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12.1 Introduction 

The increased computational power and programming capabilities in recent 
years have given impetus to the so-called multiscale modeling, which imple-
ments the largely intuitive notion that physical phenomena occurring at a 
lower length or size scale determine the observed response at a higher 
scale. A logical outcome of this thought is an organization of differentiated 
scales – from the lowest, such as nanometer scale, to the highest scale 
typical of the part or structure in mind – giving a hierarchy of scales. 
Working up the scales produces a hierarchical multiscale modeling, in which 
the essential challenge consists of “bridging” the scales. The simulation tech-
niques, such as molecular dynamics simulation (MDS), succeed mostly in 
revealing phenomena from one scale to the next; but proceeding to three or 
more scales often necessitates unrealistic computing power even with the 
most versatile facilities available. In addition, the limitation of independent 
physical validation of the simulated results questions the wisdom of total 
reliance on the multiscale hierarchical modeling strategy. 

When it comes to subcritical (prefailure) damage in composites, the 
multiscale modeling concept needs closer examination, firstly, because the 
length scales of constituents and heterogeneities are fixed while those of 
damage evolve progressively, and secondly, because the mechanisms of 
damage tend to segregate in modes with individual characteristic scales. 
All this is the subject of this chapter, which will first describe and clarify 
the damage mechanisms in common types of composites followed by the 
induced response observed at the macroscale. The hierarchical modeling 



approach will be discussed against this knowledge; and a different approach, 
named synergistic multiscale modeling, will be advocated. Assessment will 
be offered of the current state of this modeling, and future activities aimed 
at accomplishing its objectives will be outlined. 

The following treatment of multiscale modeling will draw upon a 
recent paper by Talreja [61] as well as other previous works. 

12.2 Phenomenon of Damage in Composite Materials 

Engineered structures must be capable of performing their functions through-
out a specified lifetime while being exposed to a series of events that 
include loading, environment, and damage threats. These events, either 
individually or in combination, can cause structural degradation, which, in 
turn, can affect the ability of the structure to perform its function. The per-
formance degradation in structures made of composites is quite different 
when compared to metallic components because the failure is not uniquely 
defined in composite materials. To understand how composites may lose 
the ability to perform satisfactorily, some basic definitions related to damage 
of composite materials must be reviewed. Section 12.2.1 contains a brief 
overview of significant mechanisms that can degrade a composite material. 

In a conventional sense, fracture is understood to be “breakage” of 
material, or at a more fundamental level, breakage of atomic bonds, which 
manifests itself in formation of internal surfaces. Examples of fractures in 
composites are fiber fragmentation, cracks in matrix, fiber/matrix debonding, 
and separation of bonded plies (delamination). The field of fracture mech-
anics concerns itself with conditions for enlargement of the surfaces of 
material separation. 

Damage refers to a collection of all the irreversible changes brought 
about by energy dissipating mechanisms, of which atomic bond breakage 
is an example. Unless specified differently, damage is understood to refer 
to distributed changes. Examples of damage are multiple fiber-bridged matrix 
cracking in a unidirectional composite, multiple intralaminar cracking in a 
laminate, local delamination distributed in an interlaminar plane, and fiber/ 
matrix interfacial slip associated with multiple matrix cracking. These 
damage mechanisms are explained in some detail in Sect. 12.2.1. The field 
of damage mechanics deals with conditions for initiation and progression 
of distributed changes as well as consequences of those changes on the 
response of a material (and by implication, a structure) to external loading. 

Failure is defined as the inability of a given material system (and con-
sequently, a structure made from it) to perform its design function. Fracture 
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is one example of a possible failure; but, generally, a material could 
fracture (locally) and still perform its design function. Upon suffering 
damage, e.g., in the form of multiple cracking, a composite material may 
still continue to carry loads and, thereby, meet its load-bearing requirement 
but fail to deform in a manner needed for its other design requirements, 
such as vibration characteristics and deflection limits. 

Structural integrity is defined as the ability of a load-bearing structure 
to remain intact or functional upon the application of loads. In contrast to 
metals, remaining intact (not breaking up in pieces) for composites is not 
necessarily the same as remaining functional. Composites can lose their 
functionality by suffering degradation in their stiffness properties while 
still carrying significant loads. 

12.2.1 Mechanisms of Damage 

Due to extreme levels of anisotropy and inhomogeneity of composites, a 
variety of damage mechanisms cause degradation in the material behavior. 
These can occur separately or in combination. A short description of each 
damage mechanism follows. 

Multiple matrix cracking 

Matrix cracks are usually the first observed form of damage in composite 
laminates [45]. These are intralaminar or ply cracks, transverse to loading 
direction, traversing the thickness of the ply and running parallel to the 
fibers in that ply. The terms matrix microcracks, transverse cracks, intra-
laminar cracks, and ply cracks are invariably used to refer to this very 
same phenomenon. Matrix cracks are observed during tensile loading, 
fatigue loading, changes in temperature, and thermocycling. Figure 12.1 

Fig. 12.1. Examples of matrix cracks observed on the free edges induced due to 
fatigue loading in composite laminates [37] 
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illustrates matrix cracks observed on the free edges induced due to fatigue 
loading in composite laminates [37]. Although matrix cracking does not 
cause structural failure by itself, it can result in significant degradation in 
material stiffness and also can induce more severe forms of damage, such 
as delamination and fiber breakage [44]. Numerous studies of micro-
cracking initiation were performed in the 1970s and early 1980s [4, 13–15, 
29, 48, 49]. It was observed that the strain to initiate microcracking increases 
as the thickness of 90° plies decreases. Also, these microcracks form almost 
instantaneously across the width of the specimen. 

The first attempt to predict the strain to first microcrack used the first 
ply failure theory [18] where it is assumed that the first crack develops 
when the strain in the plies reaches the strain to failure in the plies. The 
predictions were not in agreement with the experimental observations 
since the first ply failure theory predicts that the strain to initiate micro-
cracking will be independent of the ply thickness. The experimental obser-
vations on laminates with a 90° layer on the surface [90n/0m]s show that the 
strain to initiate microcracking is lower for laminates with cracks in 
surface plies than for laminates with cracks in central plies [52, 54]. 

The simplest way to model transverse matrix cracks in composite 
laminates is to completely neglect the transverse stiffness of cracked plies, 
called the ply discount method. This method underestimates the stiffness of 
cracked laminates, since cracked plies, in reality, can take some loading. 
Another simple way is shear lag analysis, wherein the load transfer between 
plies is assumed to take place in shear layers between neighboring plies. 
The normal stress in the external load direction is assumed to be constant 
over the ply thickness. The thicknesses and stiffness of these shear layers 
are generally unknown, and the variations in the thickness direction of 
local ply stresses and strains are also neglected in the shear lag theory. The 
shear lag theory has limited success for crossply laminates [19, 25, 39, 62]. 
For crossply laminates, the most successful approach is the variational 
method. By application of the principle of minimum complementary potential 
energy, Hashin [21, 22] derived estimates for thermomechanical properties 
and local ply stresses, which were in good agreement with experimental 
data. Varna and Berglund [65] later made improvements to the Hashin 
model by use of more accurate trial stress functions. A disadvantage of the 
variational method is that it is extremely difficult to use for laminate lay-
ups other than crossplies. McCartney [43] used Reissner’s energy function 
to derive governing equations similar to Hashin’s model. He applied this 
approach to doubly cracked crossply laminates assuming that the in-plane 
normal stress dependence on the two in-plane coordinates is given by two 
independent functions. Gudmundson and coworkers [16, 17] considered 
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laminates with general layup and used the homogenization technique to 
derive expressions for stiffness and thermal expansion coefficient of 
laminates with cracks in layers of three-dimensional (3D) laminates. These 
expressions correlate damaged laminate thermoelastic properties with 
parameters characterizing crack behavior: the average crack opening 
displacement (COD) and the average crack face sliding. These parameters 
follow from the solution of the local boundary value problem, and their 
determination is a very complex task. Also, the effect of neighboring layers 
on crack face displacements was neglected; and the displacements were 
determined assuming a periodic system of cracks in an infinite homogeneous, 
transversely isotropic medium (90° layer). The application of their methodo-
logy by other researchers has been rather limited due to the fairly complex 
form of the presented solutions. 

An alternative way to describe the mechanical behavior of matrix-
cracked laminates is to apply concepts of damage mechanics. Generally 
speaking, the continuum damage mechanics (CDM) approaches [1, 2, 56, 
57] may be used to describe the stiffness of laminates with intralaminar 
cracks in off-axis plies of any orientation. The damage is represented by 
internal state variables (ISVs), and the laminate constitutive equations are 
expressed in general forms containing ISV and a certain number of 
material constants. These constants must be determined for each laminate 
configuration considered either experimentally, measuring stiffness for a 
laminate with a certain crack density, or using finite element (FE) analysis. 
This limitation is partially removed in synergistic damage mechanics 
(SDM) suggested by Talreja [60], which incorporates micromechanics 
information in determining the material constants. The SDM approach has 
proved to be quite efficient for a variety of laminate layups and material 
systems. The present chapter builds on this methodology, and relevant 
details will be discussed later. 

