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CHAPTER 8 STATISTICAL METHODS 
 
 
8.1 INTRODUCTION 
 
 Variability in composite material property data may result from a number of sources including run-to-
run variability in fabrication, batch-to-batch variability of raw materials, testing variability, and variability 
intrinsic to the material.  It is important to acknowledge this variability when designing with composites 
and to incorporate it in design values of material properties.  Procedures for calculating statistically-based 
material properties are provided in this chapter.  With a properly designed test program (Chapter 2), these 
statistical procedures can account for some, but not all, of these sources for variability.  A fundamental 
assumption is that one is measuring the desired properties.  If this is not the case, then no statistical pro-
cedure is sufficient to account for other technical inadequacies. 
 
 Section 8.2 provides introductory material and guidance for the methods used in the remainder of the 
chapter.  Readers unfamiliar with the statistical methods in the chapter should read Section 8.2 before the 
remainder of the chapter; more experienced readers may find it useful as  a reference.  Section 8.3 pro-
vides methods for evaluating data and  calculating statistically-based properties.  Section 8.4 contains 
other statistical methods, including methods for confidence intervals for a coefficient of variation, stress-
strain curves, quality control, and alternate material evaluation.  Section 8.5 contains statistical tables and 
approximate formulas. 
 
8.1.1 Overview of methods for calculating statistically-based properties 
 
 Section 8.3 describes computational methods for obtaining A- and B-basis values from composite 
material data.  Different approaches are used depending on whether the data can be grouped in a natural 
way (for example, because of batches or differences in environmental conditions).  Data sets which either 
cannot be grouped, or for which there are negligible differences among such groups, are called unstruc-
tured.  Otherwise, the data are said to be structured.  The statistical methods in Section 8.3.2, which ex-
amine if the differences among groups of data are negligible, are useful for determining whether the data 
should be treated as structured or unstructured.  Unstructured data are modeled using a Weibull, normal, 
or lognormal distribution, using the methods in Section 8.3.4.  If none of these are acceptable, nonpara-
metric basis values are determined.  Structured data are modeled using linear statistical models, including 
regression and the analysis of variance (ANOVA), using the methods in Section 8.3.5.  
 
8.1.2 Computer software 
 
 Non-proprietary computer software useful for analyzing material property data is available.  STAT17, 
available from the MIL-HDBK-17 Secretariat upon request (see page ii), performs the calculations in the 
flowchart in Figure 8.3.1 with the exception of linear regression.  RECIPE (REgression Confidence Inter-
vals on PErcentiles), available from the National Institute of Standards and Technology, performs calcula-
tions that find material basis values from linear models including regression and analysis of variance.  
RECIPE can be obtained by anonymous ftp from 'ftp.nist.gov', directory 'recipe'.  A non-proprietary  
general statistical analysis and graphics package DATAPLOT is also available from NIST by anonymous 
ftp from ‘scf.nist.gov’, directory ‘pubs/dataplot1. 
 
8.1.3 Symbols 
 
 The symbols that are used in Chapter 8 and not commonly used throughout the remainder of this 
handbook are listed below, each with its definition and the section in which it is first used. 
 
 

                                                      
1 Contact Stefan Leigh, Statistical Engineering Division, NIST, Gaithersburg, MD, 20899-0001, email:  stefan.leigh@nist.gov. 
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SYMBOL DEFINITION SECTION 
A  A-basis value - 
a distribution limit 8.1.4 
ADC critical value of ADK 8.3.2.2 
ADK  k-sample Anderson-Darling statistic 8.3.2.2 
B  B-basis value 8.2.5.1 
b distribution limit 8.1.4 
C  critical value 8.3.3.1 
CV  coefficient of variation 8.2.5.2 
e  error, residual 8.3.5.1 
F  F-statistic 8.3.5.2.2 
F(x) cumulative distribution function 8.1.4 
f(x) probability density function 8.1.4 

0F  standard normal distribution function 8.3.4.3.2 

IQ  informative quantile function 8.3.6.2 

J  number of specimens per batch 8.2.5.3 
k  number of batches 8.2.3 

Ak  (1) one-sided tolerance limit factor, A-basis 
(2) Hanson-Koopmans coefficient, A-basis 

8.3.4.3.3 
8.3.4.5.2 

Bk  (1) one-sided tolerance limit factor, B-basis 
(2) Hanson-Koopmans coefficient, B-basis 

8.3.4.3.3 
8.3.4.5.2 

MNR  maximum normed residual test statistic 8.3.3.1 
MSB  between-batch/group mean square 8.3.5.2.5 
MSE  within-batch/group mean square 8.3.5.2.5 
n  number of observations in a data set 8.1.4 

′n  effective sample size 8.3.5.2.6 
~n  number of specimens required for comparable reproducibility 8.2.5.3 

*n  see Equation 8.3.5.2.6(b) 8.3.5.2.6 

in  number of observations in batch/group i  8.3.2.1 

OSL  observed significance level 8.3.1 
p(s)  fixed condition 8.3.5.1 

Q  quantile function 8.3.6.1 
�Q  quantile function estimate 8.3.6.1 

r  rank of observation 8.3.4.5.1 
RME  relative magnitude of error 8.5 
s  sample standard deviation 8.1.4 
2s  sample variance 8.1.4 

Ls  standard deviation of log values 8.3.4.4 

ys  estimated standard deviation of errors from the regression line 8.3.5.3 

SSB  between-batch/group sum of squares 8.3.5.2.3 
SSE  within-batch/group sum of squares 8.3.5.2.3 
SST  total sum of squares 8.3.5.2.3 
T  tolerance limit factor 

 
8.3.5.2.7 
 

t  quantile of the t-distribution 8.3.3.1 

iT  

 

temperature at condition i  8.3.5.1 
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SYMBOL DEFINITION SECTION 

γ δ,0.95t ( )  0.95 quantile of the non-central t-distribution with non-centrality pa-
rameter δ  and degrees of freedom γ  

8.3.5.3 

TIQ  truncated informative quantile function 8.3.6.2 

u (1) ratio of mean squares 
(2) batch 

8.3.5.2.7 
8.3.5.1 

AV  one-sided tolerance limit factor for the Weibull  distribution, A-basis 8.3.4.2.3 

BV  one-sided tolerance limit factor for the Weibull  distribution, B-basis 8.3.4.2.3 

ijw  transformed data 8.3.5.2.1 

x  sample mean, overall mean 8.1.4 

ix  observation i in a sample 8.1.4 

i
~x  median of x  values 8.3.5.2.1 

ijx  thj  observation in batch/group i  8.3.2.1 

ijkx  thk  observation in batch j  at condition i  8.2.3 

Lx  mean of log values 8.3.4.4 

(r)x  thr  observation, sorted in ascending order; observation of rank r  8.3.4.5.1 

0.10z  tenth percentile of the underlying population distribution 8.2.2 

(i)z  ranked independent values 8.3.2.1 

p(s),uz  regression constants 8.3.5.1 

α  (1) significance level 
(2) scale parameter of Weibull distribution 

8.3.3.1 
8.1.4 

�α  estimate of α  8.3.4.2.1 
β  shape parameter of Weibull distribution 8.1.4 

�β  estimate of β  8.3.4.2.1 

iβ  regression parameters 8.3.5.3 

i
�β  least squares estimate of iβ  8.3.5.3 

γ  degrees of freedom 8.3.5.3 
δ  noncentrality parameter 8.3.5.3 

iθ  regression parameters 8.3.5.1 
µ  population mean 8.1.4 

iµ  mean at condition i  8.2.3 

ρ  correlation between any two measurements in the same batch 8.2.5.3 

σ  population standard deviation 8.1.4 
2σ  population variance 8.1.4 

b
2σ  population between-batch variance 8.2.3 

e
2σ  population within-batch variance 8.2.3 

 
 
8.1.4 Statistical terms 
 
  Definitions of the most often used statistical terms in this handbook are provided in this section.  
This list is certainly not complete; the user of this document with little or no background in statistical 
methods should also consult an elementary text on statistical methods such as Reference 8.1.4.  Defini-
tions for additional statistical terms are included in Section 1.7. 
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` Population -- The set of measurements about which inferences are to be made or the totality of pos-
sible measurements which might be obtained in a given testing situation.  For example, "all possible ulti-
mate tensile strength measurements for Composite Material A, conditioned at 95% relative humidity and 
room temperature".  In order to make inferences about a population, it is often necessary to make as-
sumptions about its distributional form.  The assumed distributional form may also be referred to as the 
population. 
 
 Sample -- The collection of measurements (sometimes referred to as observations) taken from a 
specified population. 
 
 Sample size -- The number of measurements in a sample. 
 
 A-basis Value -- A statistically-based material property; a 95% lower confidence bound on the first 
percentile of a specified population of measurements.  Also a 95% lower tolerance bound for the upper 
99% of a specified population. 
 
 B-basis Value -- A statistically-based material property; a 95% lower confidence bound on the tenth 
percentile of a specified population of measurements.  Also a 95% lower tolerance bound for the upper 
90% of a specified population. 
 
 Compatible -- Descriptive term referring to different  groups or subpopulations which may be treated 
as coming from the same population. 
 
 Structured data -- Data for which natural groupings exist, or for which responses of interest could vary 
systematically with respect to known factors.  For example, measurements made from each of several 
batches could reasonably be grouped according to batch, and measurements made at various known 
temperatures could be modeled using linear regression (Section 8.3.5.2); hence both can be regarded as 
structured data. 
 
 Unstructured data -- Data for which all relevant information is contained in the response measure-
ments themselves.  This could be because these measurements are all that is known, or else because 
one is able to ignore potential structure in the data. For example, data measurements that have been 
grouped by batch and demonstrated to have negligible batch-to-batch variability (using the subsample 
compatibility methods of Section 8.3.2) may be considered unstructured.   
 
Location parameters and statistics: 
 
 Population mean -- The average of all potential measurements in a given population weighted by their 
relative frequencies in the population.  The population mean is the limit of the sample mean as the sample 
size increases. 
 
 Sample mean -- The average of all observations in a sample and an estimate of the population mean.  
If the notation 1 2 nx ,  x ,  ...,  x  is used to denote the n  observations in a sample, then the sample mean is 
defined by: 

   x  =  x + x +...+ x
n

1 2 n   8.1.4(a) 

or 

   x =  
1

n
x

i=1

n
i∑   8.1.4(b) 

 Sample median -- After ordering the observations in a sample from least to greatest, the sample me-
dian is the value of the middle-most observation if the sample size is odd and the average of the two mid-
dle-most observations if the sample size is even.  If the population is symmetric about its mean, the sam-
ple median is also a satisfactory estimator of the population mean.  
 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-5 

Dispersion statistics: 
 
 Sample variance -- The sum of the squared deviations from the sample mean, divided by n-1 , where  
n  denotes the sample size.  The sample variance is defined by: 
 

   
n 22

i
i=1

1
 = (x x)s

n 1
−∑

−
  8.1.4(c) 

or 

   2

i=1

n
s  =  

1

n-1
-

n
n-1

∑ x xi
2 2   8.1.4(d) 

 
 Sample standard deviation -- The square root of the sample variance.  The sample standard deviation 
is denoted by s . 
 
Probability distribution terms: 
 
 Probability distribution -- A formula which gives the probability that a value will fall within prescribed 
limits.  When the word distribution is used in this chapter, it should be interpreted to mean probability dis-
tribution. 
 
 Normal Distribution -- A two parameter ( µ σ, ) family of probability distributions for which the probabil-

ity that an observation will fall between a  and b  is given by the area under the curve 
 

   f(x)  =  
1

2
e-(x- ) /22 2

σ π
µ σ   8.1.4(e) 

 
between a  and b.  A normal distribution with parameters ( µ σ, ) has population mean µ  and variance 

2σ . 
 
 Lognormal Distribution -- A probability distribution for which the probability that an observation se-
lected at random from this population falls between a and b ( 0 < a < b < ∞ ) is given by the area under the 
normal distribution between ln(a)  and ln(b) . 
 
 Two-Parameter Weibull Distribution -- A probability distribution for which the probability that a ran-
domly selected observation from this population lies between a  and b  ( 0 < a < b < ∞ ) is given by 
 

   -(a/ ) -(b/ )e - eα αβ β
  8.1.4(f) 

 
where α  is called the scale parameter and β  is called the shape parameter. 
 
Probability function terms: 
 
 Cumulative Distribution Function -- A function, usually denoted by F(x) , which gives the probability 
that a random variable lies between any prescribed pair of numbers, that is 
 
   Pr(a < x b)  =  F(b) - F(a)≤   8.1.4(g) 
 
Such functions are non-decreasing and satisfy 
  
   

x
lim F(x) = 1
→+∞

  8.1.4(h) 
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The cumulative distribution function, F , is related to the probability density function, f , by 
 

   f(x)  =  
d

dx
F(x)   8.1.4(i) 

 
provided that F(x)  is differentiable. 
 
 F-distribution -- A probability distribution which is employed in the analysis of variance, regression 
analysis, and tests for equality of variance.  Tables of this distribution are readily available. 
 
 Probability Density Function -- A function f(x) 0≥  for all x  with 
 

   
−∞

∞
z =f x dx( ) 1   8.1.4(j) 

 
The probability density function determines the cumulative distribution function F(x)  by 
 

   
x

F(x) f (t)dt
−∞

= ∫   8.1.4(k) 

 
Note that the limits (- , )∞ ∞  may be conventional; for example, the exponential distribution satisfies the 
definition by defining its probability density function as 
 

   f(x)  =  
0

e-x

for x 0,  and

for x >  0

≤R
S|
T|

  8.1.4(l) 

 
The probability density function is used to calculate probabilities as follows: 
 

   
b

a
Pr(a x b) f (x)dx< ≤ = ∫   8.1.4(m) 

 
Error and Variability: 
 
 Fixed Effect -- A systematic shift in a measured quantity due to a particular level change of a treat-
ment or condition.  The change in level for a treatment or condition is often under the control of the ex-
perimenter.  A measured quantity could be compressive strength or tensile modulus.  A treatment or con-
dition could be test temperature, fabricator, and so on.  For a fixed effect, the shift in the measured quan-
tity is to be interpreted as a consistent change not only in the context of the observed data but also with 
respect to future data under the same treatment or condition. 
 
 Random Effect -- A shift in a measured quantity due to a particular level change of an external, usu-
ally uncontrollable, factor.  The level of this factor is regarded as a random draw from an infinite popula-
tion.  The specific level of a random effect is never under the control of the experimenter, however it may 
remain fixed within a limited subgroup of observed data.  A measured quantity could be compressive 
strength or tensile modulus.  An external factor could be batch production leading to batch-to-batch differ-
ences.  Fabricator-to-fabricator differences may be considered a random effect if the number of fabrica-
tors involved are considered to be a small sample of all present and future fabricators.  For a random ef-
fect, the shift in the measured quantities is viewed as a random variable having mean zero and a non-
zero variance.  Within a subgroup experiencing a fixed level of an external factor, the measured quantities 
are correlated (shifting as a cluster around a population average with the magnitude of the shift depend-
ing on the level of the factor).  Therefore, to obtain the most independent information concerning the 
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population of response values, it is better to have more subgroups than to have more measurements per 
subgroup. 
 
 Random Error -- That part of the data variation that is due to unknown or uncontrolled external factors 
and that affects each observation independently and unpredictably.  It is the residual error in a model un-
der analysis, the variability remaining after the variability due to fixed and random effects has been re-
moved.  Random error is a special case of a random effect.  In both cases, the level of the random effect 
or error is uncontrollable but random errors vary independently from measurement to measurement (i.e., 
there are no random error shifts shared in common by several measurements).  An important example of 
random error is the specimen-to-specimen variability occurring within a subgroup experiencing constant 
levels of treatment, condition, batch, and other external factors (fixed and random effects).  
 
 Material Variability -- A source of variability due to the spatial and consistency variations of the mate-
rial itself and due to variations in its processing (e.g., the inherent microstructure, defect population, 
cross-link density, etc.).  Components of material variability can be any combination of fixed effects, ran-
dom effects, and random error. 
 
 
8.2 BACKGROUND 
 
 This section  provides introductory material and guidance for the methods used in the remainder of 
the chapter.  Readers unfamiliar with the statistical methods in the chapter should read this section before 
the remainder of the chapter.  For more experienced readers, this section may be a useful reference for 
the approach and use of terminology. 
 
8.2.1 Statistically-based design values 
 
 A design value for a material is the minimum value of a material property expected to be used in the 
fabrication of the structure.  The value can be deterministic or statistically based.  S-basis value is the 
usual designation of a deterministic value; this implies that any material when test-sampled is rejected if 
any of its properties fall below the established S-value.  Statistically-based design values acknowledge 
the stochastic nature of the material properties and, in general, will reduce the amount of incoming mate-
rial testing.  Deterministic and statistically based material design values are used in the same way in the 
deterministic design of the structure.  For structural integrity, actual (including appropriate safety factors) 
stresses or strains in the structure can not exceed the material design values.  If the structure is designed 
using probabilistic methods (by making reliability estimates) only statistically-based design values can be 
used. 
 
 To understand the definitions of 'statistically-based' design values, it is necessary to regard the mate-
rial property of interest, not as a constant, but as a random variable, a quantity that varies from specimen 
to specimen according to some probability distribution.  A reasonable first attempt at definitions of B-basis 
and A-basis material properties are the 10th and 1st percentiles of a material property distribution.  One 
expects the property to usually be above these values, so these definitions are reasonable statistically-
based counterparts to the traditional deterministic notion of a design value.  Of course, there is an obvious 
problem in practice; one doesn't know the probability distribution of a material property.  So far only sim-
ple ideas of probability theory have been used in these definitions; it is in addressing uncertainty in these 
percentiles that statistical inference plays an essential role. 
 
8.2.2 Basis values for unstructured data. 
 
 Before breaking n  specimens, imagine them each to have a strength value which can be represented 
as belonging to a common probability distribution.  After breaking the specimens, one observes n  num-
bers, and if n  is large enough, a histogram of these numbers will approximate the unknown distribution.  
This probability distribution is referred to as a population, and the n  numbers are a realization of a ran-
dom sample of this population.  Conceptually, one can do this thought-experiment many times, obtaining 
different sets of n  numbers.  A statistically-based B-basis material property is a statistic, calculated from a 
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random sample n , such that if one were to repeatedly obtain random samples of n  specimens and cal-
culate many of these basis values, 95% of the time the calculated values would fall below the (unknown) 
10th percentile.  An A-basis value is defined similarly, replacing the 10th percentile with the 1st.  In statis-
tical parlance, basis values are 95% lower confidence limits on prescribed percentiles, which are also 
sometimes referred to as tolerance limits. 
 
 Note that the definitions of statistically-based material properties have been developed in two steps.  
First a deterministic property was modeled with a probability distribution in order to take into account ob-
served scatter in the property, and tentative definitions of basis values in terms of percentiles of this distri-
bution were made.  This takes into account uncertainty that remains, however much data on the property 
one obtains.  But there is additional uncertainty, since instead of unlimited data, one has only n  speci-
mens.  So the percentiles of our tentative definitions are replaced with conservative 'under-estimates' of 
these percentiles, thereby taking into account the additional uncertainty in a random material property due 
to limited data. 
 
 An example will help fix ideas.  Let the tensile strength of a material have a normal distribution with a 
mean of 1000 MPa and a standard deviation of 125 MPa.  The 10th percentile of this population is  
 
   0.10z  �  1000 (1.282)125 �  840 MPa= − =  
 
This would be the B-basis value if one had unlimited data, and hence knew the population.  Assume in-
stead that only n = 10  specimens are available.  A B-basis value can be calculated for these n   speci-
mens (see Section 8.3.4.3), and if one were to obtain many such sets of 10 specimens from the same 
population, this basis value would be less than 840 MPa for 95% of these repeated samples.  Substantial 
scatter is characteristic of basis values determined from small data sets, due primarily to uncertainty in 
the population variance (see Section 8.2.5). 
 
 The present discussion provides a fairly complete description of material basis values, if one is willing 
to make two simplifying assumptions: first that between-batch material property variability is negligible, 
and second that all of the data are obtained from tests at identical conditions.  In Section 8.3.2, such data 
are defined to be unstructured.  However, composite material properties often do vary substantially from 
batch to batch, and data on properties are usually obtained, not for a single set of fixed conditions but 
over a test matrix of some combination of temperatures, humidities, and stacking sequences.  Data that 
exhibit these additional complexities will be called structured (see Section 8.3.2), and are analyzed using 
regression and analysis of variance.  Regression analysis in general is discussed in Section 8.3.5. 
 
8.2.3 Basis values in the presence of batch-to-batch variability 
 
 Composite materials typically exhibit considerable variability in many properties from batch to batch.  
Because of this variability, one should not indiscriminately pool data over batches and apply the unstruc-
tured data procedures discussed above and in Section 8.3.4.  Basis values should incorporate the vari-
ability to be expected between batches or panels of a material, particularly when one has data on only a 
few batches or panels, or when one has a particular reason for suspecting that this variability could be 
non-negligible.  Pooling batches involves the implicit assumption that this source of variability is negligi-
ble, and in the event that this is not the case, the values which result from pooling can be too optimistic.  
Before pooling data, the subsample compatibility methods of Section 8.3.2 should be applied.  The inter-
pretation of material basis values in the presence of between-batch (or panel, and so on) variability is dis-
cussed below for the simplest case of a one-way ANOVA model (Section 8.3.5.2). 
 
 The data for the present discussion consist of n  measurements, all of the same property, of the same 
material, and tested under the same conditions, The only structure apparent in the data under this hypo-
thetical scenario is that  each specimen has been fabricated from one of k  batches of raw material. 
(Equivalently, one might imagine material made from the same batch, but for which several autoclave 
runs had been required, resulting in non-negligible variability in properties between panels of specimens.)  
Each data value can be regarded as a sum of three parts.  The first part is the unknown mean, the second 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-9 

part is a shift in the mean due to the batch from which the specimen was obtained, and the third part is a 
random perturbation due to the scatter in measurements made on different specimens from the same 
batch. 
 
 The unknown constant mean corresponds to a set of fixed conditions (for example, 8-ply unidirec-
tional tensile strength for a specific material, tested according to a well-defined test method, and at pre-
scribed test conditions).  If one were to produce batches endlessly, preparing specimens from each batch 
according to these fixed conditions, breaking specimens from each batch, and obtaining measurements of 
the property of interest, then the average of all of these measurements would approach this unknown 
constant in the limit of infinitely many batches.  This unknown mean can be parameterized as a function 
of the conditions under which the specimens were prepared and tested, where the form of this function is 
known except for some constants; this is related to the notion of a regression model, which will be dis-
cussed in some detail in Section 8.3.5.1. 
 
 Imagine, however, that one were to test many specimens from a single batch.  The average strength 
approaches a constant in this situation as well, but this constant will not be the same as in the case where 
each specimen comes from a different batch.  In the situation discussed in the previous paragraph, the 
average converges to an overall population mean (a ‘grand mean’), while the average converges to the 
population means for a particular batch in the present case.  The difference between the overall popula-
tion mean and the population mean for a particular batch is the second component of a material property 
measurement.  This difference is a random quantity; it will vary from batch to batch in an unsystematic 
way. This random ‘batch effect’ is assumed to follow a normal probability distribution with a mean of zero, 
and some unknown variance called the between-batch component of variance, and denoted by b

2σ . 

 
 Even when specimens are made from the same batch and tested under identical conditions, one will 
not get the same value every time.  In addition to the population mean and the random ‘batch effect’ there 
is a third component to any measurement, which is also random, but which differs from specimen to 
specimen within a batch.  This random quantity is called the within-batch variability, and it is modeled as a 
normally distributed random variable with a mean of zero and a variance w

2σ , referred to as the within-
batch component of variance. 
 
 To summarize, a measurement made on data on a particular specimen from a specific batch is mod-
eled as a sum of three parts: 
 
   ijk i j ijkx  =  + b + eµ   8.2.3 

 
where ijkx  is the thk  measurement on data from batch j  at a set of fixed conditions labeled by i .  The 

random variables jb  and ijke  have normal distributions with mean zero and variances b
2σ  and w

2σ , re-

spectively.  For the present discussion, there is only one set of fixed conditions, hence the subscript  ' i ' 
can be omitted.  For the general regression and analysis of variance models discussed in Sections 
8.3.5.1 and 8.3.5.2 there can be many combinations of fixed factors; there the ' i ' subscript in Equation 
8.2.3 must be retained. 
 
 If data from more than one batch are available, then RECIPE (Section 8.1.2) will use the data to de-
termine basis values which with 95% confidence are less than the appropriate percentile of a randomly 
chosen observation from a randomly chosen future batch, for a particular set of fixed conditions.  Such 
values protect against the possibility of batch-to-batch variability resulting in future batches which have 
lower mean properties than those batches for which data are available. 
 
8.2.4 Batches, panels, and confounding 
 
 The model described in Equation 8.2.3 and Section 8.3.5 is based on the assumption of at most two 
sources of variability; these are referred to as ‘between-batch variability’ and within-batch variability’.  In 
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the manufacturing of composites, however, there are typically at least three sources of variability.  For 
composites made from prepreg, the additional source is due to the fact that several specimens are typi-
cally manufactured together as a ‘panel’, consequently a third source can be referred to as ‘between-
panel’ variability. 
 
 When one has data on a material from several batches, but at only one set of fixed conditions, one 
cannot estimate batch and panel variabilities separately.  Whenever data are obtained from a new batch, 
that data also comes from a different panel.  (In statistical terminology, the batch and panel variances are 
confounded.)  So what we call 'between-batch variability' in such cases is actually the sum of the be-
tween-batch and between-panel variances.  Unless the between-panel variability is negligible, the be-
tween-batch variance will be over-estimated in such cases.  This can result in material basis properties 
that are lower than they should be. 
 
 Next consider the situation where data are available from several batches at more than one set of 
fixed conditions (see Section 8.3.7.8).  If one assumes also that data at different conditions from the same 
batch are from different panels, then one is able, in principle, to estimate the between-batch and between-
panel variances separately.  However, the regression models in this chapter and the RECIPE software 
include only one source of such variability.  Consequently, the between-panel variance is confounded, not 
with the between-batch variance as above, but with the within-batch variance.  This can result in material 
basis values that are somewhat higher than they should be.   This is likely to be a less serious problem 
than the case where panel and batch variances are confounded for several reasons.  Perhaps the most 
important of these is that of the sources of variability, that due to batches is the primary concern, and is 
being treated appropriately.  Another reason is that there is typically considerable variability within panels, 
and if the between-panel variance is small with respect to the within-panel variability, then the material 
basis properties will not be substantially higher than they should be. 
 
8.2.5 Sample size guidelines for determining basis values.   
 
 Material basis values are often regarded as material properties, that is, these values are interpreted 
as constants which can be used to help characterize the material and processing. Since basis values will 
always vary from one set of data to the next, even if the material, conditioning, and test remain un-
changed, treating them as material constants is always an approximation. 
 
 However, if the calculations are based on 'enough' data, the basis values should be reproducible, to 
within engineering accuracy, across comparable data sets. The objective of this section is to illustrate the 
small-sample reproducibility problem and to provide guidance on how many data are necessary in basis 
value calculations in order for these values to be approximately reproducible. 
 
 How many data are 'enough' depends on many factors, including 
 

1. The statistical model which is used to approximate the population from which the data is sampled, 
2. The degree of reproducibility which is desired, 
3. The variability in the property being measured, and 
4. Variability in measurements of the property due to the test method 

 
Because of this, it is impossible to give firm recommendations. The discussion in this section has another 
purpose. It is intended to provide background information and guidelines to assist the user of this hand-
book in making a sample size decision. We emphasize that this section deals only with the stability of ba-
sis values with respect to sample size. Another important issue relevant to the choice of a sample size, 
which deserves separate consideration, is the effect on basis values of statistical model assumptions - 
since there is considerable uncertainty in model selection from small samples.  Additional discussion of 
the effect of  sample size selection is found in Section 2.2.5. 
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8.2.5.1 Example 
 
 Table 8.2.5.1 presents tensile strength data (in ksi) for a unidirectional composite material, tested un-
der room temperature dry conditions. 
 
 
 
 

TABLE 8.2.5.1  Room temperature dry tensile strength for a unidirectional composite material. 
 

226 227 226 232 252 

 
 
 
 
The mean and standard deviation for these data are x   232.6= and s = 11.13 .  Using the normal model 
(Section 8.3.4.3), a B-basis value for these data is 
 
   B =    k s =  232.6  3.407(11.13)  =  195Bx − −   8.2.5.1 
 
The first point to be made is that a B-basis value determined from as few as five specimens is not likely to 
be sufficiently reproducible for it to be regarded as a material constant for most applications. For the pre-
sent discussion, the plausible assumption is made that the above data are a sample from a normal distri-
bution with a mean of 230 and a standard deviation of 10. 
 
 The theoretical population of B-basis values which corresponds to this assumed normal population of 
strength measurements can be calculated, and is displayed in Figure 8.2.5.1. Note that the observed ba-
sis value is near the mean of this population of basis values. This is to be expected since the parameters 
of the hypothetical normal distribution have been based on the same set of data from which the basis 
value was determined.  However, note also that values within ±20 ksi of the basis value are also likely to 
be observed.  Based on this analysis, one cannot rule out the possibility of the B-basis value of the next 
sample of five being as low as 180 ksi or as high as 220 ksi. 
 
8.2.5.2 Mean and standard deviations of normal basis values 
 
 Basis values calculated from small samples exhibit high variability.  One way of quantifying this is to 
calculate the theoretical mean, standard deviation, and coefficient of variation of basis values from hypo-
thetical populations as functions of the number of specimens.  Of course, these calculations are going to 
depend on the statistical model chosen and the parameters selected for this model.  However, the objec-
tive of these calculations is not to provide rigid criteria, but rather to inform the user of the qualitative be-
havior of basis values. 
 
 A normal population with a mean of 100 and a standard deviation of 10 will be considered for the dis-
cussion in this subsection.  The 10% coefficient of variation is typical of what is observed for many mate-
rial properties, and the mean of 100 is within an order of magnitude of most strength measurements (in 
ksi) for unidirectional composite materials.  The choice of the normal population is made because the 
normal basis values procedures have broad appeal, and because the required calculations can be done 
in closed form.  Sample sizes for basis values from Weibull populations should as a rule be larger than 
those for normal populations in order to achieve the same degree of reproducibility. Only basis values for 
a simple random sample are considered here; ANOVA basis values are discussed in the next subsection. 
 
 The mean and one standard deviation limits for B-basis values from a normal population with a mean 
of 100 and a standard deviation of 10 is displayed in Figure 8.2.5.2(a) as a function of the number of 
specimens. Note the extremely high variability for sample sizes of ten or less. 
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FIGURE 8.2.5.1  B-basis value population for a sample of size five. 
 
 

 

 
FIGURE 8.2.5.2(a)  Normal B-basis values with one-sigma limits. 
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FIGURE 8.2.5.2(b)  C.V. of B-basis values:  normal model. 
 
