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11.1 Introduction 

It has long been recognized that one of the primary failure modes in solids 
is due to crack growth, whether it be a single or multiple cracks. It is known, 
for instance, that Da Vinci [14] proposed experiments of this type in the 
late fifteenth century. Indeed, modern history is replete with accounts of 
events wherein fracture-induced failure of structural components has 
caused the loss of significant life. Such events are common in buildings 
subjected to acts of nature, such as earthquakes, aircraft subjected to incle-
ment weather, and even human organs subjected to aging. Therefore, it would 
seem self-evident that cogent models capable of predicting such cata-
strophic events could be utilized to avoid much loss of life. However, 
despite the fact that such events occur regularly, the ability to predict the 
evolution of cracks, especially in inelastic media, continues to elude scien-
tists and engineers. This appears to be at least due, in part, to two as yet 
unresolved issues (1) there is still no agreed upon model for predicting 
crack extension in inelastic media and (2) the prediction of the extension 
of multiple cracks simultaneously in the same object is as yet untenable. 

While it would be presumptuous to say that the authors have resolved 
these two outstanding issues, there is at least a glimmer of hope that these 
two issues may be resolved by using an approach not unlike that proposed 
herein. This chapter outlines an approach for predicting the evolution of 
multiple cracks in heterogeneous viscoelastic media that ultimately leads 
to failure of the component to perform its intended task. Examples of such 
components would include geologic formations, cementitious roadways, 



need for deploying such a model as that proposed herein are the following 
two requirements (1) at least some subdomain of the medium must be 
inelastic and (2) cracks must grow on at least two significantly different 
length scales prior to failure of the component. 

The model that is proposed herein for addressing this problem is posed 
entirely within the confines of the fundamental assumption embodied in 
continuum mechanics, i.e., that the mass density of a body is continuously 
differentiable in spatial coordinates on all length scales of interest so that 
cracks that initiate on the scale of single atoms or molecules cannot be 
modeled by this approach, implying that the smallest scale that can be 
considered is of the order of tens to hundreds of nanometers. 

This chapter opens with a short historical review of developments that 
have led up to the current state of knowledge on this subject, followed by a 
detailed description of the methodology proposed by the authors for 
addressing this problem. This will be followed by a few example problems 
that are meant to illustrate how the approach described herein can be utilized 
to make predictions of practical significance. 

11.2 Historical Review 

The discipline of mechanics, the study of the motion of bodies, dates to the 
ancients. Chief among these is Archimedes [32], who enunciated the prin-
ciple of the lever among other achievements. However, the first systematic 
study of the mechanics of bodies is attributed to Galileo [19] in the early 
seventeenth century. These accomplishments were not withstanding, it was 
not until the early nineteenth century that concerted efforts were made to 
study the motions of deformable bodies within the context of continuum 
mechanics. These efforts appear to have been initiated with the study of 
plates by Germain [20] and were followed shortly thereafter by the seminal 

in elastic bodies. These formulations utilized Newton’s laws of motion 
[27], together with definitions of strain and the necessary idea of the con-

of Newton. These initial formulations did not encompass the notion of 
dissipation of energy, so the prediction of failure was not a component of 
these models. However, over the course of the succeeding century, the for-
mulation of fundamental concepts of thermodynamics led to the first 
cogent theory of fracture by Griffith [21] in 1920. 

 
 

human organs, and advanced structures, including composite aircraft com-
ponents and defensive armor such as that used on tanks. Implicit in the 
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stitution of an elastic body, first enunciated by Hooke [8], a contemporary 

papers by Navier [26] and Cauchy [10] on the prediction of deformations 
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Griffith proposed that a crack would extend in an elastic body whenever 

 C ,G G≥  (11.1) 

where G is the energy released per unit area of crack produced and GC is 
assumed to be a material constant called the critical energy release rate. 

Though succeeding progress has been slow to develop, this monum-

obstacles lay in the way before the usefulness of Griffith’s proposition 
could be ascertained. The first obstacle was centered around the right-hand 
side of inequality (11.1): how to measure the material property required to 
make cogent predictions. The answer to this question was suggested in a 
paper by Rice [29] and proven mathematically a decade later by Gurtin 
[22]. Subsequently, techniques have been developed for quite accurately 
measuring the critical energy release rate for a broad range of materials. 
The other obstacle arose due to the left-hand side of inequality (11.1): how 
to accurately calculate the available energy in a body necessary to produce 
new crack surface area. This issue is complicated by the fact that, in an 
imaginary elastic body, it is necessary for the stresses at a crack tip to be 
singular in order for there to be a nonzero energy available for crack 
extension. This problem has been studied in significant detail over the past 
half-century with some success. However, it would be presumptive to say 
that the subject is resolved; because in reality, it is not possible for the 
stresses at a crack tip to be singular. 

