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2.1 Multiscale Damage and Failure of Fiber-Reinforced 
Composites 

Fiber-reinforced composites can be engineered to exhibit high strength, 
high stiffness, and high toughness, and are, thus, attractive alternatives 
to monolithic polymer, metals, and ceramics in structural applications. To 
engineer the material for high performance, the relationship between 
material microstructure and its properties must be established to accurately 
predict the deformation and failure. Such a relationship between under-
lying constituent material properties and composite performance can also 
aid selection and/or optimization of new composite systems. Successful 
models can yield predictive insight into the origins of damage tolerance, 
size scaling, and reliability of existing composite systems and can be 
extended to investigate damage and failure under more complex loading 
and environmental conditions, such as fatigue and stress rupture. 

Damage relevant to macroscopic failure of fiber-reinforced composite 
occurs at many length scales and by a variety of physical mechanisms. At 
the smallest scale, preexisting defects in the fibers propagate and form 
fiber cracks that impinge on the matrix and the interface. Debonding, 
sliding, and/or matrix yielding at the crack perimeter inhibit crack pro-
pagation into the matrix; but the ensuing deformations are complex. The 
load carried by the broken fiber is then redistributed among the remaining  
 



  

unbroken fibers and matrix as determined by the detailed conditions at the 
debonded fiber/matrix interface and in the matrix. Subsequent damage 
occurs in and around other fibers according to the statistical distribution of 
flaws in the fibers and the stresses acting on those flaws due to the applied 
stress and the stress redistribution. Eventually, macrocracks will form 
and grow, leading to failure of the composites. Figure 2.1 illustrates the 
damage evolution of fiber-reinforced composites at each length scale under 
different loading conditions. 

Size-dependent Strength

Micro-scale

Nano-scale

Macro-scale

Rupture LifeFatigue Life

Fiber, matrix and
interface  crack growth

Multiple Fiber
breaking

Atomic bond breaking

Multiple Matrix 
cracking

Critical Damage State: Failure

Interacting
Damage 
Evolution

Meso-scale

Number of Cycles Sample size Times

S
tre

ss

S
tre

ss

S
tre

ss

 
Fig. 2.1. Multiscale damage and failure in fiber-reinforced composites 

Although the modeling path is conceptually clear, direct simulation of 
composite materials is still not a viable option despite advances in com-
putational techniques and computing power. Finite element models that 
can capture micromechanical effects of cracks at the fiber/matrix/interface 
scale generally must employ mesh sizes of the order of the size of the 
microstructure and can result in an algebraic system with many millions of 
unknowns. It is insufficient, however, to focus only on one scale, i.e., a 
fiber break and the myriad details associated with it. On the other hand, 
homogenization and averaging techniques for analyzing heterogeneous 
materials, while possibly leading to manageable problem sizes, do not 
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provide information about the microscopic fields needed, for example, to 
predict failure. Thus, there is a need for accurate and computationally effi-
cient techniques that take into account the most important scales involved 
in the goal of the simulation while permitting the analyst to choose the 
level of accuracy and detail of description desired. Therefore, a multiscale 
modeling strategy is needed to accurately handle the evolution of damage 
at the larger scales while retaining important small-scale details and, thus, 
to accurately predict mechanical properties and performance of fiber-
reinforced composites. 

There are two main multiscale modeling techniques for materials: 
seamless coupling of methods in a single computational framework and 
hierarchical information transfer. Direct coupling methods are not viable 
for fiber composite problems because the damage spans a range of scales, 
and it is not possible to focus on one microscopic region in detail sur-
rounded by a less-detailed description. Thus, the hierarchical multiscale 
modeling approach, in which the information of simulations at small length 
scales is processed and fed into larger-scale models, is preferable. The 
need for multiscale analyses has been well recognized; but until recently 
there has not been a direct connection made between the detailed structures 
at the fiber/matrix/interface scale, the multifiber damage problem, and large- 
scale component performance. Most work has assumed some approximate 
representation of the behavior at the smallest scale and pursued the larger-
scale damage evolution. Such approaches are certainly warranted for under-
standing broad trends, identifying characteristic length scales associated 
with the damage, and for guiding the development of analytic models 
[5, 21, 31]. Other work has investigated the detailed stress states around 
damaged fibers, matrix, and/or interfaces but then employed only very 
simple models of overall composite behavior to indicate the important role 
of the microscale damage [12]. Specific system design and optimization 
requires attention to the detailed micromechanics of damage and load trans-
fer around individual fiber breaks and the inclusion of such information 
directly into accurate larger-scale models. 

In this chapter, one multiscale modeling approach for predicting 
tensile strengths of unidirectional fiber composites, including metal, poly-
mer, and ceramic matrix composites will be reviewed. The quantitative 
success of this approach in predicting the tensile strength and its size 
dependence in a carbon fiber-reinforced plastic (CFRP), silicon carbide 
fiber/titanium matrix composites (TMCs), and alumina fiber/aluminum 
matrix composite (AMC) will be demonstrated. Finally, the approach will 
be extended to the prediction of strength and low-cycle fatigue life of 
TMCs. 
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This review emphasizes the published work of the present authors on 
multiscale modeling and simulation cast into a single overall framework. 
Progress in the field at one or several coupled scales has been made by 
many workers, with important insights and advances. In addition, analytic 
models for many problems in composite failure have been devised, but 
those works are not discussed here. Hence, the work presented here is not a 
comprehensive review of the literature. Interested readers can refer to 

2.2 Multiscale Modeling via Information Transfer 

2.2.1 Model Description and General Strategy 

The fiber-reinforced composites considered here consist of continuous 
cylindrical fibers embedded in a matrix material in a unidirectional 

basic unit of a laminated composite structure. To develop a relationship 
between macroscopic properties and microstructure of the composite, a 
hierarchical set of models addressing physical phenomena at successive 
larger lengths scale, with coupling through information transfer, is intro-
duced, as illustrated in Fig. 2.2. Figure 2.2 shows the full possible range of 
studies relevant to the problem. At the smallest scales, an atomistic or 
quantum analysis can assess features such as interface fracture energy and 
crack deflection at the bimaterial fiber/matrix interface. Key information 
on interfacial debonding and sliding is then passed into a continuum 
interface model, e.g., a cohesive zone, used in a micromechanical unit cell 
model consisting of matrix and a number of fibers to compute the stress 
redistribution around a fiber break for a particular material system. The 
stress redistribution is condensed into stress concentration factors on un-
broken fibers, and, perhaps, stress intensity factors on matrix cracks, and 
this information is transferred to a larger-scale Monte Carlo model that 
tracks the evolution of fiber and/or matrix damage with increasing applied 
load. Details of the deformation around each fiber break are not retained at 
this scale, only their effects on stress concentrations. The Monte Carlo 
model is used to simulate damage up to the point of tensile failure, leading 
to a predicted average strength and statistical distribution for a composite 
sample that is small on the scale of practical samples but large compared 
to the critical damage size that drives failure. The tensile strength distribu-
tion calculated from the Monte Carlo model is then employed in analytic 
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several previous significant review articles [7, 22, 27] as well as other 

(aligned) arrangement. Such a composite can also be considered as a ply, a 

papers [19]. 



 

weak-link size-scaling models to predict ply strength and its statistical 
distribution as a function of physical size. Finally, the ply strength is used 
in standard laminated composite models to predict the strength and reliabi-
lity of the composite component. In the last stage, other damage phenomena 
such as interply delamination can occur and change the local stresses in the 
plies themselves. In such cases, the ply strength vs. size can be used at 
smaller scales to assess the onset of local ply damage due to these other 
damage modes. 

Fig. 2.2. Approach to multiscale modeling: scale coupling via information transfer 

It is not necessary to always start from the quantum mechanical scale 
and progress upward. In fact, the goal of composite design is to shift the 
critical scale of damage from the nanoscale, e.g., the crack tip, to the much 
larger, observable, and detectable scale of collective fiber damage. Since a 
single fiber break does not initiate macroscopic failure, the details of the 
behavior at the smaller scales, while important, are not sufficient to predict 
failure. Therefore, one strategy is to envision possible modes of interface 
debonding and fiber/matrix constitutive behavior, as motivated by experi-
ments or other theoretical models, and then use the multiscale modeling 
approach starting at the micromechanical scale. Parametric studies of the 
effect of interface and matrix behavior on the macroscopic fracture can 
then point to issues at smaller scales that would merit more detailed treat-
ment. The work presented in this chapter focuses on the multiscale modeling 
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of unidirectional fiber-reinforced composites starting from the micro-
mechanical scale taking the interface behavior as a parametric input with 
quantities such as the interfacial coefficient of friction and interfacial strength 
obtained from experiments when applications to a particular material system 
are made. 

