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Macromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Review definitions of stress, strain, elastic moduli, and strain energy.
• Develop stress–strain relationships for different types of materials.
• Develop stress–strain relationships for a unidirectional/bidirec-

tional lamina.
• Find the engineering constants of a unidirectional/bidirectional lam-

ina in terms of the stiffness and compliance parameters of the lamina.
• Develop stress–strain relationships, elastic moduli, strengths, and

thermal and moisture expansion coefficients of an angle ply based
on those of a unidirectional/bidirectional lamina and the angle of
the ply.

 

2.1 Introduction

 

A lamina is a thin layer of a composite material that is generally of a thickness
on the order of 0.005 in. (0.125 mm). A laminate is constructed by stacking
a number of such laminae in the direction of the lamina thickness (Figure
2.1). Mechanical structures made of these laminates, such as a leaf spring
suspension system in an automobile, are subjected to various loads, such as
bending and twisting. The design and analysis of such laminated structures
demands knowledge of the stresses and strains in the laminate. Also, design
tools, such as failure theories, stiffness models, and optimization algorithms,
need the values of these laminate stresses and strains.

However, the building blocks of a laminate are single lamina, so under-
standing the mechanical analysis of a lamina precedes understanding that
of a laminate. A lamina is unlike an isotropic homogeneous material. For
example, if the lamina is made of isotropic homogeneous fibers and an
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isotropic homogeneous matrix, the stiffness of the lamina varies from point
to point depending on whether the point is in the fiber, the matrix, or the
fiber–matrix interface. Accounting for these variations will make any kind
of mechanical modeling of the lamina very complicated. For this reason, the
macromechanical analysis of a lamina is based on average properties and
considering the lamina to be homogeneous. Methods to find these average
properties based on the individual mechanical properties of the fiber and
the matrix, as well as the content, packing geometry, and shape of fibers are
discussed in Chapter 3.

Even with the homogenization of a lamina, the mechanical behavior is still
different from that of a homogeneous isotropic material. For example, take
a square plate of length and width 

 

w

 

 and thickness 

 

t

 

 out of a large isotropic
plate of thickness 

 

t

 

 (Figure 2.2) and conduct the following experiments. 

 

Case A

 

: Subject the square plate to a pure normal load 

 

P

 

 in direction 1.
Measure the normal deformations in directions 1 and 2, 

 

δ

 

1

 

A

 

 and 

 

δ

 

2

 

A

 

,
respectively.

 

Case B

 

: Apply the same pure normal load 

 

P

 

 as in case A, but now in
direction 2. Measure the normal deformations in directions 1 and 2,

 

δ

 

1

 

B

 

 and 

 

δ

 

2

 

B

 

, respectively.

Note that

(2.1a,b)

However, taking a unidirectional square plate (Figure 2.3) of the same
dimensions 

 

w

 

 

 

×

 

 

 

w

 

 

 

×

 

 

 

t

 

 out of a large composite lamina of thickness 

 

t

 

 and
conducting the same case A and B experiments, note that the deformations

 

FIGURE 2.1

 

Typical laminate made of three laminae.
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(2.2a,b)

because the stiffness of the unidirectional lamina in the direction of fibers is
much larger than the stiffness in the direction perpendicular to the fibers.
Thus, the mechanical characterization of a unidirectional lamina will require
more parameters than it will for an isotropic lamina. 

Also, note that if the square plate (Figure 2.4) taken out of the lamina has
fibers at an angle to the sides of the square plate, the deformations will be
different for different angles. In fact, the square plate would not only have

 

FIGURE 2.2

 

Deformation of square plate taken from an isotropic plate under normal loads.
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deformations in the normal directions but would also distort. This suggests
that the mechanical characterization of an angle lamina is further complicated.

Mechanical characterization of materials generally requires costly and
time-consuming experimentation and/or theoretical modeling. Therefore,
the goal is to find the minimum number of parameters required for the
mechanical characterization of a lamina.

Also, a composite laminate may be subjected to a temperature change and
may absorb moisture during processing and operation. These changes in
temperature and moisture result in residual stresses and strains in the lam-
inate. The calculation of these stresses and strains in a laminate depends on
the response of each lamina to these two environmental parameters. In this
chapter, the stress–strain relationships based on temperature change and
moisture content will also be developed for a single lamina. The effects of
temperature and moisture on a laminate are discussed later in Chapter 4.

 

FIGURE 2.3

 

Deformation of a square plate taken from a unidirectional lamina with fibers at zero angle
under normal loads.
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2.2 Review of Definitions

 

2.2.1 Stress

 

A mechanical structure takes external forces, which act upon a body as
surface forces (for example, bending a stick) and body forces (for example,
the weight of a standing vertical telephone pole on itself). These forces result
in internal forces inside the body. Knowledge of the internal forces at all
points in the body is essential because these forces need to be less than the
strength of the material used in the structure. Stress, which is defined as the
intensity of the load per unit area, determines this knowledge because the
strengths of a material are intrinsically known in terms of stress.

Imagine a body (Figure 2.5) in equilibrium under various loads. If the body
is cut at a cross-section, forces will need to be applied on the cross-sectional
area so that it maintains equilibrium as in the original body. At any cross-

 

FIGURE 2.4

 

Deformation of a square plate taken from a unidirectional lamina with fibers at an angle under
normal loads.
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section, a force 

 

Δ

 

P

 

 is acting on an area of 

 

Δ

 

A

 

. This force vector has a com-
ponent normal to the surface, 

 

Δ

 

P

 

n

 

, and one parallel to the surface, 

 

Δ

 

P

 

s

 

. The
definition of stress then gives

,

. (2.3a,b)

The component of the stress normal to the surface, 

 

σ

 

n

 

, is called the normal
stress and the stress parallel to the surface, 

 

τ

 

s

 

, is called the shear stress. If
one takes a different cross-section through the same point, the stress remains
unchanged but the two components of stress, normal stress, 

 

σ

 

n

 

, and shear
stress, 

 

τ

 

s

 

, will change. However, it has been proved that a complete definition
of stress at a point only needs use of any three mutually orthogonal coordi-
nate systems, such as a Cartesian coordinate system.

Take the right-hand coordinate system

 

 x–y–z

 

. Take a cross-section parallel
to the 

 

yz

 

-plane in the body as shown in Figure 2.6. The force vector 

 

Δ

 

P

 

 acts

 

FIGURE 2.5

 

Stresses on an infinitesimal area on an arbitrary plane.
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on an area 

 

Δ

 

A

 

. The component 

 

Δ

 

P

 

x

 

 is normal to the surface. The force vector

 

Δ

 

P

 

s

 

 is parallel to the surface and can be further resolved into components
along the

 

 y 

 

and

 

 z 

 

axes: 

 

Δ

 

P

 

y

 

 and 

 

Δ

 

P

 

z

 

. The definition of the various stresses
then is

,

. (2.4a–c)

Similarly, stresses can be defined for cross-sections parallel to the 

 

xy

 

 and

 

xz

 

 planes. For defining all these stresses, the stress at a point is defined
generally by taking an infinitesimal cuboid in a right-hand coordinate system

 

FIGURE 2.6

 

Forces on an infinitesimal area on the 

 

y–z

 

 plane.
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and finding the stresses on each of its faces. Nine different stresses act at a
point in the body as shown in Figure 2.7. The six shear stresses are related as

,

,

. (2.5a–c)

The preceding three relations are found by equilibrium of moments of the
infinitesimal cube. There are thus six independent stresses. The stresses 

 

σ

 

x

 

,

 

σ

 

y

 

, and 

 

σ

 

z

 

 are normal to the surfaces of the cuboid and the stresses 

 

τ

 

yz

 

, 

 

τ

 

zx

 

,
and 

 

τ

 

xy

 

 are along the surfaces of the cuboid.
A tensile normal stress is positive, and a compressive normal stress is

negative. A shear stress is positive, if its direction and the direction of the
normal to the face on which it is acting are both in positive or negative
direction; otherwise, the shear stress is negative.

 

2.2.2 Strain

 

Similar to the need for knowledge of forces inside a body, knowing the
deformations because of the external forces is also important. For example,
a piston in an internal combustion engine may not develop larger stresses
than the failure strengths, but its excessive deformation may seize the engine.
Also, finding stresses in a body generally requires finding deformations. This
is because a stress state at a point has six components, but there are only
three force-equilibrium equations (one in each direction).

 

FIGURE 2.7

 

Stresses on an infinitesimal cuboid.
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The knowledge of deformations is specified in terms of strains — that is,
the relative change in the size and shape of the body. The strain at a point
is also defined generally on an infinitesimal cuboid in a right-hand coordi-
nate system. Under loads, the lengths of the sides of the infinitesimal cuboid
change. The faces of the cube also get distorted. The change in length cor-
responds to a normal strain and the distortion corresponds to the shearing
strain. Figure 2.8 shows the strains on one of the faces, 

 

ABCD

 

, of the cuboid.
The strains and displacements are related to each other. Take the two

perpendicular lines 

 

AB

 

 and 

 

AD

 

. When the body is loaded, the two lines
become 

 

A

 

′

 

B

 

′

 

 and 

 

A

 

′

 

D

 

′

 

. Define the displacements of a point (

 

x,y,z

 

) as 

 

u = u(x,y,z)

 

 = displacement in 

 

x

 

-direction at point (

 

x,y,z

 

)

 

v = v(x,y,z)

 

 = displacement in 

 

y

 

-direction at point (

 

x,y,z

 

)

 

w = w(x,y,z)

 

 = displacement in 

 

z

 

-direction at point (

 

x,y,z

 

)

The normal strain in the 

 

x

 

-direction, 

 

ε

 

x

 

, is defined as the change of length
of line 

 

AB

 

 per unit length of 

 

AB

 

 as

, (2.6)

where

 

FIGURE 2.8

 

Normal and shearing strains on an infinitesimal area in the 

 

x–y

 

 plane.
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(2.7a,b)

Substituting the preceding expressions of Equation (2.7) in Equation (2.6),

.

Using definitions of partial derivatives

(2.8)

because

,

,

for small displacements.
The normal strain in the y-direction, εy is defined as the change in the

length of line AD per unit length of AD as

, (2.9)

where

′ ′ = ′ ′ + ′ ′A B A P B P( ) ( ) ,2 2

= + + − + + −x u x x y u x y v x x y[ ( , ) ( , )] [ ( , )Δ Δ Δ2 vv x y( , )] ,2

AB = xΔ .

u x x y u x y
x

x
ε = +

+ −
→

lim
( , ) ( ,

/

Δ

Δ
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1 2
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1
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AD = Δy . (2.10a,b)

Substituting the preceding expressions of Equation (2.10) in Equation (2.9),

.

Using definitions of partial derivatives,

(2.11)

because

for small displacements.
A normal strain is positive if the corresponding length increases; a normal

strain is negative if the corresponding length decreases.
The shearing strain in the x–y plane, γxy is defined as the change in the

angle between sides AB and AD from 90°. This angular change takes place
by the inclining of sides AB and AD. The shearing strain is thus defined as 

(2.12)

′ ′ = ′ ′ + ′ ′A D A Q Q D( ) ( ) ,2 2

′ ′ = + + − +A D y v x y y v x y u x y[ ( , ) ( , )] [ ( ,Δ Δ 2 ++ −Δy u x y) ( , )] ,2

y
y

v x y y v x y
yε = + + −

→
lim

( , ) ( , )}
/

Δ

Δ
Δ0

1 2
2

1
⎡⎡

⎣
⎢

⎤

⎦
⎥ + + −⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫u x y y u x y
y

2
( , ) ( , )Δ

Δ ⎬⎬
⎪

⎭⎪
− 1

y
v
y

u
yε = + ∂

∂
⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤
1 2

2 2

1

/

⎦⎦
⎥
⎥

− 1

y
v
yε = ∂

∂
,

∂
∂

<<u
y

1,

∂
∂

<<v
y

1,

xyγ θ θ= +1 2,

1343_book.fm  Page 71  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



72 Mechanics of Composite Materials, Second Edition

where

(2.13a–c)

(2.14a–c)

Substituting Equation (2.13) and Equation (2.14) in Equation (2.12),

(2.15)

because

for small displacements.

1 0
q

P B
A PAB

= ′ ′
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lim ,
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The shearing strain is positive when the angle between the sides AD and
AB decreases; otherwise, the shearing strain is negative.

The definitions of the remaining normal and shearing strains can be found
by noting the change in size and shape of the other sides of the infinitesimal
cuboid in Figure 2.7 as

(2.16a–c)

Example 2.1

A displacement field in a body is given by 

u = 10–5(x2 + 6y + 7xy) 
v = 10–5(yz) 
w = 10–5(xy + yz2) 

Find the state of strain at (x,y,z) = (1,2,3).

Solution

From Equation (2.8),

.

yz

v
z

w
y

γ = ∂
∂

+ ∂
∂

,

zx =
w
x

+
u
z

,γ
∂
∂

∂
∂

z
w
zε = ∂

∂
.

∈ = ∂
∂x
u
x

= ∂
∂

+ +( )( )−

x
x y xz10 6 75 2

= +( )−10 2 75 x z

= × + ×( )−10 2 1 7 35

= × −2 300 10 4.
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From Equation (2.11),

.

From Equation (2.16c),

.

From Equation (2.15),

∈ = ∂
∂y
v
y

= ∂
∂ ( )( )−

y
yz10 5

= ( )−10 5 z

= ( )−10 35

= × −3 000 10 5.

∈ = ∂
∂z
w
z

= ∂
∂

+( )( )−

z
xy yz10 5 2

= ( )−10 25 yz
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.

From Equation (2.16a),

.

From Equation (2.16b),

.

2.2.3 Elastic Moduli

As mentioned in Section 2.2.2, three equilibrium equations are insufficient
for defining all six stress components at a point. For a body that is linearly
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elastic and has small deformations, stresses and strains at a point are
related through six simultaneous linear equations called Hooke’s law.
Note that 15 unknown parameters are at a point: six stresses, six strains,
and three displacements. Combined with six simultaneous linear equa-
tions of Hooke’s law, six strain-displacement relations — given by Equa-
tion (2.8), Equation (2.11), Equation (2.15), and Equation (2.16) — and
three equilibrium equations give 15 equations for the solution of 15
unknowns.1 Because strain-displacement and equilibrium equations are
differential equations, they are subject to knowing boundary conditions
for complete solutions.

For a linear isotropic material in a three-dimensional stress state, the
Hooke’s law stress–strain relationships at a point in an x–y–z orthogonal
system (Figure 2.9) in matrix form are 

(2.17)

FIGURE 2.9
Cartesian coordinates in a three-dimensional body.
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(2.18)

where ν is the Poisson’s ratio. The shear modulus G is a function of two
elastic constants, E and ν, as

(2.19)

The 6 × 6 matrix in Equation (2.17) is called the compliance matrix [S] of
an isotropic material. The 6 × 6 matrix in Equation (2.18), obtained by invert-
ing the compliance matrix in Equation (2.17), is called the stiffness matrix
[C] of an isotropic material.

2.2.4 Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic
bodies under loads, the work done by external loads is stored as recoverable
strain energy. The strain energy stored in the body per unit volume is then
defined as 

 (2.20)

Example 2.2

Consider a bar of cross-section A and length L (Figure 2.10). A uniform tensile
load P is applied to the two ends of the rod; find the state of stress and strain,
and strain energy per unit volume of the body. Assume that the rod is made
of a homogeneous isotropic material of Young’s modulus, E.
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Solution

The stress state at any point is given by

(2.21)

If the circular rod is made of an isotropic, homogeneous, and linearly
elastic material, then the stress–strain at any point is related as 

(2.22)

(2.23)

The strain energy stored per unit volume in the rod, per Equation (2.20), is

FIGURE 2.10
Cylindrical rod under uniform uniaxial load, P.
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. (2.24)

2.3 Hooke’s Law for Different Types of Materials

The stress–strain relationship for a general material that is not linearly elastic
and isotropic is more complicated than Equation (2.17) and Equation (2.18).
Assuming linear and elastic behavior for a composite is acceptable; however,
assuming it to be isotropic is generally unacceptable. Thus, the stress–strain
relationships follow Hooke’s law, but the constants relating stress and strain
are more in number than seen in Equation (2.17) and Equation (2.18). The
most general stress–strain relationship is given as follows for a three-dimen-
sional body in a 1–2–3 orthogonal Cartesian coordinate system:

(2.25)

where the 6 × 6 [C] matrix is called the stiffness matrix. The stiffness matrix
has 36 constants.

