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5.1 Introduction

By formulating a continuum homogenization problem that includes inertia
effects, a link is established between continuum homogenization and the
estimation of effective mechanical properties for particle ensembles whose
interactions are governed by potentials (e.g., as is seen in molecular dynam-
ics). The focus of this chapter is on showing that there is a fundamental
consistency of ideas between continuum mechanics and the study of discrete
particle systems, and that it is possible to define a notion of effective stress
applicable to discrete systems that can be claimed to have the same meaning
as it has in continuum mechanics.

5.2 Motivation, Objectives, and Organization

The last 15 years have seen an astonishing growth in nanomechanics-related
research. During this time, experimental and theoretical mechanicians alike
have had to adapt to a fast-evolving research landscape. Like many others,
the authors of this chapter found themselves delving into specialized fields
of study such as molecular dynamics (MD) and struggling to learn new lan-
guages and methodologies that were outside what they trained on during
their graduate work. With this in mind, this chapter is in part the result of



the authors’ learning experience in how to use MD to compute mechanical
properties of solids. In going through this learning process, the authors had
to confront the fundamental issue of what it means to compute the stress re-

continuum mechanical notion of stress.
since it dates back to the pioneering work by Cauchy who formalized the
very notion of stress. However, we feel that we have added something new
to the discussion in that we have approached the problem from the view-
point of continuum homogenization and, in so doing, not only were we able
to extend the continuum homogenization notion of effective stress to MD,
but we were also able to construct a practical Lagrangian MD scheme that is
rigorously based on classical mechanics.

From a conceptual viewpoint, the outcome of this work is that a good
part of the MD that is used in nanomechanics can be comfortably under-
stood with classical mechanics and homogenization ideas. In other words,
it is possible to define an acceptable concept of stress for discrete systems
without ever relying on ideas from statistical mechanics or a kinetic theory
of matter. While this fact may be well understood by some researchers, we
feel that it is not sufficiently known among classically trained engineers, and
we hope that this chapter may reinforce the idea that there is a fundamental
unity between the study of continuum and discrete systems.

The organization of this chapter is based on the idea that classical ho-
mogenization of heterogeneous systems is intimately related to MD, since
both disciplines deal with the computation of effective properties of matter.
Hence, we will start by reviewing some basic concepts of homogenization
of linear elastic media. We will then discuss the extension of these concepts
to the case of homogenization in the context of large deformation. Once this
review is done, we will formulate a continuum homogenization problem that
shares the basic properties of MD problems. We will show that the homog-
enization scheme in question can be turned into an MD scheme in which
stress is defined such that it can be said to have the same meaning that it
has in continuum homogenization. Finally, we will compare the continuum
homogenization-based stress concept with the virial stress, the latter being
the stress concept typically used in MD.

Before proceeding further, we wish to mention that some elements of
this chapter have been presented in [1, 2, 8, 9]. The main contribution of this
chapter lies in a presentation that is intended to give a coherent vision of how
continuum homogenization and MD are related. With this said, this chap-
ter does contain some new results consisting of more general proofs, with

sponse of a particle system and how this measure of stress is related to the
Clearly, this question is not new,
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respect to what had been previously published, on the equivalence between
a continuum-based notion of effective stress and virial stress.

5.3 Notation

The material system under consideration will be denoted by Ω in its de-
formed configuration and will be denoted by Ωκ in its reference configura-
tion. Both Ω and Ωκ are assumed to be regular subsets of a three-dimensional
Euclidean point space. The boundaries of Ω and Ωκ will be denoted by ∂Ω
and ∂Ωκ, respectively. The volumes of Ω and Ωκ will be denoted by Vol(Ω)
and Vol(Ωκ), respectively. The boundaries ∂Ω and ∂Ωκ are oriented by the
outward unit normal vector fields n and nκ, respectively. The position of
points in the reference configuration will be denoted by χ and in the de-
formed configuration by x.

The operators “Div” and “div” indicate the divergence operators with
respect to χ and x, respectively. Similarly, the operators “Grad” and “grad”
indicate the gradient operators with respect to χ and x, respectively.

We will use upper-case sans serif letters, such as A, to denote second-
order tensors and lower-case bold italic letters, such as a, to denote vectors.
The notation a ⊗ b denotes the tensor product of the vectors a and b. The
symbol , will indicate a definition.

5.4 Homogenization of Linear Elastic
Heterogeneous Media: A Brief Review

To better illustrate how MD and continuum homogenization are related, it
is useful to review some basic concepts from the theory of homogenization
of linear elastic heterogeneous media. We will therefore review the essential
objectives of homogenization theory and some basic definitions concerning
effective mechanical properties. In subsequent sections, we will discuss how
these definitions need to be adjusted to be useful in a fully nonlinear context
in preparation for their application to discrete particle systems.

5.4.1 Homogenization Objectives

Referring to Fig. 5.1, consider a structural component made of a hetero-
geneous material with overall dimensions that are much larger than the
characteristic length over which the material’s constitutive properties vary.
Conceptually, under the assumption that the material is linear elastic, in
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Fig. 5.1. A panel consisting of a heterogeneous material

quasistatic conditions, and in the absence of body forces, the prediction of
the component’s stress/strain response requires the solution of a boundary
value problem (BVP) of the following type

BVPexact : Div(C(χ)[ε(χ)]) = 0 along with BCs, (5.1)

where χ denotes position, C(χ) is the (fourth-order) tensor of elastic mod-
uli, ε(χ) is the small strain tensor field, and the expression “BCs” stands
for “boundary conditions.” For convenience, we denote by σ(χ) the stress
field corresponding to ε(χ), i.e., σ(χ) = C(χ)[ε(χ)]. Clearly, the struc-
tural component’s stress/strain response to some applied loading will reflect
the spatial variability of the elastic moduli, as schematically represented by
the solid line in Fig. 5.1. Unfortunately, from a computational viewpoint,
the spatial variability in question may make the solution of the problem in
(5.1) difficult, if not impossible, to obtain. With this in mind, a practical way
to approach the design of highly heterogeneous components is to construct
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a predictive capability that allows one to (1) model the material as homoge-
neous so as to more easily determine the system’s “average” response (see
the dashed line in Fig. 5.1) and (2) estimate the deviations from the “aver-
age” behavior since this information is essential in assessing failure condi-
tions. The purpose of homogenization is to have both types of predictive
capability, though we will only explore the first type here. Before doing so,
it is important to recognize that, at this stage, we do not know whether or not
what we have called the “average” response will in fact be an average in a
strict mathematical sense. Hence, we will refer to the “average” strain and
stress response as the effective strain and stress response and we will denote
these quantities as εeff and σeff, respectively.

