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Macromechanical Analysis of a Lamina

Chapter Objectives

* Review definitions of stress, strain, elastic moduli, and strain energy.
* Develop stress—strain relationships for different types of materials.

¢ Develop stress—strain relationships for a unidirectional/bidirec-
tional lamina.

¢ Find the engineering constants of a unidirectional /bidirectional lam-
ina in terms of the stiffness and compliance parameters of the lamina.

* Develop stress—strain relationships, elastic moduli, strengths, and
thermal and moisture expansion coefficients of an angle ply based
on those of a unidirectional/bidirectional lamina and the angle of
the ply.

2.1 Introduction

Alamina is a thin layer of a composite material that is generally of a thickness
on the order of 0.005 in. (0.125 mm). A laminate is constructed by stacking
a number of such laminae in the direction of the lamina thickness (Figure
2.1). Mechanical structures made of these laminates, such as a leaf spring
suspension system in an automobile, are subjected to various loads, such as
bending and twisting. The design and analysis of such laminated structures
demands knowledge of the stresses and strains in the laminate. Also, design
tools, such as failure theories, stiffness models, and optimization algorithms,
need the values of these laminate stresses and strains.

However, the building blocks of a laminate are single lamina, so under-
standing the mechanical analysis of a lamina precedes understanding that
of a laminate. A lamina is unlike an isotropic homogeneous material. For
example, if the lamina is made of isotropic homogeneous fibers and an
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FIGURE 2.1
Typical laminate made of three laminae.

isotropic homogeneous matrix, the stiffness of the lamina varies from point
to point depending on whether the point is in the fiber, the matrix, or the
fiber-matrix interface. Accounting for these variations will make any kind
of mechanical modeling of the lamina very complicated. For this reason, the
macromechanical analysis of a lamina is based on average properties and
considering the lamina to be homogeneous. Methods to find these average
properties based on the individual mechanical properties of the fiber and
the matrix, as well as the content, packing geometry, and shape of fibers are
discussed in Chapter 3.

Even with the homogenization of a lamina, the mechanical behavior is still
different from that of a homogeneous isotropic material. For example, take
a square plate of length and width w and thickness ¢ out of a large isotropic
plate of thickness t (Figure 2.2) and conduct the following experiments.

Case A: Subject the square plate to a pure normal load P in direction 1.
Measure the normal deformations in directions 1 and 2, §,, and 9,,,
respectively.

Case B: Apply the same pure normal load P as in case A, but now in
direction 2. Measure the normal deformations in directions 1 and 2,
8,5 and 0,5, respectively.

Note that

814 =828/
024= 018 -

(2.1a,b)

However, taking a unidirectional square plate (Figure 2.3) of the same
dimensions w X w x t out of a large composite lamina of thickness t and
conducting the same case A and B experiments, note that the deformations
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FIGURE 2.2

Deformation of square plate taken from an isotropic plate under normal loads.

147 028 /

SZA # 818 .

(2.2a,b)

because the stiffness of the unidirectional lamina in the direction of fibers is
much larger than the stiffness in the direction perpendicular to the fibers.
Thus, the mechanical characterization of a unidirectional lamina will require
more parameters than it will for an isotropic lamina.

Also, note that if the square plate (Figure 2.4) taken out of the lamina has
fibers at an angle to the sides of the square plate, the deformations will be
different for different angles. In fact, the square plate would not only have
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FIGURE 2.3
Deformation of a square plate taken from a unidirectional lamina with fibers at zero angle
under normal loads.

deformations in the normal directions but would also distort. This suggests
that the mechanical characterization of an angle lamina is further complicated.

Mechanical characterization of materials generally requires costly and
time-consuming experimentation and/or theoretical modeling. Therefore,
the goal is to find the minimum number of parameters required for the
mechanical characterization of a lamina.

Also, a composite laminate may be subjected to a temperature change and
may absorb moisture during processing and operation. These changes in
temperature and moisture result in residual stresses and strains in the lam-
inate. The calculation of these stresses and strains in a laminate depends on
the response of each lamina to these two environmental parameters. In this
chapter, the stress—strain relationships based on temperature change and
moisture content will also be developed for a single lamina. The effects of
temperature and moisture on a laminate are discussed later in Chapter 4.
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FIGURE 2.4

Deformation of a square plate taken from a unidirectional lamina with fibers at an angle under
normal loads.

2.2 Review of Definitions

2.2.1 Stress

A mechanical structure takes external forces, which act upon a body as
surface forces (for example, bending a stick) and body forces (for example,
the weight of a standing vertical telephone pole on itself). These forces result
in internal forces inside the body. Knowledge of the internal forces at all
points in the body is essential because these forces need to be less than the
strength of the material used in the structure. Stress, which is defined as the
intensity of the load per unit area, determines this knowledge because the
strengths of a material are intrinsically known in terms of stress.

Imagine a body (Figure 2.5) in equilibrium under various loads. If the body
is cut at a cross-section, forces will need to be applied on the cross-sectional
area so that it maintains equilibrium as in the original body. At any cross-
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FIGURE 2.5
Stresses on an infinitesimal area on an arbitrary plane.

section, a force AP is acting on an area of AA. This force vector has a com-
ponent normal to the surface, AP,, and one parallel to the surface, AP,. The
definition of stress then gives

6, = lim —*,
A0 AA
. AP
T, = Al{]glg— . (2.3a,b)

The component of the stress normal to the surface, ¢, is called the normal
stress and the stress parallel to the surface, 1,, is called the shear stress. If
one takes a different cross-section through the same point, the stress remains
unchanged but the two components of stress, normal stress, 6,, and shear
stress, 1,, will change. However, it has been proved that a complete definition
of stress at a point only needs use of any three mutually orthogonal coordi-
nate systems, such as a Cartesian coordinate system.

Take the right-hand coordinate system x—y—z. Take a cross-section parallel
to the yz-plane in the body as shown in Figure 2.6. The force vector AP acts
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Cross-section

FIGURE 2.6
Forces on an infinitesimal area on the y-z plane.

on an area AA. The component AP, is normal to the surface. The force vector
AP, is parallel to the surface and can be further resolved into components
along the y and z axes: AP, and AP,. The definition of the various stresses
then is

o, = lim AR,
T A0 AA
AP,
T, = lim —,
AA—0 AA
T = lim 2% | (2.4a—)
AA—0 AA

Similarly, stresses can be defined for cross-sections parallel to the xy and
xz planes. For defining all these stresses, the stress at a point is defined
generally by taking an infinitesimal cuboid in a right-hand coordinate system
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FIGURE 2.7
Stresses on an infinitesimal cuboid.

and finding the stresses on each of its faces. Nine different stresses act at a
point in the body as shown in Figure 2.7. The six shear stresses are related as

Tay = Tyx +

Ty =Ty /s

Tox = Txz - (2.5a—)

The preceding three relations are found by equilibrium of moments of the
infinitesimal cube. There are thus six independent stresses. The stresses c,,
6,, and o, are normal to the surfaces of the cuboid and the stresses 1,., T
and t,, are along the surfaces of the cuboid.

A tensile normal stress is positive, and a compressive normal stress is
negative. A shear stress is positive, if its direction and the direction of the
normal to the face on which it is acting are both in positive or negative
direction; otherwise, the shear stress is negative.

zx/

vz

2.2.2 Strain

Similar to the need for knowledge of forces inside a body, knowing the
deformations because of the external forces is also important. For example,
a piston in an internal combustion engine may not develop larger stresses
than the failure strengths, but its excessive deformation may seize the engine.
Also, finding stresses in a body generally requires finding deformations. This
is because a stress state at a point has six components, but there are only
three force-equilibrium equations (one in each direction).
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Normal and shearing strains on an infinitesimal area in the x—y plane.

The knowledge of deformations is specified in terms of strains — that is,
the relative change in the size and shape of the body. The strain at a point
is also defined generally on an infinitesimal cuboid in a right-hand coordi-
nate system. Under loads, the lengths of the sides of the infinitesimal cuboid
change. The faces of the cube also get distorted. The change in length cor-
responds to a normal strain and the distortion corresponds to the shearing
strain. Figure 2.8 shows the strains on one of the faces, ABCD, of the cuboid.

The strains and displacements are related to each other. Take the two
perpendicular lines AB and AD. When the body is loaded, the two lines
become A’B” and A’D’. Define the displacements of a point (x,y,z) as

u = u(x,y,z) = displacement in x-direction at point (x,y,z)
v = v(x,y,z) = displacement in y-direction at point (x,y,z)
w = w(x,y,z) = displacement in z-direction at point (x,,z)

The normal strain in the x-direction, €, is defined as the change of length

of line AB per unit length of AB as

where
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A'B'=/(A'P’)* + (B'PY,

= \/[Ax +u(x+Ax, y)—u(x, y)]2 +[o(x + Ax, y)—v(x, y)]2 ,

AB= Ax. (2.7a,b)

Substituting the preceding expressions of Equation (2.7) in Equation (2.6),

T A0

Ax

Ax

2 2 172
. :]jm{|:1+ u(x+Ax,y)—u(x,y)] +[v(x+Ax,y)—v(x,y):|} 1

Using definitions of partial derivatives

l

because

for small displacements.

1/2
1+a—u 2+ 9o 2 -1
ox ox

€= (2.8)

The normal strain in the y-direction, €, is defined as the change in the
length of line AD per unit length of AD as

&y

where
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AD'=(AQ) +@QDY,

A'D’' = \/[Ay +o(x,y +Ay)—o(x, y)]2 +[u(x, y + Ay) —u(x, y)]2 ,

AD = Ay. (2.10a,b)

Substituting the preceding expressions of Equation (2.10) in Equation (2.9),

1/2
e =lim 4|1+ o(x,y + Ay)—ov(x, y)} 2+ u(x,y + Ay)—u(x, y) ’ 1
Y Ay—0 Ay Ay

Using definitions of partial derivatives,

2 21/2
dv du
{1+ 2+ 2| -1
N “ +3y] +(3yn
L @.11)

because

for small displacements.

A normal strain is positive if the corresponding length increases; a normal
strain is negative if the corresponding length decreases.

The shearing strain in the x-y plane, v,, is defined as the change in the
angle between sides AB and AD from 90°. This angular change takes place
by the inclining of sides AB and AD. The shearing strain is thus defined as

Y= 617102 (2.12)
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72
where
_ . PP
T= a0 A
P'B’ =v(x+ Ax,y)—v(x,v),
AP =u(x+ Ax,y)+ Ax —u(x,y), (2.13a—)
L Q/D/
0= fim S0
Q,D,: ”(x,]/"' Ay)_ M(X,]/),
A'Q =v(x,y+Ay)+ Ay —v(x, y). (2.14a—)
Substituting Equation (2.13) and Equation (2.14) in Equation (2.12),
o(x+ Ax,y)—ov(x,y) u(x,y + Ay)—u(x, y)
Ax + Ay
_ w(x+Ax,y)+Ax—u(x,y) o(x,y+Ay)+Ay—ov(x,y)
ny T A0 Ax Ay
Ay—0
o o
_ox 9%
ou Ju
1+— 1+—
ox oy
dv  du
=+, 2.15
ox dy (215
because
ou
<1,
o <<
v
<1,
oy <<

for small displacements.
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The shearing strain is positive when the angle between the sides AD and
AB decreases; otherwise, the shearing strain is negative.

The definitions of the remaining normal and shearing strains can be found
by noting the change in size and shape of the other sides of the infinitesimal
cuboid in Figure 2.7 as

_Jv ow
1" oy’
o,
Y=y Tz’
O (2.16a—)
0z

Example 2.1
A displacement field in a body is given by

u =103(x2 + 6y + 7xy)
v = 105(yz)
w = 105(xy + yz?)

Find the state of strain at (x,y,z) = (1,2,3).

Solution
From Equation (2.8),

_du

e
oox
= %(10‘5 (x2 +6y + 7xz))
=107 (2x+7z)

=107 (2x1+7x3)

=2.300%107* .
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From Equation (2.11),

=3.000x107° .
From Equation (2.16c),

Jw

ooz
= %(10’5 (xy +yz° ))
=107 (2yz)

=107°(2x2x3)

=12x10".

From Equation (2.15),
_du ov
Yoy dy ox

= a?V(lo’S (x2 +6y + 7xz)) + %(10"5 (yz))
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=10"(6)+107(0)

=6.000x107.
From Equation (2.16a),
_dv, dw
Te =%, dy

- %(10'5 (yz)) + 8?/(10_5 (xy +yz’ ))
=107 (y)+107 (x+2?)
=107(2)+107 (1+3?)

=12x107".

From Equation (2.16b),

_dw _ou
Ve ox oz

- %(10-5 (v +yzz))+%(10‘5 (x* + 6y +722))
=107 (y)+107°(7x)
=107 (2)+107 (7 x 1)
=9.000x 1075 .

2.2.3 Elastic Moduli

As mentioned in Section 2.2.2, three equilibrium equations are insufficient
for defining all six stress components at a point. For a body that is linearly
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FIGURE 2.9
Cartesian coordinates in a three-dimensional body.

elastic and has small deformations, stresses and strains at a point are
related through six simultaneous linear equations called Hooke’s law.
Note that 15 unknown parameters are at a point: six stresses, six strains,
and three displacements. Combined with six simultaneous linear equa-
tions of Hooke’s law, six strain-displacement relations — given by Equa-
tion (2.8), Equation (2.11), Equation (2.15), and Equation (2.16) — and
three equilibrium equations give 15 equations for the solution of 15
unknowns.! Because strain-displacement and equilibrium equations are
differential equations, they are subject to knowing boundary conditions
for complete solutions.

For a linear isotropic material in a three-dimensional stress state, the
Hooke’s law stress—strain relationships at a point in an x—y—z orthogonal
system (Figure 2.9) in matrix form are

1

1 \Y Y 0 0 0
E E E
(e ] |2y 1L v 0 0 0 7
. E E E )
! v v 1 0 0 0f°
&l | E E E o: | (2.17)
Yy 0 0 0 1 0 01
Ve G T
0 0 0 0 1 0
RE G e
0 0 0 0 0 1
L G
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E(1-v) VE VE 0
[ 5, 1-2v)(1+v) (1A-2v)1+v) (A=-2v)1+v) [ ¢, ]
5, VvE E(1-v) vE 0 0 0
1-2v)(1+v) (1=-2v)(1+Vv) (1=2v)(1+V)

Oz |2 VE VE E(1-v) o o ol =l
Tel [ @=2v)1+v)  (1=2v)1+v) (1-2v)1+V) Yo
Tax 0 0 0 G 0 oY=
[ Ty ] 0 0 0 0 G Of| Yy

i 0 0 0 0 0 G
(2.18)

where v is the Poisson’s ratio. The shear modulus G is a function of two
elastic constants, E and v, as

G= E .
2(1+v)

(2.19)

The 6 x 6 matrix in Equation (2.17) is called the compliance matrix [S] of
an isotropic material. The 6 x 6 matrix in Equation (2.18), obtained by invert-
ing the compliance matrix in Equation (2.17), is called the stiffness matrix
[C] of an isotropic material.

2.2.4 Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic
bodies under loads, the work done by external loads is stored as recoverable
strain energy. The strain energy stored in the body per unit volume is then
defined as

1
W= 5 (6rextoy eyt 0.8 Ty Vot Ty ¥y F T Vo) (2.20)

Example 2.2

Consider a bar of cross-section A and length L (Figure 2.10). A uniform tensile
load P is applied to the two ends of the rod; find the state of stress and strain,
and strain energy per unit volume of the body. Assume that the rod is made
of a homogeneous isotropic material of Young’s modulus, E.
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FIGURE 2.10
Cylindrical rod under uniform uniaxial load, P.

Solution

The stress state at any point is given by

P
GXZZ/GyzolGz:O/Tyzzoszxzo’TxyZO' (221)

If the circular rod is made of an isotropic, homogeneous, and linearly
elastic material, then the stress—strain at any point is related as

(1 v v 0 0 0
E E E
]|y 1oy 0 0 offp]
. E E E n
ey oy 1 0 0 0fg
.| E E E 0], (2.22)
Yy 00 0 1 0 of,
Y C 0
o 0 0 0 1 0
REY G L 0]
o 0o o0 0 0 1
L G
_P v VP
& T AR T T AE’E T AR (2.23)

Y= 0,v,.=0, Vo= 0.

The strain energy stored per unit volume in the rod, per Equation (2.20), is
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w%[(i]( )(0)( )+(0)( vP )+(o)(0)+(0)(0)+(0)(0)}

1P

=29 (2.24)

2.3 Hooke’s Law for Different Types of Materials

The stress—strain relationship for a general material that is not linearly elastic
and isotropic is more complicated than Equation (2.17) and Equation (2.18).
Assuming linear and elastic behavior for a composite is acceptable; however,
assuming it to be isotropic is generally unacceptable. Thus, the stress—strain
relationships follow Hooke’s law, but the constants relating stress and strain
are more in number than seen in Equation (2.17) and Equation (2.18). The
most general stress—strain relationship is given as follows for a three-dimen-
sional body in a 1-2-3 orthogonal Cartesian coordinate system:

C1 Cn Ci2 Ciz Cu Ci5 Cpll &
(¢}] Cn Cxn Cx Cu Cx Cxl|l &
O3 |_ Can Cn Czz Cu Css Csx|l © ) (2.25)
T23 Ca Ca Cas Cu Css Cas Vo3
T31 Csi Cs2 Cs3 Css Css  Cosel| Van

[T2] [Ca Ce Ceos Ca Ces  Cesl| Vs

where the 6 x 6 [C] matrix is called the stiffness matrix. The stiffness matrix
has 36 constants.