What happens if one changes the system of coordinates from an orthogonal
system 1–2–3 to some other orthogonal system, 1′–2′–3′? Then, new stiffness
and compliance constants will be required to relate stresses and strains in
the new coordinate system 1′–2′–3′. However, the new stiffness and compli-
ance matrices in the 1′–2′–3′ system will be a function of the stiffness and
compliance matrices in the 1–2–3 system and the angle between the axes of
the 1′–2′–3′system and the 1–2–3 system.
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Inverting Equation (2.25), the general strain–stress relationship for a three-
dimensional body in a 1–2–3 orthogonal Cartesian coordinate system is

. (2.26)

In the case of an isotropic material, relating the preceding strain–stress
equation to Equation (2.17), one finds that the compliance matrix is related
directly to engineering constants as 

(2.27)

and Sij, other than in the preceding, are zero.
It can be shown that the 36 constants in Equation (2.25) actually reduce to

21 constants due to the symmetry of the stiffness matrix [C] as follows. The
stress–strain relationship (2.25) can also be written as

, (2.28)

where, in a contracted notation,

(2.29a–f)
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The strain energy in the body per unit volume, per Equation (2.20), is
expressed as 

(2.30)

Substituting Hooke’s law, Equation (2.28), in Equation (2.30),

(2.31)

Now, by partial differentiation of Equation (2.31),

(2.32)

and

(2.33)

Because the differentiation does not necessarily need to be in either order,

(2.34)

Equation (2.34) can also be proved by realizing that

Thus, only 21 independent elastic constants are in the general stiffness matrix
[C] of Equation (2.25). This also implies that only 21 independent constants
are in the general compliance matrix [S] of Equation (2.26).

2.3.1 Anisotropic Material

The material that has 21 independent elastic constants at a point is called an
anisotropic material. Once these constants are found for a particular point,
the stress and strain relationship can be developed at that point. Note that
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these constants can vary from point to point if the material is nonhomoge-
neous. Even if the material is homogeneous (or assumed to be), one needs
to find these 21 elastic constants analytically or experimentally. However,
many natural and synthetic materials do possess material symmetry — that
is, elastic properties are identical in directions of symmetry because symme-
try is present in the internal structure. Fortunately, this symmetry reduces
the number of the independent elastic constants by zeroing out or relating
some of the constants within the 6 × 6 stiffness [C] and 6 × 6 compliance [S]
matrices. This simplifies the Hooke’s law relationships for various types of
elastic symmetry. 

2.3.2 Monoclinic Material

If, in one plane of material symmetry* (Figure 2.11), for example, direction
3 is normal to the plane of material symmetry, then the stiffness matrix
reduces to

(2.35)

as

FIGURE 2.11
Transformation of coordinate axes for 1–2 plane of symmetry for a monoclinic material.

* Material symmetry implies that the material and its mirror image about the plane of symmetry
are identical. 
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The direction perpendicular to the plane of symmetry is called the principal
direction. Note that there are 13 independent elastic constants. Feldspar is an
example of a monoclinic material.

The compliance matrix correspondingly reduces to

. (2.36)

Modifying an excellent example2 of demonstrating the meaning of elastic
symmetry for a monoclinic material given, consider a cubic element of Figure
2.12 taken out of a monoclinic material, in which 3 is the direction perpen-
dicular to the 1–2 plane of symmetry. Apply a normal stress, σ3, to the
element. Then using the Hooke’s law Equation (2.26) and the compliance
matrix (Equation 2.36) for the monoclinic material, one gets

. (2.37a–f)

The cube will deform in all directions as determined by the normal strain
equations. The shear strains in the 2–3 and 3–1 plane are zero, showing that
the element will not change shape in those planes. However, it will change
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shape in the 1–2 plane. Thus, the faces ABEH and CDFG perpendicular to
the 3 direction will change from rectangles to parallelograms, while the other
four faces ABCD, BEFC, GFEH, and AHGD will stay as rectangles. This is
unlike anisotropic behavior, in which all faces will be deformed in shape,
and also unlike isotropic behavior, in which all faces will remain undeformed
in shape.

2.3.3 Orthotropic Material (Orthogonally Anisotropic)/Specially 
Orthotropic

If a material has three mutually perpendicular planes of material symmetry,
then the stiffness matrix is given by

FIGURE 2.12
Deformation of a cubic element made of monoclinic material.

G

σ3

σ3

D

H

A
B

G′ 

F′ 

C′ 

B′ 

A′ 

H′ 

D′ 

E′ 

E

F

1

2

3

1343_book.fm  Page 84  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 85

. (2.38)

The preceding stiffness matrix can be derived by starting from the stiffness
matrix [C] for the monoclinic material (Equation 2.35). With two more planes
of symmetry, it gives

.

Three mutually perpendicular planes of material symmetry also imply
three mutually perpendicular planes of elastic symmetry. Note that nine
independent elastic constants are present. This is a commonly found material
symmetry unlike anisotropic and monoclinic materials. Examples of an
orthotropic material include a single lamina of continuous fiber composite,
arranged in a rectangular array (Figure 2.13), a wooden bar, and rolled steel.

The compliance matrix reduces to

. (2.39)

FIGURE 2.13
A unidirectional lamina as a monoclinic material with fibers, arranged in a rectangular array.
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Demonstrating the meaning of elastic symmetry for an orthotropic mate-
rial is similar to the approach taken for a monoclinic material (Section 2.3.2).
Consider a cubic element (Figure 2.14) taken out of the orthotropic material,
where 1, 2, and 3 are the principal directions or 1–2, 2–3, and 3–1 are the
three mutually orthogonal planes of symmetry. Apply a normal stress, σ3,
to the element. Then, using the Hooke’s law Equation (2.26) and the com-
pliance matrix (Equation 2.39) for the orthotropic material, one gets

FIGURE 2.14
Deformation of a cubic element made of orthotropic material.
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(2.40a–f)

The cube will deform in all directions as determined by the normal strain
equations. However, the shear strains in all three planes (1–2, 2–3, and 3–1)
are zero, showing that the element will not change shape in those planes.
Thus, the cube will not deform in shape under any normal load applied in
the principal directions. This is unlike the monoclinic material, in which two
out of the six faces of the cube changed shape.

A cube made of isotropic material would not change its shape either;
however, the normal strains, ε1 and ε2, will be different in an orthotropic
material and identical in an isotropic material.

2.3.4 Transversely Isotropic Material

Consider a plane of material isotropy in one of the planes of an orthotropic
body. If direction 1 is normal to that plane (2–3) of isotropy, then the stiffness
matrix is given by

. (2.41)

Transverse isotropy results in the following relations:
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a hexagonal array. One may consider the elastic properties in the two direc-
tions perpendicular to the fibers to be the same. In Figure 2.15, the fibers are
in direction 1, so plane 2–3 will be considered as the plane of isotropy.

The compliance matrix reduces to

. (2.42)

2.3.5 Isotropic Material

If all planes in an orthotropic body are identical, it is an isotropic material;
then, the stiffness matrix is given by

. (2.43)

Isotropy results in the following additional relationships:

FIGURE 2.15
A unidirectional lamina as a transversely isotropic material with fibers arranged in a square
array.
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.

This also implies infinite principal planes of symmetry. Note the two
independent constants. This is the most common material symmetry avail-
able. Examples of isotropic bodies include steel, iron, and aluminum. Relat-
ing Equation (2.43) to Equation (2.18) shows that

(2.44a–b)

Note that

The compliance matrix reduces to 

. (2.45)
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types of materials:
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• Anisotropic: 21
• Monoclinic: 13
• Orthotropic: 9
• Transversely isotropic: 5
• Isotropic: 2

Example 2.3

Show the reduction of anisotropic material stress–strain Equation (2.25) to
those of a monoclinic material stress–strain Equation (2.35).

Solution

Assume direction 3 is perpendicular to the plane of symmetry. Now in the
coordinate system 1–2–3, Equation (2.25) with Cij = Cji from Equation (2.34) is

(2.46)

Also, in the coordinate system 1′–2′–3′ (Figure 2.11),

(2.47)

Because there is a plane of symmetry normal to direction 3, the stresses
and strains in the 1–2–3 and 1′–2′–3′ coordinate systems are related by
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Macromechanical Analysis of a Lamina 91

(2.49a–f)

The terms in the first equation of Equation (2.46) and Equation (2.47) can
be written as

(2.50a–b)

Substituting Equation (2.48) and Equation (2.49) in Equation (2.50b),

. (2.51)

Subtracting Equation (2.51) from Equation (2.50a) gives

. (2.52)

Because γ23 and γ31 are arbitrary,

(2.53a)

Similarly, one can show that

(2.54b-d)

Thus, only 13 independent elastic constants are present in a monoclinic
material.

Example 2.4

The stress–strain relation is given in terms of compliance matrix for an
orthotropic material in Equation (2.26) and Equation (2.39). Rewrite the
compliance matrix equations in terms of the nine engineering constants for

ε ε ε ε ε ε1 1 2 2 3 3= = =′ ′ ′, , ,

γ γ γ γ γ γ23 2 3 31 3 1 12 1 2= − = − =′ ′ ′ ′ ′ ′, , .

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + + + +C C C C C C ,

σ ε ε ε γ γ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +1 11 1 12 2 13 3 1 4 2 3 15 3 1C C C C C ,, + ′ ′C16 1 2γ

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + − − +C C C C C C

0 2 214 23 15 31= +C Cγ γ

C C14 15 0= = .

C C24 25 0= = ,

C C34 35 0= = ,

C C46 56 0= = .
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92 Mechanics of Composite Materials, Second Edition

an orthotropic material. What is the stiffness matrix in terms of the engineer-
ing constants?

Solution

Let us see how the compliance matrix and engineering constants of an
orthotropic material are related. As shown in Figure 2.16a, apply σ1 ≠ 0, σ2

= 0, σ3 = 0, τ23 = 0, τ31 = 0, τ12 = 0. Then, from Equation (2.26) and Equation
(2.39):

ε1 = S11σ1

ε2 = S12σ1

ε3 = S13σ1

FIGURE 2.16
Application of stresses to find engineering constants of a three-dimensional orthotropic body.

σ1
τ23

τ31

τ12

σ1

(a)

(b)

(c)

(e)

(f )

3
2

1

(d)

σ2

σ2

σ3

σ3
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Macromechanical Analysis of a Lamina 93

γ23 = 0

γ31 = 0

γ12 = 0.

The Young’s modulus in direction 1, E1, is defined as

. (2.55)

The Poisson’s ratio, ν12, is defined as

. (2.56)

In general terms, νij is defined as the ratio of the negative of the normal
strain in direction j to the normal strain in direction i, when the load is
applied in the normal direction i.

The Poisson’s ratio ν13 is defined as

. (2.57)

Similarly, as shown in Figure 2.16b, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

(2.58)

(2.59)

. (2.60)

Similarly, as shown in Figure 2.16c, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. From Equation (2.26) and Equation (2.39),

(2.61)

E
S1

1

1 11

1≡ =σ
ε

ν ε
ε12

2

1

12

11

≡ − = − S
S

ν ε
ε13

3

1

13

11

≡ − = − S
S

2
22

1
E

S
=

ν21
12

22

= − S
S

ν23
23

22

= − S
S

E
S3

33

1=
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94 Mechanics of Composite Materials, Second Edition

(2.62)

. (2.63)

Apply, as shown in Figure 2.16d, σ1 = 0, σ2 = 0, σ3 = 0, τ23 ≠ 0, τ31 = 0, τ12

= 0. Then, from Equation (2.26) and Equation (2.39),

ε1 = 0

ε2 = 0

ε3 = 0

γ23 = S44τ23

γ31 = 0

γ12 = 0

The shear modulus in plane 2–3 is defined as

. (2.64)

Similarly, as shown in Figure 2.16e, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

≠ 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

. (2.65)

Similarly, as shown in Figure 2.16f, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

= 0, τ12 ≠ 0. Then, from Equation (2.26) and Equation (2.39),

. (2.66)

In Equation (2.55) through Equation (2.66), 12 engineering constants have
been defined as follows:

Three Young’s moduli, E1, E2, and E3, one in each material axis

ν31
13

33

= − S
S

ν32
23

33

= − S
S

G
S23

23

23 44

1≡ =τ
γ

G
S31

55

1=

12
66

1
G

S
=
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Macromechanical Analysis of a Lamina 95

Six Poisson’s ratios, ν12, ν13, ν21, ν23, ν31, and ν32, two for each plane
Three shear moduli, G23, G31, and G12, one for each plane

However, the six Poisson’s ratios are not independent of each other. For
example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equa-
tion (2.59), 

. (2.67)

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equa-
tion (2.62),

, (2.68)

and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation
(2.63), 

. (2.69)

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal
Poisson’s ratio equations. These relations reduce the total independent engi-
neering constants to nine. This is the same number as the number of inde-
pendent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants
gives

. (2.70)

ν ν12

1

21

2E E
=

ν ν13

1
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3E E
=
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2

32

3E E
=
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E E E

=
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1 0 0 0
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96 Mechanics of Composite Materials, Second Edition

Inversion of Equation (2.70) would be the compliance matrix [C] and is
given by

, (2.71)

where

. (2.72)

Although nine independent elastic constants are in the compliance matrix
[S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials,
constraints on the values of these constants exist. Based on the first law of
thermodynamics, the stiffness and compliance matrices must be positive
definite. Thus, the diagonal terms of [C] and [S] in Equation (2.71) and
Equation (2.70), respectively, need to be positive. From the diagonal elements
of the compliance matrix [S], this gives

, , , , , (2.73)

and, from the diagonal elements of the stiffness matrix [C], gives

, , , (2.74)

 

Using the reciprocal relations given by Equation (2.67) through Equation
(2.69),

 for  and i,j = 1,2,3,

we can rewrite the inequalities as follows.

C
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Macromechanical Analysis of a Lamina 97

For example, because

,

then

. (2.75a)

Similarly, five other such relationships can be developed to give

(2.75b)

(2.75c)

(2.75d)

(2.75e)

. (2.75f)

These restrictions on the elastic moduli are important in optimizing prop-
erties of a composite because they show that the nine independent properties
cannot be varied without influencing the limits of the others.

1 012 21− >ν ν

ν
ν ν12

21

1

2 12

1 1< = E
E

ν
ν12

1

2 12

1< E
E

ν12
1

2

< E
E

ν21
2

1

< E
E

ν32
3

2

< E
E

ν23
2

3

< E
E

ν31
3

1

< E
E

ν13
1

3

< E
E

1343_book.fm  Page 97  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



98 Mechanics of Composite Materials, Second Edition

Example 2.5

Find the compliance and stiffness matrix for a graphite/epoxy lamina. The
material properties are given as

, ,

, ,

, , .

Solution

E GPa1 181= E GPa2 10 3= . E GPa3 10 3= .

ν12 0 28= . ν23 0 60= . ν13 0 27= .

G GPa12 7 17= . G GPa23 3 0= . G GPa31 7 00= .

S
E

Pa11
1

9
12 11 1

181 10
5 525 10= =

×
= × − −.

S
E

Pa22
2

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa33
3

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa12
12

1
9

12 10 28
181 10

1 547 10= − = −
×

= − × − −ν .
.

S
E

Pa13
13

1
9

12 10 27
181 10

1 492 10= − = −
×

= − × − −ν .
.

S
E

Pa23
23

2
9

11 10 6
10 3 10

5 825 10= − = −
×

= − × − −ν .
.

