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Preface

The Centre for Composite Materials at Imperial College has for many years
organised a series of training courses on various aspects of composite
materials. In 1996, recognising the increasing interest in structural analysis,
anew course on ‘Finite Element Analysis of Composites’ was launched. The
course was given jointly by the Centre and the Department of Aeronautics,
and supported by the Engineering & Physical Sciences Research Council
(EPSRC) as an MSc level module.

This book is based on the lecture notes prepared for the above course.
The emphasis throughout is on long fibre-reinforced polymer (FRP) matrix
composites, although any general analysis would be applicable to other
forms of composite. The book starts with a review of the basic behaviour
of FRP. Then, the fundamentals of finite element (FE) analysis are
rehearsed. Following this, special issues relating to the applications of FE
to FRP are discussed. Finally, a number of particular situations, such as
holes and free edges, are presented, with FE results set alongside classical
analysis and experimental data.
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Overview and review of composite materials

F. L. MATTHEWS

This part serves merely to ‘set the scene’ for the remainder of the book and also to
revise the fundamentals of composite materials. The basic nature of fibre-reinforced
plastic and its constituents is reviewed. Following this, two-dimensional stress—strain
analysis is covered, leading to laminated plate theory. Finally some limitations of
the latter are discussed.
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1

Overview

1.1 Composite materials

1.1.1 General

The group of materials known as ‘composites’ is extremely large, although
its boundaries depend on definition. Basically, we can consider a com-
posite as any material that is a combination of two or more distinct
constituents. This definition would encompass bricks, concrete, wood, bone,
as well as modern synthetic composites such as fibre-reinforced plastics
(FRP). The latter have become increasingly important over the past 50
years, and are now the first choice for fabricating structures where low
weight in combination with high strength and stiffness are required. Such
materials are sometimes referred to as ‘high-performance’ composites, and
would often be composed of carbon fibres and epoxy resin.

Of course, composites can also be made by combining fibres with a metal
or a ceramic matrix, but at the moment these have a very small market
share and would be considered as specialist materials.

1.1.2 Properties and applications

Density, stiffness (modulus) and strength are the properties that initially
come to mind when thinking of FRP, and these would certainly be the
design drivers for materials’ selection for transport applications such as
aircraft, motor vehicles and trains. However, this is a very narrow view of
the potential of such materials, and they often score over metals and other
conventional materials because of other mechanical, physical or chemical
properties.

For example, FRPs are extremely corrosion-resistant and are, in conse-
quence, used for chemical plant, water transport and storage, and flue gas
desulphurisation plant. They have interesting electromagnetic properties
and because of this glass fibre-reinforced resin is used to construct mine
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4 Overview and review of composite materials

counter measures naval vessels, the requirement being a non-magnetic
material. As another illustration, carbon fibre-reinforced epoxy is used in
medical applications because it is transparent to X-rays. Thermal proper-
ties can also be important; such materials have a low conductivity, making
them useful for fire protection, and can have a zero coefficient of expan-
sion, hence making possible the construction of temperature-stable
components.

A key issue is that of cost. Although the constituents of FRP are rela-
tively expensive, compared with conventional materials, the final compo-
nent may well be less costly than one fabricated from metal, say. This is
due, in part, to having a more integrated construction (lower ‘parts count’),
but depends crucially on the level of automation in the manufacturing
process.

1.1.3 Production methods

The important factor about FRP is that, unlike metals, the material is made
at the same time as the component. While this gives an increased freedom
to the design process, it does mean that designers/analysts must pay close
attention to the fabrication of the component or structure. The same con-
stituents if processed by one method, could produce a composite with some
properties modified compared with those produced by another method.
Also, it is important to realise that the designer may call for a particular
configuration that cannot actually be fabricated; for example, it is not pos-
sible to maintain a constant fibre angle and wall thickness along the length
of a tapered cylinder produced by filament winding. Good communication
at all levels throughout the whole design/fabrication/evaluation process is,
therefore, essential.

1.2  Structural analysis

1.2.1 Classical analysis

The use of classical (continuum) methods of stress analysis has developed
over many decades to give techniques that can be applied satisfactorily to
a vast range of situations. Such analyses are based on the application of the
equations of equilibrium and compatibility, together with the stress—strain
relations for the material, to produce governing equations which must be
solved to obtain displacements and stresses. Usually, assumptions must be
made before a solution can be effected. So, for example, problems are con-
sidered as one- or two-dimensional, as when considering beams and plates,
respectively. Often we take the material to be isotropic, but many analyses
also exist for anisotropic materials.
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As we move away from simple situations, say from a plain rectangular
plate to one containing a cut-out, the governing equations become increas-
ingly complicated and require ever-more sophisticated mathematical tech-
niques to solve them. Classical methods are limited to simple geometries
and ‘real’ structural features, e.g. the details of attachment of a stringer to
a skin panel, cannot be analysed. In such cases we have to resort to finite
element methods.

1.2.2 Finite element analysis

Finite element (FE) analysis is merely an alternative approach to solving
the governing equations of a structural problem. Hence, FE and classical
methods will produce identical results for the same problem, provided the
former method is correctly applied.

The method consists of imagining the structure to be composed of dis-
crete parts (i.e. finite elements), which are then assembled in such a way as
to represent the distortion of the structure under the specified loads. Each
element has an assumed displacement field, and part of the skill of apply-
ing the method is in selecting appropriate elements of the correct size and
distributions (the FE ‘mesh’).

The FE method was initially developed for isotropic materials and the
majority of elements available (the ‘library’) in any software package would
be for such materials. To apply the technique to composites requires dif-
ferent element formulations that adequately represent their anisotropic,
or orthotropic, stiffness and strength, as well as the laminated form of
construction often used.

The main purpose of this book is to discuss the special issues that must
be considered when using the FE method to analyse composite materials
and structures. One of the key factors is the low through-thickness stiffness
and strength; the former results in the need to adapt elements used for
plates, and the latter results in the need to model delamination. Also some
features of composite construction, such as filament winding, cannot easily
be represented (if at all) by some FE packages. Following a review of com-
posites and the FE method, the application of the method to composites is
discussed in detail. The particular issues are then illustrated via a number
of examples taken from particular situations.
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Fundamentals of composites

2.1 Basic characteristics

2.1.1 Definitions and classification

A composite is a mixture of two or more distinct constituents or phases. In
addition three other criteria are normally satisfied before we call a ma-
terial a composite. Firstly, both constituents have to be present in reason-
able proportions. Secondly, the constituent phases should have distinctly
different properties, such that the composite’s properties are noticeably
different from the properties of the constituents. Lastly, a synthetic
composite is usually produced by deliberately mixing and combining the
constituents by various means.

We know that composites have two (or more) chemically distinct phases
on a microscopic scale, separated by a distinct interface, and it is important
to be able to specify these constituents. The constituent that is continuous
and is often, but not always, present in the greater quantity in the compo-
site is termed the matrix. The normal view is that it is the properties of the
matrix that are improved upon when incorporating another constituent to
produce a composite. A composite may have a ceramic, metallic or poly-
meric matrix. The mechanical properties of these three classes of material
differ considerably. As a generalisation, polymers have low strengths and
Young’s moduli, ceramics are strong, stiff and brittle, and metals have inter-
mediate strengths and moduli, together with good ductilities, i.e. they are
not brittle. Because of their economic importance, the emphasis in this text
will be on polymer matrix composites (PMCs).

The second constituent is known to as the reinforcing phase, or rein-
forcement, as it enhances or reinforces the mechanical properties of the
matrix. In most cases the reinforcement is harder, stronger and stiffer than
the matrix, although there are some exceptions; for example, ductile metal
reinforcement in a ceramic matrix and rubberlike reinforcement in a brittle
polymer matrix. At least one of the dimensions of the reinforcement is

6
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Composite material
|

A
Fibre-reinforced composites Particle-reinforced composites
(fibrous Icomposites) (particulate chJmposites)
I I B
¢ Single-layer composites E Multilayered Random Preferred
(including composites having same (angle-ply composites) orientation orientation

orientation & properties in each layer)

| Laminates Hybrids
Continuous Discontinuous
fibre-reinforced fibre-reinforced
compolsites composites
i i
D
Unidirectional Bidirectional Random Preferred
reinforcement reinforcement orientation orientation
(woven reinforcements)

2.1 Classification of composite materials.

small, say less than 500um and sometimes only of the order of a micro-
metre. The geometry of the reinforcing phase is one of the major pa-
rameters in determining the effectiveness of the reinforcement; in other
words, the mechanical properties of composites are a function of the shape
and dimensions of the reinforcement. We usually describe the reinforce-
ment as being either fibrous or particulate. Figure 2.1 represents a com-
monly employed classification scheme for composite materials which
utilizes this designation for the reinforcement (Fig. 2.1, block A).

Particulate reinforcements have dimensions that are approximately
equal in all directions. The shape of the reinforcing particles may be spheri-
cal, cubic, platelet or any regular or irregular geometry. The arrangement
of the particulate reinforcement may be random or with a preferred ori-
entation, and this characteristic is also used as a part of the classification
scheme (block B). In the majority of particulate-reinforced composites the
orientation of the particles is considered, for practical purposes, to be
random.

A fibrous reinforcement is characterized by its length being much greater
than its cross-section dimensions. However, the ratio of length to a cross-
section dimension, known as the aspect ratio, can vary considerably. In
single-layer composites long fibres with high aspect ratios give what are
called continuous fibre-reinforced composites, whereas discontinuous fibre
composites are fabricated using short fibres of low aspect ratio (block C).
The orientation of the discontinuous fibres may be random or preferred.
The frequently encountered preferred orientation in the case of a continu-
ous fibre composite is termed unidirectional and the corresponding random



8 Overview and review of composite materials

situation can be approximated to by bidirectional woven reinforcement
(block D).

Multilayered composites are another category, and commonly used form,
of fibre-reinforced composites. These are classified as either laminates or
hybrids (block E). Laminates are sheet constructions which are made by
stacking layers (also called plies or laminae and usually unidirectional) in
a specified sequence. The layers are often in the form of ‘prepreg’ (fibres
pre-impregnated with partly cured resin) which are consolidated in an auto-
clave. A laminate may have between 4 and 400 layers and the fibre orien-
tation changes from layer to layer in a regular manner through the thickness
of the laminate, e.g. a 0/90/0 stacking sequence results in a cross-ply
composite. We shall refer in detail to the stress analysis of laminates in
Chapter 3.

Hybrids are composites with mixed fibres and are becoming common-
place. The fibres may be mixed within a ply or layer by layer, and these com-
posites are designed to benefit from the different properties of the fibres
employed. For example, a mixture of glass and carbon fibres incorporated
into a polymer matrix gives a relatively inexpensive composite, owing to
the low cost of glass fibres, but with mechanical properties enhanced by the
excellent stiffness of carbon.

2.1.2 The matrix and reinforcement

Most composites are designed to exploit an improvement in mechanical
properties. Even for composites produced essentially for their physical
properties, the mechanical properties can play an important role during
component manufacture and service. The strengths of fibres are generally
much higher than those of their monolithic counterparts owing to the
presence of defects in the latter.

There are of course many properties other than strength that we have to
take into account when selecting a reinforcement. In the case of fibres the
flexibility is important as it determines whether the fibres may be easily
woven or not, and influences the choice of method for composite manu-
facture. The flexibility of a fibre depends on Young’s modulus and the diam-
eter of the fibre, decreasing as diameter increases.

Clearly, single fibres, because of their small cross-section dimensions, are
not directly usable in structural applications. This problem may be over-
come by embedding the fibres in a material to hold the fibres apart, to
protect the surface of the fibres, and to facilitate the production of compo-
nents. The embedding material is the matrix. The amount of reinforcement
that can be incorporated in a given matrix is limited by a number of factors.
For example with particulate-reinforced metals the reinforcement con-
tent is usually kept to less than 40 vol% (0.4 volume fraction) owing to
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processing difficulties and increasing brittleness at higher contents. On
the other hand, the processing methods for fibre-reinforced polymers are
capable of producing composites with a high proportion of fibres, and the
upper limit of about 70 vol% (0.7 volume fraction) is set by the need to
avoid fibre—fibre contact, which results in fibre damage.

Finally, the fact that the reinforcement is bonded to the matrix means
that any loads applied to a composite are carried by both constituents. As
in most cases the reinforcement is the stiffer and stronger constituent, it is
the principal load-bearer. The matrix is said to have transferred the load to
the reinforcement.

2.1.3 Factors that determine properties

The fabrication and properties of composites are strongly influenced by
the proportions and properties of the matrix and the reinforcement. The
proportions can be expressed either via the weight fraction (w), which is
relevant to fabrication, or via the volume fraction (v), which is commonly
used in property calculations.

The definitions of w and v are related simply to the ratios of weight (W)
or volume (V) as shown below.

Volume fractions:

ve =V;/V. and v, =V, /V. [2.1a]
Weight fractions:
we=W;/W.,  and w,, =W, /W, [2.1b]

where the subscripts m, f and c refer to the matrix, fibre (or in the more
general case, reinforcement) and composite respectively.
We note that:

Vf+Vm=1
and
we+ wp =1

We can relate weight to volume fractions by introducing the density, p,
of the composite and its constituents.
We can show that:

Pe = PVt + PmVm [2.2]

and
1w wy
p— _+_

[2.3]
pc pf pm
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Also we have:

Wi _pVi :(&)W

Wwe =

We pVe \pe
and similarly
Wm me m
o =W PV (P_jvm [2.4]
We  pVe Pe

We can see that we can convert from weight fraction to volume fraction,
and vice versa, provided the densities of the reinforcement (p;) and the
matrix (p,,) are known.

The chemical and strength characteristics of the interface between the
fibres and the matrix are particularly important in determining the proper-
ties of the composite. The interfacial bond strength has to be sufficient for
load to be transferred from the matrix to the fibres if the composite is to
be stronger than the unreinforced matrix. On the other hand, if we are also
concerned with the toughness of the composite, the interface must not be
so strong that it does not fail and allow toughening mechanisms such as
debonding and fibre pull-out to take place.

Other parameters that may significantly affect the properties of a com-
posite are the shape, size, orientation and distribution of the reinforcement,
and various features of the matrix such as the grain size for polycrystalline
matrices. These, together with volume fraction, constitute what is called the
microstructure of the composite.

The volume fraction is generally regarded as the single most important
parameter influencing the composite’s properties. Also, it is an easily con-
trollable manufacturing variable by which the properties of a composite
may be altered to suit the application.

A problem encountered during manufacture is maintaining a uniform
distribution of the reinforcement. Ideally, a composite should be homo-
geneous, or uniform, but this is difficult to achieve. Homogeneity is an
important characteristic that determines the extent to which a representa-
tive volume of the material may differ in physical and mechanical proper-
ties from the average properties of the material. Non-uniformity of the
system should be avoided as much as possible because it reduces those
properties that are governed by the weakest part of the composite.

The orientation of the reinforcement within the matrix affects the
isotropy of the system. When the reinforcement is in the form of equiaxial
particles, the composite behaves essentially as an isotropic material whose
properties are independent of direction. When the dimensions of the rein-
forcement are unequal, the composite can behave as if isotropic provided
the reinforcement is randomly oriented, as in a randomly oriented short
fibre-reinforced composite. In other cases the manufacturing process may
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Table 2.1 Typical properties of some artificial fibres

Density Young's Tensile Failure

(Mg/m?) modulus strength strain

P (GPa) (MPa) (%)

Ef 6Tf

E-glass 2.54 70 2200 3.1
Aramid (Kevlar 49) 1.45 130 2900 2.5
SiC (Nicalon) 2.60 250 2200 0.9
Alumina (FP) 3.90 380 1400 0.4
Boron 2.65 420 3500 0.8
Polyethylene (S1000) 0.97 172 2960 1.7
Carbon (HM) 1.86 380 2700 0.7

induce orientation of the reinforcement and hence loss of isotropy; the
composite is then said to be anisotropic. In components manufactured from
continuous fibre-reinforced composites, such as unidirectional or cross-
ply laminates, anisotropy may be desirable as it can be arranged for the
maximum service stress to be in the direction that has the highest strength.
Indeed, a primary advantage of these composites is the ability to control
the anisotropy of a component by design and fabrication.

2.2 Fibres and matrices

2.2.1 Fibres

We have seen that the reinforcement in a composite may be fibrous or par-
ticulate. A wide range of both these forms of reinforcement is available for
use in the production of composite materials but most of the major devel-
opments in recent times have been in the area of fibrous reinforcement. The
underlying philosophy in the design of fibre composite materials is to find
or to make a fibre material of high elastic modulus and strength, and prefer-
ably low density, and then to arrange the fibres in a suitable manner to give
useful engineering properties to the final product.

Many different fibres are manufactured for the reinforcement in
composites and some typical properties are given in Table 2.1.! The values
for stiffness and strength given in the table should be viewed with some
caution. The manufacture of the fibres involves a number of processing
steps and variability of properties from one fibre to another can be large,
even when made by the same process. Between fibres of the same material
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made by different processes, the resulting microstructure and properties can
differ even more markedly. Furthermore, the high tensile strength of freshly
made fibres is normally reduced by surface damage caused during subse-
quent handling and storage. Finally, any variation in size leads to a range of
strength values. Most fibres are brittle and show only elastic extension
before fracture.

2.2.2 Synthetic organic fibres

The organic reinforcement market is dominated by aramid fibres, although
there is increasing interest in polyethylene fibres.

2.2.2.1 Aramid

There are a number of commercially available aramid fibres, e.g. Kevlar (Du
Pont), Twaron (Akzo) and Technora (Teijin); of these Kevlar is the most
well known. The aramids can be viewed as nylon with extra benzene rings
in the polymer chain to increase stiffness. Alternative nomenclature that
the reader might encounter is aromatic polyamide or poly(phenylene
teraphthalamide).

Aramid fibres have good high temperature properties for a polymeric
material. They have a glass transition temperature of about 360 °C, burn
with difficulty and do not melt like nylon. A loss in performance due to
carburation occurs around 425°C but they can be used at elevated tem-
peratures for sustained periods and even at 300°C for a limited time.
Aramid fibres do have a tendency to degrade in sunlight and when exposed
to moisture. Also, they have low compressive strength. Their dimensional
stability is good as the coefficient of thermal expansion is low (approxi-
mately —4 x 10°K™). Other properties that are important in certain appli-
cations are low electrical and thermal conductivity and high thermal
capacity.

2.2.2.2 Polyethylene

In the late 1980s a number of polyethylene fibres became commercially
available including Spectra (Allied Signal) and Dyneema (DSM). Polyeth-
ylene has the lowest density of any readily available fibre (about
0.97Mg/m?) and hence its specific properties are good and superior to those
of Kevlar. However, polyethylene has a low melting point of 135°C and
readily creeps at elevated temperature, so use is restricted to temperatures
below 100°C.
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2.2.3 Synthetic inorganic fibres

2.2.3.1 Glass

Glass is a non-crystalline material with a short-range network structure. As
such it has no distinctive microstructure and the properties, which are deter-
mined mainly by composition and surface finish, are isotropic. There are
many groups of glasses, for example silica, oxynitride, phosphate and halide
glasses, but from the point of view of composite technology only the
silica glasses are currently of importance. However, even within this group
of glasses the composition, and hence properties, vary considerably.

The most commonly used glass fibre is E-glass, the E being an abbrevia-
tion for ‘electrical’. This glass is based on the ternary system CaO-Al,O;—
SiO,. Freshly drawn and carefully handled fibres have tensile strengths of
approximately E¢/20 but a typical value may be nearer to E:/50, where E; is
Young’s modulus (typically about 70 GPa).

S-glass, known as R-glass in Europe, is based on the SiO,~AlL,O;-MgO
system. This fibre has higher stiffness and strength (hence the designation
S) than E-glass. It also retains its improved properties to higher tempera-
tures. However, it is more difficult to draw into fibres because of its limited
working range and is therefore more expensive.

Although the performance of the widely used general-purpose E-glass is
satisfactory in near neutral aqueous solutions, it is liable to degradation in
environments which are highly acidic or alkaline.

2.2.3.2 Carbon

Carbon fibres are produced by many companies and the world production
capacity exceeds 20000 tonnes. In spite of this large production capacity
carbon fibres are still relatively expensive. Nevertheless the usage for
carbon fibres continues to increase, and many companies have recently
increased their production capacity.

The structure and properties of these fibres vary considerably and new
fibres are always under test. For example two recent introductions are hollow
fibres and coiled fibres. The former are designed to impart better impact
toughness to carbon-reinforced polymers, whereas the latter are capable of
extending many times their original length without loss of elasticity.

Carbon has two well-known crystalline forms (diamond and graphite)
but it also exists in quasi-crystalline and glassy states. As far as fibre tech-
nology is concerned, graphite is the most important structural form of car-
bon. The graphitic structure consists of strongly bonded hexagonal layers,
which are called the basal planes, with weak interlayer van der Waals bonds.



14 Overview and review of composite materials

Alignment of the basal planes parallel to the fibre axis gives stiff fibres with
relatively low density.

Graphite sublimes at 3700 °C but starts to oxidise in air at around 500 °C;
carbon fibres can, however, be used at temperatures exceeding 2500°C
if protected from oxygen. Carbon is a good electrical conductor which,
depending on the circumstances, can be advantageous or not. Carbon fibres
are produced from a variety of precursors. The mechanical properties vary
greatly with the precursor used and the processing conditions employed, as
these determine the perfection and alignment of the crystals. The main
precursors are polyacrylonitrile (PAN) and pitch.

An unusual characteristic of carbon fibres is their very low, or even
slightly negative, coefficient of longitudinal expansion. As for other prop-
erties, the coefficient of thermal expansion depends on the fabrication
route and hence degree of graphitization and crystal orientation. Ultrahigh
modulus carbon fibres have negative coefficients of expansion of approxi-
mately —1.4 x 10°K™ and are employed in the production of polymer
matrix composites with near-zero thermal expansion.

2.2.4 Polymer matrices

The most common matrix materials for composites are polymeric. The
reasons for this are twofold. Firstly, in general the mechanical properties of
polymers are inadequate for many structural purposes. In particular their
strength and stiffness are low compared with metals and ceramics. This
means that there is a considerable benefit to be gained by reinforcing
polymers, and that the reinforcement does not have to have exceptional
properties.

Secondly, and most importantly, the processing of polymer matrix com-
posites (PMCs) need not involve high pressures and does not require high
temperatures. It follows that problems associated with the degradation of
the reinforcement during manufacture are less significant for PMCs than
for composites with other matrices. Also the equipment required for PMCs
may be simpler.

There are three classes of polymers, thermosets, thermoplastics and
rubbers, all important as far as matrices of PMCs are concerned. Rubbers
will not be dealt with here, although they constitute an important group,
being widely used in reinforced form in motor car tyres, for example. Within
any class there are many different polymers, e.g. epoxy, polyester, polyimide
and phenolic are all thermosets. Even a given polymer, such as a polyester,
exists in many forms; there are a large number of formulations, curing
agents and fillers, which results in an extensive range of properties for poly-
esters. Indeed, polyesters, and other polymers, are often marketed accord-
ing to their properties by the employment of descriptive terms including



Fundamentals of composites 15

Table 2.2 Some typical properties of polymer matrices

Epoxy Nylon (6.6) Polycarbonate Polyester

Density 1.1-1.4 1.1 1.1-1.2 1.1-1.5
(Mg/m?3)

Young’s modulus 2.1-6.0 1.4-2.8 2.2-2.4 1.3-4.5
(GPa)

Tensile strength 35-90 60-70 45-70 45-85
(MPa)

Ductility 30-100 90-110
(%)

Fracture toughness 0.6-1.0 0.5
Kic (MPam™?) 0.02
Gc (kJ/m?)

Thermal expansion 55-110 90 100-200
(10°K™)

Glass transition temperature 120-190 150
(°C)

Melting point 261
(°C)

‘general purpose’, ‘chemically resistant’ and ‘heat resistant’. Bearing in
mind also the variety of materials used for reinforcement, and the possible
arrangements of the reinforcement (random chopped fibres, unidirectional,
numerous weaves, etc.) it is clear that the range of properties exhibited by
PMC:s is quite remarkable.

The main disadvantages of PMCs are their low maximum working tem-
peratures, high coefficients of thermal expansion and hence dimensional
instability, and sensitivity to radiation and moisture. The absorption of water
from the environment may have many harmful effects which degrade
mechanical performance, including swelling, formation of internal stresses
and lowering of the glass transition temperature.

It has been estimated that over three-quarters of all matrices of PMCs
are thermosetting polymers. Thermosetting polymers, or thermosets, are
resins that readily cross-link during curing. Curing involves the application
of heat and pressure, or the addition of a catalyst known as a curing agent
or hardener.

Thermosets are brittle at room temperature and have low fracture tough-
ness values. Also, because of the cross-links, thermosets cannot be reheated
and reshaped; thermosets just degrade on reheating, and in some cases may
burn, but do not soften sufficiently for reshaping. Thermosets may be used
at higher temperatures as they have higher softening temperatures and
better creep properties than thermoplastics. Finally, they are more resistant
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to chemical attack than most thermoplastics. Typical properties are given
in Table 2.2.!

Thermoplastics readily flow under stress at elevated temperatures, so
allowing them to be fabricated into the required component, and become
solid and retain their shape when cooled to room temperature. These poly-
mers may be repeatedly heated, fabricated and cooled and consequently
scrap may be recycled, though there is evidence that this slightly degrades
the properties, probably because of a reduction in molecular weight. Well-
known thermoplastics include acrylic, nylon (polyamide), polystyrene, poly-
ethylene, polypropylene and polyetheretherketone. Some typical properties
are given in Table 2.2.

2.3 Summary

Polymer matrix composites (PMCs) are the best established form of
advanced composite materials. Of the three classes of polymers used as
matrices, thermosets, thermoplastics and rubbers, thermosets dominate the
market for structural applications. The mechanical properties of PMCs
can vary widely depending on the choice of fibre and matrix, the coating
applied to the fibres, and the manufacturing route. The main reason for the
popularity of PMCs is their ease of processing.

2.4 Reference

1 Matthews F L & Rawlings R D, Composite Materials: Engineering and Science,
Cambridge, Woodhead, 1999.



3

Stiffness and strength of composites

3.1 Stiffness of unidirectional composites
and laminates

3.1.1 Introduction

When analysing composite structures using finite elements we need to
supply to the software appropriate input data for the material being used.
Typically for composites we shall need moduli and strength of the single
plies that constitute a laminate. Occasionally we may input the laminate
properties directly.

In this chapter we shall address the essential background relating to the
above issues. Initially we shall work with ‘macromechanics’ in which case
we ignore the details of the fibres and matrix and their interactions. Later
in the chapter we shall look at these interactions in what is known as
‘micromechanics’.

When calculating the mechanical properties of composites it is conve-
nient to start by considering a composite in which all the fibres are aligned
in one direction (i.e. a unidirectional composite). This basic ‘building block’
can then be used to predict the behaviour of continuous fibre multidirec-
tional laminates, as well as short fibre, non-aligned systems.

The essential point about a unidirectional fibre composite is that its stiff-
ness (and strength) are different in different directions. This behaviour con-
trasts with a metal with a random orientation of grains, or other isotropic
material, which has the same elastic properties in all directions.

In a unidirectional composite the fibre distribution implies that the
behaviour is essentially isotropic in a cross-section perpendicular to the
fibres (Fig. 3.1). In other words, if we were to conduct a mechanical test by
applying a stress in the 2’ direction or in the ‘3’ direction (both normal to
the fibre’s longitudinal axis), we would obtain the same elastic properties
from each test. We say the material is ‘transversely isotropic’. Clearly the
properties in the longitudinal (‘1”) direction are very different from those

17
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3.1 Orientation of principal material axes.

in the other two directions. We call such a material ‘orthotropic’. The elastic
properties are symmetric with respect to the chosen (1-2-3) axes, which are
usually called the ‘principal material axes’.

3.1.2 Basic stress—strain relations

The stress—strain relations for the unidirectional material can readily
be found, provided we take account of the fact that the properties are
direction-dependent. Considering the composite illustrated in Fig. 3.1, we
see that if the directions of the applied stresses coincide with the principal
material axes (‘specially orthotropic’), the strains in terms of the stresses
are given by

e O (o)
1 — Vo ———
Ey Ey
O O,
82 = _U12_+_ [31]
E, Ey
Vi = Tiz
2=
G

where Ej is the elastic modulus in the ‘1’, or longitudinal direction
E,, is the elastic modulus in the ‘2’, or transverse direction
G, 1s the shear modulus in the 1-2 axes
vy, is the ‘major’ Poisson’s ratio
"V, 1s the ‘minor’ Poisson’s ratio

It should be clear that vy, gives the transverse (‘2’- direction) strain
caused by a strain applied in the longitudinal (‘1’) direction; conversely for
v,1. Because of the presence of the high stiffness fibres we would intuitively
expect vy, to be larger than v,;. This is confirmed by a fundamental law of
elasticity which shows that
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Table 3.1 Representative elastic properties of unidirectional fibre-reinforced
epoxy resins

Material Fibre volume E:, E,, V12 G,
fraction v (GPa) (GPa) (GPa)

CFRP 0.66 138.0 8.96 0.30 7.10

(AS fibre)

CFRP 0.65 200.0 11.10 0.32 8.35

(IM6 fibre)

GFRP 0.46 39.5 8.22 0.26 4.10

(E-glass fibre)

KFRP 0.60 76.0 5.50 0.33 2.35

(Kevlar-49 fibre)

Vi _ V.
Ell E22
Ell
or Vip =V —— 3.2
12 21 Ep [ ]

Ell
andas —>1,v>Vy
22

To get stresses in terms of strains we can rearrange equation [3.1] to give

Eig n V1 B

o= 1-v50  1-V10y
_ Vi Epg + Eye, [3.3]
21— VoV 1=y
T2 =Gy

Representative, experimentally determined, values of elastic properties
are given in Table 3.1 for carbon, glass and Kevlar fibre-reinforced epoxy
resins (CFRP, GFRP, KFRP respectively). As we shall see later, it is some-
times possible to calculate elastic constants from the properties of the fibre
and matrix using micromechanics.

The important point to note from equations [3.1] and [3.3] is that we need
four elastic constants to characterise our unidirectional composite; Ey, Ex,
V1, (or Vy;) and Gy,. Contrast this with an isotropic material where only two
quantities are needed. For the composite the shear modulus cannot be cal-
culated from E and v, as it can for isotropic materials.

For convenience when dealing with laminates it is helpful to rewrite
equations [3.1] and [3.3] in matrix form. So [3.1] becomes
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€ = 5612 [34]
where € = {El & 'Y12}
and O = {01 (e)) le}
Note that { } denotes a column vector written as a row vector
and we define the compliance matrix
-1 i,
2 _Da 0
Ell E22
1
S=|-—2z .
Ell E22
1
0 0 —
L G12 .
Note that Slz = Sz]
and [3.3] becomes
o = Qg [3.5]

where the stiffness matrix is defined by

Ey Vo By
1-vp0 1=y
Q= Vi Ey Ey
1-v1pVy  1-v505
0 0 Gy,

Note that Q, = Q.

We see that the first column of S gives the strains caused by a unit value
of 6, the second column of Q gives the stresses needed to cause a unit value
of &, and so on. It should be clear from the properties of matrices that

Q=5"

3.1.3 Off-axis loading of a unidirectional composite

In later sections we shall refer frequently to laminates. As noted in Chap-
ter 2, these plate-like entities are often constructed by assembling layers
(or laminae, or plies), usually unidirectional, one on top of another, the
direction of the fibres normally being changed from layer to layer. Conse-
quently there will be layers for which the fibres are no longer aligned with
the applied stresses (the situation considered in the previous section). We
term these ‘rotated layers’ and say that they are subjected to ‘off-axis
loading’.
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y oy

Txy

Fibres

3.2 Unidirectional lamina with principal axes rotated by 6 relative to
the x-y axes.

To prepare ourselves for the analysis of laminates, it is useful at this stage
to consider in isolation one of these rotated laminae. The situation, which
is illustrated in Fig. 3.2, is seen to correspond to the analysis of principal
stress for isotropic materials.

We can write, then

O = Tcxy [36]
and 512 = Tgxy [37]
where O = {01 (o) le}

Oy =1{0x Oy Ty}

En=1{¢&¢& %'le}

éxy = {Sx €y %’ny}
and the transformation matrix

m?  n? 2mn

T=| n* m*> 2mn [3.8]
-mn mn (m?*-n?)
with m = cos® and n = sin6.

As with any elasticity analysis we wish to determine the strains for a
known set of applied stresses (or vice versa). We can do this provided we
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know the elastic properties of the material. The situation we are faced with
here is that while we know the properties referred to the 1-2 axes, we do
not know them with reference to the x—y axes. So, before we can solve the
problem, we need to do some mathematical manipulation, which leads
eventually to:'

o, = Qg [3.9]

The transformed stiffness matrix is 6, the elements of which are

§11 =0um* +2(Qp, +205)n°m* +Qypnt

0»n =0nn* +2(Qn +20%)n*m* + Qpm*

Q1 =01 +0x»n —403)n’m* +Qn(m* +n*)

033 =011 +0xn - 201, —203)n’m* + Qs (m* +n*)

Qi3 =01 — 01 —203)nm’ + (Q1, —0n +203)n°m

05 =01 —01n -203)n°m + (Q1, —Oxn +2053) nm’ [3.10]

We see that knowledge of the orientation (0) and unidirectional proper-

ties (Q) in the principal directions enables us to calculate the stiffness of
the rotated lamina. In the general form derived we would call this a ‘gen-
erally orthotropic lamina’. If conditions are such that Q13 = O» =0, we have

what is called a ‘specially orthotropic lamina’. If we require strains in terms
of stresses then we invert equation [3.9] to give

—_0O-!

gy =Q 0y [3.11]
or €y = SOy
where § is the transformed compliance matrix, the elements of which
can be obtained by a similar process to that used for finding the elements
of Q,1ie.

;§11 = Snm4 + (2S12 + S33)n2m2 + 522n4

§22 = Snn4 + (2512 + S33)n2m2 + Szzm4

S = (Si1 +8p — S)n*m? + S, (m* + n*)

§33 = 2(2S1] + 2S22 - 4S12 - S33 )nzmz + S33 (m4 + }7,4)

Sis =281 =281 = Su)m’n+ 28, =28y + Sy)mn’

§23 = (2S11 - 2S12 - S33 )n3m + (2S12 - 2S22 + S33 )m3n [312]

For general loading of an off-axis ply we see that in addition to an exten-

sion in the direction of the applied stress and a lateral contraction, as we
would expect, there is also a shear strain. This phenomenon, which is known

as extension-shear coupling, would not be observed with an isotropic ma-
terial. We see that the shear strain is determined by the S;; term, when only
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o, is acting. Had we applied only o,, there would have been a shear strain
arising from the S term. In other words there will be no extension-shear
coupling if §13 = 523 = 0. This is clearly the case when the fibres of a
unidirectional layer are parallel to the stress axes, i.e. 8 = 0 or 90°. It is
also possible for §13 and §23 to be zero with fibres at intermediate angles;
whether, or not, this occurs depends on the relative values of Ey, Ey
and G,.

