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Micromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Develop concepts of volume and weight fraction (mass fraction) of
fiber and matrix, density, and void fraction in composites.

• Find the nine mechanical and four hygrothermal constants: four
elastic moduli, five strength parameters, two coefficients of thermal
expansion, and two coefficients of moisture expansion of a unidirec-
tional lamina from the individual properties of the fiber and the
matrix, fiber volume fraction, and fiber packing.

• Discuss the experimental characterization of the nine mechanical
and four hygrothermal constants.

 

3.1 Introduction

 

In Chapter 2, the stress–strain relationships, engineering constants, and fail-
ure theories for an angle lamina were developed using four elastic moduli,
five strength parameters, two coefficients of thermal expansion (CTE), and
two coefficients of moisture expansion (CME) for a unidirectional lamina.
These 13 parameters can be found experimentally by conducting several
tension, compression, shear, and hygrothermal tests on unidirectional lamina
(laminates). However, unlike in isotropic materials, experimental evaluation
of these parameters is quite costly and time consuming because they are
functions of several variables: the individual constituents of the composite
material, fiber volume fraction, packing geometry, processing, etc. Thus, the
need and motivation for developing analytical models to find these param-
eters are very important. In this chapter, we will develop simple relationships
for the these parameters in terms of the stiffnesses, strengths, coefficients of
thermal and moisture expansion of the individual constituents of a compos-
ite, fiber volume fraction, packing geometry, etc. An understanding of this
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relationship, called micromechanics of lamina, helps the designer to select
the constituents of a composite material for use in a laminated structure.

Because this text is for a first course in composite materials, details will be
explained only for the simple models based on the mechanics of materials
approach and the semi-empirical approach. Results from other methods based
on advanced topics such as elasticity are also explained for completeness.

As mentioned in Chapter 2, a unidirectional lamina is not homogeneous.
However, one can assume the lamina to be homogeneous by focusing on the
average response of the lamina to mechanical and hygrothermal loads (Figure
3.1). The lamina is simply looked at as a material whose properties are
different in various directions, but not different from one location to another.

Also, the chapter focuses on a unidirectional continuous fiber-reinforced
lamina. This is because it forms the basic building block of a composite
structure, which is generally made of several unidirectional laminae placed
at various angles. The modeling in the evaluation of the parameters is dis-
cussed first. This is followed by examples and experimental methods for
finding these parameters.

 

3.2 Volume and Mass Fractions, Density, and Void Content

 

Before modeling the 13 parameters of a unidirectional composite, we intro-
duce the concept of relative fraction of fibers by volume. This concept is
critical because theoretical formulas for finding the stiffness, strength, and
hygrothermal properties of a unidirectional lamina are a function of fiber
volume fraction. Measurements of the constituents are generally based on
their mass, so fiber mass fractions must also be defined. Moreover, defining
the density of a composite also becomes necessary because its value is used
in the experimental determination of fiber volume and void fractions of a
composite. Also, the value of density is used in the definition of specific
modulus and specific strength in Chapter 1.

 

3.2.1 Volume Fractions

 

Consider a composite consisting of fiber and matrix. Take the following
symbol notations:

 

FIGURE 3.1

 

A nonhomogeneous lamina with fibers and matrix approximated as a homogeneous lamina.

Nonhomogeneous lamina Homogeneous lamina
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v

 

c,f,m

 

 = volume of composite, fiber, and matrix, respectively

 

ρ

 

c

 

,f,m

 

 

 

= density of composite, fiber, and matrix, respectively.

Now define the fiber volume fraction 

 

V

 

f

 

 and the matrix volume fraction 

 

V

 

m

 

 as

and

(3.1a, b)

Note that the sum of volume fractions is 

,

from Equation (3.1) as

 

3.2.2 Mass Fractions

 

Consider a composite consisting of fiber and matrix and take the following
symbol notation: 

 

w

 

c,f,m

 

 

 

= mass of composite, fiber, and matrix, respectively.
The mass fraction (weight fraction) of the fibers (

 

W

 

f

 

) and the matrix (

 

W

 

m

 

)
are defined as

(3.2a, b)

Note that the sum of mass fractions is

,

V
v

vf
f

c

= ,

V
v
vm

m

c

= .

V Vf m+ = 1

v v vf m c+ = .

W
w

wf
f

c

= , and

W
w
wm

m

c

= .

W Wf m+ = 1
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from Equation (3.2) as 

.

From the definition of the density of a single material,

(3.3a–c)

Substituting Equation (3.3) in Equation (3.2), the mass fractions and vol-
ume fractions are related as

(3.4a, b)

in terms of the fiber and matrix volume fractions. In terms of individual
constituent properties, the mass fractions and volume fractions are related by

. (3.5a, b)

One should always state the basis of calculating the fiber content of a
composite. It is given in terms of mass or volume. Based on Equation (3.4),
it is evident that volume and mass fractions are not equal and that the
mismatch between the mass and volume fractions increases as the ratio
between the density of fiber and matrix differs from one.

f m cw + w = w

w r v

w r v

w r v

c c c

f f f

m m m

=

=

=

,

,

.

and

f
f

c
fW = V ,

ρ
ρ

and

m
m

c
mW = V ,

ρ
ρ

f

f

m

f

m
f m

fW =

V + V

V ,

ρ
ρ

ρ
ρ

W
V V

Vm
f

m
m m

m=
− +

1

1
ρ
ρ

( )

 

1343_book.fm  Page 206  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

Micromechanical Analysis of a Lamina

 

207

 

3.2.3 Density

 

The derivation of the density of the composite in terms of volume fractions
is found as follows. The mass of composite 

 

w

 

c

 

 is the sum of the mass of the
fibers 

 

w

 

f

 

 and the mass of the matrix 

 

w

 

m

 

 as

(3.6)

Substituting Equation (3.3) in Equation (3.6) yields

and

. (3.7)

Using the definitions of fiber and matrix volume fractions from Equation
(3.1),

(3.8)

Now, consider that the volume of a composite 

 

v

 

c

 

 is the sum of the volumes
of the fiber 

 

v

 

f

 

 and matrix (

 

v

 

m

 

):

. (3.9)

The density of the composite in terms of mass fractions can be found as

(3.10)

 

Example 3.1

 

A glass/epoxy lamina consists of a 70% fiber volume fraction. Use proper-
ties of glass and epoxy from Table 3.1* and Table 3.2, respectively, to deter-
mine the 

 

* Table 3.1 and Table 3.2 give the typical properties of common fibers and matrices in the SI sys-
tem of units, respectively. Note that fibers such as graphite and aramids are transversely isotro-
pic, but matrices are generally isotropic. The typical properties of common fibers and matrices
are again given in Table 3.3 and Table 3.4, respectively, in the USCS system of units.

w w wc f m= + .

ρ ρ ρc c f f m mv v v= + ,

ρ ρ ρc f
f

c
m

m

c

v

v
v
v

= +

c f f m m= V + V .ρ ρ ρ

v v vc f m= +

1
= W + W .

c

f

f

m

mρ ρ ρ
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1. Density of lamina
2. Mass fractions of the glass and epoxy
3. Volume of composite lamina if the mass of the lamina is 4 kg
4. Volume and mass of glass and epoxy in part (3)

 

Solution

 

1. From Table 3.1, the density of the fiber is

 

TABLE 3.1

 

Typical Properties of Fibers (SI System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C

 

μ

 

m/m/

 

°

 

C
MPa
MPa
MPa
MPa
MPa

—

230
22

0.30
0.35

22
–1.3

7.0
2067
1999

77
42
36

1.8

85
85

0.20
0.20

35.42
5
5

1550
1550
1550
1550

35
2.5

124
8
0.36
0.37
3

–5.0
4.1

1379
276

7
7

21
1.4

 

TABLE 3.2

 

Typical Properties of Matrices (SI System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C
m/m/kg/kg

MPa
MPa
MPa
MPa
MPa

—

3.4
3.4
0.30
0.30
1.308

63
0.33

72
102
72

102
34

1.2

71
71
0.30
0.30

27
23
0.00

276
276
276
276
138

2.7

3.5
3.5
0.35
0.35
1.3

90
0.33

54
108

54
108

54
1.2

f
3= 2500 kg / m .ρ
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From Table 3.2, the density of the matrix is

Using Equation (3.8), the density of the composite is

2. Using Equation (3.4), the fiber and matrix mass fractions are

 

TABLE 3.3

 

Typical Properties of Fibers (USCS System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F

 

μ

 

in./in./

 

°

 

F
ksi
ksi
ksi
ksi
ksi
—

33.35
3.19
0.30
0.35
3.19

–0.7222
3.889

299.7
289.8

11.16
6.09
5.22
1.8

12.33
12.33
0.20
0.20
5.136
2.778
2.778

224.8
224.8
224.8
224.8

5.08
2.5

17.98
1.16
0.36
0.37
0.435

–2.778
2.278

200.0
40.02
1.015
1.015
3.045
1.4

 

TABLE 3.4

 

Typical Properties of Matrices (USCS System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F
in./in./lb/lb

ksi
ksi
ksi
ksi
ksi
—

0.493
0.493
0.30
0.30
0.1897

35
0.33

10.44
14.79
10.44
14.79
4.93
1.2

10.30
10.30
0.30
0.30
3.915

12.78
0.00

40.02
40.02
40.02
40.02
20.01
2.7

0.5075
0.5075
0.35
0.35
0.1885

50
0.33
7.83

15.66
7.83

15.66
7.83
1.2

ρm kg m= 1200 3/ .

ρc

kg m

= +

=

( )( . ) ( )( . )

/ .

2500 0 7 1200 0 3

2110 3
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.

Note that the sum of the mass fractions,

3. The volume of composite is 

.

4. The volume of the fiber is

.

The volume of the matrix is

Wf = ×

=

2500
2110

0 3

0 8294

.

.

Wm = ×

=

1200
2110

0 3

0 1706

.

.

W Wf m+ = +

=

0 8294 0 1706

1 000

. .

. .

v
w

c
c

c

=
ρ

= 4
2110

= × −1 896 10 3 3. m

v V vf f c=

= × −( . )( . )0 7 1 896 10 3

= × −1 327 10 3 3. m

v V vm m c=

=(0.3)(0.1896 × −10 3)
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.

The mass of the fiber is

.

The mass of the matrix is

= 0.6826 

 

kg .

 

3.2.4 Void Content

 

During the manufacture of a composite, voids are introduced in the com-
posite as shown in Figure 3.2. This causes the theoretical density of the
composite to be higher than the actual density. Also, the void content of a

 

FIGURE 3.2

 

Photomicrographs of cross-section of a lamina with voids.

= × −0 5688 10 3 3. m

w vf f f= ρ

= × −( )( . )2500 1 327 10 3

= 3 318. kg

w vm m m= ρ

= × −( )( . )1200 0 5688 10 3
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composite is detrimental to its mechanical properties. These detriments
include lower 

• Shear stiffness and strength
• Compressive strengths
• Transverse tensile strengths
• Fatigue resistance
• Moisture resistance

A decrease of 2 to 10% in the preceding matrix-dominated properties gen-
erally takes place with every 1% increase in the void content.

 

1

 

For composites with a certain volume of voids 

 

V

 

v

 

 the volume fraction of
voids 

 

V

 

v

 

 is defined as

(3.11)

Then, the total volume of a composite (

 

v

 

c

 

) with voids is given by

(3.12)

By definition of the experimental density 

 

ρ

 

ce

 

 of a composite, the actual
volume of the composite is

(3.13)

and, by the definition of the theoretical density 

 

ρ

 

ct

 

 of the composite, the
theoretical volume of the composite is

(3.14)

Then, substituting the preceding expressions (3.13) and (3.14) in Equation
(3.12),

.

