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Series Preface

The field of aerospace is wide ranging and covers a variety of products, disciplines and

domains, notmerely in engineering but inmany related supporting activities. These combine to

enable the aerospace industry to produce exciting and technologically challenging products. A

wealth of knowledge is contained by practitioners and professionals in the aerospace fields that

is of benefit to other practitioners in the industry, and to those entering the industry from

University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering

professionals, operators, users and allied professions such as commercial and legal executives

in the aerospace industry. The range of topics is intended to be wide ranging, covering design

and development, manufacture, operation and support of aircraft as well as topics such as

infrastructure operations, and developments in research and technology. The intention is to

provide a source of relevant information that will be of interest and benefit to all those people

working in aerospace.

The use of compositematerials for aerospace structures has increased dramatically in the last

three decades. The attractive strength-to-weight ratios, improved fatigue and corrosion

resistance, and ability to tailor the geometry and fibre orientations, combined with recent

advances in fabrication, have made composites a very attractive option for aerospace

applications from both a technical and financial viewpoint. This has been tempered by

problems associated with damage tolerance and detection, damage repair, environmental

degradation and assembly joints. The anisotropic nature of composites also dramatically

increases the number of variables that need to be considered in the design of any aerospace

structure.

This book, Design and Analysis of Composite Structures: With Application to Aerospace

Structures, provides a methodology of various analysis approaches that can be used for the

preliminary design of aerospace structures without having to resort to finite elements.

Representative types of composite structure are described, along with techniques to define

the geometry and lay-up stacking sequence required to withstand the applied loads. The value

of such a set of tools is to enable rapid initial trade-off preliminary design studies to be made,

before using a detailed Finite Element analysis on the finalized design configurations.

Allan Seabridge, Roy Langton,

Jonathan Cooper and Peter Belobaba



 
Preface

This book is a compilation of analysis and design methods for structural components made of

advanced composites. The term ‘advanced composites’ is used here somewhat loosely and

refers to materials consisting of a high-performance fiber (graphite, glass, Kevlar�, etc)

embedded in a polymericmatrix (epoxy, bismaleimide, PEEK etc). Thematerial in this book is

the product of lecture notes used in graduate-level classes in Advanced Composites Design and

Optimization courses taught at the Delft University of Technology.

The book is aimed at fourth year undergraduate or graduate level students and starting

engineering professionals in the composites industry. The reader is expected to be familiar with

classical laminated-plate theory (CLPT) and first ply failure criteria. Also, some awareness of

energy methods, and Rayleigh–Ritz approaches will make following some of the solution

methods easier. In addition, basic applied mathematics knowledge such as Fourier series,

simple solutions of partial differential equations, and calculus of variations are subjects that the

reader should have some familiarity with.

A series of attractive properties of composites such as high stiffness and strength-to-weight

ratios, reduced sensitivity to cyclic loads, improved corrosion resistance, and, above all, the

ability to tailor the configuration (geometry and stacking sequence) to specific loading

conditions for optimum performance has made them a prime candidate material for use in

aerospace applications. In addition, the advent of automated fabrication methods such as

advanced fiber/tow placement, automated tape laying, filament winding, etc. has made it

possible to produce complex components at costs competitive with if not lower than metallic

counterparts. This increase in the use of composites has brought to the forefront the need for

reliable analysis and design methods that can assist engineers in implementing composites in

aerospace structures. This book is a small contribution towards fulfilling that need.

The objective is to provide methodology and analysis approaches that can be used in

preliminary design. The emphasis is on methods that do not use finite elements or other

computationally expensive approaches in order to allow the rapid generation of alternative

designs that can be traded against each other. This will provide insight in how different design

variables and parameters of a problem affect the result.

The approach to preliminary design and analysis may differ according to the application and

the persons involved. It combines a series of attributes such as experience, intuition, inspiration

and thorough knowledge of the basics. Of these, intuition and inspiration cannot be captured in

the pages of a book or itemized in a series of steps. For the first attribute, experience, an attempt

can be made to collect previous best practices which can serve as guidelines for future work.



 

Only the last attribute, knowledge of the basics, can be formulated in such away that the reader

can learn and understand them and then apply them to his/her own applications. And doing that

is neither easy nor guaranteed to be exhaustive. The wide variety of applications and the

peculiarities that each may require in the approach, preclude any complete and in-depth

presentation of the material. It is only hoped that the material presented here will serve as a

starting point for most types of design and analysis problems.

Given these difficulties, thematerial covered in this book is an attempt to show representative

types of composite structure and some of the approaches that may be used in determining the

geometry and stacking sequences that meet applied loads without failure. It should be

emphasized that not all methods presented here are equally accurate nor do they have the

same range of applicability. Every effort has been made to present, along with each approach,

its limitations. There are many more methods than the ones presented here and they vary in

accuracy and range of applicability. Additional references are given where some of these

methods can be found.

These methods cannot replace thorough finite element analyses which, when properly set

up, will be more accurate than most of the methods presented here. Unfortunately, the

complexity of some of the problems and the current (and foreseeable) computational

efficiency in implementing finite element solutions precludes their extensive use during

preliminary design or, even, early phases of the detailed design. There is not enough time to

trade hundreds or thousands of designs in an optimization effort to determine the ‘best’

design if the analysis method is based on detailed finite elements. On the other hand, once the

design configuration has been finalized or a couple of configurations have been down-

selected using simpler, more efficient approaches, detailed finite elements can and should be

used to provide accurate predictions for the performance, point to areas where revisions of

the design are necessary, and, eventually, provide supporting analysis for the certification

effort of a product.

Some highlights of composite applications from the 1950s to today are given in Chapter 1

with emphasis on nonmilitary applications. Recurring and nonrecurring cost issues that may

affect design decisions are presented in Chapter 2 for specific fabrication processes. Chapter 3

provides a review of CLPT and Chapter 4 summarizes strength failure criteria for composite

plates; these two chapters are meant as a quick refresher of some of the basic concepts and

equations that will be used in subsequent chapters.

Chapter 5 presents the governing equations for anisotropic plates. It includes the von

Karman large-deflection equations that are used later to generate simple solutions for post-

buckled composite plates under compression. These are followed by a presentation of the

types of composite parts found in aerospace structures and the design philosophy typically

used to come up with a geometric shape. Design requirements and desired attributes are also

discussed. This sets the stage for quantitative requirements that address uncertainties during

the design and during service of a fielded structure. Uncertainties in applied loads, and

variations in usage from one user to another are briefly discussed. Amore detailed discussion

about uncertainties in material performance (material scatter) leads to the introduction of

statistically meaningful (A- and B-basis) design values or allowables. Finally, sensitivity to

damage and environmental conditions is discussed and the use of knockdown factors for

preliminary design is introduced.

Chapter 6 contains a discussion of buckling of composite plates. Plates are introduced

first and beams follow (Chapter 8) because failure modes of beams such as crippling can
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be introduced more easily as special cases of plate buckling and post-buckling. Buckling

under compression is discussed first, followed by buckling under shear. Combined load

cases are treated next and a table including different boundary conditions and load cases

is provided.

Post-buckling under compression and shear is treated inChapter 7. For applied compression,

an approximate solution to the governing (vonKarman) equations for large deflections of plates

is presented. For applied shear, an approach that is a modification of the standard approach for

metals undergoing diagonal tension is presented. A brief section follows suggesting how post-

buckling under combined compression and shear could be treated.

Design and analysis of composite beams (stiffeners, stringers, panel breakers, etc.) are

treated in Chapter 8. Calculation of equivalent membrane and bending stiffnesses for cross-

sections consisting ofmemberswith different layups are presented first. These can be usedwith

standard beam design equations and some examples are given. Buckling of beams and beams

on elastic foundations is discussed next. This does not differentiate between metals and

composites. The standard equations for metals can be used with appropriate (re)definition of

terms such as membrane and bending stiffness. The effect of different end-conditions is also

discussed. Crippling, or collapse after very-short-wavelength buckling, is discussed in detail

deriving design equations from plate buckling presented earlier and from semi-empirical

approaches. Finally, conditions for inter-rivet buckling are presented.

The two constituents, plates and beams are brought together in Chapter 9 where stiffened

panels are discussed. The concept of smeared stiffness is introduced and its applicability

discussed briefly. Then, special design conditions such as the panel breaker condition and

failure modes such as skin–stiffener separation are analyzed in detail, concluding with design

guidelines for stiffened panels derived from the previous analyses.

Sandwich structure is treated in Chapter 10. Aspects of sandwichmodeling, in particular the

effect of transverse shear on buckling, are treated first. Various failuremodes such aswrinkling,

crimping, and intracellular buckling are then discussed with particular emphasis on wrinkling

with and without waviness. Interaction equations are introduced for analyzing sandwich

structure under combined loading. A brief discussion on attachments including ramp-downs

and associated design guidelines close this chapter.

The final chapter, Chapter 11, summarizes design guidelines and rules presented throughout

the previous chapters. It also includes some additional rules, presented for the first time in this

book, that have been found to be useful in designing composite structures.

To facilitate material coverage and in order to avoid having to read some chapters that

may be considered of lesser interest or not directly related to the reader’s needs, certain

concepts and equations are presented in more than one place. This is minimized to avoid

repetition and is done in such a way that reader does not have to interrupt reading a certain

chapter and go back to find the original concept or equation on which the current derivation

is based.

Specific problems are worked out in detail as examples of applications throughout the book

Representative exercises are given at the end of each chapter. These require the determination

of geometry and/or stacking sequence for a specific structure not to fail under certain applied

loads. Many of them are created in such a way that more than one answer is acceptable

reflecting real-life situations. Depending on the assumptions made and design rules enforced,

different but still acceptable designs can be created. Even though low weight is the primary

objective of most of the exercises, situations where other issues are important and end up
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driving the design are also given. For academic applications, experience has shown that

students benefit the most if they work out some of these exercises in teams so design ideas and

concepts can be discussed and an approach to a solution formulated.

It is recognized that analysis of composite structures is very much in a state of flux and new

and better methods are being developed (for example failure theories with and without

damage). The present edition includes what are felt to be the most useful approaches at this

point in time. As better approaches mature in the future, it will be modified accordingly.
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1

Applications of Advanced
Composites in Aircraft Structures

Some of the milestones in the implementation of advanced composites on aircraft and

rotorcraft are discussed in this chapter. Specific applications have been selected that highlight

various phases that the composites industrywent throughwhile trying to extend the application

of composites.

The application of composites in civilian or military aircraft followed the typical stages that

every new technology goes through during its implementation. At the beginning, limited

application on secondary structure minimized risk and improved understanding by collecting

data from tests and fleet experience. This limited usage was followed by wider applications,

first in smaller aircraft, capitalizing on the experience gained earlier. More recently, with the

increased demand on efficiency and low operation costs, composites have being appliedwidely

on larger aircraft.

Perhaps the first significant application of advanced composites was on the Akaflieg Ph€onix
FS-24 (Figure 1.1) in the late 1950s.What started as a balsawood and paper sailplane designed

by professors at theUniversity of Stuttgart and built by the students was later transformed into a

fiberglass/balsa wood sandwich design. Eight planes were eventually built.

The helicopter industry was among the first to recognize the potential of the composite

materials and use them on primary structure. Themain and tail rotor bladeswith their beam-like

behavior were one of the major structural parts designed and built with composites towards the

end of the 1960s. One such example is the Aerospatiale Gazelle (Figure 1.2). Even though, to

first order, helicopter blades can be modeled as beams, the loading complexity and the multiple

static and dynamic performance requirements (strength, buckling, stiffness distribution, fre-

quency placement, etc.) make for a very challenging design and manufacturing problem.

In the 1970s, with the composites usage on sailplanes and helicopters increasing, the first all-

composite planes appeared. These were small recreational or aerobatic planes. Most notable

among themwere the Burt Rutan designs such as the Long EZ andVari-Eze (Figure 1.3). These

were largely co-cured and bonded constructions with very limited numbers of fasteners.

Efficient aerodynamic designs with mostly laminar flow and light weight led to a combination

of speed and agility.

Design and Analysis of Composite Structures: With Applications to Aerospace Structures Christos Kassapoglou
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Up to that point, usage of composites was limited and/or was applied to small aircraft with

relatively easy structural requirements. In addition, the performance of composites was not

completely understood. For example, their sensitivity to impact damage and its implications for

design only came to the forefront in the late 1970s and early1980s. At that time, efforts to build

the first all-composite airplane of larger size began with the LearFan 2100 (Figure 1.4). This

was the first civil aviation all-composite airplane to seek FAA certification (see Section 2.2).

Figure 1.1 Akaflieg Ph€onix FS-24 (Courtesy Deutsches Segelflugzeugmuseum; see Plate 1 for the

colour figure)

Figure 1.2 Aerospatiale SA341GGazelle (Copyright JennyCoffey printedwith permission; see Plate 2

for the colour figure)

Figure 1.3 Long EZ and Vari-Eze. (Vari-Eze photo: courtesy Stephen Kearney; Long EZ photo:

courtesy Ray McCrea; see Plate 3 for the colour figure)
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It used a pusher propeller and combined high speed and low weight with excellent range and

fuel consumption. Unfortunately, while it met all the structural certification requirements,

delays in certifying the drive system, and the death of Bill Lear the visionary designer and

inventor behind the project, kept the LearFan frommaking it into production and the company,

LearAvia, went bankrupt.

The Beech Starship I (Figure 1.5), which followed on the heels of the LearFan in the early

1980s was the first all-composite airplane to obtain FAA certification. It was designed to the

new composite structure requirements specially created for it by the FAA. These requirements

were the precursor of the structural requirements for composite aircraft as they are today.

Unlike the LearFan which was a more conventional skin-stiffened structure with frames and

stringers, the Starship fuselage was made of sandwich (graphite/epoxy facesheets with

Nomex� core) and had a very limited number of frames, increasing cabin head room for a

given cabin diameter, andminimizing fabrication cost. It was co-cured in large pieces that were

bonded together and, in critical connections such as the wing-box or the main fuselage joints,

were also fastened.Designed also byBurt Rutan the Starshipwasmeant to havemostly laminar

flow and increased range through the use efficient canard design and blended main wing. Two

engines with pusher propellers located at the aft fuselage were to provide enough power for

high cruising speed. In the end, the aerodynamic performance was not met and the fuel

Figure 1.4 Lear Avia LearFan 2100 (Copyright: Thierry Deutsch; see Plate 4 for the colour figure)

Figure 1.5 Beech (Raytheon Aircraft) Starship I (Photo courtesy Brian Bartlett; see Plate 5 for the

colour figure)
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consumption and cruising speedsmissed their targets by a small amount. Structurally however,

the Starship I proved that all-composite aircraft could be designed and fabricated to meet the

stringent FAA requirements. In addition, invaluable experience was gained in analysis and

testing of large composite structures and new low-cost structurally robust concepts were

developed for joints and sandwich structure in general.

With fuel prices rising, composites with their reduced weight became a very attractive

alternative tometal structure. Applications in the large civilian transport category started in the

early 1980s with the Boeing 737 horizontal stabilizer which was a sandwich construction, and

continued with larger-scale application on the Airbus A-320 (Figure 1.6). The horizontal and

vertical stabilizers aswell as the control surfaces of theA-320 aremade of compositematerials.

The next significant application of composites on primary aircraft structure came in the

1990s with the Boeing 777 (Figure 1.7) where, in addition to the empennage and control

surfaces, the main floor beams are also made out of composites.

Despite the use of innovative manufacturing technologies which started with early robotics

applications on theA320 and continuedwith significant automation (tape layup) on the 777, the

Figure 1.6 Airbus A-320 (Photo courtesy Brian Bartlett; see Plate 6 for the colour figure)

Figure 1.7 Boeing 777 (Photo courtesy Brian Bartlett; see Plate 7 for the colour figure)
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cost of composite structureswas not attractive enough to lead to an even larger-scale (e.g. entire

fuselage and/or wing structure) application of composites at that time. The Airbus A-380

(Figure 1.8) in the new millennium, was the next major application with glass/aluminum

(glare) composites on the upper portion of the fuselage and glass and graphite composites in the

center wing-box, floor beams, and aft pressure bulkhead.

Already in the 1990s, the demand for more efficient aircraft with lower operation and

maintenance costs made it clear that more usage of composites was necessary for significant

reductions in weight in order to gain in fuel efficiency. In addition, improved fatigue lives and

improved corrosion resistance compared with aluminum suggested that more composites on

aircraft were necessary. This, despite the fact that the cost of composites was still not

competitive with aluminum and the stringent certification requirements would lead to

increased certification cost.

Boeing was the first to commit to a composite fuselage and wing with the 787 (Figure 1.9)

launched in the first decade of the new millennium. Such extended use of composites, about

50% of the structure (combined with other advanced technologies) would give the efficiency

improvement (increased range, reduced operation and maintenance costs) needed by the

airline operators.

Figure 1.8 Airbus A-380 (Photo courtesy Bjoern Schmitt – World of Aviation.de; see Plate 8 for the

colour figure)

Figure 1.9 Boeing 787 Dreamliner (Courtesy of Agnes Blom; see Plate 9 for the colour figure)
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The large number of orders (most successful launch in history) for the Boeing 787 ledAirbus

to start development of a competing design in the market segment covered by the 787 and the

777. This is the Airbus A-350, with all-composite fuselage and wings.

Another way to see the implementation of composites in aircraft structure over time is by

examining the amount of composites (by weight) used in various aircraft models as a

function of time. This is shown in Figure 1.10 for some civilian and military aircraft. It

should be borne in mind that the numbers shown in Figure 1.10 are approximate as they had

to be inferred from open literature data and interpretation of different company

announcements [1–8].

Both military and civilian aircraft applications show the same basic trends. A slow start

(corresponding to the period where the behavior of composite structures is still not well

understood and limited low risk applications are selected) is followed by rapid growth as

experience is gained reliable analysis and design tools are developed and verified by testing,

and the need for reduced weight becomes more pressing. After the rapid growth period, the

applicability levels off as: (a) it becomes harder to findparts of the structure that are amenable to

use of composites; (b) the cost of further composite implementation becomes prohibitive; and

(c) managerial decisions and other external factors (lack of funding, changes in research

emphasis, investments already made in other technologies) favor alternatives. As might be

expected, composite implementation in military aircraft leads the way. The fact that in recent

years civilian applications seem to have overtaken military applications does not reflect true

trends asmuch as lack of data on themilitary side (e.g severalmilitary programs such as theB-2

have very large composite applications, but the actual numbers are hard to find).

It is still unclear howwell the composite primary structures in themost recent programs such

as the Boeing 787 and the Airbus A-350 will perform and whether they will meet the design

targets. In addition, several areas such as performance of composites after impact, fatigue, and

damage tolerance are still the subjects of ongoing research. As our understanding in these areas

improves, the development cost, which currently requires a large amount of testing to answer
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Figure 1.10 Applications of composites in military and civilian aircraft structures
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questions where analysis is prohibitively expensive and/or not as accurate as needed to reduce

the amount of testing, will drop significantly. In addition, further improvements in robotics

technology and integration of parts into larger co-cured structures are expected to make the

fabrication cost of composites more competitive compared with metal airplanes.
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Cost of Composites: a Qualitative
Discussion

Considering that cost is the most important aspect of an airframe structure (along with the

weight), one would expect it to be among the best defined, most studied and most optimized

quantities in a design. Unfortunately, it remains one of the least understood and ill-defined

aspects of a structure. There aremany reasons for this inconsistency some of which are: (a) cost

data for different fabrication processes and types of parts are proprietary and only indirect or

comparative values are usually released; (b) there seems to be nowell-defined reliable method

to relate design properties such as geometry and complexity to the cost of the resulting

structure; (c) different companies have different methods of book-keeping the cost, and it is

hard to make comparisons without knowing these differences (for example, the cost of the

autoclave can be apportioned to the number of parts being cured at any given time or it may be

accounted for as an overhead cost, included in the total overhead cost structure of the entire

factory); (d) learning curve effects, which may or may not be included in the cost figures

reported, tend to confuse the situation especially since different companies use different

production run sizes in their calculations.

These issues are common to all types of manufacturing technologies and not just the

aerospace sector. In the case of composites the situation is further complicated by the relative

novelty of the materials and processes being used, the constant emergence of new processes or

variations thereof that alter the cost structure, and the high nonrecurring cost associated with

switching to the new processes that, usually, acts as a deterrent towards making the switch.

The discussion in this chapter attempts to bring up some of the cost considerations that may

affect a design. This discussion is by no means exhaustive, in fact it is limited by the lack of

extensive data and generic but accurate cost models. It serves mainly to alert or sensitize

a designer to several issues that affect the cost. These issues, when appropriately accounted

for, may lead to a robust design that minimizes the weight and is cost-competitive with

the alternatives.
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The emphasis is placed on recurring and nonrecurring cost. The recurring cost is the cost that

is incurred every time a part is fabricated. The nonrecurring cost is the cost that is incurred once

during the fabrication run.

2.1 Recurring Cost

The recurring cost includes the raw material cost (including scrap) for fabricating a specific

part, the labor hours spent in fabricating the part, and cost of attaching it to the rest of the

structure. The recurring cost is hard to quantify, especially for complex parts. There is no

single analytical model that relates specific final part attributes such as geometry, weight,

volume, area, or complexity to the cost of each process step and through the summation over

all process steps to the total recurring cost. One of the reasons for these difficulties and, as a

result, themultitude of costmodels that have been proposedwith varying degrees of accuracy

and none of them all-encompassing, is the definition of complexity. One of the most rigorous

and promising attempts to define complexity and its effect on recurring cost of composite

parts was by Gutowski et al. [1, 2].

For the case of hand layup, averaging over a large quantity of parts of varying complexity

ranging from simple flat laminates to compound curvature parts with co-cured stiffeners, the

fraction of total cost taken up by the different process steps is shown in Figure 2.1 (taken

from [3]).

It can be seen from Figure 2.1 that, by far, the costliest steps are locating the plies into the

mold (42%) and assembling to the adjacent structure (29%). Over the years, cost-cutting and
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Figure2.1 Process steps for hand layup and their cost as fractions of total recurring cost [3] (See Plate 10

for the colour figure)
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optimization efforts have concentrated mostly on these two process steps. This is the reason

for introducing automation. Robots, used for example in automated tape layup, take the cut

plies and locate them automatically in themold, greatly reducing the cost associatedwith that

process step, improving the accuracy, and reducing or eliminating human error, thereby

increasing consistency and quality. Since assembly accounts for about one-third of the total

cost, increasing the amount of co-curing where various components are cured at the same

time, reduces drastically the assembly cost. An example of this integration is shown in

Figure 2.2.

These improvements as well as others associated with other process steps such as

automated cutting (using lasers or water jets), trimming and drilling (using numerically

controlled equipment) have further reduced the cost and improved quality by reducing the

human involvement in the process. Hand layup and its automated or semi-automated

variations can be used to fabricate just about any piece of airframe structure. An example

of a complex part with compound curvature and parts intersecting in different directions is

shown in Figure 2.3.

Further improvements have been brought to bear by taking advantage of the experience

acquired in the textile industry. By working with fibers alone, several automated techniques

such as knitting, weaving, braiding and stitching can be used to create a preform, which is then

injected with resin. This is the resin transfer molding(RTM) process. The rawmaterial cost can

be less than half the rawmaterial cost of pre-impregnatedmaterial (prepreg) used in hand layup

or automated tape layup because the impregnation step needed to create the prepreg used in

those processes is eliminated. On the other hand, ensuring that resin fully wets all fibers

everywhere in the part and that the resin content is uniform and equal to the desired resin

Figure 2.2 Integration of various parts into a single co-cured part to minimize assembly cost (Courtesy

Aurora Flight Sciences)
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content can be hard for complex parts, and may require special tooling, complex design of

injection and overflow ports, and use of high pressure. It is not uncommon, for complex RTM

parts to have 10–15% less strength (especially in compression and shear) than their equivalent

prepreg parts due to reduced resin content. Another problemwithmatchedmetalmoldingRTM

is the high nonrecurring cost associated with the fabrication of the molds. For this reason,

variations of theRTMprocess such as vacuum-assisted RTM (VARTM)where one of the tools is

replaced by a flexible caul plate whose cost is much lower than an equivalent matched metal

mold, or resin film infusion (RFI) where resin is drawn into dry fiber preforms from a pool or

film located under it and/or from staged plies that already have resin in them, have been used

successfully in several applications (Figure 2.4). Finally, due to the fact that the process

operates with resin and fibers separately, the high amounts of scrap associated with hand layup

can be significantly reduced.

Introduction of more automation led to the development of automated fiber or tow

placement. This was a result of trying to improve filament winding (see below). Robotic

heads can each dispense material as narrow as 3mm and as wide as 100mm by manipulating

individual strips (or tows) each 3mm wide. Tows are individually controlled so the amount of

material laid down in the mold can vary in real time. Starting and stopping individual tows also

allows the creation of cutouts ‘on the fly’. The robotic head can move in a straight line at very

high rates (as high as 30m/min). This makes automated fiber placement an ideal process for

laying material down to create parts with large surface area and small variations in thickness or

cutouts. For maximum efficiency, structural details (e.g. cutouts) that require starting and

stopping the machine or cutting material while laying it down should be avoided. Material

scrap is very low. Convex as well as concave tools can be used since the machine does not rely

on constant fiber tension, as in filament winding, to lay material down. There are limitations

Figure 2.3 Portion of a three-dimensional composite part with compound curvature fabricated using

hand layup
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with the process associated with the accuracy of starting and stopping when material is laid

down at high rates and the size and shape of the tool when concave tools are used (in order to

avoid interference of the robotic head with the tool). The ability to steer fibers on prescribed

paths (Figure 2.5) can also be used as an advantage by transferring the loads efficiently across

Figure 2.4 Curved stiffened panels made with the RTM process

Figure 2.5 Composite cylinder with steered fibers fabricated by automated fiber placement (made in a

collaborative effort by TUDelft and NLR; see Plate 11 for the colour figure)

Cost of Composites: a Qualitative Discussion 13



 

the part. This results in laminates where stiffness and strength are a function of location and

provides an added means for optimization [4, 5].

Automated fiber placement ismost efficient whenmaking large parts. Parts such as stringers,

fittings, small frames, that do not have at least one sizeable sidewhere the advantage of the high

lay-down rate ofmaterial by the robotic head can be brought to bear, are hard tomake and/or not

cost competitive. In addition, skinswith large amounts of taper and number of cutoutsmay also

not be amenable to this process.

In addition to the above processes that apply to almost any type of part (with some exceptions

already mentioned for automated fiber placement) specialized processes that are very efficient

for the fabrication of specific types parts or classes of parts have been developed. The most

common of these are filament winding, pultrusion, and pressmolding using long discontinuous

fibers and sheet molding compounds.

Filament winding, as already mentioned is the precursor to advanced fiber or tow

placement. It is used to make pressure vessels and parts that can be wound on a convex

mandrel. The use of a convexmandrel is necessary in order tomaintain tension on the filaments

being wound. The filaments are drawn from a spool without resin and are driven through a

resin bath before they are wound around the mandrel. Due to the fact that tension must be

maintained on the filaments, their paths can only be geodetic paths on the surface of the part

being woven. This means that, for a cylindrical part, if the direction parallel to the cylinder axis

is denoted as the zero direction, winding angles between 15� and 30� are hard to maintain

(filaments tend to slide) and angles less than 15� cannot bewound at all. Thus, for a cylindrical
part with conical closeouts at its ends, it is impossible to include 0� fibers using filament

winding. 0� plies can be added by hand if necessary at a significant increase in cost. Since the
material can be dispensed at high rates, filament winding is an efficient and low-cost process.

In addition, fibers and matrix are used separately and the raw material cost is low. Material

scrap is very low.

Pultrusion is a process where fibers are pulled through a resin bath and then through a heated

die that gives the final shape. It is used for making long constant-cross-section parts such as

stringers and stiffeners. Large cross-sections, measuring more than 25� 25 cm are hard to

make. Also, because fibers are pulled, if the pulling direction is denoted by 0�, it is not possible
to obtain layups with angles greater than 45� (or more negative than – 45�). Some recent

attempts have shown it is possible to obtain longitudinal structures with some taper. The

process is very low cost. Long parts can be made and then cut at the desired length. Material

scrap is minimal.

With press molding it is possible to create small three-dimensional parts such as fittings.

Typically, composite fittings made with hand layup or RTM without stitching suffer from

low out-of-plane strength. There is at least one plane without any fibers crossing it and thus

only the resin provides strength perpendicular to that plane. Since the resin strength is very

low, the overall performance of the fitting is compromised. This is the reason some RTM

parts are stitched. Press molding (Figure 2.6) provides an alternative with improved out-of-

plane properties. The out-of-plane properties are not as good as those of a stitched RTM

structure, but better than hand laid-up parts and the low cost of the process makes them very

attractive for certain applications. The raw material is essentially a slurry of randomly

oriented long discontinuous fibers in the form of chips. High pressure applied during cure

forces the chips to completely cover the tool cavity. Their random orientation is, for the

most part, maintained. As a result, there are chips in every direction with fibers providing
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extra strength. Besides three-dimensional fittings, the process is also very efficient and

reliable for making clips and shear ties. Material scrap is minimal. The size of the parts to

be made is limited by the press size and the tool cost. If there are enough parts to be made,

the high tooling cost is offset by the low recurring cost.

There are other fabricationmethods or variations within a fabrication process that specialize

in certain types of parts and/or part sizes. The ones mentioned above are the most representa-

tive. There is one more aspect that should be mentioned briefly; the effect of learning

curves. Each fabrication method has its own learning curve which is specific to the process,

the factory and equipment used, and the skill level of the personnel involved. The learning

curve describes how the recurring cost for making the same part multiple times decreases as a

function of the number of parts. It reflects the fact that the process is streamlined and people find

more efficient ways to do the same task. Learning curves are important when comparing

alternate fabrication processes. A process with a steep learning curve can start with a high unit

cost but, after a sufficiently large number of parts, can yield unit costs much lower than another

process, which starts with lower unit cost, but has shallower learning curve. As a result, the first

processmay result in lower average cost (total cost over all units divided by the number of units)

than the first.

As a rule, fabrication processes with little or no automation have steeper learning curves and

start with higher unit cost. This is because an automated process has fixed throughput rates

while human labor can be streamlined and become more efficient over time as the skills of

the people involved improve andways of speeding up some of the process steps used inmaking

the same part are found. The hand layup process would fall in this category with, typically, an

85% learning curve. An 85% learning curve means that the cost of unit 2n is 85% of the cost of

unit n. Fabrication processes involving a lot of automation have shallower learning curves and

start at lower unit cost. One such example is the automated fiber/tow placement process with,

typically, a 92% learning curve. A discussion of some of these effects and the associated

tradeoffs can be found in [3].

An example comparing a labor intensive process with 85% learning curve and cost of unit

one 40%higher than an automated fabrication processwith 92% learning curve, is given here to

highlight some of the issues that are part of the design phase, in particular at early stages when

the fabrication process or processes have not been finalized yet.

Figure 2.6 Portion of a composite fitting made by press molding
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Assuming identical units, the cost of unit n, C(n), is assumed to be given by a power law:

CðnÞ ¼ Cð1Þ
nr

ð2:1Þ

whereC(1) is the cost of unit 1 and r is an exponent that is a function of the fabrication process,

factory capabilities, personnel skill etc.

If p % is the learning curve corresponding to the specific process, then

p ¼ Cð2nÞ
CðnÞ ð2:2Þ

Using Equation (2.1) to substitute in (2.2) and solving for r, it can be shown that,

r ¼ � ln p

ln 2
ð2:3Þ

For our example, with process A having pA¼ 0.85 and process B having pB¼ 0.92,

substituting in Equation (2.3) gives rA¼ 0.2345 and rB¼ 0.1203. If the cost of unit 1 of

process B is normalized to 1, CB(1)¼ 1, then the cost of unit 1 of process A will be 1.4,

based on our assumption stated earlier, so CA(1)¼ 1.4. Putting it all together,

CAðnÞ ¼ 1:4

n0:2345
ð2:4Þ

CBðnÞ ¼ 1

n0:1203
ð2:5Þ

The cost as a function of n for each of the two processes can now be plotted in Figure 2.7.

A logarithmic scale is used on the x axis to better show the differences between the two curves.

It can be seen from Figure 2.7 that a little after the 20th part, the unit cost of process

A becomes less than that of process B suggesting that for sufficiently large runs, process A

may be competitive with process B. To investigate this further, the average cost over a

production run of N units is needed. If N is large enough, the average cost can be accurately

approximated by:
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Cav ¼ 1

N

XN
n¼1

CðnÞ � 1

N

ðN

1

CðnÞdn ð2:6Þ

and using Equation (2.1),

Cav ¼ 1

N

ðN

1

Cð1Þ
nr

dn ¼ Cð1Þ
1�r

1

Nr
� 1

N

� �
ð2:7Þ

Note that to derive Equation (2.7) the summation was approximated by an integral. This

gives accurate results for N > 30. For smaller production runs (N< 30) the summation in

Equation (2.6) should be used. Equation (2.7) is used to determine the average cost for Process

A and Process B as a function of the size of the production run N. The results are shown in

Figure 2.8.

As can be seen from Figure 2.8, Process B, with automation, has lower average cost as

long as less than approximately 55 parts are made (N < 55). For N > 55, the steeper

learning curve of Process A leads to lower average cost for that process. Based on these

results, the less-automated process should be preferred for production runs with more than

50–60 parts. However, these results should be viewed only as preliminary, as additional

factors that play a role were neglected in the above discussion. Some of these factors are

briefly discussed below.

Process A, which has no automation, is prone to human errors. This means that: (a) the part

consistency will vary more than in Process B; and (b) the quality and accuracy may not always

be satisfactory requiring repairs, or scrapping of parts. In addition, process improvements,

which the equations presented assume to be continuous and permanent, are not always

possible. It is likely that after a certain number of parts, all possible improvements have been

implemented. Thiswould suggest that the learning curves typically reach a plateau after awhile

and cost cannot be reduced below that plateau without major changes in the process (new

equipment, new process steps, etc.). These drastic changes are more likely in automated

processes where new equipment is developed regularly than in a nonautomated process.
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Therefore, while the conclusion that a less-automated processwill give lower average cost over

a sufficiently large production run, is valid, in reality may only occur under very special

circumstances favoring continuous process improvement, consistent high part quality and part

accuracy, etc. In general, automated processes are preferred because of their quality, consis-

tency, and potential for continuous improvement.

The above is a very brief reference to some of the major composite fabrication processes. It

serves to bring some aspects to the forefront as they relate to design decisions. More in-depth

discussion of some of these processes and how they relate to design of composite parts can be

found in [6, 7].

2.2 Nonrecurring Cost

The main components of nonrecurring cost follow the phases of the development of a program

and are the following.

Design. Typically divided in stages (for example, conceptual, preliminary, and detail) it is

the phase of creating the geometry of the various parts and coming up with the material(s) and

fabrication processes (see Sections 5.1.1 and 5.1.2 for a more detailed discussion). For

composites it is more involved than for metals because it includes detailed definition of each

ply in a layup (material, orientation, location of boundaries, etc.). The design of press-molded

parts would take less time than other fabrication processes as definition of the boundaries of

each ply is not needed. Material under pressure fills the mold cavity and the concept of a ply is

more loosely used.

Analysis. In parallel with the design effort, it determines applied loads for each part and

comes up with the stacking sequence and geometry to meet the static and cyclic loads without

failure and with minimum weight and cost. The multitude of failure modes specific to

composites (delamination, matrix failure, fiber failure, etc.) makes this an involved process

that may require special analytical tools and modeling approaches.

Tooling. This includes the design and fabrication of the entire tool string needed to produce

the parts: Molds, assembly jigs and fixtures etc. For composite parts cured in the autoclave,

extra care must be exercised to account for thermal coefficient mismatch (when metal tools

are used) and spring-back phenomena where parts removed from the tools after cure tend to

deform slightly to release some residual thermal and cure stresses. Special (and expensive)

metal alloys (e.g. Invar) with low coefficients of thermal expansion can be used where

dimensional tolerances are critical. Also careful planning of how heat is transmitted to the

parts during cure for more uniform temperature distribution and curing is required. All these

add to the cost, making tooling one of the biggest elements of the nonrecurring cost. In

particular, if matched metal tooling is used, such as for RTM parts or press-molded parts, the

cost can be prohibitive for short production runs. In such cases an attempt ismade to combine as

many parts as possible in a single co-cured component. An idea of tool complexity when local

details of a wing-skin are accommodated accurately is shown in Figure 2.9.

Nonrecurring fabrication. This does not include routine fabrication during production that is

part of the recurring cost. It includes: (a) one-off parts made to toolproof the tooling concepts;

(b) test specimens to verify analysis and design and provide the data base needed to support

design and analysis; and (c) producibility specimens to verify the fabrication approach and avoid

surprises during production. This can be costlywhen large co-cured structures are involvedwith
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any of the processes alreadymentioned. Itmay take the formof a building-block approachwhere

fabrication of subcomponents of the full co-cured structure is donefirst to checkdifferent tooling

concepts and verify part quality. Once any problems (resin-rich, resin-poor areas, locations with

insufficient degree of cure or pressure during cure, voids, local anomalies such as ’pinched’

material, fiber misalignment), are resolved, more complex portions leading up to the full co-

cured structure are fabricated to minimize risk and verify the design.

Testing. During this phase, the specimens fabricated during the previous phase are tested.

This includes the tests needed to verify analysis methods and provide missing information for

various failure modes. This does not include testing needed for certification (see next item). If

the design has opted for large co-cured structures to minimize recurring cost, the cost of testing

can be very high since it, typically, involves testing of various subcomponents first and then

testing the full co-cured component. Creating the right boundary conditions and applying the

desired load combinations in complex components results in expensive tests.

Certification. This is one of the most expensive nonrecurring cost items. Proving that the

structure will perform as required, and providing relevant evidence to certifying agencies

requires a combination of testing and analysis [8–10]. The associated test program can be

extremely broad (and expensive). For this reason, a building-block approach is usually

followed where tests of increasing complexity, but reduced in numbers follow simpler more

numerous tests, each time building on the previous level in terms of information gained,

increased confidence in the design performance, and reduction of risk associated with the full-

scale article. In a broad level description going from simplest to most complex: (a) material

qualification where thousands of coupons with different layups are fabricated and tested under

different applied loads and environmental conditions with and without damage to provide

statistically meaningful values (see Sections 5.1.3–5.1.5) for strength and stiffness of the

material and stacking sequences to be used; (b) element tests of specific structural details

isolating failure modes or interactions; (c) subcomponent and component tests verifying how

the elements come together and providing missing (or hard to otherwise accurately quantify)

information on failure loads and modes; (d) full-scale test. Associated with each test level,

analysis is used to reduce test data, bridge structural performance from one level to the next and

Figure 2.9 Co-cure of large complex parts (CourtesyAurora Flight Sciences; see Plate 12 for the colour

figure)
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justify the reduction of specimens at the next level of higher complexity. The tests include static

and fatigue tests leading to the flight test program that is also part of the certification effort.

When new fabricationmethods are used, it is necessary to prove that they will generate parts of

consistently high quality. This, sometimes, along with the investment in equipment purchasing

and training, acts as a deterrent in switching from a proven method (e.g. hand layup) with high

comfort level to a new method some aspects of which may not be well known (e.g. automated

fiber placement).

The relative cost of each of the different phases described above is a strong function of the

application, the fabrication process(es) selected and the size of the production run. It is,

therefore, hard to create a generic pie chart that would show how the cost associated with each

compares. In general, it can be said that certification tends to be the most costly followed by

tooling, nonrecurring fabrication and testing.

2.3 Technology Selection

The discussion in the two previous sections shows that there is a wide variety of fabrication

processes, each with its own advantages and disadvantages. Trading these and calculating the

recurring and nonrecurring cost associated with each selection is paramount in coming up with

the best choice. The problem becomes very complex when one considers large components

such as the fuselage or the wing or entire aircraft. At this stage is it useful to define the term

’technology’ as referring to any combination of material, fabrication process and design

concept. For example, graphite/epoxy skins using fiber placement would be one technology.

Similarly, sandwich skins with a mixture of glass/epoxy and graphite/epoxy plies made using

hand layup would be another technology.

In a large-scale application such as an entire aircraft, it is extremely important to determine

the optimum technology mix, i.e. the combination of technologies that will minimize weight

and cost. This can be quite complicated since different technologies are more efficient for

different types of part. For example, fiber-placed skins might give the lowest weight and

recurring cost, but assembling the stringers as a separate step (bonding or fastening) might

make the resulting skin/stiffened structure less cost competitive. On the other hand, using resin

transfer molding to co-cure skin and stringers in one step might have lower overall recurring

cost at a slight increase in weight (due to reduced strength and stiffness) and a significant

increase in nonrecurring cost due to increased tooling cost. At the same time, fiber placement

may require significant capital outlays to purchase automated fiber/tow placement machines.

These expenditures require justification accounting for the size of the production run,

availability of capital, and the extent to which capital investments already made on the factory

floor for other fabrication methods have been amortized or not.

These tradeoffs and final selection of optimum technology mix for the entire structure of an

aircraft are done early in the design process and ’lock in’ most of the cost of an entire program.

For this reason it is imperative that the designer be able to perform these trades in order to come

up with the ’best alternatives’. As will be shown in this section these ’best alternatives’ are a

function of the amount of risk one is willing to take, the amount of investment available, and the

relative importance of recurring, nonrecurring cost and weight [11–14].

In order to make the discussion more tractable, the airframe (load-bearing structure of an

aircraft) is divided in part families. These are families of parts that perform the same function,

have approximately the same shapes, are madewith the samematerial(s) and can be fabricated
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by the same manufacturing process. The simplest division into part families is shown in

Table 2.1. In what follows the discussion will include metals for comparison purposes.

The technologies that can be used for each part family are then determined. This includes the

material (metal or composite, and, if composite, the type of composite), fabrication process

(built-up sheet metal, automated fiber placement, resin transfer molding, etc) and design

concept (e.g. stiffened skin versus sandwich). In addition, the applicability of each technology

to each part family is determined. This means determining what portion in the part family can

be made by the technology in question. Usually, as the complexity of the parts in a part family

increases, a certain technology becomes less applicable. For example, small skins with large

changes in thickness across their length and width cannot be made by fiber placement and have

low cost. Or pultrusion cannot be used (efficiently) to make tapering beams. A typical

breakdown by part family and applicability by technology is shown in Table 2.2. For

convenience, the following shorthand designations are used: SMT¼ (built-up) sheet metal,

HSM¼ high-speed-machined aluminum, HLP¼ hand layup, AFP¼ automated fiber place-

ment, RTM¼ resin transfer molding, ALP¼ automated (tape) layup, PLT¼ pultrusion. The

numbers in Table 2.2 denote the percentage of the parts in the part family that can be made by

the selected process and have acceptable (i.e. competitive) cost.

It is immediately obvious from Table 2.2 that no single technology can be used to make an

entire airframe in the most cost-effective fashion. There are some portions of certain part

families that are more efficiently made by another technology. While the numbers in Table 2.2

are subjective, they reflect what is perceived to be the reality of today and they can be modified

according to specific preferences or expected improvements in specific technologies.

Given the applicabilities of Table 2.2, recurring and nonrecurring cost data are obtained or

estimated by part family. This is done by calculating or estimating the average cost for a part of

Table 2.1 Part families of an airframe

Part family Description

Skins and covers Two-dimensional parts with single curvature

Frames, bulkheads, beams, ribs, intercostals Two-dimensional flat parts

Stringers, stiffeners, breakers One-dimensional (long) parts

Fittings Three-dimensional small parts connecting other

parts

Decks and floors Mostly flat parts

Doors and fairings Parts with compound curvature

Miscellaneous Seals, etc.

Table 2.2 Applicability of fabrication processes by part family

Part family SMT HLP HSM AFP RTM PLT ALP

Skins and covers 100 100 15 80 100 0 50

Frames, etc. 100 100 65 55 100 10 30

Stringers etc. 100 100 5 0 100 90 0

Fittings 100 85 5 0 100 0 0

Decks and floors 90 100 35 40 90 10 20

Doors and fairings 80 100 5 35 90 5 10
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medium complexity in the specific part familymade by a selected process, and determining the

standard deviation associated with the distribution of cost around that average as the part

complexity ranges from simple to complex parts. This can be done using existing data as is

shown in Figure 2.10, for technologies already implemented such as HLP, or by extrapolating

and approximating limited data from producibility evaluations, vendor information, and

anticipated improvements for new technologies or technologies with which a particular factory

has not had enough experience.

In the case of the data shown in Figure 2.10, data over 34 different skin parts madewith hand

layup shows an average (or mean) cost of 14 hr/kg of finished product and a standard deviation

around that mean of about 11 hr/kg (the horizontal arrows in Figure 2.10 cover approximately

two standard deviations). This scatter around the mean cost is mostly due to variations in

complexity.A simple skin (flat, constant thickness, no cutouts) can cost as little as 1 hr/kgwhile a

complex skin (curved,with ply dropoffs, with cutouts) can cost as high as 30 hr/kg. In addition to

part complexity, there is a contribution to the standard deviation due to uncertainty. This

uncertainty results mainly from two sources [12]: (a) not having enough experience with the

process, and applying it to types of part to which it has not been applied before; this is referred

to as production-readiness; and (b) operator or equipment variability. Determining theportion of

the standard deviation caused by uncertainty is necessary in order to proceed with the selection

of the best technology for an application. Oneway to separate uncertainty from complexity is to

use a reliable cost model to predict the cost of parts of different complexity forwhich actual data

are available. The difference between the predictions and the actual data is attributed to

uncertainty. By normalizing the prediction by the actual cost for all parts available, a distribution

is obtained the standard deviation of which is a measure of the uncertainty associated with the

process in question. This standard deviation (or its square, the variance) is an important

parameter because it can be associated with the risk. If the predicted cost divided by actual cost

data were all in a narrow band around the mean, the risk in using this technology (e.g. HLP) for

this part family (e.g. skins) would be very low since the expected cost range would be narrow.

Since narrow distributions have low variances, the lower the variance the lower the risk.

It is more convenient, instead of using absolute cost numbers to use cost savings numbers

obtained by comparing each technology of interest with a baseline technology. Inwhat follows,

SMT is used as the baseline technology. Positive cost savings numbers denote cost reduction

below SMT cost and negative cost savings numbers denote cost increase above SMT costs.
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Also, generalizing the results from Figure 2.10, it will be assumed that the cost savings for a

certain technology applied to a certain part family is normally distributed. Other statistical

distributions can be used and, in some cases, will be more accurate. For the purposes of this

discussion, the simplicity afforded by assuming a normal distribution is sufficient to show the

basic trends and draw the most important conclusions.

By examining data published in the open literature, inferring numbers from trend lines, and

using experience, themean cost savings and variances associatedwith the technologies given in

Table 2.2 can be compiled. The results are shown in Table 2.3. Note that these results reflect a

specific instant in time and they comprise the best estimate of current costs for a given

technology. This means that some learning curve effects are already included in the numbers.

For example, HLP and RTM parts have been used fairly widely in industry and factories have

come down their respective learning curves. Other technologies such as AFP have not been

used as extensively and the numbers quoted are fairly high up in the respective learning curves.

For each technology/part family combination in Table 2.3, two numbers are given. The first

is the cost savings as a fraction (i.e. 0.17 implies 17% cost reduction compared to SMT) and

the second is the variance (square of standard deviation) of the cost savings population.

Negative cost savings numbers imply increase in cost over SMT. They are included here

because the weight savings may justify use of the technology even if, on average, the cost is

higher. For SMTand someHLP cases, the variance is set to a very low number, 0.0001 to reflect

the fact that the cost for these technologies and part families iswell understood and there is little

uncertainty associated with it. This means the technology has already been in use for that part

family for some time. Some of the data in Table 2.3 are highlighted to show some of the

implications: (a) HLP skins have 17% lower cost than SMT skin mostly due to co-curing large

pieces and eliminating or minimizing assembly; (b) ALP has the lowest cost numbers, but

limited applicability (see Table 2.2); (c) the variance in some cases such as ALP decks and

floors or AFP doors and fairings is high because for many parts in these families additional

nonautomated steps are necessary to complete fabrication . This is typical of parts containing

core where core processing involves manual labor and increases the cost. Manual labor

increases the uncertainty due to the operator variability already mentioned.

Table 2.3 Typical cost data by technology by part family [14]

Part family SMT HLP HSM AFP RTM PLT ALP

Skins and covers 0.0 0.17 0.2 0.25 0.08 0.08 0.32

0.0001 0.0061 0.02 0.009 0.003 0.06 0.01

Frames, etc. 0.0 0.1 0.28 0.1 0.18 0.40

0.0001 0.0001 0.006 0.06 0.008 0.08

Stringers, etc. 0.0 �0.05 (in skins) 0.05 0.40 0.35

0.0001 0.0001 0.002 0.001 0.09

Fittings 0.0 0.2 �0.10

0.0001 0.005 0.015

Decks and floors 0.0 �0.01 0.15 �0.15 0.20

0.0001 0.0001 0.01 0.008 0.02

Doors and fairings 0.0 0.1 0.25 �0.10 0.35

0.0001 0.0021 0.026 0.01 0.05
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Given the data in Tables 2.2 and 2.3, one can combine different technologies to make a part

family. Doing that over all part families results in a technology mix. This technology mix has an

overallmean cost savings and variance associatedwith it that can be calculatedusing thedata from

Tables 2.2 and 2.3 and using the percentages of how much of each part family is made by each

technology [12, 13]. This process is shown in Figure 2.11. Obviously, some technologymixes are

better than others because they have lower recurring cost and/or lower risk. An optimization

scheme can then be set up [13] that aims at determining the technology mix that minimizes the

overall recurring cost savings (below the SMTbaseline) keeping the associated variance (and thus

the risk) below a preselected value. By changing that preselected value from very small (low risk)

to very high (high risk) different optimummixes can be obtained.A typical result of this process is

shown in Figure 2.12 for the case of a fuselage and wing of a 20-passenger commuter plane.
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The risk is shown in Figure 2.12 on the x axis as the square root of the variance, or standard

deviation of the cost savings of the resulting technology mix. For each value of risk, the

optimization process results in a technology mix that maximizes cost savings. Assuming that

the cost savings of each technology mix is normally distributed, the corresponding probabili-

ties that the cost savings will be lower than a specified value can be determined [13]. These

different probabilities trace the different curves shown in Figure 2.12. For example, if the risk is

set at 0.05 on the x axis, the resulting optimummix has 1% probability of not achieving 11.5%

savings, 2.5%probability of not achieving 13.5% savings, 5%probability of not achieving 15%

savings and so on. Note that all curves, except the 50% probability curve go through a

maximum. This maximum can be used for selecting the optimum technology mix to be used.

For example, if a specific factory/management team is risk averse it would probably gowith the

1%curvewhich goes through amaximumat a risk value slightly less than 0.05. The teamwould

expect savings of at least 11.5%. A more aggressive team might be comfortable with 25%

probability that the cost savings is lower and would use the 25% curve. This has a maximum at

a risk value of 0.09 with corresponding savings of 22.5%. However, there is a 25% probability

that this level of savings will not bemet. That is, if this technologymixwere to be implemented

a large number of times, it wouldmeet or exceed the 22.5% savings target only 75%of the time.

It is up to the management team and factory to decide which risk level and curve they should

use. It should be noted that for very high risk values, beyond 0.1, the cost savings curves

eventually become negative. For example the 1% curve becomes negative at a risk value of

0.13. This means that the technology mix corresponding to a risk value of 0.13 has so much

uncertainty that there is 99% probability that the cost savings will be negative, i.e. the cost will

be higher than the SMT baseline.

Once a risk level is selected from Figure 2.12, the corresponding technology mix is known

from the optimization process. Examples for low and high risk values are shown in Figures 2.13

and 2.14.
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Figure 2.13 Optimum mix of technologies for small airplane (low risk)

Cost of Composites: a Qualitative Discussion 25



 

For the low risk optimum mix of Figure 2.13, there is a 10% probability of not achieving

12.5% cost savings. For the high risk optimummix of Figure 2.14 there is a 10% probability of

not achieving 7% cost savings. The only reason to gowith the high risk optimummix is that, at

higher probability values (greater than 25%) it exceeds the cost savings of the low-risk

optimum mix.

A comparison of Figures 2.14 and 2.13 shows that as the risk increases, the percentage usage

of baseline SMT and low-risk low-return HLP and RTM decreases while the usage of higher-

risk high-return AFP and ALP increases. ALP usage doubles from 6 to 12% and AFP usage

increases by a factor of almost 7, from 3 to 20%. The amount of PLT also increases (in fact

doubles) but since PLT is only limited to stringers in this example, the overall impact of using

PLT is quite small. It should be noted that there is a portion of the airframe denoted by ‘Misc’.

These are miscellaneous parts such as seals, or parts for which applicability is unclear, and

mixing technologies (for example pultruded stringers co-bonded on fiber-placed skins) might

be a better option, but no data were available for generating predictions.

Finally, the breakdown by part family for one of the cases, the low-risk optimum mix of

Figure 2.13 is shown inTable 2.4. For example, 21.1%of the frames aremade byHLP, 32.4%by
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Figure 2.14 Optimum mix of technologies for small airplane (high risk)

Table 2.4 Low-risk technology mix by part family and technology

%SMT %HLP %HSM %AFP %RTM %PLT %ALP

Skins þ . . . 0 81 0 4.9 3.6 0 10.5

Frames þ . . . 0 21.1 32.4 0 40.5 0 6

Stringers 79.3 0 0 0 0 20.7 0

Fittings 44.1 0 55.5 0 0 0 0.4

Decks þ . . . 0 76.5 0 8.4 3.1 0 12

Doors þ . . . 0 81 0 10 0 0 9
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HSM, 40.5% by RTM and 6% by ALP. Note that SMT is only used for three quarters of

the stringers and almost half the fittings. Note that these percentages are the results of the

optimizationmentioned earlier and do not exactly determinewhich partswill bemadewithwhat

process, only that a certain percentage of parts for each part family is made by a certain process.

It is up to the designers and manufacturing personnel to decide how these percentages can be

achieved or, if not possible, determinewhat the best compromisewill be. For example, 6%of the

frames and bulkheads made by ALP would probably correspond to the pressure bulkheads and

any frames with deep webs where automated layup can be used effectively.

The above discussion focused on recurring cost as a driver. The optimum technology mixes

determined have a certain weight and nonrecurring cost associated with them. If weight or

nonrecurring cost were the drivers different optimum technology mixes would be obtained.

Also, the optimized results are frozen in time in the sense that the applicabilities of Table 2.2

and the cost figures of Table 2.3 are assumed constant. Over time, as technologies improve,

these data will change and the associated optimum technology mixes will change. Results for

the time-dependent problemwith different drivers such as nonrecurring cost or optimum return

on investment can be found in the references [11, 14].

It should be kept in mind that some of the data used in this section are subjective or based on

expectations of what certain technologies will deliver in the future. As such, the results should

be viewed as trends that will change with different input data. What is important here is that an

approach has been developed that can be used to trade weight, recurring cost and nonrecurring

cost and determine the optimummix of technologies given certain cost data. The interested user

of the approach can use his/her own data and degree of comfort in coming upwith the optimum

mix of technologies for his/her application.

2.4 Summary and Conclusions

An attempt to summarize the above discussion by fabrication process and collect some of

the qualitative considerations that should be taken into account during the design and

analysis phases of a program using composite materials is shown in Table 2.5. For

reference, sheet metal built-up structure and high-speed-machining (aluminum or titanium)

are also included. This table is meant to be a rough set of guidelines and it is expected

that different applications and manufacturing experiences can deviate significantly from

its conclusions.

As shown in the previous section, there is no single process that can be applied to all

types of parts and result in the lowest recurring and/or nonrecurring costs. A combination

of processes is necessary. In many cases, combining two or more processes in fabricating a

single part, thus creating a hybrid process (for example automated fiber-placed skins with

staged pultruded stiffeners, all co-cured in one cure cycle) appears to be the most efficient

approach. In general, co-curing as large parts as possible and combining with as much

automation as possible seems to have the most promise for parts of low cost, high quality

and consistency. Of course, the degree to which this can be done depends on how much risk

is considered acceptable in a specific application and to what extent the investment

required to implement more than one fabrication processes is justified by the size of the

production run. These combinations of processes and process improvements have already

started to pay off and, for certain applications [15] the cost of composite airframe is

comparable if not lower than that of equivalent metal structure.
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Table 2.5 Qualitative cost considerations affecting design/analysis decisions

Process Application Comments

Sheet metal All airframe structure Assembly intensive, relatively heavy. Moderate tooling costs including fit-out and

assembly jigs

High-speed machining Frames, bulkheads, ribs,

beams, decks and

floors. In general, parts

with one flat surface

that can be created via

machining

Very low tooling cost. Very low recurring cost. Can generate any desired thickness

greater than 0.6mm.Moderate rawmaterial cost due to the use of special alloys.

Extremely high scrap rate (more than 99% of the raw material ends up recycled

as machined chips). Limited due to vibrations to part thicknesses greater than

0.6–0.7mm. Issues with damage tolerance (no built-in crack stoppers) repair

methods, and low damping; Size of billet limits size of part that can be

fabricated

Hand Layup All airframe structure Weight reductions over equivalent metal of at least 15%. Recurring cost

competitive with sheet metal when large amount of co-curing is used. Moderate

scrap. High raw material cost. High tooling cost. Hard to fabricate 3-D fittings.

Reduced out-of-plane strength (important in fittings and parts with out-of-plane

loading)

Automated fiber/tow placement Skins, decks, floors, doors,

fairings, bulkheads,

large ribs and beams.

In general, parts with

large surface area

Weight reductions similar to hand layup. Recurring cost can be less than metal

baseline if the number of starts and stops for the machine are minimized (few

cutouts, plydrops, etc.). Less scrap than hand layup,. High tooling cost. For parts

made on concave tools, limited by size of robotic head (interference with tool).

Fiber steering is promising for additional weight savings but is limited by

maximum radius of curvature the machine can turn without buckling

the tows

RTM All airframe structure Weight reductions somewhat less than hand layup due to decreased fiber volume for

complex parts. Combined with automated preparation of fiber performs it can

result in low recurring fabrication cost. Relatively low scrap rate. Very high

tooling cost if matched metal tooling is used. Less so for vacuum-assisted RTM

(half of the tool is a semi-rigid caul plate) or resin film infusion. To use

unidirectional plies, some carrier or tackifier is needed for the fibers, increasing

the recurring cost somewhat
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Pultrusion Constant cross-section

parts: stiffeners,

stringers, small beams

Weight reductions somewhat less than hand layup due to the fact that not all layups

are possible (plies with 45� orientation or higher when 0 is aligned with the long
axis of the part). Very low recurring cost and relatively low tooling cost

compared with other fabrication processes. Reduced strength and stiffness in

shear and transverse directions due to inability to generate any desired layup

Filament winding Concave parts wound

on a rotating mandrel:

pressure vessels,

cylinders, channels

(wound and then cut)

Weight reductions somewhat less than hand layup due to difficulty in achieving the

required fiber volume and due to inability to achieve certain stacking sequences.

Low scrap rate, low rawmaterial cost. Low recurring fabrication cost. Moderate

tooling cost. Only convex parts wound on a mandrel where the tension in the

fibers can be maintained during fabrication. Cannot wind angles shallower than

geodetic lines (angles less than 15� not possible for long slender parts with 0

aligned with the long axis of the part). Reduced strength and stiffness

Press molding Fittings, clips, shear ties,

small beams, ribs,

intercostals

Weight reductions in the range 10–20% over aluminum baseline (weight savings

potential limited due to the use of discontinuous fibers). Very low recurring cost

with very short production cycle (minutes to a couple of hours). Low material

scrap. Limited by the size of the press. Very high tooling cost for the press mold.

Reduced strength due to the use of long discontinuous fibers, but good out-of-

plane strength due to interlocking’ of fibers
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Exercises

2.1 Hand layup, resin transfer molding and press molding are considered as the candidate

processes for the following part:

Discuss qualitatively how each choice may affect the structural performance and the weight

of the final product. Include size effects, out-of-plane load considerations, load path continuity

around corners, etc.

2.2 Hand layup, automated fiber placement, and filament winding are proposed as candidate

processes for the following part:

Discuss qualitatively how each choice may affect the structural performance and the

weight of the final product. Include size effects, load path continuity, etc. in your discussion.

Assume there are no local reinforcements (e.g. around window cutouts) or attachments to

adjacent structure.
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3

Review of Classical Laminated
Plate Theory

This chapter gives some basic laminate definitions and a brief summary of the classical

laminated-plate theory (CLPT). Aspects of CLPT, in particular the laminate stiffness matrices

are used throughout the remainder of this book.

3.1 Composite Materials: Definitions, Symbols and Terminology

A composite material is any material that consists of at least two constituents. In this book, the

term ‘composite material’ refers to a mixture of fibers and matrix resulting in a configuration

that combines some of the best characteristics of the two constituents. There is a largevariety of

possible combinations. For fibers, some of the options include, E- or S-glass, quartz, graphite,

Kevlar�, boron, silicon, etc, appearing in long continuous or short discontinuous form. The

matrix materials, cover a wide range of thermoset (epoxy, polyester, phenolics, polyimides,

bismaleimids) or thermoplastic resins, or metals such as aluminum or steel. The building block

of a composite material is the ply or lamina. Plies or laminae are stacked together (different

orientations and materials can be combined) to make a laminate.

The most common plies used are unidirectional plies (where all fibers are aligned in one

direction) or fabric plies (plain weave, satins, etc.) where fibers are oriented in two mutually

perpendicular directions. If each ply in the stacking sequence or layup making up a laminate

is denoted by its orientation y (in degrees) relative to a reference axis (�90� <y� þ90�),
as shown for example in Figure 3.1, then a laminate can be denoted by its stacking sequence

(or layup):

½y1=y2=y3 . . .�
where y1, y2 etc are the angles of successive plies starting from the top of the laminate.

If more than one material types are used in the same laminate the angular orientation can

be followed by a symbol that denotes the material type. For example, in the following

stacking sequence,
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½y1ðTÞ=y2ðFÞ=y3ðTÞ . . .�
the first and third plies are made with unidirectional tape material and the second with

fabric material.

When fabric material is used, it is also common to indicate the two orientations in each ply

in parentheses such as

ð0=90Þ; ð�45Þ; ð20=� 70Þ
where the first denotes a fabric ply with fibers oriented in the 0� and 90� directions, the second
denotes a ply with fibers in the þ45� and�45� directions and the third a ply with fibers in the
þ20� and �70� directions.
There are several special laminate types often encountered in practice some of which are:

(a) symmetric, (b) balanced, (c) cross-ply, (d) angle-ply and (e) quasi-isotropic laminates.

Symmetric laminates are laminates that have a symmetric stacking sequence with respect to

the laminatemid-plane (see Figure 3.1). Thismeans that thematerial, thickness and orientation

of each pair of plies located symmetrically with respect to the laminatemid-plane are the same.

A symmetric stacking sequence is usually denoted bywriting half of it and using the subscript s:

½35=20=40�s is the same as ½35=20=40=40=20=35�
This contracted notation has the advantage of simplicity, but requires caution when the total

number of plies is odd. In such a case, the center ply, half of which lies on one side of the

midplane and half on the other, is denoted with an overbar:

½35=20=40�s is the same as ½35=20=40=20=35�
Balanced laminates are laminates in which for each þy ply there is a�y ply (of the same

material and thickness) somewhere in the stacking sequence. Special properties of balanced

and/or symmetric laminates related to their structural response will be presented in subse-

quent sections.