Initial experimental results for brittle materials indicated that Griffith’s 
proposition was accurate. However, when experimental results were obtained 
for ductile materials, such as crystalline metals, experimental results com-
pared less favorably to predictions. For some time, efforts were made to 
improve upon the calculations of the available energy for crack growth in 
ductile materials; and to make these calculations, researchers turned to the 
more advanced constitutive theory, such as that embodied in plasticity theory 
[24]. However, it is now widely understood that Griffith’s proposition is 
not accurate for some ductile materials due to the fact that energy dissipa-
tion occurs in a variety of ways other than crack extension, and in ways 
that depend on the history of loading of the body. In these circumstances, it 
may be more appropriate to envision the critical energy release rate Gc as a 
history-dependent material property rather than a material constant. In the 
meantime, other approaches have been developed, such as cohesive zone 
models [7, 16], that do not require the concept of a critical energy release 
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ental proposition seems to have been the key step that was necessary
to begin to make somewhat accurate predictions of crack growth. Two 
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rate to predict crack extension (although energy release rates can be 
calculated by this approach); and these have met some success in modeling 
crack growth in ductile media. 

Simultaneously, over the past half-century, two more or less con-
tiguous developments have led to significant improvements in calculating 
the available energy for crack extension in both elastic and a variety of 
inelastic (including elastoplastic, viscoplastic, and both linear and nonlinear 
viscoelastic) media. One of these developments was the rise of the high-
speed computer, whose power has made it possible to make billions of 
calculations of the type needed to estimate the energy required for crack 
extension, even in bodies of quite complicated geometry and material 
makeup. The other development is the finite element method, which grew 
out of the so-called flexibility method used in the aerospace and civil 
engineering communities in the first half of the twentieth century. This 
methodology came under scrutiny by the applied math community after 
World War II and was subsequently identified as a member of the method 
of weighted residuals for solving sets of coupled partial differential equations. 
Today, quite a few finite element codes are available for calculating stresses 
in both elastic and inelastic bodies. 

11.3 The Current State of the Art 

While significant progress has been made in the ability to predict when a 
crack will grow and where it will go, the subject has not yet been com-
pletely closed. As mentioned above, there is still no completely agreed 
upon way of predicting when a crack will grow in a ductile medium. Further-
more, when there are multiple cracks, the computational requirements 
needed to utilize the finite element method go up significantly. Even with 
today’s high-speed computers, it is not yet possible to predict, with suf-
ficient accuracy, the available energy for crack extension for the physical 
circumstance wherein a few cracks are simultaneously imbedded in a 
body. And yet, it is known from experimental observation that many, many 
cracks can occur simultaneously in all manner of structural components 
and that these cracks can coalesce into a single crack that leads to 
structural failure. It can be said here without reservation that the state of 
the art of fracture mechanics is not to the point where the evolution of 
large numbers of cracks of evenly distributed sizes in a single inelastic 
body can be predicted. However, there is one case involving multiple 
cracks that may be a tenable problem at this time. That is the case wherein 
the cracks in the body are distributed by size into widely separated length 
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scales, with a small number of cracks observed at the largest scale, termed 
the global or macroscale, upon which failure ultimately occurs. This, then, 
is the subject of this chapter: to develop a modeling approach for 
predicting the evolution of multiple cracks on widely separated length 
scales in heterogeneous viscoelastic bodies. To affect a solution technique, 
the problem will be solved by using the concept of multiscaling, as 
described below. 

The concept of multiscaling in continuous media is an old one that is 
based on classical elasticity theory. In this approach, constitutive pro-
perties of the elastic object are required to predict deformations, stresses, 
and strains in a structural part. To obtain these properties, a constitutive 
test is performed on a specimen made of the material of interest. For the 
test to be valid, not only should the state of stress and strain in the body be 
measurable by observing boundary displacements of the object when it is 
loaded, but also it is necessary that the object be “statistically homo-
geneous.” This is a sometimes ill-defined term; but what is meant by the 
term is that any asperities in the test specimen are several orders of 
magnitude smaller than the specimen itself, so that the spatial variations in 
the magnitudes of the observed stresses and strains in the test specimen are 
small compared to the mean stresses and strains observed during the test 
to obtain the constitutive properties. This type of experiment essentially 
embodies the concept of multiscaling. By assuming that the response of 
the test specimen is statistically homogeneous, the smaller length scale on 
which asperities might be observed is separated from the larger scale of the 
structural component. 

This separation of length scales has long been understood, having been 
considered in some detail by nineteenth-century scientists such as Maxwell 
and Boltzmann, as well as in the early twentieth century by Einstein, to 
explain macroscale observations (visible to the naked eye) of molecular 
phenomena in liquids and gases. Capitalizing on this approach, a number 
of researchers developed rigorous mathematical techniques in the 1960s 
for bounding the elastic properties of multiphase elastic continua [17, 23, 
25]. Such methods earned the descriptor “micromechanics,” although this 
designator is perhaps not the best terminology, since the observed hetero-
geneity is often not microscopic. Nevertheless, this approach has gained 
acceptance as a means of estimating the elastic properties of objects com-
posed of multiple elastic phases which are small compared to the size of 
the body of interest. The advantage of such models (over the experimental 
approach described above) for measuring elastic properties is that the 
volume fractions (as well as shape, orientations, etc.) of the constituents can 
be changed without the necessity of redoing sometimes costly constitutive 
experiments. Thus, this approach, that inherently involves multiscaling, has 
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become quite popular in the engineering field. Furthermore, because the 
resulting body is elastic, the analyses on the smaller and larger scales can 
be performed independently of one another, so that no coupling between 
the two-length scales is necessary. 

