500 RTM 5-harness satin weave fabric

MATERIAL:

RESIN CONTENT: 30 - FIBER VOLUME: 57.6		- 34 wt% 6 - 62.0 vol % 133 - 0.0142 in.	6 - 62.0 vol % VOID CONTENT:		1.56 - 1.58 g/cm ³ NA	C/Ep 3 AS4/I Tensio [(300/A, 35	70-5HS PR 500 n, 1-axis 0/]₃ 0/A, 180/W Screening
	И 4R-94				000 and 3000 με	· · · · ·	Ŭ
		ecimen thickness			ight to 57% fiber vo	lume (0.0145 in	. CPT)
	Content (%) m at T, RH	30 ambi	ient		350 ambient 61	18 (2 160°F 6	<u>?)</u> water
		Normalized	Measured	Normaliz		Normalized	Measured
	Mean Minimum Maximum C.V.(%)	111 104 118 3.97	117 111 122 2.82	105 94.6 112 4.39	114 103 123 4.75	112 103 119 4.66	114 109 119 2.57
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) Weibull	(1) ANOV		(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	4.91 5.14	119 49.5	5.19 5.34	117 25.9	5.89 5.48	3.25 5.03
	No. Specimens No. Batches Data Class	3	14 3 Screening		15 3 Interim		5 3 srim
E_1^t	Mean Minimum Maximum C.V.(%)	9.51 9.14 9.79 2.16	10.0 9.79 10.5 2.21	9.07 8.46 9.76 4.50	9.88 9.28 10.5 3.76	9.70 9.40 10.2 2.25	9.92 9.47 10.4 2.78
(Msi)	No. Specimens No. Batches Data Class	3	14 3 Screening		12 3 Screening		5 3 rrim
v_{12}^{t}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)		11500 10900 12800 4.78		11800 10900 12400 3.88		11000 9700 11900 5.88
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA
(με)	C ₁ C ₂		11500 550.		12000 34.4		691. 4.32
	No. Specimens No. Batches Data Class	13 3 Scree			12 3 Screening	1 Scree	3
L	Dala Oldss	Scree	inny	<u> </u>	Scieering	30100	sinny

Table 4.2.26(b)

(1) Basis values are presented only for A and B data classes.

(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

RESIN C FIBER V	MATERIAL: AS4 6k/PR 500 RT RESIN CONTENT: 30 - 34 wt% FIBER VOLUME: 57.6 - 62.0 vol % PLY THICKNESS: 0.0133 - 0.0142 in.		5-harness sa COMP: DE VOID CON	ENSITY: 1.5	6 - 1.58 g/cm ³	C/Ep 3 AS4/I Tensio [0	I.2.26(c) ;70-5HS PR 500 n, 1-axis)₁]₃ , 300/W
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		Screening
SRI	VI 4R-94		Chord	between 1000	and 3000 με		
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight to	o 57% fiber volu	ıme (0.0145 in	CPT)
	Content (%) m at T, RH	24((2) 160°F 61) water	30 (2 160°F 6	?) water		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	109 98.0 118 5.65	114 104 120 4.13	102 98.1 110 2.81	110 102 116 3.46		
F ₁ ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Nonpara.	(1) Weibull		
(ksi)	C ₁ C ₂	6.82 4.98	5.05 4.32	8 1.43	112 35.4		
	No. Specimens No. Batches Data Class	15 3 Inter	im 3 Interim		3		
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	9.42 9.04 9.82 2.47	9.84 9.45 10.5 3.11	9.24 8.69 9.60 2.60	9.96 9.20 10.5 3.62		
(Msi)	No. Specimens No. Batches Data Class	15 3 Inter		15 3 Interim			
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		11200 10400 13500 7.43		11000 10100 12000 4.38		
$\varepsilon_1^{\text{tu}}$	B-value Distribution C ₁		(1) Nonpara. 7		(1) Weibull 11300		
(με)			, 1.81		23.7		
	No. Specimens No. Batches Data Class	12 3 Scree	2	1: 3 Inte	5		

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

RESIN C FIBER V	RESIN CONTENT: 30 - FIBER VOLUME: 56.5 PLY THICKNESS: 0.01		4 6k/PR 500 RTM 5-harness sat 35 wt% COMP: DEN 5 - 61.8 vol % VOID CONT 134 - 0.0146 in. VOID CONT		ENSITY: 1.55 - 1.58 g/cm ³		.2.26(d) 70-5HS PR 500 ion, 1-axis i] _{3s} /A, 180/A erim
	M 1R-94			Inte			
UNI	W 111-3-		Choru	Detween	000 and 3000 $\mu\epsilon$		
				er areal wei	ght to 57% fiber volu	ume (0.0145 in.	CPT)
	Content (%)	72 ambi			-75 ambient	18 ambi	
	m at T, RH	64			64	<i>C</i>	
Source C	ode	61 Normalized	Measured	Normaliz	61 ed Measured	61 Normalized	Measured
	Mean Minimum Maximum C.V.(%)	118 103 136 7.91	127 110 141 7.41	- Normanz		105 92.1 116 5.86	110 94.4 126 7.02
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) Weibull			(1) Weibull	(1) Weibull
(ksi)	C ₁ C ₂	9.99 3.81	131 16.1			108 19.8	114 15.8
	No. Specimens No. Batches Data Class		17 3 Interim				5 rim
E ₁ ^c	Mean Minimum Maximum C.V.(%)	8.88 8.30 9.41 3.16	8.95 8.28 9.86 5.41	8.85 8.19 9.30 3.09	8.90 8.10 9.72 4.71	8.99 8.69 9.30 2.16	9.00 7.99 9.48 5.08
(Msi)	No. Specimens No. Batches Data Class	17 3 Inter		15 3 Interim		15 3 Interim	
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
ε ₁ ^{cu} (με)	B-value Distribution C1						
	C ₂ No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	ic		.2.26(e) 70-5HS			
RESIN C FIBER VO PLY THIO	OLUME: 56.5	35 wt% COMP: DEI 5 - 61.8 vol % VOID CONT 134 - 0.0146 in. VOID CONT		5		AS4/PR 500 Compression, 1-axis [0 _f] _{3s}	
TEST ME			MODULUS	240/A, 300/A, 350/A Interim, Screening			
SRI	M 1R-94		Chord	between 1000) and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weight	to 57% fiber volu	ume (0.0145 in.	CPT)
	Content (%)	24 ambi			300 Ibient	35 amb	
Equilibriu Source C	m at T, RH ode	61	1		61	6	1
	000	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	103 98.2 110 3.36	106 99.5 114 4.37	80.1 69.5 87.5 6.69	84.2 71.2 93.0 7.31	51.0 42.2 61.6 9.72	53.5 44.4 64.8 10.6
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) Weibull	(1) ANOVA
(ksi)	C_1 C_2	104 29.3	4.94 4.14	82.5 18.0	6.68 4.18	53.3 10.7	6.10 4.30
	No. Specimens No. Batches Data Class	15 3 Interim		16 3 Interim		12 3 Screening	
E ₁ ^c	Mean Minimum Maximum C.V.(%)						<u> </u>
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)						
$\boldsymbol{arepsilon}_1^{\mathrm{cu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

MATERIA	AL: AS4	6k/PR 500 RTM	15-harness sa	tin weave fat	oric		4.2.26(f) 70-5HS
FIBER V	OLUME: 56.5	35 wt% COMP: DE 5 - 61.8 vol % VOID CON 134 - 0.0146 in. VOID CON		5		AS4/PR 500 Compression, 1-axis [0 _f] _{3s} 180/W, 240/W, 300/W	
TEST ME	THOD:		MODULUS	S CALCULAT	ION:		Screening
SRI	M 1R-94		Chord	between 100	00 and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal weigh	nt to 57% fiber volu	ume (0.0145 in.	CPT)
	ture (°F) Content (%) m at T, RH	18 (2 160°F)	160	240 (2) °F water	30 (2 160°F	2)
Source C		61			61	6	1
		Normalized	Measured	Normalized		Normalized	Measured
	Mean Minimum Maximum C.V.(%)	100 87.9 114 7.08	106 87.7 126 10.2	77.5 67.4 87.1 8.97	79.3 66.1 93.4 12.3	67.0 62.2 71.6 4.43	71.7 65.5 78.2 6.05
F ₁ ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) Normal	(1) ANOVA	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	7.53 3.67	12.3 4.89	77.5 6.95	11.9 16.8	3.33 11.7	5.33 16.2
	No. Specimens No. Batches Data Class	17 3 Interim		9 2 Screening		1 ⁷ 2 Scree	2
E ₁ ^c	Mean Minimum Maximum C.V.(%)						, in the
(Msi)	No. Specimens No. Batches Data Class						
v_{12}^{c}	Mean No. Specimens No. Batches Data Class						
	Mean Minimum Maximum C.V.(%)						
$\boldsymbol{arepsilon}_1^{\mathrm{cu}}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

Basis values are presented only for A and B data classes.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-h	arness satin weav	e fabric		Table 4.2.26(g) C/Ep 370-5HS				
RESIN CONTENT: 29 - 35 wt FIBER VOLUME: 56.0 - 63.6 PLY THICKNESS: 0.0130 - 0		.6 vol %			m ³ AS Shea 72/A, ·	p 370-5HS 64/PR 500 ar, 12-plane [45 _f] _{2s} -75/A, 180/A, 0/A, 300/A					
TEST ME	THOD:			MODULUS CALCI	ULATION:		n, Screening				
SRM	7R-94			Chord axial modulus between 1000 and 4000 $\mu\epsilon$							
NORMAL	IZED BY:	Not norm	alized			·					
Temperat	ure (°F)		72	-75	180	240	300				
Moisture (Equilibriur	Content (%) n at T, RH		ambient	ambient	ambient	ambient	ambient				
Source Co			61	61	61	61	61				
	Mean		14.8	15.4	13.5	11.5	9.25				
	Minimum Maximum		13.0 18.2	14.5 18.0	12.6 14.4	10.7 13.1	7.97 10.3				
	C.V.(%)		8.63	5.50	4.15	5.37	7.28				
F ^s ₁₂	B-value Distributio	on	(1) Normal	(1) Nonpara	(1) ANOVA	(1) Normal	(1) Weibull				
(ksi)	C ₁		14.8	8	0.632	11.5	9.55				
(10)	C_2		1.28	1.54	5.37	0.618	15.6				
	No. Spec No. Batch		16 3	15 3	14 3	15 3	16 3				
	Data Clas		Interim	Interim	Screening	Interim	Interim				
	Mean		0.639	0.838	0.513	0.432	0.361				
	Minimum		0.585	0.795	0.451	0.388	0.331				
	Maximum	1	0.703	0.893	0.593	0.505	0.381				
G ^s ₁₂	C.V.(%)		6.56	4.28	7.17	7.56	3.92				
(Msi)	No. Spec		16	15	14	15	16				
	No. Batch Data Clas		3 Interim	3 Interim	3 Screening	3 Interim	3 Interim				
		~									

MATERIA	L: AS	4 6k/PR 500 RTM 5-	harness satin weave	fabric		e 4.2.26(h) p 370-5HS		
FIBER VOLUME: 56.0 - 63		- 35 wt% .0 - 63.6 vol %)130 - 0.0148 in.	COMP: DENSITY: 1.55 - 1.59 g/cm ³ VOID CONTENT: NA		cm ³ AS Shea 350/A, -	AS4/PR 500 Shear, 12-plane [45 _f] _{2s} 350/A, 180/W, 240/W,		
TEST ME	THOD:		MODULUS CALCU	ILATION:		300/W n, Screening		
SRM	7R-94		Chord axial mod	dulus between 10	000 and 4000 με			
NORMALI	ZED BY: No	t normalized						
Temperatu Moisture (ure (°F) Content (%)	350 ambient		180 (2)	240 (2)	300 (2)		
Equilibriun	n at T, RH			160°F water	160°F water	160°F water		
Source Co		61		61	61	61		
	Mean	7.75		12.2	10.2	7.82		
	Minimum	7.37		11.3	9.61	7.03		
	Maximum C.V.(%)	8.15 4.36		13.0 4.76	11.4 4.78	8.45 6.35		
	0. v.(78)	4.50		4.70	4.70	0.33		
	B-value	(1)		(1)	(1)	(1)		
F_{12}^s	Distribution	Normal		ANOVA	ANOVA	Weibull		
(ksi)	C ₁	7.75		0.656	0.529	8.04		
()	C ₂	0.338		5.36	4.62	19.6		
	No. Specimen	s 8		15	14	11		
	No. Batches	2		3	3	3		
	Data Class	Screening		Interim	Screening	Screening		
	Mean	0.252		0.506	0.400	0.235		
	Minimum	0.216		0.450	0.352	0.190		
	Maximum	0.264		0.577	0.450	0.274		
G ^s ₁₂	C.V.(%)	6.02		5.80	6.95	12.0		
(Msi)	No. Specimen	s 8		15	14	11		
()	No. Batches	2		3	3	3		
	Data Class	Screening		Interim	Screening	Screening		

(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIA RESIN CC FIBER VC PLY THIC	ONTENT: 29 - 3 DLUME: 56.0 -		arness satin weave COMP: DENSITY: VOID CONTENT:		cm ³ A She	ble 4.2.26(i) Ep 370-5HS S4/PR 500 ear, 12-plane [45 _f] _{2s} 72/Fluids
TEST ME		I	MODULUS CALCU		9	Screening
SRM	7R-94		Chord axial mod	dulus between 10	000 and 3000 μι	2
NORMALI	ZED BY: Not n	ormalized				
Temperate		72	72	72	72	
	Content (%)	(2)	(3)	(4)	(5)	
Equilibriur Source Co	n at T, RH	61	61	61	61	
	Mean	13.5	14.6	15.0	14.8	
	Minimum	12.4	13.4	13.5	13.7	
	Maximum	14.9	16.7	16.7	15.8	
	C.V.(%)	6.46	8.44	8.41	6.88	
	B-value	(1)	(1)	(1)	(1)	
F_{12}^s	Distribution	Normal	Normal	Normal	Normal	
(ksi)	C ₁	13.5	14.6	15.0	14.8	
()	C ₂	0.872	1.23	1.26	1.02	
	No. Specimens	7	7	6	6	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean Minimum	0.601 0.560	0.678 0.639	0.651 0.633	0.666 0.650	
	Maximum	0.638	0.716	0.677	0.701	
G_{12}^s	C.V.(%)	5.65	4.45	2.64	2.77	
(Msi)	No. Specimens	7	7	6	6	
. ,	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	

Basis values are presented only for A and B data classes.
 Held for 6 days at room temperature in MEK cleaning solvent.
 Held for 6 days at 160°F in Skydrol hydraulic fluid.
 Held for 6 days at room temperature in JP-4 jet fuel.
 Held for 6 days at room temperature in gravity fuel.

(5) Held for 6 days at room temperature in deicing fluid.

MATERIA	L:	AS4 6k/F	PR 500 RTM 5-h	arness satin weave	e fabric		able 4.2.26(j) C/Ep 370-5HS	
RESIN CONTENT: 30 - 34 w FIBER VOLUME: 57.6 - 62 PLY THICKNESS: 0.0133 -) vol % VOID CONTENT: NA			AS4/PR 500 SBS, 31-plane [0 _f] _{3s} 72/A, 180/A, 300/A, 180/W, 300/W	
TEST MET			I	MODULUS CALCU			Screening	
SRM	8R-94			Chord axial mo	dulus between 10	000 and 3000	με	
NORMALI	ZED BY:	Not norm	alized					
Equilibrium	Content (%) n at T, RH		72 ambient	180 ambient	300 ambient	180 (2) 160°F wate		
Source Co	Mean		61 11.6	61 9.6	61 6.8	61 8.0	<u>61</u> 5.47	
	Minimum		10.4	9.0	6.5	7.2	5.2	
	Maximum		12.7	10.2	7.3	8.4	5.7	
	C.V.(%)		5.36	3.4	3.2	4.6	3.3	
F ^{sbs} ₃₁	B-value Distributio	on	(1) Weibull	(1) ANOVA	(1) Normal	(1) Weibull	(1) Normal	
(ksi)	C ₁		11.9	0.35	6.8	8.1	5.5	
(10)	C_2		22.2	3.5	0.22	30.	0.18	
	No. Spec No. Batch		19 3	19 3	19 3	12 2	7 1	
	Data Clas	SS	Screening	Screening	Screening	Screening	Screening	

Short beam strength test data are approved for Screening Data Class only.
 Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIAL:	AS4 6k/PR 500 RT	M 5-harness satin weave	e fabric	Table 4.2.26(k) C/Ep 370-5HS
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	28 - 36 wt% 55.5 - 64.8 vol % 0.0128 - 0.0149 in.	COMP: DENSITY: VOID CONTENT:	1.55 - 1.60 g/cm ³ NA	AS4/PR 500 OHT, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 72/A, -75/A, 180/A
TEST METHOD:		MODULUS CALCU	LATION:	Interim, Screening
SRM 5R-94		Chord between	1000 and 3000 $\mu\epsilon$	
NORMALIZED BY:	Specimen thickness	s and batch fiber areal w	eight to 57% fiber volu	me (0.0145 in. CPT)
Temperature (°F)		2	-75	180

Moisture	Content (%)	ambient		-75 ambient		ambient	
	m at T, RH	6.	1	6.	1	6	1
Source C	oue	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	47.5 42.5 51.5 5.49	49.4 41.7 54.0 7.03	47.7 41.7 51.6 5.73	49.9 40.6 54.8 7.82	46.9 43.8 48.8 3.46	48.3 44.9 51.5 4.66
F _x ^{ohtu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	48.7 21.8	51.0 17.6	48.8 22.6	51.5 17.6	1.69 3.61	2.20 3.81
	No. Specimens No. Batches Data Class	15 3 Inte	15 3 Inte	1	15 3 Interim		
E _x ^{oht}	Mean Minimum Maximum C.V.(%)	6.86 6.72 7.07 1.94	7.24 7.09 7.41 1.59	7.25 7.08 7.34 1.42	7.77 7.63 7.94 1.90	6.75 6.55 7.14 3.26	7.04 6.71 7.45 3.48
(Msi)	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Screening		6 1 Screening	
	Mean Minimum Maximum C.V.(%)		7100 6500 7500 5.7		6700 6600 7000 2.5		7100 6800 7400 3.8
$\varepsilon_{\rm x}^{ m ohtu}$	B-value Distribution		(1) Normal		(1) Normal		(1) Normal
(με)	C ₁ C ₂		7100 400		6700 170		7100 270
	No. Specimens No. Batches Data Class	5 1 Scree		5 1 Scree		5 1 Scree	

MATERIA	AL:	AS4	6k/PR 500 RTI	M 5-harness sa	tin weave fabr	ic		1.2.26(I) 70-5HS		
FIBER V	OLUME:	55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	COMP: DE VOID CON		55 - 1.60 g/cm ³ A	AS4/F OHT, [0 _f /45 _f /9 240/A, 30	PR 500 x-axis 90 _f /-45 _f] _s 0/A, 350/A		
TEST ME	THOD:			MODULUS	S CALCULATI	ON:	Interim, S	Interim, Screening		
SRI	VI 5R-94			Chord	between 1000) and 3000 με				
NORMAL	IZED BY:	Spec	cimen thickness	s and batch fibe	er areal weight	to 57% fiber vol	ume (0.0145 in.	CPT)		
Equilibriu	Content (%) m at T, RH		amt	40 bient	am	00 bient	35 amb	ient		
Source C	ode		6 Normalized	1 Measured	Normalized	61 Measured	6 Normalized	1 Measured		
	Mean Minimum Maximum C.V.(%)		48.6 45.4 52.8 3.89	51.2 47.8 56.1 4.96	47.5 45.9 51.2 3.20	49.7 46.6 53.3 4.11	44.1 41.6 46.7 3.61	45.4 41.4 48.4 3.86		
F _x ^{ohtu}	B-value Distribution		(1) Weibull	(1) Normal	(1) Nonpara.	(1) Weibull	(1) ANOVA	(1) Weibull		
(ksi)	C ₁ C ₂		49.5 25.6	51.2 2.54	8 1.49	50.7 26.1	1.70 3.84	46.3 29.3		
No. Specir No. Batche Data Class			16 3 Interim		16 3 Interim		16 3 Interim			
E_{x}^{oht}	Mean Minimum Maximum C.V.(%)		6.58 6.42 6.78 2.10	6.96 6.70 7.20 2.82	6.64 6.52 6.87 1.84	7.02 6.74 7.12 2.03	6.01 5.85 6.33 3.14	6.28 6.08 6.52 2.56		
(Msi)	No. Specime No. Batches Data Class			6 1 ening		6 1 eening	6 1 Scree			
	Mean Minimum			7500 7000		7200 7000		7300 7000		

7800

3.7

(1)

Normal

7500

270

6

1

Screening

7300

1.8

(1)

Normal

7200

130

6

1

Screening

7700

3.6

(1)

Normal

7300

260

6

1

Screening

(1) Basis values are presented only for A and B data classes.

Maximum

C.V.(%)

B-value

 C_1

 C_2

Distribution

No. Specimens

No. Batches

Data Class

 $\varepsilon_{\rm x}^{\rm ohtu}$

(με)

MATERIAL:	AS4	6k/PR 500 RTN	∕l 5-harness sa	tin weave f	abric	;		l.2.26(m) 870-5HS
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	55.5	36 wt% - 64.8 vol % 28 - 0.0149 in.	NSITY: TENT:	1.55 NA	5 - 1.60 g/cm ³	AS4/PR 500 OHT, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 180/W, 240/W, 300/W		
TEST METHOD:			MODULUS		n, Screening			
SRM 5R-94			Chord	between 1	000 a	and 3000 με		
NORMALIZED BY:	Spec	cimen thickness	and batch fibe	r areal wei	ght to	o 57% fiber volu	ume (0.0145 in	. CPT)
Temperature (°F)		18	30		24	0	30	00
Moisture Content (%)		(2)			(2	2)	(2)	
Equilibrium at T, RH		160°F water 160°F water				160°F water		
Source Code		6	61 61					1
		Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured

		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	47.1 43.1 50.0 3.81	49.3 44.2 53.6 5.13	46.4 43.7 49.4 3.57	48.6 46.0 53.4 4.44	46.5 44.4 50.1 3.57	48.6 45.7 52.3 6.05
F _x ^{ohtu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Nonpara.	41.9 Weibull	43.6 Weibull
(ksi)	C ₁ C ₂	47.9 29.6	50.4 22.0	47.2 31.0	8 1.49	28.1 47.3	26.8 49.6
	No. Specimens No. Batches Data Class	16 3 Interim		3	16 3 Interim		1 3 18
E _x oht	Mean Minimum Maximum C.V.(%)	6.69 6.58 6.80 1.63	7.08 6.77 7.43 3.44	7.00 6.78 7.24 2.96	7.46 7.07 7.70 3.74	6.64 5.95 7.01 4.92	6.96 6.15 7.54 5.93
L _x (Msi)	No. Specimens No. Batches	E	6	6	5	1	6
	Data Class	Scree		Screening		Interim	
	Mean Minimum Maximum C.V.(%)		7100 6800 7200 2.2		6600 6100 7100 6.5		6900 6000 7800 6.1
$\varepsilon_{\rm x}^{\rm ohtu}$	B-value Distribution		(1) Normal		(1) Normal		5800 Weibull
(με)	C ₁		7100		6600		7100
¥ /	C ₂		150		430		17
	No. Specimens No. Batches Data Class	e 1 Scree		6 1 Scree		1 3 B ²	3

(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIAL:	AS4 6k/PR 500 RTM	1 5-harness satin weave	fabric	Table 4.2.26(n) C/Ep 370-5HS
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	28 - 36 wt% 55.5 - 64.8 vol % 0.0128 - 0.0149 in.	COMP: DENSITY: VOID CONTENT:	1.55 - 1.60 g/cm ³ NA	AS4/PR 500 OHC, x-axis [0 _f /45 _f /90 _f /-45 _f] _s 72/A,180/A,240/A
TEST METHOD:		MODULUS CALCU	LATION:	B18, Interim, Screening
SRM 5R-94		Chord between	1000 and 3000 με	

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 57% fiber volume (0.0145 in. CPT)

	Content (%)	7: amb		18 ambi		24 amb	
Equilibriu Source C	im at T, RH Code	6	1	61	1	6	1
000.000		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	45.3	47.2	38.2	40.4	35.6	37.9
	Minimum	42.7	44.7	34.8	37.0	32.2	33.9
	Maximum	48.2	51.4	44.1	47.3	37.9	41.0
	C.V.(%)	3.57	4.17	6.32	6.93	4.22	4.38
	B-value	41.0	41.5	(1)	(1)	(1)	(1)
F _x ^{ohcu}	Distribution	Weibull	Weibull	Weibull	Normal	Weibull	Weibull
(ksi)	C ₁	46.1	48.1	39.4	40.4	36.2	38.6
	C ₂	30.7	24.0	15.1	2.80	29.6	26.7
	No. Specimens	18		16		16	
	No. Batches	3		3		3	
	Data Class	B1		Inte		Inte	
	Mean	6.67	7.10	6.48	6.94	6.43	6.85
	Minimum	6.28	6.67	6.44	6.78	6.24	6.34
1	Maximum	7.08	7.59	6.52	7.05	6.70	7.32
E_x^{ohc}	C.V.(%)	4.47	5.02	0.549	1.44	1.87	4.35
(Msi)	No. Specimens	8		5		15	
()	No. Batches	1		1		3	
	Data Class	Scree	ening	Scree	ning	Scree	ening
	Mean		6900		6100		5500
	Minimum		6500		5400		5100
	Maximum		7500	6800		6000	
	C.V.(%)		5.7		9.7		4.6
	B-value		(1)		(1)		(1)
$\varepsilon_{\mathrm{x}}^{\mathrm{ohcu}}$	Distribution		Normal		Normal		Weibull
(με)	C ₁		6900		6100		5700
	C ₂		390		590		24
	No. Specimens	5	;	5		1:	5
	No. Batches	1		1		3	
	Data Class	Scree	ening	Scree	ning	Scree	ening

MATERIA	AL: AS4	6k/PR 500 RTN	/I 5-harness sa	atin weave	e fabric			l.2.26(o) 570-5HS	
FIBER VOLUME: 55.5		36 wt% COMP: DENS 5 - 64.8 vol % VOID CONTE 28 - 0.0149 in. VOID CONTE						AS4/PR 500 OHC, x-axis [0 _t /45 _t /90 _t /-45 _t] _s 300/A	
TEST ME	ETHOD:		MODULU	S CALCU	LATIO	N:		Interim	
SRI	M 5R-94		Chord	between	1000 a	and 3000 με			
NORMAL	IZED BY: Spec	cimen thickness	and batch FA	W to 57%	fiber v	olume (0.0145	5 in. CPT)		
	Content (%)	30 amb							
Equilibriu Source C	im at T, RH	6	1						
Source C	Jude	6 Normalized	Measured	Normal	ized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	32.1 26.2 36.6 7.92	34.0 28.9 38.6 7.41						
F _x ^{ohcu}	B-value Distribution	(1) Weibull	(1) Weibull						
(ksi)	C ₁ C ₂	33.2 15.7	35.1 14.9						
	No. Specimens No. Batches Data Class	17 3 Interim							
E _x ^{ohc}	Mean Minimum Maximum C.V.(%)	6.24 6.02 6.38 1.73	6.60 6.19 7.24 4.13						
(Msi)	No. Specimens No. Batches Data Class	1 3 Inte	3						
	Mean Minimum Maximum C.V.(%)		5100 4300 5700 7.6						
$\varepsilon_{\rm x}^{ m ohcu}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		5300 17						
	No. Specimens No. Batches Data Class	1 3 Inte	3						

MATERIAL: RESIN CONTENT: FIBER VOLUME: PLY THICKNESS: TEST METHOD:	28 - 55.5	6k/PR 500 RTN 36 wt% - 64.8 vol % 28 - 0.0149 in.	M 5-harness sa COMP: DE VOID CON MODULUS	C/Ep 3 AS4/f OHC, [0 _f /45 _f /s 180/W, 24	I.2.26(p) 70-5HS PR 500 x-axis 90 _f /-45 _f] _s 0/W, 300/W n, Screening		
			MODULUC	OALOOLAII	OIN.		n, oereening
SRM 5R-94			Chord	between 1000) and 3000 με		
NORMALIZED BY:	Spec	cimen thickness	and batch fibe	er areal weight	to 57% fiber volu	ume (0.0145 in	CPT)
Temperature (°F)		18	30	2	240	300	
Moisture Content (%)		(2	<u>2)</u>	(2)		(2	2)
Equilibrium at T, RH		160°F			Fwater	160°F	
Source Code		61 61					1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
Mean		36.3	38.5	32.8	34.6	27.1	28.4
Minimum		32.2	34.5	30.3	31.8	25.0	26.1
Maximum		10.0	11 2	36.5	38 /	30.2	32.1

	Minimum	32.2	34.5	30.3	31.8	25.0	26.1
	Maximum	40.9	44.2	36.5	38.4	30.2	32.1
	C.V.(%)	7.01	7.02	5.76	6.39	6.35	6.52
	B-value	(1)	(1)	(1)	(1)	25.4	23.5
F _x ^{ohcu}	Distribution	Weibull	ANOVA	Weibull	Weibull	Nonpara.	Weibull
(ksi)	C ₁	37.5	2.90	33.7	35.7	9	29.3
	C ₂	16.1	3.97	18.2	17.2	1.35	16.4
	No. Specimens		6	1		1	
	No. Batches		3		3	3	
	Data Class		erim	Inte		B18	
	Mean	6.39	6.90	6.45	6.83	6.10	6.40
	Minimum	6.29	6.56	6.22	6.49	5.84	5.78
aha	Maximum	6.53	7.13	7.05	7.46	6.45	6.87
E _x ^{ohc}	C.V.(%)	1.69	2.89	3.54	4.03	2.64	4.57
(Msi)	No. Specimens	(6	1	5	1:	5
. ,	No. Batches		1	3	3	3	
	Data Class	Scre	ening	Inte		Inte	rim
	Mean		5800		5100		4500
	Minimum		5400		4500		4100
	Maximum		6500		5800		4900
	C.V.(%)		7.0		7.2		5.4
	B-value		(1)		(1)		(1)
$\varepsilon_{\rm x}^{\rm ohcu}$	Distribution		Normal		Weibull		Weibull
(με)	C ₁		5800		5300		4600
	C ₂		410		15		20
	No. Specimens	(6	1	5	1	
	No. Batches		1	3		3	
	Data Class	Scre	ening	Inte	erim	Inte	rim

(2) Held in 160°F water bath until full saturation or 95% of equilibrium once full saturation was established.

MATERIAL:	AS4 6k/PR 500 RTM	AS4 6k/PR 500 RTM 5-harness satin weave fabric				
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30 - 33 wt% 58.5 - 62.4 vol % 0.0133 - 0.0141 in.	COMP: DENSITY: VOID CONTENT:	1.56 - 1.59 g/cm ³ NA	C/Ep 370-5HS AS4/PR 500 CAI, x-axis [0 _f /45 _f /90 _f /-45 _f] _{2s} 72/A, Impact		
TEST METHOD: SRM 2-94 Imp	act energy (see footnote		LATION:	Interim		

NORMALIZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 in. CPT)

Tempera	ture (°F)	72		7		72	
	Content (%)	amb		ambient		ambient	
	ım at T, RH	(2	2)	(3	3)	(4)	
Source C	Code	6		6		61	
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	60.5	64.3	43.1	45.8	39.5	41.9
	Minimum	55.6	59.1	40.6	42.4	35.5	39.0
	Maximum	67.2	71.7	45.3	48.6	45.7	47.6
	C.V.(%)	5.33	5.42	3.31	4.23	6.32	5.47
	B-value	(1)	(1)	(1)	(1)	(1)	(1)
F _x ^{cai}	Distribution	Weibull	Weibull	ANOVA	ANOVA	ANOVA	ANOVA
(ksi)	C ₁	62.0	66.0	1.58	2.17	2.64	2.45
	C ₂	19.6	18.9	4.98	5.26	3.99	4.18
	No. Specimens	1	15		5	15	
	No. Batches	3		3			3
	Data Class	Inte	Interim		rim	Inte	erim

Basis values are presented only for A and B data classes.
 Impact energy: 135 in-lbs.
 Impact energy: 270 in-lbs.
 Impact energy: 360 in-lbs.

MATERIAL:	AS4 6k/PR 500 RTM	AS4 6k/PR 500 RTM 5-harness satin weave fabric					
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30 - 33 wt% 58.5 - 62.4 vol % 0.0133 - 0.0141 in.	COMP: DENSITY: VOID CONTENT:	1.56 - 1.59 g/cm ³ NA	C/Ep 370-5HS AS4/PR 500 CAI, x-axis [0 _f /45 _f /90 _f /-45 _f] _{2s} 72/A, Impact			
TEST METHOD: SRM 2R-94, Imp	oact energy (see footnot	MODULUS CALCU es)	LATION:	Interim			

NORMALIZED BY: Specimen thickness and batch FAW to 57% fiber volume (0.0145 in. CPT)

Tempera	ture (°E)	7:	2	7:	2		
Moisture	Content (%)	ambient			ambient		
	im at T, RH	(2)		(3)			
Source C		61		61			
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	37.2	39.4	35.1	37.4		
	Minimum	34.8	36.1	33.0	34.5		
	Maximum	40.9	43.7	37.5	39.8		
	C.V.(%)	4.61	4.91	4.15	4.26		
	B-value	(1)	(1)	(1)	(1)		
F _x ^{cai}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA		
(ksi)	C ₁	1.91	2.11	1.59	1.74		
	C ₂	5.12	4.73	4.65	4.75		
	No. Specimens	15		1			
	No. Batches	3		3			
	Data Class	Interim		Inte	rim		

Basis values are presented only for A and B data classes.
 Impact energy: 450 in-lbs.

(3) Impact energy: 545 in-lbs.

MATERIAL:		AS4 6k/F	R 500 RTM 5-ł	narness satin weave	e fabric		4.2.26(s) 370-5HS	
RESIN CON FIBER VOL PLY THICK	UME:	33 - 34 w 57.3 - 58 0.0142 -		COMP: DENSITY: VOID CONTENT:	AS4 G _{IC1}	AS4/PR 500 G _{lc} , x-axis [0 _f] _{6s} 72/A		
TEST METH BMS 8- Double	HOD: -276, Sectio Cantilever	on 8.5.7 beam (2)		MODULUS CALCU		reening		
NORMALIZ	ED BY:	Not norm	alized					
Temperatur			72					
Moisture Co Equilibrium	at T, RH		ambient					
Source Cod			61					
	Mean Minimum		2.63 1.64					
	Maximun		3.88					
	C.V.(%)		20.1					
C	B-value		(1)					
G _{Ic}	Distributi	on	ANOVA					
(in- lbs/in ²)	C ₁		0.642					
100/111 /	C ₂		8.30					
	No. Spec	cimens	56					
	No. Batcl		2					
	Data Cla	SS	Screening					

(2) Equivalent to ASTM D 5528-94 with 0.5 inch specimen width.

MATERIAL:	AS4 6k/F	e fabric	Table 4.2.					
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	33 - 34 w 57.3 - 58 0.0142 -		COMP: DENSITY: VOID CONTENT:	1.56 g/cm ³ NA	G _{lic} , x-a [0 _f] _{6s}	AS4/PR 500 G _{lic} , x-axis [0 _f] _{6s} 72/A		
TEST METHOD: BMS 8-276, Sect	tion 8 5 9		MODULUS CALCU	JLATION:	B18			
End Notched Fle								
NORMALIZED BY:	Not norm	alized						
Temperature (°F) Moisture Content (%)		72 ambient						
Equilibrium at T, RH								
Source Code Mean		61 7.88						
Minimur		6.21						
Maximu C.V.(%)		10.8 13.1						
${ m G}_{{ m II}_{ m C}}$ Distribu		(1) ANOVA						
(in- C₁ lbs/in²)		1.20						
C ₂		5.02						
No. Spe No. Bat		47 3						
Data Cla		B18						

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

4.2.27 T300 3k/EA9396 8-harness satin weave fabric

Material Description:

- Material: T300 3k/EA9396
- Form: 8-harness satin fabric of Hexcel weave W133 using 3k tows at 24x23 tows per inch, fiber areal weight of 366 g/m², wet lay-up, typical cured resin content ranged from 31.9 to 37.1%, typical cured ply thickness of 0.015 inches.
- Processing: Vacuum Bag cure; 195°F, 126 mm Hg, 45 minutes

General Supplier Information:

- Fiber: T300 3k fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments per tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb. batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that exceed what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Elevated temperature, wet properties for compression and shear are low and have increased variability because the material was tested near the glass transition temperature.
- 3. Reported fiber volumes and resin contents are not consistent with the measured ply thicknesses.
- 4. Data are from publicly available report, Reference 4.2.27.

4.2.27 T300 3k/EA 9396 8-harness satin weave fabric*

MATERIAL:	T300 3k/E	EA 9396 8-har	ness satin w	eave fabric		C/Ep 366-8HS T300/EA 9396 Summary		
FORM:	•	Dry carbon fabric impregnated with epoxy resin in a wet lay-up impregnation process.						
FIBER:	Toray T30	00 , 3k, UC 30	9 Sizing	MATRIX:	Dexter-Hysol EA 9396			
T _g (dry):	349°F	T _g (wet):	225°F	T _g METHOD:	DMA			
PROCESSING:	Vacuum I	Bag Cure: 195	-200°F, 45 n	nin., 25 in. Hg.				

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

	72°F/A	-65°F/A	200°F/A	-65°F/W	72°F/W	200°F/W
Tension, 1-axis	IISI				IISI	
Tension, 2-axis	SSSS	IISI	IISI	IISI	IISI	IISI
Tension, 3-axis						
Compression, 1-axis	SS-S				II-I	
Compression, 2-axis	SS-S	IS-S	II-I	II-I	II-I	SS-S
Compression, 3-axis						
Shear, 12-plane	II	II	II	II	IS	II
Shear, 23-plane						
Shear, 31-plane						

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.78	1.78	D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.45	1.46-1.48	D 792
Fiber Areal Weight	(g/m ²)	366	366	
Fiber Volume	(%)	54	53.7-57.3	D 3171A
Ply Thickness	(in)	0.0142	0.014-0.016	

Nominal composite densities assume void content of 0%.

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERI	AL: T3	800 3k/EA 9396 8-I	narness satin w	eave fabric		Table 4.2.27(a)
FIBER V	OLUME: 56	2.7-34.2 wt% 5.3-57.3 % 0148-0.0153 in.	Comp. De Void Con	C/Ep 366-8HS T300 3k/EA 9396 Tension, 1-axis [0 _f] ₈ 72/A,72/W		
TEST ME	ETHOD:		MODULU	S CALCULATIO	N:	Interim, Screening
AST	M D 3039		Chord	between 1000 a	and 3000με	
NORMAL	LIZED BY: Sp	becimen thickness	and areal weigh	nt to 57% (0.014	2 in. CPT)	
	Content (%) Im at T, RH	Am	72 bient 31	7: (1 140, 9 3 [:]) 5-100	
oource e		Normalized	Measured	Normalized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	88.3 80.2 94.4 5.79	80.6 73.1 86.0 6.39	92.8 84.1 102 5.49	84.9 74.3 91.4 6.00	
F_l^{tu}	B-value Distribution	(2) Weibull	(2) Nonpara.	(2) Weibull	(2) Weibull	
(ksi)	C ₁ C ₂	90.6 22.5	8 1.54	95.1 20.7	87.2 21.1	
	No. Specimens No. Batches Data Class		15 3 Interim		5 s rim	
E_1^t	Mean Minimum Maximum C.V.(%)	9.17 8.68 10.1 3.96	8.38 7.69 9.22 4.60	9.68 9.38 10.3 2.43	8.85 8.44 9.34 2.71	
(Msi)	No. Specimens No. Batches Data Class		15 3 erim	1 3 Inte	3	
v_{12}^t	Mean No. Specimens No. Batches	0.0)587 7 3	0.03 6 3	372 5	
	Data Class	Scre	ening	Scree		
	Mean Minimum Maximum C.V.(%)		7830 5500 9480 14.3		9570 8800 10400 5.34	
ϵ_1^{tu}	B-value Distribution		(2) ANOVA		(2) Weibull	
(με)	C ₁ C ₂		4.64 1220		9800 22.7	
	No. Specimens No. Batches Data Class		15 3 erim	15 3 Interim		

Unknown weight gain.
 Basis values are presented only for A and B data classes.

MATERIA	L: T300	3k/EA 9396 8-ha	arness satin we		Table 4.2.27(b) C/Ep 366-8HS			
RESIN CO FIBER VO PLY THIC	DLUME: 56.3-	34.2 wt% 57.3 % 18-0.0153 in.	7.3 % VOID CONTENT:			T300 3k Tensio [(T300 3k/EA 9396 Tension, 2-axis [0 _f] ₈ 72/A, -65/A, 200/A	
TEST ME	THOD:		MODULU	S CALCULAT	ION:		Screening	
AST	M D 3039		Chord	between 100	0 and 3000με			
NORMAL		imen thickness a	_					
Temperat		7			-65	20		
	Content (%) m at T, RH	Amb	vient	An	nbient	Amb	ient	
Source Co		3	1		31	3	1	
Source of	Jue	Normalized	Measured	Normalized		Normalized	Measured	
	Mean	100	93.0	93.6	90.6	78.9	75.5	
	Minimum	80.4	75.1	87.0	82.9	59.7	57.3	
	Maximum	110	101	103	107	94.6	91.7	
	C.V.(%)	9.39	9.11	5.19	6.89	12.4	13.1	
	0. v.(70)	0.00	0.11	0.10	0.00	12.4	10.1	
	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
Tu	Distribution	Weibull	Weibull	Weibull	Lognormal	ANOVA	ANOVA	
F_2^{tu}					-	_		
(ksi)	C ₁	104	96.4	95.9	4.50	4.61	4.61	
	C ₂	15.2	16.0	19.7	0.0663	10.6	10.7	
							_	
	No. Specimens	1.			15	1		
	No. Batches Data Class	-	3 Screening		3 iterim	3 Inte		
	Mean	9.10	8.51	9.60	9.29	Interim 9.05 8.64		
	Minimum	8.11	7.31	9.60 8.97	9.29 8.33	9.05 8.37	0.04 7.75	
	Maximum	9.68	9.44	10.1	10.2	9.67	9.23	
_t	C.V.(%)	5.12	9.44 6.58	3.27	4.66	4.92	9.23 5.14	
E_2^t	0. v.(/0)	5.12	0.00	5.21	4.00	7.32	0.14	
					45		F	
(Msi)	No. Specimens	1.		15		15		
	No. Batches	Scro		. In	3 Interim			
	Data Class	Scree			terim	Inte		
	Mean No Spocimons	0.05		0.	0543 7	0.05		
	No. Specimens No. Batches				3	6		
v_{21}^t								
	Data Class	Scree	0	Scr	eening	Scree		
	Mean		10500		9580		8590	
	Minimum		8520		8850		6460	
	Maximum		11700		10600		10000	
	C.V.(%)		10.3		6.71		10.7	
	D volue		(\mathbf{A})		(4)		(\mathbf{A})	
4.1	B-value Distribution	(1) Weibull			(1) ANOVA		(1) Weibull	
ϵ_2^{tu}		Weibull					VVEIDUII	
(με)	C ₁		10900		4.81		8980	
	C ₂		13.0		704		11.3	
							_	
	No. Specimens	1.			15	1:		
No. Batches		3	4	1	3	3		
	Data Class	Scree			iterim	Interim		

MATERIA	AL: T300 3	300 3k/EA 9396 8-harness satin weave fabricTable 4.2.27(c)C/Ep 366-8HS									
FIBER V	OLUME: 56.3-5	4.2 wt% 7.3 % 3-0.0153 in.	COMP. DE VOID CON		3 g/cm ³ 4.8 %	T300 3k/EA 9396 Tension, 2-axis [0 _f] ₈ -65/W, 72/W, 200/W					
TEST ME	ETHOD:		MODULU	S CALCULATIC	DN:		Screening				
AST	M D 3039		Chord	between 1000	and 3000με						
NORMAL	IZED BY: Specir	nen thickness a	and areal weigh	nt to 57% (0.014	12 in. CPT)						
	Content (%) Im at T, RH	(1 140, 9	65) 15-100 1	(* 140, 9	2 1) 95-100 1	20 (1 140, 9 3) 5-100				
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean Minimum Maximum C.V.(%)	100 79.4 110 7.40	96.7 80.6 105 6.88	93.3 80.4 101 5.94	87.5 72.0 101 9.29	66.7 60.2 71.9 5.51	64.3 56.7 72.1 6.51				
F ₂ ^{tu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Normal				
(ksi)	C ₁ C ₂	103 19.1	99.4 20.2	95.7 21.2	91.2 12.1	68.4 22.0	64.3 4.18				
	No. Specimens No. Batches	15 3 Interim		:	5 3	10					
	Data Class Mean	9.84	9.52	9.32	Interim 9.32 8.73		rim 7.98				
E_2^t	Minimum Maximum C.V.(%)	9.51 10.1 1.95	8.91 10.4 3.69	8.89 9.81 2.83	8.22 9.63 4.21	8.29 7.29 9.28 7.49	7.01 9.20 7.73				
(Msi)	No. Specimens No. Batches		5		15 3		16 3				
	Data Class	Inte			erim	Inte					
v_{21}^t	Mean No. Specimens No. Batches		535 5 3	e	460 5 3	0.04	C				
	Data Class	Scree		Scre	ening	Scree	U U				
	Mean Minimum Maximum C.V.(%)		9830 7210 11000 10.5		10000 8390 11700 8.61		7370 3070 9520 23.5				
ϵ_2^{tu}	B-value Distribution		(2) Weibull		(2) Weibull		(2) Weibull				
(με)	C ₁ C ₂		10200 14.4		10400 12.5		8000 5.72				
	No. Specimens No. Batches Data Class		5 3 erim	15 3 Interim		16 3 Inte					

Unknown weight gain.
 Basis values are presented only for A and B data classes.

RESIN CONTENT: 34.7-37.1 wt% 53.7-55.5 % COMP. DENSITY: 1.48 g/cm ³ 2.8-4.8 % Compression T300 3kFa 396 Compression, 1-axis [b] ₁ , 72/3,72/W TEST METHOD: MODULUS CALCULATION:	MATERIA	AL: T300 3	3k/EA 9396 8-h	arness satin w	eave fabric		Table 4.2.27(d)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FIBER V	OLUME: 53.7-5	5.5 %				T300 3k/EA 9396 Compression, 1-axis [0 _f] ₁₂						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				MODULU	S CALCULATIO	N:							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	AST	M D 3410B		Chord	between 1000	and 3000µɛ							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Equilibriu	m at T, RH			(1)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Source C	ode					Normalized Measured						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mean					Normalized Measured						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.V.(%)	8.48	8.22	11.9	11.1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(2)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F_l^{cu}	Distribution	Weibull	Weibull	Weibull	ANOVA							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ksi)												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		C ₂	15.1	15.7	8.65	6.12							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		No. Specimens	1	2	1	5							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No. Batches	3		-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10.3									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_1^c	C.V.(%)	15.0	15.8	13.0	13.5							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Mei)	No Specimens	1	っ	1	5							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(10131)												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Scree	ening	Inte	rim							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	c												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v ₁₂												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				8940		7840							
$ \begin{array}{c c} C.V.(\%) & 27.3 & 26.4 \\ \hline B-value & (2) & (2) \\ \hline Distribution & Lognormal & Weibull \\ (\mu\epsilon) & C_1 & 9.07 & 8630 \\ C_2 & 0.248 & 4.10 \\ \hline No. Specimens & 12 & 15 \\ No. Batches & 3 & 3 \\ \end{array} $		Minimum		6670		5410							
$ \begin{array}{c c} & B-value & (2) & (2) \\ \hline \text{Distribution} & Lognormal & Weibull \\ (\mu\epsilon) & C_1 & 9.07 & 8630 \\ C_2 & 0.248 & 4.10 \\ \hline \text{No. Specimens} & 12 & 15 \\ \text{No. Batches} & 3 & 3 \\ \end{array} $													
$\begin{array}{c c} \epsilon_1^{\ cu} & \mbox{Distribution} & \mbox{Lognormal} & \mbox{Weibull} \\ (\mu\epsilon) & C_1 & 9.07 & 8630 \\ C_2 & 0.248 & 4.10 \\ \hline & \mbox{No. Specimens} & 12 & 15 \\ & \mbox{No. Batches} & 3 & 3 \\ \end{array}$		U.V.(%)		27.3		26.4							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
C2 0.248 4.10 No. Specimens 12 15 No. Batches 3 3	ϵ_1^{cu}	Distribution											
No. Specimens1215No. Batches33	(με)												
No. Batches 3 3		C ₂		0.248		4.10							
No. Batches 3 3		No. Specimens	1	2	1:	5							
Data Class Screening Interim		No. Batches	3	3	3	3							
		Data Class	Scree	ening	Inte	rim							

Specimens conditioned at 140°F, 95-100% RH for 99 days.
 Basis values are presented only for A and B data classes.

FIBER V	ONTENT: 34.7-3 OLUME: 53.7-5	3k/EA 9396 8-ha 7.1 wt% 5.5 % 7-0.0153 in.	arness satin w COMP. DE VOID CON	9 g/cm ³ 4.8 %	Table 4.2.27(e) C/Ep 366-8HS T300 3k/EA 9396 Compression, 2-axis [0t]12 -65/A, 72/A, 200/A		
TEST ME	THOD:		MODULU	S CALCULATIO	N:		Screening
AST	M D 3410B		Chord	between 1000	and 3000με		
NORMAL	IZED BY: Specir	nen thickness a	nd areal weigh	nt to 57% (0.014	2 in. CPT)		
	ture (°F) Content (%) m at T, RH	7: Amb		-6 Amb		20 Amb	-
Source C		3	1	3	1	3	1
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	63.7 52.5 69.1 7.50	60.9 52.3 65.6 7.03	86.4 72.3 96.8 10.2	83.2 70.6 91.2 8.38	42.1 35.0 49.4 9.61	40.4 35.2 45.8 7.86
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA
(ksi)	C ₁ C ₂	65.7 18.7	62.7 19.1	90.2 12.7	86.1 15.8	4.48 5.05	5.27 3.56
	No. Specimens No. Batches Data Class	3	14 3 Screening		5 3 rim	19 3 Inte	5
E ₂ ^c	Mean Minimum Maximum C.V.(%)	8.21 6.41 9.48 9.69	7.86 5.94 9.21 10.6	8.79 7.77 12.0 12.5	8.46 7.38 11.2 11.6	8.26 6.75 9.93 11.1	7.95 6.46 9.56 11.0
(Msi)	No. Specimens No. Batches Data Class	3	14 3 Screening		3 3 ening	15 3 Interim	
v ₂₁ ^c	Mean No. Specimens No. Batches				-		
	Data Class Mean Minimum Maximum C.V.(%)		8260 5580 13900 26.1		11700 8230 14000 17.1		5360 3590 7610 21.4
ϵ_2^{cu}	B-value Distribution		(1) Normal		(1) Weibull		(1) ANOVA
(με)	(με) C ₁ C ₂		8260 2150		12400 8.15		3.97 1210
	No. Specimens No. Batches Data Class	14 3 Scree	5	1 3 Scree	3	15 3 Interim	

MATERIA	AL: T300) 3k/EA 9396 8-harness satin weave fabric Table 4.2.27(f C/Ep 366-8HS						
RESIN C FIBER VO PLY THIO	OLUME: 53.7-	37.1 wt% 55.5 % 17-0.0152 in.	Comp. De Void Con	T300 3k Compress [0	T300 3k/EA 9396 Compression, 2-axis [0f]12 -65/W, 72/W, 200/W			
TEST ME	ST METHOD: MODULUS CALCULATION: Interim, Scree							
ASTM D 3410B Chord between 1000 and 3000µε								
NORMAL	IZED BY: Spec	imen thickness a						
	ture (°F) Content (%) m at T, RH	1.91	'2 -2.30 1)	-6 1.91- (1	2.30	20 1.91- (1	2.30	
Source C	ode	3	81	3	1	3	1	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	52.8 45.8 65.3 9.49	50.7 44.4 59.9 8.02	79.5 69.0 92.8 8.94	76.4 67.6 86.0 7.54	29.3 20.6 39.3 17.8	28.0 19.8 37.1 17.4	
F ₂ ^{cu}	B-value Distribution	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	(2) Weibull	
(ksi)	C ₁ C ₂	55.1 10.2	52.6 12.7	82.7 12.2	79.1 14.7	31.4 6.42	30.0 6.58	
	No. Specimens No. Batches Data Class	:	15 3 Interim		15 3 Interim		13 3 Screening	
	Mean	8.57	8.24	9.14	8.80	9.12	8.73	
	Minimum	6.91	6.56	8.48	8.19	7.51	7.36	
E_2^c	Maximum C.V.(%)	9.60 10.1	9.34 10.3	10.5 6.29	10.2 6.01	11.2 11.9	10.7 11.5	
(Msi)	No. Specimens		5	15		13		
	No. Batches Data Class		3 erim	3 Inte		3 Screening		
v_{21}^c	Mean No. Specimens No. Batches						,	
	Data Class							
	Mean Minimum Maximum C.V.(%)		6490 3690 12900 32.6		9850 7460 14100 19.6		3440 1930 5130 28.9	
ϵ_2^{cu}	B-value Distribution		(2) Lognormal		(2) Weibull		(2) Weibull	
(με)	C ₁ C ₂		8.74 0.283		10600 5.42		38000 4.07	
	No. Specimens No. Batches Data Class	:	5 3 erim	1: 3 Inte	3	1: 3 Scree	1	

Specimens conditioned at 140°F, 95-100% RH for 62-99 days.
 Basis values are presented only for A and B data classes.