Cross-ply laminates consist only of 0� and 90� plies. Angle-ply laminates do not contain any

0� or 90� plies.
Finally, quasi-isotropic laminates have the same stiffness in any direction in their plane

(xy plane in Figure 3.1). One way to create a quasi-isotropic stacking sequence of n plies is to

x,1

y,2

+θ

laminate mid-
plane

Figure 3.1 Laminate axes and definition of positive y orientation
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require that there is no direction that has more fibers than any other direction. A simple

procedure to accomplish this, is to divide the range of angles from 0� to 180� in n equal

segments and, assign to each ply one angle increment corresponding to these segments.

For example, if there are 8 plies the angle increment is 180/8¼ 22.5�. Then, mixing the

following angles in any order creates a quasi-isotropic laminate:

0; 22:5; 45; 67:5; 90; 112:5 ðor � 67:5Þ; 135 ðor � 45Þ; 157:5 ðor � 22:5Þ

Taking this one step further, for a symmetric laminate, the rule is only applied to half the

laminate since the other half is automatically created by symmetry. For the same case of n¼ 8,

the angle increment is now 180/(8/2)¼ 45�. The following angles, in any order and repeated

symmetrically give a quasi-isotropic, symmetric, 8-ply laminate.

0�; 45�; 90�; 135� ðor � 45�Þ

Some possible quasi-isotropic stacking sequences in this case are:

½0=45=90=� 45�s; ½45=� 45=0=90�s; ½45=90=0=� 45�s; etc:

To complete the discussion of stacking sequence notation, other shorthand methods include

the use of parentheses with subscripts to denote a repeating pattern within the stacking

sequence and the use of numerical subscripts or superscripts outside the brackets. Examples of

these are:

½ð15=� 15Þ3=0=30�s is the same as ½15=� 15=15=� 15=15=� 15=0=30=30=0=� 15=15=

� 15=15=� 15=15�
½15=� 15=0=30�2s is the same as ½15=� 15=0=30=15=� 15=0=30=30=0=� 15=15=30=0=

� 15=15�
½15=� 15=0=30�s2 is the same as ½15=� 15=0=30=30=0=� 15=15=15=� 15=0=30=30=0=

� 15=15�

3.2 Constitutive Equations in Three Dimensions

Composite materials are, by their nature, anisotropic. In three dimensions, the engineering

stresses and strains describing completely the state of deformation in a composite are denoted

in matrix form respectively:

½sx sy sz tyz txz txy�
½ex ey ez gyz gxz gxy�

The first three are the normal stresses (strains) and the last three are the shear stresses

(strains). It is customary, for two-dimensional problems to use x and y as the in-plane

coordinates (see Figure 3.1) and z as the out-of-plane coordinate (perpendicular to the plane

of Figure 3.1).

Stresses and strains are related through the generalized stress–strain relations (Hooke’s

law) [1–5]:
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sx

sy

sz

tyz

txz

txy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66

2
66666666664

3
77777777775

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:1Þ

Note that there is an apparent mix-up of subscripts in Equation (3.1) where the stiffness

components Eij have numerical indices while the stress and strain components have letter

indices. This is done on purpose to keep the engineering notations for stresses and strains

and the usual (contracted tensor) notation for the stiffness terms, which uses numbers

instead of letters.

Equation (3.1) relates the strains to stresses through the fourth order elasticity tensorE. It can

be shown, based on energy considerations [6] that the elasticity tensor is symmetric, i.e.

Eij¼Eji. Thus, for a general anisotropic body, there are 21 independent elastic constants,

as highlighted by the dashed line in Equation (3.1a).

=

xy

xz

yz

z
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xy
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yz
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x
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EEEEEE
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γ
γ
γ

ε
ε

τ
τ
τ
σ
σ
σ

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

independent elastic
constants  

The discussion in this book is further confined to orthotropic materials. These are materials

that possess two planes of symmetry. In such a case, some of the coupling terms in

Equation (3.1a) are zero:

E14 ¼ E15 ¼ E16 ¼ E24 ¼ E25 ¼ E26 ¼ E34 ¼ E35 ¼ E36 ¼ 0 ð3:2Þ
In addition, for an orthotropic body, shear stresses in one plane do not cause shear strains in

another. Thus,

E45 ¼ E46 ¼ E56 ¼ 0 ð3:3Þ
With these simplifications, the stress–strain relations for an orthotropic material have

the form:

sx

sy

sz

tyz

txz

txy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

E11 E12 E13 0 0 0

E12 E22 E23 0 0 0

E13 E23 E33 0 0 0

0 0 0 E44 0 0

0 0 0 0 E55 0

0 0 0 0 0 E66

2
66666666664

3
77777777775

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:4Þ

(3.1a)
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A ply of unidirectional composite material, with the x axis of Figure 3.1 aligned with the fiber

direction and the y axis transverse to it, possesses two planes of symmetry and is thus described by

Equation (3.4). The same holds true for a fabric plywith the x axis alignedwith one fiber direction

and the y axis aligned with the other. Such plies form the building blocks for composite parts

discussed in this book. Note that, in the laminate coordinate system, different plies stacked

together, which are not 0, 90, or (0/90)will no longer possess two planes of symmetry and some of

the coupling terms in Equation (3.1a) are nonzero. However, it is always possible to find an axis

system (principal axes), in general not coincidingwith the laminate axes, in which the laminate is

orthotropic. In general, the entire laminate can be described by a stress–strain relation of the form:

sx

sy

sz

tyz

txz

txy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

E11 E12 E13 0 0 E16

E12 E22 E23 0 0 E26

E13 E23 E33 0 0 E36

0 0 0 E44 E45 0

0 0 0 E45 E55 0

E16 E26 E36 0 0 E66

2
666666666664

3
777777777775

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð3:5Þ

where Eij are now laminate and not ply quantities.

The inverse of Equation (3.5), expressing the strains in terms of the stresses via the

compliance tensor Sij is also often used:

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0

0 0 0 S45 S55 0

S16 S26 S36 0 0 S66

2
66666666664

3
77777777775

sx

sy

sz

tyz

txz

txy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:6Þ

where the compliance matrix is the inverse of the stiffness matrix:

½S� ¼ ½E�� 1 ð3:7Þ
Note that Equations (3.5)–(3.7) refer to laminate quantities while Equation (3.4) refers to an

orthotropicmaterial such as a ply. The underlying assumptions are that: (a) at the laminate and,

often, the ply scales, the fiber/matrix combination can be treated as a homogeneous material

with smeared properties; (b) plane sections remain plane during deformation; (c) there is a

perfect bond between fibers and matrix; and (d) there is a perfect bond between plies.

3.2.1 Tensor Transformations

If the stiffness (or compliance) properties are known in one coordinate system they can be

obtained in any other coordinate system through standard tensor transformations. These can be

expressed concisely if the tensor notation is used (each index ranges from 1 to 3 and repeating

indices sum). Defining ‘ij to be the (direction) cosine of the angle between axes i and j, the

compliance tensor Smnpq in one coordinate system is obtained in terms of the compliance tensor
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Sijkr in another via the relation:
Smnpq ¼ ‘mi‘nj‘pk‘qrSijkr ð3:8Þ

with an analogous relation for the stiffness Emnpq.

If the twocoordinate systemshave the z axis (out-of-plane in the case of a laminate) in common,

Equation (3.8) simplifies and can be expanded relatively easily. If the original coordinate system

coincides with the ply axis system (x along fibers, y perpendicular to the fibers, as shown in

Figure 3.2), then the compliancematrix in a coordinate systemwhose axis x~forms an angle ywith
the x axis of the original coordinate system, can be shown to be given by Equations (3.9).

S11 ¼ S011cos
4yþ 2S012 þ S066

� �
sin2ycos2yþ S022sin

4y

S12 ¼ S011 þ S022 � S066
� �

sin2ycos2yþ S012 sin4yþ cos4y
� �

S13 ¼ S013cos
2yþ S023sin

2y

S22 ¼ S011sin
4yþ 2S012 þ S066

� �
sin2ycos2yþ S022cos

4y

S23 ¼ S013sin
2yþ S023cos

2y

S33 ¼ S033

S16 ¼ 2S011cos
3ysiny� 2S022cosysin

3yþ 2S022 þ S066
� �

cosysin3y� cos3ysiny
� �

S26 ¼ 2S011cosysin
3y� 2S022cos

3ysinyþ 2S022 þ S066
� �

cos3ysiny� cosysin3y
� �

S36 ¼ 2 S013 � S023
� �

cosysiny

S44 ¼ S055sin
2yþ S044cos

2y

S45 ¼ S055 � S044
� �

sinycosy

S55 ¼ S055cos
2yþ S044sin

2y

S66 ¼ 4 S011 þ S022 � 2S012
� �

sin2ycos2yþ S066 sin4yþ cos4y� 2sin2ycos2y
� �

ð3:9Þ

Figure 3.2 Coordinate system transformation
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where the quantities in the xyz coordinate system (basic ply) have a superscript 0 and are given

in terms of the corresponding stiffnesses of the basic ply by:

S011 ¼
1

E11

S012 ¼ � n12
E11

S066 ¼
1

G12

S022 ¼
1

E22

S013 ¼ � n13
E11

S023 ¼ � n23
E22

S033 ¼
1

E33

S044 ¼
1

G23

S055 ¼
1

G13

ð3:10Þ

where Eij are stiffnesses of the basic (0
�) ply with subscripts 1, 2, and 3 corresponding to the

coordinates x, y, and z.

3.3 Constitutive Equations in Two Dimensions: Plane Stress

Whendealingwith thin composites,where the thickness of the laminate ismuch smaller than the

other dimensions of the structure, the laminate is often assumed to be in a state of plane stress.

This is usually the case of a composite plate that is thin compared with its in-plane dimensions.

Then, the out-of-plane stresses sz, tyz, and txz are negligible compared to the in-plane stresses:

sz � tyz � txz � 0 ð3:11Þ
For an orthotropic material such as a single ply in the ply axes or a symmetric and balanced

laminate in the laminate axes, placing Equation (3.11) in Equation (3.5) gives:

sx ¼ E11ex þE12ey þE13ez

sy ¼ E12ex þE22ey þE23ez

0¼ E13ex þE23ey þE33ez

0¼ E44gyz

0¼ E55gxz

txy ¼ E66gxy

ð3:12a--fÞ
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From equations (3.12d) and (3.12e),

gyz ¼ gxz ¼ 0 ð3:13Þ
Equation (3.12c) can be solved for ez and the result substituted in Equations (3.12a)

and (3.12b). This gives the equations

sx ¼ E11ex þE12ey þE13 � E13

E33

ex � E23

E33

ey

0
@

1
A

sy ¼ E12ex þE22ey þE23 � E13

E33

ex � E23

E33

ey

0
@

1
A

ð3:14Þ

which, upon collecting terms can be rewritten as:

sx ¼ E11 � E13
2

E33

0
@

1
Aex þ E12 � E13E23

E33

0
@

1
Aey

sy ¼ E12 � E13E23

E33

0
@

1
Aex þ E22 � E23

2

E33

0
@

1
Aey

ð3:15Þ

Equations (3.14) and (3.15) along with Equation (3.12f) form the constitutive relations

(stress–strain equation) for composite materials undergoing plane stress. Redefining

Qxx ¼ E11 � E13
2

E33

Qxy ¼ E12 � E13E23

E33

Qyy ¼ E22 � E23
2

E33

Qss ¼ E66

ð3:16Þ

the equations for plane stress can be rewritten in matrix form:

sx

sy

txy

8>>><
>>>:

9>>>=
>>>;

¼
Qxx Qxy 0

Qxy Qyy 0

0 0 Qss

2
6664

3
7775

ex

ey

gxy

8>>><
>>>:

9>>>=
>>>;

ð3:17Þ

It should be emphasized that the form of Equations (3.17) is the same irrespective of whether

one deals with a single ply or a laminate, provided that the coordinate system is such that both

the ply and the laminate are orthotropic. However, the values of the stiffnesses Qxx, Qxy, etc.,

differ between ply and laminate.
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The easiest way to use Equations (3.17) is to start frombasic ply properties asmeasured from

simple coupon tests, calculate the values for Qxx, Qxy, etc., then determine the corresponding

values for any (rotated) ply and, finally, an entire laminate.

Let EL, ET, GLT, and nLT be the Young’s modulus along the fibers (longitudinal direction),

Young’s modulus transverse to the fibers, shear modulus, and (major) Poisson’s ratio

respectively. These values can all be obtained from standard coupon tests.

Now in a uniaxial tension test (see Figure 3.3), where the applied load is parallel to the fibers

of a unidirectional ply (which define the x direction), the slope of the applied stress sx versus
longitudinal strain ex is the Young’s modulus EL and the slope of the transverse strain �ey
versus longitudinal strain ex is the Poisson’s ratio nLT:

nLT ¼ � ey
ex

ð3:18Þ

Using this to substitute for ey in the first of Equations (3.17) gives:

sx ¼ Qxxex �QxynLTex ð3:19Þ

For the same uniaxial tension test, sy¼ 0 and the second of Equations (3.17) gives

0 ¼ Qxyex þQyyey ) Qxy

Qyy

¼ � ey
ex

ð3:20Þ

σx

σx

σx

εx

εx

slope = EL

undeformed

deformed

slope = νLT 

 −εy 

Figure 3.3 Quantities measured in a uniaxial tension test of a single unidirectional ply
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Comparing, Equations (3.18) and (3.20)

nLT ¼ Qxy

Qyy

ð3:21Þ

and substituting in Equation (3.19),

sx ¼ Qxx � Qxy
2

Qyy

� �
ex ð3:22Þ

Equation (3.22) implies that the slopeEL of thesx versus ex curve (see Figure 3.3) is given by:

EL ¼ Qxx � Qxy
2

Qyy

ð3:23Þ

In a completely analogous fashion, but now considering a uniaxial tension test transverse to

the fibers, and noticing that nTL is the Poisson’s ratio that describes contraction in the x direction
when a tension load is applied in the y direction, Equations (3.24) and (3.25) are obtained as

analogues to Equations (3.21) and (3.23):

nTL ¼ Qxy

Qxx

ð3:24Þ

ET ¼ Qyy � Qxy
2

Qxx

ð3:25Þ

Note that Equations (3.21) and (3.24) imply that

nLTQyy ¼ nTLQxx ð3:26Þ

Equations (3.23), (3.25) and (3.26) form a system of three equations in the three unknowns

Qxx, Qxy, and Qyy. Solving gives,

Qxx ¼ EL

1� nLTnTL
ð3:27Þ

Qyy ¼ ET

1� nLTnTL
ð3:28Þ

Qxy ¼ nLTET

1� nLTnTL
¼ nTLEL

1� nLTnTL
ð3:29Þ

Considering now a pure shear test of a unidirectional ply whereGLT is the slope of the shear

stress (txy) versus the shear strain (gxy) curve, the last of equations (3.17) implies that

Qss ¼ GLT ð3:30Þ

42 Design and Analysis of Composite Structures



 

Equations (3.27)–(3.30) can be used to substitute in Equations (3.17) to obtain the final form

of the stress–strain equations for an orthotropic ply under plane stress:

sx

sy

txy

8>><
>>:

9>>=
>>;

¼

EL

1� nLTnTL

nLTET

1� nLTnTL
0

nLTET

1� nLTnTL

ET

1� nLTnTL
0

0 0 GLT

2
66666664

3
77777775

ex

ey

gxy

8>><
>>:

9>>=
>>;

ð3:31Þ

The next step is to obtain the stress–strain relations for any ply rotated by an angle y. In
general the stress strain Equations (3.17) now become:

s1

s2

t12

8>><
>>:

9>>=
>>;

¼
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
664

3
775

e1

e2

g12

8>><
>>:

9>>=
>>;

ð3:32Þ

To relate these quantities to the corresponding ones for an orthotropic ply requires

transforming stresses, strains, and stiffnesses by the angle y.
The stiffness transformation follows the standard tensor transformation (Equations (3.8)),

which, for a ply rotated in its plane, as is the case of interest here, are simplified to the equations

analogous to Equations (3.9) that were obtained for the compliances. For the plane stress case,

Equations (3.8) or (3.9) applied to the stiffness tensor give the stiffnesses in the 1–2 coordinate

system of Figure 3.4 as:

Q
ðyÞ
11 ¼ m4Qxx þ n4Qyy þ 2m2n2Qxy þ 4m2n2Qss

Q
ðyÞ
22 ¼ n4Qxx þm4Qyy þ 2m2n2Qxy þ 4m2n2Qss

Q
ðyÞ
12 ¼ m2n2Qxx þm2n2Qyy þ m4 þ n4ð ÞQxy � 4m2n2Qss

Q
ðyÞ
66 ¼ m2n2Qxx þm2n2Qyy � 2m2n2Qxy þðm2 � n2Þ2Qss

Q
ðyÞ
16 ¼ m3nQxx �mn3Qyy þðmn3 �m3nÞQxy þ 2ðmn3 �m3nÞQss

Q
ðyÞ
26 ¼ mn3Qxx �m3nQyy þðm3n�mn3ÞQxy þ 2ðm3n�mn3ÞQss

ð3:33Þ

where m¼ cos y and n¼ sin y
The stresses and strains transform using second-order tensor transformation equations

instead of the fourth-order tensor transformation for stiffnesses and compliances given by

Equation (3.8). Using ‘ij to denote the direction cosines between axes i and j, the stress

transformation equations can be written as:

smn ¼ ‘mp‘nqspq ð3:34Þ
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which, expanded out for the case shown in Figure 3.4 reads:

s1

s2

t12

8>><
>>:

9>>=
>>;

¼
cos2y sin2y 2sinycosy

sin2y cos2y � 2sinycosy

� sinycosy sinycosy cos2y� sin2y
� �

2
664

3
775

sx

sy

txy

8>><
>>:

9>>=
>>;

ð3:35Þ

An analogous expression is obtained for the strain transformation. However, since here

engineering notation is used (instead of tensor notation) the form of Equation (3.35) for the

(engineering) strains is:

e1

e2

g12

8>><
>>:

9>>=
>>;

¼
cos2y sin2y sinycosy

sin2y cos2y � sinycosy

� 2sinycosy 2sinycosy cos2y� sin2y
� �

2
664

3
775

ex

ey

gxy

8>><
>>:

9>>=
>>;

ð3:36Þ

Note the changes in the factors of 2 in the last row and column of the transformation matrix.

These come from the fact that the engineering shear strain is twice the tensor strain: gxy¼ 2e12.
While the equations in terms of stresses and strains can be (and often are) used, in practice it is

convenient to define force and moment resultants by integrating through the thickness of a

laminate. For a laminate of thicknessh as shown inFigure 3.5, the following quantities are defined:

Nx ¼
ð
h

2

�h

2

sxdz

Ny ¼
ð
h

2

�h

2

sydz

Nxy ¼
ð
h

2

�h

2

txydz

ð3:37Þ

x

θ

y

1

2

Figure 3.4 Coordinate system for ply rotated by an angle y
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which are the force resultants and

Mx ¼
ð
h

2

� h

2

sxzdz

My ¼
ð
h

2

� h

2

syzdz

Mxy ¼
ð
h

2

� h

2

txyzdz

ð3:38Þ

which are the moment resultants.

Note that the units of force and moment resultants are force per unit width and moment

per unit width respectively.

Using the force resultants in Equation (3.37), average laminate stresses can be defined

as follows:

sxav ¼ 1

h

ð
h

2

� h

2

sxdz ¼ Nx

h

x
y

z

h

Nx

Ny

Nx

Ny

Nxy

Nxy

Mxy

Mxy

Mxy
Mxy

Mx

MxMy

My

Figure 3.5 Force and moment resultants applied to a laminate (arrows indicate sign convention for

positive values)
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syav ¼ Ny

h

txyav ¼ Nxy

h

ð3:39Þ

where Equations (3.37) are used to substitute for the integrals involved.

The relation between force resultants and laminate strains can be obtained by using

Equation (3.32) and integrating through the laminate thickness. Since the stiffnesses are

constant in each ply (but not necessarily the same from one ply to the next), the z integrations

become summations over all the plies in the laminate. In the laminate coordinate system xy,

Equation (3.32) integrated with respect to z gives

Nx

Ny

Nzy

8><
>:

9>=
>; ¼

A11 A12 A16

A12 A22 A26

A16 A26 A66

2
64

3
75

ex

ey

gxy

8><
>:

9>=
>; ð3:40Þ

where

Aij ¼
Xn
k¼1

Qijðzk � zk�1Þ ð3:41Þ

where i,j¼ 1,2,6, the summation is carried over all n plies of the laminate and zk, zk�1 are the

upper and lower z coordinates of the kth ply, as shown in Figure 3.6.

Equations (3.40) and (3.41) describe the membrane deformations of a laminate under in-

plane loads. For a laminate under bending loads, the standard Kirchoff plate theory

assumptions are used: Plane sections remain plane and perpendicular to the neutral axis.

Denoting the out-of-plane displacement by w, the curvatures kx, ky, and kxy are defined as:

kx ¼ � @2w

@x2

ky ¼ � @2w

@y2

kxy ¼ � 2
@2w

@x@y

ð3:42Þ

y

z

ply 1

2

3

zkzk-1

ply k

Figure 3.6 Ply numbering system
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It can be shown that kx and ky are inversely proportional to the local radii of curvature in the x
and y directions respectively. Note that w is only a function of the in-plane coordinates x and y

and is not a function of the out-of-plane coordinate z.

In a pure bending situation with small deflections, the strains are proportional to the

curvatures and are assumed to vary linearly through the laminate thickness (see also

Section 5.2.2). They are then given by

ex ¼ zkx

ey ¼ zky

gxy ¼ zkxy

ð3:43Þ

Now writing the first of Equations (3.32) in the laminate coordinate system xy, multiplying

both sides by z and integrating through the thickness of the laminate, gives:

ðh2

� h
2

sxzdz ¼
ðh2

� h
2

Q11z
2kxdzþ

ðh2

� h
2

Q12z
2kydzþ

ðh2

� h
2

Q16z
2kxydz ð3:44Þ

According to the first of Equations (3.38), the left-hand side of Equation (3.44) is Mx.

Denoting

D11 ¼
ðh2

� h
2

Q11z
2dz; D12 ¼

ðh2

� h
2

Q12z
2dz; and D16 ¼

ðh2

� h
2

Q16z
2dz

Equation (3.44) can be rewritten in the form:

Mx ¼ D11kx þD12ky þD16kxy ¼ �D11

@2w

@x2
�D12

@2w

@y2
� 2D16

@2w

@x@y
ð3:45Þ

where D11, D12. and D16 are laminate bending stiffnesses.

Operating on the second and third of Equations (3.32) in an analogous fashion, the following

constitutive equations for pure bending of a laminate can be obtained:

Mx

My

Mzy

8>><
>>:

9>>=
>>;

¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
664

3
775

kx

ky

kxy

8>><
>>:

9>>=
>>;

ð3:46Þ

where

Dij ¼
Xn
k¼1

Qij

3
ðz3k � z3k� 1Þ ð3:47Þ

with i,j¼ 1,2,6, the summation carried over all plies n of the laminate, and zk, zk�1 the upper and

lower z coordinates of the kth ply, as shown in Figure 3.6.

Review of Classical Laminated Plate Theory 47



 

Equations (3.40) describe the pure membrane deformations of a laminate and

Equations (3.46) the pure bending deformations. In this decoupled form, in-plane strains ex,
ey, and gxy can only be caused by in-plane loadsNx,Ny, and Nxy, while curvatures kx, ky, and kxy
can only be caused by bendingmomentsMx,My, andMxy. However, for a general laminate, it is

possible to have coupling between the membrane and bending behaviors, with strains caused

by bending moments and/or curvatures caused by in-plane loads. In such a case the strains are

given by a superposition of the membrane strains and the curvatures. The membrane strains

are constant through the thickness of the laminate and equal to the mid-plane strains exo, eyo,
and gxyo. Therefore,

ex ¼ exo þ zkx

ey ¼ eyo þ zky

gxy ¼ gxyo þ zkxy

ð3:48Þ

Reducing Equations (3.32) to a format in terms of force and moment resultants and

combining Equations (3.40), (3.46), and (3.48) the generalized constitutive relations for any

laminate (including membrane-bending coupling) have the form:

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
6666666666664

3
7777777777775

exo

eyo

gxyo

kx

ky

kxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:49Þ

where Aij and Dij were defined by Equations (3.41), and (3.47) and

Bij ¼
Xn
k¼1

Qij

2
ðz2k � z2k� 1Þ ð3:50Þ

with i,j¼ 1,2,6, the summation carried over all plies n of the laminate, and zk, zk�1 the upper and

lower z coordinates of the kth ply, as shown in Figure 3.6.

It is important to note that if the order of plies in a stacking sequence is changed the Amatrix

remains unaffected but the B and D matrices change. This can be of particular importance for

buckling-critical designs and provides an option of optimizing a layup without increasing its

weight by reordering the plies.

If the midplane strains and curvatures of a laminate are known, direct substitution in

Equations (3.49) will give the applied forces and moments. Usually, however, the forces and

moments are known and the strains and curvatures are sought for. They can be obtained by

inverting relations (3.49). The result is [4, 5]:
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exo

eyo

gxyo

kx

ky

kxy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

a11 a12 a16 b11 b12 b16

a12 a22 a26 b21 b22 b26

a16 a26 a66 b61 b62 b66

b11 b21 b61 d11 d12 d16

b12 b22 b62 d12 d22 d26

b16 b26 b66 d16 d26 d66

2
6666666666664

3
7777777777775

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð3:51Þ

where

a½ � ¼ A½ �� 1 þ ½A�� 1½B� ½D� � ½B�½A�� 1½B�
h i� 1

½B�½A�� 1 ð3:52Þ

b½ � ¼ � A½ �½B� ½D� � ½B�½A� � 1½B�
h i� 1

ð3:53Þ

½d� ¼ ½D� � ½B�½A�� 1½B�
h i� 1

ð3:54Þ

with square brackets denoting a matrix and the exponent�1 denoting the inverse of a matrix.

Note that the bmatrix at the top right of Equation (3.51) need not be symmetric. Its transpose

appears at the lower left of the matrix in the right-hand side of Equation (3.51).

Themost important laminate layup is that of a symmetric laminate (see also Section 3.1). For

such a laminate, the couplingmatrixB is zero. This can be seen fromEquation (3.50) where the

contributions to each entry of the matrix coming from two plies located symmetrically with

respect to the midplane subtract each other (Qij are the same because the laminate is symmetric

and the coefficients z2k � z2k� 1 are equal and opposite). With the B matrix zero, there is no

membrane-stretching coupling in the laminate behavior. Also, Equations (3.52), (3.53), (3.54)

simplify. Denoting the inverse of the A matrix by a and the inverse of the D matrix by d,

Equations (3.52)–(3.54) become:

a½ � ¼ A½ � � 1 ¼ ½a� ð3:52aÞ
b½ � ¼ 0 ð3:53aÞ
½d� ¼ ½D�� 1 ¼ ½d� ð3:54aÞ

and substituting in Equation (3.51)

exo

eyo

gxyo

kx

ky

kxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

a11 a12 a16 0 0 0

a12 a22 a26 0 0 0

a16 a26 a66 0 0 0

0 0 0 d11 d12 d16

0 0 0 d12 d22 d26

0 0 0 d16 d26 d66

2
66666666666664

3
77777777777775

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:51aÞ

valid for a symmetric laminate.
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Laminate symmetry will be invoked often in subsequent chapters. It should be emphasized

here that, in designing composite structures, symmetric and balanced laminates are preferred.

They decouple membrane from bending behavior and stretching from shearing deformations,

thus avoiding unwanted failure modes that may occur under some loading conditions.

Very often used in design, are the so-called engineering constants. These are stiffness

properties that can bemeasured in the laboratory using simple tests. For example, a uniaxial test

of a symmetric and balanced laminate would provide a value for the membrane stiffness EL
xm

(orE1m if 1–2 are the laminate axes) of the laminate. For such a laminate under uniaxial loading

Nx (with Ny¼ 0), the first two of Equations (3.49) read

Nx ¼ A11exo þA12eyo

0 ¼ A12exo þA22eyo

The second equation can be used to solve for eyo:

eyo ¼ � A12

A22

exo ð3:55Þ

which, substituted in the first equation, gives

Nx ¼ A11 � A2
12

A22

� �
exo ð3:56Þ

Now using the first of Equations (3.39) to substitute for the stress sxav measured in a uniaxial

test, the following relation is obtained

sxav ¼ 1

h
A11 � A2

12

A22

� �
exo ð3:57Þ

It can also be shown that the 11 entry of the inverse of the A matrix for a symmetric and

balanced laminate is

a11 ¼ A22

A11A22 �A2
12

ð3:58Þ

Equations (3.57) and (3.58) imply that the laminate Young’s modulus for membrane

deformations of a symmetric and balanced laminate is given by:

E1m ¼ 1

h

A11A22 �A2
12

A22

¼ 1

ha11
ð3:59Þ

Also, from Equations (3.18) and (3.55), the Poisson’s ratio for a symmetric and balanced

laminate undergoing membrane deformations is

n12m ¼ A12

A22

ð3:60Þ

An analogous expression can be derived for the bending modulus E1b of a laminate. For

the special case of a laminate with B matrix zero and D16 ¼ D26 ¼ 0, the fourth and fifth

equations of relations (3.49) and (3.51) can be used to eliminate ky and obtain the relation
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Mx ¼ D11 � D12
2

D22

� �
kx ð3:61Þ

In a pure bending test, such as a four-point bending test, the moment curvature relation has

the form:

Mx ¼ M

b
¼ 1

b
E1bIkx ð3:62Þ

where I is the moment of inertia bh3/12.

Comparing Equations (3.61) and (3.62) it can be seen that

E1b ¼ 12

h3
D11 � D12

2

D22

� �
ð3:63Þ

which, using d11, can be shown to be

E1b ¼ 12

h3
D11D22 �D2

12

D22

¼ 12

h3d11
ð3:64Þ

In general, the stiffness calculated by Equation (3.59), corresponding to stretching of a

laminate, is not the same as that calculated byEquation (3.64),which corresponds to bending of

a laminate. This will be shown later on to cause some problems on the selection of the stiffness

value to be used for certain problems (see, for example, Section 8.2). In general, for bending

problems the bending stiffnesses are used and for stretching problems themembrane stiffnesses

are used. However, in situations where both behaviors occur simultaneously it is not always

clear what values should be used and it is not uncommon to use the values that give the most

conservative results.

Relations (3.59) and (3.64) were derived for special laminates to avoid algebraic complexity

and to emphasize the underlying physical models. In general, the laminate stiffness properties

in all directions for symmetric laminates can be found to be [5]:

E1m ¼ 1

ha11

E2m ¼ 1

ha22

G12m ¼ 1

ha66

n12m ¼ � a12

a22

n21m ¼ � a12

a11

E1b ¼ 12

h3d11

E2b ¼ 12

h3d22

G12b ¼ 12

h3d66

n12b ¼ � d12

d22

n 21b ¼ � d12

d11

ð3:65Þ
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Exercises

3.1 Assume a layup consists of n plies of the same material, all at the same orientation (not

necessarily 0�). Let E be the Young’s modulus of a single ply at that orientation, G the

corresponding shear modulus, and n12, n21 the two Poisson’s ratios. Derive analytical

expressions for A11, A12, A22, A66,D11,D12,D22,D66 as functions of E,G, n12, n21, and the
thickness h of the laminate (still having all plies with the same fiber orientation).

3.2 By mistake, the layup of a specific laminate fabricated in the factory was not labelled and

the stacking sequence is unknown. The laminate was fabricated using a graphite/epoxy

material with the following basic ply properties:

Ex ¼ 131 GPa

Ey ¼ 11:7 GPa

Gxy ¼ 4:82 GPa

nxy ¼ 0:29

tply ¼ 0:3048 mm

To avoid throwing the expensive laminate away an engineer cuts a small strip of material

from the edge. The strip is 152.4mm long by 25.4mm wide and has a thickness of

1.83mm. First he/she tests this in a three-point bending configuration and then in tension as

shown in the Figure below:

101.6 mm
1.83

3 pt bending

tension

mm

In the three-point bending test he/she notices that the specimen undergoes pure bending

and in the tension test the specimen only elongates (and contracts by a small amount

transversely to the load).

Using the results of the three-point bending test, the engineer notices that when plotting

the center deflection as a function of the applied load at the center, he/she obtains (for low

loads) an (almost) straight line with slope 0.03826mm/N. Unfortunately, this information

is not sufficient to determine the stacking sequence conclusively. Part of the problem is that

it is hard tomeasure the center deflection of the three-point bending test accurately. During

the uniaxial tension test the engineer notices that a maximum load of 2225N results in

a specimen elongation of 0.0941mm. Now the engineer is confident he/she knows the

stacking sequence. What is the stacking sequence? (In this factory only laminates with

0,45,–45, and 90 plies are used)
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4

Review of Laminate Strength
and Failure Criteria

If the loads applied to a laminate are sufficiently high then the strength of the material

is exceeded and the laminate fails. It is, therefore, very important to be able to use the stresses

and/or strains calculated in the previous chapter to predict failure. This, however, is compli-

cated by the fact that final failure of a laminate does not always coincidewith onset of damage.

Depending on the laminate layup and loading, damage may start at a load significantly lower

than the load at which final failure occurs. Being able to predict when damage starts and how it

evolves requires individual modeling of the matrix and fibers. Usually, damage starts in the

form of matrix cracks between fibers in plies transverse to the primary load direction. As the

load increases the crack density increases and the cracks may coalesce into delaminations

(where plies locally separate from one another) or branch out to adjacent plies [1]. In addition,

local stress concentrations may lead to failure of the fiber–matrix interphase. Further increase

of the load accumulates this type of damage and causes some fibers to fail until the laminate can

no longer sustain the applied load and fails catastrophically. The detailed analysis of damage

creation and evolution accounting for the individual constituents of a ply is the subject of

micromechanics [2, 3].

In an alternate simplified approach, each ply is modeled as homogeneous, having specific

failure modes which are characterized by tests. For a unidirectional ply the following failure

modes are usually recognized:

Tension failure along the fibers with strength symbol Xt

Compression failure along the fibers with strength symbol Xc

Tension failure transverse to the fibers with strength symbol Yt

Compression failure transverse to the fibers with strength symbol Yc

Pure shear failure of a ply with strength symbol S

These strength values, obtained experimentally, are already one step away from the

individual failures of fiber and matrix and their interphase. The details of damage onset,
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such as matrix cracks leading to fiber failure or failure of the fiber–matrix interphase

leading to fiber failure, are lumped into a single experimentally measured value. This value

is a macroscopic value that describes when a single ply will fail catastrophically given

a specific loading.

In parallel to, or instead of, the five strength values just mentioned, ultimate strain values can

be used for the same loading situations, again obtained experimentally. Using ultimate stress

values is interchangeablewith ultimate strainvalues (in terms of obtaining the same failure load

at which the ply fails) only for loading situations for which the stress–strain curve is linear to

failure or very nearly so. This means that for tension and compression along the fibers, going

from predictions obtained with a strength-based model to predictions from a strain model

requires only the use of a constant of proportionality which is the Young’s modulus (in the

direction of the load) divided by a Poisson’s ratio term. For shear loading and transverse tension

or compression, where the stress–strain curves are, usually, nonlinear, simply multiplying

strain-based predictions with a constant of proportionality does not give the correct strength

failure values. Amodel that accounts for nonlinearities in the stress–strain curve must be used.

Consider now the case of a laminate inwhich all the plies are the samewith the same arbitrary

orientation y. An arbitrary in-plane loading applied to this laminate, results in the same

combined state of stress (and strain) in each ply. This state of stress or strain must be

transformed to the principal axes for the ply, which are the ply axes (one axis parallel to

the fibers and one transverse to them). The resulting principal stresses (or strains) are compared

with their respective maximum values (strength or ultimate strain). Obviously, in this special

case, all plies fail simultaneously. The approach where the principal stresses in a ply are

compared with the ultimate strength values in the respective directions is the maximum stress

theory. The approach where principal strains in a ply are compared with the ultimate strain

values in the respective directions is the maximum strain theory. Note that, for generalized

loading, even if all stress–strain curves are linear, the predictions from the two methods will

differ slightly due to a Poisson’s ratio effect.

The situation becomes more complicated when the plies in a laminate do not all have the

same ply orientation. The procedure is as follows:

1. Given the applied loads, the corresponding laminate midplane strains and curvatures are

computed using Equations (3.51).

2. These are then used along with Equations (3.48) to determine the individual strains within

each ply in the laminate axes (see Figure 4.1).

3. Ply strains in the laminate axes can be translated to ply stresses in the laminate axes using

Equations (3.32).

4. Depending on the type of failure criterion used (stress- or strain-based) the ply stresses

and/or strains in the laminate axes are transformed to ply stresses and/or strains in the ply

axes (see Figure 4.1) using Equations (3.35) and/or (3.36). For each ply, the ply axis system

has one axis parallel to the fibers and the other perpendicular to them.

5. Using the results of the previous step, a failure criterion is applied to determine which ply

fails. This determines first-ply failure.

6. If desired, post-first-ply failure analysis can follow. The stiffness and strength properties of

the failed ply are adjusted accounting for the type of failure that occurred and steps 1–5 are

repeated until the next ply fails.

7. Step 6 is repeated until all plies in the laminate have failed.
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The failure predictions obtained with the procedure just described may vary significantly

depending on the failure criterion used. There is a large number of failure criteria, stress-

based, strain-based, or energy-based. A few representative ones are briefly discussed in

subsequent sections.

4.1 Maximum Stress Failure Theory

In this case, the principal stresses in each ply are compared with their corresponding strength

values Xt, Xc, Yt, Yc, and S. In a design situation these strength values are adjusted through

statistical analysis (see Sections 5.1.3–5.1.6) to obtain reduced values that account for material

scatter and adverse environmental effects. In some cases, the effect of damage is also included

in these reduced strength values. These reduced values are also termed allowables. The

maximum stress failure criterion can be expressed as:

sx < Xt or Xc depending on whether sx is tensile or compressive

sy < Yt or Yc depending on whether sy is tensile or compressive

jtxyj < S

ð4:1Þ

where sx, sy, and txy are ply stresses in the ply coordinate system (x parallel to fibers and y

perpendicular to fibers). Note that the sign of the shear stress is immaterial as its magnitude is

compared with the shear allowable S. If all left-hand sides of Equation (4.1) are less than the

right-hand sides there is no failure. Failure occurs as soon as one (ormore) of the left-hand sides

equals the right-hand side. The failure mode is the one for which Equation (4.1) is met. For

example, if sx is compressive and the first of Equations (4.1) is met, then the failure mode is

compressive failure along the fibers.

1

2

x

y

laminate with laminate axes 1-2 

kth ply with ply axes xy 

fiber orientation in 
ply k

1

Figure 4.1 Laminate and ply axes systems
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4.2 Maximum Strain Failure Theory

In a manner analogous to the maximum stress failure theory, the maximum strain failure

criterion can be stated as:

ex < exut or exuc depending on whether ex is tensile or compressive

ey < eyut or eyuc depending on whether ey is tensile or compressive

jgxyj < gxyu

ð4:2Þ

where ex, ey, and gxy are ply strains in the ply coordinate system (x parallel to fibers and y

perpendicular to fibers). Also, exut, exuc, eyut ,eyuc, and gxyu are allowable strains in the

corresponding direction and loading (tensile or compressive). Note that the sign of the

shear strain is immaterial as its magnitude is compared to the shear allowable gxyu. If all left-
hand sides of Equation (4.2) are less than the right-hand sides there is no failure. Failure

occurs, in a specific failure mode, as soon as one (or more) of the left-hand sides equals the

right-hand side.

4.3 Tsai–Hill Failure Theory

In the two previous failure criteria, each stress or strain is individually compared with its

respective allowable. In general, however, stresses (or strains) may interact with each other and

lead to failure, even if each compared individually with its respective allowable suggests that

there is no failure. Hill [4] was among the first to propose a combined failure criterion for

compositematerials. For a single ply under plane stress,with ply axes xy as shown in Figure 4.1,

the criterion has the form:

Fxs2x þFys2y þFxysxsy þFstxy2 ¼ 1 ð4:3Þ

The form of Equation (4.3) is exactly analogous to the vonMises yield criterion in isotropic

materials:

sx2

syield2
þ sy2

syield2
� sxsy
syield2

þ 3txy2

syield2
¼ 1 ð4:4Þ

with syield the yield stress of the material. In fact, Equation (4.3) was proposed by Hill (for

a three-dimensional state of stress) as a model of yielding in anisotropic materials. For

composite materials, where the concept of macroscopic yielding (at the laminate or the ply

level) is not really valid, failure replaces yielding.

Equation (4.3) recognizes the fact that the failure strengths of a composite ply are different in

different directions. Tsai [5] determined the stress coefficients in Equation (4.3) by considering

three simple loading situations: (a) onlysx acts on a plywith corresponding strengthX; (b) only
sy acts with corresponding strength Y; and (c) only txy acts with corresponding strength S. For
example, if only sx acts, Equation (4.3) reads:

Fxsx2 ¼ 1 ð4:5Þ

58 Design and Analysis of Composite Structures



 

It is also known that if only sx acts, which is parallel to the fibers, failure will occur when sx
equals X or

sx2 ¼ X2 ð4:6Þ
Comparing Equations (4.5) and (4.6) it can be seen that:

Fx ¼ 1

X2
ð4:7Þ

Considering the remaining two load cases would give another two conditions to determine

two of the three remaining unknowns Fy, Fxy, and Fs. One more condition is obtained by

considering the original three-dimensional formof theHill yield criterion [4] inwhich Fx,Fy, and

Fxy are interdependent through distortional deformations of a representative volume ofmaterial.

This gives one additional equation. The final form of the Tsai–Hill failure criterion is:

s2x
X2

� sxsy
X2

þ s2y
Y2

þ t2xy
S2

¼ 1 ð4:8Þ

4.4 Tsai–Wu Failure Theory

The Tsai-Wu failure criterion [6] was a result of an attempt to mathematically generalize the

Tsai–Hill failure criterion creating a curve fit based on tensor theory and accounting for the fact

that composites have different strengths in tension and compression. This means that the

Tsai–Wu failure theory is not entirely based on physical phenomena, but includes a curve-

fitting aspect. In fact, one of the unknown coefficients in the criterion is obtained by requiring

that the vonMises yield criterion be recovered if thematerial were isotropic. Aswasmentioned

in the previous section, yielding and, more so, distortional energy theory on which the von

Mises criterion is based, are not applicable to composites so the Tsai–Wu criterion should be

viewed as a convenient (and useful) curve fit more than a physics-based model of failure. The

form of the criterion is:

sy2

XtXc
þ sy2

YtYc
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

XtXc

1

YtYc

r
sxsy þ 1

Xt
� 1

Xc

� �
sx þ 1

Yt
� 1

Yc

� �
sy þ txy2

S2
¼ 1 ð4:9Þ

Note that tensile and compressive strengths are input as positive values (magnitudes) in the

above equation.With the exception of biaxial compression situationswhere the predictions are,

at best, unrealistic, the Tsai–Wu criterion gives predictions that range from acceptable to

excellent when compared with test results.

4.5 Other Failure Theories

In the discussion of some of the failure criteria presented in the previous sections some

of the shortfalls of these failure theories were mentioned. Many attempts have been made

in the past to propose improved failure criteria [7–9] that do not suffer from the shortfalls

mentioned and are in closer agreement with experimental results. This is still an open

subject of research and the sometimes heated discussion [10, 11] has yet to reach

definitive conclusions.
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One of themajor problems of interaction failure criteria such as the Tsai–WuandTsai–Hill is

the physical meaning of interaction terms (in addition to difficulty of experimentally obtaining

them). Related to that, but more generic as a problem of some of the failure criteria already

presented, is the smearing of properties and treating each ply as homogeneous with single

values to represent failure strengths in different directions [10]. Failure theories [12] that

account for the individual failure modes of fiber and matrix are more promising in that respect.

Specifically, the Hashin–Rotem failure criterion has the form [12]:

sx
Xt

¼ 1

sx
Xc

¼ 1

when sx is tensile

when sx is compressive

9>>>=
>>>;

fiber failure

sy2

Ytð Þ2 þ txy2

S2
¼ 1

sy2

Ycð Þ2 þ txy2

S2
¼ 1

when sy is tensile

when sy is compressive

9>>>>>=
>>>>>;

matrix failure

ð4:10Þ

More recently (see for example [13]), failure criteria based on micromechanics analysis of

the composite constituents under different loading situations have emerged and appear to be the

most promising, but at a significant increase in complexity and computational cost.

In view of the difficulties of failure theories to accurately predict first-ply failure, extending

to subsequent ply failure and final laminate collapse is even harder. In fact, other than

disregarding very early failures of plies with fibers transverse to the main tensile load in

a laminate, there is no reliable method for performing post-first-ply failure analysis other than

the approach by D�avila et al. [13] implemented in a finite element environment. Several

attempts have been made [14, 15] with varying degrees of success.

In the general case where a laminate is under a three-dimensional state of stress, modified

criteria accounting for out-of-plane stresses and their interaction with in-plane stresses have

to be used, or, in some cases, individual criteria for in-plane and out-of-plane loads are

used [16].

Which failure criterion or criteria will be used in a specific application is verymuch amatter

of preference, available resources, and test data. The simpler failure criteria such as maximum

strain or Tsai–Hill andTsai–Wu (despite their shortcomings) can bevery useful for preliminary

design if supported by test data covering the load situations of interest. In other cases, emphasis

is placed on test data, and laminate strength is obtained from test rather than failure criteria. In

what follows in this book, wherever laminate strength is needed (for example for crippling

calculations in Section 8.5) it is assumed that the reader will use whichever method to predict

laminate strength that he/she considers more reliable and accurate.
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5

Composite Structural Components
and Mathematical Formulation

5.1 Overview of Composite Airframe

A section of a fuselage structure, showing some of the typical parts that make it up, is shown in

Figure 5.1. Similar part types are used to make up a wing structure.

The types of parts thatmake up an airframe (fuselage and/orwing) are the same formetal and

composite structure. In fact, it is possible to replace, part for part, an aluminum airframe by an

equivalent composite airframe. This would typically be a skin-stiffened built-up structure with

fasteners connecting the different parts. In general, such a one-for-one replacement does not

make full use of composite capabilities and results in minor weight reductions (<15%) with

relatively high fabrication cost because the different parts are made separately and assembled

togetherwith fasteners. Such a construction, especiallywhen the skin layup is quasi-isotropic is

referred to as ‘black aluminum’ to emphasize the fact that the design imitates or closely

matches the aluminum design, and little or no attempt is made to use composites to their

fullest potential.

Each part or component in an airframe structure serves a specific purpose (or, sometimes,

multiple purposes) so that the ensemble is as efficient as possible. Efficiency typically refers to

the lowest weight, given a set of applied loads, but it can be any combination of desired

attributes such as weight, cost, natural frequency, etc. With reference to Figure 5.1, the parts

used in a composite (also metal) airframe can be broken into the part families or types shown in

Table 5.1. Note that a less detailed breakdownwas given in chapter 2, Table 2.1 for the purposes

of the cost discussion.

Each part must be designed so that it does not fail under the applied loads and it meets all

other design requirements (see Section 5.1.1). Usually, the main objective is to keep theweight

as low as possible but, as already mentioned, additional objectives such as minimum cost (see

Chapter 2) are also incorporated in the design process.
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5.1.1 The Structural Design Process: The Analyst’s Perspective

The objective of the structural design process is to create a structure that meets specific

requirements and has certain desirable attributes. The typical design requirements can be

summarized into: (1) fit, form, and function; (2) applied loads; (3) corrosion resistance and

Figure 5.1 Typical fuselage part break-down

Table 5.1 Part families in a composite airframe

Part family Description Usage

Skins Two-dimensional thin structures covering

the outside of fuselage or wing; usually

single curvature

Fuselage Wing

Stringers, stiffeners,

panel breakers

One dimensional beam-like structures Fuselage Wing

Frames, bulkheads Two-dimensional ring-like structures at

specific intervals along fuselage

Fuselage

Beams Two-dimensional plate-like structures Fuselage Wing

Spars Two-dimensional plate-like structures

along the length of wing

Wing

Ribs Two dimensional plate-like structures at

specific intervals along wingspan

Wing

Intercostals Two-dimensional plate-like structures

acting as supports

Fuselage

Fittings Three-dimensional structures connecting

adjacent parts

Fuselage Wing

Decks, floors Two-dimensional flat structures Fuselage

Doors, fairings Two-dimensional structures usually with

compound curvature

Fuselage Wing
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resistance to fluids; (4) thermal expansion coefficient placement; (5) frequency placement.

Briefly, each of these is discussed below.

Fit, form, and function. The structure to be designed must fit within the allowable

envelope, i.e. avoid interference with adjacent structure, must have the appropriate material

and generic shape so it performs optimally and must perform the assigned function without

flaws. The latter includes providing attachment points for other structure as needed and

access (through-paths for example) for intersecting parts such as electrical and hydraulic

equipment or ducts.

Applied loads. The structure to be designed must not fail under the applied static loads and

must have the desired life under the applied fatigue loads. In addition, the structuremust be able

towithstand certain static and fatigue loads in the presence of damagewithout jeopardizing the

operation of the remainder of the structure (e.g. if the structure is damaged and load is

transferred to the adjacent structure the adjacent structure should still be able to perform

without failure).

Corrosion resistance, resistance to fluids (jet fuel, etc). Exposure to water vapors or water

or other fluids such as fuel and hydraulic fluids is unavoidable during the service life of many

parts. The amount of corrosion and/or the associated reduction of strength or stiffness must

be minimized.

Thermal expansion coefficient placement. Airframe structures are exposed to wide

variations in ambient temperature, either due to their location on the airframe (e.g. parts

near the exhaust of an engine) or due to the environment (e.g. satellites). Such structures must

be designed to have low thermal expansion coefficients so that any deformations resulting

from temperature changes do not compromise the performance of the structure and do not

lead to premature failure.

Frequency placement. Airframe structures operate in a vibration environment with specific

driving frequencies (from the engines) or random vibrations (gusts, etc). The natural frequen-

cies of the main structural modes such as the first few bending and torsional modes must be

sufficiently far from the driving frequencies to avoid large deflections and premature failure.

Depending on the application, some or all of these design requirementsmust bemet. In some

cases additional requirements may be imposed. What makes the problem more challenging is

that these requirements must be met while specific desirable attributes are also achieved. The

most common desirable attributes are: (1) minimum weight; (2) minimum cost; (3) low

maintenance; (4) replaceability across assemblies, etc. These are discussed briefly below.

Minimum weight. Minimizing the structural weight increases the amount of payload or

weight of fuel that can be carried (for a given gross weight). Or, if the weight reduction is not

translated to payload or fuel increase, it translates to overall size reductions (engines are

smaller, wings are smaller, etc.), which, in turn, reduces fuel consumption and acquisition and

maintenance cost.

Minimum cost. This can be: (a) the recurring fabrication cost (labor and materials to build

each part or aircraft); (b) the nonrecurring cost which is the cost incurred once in each program

and includes development/research cost, tooling cost, cost for testing and certification, cost for

developing drawings and doing analysis, etc.; (c) acquisition cost (cost incurred by the

customer in purchasing the part or aircraft); (d) operating cost, etc. See also Chapter 2 for

a brief discussion on cost of composite airframe structures.

Low maintenance. This is related to the minimum cost described above, but merits special

mention. Over the long life of an aircraft, maintenance cost (including inspection, disposition
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of problems found and associated repair) can become a very significant portion of the life-cycle

cost of the aircraft. Designing structure that minimizes this cost is very desirable and attractive

to customers.

Replaceability across assemblies. This is also (indirectly) related to the cost and low

maintenance items mentioned earlier. Depending on the part geometry, adjacent structure, and

fabrication and assembly methods selected, the accuracy of the part geometry and how closely

it mates with adjacent structure can vary widely, to the point that exchanging nominally the

same parts between two different assemblies can be almost impossible without significant

rework to eliminate interferences or fill in gaps (shimming). If, however, the design and

fabrication process yield parts of acceptable cost and high accuracy, then replacing a part will

only require simple disassembly of the part to be replaced and assembly of the replacement

part. This drastically reduces repair andmaintenance costs andminimizes turn-around times so

that aircraft grounded for inspection and repairs can be returned to service very quickly.

The design process applied to a specific geometry is shown schematically in Figure 5.2.

Given the applied loads and the available space (the shaded area on the left of Figure 5.2), the

structural analyst/designer has to come up with a shape that fits the given space, provides hard

points for load applications and attachments, and includes cutouts for any equipment that

passes through. Some of the cutouts may be included as ‘lightening holes’ to reduce weight. In

addition, the designer uses local reinforcements, doublers or flanges, around the cutouts and the

attachment points for better load transfer across the part and for increased stability. The

geometry (thicknesses, widths, heights, etc.) are selected so that the weight is minimized (for

most cases minimum weight is one of the desirable attributes). This results in the structure

shown on the right of the figure.

In terms of the sequence of steps and decision flow, the design process can be summarized in

the chart of Figure 5.3. The analyst obtains the applied loads and local design requirements and

uses the available materials to select the preliminary design. Use of simple analysis methods

and experience (if available) with similar parts in the past firms up the geometry, and this

becomes the structural configuration. The structural configuration is a combination of

geometry, material, and fabrication process. Typically, at this point the requirements are met

or are close to beingmet (for example the applied loadsmay cause failure, but the reserve factor

is close to 1). A series of iterations, as shown by the loops in Figure 5.3, follows in order to fine-

tune the design. They consist of more detailed analysis to minimize the weight (or meet other

desirable attributes) without failing under the applied loads and, if needed, fabrication or

producibility trials to verify that the design ismanufacturable at acceptable cost. Testsmay also

Envelope to avoid interferences 
with surrounding structure

applied 
loads

“hard”
pts

applied 
displacement

Figure 5.2 Designing a part to meet specific requirements
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be used to verify the analysis predictions and to check that there are no issues that were not

satisfactorily addressed by the design process.

At this point it is worthwhile to go through some order of magnitude calculations to see

what this process implies in terms of time required. A typical aircraft is designed for a series

of flight maneuvers (takeoff, climb, turn, approach, land, etc) and taxi maneuvers. These are

done for a variety of speeds, accelerations, load factors, etc. and correspond to a large number

of static and fatigue load combinations for which each part of the aircraft must be designed. In

addition, there are crash load cases that must be included in the design of each part (or at least

the parts that see substantial loads during a crash). Nowadays, with the advanced simulation

software available and our improved understanding of structural behavior during different

maneuvers, the total number of load cases (static and fatigue) that have to be analyzed is of the

order of 1000.

Assume now that the structural analyst has, on average, three design concepts to consider for

each part to be designed. For example, for a skin structure, the three design concepts can be:

(a) stiffened panel; (b) sandwich panel; and (c) isogrid panel as shown in Figure 5.4a. Also

assume that for each of the three design concepts there are, on the average, three fabrication

processes/material combinations. For the case of the stiffened panel for example, these could

be co-cured, fastened, or bonded as shown in Figure 5.4b. Note that all these options, so far,

assume one choice of layup for each of the components.

In order to determine the optimum solution, i.e. the solution that meets the design

requirements and optimizes the desired attribute(s) such as weight, cost, etc., a certain

optimization algorithm must be used. Genetic algorithms are one of the most effective

optimization schemes because they are very efficient in dealing with discontinuous variables

such as the laminate thickness and multiple optima [1]. A genetic algorithm optimization

scheme works by generating a certain number of designs during each iteration (or generation)

and evaluating each design against the constraints and objective function. This evaluation
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Figure 5.3 Simplified flow diagram of the design/structural analysis process
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implies detailed analysis of each design to determine if it meets the applied loads. The worst

performers are eliminated from the design pool while the best performers are recombined to

create new designs for the next generation. Typically, to converge to an optimum solution a

genetic algorithmwill need approximately 1000 iterations (or generations)with approximately

15 designs per generation.With these assumptions, the number of analyses needed to optimize

a single part is of the order of:

1000 ðload cases or maneuversÞ � 3 design concepts � 3 process=material

combinations per concept� 1000 generations� 15 designs analyzed per generation

¼ 135 million analyses!

Of course there are shortcuts one can use by eliminating less critical load cases for example,

but if one considers: (a) additional analyses that are needed for convergence checks if the finite

elementmethod is used for each analysis; (b) load redistribution runs to account for the fact that

Figure 5.4 Options to be considered during design/analysis of a part (See Plate 13 for the colour figure)
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as the design changes load transfer through the part and around it changes and thus the applied

loads change; and (c) applied load changes (mostly increases) that invariably occur during the

design effort, the above estimate of 135 million analyses is probably representative of what

would be needed.

Clearly, this number of analyses for each part to be designed is prohibitive if the analysis

method is time consuming such as the finite element or finite difference method. For example,

to finish 135million analyses in one yearworking for 365 days 24 hours per day onewould have

to complete more than 4 analyses per second. In practice the number of analyses is reduced by

reducing the design concepts and process/material combinations per part, and limiting the

number of parts to be optimized to a subset of the entire structure. But this, in turn, means that

the structure is by necessity suboptimal since not all options are considered nor are all parts

optimized. Evenwith those shortcuts, the number of finite element or finite difference analyses

required is still prohibitive.

Therefore, until the computation time for themore accurate analysis methods such as finite

elements improves by at least a factor of 50, extensive optimization of large quantities of

parts or assemblies is not economically feasible. For this reason, simpler, reasonably

accurate, and much faster methods of analysis are necessary. In the following chapters,

some of these simpler analysis methods are presented. In general, they lend themselves to

automation and can be combined with efficient optimization schemes to optimize large

quantities of parts. However, it is important to note, and it will be stressed time and again

throughout this text, that in order to simplify the analysis approximations have to be made

which lead to results that are not as accurate as more detailed methods would generate and do

not apply to all cases. If used judiciously, they can help hone in on the final design (or close to

it) in terms of finalizing process, material, design concept, and most of the geometry so that

more detailed (andmore time consuming) methods need only be used once (or few times) per

part to firm up the final design.

5.1.2 Basic Design Concept and Process/Material Considerations
for Aircraft Parts

This section gives some of the top-level alternatives a designer/analyst has to consider when

designing a composite part. This is summarized in Table 5.2 and is by no means an exhaustive

discussion, but helps in understanding the process one has to go through before even analyzing

a part. The relation of some of these decisions to the analysis methodology that must be done is

highlighted. The different types of analysis are only mentioned here and presented in detail in

subsequent chapters. The types of parts discussed here follow the listing of Table 5.1.

As shown in Table 5.2, the different options for design concepts for each type of part make it

difficult to know a priori the optimum configuration for each application and type of loading.

At times, a compromise is necessary in order to better blend the structure to be designed with

adjacent structure where some geometry, for example the stiffener spacing, is fixed. Also,

knowledge of the fabrication options and corresponding process capabilities is necessary in

order to fully exploit the potential of a design concept. For example, maintaining fiber

continuity in all three directions in a three-dimensional structure such as a fitting may not

be possible, thereby creating interfaces where only resin is available to carry loads if fasteners

are not used. This is the case in Figure 5.5 where there are no fibers across planes a–a and b–b.
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Table 5.2 Design considerations, alternatives, and implications for analysis

Part Configuration Alternatives to be considered Implications for analysis

Skins . Stiffeners co-cured, fastened,

secondarily bonded?

Material strength

. Cutouts molded in or cut afterwards?

Reinforced with doublers or flanged?

Reinforcement co-cured, fastened or

secondarily bonded?

Notched strength(1)

Buckling

Delamination

. Full-depth core everywhere or with

rampdown for attachments?

Material strength (facesheet, core,

adhesive), notched strength(1)

. Assembly via co-curing, fastened or

secondarily bonded?

Buckling
Wrinkling (symmetric, antisymmetric)

Shear crimping

Intracellular buckling

Delamination, disbond

Stringers, Stiffeners

panel breakers

. Confine buckling pattern between

stiffeners (panel breakers)?

Material strength

Notched strength(1)

Column buckling

Crippling

Skin/stiffener separation

Inter-rivet buckling

Frames and bulkheads . Co-cured with skin, fastened or

secondarily bonded?

Material strength

. Single piece or multiple pieces?

Notched strength
(1)

. Cutouts flanged or with doublers?

Buckling of webs

. Cutouts molded-in or cut afterwards?

Crippling of stiffeners or caps

Crippling of reinforcements
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Beams, spars, ribs,

intercostals

. Co-cured with skin, fastened or

secondarily bonded?

Material strength, notched strength(1)

. Single piece or multiple pieces?

Web buckling

. Cutouts flanged or with doublers?

Crippling of flanges

. Cutouts molded-in or cut afterwards?

Crippling of reinforcements around

cutouts

Fittings . How to mold a 3-D piece with

continuous fibers in all directions?

Material strength, notched strength(1)

Lug failure(2)

Bearing failure

Delamination

Decks and floors . Stiffened, grid-stiffened or sandwich? Material strength, notched strength(1)

Stiffened panel failure modes

Sandwich failure modes

Doors and fairings . Stiffened or sandwich? Material strength, notched strength(1)

.How does compound curvature change

fiber orientation locally?

Stiffened panel failure modes

Sandwich failure modes

(1) Notched strength: OHT¼open hole tension; OHC¼ open hole compression; TAI¼ tension after impact; CAI¼ compression after impact; SAI¼ shear

after impact

(2) Net section failure, shear-out failure, bearing failure
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As summarized in Table 5.2, apart from the basic strength and notched strength failure

modes, different parts may have different failure modes that must be analyzed separately.

It is important to note that if these failure modes are not anticipated in advance, they

cannot be picked up by analysis methods that are not set up to accurately capture them.

For example, a finite element method may not pick up failure of a lug if the mesh is

not fine enough at the three different locations where net tension, shear-out, or bearing

failure may occur (Figure 5.6). Or, without proper mesh size and boundary conditions,

long-wave (global) and short-wave (e.g. crippling or wrinkling) buckling modes cannot be

accurately quantified.

5.1.3 Sources of Uncertainty: Applied loads, Usage andMaterial Scatter

It should be recognized that in any large-scale design problem, such as that of an airframe,

there are sources of uncertainty. As a result, several input quantities in the design process

are not accurately known and the design/analysis process must take these uncertainties

into account to make sure that the worst case scenario, however improbable, if it were to

occur, would not lead to failure. The three most important sources of uncertainty are:

(1) knowledge of applied loads; (2) variability in usage; and (3) material scatter. These are

examined briefly below.

A

A

View A-A (exploded) 

a
a

b

b

Figure 5.5 Schematic of a three-dimensional connection of parts without fiber continuity in all primary

load directions

Net section: material fails   Shear-out: material fails   Bearing: Lug hole 
in tension between lug    in shear at hole edge along   elongates and material 
hole and edge of part      two planes parallel to load   fails in bearing/compr. 
          ahead of hole 

Figure 5.6 Three of the failure modes in a lug
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5.1.3.1 Knowledge of Applied Loads

Asmentioned in Section 5.1.1 the structure of an aircraft must be designed for a large variety of

maneuvers. For each of those maneuvers the externally applied loads (e.g. aerodynamic loads)

must be known accurately. However, it is difficult to determine exactly these applied loads

because of the complexity of the phenomena involved (e.g. flow separation), the complexity of

the structure (e.g. wing–fuselage interaction) and the limitations in computational power

available. Typically, some approximations are necessary in the computer simulation and it is

not uncommon to introduce safety factors to provide a degree of conservatism in determining

the applied loads. This is one of the reasons for the use of the 1.5 multiplicative factor between

limit and ultimate load. The structure is not designed to the highest expected load during its

service life, which is called the limit load, but to that load multiplied by a safety factor of 1.5,

which is the ultimate load.