2.2.2 Micromechanics at the Fiber/Matrix/Interface Scale 

The goal of modeling at the micromechanics scale is to compute the 
detailed stress redistribution around broken fibers with various interfacial 
deformation models and extract from such studies the average stress 
concentrations induced in the surrounding unbroken fibers and the stress 
recovery along the broken fiber due to interface shear resistance. Since 
introduction of a fiber break or a matrix crack causes large stress changes 
only in the vicinity of the crack, a small-scale model with high spatial 
refinement is used. The model used consists of a hexagonal array of uni-
directional fibers with a fiber volume fraction of Vf. Making use of sym-
metry, the model can be restricted to a 30° wedge, as shown in Fig. 2.3a. 
Each fiber in this wedge section represents a distinct set of neighbors 
relative to the central fiber. A 3D finite element representation of this model 
is then constructed to calculate the stress distributions around broken fibers 
(Fig. 2.3b,c). The axial length of the model depends on the interface and 
matrix behavior and is generally chosen such that the stress distribution at 
the end of the model is not affected by the stress redistributions caused by 
the introduction of fiber or matrix damage at the midplane. The size of the 
model in the radial direction (perpendicular to the fibers) is chosen so that 
the deformation of fibers at the outer perimeter is not affected by the 
imposed fiber damage. For example, with a single central broken fiber, we 
use the nearest eight sets of neighbors (43 fibers total). With seven broken 
fibers (fibers 1 and 2 broken in the 30° wedge section), a larger model 
extending out to tenth neighbors and containing a total of 91 fibers is used. 
The mesh sizes are selected to obtain converged results, for which there is 
no a priori guidance except that there should be at least several elements in 
the matrix region between the fibers and within the fibers themselves. The 
model is subjected to tensile loading along the axis of the fibers, and the 
appropriate boundary conditions are shown in Fig. 2.3b. The nodes of 
uncracked material at the crack plane (z = 0) have fixed displacements in 
the z-direction while the outer surface of the model is traction free. 
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                                              (c) 

Fig. 2.3. (a) Optical image of Ti/SiC composite microstructure, (b) wedge section 
of model hexagonal distribution of fiber composite with boundary conditions for 
finite element analysis, and (c) a 30° wedge of finite element model showing the 
axial stress distribution in the fibers and matrix around a central broken fiber 
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Modeling of loading transfer through a fiber/matrix interface is a key 
step to properly simulate the stress distributions in the fibers. The inter-
faces can be classified into weak and strong bond interfaces according to 
interfacial bonding strength. If the fiber/matrix interface is strong, no inter-
facial debonding occurs. Modeling of such an interface is simple. Since 
there is no sliding between the fiber and matrix, the matrix and fiber 
elements are compatible and shear the same nodes at the interface in the 
finite element model. However, if the interfacial bonding is weak, the inter-
face will debond, leading to sliding during loading. In this case, contact 
elements can be used to simulate stress transfer across the fiber/matrix 
interface. If the residual thermal stresses (axial tension in the matrix, axial 
compression in the fibers, and radial compression σr at the interface) are 
high, the fiber/matrix bond strength is usually assumed to be zero for 
simplification. Interfacial stress transfer is then realized by Coulomb 
friction at the interface so that the friction shear stress τ along the interface 
in the slip zone is simply rτ µσ= − , where µ is the coefficient of friction. 

The introduction of a fiber break in the central fiber at the midplane of 
the model induces significant changes in the local stresses around the 

complex. Multiscale modeling progresses by assuming that all of these 
details are not relevant to the desired macroscopic behavior. For the pro-
pagation of damage among fibers, the tensile stresses in the unbroken fibers 
drive the growth of preexisting flaws in those fibers if the tensile stress is 
large enough. It is assumed that it is sufficient to consider the average ten-
sile stress through the cross-section of any fiber, rather than maintain the 
full spatial variation. While it is certainly true that any particular fiber can 

the detailed information from studies such as that shown in Fig. 2.3c, 
consider the stress in the broken fiber and the stresses in the surrounding 
fibers. The stress in the broken fiber is zero at the break point and recovers 
along the broken fiber, as shown in Fig. 2.4a. Shear deformation along the 
interface, by either shear yielding of a well-bonded plastically deforming 
matrix or frictional sliding along a debonded interface, leads to a nearly 
linear recovery of axial stress in the fiber. Figure 2.4b shows the average 
axial stress concentration factor (SCF = actual stress normalized by far-
field applied fiber stress) in the plane of the fiber break on the successive 
sets of neighbors around the broken fiber. The stresses in the neighboring 
fibers are increased to compensate for the loss of load-carrying capacity in 
the broken fiber, with the SCF decreasing with increasing distance from  
 

Z. Xia and W.A. Curtin 44 

have a flaw that experiences a stress higher or lower than the average [20, 

break (e.g., Fig. 2.3c). The stress distribution around a broken fiber is very 

33], the influence of such an effect has not been considered. Condensing 
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                      (c) 

Fig. 2.4. (a) Axial stress distribution on the central broken fiber along the fiber 
direction z/R (R = fiber radius), normalized by the far-field fiber stress, (b) axial 
stress concentration factor (SCF) on the fibers as a function of the distance away 
from the broken fiber, normalized by fiber spacing s, and (c) average axial stress 
concentrations on the near-neighbor fibers along the fiber direction z. Dashed lines 
in (a) and (c) show the approximated stress concentrations using a constant inter-
facial shear stress τ model that is employed in one of the larger-scale models 
(Green’s function model) 

the broken fiber. The average stress concentration on the near-neighbor 
fibers vs. the distance z away from the crack plane is shown in Fig. 2.4c. 
Near the plane of the break, the neighboring fiber stresses are larger than 
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in the far-field. Within increasing distance z, the broken fiber recovers 
its load-carrying capacity and the SCFs of the surrounding fibers thus 
decrease over a similar length scale. The SCF on the neighboring fibers 
can actually fall below unity before recovering to unity at larger distances, 
which is due to bending that arises from the need to satisfy compatibility. 
The details, such as those shown in Fig. 2.4, depend on the input con-
stitutive properties: the fiber elastic modulus, the matrix elastic modulus 
and plastic flow behavior, if any, and the interface constitutive model. 

and length scales of stress recovery are the information derived from the 
detailed micromechanical model that is passed to a larger-scale damage 
accumulation model. 

2.2.3 Mesoscale Modeling of Fiber Damage Evolution 

The finite element (FE) models provide the detailed stress state around a 
single broken fiber. Larger clusters of broken fibers can be investigated, 
but such a direct numerical approach is limited to symmetric clusters of 
breaks due to the symmetry of the unit cell. Decreasing the symmetry of the 
unit cell is possible but computationally difficult. Furthermore, to under-
stand the size scaling of the composite strength and, thus, predict strengths 
of very large samples, requires hundreds of simulations of failure in com-
posites having several hundred fibers. Here, two alternative approaches to 

the 3D shear-lag and Green’s function methods are discussed. The goal of 
these methods is to reliably calculate the stress states in any surviving 
fibers given an arbitrary spatial distribution of fiber breaks, while cap-
turing the proper SCFs and length scales computed from the detailed finite 
element method (FEM) models. 

Shear-lag method 

The shear-lag model (SLM) for fiber SCFs has a long history, dating back 

this model, the fibers are treated as one-dimensional extensional elements 
of modulus Ef while the matrix is treated as a material with modulus Gm 
that transfers tensile loads among fibers via shear deformation only and 
carries no tensile loads. Here we discuss a 3D SLM developed by Okabe 
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to the work of Hedgepeth and Hedgepeth and Van Dyke [4, 14, 15, 30]. In 

obtaining reasonably accurate but computationally more feasible results: 

and Takeda [25] that incorporates interface sliding due to friction and/or 

However, the results are generically those shown in Fig. 2.4, and the SCFs 



 

Fig. 2.5. (a) 3D model with 1D fibers and load transfer calculation in shear-lag 
and Green’s function models and (b) the nodes around ith fiber 

matrix yielding as well as evolving fiber damage in a single, compact 
framework. A schematic view of the composite with a hexagonal fiber 
array and relevant notation is shown in Fig. 2.5. The SLM assumes that the 
local matrix shear stress is governed by the smaller of (1) the elastic shear 
stress associated with the neighboring fiber displacements 

n m( ) [ ( ) ( )] / ,n iz G u z u z dτ = −  (2.1)

where un is the displacement of the nth near-neighboring fiber to fiber i 
(see Fig. 2.5) and d is the fiber spacing or (2) n yτ τ= , where τy is the 
yield strength for an elastic/perfectly plastic matrix or the debonded 
interfacial shear stress for a sliding interface. Within this framework, force 
equilibrium on the ith fiber in a hexagonal array with an elastic/plastic 
matrix is, when discretized by a uniform mesh size ∆z = δ, given by 
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where ui(zj) is the displacement of the jth node of the ith fiber located at 
longitudinal position zj, with h = πr/3 and A = πr2. In (2.2), ai,j are damage 
parameters: , 1 0i ja − =  if the element of fiber i between 1jz −  and zj is 
broken, and , 1 1i ja − =  if unbroken; similarly, ai,j = 0 if the element between 
zj and zj+1 is broken, and ai,j = 1 if unbroken. The bn (n = 1–6) in (2.2) are 
yield indicator parameters, with bn = 1 if |τn| is less than τy and bn = 0 
otherwise. Periodic boundary conditions are used on the lateral edges of 
the composite, so that all fibers have six neighbors. The boundary con-
ditions for uniaxial loading are zero displacement at z = 0, ui(0) = 0, and a 
constant applied displacement U at z = L, ui(L) = U. The stresses in the 
unbroken fiber elements follow from Hooke’s law as: 

f 1( ) [ ( ) ( )] / .i j i j i jz E u z u zσ δ−= −  (2.3)

The SLM predicts the stress concentration and recovery around an 
arbitrary collection of broken fibers, but the assumptions in the model are 
not always appropriate. Comparison of the SLM predictions against full 
finite element modeling for the exact same problem shows that the 
standard SLM can accurately predict the stress recovery length along a 

ever, the SCFs are only accurate for systems with a high fiber/matrix stiff-
ness ratio and high fiber volume fraction; practically, this corresponds  

systems, in particular metal matrix composites, factors such as the neglect 
of shear across the finite fiber dimensions in the SLM, the matrix load-
carrying capability, and/or the loading history, makes the SLM less accurate 

predictions of local damage evolution. Thus, care must be taken in using 
the SLM to model composite deformation and failure, although applications 
to polymer composites with stiff fibers and high fiber volume fractions 
should be accurate and realistic. 

Green’s function model 

The Green’s functional model (GFM) [36] uses the in-plane SCFs around a 
single fiber break as obtained from any detailed numerical model as a 
Green’s function, makes a simple approximation for the SCFs along the 
length of the unbroken fibers, and then computes the 3D damage evolution 
due to multiple, interacting fiber breaks. 

