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1.1 Introduction 

The accumulated in last decades knowledge of fibre-reinforced composite 
materials, their effective properties as well as deformation and damage 
processes in them confirms a random (probabilistic) character of their 
failure (see, e.g. [1–4] and references therein). Such a character is deter-
mined by the specificity of microstructure of composites – a result of  
a manufacturing process of embedding of a huge number of reinforcing 
elements into a matrix. The resulting microscopic heterogeneity linked to 
randomness in positions of fibres, their bonding with the matrix, presence 
of microdefects, etc. causes a spatially and temporally non-uniform res-
ponse to external loading even under macroscopically uniform loading 
conditions. The resulting pattern of deformation localisation and stress con-
centrations is neither uniform nor periodic; it defines macroscopic non-
uniformity in evolution of various damage mechanisms. 

At the current level of computational facilities, direct introduction of 
these stochastic microscopic features into computational models is pro-
hibitive and counterproductive. A significantly better strategy is to employ 

local and global ones. The local level is used to incorporate details of a 
(real) microstructure of composites within a relatively small area (window) 
and to study the effect of its variability while the global one accounts for 
geometry of composite components/structures and loading/environmental 
conditions to study problems of their macroscopic behaviour, structural 

in Multiscale Models 

multiscale models [5] that separate the levels of descriptions into (at least) 



integrity and/or durability. But such separation of scales presupposes a 
necessity to bridge them within a framework of a single computational 
approach. Generally, various schemes to account for material’s random-
ness can be employed both for various scales of modelling and bridging 
procedures. 

The diversity of composites (in terms of constituents, their mor-
phology and a type of reinforcement) makes a general analysis of their 
behaviour, including damage accumulation, practically infeasible. Hence 
this chapter is limited to analysis of the effect of randomness in distri-
butions of filaments in matrix on damage evolution in two-phase fibrous 
composites under external load. A vast literature on composites that assumes 
a periodic character of reinforcement is not considered here (though some 
of its results are employed as an obvious comparison basis). Since only 
plies of unidirectional (continuous) fibre-reinforced composites are con-
sidered, the orientational randomness of inclusions is also not treated here. 
Though 3D studies and simulations are becoming a routine approach, and 
the respective experimental techniques, e.g. micro-X-ray computer tomo-
graphy, can provide necessary volumetric data, for the sake of more 
‘transparency’ a local modelling level in this chapter is limited to (pre-
dominantly) 2D analysis of unidirectional layers in the plane perpendicular 
to its fibres. This is due to the emphasis on transverse (matrix) cracking in 
cross-ply laminates, which is one of their main damage mechanisms under 
static and fatigue loading conditions [2, 4]. So, effectively, the (virginal) 
state of transverse cross-section of plies in such composites can be 
considered as a 2D distribution of circular inclusions in a matrix (Fig. 1.1). 

 

Fig. 1.1. Distribution of continuous graphite fibres in epoxy matrix in a transverse 
cross-section of a unidirectionally reinforced ply (digitalisation of a micrograph) 
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This chapter treats various aspects of randomness at various levels of 
modelling of fibre-reinforced cross-ply laminates – from the character of 
local distributions of fibres to non-uniformity of damage processes and 
cracking evolution and their influence on the composite’s response to 
external loading. 

1.2 Microstructures and Effective Properties 

Though microstructural randomness of composites was obvious to re-
searchers from the very beginning of the studies of such materials, the main 
emphasis of research was on the determination of their overall properties 
that could allow the use of deterministic continuous descriptions. In other 
words, an inhomogeneous material (discrete medium) is substituted by an 
equivalent homogenous one (continuous medium). This can be implemented 
by means of homogenisation procedures, ‘smearing’ microscopic features 
at the macroscopic level of modelling. In many cases, an assumption of 
a coherent mixture or statistical homogeneity is employed: The spatial 
distribution of the phases is assumed to be macroscopically homogeneous 
[6–11]. But even in this case, a full description of a composite with arbi-
trary geometry of phases and their volume fractions is cumbersome, so the 
emphasis is shifted to estimates of the effects of structural and microscopic 
features (volume fractions, shape of filaments, the extent of randomness in 
their distributions, variations in dimensions, etc.). The implementation of 
all of the mentioned factors within the framework of a single model is a 
rather complicated task, so historically effects of a single feature (or of a 
few ones) were studied separately. The research started for cases with so-
called ‘dilute dispersions’ [6], i.e. low-volume fractions of reinforcement 
in a matrix, to exclude the effects due to their interactions, but later on it 
was extended to arbitrary volume fractions. 

The main line of analysis was a use of periodic arrays of reinforcement 
in a matrix. Though micrographs of real microstructures vividly demon-
strated deviations from regular patterns in distributions of inclusions 
(Fig. 1.1), (relative) simplicity of the approach made it very attractive. The 
notion of representative volume, used to estimate the effective properties, 
is also introduced early in the study of composites. According to Hill [6], it 
means a sample with two main properties: 

1. Its structure is ‘entirely typical’ for the composite. 
2. It contains a ‘sufficient number’ of microstructural elements so that 

boundary conditions at the surface of the composite do not affect its 
effective properties. 
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The main schemes used to determine the effective properties of 
composites are either the direct approaches, using, e.g. Voigt and Reuss 
estimates based on assumptions of uniform distributions of the stress and 
strain, respectively, or variational ones, employing, for instance, an elastic 
polarisation tensor [12]. The latter scheme allows one to obtain much 
closer bounds for the effective moduli than the Voigt and Reuss estimates. 
The well-known Hashin–Shtrikman bounds are determined on the basis of 
the original variational approach; the classical extremum principles of 
mechanics are used in [13] to obtain bounds for the overall elastic 
properties of an inhomogeneous system composed of various solid phases 
at arbitrary concentrations with ideal bonding. 

The obtained results and bounds for elastic moduli explicitly depend 
on the volume fraction of constituents, or, for a two-phase composite, on 
the volume fraction of reinforcement due to an apparent relation 

f m 1,V V+ =  (1.1)

where Vf and Vm are volume fractions of reinforcement (fibres) and matrix, 
respectively. 

For a case of fibre-reinforced composites with continuous fibres, one 
of the first results for bounds of the effective elastic moduli for a case of a 
transversely isotropic composite with fibres of the same diameter, arranged 
in a hexagonal array, was obtained in [9]. More general results for a case 
of arbitrary geometry, restricted to the statistically transversal isotropy, are 
obtained in [14]. At the same time, Hashin [14] noted that it was ‘not 
known how to use statistical details of phase geometry in prediction of 
macroscopic elastic behaviour’. The solution was based on the analysis 
performed for a cylindrical sub-region, extending from base to base of the 
fibre-reinforced specimen (Hashin introduced there the well-known now 
abbreviation RVE for representative volume element) with its transverse 
cross-section being, on the one hand, considerably smaller than that of the 
entire specimen but, on the other hand, considerably larger than that of the 
filament. 

