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3.1 Introduction 

The past few decades have seen rapid developments in the science and 
technology of a variety of advanced heterogeneous materials like polymer, 
ceramic, or metal matrix composite, functionally graded materials, and  
porous materials, as well as various alloy systems. Many of these engineered 
materials are designed to possess optimal properties for different functions, 
e.g., low weight, high strength, superior energy absorption and dissipation, 
high impact and penetration resistance, superior crashworthiness, better 
structural durability, etc. Tailoring their microstructures and properties to 
yield high structural efficiency has enabled these materials to provide ena-
bling mission capabilities, which has been a key factor in their successful 
deployment in the aerospace, automotive, electronics, defense, and other 
industries. 

Reinforced composites are constituted of stiff and strong fibers, whiskers 
or particulates of, e.g., glass, graphite, boron, or aluminum oxide, which 
are dispersed in primary phase matrix materials made of, e.g., epoxy, steel, 
titanium, or aluminum. Micrographs of a silicon particulate reinforced 
aluminum alloy (DRA) and an epoxy matrix composite (PMC), consisting 
of graphite fibers, are shown in Fig. 3.1. The presence of reinforcing 
phases generally enhances physical and mechanical properties like strength, 
thermal expansion coefficient, and wear resistance of the composite. 



Fig. 3.1. Micrographs of (a) SiC particle-reinforced aluminum matrix composite 
showing particle cracking, (b) graphite-epoxy, fiber-reinforced polymer matrix 
composite, (c) fiber breakage in a polymer matrix composite 
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Processing methods, like powder metallurgy or resin transfer molding, 
often contribute to nonuniformities in microstructural morphology, e.g., in 
reinforcement spatial distribution, size or shape, or in the constituent mate-
rial and interface properties. These nonuniformities can influence the 
degree of property enhancement. However, the presence of the nonuniform 
microstructural heterogeneities can have a strong adverse effect on their 
failure properties like fracture toughness, strain to failure, ductility, and 
fatigue resistance. Damage typically initiates at microstructural “weak 
spots” by inclusion (fiber or particle) fragmentation or decohesion at the 
inclusion-matrix interface. The cracks often bifurcate into the matrix and 
link up with other damage sites and cracks to evolve across larger scales 
and manifest as dominant cracks that cause structural failure. Structural 
failure of composite materials is thus inherently a multiple scale phenome-
non. Microstructural damage mechanisms and structural failure properties 
are sensitive to the local variations in morphology, such as clustering, 
directionality, or connectivity and variations in reinforcement shape or 
size. Figure 3.1a shows particle and matrix cracking in a SiC-reinforced 
DRA microstructure, and Fig. 3.1c is the micrograph of a graphite-epoxy 
PMC showing failure by fiber breakage and matrix rupture. Experimental 
studies, e.g., in [5, 18], have established that particles in regions of cluster-
ing or alignment have a greater propensity toward fracture. 

The need for robust design procedures for reliable and effective compo-
site materials provides a compelling reason for the accelerated development 
of competent modeling methods that can account for the structure–material 
interaction and relate the microstructure to properties and failure character-
istics. The models should accurately represent phenomena at different 
length scales and also optimize the computational efficiency through effec-
tive multiscale domain decomposition. 

3.2 Homogenization and Multiscale Models 

It is prudent to use the notion of multispatial scales in the analysis of com-
posite materials and structures due to the inherent existence of various 
scales. Conventional methods of analysis have used effective properties 
obtained from homogenization of response at microscopic length scales. A 
number of analytical models have evolved within the framework of small 
deformation linear elasticity theory to predict homogenized macroscale 
constitutive response of heterogeneous materials, accounting for the char-
acteristics of microstructural behavior. The underlying principle of these 
models is the Hill–Mandel condition of homogeneity [41], which states 
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that for large differences in microscopic and macroscopic length scales, the 
volume averaged strain energy is obtained as the product of the volume 
averaged stresses and strains in the representative volume element or RVE, 
i.e., 

* * * * * *d .ij ij ij ij ij ijσ ε Ω σ ε σ ε= =∫Ω  (3.1)

Here *

ijσ  and *

ijε  are the general statically admissible stress field and kine-
matically admissible strain field in the microstructure, respectively, and Ω is 
a microstructural volume that is equal to or larger than the RVE. The repre-
sentative volume element or RVE in (3.1) corresponds to a microstructural 
subregion that is representative of the entire microstructure in an average 
sense. For composites, it is assumed to contain a sufficient number of inclu-
sions, which makes the effective moduli independent of assumed homoge-
neous tractions or displacements on the RVE boundary. The Hill–Mandel 
condition introduces the notion of a homogeneous material that is energeti-
cally equivalent to a heterogeneous material. Cogent reviews of various ho-
mogenization models are presented in Mura [9, 52]. Based on the eigenstrain 
formulation, an equivalent inclusion method has been introduced by Eshelby 
[22] for stress and strain distributions in an infinite elastic medium contain-
ing a homogeneous inclusion. Mori–Tanaka estimates, e.g., in [8], consider 
nondilute dispersions where inclusion interaction is assumed to perturb the 
mean stress and strain field. Self-consistent schemes introduced by Hill 
[40] provide an alternative iterative methodology for obtaining mean field 
estimates of thermoelastic properties by placing each heterogeneity in an 
effective medium. Notable among the various estimates and bounds on the 
elastic properties are the variational approach using extremum principles 
by Hashin et al. [39] and Nemat-Nasser et al. [53], the probabilistic approach 
by Chen and Acrivos [14], the self-consistent model by Budiansky [11], 
the generalized self-consistent models by Christensen and Lo [16], etc. 
These predominantly analytical models, however, do not offer adequate 
resolution to capture the fluctuations in microstructural variables that have 
significant effects on properties. Also, arbitrary morphologies, material 
nonlinearities, or large property mismatches in constituent phases cannot 
be adequately treated. 

The use of computational micromechanical methods like the finite  
element method, boundary element method, spring lattice models, etc. has 
become increasingly popular for accurate prediction of stresses, strains, 
and other evolving variables in composite materials [9, 10, 83]. Within the 
framework of computational multispatial scale analyses of heterogeneous 
materials, two classes of methods have emerged, depending on the nature 
of coupling between the scales. The first group, known as “hierarchical 
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models” [17, 23, 30, 31, 37, 43, 63, 77, 78] entails bottom-up coupling in 
which information is passed unidirectionally from lower to higher scales, 
usually in the form of effective material properties. A number of hierarchical 
models have incorporated the asymptotic homogenization theory developed 
by Benssousan [7], Sanchez-Palencia [68], and Lions [47] in conjunction 
with computational micromechanics models. Homogenization implicitly 
assumes uniformity of macroscopic field variables. Uncoupling of govern-
ing equations at different scales is achieved through incorporation of  
periodicity boundary conditions on the microscopic representative volume 
elements or RVEs, implying periodic repetition of a local microstructural 
region. Consequently, the models are used to predict evolution of variables 
at the macroscopic scale using homogenized constitutive relations, as well 
as in the periodic microstructural RVE. The latter analysis can be con-
ducted as a postprocessor to the macroscopic analysis with macroscopic 
strain as the input. Hierarchical multiscale computational analyses of rein-
forced composites have been conducted by, e.g., Fish et al. [23], Kikuchi 
et al. [37], Terada et al. [78], Tamma and Chung [17, 77], and Ghosh et al. 
[30, 31, 43]. Hierarchical models involving homogenization for damage in 
composites have also been developed by Ghosh et al. in [63, 65] from the 
microstructural Voronoi cell FEM model, Lene et al. [21, 44], Fish et al. 
[25], and Allen et al. [2, 3, 20], among others. 

While the “bottom-up” hierarchical models are efficient and can accu-
rately predict macroscopic or averaged behavior, such as stiffness or 
strength, their predictive capabilities are limited with problems involving 
localization, failure, or instability. Macroscopic uniformity of response 
variables, like stresses or strains, is not a suitable assumption in regions of 
high gradients like free edges, interfaces, material discontinuities, or in  
regions of localized deformation and damage. On the other hand, RVE  
periodicity is unrealistic for nonuniform microstructures, e.g., in the presence 
of clustering of heterogeneities or localized microscopic damage. Even 
with a uniform phase distribution in the microstructure, the evolution of 
localized stresses, strains, or damage path can violate periodicity condi-
tions. Such shortcomings for composite material modeling have been dis-
cussed for modeling heterogeneous materials by Pagano and Rybicki [58, 
67], Oden and Zohdi [55, 84], Ghosh et al. [35, 62, 64], Fish et al. [24]. 
The solution of micromechanical problems in the vicinity of stress singu-
larity was suggested in [58, 67] in the context of composite laminates with 
free edges. These problems have been effectively tackled by the second 
class of models known as “concurrent” multiscale modeling methods [24, 
29, 35, 36, 51, 55, 56, 58, 61, 62, 64, 67, 71, 79, 82, 84]. 

Concurrent multiscale models differentiate between regions requiring dif-
ferent resolutions to invoke two-way (bottom-up and top-down) coupling 
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of scales in the computational domain. These models provide effective 
means for analyzing heterogeneous materials and structures involving high 
solution gradients. Substructuring allows for macroscopic analysis using 
homogenized material properties in some parts of the domain while zoom-
ing in at selected regions for detailed micromechanical modeling. Macro-
scopic analysis, using bottom-up homogenization in regions of relatively 
benign deformation, enhances the efficiency of the computational analysis 
due to the reduced order models with limited information on the micro-
structural morphology. The top-down localization process, on the other 
hand, incorporates cascading down to the microstructure in critical regions 
of localized damage or instability. These regions need explicit representa-
tion of the local microstructure, and micromechanical analysis is con-
ducted for accurately predicting localization or damage path. Microscopic 
computations involving complex microstructures are often intensive and 
computationally prohibitive. Selective microstructural analysis in the con-
current setting makes the overall computational analysis feasible, provided 
the “zoom-in” regions are kept to a minimum. 

A variety of alternative methods have been explored for adaptive con-

Voronoi cell FEM model has been conducted by Ghosh et al. [29, 35, 36, 
61, 62, 64] for modeling composites with free edges or with evolving  
damage resulting in dominant cracks. Guided by physical and mathematical 
considerations, the introduction of adaptive multiple scale modeling is a 
desirable feature for optimal selection of regions requiring different resolu-
tions to minimize discretization and modeling errors. Ghosh and coworkers 
have also developed adaptive multilevel analysis using the microstructural 
Voronoi cell FEM model for modeling elastic–plastic composites with par-
ticle cracking and porosities in [35] and for elastic composites with debond-
ing at the fiber–matrix interface in [29, 36]. This chapter is devoted to a 
discussion of adaptive concurrent multiple scale models developed by the 
author for composites with and without damage. 

3.3 Multilevel Computational Model for Concurrent 
Multiscale Analysis of Composites Without Damage 

A framework of an adaptive multilevel model is presented for macroscale 
to microscale analysis of composite materials in the absence of microstruc-
tural damage. The model consists of three levels of hierarchy, as shown in 
Fig. 3.2. These are: 

scale analysis using adaptive multilevel modeling with the microstructural 
current multiscale analysis in [51, 55, 56, 84, 79, 82]. Concurrent multi-
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(1) Level-0 macroscopic computational domain of Fig. 3.2b using material 
properties that are obtained by homogenizing the material response in 
the microstructural RVE of Fig. 3.2a. 

(2) Level-1 computational domain of macroscopic analysis that is fol-
lowed by a postprocessing operation of microscopic RVE analysis. 
This level, shown in Fig. 3.2c, is used to decipher whether RVE-based 
homogenization is justified in this region. 

(3) Level-2 computational domain of pure microscopic analysis, where the 
assumption of the microscopic RVE for homogenization is not valid. 

(4) Intermediate transition layer sandwiched between the macroscopic 
(level-0/level-1) and microscopic (level-2) computational domains. 

 
  
             (a)                               (b)                               (c) 

Fig. 3.2. An adaptive two-way coupled multiscale analysis model: (a) RVE for 
constructing continuum models for level-0 analysis, (b) a level-0 model with adap-
tive zoom-in, (c) zoomed-in level-1, level-2 and transition layers 

Physically motivated error indicators are developed for transitioning from 
macroscopic to microscopic analysis and tested against mathematically 
rigorous error bounds. All microstructural computations of arbitrary het-
erogeneous domains are conducted using the adaptive Voronoi cell finite 
element model [26, 34, 48–50]. 

3.3.1 Hierarchy of Domains for Heterogeneous Materials 
Consider a heterogeneous domain composed of multiple phases of linear 
elastic materials, which occupies an open bounded domain 3

hetΩ ⊂R , 
with a Lipschitz boundary het , .Ω Γ Γ Γ Γ∂ = = ∅∪ ∩u t u t  Γu  and Γt  
corresponds to displacement and traction boundaries, respectively. The 
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body forces 2
het( )L Ω∈f  and surface tractions 2

het( )L Ω∈t  are vector-
valued functions. The multilevel computational model for this domain uses 
problem descriptions for two types of domains. 

Micromechanics problem for the heterogeneous domain hetΩ  

The micromechanics problem for the entire domain includes explicit con-
sideration of multiple phases in hetΩ  with the location dependent elasticity 
tensor ( )E x , which is a bounded function in 9 9×R  that satisfies conven-
tional conditions of ellipticity (positive strain energy for admissible strain 
fields) and symmetry. The displacement field u for the actual problem can 
be obtained as the solution to the conventional statement of principle of 
virtual work, expressed as 

 

Find , | ,Γu
u u = u  

such that 

het het
het: : d d d ( ),

tΩ Ω Γ
Ω Ω Ω∇ ∇ = ⋅ + ⋅ Γ ∀ ∈∫ ∫ ∫v E u f v t v v V  (3.2)

where ( )ΩV  is a space of admissible functions defined as 

( ) { : ( ); | 0}.ΓΩ Ω= ∈ =
u

1V v v H v  (3.3)

For heterogeneous materials with a distribution of different phases, 
such as fibers, particles, or voids, the constituent material properties ( )E x  
may vary considerably with spatial position. Consequently, conventional 
finite element models are likely to incorporate inordinately large meshes 
for accuracy, which results in expensive computations. A regularized ver-
sion of the actual problem, using homogenization methods can be of sig-
nificant value in reducing the computing efforts through reduced order 
models. 

