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8.1 Introduction 

This chapter presents nonlinear and time-dependent multiscale frameworks 
for the analysis of thick-section and multilayered composite materials and 
structures. Nested and hierarchical three-dimensional (3D) micromechanical 
models are formulated within the nonlinear analysis framework. The 

sublaminate model for a repeating ply-stacking sequence. A unified 
development of a class of constant deformation cell (CDC) micromodels is 
presented to generate the effective nonlinear response of a unidirectional 
lamina from the response of its matrix and fiber constituents (subcells). 
Two structural modeling approaches for nonlinear analysis of laminated 
composites are proposed using 3D and shell nonlinear finite element (FE) 
analysis. The first, for the analysis of multilayered and thick-section 
composites, uses the 3D sublaminate model coupled with 3D FE structural 
models. The sublaminate represents the nonlinear effective continuum 
response of a through-thickness repeating stacking sequence at the FE 
material points (Gaussian integration points). The CDC micromodels can 
be employed for the different layers within the sublaminate model. The 
second structural approach is used for the analysis of thin-section 
laminated composite plates and shells in the form of a ply-by-ply. In this 

the matrix behavior, micromodels for the unidirectional lamina, and a 
constitutive framework is composed of nonlinear material models for



comparisons are made with reported experimental results. The proposed 
micromodels are shown to be very capable of predicting the response of 
different composite materials and structural systems, such as multilayered 
laminated composites and thick-section pultruded composites. The 
numerical stress-update algorithms are shown to be well behaved and 
robust. Applications presented using the proposed frameworks indicate 
their suitability as practical, general material, and structural analysis tools. 

Unlike traditional structural materials, such as metals, composite 
materials add a new and exciting dimension to the engineering design 
process. Their effective material properties and strengths can be controlled 
based on the choice of the matrix and fiber materials, volume fractions, 
and multiaxial reinforcements, along with several other material, geometry 
and manufacturing parameters. Proper selection of these parameters in the 
design process can lead to an optimal structural design, such as a structure 
with minimum weight and a maximum resistance to the applied forces. 

Composite materials are widely used in high-performance structures 
where high stiffness and strength combined with low weight are required. 
Today, many structural components are made from composite materials, 
especially in the aviation industry. However, it is still rare to find a 
complete structure that is fully made of composite materials. This indicates 
that the analysis, design, and manufacturing of composite structures have 
not yet fully reached a satisfactory level of reliability. Therefore, there is 
still a need to improve and introduce new analysis and design approaches 
that can predict the nonlinear and damage behavior of composites. 

Recently, the use of composite technology in civil and infrastructure 
applications, such as bridges and construction joints, has been advocated. 
However, there are two major obstacles standing in the way: the relatively 
high manufacturing cost and the lack of sufficient predictive models to 
provide information on the behavior of such structures over their lifespan. 
Nevertheless, in some cases, the relatively high cost of using composite 
materials can be justified. For example, the use of composite materials in 
bridges can eliminate the need to reinforce the concrete with steel bars that 
are subject to corrosion, thereby prolonging the lifespan of the bridge 
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micromodels and the sublaminate model; they are well suited for non-
linear displacement-based FE. Different applications are presented and 

case, the micromodels are used to represent the effective response of 
each layer. New stress-update solution algorithms are developed for the 
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computational tools that routinely employ nonlinear analysis for practical 
engineering applications. The use of nonlinear stress–strain relations, such 
as those provided by plasticity and other inelastic models, is now 
considered a standard engineering practice. However, nonlinear structural 
modeling approaches that use 3D analysis are not widespread for 
laminated composites. This is due to many factors. Laminated composites 
are often considered as brittle materials without accounting for their 
nonlinear behavior. Therefore, elastic structural analysis and design are 
often considered sufficient. Furthermore, many laminated structures are 
thin shell structures that can be idealized using plane-stress constitutive 
models. However, nonlinear 3D structural analyses may be needed to 
produce reliable structural designs. Even in the case of thin shell 
structures, a realistic nonlinear 3D constitutive model is needed to depict 
accurately the structural response in the presence of edge effects and 
structural discontinuities. These discontinuities, such as crack tips, holes, 
and cutouts, usually have a significant impact on the response of the 
structure, because damage will typically initiate at and propagate from 
these locations. Therefore, it is important to develop nonlinear and three-
dimensional material models to properly simulate the structural behavior 
with local nonlinear and damage responses. 

Macroscale nonlinear constitutive models can be formulated directly at 
the lamina level. On the other hand, micromechanical models of nonlinear 
lamina behavior, which explicitly recognize the fiber and matrix con-
stituents, are appealing because they can provide more detailed response 
information than macromechanical models. They are also potentially 
simpler to formulate because they operate at a more fundamental level than 
macromechanical models. However, the direct use of micromechanical 
models in practical nonlinear analysis of laminated structures requires 
compromise between accuracy and computational effort. 

This chapter reviews multiscale material and structural frameworks 
that allow the application of several micromechanical models while 

 
 
 
 
 
 
 
 

The tremendous advances in computer technology that have taken 
place over the last two decades have made possible the development of 

materials will drive costs down. This provides additional incentive to 
continue the research on the behavior of composite structures in civil and 
infrastructure applications. 

which can compensate for the higher cost of the composite structure. In 
addition, it is evident that advances in mass manufacturing of composite 
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a unidirectional lamina, are incorporated into a hierarchical framework that 
is suitable for FE analysis. The structural analysis includes both nonlinear 
material and geometric effects. The hierarchical nature of this framework 
allows the use of several alternative combinations of material and 
structural modeling approaches. The nonlinear material behavior can arise 

8.2 Multiscale Analysis of Laminated Composite 
Structures 

A general 3D multiscale framework is proposed for the nonlinear analysis 
of laminated composite structures. Figure 8.1 illustrates the proposed 
analysis framework for multilayered structures using 3D or shell-based 
structural FE models. In the case of a 3D FE structural model, a 
sublaminate model is formulated to represent the nonlinear effective 
continuum response at each material point (Gaussian point) [24, 25, 33, 
34]. The sublaminate model is used to generate a 3D through-thickness 
effective response of a representative stacking sequence. 