Interfacial debonding 

The performance of a composite is markedly influenced by the properties 
of the interface between the fiber and matrix resin. The adhesion bond at 
the interfacial surface affects the macroscopic mechanical properties of the 
composite. The interface plays a significant role in stress transfer between 
fiber and matrix. Controlling interfacial properties thus leads to the control 
of composite performance. In unidirectional composites, debonding occurs 
at the interface between fiber and matrix when the interface is weak. The 
longitudinal interfacial debonding behavior of single-fiber composites has 
been studied in detail by the use of the pullout [26, 38, 73] and frag-
mentation [10, 12, 24, 72] tests. The mechanics of interfacial debonding in 
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a unidirectional fiber-reinforced composite are depicted in Fig. 12.2. When 
fracture strain of the fiber is greater than that of the matrix, i.e., εf > εm, a 
crack originating at a point of stress concentration, e.g., voids, air bubbles, 
or inclusions, in the matrix is either halted by the fiber, if the stress is not 
high enough, or it may pass around the fiber without destroying the 
interfacial bond (Fig. 12.2a). As the applied load increases, the fiber and 
matrix deform differentially, resulting in a buildup of large local stresses in 
the fiber. This causes local Poisson contraction; and eventually shear force 
developed at the interface exceeds the interfacial shear strength, resulting 
in interfacial debonding at the crack plane that extends some distance 
along the fiber at the interface (Fig. 12.2c). 

 

Fig. 12.2. Mechanics of interfacial debonding in a simple composite [20] 

Interfacial sliding 

Interfacial sliding between constituents in a composite can take place by 
differential displacement of the constituents. One example of this is when 
fibers and matrix in a composite are not bonded together adhesively but by 
a “shrink-fit” mechanism, due to difference in thermal expansion properties 
of the constituents. On thermomechanical loading, the shrink-fit (residual) 
stresses can be removed, leading to a relative displacement (sliding) at the 
interface. The relief of interfacial normal stress can also occur when a 
matrix crack tip approaches or hits the interface. 

When the two constituents are bonded together adhesively, interfacial 
sliding can occur subsequent to debonding if a compressive normal stress 
on the interface is present. The debonding can be induced by a matrix 
crack, or it can result from growth of interfacial defects. Thus, interfacial 
sliding that follows debonding can be a separate damage mode or it can be 
a damage mode coupled with matrix damage. 
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When the interface between the matrix and the fiber debonds, this 
relieves the tensile residual stresses in the matrix. Due to different stresses 
in the matrix and the fiber at the interface, the fibers slide on the interfacial 
surface. Subsequently, the sliding surfaces cause degradation of material 
due to frictional wear at the interface. Pullout and pushback tests are useful 
in determining the stress required to cause interfacial sliding. This mostly 
depends upon the strength of the adhesive bond between the matrix and the 
fiber at the interface. 

Fiber microbuckling 

When a unidirectional composite is loaded in compression, the failure is 
governed by the matrix and occurs through a mechanism known as micro-
buckling of fibers. There are two basic modes of microbuckling deformation: 
“extensional” and “shear” modes [51], as shown in Fig. 12.3, depending 
upon whether the fibers deform “out of phase” or “in phase.” The com-
pressive strength corresponds to the onset of instability and is given as 

Fig. 12.3. Extensional and shear modes of microbuckling [51] 
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for the shear mode, where E and G denote Young’s modulus and shear 
modulus, respectively, and subscripts “f ”  and “m” designate fiber and 
matrix, respectively. 

Although these expressions are based on energy balance, they do not 
agree with experimental observations. As an alternative, it has been argued 
that manufacturing of composites tends to cause misalignment of fibers, 
which can induce localized kinking of fiber bundles. The kinking process is 
driven by local shear, which depends on the initial misalignment angle φ 0 
[3]. The critical compressive stress corresponding to instability is given by 
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where τy represents the interlaminar shear strength. Budiansky [6] 
considered the kink band geometry and derived the following estimate for 
the kink band angle β in terms of the transverse modulus ET and shear 
modulus G of a two-dimensional (2D) composite layer: 

2 2c c

T T

( 2 1) tan .G G
E E
σ σβ− −

− < <  (12.4)

To account for shear deformation effects, Niu and Talreja [46] 
modeled the fiber as a generalized Timoshenko beam with the matrix as an 
elastic foundation. It was observed that not only an initial fiber mis-
alignment but also any misalignment in the loading system can affect the 
critical stress for kinking. 

Delamination 

Delamination as a result of low-velocity impact loading is a major cause of 
failure in fiber-reinforced composites [7, 9, 40]. Delamination can occur 
below the surface of a composite structure with a relatively light impact, 
such as that from a dropped tool, while the surface remains undamaged to 
visual inspection [9, 28, 50]. The growth of delamination cracks under the 
subsequent application of external loads leads to a rapid deterioration of 
the mechanical properties and may cause catastrophic failure of the com-
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posite structure [55]. Delamination is a substantial problem because the 
composite laminates, although having strength in the fiber direction, lack 
strength in the through-thickness direction. This essentially limits the 
strength of a traditional 2D composite to the properties of the brittle matrix 
alone [71]. The development of interlaminar stresses is the primary cause 
of delamination in laminated fibrous composites. Delamination occurs when 
the interlaminar stress level exceeds the interlaminar strength. The inter-
laminar stress level is associated with the specimen geometry and loading 
parameters, while the interlaminar strength is related to the material pro-
perties [40, 71]. From an energy point of view, delamination cracks will 
grow when the energy required to overcome the cohesive force of the 
atoms is equal to the dissipation of the strain energy that is released by the 
crack [11]. The delamination can be reduced by either improving the frac-
ture toughness of the material or modifying the fiber architecture [8, 42]. 

Typically, a low-speed impact overstresses the matrix material, pro-
ducing local subcritical cracking (microcracking). This does not necessarily 
produce fracture; however, it will result in stress redistribution and the 
concentration of energy and stress at the interply regions where large 
differences in material stiffness exist. The onset and rapid propagation of a 
crack results in sudden variations in both section properties and load paths 
within the composite local to the impactor. This requires an adaptive 
method to track the progression of damage and fracture growth. 

Fiber fracture 

As the applied load is increased, progressive matrix cracks lead to fiber/ 
matrix interfacial debonding and delamination; and the stress state inside 
laminate material becomes quite complex. Ultimately, when the laminate 
strain reaches fiber failure strain, the fibers start to fail; and multiple cracks 
develop in the fibers. The multiple fiber cracks also develop due to stress 
transfer in the regions where the matrix is not able to take any more load. 

Since at this load level other damage modes are also present, the real 
reason for ultimate failure is often not clear. At ultimate failure load, the 
matrix is shattered; and, evidently, the fibers carry the full failure load. The 
composites usually support large load and deformation at failure, although 
the measured ultimate strength clearly may not be reliable in actual 
applications [47]. All fibers are not of the same strength, and a statistical 
variation of strength between fibers and along fiber lengths is used. In 
addition to strength and modulus, another important property of a fiber-
reinforced composite is its resistance to fracture. The fracture toughness of 
a composite depends not only on the properties of the constituents but also 
significantly on the efficiency of bonding across the interface [33]. 
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The damage mechanisms described above have different characteristics 
depending on a variety of geometric and material parameters. Each mech-
anism has different governing length scales and evolves differently when 
the applied load is increased. Interactions between individual mechanisms 
further complicate the damage picture. As the loading increases, stress 
transfer takes place from a region of high damage to that of low damage, 
and the composite failure results from the criticality of the last load-bearing 
element or region. For clarity of treatment, the full range of damage can be 
separated into damage modes, treating them individually followed by 
examining their interactions. This approach will be discussed in detail in 
later sections with respect to ceramic matrix composites (CMCs) and 
polymer matrix composites (PMCs). 

12.2.2 Damage-Induced Response of Composites 

The presence of damage in a composite induces permanent changes in the 
response with respect to the virgin state. One objective of multiscale model-
ing is to relate these changes to the damage, specifically taking into account 
the scale(s) at which damage mechanisms operate. In this section, a simple 
case of unidirectional continuous fiber composites, which respond linear 
elastically in the virgin state, will be examined to illustrate how the 
response can be varied when multiple matrix cracking damage exists. Two 
cases will be considered (1) a constrained PMC loaded in tension trans-
verse to fibers and (2) an unconstrained CMC loaded in tension along fibers. 

Constrained PMC loaded in tension transverse to fibers 

When a unidirectional PMC is loaded in uniform tension normal to fibers, 
it responds linear elastically until failure initiates from matrix or interfacial 
cracking. However, if this composite is bonded to stiff elastic elements and 
then loaded, still transverse to fibers, its failure changes from single 
fracture to multiple matrix cracking as described above. The response of 
the combined composite and the stiff elements changes as the multiple 
cracking progresses, i.e., its intensity, measured by, e.g., crack number 
density, increases. The changes in response induced by cracking depend on 
the constraining effect of the stiff elements. This phenomenon is con-
veniently illustrated in Fig. 12.4 by an axially loaded crossply composite 
[0m/90n]s in which the degree of constraint to transverse ply cracking can 
be varied by selecting the m/n ratio. Considering the strain εFPF at which 
first cracking occurs in the constrained transverse ply, Talreja [56] 
classified the constraint in four categories (Fig. 12.5) (A) no constraint, (B) 
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Fig. 12.4. The strain at first ply failure as a function of the number of transverse 
plies in [04/90n]s laminate 

Fig. 12.5. Stress–strain response at different constraints to transverse cracking in 
crossply laminates 
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low constraint, (C) high constraint, and (D) full constraint. In the case of 
[04/90n]s laminate, εFPF varies with the number 2n of 90° plies. As this 
number increases, the constraint of the 0° plies becomes increasingly 
insignificant and εFPF approaches the failure strain of the unconstrained 90° 
plies, i.e., the failure strain normal to fibers. On the other extreme, as the 
constraint of the 0° plies becomes effective, this strain increases; and 
multiple cracking occurs. This process continues to higher constraint; and 
at some point, the εFPF exceeds the fiber failure strain, at which point the 
constraining plies fail. 