What happens if one changes the system of coordinates from an orthogonal
system 1-2-3 to some other orthogonal system, 1'-2"-3"? Then, new stiffness
and compliance constants will be required to relate stresses and strains in
the new coordinate system 1'-2'-3’. However, the new stiffness and compli-
ance matrices in the 1'-2’-3" system will be a function of the stiffness and
compliance matrices in the 1-2-3 system and the angle between the axes of
the 1'-2"-3’system and the 1-2-3 system.
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Inverting Equation (2.25), the general strain—stress relationship for a three-
dimensional body in a 1-2-3 orthogonal Cartesian coordinate system is

€1 Sn Sz Sz Su  Si5 Sisf| o1
€ Sz S» Sxs Su o Sxs Sw|| o2
€3 Ssi S;»  S3 Su S Ss || 03 . (2.26)
V23 Sn Sio Siz Su S5 S| T2
Va1 Ss1 Ss2 Sss Ssa Sss Sse || Ta1
Y12 | | Se1 Se2 Ses Sea  Ses  Ses

L T12

In the case of an isotropic material, relating the preceding strain—stress
equation to Equation (2.17), one finds that the compliance matrix is related
directly to engineering constants as

1
Su= E =50=53
A%
512:_E:51325212523:531:532 ’ (2.27)

6oL
44 G

= S55= Ses s

and S, other than in the preceding, are zero.

It can be shown that the 36 constants in Equation (2.25) actually reduce to
21 constants due to the symmetry of the stiffness matrix [C] as follows. The
stress—strain relationship (2.25) can also be written as

6
o= ) Cej, i=1..6, (2.28)
j=1

where, in a contracted notation,

G4~ T237 O5= T317 O~ T12/

€47 Y37 €5= V317 €6~ V1p- (229&—f)
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The strain energy in the body per unit volume, per Equation (2.20), is
expressed as

6
1
W= 220,&. (2.30)

Substituting Hooke’s law, Equation (2.28), in Equation (2.30),

W= ;iiqjeiei. (2.31)

=1 j=1

Now, by partial differentiation of Equation (2.31),

oW
=C;, 2.32
oe0e; (2.32)
and
oW
=C.. 2.33
og0g;, (2.33)

Because the differentiation does not necessarily need to be in either order,

Ci=Cj (2.34)
Equation (2.34) can also be proved by realizing that

G —aiw
o

Thus, only 21 independent elastic constants are in the general stiffness matrix
[C] of Equation (2.25). This also implies that only 21 independent constants
are in the general compliance matrix [S] of Equation (2.26).

2.3.1 Anisotropic Material

The material that has 21 independent elastic constants at a point is called an
anisotropic material. Once these constants are found for a particular point,
the stress and strain relationship can be developed at that point. Note that
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FIGURE 2.11
Transformation of coordinate axes for 1-2 plane of symmetry for a monoclinic material.

these constants can vary from point to point if the material is nonhomoge-
neous. Even if the material is homogeneous (or assumed to be), one needs
to find these 21 elastic constants analytically or experimentally. However,
many natural and synthetic materials do possess material symmetry — that
is, elastic properties are identical in directions of symmetry because symme-
try is present in the internal structure. Fortunately, this symmetry reduces
the number of the independent elastic constants by zeroing out or relating
some of the constants within the 6 x 6 stiffness [C] and 6 x 6 compliance [S]
matrices. This simplifies the Hooke’s law relationships for various types of
elastic symmetry.

2.3.2 Monoclinic Material

If, in one plane of material symmetry* (Figure 2.11), for example, direction
3 is normal to the plane of material symmetry, then the stiffness matrix

reduces to
(Cu Cn Cs 0 0 Gy
C12 C22 C23 0 0 C26
[C]= C13 C23 C33 0 0 C36 . (235)
0 0 0 Cu Css 0
0 0 0 Cis Cs 0
_C16 C26 C36 0 0 C66
as

* Material symmetry implies that the material and its mirror image about the plane of symmetry
are identical.
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C14,=0,C;5=0,Cpy =0,C,5=0,Cs,=0,C35=0,C, =0,Cs, =0.

The direction perpendicular to the plane of symmetry is called the principal
direction. Note that there are 13 independent elastic constants. Feldspar is an
example of a monoclinic material.

The compliance matrix correspondingly reduces to

Sn Sz Si 0 0 S
S Sn»  Sxn 0 0 Sy
[S]= Sz S» Sz 0 0 Ss ‘ (2.36)
0 0 0 Sy  Sss 0
0 0 0 S5 S5 0

816 526 536 0 0 566_

Modifying an excellent example? of demonstrating the meaning of elastic
symmetry for a monoclinic material given, consider a cubic element of Figure
2.12 taken out of a monoclinic material, in which 3 is the direction perpen-
dicular to the 1-2 plane of symmetry. Apply a normal stress, o3 to the
element. Then using the Hooke’s law Equation (2.26) and the compliance
matrix (Equation 2.36) for the monoclinic material, one gets

€1= 51303

€2= 5203

€3= 53303

Y2=0

Y5 =0

Y12 = S303 - (2.37a-f)

The cube will deform in all directions as determined by the normal strain
equations. The shear strains in the 2-3 and 3-1 plane are zero, showing that
the element will not change shape in those planes. However, it will change

© 2006 by Taylor & Francis Group, LLC



84 Mechanics of Composite Materials, Second Edition

I

FIGURE 2.12
Deformation of a cubic element made of monoclinic material.

shape in the 1-2 plane. Thus, the faces ABEH and CDFG perpendicular to
the 3 direction will change from rectangles to parallelograms, while the other
four faces ABCD, BEFC, GFEH, and AHGD will stay as rectangles. This is
unlike anisotropic behavior, in which all faces will be deformed in shape,
and also unlike isotropic behavior, in which all faces will remain undeformed
in shape.

2.3.3 Orthotropic Material (Orthogonally Anisotropic)/Specially
Orthotropic

If a material has three mutually perpendicular planes of material symmetry,
then the stiffness matrix is given by
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FIGURE 2.13
A unidirectional lamina as a monoclinic material with fibers, arranged in a rectangular array.

Cu Cn Ci 0
Co Cxn Ca 0
Cs Cxn Cas 0
0 0 0 Cu
0 0 0 0 Cs
0 0 0 0 0 Ce

(2.38)

o O O O
o O ©O © ©

The preceding stiffness matrix can be derived by starting from the stiffness
matrix [C] for the monoclinic material (Equation 2.35). With two more planes
of symmetry, it gives

Ci=0,Cp =0,C5 =0,Cy5=0.

Three mutually perpendicular planes of material symmetry also imply
three mutually perpendicular planes of elastic symmetry. Note that nine
independent elastic constants are present. This is a commonly found material
symmetry unlike anisotropic and monoclinic materials. Examples of an
orthotropic material include a single lamina of continuous fiber composite,
arranged in a rectangular array (Figure 2.13), a wooden bar, and rolled steel.

The compliance matrix reduces to

Su S S 0
Sz S» S 0
S5 S» S 0
0 0 0 Su
0 0 0 0 S
0 0 0 0 0 S

(2.39)

o O O O
S O O © O
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FIGURE 2.14
Deformation of a cubic element made of orthotropic material.

Demonstrating the meaning of elastic symmetry for an orthotropic mate-
rial is similar to the approach taken for a monoclinic material [Section 2.3.2)
Consider a cubic element (Figure 2.14) taken out of the orthotropic material,
where 1, 2, and 3 are the principal directions or 1-2, 2-3, and 3-1 are the
three mutually orthogonal planes of symmetry. Apply a normal stress, G,
to the element. Then, using the Hooke’s law Equation (2.26) and the com-
pliance matrix (Equation 2.39) for the orthotropic material, one gets

€= 51503

€, =550,
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€; =530,
Y =0
(2.40a—f)
Y51 =0
Y12 =0.

The cube will deform in all directions as determined by the normal strain
equations. However, the shear strains in all three planes (1-2, 2-3, and 3-1)
are zero, showing that the element will not change shape in those planes.
Thus, the cube will not deform in shape under any normal load applied in
the principal directions. This is unlike the monoclinic material, in which two
out of the six faces of the cube changed shape.

A cube made of isotropic material would not change its shape either;
however, the normal strains, €, and ¢, will be different in an orthotropic
material and identical in an isotropic material.

2.3.4 Transversely Isotropic Material

Consider a plane of material isotropy in one of the planes of an orthotropic
body. If direction 1 is normal to that plane (2-3) of isotropy, then the stiffness
matrix is given by

[Ch Co Cn 0 0 0]
Cno2 Cn Czp 0 0 0
C12 C23 C22 0 0 O
[ClI=| 0 0 0 Cp-Cun 0 0] (2.41)
2
0 0 0 0 Cs O
L0 0 0 0 0 Cs)

Transverse isotropy results in the following relations:

Cy,-C
Cp =C33,Cpp =Ci3,Cs5 = Cg, Cuy = % .

Note the five independent elastic constants. An example of this is a thin
unidirectional lamina in which the fibers are arranged in a square array or
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FIGURE 2.15
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A unidirectional lamina as a transversely isotropic material with fibers arranged in a square

array.

a hexagonal array. One may consider the elastic properties in the two direc-
tions perpendicular to the fibers to be the same. In Figure 2.15, the fibers are
in direction 1, so plane 2-3 will be considered as the plane of isotropy.

The compliance matrix reduces to

2.3.5 Isotropic Material

Su
512
512

Si2
S»
Sx
0
0
0

Sio 0 0
Sas 0 0
(% 0 0
0 2(522 - 523) 0
0 0 S5
0 0 0

o O O © O

(2.42)

If all planes in an orthotropic body are identical, it is an isotropic material;
then, the stiffness matrix is given by

Cn
Cn
Cp,

0

C12
Cu
C12

0

C12
ClZ
Cll

0 0
0 0
0 0
Cu—Cn 0
2
0 Cu—Cn
2
0 0

Cll

Isotropy results in the following additional relationships:
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C,-C c,-C
Ciy =Cp,Cpp =Cyy,Cq6 = 222 B = 112 =,

This also implies infinite principal planes of symmetry. Note the two
independent constants. This is the most common material symmetry avail-
able. Examples of isotropic bodies include steel, iron, and aluminum. Relat-
ing Equation (2.43) to Equation (2.18) shows that

Com E(1-v)
T 1-2v)(1+v)’
vE
= 2.44a-b
Ce™ 10w+ (2.44a-b)
Note that
Cll — C12
2
1 E(l-v) VvE
2{(1-2v)A+v) (A-2v)1+v)
_E
T 2(1+v)
=G.
The compliance matrix reduces to
F511 S Si 0 0 0]
Sz S S 0 0 0
S 0 0 0
[s]=| 2 52 Su . (2.45)
0 0 0 25,-Sy 0 0
0 0 0 0 2(5;,-S,) 0
| 0 0 0 0 0 2(5;-5p)]

We summarize the number of independent elastic constants for various
types of materials:
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* Anisotropic: 21
¢ Monoclinic: 13
* Orthotropic: 9
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e Transversely isotropic: 5

¢ Isotropic: 2

Example 2.3

Show the reduction of anisotropic material stress—strain Equation (2.25) to
those of a monoclinic material stress—strain Equation (2.35).

Solution

Assume direction 3 is perpendicular to the plane of symmetry. Now in the
coordinate system 1-2-3, Equation (2.25) with C; = C; from Equation (2.34) is

O1 Cn
G2 Cn
O3 _ Cis
T23 Cu
T31 Cis
L T12 | _C16

Cn
Ca
Cx
Cau
Caxs
Cas

Cu
Cou
Cs
Cu
Css
Cus

C16—
Cas
Css
Cus
Css
Ces

Also, in the coordinate system 1'-2-3" (Figure 2.11),

Oovr Cu
Oy Cn
O3 - Ci3
Ty Cu
1| | Cis
trr] L Cs

Ci
Cxn
Cas
Cos
Cos
Cos

Cis
Cas
Css
Cas
Css
Css

Cu
Co
Ca
Cu
Cas
Cae

Cis
Cas
Css
Css
Css
Css

Clé—
Ca
Css
Cae
Css

C66< L

€1
€2
€3
V23
Va1

| _'Y1z_

, (2.46)

) (2.47)

Because there is a plane of symmetry normal to direction 3, the stresses
and strains in the 1-2-3 and 1-2’-3" coordinate systems are related by

61=061,062=0C»,03=0%

Toz = Tz, T31 = T3y, Tp = Ty
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€ =€,€,=€,,8 =8y,

Y3 = Yoz, Y31 = Y31, Y12 = Yro- (2.49a-1)

The terms in the first equation of Equation (2.46) and Equation (2.47) can
be written as

01 =Cpi& +Cpp8s + Cis€3 + CiyYas + Cis¥a + Cig Y
Oy =Cpey +Cp8y +Cis€y + CryYoy + Cis¥31, +Ci Yy (2.50a-b)
Substituting Equation (2.48) and Equation (2.49) in Equation (2.50b),
01 =18 +Cpp8s + Ci383 = Ciy¥ o3 — Cis¥a + Cie Y1z - (2.51)
Subtracting Equation (2.51) from Equation (2.50a) gives

0=2C,Y2 +2C575 - (2.52)

Because v,; and 7, are arbitrary,
Cy=C;=0. (2.53a)

Similarly, one can show that

Cuy=Cy5=0,
Cyy=Cs =0,
Cu=C5=0. (2.54b-d)

Thus, only 13 independent elastic constants are present in a monoclinic
material.

Example 2.4

The stress—strain relation is given in terms of compliance matrix for an
orthotropic material in Equation (2.26) and Equation (2.39). Rewrite the
compliance matrix equations in terms of the nine engineering constants for
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FIGURE 2.16
Application of stresses to find engineering constants of a three-dimensional orthotropic body.

an orthotropic material. What is the stiffness matrix in terms of the engineer-
ing constants?

Solution

Let us see how the compliance matrix and engineering constants of an
orthotropic material are related. As shown in Figure 2.16a, apply ¢, # 0, ©,
=0,0;=0, T3 =0, 73, = 0, T, = 0. Then, from Equation (2.26) and Equation

(2.39):
€ = 5,40,
€ = 5,04
€ = 530¢
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Y3 =0
Ys1 =0
Yo = 0.

The Young’s modulus in direction 1, E,, is defined as

E="1=— . (2.55)

The Poisson’s ratio, v;,, is defined as

vy=-f2-_52 (2.56)
€ Sy

In general terms, v; is defined as the ratio of the negative of the normal
strain in direction j to the normal strain in direction i, when the load is
applied in the normal direction 7.

The Poisson’s ratio v,; is defined as

Vy=—2=-1 (2.57)

Similarly, as shown in Figure 2.16b, apply 6, =0,0,=0,0;#0, T3 =0, T3,
=0, T, = 0. Then, from Equation (2.26) and Equation (2.39),

1
E,=— (2.58)
> Sy
S
Vy = — ?u (2.59)
22
S
V== (2.60)
22

Similarly, as shown in Figure 2.16c, apply 6, =0, 6, =0, 653 20, T)3 = 0, T3
=0, Ty, = 0. From Equation (2.26) and Equation (2.39),

E,=— (2.61)
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Vg = —% (2.62)
33

Vi = —% : (2.63)
33

Apply, as shown in Figure 2.16d, 6, =0,06,=0,0;=0, 73 20, T3, = 0, T,
= 0. Then, from Equation (2.26) and Equation (2.39),

=0
g =0
g =0
Vo3 = SasTos
Y =0
Y2=0

The shear modulus in plane 2-3 is defined as
Gp=-2B= (2.64)

Similarly, as shown in Figure 2.16e, apply 6, =0, 6, =0, 063 =0, 7,3 =0, T3,
#0, 7, = 0. Then, from Equation (2.26) and Equation (2.39),

Gy =— . (2.65)

Similarly, as shown in Figure 2.16f, apply 6, =0, 6, =0, 65 =0, T3 =0, T3,
=0, T, # 0. Then, from Equation (2.26) and Equation (2.39),

1

_?%_

G (2.66)

In Equation (2.55) through Equation (2.66), 12 engineering constants have
been defined as follows:

Three Young’s moduli, E;, E,, and E;, one in each material axis

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 95

. . , .
Six Poisson’s ratios, Viy, Vi3, Vay, Va3, V31, and vs,, two for each plane
Three shear moduli, G,;, G, and G,,, one for each plane

However, the six Poisson’s ratios are not independent of each other. For
example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equa-
tion (2.59),

Viz _ Vo (2.67)
El EZ

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equa-
tion (2.62),

Yo Va1 (2.68)
El E3
and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation
(2.63),
Vo Vo (2.69)
EZ E3

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal
Poisson’s ratio equations. These relations reduce the total independent engi-
neering constants to nine. This is the same number as the number of inde-
pendent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants

gives
1 v, v 0 0 0]
El El E]
_va 1 vy 0O 0 0
E> E> E>
Vs vap 1 0 0 0
[S]= Es Es Es _ (2.70)
0 0 o 1 0 o0
G23
0 0 o 0 1 0
Ga1
0 0 o o0 o0 1
L Gz |
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Inversion of Equation (2.70) would be the compliance matrix [C] and is

given by
[ 1- Va3V3) Vo1 ¥ VosVa Va1 Vo Vs 0 0 0 |
E,E,A E,E,A E,E,A
Vo1 +Vy3Vs 1-vi5vy Var T V1 Vs 0 0 0
E,E,A E,E,A E,E,A
[C] =| Va1t VaVer  Vap ViV 1-vpvy 0 0 R (2.71)
E,E,A E,E,A E,E,A
0 0 0 Gy 0 0
0 0 0 0 Gy O
| 0 0 0 0 0 Gy, |
where
A= (1 — VipVa1 = Va3V = Vi3Va =2V Vi3 ) / (EIEZ Es) . (2.72)

Although nine independent elastic constants are in the compliance matrix
[S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials,
constraints on the values of these constants exist. Based on the first law of
thermodynamics, the stiffness and compliance matrices must be positive
definite. Thus, the diagonal terms of [C] and [S] in Equation (2.71) and
Equation (2.70), respectively, need to be positive. From the diagonal elements
of the compliance matrix [S], this gives

E,>0,E,>0,E,>0,G;,>0,G,;>0,G5 >0 (2.73)

and, from the diagonal elements of the stiffness matrix [C], gives

1-vyvy >0,1-vyv; >0,1-v,v,, >0, (2.74)

A=1=VipVy = Vp3V3y = V1 Vi3 —2V33V Vs, >0

Using the reciprocal relations given by Equation (2.67) through Equation
(2.69),

Vi Vi . ..
—L=-L fori#j and ij=123,
E;, E

we can rewrite the inequalities as follows.
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For example, because

1-vy,v, >0,

then

‘vu‘ < \/E . (2.75a)

Similarly, five other such relationships can be developed to give

V| < E (2.75b)
Vo< \/E (2.750)
[vas| < E (2.75d)

(2.75€)

vis| < \/E . (2.75f)

These restrictions on the elastic moduli are important in optimizing prop-
erties of a composite because they show that the nine independent properties
cannot be varied without influencing the limits of the others.
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Example 2.5
Find the compliance and stiffness matrix for a graphite/epoxy lamina. The
material properties are given as

E, =181GPa , E, =10.3GPa , E, =10.3GPa
vy, =0.28 , v, =0.60 , v;3 =0.27

Gy, =7.17GPa , Gy = 3.0GPa , Gy, = 7.00GPa .