As suggested above, a fundamental objective of continuum homogeniza-
tion is to use the knowledge of the material’s microstructure to formulate a
BVP whose solution is the system’s effective response, i.e., homogenization
theory delivers the possibility of predicting the effective system’s response
by solving the following BVP

BVPeff : Div(Ceff[εeff(χ)]) = 0 along with BCs, (5.2)

where it is essential to notice that, in the new BVP, the moduli Ceff, which are
called the material’s effective moduli, are not a function of position. There-
fore, one way to interpret (5.2) is to say that homogenization theory takes
information concerning the original heterogeneous material and maps it into
the properties of an equivalent homogenous material. Finally, we will refer
to the field Ceff[εeff(χ)] as the effective stress field and we will denote it by
σeff(χ), i.e.,

σeff = Ceff[εeff(χ)]. (5.3)

So far, we have only sketched a conceptual map of what homogenization
does without considering the important details needed to show that one can
indeed go from the BVP in (5.1) to that in (5.2). Most of these “details” are
outside the scope of this chapter and they can be easily found in the literature.
For example, excellent references on the subject are the presentations in [18,
20, 28, 31]. For discussions that are more technical from a mathematical
viewpoint, one can see the presentations in [3, 4, 15]. While we will stay
away from the technical details of homogenization theory, a few important
remarks are now needed for extending homogenization ideas to MD.

Remark 1 (Representative Volume Element). To solve the BVP in (5.2), one
must first determine the effective moduli Ceff and this can be done via several
methods. Often, especially in engineering applications, the determination of
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the effective moduli is carried out by solving a special BVP defined over
a portion of the material such that both the composition and the geometry
of this portion are able to represent the material as a whole. This subset of
material is called a representative volume element (RVE), which is schemat-
ically shown in Fig. 5.2. In general the determination of the RVE may not be

Fig. 5.2. A representative volume element for the special case of a periodic medium

straightforward, however, for periodic media, the RVE is readily identified
with the periodic cell of the material. Furthermore, in the case of periodic
media, there are rigorous proofs showing that the determination of Ceff by
asymptotic expansion methods (see, e.g., [3, 4]) delivers the same result as
the solution of the RVE BVP so long as the periodicity of the material is
properly accounted for.

Remark 2 (Definition of Effective Quantities). Roughly speaking, in formal
homogenization theory, εeff(χ) and σeff(χ) are defined as the leading terms
of an asymptotic expansion of the fields ε(χ) and σ(χ) with respect to a
scaling parameter, say λ, defined as the ratio between the length over which
the moduli vary and the overall (large) dimension of the component (for
example, referring to Fig. 5.1, one can set λ = h/L). With this in mind,
and referring to Fig. 5.2, one can show that, when using the RVE as a way to
determine the effective moduli, these definitions can be given the following
form

εeff =
1

2 Vol(Ωκ)

∫
∂Ωκ

(u⊗ nκ + nκ ⊗ u)dA, (5.4)

σeff =
1

Vol(Ωκ)

∫
∂Ωκ

(σnκ ⊗ χ)dA, (5.5)

where u denotes the displacement field. The essential feature of these defi-
nitions is that εeff(χ) and σeff(χ) are determined by gathering information
on the boundary of the RVE rather than its interior. If the RVE is a simply
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connected regular domain, a straightforward application of the divergence
theorem tells us that

εeff =
1

Vol(Ωκ)

∫
Ωκ

εdV and σeff =
1

Vol(Ωκ)

∫
Ωκ

σ dV, (5.6)

where the second of (5.6) requires that the pointwise1 balance law is
Div(C(χ)[ε(χ)]) = 0. Equation (5.6) implies that there are cases in which
the word “effective” does mean “volume average,” but, in general, effective
strain and stress must be understood as given in (5.4) and (5.5) to be use-
ful mathematical constructs. In addition, there is a strong physically based
reason for defining effective quantities via boundary integrals, as eloquently
remarked by Hill ([13]; see also [18, 27, 28]):

Experimental determinations of mechanical behaviour rest
ultimately on measured loads or mean displacements over pairs
of opposite faces of a representative cube. Macro-variables in-
tended for constitutive laws should thus be capable of definition
in terms of surface data alone, either directly or indirectly. It
is not necessary, by any means, that macro-variables so defined
should be unweighed volume averages of their microscopic
counterparts.

Remark 3 (Basic Properties of εeff and σeff). In a small strain theory, one
expects the strain and stress measures to be symmetric tensors. Referring to
(5.4), it is easy to see that the effective strain is, by definition, a symmetric
tensor. Furthermore, one can easily show that under most conditions σeff is
symmetric. What needs to be observed here is that, at least at first glance,
no special steps are needed to make sure that the above-defined effective
quantities have the properties that one usually expects of the corresponding
pointwise quantities. As we will see, this is certainly not the case when
dealing with the definitions of the effective stress and deformation concepts
in nonlinear homogenization.

5.4.2 Boundary Conditions for the RVE Problem

When relying on an RVE for the determination of the effective moduli, one
must pose and solve a BVP over the RVE in question. This BVP is usually

1The “point” in pointwise refers to a continuum material point, by which we mean a
point in a regular subset of R3. This is not to be confused with a material particle, by which
we mean an abstract physical entity endowed with a given fixed mass.
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called a localization problem and its governing partial differential equations
are those in (5.1). As far as the BCs are concerned, these need to be carefully
stated to match the particular nature of the problem. In fact, in a localization
problem one is not interested in computing the solution’s pointwise behavior.
Rather, one needs to control the solution’s effective behavior in such a way
that the effective moduli can be calculated. With this in mind, it turns out
that it is indeed possible to control the value of the effective strain or stress
by specifying some specific sets of BCs. These BCs are as follows:

1. Uniform strain: u = ε̂χ on ∂Ωκ, with ε̂ a given symmetric second-
order tensor.

2. Uniform stress: σnκ = σ̂nκ on ∂Ωκ, with σ̂ a given symmetric
second-order tensor.

3. Periodic: If the RVE is a periodic cell, then the displacement field is
decomposed such that u = ε̂χ + u∗ everywhere in the RVE, with ε̂ a
given symmetric second-order tensor and with u∗ being an unknown
vector field whose boundary values are constrained to be periodic, i.e.,
u∗ is constrained to take on identical values on homologous points of
the boundary. Furthermore, in addition to constraining the boundary
values of the field u∗, one must also constrain the behavior of the field
σnκ to be antiperiodic.

If one chooses BCs of type 1 or 3, it is relatively straightforward to prove
(see, e.g., [18, 28]) that the controlled parameter ε̂ determines the value of
the effective strain, i.e., εeff = ε̂. If one chooses condition 2, then it is not
difficult to show that the controlled parameter σ̂ determines the value of the
effective stress, i.e., σeff = σ̂.

