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6.1 Introduction 

Nanoscale metallic multilayered (NMM) composites represent an important 
class of advanced engineering materials which have a great promise for 
high performance that can be tailored for different applications. Tradi-
tionally, NMM composites are made of bimetallic systems produced by 
vapor or electrodeposition. Careful experiments by several groups have 
clearly demonstrated that such materials exhibit a combination of several 
superior mechanical properties: ultrahigh strength reaching 1/3 to 1/2 of 
the theoretical strength of any of the constituent materials [28], high 
ductility [25], morphological stability under high temperatures and after 
large deformation [22], enhanced fatigue resistance of an order of magnitude 
higher than the values typically reported for the bulk form [35], and 
improved irradiation damage resistance [17, 27], again, as compared to the 
bulk. However, the basic understanding of the behavior of those materials 
is not yet at a level that allows them to be harnessed and designed for 
engineering applications. 

The problem lies in the complexity and multiplicity of factors that 
govern their behavior. Although the concept of creating a stronger metal 
from two weaker ones by combining them in laminates has been proposed 
and understood by Koehler in 1970 [20], the nanometer scale introduces 
a new domain of complexity. At this length scale, the discrete nature of 
dislocations and their interactions becomes increasingly significant in 
dictating the response. Depending on the lattice structure and lattice para-
meters mismatch of the two materials, the layers can be under very high 



stress states; and interfaces may contain misfit dislocation structures. The 
miscibility of the materials and the chemical potential strongly affect the 
nature of interfaces and, hence, their interaction with dislocations. The fact 
that interfaces form an unusually high-volume fraction of the material 
makes them a major factor in governing the behavior. The combined 
complexity and interactions among all of the above-mentioned factors 
explains the deficiency in the theoretical understanding of the response of 
NMM composites. 

The strong dependence of the mechanical behavior of NMM composites 
on unit dislocation processes and interfaces poses a challenge to modeling 
and simulating their behavior. Classical plasticity does not consider the 
physical mechanism underlying the deformation of the modeled continuum 
and fails to predict the dependence of the response of metallic structures 
on their size. Although classical crystal plasticity provides the correct 
physical framework for modeling dislocation-dependent plasticity, it fails 
to predict size effect and related phenomena because it does not accom-
modate geometrically necessary dislocations associated with gradients in 
plastic deformation. If any, it would be strain gradient plasticity theories 
that could provide the suitable framework for modeling NMM composites, 
although this remains a challenging problem and is far from being resolved 
at the present state of the field. 
 Multiscale modeling is one of the most promising modeling paradigms 
which appeared in the last decade for modeling macroscopic phenomena 
whose roots lie at a finer scale. The approach is based on the appropriate 
coupling of two models for each of the scales involved. In the case of 
NMM composites, such coupling involves the continuum mesoscale and 
dislocation microscale models, although a further coupling to the atomic 
scale is possible but practically very complex. Three-dimensional dislocation 
dynamics (DD) analysis is one of the most recent and powerful tool to 
model the behavior of metallic materials at the microscale in a more 
physical manner than existing plasticity models [8, 21, 33, 40, 41]. Since 
its development in the early 1990s, DD analysis has made significant 
advancement and proved useful in addressing several problems of interest 
in materials science and engineering. When coupled with the continuum 
level finite element (FE) analysis, the result is a multiscale model of 
elastoviscoplasticity which explicitly incorporates the physics of disloca-
tion motion and interactions among themselves and with external loads, 
surfaces, and interfaces [37, 38]. Such a model provides a very useful tool 
perfectly suited to studying the behavior of micro- and nanosized metallic 
structures. The mechanical behavior of NMM composites is clearly one 
example of those problems. 
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Section 6.2 explores the subject of modeling and simulation of NMM 
composites using multiscale modeling. The basics of dislocation-based 
metal plasticity and its mathematical modeling through DD analysis are 
reviewed. Multiscale coupling of continuum mechanics and dislocation 
dynamics are then presented. Background on the mechanical behavior 
of NMM composites is presented in Sect. 6.3. Finally, the benefits of 
multiscale and other modeling tools for NMM composites are demonstrated 
using different examples. 

6.2 Multiscale Modeling of Elastoviscoplasticity 

Decades of research, since the existence of dislocations in crystal was first 
theorized, have established that metal plasticity is governed by the 
response of crystal defects, mainly dislocations, to external and internal 
loading. Macroscopically observed deformation of metals is the cumulative 
result of the motion of a very large number of dislocations. Although the 
theory of dislocations provides a complete description of the stress, strain, 
and displacement fields of a dislocation as well as of their motion under 
the effect of forces acting on them, the extension of this theoretical under-
standing to provide accurate physics-based prediction of the mechanical 
behavior of metals is practically impossible. 

A typical density of dislocation in a moderately worked metal amounts 
to 10 × 1012 m−2. A cubic millimeter of such metal contains about 1,000 m 
of curved dislocation lines. The huge computational demand in calculating 
the dynamics of such densities of dislocations, further complicated by the 
fact that dislocations have long-range interactions and can react with each 
other upon colliding to form intricate configurations with possibly new 
characteristics, is beyond the existing and near future computational 
capacities. 

On the other hand, alternative continuum level modeling, although 
computationally feasible, remains phenomenological in nature. Even in the 
case of strain gradient plasticity and geometrically necessary dislocation-
based theories, success of one theory in capturing certain aspects of size 
effects has been problem dependant; and it remains that no general 
framework is agreed upon. The status quo is mainly due to the complexity 
and multiplicity of dislocation interactions leading to size effects. For 
example, it is well known that a dislocation has a distortion field 
associated with it, which results in a long-range stress field that decays 
inversely proportional to the distance from the dislocation core. As the 
dimensions of the specimen become smaller, the interactions between 
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these stress fields become increasingly significant, making the nonlocal 
effects increasingly pronounced. Furthermore, when the dimensions of a 
specimen become comparable to the range of the defect structure stress 
field, size effect arises due to the interaction of this field with the free 
surfaces (image stresses). 

The Hall–Petch effect, which implies that strength is inversely pro-
portional to the square root of a characteristic microstructural length scale, 
e.g., the grain size in microsized grains or the individual layer thickness in 
microscale multilayered structures, can be directly attributed to dislocation 
pileups at grain boundaries or layer interfaces, respectively. The stress 
needed to activate dislocation sources also depends on the grain size and 
their location within the grain, which reflects as a size effect in the early 
stages of deformation. Another size effect originates from low-energy 

complexity is a formidable task for any phenomenology-based theory. 
Plasticity in metals is an example of a problem that is multiscale in 

nature: The macroscopically observed behavior has its origin in the 
complex physics occurring at the microscale. A multiscale model for 
plasticity would implement a continuum level framework which avoids 
phenomenology by explicitly incorporating the physics of plasticity at the 
microscale through the DD analysis. The link between the two models is 
two-way: the DD model calculates and passes the plastic strain and the 
internal stress field due to dislocations at each material point (after proper 
homogenization), while the continuum model accounts for boundary con-
ditions and internal surfaces and interfaces through the solution of an 
auxiliary boundary value problem and the superposition concept as detailed 
below. 