.

S
G

Pa44
23

9
10 11 1

3 10
3 333 10= =

×
= × − −.

S
G

Pa55
31

9
10 11 1

7 10
1 429 10= =

×
= × − −.
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Macromechanical Analysis of a Lamina 99

.

Thus, the compliance matrix for the orthotropic lamina is given by

The stiffness matrix can be found by inverting the compliance matrix and
is given by

The preceding stiffness matrix [C] can also be found directly by using Equa-
tion (2.71).

2.4 Hooke’s Law for a Two-Dimensional Unidirectional 
Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the
case for a typical lamina. If a plate is thin and there are no out-of-plane loads,
it can be considered to be under plane stress (Figure 2.17). If the upper and
lower surfaces of the plate are free from external loads, then σ3 = 0, τ31 = 0,
and τ23 = 0. Because the plate is thin, these three stresses within the plate are

S
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100 Mechanics of Composite Materials, Second Edition

assumed to vary little from the magnitude of stresses at the top and the
bottom surfaces. Thus, they can be assumed to be zero within the plate also.
A lamina is thin and, if no out-of-plane loads are applied, one can assume
that it is under plane stress. This assumption then reduces the three-dimen-
sional stress–strain equations to two-dimensional stress–strain equations.

2.4.2 Reduction of Hooke’s Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the
lamina is thin and does not carry any out-of-plane loads, one can assume
plane stress conditions for the lamina. Therefore, taking Equation (2.26) and
Equation (2.39) and assuming σ3 = 0, τ23 = 0, and τ31 = 0, then

(2.76a,b)

The normal strain, ε3, is not an independent strain because it is a function
of the other two normal strains, ε1 and ε2. Therefore, the normal strain, ε3,
can be omitted from the stress–strain relationship (2.39). Also, the shearing
strains, γ23 and γ31, can be omitted because they are zero. Equation (2.39) for
an orthotropic plane stress problem can then be written as

(2.77)

FIGURE 2.17
Plane stress conditions for a thin plate.
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Macromechanical Analysis of a Lamina 101

where Sij are the elements of the compliance matrix. Note the four indepen-
dent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress–strain relationship as

, (2.78)

where Qij are the reduced stiffness coefficients, which are related to the
compliance coefficients as

(2.79a–d)

Note that the elements of the reduced stiffness matrix, Qij, are not the same
as the elements of the stiffness matrix, Cij (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering 
Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain
through the compliance [S] and reduced stiffness [Q] matrices. However,
stress and strains are generally related through engineering elastic constants.
For a unidirectional lamina, these engineering elastics constants are

E1 = longitudinal Young’s modulus (in direction 1)
E2 = transverse Young’s modulus (in direction 2)
ν12 = major Poisson’s ratio, where the general Poisson’s ratio, νij is

defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

G12 = in-plane shear modulus (in plane 1–2)
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Experimentally, the four independent engineering elastic constants are
measured as follows and can be related to the four independent elements of
the compliance matrix [S] of Equation (2.77).

• Apply a pure tensile load in direction 1 (Figure 2.18a), that is,

(2.80)

Then, from Equation (2.77),

FIGURE 2.18
Application of stresses to find engineering constants of a unidirectional lamina.

(a)

2

1σ1 σ1
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(2.81a–c)

By definition, if the only nonzero stress is σ1, as is the case here, then 

(2.82)

(2.83)

• Apply a pure tensile load in direction 2 (Figure 2.18b), that is

(2.84)

Then, from Equation (2.77),

(2.85a–c)

By definition, if the only nonzero stress is σ2, as is the case here, then

(2.86)

(2.87)

The ν21 term is called the minor Poisson’s ratio. From Equation (2.82),
Equation (2.83), Equation (2.86), and Equation (2.87), we have
the reciprocal relationship

(2.88)
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• Apply a pure shear stress in the plane 1–2 (Figure 2.18c) — that is,

(2.89)

Then, from Equation (2.77),

(2.90a–c)

By definition, if τ12 is the only nonzero stress, as is the case here, then

(2.91)

Thus, we have proved that

(2.92a–d)

Also, the stiffness coefficients Qij are related to the engineering constants
through Equation (2.98) and Equation (2.92) as

σ σ τ1 2 120 0 0= = ≠, .and
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γ τ12 66 12= S .
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Macromechanical Analysis of a Lamina 105

(2.93a–d)

Equation (2.77), Equation (2.78), Equation (2.92), and Equation (2.93) relate
stresses and strains through any of the following combinations of four con-
stants.

Q11, Q12, Q22, Q66, or
S11, S12, S22, S66, or
E1, E2, ν12, G12

The unidirectional lamina is a specially orthotropic lamina because normal
stresses applied in the 1–2 direction do not result in any shearing strains in
the 1–2 plane because Q16 = Q26 = 0 = S16 = S26. Also, the shearing stresses
applied in the 1–2 plane do not result in any normal strains in the 1 and 2
directions because Q16 = Q26 = 0 = S16 = S26.

A woven composite with its weaves perpendicular to each other and short
fiber composites with fibers arranged perpendicularly to each other or
aligned in one direction also are specially orthotropic. Thus, any discussion in
this chapter or in Chapter 4 (“Macromechanics of a Laminate”) is valid for
such a lamina as well. Mechanical properties of some typical unidirectional
lamina are given in Table 2.1 and Table 2.2.

Example 2.6

For a graphite/epoxy unidirectional lamina, find the following

1. Compliance matrix
2. Minor Poisson’s ratio
3. Reduced stiffness matrix
4. Strains in the 1–2 coordinate system if the applied stresses (Figure

2.19) are 

Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

Q
E

12
12 2

21 121
=

−
ν

ν ν
,

Q
E

22
2

21 121
=

− ν ν
, and

66 12Q G= .

σ σ τ1 2 122 3 4= = − =MPa MPa MPa, , .
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106 Mechanics of Composite Materials, Second Edition

Solution

From Table 2.1, the engineering elastic constants of the unidirectional graph-
ite/epoxy lamina are 

1. Using Equation (2.92), the compliance matrix elements are

TABLE 2.1

Typical Mechanical Properties of a Unidirectional Lamina (SI System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf 0.45 0.50 0.70
Longitudinal elastic modulus E1 GPa 38.6 204 181
Transverse elastic modulus E2 GPa 8.27 18.50 10.30
Major Poisson’s ratio ν12 0.26 0.23 0.28
Shear modulus G12 GPa 4.14 5.59 7.17
Ultimate longitudinal tensile 
strength

MPa 1062 1260 1500

Ultimate longitudinal 
compressive strength 

MPa 610 2500 1500

Ultimate transverse tensile 
strength

MPa 31 61 40

Ultimate transverse 
compressive strength

MPa 118 202 246

Ultimate in-plane shear 
strength

MPa 72 67 68

Longitudinal coefficient of 
thermal expansion

α1 μm/m/°C 8.6 6.1 0.02

Transverse coefficient of 
thermal expansion

α2 μm/m/°C 22.1 30.3 22.5

Longitudinal coefficient of 
moisture expansion

β1 m/m/kg/kg 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 m/m/kg/kg 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. Reprinted with permission.

( )1
T

ultσ

( )1
C

ultσ

( )2
T

ultσ

( )2
C

ultσ

( )12τ ult

E GPa E GPa G1 2 12 12181 10 3 0 28 7 17= = = =, . , . , .ν .GPa

S Pa11 9
11 11

181 10
0 5525 10=

×
= × − −. ,

S Pa12 9
11 10 28

181 10
0 1547 10= −

×
= − × − −.

. ,

1343_book.fm  Page 106  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 107

2. Using the reciprocal relationship (2.88), the minor Poisson’s ratio is

3. Using Equation (2.93), the reduced stiffness matrix [Q] elements are

TABLE 2.2

Typical Mechanical Properties of a Unidirectional Lamina (USCS System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf — 0.45 0.50 0.70
Longitudinal elastic 
modulus

E1 Msi 5.60 29.59 26.25

Transverse elastic modulus E2 Msi 1.20 2.683 1.49
Major Poisson’s ratio v12 0.26 0.23 0.28
Shear modulus G12 Msi 0.60 0.811 1.040
Ultimate longitudinal 
tensile strength

ksi 154.03 182.75 217.56

Ultimate longitudinal 
compressive strength 

ksi 88.47 362.6 217.56

Ultimate transverse tensile 
strength

ksi 4.496 8.847 5.802

Ultimate transverse 
compressive strength

ksi 17.12 29.30 35.68

Ultimate in-plane shear 
strength

ksi 10.44 9.718 9.863

Longitudinal coefficient of 
thermal expansion

α1 μin./in./°F 4.778 3.389 0.0111

Transverse coefficient of 
thermal expansion

α2 μin./in./°F 12.278 16.83 12.5

Longitudinal coefficient of 
moisture expansion

β1 in./in./lb/lb 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 in./in./lb/lb 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. USCS system used for tables reprinted
with permission.

( )1
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ultσ

( )1
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ultσ

( )2
T

ultσ

( )2
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ultσ

( )12τ ult

S Pa22 9
10 11
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×
= × − −

.
. ,
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9 11

7 17 10
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×
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.
. .

ν21 9
90 28
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10 3 10 0 01593=

×
× × =.

( . ) . .
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.

The reduced stiffness matrix [Q] could also be obtained by inverting
the compliance matrix [S] of part 1:

FIGURE 2.19
Applied stresses in a unidirectional lamina in Example 2.6.
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.

4. Using Equation (2.77), the strains in the 1–2 coordinate system are

Thus, the strains in the local axes are

2.5 Hooke’s Law for a Two-Dimensional Angle Lamina

Generally, a laminate does not consist only of unidirectional laminae because
of their low stiffness and strength properties in the transverse direction.
Therefore, in most laminates, some laminae are placed at an angle. It is thus
necessary to develop the stress–strain relationship for an angle lamina.

The coordinate system used for showing an angle lamina is as given in
Figure 2.20. The axes in the 1–2 coordinate system are called the local axes
or the material axes. The direction 1 is parallel to the fibers and the direction
2 is perpendicular to the fibers. In some literature, direction 1 is also called
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the longitudinal direction L and the direction 2 is called the transverse
direction T. The axes in the x–y coordinate system are called the global axes
or the off-axes. The angle between the two axes is denoted by an angle θ.
The stress–strain relationship in the 1–2 coordinate system has already been
established in Section 2.4 and we are now going to develop the stress–strain
equations for the x–y coordinate system.

The global and local stresses in an angle lamina are related to each other
through the angle of the lamina, θ (Appendix B):

(2.94)

where [T] is called the transformation matrix and is defined as

(2.95)

and

FIGURE 2.20
Local and global axes of an angle lamina.
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(2.96)

(2.97a,b)

Using the stress–strain Equation (2.78) in the local axes, Equation (2.94)
can be written as

(2.98)

The global and local strains are also related through the transformation
matrix (Appendix B):

(2.99)

which can be rewritten as

(2.100)

where [R] is the Reuter matrix3 and is defined as

(2.101)

Then, substituting Equation (2.100) in Equation (2.98) gives
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(2.102)

On carrying the multiplication of the first five matrices on the right-hand
side of Equation (2.102),

(2.103)

where  are called the elements of the transformed reduced stiffness matrix
[ ] and are given by

(2.104a–f)

Note that six elements are in the [ ] matrix. However, by looking at Equa-
tion (2.104), it can be seen that they are just functions of the four stiffness
elements, Q11, Q12, Q22, and Q66, and the angle of the lamina, θ.

Inverting Equation (2.103) gives

(2.105)
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Macromechanical Analysis of a Lamina 113

where Sij are the elements of the transformed reduced compliance matrix
and are given by

(2.106a–f)

From Equation (2.77) and Equation (2.78), for a unidirectional lamina
loaded in the material axes directions, no coupling occurs between the nor-
mal and shearing terms of strains and stresses. However, for an angle lamina,
from Equation (2.103) and Equation (2.105), coupling takes place between
the normal and shearing terms of strains and stresses. If only normal stresses
are applied to an angle lamina, the shear strains are nonzero; if only shearing
stresses are applied to an angle lamina, the normal strains are nonzero.
Therefore, Equation (2.103) and Equation (2.105) are stress–strain equations
for what is called a generally orthotropic lamina.

Example 2.7

Find the following for a 60° angle lamina (Figure 2.21) of graphite/epoxy.
Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is σx = 2 MPa, σy = –3 MPa, and τxy = 4 MPa, also find

3. Global strains
4. Local strains
5. Local stresses
6. Principal stresses
7. Maximum shear stress
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8. Principal strains
9. Maximum shear strain

Solution

c = Cos(60°) = 0.500
s = Sin(60°) = 0.866

1. From Example 2.6,

Now, using Equation (2.106a),

FIGURE 2.21
Applied stresses to an angle lamina in Example 2.7.
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Similarly, using Equation (2.106b–f), one can evaluate

2. Invert the transformed compliance matrix [ ] to obtain the trans-
formed reduced stiffness matrix [ ]:
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3. The global strains in the x–y plane are given by Equation (2.105) as

4. Using transformation Equation (2.99), the local strains in the lamina
are

5. Using transformation Equation (2.94), the local stresses in the lamina
are

6. The principal normal stresses are given by4

(2.107)
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The value of the angle at which the maximum normal stresses occur is4

(2.108)

.

Note that the principal normal stresses do not occur along the material
axes. This should be also evident from the nonzero shear stresses in
the local axes.

7. The maximum shear stress is given by4

(2.109)

The angle at which the maximum shear stress occurs is4

(2.110)

= × − × ± × + ×⎛
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= 16.000

8. The principal strains are given by4

(2.111)

.

The value of the angle at which the maximum normal strains occur is4

(2.112)

= 27.860.

Note that the principal normal strains do not occur along the material
axes. This should also be clear from the nonzero shear strain in the
local axes. In addition, the axes of principal normal stresses and
principal normal strains do not match, unlike in isotropic materials.

9. The maximum shearing strain is given by4
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(2.113)

The value of the angle at which the maximum shearing strain occurs is4

(2.114)

= –17.140.

Example 2.8

As shown in Figure 2.22, a 60° angle graphite/epoxy lamina is subjected
only to a shear stress τxy = 2 MPa in the global axes. What would be the
value of the strains measured by the strain gage rosette — that is, what

FIGURE 2.22
Strain gage rosette on an angle lamina.
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2 2
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120 Mechanics of Composite Materials, Second Edition

would be the normal strains measured by strain gages A, B, and C? Use the
properties of unidirectional graphite/epoxy lamina from Table 2.1.

Solution

Per Example 2.7, the reduced compliance matrix [ ] is

.

The global strains in the x–y plane are given by Equation (2.105) as

For a strain gage placed at an angle, φ, to the x-axis, the normal strain
recorded by the strain gage is given by Equation (B.15) in Appendix B.

.

For strain gage A, φ = 0°:

.

For strain gage B, φ = 240°:

S
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.

For strain gage C, φ = 120°:

.

2.6 Engineering Constants of an Angle Lamina

The engineering constants for a unidirectional lamina were related to the
compliance and stiffness matrices in Section 2.4.3. In this section, similar
techniques are applied to relate the engineering constants of an angle ply to
its transformed stiffness and compliance matrices.

1. For finding the engineering elastic moduli in direction x (Figure
2.23a), apply

(2.115)

Then, from Equation (2.105),

. (2.116a–c)

The elastic moduli in direction x is defined as

(2.117)

= × −1 724 10 4.

εC = − × ° + − ×− −6 468 10 120 9 392 10 1205 2 5 2. ( . )Cos Sin °°

+ × ° °−2 283 10 120 1204. Sin Cos

= × −1 083 10 5.

σ σ τx y xy≠ = =0 0 0, , .