The volume of void is given by

V
v
vv

v

c

= .

v v v vc f m v= + + .

v
w

c
c

ce

=
ρ

,

v v
w

f m
c

ct

+ =
ρ

.

w w
vc

ce

c

ct
vρ ρ

= +
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(3.15)

Substituting Equation (3.13) and Equation (3.15) in Equation (3.11), the
volume fraction of the voids is

(3.16)

Example 3.2

A graphite/epoxy cuboid specimen with voids has dimensions of a × b × c
and its mass is Mc. After it is put it into a mixture of sulfuric acid and hydrogen
peroxide, the remaining graphite fibers have a mass Mf. From independent
tests, the densities of graphite and epoxy are ρf and ρm, respectively. Find the
volume fraction of the voids in terms of a, b, c, Mf, Mc, ρf, and ρm.

Solution

The total volume of the composite vc is the sum total of the volume of fiber
vf , matrix vm, and voids vv:

(3.17)

From the definition of density,

(3.18a)

(3.18b)

The specimen is a cuboid, so the volume of the composite is 

(3.19)

Substituting Equation (3.18) and Equation (3.19) in Equation (3.17) gives

v
w

v
c

ce

ct ce

ct

= −⎛
⎝⎜

⎞
⎠⎟ρ

ρ ρ
ρ

.

V
v
vv

v

c

ct ce

ct

=

= −ρ ρ
ρ

.

v v v vc f m v= + + .

v
M

f
f

f

=
ρ

,

v
M M

m
c f

m

=
−
ρ

.

v abcc = .
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,

and the volume fraction of voids then is

(3.20)

Alternative Solution

The preceding problem can also be solved by using Equation (3.16). The
theoretical density of the composite is

, (3.21)

where Vf′ is the theoretical fiber volume fraction given as

(3.22)

The experimental density of the composite is

(3.23)

Substituting Equation (3.21) through Equation (3.23) in the definition of
void volume fractions given by Equation (3.16),

(3.24)

Experimental determination: the fiber volume fractions of the constituents of
a composite are found generally by the burn or the acid digestion tests. These
tests involve taking a sample of composite and weighing it. Then the density

abc
M M M

vf

f

c f

m
v= +

−
+

ρ ρ

V
v
abc abc

M M M
v

v f

f

c f

m

= = − +
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

ρ ρ

ρ ρ ρct f f m fV V= ′ + − ′( )1

′ =
+

V
volume of fibers

volume of fibers volumef of matrix

′ =
+

−
V

M

M M Mf

f

f

f

f

c f

m

ρ

ρ ρ

.

ρce
cM

abc
= .

V
abc

M M M
v

f

f

c f

m

= − +
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
1

ρ ρ
.
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of the specimen is found by the liquid displacement method in which the
sample is weighed in air and then in water. The density of the composite is
given by

, (3.25)

where
wc = weight of composite
wi = weight of composite when immersed in water
ρw = density of water (1000 kg/m3 or 62.4 lb/ft3)

For specimens that float in water, a sinker is attached. The density of the
composite is then found by

, (3.26)

where
wc = weight of composite
ws = weight of sinker when immersed in water
ww = weight of sinker and specimen when immersed in water

The sample is then dissolved in an acid solution or burned.2 Glass-based
composites are burned, and carbon and aramid-based composites are
digested in solutions. Carbon and aramid-based composites cannot be
burned because carbon oxidizes in air above 300°C (572°F) and the aramid
fiber can decompose at high temperatures. Epoxy-based composites can be
digested by nitric acid or a hot mixture of ethylene glycol and potassium
hydroxide; polyamide- and phenolic resin-based composites use mixtures of
sulfuric acid and hydrogen peroxide. When digestion or burning is complete,
the remaining fibers are washed and dried several times and then weighed.
The fiber and matrix weight fractions can be found using Equation (3.2). The
densities of the fiber and the matrix are known; thus, one can use Equation
(3.4) to determine the volume fraction of the constituents of the composite
and Equation (3.8) to calculate the theoretical density of the composite.

3.3 Evaluation of the Four Elastic Moduli

As shown in Section 2.4.3, there are four elastic moduli of a unidirectional
lamina:

ρ ρc
c

c i
w

w
w w

=
−

ρ ρc
c

c s w
w

w
w w w

=
+ −
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• Longitudinal Young’s modulus, E1

• Transverse Young’s modulus, E2

• Major Poisson’s ratio, ν12

• In-plane shear modulus, G12

Three approaches for determining the four elastic moduli are discussed next.

3.3.1 Strength of Materials Approach

From a unidirectional lamina, take a representative volume element* that
consists of the fiber surrounded by the matrix (Figure 3.3). This representa-
tive volume element (RVE) can be further represented as rectangular blocks.
The fiber, matrix, and the composite are assumed to be of the same width,
h, but of thicknesses tf , tm , and tc, respectively. The area of the fiber is given by

. (3.27a)

The area of the matrix is given by

(3.27b)

and the area of the composite is given by

(3.27c)

The two areas are chosen in the proportion of their volume fractions so
that the fiber volume fraction is defined as

(3.28a)

and the matrix fiber volume fraction Vm is

* A representative volume element (RVE) of a material is the smallest part of the material that
represents the material as a whole. It could be otherwise intractable to account for the distribu-
tion of the constituents of the material.

A t hf f=

A t hm m= ,

A t hc c= .

V
A

A

t

t

f
f

c

f

c

=

= ,
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(3.28b)

The following assumptions are made in the strength of materials approach
model:

• The bond between fibers and matrix is perfect.
• The elastic moduli, diameters, and space between fibers are uniform.
• The fibers are continuous and parallel.

FIGURE 3.3
Representative volume element of a unidirectional lamina.

3

Lc

tm/2
tr

tm/2

tc

tc

h

h

2

1

V
A
A

t
t

V

m
m

c

m

c

f

=

=

= −1 .
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• The fibers and matrix follow Hooke’s law (linearly elastic).
• The fibers possess uniform strength.
• The composite is free of voids.

3.3.1.1 Longitudinal Young’s Modulus

From Figure 3.4, under a uniaxial load Fc on the composite RVE, the load is
shared by the fiber Ff and the matrix Fm so that

(3.29)

The loads taken by the fiber, the matrix, and the composite can be written
in terms of the stresses in these components and cross-sectional areas of these
components as

(3.30a)

(3.30b)

(3.30c)

where
σc,f,m = stress in composite, fiber, and matrix, respectively
Ac,f,m = area of composite, fiber, and matrix, respectively

Assuming that the fibers, matrix, and composite follow Hooke’s law and
that the fibers and the matrix are isotropic, the stress–strain relationship for
each component and the composite is

FIGURE 3.4
A longitudinal stress applied to the representative volume element to calculate the longitudinal
Young’s modulus for a unidirectional lamina.

tm/2

tm/2
tf

tc

σc
σc

h

F F Fc f m= + .

F Ac c c= σ ,

F Af f f= σ ,

F Am m m= σ ,
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(3.31a)

(3.31b)

and

(3.31c)

where
εc,f,m = strains in composite, fiber, and matrix, respectively
E1,f,m = elastic moduli of composite, fiber, and matrix, respectively

Substituting Equation (3.30) and Equation (3.31) in Equation (3.29) yields

(3.32)

The strains in the composite, fiber, and matrix are equal (εc = εf = εm); then,
from Equation (3.32),

(3.33)

Using Equation (3.28), for definitions of volume fractions,

(3.34)

Equation 3.34 gives the longitudinal Young’s modulus as a weighted mean
of the fiber and matrix modulus. It is also called the rule of mixtures. 

The ratio of the load taken by the fibers Ff to the load taken by the
composite Fc is a measure of the load shared by the fibers. From Equation
(3.30) and Equation (3.31),

(3.35)

In Figure 3.5, the ratio of the load carried by the fibers to the load taken
by the composite is plotted as a function of fiber-to-matrix Young’s moduli
ratio Ef/Em for the constant fiber volume fraction Vf . It shows that as the fiber
to matrix moduli ratio increases, the load taken by the fiber increases tre-
mendously.

σ εc cE= 1 ,

σ εf f fE= ,

σ εm m mE= ,

E A E A E Ac c f f f m m m1ε ε ε= + .

E E
A

A
E

A
Af

f

c
m

m

c
1 = + .

E E V E Vf f m m1 = + .

F

F

E

E
Vf

c

f
f=

1

.
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Example 3.3

Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina
with a 70% fiber volume fraction. Use the properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively. Also, find the ratio of the load taken by
the fibers to that of the composite.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.34), the longitudinal elastic modulus of the unidirectional
lamina is

Using Equation (3.35), the ratio of the load taken by the fibers to that of the
composite is

FIGURE 3.5
Fraction of load of composite carried by fibers as a function of fiber volume fraction for constant
fiber to matrix moduli ratio.
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Micromechanical Analysis of a Lamina 221

Figure 3.6 shows the linear relationship between the longitudinal Young’s
modulus of a unidirectional lamina and fiber volume fraction for a typical
graphite/epoxy composite per Equation (3.34). It also shows that Equation
(3.34) predicts results that are close to the experimental data points.3

3.3.1.2 Transverse Young’s Modulus

Assume now that, as shown in Figure 3.7, the composite is stressed in the
transverse direction. The fibers and matrix are again represented by rectan-
gular blocks as shown. The fiber, the matrix, and composite stresses are
equal. Thus,

(3.36)

where σc,f,m = stress in composite, fiber, and matrix, respectively.
Now, the transverse extension in the composite Δc is the sum of the trans-

verse extension in the fiber Δf , and that is the matrix, Δm.

FIGURE 3.6
Longitudinal Young’s modulus as function of fiber volume fraction and comparison with
experimental data points for a typical glass/polyester lamina. (Experimental data points repro-
duced with permission of ASM International.)
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(3.37)

Now, by the definition of normal strain,

(3.38a)

(3.38b)

and

(3.38c)

where
tc,f,m = thickness of the composite, fiber and matrix, respectively
εc,f,m = normal transverse strain in the composite, fiber, and matrix, 

respectively

Also, by using Hooke’s law for the fiber, matrix, and composite, the normal
strains in the composite, fiber, and matrix are

(3.39a)

(3.39b)

and

(3.39c)

FIGURE 3.7
A transverse stress applied to a representative volume element used to calculate transverse
Young’s modulus of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 223

Substituting Equation (3.38) and Equation (3.39) in Equation (3.37) and
using Equation (3.36) gives

(3.40)

Because the thickness fractions are the same as the volume fractions as
the other two dimensions are equal for the fiber and the matrix (see Equa-
tion 3.28):

(3.41)

Equation (3.41) is based on the weighted mean of the compliance of the fiber
and the matrix. 

Example 3.4

Find the transverse Young’s modulus of a glass/epoxy lamina with a fiber
volume fraction of 70%. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.41), the transverse Young’s modulus, E2, is

Figure 3.8 plots the transverse Young’s modulus as a function of fiber
volume fraction for constant fiber-to-matrix elastic moduli ratio, Ef/Em. For
metal and ceramic matrix composites, the fiber and matrix elastic moduli
are of the same order. (For example, for a SiC/aluminum metal matrix
composite, Ef/Em = 4 and for a SiC/CAS ceramic matrix composite, Ef/Em =
2). The transverse Young’s modulus of the composite in such cases changes
more smoothly as a function of the fiber volume fraction.
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224 Mechanics of Composite Materials, Second Edition

For polymeric composites, the fiber-to-matrix moduli ratio is very high.
(For example, for a glass/epoxy polymer matrix composite, Ef/Em = 25). The
transverse Young’s modulus of the composite in such cases changes appre-
ciably only for large fiber volume fractions. Figure 3.8 shows that, for high
Ef/Em ratios, the contribution of the fiber modulus only increases substantially
for a fiber volume fraction greater than 80%. These fiber volume fractions are
not practical and in many cases are physically impossible due to the geometry
of fiber packing. Figure 3.9 shows various possibilities of fiber packing. Note
that the ratio of the diameter, d, to fiber spacing, s, d/s varies with geometrical
packing. For circular fibers with square array packing (Figure 3.9a),

(3.42a)

This gives a maximum fiber volume fraction of 78.54% as s ≥ d. For circular
fibers with hexagonal array packing (Figure 3.9b),

(3.42b)

FIGURE 3.8
Transverse Young’s modulus as a function of fiber volume fraction for constant fiber to matrix
moduli ratio.
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Micromechanical Analysis of a Lamina 225

This gives a maximum fiber volume fraction of 90.69% because s ≥ d. These
maximum fiber volume fractions are not practical to use because the fibers
touch each other and thus have surfaces where the matrix cannot wet out
the fibers.