 
Unconstrained CMC loaded in tension along fibers 

The stress–strain response of a unidirectional CMC loaded in axial tension 
is described in Fig. 12.6. This response develops in stages as the matrix 
cracking progresses, as evidenced by the set of micrographs obtained by 
Sørensen and Talreja [53] shown in Fig. 12.7. The micrograph taken at 0.15% 
axial strain shows the matrix cracks normal to the (horizontal) fiber axis 
that do not span the complete specimen cross section. As strain increases, 
more cracks form and quickly span the whole specimen width. Finally, the 
cracking saturates, i.e., no more cracks form on increasing the load. This 
stage of progressive matrix cracking represents Stage II, extending from 
0.13 to 0.5% axial strain in Fig. 12.6. The preceding stage (Stage I) con-
sists of linear elastic behavior before the onset of cracking. Beyond 0.5% 
 

Fig. 12.6. The three stages of stress–strain response in a SiC fiber-reinforced 
glass-ceramic composite [53] 
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strain, the frictional sliding at the fiber/matrix interface becomes signi-
ficant. Finally, beyond 0.7% strain, a progressive fiber breakage takes place 
leading to localization of damage and catastrophic failure. The Stage II 
progressive cracking was treated by Sørensen and Talreja [53]. In Sect. 12.3, 
two cases of damage will be used to illustrate the multiscale nature of damage 
and discuss how the scales can be incorporated into a damage mechanics 
framework. 

Fig. 12.7. Surface micrographs of a SiC fiber-reinforced glass-ceramic composite 
at different axial strains. Tensile loading was in the (horizontal) fiber direction 
[53] 

12.3 Multiscale Nature of Damage 

As described in Sect. 12.2, the damage in composites occurs due to a 
variety of dissipative mechanisms which cause permanent changes in the 
internal microstructure of the material and decrease the energy storing 
capacity of the material. The most basic scale at which these mechanisms 
occur depends upon the size of inhomogeneities in the microstructure of 
the material. As an example, nanocomposites may show dissipative mech-
anisms at the nanometer scale. In reality, however, identifying this scale is 
limited by the ability to observe as well as to model and analyze the 

Chapter 12: Multiscale Modeling for Damage Analysis 541 



mechanisms at the observed scale. The so-called microscale is a reference 
to the scale at which entities or features within a material are observable by 
a certain type of microscope. Thus, for example, the microscale can be a 
few micrometers, if an electron microscope is used to observe entities, 
such as cracks or crystalline slip within grains or at grain boundaries. The 
scale reduces by an order of magnitude if one focuses on dislocations 
observed by a transmission electron microscope. Today, the use of nano-
scale elements (particles, fibers, tubes, etc.) has moved the basic scale further 
down to the atomic scale. At this scale, the basic notions of continuum 
mechanics fail; and it is necessary to develop modeling tools that can 
bridge the discrete-level descriptions (quantum mechanics) to continuum-
type (smeared-out) descriptions. 

In an engineering approach, the purpose at hand should guide the 
choice of the basic scale. Thus, if the overall (effective) characteristics of 
inelastic response are of interest, it would suffice to incorporate the energy 
dissipating mechanisms in a model, directly or indirectly, in an appropriate 
average sense; while if, for instance, the aim is a particular material failure 
characteristic, the analysis may need to be conducted at the local physical 
scale of the relevant details of the mechanisms. On the other hand, if the 
purpose is to design a material, i.e., to engineer its response or to provide it 
with certain functionalities, then it would be necessary to address scales 
where the material (micro) structure can be modified, manipulated, or 
intruded. 

In composite materials, the scales of inhomogeneities (reinforcements, 
additives, second phases, etc.) embedded in the baseline material (matrix) 
determine the characteristic scales of operation of the mechanisms of energy 
dissipation. Although energy dissipation may also be occurring at other 
(smaller) scales, e.g., the scale of the matrix material’s microstructure, the 
dissipative mechanisms associated with the inhomogeneities have usually 
an overriding influence on the composite behavior. For instance, in short-
fiber PMCs, the size of fiber diameter manifests the scale at which matrix 
cracks form, although energy dissipation may also occur at the matrix 
polymer’s molecular scale. 

The complexity introduced by inhomogeneities in composite damage 
is in the form of multiple scales of dissipative mechanisms depending on 
the geometrical features of the inhomogeneities. In the case of short fibers, 
for instance, the matrix cracking from the fiber ends and the fiber/matrix 
debonding occurs at two length scales, determined by the fiber diameter 
and fiber length, respectively. For composite laminates, the thickness of 
identically oriented plies sets the scale for development of intralaminar 
cracking, while for formation of these cracks the appropriate scale is given 
by the fiber diameter. Thus, in modeling of a composite material’s behavior, 
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one faces a complex situation concerning the length scales; and taking a 
hierarchical approach may not be efficient, as will be discussed later. In 
the following, the multiscale nature of damage in composite materials will 
be illustrated by examining the two cases pertaining to damage in uni-
directional CMCs and ply cracking in laminates. 

12.3.1 Unidirectional CMCs 

In the case of CMCs, the fiber/matrix interfacial region has a strong 
influence on the thermomechanical response. The properties of the inter-
facial region determine whether a matrix crack front approaching a fiber 
advances into the fiber or bypasses it by causing interfacial slip and/or 
debonding. The damage configurations at the microscopic level thus gene-
rated govern the macroscopic (overall) response of a composite. There are 
three basic mechanisms of damage in CMCs: matrix cracking, interfacial 
sliding, and interfacial debonding. They can occur independently or inter-
actively. The experimental evidence indicates that the interfacial damage 
(slip and debonding) occurs primarily in conjunction with matrix cracking 
[41]. Talreja [59] used these damage configurations to characterize damage, 
as shown in Fig. 12.8a–d. Figure 12.8b,d shows interfacial slip and 
debonding, both in conjunction with matrix cracking. This situation (b) 
will result if the fibers are held in the matrix by frictional forces at the 
interfaces, while (d) is likely to result from a nonuniform interfacial bond 
strength [59]. 

The characterization of damage is done by regarding damage entities 
as internal structure of the homogeneous body. The internal structure changes 
with loading and causes changes of the overall response of the compo-
site. The internal structure of a continuum is described using the so-called 
internal variables. These variables are some appropriately defined quantities 
representing the geometry, i.e., size, shape, orientation, etc., of the internal 
structure as well as the influence of the internal structure on the response 
considered. The quantities chosen depend on the geometrical characteristics 
of the entities involved in the internal structure constitution and the nature 
of the influence of these entities on the response of the composite. The ele-
mentary damage entities present in the damage configurations treated here 
are cracks, debonds, and slipped surfaces. The characterization used for 
cracks and debonds is different from that used for slipped surfaces. These 
two types are, therefore, treated separately in the following. 
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Fig. 12.8. Distributed damage configurations in CMCs: (a) matrix cracking,  

Matrix cracking 

A matrix crack can be viewed as a pair of internal surfaces in a composite 
that are able to perturb the stress state in a region around the surfaces by 
conducting displacement, i.e., separation of surfaces, from the undeformed 

CMC, the constraint comes from the bridging fibers as well as from the 
stiffening effect of fibers in the matrix surrounding the crack. 

The description for matrix cracks follows a second-order tensor char-
acterization as suggested first by Vakulenko and Kachanov [64] and 
described in further detail by Kachanov [31]. Talreja [58] used a diad an to 
characterize a damage entity of a finite volume bounded by a surface S. In 
this characterization, n is the unit outward normal to the surface at a point 
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(d) debonding in conjunction with matrix cracking [59] 
(b) interfacial slip in conjunction with matrix cracking, (c) debonding, and 

depends on the size and shape of the surfaces as well as on the constraint, 
if any, imposed by the surroundings. For a matrix crack in a unidirectional 

configuration. The surface separation per unit of applied external load 
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on the surface and a represents the extent and direction of some “influence,” 
e.g., the disturbance of the strain fields, due to presence of the damage 
entity, referred to the same point on the surface. A “damage entity tensor” 
is then defined as 

d ,ij i jS
d a n S= ∫  (12.5)

with reference to a Cartesian coordinate system Xi. The influence vector 
can be resolved along the normal and tangential directions with respect to 

allowing ai to be expressed as 

,i ia an=  (12.6)

where the quantity a now represents a measure of the crack influence. 
From dimensional analysis, with dij taken to be dimensionless, a has 
dimensions of length. Drawing upon fracture mechanics, this length is in 
proportion to the crack length. For a fiber-bridged matrix crack, the crack 
length l can be expressed in multiples of the average interfiber spacing. 
Thus, 
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where k is a constant, d is the fiber diameter, and vf is the fiber volume 
fraction. The expression in (12.7) is based on a hexagonal fiber arrange-
ment. Similar expression will result from another assumption of fiber 
distribution in the cross section. It can now be inferred that the micro-
structural length scale for matrix microcracking is the fiber diameter. Note 
that, for an irregularly shaped crack surface, the interfiber spacing and, 
therefore, the fiber diameter will still be the length scale. 