MATERIA	AL: T300 3	T300 3k/EA 9396 8-harness satin weave fabric Table 4.2.27(g) C/Ep 366-8HS						
FIBER V	OLUME: 53.9-5	5.4 wt% 7.0 %)-0.0160 in.	6 COMP. DENSITY: 1.49 g/cm ³ T300 3k/E VOID CONTENT: 4.6-5.6 % Shear, 12				t/EA 9396 12-plane -45 _f]₅	
TEST ME AST	ETHOD: M D 3518		MODULUS	S CALCULATIC	DN:		5/W, 200/W Screening	
NORMAL	LIZED BY: Not no	ormalized						
	Content (%) Im at T, RH	72 Ambient 31	-65 Ambient 31	200 Ambient 31	72 2.08-2.34 (1) 31	-65 2.08-2.34 (1) 31	200 2.08-2.34 (1) 31	
	Mean Minimum Maximum C.V.(%)	12.8 11.4 15.4 9.95	18.4 15.7 21.8 9.53	7.82 6.94 9.30 9.51	10.5 8.79 12.6 12.2	16.8 13.7 20.8 11.9	4.49 3.82 5.46 11.2	
F ₁₂ ^{su}	B-value Distribution	(2) Normal	(2) Weibull	(2) Weibull	(2) Normal	(2) Weibull	(2) Normal	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	12.8 1.28	19.2 11.7	8.16 11.1	10.5 1.27	17.7 8.95	4.49 0.502	
	No. Specimens No. Batches Data Class	15 3 Interim	15 3 Interim	15 3 Interim	15 3 Interim	15 3 Interim	15 3 Interim	
- 6	Mean Minimum Maximum	0.634 0.510 0.851 13.9	0.829 0.719 0.967 9.07	0.413 0.347 0.561 16.5	0.542 0.452 0.757 17.5	0.824 0.623 1.08 15.3	0.249 0.153 0.468 32.5	
G ^s ₁₂	C.V.(%)	13.9	9.07	16.5	17.5	15.3	32.5	
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim	15 3 Interim	15 3 Interim	15 3 Interim	13 3 Screening	14 3 Screening	
γ_{12}^{s}	Mean No. Specimens No. Batches							
, 12	Data Class							

Specimens conditioned at 140°F, 95-100% RH for 91 days.
 Basis values are presented only for A and B data classes.

4.2.28 AS4 12k/997 unidirectional tape

Material Description:

Material: AS4 /997

Form: Unidirectional tape, filament count of 12,000 filaments per tow, fiber areal weight of 145 g/m², typical cured resin content of 35%, typical cured ply thickness of 0.0056 inches.

Processing: Autoclave cure; 350° F, 85 psi for two hours.

General Supplier Information:

Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 550,000 psi.

Matrix: 997 is a 350°F curing epoxy resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Primary and secondary aircraft structure. Elevated temperature service.

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.2.28 AS4 12k/997 unidirectional tape

MATERIAL:	AS4 12k/997 unidirectional tape	AS4 12k/997 unidirectional tape					
FORM:	Fiberite HyE 997/AS4 Unsized 1	Fiberite HyE 997/AS4 Unsized 12k prepreg					
FIBER:	Hexcel AS4 12k, no twist	MATRIX:	Fiberite 997				
T _g (dry):	410°F T _g (wet): 320°F	T _g METHOD:	DMA E'				
PROCESSING:	Autoclave: 2 hours, 350°F, 85 p	si					

Date of fiber manufacture	7/96-3/97	Date of testing	5/97-10/97
Date of resin manufacture	4/97	Date of data submittal	7/97
Date of prepreg manufacture	4/97	Date of analysis	2/99
Date of composite manufacture	4/97		

LAMINA PROPERTY SUMMARY

	73°F/A	-65°F/A	180°F/W		
Tension, 1-axis	BM-B	 BM-B	 BM-B		
Tension, 2-axis	BM-B	BM-B	BM-B		
Tension, 3-axis					
Compression, 1-axis	BM-B	BM-B	BM-B		
Compression, 2-axis	BM-B	BM-B	BM-B		
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 13-plane					
SBS, 31-plane	S	S	S		

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.79	1.77-1.80	SACMA SRM-15
Resin Density	(g/cm ³)	1.30		ASTM D 792
Composite Density	(g/cm ³)	1.60	1.58-1.60	
Fiber Areal Weight	(g/m ²)	145		ASTM 3529-90, modified
Fiber Volume	(%)	57	54.4-62.6	
Ply Thickness	(in)	0.0056	0.0053-0.0059	

LAMINATE PROPERTY SUMMARY

	73/A	-65/A	180/W	
[0, <u>+</u> 45, 90] _{3s} Family				
Bearing	SS	SS	SS	
ОНТ	S	S S	S	
OHC	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIAL:	AS4 12k/997 unidire	S4 12k/997 unidirectional tape					
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	27.4-31.1 wt% 55.5-64.8 % 0.0055-0.0058 in.	COMP. DENSITY: VOID CONTENT:	1.58-1.59 g/cm ³ 0-0.32 %	C/Ep 145-UT AS4 12k/997 Tension, 1-axis [0] ₈ 73/A, -65/A, 180/W			
TEST METHOD:		MODULUS CALCU	LATION:	B30, Mean			
ASTM D 3039-76		Chord modulus	in linear range				
NORMALIZED BY:	Specimen thickness	and fiber areal weight t	o 60% fiber volume (0	0056 in. CPT)			
Temperature (°F)	7	3	-65	180			
Moisture Content (%)	amb	pient	ambient	1.10			

	Content (%) m at T, RH	amb	ient	amb	ient	1.10 (1)	
Source C		8	5	8	5	8) 5
0001000		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	327 285 359 4.52	325 271 362 5.93	306 178 344 9.59	303 172 334 9.80	327 301 351 3.79	322 298 344 3.98
F ₁ ^{tu}	B-value Distribution	292 Weibull	291 Normal	263 Weibull	262 Weibull	298 Weibull	298 Nonpara.
(ksi)	C ₁ C ₂	334 24.1	325 19.3	317 17.0	313 17.6	332 29.4	
	No. Specimens No. Batches Data Class	3) 5 B3	5	3 5 B3	5	3) 5 B3	5
E_1^t	Mean Minimum Maximum C.V.(%)	19.9 18.4 21.1 3.30	19.8 19.0 20.5 2.19	20.0 19.3 20.8 2.23	19.8 18.6 20.8 2.44	20.1 18.4 21.8 3.78	19.8 18.7 22.2 3.55
(Msi)	No. Specimens No. Batches Data Class	30 5 Me	5	3 5 Me	5	3 5 Me	5
v_{12}^{t}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		15300 13500 16500 4.23		14300 8330 15500 9.09		15000 13700 16100 3.78
$arepsilon_1^{ ext{tu}}$	B-value Distribution		13700 ANOVA		12600 Weibull		13800 Weibull
(με)	C ₁ C ₂		666 2.45		14700 20.5		15290 29.9
	No. Specimens No. Batches Data Class	3) 5 B3	5	3 5 B3	5	3) 5 B3	5

(1) Conditioned at 160°F, 85% RH.

MATERIA	AL: AS	64 12k/997 unidirec	tional tape		Table 4.2.28(b)	
FIBER VOLUME: 55.5-		9.4-32.7 wt% 5.5-64.8 % 0056-0.0059 in.	COMP. DENSITY: VOID CONTENT: MODULUS CALCU	1.58-1.59 g/cm ³ 0 -1.24 %	C/Ep 145-UT AS4 12k/997 Tension, 2-axis [90] ₂₄ 73/A, -65/A, 180/W B30, Mean	
					B30, Mean	
AST	M D 3039-76		Chord modulus	in linear range		
NORMAL	IZED BY: No	ot normalized.				
Tempera		73		-65	180	
	Content (%)	ambie	nt	ambient	1.10	
	m at T, RH				(1)	
Source C		85		85	85	
	Mean	11.3		12.7	5.64	
	Minimum	9.70		11.2	4.30	
	Maximum	13.3		14.4	6.60	
	C.V.(%)	6.06		6.58	8.64	
	B-value	10.1		10.8	4.15	
rtu	Distribution	Norm		Weibull	ANOVA	
F_2^{tu}		_				
(ksi)	C ₁	11.3		13.1	0.515	
	C ₂	0.68	3	16.3	2.90	
	No. Specimen	s 30		30	30	
	No. Batches	5 5		5	5	
	Data Class	B30			B30	
	Mean	1.36		1.53	1.21	
	Minimum	1.27		1.43	1.16	
	Maximum	1.50		1.61	1.32	
E_2^t	C.V.(%)	3.19		2.63	3.38	
(Msi)	No. Specimen: No. Batches	s 30 5		30 5	30 5	
	Data Class	Mea	n	Mean	Mean	
v_{21}^{t}	Mean No. Speciment No. Batches					
• 21	Data Class					
	Mean	8820)	8700	4940	
	Minimum	7390		7470	3710	
	Maximum	1120		10100	5980	
	C.V.(%)	8.07		7.25	9.17	
	B-value	764		7390	3650	
$\varepsilon_2^{ m tu}$	Distribution	Lognor	mai	ANOVA	ANOVA	
(με)	C ₁	9.08	3	637	472	
	C ₂	0.07	9	2.06	2.72	
	No. Specimen	s 30		30	30	
	No. Batches	5		5	5	
	Data Class	B30		B30	B30	

(1) Conditioned at 160°F, 85% RH.

MATERIAL:	AS4 12k/997 unidire	ectional tape		Table 4.2.28(c) C/Ep 145-UT
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30.6-32.5 wt% 54.4-62.6 % 0.0055-0.0057 in.	COMP. DENSITY: VOID CONTENT:	1.58-1.59 g/cm ³ 0.34-0.74	AS4 12k/997 Compression, 1-axis [0] ₁₉ 73/A, -65/A, 180/W
TEST METHOD: ASTM D 3410A-	94	MODULUS CALCU	_ATION:	B30, Mean
NORMALIZED BY:	Specimen thickness	and batch fiber areal we	eight to 60% fiber volu	me (0.0056 in. CPT)

	Content (%) um at T, RH	7: amb 8!	ient	-6 amb 85	ient	18 1.1 (1 85))	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	229 169 263 7.88	221 174 251 7.14	233 182 273 8.76	227 182 261 8.89	159 132 179 6.43	152 130 178 6.71	
F ₁ ^{cu}	B-value Distribution	195 Weibull	186 ANOVA	191 Weibull	186 Weibull	135 ANOVA	125 ANOVA	
(ksi)	C ₁ C ₂	236 16.5	16.0 2.19	242 13.3	236 13.2	10.4 2.29	10.6 2.58	
	No. Specimens No. Batches Data Class	30 5 B30		30 5 B3	i	30 5 B30		
E ₁ ^c	Mean Minimum Maximum C.V.(%)	17.8 16.6 18.7 2.86	17.2 16.5 18.0 1.96	18.1 17.1 20.1 4.11	17.6 16.8 19.5 3.26	18.6 17.2 20.5 4.23	17.8 17.1 19.2 2.50	
(Msi)	No. Specimens No. Batches Data Class	3(5 Me	i i	3(5 Me	i	3(5 Me		
<i>v</i> ₁₂ ^c	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)		15400 10700 17900 9.82		15600 11300 19200 12.9		9550 7830 11500 10.1	
$\varepsilon_1^{ m cu}$	B-value Distribution		11900 ANOVA		11500 Weibull		6900 ANOVA	
(με)	C ₁ C ₂		1544 2.26		16500 8.72		998 2.66	
	No. Specimens No. Batches Data Class	30 5 B3		3(5 B3	i	30 5 B3		

(1) Conditioned at 160°F, 85% RH.

MATERIA	AL: AS4	12k/997 unidirectiona	l tape		Table 4.2.28(d)
FIBER VO PLY THIO	OLUME: 54.4 CKNESS: 0.00	JME: 54.4-62.6 % VOID CONTENT: 0 -1.24 % IESS: 0.0056-0.0059 in.			C/Ep 145-UT AS4 12k/997 Compression, 2-axis [90] ₂₄ 73/A, -65/A, 180/W
TEST ME	THOD:	M	ODULUS CALCU	LATION:	B30, Mean
SRM	1 1-94		Chord modulus	between 1000 and 3	000 με
NORMAL	IZED BY: Not	normalized.			
	Content (%) m at T, RH	73 ambient 85		-65 ambient 85	180 1.10 (1) 85
Obdice 0	Mean	37.0		39.0	25.4
	Minimum Maximum	29.5 40.8		20.7 53.9	24.0 27.9
	C.V.(%)	8.43		24.3	3.26
F ₂ ^{cu}	B-value Distribution	28.9 ANOVA		6.79 ANOVA	23.4 ANOVA
(ksi)	C ₁ C ₂	3.22 2.52		10.2 3.16	0.848 2.37
	No. Specimens No. Batches	30 5		30 5	30 5
	Data Class	B30		B30	B30
	Mean	1.45		1.55	1.34
	Minimum	1.12		1.33 1.92	1.20
E_2^c	Maximum C.V.(%)	1.70 9.93		7.63	1.50 5.93
(Msi)	No. Specimens No. Batches	30 5		30 5	30 5
	Data Class	Mean		Mean	Mean
v_{21}^{c}	Mean No. Specimens No. Batches				
	Data Class	00000		0.4700	0.4000
	Mean Minimum Maximum C.V.(%)	30600 24200 37900 11.9		24700 12200 41400 26.7	34800 28900 39500 6.97
$\varepsilon_2^{ m cu}$	B-value Distribution	22700 Weibull		2670 ANOVA	29100 ANOVA
(με)	C ₁ C ₂	32200 9.05		7371 3.13	2473 2.30
	No. Specimens No. Batches	30 5		30 5	30 5
	Data Class	B30		B30	B30

(1) Conditioned at 160°F, 85% RH.

MATER	RIAL: AS4	12k/997 unidirectio	onal tape		Table 4.2.28(e)
FIBER '	VOLUME: 54.4	2-32 wt% 4-62.6 % 053-0.0058 in.	COMP. DENSITY VOID CONTENT:	0	C/Ep 145-UT AS4 12k/997 Shear, 12-plane [+45/-45] _{4s} 73/A, -65/A, 180/W
			MODULUS CALC	ULATION:	B18
	STM D 3518-94				
	ALIZED BY: N/A	1		· · · · · · · · · · · · · · · · · · ·	1
Moistur	rature (°F) e Content (%) ium at T, RH	73 Ambient	-65 Ambient	180 Wet (1)	
Source		85	85	85	
	Mean Minimum Maximum C.V.(%)				
F ^{su} ₁₂	B-value Distribution	Table 4.2.2	28(e) will be added	when necessary do	cumentation is submitted
(ksi)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				
G ^s ₁₂	Mean Minimum Maximum C.V.(%)				
(Msi)	No. Specimens No. Batches Data Class				
	Mean Minimum Maximum C.V.(%)				
γ_{12}^{su}	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				

(1) Conditioned at 160°F, 85% RH.

RESIN CONTENT: 28.9 FIBER VOLUME: 54.4	12k/997 unidirectio 9-33.8 wt% I-62.6 % 953-0.0058 in.	onal tape COMP. DENSITY VOID CONTENT:		Table 4.2.28(f) C/Ep 145-UT AS4 12k/997 SBS, 31-plane [0]16
TEST METHOD: ASTM D 2344-84		MODULUS CALC	ULATION:	73/A, -65/A, 180/W Screening
NORMALIZED BY: N/A				
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 Ambient	-65 Ambient	180 1.10 (1)	
Source Code Mean Minimum Maximum C.V.(%)	85 18.3 17.6 19.6 2.35	85 23.1 21.1 25.3 4.91	85 11.4 9.33 12.0 7.44	
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \\ (ksi) & \text{C}_1 \\ & \text{C}_2 \end{array}$	(2) ANOVA 0.438 2.25	(2) ANOVA 1.18 2.62	(2) ANOVA 0.914 3.37	
No. Specimens No. Batches Data Class	30 5 Screening	28 5 Screening	30 5 Screening	

Conditioned at 160°F, 85% RH.
 Short beam strength test data are approved for Screening Data Class only.

MATERIAL:	AS4 12k/997 uni	directional tape			le 4.2.28(g)
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	34.6 wt% 57.7 % 0.0058 in.	COMP. DE VOID CON	0	m ³ AS Bea [0,	Ep 145-UT 4 12k/997 ring, x-axis /±45/90] _{3s} -65/A, 180/W
TEST METHOD:	ASTM [D 953-93			creening
TYPE OF BEARING	TEST: double	lap shear			
JOINT CONFIGURA Member 1 (t,w,d,e) Member 2 (t,w,d,e) FASTENER TYPE: TORQUE: NORMALIZED BY:	: 0.25 in. : 0.25" ha Not app	ardened steel	0.75 in. (e/d = 3.0) HOLE CLEARANCE COUNTER SINK AI		0.001 in. Not applicable
Temperature (°F) Moisture Content (% Equilibrium at T, RH Source Code		73 Ambient 85	-65 Ambient 85	180 1.10 (1) 85	
F ^{bu} (ksi)	Mean Minimum Maximum C.V. (%) B-value Distribution C ₁ C ₂ No. Specimens No. Batches	92.7 92.7 87.9 101 4.78 (3) Normal 92.7 4.43 6 1	92.0 92.9 106 8.44 (3) Normal 92.0 7.77 6 1	70.3 67.2 75.7 5.18 (3) Normal 70.3 3.65 6 1	
	Data Class Mean Minimum Maximum	Screening 34.4 23.0 39.2	Screening 34.1 29.7 39.4	Screening 31.0 28.7 33.7	
F ^{bry} (2) (ksi)	C.V. (%) B-value Distribution C ₁ C ₂ No. Specimens	17.9 (3) Normal 34.4 6.17 6	39.4 11.2 (3) Normal 34.1 3.81 6 1	7.20 (3) Normal 31.0 2.23 6	
	No. Batches Data Class	1 Screening	1 Screening	1 Screening	

(1) Conditioned at 160°F, 85% RH.

(2) Offset measured at 4% hole diameter.

(3) Basis values are presented only for A and B data classes.

MATERIAL: RESIN CON FIBER VOLU PLY THICKN	TENT: 28.8-29.0 JME: 56.6-59.5 NESS: 0.0057-0.	% 0058 in.	onal tape COMP. DENS VOID CONTE		60 lb/in ³ 11 %	Table 4. C/Ep 14 AS4 12 OHT, x [0/±45/ 73/A, -65// Scree	45-UT k/997 ⊱axis ⁄90]₃s A, 180/W
TEST METHOD:SRM 5-94SPECIMEN GEOMETRY:t = 0.10 in., w = 1.50 in., d = 0.25 in.FASTENER TYPE:Not applicableTORQUE:HOLE CLEARANCE:NORMALIZED BY:Specimen thickness and FAW to 60% (0.0056 in. CPT)							
Temperature Moisture Con Equilibrium a Source Code	ntent (%) at T, RH (°F, %)	Am	73 bient 35 Measured	-6 Amb 8 Normalized	pient	18 1. (1 8 Normalized	10)
F_x^{oht}	Mean Minimum Maximum C.V. (%) B-value Distribution	54.1 51.3 58.4 4.76 (2) Normal	51.4 48.9 55.1 4.48 (2) Normal	49.2 45.9 52.4 5.51 (2) Normal 49.2	46.8 44.3 50.0 4.74 (2) Normal 46.8	54.9 53.5 56.0 1.67 (2) Normal 54.9	52.6 51.5 54.1 1.77 (2) Normal 52.6
(ksi)	C ₁ C ₂ No. Specimens No. Batches Data Class	54.1 46.8 2.58 2.22 6 1 Screening		2.71 2.22 6 1 Screening		0.916 0.929 6 1 Screening	

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

MATERIAL: RESIN CONT FIBER VOLU PLY THICKN	ENT: 28.8-29.0 ME: 56.3-56.9)%	onal tape COMP. DENS VOID CONTE	60 lb/in ³ 11 %	Table 4.2.28(i) C/Ep 145-UT AS4 12k/997 OHC, x-axis [0,±45,90] _{3s} 73/A, -65/A, 180/W		
TEST METHOD:SRM 3-94SPECIMEN GEOMETRY:t = 0.10 in., w = 1.50 in., d = 0.25 in.FASTENER TYPE:Not applicableTORQUE:HOLE CLEARANCECOUNTER SINK AND						Scree	ning
NORMALIZE	D BY: S	pecimen thick	ness and FAW	to 60% (0.005	i6 in. CPT)		
Temperature Moisture Con Equilibrium at Source Code	tent (%) : T, RH (°F, %)	Am	73 bient 85	-6 Amb 8	pient	18 1.1 (1 8	10)
000100 0000		Normalized		Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V. (%)	53.0 52.3 54.2 1.33	50.5 50.0 51.5 1.15	59.8 58.4 61.0 1.77	57.0 55.7 58.3 1.96	45.3 43.2 46.5 2.76	42.9 41.0 44.1 2.60
F _x ^{ohc}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal
(ksi)	C ₁ C ₂	53.0 0.704	50.5 0.582	59.8 1.06	57.0 1.12	45.4 1.25	42.9 1.12
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening	

Conditioned at 160°F, 85% RH.
 Basis values are presented only for A and B data classes.

4.2.29 T650-35 12k/976 unidirectional tape

Material Description:

Material: T650-35 12k/976

Form: Unidirectional tape prepreg, fiber areal weight of 145 g/m², typical cured resin content of 39-45%, typical cured ply thickness of 0.0049 - 0.0058 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. Glass transition temperature results were high for an epoxy.
- 2. Low longitudinal tension strengths were not reported due to low data and unresolved issues about the testing.
- 3. A high end outlier for compression modulus at 72°F ambient was not discarded because no inconsistencies were found.
- 4. For transverse tension strength at -67°F ambient and 250°F wet, scatter is too high to report basis values.

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.29 T650-35 12k/976 unidirectional tape

MATERIAL:	T650-35 1	2k/976 unidire	ectional tape			145-UT T650-35/976 Summary
FORM:	ICI Fiberite	e T650-35 12I	976 unidirect</td <td>ional tape prepreg</td> <td></td> <td></td>	ional tape prepreg		
FIBER:	Amoco T6 no twist	50-35 12k, U	C 309 sizing,	MATRIX:	ICI Fiberite 976	
T _g (dry):	486°F	T _g (wet):	410°F	T _g METHOD:	DMA E'	
PROCESSING:	Autoclave	cure: 90 ±10	min., 350 <u>+</u> 10°	F, 95 ± 5 psi.		

Date of fiber manufacture	3/93-1/94	Date of testing	7/93-1/96
Date of resin manufacture	7/93-10/94	Date of data submittal	12/97
Date of prepreg manufacture	8/93-11/94	Date of analysis	5/00
Date of composite manufacture	10/94-6/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
Tension, 1-axis	BM	BM	BM		
Tension, 2-axis	bS	IS	IS		
Tension, 3-axis					
Compression, 1-axis	IM	bM	bM		
Compression, 2-axis	bS	IS	bS		
Compression, 3-axis					
Shear, 12-plane	BM	BM	BM		
Shear, 23-plane					
Shear, 31-plane					

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.77-1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)		1.55-1.61	
Fiber Areal Weight	(g/m ²)	145	144-147	Solvent Extraction
Fiber Volume	(%)	61	55.3-65.3	
Ply Thickness	(in)	0.0052	0.0049-0.0058	

LAMINATE PROPERTY SUMMARY

72°F/A	-67°F/A	250°F/W		
bM	bM	bM		

MATERIAL:	T650-35 12k/976 un	idirectional tape		Table 4.4.29(a) C/Ep 145-UT
RESIN CONTENT:	39-45 wt%	COMP. DENSITY:	1.57-1.61 g/cm ³	T650-35/976
FIBER VOLUME: PLY THICKNESS:	56.9-64.5 % 0.0050-0.0057 in.	VOID CONTENT:	0-1.0 %	Tension, 1-axis [0]₀
	0.0000 0.0007 11.			72/A, -67/A, 250/W
TEST METHOD:		MODULUS CALCU	LATION:	B30, Mean
ASTM D 3039-89	9	Chord, 1000 - 6	000 με	

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 60% fiber volume (0.0052 in. CPT)

	Content (%) um at T, RH	7 amb 8	ient	-6 amb	ient	25 1.11- 160, 80	1.21 , 85	
000100 0	,000	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	231 175 256 7.37	236 173 264 8.27	170 120 210 14.5	174 123 208 13.7	258 223 286 5.89	260 220 295 7.58	
F_1^{tu}	B-value Distribution	202 Weibull	200 Weibull	124 Weibull	132 Weibull	212 ANOVA	197 ANOVA	
(ksi)	C ₁ C ₂	238 19.1	244 15.8	180 8.55	184 9.56	16.0 2.87	21.0 3.01	
	No. Specimens No. Batches Data Class	32 5 B30		30 5 B30		5	30 5 B30	
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	22.0 20.9 23.5 3.00	22.5 20.2 24.8 4.64	20.7 19.4 22.4 2.89	21.2 19.9 22.4 3.60	20.9 19.6 22.2 2.72	21.0 19.3 22.5 3.66	
(Msi)	No. Specimens No. Batches Data Class	3. 5 Me	5	30 5 Mean		3 5 Mean		
v_{12}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERI	AL: T	650-35 12k/976 uni	directional tape		Table 4.2.29(b) C/Ep 145-UT	
FIBER VOLUME: 55.3		9-45 wt% 5.3-62.4 % 0052-0.0058 in.	3-62.4 % VOID CONTENT: 0-1.0 %			
	M D 3039-89		Chord, 1000 - 6		B18, Screening	
		ot normalized.		5000 με		
	Content (%) Im at T, RH	72 ambi 80	ent	-67 ambient 80	250 0.97-1.03 160, 85 80	
	Mean Minimum Maximum C.V.(%)	5.7 4.6 6.7 9.2	1 6 4	4.76 2.61 7.07 22.6	2.40 1.32 3.46 26.7	
F_2^{tu}	B-value Distribution	4.4 Weit	bull	(1) ANOVA	(1) ANOVA	
(ksi)	C_1 C_2	5.9 12.	0	1.14 3.57	0.720 4.80	
	No. Specimen No. Batches Data Class Mean	s 18 3 B1/ 1.3	8	18 3 <u>B18</u> 1.37	18 3 <u>B18</u> 0.934	
E_2^t	Minimum Maximum C.V.(%)	1.1 1.4 4.9	8 2	1.24 1.61 8.38	0.820 1.07 10.2	
(Msi)	No. Specimen No. Batches Data Class	s 9 3 Scree	ning	9 3 Screening	9 3 Screening	
v_{21}^t	Mean No. Specimen No. Batches	s				
	Data Class Mean Minimum Maximum C.V.(%)					
ϵ_2^{tu}	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimen No. Batches Data Class	s				

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERIA	AL: T65	0-35 12k/976 unidirect	ional tape		Table 4.2.29(c) C/Ep 145-UT
FIBER V	OLUME: 60.0	45 wt% COMP. DENSITY: 1.57-1.60 g/cm ³ 0-62.2 % VOID CONTENT: 0-1.0 % 050-0.0054 in. VOID CONTENT: 0-1.0 %			T650-35/976 Compression, 2-axis [90] ₂₂
TEST ME	THOD	NA	ODULUS CALCU		72/A, -67/Å, 250/W B18, Interim, Screening
	TM D 3410-87		Chord, 1000 - 3		Bio, interini, Screening
701	110 0 3410-07		Chora, 1000 - 3	000 με	
NORMAL	LIZED BY: Not	normalized.			
Tempera		72		-67	250
Moisture Content (%) Equilibrium at T, RH		ambient		ambient	(1) 160, 85
Source C		80		80	80
000.000	Mean	33.6		39.5	18.6
	Minimum	30.7		33.9	15.3
	Maximum	37.4		44.6	20.0
	C.V.(%)	6.40		6.84	5.68
	B-value	28.1		(2)	16.4
F ₂ ^{cu}	Distribution	Weibull		Weibull	Weibull
(ksi)	C ₁	34.6		40.7	19.0
(noi)	C_2	17.1		16.4	24.6
	No. Specimens	18		17	18
	No. Batches	3		3	3
	Data Class	B18		Interim	B18
	Mean	1.38		1.55	1.08
	Minimum	1.23 1.44		1.45 1.66	0.940
E_2^c	Maximum C.V.(%)	5.48		4.11	1.21 8.38
(Msi)	No. Specimens	9		8	10
()	No. Batches	3		3	3
	Data Class	Screening		Screening	Screening
v_{21}^c	Mean No. Specimens No. Batches				
• 21	Data Class				
	Mean				
	Minimum Maximum C.V.(%)				
ϵ_2^{cu}	B-value Distribution				
ε ₂ (με)	C ₁				
(f : -)	C ₂				
	No. Specimens No. Batches				
	Data Class				

(1) Unknown moisture content.

(2) Basis values are presented only for A and B data classes.

MATER	RIAL: T65	0-35 12k/976 unid	irectional tape		Table 4.2.29(d) C/Ep 145-UT
FIBER	VOLUME: 58.	45 wt% 6-62.2 % 952-0.0055 in.	COMP. DENSITY: VOID CONTENT:	1.58-1.59 g/cm ³ 0-1.0 %	T650-35/976 Shear, 12-plane [+45/-45]₄s 72/A, -67/A, 250/W
TEST N	METHOD:		MODULUS CALCI	JLATION:	B30, Mean
AS	STM D 3518-82		Chord, 1000 - 3	3000 με	
NORM	ALIZED BY: Not	normalized			
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	72 ambient	-67 ambient	250 1.16-1.22 160, 85	
Source		80	80	80	
	Mean Minimum Maximum C.V.(%)	14.9 13.1 18.1 11.4	17.4 16.1 19.2 4.85	11.8 10.9 12.4 3.54	
F ₁₂	B-value Distribution	8.57 ANOVA	14.7 ANOVA	10.4 ANOVA	
(ksi)	C ₁ C ₂	1.86 3.39	0.893 2.98	0.455 3.25	
	No. Specimens No. Batches Data Class	30 5 B30	30 5 B30	30 5 B30	
G ^s ₁₂	Mean Minimum Maximum C.V.(%)	0.745 0.680 0.830 4.82	0.919 0.700 1.05 10.4	0.542 0.510 0.580 3.91	
(Msi)	No. Specimens No. Batches Data Class	30 5 Mean	30 5 Mean	30 5 Mean	
	Mean Minimum Maximum C.V.(%)				
$\gamma_{12}^{\rm su}$	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				

MATERIAL:	T650-35 12k/976 un	idirectional tape		Table 4.2.29(e) C/Ep 145-UT
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	39-45 wt% 57.3-65.3 % 0.0049-0.0056 in.	COMP. DENSITY: VOID CONTENT:	1.57-1.60 g/cm ³ 0-1.0 %	T650-35/976 Compression, x-axis [90/0] ₈ 72/A, -67/A, 250/W
TEST METHOD:		MODULUS CALCU	_ATION:	B18, Mean
ASTM D 3410-8	7	Chord, 1000 - 3	000 με	

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 60% fiber volume (0.0052 in. CPT)

	Content (%) um at T, RH	7: amb 8(ient	-67 ambient 80		1.21- 160,	250 1.21-1.33 160, 85 80	
Source	Jode	Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	131 117 144 6.34	131 115 148 6.54	146 131 161 5.50	145 129 163 6.22	95.9 83.8 110 6.76	98.2 87.9 111 5.74	
F _x ^{cu}	B-value Distribution	(1) ANOVA	(1) ANOVA	127 Weibull	(1) ANOVA	77.2 ANOVA	83.4 ANOVA	
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	8.64 2.93	9.11 3.25	150 19.6	9.53 3.12	6.79 2.77	5.82 2.53	
	No. Specimens No. Batches Data Class	23 4 B18		2- 4 B1	ł	29 5 B18		
E ^c _x	Mean Minimum Maximum C.V.(%)	9.72 8.65 10.8 4.41	9.76 8.86 10.8 4.58	10.2 9.48 11.0 3.99	10.1 9.37 10.7 4.28	10.0 9.57 10.9 3.71	10.3 9.15 11.2 5.08	
(Msi)	No. Specimens No. Batches Data Class	2: 4 Me	Ļ	24 4 Mean		29 5 Mean		
$v_{\rm xy}^{\rm c}$	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
\mathcal{E}_{x}^{cu}	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.30 IM7 12k/PR381 unidirectional tape

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.31 IM7 6k/PR500 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.2.32 T650-35 3k/976 8-harness satin weave fabric

Material Description:

Material: T650-35 3k/976

Form: Eight harness satin fabric prepreg, fiber areal weight of 374 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.011 - 0.014 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no-twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

- 1. For transverse tension, a bowtie specimen is not in concert with the test method used.
- 2. Two low end outliers for transverse compression modulus at -67°F ambient were not discarded because no inconsistencies were found.

4.2.32 T650-35 3k/976 8 harness satin weave fabric

MATERIAL:	T650-35 3	k/976 8-harne	ess satin weave	e fabric		C/Ep 374 – 8HS T650-35 976 Summary
FORM:	Cytec Fibe	erite 8-harnes	s satin weave f	abric prepreg		
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	Cytec Fiberite 976	
T _g (dry):	443°F	T _g (wet):	380°F	T _g METHOD:	DMA E'	
PROCESSING:	Autoclave	e cure, 350°F,	90 min, 95 psi			

ſ	Date of fiber manufacture	9/90 — 9/95	Date of testing	6/93 – 1/96
	Date of resin manufacture	6/92 - 6/94	Date of data submittal	12/97
	Date of prepreg manufacture	6/92 – 10/94	Date of analysis	1/01
	Date of composite manufacture	1/93 — 4/95		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	2	50°F/W		
Tension, 1-axis	BM	BM		bSS-		
Tension, 2-axis	bS	BI		bSS-		
Tension, 3-axis						
Compression, 1-axis	bS	BM		bM		
Compression, 2-axis	bS	BM		bS		
Compression, 3-axis						
Shear, 12-plane	BM	bM		BM		
Shear, 23-plane						
Shear, 13-plane						

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	-	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.56-1.59	
Fiber Areal Weight	(g/m ²)	374	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0130	0.0113 - 0.0146	

PHYSICAL PROPERTY SUMMARY

LAMINATE PROPERTY SUMMARY

MATERIA)-35 3k 976/8-h				Table 4.2 C/Ep 37	4-8HS		
FIBER V	OLUME: 59 -	34 % wt 64 vol % 3-0.014 in.	COMP: DE VOID CON	ENSITY: 1.56- NTENT: 0 %	•1.59 g/cm ³	7650-35 Tension, [0 f	1-axis		
		0.01111				72/A, -67/A	Ā, 250/W		
TEST ME	= I HOD: rtie Specimen- ASTI	A D 2020 76		S CALCULATIO		B30, B18, Mea	n, Screening		
DOW	tie Specifien- AS fi	VID 2029 10	Chord	, 1000 - 6000 μι	E				
	in. CF	PT)			Ū	t to 57% fiber vo	•		
Tempera Moisture	ture (°F) Content (%)	7 amb		-6 amb		25 1.12-			
	im at T, RH					160			
Source C	ode	8		8		8			
	Mean	Normalized 99.2	Measured 107	Normalized 82.0	Measured 86.8	Normalized 104	Measured 115		
	Minimum	99.2 79.2	85.4	68.4	70.8	90.2	99.3		
	Maximum	111	124	92.5	99.5	118	130		
	C.V.(%)	7.03	7.16	8.24	8.65	7.85	7.62		
	B-value	82.5	89.2	64.9	67.5	88.8	95.2		
F_1^{tu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Weibull	Weibull		
(ksi)	C ₁	7.91	7.91	6.98	7.78	108	119		
	C ₂	2.33	2.29	2.44	2.48	16.0	16.2		
	No. Specimens	3		3		18			
	No. Batches Data Class		6 6 B30 B30				3 B18		
	Mean	10.3	11.1	10.3	11.4	11.0	12.1		
	Minimum	9.23	10.4	10.1	10.6	10.3	11.4		
t	Maximum	10.8	11.5	10.7	13.0	11.9	13.1		
E_1^t	C.V.(%)	3.62	2.81	2.28	4.71	5.38	5.45		
(Msi)	No. Specimens	2		1		g)		
	No. Batches Data Class	e Me		6 Me		3 Scree			
	Mean					0.0			
	No. Specimens					C C			
v_{12}^t	No. Batches					3			
	Data Class Mean					Scree	ening		
	Minimum								
	Maximum								
	C.V.(%)								
4-1	B-value								
$arepsilon_1^{ ext{tu}}$	Distribution								
(με)	C ₁								
	C ₂								
	No. Specimens								
	No. Batches								
	Data Class								

(1) Basis values are presented only for A and B data classes.

MATERIA	AL: T650	0-35 3k 976/8-h	arness satin w	eave fabric			.2.32(b)	
RESIN CONTENT: 28 – 34 % wt COMP: DENSITY: 1.56-1.59 g/cm FIBER VOLUME: 59 - 64 vol % VOID CONTENT: 0 % PLY THICKNESS: 0.013-0.014 in. VOID CONTENT: 0 %						-T650 Tensior [9	74-8HS 35 976 n, 2-axis 0 _f] ₇ /A, 250/W	
TEST ME	ETHOD:		MODULU	S CALCULATIC	DN:	B30, B18,	Screening, Sreening,	
Bow	tie Specimen- AST	M D 3039 76 (2) Chord	l, 1000-6000 με				
				er areal weight t				
	ture (°F) Content (%) ım at T, RH		2 pient	-6 amb	57 bient	25 1.12- 160	1.21	
Source C		8	0	8	0	8		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	106	116	82.2	89.2	111	122	
	Minimum	95.2	105	61.7	63.8	93.3	103	
	Maximum	115	126	97.4	108	125	137	
	C.V.(%)	4.62	4.59	10.6	11.4	6.15	6.22	
	B-value	94.0	102	62.0	62.8	97.8	104	
fu	Distribution	Weibull	Weibull	ANOVA	ANOVA	Normal	Weibull	
F_2^{tu}	Distribution				-			
(ksi)	C ₁	108	118	8.91	10.5	111	126	
	C ₂	26.0	23.9	2.26	2.52	6.85	18.4	
	No. Specimens	1	8	3	0	18	R	
	No. Batches		3		5	3		
	Data Class		B18		B30		B18	
	Mean	10.7	11.7	10.4	11.1	10.8	11.80	
	Minimum	9.83	10.9	9.74	10.2	9.67	10.9	
	Maximum	11.6	12.6	11.1	12.0	11.2	12.3	
E_{2}^{t}	C.V.(%)	5.81	4.55	3.01	4.07	5.29	4.15	
(Msi)	No. Specimens		9	15		9		
(No. Batches		3		5	3		
	Data Class	Scre	ening	Inte	erim	Scree	ening	
	Mean					0.0		
v_{21}^{t}	No. Specimens					3	5	
21	No. Batches					1		
	Data Class					Scree		
	Mean						•	
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
atu	Distribution							
$\varepsilon_2^{\mathrm{tu}}$								
(με)	C ₁							
	C ₂							
	No. Specimens No. Batches							

(1) Basis values are presented only for A and B data classes.

(2) Bowtie specimen is not the standard specimen geometry using this method.

MATERIA RESIN CO	ONTENT: 28 – 34		COMP: DEN	ISITY: 1.56-	1.59 g/cm ³	C/Ep 3 T650-	4.2.32(c) 74-8HS 35 976
FIBER VC PLY THIC			VOID CONT	ENT: 0%		Compression, 1-axis [0 _f] ₇	
	111200. 0.010 0.	014 111.				72/A, -67	/Ā, 250/W
TEST ME			MODULUS	CALCULATION	1:	B30, B18,	Screening
ASTN	A D 3410-87 Procedure	еB	Chord, 10	000-3000 με			
NORMALI	IZED BY: Specimer	n thickness and	batch fiber ar	eal weight to 5	7% fiber volun	ne (0.0146 in. C	CPT)
Temperati	ure (°F)	7	2	-6	7	25	0
	Content (%) n at T, RH	amb	ient	amb	lient	1.00- 160,	
Source Co		8	0	8	0	80	C
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	86.2	95.5	92.6	102	55.1	57.1
	Minimum Maximum	62.9 100	71.6 108	72.9 115	78.7 131	42.4 68.6	46.0 68.4
	C.V.(%)	10.3	9.82	12.7	13.7	15.1	11.9
	· · /		-				-
	B-value	70.3	77.0	55.0	56.8	25.6	34.2
F_l^{cu}	Distribution	Weibull	Weibull	ANOVA	ANOVA	ANOVA	ANOVA
(ksi)	C ₁	89.8	99.4	12.5	15.4	9.05	7.32
	C ₂	13.2	14.0	3.00	3.12	3.25	3.12
	No. Specimens	1	8	3	0	2'	1
	No. Batches	3		5		5	
	Data Class	B1		B3		B1	
	Mean Minimum	8.81 8.45	9.81 9.26	9.38 8.82	10.0 9.51	9.35 8.53	9.76 9.28
	Maximum	9.12	10.3	9.99	10.4	9.98	10.4
E_1^c	C.V.(%)	2.19	4.03	4.21	2.40	5.22	4.03
(Msi)	No. Specimens	g)	2	0	2'	1
()	No. Batches	3	3	5		5	
	Data Class Mean	Scree	ening	B1	18	B1	8
	No. Specimens						
v_{12}^{t}	No. Batches						
12	Data Class						
	Mean						
	Minimum Maximum						
	C.V.(%)						
	B-value						
ε_2^{cu}	Distribution						
=	C ₁						
(με)	C_2						
	No. Specimens No. Batches Data Class						

MATERIAL	_: T650-35	Table 4.2.32(d) C/Ep 374-8HS					
RESIN CO FIBER VO PLY THICI	LUME: 59 - 64 v	vol %	COMP: DEN VOID CONT	T650-35 976 Compression, 2-axis [90 _f] ₇ 72/A, -67/A, 250/W			
TEST MET	THOD:		MODULUS	CALCULATION	l:	B30, B1	B, Mean,
ASTM	1 D 3410-87 Procedur	e B	Chord, 1	000-3000 με		Scree	ening
NORMALIZ	ZED BY: Normali in. CPT)	o 57% fiber vol	ume (0.0146				
Temperatu	ıre (°F)	7	2	-6		25	
Moisture C Equilibrium	Content (%)	amb	pient	amb	ient	1.00- 160	
Source Co		-	0	8	0	8	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	90.1	97.5	97.4	106	54.7	59.9
	Minimum Maximum	82.1 99.6	88.5 112	74.5 113	81 127	50.3 63.0	53.6 70.9
	C.V.(%)	99.6 6.75	6.62	9.90	9.95	6.74	70.9 8.21
	- ()					_	-
	B-value	(1)	(1)	72.3	71.5	47.4	(1)
F_2^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	Normal	ANOVA
(ksi)	C ₁	6.41	6.70	10.1	11.2	54.7	5.22
	C ₂	3.54	3.20	2.49	3.05	3.69	3.72
	No. Specimens	1	8	3	0	1	8
	No. Batches		3	6		3	
	Data Class	B18		B30		B18	
	Mean	8.98	9.73	9.21	9.82	9.43	10.3
	Minimum Maximum	8.04 9.51	8.58 10.6	8.20 10.0	9.03 10.7	8.98 9.75	9.99 10.6
E_2^c	C.V.(%)	6.01	6.54	4.05	4.22	3.32	2.46
12							
(Msi)	No. Specimens		9	26		9	
	No. Batches Data Class		3 ening	6 Mean		3 Screening	
	Mean	0010	oning	iviean		00100	, in g
v_{21}^{t}	No. Specimens						
21	No. Batches Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
$arepsilon_2^{ m cu}$	B-value Distribution						
_	C ₁						
(με)	C_1 C_2						
	No. Specimens No. Batches						
	Data Class						

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER	RIAL: T65	0-35 3k 976/8-harness satin	weave fabric	Table 4.2.32(e) C/Ep 374-8HS
FIBER PLY TH	VOLUME: 59 - IICKNESS: 0.07	64 vol % VOID (3-0.014 in.	. DENSITY: 1.56-1.59 g/cm ³ CONTENT: 0	T650-35 976 Shear, 12-plane [+45₁/-45 ɾ]₅ 72/A, -67/A, 250/W
	/ETHOD:		LUS CALCULATION:	B30, B18, Mean
AS	STM D 3518-82 (1)	Cho	ord, 0 - 3000 με	
		normalized		
	rature (°F)	72	-67	250
	e Content (%)	Ambient	Ambient	1.22
	ium at T, RH			160,85
Source	Code	80	80	80
	Mean	12.8	14.5	8.99
	Minimum	12.0	13.6	8.41
	Maximum	13.9	15.2	10.4
	C.V.(%)	3.81	2.58	5.60
	B-value	11.0	13.3	8.41
\$11	Distribution	ANOVA	ANOVA	Nonpara.
F_{12}^{su}				-
(ksi)	C ₁	0.53	0.39	1.00
	C ₂	3.49	2.57	1.22
	No. Specimens	30	29	30
	No. Batches	5	5	5
	Data Class	B30	B18	B30
	Mean	0.85	1.05	.47
	Minimum	0.73	0.93	.37
	Maximum	0.98	1.13	.52
G_{12}^s	C.V.(%)	7.10	5.07	9.63
(Msi)				
(10151)	No. Specimens	26	30	21
	No. Batches	5	5	5
	Data Class	Mean	Mean	Mean
	Mean			
	Minimum			
	Maximum			
	C.V.(%)			
	B-value			
$\gamma_{12}^{\rm su}$	Distribution			
	C ₁			
(με)				
	C ₂			
	No. Specimens			
	No. Batches			
	Data Class			

(1) Test method used ultimate strength to failure.

4.2.33 T700S 12k/3900-2 plain weave fabric

Material Description:

Material: T700S 12k/3900-2

- Form: Plain weave fabric prepreg, 3 tows per inch, fiber areal weight of 193 g/m², typical cured resin content of 35%-36%, typical cured ply thickness of 0.0073-0.0079 inches.
- Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: T700 fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

4.2.33 T700S 12k/3900-2 plain weave fabric

MATERIAL:	T700S 12k/3900-2 pla	700S 12k/3900-2 plain weave fabric							
FORM:	Toray F6273C-30H pl	pray F6273C-30H plain weave fabric prepreg							
FIBER:	Toray T700SC-12 tows/inch, UD309 Siz	Toray 3900-2	2						
T _g (dry):	330°F T _g (wet):	230°F	T _g METHOD:	ASTM E 154	5 (TMA)				
PROCESSING:	Autoclave Cure: 350°F, 85 psi, 3°F/minute ramp rate, 2 hours								

Date of fiber manufacture	1/98	Date of testing	1/99-3/99
Date of resin manufacture	1/98	Date of data submittal	12/99
Date of prepreg manufacture	1/98	Date of analysis	1/00
Date of composite manufacture	3/99		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 31-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 791
Composite Density	(g/cm ³)	1.53	1.54	
Fiber Areal Weight	(g/m ²)	193	192.1	ASTM D 5300
Fiber Volume	(%)	54	54.6-55.4	ASTM D 3171
Ply Thickness	(in)	0.0079	0.0078-0.0079	

LAMINATE PROPERTY SUMMARY

MATER	IAL: T	700S 12k/3900-2 p	olain weave fab	pric			4.2.33(a) 193-PW		
FIBER \	ESIN CONTENT:35.3 wt.%COMP. DENSITY:1.54 g/cm3BER VOLUME:55 %VOID CONTENT:0 %Y THICKNESS:0.0073-0.0074 in.0.0073-0.0074 in.						T700S/3900-2 SBS, 31-plane [0 _f] ₃₄ 75/A, -67/A, 180/W		
TEST N	IETHOD:		MODULU	S CALCULATI	ON:		ening		
AS	TM D 2344-84		N/A						
NORMA	ALIZED BY: N	lot normalized							
	ature (°F)	75	-67	180					
	e Content (%)	Ambient	Ambient	1.0					
Source	ium at T, RH Code	90	90	(1) 90					
Source	Mean	10.3	12.4	7.67					
	Minimum	10.2	11.7	7.45					
	Maximum	10.7	12.9	7.91					
	C.V.(%)	1.94	4.41	2.13					
F ₃₁ sbs	B-value Distribution	(2) Nonpara.	(2) Normal	(2) Normal					
(ksi)	C ₁		12.4	7.67					
(((3))	C_2		0.546	0.164					
	No. Specimens	6	6	6					
	No. Batches	1	1	1					
	Data Class	Screening	Screening	Screening					

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: T700	0S 12k/3900-2 p	olain weave fab	vric		Table 4.2.33(b) C/Ep 193-PW
FIBER	VOLUME: 54.6	wt.% % 78-0.0079 in.	COMP. D VOID CO		4 g/cm ³	T700S/3900-2 Shear, 13-plane [0 _f] ₉₅ 75/A, -67/A, 180/W
TEST N	METHOD:		MODULU	S CALCULATIO	ON:	Screening
AS	STM D 5379-93		Chord	, 1000 - 3000 μ	ε	
NORM	ALIZED BY: Not	normalized				
Moistur	rature (°F) re Content (%) rium at T, RH	75 Ambient	-67 Ambient	180 1.0 (1)		
Source		90	90	90		
	Mean Minimum Maximum C.V.(%)	10.4 10.2 10.6 1.28	13.3 12.6 13.6 3.08	6.97 6.80 7.10 1.48		
F ₁₃ ^{su}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	10.4 0.133	13.3 0.410	6.97 0.103		
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening		
G ^s ₁₃	Mean Minimum Maximum C.V.(%)	0.418 0.394 0.436 3.58	0.498 0.467 0.520 3.72	0.374 0.366 0.381 1.58		
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening		
	Mean Minimum Maximum C.V.(%)					
$\gamma_{13}^{\rm su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.

(2) Basis values are presented only for A and B data classes.

MATER	RIAL: T700	0S 12k/3900-2 p	olain weave fab	ric		Table 4.2.33(c) C/Ep 193-PW
FIBER	VOLUME: 54.6	wt.% % 78-0.0079 in.	COMP. D VOID CO		4 g/cm ³	T700S/3900-2 Shear, 23-plane [0₁]∍₅ 75/A, -67/A, 180/W
TEST	METHOD:		MODULU	S CALCULATIO	ON:	Screening
AS	STM D 5379-93		Chord	, 1000 - 3000 μ	ε	
NORM	ALIZED BY: Not	normalized				
Moistur Equilibr	rature (°F) re Content (%) rium at T, RH	75 Ambient	-67 Ambient	180 1.0 (1)		
Source		90	90	90		
	Mean Minimum Maximum C.V.(%)	10.3 10.0 10.9 3.29	13.2 127 13.7 2.56	7.08 6.99 7.14 0.870		
F ^{su} ₂₃	B-value Distribution	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	10.3 0.339	13.2 0.337	7.08 0.062		
	No. Specimens No. Batches Data Class	5 1 Screening	6 1 Screening	6 1 Screening		
G ^s ₂₃	Mean Minimum Maximum C.V.(%)	0.401 0.375 0.445 6.60	0.500 0.478 0.525 3.76	0.349 0.333 0.376 4.15		
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	6 1 Screening		
	Mean Minimum Maximum C.V.(%)					
$\gamma_{23}^{\rm su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned at 160°F and 95 <u>+</u> 2% RH until 1.0% moisture content attained.

(2) Basis values are presented only for A and B data classes.

4.2.34 800HB 12k/3900-2 unidirectional tape

Material Description:

Material: 800HB 12k/3900-2

- Form: Unidirectional tape prepreg, fiber areal weight of 190 g/m², typical cured resin content of 36%-37%, typical cured ply thickness of 0.0075-0.0082 inches.
- Processing: Autoclave cure, 350°F, 85 psi, 3°F/minute ramp rate, 2 hours

General Supplier Information:

Fiber: 800HB fibers are continuous, standard modulus, no twist carbon filaments made from a PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments/tow. Typical tensile modulus is 34 x 10⁶ psi. Typical tensile strength is 700,000 psi.

Matrix: 3900-2 is an toughened epoxy resin.

Maximum Short Term Service Temperature: 300°F (dry), 180°F (wet)

Typical applications: General purpose commercial and military aerospace structural applications.