In Figure 3.10, the transverse Young’s modulus is plotted as a function of
fiber volume fraction using Equation (3.41) for a typical boron/epoxy lamina.
Also given are the experimental data points.4 In Figure 3.10, the experimental
and analytical results are not as close to each other as they are for the
longitudinal Young’s modulus in Figure 3.6.

FIGURE 3.9
Fiber to fiber spacing in (a) square packing geometry and (b) hexagonal packing geometry.
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226 Mechanics of Composite Materials, Second Edition

FIGURE 3.10
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction for a
Boron/Epoxy unidirectional lamina (Ef = 414 GPa, νf = 0.2, Em = 4.14 GPa, νm = 0.35) and
comparison with experimental values. Figure (b) zooms figure (a) for fiber volume fraction
between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-
8818, November 1970.)
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Micromechanical Analysis of a Lamina 227

3.3.1.3 Major Poisson’s Ratio

The major Poisson’s ratio is defined as the negative of the ratio of the normal
strain in the transverse direction to the normal strain in the longitudinal
direction, when a normal load is applied in the longitudinal direction.
Assume a composite is loaded in the direction parallel to the fibers, as shown
in Figure 3.11. The fibers and matrix are again represented by rectangular
blocks. The deformations in the transverse direction of the composite  is
the sum of the transverse deformations of the fiber and the matrix  as

(3.43)

Using the definition of normal strains,

(3.44a)

(3.44b)

FIGURE 3.11
A longitudinal stress applied to a representative volume element to calculate Poisson’s ratio of
unidirectional lamina.
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and

(3.44c)

where εc,f,m = transverse strains in composite, fiber, and matrix, respectively.
Substituting Equation (3.44) in Equation (3.43),

(3.45)

The Poisson’s ratios for the fiber, matrix, and composite, respectively, are

(3.46a)

(3.46b)

and

. (3.46c)

Substituting in Equation (3.45),

(3.47)

where
v12,f,m = Poisson’s ratio of composite, fiber, and matrix, respectively

 = longitudinal strains of composite, fiber and matrix, respec-
tively

However, the strains in the composite, fiber, and matrix are assumed to
be the equal in the longitudinal direction , which, from Equation
(3.47), gives

(3.48)
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Micromechanical Analysis of a Lamina 229

Because the thickness fractions are the same as the volume fractions, per
Equation (3.28),

(3.49)

Example 3.5

Find the major and minor Poisson’s ratio of a glass/epoxy lamina with a
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Poisson’s ratio of the fiber is

νf = 0.2.

From Table 3.2, the Poisson’s ratio of the matrix is

νm = 0.3.

Using Equation (3.49), the major Poisson’s ratio is

From Example 3.3, the longitudinal Young’s modulus is

E1 = 60.52 GPa

and, from Example 3.4, the transverse Young’s modulus is

E2 = 10.37 GPa.

Then, the minor Poisson’s ratio from Equation (2.83) is

3.3.1.4 In-Plane Shear Modulus

Apply a pure shear stress τc to a lamina as shown in Figure 3.12. The fibers
and matrix are represented by rectangular blocks as shown. The resulting
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230 Mechanics of Composite Materials, Second Edition

shear deformations of the composite δc the fiber δf , and the matrix δm are
related by

. (3.50)

From the definition of shear strains,

, (3.51a)

, (3.51b)

and

, (3.51c)

where
γc,f,m = shearing strains in the composite, fiber, and matrix, respec-

tively
tc,f,m = thickness of the composite, fiber, and matrix, respectively.

From Hooke’s law for the fiber, the matrix, and the composite,

(3.52a)

(3.52b)

and

FIGURE 3.12
An in-plane shear stress applied to a representative volume element for finding in-plane shear
modulus of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 231

(3.52c)

where G12,f,m = shear moduli of composite, fiber, and matrix, respectively.
From Equation (3.50) through Equation (3.52),

(3.53)

The shear stresses in the fiber, matrix, and composite are assumed to be
equal (τc = τf = τm), giving

(3.54)

Because the thickness fractions are equal to the volume fractions, per
Equation (3.28),

(3.55)

Example 3.6

Find the in-plane shear modulus of a glass/epoxy lamina with a 70% fiber
volume fraction. Use properties of glass and epoxy from Table 3.1 and Table
3.2, respectively.

Solution

The glass fibers and the epoxy matrix have isotropic properties. From Table
3.1, the Young’s modulus of the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.2.

The shear modulus of the fiber
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From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa

and the Poisson’s ratio of the fiber is

νm = 0.3.

The shear modulus of the matrix is

From Equation (3.55), the in-plane shear modulus of the unidirectional
lamina is

Figure 3.13a and Figure 3.13b show the analytical values from Equation
(3.55) of the in-plane shear modulus as a function of fiber volume fraction
for a typical glass/epoxy lamina. Experimental values4 are also plotted in
the same figure.

3.3.2 Semi-Empirical Models

The values obtained for transverse Young’s modulus and in-plane shear
modulus through Equation (3.41) and Equation (3.55), respectively, do not
agree well with the experimental results shown in Figure 3.10 and Figure
3.13. This establishes a need for better modeling techniques. These tech-
niques include numerical methods, such as finite element and finite differ-
ence, and boundary element methods, elasticity solution, and variational
principal models.5 Unfortunately, these models are available only as compli-
cated equations or in graphical form. Due to these difficulties, semi-empirical
models have been developed for design purposes. The most useful of these
models include those of Halphin and Tsai6 because they can be used over a
wide range of elastic properties and fiber volume fractions.

Halphin and Tsai6 developed their models as simple equations by curve fitting
to results that are based on elasticity. The equations are semi-empirical in nature
because involved parameters in the curve fitting carry physical meaning.
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Micromechanical Analysis of a Lamina 233

FIGURE 3.13
Theoretical values of in-plane shear modulus as a function of fiber volume fraction and com-
parison with experimental values for a unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm

= 1.83 GPa). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75.
(Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)
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3.3.2.1 Longitudinal Young’s Modulus

The Halphin–Tsai equation for the longitudinal Young’s modulus, E1, is the
same as that obtained through the strength of materials approach — that is,

(3.56)

3.3.2.2 Transverse Young’s Modulus

The transverse Young’s modulus, E2, is given by6

(3.57)

where

(3.58)

The term ξ is called the reinforcing factor and depends on the following:

• Fiber geometry
• Packing geometry
• Loading conditions

Halphin and Tsai6 obtained the value of the reinforcing factor ξ by com-
paring Equation (3.57) and Equation (3.58) to the solutions obtained from
the elasticity solutions. For example, for a fiber geometry of circular fibers
in a packing geometry of a square array, ξ = 2. For a rectangular fiber cross-
section of length a and width b in a hexagonal array, ξ = 2(a/b), where b is
in the direction of loading.6 The concept of direction of loading is illustrated
in Figure 3.14.

Example 3.7

Find the transverse Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use Halphin–Tsai equations for a circular fiber
in a square array packing geometry. 

Solution

Because the fibers are circular and packed in a square array, the reinforcing
factor ξ = 2. From Table 3.1, the Young’s modulus of the fiber is Ef = 85 GPa.
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Micromechanical Analysis of a Lamina 235

From Table 3.2, the Young’s modulus of the matrix is Em = 3.4 GPa.
From Equation (3.58),

From Equation (3.57), the transverse Young’s modulus of the unidirectional
lamina is

For the same problem, from Example 3.4, this value of E2 was found to be
10.37 GPa by the mechanics of materials approach.

Figure 3.15a and Figure 3.15b show the transverse Young’s modulus as a
function of fiber volume fraction for a typical boron/epoxy composite. The
Halphin–Tsai equations (3.57) and the mechanics of materials approach
Equation (3.41) curves are shown and compared to experimental data points.

As mentioned previously, the parameters ξ and η have a physical meaning.
For example,

FIGURE 3.14
Concept of direction of loading for calculation of transverse Young’s modulus by Halphin–Tsai
equations.
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Ef/Em = 1 implies η = 0, (homogeneous medium)
Ef/Em → ∞ implies η = 1 (rigid inclusions)

Ef/Em → 0 implies (voids)

3.3.2.3 Major Poisson’s Ratio

The Halphin–Tsai equation for the major Poisson’s ratio, ν12, is the same as
that obtained using the strength of materials approach — that is,

FIGURE 3.15
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction and
comparison with experimental values for boron/epoxy unidirectional lamina (Ef = 414 GPa, νf

= 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818,
November 1970.)
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(3.59)

3.3.2.4 In-Plane Shear Modulus

The Halphin–Tsai6 equation for the in-plane shear modulus, G12, is

(3.60)

where

(3.61)

The value of the reinforcing factor, ξ, depends on fiber geometry, packing
geometry, and loading conditions. For example, for circular fibers in a square
array, ξ = 1. For a rectangular fiber cross-sectional area of length a and width
b in a hexagonal array, , where a is the direction of loading.
The concept of the direction of loading7 is given in Figure 3.16.

The value of ξ = 1 for circular fibers in a square array gives reasonable
results only for fiber volume fractions of up to 0.5. For example, for a typical
glass/epoxy lamina with a fiber volume fraction of 0.75, the value of in-
plane shear modulus using the Halphin–Tsai equation with ξ = 1 is 30%
lower than that given by elasticity solutions. Hewitt and Malherbe8 sug-
gested choosing a function,

. (3.62)

FIGURE 3.16
Concept of direction of loading to calculate in-plane shear modulus by Halphin–Tsai equations.
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Example 3.8

Using Halphin–Tsai equations, find the shear modulus of a glass/epoxy
composite with a 70% fiber volume fraction. Use the properties of glass
and epoxy from Table 3.1 and Table 3.2, respectively. Assume that the fibers
are circular and are packed in a square array. Also, get the value of the
shear modulus by using Hewitt and Malherbe’s8 formula for the reinforc-
ing factor.

Solution

For Halphin–Tsai’s equations with circular fibers in a square array, the rein-
forcing factor ξ = 1. From Example 3.6, the shear modulus of the fiber is

Gf = 35.42 GPa

and the shear modulus of the matrix is

Gm = 1.308 GPa.

From Equation (3.61),

From Equation (3.60), the in-plane shear modulus is

For the same problem, the value of G12 = 4.013 GPa was found by the
mechanics of materials approach in Example 3.5.

Because the volume fraction is greater than 50%, Hewitt and Mahelbre8

suggested a reinforcing factor (Equation 3.62):

.

Then, from Equation (3.61),
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.

From Equation (3.60), the in-plane shear modulus is

.

Figure 3.17a and Figure 3.17b show the in-plane shear modulus as a func-
tion of fiber volume fraction for a typical glass/epoxy composite. The Hal-
phin–Tsai equation (3.60) and the mechanics of materials approach, Equation
(3.55) are shown and compared to the experimental4 data points.

3.3.3 Elasticity Approach

In addition to the strength of materials and semi-empirical equation
approaches, expressions for the elastic moduli based on elasticity are also
available. Elasticity accounts for equilibrium of forces, compatibility, and
Hooke’s law relationships in three dimensions; the strength of materials
approach may not satisfy compatibility and/or account for Hooke’s law in
three dimensions, and semi-empirical approaches are just as the name
implies — partly empirical.

The elasticity models described here are called composite cylinder assem-
blage (CCA) models.4,9–12 In a CCA model, one assumes the fibers are circular
in cross-section, spread in a periodic arrangement, and continuous, as shown
in Figure 3.18. Then the composite can be considered to be made of repeating
elements called the representative volume elements (RVEs). The RVE is
considered to represent the composite and respond the same as the whole
composite does.