 
 The coefficient of variation ( CV ) is the ratio of the standard deviation to the mean. It is, therefore, 
easy to obtain the CV  as a function of sample size from the information in Figure 8.2.5.2(a).  Figure 
8.2.5.2(b) displays these CV  values, with a horizontal line at 10% provided for reference. 
 
 Since an A-basis value is a 95% lower confidence limit on the first population percentile, while a 
B-basis value is a 95% lower confidence limit on the tenth percentile, it is obvious that, for a given amount 
of reproducibility in the basis values, substantially more data is required for A-basis than for B-basis.  If 
one assumes that the measurements are a sample from a normal distribution, then it is reasonable to de-
cide on the number of specimens as for B-basis and then multiply the resulting n  by three to get an 
A-basis sample size. This is based on the assumption that the population coefficient of variation is less 
than 15%. 
 
8.2.5.3 Basis values using the ANOVA method 
 
 When the data come from several batches, and the between-batch variability is substantial, the flow-
chart (Figure 8.3.1) might indicate that the ANOVA method of Section 8.3.5.2 should be used. To decide 
how many specimens are required when the data are to come from several batches, begin by acting as if 
the data were from a single batch, and selecting a sample size, say n , based on the discussion of the 
previous subsection. If J  is the number of specimens per batch (assumed equal for all batches) and ρ  is 
the correlation between any two measurements taken on specimens from the same batch, then the num-
ber of specimens required for comparable reproducibility in the multi-batch case is approximately 
 
   ~  =  J +1  nn ρ ρ−   8.2.5.3 
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If ρ = 0 , there is no between-batch variability; hence ~ = nn . At the other extreme, if ρ = 1, there is perfect 

correlation within each batch (that is, each batch consists of J  copies of a single value), and ~ = Jnn , one 
needs n  batches to have the same degree of reproducibility as n  specimens in the uncorrelated ( ρ = 0 ) 

case. In practice, ρ  is unknown.  For sample size guidelines, letting ρ = 1/ 2  in Equation 8.2.5.3 is ade-

quate for most applications.  This suggests that (n(J+1) / (2J) ) batches of size J  are necessary for the 
same degree of reproducibility as a single sample of size n .  It is usually preferable to divide a fixed num-
ber of specimens among as many batches as is possible.  However, testing a new batch is much more 
expensive than testing several more specimens within a single batch.  It is sometimes the case that the 
variability between two panels from the same batch, processed and tested separately, is comparable to 
the variability between two panels from different batches.  When this is the case, it is reasonable to sub-
stitute multiple panels within a batch for multiple batches. 
 
 Suppose that an A-basis ANOVA value is desired which has the same degree of reproducibility as a 
B-basis value would have for a single sample of size n = 5. First, make the adjustment to an A-basis sam-
ple size: nA = 3 5 = 15• , as described in Section 8.2.5.2.  Next, assuming moderate between-batch vari-
ability and a batch size of (say) J = 3, calculate that An (J+1) / (2 J) = 10  batches are required for the de-
sired degree of reproducibility, for a total of 30 specimens. 
 
 
8.3 CALCULATION OF STATISTICALLY-BASED MATERIAL PROPERTIES 
 
 Section 8.3 contains computational methods for obtaining B- and A-basis values from composite ma-
terial test data. 
 
8.3.1 Guide to computational procedures 
 
 The procedure used to determine a basis value depends on the characteristics of the data.  The step-
by-step procedure for selecting the appropriate computational method is illustrated by the flowchart in 
Figure 8.3.1.  Details for the specific computational methods are provided in later sections. 
 
 Two approaches are used, with the selection dependent on whether the data are structured or not.  
The k-sample Anderson-Darling test in Section 8.3.2 examines the differences among groups of data to 
determine if they are significant or negligible, which also determines whether the data should be treated 
as structured or unstructured.  The difference between structured and unstructured data is considered in 
Section 8.3.2.  Briefly, data sets which either cannot be grouped, or for which there are negligible differ-
ences among such groups, are called unstructured.  Otherwise, the data are said to be structured.  All 
data should be examined for outliers, using the test in Section 8.3.3.  From this point, different ap-
proaches are used for analysis depending on whether the data are unstructured or structured. 
 
 The approach for unstructured data is described first.  If unstructured data were grouped and the dif-
ferences among the groups found to be negligible, the groups are combined.  The test for outliers should 
be performed again on the combined data. Tests for goodness-of-fit (Section 8.3.4.1) are performed for 
the Weibull, normal, and lognormal distributions in succession.  If the observed significance level (OSL) 
for the Weibull distribution is greater than 0.05, indicating an adequate fit for the data to the Weibull distri-
bution, then a Weibull basis value is recommended (Section 8.3.4.2).  If the OSL for the Weibull distribu-
tion is less than 0.05 and the OSL for the normal distribution is greater than 0.05, then the normal basis 
value should be used (Section 8.3.4.3).  If the OSL's from both the Weibull and normal goodness-of-fit 
tests are less than 0.05, and the OSL for the lognormal distribution is greater than 0.05, then a lognormal 
basis value is recommended (Section 8.3.4.4).  If none of the three OSL's are greater than 0.05, then the 
nonparametric basis value procedures are recommended (Section 8.3.4.5).  Section 8.3.4 provides the 
rationale for the order of the distribution selection.  An alternative approach is to use the basis values cor-
responding to the best-fitting model.  Exploratory data analysis (EDA) techniques, described in Section 
8.3.6, can provide graphical illustrations of the data distribution in support of the goodness-of-fit tests. 
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 FIGURE 8.3.1 Flowchart illustrating computational procedures for B-basis  
   material property values.1 
 

 

 

1The ANOVA method applies to the simple multiple-batch case.  Other scenarios may be addressed by linear regression (RECIPE). 
The acceptance of data analyzed by linear regression for inclusion in MIL-HDBK-17 is under consideration. 
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 The approach for structured data divides the grouping of data according to fixed and random effects.  
A fixed effect is where an independent variable is set or measured.  An example of a fixed effect is data 
obtained, by design or by chance, at different measured test temperatures.  A random effect is the result 
of variability where the cause in unknown or unmeasurable.  An example of a random effect is data ob-
tained from several batches with significant batch-to-batch variability.  (See definitions in Section 8.1.4.)  
Data sets with random effects, fixed effects or combinations of fixed and random effects require a basic 
understanding of linear models for regression and the analysis of variance.  While a detailed exposition of 
this topic is beyond the scope of the handbook, an introduction with elementary references is provided in 
Section 8.3.5.1.  The simplest case of structured data is where the only grouping is by a random effect, 
such as batches or panels.  For this situation, basis values should be calculated by the analysis of vari-
ance (ANOVA) procedure (Section 8.3.5.2).  Before basis values are calculated, a diagnostic test for 
equality of variances should be applied.  Note that there is a special approach for determining basis val-
ues when the data consist of only two groups. 
 
 The case of one fixed effect and no random effects is linear regression (Section 8.3.5.3).  For cases 
with no or one random effect and an arbitrary number of fixed effects, basis values from regression mod-
els can be calculated using the computer program RECIPE.  A method for pooling small data sets from 
multiple environmental conditions is described in Section 8.3.5.4. 
 
8.3.2 Subpopulation compatibility - structured or unstructured 
 
 Expected and unexpected behavior should be considered in determining whether there are natural or 
logical groupings of the data.  Data for which natural groupings exist, or for which responses of interest 
could vary systematically with respect to known factors, are structured data.  For example measurements 
made from each of several batches could reasonably be grouped according to batch, and measurements 
made at various known temperatures could be modeled using linear regression (Section 8.3.5); hence 
both can be regarded as structured data.  In many ways, it is easier to analyze data which are unstruc-
tured; hence, it is often desirable to be able to show that a natural grouping of data has no significant ef-
fect.  Data are considered unstructured if all relevant information is contained in the response measure-
ments themselves.  This could be because these measurements are all that is known, or else because 
one is able to ignore potential structure in the data.  For example, data measurements that have been 
grouped by batch and demonstrated to have negligible batch-to-batch variability may be considered un-
structured.  An unstructured data set is a simple random sample. 
 
 The following section describes the k-sample Anderson-Darling test for showing the subpopulations 
are compatible, that is, the natural groupings have no significant effect.  Compatible groups may be 
treated as part of the same population.  Thus, a structured data set, with a natural grouping identified, can 
become an unstructured data set by showing that the natural grouping has no significant effect using the 
k-sample Anderson-Darling test.   
 
 For composite materials, it is recommended that batches (and panels where possible) be treated as 
natural groupings and tested for compatibility.  Other groupings may result from expected behavior.  Ply 
count might have a significant effect on ±45 shear test; thus specimens with different ply counts naturally 
fall into groupings for this test.The decision regarding grouping the data may also be affected by the pur-
pose of the test program.  As an example, consider the influence of strain rate on material properties.  A 
test program may be designed to evaluate the effects of strain rate on a given property.  That program 
would obtain data at selected and controlled values of strain rate.  These would provide the natural group-
ing for the data.  A subpopulation compatibility test could be used to determine if there was a significant 
effect; or a structured data approach, such as linear regression, could be used.  
 
8.3.2.1 Notation for grouped data 
 
 For structured data, each data value belongs to a particular group, and there will generally be more 
than one value within each group.  Therefore, double subscripts will be used to identify the observations.  
Let the data be denoted by xij for i = 1, ..., k and j = 1, ..., ni, where i is the group and j is the observation 
within that group.  There are ni data values in the ith of k groups.  Then the total number of observations is 
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n = n1 + n2 + ... +  n k.  The distinct values in the combined data set, ordered from smallest to largest, is de-
noted z(1), z(2), ..., z(L), where L will be less than n if there are tied observations. 
 
8.3.2.2 The k-sample Anderson-Darling test 
 
 The k-sample Anderson-Darling test is a nonparametric statistical procedure that tests the hypothesis 
that the populations from which two or more groups of data were drawn are identical.  The test requires 
that each group be an independent random sample from a population.  For more information on this pro-
cedure, see Reference 8.3.2.2. 
 
 The k-sample Anderson-Darling statistic is 
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n-1
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where 
 hj = the number of values in the combined samples equal to z(j) 
 Hj = the number of values in the combined samples less than z(j) plus one half the number of  
   values in the combined samples equal to z(j), and 
 Fij = the number of values in the ith group which are less than z(j) plus one half the number of  
   values in this group which are equal to z(j). 
 
Under the hypothesis of no difference in the populations, the mean and variance of ADK are approxi-
mately 1 and 

   n
2

3 2

2
= Var(ADK) = an + bn + cn+ d

(n-1)(n- 2)(n- 3)(k-1)
σ   8.3.2.2(b) 

with 
   a = (4g- 6)(k-1) + (10 - 6g)S   8.3.2.2(c) 

   b = (2g- 4) k + 8Tk+ (2g-14T- 4)S-8T+ 4g- 62   8.3.2.2(d) 

   c = (6T+ 2g- 2) k + (4T- 4g+ 6) k+ (2T- 6)S+ 4T2   8.3.2.2(e) 

   d = (2T+ 6) k - 4Tk2   8.3.2.2(f) 
where 
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If the critical value 
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is less than the test statistic in Equation 8.3.2.2(a), then one can conclude (with a five percent risk of be-
ing in error) that the groups were drawn from different populations.  Otherwise, the hypothesis that the 
groups were selected from identical populations is not rejected, and the data may be considered unstruc-
tured with respect to the random or fixed effect in question.  Table 8.5.6 contains the critical values (Equa-
tion 8.3.2.2(j)) for the case of where all of the ni are equal.  The example problem in Section 8.3.7.1, Step 
2 demonstrates this procedure.  
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8.3.3 Detecting outliers 
 
 An outlier is an observation that is much lower or much higher than most other observations in a data 
set.  Often outliers are erroneous values, perhaps due to clerical error, to the incorrect setting of environ-
mental conditions during testing, or to a defective test specimen.  Data should routinely be screened for 
outliers, since these values can have a substantial influence on the statistical analysis.  In addition to the 
quantitative screening for outliers (Section 8.3.3.1), the data should also be examined visually, since no 
statistical procedure can be completely reliable for outlier detection. 
 
 The Maximum Normed Residual (MNR) method is used for quantitative screening for outliers.  This 
test screens for outliers in an unstructured data set.  If the data can be grouped naturally into subgroups 
(due to batches, manufacturers, temperatures, and so on), then one should form the smallest subgroups 
possible and screen each of these separately.  Data from compatible subgroups, based on the previous 
section, should be combined and the screening test performed on the larger group.  Of course, data 
should only be pooled when it makes sense to do so.  For example, batches of data for the same property 
and environmental condition can be combined, but tension and compression data should never be 
pooled. 
 
 All values identified as outliers should be investigated.  Those values for which a cause can be de-
termined should be corrected if possible, and otherwise discarded.  When error in data collection or re-
cording are discovered, all data should be examined to determine whether similar errors occurred; these 
values should also be corrected or discarded.  If no cause can be found for an outlier, it should be re-
tained in the data set.  If an outlier is clearly erroneous, it can be removed after careful consideration pro-
vided that the subjective decision to remove a value is documented as part of the data analysis.  If any 
observations are corrected or discarded, both the statistical outlier test and the visual inspection should 
be repeated. 
 
8.3.3.1 The maximum normed residual 
 
 The maximum normed residual (MNR) test is a screening procedure for identifying an outlier in an 
unstructured set of data.  A value is declared to be an outlier by this method if it has an absolute deviation 
from the sample mean which, when compared to the sample standard deviation, is too large to be due to 
chance.  This procedure assumes that observations which are not outliers can be regarded as a random 
sample from a normal population.   The MNR method can only detect one outlier at a time, hence the sig-
nificance level pertains to a single decision.  Additional information on this procedure can be found in Ref-
erences 8.3.3.1(a) and (b). 
 
 Let x1, x2, ... xn denote the data values in the sample of size n, and let x  and s be the sample mean 
and sample deviation, defined in Section 8.1.4.  The MNR statistic is the maximum absolute deviation, 
from the sample mean, divided by the sample standard deviation: 
 

   MNR =
max

i

|

s
, i = 1,2,...,n

x - xi   8.3.3.1(a) 

 
The value of Equation 8.3.3.1(a)  is compared to the critical value for the sample size n from Table 8.5.7.  
These critical values are computed from the following formula 
 

   C =
n-1

n
t

n- 2 + t

2

2
  8.3.3.1(b) 

 
where t is the [1 - α/(2n)] quantile of the t-distribution with n - 2 degrees of freedom and α is the signifi-
cance level.  The recommended significance level for this test is α  = 0.05. 
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 If MNR is smaller than the critical value, then no outliers are detected in the sample; otherwise the 
data value associated with the largest value of x xi − is declared to be a  outlier. 

 
 If an outlier is detected, this value is omitted form the calculations and the MNR procedure is applied 
again. This process is repeated until no outliers are detected.  Note that the jth time that a sample is 
screened for an outlier, the mean, standard deviation, and critical value are computed using a sample size 
of n - j - 1.  It should be noted that for small samples, for example a batch containing five or six data, this 
procedure may identify most of the data as outliers, particularly if two or more of the values are identical.  
The example problem in Section 8.3.7.1, Step 1 demonstrates this procedure.  
 
8.3.4 Basis values for unstructured data 
 
 The method employed in calculating basis values for unstructured data depends on the distributional 
form which is assumed.  Section 8.3.4 contains procedures for performing a goodness-of-fit test for the 
Weibull, normal, and lognormal distributions. 
 
 As shown in Figure 8.3.1, it is recommended that the Weibull model be used if it adequately fits the 
data, even if other models apparently fit the data better. This preference for the Weibull distribution is 
based on two factors: 
  

1. Theory suggests that the Weibull distribution is appropriate for the strength distribution of brittle 
materials such as composite fibers (see, for example,  Reference 8.3.4(a). 

 
2. The "Chain-of-Bundles" model for the strength of two- and three-dimensional unidirectional com-

posites suggests that the Weibull model is appropriate for the strength distribution of such com-
posites.  This result is stated in References 8.3.4(b) and (c). 

  
 If the Weibull model cannot be shown to adequately fit the data, then the normal and lognormal tests 
are performed in succession.  If none of these three population models can be demonstrated to ade-
quately fit the data, then nonparametric procedures should be used to compute basis values. 
 
 The exploratory data analysis (EDA) techniques of Section 8.3.6 should also be used to graphically 
display the data, highlighting potential difficulties and providing graphical evidence of goodness-of-fit to 
support the quantitative conclusions of the tests in this section. 
 
8.3.4.1 Goodness-of-fit tests 
 
 Each distribution is considered using the Anderson-Darling test statistic which is sensitive to discrep-
ancies in the tail regions.  The Anderson-Darling test compares the cumulative distribution function for the 
distribution of interest with the cumulative distribution function of the data.  The data are first converted to 
a common representation for the distribution under consideration.  For example, for a normal distribution, 
the data are normalized to a mean of 0 and a standard deviation of 1.  An observed significance level 
(OSL) based on the Anderson-Darling test statistic is computed for each test.  The OSL measures the 
probability of observing an Anderson-Darling test statistics as least as extreme as the value calculated if 
the distribution under consideration is in fact the underlying distribution of the data.  The OSL is the prob-
ability of obtaining a value of the test statistic at least as large as that obtained if the hypothesis that the 
data are actually from the distribution being tested is true.  If the OSL is less than or equal to 0.05, the 
hypothesis is rejected (with at most a five percent risk of being in error) and one proceeds as if the data 
are not from the distribution being tested. 
 
 In what follows, unless otherwise noted, the sample size is denoted by n, the sample observations by 
x1, ..., xn , and the sample observations ordered from least to greatest by x(1), ..., x(n). 
 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-20 

8.3.4.2 Two-parameter Weibull distribution 
 
 In order to compute a basis value for a two-parameter Weibull population, it is first necessary to ob-
tain estimates of the population shape and scale parameters.  Section 8.3.4.2.1 contains a step-by-step 
procedure for calculating maximum likelihood estimates of these parameters.  Calculations specific to the 
goodness-of-fit test for the Weibull distribution are provided in Section 8.3.4.2.2.  The computational pro-
cedure for calculating basis values using these estimates is outlined in Section 8.3.4.2.3.  The example 
problem in Section 8.3.7.1 demonstrates these procedures.   For further information on these procedures, 
see Reference 8.3.4.2. 
 
8.3.4.2.1 Estimating the shape and scale parameters of a Weibull distribution 
 
 The section describes the maximum likelihood method for estimating the parameters of the two-
parameter Weibull distribution.  The maximum-likelihood estimates of the shape and scale parameters are 

denoted �β  and �α .  The estimates are the solution to the pair of equations: 
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Equation 8.3.4.2.1(a) can be rewritten as 
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By substituting Equation 8.3.4.2.1(c) into Equation 8.3.4.2.1(b), the following equation is obtained. 
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Equation 8.3.4.2.1(d) can be solved numerically for �β , which can then be substituted into Equation 

8.3.4.2.1(c) to obtain �α . 
 
 Figure 8.3.4.2.1 shows FORTRAN source code for three routines which compute the estimates of �α  

and �β  by the method described above.  WBLEST is a subroutine which returns the estimates of the pa-

rameters, �β  and �α .  FNALPH is a function which calculates the estimate of the scale parameter, �α .  
GFUNCT is a function which evaluates Equation 8.3.4.2.1(d).  Arguments to WBLEST are 
 
 X  = a vector of length NOBS containing the data (input), 
 NOBS = the number of data values, n (input), 
 BETA = estimate of the shape parameter (output), 
 ALPHA = estimate of the scale parameter (output). 
 
The algorithm by which the FORTRAN code computes the estimates is described in the following para-
graph. 
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 C------------------------------------------------------------------------------------------------- 
   SUBROUTINE WBLEST(X,NOBS,ALPHA,BETA) 
 C 
 C COMPUTE MLES FOR SHAPE PARAMETER (BETA) AND SCALE PARAMETER  
 C (ALPHA) BY SOLVING THE EQUATION G(BETA) = 0, WHERE G IS  
 C A MONOTONICALLY INCREASING FUNCTION OF BETA.  
 C THE INITIAL ESTIMATE IS: RI=(1.28)/(STD. DEV. OF LOG(X)'S)  
 C AND THE TOLERANCE IS  :  2*RI/(10**6).  
 C 
   DIMENSION X(NOBS)  
 C 
   RN = FLOAT(NOBS)  
   SUMY = 0.0  
   SUMYSQ = O.O  
   DO 2 I = 1, NOBS 
    Y = ALOG(X(I))  
    SUMY = SUMY + Y  
    SUMYSQ = SUMYSQ + (Y**2)  
  2 CONTINUE 
   YSTD = SQRT((SUMYSQ - (SUMY**2)/RN)/(RN - 1.0))  
   XGM = EXP(SUMY/RN)   
   RI = 1.28/YSTD  
   TOL = 2.0*.000001*RI  
   BETAM = Rl  
   GFM = GFUNCT(X,NOBS,BETAM,XGM) 
 C 
 C IF G(BETAM) .GE. 0, DIVIDE THE INITIAL ESTIMATE BY 2 UNTIL  
 C THE ROOT IS BRACKETED BY BETAL ND BETAH. 
 C 
   IF(GFM .GE. 0.0) THEN 
    DO 3 J = 1, 20 
     BETAH = BETAM 
     BETAM = BETAM/2.0 
     GFM = GFUNCT(X,NOBS,BETAM,XGM) 
     IF (GFM .LE. O.0) GO TO 4 
  3  CONTINUE 
    STOP 'GFM NEVER LE 0' 
  4  CONTINUE 
    BETAL - BETAM 
   ENDIF 
 C 
 C  IF G(BETAM) .LT. 0, MULTIPLY THE INITIAL ESTIMATE BY 2 
 C  UNTIL THE ROOT IS BRACKETED BY BETAL AND BETAH 
 C 
   IF(GFM .LT. 0.0) THEN 
    DO 7 J = 1, 20 
     BETAL=BETAM 
     BETAM=BETAM*2.O 
     GFM=GFUNCT(X,NOBS,BETAM,XGM) 
     IF(GFM .GE. 0.0) GO TO 8 
  7  CONTINUE 
    STOP 'GFM NEVER GE 0' 
  8  CONTINUE 
    BETAH = BETAM 
   ENDIF 
 C 
 C SOLVE THE EQUATION G(BETA) = O FOR BETA BY BISECTING THE 
 C INTERVAL (BETAL,BETAH) UNTIL THE TOLERANCE IS MET 
 C 
  10 CONTINUE 
   BETAM = (BETAL + BETAH) / 2.0 
   GFM = GFUNCT(X,NOBS,BETAM,XGM) 
   IF(GFM .GE. 0.0) THEN 
   BETAH = BETAM  
   ENDIF  
   IF(GFM .LT. 0.0) THEN 
   BETAL = BETAM  
   ENDIF  
   IF((BETAH - BETAL) .GT. TOL) GO TO 10  
 

 FIGURE 8.3.4.2.1 FORTRAN routines for calculating two-parameter Weibull shape 
  and shale parameter, estimates, continued on next page. 
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 C  
   BETA = (BETAL + BETAH) / 2.0  
   ALPHA = FNALPH(X,NOBS,BETA,XGM)  
   RETURN  
   END 
 C------------------------------------------------------------------------------------------------- 
   FUNCTION FNALPH(X,NOBS,BETA,XGM)  
 C 
 C COMPUTE MLE FOR TWO-PARAMETER WEIBULL SCALE PARAMETER (ALPHA)  
 C XGM IS THE GEOMETRIC MEAN OF THE X'S  
 C 
   DIMENSION X(NOBS) 
   RN = FLOAT(NOBS) 
 C 
   SUMZ = 0.0 
   DO 20 I = 1, NOBS 
    SUMZ = SUMZ I (X(l)/XGM)**BETA 
  20 CONTINUE 
 C 
   FNALPH = XGM*(SUMZ/RN)**(1./BETA) 
 C 
   RETURN 
   END 
 C------------------------------------------------------------------------------------------------- 
 
 
 
 C------------------------------------------------------------------------------------------------- 
   Function GFUNCT(X,NOBS,BETA,XGM)  
 C  
 C COMPUTE G FUNCTION USED IN ESTIMATING THE TWO-PARAMETER WEIBULL  
 C SHAPE PARAMETER (BETA).  
 C XGC IS THE GEOMETRIC MEAN OF THE X'S USED IN ESTIMATING ALPHA.  
 C 
   DIMENSION X(NOBS)  
   RN = FLOAT(NOBS)  
 C 
   ALPHA = FNALPH(X,NOBS,BETA,XGM) 
   SUMYZ = 0.0 
   DO 10 I = 1, NOBS 
    SUMYZ = SUMYZ + ALOG(X(I))*((X(I)/ALPHA)**BETA - 1.) 
  10 CONTINUE 
 C 
   GFUNCT = (SUMYZ/RN) - 1.0/BETA  
 C 
   RETURN  
   END 
 C------------------------------------------------------------------------------------------------- 
      

 
 FIGURE 8.3.4.2.1 FORTRAN routines for calculating two-parameter Weibull shape 
  and shale parameter, estimates, concluded. 
 
 

 Equation 8.3.4.2.1(d) is a monotonically decreasing continuous function of �β .  Designate the left-

hand side of Equation 8.3.4.2.1(d) divided by n as G( � )β  and obtain a solution for �β  by the following itera-

tive procedure.  Let Sy denote the standard deviation of 1 ny ,...,  y  where 1 iy  =  ln(x )  for i = 1,...,n.  Calcu-

late I = 1.28/Sy as an initial guess at the solution and calculate G(I).  If G(I) > 0, then find the smallest posi-

tive integer  k such that G(1/ 2 ) < 0k  and let L =  I/ 22  and H =  I/ 2k-1 .  If G(I) < 0, then find the smallest 

positive integer k such that G(2 I)  >  0k  and let L = 2 k-1 I and H = 2 kI.  In either case, the interval (L,H) 

contains the solution to G( � )  =  0β .  Now calculate G(M) where M = (L + H)/2.  If G(M) = 0, then the solu-

tion is �β  = M.  If G(M) > 0, then let H = M.  If G(M) < 0 then let L = M.  The new interval (L,H) still contains 

the solution to G( � )  =  0β  but is only half as long as the old interval.  Calculate a new M-value and begin 
the process of interval halving again.  The process is repeated until  H-L < 2I/106.  The solution to 

G( � )  =  0β  is then taken to be M = (L + H)/2.  The solution is in error by at most I/106. 
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8.3.4.2.2 Goodness-of-fit test for the two-parameter Weibull distribution 
 
 The two-parameter Weibull distribution is considered by comparing the cumulative Weibull distribution 
function (Section 8.1.4) that best fits the data with the cumulative distribution function of the data.  Using 
the shape and scale parameter estimates from Section 8.3.4.2.1, let 
 

   (i) (i)z  =  x / ,    for i = 1,...,n
�

� βα   8.3.4.2.2(a) 

 
The Anderson-Darling test statistic is 
 

   
n

(i) (n+1-i)
i=1

1- 2i
AD =  n 1- exp( ) - - nz z

n
  −∑   A   8.3.4.2.2(b) 

 
and the observed significance level is  
 

   { }* *OSL = 1/ 1+ exp[-0.10 +1.24ln( ) + 4.48 ]AD AD   8.3.4.2.2(c) 

where 

   *AD  =  1+
0.2

n
AD

F
HG

I
KJ   8.3.4.2.2(d) 

 
This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the 
value calculated if in fact the data are a sample from a two-parameter Weibull distribution.  If OSL ≤ 0.05, 
one may conclude (at a five percent risk of being in error) that the population does not have a two-
parameter Weibull distribution.  Otherwise, the hypothesis that the population has a two-parameter 
Weibull distribution is not rejected.  For further information on this procedure, see Reference 8.3.4.2. 
 
8.3.4.2.3 Basis values for the two-parameter Weibull distribution 
 
 If the unstructured data set is from a population with a two-parameter Weibull distribution, the B-basis 
value is 
 

   B = �qexp
-V
� nβ

RS|T|
UV|W|

  8.3.4.2.3(a) 

where 
 

   �q = � (0.10536)1/ �α β   8.3.4.2.3(b) 
 
and V is the value in Table 8.5.8 corresponding to a sample of size n. A numerical approximation to the V 
values is given in Equation 8.5.8(h). 
 
 To calculate the A-basis value, use the appropriate V value from Table 8.5.9 substituting 8.3.4.2.3(c) 
for 8.3.4.2.3(b). 
 

   1/ˆ ˆq (0.01005) βα=   8.3.4.2.3(c) 
 
8.3.4.3 Normal distribution 
 
 In order to compute a basis value for a normally distributed population, it is necessary to obtain esti-
mates of the population mean and standard deviation.  Section 8.3.4.3.1 gives the equations for calculat-
ing these parameters.  Section 8.3.4.3.2 provides the procedure for goodness-of-fit for the normal distri-
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bution, and Section 8.3.4.3.3 gives the procedure for calculating basis values.  The example problem in 
Section 8.3.7.2 demonstrates these procedures.   
 
8.3.4.3.1 Estimating the mean and standard deviation parameters for the normal distribution 
 
 The population mean and standard deviation are estimated using the sample mean x  and sample 
standard deviation s. 
 

   x =
1

n
x

i=1

n
i∑  

 

   s =
1

n-1
(

i=1

n
∑ x - x )i

2  

 
8.3.4.3.2 Goodness-of-fit test for the normal distribution 
 
 The normal distribution is considered by comparing the cumulative normal distribution function (Sec-
tion 8.1.4) that best fits the data with the cumulative distribution function of the data.  Let 
 

   (i)z  =  
s

,     for i = 1,...,n
x x(i) −

  8.3.4.3.2(a) 

 
where x(i) is the ith smallest sample observation, x  is the sample average, and s is the sample standard 
deviation.  
 
 The Anderson-Darling test statistic is 
 

   AD =  
1- 2i

n
 ln F (z ) + ln 1- f (z ) - n

i=1

n
0 (i) 0 (n+1-i)∑ o t   8.3.4.3.2(b) 

 
where F0 is the standard normal distribution function (Equation 8.1.4(e)).  The observed significance level 
is  
   OSL =  1/ 1+ exp[-0.48 + 0.78ln(AD*) + 4.58AD*]l q   8.3.4.3.2(c) 

where 

   *AD  =  1+
0.2

n
AD

F
HG

I
KJ   8.3.4.3.2(d) 

 
This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the 
value calculated if in fact the data are a sample from a normal distribution.  If OSL ≤ 0.05, one may con-
clude (at a five percent risk of being in error) that the population is not normally distributed.  Otherwise, 
the hypothesis that the population is normally distributed is not rejected.  For further information on this 
procedure, see Reference 8.3.4.2. 
 
8.3.4.3.3 Basis values for the normal distribution 
 
 If the unstructured data set is from a population with a normal distribution, the B-basis value is 
 
   B = -x k sB   8.3.4.3.3(a) 
 
where kB is the appropriate one-sided tolerance-limit factor from Table 8.5.10.  A numerical approximation 
to the kB values is given in Equation 8.5.10. 
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 To calculate the A-basis value, replace kB with the appropriate value of kA from Table 8.5.11 or the 
numerical approximation in Equation 8.5.11. 
 