Regularized problem in a homogenized domain homΩ  

A regularized solution Hu  to the actual problem can be obtained by using 
a homogenized linear elasticity tensor ( )HC x  in solving the boundary 
value problem, which is characterized by the principle of the virtual work: 

Find , |H H
Γ =

u
u u u  
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such that 

hom hom
hom: : d d d ( ).H H

Ω Ω Γ
Ω Ω Γ Ω∇ ∇ = ⋅ + ⋅ ∀ ∈∫ ∫ ∫

t
v u f v t v v VC  (3.4)

The homogenized elasticity tensor is assumed to satisfy symmetry and 
ellipticity conditions, and it is required to produce an admissible stress 
field ( : )H H H= ∇uCσ  satisfying the traction boundary condition: H⋅ =n σ  

t
3

over which averaging can be performed. The resulting field variables like 
stresses and strains are also statistically homogeneous in the RVE and may 
be obtained from volumetric averaging as 

1 1( )d , ( )d , | | d .
| | | |

H H

Y Y Y
Y Y Y Y

Y Y
σ σ ε ε= = =∫ ∫ ∫y y  (3.5)

In classical methods of estimating homogenized elastic  moduli ( )HC x , 
the RVE is subjected to prescribed surface displacements or tractions, 
which in turn produce uniform stresses or strains in a homogenous me-
dium. Various micromechanical theories have been proposed to predict the 
overall constitutive response by solving RVE-level boundary value prob-
lems, followed by volumetric averaging [9, 52].  The scale of the RVE 

( )Y x  is typically very small in comparison with the dimension L of the 
structure. The asymptotic homogenization theory, proposed in [7, 47, 68], 
is also effective in multiscale modeling of physical systems that contain 
multiple length scales. This method is based on asymptotic expansion of 
the solution fields, e.g., displacement and stress fields, in the microscopic 

Correspondingly, any variable εf  in the RVE is also assumed to be  
Y-periodic, i.e., ( , ) ( , + )ε ε=f x y f x y kY .  Here εy = x/  corresponds to 
the microscopic coordinates in ( )Y x .  Here, 1ε �  is a small positive num-
ber representing the ratio of microscopic to macroscopic length scales, and 
k  is a 3 × 3 array of integers. Superscript ε  denotes the association with 
both length scales ( , )x y .  In  homogenization theory, the displacement 

as 

meters requires an isolated representative volume element or RVE  Y (x)⊂R , 
t( )x x∀ ∈Γ . Determination of statistically homogeneous material para-

spatial coordinates about their respective macroscopic values. The com-  
posite microstructure in the RVE is assumed to be locally Y-periodic. 

field is asymptotically expanded about x  with respect to the parameter ε  
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0 1 2 2( ) ( , ) ( , ) ( , ) .i i i iu u u uε ε ε= + + +"x x y x y x y  (3.6)

Since the stress tensor is obtained from the spatial derivative of ( )iuε x  as 

0 1 2 2 3( , ) ( , ) ( , ) ( , ) ( , ) ,ij ij ij ij ij
εσ σ σ εσ ε σ

ε
= + + + +

1 "x y x y x y x y x y  (3.7)

where 
0 0 1 1 2

0 1 2, , .k k k k k
ij ijkl ij ijkl ij ijkl

t t t t t

u u u u uC C C
y x y x y

ε ε εσ σ σ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= = + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.8)

By applying periodicity conditions on the RVE boundary, i.e., 
d 0ij jY

n Yσ
∂

∂ =∫ , it is possible to decouple the governing equations into a 
set of microscopic and macroscopic problems, respectively. These are: 
 
Microscopic equations 

ˆ ( )
0 (Equilibrium),

ˆ ( )

kl
ij

j

kl
pkl

ij ijpm kp lm
m

y

C
y

ε

σ

χ
σ δ

∂
=

∂

⎡ ⎤∂
= +⎢ ⎥

∂⎢ ⎥⎣ ⎦

y

y
 

(3.9)

Macroscopic equations 

0

( )
0

1
( ) d

| |

(Equilibrium),ij
i

j

mn
Hk m

ij ijkl km lm ijmn mnY
l n

f
x

u
C Y

Y y x
ε χ

δ δ

∂Σ
+ =

∂

∂ ∂
Σ = +

∂ ∂

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫

x

x x (3.10)

The interscale transfer operators in these relations are defined as 

δ (Constitutive).

= C e ( ) (Constitutive).

The superscripts k and l in (3.9) correspond to the components of the 
macroscopic strain that cause the microscopic stress components ˆ kl

ijσ . The 
subscripts i, j, etc. in this equation on the other hand correspond to micro-
scopic tensor components. 
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0
1

0
1

ˆ ( ) ( ) (Stress–strain),

( ) ( ) (Strain–displacement).

kl k
ij ij

t

kl k
i i

l

u
x

uu
x

σ σ

χ

∂
=

∂

∂
=

∂

y x

y x
 

(3.11)

In (3.9)–(3.11), kl
iχ  is a Y-periodic function representing the character-

istic modes of deformation in the RVE and  
001( ) ( , ) , ( ) ( )

2
ji

ij ij ij ijY Y
j i

uue e
x x

ε εσ
⎧ ⎫∂∂⎪ ⎪∑ = = + =⎨ ⎬

∂ ∂⎪ ⎪⎩ ⎭
x x y x x, y  (3.12) 

are homogenized macroscopic stress and strain tensors, respectively, that are 
obtained by volumetric averaging. The asymptotic homogenization method 
provides good convergence characteristics with respect to certain norms, in 
addition to bounds on effective properties. Solutions of RVE boundary value 
problems with imposed unit macroscopic strains are used in the calculation 
of the anisotropic homogenized elasticity tensor ( )H

ijklC x . The RVE 
boundaries are subjected to periodicity conditions, implying that all bound-
ary nodes separated by the periods Y1, Y2, Y3 along the three orthogonal co-
ordinate directions will follow the displacement constraints: 

1 2 3 1 1 1 2 2 2 3 3 3( , , ) ( , , ), 1,2,3.i iu x x x u x k Y x k Y x k Y i= ± ± ± =  (3.13)

( )H
ijkl x , 

numerical simulations of the RVE boundary value problems yield stresses 
and strains in the microstructural RVE. 

Limitations of the regularized problem in homΩ  

geneous microdomains arise from assumptions of relatively uniform mac-
roscopic fields and periodicity of the RVE. In uncoupling the macroscopic 
problem in homΩ  from the microscopic RVE problem in Y, it is assumed 
that the RVE has infinitesimal dimensions in comparison with the macro-
scopic scale, i.e., 0ε → . While solutions of the problems in homΩ  approach 
those for the actual domain hetΩ  in this limit, considerable differences may 

ε

gradients, free edges, or discontinuities. 

 is finite and the RVE solutions are not perio-result when the scale factor 
dic. The occurrence of such errors is significant in regions of high local 

Limitations in solving the regularized problem for variables in hetero-
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3.3.2 Multiple Levels Coupling Multiple Scales 

In the multilevel methodology developed in Ghosh et al. [35, 62, 64], the 
overall heterogeneous computational domain is adaptively decomposed 
into a set of nonintersecting open subdomains, which may each belong to 
one of hetΩ  (domain for microscopic analysis) homΩ  (regularized domain 
for macroscopic analysis), or to a combination thereof. The resulting com-
putational domain hetΩ  may be expressed as the union of subdomains be-
longing to different levels expressed as 

0 tr1 2
10 11 12 tr 10 10

het
1 1 1 1

11 11 12 12 tr tr

10 11 10 12 11 12

11 tr

, where 0,

0, 0, 0 ,

0, 0,

0 , .

N NN N

k k k k k l
k k k k

k l k l k l

k l k l k l

k l

k l

k l

Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω

= = = =

= ∪ ∪ ∪ ∩ =

∩ = ∩ = ∩ = ∀ ≠

∩ = ∩ =

∩ = ∀

∪ ∪ ∪ ∪
 

 

(3.14)

Here the superscripts l0, l1, and l2 correspond to level-0, level-1, or 
level-2 subdomains in the computational hierarchy; and superscripts tr cor-
respond to the transition region between level-0/1 and level-2 subdomains. 
Computations in different levels require different algorithmic treatments. 
The number of levels may not exactly correspond to the number of scales, 
even though they are connected to individual scales. The constituent sub-
domains, e.g., 10

kΩ  need not be contiguous and may occupy disjoint loca-
tions in hetΩ . However, certain restrictions apply with respect to sharing of 
contiguous subdomain boundaries. If 11 11 12, ,k k kΩ Ω Ω∂ ∂ ∂  and tr

kΩ∂  represent 
boundaries of the corresponding level subdomains, then, 

• 10 11 10 11 , .k l kl k lΩ Ω Ω −∂ ∩ ∂ = ∂ ∀  Also 10 11
klΩ −∂  has the same characteristics 

as 10
kΩ∂  or 11

lΩ∂ , since 10
kΩ∂  and 11

lΩ∂  have compatible displacements. 
• 10 12 0 ,k l k lΩ Ω∂ ∩ ∂ = ∀ , i.e., 10

kΩ∂  and 12
lΩ∂  are not contiguous or 

may not share common edges. 
• 12 tr 2 tr ,l

k l kl k lΩ Ω Ω −∂ ∩ ∂ = ∂ ∀ .  Also 2 trl
klΩ −∂  has the same characteristics 

as 2 ,l
kΩ∂  since 12

kΩ∂  and tr
lΩ∂  have compatible displacements. 

• 10 / 1 tr 0 / 1 tr ,l l l
k l kl k lΩ Ω Ω −∂ ∩ ∂ = ∂ ∀ . Also the interfaces of 10 / 1l

kΩ∂  and 
tr

lΩ∂  are not compatible in general, and hence special constraint 
conditions need to be developed for 0 / 1 trl l

klΩ −∂ . 
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an “optimal” distribution of the computational levels, even for linear 
elastic problems. The three levels of computational hierarchy, in the order 
of sequence of evolution are discussed next. 

Computational subdomain level-0 0lΩ  

11 11 11

22 22 22

12 12 12

1 0 0
0 , 1 , 0 .
0 0 1

e e e
e e e
e e e

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (3.15)

Macroscopic analysis with homogenized properties is performed in the 
level-0 subdomain. Unless the microstructural morphology suggests strong 
nonperiodicity, the computational model can generally start with the as-
sumption that ( )00 0

het 1 hom
Nl l
k kΩ Ω Ω Ω== = ⊂∪ , i.e., all elements belong to 

the level-0 subdomain. This subdomain assumes relatively uniform defor-
mation with “statistically” periodic microstructures, where the regularized 
problem formulation is nearly applicable. Upon establishing a representa-
tive volume element ( )Y x  for the material at a point x, the asymptotic 
expansion-based homogenization method is implemented to yield an  
assumed orthotropic homogenized elasticity tensor ( )H

ijklC x  from (3.10). 
Components of ( )H

ijklC x  for plane problems are calculated from the solu-
tion of three separate boundary value problems of the RVE with periodic 
boundary conditions and imposed unit macroscopic strains given as 

The homogenized elastic stiffness components 1111 2222, ,H HC C  1212 ,HC  
1133 2233 1122, , andH H HC C C  are calculated from the volume averaged 

stresses ijΣ  according to (3.10). In the event that the elastic coefficient 
3333

HC  is needed, a fourth boundary value problem should be solved with 
( ) ( )T T

11, 22, 12, 33 0,0,0,1e e e e = . Since the microstructure and the corresponding 
RVE can change from element to element ( )0

0
l

lE Ω∈  in the computational 
domain, each element 0lE  should be assigned its location specific RVE 

( )Y x . Drastically different moduli in adjacent elements could lead to non-
physical stress concentrations. Smoothing schemes may be needed for 
regularization in these regions for macroscopic analysis. However, switch-
ing levels can enable a smooth transition from one RVE to another through 
the introduction of intermediate level-2 regions. 
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Level-0 mesh enrichment by h- and hp-adaptation 

Computational models in the level-0 subdomains are enhanced adaptively 
by selective h- or hp-mesh refinement strategy based on suitably chosen 
“error” criteria. Local enrichment through successive mesh refinement or 
interpolation function augmentation serves a dual purpose in the multilevel 
computational strategy. The first goal is to identify regions of high 

adap ⊂V V  with the requirement 

Find H H
adap adap, | ,Γ =

u
u u u  satisfying: 

hom hom

H
adap adap

H H
adap

: : d d d

such that preset tolerance.
tΩ Ω Γ

Ω Ω Γ∇ ∇ = ⋅ + ⋅ ∀ ∈

− ≤

∫ ∫ ∫Hv E u f v t v v V

u u
 

(3.16)

The second is to identify regions of high modeling error due to 
limitations of the regularized problem in representing the heterogeneous 
domain and to zoom in on these regions to create higher resolution. These 
regions are generally characterized by large solution gradients and 

elements in homΩ  and the local microstructure hetΩ . 
In [35, 64], the h-adaptation procedure has been used to subdivide 

macroscopic elements into smaller elements in regions of high stress or 
strain gradients, while keeping the order of interpolation fixed. The rate of 
convergence of this method for nonsmooth domains is quite limited, 
especially with solution singularities, e.g., in Szabo and Babuska [74]. As 
a remedy, the hp-version of finite element refinement has been established 
[1]. This method is capable of producing exponentially fast convergence 
in the finite element approximations to the energy norm for solutions of 
linear elliptic boundary value problems on nonsmooth domains, such as 
those with singularities. The rate of convergence of the hp-finite element 
model is estimated by the inequality 

( 1) ,hp m
fe Ch p uµ − −− ≤u u  (3.17)

where h is the mesh size, p is the order of interpolation polynomial, m cor-
responds to the regularity of the solution, C is a constant and 

min( , 1)p mµ = − . The parameter m dictates the distribution and sequence 
of h- and p-refinements in the hp-adaptation scheme. Smaller m leads to 

discretization “error” and improve convergence through mesh enhance- 
ment in a finite element subspace 

is helpful in reducing the length-scale disparity between macroscopic 
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algebraic rates, while large m for smooth solutions yield exponential rate 
of convergence with successive p-refinements. The adaptation scheme  
follows the criteria: Perform p-refinement if 2 ;p m+ ≤  and perform  
h-refinement if 2p m+ > . 

It is necessary to solve a sequence of element level regularized 
boundary value problems in homΩ  to estimate the local regularity parameter 
m.  If ( )p q k+φ  characterizes the error estimator in the FE space ( )p qY k+  for 
the kth element, using polynomials of order p+q (q is the enhancement), 
i.e., 

hom hom

hom

H
fem( , ) : ( d d

d ( ),

k k

k

k p q

k p q

B

Y k
Ω Ω

Ω

Ω Ω

Ω

+

+∂

= − ∇ ∇ + ⋅

+ ⋅ ∂ ∀ ∈

∫ ∫
∫

Hv v E u f v

g v v

φ
 (3.18)
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(3.19)

Here ( )p q k+φ  is interpreted as the finite element approximation to the true 
error fem( ) H Hk = −e u u  in element k, such that the total error is bounded by 
the sum of the element-wise error estimators 22

k k

≤ ∑e φ . The parameter 

m is estimated by solving the local element boundary value problem in 
(3.18) for three successive values of q and solving for , andk k

C m φ  from 
the approximate convergence criterion. 