3.1.4 Stiffness of laminates

Thin sheet constructions, known as laminates, are an important class of com-
posite. They are made by stacking together, usually, unidirectional layers
(also called plies or laminae) in predetermined directions and thicknesses
to give the desired stiffness and strength properties. Such constructions are
frequently encountered. The skins of aeroplane wings and tails, the hull
sides and decking of ships, the sides and bottom of water tanks are typical
examples. Even cylindrical components, such as filament wound tanks, can
be treated as laminates, provided the radius-to-thickness ratio is sufficiently
large (say >50). Laminates will be typically between 4 and 40 layers, each
ply being around 0.125 mm thick if it is carbon or glass fibre/epoxy prepreg.
Typical lay-ups (the arrangement of fibre orientations) are cross-ply, angle
ply and quasi-isotropic.

When making a laminate we must decide on the order in which the plies
are placed through the thickness (known as the stacking sequence). This
has an important influence on the flexural performance of the laminate.

There is an established convention for denoting both the lay-up and
stacking sequence of a laminate. Thus, a four-ply cross-ply laminate which
has ply fibre orientations in the sequence 0°,90°, 90°, 0° from the upper to
the lower surface, would be denoted (0/90°),. The suffix ‘s’ means that the
stacking sequence is symmetric about the mid-thickness of the laminate.
Laminates denoted by (0/45/90°), and (45/90/0°), have the same lay-up but
different stacking sequences.

The way in which they are used means that laminated plates may be sub-
jected to both in-plane and transverse (normal to the plate) loading. In
other words they will stretch and bend, and both these effects must be taken
into account when describing the overall behaviour of the plate. The two
effects are separated by considering the total strain to be the superposition
of in-plane strains, €°, constant across the plate thickness, and strains caused
by bending, linear across the thickness, as shown in Fig. 3.3. The bending
strains can be defined in terms of the plate curvatures. For example, €, =
ZK,, z being the coordinate normal to the plate measured from the laminate
mid-plane, and is positive downwards (as shown in Fig. 3.3).
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8c>

kz

z

3.3 The two components of laminate strain: €°, in-plane, constant over
the thickness; ¢, = zk,, bending, linear variation over the thickness.

3.4 Definition of plies within a laminate.

So we have
£, €, K,
g, [=]| €y |+7 K, [3.13]
Yy Yo L
or g, =€ +2K [3.14]

Because all the plies are bonded together in the manufacturing process,
we assume that they each have the same in-plane strains and curvatures.
So, for any one layer, say the j™ (Fig. 3.4) we have, using equation [3.9],

., = Qe +2Qx [3.15]

Q; being the transformed stiffness matrix for the layer.

Note that the stresses act in the plane of the laminate. These stresses can
be converted to equivalent forces (or stress resultants) acting on a unit
width of plate. So, for example, from 6, we get N,, = 6, ;, ; being the thick-
ness of layer j. If we add up the resultants for all the plies the total must be
equal to the external force (per unit width) acting on the plate (see Fig. 3.5).
Similarly, the equivalent force on a layer will have a moment about the mid-
plane. Again using o, only to illustrate the process, we have M, =6, 1 z;, z;
being the distance from the laminate mid-plane to the mid-thickness of the
ply. Adding together these moments for all the plies will give the external
moment (per unit width) acting on the plate (see Fig. 3.5).
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3.5 Loads acting on a laminate.

This procedure allows us to relate the stress resultants to the in-plane
strains and curvatures, giving:

N =Ae° + Bk [3.16]
and
M = Be° + Dx [3.17]

Equations [3.16] and [3.17] collectively are known as the ‘plate con-
stitutive equations’, and the associated analysis as ‘Classical Laminate
Theory’.

The elements of the A, B and D matrices are

<

— p —
Ars = Qrs]' [h/ - h/’—l] = ZQrs,'tj
- i

-

M-

Brs = . Qs,‘ [h]2 _hjz—l] [318]

J

Il
N

Dr.v =

Wk N~

M=

Qv [} =]

]

I
uN

where r,s =1, 3.

3.1.5 The A, B and D matrices

We have already seen when considering a unidirectional composite that
certain terms in the compliance, or stiffness, matrix are associated with cou-
pling between particular deformations and loads. Examination of the plate
constitutive equations [3.16] and [3.17] allows us to identify similar
couplings for laminates.
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Suppose we write [3.16] and [3.17] in expanded form:

N, Ay Ay Aplfes By B, Bjl||k
N, |=|An Apn Ax e’ vy |*|Ba Bxn Bxn|| K,
N, | Ay An Anlle sy By By, B lK,, 3.19]
M, By B, Bsl||e. Dy Dy Dy

M, |=|By By Bxl||¢ ’ y |*|Du Dy Dy

M, | By By Bsllew Dy Dy, Dy]lxy, |

noting, of course, that A,; = Aj,, etc.
We can then make the following associations:

e Aj; and Ay relate in-plane direct forces to in-plane shear strain, or
in-plane shear force to in-plane direct strains.

e By, Bj; and By, relate in-plane direct forces to plate curvatures, or
bending moments to in-plane direct strains.

* Bj; and By relate in-plane direct forces to plate twisting, or torque to
in-plane direct strains.

* B; relates in-plane shear force to plate twisting, or torque to in-plane
shear strain.

e D;;and Dy relate bending moments to plate twisting, or torque to plate
curvatures.

In certain circumstances some of the couplings listed above can be unde-
sirable. They can sometimes be eliminated by appropriate construction of
the laminate.

If Aj3= Ay =0 there will be no coupling between direct stresses and shear
strains (or shear stresses and direct strains). This can be achieved if we have
a laminate in which all plies have 0° and/or 90° fibre orientations (a unidi-
rectional or cross-ply laminate), or if the lay-up is balanced, i.e. for
every layer with a +0 orientation there is an identical lamina with a —0
orientation.

Bending-membrane coupling can be avoided if the B matrix is zero. This
is very easily achieved by making the laminate symmetric about its mid-
plane. In practice laminates usually have a symmetric stacking sequence.

The phenomenon of bending—twisting coupling is eliminated if D3 = D»;
= 0. This is achieved with unidirectional or cross-ply laminates, or with bal-
anced anti-symmetric lay-ups, i.e. for every layer at +0 orientation and a
given distance above the mid-plane there is a layer with identical thickness
and properties oriented at —0 and the same distance below the mid-plane.
Such a lay-up is not symmetric (i.e. B # 0).

The preference, in practice, for symmetrical laminates means that D;; and
D,; # 0. However, these terms tend to zero for thick multilayer symmetric
laminates.
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For some lay-ups in-plane behaviour of the laminate is such that it
appears to be isotropic (it is then called quasi-isotropic). Examples are
(0/90/+45°) and (0/£60°) lay-ups. For such laminates it can be shown that

An = Azz
Ay —Ap=2A5
A13 = A23 =0

3.2 Micromechanics of unidirectional composites

3.2.1 Macromechanics and micromechanics

In the previous section we developed equations that describe the
stress—strain behaviour of a lamina and the load—deformation behaviour of
a laminate. These equations were based on the elastic properties of the
lamina and, as such, ignored the microscopic nature of the material. In
other words we took no direct account of the fact that we are dealing with
fibre-reinforced materials, we merely acknowledged that they were non-
isotropic. We refer to this as macromechanics analysis.

Because the starting point of a significant proportion of composites’
manufacture is the combination of fibres and matrix, it would be very
helpful if we could predict the behaviour of the composite (laminate) from
a knowledge of the properties of the constituents alone. There are many
limitations to such micromechanics analyses. However, studying perfor-
mance on a micro scale is essential if we are to understand fully what
controls the strength, toughness, etc., of composites.

3.2.2 Micromechanics models for stiffness

We stated in Section 3.1 that the unidirectional ply forms a useful building
block for many studies of composites. Much micromechanics analysis has,
therefore, been devoted to this simple system. The most successful applica-
tion is the prediction of the stiffness parallel to the fibres, i.e. the longitu-
dinal stiffness or modulus. We denoted this as E;; in Section 3.1.2.

It can be shown that the longitudinal modulus of the composite is

E” = Efo + Eme [320]

where subscripts f and m refer to fibres and matrix and v is the volume frac-
tion. A relationship of this form is known as the Rule or Law of Mixtures.

The predictions from equation [3.20] agree well (within 5%) with data
from carefully controlled experiments for tensile loading. Predictions are
not so good for compressive loading because the experimental results are
very sensitive to the design of the equipment and the alignment of the fibres
in the specimen.
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The corresponding expression for the transverse modulus of the com-
posite is

1 Vi Vnm

— =i [3.21]
En E Ey

It is usual to take E;as the longitudinal value, if only because the transverse
fibre modulus is extremely difficult to determine. This assumption will only
be correct for isotropic fibres.

Because of the enormous simplifications made in formulating the above
equation [3.21] it does not give very good predictions for E,,. Extremely
complicated elasticity or finite element analyses are required produce a
more accurate model.

The in-plane shear stiffness or modulus, denoted as Gy, in Section 3.1.2,
of a unidirectional composite can be obtained from a similar model to that
used for obtaining transverse modulus. The analysis gives the result:

1 Vi Vm
—_—
G, Gi Gy

[3.22]

The model suffers from the same limitations as that used for transverse
modulus, very complicated analyses being needed to give a better
prediction.

The longitudinal modulus model serves to provide a prediction for the
major Poisson’s ratio, vy,. The resulting expression is

V1 = VgV + UV [323]

3.2.3 Micromechanics models for strength

It is far more difficult to obtain a prediction for strength than for stiffness.
This is due to several factors: the random nature of failure and hence the
need to employ statistical methods; the number of failure modes that can
cause the composite’s failure (fibre, matrix or interface failure); the very
local nature of failure initiation and the influence of the associated stress
field, itself determined by the details of fibre packing. As for stiffness,
methods for predicting longitudinal performance are better than those for
transverse and shear performance.

For most PMCs, a reasonable description of tensile strength capability is
given by 6, = Gy, but it should be recognised that the onset of cracking
(of fibres or matrix) may be a more useful design criterion. Also, fibre
strength is not a unique value; it varies from one fibre to another and
depends on the length over which it is measured. Thus, the choice of &; is
far from obvious and it is necessary to use a statistical approach. The
complex nature of tensile failure, involving fibre, matrix or interface failure,
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is also seen in compression, but with the added possibilities of fibre buck-
ling and matrix shear deformation.

Recent work which accounts for initial fibre waviness and the matrix
shear yield stress gives reasonably accurate predictions:

61(‘ = Gt (Y *)

i.e. the shear modulus of the composite at instability.

Failure strains in compression can be very close to those seen in tension;
however, results are very dependent on the test method.

There is no simple relation for predicting the transverse tensile strength
(62,), transverse compressive strength ( 6,.) or in-plane shear strength (1;,).
Because of the complexities, no serious attempts have been made to model
these modes of failure.

Note that there is another form of shear failure, namely interlaminar
shear failure. This mode of failure is seen when flexural or through-
thickness loading occurs (see Section 3.4). It is, then, relevant to delamina-
tion, i.e. splitting between plies.

3.2.4 Thermal and moisture effects

As already mentioned, carbon and aramid fibres have a very small, or even
slightly negative, coefficient of longitudinal thermal expansion (o). One
consequence of this is that residual stresses are set up in a unidirectional
composite as it cools from the curing temperature. In the transverse direc-
tion these stresses can be a significant fraction of the failure stress of the
matrix. Hence, any calculation which attempts to predict failure should
include these thermal effects.

A second consequence of the fibre and matrix having different expan-
sion coefficients is that the composite has different coefficients in the
longitudinal and transverse directions. Based on the assumption that the
Poisson’s ratios vy = vy, the following simple expressions have been derived:

1
(051 =E_((XfEfo +O(.mEme) [324]

11
0 =(1+0¢)0vs +(1+V5 )0 Vin — 041 V12 [3.25]

The anisotropy of thermal expansion (o, # 0,,) will cause residual thermal
stresses in laminates, in addition to those in each ply mentioned above.

Resin matrices will absorb moisture and therefore swell during normal
operating conditions. Some fibres, such as Kevlar, also absorb water. The
water up-take in a resin matrix is usually by a process of Fickian diffusion
and the swelling can be characterised by an absorption coefficient (B), which
is directly equivalent to the thermal expansion coefficient.
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For a unidirectional PMC, reinforced with carbon or glass fibres, the
swelling coefficient in the fibre direction (B;) may be taken as zero. The
transverse coefficient (3,) depends on the expansion of the matrix, j,,, and
may be taken as:

m

B.= g° (1400 )Bnm [3.26]

where the suffices m and c refer to matrix and composite respectively. The
composite’s density, p., was defined in equation [2.2].

Laminate analysis should be modified to take account of thermal and
moisture effects. This is necessary so that a better estimate of strength may
be obtained. The appropriate theory can be found in many texts, e.g.
Agarwal and Broutman.'

3.3 Strength of unidirectional composites
and laminates

3.3.1 Introduction

In Section 3.1 we established the stress—strain relationships for an individ-
ual lamina, or ply, and for a laminate. We can use the constitutive equations
to calculate the stresses in each ply when we know the values of the loads
acting on the laminate. By comparing these stresses with a corresponding
limiting value we can decide whether or not the laminate will fail when sub-
jected to the service loads.

There are several ways to define failure. The obvious one is when we have
complete separation, or fracture; clearly, then, the component can no longer
support the loads acting on it. However, a more general definition would
be ‘when the component can no longer fulfil the function for which it was
designed’.

Such a definition includes total fracture but could also include excessive
deflection as seen when a laminate buckles (basically a stiffness rather than
a strength limit), or even just matrix cracking. The latter could constitute
failure for a container because any contents would be able to leak through
the matrix cracks in the container’s walls.

As for isotropic materials, a failure criterion can be used to predict
failure. A large number of such criteria exist, no one criterion being uni-
versally satisfactory. We shall start by considering a single ply before moving
on to discuss laminates.

We saw in the last section that there are five basic modes of failure
of such a ply: longitudinal tensile or compressive, transverse tensile or
compressive, or shear. Each of these modes would involve detailed failure
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Table 3.2 Typical strengths of unidirectional PMC laminates (v; = 0.5)
(values in MPa)

Material Longitudinal Longitudinal Transverse Transverse Shear
tension compression tension compression
Glass/polyester  650-750 600-900 20-25 90-120 45-60
Carbon/epoxy 850-1100 700-900 35-40 130-190 60-75
Kevlar/epoxy 1100-1250 240-290 20-30 110-140 40-60

mechanisms associated with fibre, matrix or interface failure. Some typical
strengths of PMCs are shown in Table 3.2.

We can regard the strengths in the principal material axes (parallel and
transverse to the fibres) as the fundamental parameters defining failure.
When a ply is loaded at an angle to the fibres, as it is when part of a multi-
directional laminate, we have to determine the stresses in the principal
directions and compare them with the fundamental values.

3.3.2 Strength of a lamina

Strength can be determined by the application of failure criteria, which are
usually grouped into three classes: limit criteria, the simplest; interactive
criteria, which attempt to allow for the interaction of multi-axial stresses;
hybrid criteria, which combine selected aspects of limit and interactive
methods. Here we shall only discuss criteria that fit into the first two classes.

3.3.2.1 Limit criteria

There are two limit methods, the maximum stress and the maximum strain
criteria. The maximum stress criterion consists of five subcriteria, or limits,
one corresponding to the strength in each of the five fundamental failure
modes. If any one of these limits is exceeded, by the corresponding stress
expressed in the principal material axes, the material is deemed to have
failed.

In mathematical terms we say that failure has occurred if:

01261T or ;< 61(: or 02262-1- or 0,< (ASZC or 1122%12 [327]

(recalling that a compressive stress is taken as negative so, for example,
failure would occur if 6, = —200MPa and G,. = —150MPa).

The maximum strain criterion merely substitutes strain for stress in the
five subcriteria. We now say that failure has occurred if:

€128, OF £,<€;. O £,2€5, OT £,<E€,. OF Y122V, [3.28]
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As when calculating stiffness, it is important that we can deal with the
situation in which the fibres are not aligned with the applied stresses. We
would use equations [3.6] to obtain the stresses in the principal material
directions.

Although simple to use, limit criteria do not agree well with experimen-
tal data unless the fibre angle is close to 0° or 90°. This is because at inter-
mediate angles there will be a stress field in which both 6, and G, can be
significant. These stresses will interact and affect the failure load, a situa-
tion which is not represented in a criterion where a mode of failure is
assumed not to be influenced by the presence of other stresses.

Also, the maximum stress and maximum strain criteria will give differ-
ent predictions when the stress—strain relation is nonlinear. This will cer-
tainly be the case for shear deformations and hence an assumption of
linearity is seen to be invalid. In such cases the maximum strain criterion
generally gives better agreement with experiment than does the maximum
stress criterion.

3.3.2.2 Interactive criteria

Interactive criteria, as the name suggests, are formulated in such a way that
they take account of stress interactions. The objective of this approach is to
allow for the fact that when a multi-axial stress state exists in the material
failure loads may well differ from those when only a uni-axial stress is
acting.

There are many such criteria, of varying complexity, their success in
predicting failure often being confined to one fibre/resin combination sub-
jected to a well defined set of stresses (e.g. a tube under internal pressure).
The Tsai—Hill criterion which has proven to be successful in a wide variety
of circumstances is the only method that will be discussed here. There is
currently much debate about the merits of the various criteria.”

The Tsai—Hill criterion was developed from Hill’s anisotropic failure
criterion which, in turn, can be traced back to the von Mises yield criterion
for metals. In its most general form the Tsai-Hill criterion defines
failure as:

2 2
o 6,0 c T
(%)— — +(A2j +(Ai) >1 [3.29]
(o1 G, o> T2
Because it is usually small compared with the others, the second term
(016,/ 612) is often neglected. The modified from of the criterion is then:

oY (o) (1)
(T‘) +(A2) +(ij >1 [3.29a]
O (o)) T2
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The values of strength used in equation [3.29] or [3.29a] are chosen to
correspond to the nature of o, and o,. So if o, is tensile 6,7 is used, if o, is
compressive G, would be used, and so on.

It should be noted that only one criterion has to be satisfied, as opposed
to the five subcriteria of the limit methods. Thus, only one value is obtained
for the failure stress. Another point to bear in mind is that the mode of
failure is not indicated by the method, unlike with the limit criteria. This
latter issue has an influence on how we predict the failure of laminates, as
we shall see later. For a unidirectional composite subjected to uni-axial
stress parallel to a principal direction the Tsai-Hill and maximum stress
criteria will give the same failure stress. Interactive criteria usually give
better predictions of strength for intermediate fibre angles.

3.3.3 Strength of a laminate

3.3.3.1 [Initial failure

Suppose we take a cross-ply laminate (0/90° lay-up) and apply an increas-
ing load in the direction of the 0° fibres. At a relatively low load cracks will
be seen in the matrix parallel to the fibres in the 90° plies. These cracks will
increase in density until a saturation state is reached. At this point the 90°
plies contribute virtually no stiffness to the laminate in the 0° direction, a
fact that is shown by the change in slope of the load-extension curve for
such a laminate. The commencement of transverse ply cracking is known
as ‘initial failure’ or ‘first ply failure’.

It is possible to predict initial failure of laminates by combining Classi-
cal Laminate Theory with a failure criterion. Clearly, the choice of criterion
is crucial and, as already stated, there are many available, each one often
being relevant only to a very specific situation (loading and geometry).

We start with the plate constitutive equations (equations [3.16] and
[3.17]), i.e.

N1 [A B][¢
s ol b0
Ml LB Dllx
Solution of equations [3.30] will give the plate mid-plane strains (¢°) and
plate curvatures (x), for a known set of forces N and moments M.

e] [A B[N
MR aan

LS B D] [M
The plate strains are expressed in the, global, plate x-y axes (see Fig. 3.5).

Thus the strains in each ply can be found from the transformations of
equation [3.7], and the ply stresses are obtained from the stiffness matrix
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(equation [3.5]). By applying, on a ply-by-ply basis, a selected failure
criterion, the occurrence of failure can be determined.

3.3.3.2 Final failure and strength

The final, or ultimate, failure load of an angle ply laminate is often coinci-
dent with, or only slightly higher than, the load to cause initial failure. This
is not necessarily the case for other lay-ups and final failure can be at a con-
siderably higher load than that to cause first ply failure.

It is clear that once a ply has sustained failure its stiffness in certain direc-
tions will have been reduced. However, unless the damaged ply has com-
pletely delaminated from the rest of the laminate it will still contribute to
the overall stiffness of the plate. The magnitude of this contribution depends
on the amount of damage, the fibre/matrix combination and the nature of
the loading on the ply.

In general an iterative method is adopted, successively applying the
approach described in Section 3.3.3.1 until final failure has occurred. At
each step the A, B and D matrices would need to be recalculated to allow
for the development of damage.'

3.4 Application to structures

3.4.1 Limitations of Classical Laminate Theory

Classical Laminate Theory (CLT) (see Section 3.1.4) applies to an element
of plate over which forces and moments are assumed constant, and in which
through-thickness shear strains are ignored. Thus, only in-plane direct and
shear stresses are considered. CLT is equivalent to simple beam theory
which only considers a pure moment loading (i.e. constant along the beam),
which results in only a direct stress (acting parallel to the beam’s longitu-
dinal axis). Again shear strains (through the beam depth) are ignored.

In practice, of course, beams are usually subjected to bending moments
which vary along the length, the resultant direct stresses causing shear
stresses, which can be calculated from equations of equilibrium. Even in
these circumstances shear strains can usually be ignored; they only have a
significant effect on beam deflections when the beam is very short (small
span-to-depth ratio). For a laminated construction such shears are referred
to as interlaminar shear stresses; they can give rise to interlaminar failure,
or delamination. A three-point flexure test on a short beam (span-to-depth
=5) is a common way of determining the interlaminar shear strength of
unidirectional composites.

Plate equations can be altered to include varying moments and through-
thickness shear strains. The plate constitutive equations would be modified
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3.6 Stresses at laminate edge in the thickness (z) direction.

to account for the through-thickness shear resultants, by including two
additional terms in the A matrix’ (see Section 5.5).

The inclusion of shear strains would be appropriate for thick isotropic
plates (equivalent to short beams), and also for thick composite plates. The
latter, of course, will generally have a low through-thickness shear modulus
(compared with in-plane extensional moduli), thus making the inclusion of
such shear strains generally advisable for typical composites, even if of
moderate thickness.

3.4.2 Edges

The limitations of CLT mentioned above (constant in-plane stresses)
implies that the plate is infinitely long and wide. In other words the theory
ignores edges. In many real situations, of course, laminates will have edges;
for example a plate of finite width (encountered in mechanical testing),
a plate containing a hole (bolts, rivets) or opening (say for access), a
skin/stringer joint, a skin/spar junction, etc. The stresses acting at an edge
are shown in Fig. 3.6.

A simple example is that of the free edge of a cross-ply laminate. Because
of the mismatch in ply Poisson’s ratio (90/0°), is preferred to (0/90°),
because the latter produces tensile through-thickness stresses.

A problem in analysing these situations is that the high stresses occur
within one or two plate thicknesses from the edge. Also, solutions can indi-
cate singularities. Finite element models of this situation are discussed in
Chapter 7.

3.4.3 Buckling

In addition to the forms of failure already described, composite laminates,
especially if thin, can fail by buckling when subjected to compressive or
shear loading.
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The characteristic of buckling is that the panel retains its original con-
figuration (flat or curved) until the initial buckling load is reached. At this
point large out-of-plane displacements will occur. The magnitude of the
corresponding load is determined by the stiffness of the laminate (not the
strength), together with the geometry and edge supports.

Most panels can continue to sustain load over and above the initial
buckling strength. Final failure will be determined by the strength of the
laminate. It is usual for the design load to be equal to, or less than, the
initial buckling load.

An extensive set of information on panel buckling can be obtained from:
ESDU International plc, 27 Corsham Street, London N1 6UA, UK. An
excellent comprehensive reference is that by Leissa.*

Only in a few situations is it possible to use simple formulae to calculate
initial buckling loads. More often it is necessary to use graphical, or other
means. In this section only a few cases will be presented, merely to indicate
the general approach.

For convenience it is common to cast the equations into the same form
as those used for isotropic plates, i.e. critical stress

o, = KE(t/b)’

where ¢ = plate thickness, b = plate width, £ = Young’s modulus and K is a
buckling coefficient related to panel dimensions and edge supports. Most
solutions assume that the panel buckles into a sinusoidal shape with m half
waves along the length (x-direction) and n half waves across the width
(y-direction). Normally n = 1. K is dependent also on m and n.

So, for example, for a rectangular orthotropic plate (a x b) with all edges
simply supported, subjected to a uniform uniaxial compressive stress (c,),
the buckling coefficient is:

2 2
K, =" _N.b 3.32]
Dy, Dy,
2 2
g Ko Du(BY o De 2Da), (0} L 533
T Dy \a D,, D, b) m

Note the dependence of o, on the plate’s flexural coefficients, Dy, etc.
Clearly, an analysis that ignored stacking sequence would not be expected
to deliver accurate predictions.

3.5 Summary

In this chapter we have seen now the conventional stress—strain equations
in two dimensions are modified to account for the directional nature of
composites. From this macromechanics starting point equations describing
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the behaviour of laminated plates were derived. As pointed out at the end
of the chapter, these equations have certain limitations and cannot be used
to represent behaviour at boundaries (plate edges or holes).

The equations of micromechanics were shown to have limitations and
these should be borne in mind when using software that takes fibre and
matrix properties as input data.
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Part I

Fundamentals of finite element analysis

G. A. O. DAVIES

In this part of the book the basis of finite element analysis is reviewed.
Starting from the underlying theoretical issues, the method is developed to show
how elements are derived, a model is generated and results are processed.
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4

Fundamentals of finite element analysis

4.1 Basic theoretical foundations

This chapter is not intended to probe deeply into the theory of finite ele-
ments. Readers of this book may be familiar with the FE method and inter-
ested only in applying it to composite materials and structures, in which
case they can skip this chapter. For others, with a passing knowledge only,
we shall condense the theory to the basics. It is useful to strip some of the
mystery from the theory and to draw attention to what is important and
what is unimportant — particularly what is exact and what is approximate.
There are dangers in creating an unsound finite element model and not to
recognise poor answers.

However, it is counter-productive to simplify the method too much and
encourage users of commercial codes to treat the FE package as a ‘black
box’. User manuals encourage analysts to think of finite elements as pieces
in a jigsaw, the whole of which is the complete structure. Thus the package
merely has to insert the jigsaw pieces into the correct place and they will
be held there by nodal displacements and nodal forces at selected nodes.
In the complete structure, when loaded, the displacements at nodes will
ensure continuity and the nodal forces developed as the jigsaw piece strains
will be in equilibrium with themselves and with the applied forces —
somehow. There are two dangers to this approach.

Firstly, the user has no idea what is exact and what is approximate, and
in the latter case whether the errors are significant. Secondly, what are these
nodal forces and do they not cause a local stress concentration in a stress
field that should otherwise be smooth and changing gradually? The answer
is that these nodal forces are quite fictitious in the usual FE method, even
though they are made to equilibrate each other and the applied forces.
(Although the applied forces may have to be converted to a compatible but
fictitious form also!)

Having said we shall strip away some of the mystery, the treatment will
still be brief. For readers who wish for more we shall use the methods and

41
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Assumptions

A~ T

Equations of Equations of
equilibrium or compatibility
motion

(Strain ~ displacements)
(Stress ~ applied loads)

Stress-strain

law

4.1 The four conditions for all structural analysis.

notation of A Finite Element Primer.! We make a beginning by going to the
very basics of structural analysis, starting with a trivial example and then
generalising to a completely arbitrary structure. Basically all structural
analysis can be summarised by four separate (but linked) conditions to be
modelled and satisfied, as illustrated in Fig. 4.1.

The basic assumptions are usually directed at simplifying the type of struc-
ture or component. Thus is the component a rod/bar, beam, plate, shell or
3D? This stage leads to the justification — fundamental to the FE method —
of assuming the nature of the strain or displacement field in the element.
A pin-ended bar in a framework may have only one axial strain compo-
nent. A slender beam or thin plate may have a linear strain distribution
through the thickness. A 3D continuum may not be accessible to any
assumed field. Thus this stage is driven by geometry, but we delay the intro-
duction to finite elements proper and consider the other three stages.

Satistying equilibrium results in equations that equilibrate the applied
forces to the structure’s resisting stresses. These may be surface forces or
internal (body) forces. If the structure is in motion then the body forces
can be extended to include the ‘inertia forces’ and of course the stresses,
displacements and so on are then all functions of time. In many cases
(probably most) the strains are small and it is possible to write down the
equations of equilibrium for the body ignoring its small changes in shape.
We shall do this initially, and leave to later chapters the nonlinear behav-
iour due to material failure, or to buckling when changes in geometry
cannot be ignored.

If the equations of equilibrium are sufficient to enable us to solve com-
pletely the stresses in the structure, the structure is said to be statically
determinate. In practice very few structures are made to be statically deter-
minate. Such structures have one distinct disadvantage in that if a single
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component fails, the complete structure becomes a mechanism, i.e. it falls
down. A statically determinate structure is very much not ‘fail-safe’. There
is at least one case where statical determinacy is an advantage, and that is
if thermal heating is significant. A statically determinate structure’s stresses
depend only on the applied loads and are unaffected by temperature
gradients. (The ribs inside Concorde are made this way, since the fuel in
the wing is intended to cool down the very hot outer surfaces.)

If a structure is statically indeterminate or redundant then the next two
conditions and equations have to be brought in.

Compatibility arises from stating that the strains are ‘compatible’ with the
displacements and can be derived from them if the displacements vary con-
tinuously. We show that it simply means that a geometrical argument can be
used to express strains in terms of displacements once we have defined what
strain means: like the strain in a bar is its fractional change in length. The
equations of compatibility have nothing to do with the equations of equilib-
rium nor with the stresses directly. Thus if the body is heated and strains and
stresses ensue, the equations of compatibility are not affected.

The stress—strain law is the relationship between stress and strain and
it is based on experimental evidence. In many cases stress is proportional
to strain. In other cases strain can be caused by heating (or freezing), or by
moisture absorption or by electromagnetic-chemical effects. It is important
to note that the stress—strain law has nothing to do with either equilibrium
or compatibility.

To illustrate these separate criteria consider the very simple example
shown in Fig. 4.2 of three pin-ended bars subjected to loads R; and R, and
having joint displacements r; and r,. Let the central bar also be heated by
T degrees.

The assumption is that all bars are pin-ended, and hence only resist axial
tensions 7, and stretch by A.

Equilibrium:

T14Sin9 - T34Sin6 = R1

T14 cosO + T24 + T34 cosO = R2 [41]

Compatibility: if the displacements are small, then the displacement com-
ponents at the ends of a bar, at right angles to the bar, will not stretch it. Only
the components in line with the bar will produce strains. Thus strain

g, =24
14 L
where Ay, =rsin@+r, cosO [42]
r
Ay =
* 7 Lcos#

and Az, =—r sin®+r, cosO
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Ry, 1o

4.2 Simple (redundant) pin-jointed frame example.

Stress—strain:

For outer bars €=
[4.3]

For centre bar e=—+oT

yja | a

where E is the extensional (Young’s) modulus and o the linear coefficient
of expansion.

A displacement solution is now straightforward. If all bars have the same
cross-section area A, the stress—strain law becomes

Su_Tu A _ T o A Tu ",
L AE Lcos6 AE L AE
and using compatibility (equation [4.2]):
Tis = %[n sin® + r, cos0]
AE
Ty = ——2 — AEaT [4.5]
L cos0

AE .
Ty = T[—rl sin® + r, cos0]

Now we put these forces into the two equations of equilibrium [4.1] and
solve for r; and r,:

2ALT vt =R,

AE i [4.6]

T(Z cos” 0 +secO), =R, — AEoT
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Notice that the final set of equations (two) were just those needed to
solve for the two displacement unknowns. This would have been true if
there had been only two bars (statically determinate) or three or more
(progressively more and more redundant). This is the attraction of the
displacement method; we do not have to worry about the degree of
redundancy.

The only difference between this example and the conventional FE
solution (apart from the small number of unknowns r; and r,) is that the
‘elements’ are exact. No assumptions were made about the nature of the
displacements since uniform pin-ended bars have a constant strain.

4.2 Principle of virtual displacements

The next step is to use virtual work arguments as a substitute for equilib-
rium conditions (the advantages will become apparent later). If a force (or
a stress) moves through a displacement (or a strain) then the virtual work
is defined as the product of force x displacement. This avoids having to
define the force—displacement (or stress—strain) law which has nothing
to do with equilibrium. The force—displacement relationship may be non-
linear, as shown in Fig. 4.3 for example.

We now go further and imagine virtual displacements which are hypo-
thetical and not related to the real forces or displacements. We use a ‘bar’
to single them out; n, », A, etc.

The Principle of Virtual Displacements (PVD) simply equates internal
virtual work to external virtual work, thus in the pin-jointed framework
example:

TiaAus + Tosloy + Toulsy = R + RoF [4.7]

//

= >
r

=,

Real work Virtual work

4.3 Nonlinear force/displacement behaviour.
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This rather important equation gives us no information at all (!) until we
use the compatibility conditions. We satisfy compatibility directly and insert
the values for A in terms of 7 into the above, and rearrange

(T4 sin® — Ty, sin® — R + (T4 cos® —Toy + T4 cosO— R,)5, =0 [4.8]

We now capitalise on the virtual nature of r; and 7, and say for example
that 7 could be zero, in which case the individual expressions in the paren-
thesis above must separately vanish. These are clearly the two equations
of equilibrium as before (equation [4.1]) so the PVD is enforcing them
indirectly. Three important points to note are:

® Only because 7 and r, are independent do we get both equilibrium
equations.

e If a framework had n displacements we would get n equations from the
n virtual displacements to solve from.

¢ From the displacement in the (say) horizontal direction, r, we get the
horizontal equation of equilibrium, resolving 71, and T3, in terms of R;.

Having fixed the ideas we can now move to general structures with
arbitrary shapes.

4.3 An arbitrary structure

The leap from a simple three-bar truss to a completely general structure is
a big one. We shall need more sophisticated tools to describe the structure
and its loads, stresses, and displacements. It turns out that matrix notation
is a great aid in defining both stress fields and displacement fields and, more-
over, matrices are an ideal vehicle for reading into, or extracting from,
digital computer memories. In fact, in the early days of the 1950s, finite
element methods were originally known as ‘matrix methods’.

Figure 4.4 indicates an arbitrary 3D solid having volume V and surface
S (local normal ‘n’), subjected to surface forces p per unit area and inter-
nal (volume) body forces p, per unit volume. We list these vector forces as
having Cartesian components:

PL = [va Dvy pvz]

¢ [4.9]
Ps = [Psx Dsy psz]
Note that the ‘t” superscript denotes the transpose of a matrix.
Similarly the displacements everywhere we write as the vector
u' =[uvw] [4.10]

Notice that these components p, u, etc., may all be functions of x, y and z.
The internal stresses and strains can also be listed as column matrices in
terms of the three direct and three shear components:
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z

4.4 A general continuum.

6'=[0,.6,,6.,0,,6,.0.]
i [4.11]

= [Sxxgyygzz €xy€y7€2x

The reader can consult any standard text for definitions of stress nota-
tion. Suffice it to say that here the first suffix refers to the direction, and the
second suffix the plane on which the stress component acts. Thus o,, is a
direct stress (tensile positive, compressive negative) but c,, is a shear stress.
The strain components simply correspond to the stress components.