In the case of shell elements, Fig. 8.1 illustrates that each layer is 
explicitly modeled with one or more integration points under plane-stress 
condition; and the sublaminate model is reduced to the classical lamination 
theory in this case. Constant transverse shear, cross-sectional stiffness is 

in-plane stresses. The 3D micromechanical models provide for the 
effective nonlinear constitutive behavior for each Gaussian point. The shell 
element’s effective through-thickness response is generated at select 
integration points on its reference surface by integrating the effective 
micromechanical response over all Gaussian points, as shown in Fig. 8.1. 
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from different sources: matrix nonlinear constitutive behavior, micro-
failure effects, e.g., matrix microcracking, fiber–matrix debonding, and
fiber failure, e.g., fiber buckling. Several examples of structural analyses 
are presented and compared with experimental results where possible.

models that strike a reasonable balance between accuracy and simpli-
city is reviewed. These nonlinear micromechanical models, e.g., for  

performing nonlinear structural analysis. A class of simple 3D micro- 

assumed for the shell elements. This assumption is valid where the trans- 
verse stresses in the different layers are very small compared to the 

320



Fig. 8.1. A multiscale micromechanical–structural framework for nonlinear and 
viscoelastic analysis of laminated composite structures (adapted from [23]) 
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8.3 A Simplified Class of Micromechanical Constitutive 
Models 

A unified approach for defining and characterizing a simple and 
phenomenological class of nonlinear micromechanical models for fiber 
composites is presented in this section. A unified development of a class of 
CDC micromodels, or unit cell (UC), is presented to generate the effective 
nonlinear continuum response from the average response of its matrix and 
fiber constituents (subcells). The main advantage of these simple multicell 
models lies in their ability to generate the full 3D effective stress–strain 
response of fiber composites in a form that is suitable for integration into 
finite element structural analysis. The first part of this section sets out 

The objective of the CDC models is to generate the nonlinear effective 
stress–strain relations by employing a simple geometrical representation of 
the unit cell geometry and satisfy traction and displacement continuity 
between the cells in an average sense. Few assumptions are made at this 
stage regarding the fiber and matrix constitutive relations; specific material 
nonlinear constitutive behavior is characterized only at the more 
fundamental subcell level. The resulting unit cell effective stress–strain 
relations can be viewed, from a global/structural perspective, as a material 
model with microstructural constraints. 

It is assumed that, for a given heterogeneous periodic medium, it is 

number of subcells. Within each subcell, the spatial variation of the 
displacement field is assumed such that the stresses and deformations are 
spatially uniform in each subcell. Traction continuity at an interface 
between subcells can, therefore, be satisfied only in an average sense. 
Some general definitions and linearized formulations are established that 
are applicable to any CDC micromodel. 

The volume average stress over the unit cell is defined as 
 

( )

( ) ( ) ( )
( ) ( )

1 1

1 1 1( )d ( )d ,
N N

ij ij ij ijV V
x xV V V

V V Vα

αα α
α α

α α

σ σ σ σ
= =

= = =∑ ∑∫ ∫  (8.1)
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some general definitions and relations that are valid for all the micro- 
models in this class. Specific micromodels are presented in the later part 
of this section and through this chapter. 

possible to define a basic unit cell that represents the medium’s geo- 
metrical and material characteristics. Each unit cell is divided into a 
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where N is the number of subcells and V is the unit cell volume. A similar 
definition applies for volume average strain ijε . The superscript α denotes 
the subcell number. An overbar denotes a unit cell average quantity. The 
variables x and ( )x α  are the unit cell global and the subcell local 
coordinates, respectively. Stress and strain are uniform within each subcell 
by definition. Therefore, using matrix notation 

 

( ) ( )
( ) ( ) ( )

1 1 1

1 1, , ,
N N N

V V V V
V V

α α
α α α

α α α

σ σ ε ε
= = =

= = =∑ ∑ ∑  (8.2)

 
where the stresses and strains are now written as vectors. 

Next, a strain-concentration or strain-interaction fourth rank tensor B is 
defined for each subcell, which relates the subcell strain increment to the 
unit cell average strain increment 

 
( ) ( )d d .ij ijkl klBα αε ε=  (8.3)

 
It is important to emphasize that the interaction matrices are unknown 

at this stage; they will be determined later in this section by solution of the 
unit cell governing equations. It can be easily shown that a subcell strain-
interaction matrix is usually a function of the tangent stiffness and the 
relative volumes of all subcells. 

Using the incremental form of (8.2) with (8.3), expressed in matrix 
notation, the average strain increment of the unit cell is: 

 

( ) ( )
( ) ( )

1 1

1 1d d d .
N N

V V B
V V

α α
α α

α α

ε ε ε
= =

= =∑ ∑  (8.4)

Since (8.4) must hold for an arbitrary average strain increment dε , the 
following relations must be satisfied 

 

( ) ( )
( ) ( )

1 1

1 and ( ) 0,
N N

V B I V B I
V

α α
α α

α α= =

= − =∑ ∑  (8.5)
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where I is a unit matrix. The second relation in (8.5) follows from the first 
relation due to the volume sum relation expressed in (8.2). The matrix 
representation of the strain-concentration tensor is not symmetric. Next, 
the incremental stress–strain relations are used to express the stress 
increment in each of the subcells 

 
( ) ( ) ( ) ( ) ( )d d d ,C C Bα α α α ασ ε ε= =  (8.6)

 
where ( )C α  is the current tangent stiffness matrix of the subcell. The 
incremental form of the average stress can be expressed, using (8.6), as: 

 

( ) ( ) ( )
( ) ( )

1 1

1 1d d .
N N

V V C B
V V

α α α
α α

α α

σ σ ε
= =

= =∑ ∑  (8.7)

 
Equation (8.7) can be expressed as 

 
*d d ,Cσ ε=  (8.8)

 
where C* is the unit cell effective tangent stiffness matrix defined by: 

 

* ( ) ( )
( )

1

1 .
N

C V C B
V

α α
α

α=

= ∑  (8.9)

 
An alternative for deriving the stiffness matrix is to use the second 

variation of the strain energy density. This is demonstrated by the 
following relations: 

 

T TT ( ) ( ) T ( ) ( ) ( )
( ) ( )

1 1

1 1d d d d d d .
N N

V V B C B
V V

α α α α α
α α

α α

ε σ ε σ ε ε
= =

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∑ ∑ (8.10)

 
Substituting (8.8) into the left-hand side of (8.10), the unit cell stiffness 
matrix is expressed as: 
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T* ( ) ( ) ( )
( )

1

1 .
N

C V B C B
V

α α α
α

α=

= ∑  (8.11)

 
The two expressions for the effective stiffness matrix in (8.9) and (8.11) 
must be identical. It can be easily verified that, since the strain-
concentration matrices ( )B α  satisfy the relations in (8.5), the two stiffness 
expressions are, in fact, identical. Equation (8.11) shows that the unit cell 
stiffness matrix C* is symmetric provided that the stiffness matrix of each 
of the subcells ( )C α  is also symmetric. However, it is interesting to note 
that this property is not explicitly apparent by a first examination of the 
expression in (8.9). 