ε σx xS= 11 ,

ε σy xS= 12 ,

γ σxy xS= 16

E
Sx

x

x

≡ =σ
ε

1

11

.
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FIGURE 2.23
Application of stresses to find engineering constants of an angle lamina.
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Macromechanical Analysis of a Lamina 123

Also, the Poisson’s ratio, νxy, is defined as

(2.118)

In an angle lamina, unlike in a unidirectional lamina, interaction also
occurs between the shear strain and the normal stresses. This is
called shear coupling. The shear coupling term that relates the nor-
mal stress in the x-direction to the shear strain is denoted by mx and
is defined as

(2.119)

Note that mx is a nondimensional parameter like the Poisson’s ratio.
Later, note that the same parameter, mx, relates the shearing stress
in the x–y plane to the normal strain in direction-x.

The shear coupling term is particularly important in tensile testing of
angle plies. For example, if an angle lamina is clamped at the two
ends, it will not allow shearing strain to occur. This will result in
bending moments and shear forces at the clamped ends.5

2. Similarly, by applying stresses

, (2.120)

as shown in Figure 2.23b, it can be found

(2.121)

(2.122)

(2.123)

The shear coupling term my relates the normal stress σy to the shear
strain γxy. In the following section (3), note that the same parameter
my relates the shear stress τxy in the x–y plane to the normal strain εy.

ν
ε
εxy

y

x

S
S

≡ − = − 12

11

.

1 1

1 16 1m E S Ex

x

xy

≡ − = −σ
γ

.

σ σ τx y xy= ≠ =0 0 0, ,

E
Sy = 1

22

,

νyx
S
S

= − 12

22

, and

1 1

26 1m S Ey

= − .
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124 Mechanics of Composite Materials, Second Edition

From Equation (2.117), Equation (2.118), Equation (2.121), and Equation
(2.122), the reciprocal relationship is given by

. (2.124)

3. Also, by applying the stresses

, (2.125)

as shown in Figure 2.23c, it is found that

(2.126)

(2.127)

(2.128)

Thus, the strain–stress Equation (2.105) of an angle lamina can also be
written in terms of the engineering constants of an angle lamina in
matrix form as

(2.129)

The preceding six engineering constants of an angle ply can also be
written in terms of the engineering constants of a unidirectional ply
using Equation (2.92) and Equation (2.106) in Equation (2.117)
through Equation (2.119), Equation (2.121), Equation (2.123), and
Equation (2.128):
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(2.130)

, (2.131)

, (2.132)

(2.133)

(2.134)
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(2.135)

Example 2.9

Find the engineering constants of a 60° graphite/epoxy lamina. Use the
properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.7, we have

From Equation (2.117),

m S Ey = − 26 1

= − − − − − −E S S S s c S S S sc1 11 12 66
3

22 12 66
32 2 2 2[( ) ( ) ]

= − − +
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⎞
⎠⎟

+ + −E
E E G

s c
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12

1 12

3

2

12

1 1

2 2 1 2 2 1ν ν
22

3⎛
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⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥sc .

S
Pa11
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1= × −. ,

S
Pa12

110 7878 10
1= − × −. ,

S
Pa16

100 3234 10
1= − × −. ,

S
Pa22

100 3475 10
1= × −. ,

S
Pa26

100 4696 10
1= − × −. , and

S
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90 1141 10
1= × −. .

E
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×
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−
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12 42

10.

. .
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From Equation (2.118),

From Equation (2.119),

.

From Equation (2.121),

From Equation (2.123),

From Equation (2.128),

The variations of the six engineering elastic constants are shown as a
function of the angle for the preceding graphite/epoxy lamina in Figure 2.24
through Figure 2.29.

The variations of the Young’s modulus, Ex and Ey are inverses of each other.
As the fiber orientation (angle of ply) varies from 0° to 90°, the value of Ex

νxy = − − ×
×
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−
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11
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.
.
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1 1
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E
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FIGURE 2.24
Elastic modulus in direction-x as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.25
Elastic modulus in direction-y as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.26
Poisson’s ratio νxy as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.27
In-plane shear modulus in xy-plane as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.28
Shear coupling coefficient mx as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.29
Shear coupling coefficient my  as a function of angle of lamina for a graphite/epoxy lamina.
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varies from the value of the longitudinal (E1) to the transverse Young’s
modulus E2. However, the maximum and minimum values of Ex do not
necessarily exist for θ = 0° and θ = 90°, respectively, for every lamina.

Consider the case of a metal matrix composite such as a typical SCS – 6/
Ti6 –Al – 4V composite. The elastic moduli of such a lamina with a 55% fiber
volume fraction is

E1 = 272 GPa

E2 = 200 GPa

ν12 = 0.2770

G12 = 77.33 GPa

In Figure 2.30, the lowest modulus value of Ex is found for θ = 63°. In fact,
the angle of 63° at which Ex is minimum is independent of the fiber volume
fraction, if one uses the “mechanics of materials approach” (Section 3.3.1) to
evaluate the preceding four elastic moduli of a unidirectional lamina. See
Exercise 3.13. 

In Figure 2.27, the shear modulus Gxy  is maximum for θ = 45° and is
minimum for 0 and 90° plies. The shear modulus Gxy  becomes maximum
for 45° because the principal stresses for pure shear load on a 45° ply are
along the material axis.

From Equation (2.133), the expression for Gxy for a 45° ply is 

FIGURE 2.30
Variation of elastic modulus in direction-x as a function of angle of lamina for a typical SCS –
6/Ti6 – Al – 4V lamina. 
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. (2.136)

In Figure 2.28 and Figure 2.29, the shear coupling coefficients mx and my

are maximum at θ = 36.2° and θ = 53.78°, respectively. The values of these
coefficients are quite extreme, showing that the normal-shear coupling terms
have a stronger effect than the Poisson’s effect. This phenomenon of shear
coupling terms is missing in isotropic materials and unidirectional plies, but
cannot be ignored in angle plies.

2.7 Invariant Form of Stiffness and Compliance Matrices for 
an Angle Lamina

Equation (2.104) and Equation (2.106) for the [ ] and [ ] matrices are not
analytically convenient because they do not allow a direct study of the effect
of the angle of the lamina on the [ ] and [ ] matrices. The stiffness
elements can be written in invariant form as6

, (2.137a–f)

where

G
E

E
E

xy/45
1

12
1

2

1 2
° =

+ +
⎛
⎝⎜

⎞
⎠⎟

ν

Q S

Q S

Q U U U11 1 2 32 4= + +Cos Cosθ θ,

Q U U12 4 3 4= − Cos θ,

Q U U U22 1 2 32 4= − +Cos Cosθ θ,

Q
U

U16
2

32
2 4= +Sin Sinθ θ,

Q
U

U26
2

32
2 4= −Sin Sinθ θ,

Q U U U66 1 4 3
1
2

4= − −( ) Cos θ
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(2.138a–d)

The terms U1, U2, U3, and U4 are the four invariants and are combinations
of the Qij, which are invariants as well.

The transformed reduced compliance [ ] matrix can similarly be writ-
ten as

(2.139a–f)

where

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( )

U Q Q2 11 22
1
2

= −( ),

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( ),

U Q Q Q Q4 11 22 12 66
1
8

6 4= + + −( ).

S

S V V V11 1 2 32 4= + +Cos Cosθ θ,

S V V12 4 3 4= − Cos θ,

S V V V22 1 2 32 4= − +Cos Cosθ θ,

S V V16 2 32 2 4= +Sin Sinθ θ,

S V V26 2 32 2 4= −Sin Sin andθ θ,

S V V V66 1 4 32 4 4= − −( ) ,Cos θ

V S S S S1 11 22 12 66
1
8

3 3 2= + + +( ),

V S S2 11 22
1
2

= −( ),
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(2.140a–d)

The terms V1, V2, V3, and V4 are invariants and are combinations of Sij, which
are also invariants.

The main advantage of writing the equations in this form is that one can
easily examine the effect of the lamina angle on the reduced stiffness matrix
elements. Also, formulas given by Equation (2.137) and Equation (2.139) are
easier to manipulate for integration, differentiation, etc. The concept is
mainly important in deriving the laminate stiffness properties in Chapter 4.

The elastic moduli of quasi-isotropic laminates that behave like isotropic
material are directly given in terms of these invariants. Because quasi-iso-
tropic laminates have the minimum stiffness of any laminate, these can be
used as a comparative measure of the stiffness of other types of laminates.7

Example 2.10

Starting with the expression for  from Equation (2.104a), ,
, reduce it to the expression for of

Equation (2.137a) — that is,

Solution

Given

,

and substituting

V S S S S3 11 22 12 66
1
8

2= + − −( ),

V S S S S4 11 22 12 66
1
8

6= + + −( ).

11Q Q Q11 11
4= Cos θ

Q Q Q22
4

12 66
2 22 2+ + +Sin Sin Cosθ θ θ( ) 11Q

Q U U U11 1 2 32 4= + +Cos Cosθ θ

Q Q Q Q Q11 11
4

22
4

12 66
2 22 2= + + +Cos Sin Sin Cosθ θ θ θ( )

Cos
Cos2 1 2
2

θ θ= +
,

Sin
Cos2 1 2

2
θ θ= −

,
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we get

,

where

.

Example 2.11

Evaluate the four compliance and four stiffness invariants for a graphite/
epoxy angle lamina. Use the properties for a unidirectional graphite/epoxy
lamina from Table 2.1.

Solution

From Example 2.6, the compliance matrix [S] elements are

Cos
Cos

and2 2
1 4

2
θ θ= +

,

2 2Sin Cos Sinθ θ θ= ,

Sin
Cos2 2

1 4
2

θ θ= −
,

Q U U U11 1 2 32 4= + +Cos Cosθ θ

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( ),

U Q Q2 11 22
1
2

= −( )

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( )

S
Pa11

110 5525 10
1= × −. ,

S
Pa12

110 1547 10
1= − × −. ,
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The stiffness matrix [

 

Q

 

] elements are

Using Equation (2.138),

S
Pa22

100 9709 10
1= × −. ,

S
Pa66

90 1395 10
1= × −. .

[ ] [ ] ,Q S= −1

Q Pa11
120 1818 10= ×. ,

Q Pa12
100 2897 10= ×. ,

Q Pa22
110 1035 10= ×. ,

Q Pa66
100 7170 10= ×. .

U1
12 111

8
3 0 1818 10 3 0 1035 10 2 0 289= × + × +[ ( . ) ( . ) ( . 77 10 4 0 7171 10

0 7637 10

10 10

11

× + ×

= ×

) ( . )]

. ,Pa

U

P

2
12 11

11

1
2

0 1818 10 0 1035 10

0 8573 10

= × − ×

= ×

( . . )

. aa,

U3
12 11 101

8
0 1818 10 0 1035 10 2 0 2897 10= × + × − ×[ . . ( . )) ( . )]

. ,

− ×

= ×

4 0 7171 10

0 1971 10

10

11 Pa

U4
12 11 101

8
0 1818 10 0 1035 10 6 0 2897 10= × + × + ×[ . . ( . )) ( . )]

. .

− ×

= ×

4 0 7171 10

0 2261 10

10

11 Pa
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Using Equation (2.140),

2.8 Strength Failure Theories of an Angle Lamina

A successful design of a structure requires efficient and safe use of materials.
Theories need to be developed to compare the state of stress in a material
to failure criteria. It should be noted that failure theories are only stated and
their application is validated by experiments.

For a laminate, the strength is related to the strength of each individual
lamina. This allows for a simple and economical method for finding the
strength of a laminate. Various theories have been developed for studying
the failure of an angle lamina. The theories are generally based on the normal
and shear strengths of a unidirectional lamina.

An isotropic material, such as steel, generally has two strength parameters:
normal strength and shear strength. In some cases, such as concrete or gray
cast iron, the normal strengths are different in the tension and compression.
A simple failure theory for an isotropic material is based on finding the
principal normal stresses and the maximum shear stresses. These maximum

V1
11 111

8
3 0 5525 10 3 0 1547 10 2 0= × + − × +− −[ ( . ) ( . ) ( .99709 10 0 1395 10

0 5553 10
1

10 9

10

× + ×

= ×

− −

−

) . ]

. ,
Pa

V2
11 111

2
0 5525 10 0 1547 10

0 457

= × − − ×

= −

− −[( . ( . )]

. 88 10
110× −

Pa
,

V3
11 101

8
0 5525 10 0 9709 10 2 0 1547 10= × + × − ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 4220 10
1

) . ]

. ,
Pa

V4
11 101

8
0 5525 10 0 9709 10 6 0 1547 10= × + × + ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 5767 10
1

) . ]

. .
Pa
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stresses, if greater than any of the corresponding ultimate strengths, indicate
failure in the material.

Example 2.12

A cylindrical rod made of gray cast iron is subjected to a uniaxial tensile
load, P. Given:

Cross-sectional area of rod = 2 in.2

Ultimate tensile strength = 25 ksi
Ultimate compressive strength = 95 ksi
Ultimate shear strength = 35 ksi
Modulus of elasticity = 10 Msi

Find the maximum load, P, that can be applied using maximum stress failure
theory.

Solution

At any location, the stress state in the rod is σ = P/2. From a typical Mohr’s
circle analysis, the maximum principal normal stress is P/2. The maximum
shear stress is P/4 and acts at a cross-section 45° to the plane of maximum
normal stress. Comparing these maximum stresses to the corresponding
ultimate strengths, we have

and 

Thus, the maximum load is 50,000 lb.
However, in a lamina, the failure theories are not based on principal normal

stresses and maximum shear stresses. Rather, they are based on the stresses
in the material or local axes because a lamina is orthotropic and its properties
are different at different angles, unlike an isotropic material.

In the case of a unidirectional lamina, there are two material axes: one
parallel to the fibers and one perpendicular to the fibers. Thus, there are four
normal strength parameters for a unidirectional lamina, one for tension and
one for compression, in each of the two material axes directions. The fifth
strength parameter is the shear strength of a unidirectional lamina. The shear
stress, whether positive or negative, does not have an effect on the reported

P
or P

2
25 10 50 0003< × < , ,lb

P
or P

4
35 10 140 0003< × < , .lb
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shear strengths of a unidirectional lamina. However, we will find later that
the sign of the shear stress does affect the strength of an angle lamina. The
five strength parameters of a unidirectional lamina are therefore

Unlike the stiffness parameters, these strength parameters cannot be trans-
formed directly for an angle lamina. Thus, the failure theories are based on
first finding the stresses in the local axes and then using these five strength
parameters of a unidirectional lamina to find whether a lamina has failed.
Four common failure theories are discussed here. Related concepts of
strength ratio and the development of failure envelopes are also discussed.

2.8.1 Maximum Stress Failure Theory

Related to the maximum normal stress theory by Rankine and the maxi-
mum shearing stress theory by Tresca, this theory is similar to those
applied to isotropic materials. The stresses acting on a lamina are resolved
into the normal and shear stresses in the local axes. Failure is predicted
in a lamina, if any of the normal or shear stresses in the local axes of a
lamina is equal to or exceeds the corresponding ultimate strengths of the
unidirectional lamina.

Given the stresses or strains in the global axes of a lamina, one can find
the stresses in the material axes by using Equation (2.94). The lamina is
considered to be failed if

(2.141a–c)

is violated. Note that all five strength parameters are treated as positive
numbers, and the normal stresses are positive if tensile and negative if
compressive.

Each component of stress is compared with the corresponding strength;
thus, each component of stress does not interact with the others.

( ) =1
T

ultσ Ultimate longitudinal tensile strrength (in direction 1),
( ) =1

C
ultσ Ultimate longitudinal compressivee strength (in direction 1),

( ) =2
T

ultσ Ultimate transverse tensile strenngth (in direction 2),
( ) =2

C
ultσ Ultimate transverse compressive sstrength (in direction 2), and

( ) =12 ultτ Ultimate shear strengthin-plane (in plane 12).

− < <( ) ( ) ,σ σ σ1 1 1
C

ult
T

ult or

− < <( ) ( ) ,σ σ σ2 2 2
C

ult
T

ult or

− < <( ) ( )τ τ τ12 12 12ult ult
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Example 2.13

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to the 60° lamina of graphite/epoxy. Use maximum stress
failure theory and the properties of a unidirectional graphite/epoxy lamina
given in Table 2.1.