We now follow the procedure as before. The external virtual work
done is

[(pufi+ py T + p)dS + [ (pusll + o, + pociw)AV
S v

[4.12]
= [puds + [piadv
S \%

It can be shown that the internal virtual work done by the stresses over the
strains is

(680 +0,,8, +0..8.. +0,E,, +0,.8,. +0,E,)dV = [6€dV  [4.13]
\% v

The next step, as in the framework example, is to equate the two expres-
sions for work and enforce compatibility. The general equations relating €
and u are readily shown to be, using geometrical definitions of strain in
terms of the displacement at a point,

_du _du  9v

—+—,¢€tc. [4.14]

€ =%, €y =
ox Y9y ox

or simply using matrix shorthand €= du. [4.15]
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The six-by-three array of operators is given by

[0 0 0
— 0 0 — 0 —
ox dy 0
W P 9 9
'=| 0 3y 0 3 22 0 [4.16]
d Jd
0 0 — 0 — —
L 0z dy d

The PVD then becomes

[o€dV=[c'audV =[piadv+[puds [4.17]
\% \% \% S

This most important equation is the basis behind all FE derivations. Later
we show what it leads to. To show what we are actually doing when we use
it, it is necessary to transform the equation by using a mathematical iden-
tity derived from Gauss’s Theorem:

jc dudv = j [0'n]o dS - ju*atcdv [4.18]

This identity is in effect a three-dimensional form of integration by parts
and can be applied to any two functions, and not just to ¢ and u as here. It
is essential that the two derivatives are finite and continuous in the region
V. We later apply the PVD to a volume divided into finite elements where,
across the interface between elements, we recognise that the stress field
¢ may be discontinuous and, therefore, the derivative d'c is not defined.
However, we leave this possibility to later and now concentrate on what the
PVD is delivering. So taking the framework argument as an example, we
need to convert the term du in the PVD to the form u and then appeal to
the virtual nature of u. Thus, substituting the Gauss identity into the PVD
it becomes:

Juta'e+py]dV -[u'[(@ n)o—p,]ds =0 [4.19]

Now we use the same argument as for the framework. The displacements
u(x, y, z) are virtual, so their coefficients must vanish, i.e.
d'c+p, =0
inside V and [4.20]
(9'n)o =p,

onsS.

These are the equations of equilibrium inside the body and on its surface.
If we examine the first equation by expanding the term in 90'G and p, we find
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we get three equations representing the stress gradients, in the directions
x,y and z, which equilibrate the three body force components if they are
present. The second equation takes the stresses at a point on the surface,
and then the components in directions x, y and z (d'n are direction cosines)
which have to equilibrate the components of the surface pressures p,,, etc.
We can therefore now rely on the PVD to satisfy equilibrium everywhere.
The next step is the FE approximation.

4.4 Finite element approximations

Imagine the variation of displacement across a complex structure such as
an aircraft or a cooling tower, as shown in Fig. 4.5. No simple theory can
deliver this. The idea then is to divide the structure into elements which are
small enough so that the displaced shape can be assumed with little error,
and only the magnitudes of the displacement need be found. A crude
approximation could be a linear assumption.

The whole structure can be divided into elements, the elements being
either 1D (bars), 2D (plates) or 3D (bricks). Figure 4.6 shows a picture of
the true displacement along a row of elements in 1D, and a linear approxi-
mation which will be quite close to the truth since the elements are quite
small. Modern pre-processors use very powerful (yet friendly) algorithms
to divide up the most complex shapes. Figure 4.7 shows a display of hex-
agonal brick elements where the elements are shrunk so that the user can
check whether any are missing.
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4.5 Two real structures.
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4.6 The ‘finite’ element approximation.

Elements shrunk

4.7 Pre-processor aid for finding missing elements.

Because we are using the PVD which is an integral, we can always write
complete volume and surface integrals as a summation of all the element
integrals:

Y [o®dv=3Y |[puds+[piudv [4.21]
Ve

elements Vg elements Sy

where S, and V, denote the surface or volume of the gth element.
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4.8 A triangular element with linear shape functions.

Now, it is not the intention in this book to delve deeply into the subtleties
of the FE method, and individual elements in particular. It will suffice to
describe the basic idea and mention particular aspects that the reader may
need to know about when reading a manual, understanding the code, choos-
ing elements and appreciating which errors are unimportant and which are
important, and how to reduce or avoid them. For simplicity, then, suppose
we cover a flat plate with a triangular mesh as in Fig. 4.8, and suppose the
plate is in a 2D stress field (o,,, G,,, O,,) With uniform stresses across the
thickness at any point.

The geometry is defined by the position of the three nodes of a typical
element. If we assume that the displacement field u' = [u, v] is linear then
we can write u = a + bx + ¢y and find the coefficients a, b and c in terms of
the three horizontal displacements d;, d; and ds at the three corner nodes.
We rewrite the resulting expression as

u= N]dl + N2d3 + N3d5 [422]

where the ‘shape functions’ N(x, y) are linear in this case. In Chapter 5 we
shall look at more ambitious shape functions, such as quadratic, where more
nodal points are required to define the field. The actual algebraic details
of Ni, N, and Ns, which, for N, say, needs to be unity at node (1) and zero
at nodes (2) and (3) can be found in reference 1. Similarly for the other
displacement component:

V= N1d2 + N2d4 + N3d6 [423]
For brevity we write
u=Nd, where d;=[d, d,d;d,dsds] [4.24]

for the gth element.
It is now routine to go to the next stage and apply compatibility:

g =0u =0Nd, = Bd, [4.25]
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where the 6 X 6 matrix B for this example is just an array of constants since
N is linear. Thus the element is a constant strain triangle. (Note that the
symbol B is also used in laminated plate theory; see Chapter 3.)

We now assume the stress—strain law is linear so that

o =Ee [4.26]

where E is a 6 x 6 ‘material stiffness’ matrix whose elements contain
Young’s modulus and Poisson’s ratio for an isotropic material. Again the
details will be found in reference 1.

The internal work in the element can now be evaluated

[o'edV = [e'EEdV = [ d.B'EBd, dV [4.27]
Vg Ve Vg

But d, can clearly be taken outside the integral, which itself can be
evaluated since B and E are known.
Thus the element work = dgk, d,, where

k,=[B'EBdV

Ve

is known as the element stiffness matrix since the work product may be
viewed as d'k,d, = (kd,)'d, = forces x displacements and force = stiffness
X displacement.

The right-hand side of the PVD similarly becomes

[piudv + [piuds = [piNdvd, + [piNdsd, [4.28]
v S A% S

and these integrals can also be evaluated once we know the distributions
of p, and p,. This external work can also clearly be written as P, d, where
we see that

P, = [N'p,dV+ [N'p.ds [4.29]

Ve Sg

must clearly be nodal forces. They are not real concentrated forces (which
would produce infinite stress concentrations) and are often known as ‘kine-
matically equivalent’ forces since they are defined in terms of the dis-
placement shape functions N. The above expressions for these nodal forces
simply emerged naturally from our PVD and the element integrals. They
are measures we find convenient to use. We see, therefore, that by assum-
ing the displacement shape functions we have been able to evaluate the
integrals for any element, and therefore for all elements. The FE method
can be viewed as a way of numerically integrating. In fact the integrals are
never done exactly, but as a summation of discrete values of the integrand
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times the appropriate bit of volume or surface at the sampling points. It is
found that it is best to sample B (if it varies) at the optimal ‘Gauss’ points;
see reference 1 for where these points are.

We have now converted the internal and external virtual work to simply
d'k,d, and P/d, and it only remains to sum

2 d;kgag: 2 p;dg

elements elements

In the simplest case, if all element displacements d, are aligned with the
global axes, they will be able to be selected from the total global list of
displacements, usually written as

r'=[nnr..n] [4.30]

where n may be many thousands. The total virtual work of the entire system,
internal and external, may be similarly written as r'’Kr and R'r, where K is
the whole structure’s stiffness matrix and R is the global list of kinemati-
cally equivalent forces. But these two must be equivalent to the previous
summations, so if we (or the code) make sure that we relate each d, to the
correct parts of r, and the associated elements in k,, we may symbolically
assemble

K=Yk, and R=)P,

The exact details of how this is done methodically, and what transforma-
tions to k, are necessary when element local axes are different from global,
can be found in reference 1.

Having assembled both K and R the PVD can be rearranged as

r'’K-R")F=0 [4.31]

and we now use the argument that all the n components of r are virtual so
their coefficients vanish, and we have n equations

Kr=R [4.32]

This set of equations is then solved as discussed in Section 4.7 whence,
knowing r, we then select the particular values d for the element level and
hence € = Bd, and ¢ = Ee¢ for the strains and stresses. This is the basis of the
modern FE method. We see that the nature of the displacement field has
been approximate, but that compatibility and the stress—strain law have
been satisfied exactly. The use of the PVD to satisfy equilibrium therefore
means that these equilibrium equations will be satisfied only approximately.
It is therefore time to examine what this means.

We note that, by equating local and global nodal displacements, con-
tinuity of the structure’s nodal displacements is assured. But for our trian-
gular element the displacement variation between nodes is linear and
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4.9 Discontinuous stresses across an element interface.

therefore continuity across the entire element interfaces is also secured.
Thus we have a continuous displacement field variation throughout the
entire structure. However the strains, and therefore the stresses, are con-
stant in any element, but the stresses will not be continuous from one
element to another. Is this disastrous?

Consider two triangular elements (1) and (2) adjacent to each other as
shown in Fig. 4.9. If we return to the general form of the PVD after trans-
forming it, we can examine the consequence of summing all element con-
tributions, and look at the coefficients of the virtual displacement across
the interface between (1) and (2). If this face is not a loaded surface (p, =
0) then we are grouping two contributions together with a common virtual
displacement, i.e.

[@{@ no, ~ (@' n)c,]ds =0 [4.33]

where the minus sign arises because the normal ‘n’ is in opposite senses for
each element. Thus we may not be satisfying equilibrium exactly at any
point, that is

(atn)O'l # (at f’l)O'z

but it will be satisfied in the mean by making the above integral zero. Or,
to put it another way, the out-of-balance error in stress components will do
no net work over the displacements along the edge.

Moreover, if the element shape functions are capable of representing a
rigid body motion (1 = constant, v = constant, and the rotation), we recall
that the equation of equilibrium is always associated with the correspond-
ing virtual displacement, so the term like u = constant will ensure that the
element equilibrium is satisfied in the x-direction. The rotation freedom will
ensure that there is no resultant moment on an element if there are no body
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Elliptic ‘annulus’

4.10 A stress concentration at point ‘D’.

or surface forces acting upon it. We therefore accept that the FE solution
only satisfies equilibrium in the mean and there will be discontinuities across
interfaces. This does not mean that constant strain triangles, for example,
should not be used. They are popular in describing, for example, elasto-
plastic deformations since the whole element goes plastic and the integrals
are easy. However, small elements may be needed to pick up rapidly varying
strain fields.

Figure 4.10 shows a test case for an elliptical hole in a plate where there
is a very high stress concentration at the point D. The plate is divided into
four-node quadrilateral elements and in one quarter there is a coarse mesh
of six elements and a fine mesh of 24 elements. In Fig. 4.11 it is clear that
three elements around the edge are insufficient. If the mesh is refined then
the discontinuities are much smaller and the maximum stress is predicted
to within a few percent. The ‘jumps’ in the stresses can be used as an indi-
cator of the error, and many codes then employ this measure to refine (or
adapt) the mesh automatically until the errors are uniformly small every-
where. Most codes will take an average value of the stresses at a node
coming from several elements sharing this node. If this is done in Fig. 4.11
we can see that the results will be quite good; except, of course, for the
maximum stress at point D which sits astride the axis of symmetry.

We could further refine the mesh shown on the right of Fig. 4.11. It can
be shown that if the element is capable of having a constant strain field,
then successive mesh refinement will converge on the exact solution. Any
element not capable of representing a constant strain field and a (strain-
free) rigid body displacement is not acceptable. Another way to improve
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4.11 Effect of halving element sizes.

the description is to use higher order elements which use (say) quadratic
displacement fields and twice as many nodes per element.

45 Brick, beam, plate and shell elements

The previous example of a triangle element, usually known as a membrane
element, was selected for simplicity as an introduction to the finite element
process. It is not too difficult to extend this concept to four-sided (‘quad’)
elements with four nodes and eight nodal displacements, or eight- (and
nine-) noded quads with mid-side nodes (and a centre node). It is also pos-
sible to design curvilinear elements better able to cope with curved bound-
aries. The trick here is to ‘map’ the shape of the element edges in terms of
the nodal coordinates in exactly the same way as the displacement field was
‘mapped’ in terms of the nodal displacements. Such ‘isoparametric ele-
ments’ are a very powerful concept. They also have the property that, if the
shape and displacement fields are mapped with respect to a reference unit
square using non-dimensional shape functions, any rigid body movement
still maps into zero strain fields.

The idea for 2D plates readily converts to 3D by deploying tetrahedral
or hexagonal ‘bricks’. A six-sided brick can have eight corner nodes and
three displacement freedoms at each node for example. Higher order 20-
node bricks are popular, having 8 corner nodes and 12 mid-side nodes. Both
the displacement field and edges of such isoparametric elements can rep-
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4.12 A 20-noded curvilinear brick element.

resent curved quadratic shapes. Figure 4.12 shows a curvilinear brick which
will have 20 x 3 = 60 displacement degrees of freedom in total.

The variables {;, {, and ; indicate that the shape in the x, y, z space has
been mapped into the space —1 < { < 1 which introduces the Jacobian, J,
into the element stiffness.

111
k, = [ [ [ BUEBI|dC,dC,d; [4.34]
—1-1-1

1

All the shape functions N are now functions of {;, {, and {; and their con-
tributions to the integral, via B(C), is sampled at the Gauss points for all
elements, the only varying quantity being the Jacobian matrix whose ele-
ments are the derivatives dx/d{;, etc.

A word should be said here about distorted elements since if bricks, and
other isoparametric elements, differ too much from the basic cube then
accuracy suffers. One way of sampling excessive distortion is the variation
in the values of |J| at the Gauss points; many codes will flag warning mes-
sages. It is however possible to have undistorted elements with no |J| vari-
ations but having a very high aspect ratio, that is the element is long and
thin in one direction. If the strain variation in this direction happens to be
gentle than no problems will arise, but in general this will not be so. The
ability of the shape functions to cope with variations in strain in all direc-
tions then becomes fully stretched, and many codes have empirical
measures to flag warnings for excessively long elements.

Brick elements are expensive and produce a stiffness matrix with a high
bandwidth. It is very easy to run out of computer memory when using them
indiscriminately. For example, 100 elements in a row would not be unusual
for a 1D or 2D problem, but if a 3D problem was modelled by 100 x 100 x
100 20-noded bricks the degrees of freedom escalate to 60 million!
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4.13 Slender beam bending.

However, many composite structures are thin-walled shells and plates
which are nevertheless expected to react loads or pressures applied to their
surfaces, i.e. they have to bend. Such structures are amenable to the assump-
tion that the bending strains vary linearly through their thickness and any
in-plane (membrane) loading leads to strains which are constant through
the thickness. The shell or plate bending element, therefore, has a ready-
made strain field assumption through the thickness so that we only need to
describe variations over the plate or shell mid-surface. The simplest bending
element is of course the 1D beam shown displaced in Fig. 4.13.

The standard ‘beam theory’ assumption is that ‘plane sections remain
plane’ and in the figure the unstrained neutral axis is shown displaced by
w(x), and a vertical plane, originally normal to it, has rotated clockwise by
0(x) about the y-axis. Remembering that displacements are very small, we
may approximate the distance above the neutral axis as z and write

u=2z0

The application of compatibility then produces

xx_ax_zdx
and
_du  ow dw

€, ="—+——=0+— 4.35
© 0z ox dx [4.35]

In most cases where beams are slender we find that shear strains are neg-
ligible. We cannot get away with this in laminated composites because the
shear modulus, mainly because of the matrix, is an order of magnitude
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4.14 Cubic beam element freedoms (for continuity of displacement
and slope).

smaller than the flexural modulus, which is mainly due to the much stiffer
fibres. However, for an isotropic material we can neglect shear strains in a
slender beam, i.e. €,, << g,,. If we then put ¢, = 0, then 6 = -dw/dx and

. d?w
dx?

€y = [4.36]

This is the starting point for generating a beam element stiffness. We now
have to choose nodal displacements, and clearly we need continuity of both
w and 6, so the coventional degrees of freedom for a beam element are the
displacements and rotations at the ends of the (say) two-node element
shown in Fig. 4.14.

A cubic polynomial in x is completely defined by these four quantities
and the cubic shape functions N are given in reference 1, as are the conse-
quent beam stiffness and kinematically equivalent loads. If the displace-
ment shape function is cubic, the bending strain given above is clearly
linear. This beam element is very accurate because a cubic is a good high-
order fit. In fact if the beam rigidity E/ is constant, and the beam is loaded
only at chosen nodes, the cubic displacement is exact.

The two solutions for a three-element clamped beam, loaded in two dif-
ferent ways, are shown in Fig. 4.15 where the plots could be bending strains
or moments. Both solutions are approximate. The first solution has a dis-
tributed load and the second solution has a concentrated load (foolishly)
applied in the middle of an element. In the first case the linear distribution
clearly takes a mean path (in fact a least-squares fit), while in the second
case the mean path for the middle element has to attempt to cope with a
discontinuous variation. The FE method tries its best!

If the beam is made of a composite material with high stiffness fibres but
low shear stiffness matrix, then we can no longer put the shear strain g,, to
zZero, so it is necessary to treat the displacement w(x) and rotation 6 sepa-
rately. If a two-node element is still desired then we have to expand both
6 and w as linear variations, and this leads to a constant bending strain along
the element and a shear strain which varies linearly (but constant through
the depth of course). This formulation is known as a Mindlin element. Prob-
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4.15 Clamped beam: two loadings.

ably a more acceptable version is the next higher order element with a mid-
length node and quadratic variation in w and 6.

Flat plate elements are best thought of as 2D versions of beams, with the
same assumptions regarding plane sections remaining plane. If we attempt
to extend the conventional beam element it proves to be more difficult. It
is easy to capture the bending moment variations, but a constant twisting
moment is not straightforward, and the fundamental tenet of good finite
elements is that all constant strain states should be represented to ensure
convergence as the mesh size is refined. There is a host of plate bending
elements with various mixtures of displacement and rotational freedoms,
but probably the most popular has become the 2D version of the Mindlin
beam element. It is straightforward to use and the only point to watch is its
behaviour for very thin plates as the shear strains tend to zero. This forces
the relationship dw/dx = 6 and if these freedoms are no longer independent
the determinant of the stiffness matrix tends to zero (see Section 4.7).

Thin shells have probably generated more academic papers in FE tech-
nology than any other topic. This text is not the place to raise all the issues
and all the solutions. Most codes now have a degenerate or special form of
the 60 degree of freedom brick element. Apart from the expense, it is not
safe simply to use a thin brick as shown in Fig. 4.16(a) since the displace-
ments through the thickness at any location will all be of the same order
(particularly if through-thickness strains are negligible) and this leads again
to the ill-conditioning mentioned in Section 4.7.

We therefore condense the system to that in Fig. 4.16(b) with only eight
nodes along the mid-surface {; = 0, at which all three freedoms (u, v, w)
are used. The remaining freedoms will be the two rotations of the normal
which have to represent the outer surface freedoms, and which have been
removed from Fig. 4.16(a). This can be done by adding a linear variation
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4.16 (a) A brick element ‘thinned’. (b) A ‘respectable’ thin shell
element.

(with §; of course), but other methods deploy a simplifying integration
scheme on the ‘brick functions’ which amounts to the same thing.

46 Model generation

All commercial codes have a pre-processor, or will hook onto another com-
mercial pre-processor, to generate the shape and the meshes. These pre-
processors are becoming very sophisticated and user-friendly, and indeed
the need for human intervention between a computer-aided design (CAD)
description and the FE model is fast disappearing. The need for the user
to tailor the mesh to cope with areas of stress concentration is also theo-
retically disappearing with the emergence of adaptivity routines which
will reduce element size (h refinement) or increase the order of the ele-
ments (p refinement), or both. Most users still prefer to control the gen-
eration of the model, probably by interactive graphics-driven manipulation,
and choosing elements’ material properties, etc., by picking off from a sup-
plied database. Very briefly the model will be generated in the following
order:
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Mesh transition
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4.17 Two ways of grading a mesh.

4.6.1 Geometry specification

If a distinct ‘region’ is generated, and bounded by splines say, then the code
can subdivide the region using isoparametric contour intervals, so the user
needs only to generate regions that may be lines, surfaces, or solids, the
latter often being swept by the former. The regions do have to join seam-
lessly so that artificial cracks or other discontinuities are avoided. Various
checks and blending routines are necessary.

4.6.2 Mesh generation

Having generated regions, and chosen the mesh density in each region,
the user may have to choose or dictate some refinement. Traditional ways
of ensuring all adjacent elements have common nodes are obvious and
shown in Fig. 4.17(a). However, the transition elements shown are quite a
departure from the desirable square, and may be even more distorted if the
real curvilinear region is mapped onto Fig. 4.17(a). A much easier way is to
drop nodal continuity as shown in Fig. 4.17(b), and allow the code to ensure
continuity of displacements by forcing the refined element nodal displace-
ments to follow the displacement pattern along the edges of the coarse
element. This ‘multipoint constraint’ enforcement is available in most codes.

4.6.3 Element types

We have already discussed the types and the option of low- and high-order
elements, but the user still has to decide whether the internal stresses can
be represented by a 1D beam, or 2D plate, or pure membrane shell, a 3D
shell with bending, or a general 3D solid. It is at this stage that the cost of
the model is decided and it is still true that ‘engineering judgement’ is
needed. It is an expensive mistake to use 3D bricks when in doubt. The
modelling is particularly important (and difficult) in layered composites
when we would like to use 2D elements but the threat of through-thickness
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stress variations and local stress concentrations is ever present. Various
strategies for mimicking 3D bricks, to get through-thickness shears and
peeling stresses (but reducing the element stiffness to compete with 2D
plate and shell elements), are discussed in Part III.

4.6.4 Material properties

For isotropic or orthotropic materials the user will simply be asked for
moduli and Poisson’s ratios which occur in the aforementioned E matrix.
For composites the choice is much wider and this aspect is dealt with later.

4.7 Solution procedures

In general solution procedures should not concern the user unless he/she
is asked to choose, or unless the procedure fails! Earlier we stated that the
equations Kr = R have to be assembled and solved, so a few points need to
be made. Firstly any structure needs to be adequately supported so bound-
ary conditions need to be specified. Some displacements (including rota-
tions) will need to be set to zero. This could also include axes of symmetry
if only a half (or a quarter, etc.) of the structure needs to be modelled. The
removal of such displacements from r is always done after the unsupported
stiffness matrix has been assembled, and consequently the corresponding
rows and columns are deleted. Before this happens the equations could not
in fact be solved because an unsupported structure cannot resist loads. Dis-
placements could occur without any applied loads or internal strains, i.e.
there would be a solution to Kr = 0.

If such a solution is possible, K is said to be singular and there are several
purely mathematical ways of testing this. The determinant, for example, is
zero. All element stiffness matrices are singular for the same reason, but
only if they are then not assembled with the correct connectivity will there
be a problem. In practice the determinant check is not realistic since a
perfect ‘zero’ will never be the outcome. Moreover some structures will just
be poorly supported, for example, and then the determinant will just be
‘small’. The determinant of the set of equations in r or d will be zero if there
exists a linear dependency between the displacements (like the rigid body
movement), but this can happen as mentioned previously in Mindlin ele-
ments for example when the shear strains become small. Integration tricks
can be deployed selectively by using reduced integration on the stiffness
terms arising from the shears. Other forms of ‘locking’ can arise and many
codes will flag when and where this occurs. A quantitative measure, known
as a conditioning number, is often quoted. The ratio of maximum to
minimum eigenvalues is one such measure, but is expensive to evaluate
for very large systems. A better way is for the errors to emerge during the
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solution procedure and this also brings out the effect of the computer’s
word-length and rounding errors.

When we speak of solving Kr = R it should be said that K is never
inverted. The number of degrees of freedom can run into hundreds of thou-
sands and the formal inversion would be extraordinarily expensive. Two
solution procedures are used: direct and indirect (iterative) methods. The
direct method is best able to exploit the fact that the stiffness matrix K has
a finite bandwidth, with most off-diagonal terms being zero. This may not
happen naturally during assembly and will depend on the way the regions
and elements are created. There are standard element or node renumber-
ing schemes to ensure that the elements of K are grouped as closely as pos-
sibly to the leading diagonal.

Two direct methods are used, which decompose or factorise K into prod-
ucts of two triangular matrices. Gaussian elimination is used in conjunction
with the frontal solution method (after element optimum renumbering)
when the assembly and factorisation proceed in parallel so that the full set
of equations is never assembled. The other closely related technique is the
Cholesky factorisation which exploits the fact that K is symmetric and posi-
tive definite. The complete matrix is factorised and this time it is assumed
that node renumbering has been optimised. During the course of the fac-
torisation, if the equations are ill-conditioned, the size of the diagonal terms
becomes unacceptably small. One widely used conditioning number is the
‘trace’ (i.e. the sum of the diagonal terms) divided by the lowest term. The
order of magnitude of this number should be less than half of the number
of significant digits in the mantissa of the computer word-length. Another
measure is ‘diagonal decay’, i.e. the ratio of a leading diagonal term after
triangularisation to that of its value before.

Most workstations use 64-bit processors and natural ill-conditioning is
not really a problem nowadays, but commercial codes will have some ver-
sion of a conditioning number, or will stop the solution when the leading
diagonal term becomes too small and inform the user. Sometimes a support
or part of the structure will be excessively flexible and, if this emerges
during the solution procedure, then most codes will flag the location to be
checked.

It should be noted that the solution time of direct methods varies roughly
as the cube of the problem size, and for large 3D problems, with very large
bandwidth brick elements, it is now common to use indirect solvers where
execution time can vary more like °. Indirect iterative methods, such as the
conjugate gradient technique, exploit the fact that if we seek to satisfy equa-
tions of equilibrium any residual errors can be fed back and an improved
solution sought. They rely heavily on the success of choosing a good initial
vector r and much effort has gone into several pre-conditioning techniques.
The success of such methods is judged by the rate of convergence and this
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depends on the nature of the structure, for example are there stiff regions
and flexible regions where Kr — R residuals vary significantly? This is where
the pre-conditioning comes in.

4.8 Results verification

Modern FE codes sell if they are user-friendly, and if the answers look con-
vincing. There is a temptation therefore to conceal rather than eliminate
errors. For example we noted that the Gauss points selected for numerical
integration, in the element stiffness integrals, were optimum choices. These
points are also optimal in sampling the strains, and hence stresses after solu-
tion, assuming that we are using a higher-order element rather than the con-
stant strain variety. Most codes therefore fit curves through the Gauss points
and extrapolate to the element nodes. This results in several values when
more than one element shares the same node, and usually the arithmetic
mean is taken. This can be very accurate, and is usually taken as the ‘exact’
value when estimating errors and adapting the mesh. However, such aver-
aging can conceal large jumps and users should be aware that this has hap-
pened. Another point to remember is that most errors occur at the modelling
stage, which is where experience counts. So how best to present the results
and then be able to judge? Any subjective assessment is best backed by a
second opinion and many company QA procedures insist on this.

The most obvious check is to try another, preferably finer, mesh and ide-
alisation if you can afford it. Noting that the FE method based on the PVD
will tend to underestimate displacements and strains (the solution is ‘over-
stiff”) we expect the stresses to converge from below. The answers there-
fore are not conservative. We have mentioned reduced integration, whereby
the number of Gauss points chosen is less than the optimum, which can be
dangerous, but mostly ‘softens’ the element and is therefore beneficial as
well as cheaper. Displacement plots, which show the exaggerated deflected
shape presented against the background of the undeformed shape, are
impressive and will certainly reveal gross, unlikely looking behaviour. They
will not, however, reveal the same details as stresses and strains which
depend on gradients of the displacement, in fact second derivatives in the
case of some beam and plate elements as we recall. Automatic control of
numerical accuracy, by adapting the first mesh according to the error dis-
tributions in the first solution, is nowadays driving commercial codes in the
direction of a ‘black box’ with minimum user interference other than stating
an acceptable tolerance. Adaptivity can be expensive, but the price of hard-
ware and memory continues to plummet so automatic mesh refinement will
be attractive for a structure where all the elements are of the same family.
The user will be able to see the areas where refinement has taken place and
be able to identify the source of the local stress concentration. Figure 4.18,
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4.18 Adaptivity at work: refining a mesh near a stress singularity.

for example, shows the adaptive meshing happening for a plate with a
concentrated force applied to the bottom left-hand corner, and thereby
producing a singular behaviour.

‘p’ adaptivity, in which the extra degrees of freedom are achieved by
raising the order of the displacement shape polynomials, will leave the
original mesh alone, and the code needs to identify where the elements have
been so treated. We are now at the stage where the mesh does not have to
be displayed at all. The values of stress, strain, or equivalent measure, are
evaluated at all sample points and then contours are displayed.

Selection of the stress to be displayed can be complex. A single equiva-
lent stress such as that used in ductile failure criteria is an example (von
Mises and Tresca), or if the material is brittle then the maximum principal
stress or strain is often chosen. Probably a better choice would be stress
intensity factor or energy release rate for brittle materials. Single scalar
quantities are clearly easier to display, preferably as contours. However, in
general there may be six stress components, and they can be in either local
or global directions. In laminated composites we could be looking also at
stresses in only one of many layers. Commercial codes have only just
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become willing to face this problem. Contours confined to a single lamina
provide one approach, remembering that the lamina may be curved in a
composite shell, for example. Laminated composites tend to fail through
deficiencies in their through-thickness strengths and here it is feasible to
drop a ‘bore hole’ through the laminate and present the variations along it.
Remember that displacements are always continuous but stresses may not
be, even when they should be. If laminae are parallel to the x—y plane, for
example, then ¢, €,, and 6., 6., and o, should be continuous, but if the
laminae have different stiffness properties then o,,, 6,, and ¢, will not be
continuous. These discontinuities between the individual laminae are one
reason why higher-order bricks cannot be used to capture the through-
thickness stresses. Their continuous displacement shapes will produce con-
tinuous strains but discontinuous stresses whatever the component. Recent
developments use ‘zig-zag’ shape functions which try to overcome this
deficiency.

Finally, laminated composites are prone to delaminate, driven by the
‘peel’ tensile stress (mode 1) or shear stress (mode IT). The onset of delam-
ination and its propagation is best predicted by the energy release rate
(rather than stress) but evaluating this is still a current research topic and
only a few commercial codes can presently do this. Failure criteria and many
other topics peculiar to laminated composites are addressed in the follow-
ing chapters.

49 Summary

The basis of the finite element method is absolutely straightforward. In each
element a displacement field ‘shape’ is assumed, i.e. u = Nd.
Compatibility is then applied exactly

e=0du=Bd
The stress—strain law is exact also
o =Ee

The PVD then satisfies equilibrium approximately, leading to an ele-
ment stiffness matrix k, and converting the applied loads to kinematically
equivalent forces P,. The PVD is now summed over the entire structure
which produces a global stiffness matrix K relating the global displacements
r to the global forces R.

The equations Kr = R are solved, and on back-substitutingr - d — € we
recover the strains and stresses in every element.

Special shape functions are used for beams, plates, shells, solids, etc. Gen-
erating the model and solving for the displacements and stresses is made
straightforward by most commercial codes. Poor meshes and FE errors can
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be assessed by looking at stress ‘jumps’ across element interfaces, or else
by stipulating a tolerance and letting the code adapt.

Special requirements for composite elements, whether they be part of
beams, plates or shells, are addressed in the next chapter.

4.10 Reference

1 A Finite Element Primer, National Agency for Finite Element Methods and
Standards, East Kilbride, Scotland, 1986.
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Finite elements applied to composite
materials

D. HITCHINGS

This part of the book builds on the basics of FE analysis presented in Part II. In the
first chapter consideration is given to the particular issues that arise when applying
finite elements to composites, especially to the layered nature of the material. The
second chapter addresses how composites should be defined in FE analysis.
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5

Composites and finite element analysis

5.1 Elements used for composite laminate analysis

The layered nature of composite materials means that only certain element
types can be used efficiently within the FE analysis of composites. It would,
in theory, be possible to stack three-dimensional brick elements with one
layer of bricks representing a ply of composite material. However, this is
generally impractical for two reasons. It would be very expensive to run
such a model if the lay-up had more than a few plies and a real structure
was being represented. In addition, layering brick elements through the
thickness of relatively thin plates leads to very ill-conditioned sets of equa-
tions. For these reasons bricks tend only to be used either where the com-
posite lay-up is very thick and the geometry is more solid than plate like
(not very common), or where there is a 3D stress field in the material, as
can occur at the free edges of plates. In the latter case the 3D nature of the
stress field is only significant over a short length, typically 3-5 thicknesses,
and a small 3D sub-model of the region can be used. Note that these restric-
tions do not apply to the composite solid plate element discussed later.

Figure 5.1 shows a typical four-node quadrilateral (quad) flat plate
element with only in-plane displacements. This is known variously as a 2D
brick or a membrane (since it can only sustain stresses in the plane of the
material) element. Such elements are widely used in composite analysis for
modelling the in-plane behaviour of flat plates. However, care must be
taken to ensure that both the stresses and the displacements are zero out
of the element’s plane, otherwise the model is not valid. With layered com-
posites this depends upon the orientation of the plies. If the lay-up is not
balanced then this 2D element cannot be used.

In practice it is much more usual to employ some form of plate or shell
element. A typical nine-node shell element is shown in Fig. 5.2. The shell is
modelled in terms of its mid-surface plane rather than the complete volume.
The standard bending theory assumption that the strains only have a com-
bination of constant and linear variation through the thickness of the shell

71
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5.1 Four-node 2D solid element.

5.2 Nine-node Mindlin shell element.

is then used. This means that the deformation of the shell can then be
defined by stretching (for the constant strain components) and rotation (for
the linear strain components) of the shell’s mid-thickness surface.

Both the two-dimensional solid and the general plate element can occur
as quadrilaterals or triangles. They all have nodes at the corners of the
element and some also have mid-side nodes. A few have internal nodes, as
shown in Fig. 5.2, and this can be especially useful for improving the accu-
racy of the shell’s bending behaviour. Generally, the more nodes on the
element, the coarser the finite element mesh can be. For a mesh with a given
number of nodes, the more nodes per single element then the more accu-
rate the results will be.