A numerical example of the regularized problem 

Convergence of the hp-adaptive refinement is explored for a composite 
laminate (Fig. 3.3a) in this example. The top half of the laminate (above 
A-A) consists of 30.7% volume fraction of silicon carbide fibers in an  
epoxy matrix with homogenized orthotropic elasticity matrix (in GPa)  
as 1111 2222 1212 1133= 9.1, = 9.1, 2.3, 3.7,H H H HC C C C= =  2233 4.1HC = , and 

1122 104.2HC = .The bottom half consists of a monolithic matrix material 
with properties Eepoxy = 3.45 GPa, epoxy 0.35.ν =  Due to symmetry in the xz 
and yz planes, only one quarter of the laminate is modeled. Symmetric 
boundary conditions are employed on the surfaces x = 0 and y = 0, and the 
top and right surfaces are assumed to be traction free. 
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The regularized laminate problem is subsequently analyzed using the 
h- and hp-adapted level-0 finite element codes, subjected to constant axial 
strain 1.0zzε =  in the out-of-plane direction. While the analytical trans-
verse stress σ yy  is approximately two orders lower compared to the lead-
ing order stress zzσ , it exhibits a singularity of the form 1

yy sC rλσ +=  near 
the interface-free edge juncture A (x/h = 4). Here r is the distance from the 
singular point at the free edge and sC  is a constant along each radial line 
at a fixed angle θ, depending on material properties. The exponent λ has 
been evaluated to be 0.9629358 in [6] from traction and displacement con-
tinuity at the material interface and traction free conditions on edges. The 
initial mesh consists of 200 QUAD4 elements. Adaptations are performed 

max
0.25

k
φ φ≤ . 

The h- and hp-adapted mesh are shown in Figs. 3.2c and 3.3a, respectively. 
Following iterative cycles, the converged h-adapted mesh consists of 1,664 
elements with 3,282 degrees of freedom, while the converged hp-adapted 
mesh consists of 344 elements with 1,834 degrees of freedom. The small-
est element size in both cases is 0.0025he, where he is the initial element 
size. 

 

 
                   (a)                                      (b)                                             (c) 

Fig. 3.3. (a) Unidirectional composite laminate subjected to out-of-plane loading; 
(b) a representative volume element of the microstructure, with a single fiber in a 
square matrix; (c) FE model with h-adapted mesh 

 
 

in each element until the element error meets the criterion 
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    (a) 
 

 
     (b) 

Fig. 3.4. (a) hp-adapted meshes in the regularized domain 0lΩ , (b) convergence 
of the strength of singularity for the h- and hp-adapted meshes 

The strength of the singularityλ controls the rate of convergence and 
its value may be determined in the course of the adaptive refinements. The 
value of λ is obtained by evaluating σ yy  at two different values of r close 
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to the singular point, and its convergence is shown in Fig. 3.4b. For the 
same smallest element size, the h-adapted mesh reaches up to a value of 
λ = 0.66, whereas the hp-adapted mesh goes up to λ = 0.78. Upon further 
enriching elements near the singular point by p-adaptation, λ reaches 0.89. 

Local and pollution errors in the regularized problem 

A posteriori error estimates based on elemental stresses or strain energy, 
e.g., jumps in variables, their gradients, or element residuals, are local in 
nature. Babuska [6] and Oden [54] have introduced element pollution error 
as one that is produced due to residual forces in other contiguous and 
noncontiguous elements in the mesh. Pollution error can be significant 
with uniform meshes in problems containing singularities, and local error 
estimation methods are incapable of detecting them. Consequently, in 
domains consisting of cracks, free edges, laminate interfaces, etc. accurate 
element error estimates in the energy norm may benefit from the addition 
of pollution errors to the local errors, i.e., 

local pollution

e e e= +er er er  (3.20)

with equidistribution of error estimates in the mesh, the pollution error is 
negligible. However in problems where the singularity exponent λ  is less 
than half the order of interpolation p, i.e., 2 pλ < , the pollution error is 
significant. The basic algorithm develops an equivalent residual as the sum 
of element-wise local and pollution residuals as 

local poll local
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Here HV  is the polynomial subspace of V , hV  is an enriched space 
approximation of HV . The major steps in the evaluation of the pollution 
error are given in [54, 62]. 
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Composite laminate subjected to out-of-plane loading 

The problem of composite laminate with free edge, similar to the one in Sect. 
3.2.1 is studied to understand the effect of local and pollution errors. The top 
half of the laminate is a composite with 28.2% volume fraction of boron fiber 
in epoxy matrix with effective orthotropic homogenized properties: 

 

11E  (psi) 22E  (psi) 33E  (psi) 12G  (psi) 12ν  31ν  23ν  

60.99  10×  60.99  10×  617.2  10×  60.27 10×  0.43 0.29  0.29
 

The bottom half is monolithic epoxy material with properties 
6

epoxy epoxy= 0.5  10 psi and 0.34E ν× = . Out-of-plane loading is simulated 
using generalized plane strain condition with prescribed 0.1%zzε = . Due 
to symmetry in the xz and yz planes, only one quarter of the laminate is 
modeled. Symmetric boundary conditions are employed on the surfaces 
x = 0 and y = 0, and the top and right surfaces are assumed to be traction 
free. 

For a uniform mesh, the local error is concentrated near the intersection 
of the interface and the free edge region, whereas the pollution error is 
more diffused and occurs in bands, starting at points slightly away from 
the intersection point around the free edge. When h-adaptation is applied, 
the maximum local error reduces from 36.285 10−×  to 41.176 10−× , while the 
pollution error reduces from 45.115 10−×  to 53.105 10−× . This is shown in 
Fig. 3.5. For this problem, the inclusion of pollution error in the total  
element error estimate is found to add little to the criteria for h- and hp-
adaptation and only local error is considered henceforth. 

Micromechanical analysis with the Voronoi cell FEM 

Accurate micromechanical modeling of deformation and damage in com-
plex heterogeneous microstructures requires very high resolution models. 
Micromechanical analysis in the multilevel computational framework is 
conducted by the Voronoi cell finite element model (VCFEM) developed 
by Ghosh et al. in [26, 34, 46, 48–50] for accurate and efficient image-
based modeling of nonuniform heterogeneous microstructures. Morpho-
logical arbitrariness in dispersion, shape, and size of heterogeneities, as 
acquired from actual micrographs are readily modeled by this method. The 
VCFEM computational mesh results from tessellating the microstructure 
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    (a) 

 
                                              (b) 

Fig. 3.5.  Distribution of (a) local and (b) pollution error for the h-adapted mesh 

VC E
microΩ  with dispersed heterogeneities into a network of NVCE  multisided 

Voronoi polygon or cell elements, i.e., 
VCE

VCE VCE
micro

1

N

e
e

Ω Ω
=

= ∪ , as shown in  
Fig. 3.8. Each Voronoi cell with embedded heterogeneities (particle, fiber, 
void, crack, etc.) represents the region of contiguity for the heterogeneity 
and is treated as an element in VCFEM. In this sense, a Voronoi cell ele-
ment manifests the basic structure of the material microstructure and its 
evolution and is considerably larger than conventional FEM elements.  
Incorporation of known functional forms from analytical micromechanics 
substantially enhances its convergence. The VCFEM formulation is based 
on the assumed stress hybrid finite element method, and makes independ-
ent assumptions of equilibrated stress fields ( )/m c

ijσ  in the interior of each 
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element VCE
microΩ  for both the matrix and inclusion phases as well as com-

patible displacement fields ( )e
iu  on the element boundary VCE

eΩ∂  and 
( )c

iu  on the matrix–inclusion interface VCE
cΩ∂ . Considerable success has 

been achieved in modeling thermoelastic–plastic problems [48, 50], prob-
lems with microstructural damage by particle cracking [26, 49] and 
debonding [34, 45] by VCFEM. Recent extensions of VCFEM include 
multiple crack simulations by an extended VCFEM or X-VCFEM [46] and 
3D VCFEM model in [27]. 

VCFEM is based on a hybrid formulation with independent assumptions 
on equilibrated stress fields ijσ  defined in the matrix phase VCE

mΩ  and the 
inclusion phase VCE

cΩ  of each Voronoi cell element. Special forms of 
stress functions are developed for equilibrated stress fields from known 
analytical micromechanics solutions. The stress functions are comprised of 
polynomials, shape-based reciprocal functions, and wavelet functions to 
facilitate accurate stress concentrations near the interface or crack tips. 
Compatible displacements are generated on the boundaries VCE

eΩ∂  and 

{ } ( ) { } { } ( ) { }
{ } { } { } { }

VCE VCE

VCE VCE

,  and  , ,

on and on ,

m m m c c c
m c

e e e c c c
e c
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interfaces VCE
cΩ∂  (shown in Fig. 3.13b) by interpolating nodal displace-

ments using polynomial shape functions. The stress and displacement  
interpolations may be expressed in matrix equation forms as 

where { } { } ( ), , ,x y⎡ ⎤⎣ ⎦β β P  and ( ),x y⎡ ⎤⎣ ⎦P  are the stress coefficients and 

{ } { }, ,e c e⎡ ⎤⎣ ⎦q q L  and c⎡ ⎤⎣ ⎦L  are the nodal dis-
placement vectors and the corresponding interpolation matrices, respec-
tively. A complementary energy functional for a Voronoi cell element may 
be defined as 

interpolating functions, and 



where mS  and cS  are the elastic compliance tensors in the matrix phase 
VCE

mΩ  and inclusion phase VCE
cΩ  of each element, en  and cn  are the out-

ward normals on VCE
eΩ∂  and interfaces VCE

cΩ∂ , respectively, and t  is the 
prescribed traction on the boundary VCE

tmΓ . The corresponding total energy 
functional for the ensemble of all Voronoi cell elements in the domain is 
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 (3.26)

Equations (3.26a) and (3.26b) correspond to weak forms of the 
kinematic relations in the matrix and inclusion domains of each element, 
respectively. Solving these equations yields the relations between domain 
stresses and the boundary/interface displacements. Equations (3.26c) and 
(3.26d) correspond to weak forms of the traction reciprocity condition at 
the element boundary and the matrix–inclusion interface, respectively. The 
boundary and interface displacements can be determined by substituting 
the stress–displacement relations from (3.26a) and (3.26b), into (3.26c) 
and (3.26d) and solving them. The reader is referred to [26, 34, 46, 48–50] 
for details on VCFEM. 

An adaptive VCFEM is developed in [50] to enhance solution 
accuracy and convergence of micromechanical solutions. Two error 
indicators are introduced to facilitate this adaptation: 

Setting the first variations of VCEΠ  with respect to the element stresses 
,m cσ σ , and also the first variations of VCE

TotalΠ  with respect to the displace-
ments eu  and cu  to zero results in the following equations, respectively, 
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1. Traction reciprocity error on element boundaries and internal 
interfaces. To estimate the quality of solution induced by the weak 
satisfaction of traction continuity on the Voronoi cell element 
boundary, an average traction continuity error (ATRE) is defined as 
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Equations (3.27), ˆ
eN  and ˆ

cN  are the total of all segments ê
eY∂  and 

ĉ
eY∂  on all element boundaries VCE

eΩ∂  and interfaces VCE
cΩ∂ , res-

pectively. The stress σ  in the denominator is the absolute maximum 
principal value of the volume-averaged stress tensor in the 
microstructure, i.e., 
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*n  is the number of degrees of freedom per node and [[ ]]t  is the 
traction discontinuity along element boundaries and interfaces. 

2. Error in kinematic relations in the element matrix and reinforcement 
phases. The source of this error is the weak satisfaction of kinematic 
or compatibility relations in the matrix and inclusion phases of each 
Voronoi cell element. To quantify this effect, an average strain 
energy error indicator (ASEE) related to the kinematic relation is 
defined in [50] as 
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(3.28)

The variables with superscripts *, i.e., * mσ , * mε , * eu , and * cu  correspond 
to the change in element stress, strain, and displacement fields that result 
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from enrichments in the stress interpolations mσ  and cσ . SE in ASEE is 
the strain energy of the entire micromechanical domain that is expressed as 

VCE VCE

2

1 1

1 1SE : d : d .
2 2m c

N N
m m c c

e e
Ω Ω

Ω Ω
= =

= +∑ ∑∫ ∫σ σε ε  (3.29)

SEer  is the element level error estimator in strain energy. The latter 
estimator is a measure of the change in strain energy due to stress 
enrichment and, hence, is positive for positive definite stiffness matrices. 
Adaptation for enhancing the rate of convergence of VCFEM solutions is 
executed in two stages. In the first stage, the traction continuity error in 
(3.27) is minimized by selectively enhancing boundary and interface 
displacement degrees of freedom in the directions of optimal displacement 
enrichments. In the second stage, stress function enrichment with higher 
order polynomial terms ( enr p -adaptation) of each element is performed for 
reducing the strain energy error [32]. 

The effectiveness of the adaptive Voronoi cell finite element model is 
tested by comparison with a well-known problem in micromechanics 
solved in [58, 67]. The boundary value problem, schematically illustrated 
in Fig. 3.8, demonstrates the limitations of the effective modulus theory in 
predicting stress states in laminated composites near a free edge. The 
composite has two rows of reinforcement, each consisting of eight aligned 
cylindrical boron fibers aligned in the z-direction, perpendicular to the 
plane of the paper. The fiber radius to edge dimension ratio is r/l = 0.3. 
Only a quarter of the cross section is analyzed due to symmetry about the 
xy and xz planes. The resulting mesh consists of four Voronoi cell elements 
as shown in Fig. 3.6a. The microstructure is subjected to a constant out-of-
plane axial strain 1zzε = , which is modeled using generalized plane strain 
conditions. The material properties are given below: 

 
Material Young’s modulus, E (psi) Poisson ratio 
Boron (fiber) 6

bo 60 10E = ×  bo 0.2ν =  

Epoxy (matrix) 6
epoxy 0.5 10E = ×  epoxy 0.34ν =  

 
The analysis considers two boundary conditions: 

(a) Edges x = 0 and y = 0 are symmetry surfaces, while x = 4h and 
y = 2h are traction free 
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(b) Edges x = 0 and y = 2h are symmetry surfaces and x = 4h  and y = 0 
are traction free 

The matrix stresses are constructed from an Airy’s stress function 
consisting of a fourth-order polynomial and a 36 term reciprocal function. 

 

 
(a) 

 
(b) 

Fig. 3.6. (a) A microstructural hp-adapted VCFEM mesh showing locations of the 
initial and added nodes with x- and y-DOF – case (a); (b) ANSYS mesh 
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illustrated in Fig. 3.6 in terms of added displacement degrees of freedom. 
The preadaptation nodes are marked with a “filled circle.” The x-direction 
nodal adaptations are marked with an “open square” while those in the y-
direction are shown with “open triangle.” The VCFEM solutions for both 
cases are compared with numerical results of micromechanical analysis 
provided in [67] and also with those from analysis by the finite element 
code ANSYS. The converged ANSYS mesh with 4230 QUAD4 elements 
and 4352 nodes is shown in Fig. 3.6b. 