Data Analysis Summary: None

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

4.2.34 800HB 12k/3900-2 unidirectional tape

MATERIAL:	800H 12k/39	800H 12k/3900-2 unidirectional tape					
FORM:	Toray P2302	2-19 unidirect	ional tape pre	preg	-		
FIBER:	Toray T800l ing H, no twi		ws/inch, siz-	MATRIX:	Toray 3900-2	2	
T _g (dry):	330°F	T _g (wet):	230°F	T _g METHOD:	ASTM E 154	5 (TMA)	
PROCESSING:	Autoclave co	ure: 350°F, 85	5 psi, 3°F/min	ute ramp rate, 2 hou	rs		

Date of fiber manufacture	7/97	Date of testing	1/99-7/99
Date of resin manufacture	7/97	Date of data submittal	12/99
Date of prepreg manufacture	12/97	Date of analysis	1/00
Date of composite manufacture	12/97		

LAMINA PROPERTY SUMMARY

	75/A	-67/A	180/W		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane	SS	SS	SS		
Shear, 13-plane	SS	SS	SS		
SB Strength, 31-plane	S	S	S		

MIL-HDBK-17-2F

Volume 2, Chapter 4 Carbon Fiber Composites

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.81	1.80	ASTM D 3800
Resin Density	(g/cm ³)	1.22		ASTM D 891
Composite Density	(g/cm ³)	1.55	1.56	
Fiber Areal Weight	(g/m ²)	190	191.1	ASTM D 5300
Fiber Volume	(%)	55.5	54.0-55.5	ASTM D 3171
Ply Thickness	(in)	0.0075	0.0075-0.0082	

LAMINATE PROPERTY SUMMARY

MATER	IAL: 800H	1 12k/3900-2 ur	nidirectional tap	e			4.2.34(a) 190-UT			
FIBER \	VOLUME: 55.5	8 wt.% 5 % 73-0.0074 in.	COMP. DI VOID COI		800HB/3900-2 SBS, 31-plane [0] ₃₄ 75/A, -67/A, 180/W					
TEST M	IETHOD:		MODULU	S CALCULATIO	ON:		ening			
AS	TM D 2344-84		N/A							
NORMALIZED BY: Not normalized										
	ature (°F)	75	-67	180						
	e Content (%) ium at T, RH	Ambient	Ambient	1.0 (1)						
Source		90	90	90						
	Mean	12.7	16.7	7.63						
	Minimum	12.6 13.1	16.3 17.0	7.55 7.71						
	Maximum C.V.(%)	13.1	17.0	0.772						
	B-value	(2)	(2)	(2)						
F ₃₁ ^{sbs}	Distribution	Normal	Normal	Normal						
(ksi)	C ₁	12.8	16.7	7.63						
	C ₂	0.187	0.223	0.059						
	No. Specimens	6	6	6						
	No. Batches	1	1	1						
	Data Class	Screening	Screening	Screening						

Conditioned at 160°F and 95 ± 2% RH until 1.0% moisture content attained.
 Short beam strength test data are approved for Screening Data Class only.

MATER	RIAL: 800	H 12k/3900-2 ur	nidirectional tap	e		Table 4.2.34(b) C/Ep 190-UT
FIBER	VOLUME: 54.0	3 wt.%) %)75-0.0079	COMP. DI VOID COI		6 g/cm ³ .10 %	800HB/3900-2 Shear, 13-plane [0] ₁₀₀ 75/A, -67/A, 180/W
TEST N	METHOD:		MODULU	S CALCULATIO	ON:	Screening
AS	STM D 5379-93		Chord,	, 1000 - 3000 μ	ε	
NORM	ALIZED BY: Not	normalized				
Moistur	rature (°F) e Content (%) rium at T, RH	75 Ambient 90	-67 Ambient 90	180 1.0 (1) 90		
Source	Mean	12.8	18.6	7.20		
	Minimum Maximum C.V.(%)	12.5 12.9 1.21	18.2 19.3 2.24	6.90 7.50 3.11		
F ^{su} ₁₃	B-value Distribution	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	12.8 0.155	18.6 0.417	7.20 0.224		
	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	5 1 Screening		
G ^s ₁₃	Mean Minimum Maximum C.V.(%)	0.478 0.464 0.489 2.34	0.598 0.560 0.630 3.87	0.401 0.396 0.405 0.872		
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening	6 1 Screening	5 1 Screening		
	Mean Minimum Maximum C.V.(%)					
$\gamma_{13}^{ m su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned at 160°F and 95 \pm 2% RH until 1.0% moisture content attained.

(2) Basis values are presented only for A and B data classes.

MATER	RIAL: 800	H 12k/3900-2 ur	nidirectional tap	0e		Table 4.2.34(c) C/Ep 190-UT
FIBER	VOLUME: 54.0	3 wt.%) %)78-0.0082	COMP. DI VOID COI		6 g/cm ³ .10 %	800HB/3900-2 Shear, 23-plane [0] ₁₀₀ 75/A, -67/A, 180/W
TEST N	METHOD:		MODULU	S CALCULATIO	ON:	Screening
AS	STM D 5379-93		Chord,	, 1000 - 3000 μ	æ	
NORM	ALIZED BY: Not	normalized				
Moistur	rature (°F) e Content (%) rium at T, RH	75 Ambient	-67 Ambient	180 1.0 (1) 90		
Source	Mean	90 6.10	90 6.45	4.22		
	Minimum Maximum C.V.(%)	4.79 6.72 13.1	4.68 7.27 13.7	3.91 4.35 4.24		
F ^{su} ₂₃	B-value Distribution	(2) Normal	(2) Normal	(2) Normal		
(ksi)	C ₁ C ₂	6.10 0.801	6.45 0.886	4.22 0.179		
	No. Specimens No. Batches Data Class	6 1 Screening	7 1 Screening	6 1 Screening		
G ^s ₂₃	Mean Minimum Maximum C.V.(%)	0.317 0.306 0.330 2.94	0.377 0.360 0.399 3.36	0.281 0.258 0.293 4.45		
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening	7 1 Screening	6 1 Screening		
	Mean Minimum Maximum C.V.(%)		Ĭ			
$\gamma_{23}^{ m su}$	B-value Distribution					
(με)	C ₁ C ₂					
	No. Specimens No. Batches Data Class					

(1) Conditioned at 160°F and 95 \pm 2% RH until 1.0% moisture content attained.

(2) Basis values are presented only for A and B data classes.

4.2.35 T650-35 3k/976 plain weave fabric

Material Description:

Material: T650-35 3k / 976

Form: Plain weave fabric prepreg, fiber areal weight of 194 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.0067 - 0.0069 inches.

Processing: Autoclave cure, 350°F, 95 psi, 90 minutes

General Supplier Information:

- Fiber: T650-35 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3000 filaments/tow. Typical tensile modulus is 35 x 10⁶ psi. Typical tensile strength is 650,000 psi.
- Matrix: 976 is a high flow, modified epoxy resin that meets the NASA outgassing requirements. 10 days out-time at 72°F.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: General purpose commercial and military structural applications.

Data Analysis Summary:

1. For transverse tension, a bowtie specimen is an exception to this test method.

4.2.35 T650-35 3k/976 plain weave

MATERIAL:	T650-35 3	k/976 plain w	eave fabric			C/Ep 194-PW T650-35 976 Summary
FORM:	Cytec Fibe	erite 976/T650	-35 plain weav	e fabric prepreg		
FIBER:	Amoco T6	50-35 3k, UC	309, no twist	MATRIX:	ICI Fiberite 976	
T _g (dry):	461°F	T _g (wet):	393°F	T _g METHOD:	DMA E'	
PROCESSING:	Autoclave	e cure 350°F +	·10/-10°F, 90 r	nin +10/-10 min, 9	5 psi +5/-5 psi	

9/90 — 5/95	Date of testing	7/93 – 10/96
9/90 - 7/94	Date of data submittal	12/97
6/92 - 8/94	Date of analysis	1/01
7/93 – 10/96		
	9/90 — 7/94 6/92 — 8/94	9/90 - 5/95 Date of testing 9/90 - 7/94 Date of data submittal 6/92 - 8/94 Date of analysis 7/93 - 10/96

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	250°F/W		
Tension, 1-axis	bS	bS	BM		
Tension, 2-axis	BM	BM	BM		
Tension, 3-axis					
Compression, 1-axis	BM	BM	BM		
Compression, 2-axis					
Compression, 3-axis	bS	bS	BM		
Shear, 12-plane	BM	bM	BM		
Shear, 23-plane					
Shear, 31-plane					

PHYSICAL PROPERTY SUMMARY

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.77	1.76 – 1.78	SRM 15
Resin Density	(g/cm ³)	1.28	1.28	ASTM D 792
Composite Density	(g/cm ³)	1.57	1.55-1.58	
Fiber Areal Weight	(g/m ²)	194	-	
Fiber Volume	(%)	59	58-61	
Ply Thickness	(in)	0.0069	0.0066 - 0.0079	

LAMINATE PROPERTY SUMMARY

MATERIA	AL: T650)-35 3k 976 plai		Table 4.2.35(a) C/Ep 194-PW				
FIBER V	OLUME: 59 -	34 % wt 64 vol % 62-0.0079 in.	T650- Tensior	T650-35 976 Tension, 1-axis [0 _f] ₁₂				
PLY THICKNESS: 0.00		02-0.0079111.				72/A, -67/A, 250/W		
TEST ME			MODULUS	S CALCULATIO	N:		8, Mean, ening	
Bow	tie Specimen - AST	M D 3039 76	Chord	, 1000 - 6000 μι	2	3010	ening	
NORMAL	IZED BY: Norn	nalized by speci	men thickness	and batch fiber	areal weight to	o 57%(0.0076 ii	n. CPT)	
Tempera		72		-6		25		
	Content (%) m at T, RH	amb	ient	amb	ient	1.09- 160,		
Source C		80	C	8	C	80,		
		Normalized	Measured	Normalized	Measured	Normalized	Measure	
	Mean	94.4	103	75.4	82.6	106	113	
	Minimum	83.3	89.7	65.9	73.3	93.6	102	
	Maximum	103	116	80.9	88.7	116	125	
	C.V.(%)	7.05	7.10	6.03	5.70	6.38	5.75	
	B-value	79.9	(1)	(1)	72.9	88.9	98.1	
F_1^{tu}	Distribution	Weibull	ANOVA	ANOVA	Weibull	ANOVA	Weibull	
(ksi)	C ₁	97.35	7.87	4.74	84.2	6.99	116	
(-)	C ₂	18.09	4.08	3.27	6.35	2.50	18.9	
	No. Specimens	18 3 B18		18		30 5 B30		
	No. Batches			3				
	Data Class Mean	10.4	<u>8</u> 11.2	B1 10.5	<u>8</u> 11.5	10.7	11.2	
	Minimum	9.91	10.5	10.0	10.7	9.81	10.0	
	Maximum	11.4	11.8	10.7	11.9	11.3	12.4	
E_1^t	C.V.(%)	4.54	4.32	2.43	3.40	2.82	5.48	
(Msi)	No. Specimens	9)	g)	2'	1	
()	No. Batches	3		3	1		5	
	Data Class	Scree	ening	Scree	ening	Mea	an	
v_{12}^{t}	Mean No. Specimens No. Batches							
. 12	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
$arepsilon_1^{ ext{tu}}$	B-value Distribution							
	C ₁							
(με)	C_1 C_2							
	No. Specimens No. Batches Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATERIAL:	T650-35 3k 976 plai	n weave fabric		Table 4.2.35(b) C/Ep 194-PW
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	28 – 34 % wt 59 - 64 vol % 0.0062-0.0079 in.	COMP: DENSITY: VOID CONTENT:	1.56-1.58 g/cm ³ 0 – 1%	T650-35 976 Tension, 2-axis [90 _f] ₁₂ 72/A, -67/A, 250/W
TEST METHOD:		MODULUS CALCU	LATION:	B30, Mean
Bowtie Specimen- AS	STM D 3039 76	Chord, 1000-60	00 με	

NORMALIZED BY: Normalized by specimen thickness and batch fiber areal weight to 57%(0.0076 in. CPT)

	Content (%) um at T, RH	72 ambient 80		-6 amb	ient	1.14- 160,	250 1.14-1.22 160, 85 80	
000100 0		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	93.7 78.5 106 7.07	101 83.4 118 8.48	74.0 62.1 87.4 8.22	80.8 64.1 108 11.7	98.3 88.5 111 6.02	105 94.3 122 6.98	
F ₂ ^{tu}	B-value Distribution	76.4 ANOVA	74.9 ANOVA	57.4 ANOVA	51.4 ANOVA	81.6 ANOVA	82.5 ANOVA	
(ksi)	C ₁ C ₂	6.91 2.51	8.98 2.87	6.31 2.64	10.0 2.93	6.17 2.70	7.75 2.90	
	No. Specimens30No. Batches5Data ClassB30			30 5 B3	5	3(5 B3		
E_2^t	Mean Minimum Maximum C.V.(%)	10.0 9.59 10.9 3.40	10.6 9.61 11.9 5.17	9.91 9.46 10.5 3.28	10.6 9.93 11.5 5.32	9.93 9.16 11.0 4.87	10.5 9.57 12.2 7.31	
(Msi)	No. Specimens No. Batches Data Class	2 5 Me	i	21 5 Mean		21 5 Mean		
v_{21}^{t}	Mean No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)							
$arepsilon_2^{ m tu}$	B-value Distribution							
(με)	C ₁ C ₂							
	No. Specimens No. Batches Data Class							

MATERIA	L: T650-3	5 3k 976 plain w	eave fabric			Table 4		
RESIN CO FIBER VO PLY THIC	LUME: 59 - 64		vol % VOID CONTENT: 0 – 1%			Compress [0	T650-35 976 Compression, 1-axis [0 _f] ₁₂	
TEST ME	THOD:		MODULUS	CALCULATION	l:	72/A, -67/A, 250/W B30, Mean		
ASTN	I D 3410-87, Proced	ure B	Chord, 10	000-3000 με				
NORMALI	ZED BY: Norma	lized by specime	en thickness ar	nd batch fiber a	real weight to	57%(0.0076 in	. CPT)	
Temperatu			2	-6		25		
Moisture C Equilibriun	Content (%)	amb	pient	amb	ient	- 1.02 160		
Source Co		8	0	8	0	8		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	96.7	100	93.8	99.6	55.9	59.1	
	Minimum	74.3	71.3	62.6	65.5	43.0	45.5	
	Maximum	108	114	116	121	75.1	77.5	
	C.V.(%)	8.41	10.6	14.3	14.0	14.5	13.4	
	B-value	78.1	74.8	55.8	60.2	29.8	34.2	
F ₁ ^{cu}	Distribution	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁ C ₂	8.30 2.23	10.9 2.31	14.1 2.69	14.7 2.69	8.66 3.02	8.38 2.97	
	02	2.20	2.01	2.00	2.00	0.02	2.01	
	No. Specimens	3	36 6		6	30		
	No. Batches				5	5		
	Data Class		B30		B30		B30	
	Mean Minimum	8.83 8.07	9.53 8.63	9.36 7.78	9.89 8.55	9.15 8.63	9.67 9.08	
	Maximum	9.52	0.03 10.1	10.2	8.55 10.6	9.62	9.08 10.2	
E_1^c	C.V.(%)	4.52	4.11	4.98	4.45	2.77	2.67	
(Msi)	No. Specimens		30 27 2 [.]					
	No. Batches Data Class		6 ean	6 Me		5 Mean		
	Mean			ivie		IVIE		
	No. Specimens							
v_{12}^t	No. Batches							
	Data Class							
	Mean							
	Minimum							
	Maximum C.V.(%)							
	B-value							
$\varepsilon_2^{\rm cu}$	Distribution							
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

MATERIAL:	T650-35 3k 976 plair	n weave fabric	Table 4.2.35(d) C/Ep 194-PW
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	28 – 34 % wt 59 - 64 vol % 0.0062-0.0079 in.	COMP: DENSITY: 1.56-1.58 g/cm ³ VOID CONTENT: 0 – 1%	T650-35 976 Compression, 2-axis [90 f] ₁₂ 72/A, -67/A, 250/W
TEST METHOD: ASTM D 3410-8	7, Procedure B	MODULUS CALCULATION: Chord, 1000-3000 με	B30, B18, Mean, Screening

NORMALIZED BY:

Normalized by specimen thickness and batch fiber areal weight to 57%(0.0076 in. CPT)

Temperat		7.			67	25		
	Content (%) n at T, RH	amb	lient	amt	pient	1.03 -		
Source Co		8	0	8	0	160, 80		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	92.6	99.1	88.0	94.2	52.5	56.1	
	Minimum	79.7	88.6	70.5	78.4	38.1	40.3	
	Maximum	105	11130	98.9	108	61.0	64.3	
	C.V.(%)	9.23	8.28	10.3	9.77	10.9	10.5	
	B-value	(1)	79.7	69.2	73.6	37.5	41.8	
F_2^{cu}	Distribution	ANOVA	Weibull	Weibull	Weibull	ANOVA	ANOVA	
(ksi)	C ₁	8.93	103	91.89	98.2	5.92	6.05	
	C ₂	12.5	14.0	12.61	12.3	2.53	2.37	
	No. Specimens	1	8	1	8	30	C	
	No. Batches	3	3	:	3	5		
	Data Class		B18		18	B30		
	Mean	8.82	9.39	8.95	9.62	8.89	9.52	
	Minimum	8.26	8.83	8.13	8.93	8.44	8.81	
	Maximum	9.19 3.25	9.84 3.87	9.34 4.11	9.96 3.40	9.40 2.68	9.96 2.78	
E_2^c	C.V.(%)	5.25	3.07	4.11	3.40	2.00	2.70	
(Msi)	No. Specimens		9		9		1	
	No. Batches	3			3.	5		
	Data Class	Scree	ening	Scre	ening	Me	an	
	Mean No. Specimens							
t	No. Batches							
v_{21}^{t}								
	Data Class							
	Mean Minimum							
	Maximum							
	C.V.(%)							
	B-value							
$\varepsilon_2^{ m cu}$	Distribution							
	C.							
(με)	C ₁ C ₂							
	\mathbf{U}_2							
	No. Specimens							
	No. Batches							
	Data Class							

(1) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

MATER	RIAL: T6	50-35 3k 976 plain	weave fabric			Table 4.2 C/Ep 194		
FIBER	VOLUME: 59	– 34 % wt - 64 vol % 062-0.0079 in.	COMP. DE VOID CON		58 g/cm ³	T650-35 976 Shear, 12-plane [+45₁/-45₁]₃₅ 72/A, -67/A, 250/W		
TEST N	METHOD:		B30, B18,					
AS	STM D 3518-82 (1)		Chord,	0 - 3000 με	•			
NORM	ALIZED BY: No	t normalized						
	rature (°F)	72	-67	250				
	e Content (%) rium at T, RH	Ambient	Ambient	1.15 – 1.25				
Source		80	80	160,85 80		、		
000.00	Mean	15.0	17.2	10.8				
	Minimum	13.6	15.3	9.95				
	Maximum	16.3	17.7	11.4				
	C.V.(%)	4.93	3.04	3.56				
	B-value	13.0	16.3	9.72				
F_{12}^{su}	Distribution	ANOVA	Weibull	ANOVA				
(ksi)	C ₁	0.77	17.3	0.40				
(KSI)	C_1 C_2	2.58	58.2	2.69				
	No. Specimens	34	18	30				
	No. Batches	5	3	5				
	Data Class Mean	B30 0.80	B18 1.01	B30 0.51				
	Minimum	0.73	.95	0.47				
	Maximum	0.88	1.08	0.54				
G_{12}^s	C.V.(%)	4.90	3.82	3.73				
(Msi)	No. Specimens	24	18	22				
	No. Batches Data Class	5 Mean	3 Mean	5 Mean				
	Mean	Mean	Mean	Mean				
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
, su	Distribution							
γ_{12}^{su}								
(με)	C ₁							
	C ₂							
	No. Specimens							
	No. Batches							
	Data Class							

(1) Test method used ultimate strength at failure.

4.3 CARBON - POLYESTER COMPOSITES

4.4 CARBON - BISMALEIMIDE COMPOSITES

4.4.1 T-300 3k/F650 unidirectional tape

Material Description:

Material: T300 3k/F650 unidirectional tape

- Form: Unidirectional tape, fiber areal weight of 189 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0070 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.1 T-300 3k/F650 unidirectional tape*

MATERIAL:	T-300 3k/F650 unidirectional tape		C/BMI 189-UT T-300/F650 Summary
FORM:	Hexcel T3T190/F652 unidirectional tap	e prepreg	
FIBER:	Toray T-300 3k	MATRIX: Hexce	el F650
T _g (dry):	600°F T _g (wet):	T _g METHOD:	
PROCESSING:	Autoclave cure: 375°F, 4 hours, 85 psi	g; Postcure: 475°F, 4 hours	, free-standing oven

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	-67°F/A	400°F/A		
Tension, 1-axis	SS	S	SS		
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S		S		

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.56	1.57	
Fiber Areal Weight	(g/m ²)	189		
Fiber Volume	(%)	59	61	
Ply Thickness	(in)	0.0070		

LAMINATE PROPERTY SUMMARY

T-300 3k/F650 unidirectional tape

MATERIAL:

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

Table 4.4.1(a)

	ΑL. Ι	-300 3K/F030 unit	unectional tape				4.4.1(a) 189-UT	
FIBER V	OLUME: 6	2 wt% 1 % .0070 in.	% VOID CONT		7 g/cm ³	T-300 Tensio [(D/F650 n, 1-axis D] ₆	
	ETHOD: M D 3039-76		MODULUS	S CALCULATIO	N:		75/A, -67/A, 400/A Screening	
AST	IVI D 3039-76							
NORMALIZED BY: Fiber volume to 60% (0.0070 in. CPT)								
Tempera			75	-6		40		
Moisture	Content (%) m at T, RH	am	bient	amb	ient	amb	lent	
Source C			21	2	1	2	1	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	248	252	194	197	229	233	
	Minimum Maximum	216 293	220 298	167 212	170 216	216 243	220 247	
	C.V.(%)	7.14	7.15	8.68	8.68	3.97	3.97	
	. ,							
t 12	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F_1^{tu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal	
(ksi)	C ₁	248	252	194	197	229	233	
	C ₂	17.7	18.0	16.8	17.1	11.1	9.24	
	No. Specimer	ns .	15		5	7	7	
	No. Batches		1		1			
	Data Class Mean	18.9	ening 19.2	Scree	ening	Scree 19.1	ening 19.4	
	Minimum	16.5	16.8			16.8	17.1	
	Maximum	20.3	20.6			21.0	21.4	
E_1^t	C.V.(%)	5.58	5.49			7.26	7.23	
6.5.0								
(Msi)	No. Specimer No. Batches	IS .	15 1			9		
	Data Class	Scre	ening			Scree		
	Mean		<u> </u>					
v_{12}^{t}	No. Specimer No. Batches	IS						
12	Data Class							
	Mean							
	Minimum Maximum							
	C.V.(%)							
$\varepsilon_1^{ m tu}$	B-value Distribution							
(με)	C ₁							
(με)	C_2							
	No. Specimer	IS						
	No. Batches							
	Data Class							

(1) Basis values are presented only for A and B data classes.

JUNE	1989). ALI		ENTATION PRES	SENTLY REQUIR	ED WAS NOT SU	JPPLIED F	OR THIS MATERIAL.
MATERIAL	.:	T-300 3k	/F650 unidirectior	nal tape			Table 4.4.1(b)
RESIN CO FIBER VOI PLY THICH	LUME:	32 wt% 61 % 0.0070 in	V	OMP: DENSITY: OID CONTENT:	1.57 g/cm ³		C/BMI 189-ÚT T-300/F650 SBS, 31-plane [0] ₃₄
TEST METHOD: MODULUS CALCULATION:							75/A, 400/A Screening
ASTM	D 2344						
NORMALIZ	ZED BY:	Not norm	alized				
Temperatu	re (°F)		75	400			
Moisture C			ambient	ambient			
Equilibrium							
Source Co			21	21			
	Mean		14.1	9.39			
	Minimum Maximum		13.5 15.0	8.77 10.1			
	C.V.(%)		3.04	4.25			
	0. V.(70)		0.04	4.20			
	B-value		(1)	(1)			
F ₃₁ ^{sbs}	Distributio	n	Weibull	Weibull			
(ksi)	C ₁		14.3	9.59			
()	C_2		32.3	24.6			
	No. Speci		15	15			
	No. Batch		1	1			
	Data Clas	S	Screening	Screening			

(1) Basis values are presented only for A and B data classes.

4.4.2 T-300 3k/F650 8-harness satin weave fabric

Material Description:

Material: T300 3k/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 370 g/m², typical cured resin content of 40%, typical cured ply thickness of 0.015 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours; postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: T-300 fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.2 T-300 3k/F650 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F6	C/BMI 370-8HS T-300/F650 Summary						
FORM:	Hexcel F3T	Hexcel F3T584/F650 8-harness satin weave fabric prepreg						
FIBER:	Toray T-300) 3k	MATRIX:	Hexcel F650				
T _g (dry):	600°F	T _g (wet):	T _g METHOD:					
PROCESSING:	Autoclave c	ure: 375°F, 4 hours, 85 psi	g; Postcure: 475°F, 4	4 hours, free-standin	ig oven			

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	350°F/A	450°F/A		
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	SS				
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S	S		

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.75		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.54		
Fiber Areal Weight	(g/m ²)	370		
Fiber Volume	(%)	56	52	
Ply Thickness	(in)	0.015		

LAMINATE PROPERTY SUMMARY

MATERIA		MENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS M 3k/F650 8-harness satin weave fabric Table 4.4.					
RESIN CO FIBER VO PLY THIC	DLUME: 52 %		COMP: DENSITY: VOID CONTENT:	C/BMI 370-8HS T-300/F650 Shear, 12-plane [±45 _f] _{4s} 75/A			
TEST ME ASTN	THOD: M D 3518-76		MODULUS CALCU	LATION:	Screening		
NORMAL		malizad					
	ure (°F) Content (%) n at T, RH	75 ambient					
Source Co	ode	21					
	Mean Minimum Maximum	9.77 8.57 11.1					
	C.V.(%)	8.78					
F ₁₂ ^{su}	B-value Distribution	(1) Weibull					
(ksi)	C ₁ C ₂	10.2 12.9					
	No. Specimens No. Batches Data Class	15 1					
	Mean	Screening 0.69					
	Minimum	0.59					
G ^s ₁₂	Maximum C.V.(%)	0.81 10					
(Msi)	No. Specimens No. Batches Data Class	14 1 Sereening					
	Mean Minimum Maximum C.V.(%)	Screening					
$\gamma_{12}^{ m su}$	B-value Distribution						
(με)	C ₁ C ₂						
	No. Specimens No. Batches Data Class						

(1) Basis values are presented only for A and B data classes.

(JUNE	E 1989). ALL DOCUM	ENTATION PRES	SENTLY REQUIR	ED WAS NOT SU	UPPLIED FOR THIS MATERIAL.	
MATERIA	L: T-300 3k	/F650 8-harness	satin weave fabri	С	Table 4.4.2(b)	
RESIN CC FIBER VO PLY THIC	DLUME: 52 %	VOID CONTENT: SBS, 31				
TEST MET	75/A, 350/A, 450/A Screening					
ASTM	/I D 2344					
NORMALI	ZED BY: Not norm	nalized				
Temperatu	ure (°F)	75	350	450		
	Content (%)	ambient	ambient	ambient		
Equilibrium						
Source Co		21	21	21		
	Mean	5.83	5.59	5.80		
	Minimum	4.75	4.93	5.23		
	Maximum	8.06	6.44	6.57		
	C.V.(%)	15.0	10.9	6.81		
	B-value	(4)	(4)	(4)		
sbs	Distribution	(1) Nopporo	(1) Weibull	(1) Weibull		
F ₃₁ ^{sbs}		Nonpara.				
(ksi)	C ₁	8	5.86	5.98		
	C ₂	1.54	11.0	15.5		
	No. Specimens	15	10	10		
	No. Batches	1	1	1		
	Data Class	Screening	Screening	Screening		
		5		5		

(1) Short beam strength test data are approved for Screening Data Class only.

4.4.3 T-300 3k/F652 8-harness satin weave fabric

Material Description:

Material: T300 3k/F652

- Form: 8 harness satin weave fabric, fiber areal weight of 367 g/m², typical cured resin content of 27%, typical cured ply thickness of 0.0124 inches.
- Processing: Press cure, 400°F, 2.5 hours, 125 psi; postcure at 550°F, 4 hours

General Supplier Information:

- Fiber: T-300 3K fibers are continuous, no twist carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 3,000 filaments/tow. Typical tensile modulus is 33 x 10⁶ psi. Typical tensile strength is 530,000 psi.
- Matrix: F652 is a bismaleimide resin that has been modified from F650 to reduce the flow of the resin. The lower flow allows the resin to be used in press forming operations and also for high temperature honeycomb. The properties are equivalent to F650.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications.

4.4.3 T-300 3k/F652 8-harness satin weave fabric*

MATERIAL:	T-300 3k/F6	C/BMI 367-8HS T-300/F652 Summary			
FORM:	Hexcel F3G				
FIBER:	Amoco Thornel T-300 MATRIX: Hexcel F652				
T _g (dry):	600°F	T _g (wet):	T _g METHOD:		
PROCESSING:	Press cured	l: 400°F, 2.5 hours, 125 psi	g; Postcure: 550°F,	4 hours	

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	70°F/A	600°F/A			
Tension, 1-axis	SS				
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 31-plane	S	S			

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.76		
Resin Density	(g/cm ³)	1.26		
Composite Density	(g/cm ³)	1.55	1.57	
Fiber Areal Weight	(g/m ²)	367		
Fiber Volume	(%)	58	64.8	
Ply Thickness	(in)	.00124		

LAMINATE PROPERTY SUMMARY

MATERIAL: T-300 3k/F652 8-harness satin weave fabric Table 4.4.3(a) C/BMI 367-8HS									
FIBER V	RESIN CONTENT:27.2 wt%COMP: DENSITY:1.57 g/cm3IBER VOLUME:64.8 %VOID CONTENT:'LY THICKNESS:0.012 in.						T-300/F652 Tension, 1-axis [0ۥ] ₁₀ 70/A		
TEST METHOD: MODULUS CALCULATION: Screening									
	ASTM D 3039-76								
		h fiber volume t	o 57% (0.012	in. CPT)					
	Content (%) Im at T, RH	7(amb 2 [.]	ient						
Source C	Jude	Z Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	73.6 58.8 84.3 10.1	84.0 67.1 96.1 10.0		Mododrou		Modeared		
F_1^{tu}	B-value Distribution	(1) Weibull	(1) Weibull						
(ksi)	C ₁ C ₂	76.8 12.3	87.6 12.4						
	No. Specimens No. Batches Data Class	1: 1 Scree	ening						
E_1^t	Mean Minimum Maximum C.V.(%)	9.71 8.94 10.2 4.36	11.1 10.2 11.6 4.28						
(Msi)	No. Specimens No. Batches Data Class	15 1 Scree							
v_{12}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)	<u> </u>							
$arepsilon_1^{ ext{tu}}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

(1) Basis values are presented only for A and B data classes.

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.								
MATERIAL	_: T-300	3k/F652 8-harness	satin weave fabrio		Table 4.4.3(b) C/BMI 367-8HS			
RESIN CO FIBER VO PLY THICI	LUME: 64.8 %	t% COMP: DENSITY: 1.57 g/cm ³ T-300/F652 VOID CONTENT: SBS, 31-plane						
TEST METHOD: MODULUS CALCULATION: Scr								
ASTM D 2344								
NORMALIZ	ZED BY: Not no	ormalized						
Temperatu		70	600					
Moisture C Equilibrium		ambient	ambient					
Source Co		21	21					
	Mean	5.97	4.59					
	Minimum	5.13	4.29					
	Maximum	6.64	4.82					
	C.V.(%)	8.17	3.60					
	B-value	(1)	(1)					
F ₃₁ ^{sbs}	Distribution	Weibull	Weibull					
(ksi)	C ₁	6.18	4.66					
(KSI)	C_2	14.8	36.8					
	• <u>2</u>		0010					
	No. Specimens	15	15					
	No. Batches	1	1					
	Data Class	Screening	Screening					

(1) Basis values are presented only for A and B data classes.

4.4.4 AS4/5250-3 unidirectional tape

Material Description:

Material: AS4/5250-3

Form: Unidirectional tape, fiber areal weight of 147 g/m², typical cured resin content of 26-38%, typical cured ply thickness of 0.0055 inches.

Processing: Autoclave cure; 250°F, 85 psi, 1 hour; 350°F, 85 psi, 6 hours; postcure; 475°F, 6 hours.

General Supplier Information:

- Fiber: AS4 fibers are continuous carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Typical tensile modulus is 34×10^6 psi. Typical tensile strength is 550,000 psi.
- Matrix: 5250-3 is a modified bismaleimide resin possessing good hot/wet strength and improved toughness over standard bismaleimides. Good high temperature resistance.

Maximum Short Term Service Temperature: 450°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.4.4.

4.4.4 AS4/5250-3 unidirectional tape*

MATERIAL:	AS4/5250-3 unidire	ctional tape			C/BMI 147-UT AS4/5250-3 Summary		
FORM:	Narmco AS4/5250-	Narmco AS4/5250-3 unidirectional tape, grade 147 prepreg					
FIBER:	Hercules AS4		MATRIX:	Narmco 5250-3			
T _g (dry):	642°F T _g (wet	: 561°F	T _g METHOD:	DMA			
PROCESSING:	Autoclave cure: 250	°F, 60 minutes; 3	50°F, 360 minutes, 8	35 psi; Postcure: 475°	F, 6 hours		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal 12/	38
Date of prepreg manufacture	Date of analysis 1/2	93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	72°F/A	-67°F/A	350°F/A	450°F/A	74°F/W	350°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S		
Tension, 3-axis						
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis						
Compression, 3-axis						
Shear, 12-plane	SS	SS	SS	SS	SS	SS
Shear, 23-plane						
Shear, 31-plane						

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.80		
Resin Density	(g/cm ³)	1.25		
Composite Density	(g/cm ³)	1.58	1.52 - 1.63	
Fiber Areal Weight	(g/m ²)	147	132 - 165	ASTM D 3529
Fiber Volume	(%)	60	51 - 66	
Ply Thickness	(in)	0.0051 - 0.0059	0.0050 - 0.0062	

LAMINATE PROPERTY SUMMARY

AS4/5250-3 unidirectional tape

MATERIAL:

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.

Table 4.4.4(a) C/BMI 147-UT

FIBER VO PLY THIC	ESIN CONTENT: 26-28 wt% IBER VOLUME: 63-66 % 'LY THICKNESS: 0.0050-0.0053 in.		VOID CON	OMP: DENSITY: 1.58-1.61 g/cm ³ DID CONTENT: 0.1-0.9%		C/BMI 147-UT AS4/5250-3 Tension, 1-axis [0] ₈ 72/A, -67/A, 350/A		
TEST ME AST	THOD: M D 3039-76		MODULUS	S CALCULATIO	N:	Scre	ening	
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	% (0.0055 in. C	PT)		
Equilibriu	Content (%) m at T, RH	72 amb	ient	-6 amb	ient	35 amb	ient	
Source C	ode	(1	/	(1	/	(1	/	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	252 223 275 7.63	291 255 322 8.48	270 249 288 6.12	311 285 332 6.48	266 241 283 6.87	308 276 325 7.54	
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Nonpara.	
(ksi)	C ₁ C ₂	252 19.2	291 24.7	270 16.5	312 20.2	266 18.3	5 3.06	
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Scree		6 1 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	15.9 15.3 16.4 3.04	18.3 17.7 18.9 2.51	16.4 15.9 16.8 2.23	18.9 18.5 19.4 1.91	16.4 15.8 16.7 2.07	19.0 18.2 19.5 2.85	
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree		6 1 Screening		6 1 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches	6	0.300	0.295 6 1		6 1	0.302	
	Data Class Mean Minimum Maximum C.V.(%)	Screening 17100 14900 20000 13.3		Screening 15800 14100 18000 9.6		Screening 15900 14800 17100 4.98		
$arepsilon_1^{ ext{tu}}$	B-value Distribution	(2) Normal			(2) Normal		(2) Normal	
(με)	C ₁ C ₂		17100 2270		15800 1520		15900 789	
	No. Specimens No. Batches	6 1		6		6 1 Screening		
L	Data Class	Scree	riiriy	Scree	ening	Scree	ening	

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

	<u>NE 1989). ALL DO</u>			REQUIRED W	AS NOT SUFF				
MATERI	AL: AS ²	1/5250-3 unidired	5250-3 unidirectional tape Table 4.4.4(b) C/BMI 147-UT						
RESIN C	ONTENT: 26-2	3 wt% COMP: DENSITY: 1.61-1.63 g/cm ³					5250-3		
FIBER V	OLUME: 63-6	67 %	7 % VOID CONTENT: 0.0-0.9%				on, 1-axis		
PLY THI	CKNESS: 0.00	050-0.0053 in.				[0] ₈			
TEST ME				S CALCULATIO	NI-		4/W, 350/W eening		
			MODULU	5 CALCULATIO	//N .	3016	ening		
AST	M D 3039-76								
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er volume to 60%	% (0.0055 in. C	PT)			
Tempera		45		7		35			
	Content (%)	amb	ient	0.1		0.1			
	um at T, RH	10		160°F		(1			
Source C	Joue	(2 Normalized	Measured	(2 Normalized	<u>)</u> Measured	2) Normalized	Measured		
	Mean	253	292	268	312	249	287		
	Minimum	208	232	235	268	232	264		
	Maximum	269	314	293	347	261	305		
	C.V.(%)	8.87	9.64	7.74	8.99	4.50	5.42		
	Duelus		(0)	(0)	$\langle 0 \rangle$	(0)			
E fil	B-value Distribution	(3) Nonpara	(3) Normal	(3) Normal	(3) Normal	(3) Normal	(3) Normal		
F_1^{tu}		Nonpara.							
(ksi)	C ₁	5	292	268	312	249	288		
	C ₂	3.06	28.1	20.7	28.1	11.2	15.6		
	No. Specimens	6	5	6	6	5	5		
	No. Batches	1		1		1			
	Data Class	Scree		Scree		Scree			
	Mean	16.5	19.0	16.6	19.3	15.9	18.4		
	Minimum Maximum	15.7 16.9	18.1 19.7	16.2 17.3	18.9 19.9	15.4 16.4	17.8 19.1		
E_1^t	C.V.(%)	3.43	3.56	2.36	1.82	2.41	2.71		
E ₁	0.1.(/0)	0.10	0.00	2.00	1102	2	2.7 1		
(Msi)	No. Specimens	6	3	e	3	5	5		
(1001)	No. Batches	1		1		1			
	Data Class	Scree	ening	Scree	ening	Screening			
	Mean		0.295		0.335		0.368		
+	No. Specimens	6		6		5			
v_{12}^{t}	No. Batches	1		1		1			
	Data Class	Scree		Scree		Scree			
	Mean Minimum		13900		15200		14900		
	Maximum		11700 15000		13500 16600		13200 15500		
	C.V.(%)		8.14		7.14		6.46		
<u> </u>	B-value		(3)		(3)		(3)		
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal		
(με)	C ₁		13900		15200		14900		
	C ₂		1130		1080		961		
	No. Charlinger		、						
	No. Specimens No. Batches	6		6		6			
	Data Class	Scree		Scree		Scree			
(1) Con	ditioned at 160°E (<u> </u>	00100			

(1) Conditioned at 160°F, 95% relative humidity for 29 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

MATERI		/5250-3 unidirec					Table 4.4.4(c)
FIBER V	OLUME: 63-6	26-28 wt%COMP: DENSITY:1.61 g/cm363-66 %VOID CONTENT:0.1-0.9%0.0050-0.0053 in.0.1-0.9%					C/BMI 147-UT AS4/5250-3 Tension, 1-axis [0]₅ 350/W
TEST ME	ETHOD:		MODULUS	S CALCUI		N:	Screening
AST	M D 3039-76						
	-	cimen thickness		er volume	to 60%	6 (0.0055 in. C	:PT)
	Content (%) Im at T, RH	35 1.(160°F, (1	0 95%				
000000		Normalized	Measured	Normal	zed	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	235 176 259 12.8	270 202 296 13.0				
F ₁ ^{tu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	C ₁ C ₂	235 29.9	270 35.1				
	No. Specimens No. Batches Data Class	6 1 Scree					
E_1^t	Mean Minimum Maximum C.V.(%)	16.7 15.5 18.4 6.43	19.2 17.7 21.2 6.26				
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree					
v_{12}^{t}	Mean No. Specimens No. Batches	4					
	Data Class Mean Minimum Maximum C.V.(%)	Scree	ning 14400 9950 16200 16.0				
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		14400 2300				
	No. Specimens No. Batches Data Class	6 1 Scree					

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

	(JUNE 1989)). ALL DOC	JUMENTATION	IPRESENTLY	REQUIRED W	AS NOT SUPPL		S MATERIAL	
MA	TERIAL:	AS4	/5250-3 unidire	ctional tape				4.4.4(d)	
RESIN CONTENT: 27-40 wt% COMP: DENSITY: 1.52-1.61 g/cm ³ FIBER VOLUME: 51-65 % VOID CONTENT: 0.1-0.8% PLY THICKNESS: 0.0051-0.0059 in. VOID CONTENT: 0.1-0.8%							/AS4 Tensio [9 72/A, -67	147-UT 5250-3 n, 2-axis 00] ₈ ⁄/A, 350/A,	
TEST METHOD: MODULUS CALCULATION: Screening									
	ASTM D 303	39-76							
NO	RMALIZED B	Y: Not	normalized						
Ter	nperature (°F)		72	-67	350	450			
	isture Content uilibrium at T,		ambient	ambient	ambient	ambient			
	urce Code		(2)	(2)	(2)	(2)			
	Mean		4.61	4.98	4.63	4.54			
	Minimur		3.52	4.68	3.43	4.13			
	Maximu		5.65	5.94	5.33	5.19			
	C.V.(%)		18.4	9.69	13.7	9.20			
	B-value		(1)	(1)	(1)	(1)			
F	-	tion	Normal	Nonpara.	Normal	Normal			
(k	si) C1		4.61	5	4.63	4.54			
	C ₂		0.847	3.06	0.637	0.417			
	No. Spe	cimens	6	6	6	6			
	No. Bat		1	1	1	1			
	Data Cla	ass	Screening	Screening	Screening	Screening			
	Mean		1.24	1.40	1.04	1.08			
	Minimur		1.17	1.26	0.940	0.930			
	Maximu		1.35	1.47	1.16	1.26			
E	t C.V.(%)		5.90	5.50	8.50	10.3			
(M	si) No. Spe	cimens	6	6	5	6			
,	No. Bat		1	1	1	1			
	Data Cla	ass	Screening	Screening	Screening	Screening			
	Mean								
	No. Spe								
V	t No. Bate 21 Data Cla								
	Mean		3540	3580	4680	4330			
	Minimur	n	2000	3180	3300	3600			
	Maximu		4900	4740	6000	5600			
	C.V.(%)		26.9	16.5	19.0	18.0			
	()								

	Data Class	Screening	Screening	Screening	Screening	
v_{21}^{t}	Mean No. Specimens No. Batches					
	Data Class					
	Mean	3540	3580	4680	4330	

B-value (1) (1) (1) (1) $arepsilon_2^{ ext{tu}}$ Distribution Normal Lognormal Normal Normal 3540 8.17 4680 4330 C_1 (με) 889 C_2 955 0.149 782 No. Specimens 6 6 6 6 No. Batches 1 1 1 1 Data Class Screening Screening Screening Screening

(1) Basis values are presented only for A and B data classes.

(2) Reference 4.4.4.

MATERIAL: AS4/5250-3 unidirectional tape Table 4.4.4(e)										
FIBER VOLUME: 53-5		38 wt% COMP: DENSITY: 1.55 g/cm ³ 56 % VOID CONTENT: 0.1-0.9% 057-0.0062 in. VOID CONTENT: 0.1-0.9%		C/BMI 147-UT AS4/5250-3 Compression, 1-axis [0] ₈ 72/A, -67/A, 350/A						
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		ening			
AST	M D 3410A-87		_							
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)										
Tempera		72		-6		35				
	Content (%)	amb	ient	amb	ient	amb	ient			
Equilibriu Source C	m at T, RH	(1	`	(1	`	(1				
Source C	oue	Normalized) Measured	Normalized) Measured	Normalized) Measured			
	Mean	175	158	198	179	174	148			
	Minimum	122	110	176	160	141	127			
	Maximum	203	184	222	201	235	185			
	C.V.(%)	15.9	15.9	8.0	8.0	23.6	15.9			
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal			
(ksi)	C ₁	175	158	198	179	174	149			
(KSI)	C_2	27.7	25.1	15.8	14.3	41.1	23.6			
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening				
	Mean	17.0	15.4	15.5	14.0	17.4	14.9			
	Minimum	14.1	12.8	13.9	12.6	15.2	13.8			
	Maximum	22.7	20.5	18.5	16.7	21.9	17.2			
E_1^c	C.V.(%)	20.1	20.0	10.7	10.6	14.7	8.55			
(Msi)	No. Specimens	6		6		6				
	No. Batches Data Class	1 Scree		1 Scree		1 Screening				
	Mean	00100	anng	00100	anng	00100	annig			
	No. Specimens									
v_{12}^c	No. Batches									
	Data Class Mean		12100		10200		15300			
	Minimum		8000		19800 8360		10200			
	Maximum		22700		26700		18400			
	C.V.(%)		46.2		43.9		18.1			
	B-value		(2)		(2)		(2)			
$\varepsilon_1^{ m cu}$	Distribution		Normal		Normal		Normal			
(με)	C ₁		12100		19800		15300			
(pic)	C ₂		5570		8710		2770			
	No. Specimens	6	i	6	;	6	6			
	No. Batches	1		1		1				

(1) Reference 4.4.4.

Data Class

(2) Basis values are presented only for A and B data classes.

Screening

Screening

Screening

(JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WAS NOT SUPPLIED FOR THIS MATERIAL.											
MATERIAL: AS4/5250-3 unidirectional tape Table 4.4.4(f)											
				C/BMI 1							
		8 wt%	COMP: DE	AS4/52							
FIBER VO		36-38 wt% COMP: DENSITY: 1.55 g/cm ³ 53-56 % VOID CONTENT: 0.1-0.9%					on, 1-axis				
PLY THIC	CKNESS: 0.00		[0]								
TEST ME		450/A, 74/V									
			MODULU	S CALCULATIO	N.	Scree	ing				
AST	ASTM D 3410A-87										
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)											
Temperat	ture (°F)	45	60	74	1	35	60				
	Content (%)	amb	ient	0.8		0.7					
	m at T, RH			160°F,		(1					
Source C	ode	(2		(2		(2	/				
		Normalized	Measured	Normalized	Measured	Normalized	Measured				
	Mean	153	131	194	176	153	139				
	Minimum Maximum	119 207	108 163	175 216	159 195	113 173	102 157				
	C.V.(%)	207 21.2	15.1	8.6	8.63	173	157				
	0. v. (70)	21.2	13.1	0.0	0.05	10.0	10.0				
	B-value	(3)	(3)	(3)	(3)	(3)	(3)				
F ₁ ^{cu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal				
-		153	131	194	176	153	139				
(ksi)	C ₁ C ₂	32.4	19.7	194	15.2	23.8	21.5				
	02	52.4	13.7	10.7	10.2	20.0	21.5				
	No. Specimens	6	5	6		5					
	No. Batches	1		1		1					
	Data Class	Screening		Scree	ening	Screening					
	Mean	18.2	15.6	18.5	16.8	16.1	14.6				
	Minimum	14.0	12.6	16.4	14.9	14.3	12.9				
0	Maximum	21.7	17.1	21.5	19.5	18.2	16.5				
E_1^c	C.V.(%)	16.0	10.4	9.42	9.39	9.78	9.75				
(Msi)	No. Specimens	6		6		5					
	No. Batches	1		1		1 Screening					
	Data Class	Scree	ening	Scree	ening	Scree	ening				
	Mean No. Specimens										
L.C	No. Batches										
v_{12}^c											
	Data Class		0400		15000		12600				
	Mean Minimum		8480 2900		15900 10600		12600 6400				
	Maximum		2900 14600		22900		16000				
	C.V.(%)		44.7		32.5		30.2				
	2(/0)				02.0		0012				
	B-value		(3)		(3)		(3)				
$\varepsilon_1^{ m cu}$	Distribution		Normal		Normal		Normal				
(με)	C ₁		8480		15900		12600				
(με)	C_2		3790		5170		3810				
	U 2		0190		5170		0010				
	No. Specimens	6	5	6		5	5				
	No. Batches	1		1		1					
	Data Class	Scree	ening	Scree	ening	Scree	ening				

(1) Conditioned at 160°F, 95% relative humidity for 7 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

				REQUIRED	JVVA	S NOT SUFF	LIED FOR THIS	
MATERIA	AL: AS4	5250-3 unidirectional tape Table 4.4.4(g) C/BMI 147-UT						
		-10/				- 1 3		
FIBER V	ONTENT: 36 w OLUME: 56 %		COMP: DE VOID CON		1.55	g/cm ³		5250-3
PLY THIC		。 50-0.0053 in.			0.0%)		sion, 1-axis 0]₀
	51(NEOO. 0.00	50-0.0055 m.					35	0/W
TEST ME	THOD:		MODULUS	S CALCULA		1:		ening
	M D 3410A-87							- Y
//01	W D 0410/(0/							
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er volume to	60%	(0.0055 in. C	PT)	
Temperat		35	50					
	Content (%)	1.						
	m at T, RH	160°F						
Source C	ode	(1	/	Nerroelin	l	Maggurad	Noveralized	Magazinad
	Mean	Normalized 127	Measured 115	Normalize	ea	Measured	Normalized	Measured
	Minimum	108	97.9					
	Maximum	152	138					
	C.V.(%)	11.4	11.4					
	B-value	(2)	(2)					
F_1^{cu}	Distribution	Normal	Normal					
(ksi)	C ₁	127	115					
()	C ₂	14.4	13.0					
	No. Specimens	6	5					
	No. Batches	1						
	Data Class	Scree	ening					
	Mean	18.1	16.4					
	Minimum	16.6	15.0					
C	Maximum	20.7 7.93	18.7					
E_1^c	C.V.(%)	7.93	7.89					
(Msi)	No. Specimens	6	5					
. ,	No. Batches	1						
	Data Class Mean	Scree	ening					
	No. Specimens							
v_{12}^{c}	No. Batches							
r 12	Data Class							
	Mean		8120					
	Minimum		6600					
	Maximum		9180					
	C.V.(%)		11.5					
	B-value		(2)					
cu								
(με)								
	C_2		934					
	No Specimens	L C	3					
		1						
	Data Class	Scree						
ε ^{cu} (με)	B-value Distribution C ₁ C ₂ No. Specimens No. Batches	-	(2) Normal 8120 934					

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

MATERIA	,		0-3 unidirectiona	<u>SENTLY REQUIR</u> al tape	-	Table 4.4.4(h)		
FIBER VC	RESIN CONTENT: 28-32 wt% COMP: DENSITY: 1.58-1.61 g/cm ³ FIBER VOLUME: 59-63 % VOID CONTENT: 0.0-1.2% PLY THICKNESS: 0.0055-0.0058 in. VOID CONTENT: 0.0-1.2%					³ S	C/BMI 147-UT AS4/5250-3 Shear, 12-plane [±45]₄s 72/A, -67/A, 350/A,	
TEST ME	THOD:		450/A Screening					
ASTN	A D 3518-76							
NORMALI	ZED BY:	Not norm	alized					
Temperate	ure (°F)		72	-67	350	450		
	Content (%)		ambient	ambient	ambient	ambient		
	n at T, RH							
Source Co			(1)	(1)	(1)	(1)		
	Mean		9.61	10.1	10.4	9.01		
	Minimum Maximum		8.49 10.4	9.67 10.5	9.55 11.0	8.44 9.47		
	C.V.(%)		10.4 6.95	3.50	5.31	9.47 4.87		
	0. V.(70)		0.35	5.50	5.51	4.07		
	B-value		(2)	(2)	(2)	(2)		
F_{12}^{su}	Distributio	n	Normal	Normal	Normal	Normal		
(ksi)	C ₁		9.61	10.1	10.4	9.01		
(1(3))	C_2		0.668	0.352	0.553	0.439		
	- 2							
	No. Speci	mens	6	6	6	6		
	No. Batch	es	1	1	1	1		
	Data Clas	S	Screening	Screening	Screening	Screening		
	Mean		0.77	0.84	0.66	0.62		
	Minimum		0.71	0.78	0.62	0.50		
c.	Maximum		0.83	0.86	0.72	0.69		
G_{12}^s	C.V.(%)		5.6	3.6	5.3	12		
(Msi)	No. Speci	mens	6	6	6	6		
. ,	No. Batch	es	1	1	1	1		
	Data Clas	S	Screening	Screening	Screening	Screening		
	Mean							
	Minimum							
	Maximum							
	C.V.(%)							
	B-value							
γ_{12}^{su}	Distributio	n						
	C ₁							
(με)	C_1 C_2							
	U 2							
	No. Speci	mens						
	No. Batch							
	Data Clas	s						

(1) Reference 4.4.4.

(2) Basis values are presented only for A and B data classes.