In Sect. 6.2.1, we provide a brief background on dislocations in metals. 
The theoretical aspects of DD and their implementation in DD simulations 
are presented in Sect. 6.2.2. Then the multiscale dislocation dynamics 
plasticity model is presented in Sect. 6.2.3. 

6.2.1 Basics of Dislocations in Metals 

Dislocations are linear defects in crystals identified by their Burgers vector 
and line sense. Depending on the crystal structure, a dislocation can have 
one out of a finite set of Burgers vectors and can glide on one of a finite set 
of crystallographic planes. For example, in face-centered cubic (FCC) 
metals, there are six possible Burgers vectors, all of / 2 011a 〈 〉 -type, a 
being the lattice parameter, and four {111} slip planes. A combination of a 

F. Akasheh and H.M. Zbib 

to form by dislocation patterning and reorganization. Capturing all this 
dislocation structures, like cell structure or dislocation walls, which tend

238



Burgers vector and a slip plane defines the slip system of a dislocation. 
The Burgers vector defines the direction of slip of the material, while the 
slip plane defines the plane on which the slip motion occurs. On its plane, 
the dislocation can have an arbitrary line sense, which can change as the 
dislocation glides. Although the Burgers vector is a characteristic of a 
dislocation, its slip plane is not because a dislocation can change its glide 
plane, a process known as cross-slip. Dislocations glide under the effect of 
shear stress resolved in the slip plane along the slip direction (direction of 
Burgers vector). Notice the difference between slip direction, which 
pertains to the direction of motion of the atoms, and the dislocation line 
motion. The macroscopically observed plastic deformation of a metallic 
continuum structure is the result of the irreversible glide motion of a large 
number of dislocations on multiple slip systems each with its own spatial 
orientation. The macroscopic plastic strain tensor pε  is thus expressed by 
the following relation, which reflects the tensorial addition of several 
multiple contributions to slip each in a certain direction ( )ŝ β  on a parti-
cular ( )n̂ β  

p ( ) ( ) ( )
symˆ ˆ( ) ,s nβ β β

β

ε γ= ⊗∑  (6.1)

where pε  is the plastic strain increment, β is the slip system index, ( )βγ  is 
the increment of slip on slip system β, ( )ŝ β  is the unit slip direction, and 

( )n̂ β  is the slip plane normal. 
Gliding dislocations can also collide with each other resulting in special 

types of interactions (short-range interactions) which are very complicated 
in nature and depend strongly on the interacting dislocations’ slip systems, 
line senses, and approach trajectory. The main interactions include 
annihilation, jog formation, junction formation, and dipole formation. 
Furthermore, dislocations can also be trapped, ceasing to move either due 
to short-range interactions that leave them locked or due to long-range 
effects like pileups against obstacles or simply due to the occurrence of 
regions in the material where the stress field is not high enough to drive 
dislocations. 

6.2.2 DD Simulations 

The idea behind conducting DD simulations is to explicitly model the 
behavior of a dislocation population under applied load taking into consi-
deration all the topological and kinematical characteristics of dislocations 
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and their long- and short-range interactions as described above. Short-
range interactions due to dislocation collision are accounted for through a 
set of physics-based rules learned from either atomic scale simulations or 
careful experimental observations. In short, DD analysis is the numerical 
implementation of the theory of dislocations to analyze the dynamics of a 
dislocation system in materials. 

Generally, the simulation box in DD represents a representative volume 
element (RVE) of a larger specimen, although in some cases freestanding 
microsized components can make the simulation box. Unless a certain 
initial dislocation structure is desired, the simulation starts with a randomly 
generated dislocation structure. Dislocations are modeled as general 
curved lines in three-dimensional space made of an otherwise elastic 
medium characterized by its shear modulus, Poisson’s ratio, and mass 
density. Dislocation lines are discritized into small segments, each asso-
ciated with a dislocation node [39]. The nodes are the points at which 
forces on a dislocation from all dislocations in the system and from 
external loads are calculated. The governing equation for dislocation 
motion is then used to estimate the velocity, and hence the displacement, 
of each node in response to the net applied force. The node positions are 
updated accordingly, generating the new dislocation configuration and the 
process is repeated. 

In this scheme, the analysis of the dynamics of continuous line objects 
reduces to those of a finite number of nodes. Typical to numerical 
algorithms, the mesh size (here the length of a segment) can be refined to 
obtain the desired accuracy in representing the topology of curved 
dislocation lines and their dynamics. The above sequence of calculations is 
repeated as time marches in appropriately chosen time steps, to the desired 
point of evolution of the dislocation system or the overall stress or strain 
levels. The details of the approach outlined above will be explored in the 
following section. 

Dislocation equation of motion 

The theory of dislocations provides the following governing equation for 
the motion of a straight dislocation segment s [11, 14, 18]: 

s s s
s

1 .m F
M

υ υ+ =  (6.2)

Typical of a Newtonian-type equation of motion, it expresses the relation 
between the velocity of “an object” and the dislocation segment of 
effective mass ms, moving in a viscous medium with a drag coefficient of 
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1/Ms under the effect of a net force Fs. The effective mass per unit 
dislocation length m  has been given for the edge and screw components 
of a dislocation as follows [14]: 

( )
2

1 3 1 3 5o
edge l l l4 16 40 8 14 50 22 6W Cm γ γ γ γ γ γ γ

υ
− − − − −= − − + + + − +  (6.3a)

and 

1 3o
screw 2 ( )Wm γ γ

υ
− −= − +  (6.3b)

with 21 ( / )Cγ υ= −  and 2
l l1 ( / )Cγ υ= − . C and Cl are the trans-

verse and longitudinal sound speeds in the elastic medium, υ is the 
dislocation speed, and Wo is the line energy of a dislocation per unit length 
given as 2

o o( / 4 ) ln( / )W Gb R rπ=  [13]. In the later expression, G is the 
shear modulus, b is the magnitude of the Burgers vector, and R and ro are 
the external and internal cutoff radii, respectively. Ms is the dislocation 
mobility and it is typically a function of temperature and pressure. The net 
force Fs acting on a dislocation line can have several contributions to it 
depending on the problem. In general, 

s Peierls dislocation self external obstacle

image osmotic thermal ,
F F F F F F

F F F
= + + + +
+ + +

 (6.4)

where FPeierls is the force from lattice friction opposing the motion of a 
dislocation, Fself is the force from the two neighboring dislocation 
segments directly connected to the segment under consideration, Fdislocation 
is the net force from all other dislocation segments in the simulation 
domain, Fexternal is the force due to externally applied loads, Fobstacle is the 
interaction force between a dislocation and the stress field of an obstacle, 
Fimage is the force experienced by a dislocation due to its presence near free 
surfaces or interfaces separating phases of different elastic properties, 
Fosmotic is the driving force in climb, and Fthermal is the force on the 
dislocation from thermal noise. In general, the force due to a general stress 
field σ is given by 

s s s s ,F l bσ ξ= ⋅ ×  (6.5)

where ls is the segment length and σ is the stress field “felt” by the 
dislocation segment, while bs and ξs are the Burgers vector and the line 
sense, respectively, of the dislocation segment. For example, in the case of 
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externally applied loads, the relevant stress field is aσ , the net stress from 
all external loads along segment s and its force contribution will be 

a
external s sF l bσ ξ= ⋅ × . The details of the calculation of Fdislocation and Fself 

are not trivial and will be further detailed below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1. (a) Integration of the stress field at a point p due to a dislocation loop and 
(b) the corresponding integration in the framework of DD by the linear element 
approximation 