Solution
1 -12 -1
Sy=—=——>=5525x10"Pa
E, 181x10°
S, = 1. % =9.709x 10" Pa™*
E, 103x10
1 1

Spy=—=— 5 =9709x 10" Pa’!
E; 103x10

Sp=-2 o 9B 5475100 p
E, 181x10
Sp=-i o 927 49051072 ps!
E, 181x10
Sp=—z2o_ 00 5gr5y10pet
E, 10.3x 10°
Su=— = -3333x10"py"
Gy 3x10°
Sss = 1_ 1 5 =1.429%x10""Pa”!
Gy  7x10
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1

1 ————=139%x 107°pg7t,
Gy, 7.17x10

Ses =

Thus, the compliance matrix for the orthotropic lamina is given by

[s]-

[ 5525%10™2 -1.547x 102 -1.492x 1072 0 0 0
1547 %10 9.709%x107" -5.825%x107"! 0 0 0
-1.492x10™" -5.825x10™" 9.709x 107" 0 0 0 Pal
0 0 0 3.333x107" 0 0
0 0 0 0 1.429x107° 0
| 0 0 0 0 0 1.395x 107" |

The stiffness matrix can be found by inverting the compliance matrix and

is given by
-1
[c]=[5]
[c]=
[0.1850x 10" 0.7269x 10" 0.7204 x 10" 0 0 0 1
0.7269x 10" 0.1638x 10" 0.9938 x 10" 0 0 0
0.7204x 10" 0.9938x 10" 0.1637 x 10" 0 0 0 Pa
0 0 0 0.3000 x 10" 0 0
0 0 0 0 0.6998 x 101 0
L 0 0 0 0 0 0.7168x 10" |

The preceding stiffness matrix [C] can also be found directly by using Equa-
tion (2.71).

2.4 Hooke’s Law for a Two-Dimensional Unidirectional
Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the
case for a typical lamina. If a plate is thin and there are no out-of-plane loads,
it can be considered to be under plane stress (Figure 2.17). If the upper and
lower surfaces of the plate are free from external loads, then 6; =0, 15, = 0,
and T,; = 0. Because the plate is thin, these three stresses within the plate are
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1;2 2A

FIGURE 2.17
Plane stress conditions for a thin plate.

assumed to vary little from the magnitude of stresses at the top and the
bottom surfaces. Thus, they can be assumed to be zero within the plate also.
A lamina is thin and, if no out-of-plane loads are applied, one can assume
that it is under plane stress. This assumption then reduces the three-dimen-
sional stress—strain equations to two-dimensional stress—strain equations.

2.4.2 Reduction of Hooke’s Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the
lamina is thin and does not carry any out-of-plane loads, one can assume
plane stress conditions for the lamina. Therefore, taking Equation (2.26) and
Equation (2.39) and assuming o5 = 0, T,; = 0, and 13, = 0, then

€3 = 5301 + 55305,

Y23 = Y31 =0. (2.76a,b)

The normal strain, €;, is not an independent strain because it is a function
of the other two normal strains, €, and &,. Therefore, the normal strain, &,
can be omitted from the stress—strain relationship (2.39). Also, the shearing
strains, y,; and Y3, can be omitted because they are zero. Equation (2.39) for
an orthotropic plane stress problem can then be written as

1w Sy 0|lo,|, (2.77)
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where §;; are the elements of the compliance matrix. Note the four indepen-
dent compliance elements in the matrix.
Inverting Equation (2.77) gives the stress—strain relationship as

G, Qun  Qn» 0 €
0, |=|Qn Qn 0 & |, (2.78)
T2 0 0 Qes || Y12

where Q; are the reduced stiffness coefficients, which are related to the
compliance coefficients as

522

Qu=—"""7%"
" $1Sn—Sh

S1o
Q,=-——>22 (2.79a—d)
? o 548n-Sh

Su

Q= ta

2 511522_5%2
1

- Ses.

Q66

Note that the elements of the reduced stiffness matrix, Qz-]-, are not the same
as the elements of the stiffness matrix, C;; (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering
Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain
through the compliance [S] and reduced stiffness [Q] matrices. However,
stress and strains are generally related through engineering elastic constants.
For a unidirectional lamina, these engineering elastics constants are

E, = longitudinal Young’s modulus (in direction 1)
E, = transverse Young’s modulus (in direction 2)

Vi, = major Poisson’s ratio, where the general Poisson’s ratio, vj is
defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

Gy, = in-plane shear modulus (in plane 1-2)
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A

()

FIGURE 2.18
Application of stresses to find engineering constants of a unidirectional lamina.

Experimentally, the four independent engineering elastic constants are
measured as follows and can be related to the four independent elements of
the compliance matrix [S] of Equation (2.77).

* Apply a pure tensile load in direction 1 (Figure 2.18a), that is,
6,#20,0,=0,71,=0. (2.80)

Then, from Equation (2.77),
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€ =510,
82 = 512(51, (2.81a—C)
Y1, =0.

By definition, if the only nonzero stress is 6, as is the case here, then

E=S1_~ 2.82
= s, (2.82)
Vlzz_gz_ i (2.83)
€1 Su

¢ Apply a pure tensile load in direction 2 (Figure 2.18b), that is

6,=0,0,#20,71,=0. (2.84)

Then, from Equation (2.77),

€ =51,0,,
€, =5,,0,, (2.85a—)
Y12 =0.

By definition, if the only nonzero stress is G,, as is the case here, then

=21 (2.86)
& Sy
__ & Spp
Vy  =E——=——%, 2.87
= tte 2 87

The v,, term is called the minor Poisson’s ratio. From Equation (2.82),
Equation (2.83), Equation (2.86), and Equation (2.87), we have
the reciprocal relationship

Vi2 _ Vo (2.88)
E, E
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Apply a pure shear stress in the plane 1-2 (Figure 2.18c) — that is,

6,=0,0,=0and 1, #0.

(2.89)
Then, from Equation (2.77),
g =0,
g, =0,
Y12 = Se6Ti2: (2.90a—)

By definition, if 7,, is the only nonzero stress, as is the case here, then

Gp=tz=L (2.91)
12 66
Thus, we have proved that
1
Sn= E’
1
\
1
1
Sp = E’
2
Ses = GL (2.92a-d)
12

Also, the stiffness coefficients Q;; are related to the engineering constants
through Equation (2.98) and Equation (2.92) as

Qu=rt—
n= ’
1=vyvy,
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__Vpb
Cra 1-vyvi, ’
Q= L, and
1=vyvyp
Qg =Gz (2.93a-d)

Equation (2.77), Equation (2.78), Equation (2.92), and Equation (2.93) relate
stresses and strains through any of the following combinations of four con-
stants.

Qi Qo Qoo Qges OTF

S11, S12s S2, Seer OT
Ey, Ey Vip, Gyp

The unidirectional lamina is a specially orthotropic lamina because normal
stresses applied in the 1-2 direction do not result in any shearing strains in
the 1-2 plane because Q;; = Q,; = 0 = 5,5 = S, Also, the shearing stresses
applied in the 1-2 plane do not result in any normal strains in the 1 and 2
directions because Q;, = Q,s = 0 = S; = Sy

A woven composite with its weaves perpendicular to each other and short
fiber composites with fibers arranged perpendicularly to each other or
aligned in one direction also are specially orthotropic. Thus, any discussion in
this chapter or in Chapter 4 (“Macromechanics of a Laminate”) is valid for
such a lamina as well. Mechanical properties of some typical unidirectional
lamina are given in Table 2.1 and Table 2.2.

Example 2.6
For a graphite/epoxy unidirectional lamina, find the following

Compliance matrix
Minor Poisson’s ratio
Reduced stiffness matrix

Ll

Strains in the 1-2 coordinate system if the applied stresses (Figure
2.19) are

6, =2MPa, 6, =-3MPa, 1,, =4MPa.

Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.
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TABLE 2.1

Typical Mechanical Properties of a Unidirectional Lamina (SI System of Units)

Glass/ Boron/  Graphite/

Property Symbol Units epoxy epoxy epoxy

Fiber volume fraction V; 0.45 0.50 0.70

Longitudinal elastic modulus E, GPa 38.6 204 181

Transverse elastic modulus E, GPa 8.27 18.50 10.30

Major Poisson’s ratio Vi, 0.26 0.23 0.28

Shear modulus Gy, GPa 4.14 5.59 717

Ultimate longitudinal tensile (61). MPa 1062 1260 1500
strength

Ultimate longitudinal (6D,  MPa 610 2500 1500
compressive strength

Ultimate transverse tensile (62) MPa 31 61 40
strength

Ultimate transverse (65) MPa 118 202 246
compressive strength

Ultimate in-plane shear (t12) MPa 72 67 68
strength

Longitudinal coefficient of oy um/m/°C 8.6 6.1 0.02
thermal expansion

Transverse coefficient of o, um/m/°C 22.1 30.3 22.5
thermal expansion

Longitudinal coefficient of By m/m/kg/kg 0.00 0.00 0.00
moisture expansion

Transverse coefficient of B, m/m/kg/kg 0.60 0.60 0.60

moisture expansion

Source: Tsai, SSW. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. Reprinted with permission.

Solution

From Table 2.1, the engineering elastic constants of the unidirectional graph-
ite/epoxy lamina are

E, =181 GPa, E, =10.3 GPa, v;, =0.28, G, = 7.17 GPa.

1. Using Equation (2.92), the compliance matrix elements are

= % =0.5525x10"Pa”",
181x10
Sp= _LSQ =-0.1547x 107" Pa",
181x 10
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TABLE 2.2
Typical Mechanical Properties of a Unidirectional Lamina (USCS System of Units)
Glass/ Boron/ Graphite/

Property Symbol Units epoxy epoxy epoxy

Fiber volume fraction \ — 0.45 0.50 0.70

Longitudinal elastic E, Msi 5.60 29.59 26.25
modulus

Transverse elastic modulus E, Msi 1.20 2.683 1.49

Major Poisson’s ratio (2% 0.26 0.23 0.28

Shear modulus Gy Msi 0.60 0.811 1.040

Ultimate longitudinal (6D ksi 154.03 182.75 217.56
tensile strength

Ultimate longitudinal (6D ksi 88.47 362.6 217.56
compressive strength

Ultimate transverse tensile  (g3),, ksi 4.496 8.847 5.802
strength

Ultimate transverse (69w ksi 17.12 29.30 35.68
compressive strength

Ultimate in-plane shear (T12) ksi 10.44 9.718 9.863
strength

Longitudinal coefficient of o pin./in./°F 4.778 3.389 0.0111
thermal expansion

Transverse coefficient of o, pin./in./°F 12.278 16.83 12.5
thermal expansion

Longitudinal coefficient of B, in./in./1b/1b 0.00 0.00 0.00
moisture expansion

Transverse coefficient of B, in./in./lb/lb 0.60 0.60 0.60

moisture expansion

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. USCS system used for tables reprinted
with permission.

= % =0.9709x10°Pa™!,
10.3x10

o= % =0.1395x10°Pa".
7.17%10

2. Using the reciprocal relationship (2.88), the minor Poisson’s ratio is

0.28

= Bi1r (10.3x10%) = 0.01593.
X

Vo

3. Using Equation (2.93), the reduced stiffness matrix [Q] elements are
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4 0,=-3MPa
T,,= 4 MPa

>
L4

>

>

'

FIGURE 2.19
Applied stresses in a unidirectional lamina in Example 2.6.

181x10° .
- ~181.8x10° Pa,
Q= 1= (0.28)(0.01593) .
9
0, = 028)103x10) _ o000
1-(0.28)(0.01593)
9
O, 10.3X10° 16 35%10° Pa,

T 1-(0.28)(0.01593)

Qe =7.17x10°Pa .

The reduced stiffness matrix [Q] could also be obtained by inverting
the compliance matrix [S] of part 1:

0.5525x 107" —0.1547 x 107" 0
[Q]=[S]"'=|-0.1547x10™"  0.9709x107" 0
0 0 0.1395x 10~
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181.8x10° 2.897x10° 0
=12.897%x10° 10.35x10° 0 Pa.
0 0 7.17 x 10°

4. Using Equation (2.77), the strains in the 1-2 coordinate system are

g 0.5525x 10"  -0.1547 x 107" 0 2x10°
g, |=]-0.1547x10™"  0.9709x 107" 0 -3x10°
Yi2 0 0 0.1395x 107 || 4x10°
15.69
=|—294.4 |(10).
557.9

Thus, the strains in the local axes are
e, =15.604",
m
g, =294.4M"
m

v, = 55794
m

2.5 Hooke’s Law for a Two-Dimensional Angle Lamina

Generally, a laminate does not consist only of unidirectional laminae because
of their low stiffness and strength properties in the transverse direction.
Therefore, in most laminates, some laminae are placed at an angle. It is thus
necessary to develop the stress—strain relationship for an angle lamina.
The coordinate system used for showing an angle lamina is as given in
Figure 2.20. The axes in the 1-2 coordinate system are called the local axes
or the material axes. The direction 1 is parallel to the fibers and the direction
2 is perpendicular to the fibers. In some literature, direction 1 is also called
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B 4

FIGURE 2.20
Local and global axes of an angle lamina.

the longitudinal direction L and the direction 2 is called the transverse
direction T. The axes in the x—y coordinate system are called the global axes
or the off-axes. The angle between the two axes is denoted by an angle 6.
The stress—strain relationship in the 1-2 coordinate system has already been
established in Section 2.4 and we are now going to develop the stress—strain
equations for the x—y coordinate system.

The global and local stresses in an angle lamina are related to each other
through the angle of the lamina, 6 (Appendix B):

o
o, |=[TT" o, |, (2.94)
T

where [T] is called the transformation matrix and is defined as

2 2

c S —2sc
[TT'=|s* ¢ 2sc |, (2.95)
sc  —s¢c c¢*—=¢?

and
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c s 2sc
[T]=| s* ¢* —2sc |, (2.96)
-sc  s¢c ¢’ -s

c¢=Cos (0),

s=Sin (0). (2.97a,b)

Using the stress—strain Equation (2.78) in the local axes, Equation (2.94)
can be written as

o, €
5, |10l &, | (298)
T Y12

Xy

The global and local strains are also related through the transformation
matrix (Appendix B):

81 ex
e, |-[Tl| e, | (2.99)
Yi2/2 Yy /2
which can be rewritten as
8l ex
g, |=[RITIR] | ¢, |, (2.100)
Y12 Yy
where [R] is the Reuter matrix® and is defined as
1 0 O
[RI=|0 1 0. (2.101)
0 0 2

Then, substituting Equation (2.100) in Equation (2.98) gives
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o, €,
o, [=[TT'[QIRITIR] | ¢, | (2.102)
TXy ny

On carrying the multiplication of the first five matrices on the right-hand
side of Equation (2.102),

(O gn gu 916 €y
Oy [5|Qu QR Q| & | (2.103)
T Qle Q26 Q(,e ny

Xy

where Q,-]- are called the elements of the transformed reduced stiffness matrix
[ Q] and are given by

Qi1 = Quc* +Qps* +2(Qyp +2Q6)5°?,
Qi = (Qui + Qo —4Q6)5°* + Qi (¢* +5%),
Qu = Quis* + Qe +2(Q1; +2Q6)57c?,
Qie = Qi1 = Quz = 2Q6)c’s = (Qr2 = Quz = 2Qs6)5°c,
Qa6 = (Qu ~ Q12 = 2Q6)cs” = (Qp = Q12 = 2Qs6)c s,

Qg = (Quy +Qnp —2Q1, —2Q4)s°c” +Qge(s* +¢*). (2.104a-f)

Note that six elements are in the [ Q ] matrix. However, by looking at Equa-
tion (2.104), it can be seen that they are just functions of the four stiffness
elements, Qy;, Qi Qy, and Qg and the angle of the lamina, 6.

Inverting Equation (2.103) gives

%21
<
S
0l
N

%21
<
N

Q

(2.105)

oM
Il
o
N
|
N
|
8
e}

2
=
=<
n
f=}
192
]
95
%
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where S; are the elements of the transformed reduced compliance matrix
and are given by

S;; =5,c* (25, +5,)57c? + S5t
S1, =S,(s +c*)+(Sy, + S,y — Seg)s7c?,
Sy =518 +(2S,, + S )s*c* + Syct,
Si6 = (25, —2S,, — Sgs)sc® = (2S,, — 25,5 — Sg6)s°c,
Sy = (25, =25, =S¢ )s°c — (25,5, — 25, — S )sc>,

§66 =2(281,+2S5—4S1—Se) s’ +Ses(s* +c*). (2.106a—f)

From Equation (2.77) and Equation (2.78), for a unidirectional lamina
loaded in the material axes directions, no coupling occurs between the nor-
mal and shearing terms of strains and stresses. However, for an angle lamina,
from Equation (2.103) and Equation (2.105), coupling takes place between
the normal and shearing terms of strains and stresses. If only normal stresses
are applied to an angle lamina, the shear strains are nonzero; if only shearing
stresses are applied to an angle lamina, the normal strains are nonzero.
Therefore, Equation (2.103) and Equation (2.105) are stress—strain equations
for what is called a generally orthotropic lamina.