The consequence of the presence of a matrix crack is generally in 
changing the composite’s deformational response, which is defined and 
measured at a larger length scale, e.g., the characteristic length of a volume 
containing a representative sample of the cracks. This volume is called a 
representative volume element (RVE). For the Stage II stress–strain res-
ponse [53], the model proposed in [59] was used. Accordingly, assuming 
the influence vector magnitude a to be proportional to the crack length, 

 

,a lκ=  (12.8)
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to assume that only the normal (crack opening) displacement matters, 
the crack surface. For the type of crack considered here, it is reasonable 
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where l is a constant representing the constraint to the crack surface 
displacement. This constant equals zero when the constraint allows no 
crack separation, while it increases as the constraint reduces. From (12.5), 
(12.6), and (12.8), the damage entity tensor for matrix cracking is 

mc 2 ,ij i jd l tn nκ=  (12.9)

where t is the specimen thickness (or the through-thickness characteristic 
dimension of the crack). 

The macrolevel deformational response is derived from a strain energy 
density function that depends on the strain and damage states. The matrix-
cracking damage state is characterized by Talreja [59] 

mc mc1 ,ij ijD d
V

= ∑  (12.10)

where V is the RVE volume of an RVE over which the summation is 
conducted. Substituting (12.5) in (12.6), one obtains 

mc ,D A flκη= 〈 〉  (12.11)

where mc mc
11D D=  is the only surviving component of the damage mode 

tensor, f is the fraction of RVE width spanned by a crack, η is the crack 
number density, i.e., the number of cracks per unit volume, and A is the 
cross-sectional area. The quantity within the brackets 〈 〉  is averaged over 
the RVE volume. 

The matrix crack length (12.7) appears in the damage descriptor (12.11). 
As shown in [59], the crack length also governs the elastic constants at a 
given crack density η. For instance, the axial Young’s modulus can be 
written as 

0
11 11(1 ),E E c lη= −  (12.12)

where c is a constant and the superscript 0 is for the initial value. 
In characterizing matrix cracks as a damage mode, no specific account 

is made of the associated fiber/matrix debonding and sliding mechanisms. 
These can be considered separately and then accounted for by their 
interactions with the matrix cracks [59]. Discussions of these mechanisms 
follow. 

Interfacial debonding 

The fiber/matrix interface can debond due to several causes. Essentially, a 
stress normal to fibers or a shear stress along fibers, or a combination of 
the two, must exist for the bond to fail. These stresses can be generated by 
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a fiber break or brought into play by an approaching matrix crack. Alter-
natively, a preexisting flaw at the fiber surface or an imperfect fiber, or its 
misalignment, can produce those stresses. If debonds are produced without 
interaction with matrix cracks, then they can be characterized in a manner 
similar to matrix cracks. A characterization of such distributed debonding 
is given in [59] based on certain simplifying assumptions. The only sur-
viving damage mode tensor component for this case is D22, and its form is 
the same as that of Dmc in (12.11). Thus, the debond length and the debond 
number density enter into the damage mode description. The debond length 
will depend on the characteristic flaw length, which in turn depends on the 
manufacturing process. Unless the ability of the manufacturing process 
to produce interfacial flaws somehow depends on the composite micro-
structure, no microstructural length scale can be identified for the 
debonding mechanism. 

In the case of a matrix crack initiating debonding and then merging 
with the debond crack, more force on the advancing debond crack comes 
from the opening displacement of the matrix crack. The damage con-
figuration of interest, then, is not the debond crack itself but a combined 
matrix-debond crack. The latter can be viewed as a fiber-bridged matrix 
crack, discussed above, with the constraint to its surface displacement now 
modified by the presence of debonding. Then, the constant α in (12.8), (12.9), 
and (12.11) may be changed to another value, resulting in a change of the 
constant c in (12.12). 

Thus, for debonding that occurs in conjunction with matrix cracking, 
the determining length associated with the damage mode is still the matrix 
crack length l, although with a modified influence. This length can still be 
expressed by (12.7), giving the fiber diameter as the microstructural length 
scale. 

Specific treatments of debonding by itself and debonding in con-
junction with matrix cracking are given in [59]. Based on that work, the 
axial modulus for the latter case can be modified from (12.12) to be 

0
11 11(1 ),E E c lη′= −  (12.13)

Where 

l l ,c c k d′ = +  (12.14)

where dl is the ratio of the debond length to the crack length and kl is a 
constant. Here, a fixed ratio of the number of debonds per unit of matrix 
crack length has been assumed. 
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From (12.13) and (12.14), it can be seen that the debond length does 
not enter into the RVE response directly but via its ratio to the crack length, 
suggesting that the governing length for this response is the crack length. 

Interfacial sliding 

Interfacial sliding occurs when fibers and matrix remain in contact after 
debonding of the interface and undergo unequal displacements. Talreja 
[59] defined a measure of the slip at the interface as the area swept off by 
the relative displacement of one constituent over the other and expressed 
this measure in terms of a slippage vector. A slippage tensor was then con-
structed as a dyadic product of the slippage vector with itself to account for 
the insensitivity of the material response to the direction of slip. As in the 
case of debonding, discussed previously, when sliding occurs in conjunc-
tion with matrix cracking, the slip damage tensor, which represents this 
damage mode averaged over the RVE, turns out to depend on the average 
matrix crack length. In fact, it depends explicitly on the average COD, 
which in turn depends on the average crack length. The only surviving 
component of the slip damage tensor can be written as [59] 

2 4 2
sl 2

d2
f

,
64
dD c

v
π η

= 〈 〉  (12.15)

where d is the fiber diameter, vf is the fiber volume fraction, and cd is the 
COD; and the quantity within the brackets 〈 〉  is averaged over the RVE 
volume. 

Assuming the COD to be proportional to the crack length, (12.15) may 
be rewritten as 

sl 2 4 2 ,D d lξη= 〈 〉  (12.16)

where ξ is a constant depending on the fiber volume fraction and fiber 
stiffness. The fiber diameter is placed within the brackets to allow for its 
variation. Equation (12.16) indicates that this damage mode depends directly 
and strongly on the fiber diameter in addition to depending on the matrix 
crack length, which in turn is expressible in terms of the fiber diameter, 
as in (12.7). Thus, the microstructural length scale in this case is the fiber 
diameter. Note that the fiber length over which sliding occurs is not a 
characteristic dimension of the mechanism when it occurs in conjunction 
with matrix cracking. 
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12.3.2 Ply Cracking in Laminates 

Figure 12.9 shows an X-ray radiograph of a carbon–epoxy crossply 
laminate after being subjected to tension–tension cycling. In this 2D view, 
the horizontal lines are images of cracks in the 90° plies, while the vertical 
lines indicate cracks (also called axial splits) that lie in the 0° plies [27]. 
 

Fig. 12.9. An X-ray radiograph showing transverse cracks, axial cracks, and 
delaminations in a crossply laminate after fatigue [27] 
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Fig. 12.10. The cracks and delaminations seen in the X-ray radiograph (see 
Fig. 12.9) 

The shaded areas are sites of interlaminar cracks (delaminations), which 
are depicted in Fig. 12.10. For the sake of this discussion on length scales 
of damage, the focus will primarily be on ply cracking. 

Figure 12.11 illustrates multiple matrix cracking in a ply of an arbi-
trary orientation θ with respect to the 90° direction. The cracks are shown 
at a mutual spacing s which represents the average crack spacing in an 
RVE. Using a second-order tensor characterization for this mode of 
damage [58] gives 

2
pc c ,

cosij i j
tD n n

st
κ

θ
=  

(12.17)

where the superscript pc stands for ply cracking, κ is a ply constraint 
parameter, tc is the thickness of the cracked ply, and t is the laminate 
thickness. The components ni of the unit vector normal on a crack surface 
are given by 

(cos ,sin ,0),in θ θ=  (12.18)

where θ, as shown in Fig. 12.11, is the crack inclination. 
The laminate stiffness matrix in the presence of a fixed state of ply 

cracking is given by Talreja [58] 
0 D ,pq pq pqC C C= −  (12.19)
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Fig. 12.11. Multiple cracking in a general off-axis ply of a laminate 

where the indices p and q take values from 1 to 6 in accordance with the 
Voigt notation. The superscript 0 on the stiffness matrix indicates initial 
value while D indicates the contribution due to damage. Following clas-
sical laminate theory, the stiffness matrix for the virgin laminate can be 
written in terms of elastic moduli as below: 

0 0 0
1 12 2
0 0 0 0
12 21 12 21

0
0 2

0 0
12 21

0
12

0
1 1

0 .
1

Symm

pq

E E

EC

G

ν
ν ν ν ν

ν ν

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (12.20)

The stiffness change due to damage depends upon the laminate ply layup. 
For instance, consider damage in [0/±θm/0n]s laminate. The ply cracks develop 
in ±θ layers and the change in stiffness matrix is given as 
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1 42
D D D c