Evaluation of Fdislocation 

As mentioned above, this force contribution comes from all of the dis-
location segments in the system except for those two connected to the 
dislocation node under consideration. Dislocation theory provides the 
stress field of an arbitrary dislocation loop C at an arbitrary point p defined 
by the position vector r through the following expression [13] (see 
Fig. 6.1a). 
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2

1 1( ) d d ( )
8 R 4 R

( d )( )R,
4 (1 )

C C

C

G Gb l l b

G b l I

αβσ
π π

π ν

′ ′ ′ ′

′ ′

= − ×∇ ⊗ + ⊗ ×∇

− ∇ ⋅ × ∇⊗∇− ∇
−

∫ ∫

∫
 (6.6)

where R is position vector of p relative to the dislocation segment position 
r′ and 1 1 2 2 3 3I e e e e e e= ⊗ + ⊗ + ⊗  is the unit dyadic. In the numerical 
implementation, dislocation curves are discretized into linear segments; 
and the above integrals over closed loops become sums over linear 
segments of length ls; and the contribution from all segments is summed up 
to find the stress field at any desired point p 

s 2

21

1 1( ) d d ( )
8 R 4 R .

( d )( )R
4 (1 )

N s s

s
s

G Gb l l b

G b l I
αβ

π πσ

π ν

′ ′ ′ ′
−

′ ′=

⎧ ⎫− ×∇ ⊗ + ⊗ ×∇⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪− ∇ ⋅ × ∇⊗∇− ∇

−⎪ ⎪⎩ ⎭

∫ ∫
∑

∫
 (6.7)

Furthermore, the integration over the segment length can be evaluated 
algebraically using the linear element approximation found in [3, 13]. 
According to this approach, the stress field at point p from a dislocation 
segment bound by nodes i and i + 1 can be evaluated as [39] (see 
Fig. 6.1b) 

1( ) .i ipαβ αβ αβσ σ σ+= −  (6.8)

Evaluation of Fself 

When applied to calculate the stress field at dislocation node j which 
belongs to the same dislocation segment whose stress contribution is being 
considered, the above procedure does not work due to the singular nature 
of the stress field at the dislocation core. To overcome this obstacle, a 
regularization scheme developed in [41] is implemented. Consider the 
dislocation bend consisting of a semi-infinite line and segment (j, j + 1), as 
shown in Fig. 6.2a. The glide force per unit length acting on a point on 
segment (j, j + 1) at a distance λ is explicitly given for the case where the 
adjacent segment is semi-infinite in length as [13] 

g
g ( , ).

4
F G f b
L

θ
πλ

=  (6.9)
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This expression can be used to find the average force per unit length on 
segment (j, j + 1) by integrating it over the length of the segment yielding 

g
g

avg

( , ) ln ,
4

F G Lf b
L L b

θ β
π

⎛ ⎞ ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 (6.10)

where β is an adjustable parameter that compensates for the energy 

o

is used. To adapt the above solution to the case of a finite segment (j − 1, 
j), the superposition principle is used and the net glide component of the 
force on segment (j, j + 1) due to segment (j − 1, j) can be found by 
subtracting, from (6.10), the interaction force between additional semi-
infinite segment and (j, j + 1) calculated using the standard procedure 
(Fig. 6.2b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2. Calculation of the Peach–Koehler force on a dislocation segment due to 
its direct neighboring segment 

Treatment of boundary conditions 

Typically, the simulation box used in DD analyses is an RVE representative 
of an infinite medium. To account for this model, special boundary condi-
tions are needed. Two types of boundary conditions are applied in DD (1) 
reflection boundary conditions, which ensure the continuity of dislocation 
curves [41] and (2) periodic boundary conditions, which ensure both the 
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contained in the dislocation core. Equation (6.10) is an equivalent expres-
sion to an alternative expression where an adjustable core cutoff radius r  
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conservation of the dislocation flux and the continuity of the dislocation 
curves [2]. 

As for the cases where the simulation box represents the complete 
specimen with finite domain and arbitrary loading conditions, the above 
boundary conditions are no longer valid; and a special treatment for  
the finite domain is needed. This treatment is implemented within the 
framework of the multiscale model and its discussion is presented in 
Sect. 6.2.3. 

Evaluation of the macroscopic plastic strain 

In metals, macroscopic deformation is the result of slip on different slip 
systems. The area swept by a gliding dislocation represents the area of the 
newly slipped region due to this motion. In the framework of DD, the 
increment of the plastic strain can be explicitly calculated from the area 
swept by the dislocation segments using this relation [39] 

s
p s s

s s s s
1

( ),
2

N

s

l n b b n
V
υε

=

= ⊗ + ⊗∑  (6.11)

where Ns is the total number of dislocation segments, ls is the segment 
length, υs is the segment glide velocity, bs is the segment Burgers vector, ns 
is the normal to the slip plane of the segment, and V is the volume of the 
RVE. 

6.2.3 Multiscale DD Model 

The coupling of continuum mechanics and DD calculations provides the 
physical link between the meso- and the microscales. At the continuum 
level, the typical laws governing an elastic continuum are implemented 
along with Hooke’s law for the elastic regime, as usual. No constitutive 
law for the plastic behavior of the material is prescribed. Instead, the 
continuum level plastic strain is explicitly calculated from the actual 
motion of the underlying dislocations and homogenized at each material 
point. 

Another quantity that is explicitly calculated in DD and passed to the 
continuum scale is the internal stress from dislocations (and any other 
defects exhibiting long-range, self-induced stress fields). In this manner, 
the continuum level back-stress concept and its direct effect on hardening 
are naturally incorporated. Furthermore, this framework allows the rigorous 
treatment of boundary conditions for free surfaces and interfaces separating  
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heterogeneous media through the concept of image stresses and eigen-
stresses, respectively, as will be demonstrated below. This framework also 
facilitates the application of general loading conditions in DD simulations. 