Specifically, the data for in-plane SCFs, as shown in Fig. 2.4b, define a 
Green’s function Gij for stress transfer from broken fiber j to surrounding 
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broken fiber for a wide range of fiber/matrix stiffness ratios [37]. How-

than in the full FEM studies, making the SLM less conservative in 

to polymer matrix composites with high fiber fraction. For other material 

for the stress transfer [37]. The stress transfer is more diffuse in the SLM 



 

fiber i. The stress distribution around a broken fiber is then modeled by the 
simple constant τ SLM. In other words, for fiber m broken at position b

mz , 
the stress along the broken fiber is approximated as 

b b b( ) 2 / , ( ) ( )m m m mz z z r z zσ τ σ σ= − ≤  (2.4)

as shown in Fig. 2.4a, where ( )m zσ  is the axial stress in the fiber existing 
before the break, so that (2.4) is operative only within the slip length 
around the fiber break. The stress lost by the broken fiber at position z, 

( ) ( )m mp z zσ≥ (2.5)

is transferred to the surrounding fibers using the Green’s function 
computed in the plane of the break. With these two features, the total stress 
σi(z) on unbroken fiber i in plane z due to broken fibers {m} is approxi-
mated as 

1
app,( ) ( ) [ (1 ) ] ( ),i i ik kl lm mz z G G G p zσ σ −= + −  (2.6)

where σapp,i(z) is the applied stress on fiber i at position z and there is an 
implied sum over the repeated indices k, l, m. Equations (2.4)–(2.6) predict 
that the stress transferred to surrounding fibers decreases linearly with 
distance from the fiber break until the slip region ends. This approximation 
is shown in Fig. 2.4c, from which it is evident that the model captures the 
basic features of the deformation but misses the subtle details associated 
with bending and compatibility that arise in the full FEM and also in the 
SLM. By construction, however, the GFM always satisfies equilibrium of 
the axial load, i.e., the sum of the forces over any cross-section of the fiber 
system is equal to the total force applied across the section. Equations (2.4)–

j
provide the analog of the stresses emerging from the solution of (2.1)–(2.3) 
in the SLM. Since the GFM takes the input directly from a more detailed 
calculation, it has a wider range of applicability than the SLM. However, 
for cases where the SLM is a good approximation, such as polymer matrix 
composites, the GFM contains some additional assumptions that could 
modify the predictions. A comparison of the GFM vs. the SLM, when the 
SCFs from the SLM are used as the input to the GFM, shows that the GFM 
predicts damage evolution and tensile strength in good agreement with the 

,( ) ( ) 2 /b b
m app m m mp z z z z rσ τ= − −
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tions made in the GFM model are reasonable. 

(2.6) are solved at a discrete set of points z  along each fiber and, thus, 

SLM for the systems considered [36], thus suggesting that the approxima-



  

2.2.4 Predictions of Tensile Strength in Small Samples 

The ultimate tensile strength of the composite is determined by two 
contributions. The first contribution is the fiber bundle strength *

fσ , which 
is determined via simulation of the evolution of fiber damage and stress 
transfer from broken to unbroken fibers using the shear-lag or Green’s 
function method in a stochastic simulation model to be described below. 
The second contribution is the load-carrying capacity of the matrix. Since 
the fiber damage that drives ultimate failure is fairly localized in space, in 
both the longitudinal and transverse directions, most of the matrix is deform-
ing as if in an undamaged composite. Thus, to a very good approximation, 
the average stress carried by the matrix is the axial stress in an undamaged 
composite at a stress equal to the composite strength. The ultimate strength 
can thus be expressed as 

*
uts f f f m uts(1 ) ( ),V Vσ σ σ σ= + −  (2.7)

where σm is the axial matrix stress and is a function of the applied stress. 
The main goal is to compute the fiber bundle strength *

fσ . 
For any fixed state of damage, i.e., spatial distribution of broken fibers, 

the SLM and the GFM compute the associated tensile stresses in all fibers 
in the system. Damage evolution then occurs by further failure of fibers 
due to the increasing stress concentrations. The progressive fiber damage 
occurs because the fibers have a statistical distribution of flaws within 
them, leading to a corresponding statistical distribution of strength on any 
set of fiber elements. Modeling of the damage evolution thus requires the 
appropriate fiber strength distribution as input. The cumulative probability 
of fiber failure f ( , )P Lσ  in a gauge length L at stress σ is usually modeled 
as a Weibull distribution that accounts for the flaw-sensitive, weak-link 
nature of the brittle fiber failure. In a two-parameter Weibull model, 

f ( , )P Lσ  is given by 

f
0 0

( , ) 1 exp ,
m

LP L
L

σσ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.8)

where σ0 is a characteristic fiber strength for fibers of length L0 and m is 
the Weibull modulus describing the statistical spread in strengths. For most 
commercial fibers, the fiber strength properties are well characterized by 
the two-parameter Weibull strength model. The Weibull parameters σ0 and 
m are usually obtained from experiments in which a large number of fibers 
of length L0 are tested in tension prior to incorporation into the composite. 
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However, composite processing can damage the fibers, modifying the in 
situ strength distribution compared to the initial ex situ distribution. To 
address this problem, fibers can sometimes be extracted from as-processed 
composites and then tested to obtain the appropriate strength parameters 
[11]. Another approach is to examine the fracture mirrors on fibers protrud-
ing from the fracture surface of a tested composite, from which the fiber 
strength statistics can be derived [7]. In any case, simulations of composite 
tensile strength require accurate knowledge of the in situ fiber strength 
distribution. 

Within the constant τ shear model for interface sliding, an analytic 
model that ignores local stress concentrations, the so-called Global Load 
Sharing model, permits for the identification of a characteristic stress that 
embodies most of the major dependencies of composite behavior on fiber 
and interfacial characteristics [6, 7]. This characteristic stress σc is the char-
acteristic fiber strength at a characteristic length δc, f c c( , ) 0.632P σ δ = , 

1/( 1)

0 0 c
c c, .

mm L r
r

σ τ σσ δ
τ

+
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 (2.9)

In a simulation model, it is often convenient to normalize all lengths by δc 
and stresses by σc, using an appropriate value of τ to define the length δc. 
Even if τ is approximate, (2.9) condenses some of the major physical 
dependencies of the composite failure into two key parameters. 

With the above preliminaries, the computation of the fiber bundle 
strength *

fσ  is straightforward. The simulation algorithm proceeds as illus-
trated in Fig. 2.6. A simulation model contains a computationally tractable 
number of fibers (typically ∼1,000) each of length c2L δ≥ . Each fiber is 
discretized into a series of small elements of length cδ δ , as illustrated 
in Fig. 2.5. Each fiber element is then assigned a tensile strength at random 

1/ 1/
c c( / ) ( ln(1 ))m mRσ δ δ − − . An initial tensile load is applied to the fiber 

bundle, and fiber breaks are introduced into those fiber elements for which 
the applied stress exceeds the assigned element strength. After these  
fibers break, the stress redistribution is calculated with the shear-lag or 
Green’s function model. Under the redistributed stress, some fiber elements 
may then exceed their assigned strengths and are broken; and the stress 
redistribution is computed again. This fiber break and stress redistribution 
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from the Weibull distribution, i.e., a random number R in the interval
[0, 1] is selected; and the strength of the element is assigned to be 
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and these interrelated quantities are given by [6] 



  

  

Fig. 2.6. Flow chart of simulation procedure for fiber damage evolution in fiber 
composites 

process is repeated until no further fiber breaks are found; the damaged 
composite is then in a stable equilibrium state. The applied displacement 
or load is then increased by a small increment, and the above process is 
repeated. In the SLM, which is typically displacement controlled, the ten-
sile strength is identified as the maximum stress. In the GFM, which is 
load controlled, the system undergoes catastrophic failure (all fibers break 
in some narrow range of the sample cross-section) at the tensile strength. 

Figure 2.7 shows an example of the simulated stress–strain curve for 
an Al2O3/Al composite. The fiber damage evolution in the ultimate failure 
plane is shown via examination of the fiber SCFs in Fig. 2.7 at two stages: 
just at failure and just beyond failure. In Fig. 2.7, SCF values less than one 
indicate that the fiber is broken somewhere within a slip length of the 
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failure plane and is carrying a reduced stress in the failure plane due to slip 
(2.4) while SCF values exceeding one indicate enhanced stresses on un-
broken fibers in the plane of view. At low stress levels, isolated breaks occur 
at weak fiber elements throughout the material, and the stress concentra-
tions are not sufficient to drive further failure. With increasing load, clusters 
of fiber breaks form due to both statistics and to enhanced local stresses. 
The stress concentrations around these clusters grow with the cluster size, 
driving further damage. When the load just reaches the tensile strength 
(Fig. 2.7a), a “critical” cluster of fiber breaks forms, consisting of a dis-
persed group of fiber breaks leading to local stress enhancements on the 
unbroken fibers in and around these breaks. With no further increase in 
applied load, fiber damage continues unabated spreading outward from the 
critical damage cluster. Figure 2.7b shows the damage configuration after 
some extent of unstable fiber damage. After some sporadic growth, the 
damage cluster becomes roughly penny shaped with very high-stress 
concentrations on its perimeter that drives the continued growth, similar to 
crack growth in a monolithic material. 
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Fig. 2.7. Predicted stress–strain curve for an alumina fiber/aluminum composite 
with a matrix yield strength of 100 MPa, with schematics of fiber damage and 
stress concentrations in the plane of final fracture: (a) just at the failure strength, 
where a critical damage cluster can be identified and (b) after some unstable 
damage propagation at the failure strength, where the damage has formed a near 
penny shape crack. Each node corresponds to a single fiber (reprinted with 
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permission from [35]) 



  

If either the fiber Weibull modulus or SCF is low, the composite can 
fail in a mode different from that described above. Figure 2.8a,b shows the 
failure process for an Al matrix composite with a lower matrix yield stress 
(σy = 50 MPa). In this case, the SCFs for individual breaks are lower lead-
ing to damage that is more uniformly distributed in the cross-section, as 
compared to Fig. 2.7a, such that a critical cluster cannot be identified in 
Fig. 2.8a. Even after unstable damage propagation (Fig. 2.8b), the damage 
still spreads quite uniformly through the cross-section. Thus, the SCF 
determined at the microscale by interface and matrix deformation plays a 
key role in determining the evolution of the damage, the formation of a 
critical damage cluster, the mode of damage, and, ultimately, the statistics 
and size scaling of the tensile strength. 