In the case of inelastic media, this, unfortunately, is not the case. When 
materials undergo load-induced energy dissipation, such as that occurs in 
elastoplastic or viscoelastic media, the micromechanical description does 
not decouple from the analysis to be performed on the larger scale. In other 
words, the material properties become spatially variable and dependent 
on the load history, so that coupling between the macro- and microscale 
is unavoidable. Therefore, it becomes essential to develop modeling 
approaches that account for this fundamental increase in the level of 
complexity of the problem if there is to be any hope of achieving accuracy 
of prediction. 

For the better part of the last half of the twentieth century, efforts to 
account for this complexity in inelastic media centered on development of 
ever more complicated constitutive theories for the microscale, similar to 
that used successfully to model heterogeneous elastic media, as described 
above. This had the pragmatic basis that one could perform a finite element 
analysis on a single length scale, which was just about the limit that 
computers of that time could handle. However, as it became apparent that 
microscale cracking would have to be included in constitutive models of 
heterogeneous media at the macroscale, efforts began to bog down and 
become very complicated indeed. To account for observed behavior in test 
specimens with time-dependent microcracking, more and more (often un-
explained) phenomenological parameters had to be introduced into models. 
This approach developed the name “continuum damage mechanics.” It also 
inherited the unpalatable complication that sometimes many experi-
mentally measured material parameters were required, especially when it 
became necessary to model evolving microcracks. 

Enter the twenty-first century and more and more powerful computers. 
What required a supercomputer 10 years ago now requires only a desktop 
computer. Therefore, it is now possible to conceive of algorithms that 
obviate the necessity to perform many complicated experiments at the 
microscale. Furthermore, these new algorithms have the added advantage 
that, by performing simultaneous computations on both the micro- and 
global scales, they possess the flexibility to include heretofore unmanage-
able design variables at the microscale in the global design process, and 
without recourse to expensive constitutive testing. 
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11.4 Multiscale Modeling in Inelastic Media with Damage 

In this section, a multiscale model is proposed for predicting the evolution 
of damage on multiple scales in inelastic media. The formulation is taken 
from [5]. 

11.4.1 Microscale Model 

Consider an approach proposed herein that can be used on any number of 
length scales lµ  observed in a solid object. The number of scales n utilized 
is determined by the physics of the problem on the one hand and the 
amount of computational speed and size available on the other hand. To 
that end, consider a solid object with a region wherein microcracks are 
evolving on the smallest length scale considered l1, as shown in Fig. 11.1. 

Fig. 11.1. Scale problem with cracks on both length scales 
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While it is not necessary (or even always correct) that a representative 
volume of the object on this length scale be accurately modeled by con-
tinuum mechanics, it is assumed that this is the case in this chapter to 
simplify the discussion. Suppose that the object can be treated as linear 
viscoelastic, again for simplicity, so that the following initial–boundary 
value problem (IBVP) may be posed. 

Conservation of linear momentum 

 0, ,f x Vµ µ µσ ρ∇ ⋅ + = ∀ ∈  (11.2) 

where µσ  is the Cauchy stress tensor defined on length scale µ, ρ is the 
mass density, and f  is the body force vector per unit mass. Note that 
inertial effects have been neglected, implying that the length scale of 
interest is small compared to the next larger length scale, thus neglecting 
the effects of waves at this scale on the next scale up. Ultimately, it will be 
convenient within this context to model waves only on the largest, or 
global, scale. 

Strain–displacement equations 

 T1 [ ( ) ],
2

u uµ µ µε ≡ ∇ + ∇  (11.3) 

where µε  is the strain tensor on the length scale µ and uµ  is the 
displacement vector on the length scale µ. Note that the linearized form of 
the strain tensor has been taken for simplicity, although a nonlinear form 
may be employed without loss of generality. 

Constitutive equations 

 ( , ) { ( , )},tx t xτ
µ µ τ µ µσ ε τ=

=−∞= Ω  (11.4) 

where xµ  is the coordinate location in the object on the length scale µ, 
which has interior Vµ  and boundary Vµ∂ . 

The above description implies that the entire history of strain at any 
point in the body is mapped into the current stress, which is termed a 
viscoelastic material model. Because only the value of strain (the sym-
metric part of the deformation gradient is used in this model) is required at 
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the point of interest, it is sometimes called a simple (or local) model [15]. 
Note that a local elastic material model, such as Hooke’s law [32], is a 
special case of (11.4). 

Equations (11.2)–(11.4) must apply in the body, together with appro-
priate initial and boundary conditions. These are then adjoined with a frac-
ture criterion that is capable of predicting the growth of new or existing 
cracks anywhere in the object. There are multiple possibilities but, for 
example, the Griffith criterion given by inequality (11.1) can be taken. The 
above then constitutes a well-posed boundary value problem, albeit non-
linear due to the crack growth criterion (perhaps as well as the constitutive 
model (11.4)). 