Treatment of finite domains 

The stress fields employed in the DD calculations are those for a disloca-
tion in infinite homogeneous media. In the case of finite domains, the 
stress fields are truncated at the boundaries and, thus, the dislocation can 
experience a force depending on its position relative to the free surfaces. 
The stress field calculations in this situation can be handled through the 
concept of superposition [5, 34, 39]. The elastic fields for the finite domain 
problem can be found by summing the elastic fields from two solutions: 
that for the dislocations as if they existed in an infinite medium, and the 
solution to a complementary problem where the domain is finite and 
tractions equal but opposite to those caused by the infinite stress fields at 
the finite domain boundary (Fig. 6.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.3. Superposition principle application for the rigorous treatment of finite 
boundaries 

D D *

D D *

D D *

,
,
,

u u u
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∞

∞

∞

= +
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= +

 (6.12)

where the superscript D∞ indicates a defect field quantity as if the defect 
existed in an infinite homogeneous medium, while the superscript * 

+=

- t

Complementary 
problem solution:
u*, ε*, σ*

Solution for dislocation 
field in infinite and 
homogenous medium

+=

- t

Complementary 
problem solution:
u*, ε*, σ*

Solution for dislocation 
field in infinite and 
homogenous medium
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indicates the solution to the complementary problem described above and 
satisfying the following boundary conditions: 

a 1 2

a
u

, on ,
, on .

t t t t
u u

∞ ∞= − − ∂Ω
= ∂Ω

 (6.13)

Here, ta and ua represent any externally applied tractions and any pres-
cribed boundary displacements, respectively, on their corresponding parts 
of the boundary. 

Treatment of heterogeneous media 

Consider the infinite domain Ω consisting of two subdomains Ω1 and Ω2. 
Both Ω1 and Ω2 contain dislocations and other defects. The stress field in 
each medium 1σΩ  and 2σΩ  can be expressed as follows [39] 

D 1 D 2 12
1

D 2 D 1 21
2

,
,

σ σ σ σ
σ σ σ σ

∞ ∞ ∞
Ω

∞ ∞ ∞
Ω

= + +
= + +

 (6.14)

where D 1σ ∞  and D 2σ ∞  are the stress fields due to the defect structure as if 
the whole domain were homogenous and made of the material of Ω1 and 
Ω2, respectively. 12 D 2

1 2[ ]C Cσ ε∞ ∞= −  and 21 D 1
2 1[ ]C Cσ ε∞ ∞= −  represent 

the image stress due to the difference in the elastic properties. 

Treatment of the general case 

Consider a finite domain Ω consisting of two subdomains Ω1 and Ω2. Each 
medium can have its own dislocation (and possibly other defects) structure 
which exhibits long-range effects. The total elastic fields can be expressed 
as the sum of four solutions (1) that for dislocations in Ω1 as if they existed 
in an infinite medium made of the Ω1 material, (2) that for the dislocations 
in Ω2 as if they existed in an infinite medium made of the Ω2 material, (3) 
the image fields due to the difference in elastic properties of the two 
media, and (4) the solution to a complementary problem where the domain 
is finite and traction equal but opposite to that caused by the infinite stress 
fields at the finite domain boundary, as described before. Furthermore, any 
externally applied loads can be included in the complementary problem [39] 
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D 1 D 2 12 *1
1

D 2 D 1 21 *2
2

,
,

σ σ σ σ σ
σ σ σ σ σ

∞ ∞ ∞
Ω

∞ ∞ ∞
Ω

= + + +
= + + +

 (6.15)

where *1 *
1[ ]Cσ ε=  and *2 *

2[ ]Cσ ε= , and ε* is the solution for the comple-
mentary problem where the finite domain is subjected to the following 
boundary conditions 

a 1 2

a
u

, applied to ,
, applied to ,

t t t t
u u

∞ ∞= − − ∂Ω
= ∂Ω

 

where t and u denote traction and displacement, the superscript a denotes 
externally applied quantities, and u∂Ω  is the part of the boundary to which 
external displacement boundary conditions are applied. 

Finite element implementation 

From the continuum point of view, the simulated material consists of an 
elastic medium with internal defect structure. The macroscopic behavior is 
governed by the basic laws of continuum mechanics. If a small strain 
deformation is assumed, then the total strain ε can be decomposed into an 
elastic part eε  and a plastic part pε  as follows: 

1
2

e p

( ),
.

u uε
ε ε ε
= ∇ + ∇
= +

 (6.16)

Furthermore, if Hooke’s law is used as the constitutive law for the elastic 
regime, then one can write p[ ]Cσ ε ε= − . Depending on the problem, the 
stress σ can have any of the contribution to stress mentioned above. In the 
most general case, 

D *

1 1

[ ] [ ]
N N

i ij
i i j i

i j
C C Cσ σ ε ε∞ ∞

Ω
= =

= + − +∑ ∑  (6.17)

with N being the number of subdomains making the structure and ε* the 
solution for the complementary problem with boundary conditions: 

a

1
a

u

, on ,

, on .

N
i

i
t t t

u u

∞

=

= − ∂Ω

= ∂Ω

∑  (6.18)
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The finite element formulation for the above problem results in the 
following [37, 39] 

a B p[ ]{ } [ ]{ } [ ]{ } { } { } { } { },M u C u K u F F F F∞+ + = + + +  (6.19)

where [M], [C], and [K] are the global mass, damping, and stiffness 
matrices, respectively. a{ }F  and { }F∞  represent, respectively, the 
externally applied force vector and the force vector from tractions on the 
free surfaces due to the truncations of the long-range dislocation fields. 
The body force vector B{ }F  results from the long-range stress fields in 
the dislocations (and other defects if present), i.e., the contribution of the 

Dσ ∞  terms. If present, B{ }F  also includes the contribution of the image 
forces due to the difference in the elastic moduli of the different 
subdomains, i.e., the second term on the right-hand side of (6.17). It is 
through B{ }F  that the long-range effect of dislocations belonging to any 
of the finite elements in the mesh on the dislocation in a certain element is 
considered. As for the interactions between the dislocations belonging to 
the same element, the interactions are calculated explicitly as described in 
Sect. 6.2.2. Finally, p{ }F  reflects the contribution of the stress term 
resulting from pε . 

6.3 Nanoscale Metallic Multilayered Composites 

NMM composites are typically produced by physical vapor deposition. 
The microstructure and mechanical properties of the composite are not 
only dependent on the absolute properties of the individual constituent 
metals, but also on their relative values (for example their lattice 
parameters and elastic properties mismatch) and on the individual layer 
thickness. Furthermore, the deposition process parameters sensitively 
affect the properties of the resulting structure. 

A fundamental classification of the type of NMM systems, hence their 
behavior, is based on the compatibility of slip systems in the two phases 
and is commonly used. Coherent systems exhibit “almost” continuous slip 
systems across the interfaces such that dislocations gliding on a certain 
slip plane in one layer can continue to glide on the same plane in the 
neighboring layer. This condition requires the two metals to exhibit the 
same lattice structure, a small lattice parameter mismatch, and to be depo-
sited epitaxially. Other terminology used to describe such systems is 
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“transparent interface” systems [16]; transparent in the sense that disloca-
tions can cross the interface into the neighboring material. 