The Hashin’s approach deals with a ‘cylinder assemblage’ by contrast 
with the ‘concentric composite circular cylinders’ of Hill [7]. Both ap-
proaches provide the same bounds for the transverse plain-strain bulk 
modulus for a two-phase fibre-reinforced composite. Still, these approaches 
predicted a relatively broad interval of effective properties important for 
various application magnitudes of the volume fraction of fibres Vf ≈ 0.55. 

To improve the obtained bounds, approaches based on multi-point 
correlation functions were introduced. An example of such a function is 
the n-point probability function [15, 16] 
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where I(x) is the characteristic function (known also as indicator function 
[17]) of the phase 1 (e.g. inclusions) 

1, if belongs to phase1,
( )

0, otherwise;
I =

⎧
⎨
⎩

x
x  (1.3)

angular brackets denote an ensemble average. 
The volume fraction Vf is a one-point probability function. The two-

point probability function ( )
2 1 2( , )iS x x  for a phase i of a composite can be 

interpreted as a probability that two points at positions x1 and x2 belong to 
this phase [18]. For statistically isotropic media, the two-point probability 
function depends only on the distance 1 2r = −x x  between the points, 
and the simplified notation ( )

2 ( )iS r  can be used. For a statistically isotropic 
fibrous composite, two estimates hold 

f
2 f(0)S V=  (1.4)

and 
f 2
2 flim ( ) .

r
S r V

→∞
=  (1.5)

Such correlation functions are normally referred to as microstructural 
descriptors, a thorough review of various types of which is given in [17]. 

To introduce the extent of connectedness of microstructural elements 
into consideration (that the two-point probability function lacks), another 
statistical measure – lineal-path function – is introduced in [19]. This 
parameter denoted ( )

2 1 2( , )iL x x  is linked to the probability that a line seg-
ment spanning from x1 and x2 is situated entirely in the phase i. 

Three-point correlation functions are employed in [20] to obtain the 
bounds for elastic properties of composites. One disadvantage of the 
approach is the use of different correlation functions to define the upper 
and lower bounds of properties. So, Milton [21, 22] introduced ‘simplified 
bounds’ for two-component composites that depend on the volume fraction 
of two ‘fundamental geometric parameters’ ξ1 = 1 − ξ2 and η1 = 1 − η2 
(ξ1, η1 ∈ [0,1]). These bounds are more restrictive than the Hashin–
Shtrikman bounds (up to five times narrower according to Milton [21]); the 
latter correspond to cases ξ1 = η1 = 0 and ξ1 = η1 = 1. The self-consistent 
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approximations of [11, 23] correspond – to the same order of approximation 
– to ξ1 = η1 = Vf. The fourth-order correlation functions for composites are 
suggested in [24]. 

An alternative approach to the self-consistent scheme is introduced in 
[25, 26] and coined differential effective medium theory in [26]. According 
to Norris [27], the suggested approach is rooted in the idea of Roscoe [28] 
that extended the famous Einstein’s results on suspensions [29, 30]. One of 
the advantages of the differential scheme – as compared to the self-
consistent one – is that it distinguishes between the two phases. One phase 
is taken as a matrix while the second – filament – is incrementally added to 
it from zero concentration to the final value [25, 27]. At each stage of the 
process, the added inclusions are considered to be embedded in a homo-
geneous material, corresponding to the composite formed by the matrix 
and all the previously added inclusions. This process is described by the 
tensorial differential equation of the following structure: 

1 1
f f

d 1 ( ) ,
d 1V V

= −
−

L L L E  (1.6)

with an obvious condition 

f 2( 0) .V = =L L  (1.7)

Here L is the (fourth-order) tensor of effective moduli of the two-phase 
composite; L1 and L2 are moduli of inclusions and matrix, respectively; 

1 1[ ( )]= + −E I P L L  is a strain concentration tensor; I is a unit tensor and 
tensor P was introduced by Hill [23]. A more generalised scheme is 
suggested in [27], where ‘particles’ of both matrix and inclusions can be 
added simultaneously to the initial material. 

1.3 Microstructures and Their Descriptors 

Since transversal arrangements of fibres in unidirectional layers of real 
composites are vividly random (Fig. 1.1), researchers trying to adequately 
describe them are confronted with several problems: 

1. Characterisation of random microstructures 
2. Comparison of random and periodic microstructures 
3. Introduction of real microstructures into models 

The first problem is traditionally solved with the help of the automatic 
image analysis (AIA) and various tessellation schemes. An attempt to 
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quantify the random distribution of filaments (second phase) in a matrix by 
means of AIA and Dirichlet cell tessellation procedures was undertaken in 
[31, 32]. Voronoi tessellation, based on discretisation of a domain into 
multi-sided convex polygons (known as Voronoi) each containing no more 
than a single filament, is also used to estimate the character of distribution 
of distances between filaments [33, 34]. The distribution of cells is sup-
posed to be of the Poisson type with the cumulative probability distribution 
function accounting for non-overlapping assemblage of filaments (known 
as Gibbs hard-core process) 

f
f f

f f

1ˆ( ) 1 exp 1 .
1

VP V V
V V

⎡ ⎤⎛ ⎞
> = − − −⎢ ⎥⎜ ⎟− ⎝ ⎠⎣ ⎦

 (1.8)

It describes the cumulative probability that the local volume fraction of 
fibres f̂V  exceeds a value Vf; fV  denotes a mean volume fraction. In the 
case of the unidirectional 2D composite with random fibre spacing Vf = h/c, 
where h and c are a fibre radius and a half-spacing between (centres of) 
neighbouring fibres, respectively (Fig. 1.2). The corresponding probability 
density function has the following form [34]: 

f f
f 2

f f f f

1 1( ) exp 1 .
1 1

V Vp V
V V V V

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟− − ⎝ ⎠⎣ ⎦

 (1.9)

The exact relation for the probability density function for inter-fibre 
spacing x in the case of random impenetrable fibres of unit diameter is 
obtained in [35, 36] 

f f

f f

( ) exp ( 1) .
1 1

V Vp x x
V V

⎡ ⎤
= − −⎢ ⎥− −⎣ ⎦

 (1.10)

 

Fig. 1.2. Longitudinal cross-section of unidirectional fibre-reinforced composite 
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A study of micrographs of a carbon fibre-reinforced PEEK prepreg, 
containing about 2,000 fibres with the volume fraction close to 50%, has 
shown that the distribution of Voronoi distances – distances in an arbitrary 
direction from the centroid of a fibre to the Voronoi cell boundary – can be 
assumed as a random one [37]. The Voronoi distance is also used as a 
random variable of the statistical description suggested in [38]. 