Obtaining solutions for this problem, even for simple geometries, is in 
itself a difficult challenge, as anyone who has every attempted to do so will 
attest. Nevertheless, assume that by some means (most likely computational) 
a solution can be obtained for the boundary conditions, geometry, and 
precise form of the constitutive (11.4) at hand. Assume, furthermore, that 
the cracks that are predicted within the model dissipate so much energy 
locally that they may have further deleterious effects on the response at the 
next larger length scale. As an example, the so-called microcracks may in 
some way influence the development or extension of one or more 
macrocracks on the next larger length scale l2. It will be assumed that the 
cracks on the next larger length scale are much larger than those on the 
current scale and that this restriction applies to all length scales for cracks 
in the object of interest 

 1 , 1, , ,l l nµ µ µ+ = …  (11.5) 

where n is the number of different length scales observed in the solid. 
Note that the above restriction is a necessary condition (but not 

sufficient) for the multiscale methodology proposed herein to produce 
reasonably accurate predictions on the larger length scale(s). If this con-
dition is not satisfied, as in the case of a so-called localization problem, 
then there may indeed be no alternative to performing an exhaustive analysis 
at a single scale that takes into account all of the asperities simultaneously. 

11.4.2 Homogenization Principle Connecting the Microscale  
to the Macroscale 

To perform an analysis of the solid on the next length scale up from the 
local scale (termed the macroscale herein for simplicity), it is necessary to 
find a means of linking the state variables predicted on the microscale to 
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those on the macroscale. Of course, the state variables at the microscale 
are predicted at an infinite collection of material points in the local domain 
V Vµ µ+ ∂ , so that there is plenty of information available to supply to the 
next larger length scale. However, the objective herein is to find an effi-
cient means of constructing this link without sacrificing too much accuracy. 
In other words, it is propitious to utilize the minimum data obtained at the 
local scale necessary to make a sufficiently accurate prediction at the macro-
scale. One way is to link the microscale to the macroscale via the use of 
mean fields. To see how this might work, consider the following mathe-
matical expansion for the macroscale stress in terms of the microscale stress 

 ( )1
1

1 d ,j
j V

j
x V

V x µ
µ µ µ

µ

σ σ σ σ
∞

+
=

= + −∑ ∫  (11.6) 

where 

 
1 d

V
V

V µ
µ µ

µ

σ σ≡ ∫  (11.7) 

is the volume averaged (or mean) stress at the microscale, and it is 
assumed that the local coordinate system is set at the geometric centroid of 
the microscale volume. 

Note that, since the microscale domain V Vµ µ+ ∂  can be placed 
arbitrarily within the domain on the next larger length scale 1 1V Vµ µ+ ++ ∂ , 
the mean stress µσ  is a continuously varying function of coordinates 1xµ+  
on the next larger length scale µ + 1, as shown in Fig. 11.1. Note also that 
the terms within the summation in (11.6) represent higher area moments of 
the stress tensor. 

Now, it may be said without loss of generality that microscale con-
servation of momentum (11.2) also applies to the macroscale (assuming 
that quasistatic conditions still hold at this length scale) 

 1 1 10, .f x Vµ µ µσ ρ+ + +∇ ⋅ + = ∀ ∈  (11.8) 

By using (11.6), it can be shown that 

 
1

1/ 0
lim ( )

l lµ µ
µσ σ

+
+→

=  (11.9) 

and (11.8) reduces to the following: 
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The similarity between (11.2) and (11.10) is sufficiently striking that 
one is immediately tempted to use the same modeling algorithm on both 
length scales (note that if the momentum terms on the right-hand side of 
(11.8) are not negligible at the macroscale, then a different algorithm must 
be used at this length scale, as will be discussed below). This indeed is the 
approach that will be taken herein; but it must necessarily be said that 
(11.10) is only exact in the limit, i.e., (11.9) is a sufficient condition for 
(11.10) to be exact. However, in all real circumstances, (11.9) cannot be 
satisfied, so that some error must necessarily be introduced by utilizing 
approximate (11.10) in lieu of exact (11.10). 

The use of (11.10) is termed herein a “mean field theory” because the 
higher-order terms that are dropped from (11.6) are essentially higher area 
moments of the microscale stress. Thus, the macroscale analysis is per-
formed only in terms of the mean stress σ . Note that, in cases wherein 
there is localization induced by damage or large strain gradients, one or 
more of the higher-order terms will not be negligible. In this case, a mean 
field theory is no longer accurate; and a nonlocal approximation (including 
one or more of the higher-order terms in (11.6)) or even a full field 
analysis performed simultaneously on all length scales may be necessary 
to obtain reasonable accuracy. However, the necessity for converting to 
this procedure may be monitored by calculating the higher-order terms in 
(11.6) after each time step during the local scale analysis. 

Now consider the standard deviation of the microscale stress, given by 

 ( )2SD 1 d .
V

V
V µ

µ µ µ
µ

σ σ σ≡ −∫  (11.11) 

An object in which the standard deviation of all of the state variables is 
small compared to their respective means is termed, in this chapter, 
“statistically homogeneous” (this, of course, implies that the effects of any 
singularities are bounded when integrated over the volume). It can also be 
shown that, when (11.9) is satisfied, the standard deviation of the micro-
scale stress, given by (11.11), goes to zero. Therefore, in many cases it is 
sufficient for the object to be statistically homogeneous at the microscale 
in order for (11.10) to be an accurate representation at the macroscale. One 
implication of this result is that the microcracks contained within the 
microscale volume must be statistically homogeneous in location and 
orientation. If this is not the case, then higher-order moments will neces-
sarily have to be included at the macroscale [1]. 
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Now note that, as long as any tractions on the crack faces are self-
equilibrating, (11.2) may be used to show that [6, 9, 13] 

 
1 ( ) d ,

V
n x S

V µ
µ µ µ µ

µ

σ σ
∂

= ⋅∫  (11.12) 

where nµ  is the unit outer normal vector on the local boundary Vµ∂ . 
Note that the boundary averaged stress given in (11.12) actually is 

physically more palatable than the volume averaged stress given in (11.7), 
as it is commensurate with the original definition of stress, as defined by 
Cauchy [10], to act on a surface. 