On the other hand, in incoherent systems, also known as “opaque 
interface” systems, slip systems in the two phases do not match, which 
means that dislocations cannot continue to glide in the neighboring layers. 
Instead, interfaces can act as slip barriers through different mechanisms. 
For example, in the Cu/Nb FCC/BCC system, interfaces act as sinks for 
interlayer dislocations as they enter the interface and their core spreads 
[15]. Incoherent systems involve metals with different crystal structure or 
ones with similar crystal structure but with large lattice parameters mismatch 
or large lattice misorientation. 

Interface crossing is a critical plasticity propagation process in NMM 
composites because it marks the end of confined layer slip and the spread 
of dislocation activity in both phases of a coherent system, defining the 
limit of strength. In this work, the discussion will be limited to the strength 
of NMM composites made of coherent systems, in particular the FCC–
FCC Cu/Ni system with {100} interface. This orientation is also known as 
cube-on-cube. The lattice parameters of Cu and Ni are 0.3615 and 
0.3524 Å amounting to a small mismatch of 2.6%, which allows for 
continuous slip between the Cu and Ni layers. Furthermore, we will restrict 
the discussion to the effect of the layer thickness on the mechanical and 
structural properties of NMM composites. 

An investigation of the strength of NMM composites should start by 
studying the stress relaxation process of the as-deposited composite. The 
relaxation process dictates the nature of the initial dislocation structure, the 
interface properties, and the internal stress state in the composite. In turn, 
this as-deposited structure influences the ultimate mechanical response 
under loading. Due to its critical role, a brief discussion of stress relaxation 
in coherent multilayered systems should be in place at this point. The 
epitaxial coherent growth of two different materials forces the atomic 
positions of the materials to coincidence in spite of the slight difference in 
lattice parameters and atomic positions. For coherency to be maintained, 
the lattice with the larger size has to compress while that with the smaller 
size has to expand for them to match. The result is a strained multilayer 
structure having coherency strains and stresses of alternating sign (tension/ 
compression). Coherency stresses can be extremely high, measuring about 
2.6 GPa in the case of Cu/Ni system [16]. Consequently, as the deposition 
process proceeds, the structure’s elastic energy increases linearly with the 
increase in thickness. At a certain point, it becomes energetically favorable 
for the system to reduce its elastic energy by injecting dislocations resulting 
in a semicoherent structure whose overall energy is less. 
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A critical layer thickness hc is identified below which the structure is 
coherent and made of strained layers and above which the structure is 
semicoherent and has a network of interfacial dislocations and a reduced 
level of coherency stresses [6, 23, 24]. The relaxation process proceeds by 
the glide of what is known as threading dislocations. Threading dislocations 
are glide dislocations that originate from faults in atomic arrangement 
occurring during the deposition process. Once generated in one layer, they 
continue to replicate themselves in the layers deposited thereafter 
maintaining the same slip system. When the layer thickness is above the 
critical thickness, the resolved shear stress component of the coherency 
stresses drives the threading dislocations along their slip planes while the 
alternating stress state acts to confine them to their respective layers. This 
glide process is known as the Orowan bowing and results in the common 
hairpin dislocation structure (Fig. 6.4). 

Another suggested source of dislocations is the nucleation of half-loops 
from free surfaces followed by their propagation within the layer [19]. 
Furthermore, in the process of threading, dislocations can interact with 
other threading dislocations or interfacial dislocations deposited by earlier 
threading events. Cross-slip is commonly observed in NMM composites 
and provides another dislocation multiplication mechanism. Threading 
dislocations can also react with each other to form Lomer locks which are 
commonly observed in an increasing number as the layer thickness 
increases [25, 29, 30]. 

The end result of all these interactions among dislocations and between 
dislocations and the evolving stress field is a structure with a complex 
network of interfacial dislocations (including glide dislocations, sessile 
Lomer-type dislocations, and dislocation bends), blocked threading dis-
location, dislocation junctions, and jogs along with a remanent nonuniform 
distribution of internal stresses. The presence of “residual” internal stress 
in the structure is a consequence of the fact that full relaxation removing 
all coherency stresses is practically impossible due to several factors that 
impede the relaxation process. Such factors include dislocation–dislocation 
interactions, lattice friction, and the existence of other defects, all of which 
act to block the motion of threading dislocations. Even if the misfit 
dislocation network necessary to minimize the system energy is imagined 
to exist, there will still be a nonzero internal stress due to the stress fields 
of these dislocations. 
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Fig. 6.4. The glide of a threading dislocation in different layers 

The equilibrium semirelaxed structure described above becomes the 
initial structure for the consequent loading of the composite in service. If 
the applied load is high enough, it will provide the necessary driving force 
for dislocation activity to resume, with the softer layer flowing first. 
Meanwhile, the harder layer would be under elastic loading; and the 
laminate structure, as a whole, is still capable of supporting increased 
loading levels due to the hard phase still being in the elastic regime. For 
the overall structure to yield, both layers have to deform plastically. One 
scenario leading to this is the crossing of the dislocations from the soft 
layer to the harder one. 

As outlined in the previous discussion, the basic model to describe the 
primary plasticity mechanism in NMM composites is that of Orowan 
bowing of a threading dislocation. Based on this, model expressions for 
the critical thickness and strength of layered composites were developed 
by [6, 23] and further elaborated and modified by several researchers. 
From a mechanistic point of view, the idea is based on the balance 
between the force exerted by the misfit stress on the threading dislocation 
and the tension force in the created dislocation lines. By equating those 
forces, one finds the channeling stress dependence on layer thickness to be 
proportional to ln(h)/h, h being the layer thickness. The same results can 
be arrived at through an energetic approach. 

This simple model, however, underestimates the measured strength of 
NMM composites as well as hc. This is not surprising because the Orowan 
bowing model does not account for the effect that the presence of other 
dislocations in the system has on the critical condition for the stability of a 
threader. This effect can be due to long-range interactions as well as short-
range interactions. Other proposed reasons for this discrepancy include 
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barriers to dislocation nucleation, kinetic effects, Peirels friction, step 
formation at surfaces and interfaces, and Koehler forces resulting from 
elastic properties mismatch. This work will focus on the effect of the 
dislocation–dislocation interaction (both long and short range) on the 
strength of NMM composites. 

Considering a network of interfacial dislocations rather than a single 
dislocation, several authors developed energy expressions for stable 
dislocation arrays in multilayered systems as a function of layer thickness 
[4, 9, 10, 12, 36]. Although these models are more realistic and resulted 
in improved hc and strength predictions, they are based on simple con-
figurations where the dislocations in the array are equally spaced and 
infinite in length. In real situations, however, those assumptions are rarely 
representative of the dislocation networks distribution. 