MATERIA	,	5250-3 unidirection	PPLIED FOR THIS MATERIAL. Table 4.4.4(i)		
RESIN CO FIBER VO PLY THIC	LUME: 59-6		COMP: DENSITY: VOID CONTENT:	C/BMI 147-ÚŤ AS4/5250-3 Shear, 12-plane [±45] _{4s} 74/W, 350/W, 350/W	
TEST MET	THOD:		MODULUS CALC	JLATION:	Screening
ASTM	1 D 3518-76				
NORMALI	ZED BY: Not r	normalized			
Temperatu		74	350	350	
	Content (%)	0.55	0.55	1.1	
Equilibriun		160°F, 95%	(1)	160°F, 95%	
Source Co		(2)	(2)	(2)	
	Mean	12.5	8.70	9.81	
	Minimum	11.3	8.24	8.13	
	Maximum	13.2	8.95	10.6	
	C.V.(%)	5.26	3.42	9.27	
	B-value	(3)	(3)	(3)	
F ₁₂ ^{su}	Distribution	Normal	Normal	Normal	
		12.5	8.70	9.81	
(ksi)	C ₁ C ₂	0.656	0.298	0.909	
	C_2	0.050	0.298	0.909	
	No. Specimens	6	5	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean	0.79	0.46	0.49	
	Minimum	0.77	0.43	0.40	
	Maximum	0.81	0.48	0.56	
G_{12}^s	C.V.(%)	1.9	4.0	14	
(Msi)	No. Specimens	6	6	4	
, í	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean Minimum Maximum C.V.(%)				
γ_{12}^{su}	B-value Distribution				
(με)	C ₁ C ₂				
	No. Specimens No. Batches Data Class				

(1) Conditioned at 160°F, 95% relative humidity for 3 days (75% saturation).

(2) Reference 4.4.4.

(3) Basis values are presented only for A and B data classes.

4.4.5 IM7 6k/5250-4 RTM 4-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.6 T650-35 3k/5250-4 8-harness satin weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.4.7 T650-35 3k/5250-4 plain weave fabric

These data are presented in the MIL-HDBK-17-2F Annex A.

4.5 CARBON - POLYIMIDE COMPOSITES

4.5.1 Celion 3000/F670 8-harness satin weave fabric

Material Description:

Material: Celion 3000/F670

- Form: 8 harness satin fabric, areal weight of 384 g/m², typical cured resin content of 30-34%, typical cured ply thickness of 0.0132-0.0144 inches.
- Processing: Autoclave cure; 440°F for 2 hours; 600°F for 3 hours, 200 psi; postcure to achieve high temperature service.

General Supplier Information:

- Fiber: Celion 3000 fibers are continuous carbon filaments made from PAN precursor. Filament count is 3000 filaments/tow. Typical tensile modulus is 34 x 106 psi. Typical tensile strength is 515,000 psi.
- Matrix: F670 is a polyimide resin (PMR 15) with good high temperature performance.

Maximum Short Term Service Temperature: 575°F (dry)

Typical applications: Commercial and military aircraft applications where high temperature resistance is a requirement.

4.5.1 Celion 3000/F670 8-harness satin weave fabric*

MATERIAL:	Celion 3000/F670 8-harness satin wea	ave fabric		C/PI 384-8HS Celion 3000/F670 Summary				
FORM:	Hexcel F3L584/F670 8-harness satin	weave fabric prepre	g					
FIBER:	Celanese Celion 3000	MATRIX:	Hexcel F670 (PM	IR-15)				
T _g (dry):	635°F T _g (wet):	Tg METHOD:						
PROCESSING:	Autoclave cure: 440°F, 2 hours; 600°F	utoclave cure: 440°F, 2 hours; 600°F, 3 Hours, 200 psig; Postcure						

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	8/87
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture 2/87-5	/87 Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	550°F/A			
Tension, 1-axis	SS	SS			
Tension, 2-axis	SS	SS			
Tension, 3-axis					
Compression, 1-axis	SS	SS			
Compression, 2-axis	SS	SS			
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB Strength, 23-plane	S				
SB Strength, 31-plane	S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.8		
Resin Density	(g/cm ³)	1.32		
Composite Density	(g/cm ³)	1.59	1.59 - 1.63	
Fiber Areal Weight	(g/m ²)	384		
Fiber Volume	(%)	56	57 - 64	
Ply Thickness	(in)		0.0132 - 0.0144	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

	NE 1989). ALL DOC				IS NOT SUPP		
MATERI	AL: Celio	on 3000/F670 8-	harness satin	weave fabric			4.5.1(a) 84-8HS
FIBER V	OLUME: 57-6	4 wt% 4 % 32-0.0144 in.	Comp: De Void Con		9-1.63 g/cm ³ 0.62%	Celion 3000/F670 Tension, 1-axis [0 _f] ₈ 75/A, 550/A	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		ening
AST	M D 3039-76						
NORMAL	LIZED BY: Fibe	r volume to 57%	5 (0.0147 in. C	PT)			
Tempera		75		55			
	Content (%) Im at T, RH	amb	ient	ambi	ent		
Source C		22	2	22	2		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	132	136	116	120		
	Minimum Maximum	127 140	131 144	95.4 129	98.7 134		
	C.V.(%)	2.75	2.76	7.94	7.95		
	B-value	(1)	(1)	(1)	(1)		
F_1^{tu}	Distribution	Normal	Normal	Normal	Normal		
(ksi)	C1 C2	132 3.63	136 3.76	116 9.18	120 9.52		
	No. Specimens No. Batches Data Class	9 3 Scree		9 3 Screening			
	Mean	9.03	9.35	8.67	8.98		
	Minimum	8.66	8.96	8.50	8.80		
t	Maximum	9.35	9.68	9.07	9.39		
E_1^t	C.V.(%)	3.22	3.23	2.54	2.55		
(Msi)	No. Specimens No. Batches	9	1	93			
	Data Class	Scree	ening	Scree	ning		
v_{12}^t	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
$arepsilon_1^{ ext{tu}}$	B-value Distribution						
	C ₁						
(με)	C_1 C_2						
	No. Specimens No. Batches Data Class						

	<u>NE 1989). ALL DOC</u>				NUT SUPP		
MATERI	AL: Celic	on 3000/F670 8-	narness satin	weave fabric			4.5.1(b) 84-8HS
FIBER V	OLUME: 57-6	4 wt% 4 % 32-0.0144 in.	Comp: De Void Con		9-1.63 g/cm ³ 0.62%	Celion 3 Tensio [9	6000/F670 n, 2-axis 0 _f] ₈
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:		550/A ening
	M D 3039-76						
NORMAL	IZED BY: Fibe	r volume to 57%	6 (0.0147 in. C	PT)			
Tempera		7!		55			
	Content (%) Im at T, RH	amb	ient	ambi	ient		
Source C		22	2	22	2		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	107	111	90.4	93.5		
	Minimum Maximum	85.6 129	88.6 133	61.9 123	64.1 127		
	C.V.(%)	15.7	15.7	23.8	23.8		
F_2^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA		
(ksi)	C ₁	19.3	20.0	24.7	25.5		
(101)	C_2	6.09	6.09	6.02	6.02		
	No. Specimens No. Batches Data Class	9 3 Scree	5	9 3 Scree			
	Mean	8.43	8.73	8.23	8.52		
	Minimum	7.43	7.69	7.58	7.85		
+	Maximum	9.33	9.66	8.84	9.15		
E_2^t	C.V.(%)	7.45	7.46	5.49	5.48		
(Msi)	No. Specimens	9		9			
	No. Batches Data Class	3 Scree		3 Scree			
v_{21}^{t}	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
$arepsilon_2^{ ext{tu}}$	B-value Distribution						
ε ₂ (με)	C ₁						
(µc)	C_2						
	No. Specimens No. Batches Data Class						

	IE 1989). ALL DC				AS NOT SUPP		
MATERIA	AL: Ce	lion 3000/F670 8-	-harness satin	weave fabric			4.5.1(c)
FIBER V	OLUME: 57-	34 wt% 64 % 132-0.0144 in.	COMP: DE VOID CON		9-1.63 g/cm ³ 0.62%	Celion 3 Compress [(84-8HS 6000/F670 sion, 1-axis 0 _f] ₈
TEST ME	THOD:		MODULUS	S CALCULATIO	N:		550/A ening
	MA SRM 1-88					2310	
NORMAL	IZED BY: Fib	er volume to 57%	6 (0.0147 in. C	PT)			
Temperat		7		55			
	Content (%) m at T, RH	amb	ient	ambi	ent		
Source C		2	2	22	2		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	99.4	103	66.0	68.3		
	Minimum	87.9	91.3 122	59.0 71 7	61.1 74.2		
	Maximum C.V.(%)	118 9.33	9.33	71.7 6.60	74.2 6.59		
- 01	B-value		(1) ANOVA	(1) Normal	(1) Normal		
F_1^{cu}	Distribution	ANOVA	-		Normal		
(ksi)	C ₁ C ₂	10.2 5.28	10.6 5.28	66.0 4.36	68.3 4.51		
	No. Specimens	g)	9			
	No. Batches Data Class	3 Scree		3 Scree			
	Mean	8.61	8.92	8.09	8.38		
	Minimum	8.40	8.69	7.26	7.51		
	Maximum	9.09	9.41	8.78	9.09		
E_1^c	C.V.(%)	2.54	2.54	5.19	5.21		
(Msi)	No. Specimens			9			
	No. Batches Data Class	3 Scree		3 Scree			
	Mean		-		-		
v_{12}^{c}	No. Specimens No. Batches						
• 12	Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
	0. v .(70)						
	B-value						
ε_1^{cu}	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

	E BOOOMENTRATION I		B MACHEL COLLE	
MATERIAL:	Celion 3000/F670 8-harness satin weave fabric			Table 4.5.1(d) C/PI 384-8HS
RESIN CONTENT: FIBER VOLUME:	30-34 wt% 57-64 %	COMP: DENSITY: VOID CONTENT:	1.59-1.63 g/cm ³ 0.0-0.62%	Celion 3000/F670 Compression, 2-axis
PLY THICKNESS: TEST METHOD:	0.0132-0.0144 in.	MODULUS CALCUL	ATION:	[90 _f]₃ 75/A, 550/A Screening

SACMA SRM 1-88

NORMALIZED BY: Fiber volume to 57% (0.0147 in. CPT)

	(- -)				_	I	
Tempera	ture (°F)	7		55			
	Content (%)	amb	ient	amb	ient		
	m at T, RH		2		22		
Source C	ode	22 Normalized				Normalized	Maggurad
	Maaa	Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	78.9	81.7	54.2	56.1		
	Minimum	76.1	78.8	52.4	54.2		
	Maximum	80.7	83.5	56.6	58.6		
	C.V.(%)	3.10	3.10	4.02	4.03		
	B-value	(1)					
F_2^{cu}	Distribution	(.)					
(ksi)	C ₁						
	C ₂						
	No. Specimens	3	1	3			
	No. Batches	1		1			
	Data Class	Scree		Scree			
	Mean	8.08	8.37	7.67	7.94		
	Minimum	8.03	8.31	7.59	7.86		
	Maximum	8.14	8.43	7.77	8.04		
E_2^c	C.V.(%)	0.681	0.720	1.19	1.15		
E ₂			••• =•				
(Msi)	No. Specimens	3	1	3			
(10131)	No. Batches	1		1			
	Data Class	Scree		Scree			
	Mean	00100	, in ig	00100	, in ig		
	No. Specimens						
v_{12}^{c}	No. Batches						
V ₁₂							
	Data Class						
	Mean						
	Minimum						
	Maximum						
	C.V.(%)						
	B-value						
cu	Distribution						
$\varepsilon_2^{\rm cu}$							
(με)	C ₁						
	C ₂						
	No Specimera						
	No. Specimens No. Batches						
	Data Class						
	Dala Cidos	l					

(1) Insufficient observations to complete the statistical evaluations.

MATERIAL:	Celion 30	000/F670 8-harne	ess satin weave fa	bric		Table C/PI	e 4.5.1(e) 384-8HS
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30-34 wt 57-64 % 0.0132-0	\ 0144 in.	COMP: DENSITY: /OID CONTENT:	0.0-0.62%	n ³	Celion SBS,	3000/F670 23-plane [0 _f] ₈ 75/A
TEST METHOD:		Ν	IODULUS CALCU	JLATION:		Sci	reening
ASTM D 2344-84							
NORMALIZED BY:	Not norm						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code		75 ambient 22					
Mean		11.1					
Minimum		10.4					
Maximum		11.7					
C.V.(%)		5.88					
B-value E ^{sbs} Distributior	1	(1)					
1 23	1						
(ksi) C ₁ C ₂							
02							
No. Specin	nens	3					
No. Batche		1					
Data Class	3	Screening					

(1) Insufficient observations to complete the statistical evaluations.

MATERIAL:	Celion 30	000/F670 8-harn		Table 4.5.1(f) C/PI 384-8HS			
RESIN CONTENT:30-34 wt%FIBER VOLUME:57-64 %PLY THICKNESS:0.0132-0.0144 in.			COMP: DENSITY: VOID CONTENT:	0.0-0.62%	n ³	Celion 3000/F670 SBS, 31-plane [0₅]₅ 75/A	
TEST METHOD:			MODULUS CALCU	JLATION:		Screening	
ASTM D 2344-84							
NORMALIZED BY:	Not norm						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code		75 ambient 22					
Mean		10.9					
Minimum		9.70					
Maximum		12.0					
C.V.(%)		6.15					
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	n	(1) ANOVA					
(ksi) C ₁		0.722					
(KSI) C_1 C_2		4.78					
No. Specir No. Batche Data Class	es	9 3 Screening					

(1) Short beam strength test data are approved for Screening Data Class only.

4.6 CARBON - PHENOLIC COMPOSITES

4.7 CARBON - SILICONE COMPOSITES

4.8 CARBON - POLYBENZIMIDAZOLE COMPOSITES

4.9 CARBON - PEEK COMPOSITES

4.9.1 IM6 12k/APC-2 unidirectional tape

Material Description:

Material: IM6 12k/APC-2

Form: Unidirectional tape, fiber areal weight of 150 g/m², typical cured resin content of 32%, typical cured ply thickness of 0.0053 inches.

Processing: Autoclave cure; 720°F, 30-45 mins., 60 psi.

General Supplier Information:

- Fiber: IM6 fibers are continuous, intermediate modulus carbon filaments made from PAN precursor, surface treated to improve handling characteristics and structural properties. Filament count is 12,000 filaments per tow. Typical tensile modulus is 40 x 10⁶ psi. Typical tensile strength is 635,000 psi.
- Matrix: APC-2 is a semi-crystalline thermoplastic (polyetheretherketone, PEEK) resin that has high toughness and damage tolerance. It can be stored indefinitely at ambient conditions.

Maximum Short Term Service Temperature: 250°F (dry), 250°F (wet)

Typical applications: Primary and secondary structural applications on commercial and military aircraft, space components.

Data Analysis Summary:

1. Data are from publicly available report, Reference 4.9.1.

4.9.1 IM6 12k/APC-2 unidirectional tape*

MATERIAL:	IM6 12k/A	APC-2 unidired	ctional tape			C/PEEK - UT IM6/APC-2 Summary
FORM:	Fiberite IN	/16/APC-2 unio	directional tap	be prepreg		
FIBER:	Hercules	IM6 12k		MATRIX:	Fiberite APC-2	
T _g (dry):	291°F	T _g (wet):	309°F	T _g METHOD:	DMA	
PROCESSING:	Autoclave	e cure: 720°F,	30 - 45 minu	tes, 60 psig		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	Ţ
Date of resin manufacture	Date of data submittal 12/88	
Date of prepreg manufacture	Date of analysis 1/93	
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	74°F/A	-67°F/A	180°F/A	250°F/A	180°F/O	74°F/W	180°F/W
Tension, 1-axis	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS	SSSS
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S			
Tension, 3-axis							
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S	SS-S
Compression, 2-axis							
Compression, 3-axis							
Shear, 12-plane	SS	SS	SS	SS	SS	SS	SS
Shear, 23-plane							
Shear, 31-plane							

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.73		
Resin Density	(g/cm ³)	1.28		
Composite Density	(g/cm ³)	1.55	1.54 - 1.58	ASTM D 792
Fiber Areal Weight	(g/m ²)			
Fiber Volume	(%)	60	60 - 62	
Ply Thickness	(in)	0.0054	0.0052 - 0.0058	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

RESIN C FIBER V	MATERIAL:IM6 12k/APC-2 unidirectional tapeRESIN CONTENT:32 wt%COMP: DENSITY:1.55 g/cm3FIBER VOLUME:61-62 %VOID CONTENT:0.0-0.2%PLY THICKNESS:0.0053-0.0054 in.0.0053-0.0054 in.						Table 4.9.1(a) C/PEEK - UT IM6/APC-2 Tension, 1-axis [0] ₈ 74/A, -67/A, 180/A		
TEST M	ETHOD:		//A, 180/A ening						
AST	TM D 3039-76								
NORMA	LIZED BY: Spec	cimen thickness	and batch fibe	er volume to 60%	% (0.0055 in. C	PT)			
	ature (°F) Content (%) um at T, RH	7 amb		-6 amb			30 bient		
Source C		(1)	(1)	(1	1)		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	350 266 426 15.9	370 282 455 16.0	376 326 412 8.69	398 345 439 8.93	327 234 402 17.3	344 248 421 16.8		
F_1^{tu}	B-value Distribution	(2) Normal 350	(2) Normal 370	(2) Normal 376	(2) Normal 398	(2) Normal 327	(2) Normal 344		
(ksi)	$C_1 C_2$	55.5	59.3	376 32.7	398 35.6	56.4	58.0		
	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		6 1 Screening			
\mathbf{E}_{1}^{t}	Mean Minimum Maximum C.V.(%)	21.6 21.3 22.0 1.41	22.9 22.4 23.3 1.58	22.0 20.9 23.2 3.35	23.3 22.2 24.5 3.26	23.2 22.3 23.7 2.24	24.4 23.6 25.0 2.17		
(Msi)	No. Specimens No. Batches Data Class	6 1 Screening		6 1 Screening		e Scree	1		
	Mean		0.342	00100	0.357		0.355		
v_{12}^{t}	No. Specimens No. Batches			6 1			1		
	Data Class Mean Minimum Maximum C.V.(%)	Scree	13600 8100 17500 24.6	Scree	15900 13500 17200 9.23	Scree	ening 14100 10400 16800 14.9		
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(2) Normal		(2) Normal		(2) Normal		
(με)	C ₁ C ₂		13600 3350		15900 1470		14100 2100		
	No. Specimens No. Batches Data Class	6 1 Scree		6 1					

(1) Reference 4.9.1.

Data Class

(2) Basis values are presented only for A and B data classes.

Screening

Screening

MATERI	AL: IN	16 12k/APC-2 unic	lirectional tape		5 g/cm ³	Table 4. C/PEE		
FIBER V	OLUME: 6'	2 wt% I-62 % 0053-0.0054 in.	Comp: De Void Con	IM6/AI Tension, [0]	, 1-axis			
	CRINE 35. 0.		ری 250/A, 74/0.139					
TEST ME	ETHOD:	N:	Scree					
AST	M D 3039-76				_			
NORMAI	LIZED BY: S	pecimen thickness	and batch fibe	er volume to 60%	% (0.0055 in.	CPT)		
Tempera			50	18		7		
	Content (%)	amb	pient	0.1		0.1		
Source C	um at T, RH Code	(2	2)	(1		160 F	, 95% 2)	
000100 0		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	304	322	369	390	352	371	
	Minimum	253	269	303	320	271	286	
	Maximum	341	363	403	425	415	434	
	C.V.(%)	11.4	11.4	12.3	12.2	14.6	14.2	
	B-value	(3)	(3)	(3)	(3)	(3)	(3)	
F ₁ ^{tu}	Distribution	Normal	Normal	Normal	Normal	Normal	Normal	
(ksi)	C ₁	304	322	369	390	352	371	
(10)	C_2	34.7	36.6	45.3	47.6	51.4	52.6	
	No. Specimen	s 6	3	5	i	6	6	
	No. Batches		1		1		1	
	Data Class		Screening		Screening		Screening	
	Mean	21.4	22.7	21.8	23.0	21.2	22.3	
	Minimum	20.5 22.1	21.9 23.4	20.9 22.2	22.1	20.4 22.0	21.6	
Et	Maximum C.V.(%)	22.1	23.4 2.42	22.2	23.5 2.42	3.15	23.0 3.04	
E_1^t	0. V.(70)	2.70	2.72	2.72	2.72	3.15	5.04	
(Msi)	No. Specimen	s e	6	5		e	6	
	No. Batches		1	1		1		
	Data Class	Scree		Scree		Scree		
	Mean No. Specimen	c 4	0.338 S	5	0.366	6	0.372	
v ^t	No. Batches		1	1			1	
v_{12}^t	Data Class	Scree	ening	Scree	ning	Scro	ening	
	Mean	00100	14800	00100	16300	00100	18100	
	Minimum		12500		14400		15700	
	Maximum		16400		17200		20800	
	C.V.(%)		11.8		6.70		10.8	
	B-value		(3)		(3)		(3)	
$arepsilon_1^{ ext{tu}}$	Distribution		Normal		Normal		Normal	
(με)	C ₁		14800		16300		18100	
(με)	C_2		1760		1090		1960	
	No. Specimen	s e	6	5	i	6	6	
	No. Batches		1	1		1		
	Data Class	Soro	oning	Scroo	nina	Soro	oping	

Data ClassScreeningScreening(1)Conditioned at 160°F, 96% relative humidity for 3 days (75% saturation).

(2) Reference 4.9.1.

(3) Basis values are presented only for A and B data classes.

MATERI	,	12k/APC-2 unid					Table 4.9.1(c) C/PEEK - UT
FIBER V	CONTENT: 32 wt% COMP: DENSITY: 1.55 g/cm ³ /OLUME: 61-62 % VOID CONTENT: 0.0-0.2% ICKNESS: 0.0053-0.0054 in. VOID CONTENT: 0.0-0.2%			IM6/APC-2 Tension, 1-axis [0] ₈ 180/0.14%			
TEST ME	ETHOD:		MODULUS	S CALCUL		N:	Screening
AST	M D 3039-76						
NORMAL	LIZED BY: Spec	cimen thickness	and batch fibe	er volume	to 60%	% (0.0055 in.	CPT)
Tempera		18					
	Content (%)	0.1					
Source C	um at T, RH	160°F (1					
Source C	JUGE	Normalized) Measured	Normali	zed	Measured	Normalized Measured
-	Mean	364	385	Norman	200	Measurea	
	Minimum	325	344				
	Maximum	411	436				
	C.V.(%)	10.2	10.1				
	. .						
tu	B-value	(2)	(2)				
F_1^{tu}	Distribution	Normal	Normal				
(ksi)	C ₁	364	385				
	C ₂	37.2	38.8				
	No. Specimens	6	1				
	No. Batches	1					
	Data Class	Scree	ening				
	Mean	21.2	22.4				
	Minimum	20.5	21.8				
	Maximum	22.2	23.2				
E_1^t	C.V.(%)	3.14	2.77				
<i></i>							
(Msi)	No. Specimens	6					
	No. Batches Data Class	1 Scree					
	Mean	00100	0.332				1
	No. Specimens	6					
v_{12}^{t}	No. Batches	1					
• 12	Data Class	Scree	enina				
	Mean	00,00	15400				
	Minimum		13600				
	Maximum		17200				
	C.V.(%)		9.24				
	P volue		(0)				
_ fu	B-value Distribution		(2) Normal				
$arepsilon_1^{ ext{tu}}$							
(με)	C ₁		15400				
	C ₂		1420				
	No. Specimens	6	:				
	No. Batches	1	,				
	Data Class	Scree	nina				

(1) Reference 4.9.1.

Data Class

(2) Basis values are presented only for A and B data classes.

MATERIAL:	IM6 12k/APC-2 unidirectional tape						
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	31-34 wt% 60-62 % 0.0054-0.0058 in.	COMP: DENSITY: VOID CONTENT:	1.55 g/cm ³ 0.0%				

Table 4.9.1(d)
C/PEEK-UT
IM6/APC-2
Tension, 2-axis
[90] 16
74/A, -67/A, 180/A,
250/A
Screening

TEST METHOD:

ASTM D 3039-76

MODULUS CALCULATION:

NORMALIZED BY: Not normalized

Tempe	rature (°F)	74	-67	180	250	
	re Content (%)	ambient	ambient	ambient	ambient	
	rium at T, RH					
Source	Code	(1)	(1)	(1)	(1)	
	Mean	9.41	9.67	11.1	9.07	
	Minimum	8.53	8.72	10.0	7.30	
	Maximum	10.6	10.7	12.2	9.72	
	C.V.(%)	9.35	6.52	8.87	10.1	
	B-value	(2)	(2)	(2)	(2)	
 tu	Distribution	Normal	Normal	Normal	Normal	
F ₂ ^{tu}						
(ksi)	C ₁	9.41	9.67	11.1	9.07	
	C ₂	0.880	0.631	0.985	0.916	
	No. Specimens	6	6	6	6	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean	1.28	1.41	1.22	1.32	
	Minimum	1.24	1.35	1.17	1.27	
	Maximum	1.36	1.46	1.25	1.38	
E_2^t	C.V.(%)	3.33	3.32	2.13	3.44	
2						
(Msi)	No. Specimens	6	6	6	6	
· · /	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
	Mean					
	No. Specimens					
v_{21}^{t}	No. Batches					
	Data Class					
	Mean	7610	7120	10900	12300	
	Minimum	6650	6450	8850	8510	
	Maximum	8830	8180	14900	23600	
	C.V.(%)	11.2	8.15	20.0	45.5	
	B-value	(2)	(2)	(2)	(2)	
$arepsilon_2^{ ext{tu}}$	Distribution	Normal	Normal	Normal	Nonpara.	
	C ₁	7610	7120	10900	5	
(με)				2180		
	C ₂	850	581	2180	3.06	
	No. Specimens	6	6	6	6	
	No. Batches	1	1	1	1	
	Data Class	Screening	Screening	Screening	Screening	
I		. 3	5	5	. 3	

(1) Reference 4.9.1.

MATERI	,		Table 4.9.1(e) C/PEEK - UT					
FIBER V	SIN CONTENT: 32 wt% COMP: DENSITY: 1.55 g/cm ³ VER VOLUME: 60-62 % VOID CONTENT: 0.0% Y THICKNESS: 0.0054-0.0058 in. VIII CONTENT: 0.0%					IM6// Compress [0	APC-2 sion, 1-axis)] ₁₆	
TEST ME	ETHOD:		7/A, 180/A ening					
AST	M D 3410A-87							
NORMALIZED BY: Specimen thickness and batch fiber volume to 60% (0.0055 in. CPT)								
	tture (°F) Content (%) um at T, RH	74 amb		-6 amb		18 amb		
Source C		(1)	(1)	(1)	
000.000		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	167	169	156	160	156	155	
	Minimum	139	144	115	118	103	96.7	
	Maximum	197	200	179	181	195	190	
	C.V.(%)	13.3	13.3	16.0	15.6	20.2	20.4	
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	(2) Normal	
(ksi)	C ₁	167	169	156	160	156	155	
(((3))	C_2	22.1	22.4	25.0	24.9	31.5	31.6	
	No. Specimens No. Batches	6 1		1	6 1		i	
-	Data Class	Screening		Scree		Screening		
	Mean	19.4	19.7	20.4	20.9	21.4	21.2	
	Minimum	17.6	18.1	16.9	17.3	17.0	16.0	
ъc	Maximum C.V.(%)	20.9 6.54	21.2 7.17	24.0 12.2	24.8 12.6	27.5 16.1	26.7 16.1	
E_1^c	0. v.(76)	0.04	7.17	12.2	12.0	10.1	10.1	
(Msi)	No. Specimens	6	;	6	6	6	i	
	No. Batches	1		1		1 Screening		
	Data Class Mean	Scree	ening	Scree	ening	Scree	ening	
C	No. Specimens No. Batches							
v_{12}^{c}	Data Class							
	Mean		8790		7910		8010	
	Minimum		7780		4510		5950	
	Maximum		10500		9630		9350	
	C.V.(%)		11.8		24.7		14.9	
cu	B-value Distribution		(2) Normal		(2) Normal		(2) Normal	
ε_1^{cu}								
(με)	C ₁		8790		7910		8010	
	C ₂		1040		1950		1200	
	No. Specimens	6	;	6	6	6	i	
	No. Batches	1		1		1		

(1) Reference 4.9.1.

Data Class

(2) Basis values are presented only for A and B data classes.

Screening

Screening

MATERI	AL: IM6		directional tape			Та	able 4.9.	1(f)	
FIBER V		vt% 32 % 054-0.0058 in.	COMP: DE VOID CON		1.55 g/cm ³ 0.0%	l Comp	M6/APC pression [0] ₁₆	-2 , 1-axis	
TEST ME	ETHOD:		MODULUS	S CALCUL	S CALCULATION: Screening				
AST	M D 3410A-87				•				
NORMAI	LIZED BY: Spe	cimen thicknes	s and batch fibe	er volume to	o 60% (0.0055 ii	n. CPT)			
Tempera			50		180				
	Content (%) um at T, RH	am	bient		0.097				
Source C		(2)		(1) (2)			90 /0	
000.000		Normalized	Measured	Normaliz	Normalized Measured Normalized			Measured	
	Mean	129	126	162	160	17		176	
	Minimum	70.0	71.5	156	146				
	Maximum	154	145	168	169				
	C.V.(%)	23.6	21.8	3.25	5.36	9.	6	9.7	
	B-value	(3)	(3)	(3)	(3)	(3	5)	(3)	
F_1^{cu}	Distribution	Normal	Nonpara.	Norma				Normal	
(ksi)	C ₁	129	5	162	160	17	'4	176	
(101)	C_2	30.5	3.06	5.26	8.59			17.1	
	No. Specimens		6		5		6		
	No. Batches	1			1		1		
	Data Class		ening		Screening				
	Mean Minimum	21.2 19.6	20.7 19.0	19.5 18.7	19.3 18.6				
	Maximum	24.7	23.2	20.0	20.7				
E_1^c	C.V.(%)	8.47	7.37	2.91	4.42			7.38	
1									
(Msi)	No. Specimens		6		5		6		
	No. Batches Data Class		1 ening	ç	1 Screening		Normal Normal 174 176 16.7 17.1 6 1 Screening 1 21.4 21.6 18.8 19.3 23.9 23.9 8.60 7.38 6 1 1 Screening		
	Mean		g		Jereering		74 0.12 160°F, 95% (2) nalized Measured 74 176 41 144 8690 9.7		
v_{12}^{c}	No. Specimens No. Batches								
12	Data Class								
	Mean		6860	T T	8310				
	Minimum		3380		7500				
	Maximum		8990		9390				
	C.V.(%)		28.7		8.94			23.5	
	B-value		(3)		(3)			(3)	
$arepsilon_1^{ m cu}$	Distribution		Normal		Normal				
(με)	C ₁		6860		8310			8690	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₂		1970		743				
	No. Specimens		6		5		e		
	No. Batches		1		5 1				
	Data Class	Scre	ening		Screening			ning	
(1) 0	ditioned at 160°E							-	

(1) Conditioned at 160°F, 95% relative humidity for 10 days (75% saturation).

(2) Reference 4.9.1.

MATERI		12k/APC-2 unid					Table 4.9.1(g)
FIBER V						C/PEEK - UT IM6/APC-2 Compression, 1-axis [0] ₁₆	
TEST METHOD: MODULUS CALCULATION:							180/W Screening
	M D 3410A-87						J
NORMAI	LIZED BY: Spe	cimen thickness	and batch fibe	er volume	to 60%	6 (0.0055 in. C	PT)
	Content (%) um at T, RH	18 0.′ 160°F (1	l1 , 95%				
		Normalized	Measured	Normal	ized	Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	154 105 189 18.2	151 98.5 183 19.3				
F ₁ ^{cu}	B-value Distribution	(2) Normal	(2) Normal				
(ksi)	$\begin{array}{c} C_1 \\ C_2 \end{array}$	154 28.0	151 29.3				
	No. Specimens No. Batches Data Class	6 1 Scree					
E_1^c	Mean Minimum Maximum C.V.(%)	20.3 15.6 25.3 18.4	19.8 15.7 24.6 17.6				
(Msi)	No. Specimens No. Batches Data Class	6 1 Scree					
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class Mean Minimum Maximum C.V.(%)		8180 6580 9500 13.0				
$\varepsilon_1^{ m cu}$	B-value Distribution		(2) Normal				
(με)	C ₁ C ₂		8180 1070				
	No. Specimens No. Batches Data Class	6 1 Scree					

(1) Reference 4.9.1.

MATERIA		2k/APC-2 unidirection			Tab	Table 4.9.1(h) C/PEEK - UT				
RESIN CO FIBER VO PLY THIC	DLUME: 61 %		COMP: DENSITY: /OID CONTENT:	1.55 g/cm ³ 0.0-0.2%	IN Shea	C/PEEK - 01 IM6/APC-2 Shear, 12-plane [±45]₄s 74/A, -67/A, 180/A, 250/A				
TEST ME	THOD:	1	MODULUS CALC	JLATION:	S	creening				
AST	/I D 3518-76									
NORMALI	NORMALIZED BY: Not normalized									
Temperate	ure (°F)	74	-67	180	250					
Moisture C Equilibriur	Content (%) n at T, RH	ambient	ambient	ambient	ambient					
Source Co	ode	(1)	(1)	(1)	(1)					
	Mean	23.9	25.4	22.4	19.8					
	Minimum	18.9	18.1	17.2	14.2					
	Maximum	27.8	29.0	25.3	23.1					
	C.V.(%)	14.8	14.8	15.6	15.1					
	B-value	(2)	(2)	(2)	(2)					
F_{12}^{su}	Distribution	Normal	Normal	Normal	Normal					
(ksi)	C ₁	23.9	25.4	22.4	19.8					
()	C ₂	3.53	3.77	3.49	2.98					
	No. Specimens	6	6	6	6					
	No. Batches	1	1	1	1					
	Data Class	Screening	Screening	Screening	Screening					
	Mean	0.78	0.91	0.78	0.71					
	Minimum	0.73	0.83	0.72	0.63					
	Maximum	0.83	0.96	0.86	0.79					
G ^s ₁₂	C.V.(%)	5.5	5.5	6.2	9.3					
(Msi)	No. Specimens	6	6	6	6					
(10151)	No. Batches	1	1	1	1					
	Data Class	Screening	Screening	Screening	Screening					
	Mean	g	g	g	g					
	Minimum									
	Maximum									
	C.V.(%)									
	B-value									
2 su	Distribution									
γ_{12}^{su}	C ₁									
(με)	C_1 C_2									
	No. Specimens									
	No. Batches									

(1) Reference 4.9.1.

Data Class

MATERIA	,	2k/APC-2 unidirection			Table 4.9.1(i)
RESIN CO FIBER VC PLY THIC	DLUME: 61 %		Comp: Density: /OID Content:	1.55 g/cm ³ 0.0-0.2%	C/PEEK - UT IM6/APC-2 Shear, 12-plane [±45] _{4s} 74/0.21%, 180/0.17%,
TEST ME	THOD:	ı	MODULUS CALC	ULATION:	180/0.20% Screening
ASTN	/I D 3518-76				
NORMALI	ZED BY: Not n	ormalized			
Temperate	ure (°F)	180	74	180	
Moisture C	Content (%)	0.17	0.21	0.20	
Equilibriur	n at T, RH	(1)	160°F, 95%	160°F, 95%	
Source Co	ode	(2)	(2)	(2)	
	Mean	23.3	23.0	20.0	
	Minimum	21.8	16.2	14.5	
	Maximum	24.0	26.7	26.1	
	C.V.(%)	3.85	15.4	22.4	
	B-value	(3)	(3)	(3)	
F ₁₂ ^{su}	Distribution	Normal	Normal	Normal	
(ksi)	C ₁	23.3	23.0	20.0	
(KSI)	C_1 C_2	0.897	3.55	4.48	
	02	0.097	5.55	4.40	
	No. Specimens	5	6	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean	0.76	0.79	0.71	
	Minimum	0.74	0.65	0.64	
	Maximum	0.78	0.89	0.78	
G_{12}^s	C.V.(%)	2.7	10	9.0	
- 12					
(Msi)	No. Specimens	4	6	6	
	No. Batches	1	1	1	
	Data Class	Screening	Screening	Screening	
	Mean				
	Minimum				
	Maximum				
	C.V.(%)				
	B-value				
. SU	Distribution				
$\gamma_{12}^{\rm su}$					
(με)	C ₁				
	C ₂				
	No. Specimens				
	No. Batches				
	Data Class				
	1000		1		1

(1) Conditioned at 160°F, 95% relative humidity for 27 days (75% saturation).

(2) Reference 4.9.1.

4.10 CARBON – CYANATE ESTER COMPOSITES

4.10.1 M55J 6k/954-3 unidirectional tape

Material Description:

- Material: M55J 6k/954
- Form: Unidirectional tape, nominal fiber areal weight of 72.9 g/m², nominal cured resin content of 27%, typical cured ply thickness of 0.0024 inches.
- Processing: Autoclave cure; 350°F, 100 psi for two hours

General Supplier Information:

Fiber: M55J 6k fibers are continuous untwisted carbon filaments made from PAN precursor. Filament count is 6,000 filaments per tow. Typical tensile modulus is 78 x 10⁶ psi. Typical tensile strength is 583,000 psi.

Matrix: 954 is a 350°F curing cyanate ester resin.

Maximum Short Term Service Temperature: 350°F (dry), 250°F (wet)

Typical applications: Dimensionally stable structure for optical instruments

4.10.1 M55J 6k/954-3 unidirectional tape

MATERIAL:	M55J 6k/95	/I55J 6k/954-3 unidirectional tape							
FORM:	M55J 6k/95	55J 6k/954-3 unidirectional tape prepreg							
FIBER:	Toray M55J no twist	Toray M55J 6k, surface treated Type 5, no twist			Hexcel 954-3				
T _g (dry):	390°F	T _g (wet):	340°F	Tg METHOD:	TMA flexure @ rar	mp rate 70°F/min			
PROCESSING:	Autoclave c	ure: 350°F,	2 hrs., 100 psi						

Date of fiber manufacture	1/96 - 2/97	Date of testing	1/96 - 7/97
Date of resin manufacture	1/96 - 7/97	Date of data submittal	10/1/97
Date of prepreg manufacture	1/96 - 7/97	Date of analysis	9/98
Date of composite manufacture	1/96 - 7/97		

LAMINA PROPERTY SUMMARY

aM						
aM						
S						
	aM	aM	aM	aM	aM	aM

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MIL-HDBK-17-2F Volume 2, Chapter 4 Carbon Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	1.91	1.91	
Resin Density	(g/cm ³)	1.19	1.19	ASTM D 792-86
Composite Density	(g/cm ³)	1.65	1.62 - 1.66	ASTM D 792-86
Fiber Areal Weight	(g/m ²)	72.9	71.2 - 75.1	ASTM D 3529-90
Fiber Volume	(%)	64	53 - 67	
Ply Thickness	(in)	0.0024	0.0023-0.0026	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	AL: M55J	6k/954-3 unidire	ectional tape		Table 4.10.1(a) C/CE 73-UT		
FIBER V	RESIN CONTENT: 22.3 - 24.1 wt% COMP: DENSITY: 1.66 - 1.67 g/cm ³ FIBER VOLUME: 53.1 - 65.4 % VOID CONTENT: 0.30 - 0.49% PLY THICKNESS: 0.0024 - 0.0025 in. MODULUS CALCULATION:						M55J/954-3 Tension, 1-axis [0] ₁₆ 72/A
TEST ME	ETHOD:		MODULU	S CALCU	LATIO	N:	A55, Mean
AST	M D 3039-95		Chord	between	1000 a	and 3000 με	
NORMAL	IZED BY: Spec	imen thickness a		areal wei	ght to 6	50% (0.0024 ir	n. CPT)
Equilibriu	Content (%) m at T, RH	Amt	2 pient				
Source C	ode		2	N	12		Norma Read Advanced
	Mean	Normalized 324	Measured 320	Norma	lized	Measured	Normalized Measured
	Minimum	274	320 277				
	Maximum	367	387				
	C.V.(%)	5.37	7.52				
	A-value/B-value	250/286	216/260				
F_1^{tu}	Distribution	ANOVA	ANOVA				
(ksi)	C ₁	17.8	25.0				
	C ₂	2.15	2.41				
	No. Specimens)9				
	No. Batches	e	-				
	Data Class Mean	47.7	55 47.0				
	Minimum	43.6	43.1				
	Maximum	52.0	52.1				
E_1^t	C.V.(%)	3.66	4.21				
(Msi)	No. Specimens)9				
	No. Batches Data Class	Me	6 ean				
	Mean						
v_{12}^{t}	No. Specimens No. Batches						
12	Data Class						
	Mean						
	Minimum						
	Maximum C.V.(%)						
	B-value						
$\varepsilon_1^{ m tu}$	Distribution						
(με)	C ₁						
	C ₂						
	No. Specimens						
	No. Batches						
	Data Class						

MATERIAL:	M55J 6k/954-3 unidir	155J 6k/954-3 unidirectional tape				
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	23.5 - 27.4 wt% 54.9 - 66.1 % 0.0023 - 0.0024 in.	COMP: DENSITY: VOID CONTENT:	1.63 - 1.67 g/cm ³ 0.17 - 0.27%	C/CE 73-UT M55J/954-3 Compression, 1-axis [0] ₃₂ 72/A		
TEST METHOD:		MODULUS CALCULATION:				
SACMA SRM1-9	4 (1)	Chord between	1000 and 3000 με			
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 60% (0.0024 in. CPT)						
Temperature (°F)		72				

Tempera Moisture	ture (°F) Content (%)	7: Amb					
	ım at T, RH	7					
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean Minimum Maximum C.V.(%)	136 109 163 7.22	138 111 163 6.73				
F_1^{cu}	A-value/B-value Distribution	96/109 ANOVA	103/118 ANOVA				
(ksi)	C ₁ C ₂	10.4 2.62	9.50 2.14				
	No. Specimens No. Batches Data Class	10 6 A5	5				
E ₁ ^c	Mean Minimum Maximum C.V.(%)	44.8 39.8 49.3 4.70	45.6 42.3 50.0 3.78				
(Msi)	No. Specimens No. Batches Data Class	10 6 Me	6				
V ₁₂	Mean No. Specimens No. Batches Data Class						
ε ^{cu} (με)	Mean Minimum Maximum C.V.(%) B-value Distribution C ₁						
(µc)	C ₂ No. Specimens No. Batches Data Class						

(1) Torque on fixture bolts was "finger tight", not specifically torqued to 5-10 in-lbs.

MATERIA	L:	M55J 6k/	954-3 unidirec	tional tape		т	able 4.10.1(c) C/CE 73-UT
RESIN CONTENT: 23.5 - 27. FIBER VOLUME: 57.3 - 66. PLY THICKNESS: 0.0023 - 0				COMP: DENSITY: VOID CONTENT:	1.63 - 1.67 g/o 0.17 - 0.27%	cm ³	M55J/954-3 BS, 31 plane [0] ₃₂
	THOD: /I D 2344-95		72/A Screening				
NORMALI		Not norm	alized				
Temperatu Moisture C Equilibriun Source Co	Content (%) n at T, RH		72 Ambient 72				
	Mean Minimum Maximum C.V.(%)		11.1 9.90 12.2 5.31				
F ₁₃ ^{sbs} (ksi)	A-value/E Distributio C1		(1) ANOVA 0.623				
	C ₂ No. Spec No. Batcl	hes	2.68 113 6				
	Data Cla	SS	Screening				

(1) Short beam strength test data are approved for Screening Data Class only.

REFERENCES

- 4.2.27 Askins, Robert, "Characterization of EA9396 Epoxy Resin for Composite Repair Applications," University of Dayton Research Center, UDR-TR-91-77, WL-TR-92-4060, October 1991.
- Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New 4.4.4 Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.
- 4.9.1Rondeau, R.A., Askins, D. R., and Sjoblom, P., "Development of Engineering Data on New Aerospace Materials," University of Dayton Research Institute, UDR-TR-88-88, AFWAL-TR-88-4217, December 1988, Distribution authorized to DoD and DoD contractors only; critical technology; September 1988. Other requests for this document should be referred to AFWAL/MLSE, OH 45433-6533.

CHAPTER 5 ARAMID FIBER COMPOSITES

This section is reserved for future use.

- 5.1 INTRODUCTION
- 5.2 ARAMID EPOXY COMPOSITES
- 5.3 ARAMID POLYESTER COMPOSITES
- 5.4 ARAMID BISMALEIMIDE COMPOSITES
- 5.5 ARAMID POLYIMIDE COMPOSITES
- 5.6 ARAMID PHENOLIC COMPOSITES
- 5.7 ARAMID SILICON COMPOSITES
- 5.8 ARAMID POLYBENZIMIDAZOLE COMPOSITES
- 5.9 ARAMID PEEK COMPOSITES

CHAPTER 6 GLASS FIBER COMPOSITES

6.1 INTRODUCTION

6.2 GLASS\EPOXY COMPOSITES

6.2.1 S2-449 43k/SP381 unidirectional tape

Material Description:

Material: S2-449 17k/PR381

- Form: Unidirectional tape, fiber areal weight of 111 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0033 0.0037 inches.
- Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus, impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish. Roving of 17,000 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

6.2.1 S2-449 43k/SP381 unidirectional tape

MATERIAL:	S2-449 43.5k/SP 381 unidirectional tape		SGI/Ep 284-UT S2-449/SP 381 Summary
FORM:	3M Scotchply SP 381 Uni S29 284 BW 33R	C Prepreg	
FIBER:	Owens Corning S2-449, no twist, no sur- face treatment, typical 449 glass sizing	MATRIX:	3M PR 381
T _g (dry):	280°F T _g (wet): 234°F	T _g METHOD:	SRM 18-94, RDA, G' onset
PROCESSING:	Autoclave cure: 260±10°F, 120±20 min., 50	psi	

Date of fiber manufacture	5/92 - 12/94	Date of testing	5/93 - 4/95
Date of resin manufacture	1/93 - 12/94	Date of data submittal	6/96
Date of prepreg manufacture	4/93 - 3/95	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

LAMINA PROPERTY SUMMARY

	75°F/A	-65°F/A	180°F/A	160°F/W	
Tension, 1-axis	BM-B	SS-S	SS-S	SS-S	
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S	
Tension, 3-axis					
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	SS	SS	SS	SS	
Shear, 23-plane					
Shear, 31-plane					
SBS, 31-plane	S	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for $F^{\rm sbs}$ conditioned in eight fluids.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.49		ASTM C 693
Resin Density	(g/cm ³)	1.216		ASTM D 792
Composite Density	(g/cm ³)	1.85	1.84 - 1.97	
Fiber Areal Weight	(g/m ²)	284	283 - 291	SRM 23B
Fiber Volume	(%)	50	47.3 - 56.1	
Ply Thickness	(in)	0.009	0.0070 - 0.0097	

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

RESIN CONTENT: 29-3 FIBER VOLUME: 47.3 PLY THICKNESS: 0.008		449 43.5k/SP 38 34 wt% 3-54.7 % 080-0.0096 in.	COMP: DE VOID CON	Table 6.2.1(a) SGI/Ep 284-UT S2-449/SP 381 Tension, 1-axis [0]₅ 73/A, -65/A, 180/A B30, Mean, Screening				
TEST ME				S CALCULATIO		B30, Mea	n, Screening	
SRM	1 4-88		Chord	between 1000	and 6000 $\mu\epsilon$			
NORMAL	IZED BY: Sp	ecimen thickness	and batch fibe	er areal weight	to 50% (0.009	00 in. CPT)		
	ture (°F) Content (%) ım at T, RH	7: Amb		-6 Amb			80 pient	
Source C		6	9	69	9	-	69	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	246 217 287 6.45	243 228 267 3.89	236 204 257 7.44	246 218 261 5.19	208 200 220 3.62	211 200 228 4.79	
F ₁ ^{tu}	B-value Distribution	198 ANOVA	219 ANOVA	(1) ANOVA	(1) Weibull	(1) ANOVA	(1) ANOVA	
(ksi)	C_1 C_2	16.8 2.82	9.78 2.45	21.4 16.6	252 28.3	8.15 9.69	11.7 14.1	
	No. Specimens No. Batches Data Class	33 6 B3	5	1 [.] 2 Scree	2	11 2 Screening		
E_1^t	Mean Minimum Maximum C.V.(%)	6.91 6.32 7.54 4.34	6.83 6.47 7.22 2.68	6.93 6.41 7.24 3.03	7.24 6.91 7.53 3.26	6.62 6.42 6.78 1.62	6.70 6.55 7.09 2.48	
(Msi)	No. Specimens No. Batches Data Class	32 6 Mean		11 2 Screening		11 2 Screening		
v_{12}^{t}	Mean No. Specimens No. Batches				·· <u>ə</u>		- ····J	
	Data Class Mean Minimum Maximum C.V.(%)		35600 33400 38300 3.83		34100 29500 36700 6.23		31500 30000 33800 4.21	
$\boldsymbol{arepsilon}_1^{ ext{tu}}$	B-value Distribution		32400 ANOVA		(1) ANOVA		(1) ANOVA	
(με)	C ₁ C ₂		1400 2.28		2440 13.9		1390 7.11	
	No. Specimens No. Batches Data Class	33 6 B3	5	1 ⁻ 2 Scree	<u>.</u>		1 2 ening	

MATERIA	AL: S2-4	49 43.5k/SP 38				_	Table 6.2.1(b) SGI/Ep 284-UT		
FIBER VOLUME: 49.3-		33 wt% COMP: DENSIT 3-51.1 % VOID CONTEN 388-0.0092 in. VOID CONTEN			5		S2-449/SP 381 Tension, 1-axis [0]₅ 160/W		
TEST ME	ETHOD:		MODULU	S CALCU	LATIO	N:	Screening		
SRM	A 4-88		Chord	between	1000 a	and 6000 µɛ			
	·	cimen thickness		er areal w	eight to	50% (0.0090	in. CPT)		
	Content (%) Im at T, RH	16 W (2 6	et 2)						
000100 0		Normalized	Measured	Norma	ized	Measured	Normalized Measured		
	Mean Minimum Maximum C.V.(%)	113 105 119 3.90	115 106 120 3.22						
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull						
(ksi)	C ₁ C ₂	115 32.6	116 40.5						
	No. Specimens No. Batches Data Class	1 2 Scree	2						
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	6.86 6.52 7.25 3.19	6.95 6.71 7.16 2.06						
(Msi)	No. Specimens No. Batches	1.							
	Data Class	Scree							
v_{12}^{t}	Mean No. Specimens No. Batches								
	Data Class Mean Minimum		16500 15600						
	Maximum C.V.(%)		17100 2.76						
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		16700 45.9						
	No. Specimens No. Batches Data Class	1 2 Scree	2						

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATER	RIAL: S2-4	49 43.5k/SP 38	31 unidirectiona			Table 6.2.1(c) SGI/Ep 284-UT		
RESIN CONTENT: 31-32 wt% FIBER VOLUME: 51.0-53.2 % PLY THICKNESS: 0.0081-0.0092 ir		-53.2 %	COMP: D VOID CO	ENSITY: 1.8 NTENT: 0-0	4-1.86 g/cm ³ .99%	S2-449/SP 381 Tension, 2-axis [90]₁₀		
TEST N	METHOD:		MODULU	S CALCULATI	ON:	73/A, -65A, 180/A, 160/W Screening		
	RM 4-88				and 3000 με (2			
NORM	ALIZED BY: Not i	normalized						
Tempe	rature (°F)	73	-65	180	160			
	e Content (%)	Ambient	Ambient	Ambient	Wet			
	ium at T, RH	<u> </u>	<u> </u>	<u> </u>	(3)			
Source		69	69	69	69			
	Mean Minimum	9.0 8.7	9.1 8.3	7.5 7.1	4.2 3.8			
	Maximum	9.3	9.8	7.6	3.0 4.7			
	C.V.(%)	2.3	4.7	2.7	7.5			
	B-value	(1)	(1)	(1)	(1)			
F_2^{tu}	Distribution	Weibull	Weibull	Normal	Weibull			
(ksi)	C ₁	9.1	9.3	7.5	4.3			
()	C ₂	49	24	0.20	14			
	No. Specimens	10	11	6	10			
	No. Batches	2	2	1	2			
	Data Class	Screening	Screening	Screening	Screening			
	Mean	1.93	2.10	1.53	1.07			
	Minimum Maximum	1.85 2.07	1.88 2.31	1.47 1.59	1.00 1.12			
r t	C.V.(%)	3.31	5.57	2.58	3.23			
E_2^t	0. v.(70)	5.51	5.57	2.00	0.20			
(Msi)	No. Specimens	10	11	6	10			
	No. Batches	2	2	1	2			
	Data Class	Screening	Screening	Screening	Screening			
v_{21}^{t}	Mean No. Specimens No. Batches							
- 21	Data Class							
	Mean	4700	4300	4900	3900			
	Minimum	4200	3800	4600	3400			
	Maximum	5100	4800	5100	4300			
	C.V.(%)	4.6	7.2	4.6	6.7			
atu	B-value Distribution	(1) Nonpara.	(1) Weibull	(1) Normal	(1) Weibull			
$\varepsilon_2^{\text{tu}}$		-						
(με)	C ₁ C ₂	6 2.1	4500 16	4900 220	4000 17			
	No. Specimens	10	11	6	10			
	No. Batches	2 Sorooping	2 Sereeping	1 Sereening	2 Sereening			
	Data Class	Screening	Screening	Screening	Screening			

Basis values are presented only for A and B data classes.
 Exception to SRM 4-88.
 Conditioned in 160°F water for 14 days.