8.3.4.4 Lognormal distribution 
 
 The lognormal distribution is a positively skewed distribution that is simply related to the normal distri-
bution.  If something is lognormally distributed, then its logarithm is normally distributed. The natural (base 
e) logarithm is used in MIL-HDBK-17.  See Section 8.1.4 for the definition of the lognormal distribution.  
The example problem in Section 8.3.7.3 demonstrates the application of the procedures in Section 
8.3.4.3 for a lognormal distribution.   
 
 In order to fit test the goodness-of fit of the lognormal distribution, take the logarithm of the data and 
perform the Anderson-Darling test for normality from Section 8.3.4.3.  Using the natural logarithm, let 
 

   (i)
L

z  =  
ln( ) -

s
,     for i = 1,...,n

x x(i) L   8.3.4.4(a) 

 
where x(i) is the ith smallest sample observation, xL  and sL are the mean and standard deviation of the 
ln(xi) values. 
 
 The Anderson-Darling statistics is computed using Equation 8.3.4.3(b) and the observed significance 
level (OSL) is computed using Equation 8.3.4.3(c).  This OSL measures the probability of observing an 
Anderson-Darling statistic at least as extreme as the value calculated if in fact the data are a sample from 
a lognormal distribution.  If OSL ≤ 0.05, one may conclude (at a five percent risk of being in error) that the 
population is not lognormally distributed.  Otherwise, the hypothesis that the population is lognormally 
distributed is not rejected.  For further information on this procedure, see Reference 8.3.4.2. 
 
 The following procedure should be used to calculate basis values for unstructured data that is as-
sumed to be a sample from a lognormal population.  The equations presented in Section 8.3.4.3 are used 
to calculate the basis values.  However, the calculations are performed using the logarithms of the data 
rather than the original observations.  The computed B-basis value must then be transformed back to the 
original units by applying the inverse of the log transformation which was used.  
 
8.3.4.5 Nonparametric basis values 
 
 These procedures should be used to compute basis values for unstructured data when one is unwill-
ing to assume a particular population model, usually because the Weibull, normal, and lognormal models 
all provide inadequate fits to the data.  One of two methods should be used, depending on the sample 
size. 
 
8.3.4.5.1 Nonparametric basis values for large samples 
 
 To calculate a B-basis value for n > 28, determine the value r corresponding to the sample size n from 
Table 8.5.12.  For sample sizes between tabulated values, select the r value associated with the largest 
tabulated sample size that is smaller than the actual n. The B-basis value is the rth lowest observation in 
the data set.  For example, in a sample of size n = 30, the lowest (r = 1) observation is the B-basis value.  
A numerical approximation to the tabulated r values as a function of n is given in Section 8.5.12.  The ex-
ample problem in Section 8.3.7.4 demonstrates this procedure.  Further information on this procedure 
may be found in Reference 8.3.4.5.1. 
 
 For n > 298, an A-basis value can calculated using the sample procedure, with the r value selected 
from Table 8.5.13. 
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8.3.4.5.2 The Hanson-Koopmans method 
 
 The following procedure (References 8.3.4.5.2(a) and (b)) can be a useful method for obtaining a 
B-basis value for sample sizes not exceeding 28.  This procedure requires the assumption that the obser-
vations are a random sample from a population for which the logarithm of the cumulative distribution func-
tion is concave, an assumption satisfied by a large class of probability distributions.  There is substantial 
empirical evidence that suggests the composite strength data satisfies this assumption, consequently this 
procedure can usually be recommended for use when n is less than 29.  However, in view of the required 
assumption, this is not an unconditional recommendation. 
 
 The Hanson-Koopmans B-basis value is 
 

   B = x
x

x
(r)

k
(1)

(r)

L
N
MM
O
Q
PP   8.3.4.5.2(a) 

 
where x(1) is the smallest and x(r) is the rth largest data value.  The values of r and k depend on n and are 
tabulated in Table 8.5.14.  This equation for the B-basis value should not be employed if x(r) = x(1).  The 
example problem in Section 8.3.7.5 demonstrates these procedures.   
 
 The Hanson-Koopmans method can be used to calculate A-basis values for n less than 299.  Find the 
value kA corresponding to the sample size n in Table 8.5.15.  Let x(n) and x(1) be the largest and smallest 
data values.  The A-basis value is  
 

   A = x
x

x
(n)

k
(1)

(n)

L
N
MM
O
Q
PP   8.3.4.5.2(b) 

 
8.3.5 Basis values for structured data 
 
 Where possible, it is advantageous to reduce structured data to unstructured cases as discussed in 
Section  8.3.2.  The analysis of unstructured data is possible for distributions other than a normal prob-
ability model, which is assumed by the procedures for structured data.  Where the data are structured and 
cannot be combined according to the test in Section 8.3.2.2, the procedures in this section should be 
used.  These procedures for basis value calculations for structured data assume a normal probability 
model.  All of these procedures can be considered in terms of regression analysis.  A general description 
of regression analysis of linear statistical models is provided in Section 8.3.5.1.  Included in this section is 
a discussion of checking the required assumptions.   Analysis of variance is a special case with one ran-
dom effect and no fixed effects (Section 8.3.5.2).  A case of one fixed effect and no random effects is sim-
ple linear regression (Section 8.3.5.3). 
 
8.3.5.1 Regression analysis of linear statistical models 
 
 The objective of a regression analysis for material basis properties is to obtain basis values for a par-
ticular response (for example, tensile strength) as functions of fixed factors (such as temperature, lay-up, 
and humidity).  The measured response values will be called observations, and the values which describe 
the conditions corresponding to these observations will be referred to as covariates.  For example, if a 
linear relationship is assumed between tensile strength and temperature, then the mean strength at a 
temperature Ti is, in the limit of infinitely many observations at this temperature, equal to θ0 + θ1Ti.  The 
constants θ0 and θ1 are generally unknown and must be estimated from the data.   The values that these 
constants multiply, here 1 and Ti, are covariates; together they describe the fixed conditions under which 
the ith strength observation was made.  Linear regression refers to a method for the analysis of relation-
ships which are linear functions of unknown parameters (here θ0 and θ1).  These relationships need not be 
linear in covariates.  For example, a quadratic model in which squared temperature (T2) is introduced as 
an additional covariate can be analyzed using linear regression. 
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 Assume that the data being analyzed consist of n observations at A  fixed conditions (or levels), and 
number these conditions 1, 2, .., A .  In the example of linear regression on temperature, there are A  tem-
peratures, and A  corresponding sets of covariates: (1, T1), (1, T2),  ..., (1, TA ).  It is necessary to indicate 
which fixed condition corresponds to each observation (recall the subscript i in Equation 8.2.3, so let the 
fixed conditions for observation s be p(s).  Also each observation is made on a specimen from one of m 
batches.  These batches are numbered 1, 2, ..., m, and q(s) indicates the batch corresponding the sth ob-
servation.  Denote the observations by xs, for s = 1, 2, ..., n, where the sth value comes from fixed level p(s) 
and from batch q(s). 
 
 Assume that the {xs} represents a sample from a normal distribution with mean  
 
   p(s) 1 p(s),1 2 p(s),2 r p(s),r =  z + z + + zµ θ θ θ…   8.3.5.1(a) 

 
where the {zp(s),u}, for 1 ≤ p(s) ≤ A  and u = 1, ..., r, are known constants and the {θ u} are parameters to be 
estimated.  For example, if mean strength is assumed to vary linearly with temperature, and if condition 
p(s) = 1 corresponds to 75 degrees, then 
 
   1 1 2 =  + 75µ θ θ   8.3.5.1(b) 

 
so r = 2, z11 = 1, and z12 = 75.  Recall that the covariates zp(s),u are not required to be linear.  For example, a 

quadratic relationship between strength and temperature would have covariates, 1, Ti, and i
2T . 

 
 The means µp(s) can never be observed, but must be estimated from limited data.  Each data value 
consists of the sum of µp(s) plus a random quantity bq(s) + es, where bq(s) takes on a different value for each 
batch q(s) and es takes on a different value for each observation.  The random variables {bq(s)} and {es} are 

assumed to be random samples from normal populations with means zero and variances b
2σ  and e

2σ .  

The variance b
2σ  is the between-batch variance, and e

2σ is referred to as the within-batch (or error) vari-

ance. (For a more elementary discussion of these ideas, see Section 8.2.3.) 
 
 The model for the data can now be written as 
 
   s p(s) q(s) s 1 p(s),1 r p(s),r q(s) sx  =  + b + e  =  z + + z + b + eµ θ θ…   8.3.5.1(c) 

 
where the {zp(s),u} are known, the {θu} are unknown fixed quantities, and the {bq(s)} and {e s} are random 
quantities with unknown variances. Equation 8.3.5.1(c) is called a regression model.  Every regression 
analysis begins with the choice of a regression model.   
 
 Special cases of Equation 8.3.5.1(c) are frequently useful.  If the levels correspond to data groups, 
with the covariates indicating which group is associated with each observation, then the regression model 
is an analysis of variance (ANOVA) (Section 8.3.5.2).  This case is most frequently used to calculate basis 
values when there is significant batch-to-batch variability.  When there is one continuous covariate, the  
case is called the simple linear regression model (Section 8.3.5.3).  Details of the analysis are provided 
for these special cases in the following sections.  The analysis of the more general case is beyond the 
scope of this handbook; however, the RECIPE software is available to perform the analysis and examples 
are shown in Sections 8.3.7.6 - 8.3.7.9. 
 
 The power gained by using regression models for basis values is obtained at the expense of addi-
tional assumptions.  A residual is defined to be the difference between a data point and its fitted value.  
Using the residuals, the following assumptions need to be checked: 
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1. Check the validity of the assumed curvilinear relation between property and predictor variables, 
for example, straight line, quadratic, or other assumed relationship; 

 
2. Check homogeneity of variance (variances are assumed constant over the range of predictor 

variables); 
 
3. Check normality of regression residuals; and 
 
4. Check for independence of residuals. 

 
Also, one should not extrapolate beyond the range of the predictor variables without good cause. 
 
 A detailed discussion of the validation of a regression model is beyond the scope of this handbook; 
however it is discussed at length in most elementary texts, including References 8.3.5.1(a) - (d).  Some 
elaboration at this point, though, might be helpful. 
 
 If a model fits well, then the residuals should be as likely to be positive as negative, and so they will 
alternate in sign every few values.  They will have no apparent structure, and ideally will look like 'white 
noise'.  If a model fits poorly, then there will often be long sequences of residuals that have the same sign, 
and curved patterns will typically be apparent in the residuals.  
 
 If the variance is high for a group of residuals, then these values will appear more scattered, and con-
versely for the case of low variability.  This behavior can often be detected by examining residual plots.  
For example, if a simple linear regression has been performed of strength of specimens as a function of 
temperature, and if strength becomes more variable as temperature increases, then a plot of residuals 
against temperature might have a ‘megaphone’ shape. 
 
 There are also graphical procedures for checking the normality assumption for residuals.  These can 
be found in most textbooks.  It is also possible to apply the Anderson-Darling goodness-of-fit test for nor-
mality (Section 8.3.4.3) to the ratio of residuals to the standard deviation about the regression line (that is, 
ei/sy).  A justification for this procedure can be found in Reference 8.3.5.1(e). 
 
 It is difficult to test for independence graphically.  One possibility is to plot the odd-numbered residuals 
against the even-numbered ones, and to see if a trend is apparent.  Further discussion can be found in 
the referenced textbooks.  One form of lack of independence, ‘clustering’ due to batch effects, is ad-
dressed in the example in Section 8.3.7.9. 
 
8.3.5.2 Analysis of variance 
 
 This section contains a discussion of one-way analysis of variance (ANOVA) procedures.  Although 
these models can be written using the general notation of Equation 8.3.5.1(c), for the present discussion it 
is simpler to write the one-way ANOVA model as 
 

   ij i ij
i

x  =  + b + e ,      
i =  1, ,k

j =  1, ,n
µ

…
…

  8.3.5.2 

 
where ni is the number of values in the ith group, and ijx  represents the jth observation in the ith of k 

groups.  The overall average of the population is µ, bi is the effect attributed to the ith group, and ei j is a 
random error term representing unexplained sources of variation.  The error terms, ei j, are assumed to be 

independently distributed normal random variables with mean zero and variance e
2σ  (the within-group 

variance).  The bi may be regarded as fixed (unknown) constants, or else they may be modeled as reali-
zations of a random variable, which is generally taken to be normally distributed with mean zero and vari-
ance b

2σ  (the between-group variance). 
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 The case of fixed bi is called a fixed-effects analysis of variance, and it is appropriate for situations 
where the group means µ + bi are not to be considered as samples from a population of means.  For ex-
ample, the groups might consist of strength measurements on composite material specimens having dif-
ferent numbers of plies.  If the groups differ substantially in mean strength, one might consider determin-
ing basis values for the various numbers of plies.  However, it clearly makes no sense to consider hypo-
thetical random populations of specimens with different number of plies, and to regard the k groups which 
appear in the data as a random sample from such a population.  
 
 If the group means µ + bi are considered to be a sample from a population of group means, then the 
model is a random-effects analysis of variance.  For example, the data might come from k batches.  In 
this case, one would typically be concerned as much with future batches as with those represented in the 
data.  If one intends to use future batches in fabrication, then it does not make much sense to calculate 
basis values for each of the k observed batches.  Rather, one might choose to determine basis values 
based on the populations of a random observation from an as yet unobtained batch.  In this way, protec-
tion against batch-to-batch variability can be incorporated into design values.  Reference 8.3.5.2(a) pro-
vides more information on analysis of variance procedures.  The effect of sample size on an analysis of 
this type should be considered in test program design (Section 2.2.5.2). 
 
 The following calculations address batch-to-batch variability.  In other words, the only grouping is due 
to batches and the compatibility test (Section 8.3.2) indicate that unstructured data methods should not be 
used.  The method is based on the one-way analysis of variance (ANOVA) random-effects model and the 
procedure is documented in Reference 8.3.5.2(b). 
 
 The assumptions are that 
 

1. The data from each batch are normally distributed, 
 
2. The within-batch variance is the same from batch to batch, and 
 
3. The batch means are normally distributed. 

 
There is no test available for the first assumption.  Simulation studies, however, suggest that moderate 
violation of this assumption does not have an adverse effect on the properties of the ANOVA method.  
The second assumption should be validated by performing the test described in Section 8.3.5.2.1.  This 
test is currently recommended as a diagnostic, since extensive simulation suggests that violation of this 
assumption will likely result in conservatism, although non-conservatism can arise in some situations.  
There is no useful test for the third assumption unless data from many (twenty or more) batches are 
available. 
 
 In this analysis, all batches are treated the same (for example, no distinction is made between 
batches from different fabricators).  If the batches are not from a single fabricator, then the approach 
shown in Section 8.3.7.9  should be used. 
 
 The organization of this subsection is as follows.  The test for equality of variance is documented in 
the first two subsections.  The next three subsections present computational procedures for statistics 
used in the ANOVA procedures.  Next, a method for three or more batches, which should cover most 
cases of practical importance, is presented.  The case of two batches is discussed separately. 
 
8.3.5.2.1 Levene's test for equality of variances 
 
 The ANOVA method is derived under the assumption that the variances within each batch are equal.  
This section describes a widely-used test suggested by Levene (References 8.3.5.2.1(a) - (c)) for deter-
mining whether the sample variances for k groups differ significantly.  This test is nonparametric; that is, it 
does not require strong assumptions about the form of the underlying populations.  
 
 To perform this test, form the transformed data 
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   ij ij iw  =  |x - ~x |   8.3.5.2.1 

 
where i

~x  is the median of the ni values in the ith group.  Then perform an F-test on these transformed 
data (Section 8.3.5.2.2).  If the test statistic is greater than or equal to the tabulated F-distribution quantile, 
then the variances are declared to be significantly different.  If the statistic is less than the tabulated value, 
then the hypothesis of equality of variance is not rejected. 
 
  If the test does reject the hypothesis that the variances are equal, it is recommended that an investi-
gation of the reason for the unequal variances be carried out.  This may reveal problems in the generation 
of the data or in the fabrication of the material.  Basis values calculated using the ANOVA method are 
likely to be conservative if the variances differ substantially. 
 
8.3.5.2.2 The F-test for equality of means 
 
 To test the assumption that the populations from which the k samples were drawn have the same 
mean, calculate the following F statistic: 
 

   F =  
n ( - ) / (k-1)

 (x - ) /(n-k)

i=1

k
i

2

i=1

k

j=1

n
ij i

2i

∑

∑ ∑

x x

x

i
  8.3.5.2.2 

 
where ix  is the average of the ni values in the ith group, and x  is the average of all n observations.  If 

Equation 8.3.5.2.2 is greater than the 1 - α quantile of the F-distribution having k - 1 numerator and n - k 
denominator degrees of freedom, then one concludes (with a five percent risk of making an error) that the 
k population means are not all equal.  For α = 0.05, the required F quantiles are tabulated in Table 8.5.1. 
 
 This test is based on the assumption that the data are normally distributed; however, it is well known 
to be relatively insensitive to departures from this assumption. 
 
8.3.5.2.3 One-way ANOVA computations based on individual measurements 
 
 When all of the observations in a sample are available, the first step is to compute the means.  
 

   x = x / n
i=1

k

j=1

n
ij

1

∑ ∑   8.3.5.2.3(a) 

and 

   xi = x / n ,      for i = 1, ,k
j=1

n
ij i

i

∑ …   8.3.5.2.3(b) 

where 

   n =  n
i=1

k
i∑   8.3.5.2.3(c) 

is the total sample size.  The required sums of squares can now be computed.  The between-batch of 
squares is computed as 
 

   SSB =  - n
i=1

k
∑ n x xi i

2 2   8.3.5.2.3(d) 

and the total sum of squares is  
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   SST =   x - n
i=1

k

j=1

n

ij
2i

∑ ∑ x2   8.3.5.2.3(e) 

The within-batch, or error, sum of squares is computed by subtraction 
 
   SSE =  SST-SSB   8.3.5.2.3(f) 
 
8.3.5.2.4 One-way ANOVA computations based on summary statistics 
 
 It is often the case that only summary statistics are available for each group. If these summary statis-
tics contain the sample averages xi , the standard deviations of the data from each group (si) and the 
group sizes (ni), the sums of squares can be computed as follows.  First, compute the overall mean, 
 

   x n xi i =  / n
i=1

k
∑   8.3.5.2.4(a) 

 
The between-batch sum of squares is computed using Equation 8.3.5.2.3(d).  In terms of the i

2s , the 

within-batch sum of squares is  
 

   SSE =  (n -1) s
i=1

k
i i

2∑   8.3.5.2.4(b) 

 
The total sum of squares, SST, is the sum of SSB and SSE. 
 
8.3.5.2.5 The ANOVA table for a one-way model 
 
 An ANOVA table displays the information about sources of variation that is contained in the sums of 
squares. A typical ANOVA table, which is used for both the fixed effects and random effects models, is 
shown below.  The first column identifies the source of variation.  The degrees of freedom and the com-
puted sums of squares are listed in the second and third columns.  The fourth column contains mean 
squares which are defined as the sum of squares divided by its degrees of freedom.  The final column 
contains an F statistic which is equal to the ratio of the mean squares.  This statistic is used to test the 
hypothesis that there is significant sample-to-sample variation (Section 8.3.5.2.2).  The statistic is com-
pared to the upper 0.95th quantile of an F distribution with k - 1 numerator degrees of freedom and n - k 
denominator degrees of freedom.  Table 8.5.1 contains these critical F values.  If the computed statistic is 
greater than the tabulated F value, this indicates that there is statistically significant sample-to-sample 
variation.  If the computed statistic is less than the tabulated value, then the variation between samples is 
not statistically significant at the chosen significance level. 
 
 
 

Source Degrees of 
Freedom 

Sum of 
Squares 

Mean Squares F Test 

Samples k-1 SSB MSB = SSB/(k-1) F =MSB/MSE 

Error n-k SSE MSE = SSE/(n-k)  

Total n-1 SST   
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8.3.5.2.6 Calculation of summary statistics for one-way ANOVA basis values 
 
 The first step in computing an ANOVA basis value is to compute summary statistics, including the 
batch averages, an estimate of the overall population mean, and estimates of the between-batch and 
within-batch variances.  Since the batches need not have equal numbers of specimens, an ‘effective 
batch size, is defined as 
 

   ′n  =  
n- n
k-1

*
  8.3.5.2.6(a) 

where 
 

   *

i=1

k
i
2

n  =  
n
n

∑   8.3.5.2.6(b) 

and 
 

   n =  n
i=1

k
i∑   8.3.5.2.6(c) 

is the total sample size. 
 
 Next, the batch means ( xi ), overall mean ( x ), and between- and within-batch sums of squares 
should be calculated as in Section 8.3.5.2.3 or 8.3.5.2.4) The between-batch mean square (MSB) and the 
within-batch mean square (MSE) are then obtained by dividing these sums of squares by the appropriated 
degrees of freedom, as in Section 8.3.5.2.5. 
 
 Using these two mean squares, an estimate of the population standard deviation is 
 

   S =  
MSB

n
+

n -1

n’
MSE

′
′F
HG
I
KJ   8.3.5.2.6(d) 

 
8.3.5.2.7 Calculations for three or more batches 
 
 Let the tolerance limit factor for a simple random sample from a normal distribution with sample size n 
be denoted k0, and let the tolerance limit factor for a simple random sample from a normal distribution of 
size k be denoted k1.  These tolerance limit factors can be obtained from Table 8.5.10 (for B-basis values) 
or 8.5.11 (for A-basis values). Denote the ratio of mean squares by  
 

   u =  
MSB

MSE
  8.3.5.2.7(a) 

 
If u is less than one, set u equal to one.  The tolerance limit factor is 
 

   T =  k - k / n + (k - k ) w

1-
1

n

0 1 1 0′

′

  8.3.5.2.7(b) 

where  

   w =  
u

u+ n -1′
  8.3.5.2.7(c) 

 The basis value is 
   B =  x - TS   8.3.5.2.7(d) 
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Whether this value is an A- or B-basis value depends only on whether k0 and k1 are taken from Table 
8.5.10 or Table 8.5.11. 
 
8.3.5.2.8 Calculations for two batches 
 
 If data on only two batches are available, then the ANOVA method is not useful.  One has two alterna-
tives:  
 

1. Obtain more batches, or 
 
2. Pool the two batches and use unstructured-data methods. 

 
In order to decide which of these actions to take, look at the data from the two batches.  If the difference 
between the two batch means is large when compared to the standard deviation of x  
 

   xs  =  
MSB

n
  8.3.5.2.8 

 
and if this difference in means is also large enough to be of practical importance, then pooling cannot be 
advised.  However, if the batches overlap substantially, or if the difference in batch means is too small to 
be of engineering importance, then one might be able to justify pooling and using the methods of Sec-
tion 8.3.4.  However, since the compatibility test (Section 8.3.2) has already indicated that the batches are 
not from the same population, it is probable that this visual inspection will not provide convincing evidence 
for combining the data and using the methods of Section 8.3.4.  In this case, whenever possible, data 
from new batches should be obtained before proceeding.  If this is not possible, then calculate the basis 
values for each batch separately, according to the methods in Section 8.3.4, and choose the lower of 
these numbers as an interim basis value, ideally to be replaced when more data can be obtained. 
 
8.3.5.3 Simple linear regression 
 
 Simple linear regression is the special case of the general regression model (Equation 8.3.5.1(c), in 
which the covariates are 1 and z, and there is no random effect, such as batch-to-batch variability: 
 
   s p(s) s 1 2 p(s),2 sx  =  + e  =  + z + eµ θ θ   8.3.5.3(a) 

 
Putting this in more familiar notation and assuming that β0 and β1 are fixed unknown parameters, 
 
   Y =  + X+0 1β β ε   8.3.5.3(b) 

 
Assume that the experimenter chooses n values of x, x1, x2, ..., xn which need not be distinct, and observes 
the corresponding y values; thus the data consist of the n pairs 
 
   (x ,y ),(x ,y ), ,(x ,y )1 1 2 2 n n…  

 
 In order for the statistical analysis to be valid we must have n ≥ 3 and at least two distinct x values.  
Let 

0
�β  and 

1
�β  denote estimates of β0 and β1.  Then for any x, which need not be one of the experimental 

values x1, x2, ..., xn), a predicted or fitted value denoted �y  is obtained, that is  
 
   �y =  �  +  � x

0 1β β   8.3.5.3(c) 

 
It is customary to estimate β0 and β1 using the principle of least squares, which may be defined as follows.  

Let 0
*β  and 1

*β  be any estimates of β0 and β1.  Let  
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   Q( , )  =  (y - �y )0
*

1
*

i=1

n

i i
* 2β β ∑   8.3.5.3(d) 

where i
*

0
*

1
*

i�y  =  + xβ β . 

 

 The least squares estimates 
0
�β  and 

1
�β  are the values of 0

*β  and 1
*β  which minimize Q( , )0

*
1
*β β .  

They are given by 
 
   

0 1
�  =  - �β βy x   8.3.5.3(e) 

and 

   
1

i=1

n
i i

i=1

n
i

2

�  =  
(x - )(y - )

(x - )
β

∑

∑

x y

x
  8.3.5.3(f) 

where 

   y  =  y / n
i=1

n

i∑   8.3.5.3(g) 

and 

   x =  x / n
i=1

n
i∑   8.3.5.3(h) 

 
It is sometimes more convenient to calculate 

1
�β  by the following equivalent formula 

 

   
1

i=1

n
i i

i=1

n

i
2 2

�  =  
x y - n

x - n
β

∑

∑

xy

x

  8.3.5.3(i) 

 
 Statistical significance (at level α) of this regression means that there is evidence the β1 ≠ 0 (with a 
probability of ≤ α of reaching this conclusion when β1 = 0).  If β 1≠ 0, then X is of value as a linear predictor 
of Y.  In order for the usual test of significance to be valid, the following additional assumption is required; 
the Y’s are independently normally distributed random variables with common variance σ2 and means 
β0 + β1xi, for i = 1, 2, ..., n. 
 
 To test whether the regression is significant at level α, let 
 

   Y
2 i=1

n

1 0 1 i
2

s  =  
(y - � - � x )

n- 2

∑ β β
  8.3.5.3(j) 

and define 

   SSE =  (y - � - � x )
i=1

n

i 0 1 i
2∑ β β   8.3.5.3(k) 

   SST =  (y - )
i=1

n

i
2∑ y   8.3.5.3(l) 

and 
   SSR =  SST-SSE   8.3.5.3(m) 
Then define 
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   F =  
SSR

sY
2

  8.3.5.3(n) 

 
which has the F-distribution with 1 and n - 2 degrees of freedom.  The regression is considered significant 
if the value in Equation 8.3.5.3(n) exceeds the 1 - α quantile of the F-distribution with γ1 = 1 and γ2 = n - 2 
degrees of freedom.  Table 8.5.1 provides these values for α = 0.05. 
 
 For given x0, the B-basis value satisfies the condition that B(x )o  is a B-basis value for the normal 

population with mean f(x ) = + x0 0 1 0β β  and variance σ2.   A B-basis, value, in the case of simple linear 

regression, can be determined as follows.  For x = x0, compute B as 
 
   B =  ( � + � x ) - k s0 1 0 B yβ β   8.3.5.3(o) 

 
where sy is the square root of y

2s  in Equation 8.3.5.3(j), 

 

   B ,0.95k  =  t ( )
1+

nγ δ ∆
  8.3.5.3(p) 

 
and tγ,0.95(δ) is the 95th percentile of the non-central t-distribution with γ = n - 2 degrees of freedom and 
non-centrality parameter 
 

   δ  =  
1.282

1+
n

∆
  8.3.5.3(q) 

with 

   ∆  =  
n(x - )

(x - )

0
2

i=1

n
i

2

x

x∑
  8.3.5.3(r) 

 
 The following approximation to kB can be used when n is greater than or equal to 10 and 0 ≤ ∆ ≤10: 
 

   Bk = 1.282 + exp 0.595- 0.508ln(n) +
4.62

n
+ 0.488 -

0.988

n
ln(1.82 + )

F
HG

I
KJ

L
NM

O
QP∆   8.3.5.3(s) 

 
To adapt Equation 8.3.5.3(o) to A-basis values, replace 1.282 by 2.326 in Equation 8.3.5.3(q).  For 
A-basis values, ka can be approximated by 
 

  Ak  = 2.326 + exp 0.659 - 0.514ln(n) +
6.58

n
+ 0.481-

1.42

n
ln(3.71+ )

F
HG

I
KJ

L
NM

O
QP∆   8.3.5.3(t) 

 
The example problem in Section 8.3.7.7 demonstrates the simple linear regression procedures.  This 
case is expanded to linear regression with batch effects in Section 8.3.7.8. 
 
8.3.5.4 Basis values using pooling of structured data 
 
 For small data sets (less than eighteen (18) per environmental condition) the utility of the approach 
described in Figure 8.3.1 can be increased by pooling data from tests at different environmental condi-
tions.  When using pooling procedures to expand the utility of small data sets to obtain higher basis val-
ues, the associated assumptions and limits must be validated in the data analysis (see References 
8.3.5.4(a) and (b)).  If the statistical checks and engineering data analysis described in these references 
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indicate that pooling is invalid, the other standard statistical methods described in this handbook should 
be applied.  Unfortunately, some penalty is inherent when applying the standard methods with small data 
sets. 
 
 The general methodology is described in Reference 8.3.5.4(a) if the Weibull distribution fits the data 
and in (Reference 8.3.5.4(b)) if the use of normal distribution is desired.  Either statistical distribution can 
be used, depending on the best fit to the data, although, in general, the use of the Weibull distribution will 
result in more conservative material basis values.  In this data reduction method, data from multiple envi-
ronments, batches, and panels are pooled to obtain population variability factors for each test type and 
failure mode, i.e., tension, compression, shear.  Essentially the method uses the larger pooled data set to 
estimate variability but uses only the test sample at each environment to estimate the mean property 
value at that environment.  As the large sample size is used to calculate the probabilities and confidence, 
the resulting basis values are generally less conservative than those obtained without resorting to pooling. 
 
 However, the pooling data reduction methodology requires the validation of several underlying as-
sumptions in order to generate a valid material basis value (see References 8.3.5.4(a) and (b)).  In order 
to pool the data sets, the variability across environments must be statistically equivalent and the failure 
modes for each environment should not significantly change.   
 
8.3.6 Exploratory data analysis 
 
 Exploratory Data Analysis (EDA) techniques are simple, visual, qualitative procedures which often 
point out important features of data early in the analysis.  Where possible, conclusions based on EDA 
should be used to supplement quantitative statistical methods.  Two EDA techniques are described below; 
the quantile box plot and the informative quantile functions.  A more complete treatment of this subject 
can be found in Reference 8.3.6. 
 