Solution

Using Equation (2.94), the stresses in the local axes are

From Table 2.1, the ultimate strengths of a unidirectional graphite/epoxy
lamina are

 = 1500 MPa

 = 1500 MPa

 = 40 MPa

 = 246 MPa

 = 68 MPa

Then, using the inequalities (2.141) of the maximum stress failure theory,

–1500 × 106 < 0.1714 × 101S < 1500 × 106

–246 × 106 < –0.2714 × 101S < 40 × 106

–68 × 106 < –0.4165 × 101S < 68 × 106

or

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 75

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 000 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
×

− ×

S

S

S

2
3
4

0 1714 10
0 2714

1.
. 110

0 4165 10

1

1− ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥.

.S

( )σ1
T

ult

( )σ1
C

ult

( )σ2
T

ult

( )σ2
C

ult

( )τ12 ult
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–875.1 × 106 < S < 875.1 × 106

–14.73 × 106 < S < 90.64 × 106

–16.33 × 106 < S < 16.33 × 106.

All the inequality conditions (and S > 0) are satisfied if 0 < S < 16.33 MPa.
The preceding inequalities also show that the angle lamina will fail in shear.
The maximum stress that can be applied before failure is 

Example 2.14

Find the off-axis shear strength of a 60° graphite/epoxy lamina. Use the
properties of unidirectional graphite/epoxy from Table 2.1 and apply the
maximum stress failure theory.

Solution

The off-axis shear strength of a lamina is defined as the minimum of the
magnitude of positive and negative shear stress (Figure 2.31) that can be
applied to an angle lamina before failure.

Assume the following stress state

σx = 0, σy = 0, τxy = τ .

Then, using the transformation Equation (2.94),

.

Using the inequalities (2.141) of the maximum stress failure theory, we
have

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 750

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 00 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
τ

σ τ1 0 866= .

σ τ2 0 866− .

τ τ12 0 500= − .
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–1500 < 0.866τ < 1500 or –1732 < τ < 1732

–246 < –0.866τ < 40 or –46.19 < τ < 284.1

–68 < –0.500τ < 68 or –136.0 < τ < 136.0,

which shows that τxy = 46.19 MPa is the largest magnitude of shear stress
that can be applied to the 60° graphite/epoxy lamina. However, the largest
positive shear stress that could be applied is τxy = 136.0 MPa, and the largest
negative shear stress is τxy = –46.19 MPa. 

This shows that the maximum magnitude of allowable shear stress in other
than the material axes’ direction depends on the sign of the shear stress. This
is mainly because the local axes’ stresses in the direction perpendicular to
the fibers are opposite in sign to each other for opposite signs of shear stress
(σ2 = –0.866τ for positive τxy and σ2 = 0.866τ for negative τxy). Because the
tensile strength perpendicular to the fiber direction is much lower than the
compressive strength perpendicular to the fiber direction, the two limiting
values of τxy are different.

FIGURE 2.31
Positive and negative shear stresses applied to an angle lamina.

(a) Positive shear stress  

τxy

τxy

2
y

1

x

(b) Negative shear stress 

τxy

τxy

2
y

1

x

1343_book.fm  Page 142  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC
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Table 2.3 shows the maximum negative and positive values of shear stress
that can be applied to different angle plies of graphite/epoxy of Table 2.1.
The minimum magnitude of the two stresses is the shear strength of the
angle lamina.

2.8.2 Strength Ratio

In a failure theory such as the maximum stress failure theory of Section 2.8.1,
it can be determined whether a lamina has failed if any of the inequalities
of Equation (2.141) are violated. However, this does not give the information
about how much the load can be increased if the lamina is safe or how much
the load should be decreased if the lamina has failed. The definition of
strength ratio (SR) is helpful here. The strength ratio is defined as

(2.142)

The concept of strength ratio is applicable to any failure theory. If SR > 1,
then the lamina is safe and the applied stress can be increased by a factor
of SR. If SR < 1, the lamina is unsafe and the applied stress needs to be
reduced by a factor of SR. A value of SR = 1 implies the failure load.

Example 2.15

Assume that one is applying a load of

TABLE 2.3

Effect of Sign of Shear Stress as a Function of Angle 
of Lamina

Angle, 
Degrees

Positive ττττxy

MPa
Negative ττττxy

MPa
Shear strength

MPa

0 68.00 (S) 68.00 (S) 68.00
15 78.52 (S) 78.52 (S) 78.52
30 136.0 (S) 46.19 (2T) 46.19
45 246.0 (2C) 40.00 (2T) 40.00
60 136.0 (S) 46.19 (2T) 46.19
75 78.52 (S) 78.52 (S) 78.52
90 68.00 (S) 68.00 (S) 68.00

Note: The notation in the parentheses denotes the mode
of failure of the angle lamina as follows: 
(1T) — longitudinal tensile failure; 
(1C) — longitudinal compressive failure; 
(2T) — transverse tensile failure; 
(2C) — transverse compressive failure; 
(S) — shear failure.

SR =
Maximum Load Which Can Be Applied

Load AApplied
.
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to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the
maximum stress failure theory.

Solution

If the strength ratio is R, then the maximum stress that can be applied is

.

Following Example 2.13 for finding the local stresses gives 

.

Using the maximum stress failure theory as given by Equation (2.141)
yields

R = 16.33.

Thus, the load that can be applied just before failure is

Note that all the components of the stress vector must be multiplied by the
strength ratio.

2.8.3 Failure Envelopes

A failure envelope is a three-dimensional plot of the combinations of the
normal and shear stresses that can be applied to an angle lamina just before
failure. Because drawing three dimensional graphs can be time consuming,
one may develop failure envelopes for constant shear stress τxy and then use
the two normal stresses σx and σy as the two axes. Then, if the applied stress
is within the failure envelope, the lamina is safe; otherwise, it has failed.

σ σ τx y xyMPa MPa MPa= = − =2 3 4, ,

σ σ τx y xyR R R= = − =2 3 4, ,

σ1
10 1714 10. × R

σ2
10 2714 10= − ×. R

τ12
10 4165 10= − ×. R

σ σ τx y xyMPa MPa= × = × − =16 33 2 16 33 3 16 3. , . ( ) , . 33 4× ,Mpa

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .
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Example 2.16

Develop a failure envelope for the 60° lamina of graphite/epoxy for a con-
stant shear stress of τxy = 24 MPa. Use the properties for the unidirectional
graphite/epoxy lamina from Table 2.1.

Solution

From Equation (2.94), the stresses in the local axes for a 60° lamina are
given by

where σx and σy are also in units of MPa.
Using the preceding inequalities,

.

Various combinations of (σx, σy) can be found to satisfy the preceding
inequalities. However, the objective is to find the points on the failure enve-
lope. These are combinations of σx and σy , where one of the three inequalities
is just violated and the other two are satisfied. Some of the values of (σx, σy)
obtained on the failure envelope are given in Table 2.4.

Several methods can be used to obtain the points on the failure envelope
for a constant shear stress. One way is to fix the value of σx and find the
maximum value of σy that can be applied without violating any of the
conditions. For example, for σx = 100 MPa, from the inequalities we have

σ σ σ1 0 2500 0 7500 20 78= + +. . . ,x y MPa

σ σ σ2 0 7500 0 2500 20 78= + −. . . ,x y MPa

τ σ σ12 0 4330 0 4330 12 00= − + −. . . ,x y MPa

− < + + <1500 0 2500 0 7500 20 78 1500. . .σ σx y

− < + − <246 0 7500 0 2500 20 78 40. . .σ σx y

− < − + − <68 0 4330 0 4330 12 00 68. . .σ σx y

− < <2061 1939σy ,

− < < −1201 56 88σy . ,

− < <29 33 284 80. . .σy
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The preceding three inequalities show no allowable value of σy for this value
of σx = 100 MPa.

As another example, for σx = 50 MPa, we have from inequalities,

The preceding three inequalities show two maximum allowable values of
the normal stress, σy. These are σy = 93.12 MPa and σy = –79.33 MPa. The
failure envelope for τxy = 24 MPa is shown in Figure 2.32.

2.8.4 Maximum Strain Failure Theory

This theory is based on the maximum normal strain theory by St. Venant
and the maximum shear stress theory by Tresca as applied to isotropic
materials. The strains applied to a lamina are resolved to strains in the local
axes. Failure is predicted in a lamina, if any of the normal or shearing strains
in the local axes of a lamina equal or exceed the corresponding ultimate
strains of the unidirectional lamina. Given the strains/stresses in an angle
lamina, one can find the strains in the local axes. A lamina is considered to
be failed if

TABLE 2.4

Typical Values of (σx, σy) on the
Failure Envelope for Example 2.16

σx (MPa) σy (MPa)

50.0
50.0

–50.0
–50.0
25.0
25.0

–25.0
–25.0

93.1
–79.3
179

–135
168

–104
160

–154

− < <2044 1956σy ,

− < <1051 93 12σy . ,

− < <79 33 234 80. . .σy

− < <( ) ( ) ,ε ε ε1 1 1
C

ult
T

ult or

− < <( ) ( ) ,ε ε ε2 2 2
C

ult
T

ult or
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(2.143a–c)

is violated, where 

= ultimate longitudinal tensile strain (in direction 1)
= ultimate longitudinal compressive strain (in direction 1)
= ultimate transverse tensile strain (in direction 2)
= ultimate transverse compressive strain (in direction 2)
= ultimate in-plane shear strain (in plane 1–2)

The ultimate strains can be found directly from the ultimate strength
parameters and the elastic moduli, assuming the stress–strain response is
linear until failure. The maximum strain failure theory is similar to the
maximum stress failure theory in that no interaction occurs between various
components of strain. However, the two failure theories give different results
because the local strains in a lamina include the Poisson’s ratio effect. In fact,
if the Poisson’s ratio is zero in the unidirectional lamina, the two failure
theories will give identical results.

Example 2.17

Find the maximum value of S > 0 if a stress, σx = 2S, σy = –3S, and τxy = 4S,
is applied to a 60° graphite/epoxy lamina. Use maximum strain failure

FIGURE 2.32
Failure envelopes for constant shear stress using maximum stress failure theory.

0
τ = 24 MPa

−300 −200−250 −150 −100
σx (MPa)

σ y (M
Pa

)

−50 0 50 100

200

100

−100

−200

−300

−400

− < <( ) ( )γ γ γ12 12 12ult ult

( )ε1
T

ult

( )ε1
C

ult

( )ε2
T

ult

( )ε2
C

ult

( )γ 12 ult
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theory. Use the properties of the graphite/epoxy unidirectional lamina given
in Table 2.1.

Solution

In Example 2.6, the compliance matrix [S] was obtained and, in Example 2.13,
the local stresses for this problem were obtained. Then, from Equation (2.77),

Assume a linear relationship between all the stresses and strains until
failure; then the ultimate failure strains are

ε
ε
γ

σ
σ
τ

1

2

12

1

2

12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]S

=
× − ×

− ×

− −

−

0 5525 10 0 1547 10 0
0 1547 10 0 9

11 11

11

. .
. . 7709 10 0

0 0 0 1395 10

0 1714 10
10

9

×
×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×
−

−.

. 11

1

1

0 2714 10
0 4165 10

− ×
− ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

.
S

=
×

− ×
− ×

⎡

⎣

⎢
⎢
⎢

⎤−

−

−

0 1367 10
0 2662 10
0 5809 10

10

9

9

.
.
. ⎦⎦

⎥
⎥
⎥
S.

( )
( )

.ε σ
1

1

1

6

9

1500 10
181 10

8 287 1T
ult

T
ult

E
= = ×

×
= × 00 3− ,

( )
( )

.ε σ
1

1

1

6

9

1500 10
181 10

8 287 1C
ult

C
ult

E
= = ×

×
= × 00 3− ,

( )
( )

.
.ε σ

2
2

2

6

9

40 10
10 3 10

3 883 10T
ult

T
ult

E
= = ×

×
= × −−3 ,

( )
( )

.
.ε σ

2
2

2

6

9

246 10
10 3 10

2 388 1C
ult

C
ult

E
= = ×

×
= × 00 2− ,
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The preceding values for the ultimate strains also assume that the com-
pressive and tensile stiffnesses are identical. Using the inequalities (2.143)
and recognizing that S > 0,

or

which give

The maximum value of S before failure is 16.33 MPa. The same maximum
value of S = 16.33 MPa is also found using maximum stress failure theory.
There is no difference between the two values because the mode of failure
is shear. However, if the mode of failure were other than shear, a difference
in the prediction of failure loads would have been present due to the
Poisson’s ratio effect, which couples the normal strains and stresses in the
local axes.

Neither the maximum stress failure theory nor the maximum strain failure
theory has any coupling among the five possible modes of failure. The
following theories are based on the interaction failure theory.

2.8.5 Tsai–Hill Failure Theory

This theory is based on the distortion energy failure theory of Von-Mises’
distortional energy yield criterion for isotropic materials as applied to aniso-
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150 Mechanics of Composite Materials, Second Edition

tropic materials. Distortion energy is actually a part of the total strain energy
in a body. The strain energy in a body consists of two parts; one due to a
change in volume and is called the dilation energy and the second is due to
a change in shape and is called the distortion energy. It is assumed that
failure in the material takes place only when the distortion energy is greater
than the failure distortion energy of the material. Hill8 adopted the Von-
Mises’ distortional energy yield criterion to anisotropic materials. Then, Tsai7

adapted it to a unidirectional lamina. Based on the distortion energy theory,
he proposed that a lamina has failed if

(2.144)

is violated. The components G1, G2, G3, G4, G5, and G6 of the strength criterion
depend on the failure strengths and are found as follows.

1. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.145)

2. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.146)

3. Apply to a unidirectional lamina and, assuming that the
normal tensile failure strength is same in directions (2) and (3), the
lamina will fail. Thus, Equation (2.144) reduces to 

(2.147)

4. Apply τ12 = (τ12)ult to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.148)

From Equation (2.145) to Equation (2.148),
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(2.149a–d)

Because the unidirectional lamina is assumed to be under plane stress —
that is, σ3 = τ31 = τ23 = 0, then Equation (2.144) reduces through Equation
(2.149) to

(2.150)

Given the global stresses in a lamina, one can find the local stresses in a
lamina and apply the preceding failure theory to determine whether the
lamina has failed.

Example 2.18

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to a 60° graphite/epoxy lamina. Use Tsai–Hill failure theory.
Use the unidirectional graphite/epoxy lamina properties given in Table 2.1.

Solution

From Example 2.13,
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Using the Tsai–Hill failure theory from Equation (2.150),

1. Unlike the maximum strain and maximum stress failure theories,
the Tsai–Hill failure theory considers the interaction among the three
unidirectional lamina strength parameters.

2. The Tsai–Hill failure theory does not distinguish between the com-
pressive and tensile strengths in its equations. This can result in
underestimation of the maximum loads that can be applied when
compared to other failure theories. For the load of σx = 2 MPa, σy =
–3 MPa, and τxy = 4 MPa, as found in Example 2.15, Example 2.17,
and Example 2.18, the strength ratios are given by
SR = 10.94 (Tsai–Hill failure theory)
SR = 16.33 (maximum stress failure theory)
SR = 16.33 (maximum strain failure theory)

Tsai–Hill failure theory underestimates the failure stress because the trans-
verse tensile strength of a unidirectional lamina is generally much less than
its transverse compressive strength. The compressive strengths are not used
in the Tsai–Hill failure theory, but it can be modified to use corresponding
tensile or compressive strengths in the failure theory as follows

, (2.151)
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=  if σ2 < 0;

Y =  if σ2 > 0

=  if σ2 < 0

S = (τ12)ult.

For Example 2.18, the modified Tsai–Hill failure theory given by
Equation (2.151) now gives

σ < 16.06 MPa,

which implies that the strength ratio is SR = 16.06 (modified Tsai–Hill failure
theory). This value is closer to the values obtained using maximum stress
and maximum strain failure theories.