The RVE consists of a composite cylinder made of a single inner solid
cylinder (fiber) bonded to an outer hollow cylinder (matrix) as shown in
Figure 3.19. The radius of the fiber, a, and the outer radius of the matrix, b,
are related to the fiber volume fraction, Vf , as

. (3.63)

Appropriate boundary conditions are applied to this composite cylinder
based on the elastic moduli being evaluated.
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FIGURE 3.17
Theoretical values of in-plane shear modulus as a function of fiber volume fraction compared
with experimental values for unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm = 1.83 GPa).
Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data
from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)

FIGURE 3.18
Periodic arrangement of fibers in a cross-section of a lamina.
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3.3.3.1 Longitudinal Young’s Modulus

To find the elastic moduli along the fibers, we will apply an axial load, P, in
direction 1 (Figure 3.19). The axial stress, σ1, in direction 1 then is

. (3.64)

Now, in terms of Hooke’s law,

(3.65)

where
E1 = longitudinal Young’s modulus
∈1 = axial strain in direction 1

Thus, from Equation (3.64) and Equation (3.65), we have 

. (3.66)

FIGURE 3.19
Composite cylinder assemblage (CCA) model used for predicting elastic moduli of unidirec-
tional composites.
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To find E1 in terms of elastic moduli of the fiber and the matrix, and the
geometrical parameters such as fiber volume fraction, we need to relate the
axial load, P, and the axial strain, ∈1, in these terms.

Assuming the response of a cylinder is axisymmetric, the equilibrium
equation in the radial direction is given by13

, (3.67)

where
σr = radial stress,
σθ = hoop stress.

The normal stress–normal strain relationships in polar coordinates, r–θ–z,
for an isotropic material with Young’s modulus, E, and Poisson’s ratio, ν,
are given by

. (3.68)

The shear stresses and shear strains are zero in the r–θ–z coordinate system
for axisymmetric response.

The strain displacement equations for axisymmetric response are

(3.69a)

(3.69b)

, (3.69c)

where
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u = displacement in radial direction,
w = displacement in axial direction.

Substituting the strain-displacement equations (3.69a-c) in the stress–strain
equations (3.68) and noting that ∈z = ∈1 everywhere gives

, (3.70)

which is rewritten for simplicity as

, (3.71)

where the constants of the stiffness matrix are

(3.72a)

. (3.72b)

Substituting Equation (3.71) in the equilibrium equation (3.67) gives

. (3.73)

The solution to the linear ordinary differential equation is found by assum-
ing that
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. (3.74)

Substituting Equation (3.74) in Equation (3.73) gives

. (3.75)

The preceding expression (3.75) requires that

An = 0, n = –∞,…,∞, except for n = 1 and n = –1. (3.76)

Therefore, the form of the radial displacement is

. (3.77)

To keep the terminology simple, assume that the form of the radial dis-
placement with different names for the constants,

. (3.78)

The preceding equations are valid for a cylinder with an axisymmetric
response. Thus, the radial displacement, uf and um, in the fiber and matrix
cylinders, respectively, can be assumed of the form
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(3.79)

(3.80)

However, because the fiber is a solid cylinder and the radial displacement
uf is finite, Bf = 0; otherwise, the radial displacement of the fiber uf would be
infinite. Thus,

(3.81)

. (3.82)

Differentiating Equation (3.81) and Equation (3.82) gives

(3.83a)

. (3.83b)

Using Equation (3.83a) and Equation (3.83b) in Equation (3.70), the
stress–strain relationships for the fiber are

, (3.84)

where the stiffness constants of the fiber are

(3.85)
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and the stress–strain relationships for the matrix are

, (3.86)

where the stiffness constants of the matrix are

(3.87a)

. (3.87b)

How do we now solve for the unknown constants Af, Am, Bm, and ε1? The
following four boundary and interface conditions will allow us to do that:

1. The radial displacement is continuous at the interface, r = a,

. (3.88)

Then, from Equation (3.81) and Equation (3.82),

. (3.89)

2. The radial stress is continuous at r = a:

. (3.90)

Then, from Equation (3.84) and Equation (3.86),
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3. Because the surface at r = b is traction free, the radial stress on the
outside of matrix, r = b, is zero:

. (3.92)

Then, Equation (3.84) gives

. (3.93)

4. The overall axial load over the fiber-matrix cross-sectional area in
direction 1 is the applied load, P, then

(3.94)

.

Because the axial normal stress, σz, is independent of θ,

. (3.95)

Now,
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Then, from Equation (3.84) and Equation (3.86),
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Solving Equation (3.89), Equation (3.91), Equation (3.93), and Equa-
tion (3.97), we get the solution to Af, Am, Bm, and ε1.

Using the resulting solution for ∈1, and using Equation (3.66),

 

(3.98)

Although the preceding expression can be written in a compact form by
using definitions of shear and bulk modulus* of the material, we avoid doing
so because results given in Equation (3.98) can now be found symbolically
by computational systems such as Maple.14 Note that the first two terms of
Equation (3.98) represent the mechanics of materials approach result given
by Equation (3.34).

Example 3.9

Find the longitudinal Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

From Table 3.1, the Young’s modulus of fiber is

Ef = 85 GPa;

the Poisson’s ratio of the fiber is

νf = 0.2.

From Table 3.2, the Young’s modulus of matrix is

Em = 3.4 GPa

* Bulk modulus of an elastic body is defined as the slope of the applied hydrostatic pressure vs.
volume dilation curve. Hydrostatic stress is defined as σxx = σyy = σzz = –p, τxy = 0, τyz = 0, τzx = 0 and
volume dilation, Dv, is defined as the sum of resulting normal strains. Dv = εx + εy + εz. The bulk
modulus, K, is used for finding volume changes in a given body subjected to hydrostatic pressure.
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and the Poisson’s ratio of the matrix is

νm = 0.3.

Using Equation (3.98), the longitudinal Young’s modulus

For the same problem, the longitudinal Young’s modulus was found to be
60.52 GPa from the mechanics of materials approach as well as the Hal-
phin–Tsai equations.

3.3.3.2 Major Poisson’s Ratio

In Section 3.3.3.1, we solved the problems of an axially loaded cylinder. This
same problem can be used to determine the axial Poisson’s ratio, ν12, because
of the definition of major Poisson’s ratio as

, (3.99)

when a body is only under an axial load in direction 1.
From the definition of radial strain from Equation (3.69a) that, at r = b, 

, (3.100)

the major Poisson’s ratio is 

. (3.101)

Using Equation (3.101),
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. (3.102)

Using the solution obtained in Section 3.3.3.1 for Am, Bm, and ∈1 by solving
Equation (3.89), Equation (3.91), Equation (3.93), and Equation (3.97), we get

(3.103)

Although the preceding expression can be written in a compact form by
using definitions of shear and bulk modulus of the material, we avoid doing
so because results given in Equation (3.103) can be found symbolically by
computational systems such as Maple.14 Note that the first two terms of
Equation (3.103) are the same as the mechanics of materials approach result
given by Equation (3.34).

Example 3.10

Find the major Poisson’s ratio for a glass/epoxy lamina with a 70% fiber
volume fraction. Use the properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

Using Equation (3.103), the major Poisson’s ratio is

For the same problem, the major Poisson’s ratio was found to be 0.2300 from
the mechanics of materials approach as well as the Halphin–Tsai equations.
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3.3.3.3 Transverse Young’s Modulus

The CCA model only gives lower and upper bounds of the transverse
Young’s modulus of the composite. However, for the sake of completeness,
we will summarize the result from a three-phase model. This model (Figure
3.20), however, yields an exact solution12 for the transverse shear modulus,
G23. However, the transverse Young’s modulus can be found as follows.

Assuming that the resulting composite properties are transversely isotropic
(a valid assumption for hexagonally arranged fibers; 2–3 plane is isotropic),

, (3.104)

where ν23 = transverse Poisson’s ratio.
The transverse Poisson’s ratio, ν23, is given by15

, (3.105)

where

. (3.106)

The bulk modulus, K*, of the composite under longitudinal plane strain is 

FIGURE 3.20
Three-phase model of a composite.
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. (3.107)

The bulk modulus Kf of the fiber under longitudinal plane strain is

. (3.108)

The bulk modulus Km of the matrix under longitudinal plane strain is

. (3.109)

To derive the solution for G23 for use in Equation (3.104) is out of scope of
this book; however, for the sake of completeness, the final solution is given
next. Based on the three-phase model (Figure 3.20) where the fiber is sur-
rounded by matrix, which is then surrounded by a homogeneous material
equivalent to the composite, the transverse shear modulus, G23, is given by
the acceptable solution of the quadratic equation:12

, (3.110)

where
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(3.111)

,

. (3.112)

Then, using Equation (3.104) through Equation (3.109), we get the transverse
Young’s modulus, E2.

Example 3.11

Find the transverse Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

From Equation (3.112),

.

From Equation (3.108) and Equation (3.109),
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.

From Equation (3.107),

.

The three constants of the quadratic Equation (3.110) are given by Equation
(3.111) as

.
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Substituting values of A, B, and C in Equation (3.110),

gives G23 = 5.926 × 109 Pa, –1.953 × 109 Pa. Thus, the acceptable solution is 

.

From Equation (3.106),

.

From Equation (3.105),
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.

From Equation (3.104),

= 15.51 GPa.

For the same problem, the transverse Young’s modulus was found to be
10.37 GPa from the mechanics of materials approach and 20.20 GPa from
the Halphin–Tsai equations.

Figure 3.21a and Figure 3.21b show the transverse Young’s modulus as a
function of fiber volume fraction for a typical boron/epoxy unidirectional
lamina. The elasticity equation (3.104), Halphin–Tsai equation (3.60), and the
mechanics of materials approach (Equation 3.55) are shown and compared
to the experimental data points.

3.3.3.4 Axial Shear Modulus

To find the axial shear modulus, G12, of a unidirectional composite, we
consider the same concentric cylinder model (Figure 3.19). Consider a long
fiber of radius, a, and shear modulus, Gf, surrounded by a long concentric
cylinder of matrix of outer radius, b, and shear modulus, Gm. The composite
cylinder (Figure 3.19) is subjected to a shear strain, , in the 1–2 plane.

Following the derivation,4,12,16 the normal displacements in the 1, 2, 3
direction for the fiber or matrix are assumed of the following form:

, (3.113a, b, c)

where is the applied shear strain to the boundary.
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Micromechanical Analysis of a Lamina 257

The preceding assumption of the form of the displacements is based on a
semi-inverse method17 that is beyond the scope of this book. Individual
expressions for displacement of the fiber and matrix will be shown later in
the derivation.

From the strain-displacement13 equations and the expressions for the dis-
placement field in Equation (3.113a, b, c),

FIGURE 3.21
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction and
comparison with experimental values for boron/epoxy unidirectional lamina (Ef = 414 GPa, νf

= 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818,
November 1970.)
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. (3.114 a–f)

Because all normal strains in the 1, 2, and 3 directions are zero, all the
normal stresses in 1, 2, 3 directions are also zero. Also, τ23 = 0 because γ23 = 0. 