The fact that the volume averaged stress is equivalent to the boundary 
averaged stress is of little importance when there are no cracks. However, 
when cracks grow and evolve with time, it becomes a very important aspect 
of the homogenization process, as will now be shown by considering the 
homogenization process for the strain tensor. It can be shown by careful 
employment of the divergence theorem that 

 1 1,µ µ µε ε α+ += +  (11.13) 

where 

 
1 d

V
V

V µ
µ

µ

ε ε= ∫  (11.14) 

is the mean strain at the local scale, 

 
E

T
1

1 1 [ ( ) ]d
2V

u n u n S
V µ

µ µ µ µ µ
µ

ε + ∂
= +∫  (11.15) 

is the boundary averaged strain on the initial (external) boundary of the 
local volume EVµ∂ , and 

 
I

T
1

1 1 [ ( ) ]d
2V

u n u n S
V µ

µ µ µ µ µ
µ

α + ∂
= +∫  (11.16) 

is the boundary averaged strain on the newly created (internal) boundary 
due to cracking IVµ∂  and is called a damage parameter [17, 33]. 

Since kinematic equation (11.15) is consistent with kinetic equation 
(11.12), it is reasonable to construct constitutive equations at the macro-
scale in terms of these two variables, rather than in terms of volume 
averages. This is in striking contrast to the approach taken when there are 
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no microcracks. In this case, there is no difference between boundary 
averages and volume averages, as can be seen from the above equations. 
Nevertheless, using (11.15) and the divergence theorem, it can be shown that 

 T
1 1 1

1 [ ( ) ],
2

u uµ µ µε + + += ∇ + ∇  (11.17) 

which can be seen to be similar in form to local equation (11.3). 
The construction of a homogenized macroscale IBVP, similar to that 

posed in (11.2)–(11.4), is now nearly complete, as (11.10) replaces (11.2), 
and (11.17) replaces (11.3) at the macroscale. It remains to construct con-
stitutive equations at the macroscale. Where one to utilize the continuum 
damage mechanics approach, it would be sufficient to simply postulate 
constitutive equations of the form: 

 1 1 1 1 1( , ) { ( , ), ( , )}.tx t x xτ
µ µ τ µ µ µσ ε τ α τ=
+ + =−∞ + + += Ω  (11.18) 

The precise nature of this equation would then be determined by some 
curve-fitting scheme either to experimental data provided from macroscale 
experiments or the predictions made at the local scale. While this approach 
may be taken, as mentioned above, it removes the input parameters at the 
local scale from the design process. Therefore, it is preferable to take a 
multiscaling approach. 

Instead, (11.18) is obtained by direct substitution of the microscale 
constitutive (11.4) into the volume averaged stress (11.7). The precise 
nature of the resulting equation will depend on the choice of a constitutive 
model. As an example, consider the case wherein the microscale con-
stitutive behavior is linear nonaging viscoelastic 

 
( , )

( , ) ( , ) d ,
t x

x t E x t µ µ
µ µ µ µ

ε τ
σ τ τ

τ−∞

∂
= −

∂∫  (11.19) 

where ( , )E x tµ  is the relaxation modulus at the microscale. 
Direct substitution of (11.19) into (11.7), and subsequent careful 

utilization of (11.6), (11.9), and (11.12)–(11.16), will result in a 
constitutive description at the macroscale that is of the following form [31] 

 1
1 1 1 1( , ) ( , ) d ,

t
x t E x t µ

µ µ µ µ

ε
σ τ τ

τ
+

+ + + +−∞

∂
= −

∂∫  (11.20) 

where 

 1 1( , ) ( , )d
V

E x t E x t V
µ

µ µ µ τ+ + ≡ −∫  (11.21) 
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is the volume average of the relaxation modulus at the microscale and is 
dependent on the damage incurred in the representative volume element at 
this scale, thereby implying that the material model described in (11.20) is 
nonlinear. 

It is now apparent that macroscale equations (11.10), (11.13)–(11.16), 
and (11.19) correspond to microscale equations (11.2)–(11.4), so that a 
similar algorithm may be utilized for the analysis on both scales. The 
significant difference is that the introduction of cracks at the local scale 
results in a more complex and inherently nonlinear formulation of the 
constitutive equations at the macroscale. This then completes the des-
cription of the homogenization process and the resulting macroscale IBVP. 