3. The Tsai–Hill failure theory is a unified theory and thus does not
give the mode of failure like the maximum stress and maximum
strain failure theories do. However, one can make a reasonable
guess of the failure mode by calculating
and |τ12/(τ12)ult|. The maximum of these three values gives the asso-
ciated mode of failure. In the modified Tsai–Hill failure theory,
calculate the maximum of |σ1/X1|, |σ2/Y|, and |τ12/S| for the associ-
ated mode of failure.

2.8.6 Tsai–Wu Failure Theory 

This failure theory is based on the total strain energy failure theory of
Beltrami. Tsai-Wu9 applied the failure theory to a lamina in plane stress. A
lamina is considered to be failed if

H1σ1 + H2σ2 + H6τ12 + H11 + H22 +H66 + 2H12σ1σ2 < 1 (2.152)

is violated. This failure theory is more general than the Tsai–Hill failure
theory because it distinguishes between the compressive and tensile
strengths of a lamina.
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The components H1, H2, H6, H11, H22, and H66 of the failure theory are found
using the five strength parameters of a unidirectional lamina as follows:

1. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.153)

2. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.154)

From Equation (2.153) and Equation (2.154),

(2.155)

(2.156)

3. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.157)

4. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.158)

From Equation (2.157) and Equation (2.158),

(2.159)

(2.160)

σ σ σ τ1 1 2 120 0= = =( ) , ,T
ult

H HT
ult

T
ult1 1 11 1
2 1( ) ( ) .σ σ+ =

σ σ σ τ1 1 2 120 0= − = =( ) , ,C
ult

− + =H HC
ult

C
ult1 1 11 1
2 1( ) ( ) .σ σ

H T
ult

C
ult

1
1 1

1 1= −
( ) ( )

,
σ σ

H T
ult

C
ult

11
1 1

1=
( ) ( )

.
σ σ

σ σ σ τ1 2 2 120 0= = =, ( ) ,T
ult

H HT
ult

T
ult2 2 22 2
2 1( ) ( ) .σ σ+ =

σ σ σ τ1 2 2 120 0= = − =, ( ) ,C
ult

− + =H HC
ult

C
ult2 2 22 2
2 1( ) ( ) .σ σ

H T
ult

C
ult

2
2 2

1 1= −
( ) ( )

,
σ σ

H T
ult

C
ult

22
2 2

1=
( ) ( )

.
σ σ

1343_book.fm  Page 154  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

Macromechanical Analysis of a Lamina

 

155

5. Apply 
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 = 0, and 
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ult

 

 to a unidirectional lamina; it
will fail. Equation (2.152) reduces to

(2.161)

6. Apply 
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 = –(
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ult

 

 to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.162)

From Equation (2.161) and Equation (2.162),

(2.163)

(2.164)

The only component of the failure theory that cannot be found directly
from the five strength parameters of the unidirectional lamina is 

 

H

 

12

 

. This
can be found experimentally by knowing a biaxial stress at which the lamina
fails and then substituting the values of 
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 in the Equation (2.152).
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1. Apply equal tensile loads along the two material axes in a unidirec-
tional composite. If 
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 = 0 is the load at which the lamina
fails, then

(2.165)

The solution of Equation (2.165) gives

(2.166)

It is not necessary to pick tensile loads in the preceding biaxial test, but one
may apply any combination of
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(2.167)

This will give four different values of 
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, each corresponding to the four
tests.

2. Take a 45
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 lamina under uniaxial tension 
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. The stress 
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 at failure
is noted. If this stress is 
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, then, using Equation (2.94), the local
stresses at failure are

(2.168a–c)

Substituting the preceding local stresses in Equation (2.152),
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Example 2.19

Find the maximum value of S > 0 if a stress σx = 2S, σy = –3S, and τxy = 4S
are applied to a 60° lamina of graphite/epoxy. Use Tsai–Wu failure theory.
Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.13,

From Equations (2.155), (2.156), (2.159), (2.160), (2.163), and (2.164),

H1 =  

H2 =

H6 = 0 Pa–1,

H11 =

H22 =

H66 = .

Using the Mises–Hencky criterion for evaluation of H12, (Equation 2.165c),
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Substituting these values in Equation (2.152), we obtain

or

.

If one uses the other two empirical criteria for H12, per Equation (2.171),
this yields

Summarizing the four failure theories for the same stress state, the value
of S obtained is

S = 16.33 (maximum stress failure theory)
S = 16.33 (maximum strain failure theory)
S = 10.94 (Tsai–Hill failure theory)
S = 16.06 (modified Tsai–Hill failure theory)
S = 22.39 (Tsai–Wu failure theory)

2.8.7 Comparison of Experimental Results with Failure Theories

Tsai7 compared the results from various failure theories to some experimen-
tal results. He considered an angle lamina subjected to a uniaxial load in
the x-direction, σx, as shown in Figure 2.33. The failure stresses were
obtained experimentally for tensile and compressive stresses for various
angles of the lamina.
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The experimental results can be compared with the four failure theories
by finding the stresses in the material axes for an arbitrary stress, σx, for an
angle lamina with an angle, θ, between the fiber and loading direction as

(2.172)

per Equation (2.94). 
The corresponding strains in the material axes are

(2.173)

per Equation (2.99).
Using the preceding local strains and stresses in the four failure theories

given by Equation (2.141), Equation (2.143), Equation (2.150), and Equation
(2.152), one can find the ultimate off-axis load, σx, that can be applied as a
function of the angle of the lamina.

The following values were used in the failure theories for the unidirectional
lamina stiffnesses and strengths:

FIGURE 2.33
Off-axis loading in the x-direction in Figure 2.34 to Figure 2.37.
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The comparison for the four failure theories is shown in Figure 2.34
through Figure 2.37. Observations from the figures are:

• The difference between the maximum stress and maximum strain
failure theories and the experimental results is quite pronounced.

• Tsai–Hill and Tsai–Wu failure theories’ results are in good agreement
with experimentally obtained results.

• The variation of the strength of the angle lamina as a function of
angle is smooth in the Tsai–Hill and Tsai–Wu failure theories, but
has cusps in the maximum stress and maximum strain failure the-
ories. The cusps correspond to the change in failure modes in the
maximum stress and maximum strain failure theories.

2.9 Hygrothermal Stresses and Strains in a Lamina

Composite materials are generally processed at high temperatures and then
cooled down to room temperatures. For polymeric matrix composites, this
temperature difference is in the range of 200 to 300°C; for ceramic matrix
composites, it may be as high as 1000°C. Due to mismatch of the coefficients
of thermal expansion of the fiber and matrix, residual stresses result in a
lamina when it is cooled down. Also, the cooling down induces expansional
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FIGURE 2.34
Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum stress failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

FIGURE 2.35
Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum strain failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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FIGURE 2.36
Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai–Hill
failure theory. (Experimental data reprinted with permission from Introduction to Composite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

FIGURE 2.37
Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai–Wu
failure theory. (Experimental data reprinted with permission from Introduction to Composite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

100 
Tsai-Hill failure theory

σ x (K
si)

 Experimental data points 

10 

0 15 30 
Angle of  lamina, θ (degrees) 

45 60 75 90

100 

10 

0 15 30 
Angle of lamina, θ (degrees) 

Tsai-Wu failure theory

Experimental data points 

σ x (K
si)

 

45 60 75 90

1343_book.fm  Page 162  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 163

strains in the lamina. In addition, most polymeric matrix composites can
absorb or deabsorb moisture. This moisture change leads to swelling strains
and stresses similar to those due to thermal expansion. Laminates in which
laminae are placed at different angles have residual stresses in each lamina
due to differing hygrothermal expansion of each lamina. The hygrothermal
strains are not equal in a lamina in the longitudinal and transverse directions
because the elastic constants and the thermal and moisture expansion coef-
ficients of the fiber and matrix are different. In the following sections,
stress–strain relationships are developed for unidirectional and angle lami-
nae subjected to hygrothermal loads.

2.9.1 Hygrothermal Stress–Strain Relationships for a 
Unidirectional Lamina

For a unidirectional lamina, the stress–strain relationship with temperature
and moisture difference gives

(2.174)

where the subscripts T and C are used to denote temperature and moisture,
respectively. Note that the temperature and moisture change do not have
any shearing strain terms because no shearing strains are induced in the
material axes. The thermally induced strains are given by 

(2.175)

where α1 and α2 are the longitudinal and transverse coefficients of thermal
expansion, respectively, and ΔT is the temperature change. The moisture-
induced strains are given by

(2.176)

where β1 and β2 are the longitudinal and transverse coefficients of moisture,
respectively, and ΔC is the weight of moisture absorption per unit weight of
the lamina.
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Equation (2.174) can be inverted to give

. (2.177)

2.9.2 Hygrothermal Stress–Strain Relationships for an Angle Lamina

The stress–strain relationship for an angle lamina takes the following form:

, (2.178)

where

(2.179)

and 

. (2.180)

The terms αx, αy, and αxy are the coefficients of thermal expansion for an
angle lamina and are given in terms of the coefficients of thermal expansion
for a unidirectional lamina as

. (2.181)
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Similarly, βx, βy, and βxy are the coefficients of moisture expansion for an
angle lamina and are given in terms of the coefficients of moisture expansion
for a unidirectional lamina as

. (2.182)

From Equation (2.174), if no constraints are placed on a lamina, no mechan-
ical strains will be induced in it. This also implies then that no mechanical
stresses are induced. However, in a laminate, even if the laminate has no
constraints, the difference in the thermal/moisture expansion coefficients of
the various layers induces different thermal/moisture expansions in each
layer. This difference results in residual stresses and will be explained fully
in Chapter 4.

Example 2.20

Find the following for a 60° angle lamina of glass/epoxy:

1. Coefficients of thermal expansion
2. Coefficients of moisture expansion
3. Strains under a temperature change of –100°C and a moisture

absorption of 0.02 kg/kg.

Use properties of unidirectional glass/epoxy lamina from Table 2.1.

Solution

1. From Table 2.1,

Using Equation (2.181) gives
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2. From Table 2.1,

Using Equation (2.182) gives

.

3. Now, use Equation (2.179) and Equation (2.180) to calculate the
strains as

.
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2.10 Summary

After reviewing the definitions of stress, strain, elastic moduli, and strain
energy, we developed the three-dimensional stress–strain relationships for
different materials. These materials range from anisotropic to isotropic. The
number of independent constants ranges from 21 for anisotropic to 2 for
isotropic materials, respectively. Using plane stress assumptions, we reduced
the three-dimensional problem to a two-dimensional problem and devel-
oped a stress–strain relationship for a unidirectional/bidirectional lamina.
These relationships were then found for an angle lamina, using transforma-
tion of strains and stresses. We introduced failure theories of an angle lamina
in terms of strengths of unidirectional lamina. Finally, we developed
stress–strain equations for an angle lamina under thermal and moisture
loads. In the appendix of this chapter, we review matrix algebra and the
transformation of stresses and strains.

Key Terms

Mechanical characterization
Stress
Strain
Elastic moduli
Strain energy
Anisotropic material
Monoclinic material
Orthotropic material
Transversely isotropic material
Isotropic material
Plane stress
Compliance matrix
Stiffness matrix
Angle ply
Engineering constants
Invariant stiffness and compliance
Failure theories
Maximum stress failure theory
Maximum strain failure theory
Tsai–Hill theory
Tsai–Wu theory
Failure envelopes
Hygrothermal stresses
Hygrothermal loads
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Exercise Set

2.1 Write the number of independent elastic constants for three-dimen-
sional anisotropic, monoclinic, orthotropic, transversely isotropic,
and isotropic materials.

2.2 The engineering constants for an orthotropic material are found to be

Find the stiffness matrix [C] and the compliance matrix [S] for the
preceding orthotropic material.

 2.3 Consider an orthotropic material with the stiffness matrix given by

Find:
1. The stresses in the principal directions of symmetry if the strains

in the principal directions of symmetry at a point in the material
are ε1 = 1 μm/m, ε2 = 3 μm/m, ε3 = 2 μm/m; γ23 = 0, γ31 = 5 μm/
m, γ12 = 6 μm/m

2. The compliance matrix [S]
3. The engineering constants E1, E2, E3, ν12, ν23, ν31, G12, G23, G31

4. The strain energy per unit volume at the point where strains are
given in part (1.)

2.4 Reduce the monoclinic stress–strain relationships to those of an
orthotropic material.

2.5 Show the difference between monoclinic and orthotropic materials
by applying normal stress in principal directions and shear stress in
principal planes, one at a time and studying the resulting nonzero
and zero strains.
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2.6 Write down the compliance matrix of a transversely isotropic mate-
rial (where 2–3 is the plane of isotropy) in terms of the following
engineering constants:

E is the Young’s modulus in the plane of isotropy 2–3

E′ is the Young’s modulus in direction 1 that is perpendicular to
plane of isotropy 2–3

ν is the Poisson’s ratio in the plane of isotropy 2–3

ν′ is the Poisson’s ratio in the 1–2 plane

G′ is the shear modulus in the 1–2 plane

2.7 Find the relationship between the engineering constants of a three-
dimensional orthotropic material and its compliance matrix.

2.8 What are the values of stiffness matrix elements C11 and C12 in terms
of the Young’s modulus and Poisson’s ratio for an isotropic material?

2.9 Are ν12 and ν21 independent of each other for a unidirectional ortho-
tropic lamina?

2.10 Find the reduced stiffness [Q] and the compliance [S] matrices for a
unidirectional lamina of boron/epoxy. Use the properties of a uni-
directional boron/epoxy lamina from Table 2.1.

2.11 Find the strains in the 1–2 coordinate system (local axes) in a uni-
directional boron/epoxy lamina, if the stresses in the 1–2 coordinate
system applied to are σ1 = 4 MPa, σ2 = 2 MPa, and τ12 = –3 MPa.
Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.12. Write the reduced stiffness and the compliance matrix for an isotro-
pic lamina.

2.13 Show that for an orthotropic material Q11  ≠ C11. Explain why. Also,
show Q66 = C66. Explain why.

2.14 Consider a unidirectional continuous fiber composite. Start from [σ]
= [Q] [ε] and follow the procedure in Section 2.4.3 to get

E1 = ν12 =

E2 = ν21 = G12 = Q66.

2.15 The reduced stiffness matrix [Q] is given for a unidirectional lamina
is given as follows:

Q
Q
Q11

12
2

22

− Q
Q

12
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11
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.

What are the four engineering constants, E1, E2, ν12, and G12, of the
lamina?

2.16 The stresses in the global axes of a 30° ply are given as σx = 4 MPa,
σy = 2 MPa, and τxy = –3 MPa. Find the stresses in the local axes. Are
the stresses in the local axes independent of elastic moduli? Why or
why not?

2.17 The strains in the global axes of a 30° ply are given as εx = 4 μin./
in., εy = 2 μin./in., and γxy = –3 μin./in. Find the strains in the local
axes. Are the strains independent of material properties? Why or
why not?

2.18 Find the transformed reduced stiffness matrix and transformed
compliance matrix for a 60° angle lamina of a boron/epoxy lam-
ina. Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.19 What is the relationship between the elements of the transformed
compliance matrix for a 0 and 90° lamina?

2.20 For a 60° angle lamina of boron/epoxy under stresses in global
axes as σx = 4 MPa, σy = 2 MPa, and τxy = –3 MPa, and using the
properties of a unidirectional boron/epoxy lamina from Table 2.1,
find the following
1. Global strains
2. Local stresses and strains
3. Principal normal stresses and principal normal strains
4. Maximum shear stress and maximum shear strain

2.21 An angle glass/epoxy lamina is subjected to a shear stress τxy = 0.4
ksi in the global axes resulting in a shear strain γxy = 468.3 μin./in.
in the global axes. What is the angle of the ply? Use the properties
of unidirectional glass/epoxy lamina from Table 2.2.

2.22 Find the six engineering constants for a 60° boron/epoxy lamina.
Use the properties of unidirectional boron/epoxy lamina from
Table 2.2.