The transverse microscopic stress yyσ , which is approximately two 
orders lower compared with the leading order stress zzσ , is plotted along 

adapted VCFEM results agree very well with the ANSYS model. The 
figure also shows the singular stress solution near the free edge, which is 
obtained as a consequence of using the effective modulus theory by 
homogenization. 

Statistically equivalent RVEs for nonuniform microstructures 

Identification of the appropriate representative volume element or RVE is 
essential for estimating homogenized material properties needed in the 
computations of level-0 or level-1 elements. An RVE is not easily 
identifiable for material microstructures with nonuniform morphological 
distributions as shown in Fig. 3.8a. It is possible to identify an RVE 
only in a statistical sense, otherwise called a statistically equivalent RVE 
or SERVE. The SERVE is expected to exhibit a macroscopic behavior that 
is equivalent to the average behavior of the entire microstructural 
ensemble. A variety of statistical and computational tools are developed 
for identifying the SERVE for elastic composites with nonuniform 
dispersion of inclusions in [72]. The evolution of the SERVE with 
microstructural damage by interfacial debonding is examined in [73] using 
various metrics. As an example, the marked correlation function 
introduced in [60] is used in this chapter to delineate the SERVE size. This 
function characterizes the region of influence of a chosen heterogeneity on 
others in a domain with respect to chosen variables like stresses, strains, 
etc. The marked correlation function for a domain of an area A 
containing N inclusions is expressed as 
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The inclusion stresses are constructed using a sixth-order polynomial func-
tion. Displacement fields are constructed with linear shape functions for 

elements. The results of the adaptation cycle for the problem in case (a) are 
element boundaries and quadratic shape functions for curved interface 

the horizontal section at y = h in Fig. 3.7. Results are compared for 
the unadapted VCFEM, hp-adapted VCFEM, and the ANSYS model. The 



      109 Chapter 3: Adaptive Concurrent Multilevel Model

( )
( )

( ) ( ) ( )2 2
1

d 1d , where .
ikN

i k
i k

H r
ArM r H r m m r

g r m N =

= = ∑∑  (3.30)

In (3.30), mi is a mark associated with the ith inclusion, ki is the number 
of inclusions which have their centers within a circle of radius r around the 
ith inclusion, and m is the mean of all the marks. Marks can be any field 
variable like the maximum principal stress or Von Mises stress or even a 
geometric feature associated with each inclusion. H(r) is called the mark 
intensity function and g(r) is the pair distribution function defined as 

( ) ( )d1 ,
2 d

K r
g r

r rπ
=  (3.31)

where K(r) is a second-order intensity function explained in [32, 33, 72]. 
The radius of influence infR  can be determined from a plot of M(r) vs. r. 

infR  corresponds to the value of r at which M(r) stabilizes to a constant 
value. Upon determining infR , the SERVE may be constructed from the 
inclusions contained in a inf infR R×  square window of the micrograph. As 
shown in Fig. 3.8b, the local microstructure is first constructed by 
periodically repeating the set of inclusions that lie (wholly or partially) in 

1 2

1 2

( )1 1 1 2,y k Y y± , ( )1 2 2 2,y y k Y± , and ( )1 1 1 2 2 2,y k Y y k Y± ± , where 1 2,k k  are 
integers. The resulting domain is then tessellated into a network of Voronoi 
cells as shown in Fig. 3.8b. The SERVE boundary, shown with bold lines 
in Fig. 3.8b, is the aggregate of all outside edges of Voronoi cells that are 
associated with the primary inclusions in the domain (shown in black). For 
nonuniform inclusion arrangements, the SERVE boundary will consist of 
multiple nonaligned edges. Nodes on the SERVE boundary created by this 
procedure are periodic. For every boundary node, a periodic pair, e.g., AA, 
BB, etc., can be identified on the boundary at a distance of one period 
along one or both of the coordinate directions. Periodicity constraint 
conditions on nodal displacements can then be easily imposed. 

A numerical example is considered to demonstrate the effect of the 
SERVE size on macroscopic properties as well as on microscopic stresses. 
Maximum principal stress in the fiber and maximum Von Mises stress in 
matrix in each Voronoi cell are considered as marks in the correlation 
function, since they are good indicators of microstructural failure initiation. 

For each fiber at (y ,y ), periodically repetitive inclusions are placed at 
the window in both the y  and y  directions for several period lengths. 
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         (a) 
 

 
                                                            (b) 
Fig. 3.7. yyσ  distribution at section A–A (y = h) for the composite section with 
one row of fiber for (a) case-a and (b) case-b 
 



Plots of M(r) for different marks are shown in Fig. 3.9a. The distance r is 
normalized with respect to the fiber radius 0 1.75µmr = . M(r) is high at 
distances less than 08r  but stabilizes to a unit value at distances approxi-
mately greater than 08r , corresponding to the region of influence of stress. 
It can also be seen that M(r) plots for both Von Mises stress and principal 
stress are similar and stabilize approximately in the same radial range r. A 
similar behavior of M(r) is also observed when the micrograph is loaded 
under biaxial tension as shown in Fig. 3.9b and, hence, 08r  characterizes 
the size scale of the SERVE. 
 

 
(a)    

 

 
 (b) 

Fig. 3.8. (a) Optical micrograph of a polymer–matrix composite microstructure; 
(b) an RVE evolving from tessellation of microstructure with nonstraight edges 

Convergence of macroscopic moduli and maximum microscopic stress 
with RVE size are studied for five different RVEs, consisting of 1, 8, 18, 
35, and 55 fibers as shown in Fig. 3.10. The corresponding SERVE sizes 
 

100µ
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(a) 

 
(b) 

Fig. 3.9. Marked correlation functions M(r) for (a) uniaxial and (b) biaxial load 

          
            (a)                (b)                    (c) 

       
(d) (e) 
(e)  

Fig. 3.10. SERVEs with 1, 8, 18, 35, and 55 fibers 
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are 0r , 03r , 06r , 09r , and 012r , respectively. The morphology of each RVE 
is chosen from any arbitrary region in the micrograph. The Frobenius norm 
of the effective elastic modulus E  is plotted as a function of increasing 
RVE sizes at two different locations in the microstructure in Fig. 3.11a. 
The difference in the norm between the single fiber and 55 fibers is around 
2% , while the difference between 18 fibers and 55 fibers is found to be 
less than 0.5%. A similar observation is also made when comparing the 
microscopic maximum Von Mises stress in the matrix and maximum prin-
cipal stress in the fiber as functions of increasing RVE size in Fig. 3.11b.  
 

 
(a) 

 
(b) 

Fig. 3.11. Convergence of the (a) macroscopic stiffness and (b) microscopic 
stresses with increasing RVE sizes 
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The difference in maximum Von Mises stress in the matrix for the single  
fiber RVE and 55 fiber RVE is almost 60%, whereas the corresponding  
difference for the 18 fiber RVE and the 55 fiber RVE is less than 4%. 
Hence, a SERVE consisting of 18 fibers is deemed adequate for 
homogenization. 

Computational subdomain level-1 1lΩ  

The level-1 subdomains facilitate switchover from homogenization-based 
analysis in level-0 subdomains to micromechanical analysis in level-2 
subdomains. They are seeded in regions of locally high gradients of 
macroscopic variables in level-0 simulations. The formulation for 1lΩ  is 
the same as for homΩ
microscopic variables in the SERVE, as well as macroscopic gradients, are 
used to decide whether homogenization is valid in this region. Major steps 
in level-1 element computations are: 

1. Evaluate homogenized elastic stiffness H
ijklC  for the macroscopic 

analysis using (3.10) with applied macroscopic unit strains 
corresponding to (3.15) together with periodicity. 

2. Evaluate element stiffness and load vectors for elements 0lE  and 1lE  
using H

ijklC , and solve the global FE equations for macroscopic 
displacements, stresses, and strains. 

3. Perform RVE analysis in the postprocessing stage with macroscopic 
strains 0 0(1/ 2)(( / ) ( / ))ij i j j ie u x u x= ∂ ∂ + ∂ ∂  imposed from Step 2 and 
periodic boundary conditions. Microscopic stresses, strains, and other 
variables are computed in the RVE of every element ( )1

1

l

lE Ω∈  for 
developing appropriate level switching criteria. 

Macroscopic elements in ( )1

1

l

lEΩ  are also adaptively enriched by h- and 
hp-refinement. No special treatment is required for displacement 
compatibility between 0lE  and 1lE  elements, since their boundaries are 
similar with identical displacement interpolation. 

Criteria for level-0 to level-1 transition 

Elements in the computational subdomain ( )1 1

1

l l

lEΩ Ω∈  are computa-
tionally much more expensive than level-0 elements 0lE . Hence, the selec-
tion of appropriate criteria for switching from 0lE  to 1lE  elements is 
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 in Sect. 3.3.1. It serves as a “swing” region, where 



critical to enhance efficiency by optimally limiting the number of 1lE  
elements. These criteria depend on the important variables for the problem 
in question. Various switching criteria, based on gradients of physically 
significant stress measures, have been tested in [29, 36, 61]. As an exam-
ple, element k will be required to undergo a level 0 1→  transition if 

( )
( )

1/ 2
2

1
avg

eqv
1 avg

eqv max

, where .
EN

iik
k

E
E

NE
E C E

∑

∑
==

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≥

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑  (3.32)

Here 1C  is a prescribed tolerance, eqvΣ  is the equivalent stress in element 
k, and kE  can have one of the following forms: 
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∫

∫
∫

∫
∫

 (3.33)

ijΣ  is a chosen macroscopic stress component, prΣ  is the dominant 
principal stress, ,x yT T  are the element boundary traction components and 
[[ ]]"  denotes the jump operator. The criterion in (3.32) reflects the fact 
that high gradients in regions of high stress levels are more relevant than 
those at low stress levels. 

Computational subdomain level-2 2lΩ  

Level-2 subdomains of detailed microscopic analysis are characterized by 
the nonsatisfaction of homogenization conditions used in the level-0 and 
level-1 subdomains. Microstructural nonuniformities in the form of 
strongly nonperiodic, e.g., clustered dispersions or concentrated high 
stresses and strains with high gradients, occurring near a crack tip or free 
edge, necessitate the emergence of 2lΩ . Appropriate adaptation criteria are 
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• Identify a region ˆ hetk
Ω Ω∈  that is located in the same region as 2

k

lΩ  and 
extends beyond it by at least two fiber lengths. 

• Tessellate 
k̂

Ω  to generate a mesh of Voronoi cell elements as shown in 
Fig. 3.12a. 

• Carve out the region 2

k

lΩ  by superposing the boundary of 1
k

lΩ  on 
k̂

Ω . 
This procedure will result in dissecting some of the fibers on the 
boundary of 2

k

lΩ . When this happens, additional nodes are generated on 
the Voronoi cell boundary at locations where the fiber surface and 
Voronoi cell edges intersect the boundary of 2

k

lΩ . 
            

 
Fig. 3.12. (a) Carving out extended microstructural region in level-2 element;  
(b) level-2 element consisting of VC finite elements for microstructural modeling 
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used to trigger switching from ( )1

1

l

lE Ω∈  to ( )2

2

l

lE Ω∈  elements for micro-
mechanical analysis. It is expected that the local h- or hp-refinement in 
level-0 or level-1 elements will have reduced the size of these elements 
sufficiently prior to transition to the level-2 elements such that a high spa-
tial resolution is locally attained. 

The elements 2lE  are constructed by filling the level-0/1 elements with 
the exact microstructure at that location. The region 2

k

lΩ  encompassed in 
the kth level-2 element 2

k

lE  is obtained as the intersection of the local  
microstructural region εΩ  with the kth level-1 element 1

k
lΩ , i.e., 

2 1
k k
l l

εΩ Ω Ω= ∩ . The steps in creating a level-2 element are as follows: 



Accurate, high-resolution modeling in these elements may require 
prohibitively high computing efforts with conventional finite element 
methods. The adaptive Voronoi cell finite element model [26, 34, 48–50] 
is, therefore, preferred for efficient micromechanical analysis. 

Criteria for switching from level-1 to level-2 

Departure from periodicity conditions in the microstructural SERVE is 
taken as an indicator for the level-1→level-2 transition. This is in addition 
to the local gradients in macroscopic variables for level-0→level-1 
transition. A criterion for invoking the level-1→level-2 change is defined 
as 

1 RVE

2RVE

ˆ ˆ( , ) ( , )
.ˆ ( , )

l
ij ij ij ij

ij ij

C
σ ε σ ε

σ ε

−
≥

F F
F

 (3.34)

The function F̂  is a measure of a quantity of interest in terms of local 
variables ( , )ij ijσ ε . In some of the numerical examples, F̂  is expressed as 
the average inclusion stress in the microstructure. The superscript l1 in 
(3.34) refers to element 1

k
lE . The microstructural boundary value problem 

is solved with macroscopic displacement solutions from level-0 imposed 
on 1

k
lE  boundary. The superscript RVE corresponds to the function being 

evaluated within each RVE only, by imposing macroscopic strains with 
periodic boundary conditions on the RVE. 

1. Criterion based on strain energy density. The ratio of local strain 
energy density to the average energy density in the RVE is important 
in the prediction of localization. The criterion suggests that if local 
strain energy density due to multiaxial straining significantly exceeds

 

that due to uniaxial straining used in the evaluation of homo-
genization parameters, the onset of damage is likely. Hence level-1 to 
level-2 transition is made if 

actual actual actual actual
max max aver max max averorM M M I I IU R U U R U≥ × ≥ ×  (3.35)

at more than 1% of all integration points. Here, (1/ 2)M M M M
ijkl ij klU S σ σ= , 

(1/ 2)I I I I
ijkl ij klU S σ σ= , and the energy density concentration factors are 

max aver/M M MR U U=  and max aver/I I IR U U=  for unit strain components. 

max
MU  and max

IU  are the maximum values of MU  and IU  at all 
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Other criteria have also been used in this level transition. Among 
them are: 



integration points in the RVE, and aver
MU  and aver

IU  are the 
corresponding RVE-averaged energy densities. The maximum values 
for the four loading cases are noted as max

MR  and max
IR . 