The composite failure strength has a statistical distribution. By per-
forming many simulations, with each simulation giving a different strength 
due to the different random fiber strengths and evolution of the damage 
clusters, the distribution can be determined numerically. The strength 
distribution depends mainly on the fiber Weibull modulus m and the SCFs. 
High m and/or high SCFs result in more localized damage (Fig. 2.7) and 
broader distributions while low Weibull modulus and/or low SCFs lead 
to more dispersed damage, as show in Fig. 2.8, and narrower distributions 
of strength. Thus, the strength is a combination of the spread in fiber 

for material systems discussed below depends on the combination of fiber 
Weibull modulus and SCF. 

 

                                   (a)                                                       (b) 
Fig. 2.8. Fiber damage and stress concentrations in the plane of final fracture in 
alumina fiber/aluminum composites. Each node point corresponds to a single 
fiber. (a) For σy = 50 MPa, just at the failure strength, where there is no clear 
localization of damage and (b) after some unstable damage propagation at the 
failure strength, with the damage still distributed across the entire sample cross-
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strengths (m) and the SCFs [35]. The size scaling of the composite strength 

section (reprinted with permission from [35]) 



 

2.2.5 Size-Scaling Model at Large Scale 

The composite tensile strength decreases with increasing sample size. This 
is due to the underlying dependence of the fiber strengths on length. 
However, since a number of fibers must fail locally in the composite to 
create a critical cluster capable of driving macroscopic failure, the statistical 
distribution of composite strengths at fixed size is much narrower than that 
of the single fiber. Similarly, the size scaling of the characteristic com-
posite tensile strength is much weaker than that for the individual fibers 

between numerical simulation sizes and test specimen and/or component 
sizes. Size scaling is also intimately linked with reliability, i.e., the pro-
bability distribution of failure at any fixed size. 

Since the composite strength is controlled by a weak-link failure, i.e., 
failure is driven by the formation of a localized cluster of damage some-
where in the material and much smaller than the sample size for large 
samples (see Fig. 2.7), information on the cumulative probability 
distribution of the fiber bundle strength at a fixed size 

s
( )nP σ  can be used 

to obtain the characteristic σ  vs. the size as follows. First, the “size” 
involves the number of fibers nf in the cross-section and the length of the 
sample L. Failure occurs within a longitudinal section length of ∼δc, and so 

c/(0.4 )L δ  
independent “bundles,” where the factor of 0.4 has been derived from 

size of the composite is then f c/(0.4 )n n L δ= . Now, the characteristic 
strength σ  at any size n satisfies 1( ) 1 enP σ −= − . Furthermore, weak-link 
scaling dictates that the probability distributions for samples of sizes n and 
n′ are related via 

( ) /
( ) 1 1 ( ) .

n n

n n
P Pσ σ

′

′= − −  (2.10)

Using the simulation data 
s
( )nP σ  at size sn n′ =  on the right-hand side of 

(2.10) and setting the left-hand size equal to 1 − e−1, we find that the size n 
having characteristic fiber bundle strength σ  must satisfy 

( )ss / ln 1 ( ) ,nn n P σ= − −  (2.11)

which then implicitly generates the strength vs. size, ( )nσ . 
To investigate the size scaling of composite strength numerically within 

the present model, we need to perform a large number of simulations on 
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[13]. Size scaling is an important issue because it bridges the scales 

detailed statistical analysis of simulations and analytic estimates [26]. The 

the sample length L can be viewed as consisting of a set of 



  

composites containing ns fibers using the model described in Sect. 2.1. 
From these simulations, we directly obtain the cumulative probability 
distribution 

s
( )nP σ  for failure of the fiber bundle at the simulated size ns. 

The composite strength then follows directly from (2.11). 

2.3 Case Studies: Prediction of Strength by the Multiscale 
Coupling Approach 

An approach to the hierarchical modeling of composite tensile failure has 
been presented. The proposed multiscale modeling involves the passing of 
key information from smaller to larger scales. In this section, the general 
multiscale modeling approach will be implemented to predict the pro-
perties and performance of several different composite systems under tensile 
loadings. Although the microstructures in fiber-reinforced composites are 
similar, the fiber/matrix interfaces are quite different, and load transfer 
strongly depends on the interfacial bonding strength. In the case of a weak 
interface, debonding will occur when the fiber breaks with the subsequent 
deformation controlled by a frictional interfacial shear stress. Matrix yield-
ing also plays an important role in the failure of the composites. High 
yielding matrices may bear significant loading, for instance, in metal 
matrix composites. In the absence of debonding, the matrix shear yield 
stress can determine the “sliding” behavior after a fiber breaks. Here, metal 
and polymer matrix composites will be used as examples to demonstrate 
how to predict the tensile strength of macroscopic composite samples from 
the detailed micromechanics. 

2.3.1 Polymer Matrix Composites (PMCs) 

Polymer composites reinforced by carbon or glass fibers have high strength 
and are widely used as high-performance materials in aerospace, electronics, 
and infrastructures. Here the multiscale modeling approach is used to predict 
the strength of fiber-reinforced polymer composites by linking composite 
microstructure and mesoscale fiber damage evolution to the mechanical 
properties at very large scale. 

The stress concentration predicted by the shear-lag model and finite 
element model has been compared. The results show, for both the elastic 
and elastic–plastic cases, that the SLM agrees with the finite element pre-
dictions very well except for a region very near the fiber break, nearly 
independently of the fiber break load for polymer matrix composites with 
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dicting the stress concentration in the fibers. Hence, the SLM is used with 
the mesoscale Monte Carlo damage evolution model following the standard 
procedure described in Sect. 2.2. 

The composite material studied here is a plastic matrix reinforced 
by carbon fibers. The thermomechanical properties of the carbon  

f

0 0

( , )
1 exp[( / ) ( / ) ]m

P L
L L α

σ
σ σ

=
−

c
periodic boundary conditions. Each fiber is divided into 100 longitudinal 
elements to minimize discretization errors.In the absence of fiber damage, 
uniaxial loading determines the overall stress–strain response of the 
undamaged composite. Due to the very low matrix yield stress and high 
fiber strength and stiffness, the stress–strain behavior is nearly linear over 
the entire range of loading. If a fiber breaks during loading, the shear stress 
in the matrix near the fiber break may exceed the shear yield strength, 
leading to matrix yielding. The possibility of interface debonding, which 
can follow after matrix yielding, is neglected; debonding can be included 
and is neglected only for simplicity. 

Property Fiber Matrix 
Fiber radius, r (µm) 2.5 – 
Elastic modulus, E (GPa) 294 3.4 
Fiber volume fraction, Vf 0.6  
Poisson’s ratio, ν 0.22 0.345 
Weibull modulus, m 3.8 – 
Weibull strength, σ0 (MPa) at L0 = 50 mm 3,570 – 
Yield shear strength, σy (MPa) – 52.4 

 
With the model and parameters noted above, 1,000 simulation studies 

of composite failure have been performed. From these simulations, the pro-
bability distribution 

s
( )nP σ  for failure of the fiber bundle at the simulated 

size ns is directly obtained, as shown in Fig. 2.9. Applying the size-scaling 
theory (2.11), the strength of large composites comparable to the sizes 
tested experimentally, which contain 104–106 fibers with a gauge length of 
10 mm is obtained. Figure 2.10 shows the experimental and predicted fiber 
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fibers and polymer matrix are presented in Table 2.1. The fiber strength  
 is described using a modified two-parameter Weibull model:

, where α  = 0.7 is the fitting parameter from 

site is composed of 1,024 fibers of length 4δ  in a hexagonal array with 
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high fiber volume fraction [37]. In this case, the SLM is reliable for pre-

the experimental results for the carbon fiber [24]. The simulated compo-

Table 2.1. Thermoelastic parameters of fiber and matrix [24] 



  

Fig. 2.9. Distribution of fiber bundle strengths (MPa) in a unidirectional CFRP 
composite containing 1,024 fibers of length 4δc, plotted in Weibull form 

Fig. 2.10. Fiber bundle strength *
f uts m f( ) /Vσ σ σ= −  vs. linear composite size 

(number of fibers nf times fiber length L), as predicted by simulations and as 
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bundle strength vs. composite volume (n). The predicted strengths fit the 
experiments very well. Okabe et al. also predicted the strength using a 
similar method but with a modified Weibull distribution model (Weibull of 

very close to those predicted. 

2.3.2 Metal Matrix Composites (MMCs) 

Al2O3 /Al composite 

We first consider an aluminum alloy reinforced by Al2O3 fibers. The 
thermomechanical properties of the fibers and aluminum alloy are pre-
sented in Table 2.2. Due to chemical bonding, the Al/Al2O3 interface is 
strong and debonding does not occur before matrix yielding. Unlike polymer 
matrix composites, however, the Al matrix has a much larger elastic modulus 
and, hence, can exhibit wide-spread yielding. The matrix can also carry 
significant loads around a broken fiber. Because of low fiber/matrix 
stiffness ratio, the discrepancy between the shear-lag model and the finite 
element model stress concentrations in the Al2O3/Al composite is signi-

represent the stress concentrations derived from direct, small-scale finite 
element analyses results. 

A range of yield strengths for the Al alloy (50, 100, and 200 MPa) is 
considered to examine possible effects of alloying, in situ aging, etc. that 
may prevail in the as-processed composite. Similar to the polymer matrix 
composites, uniaxial loading determines the overall stress–strain response 
of the undamaged composite in the absence of fiber damage. Above an 
applied composite stress of 500 MPa, the matrix is fully plastic. 