2.23 A bidirectional woven composite ply may yield equal longitudinal
and transverse Young’s modulus but is still orthotropic. Determine
the angles of the ply for which the shear modulus (Gxy) are maximum
and minimum. Also find these maximum and minimum values.
Given: E1 = 69 GPa, E2 = 69 GPa, ν12 = 0.3, G12 = 20 GPa.
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2.24 A strain gage measures normal strain in a component. Experiments12

suggest that errors due to strain gage misalignment are more appre-
ciable for angle plies of composite materials than isotropic materials.
1. Take a graphite/epoxy angle ply of 8° under a uniaxial stress, σx

= 4 Msi. Estimate the strain, εx, as measured by a strain gage
aligned in the x-direction. Now, if the strain gage is misaligned
by +3° to the x-axis, estimate the measured strain. Find the per-
centage of error due to misalignment. Use properties of unidi-
rectional graphite/epoxy lamina from Table 2.2.

2. Take an aluminum layer under a uniaxial stress, σx = 4 Msi.
Estimate the strain, εx, as measured by a strain gage in the
x-direction. Now, if the strain gage is misaligned by +3° to the
x-axis, estimate the measured strain. Find the percentage of error
due to misalignment. Assume E = 10 Msi, v = 0.3 for aluminum.

2.25 A uniaxial load is applied to a 10° ply. The linear stress–strain curve
along the line of load is related as σx = 123εx, where the stress is
measured in GPa and strain in m/m. Given E1 = 180 GPa, E2 = 10
GPa and ν12 = 0.25, find the value of (1) shear modulus, G12;and (2)
modulus Ex for a 60° ply.

2.26 The tensile modulus of a 0°, 90°, and 45° graphite/epoxy ply is
measured as follows to give E1 = 26.25 Msi, E2 = 1.494 Msi, Ex = 2.427
Msi for the 45° ply, respectively.
1. What is the value Ex for a 30° ply?
2. Can you calculate the values of ν12 and G12 from the previous

three measured values of elastic moduli?
2.27 Can the value of the modulus, Ex, of an angle lamina be less than

both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

2.28 Can the value of the modulus, Ex, of an angle lamina be greater than
both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

2.29 Is the νxy for a lamina maximum for a 45° boron/epoxy ply? Use
properties of unidirectional boron/epoxy lamina from Table 2.2.

2.30 In finding the value of the Young’s modulus, Ex, for an angle ply,
length-to-width (L/W) ratio of the specimen affects the measured
value of Ex. The Young’s modulus  for a finite length-to-width
ratio specimen is related to the Young’s modulus, Ex, for an infinite
length-to-width ratio specimen by5

,

xE
1

E
E

x
x1

1
=

− ζ
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where

.

Tabulate the values of  ζ for L/W = 2, 8, 16, and 64 for a 30° glass/
epoxy. Use properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.31 Starting from the expression for the reduced stiffness element

,

derive the expression

.

2.32 Initial stress–strain data are given for a uniaxial tensile test of a 45°
angle ply. Find the in-plane shear modulus of the unidirectional
lamina, G12. Use linear regression analysis for finding slopes of
curves.

If similar data were given for a 35° angle ply, would it be sufficient
to find the in-plane shear modulus of the unidirectional lamina, G12?

2.33 Calculate the four stiffness invariants, U1, U2, U3, and U4, and the
four compliance invariants V1, V2, V3, and V4, for a boron/epoxy
lamina. Use the properties of a unidirectional boron/epoxy lamina
from Table 2.2.

2.34 Show that is not a function of the angle of ply.
2.35 Find the off-axis shear strength and mode of failure of a 60° boron/

epoxy lamina. Use the properties of a unidirectional boron/epoxy
lamina from Table 2.1. Apply the maximum stress failure, maximum
strain, Tsai–Hill, and Tsai–Wu failure theories.

2.36 Give one advantage of the maximum stress failure theory over the
Tsai–Wu failure theory.
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2.37 Give one advantage of the Tsai–Wu failure theory over the maximum
stress failure theory.

2.38 Find the maximum biaxial stress, σx = –σ, σy = –σ, σ > 0, that one
can apply to a 60° lamina of graphite/epoxy. Use the properties of
a unidirectional graphite/epoxy lamina from Table 2.1. Use maxi-
mum strain and Tsai–Wu failure theories.

2.39 Using Mohr’s circle, show why the maximum shear stress that can
be applied to angle laminae differs with the shear stress sign. Take
a 45° graphite/epoxy lamina as an example. Use the properties of a
unidirectional graphite/epoxy lamina from Table 2.1. 

2.40 Reduce the Tsai–Wu failure theory for an isotropic material with
equal ultimate tensile and compressive strengths and a shear
strength that is 40% of the ultimate tensile strength.

2.41 An off-axis test is used to find the value of H12 for use in the Tsai–Wu
failure theory for a boron/epoxy system. The five lamina strengths
of a unidirectional boron/epoxy system are given as follows:

 = 188 ksi,  = 361 ksi,  = 9 ksi,  = 45 ksi,
and (τ12)ult = 10 ksi.

A 15° specimen fails at a uniaxial load of 33.546 ksi. Find the value
of H12. Does it satisfy the inequality , which is a stability
criterion for Tsai–Wu failure theory that says failure surfaces inter-
cept all stress axes and form a closed geometric surface13?

2.42 Give the units for the coefficient of thermal expansion in the USCS
and SI systems.

2.43 Find the free-expansional strains of a glass/epoxy unidirectional
lamina under a temperature change of –100°C and a moisture
absorption of 0.002 kg/kg. Also find the temperature change for
which the transverse expansional strains vanish for a moisture
absorption of 0.002 kg/kg. Use the properties of a unidirectional
glass/epoxy lamina from Table 2.1. 

2.44 Find the coefficients of thermal expansion of a 60° glass/epoxy lam-
ina. Use the properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.45 Give the units for coefficient of moisture expansion in the USCS and
SI systems.

2.46 Find the coefficients of moisture expansion of a 60° glass/epoxy
lamina. Use the properties of unidirectional glass/epoxy lamina
from Table 2.1.

( )σ1
T

ult ( )σ1
C

ult ( )σ2
T

ult ( )σ2
C

ult

H H H12
2

11 22<
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Appendix A: Matrix Algebra*

What is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic
expressions and/or numbers. Matrix [A] is denoted by

.

Look at the following matrix about the sale of tires — given by quarter
and make of tires — in a Blowoutr’us store:

To determine how many Copper tires were sold in quarter 4, we go along
the row Copper and column quarter 4 and find that it is 27.

Row i of [A] has n elements and is  and 

Column j of [A] has m elements and is .

Each matrix has rows and columns that define the size of the matrix. If a
matrix [A] has m rows and n columns, the size of the matrix is denoted by
m × n. The matrix [A] may also be denoted by [A]mxn to show that [A] is a
matrix with m rows and n columns.

Each entry in the matrix is called the entry or element of the matrix and is
denoted by aij, where i is the row number (i = 1, 2,…m) and j is the column
number (j = 1, 2, …n) of the element. 

The matrix for the tire sales example given earlier could be denoted by
the matrix [A] as

* This section on matrix algebra is adapted, with permission, from A.K. Kaw, Introduction to
Matrix Algebra, E-book, http://numericalmethods.eng.usf.edu/, 2004. At the time of printing,
the complete E-book can be downloaded free of charge from the given website.

 Quarter 1 Quarter 2 Quarter 3 Quarter 4

Tirestone 25 20 3 2
Michigan 5 10 15 25
Copper 6 16 7 27

A

a a a

a a a

a

n

n

m

⎡⎣ ⎤⎦ =

11 12 1

21 22 2

1

.......

.......

aa am mn2 .......

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a a ai i in1 2 ....⎡⎣ ⎤⎦
a

a

a

j

j

mj

1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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.

The size of the matrix is 3 × 4 because there are three rows and four columns.
In the preceding [A] matrix, a34 = 27.

What are the special types of matrices?

Vector: A vector is a matrix that has only one row or one column. The
two types of vectors are row vectors and column vectors.

Row vector: If a matrix has one row, it is called a row vector — [B] = [b1,
b2,…bm] and m is the dimension of the row vector.

Column vector: If a matrix has one column, it is called a column vector

and n is the dimension of the column vector.

Example A.1

Give an example of a row vector.

Solution

[B] = [25 20 3 2 0] is an example of a row vector of dimension 5.

Example A.2

Give an example of a column vector.

Solution

An example of a column vector of dimension 3 is

.

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 20 3 2
5 10 15 25
6 16 7 27

[ ]C

c

cn

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

[ ]C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25
5
6
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Submatrix: If some row(s) or/and column(s) of a matrix [A] are deleted,
the remaining matrix is called a submatrix of [A].

Example A.3

Find some of the submatrices of the matrix

.

Solution

Some submatrices of [A] are 

Can you find other submatrices of [A]?

Square matrix: If the number of rows, m, of a matrix is equal to the
number of columns, n, of the matrix, (m = n), it is called a square
matrix. The entries a11, a22,…ann are called the diagonal elements of a
square matrix. Sometimes the diagonal of the matrix is also called
the principal or main of the matrix.

Example A.4

Give an example of a square matrix.

Solution

Because it has the same number of rows and columns (that is, three),

is a square matrix.
The diagonal elements of [A] are a11 = 25, a22 = 10, and a33 = 7.

Diagonal matrix: A square matrix with all nondiagonal elements equal
to zero is called a diagonal matrix — that is, only the diagonal entries
of the square matrix can be nonzero (aij = 0, i ≠ j).

[ ]A =
−

⎡

⎣
⎢

⎤

⎦
⎥

4 6 2
3 1 2

4 6 2
3 1 2

4 6
3 1

4 6 2 4
−

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦, , , ,

2
2

⎡

⎣
⎢

⎤

⎦
⎥

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 20 3
5 10 15
6 15 7
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Example A.5 

Give examples of a diagonal matrix.

Solution

An example of a diagonal matrix is

.

Any or all the diagonal entries of a diagonal matrix can be zero. For
example, the following is also a diagonal matrix:

.

Identity matrix: A diagonal matrix with all diagonal elements equal to
one is called an identity matrix (aij = 0, i ≠ j; and aii = 1 for all i).

Example A.6

Give an example of an identity matrix.

Solution

An identity matrix is

[A] = .

Zero matrix: A matrix whose entries are all zero is called a zero matrix
(aij = 0 for all i and j).

Example A.7

Give examples of a zero matrix.

3 0 0
0 2 1 0
0 0 5

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ] .A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 0 0
0 2 1 0
0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Solution

Examples of a zero matrix include:

,

,

,

.

When are two matrices considered equal?

Two matrices [A] and [B] are equal if 

The size of [A] and [B] is the same (number of rows of [A] is same as
the number of rows of [B] and the number of columns of [A] is same
as number of columns of [B]) and 

aij = bij for all i and j.

Example A.8

What would make

equal to 

?

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
0

0 0
0 0
0 0

[ ]B =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0 0

0 0 0

[ ]C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
0

0 0
0 0
0 0

0
0
0

[ ] [ ]D = 0 0 0

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

2 3
6 7

[ ]B
b

b
=

⎡

⎣
⎢

⎤

⎦
⎥

11

22

3
6
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Solution

The two matrices [A] and [B] would be equal if b11 = 2, b22 = 7.

How are two matrices added?

Two matrices [A] and [B] can be added only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). Then, the addition
is shown as [C] = [A] + [B], where cij = aij + bij for all i and j.

Example A.9

Add the two matrices

.

Solution

How are two matrices subtracted?

Two matrices [A] and [B] can be subtracted only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). The subtraction is
given by [D] = [A] – [B], where dij = aij – bij for all i and j.

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−⎡

⎣
⎢

⎤

⎦
⎥

6 7 2
3 5 19

[ ] [ ] [ ]C A B= +

=
⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣
⎢

⎤

⎦
⎥

=
+

5 2 3
1 2 7

6 7 2
3 5 19

5 6 22 7 3 2
1 3 2 5 7 19

11 9 1
4 7 26

+ −
+ + +

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ .
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Example A.10

Subtract matrix [B] from matrix [A] — that is, find [A] – [B].

.

Solution

How are two matrices multiplied?

A matrix [A] can be multiplied by another matrix [B] only if the number
of columns of [A] is equal to the number of rows of [B] to give [C]mxn =
[A]mxp[B]pxn. If [A] is an m × p matrix and [B] is a p × n matrix, then the size
of the resulting matrix [C] is an m × n matrix.

How does one calculate the elements of [C] matrix?

for each i = 1, 2,…m and j = 1, 2,…n.

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−⎡

⎣
⎢

⎤

⎦
⎥

6 7 2
3 5 19

[ ] [ ] [ ]C A B= −

=
⎡

⎣
⎢

⎤

⎦
⎥ −

−⎡

⎣
⎢

⎤

⎦
⎥

=
−

5 2 3
1 2 7

6 7 2
3 5 19

5 6 22 7 3 2
1 3 2 5 7 19

1 5 5
2 3 12

− − −
− − −

⎡

⎣
⎢

⎤

⎦
⎥

=
− −
− − −

⎡

⎣
⎢

⎤

( )

⎦⎦
⎥ .

c a b

a b a b a

ij ik kj

k

p

i j i j i

=

= + + +

=
∑

1

1 1 2 2 .......... pp pjb
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To put it in simpler terms, the ith row and jth column of the [C] matrix in
[C] = [A][B] is calculated by multiplying the ith row of [A] by the jth column
of [B] — that is,

.

Example A.11

Given

,

find

.

Solution

For example, the element c12 of the [C] matrix can be found by multiplying
the first row of [A] by the second column of [B]:

c a a a

b

b

b

ij i i ip

j

j

pj

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥[ ]1 2

1

2

⎥⎥
⎥
⎥

= + + +a b a b ........ ai j i j i1 1 2 2 pp pjb .

=
=

∑ a bik kj

k

p

1

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 2
5 8
9 10

[ ] [ ][ ]C A B=

c12 5 2 3
2
8
10

=
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]

1343_book.fm  Page 182  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 183

= (5)(–2) + (2)(–8) + (3)(–10)

= –56.

Similarly, one can find the other elements of [C] to give

.

What is a scalar product of a constant and a matrix?

If [A] is an n × n matrix and k is a real number, then the scalar product of
k and [A] is another matrix [B], where bij = kaij.

Example A.12

Let

.

Find 2 [A].

Solution

;

then,

[ ]C =
−
−

⎡

⎣
⎢

⎤

⎦
⎥

52 56
76 88

[ ]
.

A =
⎡

⎣
⎢

⎤

⎦
⎥

2 1 3 2
5 1 6

[ ]
.

A =
⎡

⎣
⎢

⎤

⎦
⎥

2 1 3 2
5 1 6

2 2
2 1 3 2
5 1 6

2 2 1 2 3 2 2
2

[ ]
.

( )( . ) ( )( ) ( )( )
(

A =
⎡

⎣
⎢

⎤

⎦
⎥

=
))( ) ( )( ) ( )( )

.
.

5 2 1 2 6

4 2 6 4
10 2 12

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥
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What is a linear combination of matrices?

If [A1], [A2],…,[Ap] are matrices of the same size and k1, k2,…,kp are scalars,
then

is called a linear combination of [A1], [A2],…,[Ap].

Example A.13

If

,

then find

.

Solution

What are some of the rules of binary matrix operations?

Commutative law of addition: If [A] and [B] are m × n matrices, then

.

Associate law of addition: If [A], [B], and [C] all are m × n matrices, then

k A k A k Ap p1 1 2 2[ ] [ ] ........ [ ]+ + +

[ ] , [ ]
.

, [A A A1 2 3
5 6 2
3 2 1

2 1 3 2
5 1 6

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ ]]

.

.
=

⎡

⎣
⎢

⎤

⎦
⎥

0 2 2 2
3 3 5 6

[ ] [ ] . [ ]A A A1 2 32 0 5+ −

[ ] [ ] . [ ]
.