Provided that the shell is thin then shell theory gives a very good descrip-
tion of its behaviour. It is assumed that there is no stress or strain in the
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direction normal to the plane of the mid-surface. With this idealised behav-
iour it is only necessary to define displacements and rotations as the degrees
of freedom on the element mid-surface plane. However, if classical Kirch-
hoff thin shell theory is used it is found to be very difficult to derive finite
elements for other than very simple (rectangular) geometries. This arises
from the need to differentiate the transverse displacements twice to derive
the bending strains. Definition of the shape functions and determination of
the Jacobian matrix for arbitrary shaped elements has not proven to be
simple in such cases. Instead, other shell theories have been used, typically
the Mindlin theory. These allow for transverse shear strains to occur so that
the bending strains take the form

%+ ’ﬂ
dx’ ¢ dx’

€y = [5.1]
where the ‘prime’ denotes that these are coordinates and displacements in
local coordinates in the plane and normal to the mid-thickness surface. There
are other similar terms for the other bending strains. This definition of strain
only requires first derivatives to be found, which greatly simplifies the deter-
mination of the Jacobian matrix. In addition, the formulation allows for the
transverse displacements w” and the rotations 6., and 6, to be interpolated
independently of each other. It is this which greatly simplifies the definition
of the shape functions. Standard shape functions of the form

wi

Wy

W,:[N1N2N3 Nm]
Wi
and [5.2]
0,,
0.,
ex’ =[N1N2N3 '--Nm]

0

Xm

can be used, where the shape function for the ith node, N,, is the standard
simple form used for many 2D membrane plate and brick elements.

The Mindlin theory allows shear strains to occur and so these must be
also included in the element behaviour and take the typical form (constant
through the thickness):

e ow’
X'z ox’

+6, [5.3]
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In reality the transverse strains cannot be constant through the thickness
since they must be zero on the top and bottom faces of the plate, and they
will generally vary in some parabolic form through the thickness. The trans-
verse shears in the Mindlin theory therefore represent average through-
thickness values. For thin plates the consequence of the variation through
the thickness is second order and this average value is quite sufficient for
good accuracy. However, as discussed later, some care must be taken when
using composite materials if a shear correction factor is employed to
account for the through-thickness variation.

A typical Mindlin shell element is shown in Fig. 5.2. This is a quadrilat-
eral element with nine nodes. There are six degrees of freedom at each
node, three translations and three rotations. They act in the global coordi-
nate directions, allowing the shell elements to be assembled in the usual
manner. It is possible to define an eight-node version of the element,
without the mid-face node, but for general shell bending the centre node is
very beneficial in allowing the shape functions to better define the curva-
ture of the shell. It has the same effect in giving a better description of the
geometry; the eight-node quad formulation tends to flatten the geometry
at the centre of the element so that, typically, a spherical shape is rather
distorted.

For an element to be useful it must pass the ‘patch test’. For a thin shell
this means that it must reproduce a constant pure bending for any amount
of element distortion. This is illustrated in Fig. 5.3 for the nine-node quad.
The mesh of distorted elements (upper left window) models a simple square
plate which is supported so that rigid body motions are just suppressed
(upper right window). It is loaded by equal and opposite moments along
the two edges parallel to the y-axis (middle left). The bending distortion is
relatively complicated since it includes anti-clastic curvature (middle right).
However, the direct x-stress is constant across the top face and the other
stress components are zero (lower windows). The element passes the patch
test.

One significant problem associated with the Mindlin element is that the
basic formulation only requires rotational freedoms that bend the plate. If
the structure were a single smooth surface then only the three translation
and the two bending rotational freedoms (five in all) would be required.
However, this smooth geometry is not generally the case and all three rota-
tions have to be included, giving an element with six degrees of freedom
per node. The third rotation is the in-plane rotation about the normal to
the plane. It is often called the ‘drilling’ rotation and is shown in Fig. 5.4.
This is an in-plane degree of freedom but it is not a natural freedom and is
difficult to include properly within the in-plane strain definitions. In most
FE systems it is treated as a fictitious freedom that does not couple to any
of the other degrees of freedom on the element. It has to have some
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5.3 Patch test for nine-node Mindlin shell element.

5.4 Drilling freedoms for the nine-node Mindlin plate element.
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5.5 Eight-node semi-Loof plate element.

stiffness associated with it to prevent the stiffness matrix being singular and
is often assigned to have an arbitrary small stiffness. For linear problems
the precise formulation of the fictitious drilling stiffness is not too impor-
tant. However, for non-linear problems it can be significant. If it is not
defined with care then it can have an in-plane stiffness for in-plane rigid
body displacements of the structure, which can then provide a significant
error for the large deflection and buckling response. For non-linear dynamic
problems the drilling freedom must have a mass assigned to it (typically
equal to the average rotational inertia of the two out-of-plane rotations) in
order to preserve the correct inertias in the global coordinate system.

It is possible to formulate a four-node Mindlin shell element but some
care must then be taken with the numerical integration scheme used. The
transverse shear terms must be integrated to a lower order than exact inte-
gration would suggest to prevent the element from being significantly over-
stiff. This has the consequence that the element has some zero strain energy
non-rigid body displaced shapes, so-called ‘hour glassing modes’ and, if the
boundaries are not sufficiently supported, these modes can propagate
throughout the structure and lead to ridiculous results.

The problem of what to do about the drilling freedoms has been
addressed with the semi-Loof element, as shown in Fig. 5.5. The typical form
of this element has eight nodes with the three global translations as degrees
of freedom at the nodes. In addition it has two local rotational freedoms
along each edge and these are located at the points on the edge which inter-
sect with the lines through the Gauss integration points; the ‘Loof” points.
This gives the element 32 degrees of freedom. Since the rotations are not
at corners, and only the local rotations are used, they do not need to be
transformed to global directions for assembly and the need for drilling free-
doms does not arise. One obvious problem with this element is that some
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5.6 Eighteen-node ‘solid’ plate element.

of the degrees of freedom occur at points other than nodes and a non-
standard assembly process is required. The semi-Loof element also includes
the effects of transverse shear strains. Comparisons between the behaviour
of Mindlin and semi-Loof elements indicate that they are comparable in
accuracy and efficiency.

Another form of shell element is the ‘solid’ shell, as shown in Fig. 5.6.
This has the geometrical definition of a solid element but the behaviour of
a shell. The element has any number of nodes, depending upon the actual
formulation, but only two nodes through its thickness. The element in Fig.
5.6 has nine nodes on the top surface, nine on the bottom and no mid-
thickness nodes, giving an 18-node element. Each node has only transla-
tional freedoms so that no rotational freedoms are explicitly defined and
there is no problem with drilling rotations. It has exactly the same number
of freedoms as the nine-node Mindlin plate element of Fig. 5.2. The com-
ponents of the translational displacements in the plane of the element
define both the stretching and the bending of the element. The average
value from a pair of nodes on the top and bottom surface is equivalent to
in-plane stretching, and their difference divided by the shell thickness gives
the mid-plane rotations.

The Mindlin shell and the ‘solid’ shell do not have exactly equivalent
degrees of freedom. The ‘solid’ shell has no drilling freedom but it does have
two through-thickness translational freedoms, allowing through-thickness
direct strains (and stresses) to occur, which the Mindlin element does not
have. It would be quite possible to use a standard brick element to model
the shape but, if this were done, it is found that the conventional brick is
over-stiff and the thinner the plate, the more over-stiff it becomes. To over-
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come this in the ‘solid’ shell a modified stress/strain relationship is used.
Here it is assumed that there is no Poisson coupling between the local
stresses in the mid-surface plane of the element and the local through-
thickness stresses. Hence, in the coordinates defined by the local mid-plane
directions, the material stress—strain matrix has the form:

Enw E, 0 Ey 0 0

Ey En 0 Ey 0 0
0 0 E; O 0 0

Eqy Eyp 0 Ey O 0
0 0 0 0 Ess Es
0 0 0 0 E¢ Egl

E = (54]

The terms E,y, E}; = E,;, Ey, are the in-plane direct stress/strain proper-
ties and have values corresponding to two-dimensional plane stress prop-
erties, E, the in-plane shear modulus and E,, = Eyy, Ey = Ey, are the in-plane
shear coupling terms and are often zero. Es; is the through-thickness
Young’s modulus and this has no coupling to any other term in the mater-
ial stiffness matrix. The remaining terms, Ess, Ess = Egs, Eq are the trans-
verse shear terms and they do not couple to any other terms in the material
stiffness matrix.

The ‘solid’ thick shell element then has a behaviour almost identical to that
of the nine-node Mindlin element. The ‘solid’ shell has various advantages
over the Mindlin element. It has no fictitious drilling freedom and elements
can be stacked through the plate thickness if required. It does have one major
disadvantage in that the through-thickness stiffness makes it rather more
prone to rounding error in the solution process. It is also more cumbersome
to model corners and other connections with the ‘solid’ shell. However, it
does have the advantage of coupling directly to standard brick elements.

5.2 Accuracy of the finite element solution

The finite element is, by its very nature, only an approximate solution, as
already explained in Section 4.4. It only guarantees that equilibrium is
satisfied on average over an element. It does not satisfy equilibrium over
any smaller volume than a complete element. Obviously, as the mesh size
is decreased then equilibrium is satisfied over smaller and smaller patches.
The art of using the FE method lies in designing a mesh that will deliver
results to an acceptable accuracy but with a mesh density that is not
prohibitively expensive to run.

The fineness of the mesh can be important for linear static problems but
it is especially important for the analysis of non-linear and dynamic prob-
lems, where repeated solutions of the equations are required.
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The significance of the mesh, and the corresponding loss of accuracy if
the mesh is too coarse, can be illustrated by the analysis of a simple can-
tilever under its own weight (Fig. 5.7). The model is fully fixed at the can-
tilevered end. It has been modelled using four meshes, a 3 x 10 mesh of
four-node quad elements, a 9 x 30 mesh of four-node quad elements and
the same with eight-node quads. The results of these four analyses are
shown in Fig. 5.7. Figure 5.7(a) shows the deflected shape and the direct
stress distribution along the top edge of the beam for the eight-node quad
elements. The results for these two meshes are almost identical. The peak
displacement is 23 mm and the peak stress 4 MN/m®” The agreement means
that these two meshes have converged and the results are accurate. Figure
5.7(b) gives the results for the four-node quads. The coarse 3 x 10 mesh
gives very poor results. The peak displacement is 8.9 mm (about one quarter
of the converged results of the high order elements) and the peak stress is
17 MN/m?. The finer 9 x 30 mesh of four-node quads is much closer to the
converged values with 19 mm and 40 MN/m?, but these are still significantly
below the converged values.

The displacement assumption used in forming the FE stiffness matrix
means that the finite element will be over-stiff, as mentioned in Section 4.8.
The above results show that a coarse mesh of low-order elements is very
over-stiff. The coarse mesh of higher-order elements gives a more flexible
solution and the finer the mesh, the better the solution. This is generally the
case and it is now standard practice to use a relatively coarse mesh of high-
order elements for preference, rather than a fine mesh of low-order ones.

One point to note from this exercise is that very little can be read into
the form of either the displacement or stress curves. Even when the error
1s very significant the general shape and pattern of the results are correct.
When using the FE method there is always a danger that the mesh might
not be fine enough. This can be best investigated by carrying out a series of
runs with different mesh densities or different element types and checking
for convergence. Some indication of the error in the solution can also be
obtained by looking at stress differences across element boundaries, and
the magnitude of stresses on external boundaries that should be stress free.
However, the correct interpretation of these values does require some ex-
perience. Such interpretations have been automated in some systems in the
form of error estimates (see Sections 4.7 and 4.8).

5.3 Other modelling techniques useful for
composite analysis

Before discussing the specific application of finite elements to composite
analysis some other aspects of FE modelling that are useful for composites
will be illustrated. Composites are usually used as laminated materials and
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5.7 Cantilever beam results: (a) quad 8; (b) quad 4.
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5.8 Rigid link connection.

failure can then occur by delamination. The effect of delamination has to
be modelled on some occasions and special techniques are required if
bending elements are being used. One such method is to represent a delam-
ination by modelling two half-thicknesses of the plate in the area of the
delamination and the full plate in non-delaminated areas. It is then neces-
sary to join the two parts of the model and this can be done with rigid links.

Consider the rigid link shown as the thick line in Fig. 5.8. This connects
nodes 1 and 2 together so that the displacements r; to r¢ at node 1 are
related to the displacements p; to ps at node 2. Since the link is rigid the
displacements r and p are related as:

P1 1 0 0 0 ¢ =-blln

P2 010 - 0 alln

P3| _ 001 b —-a O0]|n (5.5]
P4 000 1 0 O0f|n

Ps 000 0 1 O0]|lnrn

Lped LO O O O O 1 Jlrd

The above equation defines a ‘multipoint constraint’ that can be used to
relate freedoms together. It can be used to link together two plates (or
beams) so that they behave as a single entity (see also Section 4.6).

To illustrate the use of multipoint constraint (MPC) equations the
example shown in Fig. 5.9 is used. This is a simply supported beam loaded
by a central concentrated force, applied to the neutral surface. It has been
modelled using a line of conventional beam elements. Also, it has been mod-
elled with the central span split into two halves, with beams along the centre
line of the top half, and beams along the centre line of the bottom half.
These two central beams have a combined depth equal to the actual depth
of the full beam. In the complete beam model all of the corresponding
nodes on the top and bottom beams are connected by rigid links. This is
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5.9 Rigid link example.

illustrated schematically by the heavy vertical lines in Fig. 5.9. Finally a
beam with a delamination in the central span is modelled by only connect-
ing the rigid links at the ends of the two central span beams. These are, of
course, also connected by rigid links to the outer spans.

The displacement results for this model are shown in Fig. 5.10. The Nolink
window gives the displaced shape of the simple beam model. It has a
maximum deflection of 1.0 x 107 units at the centre of the beam. For the
Link model the top and bottom central span beams have been completely
joined and the displaced shape and the central deflection are identical to
those of the simple beam model. The Split beam results are where the rigid
links are only connected at the ends of the upper and lower half beams. In
this case the lower central beam deflects more than the upper one and the
maximum deflection is greater than the simple beam. This illustrates how a
delamination can be modelled using beam elements. Exactly the same
process, but with more links, can be used to model delaminations in plates.

5.4 Changes of mesh density

It is often necessary to increase the accuracy of the FE solution locally,
typically in regions of stress concentrations or if edge effects are to be in-
cluded in the analysis. As explained in Section 4.8, the accuracy of the solution
can be increased by either using elements with higher-order shape functions
(p-refinement), or by using a finer mesh of elements (h-refinement).
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5.10 Rigid link example results.

Examples of both of these refinements are given in Fig. 5.7. They are both
used in practice and generally a combination of the two is most efficient.
There are some software systems that use p-refinement and automatically
increase the order of the element shape functions in local regions of high
stress. If h-refinement is being used then there are various ways of gener-
ating meshes for locally increasing the mesh density. Some of these are
illustrated in Fig. 5.11.

The Fine mesh in Fig. 5.11 uses the same size element over the complete
structure. For real structures this is generally too expensive and some form
of local refinement is required. The Pave (paving) method changes the mesh
density by using only quadrilateral elements. This causes some elements
to become distorted with respect to the optimum square shape for the
element. This technique becomes rather cumbersome unless it is done auto-
matically by the mesh generating program. The Triangle form uses a com-
bination of quadrilateral and triangular elements, with the triangles being
used in the mesh density transition region. The MPC method has an abrupt
change in the mesh density. Generally this should not be done since it will
give rise to gaps along the edges of the discontinuous mesh. However, if
the finite element system has the relevant facilities, compatibility can be
restored by using MPCs. The constraints are defined by the shape functions
of the elements in the coarser part of the mesh. This method can be very
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5.11 Changing mesh densities.

efficient, both for the mesh generation and for the solution process. All of
the constraints can be defined and implemented at the element level.

5.5 Modelling of composite materials

A laminated composite material differs from a metal in two ways: it is a
layered material built up from stacked plies of material, and, in addition,
each ply is not isotropic but has directional properties with a higher stiff-
ness in the directions of the fibres, which can change from ply to ply.

In most lay-ups the thickness is small compared with the other dimen-
sions of the material so that it forms a plate type structure, and this is used
to simplify the description. It is assumed that the strains through the thick-
ness of the plate vary linearly with the local through-thickness, z’, direction.
As seen in Chapter 3, the total strain can then be written in terms of the
mid-plane strain, €°, and the curvature, k. Since the material properties vary
from layer to layer, the stress variation through the thickness of the com-
posite is much more complicated than that of the strains. In general there
will be discontinuous changes of stress from ply to ply. This means that a
simple material stiffness cannot be used for a laminated material. Instead
laminate theory is employed. The stresses are integrated through the thick-
ness of the plate. The average values of the stress give the in-plane loads N
and the linear variation gives the couples M. The end loads and moments
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5.12 Mid-plane forces and moments.

are shown in Fig. 5.12. Using the elasticity properties of each ply, rotated to
the appropriate fibre directions, the end loads and moments can be related
to the mid-plane strains €° and the curvatures x to give the laminate
stiffness properties as

e olld] 54
M| B D]llk

The full derivation of the above equation may be found in Section 3.1
(equations [3.18] and [3.19]). A are the in-plane stiffness properties, D are
the bending stiffness properties and B is the coupling that arises between
the bending and the membrane action. If the composite lay-up is symmet-
ric from top to bottom then B is a null matrix and there is no coupling
between membrane and bending response. All three matrices, A, B, D, are
(3 x 3) matrices and A and D are symmetric. For a laminated composite B
need not be symmetric. If extra through-thickness stiffness is introduced (z-
pinning) and this is not exactly normal to the mid-plane then B is not likely
to be symmetric.

For shell elements that include transverse shear strains, typically the
Mindlin and the semi-Loof forms, then the effects of the transverse shear
strains, ¥, and v,., must be added to the classical plate formulation. In this
case the laminate stiffness matrix takes the form



86 Finite elements applied to composite materials

N A B 0 ||€°
M(=B D 0 ||k [5.7]
Q 0 0 Ally

where A is the (2 x 2) laminate transverse material property matrix. Q is
the matrix of transverse shear forces (Q,, and Q,, in Fig. 5.12).

The ‘solid’ shell has additional terms arising from the direct strains
through the thickness of the shell. These special elements only have two
nodes (i.e. linear shape functions) through the thickness of the element
(Section 5.1). They have only translational freedoms so that both their geo-
metrical description and their nodal freedoms correspond to standard
bricks. Where they differ is in terms of their internal strain definitions. The
16- and 18-node brick elements have strains defined in the local directions
of the mid-surface plane. The material stress/strain properties are then
modified so that there is no Poisson coupling between the stress in the local
mid-plane and strains normal to this plane.

With this idealisation it is found that the brick elements have almost
exactly the same response as the corresponding plate elements. If the local
coordinates in the mid-plane are {; and &, and the local coordinate normal
to the plane is {; then the element interpolation functions can be written
(for the 18-node brick) in the form

I/l, = (ao +a1C1 +a2C2 +G3C12 +a4C1C2 +615C22 +a6C12C2
+G7C1C22 +618C12C22)+§3(b0 +biG + b0 ‘*‘b3C12 [5.8]
+b4G, 8, '|'bSCz2 +b6C12C2 +b7C1C22 +bsC12§22)

where u” is the displacement in local mid-plane coordinates. The interpola-
tions for v" and w’ are of an identical form. When these displacements are
differentiated to give the strains the first line (with the ‘a’ coefficients) leads
to the mid-plane, €°, strains and the second line (with the ‘b’ coefficients)
leads to the curvature, k. By expressing the strains in terms of mid-plane
strains and curvature the material properties can be defined in terms of the
ABD matrix. The ‘solid’ element includes the three in-plane strains, the two
transverse shear strains and, in addition, the through-thickness strain. The
equivalent ABD matrix then takes the form

NT[A 0 B 0 07
Zl 1o c 0 0 o0]le,
M[=[B 0 D 0 0]« [5.9]
Q| |0 0 0 A, Ay
Pl 0 0 0 A, Aly.
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Z is the through-thickness force and ¢, the corresponding through-
thickness strain which are related by the material stiffness C. There are also
linear variation components to the transverse shear strains which give rise
to forces P, and linear variations of the transverse shear strains, y,. These
are coupled by the integrated material property matrix A,. There can also
be coupling terms A, but these are zero for a symmetric lay-up. Note that
the zero coupling between the through-thickness stresses and strains and
the in-plane stresses and strains are preserved to give accurate bending
behaviour.

There are also equivalent laminate matrices representing the effects of
different coefficients of expansion for the thermal loading of composite
materials. These equivalent coefficient of expansion matrices are found in
a similar manner to the elasticity matrices.

5.6 Examples of finite element composite analysis

To illustrate the accuracy of laminate theory, the example shown in Fig. 5.13
is used. Here a three-layer sandwich plate is modelled as a full 3D model
using standard 20-node brick elements; three of these bricks are stacked
through the thickness to model the laminate (right-hand windows). A plate
model using laminate theory to form the material stiffness is also analysed
using eight-node Mindlin shell elements (left-hand windows). The plate is
loaded by a normal pressure and is simply supported around the edges. The
structure has a double symmetry so that only one quarter of the plate is
modelled and symmetry boundary conditions are used. The top windows
show the mesh used. The deflected shape is shown in the centre windows,
with the solid model having a peak central deflection of 3.5 x 107° units and
the laminated plate 3.6 X 10 units. The displacements are almost identical.
The lower windows show contours of the von Mises stress on the top surface
of both models. The contour shapes are very similar and the stress levels
are close. In this example the laminated plate model has both higher deflec-
tions and higher stresses and is probably more accurate. The composite’s
stresses, within the code used here, are calculated on the mid-thickness of
the ply. To obtain the surface stress as accurately as possible a very thin
‘witness layer’ (a ply of ‘zero’ thickness) was added to the top and bottom
surfaces of the laminate. This is quite a common modelling strategy if
surface stresses are required.

The response of the nine-node Mindlin element and the 18-node ‘solid’
shell are compared in Fig. 5.14. Here a flat plate is cantilevered and loaded
by a distributed normal pressure on the lower face of the row of tip ele-
ments. The mesh densities are identical for the two models. The conven-
tional Mindlin plate element is called QD09 (left-hand windows) and the
solid shell element is HC18 (right-hand windows). In both cases the plates
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5.13 Laminate test example.

are made of CFRP material with a quasi-isotropic lay-up of 0, 90, +45 and
—45° plies. The ‘solid’ shell model only has one element through the thick-
ness and uses the same laminate formulation as the shell element.

It will be seen that both models have identical maximum displacements
of 2.6 units (upper windows). The distribution of von Mises equivalent stress
on the top surface of both of the models is also shown (second row of
windows). The stress results are identical in both the magnitude and the
distribution of the contours.

As a further comparison between the Mindlin shell and the ‘solid’ shell
the first two buckling mode shapes and buckling loads are shown, for one
end loaded by an in-plane compressive force (lower two windows). It is
immediately obvious that the mode shapes are identical, as are the buck-
ling loads for each model. This comparison indicates that the large deflec-
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5.14 Plate and ‘solid’ shell comparison.

tion, geometrically non-linear, behaviour of the two elements will be the
same, and this has been borne out in practice.

The Mindlin and semi-Loof elements have transverse strains, and in some
codes a transverse shear factor is required to correct for the fact that the
element assumes a constant transverse shear through the thickness, whereas
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5.15 Transverse shear stress variations.

it must be zero at the surfaces. For a homogeneous material the transverse
shear varies parabolically through the thickness and the correction factor
is 5/6. For composites this is not necessarily correct, depending upon the
details of the lay-up. For most practical lay-ups a correction factor of unity
can be used with no significant loss of accuracy. There are a small number
of cases where this is not so, and one such case was encountered during a
test against an analytical solution where the composite had only four layers
of either 0° or 90° fibres. Two configurations were analysed, one with the 0°
fibres as the two outer layers with the 90° layers in the centre, and the
second with this reversed; 90° as the two outer layers and 0° in the centre.
The through-thickness transverse shear stresses for these models are
plotted in Fig. 5.15.

The laminate with the 90° fibres on the outside is shown in the left-hand
window of Fig. 5.15 and that with the 0° fibres on the outside in the right-
hand window. The model with the 0° outside fibres has a transverse shear
that is almost constant and a factor of unity would be applicable. The
lay-up with the 90° fibres on the outside surface has transverse shear stress
constant only over the inner layers and some factor very different from
unity is needed.

5.7 Effect of lay-up on plate response

The lay-up of the plies can have a significant effect upon the response of a
plate (as explained in Section 3.1.5). Figure 5.16 shows the displaced shapes
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5.16 Plate lay-up variation response.

of various lay-ups. In the unloaded state all of the plates are flat and square.
They are all subjected to the same in-plane tensile load. The top window
shows two views of the displaced shape of a quasi-isotropic lay-up. The
displacements are all in the plane of the plate. There is an extension due to
the load and a small amount of lateral contraction. The response is very
similar to that of a metal (isotropic) plate.

The second pair of windows shows the response of a four-ply plate, where
the top two layers have fibres at 0° and the bottom two layers have fibres
at 90°. In-plane there is an extension but no lateral contraction; the effec-
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5.17 Coupled bending-twisting.

tive Poisson’s ratio is zero. However, the out-of-plane response shown in
the right hand window illustrates that there is significant out-of-plane
bending. The non-symmetry in the lay-up gives non-zero values to the B
matrix of the laminate stiffness and this strongly couples the in-plane and
bending response.

The third window pair shows the response of a four-ply laminate where
the outer two plies are at +45° and the inner two are at —45°. The response
to the in-plane loading is substantially the same as for the quasi-isotropic
lay-up except, since there are no stiff fibres at 0°, the extension is signifi-
cantly greater than for the quasi-isotropic case. There is no significant out-
of-plane response for this case even though the lay-up is not symmetric.

The bottom window pair show the response of the four-ply lay-up where
all of the plies have fibres at 45°. This causes an in-plane shearing action of
the plate. The lay-up is symmetric so that there is no out of plane move-
ment. Of course, all of these responses would be predicted by standard
Classical Laminate Theory.

The coupling between loadings and displacements that can arise with
unbalanced or unsymmetric lay-ups can be used to advantage. One problem
with aircraft behaviour is associated with aeroelastic instability, either
dynamically with flutter or statically with divergence. Both effects arise as
a consequence of the wing moving vertically with respect to the airflow,
which causes an increase in the effective incidence of the wing which, in
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turn, causes more lift, making the wing move further and thereby provid-
ing positive feedback. Under some circumstances this can cause an uncon-
trolled increase in the lift on the wing. With a composite this effect can be
alleviated by arranging for a coupling between the tension in the wing skin
and its transverse shear deflection. For maximum resistance to bending, the
fibres in the top and bottom skins should be oriented along the wing span.
However, if they are angled slightly backwards, then the combination of
tension in the bottom wing skin and compression in the top, together with
the in-plane shear coupling, causes the wing to twist with a negative inci-
dence which can cancel the induced lift due to bending. This ‘aeroelastic
coupling’ is illustrated in Fig. 5.17. There are two models here that are iden-
tical except that the Angle model has fibres at —9° to the span direction
in the top and bottom skins. The wings are loaded by an upward pressure
corresponding to the lift. The Straight model (with fibres only in the span-
wise direction) has no rotation of the cross-section but the Angled one
has a small negative rotation. This small twist is sufficient to reduce the lift
considerably.

This example serves to show that the behaviour of composite structures
can be significantly different from metallic structures and this can be used
to advantage. However, there are some negative consequences. It will be
seen that the Angled model has a larger total deflection because the angled
fibres means the wing is more flexible in bending. Also, although not shown
here, there is a significant increase in the stresses in the wing skins.

5.8 Summary

Most composite structures are best modelled using plate and shell finite
elements. These have to be modified to allow for laminated materials. In
particular, the strains have to be expressed in terms of mid-plane strains
and curvatures. Laminated composite theory can also be extended to allow
for thick shell and through-thickness effects.

The finite element is approximate and the accuracy of the solution
depends heavily upon the choice of elements and mesh density. The mesh
should be densest where the rate of change of stress is greatest.

Special facilities within programs such as rigid links and multi-point
constraints can be used to ease the mesh generation and other modelling
problems.

Conventional laminate theory can be used to construct finite elements
for use in the analysis of composite structures. The consequences of dif-
ferent lay-ups can be included directly into the FE model. The resulting
coupling effects then arise naturally in the model.
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Definition of composite materials in finite
element analysis

6.1 Introduction

When setting up an FE model using composite materials all of the geo-
metric modelling difficulties associated with metal structures are present
and have to be addressed. In addition other modelling difficulties associ-
ated with the non-homogeneous and layered nature of the material adds
extra complications and possibilities of making mistakes. These complica-
tions are discussed in this chapter.

6.2 Geometry and topology

Under this heading the needs for representing layer orientation, stacking
sequence and thickness variation are considered. These pose few problems
for flat or cylindrically curved laminates but any double curvature intro-
duces severe difficulties. Firstly in identifying what the actual geometry will
be (and this depends upon the method of lay-up), and secondly in provid-
ing a concise definition of that geometry in order to ease the burden of data
generation. These issues are not merely academic quibbles but are funda-
mental to the problem definition and will have as much bearing on the valid-
ity of the analysis as most of the mathematical and numerical approximations
used in the element formulations. A brief discussion follows on three very
common geometries that couple the lay-up to the geometrical description,
and many more than these three can be encountered in practice.

6.2.1 Conical surfaces

It is obvious from Fig. 6.1 that in any method of lay-up that involves par-
allel tape laying or broadgoods wrapping, it is impossible to achieve con-
stant layer orientation relative to the generators of a cone in a continuous
ply. Small amounts of conical taper may be accommodated by shearing of
the parallel tape, but this must result in either discontinuities in fibre lay-

94
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6.1 Conical surface lay-up.

up to match the varying layer width in the axial direction, or ‘working’ of
the material by thinning out the wider end relative to the narrower one. If
a body or surface with significant conical taper is produced, it will most
probably be made by filament winding, in which case varying thickness or
fibre volume fraction must always accompany constant angle winding since
the same number of fibres will be present in any layer at each tapering
section. The extent to which this phenomenon appears in the guise of thick-
ness or volume fraction variation depends on the method of compaction
used in the curing. Other practical solutions are to produce 3D laminates
with fibre discontinuities and layers not parallel to the surface, by overlap-
ping tape wrapping or convolute/involute preforms.

6.2.2 Double curvature in tape or sheet-laid materials

Many components are laid up from parallel tape, fabric sheet (pre-impreg-
nated or wet laid) or broadgoods either worked over doubly curved formers
or, more commonly, laid up flat and then warm worked into a pair of curved
moulds. Wherever conventional lamination with continuous plies is at-
tempted the same fundamental geometric problems occur. The thickness or
the volume fraction varies with local curvature since the same amount of
fibre is contained in sections of varying developed length. There is also some
loss of control of the local fibre orientation as the working process causes
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fibre movement to accommodate the surface shape. In components cured in
matched male/female moulds constant thickness and orientation of each
layer relative to the natural surface coordinates would normally be assumed.
The variation would then appear as a non-constant volume fraction.

It is most improbable that any FE system would permit variation of the
material properties across an element and the best that could be expected
is a varying thickness, and even this is not common. Correct representation
of curved shell flexural properties is thus highly improbable. At best it will
be discontinuous and at worst it will be ignored altogether.

6.2.3 Filament wound doubly curved surfaces

Components with large amounts of double curvature, especially closed
shells and solids, are usually produced by filament winding. This gives
precise control of the fibre orientation but it cannot avoid the universal
problem of continuous materials — the containment of the same number of
fibres in varying cross-sections. In spherically curved regions we may lose
the nominal layered composition altogether as frequent fibre cross-over
occurs so as to maintain the fibre continuity and orientation control. Large
variations in thickness and/or volume fraction are inevitable and orienta-
tions will usually be a compromise between the design requirement and
the mechanically achievable. The numerical model needs to reflect what is
mechanically achievable (that is, what is made) rather than an ideal design
requirement.

6.3 Fibre orientation

One obvious difference between metals and composites is the fibrous
nature of the composites. The fibre direction has to be specified in the input
to the FE package. Most composite structures are made by laying up sheets
of material with the fibres having different directions in each sheet. In this
case all of the fibres are at fixed known angles to each other, and only the
direction of one layer has to be defined to specify the alignment of the lay-
up. This reference direction is usually called the ‘zero angle fibre’, but it
need not be. Associated with this is the lay-up direction defined by the man-
ufacturing stacking sequence. This is especially important for non-balanced
lay-ups since an incorrect specification of the lay-up direction will reverse
the signs in the B matrix coupling terms, and in-plane/bending interaction
will be in the wrong direction. It can also be important for stress recovery
to ensure that if ply ‘n’ is being investigated then this is the same ply
throughout the model.

In the simplest case the fibres lie at a fixed angle with respect to the global
x,y axes and a single angle, 6 (see Fig. 6.2), can be used. A more compli-
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6.2 Fibre orientation.

cated lay-up can have the fibre angle changing with respect to the x,y axes,
as illustrated by the angle @ in Fig. 6.2. With some FE systems the refer-
ence fibre angle must be constant within an element. In this case the curved
geometry of the fibres must be idealised by straight line segments.

For 3D problems the fibre angle definition can be complicated. In three
dimensions the structure generally forms a 2D surface curving in 3D space.
The fibres have to lie within this surface, but can take up an arbitrary
orientation within it. Where possible the fibre angle definition should be
related to the method used to construct the composite structure. If a draping
program is used to define the geometry then the local fibre angle should be
computed as part of the draping analysis. These angles can then be used in
the FE model. If the fibre angle in the element is constant then the angle
at the centroid of the element can be used. If varying fibre angles are
allowed then the nodal values of the angles can be used and the element
shape functions employed to interpolate for the fibre angle at the Gauss
points.

If the structure is constructed by filament winding the orientation of the
winding head can be used to define the fibre direction. To define this at any
point the relative coordinates between the two points ‘¢’ and ‘w’ (Fig. 6.3)
can be used. Point ‘¢’ is typically a node on the element and ‘w’ is the posi-
tion of the winding head. Using the coordinates of these two points then

AX =Xy — X IAY = Yy — VoI AZ = 2y — Ze

and these define a vector direction v of the fibre winding direction. In many
circumstances these offsets are constant over large portions of the winding
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6.3 Filament wound composite.

process. The nodal coordinates of the element are known from the mesh
generation process, and from these and the element shape function the
vector of the normal to the surface at point ‘c’, v,, can be found. Forming
the cross product (v, X v,) X v, gives the local fibre direction in the plane of
the layer surface. The layer stacking sequence can also be defined as being
in the direction of the component of the vector ‘c’ to ‘w’ that is normal to
the shell surface.

If the fibres are curving in space but remain parallel to each other then
the fibre reference line method can be used. The coordinates of a general
line are used to define the reference for the fibre direction and these can
be given as a table of coordinates. A line is generated through these using
a parametric cubic spline curve. The most convenient way of doing this is
to calculate the length between points as

Ly =1+ \/[(xm —Xi)z + (Vi — yz')2 +(Zim — Zi)z] with/, =0 [6.1]

and then use a cubic spline to interpolate for x in terms of / and, separately,
for y in terms of / and for z in terms of /. The derivatives dx/dl, dy/dl and
dz/dl at a point can easily be found from the cubic spline. These essentially
give the fibre winding direction vector and the operations described for the
filament winding procedure used to give the actual reference line direction
within the surface of the element. This is necessary since, although the fibre
reference line coordinate points lie in the surface, the cubic spline fit need
not lie exactly in the finite element surface since these are two different
approximate representations. The form of the general definition is given in
Fig. 6.4. A second auxilliary line 1,2’,3",4’, 5’ can be defined to specify the
normal direction from the shell surface to define the stacking sequence. This
line must not pass through the shell surface, but it does not need to be
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6.4 General reference line.

defined as accurately as the fibre reference line since it is only defining the
direction above or below the plate.