Property Fiber Matrix 
Fiber radius, r (µm) 6 – 
Elastic modulus, E (GPa) 390 70 
Poisson’s ratio, ν 0.22 0.345 
Fiber volume fraction, Vf 0.65  
Thermal expansion coefficient, α (10−6 per °C) 6.5 24 
Weibull modulus, m 9 – 
Weibull strength, σ0 (MPa) at L0 = 1 m 2,060 – 
Yield strength, σy (MPa) – 50, 100, 200 
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Weibull (WOW) statistics) for fiber strength [24] and obtained strengths 

ficant [37]. Therefore, the Green’s function method is used to accurately 

Table 2.2. Thermoelastic parameters of fiber and matrix for Al MMC [35] 



  

The 3D FEM to obtain information on deformation around fiber 
breaks. Introducing a fiber break into the central fiber at the midplane of 
the FEM model induces significant changes in the local stresses. 
Figure 2.11a shows the shear stress distribution along the broken fiber for 
different matrix yield strengths at a load of 1,000 MPa. At a low yield 
strength (σy = 50 MPa), the shear stress in the plastic zone is essentially 

y / 3σ . For higher σy, the shear stress shows more spatial variation but is 
still about y / 3σ  on average. Figure 2.11b shows the average axial stress 
within the broken fiber along the fiber length at an applied stress of 
2,000 MPa. As expected by equilibrium requirements, the stress recovers 
nearly linearly when the shear stress is nearly constant and then increases 
more slowly as the shear stress decreases to zero. The “slip” or “stress 
recovery” length around the broken fiber can be estimated using the simple 
shear-lag model and a constant interfacial shear stress τ, as indicated in 
Fig. 2.11b; the corresponding τ values are shown in Table 2.3. To capture 
the major effects of the in-plane stress redistribution, the average SCF 
(averaged over the fiber cross-section) is considered, as shown in 
Fig. 2.11c. The spatial extent of load redistribution varies with yield 
strength: the SCF of the near-neighbor fibers increases with increasing σy 
and the spatial range decreases. Since the matrix carries load, the SCFs are 
smaller than those in carbon fiber-reinforced polymers. Simulations are 
performed for a composite with 1,024 fibers of length L = 10 mm to obtain 
a statistical distribution of tensile strengths. The tensile strength of small 
size samples can be predicted directly via (2.7) using the mean strength 
obtained from many simulations of the fiber bundle strength. Such 
strengths, for the different matrix yield strengths, are shown in Table 2.3. 
The predictions are relatively insensitive to the value of the yield strengths 
due to a combination of factors although the mode of failure is quite dif-
ferent, as shown in Figs. 2.7 and 2.8. An increased σy, and hence increased 
τ, increases the characteristic strength and the fiber bundle strength as 

1/( 1)mτ + , and increases the matrix contribution to the strength. However, 
increased τ also leads to increasing SCFs that are more localized on the 
nearest fibers, which drives the formation of larger damage clusters at 
lower loads and decreases the composite strength. In the present case, 
these competing factors cancel one another to a large degree, leading to 
a slow increase in composite strength with increasing τ. Since the SCF 
depends on other constitutive properties and the fiber damage evolution 
depends on the strength distribution, the cancellation is also a function of 
features such as the fiber/matrix elastic mismatch, the fiber diameter, and 
fiber Weibull modulus. 
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Fig. 2.11 (continue)
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Fig. 2.11. (a) Interfacial shear stress along a broken fiber at an applied stress of 
1,000 MPa for different matrix yield strengths, (b) axial stress distribution on a 
broken fiber along the fiber direction z, normalized by the far-field fiber stress, at 
an applied stress of 2,000 MPa for different matrix yield strengths, and (c) axial 
stress concentration factor (SCF) on nearby fibers vs. distance from the broken 
fiber, normalized by the fiber spacing s, at an applied stress of 2,000 MPa for 
different matrix yield strengths. Dotted lines show constant τ “shear-lag” fit to the 

Parameters Predictiona Experiment 
Matrix yield strength, σy 50 100 200 100 
Interfacial shear stress, τ (MPa) 32.5 65 125 – 
Typical maximum stress, σc (MPa) 4,527 4,852 5,200 – 
Average fragment length, δc (µm) 824 447 248.6 – 
Tensile strength, σuts (MPa) 2,178 2,347 2,496 2,051 ± 141 
aAverage value of 20 results on 1,024 fibers of gauge length L = 10 mm. 

 
Experiments on the current material system have been performed by 

Ramamurty et al. [28] using three-point, four-point, and tension loadings. 
Only the size of the tension test can be determined directly; the effective 
volumes tested in bending depend on the Weibull modulus of the composite 
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data (reprinted with permission from [35]) 

Table 2.3. Parameters and tensile strength, as measured and as predicted [35] 



 

strength distribution, which is not known a priori. Ramamurty et al. con-
sidered the measured scaling of the mean strengths to derive a composite 
Weibull modulus of about 55, which was then used to assign effective 
composite volumes to the three- and four-point bend test strengths. The 
four-point tests were deduced to have an effective size of about 12,000 mm 
of total fiber length (number of fibers times length of fibers). This matches 
the volume of 10,240 mm (1,024 fibers of length 10 mm) in the simu-
lations performed rather closely. Hence, the quoted experimental strength 
in Table 2.3 is that for the four-point bend test. The agreement is quite 
reasonable, with a difference of ∼10% for the yield stress of 100 MPa, 
which is close to that pertaining to the experiments. Some of the difference 
could be due to processing-induced fiber damage, such that the ex situ 
values are not directly applicable to the in situ fibers. Some of the dif-
ference may also be due to the influence of bending strain gradients, which 
is neglected in assuming that failure is driven by locally uniform tensile 
loading. 

To investigate the size scaling of composite strength numerically, 
extensive simulation studies were performed on larger composite sizes. 
Specifically, 1,000 simulations were performed on composites containing 
1,024 fibers of length 5 mm. From these simulations and (2.7), we directly 
obtain the probability distribution 

s
( )nP σ  for failure of the composite at 

the simulated size ns. Figure 2.12 shows the composite strength σuts vs. 
composite size fn L  (nf fibers each of length L), as obtained from the simu-
lation data and (2.11), demonstrating the decreasing strength with increasing 
composite size. Also shown in Fig. 2.12 are the results of Ramamurty et al. 
at the estimated test sizes. The predicted strength decreases but more 
slowly than found experimentally, leading to a difference of ∼27% at the 
largest size. 

There are several possible reasons for this discrepancy, all of which lie 
at the micromechanical fiber/matrix/interface scale. First, the matrix defor-
mation around the fibers is very large. Thus, the details of matrix harden-
ing may be important in determining the stress redistribution. Moderate 
strain hardening typical of many Al alloys leads to an increase in the local 
SCF, which drives more localized damage, smaller critical clusters at 
failure, lower strengths, and an increasing size-scaling effect. This points 
to the necessity of understanding the matrix constitutive behavior in even 
more detail than done here to properly capture the SCFs. Okabe et al. 
recently used the spring element model (a microscale model similar to 
SLM) coupled with the size-scaling model to predict the composite 
strength. In their calculation, they used an elastic–plastic hardening matrix 
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Fig. 2.12. Composite strength vs. linear composite size (number of fibers nf times 
fiber length L) for an Al/Al2O3 metal matrix composite, as predicted by 
simulations (GFM and SEM (Spring element model) from [25]) and as obtained 

compared with the perfect plastic case, the strength with a strain-hardening 

would significantly affect the load transfer. In particular, if matrix “cracks” 

concentrations on regions of the neighboring fibers. Similar stress con-
centrations for sliding interfaces have been calculated in other materials 

the local stress concentrations can lead to a weaker composite and a more 
planar fracture surface (typical of Al MMCs). Methods to account for this 
effect within the mesoscale simulations described here have been add-

occur once the damage cluster gets close to critical and this might then 
trigger fracture. As a result, the strength would be different than predicted 
here. Such matrix fracture effects can be included in the Green’s function 
model, as will be discussed in Chap. 4. 
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experimentally [28] 

instead of a perfect plastic matrix [23]. The results in Fig. 2.12 show that, 

ressed in [38]. Third, for MMCs, it is possible that matrix fracture could 

extend up to the neighboring fibers, then there will be additional local stress 

matrix decreases quickly with size and is consistent with the experimental 

high interfacial sliding or shear yield stresses and high fiber Weibull moduli, 

trend. Second, the Al matrix may undergo ductile failure locally, which 

and the influence on enhanced local fiber failure has been assessed [33]. For 



 

SiC/titanium composite 

The SiC/Ti composites considered here were fabricated via magnetron 
sputtering of the matrix onto the fibers followed by isostatic pressing of 

nearly ideal hexagonal fiber distribution (Fig. 2.3a). The fiber volume 
fraction is 0.4. The interface is weak and debonds readily upon fiber frac-
ture, and the interfacial sliding resistance in the as-fabricated composite is 
55–75 MPa, as measured by pushout testing. Other thermomechanical 
properties are shown in Table 2.4. The SCS-6 fiber is represented by a 
homogeneous anisotropic material with elastic constants. The homogeneous 
Young’s modulus Ef of the fiber is determined by fitting the rule of mix-
tures to a full 2D model. The elastic properties of the matrix are also shown 
in Table 2.4. The stress–strain behavior of the IMI834 Ti alloy as deter-
mined experimentally is very accurately represented by a Ramberg–Osgood 
relationship of the form 

1/
m m m m/ ( / ) ,bE Bε σ σ= +  (2.12)

with b = 0.0384 the hardening exponent, B = 1,229 MPa the hardening 
coefficient, and Em the matrix elastic modulus. The yield strength of the 
alloy is 950 MPa. 