5.1.3.2 Variability in Usage

Even if the applied loads were accurately known for a certain maneuver, there is uncertainty in

practice in performing the maneuver. Nominally the same maneuver (e.g. 3g turn) will have

differences in the transient loads exerted on the aircraft from one operator to the next. For this

reason, each maneuver is simulated many times while varying different parameters (rate of

control action for example) but staying within the parameters defining the maneuver, and the

peak load(s) calculated during the simulation are recorded. Then, the loads corresponding to

this maneuver are selected so as to cover most loads recorded (for example, the 95th percentile

may be selected). This process is shown schematically in Figure 5.7.

Depending on the maneuver, there are, in general more than one load that may be of interest,

corresponding to different load types or load directions and different times during the

maneuver, such as maximum power, maximum or minimum control stick input, etc. The

situation shown in Figure 5.7 is simplified in that it isolates one load type and shows one

maximum load of interest, the peak load recorded during the simulation. Each of the peak loads

can be plotted in a frequency plot as shown at the bottom of the figure. Standard statistical

methods are then used to determine the percentile of interest. Note that the statistical

distribution of the peak load is not necessarily a normal distribution and the one shown in

Figure 5.7 is just an example.

5.1.3.3 Material Scatter

The strength of the material used in fabricating a specific design is not a single well-defined

number. Inherent variability in the microstructure of the material, material variability from one

material batch to another, fluctuations in the fabrication method (e.g. curing cycle), variations

in geometry within tolerances (e.g. thickness variation within the same specimen) lead to a

range of strength values when the same nominal geometry and layup are tested. This variability

is shown for typical unidirectional graphite/epoxy in tension and compression in Figure 5.8.

A design must account for this variation and protect against situations where the strength of

the material used may be at the low end of the corresponding statistical strength distribution.

For this purpose, specific statistically meaningful values are selected that are guaranteed to be
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Figure 5.7 Selection of applied load (95th percentile used here as an example) to be used in designing

for a specific maneuver

Figure 5.8 Typical ranges for tension and compression strength values for 0� unidirectional graphite/
epoxy
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lower than most of the strength population. The two most commonly used values are the

B-Basis and the A-Basis strength values [2]. The A-Basis value is the one percentile of

the population: 99% of the tests performed will have strength greater than or equal to the

A-Basis value. The B-Basis value is the tenth percentile of the population: 90% of the tests

performed will have strength greater than or equal to the B-Basis value.

In general, the A-Basis value is used with single load path primary structure, where failure

may lead to loss of structural integrity of a component. The B-Basis is used with secondary

structure or structure with multiple load paths, where loss of one load path does not lead to loss

of structural integrity of the component. The A- and B-Basis values are calculated on the basis

of statistical methods accounting for batch-to-batch variation, the type of statistical strength

distribution, and the number of data points [2, 3].

Stiffness has a similar variability to that of strength. However, one should be careful in using

lowpercentile values for stiffness because theymay not represent a conservative scenario. If the

material used in a structure has stiffness at the low end of the stiffness statistical distribution,

this means that surrounding structure, being stiffer will absorb more load. This would require

appropriate adjustment of applied loads and it opens up a series of scenarios that may or may

not be realistic. Instead, using the average or mean stiffness everywhere in the structure would

not unduly transfer load from one part to its neighbors and is more representative. So stiffness-

sensitive calculations such as buckling do not, usually, require the lowest stiffness values (B- or

A-Basis) but the mean values.

5.1.4 Environmental Effects

Composites are susceptible to environmental effects. In general, as the temperature and/or the

moisture content increase beyond room temperature ambient conditions, the strength and

stiffness properties degrade. Also, at temperatures lower than room temperature, most strength

properties are also lower than at room temperature. An example for a typical graphite/epoxy

material is shown in Figure 5.9.
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Figure 5.9 Variation of tension and compression strength as a function of temperature and moisture

content
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Two sets of curves are shown in Figure 5.9. The continuous lines correspond to the ‘dry’ or

ambient condition. The exposure of the specimens to moisture has been minimal. The dashed

lines correspond to the wet condition where the specimens are fully saturated with moisture.

Increasing the moisture level decreases the strength. Increasing the temperature beyond room

temperature decreases the strength. Depending on the property and thematerial, decreasing the

temperature below room temperature may increase or decrease the strength. Typically, a

decrease is observed, as shown in Figure 5.9.

Given the typeofbehavior shown inFigure5.9, complete characterizationof amaterialwould

requireknowledgeof its propertiesover theentire rangeof anticipated temperatureandmoisture

environments during service. In general this is accomplished by doing tests at representative

conditions that identifyextremepointsof the trendsand interpolating inbetween.Thenumberof

such key conditions depends on material loading and application (e.g. civilian versus military

application). The minimum number is three. These are: (1) the cold temperature (CT in

Figure 5.9) condition (usually CTA for cold temperature ambient); (2) the room temperature

(RT) condition which is split into RTA, the room temperature ambient, and RTW, the room

temperature wet condition where the specimens are fully saturated; and (3) the elevated

temperature (ET) condition which is split into ETA (elevated temperature ambient) and ETW

(elevated temperature wet) condition.

For design purposes, themost conservative strength properties across all conditions are used.

It is important to keep in mind, however, that when trying to match specific test results, the

properties corresponding to the test environment and material condition at the time during test

should be used. Stiffness also shows a similar sensitivity to environment, and it is customary to

perform preliminary design using the lowest stiffness across environments.

5.1.5 Effect of Damage

Composites exhibit notch sensitivity. A notch can be any form of damage, such as impact or

crack or cutout. The strength in the presence of damage is significantly lower and varies with

the damage size and type. Typical trends of compression strength in the presence of damage are

shown in Figure 5.10, adjusted from reference [4].
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Figure 5.10 Sensitivity of compression strength of composites to various types of damage
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While the trends shown in Figure 5.10 are representative of the behavior ofmost composites,

the specific values shown are only applicable to specific layups and materials. For other

materials and/or layups, specific analysis supported by tests must be carried out for each type of

damage in order to accurately quantify the residual strength in the presence of damage.

The types of damage shown in Figure 5.10 are the most common types encountered in

practice. Of those, the most critical is impact damage. Impact damage is caused by a large

variety of sources, ranging from tool drops and foot traffic to impact with large objects (e.g.

luggage) and hail damage.

This strength reduction in the presence of damage must be taken into account in the design

process. The approach is dependent on the inspection method used and its reliability. First, the

type and size of damage or flaw that the chosen inspection method can find consistently and

reliably must be determined. Then, the threshold of detectability is defined as the damage size

above which all damage can be found by the inspection method with a certain confidence (e.g.

99% of the time). This threshold of detectability divides the damage that may occur during

manufacturing or service in two categories: (a) nondetectable damage; and (b) detectable

damage. These are then tied to specific load levels the structure must withstand. As already

mentioned in Section 5.1.3 the two main load levels of interest in structural design of airframe

structures are the limit and ultimate load. The limit load is the highest load the structure is ever

expected to encounter during service. The ultimate load is the limit load multiplied by 1.5.

A structure with damage below the threshold of detectability of the selected inspection

methodmust be capable ofwithstanding ultimate loadwithout failure. A structurewith damage

above the threshold of detectability level of the selected inspection method must be capable of

withstanding limit load without failure.

In practice, the most common inspection method used is visual inspection. This is because it

combines low cost with ease of implementation. This does not mean that more accurate and

more reliable inspection techniques such as ultrasound, X-rays, etc. are not used at different

times in the life of an aircraft. Usually, however, these methods are applied during planned

detailed inspections at the depot level where an aircraft is taken out of service and specially

trained personnel with appropriate equipment conduct a thorough inspection of the structure.

On a more regular basis, the structure is inspected visually.

With visual inspection the preferredmethod of inspection during service today, the structural

requirements in the presence of damage become:

. structure with damage up to barely visible impact damage (BVID) must withstand ultimate

load without failure
. structure with damage greater than BVID, i.e. structure with visible damage (VD) must

withstand limit load without failure

The VD is usually defined as damage that is clearly visible from a distance of 1.5 meters

under ambient light conditions. Then BVID is damage just below the VD. It is recognized that

the definition of BVID is subjective and dependent on the inspector and his/her experience

level. For this reason attempts to more accurately define BVID have been made by tying the

BVID to a specific indentation size. Usually, 1mm deep indentation is considered to

correspond to BVID.

It should be emphasized that besides limit and ultimate load, other load levelsmay be used in

practice, albeit less frequently. One example is the ‘safe return to base load’, which is usually a
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fraction of the limit load (typically 80%) and limits the structure to loads that will not cause

catastrophic failure in the presence of larger damage levels such as those caused by bird or

lightning strike, etc.

Inviewof the experimentallymeasured strength reductions shown in Figure 5.10, the design/

analysis process must use analytical methods that allow determination of the reduced strength

in the presence of various types of damage. Usually, a conservative approach is selected and the

structure is designed for theworst type of damage (impact) since this will cover all other cases.

Due to the complexity of the analysis for determining the amount of damage caused by a

specific threat and the subsequent complexity of the analysis for determining the strength of the

structure in the presence of damage, simplified methods are commonly used for preliminary

design [5–11].

A conservative approach is usually followed that avoids computationally intensive analysis

methods that model damage creation and its evolution under load. The method consists of

designing the structure to meet (a) limit load in the presence of a 6mm diameter hole (VD)

and (b) ultimate load in the presence of low-speed impact damage (BVID). It is important to

note, however, that this approach has its limitations because it is not applicable to all threat

scenarios. For example, it can be extremely conservative in cases of thick composite structures.

The typical damage scenarios based on common threats during manufacturing and service

should not include a 6mm through hole for example because it is a very unlikely event.

Designing for damagemust be donewith care on a case-by-case basis after careful examination

of threats and requirements. And, most importantly, it should be supported by tests that

verify the analysis method and its applicability to the loading, layups, and configurations

under consideration.

5.1.6 Design Values and Allowables

The discussion in Sections 5.1.3–5.1.55.2.4 indicated that the strength of a composite structure

takes a range of values as a result of material variability, environmental effects, and sensitivity

to damage. As a result, the strength value used in a design must be such that if the ‘worst of all

situations’ is combined in service, the resulting structure will still meet the load requirements

without failure. The ‘worst of all situations’ combines material at the low end of the strength

distribution (Figure 5.8) operating at the worst environment (Figure 5.9) with the worst type of

damage present (Figure 5.10). Therefore, sufficiently conservative strength values must be

used. A procedure that leads to such design values for strength is shown schematically in

Figure 5.11.

The mean RTA strength at the far right of the figure is reduced by a ‘knockdown’ factor

representing the worst environment for the loading and material selected. This is further

reduced by another factor that represents the worst type of damage (usually impact

damage). This value is treated as the mean with the effect of damage and environment

already included. Around this mean value the statistical distribution representing the

material scatter for the property in question (tension, compression, shear, etc.) is created.

The design value is determined as a value to the left end of the statistical distribution (e.g.

A- or B-Basis value as described in Section 5.1.3), which is expected to be lower than a

certain high percentage (90% for B-Basis and 99% for A-Basis) of all test results for the

property of interest at the most degrading environment and with the highest permissible

amount of damage.
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This approach can be done rigorously by determining the worst type of damage, which

usually is BVID, and the worst type of environment, which, usually, is ETW for the strength

property of interest. Then, a sufficient number of specimens with this damage is conditioned in

that environment and strength tests are carried out. The number of specimens is selected so

expected batch-to-batch variation is reproduced and the results give sufficient statistical

confidence in the conclusions. Statistical analysis methods [3] are then used to determine

the design values which, when they are statistically significant values are called allowables.

To save time and reduce cost during preliminary design is is customary to test a limited

number of specimens at various environments to obtain a percentage reduction between mean

strengths at various environments. This is done with and without damage to determine the

reduction due to the presence of damage at different environments. Finally, a sufficient number

of tests (six per batch) from at least three batches in one of the environments gives the material

scatter. This gives design values that can be used in preliminary design.

An example follows. Assume that the compression failure strain for undamaged quasi-

isotropic layup of a material at RTA environment is 11000microstrain (ms). And that tests have
shown that the environment with the biggest reduction in strength is ETWwith a mean failure

strain equal to 80%of the RTAmean strain. Also, tests at RTAhave shown that themean failure

strainwithBVID is 65%of themeanRTA strain. Finally, tests of undamaged specimens at RTA

have shown a B-Basis value that is 80% of the mean RTAvalue (this corresponds to a normal

distribution with coefficient of variation, i.e. standard deviation divided by the mean, of about

11%). Following the procedure described above and shown in Figure 5.11, a design value that

can be used for preliminary design is

edes ¼ 11000

mean

RTA

� 0:8

worst
envir:
ðETWÞ

� 0:65

BVID
effect

� 0:8

mat’l
scatter
effect

¼ 4576ms ð5:1Þ

mean RTA 
undamaged

mean with “worst”
environmental 
effects undamaged

mean with “worst”
environmental effects 
and worst damage

B-Basis
design value

A-Basis
design value

5-20%
Depending on 
material and 
property

10-35% 
depending on 
material and 
property

material 
scatter

Figure5.11 Determination of design strength values accounting for effects of damage, environment and

material scatter
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It should be noted that this corresponds to a B-Basis value with environment and damage

effects included and should, therefore, be used in situations where B-Basis is applicable (see

Section 5.1.3). It is also of interest that this value of approximately 4500ms is typical of many

(first-generation) thermoset materials and layups that do not depart significantly from quasi-

isotropic, and has been used widely for preliminary sizing of structure. Of course, once designs

are almost finalized and most likely layups have been selected, additional testing for spot-

checking the validity of this value and more rigorous statistical analysis are necessary to verify

or update this value.

Equation (5.1) demonstrates that the design values for composite materials may be less than

half the RTA mean undamaged values. This is an important consideration in anticipating the

weight savings that can result from use of composites because the significant reduction in

strength offsets a lot of the weight savings one would expect on the basis of density difference

alone. A simple comparison between aluminum and graphite/epoxy (Gr/E) composites is

shown in Table 5.3. This is a simple comparison to show the relative differences. For aluminum

the yield strain is used as the failure strain. The failure stress (yield stress in the case of

aluminum) is approximated inTable 5.3 as the product of theYoung’smodulus times the failure

strain. The failure strain and stress for the second Gr/E layup (last column) are approximate.

It can be seen from Table 5.3 that the strength of aluminum can be significantly higher than

that of Gr/E. This means that in order to carry the same load with Gr/E, as with aluminum, one

has to use higher thickness. For a plate-type application, the weight is calculated as

W ¼ rt Areað Þ

where r is the density, t the thickness and Area the planform area of the plate.

If the structure fails exactly when the required applied load is reached, the thickness needed

is calculated from

sfail ¼ Fa

wt
) t ¼ Fa

wsfail

where Fa is the applied load, sfail is the failure strength of the material andw is the width of the

cross section over which Fa acts.

Using this expression for the thickness t to substitute in the weight expression,

W ¼ r
Fa

wsfail
ðAreaÞ

Table 5.3 Comparison of compression strength values (aluminum versus Gr/E)

Aluminum

(7075-T6)

Quasi-isotropic

Gr/E

Gr/E layup used in

compression(1)

Density (kg/m3) 2777 1611 1611

Young’s modulus (GPa) 68.9 48.2 71.7

Compressive (yield) failure strain (ms) 5700 4576 �4500

Compressive failure stress (MPa) 392.7 220.8 �322.6

(1) [45/–45/0/0/90/0/0/–45/45]
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Then, the ratio of the weight WGr of a graphite/epoxy panel to that of aluminum WAl for

the same applied load Fa and the same planform area, can be found after some rearranging

to be:

WGr

WAl

¼
r

sfail

� �
Gr

r
sfail

� �
Al

Using the values from Table 5.3 gives the weight ratios in Table 5.4.

As can be seen from Table 5.4, the quasi-isotropic composite design (column 2) is

approximately the same weight as the aluminum counterpart, in fact it is 3% heavier. The

more tailored ½45=� 45=02=90�s layup is approximately 30% lighter than the aluminum

counterpart. This case serves as an example that shows the advantages of tailoring designs

for maximum use of composite capabilities instead of using quasi-isotropic layups that lead to

so-called ‘black aluminum’ designs.

5.1.7 Additional Considerations of the Design Process

The analysis methods used are always a tradeoff between accuracy and cost and ease of

use. In a preliminary design stage where many candidate designs must be traded quickly,

especially if formal optimization is introduced early in the design process, using

conservative ‘reasonably accurate’ methods is preferred over very accurate computation-

ally intensive approaches. This allows the examination of many more options than would

not be possible with more detailed methods. The term ‘reasonably accurate’ is, of course,

subjective and, usually, is tied to how conservative one can afford to be before the design

weight starts increasing beyond acceptable levels. Often, approximate analytical methods

are modified based on test results, and adjusted accordingly to give accurate predictions

over a limited range of applicability. In addition, test methods are often used to

circumvent problems with analytical modeling of structural details present in the

structure, the detailed modeling of which would make the entire analysis very expensive.

Two such examples are: (a) modeling of fasteners in bolted structures; and (b) knowing

the exact type of boundary conditions provided by the edge supports or intermediate

structure present.

Typical airframe structures have a large variety of failure modes. Which failure mode starts

failure andwhich one eventually leads to catastrophic failure of the structure is a function of the

material, layup, and geometry used. Changing any of these can alter the failure mode scenario.

Table 5.4 Weight comparison for plate application based on strength

Quasi-isotropic design/Al ½45=� 45=02=90�s=Al
WGr

WAl

1.03 0.706

Note: The overbar over the 90� ply in the stacking sequence in the third column

denotes a ply that does not repeat symmetrically with respect to mid-plane, i.e. 90� is
the mid-ply in this case.
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One example is sandwich structure where each of the skins may fail in: (1) material strength,

(2) wrinkling (symmetric or unsymmetric), (3) dimpling or intracellular buckling, (4) shear

crimping (precipitated by core failure). In addition, the adhesive connecting core and

facesheets may fail in (5) adhesive strength (tension, compression, or shear), or the core

itself may fail in (6) core strength (tension, compression, or shear), and finally the entire

sandwichmay fail in (7) sandwich buckling. And these do not include additional failuremodes

specific to sandwich rampdown if there is one present. See Chapter 10 for a detailed discussion

of sandwich structures.

In general, a priori knowledge of the possible failure modes is necessary for a good design.

Different failure modes may interact, which makes their analytical simulation without the use

of extensive very detailed analysis tools, such as finite elements, very difficult. This is a case

where tests are used to adjust the simpler analysismethods or suggest how the existingmethods

must be modified to more accurately match test results.

The most efficient design is the one that just fails when the applied design load (ultimate or

limit depending on the requirement) is reached. Trying to implement this during preliminary

design may not be advisable since the analysis methods may not be sufficiently accurate, test

results with allowables may not be completed, loads may increase, etc. So there may be a

difference between the failure load of the design and the applied load. The relative

magnitudes of failure load and applied loads are related through the loading index, the

reserve factor, or the margin of safety. All three refer to the same thing in a slightly different

way. The loading index is the ratio of the applied load to the failure load. If less than one,

there is no failure. The reserve factor is the inverse of the loading index and equals the ratio of

the failure load to the applied load. If greater than one it implies the structure does not fail and

the applied load must be increased by a factor equal to the reserve factor for failure to occur.

Finally, the margin of safety is the reserve factor minus one. Expressed in percent, if it is

positive it implies no failure and denotes by what percentage the applied load must be

increased to cause failure. If negative, it implies failure and denotes by what percentage the

applied load must be decreased to prevent failure. It is customary to maintain positive (but not

very high) margins of safety during preliminary design and, later on, as the design is

finalized, detailed analysis supported by testing increases confidence in the design, and the

applied loads are ‘frozen’, can be driven as close to zero as possible by fine-tuning the design

to increase its efficiency.

5.2 Governing Equations

The starting point are the governing equations for a composite plate. These are: (a) the

equilibrium equations; (b) the stress–strain equations; and (c) the strain–displacement equa-

tions. Versions of the stress–strain and strain–displacement equations have been used already

in Sections 3.2 and 3.3. The reader is referred to the literature for detailed derivation of these

equations [12–14]. Only the final form of these equations is given here.

5.2.1 Equilibrium Equations

With reference to Figure 5.12, the equilibrium equations (no body forces) have the form,
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or in terms of force and moment resultants,
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Figure 5.12 Coordinate system and force and moment sign convention

Composite Structural Components and Mathematical Formulation 83



 

5.2.2 Stress–Strain Equations

In terms of stresses, the stress–strain equations for an orthotropicmaterial can bewritten as (see

also Equation 3.5),

sx

sy

sz

tyz

txz

txy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

E11 E12 E13 0 0 E16
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0 0 0 E44 E45 0

0 0 0 E45 E55 0

E16 E26 E36 0 0 E66

2
66666666664

3
77777777775

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð5:4Þ

Note that, for convenience, the subscripts used with the stiffnesses in Equation (5.4) are 1–6

with 1,2 and 3 coinciding with x, y, and z and 4, 5, and 6 used for the shear moduli as shown in

Equation (5.4).

In terms of force and moment resultants, the stress–strain equations can be written as,
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Mxy
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where Aij are the elements of the membrane stiffness matrix for a laminate, Bij are the elements

of the membrane–bending coupling matrix for a laminate, and Dij are the elements of the

bending matrix of the laminate (see also Chapter 3).

Thevectormultiplying the stiffnessmatrix in the right-hand side ofEquation (5.5) consists of

the midplane strains and curvatures of the laminate. The curvatures kx, ky, and kxy are given by

kx ¼ � @2w

@x2

ky ¼ � @2w

@y2

kxy ¼ � 2
@2w

@x@y

ð5:6Þ

The strains at any through-the-thickness location of a laminate are obtained assuming the

standard linear variation with the out-of-plane coordinate z as

ex ¼ exo þ zkx
ey ¼ eyo þ zky
gxy ¼ gxyo þ zkxy

ð5:7Þ
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5.2.3 Strain-Displacement Equations

For small displacements and rotations, the equations relating midplane strains to

displacements are,

exo ¼ @u

@x

eyo ¼ @v

@y

gxyo ¼
@u

@y
þ @v

@x

ð5:8Þ

Similarly, the out-of-plane strains are given by,

ez ¼ @w

@z

gyz ¼
@v

@z
þ @w

@y

gxz ¼
@u

@z
þ @w

@x

ð5:9Þ

Since the three midplane strains in Equation (5.8) are expressed in terms of only two

displacements, a strain compatibility condition can be derived by eliminating the displace-

ments fromEquations (5.8). Differentiate the first of (5.8) twicewith respect to y and the second

of (5.8) twice with respect to x. Finally differentiate the last of (5.8) once with respect to x and

once with respect to y. Combining the results leads to

@2exo
@y2

þ @2eyo
@x2

� @2gxyo
@x@y

¼ 0 ð5:10Þ

Similarly, two more compatibility relations can be obtained by combining corresponding

equations from (5.8) and (5.9) or using cyclic symmetry:

@2eyo
@z2

þ @2ez
@y2

� @2gyz
@y@z

¼ 0 ð5:11Þ

@2ez
@x2

þ @2exo
@z2

� @2gxz
@x@z

¼ 0 ð5:12Þ

Depending on which quantities are used as variables, equations (5.2)–(5.12) form a system

of equations in these unknown variables. For example, if stresses, strains, and displacements

are used as unknowns, equations (5.2), (5.4), (5.8) and (5.9) form a systemof 15 equations in the

15 unknowns: sx, sy, sz, tyz, txz, txy, exo, eyo, ez, gyz, gxz, gxyo, u, v, andw. Alternatively, for a plate
problem, if forces, moments, strains and displacements are used, Equations (5.3), (5.5), (5.6)
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and (5.8) form a system of 17 equations in the 17 unknowns,Nx, Ny, Nxy,Mx,My,Mxy, Qx, Qy, exo,
eyo, gxyo, kx, ky, kxy, u, v, and w.

These systems of equations can be reduced all the way to one equation in some cases, by

eliminating appropriate variables according to the needs of specific problems. Some of these

reductions will be shown in later chapters.

5.2.4 von Karman Anisotropic Plate Equations for Large Deflections

The case of large deflections merits special attention since they become important in some

problems such as post-buckling of composite plates. The von Karman equations for large

deflections are derived in this section. Consider the case of a plate undergoing large deflections

with distributed loads px, py, and pz (units of force/area). The basic assumptions that: (a) the out-

of-plane stress sz is negligible compared with the in-plane stresses; and (b) plane sections

remain plane and normal to the midplane after deformation (leading to zero out of plane shear

strains gyz and gxz) are still valid. To keep the resulting equations relatively simple (and still

covering a wide variety of applications) it is also assumed that: (a) the laminate is symmetric

(coupling matrix B¼ 0); (b) the coupling termsD16 andD26 terms of the bending matrixD are

zero; and (c) the laminate is balanced (shearing–stretching coupling termsA16¼A26¼ 0). The

deformed and undeformed state of a plate element dx in the xz plane is shown in Figure 5.13.

With reference to Figure 5.13 the coordinates of any point A0on the left edge of element dx,

are given by:

A0
x ¼ xo þ u� z

@w

@x

A0
z ¼ wþ z

deformed

A

undeformed 

B’

A’

xo B

x
w

x
w

dx

z

x

u

x
w

x
w

x
wdx

w

Figure 5.13 Deformation pattern for a plate element dx in the xz plane
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The x coordinate of any point B0on the right edge of element dx is given by a Taylor series

expansion (truncated after the second term) of the coordinate at the left end shifted by the length

of the element dx:

B0
x ¼ xo þ u� z

@w

@x
þ @

@x
xo þ u� z

@w

@x

� �
dxþ dx ¼ xo þ u� z

@w

@x
þ @

@x
u� z

@w

@x

� �
dxþ dx

The z coordinate of any point B0 on the right edge of element dx is given by

B0
z ¼ wþ dx

@w

@x
þ z

The x and z components of the deformed element A0B0 are then given by

A0B0
x ¼ B0

x �A0
x ¼ dxþ @

@x
u� z

@w

@x

2
4

3
5dx

A0B0
z ¼ B0

z �A0
z ¼ @w

@x
dx

Therefore, the length of the deformed element A0B0 is given by

A0B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0B0

xð Þ2 þ A0B0
zð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dxþ

�
@u

@x
� z

@2w

@x2

�
dx

�2

þ
�
@w

@x

�2

dx2

vuut

¼ dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
@u

@x
� z

@2w

@x2

�2

þ 2

�
@u

@x
� z

@2w

@x2

�
þ
�
@w

@x

�2
vuut

The second term under the square root is small compared with the remaining terms and is

neglected. The remaining expression is expanded using the binomial theorem:

aþ bð Þr ¼ ar þ rar� 1bþ . . .

and letting a¼ 1 in the expression for A0B0 and keeping only leading terms:

A0B0 ¼ 1þ 1

2

�
2

�
@u

@x
� z

@2w

@x2

�
þ
�
@w

@x

�2�8<
:

9=
;dx )

A0B0 ¼ 1þ @u

@x
� z

@2w

@x2
þ 1

2

�
@w

@x

�2
2
4

3
5dx

3

Composite Structural Components and Mathematical Formulation 87



 

Then, the axial strain ex is given by

ex ¼ A0B0 �AB

AB
¼

1þ @u

@x
� z

@2w

@x2
þ 1

2

@w

@x

� �2
" #

dx� dx

dx
¼ @u

@x
� z

@2w

@x2
þ 1

2

@w

@x

� �2

Using now the first of Equations (5.7) and (5.6), and noting that in this case z ! z

ex ¼ exo þ z � @2w

@x2

� �

Comparing the two expressions for ex it follows that,

exo ¼ @u

@x
þ 1

2

@w

@x

� �2

ð5:13aÞ

which is a nonlinear strain displacement equation because of the square of the slope @w/@x.
In a similar fashion, it can be shown that the other two midplane strains are given by:

eyo ¼ @v

@y
þ 1

2

�
@w

@y

�2

gxyo ¼
@u

@y
þ @v

@x
þ
�
@w

@x

��
@w

@y

� ð5:13b; cÞ

The curvatures kx, ky, and kxy are still given by Equations (5.6).

Now the first two of Equations (5.3), which represent force equilibrium along the x and y

axes, are the same as before, with the addition of the distributed loads px and py:

@Nx

@x
þ @Nxy

@y
þ px ¼ 0

@Nxy

@x
þ @Ny

@y
þ py ¼ 0

ð5:3a; bÞ

For force equilibrium along the z axis, the situation is as shown in Figure 5.14.

Angles are sufficiently small so that

tanf � f
sinf � f
cosf � 1

With j¼ @w/@x or @w/@y (respectively), summation of forces in the z direction gives

�Qxdyþ
�
Qx þ @Qx

@x
dx

�
dy�Qydxþ

�
Qyþ @Qy

@y
dy

�
dx�Nx

@w

@x
dy

þ
�
Nx

@w

@x
þ @

@x

�
Nx

@w

@x

�
dx

�
dy�Ny

@w

@y
dx

(eq continued in next page)
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þ
�
Ny

@w

@y
þ @

@y

�
Ny

@w

@y

�
dy

�
dx�Nxy

@w

@x
dx

þ
�
Nxy

@w

@x
þ @

@y

�
Nxy

@w

@x

�
dy

�
dxþNxy

@w

@y
dy

þ
�
Nxy

@w

@y
þ @

@x

�
Nxy

@w

@y

�
dx

�
dyþ pzdxdy ¼ 0

Cancelling and collecting terms,

@Qx

@x
þ @Qy

@y
þNx

@2w

@x2
þ 2Nxy

@2w

@x@y
þNy

@2w

@y2
þ

@w

@x

�
@Nx

@x
þ @Nxy

@y

�
þ @w

@y

�
@Nxy

@x
þ @Ny

@y

�
þ pz ¼ 0

But, from Equations (5.3a) and (5.3b) the quantities in parentheses in the equation above are

equal to �px and �py respectively. Substituting leads to the nonlinear equation:

@Qx

@x
þ @Qy

@y
þNx

@2w

@x2
þ 2Nxy

@2w

@x@y
þNy

@2w

@y2
� px

@w

@x
� py

@w

@y
þ pz ¼ 0 ð5:14Þ

The moment equilibrium equations (5.3d) and (5.3e) are the same as before. Equations

(5.3a), (5.3b), (5.3d), (5.3e), (5.14), (5.13a–c), (5.5), and (5.6) form the new nonlinear system

of 17 equations in the 17 unknownsNx, Ny, Nxy, Mx,My,Mxy, Qx, Qy, exo, eyo, gxyo, kx, ky, kxy, u, v,
and w. The nonlinear equations are the three strain–displacement equations (5.13a–c) and the

force equilibrium equation (5.14).

Nx

Qx

px
Nxy�

pz

dx

∂
∂

∂
∂

∂
∂

x
QQ x

x

dx
x

NN x
x

x
w

dx

thickness�perpendicular�to�
the�page�=�dy�

Figure 5.14 Force equilibrium of plate element in x and z directions
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In addition to these equations, following the same procedure as for Equation (5.10), the strain

compatibility condition can be shown to give the nonlinear equation:

@2exo
@y2

þ @2eyo
@x2

� @2gxyo
@x@y

¼ @2w

@x@y

� �2

� @2w

@x2
@2w

@y2
ð5:10aÞ

The 17 equations can be reduced to two equations as follows: first, use Equations (5.3d),

(5.3e) to substitute in Equation (5.14). This gives

@2Mx

@x2
þ2

@2Mxy

@x@y
þ @2My

@y2
þNx

@2w

@x2
þ2Nxy

@2w

@x@y
þNy

@2w

@y2
�px

@w

@x
�py

@w

@y
þpz ¼ 0 ð5:15Þ

Then, use the moment–curvature relations from (5.5) and recall that Bij¼D16¼D26¼ 0:

Mx ¼ �D11

@2w

@x2
�D12

@2w

@y2

My ¼ �D12

@2w

@x2
�D22

@2w

@y2

Mxy ¼ � 2D66

@2w

@x@y

to substitute in Equation (5.15):

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4

¼ Nx

@2w

@x2
þ 2Nxy

@2w

@x@y
þNy

@2w

@y2
� px

@w

@x
� py

@w

@y
þ pz

ð5:16Þ

Equation (5.16) is the first von Karman equation, describing the bending behavior of the

plate (left-hand side) and how it couples with stretching (right-hand side). As can be seen from

the first three terms in the right-hand side, it is nonlinear.

For the second von Karman equation, the Airy stress function F is introduced so that the

equilibrium equations (5.3a) and (5.3b) are satisfied:

Nx ¼ @2F

@y2
þV

Ny ¼ @2F

@x2
þV

Nxy ¼ � @2F

@x@y

ð5:17Þ

with V the potential function for the distributed loads px and py,
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px ¼ � @V

@x

py ¼ � @V

@y

ð5:18Þ

From Equation (5.5), the in-plane portion

Nx ¼ A11exo þA12eyo
Ny ¼ A12exo þA22eyo
Nxy ¼ A66gxyo

can be solved for the midplane strains,

exo ¼ A22

A11A22 �A12
2
Nx � A12

A11A22 �A12
2
Ny

eyo ¼ � A12

A11A22 �A12
2
Nx þ A11

A11A22 �A12
2
Ny

gxyo ¼
1

A66

Nxy

ð5:19Þ

which, in turn, can be substituted in the strain compatibility relation (5.10a) to give,

1

A11A22 �A12
2

A22

@2Nx

@y2
�A12

@2Ny

@y2
þA11

@2Ny

@x2
�A12

@2Nx

@x2

� �

� 1

A66

@2Nxy

@x@y
¼ @2w

@x@y

� �2

� @2w

@x2
@2w

@y2

Now (5.17) is used to express Nx, Ny, and Nxy, in terms of F and V:

1

A11A22�A12
2

 
A22

@4F

@y4
�2A12

@4F

@x2@y2
þA11

@4F

@x4
þ A22�A12ð Þ@

2V

@y2
þ A11�A12ð Þ@

2V

@x2

!
þ

1

A66

@4F

@x2@y2
¼
 

@2w

@x@y

!2

� @2w

@x2
@2w

@y2
ð5:20Þ

This is the second von Karman equation, relating the membrane behavior of the plate (left-

hand side) with the out-of-plane curvatures (right-hand side). The terms in the right-hand side

are nonlinear.

5.3 Reductions of Governing Equations: Applications to Specific
Problems

This section shows two examples where the governing equations are solved exactly and the

results are used in the design of specific applications.
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5.3.1 Composite Plate Under Localized In-Plane Load [15]

The situation is shown in Figure 5.15. In practice, besides the obvious case where an in-plane

point load is applied on a plate, this case arises when a stiffener is terminated. This happens

when the axial load applied to a stiffened panel is reduced to the point that a monolithic panel

may be sufficient to take the load, or in cases with moderate loads where there is not enough

room to accommodate the stiffeners.

The situation shown in Figure 5.15 represents the load from a single stiffener introduced in a

rectangular panel and reacted by a uniform load at the other end. It is assumed that the stiffener

spacing is such that there is no interaction between stiffeners (which covers most cases of

realistic stiffener spacing, which is at least 6 cm). Also, to simplify the derivation, the length of

the panel a is assumed to be sufficiently long that the details of the concentrated load

introduction at one end have died down before the other end is reached. This is also a realistic

assumption since the typical panel length, such as that corresponding to the frame spacing in a

fuselage, is much longer than the distance required for the transient effects to die out.

It is exactly these transients that the designer is required to design for. In the vicinity of the

point of introduction of the concentrated load high normal and shear stresses develop that

converge to their far-field (uniform stress) values fairly quickly. The size of this transition

region both along the x axis and along the y axis defines the size of reinforcement or doubler that

must be added to help transition the local load without failure. Determining the stresses in the

vicinity of the load application will help determine the dimensions ‘� w of the required

reinforcement as shown in Figure 5.16.

In addition to the assumptions already mentioned, the following conditions are imposed:

. Plate is homogeneous and orthotropic

. Layup is symmetric (B matrix¼ 0) and balanced (A16¼A26¼ 0)

. No bending/twisting coupling (D16¼D26¼ 0)

Simplified 
problem to 
be solved

x

y

1
h

b

a

o

Stiffened 
panel

Transitioning 
into flat panel

F

Figure 5.15 Model for a stiffener termination
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Under these assumptions, the stress–strain equations (5.5) can be solved for the midplane

strains to give the relations (5.19). The average stresses through the plate thickness are

given by

sx ¼ Nx

H

sy ¼ Ny

H

txy ¼ Nxy

H

where H is the plate thickness.

Placing these into eqs (5.19) and dropping the subscript o for convenience,

ex ¼ HA22sx �HA12sy
A11A22 �A12

2

ey ¼ HA11sy �HA12sx
A11A22 �A12

2

gxy ¼ H
txy
A66

ð5:21Þ

These expressions for the strains can now be placed into the (linear) strain compatibility

condition (5.10):

A11A22 �A12
2

A66

@2txy
@x@y

¼ A22

@2sx
@y2

�A12

@2sy
@y2

þA11

@2sy
@x2

�A12

@2sx
@x2

ð5:22Þ

Now, for a plane stress problem the out-of-plane stresses sz, txz, and tyz are zero. Then, the
stress equilibrium condition (5.2a) gives,

@2txy
@x@y

¼ � @2sx
@x2

ð5:23Þ

Stresses do not vary appreciably 
from far-field stresses

Stresses vary appreciably from 
far-field stresses

w

Figure 5.16 Doubler dimensions
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Similarly, from (5.2b),

@2sy
@y2

¼ � @2txy
@x@y

ð5:24Þ

which, in view of Equation (5.23), gives

@2sy
@y2

¼ @2sx
@x2

ð5:25Þ

Substituting in (5.22) gives

� A11A22 �A12
2

A66

@2sx
@x2

¼ A22

@2sx
@y2

�A12

@2sx
@x2

þA11

@2sy
@x2

�A12

@2sx
@x2

ð5:26Þ

Now differentiate (5.25) twice with respect to x and (5.26) twice with respect to y to obtain

@2sy
@x2@y2

¼ @2sx
@x4

ð5:27Þ

and

� A11A22 �A12
2

A66

@4sx
@x2@y2

¼ A22

@4sx
@y4

�A12

@4sx
@x2@y2

þA11

@4sy
@x2@y2

�A12

@4sx
@x2@y2

ð5:28Þ

The stress sy can be eliminated from Equation (5.28) with the use of Equation (5.27). Then,

collecting terms gives the governing equation for sx;

@4sx
@x4

þ A11A22 �A12
2

A11A66

� 2
A12

A11

� �
@4sx
@x2@y2

þ A22

A11

@4sx
@y4

¼ 0

or defining

b ¼ A11A22 �A12
2

A11A66

� 2
A12

A11

g ¼ A22

A11

@4sx
@x4

þ b
@4sx
@x2@y2

þ g
@4sx
@y4

¼ 0

ð5:29Þ
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Equation (5.29) must be solved subject to the following boundary conditions:

sxðx ¼ 0Þ ¼ 0 0 � y � b� h

2
and

bþ h

2
� y � b

sxðx ¼ 0Þ ¼ s1 ¼ F

Hh
for

b� h

2
� y � bþ h

2

sxðx ¼ aÞ ¼ so ¼ F

bH

syðy ¼ 0Þ ¼ syðy ¼ bÞ ¼ 0

txyðx ¼ 0Þ ¼ txyðx ¼ aÞ ¼ txyðy ¼ 0Þ ¼ txyðy ¼ bÞ ¼ 0

ð5:30a--eÞ

Conditions (5.30a) and (5.30b) define the applied concentrated load on one end (x¼ 0) of the

plate. The stress sx is zero there except for the narrow region of width h at the center where it

equals F/(Hh). Condition (5.30c) defines the uniform stress applied at the other end of the plate

(at x¼ a). Finally, conditions (5.30d) and (5.30e) state that the transverse stress sy and the shear
stress txy are zero at the corresponding plate edges.

The solution of Equation (5.29) can be obtained using separation of variables [16].

Following this procedure, it is expedient to assume a solution of the form,

sx � fnðxÞcos npy
b

ð5:31Þ

Substituting in the governing equation (5.29), the y dependence cancels out and the

following ordinary differential equation for fn is obtained:

d4fn

dx4
� b

np
b

� �2 d2fn
dx2

þ g
np
b

� �4
fn ¼ 0 ð5:32Þ

From the theory of linear ordinary differential equations with constant coefficients, the

solution to (5.32) is found as

fn ¼ Cefx ð5:33Þ
with

f ¼ 	 1ffiffiffi
2

p np
b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4g

qr
ð5:34Þ

Note that Equation (5.34) implies four different values of j to be used in Equation (5.33)

yielding four different solutions for fn as should be expected from the fourth order differential

equation (5.32). It is also important to note that the quantities under the square roots in

Equation (5.34) can be negative, leading to complex values for j. In such a case the four

different right-hand sides of Equation (5.34) appear in pairs of complex conjugates leading to a

real solution for the stress sx.
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If the real part of j given by Equation (5.34) is positive, the stress sx will increase with

increasing x. And for a long plate (value of a in Fig 5.15 is large) this would lead to unbounded

stresses. So, if the plate is long enough for the effect of the load introduction at x¼ 0 to have

died down, the two solutions for j with positive real parts must be neglected. The remaining

two solutions (with negative real parts) are denoted by j1 and j2 and can be combined with

Equations (5.31) and (5.33)) to give the most general expression for sx as a linear combination

of all the possible solutions (all possible values of n in Equation (5.31):

sx ¼ Ko þ
X1
n¼1

An ef1x þCne
f2x

	 

cos

npy
b

ð5:35Þ

A constant Ko, which is also a solution to Equation (5.29) has been added in Equation (5.35)

to obtain the most general form of the solution. The right-hand side of Equation (5.35) is a

Fourier cosine series.

Now, as mentioned earlier, the out-of-plane stresses sz, txz, tyz are assumed to be zero, which

eliminates the last term in each of the equilibrium equations (5.2a) and (5.2b) and identically

satisfies Equation (5.2c). Then, from Equation (5.2a),

@txy
@y

¼ � @sx
@x

ð5:36Þ

Differentiating Equation (5.35) with respect to x and then integrating the result with respect

to y to substitute in Equation (5.36) leads to

txy ¼ �
X1
n¼1

An f1e
f1x þCnf2e

f2x
	 
 b

np
sin

npy
b

þG1ðzÞ ð5:37Þ

Applying now the boundary condition (5.30e) at y¼ 0 eads to the following condition

txy y ¼ 0ð Þ ¼ 0 ) G1ðzÞ ¼ 0

Then, (5.30e) at x¼ 0 leads to

txy x ¼ 0ð Þ ¼ 0 ) f1 þCnf2 ¼ 0 ) Cn ¼ � f1

f2

Note that the condition (5.30e) at x¼ a is satisfied as long as a is large enough and the

exponentials in Equation (5.37) have died out. Incorporating these results in Equation (5.37),

txy is obtained as:

txy ¼ �
X1
n¼1

f1An ef1x � ef2x
	 
 b

np
sin

npy
b

The last of the conditions (5.30e) is at y¼ b and it leads to

txyðy ¼ bÞ ¼ 0 ) sin np ¼ 0 ) satisfied for any n
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The final expression for txy is, therefore,

txy ¼ �
X1
n¼1

f1An ef1x � ef2x
	 
 b

2np
sin

2npy
b

ð5:38Þ

Note that 2n is substituted for n; this is needed in order to satisfy (5.30d).

This, in turn implies that Equation (5.35) for sx has the form,

sx ¼ Koþ
X1
n¼1

An ef1x þCne
f2x

	 

cos

2npy
b

ð5:35aÞ

In an analogous manner, sy is determined from (5.2b), with tyz¼ 0

@sy
@y

¼ � @txy
@x

ð5:39Þ

which, combined with (5.38) and condition (5.30d) leads to

sy ¼
X1
n¼1

b

2np

� �2

f1An f1e
f1x �f2e

f2x
� �

1� cos
2npy
b

� �
ð5:40Þ

At this point all unknowns in the stress expressions (5.35a), (5.38), and (5.40) have been

determined except for Ko and An. These are determined as Fourier cosine series coefficients

using conditions (5.30a) and (5.30b). The constant Ko is the average of stress sx at any
x value,

Ko ¼ F

bH
ð5:41Þ

For the An coefficients, multiplying both sides of (5.30a) by cos 2qpy/b and integrating from
0 to b leads to

ðb

0

sxðx ¼ 0Þcos 2qpy
b

dy ¼
ðb

0

Ko þ
X

An ej1x � j1

j2

ej2x

� �
x¼0

cos
2npy
b

� �
cos

2qpy
b

dy

ð5:42Þ

Now sx(x¼ 0) is zero everywhere except at the center of the platewhere it equals the applied

load F divided by the area over which F acts. This is shown in Figure 5.17.

Substituting in Equation (5.42) and carrying out the integrations leads to the final expression

for An:

An ¼ F

hH

f2

f2 �f1

2

np
cosnpsin

nph
b

ð5:43Þ

This completes the determination of the stresses in the plate. It is in closed form and exact

within the assumptions made during the derivation. Since the solution is in terms of infinite
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series, see Equations (5.35), (5.37) and (5.40), some guidelines on selecting the number of

terms afterwhich they can be truncated and still give sufficient accuracy in the results is needed.

Oneway to do that is to evaluate Equation (5.35) at x¼ 0 and compare it with the applied load.

This is shown in Figure 5.18.

The laminate selected in Figure 5.18 has the layup (	45)4 consisting of four plies of plain

weave fabric material each at 45� with the load direction. The geometry and applied loading

information are shown in Figure 5.18. The basic material properties are as follows:

Ex¼Ey¼ 73GPa

Gxy¼ 5.3GPa

nxy¼ 0.05

ply thickness (tply)¼ 0.19mm

It can be seen fromFigure 5.18 that, evenwith 160 terms in the series in Equation (5.35a), the

step function behavior of the applied load is not exactly reproduced. In addition, outside the

region of the applied load, i.e. (b� h)/2< y< (b þ h)/2, the sx stress at x¼ 0 is very small, but

not exactly zero as it should be. More terms would be necessary for even better accuracy. In

what follows, predictions of themethod are comparedwith finite element results (obtainedwith

ANSYS) using n¼ 80.

The axial stress sx as a function of x obtained from Equation (5.35a) is compared with the

finite element prediction in Figure 5.19. Very good agreement between the two methods is

observed. The shear stress txy as a function of y is compared with the finite element results at

x/a¼ 0.0075 in Figure 5.20. Excellent agreement between the twomethods is observed. Finally

the transverse stress sy is comparedwith the finite element predictions in Figure 5.21where the

stress is plotted as a function of y at x/a¼ 0.0075. Again, very good agreement is observed.

It appears from the results in Figures 5.19–5.21 that, even though the applied sx is not exactly
reproduced at x¼ 0 (see Figure 5.18), n¼ 80 gives sufficient accuracy for predicting the in-

plane stresses in this problem. The good agreement of themethodwith the finite element results

gives confidence in its use for the design of reinforcements in composite plates with localized

loads, such as those coming from stiffener terminations shown in Figure 5.15.

x(x=0)

F
/(

H
h)

2

hb
2

hb y=b

Figure 5.17 Applied normal stress sx at one end of the plate
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There are two main issues that need to be addressed. The first is which layup minimizes the

peak stresses that develop in the vicinity of the point-load introduction. It should be noted that

the peak sx stress is F/(Hh) where F is the applied load,H is the laminate thickness and h is the

width over which the concentrated load is applied.

The peak sy and txy stresses are not as obvious and only through methods like the one

presented here can they be calculated and their potentially deleterious effect on panel

performance be mitigated. The second issue is the size (in terms of length ‘ and width w)

(Figure 5.16) of the reinforcement needed to transition the applied concentrated load to the far-

field uniform load without failure. Some results showing how the method can be applied to

specific problems are shown in Figures 5.22–5.24.

The effect of layup on the peak stress sy is shown in Figure 5.22. Only a few representative

layups are used here to show trends. The material used is the same plain weave fabric

mentioned earlier. The geometry is the same as that shown in Figure 5.18.

Of the three layups shown in Figure 5.22, the softest, (	45)4 has the highest peak stress and

is, therefore, to be avoided in such applications. The remaining two layups, the quasi-isotropic

[(	45)/(0/90)]s and the orthotropic (0/90)4 have much lower peak stresses. Also of interest is

the fact that the region overwhich thesy stress is appreciable in they direction ismuch narrower

for the (	45)4 layup than for the [(	45)/(0/90)]s or the (0/90)4 layup. Thismeans that thewidth

Figure 5.18 Applied stress at panel edge (x¼ 0) and approximation as a function of the number of terms

in the series
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Figure 5.19 Axial stress at the center of the panel (y¼ b/2) compared with finite element results (FEM)

-4

-3

-2

-1

0

1

2

3

4

Normalized transverse distance y/b

S
h

ea
r 

st
re

ss
/f

ar
-f

ie
ld

 s
tr

es
s

(±45)4

FEM Prediction

Calculated

x/a

-4

-3

-2

-1

0

1

2

3

4

10.90.80.70.60.50.40.30.20.10

x/a=0.0075

x/ax/a

Figure 5.20 Shear stress as a function of the transverse coordinate y at x/a¼ 0.0075
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w of the reinforcement or doubler needed (see Figure 5.16) must be wider for the last two

layups, extending possibly from y/b¼ 0.3 to y/b¼ 0.7 than for the (	45)4 layupwhere it can be

confined in the region 0.4< y/b< 0.6.

The axial stress sx is shown in Figure 5.23 as a function of distance from the load

introduction point for the three layups (	45)4, [(	45)/(0/90)]s, and (0/90)4. All three layups

start with the same peak value at x¼ 0which is the applied loadF divided by the area (Hh) over
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Figure 5.21 Transverse stress as a function of y at x/a¼ 0.0075
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Figure 5.22 Transverse stress sy as a function of y for different layups (x/a¼ 0.005)
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which it acts. However, the rate of decay to the far-field value is different for each layup. The

(0/90)4 layup has the slowest rate of decay suggesting a longer doubler (length ‘ in Figure 5.16)
is needed with ‘ � 0:5a compared with the other two layups for which a length ‘ � 0:3a
would suffice.

Finally, the shear stress txy is shown in Figure 5.24 for the same three layups. The stress is

shown as a function of the transverse coordinate y at a specific x/a value. Of the three layups,

(	45)4 shows the highest peaks followed by [(	45)/(0/90)]s. For all three layups, the range of y

values over which txy is significant is 0.35< y/b< 0.65. This range gives an idea of thewidthw
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Figure 5.23 Axial stress as a function of distance from load introduction for three different layups
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needed for the doubler. Note that this value is less than the value found by examining the sy
stress in Figure 5.22. This means that the value found in examining Figure 5.22 should be used

as it covers both cases.

The results presented in Figure 5.22–5.24 are only a subset of the cases that should be

examined for a complete assessment of the doubler requirements. Other locations in the panel

should alsobe checked so that the extremevalues and locations of all three stressessx,sy, and txy
canbedetermined so thedoubler characteristics canbedefined.The results inFigures5.22–5.24

giveagood ideaof thebasic trends.Basedon these results, thebasiccharacteristicsof thedoubler

needed from the analysis so far are as follows:

. Axial stresses in (0/90)4 panels decay more slowly (require longer doublers) than (	45)4 or

[(	45)/(0/90)]s panels
. On the other hand, transverse and shear stresses in (	45)4 or [(	45)/(0/90)]s panels are more

critical than in (0/90)4 panels
. Preliminary doubler (reinforcement dimensions): ‘¼ 0.5a for (0/90)4 and 0.3a for (	45)4 or

[(	45)/(0/90)]s panels and w¼ 0.3b for all panels

While the analysis so far is very helpful in giving basic design guidelines, it is by no means

complete. It should be borne in mind that once a doubler is added to the panel, the load

distribution changes and additional iterations are necessary. The previous discussion is a good

starting point for a robust design. Finally, for the specific case of a stiffener termination, the

analysis presented assumed that the concentrated load acts at the midplane of the plate. For a

terminating stiffener, the load in the stiffener acts at the stiffener neutral axis and is, therefore,

offset from the center of the plate. Thismeans that, in addition to the axial load examined here, a

moment equal to the axial load times the offset from the stiffener neutral axis to the plate

midplane should be added.

5.3.2 Composite Plate Under Out-of-Plane Point Load

The situation is shown in Figure 5.25. The plate of dimensions a� b is loaded by avertical force

F. The coordinates of the point where the load is applied are xo and yo. Besides the obvious

application of a point load on a plate, this problem can be used to obtain the basic trends in

structural response of a plate under low-speed impact damage (Figure 5.26).

The plate is assumed to have zero out-of-plane deflectionw all around its boundary (simply

supported). It is also assumed that the plate is symmetric (B matrix¼ 0) and there is no

bending twisting coupling (D16¼D26¼ 0). Finally, the out-of-plane stresses sz, txz, and tyz
are neglected.

The goal is to determine the out-of-plane displacement w of the plate as a function of

location. Since the B matrix of the layup of the plate is zero, the out-of-plain behavior of the

plate decouples from the in-plane behavior. Then, the governing equation is (5.16) with

px¼ py¼ 0 and the nonlinear terms neglected since we are interested in a linear (small

deflections) solution:

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ pz ð5:16aÞ
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The out-of-plane applied load pz in this case can be expressed with the use of delta

functions as

pz ¼ Fdðx� xoÞdðy� yoÞ ð5:44Þ
where

dðx� xoÞ ¼ 1 when x ¼ xo
¼ 0 otherwise

Then, the governing equation is

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ Fdðx� xoÞdðy� yoÞ ð5:45Þ

with Dij the bending stiffness terms for the plate layup.

Since w¼ 0 at the plate boundary, a solution to Equation (5.45) is sought in the form

w ¼
XX

Amnsin
mpx
a

sin
npy
b

ð5:46Þ

with Amn unknown coefficients.

x

y

xo

yo

F

x

y

xo

yo

F

a b

Figure 5.25 Composite plate under point load

Figure 5.26 Low-speed impact modeled as point load
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It can be seen that if Equation (5.46) is placed in ((5.45) the left-hand sidewill contain terms

multiplied by sin (mpx/a)sin (npy/b). In order to proceed, the right-hand side of Equation (5.45)
must also be expanded in a double Fourier series in order to be able to match terms in the left-

and right-hand side. Setting,

Fdðx� xoÞdðy� yoÞ ¼
XX

Bmnsin
mpx
a

sin
npy
b

ð5:47Þ

where Bmn are unknown coefficients, one can multiply both sides of (5.47) by sin (ppx/a)sin
(qpy/b) and integrate over the plate domain (x from 0 to a and y from 0 to b) to obtain,

ðð
Fdðx� xoÞdðy� yoÞsin ppx

a
sin

qpy
b

dxdy

¼
ððXX

Bmnsin
mpx
a

sin
ppx
a

sin
npy
b

sin
qpy
b

dxdy

ð5:48Þ

Now the integral of a function multiplied by the delta function is equal to the function

evaluated at the location where the delta function is nonzero. So, carrying out the integrations

in (5.48),

Fsin
mpxo
a

sin
npyo
b

¼ Bmn

ab

4
ð5:49Þ

from which

Bmn ¼ 4F

ab
sin

mpxo
a

sin
npyo
b

ð5:50Þ

Equation (5.50) can be placed in (5.47) which, along with (5.46), can be placed in (5.45)

to give

X1
m¼1

X1
n¼1

Amn D11

�
mp
a

�4

þ 2ðD12 þ 2D66Þm
2n2p4

a2b2
þD22

�
np
b

�4
2
4

3
5sinmpx

a
sin

npy
b

¼

X1
m¼1

X1
n¼1

4F

ab
sin

mpxo
a

sin
npyo
b

sin
mpx
a

sin
npy
b

ð5:51Þ

and matching coefficients of sin(mpx/a)sin(npy/b) the coefficients Amn are determined as

Amn ¼
4F

ab
sin

mpxo
a

sin
npyo
b

D11

mp
a

� �4
þ 2ðD12 þ 2D66Þm

2n2p4

a2b2
þD22

np
b

� �4 ð5:52Þ
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Combining Equation (5.52) with (5.46) gives the complete expression for w for this case:

w ¼
XX 4F

ab
sin

mpxo
a

sin
npyo
b

sin
mpx
a

sin
npy
b

D11

mp
a

� �4
þ 2ðD12 þ 2D66Þm

2n2p4

a2b2
þD22

np
b

� �4 ð5:53Þ

For the casewhereF acts at the center of the plate, the maximum out-of-plane deflection d at
the plate center is obtained by substituting x¼ xo/2 and y¼ yo/2 in Equation (5.53),

d ¼ wmax ¼
XX 4F

ab
sin2

mp
2

sin2
np
2

D11

mp
a

� �4
þ 2ðD12 þ 2D66Þm

2n2p4

a2b2
þD22

np
b

� �4 ð5:54Þ

Once the deflections are determined, classical laminated-plate theory can be used to obtain

bending moments and, in turn, strains and stresses to check the plate for failure.

As in the previous section, this is an exact solution to the problem within the context of the

assumptions made. It should also be kept in mind that because of the linearization in

Equation (5.16a), the solution is only valid for small out-of-plane deflections w.

5.4 Energy Methods

For most practical problems, the governing equations described in the previous section cannot

be solved exactly and, in some cases, approximate solutions are hard to obtain. As a powerful

alternative, energy methods can be used. Minimizing the energy stored in the system or

structure can yield useful, approximate, and reasonably accurate solutions.

Two energyminimization principles are of interest here: (1) minimum potential energy; and

(2) minimum complementary energy. In both cases, some of the governing equations are

satisfied exactly and some approximately through energyminimization. They both derive from

the following two theorems [17]:

Minimum potential energy: Of all geometrically compatible displacement states, those

which also satisfy the force balance conditions give stationary values to the potential energy.

Minimum complementary energy: Of all self-balancing force states, those which also

satisfy the requirements of geometric compatibility give stationary values to the complemen-

tary energy”.

The governing equations, given in the previous section can be split into: (a) equilibrium

equations; (b) compatibility equations (which are the strain compatibility equations obtained

once the displacements are eliminated from the strain–displacement equations); and (c) the

constitutive law or stress–strain equations.

In the case of the principle of minimum potential energy, if the strain compatibility relations

and displacement boundary conditions are exactly satisfied, then minimization of the potential

energy results in a solution that satisfies the equilibrium equations in an average sense. In the

case of the principle of minimum complementary energy, if the stress equilibrium equations

and force boundary conditions are exactly satisfied, then minimization of the complementary
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energy results in a solution that satisfies strain compatibility in an average sense. Both

approaches yield approximate solutions whose accuracy depends on the number of

terms assumed in the displacement (minimum potential energy) or stress expressions

(minimum complementary energy) and how well the assumed functions approximate the

sought-for response.

The two situations as well as the situation corresponding to the exact solution are shown in

Table 5.5.

The energymethods are not limited to the two approaches just described. Hybrid approaches

where combinations of some stresses and displacements are assumed are also possible [18].

5.4.1 Energy Expressions for Composite Plates

According to the principle of virtual work for linear elasticity, the incremental internal energy

stored in a body equals the incremental work done by external forces:

dU ¼ dWs þ dWb

where Ws is the work done by surface forces and Wb is the work done by body forces.

Then, if we define the total incremental energy dP as the difference between internal energy

and external work,

dP ¼ dU� dWs � dWb ð5:55Þ
the exact solution would make the energy variation dP zero or would minimize the total

energy P:

P ¼ U�Ws �Wb ¼ U�W ð5:56Þ

5.4.1.1 Internal Strain Energy U

The increment in the internal potential energy dU is obtained by integrating all contributions of

products of stresses and incremental strains

Table 5.5 Approximate and exact evaluations of field equations during energy minimization

Equilibrium

equations

Strain

compatibility

condition

Force

boundary

conditions

Displacement

boundary

conditions

Energy Solution is

Exactly Exactly Exactly Exactly Minimized Exact

Approximately Exactly (In an

average

sense)

Exactly Minimize

potential

(displacement-

based)

Approximate

Exactly Approximately Exactly (In an average

sense)

Minimize

complementary

Approximate
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dU ¼
ððð

V

sxdex þ sydey þ szdez þ tyzdgyz þ txzdgxz þ txydgxy
 �

dxdydz ð5:57Þ

where the integration is over the entire volume V of the body in question.

For a plate, Equation (5.57) reduces to

dU ¼
ððð

V

sxdex þ sydey þ txydgxy
 �

dxdydz ð5:58Þ

Using equations (5.7) to substitute for the strains in terms of curvatures and midplane

strains gives

dU ¼
ððð

V

sx dexo þ zdkxð Þþ sy deyo þ zdky
� �þ txy dgxyo þ zdkxy

� � �
dxdydz ð5:59Þ

For a plate of constant thickness h, the z integration in Equation (5.59) can be carried

out using

ðh2

� h
2

sx
sy
txy

2
4

3
5dz ¼

Nx

Ny

Nxy

2
4

3
5 and

ðh2

� h
2

zsx
zsy
ztxy

2
4

3
5dz ¼

Mx

My

Mxy

2
4

3
5

to give

dU ¼
ðð

A

fNxdexo þNydeyo þNxydgxyo þMxdkx þMydky þMxydkxygdxdy ð5:60Þ

where A is the area of the plate.

At this point, several options are available depending on which version of energy minimi-

zation principle (e.g. displacement-based or stress-based) is to be used.

For a displacement-based formulation, Equations (5.5) can be used to express

dU ¼ ÐÐ
A
f A11exo þA12eyo þA16gxyo þB11kx þ . . .
� �

dexo

þ A12exo þA22eyo þA26gxyo þB12kx þ :::
� �

dey

þ A16exo þA26eyo þA66gxyo þB16kx þ . . .
� �

dgxyo

þ B11exo þB12eyo þB16gxyo þD11kx þ :::
� �

dkx

þ B12exo þB22eyo þB26gxyo þD12kx þ . . .
� �

dky

þ B16exo þB26eyo þB66gxyo þD16kx þ :::
� �

dkxygdxdy ð5:61Þ

forces and moments in terms of midplane strains and curvatures.
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It is now observed that

exodexo ¼ 1

2
d exoð Þ2

exodeyo þ eyodexo ¼ d exoeyo
� �

exodkx þ kxdexo ¼ d exokxð Þ

with analogous expressions for the other midplane strains and curvatures.

These expressions are substituted in Equation (5.61) and integrated term by term. For

example, the first term of (5.61) becomesðð
A

A11 exoð Þdexodxdy ¼ 1

2

ðð
A

A11d exoð Þ2dxdy! 1

2

ðð
A

A11 exoð Þ2dxdy

This substitution leads to the following expression for the internal strain energy U:

U ¼ 1

2

ðð
A

�
A11 exoð Þ2 þ 2A12 exoð Þ eyo

� �þ 2A16 exoð Þ gxyo
� �þ A22 eyo

� �2 þ 2A26 eyo
� �

gxyo
� �þ�

dxdy
A66 gxyo
� �2

þ
ðð

A

�
B11 exoð Þkx þ B12 eyo

� �
kx þ exoð Þky

� �þ B16 gxyo
� �

kx þ exoð Þkxy
� �þ�

dxdy
B22 eyo
� �

ky þ B26 gxyo
� �

ky þ eyo
� �

kxy
� �þ B66 gxyo

� �
kxy

þ 1

2

ðð
A

D11k2x þ 2D12kxky þ 2D16kxkxy þ D22k2y þ 2D26kykxy þ D66k2xy
n o

dxdy ð5:62Þ

Finally, to express the internal strain energy in terms of displacements u, v, and w, the

strain–displacement equations (5.6) and (5.8) are used to obtain:

U ¼ 1

2

ðð
A

�
A11

�
@u

@x

�2

þ 2A12

@u

@x

@v

@y
þ 2A16

@u

@x

�
@u
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þ @v

@x

�
þA22

�
@v

@y

�2

�
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þ 2A26

@v
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�
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þA66
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þ @v

@x

�2

�
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A

�
B11

@u

@x
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@2w

@x2
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@2w

@x2
þ 2
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@2w
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2
4

3
5
�
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þB22

@v
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@2w
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þ @v

@x

�
@2w
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2

ðð
A

�
D11

�
@2w

@x2

�2

þ 2D12

@2w

@x2
@2w

@y2
þ 4D16

@2w

@x2
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@x@y
þD22

�
@2w

@y2

�2
�
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þ 4D26

@2w

@y2
@2w

@x@y
þ 4D66

�
@2w

@x@y

�2

dxdy ð5:63Þ
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The first set of terms in Equation (5.63) involves the membrane stiffnesses Aij (i,j¼ 1,2,6)

and represents stretching (or membrane) energy. The last set, involving bending stiffnessesDij

(i,j¼ 1,2,6) represents energy stored in bending of the plate. The remaining terms, involvingBij

(i,j¼ 1,2,6) represent energy stored through bending–membrane coupling. If the plate has

symmetric layup,Bij¼ 0 and Equation (5.63) decouples in two parts, the membrane (involving

the A matrix) and the bending (involving the D matrix) portion.

