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CHAPTER 5   DESIGN AND ANALYSIS 
 
 
5.1 INTRODUCTION 
 
 The concept of designing a material to yield a desired set of properties has received impetus from the 
growing acceptance of composite materials.  Inclusion of material design in the structural design process 
has had a significant effect on that process, particularly upon the preliminary design phase.  In this pre-
liminary design, a number of materials will be considered, including materials for which experimental ma-
terials property data are not available.  Thus, preliminary material selection may be based on analytically-
predicted properties.  The analytical methods are the result of studies of micromechanics, the study of the 
relationship between effective properties of composites and the properties of the composite constituents.  
The inhomogeneous composite is represented by a homogeneous anisotropic material with the effective 
properties of the composite. 
 
 The purpose of this chapter is to provide an overview of techniques for analysis in the design of com-
posite materials.  Starting with the micromechanics of fiber and matrix in a lamina, analyses through sim-
ple geometric constructions in laminates are considered. 
 
 A summary is provided at the end of each section for the purpose of highlighting the most important 
concepts relative to the preceding subject matter. Their purpose is to reinforce the concepts, which can 
only fully be understood by reading the section. 
 
 The analysis in this chapter deals primarily with symmetric laminates.  It begins with a description of 
the micromechanics of basic lamina properties and leads into classical laminate analysis theory in an ar-
bitrary coordinate system.  It defines and compares various failure theories and discusses the response of 
laminate structures to more complex loads.  It highlights considerations of translating individual lamina 
results into predicted laminate behavior.  Furthermore, it covers loading situations and structural re-
sponses such as buckling, creep, relaxation, fatigue, durability, and vibration. 
 
 
5.2 BASIC LAMINA PROPERTIES AND MICROMECHANICS 
 
 The strength of any given laminate under a prescribed set of loads is probably best determined by 
conducting a test.  However, when many candidate laminates and different loading conditions are being 
considered, as in a preliminary design study, analysis methods for estimation of laminate strength be-
come desirable.  Because the stress distribution throughout the fiber and matrix regions of all the plies of 
a laminate is quite complex, precise analysis methods are not available.  However, reasonable methods 
do exist which can be used to guide the preliminary design process. 
 
 Strength analysis methods may be grouped into different classes, depending upon the degree of de-
tail of the stresses utilized.  The following classes are of practical interest: 
  

1. Laminate level.  Average values of the stress components in a laminate coordinate system are 
utilized. 

 
2. Ply, or lamina, level.  Average values of the stress components within each ply are utilized. 
 
3. Constituent level.  Average values of the stress components within each phase (fiber or matrix) of 

each ply are utilized. 
 
4. Micro-level.  Local stresses of each point within each phase are utilized. 

 
 Micro-level stresses could be used in appropriate failure criteria for each constituent to determine the 
external loads at which local failure would initiate. However, the uncertainties, due to departures from the 
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assumed regular local geometry and the statistical variability of local strength make such a process im-
practical. 
 
 At the other extreme, laminate level stresses can be useful for translating measured strengths under 
single stress component tests into anticipated strength estimates for combined stress cases.  However 
this procedure does not help in the evaluation of alternate laminates for which test data do not exist. 
 
 Ply level stresses are the commonly used approach to laminate strength.  The average stresses in a 
given ply are used to calculate first ply failure and then subsequent ply failure leading to laminate failure.  
The analysis of laminates by the use of a ply-by-ply model is presented in Section 5.3 and 5.4. 
 
 Constituent level, or phase average stresses, eliminate some of the complexity of the micro-level 
stresses.  They represent a useful approach to the strength of a unidirectional composite or ply.  Micro-
mechanics provides a method of analysis, presented in Section 5.2, for constituent level stresses.  
Micromechanics is the study of the relations between the properties of the constituents of a composite 
and the effective properties of the composite.  Starting with the basic constituent properties, Sections 5.2 
through 6.4 develop the micromechanical analysis of a lamina and the associated ply-by-ply analysis of a 
laminate. 
 