From a conceptual viewpoint, the determination of the elastic moduli in
RVE-based linear homogenization is carried out by the following procedure.
Choosing uniform strain BCs for the sake of discussion, one can set ε̂11 = 1
and all other components of ε̂ equal to zero. Then, one solves the RVE BVP
and thus determines the σ component of the solution. Next, one uses the
σ field in question, along with (5.5), to determine σeff. Finally, due to the
linearity of problem and referring to (5.3), the σeff just computed coincides
with the “ij11” components of Ceff (ij = 1, 2, 3). This process is then re-
peated by selecting setting all components of ε̂ equal to zero, except say ε̂pq,
which is set to unity so that the “ijpq” components of the elastic moduli can
be found.
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5.5 The RVE Problem and Large Deformations

In this section, we discuss the concepts of effective strain and stress in a con-
text of large deformations. This discussion is again meant to properly setup
a stage for the extension of continuum homogenization ideas to MD prob-
lems. Choosing to work in a large deformation context is motivated by the
fact that we want the discussion to be as general as possible.2 Before pro-
ceeding to the presentation of effective measures of deformation and stress,
it is important to remark that the field of nonlinear homogenization is not as
well developed as the corresponding linear theory. In particular, there are
fewer theoretical results linking an asymptotic approach to homogenization
to the RVE-based averaging procedures. With this in mind, as has been done
by other authors (see, e.g., [12–14,25]), we will simply assume that the RVE
problem is a valid way to compute effective properties. This assumption
allows us to focus our attention on the RVE approach to homogenization,
as opposed to considering the (more technically difficult) formal asymptotic
approach.

5.5.1 Definition of Effective Deformation and Stress

In general, in a context of large deformation, one must take into consider-
ation two measures of stress, namely the Cauchy stress and the first Piola–
Kirchhoff stress, depending on whether one chooses the deformed or
reference configurations, respectively, to write the system’s equation of
motion. The two notions of stress are related by the well-known relation
(see, e.g., [11])

S = det(F)T(F−1)T, (5.7)

where S denotes the first Piola–Kirchhoff stress tensor, F denotes the defor-
mation gradient, T denotes the Cauchy stress tensor, and the superscript T
denotes transposition. The relationship in (5.7) reminds us that, when we
define effective deformation and stress in a context of large deformation,
we need to (1) provide definitions that are based both on the reference and
the deformed configurations and (2) discuss how these definitions relate to
one another. With this in mind, we introduce two independent measures of
effective deformation: the effective deformation gradient tensor, denoted by

2In choosing to work in a regime of large deformations, we assume that the kinematics at
both the micro- and macroscales is fully nonlinear. Correspondingly, we do not assume that
any aspect of the constitutive theory is linear.
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Fig. 5.3. The RVE in its reference (left) and deformed (right) configurations

JFK, and the effective inverse deformation tensor, denoted by
q
F−1

y
. These

quantities are defined as follows

JFK ,
1

Vol(Ωκ)

∫
∂Ωκ

x⊗nκ dA, JF−1K ,
1

Vol(Ω)

∫
∂Ω

χ⊗n da, (5.8)

where the RVE is subject to a motion x = x(χ, t), and the symbols are
defined in Fig. 5.3. As far as stress is concerned, we will define the effec-
tive first Piola–Kirchhoff stress tensor and the effective Cauchy stress tensor,
denoted by JSK and JTK, respectively, as follows:

JSK ,
1

Vol(Ωκ)

∫
∂Ωκ

(Snκ)⊗ χ dA, JTK ,
1

Vol(Ω)

∫
∂Ω

(Tn)⊗ x da.

(5.9)
To the best of the authors’ knowledge, the definitions of effective deforma-
tion and effective stress in a regime of large deformation were first systemati-
cally discussed in [13] (see also [14]). Important contributions to this subject
also include the works in [12, 26]. More recent discussions have been given
in [16, 25]. It should be pointed out that Hill [13, 14] does not include in his
discussions the definition of JF−1K. However, we feel that the definition of
JF−1K is important because it has a bearing on the type of phenomena that
we will choose as being physically meaningful when extending the above
notions of effective deformation and stress to discrete systems.

Going back to (5.8) and (5.9), it is important to notice that we have once
more defined effective quantities via boundary integrals rather than via vol-
ume averages. However, as was done in Sect. 5.4, under standard regularity
and smoothness assumptions, a straightforward application of the divergence
theorem yields (cf. [13])

JFK =
1

Vol(Ωκ)

∫
Ωκ

F dV and
q
F−1

y
=

1
Vol(Ω)

∫
Ω

F−1 dv. (5.10)
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Furthermore, if to these assumptions one adds that the underlying deforma-
tion process is governed by div T = 0 (or Div S = 0), i.e., governed by
a quasistatic form of the local balance of linear momentum without body
forces, an application of the divergence theorem allows one to show that

JSK =
1

Vol(Ωκ)

∫
Ωκ

SdV and JTK =
1

Vol(Ω)

∫
Ω

Tdv. (5.11)

Before proceeding further, we should keep in mind that one of the objec-
tives of this chapter is to extend continuum homogenization notions of effec-
tive stress and strain to the discrete systems analyzed via MD. Although often
disregarded in continuum homogenization of elastic systems, time evolution
and time averaging are central to MD calculations. Hence, we introduce here
a time averaging operation that will be employed later in the chapter. This
operation will be denoted by the use of angle brackets and defined as follows

〈f〉 , lim
τ→∞

1
τ

∫ t0+τ

t0

f(t)dt, (5.12)

where t denotes time, f(t) is a generic function of time, and t0 is the initial
time. Without loss of generality, we will assume that t0 = 0. Adopting
concepts from statistical mechanics, we will view the time average operation
defined in (5.12) as a way of translating the effects of fast dynamics into
corresponding thermal effects.

5.5.2 Meaningful Deformation Processes

Now that we have introduced the definition of effective deformation and
stress in a regime of large deformation, we need to address the problem of
clearly identifying those RVE motions for which the definitions in question
are useful in some sense. Specifically, it should be observed that each of the
definitions we have given is independent of the others. Therefore, one cannot
expect that, for example, JF−1K = JFK−1 for all possible RVE motions. By
the same reasoning, in general, we cannot expect that the effective Cauchy
and the first Piola–Kirchhoff stresses are related by a relationship such as
(5.7), i.e., the relation satisfied the corresponding pointwise stress measures.

These observations indicate that there is a need for the establishment
of conditions that guarantee the ability to attach physical meaning to the
definitions given above. In fact, it can be argued that Hill’s macrohomo-
geneity conditions [13, 14], i.e., those conditions under which certain prod-
ucts of effective quantities are equal to the volume average of the product
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of the corresponding local quantities, play the role of defining the set of
physically meaningful averaging processes. Here, since we are interested in
a rigorous extension of the continuum concepts of Cauchy stress and first
Piola–Kirchhoff stress to discrete systems, we propose slightly more strin-
gent requirements (with respect to Hill’s macrohomogeneity conditions). We
therefore introduce the following definition.