2

3

2 0
( ) ( ) ( ) sin 2 0 ,

Symm 2
pq pq pq

a a
tC C C a

st
a

θκθ θ θ θ
⎡ ⎤
⎢ ⎥± = + + − = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (12.21)

where θκ  is the constraint parameter for ply orientation equal to θ and 
ai are phenomenological constants. For the particular case of damage in 
[0/±θm/0]s laminates, the crack spacing in both +θ and −θ plies is assumed 
to be the same, as the damage response for both orientations would be 
nearly the same on external loading. Thus, these two damage modes, by 
virtue of their response behavior, effectively act like a single damage 
mode. Clearly, the above equation involves four unknown constants. These 
constants can be evaluated either experimentally or though numerical FE 
simulations. The procedure is outlined as follows. Experimentally observe 
degradation in stiffness properties for a reference laminate configuration 
such as a crossply laminate. Fit a straight line to the experimental data 
normalized with regard to stiffness of the virgin laminate. Evaluate exp( )pqC , 
i.e., compute E1, E2, υ12, and 21 2 1 12( / )E Eυ υ=  at a certain crack spacing 
s0. Using the equations above with θ = 90°, the following is obtained 

exp
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(12.22)

One important aspect pertaining to these constants is that though these 
constants are determined for the reference laminate, for other laminate 
configurations they are assumed to remain unaffected by angle θ for a 
given ply material. From experimental observations on carbon/epoxy [60] 
and glass/epoxy [68] laminates, this assumption is found to hold true. This 
is because the damage constants are primarily determined by the con-
stituent ply properties and are not very dependent on ply orientation. Of 
course the influence of the ply orientation on the constraint posed by un-
damaged plies over damaged plies is important and is suitably carried by 
the “constraint parameter” κ through changes in COD. 
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The length scale variable entering the damage descriptor (12.17) and, 
consequently, the elastic response change (12.21) is the crack dimension, 
which for fully developed ply cracks, as assumed here, is the ply thickness 
tc. The other crack dimension along the fiber axis in the ply extends as far 
as the imposed stress acts and is, therefore, not the characteristic length 
scale of the cracking mechanism. Expressed differently, the crack surface 
displacement, which is the cause of stress perturbations and, thereby, the 
elastic response changes, depends on the crack dimension through the ply 
thickness. 

Although the ply cracks are assumed for simplicity to be sharp tipped, 
as illustrated in Fig. 12.11, in reality they must get blunted by merging 
with the local delamination, i.e., the separation of plies at the interface, 
caused by the intense stress field carried by the approaching ply crack 
fronts. The extent of the delamination cracks along the ply interfaces must 
depend on the interfacial bond strength as well as on the ply crack length 
tc. In fact this situation is analogous to the fiber/matrix debonding in 
conjunction with matrix cracking in unidirectional CMCs, discussed pre-
viously. Drawing upon that analogy, it can be deduced that the dela-
mination length enters the analysis not directly but via its ratio to the ply 
crack length tc. Thus, once again, the relevant length scale variable is the 
total cracking ply thickness tc. 

When cracking occurs in more than one-ply orientation, multiple 
length scales result with each length scale variable equal to the combined 
thickness of the set of consecutive cracking plies of the corresponding 
orientation. Also, the delamination associated with each ply cracking 
contributes to the effect on the elastic response via the ratio of the asso-
ciated delamination length to the ply crack length. Figure 12.12 illustrates 
the ply (matrix) cracking and delamination in an angle ply laminate. 

Finally, return to the delamination mode observed in the fatigue of cross-
ply laminates depicted in Figs. 12.9 and 12.10. As illustrated in Fig. 12.10, 
this delamination occurs locally at the intersection of cracks in the two 
orthogonal orientations in adjacent plies. The cause of this delamination and 
the effect of its presence have not been adequately analyzed. Therefore, any 
inference regarding its characteristic length scale is speculative at present. It 
appears, however, that the growth of the delamination is mainly along the 
two orthogonal ply crack directions, suggesting, therefore, two length scales. 
These length scales may be described as the two principal directions of an 
ellipse, which may be taken to approximate the delamination geometry. 
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Fig. 12.12. Matrix cracks (left) and delamination (right) in an angle ply laminate 

12.4 Multiscale Modeling of Damage for Elastic Response 

12.4.1 Local vs. Nonlocal Description of Damage 

The traditional way of describing the effect of damage entities on material 
behavior is quite similar to the definition of stress and strain, i.e., it is 
defined at a point by taking an infinitesimal volume around the point into 
consideration and taking a limit as volume goes to zero. However, this 
localized definition of damage is not consistent with the real behavior of 
the damage process. The damage entities affect the stress and strains in the 
neighborhood. Moreover, at the microscale level, the size of these damage 
entities, such as matrix cracks, debonds, etc., or flaws, such as voids, inclu-
sions, etc., is finite and cannot be neglected. The third aspect to be con-
sidered is the variety of scales involved with different damage entities. The 
length scale aspects involved with different damage entities will be dealt 
with in Sect. 12.4.2. 

The key aspect to be discussed here is the evolution of damage entities. 
A solid that is highly heterogeneous at the mesoscale is considered an 
effective homogeneous continuum at the macroscale. Macroscopic damage 
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variables are judiciously selected to reflect the effects of mesostructural-
level irreversible processes on macroscale material behavior. Such damage 
descriptors are usually obtained through a “low-order” homogenization 
(spatial average) of individual damage entities, neglecting details of the 
distribution of damage throughout the RVE. Whereas effective moduli are 
somewhat insensitive to the distribution of microcracks, damage evolution 
is highly dependent on the local fluctuations in crack arrangement within 
the RVE used for stiffness calculations [32]. Bazant and Chen [5] dis-
cussed the scale dependence of energy release in fracture of heterogeneous, 
quasibrittle solids. 

In the homogenization process, critical information regarding the 
largest flaw size, minimum distance between flaws, and distribution of 
damage within an RVE is irrevocably lost. Such information is crucial  
to the development of viable damage evolution equations. Current CDM 
approaches have been generally limited to the case of dilute (noninteracting) 
damage. This limitation suggests the need for a higher-order continuum 
description of damage that retains key aspects of the damage distribution 
within an RVE. 

The choice of damage variable is either macroscopic or micro-
mechanic based. The damage descriptors could be scalar or tensor, scalar 
descriptions being too simplistic in nature. In general, both macroscopically 
measurable and micromechanically inspired damage variables neglect the 
varying effects of nonlocal or “nearest neighbor” influences, e.g., shielding 
and enhancement associated with adjacent flaws, that are essential to for-
mulate damage evolution laws. Inclusion of such effects represents, perhaps, 
one of the greatest challenges in the development of a robust CDM for-
mulation. For these reasons, more careful consideration of appropriate ISV 
measures of damage is warranted. 

The RVE is commonly defined as a cube of material with dimension 
LRVE subject to the following conditions [34, 35] 
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where d is the characteristic size of microconstituents, Lc is the hetero-

dimension, σ0 is the mean field (volume averaged) stress, and xk (x1, x2, x3) 
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are the components of a Cartesian basis. Statistical homogeneity, for 
general purposes, requires that all response functions of interest at the 
scale of the observation volume window (Helmholtz free energy, Cauchy 
stress tensor, stiffness tensor, etc.) are essentially invariant with respect to 
window position [36]. It is very important to properly select suitable 
observation windows for averaging response functions and to analyze the 
influence of observation window boundary conditions, e.g., uniform vs. 
“random-periodic” traction and displacement boundary conditions, on the 
statistical homogeneity of response functions for a given window size. Due 
to multiple scales involved with evolving damage mechanisms, 

evolution stiffnessRVE RVE .≠  (12.24)

For further discussion on RVE-level damage characterization, the 
reader is referred to [36]. 

12.4.2 Microstructural Length Scales 

In Sect. 12.3, the governing dimensions of the damage entities are examined 
from the viewpoint of elastic response in the presence of damage. Two 
specific cases of damage in unidirectional CMCs and PMC laminates have 
been examined. The framework within which the issue of characteristic 
lengths has been analyzed is CDM using characterization of damage with 
second-order tensors. This particular representation of damage, in the form 
used here, provides a consistent characterization of the basic damage entity 
involved in each case, e.g., a matrix crack in a CMC and a ply crack in a 
PMC laminate. 

The crux of the characterization is the “influence” vector, which pro-
vides a relevant measure of the action induced by the presence of the 
damage entity. By expressing the magnitude of this vector in terms of the 
characteristic and governing dimension of the damage entity, the “essence” 
of the damage entity is carried into the damage entity tensor. This dimen-
sion, when properly identified and related to the microstructural entities, 
provides the length scale associated with the damage mechanism considered. 

The relevance of the length scale to determining the elastic response 
affected by that damage mode becomes clear when the response measured 
over the RVE is examined. For this, a damage mode tensor, which acts as 
an ISV in a continuum damage framework, is considered. The damage 
mode tensor has been examined in a simple form, such as that in (12.10), 
which is the volume average of the damage entity tensor over the RVE. 
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This does not account for the damage entity distribution and can, therefore, 
be used only for the RVE-averaged, i.e., the mesoscale, response and not 
for describing damage evolution. Thus, the length scales of damage within 
the context of the elastic response have been examined. 

The next question to address is: What is the significance of the length 
scales of damage? The basic concept behind length scales appears to be the 
intuitive idea that effects seen at a given observation “window,” e.g., RVE 
size, must be determined by events occurring at dimensions smaller than 
the window size. Implicit is the assumption that those events are associated 
with certain discrete entities, such as grains in a polycrystalline material, 
and that the action of those entities and interactions between them, when 
averaged over the window size, provides the “response” variables applic-
able at that scale. 