5.2.1 Assumptions 
 
 Several assumptions have been made for characterizing lamina properties. 
 
5.2.1.1 Material homogeneity 
 
 Composites, by definition, are heterogeneous materials.  Mechanical analysis proceeds on the as-
sumption that the material is homogeneous.  This apparent conflict is resolved by considering homogene-
ity on microscopic and macroscopic scales.  Microscopically, composite materials are certainly heteroge-
neous.  However, on the macroscopic scale, they appear homogeneous and respond homogeneously 
when tested.  The analysis of composite materials uses effective properties which are based on the aver-
age stress and average strain. 
 
5.2.1.2 Material orthotropy 
 
 Orthotropy is the condition expressed by variation of mechanical properties as a function of orienta-
tion.  Lamina exhibit orthotropy as the large difference in properties between the 0° and 90° directions.  If 
a material is orthotropic, it contains planes of symmetry and can be characterized by four independent 
elastic constants. 
 
5.2.1.3 Material linearity 
 
 Some composite material properties are nonlinear. The amount of nonlinearity depends on the prop-
erty, type of specimen, and test environment.  The stress-strain curves for composite materials are fre-
quently assumed to be linear to simplify the analysis. 
 
5.2.1.4 Residual stresses 
 
 One consequence of the microscopic heterogeneity of a composite material is the thermal expansion 
mismatch between the fiber and the matrix.  This mismatch causes residual strains in the lamina after 
curing.  The corresponding residual stresses are often assumed not to affect the material's stiffness or its 
ability to strain uniformly. 
 
5.2.2 Fiber composites: physical properties 
 
 A unidirectional fiber composite (UDC) consists of aligned continuous fibers which are embedded in a 
matrix.  The UDC physical properties are functions of fiber and matrix physical properties, of their volume 
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fractions, and perhaps also of statistical parameters associated with fiber distribution.  The fibers have, in 
general, circular cross-sections with little variability in diameter.  A UDC is clearly anisotropic since proper-
ties in the fiber direction are very different from properties transverse to the fibers.   
 
 Properties of interest for evaluating stresses and strains are:   
 

Elastic properties 
Viscoelastic properties - static and dynamic  
Thermal expansion coefficients 
Moisture swelling coefficients 
Thermal conductivity 
Moisture diffusivity 

  
A variety of analytical procedures may be used to determine the various properties of a UDC from volume 
fractions and fiber and matrix properties.  The derivations of these procedures may be found in Refer-
ences 5.2.2(a) and (b).   
 
5.2.2.1 Elastic properties 
 
 The elastic properties of a material are a measure of its stiffness.  This information is necessary to 
determine the deformations which are produced by loads.  In a UDC, the stiffness is provided by the fi-
bers; the role of the matrix is to prevent lateral deflections of the fibers.  For engineering purposes, it is 
necessary to determine such properties as Young's modulus in the fiber direction, Young's modulus trans-
verse to the fibers, shear modulus along the fibers and shear modulus in the plane transverse to the fi-
bers, as well as various Poisson's ratios.  These properties can be determined in terms of simple analyti-
cal expressions. 
  
 The effective elastic stress-strain relations of a typical transverse section of a UDC, based on aver-
age stress and average strain, have the form:   
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where an asterisk (*) denotes effective values.  Figure 5.2.2.1 illustrates the loadings which are associ-
ated with these properties. 
 
 The effective modulus k* is obtained by subjecting a specimen to the average state of stress 22 33=ε ε  
with all other strains vanishing in which case it follows from Equations 5.2.2.1(a) that 
   ( + )  =  2 k ( + )22 33

*
22 33σ σ ε ε   5.2.2.1(d) 
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Unlike the other properties listed above, k* is of little engineering significance but is of considerable ana-
lytical importance. 
 
 
 

 
 

FIGURE 5.2.2.1  Basic loading to define effective elastic properties. 
 