Definition 1 (Meaningful Deformation Processes). By a large deformation
process with meaningful space averages, we mean a deformation process
possessing all of the following properties:

1. JFK−1 = JF−1K, with det(JFK) > 0.

2. Vol(Ω) = det(JFK) Vol(Ωκ).

3. JSK = det(JFK)JTK(JFK−1)T.

This definition is motivated by a desire to have effective quantities that
formally behave just like their local counterparts. Now, similarly to Hill’s
approach (cf. [14]), instead of attempting to derive necessary and sufficient
conditions for satisfying Definition 1, we will only provide a list of sufficient
conditions. These conditions are found by demanding that the RVE motions
satisfy specific BCs. As observed in Sect. 5.4, the “right” choice of BCs is
crucial for successfully solving the RVE problem that delivers the effective
elastic moduli. In this section, we see that the right choice of BCs is crucial
for establishing the very meaning of the definitions of effective quantities.
In determining the type of BCs in question, one can start with analyzing
the three “canonical” BCs we have discussed in Sect. 5.4.2. With this in
mind, the first step is to properly redefine these BCs in a regime of large
deformations. We do this next.

In the present context, we define uniform strain BCs as follows

x(χ, t) = F̂(t)χ for χ ∈ ∂Ωκ, (5.13)

where, for all t of interest, F̂(t) is a prescribed second-order tensor with
positive determinant. The definition given here matches the definition given
by Hill [13, 14].3

Uniform stress BCs are now defined as follows

T(x, t)n(x, t) = Σ̂(t)n(x, t) for x ∈ ∂Ω, (5.14)
3Equation (5.13) is presented under the assumption that the origin of the coordinate sys-

tem is at the mass center and that the total linear momentum of the system is zero.
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where, for all t of interest, Σ̂(t) is a prescribed symmetric second-order
tensor. In this case it is important to remark that, contrary to the case of the
uniform strain BCs, the uniform stress BCs stated here do not match those
discussed by Hill [13, 14].

As far as periodic BCs are concerned (for a very careful discussion of
these BCs, see [9]), we redefine them as follows: We say that the motion
x = x(χ, t) and the boundary traction field S(χ, t)nκ(χ) satisfy periodic
BCs if:

1. x(χ, t) can be given the form

x(χ, t) = F̂(t)χ + ũ(χ, t), (5.15)

where, for all t of interest, F̂(t) is a prescribed second-order tensor
with positive determinant and ũ(χ, t) is an Ωκ-periodic displacement
vector field.

2. S(χ, t)nκ(χ) is an Ωκ-antiperiodic.

When adopting periodic BCs, it is important to keep in mind that the fields ũ
and Snκ are unknown. In other words, the periodic BCs do not prescribe the
boundary values of either the motion or the traction field. Rather, they only
pose constraints on the class of functions to which both the displacement and
the traction fields can belong.

Now that these definitions have been stated we present an important
result.

Proposition 1. For any regular, bounded, and simply connected RVE, a
smooth deformation process complying with either uniform strain or peri-
odic BC is one such that

JFK = F̂, (5.16)

i.e., one can control the effective deformation gradient tensor via the pre-
scribed F̂. Furthermore, under these BCs, the resulting effective quantities
satisfy the conditions stated in Definition 1.

This proposition combines a number of results whose rigorous proof has
been given in [9]. Unfortunately, it is not possible to prove that the adoption
of the uniform stress BCs allows one to satisfy Definition 1.

The consequence of the above result is that, on the one hand, there are
sets of conditions under which our discussion is indeed meaningful. On the
other hand, the uniform stress BCs, while perfectly acceptable in linear ho-
mogenization, are no longer usable in the present context. Although we have
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not discussed MD up to now, we will see that the loss of the uniform stress
BCs as one of the admissible conditions poses possibly severe constraints on
how one can define stress-controlled continuum homogenization-based MD
schemes.

5.6 Continuum Homogenization and MD

5.6.1 Basic Ideas About MD

To construct a link between continuum homogenization and MD, we first
make some cursory observations about MD. We start with observing that,
from a conceptual viewpoint, in MD calculations one predicts the motion of
a system of N particles using Newton’s second law, i.e., f i = mir̈i, where
f i, mi, and ri are the force acting on, the mass, and the position of the ith
particle in the system, respectively, and where a dot over a quantity denotes
the material time derivative, so that r̈i is the acceleration of particle i (it
is understood that the system’s motion is being observed by an inertial ob-
server). The particle ensemble under consideration is viewed as occupying
a region of space called a cell, which is considered part of an infinite lattice
of identical cells. Therefore, in MD computations, the cell under study is
considered to be subjected to periodic BCs when the particles in the cells
are allowed to interact with the particles in the cells that surround the main
reference cell (see [9] for additional details). The particles in the cells sur-
rounding the main cell are often called image particles. With this in mind,
the force f i acting on particle i is best viewed as follows

f i = f int
i + f ext

i , (5.17)

where f int
i is the force on particle i due to its interaction with the otherN−1

particles in the cell. For this reason, f int
i can be called an internal force,

whereas f ext
i is the force on particle i due to its interaction with the image

particles, and therefore external to the ensemble. As far as the calculation
of f int

i is concerned, the internal force is derived as the gradient of the total
potential energy of the system, this potential energy being the sum of all the
potential energies that describe the bonds among the particles in the system.
From a mathematical viewpoint, this means that given the N particles in the
system and the knowledge of how these particles interact with one another,
one can form a function Ψ = Ψ(r1, r2, . . . , rN ), namely the total potential
energy of the system, such that

f int
i = −∂Ψ(r1, r2, . . . , rN )

∂ri
. (5.18)
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As far as the calculation of f ext
i is concerned, as it turns out, it is carried

out in a way very similar to the calculation for the internal forces, i.e., by
constructing the potential energy resulting from the interaction between a
particle i in the cell and the image particles outside the cell. In view of
how the force on a particle is calculated, and borrowing the language of
the theory of elasticity, one could say that the particle ensemble is typically
taken to be a hyperelastic material, i.e., a material whose internal response is
completely characterized by a stored energy function (see, e.g., [21, p. 206]
or [29, p. 302]).

Another crucial element of MD calculations is the idea, borrowed from
statistical mechanics, that the system’s total kinetic energy can be mapped
via the equipartition theorem (see, e.g., [10]) into a measure of the system’s
temperature.

Almost without exception, the calculation of stress in particle systems
studied via MD is done by computing the system’s virial stress, which is
defined as follows

P ,
1

Vol(Ω)

N∑
i=1

(
∂Ψ
∂ri

⊗ ri −miṙi ⊗ ṙi

)
, (5.19)

where ṙi is the velocity of particle i. In general, the raw measure of stress
provided by P is time averaged and treated as a measure of Cauchy stress
(for a recent and detailed review of the concept of virial stress, see [32]).
Therefore, the measure of effective stress typically done in MD is a time and
volume average of a quantity that is related to the amount of potential and
kinetic energy in the system.