MATERIA	AL: S2	-449 43.5k/SP 38	1 unidirectiona	al tape			6.2.1(d) 284-UT		
FIBER VOLUME: 49.3-		-33 wt% .3-56.1 % 0080-0.0094 in.	3-56.1 % VOID CONTENT: 0.12-0.50%				S2-449/SP 381 Compression, 1-axis [0]₅ 73/A, -65/A, 180/A		
TEST ME			MODULUS	S CALCULATIO	N:	Scree	ening		
SRM	1 1-88		Chord	between 1000	and 3000 µɛ				
NORMAL	LIZED BY: Sp	ecimen thickness	and batch fibe	er areal weight to	o 50% (0.009	0 in. CPT)			
Equilibriu	Content (%) Im at T, RH	7: Amb		-65 Ambi			80 bient		
Source C	ode	6		69			69		
		Normalized	Measured	Normalized	Measured	Normalized	Measured		
	Mean Minimum Maximum	168 141 199	182 149 215	170 153 184	177 162 196	150 137 166	166 154 179		
F ₁ ^{cu}	C.V.(%) B-value Distribution	10.4 (1) Weibull	10.8 (1) Weibull	5.20 (1) Weibull	5.59 (1) ANOVA	6.70 (1) ANOVA	4.93 (1) Weibull		
(ksi)	C ₁ C ₂	176 10.6	191 10.5	174 22.0	10.9 11.3	12.3 16.6	170 22.2		
	No. Specimens No. Batches Data Class	s 20 2 Scree		14 2 Scree		12 2 Screening			
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.96 6.71 7.20 2.43	7.06 6.67 7.34 2.68	6.87 6.75 7.01 1.40	7.20 6.75 7.68 4.16	6.76 6.54 6.94 1.74	6.95 6.75 7.16 2.22		
(Msi)	No. Specimens No. Batches Data Class	lo. Batches 2		2		10 2 Screening			
v_{12}^{c}	Mean No. Specimens No. Batches						oning		
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{ m cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class	3							

MATERIA	AL: S2-4	49 43.5k/SP 38	31 unidirectiona	al tape			Table 6.2.1(e) SGI/Ep 284-UT		
FIBER V	OLUME: 49.3	33 wt% COMP: DENSITY: 1.90-1.94 g/cm ³ 3-56.1 % VOID CONTENT: 0.12-0.50% 082-0.0090 in. 0.12-0.50% 0.12-0.50%			cm ³	S2-449/SP 381 Compression, 1-axis [0]₅ 160/W			
TEST ME	ETHOD:		MODULUS	S CALCU	LATION:		Screening		
SRM	/I 1-88		Chord	between	1000 and 300				
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er areal w	eight to 50% (0.009	0 in. CPT)		
	Content (%) Im at T, RH	16 W (2 6	'et 2)						
0001000		Normalized	Measured	Norma	lized Meas	ured	Normalized Measured		
	Mean Minimum Maximum C.V.(%)	139 130 146 3.48	146 131 157 5.27						
F ₁ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull						
(ksi)	C ₁ C ₂	141 37.4	149 22.6						
	No. Specimens No. Batches Data Class	1 2 Scree	2						
E ₁ ^c	Mean Minimum Maximum C.V.(%)	6.92 6.69 7.08 2.11	7.16 6.85 7.43 2.83						
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2						
<i>v</i> ^c ₁₂	Mean No. Specimens No. Batches								
	Data Class Mean Minimum Maximum C.V.(%)								
$\varepsilon_1^{ m cu}$	B-value Distribution								
(με)	C ₁ C ₂								
	No. Specimens No. Batches Data Class								

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL: S2-4	49 43.5k/SP 38	31 unidirectiona	l tape			6.2.1(f) 284-UT		
FIBER	VOLUME: 51.1	E: 51.1-54.5 % VOID CONTENT: 0.21-0.60%					S2-449/SP 381 Shear, 12-plane [±45] _{2S} 73/A, -65A, 180/A, 160/W		
TEST N	IETHOD:		MODULU	S CALCULATI	ON:		ening		
SR	RM 7-88		Chord	between 500 a	ind 3000 με, ax	tial			
NORM	ALIZED BY: Not	normalized							
Moistur	rature (°F) e Content (%) ium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet				
Source		69	69	69	(2) 69				
	Mean Minimum Maximum C.V.(%)	14.3 13.2 14.7 3.52	13.6 12.9 14.5 3.77	11.8 10.8 12.3 3.66	9.5 9.0 9.8 2.9				
F ₁₂ ^{su}	B-value Distribution	(1) Nonpara.	(1) Normal	(1) Weibull	(1) Weibull				
(ksi)	C ₁ C ₂	6 2.14	13.6 0.515	12.0 38.4	9.6 44				
	No. Specimens No. Batches Data Class	10 2 Screening	9 2 Screening	10 2 Screening	12 2 Screening				
G ₁₂	Mean Minimum Maximum C.V.(%)	0.689 0.648 0.729 3.62	0.881 0.837 0.952 5.06	0.555 0.541 0.578 2.26	0.470 0.455 0.480 1.76				
(Msi)	No. Specimens No. Batches Data Class	9 2 Screening	6 2 Screening	10 2 Screening	10 2 Screening				

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATERIAL: S2-4	149 43.5k/SP 38	31 unidirectiona	l tape		Table 6.2.1(g) SGI/Ep 284-U		
FIBER VOLUME: 47.6	84 wt% 5-53.1 % 170-0.0092 in.	COMP: D VOID COI	ENSITY: 1.8- NTENT: 0.0-	4-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂		
TEST METHOD: SRM 8-88		MODULU	S CALCULATIO	ON:	73/A, -65A, 180/A, [.] Screening	160/W	
NORMALIZED BY: Not	normalized						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 Ambient	-65 Ambient	180 Ambient	160 Wet (2)			
Source Code	69	69	69	69			
Mean Minimum Maximum C.V.(%)	12.4 11.6 13.2 4.16	14.6 13.9 15.6 3.32	8.7 8.2 9.0 2.9	7.2 7.0 7.4 1.7			
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) ANOVA	(1) Normal	(1) ANOVA	(1) Weibull			
(ksi) C ₁ C ₂	0.573 3.85	14.6 0.485	0.31 18	7.3 67			
No. Specimens No. Batches Data Class	25 4 Screening	14 2 Screening	14 2 Screening	13 2 Screening			

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

	149 43.5k/SP 38		-		Table 6.2.1(h) SGI/Ep 284-UT						
	/t% -53.1 % 792-0.00925 in.	COMP: D VOID COI		3-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂ 73/Fluids						
TEST METHOD: SRM 8-88		MODULU	S CALCULATIO	ON:	Screening						
NORMALIZED BY: Not normalized											
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 (2)	73 (3)	73 (4)	73 (5)							
Source Code	69 11.8	69 12.3	69 11.6	69 11.9							
Mean Minimum Maximum C.V.(%)	11.8 11.0 12.3 3.49	12.3 11.8 13.0 2.87	9.40 12.8 8.23	11.9 11.4 12.6 3.17							
$\begin{array}{c} \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weibull	(1) Normal	(1) ANOVA	(1) Normal							
(ksi) C ₁ C ₂	11.9 34.7	12.4 0.355	1.07 12.2	11.9 0.376							
No. Specimens No. Batches Data Class	14 2 Screening	14 2 Screening	14 2 Screening	14 2 Screening							

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.

(3) Conditioned in MIL-H-83282 hydraulic Fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

(4) Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

(5) Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

MATERIAL:	S2-449 43.5k	/SP 381 unidirection	al tape		Table 6.2.1(i) SGI/Ep 284-UT
RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:	30 wt% 52.9-53.1 % 0.00758-0.00	VOID CO		3-1.94 g/cm ³ -0.64%	S2-449/SP 381 SBS, 31-plane [0] ₁₂ 73/Fluids
TEST METHOD:		MODULI	US CALCULATI	ON:	Screening
SRM 8-88					
NORMALIZED BY:	Not normalize	ed			
Temperature (°F) Moisture Content (%) Equilibrium at T, RH	73 (2)		73 (4)	73 (5)	
Source Code	69		69	69	
Mean Minimum Maximum C.V.(%)	11. 11. 12. 3.4	1 10.9 6 12.6	11.7 10.6 12.3 4.02	11.8 11.3 12.3 2.91	
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) Weib		(1) Weibull	(1) ANOVA	
(ksi) C ₁ C ₂	12.0 30.7		11.9 37.2	0.386 12.6	
No. Specime No. Batches Data Class		2	13 2 Screening	14 2 Screening	

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

RESIN CONTENT: 30-3 FIBER VOLUME: 51.6		449 43.5k/SP 381 unidirectional tape 31wt% COMP: DENSITY: 1.92-1.94 g/cm ³ 5-53.5 % VOID CONTENT: 0-0.50% 086-0.0089 in.					Table 6.2.1(j) SGI/Ep 284-UT S2-449/SP 381 Tension, x-axis [±45/0/±45]s 73/A		
TEST ME	ETHOD:		MODULUS	Screening					
SRM	/ 4-88		Chord	between 1	000 a	and 3000 με			
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er areal wei	ght to	50% (0.009	0 in. CPT)		
	Content (%) Im at T, RH	7: Amb	ient						
		Normalized	Measured	Normaliz	ed	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	69.5 66.7 71.3 2.18	72.9 71.4 75.6 1.67						
F _x ^{tu}	B-value Distribution	(1) ANOVA	(1) Normal						
(ksi)	C ₁ C ₂	1.74 13.7	72.9 1.22						
	No. Specimens No. Batches Data Class	10 2 Scree	2						
E_x^t	Mean Minimum Maximum C.V.(%)	2.87 2.78 2.96 2.21	3.01 2.94 3.11 1.58						
(Msi)	No. Specimens No. Batches Data Class	10 2 Scree	2						
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches								
-	Data Class								
	Mean Minimum Maximum C.V.(%)		24200 23600 24900 1.69						
$\varepsilon_{\rm x}^{\rm tu}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		24400 65.4						
	No. Specimens No. Batches Data Class	10 2 Scree	2						

MATERI		32-449 43.5k/SP 38	31 unidirectiona	•	1.92-1.94 g/cm ³	Table 6.2.1(k) SGI/Ep 284-UT
FIBER V PLY THI	OLUME: 5 CKNESS: 0	0-31 wt% i1.6-53.5 % 0.0083-0.0090 in.	COMP: DE VOID CON	S2-449/SP 381 Tension, y-axis [±45/90/±45]s 73/A		
TEST ME			MODULU	S CALCUL	ATION:	Screening
SRN	/ 4-88		Chord	l between 1	000 and 3000 $\mu\epsilon$	
NORMAL	LIZED BY:	Specimen thickness	s and batch fibe	er areal we	ight to 50% (0.009	90 in. CPT)
	Content (%) Im at T, RH	Amt	3 bient 9			
Source C	JUGE	Normalized	Measured	Normaliz	ed Measured	Normalized Measured
	Mean Minimum Maximum C.V.(%)	24.9 23.9 25.9 2.29	26.2 24.7 27.3 2.94			
F _y ^{tu}	B-value Distribution	(1) Weibull	(1) Weibull			
(ksi)	C ₁ C ₂	25.1 47.1	26.5 42.2			
	No. Specime No. Batches Data Class		0 2 ening			
E_y^t	Mean Minimum Maximum C.V.(%)	2.15 2.10 2.20 1.33	2.26 2.18 2.39 3.50			
(Msi)	No. Specime No. Batches Data Class	2	0 2 ening			
v_{yx}^{t}	Mean No. Specime No. Batches		~			
	Data Class		11600			
	Mean Minimum Maximum C.V.(%)		10900 12000 2.65			
$\varepsilon_{\mathrm{y}}^{\mathrm{tu}}$	B-value Distribution		(1) Weibull			
(με)	C ₁ C ₂		11700 49.8			
	No. Specime No. Batches Data Class		0 2 ening			

6.2.2 S2-449 17k/SP 381 unidirectional tape

Material Description:

Material: S2-449 43.5k/3M PR381

Form: Unidirectional tape, fiber areal weight of 284 g/m², typical cured resin content of 28-33%, typical cured ply thickness of 0.0081 - 0.009 inches.

Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: S2 glass has enhanced properties in strength, modulus impact resistance and fatigue when compared to conventional E glass roving. The sizing for these fibers is an epoxy compatible 449 finish material. Rovings of 43,500 filaments. Typical tensile modulus is 12.5 to 13.0 Msi. Typical tensile strength is 665,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Primary and secondary structural applications where improved fatigue and excellent mechanical strength is important such as helicopters and general aviation.

6.2.2 S2-449 17k/SP 381 unidirectional tape

MATERIAL:	S2-449 17	7k/SP 381 unio	directional tape			SGI/Ep 111-UT S2-449/SP 381 Summary
FORM:	3M Scotch	nply SP 381 U	ni S29 111BW 33 RC			
FIBER:		orning S2-449 , typical 449 gl	, no twist, no surface lass sizing	MATRIX:	3M SP 381	
T _g (dry):	291°F	T _g (wet):	234°F	T _g METHOD:	SRM 18, RDA,	G" peak
PROCESSING:	Autoclave	cure: 260±10	0°F, 120±20 min., 50 p	si		

Date of fiber manufacture	8/91 - 12/94	Date of testing	6/93 - 4/96
Date of resin manufacture	11/91 - 5/95	Date of data submittal	6/96
Date of prepreg manufacture	11/91 - 2/96	Date of analysis	2/97
Date of composite manufacture	12/91 - 3/96		

LAMINA PROPERTY SUMMARY

	73°F/A	-65°F/A	180°F/A	160°F/W	
Tension, 1-axis	bM-b	SS-S	SS-S	SS-S	
Tension, 2-axis	SS-S	SS-S	SS-S	SS-S	
Tension, 3-axis					
Compression, 1-axis	SS-S	SS-S	SS-S	SS-S	
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane	IS	IS	IS	SS	
Shear, 23-plane					
Shear, 31-plane					
SBS, 31-plane	S	S	S	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Data are also included for F^{sbs} conditioned in eight fluids.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.49		ASTM C 693
Resin Density	(g/cm ³)	1.216		ASTM D 792
Composite Density	(g/cm ³)	1.85	1.82 - 1.94	
Fiber Areal Weight	(g/m ²)	111	111 - 113	SRM 23B
Fiber Volume	(%)	50	47.6 - 55.2	
Ply Thickness	(in)	0.0035	0.00303 - 0.00375	

LAMINATE PROPERTY SUMMARY

	73°F/A				
[±45/0/∓ 45]					
Tension, x-axis	SS-S				
Tension, y-axis	SS-S				

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

FIBER V	ONTENT: 29-3 OLUME: 47.6	49 17k/SP 381 6 wt% -54.0 % 32-0.0038 in.	unidirectional t COMP: DE VOID CON	NSITY: 1.85	-1.93 g/cm ³).17%	SGI/Ep S2-449 Tensio [0	Table 6.2.2(a) SGI/Ep 111-UT S2-449/SP 381 Tension, 1-axis [0] ₁₂	
TEST ME	ETHOD:		MODULUS	S CALCULATIO	N:	73/A, -65 B18, Mea	ō/A, 180/A n, Interim, ening	
SRM	/ 4-88			between 1000		-		
		cimen thickness						
Equilibriu	Content (%) Im at T, RH	7: Amb	pient	-6 Amb	pient	18 Amb	ient	
Source C	ode	7 Normalized		7 Normalized	-	7 Normalized	-	
	Moon	Normalized 255	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	255 243 277 3.40	248 228 274 5.07	267 233 287 6.52	274 251 302 5.96	225 218 237 3.13	225 216 234 2.59	
F ₁ ^{tu}	B-value Distribution	238 Normal	(2) ANOVA	(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	
(ksi)	C ₁ C ₂	255 8.65	13.6 3.53	274 21.3	281 18.1	228 32.9	228 43.2	
	No. Specimens No. Batches	21 4		1	2	1	2	
	Data Class	B1		Scree		Scree		
E_1^t	Mean Minimum Maximum C.V.(%)	6.93 6.61 7.18 2.29	6.75 6.26 7.16 4.37	7.01 6.70 7.31 2.98	7.19 6.98 7.49 2.19	6.73 6.50 7.09 2.80	6.73 6.50 7.09 2.95	
(Msi)	No. Specimens No. Batches	2		1		1		
	Data Class Mean	Me	an	Scree	ening	Scree	ening	
v_{12}^t	No. Specimens No. Batches Data Class							
	Mean Minimum Maximum C.V.(%)		36800 34600 38600 3.09		38000 33500 40900 5.85		33400 31000 35100 3.84	
B-value $arepsilon_1^{ ext{tu}}$ Distribution			34100 Weibull		(1) Weibull		(1) Weibull	
(με)	C ₁ C ₂		37300 37.9		39000 22.5		34000 34.9	
	No. Specimens No. Batches Data Class	2 4 B1	ł	1 2 Scree	2	1 2 Scree	<u>)</u>	

(1) Basis values are presented only for A and B data classes.(2) B-basis values calculated from less than five batches of data using the ANOVA method are not presented.

FIBER V	ONTENT: 29-3 OLUME: 49.0	449 17k/SP 381 31 wt% 0-50.1 % 034-0.0038 in.	unidirectional COMP: DE VOID CON	ENSITY:	1.90- 0.00%	1.93 g/cm ³ %	SGI/Ep S2-449 Tensio [0	Table 6.2.2(b) SGI/Ep 111-UT S2-449/SP 381 Tension, 1-axis [0] ₁₂ 160/W		
TEST ME	ETHOD:		MODULU	S CALCUL		N:		ening		
SRM	Л 4-88		Chord	between	1000 a	and 6000 με				
NORMAL	LIZED BY: Spe	cimen thickness	and batch fibe	er areal we	eight to	50% (0.0035	in. CPT)			
	Content (%) um at T, RH	16 Wi (2 7(et ')							
		Normalized	Measured	Normali	zed	Measured	Normalized	Measured		
	Mean Minimum Maximum C.V.(%)	116 107 123 4.34	113 108 123 3.54							
F ₁ ^{tu}	B-value Distribution	(1) Weibull	(1) Normal							
(ksi)	C ₁ C ₂	118 26.8	113 4.01							
	No. Specimens No. Batches Data Class	1: 2 Scree								
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V.(%)	6.84 6.50 7.12 2.57	6.71 6.49 6.97 1.99							
(Msi)	No. Specimens No. Batches	1:								
	Data Class	Scree	ening							
<i>v</i> ^t ₁₂	Mean No. Specimens No. Batches Data Class									
	Mean Minimum Maximum C.V.(%)		16900 15800 18100 3.90							
$arepsilon_1^{ ext{tu}}$	B-value Distribution		(1) Weibull							
(με)	C ₁ C ₂		17200 28.7							
	No. Specimens No. Batches Data Class	1: 2 Scree								

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

		49 17k/SP 381			8-1.92 g/cm ³	Table 6.2.2(c) SGI/Ep 111-UT S2-449/SP 381		
FIBER	VOLUME: 48.8	1 wt% -50.1 % 33-0.0036 in.	COMP: D VOID COI		Tension, 2-axis [90] ₂₀ 73/A, -65/A, 180/A, 160/W			
TEST N	/IETHOD:		MODULU	S CALCULATI	ON:	Screening		
SF	RM 4-88		Chord	between 1000	and 3000 με (2)		
NORM	ALIZED BY: Not	normalized						
Tempe	rature (°F)	73	-65	180	160			
	e Content (%)	Ambient	Ambient	Ambient	Wet			
Equilibr	ium at T, RH	70	70	70	(3) 70			
Source	Mean	8.7	10.0	6.4	3.6			
	Minimum	8.1	9.6	5.9	3.1			
	Maximum	9.0	10.3	6.7	3.9			
	C.V.(%)	3.9	3.6	4.0	9.0			
	B-value	(1)	(4)	(1)	(1)			
F_2^{tu}	Distribution	Normal		Normal	Normal			
(ksi)	C ₁	8.7		6.4	3.6			
()	C ₂	0.34		0.26	0.32			
	No. Specimens	5	3	8	5			
	No. Batches	1	1	2	1			
	Data Class	Screening	Screening	Screening	Screening			
	Mean Minimum	1.84	2.11 2.06	1.42	1.10			
	Maximum	1.82 1.91	2.06	1.34 1.55	1.05 1.16			
E_2^t	C.V.(%)	2.05	2.13	6.43	4.59			
E ₂	0.11(70)	2.00	2	0.10				
(Msi)	No. Specimens	5	3	4	5			
	No. Batches	1	1	1	1			
	Data Class	Screening	Screening	Screening	Screening			
t	Mean No. Specimens							
v_{21}^t	No. Batches							
	Data Class							
	Mean	4700	4730	4450	3280			
	Minimum	4400	4500	4200	3000			
	Maximum	4900	5000	4800 5.95	3600			
	C.V.(%)	4.26	5.32	0.90	8.18			
	B-value	(1)	(4)	(1)	(1)			
$arepsilon_2^{ ext{tu}}$	Distribution	Normal		Normal	Normal			
(με)	C ₁	4700		4450	3280			
N <i>1</i>	C ₂	200.0		265	268			
	No. Specimens	5	3	4	5			
	No. Batches	1	1	1	1			
	Data Class	Screening	Screening	Screening	Screening			

(1) Basis values are presented only for A and B data classes.

(2) Exception to SRM 4-88.

(3) Conditioned in 160°F water for 14 days.
(4) The statistical analysis is not completed for less than four specimens.

MATERI	AL: S2-4	49 17k/SP 381	unidirectional	tape			6.2.2(d) 111-UT
FIBER V PLY THI	OLUME: 50.1 CKNESS: 0.00	9 wt% -54.0 % 32-0.0035 in.	COMP: DE VOID CON	S2-449 Compress [0 73/A, -65	S2-449/SP 381 Compression, 1-axis [0] ₁₂ 73/A, -65/A, 180/A		
TEST ME				S CALCULATIO		Scre	ening
SRN	/ 1-88		Chord	between 1000	and 3000 με		
NORMAL	IZED BY: Spec	cimen thickness	and batch fibe	er areal weight to	o 50% (0.0035	in. CPT)	
	ture (°F) Content (%) ım at T, RH	7: Amb		-6 Amb		18 Amb	
Source C		70)	7	0	70	0
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	172	178	166	177	165	175
	Minimum	145	142	147	152	146	155
	Maximum	193 8.09	198 9.35	184 6.62	198 7.46	185 6.81	196 7.28
	C.V.(%) B-value	(1)	(1)	(1)	(1)	(1)	(1)
F_1^{cu}	Distribution	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull
(ksi)	C ₁ C ₂	178 15.2	185 14.7	171 17.7	183 16.0	170 16.6	181 16.4
	No. Specimens No. Batches Data Class	13 2 Screening		1: 2 Scree	2	12 2 Scree	2
	Mean	6.86	7.14	6.91	7.19	6.97	7.47
	Minimum	6.43	6.81	6.63	6.96	6.63	7.19
	Maximum	7.24	7.52	7.10	7.49	7.24	7.59
E_1^c	C.V.(%)	3.79	3.39	2.35	2.22	3.18	1.85
(Msi)	No. Specimens	10)	10	0	10	
	No. Batches	2		2		2	
	Data Class	Scree	ening	Scree	ening	Scree	ening
v_{12}^{c}	Mean No. Specimens No. Batches						
	Data Class						
	Mean Minimum Maximum C.V.(%)						
$\varepsilon_1^{ m cu}$	B-value Distribution						
ε ₁ (με)	C_1 C_2						
	No. Specimens No. Batches Data Class						

MATERIA	AL: S2-4	149 17k/SP 381	unidirectional	tape				6.2.2(e) 111-UT
FIBER V	OLUME: 50.1	29 wt% COMP: DENSITY: 1.85-1.92 g/cm ³ -54.0 % VOID CONTENT: 0-1.15% 033-0.0037 in. 0.0037 in. 0.0037 in.				S2-449 Compress [0	S2-449/SP 381 Compression, 1-axis [0] ₁₂ 160/W	
TEST ME	ETHOD:		S CALCUI		N:	Scre	ening	
SRM	/ 1-88		Chord	l between	1000 a	and 3000 με		
NORMAL	IZED BY: Spe	cimen thickness	and batch fibe	er areal we	eight to	50% (0.0035	in. CPT)	
Equilibriu	Content (%) Im at T, RH	16 W (2	et ?)					
Source C	Code	7						
	Maan	Normalized	Measured	Normal	zed	Measured	Normalized	Measured
	Mean Minimum	135 124	137 123					
	Maximum	143	146					
	C.V.(%)	3.51	4.83					
F ₁ ^{cu}	B-value Distribution	(1) Nonpara.	(1) ANOVA					
(ksi)	C ₁ C ₂	6 2.14	8.02 16.7					
	No. Specimens No. Batches Data Class	10 2 Scree	2					
	Mean	6.96	6.97					
	Minimum	6.69	6.75					
	Maximum	7.24	7.23					
E_1^c	C.V.(%)	2.44	2.16					
(Msi)	No. Specimens No. Batches	10	2					
	Data Class Mean	Scree	ening					
<i>v</i> ^c ₁₂	No. Specimens No. Batches							
	Data Class							
	Mean Minimum							
	Maximum C.V.(%)							
$\boldsymbol{arepsilon}_1^{\operatorname{cu}}$	B-value Distribution							
(με)	C ₁							
· · /	C ₂							
	No. Specimens No. Batches Data Class							

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATER	RIAL: S2-4	49 17k/SP 381	unidirectional t	ape		Table 6.2.2(f)
FIBER	CONTENT: 29-3 VOLUME: 48.8 IICKNESS: 0.00	5-1.89 g/cm ³ .74%	SGI/Ep 111-UT S2-449/SP 381 Shear, 12-plane [±45]₅s 73/A, -65/A,180/A,			
TEST	METHOD:	160/W Interim, Screening				
SF	RM 7-88		Chord	between 1000	and 3000 $\mu\epsilon$, a	xial
NORM	ALIZED BY: Not	normalized				
Moistur	rature (°F) re Content (%) rium at T, RH	73 Ambient 70	-65 Ambient 70	180 Ambient 70	160 Wet (2) 70	
Source	Mean Minimum Maximum C.V.(%)	19.7 18.9 20.3 2.18	25.7 24.7 26.2 1.85	15.0 14.0 15.5 2.67	11.1 10.7 11.9 3.43	
F ₁₂ ^{su}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	20.0 61.1	25.9 73.2	0.452 4.88	0.442 5.83	
	No. Specimens No. Batches Data Class	16 3 Interim	16 3 Interim	16 3 Interim	14 3 Screening	
G ₁₂	Mean Minimum Maximum C.V.(%)	0.681 0.627 0.745 5.29	0.808 0.772 0.850 3.32	0.539 0.513 0.583 4.06	0.467 0.440 0.490 2.96	
(Msi)	No. Specimens No. Batches Data Class	9 2 Screening	9 2 Screening	10 2 Screening	10 2 Screening	

Basis values are presented only for A and B data classes.
 Conditioned in 160°F water for 14 days.

MATERIAL: S2-	449 17k/SP 381	Table 6.2.2(g)					
FIBER VOLUME: 48.	35 wt% 3-55.2 % 029-0.0035 in.	COMP: D VOID CO		SGI/Ep 111-UT S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/A, -65/A, 180/A,			
TEST METHOD: SRM 8-88		MODULU	S CALCULATI	ON:	160/W Screening		
	normalized						
Temperature (°F) Moisture Content (%) Equilibrium at T, RH Source Code	73 Ambient 70	-65 Ambient 70	180 Ambient 70	160 Wet (2) 70			
Mean Minimum Maximum C.V.(%)	12.6 11.6 13.7 4.64	14.9 13.1 16.8 6.89	9.5 9.1 9.8 2.2	7.6 7.0 8.7 7.1			
$\begin{array}{c} & \text{B-value} \\ F_{31}^{sbs} & \text{Distribution} \end{array}$	(1) ANOVA	(1) Weibull	(1) Normal	(1) ANOVA			
(ksi) C ₁ C ₂	0.613 2.77	15.4 17.1	9.5 0.21	0.63 5.2			
No. Specimens No. Batches Data Class	32 5 Screening	14 2 Screening	17 3 Screening	18 3 Screening			

Short beam strength test data are approved for Screening Data Class only.
 Conditioned in 160°F water for 14 days.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

MATER	IAL: S	2-449 17k/SP 381	unidirectional t	ape		Table 6.2.2(h) SGI/Ep 111-UT
FIBER \	VOLUME: 50	7-30 wt%).1-51.6 % 0033-0.0037 in.	COMP: D VOID CO		2-1.94 g/cm ³ -0.12%	S3//2p 771-07 S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids
	1ETHOD: M 8-88		MODULU	S CALCULATI	ON:	Screening
NORMA	LIZED BY: N	ot normalized				
Moisture	ature (°F) e Content (%) ium at T, RH	73 (2)	73 (3)	73 (4)	73 (5)	
Source		70	70	70	70	
	Mean Minimum Maximum C.V.(%)	12.0 10.7 13.0 5.20	12.4 10.9 13.4 5.81	12.6 11.3 13.5 4.44	12.1 10.5 12.8 5.22	
F ₃₁ sbs	B-value Distribution	(1) Weibull	(1) Weibull	(1) Weibull	(1) ANOVA	
(ksi)	C ₁ C ₂	12.3 24.0	12.7 21.9	12.9 27.8	0.683 9.78	
	No. Specimens No. Batches Data Class	12 2 Screening	14 2 Screening	14 2 Screening	14 2 Screening	

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-A-8243 Anti-Icing Fluid at 32°F for 30 days.

(3) Conditioned in MIL-H-83282 hydraulic fluid at 160°F for 90 days. MIL-H-83282 was converted to MIL-PRF-83282 on September 30, 1997.

(4) Conditioned in MIL-H-5606 hydraulic fluid at 160°F for 90 days.

(5) Conditioned in MIL-T-5624 fuel at 75°F for 90 days. MIL-T-5624 was converted to MIL-PRF-5624 on November 22, 1996.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

MATER	RIAL:	S2-4	49 17k/SP 381	unidirectional t	ape		Table 6.2.2(i) SGI/Ep 111-UT
FIBER '	CONTENT: VOLUME: IICKNESS:	50.1·	0 wt% ·51.6 % 33-0.0037 in.	COMP: DI VOID COI		2-1.94 g/cm ³ -0.12%	S3//EP 111-01 S2-449/SP 381 SBS, 31-plane [0] ₃₀ 73/Fluids
	METHOD: RM 8-88			MODULU	ON:	Screening	
NORMA	ALIZED BY:	Not r	normalized				
Moistur	rature (°F) e Content (%) ium at T, RH		73 (2)	73 (3)	73 (4)	73 (5)	
Source			70	70	70	70	
	Mean Minimum Maximum C.V.(%)		12.6 10.3 13.5 6.49	12.6 11.6 13.6 3.86	11.8 11.1 12.4 3.79	11.9 10.2 12.9 6.19	
F ₃₁ sbs	B-value Distribution		(1) Weibull	(1) Weibull	(1) Weibull	(1) Weibull	
(ksi)	C ₁ C ₂		12.9 23.1	12.8 26.6	12.0 32.8	12.2 21.5	
	No. Specimer No. Batches Data Class	าร	14 2 Screening	14 2 Screening	13 2 Screening	13 2 Screening	

(1) Short beam strength test data are approved for Screening Data Class only.

(2) Conditioned in MIL-L-23699 lubricating oil at 160°F for 90 days. MIL-L-23699 was converted to MIL-PRF-23699 on May 21, 1997.

(3) Conditioned in MIL-L-7808 lubricating oil at 160°F for 90 days. MIL-L-7808 was converted to MIL-PRF-7808 on May 2, 1997.

(4) Conditioned in MIL-C-87936 cleaning fluid at 75°F for 7 days. MIL-C-87936 was canceled on March 1, 1995 and replaced with MIL-C-87937. MIL-C-87937 was converted to MIL-PRF-87937 on August 14, 1997.

(5) Conditioned in ASTM D 740 methyl ethyl ketone (MEK) at 75°F for 7 days.

MATERI	AL: S2-4	49 17k/SP 381	unidirectional	tape			Table 6.2.2(j) SGI/Ep 111-UT	
FIBER V	OLUME: 50.1	32 wt% COMP: DENSITY: 1.88-1.89 g/cm ³ 1-51.6 % VOID CONTENT: 0.0-0.74% 034-0.0036 in. 0.00000000000000000000000000000000000					S2-449/SP 381 Tension, x-axis [±45/0/±45] ₂₈ 73/A	
TEST ME	ETHOD:		MODULUS	S CALCU	LATION	1:	Screening	
SRN	A 4-88		Chord	between	1000 a	nd 3000 με		
		cimen thickness	and batch fibe	er areal w	eight to	50% (0.0035	in. CPT)	
Equilibriu	Content (%) Im at T, RH	7 Amb	pient					
Source C	Code	7 Normalized	0 Measured	Norma	izod	Measured	Normalized Measur	od
	Mean Minimum Maximum C.V.(%)	69.7 68.1 72.5 1.78	71.4 69.8 73.9 1.92	Norma		Neasureu	Normalizeu Measur	eu
F ^{tu} (ksi)	B-value Distribution C ₁	(1) Normal 69.7	(1) Weibull 72.1					
(noi)	C ₂ No. Specimens No. Batches Data Class	1.24 1.24 1 2 Scree	55.0 2					
E_x^t	Mean Minimum Maximum C.V.(%)	2.90 2.80 2.96 1.86	2.97 2.85 3.08 2.30					
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2					
$v_{\mathrm{xy}}^{\mathrm{t}}$	Mean No. Specimens No. Batches		~					
	Data Class Mean Minimum Maximum C.V.(%)		24100 23300 25200 2.49					
$\varepsilon_{\rm x}^{\rm tu}$ (µε)	B-value Distribution C ₁		(1) Weibull 24400					
	C ₂ No. Specimens No. Batches Data Class	1 2 Scree	2					

MATERI	AL: S2-	449 17k/SP 381	unidirectional	tape				6.2.2(k) 0 111-UT	
FIBER V	OLUME: 50.	32 wt% COMP: DENSITY: 1.87-1.88 g/cm ³ 1 % VOID CONTENT: 0.0-0.60% 035-0.0036 in. VOID CONTENT: 0.0-0.60%					S2-449 Tensio [±45/9 7	S2-449/SP 381 Tension, y-axis [±45/90/±45] _{2S} 73/A	
TEST ME	ETHOD:		MODULUS	S CALCU	LATION	N:	Scre	ening	
SRN	A 4-88		Chord	between	1000 a	nd 3000 με			
		ecimen thickness	and batch fibe	er areal w	eight to	50% (0.0035	in. CPT)		
Equilibriu	Content (%) Im at T, RH	7 Amb	bient						
Source C	Code	7	-		T				
	Mean	Normalized 36.2	Measured 36.6	Norma	IZED	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	35.2 35.3 37.1 1.77	35.8 37.6 1.77						
F _y ^{tu}	B-value Distribution	(1) ANOVA	(1) ANOVA						
(ksi)	C ₁ C ₂	0.813 18.6	0.755 14.8						
	No. Specimens No. Batches Data Class	1 2 Scree							
E_y^t	Mean Minimum Maximum C.V.(%)	2.21 2.14 2.28 1.88	2.24 2.17 2.31 2.01						
(Msi)	No. Specimens No. Batches Data Class	1 2 Scree	2						
$v_{\rm xy}^{\rm t}$	Mean No. Specimens No. Batches								
	Data Class		10/22	ļ					
	Mean Minimum Maximum C.V.(%)		16400 15600 16800 2.40						
$arepsilon_{ m y}^{ m tu}$	B-value Distribution		(1) Weibull						
(με)	C ₁ C ₂		16500 58.7						
	No. Specimens No. Batches Data Class		0 2 ening						

6.2.3 7781G 816/PR381 plain weave fabric

Material Description:

Material: 7781 E-glass/3M PR381

- Form: Fiber areal weight of 300 g/m², typical cured resin content of 32-38%, typical cured ply thickness of 0.009 0.0105 inches.
- Processing: Autoclave cure; 260° F, 50 psi for two hours

General Supplier Information:

- Fiber: Continuous, E-glass fiber. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: PR381 is a 250°F curing epoxy resin providing properties similar to conventional 350°F curing systems. Light tack for up to 30 days at 75°F.

Maximum Short Term Service Temperature: 220°F (dry), 160°F (wet)

Typical applications: Aircraft secondary structure, fuselage skins and general industrial applications where improved fatigue and excellent mechanical strengths are required.

6.2.3 7781 G-816/PR381 plain weave fabric

MATERIAL:	7781G 81	EGI/Ep 300-PW 7781G/PR 381				
FORM:		1/7781 E-Gla count/in. (Fill)	iss Fabric Prepreg, 57	Yarn Count/in.	(Warp),	Summary
FIBER:	Clark-Sch MIL-C-908 twist, no s	3M PR 381				
T _g (ambient):	282/F	T _g (wet):	225 /F	T _g METHOD:	SRM-18, DMA	E' knee
PROCESSING:	Autoclave	cure: 260/F,	100 min., 50 psi			

Date of fiber manufacture	11/92 - 7/95	Date of testing	3/93 - 4/96
Date of resin manufacture	12/92 - 3/96	Date of data submittal	6/96
Date of prepreg manufacture	12/92 - 3/96	Date of analysis	8/97
Date of composite manufacture	3/93 - 4/96		

LAMINA PROPERTY SUMMARY

	73/F/A	220/F/A	
Tension, 1-axis	II-I	SS-S	
Tension, 2-axis			
Tension, 3-axis			
Compression, 1-axis			
Compression, 2-axis			
Compression, 3-axis			
Shear, 12-plane			
Shear, 23-plane			
Shear, 31-plane			
SBS, 31-plane	S		
Flexure	I	S	

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

Volume 2, Chapter 6 Glass Fiber Composites

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.6		ASTM C 693
Resin Density	(g/cm ³)			ASTM D 792
Composite Density	(g/cm ³)	1.85	1.75 - 2.04	ASTM D 792
Fiber Areal Weight	(g/m ²)	300	288 - 297	SRM 23B
Fiber Volume	(%)	48	43.0 - 50.9	SRM 10
Ply Thickness	(in)	0.0099	0.0087 - 0.0104	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

MATERIA	L: 7781G 8									
RESIN CO FIBER VO PLY THIC	DLUME: 43.0-48		COMP. DEN VOID CONT		EGI/Ep 300-PW 7781G/PR 381 Tension, 1-axis [0]₅ 73/A, 220/A					
TEST ME	THOD:		MODULUS	CALCULATION	l:	Interim, Screening				
SRM 4-8	38 (1)		Chord betwe	een 1000 and 6	000 με					
NORMALIZED BY: Specimen thickness and batch fiber areal weight to 50% (0.0091 in. CPT)										
Equilibriur	Content(%) m at T, RH	73 Ambi	ent	22 Amb	ient					
Source Co	ode	72 Normalized	Measured	72 Normalized	2 Measured					
	Mean Minimum Maximum C.V. (%)	74.9 70.4 79.6 3.66	70.9 62.9 77.8 7.07	71.3 67.0 77.4 4.02	67.5 60.5 74.4 5.89					
F ₁ ^{tu} (ksi)	B-value Distribution C1	(2) ANOVA 2.90	(2) ANOVA 5.37	(2) Weibull 72.7	(2) ANOVA 4.22					
(-)	C ₂	3.10	3.26	24.9	3.45					
	No. Specimens No. Batches Data Class	16 5 Inter	im	1: 4 Scree						
$\mathrm{E}_{1}^{\mathrm{t}}$	Mean Minimum Maximum C.V. (%)	3.83 3.70 3.97 2.63	3.64 3.37 3.96 4.51	3.64 3.45 3.75 2.78	3.44 3.24 3.77 5.40					
(Msi)	No. Specimens No. Batches Data Class	15 5 Inter		1: 4 Scree						
v_{12}^{t}	Mean No. Specimens No. Batches									
	Data Class Mean Minimum Maximum C.V. (%)		17800 15200 19600 6.23		19600 18400 21100 4.01					
$\mathcal{E}_1^{ ext{tu}}$	B-value Distribution		(2) ANOVA		(2) Weibull					
(με)	C ₁ C ₂		1310 3.32		20000 25.7					
	No. Specimens No. Batches Data Class	15 5 Inter		1: 4 Scree						

(1) Three batches were tested according to SRM 4R-94 with modulus calculated as noted above.

MIL-HDBK-17-2F Volume 2, Chapter 6 Glass Fiber Composites

MATERIAL: 7781G	816/PR 381 pla	ain weave fabri	с		Table 6. EGI/Ep 3		
RESIN CONTENT: 34-36 FIBER VOLUME: 43.0-5 PLY THICKNESS: 0.0088		COMP. DEI VOID CON	NSITY: 1.76-2. FENT: %	.04 g/cm ³	7781G/PR 381 SBS, 13-axis [0]₅s 73/A		
TEST METHOD:			CALCULATIO	N:	Screer		
SRM 8-88 (1)		NA					
NORMALIZED BY: Not no	rmalized						
Temperature(°F) Moisture Content(%) Equilibrium at T, RH	73 Ambient						
Source Code	72						
Mean Minimum Maximum C.V. (%)	10.4 9.6 11.5 4.8						
B-value F ^{sbs} Distribution	(2) ANOVA						
(ksi) C ₁ C ₂	0.53 3.2						
No. Specimens No. Batches Data Class	22 5 Screening						
	I						

Three batches were tested according to SRM 8R-94.
 Short beam strength test data are approved for Screening Data Class only.

MATERIA	L: 7781	G 816/PR 381 pl	ain weave fabri	c	ſ	Table 6. EGI/Ep 3	2.3(c) 00-PW	
RESIN CO FIBER VC PLY THIC	LUME: 43.4-	3 wt% 48.7% 91-0.0103 in.	Comp. Dei Void Con	NSITY: 1.76-1.9 TENT: %	97 g/cm ³	7781G/PR 381 Flexure [0]₅s		
TEST ME	THOD:		MODULUS	CALCULATION	:	73/A, 220/A Interim, Screening		
ASTM D	790 Method 1		NA					
NORMALI	ZED BY: Not n	ormalized						
Equilibriun	Content(%) n at T, RH	73 Ambient	220 Ambient					
Source Co		72	72					
	Mean Minimum Maximum C.V. (%)	109 94.2 121 7.52	93.2 83.4 104 8.15					
F ^{flex}	B-value Distribution	(1) ANOVA	(1) ANOVA					
(ksi)	C ₁ C ₂	8.92 3.33	8.45 4.13					
	No. Specimens No. Batches Data Class	21 5 Interim	14 4 Screening					

6.2.4 E-Glass 7781/EA9396 8-harness satin weave fabric

Material Description:

Material: E7781/EA9396

- Form: Eight harness satin fabric of style 7781, fiber areal weight of 295 g/m², dry fabric impregnated in a wet lay-up process, typical cured resin content of 25.9 to 30.4%, typical cured ply thickness of 0.008 inches.
- Processing: Vacuum Bag cure; 200°F, 25 inches Hg, 45 minutes

General Supplier Information:

- Fiber: Continuous E-glass fiber woven by Hexcel using F-16 (Volan-A) sizing. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: EA9396 is a 200°F curing toughened epoxy resin with improved hot/wet properties. 75 minute pot life for 1 lb batch. This resin is a two part, unfilled version of EA 9394.

Maximum Short Term Service Temperature: Not determined from available data, but at least 150°F.

Typical applications: Aircraft repair

Data Analysis Summary:

- 1. This material was tested at fiber volumes that may be higher than what are typically used for repair. Data should be substantiated if used at lower fiber volumes.
- 2. Glass transition temperature (Tg) values were not reported because they were determined on neat resin using a non-standard method.
- 3. Wet properties are very low because of the glass and sizing combination.
- 4. Contrary to expectations, the fill tensile strengths and stiffnesses were greater than the warp properties.
- 5. Most tension failures were under the tabs, but were included since the strengths were consistent with correct failure modes.
- 6. Variability between batches is high. Documentation does not reveal a reason.
- 7. High end outliers for the following properties were discarded:
 - a. Transverse tension strain at 72°F ambient
 - b. Transverse tension modulus at -65°F ambient and 72°F wet
 - c. Transverse compression modulus at 72°F wet
- 8. Data are from publicly available report, Reference 4.2.27.
- 9. Test method dates were assumed from the testing dates rather than obtained from the data source.

6.2.4 E-Glass 7781/EA 9396 8-harness satin weave fabric *

MATERIAL:	E-Glass	E-Glass 7781/EA 9396 8-harness satin weave fabric						
FORM:		Blass fabric impro mpregnation pro						
FIBER:		/Burlington 7781 /538 Silane sizin		an MATRIX:	Dexter-Hysol EA 9396			
T _g (dry):	(1)	T _g (wet):	(1)	Tg METHOD:				
PROCESSING:	Vacuun	n Bag Cure: 200	°F, 45 min.,	25 in. Hg.				

(1) See Data Analysis Note #2 in data set description

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture		Date of testing	11/88-5/91
Date of resin manufacture	8/88-10/88	Date of data submittal	3/98
Date of prepreg manufacture	NA	Date of analysis	8/98
Date of composite manufacture	11/88-5/91		

LAMINA PROPERTY SUMMARY

72°F/A		-65°F/A	200°F/A		-65°F/W	72°F/W	200°F/W
IISI						IISI	
IISS		IISS	IISI		IISI	ISSI	IISI
II-I						II-I	
II-I		II-I	SS-S		II-I	SS-S	II-I
II		II	II		II	II	II
	IISI IISS II-I II-I	IISI IISS II-I II-I	IISI IISS IISS II-I II-I II-I	IISI IISS IISS IISI II-I II-I II-I SS-S	IISI IISS IISS IISI II-I II-I II-I SS-S	IISI IISS IISI IISI II-I II-I II-I SS-S II-I	IISI IISS IISI IISI IISS IISS IISI IISI II-I II-I SS-S II-I

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.54		D 792
Resin Density	(g/cm ³)	1.14		
Composite Density	(g/cm ³)	1.91	1.88-1.96	D 792
Fiber Areal Weight	(g/m ²)	295		
Fiber Volume	(%)	54	51.2-56.9	D 2584
Ply Thickness	(in)	0.0085	0.0083-0.0087	

Nominal composite densities assume void content of 0%.

*

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:E-Glass 7781/EA 9396 8-harness satin weave fabricRESIN CONTENT:25.9-27.7 wt%COMP: DENSITY:1.89-1.93 (COMP: DENSITY)

 RESIN CONTENT:
 25.9-27.7 wt%

 FIBER VOLUME:
 54.1-55.8 %

 PLY THICKNESS:
 0.0085-0.0086 in.

COMP: DENSITY: 1.89-1.93 g/cm³ VOID CONTENT: 3.7-5.4% Table 6.2.4(a) EGI/Ep 295-8HS E-7781/EA 9396 Tension, 1-axis [0₁]₅ 72/A,72/W Interim, Screening

ASTM D 3039-76

Chord between 1000 and $3000\mu\epsilon$

NORMALIZED BY:

TEST METHOD:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

MODULUS CALCULATION:

Temperature (°F) Moisture Content (%) Equilibrium at T, RH		ture Content (%) Ambient librium at T, RH			72 (1)		
				140, 95-100			
Source C	Code	3		3	0		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	48.3	51.8	15.7	16.4		
	Minimum	45.5	48.0 57.9	13.4 17.0	13.6 18.3		
	Maximum C.V.(%)	54.1 4.77	5.17	6.44	7.74		
	0. v.(70)	4.77	5.17	0.44	1.14		
	B-value	(2)	(2)	(2)	(2)		
F ₁ ^{tu}	Distribution	Nonpara.	Normal	Weibull	Weibull		
(ksi)	C ₁	8	51.8	16.1	16.9		
(((3))	C_2	1.54	2.68	17.8	15.8		
	-2						
	No. Specimens	1		1			
	No. Batches	3		3			
	Data Class	Inte		Inte			
	Mean Minimum	3.39 3.25	3.62 3.45	3.16 2.97	3.30 3.07		
	Maximum	3.48	3.45	3.30	3.52		
	C.V.(%)	2.18	2.51	2.64	3.93		
E_1^t					0.00		
(Msi)	No. Specimens	1:	-	1	F		
(IVISI)	No. Batches	3		3			
	Data Class	Inte		Inte			
	Mean	0.1		0.0			
v_{12}^t	No. Specimens	6		7	•		
• 12	No. Batches	3		3			
	Data Class	Scree		Scree			
	Mean Minimum		17700		5100		
	Maximum		16400 21800	4260 5850			
	C.V.(%)		7.72	8.83			
				0.00			
	B-value		(2)		(2)		
ϵ_1^{tu}	Distribution		Nonpara.		Weibull		
(με)	C ₁		8		5290		
(µc)	C ₂		1.54	13.8			
	No. Specimens	1:		1	5		
	No. Batches	3		3			
(4)	Data Class nown weight gain	Inte	rim	Inte	rim		

(1) Unknown weight gain

(2) Basis values are presented only for A and B data classes.

(3) Most failures were under the tabs, but were included since the strengths were consistent with correct failure modes.