Using Equation (3.114e) and Equation (3.114f), the only possible nonzero
stresses are
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(3.115a)

, (3.115b)

where G is the shear modulus of the material.
The equilibrium condition derived from the fact that the sum of the forces

in direction 1 is zero gives13 

. (3.116)

With Equation (3.115a) and Equation (3.115b) and σ1 = 0, the equilibrium
equation (3.116) reduces it to

. (3.117)

Converting Equation (3.117) to polar coordinates needs the following:

, (3.118)

(3.119)

give

(3.120a)

. (3.120b)

From Equation (3.118), Equation (3.119), and Equation (3.120a, b),
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(3.121a)

(3.121b)

(3.121c)
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. (3.121d)

Now, using the chain rule for derivatives,

, (3.122)

and using Equation (3.121a) and Equation (3.121c),

. (3.123)

Repeating a similar chain of rule of derivatives on Equation (3.122),
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Similarly,
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Substituting Equation (3.124a) and Equation (3.124b) in Equation (3.117)
yields
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, (3.127)

but that the surface, r = b, of the composite cylinder is only subjected to
displacements:

(3.128)

(3.129)

. (3.130)

Thus, the function F(r,θ) of Equation (3.126) for the fiber Ff and matrix Fm

is given by

(3.131)

. (3.132)

How do we find A1, B1, A2, and B2? The following boundary and interface
conditions are applied to find these four unknowns:

1. The axial displacements of the fiber u1f and the matrix u1m at the
interface, r = a, are continuous:

. (3.133)
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Now, from Equation (3.113a),

. (3.134)

At r = a,

. (3.135)

Similarly, from Equations (3.313a), (3.318), and (3.131),

. (3.136)

Equating Equation (3.135) and Equation (3.136) per Equation (3.133) gives

. (3.137)

2. The displacement of the fiber u1f is given by Equations (3.313a),
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Because r = 0 is a point on the fiber and displacement in the fiber is finite,
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. (3.140)
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First, we need to derive an expression for τ1r from transforming
stresses between 1–r and 1–3 coordinates:

. (3.141)

Using Equation (3.115a, b) in Equation (3.141),

(3.142)

. (3.143)

Substituting Equation (3.121a) and Equation (3.121b) in Equation
(3.143),

,

gives

. (3.144)

Thus, in the fiber from Equation (3.131)

(3.145)

and in the matrix from Equation (3.132),
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. (3.146)

Equating Equation (3.145) and Equation (3.146) at r = a, per Equation
(3.140), gives

. (3.147)

4. The displacement due to the applied shear strain of  at the bound-
ary r = b of the composite cylinder is given by 

(3.148a)

. (3.148b)

Based on Equation (3.113a) and Equation (3.132),

. (3.149)

From Equation (3.148b) and Equation (3.149), we get 

. (3.150)

Solving the three simultaneous equations (Equation 3.137, Equation
3.147, and Equation 3.150) to find A1, A2, and B2, (B1 = 0 from Equa-
tion 3.139), we get
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(3.151)

(3.152)

, (3.153)

where, from Equation (3.63), the fiber volume fraction Vf is substi-

tuted for .

The shear modulus G12 can be now be found as

, (3.154)

where

because, based on Equation (3.115a),

. (3.155)

Using Equation (3.121a) and Equation (3.121b), 

. (3.156)

Using Equation (3.131) and Equation (3.132) in Equation (3.156) gives
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. (3.157)

At r = b, θ = 0

. (3.158)

Substituting values of A2 and B2 from Equation (3.152) and Equation
(3.153), respectively, in Equation (3.158) yields

(3.159)

and the shear modulus, G12, can be found as

.

This gives

. (3.160)

Example 3.12

Find the shear modulus, G12, for a glass/epoxy composite with 70% fiber
volume fraction. Use the properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Use the equations obtained using the elasticity model.

Solution

From Example 3.6, Gf = 35.42 GPa and Gm = 1.308 GPa. Using Equation
(3.160), the in-plane shear modulus is
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For the same problem, the shear modulus, G12, is found to be 4.014 GPa from
the mechanics of materials approach and 6.169 GPa from the Halphin-Tsai
equations.

Figure 3.22a and Figure 3.22b show the in-plane shear modulus as a func-
tion of fiber volume fraction for a typical glass/epoxy unidirectional lamina.
The elasticity equation (3.160), Halphin-Tsai equation (3.60), and the mechan-
ics of materials approach (Equation 3.55) are shown and compared to the
experimental data points.

A comparison of the elastic moduli from the mechanics of materials
approach, the Halphin-Tsai equations, and elasticity models (Example 3.3
through Example 3.11) is given in Table 3.5.

3.3.4 Elastic Moduli of Lamina with Transversely Isotropic Fibers

Glass, aramids, and graphite are the three most common types of fibers used
in composites; among these, aramids and graphite are transversely isotropic.
From the definition of transversely isotropic materials in Chapter 2, such
fibers have five elastic moduli.

If L represents the longitudinal direction along the length of the fiber and
T represents the plane of isotropy (Figure 3.23) perpendicular to the longi-
tudinal direction, the five elastic moduli of the transversely isotropic fiber are

EfL = longitudinal Young’s modulus
EfT = Young’s modulus in plane of isotropy
νfL = Poisson’s ratio characterizing the contraction in the plane of isot-

ropy when longitudinal tension is applied
νfT = Poisson’s ratio characterizing the contraction in the longitudinal

direction when tension is applied in the plane of isotropy
GfT = in-plane shear modulus in the plane perpendicular to the plane

of isotropy

The elastic moduli using strength of materials approach for lamina with
transversely isotropic fibers18 are 
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Micromechanical Analysis of a Lamina 269

FIGURE 3.22
Theoretical values of in-plane shear modulus as a function of fiber volume fraction compared
with experimental values for unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm = 1.83 GPa).
Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data
from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)

TABLE 3.5

Comparison of Predicted Elastic Moduli

Method E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Mechanics of materials
Halphin–Tsai
Elasticity

60.52
60.52
60.53

10.37
20.20
15.51

0.2300
0.2300
0.2238

4.014
6.169
6.169a

a The Halphin–Tsai equations and the elasticity model equations give
the same value for the shear modulus. Can you show that this is not
a coincidence?
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and

(3.161a–d)

The preceding expressions are similar to those of a lamina with isotropic
fibers. The only difference is that appropriate transverse or longitudinal
properties of the fiber are used. In composites such as carbon–carbon, the
matrix is also transversely isotropic. In that case, the preceding equations
cannot be used and are given elsewhere.15,19

FIGURE 3.23
Longitudinal and transverse direction in a transversely isotropic fiber.
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3.4 Ultimate Strengths of a Unidirectional Lamina

As shown in Chapter 2, one needs to know five ultimate strength parameters
for a unidirectional lamina:

• Longitudinal tensile strength
• Longitudinal compressive strength
• Transverse tensile strength
• Transverse compressive strength
• In-plane shear strength (τ12)ult

In this section, we will see whether and how these parameters can be found
from the individual properties of the fiber and matrix by using the mechanics
of materials approach. The strength parameters for a unidirectional lamina
are much harder to predict than the stiffnesses because the strengths are
more sensitive to the material and geometric nonhomogeneities, fiber–matrix
interface, fabrication process, and environment. For example, a weak inter-
face between the fiber and matrix may result in premature failure of the
composite under a transverse tensile load, but may increase its longitudinal
tensile strength. For these reasons of sensitivity, some theoretical and empir-
ical models are available for some of the strength parameters. Eventually,
the experimental evaluation of these strengths becomes important because
it is direct and reliable. These experimental techniques are also discussed in
this section.

3.4.1 Longitudinal Tensile Strength

A simple mechanics of materials approach model is presented (Figure 3.24).
Assume that 

• Fiber and matrix are isotropic, homogeneous, and linearly elastic
until failure.

• The failure strain for the matrix is higher than for the fiber, which
is the case for polymeric matrix composites. For example, glass fibers
fail at strains of 3 to 5%, but an epoxy fails at strains of 9 to 10%.

Now, if

(σf)ult = ultimate tensile strength of fiber
Ef = Young’s modulus of fiber
(σm)ult = ultimate tensile strength of matrix
Em = Young’s modulus of matrix

( )σ1
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ult

( )σ1
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then the ultimate failure strain of the fiber is

(3.162)

and the ultimate failure strain of the matrix is

(3.163)

Because the fibers carry most of the load in polymeric matrix composites,
it is assumed that, when the fibers fail at the strain of (εf)ult, the whole
composite fails. Thus, the composite tensile strength is given by

(3.164)

Once the fibers have broken, can the composite take more load? The stress
that the matrix can take alone is given by (σmult) (1 – Vf). Only if this stress
is greater than (Equation 3.164), is it possible for the composite to take
more load. The volume fraction of fibers for which this is possible is called
the minimum fiber volume fraction, (Vf)minimum, and is

FIGURE 3.24
Stress–strain curve for a unidirectional composite under uniaxial tensile load along fibers.
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(3.165)

It is also possible that, by adding fibers to the matrix, the composite will
have lower ultimate tensile strength than the matrix. In that case, the fiber
volume fraction for which this is possible is called the critical fiber volume
fraction, (Vf)critical, and is

(3.166)

Example 3.13

Find the ultimate tensile strength for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table
3.1 and Table 3.2, respectively. Also, find the minimum and critical fiber
volume fractions.

Solution

From Table 3.1,

Ef = 85 GPa

(σf)ult = 1550 MPa.

Thus,

From Table 3.2,

Em = 3.4 GPa

(σm)ult = 72 MPa.
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Thus,

Applying Equation (3.164), the ultimate longitudinal tensile strength is

Applying Equation (3.165), the minimum fiber volume fraction is 

This implies that, if the fiber volume fraction is less than 0.6422%, the matrix
can take more loading after all the fibers break. Applying Equation (3.166),
the critical fiber volume fraction is

This implies that, if the fiber volume fraction were less than 0.6732%, the
composite longitudinal tensile strength would be less than that of the matrix.

Experimental evaluation: The general test method recommended for tensile
strength is the ASTM test method for tensile properties of fiber–resin com-
posites (D3039) (Figure 3.25). A tensile test geometry (Figure 3.26) to find
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the longitudinal tensile strength consists of six to eight 0° plies that are 12.5
mm (1/2 in.) wide and 229 mm (10 in.) long. The specimen is mounted with
strain gages in the longitudinal and transverse directions. Tensile stresses
are applied on the specimen at a rate of about 0.5 to 1 mm/min (0.02 to 0.04
in./min). A total of 40 to 50 data points for stress and strain is taken until a
specimen fails. The stress in the longitudinal direction is plotted as a function

FIGURE 3.25
Tensile coupon mounted in the test frame for finding the tensile strengths of a unidirectional
lamina. (Photo courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)

FIGURE 3.26
Geometry of a longitudinal tensile strength specimen.
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of longitudinal strain, as shown in Figure 3.27. The data are reduced using
linear regression. The longitudinal Young’s modulus is the initial slope of
the σ1 vs. ε1 curve.

From Figure 3.27, the following values are obtained:

Discussion: Failure of a unidirectional ply under a longitudinal tensile load
takes place with

1. Brittle fracture of fibers
2. Brittle fracture of fibers with pullout
3. Fiber pullout with fiber–matrix debonding

The three failure modes are shown in Figure 3.28. The mode of failure
depends on the fiber–matrix bond strength and fiber volume fraction.20 For
low fiber volume fractions, 0 < Vf <0.40, a typical glass/epoxy composite

FIGURE 3.27
Stress–strain curve for a [0]8 laminate under a longitudinal tensile load. (Data courtesy of Dr.
R.Y. Kim, University of Dayton Research Institute, Dayton, OH).
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exhibits a mode (1) type failure. For intermediate fiber volume fractions, 0.4
< Vf < 0.65, mode (2) type failure occurs. For high fiber volume fractions, Vf

> 0.65, it exhibits mode (3) type of failure.

3.4.2 Longitudinal Compressive Strength

The model used for calculating the longitudinal tensile strength for a unidi-
rectional lamina cannot also be used for its longitudinal compressive strength
because the failure modes are different. Three typical failure modes are
shown in Figure 3.29:

• Fracture of matrix and/or fiber–matrix bond due to tensile strains
in the matrix and/or bond

• Microbuckling of fibers in shear or extensional mode
• Shear failure of fibers

Ultimate tensile strains in matrix failure mode: A mechanics of materials
approach model based on the failure of the composite in the transverse
direction due to transverse tensile strains is given next.20 Assuming that one
is applying a longitudinal compressive stress of magnitude σ1, then the
magnitude of longitudinal compressive strain is given by 

(3.167)

Because the major Poisson’s ratio is ν12, the transverse strain is tensile and
is given by

(3.168)

FIGURE 3.28
Modes of failure of unidirectional lamina under a longitudinal tensile load.
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Using maximum strain failure theory, if the transverse strain exceeds the
ultimate transverse tensile strain, the lamina is considered to have
failed in the transverse direction. Thus,

(3.169)

The value of the longitudinal modulus, E1, and the major Poisson’s ratio,
v12, can be found from Equation (3.34) and Equation (3.49), respectively.
However, for the value of one can use the empirical formula,

FIGURE 3.29
Modes of failure of a unidirectional lamina under a longitudinal compressive load.
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(3.170)

or the mechanics of materials formula,

(3.171)

where
 = ultimate tensile strain of the matrix

d = diameter of the fibers
s = center-to-center spacing between the fibers

Equation (3.170) and Equation (3.171) will be discussed later in Section 3.4.3.
Shear/extensional fiber microbuckling failure mode: local buckling models for

calculating longitudinal compressive strengths have been developed.21,22

Because these results are based on advanced topics, only the final expressions
are given:

(3.172)

where

(3.173a)

and

(3.173b)

Note that the extensional mode buckling stress is higher than the shear
mode buckling stress for most cases. Extensional mode buckling is prev-
alent only in low fiber volume fraction composites.