8.3.6.1 The quantile box plot 
 
 The quantile box plot provides a graphical summary of the sample values.  This procedure depicts the 
symmetry, tail sizes, and median value of the sample as well as indicating the possible existence of out-
liers and inhomogeneous data. 
 
 Let F(x) be the underlying distribution function.  The uth quantile of F(x), qu, is the solution to the equa-
tion F(qu)  = u.  The quantile function, Q(u), is defined by 
 
   Q(u) = F (u) 0 < u < 1-1   8.3.6.1(a) 
 
(see Figure 8.3.6.1(a)).  Letting (1) (2) (n)x   x   ... x≤ ≤  denote the ordered measurements for a sample of 

size n, Q(u) is estimated by the piecewise linear function 
 

   �Q(u) = (nu - j+
1

2
) x  + (j+

1

2
- nu) x(j+1) (j)   8.3.6.1(b) 

for 

   
2 j-1

2 n
u <

2 j+1

2 n
≤   8.3.6.1(c) 

 
 Figure 8.3.6.1(b) is an example of a quantile box plot.  The boxes are used to examine the symmetry 
and tail sizes of the underlying distribution.  Flat spots in Q(u) indicate modal values.  Sharp rises in Q(u) 
for u in the vicinity of 0 or 1 indicate the possible presence of outliers in the data.  Sharp rises in Q(u) 
within the boxes indicate the possible existence of two (or more) populations or gaps in the data.  A thor-
ough treatment of the use of the Quantile Box plot can be found in Reference 8.3.6.1. 
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FIGURE 8.3.6.1(a)  The quantile function. 
 
 

 
 

FIGURE 8.3.6.1(b)  Example of a quantile box plot. 
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8.3.6.2 The informative quantile function 
 
 Techniques for obtaining B-basis values for unimodal data can be divided into two main categories: 
techniques for specific parametric families, and nonparametric techniques.  The Informative Quantile (IQ) 
function can be used as an aid in identifying a parametric model which provides a satisfactory fit to the 
data.  Parametric techniques have been most thoroughly discussed for the normal, lognormal, and two-
parameter Weibull parametric families; thus only these techniques will be considered here.  Henceforth in 
this section, any reference to the Weibull parametric family should be interpreted as a reference to the 
two-parameter Weibull parametric family.   
 
 The IQ function was developed to identify which univariate location-scale parametric distribution best 
describes an ordered group of data.  A univariate location-scale parametric distribution is one whose dis-
tribution function F(x) can be expressed as 
 
   F(x) = F [(x- a) / b]o   8.3.6.2(a) 
 
where a and b are the location and scale parameters respectively, and Fo(x) is the "standard" distribution 
with a = 0 and b = 1.  The IQ function identifies the standard distributional form and is thus independent of 
the values of the location and scale parameters.             
 
 The Weibull and lognormal parametric families are not location-scale parametric families.  However, 
these distributions are simply related to two location-scale families: the normal and the extreme value 
families. 
 
 The estimated IQ function is defined as 
 

   �IQ(u) =
�Q(u) - �Q(0.5)

2[ �Q(0.75) - �Q(0.25)]
  8.3.6.2(b) 

 
where Q(u) is the estimated quantile function defined in Equation 8.3.6.1(b).  The corresponding exact IQ 

function is denoted IQ(u) and defined by Equation 8.3.6.2(a) with �Q(u)  replaced by Q(u).  In order to de-
termine whether the data can be adequately modeled by either the normal or extreme value distribution, a 
plot of the estimated truncated IQ function, defined by  
 

   �TIQ(u)  

-1     if  �IQ(u) -1

 �IQ(u)    if  -1< �IQ(u) 1

1     if  �IQ(u) > 1

≤

≤

R
S
||

T
||

  8.3.6.2(c) 

 
is compared to the graph of the exact TIQ plots for these distributions (see Figures 8.3.6.2(a) and (b)).  
Though the TIQ plots for the data will be considerably less smooth than the exact TIQ plots, they may be 
compared for general shape and tail behavior. 
 
 In order to determine the adequacy of either the lognormal or the Weibull distribution, use the natural 
logarithms of the data to define the quantile function.  Thus, Equation 8.3.6.1(b) becomes 
 

   �Q(u) = (nu- j+
1

2
) ln(x ) + (j+

1

2
- nu) ln(x )(j+1) (j)   8.3.6.2(d) 

for 

   
2 j-1

2 n
u <

2 j+1

2 n
≤   8.3.6.2(d) 
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FIGURE 8.3.6.2(a)  TIQ plot of the normal distribution parametric family. 
 
 

 
 

FIGURE 8.3.6.2(b) TIQ plot of the extreme value distribution parametric family. 
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The IQ and TIQ functions in Equations 8.3.6.2(b) and 8.3.6.2(c) are defined using this quantile function. 
 
 Thus, to determine whether the data can be adequately modeled by the normal distribution, compare 
the �TIQ  plot for the original data to the exact TIQ plot for the normal distribution in Figure 8.3.6.2(a).  To 

determine whether the data can be adequately modeled by the lognormal distribution, compare the �TIQ  
plot for the log data to the exact TIQ plot for the normal distribution in Figure 8.3.6.2(a).  The adequacy of 
the two-parameter Weibull distribution is determined by comparing the �TIQ  plot for the log data to the 
exact TIQ plot for the extreme value distribution in Figure 8.3.6.2(b).  For further information concerning 
the quantile function and the informative quantile function, the reader is referred to References 8.3.6.2(a) 
and 8.3.6.2(b). 
 
8.3.7 Examples of computational procedures 
 
 This section illustrates the computational procedures using mechanical property data sets.  In pro-
gressing through the example problems, the flowchart in Figure 8.3.1 are followed, and appropriate refer-
ences to specific sections are made.  Each example notes which software, STAT17 or RECIPE or both, 
provides the calculation for each step (see Section 8.1.2). All example data sets are listed in Table 8.3.7.  
Data files provided with the software are identified for each example.1 
 
8.3.7.1 Problem 1 - Outlier detection, multiple-sample tests, and the Weibull distribution 
 
 The data set for this problem consists of compressive strength measurements from ten batches of 
material.  This problem illustrates the outlier detection procedure, the k-sample Anderson-Darling test, the 
two-parameter Weibull goodness-of-fit test and the calculation of B-basis values by the Weibull method.  
Calculations for all steps may be performed by STAT17 and may be demonstrated using example data 
set, example.d01. 
 
Problem 1 - Step 1.  The first step is to screen the data for outliers using the MNR procedure as described 
in Section 8.3.3.1.  The screening procedure is performed separately on each batch.  The relevant calcu-
lations for the first batch, with a sample mean of 568.8 and a sample standard deviation of 757.9, are 
shown in the table below. 
 
 

ix  ii
i

x x 568.8x= =r
s 757.9

−
 

125.9 0.584 

136.6 0.570 

1444 1.155 

 
 
The MNR  statistic is the largest absolute residual, or 1.155.  Since this is greater than the n = 3 critical 
value of 1.154 from Table 8.5.7, the third observation is identified as an outlier.  An examination of the 
laboratory record shows a measured value of 144.4.  The data point was corrected and the MNR test re-
peated.  The batch mean was recalculated as 135.7 and the batch standard deviation as 9.31.  No out-
liers were detected. Similar calculations for the remaining batches identify no other outliers in this set of 
data.  Visual inspection of the data also does not identify any outliers.  
 

                                                      
1Note that the example data sets identified for STAT17 correspond to those distributed with Version 5.0. 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-41 

 
TABLE 8.3.7  Example data sets for Section 8.3.7, continued on next page. 
Problem 1 Problem 3 Problem 4 Problem 4 

Batch Data Batch Data Batch Data Batch Data 
1 136.64 1 85.39 1 7300.000 3 6400.000 
1 125.91 1 97.12 1 6100.000 3 8700.000 
1 1444.5 1 92.66 1 7300.000 3 7400.000 
2 107.79 1 96.43 1 7900.000 3 8600.000 
2 114.58 1 90.72 1 6800.000 3 7900.000 
2 110.70 1 95.84 1 6900.000 3 8500.000 
3 125.50 2 97.30 1 1300.000 3 8400.000 
3 118.79 2 109.47 1 7000.000 3 7200.000 
3 131.24 2 101.35 1 8200.000 3 6500.000 
4 125.91 2 98.01 1 7800.000 3 8100.000 
4 127.86 2 86.18 1 7300.000 3 7900.000 
4 125.91 2 100.91 1 6900.000 3 6200.000 
5 134.41 3 96.05 1 8400.000 3 5900.000 
5 124.60 3 92.20 1 8800.000 3 6400.000 
5 127.54 3 90.86 2 7300.000 3 6800.000 
6 139.35 3 101.27 2 8000.000 3 6700.000 
6 119.03 3 101.23 2 8000.000 3 6400.000 
6 125.81 3 93.15 2 8500.000 3 8100.000 
7 120.00 4 114.32 2 6400.000 3 6700.000 
7 121.94 4 100.14 2 7000.000 3 6900.000 
7 132.58 4 91.24 2 6300.000 3 7500.000 
8 119.28 4 86.11 2 6700.000 3 7600.000 
8 118.30 4 93.42 2 8500.000 3 8200.000 
8 126.12 4 92.65 2 6800.000 3 7000.000 
9 109.50 5 97.58 2 9500.000   
9 121.23 5 97.75 2 7500.000  
9 130.03 5 97.95 2 7600.000   
10 118.71 5 112.49 2 9500.000   
10 126.56 5 95.75 2 6900.000   
10 124.60 5 110.53 2 6900.000   

  2 6400.000   
Problem 2 Problem 4 2 6100.000 Problem 5 

Batch Data Batch Data 2 7300.000 Batch Data 
1 106.5 1 5700.000 2 7700.000 1 118.58 
1  94.0 1 6300.000 2 7300.000 1 121.77 
1 116.1 1 6700.000 2 6200.000 1 137.54 
1  98.8 1 6300.000 2 6900.000 1 140.39 
1 114.2 1 6300.000 2 6200.000 1 134.03 
2 113.8 1 8600.000 2 6400.000 2 133.44 
2  98.1 1 8300.000 2 6300.000 2 114.56 
2 102.0 1 8000.000 2 5500.000 2 123.28 
2 106.0 1 7300.000 2 6400.000 2 130.33 
2  98.1 1 7600.000 2 6300.000 2 138.00 
3 105.2 1 6100.000 2 5500.000 3 122.69 
3 103.3 1 9100.000 3 8500.000 3 137.10 
3 103.3 1 7800.000 3 7500.000 3 137.49 
3 101.3 1 7100.000 3 6900.000 3 122.87 
3 100.4 1 7400.000 3 8200.000 3 135.82 
4 94.8 1 7000.000 3 7500.000   
4 105.4 1 6700.000 3 8200.000   
4 101.5 1 6300.000 3 7400.000   
4 95.8 1 6800.000 3 8100.000   
4 102.5 1 7300.000 3 7400.000   
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TABLE 8.3.7  Example data sets for Section 8.3.7, concluded. 

Problem 6 Problem 8 Problem 8 
Batch Data Temperature Batch  Data Temperature Batch  Data 

1 328.1174 75 1 328.1174 -67 4 315.2963 
1 334.7674 75 1 334.7674 -67 4 322.8280 
1 347.7833 75 1 347.7833 -67 5 340.0990 
1 346.2661 75 1 346.2661 -67 5 348.9354 
1 338.7314 75 1 338.7314 -67 5 331.2500 
2 297.0387 75 2 297.0387 -67 5 330.0000 
2 293.4595 75 2 293.4595 -67 5 340.9836 
2 308.0419 75 2 308.0419 -67 5 329.4393 
2 326.4864 75 2 326.4864 -67 7 330.9309 
2 318.1297 75 2 318.1297 -67 7 328.4553 
2 309.0487 75 2 309.0487 -67 7 344.1026 
3 337.0930 75 3 337.0930 -67 7 343.3584 
3 317.7319 75 3 317.7319 -67 7 344.4717 
3 321.4292 75 3 321.4292 -67 7 351.2776 
3 317.2652 75 3 317.2652 -67 8 331.0259 
3 291.8881 75 3 291.8881 -67 8 322.4052 
4 297.6943 75 4 297.6943 -67 8 327.6699 
4 327.3973 75 4 327.3973 -67 8 296.8215 
4 303.8629 75 4 303.8629 -67 8 338.1995 
4 313.0984 75 4 313.0984    
4 323.2769 75 4 323.2769    
5 312.9743 75 5 312.9743    
5 324.5192 75 5 324.5192    
5 334.5965 75 5 334.5965    
5 314.9458 75 5 314.9458    
5 322.7194 75 5 322.7194    
6 291.1215 75 6 291.1215    
6 309.7852 75 6 309.7852    
6 304.8499 75 6 304.8499    
6 288.0184 75 6 288.0184    
6 294.1995 75 6 294.1995    

Problem 7 -67 1 340.8146 Problem 9 
Temperature Data -67 1 343.5855 Source Batch Data 

75 328.1174 -67 1 334.1746 1 1 75.8 
75 334.7674 -67 1 348.6610 1 1 78.4 
75 347.7833 -67 1 356.3232 1 1 82.0 
75 346.2661 -67 1 344.1524 1 2 68.8 
75 338.7314 -67 2 308.6256 1 2 70.9 
75 340.8146 -67 2 315.1819 1 2 73.5 
-67 343.5855 -67 2 317.6867 1 3 74.5 
-67 334.1746 -67 2 313.9832 1 3 74.8 
-67 348.6610 -67 2 309.3132 1 3 78.8 
-67 356.3232 -67 2 275.1758 2 4 81.3 
-67 344.1524 -67 3 321.4128 2 4 87.7 

  -67 3 316.4652 2 4 89.0 
  -67 3 331.3724 2 5 88.2 
  -67 3 304.8643 2 5 91.2 
  -67 3 309.6249 2 5 94.2 
  -67 3 347.8449    
  -67 4 331.5487    
  -67 4 316.5891    
  -67 4 303.7171    
  -67 4 320.3625    

 
 
 
Problem 1 - Step 2.  The k-sample Anderson-Darling test described in Section 8.3.2.2 will be employed 
next to determine whether or not the data from the ten batches should be combined.  The first step is to 
order the pooled sample.  Table 8.3.7.1 lists the 27 sorted, distinct values in the column labeled jzb g .  The 
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remaining columns show the jh , jH , and 1 jF  values used in calculating the terms in the statistic arising 

from the first batch i = 1b g .  The column labeled 1 jf  shows the number of times that jzb g  is represented in 

the first batch and is used in calculating 1 jF .  From these numbers, it follows that 
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When these calculations are repeated for the remaining nine batches, the k-sample Anderson-Darling 
statistic is computed as 
 
 

 
TABLE 8.3.7.1  Illustration of k-sample Anderson-Darling statistic calculations for the first batch. 

 

j  (j)z  jh  jH  1 jf  1 jF  

1 107.8 1 0.5 0 0.0 
2 109.5 1 1.5 0 0.0 
3 110.7 1 2.5 0 0.0 
4 114.6 1 3.5 0 0.0 
5 118.3 1 4.5 0 0.0 
6 118.7 1 5.5 0 0.0 
7 118.8 1 6.5 0 0.0 
8 119.0 1 7.5 0 0.0 
9 119.3 1 8.5 0 0.0 

10 120.0 1 9.5 0 0.0 
11 121.2 1 10.5 0 0.0 
12 121.9 1 11.5 0 0.0 
13 124.6 2 13.0 0 0.0 
14 125.5 1 14.5 0 0.0 
15 125.8 1 15.5 0 0.0 
16 125.9 3 17.5 1 0.5 
17 126.1 1 19.5 0 1.0 
18 126.6 1 20.5 0 1.0 
19 127.5 1 21.5 0 1.0 
20 127.9 1 22.5 0 1.0 
21 130.0 1 23.5 0 1.0 
22 131.2 1 24.5 0 1.0 
23 132.6 1 25.5 0 1.0 
24 134.4 1 26.5 0 1.0 
25 136.6 1 27.5 1 1.5 
26 139.4 1 28.5 0 2.0 
27 144.4 1 29.5 1 2.5 
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The computed value of the statistic is compared to the critical value from Equation 8.3.2.2(j), which is 
1.37.  Since the computed value of 1.24 is less than the critical value of 1.37, the hypothesis that the 
populations from which these groups were drawn are identical is not rejected.  Conclude that the data 
from these batches may be combined into a single sample. 
 
Problem 1 - Step 3.  The maximum normed residual (MNR) test is performed on the pooled data.  No po-
tential outliers are detected in the pooled data.  (see Problem 1 - Step 1 for details of the outlier detection 
procedure.) 
 
Problem 1 - Step 4.  In order to perform the two-parameter Weibull goodness-of-fit test described in Sec-

tion 8.3.4.2.2, it is necessary to compute estimates of the scale and shape parameters, �α  and �β .  A pro-
cedure for doing this is described in Section 8.3.4.2.1.  The geometric mean of the data is computed as 
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For a given value of �β , �α  is calculated as 
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In order to calculate �β , define the function G( � )β  by 
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where �α  is calculated as above.  The estimate, �β , is the solution to the equation G � = 0βe j .  An iterative 

technique for solving this equation is given in Section 8.3.4.2.1, and begins by setting 
 

   �  =  
1.28

S
 =  

1.28

0.0673
 =  19.02

y
β  

 

The solution is � = 15.35β , which in turn gives � = 128.39α . 
 
The first five ordered observations are listed below with the transformations necessary to compute the 
goodness-of-fit test statistic. 
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ix  
(i)

�
(i)

15.35
(i)

z  =  
x
�  =  

x

128.39

β

α
F
HG
I
KJ
F
HG

I
KJ  

107.8 0.0684 
109.5 0.0869 
110.7 0.1027 
114.6 0.1748 
118.3 0.2847 

 
The Anderson-Darling goodness-of-fit statistic and observed significance level are calculated according to 
Section 8.3.4.2.2 as follows. 
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   ( ) ( )* = 1+ 0.2 / n AD = 1+ 0.2 / 30 0.699 = 0.7245AD  

   

[ ]{ }
[ ]{ }

OSL 1/ 1 exp 0.10 1.24ln(AD*) 4.48AD*

1/ 1 exp 0.10 1.24ln(0.7245) 4.48(0.7245)

0.0576

= + − + +

= + − + +

=

 

 
Since the Weibull goodness-of-fit test yields an OSL  value greater than 0.05, there is insufficient evi-
dence to contradict the assumption that the data follow a two-parameter Weibull distribution.  Hence, the 
two parameter Weibull method in Section 8.3.4.2.3 should be used to compute the B-basis value.  
 

Problem 1 - Step 5.  The parameter estimates �α  and �β  calculated in the previous step are used to com-
pute the B-basis value for the sample as described in Section 8.3.4.2.3.  The quantities necessary to 
compute the B-basis value are: 
 
   BV  =  5.057  (from Table 8.5.8) 

   �  =  128.39α  

   �  =  15.35β  

   �Q =  � (0.10536)  =  (128.39)(0.10536)  =  110.881/ � 1/15.35α β  
 
The B-basis value is calculated as 
 

   B =  �Qexp V
� n

 =  110.88exp
5.057

15.35 30
 =  104.41B−F

HG
I
KJ

−F
HG

I
KJβ

 

 
For presentation in MIL-HDBK-17, this B-basis value would be rounded to 104. 
 
8.3.7.2 Problem 2 - Normal distribution 
 
 The data set for this problem consists of compressive test measurements from four batches of mate-
rial.  This problem illustrates the normal goodness-of-fit test and the calculation of B-basis values by the 
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normal method.  Calculations for all steps may be performed by STAT17 and may be demonstrated using 
example data set, example.d02.  Calculations for Step 6 may be performed by RECIPE and may be 
demonstrated using example data set, pr2.dat.  This also provides an example of the use of RECIPE 
for a simple random sample. 
 
Problem 2 - Step 1.  There are no detected outliers in this set of data.  (See Problem 1 for details of the 
outlier detection calculations.) 
 
Problem 2 - Step 2.  The k-sample Anderson-Darling test statistic is ADK 1.01=  (see Problem 1 for a de-
tailed computation of the k-sample statistic).  Since this is less than the critical value of 1.73, conclude 
that the data from the batches may be combined and treated as a single sample.  The next step is to in-
vestigate the form of the distribution. 
 
Problem 2 - Step 3.  The maximum normed residual (MNR) test is performed on the pooled data.  No po-
tential outliers are detected in the pooled data.  (see Problem 1 - Step 1 for details of the outlier detection 
procedure.) 
 
Problem 2 - Step 4.  The Weibull goodness-of-fit test yields an observed significance level of 0.008.  (See 
Problem 3 for details of the computation for the Weibull goodness-of-fit test.)  Since this is less than 0.05, 
the normal goodness-of-fit test described in Section 8.3.4.3.2 is performed. 
 
Problem 2 - Step 5.  The mean and standard deviation of the sample are 103.1 and 6.175, respectively.  
The first five ordered observations are listed below with the z-values and the values of the standard nor-
mal distribution necessary for calculation of the normal Anderson-Darling statistic. 
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 Since the normal goodness-of-fit test yields an OSL  value (0.163) greater than 0.05, there is insuffi-
cient evidence to contradict the assumption that the data are normally distributed.  Hence, the normal 
method in Section 8.3.4.3.3 is used to compute a B-basis value. 
 
Problem 2 - Step 6.  From Table 8.5.10, the one-sided tolerance limit factor, Bk , is 1.93.   The B-basis 
value for a normally distributed sample is computed as 
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   BB x k s 103.1 (1.927)(6.175) 91.2= − = − =  
 
For presentation in MIL-HDBK-17, this B-basis value would be rounded to 91, since this corresponds to 
the number of significant figures obvious in the data. 
 
 RECIPE can also be used to calculate this basis value  Since it has been shown that the batches may 
be pooled, this problem represents an unstructured (that is, simple random) sample of n observations 
from a single batch at a fixed set of conditions.  For this case, there A  = 1 is condition, and m = 1  batch, 
so p(s) = q(s) = 1  for each s .  This model can be written 
 
   s 1 sy  =  + eθ  

Note that q(s)b  does not appear in this equation since the between-batch variability has been shown to be 

negligible (Step 3). 
 
# 
#   RECIPE Problem #2: Random sample of 4 batches with no 
#                      batch-to-batch variability 
# 
#   -- For this example, we have 20 observations: all at the same 
#      fixed level and from one population.  RECIPE is a very  
#      general program which is here used for a very simple 
#      example. This example might seem confusing because it 
#      is so special.  If so, consider the more complicated 
#      examples, particularly Example #4. Ironically, the  
#      simpler examples may then be easier to understand. 
#     
#   --  ntot, nlvl, nbch, npar, npts, prob, conf 
# 
    20 1 1 1 1 .9d0 .95d0 
# 
#  --  Fixed levels. Here nlvl=1 and npar=1; that is there is only 
#      one fixed level and one regression parameter (a constant mean), 
#      so this part of the input consists of one row and one column, 
#      containing just the number '1'. 
# 
   1 
# 
#  --  Fixed level, batch number, response value.  Note that there 
#      is only one level (nlvl=1) and one batch (nbch=1). 
# 
   1    1  99. 
   1    1  100. 
   1    1  106. 
# (this just shows that comments can be put anywhere: even among 
#  the data values. This is useful, for example, if a data value 
#  is to be removed from the analysis. Simply put a '#' at the 
#  beginning of the appropriate line, and decrease 'ntot' by 1 
#  in the first noncomment line) 
   1    1  107. 
   1    1  110. 
   1    1  98. 
   1    1  103. 
   1    1  111. 
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   1    1  119. 
   1    1  121. 
   1    1  100. 
   1    1  100. 
   1    1  104. 
   1    1  108. 
   1    1  116. 
   1    1  103. 
   1    1  104. 
   1    1  106. 
   1    1  106. 
   1    1  108. 
# 
#  --  Points at which to evaluate tolerance limit. Here the only fixed  
#      effect is a constant mean, so this part of the input is trivial. 
  1 
 
Lines which begin with a '#' are comment lines which are ignored by the program.  Comment lines can be 
inserted anywhere and are intended to make RECIPE data files self-documenting.  The input to this pro-
gram is free-format, so it doesn’t matter which column values are in, so long as they are in the correct 
order and separated by spaces.  The sole exception to this is that comment lines must have a '#' in col-
umn 1. 
 
 The first non-comment line of any RECIPE files has seven constants: 
 
 

RECIPE 
mnemonic 

Symbol Definition 

ntot n  total number of observations 
nlevel l  number of fixed levels 
nbch m  number of batches 
npar r  number of fixed parameters 
npts - number of basis values to be calculated 
prob - content 
conf - confidence 

 
 
 It is necessary to specify the number of points at which the basis values will be determined.  For ex-
ample, if a linear regression model relates strength to temperature, then a basis value can be calculated 
at any number of temperatures, that is, the temperatures at which basis values are determined need not 
correspond to values for which data are available.  The fifth number npts specifies the number of basis 
values which are to be calculated.  The sixth and seventh values, prob and conf, give the content and 
confidence which are to be used.  For purpose of basis calculations, one need only remember that prob 
should be 0.99d0 for A-basis values and  0.90d0 for B-basis values, and that conf should be 0.95d0. 
 
 In this example, note that there are n = 20  observations, at l = 1  fixed level, from m = 1  batch, with 
r = 1  fixed parameter, and that a single B-basis value is to be calculated.  (Since this corresponds to a 
simple random sample, it only makes sense to calculate one B-basis value.) 
 
 The next l = 1  noncomment lines specify the fixed levels; for this example there is only one fixed 
level, and it is just the mean, so this part of the file has only one line with a ' 1 ' in it.  The following n = 20  
noncomment lines each gives, from left to right, a fixed level p(s)  (here p(s) = 1 ), batch q(s)  (here 

q(s) = 1 ), and observation (strength sy  for s = 1,...,20 ).  The next npts = 1 noncomment lines give the z ‘s 
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corresponding to each point at which a basis value is to be calculated.  Again, because this example is a 
simple random sample, this part of the file consists of only a single line with a ' 1 '. 
 
RECIPE is executed as follows: 
recipe 
  Filename (without .dat extension) ? 
ex2 
 
  RECIPE : One-Sided Random-Effect Regression Tolerance Limits 
  (Version 1.0, April 1995)  
 
  *** Simulated pivot critical value file ex2.crt not found. 
     Satterthwaite approximation will be used. 
 
        Probability    Confidence   Regression  Tolerance Limit 
           0.90           0.95     104.400000     88.312898 
 
 The first two columns of the output indicate a B-basis value has been calculated.  The third column 
gives the value of a point on the least squares regression line (here just the sample mean) and the fourth 
column gives the corresponding basis value (here the usual normal B-basis value for a single sample of 
five specimens).  These results provide a mean of 104 and a B-basis value of 88  (Note the number of 
significant figures).  This approach can also be used for data from one batch.  A warning is provided as a 
reminder that one cannot estimate between-batch variability with data from a single batch, and conse-
quently a basis value has been calculated under the assumption that there is no between-batch variability.   
 
 There are two methods that RECIPE can use to calculate allowable.  One involves the use of a Sat-
terthwaite approximation (Reference 8.3.7.2(a)) and the other requires using an auxiliary program 
SIMPVT to obtain a quantile of a pivotal random variable for which the probability distribution cannot be 
determined in analytical form.  Usually, these two methods will give very nearly the same answers, at 
least for material basis value calculations.  The simpler Satterthwaite approximation is therefore recom-
mended for general use.  Auxiliary programs SIMPVT and SIMCOV, which use simulation to approximate 
the appropriate pivoted quantile and to assess the quality of the Satterthwaite approximate, respectively, 
are available with RECIPE (Section 8.1.2).  For more information see References 8.3.7.2(a) and (b). 
 
8.3.7.3 Problem 3 - Lognormal distribution 
 
 The data set for this problem consists of transverse tension test measurements from five batches of 
material.  This problem illustrates the lognormal goodness-of-fit test and the calculation of B-basis values 
by the lognormal method.  Calculations for all steps may be performed by STAT17 and may be demon-
strated using example data set, example.d03. 
 
Problem 3 - Step 1.  There are no detected outliers in this set of data.  (See Problem 1 for details of the 
outlier detection calculations.) 
 
Problem 3 - Step 2.  The k-sample Anderson-Darling test statistic is ADK = 1.27 . (See Problem 1 for de-
tails of the computation of the k-sample statistic.)  Since this is less than the critical value of 1.64, con-
clude that the data from the batches may be combined into a single sample. 
 
Problem 3 - Step 3.  The maximum normed residual (MNR) test is performed on the pooled data.  No po-
tential outliers are detected in the pooled data.  (see Problem 1 - Step 1 for details of the outlier detection 
procedure.) 
 
Problem 3 - Step 4.  The observed significance levels ( OSL ) for the two-parameter Weibull and the nor-
mal goodness-of-fit tests are given below: 
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Distribution OSL  
Two-parameter Weibull 0.001 
Normal 0.042 

 
(See Problems 1 and 2 for details of the computations for these tests.)  Since the OSL 's are both less 
than 0.05, neither of the distributions adequately describe the data.  Thus, the lognormal goodness-of-fit 
test is performed. 
 
Problem 3 - Step 5.  In order to perform the lognormal goodness-of-fit test described in Section 8.3.4.4, 
the natural logarithms of the data are used.  The average and standard deviation of the transformed data 
are 
   xL  =  4.57                s  =  1.6050L  
 
The first five ordered observations are listed below with the transformations necessary to compute the 
goodness-of-fit statistic.  The goodness-of-fit statistic and observed significance level are calculated as: 
 
 

 

(i)x  
 

ln(x )(i) S  (i)
(i) L

L

(i)
z =

ln(x )

s
 =  

ln(x ) 4.57

1.6050

− −x  
 

o (i)F [z ]  

85.39 4.447228998 -1.727771002 0.042014598 
86.11 4.455625549 -1.719374451 0.042773061 
86.18 4.456438132 -1.718561868 0.042847046 
90.72 4.50777784  -1.66722216  0.047735087 
90.86 4.50931986  -1.66568014  0.047888539 
… … … … 

 

   

AD =  
1 2 i

n
ln[F (z )]+ ln[1 F (z )] n

 =  
1 2 i

30
ln[F ( z )]+ ln[1 F (z ) 31

 =  0.597

i=1

n
o (i) o (n+1 i)

i=1

30
o (i) o (31 i)

∑
− − −

∑
− − − −

−

−

m r

m r  

   *
2 2AD  =  1+

4

n

25

n
AD =  1+

4

30

25

30
(0.597)  =  0.177−L

NM
O
QP −L

NM
O
QP S  

 

   

OSL 1/ 1 exp 0.48 0.78ln(AD*) 4.58AD *

1/ 1 exp 0.48 0.78ln(0.177) 4.58(0.177)

0.098

= + − + +

= + − + +

=

m r
m r  

 
 Since the lognormal goodness-of-fit test results in an OSL  value greater than 0.05, there is insuffi-
cient evidence to contradict the assumption that the data are lognormally distributed.  Hence, the log-
normal method in Section 8.3.4.5.1 is used to compute a B-basis value. 
 