Example 2.7

Find the following for a 60° angle lamina (Figure 2.21) of graphite/epoxy.
Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is 6, = 2 MPa, 0, =-3 MPa, and T, =4 MPa, also find

Global strains
Local strains
Local stresses

Principal stresses

N oW

Maximum shear stress
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c, = -3 MPa
A
» T..=4MPa
> Ty
A
O
p / >
6,=2 MPa
Txy v /
v O
y
FIGURE 2.21
Applied stresses to an angle lamina in Example 2.7.
8. Principal strains
9. Maximum shear strain
Solution
¢ = Cos(60°) = 0.500
s = Sin(60°) = 0.866
1. From Example 2.6,
S, =0.5525x10™" i,
Pa
S, =0.9709x 107" i,
Pa
S, =-0.1547 x 107" i,
Pa

Se =0.1395x 107 L
Pa

Now, using Equation (2.106a),
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S, =0.5525x107"(0.500)* +[2(-0.1547 x 10™"")
+0.1395 x 107°](0.866)(0.5)* +0.9709 x 10°(0.866)*

=0.8053x107%° L

Similarly, using Equation (2.106b—f), one can evaluate

S, =—-0.7878 x10™"! i,
Pa

S, =-0.3234x107" i,
Pa

S,, =0.3475x 107" i,
Pa

Sy =—0.4696 x 107" i,
Pa

See = 0.1141 x 10° L,
Pa

2. Invert the transformed compliance matrix [ S ] to obtain the trans-
formed reduced stiffness matrix [ Q ]:

0.8053x107°  —0.7878x10™"  —0.3234x107° |
[Q]=|-0.7878x10™"  0.3475x107°  —0.4696x107"°
-0.3234x107™"° -0.4696x107°  0.1141x10”°

0.2365x 10" 0.3246x 10"  0.2005x 10"
=[0.3246x10"  0.1094%x10?  0.5419x 10" |Pa.
0.2005x 10" 0.5419x 10"  0.3674 x 10"
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3. The global strains in the x-y plane are given by Equation (2.105) as

€, 0.8053x107°  —0.7878x 107"  —0.3234x 107" || 2x10°
g, |=|-0.7878x10™"  0.3475x107"°  -0.4696x107" || -3x10°
Vo | [0-3234x1077  -04696x107°  0.1141x107 | 4x10°

0.5534x107*
=1-0.3078x 107 |.
0.5328x10°°

4. Using transformation Equation (2.99), the local strains in the lamina
are

g 0.2500  0.7500  0.8660 || 0.5534x107*
e, |=| 07500 02500 -0.8660 || —0.3078x107°
Yo /2 -0.4330 0.4330 -0.500 || 0.5328x107 /2

e, | [01367x10* ]
g, |=|-0.2662x107 |.
Y| |[-0.5809%x107°

5. Using transformation Equation (2.94), the local stresses in the lamina
are

o,] [02500 07500 0.8660 ][ 2x10°
o, |=| 07500  0.2500 —0.8660 || -3x10°
T, | [-04330 04330 -0.500 || 4x10°

0.1714x 107
=|-0.2714x 10 |Pa.
—0.4165x 107

6. The principal normal stresses are given by*

2
G.+0 G.-0
O macmin = — L+ e (2.107)
’ 2 2 4
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2
6 _ 6 6 6
_2x10 23><1o i\/[leo ;leo J +(@x10°)

=4.217,-5.217 MPa.

The value of the angle at which the maximum normal stresses occur is*

27
0, = Ltan!| T (2.108)
P2 c,-0C,

1. 2(4x10°%)
=—tan"'| — 21
2 2x10°+3x10°

=29.00" .

Note that the principal normal stresses do not occur along the material
axes. This should be also evident from the nonzero shear stresses in
the local axes.

7. The maximum shear stress is given by*

(2.109)
2x10°=3x10° |
S e R
2
=4.717 MPa.
The angle at which the maximum shear stress occurs is*
6,-G
0, = Lian1| =827 % (2.110)
2 27,
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1 1[ 2><106+3><106]
tan -

2 2(4x10°%)

= 16.00°

8. The principal strains are given by*

2 2
. =EX+€yi e, —¢g, [ Yo
max,min ) 2 2

~ 0.5534x107* +0.3078 x 10~
2

(2.111)

2
. \/( 0.5534 % 10~ +0.3078 x 10 ] . ( 0.5328 %10 ]
- 2 2

=1.962x 107", —4.486x10™* .

The value of the angle at which the maximum normal strains occur is*

ep = ltan"l (ny J
2 €, €,

1 _1( 0.5328 x 10 )
=—tan

ta 2.112
2 0.5534x 107 +0.3078 x 10~ ( )

= 27.86°.

Note that the principal normal strains do not occur along the material
axes. This should also be clear from the nonzero shear strain in the
local axes. In addition, the axes of principal normal stresses and
principal normal strains do not match, unlike in isotropic materials.

9. The maximum shearing strain is given by*
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Y max = (ex - ay)z + ’Yiy

= \/(0.5534 x 107 +0.3078 x 10°)* +(0.532x 107%)* (2.113)

=6.448x107%

The value of the angle at which the maximum shearing strain occurs is*

€, —€
0, = ltan‘1 ——=*
2 Yy

1. 4 0.5534x10™*+0.3078x107°
—tan | —
0.5328 x10°°

(2.114)

=-17.14°

Example 2.8

As shown in Figure 2.22, a 60° angle graphite/epoxy lamina is subjected
only to a shear stress t,, = 2 MPa in the global axes. What would be the
value of the strains measured by the strain gage rosette — that is, what

1

2y
N /§ 60° T,,=2 MPa

AN
Y

A

Fiber Strain gage rosette with gages A, Band C

FIGURE 2.22
Strain gage rosette on an angle lamina.
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would be the normal strains measured by strain gages A, B, and C? Use the
properties of unidirectional graphite/epoxy lamina from Table 2.1.

Solution
Per Example 2.7, the reduced compliance matrix [ S ] is

0.8053x107°  —0.7878x 107! -0.3234x107*°
—0.7878x 107" 0.3475x107°  —0.4696x107"° L )
-0.3234x107° -0.4696x107°  0.1141x10”°

The global strains in the x—y plane are given by Equation (2.105) as

£, 0.8053x107°  —0.7878x10""  —0.3234x107"° 0

g, |=|-07878x107""  0.3475x107"  -0.4696x107" || 0

Yy | |703234x1077  —04696x107  0.1141x107 || 2x10°

—6.468x 107
=[-9.392%x107° |.
2.283x107*

For a strain gage placed at an angle, ¢, to the x-axis, the normal strain
recorded by the strain gage is given by Equation (B.15) in Appendix B.

g, =¢,Cos’9+g, Sin’¢+7y,,Sn¢Cos¢ .
For strain gage A, ¢ = 0°:
€, =—6.468 x 107 Cos® 0°+(~9.392 x 107°) Sin? 0° +2.283 x 10~* Sin 0° Cos 0°
=-6.468x107.
For strain gage B, ¢ = 240°:

€, = —6.468 x 107 Cos* 240° +(-9.392 x 107°) Sin* 240°

+2.283 x 107 Sin 240° Cos 240°
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=1.724x107" .

For strain gage C, ¢ = 120°:

£c =—6.468x 107 Cos® 120° +(-9.392 x 107°) Sin* 120°

+2.283x 107 Sin 120° Cos 120°

=1.083x107° .

2.6 Engineering Constants of an Angle Lamina

The engineering constants for a unidirectional lamina were related to the
compliance and stiffness matrices in Section 2.4.3. In this section, similar
techniques are applied to relate the engineering constants of an angle ply to
its transformed stiffness and compliance matrices.

1. For finding the engineering elastic moduli in direction x (Figure
2.23a), apply

6,#0,0,=0,1,=0. (2.115)

Then, from Equation (2.105),

£x = gllcx/
g,=5,0,,
Yy = 5160, - (2.116a—)

The elastic moduli in direction x is defined as

1
E ="x=_— (2.117)
Sll
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()

&
Xy €

(0

FIGURE 2.23
Application of stresses to find engineering constants of an angle lamina.
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Also, the Poisson’s ratio, A\ is defined as

%]

12 (2.118)

11

Vi

&y
€

95

X

In an angle lamina, unlike in a unidirectional lamina, interaction also
occurs between the shear strain and the normal stresses. This is
called shear coupling. The shear coupling term that relates the nor-
mal stress in the x-direction to the shear strain is denoted by m, and
is defined as

(¢
=——* =——— (2.119)
Y Er Si6Ex

1
m.?(

Note that m, is a nondimensional parameter like the Poisson’s ratio.
Later, note that the same parameter, m,, relates the shearing stress
in the x—y plane to the normal strain in direction-x.

The shear coupling term is particularly important in tensile testing of
angle plies. For example, if an angle lamina is clamped at the two
ends, it will not allow shearing strain to occur. This will result in
bending moments and shear forces at the clamped ends.®

2. Similarly, by applying stresses
6,=0,0,#0,1,=0, (2.120)

as shown in Figure 2.23b, it can be found

E -1 2121
S, ( )
Vi = —i, and (2.122)
22
r__ 1 (2.123)
m, SyEq

The shear coupling term m, relates the normal stress o, to the shear
strain v,,. In the following section (3), note that the same parameter
m, relates the shear stress 1,, in the x—y plane to the normal strain ¢,
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From Equation (2.117), Equation (2.118), Equation (2.121), and Equation
(2.122), the reciprocal relationship is given by

A% A%
MR (2.124)

3. Also, by applying the stresses
6,=0,0,=0,1,%#0, (2.125)

as shown in Figure 2.23c, it is found that

€ =—=, (2.126)
m, Si6E1
I ! , and (2.127)
m, SyEq
G, = 1 2.12
W=7 - (2.128)
66

Thus, the strain—stress Equation (2.105) of an angle lamina can also be
written in terms of the engineering constants of an angle lamina in
matrix form as

l _VW _mx
E, E. E
ex v 1 m Gx
e, |=|-> L lig | (2.129)
v E. E E,
T
e A TR U
E B G,

The preceding six engineering constants of an angle ply can also be
written in terms of the engineering constants of a unidirectional ply
using Equation (2.92) and Equation (2.106) in Equation (2.117)
through Equation (2.119), Equation (2.121), Equation (2.123), and
Equation (2.128):
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=5,,¢* +(25,, + S )s*c* + S5’

(1
+7
G12

2vy,

s2c?
E,

1
+—s%,

2

4

=5,,5* +(25,, + S4)c?s” + Syt

sty
( E,

_2vp 1
G,

1 _
Gi = 566

xy

)czs2 +iC4 ,
E

2

=2(25,; +25,, —4S,, — S45)sc* + Sy (s* +¢*)

2
=2| —+
(El
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=-E,[(25,, -25,, - 566)53C —(255-25,, - Seﬁ)SCS]

=E, |:(—2—2V12+1J53c+(2+ Zadr —1)sc3}. (2.135)

Example 2.9

Find the engineering constants of a 60° graphite/epoxy lamina. Use the
properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution
From Example 2.7, we have

S,; =0.8053x107" l,
Pa

S, =-0.7878 x10™" i,

c 0 1

Si6 =—0.3234x 10" ,
Pa

S,, =0.3475x 107" i,
Pa

Sy =—0.4696x107"° i, and
Pa

S =0.1141x107° L
a
From Equation (2.117),
E.= ;—10
0.8053x 10
=12.42GPa.
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From Equation (2.118),

—-0.7878 x 1071
A i e————T e
v 0.8053%x 10710

=0.09783.

From Equation (2.119),

1 1

m,  (=0.3234x107°)(181x 10°)

m, =5.854.
From Equation (2.121),
E,= ! 10
0.3475x 10
=28.78 GPa.
From Equation (2.123),
1 1

m,  (-0.4696x1070)(181x10°)

m, = 8.499.
From Equation (2.128),

1
G, =—
¥ 0.1141%x107°

=8.761 GPa.

The variations of the six engineering elastic constants are shown as a
function of the angle for the preceding graphite/epoxy lamina in Figure 2.24
through Figure 2.29

The variations of the Young’s modulus, E, and E, are inverses of each other.
As the fiber orientation (angle of ply) varies from 0° to 90°, the value of E,

© 2006 by Taylor & Francis Group, LLC



128 Mechanics of Composite Materials, Second Edition
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Angle of lamina, 0 (degrees)
FIGURE 2.24

Elastic modulus in direction-x as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.25

Elastic modulus in direction-y as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.26
Poisson’s ratio v,, as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.27
In-plane shear modulus in xy-plane as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.28
Shear coupling coefficient m, as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.29
Shear coupling coefficient m, as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.30
Variation of elastic modulus in direction-x as a function of angle of lamina for a typical SCS -
6/Ti6 — Al — 4V lamina.

varies from the value of the longitudinal (E;) to the transverse Young’s
modulus E,. However, the maximum and minimum values of E, do not
necessarily exist for 8 = 0° and 0 = 90°, respectively, for every lamina.

Consider the case of a metal matrix composite such as a typical SCS - 6/
Ti6 —Al — 4V composite. The elastic moduli of such a lamina with a 55% fiber
volume fraction is

E, = 272 GPa
E, = 200 GPa
vy, = 0.2770

Gy, = 77.33 GPa

In Figure 2.30, the lowest modulus value of E, is found for 6 = 63°. In fact,
the angle of 63° at which E, is minimum is independent of the fiber volume
fraction, if one uses the “mechanics of materials approach” (Section 3.3.1) to
evaluate the preceding four elastic moduli of a unidirectional lamina. See
Exercise 3.13.

In Figure 2.27, the shear modulus G,, is maximum for 6 = 45° and is
minimum for 0 and 90° plies. The shear modulus G,, becomes maximum
for 45° because the principal stresses for pure shear load on a 45° ply are
along the material axis.

From Equation (2.133), the expression for G,, for a 45° ply is
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E
Gy =7 (2.136)
(1 +2v,, + 1]
E

2

In Figure 2.28 and Figure 2.29, the shear coupling coefficients m, and m,
are maximum at 0 = 36.2° and 6 = 53.78°, respectively. The values of these
coefficients are quite extreme, showing that the normal-shear coupling terms
have a stronger effect than the Poisson’s effect. This phenomenon of shear
coupling terms is missing in isotropic materials and unidirectional plies, but
cannot be ignored in angle plies.

2.7 Invariant Form of Stiffness and Compliance Matrices for
an Angle Lamina

Equation (2.104) and Equation (2.106) for the [ Q]and [ S ] matrices are not
analytically convenient because they do not allow a direct study of the effect
of the angle of the lamina on the [ Q] and [S ] matrices. The stiffness
elements can be written in invariant form as®

Q,, =U, +U, Cos20+U, Cos49,
Q,, =U, U, Cos 46,

Q,, =U, —U, Cos20 + U, Cos 40
~ u, .. ,
Q16=75mze+u3sm4e,

Q= %SinZG ~U,Sin 46,
Qe = %(Ul -U,)-U;Cos48 , (2.137a—f)

where
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1
U, = §(3Q11 +3Q2 +2Q1; +4Q)
1
U, = E(Qn -Qn),
1
U; = g(Qn +Qx —2Q1, —4Q%),

1
u,= g(Qn +Qp +6Qy; —4Q%)- (2.138a-d)
The terms U,, U,, U, and U, are the four invariants and are combinations

of the Q;, which are invariants as well.
The transformed reduced compliance [ S | matrix can similarly be writ-

ten as

S, =V, +V,Co0s20+V,Cos 48,

S, =V,—V,Cos46,
Sy, =V, -V, Cos20+V,Cos46,
S =V, Sin20+ 2V, Sin 40,
S, =V, Sin26 -2V, Sin 46, and
Ses = 2(V, = V,)—4V, Cos 46, (2.139af)

where

V= %(3511 +3S5,, +25,, + S¢6),

1
V,= E(Sll - Szz)r
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1
Vy= g(Su +52% =251, = S¢6),s

V,= %(s11 +S5 + 681, — Se)- (2.140a—d)

The terms V,, V,, V,, and V, are invariants and are combinations of S;, which
are also invariants.

The main advantage of writing the equations in this form is that one can
easily examine the effect of the lamina angle on the reduced stiffness matrix
elements. Also, formulas given by Equation (2.137) and Equation (2.139) are
easier to manipulate for integration, differentiation, etc. The concept is
mainly important in deriving the laminate stiffness properties in Chapter 4.

The elastic moduli of quasi-isotropic laminates that behave like isotropic
material are directly given in terms of these invariants. Because quasi-iso-
tropic laminates have the minimum stiffness of any laminate, these can be
used as a comparative measure of the stiffness of other types of laminates.”

ijr

Example 2.10

Starting with the expression for Q,, from Equation (2.104a), Q;; =0Q,,Cos*9,
+Qy, Sin* 0+ 2(Qy, +2Q,,)Sin* 8 Cos® 0, reduce it to the expression for Q,, of
Equation (2.137a) — that is,

Q,, =U, +U, Cos20+U, Cos 46

Solution

Given

Q;; =Q,; Cos*8+Q,, Sin* 0 +2(Q,, +2Q,,)Sin*0Cos* 0,

and substituting

Cos? 0 = 1+Cos26
2 7

Sin20= 1-Cos260
2 7
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1+ Cos46
2 7

Cos?20= and

25in0Cos 0 = Sin 26,

Sin220=1~C0s40
2
we get
Q,; =U, +U,Cos20+U,Cos 48 ,
where

u, = %(3(211 +3Qy, +2Q1; +4Q),
1
u, = E(Qn - sz)

U, = %(Qn + Q0 =201, —4Q) -

Example 2.11

Evaluate the four compliance and four stiffness invariants for a graphite/
epoxy angle lamina. Use the properties for a unidirectional graphite/epoxy
lamina from Table 2.1.

Solution
From Example 2.6, the compliance matrix [S] elements are

S, =0.5525x107" i,
Pa

S, =-0.1547 x 107" i,
Pa
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S, =0.9709x 1071 i,
Pa

Se =0.1395x 107 i
Pa
The stiffness matrix [Q] elements are
[Q1=[sI",
Q,; =0.1818 x10'* Pa,
Q,, =0.2897 x 10" Pa,
Q,, =0.1035x 10" Pa,

Qe = 0.7170x 10" Pa.