1.3.1 Parameters of Microstructure 

Various parameters are introduced to quantify the extent of non-uniformity 
in distributions of filaments in composites. Several such parameters are 
suggested in [39]. The first one – homogeneity distribution parameter ξ – 
characterises the closeness of N particles (e.g. fibres in a transversal cross-
section) within the window with area A 

p .
/

d
A N

ξ =  (1.11)

This parameter is a ratio of two magnitudes of an inter-particle distance, 
one, dp, corresponding to the peak of probability density diagram for this 
parameter and another being an effective average of it. Obviously, for a 
square lattice ξ = 1; its value diminishes with the increase in clusterisation. 
Another parameter – an anisotropy parameter of the first kind η – can also 
be applied to a distribution of cylindrical fibres in a transversal cross-
section. It is introduced as [39] 

1

1 cos 2 ,
N

i
iN

η θ
=

= ∑  (1.12)

where θi is an orientation angle for the direction from the centre of the 
window to the centroid of particle i. For a statistically isotropic distribution, 
this parameter should vanish. 

Several parameters are suggested to characterise the extent of clustering 
and the properties of clusters (see, e.g. [40]). Still, in traditional carbon 
fibre-reinforced composites with Vf ≥ 0.5, the clusters are less obvious (if at 
all) than in metal matrix composites (MMCs). 

As it is shown in [41], real distributions of fibres in unidirectional 
composites are neither periodic nor fully random, thus presupposing employ-
ment of measures that provide additional quantitative characteristics of the 
exact type of microstructures. So, based on the works of Ripley [42, 43], a 
second-order intensity function K(r) was introduced to describe dis-
tributions of points in the following form [41]: 
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k
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I rAK r
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= ∑  (1.13)

This function characterises the expected number of further points (e.g. 
centres of fibres) within the distance r from an arbitrary point, normalised 
by their intensity (i.e. the number of points per unit area). Here, A is an 
area of the sampling window, containing N points, and Ik(r) is the number 
of points situated within the distance r from the point k. The weighting 
factor wk is introduced to account for the edge effects; it is equal to the 
ratio of the circumference of the circle situated within the window. If the 
entire circle with radius r is situated within the window, wk = 1 and it is 
smaller than unity otherwise. The second-order function was applied  
to specimens of unidirectional fibre-reinforced composites exposed to 
different levels of external pressure during curing; also statistics for 
orientations and distances between fibres were used in terms of cumulative 
distribution functions. It was shown that these parameters, obtained with 
the use of image analysis from micrographs of real specimens, significantly 
differ from those of artificial microstructures with the same number of 
fibres, obtained by the Poisson process [41]. Unfortunately, second-order 
functions are not able to determine sub-patterns in distributions, so either 
parameters of a higher order or combinations of second-order functions 
with some other parameters should be used [44]. 

The second-order intensity function K(r) can also be used to derive 
another quantitative parameter, characterising randomness in distribution 
of fibres (their centroids). It can be introduced in the following way [41, 
44, 45]. The average number of fibre centroids located within a circular 
ring of radius r and thickness dr with a centre at a given fibre centroid is 

( ) ( ) ( ).dK r K r dr K r= + −  (1.14)

Dividing (1.14) by the area of the ring 2πrdr, one can obtain the local 
spatial density of fibres. The ratio of the latter and the average spatial 
density N/A forms the radial distribution function [41, 45] 

( )( ) .
2

A dK rg r
rN drπ

=  (1.15)

Obviously, for a random Poisson process g(r) = 1. The value r0, for which 
g(r0) = 1, is a characteristic scale of the local disorder in an ensemble. 

In parallel with statistical characterisation of distributions of micro-
scopic features (e.g. filaments in a matrix) in composites, various topological 
characteristics are introduced. An obvious development in this direction is 
application of fractals [39, 46, 47]. 
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A multifractal formalism can provide useful information on the type of 
the random distribution of fibres in the matrix [48]. It characterises the 
spatial scaling of non-uniform distributions: A local probability (number of 
fibres) Pi in the ith box (element) from a set of boxes, compactly covering 
the area of interest, scales with the box size l as 

( ) ,i
iP l lα∝  (1.16)

where the scaling exponent αi is known as singularity strength. According 
to the multifractal theory [49, 50], the number of elements with probability 
characterised by the same singularity strength is linked to the box size by 
the fractal (Hausdorff) dimension f(α) 

( )( ) .fN l αα −∝  (1.17)

The function f(α), known as multifractal spectrum, describes the con-
tinuous (but finite) spectrum of scaling exponents for a random distribution. 
As it was shown in [48], the distribution of carbon fibres in epoxy matrix 
is multifractal; the respective multifractal spectrum was calculated. 

1.3.2 Local Volume Fraction 

Analysing the effects of microstructural randomness, an obvious idea is to 
consider the volume fraction of reinforcement not only in terms of a global 
description, i.e. as a parameter characterising the entire composite, but also 
as a field function, introducing the idea of a local volume fraction. A direct 
comparison of various parts of the composite (Fig. 1.3) vividly demonstrates 
that the volume fraction of fibres depends on a location in a composite. In 
Torquato [17], it is introduced as an average over a volume element 
(observation window) V0 of the composite with the centroid at x 

0
f

0

1( ) ( ) ( )d ,
V

V I
V

θ= −∫x x x z z  (1.18)

where I(x) is the characteristic function (see (1.3)), z characterises any 
point in V0 and θ (x − z) is the indicator function 

1, ,0( )
0, otherwise.

V
θ

− ∈
− =

⎧
⎨
⎩

z x
x z  (1.19)
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Fig. 1.3. Variations in local volume fraction of fibres (see Fig. 1.1) 

Obviously, the size of V0 will affect the level of the local volume fraction; 
but even for the same V0 it depends on x. All the moments of this variable 
are studied for various systems in [51]. 

Two schemes are used in [52] to estimate variability of the volume 
fraction in carbon–epoxy T300/914 unidirectional composite. For macro-
scopic specimens with a cross-section 10 × 1 mm, a direct measurement of 
the Young’s modulus of the composite is employed to calculate Vf using a 
linear rule of mixtures. An image analysis of fields 0.1 × 0.1 mm provides 
the data for direct estimation of the volume fraction of fibres (and its 
variation). In both cases, the distributions peak at (or close to) the nominal 
volume fraction Vf = 0.6. The increase in the window dimension results in 
the decrease in the scatter; still, even for a macroscopic specimens of the 
first method the measured interval of Vf was from 0.5 to 0.68. 

Another analysis is performed for a micrograph of the ply’s cross-
sectional area of a carbon/epoxy composite, containing 603 fibres with 
diameter d f = 10 µm [48]; the size of the window is 345 × 250 µm (its part 
is shown in Fig. 1.1). With the increase in the window size, the distribution 
of local magnitudes of Vf  changes its shape and bounds – maximal max

f( )V  
and minimal min

f( )V . The respective evolution of these bounds is shown in 
Fig. 1.4. For sufficiently small window size, these two bonds demonstrate 
mono-phase asymptotes: max

f 1V →  and min
f 0V → . With the increase in 

the window size, both bounds should converge to the average value 
max min

f f f fand .V V V V→ →  (1.20)
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Though this trend is distinct in Fig. 1.4, the full convergence of the bounds 
is not reached even at the length scale of 115 µm. 