Problem 3 - Step 6.  The B-basis value for lognormally distributed data is computed as 
 
   B =  exp[ k s ] =  exp[4.57 1.78(1.6050)] =  85.09L B Lx − −  
 
For presentation in MIL-HDBK-17, this B-basis value would be rounded to 85.1. 
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8.3.7.4 Problem 4 - Nonparametric method 
 
 The data set for this problem consists of transverse tensile strain-to-failure measurements for three 
batches of material.  This problem illustrates the calculation of B-basis values by the nonparametric 
method.  Calculations for all steps may be performed by STAT17 and may be demonstrated using exam-
ple data set, example.d04. 
 
Problem 4 - Step 1.  There was one detected outlier, 1300, in this set of data.  No reason could be found 
so it was retained in the data set  (See Problem 1 for details of the outlier detection calculations.) 
 
Problem 4 - Step 2.  The k-sample Anderson-Darling test statistic is ADK = 1.44 . (See Problem 1 for de-
tails of the computation of the k-sample statistic.)  Since this is less than the critical value of 1.86, con-
clude that the data from the batches may be combined into a single sample. 
 
Problem 4 - Step 3.  The maximum normed residual (MNR) test is performed on the pooled data.  The 
outlier detected in Step 1 was again identified as an outlier in the pooled data.  (see Problem 1 - Step 1 
for details of the outlier detection procedure.) 
 
Problem 4 - Step 4.  The results of the goodness-of-fit tests for the three distributions are: 
 
 

Distribution OSL  
Two-parameter Weibull 0.003 
Normal 0.011 
Lognormal 0.000 

 
(See problems 1, 2, and 3 for details of the computations for each of these tests.) 
 
 Since all of the observed significance levels are less than 0.05, it is concluded that the data do not 
follow any of the three distributions.  Thus, the nonparametric method described in Section 8.3.4.5.1 must 
be used to calculate the B-basis value. 
 
Problem 4 - Step 5.  The first step in computing a B-basis value by the nonparametric method is to order 
the data values from smallest to largest.  The five smallest values are 1300, 5500, 5500, 5700, and 5900.  
The next step is to obtain the appropriate rank from Table 8.5.12 corresponding to the sample of size n .  
With an n  of 97, the rank of the observation to be used as a B-basis value is r = 5 .  Thus, the fifth obser-
vation, or 5900, is the B-basis value for this sample. 
 
8.3.7.5 Problem 5 - Hanson-Koopmans method 
 
 The data set for this problem consists of compressive strength measurements for three batches of 
material.  This problem illustrates the situation where none of the standard distributions adequately fit the 
data, and there is insufficient data to perform the nonparametric method.  Calculations for all steps may 
be performed by STAT17 and may be demonstrated using example data set, example.d05. 
 
Problem 5 - Step 1.  There are no detected outliers in this set of data.  (See Problem 2 for details of the 
outlier detection calculations.) 
 
Problem 5 - Step 2.  The k-sample Anderson-Darling test statistic is ADK =  0.60 . (See Problem 1 for 
details of the computation of the k-sample statistic.)  Since this is less than the critical value of 1.89, con-
clude that the data from the batches may be combined into a single sample. 
 
Problem 5 - Step 3.  The maximum normed residual (MNR) test is performed on the pooled data.  No po-
tential outliers are detected in the pooled data.  (see Problem 1 - Step 1 for details of the outlier detection 
procedure.) 
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Problem 5 - Step 4.  The results of the goodness-of-fit tests for the three distributions are: 
 
 

Distribution OSL  
Two-parameter Weibull 0.047 
Normal 0.039 
Lognormal 0.035 

 
 
(See problems 1, 2, and 3 for details of the computations for each of these tests.) 
 
 Since all of the observed significance levels are less than 0.05, it is concluded that the data do not 
follow any of the three distributions.  The Hanson-Koopmans method should be used to calculate a 
B-basis value for these data, since there are only 15 data values. 
 
Problem 5 - Step 5.  Following the procedure described in Section 8.3.4.5.2, a B-basis value can be esti-
mated.  For n =  15 , from Table 8.5.14 it is determined that r =  8  and k =  1.54 .  After ranking the data 
in ascending order, the first and eighth values are found. 
 
   (1) (8)x = 114.6          x = 133.4  
 
The B-basis value is calculated as  
 

   B =  x
x

x
 =  133.4

114.6

133.4
 =  104.365(r)

k
(1)

(r)

1.54L
N
MM
O
Q
PP

L
NM
O
QP  

 
These data can be included in MIL-HDBK-17 as interim data, but the B-value would not be reported in the 
handbook. 
 
8.3.7.6 Problem 6 - Analysis of variance (ANOVA) method 
 
 The data set for this problem consists of tensile strength measurements from six batches of material.  
This problem illustrates the test for normality of multiple samples, the equality of variance test, and the 
calculation of basis values by the analysis of variance (ANOVA) method.  Calculations for all steps may 
be performed by STAT17 and may be demonstrated using example data set, example.d06.  Calcula-
tions for Step 4 may be performed by RECIPE and may be demonstrated using example data set, 
ex2.dat. 
 
Problem 6 - Step 1.  There are no detected outliers in this set of data.  (See Problem 1 for details of the 
outlier detection computations.) 
 
Problem 6 - Step 2.  The k-sample Anderson-Darling test statistic is ADK = 2.45 . (See Problem 1 for de-
tails of the computation of the k-sample statistic.)  Since ADK  is greater than the critical value of 1.56, 
the hypothesis that the populations from which these groups are drawn are identical is rejected. 
 
Problem 6 - Step 3.  The equality of variance test described in Section 8.3.5.2.1 is used to determine if 
the within-batch variances are significantly different.  The sample sizes ( in ), group medians ( i

~x ), and 

group averages of ij iij = w x x− � are tabulated below.  
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Batch in  i
~x  wi  

1 5 338.7 6.233 
2 6 308.5 9.187 
3 5 317.7 9.874 
4 5 313.1 9.823 
5 5 322.7 6.239 
6 5 294.2 7.099 

 
 
The transformed data are 11w =|328.1 338.7|= 10.6− , 12w =|334.8 338.7|= 3.9− , ..., 65w =|294.2 294.2|= 0− .  
The test statistic is 
 

   

i

i

k 2
i i

i=1
k n 2

ij i
i=1j=1

6 2
i i

i=1
6 n 2

ij i
i=1j=1

(w -w /(k 1))n
F = 

( /(n k))w -w

(w w /(6 1))n
= 

( /(31 6))w -w

= 0.29

−∑

−∑ ∑

− −∑

−∑ ∑
 

 
 95th percentile of an F random variable with 1 = k 1= 5γ −  and 2 = n k = 25γ −  degrees of freedom from 

Table 8.5.1 is 2.60.  Since 0.29 is less than 2.60, the hypothesis that within-group variances are equal is 
not rejected. 
 
 Since the equality of variance test is a diagnostic test, a B-basis value may still be calculated, even 
when the hypothesis that higher group variances are equal is rejected.  However, a nonconservative B-
basis value can result in some instances when the variances are unequal.  Unequal variances suggest 
potential problems with consistency in fabrication or processing of the different batches.  The B-basis 
value calculated in such cases should be used with caution. 
 
Problem 6 - Step 4.  Summary statistics for the data are given in the table below. 
 
 

Batch in  xi  is  

1 5 339.133 8.159 
2 6 308.701 12.443 
3 5 317.081 16.236 
4 5 313.066 12.556 
5 5 321.951 8.614 
6 5 297.595 9.307 

 
 
Preliminary ANOVA calculations covered in Section 8.3.5.2.6 are: 
 

   *

i=1

k

i
2 2 2n  =  n / n =  (5 + +5 ) / 31 =  5.19∑ …  

 

   ′n  =  (n- ) / (k-1)  =  (31-5.19) / (6 -1)  =  5.16*n  
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   x n xi i =  / n =  [5(339.133)+ +5(297.595)] / 31 =  316
i=1

k
∑ …  

 

   MSB =  n ( )
k-1

 =  
1

6 -1
5(339 - 316) + +5(298 - 316)  =  983.0

i=1

k
i

2
2 2∑

−x xi …  

 

  MSE =  
( )

n- k
 =  

1

n- k
 (n -1)s  =  

1

31- 6
4(8.159) + +4(9.307)  =  134.8

i=1

k

j=1

n 2

i=1

k
i i

2 2 2i

∑ ∑ ∑
x - xij i …  

 
The following tolerance limit factors are obtained from Table 8.5.10 (for B-basis values). 
 
   0 1k  =  1.768           k  =  3.007  
 
Note that the approximation to Table 8.5.10 is not used for small degrees of freedom. The tolerance limit 
factor is calculated as follows.  Denote the ratio of mean squares by  
 

   

S =  
MSB

n
+

n 1

n
MSE

 =  
983.0

5.16
+

5.16 1

5.16
134.8

 =  17.297

′
′−

′
F
HG
I
KJ
−F

HG
I
KJ  

 

   u =  
MSB

MSE
 =  

983.0

134.8
 =  7.292  

 
(If u  is less than one, set u  equal to one.) 
 

   w =  
u

u+ n 1
 =  

7.292

7.292 + 5.16 1
 =  0.7980

′ −
 

 
The tolerance limit factor is 
 

   

t =  k k / n + (k k )W

1
1

n

 =  
1.768 3.007 / 5.16 + (3.007 1.768)0.798

1
1

5.16
 =  2.560

0 1 1 0− ′ −

−
′

− −

−
 

 
Thus, a B-basis value is calculated as 
 
   B =  ts =  316 2.560(17.297)  =  271.72x - −  
 
For presentation in MIL-HDBK-17, this B-basis value would be rounded to 272. 
 
 The calculations for Step 4 can be performed using RECIPE, when batch-to-batch variability is signifi-
cant or the ANOVA approach is desired.  In this example, there are data on several batches, each tested 
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under the same set of fixed conditions.  Since there is only one set of fixed conditions, the model for this 
example has a constant mean, but now there are both between-batch and within-batch components of 
variance.  So l = 1 , and  
 

  s 1 q(s) sy  =  + b + eθ  
This is the usual random-effects ANOVA (or simply 'ANOVA') model of Section 8.3.5.2. 
 
# 
#  RECIPE Example #2: Basis value from a one-way ANOVA model 
#  This corresponds to MIL-HDBK-17, Problem #6 
# 
#  -- This example has 31 observations in 6 batches, for which 
#     an ANOVA B-basis value is to be determined 
# 
#   --  ntot, nlvl, nbch, npar, npts, prob, conf 
   31 1 6 1 1 .9d0 .95d0 
# 
#  -- Fixed levels. Here we are fitting a one-way ANOVA model, so there 
#     is only one fixed level, and only one fixed parameter (the mean) 
#     to estimate. 
   1 
# 
#  -- Fixed level number, batch number, strength. Since we have 
#     only one fixed level, the first column is all ones. The 
#     second column gives the batch number, and the third column 
#     gives the strength values. 
    1   1  328.1174 
    1   1  334.7674 
    1   1  347.7833 
    1   1  346.2661 
    1   1  338.7314 
    1   2  297.0387 
    1   2  293.4595 
    1   2  308.0419 
    1   2  326.4864 
    1   2  318.1297 
    1   2  309.0487 
    1   3  337.0930 
    1   3  317.7319 
    1   3  321.4292 
    1   3  317.2652 
    1   3  291.8881 
    1   4  297.6943 
    1   4  327.3973 
    1   4  303.8629 
    1   4  313.0984 
    1   4  323.2769 
    1   5  312.9743 
    1   5  324.5192 
    1   5  334.5965 
    1   5  314.9458 
    1   5  322.7194 
    1   6  291.1215 
    1   6  309.7852 
    1   6  304.8499 
    1   6  288.0184 
    1   6  294.1995 
# 
#   -- Points at which to evaluate tolerance limit. For the one-way  
#      ANOVA model used here, there is only one point at which the  
#      evaluation can be done: it corresponds to the one fixed 
#      level of the model. 
    1 
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The output is similar in form to the example in Problem 2, Step 6. 
 
recipe 
  Filename (without .dat extension) ? 
ex2 
 
  RECIPE : One-Sided Random-Effect Regression Tolerance Limits 
  (Version 1.0, April 1995)  
 
  *** Simulated pivot critical value file ex2.crt not found. 
     Satterthwaite approximation will be used. 
 
        Probability    Confidence   Regression  Tolerance Limit 
           0.90           0.95     316.010884     271.672860 
 
The results include a mean of 316 and a B-basis value of 272.  Note, however, that the warning message 
that was output for Problem 2 does not appear.  The between-batch variability can be estimated since 
there are six batches.  The fourth column gives the one-way random effects ANOVA basis value.   
 
8.3.7.7 Problem 7 - Linear regression 
 
 The data set for this problem consists of tensile test measurements at two fixed temperatures.  This 
problem illustrates the regression analysis procedures presented in Section 8.3.5.3.  Calculations for Step 
1 may be performed by STAT17 and may be demonstrated using example data set, example.d07.  Cal-
culations for Steps 2 through 5 may be performed by RECIPE and may be demonstrated using example 
data set, ex3.dat.  Note that a linear relationship between strength and temperature is not appropriate 
for all temperature ranges. 
 
Problem 7 - Step 1.  In this example, x  represents the temperature and y  the tensile strength determined 
from a group of tension tests.  Outlier detection is useful applied to each temperature or fixed condition.  
There are no detected outliers for either temperature in this set of data. 
 
Problem 7 - Step 2.  From the data in Table 8.3.7, the following quantities may be calculated: 
 

 

n =  11

x =  115

y =  3763

x  =  56195

y  =  1288172

2

2

Σ
Σ

Σ

Σ

 

2

2

x  =  13225

y  =  14163006

x y  =  432788.3

xy =  37033.94

Σ

Σ

Σ Σ
Σ

b g
b g
b gb g

 

 

   
xx

2 2

xy

yy
2 2

S  =  x ( x) / n =  56195 (13225) / 20 =  54992

S  =  xy ( x)( y) / n =  37033.94 (115)(3763) / 11 =  2310.459

S  =  y ( y) / n =  1288172 (14163006) / 11 =  626.5063

Σ Σ
Σ Σ Σ

Σ Σ

− −
− −

− −

 

 
The slope of regression line is: 
 

   b =  
S

S
 =  

2310.459

54992
 =  0.0420xy

xx

−  

 
The y-intercept of the regression line is: 
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   a =  
y b x

n
 =  

3763

11

( 0.0420)(115)

11
 =  342.1 ( 0.438)  =  342.5644

Σ Σ− − − −  

 
Thus, the final equation of the least squares regression line is: 
 

   *y  =  a+ b  =  342.5644 0.0420x x−  
 

Using this equation, the values of *y  in the table below are computed for the values of x  in the data set.  
 

x  y  *y  e = y- y*  

75 328.1174 339.4134 -11.2959667 
75 334.7674 339.4134 -4.6459667 
75 347.7833 339.4134 8.3699333 
75 346.2661 339.4134 6.8527333 
75 338.7314 339.4134 -0.6819667 
75 340.8146 339.4134 1.4012333 
-67 343.5855 345.3793 -1.7938400 
-67 334.1746 345.3793 -11.2047400 
-67 348.6610 345.3793 3.2816600 
-67 356.3232 345.3793 10.9438600 
-67 344.1524 345.3793 -1.2269400 

 
The root mean square error is computed as follows: 
 

   Y

* 2

s  =  
(y- y )
n- 2

 =  
529.5

9
 =  7.669818

∑  

 
and 2R  is computed as follows: 
 

   2
2

xx

yy

2

R  =  b S

S
 =  

(-0.0420) (54992)

626.5063
 =  0.1549  

 
Thus, 15% of the variability in the y  data about its average is explained by the linear relationship between 

y  and x . 
 
Problem 7 - Step 3.  One of the assumptions made in linear regression analysis is that the residuals are 
normally distributed about the regression line.  The validity of this assumption may be checked by per-
forming a normal goodness-of-fit test on the residuals as discussed in Section 8.3.5.1.  Note that the (i)z  

values used in the Anderson-Darling statistic are defined as (i) (i) yz = e / s , where (i)e  is the thi ordered re-

sidual and yS  is the root-mean-square error from the regression.  The eleven ordered residuals and the 

preliminary goodness-of-fit calculations are shown in the following table. 
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(i)e  
(i)

(i)

y

(i)
z =

e

S
=

e

58.83
 

-11.2959667 -1.47278162 
-4.6459667 -0.60574667 
8.3699333 1.09128187 
6.8527333 0.89346752 

-0.6819667 -0.08891563 
1.4012333 0.18269447 

-1.7938400 -0.23388299 
-11.2047400 -1.46088734 

3.2816600 0.42786674 
10.9438600 1.42687349 
-1.2269400 -0.15996990 

 
The normal goodness-of-fit test statistic is 0.222 with an OSL  of 0.590.  (See Problem 2 for details of the 
computation for the normal goodness-of-fit test.)  Since the OSL  is greater than 0.05, there is insufficient 
evidence to contradict the assumption that the residuals are normally distributed. 
 
Problem 7 - Step 4.  There are multiple y  observations for several of the x  values.  Thus, it is possible to 
construct an analysis of variance table to test the adequacy of the regression as discussed in Section 
8.3.5.3.  The sums of squares for the three primary lines of the analysis of variance table are calculated 
as follows: 
 

   
SSR =  b S  =  (-0.0420) (54992)  =  97.7138

SST =  S  =  626.5063

SSE =  SST-SSR =  626.5063- 97.7138  =  529.4349

2
xx

2

yy  

 
The mean squares are calculated as shown below. 
 

   
MSR =  SSR =  97.07138

MSE =  SSE/n- 2 =  529.4349 / 9  =  58.82611

F =  MSR/ MSE =  97.07138 / 58.82611 =  1.650141

 

 
The analysis of variance table is shown below. 
  

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares, SS  

Mean 
Squares, MS  

calcF  

Regression 1 97.07 97.07 F = 1.65  
Error 9 529.4 58.83  
Total 10 626.5   

 
The F  value of 1.65 with 1 and n- 2 = 9  degrees of freedom is less than the value of 5.12 from Table 8.5.1 
corresponding to 1 and 9 degrees of freedom, so the regression may be negligible. 
 
Problem 7 - Step 5.  With the linear regression equation from step 1, lower tolerance limits may be calcu-
lated at any temperature ( x  value) by the procedure in Section 8.3.5.3.  Details for computing a B-basis 
value at x = 25 are given below. 
 
The average temperature value in the data set is: 
 
   x  =  x/ n =  115 / 11 =  10.45∑  
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The ∆  factor required to compute the tolerance limit factor, , is: 
 

   ∆  =  
( )

( ) / n
 =  

2

i=1

n
2

x - x

x - x

0

0∑

(25 -10.45 )

(54992) / 11
 =  0.0423

2
 

 
The approximation for the ′k  factor is: 
 

   

′ F
HG

I
KJ

L
NM

O
QP

F
HG

I
KJ

L
NM

O
QP

k  =  1.282 + exp 0.595- 0.508ln(n) +
4.62

n
+ 0.486 -

0.986

n
ln(1.82 + )

=  1.282 + exp 0.595- 0.508ln(11) +
4.62

11
+ 0.486 -

0.986

11
ln(1.82 + 0.0423)

=  2.33

B ∆

 

 
Thus, a B-basis value at x = 25  is computed as 
 
   B =  (a+ b x ) - k s  =  342.5 + (-0.0420)(20) - 2.33(7.669818)  =  323.643390 B y  
 
For presentation in MIL-HDBK-17, this value would be rounded to 324. 
 
RECIPE provides the linear regression calculations for this problem.  There are data from a single batch, 
so that m = 1 ; but the possibility of several conditions ( l > 1) is included.  To fix ideas, assume that there 
are several sets of unidirectional tensile strength data from a single batch, with each set being tested at a 
different temperature, and with all other conditions held constant.  Assume further that the strength for this 
material is believed to vary linearly with temperature, at least for temperatures within the range of the 
data.  With only one batch, the between-batch variability cannot be estimated.  The regression model ap-
propriate for this situation is  
 
   s 1 p(s),1 2 p(s),2 sy  =  z + z + eθ θ  
 
This is the simple linear regression model of Section 8.3.5.3. 
 
 The file ex3.dat, which corresponds to this problem, is: 
 
# 
#  RECIPE Example #3: Regression model with data from a single batch 
#  This corresponds to MIL-HDBK-17, Problem #7 
# 
#  -- This dataset has 11 observations at two fixed levels. The 
#     data come from 1 batch, there are two fixed parameters to 
#     estimate (the slope and intercept of a straight line), and 
#     a B-basis value is to be calculated at 7 points on this line. 
# 
#   --  ntot, nlvl, nbch, npar, npts, prob, conf 
   11 2 1 2 7 .9d0 .95d0 
# 
#  -- We are fitting a model y=a+bT at two levels: T=75 degrees and 
#     T=-67 degrees.  The first column corresponds to 'a' in this 
#     linear equation; the second column corresponds to 'b'. Note 
#     that these values need not be given in any special order, 
#     for example (1, -67) need not come before (1, 75).  The 
#     important thing is that the order of the rows given here 
#     must correspond to the level indicator, p(s), given with each 
#     response value. 
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   1 75 
   1 -67 
# 
#  -- Now we have the 11 observations.  The first column is the 
#     level (=1 for 75 degrees, =2 for -67 degrees), the second 
#     column is the batch (always 1), and in the third column are 
#     the strength observations. 
# 
   1    1   328.1174 
   1    1   334.7674 
   1    1   347.7833 
   1    1   346.2661 
   1    1   338.7314 
   1    1   340.8146 
   2    1   343.5855 
   2    1   334.1746 
   2    1   348.6610 
   2    1   356.3232 
   2    1   344.1524 
# 
#  -- Finally, we give the seven points at which basis 
#     values are to be determined.  These correspond 
#     to seven different temperatures -67,...,50. Note 
#     that the first column of ones is required because  
#     of the intercept in the regression model 
  1 -67 
  1 -50 
  1 -25 
  1  0 
  1 25 
  1 50 
  1 75 
 
Note that the first noncomment line of ex3.dat indicates (in order, from left to right) that there are 11 ob-
servations in all, that the data are at 2 fixed levels, that all of the data are from a single batch, that the 
fixed part of the model involves 2 unknown parameters (actually, a straight line is being fit to the data), 
that the basis value curve will be evaluated at 7 points, and that the tolerance limits to be calculated are 
B-basis values. 
 
 This example illustrates a simplification of the common situation where a material basis value is re-
quired as a function of temperature.  One has data at two fixed levels, corresponding to the temperatures 
-67 and 75 °F, and one would like to determine basis values at the 7 temperatures -67, -50, -25, 0, 25, 50, 
and 75 °F.  The intercept of the linear function is, of course, constant for all temperatures, so the first col-
umn equals 1 for the 2 rows that give the levels of the fixed effect, as well as the 7 rows that give the 
points at which the basis values are to be evaluated.  The output from running RECIPE on these data is 
 
recipe 
  Filename (without .dat extension) ? 
ex3 
 
  RECIPE : One-Sided Random-Effect Regression Tolerance Limits 
  (Version 1.0, April 1995)  
 
  *** Simulated pivot critical value file ex3.crt not found. 
     Satterthwaite approximation will be used. 
 
  regini : Warning: between-batch variance cannot 
           be estimated from these data. Results 
           will be based on the assumption that the 
           between-batch variability is negligible. 
 
        Probability    Confidence   Regression  Tolerance Limit 
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           0.90           0.95     345.379340     325.887099 
           0.90           0.95     344.665104     325.747683 
           0.90           0.95     343.614756     325.338699 
           0.90           0.95     342.564409     324.619436 
           0.90           0.95     341.514062     323.538853 
           0.90           0.95     340.463714     322.102027 
           0.90           0.95     339.413367     320.366619 
 
Each of the last seven lines gives a point on the regression line, and the corresponding point on the 
B-basis curve for each of the seven sets of covariates (temperatures) in the file ex3.dat.  Note that there 
is a warning message, since one cannot estimate between-batch variability using data from a single 
batch.  The basis values calculated are valid under the assumption that the between-batch variability is 
zero (or at least negligible). 
 
8.3.7.8 Problem 8 - Simple linear regression with a random effect 
 
 The data set for this problem consists of compression test measurements at two temperatures with 
several batches represented at each temperature.  This problem illustrates the same situation as Problem 
7 except data are available for more than one batch.  Calculations for Step 1 can be performed by 
STAT17 and can be demonstrated using example data set, example.d08.  Calculations for Step 2 are 
demonstrated by example data set, ex4.dat. and RECIPE.  Note that a linear relationship between 
strength and temperature is not appropriate for all temperature ranges. 
 
Problem 8 - Step 1.  In this example, x  represents the temperature and y  the tensile strength determined 
from a group of tension tests.  Outlier detection is useful applied to each temperature or fixed condition.  
There are no detected outliers for either temperature in this set of data. 
 
Problem 8 - Step 2.  The random batch effect q(s)b  can now be introduced into the model, leading to  

 
   s 1 p(s),1 2 p(s),2 q(s) sy  =  z + z + b + eθ θ  
 

where p(s),1z = 1 , p(s),2 iz = T , the thi  test temperature, and q(s)b  is the batch mean for the q(s)th  batch. 

The file ex4.dat, which corresponds to this problem, is 
 
# 
#     RECIPE Example #4: Regression model with data from several 
#                        batches 
#     This corresponds to MIL-HDBK-17, Problem #8 
# 
#  -- In this example, we have 72 strength observations on data 
#     from 8 batches.  A straight-line regression is fit with 
#     two fixed levels (temperatures).  B-basis values are calculated 
#     for 7 points along this curve. 
# 
#  -- ntot, nlvl, nbch, npar, npts, prob, conf 
 72 2 8 2 7 .9d0 .95d0 
# 
#  -- There are two fixed levels, corresponding to 
#     75 and -67 degrees. 
 1  75 
 1 -67 
# 
#  -- The following 72  rows give the fixed level in the 
#     first column, the batch in the second column, and the 
#     strength observation in the third column. 
   1   1  328.1174 
   1   1  334.7674 
   1   1  347.7833 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-62 

   1   1  346.2661 
   1   1  338.7314 
   1   2  297.0387 
   1   2  293.4595 
   1   2  308.0419 
   1   2  326.4864 
   1   2  318.1297 
   1   2  309.0487 
   1   3  337.0930 
   1   3  317.7319 
   1   3  321.4292 
   1   3  317.2652 
   1   3  291.8881 
   1   4  297.6943 
   1   4  327.3973 
   1   4  303.8629 
   1   4  313.0984 
   1   4  323.2769 
   1   5  312.9743 
   1   5  324.5192 
   1   5  334.5965 
   1   5  314.9458 
   1   5  322.7194 
   1   6  291.1215 
   1   6  309.7852 
   1   6  304.8499 
   1   6  288.0184 
   1   6  294.1995 
   2   1  340.8146 
   2   1  343.5855 
   2   1  334.1746 
   2   1  348.6610 
   2   1  356.3232 
   2   1  344.1524 
   2   2  308.6256 
   2   2  315.1819 
   2   2  317.6867 
   2   2  313.9832 
   2   2  309.3132 
   2   2  275.1758 
   2   3  321.4128 
   2   3  316.4652 
   2   3  331.3724 
   2   3  304.8643 
   2   3  309.6249 
   2   3  347.8449 
   2   4  331.5487 
   2   4  316.5891 
   2   4  303.7171 
   2   4  320.3625 
   2   4  315.2963 
   2   4  322.8280 
   2   5  340.0990 
   2   5  348.9354 
   2   5  331.2500 
   2   5  330.0000 
   2   5  340.9836 
   2   5  329.4393 
   2   7  330.9309 
   2   7  328.4553 
   2   7  344.1026 
   2   7  343.3584 
   2   7  344.4717 
   2   7  351.2776 
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   2   8  331.0259 
   2   8  322.4052 
   2   8  327.6699 
   2   8  296.8215 
   2   8  338.1995 
# 
#    -- The following 7 rows give the points at which  
#       the B-basis value is to be calculated: these  
#       correspond to 7 temperatures -67,-50,...,75. 
  1 -67 
  1 -50 
  1 -25 
  1  0 
  1 25 
  1 50 
  1 75 
 
A run of RECIPE produces the output: 
 
recipe 
 Filename (without .dat extension) ? 
ex4 
 
  RECIPE : One-Sided Random-Effect Regression Tolerance Limits 
  (Version 1.0, April 1995)  
 
  *** Simulated pivot critical value file ex4.crt not found. 
     Satterthwaite approximation will be used. 
 
        Probability    Confidence   Regression  Tolerance Limit 
           0.90           0.95     327.537310     286.895095 
           0.90           0.95     326.157386     285.580736 
           0.90           0.95     324.128085     283.557672 
           0.90           0.95     322.098785     281.470595 
           0.90           0.95     320.069485     279.335972 
           0.90           0.95     318.040184     277.119935 
           0.90           0.95     316.010884     274.783636 
 
The input and output files have the same form as Problem 7.  The important distinction between Problem 
7 and Problem 8 is that the basis values in Problem 8 account for between-batch variability, while in Prob-
lem 7 the calculated basis values are strictly valid for a specific batch.  Note also that the warning mes-
sage that appeared in Problem 7 does not appear here, since there are data from several batches. 
 
8.3.7.9 Problem 9 - One-way mixed-model ANOVA: basis values with data from multiple sources 
 
 The data set for this problem consists of tensile test measurements for several batches each from 
more than one manufacturer.  Calculations for Steps 1 and 2  may be performed by STAT17 and may be 
demonstrated using example data set, example.d09.  Calculations for Step 3 are demonstrated by ex-
ample data set, ex5.dat. and RECIPE.  
 
 Suppose that one has several batches of data from each of several manufacturers, and that these 
manufacturers wish to combine their resources to determine basis values.   If one is absolutely certain 
that the manufacturing and testing are identical for all of the data, then one can ignore the fact that the 
data came from multiple sources.  Often, however, there will be slight differences among the manufactur-
ers in the way that the material was fabricated, tested, or both.  In such cases, if one is unwilling to as-
sume that the variability between and within batches are close to being the same for all manufacturers, 
there is no alternative to applying the usual ANOVA method (as in Section 8.3.5.2) separately to each 
manufacturer's data.  However, if one is willing to assume that each set of data exhibits the same variabil-
ity (with a possible different mean for each manufacturer), then all of the batches can be used to deter-
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mine a basis value for each manufacturer.  These basis values will often be substantially higher, and 
closer together, than if each manufacturer had acted alone. 
 
Problem 9 - Step 1.  As in Problem 6, each batch should be examined for outliers.  No outliers were iden-
tified for these batches. 
 
Problem 9 - Step 2.  For this case, it may also be worthwhile to group the data by manufacturer, and 
evaluate each group for outliers.  The outlier detection procedure is demonstrated in Problem 1. 
 