The multiscale modeling of composite strength starts from a micron-
scale finite element model. A 3D finite element representation of the com-
posite was constructed using symmetry to calculate the stress distributions 
around broken fibers. The model consists of 13,922 elements, including 
3,255 gap elements and 13,888 nodes. The fiber/matrix bond strength  
is assumed to be zero. Coulomb friction at the interface rτ µσ= −  is 
assumed. For the cooling range shown in Table 2.4, σr = 208 MPa, leading 
to interfacial shear stresses ranging from 52 to 187 MPa for the range 
0.25 0.9µ≤ ≤ . The finite element results show that the load transfer in 
metal matrix is affected by the matrix. Similar to the polymer matrix 
composites, the near-neighbor fibers bear most of the load and bear an 
increasing portion of the load as the friction coefficient increases. 
However, the surviving fibers do not take on all of the loads from the 
broken fiber. The fibers carry only 83% of the load at low coefficient of 
friction (µ = 0.25) and only 64% of the load at high coefficient of friction 
(µ = 0.9). The matrix carries the remainder of the load. Finite element 
results show that there is a clear axial stress concentration in the matrix 
near the broken fiber, which increases with increasing friction coefficient. 
The increased axial matrix stress occurs due to both hardening and 
constraint effects that govern the yielding. Similar calculations for an 
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the matrix-coated fibers into a composite [18]. This technique yields a 



  

elastic/perfectly plastic matrix (no hardening) show similar increases in 
axial matrix load attributable purely to constraint effects. For a high 
coefficient of friction, µ = 0.9, the stress in the matrix near the fiber break 
exceeds the tensile strength of the matrix so that a fiber break may actually 
cause matrix fracture. Matrix fracture can then induce a different and much 
more dangerous mode of composite fracture in which fiber and matrix 
fracture progress unstably from around a single break, since the load 
carried by the cracked matrix will be transferred predominantly onto the 
nearby fibers. This failure mode is in contrast to the distributed damage 
and failure that occurs when the matrix does not fail. Most existing models 
for stress transfer neglect the stress carried by the matrix and the 
possibility of matrix fracture. 

Material Ezz 
(GPa) 

Err = Eθθ 
(GPa) 

Grθ 
(GPa)

Gθz = Gzr
(GPa) 

νrθ νθz = νzr αzz 
(10−6 per 

°C) 

αrr = αθθ 
(10−6 per 

°C) 

∆Ta 
(°C) 

Fiber 400 240 70 118 0.15 0.25 6.48 6.48 750 
Matrixb 120    0.3  11.24  750 
Composite 232 155 64 91 0.186 0.296 8.05 9.4 750 
aTemperature difference for cooling from processing. 
bIsotropic material. 
 

Table 2.5. Thermoelastic parameters of SiC (SCS-6) fiber 

Fiber radius, r (µm) 71 
Elastic modulus, Ezz (GPa) 400 
Weibull modulus, m 17 
Weibull strength, σ0 (MPa) at L0 = 25 mm 4,580 

 
Neglecting the possibility of matrix failure, the damage evolution 

during loading is simulated using the Green’s function model with the 
SCFs around a broken fiber for different coefficient of friction calculated 
using the finite element model. The fiber parameters are listed in Table 2.5. 
The simulation method requires an appropriate value of τ to define the 
length δc and characteristic strength σc. The characteristic stress σc and 
characteristic length δc for different coefficient of friction are listed in 
Table 2.6. 
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Table 2.4. Thermoelastic parameters of fiber, matrix, and composite [38] 



 

Parameters Predictiona Experiment 
Coefficient of friction, µ 0.25 0.5 0.9 – 
Interfacial shear stress, τ (MPa) 51.7 103.5 186.3 55–75 
Characteristic stress, σc (MPa) 4,946.4 5,141.6 5,313.0 – 
Average fragment length, δc (µm) 6,792.9 3,527.1 2,024.8 – 
Tensile strength, σuts (MPa) 2,268.0 2,317.5 2,344.5 2,200–2,300 
aAverage value of 20 results (Gauge length L = 20 mm, the number of fibers = 210). 

 
The tensile strengths were predicted using the mean of many simulations 

of the fiber bundle strength *
fσ  and are shown in Table 2.6 for several 

different friction coefficients. The predictions contain no adjustable 
parameters and are in excellent agreement with the experimental data for 
the range of friction parameters consistent with the experimentally 

the predictions to the value of the friction coefficient is due to the same 
combination of factors as discussed previously for the Al MMCs. 

Similar to Al matrix composites, the size scaling of composite strength 
was investigated numerically within the present model. One thousand simu-
lations were performed on composites containing 1,000 fibers of length 4δc 
(size ns = 4,000δc). The probability distribution 

s
( )nP σ  for failure of the 

fiber bundle at the simulated size was directly obtained from these 
simulations. The results show that the tensile strength at the sizes of typical 
Ti MMC components (≈106 mm3) is reduced by about 100 MPa below the 
value obtained on the small laboratory test coupons (≈102 mm3). Currently, 
no experimental data are available to test the accuracy of the predicted 
scaling of strength with composite size. 

2.4 Extension to Low-Cycle Fatigue of Titanium Matrix 
Composite 

In highly stressed rotating components where Ti MMCs might be employed, 
the transient loadings associated with start-up/shutdown and maneuvering 
give rise to a situation where low-cycle fatigue dominates. Studies of low-
cycle fatigue behavior of unnotched specimens indicate that matrix cracks 
in TMCs initiate at the matrix/fiber interface, fiber breaks, and surface  
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Table 2.6. Parameters and tensile strength, as measured and as predicted [38] 

measured interfacial shear sliding stress [18]. The relative insensitivity of 



  

flaws of the specimens and grow perpendicular to the fibers. The range of 
fatigue crack growth can be divided into a short crack range, a steady-state 
range, and composite failure [1, 2]. After an initial growth in the short 
crack range, the crack growth rate reaches a constant value (steady-state 
regime) due to fiber bridging that substantially shields the crack tip from 
the applied stresses. However, the high stresses in the bridging fibers can 
cause them to fail and ultimately drive the composite to fail catastrophically 

Here, we extend the multiscale coupling approach to predict the low-
cycle fatigue of Ti/SiC composites. We combine detailed finite element 
models of the stress states in and around small matrix fatigue cracks with 
the Green’s function model to capture the stochastic fiber damage under 
the calculated stress states. Figure 2.13 illustrates the multiscale modeling 
procedure for low-cycle fatigue life predictions. The micromechanical finite 
element model provides both the crack tip stress intensity (∆Keff) govern-
ing fatigue crack growth and the stress distributions on the fibers in and 
around the fatigue crack. The Green’s function model evaluates the failure 
of the fibers under the given stress state, distributes the stress from broken 

Fig. 2.13. Multiscale modeling of low-cycle fatigue of Ti/SiC composites 
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[3, 32]. 



 

fibers onto the remaining fibers, and permits the evolution of fiber damage 
up to composite failure (critical crack length ac). A Paris law links the 
crack growth rate (da/dN) with the ∆Keff. The fatigue life is then predicted 
from da/dN and the computed critical size ac. 

2.4.1 Fatigue Failure Predictions 

Model geometry and constitutive behavior 

Under cyclic loading, the fatigue cracks in composites usually start at flaws 
such as interfacial reaction and broken fibers. Therefore, the simulation 
starts from the fiber/matrix interface at which there is an initial annular 
matrix crack of outer radius a0. The initial annular crack width a0 is taken 
to be the thickness of the brittle reaction layer formed during processing at 
the C/Ti interface of the SCS-6/Ti system, which is about 1 µm. A second 
initial state is considered in which the fiber inside the reaction layer crack 
has also failed, for which the initial crack is a penny crack of radius R + a0. 
Probabilistic assessment of fiber fracture upon loading is used to determine 
which of these two initial states is relevant as a function of applied stress. 
We assume that the fiber/matrix (or more precisely the fiber/coating) inter-
face is rather weak and debonds when the matrix crack impinges on the 
interfaces or when a fiber breaks. The interfacial shear stress τ along the 
debonded interface is controlled by Coulomb friction, as described in 
Sect. 3.2. The elastic constitutive properties of the matrix and fibers are 
shown in Tables 2.4 and 2.5. The elastic–plastic regime of the matrix is 
described by a Ramberg–Osgood relationship (2.12). 

The finite element models for fatigue crack simulation are similar to 
those used in tensile simulation (Fig. 2.3) but an average material with 
composite properties is added such that the number of elements is reduced 
while the cracked area is kept below 1% of the model cross-section. Three 
FE models, each with a different matrix crack radius, were developed to 
predict the stress concentrations in the bridging fibers and the stress 
intensity factor at the crack tip, as shown in Fig. 2.14. The element sizes 
were selected to adequately determine the strain energy release rate along 
the matrix crack front, as described in “Failure simulations at fixed fatigue 
crack size.” 
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Fig. 2.14. The finite element models used here: (a) 30° wedge showing fibers, 
matrix, and average material with different crack lengths, (b) mesh distribution 
and crack tip propagation region for small matrix cracks of am = 10–40 µm,  
(c) mesh distribution and crack propagation region for an intermediate crack size 
of a = 2.5s, and (d) FE-predicted stress distribution in crack propagation region 

Stress concentrations in bridging fibers 

The presence of a matrix fatigue crack causes several important stress 
concentrations on the bridging fibers. First, there is a transfer of the matrix 
load onto the fibers. Second, there is an increased transfer of stress from 
broken fibers to unbroken fibers since the cracked matrix is not available 
to participate in the load sharing. Third, the matrix crack causes a stress 
concentration at the fiber surface that can drive “premature” fiber fracture. 
The calculation of the third stress concentration involves theoretical 

two factors calculated by the FE models are addressed as follows. 
 

for a crack size of a = 5s (reprinted with permission from [34]) 

analysis and the details can be referred to in references [33, 34]. The first 



 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3 4 5 6 7

Matrix crack length/fiber spacing am/s

SC
F

σapp=1880MPa

σapp=1410MPa

σapp=1880MPa
σapp=1410MPa

µ=0.9

0.25

0.5

0.9

0.5

µ=0.25

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance from the crack center, r/s