In the worst case the fibre directions have to be specified manually. This
should be avoided if at all possible since it is both time-consuming and very
error-prone. This input can be done by making the fibre direction specifi-
cation part of the mesh generation process. Ax, Ay and Az can be specified
at each of the mesh generation nodes and the offsets at all other points
generated in the same way that the nodes themselves are generated.

6.4 Volume fraction and ply thickness variations

When the curvature of the composite skin is changing rapidly, or when a
tapered filament wound component is produced, then it is likely that both
the effective ply thickness and the volume fraction of the ply will be chang-
ing. If the curvature is rapid these changes will not be well controlled and
their magnitude will change for each component that is made, although they
are nominally identical. Such variations can probably only be treated in any
realistic way by some statistical method based upon the average values. For
the case of tapered filament wound structures the variations of volume frac-
tion and ply thickness can be calculated from the geometry of the structure
and the dimensions of the fibre. In principle, the individual ABD matrices
can be re-calculated at each Gauss point of each element, in the same way
that material properties can be made a function of temperature. However,
this is likely to be impractical both from the point of view of computer time
and from the extra storage requirements. If the taper is relatively gentle
then a more practical approach is to idealise the structure so that average
values of volume fraction and ply thickness are taken over areas of the
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surface, with abrupt changes from area to area. (This is the same idea as
representing a tapered beam by step changes in the cross-section proper-
ties with constant properties along segments of the beam.) The idealised
model is used to define the stiffness of the structure. The deflections and
hence the strains in the structure can then be found. Basic layer stresses in
the plies can be found from strains using the idealised properties. More
precise stresses can be found at critical points by using the exact volume
fraction and equivalent ply thickness at these points. This can be done ‘by
hand’ outside the FE program if the number of critical points is small.

6.5 Laminate ply drop-off

One of the advantages of composite materials is that, as a part of the laying-
up operations, laminae can be added or removed over relatively small areas.
This allows the structure to be locally reinforced by having more layers in
highly stressed areas. If plies are removed, and the ply drop-off length is
smaller than the element length, then the drop-offs can be modelled by
abrupt changes in material properties at element boundaries (where the
element boundary is arranged to occur at the ply drop-off point). However,
if the drop off is gradual, or a fine mesh has been used in the drop-off area,
which is quite likely if this is a highly stressed region, then the ABD matri-
ces must be changed to represent the drop-off. This can have the effect of
requiring a large number of different material models (material ABD
matrices) to be defined for the structure.

The reinforcing of a corner by using ply drop-offs is illustrated schemati-
cally in Fig. 6.5. For the vertical side the plies all drop-off so that only the
first layer is left. Horizontally another form of drop-off is shown. Here the
centre layers 2 and 3 are dropped-off but the two outer layers are retained
and used to enclose the ends that were dropped-off. It can be very conve-
nient to model this situation with a four-layer material model everywhere,

Zero thickness
layers 2 and 3

Layer 1 NG e

6.5 Ply drop-off.
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and where a ply does not exist to give it a zero thickness when forming
the ABD matrix. The zero thickness will mean that the layer does not
contribute to the material stiffness matrix but the identity of the layer is
retained. Having zero thickness also means that the layer will have no
stresses associated with it. However, retaining the same number of layers
throughout the skin greatly simplifies the data interpretation at the end of
the analysis. Layer 4 will always be the outer layer but where it has zero
thickness it will have zero stress. To draw contours of stresses on the outer
layer the user has only to select layer 4. Where the thickness is zero, no con-
tours are drawn.

This procedure can often be made considerably easier if just one lay-up
is defined initially, with all four materials present with their true stiffnesses.
When the mesh is generated then zero thickness for non-existent layers
can be specified for the relevant groups of elements. This removes the need
for the user to define many different material lay-ups. It also allows easier
graphical validation of the model. The user can draw each layer separately,
with the plotting routine not drawing zero thickness layers. The alternative
of having many different material lay-up models is much more difficult to
verify to ensure that the correct lay-up has been used at each location.

6.6 Modelling real structures

The process of modelling real composite structures can be significantly
more complicated and more open to error than with metallic structures. To
illustrate the difficulties the wing box form of structure shown in Fig. 6.6 is
considered. This box consists of two large skin areas on the top and bottom
surfaces, full depth spars at the front and rear and, in this case, a central
spar. Finally, there is a series of longitudinal stiffeners. There will also be
internal ribs. All of these components will have variations in the number of
plies along their length, and possibly also across their width. In addition,
there will be local reinforcing of the form illustrated in Fig. 6.5 at all junc-

6.6 Wing box example.
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tions. If a detailed analysis of the structure is required then all of these
details will have to be modelled. This is significantly more complex than the
equivalent metal structure where, typically, local stiffening can be repre-
sented as ‘lumped area’ bar members.

It makes sense to approach the modelling of the structure in the same
form as it is built. The top skin can be modelled, in this case as a flat plate,
but including the stiffeners attached to the plate since these are often made
integral with the plate. The bottom skin is modelled similarly. If the bottom
skin is a mirror image of the top skin (admittedly not a likely situation)
then mirroring facilities in the mesh generation program can be used if they
are available. However, care must be taken since the mirroring might be
correct for defining the geometry but it may not mirror the lay-up of the
composite material correctly. This can depend upon exactly how the orien-
tation of the stacking sequence is defined and how the top and bottom
surface layers are specified. However, if only a half-model of the structure
is constructed, and symmetry enforced by appropriate boundary conditions,
then the lay-up will be correct.

The spars are often constructed separately from the skins and, similarly,
they are most easily modelled as separate components. In the manufactur-
ing process the spars can be bonded to the skins but the modelling of
the connection is not so easy. Even for co-bonded spars they are effectively
separate items in many cases.

If the plate models for the skins and the spar are combined, by overlay-
ing the horizontal portions of the spar with the corresponding skin ele-
ments, then the geometry represented will be as shown in the lower diagram
of Fig. 6.7. This is not the same as the true geometry shown in the top of
the figure. The offsets of the spar flanges have not been included and,
to make the geometry correct, the vertical spar web is over-long. There
are various ways to obtain a better model, depending upon the facilities
available within the FE software being used.

One possibility is to add layers with a finite thickness but zero stiffness
to the top and bottom spar flanges as shown in the lower part of Fig. 6.8.
The zero stiffness layers must be wider than the skin thickness so that the
geometric centre lines of the modified flanges are in the same position as
the centre lines of the skins. The non-zero stiffness spar material is then cor-
rectly located and is the correct geometrical shape (upper part of Fig. 6.8).

An alternative is to model the correct skin and spar geometries and to
connect them together with rigid links to allow for the offset between the
centre lines. The components are modelled separately using plate elements.
Corresponding nodes on the centre line of the skin elements and the spar
elements are connected via rigid links. These cause plane sections to remain
plane but still allow both bending and shear deflections to occur. Where it
is available, especially where a large number of rigid links can be quickly
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and accurately specified, this is the most direct form coupling plate com-
ponents in built-up structures. This approach is shown in Fig. 6.9.

For these situations the brick form of shell elements allows a direct
representation of the true geometry, which would give the easiest way to
model it. However, there are some other aspects of plate modelling where
the brick form is not so convenient.
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6.9 Rigid link component coupling.

Figure 6.10 shows an example of a real structure that was designed as an
impact test model. It consisted of a flat plate stiffened by top hat stiffeners.
Low-velocity impact tests were conducted on the plate to measure its com-
pression after impact strength. There are various things to note about the
model. There is a local mesh refinement in the area that was impacted. This
degree of refinement was required to obtain the correct dynamic response.
There is an abrupt change in mesh density, but multi-point constraints were
applied to freedoms along this interface to maintain an exact satisfaction
of compatibility. Three effects were of interest here, the dynamic response,
the in-plane material degradation due to the impact and possible debond-
ing of the foot of the stiffener from the plate. To model the possibility of
debonding, layers of plates were introduced and these were coupled with
rigid links. The details of the layers and the rigid links are shown in the
lower two windows of Fig. 6.10.

6.7 Non-linearities in composite analysis

Non-linear behaviour can arise in various ways in composite structures.
Since many composite structures consist of thin plates they are prone to
large deflection non-linear response. This response is modelled in exactly
the same way as for metallic structures; the composite nature of the ma-
terial does not introduce any significant problems. The only difference for
composites is the non-isotropic nature of the material. The orientation of
the material changes with large deflections, and in almost all cases this con-
sists of a rigid body rotation with either the stresses/strains rotated to suit
the material direction (up-dated Lagrangian solution), or the material prop-
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6.10 A composite stiffened panel model.

erty matrix is rotated to suit the stress/strain directions (total Lagrangian
solution). The up-dated Lagrangian form is probably most suitable for these
plate type problems since the stresses and strains are naturally defined in
local element coordinate systems in the basic element definition.

If the structure is under a compressive load it can buckle and lose its stiff-
ness. Fig. 6.11 shows the response of a plate under a compressive load. The
top graph shows the vertical tip deflection against loading factor. As the
load increases there is no significant vertical movement until the strut
buckles. This occurs at a load factor of 1, the buckling load. There is then a
sudden large sideways movement. This graph shows both the loading and
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6.11 Post-buckling displacement response.

unloading behaviour. The unloading curve follows the loading exactly. The
lower left window shows the deflected shape at a load factor of 2.5 (2.5
times the buckling load). This is the actual (not magnified) diplacement and
it will be seen that the deflection is very large.

The loading/unloading Cauchy stress response on the top ply at the built
in end of the strut are shown in the bottom graph of Fig. 6.11. There is an
initial compressive stress, which is too low to register on the scale of this
plot. After the strut buckles the large deflection response gives bending
stresses that rise rapidly. The loading/unloading response curves are iden-
tical to each other and overlay each other on the plot.

For lower aspect ratio plate structures under compression a similar non-
linear response is observed. There can be further complications for these
geometries since it is common for plates to have more than one mode, with
close buckling loads. In such a case the plate can buckle in an initial mode
and then, after a small increase in the load factor, jump to another mode.
This effect can sometimes cause difficulties in the numerical non-linear
solution process.

There can be some circumstances where fibrous materials have a non-
linear elasticity property. This can arise because, as the fibre composite is
pulled, the inclined fibres tend to align themselves with the load and hence
the stiffness increases, as shown in Fig. 6.12. Similarly, when compressed the
fibres tend to become less vertical. The model in this example consists of
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6.12 Fibre re-alignment.

diagonal and horizontal pin jointed members to represent the fibres. The
model is pulled in the vertical direction. The horizontal fibres will be in
compression and are likely to buckle. To represent this simply in the model
they have been assigned a Young’s modulus one-tenth that of the diagonal
members. The load-deflection behaviour follows the same curve for both
loading and unloading so that the behaviour is non-linear elastic. This effect
is particularly noticeable for composites with stiff fibres and a flexible
matrix, typically biological tissue material. There can also be some loss of
effective stiffness in compression due to fibres buckling. This tends to give
rise to a bi-linear load deflection curve with one modulus in tension and
another, lower, value in compression. When the structure is under a tensile
load it becomes stiffer and when the load is compressive it is more flexible.
The tensile behaviour only is shown in Fig. 6.12.

6.8 Failure models

Most structural composite materials are brittle and this can lead to a non-
linear behaviour involving brittle fracture. There are three main forms of
failure: fibre fracture, matrix cracking (see Section 3.2) and delamination.
All composites will have some degree of delamination, broken fibres and
cracked matrix, but this is only significant if the damage grows to occupy
large and/or critical areas of the material so that the component is starting



108 Finite elements applied to composite materials

to lose its integrity. The analysis of the failure of composite materials is still
very much a research topic, both in terms of modelling and obtaining experi-
mental data on the characteristics of such failures. The numerical models
can be based upon stress/strain values, critical energy release values or
damage mechanics considerations. There can also be combinations of
effects; a crack can be initiated depending upon a critical stress value, with
the propagation depending upon released energy values. Other problems
include how to combine stresses in a multi-axial stress states, and interac-
tions between the different materials within the composite.

An interactive failure criterion, such as Tsai-Hill (see Section 3.3.2),
which gives only a global indication of failure, is not useful for modelling
progressive damage growth. A criterion such as that developed by Chang
and Chang' is much better since it is possible to distinguish individual
failure modes and the order in which they occur.

If fibre failure occurs in a layer then all the in-plane elasticity properties
for that layer could be set to zero. If matrix failure occurs then all the in-
plane properties except the fibre modulus could be set to zero. This would
be done at the Gauss integration points. In fact, in order to preserve nu-
merical stability of the solution, the properties would be set to a value of
0.001 times their intact stiffness, rather than to zero. This still makes their
effective stiffness zero but they retain a ‘numerical’ stiffness. A new ABD
matrix is then formed for this section using the degraded properties. Such
a model would not include delamination failure.

There are variations to the latter approach which would represent the
material more accurately. For example, woven material does not lose its
strength entirely after initial failure, a significant stiffness being retained.
Associated models do not degrade the stiffness property to zero immedi-
ately, but do so over a stress range.

If there is an existing crack in the material then fracture mechanics can
be used to decide if the crack will propagate (see Chapter 8). The energy
released, AG, by the crack advancing over an area AA is found and the ratio
AG/AA is compared with the critical energy release rate, AG/AA, for the
material. If the critical energy is exceeded then the crack is assumed to
propagate. There are three possible modes of crack propagation, shown in
Fig. 6.13, and each has different critical energies. One as yet unresolved
problem is how to combine these energies if mixed mode crack propaga-
tion occurs. In all current fracture mechanics models the analyst has to
model the possible crack surfaces within the FE model. This can be done
in various ways. One possibility is to use a rigid link model, as shown in
Fig. 5.9. The plate is modelled as two (or more) parallel plates joined
together with rigid links. The forces within the links are used to calculate
the internal forces and hence the energy release as the crack opens. If the
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6.13 Crack opening modes.

critical energy is exceeded then the corresponding link can be ‘broken’ to
simulate the crack growth.

An alternative is to employ a special interface element in place of the
links, using the concept of damage mechanics. The element, which has
the load—deflection material properties shown in Fig. 6.14,> models both the
initial fracture and the subsequent crack growth. The element is sometimes
referred to as a ‘resin-rich’ element. In practice, for realistic values of
modulus, fracture load and critical strain energy release, a fine mesh of these
elements is required in the region of the crack tip for accurate results. Also,
the crack propagation phase has a negative stiffness and this requires
special care in the choice of solution method. The element includes the
effect of first failure with the fracture load F., and the subsequent fracture
mechanics is incorporated in the choice of the area under the load-deflec-
tion curve. The latter is made equal to the critical energy release. For a single
mode of crack opening this approach can work well. However, multimode
crack propagation is not straightforward. Only one area is available in the
model but there are three critical energy release modes, which requires an
approximation to be made.

The interface element is still being investigated and various computa-
tional problems remain to be solved. Apart from the approximation
required for multimode cracks, a fine mesh is required at the crack tip in
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order for the crack to propagate smoothly. For real material properties this
requires a very fine mesh. If the mesh is not fine enough the crack propa-
gates to one Gauss point in the element and then stops until the stresses
from the crack tip singularity have risen sufficiently at this point to exceed
the fracture load, and the crack then propagates to the next Gauss point.
In practice, to make the solution viable, an automatic mesh refinement algo-
rithm is required to move a fine mesh along with the crack front. This
procedure becomes very cumbersome and difficult to do for a surface crack
propagating into a solid. It is almost impossible to do for multiple cracks
that can merge, and for handling the crack propagation across structural
discontinuities, e.g. under the foot of a stiffener.

6.9 Determination of energy release rates

One requirement for crack propagation modelling is the necessity to deter-
mine whether (and how) a crack will propagate. If a sharp crack or delam-
ination exists in a structure then there will be a singular stress field around
the crack tip. If the material failure is determined solely on a strength basis
then this singularity would exceed the strength and the crack front would
travel through the structure, advancing at the speed of sound within the
material. Such behaviour is only observed for very brittle materials. For
most materials the crack might not propagate and, when it does, it travels
at a speed much lower than the speed of sound. This has led to other
theories being developed to explain crack propagation, notably linear
elastic fracture mechanics (see Chapter 8). The latter assumes that around
the crack tip there is a very localised area which, for metals, yields and so
limits the peak stresses. As already mentioned, the crack will then grow if
the energy it releases by propagating is greater than a critical energy release
rate for the material. If the energy caused by propagation is less than the
critical value the crack will not propagate. The critical energy release rate,
G, is a measured material property.

There are various methods for calculating the energy release rate within
a theoretical model. Classical methods are typified by the J-integral method,
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6.15 DCB model for Virtual Crack Closure.

which is not very suitable for finite element analysis and, instead, other tech-
niques such as the Virtual Crack Closure (VCC) method are used.

A typical test specimen for determining G., the double cantilever beam
(DCB), is shown in Fig. 6.15. This is a cantilever where a crack has been
induced at the free end, in this case on the centre line of the beam, although
it could be off-centre. The model is loaded by applying equal and opposite
displacements at the free end, as shown by the arrows in the bottom
window. The displacements at the nodes on the crack surface adjacent to
the tip are recorded. Forces are then applied at these nodes of a sufficient
magnitude just to join the nodes together, that is to close the crack by one
node spacing. The work required to close the crack is then the forces times
the displacements before the crack was closed. This work would be equal
to the energy released if the crack opened by one node. If the energy
released per unit area is greater than the critical value, G., then the crack
will propagate. In practice, provided the crack tip is not near to either end
of the beam, the local stress field around the tip will be the same when the
crack opens by one element; that is the two stress fields are self-similar. In
this case only one calculation need be done, as follows. The displacements
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are recorded as before but now the inter-element forces at the crack tip
node are found. These will be identical to the forces required to close the
crack at the adjacent node and can be used instead of these.

One advantage of this form of calculation is that it is based on energy
rather than stress. This means that the stresses at the crack tip do not need
to be found accurately and a very fine mesh at the crack tip is not required.
However, the mesh must be sufficiently fine for the stress field to be
self-similar and for the implied use of superposition to be valid.

The problem is complicated by real cracks in that, as shown in Fig. 6.13,
there are three modes of crack opening and they all have very different criti-
cal energy release rates. If a pure crack opening mode is present then the
appropriate G, is used. Typically, for the DCB specimen with the crack on
the centre line this is a pure mode I crack. However, if the crack is off-centre
then the crack will involve a mixture of mode I and mode II. The VCC
method can be used to find the energy in each mode by splitting the stress
fields into symmetric and anti-symmetric components with respect to the
crack line. The symmetric components give the mode I energy release and
the anti-symmetric components the mode II. In practice this reduces to
taking appropriate combinations of forces and displacements for calculat-
ing the energy release. There are other methods of calculating the mode
components of the energy release and, although they all agree to within a
small percentage with the total energy released, they can differ in their esti-
mates of the mode components. It is not clear yet which calculation is most
relevant. The whole process is yet more complicated by the fact that there
is no well-established way of combining the individual mode energy
releases to give a single equivalent energy release. Such an equivalent value
is needed since there is assumed to be only one crack front,even when there
are multiple modes involved.

The single step VCC method described above is a commonly available
technique but it does have limits to its applicability. A more general method
is the two-step crack opening method. Here, a first run is conducted and the
inter-element forces on the faces of the elements at the crack tip are
recorded. The crack is then advanced across these elements and the new
model is re-run to find the displacements across the newly opened elements.
These displacements can then be multiplied by the previously recorded
forces holding the elements together to give the energy released. This
approach does not require the stress field to be self-similar between
opening and closing.

6.10 Crack propagation modelling

A number of crack propagation models are being developed but these are
all still at the research stage (see also Chapter 9). One method is to use the
interface element previously mentioned. This element has the advantage
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that it includes both a failure load, to give a stress-based crack initiation
model, and an energy release component for fracture mechanics (propaga-
tion). There are problems though. The negative stiffness associated with the
energy release can be numerically unstable and requires special solution
methods. Also, for realistic values of failure strength and energy release, a
fine mesh is required near the crack tip. In practice this means that some
form of moving mesh algorithm is required as the crack propagates, in order
to have realistic model sizes (see Section 4.8).

Another approach has recently been developed by workers in Sweden.**
The structure is loaded incrementally and the crack allowed to grow by a
small amount defined by the load energy release rates. The model also
allows for large deflection, and buckling of the structure, either locally asso-
ciated with the delamination, or globally. It also includes a contact model
to permit the two surfaces of the crack to come together in some areas.

For energy release fracture mechanics there must be an existing crack,
or we must use a stress model for crack initiation. For thin shells we can
use the same rigid link model as for stress-based failure, but calculate link
forces only. The virtual crack closure method is used to determine the
energy release rates. An equivalent failure energy of the form

,Y_ :|:G1[X/'P]ila +|:G11[X/'P]:|b+|:G1u[X,—P
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is defined where:

X; = the position variables,

P =the loading,

G = the energy release rates,

a,b,c = material constants,

n = the number of nodes on crack front,

The position variables are chosen to satisfy the criterion

The crack front is then moved to the position defined by the X; values.
Again, in practice, this requires a fine mesh region around the crack front
and some form of moving mesh algorithm is required to model any real
problem. As with the interface element, this procedure becomes computa-
tionally very complicated for real geometries.

6.11 Micromechanical models using finite
element analysis

The FE method can also be used to model the behaviour of the material on
the micromechanical level, either for a single layer or for a group of layers.
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Typically a small section of a plate is considered, say a square in plan view,
where the side lengths are equal to the plate thickness and a complete depth
of lay-up. This section is then modelled in detail using brick elements to rep-
resent the matrix, typically assuming isotropic properties for this, and thin
membrane plates to represent the fibres. These plates will have anisotropic
properties. The plates are positioned corresponding to the centre line of the
fibres. This model is small and a fine mesh of elements can be used.

The model can be used for various purposes but one thing that can be
done is to load it as if it were in a testing machine. All the through-thick-
ness edges can be held fixed and then boundary displacements applied to
give unit strains to the model. For the first load case a set of displacements
is applied to opposite faces so that the only strain is in the x-direction, and
this has a unit value. This is displacement set D,. The reaction forces on all
of the fixed boundaries are computed and these give a set of reaction forces
R;. This process is then repeated, but now applying a set of displacements
D, that give rise to a unit y-strain. Again the reaction forces are computed
and saved as R,. This is repeated for all of the other possible strain com-
ponents, typically the in-plane shear, unit curvature x,,, unit curvature x,,,
unit twisting x,,, unit transverse shear €,, and unit transverse shear ¢,,. All
of these displacements are combined into a single matrix:

D=[D,D,D;...] [6.3]
and the boundary reaction forces into the single reaction matrix

R=[R/R,R; .. ] [6.4]
The equivalent material property matrix is then given by:

_R'D
v

E [6.5]

where V is the volume of the model.
A result for a 30% fibre volume unidirectional carbon fibre/epoxy layer,
compared with the Halpin-Tsai equations® (H-T), yields the comparison:

FE: E,; =785GPa, Ey =7.78GPa, G\, =2.08 GPa, v, = 0.35
H-T: E; =785GPa, Ey =2.96GPa, G, = 1.10GPa, v, = 0.35

It is seen that the results for ‘longitudinal’ properties (E;; and vy,)
compare well, but there are big discrepancies between the ‘transverse’ prop-
erties (E, and Gy,). The details of the modelling, by whichever approach,
are clearly far more critical for the latter properties.

These material properties can then be used as the ABD matrix in a shell
analysis. From this the mid-plane strains and curvatures at a point can be
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computed as usual. However, a more detailed stress recovery can be made
by applying these strains to the ‘test specimen’ model. In fact, the stresses
for the unit strain load cases will be available from the preliminary mater-
ial property calculation, so that these can be linearly combined using the
actual strains at a point as multiplying factors to give a highly detailed stress
distribution calculation. If the ‘test specimen’ mesh is fine then components
such as interlaminar shear and through-thickness direct stresses will also be
recovered. Also, other runs of the ‘test specimen’ (possibly another model
of larger dimensions) can be used to investigate free edge stresses and asso-
ciated stress concentrations.

The above approach can be used for other problems where highly
detailed real geometry effects can be ‘smeared’ to give an average overall
behaviour. The accuracy of the approach then depends upon the microme-
chanical model used. A typical case is the single fibre/matrix structure
shown in Fig. 6.16. The structure can include the fibre material, the matrix
material and the interface between fibre and matrix. This combination is
then modelled using the fine mesh shown in Fig. 6.17. The six unit strain
boundary conditions, to get the equivalent in-plane stiffness properties, are
applied as imposed displacements on all boundary nodes.

For example, for a constant unit shear strain, €,

_Jdv  Idw

1=, 2%
& dz dy

[6.6]
and this is satisfied if the displacements v = 0.5z* and w = 0.5y* are applied
on the boundary nodes, z* and y* being the coordinate values for the
boundary nodes. The other five unit strains are dealt with in a similar
manner.

Such models also give the detailed stress distributions around the fibre
once the actual strains have been determined. The equivalent smeared
properties are used in a global model (exactly equivalent to the laminate
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ABD material matrix), the problem is solved and the strains at any point
computed. The stresses from the unit strain load cases are then multiplied
by the appropriate actual strain, and summed to give the detailed stress field
around the individual fibre at this point in the material.

6.12 Smart composites: the inclusion of
piezo-electric effects

There is currently much interest in producing ‘smart’ composites where, for
example, areas of piezo-electric materials are included in the lay-up. A
piezo-electric material is one where the elastic stress/strain behaviour
couples with the electric voltage charge behaviour. In one dimension the
elastic equilibrium equation (ignoring body forces) becomes

2 2
du FA IV

EA =
dx? dx?

0 [6.7]

and the electric equilibrium equation is

2 2
8u+GA8V

FA
0x2 dx?2

=0 [6.8]

where u is the displacement at a point, V is the voltage and A the area of
the element. The material properties are E, Young’s modulus; G, the dielec-
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tric constant at constant strain; and F, the piezo-electric constant. The
electric field is

v
0x

[6.9]

Taking the basic structural variables as the displacements u, v, w, and the
electric variable as the voltage V, then the FE field interpolation is

u
"l—u=Nd
w
%
o
d,
NNO 0o 0N 0 0 o0 .1ld
Jo N~ 0 0 0N 0 0 .|
o 0N O 0 0 N 0 .| - [6-10]
O 0 0 N 0 0 0 N,
Ld,

where N; is the usual shape function at node i and d,, d, and d; are the
displacements at node 1 and d, is the voltage at node 1, etc. Equation
[6.10] can be compared directly with equation [4.24]. The mechanical and
electrical strains can be written in a single matrix equation

g=D'u=DNd =Bd [6.11]

where D' is the matrix of differential operators including the the usual dis-
placements of derivatives for the mechanical strains, and also the voltage
derivatives for the electrical field. Equation [6.11] compares with equation
[4.25].

The combined elastic/piezo-electric stiffness form of the equilibrium
equations is then

P=| BEBdVd=kd [6.12]
where the material property matrix, E, is now
E F
E= [ } [6.13]
F' -G

The property matrix E is symmetric but the minus sign on the dielectric
constant variable, G, means that it is not positive definite. It then follows
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that neither the element stiffness matrix nor the assembled stiffness matrix
is positive definite. The matrix solver must be able to cope with non-
positive definite matrices.

The nodal displacement vector now has displacements and a voltage as
nodal freedoms. The nodal load vector now has terms for forces corre-
sponding to the nodal displacements and charges corresponding to the
voltage. The piezo-electric coupling term, F, couples the elastic and electric
fields together so that an applied voltage or charge can cause a displace-
ment or a reaction force. Similarly, an applied force or displacement
causes a voltage or charge change. This coupling allows the structural
response to be modified by an applied voltage to represent one area of
piezo-electric material acting as a sensor and another area acting as a force
transducer.

Layers of piezo-electric film can be included in a composite lay-up to
form a piezo-electric composite material. Laminate theory can be applied
to this to form an equivalent laminate ABD matrix including the elastic,
the electric and the piezo-electric effects. Provided sufficient forces can be
generated by the piezo-electric material and, provided it can withstand
the resulting stresses, a very versatile structure can be produced. However,
many current piezo-electric materials do not generate much force and they
are very brittle and weak. It is worth noting that piezo-electric materials
have been used for some time. The crystals in crystal-controlled oscillators
are piezo-electric and it is the low loss factor associated with mechanical
vibrations that make them such stable and precisely defined frequency
sources.

The dynamic behaviour of piezo-electric materials also presents some
numerical difficulties. In addition to the non-positive definite form of the
stiffness matrix there is no inertia associated with the electric variables. This
leads to the possibility of some modes having infinite frequencies. However,
if an eigenvalue extraction scheme such as the Lanczos method is used,
these modes are not computed and present no numerical difficulties.

6.13 Summary

The description of real composite structures can be difficult to model. Fibre
directions for materials where the fibres are arbitrarily oriented in 3D space
are difficult to define. Variations of lay-up thickness and volume fraction
have to be approximated in the model. These parameters have to be con-
stant over an element in most systems.

Ply drop-offs can be modelled by assigning zero material properties to
the dropped-off plies. For real structures either rigid links or fictitious plies
can then be used to model the offsets between plate and shell centre-line
surfaces.
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The thin plate-like nature of composite structures means that they are

likely to be prone to vibration, buckling and large deflection behaviour.
These can all be modelled using standard FE theory.

Composite materials can fail by matrix and fibre fracture (material degra-

dation) and by ply delamination (fracture mechanics). Models for material
degradation are well developed but the modelling methods for delamina-
tion growth are still being developed.

Detailed 3D FE models can be used to construct micro-mechanical

models of either individual fibres or bundles of fibres.
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Part IV

Analytical and numerical modelling

C. SOUTIS

This final part of the book is sub-divided into several chapters, each dealing with an
important issue in the application of FRP composites. The approach is to present
analytical models alongside FE representations. The former are always needed,
when available, to confirm the FE models. Specific issues addressed include: inter-
laminar stresses, fracture, delamination, joints and fatigue.
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7

Interlaminar stresses and free-edge effects

71 Introduction

The classical laminate theory (CLT) discussed in Section 3.1 provides a
simple and direct procedure for calculating stresses and strains. It is,
however, not very accurate since it does not satisfy equations of elasticity
at every point. This can be shown through a simple example. Consider a
laminate subjected to uniaxial tensile loading in the x-direction (N,=N, N,
= N,,=0), as shown in Fig. 7.1. The mid-plane strains and plate curvatures
can be obtained from equation [7.1] (see equations [3.18] and [3.19]) and
then the lamina stresses calculated according to equation [7.2] (see equa-
tion [3.15]). In general, the lamina stresses o, and t,, will not vanish even
on a free boundary parallel to the x-axis; for example at the edge of the
laminate y = +b as shown in Fig. 7.1. This violates the equilibrium bound-
ary conditions on the edge.

M 2
LM B D]k
(o, Qn Qz Qm €% Qn Qz Qm Ky

o, | =|0n On Ox||e [+70n 0»n Osl|x, [7.2]
LTy d; Oz Oxn 0On i Yy Oz Oxn 0On LKy

Also, CLT ignores shear deformations of layers because of the assump-
tion that the bond between two laminae is non-shear deformable. However,
when the generalised plane stresses are applied to a laminate, different
layers tend to slide over each other because of the differences in their elastic
constants. The two most important properties for determining the presence
and magnitude of interlaminar stresses are Poisson’s ratio, v;,, and the shear
coupling term, ny,.

Since the layers are elastically connected through their faces, shear
stresses are developed on the faces of each layer. The transverse stresses
(64 T, Ty,) thus produced (see Fig. 7.1) are negligible in the regions away

123
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No

X

7.1 Stress components developed in a laminate loaded in tension in
the x-direction.

from the laminate boundaries. Therefore, the laminate analysis already pre-
sented is quite adequate in the regions away from the boundary. However,
the state of stress near a free boundary is not a plane stress state but a 3D
stress state.

The general principles can be demonstrated by reference to the cross-ply
laminate with (0/90/0°)lay-up illustrated in Fig. 7.2. The laminate is loaded
in tension in the longitudinal direction. The lateral, y-direction, contraction
of the 0° layers is opposed by the high lateral stiffness of the 90° layer. As
predicted by CLIT, this results in tensile o, in the 0° layers, counterbalanced
by compressive o, in the 90° layer; Fig. 7.2(a). The forces acting on a small
element of material are shown in Fig. 7.2(b). To satisfy lateral equilibrium
at the free edge of the laminate, the resultant force due to these G, stresses
(forces 1 and 2 in Fig. 7.2b), must be opposed by the resultant of the inter-
laminar shear stress, T,, (force 3 in Fig. 7.2b). These forces form a couple
which is opposed by the resultant of the direct stress, 6. (forces 4 and 5 in
Fig. 7.2b) near the free edge.'

In many cases the transverse stresses, especially the transverse shear
stress, may be quite large near the edge and may influence the failure of
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@ Compressive force due to o, in 0° near laminate edge

® Tensile force due to o, in 0° at laminate edge
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7.2 Details of the stresses on an element near the edge of a cross-ply

laminate.’

laminates. A large interlaminar shear stress at the interface may produce
matrix cracks at the free edge. These cracks then propagate into the lami-
nate and initiate delaminations, leading to stiffness loss and premature
failure of the laminate. This initial damage at the laminate edge is quite
important for fatigue loading in which the ultimate failure may initiate at
the edges. In this chapter the methods of evaluation of the interlaminar
stresses and their influence on the ultimate fracture of the laminates are

discussed.
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7.2 Development of classical analysis

The interlaminar stress distributions at the free edge of a finite width angle-
ply laminate have been examined by many investigators in recent years.
Although some of the related studies, which later led to important devel-
opments on the subject, were reported by Pagano and Halpin,” Pagano,™*
Whitney and Leissa’ and Whitney,” the first direct approach to the problem
was made by Puppo and Evensen,” who derived an approximate formula-
tion in which each of the anisotropic laminae of the laminate were repre-
sented by a model that contained an anisotropic plane stress layer and an
isotropic shear layer. Each anisotropic layer was assumed to carry only in-
plane loads and to exist in a state of generalised plane stress, whereas the
isotropic shear layers were assumed to carry the interlaminar shear stress.
The interlaminar normal stress was assumed to vanish throughout the
laminate.