Up to this stage, the properties of the strain-interaction matrices and 
the expression for the unit cell effective stiffness matrix have been dealt 
with. The only assumption that was made is that the subcells have uniform 
stress and strain. Therefore, these linearized relations are general for any 
CDC micromodel. To derive the strain-interaction matrices for a unit cell, 
the traction and displacement continuity conditions must be imposed, and 
stress–strain relations must be invoked. The fact that the strains and 
stresses are uniform in every subcell makes it possible to express the 
traction and displacement continuity conditions directly in terms of the 
average stress and strain vectors. The term strain compatibility will be 
used here to describe the relations between the strains in the subcells 
which satisfy displacement continuity in an average fashion. The 
combined set of equations that describe the strain compatibility and the 
traction continuity equations (micromechanical constraints) can ultimately 
be written in a general incremental form as: 

 
( ) ( )

( )d (d ,d ,d , , 1, 2, , ) 0, 1, , .iR C V N i nα α
σ ασ ε ε α= = … = = …  (8.12)

 
Equation (8.12) is used to generate the strain-interaction matrices for the 
subcells. The incremental form of the stress–strain relations in the subcells 
(8.6) is used to express the constraints in terms of the incremental strains 

 
( ) ( )

( )d ( ,d ,d , , 1, 2, , ) 0, 1, , .jR E C V N j mα α
ε αε ε α= = … = = …  (8.13)
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The subset of (8.13) that represents the strain compatibility constraints 
satisfies (8.4). Equation (8.13) forms a set of linear equations in terms of 
the unknown incremental strain vectors for each of the subcells. The 
current state of the linearized micromechanical equations can be arranged 
in terms of these unknowns and the known values, the current tangent 
stiffness matrices, and the unit cell strain vector, and represented, in a 
general matrix form, as: 

 

(1)

(2)

6 1

( )

6 1
6 6 6 6

d
d

{d }.

d N

N
N N N

A D

ε
ε

ε

ε
×

×
× ×

⎡ ⎤ ⎡ ⎤
⎧ ⎫⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥=⎨ ⎬

⎢ ⎥ ⎢ ⎥⎪ ⎪
⎢ ⎥ ⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (8.14)

 
Equation (8.14) can be rearranged by dividing the subcells’ strain 
components into two dependent groups with (m) and (n) number of 
components, respectively, to yield a new compact form that can be solved 
numerically in an efficient manner. The general structure of the linearized 
micromechanical equations for the CDC class of micromodels is: 

 

{ }( )( 1) ( 1)( ) ( 6)

(6 1)
( 6)( 1) ( 1)( ) ( )

d d
d .

d d 0

aab am mm mm n m

bba bb
nn nn m n n
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ε

σ

ε
ε

ε
×× ×× ×

×

×× ×× ×

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭⎣ ⎦

 (8.15)

 
The bar notation over the components of the (A) matrix denotes the new 
arrangement of the terms of the original matrix. Once (8.14) or (8.15) is 
solved, the incremental stress in each of the subcells and the average stress 
of the unit cell can be back-calculated using the incremental stress–strain 
relations. The incremental strain-concentration matrices are expressed, 
using (8.3) and (8.14), by 
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⎣ ⎦
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strain increment and the history of deformations in the subcells, the strain-
interaction matrices are formed using (8.16). The strain increments are 
subsequently formed in each of the subcells followed by the corresponding 
stress increments. This procedure is a linearized incremental stress analysis 
and will be referred to as the trial state. If only this linearized trial analysis 
is used, two types of error will result at each trial increment and will 
accumulate during the analysis. It is important to mention, however, that 
the strain compatibility and traction continuity constraints are exactly 
satisfied by the trial state which is composed of tangential approximations. 
The first error occurs in the strain increments because the strain-interaction 
matrices are derived using the tangent stiffness matrices of the subcells at 
the beginning of the increment. The second error occurs as a result of 
using the tangent stiffness to compute the stress increment. Therefore, a 
correction scheme must be used to accurately account for the nonlinear 
constitutive (with or without damage) material behavior (prediction) and 
its associated error in the incremental micromechanical equations. New 
general correction algorithms have been derived for different CDC type 
micromechanical models with nonlinear and time-dependent behavior, 
e.g., [16, 18, 20, 22–24]. 

The stress analysis of a micromechanical unit cell becomes a straight-
forward procedure as a result of this formulation. Given an average 

or GMOC has been shown to be well suited for highly nonlinear matrix 
response, such as that exhibited by metal matrix composites. However, 
integration of the MOC formulation in general 3D analysis of composite 
structures can be tremendously enhanced using the proposed numerical 
formulation because of the large computational effort that is needed to be 
performed at each material point (Gaussian point) of the FEA. Therefore, it 
is important to employ the above efficient stress-update and stress-
correction formulations for this model that are suitable for nonlinear 

A four-cell micromodel is formulated next using the previous tan- 
gential and stress-update formulations. This model was originally for-
mulated using the method of cells (MOCs), e.g., [2–6]. Aboudi’s MOC 
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structural analysis. Next, an incremental formulation of the four-cell model 
is presented in terms of the average stresses and strains in the subcells. 
New stress-update and stress-correction algorithms are developed which 
significantly reduce the computational effort that is needed. The new 
algorithms are formulated given a constant average strain rate for each 
time step, which makes them suitable for integration with FE constitutive 
framework. 

The micromechanical model is shown in Fig. 8.2. The unidirectional 
composite, which consists of long fibers arranged unidirectionally in the 
matrix system, is idealized as doubly periodic array of fibers with 
rectangular cross-section. A quarter UC that consists of four subcells is 
modeled due to symmetry. The first subcell is a fiber constituent, while 
subcells 2–4 represent the matrix constituents. The long fibers are aligned 
in the x1-direction. The other cross-section directions are referred to as the 
transverse directions. The x3-direction is called the out-of-plane axis or 
lamina thickness direction. The total volume of the UC is taken to be equal 
to one. The volumes of the four subcells are: 

 

1 2 3 4, (1 ), (1 ), (1 )(1 ).V bh V h b V b h V h b= = − = − = − −  (8.17)

 
The notations used for the stress and strain vectors are: 

 
( )

11 22 33 12 13 23
( )

11 22 33 12 13 23

d {d ,d ,d ,d ,d ,d }, 1, , 4,
d {d ,d ,d ,d ,d ,d }, 1, ,6.

k

k k

α

α

σ σ σ σ τ τ τ α
ε ε ε ε γ γ γ

= = …
= = …

 (8.18)

 
The 3D nonlinear constitutive integration for the fiber and matrix 
constituents is performed separately for each subcell. The fiber is linear 
elastic and transversely isotropic, while the matrix medium is viscoelastic. 
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Fig. 8.2. Unit cell micromodel for unidirectional reinforced composites 
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The homogenization of the micromodel should satisfy displacement and 
traction continuity. Perfect bond is assumed along the interfaces of the 
subcells. In the fiber direction, the four subcells satisfy the same strain 
continuity relation. The axial average stress definition is used as a second 
independent relation to relate the effective axial stress to the stresses in the 
subcells. The following equations summarize the relations in the axial 
mode 

 
(1) (2) (3) (4)
1 1 1 1 1

(1) (2) (3) (4)
1 1 2 1 3 1 4 1 1

d d d d d ,
d d d d d ,V V V V
ε ε ε ε ε
σ σ σ σ σ
= = = =
+ + + =

 (8.19)

 
where overbar denotes an overall average quantity over the unit cell. 