SC
F

µ=0.25
µ=0.5
µ=0.9
µ=0.25/f1b
µ=0.5/f1b
µ=0.9/f1b

σapp=1880MPa

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3 4 5 6 7

Matrix crack length/fiber spacing am/s

SC
F

σapp=1880MPa

σapp=1410MPa

σapp=1880MPa
σapp=1410MPa

µ=0.9

0.25

0.5

0.9

0.5

µ=0.25

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance from the crack center, r/s

SC
F

µ=0.25
µ=0.5
µ=0.9
µ=0.25/f1b
µ=0.5/f1b
µ=0.9/f1b

σapp=1880MPa

0             1              2             3              4
Distance from the crack center, r/s

0       1        2       3       4       5        6      7
Matrix crack length/fiber spacing

S
C

F
1 

   
   

  1
.2

   
   

   
 1

.4
   

   
   

1.
6 

   
   

 1
.8

 

S
C

F
1 

   
   

   
   

 1
.2

   
   

   
   

  1
.4

   
   

   
   

1.
6 

σapp=1880MPa

σapp=1410MPa

σapp=1880MPa
σapp=1410MPa

µ=0.25
µ=0.5
µ=0.9
µ=0.25/f1b
µ=0.5/f1b
µ=0.9/f1b

σapp=1880MPa

0.9
0.5

0.25

0.9
0.5

µ=0.25

 
                          (a)                                                       (b) 
Fig. 2.15. (a) Average stress concentration factor (SCF) on the central bridging 
fiber as a function of matrix crack length for applied stresses of 1,410 and 
1,880 MPa. Dashed line shows the asymptotic SCF, (b) average axial SCF on the 
bridging fibers in and around a matrix crack of length a = 2.5s (s is the fiber 
spacing) for an applied stress of 1,880 MPa with no broken fibers (solid line, solid 
symbols) and with a broken central fiber (dashed lines, open symbols) (reprinted 

Upon fatigue crack initiation and propagation, the fibers in the wake of 
the crack experience a greatly increased stress since the cracked matrix no 
longer carries any stress. In the limit of a large matrix crack, steady-state 
conditions deep within the crack dictate that the stresses on the surviving 
fibers in the crack plane attain the value σf = σcomp/Vf. Figure 2.15a shows 
the average stress concentration on the central bridging fiber in the crack 
plane as a function of matrix crack length. For a high coefficient of fric-
tion, the maximum fiber stress becomes independent of the crack length 
after a relatively small amount of crack growth, i.e., steady-state conditions 
are reached for fairly small cracks. For a low coefficient of friction, con-
siderable crack growth must occur before the central fiber stress becomes 
independent of length, i.e., steady-state conditions require rather longer 
crack lengths. The limiting stress concentration factor is SCFmax independent 
of the coefficient of friction. 

When the central bridging fiber has failed, the stress concentrations 
on the surrounding surviving fibers are further elevated, as shown in 
Fig. 2.15b. Since the cracked matrix cannot carry any of the loads from the 
broken fiber, the stresses transferred to the nearby fibers are larger than 
those in the absence of matrix damage. Thus, the presence of the matrix 
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with permission from [34]) 



fatigue crack enhances the stress on the fibers and the stress transferred 
from broken to unbroken fibers; both factors drive preferential damage of 
the fibers within the matrix crack region. 

Failure simulations at fixed fatigue crack size 

Fiber damage in a composite evolves stochastically due to the underlying 
statistical strength distribution of the brittle reinforcing fibers. Here, fiber 
damage in the composite is calculated using a numerical simulation 
technique based on the Green’s function method described in Sect. 2.3. We 
obtain the Green’s function Gij in (2.5) from the full 3D finite element 
model, and specifically the resulting in-plane SCFs. In application to the 
present problem, the results of our detailed FE model with a specified 
matrix fatigue crack are also used to obtain the local applied field 

app, ( )i zσ
which is the stress state prior to any fiber damage. Now, the effective app-
lied stress app, ( )i zσ  in (2.6) is the stress due to applied fields plus matrix 
damage but not including any fiber damage. 

The failure strength of composite sizes n = 210 and 1,024 at a gauge 
length of L = 6 mm, for various fatigue crack lengths was calculated. All 
calculations begin with a single initial matrix crack in the center of the 
composite. The calculated composite strength vs. fatigue crack size is 
shown in Fig. 2.16. For a fatigue crack size of zero, the simulations predict 

As the fatigue crack size increases, the composite strength decreases in a 
manner that depends strongly on the interfacial friction coefficient. For a 
high coefficient of friction, the higher fiber stress concentrations and sur-
face stress concentrations drive fiber failure at smaller fatigue crack sizes. 
For lower coefficients of friction, the decrease in strength with increasing 
fatigue crack size is more gradual. The composite strength for systems 
with an initial fiber crack at the center of the model is also shown in 
Fig. 2.16. The strength of the composite is nearly independent of the 
existence of the initial fiber break for the lower friction coefficients. At 
high loads, there can be several fiber breaks, and so one additional break 
may not be critical. At low loads, a single fiber break cannot drive 
extensive additional damage; and so, again, the one break is not critical. 
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 on every fiber in the cross-section (see Fig. 2.15, for example), 

the ultimate tensile strength of the composite of about 2,300 MPa [18]. 
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                             (a)                                                         (b) 

Fig. 2.16. Composite strength vs. matrix crack length for different coefficients of 
friction: (a) composite size of 210 fibers, without (solid lines) and with (dashed 

Fatigue life predictions require the knowledge of crack growth rate as well 
as the initial and critical crack lengths. The critical crack length (or com-

putation, we must compute the number of fatigue cycles needed to reach 
the critical size ac at the corresponding critical applied strength (Fig. 2.16). 
Here, the crack growth rate in the matrix of TMC was calculated by using 
fatigue properties of “neat” matrix material. Dowling and Iyyer [8] have 
suggested that the low-cycle fatigue crack growth rate da/dN is associated 
with an effective stress intensity factor range ∆Keff according to a Paris law 

eff
d ,
d

ba c K
N

=  (2.13)

where b = 8.22 and c = 7 × 10−16 m per cycle are materials constants 
eff is 

related to the effective strain energy release rate range, ∆Jeff, consisting of 
an elastic strain component ∆Je and plastic strain component ∆Jp. 
Following Dowling and Iyyer [8], an approximation valid for an internal 
circular crack is used in this study to calculate the plastic term ∆Jp. The 
term ∆Je was calculated using the FE model as follows. In linear elastic 

73

and 1,024 (solid lines) with a central fiber break. As-processed fiber strength 
lines) an initial central fiber break, (b) composite sizes of 210 (dashed lines)

∆
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parameters are listed in Table 2.5 (reprinted with permission from [34]) 

posite strength) has been determined in Sect. 2.4.1. To complete the com-

2.4.2 Fatigue Life Predictions 

determined via fatigue crack growth experiments on IMI834 [17]. ∆K



  

fracture mechanics, Je equals the strain energy release rate GI. The strain 
energy release rate for matrix crack growth was determined with the 

I 0 1

1lim ,
M

i i
z zA i

G F u
A→

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑  (2.14)

where i
zF  is the axial force on node i at the crack tip position, i

zu  is the 
crack tip opening of the node i after permitting the crack to grow, M is the 
number of crack tip nodes, and ∆A is the area of crack propagation. 
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Fig. 2.17. Elastic contribution to the effective stress intensity factor Keff vs. square 
root of the crack length a for different friction coefficients, both without (open 
symbols) and with (solid symbols) a central fiber break, at a matrix stress of 
1,000 MPa (applied stress amplitude of 1,600 MPa, s = fiber spacing) (reprinted 

The elastic component of Keff for a matrix stress of 1,000 MPa 
(corresponding to an applied stress amplitude of 1,600 MPa) is shown in 
Fig. 2.17 vs. crack length a = am + R, where am is the annular matrix crack 
length. The stress intensity factor for µ = 0.01 follows the linear elastic 
fracture mechanics relation I mK Y aσ π=  that is expected in the absence of 
fiber bridging. Y = 0.536 is a geometry factor whose value differs from the 
value Y = 2/π = 0.637 for a circular flaw in homogeneous elastic material 
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∆∆

with permission from [34]) 

modified crack closure integral technique [29], given by 



 

[33] because the higher-modulus fibers reduce the stress in the matrix. 
With increasing matrix crack length a (a > 2.5s), Keff begins to approach a 
steady-state value independent of the crack length, and the bridging 
contribution to Keff scales as 1/ 3 1/ 2

bK aτ∝ , similar to predictions of 
McCartney [21]. When the initial crack includes an in-plane fiber break, 
the crack growth rate is greatly accelerated in the early stages, as shown in 
Fig. 2.17 and as expected due to the loss of fiber bridging. For larger 
fatigue cracks, the crack growth rate becomes largely independent of the 
initial crack details; the large number of bridging fibers establishes the 
approach to the steady-state regime. 

The calculations also show that Keff increases nearly linearly before the 
matrix exceeds the cyclic yield point (about 850 MPa), after which Keff 
increases more rapidly. The interfacial friction has a strong influence on 
Keff in both elastic and plastic stages, with increased friction leading to a 
reduction in Keff because the fiber bridging is more effective when fiber 
sliding is more restrained. 