A second solution was developed by Pipes and Pagano,® who considered
a four-ply symmetric laminate with the plies oriented only at £ to the lon-
gitudinal laminate axis (Fig. 7.1). The exact equations of elasticity were
derived from a uniform axial extension by assuming the stress components
to be independent of x. The finite difference method was employed to
obtain numerical results for the (£45°), laminate with the geometric rela-
tion b = 8hy, and the following laminae properties, typical of a high modulus
carbon fibre/epoxy system:

E11 = 138 GPa Vyp = 021
E22 = 145 Gpa G]z = 58 GPa

The stress distributions across the half-width (b) of the specimen are
shown in Fig. 7.3. The stresses in the centre of the cross-section are the same
as those predicted by CLT. However, as the free edge is approached, o,
decreases, T,, goes to zero, and, most significantly, T, increases from zero to
infinity (a singularity exists at y = +b). The stresses ¢, and t,, also increase
near the free edge, but their magnitudes are quite small. By use of other
laminate geometries, it was established that the width of the region in which
the stresses differ from those predicted by lamination theory is approxi-
mately equal to the thickness of the laminate (/). Thus the interlaminar
stresses, or the deviations from lamination theory, can be regarded as an
edge effect only. They are sometimes also referred to as boundary layer
stresses. It must also be expected that the edge effects will be observed at
cut-outs or holes in laminates which provide internal free edges.

The theoretical results of Pipes and Pagano® were confirmed experimen-
tally by Pipes and Daniels.” The surface displacements of the symmetric
angle-ply laminate subjected to axial tension were examined by employing
the Moiré technique. The experimental study also confirmed that the inter-
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7.3 Stress variations across the width of a (+45°); laminate; after
Pipes and Pagano.?

laminar stresses can be regarded as an edge effect only since their effect is
confined to a region whose width is approximately equal to the laminate
thickness.

Pagano and Pipes demonstrated in a later study'® that the interlaminar
stresses can be significantly influenced by the laminate stacking sequence,
and thus the stacking sequence may be important to a designer. Their work
was motivated by observations of Foye and Baker'! on the tensile fatigue
strength of combined angle-ply, (£15/£45°), and (£45/£15°),, boron
fibre/epoxy laminates. Foye and Baker reported that fatigue strength of
laminates with the former stacking sequence is about 175MPa lower than
that for the latter stacking sequence. Pagano and Pipes showed that the
interlaminar normal stress, ¢,, changes from tension to compression by
changing the stacking sequence and thus accounts for the difference in
strengths. The explanation seems quite reasonable in view of the fact that
Foye and Baker observed delamination, and stated that progressive delam-
ination was the failure mode in fatigue. Whitney and Browning'? and
Whitney"” have also suggested that the interlaminar normal stress o,
strongly influences the delamination process during failure. During fatigue
tests on carbon fibre/epoxy laminates, Whitney observed that a specimen
that developed a tensile value of interlaminar stress showed delamination
well before final fracture of the specimen. In contrast, another specimen
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that developed a compressive interlaminar stress at the free edge, from a
change in the stacking sequence, showed very little evidence of delamina-
tion even when fracture had occurred. A similar dependence of both static
and fatigue strengths on laminate stacking sequence has also been reported
by other investigators. A more elaborate discussion on the subject can be
found in Whitney' and Pipes et al.'*

Many numerical techniques and approximate solutions have been devel-
oped for comparison with the classical solutions. Isakson and Levy" devel-
oped a FE model, similar to that of Pipes and Pagano,’ that incorporated
non-linear interlaminar shear response. Rybicki'® employed a 3D FE tech-
nique based on a complementary energy formulation in the analysis of a
finite width laminate. Pagano'’ developed an approximate method for defin-
ing the distribution of the interlaminar normal stress, G, along the central
plane of a symmetric finite width laminate. The method takes into consid-
eration the influence of the pertinent material and geometric parameters
on the shape of the stress distribution. Pipes and Pagano'® developed an
approximate elasticity solution for the response of a multilayered, sym-
metric, angle-ply laminate under uniform axial strain. The results of the
approximate solution exhibit excellent agreement with their earlier numer-
ical results from the exact elasticity equations.® Tang" obtained an analyti-
cal solution for bending of a rectangular composite plate subjected to
uniform transverse loading.

Whitney" developed an approximate solution based on the numerical
results of Pipes and Pagano.® Whitney’s approximate solution is quite
simple to apply and compares reasonably well with the exact elasticity solu-
tion.® Whitney’s solution is discussed in the following paragraphs.

Whitney considered a tensile specimen of length a, thickness # and width
b where b > 2h. A standard x, y, z coordinate system is located at the
mid-plane of the free edge. If the origin is in the gauge section (i.e. away
from the ends where the load is applied), the stresses can be assumed to be
independent of x. Then, the equilibrium equations take the form

Tyyy + Tz =0
Oy + Ty, =0 [7.3]
Tyy + 6., =0

where a comma denotes partial differentiation. Based on the numerical
results of Pipes and Pagano,® Whitney suggested the following form of o,
and T1,, in the free edge interval 0 = y = h:

o, = GyT(Z)[l ek S(sin nmy + cos nni)}
[7.4]

(1—e™ ™ cosnmy)

_1.(2)
xy — c
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where
c= [1 - (—1)"e‘k"]

Y
=2 k>0
y=o k>

n is positive integer, and o, (z), and 1, (z) are determined from lamination
theory (equation [7.2]). Substituting equation [7.4] into equation [7.3] and
then integrating with respect to z yields the remaining stresses:

_ Ty, (Z)(nz +k2) —kny

Ty, e  sinnmy
nc

n’c 2+ ke L

0.=— (2)(n Je (ncosnmy — ksin nmy) [7.5]
nc
-ky

-1t (z)e R —

T, = ¢(n sin nmy + k cos nmy)
nc

where

[1,:(2).0.() 1 (@] =], [6,(2).1,0(). 1 (2], dz

Thus, equations [7.4] and [7.5] exactly satisfy the equilibrium equations
as well as the free-edge boundary conditions. In addition, lamination theory
is exactly recovered at y/h = 1.0. Compatibility, however, is violated. The
solution of these approximate functions compares reasonably well with
the exact solution obtained by Pipes and Pagano® (shown in Fig. 7.3). The
approximate results were obtained with n =1 and k = 2. Whitney suggested
that since the character of the solution is reasonably approximated with
these values of n and k, in the absence of other information they may be
used for general application.

7.3 Finite element analysis of straight edges

To illustrate the approach using FE, we consider a four-ply symmetric lam-
inate with (0/90°), stacking sequence subjected to an in-plane uniaxial
tensile load, as shown in Fig. 7.4(a). The x—y plane of the Cartesian coordi-
nate system lies in the mid-plane of the laminate; the x-dimension is
assumed to be much larger than the other dimensions of the plate. The plate
width is four times the ply thickness. The 0/90° lay-up is selected for this
analysis because of the large mismatch of mechanical properties between
layers. The FE77 FE package, developed at Imperial College, Department
of Aeronautics,” is used, and the analysis is based on isoparametric eight-
node elements. Owing to the symmetry of the loading and lay-up, only
one-eighth of the laminate is modelled. Because high interlaminar stress
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7.4 (a) Cross-ply (0/90°); laminate; (b) associated FE mesh.

concentration is expected near the free edge, and at the 0/90° interface, a
refined mesh is required in this area; Fig. 7.4(b). Each ply is treated as a
homogeneous, elastic and orthotropic material with the following elastic
properties: E; = 146.9GPa, Ey = E; = 10.89GPa, G, = G5 = 10.89 GPa,
Gy = 6.4GPa, v, = vi3= 038 and vy = 0.776. A uniform tensile strain,
gy= 10", is applied in the x-direction.

The distributions of the through-thickness direct stress, 6,, on the lami-
nate midplane and on the 0/90° interface along the y-axis are plotted in Fig.
7.5(a) and (b), respectively. A good agreement between the current model
and previous work®*' is achieved near the laminate free edge (0 = y/b =
0.9). For a small distance, 0.7 < y/b = 0.8, there is a larger difference
between the models, probably due to a different type of element and
more refined mesh used in Wang and Crossman.” Overall, the FE solution
provides reasonable results for predicting the through-thickness stresses.

7.4 Finite element analysis of curved edges

7.4.1 Introduction

Cut-outs and holes are widely used in carbon fibre-reinforced laminates for
aircraft structures. The existence of the associated stress concentration will
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7.5 Variation of through-thickness tensile stress across the width of the
cross-ply laminate: (a) at laminate mid-plane, (b) at 0/90° interface.

initiate matrix cracking and delamination at the hole edge, especially under
fatigue loading, which will lead to the loss of strength/stiffness and to poten-
tial environmental attack.

It has been seen above that the straight free edge effect has been under
consideration for more than 20 years. Because of the simplicity of the
straight free edge geometry as compared with a curved free edge, fewer
studies have been done on the latter. The straight free edge can sometimes
be analysed as a problem with only 2D variations in stresses and displace-
ments. Unfortunately, the stress state near a circular hole in a laminate is
a complex 3D problem. The only exact solution to the problem is a 2D
approximation.”? Approximate analytical methods®* and numerical
approaches such as finite difference and FE methods®?" have been used
with some success to analyse the interlaminar stress distributions around
curved free edges.
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Recently, Ko and Lin* have developed an analytical model to determine
the interlaminar stresses around a circular hole in symmetric laminates
under a set of far-field in-plane stresses. This method uses the Kassa-
poglou-Lagace technique® for the straight free edge in conjunction with
boundary layer theory. The region of interest is divided into an interior
region and a boundary layer region, and each stress component is deter-
mined by superposition of the interior stress field and the boundary layer
stress. In the interior region, Lekhnitskii’s theory of 2D anisotropic elastic-
ity* in conjunction with classical lamination plate theory is adopted. The
equilibrium equations in the boundary layer region are approximated by
expressing the stress components as a perturbation series. The zeroth-order
approximation is then used for the solution of the interlaminar stresses in
the boundary layer region.

7.4.2 An example

Hu and Soutis™ and Hu er al.*' calculated the interlaminar stresses using a
3D FE analysis and evaluated the accuracy of the Ko-Lin model. The study
was conducted on a plate of length L = 60mm, width w = 30mm, contain-
ing a central hole of radius R =2.5mm. Cross-ply (90/0°), and (0/90°), lam-
inates, with ply thickness 4, = 0.125mm, were examined since they show
large mismatch of mechanical properties between adjacent plies and there-
fore significant through-thickness stresses. The FE77 FE package® was used
and the analysis employed curved isoparametric 20-node elements. Owing
to the symmetry of loading, hole location and lay-up, only one-eighth of the
laminate was modelled. Because high interlaminar stress concentration is
expected near the hole edge, and at the 0/90° interface, a very high mesh
refinement is required in this area. The smallest element dimension in the
radial and thickness directions was 0.00025 mm. Figure 7.6 shows the FE
mesh used. This FE model consisted of 4000 elements and solved a system
of 56000 linear equations. Each ply was treated as a homogeneous, elastic
orthotropic material with the same elastic properties as those in the litera-
ture of Raju and Crews.”®

7.4.2.1 Interlaminar normal stresses

Figure 7.7 shows the interlaminar normal stress distributions at the 90/0°
ply interface around the hole (z = Ay = 0.125mm) of the (90/0°), laminate.
Since a mathematical interlaminar stress singularity exists at the free edge
between the 90° and 0° plies, the computed stresses are presented near, but
not at, the hole boundary. The stresses closest to the hole are at #/R =1.0001;
that is, at a distance of 0.002A,. from the hole boundary. As the distance
from the edge, (r—R), increases, the interlaminar stress 6, decreases rapidly.
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7.6 Three-dimensional finite element mesh for one-eighth the notched
(90/0°); laminate.*' (s, = remote applied stress.)
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7.7 Normalised interlaminar direct stress distributions around the hole
at the 90/0° interface of the (90/0°); laminate.™
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When (—R) =0.1R,i.e. 0.25mm, or two ply-thicknesses away from the hole
boundary, ¢, becomes almost zero, and is compressive for most of the region
around the hole, with a small tensile region near 8 = 90°. The largest com-
pressive 6, occurs at about 60° from the loading axis. The predicted values
at the central (0/0°) interface are twice those developed at the (90/0°)
interface.

For the (0/90°), lay-up, o, is again compressive for most of the region
around the hole boundary, but is tensile in the regions 10° = 6 =< 28° and
80° = 6 = 90°. Its largest compressive value occurs at around 0 = 60°. The
stress distributions in Fig. 7.7 have similar shapes at different (+—R) dis-
tances from the hole edge, indicating that the location in the hoop direc-
tion is an important parameter for a curved free edge. This is the main
difference from the straight free edge problem.

For comparison purposes, Raju and Crews’ FE results® at (r—R)/R =
0.0001 are plotted in Fig. 7.7. The difference between the two FE solutions
is negligible. However, the stress predictions of the Ko and Lin*® analytical
model are in poor agreement, both qualitatively and quantitatively. This is
probably due to the zeroth-order approximation that those authors used
when they solved the equilibrium equations in the boundary layer region.
Although their solution satisfied the equilibrium conditions at the bound-
ary, the circumferential stress and the laminate’s stress gradients in the
radial direction were ignored. For the case of a hole, there are two stress
gradients to be considered: the gradient in the interlaminar stresses near
the hole, similar to the straight edge case; and also the gradient in the in-
plane stresses due to the presence of the hole, which gives an additional
contribution to the gradient in the through-thickness stresses. Also, the
Ko-Lin model does not ensure interface displacement continuity and pre-
dicts a significant interlaminar shear stress at the hole boundary near 6 =
90° where it should be zero. This suggests that their assumed boundary layer
stresses need to be amended or a higher-order approximation should be
employed in their stress solution. This is another indication of how much
more complex the hole problem is compared with straight free edges.

7.4.2.2 Interlaminar shear stresses

The circumferential interlaminar shear stress distributions 1. at various dis-
tances, (r—R)/R, from the hole boundary are shown in Fig. 7.8. Similarly to
the normal stress, 6., the interlaminar shear stress 1.4 decreases as the dis-
tance (r—R) from the hole boundary increases, and becomes vanishingly
small within two ply thickness (0.25mm) from the hole. Except for differ-
ent signs, the 1,4 distributions are identical for the (90/0°), and (0/90°), lam-
inates. Both of these distributions have their maximum values at about 75°
from the loading axis. The largest value in Fig. 7.8 is approximately 1.65S,
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7.8 Normalised interlaminar shear stress distributions around the hole
at the 90/0° interface of the (90/0°); laminate.*"

(S, being the remote applied stress), which is about ten times larger than
the largest o, value (Fig. 7.7) computed for the same distance from the hole.
This comparison indicates that the T, stress singularity is stronger than that
for the o, interlaminar stress. It also suggests that the interlaminar shear
stresses are mainly responsible for delamination initiation in such lami-
nates. The shear stress component 1., is very small compared with 1,4 and
can be neglected.

Raju and Crews’ FE results® for 1, are in very good agreement with the
present FE model, while those predicted by the Ko-Lin analytical model*®
are lower by almost a factor of 3. The zeroth-order approximation of the
Ko-Lin analysis, although giving a good qualitative agreement with the
numerical models, produces considerably lower interlaminar shear stresses
and therefore will predict higher delamination onset stresses.

7.5 Summary

Interlaminar normal and shear stresses can be very high (perhaps even
singular) at the free edge of a laminate (as at the edges on the sides of a



136 Analytical and numerical modelling

laminate, cut-outs, holes, etc.). A tensile value of ¢, at a free edge may ini-
tiate delamination. Whereas delamination is important to the overall struc-
tural performance of laminates under tensile loading, it is critical for
compression and shear loads where stability is of major concern. The stack-
ing sequence in a laminate affects the magnitude as well as the nature of
the interlaminar stresses.

Interlaminar stresses can be regarded as an edge effect only since they
are confined to a narrow region close to the edges. The predictions of lam-
inated plate theory (LPT) are quite accurate in regions away from the edges
(i.e. a distance equal to the laminate thickness).

While free edges may not necessarily be important for real components
the possibility of delamination at holes and cut-outs has to be considered.
The FE method can be applied to any lay-up configuration (thin or thick)
under any loading condition, tension or compression, to estimate interlam-
inar stresses in laminates with an open hole.

Further information on LPT and free-edge effects can be found in other
composites textbooks, see for example [32-34].
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8

Fracture and fracture mechanics

8.1 Introduction

Typical engineering fibre-reinforced plastics consist of brittle fibres, such as
glass or carbon, in a weak brittle polymer matrix, such as epoxy or poly-
ester resin. However, an important characteristic of these composites is that
they are reasonably tough, largely as a result of their heterogeneous nature,
the manner of their construction, and the widespread modes of fracture.
During deformation, microstructural damage is extensive throughout the
composite, but much damage can be sustained before load-bearing ability
is impaired. Beyond some critical level of damage, failure may occur by the
propagation of a crack which usually has a much more complex character
than cracks in metals. Crack growth is inhibited by the presence of inter-
faces between fibres and matrix and between separate laminae in a multi-
ply laminate.

Compared with fracture in metals, research into the fracture behaviour
of composites is quite limited. Much of the necessary theoretical framework
is not yet fully developed and there is no simple recipe for predicting the
toughness of all composites. We are not yet able to design with certainty
the make-up of any composite so as to produce the optimum combination
of strength and toughness. However, it will be apparent from what follows
that the lay-up geometry of a composite strongly affects crack propagation,
with the result that some laminates appear highly notch-sensitive whereas
others are totally insensitive to the presence of stress concentrators. The
selection of fibres and resins, the manner in which they are combined in the
lay-up, and the quality of the manufactured composite must all be carefully
controlled if optimum toughness is to be achieved. Furthermore, require-
ments for highest tensile and shear strengths of laminates are often
incompatible with requirements for highest toughness. Final selection
of a composite for a given application may therefore be a matter of
compromise.'
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8.1 Schematic illustration of cracking mechanisms in different kinds of
solids."

8.2 Crack tip behaviour in homogeneous solids

The principal differences between cracking mechanisms in some familiar
solids are shown in Fig. 8.1." In an ideal brittle solid, failure is elastic by the
simple breaking of bonds across the crack plane, which remains relatively
flat. The work of fracturing the solid in terms of the familiar Griffith model®
is approximately the work of creating two new surfaces:

ncla

G=2y,= 3

8.1]

where v, = specific surface energy, ¢ = applied stress, a = one half crack
length and E = modulus of elasticity.
Griffith rewrote equation [8.1] in the form:

1
2Ey,\?
6= (—Yj [8.2a]
na
for the case of plane stress (biaxial stress conditions), and:
1
2Ey, |2
o= [_Yz} [8.2b]
ra(l—v?)

for the case of plane strain (triaxial stress conditions associated with the
suppression of strains in one direction). The Poisson ratio, v, for most ma-
terials is between 0.25 and 0.33.
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It is important to recognise that the Griffith relation was derived for an
ideal elastic material containing a very sharp crack. Although equations
[8.2a] and [8.2b] do not explicitly involve the crack tip radius, p, that radius
is assumed to be very sharp. As such, the Griffith relation, as written, should
be considered necessary but not sufficient for failure. The crack tip radius
would also have to be atomically sharp to raise the local stress above the
cohesive strength.

In materials such as metals and plastics, even relatively brittle ones,
energy is dissipated in non-elastic deformation mechanisms in the region
of the crack tip. This energy is lost in moving dislocations in a metal and in
viscoelastic flow or craze formation in a polymer. The zone around the crack
tip in which these deformation processes occur is called the ‘process zone’.
In such real cases the fracture energy, G, is found to be several orders of
magnitude greater that the material surface energy 7y, Orowan’ recognised
this fact and suggested that equation [8.1] be modified to include the energy
of plastic deformation v, in the fracture surface, so that:

G=2(y,+7,)=27r [8.3]

where ¢ is known as the ‘work of fracture’.

Irwin® also considered the application of Griffith’s relation, equation
[8.2a], to the case of materials capable of plastic deformation. Instead of
developing an explicit relation in terms of the energy sink terms, ¥y, or (y, +
Y,), Irwin chose to use the energy source term (i.e. the elastic energy per
unit increment of crack length, 0U/da). Denoting dU/da as G, Irwin showed
that a microcrack, or growth defect, may propagate at a nominal applied
failure stress given by:

1
EGIc E KTC
= = 4
o ( — j K [8.4]

where Gy and K|, are the critical elastic energy release rate and fracture
toughness, respectively; K;> = EG), for isotropic materials. The K. para-
meter is a material property and can be measured in the laboratory
with sharply notched test specimens. Equation [8.4] is one of the most
important relations in the literature of linear elastic fracture mechanics
(LEFM).

Fracture mechanics has been used successfully in the development of
structural materials in two complementary ways: firstly, by relating K. to
microstructure; secondly, by identifying the origins of cracking. The strength
of a component can then be maximised by optimising the microstructure
through careful control of manufacturing conditions to reduce flaw size
and increase K. This requires an understanding of the dependence of K,
(or Gy.) on microstructure.
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In general, materials that show some ductility can fail in one of two com-
peting ways, depending on the site of any crack or notch they may contain.
A material containing a short notch fails by general damage, in which
ductile fracture occurs at a net section stress which is independent of notch
length. Alternatively, the localised stresses at the tip of a long notch or crack
may be large enough to cause crack propagation, while deformation in the
bulk of the material remains elastic. In this case fracture occurs at a stress
that is proportional to 1//a (equation [8.4]). We call this the regime of single
crack propagation.

In composite materials, the fibres interfere with crack growth, but their
effect depends on how strongly they are bonded to the matrix (resin). For
example, if the fibre/matrix bond is strong, the crack may run through both
fibres and matrix without deviation, in which case the composite toughness
would be low and approximately equal to the sum of the separate con-
stituents’ toughness:

G =2[(yp);vi +(vr),, A —vy)] [8.5]

where (y¢)r and (¥x),, are the fibre and matrix work of fracture, respectively.
The fibre volume fraction is v;.

On the other hand, if the fibre/matrix bond is weak the crack path
becomes very complex and many separate damage mechanisms may then
contribute to the overall fracture work of the composite. These fracture
processes are controlled by the constituent materials of the composite and
the manner of their combination. For example, a brittle polymer or epoxy
resin with Gy, = 0.1kJ/m? and brittle glass fibres with G|, = 0.01kJ/m? can
be combined together in composites some of which have energies of up to
100kJ/m*. For an explanation of such a large effect we must look beyond
simple addition.

8.3 Crack extension in composites

Many authors have attempted to apply fracture mechanics to fibre-
reinforced composites and have met with mixed success. Conventional frac-
ture mechanics methodology assumes a single dominant crack that grows
in a self-similar fashion;i.e. the crack increases in size (either through stable
or unstable growth), but its shape and orientation remain the same. Frac-
ture of a fibrous composite, however, is often controlled by numerous
microcracks distributed throughout the material, rather than a single
macroscopic crack. There are situations where fracture mechanics is appro-
priate for composites, e.g. for delamination, but it is important to recognise
the limitations of theories that were intended for homogeneous materials.
Figure 8.2° illustrates various failure mechanisms in fibre-reinforced
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1. Fibre pull-out.

2. Fibre bridging.

3. Fibre/matrix debonding.
4. Fibre failure.

5. Matrix cracking.

—

(a) In-plane damage (b) Delamination

RESS

i 0

bt

(c) Fibre microbuckling (d) Delamination buckling

8.2 Examples of damage and fracture mechanisms in fibre-reinforced
composites.®

composites. One advantage of composite materials is that fracture seldom
occurs catastrophically without warning, but tends to be progressive, with
substantial damage widely dispersed throughout the material. Tensile
loading, Fig. 8.2(a), can produce matrix cracking, fibre bridging, fibre
rupture, fibre pull-out and fibre/matrix debonding. Ultimate tensile failure
of a fibrous composite often involves several of these mechanisms. Out-of-
plane stresses can lead to delamination, Fig. 8.2(b), because the fibres do
not contribute significantly to strength in this direction. Compressive load-
ing can produce microbuckling of fibres, Fig. 8.2(c); since the polymer
matrix is soft compared with the fibres, the fibres are unstable in compres-
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8.3 Schematic representation of stages in crack growth in a fibre
composite.’

sion. Compressive loading can lead also to macroscopic delamination buck-
ling, Fig. 8.2(d), particularly if the material contains a pre-existing delami-
nated region. All these failure mechanisms absorb energy and contribute
to the fracture toughness of the composite.

In order to distinguish the separate micromechanisms of toughening due
to true composite action, it is convenient to consider a simple model in
which a crack travelling in the resin approaches an isolated fibre; Fig. 8.3a.!
A crack propagating in the matrix phase is effectively stopped by a fibre;
Fig. 8.3(b). As the load on the composite is increased, matrix and fibre at
the crack tip deform differentially and a large local stress builds up in the
fibre. This stress causes local Poisson contraction which, exacerbated by
the tensile stress normal to the interface ahead of the crack tip, initiates
fibre/resin debonding (or decohesion); Fig. 8.3(c). The interfacial shear
stress resulting from fibre/matrix modulus mismatch will then cause exten-
sion of the debond along the fibre in both directions away from the crack



Fracture and fracture mechanics 145

plane. This permits further opening of the matrix crack beyond the fibre,
and the process is repeated at the next fibre. An upper limit to the energy
of debonding is given by:

Nrd*ciy

SE [8.6]

Wdebond =

for a composite with N fibres of diameter d, failure stress o; and modulus
E:. The mean bonded length is y.

After debonding, the fibre and matrix move relative to each other as
crack opening continues and work must be done against frictional resis-
tance during this process. One estimate, assuming that the interfacial fric-
tional stress, T, acts over a distance equal to the fibre failure extension,
suggests that this contribution is equal to:

Nrdy*ne;

‘/Vfriction = 2

[8.7]

where ¢, the fibre failure strain, contributes substantially to the toughness
of fibre/resin composites.

After debonding a continuous fibre is loaded to failure over a distance
equal to the debonded length and it may break at any point within this
region; Fig. 8.3(d). The broken ends retract and regain their original diam-
eters and they are regripped by the resin. In order to permit further opening
of the crack, and ultimately separate the two parts of the sample, these
broken ends must be pulled out of the matrix; Fig. 8.3(e). Further frictional
work is needed to accomplish this. Crude estimates of the pull-out work
give:

- Nrdl?t

pullout = 5 [8.8]
where /. is the critical length, and the distance over which the fibre end is
pulled out is given approximately by //4. It can be shown that, in aligned
short fibre composites, the work of pull-out will be at a maximum when the
reinforcing fibres are exactly of the critical length.

It should be noted that composite toughness ought to be increased by
raising the fibre volume fraction, vy, increasing the fibre diameter, d, or using
stronger fibres. Contrary to expectation, however, improving the fibre/
matrix bond will usually reduce the toughness because it inhibits debond-
ing and therefore reduces pull-out.

The behaviour of many types of composite has been reasonably well
explained in terms of summation of the contributions from these mecha-
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nisms but it is not yet possible to design a composite to have a given tough-
ness. Clearly, ease of cracking in unidirectional laminates will be strongly
dependent on fibre orientation. In GRP and CFRP, for example, the energy
for fracture parallel to the fibres is two orders of magnitude less than that
normal to the fibres. The same is true of wood.

Simple crack interactions rarely occur in practical composites made by
bonding together several plies with differing fibre orientations. The varia-
tion of axes of anisotropy from lamina to lamina results in coupling shear
stresses in the plane of the plate when the composite is loaded and, since
the interlaminar planes are always planes of weakness, it follows that inter-
laminar shear stresses may easily become so large as to delaminate the com-
posite well before fibre fracture can occur. Cracks are also caused to deviate
along these planes of weakness. Because of the increased surface area asso-
ciated with this form of cracking the composite toughness is substantially
increased. Delamination can be considered as a special case, and is dealt
with separately in the next chapter.

8.4 Application of fracture mechanics to composites

8.4.1 Notched strength and notch sensitivity

Frequently the design of composite structures includes holes introduced
either intentionally as cut-outs and as fastener holes, or unintentionally due
to damage events. Several investigators (e.g. Waddoups et al.® and Soutis
et al.”) have examined the behaviour of notched composite laminates and
found that open holes reduced the tensile or compressive strength of the
laminate by more than 50%. However, the remote failure stress is well
above the value one might predict from the elastic stress concentration
factor, indicating that the composite material is not ideally brittle and some
stress relief occurs around the hole.”® In Fig. 8.4 the remote compressive
failure stress, 6,, normalised by the unnotched failure strength, c,,, of the
laminate is plotted as a function of hole radius R normalised by semi-width
W of the specimen. The high stresses at the hole boundary initiate localised
damage which results in a redistribution of stresses. Such damage will take
the form of delamination, matrix cracking, splitting, fibre fracture (fibre
microbuckling in compression). It is reasonable to expect that fast fracture
of the laminate will occur when the size of the delaminations, or the length
of the crack tip split, or size of the damage zone, exceeds some critical value.
Various theoretical models have been developed to predict notched tensile
fracture.*” Some of the models have been extended to include compression-
loaded laminates.” More recently the progressive development of fibre
microbuckling leading to ultimate compressive failure has been modelled
successfully by Soutis and coworkers.”®
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8.4 Effects of hole diameter on the compressive strength of T800/924C
laminates.®
8.4.2 Inherent flaw model

Waddoups et al.® postulated the existence of a ‘high-intensity energy region’,
adjacent to a circular hole in a composite plate under uniaxial tensile load;
Fig. 8.5. The high intensity energy region is presumed to behave like a crack
of length a,. The fracture strength of the laminate o,, is taken from the
toughness K;. and a,, given the geometry and stress intensity factor, K.
Waddoups made use of Bowie’s solution'' for the stress intensity factor,
for the problem of cracks emanating from a circular hole in an isotropic
homogeneous infinite plate.

It was shown that the flawed, or notched, strength (c,) and unflawed, or
unnotched, strength (o,,) of the composite are related by:

2= flan/7)

o= [8.9]

where the correction factor, f(ay/r), from Bowie is given in Table 8.1.
Waddoups considered a (0/£45°),, carbon fibre/epoxy laminate containing
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Table 8.1 Correction factors fla,/r)"

alr 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0
flao/r) 2.73 2.41 2.15 1.96 1.83 1.71 1.58 1.45

.

FLLT

8.5 Damage zone of size a,, at edge of a hole or cut-out.®

a circular hole, the strength data for which are given in Table 8.2. Inserting
values of 6,, = 524 MPa and o, = 192MPa into equation (8.9) gives:

=2.72
o, 192

f(llo/”):

From Table 8.1 we see that ay/r = 0.1 and therefore a, = 1.27. We now cal-
culate K. using:

1
K. =06, (may)? f(ay/r) = 31 MPavm

Assuming that Kj. is a laminate property, we can then determine the
notched strength for specimens containing holes of diameters 63 mm and
75mm. Values of G, calculated this way are 166 MPa and 164 MPa, respec-
tively, which compare favourably with experimental measurements of
157MPa and 156 MPa given in Table 8.2.
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Table 8.2 Hole data summary®

Specimen (965mm x 125 mm) Static strength (MPa)
Control (no hole) 524
25mm diameter hole 192
63 mm diameter hole 157
75mm diameter hole 156

8.4.3 Stress intensity factors for a cracked hole laminate

For isotropic materials the subject of linear elastic fracture mechanics
(LEFM) is highly developed and the plane strain fracture toughness, K., is
treated as a material property. Paris and Sih'? developed expressions for the
crack tip stress field for a linear elastic anisotropic material for the case of
plane strain and pure shear. The crack tip stress field exhibits the same '
singularity with distance r from the crack tip as for the isotropic case. Also
the stress intensity factors (SIF), K, Ky;, Kiip, have the same meaning as for
the isotropic case.

Linear elastic fracture mechanics can be applied to composite laminates
provided the damage zone at the crack tip is contained within the K-field,
i.e. provided the damage zone is small compared with other dimensions of
the specimen.

The stress intensity factor for a finite 2D isotropic plate, subjected to
mode I loading and containing a cracked hole, Fig. 8.5, is given by

K, =0"Vr(r+ay)f(ay/r)F(r,a,,w) [8.10]

where 6~ is the applied far field stress and the factor f(ay/r) reflects the influ-
ence of the cracked hole on the SIF. Function F is the finite width correc-
tion factor that also depends upon material anisotropy.

Using FE analysis, K; for an orthotropic T800/924C carbon fibre/epoxy
laminate, with cracks emanating symmetrically from a circular hole, is now
determined.

A number of techniques are currently used for evaluating SIFs. Here, the
Virtual Crack Extension (VCE) procedure in the FE77 finite element
package, with an eight-node isoparametric element, is used to obtain the
SIF for the problem shown in Fig. 8.5.

The fundamental difficulty in a crack problem is the singularity in the
strain field at the crack tip. The finite element mesh must be such that the
singularity is approximated with sufficient accuracy. Many methods have
been devised to arrive at such an approximation; one commonly used
method is the quarter point element where a degenerate form of the stan-
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8.6 FE mesh around circular cut-out.

8.7 FE representation of crack.

dard eight-node quadrilateral element is employed. This isoparametric
element produces the r ' singularity when it degenerates to a triangular
element and the mid-side nodes are moved to the quarter point adjacent
to the crack tip node.” In the FE77 code a refined mesh is required, Fig.
8.6, where the ‘interface disconnect’ subroutine is used to represent the
crack, Fig. 8.7.

The FE77 program allows the evaluation of the J-integral by discon-
necting nodes in certain elements ahead of the crack tip, Fig. 8.8, to repre-
sent a differential crack advance, 8/, and measuring the change in strain
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8.8 Incremental advance of crack.

L]

8.9 Deformed mesh for cracked hole.

energy dU. The J-integral is the negative differential of strain energy with
respect to crack advance. For an elastic body J is identical to the elastic
strain energy release rate G. Hence;

dU

G=J=-"
8l

[8.11]

A typical deformed configuration of the plate with a cracked hole loaded
in tension is shown in Fig. 8.9.
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8.10 Variation of stress intensity factor with crack length.

For an orthotropic laminate the energy release rate Gj is related to the
stress intensity factor K; by:

1/2 1/2 1/2
G, = (anzalz j Kaﬁ) + 2a1, + a6 } K? 8.12]

ap 2ay

where a; are the coefficients of the laminate compliance matrix, related to
elastic constants E,, E,, G,, and v,,.” Of course, G; = Ki/E for isotropic
materials.

In order to investigate the accuracy of the FE model an elastic stress
analysis is performed. The SIF for a T800/924C quasi-isotropic (+45/0/90°),
cracked hole specimen, with /W = (.25, is shown in Fig. 8.10 and is com-
pared with the analytical solution for an isotropic plate. It is clear from these
results that the singularity in the stress field at the crack tip is approximated
with sufficient accuracy, and the difference in the solution for K; is small.
Of course, the SIF cannot strictly be implemented in the inherent flaw frac-
ture model described in Section 8.4.2 to predict the ultimate tensile strength
of any orthotropic notched laminate, since the Bowie correction factor in
Table 8.1 is for an isotropic plate.

For the quasi-isotropic (£45/0/90°), laminate, however, the anisotropic
effect is negligible and the isotropic SIF can be employed. The method
described here is more useful for anisotropic lay-ups where an analytical
solution does not exist.
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bl

8.11 Point and average stress failure criterion.®

8.4.4 Point stress and average stress failure criteria

Whitney and Nuismer’ have extended the Waddoups model® to explicitly
include the anisotropy of the material. In their analysis, orthotropic sym-
metry is assumed. For a plate containing a circular hole of radius R, the
ratio of notched strength to the unnotched strength is given by:

On

=22+ 8 +34 - (K5 -3)5-¢ - 7¢)] [8.13]

un

where { = R/(R + d,) and K7 = stress concentration factor for an orthotropic
laminate.