Problem 9 - Step 3.  To develop a regression model for this example, let the mean for the thi  manufac-
turer by iµ .  If there are l manufacturers, we have r = l  unknown fixed parameters, 1 2 l, , ,µ µ µ…  in addi-

tion to the components of variance b
2σ  and e

2σ .  Hence, the regression model is of the form 

 

   s 1 p(s),1 2 p(s),2 3 p(s),3 p(s), q(s) s

p(s) q(s) s

y  =  z + z + z +...+ z + b + e

=  + b + e

2θ θ θ θ
µ

A A
 

 
The z 's are taken to be p(s),u p(s),uz = δ , where p(s),uδ  (the Kronecker δ ) equals one where p(s) = u , and 

zero otherwise.  The fixed parameters are i i=θ µ . 

 
The example data set ex5.dat, which corresponds to this problem, contains data on several batches of 
the same material from each of two manufacturers.  For this example, assume that the variability is the 
same for each manufacturer.  The number of fixed levels l = r = 2 . 
 
# 
#  RECIPE Example #5: Basis values using data from multiple sources 
#  This corresponds to MIL-HDBK-17, Problem #9 
# 
#   -- In this example, we have five batches of data: three from 
#      one source, and two from a second source.  We would like 
#      to use all five batches of data to get a tolerance limit 
#      for each source. 
# 
#   --  ntot, nlvl, nbch, npar, npts, prob, conf 
# 
  15 2 5 2 2 .9d0 .95d0 
# 
#   -- The fixed part of this model is a different mean for 
#      each of the two sources 
   1 0 
   0 1 
# 
#   -- Here are the 15 data values.  Column 1 indicates the 
#      fixed level (data source), and column 2 indicates the 
#      number of the batch. The third column gives the strength 
#      values. 
  1  1  75.8 
  1  1  78.4 
  1  1  82.0 
  1  2  68.8 
  1  2  70.9 
  1  2  73.5 
  1  3  74.5 
  1  3  74.8 
  1  3  78.8 
  2  4  81.3 
  2  4  87.7 
  2  4  89.0 
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  2  5  88.2 
  2  5  91.2 
  2  5  94.2 
# 
#    -- The tolerance limit are to be calculated at two 
#       points, which correspond to the two sources. So 
#       we just repeat the two lines for the fixed part 
#       of the model here. 
  1 0  
  0 1 
  
From the file ex5.dat one can see that there are 15 data values, and that a regression model is being 
used with r = 2  parameters.  The first column of the 15 rows of ex5.dat that contain data indicates the 
fixed level, the second column for these rows indicates the batches, and the third column gives the 
strength values.  The fixed part of the model has two means, one for each data source.  So the rows that 
give the fixed levels, and the rows that give the points at which basis values are to be evaluated have a ‘1' 
in one column and a ‘2' in the other.  Contrast this with Problems 2 and 6 where there is only one fixed 
level and so the corresponding rows have just one column having a single value, 1 . 
 
The RECIPE output for this example is: 
 
recipe 
 Filename (without .dat extension) ? 
ex5 
 
  RECIPE : One-Sided Random-Effect Regression Tolerance Limits 
  (Version 1.0, April 1995)  
 
  *** Simulated pivot critical value file ex5crt not found. 
     Satterthwaite approximation will be used. 
 
        Probability    Confidence   Regression  Tolerance Limit 
            0.90           0.95           
                                    75.27778       59.401536 
            0.90           0.95           
                                    88.600000      71.902179 
 
The B-basis values are therefore 59.4 and 71.9 for the two manufacturers.  As a simple exercise in using 
RECIPE, one can show (following Problem 6, using the data from this problem) that if each manufacturer 
had used only their own data, then the B-basis values would be 52.8 and 34.6, respectively.  Note that the 
mixed model gives basis values which are higher and closer together.  In particular, the very low value 
34.6 is due to the second manufacturer having data from only two batches. 
 
 
8.4 STATISTICAL METHODS 
 
8.4.1 Tests for determining equivalency between an existing database and a new dataset for the 
same material  
 
 There are several situations where it is required to determine whether a sample of test data is equiva-
lent to a baseline data set for the same raw material: 
 

• For material batch certification and acceptance, it must be shown that the properties of the batch 
are "equivalent" to the qualification database; i.e., the batch data meet the material specification 
acceptance limits. 

• A material supplier wishes to modify the production process for the raw material. 
• A part manufacturer wants to design using a common database of material properties and basis 

values that was developed by another organization.  Whether they are using the exact same fab-
rication process as was used for the laminates used to obtain the shared database, or are using a 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-66 

modified fabrication process, the manufacturer must demonstrate the "equivalency" of its produc-
tion methods in obtaining the same material properties. 

• A part manufacturer who has established a database of material properties, specification values 
and basis values, and who wants to modify its fabrication process without regenerating the prop-
erty database. 

 
 This section is intended to provide the statistical procedures for determining data "equivalency" in the 
above types of situations.  These procedures are not intended for use in determining the acceptability for 
use of an alternate (“second source") material; for this situations refer to Section 8.4.2.  In the following 
procedures, a probability level of rejecting a "good" material, α , must be selected.  Other sections of this 
Volume recommend the appropriate value of α  for particular situations; for instance, see Section 2.3.7 for 
requirements to substantiate the use of MIL-HDBK-17 Volume 2 data. 
 
 The mechanical and chemical properties of material specimens are subject to random variability.  
Hence, one must accept the possibility of making an error in declaring a "good" material property to have 
failed a statistical test.  For a fixed number of test specimens in a sample, the probability of this undesir-
able event occurring (defined as α  in the following statistical tests) can only be made small at the ex-
pense of decreased likelihood of detecting failures in material when failure should be declared.  The se-
lection of the value for the probability of failing a statistical test in error, α , is a compromise between the 
two types of errors.  If the statistical tests are being used with test programs where retests of "failed" 
properties are allowed, then a slightly higher value for α  can be used, as the α  after one retest will be 

effectively 2α . 
 
 The criteria used to determine equivalency between a large database of a given composite material 
and a subsequent test sample of the same material are selected based on the material properties of in-
terest.   
 
 The criterion for modulus or physical properties such as per ply thickness require that the mean value 
be within an acceptable range; neither a high nor a low mean is desirable.  The criterion for these proper-
ties is designed to reject either a high or a low mean value.  The appropriate statistical method is given 
below as "Test for Change in Mean". 
 
 The criterion for strength properties, on the other hand, must reject either a low mean or a low mini-
mum individual value.  The appropriate statistical method for strength properties is given below as "Test 
for Decrease in Mean or Minimum Individual".  This test  was developed to have equal probability of re-
jecting a "good" set of data with either the test on the mean or on the minimum individual property.  This 
balance between the two conditions of the test gives the maximum "statistical power", and is an improve-
ment over the ad-hoc methods used in industry to set material specification acceptance limits. 
 
 The criterion for certain chemical and physical properties, such as volatile content or porosity level, 
must reject a high mean value, as the desired property value is 0.  The appropriate statistical method for 
these properties is given below as "Test for a High Mean". 
 
 Test for Decrease in Mean or Minimum Individual – The mean, and standard deviation are approxi-
mated by x  and s, from the individual test condition (environment) of the original material qualification 
database.  The pass/fail thresholds for mean properties, Wmean, are determined by equation 8.4.1(a).  The 

Mean
nk  values are given in Table 8.5.17.  The mean values from experimental tests must meet or exceed  

 

   
Mean

mean nW x k S= −   8.4.1(a) 
 
 The pass/fail thresholds for minimum individual properties, Wminimum individual, are determined by equa-

tion 8.4.1(b).  The Indv
nk  values are given in Table 8.5.18.  The minimum individual values from experi-

mental tests must meet or exceed  
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Indv

Minimum Individual nW x k S= −   8.4.1(b) 
 
 Test for Change in Mean -  Since the sample sizes of the original database, n1, and the new data 
sample, n2, are different, a pooled standard deviation, Sp, is used as an estimator of common population 
standard deviation. 
 

   
2 2

1 1 2 2
p

1 2

(n 1)s (n 1)s
S

n n 2

− + −=
+ −

  8.4.1(c) 

 
Using the pooled standard deviation and the mean values of the original and new data sets, the test sta-
tistic, t0, is calculated using: 
 

   1 2
0

1 2

1 1

−
=

+ip

x x
t

S
n n

  8.4.1(d) 

 
Since this is a two-sided t-test, the required t value is 

1 2, / 2, _ 2α −=a n n nt t .  Note that / 2α=a  for the two–

sided test.  ,a nt  is obtained from Table 8.5.19.   

 
 For a material to pass the this test, the test statistic, t0, must satisfy: 
 
   

1 2 1 2/ 2,n n 2 0 / 2,n n 2 t t tα α+ − + −− ≤ ≤   8.4.1(e) 

 
 Test for a High Mean - For this test, the test statistic, t0, is obtained using equation 8.4.1(d).  This test 
is designed to detect undesirably high mean values such as in the case of volatile content of prepreg.  
The mean of the "follow-on" property is said to be less than or equal to the mean of the "original" property 
if equation 8.4.1(f) is satisfied, an indication of an acceptable material and/or process.  This is a one-sided 
t-test so

1 2a,n ,n n 2t tα + −= .  Note that α=a  for one-sided test.  ,a nt  is obtained from Table 8.5.19.  Thus, for 

a material to pass this test, the test statistic, t0, must satisfy: 
 
   

1 20 ,n n 2t tα + −≤   8.4.1(f) 

 
Recommended Values for α  
 
 For determining batch acceptance limits for material specifications, setting the probability of rejecting 
a good property (α ) to 0.01 (1%) is recommended for all test methods that utilize the test statistics.  A 
minimum of five specimens for strength properties and three specimens for modulus properties is recom-
mended for material batch acceptance testing. 
 
 For determining material equivalency (such as the second through fourth situations listed in the intro-
duction to this section), setting the probability of rejecting a good property (α ) to 0.05 (5%) is recom-
mended for all test methods that utilize the test statistics.  One retest is allowed for each property, reduc-
ing the actual probability to 0.0025 (0.25%).  A minimum of eight specimens is recommended for strength 
property comparisons (typically four specimens from two separate panels and processing cycles).  A 
minimum of four specimens is recommended for modulus comparisons (typically two specimens from two 
separate panels and processing cycles).  In the case where one or more properties fail the appropriate 
criteria, one may choose to retest only those properties that failed the criteria. 
 



MIL-HDBK-17-1F 
Volume 1, Chapter 8  Statistical Methods 
 

8-68 

8.4.2 Alternate material statistical procedures 
  
 Considerable data, including allowables, are  often available on the in-house fabrication of a particular 
material system with raw material obtained from a particular supplier.  A change in some aspect of the 
material system is contemplated, such as a switch to a new supplier.  The additional testing which is re-
quired is specified in Sections 2.3.4.  The present section describes statistical procedures which will help 
determine when the original and alternative materials differ to an extent that is too large to be plausibly 
attributed to chance.  If the methods of this section indicate a statistically significant difference, and if the 
magnitude of this difference is meaningful from an engineering standpoint, then the alternative material 
probably should not be qualified without further testing. 
 
 This section assumes that data as required by Section 2.3.4 are available.  Because differences in 
materials are usually observed to be differences in the mean of a property, the methods of this section 
focus on the comparison of means.  It is important to note that, although no formal test for comparing 
variances is provided, differences in variability which are substantially larger than what is consistent with 
experience with similar materials should be investigated. 
 
 The means for each mechanical property for which data are available for both the original and the 
alternative material are compared using a two sample t-test which allows for a random batch effect (Sec-
tion 8.4.2.1).   This analysis will result in a set of observed significance  levels and confidence intervals.  
Any of the mean differences which are statistically significant at the five percent level should be investi-
gated. 
 
 To get a single number which measures the difference between the materials, let pi be the OSL for the 
ith property as determined in Section 8.4.2.1, and let m be the number of properties compared.  Calculate 
the following: 
 

   P =  - 2  ln(p )
i=1

m

i∑   8.4.2 

 
The larger P is, the more evidence there is in the data for a difference between the materials.  Compare P 
with the 95th percentile of a chi-square distribution with 2m degrees of freedom (Table 8.5.2) in order to 
determine if the differences in the means is significant at the five percent significance level. 
 
 This combined test is strictly valid only when the m sets of data are statistically independent of each 
other.  However, since the tests are on the same material and the same batches, this independence will 
never exactly hold.  In many situations, the tests will be approximately independent and the combined 
value P will provide a useful measure of the extent to which the two sets of tests differ.  If it is apparent 
from examining the data that some batches are consistently high and others low, i.e. that independence 
does not hold, then the combined test should be interpreted with caution. 
 
8.4.2.1 Comparing two groups of batches 
 
 This section considers the problem of testing whether a statistically significant difference exists be-
tween the means of two sets of measurements, where each set consists of several batches.  The meth-
ods of this section might be applied, for example, to compare the mean room temperature tensile strength 
of specimens made from three batches at one site to another set of measurements on the same me-
chanical property consisting of five batches manufactured at another site. 
 
 The two sets of data are represented by xij and yij where the first subscript indicates the batch and the 
second subscript denotes the values within each batch.  We assume here that both the x and y sets of 
data are sampled from one-way, balanced, random effects models (see Section 8.3.5.2): 
 

   ij
(1)

i
(1)

ij(1)x  =   +  b  +  µ e   8.4.2.1(a) 
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where i = 1,...,k1 and j = 1,...,n1 and 
 

   ij
(2)

i
(2)

ij(2)y  =   +  b  +  µ e   8.4.2.1(b) 

 
where i = 1,...,k2 and j = 1,...,n2.  The number of batches and batch size are k1 and n1 for the x's and k2 and 
n2 for the y's. 
 

 The ANOVA model represents each observation as the sum of three components; ( )Aµ  is the overall 

mean, ( )
i
( ) +  bA Aµ  is the population average for the ith batch, and ij( )Ae  represents the variation within 

each batch, where A  equals one for the x data and two for the y data.  The error terms ij( )Ae  are assumed 

to be independently distributed normal random variables with mean zero and variance e
2σ  (the within 

batch variance). 
 
 The batch means i

( )b A  are assumed to be independent random variables following a normal distribu-

tion with zero and a variance of b
2σ  (the between batch variance).  The within-batch variance is assumed 

to be the same for all batches. 
 
 Denote the batch averages for the x's by xi , for i = 1,...,k1, and the batch averages for the y's by iy , 

for i = 1,...,k2.  the test statistic uses the following four quantities: 
 

   x x =  
1

k
  

1 i=1

k
i

1

∑   8.4.2.1(c) 

   y y =  
1

k
 

2 i=1

k

i
2

∑   8.4.2.1(d) 

   x
2 1

1 i=1

k 2s  =  n

k -1
 ( - )

1

∑ x xi   8.4.2.1(e) 

 

   y
2 2

2 i=1

k 2s  =  n

k -1
 ( )

2

∑ −y yi   8.4.2.1(f) 

 
If 1k  =  1 , then let x

2s  =  0 ; if 2k  =  1 , let y
2s  =  0 ; if 1 2k  =  k  =  1 , then the method of this subsection 

should not be used.  In terms of the statistics in Equations 8.4.2.1(c) - (f), the test statistic is 
 

   T =  

s
k n

 +  
s

k n

0.5
x
2

1 1

y
2

2 2

x - y

F
HG

I
KJ

  8.4.2.1(g) 

 

To test the hypothesis that (1) (2) =  µ µ  at the α  significance level, compare T with 1- /2,t α γ , the 

100(1 - α /2) quantile of a central t random variable with γ  =  k  +  k1 2  - 2 degrees of freedom (Table 
8.5.3).  If T does not exceed this t quantile, then conclude that the data are consistent with the hypothesis 
that the population means are equal, otherwise conclude that there is a statistically significant difference 
in the population means (at the α  level of significance). 
 
 A 100(1 - α ) confidence interval is 
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   x - y ±
F
HG

I
KJ t  s

k n
 +  

s

k n
1-a/2,

0.5

x
2

1 1

y
2

2 2
γ   8.4.2.1(h) 

 
The observed significance level, or OSL, is the probability of observing a value of T as large or larger than 
the T actually observed if indeed the hypothesis of equal means is true.  An OSL which is less than the 
significance level α  indicates that the null hypothesis can be rejected at the α  level of significance.  The 
OSL is a function of T and γ =  1 2k  +  k  -  2 .  For γ  greater than ten, the following approximation is usu-
ally adequate.  Calculate 
 

   u =  
T(1-

1
4

)

1+ T
2

2

γ

γ
F
HG
I
KJ

  8.4.2.1(i) 

 
Determine the probability P that a standard normal random variable is less than u.  This probability can be 
determined from a table of the normal distribution, such as Table 8.5.5.  The OSL is equal to 2(1 - P).  If γ  
is less than 10, then the above approximation is not sufficiently accurate and the OSL should be obtained 
from Table 8.5.4. 
 
 For example, consider the strength measurements in Table 8.4.2.1.  The specimens tested to give 
these data were taken from a group of three consecutive batches and a group of five consecutive 
batches.  The second group of batches was produced more than a year after the first group.  Because of 
this time difference, one should not consider these data to be eight random batches from a single popula-
tion without justification.  A more prudent approach is to regard these test results as a random sample of 
three batches from one population and a random sample of five batches from a possible different popula-
tion. 
 
 

TABLE 8.4.2.1  Strength measurements from two groups of consecutive batches. 
 

Set 1 Set 2 
Mean Variance n Mean Variance n 
402.2 138.7 5 408.4 40.8 5 
387.8 1002.2 5 395.8 113.2 5 
389.4 321.8 5 357.2 451.7 5 

   376.2 119.7 5 
   377.0 189.5 5 

 
 
 
 For the data in Table 8.4.2.1, Equations 8.4.2.1(c) - (g) give the following: 
 
   x  =  393   8.4.2.1(j) 

   y = 383   8.4.2.1(k) 

   x
2s  =  311   8.4.2.1(l) 

   y
2s  =  1946   8.4.2.1(m) 

   T =  
393 -  383

311
(3)(5)

 +  
1946
(5)(5)

 =  1.0070.5F
HG

I
KJ

  8.4.2.1(n) 
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From Table 8.5.3, the 97.5 percentile of the t distribution with 5 + 3 - 2 = 6 degrees of freedom is t0.975,6 = 
2.45.  Since 1.007 is less than 2.45, one concludes that there is no statistically significant difference in the 
mean strength for the two sets of data at the five percent significance level.  Because k1 + k2 - 2 = 6 is less 
than ten, use Table 8.5.4 to obtain an OSL of 0.0.36.  A 95 percent confidence interval for the difference in 
the means is given by 
 

   
393 -  383   (2.45)  

311

(3)(5)
 +  

1946

(5)(5)

10   24.3

0.5

± F
HG

I
KJ

±

  8.4.2.1(o) 

 
Note that the confidence interval must contain zero for this example since the difference in the means is 
not significant at the 95 percent level. 
 
8.4.3 Confidence intervals for the coefficient of variation 
 
 The coefficient of variation is the ratio of the population standard deviation to the population mean.  
This section provides a method for calculating confidence intervals for a coefficient of variation, assuming 
that the underlying distribution is normal.  The coefficient of variation of the population is  estimated by the 
sample coefficient of variation  
 

   c =  
s

x
  8.4.3(a) 

 
where s  is the sample standard deviation and x  is the sample mean. 
 
 An approximate 100γ % confidence interval for the coefficient of variation has lower limit 
 

   l
1 2 1c  =  c u + 2

n
1 c + u

n+1

1
2−

−F
HG

I
KJ

L
NM

O
QP   8.4.3(b) 

and upper limit 
 

   h
2 2 2c  =  c u + 2

n
1 c + u

n+1

1
2−

−F
HG

I
KJ

L
NM

O
QP   8.4.3(c) 

 

where 1u  and 2u  are 100 1+ /2γb g  and 100 1 /2− γb g  percentiles of the 2χ  distribution with n 1−  degrees 

of freedom.  Values of 1u  and 2u  are tabulated in Table 8.5.16 for γ  equal to 0.9, 0.95, and 0.99. 
 
8.4.3.1 Example of CV confidence interval calculation 
 
 A sample of five specimens has sample mean x = 103.8 , sample standard deviation s =  4.161 , and 
sample coefficient of variation 
 

   c =  
4.161

103.8
 =  0.0400   8.4.3.1 

 
The constants 1u  and 2u  are, from Table 8.5.16, found to be 1u  =  5(2.2287)  =  11.1435  and 

2u  =  5(0.0968883)  =  0.48444 .  By substituting in Equations 8.4.3(a) and (b), an interval, which contains  

the population coefficient of variation, with 95% confidence, is determined to have lower limit lc  =  0.0240  

and upper limit, hc  =  0.115 . 
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8.4.3.2 Comment on the approximation 
 
 This approximate method is adequate for situations where the population coefficient of variation is 
less than 35%.  It is usually extremely accurate, and it is exact in the limit of large samples and also in the 
limit of small population coefficient of variation.  For details of the derivation and properties of this ap-
proximation, see Reference 8.4.3.2.  For measurements made on populations with coefficients of varia-
tion substantially larger than this, an exact (but somewhat complicated) method is available.  However, if 
one is willing to consider the possibility of a population C.V. much larger than 35%, then in order for the 
normal model to make sense, one must also accept the possibility of negative values.  Hence, if a quan-
tity is necessarily positive, then a very large C.V. implies that the normal model does not make physical 
sense.  Consequently for those cases where this approximation fails, one would usually not want to as-
sume a normal model anyway, so one would seldom, if ever, need the complicated exact procedure. 
 
8.4.4 Statistical procedures for process control 
 
8.4.4.1  x bar chart including batch effect 
 
 Assume that the data are a sample from a one-way, balanced random effects analysis of variance 
model (see Section 8.3.5.2): 
 
   ij i ijx  =   +  b  +  e ,    i = 1, ,k    j = 1, ,kµ … …   8.4.4.1(a) 

 
where k is the number of accepted batches, n is the number of specimens in each batch, and xij repre-
sents the jth specimen in the ith batch. 
 
 This ANOVA model represents each observation as the sum of three components; µ is the overall 
average of the population, bi is the population average for the ith batch, and eij is a random error term 
which represents variation within each batch.  The error terms, eij, are assumed to be independently dis-

tributed normal random variables with a mean of zero and a variance of e
2σ  (the within-batch variance).  

The batch means, bi, are assumed to be independent random variables following a normal distribution 

with a mean of zero and a variance of b
2σ  (the between-batch variance). 

 
 The acceptability of a new batch is to be tested using the data in the k previously accepted batches.  
This new batch is referred to as the (k+1)th batch. Denote the grand mean on the basis of k batches as 
 

   x(k)

i=1

k

j

n
 =  x / (kn)

=1
ij∑ ∑   8.4.4.1(b) 

 
The batch means are computed as 
 

   xi  =  x / n    for i = 1, ,k
j=1

n
ij∑ …   8.4.4.1(c) 

 
In this section, a superscript in parentheses indicates the number of batches of data used to calculate a 

statistic.  For example, x(k)  is the grand mean based on all batches up to and including the kth batch.  
From these quantities, the required sums of squares can be computed.  The between-batch mean square 
is computed as 
 

   (k)

i=1

k
i

(k) 2MSB =  
1

k-1
  n(  -  )∑ x x   8.4.4.1(d) 
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Assume that the (k+1th) batch is also described by the model in Equation 8.4.4.1(a). The mean of the 
(k+1th) batch has a normal distribution with mean µ and a variance of 
 

   
1

n
n  +  b

2
e
2σ σd i  

 
It follows that the difference between the grand mean and the (k+1th) mean, 
 

   x x(k)
k+1−  

 
has a normal distribution with a mean of zero and a variance of 
 

   k+1

k
 

n  +  

n
b
2

e
2σ σd i

 

Also, 
 

   
k+1

kn
 MSB ~

k+1

k(k-1)
 

n  +  

n
  

2

k-1
(k) b

2
e
2σ σ

χ
d i

  8.4.4.1(e) 

 

where the ~ indicates "is distributed as" and k-1
2χ  denotes the 2χ  distribution with k-1 degrees of free-

dom.  Dividing the difference between the grand mean and the (k+1)th batch mean by the left hand side of 
Equation 8.4.4.1(e) gives 
 

   (k+1)
1/2

i=1

k
2

k-1V  =  
k+1

k(k-1)
  ( )

~ t
x x

x x

(k)
k+1

i
(k)

−

∑ −
L
NM

O
QP

  8.4.4.1(f) 

 
where k-1t  denotes the central t-distribution with k-1 degrees of freedom.  This last relationship is the ba-

sis of the control chart.  (k+1)V , calculated from the new mean and all previously accepted batch means, 

is compared to the t-distribution limits.  Specifically, (k+1)V  is compared to the a quantile of the central 

t-distribution with k-1 degrees of freedom, k-1,t α , from Table 8.5.3.  If the absolute value of (k+1)V  ex-

ceeds k-1,t α , the (k+1)th batch is not accepted.  These limits approach the normal distribution limits as the 

number of batches increases.  Because of the variable control limits, it should be possible to start using 
this chart after very few batches.  It may be reasonable to use it after data from four or five batches have 
been obtained. 
 
 If the (k+1)th batch is accepted, the grand mean and the between-batch mean square are updated as 
follows: 

   (k+1)  =  
k 

k+1
x

x x(k)
k+1−

  8.4.4.1(g) 

 

   (k+1) (k) 2(k)MSB  =  
k-1

k
 MSB  +  

n

k+1
 -  x xk+1d i   8.4.4.1(h) 

 
Finally, note that this procedure can fail if there is a trend in the means.  Such a trend would inflate the 
estimate of the variance and result in limits which are too wide.  Because of this, the above procedure is 
used with a "runs" test for trends.  Example charts are shown in Figure 8.4.4.1(a) and (b).  These figures 
show the limits, k-1,t α  and - tk-1,α , and V(k+1) for each successive batch. 
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FIGURE 8.4.4.1(a)  Example control chart for means beginning with the third batch (0.01 level). 

 
 
 

 
FIGURE 8.4.4.1(b)  Example control chart for means beginning with the fifth batch (0.01 level). 
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8.4.4.2 s2 chart for the within-batch component of variance 
 
 Let s2 be the sample variance of the jth accepted batch.  Test the (k+1)th batch variance using the 
following statistic: 

   k+1
k+1
2

j=1

k

j
2

U  =  
s

 s / k
F

∑
~   8.4.4.2 

 
where F denotes the standard F-distribution with n -1 numerator degrees of freedom and k(n-1) denomina-
tor degrees of freedom.  Compare k+1U  to the a quantile of the F-distribution for n-1 numerator degrees of 

freedom and k(n-1) denominator degrees of freedom, αF .  These values are provided in Table 8.5.1 for 

the 0.95 level.  If the statistic k+1U  exceeds αF , the (k+1)th batch is not accepted.  The control limits will 
approach constants as the denominator degrees of freedom for the F statistic become large.  As with the 
means chart, this variance chart should be useful after data have been obtained from a few batches.  An 
example S2 chart is shown in Figure 8.4.4.2.  This figure shows the limit, αF , and U for each successive 
batch. 
 
 

 
FIGURE 8.4.4.2  Example control chart for variances beginning with the third batch (0.01 level). 

 
 
8.4.4.3 Test for trend in batch means 
 
 The x  chart including batch effect of Section 8.4.4.1 may not perform properly if there is a systematic 
trend, either upward or downward, in the batch means for the initial batches received.  Such a trend 
would make (k+1)V  (Equation 8.4.4.1(f)) too small by inflating the denominator.  This could result in 
batches being accepted which would have been rejected had there been no trend.  If a trend is detected 
in the batch means before the control limits have leveled off (e.g., before the 25th batch; see Figure 
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8.4.4.1(b)) then caution should be used when accepting batches, especially if the trend can be seen to be 
downward.  A diagnostic test is given in this subsection which should be performed on the first 25 batches 
received in order to determine whether a statistically significant trend exists.  After 25 batches, this diag-
nostic should be discontinued, since the control limits will no longer be substantially effected by any trend 
which might be present, so the validity of the test in Section 8.4.4.1 need no longer be questioned.  The 
idea behind this test is to fit a straight line through the batch means by least squares, and to determine if 
this line has a statistically significant slope. 
 
 Let the mean for the ith accepted batch be denoted xi , and let it  be a time associated with the arri-

val of this batch.  For example, the time of arrival of the first batch may be represented by 1t = 0 , and the 

remaining it  may be the number of days which have elapsed since the first batch arrived.  Assume that k 
batches have been accepted thus far, and that the following quantities have been calculated and there-
fore are available: 

   x x
(k)  = / k

i=1

k
i∑   8.4.4.3(a) 

   (k)

i=1

k
i =  t / kt ∑   8.4.4.3(b) 

   tt
(k)

i=1

k 2(k)
iS  =  t -∑ te j   8.4.4.3(c) 

 

   xx
(k)

i=1

k 2
j

(k)S  =  -∑ x xd i   8.4.4.3(d) 

 

   tx
(k)

i=1

k
i

(k)
i

(k)S  =  t  -  t  -  ∑ e jd ix x   8.4.4.3(e) 

   (k) tx
(k)

tt
(k)b  = S

S
  8.4.4.3(f) 

   R
(k)

xx
(k) (k)

tx
(k) 2(k)

tt
(k)S =  S -  2 b S + b S   8.4.4.3(g) 

 
 The slope of the least squares line based on k batches is (k)b , and the standard deviation about the 
least squares line is 
 

   SD  =  S / (k- 2)(k) 1/2
R
(k)   8.4.4.3(h) 

 
 When the (k+1)st batch arrives, at time k+1t , the following steps should be performed. 
 
Step 1  Update tt

(k)S , tt
(k)S , and tx

(k)S . 
 

   tt
(k+1)

tt
(k) 2(k)

k+1S  =  S +
k

k+1
- tte j   8.4.4.3(i) 

 

   xx
(k+1)

xx
(k) 2(k)

k+1S  =  S +
k

k+1
-x xd i   8.4.4.3(j) 

 

   tx
(k+1)

tx
(k) (k)

k+1 k+1S  =  S +
k

k+1
- tt xe j   8.4.4.3(k) 
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Step 2  Calculate (k+1)b  and R
(k+1)S . 

 

   (k+1) tx
(k+1)

tt
(k+1)b  =  S

S
  8.4.4.3(l) 

   R
(k+1)

xx
(k+1) (k+1)

tx
(k+1) (k+1)

tt
(k+1)S  =  S  -  2 b  S  +  b S

2
  8.4.4.3(m) 

 
Step 3  Calculate the trend statistic. 
 

   (k+1) (k+1)U  =  b
(k -1)S

S
tt
(k+1)

R
(k+1)

  8.4.4.3(n) 

 
Step 4  Determine k-1, /2t α , the α  quantile of the central t distribution with k-1 degrees of freedom (Table 

8.5.3).  If |U |(k+1)  is greater than k-1, /2t α , then a statistically significant trend has been detected and 

should be investigated. 
 