 
 Only five of the properties in Equations 5.2.2.1(a-c) are independent.  The most important interrela-
tions of properties are: 
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 Computation of effective elastic moduli is a very difficult problem in elasticity theory and only a few 
simple models permit exact analysis.  One type of model consists of periodic arrays of identical circular 
fibers, e.g., square periodic arrays or hexagonal periodic arrays (References 5.2.2.1(a) - (c)).  These 
models are analyzed by numerical finite difference or finite element procedures. Note that the square ar-
ray is not a suitable model for the majority of UDCs since it is not transversely isotropic. 
 
 The composite cylinder assemblage (CCA) permits exact analytical determination of effective elastic 
moduli (Reference 5.2.2.1(d)).  Consider a collection of composite cylinders, each with a circular fiber 
core and a concentric matrix shell.  The size of the cylinders may vary but the ratio of core radius to shell 
radius is held constant.  Therefore, the matrix and fiber volume fractions are the same in each composite 
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cylinder.  One strength of this model is the randomness of the fiber placement, while an undesirable fea-
ture is the large variation of fiber sizes.  It can be shown that the latter is not a serious concern. 
 
 The analysis of the CCA gives closed form results for the effective properties, k E n* * * * *, , , ,1 12ν A  and 

1
*G  and closed bounds for the properties 2

*G , 2
*E , and 23

*ν .  Such results will now be listed for isotropic 
fibers with the necessary modifications for transversely isotropic fibers (References 5.2.2(a) and 
5.2.2.1(e)). 
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The last is an excellent approximation for all UDC. 
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 As indicated earlier in the CCA analysis for 2

*G  does not yield a result but only a pair of bounds which 
are in general quite close (References 5.2.2(a), 5.2.2.1(d,e)).  A preferred alternative is to use a method 
of approximation which has been called the Generalized Self Consistent Scheme (GSCS).  According to 
this method, the stress and strain in any fiber is approximated by embedding a composite cylinder in the 
effective fiber composite material.  The volume fractions of fiber and matrix in the composite cylinder are 
those of the entire composite.  Such an analysis has been given in Reference 5.2.2(b) and results in a 
quadratic equation for 2

*G .  Thus, 
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   γ  =  G / Gf m   5.2.2.1(r) 

   m m =  3- 4η ν   5.2.2.1(s) 

   f f =  3 - 4η ν   5.2.2.1(t) 

To compute the resulting 2
*E  and 23

*ν , use Equations 5.2.2.1(g-h).  It is of interest to note that when the 
GSCS approximation is applied to those properties for which CCA results are available (see above Equa-
tions 5.2.2.1(j-m)), the CCA results are retrieved. 
 
 For transversely isotropic fibers, the following modifications are necessary (References 5.2.2(a) and 
5.2.2.1(e)): 
 
 For k* kf is the fiber transverse bulk modulus 
 For E1 12

* *,ν  Ef = E1f 
  νf = ν1f 
  kf as above 
 For G1

* Gf = G1f 

 For G2
*  Gf = G2f 

  ηf = 1 + 2G2f/kf 
 
 Numerical analysis of the effective elastic properties of the hexagonal array model reveals that the 
values are extremely close to those predicted by the CCA/GSCS models as given by the above equa-
tions.  The results are generally in good to excellent agreement with experimental data. 
 
 The simple analytical results given here predict effective elastic properties with sufficient engineering 
accuracy.  They are of considerable practical importance for two reasons.  First, they permit easy deter-
mination of effective properties for a variety of matrix properties, fiber properties, volume fractions, and 
environmental conditions.  Secondly, they provide the only approach known today for experimental 
determination of carbon fiber properties. 
 