Along the interfaces between the subcells with normal in the x2-
direction, the in-plane stress components σ22 and τ12 must satisfy traction 
continuity conditions. The total strain components ε22 and γ12 from subcells 
1 and 2 and subcells 3 and 4, respectively, should also satisfy strain 
compatibility conditions. These relations are written in an incremental 
form as: 

 
(1) (2)
2 2
(3) (4)
2 2

(1) (2)1 2
2 2 2

1 2 1 2

(3) (4)3 4
2 2 2

3 4 3 4
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d d ,

d d d ,

d d d ,

V V
V V V V

V V
V V V V

σ σ
σ σ

ε ε ε

ε ε ε

=
=

+ =
+ +

+ =
+ +

 (8.20)

 
(1) (2)
4 4
(3) (4)
4 4

(1) (2)1 2
4 4 4

1 2 1 2

(3) (4)3 4
4 4 4

3 4 3 4

d d ,
d d ,

d d d ,

d d d .

V V
V V V V

V V
V V V V

σ σ
σ σ

ε ε ε

ε ε ε

=
=

+ =
+ +

+ =
+ +

 (8.21)

 
Considering interfaces between subcells with normal in the x3-

direction, the out-of-plane stress components σ33 and τ13 must satisfy 
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traction continuity conditions. The total strain components ε33 and γ13 from 
subcells 1 and 3 and subcells 2 and 4, respectively, should also satisfy 

 
(1) (3)
3 3
(2) (4)
3 3

(1) (3)31
3 3 3

1 3 1 3

(2) (4)2 4
3 3 3

2 4 2 4

d d ,
d d ,

d d d ,

d d d ,

VV
V V V V

V V
V V V V

σ σ
σ σ

ε ε ε

ε ε ε

=
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+ =
+ +

+ =
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 (8.22)
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5 5
(2) (4)
5 5
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(3) (4)2 4
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d d ,
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=
=

+ =
+ +

+ =
+ +

 (8.23)

 
Finally, both types of interfaces should satisfy transverse shear stress 
continuity. Therefore, the transverse shear stresses in the four subcells are 
equal to the effective transverse shear stress. The transverse shear strains 
from the four subcells in the average strain definition are used to express 
the relations with the effective transverse shear strain of the UC. The 
transverse shear relations are summarized as: 

 
(1) (2) (3) (4)
6 6 6 6 6

(1) (2) (3) (4)
1 6 2 6 3 6 4 6 6

d d d d d ,
d d d d d .V V V V
σ σ σ σ σ
ε ε ε ε ε
= = = =
+ + + =

 (8.24)

 
Equations (8.19)–(8.24) along with the stress–strain relations within each 
fiber and matrix subcells complete the micromechanical formulation of the 
unidirectional lamina. These relations are used in incremental (rate) form 
due to the nonlinear constitutive relations in the matrix subcells. Next, the 
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strain compatibility conditions. These relations are expressed in incre-
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(1) (2) (3) (4) (1) (3) (1)

T 1 1 1 1 2 2 4
a (3) (1) (2) (1) (2) (1)

(1 13) 4 3 3 5 5 6

d ,d ,d ,d ,d ,d ,d ,
d ,

d ,d ,d ,d ,d ,d
ε ε ε ε ε ε ε

ε
ε ε ε ε ε ε×

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

(8.25)

 
(2) (4) (2) (4) (3) (4)
2 2 4 4 3 3T

b (3) (4) (2) (3) (4)
(1 11) 5 5 6 6 6

d ,d ,d ,d ,d ,d
d .

d ,d ,d ,d ,d

ε ε ε ε ε ε
ε

ε ε ε ε ε×

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (8.26)

 
Equations (8.19)–(8.24) can be expressed in terms of the strain 

increments in the subcells after substituting the incremental stress–strain 
relations. The rearrangement of the strain increments allows this set of 
equations to be transformed into the previous general CDC form presented 
in (8.15), where dRσ  is the residual form of the stress relations (traction 
continuity) expressed incrementally in terms of the strains in the subcells. 
The matrices that appear in (8.15) for this UC micromodel are listed below 
and can be identified by examining (8.17)–(8.24). The nonzero terms of 

abA  are: 
 

ab ab ab ab ab

ab ab ab ab ab

ab

1(5,1) (6,2) (7,3) (8,4) (13,9) ,

1(9,5) (10,6) (11,7) (12,8) (13,10) ,

(1 )(1 )(13,11) .

hA A A A A
h

bA A A A A
b

b hA
bh

−
= = = = =

−
= = = = =

− −
=

(8.27)

 
The nonzero terms of aD  are: 

 

the second part is the traction continuity relations (homogeneous equa-
tions). The two groups of strain vectors are defined by: 

strain components in the subcells are grouped into two parts (a) and (b). 
The first part corresponds to the incremental compatibility equations and 
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a a a a

a a a a

a a a a

a

(1,1) (2,1) (3,1) (4,1) 1,
1(5,2) (6,2) (7, 4) (8,4) ,

1(9,3) (10,3) (11,5) (12,5) ,

1(13,6) .

D D D D

D D D D
h

D D D D
b

D
bh

= = = =

= = = =

= = = =

=

 (8.28)

 
The terms of baA  and bbA  matrices are listed in (8.29) and (8.30), 
respectively. Only the inverse of the (11 × 11) submatrix in (8.15) is 
needed to solve for adε  and bdε . The strain-concentration matrices are 
determined by solving d 0Rσ =  and d 0Rε =  equations as previously 
outlined 
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(8.30)

 
The micromechanical relations are exact only in the case of linear 

stress–strain relations in the fiber and matrix subcells. Due to the nonlinear 
response in one or more of the subcells, the incremental relations will 
usually violate the constitutive equations. Thus, an iterative correction 
scheme is needed to satisfy both the micromechanical constraints and the 
constitutive equations. The tasks for the micromechanical algorithm can be 
stated as: Given history variables in the subcells from previous converged 
solution and a constant average strain rate for the unit cell within the 
current time increment, update the effective stress, the effective stiffness, 
and the history variables at the end of the increment. 

Chapter 8: Nested Nonlinear Multiscale Frameworks 333 



8.4 The Sublaminate Model 

consists of the smallest repeating stacking sequence of laminae (Fig. 8.1). 
Unlike the terminology used in the theory of plates and shells for thick-
section structures, the term thick-section, used herein, does not always 
imply the existence of relatively large interlaminar stress and strain 
distributions. For example, a composite with thickness t = 1.0 in., stacking 
sequence of 2 30[90 / 0] S , and a radius of curvature of 80 in. and above is 
not normally considered to be a thick-section in the context of plate or 
shell theory; however, it does fall under the current definition for thick-
section and multilayered composites. 

A thick-section composite structure may exhibit nearly linear overall 
structural behavior almost up to failure. However, nonlinear structural 
response can also arise locally especially in the presence of edge effects 
and structural discontinuities, such as crack tips, holes, and cutouts. These 
stress concentrations can have a significant impact on damage and the 
overall behavior close to and postultimate. Therefore, it is important to 
develop analysis methods for thick-section composites that include both 
3D and nonlinear capabilities. 