As in the Waddoups’ analysis, the assumption is that failure occurs when
the stress at a point, a distance d, from the hole edge, reaches a critical
value; Fig. 8.11. We can, in an alternative model, assume failure to occur
when the average value of 6, over a distance a, in front of the hole exceeds
the unnotched tensile strength of the material; Fig. 8.11. In this case:

On

—2(1-0)2 -G -8 +(Ky -3 -3 [8.14]

un

where &, = R/(R + ay).
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8.12 Comparison of predicted and experimental failure stresses for
centre cracks in (0/+45/90°),s HTS carbon fibre/epoxy resin.

For an infinite anisotropic plate containing a centre crack of length 2c,
subjected to a uniform uniaxial tensile load, the point stress failure
criterion gives:

On

—a-ge [8.15]

un

and the average stress failure criterion gives:

On :(1‘9‘ ji [8.16]

Gun 1+C4

Here, &3 = ¢/(c + dy) and {, = ¢/(c + ap).

In the Whitney-Nuismer models the characteristic length a, (or d,) is
used as a free parameter to be fixed by best fitting the experimental data.
An example of a comparison between theory and experimental data is
shown in Fig. 8.12 for centre notched (0/145/90°),, laminates made from
high tensile strength (HTS) carbon fibre/epoxy. Here o,/c,, is plotted
against notch length c. The theoretical curves of 6,/6,, against notch size
are computed using equations [8.15] and [8.16]. Values of d;, = 1mm and
a, = 3.8mm provided the best fit to these and other data for laminates
with both circular holes and central cracks.
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The models described above assume that Kjc and a, (or d,) are invariant
material properties. However, the fracture toughness and characteristic
lengths depend on fibre and resin type, ply distribution and layer thickness.
It is probably better to consider these parameters as laminate rather than
ply properties, that have to be determined experimentally.

8.5 Progressive failure models

Recently, more interest has been placed on progressive failure model-
ling."*'® The mechanisms for damage progression and accumulation in
notched laminates are so complicated (combinations of matrix cracking,
longitudinal splitting, delamination and fibre breakage) that analytical
methods are impractical and, perhaps, unable to model them. The most suit-
able tool is probably the FE method.

The damage progression around a hole can be determined by perform-
ing a ply-by-ply and element-by-element stress analysis and applying appro-
priate stress or strain-based failure criteria. If no laminae have failed, the
load must be determined at which the first lamina fails, that is, violates the
failure criterion. The load parameter is increased until some lamina fails.
That lamina is then eliminated from the laminate by assigning zero stiffness
(ply discount technique), or reduced properties (stiffness degradation
factors), to the failed layer and new laminate extensional, coupling and
bending stiffnesses (ABD) are calculated. Laminae stresses are recalcu-
lated to determine their distribution after a lamina has failed (the stresses
will increase to maintain equilibrium). Then it must be verified that the
remaining laminae, at their increased stress levels, do not fail at the same
load that caused failure of the lamina in the preceding pass through the
analysis. If no more laminae fail, then the load can be increased until
another lamina fails and the cycle is repeated until last ply failure.

The overall procedure for strength analysis is independent of the failure
criterion, but the results of the procedure, the maximum loads and defor-
mations, will depend on the specific failure criterion. The laminate behav-
iour could be piecewise non-linear if the laminae behaved in a non-linear
elastic manner. The results of such models include the whole field
stress—strain relationship, the laminate stiffness degradations and the extent
of damage at any stress level. The computing time varies significantly from
one mesh design to another, depending on the number of elements.
Although a finer mesh predicts failure progression better than does a coarse
mesh, it needs more computing time. The increase in computing time may
not be worth the increase in accuracy after the number for elements reaches
a certain value. Figure 8.13(a) and (b) illustrate damage growth, in the form
of matrix cracking, developed in the 90° ply of a (0/90°), carbon fibre/epoxy
laminate at uniaxial tensile loadings of 43.8 kN and 97.18 kN, respectively.
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8.13 Finite element modelling of matrix cracking growth in the 90° ply
of a cracks in (0/90°); CFRP laminate: (a) applied load of 43.8kN;
(b) applied load of 97.18kN.

8.6 Summary

We have seen that a number of parameters such as the critical strain energy
release rate, Gy, and the critical stress intensity factor, K., may specify the
toughness of a material. Fracture toughness parameters enable the critical
flaw size in a component subjected to a given stress to be determined.

Under some circumstances linear elastic fracture mechanics (LEFM)
can be used directly to describe fracture behaviour in composites and
measure their notch sensitivity. Typically this applies to 0° dominated
laminates of brittle composites (e.g. (0/£45°),, (0/90°),) with high fibre/resin
bond strengths and brittle matrices. In such laminates crack paths may be
planar, or nearly so, and damage zones small (e.g. 1-2mm). LEFM seems
to predict notched strength reasonably well in quasi-isotropic (0/£45/90°),
laminates where there is a lower percentage of 0° fibres. The methods of
LEFM become invalid for angle-ply dominated laminates, e.g. (£45°),,
which are commonly notch insensitive. For these laminates the damage is
diffuse in nature, and a crack-like representation of damage becomes
inappropriate.
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The important message is that generalisations should not be made. There
is always likely to be uncertainty over the question of validity of LEFM for
any given case.'

The FE method can be used successfully to predict the orthotropy effect
on SIFs that are required in stress based failure criteria. It can also be used
to model damage progression around open holes by performing ply-by-ply
and element-by-element analysis, taking into account geometric and
material non-linearities.
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Delamination

9.1 Introduction

The fracture processes in composite laminates under tensile monotonic and
fatigue loading involve a sequential accumulation of damage in the form of
matrix cracking, local delamination and edge delamination prior to cata-
strophic failure." Edge delamination initiates at load-free edges of the
composite plate due to Poisson’s mismatch (see Chapter 7), whereas local
delamination originates from the interaction of matrix ply cracks at ply
interfaces.’ These ‘resin-dominated’ failure modes can be detrimental to the
strength of the laminate since they can cause fibre fracture in the primary
load-bearing (0°) plies. It is therefore important to be in a position to
predict their onset strain and growth.

Opver the years a number of researchers have shown that the strain energy
release rate, G, associated with local delamination can be compared with
an appropriate value of interlaminar fracture toughness, obtained experi-
mentally,’ to estimate the initiation and propagation of delamination.
O’Brien** derived a closed-form equation for G which, for certain lay-ups,
can successfully predict the delamination onset strain. However, the author
neglected the effect of matrix ply cracking which becomes important
for laminates containing thick 90°-plies where local delaminations usually
develop. More recently, Zhang and Soutis’ modelled the matrix crack tip
delamination and its effect on the stiffness properties of carbon fibre/epoxy
laminates. A 2D shear lag approach was followed to obtain the microstress
field in the damaged laminate. These resulting microstresses were used in
an in situ damage effective function (IDEF) which was derived explicitly in
terms of matrix crack density and relative local delamination area. Then,
expressions for the strain energy release rates for matrix cracking and local
delamination were derived, taking into account residual hygrothermal
stresses and the interaction effect between the two damage modes. Further
details are given below.

As mentioned in Chapter 6, FE analyses have used a number of

158
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(90),

Matrix crack Local delamination
9.1 The (+6,,/90°,); laminate with matrix cracks and local delamination.

approaches to represent delamination, including the Virtual Crack
Closure (VCC) method, as well as employing special ‘delamination’ ele-
ments (Sections 6.8 and 6.10). Again, results from such analyses will be
given below.

9.2 A continuum model

When a (£6,,/90;), balanced symmetric laminate is under static or fatigue
tensile loading, matrix cracking in the transverse plies (90°) is the first
damage mode observed and multiplies with increasing applied load or
number of cycles. Subsequently, either edge delamination will form at the
—6/90° interface, or local delamination will initiate from the transverse ply
crack tips due to high local stresses at the crack tip. A schematic of the
damage configuration is shown in Fig. 9.1.

The mid-region is made of 90° plies, while the constraining layers
(sublaminate) consist of multi-orientation plies (£8). Transverse ply
cracks are assumed to exist in the 90° plies with uniform crack spacing
of 2s; local delaminations initiate and grow from both tips of each trans-
verse crack and span the width of the specimen. Following previous
work,”” in order to examine the effect of these damage modes on the lam-
inate loading capacity, a representative three-layer segment, Fig. 9.2, con-
taining a single transverse ply crack and two strip-shaped delaminations is
considered. This element can be segregated into a locally delaminated
region 0 = y = /; and a non-delaminated region /; = y = s. The effect
of the cracking and the delaminations is to reduce the stiffness of the
laminate.

9.2.1 Stiffness reduction

The modified stiffness matrix of a cracked lamina has been derived® by
introducing the IDEF, Ay, and is given by:
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9.2 A three-layer element with local delamination growing from a 90°
matrix crack.

2 2

o 0] Joh oh o0
(2) (2) _ 0 0

12 22 0 - Q12 Q22 0
0 0 2) 0 0 Q%

02 [9.1]
(le A22 {)ZAZZ 0

0%
ObAyn  ObAy 0
0 0 0% Az

where QY is the in-plane stiffness matrix of the 90° (ply 2) uncracked
lamina. The Ay and A;; parameters describe the stiffness loss of the 90° ply
caused by matrix cracking; they are functions of the average matrix crack
density, Cy, and also of the in sifu constrained conditions of the 90° plies. In
order to calculate A,, and As; a 2D shear-lag analysis was proposed,”® where
the out-of-plane shear stresses varied linearly across the thickness of the
constraining layers (ply 1); Fig. 9.3.

Combining this shear stress variation with out-of-plane stress/strain and
strain/displacement relations, and taking the average values across the ply
thickness, the interface shear stresses were expressed in terms of in-plane
displacements. Once the microstress field in the cracked laminate was
obtained the macro stresses in the cracked 90° plies could be determined
by integrating over the laminate length. Substituting these stresses into the
damaged constitutive equation of the 90° plies, the A, and Az; were derived
as functions of matrix crack density.

When delamination is present, growing from the transverse ply crack tips,
the locally delaminated portion of 90° plies is not able to carry normal load
in the y-direction and shear loads in xz and yz-planes; the overall laminate
stiffness properties are further reduced by the local delaminations. The
influence of the local delamination and matrix cracking on the overall lam-
inate response was considered’ by including the two damage modes in the
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9.3 Out-of-plane shear stress variation across the thickness of the 90°
ply (ply ‘2’) and the constraining layer (ply ‘1').

reduced lamina stiffness matrix of the 90° plies; equation [9.1]. The A,, and
As; coefficients are given by

e
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where D™(= h,/s = 2h,C,) and D"(= ly/s = 21,C,) are the relative matrix crack
density and the relative local delamination area, respectively. The parame-
ters @, T}, {; and A; are functions of laminate elastic constants. When delam-
ination is ignored, equations [9.2a] and [9.2b] reduce to the corresponding
relations for pure matrix cracking derived in reference 7.

9.2.2 Constitutive relationship of the damaged
laminate

Let a laminate be subjected to in-plane loading under iso-hygrothermal
conditions, and be deformed and cracked progressively. Following previous
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work®’ the macro-stress or total stress vector in the kth ply group can
be written in terms of the strain vector and the reduced lamina stiffness
properties

k Sk Ak Ak K)RT k)RH

ol 1(1 : 1(2 : 1(3 : €x gl el
i_| Wk Ak k) k)RT k)RH

o} |=| O 22 23 g, |+ eWRT 4] el [9.3a]
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Gg(y) 13 23 33 Y xy ch ) chy)

or

or = Qc(e+el +efM) [9.3b]

where €f" and €' are the residual thermal and hygroscopic (moisture)
strain vectors in the laminate due to the temperature and moisture differ-
ence between the stress-free state and the ambient state. They can be com-
puted using Classical Laminate Theory. The constitutive equation of the
damaged laminate is found to be:

N, Ay Ap, 0 & er
Ny = A12 A22 0 Ey - 85 [943]
ny 0 0 A33 ny ’Y)gv

or
N=A(e—¢g") [9.4b]
with
e’ =A'(NT+N" —A”NT + N) [9.5]

where A is the extensional stiffness matrix of the damaged laminate, and
NT and N" are the equivalent thermal loads in the damaged and undam-
aged states, with N" and N the respective equivalent moisture loads. It is
observed that the laminate develops permanent strains due to the interac-
tion effect between damage and residual hygrothermal stresses.

9.2.3 Energy release rate

The potential energy method of Zhang and Soutis’ is used here to derive
expressions for the energy release rates associated with local delamina-
tion, matrix cracking and their interaction. The potential energy (PE) of
the equivalent damaged laminate element with a finite length 2/ and width
w is:

PE = U - N'e2lw [9.6]
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where U is the total strain energy stored in the laminate element which is
a function of matrix cracking density and local delamination area. Its
calculation requires a ply-by-ply analysis in order to take into account the
contribution of residual hygrothermal stresses. The energy release rate asso-
ciated with a particular damage mode is equal to the first partial derivative
of the potential energy with respect to the crack surface area of the respec-
tive damage. The applied laminate loads, N, are fixed and the other damage
modes remain unchanged. So, the strain energy release rates due to matrix
cracking and local delamination are, respectively:

G = —(ﬂ) [9.7a]
BA“’C {N}‘Ald
JPE

Gl = _(aAld ){N} . [9.7b]

After some mathematical manipulation, it may be shown that, for speci-
fied stress resultants, the energy release rates for matrix cracking and local
delamination are, respectively:
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The second and third terms on the right-hand side of equation [9.8] are
due to residual hygrothermal stresses and their interaction with damage.
These expressions for the strain energy release rate are general and simple
to use. Knowing the in-plane stiffness matrix of the cracked lamina for a
given matrix crack density, C,, and relative local delamination area, D', the
energy release rate is directly evaluated from equations [9.8a, b] by differ-
entiating the reduced stiffness matrix with respect to the corresponding
damage variable. The effect of interaction between matrix cracking and local
delamination is explicitly included in the expression of the in situ damage
effective function, A, which is used to obtain the reduced stiffness matrix, Q.
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9.3 Two-dimensional finite element analysis

9.3.1 Virtual crack closure approach

In this section a 2D FE analysis of the three-layer laminate considered
above is performed to obtain the interlaminar stresses and the strain energy
release rate associated with a local delamination starting from the trans-
verse ply cracks. This will assess the analytical model presented in the pre-
vious section and O’Brien’s simple equation for G.*

We assume the laminate to be subjected to a uniform axial tensile strain
g,. Because of symmetry, only a quarter of the laminate, defined by 0 = y
= s and 0 = z = h, is considered. Transverse ply crack density, Cgy, deter-
mines the length of the quarter, s (s = 0.5Cg; half crack spacing), while the
relative local delamination area, D", defines the interface crack length, I,
(l4 = s D"). The FE package ABAQUS" was employed to obtain the
microstress field in the region of the crack tip. The quarter model is pre-
liminarily divided into the 24 rectangles (4 x 6) shown in Fig. 9.4(a).

The rectangles are then subdivided into smaller regions using the eight-
node quadrilateral plane strain element with 4-Gauss points. The detailed
mesh of the OO’~A A’ region is shown in Fig. 9.4(b).

Five divisions are imposed in the interval AB. Multipoint constraints are
used at the perfectly bonded section of the 6/90° interface. Symmetry con-
ditions are applied by imposing zero nodal displacement in the z-direction
at z = 0 plane and in the y-direction at y = 0 plane. Load is applied by
specifying uniform displacement in the y-direction at y = s plane.

9.3.2 Evaluation of strain energy release rate

The energy release rate, G, in the finite element model is evaluated by
using the VCC technique,'' as described in Section 6.9, and running the
model twice. In the first run the model is loaded with nodes e, f and g, h
held together (Fig. 9.5a) by employing the multipoint constraints (MPC)
command in the ABAQUS package. The forces to hold these nodes
together are evaluated. In the second run the model is loaded in the same
manner but nodes e, f and g, h are allowed to move apart (Fig. 9.5b) and
the relative displacements of the nodes recorded.

If F}; and F%; are the components of force in y- and z-directions required
to hold nodes e and f together in the first run, respectively, and 8 and &%
are the relative displacement components between nodes e and f in the
second run, the mode I and mode II strain energy release rate can be eval-
uated as

1 Z z
10 _ AL (Fi8% + F483,) [9.9a]
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9.4 FE meshes for cracked-layer laminate: (a) coarse mesh and, (b)
refined mesh at crack tip.
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with the total energy being taken as:
Gt =GY+ Gy [9.10]

In equation [9.9] Al, is the increment of delamination growth (virtual crack
extension).

Rybicki and Kanninen'' suggested that the value of the nodal forces in
equations [9.9a, b] could be replaced by the corresponding components of
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9.5 Calculation of G using Virtual Crack Closure technique.

nodal force of nodes i and k (or nodes j and 1) in run 2. In this case only the
second run, Fig. 9.5(b), is required. In theory, the two values of the energy
release rate, obtained from the two approaches, should tend to the same
value for small virtual crack growth, Al,. It is suggested that any discrepancy
between the two values could be used to check if the FE mesh is fine enough
to provide a reliable and stable value of the strain energy release rate.

9.3.3 An example

In order to compare the two virtual crack closure methods the nodal forces
and the energy release rates are evaluated for a glass fibre/epoxy (0,/90%),
laminate. The lamina stiffness properties are:'> E; = 50.33GPa, Ey, = Ez; =
14.48 GPa, G, = G5 = Gy = 6.068 GPa, v, = V13 = V3 = 0.275 and the ply
thickness ¢ = 0.254 mm. The transverse ply crack half-spacing, s, is assumed
to be 10.16mm (= 40 ply-thicknesses); this corresponds to a matrix crack
density Cy=0.492cm™. The local delamination half-length is taken equal to
Al; =1.016 mm (= 4 ply-thicknesses), which is equivalent to relative delam-
ination area D" = 10%.

Figures 9.6 and 9.7 illustrate the variation of the interlaminar normal
stress, 6,, and shear stress, 6,,, at the 0°/90° interface along the loading y-
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Table 9.1 Energy release rate evaluated using the Virtual Crack Closure
technique

FE models 1 G/t GU
(10°J/m?) (10%J/m?) (10%J/m?)
Two runs 0.792 9.222 10.014
One run 0.799 9.195 9.994
Error between the 0.9% 0.3% 0.2%

two methods

axis. It can be seen that the variation of the interlaminar normal and shear
stresses ahead of the delamination crack tip in the two configurations shown
in Fig. 9.5 are in a good agreement, suggesting that with a fine mesh one
run can successfully evaluate the energy release rate due to local delami-
nation. Results for Gt and its components are shown in Table 9.1; the
maximum relative error between the two methods is only 0.9%.

Going back to the stress results, Fig. 9.6 and 9.7 show a sharp increase in
interfacial shear and normal stresses near the local delamination crack tip.
The normal stress, 6., at the 0°/90° interface is compressive (Fig. 9.6),
suggesting that opening mode delamination does not exist.

In Fig. 9.8 the distribution of the interfacial normal stress, G, ahead of
the delamination tip is presented for four different local delamination areas.
It can be seen that for delamination lengths greater than one-ply thickness,
o, is compressive, indicating that the shear mode (mode II) dominates
delamination growth.

9.4 Discussion of VCC results

9.4.1 Comparison between the analytical models and FE
method

In this section, the analytical model described above is compared with the
2D finite element solution and O’Brien’s simple model;* the energy release
rate associated with local delamination is calculated for the T300/924 CFRP
system with (£25/90°,), lay-up. The FE analysis for local delamination is
carried out for two different matrix crack densities; C4 = 0.947cm™ and C,
=4.38cm™". The stiffness properties of the T300/924 system are taken as: Ej
=144.8GPa, E,, = E;; = 11.38 GPa, G, = G1; = 6.48 GPa, Gy = 3.45GPa, v,
=13 = 0.3 and ply thickness ¢ = 0.132mm.
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9.8 Variation of direct stress at the 0/90° interface of a (0,/90°,),

CFRP laminate as a function of relative local delamination area,
D,

In Fig. 9.9 the energy release rate normalised by the applied strain is
plotted against the relative local delamination area, D", for the laminate
with the two matrix crack densities. It can be seen that the strain energy
release rate for delamination is reduced with increasing matrix crack
density. The present analytical model agrees well with the FE solution in
the steady-state growth of delamination. The predictions based on
O’Brien’s simple equation, which ignores the effect of matrix crack density,
are far away from the FE results.

9.4.2 Effect of thermal residual stresses on G

In Fig. 9.10 the values of G with and without residual thermal stress effects
are plotted against the relative delamination area. The applied axial strain
is 1% and the matrix crack density Cq = 4.38cm™. The thermal coef-
ficients parallel and perpendicular to the fibres are: o; = 0.36 x 10°C™ and
o, =28.8x10°C.

The temperature difference between the stress-free state and ambient is
assumed to be 125°C and the specimen is assumed to be dry. It can be con-
cluded that residual thermal stresses substantially increase the available
energy to extend local delamination, and they should be included in pre-
dicting the local delamination onset strain (or stress).
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9.11 Delamination initiation strain for T300/914 graphite/epoxy
(+25/90°,)s laminates.

9.4.3 Local delamination initiation

In order to evaluate the critical load for local delamination initiation, the
interlaminar fracture toughness, G, of the composite material was taken
as 310J/m’. For the (+25/90°,), laminates tested by Crossman and Wang,’
the matrix crack density at which local delamination initiates can be
inferred from the delamination onset strain and transverse ply crack
density/strain data given in their paper. In Fig. 9.11 the dashed line gives
the delamination onset strain as a function of the number of 90° plies in the
laminate. In the experiments, the damage undergoes a transition from edge
delamination (n = 4) to local delamination (n = 4). The prediction is in
good agreement with experimental data for n = 4. For n = 4, the edge
delamination is the dominant damage mode and has been analysed in
Zhang et al.”

9.5 Finite element analysis using interface
elements
The interface element described in Chapter 6 has been used to model

several CFRP fracture mechanics test specimens.' To undertake the analy-
ses, the linear interface element was implemented in ABAQUS and the
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9.12 Load/displacement response for DCB. Point ‘B’ denotes the onset
of delamination growth."

quadratic element in LUSAS. The meshes used were such that there was
roughly the same number of nodes in each case. The results indicated a
faster convergence rate with the linear elements, although otherwise the
two packages gave comparable results.

The situations modelled were the basic pure mode I test, the double can-
tilever beam (DCB), the pure mode II test, the end-loaded split (ELS), and
the fixed ratio mixed mode (FRMM) test. The load-displacement response
was computed and compared with experimental data, and with a closed
form solution using modified beam theory.” As can be seen from Fig. 9.12,
the comparison is excellent for the DCB specimen. The results for the ELS
specimen were also good, although there was some difficulty in getting,
simultaneously, a close agreement for both the initial (linear) and ‘propa-
gating’ parts of the load-displacement response. Similar, but not such
pronounced, differences were encountered with the FRMM model.
These issuse could be overcome by modifying the values of E;; input to the
analysis, but such an approach is not satisfactory and indicates that more
work is required in developing these elements.

9.6 Summary

The modelling of cracking in laminates has been illustrated with reference
to laminates with (£6,,/90;), lay-ups. A new theoretical model and a 2D
finite element analysis were used as a basis for comparison. The total Gr
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was seen to consist primarily of the Gy;; component, and the FE result using
the VCC method was in good agreement with theoretical predictions for
large delaminations. It was substantially affected by the matrix crack
density and the residual thermal stresses.

The recently developed interface element has been shown to offer con-
siderable promise, despite much development being needed, especially for
application in complex structures.
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Joining

10.1 Introduction

Joints in components or structures incur a weight penalty, are a source of
failure and cause manufacturing problems; whenever possible, therefore,
a designer will avoid using them. Unfortunately it is rarely possible to
produce a construction without joints owing to limitations on material size,
convenience in manufacture or transportation and the need for access in
order to inspect or repair the structure.! This chapter describes various fas-
tening methods commonly employed with composite materials, the types of
joint failure, and the kind of problems that arise in the joint design because
of the heterogeneous and anisotropic nature of composite materials.

Basically, there are two types of joint commonly employed with com-
posite materials: adhesively bonded joints and mechanically fastened joints.
Welding is also a possibility for thermoplastic composites, but this technique
is not well developed for load-carrying joints. In the following paragraphs,
the first two types of joint are discussed.

10.2 Adhesively bonded joints

10.2.1 Introduction

Bonded joints can be made by bonding (glueing) together pre-cured lami-
nates with a suitable adhesive or by forming joints during the manufactur-
ing process, in which case the joint and the laminate are cured at the same
time (co-cured or co-bonded). Load-carrying joints often have an overlap
configuration; see Fig. 10.1. Such joint forms would be appropriate for
joining flat laminates or tubular members. Because the strength of a joint
is sensitive to a large number of parameters it is vital that consideration is
given to the joints at the outset of any design. Failure to do so may result
in the component being otherwise of adequate performance but impos-
sible to join. In the development of bonded joints for structures, a simple
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10.1 Some common engineering adhesive joints."

joint can be fabricated first and tested for its suitability in structures. The
size of the joint can be estimated from a knowledge of the part sizes to be
joined, the allotted space for the joint, and a general idea of how much
overlap is required to carry the load. With such knowledge, preliminary
joint designs can be made that can be refined using an iterative analysis
procedure.

10.2.2 Stress distributions

A joint represents a discontinuity in a structure, and the resulting high
stresses often initiate failure. Therefore, knowledge of the stresses in joints
is vital if we are to understand the failures that occur in practice and hence
improve designs and predict strength. Even relatively simple theories can
be useful if they allow the important parameters to be identified. There are
many publications concerned with the stress analysis of bonded joints,>™"
and analyses have been carried out for various joint configurations and for
different properties of the adherends and adhesives. Results have been
obtained in closed form or from numerical analyses. Important results are
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10.2 Adhesive shear stress distribution in bonded joints.?

qualitatively described here, and the conclusions affecting the joint design
are also discussed.

The primary purpose of a joint is to transfer load between the two items
being joined. In most bonded joints the load transfer takes place through
interfacial shear, which gives rise to high interlaminar stresses in the adhe-
sive layer. An idealised (elastic) variation of interlaminar shear stress in a
double lap joint is shown in Fig. 10.2. It can be observed in the figure that
the interlaminar shear stress has a large concentration near the end of the
joint. In the remainder of the joint the stress is low and uniformly distrib-
uted. Because the load transfer zones occur at the ends and eventually reach
a constant length, no increase in joint strength will be achieved once these
zones are fully developed. There is no point in increasing the overlap
beyond a critical value since no significant enhancement in strength will
result. Typically, for carbon fibre/epoxy systems the limiting overlap is 30¢,,
where ¢, is the thickness of the adherend. Since high stresses are developed
in the adhesive layer at the ends of the overlap, high stresses are produced
in the adjacent plies of the adherends. Therefore, failure may initiate in
these plies. Hart-Smith'? suggested that an effective way of reducing the
local high stresses in the plies adjacent to the adhesive layer is to increase
the adhesive thickness at the edge of the overlap. However, it is important
to remember that good adhesive bonds can be produced only in small range
of thicknesses (typically 0.1-0.25 mm) since thick bonds tend to be porous
and weak while ultrathin bonds are too stiff and brittle.

In contrast to double lap joints, the shear characteristics of the adhesive
have little influence on the strength of single lap joints, which are deter-
mined mainly by adherend properties, peel stresses and overlap length. The
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10.3 Typical single lap joint geometry and FE model (dimensions
in mm)."

length of the plastic zone in the adhesive is only one half that in equivalent
double lap joint and the elastic trough carries a significant proportion of
the total load. Peel stresses are an order of magnitude greater than in a
double lap joint and, in contrast to the latter situation, their effect can be
minimised by increasing the lap length. For acceptable efficiency the
overlap should be at least 80¢,.

A typical FE mesh for a single lap joint between eight-ply laminates is
shown in Fig. 10.3. There is one element through the depth of each ply, and
two through the thickness of the adhesive. Notice the increase in mesh
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density at the ends of the overlap.”® Continuum and FE analyses of such
joints give the same results for comparable situations.'

Scarf joints (Fig. 10.1) between identical adherends will have a uniform
distribution of adhesive shear stress and hence will show a higher strength
than the other joint types. With non-identical adherends such stress uni-
formity is not obtained and the scarf joint will usually fail at the tip of
the stiffer adherend. The same situation can occur with stepped joints. To
restrict creep deformation the scarf angle must be kept small (1-3°), result-
ing in long joints. Stress analysis of both stepped and scarf joints between
dissimilar adherends (e.g. composite and metal) must include the influence
of the different adherend stiffnesses and thermal expansion coefficients.

10.2.3 Failure modes and strength

Micromechanical damage occurs first and will eventually lead to macro-
mechanical damage. Thus micromechanical damage can be the basis for the
selection of ultimate load prediction techniques and the prediction of
failure modes of the joints. The micromechanical damage may initiate in
the adhesive layer, at the adhesive/adherend interface, or in the adherends.
Adherend failure can be tensile, interlaminar or transverse, in the last two
cases either in the resin or at the fibre/resin interface.

Cohesive failure within the adhesive layer or in the surface layer of the
adherend matrix may occur by brittle fracture or by a rubbery tearing,
depending on the type of adhesive used. This results in cracking perpen-
dicular to the load and causes a reduction in the load-transfer capability of
the joint. This situation is analogous to the cracks in the 90° plies of a cross-
ply laminate. Adhesive/adherend interface failure usually occurs on a macro
scale at low loads when processing (surface treatment) or material quality
are poor; it should not take place in properly prepared joints. Interlaminar
failure in the laminate (not related to edge effects) may be caused by poor
processing, voids, delaminations or thermal stresses.

The weakest joints are those where failure is limited by interlaminar
failure of the adherend or peel of the adhesive. The next strongest joints are
those in which the load is limited by the shear strength of the adhesive, while
the strongest will fail outside the joint area at a load equivalent to the strength
of the adherend. Such failures can be related to the stress distributions des-
cribed earlier. Further details on the different types of joint failure,joint analy-
sis procedures and joint design allowables can be found in Hart-Smith."

10.2.4 FE analysis of scarf joint

In this section we consider a joint that has identical adherends, uses a
relatively brittle adhesive and has small scarf angles, Fig. 10.4. The FE77
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10.5 Refined FE mesh near scarf tip.

finite element package" is employed to determine the stress field in the
scarf joint, using an isoparametric eight-node solid element. Because a high
stress concentration is expected near the sharp tip, a fine mesh is required
in this area; Fig. 10.5. The smallest element dimension is 0.0125mm."® The
(245/0/90°),s carbon fibre/epoxy laminate is treated as an homogeneous
elastic material with the following stiffness/strength properties: E,, = E,, =
53.8GPa, E,, = 11.3GPa, G,, = 20.5GPa, G, = G,, = 485GPa, v,, = 0.31,
Vy; = Yy, = 0.19 and compressive strength 6,, = 454MPa. The epoxy
adhesive layer of thickness ¢4 = 0.129mm has the following properties:
E =3.40GPa, G =1.26 GPa, v = 0.35 and 1, = 40 MPa.

10.2.4.1 Stress results

It is found that the dominant stress components are the in-plane stress, G,,
along the x-axis (load axis) in the parent laminate, and the shear stress tan-
gential to the tapered bond surface. Other stress components are relatively
small and could be neglected in any failure load calculations. The axial stress
distribution has a steep gradient near the tip of the scarf, suggesting the
existence of a stress singularity, and approaches the applied remote stress,
Sg, within eight plies (1 mm); Fig. 10.6. Since a mathematical stress singu-
larity exists at the scarf tip due to stiffness discontinuity, the computed
stresses are taken near, but not at, the tip of the scarf. The elastic stress con-
centration factor, at a distance of 0.01 mm from the scarf tip, for the lami-
nate examined, is approximately 2.3. As the distance from the tip increases,
the in-plane direct stress rapidly decreases.

The shear stress in the adhesive is quite uniformly distributed; Fig. 10.7.
Its magnitude is nearly proportional to the scarf angle; for 8 =9°,it is almost
three times higher than the value obtained for 6 = 3°.
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10.7 Distributions of normalised shear stresses, 1/S,, in the adhesive

layer along x-axis when the scarf angle equals 3, 6 and 9°.

10.2.4.2 Scarf joint strength and optimum scarf angle

For the simple scarf joint case, a simple stress analysis'® predicts that the
optimum scarf angle 6,, for a maximum strength joint is a function of
the adhesive shear strength 7, and laminate strength c,,, given by
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Ts
Bopt = ‘[anl(aLm ) [10.1]

For small 6 the failure stress, Sy, of the scarf joint is determined by the
maximum stress failure criterion, and is given by

Glll'l TS

S, =wm s
7K, K,sin®

[10.2]
where K, and K| are the stress concentration factors (SCFs) in the adhe-
sive and adherend, respectively. From the FE analysis, K, = 2.88 and K| =
2.3 for 8 = 10°. The load-carrying capability of the adhesive and the
adherend is plotted in Fig. 10.8 as a function of scarf angle. The optimum
scarf angle occurs when the adhesive failure load is equal to the laminate
failure load. For the composite system examined (t, = 40MPa and o,, =
454MPa), equation [10.2] results in a failure stress of = 200MPa and
an optimum scarf angle 6, of 4°.

Since stress redistribution, owing to material non-linearities and resin
plasticity, may occur in the scarf region before final failure, using elastic
SCFs could substantially underestimate the failure load. An alternative
approach is that of averaging the stresses over a distance from the tip of
the scarf, suggesting that the exact values of the stresses at the tip are not
too important, see Section 8.4.4. This approach accounts for material non-
linearities and plasticity of the adhesive, which reduce local peak stresses
in the scarf region, and stress redistribution mechanisms, which are not con-
sidered in the elastic FE analysis.
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10.3 Mechanically fastened joints

10.3.1 Introduction

In structures where parts are removed for inspection or maintenance bolted
joints will be required. The behaviour of bolted connections, for composite
laminates made from unidirectional pre-preg material, has been extensively
examined by several workers,”? who investigated a wide range of vari-
ables such as lay-up, fastener type (screw, rivet, bolt), friction effects, clear-
ance and their influence on the failure mode. A full theoretical description
of the stresses in such a joint must include their three-dimensional nature,
a fact that has limited the analytical treatment given to such connections.
The prediction of failure loads is, at the moment, mostly done semi-
empirically. Improvement will depend on the development of failure crite-
ria that are more generally applicable, together with an easy-to-use 3D
stress analysis. In the latter context, FE analysis is clearly important, and
some recent work is discussed below.