The spatial variation in the volume fraction of fibres causes con-
siderable variations in the local values of stiffness: For the window size 
30 µm, the axial and shear moduli demonstrate the scatter of more than 
100% and the transverse module more than 40%. 

An important parameter of local variations of the volume fraction of 
fibres Vf, treated as a random variable, can be linked to the standard 
deviation of its local magnitude. Such a parameter, named coarseness C, is 
introduced in [15, 36] as a the standard deviation of the volume fraction of 
filaments normalised by its mean value fV  

2 2
f f

f

1 .C V V
V

= 〈 〉 −  (1.21)

 

Fig. 1.4. Evolution of bounds for local volume fraction with window size 

The change of coarseness C with the window size, calculated for the 
arrangement of 603 fibres that was treated before (see Fig. 1.4), is pre-
sented in Fig. 1.5. Obviously, C = 0 for an infinite area. 
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1.4 RVE Size 

The problem of transferability of results obtained for some part of the 
composite’s cross-section cannot be solved without the knowledge of 
representativeness of these results. This, in its turn, necessitates deter-
mination of the RVE size (or sizes). Obviously, a problem of the minimum 
size of the RVE for a random media – one of the central questions in the 
study of such materials – is linked to the analysed property/process and is 
not a universal parameter, depending purely on morphology of reinforce-
ment. It is defined by the type of the property, the property’s contrast in a 
composite and the volume fraction; the chosen precision of approximation 
plays a very important part in this as well as the type of the boundary 
conditions [53]. 

A diversity of ways to characterise and quantify microstructures and 
their randomness leads to various schemes for definition of the minimum 
RVE size. For instance, the last parameter from Sect. 1.3.2 – coarseness 
C – can be used for this purpose, linking the minimum RVE size to imple-
mentation of the condition of closeness of C to zero. Some notions of RVE 
(see one by Hill above) either explicitly or implicitly introduce ways to 
determine the respective minimum size. Still, in many cases this process 
leads to very large dimensions of RVEs, so that they could contain a 
sufficient number of microstructural elements to ensure the statistical 
representativeness. 

The radial distribution function g(r) (see Fig. 1.15) was also suggested 
as a basis to define the minimal RVE size. The latter is considered to be 
the value of radius r0, for which g(r0) = 1. 

Another notion, employed in [54], is introduced with regard to the 
overall modulus L  that will provide a sufficiently correct link between 
average (macroscopic) stresses and strains 

,〈 〉 = 〈 〉σ L ε  (1.22)

where angular brackets denote averaging. Normalising contribution of the 
non-local terms for simple cases of materials (non-overlapping spheres in a 
matrix) and deformation (varying normal strain and shear strain), it is 
possible to obtain explicit estimates. In the cases with extreme contrasts – 
rigid inclusions or voids – the RVE size practically does not exceed two 
reinforcement diameters for 5% error of L  [54]. Even for a case of higher 
precision (error 1%), this size for the most demanding cases of matrix–
reinforcement combinations is less than 5 diameters. This is confirmed by 
numerical studies of overall properties of non-linear composites with 
random distributions of fibres [55]. 
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Fig. 1.5. Evolution of coarseness with window size 

1.5 Periodic vs. Random 

Determination of the RVE size allows considering two inter-linked pro-
blems: comparison of periodic arrangements of reinforcements with random 
ones and introduction of random microstructures into modelling schemes. 
The latter can be implemented by a direct incorporation of microstructural 
morphology from obtained micrographs into various computational 
schemes (e.g. by means of discretisation of digitalised images into finite 
elements) with a subsequent numerical solution of the problem. But since 
transferability of this ad hoc solution to other areas even of the same 
composite is, at least, questionable, special procedures of the micro-
structure’s reconstruction were developed; they will be treated in Sect. 1.6. 

Generally, a vivid deviation of real microstructures from periodic ones 
initiated their comparison at the early stages of the history of micro-
mechanics of composites [56]. Obvious advantages of the use of periodic 
arrangements of fibres in studies and simulations – from existence of ana-
lytical estimates to possibility of high-refined meshes for very small 
windows – impelled researchers to compare those arrangements with real 
(random) microstructures to study reducibility of the latter to the former. 
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Since the manufacturing of periodic arrangements for large number of 
microscopic reinforcing elements is cumbersome, the main tool for such 
comparisons is computational analysis. Hence, in studies of composite 
materials, a considerable emphasis has been on a comparison of random 
and non-random models and their closeness to experimental results for 
composites. 

The data obtained by combination of the image analysis and Dirichlet 
cell tessellation procedures [31, 32] are used to numerically generate distri-
butions of reinforcements with the same average magnitudes and standard 
deviations. Numerical simulations, performed for various periodic and 
random distributions of fibres with different shapes of their cross-sections 
for boron fibre-reinforced aluminium, have vividly demonstrated a signi-
ficant influence of microstructural features on the composite’s effective 
elastic moduli as well as on the plastic flow/localisation. The case with a 
random distribution of circular fibres (30 fibres were used in a statistical 
realisation) in a transverse cross-section provided the closest match to 
experimentally measured values [57]. It is worth mentioning that the effect 
of fibres’ distributions on the material’s response is relatively stronger than 
that of their shape. 

For a unidirectional fibre-reinforced boron–aluminium composite 
(Vf = 0.48), models for square and hexagonal arrays and a random dis-
tribution were compared with experimental data for components of stiffness 
and compliance [58]. Two experimental methods were used to estimate 
those components: the ultrasonic-velocity method and the resonance method. 
It is demonstrated that the random distribution model provides the best 
approximations to the measured parameters. 

An extensive study of the periodic and random distributions of fibres 
in matrix and their effect on transverse properties is implemented in [55] 
with the employment of Fast Fourier Transforms as an alternative to finite 
element analysis. A window of 1,024 × 1,024 pixels is used to resolve an 
area of non-linear composite (with elasto-plastic matrix) containing 64 
fibres (Vf = 0.475) with a resolution 128 × 128 pixels per fibre. The main 
result for effective properties is that the scatter in the transversal Young’s 
moduli is small (standard deviation is less than 1%) while the flow stress 
and hardening modulus demonstrate higher fluctuations. Another approach 
is used in [44] based on the perturbed periodic square arrays of fibres with 
clustered or staggered patterns that are compared with a square one. These 
less ordered patterns are generated by a shift of the centre of a circular 
cross-section of a fibre in a unit cell (each containing a single fibre) from 
its fully symmetrical position in a square array. Combined with a special 
type of boundary conditions, this scheme allows simulations of uni-
directional continuously reinforced MMCs with the volume fraction of 
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fibres, similar to the previous example. The obtained results for a boron–
aluminium MMC demonstrate that the axial overall response is practically 
independent of the arrangement of fibres, while the transverse parameters 
(both the elastic moduli and yield limits) are highly sensitive to it. 