Carrying this logic one step “behind” would suggest that the response 
at the scale of the discrete entities in an RVE could be given by the 
subentities lying within those entities. Thus, if a grain is viewed as an 
entity, then the dislocations within the grain could be the subentities. This 
move to smaller and smaller size scales could, in principle, have no end 
other than the limit set by the tools of observation and analysis available at 
a given time. 

In engineering science, in contrast to “pure” sciences, one takes a prag-
matic approach driven by the application or need at hand. From this point 
of view, one must consider the purpose first and go as far down in scales 
as needed. Thus, if the purpose is to determine the elastic response changes 
induced by damage in a composite material, then one must go as much 
down in length scales as necessary to determine the reversible deformation 
(or stress) related effects but no further. 

The next question is whether a hierarchy of length scales can be 
identified. What has been illustrated by the discussion of the two cases of 
composites with damage is that a simple hierarchy of length scales does 
not exist. Instead, a complex damage mode may involve more than one 
governing length, e.g., the matrix crack length and the interfacial sliding 
length for a fiber-bridged crack. Also, multiple damage modes may operate 
simultaneously and interactively, leading to multiple length scales, e.g., in 
the case of multiple off-axis plies in a laminate. These considerations sug-
gest that an alternative is needed to the strategy of starting at the smallest 
length scale and working up the scale hierarchy. Talreja [60] proposed one 
such strategy, the so-called “synergistic” damage mechanics. The following 
discussion will address the two strategies. 
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12.4.3 Hierarchical Multiscale Modeling 

There are three levels of modeling of composites with a hierarchical 
approach, as depicted in Fig. 12.13: 

 

Fig. 12.13. Three scales involved in hierarchical modeling of composite laminates 

– Microscopic level. This is the lowest level of observation, wherein fiber 
and matrix phases are modeled separately and the average properties of 
a single reinforced layer are determined from individual constituent 
properties by a suitable homogenization technique. With regard to damage 
in composites, micromechanics includes matrix cracks inside a layer, 
called microdamage mechanics (MDM). Hashin type of analyses belongs 
to the set of MDM approaches. 

– Mesolevel. At this level, the ply is considered homogeneous and the 
virgin (undamaged) material is regarded as either orthrotropic or trans-
versely isotropic. This scale is very useful in describing and predicting 
the damage/failure of composites. 

– Macroscopic level. This refers to the structural level wherein the whole 
structure is considered as a homogeneous continuum and material beha-
vior is described by an anisotropic constitutive law. The traditional con-
cepts of continuum mechanics work quite remarkably here; and, thus, 
the overall structural behavior to external loading can be studied using 
suitable FE modeling or by solving a boundary value problem with 
effective material properties. 

It would be fair to say at the outset that the hierarchical multiscale 
approach is intuitively logical. For a complex composite architecture, which 
is quite often the case in practical applications, one can think of starting 
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with the smallest basic unit – a discrete fiber embedded in a matrix – and 
proceed to the level of a representative unit of a collective fiber arrange-
ment. The basic unit can be analyzed as a piecewise homogeneous con-
tinuum, with two regions, if fiber and matrix are considered, or three, if an 
interfacial layer is added. The result (stress, strain, temperature, etc.) can 
then be averaged in some sense over a representative unit to get a des-
cription for the homogenized medium. Several models for doing this exist, 
e.g., the Mori–Tanaka method. These models aim at bridging the two 
scales: the scale of the basic unit and the RVE scale. 

Generally, the issue of uniqueness remains unresolved in the sense of 
representation of the collective fiber effect. There is as yet no precise and 
rigorous definition of a representative unit for a general case, which is the 
source of the lack of uniqueness. A logical extension of the discrete-to-
collective bridging of the fiber–matrix case to higher scales produces the 
hierarchical approach in multiscale modeling. One can argue whether or 
not this approach is efficient, in spite of its logic. Historically, the hier-
archical approach has not preceded other approaches. A structural analyst 
has worked with macrolevel descriptions of material behavior, e.g., the 
classical laminate plate theory, and has looked for microlevel information 
as needed. A materials developer, on the other hand, has focused on effects 
of constituents and their microstructural arrangements on properties. In 
recent years, the seemingly abundant computer power has motivated the 
hierarchical approach with the hope of integrating materials design and 
structural analysis. 

The objective here is to examine approaches for multiscale analysis of 
damage in composites. A first thought would be to conduct damage initia-
tion and progression analysis as a part of the hierarchical multiscale 
approach. It turns out not to be that straightforward. The issues confronting 
this approach are discussed below, along with the merits of an alternative 
approach. 

An overall view of the multiscale approach is reviewed first. Figure 12.14 
illustrates, from left, an object of structural integrity assessment within 
which a region of potential criticality (failure) exists. This region (a sub-
structure) is analyzed to determine the loading on its boundary. The next 
step is to examine how this loading induces damage. This step requires 
analyzing heterogeneities (microstructure, generally), which govern initia-
tion of damage. Simple examples are debonding of fibers from the matrix 
and matrix cracking from broken fiber ends. The analysis of local stress/ 
strain fields to determine such microfailures is commonly referred to as 
micromechanics. Micromechanics could be conducted at multiple scales. An 
example is fiber/matrix debonding at the fiber diameter scale and coalescence 
of the debond cracks at the scale of a representative number of fibers. 
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Fig. 12.14. A multiscale approach starting from the structural scale, moving down 
to lower scales 

In Fig. 12.14, the direction of the arrows indicates moving from the 
structural (macro) scale downward to decreasing length scales. Until the 
microstructural entities are explicitly included in an analysis, the regime of 
analysis is characterized as “continuum,” beyond which it is known as 
micromechanics. In the context of damage, the continuum regime is called 
continuum damage mechanics, while the micromechanics is typically not 
given an additional characterization (except, perhaps, occasionally as micro-
damage mechanics) [23]. 

Historically, the fields of CDM and micromechanics have developed 
independently, CDM going back to [31], while micromechanics originated 
in various works; but its characterization as a coherent field may be 
credited to Budiansky [6], who defined it as “the mechanics of very small 
things.” In recent years, the upsurge of computational mechanics has also 
boosted micromechanics, adding the aspects of numerical simulation and 
length scale-based characterizations such as “nanomechanics.” 

The increasing confidence in the power of computation has led to the 
notion of the hierarchical approach, with the implicit assumption that 
“basic” laws, when placed into a simulation scheme, will lead to physically 
correct results. Thus, once the microstructure, at any chosen level of length 
scale, has been codified in a simulation scheme, the results of the com-
putation will describe the behavior at the next higher level, the assumption 
goes. In the context of damage mechanics, this may raise a few issues, as 
discussed below. 

The first issue in a hierarchical approach is the choice of length scales. 
As discussed in Sect. 12.3, the microstructural length scales are relatively 
straightforward; and, consequently, setting up a hierarchy of scales and 
procedures for bridging between them can be accomplished relatively 
easily. However, the microstructural configuration and driving forces for 
damage initiation and progression determine the length scales of damage. 

Structure Substructure RVE Unit cell

CDM
Micromechanics
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Thus, length scales of damage and their hierarchy are not fixed but are 
subject to evolution. To illustrate this, consider ply cracking in a laminate. 
In the early stage, individual ply cracks initiate from debonding of fibers, 
giving the damage length scale in terms of the fiber diameter. When the 
ply cracks are fully grown through the ply thickness, the mechanism of 
interest is the multiplication of cracks. At this stage, the damage length 
scale is crack spacing, which in turn depends on the ply thickness as well 
as the constraint to surface displacement of the ply cracks. The two-stage 
behavior and the evolving nature of damage complicate any hierarchical 
scheme for predicting response. 

Another issue in a hierarchical approach is the multiplicity of damage 
modes. If more than one damage mode operates at a time and there is 
interaction between the modes, then a hierarchy of length scales becomes 
questionable. Consider ply cracking in a commonly used quasi-isotropic 
[0/±45/90]s laminate in axial tension. Multiple matrix cracking occurs in 
90° plies, followed by the same in plies of −45° and 45° orientations. The 
three-ply cracking modes progress interactively and, at some stage, 
concurrently. The length scales associated with the three damage modes do 
not show hierarchy. Consequently, bridging the scales by some averaging 
scheme becomes irrelevant. Further complicating the hierarchical scale 
arrangement is the interlaminar cracking that results from the cracking in 
individual off-axis plies. 

12.4.4 Synergistic Multiscale Modeling 

An alternative to the hierarchical approach is the SDM approach proposed 
by Talreja [60]. Conceptually, the approach combines the strengths of CDM 
and MDM. In CDM, the material microstructure, e.g., distributed fibers, 
and the distributed damage, which may be called the microdamage structure, 
are treated as smeared-out fields. This homogenization is illustrated in 
Fig. 12.15 as a two-step process, where the material microstructure is viewed 
as consisting of “stationary” entities, e.g., fibers and plies, and the micro-
damage structure is considered as a family of evolving entities, e.g., cracks 
and voids. A set of response functions are expressed in terms of the field 
variables (stress, strain, and temperature) and internal variables, which 
represent the smeared-out field of evolving damage entities. The internal 
variables, although being field quantities, actually have an RVE associated 
with them at each material point. Strictly speaking, there is another RVE 
associated with the stationary microstructure; but it is customary in continuum 
treatments to bypass it by requiring that the quantities, such as the elastic 
moduli of virgin material, be measured at a scale much larger than the 
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scale of the individual stationary microstructure entities. There is a ten-
dency to do that for the RVE associated with damage as well, as evidenced 
in finite element-based analyses where reduced (damage induced) properties 
are assigned at nodal points. The reduced properties are meaningful only at 
the RVE scale, which depends on the length scales of damage discussed above. 