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. *

MATERIAL:	Table 6.2.4(b)			
				EGI/Ep 295-8HS
RESIN CONTENT:	25.9-27.7 wt%	COMP: DENSITY:	1.89-1.94 g/cm ³	E-7781/EA 9396
FIBER VOLUME:	54.0-56.5 %	VOID CONTENT:	3.7-5.4 %	Tension, 2-axis
PLY THICKNESS:	0.0085-0.0086 in.			[O _f] ₈
				72/A, -65/A, 200/A
TEST METHOD:		MODULUS CALCU	LATION:	Interim, Screening
ACTM D 2020 76		Chard batwaan	1000 and 2000us	

ASTM D 3039-76

Chord between 1000 and 3000µε

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Tompora	turo (°E)	7	o	-6	5	20	0	
Temperature (°F) Moisture Content (%)		Ambient		Ambient		Ambient		
Equilibriu	um at T, RH							
Source C	Code	3		30		30		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	50.5	54.3	67.2	71.9	42.4	45.2	
	Minimum	45.1 54.1	48.5 59.0	56.7 78.7	59.2 83.2	35.4 47.9	37.0 50.5	
	Maximum C.V.(%)	54.1 5.96	59.0 6.14	8.62	83.2 9.03	6.42	50.5 6.80	
	0. v.(70)	5.50	0.14	0.02	3.00	0.42	0.00	
	B-value	(1)	(1)	(1)	(1)	(1)	(1)	
F ₂ ^{tu}	Distribution	Weibull	Weibull	Weibull	ANOVA	Weibull	Weibull	
(ksi)	C ₁	51.8	55.7	69.7	74.7	43.6	46.5	
(10)	C_2	19.5	20.5	11.2	36.8	15.4	18.3	
	02		2010		0010		1010	
	No. Specimens	1		15		15		
	No. Batches	3		3		3		
	Data Class		Interim		Interim		Interim	
	Mean	3.41 3.25	3.67 3.38	3.89	4.15 3.97	3.31 3.19	3.53 3.36	
	Minimum Maximum	3.25	3.30 4.15	3.74 3.96	3.97 4.30	3.19	3.30	
nt	C.V.(%)	5.39	6.11	1.63	2.68	2.50	2.79	
E_2^t	0(/0)	0.00	0.11	1100	2.00	2.00	2.10	
(Msi)	No. Specimens	1	F	14	1	15		
(10151)	No. Batches	3		3		3		
	Data Class	Inte		Screening		Interim		
	Mean	0.1		0.157		0.101		
	No. Specimens	6	5	7		6		
v_{21}^t	No. Batches	3	3	3		3		
21	Data Class	Scree	ening	Screening		Screening		
	Mean		18200	24000		14400		
	Minimum		15400		20500		9750	
	Maximum		20300		26200		16500	
	C.V.(%)		8.37		7.76		11.6	
	B-value		(1)		(1)		(1)	
ϵ_2^{tu}	Distribution		Weibull		Normal		Weibull	
_	C ₁		18900		24000		15000	
(με)	C_1 C_2		15.7		1870		13.0	
	02		10.7		1070		13.0	
	No. Specimens	1		7		15		
	No. Batches	3		3		3		
	Data Class	Scree	ening	Scree	ening	Inter	rim	

ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL. *

MATERIAL:	Table 6.2.4(c)			
	05 0 07 7 10/		4 00 4 04 / 3	EGI/Ep 295-8HS
RESIN CONTENT:	25.9-27.7 wt%	COMP. DENSITY:	1.89-1.94 g/cm ³	E-7781/EA 9396
FIBER VOLUME:	54.0-56.5 %	VOID CONTENT:	3.7-5.4 %	Tension, 2-axis
PLY THICKNESS:	0.0085-0.0086 in.			[O _f] ₈
				-65/W, 72/W, 200/W
TEST METHOD: MODULUS CALCUL			LATION:	Interim, Screening
ASTM D 2020 76	•	Chard hat was	1000 and 2000	

ASTM D 3039-76

Chord between 1000 and 3000µε

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

_	(0-				_			
Temperature (°F)		-65		72		200		
	Content (%)	(1) 140, 95-100		(1	(1)		(1)	
Equilibriu Source C	m at T, RH				140, 95-100 30		140, 95-100 30	
Source C	ode	Normalized	0 Measured	Normalized	Measured	Normalized	Measured	
	Mean	19.7	21.2	16.3	17.5	12.6	13.5	
	Minimum	14.4	15.5	14.6	15.7	11.2	11.9	
	Maximum	23.0	25.2	18.8	20.4	14.3	15.9	
	C.V.(%)	10.9	12.3	8.11	8.42	6.17	7.04	
	0. (/0)	10.5	12.0	0.11	0.42	0.17	7.04	
	B-value	(2)	(2)	(2)	(2)	(2)	(2)	
F_2^{tu}	Distribution	Weibull	Weibull	ANÓVA	ANÓVA	Weibull	Normal	
						10.0		
(ksi)	C ₁	20.5	22.3	1.44	1.59	13.0	13.5	
	C ₂	10.5	10.1	4.06	4.37	14.3	0.953	
	No. Specimens	1	5	1:	5	1	5	
	No. Batches		3	3		15 3		
	Data Class	Interim		Interim		Interim		
	Mean	3.54	3.81	3.01	3.22	2.81	3.01	
	Minimum	3.32	3.47	2.89	3.09	2.44	2.58	
	Maximum	3.74	4.03	3.11	3.36	3.52	3.67	
E_2^t	C.V.(%)	2.97	3.65	1.96	2.47	11.7	11.5	
E ₂								
(Msi)	No. Specimens	1	5	1.	3	1	5	
(10131)	No. Batches		3	13 3		15 3		
	Data Class		erim	Screening		Interim		
	Mean	0.1		0.066		0.079		
t	No. Specimens	6		6		6.0		
v_{21}^t	No. Batches		3	3		3		
	Data Class	Scree		Screening		Screening		
	Mean		6240	5420			4470	
	Minimum		4000		3040		3360	
	Maximum		7300		6510		4900	
	C.V.(%)		14.2		19.2		10.6	
	D 1							
	B-value		(2)		(2)		(2)	
ϵ_2^{tu}	Distribution		ANOVA		ANOVA		Nonpara.	
(με)	C ₁		936		1120		8	
····/	C ₂		3.88		4.58		1.54	
	_							
	No. Specimens	1	5	1:		1	5	
	No. Batches		3	3		3		
	Data Class	Inte	erim	Inte	rim	Inte	rim	

(1) Unknown weight gain

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL:	Table 6.2.4(d)			
			2	EGI/Ep 295-8HS
RESIN CONTENT:	27.6-30.4 wt%	COMP: DENSITY:	1.89-1.93 g/cm ³	E-7781/EA 9396
FIBER VOLUME:	54.1-55.8%	VOID CONTENT:	3.7-5.4%	Compression, 1-axis
PLY THICKNESS:	0.0085-0.0086 in.			[O _f] ₁₆
				72/A,72/W
TEST METHOD:		MODULUS CALCUL	_ATION:	Interim
ASTM D 3410B-8	7	Chord between	1000 and 3000με	

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Temperature (°F)		72		72			
Moisture Content (%) Equilibrium at T, RH		Ambient		1.68-2.33 (1)			
Source C		3	30		30		
		Normalized	Measured	Normalized	Measured	Normalized	Measured
	Mean	46.4	49.6	20.3	21.0		
	Minimum	41.1	43.9	11.2	11.0		
	Maximum	51.2	55.5	26.3	27.0		
	C.V.(%)	5.96	5.84	27.6	27.8		
	B-value	(2)	(2)	(2)	(2)		
F ₁ ^{cu}	Distribution	Weibull	Weibull	ANÔVA	ANÓVA		
(ksi)	C ₁	47.6	51.0	6.40	6.71		
()	C ₂	17.5	18.5	4.91	5.67		
	No. Specimens	1	5	1	5		
	No. Batches	3		3			
	Data Class	Inte		Interim			
	Mean	3.45	3.68	3.06	3.18		
	Minimum	2.96	3.17	2.56	2.56		
	Maximum	3.86	4.11	3.77	3.85		
E_1^c	C.V.(%)	6.24	5.98	10.1	10.1		
(Msi)	No. Specimens	1	5	1	5		
(1101)	No. Batches		5	3	5		
	Data Class	Inte		Interim			
	Mean						
v_{12}^c	No. Specimens						
12	No. Batches						
	Data Class Mean		14700		7160		
	Minimum		14700		4160		
	Maximum		19600		10600		
	C.V.(%)		12.8		27.3		
	0.1.(70)		12.0		21.0		
	B-value		(2)		(2)		
ϵ_1^{cu}	Distribution		ANOVA		ANOVA		
(με)	C ₁		3.25		4.72		
W7	C ₂		1940		2130		
	No. Specimens	1	5	1	5		
	No. Batches			3			
	Data Class	Inte		Inte			

(1) Specimens conditioned at 140°F, 95-100% R.H for 68-180 days.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: E-Glass 7781/EA 9396 8-harness satin weave fabric

 RESIN CONTENT:
 27.6-30.4 wt%

 FIBER VOLUME:
 51.2-53.8 %

 PLY THICKNESS:
 0.0083-0.0085 in.

COMP: DENSITY: 1.89-1.93 g/cm³ VOID CONTENT: 4.0-5.0 % Table 6.2.4(e) EGI/Ep 295-8HS E-7781/EA 9396 Compression, 2-axis [0_f]₁₆ -65/A, 72/A, 200/A Interim, Screening

TEST METHOD: ASTM D 3410B-87 MODULUS CALCULATION: Chord between 1000 and 3000µε

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Temperature (°F) Moisture Content (%) Equilibrium at T, RH		72 Ambient		-65 Ambient		200 Ambient		
Source C		30		30		30	30	
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean Minimum Maximum C.V.(%)	37.7 32.4 42.9 8.72	40.8 35.3 46.0 7.60	59.2 50.8 68.9 9.72	63.8 55.8 73.5 9.58	26.9 20.4 34.4 16.1	29.0 23.4 37.2 15.1	
F ₂ ^{cu}	B-value Distribution	(1) Weibull	(1) Weibull	(1) ANOVA	(1) ANOVA	(1) ANOVA	(1) ANOVA	
(ksi)	C ₁ C ₂	39.2 11.6	42.3 15.1	6.54 4.81	5.33 6.87	5.07 5.00	5.75 5.16	
	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		12 3 Screening		
E ₂ ^c	Mean Minimum Maximum C.V.(%)	3.37 2.94 3.61 6.04	3.66 3.13 3.93 6.70	3.89 3.38 4.17 5.79	4.18 3.63 4.55 5.84	3.23 2.82 3.54 7.64	3.49 2.98 3.83 7.23	
(Msi)	No. Specimens No. Batches Data Class	15 3 Interim		15 3 Interim		12 3 Screening		
v ₂₁	Mean No. Specimens No. Batches							
	Data Class Mean Minimum Maximum C.V.(%)		11900 9020 17800 20.1		16800 13400 20800 11.8		8650 6550 12400 19.5	
ϵ_2^{cu}	B-value Distribution		(1) Weibull		(1) ANOVA		(1) Weibull	
(με)	C ₁ C ₂		12900 5.04		5.06 2200		9340 5.42	
	No. Specimens No. Batches Data Class	1: 3 Inte	5	15 3 Inter		12 3 Scree		

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATE	RIAL.
--	-------

MATERIAL:	E-Glass 7781/EA 9396 8-harness satin weave f

 RESIN CONTENT:
 27.6-30.4 wt%

 FIBER VOLUME:
 51.2-53.8 %

 PLY THICKNESS:
 0.0083-0.0085 in.

COMP: DENSITY: 1.89-1.93 g/cm³ VOID CONTENT: 4.0-5.0 %

fabric

Table 6.2.4(f) EGI/Ep 295-8HS E-7781/EA 9396 Compression, 2-axis [0_f]₁₆ -65/W, 72/W, 200/W Interim, Screening

TEST METHOD: ASTM D 3410B-87 MODULUS CALCULATION: Chord between 1000 and 3000µε

NORMALIZED BY:

Specimen thickness and batch fiber areal weight to 50% fiber volume (0.0085 in. CPT)

Temperature (°F)		-65		72		200		
Moisture Content (%) Equilibrium at T, RH		1.48-2.33		1.48-2.33		1.48-2.33		
Source Code		(1) 30		(1) 30		(1) 30		
		Normalized	Measured	Normalized	Measured	Normalized	Measured	
	Mean	43.5	46.5	22.0	23.6	13.4	14.2	
	Minimum	36.4	38.6	16.8	18.9	11.3	11.8	
	Maximum	52.5	56.1	26.4	27.7	17.2	18.3	
	C.V.(%)	9.58	10.0	13.3	12.8	14.8	14.8	
	B-value	(2)	(2)	(2)	(2)	1.88	1.84	
F ₂ ^{cu}	Distribution	Wèibull	Weibull	ANÒ́VA	ANOVA	ANOVA	ANOVA	
(ksi)	C ₁	45.4	48.6	3.50	15.3	2.36	4.95	
(-)	C ₂	9.65	10.9	1.39	3.56	4.31	2.49	
	No. Specimens	1	5	1()	18	3	
	No. Batches		3		2		3	
	Data Class	Interim		Screening		Interim		
	Mean	3.81	4.07	3.11	3.34	2.91	3.08	
	Minimum	3.32	3.41	2.96	3.23	2.25	2.32	
	Maximum	4.16	4.46	3.25	3.49	3.73	3.92	
E_2^c	C.V.(%)	6.22	6.76	3.40	2.40	13.6	13.8	
(Msi)	No. Specimens	1	5	9		18	3	
(11101)	No. Batches			2 Screening		3		
	Data Class	Inte	rim			Interim		
	Mean							
v_{21}^c	No. Specimens							
21	No. Batches Data Class							
	Mean		12400		7800		4540	
	Minimum		9890	4570		2880		
	Maximum		15700		9310	6890		
	C.V.(%)		13.3		18.8		22.9	
	B-value		(2)		(2)		(2)	
ϵ_2^{cu}	Distribution		Weibull		Weibull		Weibull	
(με)	C ₁		13100		8330		4950	
¥ /	C ₂		8.42		7.91		4.68	
	No. Specimens	1	5	1(18		
	No. Batches	3		2		3		
	Data Class	Inte	rim	Scree	ning	Inte	rim	

(1) Specimens conditioned at 140° F, 95-100% RH for 68-180 days.

* ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: E-Glass 7781/EA 9396 8-harness satin weave fabric

RESIN CONTENT: FIBER VOLUME: PLY THICKNESS:

25.0-27.7 wt% 54.2-56.9 % 0.0083-0.0085 in. COMP: DENSITY: 1.92 g/cm³ VOID CONTENT: 3.6-5.7 % Table 6.2.4(g) EGI/Ep 295-8HS E-7781/EA 9396 Shear, 12-plane [+/-45_f]_s 72/A, -65/A, 200/A, -65/W, 72/W, 200/W Interim

TEST METHOD:

ASTM D 3518-76

MODULUS CALCULATION:

NORMALIZED BY: Not normalized

Tempera	ture (°F)	72	-65	200	-65	72	200
	Content (%)	Ambient	Ambient	Ambient	1.52-2.32	1.52-2.32	1.52-2.32
	m at T, RH				(1)	(1)	(1)
Source C	ode	30	30	30	30	30	30
	Mean	11.5	16.9	7.11	8.52	5.49	2.73
	Minimum	9.45	13.1	4.59	6.74	4.16	2.17
	Maximum	13.5	20.3	9.56	10.7	6.44	3.42
	C.V.(%)	9.20	14.1	15.8	13.3	11.9	12.9
<u>en</u>	B-value	(2)	(2)	(2)	(2)	(2)	(2)
F_{12}^{su}	Distribution	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull
(ksi)	C ₁	12.0	17.9	7.59	9.01	5.76	2.890
	C ₂	11.8	8.15	6.77	8.08	11.0	8.60
	No. Specimens	23	18	19	18	18	17
	No. Batches	3	3	3	3	3	3
	Data Class	Interim	Interim	Interim	Interim	Interim	Interim
	Mean	0.758	1.03	0.458	0.860	0.490	0.242
	Minimum	0.625	0.901	0.289	0.624	0.336	0.146
	Maximum	0.928	1.29	0.549	0.976	0.666	0.436
G_{12}^s	C.V.(%)	11.3	10.5	12.9	11.6	16.7	33.0
(Msi)	No. Specimens	22	18	19	16	18	17
	No. Batches	3	3	3	3	3	3
	Data Class	Interim	Interim	Interim	Interim	Interim	Interim
	Mean						
	No. Specimens						
$\gamma_{12}^{\rm s}$	No. Batches						
(με)	Data Class						

(1) Specimens conditioned at 140° F, 95-100% RH for 111-117 days.

(2) Basis values are presented only for A and B data classes.

- 6.3 GLASS POLYESTER COMPOSITES
- 6.4 GLASS BISMALEIMIDE COMPOSITES
- 6.5 GLASS POLYIMIDE COMPOSITES
- 6.6 GLASS PHENOLIC COMPOSITES
- 6.7 GLASS SILICONE COMPOSITES
- 6.8 GLASS POLYBENZIMIDAZOLE COMPOSITES
- 6.9 GLASS PEEK COMPOSITES

CHAPTER 7 BORON FIBER COMPOSITES

- 7.1 INTRODUCTION
- 7.2 BORON EPOXY COMPOSITES
- 7.3 BORON POLYESTER COMPOSITES
- 7.4 BORON BISMALEIMIDE COMPOSITES
- 7.5 BORON POLYIMIDE COMPOSITES
- 7.6 BORON PHENOLIC COMPOSITES
- 7.7 BORON SILICON COMPOSITES
- 7.8 BORON POLYBENZIMIDAZOLE COMPOSITES
- 7.9 BORON PEEK COMPOSITES

CHAPTER 8 ALUMINA FIBER COMPOSITES

- 8.1 INTRODUCTION
- 8.2 ALUMINA EPOXY COMPOSITES
- 8.3 ALUMINA POLYESTER COMPOSITES
- 8.4 ALUMINA BISMALEIMIDE COMPOSITES
- 8.5 ALUMINA POLYIMIDE COMPOSITES
- 8.6 ALUMINA PHENOLIC COMPOSITES
- 8.7 ALUMINA SILICON COMPOSITES
- 8.8 ALUMINA POLYBENZIMIDAZOLE COMPOSITES
- 8.9 ALUMINA PEEK COMPOSITES

CHAPTER 9 SILICON CARBIDE FIBER COMPOSITES

- 9.1 INTRODUCTION
- 9.2 SILICON CARBIDE EPOXY COMPOSITES
- 9.3 SILICON CARBIDE POLYESTER COMPOSITES
- 9.4 SILICON CARBIDE BISMALEIMIDE COMPOSITES
- 9.5 SILICON CARBIDE POLYIMIDE COMPOSITES
- 9.6 SILICON CARBIDE PHENOLIC COMPOSITES
- 9.7 SILICON CARBIDE SILICON COMPOSITES
- 9.8 SILICON CARBIDE POLYBENZIMIDAZOLE COMPOSITES
- 9.9 SILICON CARBIDE PEEK COMPOSITES

CHAPTER 10 QUARTZ FIBER COMPOSITES

This section is reserved for future use.

10.1 INTRODUCTION

10.2 QUARTZ - EPOXY COMPOSITES

10.3 QUARTZ - POLYESTER COMPOSITES

10.4 QUARTZ - BISMALEIMIDE COMPOSITES

10.4.1 Astroquartz – II/F650 8-harness satin weave (see page 2)

10.4.1 Astroquartz II/F650 8-harness satin weave fabric

Material Description:

Material: Astroquartz II/F650

- Form: 8 harness satin weave fabric, fiber areal weight of 285 g/m², typical cured resin content of 37%, typical cured ply thickness of 0.010 inches.
- Processing: Autoclave cure; 375°F, 85 psi for 4 hours. Postcure at 475°F for 4 hours

General Supplier Information:

- Fiber: Astroquartz II fiber is a continuous, high strength, low modulus ceramic fiber made of pure fused silica. Typical tensile modulus is 10 x 10⁶ psi. Typical tensile strength is 500,000 psi.
- Matrix: F650 is a 350°F curing bismaleimide resin. It will retain light tack for several weeks at 70°F.

Maximum Short Term Service Temperature: 500°F (dry), 350°F (wet)

Typical applications: Primary and secondary structural applications, fire containment structures, radomes or any application where high strength and/or electrical properties are required.

Volume 2, Chapter 10 Quartz Fiber Composites

10.4.1 Astroquartz II/F650 8-harness satin weave*

MATERIAL:	Astroquart	z II/F650 8-harness sa	Q/BMI 285-8HSI Astroquartz II/F650 Summary		
FORM:	Hexcel AQ	II581/F650 8-harness	satin weave prepreg	-	
FIBER:	J.P. Stever	ns Astroquartz II	MATRIX:	Hexcel F650	
T _g (dry):	600°F	T _g (wet):	T _g METHOD:		
PROCESSING:	Autoclave	cure: 375°F, 4 hours,	F, 4 hours		

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

Date of fiber manufacture	Date of testing	
Date of resin manufacture	Date of data submittal	4/89
Date of prepreg manufacture	Date of analysis	1/93
Date of composite manufacture		

LAMINA PROPERTY SUMMARY

	75°F/A	450°F/A			
Tension, 1-axis					
Tension, 2-axis					
Tension, 3-axis					
Compression, 1-axis					
Compression, 2-axis					
Compression, 3-axis					
Shear, 12-plane					
Shear, 23-plane					
Shear, 31-plane					
SB strength, 31-plane	S	S			

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

		Nominal	As Submitted	Test Method
Fiber Density	(g/cm ³)	2.17		
Resin Density	(g/cm ³)	1.27		
Composite Density	(g/cm ³)	1.78	1.73	
Fiber Areal Weight	(g/m ²)	285		
Fiber Volume	(%)	57	51	
Ply Thickness	(in)	0.0100	0.010	

LAMINATE PROPERTY SUMMARY

Classes of data in Strength/Modulus/Poisson's Ratio/Strain-to-Failure order: A = A75, a = A55, B = B30, b = B18, M = Mean, I = Interim, S = Screening, - = no data (See Table 1.4.2(c))

* DATA WERE SUBMITTED BEFORE THE ESTABLISHMENT OF DATA DOCUMENTATION REQUIREMENTS (JUNE 1989). ALL DOCUMENTATION PRESENTLY REQUIRED WERE NOT SUPPLIED FOR THIS MATERIAL.

MATERIAL: A	stroquartz II/F650	8-harness satir	n weave fabric		Table 1	10.4.1(a)				
FIBER VOLUME: 5	7 wt% 1 % .010 in.	COMP: D VOID CO		3 g/cm ³	Astroqua SBS, 3 [0	285-8HS artz II/F650 a1-plane a12 a50/A				
TEST METHOD:		MODULU	S CALCULATIO	ON:	75/A, 450/A Screening					
ASTM D 2344										
NORMALIZED BY: N	lot normalized									
Temperature (°F)	75	450								
Moisture Content (%) Equilibrium at T, RH	ambient	ambient								
Source Code	21	21								
Mean	6.41	6.56								
Minimum	6.31 6.50	6.43 6.72								
Maximum C.V.(%)	1.06	1.69								
0.0.(70)	1.00	1.05								
B-value	(1)	(1)								
F ₃₁ ^{sbs} Distribution	Normal	Normal								
(ksi) C ₁	6.41	6.56								
C_1	0.068	0.111								
02	0.000	0.111								
No. Specimens	5	5								
No. Batches	1	1								
Data Class	Screening	Screening								
L										

(1) Short beam strength test data are approved for Screening Data Class only.

- 10.5 QUARTZ POLYIMIDE COMPOSITES
- **10.6 QUARTZ PHENOLIC COMPOSITES**
- **10.7 QUARTZ SILICONE COMPOSITES**
- **10.8 QUARTZ POLYBENZIMIDAZOLE COMPOSITES**
- **10.9 QUARTZ PEEK COMPOSITE**

APPENDIX A1. MIL-HDBK-17A DATA

A1.1 GENERAL INFORMATION

The data on polymer matrix composite materials which were presented in MIL-HDBK-17A, dated January 1971, are presented in this appendix. MIL-HDBK-17A has been superseded so these data are presented here so they can be Referenced in a current publication. However, these data do not meet the data requirements in Volume 1. The materials which were included in MIL-HDBK-17A are listed in Table A1. Of the sixteen materials, six are still available, five are no longer available, and the availability of the other five materials could not be determined. The data from the six available materials are provided in this appendix. The data from the remaining materials may be added as availability of the material or usefulness of the data is determined. Note that Narmco 5505 has been licensed to AVCO and those data are presented herein as AVCO 5505.

TABLE AT Materials from MIL-HDBK-17A.
Available:
U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy
Hexcel F-161/7743(550) Fiberglass Epoxy
Hexcel F-161/7781(ECDE-1/0-550) Fiberglass Epoxy
Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy
Narmco 506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic
AVCO 5505 Boron Epoxy
Not available:
U.S. Polymeric E-779/7743 (Volan) Fiberglass Epoxy
3M XP251S Fiberglass Epoxy
U.S. Polymeric S-860/1581 (ECG-1/2-112) Neutral pH Fiberglass Silicone
U.S. Polymeric P670A/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester
SP272 Boron Epoxy
Availability unknown:
Bloomingdale BP915/7781 (ECDE-1/0-550) Fiberglass Epoxy
Bloomingdale BP911/7781 (ECDE-1/0 Volan) Fiberglass Epoxy
Cordo E293/7781 (ECDE-1/0-550) Fiberglass Epoxy
Styrene-Alkyd Polyester/7781 Fiberglass
Cordo IFRR/7781 (ECDE-1/0) Fiberglass Modified DAP Polyester

TABLE A1 Materials from MIL-HDBK-17A.

The Table and Figure numbers used in this appendix are similar to those in MIL-HDBK-17A. The chapter identification has been changed from 4 to A1 but the rest of all Figure and Table numbers has not been changed. For example, Table A1.40 is the same as Table 4.40 in MIL-HDBK-17A. The MIL-HDBK-17A text describing the test program and methods is reproduced in Sections A1.2 through A1.4.

A1.2 INTRODUCTION

The laminate properties presented in this chapter have been generated in test programs conducted at the U.S. Forest Products Laboratory and elsewhere (Reference A1.2).¹ Properties are given for fiberglass with epoxy, phenolic, silicone and polyester resins and for boron with epoxy. Additional information on these and other material combinations will be issued as supplements or revisions of the present handbook edition.

A1.3 HANDBOOK TEST PROGRAM

A1.3.1 Objectives

The objectives of the handbook test program are to obtain statistically significant data for materials currently in use and to determine the degree of reproducibility attained in their fabrication. A minimum requirement is that test results include data from three sets of panels which are representative of the manufacturing procedures employed by three different fabricators. The properties listed in the charts and Tables of this chapter represent test results from only one set of panels for each material system. Properties are therefore not given minimum values and are considered to be "typical" for each material. When the minimum number of tests has been completed for a material, its properties will be assigned values on a B-basis; that is, the value above which 90 percent of the population of values is expected to fall with a confidence of 95 percent.

A1.3.2 Preimpregnated materials

All test panels are fabricated from prepregs. Emphasis is placed on materials for use as facings in sandwich type structures. The prepregs for facings are normally processed to conform with two methods of sandwich fabrication. These are the laminate grades for two-step sandwich constructions and the controlled flow adhesive grades for one-step sandwich constructions. Only laminates simulating precured facings, that is, for use in two-step sandwiches, have been subjected to the narrow coupon tests listed in this chapter. The controlled flow adhesive prepregs are best tested as sandwich panels, and such testing is not at present included in the handbook program.

The prepreg materials comply with the specifications established by the individual fabricators. In general, the materials are autoclave molding grades with flows controlled to attain minimum bleedout and optimum bonding of the plies. When possible handling characteristics are specified consistent with the objectives of collimated plies in the laminate and the retention of fiber orientation during lay-up and cure.

Imposed tolerances on the gravimetric resin content of the prepregs are dependent on the type of reinforcement. For bidirectional woven broadgoods such as style 7781 fabric, the resin fraction is specified as not varying by more than two percent from the assigned devolatilized resin content. For directionally woven broadgoods such as style 7743 fabric, and nonwoven parallel fiber tapes such as XP251S, variation from the assigned devolatilized resin content is not to exceed three percent.

A1.3.3 Test panels

A minimum size of the test panels has been established as two feet parallel to the warp direction by three feet parallel to the width for woven fabrics. For the non-woven laminates, including unidirectional, crossplied and quasi-isotropic configurations, the three foot dimension is parallel to the fiber direction in the outer plies.

¹Exceptions are the data for fiberglass-polyester laminates, taken from earlier sources, and the data for boron-epoxy panels which were compiled under special contract and published separately (Reference A1.2).

It is desirable that the test laminates be fabricated so that fiber alignment and orthotropy are maintained and that they are symmetrically balanced. Such conditions are generally attained in the test panels and they are designated in the following data summary Tables as balanced and parallel. One set of panels (Table A1.1) is not balanced. In this case the laminates are parallel plied.

A1.3.4 Test procedures

Conventional uniaxial tests are conducted at constant crosshead rates. The direction parallel to the warp of woven fabrics is designated as the 0° or 1-direction. The direction perpendicular to the 0° direction is designated as the 90° or 2-direction. For non-woven unidirectional laminates, the 0° direction corresponds to the fiber direction. For crossplied and quasi-isotropic laminates, the 0° direction corresponds to the fiber direction in the outer plies.

A1.3.4.1 Tensile tests

Tensile tests for woven fabric laminates have been conducted initially using the method of ASTM D 638 and Type I specimens (Reference A1.3.4.1(a)). Later tests are conducted with a modified specimen (Reference A1.2) and the method is designated as MIL-HDBK-17 tensile test. Tab ended specimens are used to test the 0° tensile properties of the non-woven unidirectional laminates (Reference A1.3.4.1(b)).

A1.3.4.2 Compression tests

Compression tests have been conducted with the end clamped and jig stabilized ASTM D 695 specimen (Reference A1.3.4.2) and with the MIL-HDBK-17 compression specimen (Reference A1.2) in which the specimen and fixture have been modified.

A1.3.4.3 Shear tests

The picture frame method (Reference A1.2) has been used to determine the 0° - 90° shear properties of one material system at three resin fractions (Figure A1.6.3). In these tests it is assumed that 88 percent of the load is reacted by the specimen, while the pins in the fixture react the remainder. The other materials are tested by a modified rail shear method (Reference A1.3.4.3).

A1.3.4.4 Interlaminar shear

Interlaminar shear properties are determined by the short beam test method (Reference A1.3.4.1(b)), or by the method of ASTM D 2733-68T when indicated (Reference A1.3.4.4).

A1.3.4.5 Flexural tests

Flexural properties are determined by the method of ASTM D 790 (Reference A1.3.4.5).

A1.3.4.6 Bearing strength

Bearing strengths are determined by the method of ASTM D 953 (Reference A1.3.4.6).

A1.3.5 Dry conditioning

Specimens are dry conditioned by allowing them to attain equilibrium at 70°F to 75°F and 45 percent to 55 percent relative humidity for a minimum of ten days. When tested at other than room temperature, the dry conditioned specimens are soaked at the test temperature for one-half hour prior to applying load.

A1.3.6 Wet conditioning

Specimens are wet conditioned at 125°F and 95 percent to 100 percent relative humidity for 1000 hours (42 days). When tested at temperatures below freezing, the wet conditioned specimens are cycled four times from the wet condition at 125°F to the sub-freezing test temperature; the dwell time at each temperature being one-half hour. Wet specimens tested at 160°F are soaked for one-half hour at this temperature immediately prior to testing. Some materials are shown as being tested at 220°F after wet conditioning. Such testing has been discontinued since these results appear inconclusive.

A1.3.7 Test schedule

The 0° and 90° tension and compression properties are determined at three Reference temperatures, $65^{\circ}F$, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$, for both dry and wet conditioned specimens. Dry conditioned specimens are tested at maximum temperature for those materials which are potentially serviceable at elevated temperatures. Ten test results are obtained for the stress-strain relations at each of these conditions. Tests at intermediate temperatures are conducted to verify property changes, in which cases five specimens are tested. Ten test results are also required for the 0° - 90° shear at -65°F, $70^{\circ}F$ - $75^{\circ}F$, and $160^{\circ}F$ in the dry condition. Five tests are conducted at $70^{\circ}F$ - $75^{\circ}F$ to determine the stress-strain relations for Poisson's ratio. Flexure, bearing and interlaminar shear are determined in the 0° direction and dry condition at -65°F, $70^{\circ}F$ - $75^{\circ}F$ and $160^{\circ}F$. Five specimens are tested for each temperature.

A1.4 DATA PRESENTATION

Uniaxial tension, compression and shear are shown as stress-strain relations at each temperature and the properties are summarized in tabular form. Flexural, bearing and interlaminar shear properties are listed in summary Tables. Poisson's ratio is shown as the response of the 0° elongation and 90° contraction to the applied tensile stress.

When ten or more results are available at a test condition, average values and the associated standard deviations are given in the Tables. Stress-strain relations are plotted as an average curve and a plot of the average minus three times the standard deviation is also shown. When five to nine results are obtained from a test condition, average, maximum, and minimum values and curves are shown.

A1.4.1 Epoxy-fiberglass laminates

All data on fiberglass-epoxy systems are results obtained from the handbook test program. Properties are summarized in Tables A1.1 through A1.8. Detailed data are shown in Figures A1.1.1(a) through A1.8.5. [Four of the nine materials are known to be available.]

A1.4.2 Phenolic-fiberglass laminates

Handbook tested properties are summarized in Table A1.40 and Figures A1.40.1(a) through A1.40.5 for one fiberglass-phenolic system. [This material is available.]

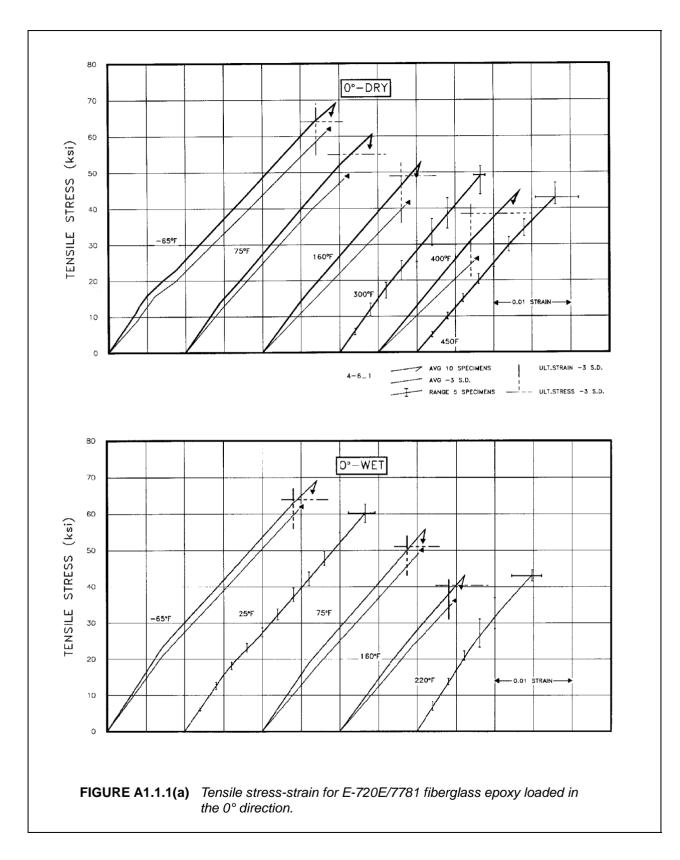
A1.4.3 Silicone-fiberglass laminates

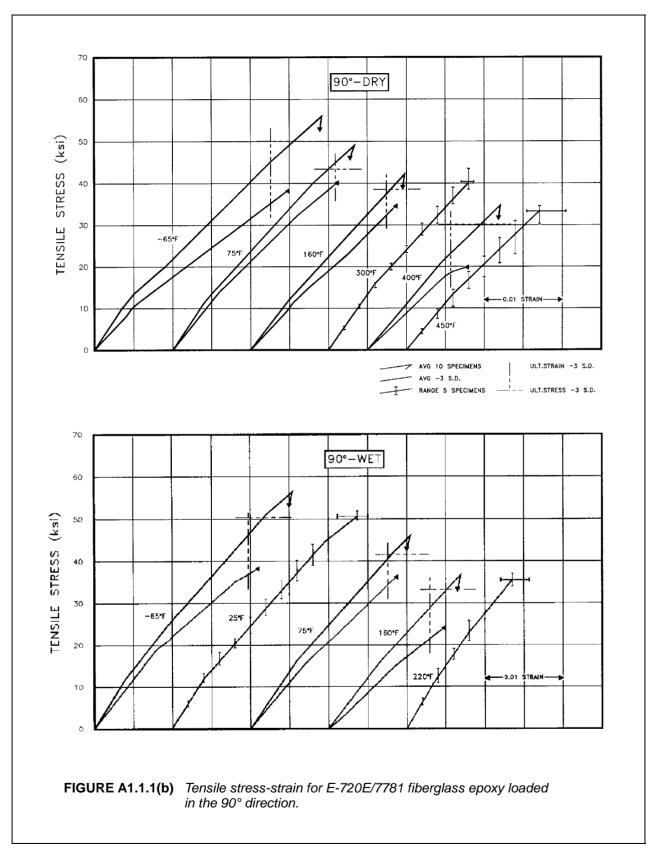
Partial handbook test results were listed in MIL-HDBK-17A for one fiberglass-silicone system. [This material is not available]

A1.4.4 Polyester-fiberglass laminates

Previous data for fiberglass-polyester laminates were listed in MIL-HDBK-17A. [None of these materials are known to be available.]

A1.4.5 Boron-epoxy laminates


Data on two boron-epoxy systems have been abstracted from the literature (Reference A1.4.5) and are presented in Tables A1.110 and A1.111 and in Figures A1.110.1(a) through A1.111.3. [One of these materials is available.]


The laminate thickness is controlled by the number of plies in the construction and the desired resin content. In general, the thickness of woven fabric laminates is maintained at eight plies, except for low resin content laminates which may require as many as ten plies. Nonwoven laminate monolayers are constructed with six plies to reduce the shear lag apparent in testing, and eight plies for the crossplied and quasi-isotropic panels.

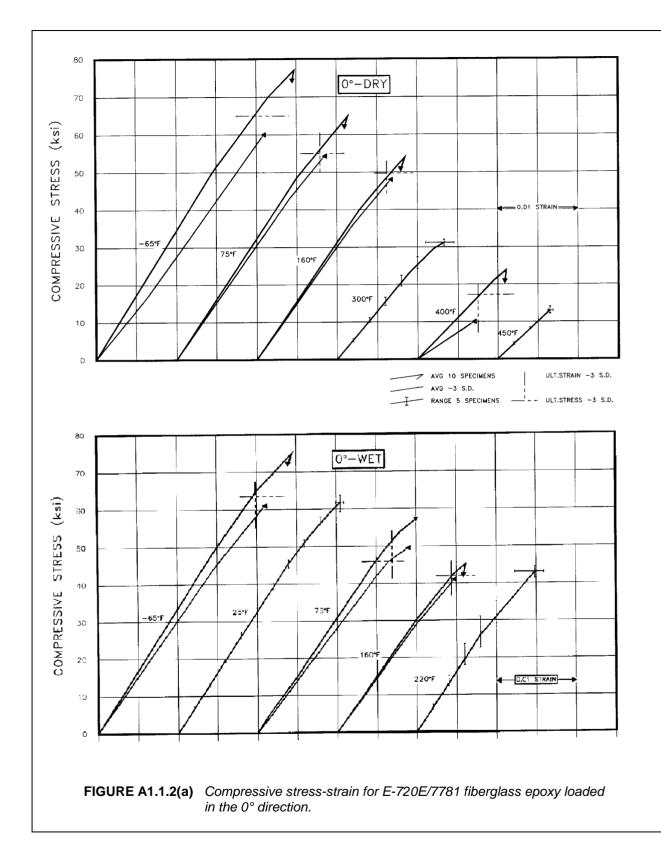
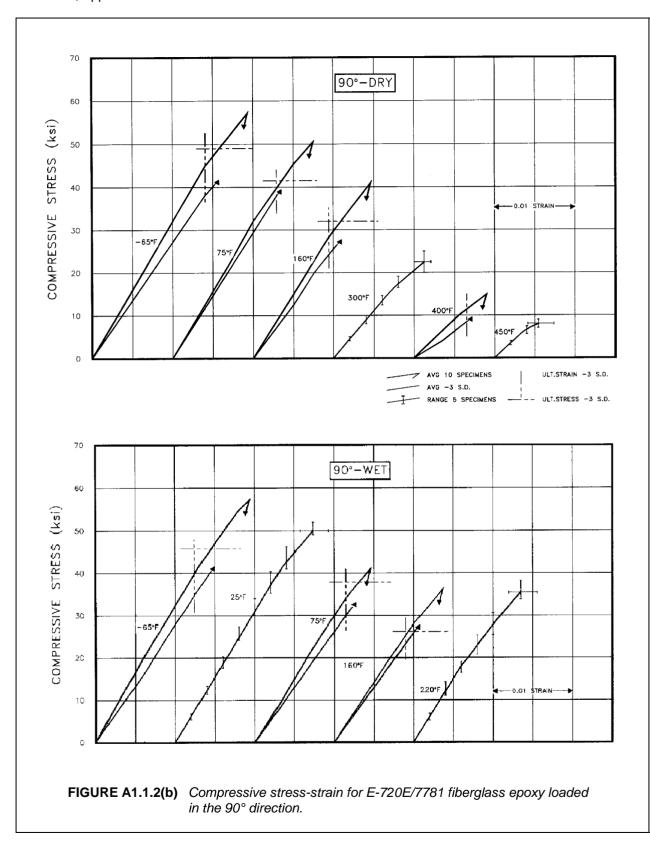
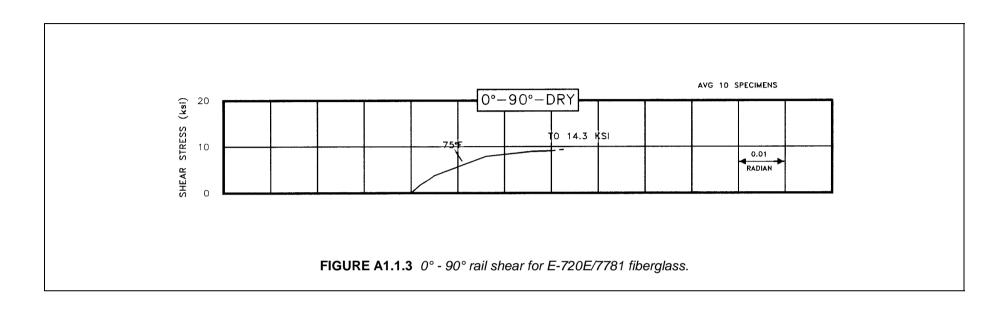
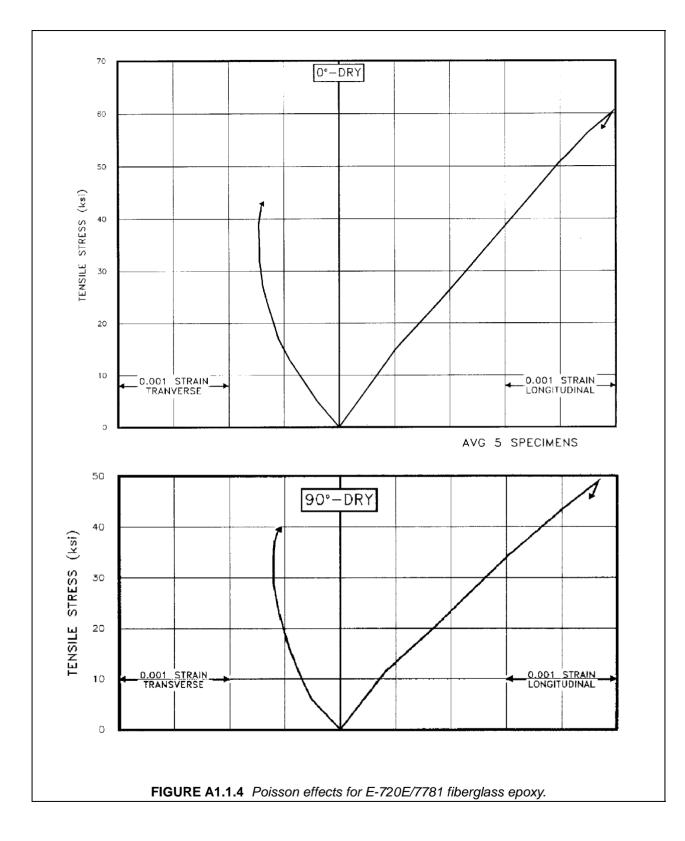

Volume 2, Appendix A1

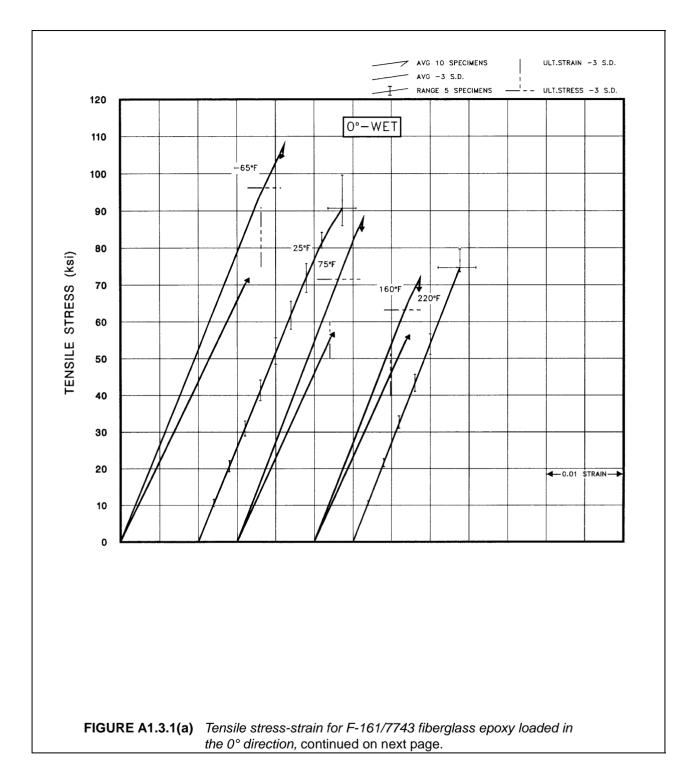
TABLE A1.1 Summary of Mechanical Properties of U.S. Polymeric E-720E/7781 (ECDE-1/0-550) Fiberglass Epoxy

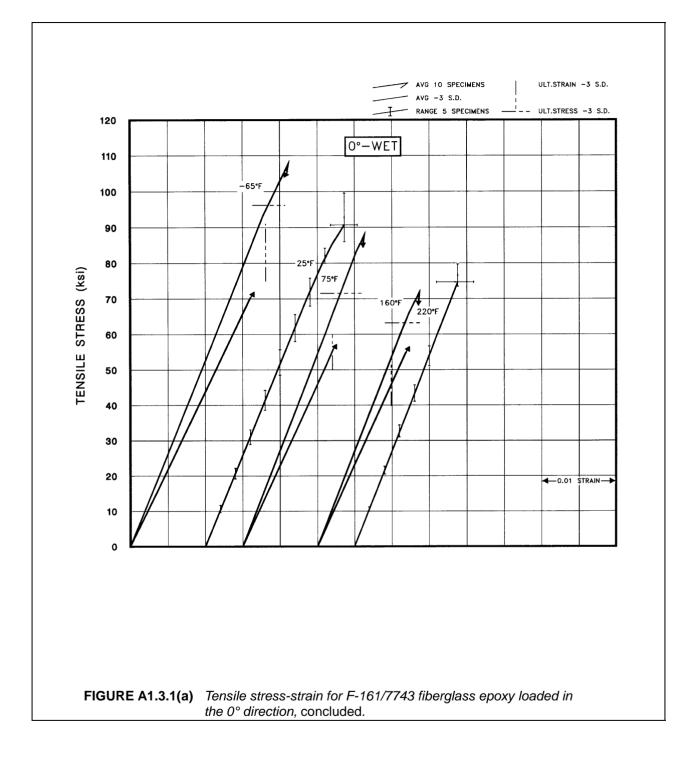

		Lay-up: Vacuum:				Pressur	-	Bleedout		Cure:		Postcure			
abrication		Para		No	-		55 PSI	Edge &		2 hr/3			400°F		В
Dhusiaal Dranatiaa		Weight P			Avg.	Specific	Gravity:		Avg. Per	cent Voids	:	Avg.	Thicknes		
Physical Properties		Tension:	34.9		pression:		1.78 Shear:		Flexure	2.0	Bear	rin a.		32 inches Iterlamina	r Choor
Test Methods			638 TYP		nession. 11L-HDBK		Shear. Ra	sil		FM D 790		ASTM D 9		Short E	
Temperature		ASTIND	-65			-17	75		70			0°F	555		0°F
Condition		D		W	≏t	-	Drv		/et	Dr	-	-	'et	D	
Condition		Avg	, SD	Avg	SD	Avg	SD	Avg	SD	Avg	, SD	Avg	SD	Avg	SD
Tension		,	02	,	02				02						
ultimate stress, ksi	0°	69.2	1.6	69.1	1.7	60.4	4 1.7	55.7	1.5	52.5	1.0	42.9	0.8	44.8	2.
	90°	56.0	2.0	56.5	2.0	49.	0 1.8	45.9	1.4	42.3	1.2	36.9	1.1	34.9	1
ultimate strain, %	0°		0.08		0.11	2.4		2.12		2.05	0.08		0.06		
	90°	-	0.22	2.54	0.19	2.3	3 0.09	2.04	0.09	1.98	0.08	1.70	0.13	1.72	0.2
proportional limit, ksi	0°														
	90°			0.00			_	0.40		0.05		0.70		0.00	
initial modulus, 10 ⁶ psi	0°			3.38		3.1		3.12		2.95		2.76		2.60	
secondary modulus, 10 ⁶ psi	90° 0°			3.02 2.85		2.8 2.4		2.78 2.50		2.50 2.46		2.65 2.37		2.30	
secondary modulus, 10 psi	90°			2.65 1.74		2.4		2.50		2.40		2.37			
Compression	30	1.30		1.74		2.0	5	2.13		2.01		1.57			
ultimate stress, ksi	0°	77.1	4.0	75.0	3.7	64.	8 2.9	57.3	3.8	54.0	1.4	46.2	1.4	23.8	2
	90°		2.7	53.9	2.7	50.		45.2	2.4	40.8	2.9		3.1	14.7	1
ultimate strain, %	0°		0.16		0.15			1.99		1.86	0.08		0.06		
·	90°		0.16	1.81	0.19	1.7	0.14	1.58	0.14	1.46	0.17	1.37	0.15	0.91	0.0
proportional limit, ksi	0°														
6	90°														
initial modulus, 10 ⁶ psi	0°			3.45		3.2		3.10		3.15		3.03		2.45	
	90°	3.20		3.26		3.2	1	3.03		2.99		2.85		1.85	
Shear ultimate stress, ksi	0°-90°	17.5				14.:	3 0.6			11.2					
uitimate stress, ksi		17.5				14.	3 0.6			11.2					
	±45°		6	5°F Dry				750	Dry				160° Di	n /	
		Avg	-0	Max	Mir	h	Avg		ax	Min		٩vg	Max	y I	Min
Flexure		Avg		Μαλ	IVIII	· ·	Avg		an	IVIIII	,	wg	Μαλ		IVIIII
ultimate stress, ksi	0°	1	15.6	119.4	L	111.5	91	7	93.4	90	0.3	69.4	-	71.1	67
proportional limit, ksi	0°		88.1	100.7		77.5	32		36.2		0.8	56.2		62.8	49
initial modulus, 10 ⁶ psi	0°		2.87	2.91		2.74	3.2		3.36		03	2.81		2.87	2.7
Bearing															
ultimate stress, ksi	0°		74.1	78.4	ŀ	70.7	60	.8	64.4	58	3.2	50.0	:	53.0	47
stress at 4% elong., ksi	0°	·	32.1	34.8	3	29.1	23	.9	34.2	20).1	18.1		21.5	15
Interlaminar Shear												Т			
ultimate stress, ksi	0°	'	7.09	7.36	6	6.80	5.9	90	6.07	5.	72	6.05	(6.16	5.9

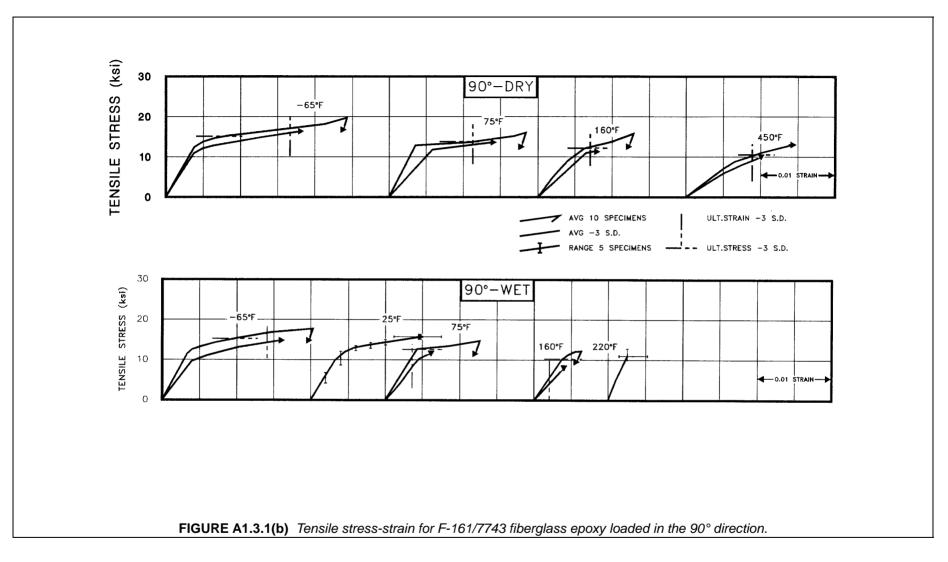


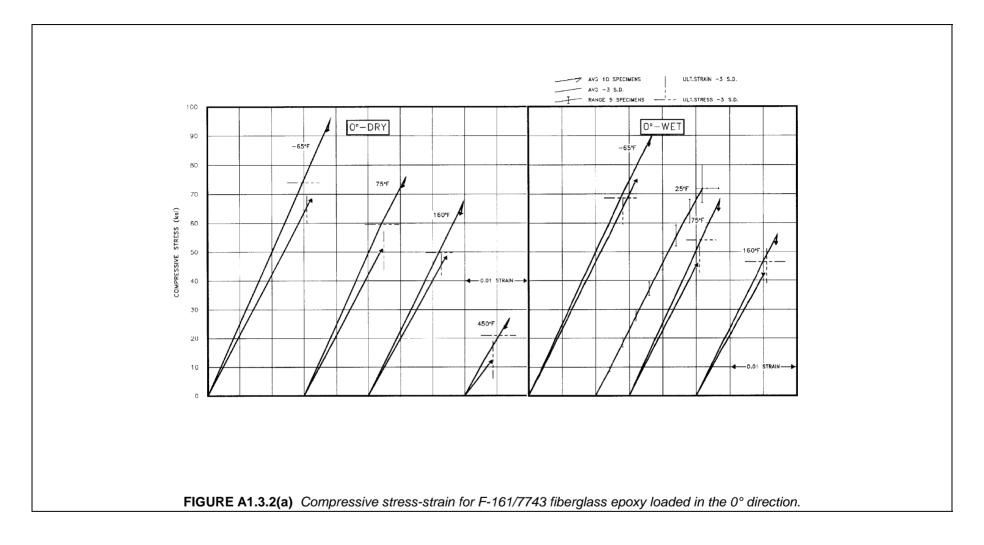


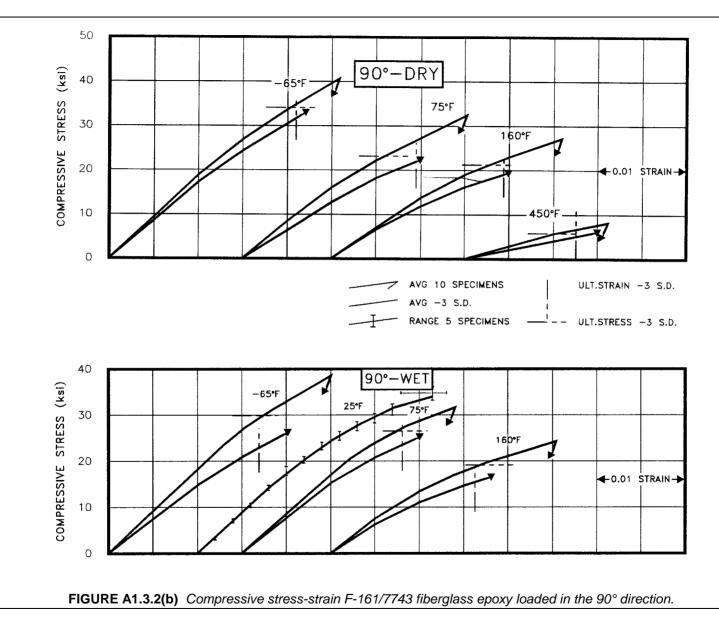
Volume 2, Appendix A1

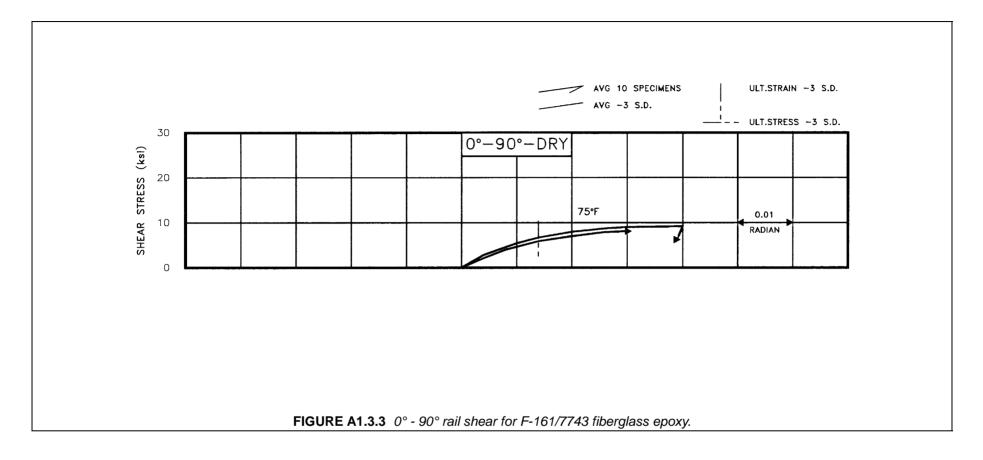


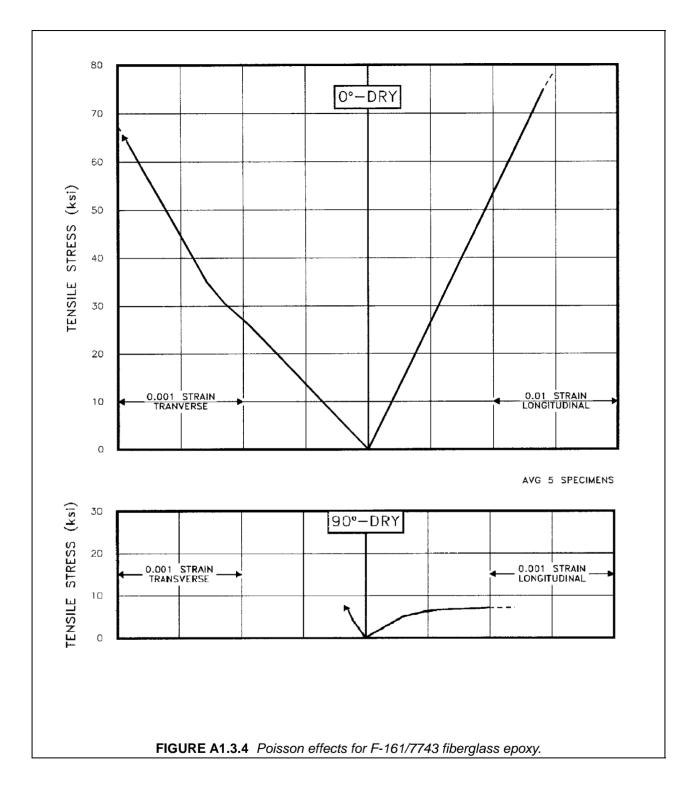


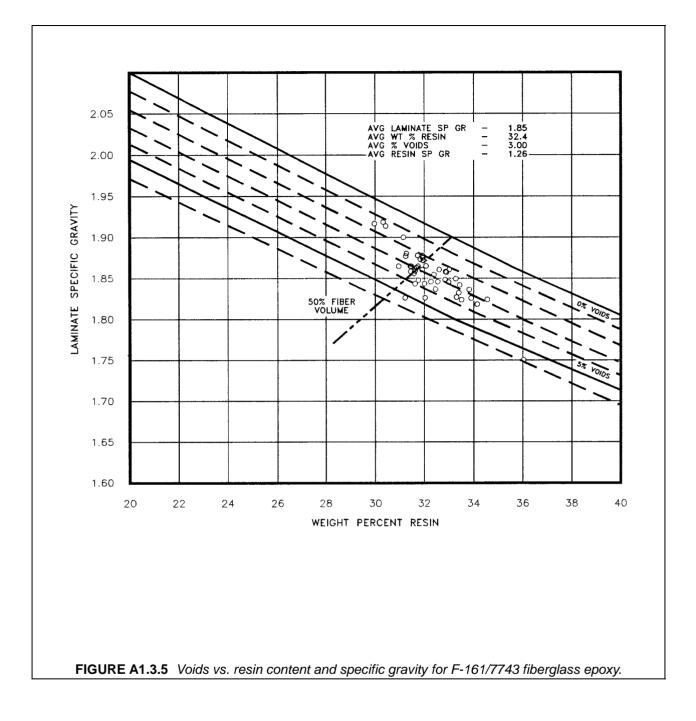

Volume 2, Appendix A1

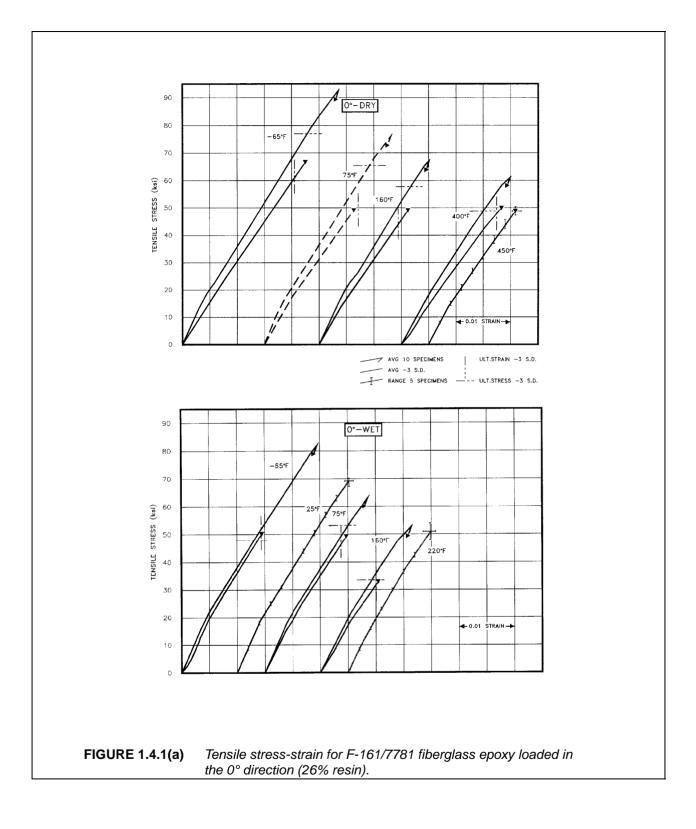

TABLE A1.3 Summary of Mechanical Properties of Hexcel F-161/7743(550) Fiberglass Epoxy.