At the other extreme, a stress-based energy formulation starts with Equation (5.60) and uses

the inverse of the stress–strain equations (5.5) to substitute for the strains. For simplicity, only

the case of a symmetric layup is shown here. The inverted stress–strain equations,

exo

eyo

gxy
o

kx

ky

kxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

a11 a12 a16 0 0 0

a12 a22 a26 0 0 0

a16 a26 a66 0 0 0

0 0 0 d11 d12 d16

0 0 0 d12 d22 d26

0 0 0 d16 d26 d66

2
66666666664

3
77777777775

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð5:64Þ

where [a] and [d] are the inverses of the laminate [A] and [D] matrices, can be used to substitute

in Equation (5.60):

dU ¼ ÐÐ
A
fNxd a11Nx þ a12Ny þ a16Nxy

� �þNyd a12Nx þ a22Ny þ a26Nxy

� �
þNxyd a16Nx þ a26Ny þ a66Nxy

� �þMxd d11Mx þ d12My þ d16Mxy

� �
þMyd d12Mx þ d22My þ d26Mxy

� �þMxyd d16Mx þ d26My þ d66Mxy

� �gdxdy
ð5:65Þ

A completely analogous procedure as in deriving Equation (5.63) from (5.61) leads to the

final expression for the stress-based (complementary) energy:

U ¼ 1

2

ðð
A

a11N
2
x þ 2a12NxNy þ 2a16NxNxy þ a22N

2
y þ 2a26NyNxy þ a66N

2
xy

n o
dxdy

þ 1

2

ðð
A

d11M
2
x þ 2d12MxMy þ 2d16MxMxy þ d22M

2
y þ 2d26MyMxy þ d66M

2
xy

n o
dxdy

ð5:66Þ
Equation (5.66) has the stretching and bending portions already decoupled because the

laminate was assumed symmetric.

5.4.1.2 External Work W

The derivation for the external work does not have any difference between composite and

noncomposite plates. It is derived for a general plate and included here for completeness. With
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reference to Equation (5.55), the incremental work dWb done by applied body forces on a body

is given by

dWb ¼
ððð

V fxduþ fydvþ fzdw
 �

dxdydz

where V is the volume of the body, fx, fy, fz are forces per unit volume in the x, y and z directions

respectively, and du, dv, and dw are incremental displacements in the x, y and z directions.

For a plate, the body forces can be integrated through the thicknessÐ
fxdz ¼ pxbÐ
fydz ¼ pybÐ
fzdz ¼ pzb

with the subscript b denoting that these contributions to surface forces come from integrating

the body forces.

Combining these with any surface forces applied over the plate surface and the contribution

from any forces or moments applied on the plate edges, gives

dW ¼ dWb þ dWs¼
ðð
Ap

pxduþ pydvþ pzdw
 �

dxdyþ

ða

0

NxduþNxydvþQxdw�Mxd
@w

@x

0
@

1
A

2
4

3
5
x¼a

x¼0

dyþ

ða

0

NxyduþNydvþQydw�Myd
@w

@y

0
@

1
A

2
4

3
5
y¼b

y¼0

dx

where a and b are the plate dimensions and Ap is the plate area. The contributions from pxb, pyb,

and pzb are included in the first term within px, py, and pz respectively. The second and third

terms in the right-hand side of the above expression include contributions from applied forces

Nx, Ny, and Nxy (in-plane) or (transverse shear) forces Qx and Qy (out-of-plane) or bending

moments Mx and My at the plate edges (x¼ 0,a and/or y¼ 0,b).

Integrating the incremental contributions on left- and right-hand sides gives

W¼
ðð
Ap

pxuþ pyvþ pzw
 �

dxdyþ
ðb

0

NxuþNxyvþQxw�Mx

@w

@x

2
4

3
5
x¼a

x¼0

dyþ

ða

0

NxyuþNyvþQyw�My

@w

@y

2
4

3
5
y¼b

y¼0

dx

ð5:67Þ

For the case of plate buckling problems, px and py in Equation (5.67) can be evaluated further.

Assuming there is no stretching or shearing of the plate midplane during buckling, the
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mid-plane strains exo eyo and gxyo are zero. Then, for large deflections, Equations (5.13a–c) imply

@u

@x
þ 1

2

�
@w

@x

�2

¼ 0

@v

@y
þ 1

2

�
@w

@y

�2

¼ 0

@u

@y
þ @v

@x
þ
�
@w

@x

��
@w

@y

�
¼ 0

Consider now the first term of Equation (5.67) with pz¼ 0 for a buckling problem. Using

Equations (5.3a,b) to substitute for px and py,

ðð
A

pxuþ pyv
� �

dxdy ¼
ðð
A

� @Nx

@x
� @Nxy

@y

� �
uþ � @Nxy

@x
� @Ny

@y

� �
v

� �
dxdy

Integrating by parts, for a rectangular plate of dimensions a and b, gives

ðð
A

pxuþ pyv
� �

dxdy¼
ðb

0

�Nxu�Nxyv
	 
x¼a

x¼0
þ
ða

0

Nx

@u

@x
þNxy

@v

@x

2
4

3
5dx

8<
:

9=
;dy

þ
ða

0

�Nxyu�Nyv
	 
y¼b

y¼0
þ
ðb

0

Nxy

@u

@y
þNy

@v

@y

2
4

3
5dy

8<
:

9=
;dx

¼
ða

0

�Nxyu�Nyv
	 
y¼b

y¼0
dxþ

ðb

0

�Nxu�Nxyv
	 
x¼a

x¼0
dy

þ
ða

0

ðb

0

Nx

@u

@x
þNxy

@v

@x
þNxy

@u

@y
þNy

@v

@y

2
4

3
5dxdy

The derivatives @u/@x, @v/@y, and the sum @u/@yþ @v/@x can be substituted for derivatives
of w, as shown in the large deflection equations above. Then, combining everything in

Equation (5.67), canceling terms and noting that for a typical buckling problem Qx¼Qy¼
Mx¼My¼ 0 leads to

W ¼
ða

0

ðb

0

� 1

2
Nx

@w

@x

� �2

� 1

2
Ny

@w

@y

� �2

�Nxy
@w

@x

� �
@w

@y

� �( )
dxdy
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or

W ¼ � 1

2

ða

0

ðb

0

Nx

@w

@x

� �2

þNy

@w

@y

� �2

þ 2Nxy
@w

@x

� �
@w

@y

� �( )
dxdy ð5:68Þ

valid for plate buckling problems.

Exercises

5.1 A certain composite material is proposed for use at two different locations of the same

application. Location 1 is designed by tensionwith a design (ultimate) load of 1750N/mm.

Location 2 is designed by shear with a design (ultimate) load of 2450N/mm. The proposed

material has been tested in tension and shear with the results shown in Table E5.1.

Originally, the two parts at the locations of interest were made with aluminum with the

following properties:

An aspiring engineer looks at the two tables of properties, in particular the mean

values, and claims that he/she can save at least 30% of the weight at both locations by

switching from aluminum to composite. You are to check if the engineer is right in his/her

claim for both locations considering: (a) a single load path application and (b) a multiple

load path application.

You are to assume that the test data in Table E5.1 follows a normal distribution for both

tension and shear. Note that for a normal distribution the B- andA-Basis values are given by

B ¼ Mean� kBs
A ¼ Mean� kAs

where s is the standard deviation of the test results and kA, kB are the so-called one-sided

tolerance limit factors given by (see for example [2] chapter 9).

Table E5.1 Test data for proposed composite material

Specimen Tension (Pa) Shear (Pa)

1 3.0918E þ 08

2 6.7217E þ 08 4.0789E þ 08

3 6.1025E þ 08 3.2922E þ 08

4 6.3263E þ 08 2.9084E þ 08

5 6.5498E þ 08 3.6868E þ 08

6 5.3391E þ 08 3.3140E þ 08

7 6.5647E þ 08 3.6039E þ 08

Mean 6.2673E þ 08 3.4251E þ 08

Table E5.2 Aluminum properties (7075 Al from [19])

Tension (Pa) Shear (Pa)

Mean 5.1016E þ 08 3.2815E þ 08

B-Basis 4.9637E þ 08 3.2402E þ 08

A-Basis 4.7569E þ 08 3.1712E þ 08
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In your calculations consider ONLY the material scatter. Do not include effects of

damage and environment.

5.2 The tension strength data for a specific composite material and layup at RTA conditions is

given in the table below:

Specimen Value (MPa)

1 538.8

2 475.6

3 447.9

4 461.7

5 495.4

6 483

7 479.3

8 442.5

9 471.6

10 525.5

Assuming that the experimental data are normally distributed, it can be shown that the

fraction of the population with strength less than any given value (cumulative probability)

is given by the following graph:
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Table E5.3 One-sided tolerance limit factors for normal distribution

Number of specimens k90
(1) k99

(1)

6 3.006 5.741

7 2.755 4.642

(1) 90 and 99 refer to the % of tests that will be stronger than the

corresponding Basis value
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Assume that at any other environmental condition, the tension strength is given as a

fraction of its corresponding value at RTA condition and that fraction can be obtained from

the material covered in this chapter.

This composite material and layup are to be used in a wing-box (single load path

primary structure). The best available aluminum is 7075-T6 with the following properties

(from reference [19]):

RTA ETW

Mean (MPa) 586.0 562.5

B-Basis (MPa) 551.5 529.4

A-Basis (MPa) 537.7 516.2

Density (kg/m3) 2773.8 2773.8

Determine the weight savings of using the composite instead of aluminum if: (a) the

design is based on RTA properties and (b) the design is based on ETWproperties. Looking

at your results, are the weight savings resulting from using composites in this application

worth the extra material and processing cost associated with composites?

5.3 A simply-supported rectangular composite plate (Figure E5.1) with dimensions

152.4 � 508mm is loaded at x¼ 127mm and y¼ 38.1mm by a force F perpendicular

to the plate. The layup of the plate is (	45)/(0/90)3/(	45) and the basic material

properties are as shown in Figure E5.1.

(a) Determine the location in the plate where each of the three stresses sx, sy, and txy
is maximized.

(b) Since the three stresses do not reach their peak values at the same location, discuss how

onewould go about predicting the loadF at which the platewould fail (assume that the

ultimate strength values such asXt,Xc,Yt,Yc, and SwithX strength along fibers orwarp

direction for a plain weave fabric and Y strength perpendicular to the fibers or fill

direction for a plain weave fabric, and superscripts t and c tension and compression

respectively, are known).

(c) Determine the maximum values of the through the thickness averaged out-of-plane

shear stresses txz, and tyz and their locations for a unit load F¼ 1N. Compare these

38.1�mm�

x

y

508�mm�

152.4�mm�

127�mm�

F Ex =�Ey =�73�GPa�
Gxy�=�5.3�GPa�
νxy�=�0.05�
tply�=�0.19�mm�

Figure E5.1
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values with the maximum values for sx, sy, and txy from part (a) and comment on

whether the assumption made in section 5.3.2 that txz, and tyz can be neglected

is valid.

5.4 For a composite rectangular panel simply supported all around under pressure loading,

determine if the linear solution for the out-of-plane deflections is sufficient to use in design.

The applied pressure corresponds to an overload pressure case of a pressurized composite

fuselage of almost 1.4 atmospheres or 20 psi. (Note: the units are British (Imperial) in this

problembecause you are to use theESDUdata sheetswhich have charts in these units). The

situation is shown in Figure E5.2.

(a) Derive an expression for the deflection at the center of the plate d.
(b) For the case a¼ b ¼50 in, D11¼D22¼ 347 000 in lb, D12¼ 110 000 in lb, D66¼

120 000 in lb and t¼ 0.5 in, the solution for d as a function of po can be found in the

ESDU data sheets. The ESDU solution is a large-deflection, moderate-rotation solution

thatwill bemore accurate as the applied pressure increases. Find theESDU solution and

plot d versus applied pressure for pressures from 0 to 20 psi for your solution and the

ESDU solution. Compare the two solutions and determine when your (linear) solution

departs significantly from the ESDU (nonlinear) solution. Can your linear solution be

used for the overpressure case of 20 psi? Before you give your final answer on this, keep

in mind that this is a design problem so you do not always have to be accurate as long as

you are conservative (and can afford the associated increase in weight).

(c) In view of your comparison in Exercise 5.4, and the ESDU curves you found, what

exactly does ‘simply supported plate’ mean in this case? (discuss in-plane and out-of

plane boundary conditions that your linear solution satisfies versus the cases that ESDU

provides)
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6

Buckling of Composite Plates

Composite plates under compression and/or shear loading are sensitive to buckling failures.

A typical situation where a stiffened composite plate has buckled between the stiffeners is

shown in Figure 6.1.

Unlike beams, where buckling is, typically, very close to final failure, plates may have

significant post-buckling ability (see Chapter 7). However, post-buckling of composite plates

requires accurate knowledge of the possible failure modes and their potential interaction. For

example, in a stiffened panel such as that of Figure 6.1, the portion of the skin buckling away

from the reader tends to peel off the stiffeners. The skin–stiffener separation mode is fairly

common in post-buckled stiffened panels and may lead to premature failure. Depending on the

application, designing for buckling and using any post-buckling capability as an extra degree

of conservatism is one of the possible approaches. Even in post-buckled panels, accurate

calculation of the buckling load for different loading combinations and boundary conditions is

paramount in the design.

6.1 Buckling of Rectangular Composite Plate under Biaxial Loading

The derivation of the buckling equation follows the approach described by Whitney [1].

A rectangular composite plate under biaxial loading is shown in Figure 6.2.

The governing equation is obtained from Equation (5.16) by setting Nxy¼ px¼ py¼ pz¼ 0:

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ Nx

@2w

@x2
þNy

@2w

@y2
ð6:1Þ

where w is the out-of-plane displacement of the plate.

Note that the governing equation (6.1) assumes that the bending–twisting coupling terms

D16 and D26 are negligible compared with the remaining terms D11, D12, D22, and D66. The

plate is assumed simply supported all around its boundary and the only loads applied areNx and

Ny as shown in Figure 6.2. Then, the boundary conditions are,
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Figure 6.2 Rectangular composite panel under biaxial loading

Figure 6.1 Composite stiffened panel buckling under shear (See Plate 14 for the colour figure)

120 Design and Analysis of Composite Structures



 

w ¼Mx ¼ �D11

@2w

dx2
�D12

@2w

dy2
¼ 0 at x ¼ 0 and x ¼ a

w ¼My ¼ �D12

@2w

dx2
�D22

@2w

dy2
¼ 0 at y ¼ 0 and y ¼ b

ð6:2Þ

An expression for w that satisfies all boundary conditions (Equations (6.2)) is,

w ¼
XX

Amn sin
mpx
a

sin
npy
b

ð6:3Þ

Substituting in Equation (6.1) and rearranging and defining the plate aspect ratio AR¼ a/b

gives,

p2Amn½D11m
4 þ 2ðD12 þ 2D66Þm2n2ðARÞ2 þD22n

4ðARÞ4� ¼ �Amna
2½Nxm

2 þNyn
2ðARÞ2�

ð6:4Þ
When buckling occurs, the out-of-plane deflectionw of the plate is nonzero. This means that

the coefficients Amn of Equation (6.3) are nonzero and cancel out in Equation (6.4). It is

convenient to let k¼Ny/Nx and to let the buckling load Nx be denoted by �No (minus sign to

indicate compression). Then, from Equation (6.4),

No ¼
p2
h
D11m

4 þ 2ðD12 þ 2D66Þm2n2ðARÞ2 þD22n
4ðARÞ4

i
a2ðm2 þ kn2ðARÞ2Þ ð6:5Þ

The buckling load No is a function of the number of half-waves m in the x direction and n in

the y direction and thus, changes as m and n, which define the buckling mode, change. The

sought-for buckling load is the lowest value of Equation (6.5) so the right-hand side of (6.5)

must be minimized with respect to m and n.

As an application of Equation (6.5), consider a square plate with quasi-isotropic layup

[(45/-45)2/02/902]s with basic ply properties (x parallel to fibers):

Ex ¼ 137:9 GPa

Ey ¼ 11:7 GPa

nxy ¼ 0:31

Gxy ¼ 4:82 GPa

tply ¼ 0:1524 mm

where tply is the (cured) ply thickness.

Determine the compressive buckling load No for various values of k.

Using classical laminated-plate theory (CLPT) the bending stiffness terms are found to be:

D11 ¼ 65:4 kN=mm

D12 ¼ 37:2 kN=mm

D22 ¼ 51:1 kN=mm

D66 ¼ 38:6 kN=mm

D16 ¼ 5:40 kN=mm

D26 ¼ 5:40 kN=mm
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The bending–twisting coupling terms D16 and D26 are less than 15% of the next larger term

so using Equation (6.1) will give accurate trends and reasonable buckling predictions.

For a given value of k, Equation (6.5) is evaluated for successive values of n and m until the

combination that minimizes the buckling load No is obtained. This load is shown in Figure 6.3

as a function of the plate size and different ratios k.

As expected, increasing the plate size decreases the buckling load, which varies with the

inverse of the square of the plate size. Both positive and negative values of k are shown in

Figure 6.3. Positive values mean that the sign of Ny is the same as No. And since No is

compressive, k> 0 implies biaxial compression. Then, negative values of k correspond to

tensile Ny values. As is seen from Figure 6.3, a tensile Ny (k< 0) tends to stabilize the plate and

increase its buckling load. Compressive Ny (k> 0) tends to precipitate buckling earlier

(material is pushed from both x and y directions) and decreases the buckling load. The case

of k¼ 0 corresponds to uniaxial compression (see below).

It is interesting to note that the minimum buckling load was obtained for n¼ 1 in all cases.

It can be shown [2, 3] that for a rectangular plate under biaxial loading the number of half-

waves n in one of the two directions will always be 1.

Finally, Equation (6.5) also gives negative values of No when k< 0. This means that No is

tensile and, since k< 0, Ny is compressive. So the plate still buckles, but now the compressive

load is in the y direction while the load in the x direction is tensile.

6.2 Buckling of Rectangular Composite Plate under
Uniaxial Compression

This case was derived as a special case in the previous section when k¼ 0. The buckling load

when the plate is under compression is given by Equation (6.5) with k set to zero:

No ¼
p2 D11m

4 þ 2ðD12 þ 2D66Þm2n2ðARÞ2 þD22n
4ðARÞ4

h i
a2m2

ð6:6Þ
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Figure 6.3 Buckling load of a square quasi-isotropic plate as a function of plate size and biaxial loading

ratio Ny/Nx

122 Design and Analysis of Composite Structures



 

The right-hand side is minimized when n¼ 1, i.e. only one half-wave is present in the

direction transverse to the applied load. Setting n¼ 1 and rearranging,

No ¼ p2

a2
D11m

2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
m2

" #
ð6:7Þ

The value of m that minimizes the right-hand side of Equation (6.7) gives the buckling load

of a simply supported rectangular composite plate under compression.

As can be seen from Equation (6.7), in addition to the bending stiffnessesD11,D12,D22, and

D66, the buckling load is also dependent on the aspect ratio (AR¼ length/width) of the plate.

This dependence is shown in Figure 6.4 for a plate with fixed length 508mm.

As is seen from Figure 6.4, as the aspect ratio increases, the number of half-waves m in the

direction of the load increases. Typically, for each m value, there is a value of AR that

minimizes the buckling load. Points of intersection of curves corresponding to successive m

values indicate that the platemay buckle in either of the twomodes (differing by one half-wave)

and have the same buckling load. In practice, due to eccentricities and inaccuracies due to

fabrication, these cusps cannot be reproduced. The plate will tend to buckle in one of the two

modes and will not switch to the other.

The results in Figure 6.4 correspond to a quasi-isotropic layup (�45)/(0/90)/(�45) with

D matrix values as shown in the same figure. The laminate thickness for this laminate is

0.5715mm. It is of interest to compare with an aluminum plate of the same thickness, length

and aspect ratio. This is done in Figure 6.5. Note that the buckling loads for aluminum can be

obtained using the same Equation (6.7) with proper redefinition of the D matrix terms.

As is seen from Figure 6.5, the buckling load of an aluminum plate of the same thickness

can be as much as 20% higher (for AR� 0.5) than that of an equal thickness quasi-isotropic

composite plate. Based on this result, to match the buckling load of the aluminum plate at the

worst case (AR¼ 0.5) the quasi-isotropic plate thickness must be increased by a factor of

(1.2)1/3. The one-third power is because theDmatrix terms are proportional to thickness to the
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Figure 6.4 Dependence of buckling load on plate aspect ratio
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third power (see also Equation 3.47). It is recognized here that typical composite materials are

not available at any desired thickness, but only in multiples of specific ply thicknesses.

Therefore, this calculation would have to be rounded up to the next integral multiple of ply

thicknesses. Assuming, for now, continuity of thickness for the composite plate so that

preliminary comparisons can be obtained, the required increase in thickness for the composite

plate would be

thickness increase ¼ 1:21=3 ¼ 1:063

Therefore, for the same size plate, the weight ratio between a composite (graphite/epoxy)

and an aluminum panel is

0.616
1

1.063
0.58/ ==

Al

EGr

W
W

density 

ratio

thickness 

ratio 

ð6:8Þ

Equation (6.8) implies that a quasi-isotropic composite with the same buckling load under

compression as an aluminum plate, is approximately 62% of the aluminumweight or results in,

approximately, 38% weight savings. It is important to keep in mind that this result assumes

that any thickness is achievable with a composite material (which is not true, as mentioned

above) and that there are no other factors that may affect the design such as material scatter,

environmental effects, and sensitivity to damage.Accounting for these effects tends to decrease

the weight savings.

6.2.1 Uniaxial Compression, Three Sides Simply Supported, One Side Free

The discussion so far in this section has been confined to a simply supported plate. The effect

of the boundary conditions can be very important. As a special case, of interest in future

discussion (Section 8.5 on stiffener crippling) the case of a rectangular composite plate under

compressionwith three sides simply supported and one (not loaded) side free, is discussed here.

The situation is shown in Figure 6.6.
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Figure 6.5 Comparison of buckling loads for equal thickness aluminum and quasi-isotropic composite

plates (length¼ 508mm)
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An approximate solution is obtained following the same steps as for the plate simply

supported all around. Analogous to Equation (6.3) an expression for w is assumed in the form,

w ¼
XX

Amn sin
mpx
a

sin
lnpy
b

ð6:9Þ

where l is a parameter appropriately selected to satisfy the boundary conditions of the problem.

The governing equation is the same as (6.1) with Ny¼ 0:

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ Nx

@2w

@x2
ð6:10Þ

The boundary conditions for Equation (6.10) are

wðx ¼ 0Þ ¼ wðx ¼ aÞ ¼ 0

wðy ¼ 0Þ ¼ 0

Mx ¼�D11

@2w

@x2
�D12

@2w

@y2
¼ 0 at x ¼ 0; a

My ¼�D12

@2w

@x2
�D22

@2w

@y2
¼ 0 at y ¼ 0; b

ð6:11Þ

The value of lmust be chosen such that w given by Equation (6.9) is free to attain any value

at the free edge y¼ b. For example, if l¼ 1, w at y¼ b is zero and the simply supported case

discussed earlier is recovered. A plot of w as a function of y for different l values is shown in
Figure 6.7.

b
ynπλ
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y/b10.5 

λ=1/2λ=1

λ=5/12

1

Figure 6.7 Shape of w deflection for various values of the parameter l
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ss
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Figure 6.6 Plate under compression with one (unloaded) edge free and three edges simply-supported
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It appears from Figure 6.7, that l values in the vicinity of 1/2 would give a reasonable

representation of w. It should be noted that l¼ 1/2 gives a slope of w at y¼ b that equals zero

which is unlikely to be the case since w is arbitrary at y¼ b and there is no reason for its slope

to be equal to zero all along the edge y¼ b.

The results obtained with this expression for w are approximate for another reason: The last

of the boundary conditions (Equation 6.11), is not satisfied. ThemomentMy at y¼ bwill not be

zero and its value will depend on l.
Following the same procedure as for the simply supported case above, the expression for the

buckling load corresponding to Equation (6.7) is,

No ¼ p2

a2
D11m

2 þ 2ðD12 þ 2D66Þl2ðARÞ2 þD22

ðARÞ4
m2

l4
" #

ð6:12Þ

The exact solution to this problem is [4]

No ¼ 12
D66

b2
þ 1

ðARÞ2
ffiffiffiffiffiffiffiffi
D11

D22

r
ð6:13Þ

The approximation of Equation (6.12) and the exact solution (6.13) are compared in

Figure 6.8 for the same quasi-isotropic layup (�45)/(0/90)/(�45) of Figure 6.4.

The approximate solution is very close to the exact answer especially for l¼ 5/12. In

particular, for infinitely long plate, the exact solution (6.13) becomes

Nxcrit ¼ 12D66

b2
ð6:13aÞ

and the approximate solution becomes

Nxcrit ¼ 4p2

b2
l2D66 þ 2p2

b2
D12 ð6:12aÞ

Figure 6.8 Comparison of approximate (two l values) and exact solutions for buckling load of a

rectangular composite panel under compression with three simply supported edges and one (unloaded)

edge free
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Note that since the plate is infinitely long, the two expressions are only dependent on the plate

width b now.

Setting b¼ 508mm, for l¼ 1/2 the two answers differ by 46.9%, but for l¼ 5/12 the two

differ by only 12.5%. Obviously, if an exact solution to a problem such as the one under

discussion exists and does not require expensive computation (e.g. solution of a large eigenvalue

problem), it will be preferred over an approximate solution. Unfortunately, in most cases,

approximate solutions may be all that is available during design and preliminary analysis. The

example given is meant to show the potential and the drawbacks of approximate methods.

6.3 Buckling of Rectangular Composite Plate under Shear

A rectangular composite plate under shear is shown in Figure 6.9. As before, the layup of the

plate is assumed symmetric (B matrix¼ 0) and with negligible bending–twisting coupling

(D16�D26� 0). The approach to determine the buckling load parallels the Galerkin solution

given in [5].

The governing equation is again derived from Equation (5.16) with Nx¼Ny¼ px¼ py¼
pz¼ 0:

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ 2Nxy

@2w

@x@y
ð6:14Þ

In the Galerkin approach, an assumed expression of the solution is substituted in the

governing equation which, in turn, is multiplied by characteristic (usually orthogonal)

functions and then integrated over the domain of the problem. This results in algebraic

equations for the unknown coefficients in the assumed expression for the solution and, at the

same time, minimizes the error [6].

To solve Equation (6.14) by the Galerkin method, the following expression for w is used

which is the same as Equation (6.3):

w ¼
XX

Amnsin
mpx
a

sin
npy
b

ð6:3Þ

where Amn are unknowns to be determined.

As the terms in Equation (6.3) comprise orthogonal sine functions, the same characteristic

functions are used. Multiplying Equation (6.14) by the characteristic functions sin (mpx/a)sin
(npy/b) and integrating gives

Nxy

Nxy x 

y
a

b

Figure 6.9 Rectangular composite plate under shear
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ð ð
D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
� 2Nxy

@2w

@x@y

� �
sin

mpx
a

sin
npy
b

dxdy ¼ 0

ð6:15Þ

where the integrations are carried over the entire plate (0� x� a and 0� y� b)

Note that each set of m,n values gives a different equation to be solved where

all unknowns Amn appear. Substituting for w from Equation (6.3) and carrying out the

integrations gives

p4 D11m
4þ2ðD12þ2D66Þm2n2ðARÞ2þD22n

4ðARÞ4
h i

Amn�32mnðARÞ3b2Nxy

XX
TijAij ¼ 0

Tij ¼ ij

ðm2� i2Þðn2� j2Þ for m � j odd and n � j odd

Tij ¼ 0 otherwise

ð6:16Þ

with AR¼ a/b the aspect ratio of the plate

Equation (6.16) uncouples to two independent sets of homogeneous equations, one for

m þ n odd and one for m þ n even. The form of each set of equations is:

E½ � Amnf g ¼ 0 ð6:17Þ
with [E] a coefficient matrix with ijth entry given by

Eij ¼ �32mnðARÞ2b2NxyTij þ
p4 D11m

4 þ 2ðD12 þ 2D66Þm2n2ðARÞ2 þD22n
4ðARÞ4

h i
dðm� iÞdðn� jÞ

ð6:18Þ

where d(m� i)¼ 1 when m¼ i and 0 otherwise, and d(n� j)¼ 1 when n¼ j and zero

otherwise.

Equations (6.17) have coefficients Amn that are a function of the shear load Nxy as shown in

Equation (6.18). For each of the independent sets of Equations (6.17), a nontrivial solution

(Amn 6¼ 0) is obtained when the determinant of the coefficient matrix is set equal to zero,

det E½ �mþ n¼odd ¼ 0

det E½ �mþ n¼even ¼ 0

Each of these two equations results in an eigenvalue problem where the eigenvalue is the

buckling load Nxy and the eigenvector gives the buckling mode. The lowest eigenvalue across

both problems is the sought-for buckling load. For symmetric and balanced (specially

orthotropic) plates, the eigenvalues appear in pairs of positive and negative values, indicating

that if the load direction changes the plate will buckle when the applied load reaches the

same magnitude.

The approach just described gives very accurate buckling loads, provided sufficient terms in

Equation (6.3) are used and an accurate eigenvalue solver is available. The following is a less

involved, approximate method to obtain the buckling load under shear.
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For 0.5� a/b< 1, the buckling load is given by

NxyEcr ¼

p4b
a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

14:28

D12
þ 40:96

D1D2
þ 40:96

D1D3

s with

D1¼ D11 þD22

�
a

b

�4
þ 2 D12 þ 2D66ð Þ

�
a

b

�2

D2¼ D11 þ 81D22

�
a

b

�4
þ 18 D12 þ 2D66ð Þ

�
a

b

�2

D3¼ 81D11 þD22

�
a

b

�4
þ 18 D12 þ 2D66ð Þ

�
a

b

�2

ð6:19Þ

For a/b¼ 0, use the results of the next section for long plates. Finally, for 0� a/b< 0.5,

interpolate linearly between the result for a/b¼ 0 and a/b¼ 0.5. The accuracy of this approach

depends on the bending stiffnesses of the plate and its aspect ratio a/b, and ranges from less than

one percent to 20% for typical layups used in practice.

6.4 Buckling of Long Rectangular Composite Plates under Shear

The Galerkin-based derivation of the previous section can be simplified significantly if one

of the plate dimensions is long compared with the other. In such a case, the long dimension

does not affect the buckling load and the buckling pattern is confined over a length L,

which is significantly lower than the panel long dimension. The situation is shown in

Figure 6.10.

FollowingThielemann [7], and assuming a simply supported plate, an expression for the out-

of-plane displacement w can be assumed in the form:

w ¼ wo sin
px
a
sin

pðy� x tan aÞ
L

ð6:20Þ

a

x

y

α

0 degreesL

Figure 6.10 Buckling pattern in a long rectangular plate under shear
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This expression satisfies the conditions that w is zero along the long sides (x¼ 0 and x¼ a)

and along lines inclined by an angle a to the x axis separated by distance L, as shown in

Figure 6.10. It should be noted that in the actual buckling pattern these inclined lines of zero w

are not perfectly straight as Equation (6.20) implies, but the error in assuming perfectly straight

lines is small.

The buckling load is obtained by minimizing the energy stored in the plate. It is assumed

that the laminate is symmetric so the internal potential energy (Equation 5.63) decouples in a

membrane (in-plane) portion (the terms involving the A matrix) and a bending (out-of-plane)

portion (the terms involving the D matrix). For the buckling problem under consideration,

onlyw is of interest and, therefore, only the terms involving theDmatrix are used. In addition,

it is assumed that D16¼D26¼ 0. Then, the internal potential energy has the form:

U ¼ 1

2

ðð
A

D11

@2w

@x2

� �2

þ 2D12

@2w

@x2
@2w

@y2
þ 4D66

@2w

@x@y

� �2

þD22

@2w

@y2

� �2
( )

dxdy ð6:21Þ

Using Equation (6.20) to substitute forw in Equation (6.21) and carrying out the integrations

gives:

U ¼ aL

2

D11

w2
op

4

4

1

a2
þ tan2 a

L2

0
@

1
A

2

þ w2
op

4

a2L2
tan2 a

2
4

3
5þ 2D12

w2
op

4

4L2
1

a2
þ tan2 a

L2

0
@

1
Aþ

D22

w2
op

4

4L4
þ 4D66

w2
op

4

4a2L2
þ w2

op
4

4L4
tan2 a

0
@

1
A

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

which, after rearranging and simplifying, becomes:

U ¼ w2
op

4L

8a3

D11 1þ 6 tan2 aAR2 þ tan4 aAR4
� �þ 2 D12 þ 2D66ð Þ AR2 þAR4 tan2 a

� �þ
D22AR

4

" #

ð6:22Þ
where AR¼ a/L

Now the work done by the applied load Nxy is given by Equation (5.68) with Nx¼Ny¼ 0

W ¼ � 1

2

ða

0

ðb

0

2Nxy
@w

@x

� �
@w

@y

� �	 

dxdy ð6:23Þ

Using Equation (6.20) to substitute for w and carrying out the integrations gives:

W ¼ w2
oARp

2

4
tan aNxy ð6:24Þ

Minimizing the total potential energy

P ¼ U�W ð6:25Þ
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with respect to the unknown coefficient wo implies,

@P
@wo

¼ 0 ð6:26Þ

which, using Equations (6.22) and (6.24) results in:

2wop4L
8a3

D11 1þ 6 tan2 aAR2 þ tan4 aAR4
� �þ 2 D12 þ 2D66ð Þ AR2 þAR4 tan2 a

� �þ
D22AR

4

2
4

3
5

� 2woARp2 tan a
4

Nxy ¼ 0 ð6:27Þ

The obvious (trivial) solution to Equation (6.27) iswo¼ 0 which corresponds to the in-plane

pre-buckling situation (out-of-plane displacement w is zero). For wo 6¼ 0, Nxy must attain a

critical value which corresponds to the buckling load. Therefore, solving Equation (6.27) for

Nxy¼Nxycrit gives the buckling load:

Nxycrit ¼ p2

2AR2a2 tan a

D11 1þ 6 tan2 aAR2 þ tan4 aAR4
� �þ

2 D12 þ 2D66ð Þ AR2 þAR4 tan2 a
� �þD22AR

4

2
4

3
5 ð6:28Þ

Equation (6.28) shows that the buckling load is a function of the angle a and the length L

through the aspect ratio AR. Since the buckling load is the lowest load at which out-of-plane

displacements w are permissible, the values of tan a and ARmust be determined for which the

right-hand side of Equation (6.28) is minimized. This is done by differentiating with respect

to the two parameters tan a and AR and setting the result equal to zero. Then,

@Nxycrit

@ðARÞ ¼ 0 ) AR ¼ D11

D11 tan4 aþ 2 D12 þ 2D66ð Þ tan2 aþD22

� �1=4
ð6:29Þ

and

@Nxycrit

@ðtan aÞ ¼ 0 ) 3D11AR
4 tan4 aþ 6D11AR

2 þ 2 D12 þ 2D66ð ÞAR4
� �

tan2 a

� D112 D12 þ 2D66ð ÞAR2 þD22AR
4

� � ¼ 0

ð6:30Þ

Equations (6.29) and (6.30) are solved simultaneously for AR and tan a. The results are

substituted in Equation (6.28) to obtain the buckling load Nxycrit.

The accuracy of this approach is compared with a solution obtained by Seydel [8] where the

governing differential equation (6.14) is solved as a product of an exponential function in y and

an unknown function of x. For the comparison, a (0/90)8 laminate with basic ply properties:

Ex¼Ey¼ 68.9 GPa, nxy¼ 0.05, Gxy¼ 4.83GPa, and ply thickness¼ 0.1905mm is selected.

The result is shown in Figure 6.11 where the two methods are shown to be in excellent

agreement (largest difference is less than 7%).
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6.5 Buckling of Rectangular Composite Plates under Combined Loads

A composite plate under compression and shear is shown in Figure 6.12. Its edges are assumed

to be simply supported.

The out-of-plane displacement w is assumed to be of the form

w ¼ w1 sin
px
a
sin

py
b

þw2 sin
2px
a

sin
2py
b

ð6:31Þ

The two terms in the right-hand side of Equation (6.31) are two of the terms in the w

expressions in previous sections (see Equation 6.3). Equation (6.31) satisfies the simply

supported boundary conditions on w,

wðx ¼ 0Þ ¼ wðx ¼ aÞ ¼ 0

wðy ¼ 0Þ ¼ wðy ¼ bÞ ¼ 0

and the fact that the bending moments at the plate boundary are also zero

Mx ¼ �D11

@2w

@x2
�D12

@2w

@y2
¼ 0

My ¼ �D12

@2w

@x2
�D22

@2w

@y2
¼ 0

Nxy

Nxy
x

y
a

b

NxNx

ss
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Figure 6.12 Simply supported plate under compression and shear
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Figure 6.11 Buckling load of a long simply supported plate under shear: comparison of two approaches
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However, substituting in the last two of Equations (5.3) shows that Equation (6.31)

results in nonzero transverse shear forces V (¼ Qz� @Mxy/@x and Qy� @Mxy/@y) at the
plate boundary. This solution is, therefore, an approximation since there are no transverse

shear forces applied on the plate boundaries. In an energy minimization approach, which

is the method that will be used in this case, it is not necessary to satisfy the force

boundary conditions when the problem is formulated in terms of displacements. This was

discussed in Section 5.4. The more terms are used in the w expression (6.31) the higher

the accuracy and the force boundary conditions will, in the limit, be satisfied in an

average sense.

Minimization of the total potential energy of the plate will lead to two equations for the two

unknowns w1 and w2 in the assumed expression for w. It is important to note that for shear

loading cases, assuming a single term for w will not work (see Exercise 6.5). The assumed

shape using one term is quite different from the plate deformations caused by the shear

loading when the plate buckles. At least two terms are necessary to begin capturing the

buckling mode.

For a displacement-based approach, Equations (5.63) and (5.68) can be used. Since the plate

is symmetric (B matrix terms are equal to zero) the in-plane and out-of-plane contributions

to the energy decouple. To determine the out-of-plane displacement w, therefore, the total

energy to be minimized, strain energy minus work done, has the form:

Pc ¼ 1

2

ðð D11

�
@2w

@x2

�2

þ2D12

@2w

@x2
@2w

@y2
þD22

�
@2w

@y2

�2

þ4D66

�
@2w

@x@y

�2

þ

4D16

@2w

@x2
@2w

@x@y
þ4D26

@2w

@y2
@2w

@x@y

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
dxdy

�1

2

ðð
Nx

�
@w

@x

�2

dxdy�
ðð

Nxy

@w

@x

@w

@y
dxdy

ð6:32Þ

It is further assumed that the bending-twisting coupling terms D16�D26� 0.

Equation (6.31) is substituted in the expression (6.32) forPc. As an example, the first term is

shown below:

�
@2w

@x2

�2

¼ w1
2 p4

4b4

�
1� cos

2px
a

��
1� cos

2py
b

�
þw2

2 16p
4

4b4

�
1� cos

4px
a

��
1� cos

4py
b

�

þ2w1w2

4p4

b4
1

4

�
cos

px
a

� cos
3px
a

��
cos

py
b

� cos
3py
b

�

with similar expressions for the remaining derivatives present in Equation (6.32).
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Carrying out the integrations gives

ða

0

ðb

0

@2w

@x2

� �2

dxdy ¼ w2
1

p4

4a4
abþw2

2 4p
4

a4
ab

ða

0

ðb

0

@2w

@y2

� �2

dxdy ¼ w2
1

p4

4b4
abþw2

2 4p
4

b4
ab

ða

0

ðb

0

@2w

@x2
@2w

@y2

� �
dxdy ¼ w2

1

p4

4a2b2
abþw2

2

4p4

a2b2
ab

ða

0

ðb

0

@2w

@x@y

� �2

dxdy ¼ w2
1

p4

4a2b2
abþw2

2

4p4

a2b2
ab

ða

0

ðb

0

@w

@x

� �2

dxdy ¼ w2
1

p2

4a2
abþw2

2

p2

a2
ab

ða

0

ðb

0

@w

@x

@w

@y

� �
dxdy ¼ w1w2p2

2ab

2a

3p
þ 2a

p

� �
2b

3p
� 2b

p

� �
þ w1w2p2

2ab

2a

3p
� 2a

p

� �
2b

3p
þ 2b

p

� �

So the final form for Pc is

Pc ¼ 1

2

D11

�
w2
1

p4

4a3
bþw2

2

4p4

a3
b

�
þ 2ðD12 þ 2D66Þ
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where, for simplicity,

Nxy

Nx

¼ k

and No¼Nxcrit the value of Nx which, simultaneously with Nxy¼ kNx causes buckling of the

plate.
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The energy expression (6.32a) is minimized with respect to the unknown coefficients w1

and w2. This leads to,

@Pc

@w1

¼ 0

@Pc

@w2

¼ 0

and substituting,

1

2
D11

w1p4b
2a3

þ 2ðD12 þ 2D66Þ p
4w1
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2b3
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;�No
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þ 32

9
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2
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8w2p4a
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8<
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þ 32
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Setting, for simplicity,

K1 ¼ 1

4
D11

p4b
a3

þ 2ðD12 þ 2D66Þ p
4

ab
þD22

p4a
b3

� �

Equations (6.33) can be recast in the following generalized eigenvalue problem:

K1 0

0 16K1

" #
w1

w2

( )
¼ No

p2b
4a

� 32

9
k

� 32

9
k

p2b
a

2
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3
777775

w1

w2

( )
ð6:33aÞ

which, with terms appropriately defined, is of the form

~
A
~
x ¼ a

~
B
~
x

The solution is obtained by premultiplying both sides of the equation by
~
B�1 the inverse of

~
B to obtain the standard eigenvalue problem,

~
B�1

~
A
~
x ¼ a

~
I
~
x

where
~
I is the identity matrix.

With

~
B�1 ¼ 1

p4b2

4a2
� 32

9
k

� �2

p2b
a

32

9
k

32

9
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4a

2
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3
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the standard eigenvalue problem has the form:

p2b
a

16
32
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9
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a

where the quantity premultiplying thevector {w1w2}
Ton the right-hand side is the eigenvaluea.

By bringing the right-hand side to the left of the above equation, a system of homogeneous

equations is obtained. For a nontrivial solution, the determinant of the resulting left-hand side

must be set equal to zero. Then, the eigenvalues are obtained as solutions to

det
~
B�1

~
A� a

~
I

� �
¼ 0

which leads to the following equation for the eigenvalue a:

p2b
a

� a
� �

4p2b
a

� a
� �

� 512ð32Þ
81

k2 ¼ 0

Solving for a and recovering No, leads to

No ¼ p2
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Of the two solutions given by Equation (6.34) the one giving the lowest buckling load (in

absolute value) is selected.

Before proceeding with the general case where both Nx and Nxy are nonzero, two special

cases, those of pure compression and pure shear, are examined. This will give insight to how

accurate or inaccurate this two-term solution is.

For pure compression, Nxy¼ 0 and, therefore, k¼ 0. Substituting in Equation (6.34), the

buckling load under compression is given by

No ¼ p2

a2
D11 þ 2ðD12 þ 2D66Þ a

2

b2
þD22

a4

b4

� �
ð6:35Þ

Comparison of this expression with the general expression (6.7) for buckling under

compression shows that the current expression coincides with the exact solution given by

that equation when the number of half-wavesm parallel to the loading direction equals 1. If the

panel aspect ratio is large and/or the difference in bending stiffnesses D11 andD22 is large, the

present approximate solution will depart from the exact solution. The approximate expression

just derived and the exact solution are compared in Figure 6.13. In this comparison, the bending

stiffness values were taken to be D11¼D22¼ 0.66Nm, D12¼ 0.47Nm, D66¼ 0.49Nm, and

D16¼D26¼ 0. As is seen from Figure 6.13, the two solutions are identical up to aspect ratios of

approximately 1.5. For greater aspect ratios, the approximate solution gives higher buckling

loads than the exact solution.
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For pure shear, the ratio k¼Nxy/Nx is allowed to become large (implying Nx is negligible

compared with Nxy). Then, Equation (6.34) simplifies to

Nok ¼ � p2

a2

D11 þ 2ðD12 þ 2D66Þ a
2

b2
þD22

a4

b4

� �

32

9

a

bp2

ð6:36Þ

By recognizing that Nok¼Nxy and rearranging,

Nxycrit ¼ � 9p4b
32a3

D11 þ 2ðD12 þ 2D66Þ a
2

b2
þD22

a4

b4

� �
ð6:37Þ

Equation (6.37) gives an approximate expression for the buckling load of a rectangular

composite panel under shear. The � sign indicates that buckling can be caused by either

positive or negative shear loads. This expression is, typically, 27–30% higher than the exact

solution one can obtain using the procedure in Section 6.3. The accuracy of Equation (6.37) can

be improved if more terms are included in Equation (6.31) at considerable increase in algebraic

complexity [9].

For the combined load case, Equation (6.34) will provide an approximation to the buckling

load. However, for combined loading, the accuracy of this equation is higher than what was

obtained for the compression and shear acting alone, aswas seen inEquations (6.35) and (6.37).

The reason is that, even though the individual buckling loads may be approximate, the

interaction between the two loading types is accurately captured by Equation (6.34).

A comparison of Equation (6.34) with the interaction curve [10] that has been found to be

very accurate for this type of load combination,

Nx

Nxcrit

þ Nxy

Nxycrit

� �2
¼ 1 ð6:38Þ

is shown in Figure 6.14. The approximate and ‘exact’ solutions are very close to each other.

Interaction curves such as the one shown in Figure 6.14 can be very useful in design. They

provide ameans for determining: (a) if a panel fails under combined loadsNx andNxy; or (b) the
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Figure 6.13 Approximate and exact buckling loads as a function of panel aspect ratio
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maximum allowable in one direction (compression or shear) given the applied load in the other.

Load combinations inside the interaction curve imply that the panel does not buckle. Load

combinations corresponding to points outside the interaction curve correspond to a panel that

has buckled already. As an example, consider a casewhere the applied compressive load is half

the buckling load of the panel when only compression is applied (Nx/Nxcrit¼ 0.5). This point

gives the x coordinate in Figure 6.14. The corresponding y coordinate is (approximately) 0.67.

This means that if the applied shear load is less than 67% of the shear buckling load when shear

acts alone, the panel will not buckle under this load combination.

6.6 Design Equations for Different Boundary Conditions
and Load Combinations

Approaches similar to those presented in the three previous sections can be used to obtain

expressions for the buckling loads of rectangular composite panels with different boundary

conditions and/or applied loads. A brief summary for the most common cases [4, 10–12] is

given in Table 6.1. Note that, in all cases, in Table 6.1, the panel is assumed to have no

bending–twisting coupling (D16¼D26¼ 0).

As an example of using Table 6.1, examine the effect of various boundary conditions on a

square composite plate under uniaxial compression. The side of the plate is a and the bending

stiffnesses areD11¼D22¼ 660.5Nmm,D12¼ 467.4 Nmm, andD66¼ 494.5Nmm.Normali-

zing the results to the case of a plate simply supported all around, the results shown in

Figure 6.15 are obtained. The notation CCL implies the loaded sides are clamped. The notation

CCU implies the unloaded sides are clamped. An analogous notation scheme is used for the

simply supported boundary condition.

As is seen from Figure 6.15, the clamped-all-around plate has the highest buckling load. As

expected, the simply supported all-around plate has the lowest buckling load and the clamped/

simply supported combinations lie in between the two extremes. It should be noted that, unlike

beams where the ratio of clamped to simply supported buckling load is 4, for plates, the

corresponding ratio is significantly less (less than 2.5 for the case of Figure 6.15).
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Figure 6.14 Interaction curve for buckling of composite rectangular plate under combined compression

and shear
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Table 6.1 Buckling loads for various boundary conditions and load combinations
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Table 6.1 (continued)
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Exercises

6.1 Consider a composite platewith bending stiffnessesD11,D12,D22, andD66 (D16¼D26¼ 0)

and dimensions a, b as shown below (Figure E6.1). Use the derivation shown in Section 6.5

and assume the compression load Nx¼ 0. Verify the approximate expression for the

buckling load under shear shown in that section by deriving the new 2� 2 eigenvalue

problem and solving for all the eigenvalues. What does the sign of the eigenvalue mean?

(Hint: start either from the energy expression or from the two equations obtained after

differentiation, and set Nx¼ 0).

6.2 One of the spars of awing is 101.6 cmdeep. A bendingmomentM¼ 11290.3Nm is acting

on the spar web (Figure E6.2).

The manufacturer of the spar has automated the process of laying up the following

stacking sequence: [45/–45/0/90/0/–45/45] with the intent of simply stacking upmultiples

of this base laminate everywhere to keep the fabrication costs low. The basic material

properties are:

E11¼ 131 GPa

E22 ¼ 11:37 GPa
G12¼ 4:82 GPa
i12¼ 0:29
tply¼ 0:1524 mm

(Nx=0) 

Nx

Nx
x

y
a

b

NxNx

ss
ss

ss

ss

Figure E6.1 Composite plate under shear

0

0.5

1

1.5

2

2.5

CC all aroundSSL,CCUCCL,SSUSS all around

Buckling load 
(normalized 

to SS all 
around) a

b=a
No No

Figure 6.15 Effect of boundaryconditions onbuckling loadof a square composite plate under compression
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To keep the number of basic laminates stacked together in the spar web low, the

manufacturer/designer intends to use ribs to break up the spar. The rib spacing is a.

Create a graph that shows how the maximum allowable rib spacing a varies with the

number n of basic laminates used for the spar not to buckle. What is the value of a when

n¼ 3, i.e. when the web layup is: [45/–45/0/90/0/–45/45]3?

6.3 Prove that for a simply supported square composite panel for whichD11¼D22, the number

of half-wavesm into which the panel buckles under compression is always 1.What should

the condition be between D11 and D22 for the square panel to buckle in two half-waves?

(Assume D16¼D26¼ 0.)

6.4 A rectangular composite platewith simply supported sides all around is under compression

and shear. A Gr/E unidirectional composite material is available with basic (single ply)

properties:

x

y

Ex ¼ 137:9 GPa
Ey ¼ 11:72 GPa
nxy ¼ 0:29
Gxy ¼ 5:171 GPa
tply ¼ 0:1524 mm

a= 558.8 mm; b= 304.8 mm  

Nxy
x

NxNxy

y
a

b

Nx

ss

ss

ss

ss

Figure E6.3 Composite plate under combined loading

M M

101.6cm 

a = ? 

0 dir 

Figure E6.2 Spar web under in-plane bending moment M
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The application is a wing skin (bending upwards as shown in Figure E6.4) with the

following four loading conditions (note that here, Nx> 0 means compression):

Load case 1 2 3 4

Nx (N/mm) 4.99 31.54 23.84 34.34

Nxy (N/mm) 0.50 25.23 35.76 171.69

For ease of manufacture you want to only use layups of the form [45n/–45n/0n/90n]s.

(a) If the Dij terms of the D matrix for the basic layup [45/�45/0/90]s are known and

denoted by Dijb, determine the Dij for any value of n as a function of Dijb.

(b) Use your result in (a) to determine the lowest value of n such that all load conditions are

met without buckling of the plate. Do not use any knockdowns for environment,

material scatter or damage.

(c) For your final answer in (b), determine themaximum applied stress samax for a linearly

distributed applied normal stress as shown in Figure E6.4 that causes buckling of

the plate.

6.5 Use only the first term of Equation (6.31) to determine the buckling load of a composite

rectangular plate of dimensions a� b under shear. Do this by: (a) energy minimization

and (b) solution of the governing equation. Discuss the merits of this approach and

its disadvantages.
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7

Post-Buckling

Post-buckling is the load regime a structure enters after buckling (Figure 7.1). In several

situations, dictated by robust design practices, externally imposed requirements, or even the

degree of comfort a designer is willing to accept, especially for single load path critical

structures, bucklingmay be taken to coincidewith final failure. However, in general, there may

be considerable load capacity beyond buckling before final failure occurs. This is true in

particular for plates, which, in contrast with beams (Figure 7.2) may have significant load-

carrying ability beyond buckling. This ability is often capitalized on to generate designs of

lighter weight.

As is seen from Figure 7.2, after buckling (P/Pcr> 1) the center deflections of a beam

increase rapidly compared with those of a plate. This means that, in a beam, high bending

moments develop early in the post-buckling regime and will lead to failure. In a plate on the

other hand, the deflections increase more slowly with increasing load and the panel can

withstand significant excursion in the post-buckling regime before the resulting bending

moments become critical.

This ability of plates to withstand load in the post-buckling regime without failing makes

such configurations very attractive for design. Thinner skins can be used in wings and

fuselages, resulting in lighter structure. However, designing in the post-buckling regime

requires knowledge and accurate quantification of failure modes that are not present below the

buckling load. One such failure mode is the skin–stiffener separation in stiffened panels shown

schematically in Figure 7.3.

The buckled pattern consists of a number of half-waves as shown in Figure 7.3. Depending

on which way the skin deforms locally, there will be locations such as the one shown in

Figure 7.3 where the skin tends to peel away from the stiffeners. Out-of-plane normal and

shear stresses develop which may exceed the material strength and lead to separation and

final failure.

Even if the out-of-plane stresses that develop during post-buckling do not lead to

skin–stiffener separation under static loading, they may lead to the creation of delaminations

under repeated loading. Designing post-buckled panels that performwell under fatigue loading

requires accurate knowledge of internal loads and the use of geometries and layups that delay

the creation and growth of delaminations.
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Figure 7.1 Post-buckled curved composite stiffened panel (See Plate 15 for the colour figure)
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Figure 7.2 In-plane load versus center deflection for plates and beams
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Figure 7.3 Post-buckled skin between stiffeners in a stiffened panel
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The tendency for the stiffeners to separate from the skin or,more generally, for delaminations

to form, is higher for higher values of the ratio of the applied load to the buckling load. This ratio

is referred to as the post-buckling ratio (PB) and, for post-buckled structures, is greater than 1.

The PB ratio to be used in a designmust be carefully selected, especially for load situations that

include shear. Note that the post-buckling ratio should not be confused with the post-buckling

factor defined later in Section 7.2.

At the conservative end of the design spectrum, PB is not allowed to exceed 1.5. This means

that the structure would buckle at limit load and fail at ultimate load. This protects against

fatigue loading as the fatigue loads are lower than the limit load and, therefore, the structure

does not buckle repeatedly during service. At the other end of the design spectrum, PB values

greater than 5 are very challenging because the loads in the post-buckling regime, both static

and fatigue, are significant and it is hard to design efficient structure that will not fail after a

relatively low number of cycles.

In a typical structure, such as a stiffened panel, a number of components or structural details

may buckle. Selecting the sequence in which the various components of a structure will buckle

is crucial for creating a lightweight design. For example, for the stiffened panel of Figure 7.4 the

following bucklingmodes can be identified: (a) panel buckles as awhole, the stiffeners serve to

mainly increase the bending stiffness of the panel; (b) skin between stiffeners buckles and

stiffeners remain straight, stiffeners carry significant axial loads; (c) stiffeners buckle as

columns; and (d) stiffener flanges buckle locally (crippling).

The panel in Figure 7.4 is loaded under compression, but the buckling modes mentioned are

valid, with minor changes for any load situation that may induce buckling. For a panel under

compression, it is usually more efficient to carrymost of the compressive load by the stiffeners.

The stiffener cross-sectional area required to carry compressive load is a smaller fraction of the

total weight than the skin cross-section required to carry significant amounts of compressive

load. This means that the stiffeners must remain straight (no column buckling and no crippling

see Sections 8.3 and 8.5) and the panel should not buckle as a whole which would force the

frame

frame 

stiffeners

skin

Figure 7.4 Stiffened panel under compressive load
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stiffeners to bend out-of-plane and lose axial load capability. Therefore, usually, the buckling

scenario for a post-buckled panel under compression requires that buckling of the skin between

stiffeners happens first.

For a panel buckling under shear load, forcing the skin between stiffeners to buckle first is

also desirable. For judiciously chosen stiffener spacing and with sufficient bending stiffness in

the stiffeners, the buckling load of the skin between stiffeners can be increased or, more

importantly, the amount of skin thickness required to have the skin between stiffeners buckle

at a required PB ratio can be decreased. This decrease in skin thickness decreases the

panel weight.

After the skin between stiffeners buckles the load can be increased until the desired PB value

is reached. At that point the next failure mode occurs which can be any of the buckling and

failure modes mentioned above, or material failure of any of the constituents. The preferred

failure mode is skin material failure and/or crippling of the stiffeners. (Global) buckling of the

panel as a whole or column buckling of the stiffeners is avoided because this would overload

adjacent panels in the structure and might lead to catastrophic failure. Local skin or stiffener

failures still leave some load-carrying ability in the panel and the load redistributed in adjacent

panels is less. This results in a more damage tolerant overall structure.

In addition to the failure modes and their sequence, the boundary conditions of the panel as

a whole, but also of the skin between stiffeners, can be very important and, at least for the

skin, is directly related to when skin buckling occurs. As was shown in Section 6.6, the

boundary conditions can increase the buckling load bymore than a factor of 2 (clamped versus

simply supported conditions in Figure 6.15). This is directly related to the stiffener cross-

section selected. A schematic of the two extreme behaviors is shown in Figure 7.5

In both cases in Figure 7.5 it is assumed that the stiffeners have sufficient bending stiffness

to stay straight and force the panel to buckle between them. This means that they act as

panel breakers (see Section 9.2.1 for related discussion). In Figure 7.5a the torsional rigidity

of the stiffeners is negligible (open cross-section stiffeners). As a result, they rotate with

the skin locally and the corresponding boundary condition they impose is that of a simple

support (zero deflection but nonzero rotation). In Figure 7.5b, the closed-cross-section

stiffeners have very high torsional rigidity and they locally force the skin to remain nearly

horizontal. In such a case, the imposed boundary condition approaches that of a fixed support

(zero deflection and slope).

(b) Stiffeners provide fixed support 

(a) Stiffeners provide simple support  

Figure 7.5 Skin buckling between stiffeners – effect of stiffener support
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7.1 Post-bucking Analysis of Composite Panels under Compression

The specific case of a square simply supported plate with three edges immovable and one

loaded in compression (Figure 7.6) will be used as the example to bring out the most important

characteristics of the behavior.

The in-plane deflections u and v of the panel at the three edges y¼ 0, x¼ 0, y¼ a are zero

(immovable edges). This means that an in-plane transverse force Pymust develop at y¼ 0 and

y¼ a in order to keep the panel edges frommoving. The out-of-plane deflection w of the panel

is zero all around its boundary (simple-support condition). The applied load Px (units of force)

at x¼ a is a result of a uniformly applied deflection �C at that location. The boundary

conditions of the problem can then be written as:

w ¼ 0 at x ¼ y ¼ 0 and x ¼ y ¼ a

u ¼ 0 at x ¼ 0

v ¼ 0 at y ¼ 0 and y ¼ a

u ¼ �C at x ¼ a

ð7:1Þ

As the plate may undergo moderate to large deflections once it buckles, the governing

equations are the two von Karman large-deflection equations (5.16) and (5.20) repeated here

for convenience:

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ Nx

@2w

@x2
þ 2Nxy

@2w

@x@y
þNy

@2w

@y2

�px
@w

@x
�py

@w

@y
þ pz

ð5:16Þ
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!
þ
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@4F

@x2@y2
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�@2w

@x2
@2w

@y2
ð5:20Þ

For the present case where the distributed loads px, py, and pz are zero (and the potential V is

zero), these equations simplify to:

a

a

Px
(applied
force)

rigid

x

y

Figure 7.6 Square composite panel under compression
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D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w
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@2w
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and

1
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12
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� �
� 1

A66

@4F

@x2@y2
¼ @2w

@x@y

� �2
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The solution to equations (5.16a) and (5.20a) can be obtained using infinite series. Here, for

simplicity, the series are truncated after the first few terms. The results will be of sufficient

accuracy to show the basic trends.

The following expressions are assumed for w and F:

w ¼ w11sin
px
a
sin

py
a

ð7:2Þ

F ¼ �Px

a

y2

2
�Py

a

x2

2
þK20cos

2px
a

þK02cos
2py
a

ð7:3Þ

with w11, K20, K02, and Py unknowns.

It is readily seen that the expression for w satisfies the first of boundary conditions

(Equations (7.1)). The expression for the Airy stress function F is constructed such that the

average loads Px, at any station x, and Py, at any station y, are recovered. This can be seen by

integrating the first two of equations (5.17) with V¼ 0. The first is integrated with respect to y

and the second with respect to x.

Using Equations (7.2) and (7.3) to substitute in Equation (5.20a) gives,

A22

A11A22�A12
2
K02

16p4

a4
cos

2py
a

þ A11

A11A22�A12
2
K20

16p4

a4
cos
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¼ w11
2 p4

2a4
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2py
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þw11
2 p4

2a4
cos

2px
a

ð7:4Þ

Matching coefficients of cos 2px/a and cos 2py/a gives

K02 ¼ A11A22�A12
2

A22

w11
2

32
ð7:5Þ

K20 ¼ A11A22�A12
2

A11

w11
2

32
ð7:6Þ

With these expressions for the coefficients K20 and K02, the second von Karman

equation (5.20a) is satisfied exactly.

Before proceeding to the first von Karman equation (5.16a), the transverse load Py and the

displacement�C at x¼ a corresponding to the applied load Px are determined. The nonlinear

strain displacement equation (5.13a) is rearranged:
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@u

@x
¼ exo� 1

2

@w

@x

� �2

and the first of the inverted strain–stress equations (5.19) is used to substitute for the midplane

strain exo. This gives

@u
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¼ A22

A11A22�A12
2
Nx� A12

A11A22�A12
2
Ny� 1

2

@w

@x

� �2

Now the first two equations of (5.17) can be used to substitute for Nx and Ny in terms of F

(with V¼ 0 as mentioned earlier):
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Integrating over the entire plate,
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Equations (7.2) and (7.3) can be used to substitute for F and w. This leads to
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2

A11A22�A2
12

�Px

a

� �
� A12a

2

A11A22�A2
12

�Py

a

� �

� 1

2

ðð
ðw11

p
a
cos

px
a
sin

py
a

� �2
dxdy ð7:8Þ

But u(a,y)¼�C and u(0,y)¼ 0 from (7.1). Substituting, performing the integration on the

right-hand side, and rearranging,

C ¼ aA22

A11A22�A2
12

Px

a
� aA12

A11A22�A2
12

Py

a
þw2

11
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8a
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In an exactly analogous fashion, but starting this time from (5.13b):

eyo ¼ @v

@y
þ 1

2

@w

@y

� �2

and using the third of Equations (7.1), the transverse load Py is obtained as:

Py ¼ Px

A12

A11

�w2
11

p2

8a

A11A22�A2
12

A11

ð7:10Þ

It is interesting to note that for in-plane problems, where w11¼ 0, Equation (7.10) gives

Py ¼ Px

A12

A11
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Also, for isotropic plates, it can be shown that A12/A11 equals the Poisson’s ratio n and thus,

Py ¼ nPx

as expected.