Shear stress failure of fibers mode: A unidirectional composite may fail due
to direct shear failure of fibers. In this case, the rule of mixtures gives the
shear strength of the unidirectional composite as
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280 Mechanics of Composite Materials, Second Edition

where
(τf)ult = ultimate shear strength of the fiber

(τm)ult = ultimate shear strength of the matrix

The maximum shear stress in a lamina under a longitudinal compressive
load is at 45° to the loading axis. Thus,

(3.175)

Three models based on each of the preceding failure modes were dis-
cussed to find the magnitude of the ultimate longitudinal compressive
strength. One may caution that these models are not found to match the
experimental results as is partially evident in the comparison of experimen-
tal and predicted values23 of longitudinal compressive strength given in
Table 3.6. Comparison with other equations (3.169) and (3.175) is not avail-
able because the properties of constituents are not given in the reference,23

although fiber buckling is the most probable mode of failure in advanced
polymer matrix composites. 

Several factors may contribute to this discrepancy, including

• Irregular spacing of fibers causing premature failure in matrix-rich
areas

• Less than perfect bonding between the fibers and the matrix
• Poor alignment of fibers
• Not accounting for Poisson’s ratio mismatch between the fiber and

the matrix
• Not accounting for the transversely isotropic nature of fibers such

as aramids and graphite

In addition, there is controversy concerning the techniques used in measur-
ing compressive strengths.

TABLE 3.6

Comparison of Experimental and Predicted Values of Longitudinal 
Compressive Strength of Unidirectional Laminaea

Material
Experimental

strength
Equation (3.78a)

(MPa)
Equation (3.78b)

(MPa)

Glass/polyester
Type I carbon/epoxy
Kevlar 49/epoxy

600–1000
700–900
240–290

8700
22,800
13,200

2200
2900
2900

a Vf = 0.50.

Source: Hull, D., Introduction to Composite Materials, Cambridge University Press,
1981, Table 7.2. Reprinted with the permission of Cambridge University Press.

σ1
c ( )/σ1 2c

( ) ( ) ( ) .σ τ τ1 2c
ult f ult f m ult mV V= +⎡⎣ ⎤⎦
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Micromechanical Analysis of a Lamina 281

Example 3.14

Find the longitudinal compressive strength of a glass/epoxy lamina with a
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively. Assume that fibers are circular and are in a
square array.

Solution

From Table 3.1, the Young’s modulus for the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.20.

The ultimate tensile strength of the fiber is

(σf)ult = 1550 MPa

and the ultimate shear strength of the fiber is

(τf)ult = 35 MPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa

and the Poisson’s ratio of the matrix is

νm = 0.30.

The ultimate normal strength of the matrix is

(σm)ult = 72 MPa

and the ultimate shear strength of the matrix is

(τm)ult = 34 MPa.

From Example 3.3, the longitudinal Young’s modulus of the unidirectional
lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio of the unidirectional lamina is
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282 Mechanics of Composite Materials, Second Edition

ν12 = 0.23.

Using Equation (3.42a), the fiber diameter to fiber spacing ratio is

The ultimate tensile strain of the matrix is

Using the transverse ultimate tensile strain failure mode formula (3.76),

From the empirical Equation (3.170),

Using the lesser of these two values of ultimate transverse tensile
strain, and Equation (3.169),

Using shear/extensional fiber microbuckling failure mode formulas
(3.173a),
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From Example 3.6, the shear modulus of the matrix is

Using Equation (3.173b),

Thus, from Equation (3.172), the ultimate longitudinal compressive
strength is

Using shear stress failure of fibers mode, the ultimate longitudinal com-
pressive strength from Equation (3.175) is

Taking the minimum value of the preceding, the ultimate longitudinal
compressive strength is predicted as

Experimental evaluation: The compressive strength of a lamina has been
found by several different methods. A highly recommended method is the
IITRI (Illinois Institute of Technology Research Institute), compression test.24

Figure 3.30 shows the (ASTM D3410 Celanese) IITRI fixture mounted in a
test frame. A specimen (Figure 3.31) consists generally of 16 to 20 plies of 0°
lamina that are 6.4 mm (1/4 in.) wide and 127 mm (5 in.) long. Strain gages
are mounted in the longitudinal direction on both faces of the specimen to
check for parallelism of the edges and ends. The specimen is compressed at
a rate of 0.5 to 1 mm/min (0.02 to 0.04 in./min). A total of 40 to 50 data
points for stress and strain are taken until the specimen fails. The stress in
the longitudinal direction is plotted as a function of longitudinal strain and
is shown for a typical graphite/epoxy lamina in Figure 3.32. The data are
reduced using linear regression and the modulus is the initial slope of the
stress–strain curve. From Figure 3.32, the following values are obtained:

G GPam = 1 308. .
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3.4.3 Transverse Tensile Strength

A mechanics of materials approach model for finding the transverse tensile
strength of a unidirectional lamina is given next.25 Assumptions used in the
model include

• A perfect fiber–matrix bond
• Uniform spacing of fibers

FIGURE 3.30
IITRI fixture mounted in a test frame for finding the compressive strengths of a lamina. (Data
reprinted with permission from Experimental Characterization of Advanced Composites, Carlsson,
L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987, p. 76. Copyright CRC Press, Boca
Raton, FL.)

E GPac
1 199= ,

( ) ,σ1 1908c
ult MPa= and

( ) . %.ε1 0 9550c
ult =
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• The fiber and matrix follow Hooke’s law
• There are no residual stresses

Assume a plane model of a composite as shown by the shaded portion in
Figure 3.33. In this case,

s = distance between center of fibers
d = diameter of fibers

The transverse deformations of the fiber, δf , the matrix, δm , and the com-
posite, δc , are related by

(3.176)

FIGURE 3.31
Geometry of a longitudinal compressive strength specimen. (Data reprinted with permission
from Experimental Characterization of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Tech-
nomic Publishing Co., Inc., 1987, p. 76. Copyright CRC Press, Boca Raton, FL.)

w

L1L2

L1, mm

12.7 ± 1 12.7 ± 1.5 12.7 ± 0.1 or
6.4  ±  0.1

L2, mm w*, mm

Strain gage

Specimen dimensions

δ δ δc f m= + .
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286 Mechanics of Composite Materials, Second Edition

FIGURE 3.32
Stress–strain curve for a [0]24 graphite/epoxy laminate under a longitudinal compressive load.
(Data courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)

FIGURE 3.33
Representative volume element to calculate transverse tensile strength of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 287

Now, by the definition of strain, the deformations are related to the trans-
verse strains,

, (3.177a)

, (3.177b)

, (3.177c)

where εc,f,m = the transverse strain in the composite, fiber, and matrix,
respectively.

Substituting the expressions in Equation (3.82) in Equation (3.81), we get

(3.178)

Now, under transverse loading, one assumes that the stresses in the fiber
and matrix are equal (see derivation of transverse Young’s modulus in Sec-
tion 3.2.1.2). Then, the strains in the fiber and matrix are related through
Hooke’s law as

(3.179)

Substituting the expression for the transverse strain in the fiber, εf, in
Equation (3.178), the transverse strain in the composite

(3.180)

If one assumes that the transverse failure of the lamina is due to the failure
of the matrix, then the ultimate transverse failure strain is

(3.181)

where = ultimate tensile failure strain of the matrix.
The ultimate transverse tensile strength is then given by

(3.182)

where is given by Equation (3.181). The preceding expression
assumes that the fiber is perfectly bonded to the matrix. If the adhesion
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between the fiber and matrix is poor, the composite transverse strength will
be further reduced.

Example 3.15

Find the ultimate transverse tensile strength for a unidirectional glass/epoxy
lamina with a 70% fiber volume fraction. Use properties of glass and epoxy
from Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular
and arranged in a square array.

Solution

From Example 3.14, the ultimate transverse tensile strain of the lamina

is the lower estimate from using Equation (3.170) and Equation (3.171).
From Example 3.4, the transverse Young’s modulus of the lamina is E2 =

10.37 GPa. 
Using Equation (3.182), the ultimate transverse tensile strength of the

lamina is

Experimental evaluation: The procedure for finding the transverse tensile
strength is the same as for finding the longitudinal tensile strength. Only the
specimen dimensions differ. The standard width of the specimen is 25.4 mm
(1 in.) and 8 to 16 plies are used. This is mainly done to increase the amount
of load required to break the specimen. Figure 3.34 shows the typical
stress–strain curve for a 90° graphite/peek laminate. From Figure 3.34, the
following data are obtained:

E2 = 9.963 GPa

Discussion: Predicting transverse tensile strength is quite complicated.
Under a transverse tensile load, factors other than the individual properties
of the fiber and matrix are important. These include the bond strength
between the fiber and the matrix, the presence of voids, and the presence

( ) .ε2
20 1983 10T
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Micromechanical Analysis of a Lamina 289

of residual stresses due to thermal expansion mismatch between the fiber
and matrix. Possible modes of failure under transverse tensile stress
include matrix tensile failure accompanied by fiber matrix debonding and/
or fiber splitting.

3.4.4 Transverse Compressive Strength

Equation (3.182), which was developed for evaluating transverse tensile
strength, can be used to find the transverse compressive strengths of a
lamina. The actual compressive strength is again lower due to imperfect
fiber/matrix interfacial bond and longitudinal fiber splitting. Using com-
pressive parameters in Equation (3.182),

(3.183)

where

(3.184)

= ultimate compressive failure strain of matrix.

FIGURE 3.34
Stress–strain curve for a [90]16 graphite/epoxy laminate under a transverse tensile load. (Data
courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)
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Example 3.16

Find the ultimate transverse compressive strength of a glass/epoxy lamina
with 70% fiber volume fraction. Use the properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular and
packed in a square array.

Solution

From Table 3.1, the Young’s modulus of the fiber is Ef = 85 GPa.
From Table 3.2, the Young’s modulus of the matrix is Em = 3.4 GPa and

the ultimate compressive strength of the matrix is

From Example 3.4, the transverse Young’s modulus is E2 = 10.37 GPa.
From Example 3.14, the fiber diameter to fiber spacing ratio is

The ultimate compressive strain of the matrix is

From Equation (3.184), the ultimate transverse compressive strain of the
lamina is

and from Equation (3.183), the ultimate transverse compressive strength is

Experimental evaluation: The procedure for finding the transverse compres-
sive strength is the same as that for finding the longitudinal compressive
strength. The only difference is in the specimen dimensions. The width of
the specimen is 12.7 mm (1/2 in.) and 30 to 40 plies are used in the test.
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Figure 3.35 shows the typical stress–strain curve for a 90° graphite/epoxy
laminate. From Figure 3.35, the following data are obtained26:

Discussion: Methods for predicting transverse compressive strength are
also not yet satisfactory. Several modes of failure possible under a transverse
compressive stress include matrix compressive failure, matrix shear failure,
and matrix shear failure with fiber–matrix debonding and/or fiber crushing.

3.4.5 In-Plane Shear Strength

The procedure for finding the ultimate shear strength for a unidirectional
lamina using a mechanics of materials approach follows that described in
Section 3.4.3. Assume that one is applying a shear stress of magnitude τ12

FIGURE 3.35
Stress–strain curve for a [90]40 graphite/epoxy laminate under a transverse compressive load
perpendicular to the fibers. (Data reprinted with permission from Experimental Characterization
of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987,
p. 79.)