To understand the strengthening effect of predeposited interfacial 
dislocations on the stress needed to drive a threading dislocation, hereafter 
referred to as the channeling stress [31], Freund [7] considered the effect 
of glide interfacial dislocations that intersect the path of a threading 
dislocation in an unpassivated film. It was concluded that the presence of 
an interfacial dislocation forces the threading dislocation to “squeeze” 
through a narrowed-down channel with effective thickness h* as opposed 
to the actual layer thickness h. A blocking criterion was suggested based 
on this analysis, which predicts a significant hardening effect due to this 
interaction. For thicknesses below 100 nm, this effect was about 50%. 
Using Freund’s approach, Nix [31] evaluated the effect of passivation and 
elastic properties mismatch between the film and the substrate on the 
channeling strength. For the case of unpassivated film with “very rigid” 
substrate, the channeling strength increased by 30% over the reference (no 
interfacial dislocations present) strength for the same film thickness. For 
the case of 10b (b: magnitude of Burgers vector) thick passivation layer 
and uniform elastic properties for the film, passivation, and substrate, the 
strength increase was about 50%. 

In Freund’s calculations, the interfacial dislocation was assumed to be 
a straight and pinned line not allowed to undergo short-range interactions. 
Furthermore, the threading dislocation was considered to be made of one 
straight segment, while the critical passing point, corresponding to the 
effective channel thickness h*, was assumed to occur directly above the 
interfacial dislocation. As will be seen, these assumptions make this model  
far displaced from a real-life scenario. In fact, the blockage mechanism is 
completely absent in NMM composites when the interfacial dislocation is 
of the glide type and short-range interactions become the main factor that 
dictate the outcome of this process. 
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In an attempt to make more realistic predictions of the strength of 
nanoscale multilayered systems, Misra et al. [26] developed a model 
based on the Orowan bowing for a single threading dislocation in a layer 
having equally spaced interfacial dislocations and extended it to include 
the resistance to dislocation crossing from one layer to the next through 
the interface. Using an energy approach, the stress needed to propagate the 
hairpin was estimated for two bounding cases. In the upper bound case, the 
threading dislocation was assumed to propagate in the presence of an array 
of equally spaced interfacial Lomer-type dislocations as well as “left over” 
unrelaxed coherency stress inversely proportional to the layer thickness. In 
the lower bound case, the dislocation array was ignored. In both cases, the 
interfacial dislocation arrays were assumed to be the source of resistance 
to dislocation crossing into the neighboring layer. For yield to occur, 
the applied stress must be sufficiently large to propagate the threading 
dislocation and overcome the interface resistance. Lower bound estimates 
with the proper choice of the core size produced a good match to the 
experimental data for the strength of Cu–Ni systems. 

The above discussion demonstrates the strong dependence of the 
mechanical response of NMM composites on the underlying dislocation 
structure and its interactions with interfaces and free surfaces. The 
discussion also pointed out that, in spite of their better predictions and 
insightfulness, analytical models developed to predict the behavior of 
NMM composites remain far from capturing the complexity of real systems. 
DD provides the right framework to address such problems because it 
treats dislocations and their interaction explicitly. Furthermore, the multi-
scale coupling of DD with continuum mechanics allows the rigorous treat-
ment of surfaces and interfaces at the macroscale. 

Nevertheless, care should be exercised when interfaces are modeled 
in the DD framework. The physics of interfaces and their interactions 
with dislocation are very complicated and should be addressed at the 
atomic level. Another limitation to DD analysis in the modeling of NMM 
composites is the lower bound on layer thicknesses which can be 
accurately handled. As the layer thickness decreases, the length of the 
segments must also decrease for the accurate representation of dislocation 
curves. However, the segment length can become so small so as to permit 
the overlap of dislocation cores where the linear elasticity solution is not 
defined. 
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6.4 Modeling and Simulation of NMM Composites: 
Examples 

The ultimate goal of modeling NMM composites is to provide accurate 
predictions for their mechanical response under various loading conditions. 
The achievement of this goal is important for the design of NMM 
composites for different engineering applications. Due to the complexity 
of the physics of NMM composites, this goal has been elusive to analytical 
approaches. The use of DD to study plasticity mechanisms in NMM 
composites and how they contribute to the macroscopically observed 
response will be demonstrated in this section. 

We start by considering the modeling of four significant unit processes 
in isolation from other effects which inevitably exist in real systems (1) the 
basic Orowan bowing process, (2) the interaction between a threading 
dislocation and orthogonal interfacial dislocations intersecting its glide 
path, (3) the interaction between a threading dislocation and parallel 
interfacial dislocations, and (4) threading in a surface layer. Next, the 
collective behavior of a system of dislocations as in real-life scenarios will 
be discussed. In these simulations, all the above-mentioned unit processes, 
and others, naturally interplay and lead to the overall response of the 
composite. 

6.4.1 Modeling of Unit Dislocation Process in NMM Composites 

In complex systems where many mechanisms interact to produce the 
overall behavior, it seems plausible to disseminate the complexity by 
identifying a number of mechanisms thought to be significant and investi-
gating them one at the time and in isolation of any other mechanisms. The 
next question becomes that of appropriately combining their behavior in a 
statistical manner to arrive at the overall behavior. This involves not only 
the statistics of each process individually, but also possible correlations 
among them. The benefits of investigating, within the framework of 
multiscale DD, a number of such significant and frequently occurring 
dislocation processes in NMM composites are demonstrated. 

Orowan bowing 

Figure 6.5 shows the crystallography of the problem and the setup used to 
model the Orowan bowing in a confined layer. It consists of a {001} 
orientation Cu layer with rigid walls. The physical properties of Cu used in 
this calculation and all the ones to follow in this work are listed in 
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Table 6.1. This layer represents a single buried layer in an infinite elastic 
medium of the same properties as that of the material of the layer, which 
implies that no image forces exist. Slip is confined to the layer by its rigid 
walls impenetrable by dislocations. An infinite / 2 011a 〈 〉  {111}-type 
dislocation resides on its slip plane with that portion contained in the layer 
representing the threading dislocation. If the stress applied to the layer is 
sufficiently high, the dislocation will bow out. Channeling stress defines 
the minimum stress needed to cause the dislocation to bow out indefinitely 
(i.e., become unstable). 

Fig. 6.5. (a) Crystallographic orientation of the layer and (b) setup for Orowan 
/2 011a 〈 〉

Table 6.1. Physical properties of Cu used in DD calculations 

Density (Kg m−3) 8,980.0 
Burgers vector magnitude (Å) 2.556 
Shear modulus (GPa) 38.46 
Poisson’s ratio 0.3 
Core size (b: Burgers’ vector magnitude) 1.0 
Mobility (1 Pa−1 s−1) 1.0 × 104 
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Figure 6.6 shows the DD prediction of the channeling stress as a 
function of layer thickness. The numerical parameter β in (6.10) was 
determined to be 0.5 through a fitting procedure for the DD results so that 
they match the corresponding stress obtained from an analytical model 
based on dislocation interaction energies in the system (see Fig. 6.7). 
As expected, the channeling strength increases as the layer thickness 
decreases. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 6.6. Comparison of the strength due to Orowan bowing as predicted by DD 
and the energetic model (Fig. 6.7) with the measured strength of Cu/Ni 
multilayered structure 