Fig. 12.15. The two-step homogenization process for composites with damage 

Although the hierarchical approach seems to be the most common 
choice, it disregards many of underlying issues. Another suitable approach 
is to combine the micromechanics with continuum damage mechanics, 
called synergistic damage mechanics [60]. To illustrate the structure of SDM, 
consider the Helmholtz free energy function for isothermal mechanical 
response as 

( , ),f Dφ ε=  (12.25)

where the strain tensor ε and damage variable D, generally also a tensor, 
are independent variables representing the material state. The variable D is 
viewed as an internal variable, representing some measure of the collective 
presence of damage entities in an RVE at the considered point where the 
material response is sought. In Fig. 12.15, the RVE at a point is shown as a 
finite-sized cube of material containing a representative sample of damage 
entities. 

The internal state (damage) in a general case may contain multiple 
modes, such as the ply cracking modes in a [0/±45/90]s laminate. In the 
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conventional CDM approach, the response function R, and any function 
derived from it, is expressed in terms of D, which is formulated to represent a 
measure of the intensity of damage. Examples of such measures are void 
volume fraction and crack number density. Such “passive” measures end 
the CDM at the RVE level, i.e., the role of CDM gets limited to generating 
constitutive relationships at the RVE (meso) level that are then used for 
analyzing structural (macro) response. In the SDM approach, one proceeds 
down from the RVE level to one or more microlevels as warranted by the 
situation at hand. This is accomplished by developing a characterization of 
damage entities that is “active” in the sense that the presence of damage 
entities is accounted for by including the “influence” of damage entities. 

In contrast, the passive characterization is limited to only accounting 
for the “presence” of damage entities by measures such as crack number 
density, as noted above. The characterization of influence is accomplished 
by assigning a two-vector representation to a damage entity, as illustrated 
in Fig. 12.15. The vector a carries the influence through its magnitude and 
direction. The magnitude of the vector represents a measure of how much 
the damage entity is able to affect its surroundings, while the direction of 
the vector indicates the orientation in which this effect acts. For instance, if 
there is concern about the deformational response of a composite, then 
clearly the surface of a given damage entity must conduct a displacement 
to affect this response. Imagine, for instance, a transverse crack in 90° 
plies of a [0/±45/90]s laminate. The degree to which this crack opens under 
an imposed axial load increment will determine how much the axial elastic 
modulus of the composite will reduce. If the axial stiffness of the 
sublaminate [0/±45] is high, then the COD will be low; and, consequently, 
the modulus reduction will be small. In a passive damage characterization, 
where only the crack number density enters, no distinction can be made 
between the presence of cracks in different constraining environments. 

In the SDM approach, the constraint to the damage entity influence is 
represented in a constraint parameter, such as α in (12.8) for a fiber-
bridged matrix crack. The determination of the constraint parameter, and 
generally any influence function, is accomplished by a micromechanics 
analysis at levels warranted by the length scales of damage. 

The SDM approach has been illustrated in [69] for the elastic response 
of [±θ/904]s laminates and in [70] for the linear viscoelastic response of 
crossply laminates of different 0/90° ply mix. In each case, the transverse 
cracking in 90° plies was considered as the damage mode subjected to 
different constraints. Thus, in the [±θ/904]s laminates, θ is varied to vary the 
constraint, while no cracking is considered in the ±θ plies. The objective in 
both of the works just cited was to demonstrate SDM for the case of one 
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damage mode with varying constraint and varying mesoscale (RVE size). 
This addresses the first of the two issues in the hierarchical multiscale 
modeling discussed previously. This author and his associates in ongoing 
work are treating the other issue of multiple damage modes. The main 
ideas in dealing with the first issue are discussed next. 

Let us consider the elastic response of [±θ/904]s laminates. At a 
damage state where multiple transverse cracks of average spacing s exist, 
an elasticity response function (modulus) derived from the free energy 
function (12.25) can be expressed as [56] 

c
1 2

0

1 ,tR f f
R s

κ= −  
(12.26)

where R0 is the initial (undamaged) value of the response, tc is the 
thickness of the cracked plies, κ is the constraint parameter, and f1 and f2 

(12.26) results from a linearized theory; more terms of higher order in 
c /t s  will appear in a higher-order theory. In [69], it was shown, based on 

MDM analysis, that the constraint parameter κ could be approximated as a 
function of θ by a polynomial function of ply properties and ratio of 
thicknesses of cracked and uncracked (constraining) plies. Thus, with input 
from MDM, the CDM framework could be applied to the class of [±θ/904]s 
laminates. Note that, in the conventional CDM framework, the response 
function R must be calculated separately for each θ value. 

In the case of linear viscoelastic response, R, κ, f1, and f2 are all 
functions of time. In [70], it was shown that the functions f1 and f2 are 
normalized functions of laminate geometry and relaxation moduli of 
undamaged plies, respectively, while the time variation of κ was found by 
parametric studies of [0/90n]s to be given by a polynomial function of the 
ratio of axial relaxation moduli of the cracked plies to that of the 
uncracked plies. Once again, an MDM analysis allowed predicting visco-
elastic response (for a fixed crack density) for a class of composites with a 
CDM framework without experimentally determining material constants 
for each laminate configuration. 

12.4.5 Multiple Damage Modes 

The authors are presently working toward developing SDM methodology 
for multiple damage modes. The multiple damage modes may appear due 
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to separate damage mechanisms, such as matrix cracks, debonding, 
delaminations, etc. Alternatively, if the matrix cracks appear in more than 
one orientation, these can also be treated through multiple damage modes 
by assigning one damage tensor to cracks of a particular orientation. SDM 
methodology has been successfully used to predict stiffness degradation 
due to matrix cracking in laminate configuration. Work is ongoing to pre-
dict damage behavior for more general laminate layups. Based on the results 
available for the case of multimode damage using SDM, it is evident that a 
purely MDM approach or a conventional CDM framework will not provide 
results without excessive computation (for MDM) or tedious experiments 
(for CDM). Section 12.4.6 presents some of the recent advances pertaining 
to the SDM approach. 

12.4.6 SDM Characterization of Damage in Off-Axis Plies 

In the case of ply cracking, the most direct measure of damage is the sepa-
ration of crack surfaces, known as crack opening displacement. These surface 
displacements do not occur freely due to the constraints from the adjoining 
undamaged plies. These “constraint effects” are suitably incorporated in the 
CDM formulation through the constraint parameter κ. Using COD, there are 
four common ways to characterize damage in the laminates: 

1. MDM/micromechanics. For a given laminate system, the ply cracks 
inside the RVE can be characterized by defining an equivalent 
boundary value problem; and its solution would yield expression 
for COD in terms of laminate geometry and material properties. 
This type of analysis has been performed [66] for crossply lami-

crossply laminates. Solving a boundary value problem for off-axis 
plies is impossible due to too many unknowns in the formulation. 

2. Gudmundson model. The second approach is to use the Gudmundson 
model [16] in which he characterized damage using average COD. 
Although the stiffness degradation relations are quite accurate in 
this model, the COD is calculated assuming a system of infinite 
cracks in a homogeneous medium. Hence, it does not include the 
“constraint effects” of the adjoining undamaged plies. 

3. Hierarchical approach. This approach solves the boundary value 
problem inside RVE using FE simulation and then integrates it to 
the higher scale to obtain the overall macrolevel response of the 
structure. This methodology can be used to solve any laminate 
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layup and looks quite straightforward but has important limita-
tions, which have already been discussed in detail. 

4. Synergistic damage mechanics. SDM follows the regular CDM 
formulation except that the constraint effects area is evaluated using 
numerical simulations at the micromechanics level. This approach 
can be applied to a variety of laminate layups. It captures the physics 
of dissipating mechanisms in an accurate manner and is more 
computationally efficient than MDM or the hierarchical approach. 
It can also include the multiscale nature of damage efficiently and 
can solve problems involving multiple damage modes. In the follow-
ing paragraphs, its applicability to characterize damage in off-axis 
plies is described. 

The procedure for analyzing damage behavior in off-axis plies using 
SDM methodology is explained in Fig. 12.16. The example illustrated here 
is of damage in [0/±θ4/01/2]s laminates. The approach needs both micro-
mechanics and CDM for a complete evaluation of structural response. 

ing damage behavior in a general symmetric laminate [0/θ1/θ2]s with matrix cracks 
in multiple orientations. The example taken here is [0/±θ4/01/2]s laminate with 
transverse matrix cracks in and +θ and −θ plies 
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Micromechanics involves analysis over a unit cell (or RVE) to determine 
COD values and the constraint effect due to adjoining uncracked plies. 
These constraint effects are carried over in CDM formulation through the 
“constraint parameter” κ. In a separate step, the material constants ai appear-
ing in expressions for damaged laminate stiffness relationships are deter-
mined from data for a reference laminate, such as [0/908/01/2]s for the 
present study. CDM expressions, given in (12.19), are then employed to pre-
dict stiffness degradation with crack density. The subsequent structural 
behavior in response to external loading is analyzed through a suitable FE 
model with material input as degraded stiffness properties at a given crack 
density (or corresponding applied strain). 