11.4.3 Cohesive Zone Model for Predicting Crack Growth  
on Each Length Scale 

As mentioned in the historical review, there are several shortcomings of 
the Griffith criterion. First, it is often found to be inaccurate for visco-
elastic media. Second, it is not convenient to utilize in a computational algo-
rithm, which may be a necessary byproduct of modeling multiple cracks 
simultaneously. For these reasons, a different approach is taken herein for 
predicting crack growth in viscoelastic media. In this chapter, a cohesive 
zone model is utilized instead of the Griffith criterion. Models of this type 
are not new, having been introduced many years ago by Dugdale [16] and 
Barenblatt [7]. Initially, at least, a primary motivation of these models was 
to account for ductility that occurs in many materials, a phenomenon that 
is not generally captured well by the Griffith criterion. Unfortunately, cohe-
sive zone models suffer from several shortcomings that have inhibited their 
deployment until recently. These are essentially related to the inability to 
measure directly the material parameters necessary to characterize a par-
ticular cohesive zone model. Furthermore, a cohesive zone model is normally 
deployed in such a way that it is necessary to know where the crack will 
propagate a priori. For these reasons, cohesive zone models are only now 
finding widespread usage. 

On the other hand, cohesive zone models are endowed with several 
significant strengths. Firstly, they are quite conveniently deployable into a 
finite element code by simply joining two or more subdomains with self-
equilibrating tractions, so that the domain may be treated as simply 
connected and then allowing the tractions to relax to zero as a function of 
one or more observed state variables during problem solution, thereby 
resulting in the production of new surface area. Secondly, cohesive zone 
models can be formulated in such a way that they can more accurately 
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capture fracture phenomena in some media than can the Griffith criterion. 

energy release rate required for crack extension is both rate and history 
dependent. 

model for some viscoelastic media that is formulated in such a way that the 
material parameters required to characterize the cohesive zone model can 
be obtained directly from microscale experiments. Furthermore, this model 
is inherently two scale in nature, in that it utilizes the solution to a 
microscale continuum mechanics problem, together with a homogenization 
theorem, to produce a cohesive zone model on the next larger length scale. 
The model has also been shown to be consistent with advanced fracture 
mechanics, in that the cohesive zone requires a nonstationary critical energy 
release rate in order for a crack to propagate [11, 12, 33]. 

This model will not be reviewed in detail herein since it has already 
been reported in the literature; however, a brief review is given here. As 
shown in Fig. 11.2, the cohesive zone is postulated to be represented by a 
fibrillated or crazed zone that is small compared to the total cohesive zone 
area. 

The length scale of this IBVP is one-length scale below that of the 
smallest local scale required in the multiscale problem. In this chapter, the 
value µ = 1 has been arbitrarily assigned to this length scale. The solution 
to this IBVP (with geometry as shown in Fig. 11.2 and governing equa-
tions identical to (11.2)–(11.4)) has been obtained and homogenized, thus 
leading to the following traction–displacement relation in the cohesive 
zone [3] 
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Fig. 11.2. Two-scale problem showing a cohesive zone at the microscale 

Recently, Allen and Searcy [2, 3, 4, 30] have produced a cohesive zone 

For example, it is often observed in viscoelastic media that the critical 
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where E(t) is the uniaxial viscoelastic relaxation modulus of the 
undamaged cohesive zone material, 1V∂  is the part of the boundary on 
which cohesive zones are active, δ  is the crack opening displacement 
vector in the coordinate system, aligned with the crack faces, λ is the 
Euclidean norm of the crack opening displacement vector, and α is the 
damage parameter, which in this case degenerates to a scalar, defined by 
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A
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where A0 is the undamaged planform cross-sectional area of a representa-
tive area of the cohesive zone and nf is the number of fibrils contained in 
the representative area. 

It can be seen that, when all of the fibrils in a representative area 
fracture, the damage parameter α goes to unity; and the traction vector in 
(11.20) becomes zero, thereby inducing crack propagation. Note that the 
damage parameter α does not exist on the smallest length scale. It appears 
as a natural byproduct of the homogenization process linking this scale to 
the next larger scale. This concept is not unlike the concept of temperature, 
which does not exist at the molecular scale but arises as an outcome of 
kinetic motions averaged up to the continuum scale. Thus, both are repre-
sentations of the kinematics associated with entropy generation. 

Note that herein the damage parameter for this scale is a scalar, unlike 
that produced at the other length scales, as defined in (11.16). This is due 
to the fact that, for the case of a cohesive zone, the homogenization pro-
cess must be slightly altered to perform an area average rather than a 
volume average, as described in Sect. 11.4.2. In this case, the limit is taken 
as the dimension normal to the plane of the cohesive zone, which goes to 
zero, thereby reducing the homogenized cohesive zone to a traction–
displacement relation rather than a stress–strain relation. 

11.4.4 Formulation of Multiscale Algorithms 

The approach detailed above may be used to develop multiscale algorithms 
for obtaining approximate solutions to problems containing multiple cracks 
growing simultaneously on widely differing length scales. This is accom-
plished by constructing a time-stepping algorithm in which the global 
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solution is first obtained for a small time step, assuming some initially 
damaged (or undamaged) state, as shown in Fig. 11.3. The global solution 
for this time step is then utilized to obtain solutions for each integration 
point at the local scale, using the state variables obtained as output from 
the global analysis to obtain the solution at the local scale. The results for 
each integration point are then homogenized to produce the global 
constitutive equations to be used on the next time step at the global scale. 
This procedure is essentially an operator splitting technique, assuming that 
there is one-way coupling between the two-length scales. Sufficient 
accuracy can usually be obtained by this method if successively smaller 
time steps are employed until convergence is obtained. Details of this 
approach may be found in [18, 34]. 