 For purposes of laminate analysis, it is important to consider the plane stress version of the effective 
stress-strain relations.  Let x3 be the normal to the plane of a thin unidirectionally-reinforced lamina.  The 
plane stress condition is defined by 
   33 13 23= = = 0σ σ σ   5.2.2.1(u) 

Then from Equations 5.2.2.1(b-c) 
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The inversion of Equation 5.2.2.1(v) gives 
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For polymer matrix composites, at the usual 60% fiber volume fraction, the square of 12

*ν  is close enough 
to zero to be neglected and the ratio of 2
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*E / E  is approximately 0.1 - 0.2.  Consequently, the following 

approximations are often useful. 
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5.2.2.2 Viscoelastic properties 
 
 The simplest description of time-dependence is linear viscoelasticity.  Viscoelastic behavior of poly-
mers manifests itself primarily in shear and is negligible for isotropic stress and strain.  This implies that 
the elastic stress-strain relation 
   11 22 33 11 22 33+ + = 3K( + + )σ σ σ ε ε ε   5.2.2.2(a) 
where K is the three-dimensional bulk modulus, remains valid for polymers.  When a polymeric specimen 
is subjected to shear strain 12

°ε  which does not vary with time, the stress needed to maintain this shear 
strain is given by 
   12 12(t) = 2 G(t)σ ε°   5.2.2.2(b) 
and G(t) is defined as the shear relaxation modulus.  When a specimen is subjected to shear stress, 12

°σ , 
constant in time, the resulting shear strain is given by 

   12 12(t) =
1

2
g(t)ε σ °   5.2.2.2(c) 

and g(t) is defined as the shear creep compliance. 
 
 Typical variations of relaxation modulus G(t) and creep compliance g(t) with time are shown in Figure 
5.2.2.2.  These material properties change significantly with temperature.  The relaxation modulus de-
creases with increasing temperature and the creep compliance increases with increasing temperature, 
which implies that the stiffness decreases as the temperature increases.  The initial value of these proper-
ties at "time-zero" are denoted Go and go and are the elastic properties of the matrix.  If the applied shear 
strain is an arbitrary function of time, commencing at time-zero, Equation 5.2.2.2(b) is replaced by 

   12 12 o
t 12(t) = 2 G(t) (0) + 2 G(t- t )

d

dt’
dtσ ε εz ′ ′   5.2.2.2(d) 

Similarly, for an applied shear stress which is a function of time, Equation 5.2.2.2(c) is replaced by 
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 The viscoelastic counterpart of Young's modulus is obtained by subjecting a cylindrical specimen to 
axial strain 11

°ε  constant in space and time.  Then 
   11 11(t) = E(t)σ ε°   5.2.2.2(f) 
and E(t) is the Young's relaxation modulus.  If the specimen is subjected to axial stress, 11

°σ , constant is 
space and time, then 
   11 11(t) = e(t)ε σ °   5.2.2.2(g) 
and e(t) is Young's creep compliance.  Obviously E(t) is related to K and G(t), and e(t) is related to k and 
g(t).  (See Reference 5.2.2.2(a).) 
 
 The basic problem is the evaluation of the effective viscoelastic properties of a UDC in terms of matrix 
viscoelastic properties and the elastic properties of the fibers.  (It is assumed that the fibers themselves 
do not exhibit any time-dependent properties.)  This problem has been resolved in general fashion in Ref-
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erences 5.2.2.2(b) and (c).  Detailed analysis shows that the viscoelastic effect in a UDC is significant 
only for axial shear, transverse shear, and transverse uniaxial stress. 
 
 For any of average strains 22 23 12, , andε ε ε  constant in time, the time-dependent stress response will 

be 
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FIGURE 5.2.2.2  Typical viscoelastic behavior. 

 
 
For any of stresses 22 23, ,σ σ  and 12σ  constant in time, the time-dependent strain response will be 
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where material properties in Equations 5.2.2.2(h) are effective relaxation moduli and the properties in 
Equations 5.2.2.2(i) are effective creep functions.  All other effective properties may be considered elastic.  
This implies in particular that if a fiber composite is subjected to stress 11(t)σ  in the fiber direction, then 
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where 1
*E  and 12

*ν  are the elastic results of Equations 5.2.2.2(k) with matrix properties taken as initial 
(elastic) matrix properties.  Similar considerations apply to the relaxation modulus k*. 
 