Also plotted in Fig. 6.6 is the measured strength of a real Cu/Ni system. 
Although the model bears little resemblance to the real system, the mild 
difference between the elastic moduli of Cu and Ni makes the comparison 
reasonable due to the minor effect of image force in such a system. This, 
however, does not apply for the few nanometer thickness range as the 
interface-related mechanism dominates over Orowan bowing [26]. This 
is why both DD and the analytical model results continue to predict 
increasing channeling strength in this range while the real system shows 
saturation followed by softening. Outside this range, both models under-
estimate the strength of a multilayer system. This should not be a surprise 
since a model based on a single bowing dislocation is not expected to 
capture the interactions between bowing dislocations and other bowing 
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dislocations and/or predeposited interfacial dislocations. This leads us to 
consider the DD simulation of the next two mechanisms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.7. Dislocation configuration modeling the threading process in a confined 
layer 

Interaction between threading and orthogonal interfacial dislocations 

The encounter between a threading dislocation and an interfacial dis-
location orthogonally intersecting its path should be a very common event 
given the biaxial nature of loading in NMM composites. Freund [7] 
studied this interaction mechanism and developed the blockage model 
along with the associated concept of the effective channel thickness. As 
mentioned in the introductory part of this section, DD analysis indicates 
that the assumptions underlying this model suppress the possibility of 
short-range dislocation interactions making this model unrealistic. In fact, 
DD simulations [1] indicate that short-range interactions dictate the 
outcome of this type of interaction and that the blocking mechanism is not 
realistic all together in the case of a threader’s encounter with glide-type 
interfacial dislocations. 

In the case of an encounter between a threading dislocation and 
nonreacting Lomer-type dislocations, the blockage mechanism is realistic 
and has been observed. Nevertheless, the assumptions underlying the 
blockage mechanism are still coarse. In the process of bypassing an inter-
secting Lomer-type interfacial dislocation, the threader tends to adjust its 
configuration in a complex dynamic manner so as to minimize the overall 
system energy, rendering unclear the notion of h* and a narrowed-down 
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channel right above the obstacle through which the dislocation “squeezes-
in” to overcome the stress field. Figure 6.8 shows simulation snapshots for 
the dynamic process of leading a threader to bypass a Lomer-type obstacle. 

Fig. 6.8. Snapshots ((a)–(d) ordered in increasing simulation time) from DD 
simulations showing the complex sequence of configurations by which a threading 
dislocation bypasses a Lomer-type dislocation at the interface 

As mentioned above, short-range dislocation interactions dominate the 
outcome of the encounter between threading and predeposited interfacial 
dislocations. Depending on the particular slip systems of the threader and 
the interfacial dislocation involved in the four representative encounters 
dictated by the crystallographic nature of the problem (Fig. 6.9), annihi-
lation or jog formation can occur. Simulations indicate that the strongest 
effect on the strength is that of the annihilation interaction occurring when 
the Burgers vectors of both dislocations are collinear [1]. 
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Figure 6.10 shows the channeling stress dependence on layer thickness 
as modified by this process. In the plot, the measured strength of Cu/Ni 
NMM composite and the reference strength due to the basic Orowan 
 

 
Fig. 6.9. The four encounters representing all possible intersections between 
threading dislocation and / 2 011a 〈 〉 -type interfacial dislocation dipoles (same 
crystallographic setup as that shown in Fig. 6.5) 

Fig. 6.10. Comparison between DD predictions of the channeling strength due to 
the basic Orowan bowing and that due to the orthogonal interaction between a 
threading and an interfacial dislocation of the same Burgers vector (also shown is 
the experimentally measured strength of Cu/Ni NMM composite) 
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model are also included. As can be seen from the figure, the strength 
predictions due to the strongest orthogonal dislocation interactions in 
NMM composites are significantly higher than those of the reference 
“plain” Orowan bowing process. Furthermore, they are in better agreement 
with the measured strength of the Cu/Ni composite system in the range of 
22 nm, approximately, and above; while below this range the strength is 
overestimated. 

Together, these observations indicate a model-based collinear orthogonal 
interaction results in better predictions of strength in NMM composites, 
although this is still incomplete. In the lower layer thickness structures, the 
results strongly suggest that softening mechanisms become more significant 
in governing the response of NMM composites. 

Interaction between threading and parallel interfacial dislocations 

Another frequent long-range dislocation interaction in NMM composites is 
the parallel threading of a dislocation in the vicinity of a predeposited 
interfacial dislocation and parallel to it. The closer the threading disloca-
tion is to the interfacial dislocation, the stronger will be the effect of the 
later dislocation on the driving force for threading. Depending on the 

Figure 6.11 shows DD results for the thickness dependence of the channeling 
stress as a function of the spacing (normalized with respect to layer 
thickness) between the threading and the parallel interfacial dislocation. 

As the spacing between the threading dislocation and the predeposited 
dislocation dipole becomes smaller, the interaction gets stronger. The figure 
also demonstrates the effect of the relative sense of the Burgers vector of 
the two dislocations on the channeling strength. The cases identified by 
“parallel” in Fig. 6.11 refer to the case where the two dislocations have 
collinear Burgers vectors, while “antiparallel” refers to the case where the 
two dislocations have opposite Burgers vectors. In the former case, the 
interaction energy between the threader and the interfacial dislocation is 
positive, meaning that additional work has to be supplied to overcome the 
interaction. In the latter case, the interaction energy is negative implying 
that less work, relative to the “plain” Orowan bowing, needs to be spent. 
Finally, Fig. 6.11 overlays the measured strength of the Cu/Ni nano-
composite systems for comparison. Besides the significance of their effect 
on the channeling stress, parallel interactions have important implications 
on the minimum spacing between parallel interfacial dislocations. A new 
threader will need to be sufficiently far from a neighboring threader 
already threaded at an earlier stage in the relaxation process. 

the interfacial dislocation can impede or augment the threading process. 
direction of the Burgers vectors of the two dislocations, the presence of

Chapter 6: Multiscale Modeling and Simulation of Deformation 261 



 

 

 

 

 

 

 

 

 
Fig. 6.11. Comparison between DD predictions of the channeling strength due to 
the basic Orowan bowing and that due to the parallel interaction between a 
threading and an interfacial dislocation of the same Burgers vector (also shown is 
the experimentally measured strength of Cu/Ni NMM composite) 

Threading in surface layer: effect of free surface on threading 
strength 

In the previous three examples, unit dislocation mechanisms were studied 
as they occur in a layer embedded in an infinite medium with homogenous 
elastic properties similar to that of the layer. In this example, the threading 
process in a surface layer of a large stack is considered. The fundamental 
difference is that the presence of a free surface will impose an additional 
stress (image stress) on the threading dislocation. 

Image stresses induce an attractive force on dislocations close to the 
boundary pulling them toward the free surface and out of the medium. 
As pointed out in Sect. 6.2.3, the multiscale DD model, coupled with 
FE analysis, rigorously accounts for this effect through the superposition 
principle and the solution of the complementary elasticity problem, as 
explained there. 