240

200

160

120

80

40

0.5 1 1.5 2
Transverse compressive strain, %

Tr
an

sv
er

se
 co

m
pr

es
siv

e s
tr

es
s (

M
Pa

)

2.5 3 3.5
0

0

E GPac
2 93= ,

( ) ,σ2 198c
ult MPa=

( ) . %.ε2 2 7c
ult =

1343_book.fm  Page 291  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



292 Mechanics of Composite Materials, Second Edition

and then that the shearing deformation in the representative element is given
by the sum of the deformations in the fiber and matrix,

 (3.185)

By definition of shearing strain,

(3.186a)

(3.186b)

and

(3.186c)

where (γ12)c,f,m = the in-plane shearing strains in the composite, fiber, and
matrix, respectively.

Substituting the Equation (3.186a-c) in Equation (3.185),

(3.187)

Now, under shearing stress loading, one assumes that the shear stress in
the fiber and matrix are equal (see derivation of shear modulus in Section
3.3.1.4). Then, the shearing strains in the fiber and matrix are related as

(3.188)

Substituting the expression for (γ12)f from Equation (3.188) in Equation
(3.187),

(3.189)

If one assumes that the shear failure is due to failure of the matrix, then

, (3.190)

where (γ12)m ult = ultimate shearing strain of the matrix.
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The ultimate shear strength is then given by

(3.191)

Example 3.17

Find the ultimate shear strength for a glass/epoxy lamina with 70% fiber
volume fraction. Use properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Assume that the fibers are circular and arranged in
a square array.

Solution

From Example 3.6, the shear modulus of the fiber is

Gf = 35.42 GPa,

the shear modulus of the matrix is

Gm = 1.308 GPa,

and the in-plane shear modulus of the lamina is

G12 = 4.014 GPa.

From Example 3.14, the fiber diameter to fiber spacing ratio is

From Table 3.2, the ultimate shear strength of the matrix is

(τ12)mult = 34 MPa.

Then, the ultimate shearing strain of the matrix is
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Using Equation (3.191), the ultimate in-plane shear strength of the unidi-
rectional lamina is

Experimental determination: One of the most recommended methods27 for
calculating the in-plane shear strength is the [±45]2S laminated tensile cou-
pon* (Figure 3.36). A [±45]2S laminate is an eight-ply laminate with [+45/
–45/+45/–45/–45/+45/–45/+45] distribution of plies on top of each other.

FIGURE 3.36
Schematic of a [±45]2S laminate shear test.

* See Section 4.2 of Chapter 4 for an explanation on laminate codes.
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An axial stress σx is applied to the eight-ply laminate; the axial strain εx and
transverse strain εy are measured. If the laminate fails at a load of (σx)ult, the
ultimate shear strength of a unidirectional lamina is given by

(3.192)

and the ultimate shear strain of a unidirectional lamina is

(3.193)

An eight-ply [±45]2S laminate is used for several reasons. First, according
to maximum stress and strain failure theories of Chapter 2, each lamina fails
in the shear mode and at the same load. The stress at which it fails is simply
twice the shear strength of a unidirectional lamina and is independent of
the other mechanical properties of the lamina, as reflected in Equation
(3.192). Second, the shear strain is measured simply by strain gages in two
perpendicular directions and does not require the values of elastic constants
of the lamina.

Equation (3.192) and Equation (3.193) can be derived using concepts from
Chapter 4 and Chapter 5. The in-plane shear strength is simply half of the
maximum uniaxial stress that can be applied to the laminate. The initial slope
of the τ12 vs. γ12 curve gives the shear modulus, G12. A total of 40 to 50 points
are taken for the stress and strains until the specimen fails. From Figure 3.37,
the following values are obtained for a typical graphite/epoxy lamina:

Discussion: The prediction of the ultimate shear strength is complex. Similar
parameters, such as weak interfaces, the presence of voids, and Poisson’s
ratio mismatch, make modeling quite complex. 

Theoretical methods for obtaining the strength parameters also include
statistical and advanced methods. Statistical methods include accounting for
variations in fiber strength, fiber–matrix adhesion, voids, fiber spacing, fiber
diameter, alignment of fibers, etc. Advanced methods use elasticity, finite
element methods, boundary element methods, finite difference methods, etc.
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3.5 Coefficients of Thermal Expansion

When a body undergoes a temperature change, its dimensions relative to its
original dimensions change in proportion to the temperature change. The
coefficient of thermal expansion is defined as the change in the linear dimen-
sion of a body per unit length per unit change of temperature.

For a unidirectional lamina, the dimensions changes differ in the two
directions 1 and 2. Thus, the two coefficients of thermal expansion are
defined as

α1 = linear coefficient of thermal expansion in direction 1, m/m/°C (in./
in./°F)

α2 = linear coefficient of thermal expansion in direction 2, m/m/°C (in./
in./°F)

The following are the expressions developed for the two thermal expan-
sion coefficients using the thermoelastic extremum principle28:

(3.194)

FIGURE 3.37
Shear stress–shear strain curve obtained from a [±45]2S graphite/epoxy laminate under a tensile
load. (Data courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)
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(3.195)

where αf and αm are the coefficients of thermal expansion for the fiber and
the matrix, respectively.

3.5.1 Longitudinal Thermal Expansion Coefficient

As an example, Equation (3.194) can be derived using the mechanics of
materials approach.29 Consider the expansion of a unidirectional lamina in
the longitudinal direction under a temperature change of ΔT. If only the
temperature ΔT is applied, the unidirectional lamina has zero overall load,
F1, in the longitudinal direction. Then

(3.196)

, (3.197)

where
Ac,f,m = the cross-sectional area of composite, fiber, and matrix, 

respectively
σ1,f,m = the stress in composite, fiber, and matrix, respectively

Although the overall load in the longitudinal direction 1 is zero, stresses
are caused in the fiber and the matrix by the thermal expansion mismatch
between the fiber and the matrix. These stresses are

(3.198a)

and

. (3.198b)

Substituting Equation (3.198a) and Equation (3.198b) in Equation (3.197)
and realizing that the strains in the fiber and matrix are equal (εf = εm = ε1),

(3.199)

For free expansion in the composite in the longitudinal direction 1, the
longitudinal strain is

(3.200)

α ν α ν α α ν2 1 121 1= + + + −( ) ( ) ,f f f m m mV V

F A A Ac f f m m1 1 0= = = +σ σ σ

σ σf f m mV V+ = 0

σ ε αf f f fE T= −( ),Δ

σ ε αm m m mE T= −( )Δ

ε
α α

f
f f f m m m

f f m m

E V E V

E V E V
T=

+
+

Δ .

ε α1 1= ΔT.
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Because the strains in the fiber and composite are also equal (ε1 = εf), from
Equation (3.199) and Equation (3.200),

Using Equation (3.34) for the definition of longitudinal Young’s modulus,

. (3.201)

The longitudinal coefficient of thermal expansion can be rewritten as

, (3.202)

which shows that it also follows the rule of mixtures based on the weighted
mean of αE/E1 of the constituents.

3.5.2 Transverse Thermal Expansion Coefficient

Due to temperature change, ΔT, assume that the compatibility condition that
the strain in the fiber and matrix is equal in direction 1 — that is,

. (3.203)

Now, the stress in the fiber in the longitudinal direction 1 is

(3.204)

and the stress in the matrix in longitudinal direction 1 is

(3.205)
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The strains in the fiber and matrix in the transverse direction 2 are given
by using Hooke’s law:

(3.206)

. (3.207)

The transverse strain of the composite is given by the rule of mixtures as

. (3.208)

Substituting Equation (3.206) and Equation (3.207) in Equation (3.208),

(3.209)

and, because

, (3.210)

we get

. (3.211)

Substituting

(3.212)

in the preceding equation, it can be rewritten as

. (3.213)
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Example 3.18

Find the coefficients of thermal expansion for a glass/epoxy lamina with
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.2.

The coefficient of thermal expansion of the fiber is

αf = 5 × 10–6 m/m/°C.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa,

the Poisson’s ratio of the matrix is

νm = 0.3,

and the coefficient of thermal expansion of the matrix is

αm = 63 × 10–6 m/m/°C.

From Example 3.3, the longitudinal Young’s modulus of the unidirectional
lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio of the unidirectional lamina is

ν12 = 0.2300.

Now, substituting the preceding values in Equation (3.194) and Equation
(3.195), the coefficients of thermal expansion are
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In Figure 3.38, the two coefficients of thermal expansion of glass/epoxy
are plotted as a function of fiber volume fraction.

It should be noted that the longitudinal thermal expansion coefficient is
lower than the transverse thermal expansion coefficient in polymeric matrix
composites. Also, in some cases, the thermal expansion coefficient of the
fibers is negative, and it is thus possible for a lamina to have zero thermal
expansions in the fiber directions. This property is widely used in the man-
ufacturing of antennas, doors, etc., when dimensional stability in the pres-
ence of wide temperature fluctuations is desired.

Experimental determinations: The linear coefficients of thermal expansion
are determined experimentally by measuring the dimensional changes in a

FIGURE 3.38
Longitudinal and transverse coefficients of thermal expansion as a function of fiber volume
fraction for a glass/epoxy unidirectional lamina. (Properties of glass and epoxy from Table 3.1
and Table 3.2.)
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lamina that is free of external stresses. A test specimen is made of a 50 × 50
mm (2 in. × 2 in.), eight-ply laminated unidirectional composite (Figure 3.39).
Two strain gages are placed perpendicular to each other on the specimen. A
temperature sensor is also placed. The specimen is put in an oven and the
temperature is slowly increased. Strain and temperature measurements are
taken and plotted as a function of each other as given in Figure 3.40. The
data are reduced using linear regression. The slope of the two strain-tem-
perature curves directly gives the coefficient of thermal expansion.

From Figure 3.40, the following values are obtained for a typical graphite/
epoxy laminate26:

α1 = –1.3 × 10–6 m/m/°C

α2 = 33.9 × 10–6 m/m/°C.

FIGURE 3.39
Unidirectional graphite/epoxy specimen with strain gages and temperature sensors for finding
coefficients of thermal expansion. (Reprinted with permission from Experimental Characterization
of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987, p.
98. Copyright CRC Press, Boca Raton, FL.)
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3.6 Coefficients of Moisture Expansion 

When a body absorbs water, as is the case for resins in polymeric matrix
composites, it expands. The change in dimensions of the body are measured
by the coefficient of moisture expansion defined as the change in the linear
dimension of a body per unit length per unit change in weight of moisture
content per unit weight of the body. Similar to the coefficients of thermal
expansion, there are two coefficients of moisture expansion: one in the lon-
gitudinal direction 1 and the other in the transverse direction 2:

β1 = linear coefficient of moisture expansion in direction 1, m/m/kg/
kg (in./in./lb/lb)

β2 = linear coefficient of moisture expansion in direction 2, m/m/kg/
kg (in./in./lb/lb)

The following are the expressions for the two coefficients of moisture
expansion30:

FIGURE 3.40
Induced strain as a function of temperature to find the coefficients of thermal expansion of a
unidirectional graphite/epoxy laminate. (Reprinted with permission from Experimental Charac-
terization of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc.,
1987, p. 102. Copyright CRC Press, Boca Raton, FL.)