Another study [59], based on the boundary element method, compared 
square and hexagonal arrangement of fibres with random ones, using the 
embedded cell approach. The latter is implemented by embedding the core, 
containing a discrete arrangement of fibres (60 fibres in random cores), 
into a homogeneous media with properties obtained, e.g. by the self-
consistent scheme, to which the far-field boundary conditions are applied. 
It was shown that the fibre packing arrangement significantly affects the 
overall stress distribution as well as the extent of stress localisation, with 
considerably higher stress concentrations observed in random sets. For 
instance, for carbon fibre/epoxy composite (Vf = 0.56) 90% higher local 
radial stresses are reported in [60] for a random arrangement as compared 
to a hexagonal one. This can be naturally explained by the fact that some 
morphological parameters of random microstructures differ from those of 
periodic ones. An obvious example is the nearest-neighbour distances for 
random and clustered distributions are smaller than those for square or 
hexagonal patterns [61]. 

A detailed analysis of the effect of arrangement of fibres on stress con-
centration was undertaken in [62]. The studied microstructures included 
600 fibres in a matrix with the contrast in the Young’s modulus 6.7 and 
close Poisson’s ratios. The volume concentration of reinforcement was 0.1 
and the minimum distance between the centroids of reinforcements was 
three times their radius. The main conclusion is that the proximity of rein-
forcements along the direction of loading results in the highest stress con-
centration. Alignments of fibres, close to each other, along directions at 
large angles to the loading one cause the stress reduction. 

To account for the effect of the relative positions of, and orientations 
between, neighbouring fibres, a special stress interaction parameter was 
introduced in [63]. This is an additional descriptor used to quantify a short-
range configuration of fibres 

min min 1 .ij
iji j

c d
θ
α

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (1.23)

Here dij is a distance between centroids of two fibres i and j; θij is the angle 
between the line connecting them and the loading direction; α = π/3 is a 
normalising factor. The lower c, the higher the radial stress concentration. 
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An attempt is also made to determine parameters of a periodic micro-
structure, similar to a random two-phase microstructure [64]. It employs 
discretisation of the image of the actual microstructure and calculation of 
its power spectral density. Then parameters of the unit cell are chosen: 
number of reinforcements, their geometry, initial dimensions of the cell 
and positions of reinforcements. Since the discrete power spectral densities 
of the original and equivalent systems are obtained under various con-
ditions (e.g. frequencies), the so-called ‘rebinning’ [64] process is used to 
match the frequencies. The final positions of particles in the unit cell are 
found with the use of the minimisation of a specially constructed function. 

1.6 Direct Introduction of Microstructure 

Understanding of (sometimes) considerable deviations of microstructures 
of real composites from periodic ones resulted in an obvious idea of a 
direct introduction of such a microstructure into numerical schemes. Two 
principal ways to implement this are possible (1) direct use of a scanned 
microstructural images and (2) generation of artificial microstructures. While 
the former procedure is relatively straightforward, the latter one raises the 
question of reproducibility of main features of the material. A somewhat 
simplified way for a 2D case of a transversal cross-section is to introduce a 
‘fully random’ system using, e.g. a planar Poisson process for hard-core 
(i.e. impenetrable) disks [65]. An obvious deficiency of this approach is 
that it is not linked to the exact type of stochasticity of the microstructure 
that can deviate from the ideal randomness. Hence, it is necessary to 
reflect the features (at least principal ones) of an original microstructure in 
the artificially generated microstructure of the composite. 

Naturally, a direct account for random features of the microstructure 
began in micromechanical models. One of the typical examples is the 
introduction of the random fibre spacing [66, 67]. A random number gene-
rator is used to produce a set of random numbers that, after re-ordering in 
an ascending order, present the set of transversal co-ordinates zm for 
parallel fibres in a 2D set. The fibre spacing dm is then defined in an 
obvious way 

1m m md z z+= −  (1.24)

with the average spacing being 
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where N is the total number of fibres. 
Several statistical realisations for sets of 12 fibres are used in 

calculations of the stress concentration factors (SCFs); both the average 
and the variance of the distribution of spacing are equal to unity. To exclude 
an overlap of neighbouring fibres, a lower cut-off at some arbitrary chosen 
level is introduced. A transition from the deterministic case with a uniform 
distribution of fibres in a transversal direction results in a statistical 
character of magnitudes of SCFs in the composite. 

A more consistent approach to reflect the original microstructure and 
its features in a model was named reconstruction (e.g. [18]) and is under-
stood as generation of the microstructure employing the correlation func-
tions, characterising its morphology. 

The suggested variant of this procedure for a two-phase statistically 
isotropic material is based on two-point correlation functions, introduced 
for two digitized representations of the microstructure – original, with the 
reference correlation function f0(r), and ‘reconstructed’ (i.e. generated), 
with fs(r). Manipulation of the generated image, using interchanges of the 
states for pairs of arbitrarily selected pixels of two phases to preserve the 
volume fraction, is controlled by minimisation of a variable E that plays 
the role of energy in this approach [18] 

s 0[ ( ) ( )],i i
i

E f r f r= −∑  (1.26)

where r is the distance between two points. The probability of acceptance 
of such phase interchange, estimated after each step, is determined by the 
energy change for two subsequent steps ∆E 

1, 0,
( )

exp( / ), 0.
E

p E
E T E

<⎧
= ⎨ − >⎩

∆∆ ∆ ∆  (1.27)

Here T plays the role of temperature. 
The suggested scheme converges to the reference correlation function 

f0(r). It is worth mentioning that the general framework can be used with a 
variety of correlation functions. The authors used two functions – the two-
point probability function and lineal-path function – since they characterise 
various facets of real microstructures, e.g. the former is good in catching 
the short-range information while the latter contains information on con-
nectedness. One of the suggested ways to expand this description is to 
account for various correlation functions in the expression for energy, 
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modifying it to accommodate various functions with some weights [18]. 
Reconstructions of random microstructures, based on two mentioned 
functions, though demonstrated a rather good match for the reference and 
artificial microstructure, still resulted in some deviations from the original, 
as measurements with other correlation functions have shown. Another 
way for reconstruction of the microstructure is suggested in [68], based on 
the maximum entropy principle. 