The question to address is now as follows: Can one formulate a con-
tinuum homogenization problem that is formally identical to an MD-based
measure of stress? The answer to this question is in the affirmative and to
see how to use continuum homogenization to mimic MD, we need to make
the following important remark: Traditionally, when applied to the charac-
terization of the elastic response of a material, continuum homogenization
is used to map the properties of a heterogeneous system under quasista-
tic conditions into those of a companion homogeneous system, again under
quasistatic conditions. By contrast, an MD calculation maps the (discrete)
properties of a system subject to the full form of Newton’s second law, i.e.,
including inertial effects, and maps them into the properties of an equiv-
alent thermomechanical system in equilibrium.4 Therefore, going back to

4By contrast, molecular statics determines the properties of a material under static equi-
librium conditions and therefore it is applicable only in the zero temperature limit.
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continuum homogenization, what we need to consider is an RVE, consisting
of a hyperelastic medium (heterogeneous or not), whose evolution is gov-
erned by a fully dynamic equation of motion, i.e.,

Div(S) = ρκv̇, (5.20)

where ρκ is the density distribution in the reference configuration and v is
the material velocity field. Next, the local properties of this RVE must then
be mapped into the properties of an equivalent homogeneous thermoelas-
tic solid under quasistatic conditions. Adopting this conceptual framework
yields a method for bridging continuum homogenization and MD. This will
be shown in detail in the remainder of the chapter.

5.6.2 Effective Cauchy Stress

As we noted earlier, the measure of effective stress in MD is obtained as
a time and volume average. Hence, the first result we intend to illustrate
concerns what happens to the continuum homogenization notion of effective
Cauchy stress under (5.20) when computed as a volume average rather than
through boundary integrals and when averaged over time.

For simplicity, we will assume that the RVE is a regular and simply con-
nected domain. In addition, we will assume that there exist positive constants
α and β such that, for all times t ∈ [0,∞), we have

‖ρv ⊗ x‖ < α and β < Vol(Ω), (5.21)

where ρ is the RVE mass density distribution in the deformed configuration.
Furthermore, we assume that the volume time rate of change is controllable
in the following sense, namely that there exist a positive constant γ and a
constant δ ∈ (0, 1) such that, for all τ ∈ [0,∞), we have∫ ∞

0

∣∣∣∣ d
dt

Vol(Ω)
∣∣∣∣ dt < γτ δ. (5.22)

From a practical viewpoint, the above assumptions require that the RVE mo-
tion be controllable in such a way that the RVE volume neither shrinks to
zero nor grows “too fast” and in such a way that the momentum of the sys-
tem remains bounded. These assumptions are always achievable under uni-
form strain and periodic BCs since, from a purely kinematical viewpoint,
these BCs imply the satisfaction of the relations in Definition 1, which, in
turn, imply the full controllability of the system’s volume by an appropriate
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choice of F̂(t). In addition, the assumption concerning the system’s momen-
tum is easily achievable in that the BCs in question do not let the RVE to
accelerate as a whole or to “spin out of control.” With this in mind, we prove
the following result.5

Proposition 2 (Effective Stress as a Volume Average). Under the assump-
tions in (5.21) and (5.22), and for a regular simply connected RVE governed
by (5.20), we have

〈JTK〉 =
〈

1
Vol(Ω)

∫
Ω
(T− ρv ⊗ v)dv

〉
. (5.23)

Before presenting the proof of this result, it is important to discuss its
meaning. Equation (5.23) says that the time average of the effective stress
has a structure that is very similar to that of the time average of the virial
stress. In fact, for a hyperelastic material, T is completely derived from a
potential, as is the first term on the right-hand side of (5.19). Furthermore,
(5.23) displays the term (ρ dv)v⊗ v, which is formally identical to the term
miṙi ⊗ ṙi appearing in (5.19). Clearly, we still have some work to do to
show that indeed 〈JTK〉 is the same as 〈P〉, since we do not have a discrete
equivalent of JTK yet. We will deal with this issue later in this chapter.

Proof of Proposition 2. Starting from the second of (5.9) and using the
divergence theorem, we obtain

Vol(Ω)JTK =
∫

Ω
(T gradx+(div T)⊗x)dv =

∫
Ω
(T+ρv̇⊗x)dv, (5.24)

where we have used the fact that gradx = I along with (5.20).
Next, using the transport theorem (see, e.g., [11]), we can rewrite the last

term in (5.24) as follows:∫
Ω
ρv̇ ⊗ x dv =

d
dt

∫
Ω
ρv ⊗ x dv −

∫
Ω
ρv ⊗ v dv. (5.25)

Substituting the above result into (5.24) and dividing by Vol(Ω), we obtain

JTK =
1

Vol(Ω)

∫
Ω
(T− ρv ⊗ v)dv +

1
Vol(Ω)

d
dt

∫
Ω
(ρv ⊗ x)dv. (5.26)

Next we consider the time integral of the last term in the above expression
over the interval (0, τ)

5A less general version of this result was presented in [9].
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∫ τ

0

{
1

Vol(Ω)
d
dt

∫
Ω
(ρv ⊗ x)dv

}
dt =

[
1

Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]τ

0

+
∫ τ

0

{
1

(Vol(Ω))2

(
d

dtVol(Ω)
) ∫

Ω
(ρv ⊗ x)dv

}
, (5.27)

where use has been made of integration by parts (with respect to t). From
the above relation, we conclude that the norm of the term on the left-hand
side is such that

∥∥∥∥∫ τ

0

{
1

Vol(Ω)
d
dt

∫
Ω
(ρv ⊗ x)dv

}
dt

∥∥∥∥
≤

∥∥∥∥[
1

Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]τ

0

∥∥∥∥
+

∥∥∥∥∫ τ

0

{
1

(Vol(Ω))2

(
d
dt

Vol(Ω)
) ∫

Ω
(ρv ⊗ x)dv

} ∥∥∥∥. (5.28)

In turn, taking advantage of the first of the assumptions in (5.21), for the first
term on the right-hand side of the above expression, we can write

∥∥∥∥[
1

Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]τ

0

∥∥∥∥ =
∥∥∥∥[

1
Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]
t=τ

−
[

1
Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]
t=0

∥∥∥∥
≤

∥∥∥∥[
1

Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]
t=τ

∥∥∥∥
+

∥∥∥∥[
1

Vol(Ω)

∫
Ω
(ρv ⊗ x)dv

]
t=0

∥∥∥∥
≤

[
1

Vol(Ω)

∫
Ω
‖ρv ⊗ x‖dv

]
t=τ

+
[

1
Vol(Ω)

∫
Ω
‖ρv ⊗ x‖dv

]
t=0

<

[
αVol(Ω)
Vol(Ω)

]
t=τ

+
[
αVol(Ω)
Vol(Ω)

]
t=0

< 2α.
(5.29)

dt
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As far as the second term on the right-hand side of the inequality in (5.28) is
concerned, using the assumptions in (5.21) and (5.22), we have that∥∥∥∥∫ τ