At this point, Py is known from Equation (7.10) and one can substitute in the first von

Karman equation (5.20a). To do this, the following intermediate results are used:
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In addition, the following trigonometric identities are used:
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Upon substituting in Equation (5.20a) there will be terms multiplying sin (px/a)sin (py/a)
and terms multiplying sin(3px/a) sin(py/a) or sin (px/a)sin (3py/a). The terms involving 3px/a
or 3py/a are higher-order terms that would lead to additional equations if additional terms in the

w expression (7.2) had been included. For the current expression forwwith only one term, only

coefficients of sin (px/a)sin (py/a) are matched giving the following equation:

p2

a

ðA11A22�A2
12ÞA11þ3A22
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w3
11þ

p2

a
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A22
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which can be solved for w11 to give:

w11 ¼
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With w11 known from Equation (7.11), Py can be obtained from (7.10) and K02, K20 can be

obtained from (7.5) and (7.6). This completely determines the displacement w and the Airy

stress function F from Equations (7.2) and (7.3).
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Equation (7.11) has certain important implications. The denominator in the quantity in

brackets under the square root is the buckling load (units of force) for a square platewith simply

supported and immovable edges. This expression is exact for a square plate. By denoting this

buckling load by Pcr:

Pcr ¼ p2

a

ðD11 þ 2ðD12 þ 2D66ÞþD22Þ
1þ A12

A11

� � ð7:12Þ

Equation (7.11) can be rewritten as:

w11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16A11A22ðD11 þ 2ðD12 þ 2D66ÞþD22Þ

ðA11A22�A2
12ÞðA11 þ 3A22Þ

Px

Pcr

�1

� �s
ð7:11aÞ

It can be seen from Equaion (7.11a) that the quantity under the square root is negative if the

applied loadPx is less than the buckling loadPcr. In such a case,w11 does not exist. Out-of-plane

deflections, corresponding to a positive value of w11 are possible only after the plate has

buckled and the applied load Px is greater than the buckling load Pcr.

Additional implications are better understood through an example. Consider a square plate

with layup (�45)/(0/90)/(�45) made of plain weave fabric plies. Note that for such a

symmetric layup D16 and D26 are always zero. The basic material properties are given below:

Ex ¼ Ey ¼ 68:94 GPa
vxy ¼ 0:05
Gxy ¼ 5:17 GPa
tply ¼ 0:19 mm

With these properties the pertinent quantities in Equation (7.11) can be calculated:

D11 659.7 Nmm A11 28912.44 N/mm

D12 466.9 Nmm A12 12491.43 N/mm

D22 659.7 Nmm A22 28912.44 N/mm

D66 494.0 Nmm A66 13468.58 N/mm

and a plot of applied (normalized) load versus (normalized) center deflection is given in

Figure 7.7. The plate thickness is denoted by h.

As already discussed, the center deflection w11 is zero for applied loads Px lower than the

buckling loadPcr. Once the applied loadPx exceeds the buckling loadPcr, the plate deflects out-

of-plane and w11> 0. As already suggested by the qualitative discussion of Figure 7.2, the

load versus deflection curve is nonlinear and, for a plate, starts relatively flat and increases

rapidly only after the center deflection becomes significantly larger than the plate thickness

(w11/h> 1).

The distribution of the in-plane load Nx is also very interesting. Nx can be obtained from the

first of equations (5.17) with V¼ 0 after substituting into (7.3) with Py, K02, and K20 given by

Equations (7.10), (7.5), and (7.6) respectively. A plot of Nx as a function of the transverse

coordinate y is shown in Figure 7.8.Nx is normalized by the averageNx valuewhich equalsPx/a,

and the y coordinate is normalized by the plate dimension a. The peak value ofNx occurs at the

panel edge, suggesting that failure of a post-buckled plate under compressionwill initiate there.
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The variation of Nx is shown for different load ratios Px/Pcr, starting with Px¼Pcr, which is

the case when the plate just buckles under compression. In that case, the in-plane force Nx is

constant across the plate, as indicated by the vertical line in Figure 7.8. As the applied load

increases beyond the buckling load (Px/Pcr> 1) the Nx distribution is no longer uniform. More

load concentrates at the edges of the panel while the load at the center ismuch lower. Already at

Px/Pcr¼ 2 the load at the panel edge is approximately twice the value at the center as can be

seen fromFigure 7.8. AtPx/Pcr¼ 5, the load at the edge is, approximately, four times the load at

the panel center.

The reason for this nonuniform distribution is that once the plate buckles, its center is softer

than the edges where the supports are. So load is diverted from the center to the edge of the

panel. This difference between the load at the center and the edges of the panel becomes more

and more pronounced as the load ratio Px/Pcr increases.

This load redistribution can be used in design to generate simpler (conservative) design

equations. The approach is based on approximating the actualNx distribution by a step function

that is zero at the panel center and generates the same total applied force. This is shown

schematically in Figure 7.9. At each of the loaded edges of the panel, the loadNx is localized at

the two edges, is constant, and is acting over an effectivewidth beff. Themagnitude ofNx equals

the maximum magnitude of Nx shown in Figure 7.8 for the respective Px/Pcr.
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Figure 7.7 Load versus deflection for a square plate with layup (�45)/(0/90)/(�45)
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Figure 7.8 In-plane axial load Nx as a function of location and post-buckling ratio
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The total force applied by this step-wise distributionmust equal the applied load Px. In terms

of the force per unit width Nx this requirement can be expressed as:ð
Nxdy ¼ 2ðNxmaxÞbeff ð7:13Þ

Now from equation (5.17),

Nx ¼ @2F

@y2
¼ �Px

a
�A11A22�A2

12

A22

w2
11

32

2p
a

� �2

cos
2py
a

which is maximized when y¼ a/2, i.e. at the edge of the panel. Then,

Nx max ¼ �Px

a
�A11A22�A2

12

A22

w2
11

32

2p
a

� �2

ð7:14Þ

Also, by the definition of Px, ð
Nxdy ¼ �Px

Using this result and Equation (7.14) to substitute in (7.13), withw11 given by (7.11a), gives

an equation for beff. Solving for beff gives:

beff ¼ a
1

2 1þ 2 1þ A12

A11

� �
1�Pcr

Px

� �
A11

A11 þ 3A22

� � ð7:15Þ

This beff can be viewed as the effective portion of the skin over which applying themaximum

Nx value given by Equation (7.14) gives a loading that is equivalent to the applied load Px, but

also conservative. It is conservative because a larger portion of the plate is exposed to the

maximum value Nxmax than the exact Nx distribution suggests. As a result, designing a

compressive panel in the post-buckling regime is equivalent to checking if the stress

Nxmax/h (where h the plate thickness) exceeds the allowable compression stress for the layup

used and if so, reinforcing the panel edges over a distance given by Equation (7.15) so that there

is no failure.

beff

a

a

peak Nx
value

⇔

Figure 7.9 Equivalent in-plane compression in the post-buckling regime
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It should be noted that for a quasi-isotropic layup,

A12

A11

¼ n12

A11

A11 þ 3A22

¼ 1

4

n12 � 0:3

and substituting in Equation (7.15) gives

beff ¼ a
1

2þ 1:3 1�Pcr

Px

� � ðfor quasi�isotropic layupÞ ð7:15aÞ

For cases with large loading ratios where Px�Pcr Equation (7.15a) becomes

beff ¼ 0:303a ðfor quasi�isotropic layup with Px=Pcr � 1Þ
Equation (7.15) suggests a dependence of beff on the ratios A12/A11 and A22/A11. The first

ratio, is a measure of Poisson’s ratio and the second a measure of degree of orthotropy.

While these ratios are independent, for typical composite materials they lie within a range

(for example a 0� ply of unidirectionalmaterial has a high degree of orthotropy, andA22/A11 can

be as low as 0.1, but the corresponding Poisson’s ratio A12/A11 is typically between 0.25 and

0.35). Based on typical composite material values, the three curves shown in Figure 7.10 can

be constructed. The upper and lower curves correspond to extreme cases of high

degree of orthotropy and the middle curve corresponds to a quasi-isotropic laminate. The

two extreme curves give an idea of the range of variation of beff for typical composite

materials. Note that as expected, all curves go through beff/a¼ 0.5 when Pcr/Px¼ 1. This

means that at buckling the entire skin is effective so the strip on each edge equals half the

plate thickness.

It should be emphasized that the preceding discussion and derivation were based on

single- or two-term expansions of the deflection w and Airy stress function F. The resulting

post-buckled shape has a single half-wave across the entire plate. As such, while the basic
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Figure 7.10 Variation of beff as a function of loading fraction and material properties
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conclusions of the present analysis are valid, the absolute numbers may not be sufficiently

accurate for detailed analysis (but they are for preliminary design). This is particularly true for

plates with aspect ratios different from 1, where the post-buckled shape involves more than the

one half-wave assumed here. In such a case, more terms should be included in the analysis (see

also Exercise 7.3).

Oncew and F are known the internal forces (Nx,Ny, andNxy) and moments (Mx,My andMxy)

can be determined. Based on these, ply strains and stresses can be calculated and a failure

criterion invoked. This can be a first-ply failure criterion (see Chapter 4) or a semi-empirically

derived criterion based on test results.

7.1.1 Application: Post-Buckled Panel Under Compression

Consider a square plate simply supported all around (w¼ 0) with three edges immovable (no

displacement perpendicular to them in the plane of the plate) and one edge loaded by a force of

2152 N, as shown in Figure 7.11.

Two candidate layups are proposed using plainweave fabricmaterial: LayupAwith stacking

sequence (�45)/(0/90)3/(�45) and Layup B with stacking sequence (0/90)/(�45)/(0/90)/

(�45)/(0/90). Note that the two layups have exactly the same thickness and plies used. Only the

ordering of the plies is different.

The basic material (ply) properties are given by:

Property Value

Ex 69GPa

Ey 69GPa

nxy 0.05

Gxy 5.1GPa

tply 0.19mm

It is required to determine the location and magnitude of the highest Nx value and which of

the two proposed layups is better for this application.

200 mm

200 mm 

immovable 

immovable

immovable

2152 N 

w=0, v=0 

w=0, v=0 

w=0, u=0 

w=0,
u=const 

x

y

Figure 7.11 Square plate under compression
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The boundary conditions and loading are the same as the post-buckling under compression

situation analyzed earlier in this section and the solution just derived applies. From classical

laminated-plate theory the following properties are obtained for each of the two layups:

Layup A Layup B

a 200 200 mm

b 200 200 mm

A11 55265 55265 N/mm

A12 13821.5 13821.5 N/mm

A22 55265 55265 N/mm

A66 15452.5 15452.5 N/mm

D11 3412.967 4560.031 Nmm

D12 1809.787 662.723 Nmm

D22 3412.967 4560.031 Nmm

D66 1932.848 785.784 Nmm

t 0.9525 0.9525 mm

E10 5.44E þ 10 5.44E þ 10 N/m2

E20 5.44E þ 10 5.44E þ 10 N/m2

E60 1.62E þ 10 1.62E þ 10 N/m2

Applying Equation (7.12), the buckling load for Layup A is found to be 718 N and for

Layup B 536 N, which is 25% smaller than Layup A. This is due to the rearranging of the

stacking sequence. It is interesting to note that placing (�45) plies on the outside as in Layup A

increases the buckling load. This can be seen fromEquation (7.12)where the coefficient ofD66,

which is 4, is higher than the coefficients of the remaining Dij terms in the buckling load

expression. Thus, increasing D66 increases the buckling load more than does the same

percentage increase in other Dij terms. And placing �45� plies on the outside of a layup

maximizes D66.

Since the applied load is 2152N, both layups have buckled and the post-buckling ratio PB for

Layup A is 2152/718¼ 3.0 and for Layup B is 2152/536¼ 4.0 Using Equation (7.11a) the

corresponding maximum center deflections w11 for the two layups are found to be:

w11A ¼ 1:67 mm

w11B ¼ 1:78 mm

These deflections are about twice the plate thickness and justify the use of large deflection

theory. Even though Layup B has 25% lower buckling load, its center deflection is only 6.5%

higher than Layup B, showing that increased bending stiffness has less of an effect in the post-

buckling regime.

Using Equations (7.5) and (7.6), the constants K02 and K20 are found to be:

Layup A Layup B

K02¼K20¼ 4538.78 5112.312
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The in-plane force Nx now be determined from Equations (5.17) and (7.3) as:

Nx ¼ � Px

a
þ 4p2

a2
K02 cos

2py
a

� �

where Px is the applied load 2152N and a is the side of the plate, 200mm.

The expression for Nx is independent of x so it is the same for any x location along the plate.

Substituting values, the plot of Nx as a function of y can be obtained and it is shown for both

layups in Figure 7.12.

As can be seen from Figure 7.12 and as expected from the expression for Nx above and the

earlier discussion, Nx reaches its maximum compressive values at the edges of the panel. It is

also evident from Figure 7.12 that the maximum Nx values for the two layups differ only by

3.7%. Thus, a significant difference (25%) in the buckling load leads to a negligible difference

in the maximum in-plane force in the plate. This suggests that the failure loads in the post-

buckling regime for the two layups will be close to each other. Thus, significant differences in

buckling performance do not translate to analogous differences in post-buckling performance.

7.2 Post-buckling Analysis of Composite Plates under Shear

A post-buckled stiffened composite plate under shear is shown in Figure 7.13. The buckling

pattern consists of half-waves confined between the stiffeners. These half-wavesmake an angle

a with the stiffener axis.
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Figure 7.13 Stiffened composite panel in the post-buckling regime (See Plate 16 for the colour figure)
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The situation of Figure 7.13 is idealized in Figure 7.14.

Assuming that the bending loads are taken by the two frames, the skin between stiffeners is

under pure shear. The constant (applied) shear in each skin bay is then given by:

ta ¼ V

ht
ð7:16Þ

When the applied shear load V is low, the skin does not buckle and the shear stress ta can be

resolved into a biaxial state of stress consisting of tension stress st along a 45� line (see last bay
in Figure 7.14) and a compression stress sc. It can be shown that themagnitudes of st and sc are
equal. This can be derived from the standard stress transformation equations (3.35):

�sc

st

t12

8>>><
>>>:

9>>>=
>>>;

¼
cos2y sin2y 2 sin y cos y

sin2y cos2y �2 sin y cos y

�sin y cos y sin y cos y cos2y�sin2y

2
6664

3
7775

sx

sy

txy

8>>><
>>>:

9>>>=
>>>;

ð7:17Þ

In Equation (7.17), the original coordinate system x,y (see Figure 7.14) is rotated through the

angle y to the new 1,2 (or c,t) coordinate system. Aminus sign appears in front of sc on the left
hand side to stay consistent with the orientation of sc in Figure 7.14 (the sign convention

requires tensile normal stresses to be positive; sc is compressive). Given the sign convention in

the xy coordinate system, txy¼�ta.
Also, in the same coordinate system, sx¼ sy¼ 0. And for y¼ 45�, Equation (7.17)

simplifies to:
sc ¼ ta

st ¼ ta

t12 ¼ 0

ð7:18Þ

The fact that the shear stress t12 is zero in the 1–2 coordinate system implies that the 1–2 axes

are principal axes. This is expected from the fact that the skin is under pure shear, which

translates to pure biaxial loading (tension and compression) in a coordinate system rotated by

45� with respect to the original.
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Figure 7.14 Stiffened skin under shear
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Equation (7.18) describes the situation until the skin buckles. Once the skin buckles, it is

assumed that, the compression direction of the skin cannot support any higher stress. So as the

applied load is increased beyond the load that causes skin buckling, the compressive stress sc
stays constant and equal to its value at buckling. Letting tcr be the value of ta when the skin

buckles, the compressive skin stress after the skin buckles is given by

sc ¼ tcr for ta > tcr or V > Vcr ð7:19Þ
where Vcr is the applied shear load at which the skin buckles.

The stresses in the skin after it buckles can be determined by considering equilibrium of the

triangular piece of skin with base length dx shown in detail B in Figure 7.14. The free-body

diagram of that detail is shown in Figure 7.15.

With reference to Figure 7.15, if the length of segment AC is dx, then, by Pythagoras’

theorem, the two segments AB and BC are:

AB ¼ BC ¼ dxffiffiffi
2

p ð7:20Þ

As already mentioned, sides AB and BC are under pure compression and pure tension

respectively (x and y axes are principal axes). On the other hand, both a shear stress ta and a

normal stress s are applied on side AC. Considering force equilibrium in the x direction,

st

�
tdxffiffiffi
2

p
�
sin 45þ sc

�
tdxffiffiffi
2

p
�
sin 45�tatdx ¼ 0 )

st þ sc
2

¼ ta

ð7:21Þ

Similarly, considering force equilibrium in the y direction,

�st

�
tdxffiffiffi
2

p
�
cos 45þ sc

�
tdxffiffiffi
2

p
�
cos 45þ stdx ¼ 0 )

st�sc
2

¼ s
ð7:22Þ
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Figure 7.15 Free-body diagram of triangular skin element after buckling
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Now sc is constant and given by Equation (7.19) while ta is proportional to the applied load V
and given by Equation (7.16). Therefore, Equations (7.21) and (7.22) form a system of two

equations in the two unknowns st and s. Solving:

st ¼ 2ta�sc
s ¼ ta�sc

and using Equations (7.16) and (7.19),

st ¼ 2V

ht
�tcr ð7:23Þ

s ¼ V

ht
�tcr ð7:24Þ

Asmentioned earlier, tcr is the shear stress at which the skin buckles. This can be determined

following the procedures of Sections 6.3–6.5 (for example Equation 6.28 for long plates or 6.37

with appropriate adjustment to improve its accuracy).

Designing a composite skin under shear in the post-buckling regime would then require

the determination of a layup that will not fail when stressesst andsc are applied. Note that these
are along the axes 1,2 in Figure 7.14 and, therefore, the resulting layup would be in that

coordinate system and would have to be rotated in order to express it in the original

xy coordinate system. In addition to the skin, the stiffeners and flanges would have to

be designed taking into account the stresses s and ta (for stiffener and flange design see

Sections 8.3–8.7).

It is important to note that the preceding derivation only gives the average stresses in the skin

and assumes that the angle of the principal axes remains constant and equal to 45� after

buckling. In reality, the angle changes as the applied load increases. The solution given above is

conservative and mainly underlines the fact that the skin is under increasing tension along

diagonal lines (hence the term ‘diagonal tension’ for such situations) and constant compression

perpendicular to these diagonal lines. For sufficiently high applied loads the effect of the

compression stress sc is very small and can be neglected.

An improved analytical approach for post-buckled panels under shear was proposed

by Wagner for isotropic materials [1, 2]. In this analysis the effect of stiffener spacing,

flange geometry, and skin dimensions is taken into account and an iterative set of equations

is derived for the post-buckling angle a (Figure 7.16) and the stresses in the skin, stiffeners

and flanges.

hA

Figure 7.16 Post-buckled skin under shear showing post-buckling angle a
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The analysis by Wagner was further improved by Kuhn et al. [3, 4] who accounted more

accurately for the relative stiffnesses of skin, stiffeners and flanges and used test results to

derive some of their semi-empirical equations. In fact, the analysis by Kuhn et al. forms

even today, with minor modifications, the basis for designing isotropic post-buckled panels

under shear.

For the case of composite materials, the analysis by Kuhn et al. was modified by Deo et al.

[5, 6]. The basic results from their work form the starting point for the discussion in

Section 7.2.1. In what follows, the mathematical aspects of their method are improved upon

in order to minimize or eliminate the need for iterations.

7.2.1 Post-buckling of Stiffened Composite Panels under Shear

The situation is shown in Figure 7.16.

Before going into the equations that describe the state of stress in the panel of Figure 7.16, a

qualitative discussion of how loads are shared between the different components might help

visualize what happens. Consider that the panel of Figure 7.16 is a portion of a fuselage, with

the two flanges (above and below) being frames and the vertical stiffeners being stringers.

It is simpler to visualize what happens if only a shear load is applied as in Figure 7.16. This

could be the result of torsion in the fuselage. Combined load cases are briefly discussed in the

next section. If the load is low enough and the skin does not buckle, the skin is under pure shear

and there is no load in the stringers or the frames.

After the skin buckles in shear, it resists the applied load in diagonal tension along lines

forming an angle a with the frames. A small amount of compression (see Equation (7.19)) is

also present. As the skin pulls away from the stiffeners it exerts both a tension load along each

stiffener and a transverse load that would bend the stiffener in the plane of Figure 7.16. This is

shown in Figure 7.17 where detail A from Figure 7.16 is put in equilibrium.

At the interface between skin and stringer a normal stress ss and a shear stress ts must

develop to put the skin in equilibrium. These, in turn, are exerted on the stringer. In order for the

stringer to be in equilibrium axial loadsPst1 and Pst2 and bendingmoments must develop. In an

skin stringer 

t

c
s

s

s

s

Pst2

Pst1

Figure 7.17 Equilibrium of detail A from Figure 7.16

Post-Buckling 163



 

analogous fashion, axial and bending loads develop in the frames. Therefore, determining the

stresses or strains not only in the skins, but also in the stringers and frames becomes crucial for

designing such structures in the post-buckling regime.

The best analytical solution for composite panels in the post-buckling regimewas developed

by Deo, Agarwal and Madenci [5] and Deo, Kan and Bhatia, [6]. In that work, the original

methodology for metal panels developed by Kuhn, Peterson and Levin [3, 4] was modified to

account for the anisotropy of composite panels and the additional failuremode of skin/stiffener

separation, typically not present in metal structures.

This work relates the strains in the skin, stiffener and frame to the post-buckling angle a,
which is the angle formed by the buckled shape of the skin and the stiffener axis (see

Figures 7.16 and 7.17). The equations are transcendental, and iterations are needed to eliminate

a in order to obtain strains as a function of geometry and stiffness. An approach to simplify the

algebra and solve the equations presented in [5] and [6] is presented below.

The governing equations are as follows:

Post-Buckling Factor k

k ¼ tanh
1

2
ln

Nxy

Nxycr

� �� �
ð7:25Þ

The post-buckling factor (not to be confused with the post-buckling ratio PB introduced at

the start of this chapter) ranges between 0 and 1 and gives a measure of how much of

the applied shear load is taken by in-plane shear and how much by diagonal tension. A

value of k¼ 0 denotes pure shear. A value of k¼ 1 denotes all the applied load is taken by

diagonal tension.

Post-Buckling Angle a

a ¼ tan�1

ffiffiffiffiffiffiffiffiffiffi
e�es
e�ef

r
ð7:26Þ

Skin Strain e in Diagonal Tension Direction:

e ¼ Nxy

Ewa

2k

sin 2a
þ Ewa

2Gsk

ð1�kÞsin 2a
� �

ð7:27Þ

Stiffener Strain es

es ¼ �kNxy cot a

EAs

hstsk
þ 1

2
ð1�kÞEws

" # ð7:28Þ
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Frame strain ef

ef ¼ �kNxy tan a
EAf

hrtsk
þ 1

2
ð1�kÞEwf

" # ð7:29Þ

where:

Nxy ¼ applied shear load (force/length)

Nxycr ¼ buckling load under shear of skin between adjacent stiffeners and frames

e ¼ skin strain in diagonal tension direction

es ¼ strain in the stringer averaged over its length

ef ¼ strain in the frame averaged over its length

tsk ¼ skin thickness

hs ¼ stiffener spacing

hf ¼ frame spacing

Ewa ¼ skin (or web) modulus in diagonal tension direction

Ews ¼ skin (or web) modulus along stiffener direction

Ewf ¼ skin (or web) modulus along frame direction

Gsk ¼ skin shear modulus

EAs ¼ axial stiffness of stiffener ð¼ EAsðEIsÞ=EIsÞ
EAf ¼ axial stiffness of frame (¼ EAf(EIf)=EIf )

EIs,EIf ¼ bending stiffness about stiffener, frame neutral axis

EIs ;EIf ¼ corresponding bending stiffnesses about skin midsurface

It is important to note that the axial stiffnesses EA (¼ Young’s modulus E multiplied by

area A) are corrected by the bending stiffnesses EI (¼ Young’s modulus E multiplied by

moment of inertia I). This is done to account for the fact that, in general, for a composite beam,

the membrane stiffness and the bending stiffnesses are different (see Sections 3.3 and 8.2).

It can be seen from Equations (7.26)–(7.29) that trigonometric functions of a and the strains
e, es, and ef all appear in the governing equations. Traditionally, the approach to solving them is

to assume a value of a (about 40� is a good starting value), and substitute in Equa-

tions (7.27), (7.28) and (7.29) to get the strains e, es, and ef. These strains are then substituted
in Equation (7.26) to obtain an updated value for a. The procedure is repeated until two

successive values of a are equal to within some preset tolerance value.

This approach is not very efficient because it involves iterations. These iterations would be

repeated for each candidate design during an optimization run and would slow the process

tremendously. It would be advantageous if these iterations were minimized and another way to

solve Equations (7.26)–(7.29) were found.

It turns out that if Ewa, the skin modulus in the direction of the diagonal tension angle a is

assumed constant, Equations (7.26)–(7.29) can be solved exactly without iterations. First, the

trigonometric expressions involving a are expressed in terms of tan a:

sin2 a ¼ tan2 a
1þ tan2 a

cos2 a ¼ 1

1þ tan2 a
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sin 2a ¼ 2
tan a

1þ tan2 a

Then, using these expressions, the three strains from Equations (7.27)–(7.29) are written as:

e ¼ A
1þ tan2 a
2tan a

þB
2 tan a

1þ tan2 a
ð7:27aÞ

es ¼ C

tan a
ð7:28aÞ

ef ¼ D tan a ð7:29aÞ
where

A ¼ Nxy2k

tskEwa
ð7:30Þ

B ¼ Nxyð1�kÞ
tskGsk

ð7:31Þ

C ¼ �kNxy

tsk
EAs

hstsk
þ 1

2
ð1�kÞEws

� � ð7:32Þ

D ¼ �kNxy

tsk
EAr

hrtsk
þ 1

2
ð1�kÞEwf

� � ð7:33Þ

If Equation (7.26) is now used to solve for tana and substitute in (7.27a)–(7.29a), the angle a
is eliminated and three equations in the three unknowns e, er, and ef are obtained. After some

manipulation, e and es can be eliminated and a single equation in

z ¼ ef
D

� �2
ð7:34Þ

is obtained as follows:

z3 þ z2
2D�A�4B

2D�A
þ z

A�2Cþ 4B

2D�A
þ A�2C

2D�A
¼ 0 ð7:35Þ

From the theory of cubic equations, (see for example [7]), it can be shown that since A and B

have the same sign as Nxy and C and D have sign opposite to that of Nxy, Equation (7.35) has

three real and unequal solutions. The solutions are given by
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z1 ¼ 2
ffiffiffiffiffiffiffiffi�Q

p
cos

y
3
� a2

3

z2 ¼ 2
ffiffiffiffiffiffiffiffi�Q

p
cos

yþ 2p
3

0
@

1
A� a2

3

z3 ¼ 2
ffiffiffiffiffiffiffiffi�Q

p
cos

yþ 4p
3

0
@

1
A� a2

3

ð7:36Þ

with

y ¼ cos�1 Rffiffiffiffiffiffiffiffiffiffi
�Q3

p
0
@

1
A

R ¼ 9a1a2�27ao�2a32
54

Q ¼ 3a1�a22
9

ð7:37Þ

and

ao ¼ A�2C

2D�A

a1 ¼ A�2Cþ 4B

2D�A

a2 ¼ 2D�A�4B

2D�A

ð7:38Þ

Of the three solutions in Equation (7.36), only the positive ones are acceptable

because, otherwise, the right-hand side of Equation (7.34), which is positive, would be a

negative number. If there are more than one positive solutions, the lowest one should

be selected.

Aswasmentioned earlier, the solution ofEquation (7.36)–(7.38) assumes that the stiffness of

the skin in the direction of a, Ewa, is constant. However, without knowing a a priori Ewa is not

known exactly. A small number of iterations (typically significantly fewer than those required

with the traditional approach mentioned earlier) is required after all. To determine the skin

stiffness along any direction a, it is assumed that a tension load is applied in that direction and

the stress–strain equations are solved for. This parallels the derivation of Equations (5.19)

in chapter 5. For a symmetric and balanced skin, the normal stresses s11 and s22 in a
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coordinate system with the 1 axis aligned with a are given by the following expressions (see

Equation 3.32):
s11 ¼ Q11e11 þQ12e22
s22 ¼ Q12e11 þQ22e22

But s22¼ 0 since only a tension load is applied in the 1 (or a) direction. Therefore, solving
for e22:

e22 ¼ �Q12

Q22

and substituting in the equation for s11:

s11 ¼ Q11�Q2
12

Q22

� �
e11

|fflfflfflffl{zfflfflfflffl}
Ewa

from which,

Ewa ¼ Q11�Q2
12

Q22

ð7:39Þ

with the standard transformation giving the stiffnessesQ11,Q12, andQ22 (see Equations 3.33):

Q11 ¼ Qxxcos
4aþQyysin

4aþ 2sin2acos2aðQxy þ 2QssÞ

Q22 ¼ Qxxsin
4aþQyycos

4aþ 2sin2acos2aðQxy þ 2QssÞ

Q12 ¼ sin2acos2aðQxx þQyy�4QssÞþ ðsin4aþ cos4aÞQxy

ð7:40Þ

and, from Equations (3.27)–(3.29):

Qxx ¼ Exx

1�nxynyx

Qyy ¼ Eyy

1�nxynyx

Qxy ¼ nyxExx

1�nxynyx
Qss ¼ Gsk

ð7:41Þ

where Exx,Eyy,Gsk nxy, nyx are engineering constants for the entire skin laminate with x

coinciding with the stiffener direction and y coinciding with the frame direction.

The solution procedure is then as follows:

1. Select a value ofEwa. Typically, since a� 45� select Ewa corresponding to the 45
� direction.

2. Calculate the coefficients in Equation (7.35) using Equations (7.37) and (7.38).

3. Calculate z1, z2, z3 from Equation (7.36).

4. Pick the positive z value from step 3. If there are more than one positive values, use the

lowest one.

5. Calculate a new value of Ewa using Equations (7.39)–(7.41). If it is equal to the previous

value ofEwawithin a preset tolerance, the diagonal tension analysis is complete. If not, go to

step 2 above and repeat the process.
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7.2.1.1 Application: Post-Buckled Stiffened Fuselage Skin under Shear

Consider the portion of fuselage skin enclosed by two adjacent stiffeners and frames as shown

in Figure 7.18. The skin is under pure shear Nxy.

A notional sketch of the post-buckling shapewith the half-waves inclined at an angle a to the
stiffener axis is also included in Figure 7.18. The length of the stiffeners and frames are set at

typical values of 508� 152.4mm respectively. Two different skin layups of the same thickness

are used: (a) (�45)5 and (b) (�45)/(0/90)3/(�45). Thematerial used for the skin is plain weave

fabric with properties:

Ex ¼ Ey ¼ 68:9 GPa

Gxy ¼ 4:82 GPa

vxy ¼ 0:05

tply ¼ 0:1905 mm

The details of the stiffener and frame layups are of no interest at this point other than the

fact that, for both skin layups, EA for the stiffener is 6953 kN and for the frame is

75 828 kN. The buckling load for the skin of case (a) is determined to be 10.82N/mm and

for the skin of case (b) 10.88N/mm. Note that the buckling loads are essentially the same for

the two cases.

The results for the post-buckling behavior for both cases are shown in Figures 7.19–7.21.

The post-buckling angle a (see Figure 7.18) for the two different skin layups is given in

Figure 7.19 as a function of the applied load normalized by the buckling load.

For both cases, the post-buckling angle starts at 45� when the applied load Nxy equals

the buckling load Nxycrit and decreases towards an asymptote around 25� for high values of

Nxy/Nxycrit. The post-buckling angle for the (�45)/(0/90)3/(�45) skin is slightly higher.

The strains in the skin, stiffener and frame for the (�45)5 skin layup are shown as a function

of the applied load in Figure 7.20. It is seen that the stiffener and frame are always in

compression. While the skin strains are relatively linear, the stiffener and frame strains are

nonlinear and they increase more rapidly than the skin strains. If now the cutoff strain of

4500ms calculated in Section 5.1.6 is used for the stiffener and frame, which are in

compression, and a corresponding value of 6000ms is used for the skin, which is in tension,

(tension allowable is higher than compression allowable formost layups used in practice) it can

152.4 mm 

508 mm

frame 

frame 

stiffener 

stiffener

Nxy

Nxy

Figure 7.18 Stiffened skin under shear load
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be seen from Figure 7.20 that the stiffener will fail first at a value of Nxy/Nxycrit, slightly higher

than 11. This is interesting because at lower loads the skin has higher strains than the stiffener,

but they are increasing more slowly as the load increases.

It is important to note that the use of cutoff strains does not explicitly account for the

layup. This is a conservative approach for generating or evaluating a preliminary design.

A more detailed analysis would require knowledge of the specific layups and geometries

for the skin and stiffener. Also, additional failure modes such as crippling of the stiffener or

frame (see Section 8.5) and skin–stiffener separation (see Section 9.2.2) would have to be

included in the evaluation. The present discussion gives a good starting point for generating a

viable design.

The corresponding strains for the second case with skin layup (�45)/(0/90)3/(�45)

are shown in Figure 7.21. Again, the stiffener and frame are in compression while the

skin is in tension. Unlike the case of the (�45)5 skin where the stiffener strains rapidly
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Figure 7.20 Strains in the post-buckling regime for (�45)5 skin
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exceeded in magnitude the skin strains, here the skin strains are always higher in magnitude.

This is due to the fact that the skin in this case is significantly stiffer and absorbs more load,

thus unloading the stiffeners to some extent. However, the stiffeners are still critical as the

cutoff value of 4500ms for the stiffeners is reached before the cutoff value of 6000ms is reached
for the skin.

Comparing the results in Figures 7.20 and 7.21 it is seen that, even though the dimensions,

the stiffeners, and the frames are identical and the skin buckling loads are the same, the post-

buckling behavior in the second case is significantly different. For example, at low applied

loads the skin strains are twice as high for the second case. This difference decreases as the

applied load increases, but is still at least 25% at high applied loads.

7.2.2 Post-buckling of Stiffened Composite Panels under Combined
Uniaxial and Shear Loading

When both shear and an axial load (tension or compression) act on a stiffened panel, the state of

stress developing in the post-buckling skin is quite complicated and very hard to obtainwithout

a good computationalmodel, usually based on finite elements. Also, the situation changes if the

axial load is tension instead of compression.

A stiffened composite panel under combined shear and compression is shown in Figure 7.22.

A typical half-wave of the buckled pattern is also shown. Note that, unlike the pure shear

case where the post-buckling angle a starts at 45� at buckling and decreases slowly with

increasing load (see example in previous section) the presence of a compressive load

keeps the half wave closer to the 90� orientation, i.e. the post-buckling angle a starts higher

than 45� at buckling.
The load combination that leads to buckling can be obtained following the procedures of

Sections 6.5 and 6.6. The conservative approach for designing in the post-buckling regime is to

assume that all the compressive load beyond the buckling load is absorbed by the stiffeners.
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Figure 7.21 Strains in the post-buckling regime for (�45)/(0/90)3/(�45) skin
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This extra compressive load would increase the stiffener strains and make them more critical

than in the case where no compressive load is applied. The load in the skin would be a

combination of the strains obtained when only the shear is applied, and the (constant)

compressive strains corresponding to the buckling load. That is, beyond buckling, the

compression load in the skin is constant and equal to its buckling value, but the shear is

increasing according to the post-buckling analysis given in the previous section. The fact that

the skin is loaded by the compressive strains thatwere exerted at the buckling load in addition to

the diagonal tension strains resulting from the shear load, is more critical than in the casewhere

only shear load was applied.

In contrast to the combined compression and shear case, a tension and shear case is, usually,

less critical. First, themagnitude of the buckling load under tension and shear is lower. Then, in

the post-buckling regime, the tension strains caused by the applied tensile load are split

between skin and stiffeners according, roughly, to their respective EA ratios. This means that

the compression strains in the stiffeners caused by the shear load are relieved and the stiffeners

are less critical. In the skin, the diagonal compression strains are relieved while the diagonal

tension strains are increased. However, since inmost designs the stiffeners aremuch stiffer than

the skin (have much higher EA) the amount of tension left in the skin is small and most of it is

taken by the stiffeners.

The procedure for preliminary design and analysis of a composite stiffened panel under

combined uniaxial load and shear is summarized in Figure 7.23. Note that in this figure Nx> 0

corresponds to tension. This procedure should be viewed as approximate because it requires

combining skin strains caused by shear load applied alone and a portion of strains from

compression applied alone. This implies some kind of superposition is being used. However,

linear superposition is not valid in the post-buckling regime because the deflections are large

and the problem is nonlinear. Only for applied loads that do not exceed the buckling loads

significantly, is superposition (approximately) valid. Therefore, the results of this process are

approximate. They can be very useful in determining a good starting design for further more

detailed analysis.

>45o  at buckling 

Nxy 

Nxy 

NxNx

stiffeners

Figure 7.22 Post-buckled panel under compression and shear
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Figure 7.23 Design/analysis procedure for stiffened panels under combined uniaxial load and shear
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Exercises

7.1 Refer to the application discussed in Section 7.1. A fabric material is made available that

has the basic properties given in the following table:

Property Value

Ex 69GPa

Ey 69GPa

nxy 0.05

Gxy 5.1GPa

tply 0.19mm

The material is to be used in a skin application. The skin panel of interest is square of

dimensions 200� 200mm and the applied ultimate load is 2152N. The following two

skin layups are proposed for this application: (a) (�45)/(0/90)3/(�45) and (b) (0/90)/

(�45)/(0/90)/(�45)/(0/90). Given the highest value of Nx determined in Section 7.1 and

its location, comment on or discuss the following. Based on the highestNx value, which of

the two layups is stronger and why? What is better, placing plies with fibers aligned with

the load away from the laminate midplane, or placing plies with fibers at 45� to the load
away from the laminate midplane?

7.2 The layup for the skin in a certain application is dictated to be: [(45/�45)2/0/90]s (total of

11 plies). The basic material properties are given below:

E11¼ 131GPa

a=? 
P=?

immovable 

E22¼ 11.37GPa

G12¼ 4.82GPa

n12¼ 0.29

tply¼ 0.1524mm

This skin is square and under compression and is allowed to post-buckle. Three of the

edges of the skin are immovable and the fourth one is under load P (N). If the maximum

deflection of the skin is not allowed to exceed 6.35mm (to avoid interferencewith adjacent

structure) determine: (a) the largest dimension a the skin can have and (b) the corresponding

maximum allowable load P if the axial strain in the plate is not to exceed 5000 microstrain

(this includes scatter, environmental effects anddamage). In order to correlate load to strain,

use the effectivewidth concept and assume that s¼Ee is the constitutive relation (Hooke’s
law) with E the engineering membrane stiffness of the laminate at hand.

7.3 Using the same assumed expressions for w and F (Equations (7.2) and (7.3)) re-derive the

post-buckling solution for a non-square plate, i.e. determine w11 and beff for a rectangular

plate of dimensions a� b. Once you derive the expression for the center deflection, verify

that it coincideswith the expression (7.11) for the case a¼ b. Determine the range of aspect

ratios a/b for which the buckling mode has only one half wave (m¼ 1). Use this result to

suggest over what range your post-buckling solution in this problem is accurate.

7.4 A square composite plate of side 254mm simply supported all around is loaded on one side

by a force F. The remaining three edges are fixed so they do not move in-plane. Determine

the location and magnitude of the maximum strains exo and eyo.
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x

y

7.5 For the case of Exercise 7.4, a composite material with properties

Ex ¼ 137:9 GPa

Ey ¼ 11:72 GPa

nxy ¼ 0:29

Gxy ¼ 5:171 GPa

tply ¼ 0:1524 mm

is made available. If the applied load is F¼ 31.1 kN determine the 10-ply symmetric and

balanced laminate consisting of only 45,�45, 0, and 90� plies that has the lowest value of
maximum exo found in Exercise 7.4. Do not usemore than two 0� or two 90� plies per half-
laminate. You do not have to use all four ply orientations. Accounting for damage,

material scatter, and environmental effects, determine either the margin of safety, or the

loading factor, or the reserve factor.

100cm 

50cm
x or ribbon 
dir for core 

7.6 (May be done in conjunction with Exercise 10.5). You are to design a composite panel

under compressive load using a skin–stiffener configuration. The panel dimensions are

100� 50 cm and the applied load is 1750N/mm acting parallel to the 50 cm dimension.

Two composite materials are available, with properties as follows:
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Unidirectional tape

graphite/epoxy

Plain weave fabric

graphite/epoxy

Ex¼ 131GPa 68.9GPa

Ey¼ 11.4GPa 68.9GPa

nxy¼ 0.31 0.05

Gxy¼ 5.17GPa 5.31GPa

tply¼ 0.1524mm 0.1905mm

Xt¼ 2068MPa 1378.8MPa

Xc¼ 1723MPa 1378.8MPa

Yt¼ 68.9MPa 1378.8MPa

Yc¼ 303.3MPa 1378.8MPa

S¼ 124.1MPa 119.0MPa

r¼ 1611 kg/m3 1611 kg/m3

Onceyou determine any strength values needed for anyof the layups selected you are

to assume the same knockdowns mentioned in Section 5.1.6 for environment, material

scatter and damage.

Of the seven shapes below select one for the stiffeners.

L C Z

I JT

Hat

60
o

You are to select the layup for the skin and eachmember of the stiffener cross-section for a

post-buckling factor of 2.5 and a post-buckling factor of 5. You may use one of the two

composite materials or a combination of both. You will need to decide on a stiffener

spacing and use the solution to Exercise 7.3. It is up to you to decide if you want to

reinforce the skin at the edges (near the stiffeners) over the effectivewidth in order to get a

lighter design or simply use the same layup for the skin everywhere. Note that the stiffener

height cannot exceed 10 cm and no horizontal flange of the stiffener can exceed 5.5 cm.

The skin or any member of the stiffener cannot be thinner than 0.57mm. Make sure that

176 Design and Analysis of Composite Structures



 

you account for all failure modes that apply in this case. Assume that the stiffeners are co-

cured with the skin.

Determine the layup of eachmember of each stiffener and its dimensions observing the

following design rules: (a) laminates are symmetric and balanced; (b) at least 10% of the

fibers are in each of the four principal directions 0, 45,�45, and 90�; (c) nomore than four

unidirectional plies of the same orientation may be next to each other; (d) use only 0, 45,

�45, and 90� plies. Provide a simple sketch of the cross-section of stiffeners that shows

the plies, layup, dimensions, etc. Calculate the corresponding weights for skin/stiffened

panel with PB¼ 2.5, skin/stiffened panel with PB¼ 5.0 and, if available, compare with

the results from Exercise 10.5.
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8

Design and Analysis of
Composite Beams

The term beams is used here as a generic term referring to all one-dimensional parts thatmay be

used in a structure. These include stiffeners, stringers, panel breakers, etc. There are many

cross-sectional shapes that are used in practice. Of those, the ones used most frequently are

(Figure 8.1): L or angle, C or channel, Z, T or blade, I, J, and Hat or omega.

8.1 Cross-section Definition Based on Design Guidelines

For a composite beam such as the one shown in Figure 8.2, each member may have a different

layup. This would result in different stiffnesses and strengths for each of the flanges and web,

and would allow more efficient usage of composite materials through tailoring. Typically, the

letter b with appropriate subscript is used to denote the longer dimension of each member and

the letter t the shortest (the thickness).

As beams tend to be used in stability-critical situations, cross-sections with highmoments of

inertia are preferred. Besides the obvious implications for the beam geometry (high b2 value for

example in Figure 8.2), there are certain guidelines that relate to the layup, which, when

implemented, also contribute to robust performance.

With reference to Figure 8.2, stiff material must be located as far from the neutral axis as

possible. Defining the 0 direction to be alignedwith the beamaxis (perpendicular to the plane of

Figure 8.2), this stiffness requirement would result in the two flanges, the one next to the skin

and the one away from the skin, being made up of mostly 0� plies.
Another clue can be deduced from the theory of joints (see for example [1, 2]). It has been

demonstrated that as the thickness of the adherends decreases, the strength of the joint increases

because the peak stresses at the end of each adherend, where the load transfer to the adhesive is

completed, are lower. This implies that the stiffness mismatch caused by the adherend

termination is less and the associated stress concentration is reduced. A similar situation

occurs in testing coupons (in tension) using beveled tabs. The bevel in the tabs reduces the local

stresses and helps eliminate the possibility of specimen failure at the tab termination.With this

background, it is easy to deduce that, by decreasing the stiffness mismatch between the flange
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� 2010 John Wiley & Sons, Ltd



 

next to the skin and the skin itself, the possibility of skin failure or flange/skin separation is

reduced. This means that: (a) the flange should be made as thin as possible, still meeting

other load requirements; and (b) the stiffness of the flange should be as close as possible to that

of the skin.

Finally, to improve performance against shear loads (parallel to the web axis) the web

must have high strength and stiffness under shear loads, which means it should consist mostly

of 45� plies. The importance of 45� plies is discussed later in Section 8.5.1 where the pertinent
stiffness term Q66 is shown to be maximum for 45� plies.

Combining these into a design would result in the preliminary configuration shown in

Figure 8.3. The flange away from the skin consists of only 0� plies (for increased stiffness away
from the neutral axes). The flange next to the skin consists of a combination of some 0� plies, for
increased stiffness, sandwiched between the two halves of the skin layup in order to minimize

the stiffness mismatch between skin and flange. The web consists of 45 and � 45� plies for
increased shear stiffness and strength.

“L” or
angle 

“C” or
channel 

“Z”
“T” or 
blade

“I” “J”
“Hat” or 
omega

Figure 8.1 Typical beam cross-sections
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flange 

web

Figure 8.2 J stiffener cross-section
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As it stands, the design of Figure 8.3 is inadequate. There are several issues readily apparent:

(a) at the two corners where the web meets the flanges, dissimilar plies meet and load transfer

would rely on thematrix, which is grossly inefficient; (b) the layup of the flange next to the skin

may be too thick if the number p of 0� plies is too high and/or still have very different stiffness
from the skin; (c) using only one ply orientation in the flange away from the skin and theweb to

satisfy the respective requirements results in less than adequate performance of the beamwhen

(secondary) conditions or requirements other than the ones used here are considered.

To improve on this design, additional guidelines, developed on the basis of experience and

good engineering practice, are implemented. In order to get better load continuity, some plies in

the web must continue into the flanges. Also, to protect against secondary load cases, ply

orientations that cover the basic possible load directions, 0, 45,� 45, and 90 are used. Usually a

very small number of load conditions (quite often a single one) are the critical conditions that

size a structure. This does not mean that there are no other load conditions, only that their

corresponding loads are lower (see for example Section 5.1.1 for the implications of multiple

design load cases). If the layup selected were optimized for a single load case (or few load

cases) it might not have enough fibers in other load directions where the loads may be

significantly lower, but could still lead to premature failure if not enough fibers are present in

those directions. Finally, robust performance under impact requires þ 45/�45� plies to be

placed on the outside of laminates susceptible to impact. (This is more a consequence of the

observation that layups with 45� fabric material on the outside tend to more effectively contain

impact damage and minimize ply splitting).

Introducing these requirements to the design of Figure 8.3, results in the improved

configuration of Figure 8.4.

In this case, a 45/�45 pair is on the outside to improve impact resistance. It is not, however,

clear whether this is sufficient especially in view of the complete layup of, say, the top flange

where four 0� plies are stacked next to the two outer 45� plies. Also, it is known that stacking too
many plies of the same orientation next to each other leads to the creation of sizeable

microcracks during cure or during loading perpendicular to the fibers. The reason is that a

matrix crack forming between fibers in a ply can progress easily to the next ply since there are

0n

±45m

A/0p/A

Skin layup A/A 

Load continuity
issues 

?

stiffness mismatch 
can lead to stiffener 
separation

Figure 8.3 Preliminary design of stiffener cross-section based on first (crude) guidelines
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no fibers perpendicular to it in the next ply to stop or slow down its growth. So the improved

design of Figure 8.4 still has issues associated with the layup of the flanges.

Furthermore, the continuity of plies around the corners may or may not be sufficient and it

will depend on the applied loads. At the top and bottom of the web several plies terminate

causing stress concentrations. In particular, adjacent to the terminated plies are plies turning

away from the web and into the flange. Typically, it is very hard to force the turning plies to

conform perfectly to the 90� turn, and a small radius as shown in the enlarged detail of

Figure 8.4 will be present. The resulting gap between terminated and turned plies is usually

filled with resin, creating a weak spot for the entire cross-section.

Finally, reaching a compromise layup for the flange next to the skin so that the stiffness

mismatch at the flange termination is minimized, is difficult and more information about

applied loading and skin layup is needed for further improvement. The design configuration of

Figure 8.4 will be periodically revisited and improved upon in future chapters as a better

understanding of designing to specific requirements is developed.

8.2 Cross-sectional Properties

The axial (EA) and bending (EI) stiffnesses of a beam are very often used in design and analysis

of such structures and, therefore, accurate determination of their values for a composite cross-

section is very important. There are some significant differences from metal cross-sections

too many 0’s ? => 
microcracks 

impact 
damage 
resistance?

is load transfer 
sufficient? 

is stiffness mismatch 
sufficiently reduced? 

skin

what happens here? 

+45

-45

0

approximation

R

Figure 8.4 Improved stiffener cross-section design (See Plate 17 for the colour figure)
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stemming from the fact that, for a cross-section made using composite materials, the different

members may have different layups and thus stiffnesses.

These differences become evident in the calculation of the location of the neutral axis for a

cross-section made up of composite materials. With reference to Figure 8.2, the neutral axis is

located at

�y ¼
X

ðEAyÞjX
ðEAÞj

ð8:1Þ

Note that E here is either the membrane or bending modulus of each member (see

Section 3.3 and Equations 3.65). The two moduli are, in general, different. This means that

one should differentiate between axial and bending problems and use the appropriate

moduli. In what follows, the axial stiffness EA (¼ modulus� cross-sectional area), which

is a quantity needed in uniaxial loading situations, is calculated first and the bending

stiffness EI (¼ modulus x moment of inertia), which is used in bending problems, is

calculated afterwards.

In order to determine the axial stiffness (EA) of a cross-section, assume, for simplicity, that

the layup of each member is symmetric and balanced. Then, denoting the beam axis as the x

axis, a uniaxial loading situation for member i is represented by:

ðNxÞi ¼ ðA11ÞiðexÞi þðA12ÞiðeyÞi
ðNyÞi ¼ ðA12ÞiðexÞi þðA22ÞiðeyÞi

ð8:2Þ

where the subscript i denotes the ith member. This is the same as Equation (3.49) adjusted to

uniaxial loading (Nxy¼ 0) and symmetric and balanced layups (B matrix¼A16¼A26¼ 0).

If now only load Nx is applied, Ny¼ 0 and substituting in Equation (8.2) and solving

for (ey)i gives

ðeyÞi ¼ � A12

A22

� �
i

ðexÞi ð8:3Þ

This result can now be substituted into the first of Equations (8.2) to obtain:

ðNxÞi ¼ A11 � A12
2

A22

� �
i

ðexÞi ð8:4Þ

If both sides of Equation (8.4) are divided by the thickness of themember ti the left-hand side

becomes the applied stress:

ðsxÞi ¼
1

ti
A11 � A12

2

A22

� �
i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ei

ðexÞi ð8:5Þ

It can be seen by inspection of Equation (8.5) that the quantity multiplying the strain on

the right-hand side is the equivalent axial modulus of the member, which was also given in

Section 3.3, Equation (3.59), as a slightly different (but equivalent) expression:
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Ei ¼ 1

ti
A11 � A2

12

A22

� �
¼ 1

ða11Þiti
ð8:6Þ

with a11 the 11 entry of the inverse of the A matrix.

The axial or membrane stiffness EA of member i can now be written as

ðEAÞi ¼ Eibiti ð8:7Þ
with bi and ti the width and thickness of the member, respectively.

Consider now that an axial force FTOT is applied to the entire cross-section. Because of the

different EAvalues for each member, the corresponding forces acting on each member will be

different. For the three-member cross-section of Figure 8.2, the total force equals the sumof the

forces acting on the individual members,

FTOT ¼ F1 þF2 þF3 ð8:8Þ
but the forceF acting on eachmember is related to the corresponding force per unit widthNx via

ðNxÞi ¼
Fi

bi
ð8:9Þ

Now for a uniaxial loading casewith the load applied at the neutral axis, uniform extension or

compression results, which means the strains in all members of the cross-section are equal:

ðexÞ1 ¼ ðexÞ2 ¼ ðexÞ3 ¼ ea ð8:10Þ
Combining equations (8.4), (8.6), (8.7), (8.9) and (8.10) it can be shown that

F1

ðEAÞ1
¼ F2

ðEAÞ2
¼ F3

ðEAÞ3
¼ FTOT

ðEAÞeq
ð8:11Þ

with (EA)eq the equivalent membrane stiffness for the entire cross-section.

Combining Equations (8.11) with equation (8.8) and solving for the individual forces on

each member it can be shown that the force on member i is given by,

Fi ¼ ðEAÞiP3
j¼1

ðEAÞj
FTOT ¼ EibitiP3

j¼1

Ejbjtj

FTOT ð8:12Þ

with (EA)j given by Equation (8.7).

Equations (8.11) and (8.12) can be combined in order to determine the equivalent axial

stiffness for the entire cross-section. Eliminating the forces gives,

ðEAÞeq ¼
X
j

ðEAÞj ð8:13Þ

The situation for pure bending is shown in Figure 8.5. Each member contributes to the EI

calculation for the entire cross-section according to

ðEIÞi ¼ Eb

ðwidthÞiðheightÞ3i
12

þAidi
2

" #
ð8:14Þ
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where Ai is the area of the ith member (¼ biti) and di is the distance of the neutral axis of the ith

member from the neutral axis of the entire cross-section determined by Equation (8.1) and the

bending modulus is given by Equation (3.63),

Ebi ¼ 12

ti3ðd11Þi
ð8:15Þ

If a bending moment MTOT is applied to the beam, the individual bending moments and

overall bending stiffness of the cross-section are calculated in amanner analogous to the case of

uniaxial loading. However, instead of the strain compatibility condition that required that the

strains in all members be equal, here the requirement is that the radii of curvature Rci for all

members are all equal to that of the neutral axis of the entire cross-section. Therefore,

Rc1 ¼ Rc2 ¼ Rc3 ¼ Rca ð8:16Þ
In addition,

MTOT ¼ M1 þM2 þM3 ð8:17Þ
Also, the local radius of curvature is given by thewell-knownmoment–curvature relation of

simple beam theory,

Rci ¼ ðEIÞi
Mi

ð8:18Þ

Combining Equations (8.16)–(8.18) and solving for the moments acting on each individual

member, gives

Mi ¼ ðEIÞiP3
j¼1

ðEIÞj
MTOT ð8:19Þ

with (EI)i given by Equation (8.14). This relation is the analogous relation to Equation (8.12)

for the axial forces on the members of the cross-section.

t1

1

2

3

b1

b2

b3

t2

t3

y

neutral 
axis loc’n 

d1

d2 d3

Figure 8.5 Definition of pertinent quantities for a beam cross-section in bending
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With the individual moments given by Equation (8.19), the overall bending stiffness of the

cross-section can be obtained from Equations (8.16), (8.18), (8.19):

ðEIÞeq ¼
X
j

ðEIÞj ð8:20Þ

In the preceding discussion, axial and bending behaviors were completely uncoupled, which

was very convenient since the same layup would undergo each type of deformation (axial

or bending) exhibiting a different modulus value. Care must be exercised if both modes

of deformation occur simultaneously and are coupled. This issue was first mentioned in

Section 7.2.1 and points to a problem associatedwith attempting to oversimplify the design and

analysis of composite structures. In such cases it is better to resort to the constitutive relations

involving theA,B, andDmatrices (see for example Equation 3.49). As a simpler, less accurate,

but conservative approach, one may select the one of the two moduli (membrane or bending)

that leads tomore conservative results (for example higher post-buckling deflections which are

caused by using the lower of the two moduli).

As an example showing the implications of the equations presented so far in this section

consider a comparison of the cross-section of Figure 8.4 with an aluminum cross-section with

the same dimensions. The (graphite/epoxy) composite cross-section with the flange next to the

skin completely defined now is shown in Figure 8.6. For this configuration, the pertinent

quantities are shown in Table 8.1.

Using Equation (8.1) the neutral axis is found to be located 7.17mm away from the outer

edge of the bottom flange (Figure 8.6). Using Table 8.1 and Equations (8.13) and (8.20) the

membrane (EA) and bending (EI) stiffnesses of the cross-section of Figure 8.6 are found and

compared with the case of aluminum with the exact same geometry in Table 8.2.
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Figure 8.6 Baseline J stiffener cross-section made out of composite materials (See Plate 18 for the

colour figure)
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Table 8.2 shows that the same geometry made with aluminum has significantly higher

stiffness both in-plane (47% higher) and bending (122% higher). Since the geometries are

identical between aluminum and composite, it is easy to compare the respective weights.

The weight ratio will equal the density ratio. The density of aluminum is 2774 kg/m3 while

the density of graphite/epoxy is 1609 kg/m3. This means that the aluminum configuration is

72% heavier.

For a more insightful comparison, design the graphite/epoxy cross-section to have the same

stiffnesses as the aluminum design and then compare the weights. Since EA for aluminum is

46.9% higher (see Table 8.2), the ply thickness of the graphite/epoxy material is increased by

46.9% and a minor reshuffling of the stacking sequence of the flange away from the skin is

done. The changes are shown in Table 8.3.

The only change in layup is in the flange away from the skin where the starting 45/�45

combination is now split bymoving the pair of 0 plies between them. The bvalues stay the same

but the thicknesses are all increased by a factor of 1.67. As a result the bending stiffness of the

flange away from the skin is now increased from 32.4 to 62.7GPa. It should be noted that

simply scaling the ply thickness as was suggested here is not usually possible. The rawmaterial

is available only in limited ply thicknesses, so increasing to a specified value would require

rounding up to the next integral multiple of ply thickness. So the results of this example are

only approximate.

With the changes of Table 8.3, the graphite/epoxy cross-section now matches (or is very

close to) the stiffnesses of the aluminum cross-section as is shown in Table 8.4.

Table 8.1 Properties for baseline composite configuration of Figure 8.6

Member b (mm) t (mm) Em (GPa) Eb (GPa)

1 12.7 1.2192 75.6 32.4

2 31.75 1.2192 18.2 17.9

3 38.1 1.8288 56.5 47.9

Table 8.2 Composite versus same geometry aluminum

A Comp D(%)

EA (kN) 8525 5803 46.9

EI (Nm2) 1401 631 121.8

Table 8.3 Revised Gr/Ep configuration to match aluminum stiffnesses

Member Layup

before

Layup now b (mm) t (mm) Em (stays

same)

Eb

before

(GPa)

Eb now

(GPa)

1 [45/–45/02]s [45/02/�45]s 12.7 1.791 75.6 32.4 62.7

2 [(45/–45)2]s [(45/�5)2]s 31.75 1.791 18.2 17.9 17.9

3 [45/–45/02/

45/–45]s

[45/�45/02/

45/�45]s

38.1 2.687 56.5 47.9 47.9
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Now the weight comparison includes both the density and thickness difference. The weight

ratio of the two configurations is given by:

WGr=Ep

WAl

¼ 0:58
1:469

1
¼ 0:852

density ratio for carbon=epoxy

or, the composite design is, approximately, 15 % lighter.

The previous example points to the important fact that, once the design and best-practices

rules and other constraints are imposed on the composite design, the weight savings are

drastically reduced compared with the nominal savings one would obtain based on the tension

or compression strength of a unidirectional ply. The savings of 15% found here is typical of the

performance of modern composite materials when used on airframe structures. A somewhat

higher value of 38% savingswas found in Section 6.2 for a buckling application. In general, the

weight savings rarely exceeds 30% and not without detailed evaluation of all possible failure

modes and use of a good, robust optimization scheme.

8.3 Column Buckling

In column buckling a beamunder compression suddenly deflects perpendicular to its axis.With

EI defined in the previous section, the standard buckling expressions can be used for the two

cases shown in Figure 8.7. It should be noted that, for buckling load calculations, themembrane

modulus Em given by Equation (8.6) should be used.

Table 8.4 Comparison of Aluminum andG/E stiffnesses for revised configuration

Al Comp D(%)

EA (kN) 8525 8525 0.0

EI (Nm2) 1401 1441 �2.8

L

P P

a. both ends pinned 

L

P

b. both ends fixed 

Figure 8.7 Buckling of simply supported (pinned) and clamped (fixed) beams

"
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The solutions for the buckling loads are well known and can be found elsewhere in the

literature, e.g. [3, 4]. For convenience, they are provided here without derivation.

Pcr ¼ p2EI
L2

ðpinned endsÞ ð8:21Þ

Pcr ¼ 4p2EI
L2

ðfixed endsÞ ð8:22Þ

As is seen from the coefficient in the right-hand side of Equations (8.21) and (8.22), the

boundary conditions at the beam ends play a big role in the value of the buckling load. A brief

compilation of buckling load values for different boundary conditions and loadings is given in

Table 8.5. In all cases the buckling load is given by

Pcr ¼ cp2EI
L2

ð8:23Þ

and the coefficient c is given in Table 8.5.

The physical meaning of the boundary conditions in Table 8.5 is as follows:

. free: free rotation and free translation

. pinned: free rotation and fixed translation

. fixed: fixed rotation and fixed translation

8.4 Beam on an Elastic Foundation under Compression

The situation is shown in Figure 8.8. A beam rests on an elastic foundation which has a spring

constant k. In general, the beam ends have linear (K1 andK2) and torsional (G1 andG2) springs

Table 8.5 Buckling load coefficient for various boundary conditions and loadings

Configuration BC at left, right end c

pinned, pinned 1.88

fixed, fixed 7.56

fixed, pinned 2.05

fixed, pinned 5.32

fixed, free 0.25

fixed, free 0.80

P P

K1
K2

G1 G2
L

Bending stiffness EI

Spring constant k

x

LL

Figure 8.8 Beam on an elastic foundation
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restraining them. Depending on the spring stiffnesses, the end boundary conditions can range

from free to clamped, and can achieve any intermediate value.

To gain insight to the problem, the case of a simply supported beam (G1¼G2¼ 0,

K1¼K2¼1) is solved first in detail. This is done using energy methods.

Referring to the discussion of Section 5.4 the one-dimensional counterpart of the energy

expression is

Pc ¼ 1

2

ðL

0

EI
d2w

dx2

� �2

dxþ 1

2

ðL

0

ð�PÞ dw

dx

� �2

dxþ 1

2

ðL

0

kw2dx ð8:24Þ

where w is the out-of-plane displacement of the beam.

The first term in the right-hand side of Equation (8.24) is the potential energy stored in

bending the beam. The second term is thework done by the external force P and the third term is

the energy stored in the spring foundation. The units of k are force/area.

An expression for w is assumed such that the boundary conditions thatw¼ 0 at the two ends

of the beam are satisfied:

w ¼
X

Am sin
mpx
L

ð8:25Þ

where L is the length of the beam and Am are unknown coefficients.