2. Criterion based on equivalent stress. In this criterion, level-1→level-
2 transition is made if the local equivalent stress exceeds the average, 
i.e., 

( ) ( ) ( ) ( )eqv 3 eqv eqv 3 eqvmax avg max avg
* , *m m c cC Cσ σ σ σ> >  (3.36)

at more than 1% of all integration points. ( ) ( )eqv eqvmax avg
,m mσ σ  and 

( ) ( )eqv eqvmax avg
,c cσ σ  represent the maximum and average equivalent 

stresses in the matrix and inclusion phases. 
3. Criterion based on traction at the fiber–matrix interface. Traction at 

the fiber–matrix interface is important for predicting failure by 
debonding. This criterion is postulated as level-1→level-2 transition 
occurs if 

( )2 2
4 avg

ˆ ˆ ˆ| |   *  | | where | |  ,n tT C T T T T> = +  (3.37)

where avg
1ˆ| |

ˆ| |
IN

i

I

T
T

N
==
∑

 is the average traction at the fiber–matrix 

interface and IN  is the total number of integration points on interface 
in the RVE. 1 2 3 4, , ,C C C C  are chosen from numerical experiments. 

Transition elements between elements in 2lΩ  and 1/ 0l lΩ  

To facilitate gradual transition of scales across the element boundaries, a 
layer of transition elements ( )tr

trE Ω∈  is sandwiched between the 
macroscopic elements in 1/ 0l lΩ  and microscopic elements in 2lΩ , as 
shown in Fig. 3.13. The elements trE  are essentially level-2 elements with 
compatibility and traction continuity constraints imposed at the interface 
with 1lE  or 0lE  elements. The transition elements are located beyond the 
level-2 regions, away from critical hot spots. 
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Fig. 3.13. Interface constraints between level-0/1 and transition elements 

A relaxed displacement constraint method is proposed in [36, 62], 
where a weak form of the interface displacement continuity is incorporated 
by using Lagrange multipliers, suggested in [4]. The total potential energy 
of the multilevel computational domain can then be expressed as 

0 1 2 tr
int int

1 1 tr tr( )d ( )d ,
l l l

l l
i i i i i iv u v uΩ Ω Ω Ω Γ Γ

∏ ∏ ∏ ∏ ∏ λ Γ λ Γ= + + + + − + −∫ ∫ (3.38)

where 
0 1 2
, , ,

l l lΩ Ω Ω∏ ∏ ∏  and 
trΩ∏  are the potential energies for elements 

in the respective subdomains, 1l
iλ  and tr

iλ  are columns of Lagrange 
multipliers on the interfacial layer intΓ  belonging to 1lΩ  and trΩ , respec-
tively, for which the interfacial displacements are designated as 1l

iu  and 
tr
iu . 

As shown in Fig. 3.13, an intermediate boundary segment is added 
with displacements iv  that may be interpolated with any order polynomial 
functions, independent of the interpolations for 1l

iu  or tr
iu . The Lagrange 

multipliers 1l
iλ  and tr

iλ  correspond to the interface tractions on 1lΩ∂  and 
trΩ∂ , respectively. The displacements and the Lagrange multipliers on the 
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intermediate boundary segment are interpolated from nodal values using 
suitably assumed shape functions 

{ } [ ]{ } { } { } { } { }1 tr
1 tr

int int l1 trv , , .l
lL L L

λ λ
λ λ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦q Λ Λ  (3.39)

To examine the effectiveness of the relaxed displacement constraint 
method, a composite laminate problem with two sandwiched lamina is solved. 
The top lamina consists of a uniform distribution of circular fibers of 30% 
volume fraction, while the bottom lamina has fibers of 10% volume fraction. 
 

 
(a) 

               (b) 

Fig. 3.14. (a) Composite laminate subjected to a point load; (b) stress xxσ  pro-
duced by the load along the interface A–B by micromechanics, direct displace-
ment, and relaxed displacement constraint methods 
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A 106 lb point load is applied on the laminate as shown in Fig. 3.14. The 
fiber material has 6

fiber 60 10 psiE = ×  and fiber 0.2ν = , while the matrix 
material has 6

matrix 0.5 10 psiE = ×  and matrix 0.34ν = . As shown in the Fig. 
3.14a, a portion of the top lamina is modeled using VCFEM-based level-2 
and transition elements. 

This region consists of eight rows of fiber and, hence, each level-2 or 
transition element may contain up to 64 fibers. The remaining elements are 
level-0 with homogenized moduli. In the relaxed displacement constraint 
method, increasing order polynomials are considered for the displacement 
interpolation [ ]intL  on the intermediate boundary segment between A and E. 
The shape functions 1lL

λ
⎡ ⎤⎣ ⎦  and trL

λ
⎡ ⎤⎣ ⎦  in (3.39) are assumed to be linear. 

The critical stress xxσ  distribution is shown along the section A–B for dif-
ferent interfacial conditions. The solutions of the multilevel models are 
compared with that of a fully micromechanical model analyzed by 
VCFEM. The plots in Fig. 3.14b show that relaxed displacement constraint 
method yields much better results compared with a direct constraint 
method done in [61, 62]. 

3.3.3 Coupling Levels in the Concurrent Multilevel FEM 

The global stiffness matrix and load vectors are derived for the multilevel 
model consisting of level-0, level-1, level-2, and transition elements, i.e., 

{ }0 1 2
het 0 1 tr 2 0 1 0 1 1 1 tr 1 2: l l tr lN N N N

l l l l k l k l k k lEΩ Ω Ω Ω Ω Ω = = = == =∪ ∪ ∪ ∪
boundary is decomposed as { }het 0 1 2 trl l lΓ Γ Γ Γ Γ= ∪ ∪ ∪ , where 0lΓ =  

0 hetlΩ Γ∂ ∩ , 1 1 hetl lΓ Ω Γ= ∂ ∩ , tr tr hetΓ Ω Γ= ∂ ∩  and 2 2 het .l lΓ Ω Γ= ∂ ∩  The 
principle of virtual work equation for the entire multilevel computational 
domain for multiscale analysis is expressed as 

10 10 11 11

12 12 tr

10 11 12 tr

10 11
10 11

12 tr
12 tr

10 11 12 tr
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d d d d

 + d d d d
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δ δ
σ Ω δ Ω σ δ Ω

δ δ Γ δ Γ δ Γ

δ λ

∂ ∂
Σ − + Σ −

∂ ∂
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− + Ω −

−

∂ ∂

Γ − − −

+

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

int int

10 /11 tr tr)d ( )d 0.i i i i iu v u
Γ Γ

Γ δ λ Γ− + − =∫ ∫

(3.40)

;∪ E ;∪ E ;∪ E . The 
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Ω Ω



The traction continuity between level-0 and level-1, as well as level-2 
and transition elements are satisfied in a weak sense. The boxed terms in 
(3.40) involve integration over the microstructural domains 2lΩ  and trΩ , 
and are analyzed using VCFEM, described in Sect. 3.2.2. It is necessary to 
couple these terms with the other terms using homogenized properties, 
analyzed by conventional finite element models. To make the connection 
with the macroscopic elements in the model, the total energy in the 
ensemble of Voronoi cell elements in (3.25) is identified as the energy of 
the level-2 or transition elements, i.e., tr/ VCE

Total
l2Ε ΕΠ = Π . Furthermore, 

element boundaries of all Voronoi cell elements are split as 
VCE

VCE ext int
N

e
e

Ω Ω Ω
=1

∂ = ∂ ∂∑ ∪ . extΩ∂  is the aggregate of all Voronoi element 

boundaries that coincides with level-2 or transition element boundaries, 
shown with thicker lines in Fig. 3.12b, and intΩ∂  corresponds to all other 
internal boundaries of VC elements. Substitution in (3.26c) yields 

int ext VCE
t1

d d d 0.
N

e e e e e

e

Γ

Ω Ω Γ
δ Ω δ Ω δ Γ

∂ ∂
=

− ⋅ ⋅ ∂ − ⋅ ⋅ ∂ + ⋅ =∑∫ ∫ ∫σ n u σ n u t u (3.41)

In the absence of body forces, the boxed terms in (3.40) corresponding 
to the micromechanical energy in each level-2 or transition element can be 
restated by using divergence theorem as 

12 tr 12 tr 12 tr

ext
12 tr 12 tr

VCE

VCE VCE
e t

12/tr 12 /tr 12/tr

/ / /

12/tr 12/tr 12/tr

/ /

12/tr 12/tr

1 1

d d d

d d d

d d .

e

E E E E
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Γ Γ

Γ Γ Ω

Ω Γ

δ Ω δ Γ δ Ω

δ Ω δ Γ δ Ω

δ Ω δ Γ

∂ ∂

∂

= =

⋅∇ − ⋅ = ⋅ ⋅ ∂    

− ∇ ⋅ − ⋅ = ⋅ ⋅ ∂

− ∇ ⋅  − ⋅

∫ ∫ ∫
∫ ∫ ∫

∑ ∑∫ ∫

σ u t u σ n u

σ u t u σ n u

σ u t u

(3.42)

The term containing ∇σ  in (3.42) drops out, since equilibrated stress 
fields are used in VCFEM. It should be noted that the boundary vector 

12 /tru  is a subset of the VCFEM boundary displacements eu . The first term 
on the right-hand side is the contribution to the global stiffness and is 
obtained from VCFEM analysis by using static condensation in (3.41) to 
remove internal degrees of freedom on intΩ∂  from the global stiffness. 
The displacement field along the edges of VCFEM elements is 
interpolated as 

{ } [ ]{ }VCE VCE .e L=u q  (3.43)
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The degrees of freedom VCEq  can be separated into ext

VCEq  and int

VCEq  depen-
ding on whether they belong to extΩ∂  or intΩ∂ , respectively. The stiffness 
matrix and the load vector of the ensemble of all Voronoi cell elements 
belonging to a level-2 element or transition element can thus be partitioned 
as 

ext extext,ext ext,int
VCE VCEVCE VCE

int,ext int,int int int
VCE VCE VCE VCE

.
K K
K K

=
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬⎜ ⎟
⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎩ ⎭ ⎩ ⎭

q F

q F
 (3.44)

Static condensation of the internal degrees of freedom leads to 

{ } { }

{ }

1ext,ext ext,int int,int int,ext ext ext
VCE VCE VCE VCE VCE VCE

1ext,int int,int int
VCE VCE VCE .

K K K K

K K

−

−

− =

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

q F

F
 (3.45)

This form is used in global assembly. The displacements 0l
iu  and 1l

iu  
in each level-0 and level-1 element are interpolated by the standard or 
hierarchical shape functions based on Legendre polynomials as 

{ } [ ]{ } { } [ ]{ }
I I

10 1110 11I O I O
10 10 10 10 11 11 11 11O O

10 11

, ,N N N N N N= = = =
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

q q
u q u q

q q
(3.46)

where { } { }I I

l0 l1/q q  corresponds to the nodal degrees of freedom at the 
interface with transition elements and { } { }O O

l0 l1/q q  corresponds to the 
remaining degrees of freedom. A similar separation can also be done for 
nodal displacements of transition elements into displacements on this 
interface. The displacements and the Lagrange multipliers on the 
intermediate boundary segment between the level-0/1 and transition 
elements are interpolated according to (3.39). Substituting (3.45), (3.46), 
and (3.39) in (3.40) results in a coupled set of matrix equations for the 
multilevel domain: 
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12 / tr 12 / tr 12 / tr

10 /11 tr int

T T

10 /11 10 /11 10 /11

T T

tr tr

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

K K P

K K

K K P

K K

Q Q

P Q

P Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

q

q

q

q

q

Λ

Λ

I

10 /11

O

10 /11

I

tr

O

12 / tr

tr

0

0

0

.=

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

F

F

F

F

(3.47)
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Superscript I represents quantities on the interface with transition ele-
ments, while superscript O corresponds to other regions. The submatrices 

10 /11K , 12K , and trK  and vectors 10 /11F , 12F , and trF  correspond to stiffness 
matrices and load vectors from the respective subdomains. The stiffness 

12 / tr[ ]K  and the load vectors 12 / tr{ }F  are obtained from VCFEM analysis. 
The coupling between the level-0/1 and transition elements is achieved 
through the [ ]P  and [ ]Q  matrices. The system of equations is solved using 
an iterative solver with the Lanczos method. 

3.3.4 Numerical Examples with the Adaptive Multilevel Model 

Three sets of numerical examples are solved to study the effectiveness of 
the multilevel computational model for heterogeneous materials. 

Composite laminate with a free edge 

A classical problem of a composite laminate with a free edge that was 
introduced by Pagano and Rybicki [58, 67] is solved by the multilevel 
adaptive computational model. The problem to be solved is illustrated in 
Fig. 3.3 with out-of-plane loading. The homogenized solution of this 
problem yields a singular stress field near the free edge between the 
composite ply and the monolithic material layer, due to the constraints 
imposed by the free edge and Poisson’s effect. The stress singularity has 
been reported in [58] as (d−a), where d  is the radial distance from the edge 
and the exponent 0.1a < . However, the micromechanics solution does not 
show any singularity and hence the macroscopic solution is grossly 
misrepresented in this region. The material properties for the boron fiber 
and epoxy matrix are: 

 

bo psi)(E  boν  epoxy psi)(E  epoxyν  
660 10×  0.2  60.5 10×  0.34  

 

sponding to a local volume fraction of 28.2%. For 40 rows of fiber, the 
microstructural RVE is assumed to be a unit cell of size / 40l h= .  
The homogenized orthotropic stiffness coefficients are obtained as: xxE =  

yyE =  60.99 10 psi× , 60.99 10 psixx yyE E= = × , 61.72 10 psizzE = × , xyG =  
60.27 10 psi× , 0.43xyν = , 0.29zx zyν ν= = . Only a quarter of the laminate 
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The ratio of fiber radius to edge length in the RVE is r / l = 0.3, corre-



is modeled, accounting for symmetry about xz  and yz  planes by impos-
ing symmetry boundary conditions on 0x =  and 0y =  surfaces. The top 
( 2y h= ) and right ( 4x h= ) surfaces are assumed to be traction free. The 
out-of-plane loading is simulated using a generalized plane strain condition 
with prescribed 1zzε = . The problem solved is for the number of fiber 
rows (n = 40) corresponding to approximately 6,400 fibers. The initial 
mesh in the multilevel model consists of 200 QUAD4 level-0 elements. 
The adaptive model consists of hp-adaptation, and the three level transi-
tions for control of the discretization and modeling errors, respectively. 