Using Equation (2.138),

u,= %[3(0.1818 x10")+3(0.1035 x 10") +2(0.2897 x 10'°) + 4(0.7171 x 10'%)]

=0.7637 x 10" Pa,

u, = %(0.1818 %10 -0.1035x10")

=0.8573x 10" Pa,

u, = %[0.1818 x 10" +0.1035 x 10" —2(0.2897 x 10'°) — 4(0.7171x 10'%)]

=0.1971x 10" Pa,

u,= %[0.1818 %10 +0.1035 x 10™ + 6(0.2897 x 10'°) — 4(0.7171 x 10')]

=0.2261x 10" Pa.
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Using Equation (2.140),

V, = %[3(0.5525 x10™) 4+ 3(=0.1547 x 101 +2(0.9709 x 10'°) + 0.1395 x 10~°]
0 1
=0.5553%x 10710 —,
Pa
_ 1 —11 -11
V, = E[(O'SSZS x 107" - (-0.1547 x 10™)]
o 1
=-0.4578x107"" —,
Pa
V, = %[0.5525 x10™ +0.9709 x 107"° — 2(0.1547 x 10™) - 0.1395x 10°]

=-0.4220x 107" i,
Pa

V,= %[0.5525 x 107" +0.9709x 107 +6(0.1547 x 10™")— 0.1395x 10~°]

=-0.5767 x 107! i.
Pa

2.8 Strength Failure Theories of an Angle Lamina

A successful design of a structure requires efficient and safe use of materials.
Theories need to be developed to compare the state of stress in a material
to failure criteria. It should be noted that failure theories are only stated and
their application is validated by experiments.

For a laminate, the strength is related to the strength of each individual
lamina. This allows for a simple and economical method for finding the
strength of a laminate. Various theories have been developed for studying
the failure of an angle lamina. The theories are generally based on the normal
and shear strengths of a unidirectional lamina.

An isotropic material, such as steel, generally has two strength parameters:
normal strength and shear strength. In some cases, such as concrete or gray
cast iron, the normal strengths are different in the tension and compression.
A simple failure theory for an isotropic material is based on finding the
principal normal stresses and the maximum shear stresses. These maximum
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stresses, if greater than any of the corresponding ultimate strengths, indicate
failure in the material.

Example 2.12

A cylindrical rod made of gray cast iron is subjected to a uniaxial tensile
load, P. Given:

Cross-sectional area of rod = 2 in.?
Ultimate tensile strength = 25 ksi
Ultimate compressive strength = 95 ksi
Ultimate shear strength = 35 ksi
Modulus of elasticity = 10 Msi

Find the maximum load, P, that can be applied using maximum stress failure
theory.

Solution

At any location, the stress state in the rod is ¢ = P/2. From a typical Mohr’s
circle analysis, the maximum principal normal stress is P/2. The maximum
shear stress is P/4 and acts at a cross-section 45° to the plane of maximum
normal stress. Comparing these maximum stresses to the corresponding
ultimate strengths, we have

§<25><103 or P <50,000 Ib,

and

g <35x10% or P < 140,000 Ib.

Thus, the maximum load is 50,000 1b.

However, in a lamina, the failure theories are not based on principal normal
stresses and maximum shear stresses. Rather, they are based on the stresses
in the material or local axes because a lamina is orthotropic and its properties
are different at different angles, unlike an isotropic material.

In the case of a unidirectional lamina, there are two material axes: one
parallel to the fibers and one perpendicular to the fibers. Thus, there are four
normal strength parameters for a unidirectional lamina, one for tension and
one for compression, in each of the two material axes directions. The fifth
strength parameter is the shear strength of a unidirectional lamina. The shear
stress, whether positive or negative, does not have an effect on the reported
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shear strengths of a unidirectional lamina. However, we will find later that
the sign of the shear stress does affect the strength of an angle lamina. The
five strength parameters of a unidirectional lamina are therefore

(61 ), = Ultimate longitudinal tensile strength (in direction 1),

(65),; = Ultimate longitudinal compressive strength (in direction 1),
(63 ), = Ultimate transverse tensile strength (in direction 2),

(65 ), = Ultimate transverse compressive strength (in direction 2), and
(112),; = Ultimate in-plane shear strength (in plane 12).

Unlike the stiffness parameters, these strength parameters cannot be trans-
formed directly for an angle lamina. Thus, the failure theories are based on
first finding the stresses in the local axes and then using these five strength
parameters of a unidirectional lamina to find whether a lamina has failed.
Four common failure theories are discussed here. Related concepts of
strength ratio and the development of failure envelopes are also discussed.

2.8.1 Maximum Stress Failure Theory

Related to the maximum normal stress theory by Rankine and the maxi-
mum shearing stress theory by Tresca, this theory is similar to those
applied to isotropic materials. The stresses acting on a lamina are resolved
into the normal and shear stresses in the local axes. Failure is predicted
in a lamina, if any of the normal or shear stresses in the local axes of a
lamina is equal to or exceeds the corresponding ultimate strengths of the
unidirectional lamina.

Given the stresses or strains in the global axes of a lamina, one can find
the stresses in the material axes by using Equation (2.94). The lamina is
considered to be failed if

_(Gf)ult <0; < (G{)ult/ or
C
_(62 )ult <0,< (Gg)ultl or

=(T2)ur < Tiz <(Tp2)ue (2.141a—)

is violated. Note that all five strength parameters are treated as positive
numbers, and the normal stresses are positive if tensile and negative if
compressive.

Each component of stress is compared with the corresponding strength;
thus, each component of stress does not interact with the others.
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Example 2.13

Find the maximum value of S > 0 if a stress of ¢, = 2S5, 6, = -3S, and 1,, =
4S is applied to the 60° lamina of graphite/epoxy. Use maximum stress
failure theory and the properties of a unidirectional graphite/epoxy lamina
given in Table 2.1.

Solution
Using Equation (2.94), the stresses in the local axes are

(o 0.2500  0.7500 0.8660 [| 25
G, |=| 07500 0.2500 -0.8660 || -3S
Ty —0.4330 0.4330 -0.5000 || 4S

0.1714x 10"
=|-0.2714x10" |S.
—0.4165x 10"

From Table 2.1, the ultimate strengths of a unidirectional graphite/epoxy
lamina are

(o]),s = 1500 MPa
(6$),4 = 1500 MPa
(063),s =40 MPa
(65),; = 246 MPa

(T12)uy = 68 MPa
Then, using the inequalities (2.141) of the maximum stress failure theory,
-1500 x 10° < 0.1714 x 10'S < 1500 x 10°
246 x 10° < -0.2714 x 10'S < 40 x 10°
—68 x 10° < -0.4165 x 10'S < 68 x 10°

or
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-875.1 x 106 < S < 875.1 x 106
-14.73 x 106 < S < 90.64 x 10¢
-16.33 x 10° < S < 16.33 x 10¢.

All the inequality conditions (and S > 0) are satisfied if 0 < S < 16.33 MPa.
The preceding inequalities also show that the angle lamina will fail in shear.
The maximum stress that can be applied before failure is

6, =32.66 MPa,6, =-48.99 MPa,t,, =65.32 MPa.

Example 2.14

Find the off-axis shear strength of a 60° graphite/epoxy lamina. Use the
properties of unidirectional graphite/epoxy from Table 2.1 and apply the
maximum stress failure theory.

Solution

The off-axis shear strength of a lamina is defined as the minimum of the
magnitude of positive and negative shear stress (Figure 2.31’ that can be
applied to an angle lamina before failure.

Assume the following stress state

o,=0,0,=0,1,=1.

Then, using the transformation Equation (2.94),

(o} 0.2500  0.7500 0.8660 || 0
o, |=| 07500 0.2500 —0.8660 ([0
Ty -0.4330 0.4330 -0.5000 ||~

c, =0.8661
o, —0.8661
T, =—0.5007 .

Using the inequalities (2.141) of the maximum stress failure theory, we
have
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g
A

(a) Positive shear stress

(b) Negative shear stress

FIGURE 2.31
Positive and negative shear stresses applied to an angle lamina.

-1500 < 0.8661 < 1500 or —1732 < 1 < 1732
-246 < —0.8667 < 40 or —46.19 < 1 < 284.1
—-68 < -0.5001 < 68 or —136.0 < T < 136.0,

which shows that 1,, = 46.19 MPa is the largest magnitude of shear stress
that can be applied to the 60° graphite/epoxy lamina. However, the largest
positive shear stress that could be applied is 1,, = 136.0 MPa, and the largest
negative shear stress is t,, = -46.19 MPa.

This shows that the maximum magnitude of allowable shear stress in other
than the material axes” direction depends on the sign of the shear stress. This
is mainly because the local axes’ stresses in the direction perpendicular to
the fibers are opposite in sign to each other for opposite signs of shear stress
(0, = -0.8661 for positive 1,, and 6, = 0.866t for negative t,,). Because the
tensile strength perpendicular to the fiber direction is much lower than the
compressive strength perpendicular to the fiber direction, the two limiting
values of t,, are different.
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TABLE 2.3

Effect of Sign of Shear Stress as a Function of Angle
of Lamina

Angle,  Positive t,, Negative T,,  Shear strength

Degrees MPa MPa MPa
0 68.00 (S) 68.00 (S) 68.00

15 78.52 (S) 78.52 (S) 78.52

30 136.0 (S) 46.19 (2T) 46.19
45 246.0 (2C) 40.00 (2T) 40.00
60 136.0 (S) 46.19 (2T) 46.19
75 78.52 (S) 78.52 (S) 78.52
90 68.00 (S) 68.00 (S) 68.00

Note: The notation in the parentheses denotes the mode
of failure of the angle lamina as follows:
(1T) — longitudinal tensile failure;
(1C) — longitudinal compressive failure;
(2T) — transverse tensile failure;
(2C) — transverse compressive failure;
(S) — shear failure.

Table 2.3 shows the maximum negative and positive values of shear stress
that can be applied to different angle plies of graphite/epoxy of Table 2.1.
The minimum magnitude of the two stresses is the shear strength of the
angle lamina.

2.8.2 Strength Ratio

In a failure theory such as the maximum stress failure theory of Section 2.8.1,
it can be determined whether a lamina has failed if any of the inequalities
of Equation (2.141) are violated. However, this does not give the information
about how much the load can be increased if the lamina is safe or how much
the load should be decreased if the lamina has failed. The definition of
strength ratio (SR) is helpful here. The strength ratio is defined as

_ Maximum Load Which Can Be Applied
- Load Applied '

SR

(2.142)

The concept of strength ratio is applicable to any failure theory. If SR > 1,
then the lamina is safe and the applied stress can be increased by a factor
of SR. If SR < 1, the lamina is unsafe and the applied stress needs to be
reduced by a factor of SR. A value of SR = 1 implies the failure load.

Example 2.15
Assume that one is applying a load of
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6,=2MPa,6,=-3MPa,t,, =4MPa

to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the
maximum stress failure theory.

Solution
If the strength ratio is R, then the maximum stress that can be applied is

0.=2R,6,=-3R, 1 4R .

Xy:

Following Example 2.13 for finding the local stresses gives

6,0.1714x10' R
6,=-02714x10'R

1, =-0.4165%10'R .

Using the maximum stress failure theory as given by Equation (2.141)
yields

R =16.33.

Thus, the load that can be applied just before failure is

6,=16.33x2 MPa, 6, =16.33x(-3) MPa, 1,, =16.33 x4 Mpa,

6, =32.66 MPa, 6, =—48.99 MPa, 1., =65.32 MPa.

Note that all the components of the stress vector must be multiplied by the
strength ratio.

2.8.3 Failure Envelopes

A failure envelope is a three-dimensional plot of the combinations of the
normal and shear stresses that can be applied to an angle lamina just before
failure. Because drawing three dimensional graphs can be time consuming,
one may develop failure envelopes for constant shear stress t,, and then use
the two normal stresses ¢, and 6, as the two axes. Then, if the applied stress
is within the failure envelope, the lamina is safe; otherwise, it has failed.
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Example 2.16

Develop a failure envelope for the 60° lamina of graphite/epoxy for a con-
stant shear stress of 1,, = 24 MPa. Use the properties for the unidirectional
graphite/epoxy lamina from ‘lable 2.1.

Solution
From Equation (2.94), the stresses in the local axes for a 60° lamina are
given by

6,=0.25000,+0.75000, +20.78 MPa,

6, =0.75000, +0.25000,, — 20.78 MPa,

1), =-0.43300, +0.43305, —12.00 MPa,

where 6, and 6, are also in units of MPa.
Using the preceding inequalities,

-1500<0.250006, +0.7500 5, +20.78 < 1500

246 <0.75000, +0.25000, —20.78 < 40

-68<-0.43300, +0.43300, -12.00 < 68 .

Various combinations of (o,, 6,) can be found to satisfy the preceding
inequalities. However, the objective is to find the points on the failure enve-
lope. These are combinations of 6, and 6,, where one of the three inequalities
is just violated and the other two are satisfied. Some of the values of (o,, ©,)
obtained on the failure envelope are given in Table 2.4.

Several methods can be used to obtain the points on the failure envelope
for a constant shear stress. One way is to fix the value of o, and find the
maximum value of ¢, that can be applied without violating any of the
conditions. For example, for 6, = 100 MPa, from the inequalities we have

-2061<0, <1939,
-1201< 0o, <-56.88,

~29.33< 5, < 284.80.
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TABLE 2.4

Typical Values of (c,, 6,) on the
Failure Envelope for Example 2.16

o, (MPa) o, (MPa)
50.0 93.1
50.0 -79.3

-50.0 179
-50.0 -135
25.0 168
25.0 -104
-25.0 160
-25.0 -154

The preceding three inequalities show no allowable value of 6, for this value
of 6, = 100 MPa.
As another example, for ¢, = 50 MPa, we have from inequalities,

—2044 < o, < 1956,
-1051<05, <93.12,

-79.33 < o, < 234.80.

The preceding three inequalities show two maximum allowable values of
the normal stress, G, These are 6, = 93.12 MPa and o, = -79.33 MPa. The
failure envelope for t,, = 24 MPa is shown in Figure 2.32.

2.8.4 Maximum Strain Failure Theory

This theory is based on the maximum normal strain theory by St. Venant
and the maximum shear stress theory by Tresca as applied to isotropic
materials. The strains applied to a lamina are resolved to strains in the local
axes. Failure is predicted in a lamina, if any of the normal or shearing strains
in the local axes of a lamina equal or exceed the corresponding ultimate
strains of the unidirectional lamina. Given the strains/stresses in an angle
lamina, one can find the strains in the local axes. A lamina is considered to
be failed if

C
_(el )ult <g < (erl[‘)ult/ or

_(Sg)ult <g < (gg)ultl or
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FIGURE 2.32
Failure envelopes for constant shear stress using maximum stress failure theory.

=(Y12)ur < V12 <(V12)un (2.143a—)
is violated, where
(¢1)s; = ultimate longitudinal tensile strain (in direction 1)
(e¥),; = ultimate longitudinal compressive strain (in direction 1)
(e1),; = ultimate transverse tensile strain (in direction 2)
(5), = ultimate transverse compressive strain (in direction 2)
(Y12)uy = ultimate in-plane shear strain (in plane 1-2)

The ultimate strains can be found directly from the ultimate strength
parameters and the elastic moduli, assuming the stress—strain response is
linear until failure. The maximum strain failure theory is similar to the
maximum stress failure theory in that no interaction occurs between various
components of strain. However, the two failure theories give different results
because the local strains in a lamina include the Poisson’s ratio effect. In fact,
if the Poisson’s ratio is zero in the unidirectional lamina, the two failure
theories will give identical results.

Example 2.17

Find the maximum value of S > 0 if a stress, o, = 25, o, = -3S, and Ty = 48,
is applied to a 60° graphite/epoxy lamina. Use maximum strain failure
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theory. Use the properties of the graphite/epoxy unidirectional lamina given
in Table 2.1.

Solution

In Example 2.6, the compliance matrix [S] was obtained and, in Example 2.13,
the local stresses for this problem were obtained. Then, from Equation (2.77),

€ O
&, [=I[S]| o,
Y12 T12
0.5525x 107" —-0.1547 x10™" 0 0.1714x 10"
=|-0.1547x10™" 0.9709x107"° 0 -0.2714x10" |S
0 0 0.1395% 10 || -0.4165x 10"

0.1367 x 107
=1-0.2662%x107 |S.
—-0.5809x 107

Assume a linear relationship between all the stresses and strains until
failure; then the ultimate failure strains are

T 6
(€7, = O )ur _ 1500X107 _ g a7 1073,

E, 181x10°

C 6
(€)= (O L 1S00XA0T _ g 57103,
E,  181x10

_ (62)u _ 40x10°

el), = = =3.883x107°,
&2 )u E, 10.3%x10°
C 6
(€)= O _ 246X10° 5 366102,
E, 103x10
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(112)ult _ 68X 106

e 9.483x10°.

(Y12)ue =

The preceding values for the ultimate strains also assume that the com-
pressive and tensile stiffnesses are identical. Using the inequalities (2.143)
and recognizing that 5 > 0,

-8.287 %107 <0.1367 x107°S < 8.287 x 107,

—2.388x 107 <—0.2662x107°S <3.883x107°,

-9.483x107° <-0.5809%x 1075 <9.483x 107,

or
-606.2x10° < S <606.2x10°,
~14.58 x10° < § < 89.71x 10°
-16.33x10° < S<16.33x10°,
which give

0<5<16.33 MPa.

The maximum value of S before failure is 16.33 MPa. The same maximum
value of S = 16.33 MPa is also found using maximum stress failure theory.
There is no difference between the two values because the mode of failure
is shear. However, if the mode of failure were other than shear, a difference
in the prediction of failure loads would have been present due to the
Poisson’s ratio effect, which couples the normal strains and stresses in the
local axes.

Neither the maximum stress failure theory nor the maximum strain failure
theory has any coupling among the five possible modes of failure. The
following theories are based on the interaction failure theory.

2.8.5 Tsai-Hill Failure Theory

This theory is based on the distortion energy failure theory of Von-Mises’
distortional energy yield criterion for isotropic materials as applied to aniso-
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tropic materials. Distortion energy is actually a part of the total strain energy
in a body. The strain energy in a body consists of two parts; one due to a
change in volume and is called the dilation energy and the second is due to
a change in shape and is called the distortion energy. It is assumed that
failure in the material takes place only when the distortion energy is greater
than the failure distortion energy of the material. Hill® adopted the Von-
Mises’ distortional energy yield criterion to anisotropic materials. Then, Tsai”
adapted it to a unidirectional lamina. Based on the distortion energy theory,
he proposed that a lamina has failed if

(G, +G;)07 +(G, +G;)05 +(G, +G,)03 —2G;6,6, —2G,6,6,  (2.144)

— 2G,6,6, +2G, 15, +2G513, + 2G5, < 1

is violated. The components G;, G,, G;, G, G5, and G of the strength criterion
depend on the failure strengths and are found as follows.