Substituting in the energy expression (8.24) and performing the integrations results in,

Pc ¼
X ðEIÞm4p4

4L3
� Pm2p2

4L
þ kL

4

� �
A2
m ð8:26Þ

The energy must be minimized with respect to the unknowns Am which leads to

@Pc

@Am

¼ 0 ð8:27Þ
Carrying out the differentiation and setting the result equal to zero yields the following

equation:

2
ðEIÞm4p4

4L3
� Pm2p2

4L
þ kL

4

� �
Am ¼ 0 ð8:28Þ

This is a matrix equation with a diagonal matrix multiplying the vector Am:

EIp4

4L3
þ kL

4
� Pp2

4L
0 0 . . .

0
EIð16Þp4

4L3
þ kL

4
� Pð4Þp2

4L
0 . . .

0 0
EIð81Þp4

4L3
þ kL

4
� Pð9Þp2

4L
. . .

. . . . . . . . . . . .

2
666666666664

3
777777777775

A1

A2

A3

A4

..

.

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ 0

The obvious possibility, Am¼ 0 corresponds to the uniform compression pre-buckling case.

Therefore, for out-of-plane deflections to be possible (Am must be different from zero) the

determinant of this matrix must equal zero. Defining,
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Kmm ¼ p2EI
L2

m2 þ kL4

p4ðEIÞm2

� �
ð8:29Þ

the matrix equation can be rewritten in the form:

K11 �P 0 0 0 0

0 K22 �P 0 0 0

0 0 K33 �P 0 0

0 0 0 . . .

0 0 . . . . . . . . .

2
66666664

3
77777775

A1

A2

. . .

. . .

. . .

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼ 0 ð8:30Þ

Since the matrix on the left-hand side is diagonal, setting its determinant equal to zero is

equivalent to setting the product of the diagonal terms equal to zero:

ðK11 �PÞðK22 �PÞðK33 �PÞ . . . ¼ 0 ð8:31Þ
There are as many solutions to Equation (8.31) as there are terms. Of them, the solution that

results in the lowest buckling load P ¼ Pcr is selected:

Pcr ¼ minðKiiÞ ð8:32Þ
From Equations (8.31) and (8.29), the buckling load has the form,

Pcr

p2EI
L2

¼ m2 þ kL4

p4EI
1

m2
ð8:33Þ

whereKmm fromEquation (8.29) was rearranged to bring the term p2EI/L2 to the left-hand side.
As a special case of Equation (8.33) consider the situation in which k¼ 0. This would be the

case of a pinned beam under compression. Then, the critical buckling load would be given by

Pcr ¼ p2EI
L2

m2 ð8:34Þ

which is minimized for m¼ 1. If m¼ 1, Equation (8.34) is identical to (8.21) and the exact

solution for this case is recovered.

In the general case when k 6¼ 0, the value of m that minimizes the right-hand side of

Equation (8.32) or (8.33) depends on the value of k itself. This can be seen more easily

graphically where the normalized buckling load (left-hand side of Equation 8.33) is plotted as a

function of the parameter kL4/(p4EI) which appears on the right-hand side of Equation (8.33).
This plot is shown in Figure 8.9.

For each value ofm, the right-hand side of Equation (8.33) is a straight line. The straight lines

corresponding to different values of m are shown in Figure 8.9. The bold black line giving the

envelope of the lowest values of the buckling load defines the critical buckling load for a given

value of the parameter kL4/(p4EI). It is seen that for low values of this parameter, m¼ 1 (one

half-wave over the entire length of the beam) gives the lowest buckling load.As thevalue of this

parameter increases, the bucklingmode progressively switches tom¼ 2 (two half-waves along

the beam length), m¼ 3, etc. Unlike the case of no elastic foundation where the beam always
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buckles in one half-wave (m¼ 1), the presence of an elastic foundation changes the buckling

mode. The higher the value of kL4/(p4EI), the higher the number of half-waves (value ofm) into

which the beam buckles.

For boundary conditions other than pinned ends, the governing equation

EI
d4w

dx4
þP

d2w

dx2
þ kw ¼ 0 ð8:35Þ

can be solved. The solution has the form

w ¼ Aepx ð8:36Þ
with the exponent p given by

p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� P

EI
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

EI

� �2

� 4k

EI

s

2

vuuuut
ð8:37Þ

Thus, there are four solutions of the form (8.36):

w ¼ A1e
p1x þA2e

p2x þA3e
p3x þA4e

p4x ð8:38Þ
The four coefficients A1–A4 are determined from the boundary conditions at the two ends of

the beam:

�EI
d2w

dx2
þG1

dw

dx
¼ 0

EI
d3w

dx3
þP

dw

dx
þK1w ¼ 0

ð8:39a--dÞ

�EI
d2w

dx2
þG2

dw

dx
¼ 0

EI
d3w

dx3
þP

dw

dx
þK2w ¼ 0

Equations (8.39) and (8.39c) are statements of moment equilibrium at the two beam ends

respectively, i.e. the moment caused by the torsional springG(dw/dx) equals the beam bending
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Figure 8.9 Buckling load of a beam on elastic foundation
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moment at that end. Equations (8.39b) and (8.39d) express shear force equilibrium at the

same locations.

Detailed results for various values of the spring constants G1, G2, K1, and K2, can be found

in [5]. Following the approach in that reference, the following parameters are defined (subscript

i¼ 1,2 denotes end x¼ 0 or end x¼L):

Ri ¼ GiL

EI

ri ¼
1

1þ 3

Ri

ð8:40Þ

Then, ri¼ 0 implies no torsional stiffness at end i, or the beam is free to attain any slope

locally (pinned end). Also, ri¼ 1 implies infinite torsional stiffness at end i, or the beam has

zero slope at that end (fixed end). As an example, the case where the beam is pinned at the left

end and has variable stiffness at the other end is shown in Figures 8.10 and 8.11.
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Figure 8.10 Buckling load of beam on elastic foundation pinned at one end and with variable rotational
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Figure 8.11 Buckling load of beam on elastic foundation pinned at one end and with variable rotation

restraint at the other (detail of Figure 8.10 for low values of x)
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In addition to Figures 8.10 and 8.11, approximate equations for a range of values of the

parameterswere obtained by best-fitting the results in [5]. These approximate equations are given

in Table 8.6.

8.5 Crippling

Crippling is a stability failure where a flange of a stiffener locally buckles and then collapses.

This is shown graphically in Figure 8.12. Under compressive load one (or more) of the flanges

buckles locally with a half-wavelength ‘, which is much smaller than the length L of the

stiffener. Once the flange buckles it can support very little load in the post-buckling regime and

fails (collapses). Its load is then shared by other members of the cross-section (if they have not

failed) until the entire cross-section collapses.

Crippling is one of the most common failure modes in a composite airframe. It may occur on

stiffeners, stringers, panel breakers, beams, ribs, frame caps, and all other members that are

Table 8.6 Buckling load y as a function of elastic foundation stiffness x and boundary rigidity

r1¼ 0

r2 x y r2 (goodness of fit)

0 0� x� 20 0.0099x2 + 0.0041x+ 1 1.0000

0 20� x� 100 0.0004x2 + 0.1517x+ 1.6658 0.9987

0.5 0� x� 20 0.0004x2 + 0.0169x+ 1.4069 1.0000

0.5 20� x� 100 0.0002x2 + 0.1714x+ 1.4518 0.9988

1 0� x� 20 0.0069x2 + 0.01134x+ 2.046 1.0000

1 20� x� 100 7� 10�5x2 + 0.1924x+ 1.2722 0.9998

r1¼ r2 x y r2 (goodness of fit)

0.2 0� x� 20 0.099x2 þ 0.0039x þ 1.28 1.0000

0.2 20< x� 100 0.0004x2 þ 0.1517x þ 1.9512 0.9987

0.5 0� x� 20 0.0099x2 þ 0.0019x þ 1.916 1.0000

0.5 20< x� 100 0.0003x2 þ 0.1539x þ 2.5361 0.999

1 0� x� 20 0.0051x2 þ 0.0265x þ 4 1.0000

1 20< x� 100 �0.0003x2 þ 0.2385x þ 2.3368 0.9943

L

Figure 8.12 Stiffener flange crippling
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stability critical and do not fail by global buckling. An approximate distribution of failure

modes for fuselage and wing of an aircraft is shown in Figure 8.13.

It can be seen from Figure 8.13 that crippling designs as much as one quarter of the parts in a

composite airframe. The distribution in Figure 8.13 should not be viewed as exact and it will

vary significantly from one application to the next. The main message however, about the

importance of certain failure modes such as crippling, carries over to most applications.

In a one-dimensional structure under compression such as a stiffener, crippling competes with

(at least) two other failure modes: material failure and column buckling. Typically, for a robust

design,material failure (not precededby some stability failure) is not the driver because it leads to

heavy designs. Between crippling and column buckling failure, crippling is preferred as the

primary failure mode. The reason is that it typically occurs on one member (or portion of a

member in bending situations as will be discussed in Section 8.5.3) and when the crippled flange

collapses there is a good chance that the remaining members of the cross-section may be able to

absorb someor all of the load originally in the failed flange, thus precluding or delaying complete

failure of the stiffener. In column buckling the whole stiffener fails. As a result, crippling has a

better chance of leading to a robust design, and is preferred as the designing failure mode. This

does not mean that there are no cases where column buckling is the driver, especially in long

beams. In such cases, if a weight-competitive design can be generated, the approach is to either

increase the bending stiffness of the entire cross-section or shorten the unsupported length of the

beam so that column buckling happens at a higher load than flange crippling.

To analyze crippling in detail onewouldfirst have to obtain the portion of the total load that acts

on eachflange and then determine the corresponding buckling load. Theflange in that casewould

be modeled as a long plate with three edges simply supported and one edge free. Then, a post-

buckling solution similar to that inChapter 7would have tobecarried out todetermine deflections

strains and stresses and some failure criterion applied to determine the load for final collapse.

Such an approach is cumbersome and relies on many simplifying assumptions to make the

solution tractable.As a result the solution is not accurate enough. In addition, there are issueswith

Figure 8.13 Failure modes in a composite airframe
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modeling the boundary condition at the root of the flange. Typically there is a radius region

(Figure 8.14) and there is some finite stiffness, meaning the boundary condition is somewhere

between simply supported and clamped. The exact type of boundary condition depends on the

radius, thickness, layup, and in- and out-of-plane stiffnesses in a complex way further compli-

cating the possibility of generating accurate analytical predictions for this failure mode.

For isotropic configurations, attempts have beenmade [6] to account for the local specifics of

the boundary conditions, in particular for beams that are nominally cantilevered. But more

work is needed in this area with an extension to composites before more accurate analytical

models for crippling analysis can be developed.

A semi-empirical approach has been favored instead. Two cases are distinguished as shown

in Figure 8.15: (a) one-edge-free (OEF) and (b) no-edge-free (NEF). In the OEF case, one end

of the flange is constrained, for example by being attached to a web or other member, and the

other end is free. In the NEF case, both flange ends are constrained from moving.

8.5.1 One-Edge-Free (OEF) Crippling

Consider the situation shown in Figure 8.16. The cross-section has threeOEFflanges, one at the

top and two at the bottom on either side of the vertical web. The buckling load for each flange

corresponds to that of a long platewith three sides simply supported and one side free. This case

was addressed in Chapter 6 for finite and infinite flange length (see Equations 6.12a and 6.13a).

radius
region

flange to be 
analyzed for 
crippling 

Figure 8.14 Radius region at root of a flange

NEF

OEFOEF

free edge

edge movement 
constrained 

Figure 8.15 One-edge-free and no-edge-free flanges in a cross-section
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For convenience, the buckling load (infinitely long flange) is repeated here:

Nxcrit ¼ 12D66

b2
ð6:13aÞ

Looking at Equation (6.13a), for a given flange width b, to maximize the buckling load one

shouldmaximize the twisting stiffnessD66. Oneway to see howD66 can bemaximized for a given

laminate thickness is to consider how each ply contributes to theD66 term for the entire laminate.

Consider the situation shown in Figure 8.17 for a symmetric and balanced laminate.

The equation that determines the contribution of the ith ply to theD66 term for that laminate

(Equation 3.47) can be recast into the form

ðD66Þc ¼ 2D66
ðiÞ þ 2A66

ðiÞdi2 ð8:41Þ
where the superscript (i) denotes quantities for the ith ply with respect to its own midplane.

Equation (8.41) is essentially the same as Equation (8.14) per unit width with the first term

of (8.14)being replacedby the correspondingD termof the ith ply and the second term replacedby

theEA termof the ith ply. The factors of 2 on the right-hand side of Equation (8.41) account for the

contribution of two plies symmetrically located with respect to the midplane of the laminate.

OEF

OEFOEF 

Figure 8.16 OEF flanges in a “J” stiffener
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Figure 8.17 Section cut of a symmetric and balanced laminate
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Based on Equation (8.41), the biggest contribution to the D66 term for the entire laminate

comes from the second term in the right-hand side of Equation (8.41) because of the presence of

the distance di.. Terms away from the midplane contribute more. Therefore, one should place

materialwith the highA66 term as far away from themidplane as possible.NowmaximizingA66

for a single ply amounts to maximizing the corresponding expression for Q66 (see

Equation 3.33d repeated below):

Q66 ¼ ðQxx þQyy � 2ðQxy þQssÞsin2y cos2yþQ66ðsin4yþ cos4yÞ ð3:33dÞ
By differentiating the right-hand side with respect to y and setting the result equal to zero, it

can be shown thatQ66 and, therefore, A66, is maximized when y¼ 45�. Therefore, on the basis
of Equation (6.13a), to maximize crippling performance one should select a flange layup that

has the 45� plies as far from the midplane as possible.

This conclusion contradicts another of the design guidelines, stated in Section 8.1, that the 0�

plies should be placed as far from themidplane as possible. This is not an inconsistency as the 0�

ply guideline is for increasing the bending stiffnessD11 and applies to columnbucklingwhile the

45� ply guideline is for increasing the bending stiffness D66 and applies to crippling. This

situation occurs frequently in practice where different design requirements point to different

directions and a compromise between them must be reached. In addition, as will be discussed

below, the requirement of asmany 45� plies away from themidplane as possible is not sufficient

to guarantee optimum crippling performance and other ply orientations are also necessary.

Equation (6.13a) is compared with test results for various layups and stiffener geometries in

Figure 8.18. It is customary and insightful to plot crippling stress normalized by the

compressive strength of the respective layup as a function of the ratio b/t (width divided by

thickness) for the respective flange. For low b/t values the crippling strength is essentially the

same as the compressive strength of the flange. This would be the case of a thick flange where

buckling is delayed because of the high bending stiffness and material strength is the operative

failure mode. For high b/t values the crippling strength drops rapidly as b/t increases, showing

the sensitivity to reduced bending stiffnesses of the flange.

As is seen from Figure 8.18, the theoretical prediction of Equation (6.13a) is higher than the

test results for low b/t values (b/t< 6) but close to them.However, it becomes very conservative

for high b/t values. The reasons for this, as alreadymentioned above, are related to the boundary
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Figure 8.18 OEF crippling test results compared to buckling predictions

198 Design and Analysis of Composite Structures



 

conditions at the edge of the flange that are not captured by Equation (6.13a), which assumes a

simply supported edge, and to the post-buckling capability of the flange, which becomes more

and more pronounced for larger b values. This would be the case where the flange stops

behaving as a one-dimensional structure and behavesmore like a plate, which, aswas discussed

in relation to Figure 7.2 in the previous chapter, would result in improved post-buckling load

carrying ability.

In view of these differences between analysis and experimental results and the difficulties

associated with improving the analysis without resorting to expensive computational

approaches, a semi-empirical approach has been adopted where the crippling strength is

correlatedwith the b/t ratio. Over a large set of test results with differentmaterials and layups, it

has been found [7] that the following expression fits the data well:

scrip
scu

¼ 2:151

b

t

� �0:717
ð8:42Þ

valid for b� 2.91t; for b < 2.91t, scrip ¼ suc.
The two constants in Equation (8.42) are determined by best-fitting the data. For design,

Equation (8.42) is modified to guarantee that at least 90% of the tests are higher than the

prediction (seeB-Basis definition in Section 5.1.3 and Figure 5.8). The design equation is, then:

scrip
scu

¼ 1:63

b

t

� �0:717
ð8:43Þ

valid for b� 1.98t; for b< 1.98t, scrip ¼ suc.
In Equations (8.42) and (8.43)suc is the ultimate compressive strength of the flangewhich can

be determined, for example, as the first-ply failure of the flange under compression (see

Chapter 4 for first-ply-failure criteria). The predictions of these two equations are also shown in

Figure 8.18. It can be seen that Equation (8.42) fits the present datawellwhile Equation (8.43) is

below most of the data and thus could be used as a design equation. It is important to note that

the test results shown in Figure 8.18 were not used in generating the semi-empirical curves of

Equations (8.42) or (8.43) so the agreement seems to reinforce the usefulness and applicability

of these two equations.

An important note on applicability: As the test data onwhich Equations (8.42) and (8.43) are

based come from laminateswith at least 25%0� plies and 25%45� plies, these equations should
be used only with layups that fall in this category. Extending to other layups with less 0� and/or
45� plies is not recommended. In any case, most flange designs do obey this requirement of at

least 25% 0� and at least 25% 45� plies as a compromise between the two design requirements,

already presented, of 0� plies for high D11 and 45� plies for high D66 and respective high

EA� d2 contribution.

A final point relating to the presence of 0� and 45� plies is in order. As was mentioned above,

45� plies away from the laminate midplane maximize D66 and thus the buckling load of the

flange as given by Equation (6.13a). However, especially for large b/t values where the flange

behaves as a plate and has significant post-buckling capability, using mostly 45� plies in the

flange is not recommended. 0� plies are also required to increase the post-buckling strength.

This is captured in Equation (8.43) in suc, the compression strength of the flange. As a result, in
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practice flange layups with at least 25% 0� and 25% 45� plies are used. They have been

demonstrated by test to have better crippling performance.

8.5.2 No-Edge-Free (NEF) Crippling

The situation is shown in Figure 8.19. The vertical web in this Figure is supported at the two

ends by the flanges and is treated as no-edge-free (NEF) web.

The web in this case can be modeled as a long plate that is simply supported all around its

boundary. This case was examined in detail in Section 6.2. Starting from the buckling load

given by Equation (6.7),

No ¼ p2

a2
D11m

2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
m2

" #
ð6:7Þ

the corresponding expression for a very long plate (a ! 1) can be determined as follows: The

term a2 is brought inside the brackets and a factor b2 is factored out using the fact that AR¼ a/b.

Also, the square root of the product D11D22 if factored out, giving

Nxcrit ¼ p2

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p m2b2

a2
ffiffiffiffiffiffiffiffi
D22

D11

r þ 2ðD12 þ 2D66Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p þ
ffiffiffiffiffiffiffiffi
D22

D11

r
a2

b2m2

2
664

3
775 ð8:44Þ

To determine the number of half-waves m that minimizes Equation (8.46), the right-

hand side is differentiated with respect to m and the result set equal to zero. This results in

the equation,

mb2

a2
ffiffiffiffiffiffiffiffi
D22

D11

r ¼ a2

b2m3

ffiffiffiffiffiffiffiffi
D22

D11

r

NEF

b

t

Figure 8.19 NEF web in a J stiffener
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and solving for m,

m ¼ a

b

D22

D11

� �1=4

ð8:45Þ

Note that, sincem is an integer, the right-hand side of Equation (8.45) must be rounded up or

down to the next (or previous) integer, whichever minimizes the right-hand side of Equa-

tion (8.44). For a long plate, (dimension a is large)m is large and using Equation (8.45) instead

of the nearest integer thatminimizes Equation (8.44) is justified. Then, using Equation (8.45) to

substitute in Equation (8.44) gives,

Nxcrit ¼ 2p2

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p þðD12 þ 2D66Þ
� 	 ð8:46Þ

Equation (8.46) gives the buckling load of a long plate under compression, and can be used to

correlate with NEF crippling test results. It is the counterpart of Equation (6.13a), which was

used to predict buckling of OEF flanges in the previous section. It is interesting to note that, in

terms of laminate stiffnesses, the right-hand side of Equation (8.46) is most sensitive to D66

because of the factor of 2 multiplying that term. A fractional change in any other of the terms,

D11, D22, or D12 will result in smaller increase of the buckling load for the same fractional

change in D66. Thus, similar to the OEF case, to maximize the crippling load one should

maximize theD66 termwhich, aswas shown in the previous section is equivalent tomaximizing

the number of 45�/–45� plies and locating them as far from the midplane as possible.

Equation (8.46) is compared with test results for NEF crippling in Figure 8.20. Just as for the

OEF case, the test results are slightly lower for low b/t values (b/t< 15) and significantly higher

at high b/t values. The same arguments presented in the previous section for OEF flanges are

also valid here. The post-buckling ability of the web or flange (not accounted for by

Equation 8.46) and the specifics of the boundary condition at the roots of the web or flange

are two of the main reasons for the discrepancy between the prediction and test results in

Figure 8.20.
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Figure 8.20 NEF crippling test results compared to buckling predictions
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Fitting a curve to the test data [8] results in the expression:

scrip
scu

¼ 14:92

b

t

� �1:124
ð8:47Þ

where suc is the compression strength of the flange. Equation (8.47) is valid for b� 11.07t. For

b< 11.07t, scrip ¼ suc.
For design, a curve that is lower than 90% of the test results (B-Basis value) is used and is

given by [8]:

scrip
scu

¼ 11:0

b

t

� �1:124
ð8:48Þ

for b� 8.443t and scrip ¼ suc for b< 8.443t.

Both Equations (8.47) and (8.48) give improved predictions over Equation (8.46). Equa-

tion (8.47)matches test resultswell up tob/tof 25but thenbecomes conservative.Equation 8.48

has all test data lying above it and is, therefore, a good equation to use for design. It should be

emphasized that the test data in Figure 8.20 were not included in the creation of the semi-

empirical Equations (8.47) and (8.48) so the agreement between test results and these equations

suggests that the equations have a fairly wide range of applicability. It should be noted that, as

Equations(8.47)and(8.48)werederivedforflangeswithat least25%0� and25%45� plies,useof
these equations for layups that do not fall in this category should be avoided. The tradeoff

between0� and45� plies thatwasdiscussedforOEFflanges in theprevioussectioncarriesover to
this section also. Adding 45� plies away from themidplane increasesD66 and thus the buckling

load. Adding 0� plies increases the compression strength. Both are needed for an optimum

design. The final mix of 0� and 45� plies will be a function of applied load and geometry.

Finally, by comparing the test results between Figures 8.18 and 8.20, it can be seen that a

NEF flange has always greater crippling strength (as a fraction of the compression strength)

than a OEF flange with the same b/t ratio.

8.5.3 Crippling Under Bending Loads

If bending loads are applied to a stiffener (Figure 8.21), then some of the flanges or portions of

flanges may still be under compression and can still be crippling-critical.

The recommended approach is to determine the portion of the flange that is under compressive

loads and use that portion as the b value in the crippling analysis. Also, as applied load, the

average compressive loadexerted on that portion is used.This is shown inFigure 8.22 for a case of

combined compression and bending loading. For this case, the portion that is under compression

is a fraction of the entire flange and is denoted by b in Figure 8.22. Also, the minimum

compressive stress scmin is zero. Then, the average compressive stress acting over b is given by:

sc ¼ scmax þ scmin

2
¼ scmax

2
ð8:49Þ

The analysis then would consist of determining the crippling stress scrip for a NEF or OEF

flange (depending on the case; it is NEF for the example of Figure 8.22) and comparing it with
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the applied stress sc given by Equation (8.49). If the crippling stress exceeds sc then there is

no failure.

Note that the example of Figure 8.22 assumes that the bending momentM is large enough to

create high tension on the upper end of the flange which exceeds the compression stress due to

the applied load P. IfMwere not high enough the entire flangewould be under compression. In

M

M tension

compression

Figure 8.21 Stiffener under bending loads

M

M
P

P

b

σcmax

σcmin=0

Figure 8.22 Stiffener cross-section under combined compression and bending
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that case scmin is not zero, but equal to

scmin ¼ P

A
� Mc

I

with A and I the area and moment of inertia of the entire cross-section and c half the height.

Also, in this case b is equal to the entire width of the web and not a portion of it.

8.5.3.1 Application: Stiffener Design Under Bending Loads

Consider the L stiffener under bending moment M¼ 22.6Nm shown in Figure 8.23. The

stiffener layup is the same for bothmembers: [45/–45/02/90]s with the 0
� fibers alignedwith the

axis of the stiffener (perpendicular to the plane of Figure 8.23). The ultimate strain for this

layup at room temperature ambient (RTA) conditions is 12 000 ms. The width b1 of the

horizontal flange is fixed at 17.78mm. Determine themaximum value of b2 so that the stiffener

does not fail in crippling.

Using classical laminated-plate theory, the elastic properties of the stiffener flange and web

are as follows:

A11 (N/mm) 113015 D11 (Nmm) 12893.18

A12 (N/mm) 23327.5 D12 (Nmm) 6219.661

A22 (N/mm) 54670 D22 (Nmm) 8265.409

A66 (N/mm) 25532.5 D66 (Nmm) 6564.006

where axis 1 is aligned with the stiffener axis and axis 2 is in the plane of the web or flange

accordingly.

Using Figure 8.24, the stiffener cross-sectional properties are determined as follows:

�y ¼
b2t

�
tþ b2

2

�
þ b1t

t

2

b1tþ b2t
¼

t

�
b2 þ b1

2

�
þ b2

2

2

b1 þ b2

I ¼ tb2
3

12
þ b2t

�
tþ b2

2
��y

�2

þ b1t
3

12
þ b1t

�
�y� t

2

�2

with t the thickness of the laminate used (¼1.3716mm).

b1

b2

t Ex=137.9 GPa
Ey=11.0 GPa  

Gxy=4.83 GPa 
νxy=0.29 

tply=0.1524 mm 

[45/-45/02/90]s 

M
M

edge view

Figure 8.23 Stiffener under bending moment

E1memb 75.2 GPa

E1bend 38.1 GPa

t 1.3716 mm
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Assuming engineering bending theory is valid, the maximum compressive stress and strain

in the stiffener can be shown to be:

scomp ¼Mðb2 þ t��yÞ
I

ecomp ¼ scomp
E1bend

¼ Mðb2 þ t��yÞ
E1bendI

Note that for small t values, using E1memb is more representative than E1bend.

The upper portion of the web in Figure 8.24 is under compression and the lower portion,

along with the flange, are under tension. Therefore, only the portion above the neutral axis in

Figure 8.24 can fail in crippling. This means that the length of the web that may fail in

crippling is (see insert of Figure 8.24) b2 þ t� y. The linear strain distribution shown in

Figure 8.24 is approximated as a constant compressive strain equal to the average compres-

sive strain over the portion of the stiffener web that is under compression (see insert of

Figure 8.24).

The portion of the stiffener web that is under compression is stabilized at the neutral axis and

free at the top so it is OEF. Using Equation (8.43),

scrip
suc

¼ 1:63

b

t

� �0:717

Bymultiplying numerator and denominator by the axial stiffnessE, the crippling equation in

terms of strains can be obtained:

y

ε
comp

b2

b1

y

y

neutral axis
t

b2

b1

yy

y

εcomp/2

−+
__

2 ytb
portion of web 
that is under 
compression

Figure 8.24 Stiffener geometry and neutral axis location
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scrip
sult

¼ Eecrip
Eeult

¼ ecrip
eult

¼ 1:63

1þ b2 ��y

t

� �0:717

where b¼ b2 þ t��y was substituted in the equation.

The design ultimate strain can be obtained from the ultimate strain at RTA conditions using

the knockdowns provided in Section 5.1.6 for material scatter, environmental sensitivity and

impact damage. This gives:

eult ¼ ð0:8Þð0:8Þð0:65Þ12000 ¼ 4992 ms

The not-to-exceed strain at which the web cripples is then given by

ecrip ¼ 1:63ð0:004992Þ

1þ b2 ��y

t

� �0:717

which is a function of the web height b2.

The applied strain ecomp was calculated earlier as a function of the applied moment M

and stiffener geometry. That strain must be below the crippling strain ecrip to avoid failure.

A plot of the applied and crippling strains is shown in Figure 8.25 as a function of the web

height b2.

As can be seen from Figure 8.25, the crippling strain is lower than the applied strain for small

b2 values. In that range, the applied strain exceeds the crippling strain and failure occurs. This is

because the moment of inertia I of the stiffener is low and, as a result, the bending strains are

high. Now as b2 increases, the crippling strain is reduced, which would be expected from the

form of the crippling strain equationwith b2 in the denominator. Therefore, the situation would

get ‘worse’ from a crippling perspective. However, the rate at which the crippling strain

decreases is much lower than the rate at which the applied strain decreases. This is because a

change in b2 increases the moment of inertia (and thus decreases the applied strain) to a larger
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Figure 8.25 Comparison of maximum applied strain to the crippling strain of a stiffener under bending

moment
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extent than the same change decreases the crippling strain. As a result, a value of b2 can be

found, 43.2mmbeyondwhich the applied strain is lower than the crippling strain and no failure

occurs. Therefore, the minimum allowable value of b2 is 43.2mm.

8.5.4 Crippling of Closed-Section Beams

For closed-section beams such as the hat stiffener shown in Figure 8.26, two cases are

distinguished: (a) the beam is hollow, and (b) the beam is filled by foam or other material. In

the first case, the crippling analysis proceeds as in the previous sections by analyzing each

flange of the closed section as NEF. In the second case, an analysis of a beam on an elastic

foundation can be carried out (provided a reliable post-buckling analysis is available) or,

which is preferred, each flange is treated as a facesheet of a sandwich failing in wrinkling

(see Section 10.3).

8.6 Importance of Radius Regions at Flange Intersections

It was briefly mentioned in Section 8.1 (see also Figure 8.4) that turning plies around 90�

corners at flange/web intersections is very difficult without the creation of a ‘pocket’.

This happens irrespective of the fiber orientation, but is most pronounced in the case of

90� plies and least in the case of 0� plies (where 0� is the direction perpendicular to the

page of Figure 8.27). This situation is shown (exaggerated and not to scale) in

Figure 8.27.

Wavy fibers in the radius region compromise the strength of the cross-section. Resin-rich

areas in the radius region suggest that there are resin-starved areas in adjacent plies, again

leading to reduced strength and stiffness, especially under compression or shear. The size of the

‘pocket’ is a function of the layup (plies with fibers aligned with the turn are harder to turn 90�

corners following a tight radius), tooling (concave tooling into which the material is placed

results in larger pockets, as opposed to convex tooling over which material is draped), cure

pressure (higher pressures tend to decrease the size of the pocket), resin flow and bleeding

during cure, etc.

Since the existence of the pocket is unavoidable in such configurations, efforts are usually

made to reinforce it by incorporating a piece of unidirectional tape or roving material. With

reference to Figure 8.28, the area of the ‘pocket’ is found to be:

b. filled a. Hollow 

NEF

OEF OEF

Figure 8.26 Closed cross-section stiffeners (crippling considerations)

Design and Analysis of Composite Beams 207



 

Af ¼ 2 Ri þ t

2

h i2
1� p

4


 �
ð8:50Þ

where Ri and t/2 are the inner radius and thickness of the turning flange respectively.

For the case of uniaxial tension or (pre-buckling) compression, strain compatibility requires

that the strain in the pocket be the same as the strain in every othermember of the cross-section.

Then, using Equation (8.12) the force in the pocket can be found to be:

Ff ¼ EfAfP
EjAj

FTOT ð8:51Þ

The significance of the force absorbed by the filler material can best be seen through an

example. Consider the stiffener cross-section shown in Figure 8.29. It is assumed that the

without special provisions, this region fills 
with wavy fibers and/or pure resin 

Figure 8.27 Resin pocket formed at web/flange intersection of a stiffener (See Plate 19 for the colour

figure)

Ri

t

filler material

Figure 8.28 Pocket geometry
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material used is typical graphite/epoxy. Then, for typical layups, the axial stiffness of

the web and flanges is given by E1¼ 89.6 GPa, E2¼ 31.0 GPa, E3¼ 48.3 Gpa, with the

subscripts referring to the three members in Figure 8.29. The filler material can be

anything from pure resin (no filler) whose stiffness is Ef¼ 3GPa, to completely filled by

unidirectional material, in which case the stiffness would be Ef¼ 138 GPa. Finally, the

inside radius Ri of the turning flange (see Figure 8.28) is assumed to vary in a typical range

of 2.5–6.35mm.

Using Equation (8.51) the force acting in the filler region can be determined as a fraction

of the total applied force. The results are shown in Figure 8.30. It can be seen that the force

on the filler can be a significant fraction of the total applied force, especially when it is filled

with unidirectional material. In general, even when unidirectional or roving material is

used, the force on the filler is neglected during the design phase. This increases the load

on the other members of the cross-section, making the design more conservative. For a

detailed analysis and for comparison with test results the force on the filler must be taken

into account.

19mm

40.6mm

30.5mm

0.91mm 1.22mm

1.83mm
Ri

1

2

3

Figure 8.29 Stiffener cross-section with filler material at the interface of the web and bottom flange
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Figure 8.30 Force on filler region as a function of filler stiffness and flange inside radius
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In view of the importance of the filler material in load sharing and alleviating some of the

load in the stiffener web and flanges, the design of the J cross-section from Figure 8.6 is now

revisited in Figure 8.31. Besides a filler material, the conclusions of the discussion on crippling

have been applied to the flange and an attempt has beenmade to combine, in the bottom flange,

45� plies (for increased D66) with 0� plies (for increased moment of inertia and compressive

strength which, in turn increases the crippling strength).

8.7 Inter-rivet Buckling of Stiffener Flanges

In addition tomaterial failure, columnbuckling, and crippling, a flange under compressionmay

buckle in a modewhere the half-wave is confined between adjacent fasteners. This is shown in

Figure 8.32.

In a design, efforts aremade to avoid the use of fasteners because of the associated increase in

cost and, depending on the fastener type and spacing, increase inweight. However, in situations

where co-curing or bonding is not deemed sufficient, fasteners may be the only option. In

addition, for post-buckled panels, fasteners may be used (typically near the stiffener ends only)

to keep the skin from peeling away from the flange.
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Figure 8.31 J stiffener cross-section with filler material (See Plate 20 for the colour figure)

210 Design and Analysis of Composite Structures



 

To obtain the design condition for this failure mode, the flange is treated as a beam with the

x axis running along its length (Figure 8.32). Also, the 0� direction is aligned with the x axis.

Assuming the flange to be symmetric and have D16¼D26¼ 0, the governing equation for the

out-of-plane displacements w is given by Equation 5.16 applied to a one-dimensional problem

(@/@y¼ 0) with no distributed loads (px¼ py¼ pz¼ 0):

D11

@4w

@x4
þ 2ðD12 þ 2D66Þ @4w

@x2@y2
þD22

@4w

@y4
¼ Nx

@2w

@x2
þ 2N

@2w

@x@y

þNy

@2w

@y2
� px

@w

@x
� py

@w

@y
þ pz ð5:16Þ

which, for a compressive load No¼�Nx simplifies to:

D11

@4w

@x4
þNo

@2w

@x2
¼ 0 ð8:52Þ

which has the general solution:

w ¼ Co þC1xþC2 sin

ffiffiffiffiffiffiffiffi
No

D11

r
x

� �
þC3 cos

ffiffiffiffiffiffiffiffi
No

D11

r
x

� �
ð8:53Þ

Note that the partial derivatives of Equation (8.52) are, in fact, total derivatives in this case

because there is no dependence on y.

If the fasteners are assumed to provide simple support to the flange at x¼ 0 and x¼ s, the

boundary conditions are:

fastener spacing, s 

x

flange thickness t

Figure 8.32 Flange inter-rivet buckling

wðx ¼ 0Þ ¼ wðx ¼ sÞ ¼ 0

�D11

d2w

dx2
¼ M ¼ 0 at x ¼ 0; x ¼ s

ð8:54Þ
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Substituting in Equation (8.54):

wðx ¼ 0Þ ¼ 0 ) Co þC3 ¼ 0

wðx ¼ sÞ ¼ 0 ) Co þC1sþC2 sin

ffiffiffiffiffiffiffiffi
No

D11

s
s

0
@

1
AþC3 cos

ffiffiffiffiffiffiffiffi
No

D11

s
s

0
@

1
A ¼ 0

ð8:55a--dÞ

�D11

d2w

dx2
ðx ¼ 0Þ ) C3

N0

D11

¼ 0

�D11

d2w

dx2
ðx ¼ sÞ ) C2

N0

D11

sin

ffiffiffiffiffiffiffiffi
N0

D11

s
s

0
@

1
AþC3

N0

D11

cos

ffiffiffiffiffiffiffiffi
No

D11

s
s

0
@

1
A ¼ 0

From Equation (8.55c),

C3 ¼ 0

which substituted in (8.55a) gives

Co ¼ 0

Then, Equation (8.55b) can be used to obtain a relation between C1 and C2:

C1 ¼ �C2

1

s
sin

ffiffiffiffiffiffiffiffi
No

D11

r
s

� �

Finally, Equation 8.55d gives:

sin

ffiffiffiffiffiffiffiffi
No

D11

r
s

� �
¼ 0 )

ffiffiffiffiffiffiffiffi
No

D11

r
s ¼ np ) No ¼ n2p2

s2
D11

which gives the buckling load No for the flange. The lowest buckling load (n¼ 1) is the one of

interest. Therefore, the inter-rivet (buckling) stress is

sir ¼ No

t
¼ p2D11

ts2

where t is the flange thickness.

This equation corresponds to simply supported ends at the fasteners. However, depending on

the type of fastener, the support provided at the ends can be more restricting than a simple

support with the slope locally constrained to a degree. The edge condition can range from

simply supported (countersunk fasteners) to nearly fixed (protruding fasteners). This range of

boundary conditions is represented by a coefficient of fixity c and the inter-rivet stress

expression is generalized to:

sir ¼ cp2D11

ts2
ð8:56Þ

with c¼ 1 for countersunk fasteners and c¼ 3 for protruding-head fasteners.
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The fastener spacing and flange stiffness determine the failure mode of the flange.

Contrasting inter-rivet buckling with crippling for example, it can be seen that for relatively

wide fastener spacings and soft flanges (s large andD11 small) the flangewill fail by inter-rivet

buckling. For narrow spacings and large bending stiffness the flange will fail in crippling. This

means that, given a flange layup, there is a threshold fastener spacing value that, if exceeded, the

failure mode switches from crippling to inter-rivet buckling. This is shown schematically in

Figure 8.33.

Typically, the flange attached to the skin that may fail by inter-rivet buckling is of the one-

edge-free (OEF) type. Then, Equations (8.43) and (8.56) can be combined to determine the

critical fastener spacing. Equating the inter-rivet buckling stress to the crippling stress and

solving for s gives,

smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp2D11

1:63tscu
b

t

� �0:717
s

ð8:57Þ

which gives the maximum fastener spacing for crippling to occur.

The implications of Equation (8.57) can be seen more clearly through an example. Consider

the twoflange layupsgiven inTable 8.7. Thefirst is a stiffflange and the second avery soft flange.

Themaximum fastener spacing determined fromEquation (8.57) is plotted in Figure 8.34 for

the first layup, [45/02/�45/04]s. As the width to thickness ratio b/t for the flange increases the

value of smax increases.

The maximum fastener spacing for the soft layup, [(�45)/(0/90)/[(�45)], is shown in

Figure 8.35. The trends are the same as in Figure 8.34, but an important problem not present in

the stiff flange of Figure 8.34 is now evident: The maximum allowed fastener spacing is too

small for typical b/t ratios. Fastener spacing values less than 20mm are avoided in practice

because the interaction between adjacent fasteners leads to increased bearing loads. For a

(protruding-head) fastener spacing of 20mm, Figure 8.35 suggests a b/t value of about 25

which corresponds to very low crippling failure loads (see Figure 8.18). The situation is even

worse for countersunk fasteners.

flange failure 
stress

fastener spacing smax

inter-rivet 
buckling failure 

crippling failure

Figure 8.33 Flange failure modes as a function of fastener spacing

Table 8.7 Properties of two potential flange layups

Layup [45/02/�45/04]s [(�45)/(0/90)/[(�45)]

suc (MPa) 762 529

D11 (Nm) 67.5 0.66

t (mm) 2.032 0.572
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This discussion brought to the surface some of the issues associated with fasteners and

fastener spacing.While the interaction between inter-rivet buckling and crippling suggests that

relatively large fastener spacings may be necessary, bolted joint analysis of multi-fastener

joints shows that, for composites, lower fastener spacings should be preferred because they

tend to maximize the net section strength [9]. As is often the case when multiple failure modes

and constraints come into play, design guidelines can be generated that, at times, conflict with

one another. Care must be exercised in such situations to generate designs that yield the best

compromise. While an exhaustive discussion of bolted joints is beyond the scope of this book,

some basic guidelines derived from the above discussion and more elaborate analyses of

fastener joints [9–11] are summarized below.

1. If no other requirements dominate, use a fastener spacing of 4-5D (whereD is the diameter

of the fastener)

2. Minimum fastener spacing should be no less than 20mm

3. Use skin thickness/diameter ratio < 1/3 to minimize fastener bending

4. Use skin thickness/countersunk depth >2/3 to avoid pulling countersunk fastener through

the skin when loads perpendicular to the skin are applied

5. Use at least 40% 45/–45 plies around fasteners for better load transfer

0
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spacing (mm)

protruding head

countersunk fasteners

Figure 8.34 Fastener spacing to cause inter-rivet buckling for [45/02/�45/04]s flange
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Figure 8.35 Fastener spacing to cause inter-rivet buckling for [(�45)/(0/90)/[(�45)] flange
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8.8 Application: Analysis of Stiffeners in a Stiffened Panel
under Compression

Ahighly loaded stiffened panel is shown in Figure 8.36. The stiffener cross-section is the same,

in terms of layup, as in Figure 8.31. The effect of the filler material at the radius regions is

neglected. Skin and stiffener properties are summarized in Table 8.8. The axial stiffness of

the skin is found from Equation (8.6) to be Eskin¼ 41.15GPa. The portion of skin under

compression, beff if the post-buckling load distribution is represented by a piecewise constant

distribution, is given by Equation (7.15), resulting in beff¼ 0.292a¼ 4.45 cm.

Using Equation (6.7), the buckling load of the skin between the stiffeners is found to be

No¼ 182N/mm. This corresponds to a total force of 182� 457¼ 83 174N. So, under the

applied load of 100 kN, the skin buckles and the PB ratio is 100/83.17¼ 1.20. It is now assumed

that, once the skin buckles all the excess load (between 100 and 83 kN) is taken by the stiffeners

and beff skin next to them. So the load on each cross-section of Figure 8.37 is the buckling load

on the beff portion of the skin and the total load minus the buckling load acting on the stiffener

plus the beff skin portion. Since there are four stiffener/skin combinations as in Figure 8.37, the

load in the skin due to skin buckling is 83 174/4¼ 20794N.The load beyondbuckling acting on

45.7
cm 

50.8
cm

100 kN 100 kN 
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-45
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-45
-45
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-45
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Figure 8.36 Skin-stiffened panel under compression (See Plate 21 for the colour figure)
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each stiffener/skin combination is (100 000� 83 174)/4¼ 4207N. The situation is shown in

Figure 8.38.

The skin buckling load of 20 794N is shown in Figure 8.38 acting through the skin neutral

axis to emphasize the fact that it is caused by skin buckling and stays in the skin (does not

transfer into the stiffener). The remaining load of 4207N is acting through the neutral axis of

the entire combination of stiffener and effective skin.

Using the geometry of Table 8.8 and the crippling equations (8.43) and (8.48) the crippling

stresses in eachmember of the cross-section can be determined as a fraction of the compression

strength of eachmember. Then, a first-ply failure criterion (Tsai–Wu failure theory, see Section

4.4) is used to determine the compression strength of eachmember and, from that, the crippling

failure stresses in each member. The results are shown in Table 8.9.

Equation (8.12) can be used to determine the applied load on each of the members of the

cross-section. This equation is applied to the 4207N load (see Figure 8.38) while the 20794N

Table 8.8 Skin and stiffener properties

SKIN

D11 659.7 Nmm

D12 466.9 Nmm

D22 659.7 Nmm

D66 494.0 Nmm

skin thickness¼ 0.57mm

A11 28912.44 N/mm

A12 12491.43 N/mm

A22 28912.44 N/mm

A66 13468.58 N/mm

STIFFENER

Member b (mm) t (mm) Em (Gpa) Eb (GPa)

1 12.7 1.2192 75.6 32.4

2 31.75 1.2192 18.2 17.9

3 38.1 1.8288 56.5 47.9

beff beff

1

2

34

56

Figure 8.37 Cross-section carrying load in the post-buckling regime
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load is added to the skin members 5 and 6 in addition to the contribution coming from the

4207N load. The resulting loads are given in Table 8.10.

The last column of Table 8.9 gives the stress at which the corresponding member will fail

(allowable stress). The last column of Table 8.10 gives the applied stress. The ratio of the two

stresses is shown in Table 8.11. If the ratio of applied to allowable (also termed the loading

index) is greater than 1, the corresponding member fails. As can be seen from Table 8.11, the

last two members, i.e. the effective skin portion will fail in crippling.

beff 

beff 

4207 N 

20794 N

Figure 8.38 Loads on representative cross-section after the skin buckles

Table 8.9 Crippling analysis of members of the cross-section

Member b (mm) t (mm) OEF/NEF b/t scrip/scu scu(N/mm2) sfail (N/mm2)

1 12.7 1.22 OEF 10.42 0.304 494.64 150.2344

2 31.75 1.22 NEF 26.04 0.282 283.88 80.04247

3 19.05 1.83 OEF 10.42 0.304 351.75 106.8331

4 19.0.5 1.83 OEF 10.42 0.304 351.75 106.8331

5 44.5 0.57 NEF 78.07 0.082 529.14 43.43236

6 44.5 0.57 NEF 78.07 0.082 529.14 43.43236

Table 8.10 Applied loads on the members of the cross-section

Member b (mm) t(mm) E (N/m2) A (mm2) EA (N) Fi/Ftot Applied

F (N)

sapplied
(N/mm2)

1 12.7 1.22 7.56Eþ 10 15.48 1.17Eþ 05 0.148 623.42 40.26

2 31.75 1.22 1.82Eþ 10 38.71 7.05Eþ 04 0.089 375.20 9.69

3 19.05 1.83 5.65Eþ 10 34.84 1.97Eþ 05 0.249 1048.31 30.09

4 19.05 1.83 5.65Eþ 10 34.84 1.97Eþ 05 0.249 1048.31 30.09

5 44.5 0.57 4.12Eþ 10 25.37 1.04Eþ 05 0.132 10952.88 431.81

6 44.5 0.57 4.12Eþ 10 25.37 1.04Eþ 05 0.132 10952.88 431.81
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Exercises

8.1 A T stiffener is used in a compression application. It has the following configuration:

b1

t1

b2

t2

+45

-45

0 

90

0 is along the axis of the 
stiffener 

The material used has the properties:

Ex ¼ 137:9 GPa
Ey ¼ 11:0 GPa
Gxy ¼ 4:82 GPa
nxy ¼ 0:29
tply ¼ 0:1524 mm

The length L of the stiffener is 304.8mm. The stiffener is pinned at the two ends and

rests on an elastic foundation of spring constant k. Manufacturing considerations do not

permit b2 to be smaller than 19.05mm or b1 to be smaller than 12.7mm. (a) If k is allowed

to vary between 1378 800N/m2 and 5515 200N/m2, create a plot that shows how b1 and b2
vary with k so that the weight is minimized and the stiffener does not buckle below

31.115 kN. (b)What is the optimum value of k to use in this application (taking ‘optimum’

to mean the value that minimizes the stiffener weight)?

8.2 A stiffener terminates in themiddle of nowhere on a skin. The stiffener is loaded on one end

by a compressive load of 22.2 kN. The outermold line of the stiffener cross-section (i.e. the

outer shape) is fixed because a tool to make it is already available. But the stiffener

thickness is variable. The situation is shown in the Figure below.

Table 8.11 Failure index (applied/allowable stress) for

members of the cross-section

Member Applied/allowable

1 0.268

2 0.121

3 0.282

4 0.282

5 9.942

6 9.942
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The basic material properties are the same as in Exercise 8.1.

27.94 mm

15.24 
mm

t

L=457.2 mm
F=120 kN

skin

stiffener

fixed end

F

F

l

pinned end

Use only 45,�45, 0, and 90� plies to create a symmetric and balanced laminate, which

includes at least one of each of these principal four orientations, to determine the lowest

thickness laminate that does not buckle under the applied load.

8.3 You are now given the basic strength values for the material of Exercise 8.2:

Xt ¼ 2068MPa ðtension strength parallel to the fibersÞ
Xc ¼ 1378MPa ðcompression strength parallel to the fibersÞ
Y t ¼ 103:4MPa ðtension strength perpendicular to the fibersÞ
Yc ¼ 310:2MPa ðcompression strength perpendicular to the fibersÞ
S ¼ 124:1MPa ðshear strength

Check your solution of Exercise 8.3 for crippling of the upper flange (flange away from

the skin) and the vertical web. If your solution fails in crippling, discuss how youwould go

about changing different parameters of the problem (layups, lengths, widths) to avoid

failure with the lowest possible weight increase. If your solution does not fail in crippling,

discuss what parameters of the problem (layups, length, widths, etc) you should change to

reduce the weight of the structure as much as possible without failing in crippling or

buckling. Do not run any numbers, simply discuss what you should change and why you

think it is the most effective.

8.4 The stiffener of Exercise 8.3 is riveted to the skin. Using the layup you obtained in Exercise

8.3, determine the maximum allowed rivet spacing for the rivets shown below. For this

problem, disregard the crippling failure.

lower flange of stiffener
skin 
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8.5 A C (or channel) stiffener is used in a compression application (see Figure)

b1

b2

b3

t3

t1 t2

Member 1 is next to the skin and its layup is fixed to: [45/–45/0/90/0/–45/45] with 0

running along the axis of the stiffener. The dimension b1 is also fixed at 19.05mm. The

basic material properties are as follows:

Ex 1:31Eþ 11 Pa XT 1:7235Eþ 09 Pa

Ey 1:14Eþ 10 Pa XC 1:379Eþ 09 Pa

Gxy 4:83Eþ 09 Pa YT 8:273Eþ 07 Pa

nuxy 2:90E-01 YC 3:033Eþ 08 Pa

tply 1:52E-01 mm S 8:809Eþ 07 Pa

Dimensions b2 and b3 are allowed to vary between 12.7 and 48.26mm.Use the layup for

member 1 above and change it (if needed) according to the following rules:

(a) No fewer plies than the base layup are allowed

(b) Keep þ 45/�45 on the outside

(c) Layup is symmetric

(d) At least one 0� and one 90� ply are present in the layup

(e) Only 45, �45, 0, and 90� degree plies are used

(f) No layup has more than a total of 13 plies

to create candidate layups for members 2 and 3.

(a) (you will need access to do first ply failure analysis). If the total compressive load

applied to the cross-section is 26.67 kN, determine the optimum layup(s) and dimen-

sions for members 2 and 3 so that the cross-section does not fail in crippling. Note that

member 1, beingnext to the skin is reinforcedby the effective skin and is assumednot to

fail in crippling (so you do not need to do any failure analysis for member 1). For

crippling equations, assume that the general equations given in this chapter are valid

even if, for some of your layups, the requirement of at least 25%0, 25%45� plies is not
satisfied. Optimum here means that for each set of layups that do not fail in crippling,

determine the onewith the lowest cross-sectional area.Do not reduce the strength value

calculated to account for environmental effects, impact, and material scatter.

(b) Among the optimum layups determined in part (a) determine, as the best layup(s) to

use, the one(s) that make most sense from a robust design and manufacturing

perspective.
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8.6 You are to design the cross-sectional shape and layup for a composite stiffener for an

application under compressive load.

Of the seven shapes below select three (if the hat stiffener is not included in your

selection) or two (if the hat stiffener is one of them). Also note that you are not allowed to

include both the C and Z stiffeners in your selection. If you like both the C and the Z you

must only include one of them in your analysis.

L C Z

T I J

Hat 

60o

The stiffeners must fit within a rectangle of height 80mm and width 50mm. These are

the maximum dimensions, but they can be smaller than that.

80 mm 

50 mm 

stiffener must 
fit within this 
envelope 

The applied load is 35000N (assume it is acting at the center of gravity of the selected

cross-section). The length ‘ of the stiffener is 550mm.

Two composite materials are available, with properties as follows:

Unidirectional tape Gr/Epoxy Plain weave fabric Gr/Epoxy

Ex¼ 131GPa 68.9GPa

Ey¼ 11.4GPa 68.9GPa

nxy¼ 0.31 0.05

Gxy¼ 5.17GPa 5.31GPa

tply¼ 0.1524mm 0.1905mm

r¼ 1611 kg/m3 1611 kg/m3
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You are allowed to use any of the two graphit/epoxymaterials or a combination thereof.

Finally, assume a compression strain allowable (accounting for environment, damage, and

material scatter) of 4500 ms.

1. Determine the layup of each member of each stiffener and its dimensions, observing as

many of the design rules as possible.

2. Provide a simple sketch of the cross-section of stiffeners that shows the plies, layup,

dimensions, etc.

3. Calculate the corresponding weights for the stiffeners and compare. Based on the

comparison, select the ‘best’ design.
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9

Skin-Stiffened Structure

The individual constituents, skin and stiffeners have been examined in previous chapters.

Based on that discussion, the behavior and the design of a stiffened panel such as the one shown

in Figure 9.1 can be summarized as follows: The skin takes pressure loads via in-plane

stretching (membrane action) and shear loads. It also takes compression loads up to buckling.

Beyond buckling extra care must be exercised to account for the skin deformations and

additional failure modes, not examined so far, such as the skin/stiffener separation, which is

discussed in this chapter. The stiffeners take bending and compression loads. It is readily

apparent that the robustness and efficiency of a design will strongly depend on how one can

’sequence’ the various failuremodes so benign failures occur first and load can be shared by the

rest of the structure, and howone can eliminate certain failuremodeswithout unduly increasing

the weight of the entire panel.

In this chapter, some aspects that manifest themselves at the component level, with both skin

and stiffeners present, are examined. This includes modeling aspects such as smearing of

stiffness properties and additional failure modes such as the skin/stiffener separation.

9.1 Smearing of Stiffness Properties (Equivalent Stiffness)

If the number of stiffeners is sufficiently large and/or their spacing is sufficiently narrow,

accurate results for the overall panel performance can be obtained by smearing the skin and

stiffener properties in combined, equivalent stiffness, expressions. This can be done for both

in-plane (membrane) and out-of-plane (bending) properties.

9.1.1 Equivalent Membrane Stiffnesses

A composite stiffened panel is shown in Figure 9.2. The stiffener spacing is ds and the width

of the panel is bp.

As can be seen from Equation (8.13), the equivalent in-plane stiffness of the skin–stiffener

combination is the sum of the individual stiffnesses of skin and stiffeners. This means that the
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Amatrix for the entire panel, which is themembrane stiffness per unitwidth, is given by the sum

of the corresponding terms for skin and stiffeners considered separately:

Aij

� �
eq
¼ Aij

� �
skin

þ Aij

� �
stiffeners

ð9:1Þ

with the subscript ij denoting the ij element of the Amatrix. Also, again from Equation (8.13),

Aij

� �
stiffeners

¼ ns Aij

� �
sin glestiff

ð9:2Þ

where ns is the number of the stiffeners.

Determining the number of the stiffeners involves some approximation caused by the

presence or lack of stiffeners at the panel edges. If there are stiffeners right at the panel edges

as in Figure 9.2, the number of stiffeners is given by:

ns ¼ int
bs

ds

� �
þ 1 ð9:3Þ

where int[. . .] denotes the integer that is obtained when the quantity in brackets is rounded

down to the nearest integer.

If the stiffener spacing is sufficiently small, the second term in the right-hand side of

Equation (9.3) can be neglected and the number of stiffeners approximated by,

ns � bp

ds
ð9:4Þ

ds

bp

panel

edge

panel

edge

Figure 9.2 Section cut of a composite stiffened panel

Figure 9.1 Stiffened panel under combined loads
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If there are no stiffeners at the panel edges, i.e. the skin overhangs on either side of the panel,

bs in Equation (9.3) must be reduced by the total amount of overhang. Again, for sufficiently

large bs and/or small ds Equation (9.4) can be used. Note that Equation (9.4) typically is a

rational number as the division bs/ds is an integer only for judiciously chosenvalues of bp and ds.

But, for the purpose of stiffness estimation, using the rational number obtained from

Equation (9.4) without round-off is a reasonable approximation.

Now the Aij term for a single stiffener can be estimated by averaging the corresponding

membrane stiffness of the stiffener over the skin width bp. For the case of A11 this gives

A11ð Þsin glestiff ¼
EAð Þstiff
bp

ð9:5Þ

Placing Equations (9.2), (9.4), and (9.5) into Equation (9.1) and recognizing that a one-

dimensional stiffener has negligible contribution to stiffnesses other than the one parallel to its

own axis, gives the A matrix terms:

A11ð Þeq � A11ð Þskin þ
EAð Þstiff
ds

A12ð Þeq � A12ð Þskin
A22ð Þeq � A22ð Þskin
A66ð Þeq � A66ð Þskin

ð9:6Þ

9.1.2 Equivalent Bending Stiffnesses

The derivation of the bending stiffnesses proceeds in a similar fashion. Based on

Equation (8.20) the bending stiffnesses per unit width can be written as:

Dij

� �
eq
¼ Dij

� �
skin

þ Dij

� �
stiffeners

ð9:7Þ

with

Dij

� �
stiffeners

¼ ns Dij

� �
sin glestiff

ð9:8Þ

The bending stiffness D11 for a single stiffener can be determined by smearing its

contribution over the entire width bp:

D11ð Þsin glestiff ¼
EIð Þstif
bp

ð9:9Þ

While there are no contributions to the D12 and D22 terms because the bending stiffness

contribution from the stiffeners is negligible in these directions, the contribution toD66 requires

a detailed derivation.

Consider the situation shown in Figure 9.3 where a laminate deforms under an

applied torque.

Skin-Stiffened Structure 225



 
The angle a is given by

a ¼ @w

@x
ð9:10Þ

From torsion theory [1], the rate of change of angle a as a function of y is given by

da
dy

¼ T

GJ
ð9:11Þ

where T is the applied torque, G the shear modulus and J the polar moment of inertia.

Combining Equations (9.10) and (9.11) gives

da
dy

¼ @2w

@x@y
¼ T

GJ
ð9:12Þ

Now from classical laminated-plate theory (see Equation 3.49 and assuming no coupling is

present) the torque per unit width Mxy is given by

Mxy ¼ �2D66

@2w

@x@y
ð9:13Þ

Since now

T

bp
¼ �Mxy ð9:14Þ

Equations (9.12), (9.13), and (9.14) can be combined and applied to a single stiffener to give:

D66ð Þsin glestiff ¼
GJð Þstif
2bp

ð9:15Þ

This equation is analogous to Equation (9.9), but there is a factor of 2 in the denominator.

Summing up the contributions of all stiffeners and using Equation (9.4), the contribution of

all stiffeners to D66 for the combined skin/stiffener configuration is

D66 ¼ ns D66ð Þsin glestiff ¼
GJð Þstif
2ds

ð9:16Þ

Finally, combining Equations (9.7)–(9.9) and (9.16) gives the final approximate expressions

for the bending stiffnesses of a stiffened panel:

x

y

α
w

T

Figure 9.3 Laminate under applied torque
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D11ð Þeq � D11ð Þskin þ
EIð Þstif
ds

D12ð Þeq � D12ð Þskin
D22ð Þeq � D22ð Þskin

D66ð Þeq � D66ð Þskin þ
GJð Þstif
2ds

ð9:17Þ

which are analogous to Equations (9.6) in the previous section.

If the stiffeners have an open cross-section (such as L, C, Z, T, I, J, etc.) the polar moment of

inertia J in the last of Equations (9.17) is negligibly small and the stiffener contribution (second

term in that equation) can be neglected altogether. If the stiffeners have a closed cross-section

(such as a hat stiffener) the second term in the last of Equations (9.17) is significant and cannot

be neglected.

In addition to the approximation introduced by Equation (9.4) when the number of

stiffeners is small, there is an approximation in Equations (9.17) introduced by the fact

that stretching–bending coupling terms (B matrix contribution) were neglected. The skin–

stiffener cross-section in Figure 9.2 is asymmetric and there is a contribution to the bending

stiffnesses coming from the axial stiffnesses of the stiffeners and skin. These are analogous to

the B matrix terms of an asymmetric laminate and they become more significant as the

stiffeners become bigger (greater web heights for example). Only in a situation where the

stiffeners are mirrored to the other side of the skin, giving a symmetric configuration with

respect to the skin midplane, will these coupling terms be exactly zero and no additional

correction terms needed in Equation (9.17).

9.2 Failure Modes of a Stiffened Panel

Failure modes that are specific to the individual constituents, skin and stiffeners, were

examined in previous chapters. Here, a summary of all failure modes, including those

pertaining to the interaction between the skin and stiffeners, is given. The most important

failure modes are presented in Figure 9.4. Of these, the material strength failure modes

(either for the stiffener or for the skin) are typically covered by a first-ply failure analysis

(see Chapter 4) supported and modified by test results. They were also briefly invoked in the

discussion on crippling (Section 8.5) and skin post-buckling (see Sections 7.1 and 7.2). Flange

crippling was examined in Section 8.5. Inter-rivet buckling was discussed in Section 8.7. Panel

buckling failure modes were discussed in Chapter 6 for plates and Section 8.3 for beams.

Whichever buckling model occurs first, overall buckling of the panel or buckling of the skin

between stiffeners is a function of the relative stiffnesses and geometry of skin and stiffeners,

and conditions ensuring precedence of one buckling mode over another are discussed in this

chapter. Finally, the skin–stiffener separation mode was briefly mentioned in association with

post-buckling (at the start of Chapter 7) and will be examined in detail in this chapter.

As might be expected, unless explicitly designed for this, failure modes do not occur

simultaneously. In certain situations, designing so that some (or all) failure modes occur at the

same time gives the most efficient design in the sense that no component is over-designed. This
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is not always true. It assumes that different components are used to take different types of

loading and fail in different failure modes that are independent from one another. In general,

formal optimization shows that the lightest designs are not always the ones where the critical

failure modes occur simultaneously.

In view of this, knowingwhen one failuremodemay switch to another is critical. In addition,

sequencing failure modes so they occur in a predetermined sequence is also very useful for the

creation of robust designs. For example, relatively benign failure modes such as crippling

(as opposed to column buckling) and local buckling between stiffeners as (opposed to overall

buckling) contribute to creating a damage tolerant design, in the sense that catastrophic failure

is delayed and some load sharing with components that have not yet failed occurs. One such

case of finding when one failure mode changes to another was examined in Section 8.7 where

the condition for switching from crippling to inter-rivet buckling was determined.

9.2.1 Local Buckling (Between Stiffeners) Versus Overall Panel
Buckling (the Panel Breaker Condition)

As mentioned in the previous section, confining the buckling mode between stiffeners is

preferable. In general it leads to lighter designs and keeps the overall panel from buckling,

which, typically, leads to catastrophic failure. From a qualitative point of view, as the bending

stiffness of the stiffeners increases, it becomes harder for them to bend. Then under

compressive loading for example, if the stiffeners are sufficiently stiff, the skin between the

stiffeners will buckle first. The stiffeners remain straight and act as ’panel breakers’. For a given

stiffener stiffness, this behaviour can be assured if the stiffener spacing is sufficiently wide.