A A A1 2 32 0 5
5 6 2
3 2 1

2
2 1 3 2
5 1 6

+ − =
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ +

0 5
0 2 2 2
3 3 5 6

5 6 2
3 2 1

4 2 6

.
.
.

. 44
10 2 12

0 1 1 1
1 5 1 75 3

9 2 10 9 5
1

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥

=

.
. .

. .
11 5 2 25 10. .

.
⎡

⎣
⎢

⎤

⎦
⎥

[ ] [ ] [ ] [ ]A B B A+ = +
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.

Associate law of multiplication: If [A], [B], and [C] are m × n, n × p, and p
× r size matrices, respectively, then

and the resulting matrix size on both sides is m × r.
Distributive law: If [A] and [B] are m × n size matrices and [C] and [D]

are n × p size matrices, then

and the resulting matrix size on both sides is m × p.

Example A.14

Illustrate the associative law of multiplication of matrices using 

.

Solution

[ ] ([ ] [ ]) ([ ] [ ]) [ ]A B C A B C+ + = + +

[ ]([ ][ ]) ([ ][ ])[ ]A B C A B C=

[ ]([ ] [ ]) [ ][ ] [ ][ ]A C D A C A D+ = +

([ ] [ ])[ ] [ ][ ] [ ][ ]A B C A C B C+ = +

[ ] , [ ] , [ ]A B C=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

2 5
9 6

2 1
3 55

⎡

⎣
⎢

⎤

⎦
⎥

[ ][ ]B C =
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

2 5
9 6

2 1
3 5

19 27
36 39

[ ][ ][ ]A B C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

19 27
36 39

91 1105
237 276
72 78

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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These illustrate the associate law of multiplication of matrices.

Is [A][B] = [B][A]?

First, both operations, [A][B] and [B][A], are only possible if [A] and [B]
are square matrices of same size. Why? If [A][B] exists, the number of
columns of [A] must be the same as the number of rows of [B]; if [B][A]
exists, the number of columns of [B] must be the same as the number of
rows of [A]. 

Even then, in general, [A][B] ≠ [B][A].

Example A.15

Illustrate whether [A][B] = [B][A] for the following matrices:

.

Solution

[ ][ ]A B =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

2 5
9 6

20 17
51 45
188 12

20 17
51 45
18 12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

[ ][ ][ ]A B C ⎥⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1
3 5

91 105
237 276
72 78

.

[ ] , [ ]A B=
⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

6 3
2 5

3 2
1 5

[ ][ ]A B =
⎡

⎣
⎢

⎤

⎦
⎥

−⎡

⎣
⎢

⎤

⎦
⎥

=
−
−

⎡

⎣
⎢

⎤

⎦

6 3
2 5

3 2
1 5

15 27
1 29⎥⎥
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What is the transpose of a matrix? 

Let [A] be an m × n matrix. Then [B] is the transpose of the [A] if bji = aij

for all i and j. That is, the ith row and the jth column element of [A] is the jth

row and ith column element of [B]. Note that [B] would be an nxm matrix.
The transpose of [A] is denoted by [A]T. 

Example A.16

Find the transpose of 

[A]=  

Solution

The transpose of [A] is

.

Note that the transpose of a row vector is a column vector and the trans-
pose of a column vector is a row vector. Also, note that the transpose of a
transpose of a matrix is the matrix — that is, ([A]T)T = [A]. Also, (A + B)T =
AT + BT; (cA)T = cAT.

What is a symmetric matrix?

A square matrix [A] with real elements, where aij = aji for i = 1,…,n and j
= 1,…,n, is called a symmetric matrix. This is same as that if [A] = [A]T, then
[A] is a symmetric matrix.

[ ][ ]B A =
−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
−⎡

⎣
⎢

⎤

⎦
⎥

3 2
1 5

6 3
2 5

14 1
16 28

[[ ][ ] [ ][ ].A B B A≠

25 20 3 2

5 10 15 25

6 16 7 27

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]A T =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

25 5 6
20 10 16
3 15 7
2 25 27
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Example A.17

Give an example of a symmetric matrix.

Solution

A symmetric matrix is 

because a12 = a21 = 3.2; a13 = a31 = 6; and a23 = a32 = 8.

What is a skew-symmetric matrix?

A square matrix [A] with real elements, where aij = –aji for i = 1,…,n and
j = 1,…,n, is called a skew symmetric matrix. This is same as that if [A] =–[A]T,
then [A] is a skew symmetric matrix.

Example A.18

Give an example of a skew-symmetric matrix.

Solution

A skew-symmetric matrix is

because a12 = –a21 = 1; a13 = –a31 = 2; a23 = –a32 = –5. Because aii = –aii only if
aii = 0, all the diagonal elements of a skew-symmetric matrix must be zero. 

Matrix algebra is used for solving systems of equations. Can you illustrate
this concept?

Matrix algebra is used to solve a system of simultaneous linear equations.
Let us illustrate with an example of three simultaneous linear equations:

.

[ ]
. .
. .

.
A =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

21 2 3 2 6
3 2 21 5 8
6 8 9 3

0 1 2
1 0 5
2 5 0

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 106 8a b c+ + = .

64 8 177 2a b c+ + = .

144 12 279 2a b c+ + = .
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This set of equations can be rewritten in the matrix form as

.

The preceding equation can be written as a linear combination as follows

and, further using matrix multiplications, gives

.

For a general set of m linear equations and n unknowns,

……………………………………

…………………………………….

can be rewritten in the matrix form as

.

25 5
64 8
144 12

106 8
1

a b c

a b c

a b c

+ +
+ +
+ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
.

777 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a b c

25
64
144

5
8
12

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

106 8
177 2
279 2

.

.

.

25 5 1
64 8 1
144 12 1

106⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a

b

c

.88
177 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a x a x a x cn n11 1 22 2 1 1+ + + =

a x a x a x cn n21 1 22 2 2 2+ + + =

a x a x a x cm m mn n m1 1 2 2+ + + =........

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

. .

. .

. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= ⋅
⋅

x

x

x

c

c

cn

1

2

1

2

mm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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Denoting the matrices by [A], [X], and [C], the system of equation is [A]
[X] = [C], where [A] is called the coefficient matrix, [C] is called the right-hand
side vector, and [X] is called the solution vector.

Sometimes [A] [X] = [C] systems of equations are written in the augmented
form — that is,

.

Can you divide two matrices because that will help me find the solution
vector for a general set of equations given by [A] [X] = [C]?

If [A][B]=[C] is defined, it might seem intuitive that [A] = , but matrix

division is not defined. However, an inverse of a matrix can be defined for
certain types of square matrices. The inverse of a square matrix [A], if exist-
ing, is denoted by [A]–1 such that [A][A]–1= [I] = [A]–1[A].

In other words, let [A] be a square matrix. If [B] is another square matrix
of the same size so that [B][A] = [I], then [B] is the inverse of [A]. [A] is then
called invertible or nonsingular. If [A]–1 does not exist, [A] is called noninvertible
or singular.

Example A.19

Show whether

is the inverse of

.

[ ]A C

a a ...... a c

a a ...... a c
n

n

=

11 12 1 1

21 22 2 2

a a ...... a cm m mn n1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

[ ]
[ ]
C
B

[ ]B =
⎡

⎣
⎢

⎤

⎦
⎥

3 2
5 3

[ ]A =
−

−
⎡

⎣
⎢

⎤

⎦
⎥

3 2
5 3
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Solution

[B][A] = [I], so [B] is the inverse of [A] and [A] is the inverse of [B]. However,
we can also show that 

to show that [A] is the inverse of [B].

Can I use the concept of the inverse of a matrix to find the solution of a
set of equations [A][X] = [C]?

Yes, if the number of equations is the same as the number of unknowns,
the coefficient matrix [A] is a square matrix. 

Given [A][X] = [C]. Then, if [A]–1 exists, multiplying both sides by [A]–1:

[A]–1 [A][X] = [A]–1 [C]

[I][X] = [A]–1[C]

[X] = [A]–1 [C].

This implies that if we are able to find [A]–1, the solution vector of [A][X] =
[C] is simply a multiplication of [A]–1 and the right-hand side vector, [C]. 

How do I find the inverse of a matrix?

If [A] is an n × n matrix, then [A]–1 is an n × n matrix and, according to the
definition of inverse of a matrix, [A][A]–1 = [I].

Denoting,

[ ][ ]

[

B A

I

=
⎡

⎣
⎢

⎤

⎦
⎥

−
−

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=

3 2
5 3

3 2
5 3

1 0
0 1

]].

[ ][ ]

[

A B

I

=
−

−
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=

3 2
5 3

3 2
5 3

1 0
0 1

]]
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.

Using the definition of matrix multiplication, the first column of the [A]–1

matrix can then be found by solving:

.

Similarly, one can find the other columns of the [A]–1 matrix by changing
the right-hand side accordingly.

Example A.20

Solve the set of equations:

[ ]A

a a a

a a a

a a

n

n

n n

=

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅

11 12 1

21 22 2

1 2 ⋅⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥ann

[ ]A

a a a

a a a
n

n
− =

′ ′ ⋅ ⋅ ′
′ ′ ⋅ ⋅ ′
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1

11 12 1

21 22 2

⋅⋅
′ ′ ⋅ ⋅ ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥a a an n nm1 2

[ ]I =

⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 1 0
0

1

0 1

⎥⎥
⎥
⎥
⎥
⎥

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

′
′
⋅
⋅
′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

a

a

an

11

21

1

⎥⎥
⎥
⎥
⎥

= ⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
0

0

25 5 106 8a b c+ + = .
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.

Solution

In matrix form, the preceding three simultaneous linear equations are writ-
ten as

.

First, we will find the inverse of

and then use the definition of inverse to find the coefficients a, b, c.
If 

is the inverse of [A], then

gives three sets of equations:

64 8 177 2a b c+ + = .

144 12 279 2a b c+ + = .

25 5 1
64 8 1
144 12 1

106⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a

b

c

.88
177 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

[ ]A

a a a

a a a

a a a

− =
′ ′ ′
′ ′ ′
′ ′ ′

⎡
1

11 12 13

21 22 23

31 32 33⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

11 12 13

21 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′ ′ ′
′ ′

a a a

a a 22 23

31 32 33

1 0 0
0 1 0
0 0 1

′
′ ′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

a

a a a

⎤⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

11

21

31

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

a

a

a

⎥⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
0
0
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.

Solving the preceding three sets of equations separately gives

.

Therefore,

.

Now, [A][X] = [C], where

25 5 1
64 8 1
144 12 1

12

22

32

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤a

a

a ⎦⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
1
0

25 5 1
64 8 1
144 12 1

13

23

33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

a

a

a

⎥⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
1

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡a

a

a

11

21

31

0 04762
0 9524
4 571

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

−

⎡a

a

a

12

22

32

0 08333
1 417
5 000

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡a

a

a

13

23

33

0 03571
0 4643
1 429

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]
. . .

. . .A − =
−

− −1

0 04762 0 08333 0 03571
0 9524 1 417 0 44643
4 571 5 000 1 429. . .−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]X

a

b

c

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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.

Using the definition of [A]–1,

.

Computationally and algorithmically more efficient, a set of simultaneous
linear equations, such as those given previously, can also be solved by using
various numerical techniques. These techniques are explained completely in
the source (http://numericalmethods.eng.usf.edu) of this appendix. Some of
the common techniques of solving a set of simultaneous linear equations are

Matrix inverse method
Gaussian elimination method
Gauss–Siedel method
LU decomposition method

Key Terms

Matrix
Vector
Row vector
Column vector
Submatrix

[ ]
.
.
.

C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

106 8
177 2
279 2

[ ] [ ][ ] [ ] [ ]

[ ] [ ] [ ]

A A X A C

X A C

− −

−

=

=

1 1

1

=
− −
− −
0 04762 0 08333 0 03571
0 9524 1 417 0 4643
. . .
. . .

44 571 5 000 1 429

106 8
177 2
279 2. . .

.

.

.−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

b

c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 2900
19 70
1 050

.
.

.

1343_book.fm  Page 195  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



196 Mechanics of Composite Materials, Second Edition

Square matrix
Diagonal matrix 
Identity matrix
Zero matrix
Equal matrices
Addition of matrices
Subtraction of matrices
Multiplication of matrices
Scalar product of matrices
Linear combination of matrices
Rules of binary matrix operation
Transpose of a matrix
Symmetric matrix
Skew symmetric matrix
Inverse of a matrix
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Appendix B: Transformation of Stresses and Strains

Equation (2.100) and Equation (2.94) give the relationship between stresses/
strains in the global (x,y) coordinate system and the local (1,2) coordinate
system, respectively. Note that the transformation is independent of material
properties and depends only on the angle between the x-axis and 1-axis, or
the angle through which the coordinate system (1,2) is rotated anticlockwise.

B.1 Transformation of Stress

Consider that σx , σy , and τxy are the stresses on the rectangular element at a
point O in a two-dimensional body (Figure 2.38). One now wants to find the
values of the stresses σ1, σ2, and τ12 on another rectangular element but at
the same point O on the body. To do so, make a cut at an angle θ normal to
direction 1. Now the stresses in the local 1–2 coordinate system can be related
to those in the global x–y coordinate system.

Summing the forces in the direction 1 gives,

.

Now,

and

;

we have

. (B.1)

σ τ θ σ θ τ θ σ θ1BC AB AB AC ACxy y xy x− − − − =Cos Sin Sin Cos 00

σ τ θ σ θ τ θ σ1 = + + +xy y xy x
AB

BC

AB

BC

AC

BC

AC

B
Cos Sin Sin

CC
Cosθ

Sin θ =
AB

BC
,

Cos θ =
AC

BC

σ τ θ θ σ θ τ θ θ σ θ1
2 2

xy y xy xSin Cos Sin Cos Sin Cos+ + +

σ σ θ σ θ τ θ θ1
2 2 2= + +x y xyCos Sin Sin Cos
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Similarly, summing the forces in direction 2 gives

. (B.2)

By making a cut at an angle, θ, normal to direction 2,

. (B.3)

FIGURE 2.38
Free body diagrams for transformation of stresses between local and global axes.

A
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1
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σy

τ12

τ12

τxy

τxy

σx

σ1

σ2

σx

σy

σ1σx θ

τxy

τxy

τxy

τxy

τ σ θ θ σ θ θ τ θ θ12
2 2= − + + −x y xySin Cos Sin Cos Cos Sin( )

σ σ θ σ θ τ θ θ2
2 2 2= + −x y xySin Cos Sin Cos
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In matrix form, Equation (B.1), Equation (B.2), and Equation (B.3) relate
the local stresses to global stresses as

(B.4)

where c = Cos θ and s = Sin θ.
The 3 × 3 matrix in Equation (B.4) is called the transformation matrix [T]:

. (B.5)

By inverting (B.5),

. (B.6)

This relates the global stresses to local stresses as

. (B.7)

B.2 Transformation of Strains

Consider an arbitrary line, AB, in direction 1 at an angle, θ, to the x-direction.
Under loads, the line AB deforms to A′B′. By definition of normal strain
along AB,

(B.8)
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From Figure 2.39,

(B.9)

(B.10)

. (B.11)

However, from definition of strain,

(B.12)

. (B.13)

Then, from Equation (B.11) through Equation (B.13),

FIGURE 2.39
Line element for transformation of strains between local and global axes.
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Neglecting products and squares of derivatives of strain,

(B.14)

From Equation (B.9),

.

Neglecting again the squares of the strains,

. (B.15)
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Similarly, one can take an arbitrary line in direction 2 and prove

(B.16)

and, by taking two straight lines in direction 1 and 2 (perpendicular to each
other), one can prove 

. (B.17)

In matrix form, Equation (B.15), Equation (B.16), and Equation (B.17) relate
the local strains to global strains

, (B.18)

where the 3 × 3 matrix in Equation (B.18) is the transformation matrix [T]
given in Equation (B.5).

Inverting Equation (B.18) gives

, (B.19)

where the 3 × 3 matrix in Equation (B.19) is the inverse of the transformation
matrix given in Equation (B.6).
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