1. Apply 6, =(0]),; to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(G, +G3)o1 )a =1. (2.145)

2. Apply 6, =(03),; to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(G +G3)(03)i =1. (2.146)

3. Apply 6, =(63),; to a unidirectional lamina and, assuming that the
normal tensile failure strength is same in directions (2) and (3), the
lamina will fail. Thus, Equation (2.144) reduces to

(G, +Gy)(o3)ay =1. (2.147)

4. Apply Ty, = (1), to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

2G4(Ty)i = 1. (2.148)

From Equation (2.145) to Equation (2.148),
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G = 1[ 2 1 J
[(62 )ult ]2 [(G;F)ltlt ]2
G, = I(leJ
2\ [(01).u]

=i ] ]
2\ [(o1)u?

Y B 2}. (2.149a—d)
20 [(T12) ]

Because the unidirectional lamina is assumed to be under plane stress —
that is, 03 = T3, = T3 = 0, then Equation (2.144) reduces through Equation

(2.149) to
% 2— 010, or |,[ m | 1. 2.150
[«sm} {(o{)@H(oi)A {(ru)uu} < (2.150)

Given the global stresses in a lamina, one can find the local stresses in a
lamina and apply the preceding failure theory to determine whether the
lamina has failed.

Example 2.18

Find the maximum value of S > 0 if a stress of 6, = 25, o, = =35, and Ty =
4S is applied to a 60° graphite/epoxy lamina. Use Tsai-Hill failure theory.
Use the unidirectional graphite/epoxy lamina properties given in Table 2.1.

Solution
From Example 2.13,

6,=17145,

6,=-27145,

© 2006 by Taylor & Francis Group, LLC



152 Mechanics of Composite Materials, Second Edition

T, =—4.165 S.

Using the Tsai-Hill failure theory from Equation (2.150),

17145 Y ( 1.714S 27145 27145 (-41655Y
- + + <1
1500 % 10° 1500%10° )\ 1500% 10° 40x10° 68x10°

5<10.94 MPa

1. Unlike the maximum strain and maximum stress failure theories,
the Tsai—Hill failure theory considers the interaction among the three
unidirectional lamina strength parameters.

2. The Tsai-Hill failure theory does not distinguish between the com-
pressive and tensile strengths in its equations. This can result in
underestimation of the maximum loads that can be applied when
compared to other failure theories. For the load of ¢, = 2 MPa, o, =
-3 MPa, and T, = 4 MPa, as found in Example 2.15, Example 2.17,
and Example 2.18, the strength ratios are given by

SR =10.94 (Tsai-Hill failure theory)
SR = 16.33 (maximum stress failure theory)
SR =16.33 (maximum strain failure theory)

Tsai-Hill failure theory underestimates the failure stress because the trans-
verse tensile strength of a unidirectional lamina is generally much less than
its transverse compressive strength. The compressive strengths are not used
in the Tsai-Hill failure theory, but it can be modified to use corresponding
tensile or compressive strengths in the failure theory as follows

2 2 2
S| ||| O2 ||4] %2 | 4| T2 | <1 (2.151)
X, X, \ X, Y S ’ '
where
X; = (G;F)ult ifo,>0

c . )
= (o7)u if 0, <0;

X, =(01)y if6,>0
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= (Glc)ult if 0, < 0;
Y = (6})y if 0, >0

= (65)u if 0, <0

S = (T1)ur

For Example 2.18, the modified Tsai-Hill failure theory given by
Equation (2.151) now gives

17146 Y ( 17140 \( —2.714c 27146 ¥ (—4.1656 )
_ + + <1
1500 % 10° 1500 10° )\ 1500 x 10° 246x10° 68x10°

¢ < 16.06 MPa,

which implies that the strength ratio is SR = 16.06 (modified Tsai-Hill failure
theory). This value is closer to the values obtained using maximum stress
and maximum strain failure theories.

3. The Tsai-Hill failure theory is a unified theory and thus does not
give the mode of failure like the maximum stress and maximum
strain failure theories do. However, one can make a reasonable
guess of the failure mode by calculating ‘01 /(61w G2 /(03
and [T,/ (Ty2),]- The maximum of these three values gives the asso-
ciated mode of failure. In the modified Tsai-Hill failure theory,
calculate the maximum of |6,/X)), [6,/Y], and |1,/ 5| for the associ-
ated mode of failure.

7

2.8.6 Tsai-Wu Failure Theory

This failure theory is based on the total strain energy failure theory of
Beltrami. Tsai-Wu® applied the failure theory to a lamina in plane stress. A
lamina is considered to be failed if

H,o, + H,06, + Hxy, + Hy, 63 + Hy, 63 +Hy 13, + 2H,0,06, <1 (2.152)

is violated. This failure theory is more general than the Tsai-Hill failure
theory because it distinguishes between the compressive and tensile
strengths of a lamina.
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The components H,, H,, H,, H,;, H,,, and H of the failure theory are found
using the five strength parameters of a unidirectional lamina as follows:

1. Apply 6, =(61).u, 6, =0, T, =0 to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

H,(07) s+ Hyy (0] = 1. (2.153)

2. Apply 6, =—(6)u, 6,=0, T, =0to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

—H,(07) s+ Hyy (07 )i = 1. (2.154)
From Equation (2.153) and Equation (2.154),

1 1

= —_ C ,
(G{)ult (61 )ult

(2.155)

1

1

—_—. 2.156
(G{)ult (Glc)ult ( )

1=

3. Apply 6,=0, 6, =(03 )., T, =0 to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

Hy(63) s + Hy (03 = 1. (2.157)

4. Apply 6,=0, 6,=—(65)4, Tp=0to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

—H,(65).u + H (053 = 1. (2.158)
From Equation (2.157) and Equation (2.158),

1 1

= — c ,
(Gg)ult (62 )ult

(2.159)

2

Hy=—+ (2.160)

(Gg)ult(cg)ult
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5. Apply 6, =0, 6, =0, and 1}, = (T1,), to a unidirectional lamina; it
will fail. Equation (2.152) reduces to

Hg(T12) e + He (T2 = 1. (2.161)

6. Apply 6, =0, 6, =0, and 1;, = —(T;,),+ to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

—H(T12) e + Ho (T2 = 1. (2.162)

From Equation (2.161) and Equation (2.162),

H,=0, (2.163)
1
= . (2.164)
* (’Hz)iu

The only component of the failure theory that cannot be found directly
from the five strength parameters of the unidirectional lamina is H,,. This
can be found experimentally by knowing a biaxial stress at which the lamina
fails and then substituting the values of 6, 6,, and t,, in the Equation (2.152).
Note that 6, and o, need to be nonzero to find H,,. Experimental methods
to find H;, include the following.

1. Apply equal tensile loads along the two material axes in a unidirec-
tional composite. If 6, = 6, = 6, T,, = 0 is the load at which the lamina
fails, then

(H,+H,)o+(Hy, +Hy, +2H,,)0” = 1. (2.165)

The solution of Equation (2.165) gives
1
le=2—02[1—(H1+H2)G—(H11+H22)(52]. (2.166)

It is not necessary to pick tensile loads in the preceding biaxial test, but one
may apply any combination of

6,=0,0,=0,
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6,=-0,0,=-0,

6,=0,0,=-0,

6,=-06,0,=0. (2.167)

This will give four different values of H;,, each corresponding to the four
tests.
2. Take a 45° lamina under uniaxial tension G,. The stress o, at failure
is noted. If this stress is 6, = ¢, then, using Equation (2.94), the local
stresses at failure are

(¢}
61 - E,
G, = % (2.168a—c)
L _.o
12 2

Substituting the preceding local stresses in Equation (2.152),

2
o O
(H1+H2)E+Z(HH+H22+H66+2H12):1. (2.169)

2 (H,+H,) 1
?_%_E(HH +H,, +H). (2.170)

Hy, =

Some empirical suggestions for finding the value of H;, include

, per Tsai-Hill failure theory?® (2.171a—)

le =

2(01 )
H,, = —% , per Hoffman criterion
2(01 )ult(cl )ult
H,, = L \/ L per Mises—Hencky criterion.!
12— 5 7 - .
2 (G{)ult(Glc)ult(cg)ult(cg)ult
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Example 2.19

157

Find the maximum value of S > 0 if a stress 6, = 25, 6, = 3§, and 1,, = 4S
are applied to a 60° lamina of graphite/epoxy. Use Tsai-Wu failure theory.
Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution
From Example 2.13,

6, =1714S,
6, =-2.714S,
1y, = —4.1658.

From Equations (2.155), (2.156), (2.159), (2.160), (2.163), and (2.164),

= 1 - ! ~=0Pa™!
1500x 10> 1500x10

1 ’

_ 11
40x10° 246x10°

=2.093x10"® Pa’!,

2

Hy =0 Pa,
1 -19 -2
H, = - —=4.4444x10™" Pa’?,
(1500 % 10°)(1500 x 10°)
1 —-16 -2
Hy, = - —=1.0162x10"° Pa’?,
(40x 10°)(246 X 10°)
1 -16 -2
6= 5 =21626x107° Pa? .
(68%10°)

Using the Mises—Hencky criterion for evaluation of H;,, (Equation 2.165c),

2

Hy,= L J ! =3.360x107"* Pa.

(1500 x 10°)(1500 x 10°)(40 x 10°)(246 x 10°)
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Substituting these values in Equation (2.152), we obtain

(0)(1.7145) +(2.093 x 107%)(—2.714S)
+ (0)(—4.1655) + (4.444 x 107%)(1.714S)?
+ (1.0162 x 107')(—2.7145)* +(2.1626 X 10'¢)(—4.1655)*

+ 2(-3.360x 107'¥)(1.7145)(-2.714S) < 1,
or

5<22.39 MPa .

If one uses the other two empirical criteria for H;,, per Equation (2.171),
this yields

5<22.49 MPa for Hy, = —%,
2(01 )

1 1

§$<22.49 MPa for H,=———7n———.
2606

Summarizing the four failure theories for the same stress state, the value
of S obtained is

S =16.33 (maximum stress failure theory)

S =16.33 (maximum strain failure theory)
S =10.94 (Tsai-Hill failure theory)

S =16.06 (modified Tsai-Hill failure theory)
S = 22.39 (Tsai-Wu failure theory)

2.8.7 Comparison of Experimental Results with Failure Theories

Tsai” compared the results from various failure theories to some experimen-
tal results. He considered an angle lamina subjected to a uniaxial load in
the x-direction, 6., as shown in Figure 2.33. The failure stresses were
obtained experimentally for tensile and compressive stresses for various
angles of the lamina.
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FIGURE 2.33
Off-axis loading in the x-direction in Figure 2.34 to Figure 2.37

The experimental results can be compared with the four failure theories
by finding the stresses in the material axes for an arbitrary stress, ¢,, for an
angle lamina with an angle, 6, between the fiber and loading direction as

6,=0,Cos*6,
6,=0,5Sin”9, (2.172)

1, =—6,5in0Cos6,

per Equation (2.94).
The corresponding strains in the material axes are

g = i(Cosz 90—V, Sin’0)c,,
E,
€, = Ei(sm2 0—v,, Cos’0)c, (2.173)
2

Yo = —Gi(smecOs 0)a,,

12

per Equation (2.99).

Using the preceding local strains and stresses in the four failure theories
given by Equation (2.141), Equation (2.143), Equation (2.150), and Equation
(2.152), one can find the ultimate off-axis load, o,, that can be applied as a
function of the angle of the lamina.

The following values were used in the failure theories for the unidirectional
lamina stiffnesses and strengths:

E, =7.8 Msi,
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E,=2.6 Msi,
vy, =0.25,
Gy, =1.3 Msi,

(1), =150 Ksi,
(6%),, = 150 Ksi,
(Gg)ult =4 Ksi,
(65), =20 Ksi,

(T12) e = 6 Ksi.

The comparison for the four failure theories is shown in Figure 2.34
through Figure 2.37. Observations from the figures are:

¢ The difference between the maximum stress and maximum strain
failure theories and the experimental results is quite pronounced.

* Tsai-Hill and Tsai-Wu failure theories’ results are in good agreement
with experimentally obtained results.

¢ The variation of the strength of the angle lamina as a function of
angle is smooth in the Tsai-Hill and Tsai-Wu failure theories, but
has cusps in the maximum stress and maximum strain failure the-
ories. The cusps correspond to the change in failure modes in the
maximum stress and maximum strain failure theories.

2.9 Hygrothermal Stresses and Strains in a Lamina

Composite materials are generally processed at high temperatures and then
cooled down to room temperatures. For polymeric matrix composites, this
temperature difference is in the range of 200 to 300°C; for ceramic matrix
composites, it may be as high as 1000°C. Due to mismatch of the coefficients
of thermal expansion of the fiber and matrix, residual stresses result in a
lamina when it is cooled down. Also, the cooling down induces expansional
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O T T T I T T I T T l T T T T
100 =
L Maximum stress failure theory .
{a\ - -
2 Experimental data points
o L
10
1 1 O
0 15 30 45 60 75 90
Angle of lamina, 0 (degrees)
FIGURE 2.34

Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum stress failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.\W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

T T ' T T I T T ' T T I T T l T T
100 |- -
E i Experimental data points
v><
© - -
Maximum strain failure theory
10 = 7
1 ] l 1 1 o
0 15 30 45 60 75 90
Angle of lamina, 0 (degrees)
FIGURE 2.35

Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum strain failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.\W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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Tsai-Hill failure theory

Experimental data points

Ll

162
(Coa
100 |-
3 .
v><
© L
10 |
—
0
FIGURE 2.36

15 30 45 60 75
Angle of lamina, 0 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai-Hill
failure theory. (Experimental data reprinted with permission from Introduction to Composite

Materials, Tsai, SW. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

Tsai-Wu failure theory

Experimental data points

@
100
E -
vx
© -
10 |-
0
FIGURE 2.37

15 30 45 60 75
Angle of lamina, 0 (degrees)

Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai-Wu
failure theory. (Experimental data reprinted with permission from Introduction to Composite

Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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strains in the lamina. In addition, most polymeric matrix composites can
absorb or deabsorb moisture. This moisture change leads to swelling strains
and stresses similar to those due to thermal expansion. Laminates in which
laminae are placed at different angles have residual stresses in each lamina
due to differing hygrothermal expansion of each lamina. The hygrothermal
strains are not equal in a lamina in the longitudinal and transverse directions
because the elastic constants and the thermal and moisture expansion coef-
ficients of the fiber and matrix are different. In the following sections,
stress—strain relationships are developed for unidirectional and angle lami-
nae subjected to hygrothermal loads.

2.9.1 Hygrothermal Stress—Strain Relationships for a
Unidirectional Lamina

For a unidirectional lamina, the stress—strain relationship with temperature
and moisture difference gives

€ S S 0 o 81T 8?
& [=|S, S» 0 |[o, |+|el [+]|e5 |, (2.174)

Y12 0 0 Ses || T12 0 0

where the subscripts T and C are used to denote temperature and moisture,
respectively. Note that the temperature and moisture change do not have
any shearing strain terms because no shearing strains are induced in the
material axes. The thermally induced strains are given by

8{ Oy
el [=AT| o, |, (2.175)
0 0

where 0, and «, are the longitudinal and transverse coefficients of thermal
expansion, respectively, and AT is the temperature change. The moisture-
induced strains are given by

8? B,
g5 |=AC|B, |, (2.176)
0 0

where B, and (3, are the longitudinal and transverse coefficients of moisture,
respectively, and AC is the weight of moisture absorption per unit weight of
the lamina.
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Equation (2.174) can be inverted to give

G Qu Qun 0 |l&- £1T - 81C
0, [=|Qn O 0 | &~ 8; - 8% . (2.177)

T2 0 0 Qs Y12

2.9.2 Hygrothermal Stress—Strain Relationships for an Angle Lamina

The stress—strain relationship for an angle lamina takes the following form:

€y Si Sy §16 (O &, ey
g, |= %2 @z @6 o, [+| & [+] & |, (2.178)
Yy S5 S Ses Ty YL ng
where
& o,
g, [=AT| o, |, (2.179)
T
ny (ny
and
& B.
c |-
e |=AC| B, |- (2.180)
C
Yy By

The terms o, ,, and o, are the coefficients of thermal expansion for an
angle lamina and are given in terms of the coefficients of thermal expansion
for a unidirectional lamina as

(xx al
o, |=[TT"a,|. (2.181)
o, /2 0
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Similarly, B,, B,, and B,, are the coefficients of moisture expansion for an
angle lamina and are given in terms of the coefficients of moisture expansion
for a unidirectional lamina as

Bx Bl
B, |=[TT"|B,|. (2.182)
Bxy /2 0

From Equation (2.174), if no constraints are placed on a lamina, no mechan-
ical strains will be induced in it. This also implies then that no mechanical
stresses are induced. However, in a laminate, even if the laminate has no
constraints, the difference in the thermal/moisture expansion coefficients of
the various layers induces different thermal/moisture expansions in each
layer. This difference results in residual stresses and will be explained fully
in Chapter 4.

Example 2.20

Find the following for a 60° angle lamina of glass/epoxy:

1. Coefficients of thermal expansion
2. Coefficients of moisture expansion

3. Strains under a temperature change of -100°C and a moisture
absorption of 0.02 kg/kg.

Use properties of unidirectional glass/epoxy lamina from Table 2.1.

Solution

1. From Table 2.1,
o, =8.6x10° m/m/°C,

0, =22.1x10° m/m/°C.

Using Equation (2.181) gives

o, 0.2500  0.7500  —0.8660 || 8.6x107°
o, |=[0.7500  0.2500 0.8660 |[22.1x107° |,
o, /2 0.4330 -0.4330 —0.5000 0
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o, 18.73x 10
o, [=] 11.98x10° [ m/m/°C.
o -11.69x10°°

2. From Table 2.1,
B, =0m/m/kg/kg,

B, =0.6 m/m/kg/kg.