With the composite strength and crack growth rate as a function of 
fatigue crack size, as shown in Figs. 2.16 and 2.17, it is straightforward to 
determine the number of cycles required, at that applied stress, to grow the 
fatigue crack from the initial size to the final critical size. Since the initial 
fiber breakage does significantly reduce the fatigue life, it is important in 
making predictions to determine the likelihood of fiber damage upon 
application of the initial load. A single initial fiber break anywhere in the 
entire composite can serve as the site for a fast-growing fatigue crack and, 
hence, early fatigue failure. The probability of failure of a single fiber some-
where in a composite specimen containing n fibers with a gauge length of 
L is, from the Weibull statistics of fiber failure, given by 

comp
f comp

0 0

(1 )
( ) 1 exp .

m
m fLnP

L f
σ σ

σ
σ

∞
⎡ ⎤− −⎛ ⎞
⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2.15)

For small composites (e.g., n = 210, L = 6 mm), the 50% probability 
level for one fiber break is fairly high, at about 2,050 MPa. For a larger 
composite (e.g., n = 1,024, L = 6 mm), the 50% probability level is reduced 
to about 1,900 MPa. Hence, the typical stress level between having no 
initial fiber break and finding at least one initial fiber break is a function of 
composite size. To account for the possibility of initial fiber breakage, the 
average fatigue lifetime at any stress level should be weighted by the 
probability of obtaining such a fiber break. Thus, the lifetime N vs. applied 
stress is 
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b comp f comp ub comp f app( ) ( ) ( )[1 ( )],N N P N Pσ σ σ σ= + −  (2.16)

where b comp( )N σ  and nb comp( )N σ  are the lifetimes for the cases of an 
initial fiber break and no initial fiber break at the applied stress level of 
interest. 

in Fig. 2.18 for 
b comp( )N σ  and nb comp( )N σ , and (2.15) and (2.16) for compo-

obtained with no adjustable parameters, are shown in Fig. 2.18 along with 
the experimental S–N data on SCS-6 fiber-reinforced IMI834 titanium 

sample size closely matches the simulated size. The low-cycle fatigue 
predictions for µ = 0.25 are in very good agreement with the experimental 
results at stress levels higher than 1,800 MPa (lifetimes below 104 cycles). 
Below about 1,800 MPa for µ = 0.25, the model predicts the aforementioned 
fatigue threshold whereas the actual composites continue to degrade, so 
that the life is overpredicted. However, the model uses only the pristine as-
processed fiber strengths and explicit fatigue degradation of the fibers 
appears to be the cause of the reduced fatigue life for N > 104 cycles. 

4

450 MPa, the extracted SiC (SCS-6) fiber surface shows a morphology 
similar to (uncoated) SCS-0 SiC fibers. The tensile strength of the SCS-6 
fibers extracted from the fatigued specimens was reduced to a level nearly 
the same as that of SCS-0 fibers (σ0 = 2,300 MPa, m = 7.2 at L0 = 25 mm). 
Thus, it appears that low-cycle fatigue loading reduces the strength of 
SCS-6 fibers to that of SCS-0 fibers. We have used these fatigued fiber 
properties as relevant for N > 104 cycles (thereby assuming no further 
fatigue degradation of the fibers, consistent with the interpretation that the 
strength reduces only to that of the SCS-0 fibers) to calculate the com-
posite strength vs. fatigue crack size and, subsequently, a fatigue life vs. 
stress. The initial fatigue crack at these low applied stresses is taken to be 
without a fiber break since the fibers only weaken after the ≈104 cycles. 
The resulting fatigue prediction is also shown in Fig. 2.18 and contains no 
adjustable parameters. The predicted S–N curve agrees with the experi-
mental data over the range from 1,200 to 1,500 MPa. Taken together, the 
two predicted results for fatigue life fall nearly along the same line, sug-
gesting that if the fiber fatigue effect could be introduced in an appro-
priately gradual manner then the entire fatigue life curve would be very 
accurately predicted by our analysis. For the reduced fiber strengths, there  
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The fatigue life (S–N curve) is calculated using the results shown

alloy [32], for which the coefficient of friction is about 0.3 [16] and the 

sites with n = 210 and 1,024 fibers of gauge length 6 mm. The results, 

Guo et al. [12] found that after 10  cycles at a stress amplitude of 



 

is again a fatigue threshold predicted but it is at about 1,050 MPa and there 
is no experimental data at such low stresses. From the results shown in 
Fig. 2.18, interface friction is seen to play a more important, and varying, 
role in fatigue than in tensile strength. A higher friction coefficient is 
predicted to be beneficial for high-stress/low-cycle fatigue but to be 
detrimental at lower stresses or higher cycles. 

Fig. 2.18. Applied stress vs. fatigue cycles at failure (S–N curve, R = 0.1), as 
measured (solid diamonds) and as predicted (lines), for an SCS-6/IMI834 titanium 
matrix composite for different friction coefficients. Predictions use as-fabricated 
fiber strength (σ0 = 4,580 MPa, L0 = 25 mm, and m = 17) and fatigued/cycled fiber 
strengths (σ0 = 2,300 MPa, L0 = 25 mm, and m = 7.2) (reprinted with permission 

2.5 Conclusions 

An approach to the hierarchical modeling of composite failure has been 
presented. The proposed multiscale modeling involves the passing of key 
information from smaller to larger scales. The approach employs the FEM 
at the smallest scale to obtain detailed information on stress transfer from 
broken fibers to unbroken fibers as a function of elastic constants, fiber 
volume fraction, fiber/matrix interface conditions, and matrix deformation. 
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from [34]) 



  

This detailed information is condensed into average axial SCFs on fibers 
around a break, which is then used as the Green’s function in a larger-scale 
model of stochastic fiber damage evolution. In some materials, a SLM can 
replace the FEM/Green’s function combination. Simulations of composite 
failure on small systems using the shear-lag or Green’s function model are 
then performed. In the some cases, the simulated sizes can be comparable 
to actual test specimens so that direct comparison between model and experi-
ment can be made; in general, this is not the case. Extensive simulations of 
tensile failure on small sample sizes are then used together with analytic 
size-scaling concepts to generate predictions for the strength vs. size and 
probability of failure of much larger (component size) specimens. Such 
large sizes could never be simulated directly, even using the highly effi-
cient Green’s function model. 

Important features of the failure and deformation at each scale govern 
the ultimate macroscopic behavior. The interface friction coefficient and 
matrix-yielding behavior determine the load transfer. The shear-lag and 
Green’s function simulations demonstrate how much damage must evolve, 
given the underlying load transfer, to drive tensile failure. The simulations 
then also provide statistical data on the size scaling. Each level of analysis 
is required for an accurate overall predictive methodology. 

The proposed multiscale modeling approach has been used to predict 
the tensile strength of large-scale PMCs and MMCs. For PMCs, the pre-
dictions are in good agreement with the experimental results. In application 
of the method to MMCs, the success is mixed. The strength predictions for 
alumina fiber/Al matrix composites are comparable to the experimental 
values but not as accurate as SiC fiber/Ti matrix composites. The size scal-
ing for alumina fiber/Al matrix composites is not accurately captured, with 
the experimental strengths decreasing faster than the predicted strengths. The 
absolute magnitude of the composite strength could be simply due to fiber 
degradation during processing, as noted above. 

The present model does not consider several potential damage mecha-
nisms that can occur in real as-fabricated coupons and components. Pre-
existing fiber breaks, which can occur during processing, have not been 
included. Given appropriate information on the break density, however, 
initial breaks can easily be incorporated into the current models. Spatial 
irregularity of the fibers has not been included, although work by Foster 
[10] shows that some spatial disorder has almost no effect on the distribution 
of strength in a composite. The possibility of touching fibers, wherein one 
fiber failure immediately precipitates the second fiber failure, may be detri-
mental to composite strength as well and has not been addressed here. 
Algorithms for introducing such correlated fiber breaking are easy to 
generate and incorporate into the shear-lag and Green’s function model. 
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Time- and cycle-dependent deformation and failure are both important 
applications issues for fiber composites. Fatigue loading induces matrix 
fatigue cracks, which increase the stresses on the fibers and drives damage 
at loads well below the quasistatic tensile strength. The multiscale modeling 
method has been extended to low-cycle fatigue life predictions. A finite 
element model is coupled with a Green’s function model to simulate the 
major damage mechanisms occurring under fatigue loading of TMC and 
have predicted the low-cycle fatigue life (S–N curve). A finite element 
model containing a matrix crack bridged by SiC fibers is used to calculate 
both the matrix crack tip stress intensity factor and the local fiber stress 
concentrations due to the matrix crack as a function of the crack size. The 
effective crack tip stress intensity factor, including the effect of the matrix 
plasticity, is then used to calculate the growth rate of the bridged matrix 
crack. A 3D Green’s function method then uses three outputs from the FE 
model (1) the fiber stress states due to the matrix crack, (2) the average 
stress transfer from a broken fiber to unbroken fibers, and (3) the surface 
fiber stress concentrations, to simulate the fiber damage process and com-
posite strength at any fixed fatigue crack size. The composite strength for a 
given fatigue crack size together with the number of cycles required to 
grow the fatigue crack to the given size at an applied stress equal to this 
composite strength then determines the fatigue life. Detailed application of 
this approach to the SCS-6/IMI834 shows very good agreement with no 
adjustable parameters when the appropriate fiber strengths are employed 
(as-processed value at low cycles, fatigued value at high cycles). 

Creep deformation also influences local stress states, and the present 
multiscale approach may be useful as a means of transferring details of 
time-dependent deformation at small scales into larger-scale models of 
fiber damage evolution in a computationally efficient manner. Direct 
degradation of the reinforcing fibers, via fatigue crack growth or slow 
crack growth, can also occur. The present models can incorporate such 
degradation directly at the Green’s function level by introducing time- or 
cycle-dependent fiber strengths. In some cases, the stresses acting on grow-
ing flaws in the fibers can, however, greatly exceed the average axial fiber 
stresses used in the Green’s function models. Thus, additional multiscale 
models must be used to characterize fiber strength degradation at the fiber 
scale due to underlying flaw growth mechanics at much smaller scales. 

The present modeling and methodology set the stage for the inclusion 
of other damage mechanisms that may be relevant to as-processed materials 
or in-service application. Within the framework of the model, one could 
study: the effects of processing damage on damage evaluation, fatigue 
growth and failure, and the quasistatic and creep failure of materials with 
small notches. Furthermore, the current models apply not only to metallic 
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and polymeric matrix composites, but also to ceramic matrix composites. 
Future work remains to attack some of these key problems and applica-
tions to other materials systems. 
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