Fig. 11.3. Flowchart showing multiscale computational algorithm 

In principle, the approach described herein can be utilized on as many 
(continuum) length scales as necessary to solve complex problems. How-

10 310 m 10 ml− < <
the requirement that the length scales be broadly separated, as given by 
inequality (11.5), lead to the conclusion that only about five, or perhaps 
six, length scales are physically possible. On the other hand, depending on 
the complexity of the given problem, only about three computational 
scales are practical with current computer capacities. Fortunately, there are 
few problems of current technological significance that require more than 
about three computational scales (there is generally no limitation on the 
number of analytic scales, as these require little computation; but analytic 
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ever, the limits of continuum scales in nature ( ), and 
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solutions, unlike the cohesive zone model described in Sect. 11.4.3, are not 
often attainable). Allen and coworkers have been able to obtain solutions 
on a desktop computer by this technique using as many as four scales 
simultaneously (although it must be admitted that two of the scales were 
analytical) [28]. For simplicity, a three-scale problem is illustrated in 
Fig. 11.4. 

 

Fig. 11.4. Example of three-scale problem 

11.5 Example Problems 

In this section, two example problems are presented to demonstrate the 
technique of multiscaling with damage. 

11.5.1 Tapered Bar Problem 

The first problem to be considered is a uniaxial bar 10 m long and 2 m in 
depth with a linear varying cross-sectional area. Figure 11.5a shows the 
geometry of this tapered bar. The right end of the bar is subjected to a 
monotonically increasing load of 200 N in the x-direction, and dis-
placements on the left end are restricted. In the local scale, the structure is 
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represented by a repeating unit cell, a square element with 0.025 m of side. 
This represents a quarter of one aggregate surrounded by asphalt material, 
shown in Fig. 11.5b. Cohesive zone elements are introduced in the inter-
face between the aggregate and binder. As the load increases, the cohesive 
zones weaken and accumulate damage, leading to eventual crack growth 
on the local scale. 

Fig. 11.5. (a) Global scale geometry and (b) local scale geometry 

Symmetry along the x-direction in the global scale allows modeling of 
only half of the problem. The global scale finite element mesh is shown in 
Fig. 11.6a. The bar is discretized into 20 elements on the global scale; and 
each one of them is designated as a multiscale element, thus requiring a 
separate local analysis for each element in the global scale. The domain of 
the local scale is then partitioned into 12 triangular elements. A simple 
local mesh is then created with cohesive zone elements introduced in  
the interface between the aggregate and binder. The 20 undeformed local 
scale meshes at t = 0 are shown in Fig. 11.6b. Note that these are identical 
in the initial state but become different from one another as the damage 
accumulates. 

As the bar is loaded, local elements experience differing damage accu-
mulation according to their location, because the macroscale stresses increase 
toward the loaded end of the bar. Due to the fact that the bar is tapered, 
local elements close to the load undergo more damage than the ones away 
from the load. 
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Fig. 11.6. Finite element global (a) and local (b) meshes of tapered bar 

Table 11.1 shows the material properties for local and global meshes, 
as well as cohesive zone parameters. The bar is made of a hypothetical 
material model. All materials are assumed to be isotropic linear elastic, 
where δt and δn are material length parameter, A and n are damage para-
meters, and σn and σt are assumed to be zero. 

Table 11.1. Material properties 

Global Local  
 Bulk properties  Bulk properties Cohesive zone 

properties 

E (Pa) 3.00 × 108 E (Pa) 3.00 × 108  E∞ (Pa) 5.00 × 107 
ν 0.35 ν 0.35 E1 (Pa) 5.00 × 107 
    η1 (Pa s) 1.00 × 102 
    ν 0.40 
    δt (m) 1.00 × 10−3 
    δn (m) 1.00 × 10−3 
    A 0.1 
    n 15 

 
The applied force is illustrated in Fig. 11.7. A time increment of 1.0 s 

is used in this problem. 
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To illustrate the local behavior of the elastic tapered bar after the load 
is applied, the deformation of four different local meshes positioned at 
different locations along the bar are shown in different times. Four unit 
cells, chosen strategically within the global bar, are shown in Fig. 11.8. 
Those unit cells are shown in increments of 250 s, up to 1,000 s, in 
Fig. 11.9. 

Fig. 11.8. Illustrated multiscale elements 

The stress legend is positioned on the left side. It can be seen that all 
local elements start with zero stresses and no displacements. After 250 s, a 
cohesive zone opening can be seen in all but Element 2. At 500 s, a crack 
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Fig. 11.7. Load applied 
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Fig. 11.9. Deformation of elastic tapered bar 

has developed in all elements; and stresses are higher in Element 20. As 
the global force continues to increase and the time approaches 1,000 s, the 
stresses are still higher in Element 20; and the crack opening is also larger 
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in this element. This is expected to happen; since the cross-sectional area of 
the tapered bar is smaller on the right end, the global axial stresses are higher 
at this end. Figure 11.10 shows how the global scale evolves with time. 

Fig. 11.10. Global deformation of elastic tapered bar 
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11.5.2 Roadway Problem 

The next problem is an asphaltic roadway problem. This is an interesting 
multiscale problem which considers two different scales. The first step is 
to consider the geometry of the problem. Consider a typical two-lane 
asphalt roadway that contains a symmetry line down the middle of it, as 
shown in Fig. 11.11. For simplicity, only the right half of the pavement 
will be modeled. The road is 12 m wide with two 3.50 m traffic lanes and 
two shoulders of 2.50 m. 