10.3.2 Failure modes

In addition to fastener failure, in shear and/or bending, there are essentially
four modes of failure, namely tension, shear, bearing and cleavage, as illus-
trated in Fig. 10.9. Failure will be dependent upon many factors, such as
fibre type, fibre orientation, surface treatment and matrix properties. It
follows that knowledge of a wide range of variables is needed if favourable
joint conditions are to be achieved and unwanted failure modes avoided.
Composite materials may have low bearing strength and low in-plane shear
strength. The tensile strength of the material in the reduced cross-section
can be improved by increasing the spacing between bolts and transferring
the load through several rows of bolts so that the net shear area of the bolts
is sufficient.

el = O
) b o

Tension Shear Bearing Cleavage

10.9 Modes of failure for mechanical joints in FRP composites.
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The low in-plane shear strength of the composite presents quite a few
problems. Unidirectional composites have low shear strength in the longitu-
dinal direction, which results in the shear out mode of joint failure. An
improvement for this mode of failure can be made by the use of +45° fibre
orientations, but this can result in low net tension capability. The use of quasi-
isotropic fibre orientations combines improved shear and tensile strength,
but at the same time reduces considerably the efficiency of the joint.

Besides the preceding problems related to conventional strength criteria,
there are problems peculiar to composite materials. The holes in the lami-
nate cause stress concentrations that vary with the fibre orientation rela-
tive to the load direction. The stress concentration factors may sometimes
be well above those occurring in a similar metal structure. Composite ma-
terials do not plastically deform, so that stresses are not easily redistributed
around the stress concentration and are thus a cause of concern. The holes
also give rise to the edge effects, as discussed in Chapter 7, which promote
local interlaminar failures that may become critical in the presence of a cor-
rosive environment. A detailed discussion of current joint design practices
can be found in other works.?*

10.3.3 Bearing strength prediction

There are three significant in-plane stresses in the laminate: the compres-
sive (bearing) stress on the loaded side of the pin, the tensile stress across
the net section and the shear stress on the shear out planes; Fig. 10.10.

10O

@ (b) ©

10.10 Typical in-plane stress distributions around a pin-loaded hole:
(a) radial compression stress, o,; (b) tensile stress on net
section, o,; and (c) shear stress on shear out planes, o,,.
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Table 10.1 Measured and predicted bearing strengths of woven CFRP
laminates

Laminate Failure load, P; (kN) Strengths (MPa)

Op Oith, Eqn [104] 0‘h18
(0/90°)g, 12.6 553 315 (567) 620
(0/90/+ 45°)4 16.5 723 363 (653) 402

Note: number in parentheses are strengths obtained by reducing the SCF.%®

Provided certain geometric requirements are met joint failure will be in
bearing.

Smith* and Smith et al.”® related the maximum tensile stress concentra-
tion factor (SCF) at a loaded hole, K,, to the maximum stress concentra-
tion factor at an unloaded hole in a finite width orthotropic laminate under
a remote tensile stress by the following expression:

K, = K7[0.31+0.5Y (d/w)] [10.3]

K, is defined as the maximum tensile stress normalised by the nominal
bearing stress, Y is a finite width correction factor, d is the hole diameter
and w is the plate width. K7 is related to the laminate elastic constants (E,
v, G) and is given by Lekhnitskii.”! For the woven carbon fibre (T300 2 x 2
twill)/epoxy (135 °C curing toughened epoxy, LTM49) (0/90°)s, orthotropic
and (0/90/£45°), quasi-isotropic laminates investigated by Andreasson
et al.,” K, is equal to 2.063 and 1.188, respectively. These values could be
used with the maximum stress criterion to predict the bearing strength
(in the net tension mode of failure); i.e.

[10.4]

where o, is the ultimate tensile strength of the laminate. Equation [10.4]
predicts that failure would occur at 315 MPa for the (0/90°) lay-up and at
363MPa for the (0/90/£45°) laminate; Table 10.1. Both values are much
lower than the measured strengths, Gy

This suggests that some load redistribution is occurring and a simple
stress concentration factor underestimates considerably the notched
strength. A simple means of incorporating the load redistribution is to apply
the point stress or average stress failure criterion,” or just reduce the elastic
SCF by a constant C (=1.8; determined from the best fit to experimental
data) as suggested by Hart-Smith.”
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Note that the parameter C for the non-woven laminates (XAS/914 car-
bon fibre/epoxy system) examined by Smith** and Smith et al.*® was taken
as 2.1, independent of stacking sequence and thickness.

In order to predict the bearing strength, in the bearing mode of failure,
the semi-empirical technique developed by Collings™ could be used. The
method underestimates the bearing strength of the quasi-isotropic laminate
by more than 40%, but in general the agreement is acceptable considering
the complex nature of damage initiation and growth observed in the exper-
iments.” It would be more appropriate to use Collings’ expressions to esti-
mate damage initiation rather than final fracture. The average or point
stress criterion could be applied to account for the local damage occurring
around the hole, but knowledge of the stress distribution is required. This
can be achieved by performing a 2D FE stress analysis.

10.3.4 2D FE analysis

The stress field in the region of a loaded hole in a composite laminate is
quite complicated, even if the problem is treated as being two-dimensional
(load transfer friction and through-thickness clamping effects ignored). The
stress distributions are influenced by the elastic constants of the laminate,
the joint width and end distance, pin elasticity, friction and clearance
between the pin and the hole. Andreasson er al.** used the commercial FE
package I-DEAS to model a pin joint (i.e. a bolt with no through-thickness
restraint or tightening) as a 2D contact problem which incorporated the
bolt/hole friction and an appropriate contact region between the bolt and
the plate. Orthotropic (0/90°)s, and quasi-isotropic (0/90/445°),, laminates
were examined. For linear static problems I-DEAS makes use of laminate
plate theory to determine ply and laminate stresses. A typical FE mesh is
shown in Fig. 10.11(a). The optimised mesh consisted of about 760 quadratic
thin shell elements (Mindlin shell element) and 55 contact elements with
2393 nodes in total. The mesh is much finer in the region close to the hole
since large stress variations are expected; Fig. 10.11(b). The model, when
run on a Sun Superstation 5 with 64 Mb main memory, takes just over 5
minutes CPU time.

In order to simulate the no contact region behind the bolt, a gap is
left between 101° and —101°. For the rest of the interface special gap
elements are employed which prevent penetration of the bolt elements
into the plate elements, and allow the contact region between the bolt and
plate to be modelled with friction. The load is applied at the centre of the
bolt as a point load (linearly increasing from zero to 12kN in 2kN incre-
ments) along the x-axis. The radial degree of freedom of the boundary
nodes in the bolt, between 90° and 270°, is fixed to avoid any rigid body
movement.



Joining 187

\ [/

/]

(a)

(b)

10.11 Plate with a pin-loaded hole: (a) overall mesh and (b) refined
mesh around hole.

The FE load/strain curves corresponding to the net tension and bearing
planes for the orthotropic and quasi-isotropic laminates are plotted in Fig.
10.12, and compared with experimental values obtained from strain gauges
attached near the hole on a representative test specimen. Differences are
due to the fact that the strain gauges measure an average value rather than
a point value, and the FE analysis is 2D elastic, ignoring through-thickness
effects.

For the (0/90°) orthotropic plate the maximum stress criterion predicts
damage initiation at approximately 12kN applied load, owing to high shear
stress developed at 6 = 45° from the direct contact point between the bolt
and the plate. No damage is observed in the bearing plane; the compres-
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10.12 Load-strain curves corresponding to strain on the net-tension
plane (left) and bearing plane (right): (a) the orthotropic
laminate and (b) quasi-isotropic laminate.®?

sive stress at the edge of the hole is below the critical compressive strength
value of 520 MPa.

In the (0/90/£45°) laminate failure initiates first in the off-axis plies (£45°
layers) at 45° from the direct contact point, owing to high shear, while the
(0/90°) plies fail both in net-tension and bearing mode. A 12kN applied
load introduces stresses at the edges of the hole which exceed the ultimate
tensile (650 MPa) and compressive strength (520MPa) of the system, and
therefore damage (net-tension and bearing) is expected to occur in these
layers. The measured failure load for this lay-up is 16.5kN, suggesting that
the damage reduces the local stresses (load redistribution) and therefore
delays final failure. The point stress failure criterion (PSFC) predicts net-
tension failure in the quasi-isotropic laminate successfully. With the char-
acteristic length d, from the hole edge taken equal to 1 mm, the predicted
failure load is 16 kN compared with 16.5kN for the measured value. For
the orthotropic lay-up the theoretical failure load is 12kN, which is very
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close to that observed (13kN). However, final failure occurred in the
bearing plane.

With the PSFC, the linear elastic stress analysis is presumed to be valid
outside some empirically determined softened zone adjacent to the hole.
The basic drawback is that the so-called characteristic length varies con-
siderably with bearing stress, and failure is predicted at some place other
than where it is known to occur. The value chosen for d, although not deter-
mined analytically, correlates quite well with the value used for the strength
of carbon fibre/epoxy laminates with an open hole.

10.3.5 3D FE analysis

As already mentioned, there are many factors that influence the per-
formance of mechanical joints, and their complete representation, in any
model, requires a 3D analysis. Necessarily, this will mean an FE model. In
this section a particular approach is presented.*

10.3.5.1 Model formulation

Stacked, eight-node, reduced integration, brick elements were chosen as
they are adequate to capture the 3D stresses around the hole boundary. The
ABAQUIS system™ was used for the analysis, with -DEAS™ used as a pre-
processor. The choice of element was also related to the contact algorithm
used in ABAQUS. The mesh around the hole boundary is shown in Fig.
10.13; there is one element per ply thickness. Special care was taken to avoid
element distortions due to aspect ratio and skew angular deformations.
Nevertheless, the use of one element per ply will give high aspect ratios
away from the fine mesh region, where accurate stresses are not so impor-
tant. Because of symmetry, only one quarter of the laminate was modelled.

10.13 Typical 3D finite element mesh for a FRP laminate with a
pin-loaded hole.?*
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The FE results were compared with experimental data obtained from
single fastener specimens, with finger-tight washers, loaded in double shear.
The washer was assumed to be rigid, and constraints imposed at the corre-
sponding nodes in the model to prevent through-thickness expansion.

10.3.5.2 Representation of damage

Extensive experimental characterisation was carried out to identify the
failure modes that occurred as the fastener load was increased from zero
to final failure.* Matrix cracking in tension, compression and shear, fibre
failure in tension and compression, and delamination were all seen. From
this work it was concluded that a 3D failure criterion would be needed,
together with a procedure for reducing the elastic properties in damaged
elements. The latter was based on the approach of Tan and coworker,”*
and the criterion of Hashin® was used to indicate the onset and type of
damage within a ply. The initiation of delamination was modelled, but not
its growth.

Besides predicting the onset of non-critical damage, a procedure was also
needed to indicate final failure. For the tension and shear out modes, total
failure of the joint was taken to be when predicted fibre damage extended
to the free edge of the laminate. For the bearing mode failure was when
fibre damage reached the outer edge of the washer. These representations
were in accord with experimental observations.

10.3.5.3 Comparison of predictions with experiment

To illustrate the success of the approach, the predicted and experimental
load-displacement (from a linear voltage displacement transducer, LVDT)
curves are shown in Fig. 10.14 for the bearing failure specmen. Compar-
isons for tension and shear out modes were equally good. There is signifi-
cantly more extension from the experimental results simply because the
tests were continued long after effective failure had occurred.

10.4 Summary

In this chapter, fastening methods commonly employed with composite
materials, the types of joint failure and the kinds of problems that arise
in the joint design because of the heterogeneous and anisotropic nature
of composite materials have been discussed. Adhesive bonded joints and
mechanically fastened joints are the two types of joint mainly used with
these materials.

In the development of bonded joints for structures, a simple joint can be
fabricated first and tested for its suitability in structures. The size of the joint
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10.14 Experimental and predicted load-displacement relation for the
bearing failure specimen.?

can be first estimated from a knowledge of the part sizes to be joined, the
allotted space for the joint, and a general idea of how much overlap is
required to carry the load. With such knowledge, preliminary joint designs
can be made that can be refined using an iterative analysis procedure. The
FE method is a powerful numerical tool that can be used to estimate direct
and shear stress distributions required in the failure analysis.

In structures where parts are removed for inspection or maintenance
bolted joints are required. A wide range of variables such as lay-up, fastener
type (screw, rivet, bolt), friction effects, clearance and their influence on the
failure mode of a bolted (or riveted) connection need to be carefully exam-
ined for a successful design. The stress analysis in such a joint must include
their 3D nature, a fact that has limited the analytical treatment given to
such connections. The prediction of failure loads is, for the moment at least,
generally semi-empirical. However, it has been shown that the use of appro-
priate failure criteria that are more generally applicable, in combination
with stiffness reduction laws, together with an easy-to-use 3D FE stress
analysis can result in improved strength predictions.
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Fatigue

11.1 Introduction

Fatigue in metals occurs by the initiation of a single crack and its intermit-
tent propagation until catastrophic failure occurs with little warning and
no sign of gross distortion, even in highly ductile metals, except at the final
tensile region of fracture. In contrast to homogeneous materials, compos-
ites accumulate damage in a general rather than a localised fashion, and
fracture does not always occur by propagation of a single macroscopic
crack. The microstructural mechanisms of damage accumulation, including
fibre/matrix debonding, matrix cracking, delamination and fibre fracture,
occur sometimes independently and sometimes interactively, and the pre-
dominance of one or other of them may be strongly affected by both ma-
terials’ variables and testing conditions.'” Fatigue damage in composites
leads to permanent degradation in mechanical properties, notably laminate
stiffness and residual strength, often at an early stage in the fatigue life.

In this chapter, we describe the fatigue damage accumulation in unidi-
rectional and multidirectional fibre-reinforced polymer laminates, and
discuss some of the methods which have been used to model composite
fatigue behaviour. A more elaborate discussion on the subject can be found
in references 1-7.

11.2 Damage modes in composite laminates

In multidirectional laminates, the 0° plies carry most of the load and provide
most of the stiffness while the 90° and +45° plies give transverse and shear
strength and stiffness, respectively. Under an applied load (mechanical,
thermal, static or cyclic) a complicated state of damage develops in the off-
axis plies, causing load redistributions which lead to eventual fracture of the
load-bearing plies.

Damage in (0/90°) cross-ply and (0/90/£45°) quasi-isotropic laminates is
of three main types: matrix cracking parallel to the fibres in the longitudi-
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nal and off-axis plies, delamination between plies and fibre fracture with
associated debonding. The general sequence of damage is similar under
tensile static and fatigue loading. Fibre/matrix debonds initiate around
fibres lying at an angle to the loading direction, initially in the 90° plies,
extend to form microcracks which, in turn, form matrix cracks across the
thickness and the width of the plies. The number of cracks in all of the off-
axis plies increases with increasing static stress or number of fatigue cycles,
reaching a maximum density which remains stable until fracture. This has
been termed the ‘characteristic damage state’ (CDS) and depends on ply
thickness and orientation and on laminate stacking sequence.®

Matrix cracking parallel to the fibres in the 0° plies occurs at strains close
to failure under static loading or may develop throughout fatigue cycling
(owing to the mismatch between Poisson’s ratios of adjacent plies).”

Delaminations initiate between plies of different orientation and grow
inwards from the laminate edges across the width of a test coupon. The
tendency to delaminate results from out-of-plane interlaminar shear and
normal stresses which exist at free edges and depends on the stacking
sequence of the off-axis plies within the laminate,” as described in
Chapter 7.

Final failure of the laminate is due to tensile fracture of the 0° fibres. The
variation in fibre strength is related to the statistical distribution of flaws
along the fibre length. Progressive fibre failure and debonding of the broken
fibres (due to the high shear stresses at the fibre/matrix interface close to
the break) causes a redistribution of the applied load, increasing the prob-
ability of fracture in neighbouring fibres and reaching a critical number of
fibre failures to cause fracture. A higher concentration of fibre breaks has
been observed at the intersection of transverse ply cracks with the longi-
tudinal plies under cyclic loading."

In compression, although the fibres remain the principal load-bearing ele-
ments, they must be supported from becoming locally unstable and under-
going a microbuckling type of failure.*'? This is the task of the matrix and
the fibre/matrix interface, the integrity of both being of greater importance
in compressive loading than in tensile loading. Matrix and interfacial
damage develop for much the same reasons as for tensile loading, but
because of the greater demand on the matrix and the interface in com-
pressive loading, compressive fatigue loading generally has a greater effect
on the residual strength of composite materials than does tensile loading.
In addition, local resin and interfacial damage leads to fibre instability in
compressive loading which is more severe than the fibre isolation mode
which occurs in tensile loading. Generally, fewer studies are available on
the compressive fatigue of composites, mainly because compression testing
of these materials presents many problems, not the least of which is the
need to support the specimen from undergoing global macrobuckling, com-
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11.1 S-N fatigue data for unidirectional composite materials.*

bined with limitations imposed on specimen geometry by the anisotropic
nature of the materials.*

11.3 Fatigue of unidirectional laminates

11.3.1 Fatigue lifetime

Typical plots of peak tensile stress versus log cycles to failure, the traditional
stress-cycles (S-N) presentation of data, are shown in Fig. 11.1.* Data for
three unidirectional materials are presented: carbon fibre, glass fibre and
aramid fibre-reinforced epoxy resin. The slope and shape of the S-N curve
is a measure of the fatigue resistance of the material.

Since, for unidirectional composite materials under tensile loading, the
fibres carry virtually all the load, the tensile fatigue behaviour might be
expected to depend solely on the fibres, and since the fibres themselves are
not usually particularly sensitive to fatigue loading, good fatigue behaviour
should result. However, experimental evidence has shown that the slopes
of the curves are determined principally by the strain in the matrix'*'* when
the fatigue limit of the matrix is less than that of the fibres, which is nearly
always the case. Consequently, plots of mean strain rather than stress vs log
cycles to failure are frequently more meaningful for composite materials.
The resulting e-N diagram, Fig. 11.2, would show regions of dominance of
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11.2 A generalised strain—fatigue life diagram for unidirectional
composites loaded parallel to the fibres showing dominant
regions of tensile fatigue damage.™

individual damage mechanisms in the fibre, matrix and interface from which
the contribution of each to the overall fatigue response can be evaluated."

In unidirectional fibre/epoxy laminates, fatigue failures tend to occur only
within a narrow band of stress close to the static strength of the laminate,
and the number of cycles to failure can vary over several decades of cycles
inside this band. Load is carried mainly by the stiff fibres and there is little
permanent damage until fibre fracture is initiated. Fatigue damage may
accumulate as a result of stress redistribution from broken fibres but this is
only significant at stresses close to the static ultimate strength.

Comparison of the S-N curves shown in Fig. 11.1 illustrates that fatigue
performance is ranked in the order of modulus and strain to failure of
the fibres. The use of very stiff fibres, such as carbon fibres (typically with
modulus of 220-700 GPa and failure strains of 0.6-2%), limits the strain in
the composite and so prevents large elastic and visco-elastic deformations
in the matrix which lead to initiation of damage. The lower modulus of glass
fibres (70-80 GPa) permits composite strains large enough to cause early
matrix damage and hence precipitate fatigue failure. Consequently, the S-N
curve falls more steeply than for CFRP. The fatigue performance of Kevlar
fibre composites is intermediate to CFRP and GFRP. However, the fatigue
damage mechanism is complicated in this material since aramid fibres are
themselves fatigue sensitive and can defibrillate during fatigue loading.
The low-cycle behaviour compares well with GFRP but deteriorates at
intermediate to long lifetimes.

11.3.2 Fatigue damage accumulation

Some of the weakest fibres fail in the first few cycles since the cyclic stress
falls within the statistical fibre strength distribution determined by flaws."
This gives rise to locally enhanced stresses in the matrix and at the
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11.3 Normalised S-N curves for (0/+45°) CFRP laminates with varying
percentage of 0° fibres.*

fibre/matrix interface, which lead to the development of fatigue damage
with increasing number of cycles. Damage may also develop at local
microdefects, such as misaligned fibres, resin-rich regions or voids.* Resin
cracks frequently develop between the fibres, isolating them from adjacent
material and rendering them ineffective load carriers, causing fibres to
become locally overloaded and further fibre failures to occur. Close to
failure, the matrix may show extensive longitudinal splitting parallel
to fibres caused by resin and interfacial damage, leading to the brush-like
failure characteristic of most unidirectional materials.* The rate of this
degradation process in the matrix and at the interface is a function of the
bulk strain in the resin as well as the nature of the matrix.

11.4 Fatigue of multidirectional laminates

11.4.1 Fatigue lifetime

On increasing the percentage of non-axial plies in a laminate, the static
tensile strength and stiffness are reduced since fewer fibres are available to
support the mean applied loads. The slope of the tensile S-N curve increases
in relation to the static strength, Fig. 11.3, as the layers with off-axis fibres,
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whose mechanical properties are resin-dependent, are more easily damaged
in fatigue.*

Both CFRP and GFRP multidirectional laminates undergo progressive
accumulation of fatigue damage at rates that are reflected in the slope of
the S-N curves, as explained in Section 11.2. The damage will lead to a
general loss of integrity with potential for environmental attack, and cer-
tainly to a reduction in compressive strength."'® Ultimate tensile fatigue
failure of composite laminates is usually determined by the 0° layers; thus
the tensile S-N curves for multidirectional laminated composite materials
are still relatively shallow, although steeper than for 100% unidirectional
material. In general, the poorer fatigue performance observed in unidirec-
tional materials through the use of tough matrices is less marked in multi-
directional laminates.

11.4.2 Progressive damage in multiply laminates

The general sequence of damage events in a multidirectional laminate
under fatigue loading is similar to that observed under static loading, as
explained above. At high fatigue stresses, cracks can initiate on the first
loading cycle and then accumulate with increasing number of cycles.
However, cracks can develop even when the maximum cyclic stress is well
below the static cracking threshold, although only after an ‘incubation
period’ of hundreds of thousands of cycles (depending on peak stress); Fig.
11.4."7 Cracks generally initiate at the free edge of the specimen but can
also initiate away from the edge. Transverse ply cracks are observed to grow
stably across the width of the ply under fatigue loading at a rate which
depends on the cyclic stress level and on interaction with neighbouring
cracks.

The early initiation of matrix cracking in fatigue relative to static loading
consequently leads to a decrease in the threshold for the onset of other
types of damage. Delaminations can propagate over many thousands of
cycles, resulting in separation of the laminate into discrete laminae (which
will continue to support tensile load via the 0° plies).

Analysis of the stresses at the intersection of matrix cracks in adjacent
plies of different orientation'® shows that there is a highly localised region
of increased interlaminar normal and shear stress around the point of inter-
section, which could be an initiation point for failure of the laminate. The
final stage of damage development is dominated by fibre failures that result
from these locally enhanced stresses.'*” Ultimately fracture occurs when
the locally failed regions have sufficiently weakened the laminate to cause
failure at the maximum applied load.

The progression of damage in woven fabric composites in the initial
stage of tension—tension fatigue shows basically the same features that are
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observed in cross-ply laminates,” i.e. cracks initiate in the weft (transverse)
direction along the fibres. Further on in the lifetime, longitudinal cracks
appear between warp fibres in the undulation region where the fibres cross
over. Crack densities increase with cycling and a uniform pattern of ortho-
gonal cracks develops. After further cycling, delaminations occur confined
to the undulation regions and, thereby, attain a uniform distribution in the
interlaminar planes. Towards the end of the fatigue life fibre bundles fail
in the undulation regions and lead to general weakening and subsequent
failure. The S-N curve falls more steeply than for equivalent non-woven
material.* Thus, although woven composites have many processing advan-
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tages, their mechanical properties, particularly in fatigue loading, are gen-
erally poorer than unidirectional tape materials.

11.5 Fatigue damage effects on mechanical properties

11.5.1 Stiffness

The progressive damage sustained by a laminate during fatigue will affect
the macroscopic mechanical properties of the material to an extent which
depends on the specimen geometry, laminate stacking sequence and mode
of testing. For example, in unidirectional, high-modulus carbon fibre/epoxy
laminates, subjected to tension—tension fatigue, no significant change in
composite stiffness is expected prior to failure. By contrast, in cross-ply lam-
inates transverse ply cracking occurs early in the life of the specimen,
causing a stiffness reduction that will increase with number of cycles.
Stiffness reduction in composite laminates has been studied extensively
and very good correlations have been obtained with the level of matrix
cracking.”? The curve of normalised modulus versus cycles consists of three
distinct regions;"® Fig. 11.5. The initial rapid stiffness reduction of Stage I is

100%

Normalised stiffness

e

0 . . 100%
Fatigue life
I: Rapid II: Reduced rate III: 0° fibres failure,
accumulation of of cracking, linear localisation of damage
off-axis ply cracks stiffness decrease leading to failure

11.5 Schematic stiffness—fatigue life curve for a multiply laminate
showing three characteristic stages of stiffness reduction.™



202 Analytical and numerical modelling

1.0

_______________________________ CFRP
6max=700 MPa

l o e - ————

] o -
o Teea
o) -~
£
O A
E VKFRP
2 400 MPa 400 MPa
[
04
200 MPa
{ | | | | | L
0 1 2 3 4 5 6 7 8
Log cycles
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dominated by the formation of off-axis ply cracks, although some edge
delamination (in a 0/90/45° laminates) and 0° fibre fracture (in 0/90/0°) may
also occur. Throughout the approximately linear region of Stage II, the
matrix crack density is still increasing but much more slowly, and further
fibre fracture is accompanied by 0° ply splitting (0/90/0°) and edge delam-
inations (0/90/45°). In Stage III, the final rapid stiffness reduction is associ-
ated with localisation of the damage processes to form a macro-crack which
precipitates ultimate failure.

11.5.2 Residual strength

The effect of fatigue loading on laminate residual strength can be described
by the concepts of ‘wear-out’ and ‘sudden death’. The wear-out model
assumes that the residual strength of the laminate falls gradually with cycles
until failure occurs when the residual strength equals the applied cyclic
stress; Fig. 11.6. This behaviour is observed in cross-ply GFRP and Kevlar
fibre composites.” The sudden-death model proposes that instead of pro-
gressively decreasing the residual strength, some other material property
changes (such as matrix properties) which does not reduce the strength sig-
nificantly until very close to failure. This type of behaviour is generally
shown by CFRP laminates; Fig. 11.6.
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11.6 Fatigue damage modelling

Although the details of the damage mechanisms in the various composite
systems are quite varied, it is possible to identify certain general features
in the damage development. As an overall generalisation damage devel-
opment may be considered to take place in two stages: the distributed
damage stage and the localised damage stage.*® Furthermore, the distrib-
uted damage stage is initially non-interactive, i.e. the individual damage
entities initiate and grow uninfluenced by the others. The degree of inter-
action increases, first gradually, and eventually becomes severe enough to
cause localised damage development in some preferred zones. Further
development of damage involves instability and loss of integrity, and is sta-
tistically governed. The present state of damage modelling, using a micro-
mechanics®?’ or continuum damage approach,”®* has come as far as to
model the distributed damage stage. Localised damage development is not
yet sufficiently understood to attempt realistic modelling, including, for
example, multiple delaminations.

Earlier studies on damage accumulation during cyclic loading attempted
to obtain useful working relationships of the Miner’s rule type, that might
be used in design. Howe and Owen® who studied CSM/polyester compo-
sites suggested that although debonding did not itself cause reductions in
strength it did serve to initiate resin cracks which weakened the material.
For resin cracking during fatigue, the authors proposed a non-linear damage
law, independent of stress level, which gives the damage, A, as

-5 )ra(3) i

where n is the number of cycles sustained by the composite at a stress
level which would normally cause failure after N cycles, and A and B are
constants. A is equal to unity at failure. Fong® proposed an alternative
single-parameter stress-independent damage model in which the damage
factor A was given by

(e -1)

A= © -1 [11.2]
for k = 0 and 0 < x < 1, where k and x are constants determined from
experimental data. This model implies that the rate of accumulation of
damage (matrix cracking), dA/dt, depends linearly on ¢ as a first approxi-
mation, ¢ being the non-logarithmic cycle ratio n/N. For different values of
k this function generates a family of exponential curves.

A similar approach to quantify and predict the effect of damage on
fatigue life was used by Beaumont and coworkers,*? where all the individ-
ual damage mechanisms, e.g. splitting, delamination and matrix cracking,
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are assumed to contribute to a global damage parameter, A. This param-
eter can be related to a measurable change in laminate property such as
stiffness to find the rate of change of A with cycles and then integrated to
give A after N cycles at a given load. A suitable failure criterion is then
applied to determine the critical value of A.

Also, the rate of growth of individual types of damage (e.g. transverse ply
cracking) have been considered. A fracture mechanics parameter, the strain
energy release rate G, has been used to relate fatigue crack growth to the
change in laminate compliance® using the relationship between G and the
change in laminate compliance with transverse ply crack length. Wang et al.**
assumed a simple power law dependence of the rate of growth of full ply-
width flaws across the ply thickness on the strain energy release rate (calcu-
lated by FE analysis). The energy release rate depends on crack spacing and
is reduced by crack interactions, which is relevant to experimental observa-
tions of the effect of the proximity of neighbouring cracks on growth rate as
the crack density increases.” The strain energy release rate has also been
used to model fatigue delamination growth in angle-ply laminates.*

A different fracture mechanics approach to modelling matrix crack
growth is taken by Bader ef al.'” in which an approximate expression is
derived for the stress intensity factor at the tip of a full ply-thickness trans-
verse crack growing across the ply width. The stress intensity factor also
depends on crack spacing and decreases as the spacing decreases. A Paris
Law relationship gave good correlation between total crack growth rate
(inferred from the measured rate of stiffness reduction) and the maximum
stress intensity factor.

In some recent work, Behesty ef al.”” have developed a constant-life
model which is able to describe the stress/life/R-ratio failure surface of a
given laminate in terms of the monotonic tensile and compressive strengths
of the material and three empirical parameters, referred to as f, u and v. It
was found that for a CFRP laminate the values of u and v are close to 2
and do not vary greatly with life or material characteristics. The parameter,
f,on the other hand, is a function of the ratio of the compressive and tensile
strengths, and varies with life. The model appears to be valid for glass fibre-
reinforced plastics as well as for the carbon fibre composites for which it
was originally developed.

1‘37

11.7 A finite element model for fatigue life prediction
of CFRP components

11.7.1 Introduction

Very little FE modelling of the fatigue of composite structures appears to
have been undertaken. In this section a particular case of a web-notched
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11.7 A web-notched I-beam subjected to a four-point bending load.®®

I-beam subjected to the four-point bending load illustrated in Fig. 11.7 is
described.™ The basis of the method is first to use a fracture mechanics
approach to obtain experimentally the relationship between the maximum
strain energy release rate experienced during a fatigue cycle and the rate
of growth of the damage. For the beam, the latter was mainly matrix crack-
ing, as determined by observations during a series of fatigue tests. The com-
ponent is then analysed using FE analysis, the local stresses and strains
around the notch determined, the energy release rate calculated and then
combined with the fracture mechanics data to give the lifetime, which is
compared with experimental results.

11.7.2 Qutline of predictive method

The model is based on a combination of FE stress analysis and fracture
mechanics. The FE analysis (using the ABAQUS system, with 2D shell el-
ements) is used to get a detailed stress distribution in the structure when
subjected to a static load equal to the maximum load applied in the fatigue
cycle. Interrogation of the output allows identification of strains above a
designated threshold (for matrix cracking), and the elements and plies
within the element in which these strains occur.

The elastic properties in the damaged plies are then reduced and the
analysis repeated. Further damage is identified and the process continued
until final failure is indicated. In the experimental work fibre fracture was
identified as being the ultimate cause of failure. Hence, in the model, fibre
strains are monitored and when the ultimate fibre failure strain is reached,
at any location, the analysis is halted.

At each iteration of the analysis the strain energy release rate, G, in the
structure is calculated. So, at the conclusion of the analysis a relationship
between G and damage area, A, is available. This information is then com-
bined with fracture mechanics in the form of the Paris Law, and from this
the lifetime is found.

An initial model was based on the simple Paris Law: dA/dN = DGy
linking damage area, A, number cycles, N, and maximum strain energy
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release rate in a cycle, G5, via ‘materials’ parameters D and . This infor-
mation would typically be determined from the double cantilever beam test.
From the above equation, the lifetime is found by integration as

_m_dA
DG

where the final damage area A; corresponds to fibre fracture.

The lifetime predictions from the initial model proved to be extremely
sensitive to values of n and D and to overcome this a modified form of the
Paris Law was used:

e ]
9 DG
dN G...\"

1| Fmax

EGI
where Gy, is a threshold value of G, below which no cracking occurs, and
G. is the critical value above which instantaneous failure occurs. The terms
n; and n, are additional ‘materials’ parameters. The integration to get life-
time was performed numerically. Data for stiffness reduction due to ma-
trix cracking were obtained from published work on a similar material to

that from which the beams were fabricated (CFRP: XAS/914 from Hexcel
Composites).*

11.7.3 Results from model

A key issue proved to be the availability, and quality, of fracture mechan-
ics data, essentially the Paris Law constants (n and D (and n, and n, if
appropriate)). Owing to scatter in the results of DCB, and similar tests, a
spread of n and D is always apparent. The values chosen, by curve fitting
the experimental points, have a major influence on the predictions.

Another factor that influences the outcome of the predictions is the
values of elastic constants that are input to the FE model. The most criti-
cal parameter seems to be the modulus (E,,) at right angles to the fibres in
the unidirectional ply, although Poisson’s ratio and shear modulus also play
a part.

The best estimate, from the modified Paris Law, was 3.3 x 10° cycles to
failure, which compares with the experimental value for the lifetime, N, of
4.78 x 10° cycles.

The predicted growth of damage area compared well with experiment. A
typical FE mesh is shown in Fig. 11.8 and a comparison of predicted and
measured damage growth is seen in Fig. 11.9.
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11.8 Summary

In contrast to metals, composites accumulate damage in a general rather
than a localised fashion, and fracture does not usually occur by propaga-
tion of a single macroscopic crack. The microstructural mechanisms of
damage accumulation, including fibre/matrix debonding, matrix cracking,
delamination and fibre fracture, occur sometimes independently and some-
times interactively, and the predominance of one or other of them may
be strongly affected by both materials’ variables and testing conditions.
Fatigue damage leads to a permanent degradation in laminate stiffness and
residual strength.

The fatigue resistance of composites is reduced when the applied load is
other than tensile and in the fibre direction. Compression, flexure and
torsion subject the relatively weak matrix and fibre/matrix interface to
shear stresses, reducing the contribution of the fibres to the fatigue resis-
tance and allowing compressive fibre buckling initiated by local matrix
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shear and longitudinal splitting. Fatigue lives in tension—compression
loading are usually shorter than for zero-compression or zero-tension
fatigue.

The effect of exposure to moisture and changes in temperature on the
fatigue response depends on the sensitivity of the laminate to matrix prop-
erties, since it is usually the matrix or fibre/matrix interface that is affected.
Thus carbon fibre laminates, having a strong fibre/matrix interface, show
little sensitivity to moisture content or a rise in temperature.

It should be noted that the test method, specimen design, edge effects
and stress concentrations such as notches, holes, fasteners, impact damage
and other imperfections may affect the fatigue strength. However, because
of relatively low static design allowables, fatigue strength is not usually a
serious design criterion for current carbon fibre composite structures.

Finally, a fracture mechanics parameter, the strain energy release rate
(calculated by finite element analysis) is commonly used to relate fatigue
crack growth (matrix cracking or delamination) to the change in laminate
stiffness. This information can then be combined with a simple power law
(usually the Paris Law) to predict the fatigue life of composite structures.
All existing fatigue models require extensive experimental data.
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