Using Equation (2.182) gives

B, 0.2500  0.7500  -0.8660 || 0.0
B, |[=[0.7500  0.2500 0.8660 || 0.6
B, /2 04330 -0.4330 -0.50001(| O

B, 0.4500
By =| 0.1500 | m/m/kg/kg .
By -0.5196

3. Now, use Equation (2.179) and Equation (2.180) to calculate the
strains as

€, 18.73x 10 0.4500
g, |=| 11.98x10°° |(~100)+| 0.1500 |(0.02)
Ty -11.69x10°° -0.5196
0.7127 x 1072
=| 0.1802x102 | m/m.
—0.9223x 107
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2.10 Summary

After reviewing the definitions of stress, strain, elastic moduli, and strain
energy, we developed the three-dimensional stress—strain relationships for
different materials. These materials range from anisotropic to isotropic. The
number of independent constants ranges from 21 for anisotropic to 2 for
isotropic materials, respectively. Using plane stress assumptions, we reduced
the three-dimensional problem to a two-dimensional problem and devel-
oped a stress—strain relationship for a unidirectional/bidirectional lamina.
These relationships were then found for an angle lamina, using transforma-
tion of strains and stresses. We introduced failure theories of an angle lamina
in terms of strengths of unidirectional lamina. Finally, we developed
stress—strain equations for an angle lamina under thermal and moisture
loads. In the appendix of this chapter, we review matrix algebra and the
transformation of stresses and strains.

Key Terms

Mechanical characterization
Stress

Strain

Elastic moduli

Strain energy

Anisotropic material
Monoclinic material
Orthotropic material
Transversely isotropic material
Isotropic material

Plane stress

Compliance matrix

Stiffness matrix

Angle ply

Engineering constants
Invariant stiffness and compliance
Failure theories

Maximum stress failure theory
Maximum strain failure theory
Tsai-Hill theory

Tsai-Wu theory

Failure envelopes
Hygrothermal stresses
Hygrothermal loads
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Exercise Set

2.1 Write the number of independent elastic constants for three-dimen-
sional anisotropic, monoclinic, orthotropic, transversely isotropic,
and isotropic materials.

2.2 The engineering constants for an orthotropic material are found to be

E,=4Msi, E;=3Msi, E;=3.1Msi,
vy, =02, vy; =04, v;, =0.6,
Gy, =6Msi, Gy =7 Msi, G5, =2 Msi

Find the stiffness matrix [C] and the compliance matrix [S] for the
preceding orthotropic material.

2.3 Consider an orthotropic material with the stiffness matrix given by

[-0.67308  -1.8269 -1.0577 0 0 O
-1.8269 -0.67308 -14423 0 0 O
[C]= -1.0577 —1.4423 048077 0 0 O GPa
0 0 0 4 0 O
0 0 0 0 2 0
10 0 0 0 0 15

Find:

1. The stresses in the principal directions of symmetry if the strains
in the principal directions of symmetry at a point in the material
areg; =1lum/m, &, =3 um/m, & =2 um/m; ¥,; =0, v3; = 5 um/
m, ¥, = 6 um/m

2. The compliance matrix [S]

3. The engineering constants E,, E,, E;, V15, Va3, Va1, Gip, Gos, Gy

4. The strain energy per unit volume at the point where strains are
given in part (1.)

2.4 Reduce the monoclinic stress—strain relationships to those of an
orthotropic material.

2.5 Show the difference between monoclinic and orthotropic materials
by applying normal stress in principal directions and shear stress in
principal planes, one at a time and studying the resulting nonzero
and zero strains.
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2.6 Write down the compliance matrix of a transversely isotropic mate-
rial (where 2-3 is the plane of isotropy) in terms of the following
engineering constants:

E is the Young’s modulus in the plane of isotropy 2-3

E’ is the Young’s modulus in direction 1 that is perpendicular to
plane of isotropy 2-3

v is the Poisson’s ratio in the plane of isotropy 2-3
v’ is the Poisson’s ratio in the 1-2 plane
G’ is the shear modulus in the 1-2 plane

2.7 Find the relationship between the engineering constants of a three-
dimensional orthotropic material and its compliance matrix.

2.8 What are the values of stiffness matrix elements C;; and C;, in terms
of the Young’s modulus and Poisson’s ratio for an isotropic material?

2.9 Are v, and v,, independent of each other for a unidirectional ortho-
tropic lamina?
2.10 Find the reduced stiffness [Q] and the compliance [S] matrices for a
unidirectional lamina of boron/epoxy. Use the properties of a uni-
directional boron/epoxy lamina from Table 2 1.

2.11 Find the strains in the 1-2 coordinate system (local axes) in a uni-
directional boron/epoxy lamina, if the stresses in the 1-2 coordinate
system applied to are 6, = 4 MPa, 6, = 2 MPa, and 1, = -3 MPa.
Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.12. Write the reduced stiffness and the compliance matrix for an isotro-
pic lamina.

2.13 Show that for an orthotropic material Q;; # C;;. Explain why. Also,
show Qg = C¢. Explain why.

2.14 Consider a unidirectional continuous fiber composite. Start from [c]
= [Q] [¢] and follow the procedure in Section 2.4.3 to get

El=Qn_Qi122 V12=&
Qan Qan
2
Q
E;=Qp» _ai Vo1 = Eﬁ Gz = Qee-

2.15 The reduced stiffness matrix [Q] is given for a unidirectional lamina
is given as follows:
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5681 0.3164 0
[Q]=]|0.3164 1.217 0 Msi .
0 0 0.6006

What are the four engineering constants, E;, E,, vy, and Gy,, of the
lamina?

2.16 The stresses in the global axes of a 30° ply are given as ¢, = 4 MPa,
6,=2MPa, and 1,, = -3 MPa. Find the stresses in the local axes. Are
the stresses in the local axes independent of elastic moduli? Why or
why not?

2.17 The strains in the global axes of a 30° ply are given as €, = 4 pin./
in., &, = 2 pin./in., and v,, = -3 Win./in. Find the strains in the local
axes. Are the strains independent of material properties? Why or
why not?

2.18 Find the transformed reduced stiffness matrix [Q] and transformed
compliance matrix [S] for a 60° angle lamina of a boron/epoxy lam-

ina. Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.19 What is the relationship between the elements of the transformed
compliance matrix [S] for a 0 and 90° lamina?

2.20 For a 60° angle lamina of boron/epoxy under stresses in global
axes as 0, = 4 MPa, 6, = 2 MPa, and 1,, = -3 MPa, and using the
properties of a unidirectional boron/epoxy lamina from Table 2.1,
find the following
1. Global strains
2. Local stresses and strains
3. Principal normal stresses and principal normal strains
4. Maximum shear stress and maximum shear strain

221 An angle glass/epoxy lamina is subjected to a shear stress 1,, = 0.4
ksi in the global axes resulting in a shear strain v,, = 468.3 pin./in.
in the global axes. What is the angle of the ply? Use the properties
of unidirectional glass/epoxy lamina from lable 2.2.

2.22 Find the six engineering constants for a 60° boron/epoxy lamina.
Use the properties of unidirectional boron/epoxy lamina from
Table 2.2.

2.23 A bidirectional woven composite ply may yield equal longitudinal
and transverse Young’s modulus but is still orthotropic. Determine
the angles of the ply for which the shear modulus (G,,) are maximum

and minimum. Also find these maximum and minimum values.
Given: E; = 69 GPa, E, = 69 GPa, v,, = 0.3, Gy, = 20 GPa.
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2.24 Astrain gage measures normal strain in a component. Experiments!?
suggest that errors due to strain gage misalighment are more appre-
ciable for angle plies of composite materials than isotropic materials.

1. Take a graphite/epoxy angle ply of 8° under a uniaxial stress, o,
= 4 Msi. Estimate the strain, €,, as measured by a strain gage
aligned in the x-direction. Now, if the strain gage is misaligned
by +3° to the x-axis, estimate the measured strain. Find the per-
centage of error due to misalignment. Use properties of unidi-
rectional graphite/epoxy lamina from Table 2.2.

2. Take an aluminum layer under a uniaxial stress, 6, = 4 Msi.
Estimate the strain, €,, as measured by a strain gage in the
x-direction. Now, if the strain gage is misaligned by +3° to the
x-axis, estimate the measured strain. Find the percentage of error
due to misalignment. Assume E = 10 Msi, v = 0.3 for aluminum.

2.25 A uniaxial load is applied to a 10° ply. The linear stress—strain curve
along the line of load is related as o, = 123¢,, where the stress is
measured in GPa and strain in m/m. Given E; = 180 GPa, E, = 10
GPa and v,, = 0.25, find the value of (1) shear modulus, G;,and (2)
modulus E, for a 60° ply.

2.26 The tensile modulus of a 0°, 90°, and 45° graphite/epoxy ply is
measured as follows to give E; = 26.25 Msi, E, = 1.494 Msi, E, = 2.427
Msi for the 45° ply, respectively.

1. What is the value E, for a 30° ply?

2. Can you calculate the values of v;, and G, from the previous
three measured values of elastic moduli?

2.27 Can the value of the modulus, E,, of an angle lamina be less than
both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

2.28 Can the value of the modulus, E,, of an angle lamina be greater than
both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

229 Is the v,, for a lamina maximum for a 45° boron/epoxy ply? Use
properties of unidirectional boron/epoxy lamina from Table 2.2.

2.30 In finding the value of the Young’s modulus, E,, for an angle ply,
length-to-width (L/W) ratio of the specimen affects the measured
value of E,. The Young’s modulus F, for a finite length-to-width
ratio specimen is related to the Young’s modulus, E,, for an infinite
length-to-width ratio specimen by®
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where

(= 1 35%
Sii| 35 +25,(L/ W)Y |

Tabulate the values of { for L/W =2, 8, 16, and 64 for a 30° glass/
epoxy. Use properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.31 Starting from the expression for the reduced stiffness element

Qes =(Q1 +Q»n —20Q;, - 2Q66)SZCZ + Q66(54 +ct),

derive the expression

Qs6 =%(U1 -U,)-U;Cos46 .

2.32 Initial stress—strain data are given for a uniaxial tensile test of a 45°
angle ply. Find the in-plane shear modulus of the unidirectional
lamina, G,,. Use linear regression analysis for finding slopes of
curves.

o, (KPa) £, (%) -g, (%)

210 0.1 0.08
413 0.2 0.16
644 0.3 0.25
847 0.4 0.33
1092 0.5 0.42

If similar data were given for a 35° angle ply, would it be sufficient
to find the in-plane shear modulus of the unidirectional lamina, G,,?
2.33 Calculate the four stiffness invariants, U,, U,, U,, and U,, and the
four compliance invariants V;, V,, V;, and V,, for a boron/epoxy

lamina. Use the properties of a unidirectional boron/epoxy lamina
from Table 2.2.

2.34 Show that Q;; +Q,, +Q;, + Qy is not a function of the angle of ply.

2.35 Find the off-axis shear strength and mode of failure of a 60° boron/
epoxy lamina. Use the properties of a unidirectional boron/epoxy
lamina from Table 2.1. Apply the maximum stress failure, maximum
strain, Tsai—-Hill, and Tsai-Wu failure theories.

2.36 Give one advantage of the maximum stress failure theory over the
Tsai-Wu failure theory.
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2.37 Give one advantage of the Tsai-Wu failure theory over the maximum
stress failure theory.

2.38 Find the maximum biaxial stress, 6, = -G, 6,=-0,06>0, that one
can apply to a 60° lamina of graphite/epoxy. Use the properties of
a unidirectional graphite/epoxy lamina from Table 2.1. Use maxi-
mum strain and Tsai-Wu failure theories.

2.39 Using Mohr’s circle, show why the maximum shear stress that can
be applied to angle laminae differs with the shear stress sign. Take
a 45° graphite/epoxy lamina as an example. Use the properties of a
unidirectional graphite/epoxy lamina from Table 2.1.

2.40 Reduce the Tsai-Wu failure theory for an isotropic material with
equal ultimate tensile and compressive strengths and a shear
strength that is 40% of the ultimate tensile strength.

241 An off-axis test is used to find the value of H;, for use in the Tsai-Wu
failure theory for a boron/epoxy system. The five lamina strengths
of a unidirectional boron/epoxy system are given as follows:

(G{)ult =188 kSi/ (G‘f)ult =361 kSil (Gg)ult =9 kSi/ (Gg)ult =45 kSi/
and (Ty,), = 10 ksi.

A 15° specimen fails at a uniaxial load of 33.546 ksi. Find the value
of Hy,. Does it satisfy the inequality Hy, < H;;H,,, which is a stability
criterion for Tsai-Wu failure theory that says failure surfaces inter-
cept all stress axes and form a closed geometric surface!3?

2.42 Give the units for the coefficient of thermal expansion in the USCS
and SI systems.

2.43 Find the free-expansional strains of a glass/epoxy unidirectional
lamina under a temperature change of —100°C and a moisture
absorption of 0.002 kg/kg. Also find the temperature change for
which the transverse expansional strains vanish for a moisture
absorption of 0.002 kg/kg. Use the properties of a unidirectional
glass/epoxy lamina from Table 2.1.

2.44 Find the coefficients of thermal expansion of a 60° glass/epoxy lam-

ina. Use the properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.45 Give the units for coefficient of moisture expansion in the USCS and
SI systems.

2.46 Find the coefficients of moisture expansion of a 60° glass/epoxy
lamina. Use the properties of unidirectional glass/epoxy lamina
from Table 2.1.
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Appendix A: Matrix Algebra*

What is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic
expressions and/or numbers. Matrix [A] is denoted by

Ay Ay e a,,,
[A]: Ay Ay e a,,
App Ay e Ay

Look at the following matrix about the sale of tires — given by quarter
and make of tires — in a Blowoutr’us store:

Quarter 1 Quarter2 Quarter 3  Quarter 4

Tirestone 25 20 3 2
Michigan 5 10 15 25
Copper 6 16 7 27

To determine how many Copper tires were sold in quarter 4, we go along
the row Copper and column quarter 4 and find that it is 27.
Row i of [A] has n elements and is [“n aiz....ain] and

Cll]-

Column j of [A] has m elements and is %

a

mj

Each matrix has rows and columns that define the size of the matrix. If a
matrix [A] has m rows and #n columns, the size of the matrix is denoted by
m x n. The matrix [A] may also be denoted by [A],,,, to show that [A] is a
matrix with m rows and n columns.

Each entry in the matrix is called the entry or element of the matrix and is
denoted by a;, where i is the row number (i = 1, 2,...m) and j is the column
number (j = 1, 2, ...n) of the element.

The matrix for the tire sales example given earlier could be denoted by
the matrix [A] as

* This section on matrix algebra is adapted, with permission, from A.K. Kaw, Introduction to
Matrix Algebra, E-book, http:/ /numericalmethods.eng.usf.edu/, 2004. At the time of printing,
the complete E-book can be downloaded free of charge from the given website.
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25 20 3 2
[A]=] 5 10 15 25
6 16 7 27

The size of the matrix is 3 x 4 because there are three rows and four columns.
In the preceding [A] matrix, a;, = 27.

What are the special types of matrices?

Vector: A vector is a matrix that has only one row or one column. The
two types of vectors are row vectors and column vectors.

Row vector: If a matrix has one row, it is called a row vector — [B] = [b;,
b,,...b,] and m is the dimension of the row vector.

Column vector: If a matrix has one column, it is called a column vector

€1

n

and 7 is the dimension of the column vector.

Example A.1
Give an example of a row vector.

Solution
[B] = [25 20 3 2 0] is an example of a row vector of dimension 5.

Example A.2
Give an example of a column vector.

Solution
An example of a column vector of dimension 3 is

25
[C]=]| 5
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Submatrix: If some row(s) or/and column(s) of a matrix [A] are deleted,
the remaining matrix is called a submatrix of [A].

Example A.3
Find some of the submatrices of the matrix

4 6 2
[A]:L 1 2}'

Solution
Some submatrices of [A] are

I TR AR AR

Can you find other submatrices of [A]?

Square matrix: If the number of rows, m, of a matrix is equal to the
number of columns, n, of the matrix, (m = n), it is called a square
matrix. The entries ay,, a,,,...4,, are called the diagonal elements of a

square matrix. Sometimes the diagonal of the matrix is also called
the principal or main of the matrix.

Example A.4

Give an example of a square matrix.

Solution
Because it has the same number of rows and columns (that is, three),

25 20 3
[Al=|5 10 15
6 15 7

is a square matrix.
The diagonal elements of [A] are a,; = 25, a5, = 10, and a3; = 7.

Diagonal matrix: A square matrix with all nondiagonal elements equal

to zero is called a diagonal matrix — that is, only the diagonal entries
of the square matrix can be nonzero (a; = 0, i #j).
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Example A.5
Give examples of a diagonal matrix.

Solution
An example of a diagonal matrix is

3 0 O
0 21 0
0 0 5

Any or all the diagonal entries of a diagonal matrix can be zero. For
example, the following is also a diagonal matrix:

3 0 0
[A]l=|0 21 of.
0 0 0

Identity matrix: A diagonal matrix with all diagonal elements equal to
one is called an identity matrix (2; = 0, i # j; and a;; = 1 for all i).

Example A.6
Give an example of an identity matrix.

Solution

An identity matrix is

[ e R R
S O = O
S = O O
_ O O O

Zero matrix: A matrix whose entries are all zero is called a zero matrix
(a; = 0 for all 7 and j).

Example A.7
Give examples of a zero matrix.
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Solution

Examples of a zero matrix include:

[D]=[0 0 0].

When are two matrices considered equal?
Two matrices [A] and [B] are equal if

The size of [A] and [B] is the same (number of rows of [A] is same as

the number of rows of [B] and the number of columns of [A] is same
as number of columns of [B]) and

a; = b; for all i and j.

Example A.8
What would make

equal to
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Solution
The two matrices [A] and [B] would be equal if b,; =2, b,, = 7.

How are two matrices added?

Two matrices [A] and [B] can be added only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). Then, the addition
is shown as [C] = [A] + [B], where ¢; = a; + b, for all i and j.

Example A.9
Add the two matrices

5 2 3]
Vﬂ_[l 2 7]
6 7 -2]
[B]"[s 5 19]

Solution

[C]=[A]+[B]

[5+6 247 3-2
| 1+3  2+5 7+19

How are two matrices subtracted?

Two matrices [A] and [B] can be subtracted only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). The subtraction is
given by [D] = [A] - [B], where d; = a; — b; for all i and j.
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Example A.10
Subtract matrix [B] from matrix [A] — that is, find [A] - [B].