0

{
1

(Vol(Ω))2

(
d
dt

Vol(Ω)
) ∫

Ω
(ρv ⊗ x)dv

} ∥∥∥∥
≤

∫ τ

0

{
1

(Vol(Ω))2

∣∣∣∣ d
dt

Vol(Ω)
∣∣∣∣ ∫

Ω
‖ρv ⊗ x‖ dv

}
dt

<

∫ τ

0

αVol(Ω)
(Vol(Ω))2

∣∣∣∣ d
dt

Vol(Ω)
∣∣∣∣ dt

<
α

β

∫ τ

0

∣∣∣∣ d
dt

Vol(Ω)
∣∣∣∣ dt <

αγ

β
τ δ. (5.30)

Next, substituting the results in (5.29) and (5.30) into (5.28), we have that∥∥∥∥∫ τ

0

{
1

Vol(Ω)
d
dt

∫
Ω
(ρv ⊗ x)dv

}
dt

∥∥∥∥ < 2α+
αγ

β
τ δ. (5.31)

Finally, observing that

lim
τ→∞

1
τ

(
2α+

αγ

β
τ δ

)
= 0, (5.32)

and recalling the definition of the time average operation in (5.12), we con-
clude that we must have〈

1
Vol(Ω)

d
dt

∫
Ω
(ρv ⊗ x)dv

〉
= 0. (5.33)

Finally, taking the time average of (5.26) and taking advantage of the result
in (5.33), we obtain (5.23).

5.6.3 Application of BCs in the “Dynamic” RVE Problem

As discussed earlier in the section, to build a continuum homogenization
problem that can mimic an MD calculation, one needs to adopt a fully dy-
namic form of the pointwise balance of linear momentum law, such as that
in (5.20), which we repeat here for convenience

Div(S) = ρκv̇. (5.34)

In addition to this balance law, the RVE problem needs to be accompanied
by the material’s constitutive equations and by a set of BCs. As far as con-
stitutive equations are concerned, for a hyperelastic material, these are given

dt
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by assigning a strain energy function ψκ(F,χ) so that

S(F,χ) = ρκ
∂ψκ(F,χ)

∂F
. (5.35)

As far as the BCs are concerned, as illustrated in Sect. 5.4.2, these are es-
sential to the determination of the effective elastic properties of the material.
In fact, the BCs allow one to control, say, the effective deformation and, at
the same time, solve the governing equations for the resulting stress field,
which can then be used to compute the effective stress response as a function
of the specified value of the effective deformation. With this in mind, it is
important to be aware of how the parameter controlled by the BCs actually
appears in the problem.

Referring to (5.13), if one chooses uniform strain boundary conditions,
then the control parameter F̂(t) directly determines the location of the RVE
boundary points in the deformed configuration. Hence, it is easy to see how
the RVE “knows” about F̂(t). However, in the case of periodic BCs, it is less
obvious to see how the effective deformation of the RVE is directed to take
on the prescribed value F̂(t). To understand how this happens, one needs
to carefully consider (5.15). The first thing to understand about (5.15) is
that it is not an assumption: It is a convenient decomposition of the motion
of the entire RVE. Specifically, it decomposes the entire RVE motion into
a homogeneous deformation and an unknown displacement field ũ. This
decomposition is always admissible because the controlled parameter F̂(t)
is chosen to be invertible. Next, it must be understood that, under periodic
BCs, the RVE “does not know” about F̂(t) through boundary data, because
the only fields whose boundary behavior is controlled are the unknown field
ũ (constrained to be periodic) and the unknown field Snκ (constrained to be
antiperiodic). We must, therefore, conclude that the effective deformation of
the RVE is controlled via the governing equations. In fact, using the decom-
position in (5.15) to compute the deformation gradient and the velocity of
the RVE motion, we have

F = F̂(I + H̃) and v̇ = ¨̂
F(χ + ũ) + 2 ˙̂

F ˙̃u + F̂¨̃u, (5.36)

where H̃ = Grad ũ. With this in mind, one can then take F and v as given
in (5.36) and combine them with (5.34) and (5.35) to formulate a BVP in
the unknown field ũ. By this substitution, we see that the control parameter
F̂ will contribute to the governing partial differential equations as a forcing
term.
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To facilitate the discussion in Sect. 5.6.4, it is useful to notice that one
could enforce even the uniform strain BCs as was done in the case of periodic
BCs. In fact, no matter what BC set one chooses, given a nonsingular F̂(t),
one can always represent the RVE motion as

x(χ, t) = F̂(t)x∗(χ, t), (5.37)

where x∗ is an unknown vector field. Again, (5.37) is not an assumption,
it is simply a decomposition that defines an unknown vector field x∗. To
determine this field, we first compute the RVE deformation gradient and the
acceleration, which take on the form

F = F̂F∗ and v̇ = ¨̂
Fx∗ + 2 ˙̂

Fẋ∗ + F̂ẍ∗, (5.38)

where F∗ = Gradx∗. Next, the relations in (5.38) along with the consti-
tutive relations in (5.35) are substituted into the momentum balance law to
obtain a set of partial differential equations in the unknown field x∗. Finally,
under uniform strain BCs, the boundary value of x∗ is such that x∗ = χ,
whereas in the case of periodic BCs, the boundary value of x∗ is such that
x∗ = χ + u∗, the field u∗ being periodic. Clearly, in the case of periodic
BCs, one still needs to also make sure that the field Snκ is antiperiodic.

5.6.4 A Lagrangian Continuum Homogenization Scheme

Now we can deal directly with the question concerning how the continuum
homogenization notion of effective stress can be extended to discrete sys-
tems. The answer we provide lies in a reformulation of the RVE problem
illustrated in Sect. 5.6.3 using the Lagrangian mechanics. Before delving
into the details of this reformulation, it is essential to realize that the refor-
mulation in question is not useful from the viewpoint of continuum homo-
genization because the latter requires the solution of a BVP, i.e., a set of
partial differential equations and boundary conditions. The usefulness of the
reformulation lies in the fact that it can be easily applied to discrete systems
because, at least formally, the Lagrangian formulation we are about to illus-
trate does not require the evaluation of boundary information. Therefore,
the proposed Lagrangian scheme can be applied to discrete systems without
worrying about defining the boundary of such systems.

As observed in Sect. 5.6.3, we mimic what happens in MD by model-
ing the material as hyperelastic and subject to a fully dynamic version of
the momentum balance law. Under these conditions, one can construct the
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Lagrangian of the RVE, which, under uniform or periodic BCs, takes on the
form (for a careful discussion on the effect of BCs on the Lagrangian of the
RVE, see [1])

L (x,v) = T − U, (5.39)

where T and U denote the RVE’s total kinetic and potential energies, res-
pectively, and, in a continuum mechanics context, are defined in the usual
way, i.e.,

T =
∫

Ωκ

1
2
ρκv · v dV and U =

∫
Ωκ

ρκψκ dV, (5.40)

In a continuum context, using the standard Lagrangian formalism, one can
start from (5.39) and derive the governing equations of the RVE, namely
(5.34) (see [1]). Again, we have no interest in pursuing this because we al-
ready have the governing equations of the RVE. Instead, noticing that the
terms in (5.40) do not require an explicit knowledge of the boundary of the
RVE, the focus of this discussion will be to illustrate how one can compute
the effective stresses JSK and JTK directly from the Lagrangian function L .