To assess the surface effect, the stress needed to propagate a threading 
dislocation in a surface layer was estimated with/without the multiscale 
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coupling with FE analysis enabled. A layer thickness of 25 nm was 
considered, and the threading dislocation considered had the slip system 
a/2[01-1] (111), with the same crystallographic setup as that indicated in 
Fig. 6.5a. The surface layer and the rest of the domain were subjected to 
equal but opposite sign stresses as is the case in threading induced by 
coherency stress during the relaxation process. 

It was found that a biaxial stress of 0.4 GPa was necessary to propagate 
the threader when surface treatment through the multiscale analysis was 
disabled, while in the case it was enabled, the corresponding stress was 
0.2 GPa. This difference is significant and indicates that a free surface 
enhances the threading process in a surface layer. Further investigation of 
this effect for a different layer thickness is in progress and will be the 
subject of a future publication. 

6.4.2 Modeling of Dislocation Systems in NMM Composites 

Although the understanding of unit dislocation mechanisms is a crucial 
first step toward predicting the overall response of NMM composites, the 
complexity of dislocation interactions in real systems makes the task of 
extending an understanding of isolated units to overall behavior nontrivial, 
if not impossible. As can be concluded from comparing the measured 
strength of NMM composites and predicted strength based on parallel and 
orthogonal interactions between threading and interfacial dislocations 
(Figs. 6.10 and 6.11), no single mechanism can be claimed to be dominant 
over the whole range of layer thicknesses. Furthermore, the evolution of 
the dislocation structure under an extremely complex and continuously 
evolving stress field can significantly change the dynamics of unit process. 
For example, DD simulations performed by Pant et al. [32] showed that, 
while in isolation from other dislocations, two threading dislocations 
gliding in opposite directions on parallel planes can form a dipole and get 
stuck. However, a third threading dislocation approaching this dipole on a 
close parallel plane can “free” one of the dislocations in the existing dipole 
and form a new dipole. The high density of dislocations in a real system 
makes it impossible to track the effect on the overall response of the 
possibly large number of similar interactions between the background 
dislocations and the unit mechanisms. 

The above complexity of the dislocation behavior in NMM composites 
can be handled using DD analysis because dislocation motion and 
interactions are treated explicitly. Their motion is directly calculated from 
the net stress field due to all other dislocations and to any applied loads, 
while boundary conditions can be rigorously treated through the coupling 
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to FE. Short-range interactions are also accounted for through physical 
constitutive rules. Thus, capturing the natural evolution of a real system 
is possible and feasible in spite of the heavy computational expense. 
Nevertheless, the question of the validity of such massive simulations 
hinges on the validity of the initial dislocation structure from which loading 
starts. 

Arriving at a valid initial structure should also be the natural outcome 
of the process leading to it, i.e., the relaxation process of the as-deposited 
composite. DD simulations for the relaxation process of an as-deposited 
NMM structure and its consequent loading are presented in the following 
sections. The relaxation simulation starts from an initial random 
distribution of threading dislocations driven by an alternating system of 
coherency stresses, as suggested by the physics of the deposition and 
relaxation process in real systems, and ends at the point when the 
dynamics evolution of the systems ceases, marking the arrival at a relaxed 
equilibrium structure. The loading simulation starts from this relaxed 
structure by applying strain rate-controlled uniform biaxial loading. From 
this simulation, stress–strain curves can be collected from which the 
strength of the composite is captured. 

Modeling of the relaxation process and as-deposited structure 

The goal of these simulations is to arrive at a representative relaxed 
structure for NMM composites with physical initial dislocation content and 
residual coherency stresses. The simulation box is made of four layers, and 
represents an infinite domain made of alternating layers of the bimetal 
system. To ensure this, periodic boundary conditions are applied to the 
simulation box in all three directions. Each layer is 12.7 nm thick, and 
its elastic properties are those of Cu (Table 6.1). All the layers have the 
same elastic properties; however, they are under a stress field of equal 
magnitude but alternating sign in alternating layers. The stress field is due 
to coherency stress resulting from lattice parameters mismatch between the 
two materials making the alternating layers. Strictly speaking, this setup 
represents a bimetal system with matching elastic properties but different 
lattice parameters. However, as was explained earlier, this idealization is 
still reasonable for the Cu/Ni system. 

The coherency stress used in the simulation is 2.6 GPa [16] and is 
biaxial. The simulation begins with a random distribution of dislocation 
loops spanning the four layers. If the layer thickness is larger that the 
critical thickness hc, dislocations glide in opposite directions in the alter-
nating layers due to the alternating stress state. In the process, dislocations  
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naturally interact with the stress field and among themselves result in the 
relaxation of the coherency stress and at the expense of generating a new 
dislocation structure. 

The process continues until dislocation motion ceases indicating the 
attainment of an equilibrium state between the dislocations and the final 
distribution of internal stress. Figure 6.12 shows DD simulation of the 
final structure after the relaxation process has ended. As can be seen, 
the structure consists dominantly of a network of orthogonal interfacial 
dislocations, dislocation bends resulting from cross-slip, and blocked 
threading dislocations. Another dislocation mechanism that was observed 
during the relaxation process but leaves no traces of its occurrence in the 
final structure is annihilation of threaders of opposite signs. As they do so, 
the threading segments get eliminated leaving only the trailing hairpin arm 
at the interfaces. 

Modeling of the biaxial loading process 

As mentioned previously, the resulting structure at the end of the 
relaxation process is considered to be representative of that of an as-
deposited structure that has relaxed, although incompletely as discussed 
previously, its coherency stresses through the threading process. To study 
the strength of NMM composites, this structure serves as the starting point 
for loading. The same periodic four-layer system used in the relaxation 
simulation is used here. Tensile biaxial loading at a controlled strain rate is 
applied. 

Figure 6.13a is a side snapshot showing dislocation activity under 
loading just after the yield point has been reached. It shows that the top 
and the third-from-top layers, which had compressive coherency stresses 
in the relaxation phase, are now showing reversal of dislocation activity 
due to the opposite sign loading. This recovery process is limited to those 
dislocations which have not undergone irreversible short-range interactions 
and those which threaded to some length that is short of their threading 
stability point. The other two layers, which were under tensile coherency 
stresses in the relaxation process, are showing a resumption of dislocation 
activity. Figure 6.13b shows the stress evolution curve captured by the 
simulation. As can be seen, the yield point occurs at about 2.2 GPa. The 
difference between this value and the 2.6 GPa coherency stress experi-
enced in the relaxation phase reflects the fact that relaxation is not 
complete due to the impediments to relaxation expected to exist in real 
systems, as discussed earlier. 
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Fig. 6.12. Relaxed dislocation configuration due to coherency stress in a four-
layered structure representative of a bimetal multilayered structure 
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Fig. 6.13. Biaxial loading of the relaxed multilayer structure shown in Fig. 6.12: 
(a) side view of the dislocation activity after yielding and (b) stress evolution as 
captured by the simulation 
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