In cases where plate or shell structural modeling is appropriate, and 
where the material response can be considered linear, the cross-sectional 
stiffness and flexural rigidities can be calculated using the classical 
laminate theory (CLT). The stress and strain distributions for the 
individual laminae can be back-calculated from central plane strains and 
curvatures obtained from the structural analysis. However, the existence of 
hundreds of individual plies in a typical thick-section composite structure 
makes ply-by-ply nonlinear analysis impractical. In this case, where 
nonlinear response and damage and/or interlaminar stress effects are 
important, the integration of the stress–strain relations must be performed 
numerically for all plies during the analysis. As a result, the CLT method 
is very difficult to apply. On the other hand, the large number of repeating 
plies in thick-section composites produces a structure which is, in effect, 
much more homogeneous than sections with a small number of plies. This 
allows for a through-thickness homogenization or “smearing” procedure to 
be used effectively at the laminate level. 

A sublaminate is constructed from the smallest through-thickness 
repeating stacking sequence. The effective response of the sublaminate is 
used to define an equivalent nonlinear homogeneous continuum. The 
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The term thick-section composite laminate is herein defined as a multi- 
layered laminate with a thickness greater than approximately 1/4 in. in 
which it is possible to identify a repeating sublaminate. The sublaminate 
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analysis of thick-section laminated composites. This general approach 
involves a material model with a two-level hierarchy: a micromechanical 
model of a unidirectional lamina and a sublaminate model. The CDC class 

which constitute a two-level material model, are hidden from element and 

model are formulated in this section using the 3D lamination theory to 

of the sublaminate are then derived. 

derive thermomechanical effective stress–strain relations for the sub- 
laminate. The instantaneous effective stiffness and thermal coefficients 

The 3D lamination theory was used by Pagano [30, 31] to derive the 
cross-sectional properties of anisotropic laminates. In Pagano’s work, the 
extensional, flexural, and coupling stiffness were generated for the entire 
section of the laminate. The formulation of Pagano is based on a linear 
elasticity solution which satisfies the external boundary conditions as well 
as the interface traction and displacement continuity between the layers. 
Therefore, the treatment is limited to the case where all force and moment 
resultants, and surface forces, are spatially constant. Sun and Li [39] 
employed the same deformation field and derived the extensional effective 
stiffness properties for a repeating sublaminate. Pecknold [32, 33] presented 
a simpler approach for deriving the effective properties of anisotropic sub-
laminate using the same fundamental patterns of deformations. They 
proposed using a nonlinear micromechanical model for the individual 
layers in the sublaminate, which is integrated within a 3D FE analysis of 
thick-section composites. The cross-section is homogenized at a selected 
number of integration points, and the nonlinear response of the equivalent 
homogeneous material is obtained using the 3D lamination theory. The key 
idea is to replace the sublaminate by a well-defined equivalent homo-
geneous material. The properties of this material are determined by requiring 
that the two, sublaminate and equivalent continuum, respond identically 
when subjected to certain fundamental patterns of stress or strain. To satisfy 
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represent the nonlinear response of each layer in the sublaminate. The 3D 

structural analysis packages; the micromodels and sublaminate model, 

lamination theory is used in a nonlinear formulation to synthesize the 

response of a nonlinear response of the composite structure is determined by 

of micromodels, developed in the previous sections, can be used to 

structural-level processes. The main features of the nonlinear sublaminate 

structural mesh. 

material model is designed to function through a standard interface with 

the effective homogeneous behavior of material points with the few layers

effective continuum response of the sublaminate model. The sublaminate 

of generated by the sublaminate at each integration point in the FE

Figure 8.1 describes a 3D framework for the nonlinear structural 
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It is useful to use the following notations for the stress and strain 
vectors: 

 

i i

o o

{ } , { } .

x x

y y

xy xy

z z

xz xz

yz yz

σ ε
σ ε
τ γσ ε

σ ε
σ εσ ε
τ γ
τ γ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪− − − −= ≡ − − = ≡ − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (8.31)

 
In (8.31), all stress and strain vectors are partitioned into in-plane and out-
of-plane components. Perfect bond interface conditions are assumed 
between the layers. Therefore, the displacement continuity conditions at 
the interfaces are expressed as 

 
( ) ( 1)

( ) ( ) ( 1) ( 1)
i 1 2 3 i 1 2 3, , , , ,

2 2

k k
k k k kt tu x x x u x x x

+
+ +⎛ ⎞ ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.32)
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displacement and traction continuity conditions between the layers, homo-
geneous in-plane strain and homogeneous out-of-plane stress patterns 
are used. The conjugate stress and strain components are determined as 
through-thickness weighted averages of the corresponding quantities in 
each layer of the sublaminate. 

Effective thermoelastic moduli of the sublaminate are derived con-
sidering each layer to be a general anisotropic material. The equivalent 
response of the repeating sublaminate is assumed to represent the average 
response of a multilayered and thick-section laminate in some local region. 
In this equivalent continuum approach, certain selected patterns of stress 
and strain are used to define equivalence between the actual sublaminate 
and an equivalent homogeneous continuum. This derivation is an exact 
solution when the applied in-plane strain and the out-of-plane surface 
tractions are spatially constant. Under these conditions, the interlaminar or 
out-of-plane stresses are also constant. The field equations in the form of 
equilibrium, interface traction, and displacement continuity are reviewed 
next. 
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continuity equations require that 
 

( ) ( 1)
( ) ( ) ( 1) ( 1)
i 1 2 3 i 1 2 3, , , , .

2 2

k k
k k k kt tx x x x x xε ε

+
+ +⎛ ⎞ ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.33)

 
The equilibrium and traction continuity at the interface are expressed by: 

( ) ( 1)
( ) ( ) ( 1) ( 1)
o 1 2 3 o 1 2 3, , , , .

2 2

k k
k k k kt tx x x x x xσ σ

+
+ +⎛ ⎞ ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.34)

 
The interface equations expressed in (8.33) and (8.34), along with the 
external boundary conditions and the stress–strain relations of the laminae, 
define the governing field equations. 

The effective thermoelastic moduli of the anisotropic sublaminate are 
defined next. The formulation is expressed in terms of total stress and 
strain vectors. This formulation also applies in an incremental form for the 
effective tangent stiffness matrix of the laminate in the case where 
nonlinear stress–strain response in a layer is considered. 

The through-thickness effective stress and strain vectors are defined as 
 

( )

( )

( )

/ 2
( )
3

1 / 2

1 d ,
k

k

k
tN

k

k t

x
t

ε ε

σ σ= −

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − = − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∑ ∫  (8.35)

 
where t is the sublaminate thickness, t(k) is the kth lamina thickness, and N 
is the number of laminae in the sublaminate. An upper bar is used to 
denote a sublaminate effective (global) quantity. 