5 2 3]
A= [1 2 7]
6 7 2]
(51= [3 5 19
Solution
[C]=[A]-[B]

How are two matrices multiplied?

A matrix [A] can be multiplied by another matrix [B] only if the number
of columns of [A] is equal to the number of rows of [B] to give [Cl,,, =
[A]mXP[B]pxn. If [A] is an m X p matrix and [B] is a p X n matrix, then the size
of the resulting matrix [C] is an m x n matrix.

How does one calculate the elements of [C] matrix?

p

Cij = E aikbkj

k=1

=a;byj+aphy i+ ... +ayb,;

foreachi=1,2,..mandj=1,2,...n
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To put it in simpler terms, the i" row and j* column of the [C] matrix in
[C] = [A][B] is calculated by multiplying the i" row of [A] by the j* column
of [B] — that is,

by;
b,
Cij = lay a, aip]
[0y ]
=, b+ ap byt +a,Db,.
= ; llikbkj .
k=1

Example A.11

Given
5 2 3
[A]=[ }
1 2 7
3 =2
9 -10
find
[C]=[A][B] .
Solution

For example, the element c;, of the [C] matrix can be found by multiplying
the first row of [A] by the second column of [B]:

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 183

= (5)(=2) + (2)(-8) + (3)(-10)
= -56.

Similarly, one can find the other elements of [C] to give

52 56
[C]= :
76 88
What is a scalar product of a constant and a matrix?

If [A] is an n X n matrix and k is a real number, then the scalar product of
k and [A] is another matrix [B], where b;; = ka;.

Example A.12

Let
21 3 2
(Al { } |
5 1 6
Find 2 [A].
Solution
21 3 2
[A]l= ;
5 1 6
then,
2[A]=2 21 3 2
5 1 6

_[@ey @) <2)<2)]
L @6) @0 @6

(42 6 4
10 2 12/
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What is a linear combination of matrices?

If [A]] [A,],...,[A,] are matrices of the same size and k;, k,,... k, are scalars,
then

If
5 6 2 21 3 2 0 22 2
A = , A = , = ,
4] [3 1}[2]{5 1 6}[3] {3 35 6:|
then find
[A,]+2[A,]-0.5[A,] .
Solution
(5 6 2| [21 3 2 0 22 2
A]+2[A,]-05[4,]= +2 -05
(A4,]+204,1-034] 3 2 1] [5 1 6} [3 35 6}

[92 1009 5
(115 225 10]

What are some of the rules of binary matrix operations?

Commutative law of addition: If [A] and [B] are m x n matrices, then

[A]+[B]=[B]+[A].

Associate law of addition: If [A], [B], and [C] all are m x n matrices, then
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[A]+([BI+[C]) = ([A]+[B]) +[C] .

Associate law of multiplication: If [A], [B], and [C] are m x n, n X p, and p
X r size matrices, respectively, then

[ANIBIIC]) = ([AIIBDIC]

and the resulting matrix size on both sides is m x .

Distributive law: If [A] and [B] are m X n size matrices and [C] and [D]
are 1 X p size matrices, then

[AI[C]+[D]) =[AlIC]+[A]ID]

([Al+[BDICI=[AI[C]+[BIIC]
and the resulting matrix size on both sides is m X p.

Example A.14

Ilustrate the associative law of multiplication of matrices using

b2 2 5 2 1
[Al=3 5], [B]={ } [C]=[ }
0 o 9 6 3 5

Solution

[B][C]:{z 5{2 1}:{19 27]
9 6|3 5] [36 39

1 2 o 2 91 105
[A][BI[C]=|3 5 2% 39}: 237 276
0o 2|t 72 78
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1 2 20 17
[AlIB]=|3 5 {2 5}: 51 45
0 2 9 6l 1
20 17
[AIIBIIC]=|51 45 [2 1]
18 12 3
91 105
=237 276|.
72 78

These illustrate the associate law of multiplication of matrices.

Is [Al[B] = [BI[A]?

First, both operations, [A][B] and [B][A], are only possible if [A] and [B]
are square matrices of same size. Why? If [A][B] exists, the number of
columns of [A] must be the same as the number of rows of [B]; if [B][A]
exists, the number of columns of [B] must be the same as the number of
rows of [A].

Even then, in general, [A][B] # [B][A].

Example A.15
[lustrate whether [A][B] = [B][A] for the following matrices:

6 3 -3 2
[A]—{2 5}, [B]—{1 5].

Solution

6 3|[-3 2
U L D
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[-14 1
116 28
[A][B]#[B][A].

What is the transpose of a matrix?

Let [A] be an m x n matrix. Then [B] is the transpose of the [A] if b; = a;
for all i and j. That is, the i*" row and the j* column element of [A] is the jt
row and i column element of [B]. Note that [B] would be an nxm matrix.
The transpose of [A] is denoted by [A]™.

Example A.16

Find the transpose of

[Al= 5 10 15 25

Solution
The transpose of [A] is

%5 5 6
af |20 10 16
3 15 7
2 25 27

Note that the transpose of a row vector is a column vector and the trans-
pose of a column vector is a row vector. Also, note that the transpose of a
transpose of a matrix is the matrix — that is, ([A]7)T = [A]. Also, (A + B)T =
AT + BT; (cA)T = cAT.

What is a symmetric matrix?

A square matrix [A] with real elements, where a; = a; fori=1,...nandj
=1,...,n,is called a symmetric matrix. This is same as that if [A] = [A], then
[A] is a symmetric matrix.
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Example A.17

Give an example of a symmetric matrix.

Solution

A symmetric matrix is

212 32 6
[A]l=]| 32 215 8
6 8 93

because a,, = a,; = 3.2, 4,3 = a3, = 6; and ay;, = a, = 8.

What is a skew-symmetric matrix?

A square matrix [A] with real elements, where a; = —~a; fori=1,...n and
j=1,...,n,is called a skew symmetric matrix. This is same as that if [A] =—[A],
then [A] is a skew symmetric matrix.

Example A.18
Give an example of a skew-symmetric matrix.

Solution

A skew-symmetric matrix is

o 1 2
-1 0 -5
-2 5 0

because a;, = —ay = 1; a3 = —a5; = 2; ay3 = —ag, = -5. Because a; = —a; only if
a; = 0, all the diagonal elements of a skew-symmetric matrix must be zero.

Matrix algebra is used for solving systems of equations. Can you illustrate
this concept?

Matrix algebra is used to solve a system of simultaneous linear equations.
Let us illustrate with an example of three simultaneous linear equations:
25a+5b+c=106.8
64a+8b+c=177.2

144a+12b+¢=279.2 .
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This set of equations can be rewritten in the matrix form as

25a + 5b + c 106.8
64a+ 8b+ ¢ |=|177.2
1440+ 12b+ ¢ 279.2

The preceding equation can be written as a linear combination as follows
25 5 1| [106.8
al 64 |+b| 8 |+c|1|=|1772
144 12 1] |279.2

and, further using matrix multiplications, gives

25 5 1}|a 106.8
64 8 1||b|=|177.2
144 12 1||c 279.2

For a general set of m linear equations and n unknowns,

1 Xyt aypXx, + +ay,X, =C;
anXy +aypx; + +a,,X, =¢C,
Ay Xq + 0y Xy F e +4a,,x, =c,

can be rewritten in the matrix form as

an app . . A || X1 ¢
an axn . . Ay || X2 Cy
_aml amZ . . amn B _xn N _Cm i
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Denoting the matrices by [A], [X], and [C], the system of equation is [A]
[X] = [C], where [A] is called the coefficient matrix, [C] is called the right-hand
side vector, and [X] is called the solution vector.

Sometimes [A] [X] = [C] systems of equations are written in the augmented
form — that is,

Ay G e a,, ¢

Ayy Oy e ay, Cy
[A C]=

N By C |

Can you divide two matrices because that will help me find the solution
vector for a general set of equations given by [A] [X] = [C]?

IC]
[B]’
division is not defined. However, an inverse of a matrix can be defined for
certain types of square matrices. The inverse of a square matrix [A], if exist-
ing, is denoted by [A]™! such that [A][A]}= [I] = [A]'[A].

In other words, let [A] be a square matrix. If [B] is another square matrix
of the same size so that [B][A] = [I], then [B] is the inverse of [A]. [A] is then
called invertible or nonsingular. If [A] does not exist, [A] is called noninvertible
or singular.

If [A][B]=[C] is defined, it might seem intuitive that [A] = but matrix

Example A.19
Show whether

is the inverse of
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Solution
3 213 2
wm_[S 3][5 _3]
{1 0
lo 1

=[1].

[BI[A] =[1], so [B] is the inverse of [A] and [A] is the inverse of [ B]. However,
we can also show that

to show that [A] is the inverse of [B].

Can I use the concept of the inverse of a matrix to find the solution of a
set of equations [A][X] = [C]?

Yes, if the number of equations is the same as the number of unknowns,
the coefficient matrix [A] is a square matrix.
Given [A][X] = [C]. Then, if [A]! exists, multiplying both sides by [A]™:

(AT [AIX] = [AT [C]

U1[X] = [AIT[C]

This implies that if we are able to find [A]”, the solution vector of [A][X] =
[C] is simply a multiplication of [A]! and the right-hand side vector, [C].

How do I find the inverse of a matrix?

If [A] is an 1 X n matrix, then [A]"! is an n X n matrix and, according to the
definition of inverse of a matrix, [A][A] = [I].
Denoting,
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an ap A1
an axn oy
[A]=
_anl anZ ) : ann N
[ ’ ’ ’ ]
A 4 - 0y
7 ’ 7
as ap - - Oy
[A]" =
’ 7 ’
_anl ”nz anm__
1 0 0
0 1 0
0
[1]= .
_0 1_

Using the definition of matrix multiplication, the first column of the [A]™
matrix can then be found by solving:

’

ay Ay Ay || O11 1
’

Ay A4y Aoy || 822 0
’

_anl a112 : : a;m_ _anl_ _O_

Similarly, one can find the other columns of the [A]"! matrix by changing
the right-hand side accordingly.

Example A.20

Solve the set of equations:

25a+5b+c =106.8
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64a+8b+c=177.2

144a+12b+c¢=279.2 .

Solution

In matrix form, the preceding three simultaneous linear equations are writ-
ten as

25 5 1||a 106.8
64 8 1||bl|=|1772
144 12 1f|c 279.2
First, we will find the inverse of
25 5 1
[A]l=| 64 8 1
144 12 1

and then use the definition of inverse to find the coefficients a, b, c.
If

’ ’

app dp 3
-1 _ ’ ’ ’
[A] =|a} ayp a5

4 ’ ’
a3 axp A4
is the inverse of [A], then

25 5 1||a; a3, aj; 1 0 0
64 8 1f|lay ayp ay|=|0 1 0
144 12 1||a3 af a3 0 0 1

gives three sets of equations:
25 5 1}|ay

1
64 8 1|lay|=|0
144 12 1|l | |0
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(25 5 1][a,] [0
64 8 1||a}|=|1
144 12 1|{a%| |0

25 5 1][a,] [0
64 8 1||ay|=]0].
144 12 1|a] |2

Solving the preceding three sets of equations separately gives

@, ] [0.04762
@, |=|-0.9524
@, 4571

a, | [-0.08333
@, |=| 1417
@ | | —-5.000

@, [0.03571
@, |=| -0.4643 |.
dy| | 1429

Therefore,

0.04762  —0.08333  0.03571
[A]! =|-0.9524 1.417 —-0.4643 | .
4571 -5.000 1.429

Now, [A][X] = [C], where

[X]=|b
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106.8
[Cl=[177.2].
279.2
Using the definition of [A]7,
[AT'[AIIX]=[AT'[C]

[X]=[AT"[C]

-0.04762 -0.08333  0.03571 || 106.8
=| —0.9524 1.417 —0.4643 || 177.2

4.571 -5.000 1.429 || 279.2
a 0.2900
b|=| 19.70
c 1.050

Computationally and algorithmically more efficient, a set of simultaneous
linear equations, such as those given previously, can also be solved by using
various numerical techniques. These techniques are explained completely in
the source (http:/ /numericalmethods.eng.usf.edu) of this appendix. Some of
the common techniques of solving a set of simultaneous linear equations are

Matrix inverse method
Gaussian elimination method
Gauss-Siedel method

LU decomposition method

Key Terms

Matrix

Vector

Row vector
Column vector
Submatrix
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Square matrix

Diagonal matrix

Identity matrix

Zero matrix

Equal matrices

Addition of matrices
Subtraction of matrices
Multiplication of matrices
Scalar product of matrices
Linear combination of matrices
Rules of binary matrix operation
Transpose of a matrix
Symmetric matrix

Skew symmetric matrix
Inverse of a matrix
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Appendix B: Transformation of Stresses and Strains

Equation (2.100) and Equation (2.94) give the relationship between stresses/
strains in the global (x,y) coordinate system and the local (1,2) coordinate
system, respectively. Note that the transformation is independent of material
properties and depends only on the angle between the x-axis and 1-axis, or
the angle through which the coordinate system (1,2) is rotated anticlockwise.

B.1 Transformation of Stress

Consider that o,, G, and T,, are the stresses on the rectangular element at a
point O in a two-dimensional body (Figure 2.38). One now wants to find the
values of the stresses o, 6,, and 7;, on another rectangular element but at
the same point O on the body. To do so, make a cut at an angle 6 normal to
direction 1. Now the stresses in the local 1-2 coordinate system can be related
to those in the global x—y coordinate system.

Summing the forces in the direction 1 gives,

6,BC—1,,ABC0s6 -G, ABSin8—1,, ACSin® -6, ACCos6=0
AC

o, = rnyCoseﬂsyismeﬂxy:smwcxi(:ose .
BC BC BC BC

Now,
Sin6 = g/
BC
and
Coso=— ;
BC
we have

0,T,,Sin08Cosb+0, Sin® 0+ T,,CosBSin6+0, Cos* 9

6,=0,Cos’0+0,Sin”0+21,, Sin6Cos6 . (B.1)
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o, 1o %
Xy B
A ‘j_ D
T, Yo,

FIGURE 2.38
Free body diagrams for transformation of stresses between local and global axes.

Similarly, summing the forces in direction 2 gives
7, =—6,Sin08Cos6+6, Sin®Cos0+1,,(Cos® 6—Sin”6) . (B.2)
By making a cut at an angle, 6, normal to direction 2,

6,=0,5in’6+0, Cos”6-21,,Sn6Cos6 . (B.3)
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In matrix form, Equation (B.1), Equation (B.2), and Equation (B.3) relate
the local stresses to global stresses as

o, ¢ 2sc || o,

_ 2 2
o, |=| s c -2sc || o, (B.4)
T, | |-sc sc F-s|r

where ¢ = Cos 6 and s = Sin 6.
The 3 x 3 matrix in Equation (B.4) is called the transformation matrix [T]:

c S 2sc
[T]=| s* ¢* —2sc |. (B.5)

—sc s¢ c*-s?

By inverting (B.5),

2§ —2sc
[TT'=|s* ¢ 2sc |. (B.6)
sc  —s¢c c¢*—¢?

This relates the global stresses to local stresses as

o, | | & -2sc || o,

_ 2 2
G, [=|s c 2sc || o, |- (B.7)
T sc  -sc -5 |1,

B.2 Transformation of Strains

Consider an arbitrary line, AB, in direction 1 at an angle, 6, to the x-direction.
Under loads, the line AB deforms to A’B’. By definition of normal strain
along AB,

A’B’- AB

AB
AB

© 2006 by Taylor & Francis Group, LLC



200 Mechanics of Composite Materials, Second Edition

FIGURE 2.39
Line element for transformation of strains between local and global axes.

From Figure 2.39,

A’'B
AB

1+¢, =

(AB)* = (Ax)* +(Ay)*

(A = (A + (A
However, from definition of strain,

[0 gy 20
Ax _(1+8xJAx+8yAy

_ v v

Then, from Equation (B.11) through Equation (B.13),
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2 2
ou ou v v
ABY =] 14— |Ax+——(A —Ax+| 1+ |Ay | .
( ) |:[ +8x] +8y( y):| +[ax +( +8y] y]
Neglecting products and squares of derivatives of strain,

(A’B)? = (1+2§Z)(Ax)2 +(1+2g;’j(Ay)2 +2(§§+SZJAxAy. (B.14)

From Equation (B.9),

(1+¢,)° = (A,B/);
(AB)
) e 4 14290 ) agy 4o 244 %
_(1+2axJ(Ax) +(1+28y](Ay) +2(ay+ax)AxAy
(Ax)* +(Ay)*

:(1+2w)gm22+[1+28z))9y>22
ox ) (Ax)* +(Ay) dy ) (Ax)* +(Ay)

z(au 80) AxAy

- x ) (A +(Ay)?

= 1+za—” Cos? 0+ 1+2a—v Sin%0+2 a—”+a—” Sin6Cos0
ox ady dy ox

(1+¢,)? = (1+2e,)Cos® 8+ (1+2¢,)Sin* 6 +27,, Sin 6 Cos 6

1+¢7 +2¢, =1+2¢,Cos’0+2¢, Sin” 0+2y,, SinOCosH .

Neglecting again the squares of the strains,

g, =¢,Cos’0+e,Sin*0+7y,, SnOCosH . (B.15)
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Similarly, one can take an arbitrary line in direction 2 and prove
g, =¢,5in’0+g,Cos’0-7,,Sin0CosH, (B.16)

and, by taking two straight lines in direction 1 and 2 (perpendicular to each
other), one can prove

Y1, = —2¢,Sin®Cos0+2¢, Sin6CosO+7,,(Cos’6-Sin’6) . (B.17)

In matrix form, Equation (B.15), Equation (B.16), and Equation (B.17) relate
the local strains to global strains

€ c S 2sc €,

e, |=|s* & 2s g, |, (B.18)

Yo/2| |-sc sc c*-¢? Yy /2

where the 3 x 3 matrix in Equation (B.18) is the transformation matrix [T]
given in Equation (B.5).
Inverting Equation (B.18) gives

€, & § —2sc €

e, |=|s* 2sc e |, (B.19)

y

Ve /2| |5C -sc 2=s" ||y, /2

where the 3 X 3 matrix in Equation (B.19) is the inverse of the transformation
matrix given in Equation (B.6).

Key Terms

Transformation of stress
Transformation of strain
Free body diagram
Transformation matrix
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