1 0.3=  in (3.32), kE  is 
based on traction discontinuity defined by (3.33c) and level-1 to level-2 
transition takes place according to (3.34) with 

 

1ˆ ( )d .yy c
cA

A
ω
σ= ∫F v  (3.48)

 

F̂  is an inclusion area averaged stress and cA  is its cross-sectional area. 
Figure 3.15a shows the multilevel mesh consisting of 242 level-0 elements, 
four level-1 elements, six transition elements, and five level-2 elements. 
Each level-2 element in this model is assumed to contain a single unit cell 
or RVE. The same problem is also solved using the commercial code 
ANSYS with a mesh of 30,000 elements (50,000 nodes). A 3 × 3 array of 
nine fibers near the free edge and laminate interface are explicitly modeled 
using a highly refined mesh (see Fig. 3.15c) and coupled with the 
remaining macroscopic analysis mesh. The multilevel model has a 
significantly smaller size with DOF=2,000 (2 × no. of nodes in level-
0 + level-1 + level-2 elements + # of β s in level-2 elements). Fig. 3.16a 
compares the stress yyσ  along the line 1/y h =  near the free edge 

4/x h =  for two values of 1C  by (a) the homogenized material law (gives 
rise to a singularity), (b) the microscopic stress obtained by VCFEM, and 
(c) the microscopic stress from the ANSYS analysis. The singularity 
vanishes for the microscopic results and the ANSYS and multilevel model 
results compare very well. 

(3.35)–(3.37) are examined with 3 3.0C =  and 4 1.5C = . The criteria (a) and 
(b) in (3.35) and (3.36) lead to 242 level-0 elements, four level-1 elements, 
six transition elements, and five level-2 elements. Criterion (c) in (3.37)  
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The level-0 to level-1 transition parameter C

In a second study, the effect of level-1 to level-2 switch-over criteria in 



      
                               (a)                                                                 (b) 

 
(c) 

Fig. 3.15. (a) hp-Adapted multilevel mesh showing level-0, level-1, and level-2 
elements; (b) blow-up of the free-edge interface region mesh; and (c) ANSYS 
mesh with detailed microstructure modeled near the free edge 

yields 245 level-0 elements, four level-1 elements, five transition elements, 
and three level-2 elements, and criterion (d) in (3.34) yields 245 level-0 
elements, five level-1 elements, five transition elements, and two level-2 
elements. 

yy along 1/y h =  near 4/x h =  is compared in Fig. 3.16b. 
The agreement between the ANSYS and multilevel model results is excellent. 
Criteria (c,d) are more efficient due to a lesser number of level-2 elements. 
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The stress σ



Fig. 3.16. Convergence of microscopic level-2 stress yyσ  along section A–A near 
the critical free edge with different: (a) level-0 to level-1 and (b) level-1 to level-2 
transition criteria 

Comparison with GOALS algorithm-based multiscale modeling 

In [56, 79], Oden et al. have introduced a theory of a posteriori modeling 
error estimates based on local quantities of interest, cast in terms of a linear 
functional ( )L u . The goal-oriented adaptive local solution or GOALS  
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algorithm is applied to the homogenized solution for estimating the local 
error in quantities of interest due to modeling a heterogeneous material as 
a homogenized medium. Subsequent to estimating the error, the algorithm 
adaptively adjusts the calculated quantities by adding microscale data until 
preset levels of accuracy are attained. The method entails solving an addi-
tional adjoint homogenized problem, in which ( )L u  serves as the load vec-
tor. A measure β  is defined as a local estimator of the modeling error as 

0 0
upp upp upp ( )| ( ) | || || ,EL Ωβ ζ ζ ζ− ≤ = +u u w  (3.49)

 where uppζ  and uppζ  are the upper bound of the energy norm-based 
modeling error in the primal problem and the adjoint problem respectively 
and 0

( )|| ||E Ωw  is the energy norm of the influence function. A domain of 
influence is determined as a local region or “cell” k for which the local 
error estimator kβ  exceeds a prescribed tolerance. An m-shaped domain 
with randomly distributed cylindrical inclusions, having an average 
volume fraction 0.3 is depicted in Fig. 3.17a. The matrix material 
properties are 100 MPaE = , 0.2ν = , and inclusion properties are 

1,000 MPaE = , 0.2ν = . The domain is subjected to a distributed load of 
11MN m−=W  under plane strain conditions. The domain is initially 

discretized into 42 level-0 elements and homogenized properties for level-0 
and level-1 elements are computed using a unit cell consisting of a single 
circular inclusion of 30% volume fraction. A local quantity of interest is 
ascertained in [79] as the inclusion area-averaged stress xxσ : 

1
( ) ( )d ,xx c

c

L A
A ω

σ= ∫v v  (3.50)

where cA  is the inclusion cross-sectional area. The distribution of kβ  is 
shown in the contour plot of Fig. 3.17b. In the application of the multilevel 
model, adaptation criteria in (3.32), (3.33a), and (3.34) are chosen. 
Consistent with (3.34), the level-1 to level-2 switch takes place if 

- RVE RVE
2ˆ ˆ ˆ ,level 1

xx xx xxCσ σ σ− ≥  (3.51)

where 
# inclusions 1ˆ ( )d .

i
xx xx i

i i
c

c

A
A ω

σ σ= ∑ ∫ v  
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The adaptation parameters are chosen as 1 0.1C =  and 2 0.1C = . The 
domain of influence has been calculated in [79] by the GOALS algorithm 
using the local quantity corresponding to an inclusion marked as ω , 
shown in Fig. 3.17a. The corresponding distribution of levels in the 
computational domain with the multilevel model are shown in Fig. 3.17c. 

 
(a) 

 
(b) 

 

 
 

(c) 
Fig. 3.17. (a) An m-shaped domain with uniformly distributed inclusions; (b) plot 
of kβ  normalized with respect to its maximum for the quantity of interest 2L ;  
(c) multilevel mesh with adaptation tolerances 1 0.1C = , 2 0.1C =  
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The GOALS algorithm [56, 79] conducts a microscopic analysis on six 
adjacent cells with high kβ  (see Fig. 3.17b) to achieve 0.5% relative 
modeling error 100%( ( ) / ( ))L L ×−u u u� . In the present multilevel model,  
error is computed using ( ( ) / ( ))= 0.743L L− 0u u u  (as reported in [79]) 
and ( ) 0.1554L =u�  calculated from the solution of the level-2 VCFEM in 
the same inclusion. The corresponding value of relative modeling error 

%( ( ) / ( ))L L−u u u�  is 0.45%, in comparison with the 0.5% in [56]. Thus 
the modeling error with multilevel adaptation is quite satisfactory. 

A double lap aluminum-composite bonded joint 

Adhesive bonded joints consisting of different materials are used to repair 
damaged structures in aircraft industries [66]. They can induce high 
stresses near the interface leading to failure initiation by fiber cracking,  
fiber–matrix interfacial debonding or interfacial delamination. A double-lap 
bonded joint with aluminum and boron-epoxy composite as the adherents 
is analyzed as shown in Fig. 3.18a. The dimension h is 64 mm with a total 
of 14 million fibers in the composite laminate. A perfect interface, 
corresponding to displacement continuity, is assumed between the 
aluminum and composite materials. Symmetry boundary conditions are 
employed in a quarter symmetry model with displacement component 

0yu =  on 0y =  and 0xu =  along 0x =  as depicted in Fig. 3.18b. 
Displacement 1xu =  is applied on the face x h= . The microstructure and 
RVE are the same as in Sect. 3.2.3. The material properties are 

 
Material Young’s modulus, E (GPa) Poisson ratio 

Aluminum 
al 73.8E =  al 0.25ν =  

Epoxy (matrix) 
epoxy 3.45E =  epoxy 0.3ν =  

Boron (fiber) 
boron 413E =  boron 0.2ν =  

The components of the homogenized elastic stiffness matrix for the 
composite are 

1111E  
(GPa) 

1122E  
(GPa) 

1133E  
(GPa) 

2222E  
(GPa) 

2233E  
(GPa) 

1212E  
(GPa) 

3333E  
(GPa) 

9.93 4.39 4.14 10.59 4.27 2.58 137.32 
 

The initial level-0 mesh consists of 225 level-0 QUAD4 elements. 
Level-0 macroscopic stresses at the bonded interface 0.5y h=  are plotted 
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in Fig. 3.19. In the composite, a high gradient of the tensile stress xxΣ   
results near the interface A at 0.25x h= , with a high peak at A. Subse-
quently, xxΣ  drops to a very small value between 0.25x h=  and 0.5x h= . 
The composite stress yyΣ  (not shown) is compressive and exhibits a singular 
behavior at 0.25x h=  due to material mismatch and free edge constraints. 
The shear stress xyΣ  is generally zero in the composite along this line,  
 

Fig 3.18. (a) Double-lap aluminum/boron-epoxy composite bonded joint, (b) 
macroscopic model of multilevel mesh, (c) zoomed in region of the macroscopic 
mesh undergoing level transition, (d) microscopic VCFEM analysis level-2 
regions 
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with the exception near A, where it exhibits a sharp gradient with a sign 
reversal. The small peaks at 0.5x h=  result from free edge conditions. In 
the aluminum panel, the stresses xxΣ  and xyΣ  start from zero at 0.25x h=  
and reach a maximum with a very high gradient near the point A. Subse-
quently, they stabilize at lower values, satisfying the traction free boundary 
conditions on the top surface 0.05y h= . The stress yyΣ  is also compres-
sive and very high near the interface 0.25x h= . These macroscopic results  

xxΣ ; (b) xyΣ  in aluminum and composite at 0.05y h=  
 

Fig. 3.19. Stresses (a) 
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qualitatively match the predictions of stresses made in [66]. The adapted 
multiple levels showing the microstructural region are depicted in Fig. 3.18. 

kE  in (3.32) is based on xxΣ  and level-1 to level-2 transition takes place 
according to (3.51). The evolved multilevel mesh in Fig. 3.18b, c has 667 
level-0 elements, seven transition elements, and four level-2 elements. The 
level-2 elements consist of a total of 203 microstructural Voronoi cell ele-
ments. Plots in Fig. 3.20 compares (a) the level-0 macroscopic stress,  
(b) the level-2 microscopic stress, and (c) the average microscopic stress, 
in the x-direction near the critical point A. The homogenized stresses do 
not match with the average microscopic stresses near A. However, they are  

Fig. 3.20. Level-2 stress (a) xxσ ; (b) xyσ  in aluminum and composite at 0.05y h=  
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the same away from the critical region, proving that homogenization is not 
effective at critical singular regions. The solution demonstrates the ability 
of the multilevel computational model in analyzing real problems with 
high efficiency and accuracy. 

3.4 Multilevel Model for Damage Analysis in Composites 

The adaptive concurrent multiscale modeling framework developed in 
Sect. 3.3 is extended to problems of composite structures undergoing 
damage initiation and growth due to microstructural damage induced by 
debonding at the fiber–matrix interface. Important changes in the three-
level framework in the presence of damage are: 

1. Incremental formulation is necessary to account for the history and 
path dependence of evolving damage. 

2. The Voronoi cell FEM explicitly incorporates evolving damage (by 
interfacial debonding here) in the microstructure with inclusions. 

3. An anisotropic continuum damage mechanics (CDM) model is 
developed for constitutive modeling of level-0 elements to replace the 
constant homogenized stiffness in pure elastic problems. 

The CDM model has been developed for unidirectional fiber-reinforced 
composites undergoing interfacial debonding by using homogenization 
theory in [36, 63]. It homogenizes the damage incurred through initiation 
and growth of interfacial debonding in a microstructural RVE and can 
effectively handle arbitrary loading conditions. An important assumption 
that is made in the derivation of this CDM is that the size of the RVE 
SERVE remains the same throughout the damage process. Extensive 
discussion of evolving damage in composites is provided in Talreja et al. 
[12, 76]. In [73], it has been shown that as the extent of damage increases 
with increasing strain, the SERVE size also increases. Continual increase 
in the SERVE size with evolving damage provides ground for its restricted 
use in homogenization schemes that use RVEs for evaluating continuum 
constitutive models. The breakdown of SERVE leads to the consideration 
of the level-2 elements in these regions. 

In [36], the CDM model of [63] is incorporated in an adaptive 
concurrent multilevel computational model to analyze multiscale evolution 
of damage in composites. Damage by fiber–matrix interface debonding is 
explicitly modeled over extended microstructural regions at critical 
locations using the Voronoi cell FEM developed in [34, 45], where a layer 
of cohesive springs model in the fiber–matrix interface. In this section, the 
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adaptive multilevel modeling framework is discussed for composites with 
evolving damage with numerical examples demonstrating its effectiveness. 

3.4.1 Voronoi Cell FEM with Microstructural Damage 

for incorporating explicit damage evolution in the form of interfacial 
debonding as detailed in [34, 45]. Figure 3.21a shows a schematic of  
a typical Voronoi cell element with nonlinear cohesive zone springs 
characterizing the matrix–inclusion interface springs. Cohesive zone 
models are effective in depicting material failure as a separation process 
across an extended crack tip [36, 42, 63]. They introduce softening 
constitutive equations relating crack surface tractions to the material 
separation across the crack. The tractions across the interface reach a 
maximum, subsequently decrease, and eventually vanish with increasing 
interfacial separation. Motivated by interatomic potentials in atomistic 
modeling, many cohesive laws use a potential function φ  to describe the 
traction–displacement relation during material separation. The traction–

interfacial separation as 

max maxand ,e
c

c c e

t t
δ δδ

σ δ δ σ δ δ
δ δ δ

−
= ∀ < = ∀ ≥

−
 (3.52)

from which the normal and tangential traction components are derived as 
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⎪ ⎪
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⎪ ⎪
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(3.53)

When the normal displacement nδ  is positive, the traction at the interface 
increases linearly to a maximum value of maxσ  (point A in Fig. 3.21b, c) 
corresponding to a value of cδ  before it starts decreasing to zero at a value 
of eδ  (point C). The unloading behavior in the hardening region is linear 
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displacement relation of a bilinear model in [57] is depicted in Fig. 3.21b, c. 
The magnitude of traction t is expressed as a bilinear function of the 

The micromechanical Voronoi cell FEM outlined in Sect. 3.3.2 is extended 



following the loading path. In the softening region, the unloading proceeds 
along a different linear path from the current position to the origin with a 
reduced stiffness given by the traction–displacement relation (line BO): 

max
max max max

max

ande
c e

c e

t
δ δ δ

σ δ δ δ δ δ
δ δ δ

−
= ∀ ≤ ≤ ≤

−
 (3.54)

An irreversible damage path (OBC) is followed for reloading. Both 
normal and tangential tractions vanish when eδ δ> . When the normal 
displacement is negative in compression, stiff penalty springs with high 
stiffness are introduced between the node pairs at the interface. The 
location of the separation at the debonding point is independent of the 
location of the peak of the curve for the bilinear model. This gives 
flexibility to adjust interfacial parameters for the peak and debonding 
locations to match the experimental observations as discussed in [34, 45]. 