The fundamental patterns of applied stress and strain should include 
spatially homogeneous patterns to generate the effective response of the 
multilayered laminate in the form of an equivalent continuum. Examining 
the previous field equations of the 3D lamination theory, it can be seen that 

It can be easily verified using (8.32) that the interface displacement 
where (k) denotes a layer number and is the through-thickness direction.
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( )
i i

kε ε=  and ( )
o o

kσ σ=  satisfy the interface conditions (8.33) and (8.34), 
respectively. Therefore, the applied spatially homogeneous patterns are: 

i

o

.
ε

σ

⎧ ⎫
⎪ ⎪− −⎨ ⎬
⎪ ⎪
⎩ ⎭

 (8.36)

 
Using the interface conditions (8.33) and (8.34), along with the applied 
homogeneous patterns (8.36), the stress and strain for each lamina (k) are 

 
( )

i i

o o

, 1, , ,

k

k N
ε ε

σ σ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − = − − = …⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (8.37)

 
where (8.37) identically satisfies (8.35). The conjugate effective stresses 
and strains are expressed, using (8.35), by: 

 
( )

i i( )

1
o o

.

k

kN

k

t
t

σ σ

ε ε=

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − = − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∑  (8.38)

 
Next, the displacement and traction continuity relations (8.37) are used, 
along with the stress–strain relations for the laminae, to form the 
sublaminate effective thermoelastic properties. To this end, the stress–
strain relations for each lamina are expressed in the sublaminate global 
coordinate system. Using the notation of (8.31), the stress–strain relations 
for lamina (k) are expressed in the global coordinate system as 

 

i ii io i i

o oi oo o o

,
C C T
C C T

σ ε α
σ ε α

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (8.39)
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where ∆T is the change in temperature and α denotes the thermal 
expansion coefficients of the lamina. Next, (8.39) is partially inverted to 
obtain the form 

 

i i i
T

o o o

1
oo

1
io oo

1
ii io oo oi

,

,
,

.

TA B
T B D

D C
B C C
A C C C C

σ ε α
ε α σ

−

−

−

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎣ ⎦⎩ ⎭ ⎩ ⎭
=
=
= −

 (8.40)

 
Equation (8.40) is merely a general and convenient representation of the 
stress–strain relations that apply in general to any material with an 
invertible tangent stiffness matrix. However, this compact representation is 
an instrumental precursor to the simplified formulation for the effective 
stiffness of anisotropic laminates. The matrices B and D, defined in (8.40), 
should not be confused with the coupling and flexural stiffness matrices of 
the CLT, which are often denoted by the same symbols. Equation (8.40) is 
further simplified and written as: 

 

i i i
T T

o o o

0
.

A B A
T

B D B I
σ ε α
ε σ α

−⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (8.41)

 
Substituting (8.37) and (8.41), the stress–strain relation for the kth lamina 
is: 

 

( ) ( )( ) ( )
i i i

T T
o o o

0
.

k kk kA B A
T

B D B I
σ ε α
ε σ α

−⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (8.42)

 
Equations (8.38) and (8.42) are used to express the effective in-plane stress 
and out-of-plane strain of the sublaminate as: 

in which
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It is desired to write the effective stress–strain relations for the 
sublaminate, similar to the laminae stress–strain relations in (8.39) and 
(8.41), as: 

 ( )
i i iii io

o o ooi oo

.
k TC C

TC C
σ ε α
σ ε α
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 (8.44)

 
To determine the effective stiffnesses in (8.44), it is first partially inverted 
in the form 
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and then compared with (8.43) to yield 
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Therefore, the effective tangent stiffness matrix of the sublaminate can be 
calculated from (8.46) as: 

 
1

oo
1

ii io io
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oi oo oi io
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 (8.48)

 
The effective thermal expansion coefficients of the sublaminate are 
derived from (8.47) as: 
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 (8.49)

8.5 Multiscale Analysis of Thick-Section Pultruded 
Composites 

Thick-section structural components can be manufactured by the 
pultrusion process using several reinforcement layers with a polymeric 
resin system. The result is a long prismatic structural component that can 
have shapes similar to the standard steel shapes, such as wide flange, 
channels, and angle sections. Layers with continuous filament mat (CFM) 
reinforcement are heavily used in this process to provide large volume and 
bind the unidirectional roving layers in transition areas of the prismatic 
cross-section. The relatively fast production of pultruded structural 
components allows for mass manufacturing and cost competitive 
composite materials. Pultruded composites can have a thickness ranging 
from 1/16 to 1 in. and an overall fiber volume fraction (FVF) of 0.3–0.5. 
 
 
 
 
 

, where
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polymeric matrix, a nonlinear and time-dependent mechanical response is 
present. The nonlinear responses coupled with the time-dependent 
responses affect the overall behavior of the structure. It is important to 

Several experimental and analytical studies on time-independent 
buckling and postbuckling of thick-section composite (pultruded) columns 
have been performed. Vakanier et al. [41] performed linearized buckling 
analysis of columns with stocky wide-flange (WF) cross-sections using FE 
models. Most of geometries studied have relatively small slenderness ratio 
and allow for local flange buckling. Barbero and Tomblin [12] investigated 
global buckling loads for I-shape long columns. As expected, the results 
for the long columns were well predicted by the Euler buckling theory. 
Barbero et al. [10] studied interaction between the local and global 
buckling modes on intermediate length composite WF columns. Zureick 
and Scott [42] presented design guidelines for fiber-reinforced polymer 
(FRP) slender structural members under axial compression load based on 
global buckling limit states. Axially compression tests on box and I-shape 
cross-sections of E-glass/vinylester composite specimens were performed. 
Bank and Yin [8] investigated the postbuckling regime of composite I-
beams, focusing on the web-flange junction failure. They performed a FE 
analysis using a node separation technique to simulate the local separation 
of the flange from the web following a local buckling of the flange. 

Micromechanical modeling approaches in thick-section pultruded 
composite materials have been studied. Barbero [9, 37] proposed a linear 
micromechanical modeling approach to generate the overall effective 
stiffness of thick-section (pultruded) composite material systems. Their 

laminated beams approach to determine the overall effective stiffness of 
composite beams. 

Haj-Ali et al. [16, 19, 20, 22, 23] proposed a multiscale modeling 
approach for the nonlinear elastic responses of thick-section composite 
systems with roving and CFM reinforcements. This multiscale framework 
is schematically illustrated in Fig. 8.3. 
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form a combined material and structural framework that can simul- 
taneously provide effective material and structural analyses. 

micromodel, which employed the periodic microstructure formulae of [11], 
was combined with the classical lamination theory and mechanics of 

Due to a relatively low FVF, large thickness, and existence of the 
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Fig. 8.3. Multiscale structural and micromechanical framework for the analysis of 

Both structural and continuum finite elements can be used. Different 
micromechanical models are employed for the reinforcement systems in 
the pultruded layers. Haj-Ali et al. [19, 20] were the first to introduce this 
combined nonlinear 3D micromechanical modeling approach for pultruded 
composites. Their framework was time independent and focused mainly on 
applying continuum elements. The structural level of this framework, 
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pultruded composite materials and structures (adapted from [21]) 
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shown in Fig. 8.3, represents FE models for pultruded structures using 1D 
(beam, truss), 2D (plane, shell), and 3D (brick) elements. A sublaminate 
model is used at each Gauss point in every element to generate a 3D 
effective anisotropic nonlinear viscoelastic response of the combined 
roving and CFM layers. Different stress–strain constraints are imposed on 
the sublaminate model to properly interface with the 1D, 2D, or 3D 
elements. In the case where beam and shell elements are used, a uniaxial 
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stress–strain relation and a plane-stress condition must be imposed, res- 
pectively. In the lower level, two previously developed 3D micromecha-
nical material models are then used for the roving and CFM layers 
[20, 21, 23]. 