Then, even for relatively soft stiffeners, the skin between themwill buckle first. Thismeans that

the panel breaker condition will involve both the stiffness and spacing of the stiffeners

compared with the skin stiffness and its overall dimensions.

stiffener mat’l
failure

stiffener inter-
rivet buckling 

panel buckling 
as a whole stiffener 

crippling

skin buckling 
between stiffeners 

stiffener column 
buckling 

skin mat’l
failure 

skin-stiffener 
separation

Figure 9.4 Failure modes of a stiffened panel
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There are twomain scenarios to quantify this sequence of events. In the first, a non-buckling

design is all that is required (no post-buckling capability). In such a case, the stiffeners must

have properties such that the buckling load of the panel as a whole equals the buckling load

of the skin between stiffeners. The two failure modes, local and global buckling, occur

simultaneously. In the second scenario, the skin is allowed to buckle. This means that the

stiffeners must stay intact and not bend, until the skin reaches the desired post-buckling load

and fails.

9.2.1.1 Global Buckling ¼ Local Buckling (Compression Loading)

It is important to recognize that the total applied force FTOT is distributed between the skin

and stiffeners according to their respective in-plane EA stiffnesses. This was expressed by

Equation (8.12). With reference to Figure 9.5, the membrane stiffness EA of the skin is

approximated by bA11. Note that a more accurate expression would be bðA11�A2
12=A22Þ, as is

indicated by Equations (8.5) and (8.6), but the second term is neglected here, assuming the skin

has at least 40% 0� plies aligned with the load so that A12�A11. If this requirement is not

satisfied, the equations that follow can be modified accordingly.

Using Equation (8.12), the force acting on the skin alone can be determined as

Fskin ¼ bA11

bA11 þ b
EA

ds

FTOT ¼ A11

A11 þ EA

ds

FTOT ð9:18Þ

Then, the force per unit length acting on the skin alone is

Nxskin ¼ Fskin

b
ð9:19Þ

If the skin between stiffeners is assumed to be simply supported, its buckling load can be

obtained from Equation (6.7):

Nxskin ¼ p2

a2
D11k

2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
k2

" #
ð9:20Þ

ds
b

a

ds
b

a

Figure 9.5 Stiffened skin under compression
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where k is the number of half-waves intowhich the skin buckles,Dij are skin bending stiffnesses

and AR is the aspect ratio a/ds.

Combining Equations (9.18)–(9.20) and solving for the total force FTOT, gives:

FTOT ¼
A11 þ EA

ds
A11

p2b
a2

D11k
2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
k2

" #
ð9:21Þ

where A11 is the skin membrane stiffness and EA is the stiffener membrane stiffness.

Assuming now that the panel as a whole is simply supported all around its boundary, its

buckling load will also be given by Equation (6.7),

Npanel ¼ p2

a2
D11ð Þpm2 þ 2 D12ð Þp þ 2 D66ð Þp

� �
ðARÞ2 þ D22ð Þp

ðARÞ4
m2

" #
ð9:22Þ

wherem is the number of half-waves into which the entire panel would buckle (note thatm for

the overall panel and k for the skin between the stiffeners can be different) and the subscript p

denotes the entire panel. The aspect ratio AR of the panel is a/b. The bending stiffnesses (Dij)p
for the panel are given by Equation (9.17).

The force per unit length Npanel is given by

Npanel ¼ FTOT

b
ð9:23Þ

Combining Equations (9.22) and (9.23) and solving for FTOT gives:

FTOT ¼ bp2

a2
D11ð Þpm2 þ 2 D12ð Þp þ 2 D66ð Þp

� �
ðARÞ2 þ D22ð Þp

ðARÞ4
m2

" #
ð9:24Þ

Equations (9.21) and (9.24) imply that the total load at which the skin between stiffeners

buckles and the panel as a whole buckles is the same. Therefore, equating the right-hand sides

of Equations (9.21) and (9.24) gives:

A11 þ EA

ds

A11

p2b
a2

D11k
2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
k2

2
4

3
5

¼ bp2

a2
D11ð Þpm2 þ 2 D12ð Þp þ 2 D66ð Þp

� �
ðARÞ2 þ D22ð Þp

ðARÞ4
m2

2
4

3
5

ð9:25Þ

Equation (9.25) can be simplified by canceling out common factors and using

Equation (9.17) to express the panel bending stiffnesses EI. Here, it will be assumed that

the stiffener has an open cross-section so its GJ is very small and does not contribute to the

panel D66 value. Then, Equation (9.25) reads,
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A11 þ EA

ds

A11

D11k
2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
k2

2
4

3
5

¼ D11 þ EI

ds

0
@

1
Am2 þ 2 D12 þ 2D66ð ÞðARÞ2 þD22

ðARÞ4
m2

2
4

3
5

ð9:26Þ

Note that, in Equation (9.26), EA and EI both refer to stiffener quantities.

Further simplification is possible if the values of k andm are approximated. As mentioned in

Section 6.2, k and m are the integer values of half-waves that minimize the corresponding

buckling loads (skin between stiffeners or entire panel). If k and m were continuous variables

(instead of only taking integer values) differentiating the corresponding buckling expressions

and setting the result equal to zero would give the values to use (see the derivation of

Equation 8.45 in the previous chapter). Since they are integers, the rational expression resulting

from differentiation would have to be rounded up or down to the nearest adjacent integer that

minimizes the buckling load.

Differentiating the right-hand side of Equation (9.20) with respect to k and setting the result

equal to zero gives:

dNxskin

dk
¼ 0 ) k* ¼ D22

D11

� 	1=4
a

ds

� 	
ð9:27Þ

where k� denotes the continuous variable (k¼ k�when the right-hand side of Equation (9.27) is
an integer).

Using Equation (9.27), the value of k is given by either,

k ¼ int½k*�
or

k ¼ int½k*� þ 1

whichever of the two minimizes the right-hand side of Equation (9.20). The symbol int[x]

denotes the integer obtained if x is rounded down to the next integer.

Similarly for m,

m* ¼ D22

D11 þ EI

ds

0
BB@

1
CCA

1=4

a

b

� �
ð9:28Þ

By necessity, if either of k� orm� is less than 1, the corresponding value of k ormwill be set

equal to 1.

Now for typical applications of panels under compression, the quantity D11 þ EI/ds is

greater than D22 because of the contribution of the stiffeners EI/ds and the tendency to align

fibers with the load direction which would give D11�D22. So unless, a/b	 1 the quantity

in the right-hand side of Equation (9.28) is less than 1 and m will be equal to 1.
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To proceed, set k¼ k� as obtained from Equation (9.27). Then, substituting for k and m in

Equation (9.26)

D11 þ
ðEIÞstif
ds

þ 2 D12 þ 2D66½ �ðARÞ2 þD22ðARÞ4

¼
A11 þ EA

ds

A11|fflfflfflfflffl{zfflfflfflfflffl}
l

D11

ffiffiffiffiffiffiffiffi
D22

D11

s
AR

2 þ 2 D12 þ 2D66½ �ðARÞ2 þD22

ðARÞ4ffiffiffiffiffiffiffiffi
D22

D11

s
AR

2

2
66664

1
CCCCA

ð9:29Þ

Denoting by l the term multiplying the quantity in brackets on the right-hand side,

solving for the stiffener EI, and dropping the subscript ‘stiff’, for convenience, gives the

final expression:

EI ¼ D11ds

ffiffiffiffiffiffiffiffi
D22

D11

r
2lAR

2�
ffiffiffiffiffiffiffiffi
D22

D11

r
ARð Þ4

� 	
þ 2 D12 þ 2D66ð Þ

D11

lAR
2� ARð Þ2

� �
�1

� �

ð9:30Þ

Equation (9.30) gives theminimumbending stiffnessEI that the stiffenersmust have in order

for buckling of the skin between stiffeners to occur at the same time as overall buckling of the

stiffened panel. If EI is greater than the right-hand side of Equation (9.30), the skin between

stiffeners buckles first.

9.2.1.2 Stiffener Buckling ¼ PB 
 Buckling of Skin Between Stiffeners

(Compression Loading)

This scenario covers the casewhere skin is allowed to post-buckle. It is assumed that the skin is

loaded over the beff portion, which was determined in Section 7.1. The stiffener must stay

straight all theway up to the load that fails the skin. That load is given by the buckling load of the

skin between stiffeners multiplied by the post-buckling ratio PB.

In general, when the skin has buckled the compressive load on it is not constant (see

Figure 7.8 for example) and the skin strains are not constant across its width. If the skin is

replaced by the beff portion shown in Figure 9.6, then, the skin load is constant over beff
and the strain, given by inverting Equation (8.4) is also constant. Thus, strain compatibility

can be applied.

Considering a 2beff portion of skin and its corresponding stiffener as shown in Figure 9.6, and

using Equation (8.12), the individual forces on skin and stiffener can be found to be:

Fskin ¼
A11

b

ds
2beff

2A11

b

ds
beff þEA

b

ds

FTOT ) Fskin ¼ 2A11beff

2A11beff þEA
FTOT ð9:31Þ
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Fstiffeners ¼ EA

2A11beff þEA
FTOT ð9:32Þ

where EA is the membrane stiffness of each stiffener (¼membrane modulus
 cross-sectional

area)

For a single stiffener, dividing the right-hand side of Equation (9.32) by the number of

stiffeners given by Equation (9.4) gives,

Fstif ¼ ds

b

EA

2A11beff þEA
FTOT ð9:33Þ

Now, the column buckling load of a stiffener is, for simply supported ends, given by

Equation (8.21), repeated here for convenience:

Fstiffb ¼ p2EI
a2

ð9:34Þ

Equating the right-hand sides of Equations (9.33) and (9.34) relates the load in each

stiffener to the buckling load of that stiffener, and can be solved for the total force on the

panel FTOT:

ds

b

EA

2A11beff þEA
FTOT ¼ p2EI

a2
) FTOT ¼ p2EI

a2
b

ds

2A11beff þEA

EA
ð9:35Þ

Now it is postulated that final failure occurs when the required post-buckling ratio PB

is reached. At that point, the force in the skin Fskin must equal the buckling load of the skin

between the stiffeners multiplied by PB:

Fskin ¼ Fskin bucklingðPBÞ ð9:36Þ
The skin buckling loadFskinbuckling is given by Equation (9.20) multiplied by the panel width

b to convert the force per unit width Nxskin into force:

Fskin buckling ¼ b
p2

a2
D11ð Þk2 þ 2 D12ð Þþ 2 D66ð Þ½ �ðARÞ2 þ D22ð Þ ðARÞ

4

k2

" #
ð9:37Þ

with all terms as defined before.

Combining Equation (9.31) with (9.36) and (9.37) relates the total force to the skin

buckling load:

beff beff

ds
b

a

ds
b

a

Figure 9.6 Effective skin in the vicinity of a stiffener in a post-buckled stiffened panel
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FTOT ¼ 2A11beff þEA

2A11beff
b
p2

a2
D11ð Þk2 þ 2 D12ð Þþ 2 D66ð Þ½ �ðARÞ2 þ D22ð Þ ðARÞ

4

k2

" #
ðPBÞ

ð9:38Þ
Equations (9.35) and (9.38) can now be combined to yield the condition for column buckling

of the stiffeners occurring when the final PB is reached:

EI

dsEA
¼ ðPBÞ

2A11beff
D11k

2 þ 2 D12 þ 2D66½ �ðARÞ2 þD22

ðARÞ4
k2

" #
ð9:39Þ

which relates stiffener properties on the left-hand side with skin properties on the right-

hand side.

Equation (9.39) can be further manipulated using the definition of the parameter l that was
introduced when Equation (9.29) was derived. Using that definition, it can be shown that,

l ¼
A11 þ EA

ds
A11

) lA11�A11 ¼ EA

ds
) A11ðl�1Þ ¼ EA

ds
) EA

A11

¼ ðl�1Þds ð9:40Þ

Introducing this result in Equation (9.39) and solving for the stiffener bending stiffness EI

results in the expression:

EI ¼ l�1ð ÞðPBÞds ds

2beff
D11k

2 þ 2 D12 þ 2D66½ �ðARÞ2 þD22

ðARÞ4
k2

" #
ð9:41Þ

Also note that using the expression for beff, Equation (7.15) derived earlier (assuming the

boundary conditions for the skin between stiffeners reasonably approximate those used in

Section 7.1) the following can be shown:

ds

beff
¼ 2 1þ 2 1þ A12

A11

� 	
1� 1

ðPBÞ
� 	

A11

A11 þ 3A22

� �
ð9:42Þ

which can be substituted in Equation (9.41).

Equation (9.41) determines the minimum bending stiffness of the stiffeners so that they do

not buckle until the final failure load in the post-buckling regime is reached. This would

guarantee that the stiffeners will stay straight, and thus act as panel breakers, all the way to the

failure load of the panel. It should be noted that EI in Equation (9.42) is related to the stiffener

EA through the parameter l so the two are not entirely independent and some iterations may be

needed between stiffener geometry and layup to arrive at the required bending stiffness.

9.2.1.3 Example

As an application of the two conditions (9.30) and (9.41) consider a skin panel with dimensions

a¼ 508mm and b¼ 762mm loaded in compression parallel to dimension a as shown in

Figure 9.7. The skin layup is [(�45)/(0/90)/(�45)] with stiffness properties given in Figure 9.7.

The stiffener spacing, geometry, and layup are unknown. The minimum EI for the stiffeners

must be determined subject to conditions (9.30) and (9.41).
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The procedure is as follows: First a value of the parameter l is selected. Then, for that value,
the stiffener spacing ds is varied between 75 and 300mm. For each value of ds the aspect ratio

ðARÞ is calculated and the corresponding buckling load of the skin between the stiffeners

is determined using Equation (9.20). Finally, the minimum EI required is determined using

Equations (9.30) and (9.41).When using Equation (9.41) a PB ratio of 5 is assumed. The results

are shown in Figure 9.8 for two different l values.

It can be seen from Figure 9.8 that the minimum bending stiffness for the stiffener decreases

as the stiffener spacing increases. This is due to the fact that, as the stiffener spacing increases,

the buckling load of the skin between the stiffeners decreases. This implies that the total load at

which the skin buckles is lower and the corresponding load applied to the stiffeners is lower.

So the stiffener requirement must be satisfied for a lower load and thus lower bending stiffness

is needed.

It is also evident from Figure 9.8 that as l decreases the required bending stiffness for the

stiffener decreases. This is because, for a given skin (and thus A11 value) the only way to

decrease l is by decreasing the stiffener EA (see Equation (9.40)). But if the stiffener EA

decreases, less load is absorbed by the stiffeners (see Equation (9.32)) and more by the skin.
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Figure 9.8 Normalized minimum bending stiffness required for stiffeners of a stiffened panel under

compression (PB¼ 5)
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Figure 9.7 Example of stiffened panel under compression
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Again, since the load carried by each stiffener is lower, the required bending stiffness will also

be lower.

The last observation related to the trends of Figure 9.8 is that a value of l is reached beyond
which the condition that the stiffeners buckle at PB
 bay buckling dominates. This is

demonstrated by the fact that the continuous curve is above the dashed curve for l¼ 1.1,

but below the dashed curve for l¼ 1.5. Thismeans that, for a given stiffener spacing, there is a l
value between 1.1 and 1.5 at which the design driver switches from Equation (9.30) to

Equation (9.41). This means that one should check both conditions, (9.30) and (9.41), and use

the one that gives the more conservative results. Unless, of course, no post-buckling is allowed

in the design, in which case, only condition (9.30) should be used.

Selecting the more critical of the two conditions, for each value of l, results in the curves

of Figure 9.9. The lowest 3 curves (l¼ 1.1, 1.5, 3.0) correspond to Equation (9.30) dominating

the design and the highest 2 curves (l¼ 5.0, 10.) correspond to Equation (9.40) dominating

the design.

9.2.2 Skin–Stiffener Separation

As load is transferred between skin and stiffeners, out-of-plane loads develop at their interface

or at the flange edges. These loads develop, even when the applied loads are in the plane of the

skin and they can lead to separation of the stiffener from the skins. There are two main

mechanisms for the development of these out-of-plane stresses. The first is associated with the

presence of any stress-free edges such as the flange edges [2–7]. Load present in one component

such as the flange has to transfer to the other as the free edge is approached. The local stiffness

mismatch caused by the presence of the free edge (and the differences in stacking sequence

between flange and skin) creates out-of-plane stresses which are themain culprit for separation

of the flange from the skin. This is shown in Figure 9.10.

Away from the flange edge, closer to the location where the stiffener web meets the flange,

a two-dimensional state of stress develops that can be determined with the use of classical-

laminated plate theory once the local loads are known. A section including the flange edge and

the skin below can be cut off and placed in equilibrium (bottom left part of Figure 9.10). If then,

the flange alone is sectioned off (bottom right of Figure 9.10), it is not in equilibrium unless

out-of-plane shear and normal stresses develop at the interface between the flange and skin.
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Figure 9.9 Normalized minimum bending stiffness of stiffeners for various l values (PB¼ 5)
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This is the only location where this can happen since the top of the flange and the right edge of

the flange are, by definition, stress-free. Zooming to the sectioned detail at the bottom right of

Figure 9.10 gives the situation shown in Figure 9.11.

For the purposes of discussion, the skin and stiffener in Figures 9.10 and 9.11 are assumed

to be under compression. A local coordinate system is established in Figure 9.11 to facilitate

the discussion. As shown in Figure 9.11, to maintain force equilibrium in the y direction,

an interlaminar shear stress tyz must develop at the flange–skin interface (bottom of flange in

Figure 9.11). Also, the presence of in-plane shear stresses at the left end of the flange, as

predicted by classical laminated-plate theory leads to a net force in the x direction. In order to

balance that force, an interlaminar shear stress txz must also develop at the flange–skin

interface. Finally, to balance the moments (about the bottom right corner of the flange say), an

out-of-plane normal stress szmust develop at the flange–skin interface. However, since there is

no net force in the z direction in Figure 9.11, thesz stressmust be self-equilibrating. Thus, it will

be tensile over a portion of the region over which it acts and compressive over the remaining

portion. This is why sz is shown as both tensile and compressive in Figure 9.11.

Classical Laminated-
Plate Theory solution 
rising from compressive 
load along the axis of the 
stiffeners

z

y

interlaminar normal stress σz
to balance moments about the 
x axis; from ΣFz=0, it must be 
self-equilibrating

interlaminar shear stress τxz
required to balance forces in 
the x direction and moments 
about the y and z axis

interlaminar shear stress τyz
required to balance forces in 
the y direction and moments 
about the x axis

y

Figure 9.11 Free-body diagram of the flange

stiffened panel under 
compression before any 
component buckles

edge of flange: 
stress-free

top of flange: 
stress-free

bottom of skin: stress free

Figure 9.10 Development of out-of-plane stresses at the interface between flange and skin prior

to buckling
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The second mechanism that gives rise to these separation stresses is associated with the skin

deformation after buckling in a post-buckling situation. This is shown in Figure 9.12 based on

an example from reference [8].

The stiffened panel of Figure 9.12 is shown with the stiffeners at the bottom so the skin

deformations are more easily seen without stiffeners blocking the view. As shown in

Figure 9.12 a portion of the buckling pattern has the skin moving away from the stiffeners.

This would give rise to ‘peeling’ stresses at the skin–stiffener interface and could lead

to skin–stiffener separation. The resulting failure for this situation is shown in Figure 9.13.

Figure 9.13 Skin–stiffener separation failure mode (See Plate 22 for the colour figure)

stiffeners

skin

skin buckling away 

from stiffener flanges 

Figure 9.12 Post-buckled shape of blade-stiffened panel under compression
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The separated stiffener is highlighted with a red ellipse. It is important to bear in mind that,

for this mechanism to occur, bucking of the skin (under compression, shear, or combined

loads) is a prerequisite [9].

Many different solutions to the problem of determining the stresses between the skin and

stiffener given a loading situation have been proposed [2–12]. The highest accuracy is obtained

with detailed finite element methods [8–12] at a relatively high computational cost. The

required mesh refinement in the region (or interface) of interest makes it difficult to use this

approach in a design environment where many configurations must be rapidly compared with

each other for the best candidates to emerge. Simpler methods [2–6] can be used for screening

candidate designs and performing afirst evaluation.Once the best candidates are selected,more

detailed analysis methods using finite elements can be used for more accurate predictions.

In general, solutions that calculate the stresses at the skin–stiffener interface assume a

perfect bond between stiffener flange and the skin and require the use of some out-of-plane

failure criterion [13, 14] to determinewhen delamination starts. This can be quite conservative

as a delamination starting at the skin–stiffener interface rarely grows in an unstable fashion

to cause final failure. To model the presence of a delamination and to determine when it

will grow, methods based on energy release rate calculations [10–12] are very useful.

In what follows, only the problem of determining the out-of-plane stresses in a pristine

structure will be presented.

The approach is adapted from [3, 4] and can be applied to any situation for which the loads

away from the flange edge are known, irrespective of whether the structure is post-buckled

or not. The situation is shown in Figure 9.14. The flange end is isolated from the rest of the

stiffener and a portion of the skin below it is shown.

Two coordinate systems are used in Figure 9.14, one for the flange and one for the skin. They

have a common origin at the end of the flange where it interfaces with the skin. The z axis

(out-of-plane) for the flange is going up and it is going down for the skin. The y axis is moving

away from the flange edge towards the stiffener web and the x axis is aligned with the axis of

the stiffener. The stresses away from the origin of the coordinate systems, at the far left and

right end in Figure 9.14, are assumed known. They would be the result of classical laminated-

plate theory and/or other two-dimensional solutions. For the solution discussed here, these

far-field stresses are assumed to be only in-plane stresses. This means that the three-

dimensional stresses that arise in the vicinity of the flange termination die out in the

far-field so the known solution at the left and right end of Figure 9.14 can be recovered.

z (for flange)

y

(τxy(z))ff

(σy(z))ff

t1

z (for skin) t2
y

t1

z (for skin)
t2

Figure 9.14 Geometry and coordinate systems for the skin–stiffener separation problem
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Note that out-of-plane stresses at the far field can, if present, be added following the same

procedure as the one outlined below.

It is assumed that the structure shown in Figure 9.14 is long in the x direction (perpendicular

to the plane of the figure) so no quantity depends on the x coordinate, i.e.,

@ð. . .Þ
@x

¼ 0

With this assumption, the equilibrium equations (5.2) become

@txy
@y

þ @txz
@z

¼ 0

@sy
@y

þ @tyz
@z

¼ 0

@tyz
@y

þ @sz
@z

¼ 0

ð9:43a--cÞ

Thismeans that the first equilibrium equation, (9.43a), uncouples from the other two. This, in

turn, suggests that if one of the stresses txy or txzwere somehow known, Equation (9.43a) could

be used to determine the other. Similarly, if one of the stresses sy, tyz, or sz were known, the
other two could be determined from Equations (9.43b) and (9.43c).

Pursuing this line of thought, a fairly general assumption is made for txy and sy in the form:

sy ¼ syðzÞ
� �

ff
þ f ðyÞFðzÞ ð9:44Þ

txy ¼ txyðzÞ
� �

ff
þ gðyÞGðzÞ ð9:45Þ

where f(y), g(y),F(z) andG(z) are unknown functions of the respective coordinates and (sy(z))ff
and (txy(z))ff are the known far-field stresses away from the flange edge (i.e. at large positive

or negative y values).

The solution remains quite general ifF(z) andG(z) are assumed to be Fourier sine and cosine

series. Concentrating on the flange, Equations (9.44) and (9.45) can be written as:

sy ¼ syðzÞ
� �

ff
þ f ðyÞ

X¥
m¼1

Amsin
mpz
t1

þ
X¥
n¼1

Bncos
npz
t1

" #
ð9:44aÞ

txy ¼ txyðzÞ
� �

ff
þ gðyÞ

X¥
p¼1

C1psin
ppz
t1

þ
X¥
q¼1

C2qcos
qpz
t1

" #
ð9:45aÞ

Here a simplification is introduced by truncating the infinite series in Equations (9.44a)

and (9.44b) after the first term. Thiswill give good solutions in terms of trends andwill simplify

the algebra considerably. Additional terms may be included for more accurate solutions. Then

the two stresses in the flange have the form:
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sy ¼ syðzÞ
� �

ff
þ f ðyÞ A1sin

pz
t1

þB1cos
pz
t1

� �
ð9:44bÞ

txy ¼ txyðzÞ
� �

ff
þ gðyÞ C1sin

pz
t1

þC2cos
pz
t1

� �
ð9:45bÞ

where, for simplicity, we set C1¼C11 and C2¼C21. The coefficients A1, B1, C1, and C2 and

the functions f(y) and g(y) are unknown at this point.

Now use Equation (9.44b) to substitute in (9.43b) to obtain

@tyz
@z

¼ �f 0 A1sin
pz
t1

þB1cos
pz
t1

� 	
ð9:46Þ

where f 0 ¼ df/dy.

Integrating (9.46) with respect to z gives,

tyz ¼ �f 0 �A1

t1

p
cos

pz
t1

þB1

t1

p
sin

pz
t1

� 	
þP1ðyÞ ð9:47Þ

where P1(y) is an unknown function of y.

Now the top of the flange is stress free, which means that tyz(z¼ t1)¼ 0 or,

�f 0 A1

t1

p

� �
þP1ðyÞ ¼ 0 ) P1ðyÞ ¼ f 0 A1

t1

p

� �
ð9:48Þ

and P1(y) is determined. This would give the following expression for tyz:

tyz ¼ f 0 A1

t1

p
1þ cos

pz
t1

� 	
�B1

t1

p
sin

pz
t1

� 	
ð9:49Þ

In a similar fashion, Equation (9.49) can be used to substitute for tyz in (9.43c) to obtain:

@sz
@z

¼ �f 00 A1

t1

p
1þ cos

pz
t1

� 	
�B1

t1

p
sin

pz
t1

� 	
ð9:50Þ

which can be integrated with respect to z to give:

sz ¼ �f 00 A1

t1

p
zþ t1

p
sin

pz
t1

� 	
þB1

t1

p

� �2
cos

pz
t1

� 	
þP2ðyÞ ð9:51Þ

where f 00 ¼ d2f/dy2 and P2(y) is an unknown function.

Again, the requirement that the top of the flange be stress free leads to sz(z¼ t1)¼ 0 or,

�f 00 A1

t1

p
t1ð ÞþB1

t1

p

� �2
cosp

� 	
þP2ðyÞ ¼ 0 ) P2ðyÞ ¼ f 00 A1

t1
2

p
�B1

t1

p

� �2� 	
ð9:52Þ

With P2(y) known, the final expression for sz can be obtained:

sz ¼ f 00 A1

t1

p
t1�z� t1

p
sin

pz
t1

� 	
�B1

t1

p

� �2
1þ cos

pz
t1

� 	� 	
ð9:53Þ
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In a completely analogous fashion, placing Equation (9.45b) into (9.43a) and solving for

txz gives

txz ¼ g0 C1

t1

p
1þ cos

pz
t1

� 	
�C2

t1

p
sin

pz
t1

� �
ð9:54Þ

Equations (9.44b), (9.45b), (9.49), (9.51), and (9.54) determine the stresses sy, txy, tyz, sz,
and txz to within some unknown constants and the two unknown functions f and g and their

derivatives. At this point the stress sx is unknown. It does not appear in the equilibrium

equations (9.43a–c) and other means must be invoked for its determination.

By inverting the stress–strain equations (5.4), the following relations are obtained:

ex

ey

ez

gyz

gxz

gxy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

S11 S12 S13 0 0 S16

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

0 0 0 S44 S45 0

0 0 0 S45 S55 0

S16 S26 S36 0 0 S66

2
6666666666664

3
7777777777775

sx

sy

sz

tyz

txz

txy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð9:55Þ

where Sij (i, j¼ 1–6) are compliances for the flange as a whole. They can be computed as

thickness-averaged sums of the corresponding compliances for the individual plies, and the

compliances of the individual plies are obtained using standard tensor transformation equations

(Equations 3.8–3.10).

In addition, the strain compatibility relations (5.10) and (5.12) can be rewritten as:

@2gxy
@x@y

¼ @2ex
@y2

þ @2ey
@x2

ð9:56Þ

@2gxz
@x@z

¼ @2ex
@z2

þ @2ez
@x2

ð9:57Þ

As was mentioned earlier, there is no dependence on the x coordinate so all derivatives with

respect to x are zero and Equations (9.56) and (9.57) simplify to:

0 ¼ @2ex
@y2

ð9:58Þ

0 ¼ @2ex
@z2

ð9:59Þ

The first of Equations (9.55) can be combined with Equations (9.58) and (9.59) to give:

@2

@y2
S11sx þ S12sy þ S13sz þ S16txy
�  ¼ 0 ð9:60Þ
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@2

@z2
S11sx þ S12sy þ S13sz þ S16txy
�  ¼ 0 ð9:61Þ

The quantity in brackets is the same for both Equations (9.60) and (9.61). The only way

these two equations can be compatible with each other is if the quantity in brackets has the

following form:

S11sx þ S12sy þ S13sz þ S16txy ¼ yG1ðzÞþG2ðzÞ ð9:62Þ
with G1(z) and G2(z) unknown functions of z.

Using Equation (9.62) to substitute in (9.61) gives:

y
d2G1ðzÞ
dz2

þ d2G2ðzÞ
dz2

¼ 0

from which

G1ðzÞ ¼ ko þ k1z

G2ðzÞ ¼ k3 þ k4z

with ko, k1, k3, and k4 unknown constants.

Using this result and Equation (9.62) to solve for sx gives

sx ¼ Ko þK1yþK2zþK3yz� S12

S11
sy� S13

S11
sz� S16

S11
txy ð9:63Þ

with Ko, K1, K2, and K3 new unknown constants (combinations of ko� k4).

Equation (9.63) determines sx as a function of the other stresses sy, sz, and txy which were
determined earlier. The unknown coefficients Ko�K3 are determined from matching the

far-field solution. That is, Equation (9.63) is evaluated for large values of y and compared with

the known solution there.

At this point, all stresses in the flange have been determined to within some unknown

coefficients and two unknown functions f(y) and g(y). The stresses in the skin for y > 0 are

determined in a completely analogous fashion. One additional set of conditions is imposed

here, namely, stress continuity at the flange–skin interface. By using an overbar to denote skin

quantities, these conditions have the form:

txzðz ¼ 0Þ ¼ �txzðz ¼ 0Þ
tyzðz ¼ 0Þ ¼ �tyzðz ¼ 0Þ
szðz ¼ 0Þ ¼ szðz ¼ 0Þ

ð9:64Þ

Note that aminus sign is needed in front of the shear stresses on the right-hand side to account

for the orientation of the coordinate systems in Figure 9.14. As a result of Equations (9.64),

the unknown functions f(y) and g(y) have to be the same for both flange and skin. In addition,

the coefficients A1, B1, etc. for the skin, corresponding to the coefficients present in

Equations (9.44b), (9.45b), (9.49), (9.51) and (9.54) for the flange, are also determined from

Equations (9.64).
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In order to determine the unknown functions f(y) and g(y), the principle of minimum

complementary energy (see Section 5.4) is invoked. This means that the quantity,

PC ¼ 1

2

ð ð ð
sTS s dydxdzþ 1

2

ð ð ð
sT S s dydxdz�

ð ð
TTu*dydz ð9:65Þ

must be minimized. Underscores denote vectors and matrices. Overbars, as already mentioned

denote skin quantities. Specifically,

sT ¼ sx sy sz tyz txz txy
� 

and S was given in Equation (9.55) above.

The last term ofEquation (9.65) is thework term. It consists of the tractions Tmultiplying the

prescribed displacements u�.
The stress expressions already determined are used to substitute in Equation (9.65). The x

and z integrations can be carried out without difficulty because they only involve either powers

or sines and cosines of the variables. Thus, after x and z integration, an expression for the energy

is obtained in the form:

PC ¼ 1

2

ð
H

d2f

dy2
;
df

dy
; f ;

dg

dy
; g; y

� 	
dy ð9:66Þ

The problem has thus been recast as one in which the functions f(y) and g(y) must be

determined such that the integral in the right-hand side of Equation (9.66) is minimized. This

can be done by using the calculus of variations [15]. The general form of the Euler equations

for f and g is as follows:

d2

dy2
@H

@f 00

� 	
� d

dy

@H

@f 0

� 	
þ @H

@f
¼ 0 ð9:67Þ

@H

@g
� d

dy

@H

@g0

� �
¼ 0 ð9:68Þ

Using the detailed expression of H to substitute in Equations (9.67) and (9.68) yields the

two equations:

d4f

dy4
þR1

d2f

dy2
þR2f þR3

d2g

dy2
þR4g ¼ 0 ð9:67aÞ

d2g

dy2
þR5gþR6

d2f

dy2
þR7f ¼ 0 ð9:68bÞ

where R1–R7 are constants obtained from the x and z integrations implied by Equation (9.65)

and can be found in [2].

It should be noted that Equations (9.67a) and (9.68a) are given as homogenous equations. In

fact, Equations (9.67) and (9.68) would yield a nonhomogeneous term, i.e. the right-hand side

of Equations (9.67a) and (9.68a) is, in general, nonzero. However, it can be shown [2] that the

nonhomogeneous terms affect only the far-field behavior of the stresses which is already
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incorporated in the stress expressions. So the nonhomogeneous part of the solution can be

neglected without loss of generality.

The two equations (9.67a) and (9.68a) are coupled ordinary differential equations

with constant coefficients. Following standard procedures the solutions can be written

using exponentials:

f ðyÞ ¼ S1f e
�f1y þ S2f e

�f2y þ S3f e
�f3y ð9:69Þ

gðyÞ ¼ S1ge
�f1y þ S2ge

�f2y þ S3ge
�f3y ð9:70Þ

where the exponents ji are solutions to:

f6 þðR1 þR5�R3R6Þf4 þðR1R5 þR2�R3R7�R4R6Þf2 þR2R5�R4R7 ¼ 0 ð9:71Þ

There are, in general six solutions to Equation (9.71), but because only even powers ofj are

present, they will appear in positive and negative pairs. Positive values of j (or j values with

positive real parts) imply that f and g grow indefinitely as y increases, which implies that the

interlaminar stresses containing f and g and their derivativeswill tend to infinity for largevalues

of y. This, however, is unacceptable as the interlaminar stresses must go to zero for large values

of y in order for the far-field solution to be recovered. This is the reason for the negative

exponents in Equations (9.69) and (9.70). It is assumed that j1, j2, and j3 correspond to the

positive solutions of Equation (9.71) (or those with positive real parts) so that the expressions

for f and g are in terms of decaying exponentials.

One additional comment pertaining to the limits of the integral in Equation (9.66) is in order.

The lower limit is zero, the edge of the flange. The upper limit is any large but finite value of y,

corresponding to a point where the far-field stresses are recovered.Of course, if the flange of the

stiffener is very narrow, the negative exponentials in Equations (9.69) and (9.70) have not died

out and those two expressions for f and g must be modified to include the remaining three j
solutions of (9.71) which correspond to increasing exponentials. As already alluded to, some of

the solutions to Equation (9.71) may be complex, in which case, expressions (9.69) and (9.70)

will include complex conjugates.

Proceeding with the solution to the system of the two equations (9.67a) and (9.68a) it can be

shown that

Sif

Sig
¼ � fi

2 þR5

R6fi
2 þR7

ð9:72Þ

which relates the coefficients in function f(y) to those in function g(y).

At this point in the solution, the following unknowns remain: S1f, S2f, S3f, B1, and C2 in the

flange and �C2 in the skin. To determine these, the remaining boundary conditions, namely that

the flange edge is stress free are imposed:

syðy ¼ 0Þ ¼ 0

txyðy ¼ 0Þ ¼ 0

tyzðy ¼ 0Þ ¼ 0

ð9:73Þ
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which, using the expressions for the stresses and the solution to the governing equations for f

and g become:

S1f þ S2f þ S3f
� � 

A1sin
pz
t1

þB1cos
pz
t1

!
þ syðzÞ
� �

ff
¼ 0

S1g þ S2g þ S3g
� � 

C1sin
pz
t1

þC2cos
pz
t1

!
þ txyðzÞ
� �

ff
¼ 0

f1S1f þf2S2f þf3S3f
� �

A1

t1

p
1þ cos

pz
t1

0
@

1
A�B1

t1

p
sin

pz
t1

0
@

1
A ¼ 0

ð9:74a--cÞ

Since Equations (9.74a–c) involve sines and cosines of the variable z, the far-field stresses

(sy(z))ff and (txy(z))ff are expanded in Fourier series and the first terms used to match the

corresponding terms in Equations (9.74a–c). This introduces an additional approximation in

the solution, but the results are still accurate enough to give reliable trends of the behavior.

Once Equations (9.74a–c) are solved, all unknown constants in the stress expressions are

determined except for �C2 in the skin. This, again, is determined by energy minimization

@Pc

@ �C2

¼ 0

which yields a linear equation for �C2. The details of the algebra can be found in [2].

The predictions of the method presented here have been compared with finite element

results [2–4] and shown to be in good to excellent agreement. Discrepancies and reasons for

them are discussed in the references. Inwhat follows, the solutionwill be used to generate trend

curves and discuss the implications for design.

To gain insight on how different parameters affect the tendency of a stiffener to peel away

from a skin, a typical flange and skin portion of a stiffened panel is isolated in Figure 9.15. The

applied loading is simplified to an appliedmomentM. This could be the result of bending loads

(e.g. pressure) applied on the panel, or even post-buckling where local in-plane axial and/or

shear loads are neglected.

t1

t2

M
M

skin

flange

z

Figure 9.15 Skin–flange configuration under bending load
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The basic material properties are as follows:

Ex¼ 137.9GPa Ez¼ 11.03GPa

Ey¼ 11.03GPa Gxz¼ 4.826GPa

Gxy¼ 4.826GPa Gyz¼ 3.447GPa

nxy¼ 0.29 nxz¼ 0.29

tply¼ 0.152mm nyz¼ 0.4

Note that, for this type of problemwhere out-of-plane stresses are involved, the out-of-plane

stiffness properties Ez, Gxz, Gyz, nxz and nyz of the basic ply are also needed.

For the first set of results, the skin and flange layup are assumed to be the same

[45/–45/–45/45]n in order to eliminate stiffness mismatch due to differences in moduli in

the flange and skin. Only the thicknesses of skin and flange are allowed to vary by specifying

different values of n. The normal stress sz at the interface between skin and flange is plotted

against distance from the flange edge for different values of the ratio t1/t2 in Figure 9.16. It is

normalized with the maximum tensile value of sy at the far field which is given by

symax ¼ 6M

t1 þ t2ð Þ2

with M the applied moment per unit of stiffener length.

As expected from the qualitative discussion in association with Figure 9.11 at the beginning

of this section, the normal stress has amaximumvalue at the edge of the flange and then reduces

rapidly to negative values and decays to zero. The higher the value of t1/t2 the more rapidly the

stress decays to zero. The distance over which the normal stress decays to zero does not exceed

10 flange thicknesses as is shown in Figure 9.16.

It is also apparent from Figure 9.16 that starting from low t1/t2 values and going up, the peak

stress at the flange edge increases. However, this trend is not monotonic. As is shown in

Figure 9.17, for the same skin and flange layups as in Figure 9.16, the highest peaks are reached

for t1/t2 values between 1 and 1.5 and then decrease again. This means that flange thicknesses

close to the skin thickness should be avoided because they maximize the normal stresses

at the interface.

The discussion so far has attempted to isolate the effect of geometry by keeping the layup

of the flange and skin the same. Now, the thicknesses of the flange and skin are fixed to the

-0.1
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0
0.05
0.1
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Distance from flange edge (y/t1)
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10 flange thicknesses 

Figure 9.16 Normal stress as a function of distance from flange end for various thickness ratios
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same value and the layup is varied. This is shown in Figure 9.18 where the case of [45/–45]s

flange and skin is compared with the extreme case of an all 0� flange, [04], on an all 90�

skin, [904]. This is the most extreme case because it has the largest stiffness mismatch

between skin and flange. Note that the 0 direction is taken to be parallel to the y axis for

this example.

The [04] flange on [904] skin has a peak normal stress that is twice as high as the peak stress

when skin and flange are both [45/–45]s. And, because the peak value is higher, the stress

decays to zero faster than in the case of [45/–45]s skin and flange. An attempt to combine the

effect of layup and geometry is shown in Figure 9.19 where the peak stress is plotted as a

function of the ratio t1/t2 for the two layups of Figure 9.18.

Again, the highest peaks occur for t1/t2 ratios between 1 and 1.5 In addition, the 0
� flange on

90� skin has much higher peaks (as much as 2 times higher) than a situation where flange and

skin have the same layup. Only for t1/t2 values lower than 0.3 do the two cases approach each

other but, even for t1/t2¼ 0.2 the 0� flange on 90� skin has 40% higher peak normal stress at the

flange edge.

The results presented in Figures 9.16–9.19 were based on a case where only a bending

momentMwas applied. Similar results are obtained for other types of loading (but see exercise

9.5 for some important differences). The trends can be summarized into the following

recommendations or guidelines for design.
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Figure 9.18 Dependence of interface normal stress on layup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

43.532.521.510.50

Flange/skin thickness ratio (t1/t2)

peak stress

y t2

t1

Figure 9.17 Peak normal stress at the flange edge as a function of flange to skin thickness ratio
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1. The interlaminar stresses die out within 10–15 flange thicknesses away from the

flanged edge.

2. The interlaminar normal stress peaks at the flange edge and decays rapidly to zero.

3. The flange thicknessmust be either less than the skin thickness or at least 1.5 times greater to

minimize the peak stress at the flange edge.

4. The closer the stiffness of the flange is to that of the skin, the lower the interlaminar stresses

at the flange skin interface. Since the thicknesses have to be different, this suggests a

situation where the flange and skin have the same repeating base layup and only the number

of times it repeats in one is different than in the other.

These implications for design rely heavily on the peak value of the normal stress at the

flange–skin interface. This value occurs at the edge of the flange. It is important to note that the

exact value at that location is not easy to determine.While the method presented in this section

gives a well-defined value for the peak stress, the approximations and assumptions made in

the derivation suggest that it may not be sufficiently accurate. On the other hand, finite element

solutions show that the value at the edge itself is a function of themesh size. In general, the finer

the mesh near the flange edge, the higher the value. This is a well-known problem associated

with free edges in composite materials [16, 17] and displacement-based formulations have

difficulty in obtaining accurate stresses because the stress-free boundary condition is im-

plemented in an average sense [17, 18]. In addition, exact anisotropic elasticity solutions for

simple laminates [19, 20] have shown that, indeed, the stresses are, in general, singular at the

free edge. However, in most cases, the strength of the singularity is so low that it becomes

significant over a range equivalent to a few fiber diameters. In such a case, themain assumption

of homogeneity in the elasticity solution breaks down and the two different constituents,

fiber and matrix must be modeled separately. As a result, the elasticity solution is no more

reliable than finite element solutions or the approach presented in this section.

From a design perspective, any method that gives accurate stresses near the free edge of the

flange (but not necessarily the flange edge itself) can be used to differentiate between design

candidates. Configurations with higher peak values at the edge are expected to have inferior

performance. Predicting the exact load at which a delamination will start requires the use of
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Figure 9.19 Peak normal stress as a function of thickness ratio (t1/t2) for two different

layup configurations.
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some failure criterion [13, 14] and some test results to adjust any discrepancies between the

value predicted at the edge by the analysis method used and the actual test value.

The design guidelines presented in this section can now be used to revisit and upgrade the

design of the stiffener cross-section that was last reviewed in Figure 8.36. The revised design is

shown in Figure 9.20. The two main differences from Figure 8.36 are the stepped flange next

to the skin where plies are dropped with the distance between drops at least 10 times the height

of the dropped ply (or plies if more than one plies are dropped at the same location) and the

requirement that the skin and flange thicknesses be different tflange/tskin < 1 or > 1.5) with

layups that are, if possible, multiples of the same base layup to keep the respective in-plane

stiffnesses as close as possible.

It is recognized, of course, that by using a stepped flange next to the skin the manufacturing

cost increases significantly. A tradeoff between the increased cost associated with the stepped

flange and the improvement in performance (and thus decreased weight) is necessary in such

cases. Alternatives to the stepped flange are shown in Figure 9.21. While they all improve the

performance of the skin-stiffened panel, they all carry a significant cost penalty with them.
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Figure 9.20 Stiffener cross-section design incorporating guidelines from this section
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Figure 9.21 Different options for delaying skin–stiffener separation
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9.3 Additional Considerations for Stiffened Panels

9.3.1 ‘Pinching’ of Skin

With shear loads present, the skin between stiffeners goes into diagonal tension (see

Section 7.2). Resolving the shear load in biaxial tension and compression as was done in

Section 7.2 results in the situation shown in Figure 9.22. Only the base flanges of the stiffeners

are shown in this figure for clarity.

Of particular importance during testing of such configurations are the compression regions at

the top left and bottom right of each bay (the term bay here refers to the section between

stiffeners). Locally there, an originally rectangular piece of skin deforms such that the angle

at the corners of interest is less than 90� (Figure 9.22). If the applied load is sufficiently high,
this can cause the skin to fail in compression. This ’pinching’ phenomenon ismore pronounced

on components isolated from the surrounding structure during, for example, testing of

individual panels. In a complete structure such as a fuselage or wing skin, the conditions

at the edges of the panel in Figure 9.22 are different fromwhen it is isolated in a test fixture and

the compliance of the adjacent structure relieves this phenomenon.

Pinching of skin at the cornersmay lead to a premature failurewhen testing in the laboratory.

This can happen even before the skin buckles and it can be exacerbated by local eccentricities

that may introduce additional bending moments in the region where the skin is under

compression. For this reason special fixtures and specimen geometries have been designed

to eliminate this problem [21].

9.3.2 Co-Curing Versus Bonding Versus Fastening

The discussion in this book has mostly been confined to generating designs that meet the

loads at low weights. Other than Chapter 2 and Sections 5.1.1, 5.1.2, and 9.2.2, little attention

has been paid to the cost associated with some of the designs that result from the approaches

presented. The subject of skin-stiffened structure is ideal for bringing up some additional

considerations relative to assembly cost and how different concepts can be traded with cost as

an additional driver.

schematic of 
buckled pattern 

angle<90o

angle<90o

angle>90o

(arrows show direction
of in-plane stresses)  

Figure 9.22 Local tension and compression regions in skin under shear
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There are three major ways in which a stiffened panel can be assembled: (a) co-curing,

(b) bonding, (c) fastening. There are variations or combinations of those such as co-bonding

(where one or both of skin and stiffeners are staged and then cured with adhesive present),

bonding and fastening, etc., but these three major options are a good starting point for

cost tradeoffs.

To discuss these approaches some basic aspects and experience-based conclusions should be

laid down first:

1. In general, the larger the part the lower the cost per unit weight. There are economies of

scale, elimination of secondary process steps (such as off-line part preparation), and, most

importantly, elimination of assembly time required to put together the final product if it is

made in smaller pieces instead of one larger part.

2. Eliminating additional cure cycles reduces the cost. Ideally, one should have one cure cycle

(or cure at room temperature if materials and loads permit).

3. The higher the complexity of the part being made the higher the cost.

4. If the process requires additional inspection to assure structural integrity and to check that

tolerances are met, the cost increases.

5. The risk associated with something going wrong during fabrication adds to the cost. This

risk is higher for parts of greater complexity and size. Thus, complex parts have a higher

rework and scrap rate than simpler parts, which add to their cost.

6. Automated processes are more accurate and reliable and have lower recurring cost, but can

be limited by howcomplex a part they canmake.Also, the nonrecurring cost associatedwith

acquiring the equipment (e.g. an automated fiber/tow placement machine) can be high and

not easily justifiable for relatively short production runs.

In co-curing, the skin and stiffeners are cured at the same time. This requires detailed (and

costly) tooling to accurately locate the stiffeners during cure, and to ensure uniform pressure

everywhere. So the nonrecurring cost associated with tooling is relatively high. The recurring

cost (labor hours) per unit weight is relatively low according to item (1) above. On the other

hand, the risk of something going wrong during cure of the combined skin and stiffeners is

relatively high, which, according to item (5) above, adds to the cost.

In a bonded configuration, skin and stiffeners are made separately which minimizes the risk.

But bonding requires the extra assembly step of skin and stiffeners thus adding to the cost.

In addition, there are currently no reliable consistent nondestructive inspection methods to

verify that the bond is everywhere effective and meets minimum strength requirements. This

means that additional process steps ensuring proper surface preparation of the surfaces to be

bonded, full coverage with adhesive, cleanliness and avoidance of contamination, etc. have to

be in place to guarantee a good bondline. This adds to the cost. In some cases, to protect against

defective bondlines that were missed during fabrication and inspection, it is required to

demonstrate that the structure can meet limit load with a significant portion of the bondline

ineffective, which adds to the weight of the structure.

Fastening of the stiffeners to the skin eliminates the problems associated with bonding and

improves the post-buckling performance. However, the extra assembly time associated

with fastening is a significant cost increase. In addition, the use of fasteners typically increases

the weight.
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It can be seen from the previous discussion that each of the three approaches has advantages

and disadvantages, and decidingwhich approach to follow is a function of the amount of risk to

be undertaken and which process steps a particular facility is more comfortable with and more

efficient in. It is possible, for example, if the assembly process steps are streamlined and

automated, that the cost associatedwith them is only a small fraction of the total and can lead to

overall cost savings compared with a co-cured configuration [22].

Exercises

9.1 Assume that the stiffener used in the application in Section 8.5.3.1 is to be used on a square

skin panel of dimensions 508
 508mm loaded in compression. The skin layup is

[45/–45]s (same material as the stiffener). Determine the largest stiffener spacing (and

thus the spacing that minimizes the number of stiffeners and therefore the fabrication cost)

such that the overall buckling load equals the buckling load of the skin portion between

the stiffeners.

ds=? 

9.2 Consider the stiffener terminating somewhere on a skin as shown in the figure.

skin 

stiffener 

stiffener terminates in the 
“middle” of the skin 

F

Further isolating the flange and skin portions included in the dashed rectangle above and

viewing them from the side (enlarged):
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flange or region 1 

skin or region 2 

F

F
x1 or x2

z1

z2

location where 
stiffener terminates 

t1

t2

Note the following:

(a) The loadF applied to the stiffener in the first figure, when transmitted to the flange in the

second figure would, in general, also exert a moment. To simplify the calculations this

moment is neglected. There are applications where this is valid (when the stiffener is

also attached to a very stiff part which absorbs the bending moment). Similarly, going

from the applied F on the flange in the second figure to the reacting F on the skin on the

left would again, in general, result in a bending moment which is neglected for the

same reasons.

(b) The flange is called region 1, meaning all the quantities relating to the flangewill have a

subscript 1 from now on. Similarly, the skin is region 2 and all skin-related quantities

will have a subscript 2. Note there are two coordinate systems one in region 1 and one in

region 2. Also note that the z directions in these two coordinate systems are opposite

each other.

(c) The left edge of the flange in the second figure above, where the stiffener terminates has

no loads applied and therefore stresses are zero there. All stresses in the flange transfer

to the skin as that edge is approached.

(d) The flange and skin are assumed to bewide in the y direction (perpendicular to the plane

of the figure and, therefore, there is no dependence on y1 or y2.

It is assumed that far from the terminating flange edge (i.e. for high values of x1) the

classical laminated plate theory is recovered according to which the average stress in the

flange s1 is given by

s1 ¼ F

t1b1
¼ A1

where b1 is the flange width.

It is now assumed that the normal stress sx1 in the flange is given by the follow-

ing expression:

sx1 ¼ f sin
pz
2t1

þD1sin
3pz
2t1

� 	
þA1

where f is an unknown function of x1 and D1 is an unknown constant.
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Note that this expression can be viewed as consisting of the first few terms of a Fourier

series. The requirement, of course, is that f, for large x1, tend to zero so sx1 ! A1 away

from the flange termination.

Use the equilibrium equations to determine the stresses txz1 andsz1 (all other stresses are
zero or close to zero in the flange). To do this you will also need to make sure that txz1¼ 0

and sz1¼ 0 at the top of the flange. Also, write the corresponding stress expressions for

region 2 (by analogy with region 1).

Require that txz and sz are continuous at the flange/skin interface (i.e. the value of txz
obtained at the flange skin interface coming from the flange equals the value of txz
obtained at the same location coming from the skin, and similarly for sz) and obtain the

values of D1 and D2. (Watch out for the definition of the coordinate systems and

the z direction.)

9.3 Continuing from Exercise 9.2, the function f is still unknown. To determine it you need to

minimize the energy in the flange/skin system. The energy has the form:

P ¼ U�W

where the internal potential energy U is the sum of U1 and U2 andW is the external work.

It turns out that W does not contribute to the solution so neglect it.

Now U1 is given by

U1 ¼ 1

2

ððð
S11sx2 þ 2S13sxsz þ S33sz2 þ S55txz2
� 

dxdydz

where, all quantities in the right-hand side should have an additional subscript 1 to denote

the flange (omitted here for simplicity) and the quantities Sij are compliances (obtained

from inverting the stiffness matrix for the entire flange).

The y integration only yields a constant b1, the width of the flange since there is no

dependence on y.

Without substituting for D1 (and D2) use your expressions for the stresses obtained in

Exercise 9.2 and perform the z integrations in the expression for U1. Note that, because

these involve sines and cosines, quite a few of the integrals are zero and you can derive

simple expressions for those that are not.

Write the analogous expression for U2 and perform the z integration. Note that the y

integration in the skin will also yield a constant multiplier of b1 because we are assuming

the the skin/flange portion we have isolated for analysis is of width b1 both for the flange

and the skin.

If you substitute in the expression for P¼U1 þ U2 you will now have a long integral

with respect to x only (y and z integrations already performed) which will be a function of

f and its first two derivatives.

9.4 Continuing from Exercise 9.3, using the calculus of variations write down the Euler

equation for this problem and derive the governing equation for f so that the energy is

minimized. Write the governing equation in the form

R1ðdnf=dxnÞþR2ðdn�1f=dxn�1Þþ . . . ¼ 0

Start with R1 with the highest derivative of f, and neglect the constant term (because it

does not contribute to the solution). Write down the expressions for R1, R2, . . . .
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Solve the equation obtained writing down the solution in the form:

f ¼ C1e
m1x þC2e

m2x þ . . .

Also write down the expression for mi.

9.5 (Continuing from Exercise 9.4) At this point, the fact that none of the stresses can increase

with increasing x is invoked and only exponentials with negative real parts are used. In

addition, the boundary conditions that require txz1¼ 0 and sx1¼ 0 at x¼ 0 are invoked (the

second one approximately only) and the constants C1, C2, . . .are determined. After that is

done, one notices that at x1¼ 0 at the flange skin interface, the interlaminar shear stresses

txz1 and txz2 are zero and only the normal stress sz1 or sz2 are nonzero. Therefore, the only
stress that contributes to delamination is sz1 (or sz2 which is the same at the flange–skin

interface by stress continuity).

Substituting in the stress expressions and evaluating sz1 at x¼ z¼ 0 show that

szcrit ¼ �8A1

p
1� t2

3t1

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11ð Þ1 1þ D1

2

2

� 	
þ S11ð Þ2

t2

t1
1þ D2

2

2

� 	

2 S33ð Þ1 T1 þ t2

t1

� 	5

T2

" #
vuuuuuut

where the compliances for each laminate (flange or skin) can be obtained by averaging the

compliances over all plies (springs in series):

t1

ðSijÞ1
¼
X ti

Sij
� �

ithply

with an analogous expression for region 2, and the compliances for each ply of orientation

y are given by the following expressions where quantities with superscript 0 refer to a

0� ply of the material being used.

S11 ¼ S011cos
4yþ 2S012 þ S066

� �
sin2ycos2yþ S022sin

4y

S13 ¼ S013cos
2yþ S023sin

2y

S33 ¼ S033

S55 ¼ S055cos
2yþ S044sin

2y

S011 ¼
1

E11

S012 ¼ � n12
E11

S066 ¼
1

G12

S022 ¼
1

E22
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S013 ¼ � n13
E11

S023 ¼ � n23
E22

S033 ¼
1

E33

S044 ¼
1

G23

S055 ¼
1

G13

T1 ¼ 3

2
� 4

p
þ D1

2

81

3

2
� 4

3p

0
@

1
Aþ 2D1

9
1� 8

3p

0
@

1
A

T2 ¼ 3

2
� 4

p
þ D2

2

81

3

2
� 4

3p

0
@

1
Aþ 2D2

9
1� 8

3p

0
@

1
A

A material is made available with the following properties:

E11 ¼ 137:88 GPa

E22 ¼ E33 ¼ 11:72 GPa

G12 ¼ G13 ¼ 4:825 GPa

G23 ¼ 4:0 GPa

v12 ¼ v13 ¼ 0:3

v23 ¼ 0:45

tply ¼ 0:1524 mm

Xt ¼ 2068MPa

Xc ¼ 1379MPa

Yt ¼ 68:94MPa

Yc ¼ 310:2MPa

S ¼ 124:1MPa

It is also given that the skin at the location of interest has the following layup:

[45/–45/0/90]s4.

9.6 (a) If the skin is not to exceed 4500ms, determine the value of F that barely fails the skin.

(b) Assume that the flange is made from one of the three layups: [0/90]sn, or [45/–45]sm or

[45/–45/0/90]sp. Select a value of n,m, and p and plot the value of szcrit as a function of t2/t1.
Which value(s) of t2/t1 would you recommend to use in this case and why? (c) Use your

results in (a) and (b) to select the lightest flange layup you should use.
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10

Sandwich Structure

A sandwich structure (Figure 10.1) typically consists of two facesheets separated by light-

weight core. Usually, the facesheets are bonded to the core with the use of adhesive but, under

certain circumstances (for example usingX-cor� or K-cor� [1,2] it is possible to eliminate the

use of adhesive.

Composite laminates make up the facesheets. There is a variety of materials and config-

urations used for the core depending on the application and the desired properties: foam,

honeycomb, low density foaming aluminum, etc. Most core materials, in particular honey-

combs, are anisotropic. They have different stiffness and strength in different directions. In

general, the purpose of the core is to increase the bending stiffness of the sandwich by moving

material away from the neutral axis of the cross-section. The stiffness (and strength) of the core

are, typically, much lower than those of the facesheets. As a result, for general loading

situations such as that shown in Figure 10.1, with applied bendingmomentM and in-plane axial

and shear loads N and V, respectively, all the load is taken by the facesheets. The bending

moment (per unit width) is resolved into a force couple where one facesheet is loaded by

a positive force per unit width Nm and the other by an equal and opposite force per unit width

�Nm. Themagnitude of that force is such that the force couple generates a moment equal toM:

Nm ¼ M

tc þ tf

The axial load N and the shear load V are divided equally between the two facesheets.

The core must still have minimum strength and stiffness in certain directions so that: (i) the

sandwich does not collapse under pressure during cure; (ii) load can be transferred between

facesheets; and (iii) core ramp-downs, where the core gradually transitions to monolithic

laminate for attachment to adjacent structure, do not fail prematurely. With reference to

Figure 10.2, aside from the core thickness tcwhich determines the overall bending stiffnesses of

the sandwich, the most important core properties are: The transverse shear stiffnesses Gxz and

Gyz, the corresponding transverse shear strengths Zxz, Zyz, the out-of-plane Young’s modulus

Ec, and the corresponding (flatwise) tension and compression strengths Zt and Zc respectively.

Finally, for the case of honeycomb core such as that shown in Figure 10.2, the core cell size s
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plays a role in some of the failure modes. A thorough investigation of sandwich structures with

isotropic facesheets can be found in reference [3].

10.1 Sandwich Bending Stiffnesses

A sandwich can be treated as a laminate where the core is just another ply with negligible

stiffness and strength properties, and thickness equal to the core thickness. Standard classical

laminated-plate theory (see Section 3.3) can be used to determine the correspondingA,B andD

matrices. The presence of the core does not change theAmatrix, butwill affect theB (if the total

layup is unsymmetric) and D matrices significantly. This can be seen by applying Equation

(8.14) to obtain theDmatrix of a sandwich. Rewriting Equation (8.14) it can be shown that for a

sandwich with identical facesheets,

Dij ¼ 2ðDijÞf þ 2ðAijÞf
tc þ tf

2

� �2
ð10:1Þ

x
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z

tc

s
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deformation
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Figure 10.2 Honeycomb core geometry
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Figure 10.1 Sandwich configuration
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where the multiplicative factors of 2 appearing on the right-hand side account for the presence

of two facesheets. The first term on the right-hand side of Equation (10.1) is the same as the EI

term in Equation (8.14) with the stiffness E incorporated in the corresponding Dij term. The

second term is the product of the stiffness and the distance from the neutral axis present in

Equation (8.14) with the modulus this time lumped in the Aij term.

To see the effect of the core on increasing the bending stiffness of a sandwich, consider two

facesheets of layup (�45)/(0/90)/(�45) separated by a core of varying core thickness. The

individual A and D matrices for each facesheet are given by:

A11 28912.44 N/mm D11 659.7 Nmm

A12 12491.43 N/mm D12 466.9 Nmm

A22 28912.44 N/mm D22 659.7 Nmm

A66 13468.58 N/mm D66 494.0 Nmm

Using Equation (10.1), the ratio of D11 for the entire sandwich divided by D11 for each

facesheet can be determined as a function of varying core thickness. The result is shown in

Figure 10.3.

It can be seen from Figure 10.3 that even very small core thicknesses (5mm) result in

a thousand-fold increase of the bending stiffness. The range of typical core thicknesses used in

many applications is also shown in Figure 10.3, indicating that, for such applications, the core

increases the bending stiffness anywhere between 4000 and 15 000 times.

This kind of improvement at a relatively small increase in weight, due to the presence of the

core and adhesive, makes sandwich structure ideal for many stability-driven applications

where high buckling loads are important. In fact, judicious selection of facesheet material and

layup and corematerial and thickness would result in sandwich being themost weight-efficient

structure if it weren’t for a variety of new failure modes associated with such configurations.

Each of the components – facesheet, adhesive, or core, can fail and there are more than one

failure modes for each component. Some of these failure modes are quite limiting and tend to

drive the design. The result is that sandwich is not always more efficient than the alternative(s)

such as a skin-stiffened structure. It depends on the geometry, loading, and design philosophy

(e.g. whether post-buckling is allowed and at how high a post-buckling ratio). The most

important of these failure modes are examined in subsequent sections.
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Figure 10.3 Variation of sandwich bending stiffness as a function of core thickness
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In addition, it should be pointed out that in many applications where sandwich is selected,

ramp-downs are used at the edges of the sandwich for attachment to adjacent structure. Ramp-

downs are briefly discussed in Section 10.6.1. They tend to increase cost and introduce

additional failure modes that must be checked to make sure they do not lead to premature

failure of the entire structure.

10.2 Buckling of Sandwich Structure

Buckling is one of the critical failure modes for sandwich structure in particular for relatively

large panels. The reason is that it is hard to design against all possible failure modes in the post-

buckling regime and, as a result, buckling is usually considered to coincide with final failure.

10.2.1 Buckling of Sandwich Under Compression

The procedure to determine the buckling load of a sandwich structure is very similar to that

presented in Chapter 6 for monolithic laminates, with one important difference. The presence

of the core makes the effects of transverse shear very important. If they are not properly

accounted for, the predicted buckling load is very unconservative (higher than the case where

transverse shear effects are accounted for).

In a uniform thickness plate where transverse shear effects are significant the Kirchoff

hypothesis is no longer valid. Plane sections remain plane, but are no longer perpendicular to

the plate midplane. This is shown schematically in Figure 10.4.