The calculation of JSK and JTK from L is done by first making sure that
the parameter controlling the effective deformation of the RVE is explicitly
embedded into the Lagrangian. In turn, this is done by adopting the strategy
discussed at the end of Sect. 5.6.3, i.e., we adopt the decomposition in (5.37)
and we turn the Lagrangian L into a function of the control parameter F̂,
its time rate of change, the unknown motion x∗, and the associated velocity
field ẋ∗

L (x,v) = L
(
F̂,

˙̂
F,x∗, ẋ∗

)
, (5.41)

where, in view of (5.37), v takes on the form v = ˙̂
Fx∗ + F̂ẋ∗. Once the

Lagrangian is given the above form, Andia et al. [1] have rigorously proven
that

JSK =
1

Vol(Ωκ)

[
d
dt

(
∂L

∂
˙̂
F

)
− ∂L

∂F̂

]
. (5.42)

Furthermore, since under uniform or periodic BCs one can rely on the rela-
tions in Definition 1, we have that

JTK =
1

Vol(Ω)

[
d
dt

(
∂L

∂
˙̂
F

)
− ∂L

∂F̂

]
F̂T. (5.43)

The importance of (5.42) and (5.43) lies in the fact that one can measure
the effective stresses of the RVE without having to carry out the bound-
ary integrations by which JSK and JTK are defined. As important, from a

224 F. Costanzo and G.L. Gray



practical viewpoint, this means that one can use (5.42) and (5.43) to define
JSK and JTK for a discrete system of particles as long as one can define the
Lagrangian of the discrete system in question. With this in mind, construct-
ing the Lagrangian of a system of particles interacting via a bond potential
energy is a rather simple operation. In fact, denoting such a Lagrangian
function by LMD, we have that

LMD(r1, . . . , rN , ṙ1, . . . , ṙN ) =
N∑

i=1

1
2
miṙi · ṙi−Ψ(r1, . . . , rN ), (5.44)

where the various quantities in the above equations have been introduced in
Sect. 5.6.1. Next, we explicitly embed the control parameter F̂ into LMD
similarly to what was done in the case of L , i.e., by adopting the following
decomposition of the system’s motion:

ri(t) = F̂(t)r∗i (t), i = 1, . . . , N. (5.45)

The unknown functions r∗i (t) are determined by solving the system’s equa-
tions of motion. In turn, these equations are obtained by substituting (5.45)
into (5.44) and by using the standard Lagrangian formalism, which, as
demonstrated in [1], yields

miF̂r̈∗i + 2mi
˙̂
Fṙ∗i +mi

¨̂
Fr∗i = −F̂−T ∂Ψ

∂r∗i
+ f e

i , i = 1, . . . , N. (5.46)

The result in (5.46) is important in that it shows that the somewhat abstract
continuum homogenization scheme described earlier has been turned into a
practical tool for carrying out MD simulations. In fact, by placing a parti-
cle ensemble in an initial reference volume Ωκ, and by knowing the bond
potentials that allow one to compute Ψ, one can assign any given effective
deformation F̂(t) and compute the resulting motion of the particle system
by integrating the system of ordinary differential equations in (5.46). Once,
this motion has been calculated, the solution can be postprocessed to com-
pute the effective Cauchy and first Piola–Kirchhoff stresses for the discrete
system which are now defined as follows

JSKMD ,
1

Vol(Ωκ)

[
d
dt

(
∂LMD

∂
˙̂
F

)
− ∂LMD

∂F̂

]
, (5.47)

JTKMD ,
1

Vol(Ω)

[
d
dt

(
∂LMD

∂
˙̂
F

)
− ∂LMD

∂F̂

]
F̂T, (5.48)
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where we have used the subscript “MD” to underscore the fact that (5.47)
and (5.48) are the definitions applicable in MD. In addition, it should be
noted that the definition in (5.48) is obtained from that in (5.47) and the
conditions stated in Definition 1. Therefore, in adopting the definitions in
(5.47) and (5.48), it is crucial that the BCs enforced on the discrete system be
compatible with Definition 1, e.g., periodic BCs, which are the BCs almost
universally used in MD.

Carrying out the calculations implied by (5.47) and (5.48) and using
(5.18), (5.45), and (5.46), one can show that JSKMD and JTKMD can be given
the following simple forms (see [1]):

JSKMD =
1

Vol(Ωκ)

N∑
i=1

f ext
i ⊗ r∗i and JTKMD =

1
Vol(Ω)

N∑
i=1

f ext
i ⊗ ri.

(5.49)
From a conceptual viewpoint, we consider the result in (5.47) and (5.48)

to be extremely important in that we can claim that the effective stress mea-
sures we have introduced have exactly the same meaning in both a discrete
context and a continuum context. For this reason, they demonstrate that one
can indeed gain a great deal of understanding of MD methods for computing
mechanical properties by relying just on classical mechanics concepts.

5.6.5 Virial Stress/Effective Cauchy Stress Equivalence

Now that we have obtained a continuum homogenization-based notion of
effective Cauchy stress applicable to discrete systems, we are in a position
to offer a meaningful comparison between such a notion and that of virial
stress. This comparison will be expressed via the following.

Proposition 3 (Virial–Cauchy Stress Equivalence). If there exist positive
constants α and β such that, for all times t ∈ [0,∞) and all i = 1, . . . , N ,

‖miṙi ⊗ ri‖ < α and β < Vol(Ω), (5.50)

and assuming that the volume time rate of change is controllable in the sense
that there exist a positive constant γ and a constant δ ∈ (0, 1) such that, for
all τ ∈ [0,∞), ∫ ∞

0

∣∣∣∣ d
dt

Vol(Ω)
∣∣∣∣ dt < γτ δ, (5.51)

then
〈JTKMD〉 = 〈P〉. (5.52)
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Proof of Proposition 3. We consider a reference cell consisting of an ensem-
ble of N particles subject to periodic BCs. Next, using (5.17), we can write

f ext
i = f i − f int

i , (5.53)

f i being the total force acting on particle i and f int
i being the force acting on

particle i due to interactions with the other particles internal to the reference
cell. Next, we recall that the total force f i = mir̈i due to Newton’s second
law, so that, using (5.18), (5.53) can be rewritten as

f ext
i = mir̈i +

∂Ψ
∂ri

. (5.54)

Substituting (5.54) into the second of (5.49), we have

JTKMD =
1

Vol(Ω)

N∑
i=1

(
mir̈i +

∂Ψ
∂ri

)
⊗ ri. (5.55)

Now, observe that the term r̈i ⊗ ri can be written as

r̈i ⊗ ri =
d
dt

(ṙi ⊗ ri)− ṙi ⊗ ṙi, (5.56)

so that (5.55) can be written as

JTKMD =
1

Vol(Ω)