 The level α  of the test is somewhat arbitrary, but probably should be taken to be small (e.g., 0.001) 
in order to make small the probability of making an error by declaring a trend when no trend exists. 
 
Step 5  Update the means. 

   (k+1)  =  
k +

k+1
x

x x(k)
k+1   8.4.4.3(o) 

   (k+1) (k+1) =  
k + t

k+1
t

t(k)

  8.4.4.3(p) 

The following remarks should be made concerning this test: 
 

1) The test should not be performed once the control limits in the x  chart including batch effect 
(Section 8.4.4.1) have leveled off.  This should occur at or before 25 batches have been ac-
cepted. 

 
2) This trend test is only designed to detect situations where the validity of the test in Section 8.4.4.1 

is called into question.  It is not suitable as a general purpose trend test. 
 
3) The updating Equations 8.4.4.3(i - k) and 8.4.4.3(o - p) make it unnecessary to use Equations 

8.4.4.3(a - e) after each batch.  Calculating quantities for a test on the (k+1)th batch based on the 
results from the test on the kth batch requires only a hand calculator. 

 
4) A control chart analogous to Figure 8.4.4.1 may be prepared for the trend test as well, and it 

could provide useful information. 
 
8.4.5  Average stress-strain curves and bearing load-deformation curves 
 
 It is highly desirable to have average stress-strain curves for tension, compression, and in-plane 
shear loading and to have average bearing load-deformation curves.  However, the equations suggested 
below to represent the average curves are continuous and cannot represent discontinuities that may be 
caused by initiation of damage.  Thus, it is also desirable to have graphs of actual data sets that are rep-
resentative of individual tests. 
 
 Average curves will be determined using a best fit procedure with a minimum of two data sets from 
each batch.  The best fit of each data set will be obtained to each of the seven algebraic functions below 
using the procedure described in References 8.4.5(a) and (b). 
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1) linear 
2) parabolic 
3) inverse parabolic 
4) Ramberg-Osgood exponential 
5) bilinear 
6) parabolic-linear 
7) parabolic-exponential 

 
 The equations for each function are given in the Section 8.4.5.1.  The average error of fit is deter-
mined by the product of the root mean square (RMS) stress (load) error and the RMS percent stress 
(load) error.  By using the product of these two values, sensitivity to errors for high stress (load) values 
and for the initial portion of the data set is provided.  The function with the smallest average error of fit is 
chosen for each data set. 
 
 An average curve for all the data sets is determined up to the minimum strength of all data sets using 
the best-fit functions with smallest average error and the following procedure.  At increments of one hun-
dredth of the minimum strength, the average strain (deformation) for each best-fit function is determined.  
These average strains (deformations) and stresses (loads) are again fit to the seven algebraic functions 
to obtain an average curve. The function with the smallest average error of fit and the constants for this 
function will be reported with the average curve in Volume 2. 
 
 All of the strengths and strain- and deformation-to-failure values, not just those used in determining 
the average curve will be included as a scatter plot at the top of the average curve.  Example stress-strain 
curves which include the scatter plot are shown in Figures 8.4.5(a) and (b). 
 
 

 
FIGURE 8.4.5(a)  Tensile stress-strain curve for AS4/3501-6 carbon/epoxy. 
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FIGURE 8.4.5(b)  Shear stress-strain curve for AS4/3501-6 carbon-epoxy. 

 
 
8.4.5.1 Fitting equations 
 
 The fitting equations for the stress-strain curves based on References 8.4.5(a) and (b) are presented 
below.  Also included with each type of curve are the equations for the secant modulus and tangent 
modulus curves. These curves will be presented in MIL-HDBK-17 as discussed in Section 8.4.4.  Each of 
the functions are based on the terms stress (s) and strain (e).  The secant modulus functions are calcu-
lated as the secant modulus between the current value of strain and zero strain. 
 

   sE =
s(e) - s(0)

e- 0
=

s(e)

e
  8.4.5.1(a) 

 
The equation for the tangent modulus at any value of strain is: 
 

   tE =
ds

de
  8.4.5.1(b) 

 
Linear: 
   s = C e1   8.4.5.1(c) 

   t s 1E = E = C   8.4.5.1(d) 
 
Parabolic: 
   s = C e+ C e1 2

2   8.4.5.1(e) 

   t 1 2E = C + 2C e   8.4.5.1(f) 

   s 1 2E = C + C e   8.4.5.1(g) 
 
Inverse Parabolic: 
   e = C s+ C s2 3 2   8.4.5.1(h) 

   t 2
2

3
-1/2

E = (C + 4C e)±   8.4.5.1(i) 
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   s
2 2

2
3

1/2

3
E = C (C + 4C e)

2C e

±
  8.4.5.1(j) 

 
The ± symbol has the same sign as the constant C3. 
 
Ramberg-Osgood Exponential: 
 

   e =
s

C
+ 0.002  

s

C
,      n = C

2

n

1
3

L
NM
O
QP   8.4.5.1(k) 

 
Both secant modulus and tangent modulus values for the Ramberg-Osgood exponential function are 
found numerically. 
 
The remaining functions have two fitted portions of the curves.  The intersection of these two portions (ei, 
si) is found as part of the fitting procedure. 
 
Bilinear: 
Below (ei,si) 
   s = C e1   8.4.5.1(c) 

   t s 1E = E = C   8.4.5.1(d) 
Above (ei,si) 
   s = C + C e2 3   8.4.5.1(l) 

   t 3E = C   8.4.5.1(m) 

   s
2

3E = C
e

+ C   8.4.5.1(n) 

Parabolic - Linear: 
Below(ei,si) 
   s = C e+ C e1 2

2   8.4.5.1(e) 

   t 1 2E = C + 2C e   8.4.5.1(f) 

   s 1 2E = C + C e   8.4.5.1(g) 
 
Above (ei,si) 
   s = C + C e3 4   8.4.5.1(o) 

   t 4E = C   8.4.5.1(p) 

   s
3

4E = C
e

+ C   8.4.5.1(q) 

Parabolic - Exponential: 
Below (ei,si) 
   s = C + C e1 2

2   8.4.5.1(e) 

   t 1 2E = C + 2C e   8.4.5.1(f) 

   s 1 2E = C + C e   8.4.5.1(g) 
Above (ei,si) 
   s = C e ,    n = C3

n
4   8.4.5.1(r) 

   t 3
n-1E = nC e   8.4.5.1(s) 

   s 3
n-1e = C e   8.4.5.1(t) 
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In all cases, the type of curve and the values of the constants will be shown on the typical stress-strain 
curve figures.  When there are two regions in a stress-strain curve, the value of the strain and stress and 
the intersection of the two regions is also shown on the figure. 
 
 
8.5 STATISTICAL TABLES AND APPROXIMATIONS 
 
 This section contains a number of tables which are required for the analyses described in Section 8.3.  
Tables 8.5.1, 8.5.4 through 8.5.6, and 8.5.14 were generated specifically for MIL HDBK-17.  The remain-
ing tables were adapted from MIL-HDBK-5 (see Reference 8.3.4.5.1). 
 
 For some of the tabulated values, theoretical derivations and numerical approximations are provided 
below.  The approximations are useful in computer applications when the software required to generate 
the tabulated values is not available.  The accuracy of the approximations is measured by the relative 
magnitude of error (RME).  The RME is defined as 
 

   RME =  
approximate value

actual value

−
  8.5 

 
and measures the percentage error in the approximate value with respect to the actual value. 
 
8.5.1 Quantiles of the F-distribution 
 
 An approximation to the F0.95 values in Table 8.5.1 is 
 

   0.95

2 2 2 2

F = exp 2 1+ z -1

3
-

4

3
+ 2 z 1+

(z - 3)

6
δ σ σ σL
NM

O
QP

F
HG

I
KJ   8.5.1(a) 

where 
 
   δ γ γ= 0.5{1/ ( -1) -1/ ( -1)}2 1   8.5.1(b) 

   2
2 1= 0.5 1/ -1 +1/ -1σ γ γb g b gn s   8.5.1(c) 

 z = 1.645 
 
 1γ   = numerator degrees of freedom   
 
 2γ   = denominator degrees of freedom. 
 
 Equations 8.5.1(a-c) are not valid when either 1γ  or 2γ  equals one.  The following equations are to 
be used for these special cases: 
 
For 1γ  = 1 
 

   

0.95

2 2
2

2

2
3

2
4

F  =  1.95996400 +
2.37227200

+
2.82250000

    +
2.555585200

+
1.58953600

γ γ

γ γ

L
NM

O
QP

  8.5.1(e) 

For 2γ  = 1 
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0.95

1 1
2

-2

1
3

1
4

F  =  0.06270671+
0.01573832

+
0.00200073

    -
0.00243852

-
0.00064811

γ γ

γ γ

L
NM

O
QP

  8.5.1(f) 

 
8.5.2 Quantiles of the 2χ  distribution 
 
 An approximation to the chi-squared quantiles ( 0.95

2χ ) in Table 8.5.2 is: 
 

   0.95
2

 31

2

  =  1-
2

9
+1.645

2

9
+

9

100
χ γ

γ γ γ
F
HG
I
KJ

L

N
MMM

O

Q
PPP

  8.5.2 

 
where γ  is the degrees of freedom.  This approximation is accurate to within 0.2% of the tabulated val-
ues.  (See Reference 8.5.2.) 
 
8.5.3 Upper-tail quantiles for the t-distribution 
 
 Table 8.5.3 was generated specifically for MIL-HDBK-17. 
 
8.5.4 Two-tail probabilities for the t-distribution 
 
 Table 8.5.4 was generated specifically for MIL-HDBK-17. 
 
8.5.5 Upper-tail probabilities for the standard normal distribution 
 
 Table 8.5.5 was generated specifically for MIL-HDBK-17. 
 
8.5.6 Critical values for the k-sample Anderson-Darling test at the α = 0.05 significance level 
 
 The k-sample Anderson-Darling test critical values in Table 8.5.6 were calculated using Equation 
8.3.2.2(j) for the case of samples of equal size n. 
 
8.5.7 Critical values for the MNR outlier test 
 
 The critical values in Table 8.5.7 are computed by the following formula: 
 

   c

2

2V  =  
n-1

n
t

n- 2 + t
  8.5.7 

 
where t is the [1 - γ /(2n)] quantile of the t-distribution with n - 2 degrees of freedom, γ  is the significance 
level of the test, and n is the sample size.  Numbers in Table 8.5.7 are computed with a significance level 
of γ  = 0.05.  (See Reference 8.3.3.1(b).)   
 
8.5.8 One-sided B-basis tolerance factors, VB, for the Weibull distribution 
 
 The V values in Table 8.5.8 are calculated using the following statistical results.  First, define the ran-
dom variables 

   i
i

A =
ln(x ) - ln( � )

1/ �
     i = 1, ,n

α
β

…   8.5.8(a) 
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where xi is a Weibull random variable with unknown shape and scale parameters β  and α  and �α  and 
�β  are the maximum likelihood estimators (MLE's) of β  and α  given by Equations 8.3.4.2.1(a) and 

8.3.4.2.1(c).  For a particular n, the VB value is the 0.95th quantile of the conditional distribution of the 
random variable 
 

   BV =
n[ln( �Q) - ln(Q)]

1/ �β
  8.5.8(b) 

given that 

   iA =
ln( ) - ln( � )

1/ �
′ ′

′
xi α

β
  8.5.8(c) 

where 

   ′ =
F
HG

I
KJxi -ln 1-

i- 0.5

n+ 0.25
     i = 1, ,n…   8.5.8(d) 

 
   �Q = � (0.10536)1/α β   8.5.8(e) 
 
   Q = (0.10536)1/α β   8.5.8(f) 
 

and � ′α  and � ′β  are the MLE's of the two-parameter Weibull scale and shape parameters for the sample 
x1', ..., xn'.  The conditional distribution of VB is determined by the relationship 
 
   BV = n[Z+ ln(0.10536)]   8.5.8(g) 
 
where the distribution of Z is given in Theorem 4.1.3 on page 150 of reference 8.3.4.2.  Numerical integra-
tion was used to determine the V values in Table 8.5.8 based on these results. 
 
 An approximation to the V values in Table 8.5.8 is: 
 

   BV 3.803 + exp 1.79 - 0.516ln(n) +
5.1

n-1
≈ RST

UVW   8.5.8(h) 

 
This approximation is accurate to within 0.5% of the tabulated values for n greater than or equal to 16. 
 
8.5.9 One-sided A-basis tolerance factors, VA, for the Weibull distribution 
 
 The VA values in Table 8.5.9 are calculated as described in Section 8.5.8 (Reference 8.5.9).  An ap-
proximation to the VA values is: 
 

   AV   6.649 + exp 2.55- 0.526ln(n) +
4.76

n
≈ L

NM
O
QP   8.5.9 

 
This approximation is accurate within 0.5% of the tabulated values for n greater than or equal to 16. 
 
8.5.10 One-sided B-basis tolerance factors, kB, for the normal distribution 
 
 The kB values in Table 8.5.10 are calculated as 1/ n  times the 0.95th quantile of the noncentral 

t-distribution with noncentrality parameter 1.282 n  and n - 1 degrees of freedom.  An approximation to 
the kB values in Table 8.5.10 is: 
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   Bk 1.282 + exp{0.958 - 0.520ln(n) + 3.19 / n}≈   8.5.10 
 
This approximation is accurate to within 0.2% of the tabulated values for n greater than or equal to 16. 
 
8.5.11 One-sided A-basis tolerance factors, kA, for the normal distribution 
 
 The kA values in Table 8.5.11 are calculated as 1/ n  times the 0.95th quantile of the noncentral 

t-distribution with noncentrality parameter 2.326 n  and n - 1 degrees of freedom (Reference 8.5.11).  An 
approximation to the kA values in Table 8.5.11 is: 

   Ak   2.326 + exp 1.34 - 0.522ln(n) +
3.87

n
≈ F

HG
I
KJ   8.5.11 

This approximation is accurate to within 0.2% of the tabulated values for n greater than or equal to 16. 
 
8.5.12 Ranks, rB, for determining nonparametric B-basis values 
 
 For n > 29, an approximation to the ranks for B-basis values in Table 8.5.12 is 

   Br =
n

10
-1.645

9 n

100
+ 0.23   8.5.12 

rounded to the nearest integer.  This approximation is exact for all but 12 values of n in the range of the 
table (29 ≤ n ≤ 10499).  For this small percentage of n values (0.1%), the approximation errs by one rank 
on the conservative side. 
 
8.5.13 Ranks, rA, for determining nonparametric A-basis values 
 
 For n ≥ 299, an approximation to the ranks for A-basis values in Table 8.5.13 is: 
 

   Ar   
n

100
-1.645

99 n

10,000
+ 0.29 +

19.1

n
≈   8.5.13 

For n less than 299, an A-allowable cannot be computed.  This approximation is exact for all but 23 values 
of n in the range of the table (299 ≤ n ≤ 11691).  For this small percentage of n values (0.2%), the approxi-
mation errs by one rank on the conservative side (Reference 8.3.4.5.1). 
 
8.5.14 Nonparametric B-basis values for small sample sizes 
 
 The values in Table 8.5.14 are based on Reference 8.3.4.5.2(a). 
 
8.5.15 Non-parametric A-basis values for small sample sizes 
 
 The values in Table 8.5.15 are based on Reference 8.3.4.5.2(b). 
 
8.5.16 Critical values for approximate confidence limits on the coefficient of variation 
 

 Values for 1u  and 2u ,  100 1+ /2γb g  and 100 1 /2γb g  percentiles of the 2χ  distribution with n1  degrees 

of freedom, are tabulated in Table 8.5.16 for γ  equal to 0.9, 0.95, and 0.99. 

 
8.5.17 One-sided tolerance factors for acceptance limits on mean values, for normal distribution 
 
 The values listed in Table 8.5.17 are used for determining equivalency between two data sets and for 
the establishment of material specification requirements for minimum average values.  These constants 
are used for equivalency tests that are designed to detect a decrease in the mean value.  The values in 
the table were obtained from Reference 8.3.5.4(b) and reference 8.5.17. 
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8.5.18 One-sided tolerance factors for acceptance limits on individual values, for normal distribution 
 
 The values listed in Table 8.5.18 are used for determining equivalency between two data sets and for 
the establishment of material specification requirements for minimum individual values.  These constants 
are used for equivalency tests that are designed to detect a decrease in an individual value.  The values 
in the table were obtained from Reference 8.3.5.4(b) and Reference 8.5.17. 
 
8.5.19 Upper and lower tail quantiles for two-sided t-distribution 
 
 The values listed in Table 8.5.19 are used for determining equivalency between two data sets and for 
the establishment of material specification requirements for minimum and/or maximum mean values.  
These constants are used for equivalency tests that are designed to detect an increase in a mean value, 
or to detect a change in a mean value (either up or down).  The values in the table were obtained from 
Reference 8.3.5.4(b) and Reference 8.5.17. 
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TABLE 8.5.1  Quantiles of the F-distribution, continued on next page. 
 

 γ1 numerator degrees of freedom 
 1 2 3 4 5 6 7 8 9 

 1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 
 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 

γ2 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 
 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 
 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

d           
e 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 
n 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 
o 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 
m 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 
i 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
n           
a 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 
t 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 
o 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
r 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 
 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
           

d 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
e 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 
g 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
r 19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 
e 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 
e           
s 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 

o 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 
f 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 
           
 26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
f 27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 
r 28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
e 29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 
e 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
d           
o 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
m 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 
 120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 
           
 ∞ 3.84  3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 
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TABLE 8.5.1  Quantiles of the F-distribution, concluded. 
 

 γ1 numerator degrees of freedom 
 10 12 15 20 24 30 40 60 120 ∞ 

 1 241.88 243.91 245.95 248.01 249.05 250.10 251.14  252.20 253.25 254.31 
 2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.51 

γ2 3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 
 4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 
 5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37 

d            
e 6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 
n 7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 
o 8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 
m 9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 
i 10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 
n            
a 11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 
t 12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 
o 13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 
r 14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 
 15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 
            

d 16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 
e 17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 
g 18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 
r 19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 
e 20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 
e            
s 21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 
 22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 
 23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 

o 24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 
f 25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 
            
 26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69 
f 27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67 
r 28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65 
e 29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64 
e 30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 
d            
o 40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 
m 60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 
 120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 
            
 ∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 
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TABLE 8.5.2  Quantiles of the χ2 distribution. 
 

γ  
0.95
2χ  

1 3.84 
2 5.99 
3 7.82 
4 9.49 
5 11.07 
6 12.60 
7 14.07 
8 15.51 
9 16.93 
10 18.31 
11 19.68 
12 21.03 
13 22.37 
14 23.69 
15 25.00 
16 26.30 
17 27.59 
18 28.88 
19 30.15 
20 31.42 
21 32.68 
22 33.93 
23 35.18 
24 36.42 
25 37.66 
26 38.89 
27 40.12 
28 41.34 
29 42.56 
30 43.78 
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TABLE 8.5.3  Upper-tail quantiles for the t-distribution. 
 

γ 0.75 0.90 0.95 0.975 0.99 0.995 
1 1.0000 3.0777 6.3137 12.7062 31.8205 63.6568 
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 
3 0.7649 1.6377 2.3534 3.1825 4.5407 5.8409 
4 0.7407 1.5332 2.1318 2.7764 3.7470 4.6041 
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322 
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 
8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 
13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 
15 0.6912 1.3406 1.7530 2.1314 2.6025 2.9467 
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 
21 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 
60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603 

120 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174 
∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 
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TABLE 8.5.4  Two-tail probabilities for t-distribution. 
 

T degrees of freedom, γ 
 1 2 3 4 5 6 7 8 9 10 
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.25 0.8440 0.8259 0.8187 0.8149 0.8125 0.8109 0.8098 0.8089 0.8082 0.8076 
0.50 0.7048 0.6667 0.6514 0.6433 0.6383 0.6349 0.6324 0.6305 0.6291 0.6279 
0.75 0.5903 0.5315 0.5077 0.4950 0.4870 0.4816 0.4777 0.4747 0.4724 0.4705 
1.00 0.5000 0.4226 0.3910 0.3739 0.3632 0.3559 0.3506 0.3466 0.3434 0.3409 
1.25 0.4296 0.3377 0.2999 0.2794 0.2666 0.2578 0.2515 0.2466 0.2428 0.2398 
1.50 0.3743 0.2724 0.2306 0.2080 0.1939 0.1843 0.1773 0.1720 0.1679 0.1645 
1.75 0.3305 0.2222 0.1784 0.1550 0.1405 0.1307 0.1236 0.1182 0.1140 0.1107 
2.00 0.2952 0.1835 0.1393 0.1161 0.1019 0.0924 0.0856 0.0805 0.0766 0.0734 
2.25 0.2662 0.1534 0.1099 0.0876 0.0743 0.0654 0.0592 0.0546 0.0510 0.0482 
2.50 0.2422 0.1296 0.0877 0.0668 0.0545 0.0465 0.0410 0.0369 0.0339 0.0314 
2.75 0.2220 0.1107 0.0707 0.0514 0.0403 0.0333 0.0285 0.0251 0.0225 0.0205 
3.00 0.2048 0.0955 0.0577 0.0399 0.0301 0.0240 0.0199 0.0171 0.0150 0.0133 
3.25 0.1900 0.0831 0.0475 0.0314 0.0227 0.0175 0.0141 0.0117 0.0100 0.0087 
3.50 0.1772 0.0728 0.0395 0.0249 0.0173 0.0128 0.0100 0.0081 0.0067 0.0057 
3.75 0.1659 0.0643 0.0331 0.0199 0.0133 0.0095 0.0072 0.0056 0.0046 0.0038 
4.00 0.1560 0.0572 0.0280 0.0161 0.0103 0.0071 0.0052 0.0039 0.0031 0.0025 
4.25 0.1471 0.0512 0.0239 0.0132 0.0081 0.0054 0.0038 0.0028 0.0021 0.0017 
4.50 0.1392 0.0460 0.0205 0.0108 0.0064 0.0041 0.0028 0.0020 0.0015 0.0011 
4.75 0.1321 0.0416 0.0177 0.0090 0.0051 0.0032 0.0021 0.0014 0.0010 0.0008 
5.00 0.1257 0.0377 0.0154 0.0075 0.0041 0.0025 0.0016 0.0011 0.0007 0.0005 
5.25 0.1198 0.0344 0.0135 0.0063 0.0033 0.0019 0.0012 0.0008 0.0005 0.0004 
5.50 0.1145 0.0315 0.0118 0.0053 0.0027 0.0015 0.0009 0.0006 0.0004 0.0003 
5.75 0.1096 0.0289 0.0104 0.0045 0.0022 0.0012 0.0007 0.0004 0.0003 0.0002 
6.00 0.1051 0.0267 0.0093 0.0039 0.0018 0.0010 0.0005 0.0003 0.0002 0.0001 
6.25 0.1010 0.0247 0.0083 0.0033 0.0015 0.0008 0.0004 0.0002 0.0001 0.0001 
6.50 0.0972 0.0229 0.0074 0.0029 0.0013 0.0006 0.0003 0.0002 0.0001 0.0001 
6.75 0.0936 0.0213 0.0066 0.0025 0.0011 0.0005 0.0003 0.0001 0.0001 0.0001 
7.00 0.0903 0.0198 0.0060 0.0022 0.0009 0.0004 0.0002 0.0001 0.0001 0.0000 
7.25 0.0873 0.0185 0.0054 0.0019 0.0008 0.0003 0.0002 0.0001 0.0000 0.0000 
7.50 0.0844 0.0173 0.0049 0.0017 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000 
7.75 0.0817 0.0162 0.0045 0.0015 0.0006 0.0002 0.0001 0.0001 0.0000 0.0000 
8.00 0.0792 0.0153 0.0041 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 
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TABLE 8.5.5  Upper tail probabilities for the standard normal distribution. 
 

x 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
0.00 0.50000 0.59871 0.69146 0.77337 0.84134 0.89435 0.93319 0.95994 0.97725 0.98778 
0.01 0.50399 0.60257 0.69497 0.77637 0.84375 0.89617 0.93448 0.96080 0.97778 0.98809 
0.02 0.50798 0.60642 0.69847 0.77935 0.84614 0.89796 0.93574 0.96164 0.97831 0.98840 
0.03 0.51197 0.61026 0.70194 0.78230 0.84850 0.89973 0.93699 0.96246 0.97882 0.98870 
0.04 0.51595 0.61409 0.70540 0.78524 0.85083 0.90147 0.93822 0.96327 0.97932 0.98899 
0.05 0.51994 0.61791 0.70884 0.78814 0.85314 0.90320 0.93943 0.96407 0.97982 0.98928 
0.06 0.52392 0.62172 0.71226 0.79103 0.85543 0.90490 0.94062 0.96485 0.98030 0.98956 
0.07 0.52790 0.62552 0.71566 0.79389 0.85769 0.90658 0.94179 0.96562 0.98077 0.98983 
0.08 0.53188 0.62930 0.71904 0.79673 0.85993 0.90824 0.94295 0.96637 0.98124 0.99010 
0.09 0.53586 0.63307 0.72240 0.79955 0.86214 0.90988 0.94408 0.96712 0.98169 0.99036 
0.10 0.53983 0.63683 0.72575 0.80234 0.86433 0.91149 0.94520 0.96784 0.98214 0.99061 
0.11 0.54380 0.64058 0.72907 0.80511 0.86650 0.91309 0.94630 0.96856 0.98257 0.99086 
0.12 0.54776 0.64431 0.73237 0.80785 0.86864 0.91466 0.94738 0.96926 0.98300 0.99111 
0.13 0.55172 0.64803 0.73565 0.81057 0.87076 0.91621 0.94845 0.96995 0.98341 0.99134 
0.14 0.55567 0.65173 0.73891 0.81327 0.87286 0.91774 0.94950 0.97062 0.98382 0.99158 
0.15 0.55962 0.65542 0.74215 0.81594 0.87493 0.91924 0.95053 0.97128 0.98422 0.99180 
0.16 0.56356 0.65910 0.74537 0.81859 0.87698 0.92073 0.95154 0.97193 0.98461 0.99202 
0.17 0.56749 0.66276 0.74857 0.82121 0.87900 0.92220 0.95254 0.97257 0.98500 0.99224 
0.18 0.57142 0.66640 0.75175 0.82381 0.88100 0.92364 0.95352 0.97320 0.98537 0.99245 
0.19 0.57535 0.67003 0.75490 0.82639 0.88298 0.92507 0.95449 0.97381 0.98574 0.99266 
0.20 0.57926 0.67364 0.75804 0.82894 0.88493 0.92647 0.95543 0.97441 0.98610 0.99286 
0.21 0.58317 0.67724 0.76115 0.83147 0.88686 0.92785 0.95637 0.97500 0.98645 0.99305 
0.22 0.58706 0.68082 0.76424 0.83398 0.88877 0.92922 0.95728 0.97558 0.98679 0.99324 
0.23 0.59095 0.68439 0.76730 0.83646 0.89065 0.93056 0.95818 0.97615 0.98713 0.99343 
0.24 0.59483 0.68793 0.77035 0.83891 0.89251 0.93189 0.95907 0.97670 0.98745 0.99361 

 
 

Note: To find the probability that a standard normal random variable is less than x, enter the 
table at the cell for which the sum of the row and column headings equals x (e.g., for 
x = 0.73 = 0.5 + 0.23, we have, from row 23 and column 2, P = 0.76730).  If x is less than zero, 
use the absolute value of x to get a value P', and let the probability be P = 1 - P' (e.g., for 
x = -0.73, P = 1 - 0.76730 = 0.23270) 
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TABLE 8.5.6  Critical values for the k-sample Anderson-Darling test at the α = 0.05 significance level. 
 

  k* 
   2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 3 2.11 1.80 1.65 1.56 1.50 1.46 1.42 1.39 1.37 1.35 1.33 1.32 1.31 1.29 
 4 2.20 1.86 1.70 1.60 1.54 1.49 1.45 1.42 1.39 1.37 1.36 1.34 1.33 1.31 
 5 2.25 1.89 1.73 1.63 1.56 1.51 1.47 1.43 1.41 1.39 1.37 1.35 1.34 1.32 
                
 6 2.29 1.92 1.74 1.64 1.57 1.52 1.48 1.45 1.42 1.40 1.38 1.36 1.34 1.33 
 7 2.32 1.94 1.76 1.65 1.58 1.53 1.49 1.45 1.43 1.40 1.38 1.36 1.35 1.34 
 8 2.34 1.95 1.77 1.66 1.59 1.53 1.49 1.46 1.43 1.41 1.39 1.37 1.35 1.34 
 9 2.35 1.96 1.78 1.67 1.59 1.54 1.50 1.46 1.43 1.41 1.39 1.37 1.36 1.34 
 10 2.37 1.97 1.78 1.67 1.60 1.54 1.50 1.47 1.44 1.41 1.39 1.37 1.36 1.35 
                
 11 2.38 1.97 1.79 1.68 1.60 1.55 1.50 1.47 1.44 1.42 1.39 1.38 1.36 1.35 
n* 12 2.39 1.98 1.79 1.68 1.60 1.55 1.51 1.47 1.44 1.42 1.40 1.38 1.36 1.35 
 13 2.39 1.98 1.80 1.68 1.61 1.55 1.51 1.47 1.44 1.42 1.40 1.38 1.36 1.35 
 14 2.40 1.99 1.80 1.69 1.61 1.55 1.51 1.47 1.44 1.42 1.40 1.38 1.37 1.35 
 15 2.41 1.99 1.80 1.69 1.61 1.55 1.51 1.48 1.45 1.42 1.40 1.38 1.37 1.35 
                
 16 2.41 2.00 1.80 1.69 1.61 1.56 1.51 1.48 1.45 1.42 1.40 1.38 1.37 1.35 
 17 2.42 2.00 1.81 1.69 1.61 1.56 1.51 1.48 1.45 1.42 1.40 1.38 1.37 1.35 
 18 2.42 2.00 1.81 1.69 1.62 1.56 1.51 1.48 1.45 1.42 1.40 1.39 1.37 1.35 
 19 2.42 2.00 1.81 1.70 1.62 1.56 1.52 1.48 1.45 1.43 1.40 1.39 1.37 1.36 
 20 2.43 2.01 1.81 1.70 1.62 1.56 1.52 1.48 1.45 1.43 1.40 1.39 1.37 1.36 
                
  2.49 2.05 1.84 1.72 1.64 1.58 1.53 1.50 1.46 1.44 1.42 1.40 1.38 1.37 
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TABLE 8.5.7  Critical values for the MNR outlier test. 
 