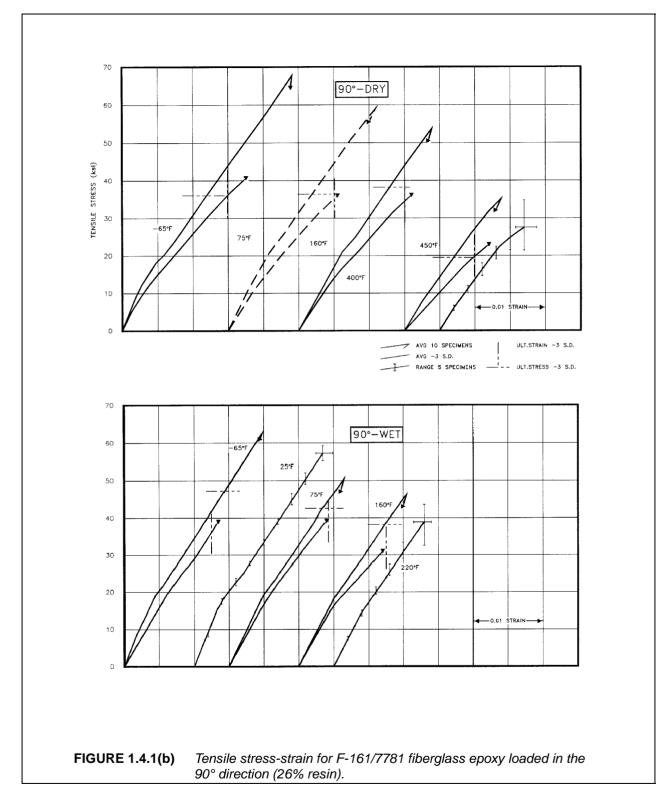

	17.8						THexcel F	Bleedou	, ,			Postcure		Plies:	
Fabrication		Lay-up: Balanc		Vacuum: 14 ps		Pressure 35 p			d Edge	Cure: 2 hr/35		2 hr/3		Piles.	
Tablication		Weight P					Gravity:	FILCHE		cent Voids			. Thicknes	-	
Physical Properties			$v_f = 0.4$		Avg.	1.85	Glavity.			3.0	.	Avg	0.086 ii		
r flysical r topetties		Tension:	Vf = 0.4		pression		Shear:	Flex			Bearing:			aminar S	hoor:
Test Methods					IL-HDBK		Rail		STM-D790		ASTM	D052		ort Bear	
Temperature		ASTM-D638 TYPE 1 MII -65°F				-17	75		31101-0190	,	-	0°F	31		00°F
		Dr		W	-4		75 Drv		/et	D.	-	vr W	-4		
Condition										Dr	5				Dry
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension	•		4.40	407.0	0.00			07.0			4.05		0.70	- 4	
ultimate stress, ksi	0°	111.3	1.12	107.3	3.60	95.5		87.3			4.05		2.73	74.	
addies a tana ing 104	90°	9.84	0.78	9.42	0.59	8.15		7.27			0.18			6.5	
ultimate strain, %	0°	2.10	0.31	2.11	0.10	1.88		1.72			0.15		0.12	1.6	
and a set of a set that the back	90°	2.43	0.25	2.03	0.21	1.82		1.20		-	0.19		0.13		
proportional limit, ksi	0°	86.2		87.8		74.7		81.5		64.0		65.4		61.	
	90°	5.6		5.0		5.2		4.8		5.0		5.0		3.	
initial modulus, 10 ⁶ psi	0°	5.42		5.35		5.30		5.55		5.36		5.47		4.5	
	90°	1.61		1.73		1.73		1.41		1.11		1.30		0.74	4
secondary modulus, 10 ⁶ psi	0°					5.15									
2	90°					0.09	1								
Compression															
ultimate stress, ksi	0°	95.0	7.42	89.7	7.0	75.9		67.4			5.53				
	90°	40.3	1.93	37.6	2.93	32.1		30.4			1.93				
ultimate strain, %	0°	1.90	0.11	1.83	0.14	1.58		1.36		1.47	0.08		0.06		
	90°	2.57	0.16		0.25	2.51		2.38			0.22		0.30		
proportional limit, ksi	0°	83.0		70.0		52.2		49.8		55.6		40.8		20.	J
	90°	18.1		15.0		11.9		10.6		9.2		8.2			
initial modulus, 10 ⁶ psi	0°	5.02		4.98		4.96		5.09		4.59		4.66		4.1	2
2	90°	1.91		1.88		1.65)	1.77		1.46		1.37			
Shear		10.5													
ultimate stress, ksi	0°-90°	12.5				9.2	2 0.2			7.7					
	±45°														
			-6	5°F Dry					= Dry				160° D	ry	
		Avg		Max	Mir	า	Avg	M	lax	Min	1	Avg	Max		Min
Flexure															
ultimate stress, ksi	0°		03.0	210.0		196.0	160		163.0	155	5.0	138.0		42.0	135.
proportional limit, ksi	0°		53.0	158.0		147.0	127		139.0	116		116.0		18.0	112.0
initial modulus, 10 ⁶ psi	0°		5.71	5.80		5.63	5.1	8	5.27	5.	10	5.43		5.46	5.3
Bearing															
ultimate stress, ksi	0°		79.4	90.2		64.8	58		63.2		2.7	53.7		57.5	50.
stress at 4% elong., ksi	0°		37.9	45.6	i	31.5	23	.0	27.1	19	9.5	21.9		23.6	20.
Interlaminar Shear															
ultimate stress, ksi	0°		9.55	10.15	j l	8.72	9.3	5	9.55	9.	17	8.31		8.65	8.02
· .		l			1										



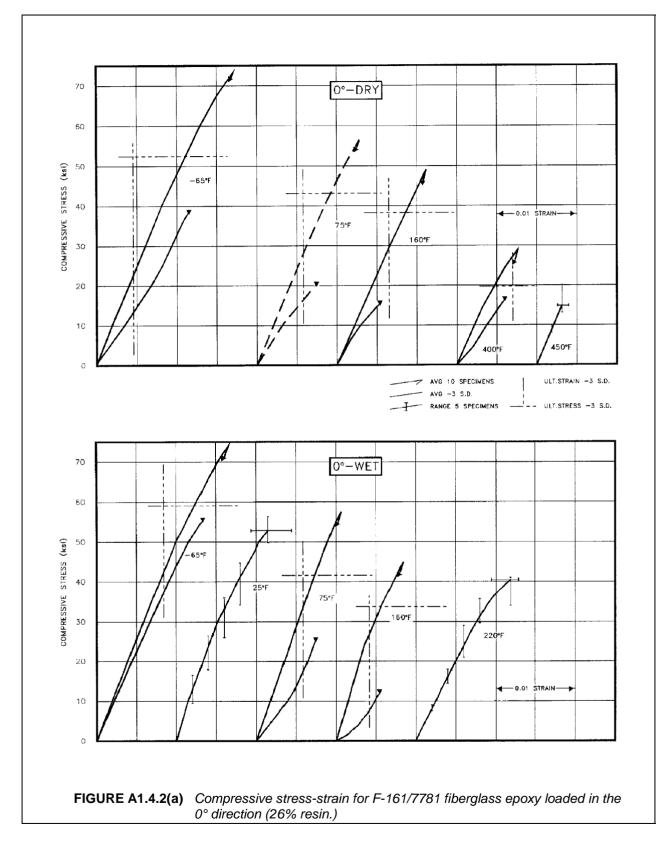


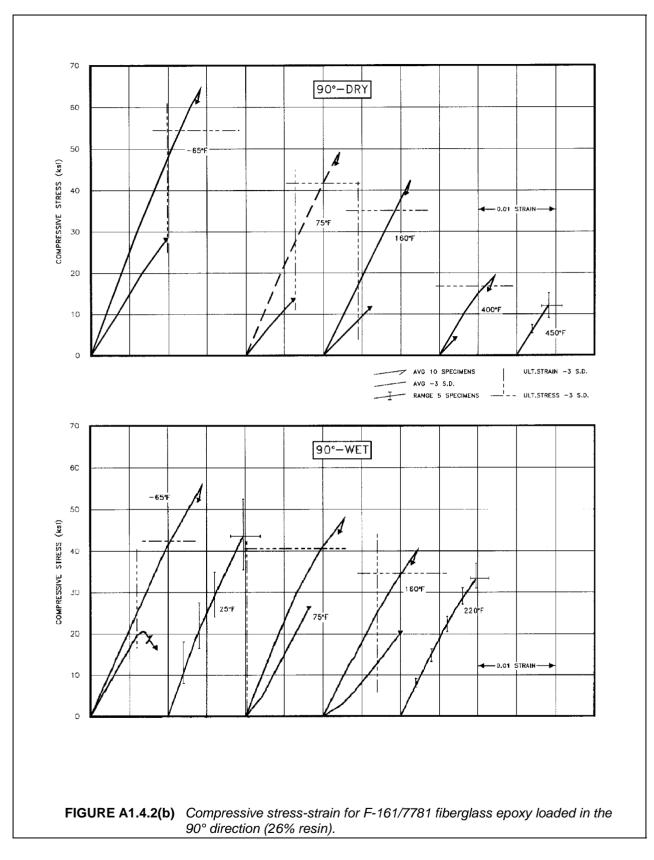


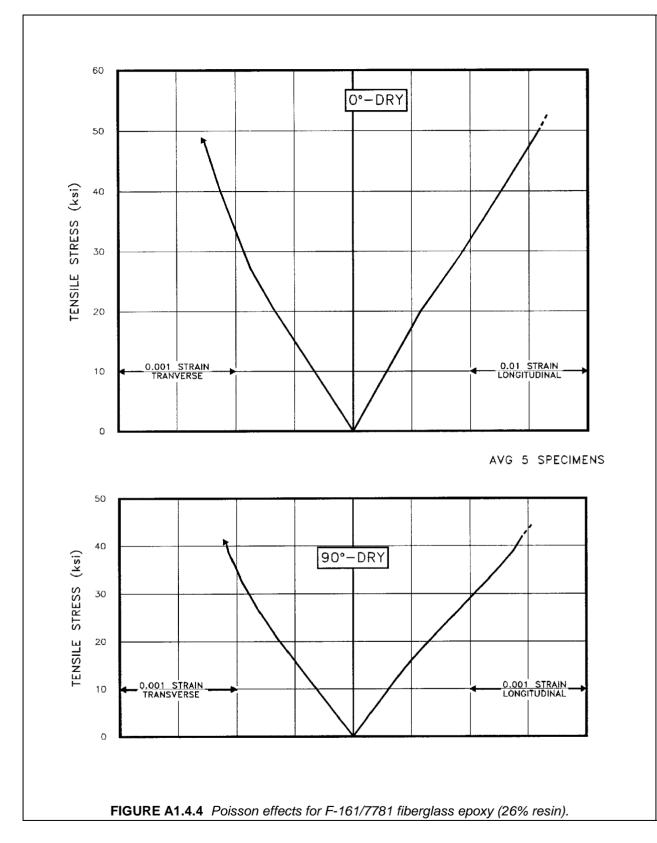




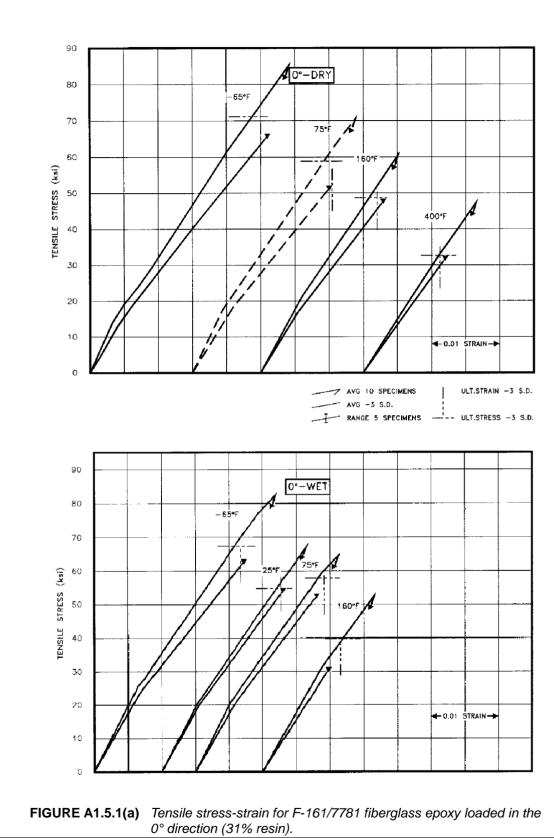
Volume 2, Appendix A1

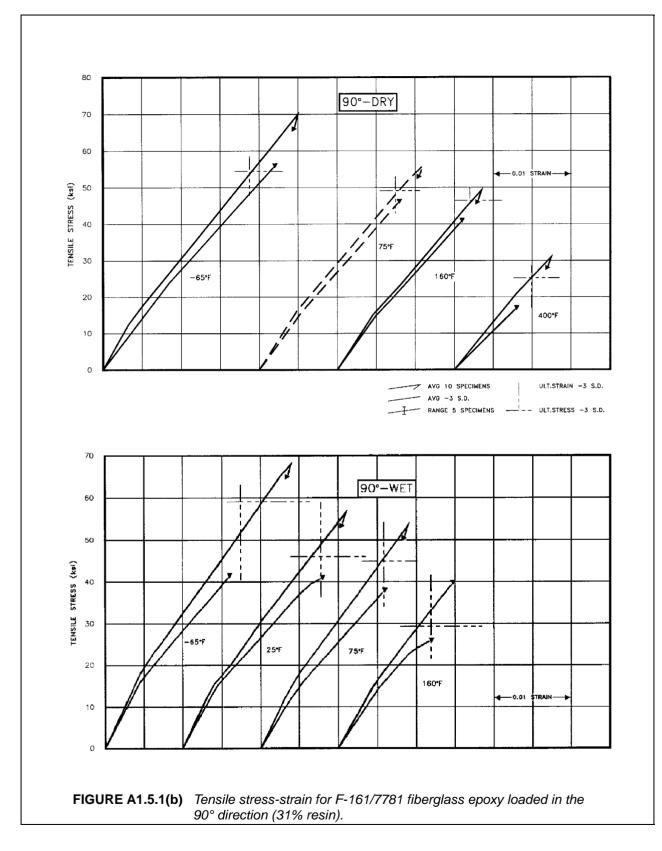

TABLE A1.4 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epoxy (26% Resin)

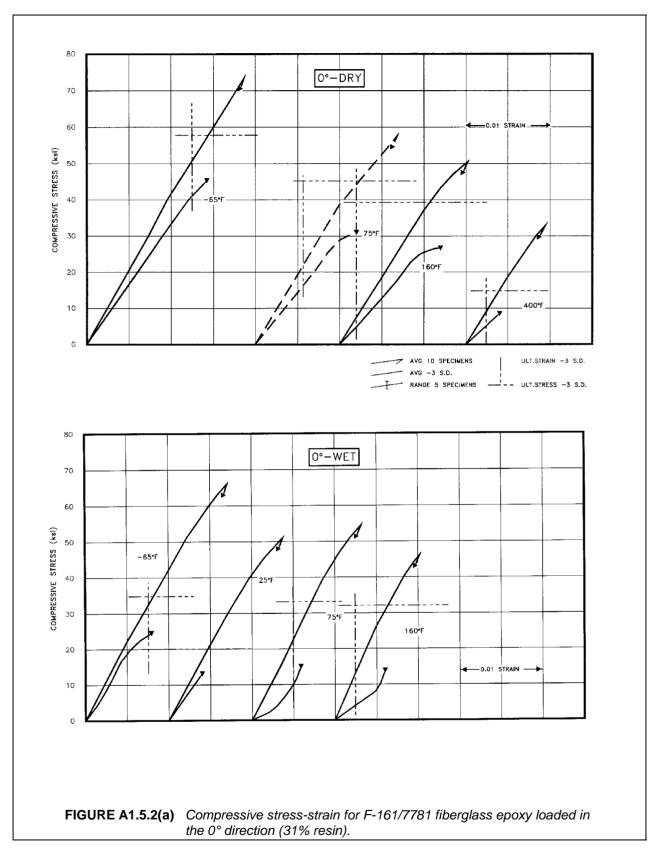

	.E A1.4 Sui	Lay-up:		Vacuum:		Pressu	۱	Bleedou	,	Cure:		Postcure		Plies:	
Fabrication		Balance		None			5 psi	Vert	ical and ed Edge	1 hr/350)°F	2 hr/300°F 8 and 2.5 hr/400°F		10	
		Weight Pe	ercent Re	sin:				Avg. Percent Voids:				Avg. Thickness:			
Physical Properties			$v_{f} = 0.59$		2.01				0.5					nch/ply	
		Tension:			ession:		Shear:	_	Flexure:		Bearin	ng:	Int	erlaminar	
Test Methods		MIL-H	DBK-17		L-HDBK-	17	Picture F		AST	M-D790				ASTM-D	
Temperature			-65					5°F				0°F		-	Ъ°Е
Condition			Dry		et		Dry		/et	Dry			et		ry
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	92.4	5.16	80.5	10.87			61.4			3.03		5.72		3.81
ultimate strain 0/	90° 0°	67.8	10.65 2.11	62.3	5.01 0.31			50.3 1.78			5.19		2.69		5.16 0.08
ultimate strain, %	90°	2.86 2.42	2.11 3.14	2.37 1.97	0.31			1.65			0.14 0.12				0.08
proportional limit, ksi	90°	2.42	3.14	1.97	0.24			1.00	0.00	0 1.00	0.12	1.55	0.10	1.30	0.13
proportional limit, ksi	90°														
initial modulus, 10 ⁶ psi	0°	4.42		4.49				4.10		3.92		3.72		3.27	
	90°	4.22		4.21				3.76		3.17		3.38		2.86	
secondary modulus, 10 ⁶ psi	0°	3.32		3.14				3.06		3.24		3.07		2.94	
,	90°	2.70		2.74				2.62		2.72		2.55		2.46	
Compression															
ultimate stress, ksi	0°	73.2	6.83	74.0	5.02			57.3	4.0	48.9	3.50	44.7	3.25	28.8	3.03
	90°	64.2	3.19	55.8	4.40			37.5			2.64	40.1	1.90		0.69
ultimate strain, %	0°	1.70	0.42	1.65	0.28			1.09			0.15		0.14		0.03
	90°	1.40	0.14	1.42	0.27			1.26			0.23		0.18		0.27
proportional limit, ksi	0°	39.0		46.0				42.0		41.0		24.0		15.0	
	90°	28.0		41.0				24.0		36.0		21.0		11.0	
initial modulus, 10 ⁶ psi	0°	4.42		4.47				4.27		4.05		3.94		3.73	
Ohaan	90°	4.02		4.19				4.12	2	3.68		3.40		3.07	
Shear	0°-90°	20.4	2.3					16.0	1.6/	12.4	1 00				
ultimate stress, ksi		20.1	2.3					16.0	0 1.64	13.4	1.28				
	± 45°							750			-		1000 D		
	-	A		5°F Dry			A		= Dry	N.41-	_	A	160° D	, ,	N.4'
-	-	Avg		Max	Mir	ו	Avg	IV	lax	Min		Avg	Max		Min
Flexure	00						0.4	10	00.00	00.0					
ultimate stress, ksi proportional limit, ksi	0° 0°						94.	10	96.86	89.6	64				
initial modulus, 10 ⁶ psi	0°														
Bearing	0				<u> </u>										
ultimate stress, ksi	0°														
stress at 4% elong., ksi	0°														
Interlaminar Shear	0				ł										
ultimate stress, ksi	0°						5	56	5.65	5.5	50				
	0						0.	~~	0.00	0.0					

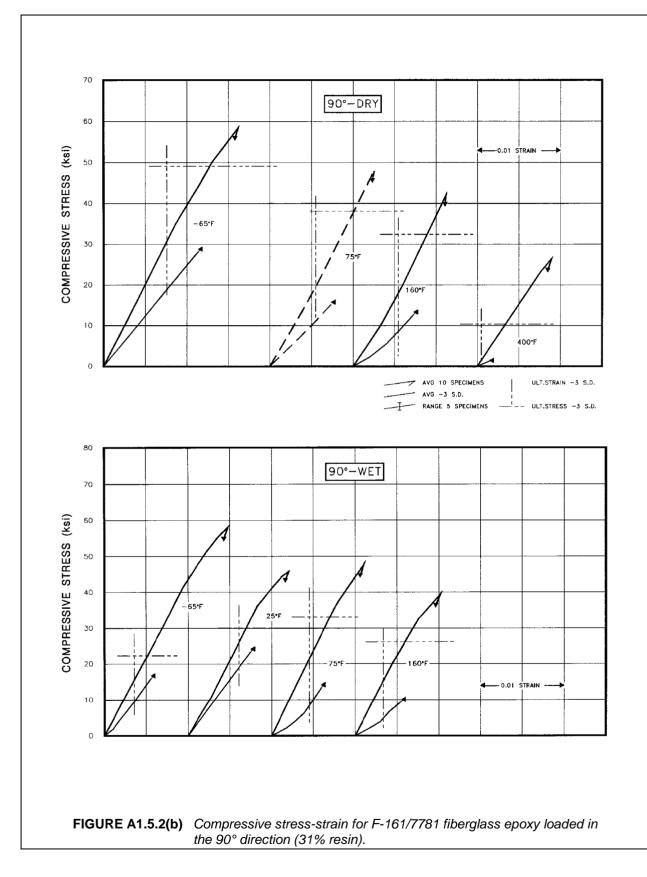


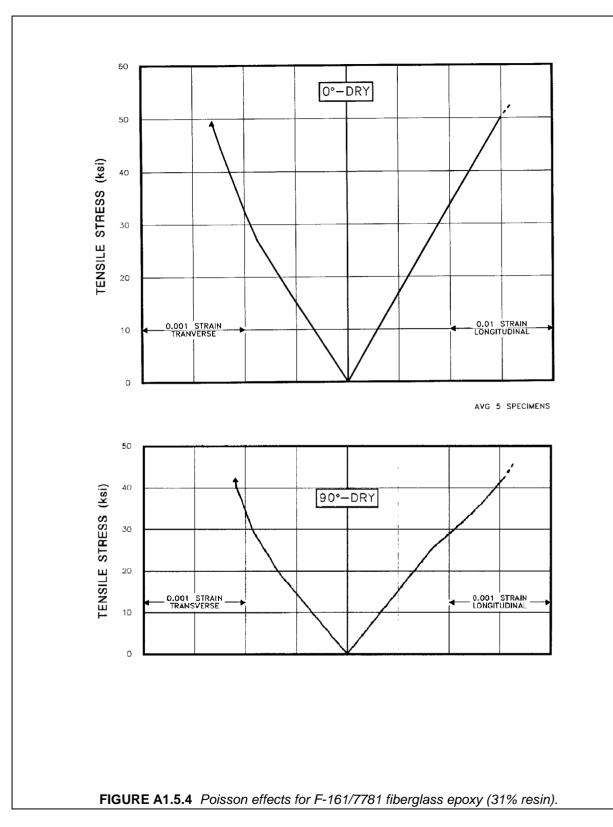
Volume 2, Appendix A1

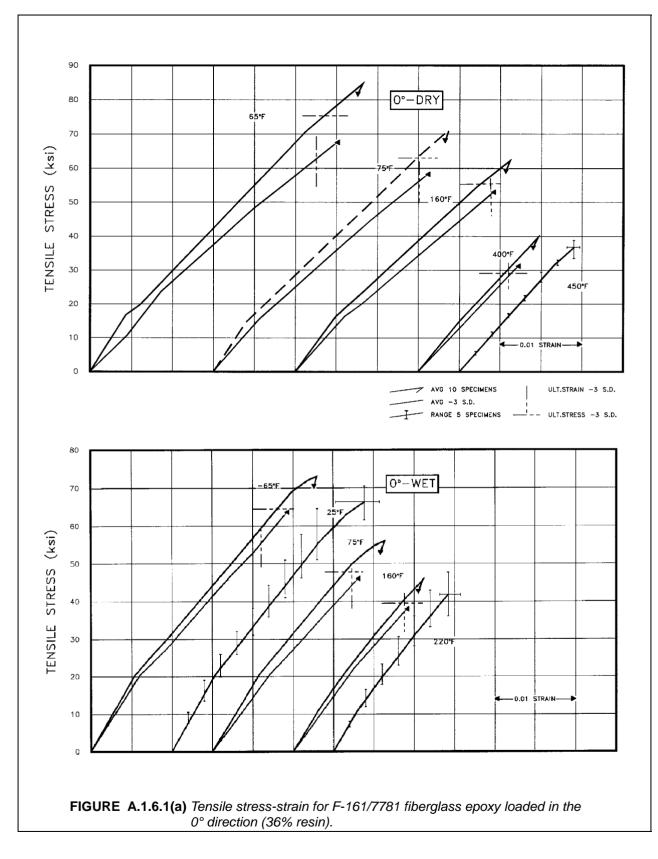


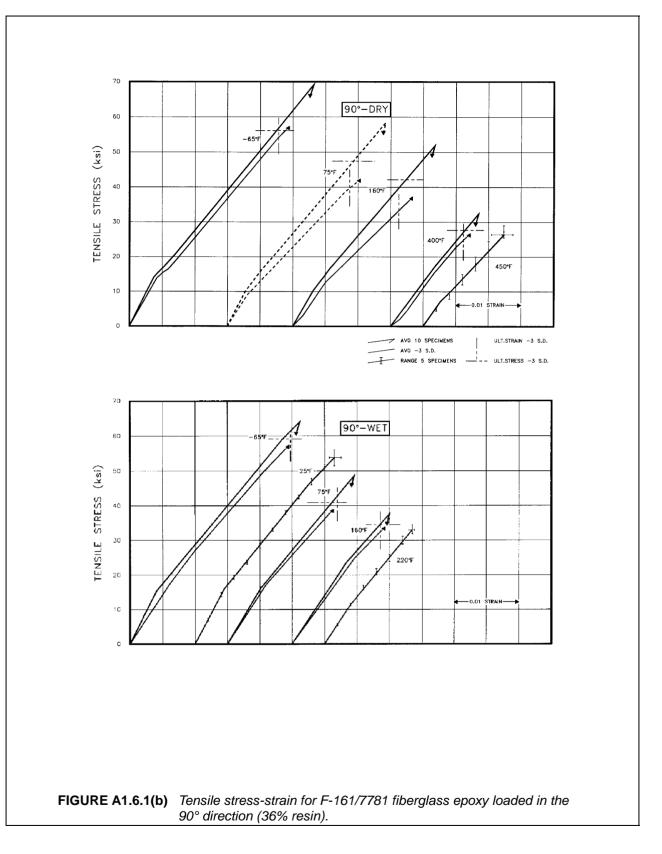


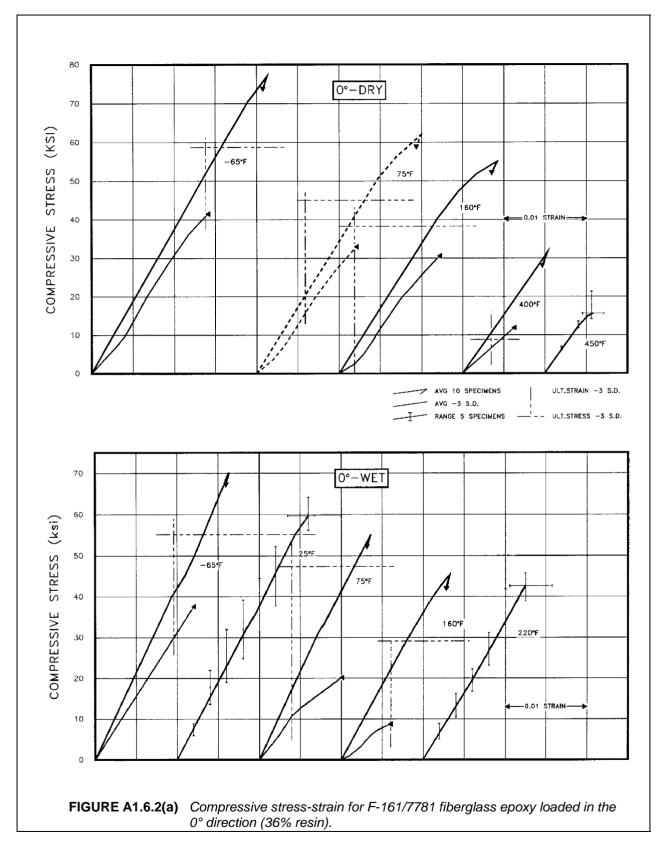


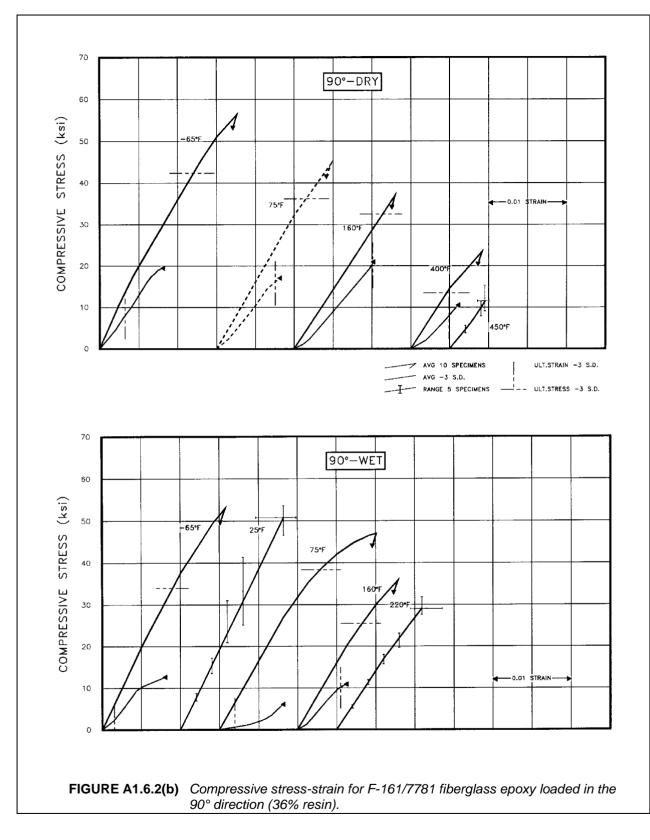

TABLE A1.5 Summary of Mechanical Properties of Hexcel F-161/7781 (ECDE-1/0-550) Fiberglass Epo	oxy (31% Resin)
--	-----------------

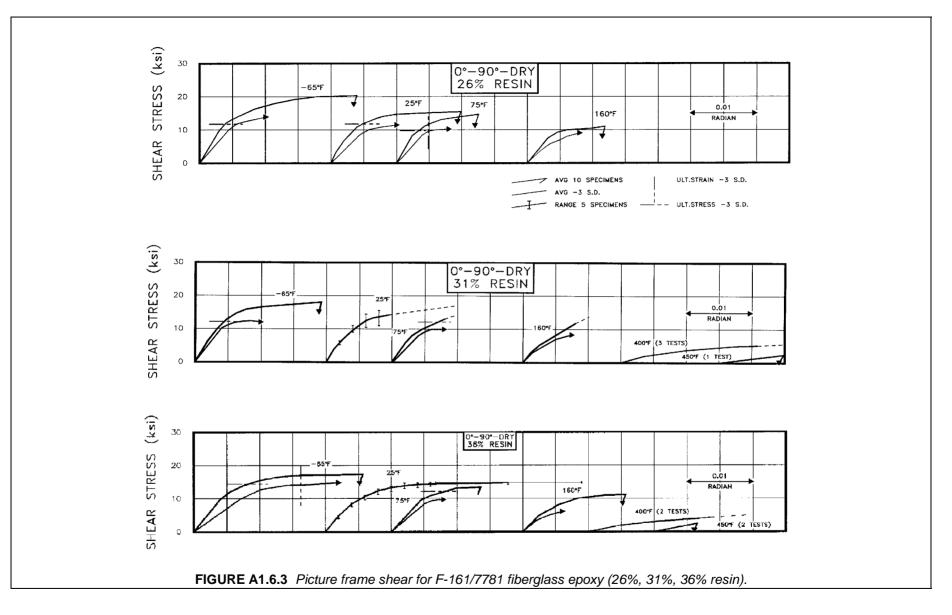

		Lay-up:		Vacuum:	: Pressure:			Bleedout	,	Cure:		Postcure				
Fabrication		Balanc		None	•	55-65	5-65 psi Vertical Stepped E			1 hr/350	°F		00°F 2.5			
		Weight P	ercent Re	sin:	Avg.					cent Voids:		Avg. Thickness:				
Physical Properties			31.0		1.92					0.6			nch/ply			
		Tension:		Compression:			near:		Flexure:		Bearir	ng:	Int	Interlaminar Shear:		
Test Methods		MIL-H	IDBK-17		L-HDBK-	17	Picture Frame			M-D790						
Temperature			-65			75°					160			400)°F	
Condition		Di	,	Wet		Dry		Wet		Dry			et	D	.,	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension																
ultimate stress, ksi	0°	85.2	4.68	82.3	4.97			64.0	2.04		3.75			47.3	4.87	
	90°	70.0	5.24	67.9	2.98			53.5	2.91		0.95			31.0	1.95	
ultimate strain, %	0°	2.93	0.14	2.53	0.18			2.10	0.06		0.10			1.66	0.18	
proportional limit kai	90° 0°	2.50	0.21	2.41	0.22			1.90	0.11	1.86	0.06	1.47	0.09	1.25	0.09	
proportional limit, ksi	90°															
initial modulus, 10 ⁶ psi	90 0°	4.22		4.30				3.84		3.69	3.72	3.65		3.09		
	90°	3.97		4.15				3.68		3.37	3.34			2.75		
secondary modulus, 10 ⁶ psi	0°	3.13		3.01				3.03		2.97	0.04			2.94		
eccondary modulad, to por	90°	2.62		2.96				2.62		2.55	0.25			2.47		
Compression		-						-								
ultimate stress, ksi	0°	73.1	5.18	66.0	10.75			54.4	7.04	50.6		45.9	5.39	32.8	6.04	
	90°	58.4	3.17	57.5	11.56			47.3	4.73	42.2		38.7	4.19	25.8	8.27	
ultimate strain, %	0°	1.86	0.21	1.72	0.32			1.33	0.28			1.04		0.95	0.24	
	90°	1.61	0.29	1.44	0.36			1.10	0.21			0.99	0.22	0.87	0.28	
proportional limit, ksi	0°	44.0		38.0				33.0		32.0		25.0		16.0		
	90°	33.0		33.0				30.0				21.0		15.0		
initial modulus, 10 ⁶ psi	0°	3.90		4.04				4.03		3.42		4.06		3.50		
Chaor	90°	3.56		3.84				3.96		3.23		4.01		3.07		
Shear	0°-90°	20.5	2.23					15.9	0.72	13.7	0.82					
ultimate stress, ksi		20.5	2.23					15.9	0.72	13.7	0.82					
4	± 45°							7505	Duri		1		1000 5			
		Δ		5°F Dry	NA:		A	75°F		Min		N. 19	160° D	/	Min	
		Avg		Max	Mir	1	Avg	Ma	ax	Min		Avg	Max		Min	
Flexure	08						00.0		00.74	07.0						
ultimate stress, ksi proportional limit, ksi	0° 0°						90.2	.3	93.74	87.2	9					
initial modulus, 10 ⁶ psi	0°															
Bearing	0															
ultimate stress, ksi	0°															
stress at 4% elong., ksi	0°															
Interlaminar Shear	0															
ultimate stress, ksi	0°						5.5	6	5.65	5.5	0					
	ů						5.6	-	0.00	5.0	-					

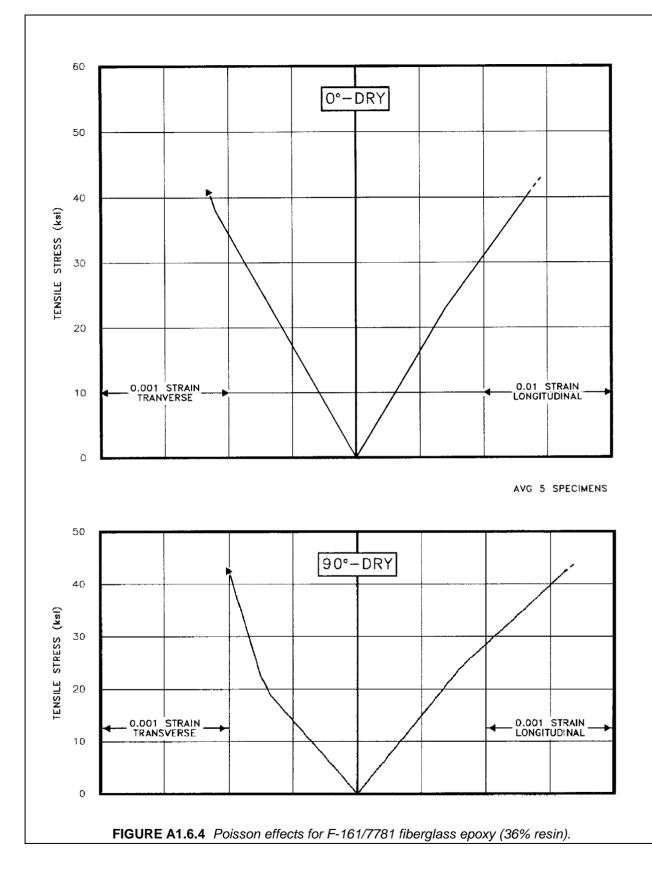









	-E A1.6 Su								,		F 1	,		Plies:	
Fabrication	Lay-up: Balanc		Vacuum: None		Pressure: 55-65 psi		Bleedout	: al and	Cure: 1 hr/35		Postcure 2 hr/30				
abrication		Dalanc	eu	NOTE		55-05			Stepped Edge		01	2.5 hr/4			
		Weight P	ercent Re	sin [.]	Ava	Specific	Gravity [.]			cent Voids			Thickness:		
Physical Properties			5.6				.86			0.9) inch/ply	
,	I	Tension:		Compression:			Shear:			exure:	В	earing:		nterlaminar Shear:	
Test Methods		MIL-H	IDBK-17		MIL-HI	DBK-17	Pict	ure Fram	ire Frame		90	0			
Temperature			-65	ö°F			75°F					0°F		400)°F
Condition		D	ry	W	et	D	ry	W	'et	Dr	у	W	/et	Di	ry
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	83.9	2.85	73.0				55.5	-		2.24			39.2	3.40
allies at a standar Of	90°	68.7	4.19	63.9				48.9			3.25			32.0	1.44
ultimate strain, %	0° 90°	3.30 2.80	0.18	2.79 2.41	0.02 0.05			2.12 1.95			0.08 0.19			1.45 1.35	0.13 0.08
proportional limit, ksi	90° 0°	2.60	0.18	2.41	0.05			1.95	0.09	2.10	0.19	1.50	0.05	1.35	0.06
	90°														
initial modulus, 10 ⁶ psi	0°	3.84		3.81				3.58		3.25		3.35		2.96	
	90°	3.67		3.81				3.30		3.13		3.18		2.51	
secondary modulus, 10 ⁶ psi	0°	2.81		2.75				3.04		2.49		3.04		2.74	
	90°	2.65		2.67				2.72		2.39		2.70		2.22	
Compression															
ultimate stress, ksi	0°	76.2	5.88	68.8				55.1	2.63		5.49			31.0	8.08
	90°	56.0	4.56	52.9				47.0			1.47			23.2	3.26
ultimate strain, %	0°	2.13	0.28	1.64	0.23			1.36			0.56			1.02	0.23 0.14
proportional limit, ksi	90° 0°	1.75 28.0	0.48	1.58 24.0				2.00 24.0	0.89	1.29 32.0	0.09	1.27 22.0		0.91 17.0	0.14
proportional limit, ksi	90°	28.0		24.0 17.0				24.0 16.0		28.0		17.0		17.0	
initial modulus, 10 ⁶ psi	0°	4.10		4.50				3.87		3.45		3.36		2.87	
	90°	4.00		4.10				3.64		2.87		2.88		2.63	
Shear															
ultimate stress, ksi	0°-90°	19.6	1.04					15.0	0.70	12.7	0.62				
	± 45°														
			-6	5°F Dry				75°F	Dry			160° [Dry	
		Avg		Max	Mir	า	Avg	M	ax	Min		Avg	Max		Min
Flexure															
ultimate stress, ksi	0°						86.3	1	92.16	79.	07				
proportional limit, ksi	0°														
initial modulus, 10 ⁶ psi	0°														
Bearing	~														
ultimate stress, ksi stress at 4% elong., ksi	0° 0°														
Interlaminar Shear	0							-							
ultimate stress, ksi	0°						5.5	6	5.65	5.	50				
	0						0.0		0.00	5.					