1.2

1

0.8

0.6 ε2

ε1

0.4

0.2

0

−0.2
20 60 100 140

Temperature, °C

In
du

ce
d 

st
ra

in
, %

180 220

1343_book.fm  Page 303  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



304 Mechanics of Composite Materials, Second Edition

(3.214)

(3.215)

where
ΔCf = the moisture concentration in the fiber, kg/kg (lb/lb)

ΔCm = the moisture concentration in the matrix, kg/kg (lb/lb)
βf = the coefficient of moisture expansion of the fiber, m/m/kg/

kg (in./in./lb/lb)
βm = the coefficient of moisture expansion of the matrix, m/m/

kg/kg (in./in./lb/lb)

Note that, unlike the coefficients of thermal expansion, the content of
moisture enters into the formula because the moisture absorption capacity
in each constituent can be different. However, in most polymeric matrix
composites, fibers do not absorb or deabsorb moisture, so the expressions
for coefficients of moisture expansion do become independent of moisture
contents. Substituting ΔCf = 0 in Equation (3.214) and Equation (3.215),

, (3.216)

. (3.217)

Further simplification for composites such as graphite/epoxy with high
fiber-to-matrix moduli ratio (Ef/Em) and no moisture absorption by fibers
leads to

(3.218)

(3.219)

Similar to the derivation for the longitudinal coefficient of thermal expan-
sion in Section 3.5, Equation (3.214) can be derived using the mechanics of
materials approach. Consider the expansion of a unidirectional lamina in the
longitudinal direction because of change in moisture content in the compos-
ite. The overall load in the composite, F1, is zero — that is,
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, (3.220)

where
Ac,f,m = the cross-sectional areas of the fiber, matrix, and composite, 

respectively
σ1,f,m = the stresses in the fiber, matrix, and composite, respectively

The stresses in the fiber and matrix caused by moisture are

(3.221)

. (3.222)

Substituting Equation (3.221) and (3.222) in Equation (3.220) and knowing
that the strains in the fiber and matrix are equal (εf = εm),

. (3.223)

For free expansion of the composite in the longitudinal direction, the
longitudinal strain is

, (3.224)

where ΔCc = the moisture concentration in composite.
Because the strains in the fiber and the matrix are equal,

(3.225)

Equation (3.225) can be simplified by relating the moisture concentration
in the composite (ΔCc) to the moisture concentration in the fiber (ΔCf) and
the matrix (ΔCm).

The moisture content in the composite is the sum of the moisture contents
in the fiber and the matrix,

, (3.226)

where wc,f,m = the mass of composite, fiber, and matrix, respectively. Thus,

F A A Ac f f m m1 1 0= = = +σ σ σ , and

σ σf f m mV V+ = 0

σ ε βf f f f fE C= −( ) ,Δ

σ ε βm m m m mE C= −( )Δ

ε
β β

f
f f f f m m m m

f f m m

C V E C V E

E V E V
=

+
+

Δ Δ

ε β1 1= ΔCc

β
β β

1 =
+

+
f f f f m m m m

f f m m c

C V E C V E

E V E V C

Δ Δ
Δ( )

.

Δ Δ ΔC w C w C wc c f f m m= +

1343_book.fm  Page 305  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



306 Mechanics of Composite Materials, Second Edition

, (3.227)

where Wf,m = the mass fractions of the fiber and matrix, respectively.
Substituting Equation (3.227) in Equation (3.225),

(3.228)

Using Equation (3.4) and Equation (3.34), one can rewrite Equation (3.228)
in terms of fiber volume fractions and the longitudinal Young’s modulus as

(3.229)

Example 3.19

Find the two coefficients of moisture expansion for a glass/epoxy lamina
with 70% fiber volume fraction. Use properties for glass and epoxy from
Table 3.1 and Table 3.2, respectively. Assume that glass does not absorb
moisture.

Solution

From Table 3.1, the density of the fiber is

ρf = 2500 kg/m3.

From Table 3.2, the density of the matrix is

ρm = 1200 kg/m3,

the swelling coefficient of the matrix is

βm = 0.33 m/m/kg/kg,

and the Young’s modulus of the matrix is

Em = 3.4 GPa.

The Poisson’s ratio of the matrix is

νm = 0.3.
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From Example 3.1, the density of the composite is 

ρc = 2110 kg/m3.

From Example 3.3, the longitudinal Young’s modulus of the lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio is

ν12= 0.230.

Thus, the longitudinal coefficient of moisture expansion from Equation
(3.216) is

and the transverse coefficient of moisture expansion from Equation (3.217) is

Experimental determination: A specimen is placed in water and the moisture
expansion strain is measured in the longitudinal and transverse directions.
Because moisture attacks strain gage adhesives, micrometers are used to find
the swelling strains.

3.7 Summary

After developing the concepts of fiber volume and weight fractions, we
developed equations for density and void content. We found the four elastic
moduli constants of a unidirectional lamina using three analytical
approaches: strength of materials, Halphin–Tsai, and elasticity. Analytical
models and experimental techniques for the five strength parameters, the
two coefficients of thermal expansion, and the two coefficients of moisture
expansion for a unidirectional lamina were discussed.
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Key Terms

Volume fraction
Weight (mass) fraction
Density
Void volume fraction
Void content
Elastic moduli
Array packing
Halphin–Tsai equations
Elasticity models
Transversely isotropic fibers
Strength
ASTM standards
Failure modes
IITRI compression test
Shear test
Coefficient of thermal expansion
Coefficient of moisture expansion

Exercise Set

3.1 The weight fraction of glass in a glass/epoxy composite is 0.8. If the
specific gravity of glass and epoxy is 2.5 and 1.2, respectively, find the
1. Fiber and matrix volume fractions
2. Density of the composite

3.2 A hybrid lamina uses glass and graphite fibers in a matrix of epoxy
for its construction. The fiber volume fractions of glass and graphite
are 40 and 20%, respectively. The specific gravity of glass, graphite,
and epoxy is 2.6, 1.8, and 1.2, respectively. Find
1. Mass fractions
2. Density of the composite

3.3 The acid digestion test left 2.595 g of fiber from a composite specimen
weighing 3.697 g. The composite specimen weighs 1.636 g in water.
If the specific gravity of the fiber and matrix is 2.5 and 1.2, respec-
tively, find the
1. Theoretical volume fraction of fiber and matrix
2. Theoretical density of composite
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3. Experimental density
4. Weight fraction of fiber and matrix
5. Void fraction

3.4 A resin hybrid lamina is made by reinforcing graphite fibers in two
matrices: resin A and resin B. The fiber weight fraction is 40%; for
resin A and resin B, the weight fraction is 30% each. If the specific
gravity of graphite, resin A, and resin B is 1.2, 2.6, and 1.7, respec-
tively, find
1. Fiber volume fraction
2. Density of composite

3.5 Find the elastic moduli of a glass/epoxy unidirectional lamina with
40% fiber volume fraction. Use the properties of glass and epoxy
from Table 3.3 and Table 3.4, respectively.

3.6 Show that

if the fibers are much stiffer than the matrix — that is, Gf >> Gm.
3.7 Assume that fibers in a unidirectional lamina are circularly shaped

and in a square array. Calculate the ratio of fiber diameter to fiber
center-to-center spacing ratio in terms of the fiber volume fraction.

3.8 Circular graphite fibers of 10  μm diameter are packed in a hexagonal
array in an epoxy matrix. The fiber weight fraction is 50%. Find the
fiber-to-fiber spacing between the centers of the fibers. The density
of graphite fibers is 1800 kg/m3 and epoxy is 1200 kg/m3.

3.9 Find the elastic moduli for problem 3.5 using Halphin–Tsai equa-
tions. Assume that the fibers are circularly shaped and are in a square
array. Compare your results with those of problem 3.5.

3.10 A unidirectional glass/epoxy lamina with a fiber volume fraction of
70% is replaced by a graphite/epoxy lamina with the same longitu-
dinal Young’s modulus. Find the fiber volume fraction required in
the graphite/epoxy lamina. Use properties of glass, graphite, and
epoxy from Table 3.1 and Table 3.2.

3.11 Sometimes, the properties of a fiber are determined from the measured
properties of a unidirectional lamina. As an example, find the exper-
imentally determined value of the Poisson’s ratio of an isotropic fiber
from the following measured properties of a unidirectional lamina:
1. Major Poisson’s ratio of composite = 0.27
2. Poisson’s ratio of the matrix = 0.35
3. Fiber volume fraction = 0.65
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3.12 Using elasticity model equations, find the elastic moduli of a glass/
epoxy unidirectional lamina with 40% fiber volume fraction. Use the
properties of glass and epoxy from Table 3.3 and Table 3.4, respec-
tively. Compare your results with those obtained by using the
strength of materials approach and the Halphin–Tsai approach.
Assume that the fibers are circularly shaped and are in a square
array for the Halphin–Tsai approach.

3.13 A measure of degree of orthotropy of a material is given by the ratio
of the longitudinal to transverse Young’s modulus. Given the prop-
erties of glass, graphite, and epoxy from Table 3.1 and Table 3.2 and
using the mechanics of materials approach to find the longitudinal
and transverse Young’s modulus, find the fiber volume fraction at
which the degree of orthotropy is maximum for graphite/epoxy and
glass/epoxy unidirectional laminae.

3.14 What are three common modes of failure of a unidirectional com-
posite subjected to longitudinal tensile load?

3.15 Do high fiber volume fractions increase the transverse strength of a
unidirectional lamina? 

3.16 Find the five strength parameters of a unidirectional glass/epoxy
lamina with 40% fiber volume fraction. Use the properties of glass
and epoxy from Table 3.3 and Table 3.4.

3.17 A rod is designed to carry a uniaxial tensile load of 1400 N with a
factor of safety of two. The designer has two options for the mate-
rials: steel or 66% fiber volume fraction graphite/epoxy. Use the
properties of graphite and epoxy from Table 3.1 and Table 3.2.
Assume the following properties for steel:
• Young’s modulus of steel = 210 GPa
• Poisson’s ratio of steel = 0.3
• Tensile strength of steel = 450 MPa
• Specific gravity of steel = 7.8
The cost of graphite/epoxy is five times that of steel by weight. List

your material of choice if the criterion depends on just
1. Mass
2. Cost

3.18 Find the coefficients of thermal expansion for a 60% unidirectional
glass/epoxy lamina with a 60% fiber volume fraction. Use properties
of glass and epoxy from Table 3.3 and Table 3.4, respectively.

3.19 If one plots the transverse coefficient of thermal expansion, α2, as a
function of fiber volume fraction, Vf, for a unidirectional glass/epoxy
lamina, α2 > αm for a certain fiber volume fraction. Find this range
of fiber volume fraction. Use properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively.
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3.20 Find the fiber volume fraction for which the unidirectional glass/
epoxy lamina transverse thermal expansion coefficient is a maxi-
mum. Use properties of glass and epoxy from Table 3.1 and Table
3.2, respectively.

3.21 Prove31 that it is possible to have the transverse coefficient of thermal
expansion of a unidirectional lamina greater than the coefficient of
thermal expansion of the matrix (α2 > αm) only if

3.22 The coefficient of thermal expansion perpendicular to the fibers of
a unidirectional glass/epoxy lamina is given as 28 μm/m/°C. Use
the properties of glass and epoxy from Table 3.3 and Table 3.4 to
find the coefficient of thermal expansion of the unidirectional glass/
epoxy lamina in the direction parallel to the fibers.

3.23 There are large excursions of temperature in space and thus com-
posites with zero or near zero thermal expansion coefficients are
attractive. Find the volume fraction of the graphite fibers for which
the thermal expansion coefficient is zero in the longitudinal direction
of a graphite/epoxy unidirectional lamina. Use all the properties of
graphite and epoxy from Table 3.1 and Table 3.2, respectively, but
assume that the longitudinal coefficient of thermal expansion of
graphite fiber is –1.3 × 10–6 m/m/°C.

3.24 Find the coefficients of moisture expansion of a glass/epoxy lamina
with 40% fiber volume fraction. Use the properties of glass and
epoxy from Table 3.1 and Table 3.2, respectively.

3.25 Assume a 60% fiber volume fraction glass/epoxy lamina of cuboid
dimensions 25 cm (along the fibers) × 10 cm × 0.125 mm. Epoxy
absorbs water as much as 8% of its weight. Use the properties of
glass and epoxy from Table 3.1 and Table 3.2, respectively, and find
1. Maximum mass of water that the specimen can absorb
2. Change in volume of the lamina if the maximum possible water

is absorbed
Assume that the coefficient of moisture expansion through the thick-
ness is the same as the coefficient of moisture expansion in the
transverse direction and that the glass fibers absorb no moisture.
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