n CV n CV n CV n CV n CV 
- - 41 3.047 81 3.311 121 3.448 161 3.539 
- - 42 3.057 82 3.315 122 3.451 162 3.541 
3 1.154 43 3.067 83 3.319 123 3.453 163 3.543 
4 1.481 44 3.076 84 3.323 124 3.456 164 3.545 
5 1.715 45 3.085 85 3.328 125 3.459 165 3.547 
6 1.887 46 3.094 86 3.332 126 3.461 166 3.549 
7 2.020 47 3.103 87 3.336 127 3.464 167 3.551 
8 2.127 48 3.112 88 3.340 128 3.466 168 3.552 
9 2.215 49 3.120 89 3.344 129 3.469 169 3.554 
10 2.290 50 3.128 90 3.348 130 3.471 170 3.556 
11 2.355 51 3.136 91 3.352 131 3.474 171 3.558 
12 2.412 52 3.144 92 3.355 132 3.476 172 3.560 
13 2.462 53 3.151 93 3.359 133 3.479 173 3.561 
14 2.507 54 3.159 94 3.363 134 3.481 174 3.563 
15 2.548 55 3.166 95 3.366 135 3.483 175 3.565 
16 2.586 56 3.173 96 3.370 136 3.486 176 3.567 
17 2.620 57 3.180 97 3.374 137 3.488 177 3.568 
18 2.652 58 3.187 98 3.377 138 3.491 178 3.570 
19 2.681 59 3.193 99 3.381 139 3.493 179 3.572 
20 2.708 60 3.200 100 3.384 140 3.495 180 3.574 
21 2.734 61 3.206 101 3.387 141 3.497 181 3.575 
22 2.758 62 3.212 102 3.391 142 3.500 182 3.577 
23 2.780 63 3.218 103 3.394 143 3.502 183 3.579 
24 2.802 64 3.224 104 3.397 144 3.504 184 3.580 
25 2.822 65 3.230 105 3.401 145 3.506 185 3.582 
26 2.841 66 3.236 106 3.404 146 3.508 186 3.584 
27 2.859 67 3.241 107 3.407 147 3.511 187 3.585 
28 2.876 68 3.247 108 3.410 148 3.513 188 3.587 
29 2.893 69 3.252 109 3.413 149 3.515 189 3.588 
30 2.908 70 3.258 110 3.416 150 3.517 190 3.590 
31 2.924 71 3.263 111 3.419 151 3.519 191 3.592 
32 2.938 72 3.268 112 3.422 152 3.521 192 3.593 
33 2.952 73 3.273 113 3.425 153 3.523 193 3.595 
34 2.965 74 3.278 114 3.428 154 3.525 194 3.596 
35 2.978 75 3.283 115 3.431 155 3.527 195 3.598 
36 2.991 76 3.288 116 3.434 156 3.529 196 3.599 
37 3.003 77 3.292 117 3.437 157 3.531 197 3.601 
38 3.014 78 3.297 118 3.440 158 3.533 198 3.603 
39 3.025 79 3.302 119 3.442 159 3.535 199 3.604 
40 3.036 80 3.306 120 3.445 160 3.537 200 3.606 
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TABLE 8.5.8 One-sided B-basis tolerance factors, VB , for the Weibull distribution, 
continued on next page 

. 

n = 10 - 192 
n VB n VB n VB n VB 

10 6.711 45 4.764 80 4.477 130 4.309 
11 6.477 46 4.751 81 4.471 132 4.305 
12 6.286 47 4.738 82 4.466 134 4.301 
13 6.127 48 4.725 83 4.462 136 4.296 
14 5.992 49 4.713 84 4.457 138 4.292 
15 5.875 50 4.702 85 4.452 140 4.288 
16 5.774 51 4.691 86 4.448 142 4.284 
17 5.684 52 4.680 87 4.443 144 4.280 
18 5.605 53 4.670 88 4.439 146 4.277 
19 5.533 54 4.659 89 4.435 148 4.273 
20 5.469 55 4.650 90 4.431 150 4.269 
21 5.412 56 4.640 91 4.427 152 4.266 
22 5.359 57 4.631 92 4.423 154 4.262 
23 5.310 58 4.622 93 4.419 156 4.259 
24 5.265 59 4.631 94 4.415 158 4.256 
25 5.224 60 4.605 95 4.411 160 4.253 
26 5.186 61 4.597 96 4.407 162 4.249 
27 5.150 62 4.589 97 4.404 164 4.246 
28 5.117 63 4.582 98 4.400 166 4.243 
29 5.086 64 4.574 99 4.396 168 4.240 
30 5.057 65 4.567 100 4.393 170 4.237 
31 5.030 66 4.560 102 4.386 172 4.234 
32 5.003 67 4.553 104 4.380 174 4.232 
33 4.979 68 4.546 106 4.373 176 4.229 
34 4.956 69 4.539 108 4.367 178 4.226 
35 4.934 70 4.533 110 4.361 180 4.224 
36 4.913 71 4.527 112 4.355 182 4.221 
37 4.893 72 4.521 114 4.349 184 4.218 
38 4.875 73 4.515 116 4.344 186 4.216 
39 4.857 74 4.509 118 4.339 188 4.213 
40 4.840 75 4.503 120 4.334 190 4.211 
41 4.823 76 4.498 122 4.328 192 4.208 
42 4.807 77 4.492 124 4.323   
43 4.792 78 4.487 126 4.317   
44 4.778 79 4.482 128 4.314   
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TABLE 8.5.8  One-sided B-basis tolerance factors, VB , for the Weibull distribution, concluded. 
 

n = 194 - ∞ 
n VB n VB n VB 

 194 4.206  300 4.119   850 3.992 
 196 4.204  310 4.113   875 3.989 
 198 4.201  320 4.108   900 3.986 
 200 4.199  330 4.103   925 3.983 
 204 4.195  340 4.098   950 3.981 
 208 4.191  350 4.093   975 3.979 
 212 4.186  360 4.089  1000 3.976 
 216 4.182  370 4.085  1100 3.968 
 220 4.179  380 4.081  1200 3.960 
 224 4.175  390 4.077  1300 3.954 
 228 4.171  400 4.073  1400 3.948 
 232 4.168  425 4.076  1500 3.943 
 236 4.164  450 4.067  1600 3.939 
 240 4.161  475 4.060  1700 3.934 
 244 4.157  500 4.053  1800 3.931 
 248 4.154  525 4.047  1900 3.927 
 252 4.151  550 4.041  2000 3.924 
 256 4.148  575 4.035  3000 3.901 
 260 4.145  600 4.030  4000 3.887 
 264 4.142  625 4.025  5000 3.878 
 268 4.140  650 4.020  6000 3.872 
 272 4.137  675 4.016  7000 3.866 
 276 4.134  700 4.012  8000 3.862 
 280 4.131  725 4.008  9000 3.859 
 284 4.129  750 4.005 10000 3.856 
 288 4.126  775 4.001 15000 3.846 
 292 4.124  800 3.998 20000 3.840 
 296 4.121  825 3.995 ∞ 3.803 
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TABLE 8.5.9 One-sided A-basis tolerance limit factors, VA, for the Weibull distribution, 
(Reference 8.5.11), continued on next page. 

 

n VA  n VA  n VA  n VA 
10 12.573  44 8.629  78 8.038  124 7.706 
11 12.093  45 8.600  79 8.028  126 7.697 
12 11.701  46 8.573  80 8.017  128 7.687 
13 11.375  47 8.547  81 8.007  130 7.678 
14 11.098  48 8.522  82 7.997  132 7.669 
15 10.861  49 8.498  83 7.988  134 7.660 
16 10.654  50 8.474  84 7.978  136 7.652 
17 10.472  51 8.452  85 7.969  138 7.643 
18 10.311  52 8.430  86 7.960  140 7.635 
19 10.166  53 8.409  87 7.951  142 7.627 
20 10.035  54 8.389  88 7.942  144 7.619 
21 9.917  55 8.369  89 7.933  146 7.612 
22 9.809  56 8.349  90 7.925  148 7.604 
23 9.710  57 8.330  91 7.916  150 7.597 
24 9.619  58 8.313  92 7.908  152 7.590 
25 9.535  59 8.295  93 7.900  154 7.583 
26 9.457  60 8.278  94 7.892  156 7.576 
27 9.385  61 8.262  95 7.884  158 7.569 
28 9.318  62 8.246  96 7.877  160 7.563 
29 9.251  63 8.230  97 7.867  162 7.556 
30 9.195  64 8.215  98 7.862  164 7.550 
31 9.139  65 8.200  99 7.855  166 7.544 
32 9.087  66 8.186  100 7.845  168 7.538 
33 9.037  67 8.172  102 7.834  170 7.532 
34 8.990  68 8.158  104 7.820  172 7.526 
35 8.946  69 8.145  106 7.811  174 7.520 
36 8.904  70 8.132  108 7.795  176 7.515 
37 8.863  71 8.119  110 7.783  178 7.509 
38 8.825  72 8.107  112 7.771  180 7.504 
39 8.789  73 8.095  114 7.759  182 7.499 
40 8.754  74 8.083  116 7.748  184 7.493 
41 8.721  75 8.071  118 7.737  186 7.488 
42 8.689  76 8.060  120 7.727  188 7.483 
43 8.658  77 8.049  122 7.717  190 7.478 
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TABLE 8.5.9 One-sided A-basis tolerance limit factors, VA, for the Weibull distribution, 
(Reference 8.5.11), concluded. 

 

n VA  n VA  n VA  n VA 
192 7.473  268 7.333  475 7.152  1000 6.989 
194 7.469  272 7.328  500 7.138  1100 6.972 
196 7.454  276 7.322  525 7.126  1200 6.958 
198 7.459  280 7.317  550 7.114  1300 6.945 
200 7.455  284 7.312  575 7.103  1400 6.934 
204 7.446  288 7.307  600 7.093  1500 6.924 
208 7.437  292 7.302  625 7.084  1600 6.915 
212 7.429  296 7.297  650 7.075  1700 6.907 
216 7.421  300 7.292  675 7.066  1800 6.899 
220 7.413  310 7.280  700 7.058  1900 6.892 
224 7.404  320 7.270  725 7.051  2000 6.886 
228 7.397  330 7.259  750 7.044  3000 6.841 
232 7.390  340 7.249  775 7.037    
236 7.383  350 7.240  800 7.031    
240 7.376  360 7.229  825 7.025    
244 7.370  370 7.222  850 7.019    
248 7.363  380 7.214  875 7.013    
252 7.357  390 7.206  900 7.008    
256 7.351  400 7.198  925 7.003    
260 7.345  425 7.183  950 6.998    
264 7.339  450 7.167  975 6.993    
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TABLE 8.5.10 One-sided B-basis tolerance limit factors, kB, for the normal distribution, 
continued on next page. 

 

N = 2 - 137 
n kB n kB n kB n kB 
 2 20.581 36 1.725  70 1.582 104 1.522 
 3 6.157 37 1.718  71 1.579 105 1.521 
 4 4.163 38 1.711  72 1.577 106 1.519 
 5 3.408 39 1.704  73 1.575 107 1.518 
 6 3.007 40 1.698  74 1.572 108 1.517 
 7 2.756 41 1.692  75 1.570 109 1.516 
 8 2.583 42 1.686  76 1.568 110 1.515 
 9 2.454 43 1.680  77 1.566 111 1.513 
10 2.355 44 1.675  78 1.564 112 1.512 
11 2.276 45 1.669  79 1.562 113 1.511 
12 2.211 46 1.664  80 1.560 114 1.510 
13 2.156 47 1.660  81 1.558 115 1.509 
14 2.109 48 1.655  82 1.556 116 1.508 
15 2.069 49 1.650  83 1.554 117 1.507 
16 2.034 50 1.646  84 1.552 118 1.506 
17 2.002 51 1.642  85 1.551 119 1.505 
18 1.974 52 1.638  86 1.549 120 1.504 
19 1.949 53 1.634  87 1.547 121 1.503 
20 1.927 54 1.630  88 1.545 122 1.502 
21 1.906 55 1.626  89 1.544 123 1.501 
22 1.887 56 1.623  90 1.542 124 1.500 
23 1.870 57 1.619  91 1.540 125 1.499 
24 1.854 58 1.616  92 1.539 126 1.498 
25 1.839 59 1.613  93 1.537 127 1.497 
26 1.825 60 1.609  94 1.536 128 1.496 
27 1.812 61 1.606  95 1.534 129 1.495 
28 1.800 62 1.603  96 1.533 130 1.494 
29 1.789 63 1.600  97 1.531 131 1.493 
30 1.778 64 1.597  98 1.530 132 1.492 
31 1.768 65 1.595  99 1.529 133 1.492 
32 1.758 66 1.592 100 1.527 134 1.491 
33 1.749 67 1.589 101 1.526 135 1.490 
34 1.741 68 1.587 102 1.525 136 1.489 
35 1.733 69 1.584 103 1.523 137 1.488 
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TABLE 8.5.10  One-sided B-basis tolerance limit factors, kB, for the normal distribution, concluded. 
 

n = 138 - ∞ 
n kB n kB n kB n kB 

138 1.487 172 1.464 230 1.438   400 1.398 
139 1.487 173 1.464 235 1.436   425 1.395 
140 1.486 174 1.463 240 1.434   450 1.391 
141 1.485 175 1.463 345 1.433   475 1.388 
142 1.484 176 1.462 250 1.431   500 1.386 
143 1.483 177 1.461 255 1.430   525 1.383 
144 1.483 178 1.461 260 1.428   550 1.381 
145 1.482 179 1.460 265 1.427   575 1.378 
146 1.481 180 1.460 270 1.425   600 1.376 
147 1.480 181 1.459 275 1.424   625 1.374 
148 1.480 182 1.459 280 1.422   650 1.372 
149 1.479 183 1.458 285 1.421   675 1.371 
150 1.478 184 1.458 290 1.420   700 1.369 
151 1.478 185 1.457 295 1.419   725 1.367 
152 1.477 186 1.457 300 1.417   750 1.366 
153 1.476 187 1.456 305 1.416   775 1.364 
154 1.475 188 1.456 310 1.415   800 1.363 
155 1.475 189 1.455 315 1.414   825 1.362 
156 1.474 190 1.455 320 1.413   850 1.361 
157 1.473 191 1.454 325 1.412   875 1.359 
158 1.473 192 1.454 330 1.411   900 1.358 
159 1.472 193 1.453 335 1.410   925 1.357 
160 1.472 194 1.453 340 1.409   950 1.356 
161 1.471 195 1.452 345 1.408   975 1.355 
162 1.470 196 1.452  350 1.407  1000 1.354 
163 1.470 197 1.451  355 1.406  1500 1.340 
164 1.469 198 1.451  360 1.405  2000 1.332 
165 1.468 199 1.450  365 1.404  3000 1.323 
166 1.468 200 1.450  370 1.403  5000 1.313 
167 1.467 205 1.448  375 1.402 10000 1.304 
168 1.467 210 1.446  380 1.402 ∞ 1.282 
169 1.466 215 1.444  385 1.401   
170 1.465 220 1.442  390 1.400   
171 1.465 225 1.440   395 1.399   
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TABLE 8.5.11 One-sided A-basis tolerance limit factors, kA, for the normal distribution, 
Reference 8.5.11), continued on next page. 

 

n kA n kA n kA n kA 
2 37.094 36 2.983 70 2.765 104 2.676 
3 10.553 37 2.972 71 2.762 105 2.674 
4 7.042 38 2.961 72 2.758 106 2.672 
5 5.741 39 2.951 73 2.755 107 2.671 
6 5.062 40 2.941 74 2.751 108 2.669 
7 4.642 41 2.932 75 2.748 109 2.667 
8 4.354 42 2.923 76 2.745 110 2.665 
9 4.143 43 2.914 77 2.742 111 2.663 
10 3.981 44 2.906 78 2.739 112 2.662 
11 3.852 45 2.898 79 2.736 113 2.660 
12 3.747 46 2.890 80 2.733 114 2.658 
13 3.659 47 2.883 81 2.730 115 2.657 
14 3.585 48 2.876 82 2.727 116 2.655 
15 3.520 49 2.869 83 2.724 117 2.654 
16 3.464 50 2.862 84 2.721 118 2.652 
17 3.414 51 2.856 85 2.719 119 2.651 
18 3.370 52 2.850 86 2.716 120 2.649 
19 3.331 53 2.844 87 2.714 121 2.648 
20 3.295 54 2.838 88 2.711 122 2.646 
21 3.263 55 2.833 89 2.709 123 2.645 
22 3.233 56 2.827 90 2.706 124 2.643 
23 3.206 57 2.822 91 2.704 125 2.642 
24 3.181 58 2.817 92 2.701 126 2.640 
25 3.158 59 2.812 93 2.699 127 2.639 
26 3.136 60 2.807 94 2.697 128 2.638 
27 3.116 61 2.802 95 2.695 129 2.636 
28 3.098 62 2.798 96 2.692 130 2.635 
29 3.080 63 2.793 97 2.690 131 2.634 
30 3.064 64 2.789 98 2.688 132 2.632 
31 3.048 65 2.785 99 2.686 133 2.631 
32 3.034 66 2.781 100 2.684 134 2.630 
33 3.020 67 2.777 101 2.682 135 2.628 
34 3.007 68 2.773 102 2.680 136 2.627 
35 2.995 69 2.769 103 2.678 137 2.626 
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TABLE 8.5.11 One-sided A-basis tolerance limit factors, kA, for the normal distribution, 
Reference 8.5.11), concluded. 

 

n kA n kA n kA n kA 
138 2.625 172 2.591 230 2.552 400 2.494 
139 2.624 173 2.590 235 2.549 425 2.489 
140 2.622 174 2.589 240 2.547 450 2.484 
141 2.621 175 2.588 245 2.544 475 2.480 
142 2.620 176 2.587 250 2.542 500 2.475 
143 2.619 177 2.587 255 2.540 525 2.472 
144 2.618 178 2.586 260 2.537 550 2.468 
145 2.617 179 2.585 265 2.535 575 2.465 
146 2.616 180 2.584 270 2.533 600 2.462 
147 2.615 181 2.583 275 2.531 625 2.459 
148 2.613 182 2.583 280 2.529 650 2.456 
149 2.612 183 2.582 285 2.527 675 2.454 
150 2.611 184 2.581 290 2.525 700 2.451 
151 2.610 185 2.580 295 2.524 725 2.449 
152 2.609 186 2.580 300 2.522 750 2.447 
153 2.608 187 2.579 305 2.520 775 2.445 
154 2.607 188 2.578 310 2.518 800 2.443 
155 2.606 189 2.577 315 2.517 825 2.441 
156 2.605 190 2.577 320 2.515 850 2.439 
157 2.604 191 2.576 325 2.514 875 2.438 
158 2.603 192 2.575 330 2.512 900 2.436 
159 2.602 193 2.575 335 2.511 925 2.434 
160 2.601 194 2.574 340 2.509 950 2.433 
161 2.600 195 2.573 345 2.508 975 2.432 
162 2.600 196 2.572 350 2.506 1000 2.430 
163 2.599 197 2.572 355 2.505 1500 2.411 
164 2.598 198 2.571 360 2.504 2000 2.399 
165 2.597 199 2.570 365 2.502 3000 2.385 
166 2.596 200 2.570 370 2.501 5000 2.372 
167 2.595 205 2.566 375 2.500 10,000 2.358 
168 2.594 210 2.563 380 2.499 ∞ 2.326 
169 2.593 215 2.560 385 2.498   
170 2.592 220 2.557 390 2.496   
171 2.592 225 2.555 395 2.495   
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TABLE 8.5.12  Ranks, rB, for determining nonparametric B-basis values. 
 

n Rb n rB n rB 
 28   660  54 3901 360 
 29  1 682  56 4005 370 
 46  2 704  58 4109 380 
 61  3 726  60 4213 390 
 76  4  781  65 4317 400 
 89  5  836  70 4421 410 
103  6  890  75 4525 420 
116  7  945  80 4629 430 
129  8  999  85  4733 440 
142  9 1053  90  4836 450 
154 10 1107  95  4940 460 
167 11 1161 100  5044 470 
179 12 1269 110  5147 480 
191 13 1376 120  5251 490 
203 14 1483 130  5354 500 
215 15 1590 140  5613 525 
227 16 1696 150  5871 550 
239 17 1803 160  6130 575 
251 18 1909 170  6388 600 
263 19 2015 180  6645 625 
275 20 2120 190  6903 650 
298 22 2226 200  7161 675 
321 24 2331 210  7418 700 
345 26 2437 220  7727 730 
368 28 2542 230  8036 760 
391 30 2647 240  8344 790 
413 32 2752 250  8652 820 
436 34 2857 260  8960 850 
459 36 2962 270  9268 880 
481 38 3066 280  9576 910 
504 40 3171 290  9884 940 
526 42 3276 300 10191 970 
549 44 3380 310 10499 10001 
571 46 3484 320   
593 48 3589 330   
615 50 3693 340   
638 52 3797 350   

 
B-value does not exist for n < 28. 

1For n > 10499, use Equation 8.5.12. 
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TABLE 8.5.13  Ranks, rA, for determining non-parametric A-basis values (Reference (8.6.8 (c)). 
 

        n          rA      n          rA    n         rA      n             rA 
≤298  3603 27 6657 54 9627 81 
299 1 3719 28 6769 55 9736 82 
473 2 3834 29 6879 56 9854 83 
628 3 3949 30 6990 57 9954 84 
773 4 4064 31 7100 58 10063 85 
913 5 4179 32 7211 59 10172 86 

1049 6 4293 33 7322 60 10281 87 
1182 7 4407 34 7432 61 10390 88 
1312 8 4521 35 7543 62 10498 89 
1441 9 4635 36 7653 63 10607 90 
1568 10 4749 37 7763 64 10716 91 
1693 11 4862 38 7874 65 10824 92 
1818 12 4975 39 7984 66 10933 93 
1941 13 5088 40 8094 67 11041 94 
2064 14 5201 41 8204 68 11150 95 
2185 15 5314 42 8314 69 11258 96 
2306 16 5427 43 8423 70 11366 97 
2426 17 5539 44 8533 71 11475 98 
2546 18 5651 45 8643 72 11583 99 
2665 19 5764 46 8753 73 11691 1001 
2784 20 5876 47 8862 74   
2902 21 5988 48 8972 75   
3020 22 6099 49 9081 76   
3137 23 6211 50 9190 77   
3254 24 6323 51 9300 78   
3371 25 6434 52 9409 79   
3487 26 6545 53 9518 80   

 
 

 A-value does not exist for n < 2991  
For N > 11691, use Equation 8.5.13 
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TABLE 8.5.14  Nonparametric B-basis factors for small sample sizes (Reference 8.3.4.5.2(a)). 
 

n rB   kB 
2 2 35.177 
3 3 7.859 
4 4 4.505 
5 4 4.101 
6 5 3.064 
7 5 2.858 
8 6 2.382 
9 6 2.253 
10 6 2.137 
11 7 1.897 
12 7 1.814 
13 7 1.738 
14 8 1.599 
15 8 1.540 
16 8 1.485 
17 8 1.434 
18 9 1.354 
19 9 1.311 
20 10 1.253 
21 10 1.218 
22 10 1.184 
23 11 1.143 
24 11 1.114 
25 11 1.087 
26 11 1.060 
27 11 1.035 
28 12 1.010 
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TABLE 8.5.15  Nonparametric A-basis factors for small sample sizes (Reference 8.3.4.5.2(b)). 
 

n kA n kA n kA 
2 80.00380 38 1.79301 98 1.31553 
3 16.91220 39 1.77546 100 1.30806 
4 9.49579 40 1.75868 105 1.29036 
5 6.89049 41 1.74260 110 1.27392 
6 5.57681 42 1.72718 115 1.25859 
7 4.78352 43 1.71239 120 1.24425 
8 4.25011 44 1.69817 125 1.23080 
9 3.86502 45 1.68449 130 1.21814 

10 3.57267 46 1.67132 135 1.20620 
11 3.34227 47 1.65862 140 1.19491 
12 3.15540 48 1.64638 145 1.18421 
13 3.00033 49 1.63456 150 1.17406 
14 2.86924 50 1.62313 155 1.16440 
15 2.75672 52 1.60139 160 1.15519 
16 2.65889 54 1.58101 165 1.14640 
17 2.57290 56 1.56184 170 1.13801 
18 2.49660 58 1.54377 175 1.12997 
19 2.42833 60 1.52670 180 1.12226 
20 2.36683 62 1.51053 185 1.11486 
21 2.31106 64 1.49520 190 1.10776 
22 2.26020 66 1.48063 195 1.10092 
23 2.21359 68 1.46675 200 1.09434 
24 2.17067 70 1.45352 205 1.08799 
25 2.13100 72 1.44089 210 1.08187 
26 2.09419 74 1.42881 215 1.07595 
27 2.05991 76 1.41724 220 1.07024 
28 2.02790 78 1.40614 225 1.06471 
29 1.99791 80 1.39549 230 1.05935 
30 1.96975 82 1.38525 235 1.05417 
31 1.94324 84 1.37541 240 1.04914 
32 1.91822 86 1.36592 245 1.04426 
33 1.89457 88 1.35678 250 1.03952 
34 1.87215 90 1.34796 275 1.01773 
35 1.85088 92 1.33944 299 1.00000 
36 1.83065 94 1.33120   
37 1.81139 96 1.32324   
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TABLE 8.5.16  Critical values for approximate confidence limits on the coefficient of variation. 
 

   Confidence level 
n Lower limit C1 Upper limit Cu 

  0.99 0.95 0.90 0.90 0.95 0.99 
2 0.3562 0.4461 0.5101 15.989 31.999 160.051 
3 0.4344 0.5207 0.5778 4.415 6.285 14.124 
4 0.4834 0.5665 0.6196 2.920 3.729 6.467 
5 0.5188 0.5991 0.6493 2.372 2.874 4.396 
6 0.5464 0.6242 0.6720 2.089 2.453 3.485 
7 0.5688 0.6444 0.6903 1.915 2.202 2.980 
8 0.5875 0.6612 0.7054 1.797 2.035 2.660 
9 0.6036 0.6755 0.7183 1.711 1.916 2.439 

10 0.6177 0.6878 0.7293 1.645 1.826 2.278 
20 0.7018 0.7604 0.7939 1.370 1.461 1.666 
30 0.7444 0.7964 0.8255 1.280 1.344 1.487 
40 0.7718 0.8191 0.8453 1.232 1.284 1.397 
50 0.7914 0.8353 0.8594 1.202 1.246 1.341 
60 0.8065 0.8476 0.8701 1.181 1.220 1.303 
70 0.8185 0.8574 0.8785 1.165 1.200 1.274 
80 0.8284 0.8654 0.8855 1.152 1.185 1.252 
90 0.8368 0.8722 0.8913 1.142 1.172 1.235 

100 0.8440 0.8780 0.8963 1.134 1.162 1.220 
125 0.8583 0.8895 0.9062 1.118 1.142 1.193 
150 0.8692 0.8982 0.9137 1.106 1.128 1.173 
200 0.8849 0.9106 0.9243 1.090 1.109 1.147 
250 0.8959 0.9193 0.9317 1.080 1.096 1.129 
500 0.9243 0.9416 0.9507 1.055 1.066 1.088 
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TABLE 8.5.17  One-sided tolerance factors for acceptance limits on mean values, for normal distribution. 
 

Number of Samples (n) α  
2 3 4 5 6 7 8 9 10 

0.5 0.1472 0.1591 0.1539 0.1473 0.1410 0.1354 0.1303 0.1258 0.1217 
0.25 0.6266 0.5421 0.4818 0.4382 0.4048 0.3782 0.3563 0.3379 0.3221 
0.1 1.0539 0.8836 0.7744 0.6978 0.6403 0.5951 0.5583 0.5276 0.5016 
0.05 1.3076 1.0868 0.9486 0.8525 0.7808 0.7246 0.6790 0.6411 0.6089 
0.025 1.5266 1.2626 1.0995 0.9866 0.9026 0.8369 0.7838 0.7396 0.7022 
0.01 1.7804 1.4666 1.2747 1.1425 1.0443 0.9678 0.9059 0.8545 0.8110 
0.005 1.9528 1.6054 1.3941 1.2488 1.1411 1.0571 0.9893 0.9330 0.8854 
0.0025 2.1123 1.7341 1.5049 1.3475 1.2309 1.1401 1.0668 1.0061 0.9546 
0.001 2.3076 1.8919 1.6408 1.4687 1.3413 1.2422 1.1622 1.0959 1.0397 
0.0005 2.4457 2.0035 1.7371 1.5546 1.4196 1.3145 1.2298 1.1596 1.1002 
0.00025 2.5768 2.1097 1.8287 1.6363 1.4941 1.3835 1.2943 1.2203 1.1578 
0.0001 2.7411 2.2429 1.9436 1.7390 1.5877 1.4701 1.3752 1.2966 1.2301 
0.00005 2.8595 2.3389 2.0266 1.813 1.6553 1.5326 1.4337 1.3517 1.2824 
0.000025 2.9734 2.4313 2.1065 1.8844 1.7204 1.5928 1.4900 1.4048 1.3327 
0.00001 3.1179 2.5487 2.2079 1.9751 1.8031 1.6694 1.5616 1.4723 1.3968 
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TABLE 8.5.18 One-sided tolerance factors for acceptance limits on individual values, for 
normal distribution. 

 
Number of Samples (n) α  

2 3 4 5 6 7 8 9 10 
0.5 0.7166 1.0254 1.2142 1.3498 1.4548 1.5400 1.6113 1.6724 1.7258 
0.25 1.2887 1.5407 1.6972 1.8106 1.8990 1.9711 2.0317 2.0838 2.1295 
0.1 1.8167 2.0249 2.1561 2.2520 2.3272 2.3887 2.4407 2.4856 2.525 
0.05 2.1385 2.3239 2.4420 2.5286 2.5967 2.6527 2.7000 2.7411 2.7772 
0.025 2.4208 2.5888 2.6965 2.7758 2.8384 2.8900 2.9337 2.9717 3.0052 
0.01 2.7526 2.9027 2.9997 3.0715 3.1283 3.1753 3.2153 3.25 3.2807 
0.005 2.9805 3.1198 3.2103 3.2775 3.3309 3.3751 3.4127 3.4455 3.4745 
0.0025 3.1930 3.3232 3.4082 3.4716 3.5220 3.5638 3.5995 3.6307 3.6582 
0.001 3.4549 3.5751 3.6541 3.7132 3.7603 3.7995 3.8331 3.8623 3.8883 
0.0005 3.6412 3.7550 3.8301 3.8864 3.9314 3.9690 4.0011 4.0292 4.0541 
0.00025 3.8188 3.9270 3.9987 4.0526 4.0958 4.1319 4.1628 4.1898 4.2138 
0.0001 4.0421 4.1439 4.2117 4.2629 4.304 4.3384 4.3678 4.3936 4.4166 
0.00005 4.2035 4.3011 4.3664 4.4157 4.4554 4.4886 4.5172 4.5422 4.5644 
0.000025 4.3592 4.4530 4.5160 4.5637 4.6022 4.6344 4.6620 4.6863 4.7079 
0.00001 4.5573 4.6466 4.7069 4.7527 4.7897 4.8206 4.8473 4.8707 4.8915 
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TABLE 8.5.19  Upper and lower tail quantiles for two-sided t-distribution. 
 

a n 
0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

1 0.325 1 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62 
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598 
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924 
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 
10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 
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