N∑
i=1

(
∂Ψ
∂ri

⊗ ri −miṙi ⊗ ṙi

)

+
1

Vol(Ω)

N∑
i=1

mi
d
dt

(ṙi ⊗ ri). (5.57)

Next, recalling that the mass of each particle is a constant and substituting
(5.19) into (5.57), we can give JTKMD the following form:

JTKMD = P +
1

Vol(Ω)
d
dt

N∑
i=1

(miṙi ⊗ ri). (5.58)

Finally, observing that (5.50) and (5.51) are a restatement of (5.21) and
(5.22), using the same strategy that we have used to derive (5.33), provided
of course that the due adjustments are made to account for the fact that here
we are in a discrete context, we have that〈

1
Vol(Ω)

d
dt

N∑
i=1

(miṙi ⊗ ri)

〉
= 0, (5.59)

which implies that the time average of (5.58) yields (5.52).
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5.6.6 Remarks on the Difference Between JTKMD and P

In the preceding sections, we have shown that the effective Cauchy stress
developed by exclusively relying on continuum homogenization ideas does
lead to a useful definition of effective stress for particle systems. In addition,
we have shown that, when taken as a time average, the effective Cauchy
stress is identical to the stress measure based on the virial stress, provided
that the evolution of the RVE is bounded as indicated in Proposition 3. With
this in mind, referring to (5.58), we see that, at every instant in time, the
difference between the JTKMD and P is given by the volume average of the
time rate of change of the tensor

H =
N∑

i=1

(miṙi ⊗ ri). (5.60)

The tensor H can be interpreted as the generalized moment of momentum (or
angular momentum) of the system. In fact, taking advantage of the one-to-
one mapping that exists between second-order skew-symmetric tensors and
vectors (see, e.g., [11]), it is not difficult to show that the components of
skw(H), the skew-symmetric part of H, are the components of the system’s
total angular momentum. Therefore, so long as the overall moment of the
external forces acting on the reference cell (computed with respect to some
fixed point in an inertial frame of reference) is equal to zero, as is normally
the case in MD, then the balance of angular momentum for the reference cell
demands that (d/dt) skw(H) = 0. In turn, this means that the difference
between JTKMD and P is given by the term

1
Vol(Ω)

sym(Ḣ), (5.61)

where sym(H) is the symmetric part of H. As it turns out, the term in (5.61)
does not vanish on a instant by instant basis. This can be seen in Fig. 5.4,
which was obtained by conducting an MD simulation for an ensemble of
500 particles interacting via the Lennard–Jones potential and at constant vol-
ume (details about this simulation are reported in [2]). Keeping in mind that
JTKMD and P are indeed different notions of stress (for additional comments
concerning this discussion, see [32]), thanks to Proposition 3, we know that
the time average of their difference vanishes when averaging over long time
periods. However, Andia et al. [2] have reported some surprising numerical
results in which the time average of (JTKMD − P) becomes negligible even
over relatively small timescales. However, a question that remains open to
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Fig. 5.4. Plot of the 11 components JTKMD and P in nondimensional form obtained
in a microcanonical ensemble simulation of a three-dimensional Lennard–Jones ma-
terial. The horizontal axis shows the number of (identical) time integration steps
during the MD simulation

investigation is whether or not there exists an intrinsic timescale over which
the time average of (JTKMD − P) can be said to be negligible in some physi-
cally based way.

5.6.7 Is There a Continuum-Level Virial Stress?

From a conceptual viewpoint, this chapter is focused on how the concepts
from a continuum context can be used to define equivalent concepts in a dis-
crete context. What we have not dealt with are questions such as how to
derive a continuum-level concept corresponding to the virial stress or, at a
more fundamental level, how do we theoretically establish rigorous contin-
uum limits of the mechanical response of a discrete system. This second
question has been studied by many researchers (see, for example, [6,17,19];
new rigorous results have been presented in [5]) and is outside the scope of
the present chapter. However, the first question can be answered within the
framework presented here. In fact, carefully comparing the proofs of Propo-
sitions 2 and 3, there is strong indication that indeed one could define the
continuum-level virial stress to be the following second-order tensor

PCL , T− ρv ⊗ v, (5.62)
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where the subscript CL stands for “continuum level.” What is interesting
about this result is that it is not at all original. In fact, although absent from
most (if not all) of the continuum mechanics textbooks published in the last
20 years, in reality the stress tensor PCL is well known in the fluid mechanics
literature and has been discussed, although without being explicitly called
“the virial stress,” by Truesdell and Toupin [30, Article 207] and then re-
called in their presentation of the virial theorem (cf. [7, Article 219]). Trues-
dell and Toupin [30] call the component ρv⊗v of the tensor PCL the “appar-
ent stress due to transfer of momentum” and show that it appears naturally in
a fully Eulerian restatement of the pointwise linear momentum balance law.
Using the tensor PCL, this restatement of the momentum balance law takes
on the form

div PCL + ρb =
∂(ρv)
∂t

, (5.63)

where b is the (external) body force field per unit mass and ∂(ρv)/∂t is often
referred to as the “apparent” rate of change of linear momentum.

5.6.8 Remarks on the Proposed MD Scheme

As mentioned earlier, our continuum homogenization-based extension of
the notion of effective stress to MD relied on a Lagrangian scheme which
can be used in practice.
(1) the derivation is based solely on classical mechanics ideas and (2) it
is completely rigorous (again, within the confines of classical mechanics).

schemes for MD simulations of solid systems, most of which are variants of
the scheme first proposed in [22–24]. Many of these Lagrangian schemes ac-
count for various effects that are not included in the Lagrangian scheme we
have derived. However, these schemes are often based on ad hoc Lagrangian

fers the opportunity for rigorous comparisons with existing methods as has
been done in the case of the original Parrinello–Rahman method in [1].

derived herein is that, in view of (5.46), it is easily implementable as a
“strain-control” MD method, i.e., a method in which F̂ dictates the simu-
lation cell deformation.

MD

  

functions that cannot be reduced to the canonical form T − U dictated by

With this in mind, it is possible to conceive of a stress-control variant

classical mechanics. Therefore, the Lagrangian scheme proposed herein of-

With this in mind, it should be mentioned that there are various Lagrangian

of the method in which the governing equations are those in (5.46) along

This result is remarkable for at least two reasons

with (5.48), where the function JTK

Another observation that can be made concerning the Lagrangian scheme

is a given of the problem and where 
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5.7 Conclusions

tion ideas to determine the stress/deformation response of particle systems
using MD. From a conceptual viewpoint, the main points of the chapter are

in fact, by methods often used by engineers for the study of composite ma-
terials.
of effective stress from continuum homogenization to the context of discrete
particle systems. This extension has been carried out by formulating a prac-
tically implementable MD Lagrangian scheme, which, by being grounded in
classical mechanics, offers a way of better understanding the sort of approxi-
mations that are done in the implementation of MD schemes based on ad hoc
Lagrangian functions.
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