The sandwich under compression is treated as a wide beam. Following the derivation in [4]

for isotropic beams, the buckling load is given by:

Ncrit ¼ NEcrit

1þ kNEcrit

tcGc

ð10:2Þ

In Equation (10.2), NEcrit is the buckling load No of the sandwich if transverse shear

effects are neglected, given, for simply supported edges by Equation (6.7) repeated below

for convenience:

NEcrit ¼ p2

a2
D11m

2 þ 2ðD12 þ 2D66ÞðARÞ2 þD22

ðARÞ4
m2

" #
ð6:7Þ

angle    90º 

Figure 10.4 Bending of a sandwich panel under compression
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Also, tc and Gc are the core thickness and transverse shear stiffness respectively. It is

important to note thatGc is thevalue of the shearmodulus (typicallyGxz orGyz) alignedwith the

loading direction.

Finally, k in Equation (10.2) is the shear correction factor. The shear correction factor is

introduced to reconcile the inconsistency between the derived and assumed transverse shear

stress distributions through the thickness of the plate. Engineering bending theory leads to

a quadratic distribution of shear stress through the thicknesswhile first-order shear deformation

theory assumes the shear strain (and thus the shear stress) is independent of the through-

thickness coordinate. This inconsistency [5] is reconciled by requiring that the work done

following either formulation is the same. This leads to an expression for the transverse shear

force (per unit width) of the form [5],

Qx ¼ kGxzhg ¼ 5

6
Gxzhg

where the shear correction factor is k¼ 5/6 in this case, h is the plate thickness and g is the
transverse shear strain.

As mentioned earlier, most sandwich structures use core with very small shear stiffness Gxz

compared with that of the facesheets. As a result, the shear stress through the thickness is very

nearly uniform. This is consistent with the fact that bending stresses are not linearly distributed

through the thickness of the core because, as was mentioned earlier, bending moments are

transmitted through a sandwich as a force couple. Thus, there is (almost) no inconsistency

between bending theory and first-order shear deformation theory and k� 1. Thus,

Ncrit ¼ NEcrit

1þ NEcrit

tcGc

ð10:3Þ

An examplewould help illustrate the importance of transverse shear in a sandwich. The same

facesheet properties as those in Section 10.1 and Figure 10.3 are used here. The core material

is assumed to have a shear stiffness Gxz¼ 42.1N/mm2. Equation (10.3) is used to calculate

the buckling load of a square sandwich panel of side 508mmand compare itwithEquation (6.7),

i.e. without accounting for transverse shear. This is done for different core thicknesses and

the results are shown in Figure 10.5.
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Figure 10.5 Buckling load of a sandwich with and without transverse shear effects as a function of core
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It can be seen that once the core thickness exceeds 5mm, the buckling load including

transverse shear effects diverges drastically from the buckling load without transverse shear

effects. If transverse shear effects are included the buckling load is always lower. Even for

a core thickness of 3mm the two buckling loads (with and without transverse shear effects)

differ by 21%.

10.2.2 Buckling of Sandwich Under Shear

The situation is shown in Figure 10.6. The form of the equation predicting buckling of a simply

supported sandwich under shear is the same as Equation (10.3):

Nxycrit ¼ Nxyc

1þ Nxyc

tcG45

ð10:4Þ

where Nxyc is the shear buckling load without transverse shear effects (see for example

Sections 6.3–6.5) and G45 is the core shear modulus in the 45� direction, as shown in

Figure 10.6.

The shear modulus G45 is used because it is the one mostly opposing the tendency of the

panel to buckle. Since a pure shear loading is equivalent to biaxial loading with tension in one

direction and compression in the other (see for example Section 7.2), the tendency for buckled

half-waves to form is along the 45� line in Figure 10.6 (the direction ofmaximum compression)

and G45, the core shear stiffness in that direction, opposes that tendency.

To determine G45 standard tensor transformation equations are used (Section 3.2,

Equation 3.8). The result is

G45 ¼ sin245Gyz þ cos245Gxz ¼ Gyz þGxz

2
ð10:5Þ

Using this result to substitute in Equation (10.4) and rearranging leads to:

Nxycrit ¼
Gxz þGyz

� �
tc

Gxz þGyz

� �
tc

Nxyc

þ 2

ð10:6Þ
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GyzG45
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Figure 10.6 Sandwich panel under shear load
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10.2.3 Buckling of Sandwich Under Combined Loading

For combined loading situations the same interaction curves as those presented in Sections 6.5

and 6.6 can be used, provided the individual buckling loads are corrected for transverse shear

effects as presented in the two previous sections.

10.3 Sandwich Wrinkling

Wrinkling is a local buckling phenomenon where the facesheet of a sandwich buckles over

a characteristic half-wavelength ‘, which is unrelated to the overall length orwidth of the panel.
There are three possible modes, symmetric, antisymmetric and mixed-mode wrinkling. These

are shown schematically in Figure 10.7 for applied compression, but can also occur under

applied shear or combined loads.

10.3.1 Sandwich Wrinkling Under Compression

The symmetric wrinkling case is examined here in detail (see also [6]). A sandwich

compression specimen, which failed in wrinkling, is shown in Figure 10.8.

The deformed shape after the facesheet has buckled in the wrinkling mode is idealized in

Figure 10.9. This shape extends through the width of the sandwich (perpendicular to the plane

of Figure 10.9). It is assumed that the sandwich is very long in the y direction. It is also assumed

that at the edges of the buckled shape, at x¼ 0 and x ¼ ‘, the boundary conditions on the

facesheet are those of simple support, i.e. w¼ 0 there.

One important aspect of the formulation is modeling the behavior of the core. Assuming

perfect bondingbetween core and facesheet, it is obvious fromFigure10.9 that the core deforms

under the buckled facesheet. In the case shown in Figure 10.9, the core extends perpendicular to

thex axis. If the corewerevery thick, therewouldbe a regionnear themidplaneof the corewhere

symmetric wrinkling 

anti-symmetric wrinkling

mixed mode wrinkling 

Figure 10.7 Sandwich wrinkling modes
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the core would not deform. So the core deformations are confined in a region close to the

facesheet. It is assumed that this region has width zc (Figure 10.9) where zc is unknown at this

point. It is also assumed that the core deflections in the z direction vary linearly with z.

Combining the assumption of simply supported ends for the deformed facesheet and linear

variation of deflection for the core, the following expression for w is introduced:

w ¼ A
z

zc
sin

px
‘

ð10:7Þ

Equation (10.7) satisfies the requirement that w¼ 0 at x¼ 0 and x ¼ ‘. It also satisfies the

linear variation of w as a function of z with w¼ 0 at z¼ 0 (i.e. at the interface where core

deformations seize to be significant) and reproducing the facesheet sinusoidal deformation at

z¼ zc, which is the intersection of the core with the facesheet.

The wrinkling load is determined by energy minimization. During wrinkling, energy is

stored in bending the facesheet and extending the core. So the energy expression has the form:

Pc ¼ 2Uf þUc � 2W ð10:8Þ
where Uf is the energy in each facesheet and Uc is the energy stored in the core. W is the work

done by the applied load on one end of the sandwich. The factors of 2 in this equation account

for the presence of two (identical) facesheets.

Figure 10.8 Wrinkling failure of sandwich tested in compression
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z
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Nx
Nx
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Figure 10.9 Deformed configuration of sandwich undergoing symmetric wrinkling
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Neglecting deformations u and v in the plane of the facesheet, the strain and stress in the

facesheet can be obtained from Equations (5.6), (5.7), and (5.4):

ex ¼ � z
@2w

@x2

sx ¼ Ef ex

ð10:9Þ

where Ef is the facesheet membrane modulus obtained from Equation (8.6).

Then,

sxex ¼ Ef z
2 @2w

@x2

� �2

Thus, the facesheet energy can be written as,

Uf ¼ 1

2

ðð
Ef z

2 @2w

@x2

� �2
" #

z¼zc

dzdx ¼ 1

2
Ef
�I

ð‘

0

@2w

@x2

� �2
" #

z¼zc

dx ¼ ðE�IÞf
2

ð‘

0

@2w

@x2

� �2
" #

z¼zc

dx

ð10:10Þ

where �I is the moment of inertia of the facesheet per unit width b. It should be noted that this

expression can also be obtained from Equation (5.62) assuming a symmetric facesheet and

noticing that only theD11 term contributeswithD11¼EI/bwhere b is thewidth of the facesheet

perpendicular to the plane of Figure 10.9.

The strain–displacement and stress–strain equations (5.9) and (5.4) applied to the core, give

ez ¼ @w

@z

gxz ¼
@w

@x
þ @u

@z

sz ¼ Ecez
txz ¼ Gxzgxz

where Ec is the core modulus in the z direction and Gxz is the transverse shear modulus of the

core for shearing in the xz plane (see Figure 10.9).

As already mentioned, the u deflection of the core is negligible. Then, the above equations

can be combined to

szez ¼ Ec

�
@w

@z

�2

txzgxz ¼ Gxz

�
@w

@x

�2

which, in turn, can be substituted for in the core energy expression:
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Uc ¼ 1

2

ð‘

0

2

ðzc
0

Ecszez þGxztxzgxz
� �

dz dx ¼
ð‘

0

ðzc
0

Ec

@w

@z

� �2

þGxz

@w

@x

� �2
 !

dzdx ð10:11Þ

Note the factor of 2 in front of the second integral, which is introduced to account for the

fact that there are two portions of the core (one above and one below the midplane) both of

thickness zc that contribute to the core energy.

The external work done by the applied load Nx per facesheet per unit width is given by

W ¼ Nxd

d ¼ ‘�
ð‘

0

dx

with d the deflection at the edge of the sandwich portion considered, i.e. at x¼ 0 and x ¼ ‘.
Considering the deformed shape of the facesheet shown in Figure 10.10, the deflection d can

be calculated using Pythagoras’ theorem and assuming small deflections w.

By Pythagoras’ theorem,

dxð Þ2 þ dwð Þ2 ¼ dsð Þ2 ) dx ¼ ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dw

ds

� �2
s

The quantity involving the square root can be expanded into the first two terms of a Taylor

series (valid for small (dw/ds)2) to give,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dw

ds

� �2
s

� 1� 1

2

dw

ds

� �2

for small
dw

ds

� �2

and for small deflections w

dw

ds
� dw

dx

Therefore, substituting in the expression for d,

dx 

ds

dw

Figure 10.10 Deformed facesheet and local geometry
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W ¼ Nx

2

ð‘

0

@w

@x

� �2
					
z¼zc

dx

At this point, the relevant w derivatives present in the energy expression are evaluated:

�
@w

@x

�2

¼ A2z2

zc2
p2

2‘2

�
1þ cos

2px
‘

�

�
@w

@z

�2

¼ A2

zc2
1

2

�
1� cos

2px
‘

�

�
@2w

@x2

�2

¼ A2z2

zc2
p4

2‘4

�
1� cos

2px
‘

�

and substituted in Equation (10.8). Evaluating the integrals gives,

Pc ¼ p4

2‘3
ðE�IÞf A2 þ 1

2

Ec‘

zc
þ 1

3
Gxzzc

p2

‘


 �
A2 �Nx

A2p2

2‘
ð10:12Þ

Equation (10.12) must be minimized with respect to the unknown amplitude A. This

implies,

@Pc

@A
¼ 0 ) 2A

p4

2‘3
ð �EIÞf þ

1

2

Ec‘

zc
þ 1

3
Gxzzc

p2

‘


 �
�Nx

p2

2‘


 �
¼ 0 ð10:13Þ

For nonzero values of A, the quantity in brackets must be zero. This gives a condition for the

wrinkling load Nx. Denoting the wrinkling load by Nxwr:

Nxwr ¼
p2ðE�IÞf

‘2
þ Ec‘

2

p2zc
þGxz

zc

3
ð10:14Þ

Examining Equation (10.14) it can be seen that the first term of the right-hand side is the

buckling load of a beam column (per unit width). The second term is the contribution to the

buckling load of a beam by an elastic foundation when the stiffness of the foundation k equals

Ec/zc. This can be readily seen by comparing this term with Equation (8.33) when m¼ 1. The

third term is the contribution of the elastic foundation when it consists of torsional instead of

extensional springs.

This expression for the wrinkling load is still in terms of two unknowns: ‘ the half

wavelength during wrinkling, and zc the portion of the core undergoing deformations during

wrinkling. Each of them is determined by noticing that if Nx starts increasing from zero, then

wrinkling will occur at the lowest possible value that Equation (10.14) allows as a function of ‘
and zc. Therefore, minimizing Nxwr with respect to ‘ gives:
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@Nxwr

@‘
¼ 0 ) ‘ ¼ p

ðE�IÞf
Ec

zc

 !1=4

ð10:15Þ

which gives a condition relating ‘ and zc. Using it to eliminate ‘ fromEquation (10.14) results in

Nxwr ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EcðE�IÞf

q
ffiffiffiffi
zc

p þ Gxzzc

3
ð10:16Þ

which is only in terms of zc. Differentiating nowwith respect to zc and setting the result equal to

0 gives,

@Nxwr

@zc
¼ 0 ) zc ¼ 32=3

EcðE�IÞf
G2

xz

 !1=3

ð10:17Þ

Now the moment of inertia per unit width

�I ¼ tf
3

12

is used to substitute in Equation (10.17) to obtain the final expression for zc

zc ¼ 32=3

12
tf

EcEf

Gxz
2

� �1=3

¼ 0:91tf
EcEf

Gxz
2

� �1=3

ð10:18Þ

This expression can nowbe used to substitute in Equation (10.15) to get the final value for the

half-wavelength:

‘ ¼ p31=6

121=3
tf

Efffiffiffiffiffiffiffiffiffiffiffiffi
EcGxz

p
� �1=3

¼ 1:648tf
Efffiffiffiffiffiffiffiffiffiffiffiffi
EcGxz

p
� �1=3

ð10:19Þ

Finally, Equation (10.18) can be used to substitute in Equation (10.16) to obtain the

wrinkling load,

Nxwr ¼ 0:91tf Ef EcGxz

� �1=3 ð10:20Þ
Equation (10.20) has been derived in many different ways [6,7]. In fact, depending on the

assumptions, the form of the equation remains the same and only the coefficient in the right-

hand side changes [7].

It is important to keep in mind that the derivation so far has assumed that the core was

sufficiently thick that the portion zc of the core undergoing deformations is less than or equal to

half the core thickness tc/2. If zc given by Equation (10.18) is greater than half the core

thickness, then the entire core deforms during wrinkling and

zc ¼ tc

2
ð10:18aÞ

With this new value of zc new values of ‘ and Nxwr must be calculated. Following the same

procedure as before, zc is substituted for in Equation (10.15) to get
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‘ ¼ p

241=4
Ef

Ec

tf
3tc

� �1=4

for zc ¼ tc

2
ð10:19aÞ

Then, the new value of zc is substituted in Equation (10.16) to obtain

Nxwr ¼ 0:816

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EfEct

3
f

tc

s
þGxz

tc

6
ð10:20aÞ

The condition for the full depth of the core being involved in the wrinkling deformations

can be obtained fromEquation (10.18). If the right-hand side of Equation (10.18) is greater than

tc/2, then the entire core thickness deforms. Therefore, if

tc < 1:817tf
Ef Ec

Gxz
2

� �1=3

ð10:21Þ

the core deforms in its entirety, and Equations (10.18a), (10.19a), and (10.20a) are valid.

Otherwise, only a portion zc of the core deforms and Equations (10.18), (10.19) and (10.20)

are valid.

It should be noted that, according to Equation (10.20a), as the core thickness increases

the wrinkling load decreases. So it would be expected that wrinkling would become the

primary failure mode beyond a certain core thickness. However, this is only true as long as

Equation (10.21) is satisfied. Once the core thickness exceeds the right-hand side of

Equation (10.21) the governing Equation is (10.20), which is independent of the

core thickness.

For antisymmetric wrinkling, an analogous approach to that presented above, but with

a different expression for the w deflection of the core in order to satisfy the different boundary

conditions, leads to the following results [6,8]:

Nxwr ¼ 0:51tf Ef EcGxz

� �1=3 þ Gxztc

3
ð10:22Þ

‘ ¼ 2:15tf
Ef

2

EcGxz

� �1=6

ð10:23Þ

zc ¼ 3

2
tf

Ef Ec

Gxz
2

� �1=3

ð10:24Þ

for sufficiently thick core, i.e. when

tc � 3tf
Ef Ec

Gxz
2

� �1=3

ð10:25Þ

or, when the entire core thickness undergoes deformations (core is relatively thin),

Nxwr ¼ 0:59t
3=2
f

ffiffiffiffiffiffiffiffiffiffi
Ef Ec

tc

r
þ 0:378Gxztc ð10:22aÞ
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‘ ¼ 1:67tf
Ef tc

Ectf

� �1=4

ð10:23aÞ

valid when

tc < 3tf
Ef Ec

Gxz
2

� �1=3

ð10:25aÞ

In practice, one would have to evaluate both symmetric and antisymmetric wrinkling loads

for a given application and use the lowest of the two. However, it can be demonstrated, (see

Exercise 10.1) that only for very thin cores is antisymmetric wrinkling possible. For typical

core thicknesses, symmetric wrinkling is the mode of failure.

Comparison of the predictions for symmetric and antisymmetric wrinkling with experi-

mental results is difficult to do with the equations presented so far. The main reason is that

sandwich structure is most often fabricated by co-curing core, adhesive, and facesheets all at

once. As a result of this process the facesheets are not perfectly flat, but have some waviness.

This waviness is not included in the analysis presented so far. Only if the facesheets

are pre-cured separately and then bonded on a perfectly flat core will the waviness be

(mostly) eliminated.

For this reason, the predictions presented so far are compared with finite element models in

which the facesheets are perfectly flat. Such a comparison can be found in reference [9] and its

conclusions are summarized here.

A sandwich with 25.4mm honeycomb core and facesheets made with four plain weave

fabric plies and layup [(�45)(0/90)2/(�45)] was modeled under compression using finite

elements. The facesheet stiffness Ef was 64GPa. Since the core was thick, only symmetric

wrinkling predictions were used. The pertinent core properties and a comparison or prediction

from Equations (10.19) and (10.20) are shown in Table 10.1 for three different core materials

with the same facesheet.

It can be seen that the predictions for thewrinkling stressNxwr/tf and the corresponding half-

wavelength ‘ are in good agreementwith finite elementswith the highest discrepancybeing less

than 20%. It should be noted that the predicted wrinkling loads are always less than the finite

element result. Also, the greatest discrepancy in wrinkling stress (case 2) does not correspond

to the case with the greatest discrepancy in the half-wavelength (case 3). The discrepancies are

attributed to a combination offinite elementmodeling issues related to proper load introduction

and boundary conditions, and to the fact that Equation (10.7) is an approximation, especially

considering the assumed linear variation with out-of-plane coordinate z.

The discussion so far has not explicitly accounted for the fact that the facesheets are made of

composite materials. Only by substituting the appropriate value for the facesheet in-plane

Table 10.1 Analytical predictions versus FE results for sandwich wrinkling

Ec (MPa) Gxz (MPa) Nxwr /tf (MPa)

present

Nxwr /tf
(MPa) FE

D% ‘ (mm)

present

‘ (mm) FE D%

133 42 646 658 �1.8 11.3 11.4 �0.9

266 42 842 1033 �18.5 9.5 8.9 þ 6.7

133 84 808 821 �1.6 10.6 13.2 �19.7
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stiffness Ef in the equations derived does one account for composite laminates. For more

accurate values forEf in case of composite facesheets, the following expression can be used [7]:

Ef ¼ 12ð1� nxynyxÞD11f

tf 3
ð10:26Þ

where nxy, nyx, and D11f are Poisson’s ratios and bending stiffness of the facesheet.

Other models explicitly incorporating composite layups can be found in the literature. For

example, symmetric wrinkling was determined by Pearce and Webber [10] as:

Nxwr ¼ p2

a2
D11ð Þf m2 þ 2 D12ð Þf þ 2 D66ð Þf

� � a

b

� �2
þ D22ð Þf

m2

a

b

� �4
 �
þ 2Eca

2

m2p2tc
ð10:27Þ

ComparingEquation (10.27)withEquation (8.33) suggests that thewrinkling loadconsists of

two parts, the buckling load of the facesheet and a contribution from the core acting as an elastic

foundationwithspringconstantk¼ 2Ec/tc. Indeed, thefirstpartofEquation(10.27)is identical to

the buckling load of a simply supported plate under compression given by Equation (6.7).

Finally, comparing Equation (10.27) with the wrinkling expression (10.14) derived earlier

withoutexplicitly incorporating thefact that the facesheet iscomposite, it is seen that thefirst two

terms of Equation (10.14) have a one-to-one correspondence with the two terms of Equa-

tion (10.27). The first term corresponds to buckling of the facesheet and the second to the core

acting as an elastic foundation and storing energy in deformation in the z direction. However,

Equation (10.14) has an additional term dependent on the core shear stiffness which represents

core shear deformations. This term is not present in Equation (10.27). It is, therefore, expected

that Equation (10.27)may not be as accuratewhen the core shear deformations are appreciable.

As already alluded to, the fact that sandwich structures are usually co-cured results in

facesheet waviness, which may significantly affect the performance of the sandwich and limit

the usefulness of the design equations presented so far. One attempt to include the effect of

waviness can be found in [9]. A typical cross-section of a [(�45)/(0/90)/(�45)] facesheet on

honeycomb core is shown in Figure 10.11 (taken from [9]).

Using Figure 10.11, the waviness of the facesheet at that section cut through the specimen

was measured and plotted in Figure 10.12 (taken from [9]). It is evident from Figure 10.12 that

the waviness can be significant and its amplitude can approach one-quarter to one-third of the

facesheet thickness tf (¼0.5717mm in this case).

Even though there is an element of randomness in the waviness of Figure 10.12, a main

sinusoidal component of a specific amplitude and wavelength can be estimated. Assuming that

component is present everywhere in the facesheet, a new model of facesheet deformations

under compression accounting for the waviness can be created [9]. This model assumes

a sinusoidal shape of the facesheet shown schematically in Figure 10.13. This model permits

accounting for the presence of facesheet (light grey color in Figure 10.13), adhesive (dark grey

color in Figure 10.13), and core and their respective failure modes relatively easily. The model

assumes that the waviness shown in Figure 10.13 extends all the way to the edges of the

sandwich (perpendicular to the plane of the Figure).

Each of the failure modes shown in Figure 10.13, core tension, core compression, core

shear, adhesive tension, adhesive shear, and facesheet bending must be checked for, and

the most critical will give the failure prediction. This requires accurate knowledge of the

corresponding allowables.
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A comparison of this model to test results, taken from [9], is shown in Table 10.2. Here, three

different facesheet layups and three different cores were used. The predictions range from

excellent to barely acceptable (for the last case in Table 10.2). The main reasons for the

discrepancies from test results are: (a) not so accurate knowledge of all allowables for the

Figure 10.11 Sandwich cross-section showing facesheet and portion of the core (200� magnification

from [9])
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Figure 10.12 Waviness of outer surface of facesheet of Figure 10.11 (from [9])
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failure modes mentioned above; and (b) in all cases, one amplitude and waviness were used

obtained from Figure 10.12, which is not sufficiently accurate for some of the cores and

facesheet layups in Table 10.2. Still, using a waviness model is promising and, combined with

accurate allowables, can yield very reliable predictions.

To account for the effect of (usually unknown) waviness and other complicating factors, it is

customary to knockdown the predictions of Equation (10.20) for symmetric wrinkling by

reducing the coefficient in the right-hand side [11]:

Nxwr ¼ 0:43tf Ef EcGxz

� �1=3 ð10:28Þ
Similarly, for antisymmetric wrinkling which, as already mentioned, occurs only in thin

cores, Equation (10.22a) is modified as follows [12]:

Nxwr ¼ 0:33tf Ef

ffiffiffiffiffiffiffiffiffi
Ec

Ef

tf

tc

s
ð10:29Þ

Equations (10.28) and (10.29) have been shown to be (sometimes very) conservative over a

wide variety of facesheet and core materials, including metals.

What has been presented so far is only a small portion of sandwich wrinkling modeling

approaches. There are many more models, each with its own range of applicability. A

discussion of the accuracy of the various models and their applicability can be found

in [13].

max core compression
max facesheet
bending

max core shear
max adhesive shear

Nxwr
Nxwr

max core tension
max facesheet bending
max adhesive tension

waviness half wavelength waviness amplitude 

Figure 10.13 Sandwich with waviness

Table 10.2 Comparison of wrinkling predictions obtained with a waviness model to test results

Facesheet Core Predicted

wr. stress (MPa)

Test wr.

stress (MPa)

D%

(�45)/(0/90) Nomex�HRH 10-1/8-3.0 295 313 �5.8

(�45)/(0/90)/(�45) Nomex�HRH 10-1/8-3.0 264 297 �11.2

(�45)/(0/90)2/(�45) Nomex�HRH 10-1/8-3.0 426 337 þ 26.4

(�45)/(0/90) Phenolic HFT 3/16-3.0 344 350 �1.8

(�45)/(0/90)/(�45) Phenolic HFT 3/16-3.0 255 349 �26.9

(�45)/(0/90)2/(�45) Phenolic HFT 3/16-3.0 309 382 �19.0

(�45)/(0/90)/(�45) Korex� 1/8-3.0 246 365 �32.7

Sandwich Structure 275



 
10.3.2 Sandwich Wrinkling Under Shear

Wrinkling of a sandwich structure can also occur under applied shear load. Since pure shear can

be resolved in compression in one direction and tension in the other, the compression portion

can cause wrinkling of the sandwich along a line at 45� to the applied shear load (see

Figure 10.14). A conservative way to estimate the wrinkling load under shear is to analyze the

sandwich as loaded under compression along the 45� line and neglect the tension load. The

reason is that in biaxial loading situations with compression and tension, the tension load tends

to stabilize the structure and the buckling load is higher than if only compression were applied.

This was demonstrated in Figure 6.3 where the buckling load was higher for compression and

tension than for biaxial compression.

Therefore, conservatively, the equations derived in the previous section for wrinkling under

compression can also be used here, provided the relevant quantitiesEf,Ec, andGxz are rotated to

the direction of applied compression. Of these, the core Young’s modulus in the z direction Ec

remains unaffected. The facesheet modulus Ef is rotated by 45
� by simply rotating the stacking

sequence by that angle and calculating the corresponding membrane modulus of the resulting

laminate in that direction using Equation (8.6). The core shear modulusG45 also changes if the

core is not isotropic in its plane. The corresponding transformation was given by Equa-

tion (10.5). So, in the coordinate system xy, with compression parallel to the �x axis, the rotated
core shear stiffnesses are:

G�xz ¼ sin2yGyz þ cos2yGxz ¼ Gyz þGxz

2
for y ¼ � 45�

G�yz ¼ cos2yGyz þ sin2yGxz ¼ Gyz þGxz

2
for y ¼ � 45�

ð10:5aÞ

10.3.3 Sandwich Wrinkling Under Combined Loads

Wrinkling under combined loads is analyzed using interaction curves [7,14], which are very

similar to the interaction curves for buckling of monolithic plates presented in Sections 6.5 and

6.6. A summary of the most common cases is given in Table 10.3. To use Table 10.3 the

following ratios are defined:

Nxy Nxy

Nxy

Nxy

45o x

y

x

y

45o45o x

xx

yy

Figure 10.14 Sandwich under shear with shear load resolved into compression and tension loads
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For compression alone,

Rc ¼ Nx=Nxwr ð10:30Þ

where Nxwr is the wrinkling load under compression

For shear alone,

Rs ¼ Nxy=Nxywr ð10:31Þ

where Nxywr is the wrinkling load under shear

Table 10.3 Interaction curves for sandwich wrinkling under combined loads

Case Loading Design equation

Biaxial compression Nx ¼ Nxwr

1þ Ny

Nx

� �3
 !1=3

Compression in x direction

and tension in y direction

Nx Nx 

Ny

Ny

Nx ¼ Nxwr

Combined compression

and shear

Nx Nx

Nxy

Nxy

Rc þRs
2 ¼ 1

Biaxial compression

and shear

Rc þRs
2 ¼ 1

Rc ¼ Nx=Nxwr

Rs ¼ Nxy=Nxywr

Nxwr is wrinkling load in major

core direction when biaxial

compression acts alone (1st

case in this table)

Compression in x direction,

tension in y direction, and

shear

Rc þR2
s ¼ 1

Rc ¼ Nx=Nxwr

Rs ¼ Nxy=Nxywr

Nxwr is wrinkling load in x

direction when compression

acts alone.
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10.4 Sandwich Crimping

This failure mode is shown in Figure 10.15. It occurs when the core shear stiffness is very low

and is quite sensitive to the presence of eccentricities (e.g. when the core thickness is not

uniform or if there is an abrupt change in the facesheet thickness whenmany plies are dropped.

This is a failure mode that is similar to antisymmetric wrinkling with, essentially, zero

wavelength (‘! 0).

10.4.1 Sandwich Crimping Under Compression

If the wavelength ‘ of the buckling mode tends to zero, the corresponding buckling load tends

to infinity since the buckling load is proportional to 1/‘2. Then, the basic buckling equation for
a sandwich under compression Equation (10.3) can be used,

Ncrit ¼ NEcrit

1þ NEcrit

tcGc

ð10:3Þ

letting NEcrit tend to infinity.

It can be seen that Equation (10.3) is of the form1/1 asNEcrit ! 1, so l’Hopital’s rule can

be used to determine the limit ofNcrit. Differentiating numerator and denominator with respect

to NEcrit and, subsequently letting NEcrit tend to infinity, the crimping load Ncrit is shown to be:

Ncrit ¼ tcGc ð10:32Þ
where Gc is either Gxz or Gyz, whichever is aligned with the direction of the load.

10.4.2 Sandwich Crimping Under Shear

A semi-empirical formula is used in this case, which is analogous to Equation (10.32):

Nxycrim ¼ tc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GxzGyz

p ð10:33Þ

10.5 Sandwich Intracellular Buckling (Dimpling) under Compression

This is a failure mode specific to honeycomb or other open-cell cores. Representative such

cores are shown in Figure 10.16. Flex and double-flex core are used in structures with single or

0

Figure 10.15 Sandwich crimping
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compound curvature to allow the sandwich to conform to the curved shape and eliminate

anticlastic curvature effects.

When cores as those shown in Figure 10.16 are used, if the cell size is big enough it is possible

for the unsupported facesheet between the cell walls to buckle. To analyze this intracellular

buckling or dimpling mode requires developing a buckling solution for a composite facesheet

with hexagonal or highly irregular (for flex or double-flex cores in Figure 10.16) boundaries.

The complexity of such solution is prohibitive. Instead, a one-dimensional column-buckling

type solution combining Equations (8.56) and (10.26) with a semi-empirical factor is used:

Nx dim ¼ 2
Ef tf

3

1� nxynyx

1

s2
ð10:34aÞ

or

Nx dim ¼ 24
D11f

s2
ð10:34bÞ

where s is the core cell size shown in Figure 10.16.

10.6 Attaching Sandwich Structures

Asmentioned in Section 10.1, sandwich has superior bending stiffness properties andwould be

the preferred design configuration had it not been for several failuremodes such aswrinkling or

crimping that limit its performance. Another problem that limits the usage of sandwich

structure is the difficulty of attaching it to adjacent structure with adequate load transfer at

the attachment region without undue increase in weight and cost. While it is relatively easy to

attach sandwich structure when the applied loads are low, it is quite a challenge to do so

for highly loaded structure. Some considerations and options are discussed in the following

two sections.

x
y

z

tc

s

cell size

regular honeycomb core 

double flex core flex core 

s

s

Figure 10.16 Cores susceptible to dimpling
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10.6.1 Core Ramp-Down Regions

One of the most common methods of providing adequate means of attachment is through

the use of a ramp-down. By eliminating the core at the attachment region one does not have

to deal with the fact that core has low compression and shear strengths which would

compromise the strength of an attachment. As seen in Figure 10.17, the attachment can be

through fasteners or adhesive (or both) connecting monolithic laminates at the edge of the

ramp-down region.

The monolithic laminate created by eliminating the core (consisting of the two face-

sheets) may not be sufficient if the loads are high, and local reinforcement may be necessary

to transfer bearing and shear loads (Figure 10.18). This creates the additional problem of

deciding how and where the extra plies will be dropped off, transitioning to the full depth of

the core. Clearly, they cannot all terminate at the edge of the core ramp because the

resulting stiffness mismatch would lead to premature failure. In fact, a number of plies must

go up the ramp to stiffen it and thus attract some of the load to the upper facesheet in

Figure 10.18. This is of particular importance for relatively large values of the ramp angle y
(15� < y< 40�).

rampdownfasteners fasteners
and

adhesive

Figure 10.17 Attaching sandwich structure through the use of ramp-downs

?

monolithic
region

transition 
region

full-depth 
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?θ

region

core machining at 
plydroplocations?

t

1-2 core thicknesses10 x dropped height-half 
core thickness

more material must come 
up the ramp to attempt to 
load both facesheets
evenly

core machining at 
plydroplocations?

tc

Figure 10.18 Transitioning from monolithic laminate to full-depth core
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Consider a situation where some in-plane load, for example compression, is applied at the

edgewhere the monolithic laminate is. The loading is eccentric in that it acts at the neutral axis

of the monolithic laminate which is offset from the neutral axis of the full-depth core. This

causes a bending moment. At low loads, the entire compressive load stays in the flat facesheet,

the bottom facesheet in Figure 10.18. At higher loads, bending of the full-depth core is more

pronounced, and a significant fraction of the applied load starts to get transmitted up the ramp

into the ramped facesheet (top facesheet in Figure 10.18). This is the reason pliesmust go up the

ramp and into the upper facesheet, to transfer that load without failure. For typical designs of

ramped sandwich under compression, 60% of the load stays in the straight (bottom) facesheet

and 40% is transmitted up the ramp to the top facesheet.

Since themonolithic region is typically designed for bearing strength (at leastwhen fasteners

are used to connect to adjacent structure) and the facesheets away from the ramped regions are

designed for buckling and notched strength requirements, the thickness of the monolithic

region is, usually, significantly higher than the sum of the thicknesses of the two facesheets.

This poses the problem of smoothly transitioning the thicker monolithic laminate to the thinner

facesheets. A typical transition with some guidelines is shown in Figure 10.18. Successive

plydrops are separated by at least 10 times the thickness of the dropped plies. This is in

agreement with the findings of Figure 9.16. At the same time, again consistent with the results

of Section 9.2.2, dropping a large number of plies should be avoided because of the high normal

and shear stresses created. In addition, dropping many plies at the same location may require

machining a step into the core, as shown in Figure 10.18, to accommodate them. Dropping no

more than 3–4 plies at one location usually does not require special provisions such as locally

machining the core.

If the thickness difference between the monolithic laminate at the panel edges and the

facesheets at the full-thickness portion of the core is large it will be necessary to have a number

of plydrop locations transitioning from the edge without core to the full-depth core. It is

customary to separate successive plydrops by distances roughly equal to the core thickness,

provided other requirements such as the minimum distance between drops¼ 10� plydrop

thickness are not violated. Also, plydrops along the ramped itself are usually avoided.

The discussion so far has been qualitative and draws mostly on previous results from

Chapter 9. A detailed analytical approach for evaluating ramp-down regions can be found

in [15]. The possibility of facesheet and/or core failures in the ramp region are examined in

that reference.

A final word related to the ramp-down angle y is in order. If the ramp angle is large

(Figure 10.19a) the ramp is closer to vertical and it is hard to transfer load to the upper facesheet.

θ

cure pressure 
may crush core

θ

core too thin to 
handle and will 
move during 
cure 

a. θ large b. θ small 

Figure 10.19 Steep versus shallow ramp-down regions
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Furthermore, the pressure during cure tends to crush the core. For ramp angles between 30� and
45�, curing an extra layer of adhesive prior to curing the facesheets stabilizes the core and

eliminates the crushing problem (at the expense of an extra cure cycle for the adhesive layer).

On the other hand, large ramp angles take up less space. If the ramp angle is shallow

(Figure 10.19b) the ramp is closer to the horizontal, and transferring load to the upper

facesheet is easier. However, small ramp angles result in long ramp-down regionswhichmeans

significant portions of the sandwich panel have core with lower thickness and thus lower

bending stiffness. This can cause stability problems. In addition, for small ramp angles, the end

of the core, where the monolithic laminate starts, ends up being very thin. This causes handling

problems during fabrication and it is hard to keep the core edge from moving and/or getting

crushed under pressure during cure.

The optimum ramp angle will depend on which of the factors mentioned above are

favored for a given design and by specific factory practices. Lightly loaded ramps and

situations with limited available space tend to favor larger values of y, while more highly

loaded applications will favor lower values of y which approach a more even distribution of

load between the facesheets, provided the local loss of bending stiffness is not prohibitive.

For applied bending loads on small panels, where the ramped portions on either side of the

panel are a significant fraction of the total panel size, it can be shown that the optimum

value of y is 12–18� (depending on panel size) [15]. This is a result of two opposing

tendencies. For large values of y the core shear and normal stresses are high, and lead to

failure. For low values of y, the core stresses are low, but the deformations are high due to

reduced bending stiffness, and they cause failure. The best compromise is reached at

intermediate y values.

10.6.2 Alternatives to Core Ramp-Down

While using a ramp-down has certain advantages, especially for highly loaded situations, it

does not come without a price, in particular because of the additional failure modes (core

compression or shear) in the ramp-down region that require detailed analysis. Alternatives have

been used for a long time and are based on the experience with metal cores [16].

Thesemethodsmake use of inserts and bushings that span the full depth of the core so there is

no need for ramp-down (Figure 10.20). Locally, the core may be densified with higher-density

insert 
(bushing)

core close-
out

splice 
plate 

core
densification 

Figure 10.20 Attachments of sandwich parts without ramp-downs
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core or other material that has the required compression and shear stiffness to meet the loads

exerted by clamp-up of bolts or other localized loads.

In addition to these, bonded configurations making use of special purpose joints such as

the “pi” and “F” joints shown in Figure 10.21 can be used. Again, local densification of the

core may be necessary. Due to the difficulty in accurately controlling the final thickness of

the parts to be connected, and the width of the opening of the “pi” or “F” joint (mainly due

to spring-back after cure), paste adhesive is used. Controlling the thickness of the bondline

and making sure it is within the required range (too thin leads to early failure, too thick

causes eccentricities that lead to high bending-induced loads) is the major challenge for

these configurations. In addition, the lack of a reliable nondestructive inspection (NDI)

technique, that determines whether the bond has the required strength or not, may either

force the designer to use fasteners or to build into the configuration sufficient strength and

alternate load paths so that, if a significant portion of the bond is compromised, the

remainder can still meet limit load requirements. Despite these issues, bonded joints similar

to those in Figure 10.21 have been used successfully in airframe structures (see for

example [17,18]).

Finally, for relatively thin cores, transitioning to a thick monolithic laminate that forms an

“F” joint is also a possibility and has been used successfully (Figure 10.22).

adhesive

adhesive

core densification 
may be necessary 
in these regions 

Figure 10.21 Alternate means of joining sandwich structures (See Plate 23 for the colour figure)

Figure 10.22 Core transitioning to monolithic laminate without ramp-down (Courtesy Aurora Flight

Sciences) (See Plate 24 for the colour figure)
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Exercises

10.1 Prove that for antisymmetric wrinkling to occur, the core thickness must satisfy the

following relation:

tc < 1:047tf
Ef Ec

G2
xz

� �1=3

10.2a Prove that for a simply supported square composite panel for which D11¼D22, the

number of half-waves m into which the panel buckles under compression is always 1.

What should the condition be betweenD11 andD22 for the square panel to buckle in two

half-waves?

10.2b Assume a layup consists of n plies of the same material all at the same orientation (not

necessarily 0�). Let E the Young’s modulus of a single ply at that orientation, G the

corresponding shear modulus, and n12, n21 the two Poisson’s ratios. Derive analytical

expressions forA11,A12,A22,A66,D11,D12,D22,D66 as functions ofE,G, n12, n21, and the
thickness h of the laminates (still having all plies with the same fiber orientation).

10.2c A simply supported square sandwich panel of dimension a and core thickness tc is under

a compression loadNa (units: force/width). Use the results of Exercises 10.2a and 10.2b

to express the buckling loadNcrit as a function ofE,G, n12, n21, h and tc. Assume now that

thematerial used is plainweave fabric forwhichEx¼Ey and simplify the expressionyou

derived (n12, n21 are replaced by a single Poisson’s ratio n).

a

a

tc

h

ribbon
direction

Na Na

10.2d In certain circumstances, optimizing a structure that is likely to fail in more than one

failure modes with corresponding loads ‘reasonably’ close to each other, is equiva-

lent to making sure that all failure modes occur simultaneously since this guarantees

that the structure is not over-designed (and thus heavier than it needs to be) for any

of the failure modes. This is not true in general, but it is true in quite a few cases.

Assuming that the wrinkling failure and the buckling failure for the simply

supported sandwich of Exercise 10.2c above occur at the same time, derive an

expression for the facesheet thickness h (independent of tc) and the core thickness tc
(which will be a function of h).

10.2e Let a¼ 381mm, Na¼ 175 N/mm. For the facesheet material assume that Ex¼Ey¼
68.94GPa, Gxy¼ 4.826GPa, nxy¼ 0.05, and tply¼ 0.1905mm. For the core assume

Ec¼ 133.05MPa, (out-of-plane stiffness) and Gxz¼ 42.05MPa (shear stiffness in the

ribbon direction). If the ribbon direction is aligned with the loading Na and the facesheet

consists exclusively of (�45) plies, use the results of Exercise 10.2d to determine the

minimumnumber of plies andminimum facesheet thickness needed. Is this theminimum

weight configuration (i.e. is there another pair of values of h, tc that gives lower weight)?
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For the optimum solution you found are the crimping and intracellular buckling

requirements also satisfied? (For the latter assume a core cell size of 6.35mm.)

10.3a A skin panel has dimensions 1270� 1016mm and is loaded in compression (along the

long dimension of the panel) with Nx¼ 121.45N/mm. A sandwich design is proposed

for this application. The skin layup has been fixed to [45/–45/0/core/0/–45/45]. The

facesheet material has the following properties:

Ex ¼ 137:88 GPa
Ey ¼ 11:03 GPa
Gxy ¼ 4:826 GPa
nxy ¼ 0:29
tply ¼ 0:1524 mm

Two Nomex honeycomb materials are proposed with the properties given below:

Material Ec (MPa) Gxz (MPa) (ribbon direction) Gyz (MPa)

HRH-1/8-3.0 133.1 42.05 24.12

HRH-3/16-3.0 122.7 39.29 24.12

Note that in the core material designation, 1/8 and 3/16 denote the cell size (in

inches!) and the 3.0 the density (in units of lb/ft3). The second material is cheaper than

the first and this is the only reason it is considered as a candidate.

Given the ribbon direction call-out shown below, determine the minimum core

thickness needed for each type of core material for the sandwich panel not to fail.

directionribbon

1270 mm 

1016 mm 

121.45

N/mm

tc=? 

10.3b Themanufacturing personnel in the factorywhowill fabricate this panel are very sloppy

and careless. The engineer designing the panel is concerned that theywill mis-orient the

core in the panel and the ribbon direction will be perpendicular to the load. What is the

minimum core thickness needed in this case (whichwill cover all possible errors in core

placement during fabrication)? (Do this problem only for the first of the two core

materials).

10.4 (may be done in conjunction with Exercise 8.6 which has the exact same requirements

for a stiffener.) Design a sandwich configuration to represent a composite stiffener under

compression.
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The sandwich design for each stiffener must fit within a 50� 50mm rectangle.

50 mm 

50 mm 

sandwich must 

fit within this 

envelope

The applied load is 35000 N (assume it is acting at the center of gravity of the selected

cross-section). The length ‘ of the stiffener is 550mm.

Two composite materials are available, and one core material with properties as

follows:

Unidirectional tape

graphite/epoxy

Plain weave fabric

graphite/epoxy

Nomex core

Ex¼ 131GPa 68.9GPa

Ey¼ 11.4GPa 68.9GPa

vxy¼ 0.31 0.05

Gxy¼ 5.17GPa 5.31GPa

tply¼ 0.1524mm 0.1905mm

r¼ 1611 kg/m3 1611 kg/m3 48.2 kg/m3

Also assume that the honeycomb core is attached to the facesheet (on either side)

with an adhesive layer of density 0.147 kg/m2. (Watch out for the units!) You are

allowed to use any of the two graphite/epoxy materials or a combination thereof. Do

not worry about any analysis for the adhesive, it is included here only for the weight

calculation. Finally, assume a compression strain allowable (accounting for environ-

ment, damage, and material scatter) of 4500 ms.
Determine the layup and core thickness of the sandwich, observing as many of the

design rules as possible. (Note that the core is only allowed to take thickness values

that are integral multiples of 3.175mm; this is to save on machining costs.) Provide a

simple sketch of the cross-section of stiffeners and sandwich that shows the plies,

layup, dimensions, etc. Calculate the corresponding weight. If available, compare

with the answer from Exercise 8.6.

10.5 (may be done in conjunction with Exercise 7.6.) You are to design a composite panel

under compressive load, using sandwich construction. The panel dimensions are

100� 50 cm and the applied load is 1750N/mm acting parallel to the 50 cm

dimension.
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100cm 

50cm
x or ribbon

dir for core  

Two composite materials are available, and one core material with properties as follows:

Unidirectional tape

graphite/epoxy

Plain weave fabric

graphite/epoxy

Nomex core

Ex¼ 131GPa 68.9GPa

Ey¼ 11.4GPa 68.9GPa Ec¼ 133MPa

Nxy¼ 0.31 0.05

Gxy¼ 5.17GPa 5.31GPa Gxz¼ 42.0MPa

Tply¼ 0.1524mm 0.1905mm Core cell size¼ 3.2mm

Xt¼ 2068MPa 1378.8MPa

Xc¼ 1723MPa 1378.8MPa

Yt¼ 68.9MPa 1378.8MPa

Yc¼ 303.3MPa 1378.8MPa

S¼ 124.1MPa 119.0MPa

r¼ 1611 kg/m3 1611 kg/m3 48.2 kg/m3

Once you determine any strength values needed for any of the layups selected you are to

assume the same knockdownsmentioned in Section 5.1.6 for environment, material scatter and

damage, i.e. any first-ply failure values should be reduced to the design (or allowable) values by

multiplying them by 0.8� 0.65� 0.8¼ 0.416.

Determine the facesheet layup and core thickness for the sandwich panel not to buckle or fail

in any other failure mode up to the applied load of 1750N/mm. Also assume that the

honeycomb core is attached to the facesheet (above and below) with an adhesive layer of

density 0.147 kg/m2. (Watch out for the units!) For the facesheet, you are allowed to use any

of the two graphite/epoxy materials or a combination thereof. Do not worry about any analysis

for the adhesive, it is included here only for the weight calculation. The core thickness

cannot exceed 5 cm and cannot be any less than 6mm. Each of the facesheets cannot be thinner

than 0.57mm.

tc
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Determine the layup and core thickness of the sandwich, observing as many of the design

rules as possible. Provide a simple sketch of the cross-section of the sandwich that shows the

plies, layup, dimensions, etc. Calculate the corresponding weight and, if available compare

with the post-buckled design of Exercise 7.6.
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11

Good Design Practices and
Design ‘Rules of Thumb’

Throughout the previous chapters, several guidelines that result in robust designs have been

presented and, in some cases, analytical models that support them were given. In this chapter,

all the rules alreadymentioned in this book are collected and some new ones added to provide a

framework within which most composite designs can perform successfully.

Design guidelines are a result of analysis and trending, test results and experience. As such,

they typically have a range of applicability (especially in terms of the stacking sequences to

which they apply) outside of which they may or may not be as successful. There is no reason

why any and all of the guidelines should be closely followed. Deviations and departures from

them are often necessary. As long as the reasons for deviation are understood and test results

and accurate analysis are available to support that deviation, there is no reason to limit the

designs by following these guidelines. In fact, there is a motivation to open up or reformulate

some of these guidelines in order to generate more efficient and/or more robust designs in the

future [1].

The most important guidelines with a brief discussion are listed below. Other guidelines

and/or variations of the ones presented below can be found in the literature, for example, in

reference [2].

11.1 Layup/stacking Sequence-related

1. The layup (stacking sequence) of a laminate should be symmetric. This eliminates

unwanted (and difficult to analyze) membrane/bending coupling (B matrix is zero).

2. The layup should be balanced (for every þy ply there should be a �y ply of the same

material and thickness somewhere in the laminate). This eliminates stretching/shearing

coupling (A16¼A26¼ 0).

3. Bending/twisting coupling should be avoided. One way to achieve this is to use antisym-

metric layups, but this violates guideline number 1. Another is to use fabric materials and

unidirectionalmaterials exclusively in the 0 and 90� directions.When these options are not
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possible, layups where D16 and D26 are small compared with the remaining terms of the

D matrix should be preferred. To that end, þy and �y plies should be grouped together.

Also, special classes of laminates with negligible D16 and D26 are possible [3].

4. The 10% rule. At least 10% of the fibers in every layup should be lined up with each of the

four principal directions: 0, 45, �45, and 90. This protects against secondary load cases,

which have small load magnitudes and thus are not included in the design effort, but could

lead to premature failure if there are no fibers in one of the four principal directions. In

some cases, instead of 10% other values (12, 15%) are also used.

5. Minimization of the number of unidirectional plies with same orientation next to each

other. If there is a number of unidirectional (UD) plies of the same orientation next to

each other, then a matrix crack forming in them can grow easily in the matrix and extend

from one end of the identical ply stack to the other without being arrested. Such cracks

can be caused by thermal stresses during cure or due to transverse loading during service

(transverse to the orientation of the fibers in the ply stack in question). It is recommended

to avoid ply stacks of the same ply orientation that exceed 0.6–0.8 mm (corresponding to

4–5 plies for typical UD materials). Interrupting the ply stack with plies of different

orientation (preferably with at least 45� difference from the plies in the ply stack)

provides a means to arrest microcracks. The probability of microcracks coalescing and/or

creating delaminations is minimized.

11.2 Loading and Performance-related

6. To improve the bending stiffness of a one-dimensional composite structure place 0� plies
as far away from the neutral axes as possible (this maximizes D11).

7. Panel buckling and crippling improvement. Place 45/–45 plies as far away from the

neutral axis as possible (this maximizes D66).

8. Fastener rule 1. Maintain skin thickness/fastener diameter ratio <1/3 to minimize

fastener bending (Figure 11.1a).

9. Fastener rule 2 (countersunk fasteners). Maintain skin thickness/to countersunk depth

> 2/3 to avoid pulling the fastener through the skin under out-of-plane loads

(Figure 11.1b).

10. 45� fabric plies on the outside. To improve damage resistance, i.e. to limit the amount of

damage caused by low speed impact, fabric plies should be placed on the outside of a

stacking sequence. They limit the amount of fiber splitting and help contain splits created

in the first (impacted) or last ply.

11. Skin layup should be dominated by 45/–45 plies. Using 45 and �45� plies improves the

shear stiffness and strength of the layup. This is also a good rule to follow for beam or

stiffener webs under shear loads in the plane of the web.

12. Fastener rule 3. For improved load transfer around fasteners in bolted joints, at least

40% of the fibers should be in the þ45� and �45� directions relative to the applied

axial load.

13. Fastener rule 4. To avoid interaction and increased stress concentrations fastener

spacing should be at least 4–5D where D is the fastener diameter (Figure 11.1c). This

only ensures that the full by-pass load is developed between fasteners, and the load

distribution around one fastener does not affect that around its neighbors. This decreases
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the stress concentration effect. It does not account for other considerations such as inter-

fastener buckling (see Section 8.7) or potential improvements in bolted joint performance

with lower spacings alluded to in Section 8.7. Specific requirements of each designmight

supersede this guideline

14. Fastener rule 5 (edge distance). To minimize edge effects (so that the load distribution

around the fastener approaches that of a fastener in an infinite plate) the edge distance

between a fastener and the edge of a part should be no less than 2.5D þ 1.3 mmwhere D

is the fastener diameter (see Figure 11.1c). This includes the distance of a fastener from

the tangency point of the radius region of a web transitioning to a flange (see

Figure 11.1c).

15. Plydrop guidelines. See Figure 11.2.

a. Avoid external plydrops. The tendency to delaminate at the edge of the termi-

nating ply is high. Plydrops should be as close to the midplane of the laminate

as possible.

b. For more than one plydrop, try to drop plies symmetrically with respect to the

midplane of the laminate.

c. Avoid dropping more than 0.5mmworth of plies at the same location to minimize the

interlaminar stresses created (see typical results in Section 9.2.2).

d. The distance between successive plydrops should be at least 10 or 15 times the dropped

height to avoid constructive interference (enhancement of stresses) between the

stresses at the different plydrop sites (see Section 9.2.2).

16. Anti-peel fasteners. For highly post-buckled stiffened panels with co-cured stiffeners,

using two fasteners at each stiffener end postpones or eliminates the skin–stiffener

separation failure mode (see Section 9.2.2 and Figure 9.21).

(b) Fastener rule 2 (a) Fastener rule 1 

(c) Fastener rules 3 and 4 

t

tht1

t2

tf<2t/3D
D>3 min(t1,t2)

2.5D+1.3mm

4D 

D

2.5D+1.3mm 

2.5D+1.3mm 

D

Figure 11.1 Fastener rules of thumb
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11.3 Guidelines Related to Environmental Sensitivity and
Manufacturing Constraints

17. Minimum gage. For lightly loaded structure, the thickness should be no lower than

0.5–0.6 mm to keep moisture from seeping into the structure. For lower thicknesses,

additional coating protecting against moisture should be used.

18. Minimum flange width.

a. Fastener rule 6. If fastened, the minimum flange width is the sum of edge distances

fromguideline 14: 5D þ 2.6mmfrom theflange edge to the tangency point of theweb-

to-flange transition.

b. If co-cured or bonded the minimum flange width for lightly loaded structure is

12.7mm and for highly loaded structure is 19mm. These values are the minimum

required for the load shearing through the flange to reach at least 95% of its far

field value.

19. Minimum web height. To avoid damage during handling and to make fabrication

easier, the minimum web height should be 18 mm. This is particularly important

for stiffeners with flanges at both ends of the web (I, J, C, Z) where access to the web

is limited.

20. Bridging avoidance. Avoid 90� plies going around corners (see Figure 11.3) in particular
when convex tools are used during layup. It is very hard to make the stiff 90� fibers

conform to the shape of the tool and, usually, bridging occurs where a void and/or resin

pocket is created.

11.4 Configuration and Layout-related

21. Preferred stiffener shapes. Unless the structure is lightly loaded, stiffeners with a one-

sided flange (L, C, Z) on the skin side should be avoided and stiffeners with flanges on

external plydrops

too many plydrops at same location

adjacent plydrops too 
close to each other

d d=15h

Good
design

h

Figure 11.2 Plydrop guidelines
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either side of the web should be preferred (T, I, J, Hat). This protects the resin pocket

present at the web flange corner (see Figure 11.4) from moisture and contamination and

minimizes the possibility that matrix cracks may develop there and coalesce into

delaminations under fatigue loading.

22. Stiffener and frame spacing. While the optimum spacing of frames and stiffeners will be

dictated by the design loads and cost and weight considerations, a configuration that has

been found to be robust and reasonably efficient is frame spacing of 500–510mm and

stiffener spacing of 150–160mm. This is, approximately, the same configuration used in

manymetal structures and combines relatively low cost andweight.While lower stiffener

spacing can lead to lower weights the cost can be prohibitive as it increases rapidly with

the number of stiffeners. At the other end of the spectrum, using high stiffener spacing

reduces the cost, but increases the weight since the skin thickness must increase to meet

buckling and post-buckling requirements and the stiffener thickness must increase to

maintain the desired ratio of stiffener to skin loads.

At this point, with all the design guidelines in place, the J stiffener cross-section that has been

used all along as an example last discussed in Section 9.2.2, Figure 9.20, can be revisited and

the preliminary configuration can be finalized. This is shown in Figure 11.5. This is preliminary

in the sense that no specific load has been used to design it. The final dimensions and layup

would depend on the applied loads. What is shown in Figure 11.5 is just a good starting point

90

0

convex tool 

90º ply going
around a corner  

bridging with void
or resin pocket  

Figure 11.3 Bridging at a corner

flanges on either side of the web one-sided flange 

resin pocket

Figure 11.4 Exposed resin pockets may lead to delaminations easily
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applicable to lightly loaded stiffeners. Note that what is shown in Figure 11.5 does not satisfy

the 10% rule.

Exercises

11.1 Consider three composite parts intersecting at right angles as shown in the figure below.

They are under tension and shear loads as shown.

Three different methods for assembling them together are proposed, shown below:

(a) bolted connections, (b) bonded connections, and (c) co-cured with the use of a

3-D preform.

45
-45
02

-45

45

45
-45

45

-45

-45
45

-45

45

45
-45

0

0

(±45)
0
0

-45
45

1

2

3

change to 
(±45) fabric

2x12.7=25.4 mm (min)

18 mm (min)

move 0 plies away 
from mid-plane improve flange 

crippling with (±45)

h1

h2

12h1

10h2

UD or roving 
material

UD or roving 
material

1

2

3

change to 
(±45) fabric

2x12.7=25.4 mm (min)

18 mm (min)

h1

h2

12h1

10h2

h1

h2

12h1

10h2

Figure 11.5 Stiffener cross-section created on the basis of design guidelines
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(c) Co-cured (b) Bonded (a) Bolted 

fasteners

fasteners
adhesive

adhesive

Discuss the merits and disadvantages of each of the three approaches from a weight and

cost perspective. Combine the material from this chapter with that from Chapter 2.

Include in your discussion (but do not limit it to) assembly cost associated with fastener

installation, weight impact of use of fasteners, bearing load requirements, bondline

thickness control, inspection issues of adhesive, use of RTM with 3-D preforms and

associated tooling cost, effect of process on final strength and stiffness, etc.

11.2 Referring to Figure 11.4, determine which of the design guidelines presented in this

chapter are not satisfied and discuss the implications. (For example, the web layup does

not satisfy the 10% rule.)
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one-edge-free crippling, 195–6
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no-edge-free (see crippling)

nondestructive inspection, 252, 283
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one-edge-free (see crippling)

panel breaker condition, 228–36

part, 1, 7, 10, 16–31, 63–72, 251–4, 294

part families, 20–27, 63

pinching of skin, 251

plates, 86, 107

buckling, 119–44

post-buckling, 145–62

plydrops, 28, 280–1, 291–2

post-buckling angle, 162, 164, 169–71

post-buckling factor, 147, 164, 176
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potential function, 90
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rate of twist, 226

resistance to fluids, 65

resin film infusion, 12, 28

resin transfer molding, 11, 20–1, 29

reserve factor, 66, 82, 175

rib, 21, 28, 29, 64, 71, 142, 194

ribbon, 175, 284–6

risk, 1, 6, 19–27, 252

roving, 207, 209, 294

sandwich, 3–4, 20–1, 67, 71, 82, 207, 259–88,

272–83

scatter (see material scatter)

scrap rate, 28–9, 252

sequencing of failure modes, 228

shear correction factor, 263

shear deformation theory, 263

shear crimping, 70, 82

sheet molding compound, 14

sign convention (forces and moments),

45, 83

skin–stiffener separation, 119, 145, 170, 227,

236–51, 291

smeared properties (see equivalent properties)

sources of uncertainty, 72

applied loads, 73

usage, 73

material scatter, 73

spar, 64, 71, 141, 142

spring constant, 189, 193, 218,

273

stabilization (see core stabilization)

stacking sequence, 33–5, 48, 52, 117, 157–8, 236,

289

steered fibers, 13

stiffener, 21, 29, 64, 92, 145–8, 169–77,

179–257, 290

stiffness, 33–51, 223–7, 260–2

membrane, 50–1, 184, 223–5

bending, 47, 51, 183, 185, 225–7,

260–2, 290

stiffness mismatch, 179–82, 236, 247–8,

280

strain, 35–7

compatibility, 85, 90–3, 106–7, 173, 185, 208,

232, 242

cutoff 169, 170

engineering, 44

midplane strain, 48, 56, 84–93,

109, 151

tensor, 44

strain–displacement equations, 82, 85, 89, 106,

109

stress–strain equations, 43, 82, 84, 93, 106, 110,

167, 242, 267

stringer, 3, 14, 20–1, 23–4, 26–7, 29, 64, 70,

163–5, 179, 194, 258

structural configuration, 66–7

symmetric laminate, 34–5, 49, 51,

227

technology, 20–7

technology mix (optimum), 20, 24–7

applicability of a technology, 21, 23, 26

thermal expansion coefficient

placement, 65

threshold of detectability, 77

transverse shear effects, 262–5

Tsai–Hill failure criterion, 58–60

Tsai–Wu failure criterion, 59–60, 216

ultimate load, 73, 77–8, 113

usage, 64, 72–3

vacuum-assisted resin transfer molding,

12, 28

variability (see sources of uncertainty)

variational calculus (see calculus of

variations)
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void content, 76

von Karman plate equations, 86–91

waviness, 272–5

web of stiffener, 205, 210, 236, 239, 290

wrinkling, 70, 72, 82, 207, 265

symmetric, 265–71, 275

antisymmetric, 265, 271, 272, 275, 278, 284

X-cor�, 259, 288
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Plate 1 Figure 1.1 Akaflieg Ph€onix FS-24 (Courtesy: Deutsches Segelflugzeugmuseum)

Plate 2 Figure 1.2 Aerospatiale SA 341G Gazelle (Copyright Jenny Coffey printed with permission)

Plate 3 Figure 1.3 Long EZ and Vari-Eze (Vari-Eze, photo: courtesy Stephen Kearney; Long EZ,

photo: Courtesy Ray McCrea)

Plate 4 Figure 1.4 Lear Avia LearFan 2100 (Copyright: Thierry Deutsch)



 
Plate 5 Figure 1.5 Beech (Raytheon Aircraft) Starship I (Photo courtesy Brian Bartlett)

Plate 6 Figure 1.6 Airbus A-320 (Photo courtesy Brian Bartlett)

Plate 7 Figure 1.7 Boeing 777 (Photo courtesy Brian Bartlett)

Plate 8 Figure 1.8 Airbus A-380 (Photo courtesy Bjoern Schmitt – World-of-Aviation.de)



 
Plate 9 Figure 1.9 Boeing 787 Dreamliner (Courtesy of Agnes Blom)
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Plate 10 Figure 2.1 Process steps for hand layup and their cost as fractions of total recurring cost [3]

Plate 11 Figure 2.5 Composite cylinder with steered fibers fabricated by automated fiber placement

(made in a collaborative effort by TUDelft and NLR)



 
Plate 12 Figure 2.9 Co-cure of large complex parts (Courtesy Aurora Flight Sciences)

Plate 13 Figure 5.4 Options to be considered during design/analysis of a part

Plate 14 Figure 6.1 Composite stiffened panel buckling under shear



 
Plate 15 Figure 7.1 Post-buckled curved composite stiffened panel

stiffeners

test fixture imposing 
edge boundary 
conditions and 
introducing load 

half-waves at 
an angle α with 
the stiffener 
axis

Plate 16 Figure 7.13 Stiffened composite panel in the post-buckling regime
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Plate 17 Figure 8.4 Improved stiffener cross-section design
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Plate 18 Figure 8.6 Baseline J stiffener cross-section made out of composite materials

without special provisions, this region fills 
with wavy fibers and/or pure resin 

Plate 19 Figure 8.27 Resin pocket formed at web/flange intersection of a stiffener
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Plate 20 Figure 8.31 J stiffener cross-section with filler material
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Plate 21 Figure 8.36 Skin-stiffened panel under compression



 

Plate 22 Figure 9.13 Skin–stiffener separation failure mode

adhesiveadhesive

adhesive

core densification 
may be necessary 
in these regions 

Plate 23 Figure 10.21 Alternate means of joining sandwich structures

Plate 24 Figure 10.22 Core transitioning tomonolithic laminatewithout ramp-down (Courtesy Aurora

Flight Sciences)