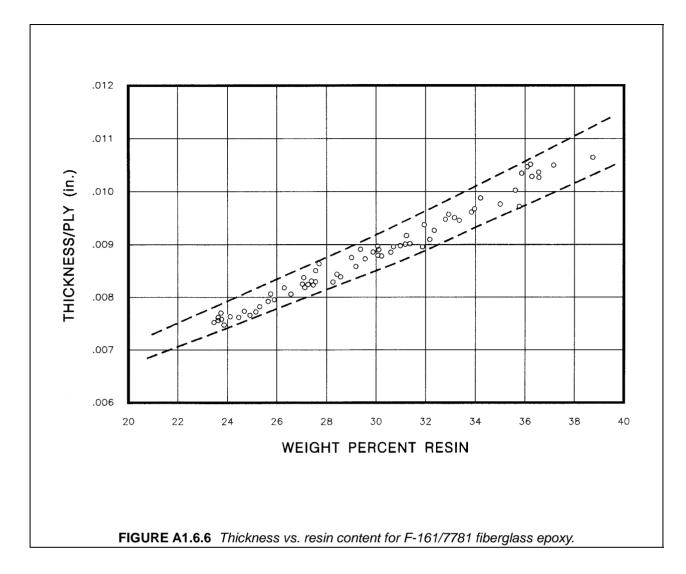
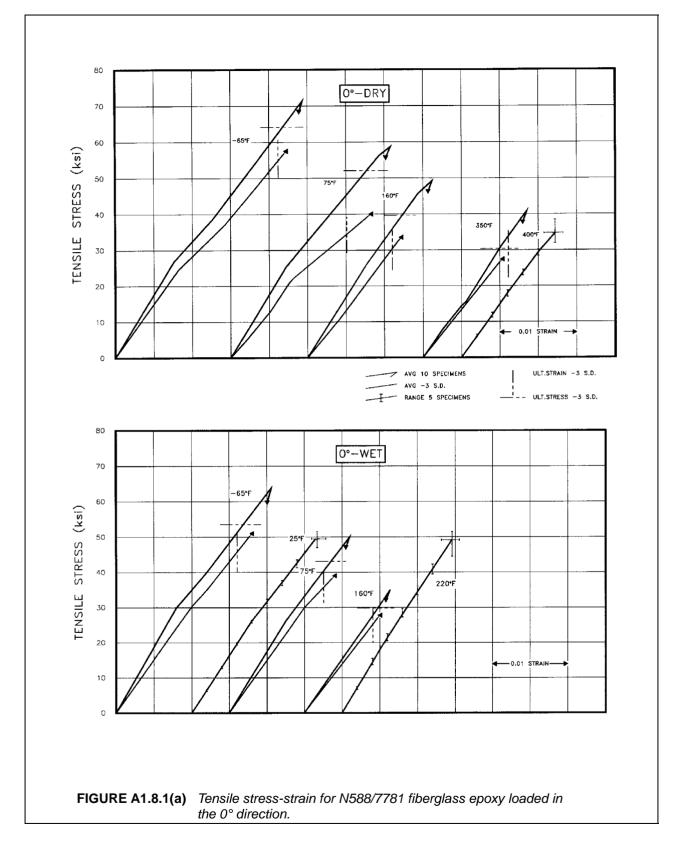
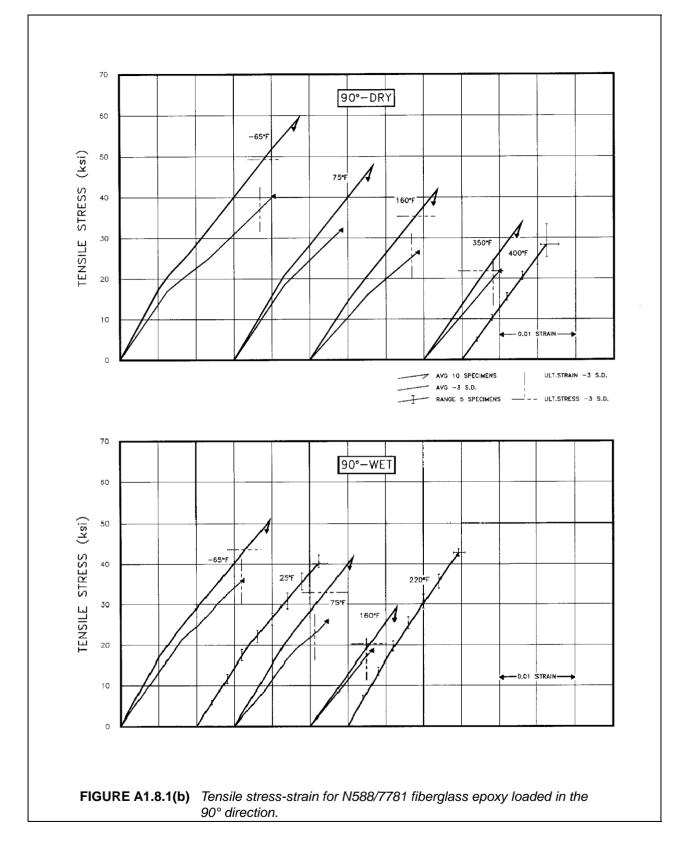
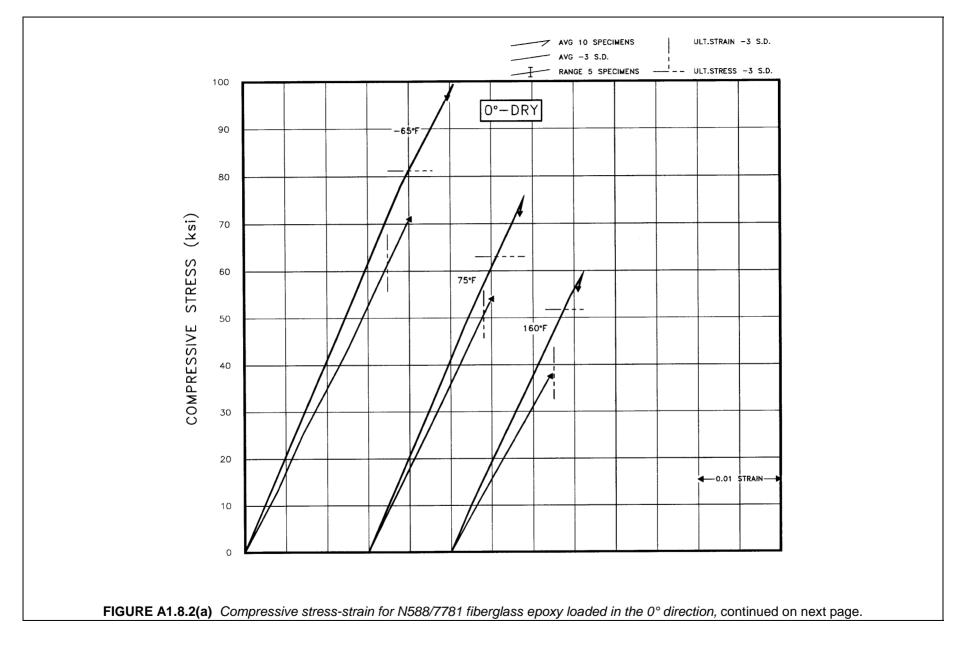
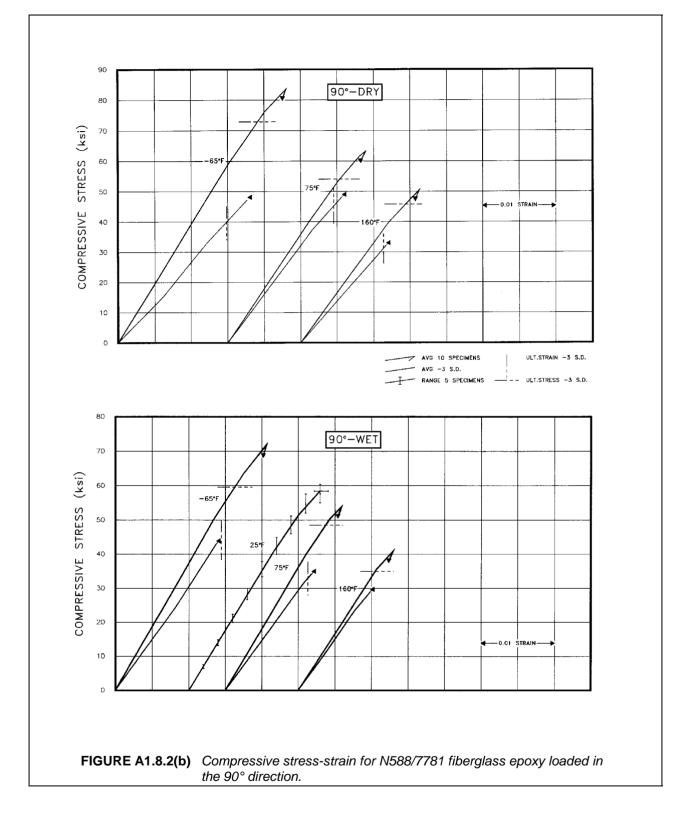
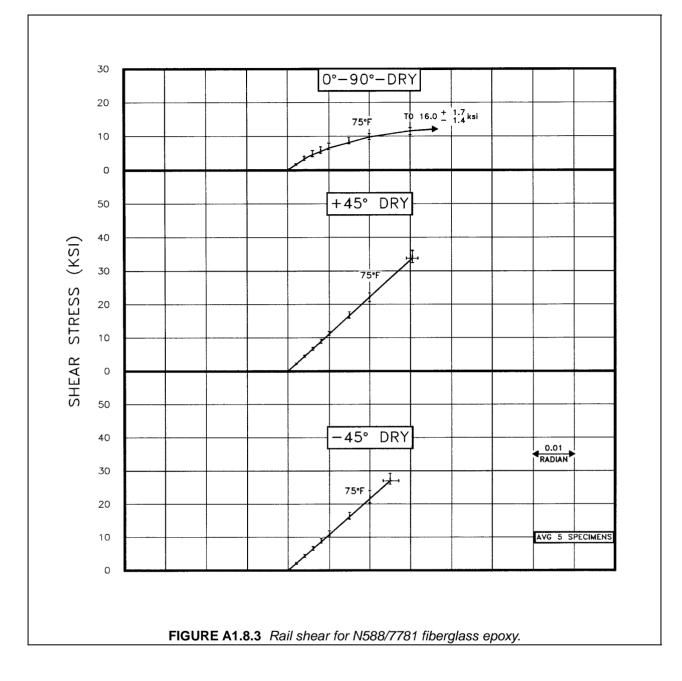
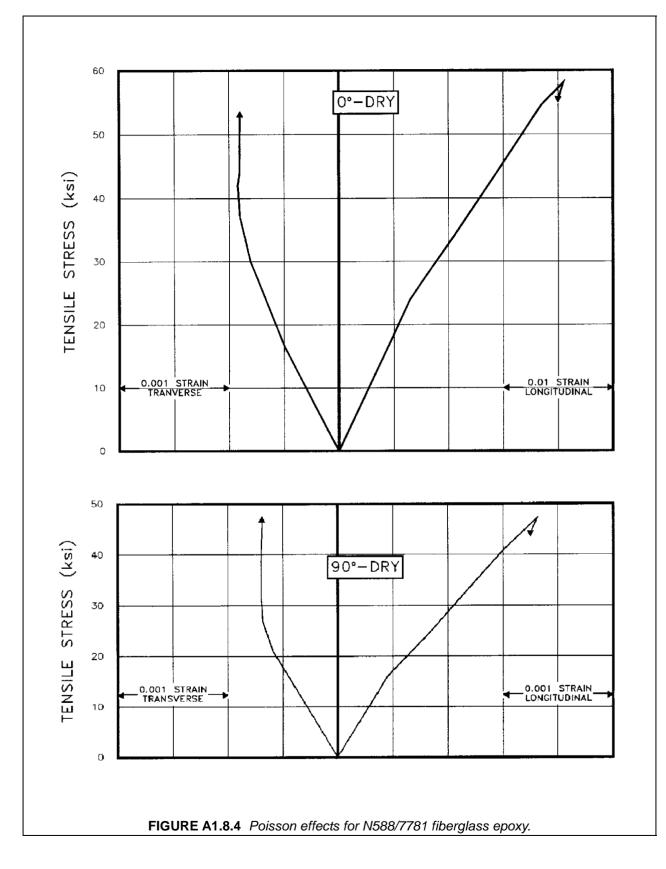





TABLE A1.8 Summary of Mechanical Properties of Narmco N588/7781 (ECDE-1/0-550) Fiberglass Epoxy


		Lay-up:		Vacuum	cuum:			Bleedou		Cure:		Postcur	e:	Plies:		
Fabrication		Balanced None								ertical Stepwise to 350°F 1hr/350°F				8		
		Weight P	ercent Re	esin:	Avg.	. Specific	Gravity:		Avg. Percent Voids:				Avg. Thickness:			
Physical Properties		32.8			1.91				1.0			0.075 inches				
		Tension:			ompressio		Shear:		Flexure:		Bearing:			rlaminar Shear:		
Test Methods		ASTM-D			MIL-HD	BK-17	Rai		ASTM-	D790		N-D953				
Temperature				5°F			75°F					0°F			0°F	
Condition		D			/et		Dry		Vet	D					lry	
- ·		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	
Tension	00	74.4				50		50 (40.0		05.0		10.4		
ultimate stress, ksi	0° 90°	71.4 59.3	2.4 3.3	63.8 50.6		58.4 47.2		50.0 41.1			3.0 2.0	35.0 28.9	2.0 2.8			
ultimate strain, %	90°	2.41	0.09					41. 1.6'			2.0 0.15		2.8 0.07	1.26		
uninale Shan, 70	90°	2.41	0.09					1.5	-		0.15		0.07			
proportional limit, ksi	0°	2.55	1.7					25.4			1.7	29.9	2.0			
	90°	19.3	0.8					18. ²					1.3			
initial modulus, 10 ⁶ psi	0°	3.64	0.0	3.85		3.71		3.57		3.58		3.10	-	3.13		
	90°	3.41		3.37		3.56		3.23		2.92		2.63		2.80		
secondary modulus, 10 ⁶ psi	0° 90°	_							-	_						
Compression																
ultimate stress, ksi	0°	99.2	5.9	87.4	5.8	74.0	3.6	63.5	5 3.2	59.0	2.4	49.5	1.9			
	90°	83.4	3.5			62.9		53.7			1.5		1.8			
ultimate strain, %	0°	2.52	0.26					1.65			-					
	90°	2.30	0.27					1.58					0.08			
proportional limit, ksi	0°	42.7	2.6					39.8			2.7	30.7	2.7			
	90°	40.8	3.8			35.3		34.4					1.6			
initial modulus, 10 ⁶ psi	0° 90°	4.32 4.08		4.15 3.83		4.18		4.1 ² 3.72		3.88		3.70 3.41				
Shear	90	4.06		3.03		3.68	b	3.72	2	3.41		3.41				
ultimate stress, ksi	0°-90°	22.6				16.0	1.05			13.8						
utilitate stress, KSI	±45°	22.0				10.0	1.05			15.0						
	± 45		6	5°F Dry				75°	F Dry				160° D	n /		
		Avg		Max	Mi	n	Avg		/ax	Min	-	Avg	Max	l y	Min	
Flexure		Avg		ινίαλ	1711		Avy	IV.	Παλ	IVIIII	/	-vy	ividX		IVIII I	
ultimate stress, ksi	0°	1	05.0	115.	6	95.6	90	4	102.6	R	4.5	79.3		87.8	74.0	
proportional limit, ksi	0°		69.6			59.0	68		72.4		4.6	64.8		72.2	57.2	
initial modulus, 10 ⁶ psi	0°		3.48	3.62		3.42	3.3		3.60		.20	3.19		3.27	3.09	
Bearing	-															
ultimate stress, ksi	0°		84.6	92.5		77.9	68	.4	71.3		6.0	0 48.4		53.6	44.2	
stress at 4% elong., ksi	0°		29.3	30.	9	26.5	26		27.4	2	5.3	21.8		22.8	20.6	
Interlaminar Shear									İ							
ultimate stress, ksi	0°		8.84	9.1	6	8.56	8.3	35	8.56	8	.05	7.39		7.72	6.47	





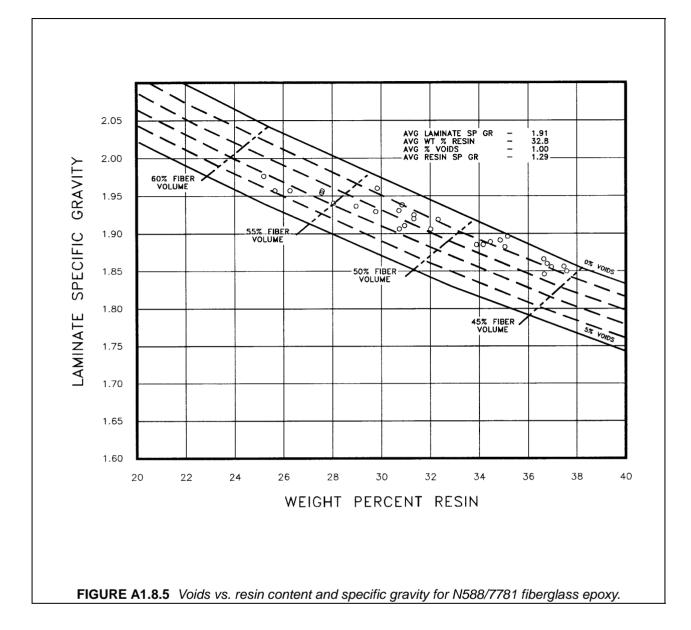
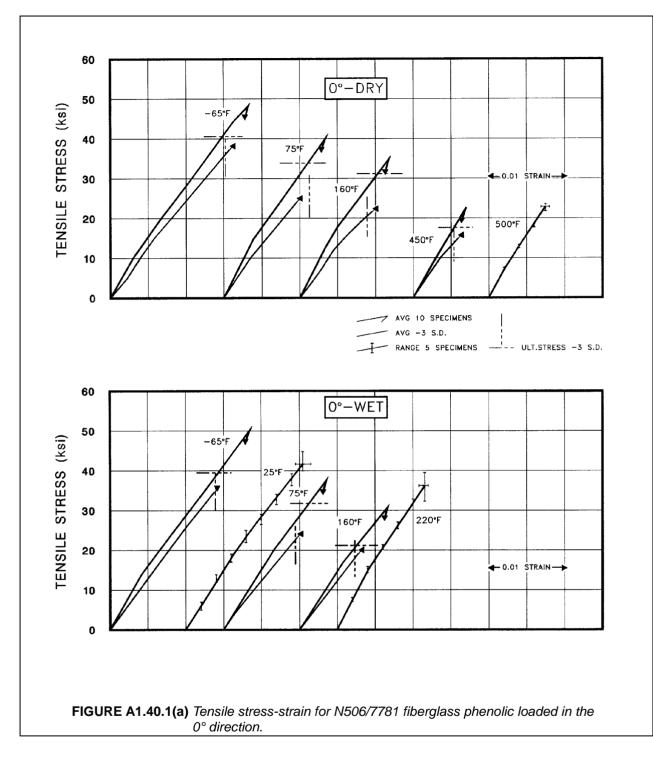
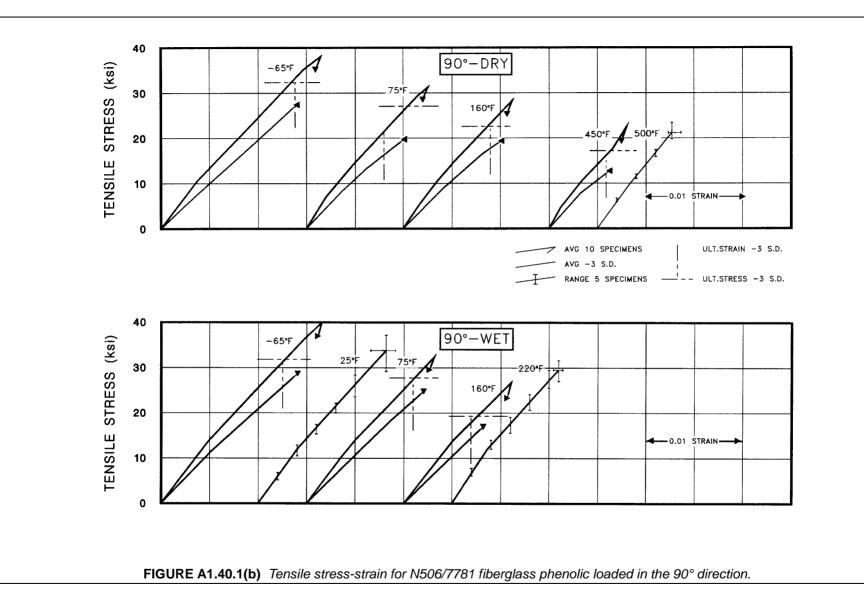




 TABLE A1.40
 Summary of Mechanical Properties of Narmco N506/7781 (ECDE-1/0-A1100) Fiberglass Phenolic.

			y 0, 10000	-			0 N506/778			, .				Plies:			
Fabrication		Lay-up: Balanc	ad	Vacuum:		Pressu	sure: Bleedout: Vertica			Cure:		Postcure		Blies.			
Fabrication		Weight P		agin:	Ava	Specific	Gravity:			cent Voids:		Ava	Thicknor	-			
Physical Properties			.3 - 32.3	esin.	Avg.	1.72 -				gure 4.40.5			Avg. Thickness: 0.071 - 0.095 inches				
Filysical Flopenies		Z5. Tension:	.3 - 32.3		mpressio		Shear:		Flexure	0	Bearir						
Test Methods			D638 TY		MIL-HDE		Rail			Л-D790		ig. TM-D953	terlaminar Shear: Short Beam				
Temperature		ASTIVI		5°F		Dr17	75	٥E	ASTI	/I-D790		0°F		Short Beam 400°F			
Condition		D		ST W	-1		75 Drv		/et	Dry		w w	-1	-	0°F)rv		
Condition			.,				,			,	/				,		
-		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD		
Tension		40.4		40.0				07.0		05.0							
ultimate stress, ksi	0°	48.1	2.4		3.3	38.9		37.2	1.8		1.4	30.6	3.0				
ultimente etcele 0/	90°	37.9	1.8		2.7	31.5		32.1	1.4	-	1.7	26.2	2.2	21.6			
ultimate strain, %	0°	1.76	0.07		0.13	1.33		1.34	0.13		0.10	1.15	0.14				
proportional limit kai	90° 0°	1.63 13.6	80.0		0.13	1.20		1.32 17.0			0.07	1.11	0.14	0.78 9.7			
proportional limit, ksi	0°	9.9	0.9 0.4		1.2 0.9	13.5 9.2		17.0		13.9 10.3	1.0 0.8	14.9 11.6	0.70 0.70	9.7			
initial modulus, 10 ⁶ psi	90° 0°	9.9 3.40	0.4		0.9	9.4 3.94		3.14			0.8		0.70				
initial modulus, 10 psi	90°	3.40 3.08			0.20	3.94		2.81	0.20		0.41						
secondary modulus, 10 ⁶ psi	90 0°	3.00	0.29	3.04	0.22	3.54	+ 0.41	2.01	0.24	3.33	0.57	2.70	0.21	3.10	0.30		
secondary modulus, to psi	90°																
Compression	30																
ultimate stress, ksi	0°	66.7	6.2	65.9	5.0	59.7	7 4.7	54.5	7.1	50.6	2.3	49.2	4.2				
	90°	57.7	5.8		5.8	49.0		48.7	4.0		4.3	42.9	3.7				
ultimate strain, %	0°	1.85	0.09		0.18	1.58		1.49			0.06		0.12				
	90°	1.70	0.21		0.13	1.40		1.43			0.12		0.15				
proportional limit, ksi	0°	45.8	3.8		7.9	39.0		41.2			2.4	35.0	1.7				
	90°	35.2	3.8		5.0	32.6		35.5			3.1	31.1	3.3				
initial modulus, 10 ⁶ psi	0°	3.90	0.19		0.29	3.95		3.89			0.21	3.67	0.12				
	90°	3.69	0.25	3.68	0.17	3.70	0.20	3.57	0.20	3.30	0.23	3.45	0.21				
Shear																	
ultimate stress, ksi	0°-90°	13.8				12.3	3 0.97			11.4							
	±45°																
			-(65°F Dry				75°F	75°F Dry			160° D			Drv		
		Avg		Max	Mir	1	Avg		ax	Min	4	Avg	Max		Min		
Flexure												3					
ultimate stress. ksi	0°		68.2	72.8		65.2	58	4	64.0	52	.1	52.7		56.3	47.4		
proportional limit, ksi	0°		59.3			54.6	48		56.8			42.4		46.2			
initial modulus, 10 ⁶ psi	0°		2.97	3.04		2.88	2.8		2.99	2.7		2.97		3.06	2.82		
Bearing					1												
ultimate stress, ksi	0°		65.7 73.2			57.0	58	.9	64.0	46.8		49.5		55.8	44.5		
stress at 4% elong., ksi	0°		25.1	26.0		23.7	24		24.9	23		21.6		22.6	20.7		
Interlaminar Shear	-														-		
ultimate stress, ksi	0°		4.83	5.10)	4.29	4.6	64	4.92	3.9	94	4.62		4.88	4.08		
	5									5.0							

ULT.STRAIN -3 S.D. AVG 10 SPECIMENS -2 AVG -3 S.D. RANGE 5 SPECIMENS _ 70 0°-WET -65°F 60 25°F COMPRESSIVE STRESS (ksi) , 75⁰F 50 160°F Л 40 30 20 0.01 STRAIN 10 0 FIGURE A1.40.2(a) Compressive stress-strain for N506-7781 fiberglass phenolic loaded in the 0° direction.

65'

0°-DRY

160°F

-0.01 STRAIN

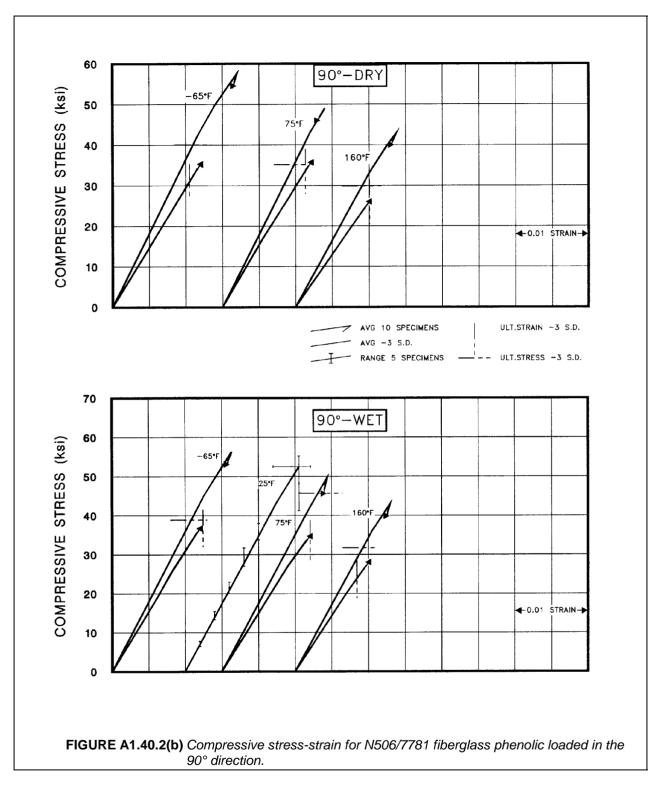
75**°**F

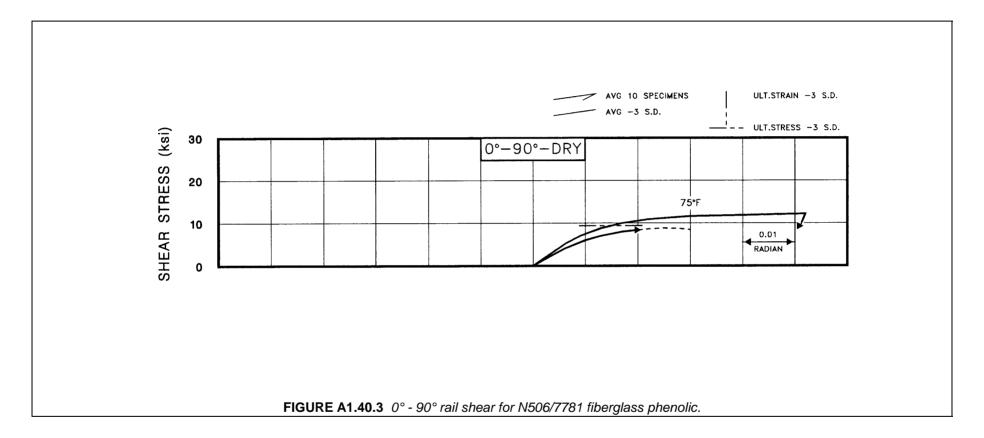
70

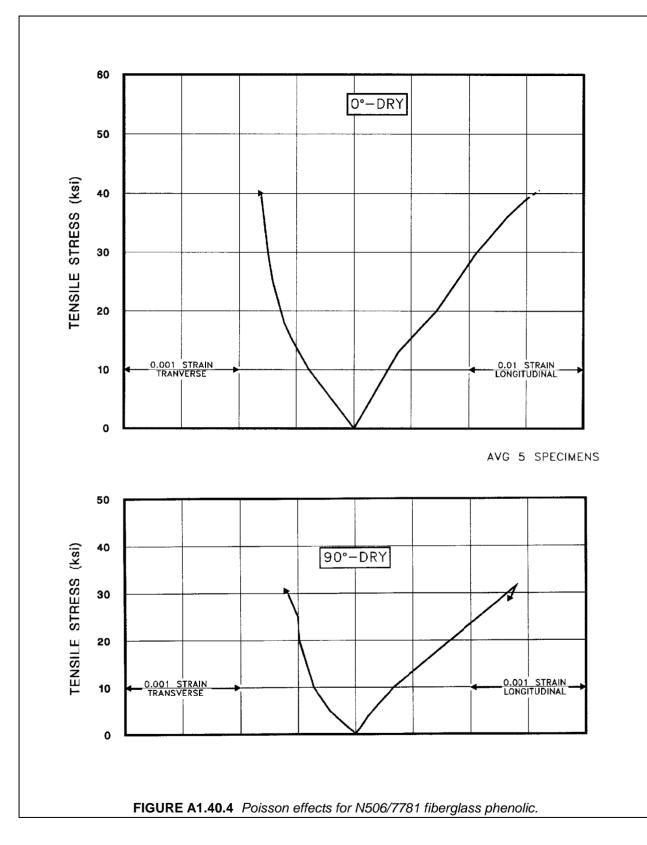
60

50

40


30


20


10

0

COMPRESSIVE STRESS (ksi)

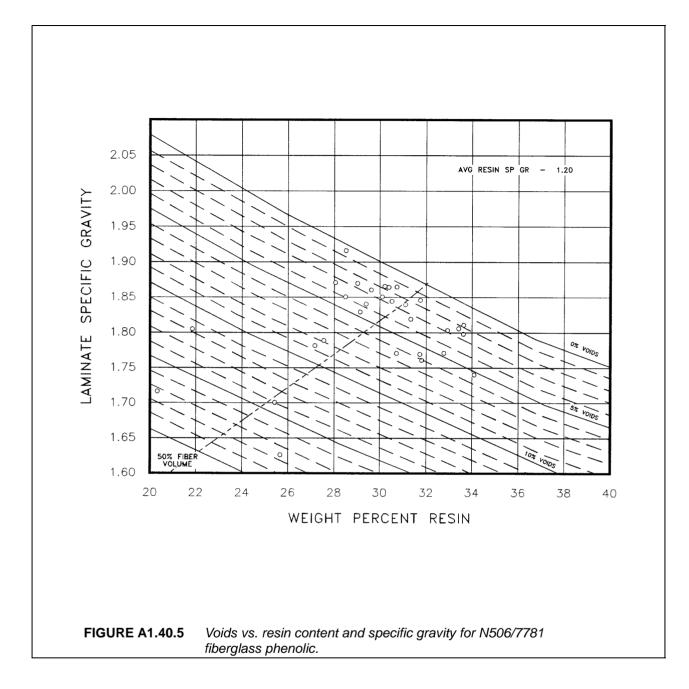
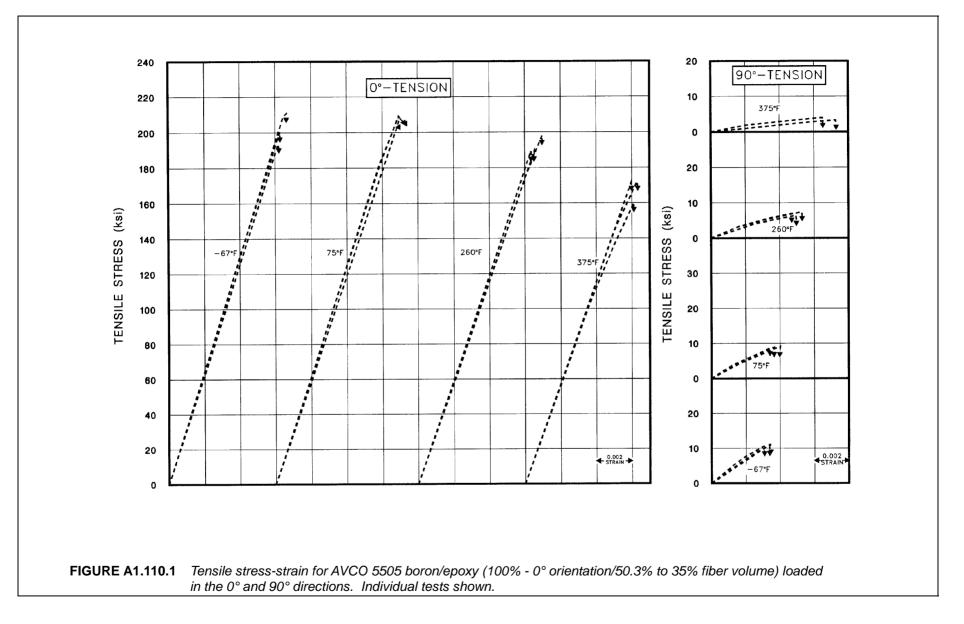
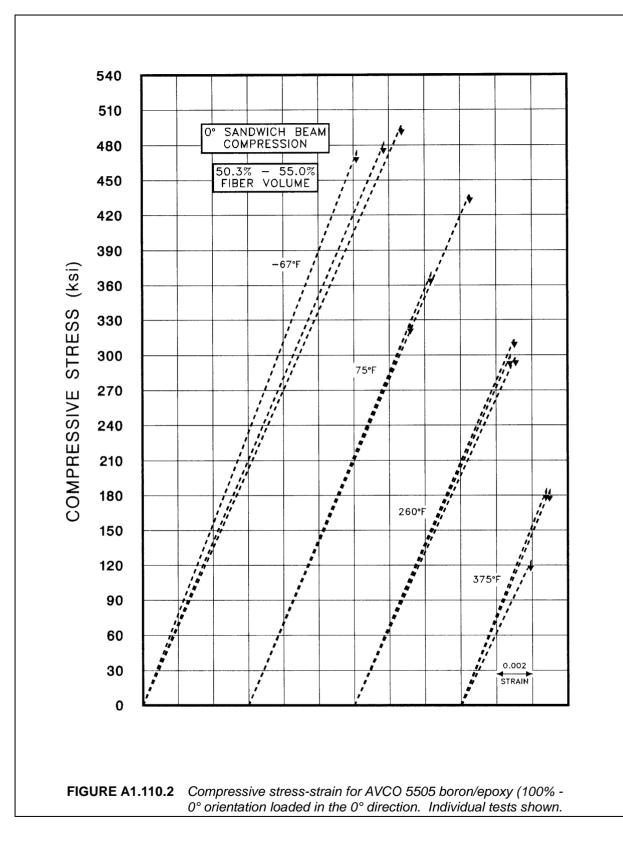
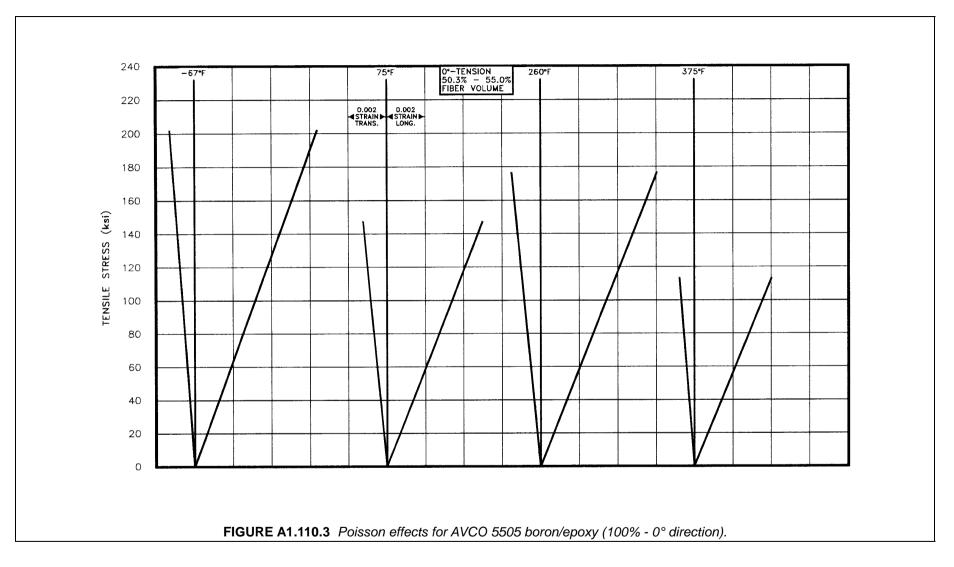
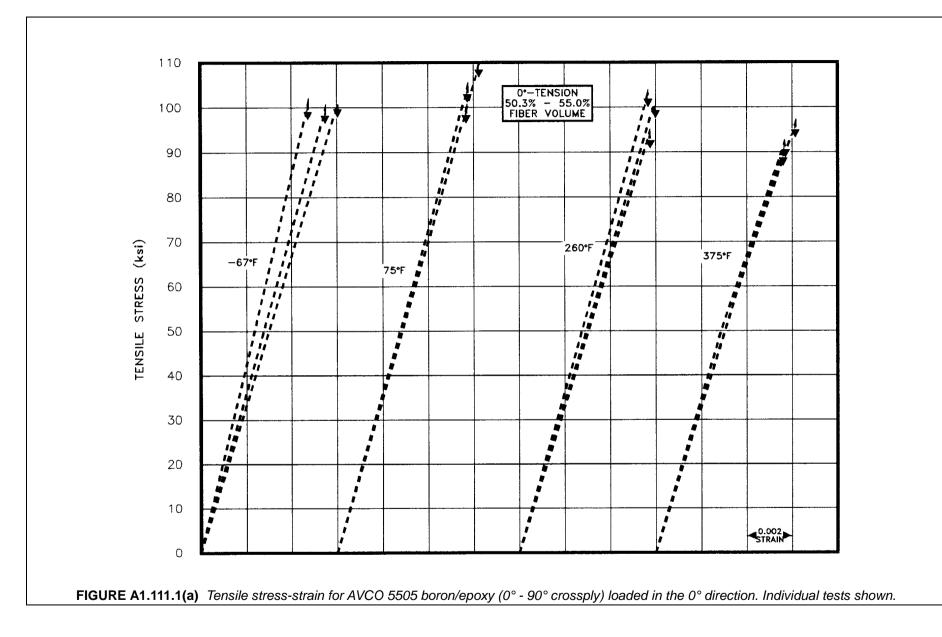
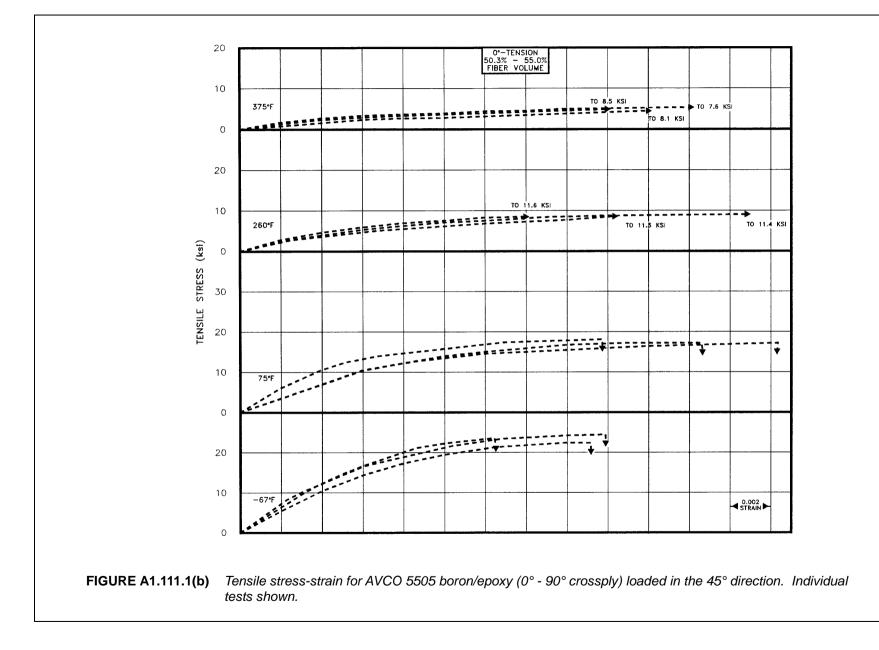





TABLE A1.110 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (100%-0° Direction) (Tentative).

		Lay-up:		uum:		ssure:		edout:	_	Cur	,		ostcure:		Plies:			
Fabrication		Parallel		2 ins		0 ± 5 psi	Diot	Juout.	1.5hr/ 350°F				2hr/35		6			
					Ũ	o _ o po.					± 10°F							
		Weight Per	cent Re	sin:	Avg. Specific Gravity: Av					Avg. Percent Voids:				Avg. Thickness:				
Physical Properties													0.005 in/ply					
To at Matha da		Tension:		ompressio		Shear:			Flexur		alia a	Bearin	ig:		laminar She	ear:		
Test Methods Temperature	ĺ	Tab-en	aea -67		ch Beam		75	٥E	4 PC	oint Loa	aing	26	60°F	5	hort Beam	°E		
Condition		Dry	-07		/et	Dry	-	Г	Wet		Dr			Wet	375°F Dry			
Condition		Avg	SD	Avg	SD	Avg	SD	Avg		SD	Avg	y SD	Avg	SD	Avg	SD		
Tension		, wg	00	7.wg	00	7.vg	00	///	9	00	7.09	00	7.09	00	7.09	00		
ultimate stress, ksi	0°	201.1				208.3					191.6				167.3	3		
	90°	10.5				8.7					6.5				3.3			
ultimate strain, %	0°	6390				6930					6660				6150			
and a set an all that to be t	90°	3250				3710					4970				6920			
proportional limit, ksi	0° 90°	141.8				175.5					140.0				79.5			
initial modulus, 10 ⁶ psi	90 0°	32.0				30.9					29.6				28.6			
	90°	52.0				50.5					20.0				20.0	,		
secondary modulus, 10 ⁶ psi	0°																	
	90°																	
Compression																		
ultimate stress, ksi	0°	482.3				378.0					303.3				143.9)		
ultimate strain, %	90° 0°	13670				10830					8920				4466			
	90°	13070				10030					0920				4400			
proportional limit, ksi	0°	333.5																
	90°																	
initial modulus, 10 ⁶ psi	0°	35.7				34.8					34.6				35.8	3		
	90°																	
Shear																		
ultimate stress, ksi)°-90°																	
	± 45°		0.5					7505	Date					100% Dr				
		Avg	-65 Ma	°F Dry	Min	Avo		75°F Ma			Min	Av	0	160° Dr Max	,	/lin		
Flexure		Avy	ivia	^	IVIIII	Avg	,	IVIC	1			AV	9	ινιαλ	N	/1111		
ultimate stress, ksi	0°																	
proportional limit, ksi	0°																	
initial modulus, 10 ⁶ psi	0°																	
Bearing													Т					
ultimate stress, ksi	0°																	
stress at 4% elong., ksi	0°																	
Interlaminar Shear ultimate stress, ksi	0°																	
מתווותוב סוובסס, הסו	U																	





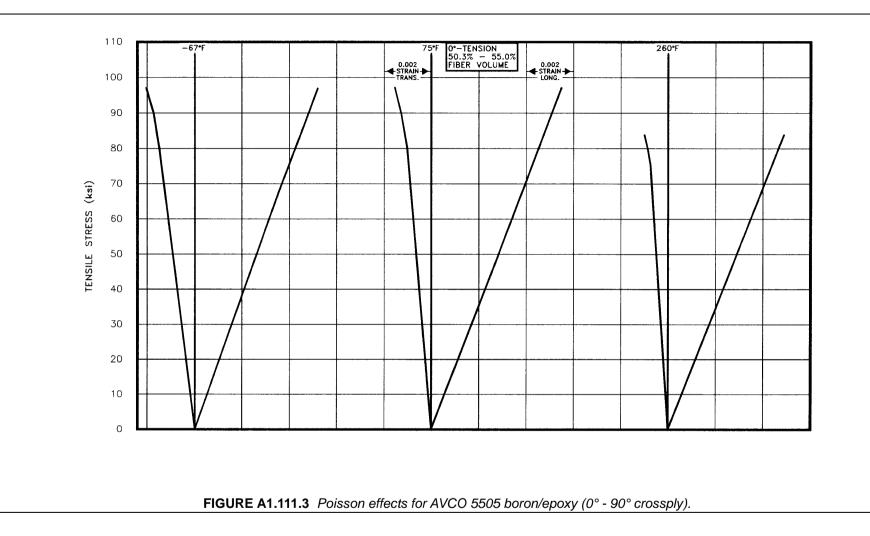

Volume 2, Appendix A1

TABLE A1.111 Summary of Mechanical Properties of Narmco 5505 Boron-Epoxy (0°-90° Crossply) (Tentative)

Fabrication		Lay-up:													
Fabrication			~	Vacuu		Pressu		Bleedou	ut:	Cure:		Postcure		Plies:	
		[2(0/90)]	S	2 ir	าร	50 ±	5 psi				r/ 350°F	2hr/38	30°F	6	
										± 1	0°F				
	-	Weight Per	cent Res	sin:	Avc	. Specific	Gravity:		Ava. P	ercent Voi	ds:	Av	g. Thickne	ess:	
Physical Properties							,·					,	0.005		
i nyoloan roponioo	-	Tension:	C	ompress	ion.	Sh	ear:		Flex		Bo	aring:		aminar She	or:
Test Methods		Tab-end		ompress	1011.		Picture Fr	omo	1 10/	uie.	De	anng.	inter		ai.
	ľ	Tab-enu	-67°	-			75°			1		0°F		375°	
Temperature															
Condition		Dry		W		D	,	W		Dr	,		et	Dry	
		Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD	Avg	SD
Tension															
ultimate stress, ksi	0°	99.9				103.	9			98.5				91.9	
	90°	23.6				17.				11.4				8.1	
ultimate strain, %	0°	5400				571				5830				5780	
	90°	15850				2447				2200				0.00	
proportional limit, ksi	0°	53.0				77.				48.6				48.6	
	90°	55.0					1			-0.0				+0.0	
initial modulus, 10 ⁶ psi	0°	18.9				18.				17.5				16.5	
initial modulus, 10 psi	90°	10.9				10.	J			17.5				10.5	
40 ⁶ m c															
secondary modulus, 10 ⁶ psi	0°														
I	90°														
Compression															
ultimate stress, ksi	0°														
	90°														
ultimate strain, %	0°														
	90°														
proportional limit, ksi	0°														
	90°														
initial modulus, 10 ⁶ psi	0°														
initial moduluo, no por	90°														
Shear															
ultimate stress, ksi	0°-90°	19.5				17.									5.4
ulumate stiess, KSI		19.5 65.7				63.									33.3
	±45°	05.7				03.	'								33.3
				5°F Dry					F Dry				160° [
	ſ	Avg	Ν	Лах	Mir	n 🗌	Avg	1	Max	Min		Avg	Max	N	/lin
Flexure	ľ	~					-					-			
ultimate stress, ksi	0°									1					
proportional limit, ksi	0°										1				
initial modulus, 10 ⁶ psi	0°									1					
Bearing															
	0									1					
ultimate stress, ksi	0°									1					
stress at 4% elong., ksi	0°														
Interlaminar Shear															
ultimate stress, ksi	0°														

REFERENCES

- A1.2 S. J. Dastin and others, *Determination of Principal Properties of "E" Fiberglass High Temperature Epoxy Laminates for Aircraft,* Grumman Aircraft Engineering Corporation, DAA21-68-C-0404, August 1969.
- A1.3.4.1(a) ASTM D 638, "Tensile Properties of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.1(b) P. D. Shockey and others, *Structural Airframe Application of Advanced Composite Materials*, General Dynamics, IIT Research Institute, Texaco Experiment, AFML-TR-69-01, **IV**, AF 33(615)-5257, October 1969.
- A1.3.4.2 ASTM D 695, "Compressive Properties of Rigid Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.3.4.3 K. H. Boller, A Method to Measure Intralaminar Shear Properties of Composite Laminates, Forest Products Laboratory, AFML-TR-69-311, March 1970.
- A1.3.4.4 ASTM D 2733-68T, "Interlaminar Shear Strength of Structural Reinforced Plastics at Elevated Temperatures," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA (canceled January 15, 1986 and replaced by ASTM D 3846).
- A1.3.4.5 ASTM D 790-70, "Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," *1971 Annual Book of ASTM Standards*, ASTM, Philadelphia, PA, 1971.
- A1.3.4.6 ASTM D 953, "Bearing Strength of Plastics," *Annual Book of ASTM Standards*, ASTM, Philadelphia, PA.
- A1.4.5 G. C. Grimes and G. J. Overby, *Boron Fiber Reinforced/Polymer Matrix Composites Material Properties*, Southwest Research Institute, January 1970.

INDEX

PAGE

Abbreviations Acronyms Ambient	Ch 1- 30
Bearing Braiding	
Compression	Ch 1- 7, 22, 23, 25, 30, 34, 38, 43, 44
Data Definitions Dry	Ch 1- 32
Fiber Ch 1- 2, 3, 7, 10, 12, 16, 17, 18, 19, 20 45, 46, 47, 48, 50, 51, 52, 53	, 21, 22, 25, 28, 32, 34, 35, 37, 39, 40, 41, 43, 44,
Glass transition temperature	Ch 1- 26, 46, 47
Joint	Ch 1- 1, 2, 18, 31, 38
Lamina Ch 1-2, 10, 17, 20, 21, 22, 25, 28, 29 Laminate orientation code Lay-up code	9, 31, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 53 Ch 1- 20, 21, 38
Matrix	Ch 1- 37
Normalization Notched laminates	
Processing	Ch 1- 34, 44, 46, 47, 48, 49
Symbols	Ch 1- 22, 23, 27, 28
Terminology Test Method	
Units Conversion	

PAGE

Material Property Data

Bismaleimide AS4/5250-3 unidirectional tape Astroquartz II/F650 8-harness satin weave fabric	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	4-292
T-300 3k/F650 unidirectional tape T-300 3k/F650 8-harness satin weave fabric T-300 3k/F652 8-harness satin weave fabric T-650-35 3k/5250-4 plain weave fabric T650-35 3k/5250-4 8-harness satin weave	

Carbon

AS4 12k/938 unidirectional tape	
AS4 12k/997 unidirectional tape	
AS4 12k/3502 unidirectional tape	
AS4 12k/E7K8 unidirectional tape	
AS4 3k/3501-6 plain weave fabric	
AS4 3k/3501-6S 5-harness satin weave fabric	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4/3501-6 (bleed) unidirectional tape	
AS4/3501-6 (no bleed) unidirectional tape	
AS4 3k/E7K8 plain weave fabric	4-105
AS4 6k/3502-6S 5-harness satin weave fabric	
AS4 6k/PR500 5-harness satin weave fabric	
AS4/5250-3 unidirectional tape	
Celion 12k/938 unidirectional tape	4-53
Celion 12k/E7K8 unidirectional tape	
Celion 3000/E7K8 plain weave fabric	
Celion 3000/F670 8-harness satin weave fabric	
HITEX 33 6k/E7K8 plain weave fabric	
HITEX 33 6k/E7K8 unidirectional tape	
IM6 12k/APC-2 unidirectional tape	
IM6 3501-6 unidirectional tape	
IM7 6k/5250-4 RTM 4-harness satin weave fabric	
IM7 6k/PR500 4-harness satin weave fabric	
IM7 12k/8551-7A unidirectional tape	
IM7 12k/8552 unidirectional tape	
IM7 12k/977-2 unidirectional tape	
IM7 12k/PR381 unidirectional tape	
M55J 6k/954-3 unidirectional tape	
·	
T-300 15k/976 unidirectional tape	4-152
T-300 3k/934 plain weave fabric	
T-300 3k/977-2 8-harness satin weave fabric	
T-300 3k/977-2 plain weave fabric	
T-300 3k/EA9396 8-harness satin weave fabric	4-205

T-300 3k/F650 8-harness satin weave fabric	
T-300 3k/F650 unidirectional tape	4-265
T-300 3k/F652 8-harness satin weave fabric	
T-500 12k/976 unidirectional tape	
T-650-35 3k/5250-4 plain weave fabric	
T650-35 3k/5250-4 8-harness satin weave	
T650-35 3k/976 8-harness satin weave fabric	
T650-35 3k/976 plain weave fabric	
T650-35 12k/976 unidirectional tape	
T700S 12k/3900-2 plain weave fabric	
T800HB 12k/3900-2 unidirectional tape	
·····	
Cyanate Ester	
M55J 6k/954-3 unidirectional tape	
·	
Ероху	
7781G 816/PR381 plain weave fabric	
7781G/EA 9396 8-harness satin weave fabric	
AS4 12k/938 unidirectional tape	
AS4 12k/997 unidirectional tape	
AS4 12k/3502 unidirectional tape	
AS4 12k/E7K8 unidirectional tape	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4 3k/3501-6 5-harness satin weave fabric	
AS4 3k/3501-6 plain weave fabric	
AS4 3k/3501-6S 5-harness satin weave fabric	
AS4 3k/E7K8 plain weave fabric	
AS4/3501-6 (bleed) unidirectional tape	
AS4/3501-6 (no bleed) unidirectional tape	
AS4/S501-6 (no bleed) undirectional tape	
AS4 6k/PR500 5-harness satin weave fabric	
AS4 6K/PRS00 5-hamess saun weave lablic	
Celion 12k/938 unidirectional tape	1-53
Celion 12k/E7K8 unidirectional tape	
Celion 3000/E7K8 plain weave fabric	
HITEX 33 6k/E7K8 plain weave fabric	1-03
HITEX 33 6k/E7K8 unidirectional tape	
IM6 3501-6 unidirectional tape	1-181
IM7 12k/8551-7A unidirectional tape	
IM7 12k/8551 unidirectional tape	
IM7 12k/977-2 unidirectional tape	
IM7 12k/PR381 unidirectional tape IM7 6k/PR500 4-harness satin weave fabric	
INT 6K/PR500 4-namess satin weave labric	
S2-110 17k/SP 381 unidirectional tape	G 15
S2-449 17k/SP 381 unidirectional tape	
S2-449 43k/SP381 unidirectional tape	0-1
T-300 15k/976 unidirectional tape	1_150
T-300 3k/970 undirectional tape	
T-300 3k/977-2 8-harness satin weave fabric	
T-300 3k/977-2 plain weave fabric T-300 3k/EA9396 8-harness satin weave fabric	
T-500 12k/976 unidirectional tape	

T650-35 3k/976 8-harness satin weave fabric T650-35 3k/976 plain weave fabric T650-35 12k/976 unidirectional tape T700S 12k/3900-2 plain weave fabric T800HB 12k/3900-2 unidirectional tape	
Glass	
7781G 816/PR381 plain weave fabric	
7781G/EA 9396 8-harness satin weave fabric	
S2-449 43k/SP381 unidirectional tape	
S2-449 17k/SP 381 unidirectional tape	
PEEK	
IM6 12k/APC-2 unidirectional tape	4-303
Polyimide	
Celion 3000/F670 8-harness satin weave fabric	
Quartz	40.0
Astroquartz II/F650 8-harness satin weave fabric	

CONCLUDING MATERIAL

Custodians:

Army - MR Navy - AS Air Force - 11 Preparing activity: Army - MR

(Project CMPS-0172)

Review activities: Army - AR, AT, AV, MI Navy - SH Air Force - 13 DLA-IS

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter must be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.

2. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

	1. DOCUMENT NUMBER	2. DOCUMENT DATE (YYYYMMDD)		
I RECOMMEND A CHANGE:	MIL-HDBK-17-2F	20020617		

3. DOCUMENT TITLE

COMPOSITE MATERIALS HANDBOOK - VOLUME 2, Polymer Matrix Composites, Materials Properties

4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed)

5. REASON FOR RECOMMENDATION

6. SUBMITTER

a. NAME (Last, First, Middle Initial)	b. ORGANIZATION					
c. ADDRESS (Include Zip Code)	d. TELEPHONE (Include Area Code) (1) Commercil (2) DSN (If applicable)	7. DATE SUBMITTED (YYYYMMDD)				
8. PREPARING ACTIVITY						
a. NAME	b. TELEPHONE (Including Area Code)					
US Army Research Laboratory	(1) Commercial	(2) DSN				
Weapons & Materials Research Directorate	(410) 306-0725	458-0725				
C. ADDRESS (Include Zip Code) IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTAC						
ARL/WMRD	Defense Standardization Program Office (DLSC-LM)					
ATTN: AMSRL-WM-MA	WM-MA 8725 John J. Kingman Road, Suite 2533, Fort Belvoir, VA 22060-6221					
Aberdeen Proving Ground, MD 21005-5069	Telephone (703) 767-6888 DSN 427-6888					
DD Earm 1426 EEP 1000 (EC)	Dravious adition is obsolate	WUS/DIOD Eab 00				

DD Form 1426, FEB 1999 (EG)

Previous edition is obsolete