In an incremental formulation, the complementary energy functional 
for each element in (3.24) is expressed in terms of the incremented stresses 
and displacements as 

Terms 1
2 ij ijkl klσ σS  and 1

2 ijkl ij kl ijkl ij klσ σ σ σ∆ ∆ + ∆S S  are the complementary 
energy density and its increment, respectively. The prefix ∆  corresponds 
to increments, and subscripts n and t correspond to the normal and 
tangential directions at the matrix–inclusion interface. Here en  and cn  are 
the outward normal on eΩ∂  and cΩ∂ , respectively. The two terms on the 
matrix–inclusion interface VCE

cΩ∂  provide the work done by the interfacial 
tractions m m m m m

n tT T= +T n t  due to interfacial separation ( )m c−u u . The 
integration over the incremental displacements at the interface cΩ∂  is 
conducted by the backward Euler method. The total energy functional for 
each level-2 or transition element containing VCEN  Voronoi cell elements 
is obtained by adding individual element contributions as in (3.25). 
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(a) 

 
                     (b)                                       (c) 

Fig. 3.21. (a) Voronoi cell FE with fiber–matrix interface using cohesive springs, 
(b) normal, and (c) tangential, traction–displacement behavior for bilinear 
cohesive zone model 

Substituting stress and displacement increment interpolations of (3.26) 
in (3.71) and setting variations with respect to the stress coefficients m∆β  
and m∆β , respectively, to zero, results in the weak form of the element 
kinematic relation, stated in a condensed matrix form as 

.

e e

m m
e e m m

c c
n n

+ ∆
+ ∆

= + ∆
+ ∆

+ ∆

⎧ ⎫
⎧ ⎫ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭ ⎪ ⎪

⎩ ⎭

q q
β β

H G q q
β β

q q
 (3.56)

The weak forms of the global traction continuity conditions are 
subsequently solved by setting the variation of the total energy function, 
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with respect to e∆q , m∆q , and c∆q , to zero. This results in the weak form 
of the traction reciprocity conditions, stated in a condensed form as 

{ }
vc vc

1 1

.
m mN N

e e

c c
e e= =

+ ∆
=

+ ∆

⎧ ⎫
⎡ ⎤ ⎨ ⎬⎣ ⎦

⎩ ⎭
∑ ∑

β β
G R

β β
 (3.57)

Substituting (3.56) into (3.57) yields 

{ } { }
vc vc1

1 1

N N
e e e e

e e

−

= =

+ ∆ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑G H G q q R  (3.58)

that is solved iteratively. Several numerical examples, validating this 
VCFE model, are solved in [34, 45]. 

elements requires the evaluation of different variables in the RVE from 
known values of macroscopic strains. A small variant of the formulation in 
(3.55) is needed for the energy functional of a SERVE (Y). The functional 
with Y-periodic displacements, Y-antiperiodic tractions on the boundary 
and imposed macroscopic strain ( )ij ije e+ ∆  is written as 
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The boxed term corresponds to the additional energy due to the imposed 
macroscopic strain field on Y. Euler–Lagrange equations for this functional 
are the multiscale kinematic relations, 
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As discussed in Sect. 3.3.2, the postprocessing phase for level-1 



3.4.2 Anisotropic CDM Model for Level-0 Subdomain 0lΩ  

For microstructures with randomly evolving microcracks or debonding 
causing diffused damage, the homogenized material behavior is best 
represented by a CDM law [2, 12, 20, 76]. An anisotropic CDM model 
with a fourth-order damage tensor has been developed from rigorous 
micromechanical analyses in [36, 63]. The general form of CDM models 
[2, 42, 70, 75] introduce a fictitious effective stress ijΣ�  acting on an 
effective resisting area A� , which is caused by reduction of the original 
resisting area A due to material degradation from the presence of 
microcracks and stress concentration in the vicinity of cracks. The 
effective stress ijΣ�  is related to the actual Cauchy stress ijΣ  through the 
relation ( )ij ijkl klMΣ Σ= D� , where ijklM  is a fourth-order damage effect 
tensor that is a function of the fourth-order damage tensor 

( )ijkl i j k lD= ⊗ ⊗ ⊗D e e e e . The hypothesis of equivalent elastic energy is 
used to evaluate ijklM , and hence establish a relation between the damaged 
and undamaged stiffnesses [15, 19, 80]. Equivalence is established by 
equating the elastic energy in the damaged state to that in a hypothetical 
undamaged state as 

1 1o1 1
2 2

( , ) ( ( )) ( , ) ( ) ,ij kl ij klijkl ijklW WE EΣ Σ Σ Σ− −= = =Σ D D Σ 0 � ��  (3.61)

where o
ijklE  is the elastic stiffness tensor in the undamaged state and 

( )ijklE D  is the stiffness in a damaged state. The relation between the 
damaged and undamaged stiffnesses is thus 

1 o 1( ) ( )ijkl pqrspqij rsklE EM M− −=  (3.62)

with an appropriate assumption of a function for ijklM , (3.62) can be used 
to formulate a damage evolution model using micromechanics and homo-
genization. A damage evolution surface is introduced to delineate the inter-
face between damaged and undamaged domains in the strain ije -space as 

d
1

0.
2

( )ij ijkl klF e P e Wκ α= − =  (3.63)

Here d
1 d
2 ij kl ijklW e e E⎛ ⎞=⎜ ⎟

⎝ ⎠∫
energy density due to stiffness degradation for constant strain without an 
external work supply. Also called the degrading dissipation energy, it is an 
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 corresponds to the dissipation of the strain 



internal variable denoting the current state of damage. ijklP  is a symmetric 
negative-definite fourth-order tensor that will be expressed as a function of 
the strain tensor ije , α  is a scaling parameter and κ  is a function of dW . 
Assuming associativity rule in the stiffness space, the evolution of the 
fourth-order secant stiffness is obtained as 

1
2

.ijkl ijkl

ij kl

F
E P

e e
λ λ

∂
= =

∂ ⎛ ⎞
⎜ ⎟
⎝ ⎠

� ��  (3.64)

( )ijkl mnP e  corresponds to the direction of the rate of stiffness degradation 
tensor ijklE� . For a composite material with interfacial debonding, the 
direction of rate of stiffness degradation varies with increasing damage and 
hence ( )ijkl mnP e  does not remain a constant throughout the loading process. 
The model requires the evaluation of κ , α , and ijklP  in (3.63). These are 
determined from the results of VCFEM-based micromechanical 
simulations of an RVE with periodic boundary conditions. The function 

d( )Wκ  is evaluated for a reference loading path and all other strain paths 
are scaled with respect to this reference. Upon determination of the 
maximum value dW  for a reference loading condition, the value of α  for 
any strain path can be obtained by simple scaling. To account for the 
variation of ( )ijkl mnP e , any macroscopic strain evolution path is discretized 
into a finite set of points. The values of ijklP  are explicitly evaluated at 
these points from RVE-based simulations. Values of ijklP  for any arbitrary 
macroscopic strain value can then be determined by interpolating between 
nodal values using shape functions of a 3D linear hexahedral element. 
Details of the parameter evaluation process in the macroscopic CDM 
model are discussed in [36, 63]. Gradients of important field variables are 
evaluated from macroscopic analysis using the CDM to assess the 
deviation of macroscopic uniformity. Such gradients may be the effect of 
microscopic nonhomogeneity in the form of highly localized stresses and 
strains or damage. 

Numerical example with the anisotropic CDM 

The macroscopic finite element model with its constitutive relations 
represented by the CDM model is validated by comparison of results with 
those obtained by homogenizing micromechanical solutions. The 
macroscopic model consists of a single QUAD4 element. For the 
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fraction 21.78% (see Fig. 3.22a) is constructed with periodic boundary. As 

multifiber domain is tessellated into a network of Voronoi cells for the 
entire region, and the boundary of the RVE is generated as the aggregate 

The material properties of the elastic matrix (m) and fibers (f) and the 
cohesive zone model parameters are: 

 
mE  

(GPa) 
mν  fE  

(GPa) 
fν  cδ  (m) eδ  (m) 

maxσ  
(GPa) 

4.6 0.4 210.0 0.3 55.0 10−×  420.0 10−×  0.2 

 
Three different macroscopic strain paths are considered for loading 

conditions, viz.: 

(L1) 0, 0xx yy xyε ε ε≠ = =  
(L2) 0, 0xy yy xxε ε ε≠ = =  
(L3) 0xx yy xyε ε ε= = − ≠  

The parameter d( )Wκ  is evaluated from the reference loading (L1) 
corresponding to uniaxial tension. The strain state (L2) corresponds to 
shear loading condition, while the load (L3) represents a combination of 
all strain components. The macroscopic stress–strain plots by the CDM 
model are compared with the homogenized micromechanical analyses 
results in Figs. 3.21b–d. All the nonzero stress components are plotted for 
each of the loading conditions, and excellent agreement is observed. In the 
shear loaded case, while xxσ  and yyσ  are zero prior to the onset of 
damage, they continue to increase with softening and debonding of the 
interface. This is due to the different interface behavior in tension and 
compression. For the combined straining case, a more complex stress–
strain behavior is observed. The debonding initiation and propagation is 
dispersed in the microstructure with 20 fibers and hence a very gradual 
reduction of stiffness is observed. The homogenized CDM model 
developed, predicts the true macroscopic damage behavior with high 
accuracy and efficiency. 
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microstructure, a nonuniform RVE with 20 circular fibers of volume 

Chapter 3: Adaptive Concurrent Multilevel Model

explained in [62, 64] and Sect.  3 .3.2 (Fig. 3.8b), a local microstructure is 

be easily imposed by constraining the node pairs to move identically. 

first constructed by repeating the set of randomly distributed fibers that lie 

of the outside edges of Voronoi cells associated with the original set of 

in a window in both the x and y directions for several period lengths. The 

fibers. Periodicity constraint conditions on nodal displacements can then 



Fig. 3.22. Comparison of macroscopic stress–strain curves by CDM and 
homogenizing micromechanical solution: (a) a statistically equivalent RVE with 
20 circular fibers, stress–strain plots for load cases, (b) L1, (c) L2, and (d) L3 

3.4.3 Coupling Levels in the Concurrent Multiscale Algorithms 

In a manner similar to Sect. 3.3.3, the incremental form of the equation of 
principle of virtual work equation for hetΩ  at the end of an increment can 
be written as the sum of contributions from each individual domain as 
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  (a)    (b) 

 
  (c)     (d) 

142         S. Ghosh 



The discretized algebraic form of (3.65) is solved by using the Newton–
Raphson iterative solver. Setting up the tangent stiffness matrix requires 
consistent linearization by taking directional derivative of (3.65) along 
incremental displacement vectors ∆u  and ∆v  and the Lagrange multi-
pliers ∆λ . For the ith iteration in the solution of the incremental variables, 
assembled matrix equations have the following structure. 
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10 / 1110 / 11 10 / 11 10 / 11
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All the components have the same meaning as explained in Sect. 3.3.3. 
The stiffness 12 / trK  and the load vector 12 / tr∆F  for level-2 and transition 
elements are obtained by VCFEM calculations followed by static conden-
sation to represent the virtual work in terms of the boundary terms only. 

3.4.4 Adaptation Criteria for Mesh Refinement and Level 
Change 

The following criteria are used for mesh-refinement and level transitions 
due to discretization and modeling error, respectively, in the multilevel 
model. Many of these adaptation criteria are physically based, depending 
on the problem in consideration, since rigorous mathematical error bounds 
may not even exist for these nonlinear problems with damage. Conse-
quently, other indicators may be used as appropriate. 

Refinement of level-0 and level-1 meshes by h-adaptation 

Computational models in level-0 and level-1 subdomains are enriched by 
h-adaptation to reduce discretization “error” and to identify regions of 
modeling error by zooming in on regions of localization with high gradients. 
For simulations using the CDM model, the adaptation criterion is formu-
lated in terms of the traction jump across adjacent element boundaries, 

      143 Chapter 3: Adaptive Concurrent Multilevel Model

representing local stress gradients. The condition is stated as: 
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Here NE is the total number of level-0 and level-1 elements in the entire 
computational domain, xT , yT  are the components of element boundary 
tractions in the x and y directions, and [[ ]] is the jump operator across 
element boundary e∂Ω . 1 1C <  is chosen from numerical experiments. 

Criteria for switching from level-0 to level-1 elements 

Level-0 to level-1 element transition takes place according to criteria 
signaling the departure from conditions of homogenizability. The criteria 
are based on macroscopic variables in the CDM model of level-0 elements. 
The degrading dissipation energy dW  is a strong indicator of localized 
damage evolution and hence, a criterion is formulated as: 

Switch element “k” from level-0 to level-1 if: 

gde gde
d 2 max d max* ( ) * *( ) ,k kE W C E W>  (3.68) 

where gde

kE  is the norm of the local gradient of d( )kW , expressed as 
2 2

gde d d

1 2

( ) ( )e e
e

W W
E

x x
∂ ∂

= +
∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, gde
maxE  is the maximum value of gde

kE  in 

all elements and 2 ( 1)C <  is a prescribed tolerance. The criterion (3.68) is 
helpful for seeking out regions with high gradients of dW  in regions of 
high dW  itself. The local gradient is accurately evaluated using the 
Zienkiewicz–Zhu (ZZ) gradient patch recovery method [81], where dW  is 
interpolated using a polynomial function over a patch of elements 
connected to a nodal point. The gradients of dW  in each element are 
calculated from the nodal values using element shape functions. 

Criteria for switching from level-1 to level-2 elements 

For elements in which macroscopic uniformity does not hold in the sense 
of (3.68), departure from RVE periodicity condition is used to trigger a 
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Refine element “k,” if the traction jump error satisfies the condition 



terms of evolving variables, e.g., the average strain at the fiber–matrix 
interface in the local microstructural RVE. The average strain is defined as 

1 1
d ([ ] [ ] )d

d d
,

c c

c c

ij ij i j j iD u n u n
Ω Ω

Ω Ω

ε Ω Ω
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∂ ∂

= ∂ = + ∂
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∪ ∪

 (3.69)

where the integral is evaluated over all fiber–matrix interfaces in the RVE. 
The jump in displacement across the fiber–matrix interface with a normal 

in  is denoted by [ ]iu . For perfect interfaces [ ]iu  will be zero. Thus, ijD  
corresponds to the contributions to the macroscopic strain due to damage 
only, since 0ijD =  in the absence of damage. Departure from periodicity 
will result in a significantly altered averaged strain ijD  in response to 
different conditions on the boundary of the microstructural region. For 
example, let , 2e l

ijD  correspond to a solution of the boundary value problem 
of the local microstructure included in a level-2 element (see Fig. 3.12), 
subject to boundary displacements that have been obtained from 
macroscopic level-0/level-1 analysis. The microstructural scale is explicit 
in this analysis, since periodicity is not imposed on the boundary. On the 
other hand, let ,RVEe

ijD  be from the solution of a boundary value problem of 
the local RVE with imposed macroscopic strains and subjected to periodic 
boundary displacements constraints. The difference in these two strains for 
a level-1 element k is quantified as 

( )dper , 2 ,RVE , 2 ,RVE , 2 ,RVE
11 11 22 22 12 12max , , .k l k k l k k l k

kE D D D D D D= − − −  (3.70)

For evaluating , 2e l
ijD  in the incremental solution, only the increments in the 

present step are calculated by the level-1 macroscopic displacement 
boundary conditions. It is assumed that the RVE-based solution is valid all 
the way up to (but excluding) the present step. The departure from 
periodicity is measured in terms of the difference in averaged strains dper

eE . 
The criterion thus reads: 

Switch element “k” from level-1 to level-2 if: 
dper RVE

3 max ,eE C D>  (3.71)

where RVE
maxD  is the maximum value of ,RVEk

ijD  in all level-1 elements. 