An alternative variant to generate of a periodic unit cell, based on the 
data on statistic features of the composite’s microstructure, is suggested in 
[69]. For a fibre-reinforced composite material characterised by a given 
second-order intensity function ( )K r  (see (1.13)), which is evaluated in 
points ri, 1, mi N= , positions of centroids of N fibres in a 2D unit cell with 
dimensions H1 × H2 are defined by means of the following relation 

( )1 2 1 2, ,arg min ,N N
H H H HF

∈
=

x S
x x  (1.28)

where 

( )1 2

2

, 2
1

( ) ( ) .
mN

N i i
H H

i i

K r K rF
rπ=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑x  

Here, vector { , }i ix y=x , 1,i N= , defines positions of the centroids in 
the unit cell and S denotes a set of admissible x. A numerical realisation 
can be implemented with the use of genetic algorithms [69]. 

A so-called mean-window technique [70], based on the exact averaging 
over the volume fraction, can also be used as a basis to generate model 
microstructures with statistical functions, similar to observed/measured ones. 
It allows estimating effective properties of a composite by averaging ran-
domly selected windows from a real structure, as obtained from a micro-
tomographic analysis. The suggested method exploits the hypothesis of 
ergodicity, according to which an ensemble average of a property obtained 
on smaller volumes is equal to the average over an infinite one [71]. Authors 
also distinguish between the physical and geometrical RVEs. The latter has 
a standard sense as a material volume of specific size (e.g. equal to the 
correlation length of the two-point probability function [71]). In contrast, 
the physical RVE (PRVE) is defined by the level of variation of the 
physical property, which should become insignificant for a PRVE. One of 
the possible formulations for the PRVE is that of a minimum material 
volume for which the standard deviation for different statistical realisations 
is smaller than the measurement error for a chosen parameter. Applicability 
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of the mean-window technique is restricted to fulfilment of two conditions 
[71] (1) symmetry of the probability distribution function and (2) linearity 
of the variation of the chosen property within the respective interval of the 
local volume fraction, for a given window size. Another feature affecting 
the size of this PRVE is the contrast of properties (i.e. the ratio of elastic 
moduli of the matrix and reinforcement): An increase in the contrast will 
request a larger window. 

1.7 From Micro to Macro: A Way to Multiple Scales 

The choice of the adequate dimensions for the RVE and introduction of the 
(principal) microstructural features, though complying with requirements 
of representativeness, still do not always allow a direct transfer of the results, 
obtained for some area (window) to a real component/structure. There are 
several reasons for this: 

1. The results, obtained for an RVE, will depend on the type of the 
employed boundary conditions: homogeneous strain or stress, periodic, 
etc. [53, 72]. 

2. A transfer of loads/environmental conditions, externally applied to a 
macroscopic component, to the RVE can be implemented in various 
ways. 

3. Gradients in stress and/or strain fields due to non-uniform loading or 
stress concentration as well as edge effects affect the results. 

Still, RVE with periodic boundary conditions is broadly used to 
estimate the effective properties of heterogeneous materials with a given 
type of microstructure. More advanced schemes have been introduced to 
overcome the discussed limitations and to develop more adequate modelling 
tools. One possibility is to use a meso-scale window as an alternative to the 
RVE [73, 74]. The window is placed within a two-phase domain and its 
size L (and the respective non-dimensional window scale δ = L/d, where d 
is the size of inclusions) is being changed to determine a convergence 
condition for two responses of an elastic heterogeneous media, controlled 
by either stresses or strains. Calculations, based on two respective types of 
boundary conditions, preclude the necessity to use periodic boundary con-
ditions within the RVE formalism, still providing bounds for stiffness for 
any δ. Random simulations (using Monte Carlo sampling) employ appro-
ximations of the planar continuum by a very fine spring network, with res-
pective stiffness magnitudes depending on coordinates. A detailed analysis 
 

20 V.V. Silberschmidt



 21 

properly describe variations in the local stiffness without truncations; if 
truncations are acceptable then Chi, Gumbel max, Rayleigh and Gauss dis-
tributions can be used for this purpose [74]. Generally, RVE is considered 
as a deterministic limit of a statistical volume element (SVE) in [75]. 

An alternative to the RVE formalism is an approach base on lattice 
models that was initially developed for problems of statistical physics [76]. 
In application to materials with spatial randomness in their properties, 
linked to their microstructure, it employs not a single RVE but a set of 
them – each with its own properties – compactly covering the area of 
interest [48, 77–79]. 

Another approach is the scheme named Voronoi cell finite element 
method [80, 81] that is an extension of the Dirichlet tessellation. Each of 
the Voronoi polygons of such tessellation, containing a single filament, is 
treated as a finite element. This representation of microstructure, which 
can be linked to image analysis data, is used as a basis for a two-level 
computational model for heterogeneous materials [81]. A two-way linkage 
between the levels is introduced in the following way: 

1. Data from the microscopic level are used to estimate the global effec-
tive parameters of the composite at each point of the macroscopic 
level. 

2. Macroscopically calculated data are used to determine the distribution 
of stresses and strains in the microstructure. 

modelling schemes (though the term was suggested considerably later) for 
composites. Their necessity has always been obvious: numerical simula-
tions based on the finite elements method (or any comparable schemes), 
accounting for the exact position of all the fibres in the whole specimen is 
not practical since dimensions of the elements should be considerably 
smaller than the diameter of a fibre. With the latter being, e.g. 5–10 µm for 
carbon fibres, the simulation of a standard composite specimen becomes 
prohibitive at the current level of computational power. Hence, to 
overcome this obstacle, the problem was separated into solvable sub-tasks. 
One of the typical approaches is to limit a microscopic analysis with a 
sufficient resolution of microstructural elements to a relatively small area 
of interest of the component, with the component itself being analysed 
within the framework of a macroscopic mechanics, i.e. employing of the 
effective properties. In Akbarzadeh and Adams [82], the following two-
step procedure is used: 
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of probability density distributions shows that the beta distribution can 

This scheme goes back to the first attempts to introduce multiscale 



1. A macroscopic analysis of the whole region (homogeneous and trans-
versely isotropic in the case of [82]) 

2. A micromechanical analysis of the region of interest containing several 
fibres with the boundary conditions obtained from the previous stage 

The results for a notch area of the Charpy specimen for a random 
distribution of fibres (in total, four fibres are situated in the studied 
microscopic area) have demonstrated that the microscopic features can 
have a profound effect on the global behaviour: It can be more important 
for stress localisation than the curvature of the notch [82]. 

Still, the random character of materials and of deformational and 
failure processes in them should not be always limited to the microscopic 
level of their description. 

1.8 Randomness at Macroscale 

Microstructural (local) randomness of heterogeneous materials does affect 
their response at the global (macroscopic) level. Here two principal trends 
are vivid. On the one hand, the increase in the considered area (volume) 
‘smoothens’ local fluctuations of properties linked with the microstructure – 
similar to an averaging procedure for larger sets – thus resulting in the 
decreasing variability of the global effective properties for macrovolumes 
(or twin specimens). On the other hand, mechanisms causing spatial localisa-
tion of deformation and/or fracture processes, for instance, plastic flow and 
crack nucleation and/or propagation, inherit some of the randomness of the 
underlying microscopic structure. 