To evaluate the constraint effect of undamaged plies over damaged 
plies, detailed 3D FE analyses over RVE, as shown in Fig. 12.17, were 
performed for angles, θ  = 25°, 40°, 55°, 70°, and 90°. Specifically, CODs 
were determined as a function of ply orientation, ply thickness, and stiff-
ness ratio of constrained to cracked plies. In literature, many analyses can 
be found which use 2D generalized FE models even for analyzing damage 
in off-axis laminates, e.g., [0/90/±45]s laminates [63]. However, a 2D FE 
modeling may not be accurate for analyzing structural behavior when damage 
is present in multiple modes as different sections in the width direction no 
longer behave in a similar manner. Only the key results are presented here. 

 
Fig. 12.17. A representative unit cell for [0/±θ4/01/2]s laminate configuration used 
in FE modeling. This shows the symmetry about the laminate midplane as the 
laminate is symmetric 
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Figure 12.18 shows the comparison between the experimental results 
and the 3D FE analysis for COD values evaluated at 0.5% axial strain. The 
FE results match very well with the experimental values. The experimental 
results are already published in [65, 66]. The experimental values are 
shown for ply orientations greater than 40° as there were no surface cracks 
observed below this angle. Average COD increases with ply orientation, 
but the rate of increase decreases and almost flattens out for crossply 
laminates (θ = 90°). Thus, the effect of damage due to transverse matrix 
cracking is substantially lower in off-axis plies than in crossply laminates. 
This illustrates one advantage of using off-axis laminates, especially in 
complex loading. The profile of the crack opening was observed to be 
similar to that of a single crack in an infinite isotropic elastic medium 
subjected to a uniform far-field stress. The constraint due to adjoining plies 
makes it somewhat flat. 
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Fig. 12.18. Comparison of average crack opening displacements with experi-
mental results for [0/±θ4/01/2]s laminate for εaxial = 0.5% 

To understand the constraint effects further, a parametric study was 
performed by varying the stiffness of the constraining plies; and its effect 
on COD was analyzed. Figure 12.19 shows the effect of stiffness ratio on 
the COD of crack ±θ plies. The COD values are normalized with the 
thickness of the cracked layer. For all cracked-ply orientations, normalized 
COD decreases as the constraining plies become stiffer than the cracked 
plies. The normalized COD values can be fitted to the following power law 
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(12.27)

where A, B, and n are the constants determined from the FE simulations, 
xE θ±  represents the elasticity modulus of ±θ plies in the laminate 

longitudinal direction, and the corresponding elasticity modulus of 90° ply 
in the longitudinal direction. The effects of ply thickness over CODs were 
also studied. To evaluate the stiffness degradation, the damage constants 
appearing in (12.21) were evaluated based on experimental plots for the 
reference laminate [0/908/01/2]s. Figure 12.20 shows the plot of predicted 
longitudinal Young’s modulus and Poisson’s ratio normalized by their 
virgin state (undamaged) values with respect to the crack density for 
θ  = 70°. The stiffness reduction in laminates with damage in off-axis 
plies is found to be less significant than in damage in crossply laminates. 
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Fig. 12.19. Variation of COD for [0/±θn/01/2]s laminate with axial stiffness ratio 

To expand the scope of the SDM application, the authors are currently 
studying the damage behavior in [0m/±θn/90p]s laminates, which involves 
matrix cracks in three different orientations and is characterized using 
CDM formulation with a separate damage mode tensor for each orienta-
tion. This will be taken up in a future publication. 
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Fig. 12.20. Predicted stiffness reduction for [0/±704/01/2]s laminate compared with 
experimental results 

12.5 Structural Integrity and Durability Assessment 

In composite damage modeling and engineering research generally, it is 
important to have the ultimate goal in mind to develop the right strategy 
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and to be clear about the context. For the authors, the goal is to assess 
integrity and durability of composite structures. This goal is not new; it 
has been in sight for most individuals involved in materials modeling. 
Figure 12.21 shows the “big picture” in which structural integrity and 
durability assessment are embedded. The starting place in the iterative pro-
cess illustrated in the figure is manufacturing. One selects a process, e.g., 
liquid compression molding, and quantifies its process parameters, which 
along with other manufacturing details involved, such as machining and 
assembly, determine the material state in the component manufactured. 
The material state is characterized by a set of properties, e.g., elastic moduli, 
strength, and fracture toughness. These properties undergo evolution in the 
service environment due to phenomena such as fatigue, creep/viscoelasticity, 
and aging. The performance evaluation for the expected component life 
involves assessment of structural integrity and durability. Finally, a tradeoff 
study of cost against performance is conducted to assess the cost effective-
ness. Most cost drivers lie in the manufacturing process, whose parameter 
variation allows moving toward the optimal design. 

Fig. 12.21. The “big picture” considerations for cost-effective design of composite 
structures 

Returning to the structural integrity and durability assessment, the role 
of materials modeling for composites is described in Fig. 12.22. Here the 
starting place is structural stress analysis of a given component, often by a 
finite element code. The input to this is the loading environment along 
with a deformational model, which is taken to be that of the initial material 
state (as produced by the manufacturing process). In most cases, prior 
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experience guides in identifying critical sites in the component that are 
prone to failure. The local stress states in those sites determine the initia-
tion and evolution of damage, also called subcritical failure. The mecha-
nisms of damage depend additionally on the “microstructure,” i.e., the fiber 
architecture, ply configuration, fiber/matrix interface, etc. In the discussion 
above, two cases of damage have been covered in two widely different 
microstructure scenarios. Along with this, the damage mechanics approaches, 
CDM and MDM, have been discussed as well as the hierarchical vs. SDM 
strategies. The outputs of these modeling efforts are either deformational 
changes, expressed as stiffness–damage relationships, or strength (failure 
criticality) or both. The stiffness change result also provides incremental 
input to the stress analysis, updating the deformational model. The final 
goal of life prediction (durability) can be reached by either a stiffness cri-
terion or a strength criterion, depending on the performance requirement. 
 

 
 
Fig. 12.22. Integrity and durability assessment procedure for composite structures 

 
The multiscale modeling approach discussed here has been focused on 

the deformational response. Other considerations are needed for treating 
the local-to-global failure. The length scale issues are substantially different 
for failure than for deformational response. Discussion of these calls for a 
separate, focused treatment is reserved for a future work. 
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12.6 Conclusions 

Multiscale modeling of composite materials generally, and of damage in 
these materials particularly, is still in the early stages of development. The 
overall field of multiscale modeling is undergoing intense development 
and is strongly driven by efforts to uncover phenomena that do not seem to 
be amenable to analytical treatments or are not yet feasible to study by 
direct or indirect observation. The need to enrich structural-level modeling 
with details of lower scales at which physical mechanisms operate forms a 
part of the multiscale modeling field. The discussion offered here has been 
targeted at this part. 

The objectives of structural-level analysis of composites undergoing 
damage are to determine deformational response and assess structural 
integrity and durability. The treatment above has attempted to make the 
case that starting at a small scale, such as the fiber diameter, and working 
up the scales to the structural level is not an effective way to meet these 
objectives. This so-called hierarchical multiscale strategy will not, on its 
own, produce the observed features of damage, such as multiple cracking 
and multiple modes of multiple cracking. As discussed above, the char-
acteristic scales change from a single damage entity to a damage mode and 
from a single damage mode to multiple damage modes. Furthermore, the 
length scales in each damage mode evolve as damage progresses, render-
ing the hierarchical approach a frustrating exercise. It should be realized 
that efforts in hierarchical multiscale modeling usually address phenomena 
at one scale and seek their outcome in terms of parameters valid at the next 
higher scale. In principle, of course, such efforts can be expanded to address 
multiple evolving scales, but it does not appear to lead to an effective strategy. 
Once again, this assessment is in the context of the set ultimate objective of 
analyzing behavior at the structural level. 

An alternative strategy is to take the approach advocated here as SDM. 
In this approach, one begins at the structural level, i.e., the macrolevel, and 
formulates the material response in terms suited for structural analysis, 
e.g., by a finite element method. The scale at which the material response 
is addressed, i.e., the scale over which averaging is performed to determine 
the response functions, is the scale of an RVE, also called the mesoscale. 
The choice of the mesoscale is determined by the operating damage modes, 
which are known from experimental observations. In new situations, where 
experiments may not be feasible, a separate numerical simulation may be 
performed to uncover damage modes. In any case, the idea is not to indulge 
in an indiscriminate microlevel simulation but specifically to seek informa-
tion needed at the mesolevel, as dictated by the macrolevel formulation. 
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In the examples discussed above, the relevant information is the crack 
surface displacement as affected by constraints of the material surrounding 
a crack in the mesolevel volume. 

If the field of multiscale modeling is to advance beyond academic 
interests, it must address practical structures. Practical composite structures 
are manufactured by techniques that inevitably introduce defects such as 
voids in matrix, misaligned fibers, and interfacial disbonds. A multiscale 
modeling strategy must incorporate such defects in a judicial manner 
without increasing complexity to an impractical level. Work along these 
lines is ongoing in the authors’ research group and will be reported as it 
progresses. 
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