Deformation plasticity with a Ramberg–Osgood strain–stress curve 
was used to describe the nonlinear static response in the matrix system. 
Tension and compression tests on off-axis coupons made of E-glass fiber 
and vinylester matrix were conducted to calibrate linear and nonlinear 
elastic material properties and to validate their proposed modeling 
approach. It was shown that the nonlinearity in the material response is 

dependent formulation for multilayered composite systems. The Schapery 

glass/vinylester coupons were performed to calibrate the nonlinear time-
dependent material properties and to verify their proposed micromodels. 
Haj-Ali and Muliana [22] performed an integrated micromechanical–
structural modeling approach to analyze creep behaviors of composite 

models of roving and CFM were used within continuum typed elements in 
general FE analyses. Creep responses of notched plate composite plates 
were used to validate the integrated micromechanical–structural modeling 
approach. 

Studies on long-term behaviors of thick-section layered FRP com-
posites are limited. Several experimental and analytical works have been 
focused on the uniaxial viscoelastic responses on composite specimens and 
structural components [7, 27, 28, 36, 38]. Spence [38] performed tests on 
unidirectional glass/epoxy pultruded coupons under compression creep for 
840 h. The creep response was pronounced for applied loads higher than 
30% of the compressive strength. Bank and Mosallam [7] conducted long-
term creep tests for E-glass/vinylester structural members with continuous 
strand mat and roving layers. A plane portal frame, 6 ft. high × 9 ft. wide, 
was tested under a load level of 25% of the ultimate failure for 10,000 h. 

significant for the off-axis specimens even for relatively low load levels. 

the isotropic matrix. Short-term off-axis creep compression tests on E-

structures. The previously developed time-dependent micromechanical 

constitutive model [22, 35] was used for the time-dependent behavior of

Haj-Ali and Muliana [21, 23] proposed a new nonlinear and time-
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E-glass/vinylester coupons cut from I-shape pultruded sections in their 
longitudinal direction. The samples were subjected to three different stress 
levels for the duration, up to 16 months. Findley power law model was 
used with a constant exponent to calibrate their uniaxial time-dependent 
behavior. The stress-dependent coefficients were calibrated from the short 
duration tests (1,000 h). 

Long-term behavior, such as creep buckling of thick-section com-
posites, has not been widely addressed, especially using a multiscale 
modeling approach. This study presents a multiscale nonlinear viscoelastic 
framework for the time-dependent behavior of composite materials and 
structural systems. The multiscale modeling approach is a local–global 
structural framework that can integrate different constitutive material 
models at the lowest material scales, namely the fiber and polymeric 
matrix constituents. It can also generate the effective nonlinear anisotropic 
continuum response that is needed at the structural level. The composite 
system studied is reinforced with roving and CFM layers. The constitutive 
characterization for the fiber and matrix constituents is performed at the 
lowest level of the multiscale modeling framework. The Schapery’s 
nonlinear single integral model is applied for the polymeric matrix system. 
It is assumed that both matrix constituents in the roving and CFM unit 
cells have the same isotropic nonlinear viscoelastic properties. An overall 

Scott and Zureick [36] conducted compression creep tests on pultruded  
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Fig. 8.4. Unit cell for the CFM layers in a pultruded composite 
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where the subscript i and o indicate in-plane and out-of-plane strain 

T (1) (1) (3) (4)
a i o i i

(1 12)
T (2) (2) (3) (4)
b i o o o

(1 12)

d {d ,d ,d ,d },

d {d ,d ,d ,d }.

ε ε ε ε ε

ε ε ε ε ε
×

×

=

=
 (8.51)

The A  and D  matrices in (8.15) are determined for sublaminate and CFM 
micromodels. After some algebraic manipulations, the A  and D  matrices 
for the sublaminate model are 

R

C

(3 3) (3 3) (3 3) (3 3)

(3 3)(3 3) (3 3) (3 3)

(3 3)(3 3) (3 3)
(3 3)

(C) (R) (C) (R)
oi oi oo oo

(3 3) (3 3) (3 3) (3 3)

0 0 0

0 0 0
,0 0 t

t

I

I
A I I

C C C C

× × × ×

×× × ×

×× ×
×

× × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 (8.52)
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T (R ) (C) (C) T (R )
a i i o b o

(1 9) (1 3)
d {d ,d ,d }, d {d },ε ε ε ε ε ε
× ×

= =  (8.50)

Micromechanical formulations for the two-layer sublaminate, CFM, 
and roving systems have been formulated and described in Haj-Ali and 
Muliana [21, 23]. These relations are used in incremental (rate) form due 

(8.15) can be used to define the micromechanical relations for the sub-
laminate, CFM, and roving unit cells. The roving micromodel follows a 
square, four-cell unit cell model previously formulated for the unidirectional 
composites. The strain vectors corresponding to displacement compatibi-

numerical integration method of the Schapery’s nonlinear viscoelastic 
model is formulated at the matrix level. Linearized micromechanical 
formulations and a stress-correction algorithm for roving, CFM, and sub-
laminate systems were employed. Static postbuckling and creep collapse 
analyses to demonstrate the capability of the proposed framework were 
conducted by Haj-Ali and Muliana [21–23]. 

lity and traction continuity in the two-layer sublaminate model are 

components, respectively. The displacement compatibility and traction 

to the nonlinear constitutive relations in the matrix subcells. Equation 

continuity strain vectors in the CFM model, shown in Fig. 8.4, are: 
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(8.54)
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C

(3 3) (3 3) (3 3) (3 3)
T

(3 3) (3 3) (3 3)
(3 3)

0 0
,0 0 0t

t

I I
D I

× × × ×

× × ×
×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (8.53)

 
where C is the subcell stiffness matrix and the subscripts “i” and “o” in the 
stiffness matrices indicate in-plane and out-of-plane components, 
respectively. The variables t, tC, and tR refer to sublaminate, CFM, and 
roving thicknesses, respectively. The A  and D  matrices for the CFM 
micromodel are expressed as 
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(8.55)

 
α α. 

The linearized micromechanical relations, derived in incremental 
formulation, will usually violate the constitutive equations because of the 
nonlinear and time-dependent response in the matrix subcells. An iterative 
correction scheme is needed to satisfy both the micromechanical 
constraints and the constitutive equations. The linearized micromechanical 
relations with tangential material matrices are used to generate trial 
incremental stresses and strains for the subcells (trial solution). The total 
micromechanical relations are then used to define a residual error for each 
micromodel. This residual is then used to correct the trial solution. This 
process is repeated until a converged solution that satisfies both 
micromechanical and nonlinear equations is reached. 