Even in the latter case, there is no direct mapping of the micro-
structural stochasticity onto the macroscopic patterns of behaviour. This 
effect is more pronounced at the stage of the onset of localisation, but 
weakens with its development due to a strong interaction with additional 
mechanisms. Fluctuations in the spatial distribution of constituents result 
in a non-uniform distribution of microscopic stresses. This factor, together 
with – also non-uniform – distributions of defects, results in considerable 
variations in plastic flow and/or damage accumulation and transition to for-
mation of macroscopic defects. This scenario is additionally complicated 
by multiplicity of damage mechanisms and their interactions. 

The material’s behaviour at the initial pre-critical stage of deformation 
is characterised by a bulk response of the entire specimen, demonstrating 
relatively low spatial fluctuations of stresses and/or strains that are roughly 
proportional to fluctuations in material’s properties caused by its micro-
structure. With the onset of the critical and post-critical stages, characterised 
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by the localisation of deformation and failure processes, the extent of 
macroscopic non-uniformity can significantly increase. This localisation 
can also, in its turn, affect the global material’s behaviour. For instance, in 
composites with elastic–ideal plastic matrix in many cases, only a small part 
of the matrix participates in the plastic flow, the spatial pattern of which 
directly affects the overall flow stress of the composite, as shown in [55]. 

Thus, the macroscopic randomness can be considered as a given feature 
of a composite only at some stages of its life; in many cases it changes as 
due to its interaction with loading/environmental conditions. One of the 
striking examples is evolution of matrix cracking in cross-ply laminates 
under axial tensile loading. This process starts relatively early in the loading 
history of composites: at low external stretching under quasi-static loading 
or during initial cycles of tensile fatigue. Distributions of transverse cracks 
along the longitudinal axis of cross-ply composites are random: Twin 
specimens demonstrate various numbers and positions of matrix cracks 
[83–86]. A typical character of evolution of matrix cracking in a single 
specimen during its loading history is given in Fig. 1.6. Even in the same 
specimens, with matrix cracks not crossing their entire width, the crack 
distribution along two longitudinal edges is different – and random [87]. 

The evolution of matrix cracking, reflected in a pattern of transverse 
cracks, is a result of interplay of processes of cracks’ nucleation and their 
interaction. At the initial stage of loading history, the macroscopically app-
lied external load accelerates damage evolution in places of stress con-
centrations and/or largest or preferably oriented microdefects (microcracks, 
voids, fibre debonding, etc.). This development causes a practically uncork-
related generation of matrix cracks with inter-crack spacing demonstrating 
a high extent of randomness (Fig. 1.6a,b). 

Generation of matrix cracks, crossing the entire thickness of a weak 
90° layer, causes a significant change in the pattern of stress distributions, 
especially in this layer. Instead of the longitudinally uniform – if tem-
porarily to neglect variations due to the microstructural randomness for the 
simplicity of our analysis – field of the axial stress, a new stress pattern 
arises: Unloaded zones appear in the direct vicinity of the transverse cracks. 
They are due to the so-called shielding effect caused by the traction-free 
surfaces of the matrix cracks. 
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1.8.1 Evolution of Matrix Cracking 



Fig. 1.6. Matrix cracking in a 20 mm long part of [07/90]s carbon–epoxy T300/914 
specimen at various moments of loading history: (a) 10 cycles; (b) 100 cycles;  
(c) 1,000 cycles; (d) 10,000 cycles; (e) 100,000 cycles (different horizontal and 
vertical scales) 

These unloaded zones have a considerable length in the axial direction – 
up to several mm. At the initial stages of matrix cracking, characterised by 
a low crack density, zones from neighbouring cracks practically do not 
overlap. Still, the areas of the 90° layer, unaffected by matrix cracking (i.e. 
not partially unloaded), decrease with the increase in the external load or 
number of cycles. It means that initially spatially uniform conditions with 
regard to crack nucleation change: Areas situated somewhere in the middle 
between two neighbouring cracks with a larger spacing become more 
preferable for matrix cracking. With the further increase in the number 
of cycles (or the external load/stretching for quasi-static conditions), the 
number of cracks increases, and the neighbouring unloading zones begin 
overlapping (interacting). A resulting distribution of the axial stress 
component, normalised by its far-field magnitude, in a weak layer that was 
calculated for a part of a real random distribution of matrix cracks with the 
use of detailed finite element simulations (see [88]) is given in Fig. 1.7. 
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Fig. 1.7. Distribution of the normalised axial stress in a 10 mm long part of 90° 
layer of [01/902]s carbon–epoxy T300/914 composite 

Superposition of stress reduction in the areas of overlap causes the 
additional decline in the probability to initiate a matrix crack in these areas 
(in some cases the axial stress state can even change from tension to com-
pression). Hence, the stage of random matrix cracking is gradually changed 
by a more ordered character of transverse crack nucleation, with mid-
spacing areas becoming preferable places for this process. Retrieving now 
the notion of microstructure-induced material’s randomness, it is obvious 
that two major processes determine the pattern of transverse cracks in the 
90° layer: The randomness in a spatial distribution of flaws is responsible 
for spatially non-uniform nucleation of cracks while the re-distribution of 
macroscopic axial stress orders this process, limiting it to a diminishing 
part of the composite. Obviously, for the material with a considerable scatter 
discussed in the previous sections, an event of matrix crack nucleation close 
to the existing one is still possible if the extent of local stress concentration 
near a strong flaw is not fully compensated by unloading due to the shield-
ing effect (compare successive stages of the loading history in Fig. 1.6). 

The above considerations are based on a one-dimensional inter-
pretation of the process (similar to many modelling schemes that deal with 
axial stresses, averaged over the thickness of 90° layers). Obviously, the 
cracking processes in relatively thick layers demonstrate their own spe-
cificity as well as in wide specimens; in the latter, under tensile fatigue, 
matrix cracks do not instantly occupy the entire width of the specimen but 
grow with random rates [89, 90] (the difference between two schemes also 
depends on laminate thickness [4]). 

Various parameters are used to characterise the randomness of dis-
tributions of matrix cracks: the Weibull’s distribution [85], number of cracks 
in bands [2], etc. The multifractal analysis has been found to be a very 
convenient tool for this purpose [89–91]. It was found that twin specimens, 
exposed to the same loading history, demonstrate a considerable difference 
in patterns of transverse cracking (in numbers of cracks and their 
positions) but their multifractal spectra are very close (see Fig. 1.8). 
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Fig. 1.8. Multifractal spectra of matrix crack sets in two twin specimens of carbon– 
epoxy T300/914 [02/903/02] laminate loaded with 100,000 cycles (1,050 N mm−²) 

Besides, multifractal spectra depend on both loading conditions and 
structure of cross-ply laminates (stacking order) (see [92] for a detailed 
analysis). A typical transformation of f(α) functions with the loading 
history is given in Fig. 1.9. The width of a multifractal spectrum is linked 
to an extent of the distribution’s randomness: For a fully uniform dis-
tribution it is reduced to a single point. Hence, it is possible to interpret the 
effects of various factors on randomness in matrix cracking. 