Remark: Once the level-2 and transition elements have been identified, it is 
important to update the local states of stress, strain, and damage to the 
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switch from level-1 to level-2. The switching criterion is developed in 



3.4.5 Numerical Examples with the Adaptive Multilevel Model 

Two numerical examples are solved to study the effectiveness of the 
multilevel computational model in analyzing damage in composite 
materials. 

Multilevel model vs. micromechanical analysis 

This example is aimed at establishing the effectiveness of the multilevel 
model in analyzing a nonuniform composite microstructure by comparing 
its predictions with those by pure micromechanical analysis. It is 
computationally intensive to conduct the reference micromechanical 
analysis with evolving damage for very large microstructural regions. 
Consequently, a computational domain with a small population of fibers, 
as shown in the optical micrograph of Fig. 3.23a, is considered. The 
polymer matrix composite micrograph has a random dispersion of uniaxial 
fibers. The dimensions of the micrograph analyzed are 100µm 70.09µm× , 
containing 264 circular fibers. Each fiber has a diameter of 1.645µm  for a 
total volume fraction of 32%. Though the domain is not adequate for a 
clear separation between continuum and micromechanical regions (since 
relatively large regions are needed to realize an RVE), the results of this 
example show the effectiveness of the overall framework. 

The optical micrograph is mapped onto a simulated microstructure 
with circular fibers that is tessellated into a mesh of 264 Voronoi cell 
elements, shown in Fig. 3.23b. The constituent materials are an epoxy 
resin matrix, stainless steel reinforcing fibers, and a very thin film of 
freekote ( 0.1µm< ) at the fiber–matrix interface. The freekote imparts 
weak strength to the steel–epoxy interface, which allows a stable growth of 
the debond crack for experimental observation. The experimental methods 
of material and interface characterization have been discussed in [34]. 
Both the matrix and fiber materials are characterized by isotropic elasticity 
properties, viz. epoxy 4.6 GPaE = , epoxy 0.4ν = , steel 210GPaE = , steel 0.3ν = .  

current state. This step should precede the coupled concurrent analysis. For 
this analysis, the history of the macroscopic displacement solution on the 
boundaries of the level-0/level-1 elements is used. The local micro-
mechanical (VCFEM) boundary value problem for the level-2 element is 
incrementally solved from the beginning to obtain the stress, strain, and 
damage history in the microstructure from the macroscopic boundary 
displacement history. 
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(a) 

            
(b) 

Fig. 3.23. (a) Optical micrograph of a steel fiber–epoxy matrix composite with 
264 fibers and (b) the simulated computational model with a Voronoi cell mesh 

The cohesive model properties are: 5.1 5c e mδ = − , 3.1 4e e mδ = − , and 
max 0.005GPaσ =

0.1%xx = . The 
displacement is imposed on the right edge, as shown in Fig. 3.23b. 

The pure micromechanical VCFEM solution using the mesh of 
Fig. 3.23b is presented in [45] and is used here as reference solutions for 
the multiscale simulation. Figure 3.26a shows the contour plot of 
microscopic stress xxσ  at the final step of the micromechanical simulation, 
with a depiction of interfacial debonding. The right side of the microstructure 
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ε0.1µm , to a total strain of 20 equal increments of 
. The micrograph is stretched in horizontal tension by 



shows significant localized damage. Debonding initiates at the top and 
percolates to the bottom of the microstructure along a narrow band. 
Multiscale analysis is performed by the concurrent multilevel model and 
the results are compared with those from the micromechanical VCFEM 
analysis. For the multilevel model, the entire computational region of 264 
fibers is first divided into nine macroscopic finite elements as shown in 
Fig. 3.24a. For evaluating the homogenized constitutive properties for each 
element, the statistically equivalent representative volume element, or 
SERVE, for the microstructure underlying each macroscopic element is 
first identified. Statistical methods for identification of the SERVE have 
been discussed in Sect. 3.3.2.3 and also in [13, 32, 33, 60, 69, 72, 73]. 
However, since the number of fibers in the micrograph is limited in this 
exercise, the SERVE for each element is assumed to consist of all the 
fibers belonging to that element. For example, to generate the SERVE for 
an element window in the micrograph of Fig. 3.23b, all fibers whose 
centers are located within this window are first identified as constituents of 
the RVE and the SERVE is then created. The number of fibers and their 
distribution in the SERVE of each macroscopic element is shown in 
Fig. 3.24a. 

The number of elements is only nine in this example. Consequently, 
level-0 simulations with the CDM model are bypassed, and all elements 
are level-1 at the start of the multilevel simulation. The factor 3C  in (3.71) 
is taken as 0.2. However the , 2 ,RVEk l k

ij ijD D−  terms for each element in 
(3.70) are replaced by the difference in RVE-based averaged strains 
between adjacent elements, i.e., 1,RVE 2,RVEe e

ij ijD D− . Also, instead of 
transition elements, a single layer of microscopic Voronoi cell elements is 
included for transitioning between the level-1 and level-2 elements. In 
Fig. 3.24b the Voronoi elements containing the grey fibers constitute the 
transition layer, while those containing the black fibers belong to level-2. 
An interface segment intΓ  is inserted between the transition and level-1 
elements at a distance tr 2/lL  from the right edge. Convergence properties of 
the multilevel model are studied for two cases, viz. tr 2 0.35//l =L L  and 

tr 2 0.45//l =L L . This is achieved by changing the initial level-1 element 
size. 

In Fig. 3.24b, only three elements (3, 6, and 9) on the right side of the 
initial mesh switch from level-1 to level-2. A comparison of results by  
(a) VCFEM-based micromechanical analyses (all level-2 elements),  
(b) homogenization-based macroscopic analysis (all level-1 elements), and 
(c) concurrent multilevel analysis (level-1 and level-2 elements) is made. 
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(a)   

 
(b) 

Fig. 3.24. Mesh for the computational domain: (a) macroscopic mesh with 
different RVE in every element and (b) multilevel model with the interface 
between macroscopic and microscopic VCFE elements 

Contour plots of 11σ
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the simulation are shown in Fig. 3.24b, c. The discrepancy between the 
 (GPa) showing interfacial debonding at the end of 



damage paths predicted by the micromechanical and the multilevel 
analyses reduces sharply with increasing tr / 2 /lL L  value. This can be 
attributed to the fact that the damage path is very sensitive to the macro–
micro interface conditions. Since the sample size is small and there is no 
real periodicity in the microstructure, the proximity of the level-1 boundary 
to the damage localization zone alters the local boundary conditions. 
However, as this distance is increased, the microscopic stress distribution, 
debonding pattern and damage zone replicates the micromechanical 
analysis results. This is due to the fact that the damage localization has 
little effect on the level-1/level-2 boundary with increasing distance. The 
distribution of the micromechanical stresses 11σ , generated by pure 
micromechanical and multilevel analyses, is plotted along a line through 

 

 
Fig. 3.25. Comparison of microscopic stress 11σ  by different methods along a line 
through the middle of microstructure 

150         S. Ghosh 

the middle of the micrograph in Fig. 3.25. The micromechanical stresses 
show only minor oscillations about an average value of 0.005 GPa in the 
region to the left of the level-1–level-2 interface. In the region to the right, 
where damage is predominant, there is clearly convergence of the stresses 
with increasing tr / 2 /lL L  value. The macroscopic or averaged stress–
strain response for element 1 (always level-1) and element 9 (changes 
levels) are plotted in Fig. 3.25. The volume averaged stresses and strains 
are evaluated by averaging the local fields over the microscopic domain as
 



 
(b) 

 (c) 

Fig. 3.26. Contour plot of 11σ  showing interfacial debonding at the end of 
simulation for: (a) pure micromechanical analysis, (b) multiscale analysis with 

tr / 2 0.35/l =L L , and (c) multiscale analysis with tr / 2 0.45/l =L L  

 
(a) 
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1 2 1 2

1 1
( , )d and , d( ) ,ij ij ij ij ijx x e x x D

Ω Ω
Σ σ Ω Ω

Ω Ω
ε== −∫ ∫  (3.72)

A composite double lap joint with microstructural debonding 

 

adhesiveE  
(GPa) 

adhesiveν  cδ  (m) eδ  (m) 
maxσ  

(GPa) 
4.6 0.4 55.0 10−×  420.0 10−× 0.2 

 

Only a quarter of the joint is modeled from considerations of symmetry 
in boundary and loading conditions. In the model, the top ply above the 
adhesive is assumed to consist of ten rows of fiber, while the bottom row 
consists of five rows resulting in a total of 450 fibers. The number of fibers 
is kept low, so that a reference micromechanical analysis can be easily 
done for this example with a mesh of 450 Voronoi elements (square unit 
cell). The displacement component is 1 0u =  along the face 2 0x =  due to  
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where ijD  is the strain jump defined in (3.68). The results for all the 
models are in good agreement for element 1, where there is no significant 
microstructural damage. The small difference is due to the periodicity 
constraints imposed on the microstructure. Also, there is a difference 
between the results of tr / 2 0.35/l =L L  and tr / 2 0.45/l =L L , due to the 
interface conditions at intΓ . However, as is expected, the results are quite 
different for element 9, where significant damage is observed in Fig. 3.26. 
The level-1 analysis shows significant deviation from the micromechanical 
analysis due to imposed periodicity in the damage zone. Once again, the 
results improve significantly with increasing tr / 2 /lL L  ratio. 

The double lap bonded adhesive joint with boron–epoxy composites, 
discussed in Sect. 3.4.3, is again analyzed with interfacial damage. An 
adhesive, ABCD in Fig. 3.27a, is used to bond the two composite 
materials. Both plies above and below the adhesive are made of uni-
directional boron fiber–epoxy matrix composite materials. The fibers are 
uniformly arranged in a square array, implying a square unit cell with a 
single circular fiber of f 20%V = . The epoxy matrix and boron fibers have 
the same properties as described in the previous section. The material 
properties of the isotropic adhesive and the bilinear cohesive law 
parameters for the matrix–fiber interface are: 



 
(a) 

             
(b) 
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symmetry about the 2x  axis. The displacement components along the face 
1 8x h=  are 1 0u =  and 2 0u =  corresponding to a fixed edge. A total 

tensile displacement 3
1 1.2 10u h−= ×  is applied on the face of the lower ply 

at 1 0x =  in 15 uniform increments. Three different approaches are used to 
solve this problem (1) a macroscopic model using the CDM model, (2) a 
detailed micromechanical VCFEM analysis, and (3) multiscale analysis by 
the multilevel model. 

The starting mesh in the multilevel model of the bonded joint consists 
of a uniform grid of 470 QUAD4 elements for macroscopic analysis as 
shown in Fig. 3.27b. The constitutive relation for each element is a fourth-
order anisotropic CDM model developed for this unit cell with interfacial 
cohesive zone in [63]. Figure 3.27d shows the gradient of the dissipation 
energy, i.e., dW∇ , at the final stage of loading. Damage initiates near the 
bottom left corner A of the adhesive joint and propagates downward to 
span the entire region on the left of point A. Level transition parameters 
are 2 0.5C =  and 3 0.1C = . The corresponding evolution of various levels 



 
(d) 

Fig. 3.27. (a) A composite double lap joint, (b) level-0 computational mesh, (c) 
evolution of the multilevel computational model with level transition at the final 
loading stage, and (d) contour plot of dissipation energy gradient dW∇  

Figure 3.28a, b depicts the contours of microscopic stress 11σ  and the 
regions of debonding. The results of the multilevel model are in excellent 
agreement with the micromechanical analysis, both with respect to  
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(c) 

mesh consists of 446 level-0 elements, 0 level-1 elements, 14 level-2 
elements, and 10 transition elements. All level-2 elements emerge in 
critical regions where both dW∇  and dW  are high. 

in the model is depicted in Fig. 3.27c. At the final step, the multilevel 



 

   (b)  

                                                                  (c) 

Fig. 3.28. Level-2 solution near the corner A showing microscopic stress 
distribution (GPa) and interfacial debonding at the end of the analysis by: (a) pure 
micromechanical analysis, (b) multiscale analysis, and (c) comparison of 11σ  along 
the vertical line through the microstructure by multilevel and micromechanical 
analysis 
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(a) 





different locations, P1 and P2 shown in Fig. 3.27b. At P2, with low 
damage and its gradient, solutions by the CDM model and micromechanics 
are in relatively good agreement. At this point, the multiscale model uses 
the CDM constitutive law. However, the CDM results are quite different 
from the other two at P1, a hotspot where the damage and its gradient are 
high. The multilevel model and micromechanics results match quite well 
here. 

Computational efficiency of the multilevel model is examined by a 
comparison of the CPU time on an IA32 computer cluster for the different 
models. The relative CPU times are as follows: (1) 71 s for all level-0, (2) 
300,330 s for all level-1, (3) 300,310 s for all level-2, and (4) 42,260 s for 
the multilevel model. Although the macroscopic CDM analysis is faster, it 
can lead to significant errors. The complete level-1 solution is even slower 
than the micromechanics solution. Accurate analysis with the multilevel 
model is at least seven times faster than the complete micromechanics and 
level-1 solutions. The efficiency increases rapidly with increasing number 
of fibers in the analysis as shown in [36]. 

3.5 Conclusions 

A comprehensive framework for adaptive concurrent multilevel computa-

structural damage is manifested by fiber–matrix interfacial debonding here, 
any possible mode, e.g., multicrack evolution [46], can be incorporated 
into this framework. The multilevel model invokes two-way coupling of 
scales, viz. a bottom-up coupling with homogenization at lower scales to 
introduce reduced order continuum models and a top-down coupling at 
critical hot spots to transcend scales for following the microstructural 
damage evolution. Adaptive capabilities enable effective domain decom-
position in the evolving problem with damage, keeping a balance between 
computational efficiency and accuracy. Numerical examples establish the 
accuracy and efficiency aspects of the model, as well as demonstrate its 
capability in handling problems involving large composite domains. Overall, 
this work lays an effective foundation for solving multiscale problems invol-
ving localization, damage, and crack evolution that may be impossible to 
achieve using any single scale model. 
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averaging, and (c) multiscale analysis with the multilevel model at two 

tional analysis is developed in this chapter for multiscale analysis of 
fiber-reinforced composite materials with damage prediction. While, micro-
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