A correction algorithm is needed in every nested micromodel. The 
input is in the form of an applied incremental strain. The stress–strain 
states from the previous step and the history variables are the known 
variables for each nested micromodel and scale. Inside the sublaminate 
model, the strain increment is distributed to the roving and CFM 

micromechanical and constitutive relations. At the roving and CFM 
systems, the current stress–strain states, the tangent stiffness, together with 
the history variables are updated and sent to the sublaminate level. An 
iterative procedure is also performed inside the sublaminate system until 
the actual stress–strain relations, as well as homogenization constraints, are 
satisfied. Any iteration at the sublaminate level requires the full calculation 
procedure from the lower levels of the framework. Once all levels of error 
are satisfied, the sublaminate effective nonlinear continuum state is 
defined and communicated to the FE structural level. 

R. Haj-Ali 

 indicates unit volume fraction of the subcell number where the variable V

the roving and CFM models to minimize the errors and satisfy the 
micromodels. Iterative correction schemes are developed separately for 
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8.6 Applications 

Haj-Ali and Muliana [22, 23] examined the ability of the multiscale 
formulation to predict the nonlinear viscoelastic behavior of composite 
materials and structures. The effective response is generated from 
calibrated in situ properties of the matrix and fiber constituents. To that 
end, different creep tests available in the literature are used. Off-axis test 
results are available for glass/epoxy [26] and T300/5208 graphite/epoxy 
[40] composites. Prediction of the calibrated model is examined against 
test results not used in the calibration process. The current approach is 

in both 2D and 3D structural models. Creep test results on glass/epoxy off-
axis composite specimens reported by Lou and Schapery were used for 
validation of the current modeling approach. Linear viscoelastic calibration 
was performed using results from the 45° off-axis specimen under the 
lowest applied axial stress (1.382 ksi). Overall, the nonlinear calibration 
strikes a balance between all nonlinear curves as seen in Figs. 8.5 and 8.6. 

 
Fig. 8.5. Axial creep strain for 45° off-axis glass-epoxy laminate (adapted from 

Chapter 8: Nested Nonlinear Multiscale Frameworks

similar but employs a refined 3D micromodel that can ultimately be used 

[23]) 
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Fig. 8.6. Axial creep strain for 30° off-axis glass-epoxy laminate (adapted from 

Haj-Ali and Kilic [19, 20] applied the multiscale nonlinear models to 
predict the nonlinear response of thick-section pultruded plates under 
multiaxial stress–strain states. To this end, a series of tests were performed 
with off-axis notched pultruded plates subject to uniaxial compression. 
Four uniaxial strain gages were attached on the back and front surfaces of 
each plate. The off-axis angles used in the notched plates were 0°, 15°, 
30°, 45°, 60°, and 90°. The multiscale framework was implemented in the 
[1] general FE code. 

Figure 8.7 shows the off-axis tests and FE results in the form of the 
fourth strain gage (G4) that is the closest to the edge of the hole. A 
consistent softer response is shown from the G4 curves for all off-axis 
tests. As expected, the level of nonlinear response varies from the different 
plates, increasing with the increased off-axis angle. Compression buckling 
was monitored by examining the difference in the back-to-back strains. It 
was concluded that no significant out-of-plane bending occurred in these 
tests prior to reaching their ultimate loading states. Overall, very good 
prediction is shown by the FE models compared with the experimental 
results. This confirms the ability of the micromodels to predict a nonlinear 
multiaxial state of deformation with stress concentration due to the 
notched holes. 

R. Haj-Ali 

[23]) 
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Fig. 8.7. Experimental and FE remote compression stress vs. axial strain measured 
from G4 for different off-axis orientations of notched pultruded composite plate 
(adapted from [20]) 

A nested 3D micromechanical and structural framework is presented 
for the nonlinear elastic, viscoelastic, and crack growth analysis of thick-
section and multilayered composite materials. Micromodels for a uni-
directional lamina, an in-plane random medium phenomenological model, 
and a sublaminate model for effective continuum response of a through-
thickness repeating stacking sequence are formulated and integrated in the 
material–structural modeling approach. Numerical predictor–corrector 
stress-update algorithms are used and nested in all hierarchies. The ana-
lysis framework is general and can be used with a displacement-based 
nonlinear FE code. It can incorporate time, temperature, and moisture 
effects. Several structural simulations are demonstrated to illustrate the 
effectiveness of the framework. 

Haj-Ali and El-Hajjar [13–15, 17, 18] performed experimental and 
numerical analyses to determine the translayer Mode I and Mode II fracture 
toughness and crack growth of a thick-section FRP pultruded compo- 
site using the proposed multiscale material and structural framework. 
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Fig. 8.8. Two test setups: (a) fracture test with crack monitoring gage bonded to 
ESE(T) specimen and (b) modified Arcan fixture used for Mode II fracture testing 
(adapted from [18]) 

R. Haj-Ali 

Crack growth tests with crack tip opening displacement (CTOD) measure-
ments were conducted for different crack length to width ratios (a/W)  
as shown in Fig. 8.8. Figure 8.9 shows that the computational cohesive 
models were calibrated and used to predict Mode I and Mode II crack 
growth for eccentrically loaded single-edge-notch (tension), ESE(T), and 
notched butterfly specimens using a modified Arcan fixture. Figure 8.10 
illustrates the predicted capability of the combined cohesive FE modeling 
with the proposed multiscale constitutive framework compared to experi-
mental results in the form of load vs. CTOD and in the form of crack 
length vs. CTOD. The validity of the multiscale modeling approach before 
the onset of crack growth was also investigated using a new infrared 
thermography (IR) method [13–15]. The multiscale constitutive framework, 
combined with cohesive models, was shown to be effective in predicting 
the failure load and crack growth behavior in thick-section composites. 
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Fig. 8.9. Cohesive fracture modeling of through-crack in thick-section composites 
using FE cohesive models along with the multiscale material and structural 
modeling framework (adapted from [18]) 

Fig. 8.10. Predicted crack growth for transversely oriented reinforcement of an
ESE(T) composite specimen with a/W = 0.3 using cohesive FE model with the
multiscale material framework (adapted from [18]) 
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8.7 Conclusions 

Effective multiscale micromechanical and structural frameworks are 
formulated for the nonlinear analysis of multilayered and thick-section 
FRP composite materials. The micromechanical models explicitly 
recognize the response of the layered composite systems and their fiber–
matrix constituents. A unified numerical formulation is presented for a 
class of simplified micromodels. The formulation allows efficient 
application of the micromodels in large-scale nonlinear FE analysis of 
composite structures, where very large numbers of micromechanical 
calculations are carried out. Therefore, it is crucial that the proposed 
nonlinear stress-update and stress-correction algorithms are efficient and 
robust. The proposed material and structural framework were shown to be 
effective in predicting the nonlinear and time-dependent responses of 
laminated and pultruded FRP composites. 
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