The initial stage of the tensile fatigue, characterised by a nearly non-
restricted (i.e. random) nucleation of matrix cracks, has a rather wide multi-
fractal spectrum (Fig. 1.8). With the increase in the number of cycles, the 
above described ordering mechanism results in less random patterns of 
cracks. This is reflected in considerably narrower multifractal spectra. Our 
results [91, 93] have shown that, for long loading histories when the pro-
cess of matrix cracking attains the so-called characteristic damage state 
with nearly non-changing distributions of transverse cracks, the respective 
f(α) functions are very close to each other. 
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Fig. 1.9. Multifractal spectra of axial distributions of transverse cracks for different 
number of load cycles 

A detailed analysis of the single damage mechanism in cross-ply laminates 
allows a better understanding of the macroscopic manifestation of micro-
structural randomness when one neglects a rather non-trivial interaction 
between various mechanisms [1]. Here let us consider some of the effects 
of this mechanism on the macroscopic behaviour of these composites. 
Firstly, contrary to ideas of the standard approaches, dealing with an area 
between two neighbouring transverse cracks as a macroscopic RVE, the 
load (stress) transfer depends also on the exact type of the axial distribution 
of cracks. It is shown [93] that, at the advanced stages of loading (i.e. in 
cases of high crack density) for the same spacing, the level of axial stresses 
both in weak (90°) and stiff (0°) layers differs for different types of crack 
distributions. 

The pattern of matrix cracking affects the distribution of axial cracks 
and delamination zones in composites. The former are nucleated near 
0°/90° interfaces close to tips of matrix cracks, while the latter are centred 
on intersections of transverse and axial cracks [1]. Delamination zones 
effectively reduce the spacing between neighbouring transverse cracks 
[92], thus additionally diminishing zones of preferable nucleation for new 
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1.8.2 Multi-Mechanism Damage 



cracks (i.e. acting as another ordering mechanism for an ensemble of 
matrix cracks). Delamination also affects the macroscopic mechanic pro-
perties of laminates (e.g. the flexural modulus) to a considerably higher 
degree than transverse cracking. This effect also depends on the type of the 
distribution of matrix cracking, showing a considerable scatter in the extent 
of the modulus’ deterioration for the same total length of delamination 
zones. 

Tips of matrix cracks at the 0°/90° interfaces cause significant stress 
concentrations in stiff layers, adjacent to them. Such local overloading can 
result in fibre breakage and final rapture of the laminate. Here, the random-
ness in the pattern of stress concentration due to the underlying character 
of distribution of transverse cracks interacts with other random micro-
structural features, e.g. non-uniform longitudinal distributions of fibre’s 
strength and fibre debonding areas. Such interaction additionally com-
plicates the scenario of macroscopic damage evolution in composites. 

Thus the result of interacting processes linked to microstructural random-
ness and ordering due to the load re-distributions ‘percolates’ to other damage 
mechanisms, affecting its macroscopic response to external loading. This 
complicated scenario of multi-mechanism damage is hard to adequately 
reflect in modelling schemes, which in many cases are reduced to either a 
single-mechanism studies or an explicit analysis of the interaction between 
mechanisms at the local level. 

1.9 Conclusions 

The above analysis of only a few features and damage mechanisms in 
cross-ply laminates – non-uniformity in the distribution of fibres in plies as 
well as matrix cracking and delamination – vividly demonstrates a challenge 
facing researchers who are developing modelling schemes for these materials. 
Though estimation of the effective macroscopic properties of these com-
posites in a virginal state (i.e. without macroscopic defects) is a relatively 
simple task which can be solved analytically, an adequate description of 
damage evolution, especially at the stage of nucleation of macroscopic 
defects, presupposes a totally different strategy. Some elements of ana-
lytical schemes (e.g. load transfer rules, etc.) can be effectively used also 
in this strategy, forming one part of the computational analysis [94, 95]. 

In general, modelling of damage in composites can be implemented 

28 V.V. Silberschmidt

with the use of various multiscale strategies [5]. Not all the suggested 

sideration. Generally, they combine partial solutions (e.g. for specific local 
multiscale schemes take random features of the microstructure into con-
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areas, single damage mechanisms or local interactions of a few mechanisms), 
based on refined descriptions of the microstructure and/or geometry of the 
induced damage, with global ones that lack the detailedness at the micro-
scopic level but reproduce the exact structure of a composite and macro-
scopic loading conditions. 

A lattice-model approach [48, 78] employs ideas of continuum damage 
mechanics to link micro and macro levels. This is achieved by introducing 
a damage parameter as an additional variable at the macroscopic (continuous) 
level. This parameter characterises evolution of ensemble of microdefects 
and its macroscopic manifestation. The effect of spatially random micro-
structure (e.g. due to a stochastic spatial distribution of fibres) is accounted 
for, in terms of the varying local stiffness, reflecting the experimentally 
observed scatter. In this case, application of an externally uniform tensile 
load results in non-uniform distributions of the axial stress and, 
subsequently, different rates of damage accumulation for different parts of 
a 90° layer. The attainment of the critical damage concentration (i.e. imple-
mentation of the local failure criterion) in any point of this layer results in 
initiation of a matrix crack. Matrix cracking causes stress re-distribution, 
including formation of unloaded zones due to the shielding effect. The latter 
(as some other factors, for instance, a through-thickness stress variation 
linked to the effects of the stacking order and resin-rich zones) is incorpo-
rated by mapping of a (dynamic) matrix of stress coefficients onto the 
current stress levels in elements. 

This approach allows a natural reflection of the interaction of micro-
structural randomness and additional ordering, imposed by matrix cracking 
at advanced stages of the loading history. Though this approach has been 
used for cross-ply laminates under tensile fatigue, it can be expanded to 
more complicated cases of both structure of laminates and loading con-
ditions. This can be achieved by introducing of additional load transfer 
mechanisms, as it was implemented in [94]. 

Inclusion of additional damage mechanisms, necessary to describe 
multi-mechanism failure in fibre-reinforced cross-ply composites exposed 
to conditions of high-cycle fatigue, can be achieved by combining physical 

It is based on the use of various damage parameters for respective 
mechanisms – transverse cracking, delamination and fibre breaks – each 
with its own damage accumulation law, reflecting experimental observations 
and measurements [96, 97]. In some cases, an additional scale between 
microscopic and macroscopic ones – a meso-scale – could be introduced to 
incorporate several damage entities and capture their interaction for a more 
precise description of respective local perturbations of the stress field [1]. 

Chapter 1: Account for Random Microstructure

and continuum modelling tools within another multiscale formalism [96]. 
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