Fig. 11.11. Pavement geometry 

The travel lane has slopes to both shoulders at 2% grade, while paved 
shoulders have slopes of 4%. Even though the pavement geometry can vary 
from case to case and require additional layers if necessary, the selected 
pavement for this analysis contains four layers. The top layer is a 10 cm 
hot mix asphalt, or HMA. The asphalt concrete layer is the final layer to be 
built on top of the other layers. The subsequent layers are made of granular 
material: a 40 cm granular base, a 30 cm granular subbase, and an in situ 
subgrade, which is the graded natural terrain and has a depth of 1.10 m in 
the model. All layers are modeled as isotropic elastic media. Table 11.2 
shows material properties for all the layers. 
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Table 11.2. Material properties for each layer 

 HMA Base Subbase Subgrade 
E (MPa) 14,500 4,000 800 200 
ν 0.40  0.35 0.35 0.35 

 
The local scale geometry is defined by scanning actual asphalt samples 

designed to perform laboratory tests. The global domain is discretized into 
1,423 elements; the finite element mesh is shown in Fig. 11.12. Four global 
scale elements have been chosen for multiscale analysis. These elements 
are located in the surrounding area of the tire load. 

Fig. 11.12. Selected elements for multiscale analysis 
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The local scale problem was divided into 404 elements and is depicted 
in Fig. 11.13 in its undeformed configuration. The asphalt material and 
aggregate are both modeled as linear elastic material. Fracture, in the form 
of discrete cracks, is introduced at the local scale by 930 cohesive zone 
elements. All cohesive zone elements are located within the asphalt material; 
therefore, the interior of each aggregate does not possess any cohesive 
elements. Cohesive zone elements located in the interface of aggregate and 
asphalt imply that fracture will occur around the aggregate boundaries or 
by defibrillation of the asphalt. 
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Fig. 11.13. Local scale mesh 

Local 
Bulk properties Cohesive zone properties 

Asphalt  E∞ (Pa) 5.00 × 107 
E (Pa) 3.00 × 107 E1 (Pa) 5.00 × 107 
ν 0.35 η1 (Pa s) 1.00 × 102 
Rock  ν 0.40 
E (Pa) 8.00 × 108 δt (m) 1.00 × 10−3 
ν 0.20 δn (m) 1.00 × 10−3 
  A 0.1 
  n 15 

 
For this analysis, the response of a cyclic load imposed by a truck on 

the pavement is simulated. The truck applies a static load of 151 kN with a 
tandem axle. A 60-ft. long truck traveling at 70 mph takes less than 1 s to 
pass through a fixed point on the pavement. However, for simplicity, 1 s of 
simulation was considered to simulate the passage of all five axles; ramp 
functions for axle loading and unloading were implemented in the code, 
with a period of 0.2 s for each passing axle or 0.1 s for loading and 0.1 s 

D.H. Allen and R.F. Soares 

Table 11.3 shows the material properties for all constituents of the local 
scale. 

Table 11.3. Material properties for all constituents of the local scales 

520 



rest, which is the time until the next truck passes, totaling a period of 20 s. 
Three trucks per minute or 180 trucks per hour are considered. Figure 11.14 
shows the five axle loads and a rest period of up to 5 s, although the rest 
period still goes up to 20 s. For scale reasons, it would be hard to see the 
five cycles with a larger scale. 

 
Fig. 11.14. Load history 

Let us turn attention to the results of this multiscale problem. As 
shown in Fig. 11.12, four elements are selected for multiscale analysis; and 
the deformation of each of those elements as an outcome of the load 
applied is featured in Fig. 11.15. 

It can be seen that, as time increases, elements on the edge of the load 
(Elements 11 and 23) accumulate less damage than the others with more 
direct action from the load (Elements 15 and 19). At t = 0, all unit cells 
have zero stresses; and as time progresses, Elements 15 and 19 suffer more 
damage because they are subjected to higher stresses. Figure 11.16 
presents the global mesh with stress contours. It is possible to see that 
higher compressive stresses occur where the load is applied by the truck. 
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for unloading, into a peak load of 18,900 kPa. The truck takes a total of 
five cycles of 0.2 or 1 s for all five axles, followed by a 19-s interval of 
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Fig. 11.15. Local deformation 
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Fig. 11.15. (cont’d) 
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Fig. 11.16. Stress in global scale (y component) 

11.6 Conclusion 

A multiscale method has been developed for analysis of structural com-
ponents that exhibit two or more length scales due to heterogeneity and/or 
evolving damage. The model is implemented into a finite element formula-
tion, and the code employs a micromechanic, alloy-based, viscoelastic 
cohesive zone model to predict rate-dependent damage evolution. 

Two simple example problems have been presented to facilitate the 
understanding of how the multiscale method works. Although further 
research is surely needed before this approach can be demonstrated to be 
accurate, it possesses the potential advantages that (1) material properties 
need be supplied only on the constituent scale, thereby simplifying the 
evaluation of material properties and (2) because material properties are 
specified at the constituent scale, variables, such as volume fraction of 
aggregate, can be readily incorporated into the design process. 
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