 The simplest case of the viscoelastic properties entering into Equations 5.2.2.2(h-i) is the relaxation 
modulus 1

*G (t) and its associated creep compliance 1
*g (t) .  A very simple result has been obtained for fi-

bers which are infinitely more rigid than the matrix (Reference 5.2.2(a)).  For a viscoelastic matrix, the 
results reduce to 
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This results in an acceptable approximation for glass fibers in a polymeric matrix and an excellent ap-
proximation for boron fibers in a polymeric matrix.  However, the result is not applicable to the case of 
carbon or graphite fibers in a polymeric matrix since the axial shear modulus of these fibers is not large 
enough relative to the matrix shear modulus.  In this case, it is necessary to use the correspondence prin-
ciple mentioned above (References 5.2.2(a) and 5.2.2.2(b)). The situation for transverse shear is more 
complicated and involves complex Laplace transform inversion.  (Reference 5.2.2.2(c)). 
 
 All polymeric matrix viscoelastic properties such as creep and relaxation functions are significantly 
temperature dependent.  If the temperature is known, all of the results from this section can be obtained 
for a constant temperature by using the matrix properties at that temperature.  At elevated temperatures, 
the viscoelastic behavior of the matrix may become nonlinear.  In this event, the UDC will also be 
nonlinearly viscoelastic and all of the results given here are not valid.  The problem of analytical determi-
nation of nonlinear properties is, of course, much more difficult than the linear problem (See Reference 
5.2.2.2(d)). 
 
5.2.2.3 Thermal expansion and moisture swelling 
 
 The elastic behavior of composite materials discussed in Section 5.2.2.1 is concerned with externally 
applied loads and deformations.  Deformations are also produced by temperature changes and by ab-
sorption of moisture in two similar phenomena.  A change of temperature in a free body produces thermal 
strains while moisture absorption produces swelling strains.  The relevant physical parameters to quantify 
these phenomena are thermal expansion coefficients and swelling coefficients. 
 
 Fibers have significantly smaller thermal expansion coefficients than do polymeric matrices.  The ex-
pansion coefficient of glass fibers is 2.8 x 10-6 in/in/F° (5.0 x 10-6 m/m/C°) while a typical epoxy value is 30 
x 10-6 in/in/F° (54 x 10-6 m/m/C°).  Carbon and graphite fibers are anisotropic in thermal expansion.  The 
expansion coefficients in the fiber direction are extremely small, either positive or negative of the order of 
0.5 x 10-6 in/in/F° (0.9 x 10-6 m/m/C°).  To compute these stresses, it is necessary to know the thermal 
expansion coefficients of the layers.  Procedures to determine these coefficients in terms of the elastic 
properties and expansion coefficients of component fibers and matrix are discussed in this section. 
 
 When a laminate absorbs moisture, there occurs the same phenomenon as in the case of heating.  
Again, the swelling coefficient of the fibers is much smaller than that of the matrix.  Free swelling of the 
layers cannot take place and consequently internal stresses develop.  These stresses can be calculated if 
the UDC swelling coefficients are known. 
 
 Consider a free cylindrical specimen of UDC under uniform temperature change ∆T.  Neglecting tran-
sient thermal effects, the stress-strain relations (Equation 5.2.2.1(c)) assume the form 
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where 
  1

*α   - effective axial expansion coefficient 
 
  2

*α   - effective transverse expansion coefficient 
 
 It has been shown by Levin (Reference 5.2.2.3(a)) that there is a unique mathematical relationship 
between the effective thermal expansion coefficients and the effective elastic properties of a two-phase 
composite.  When the matrix and fibers are isotropic 
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  5.2.2.3(b) 

where 
 
 m f,α α  - matrix, fiber isotropic expansion coefficients 
 
 m fK ,K  - matrix, fiber three-dimensional bulk modulus 
 
 1

*
12
* *E , ,kν  - effective axial Young's modulus, axial Poisson's ratio,  

   and transverse bulk modulus 
 
These equations are suitable for glass/epoxy and boron/epoxy.  They have also been derived in Refer-
ences 5.2.2.3(b) and (c).  For carbon and graphite fibers, it is necessary to consider the case of trans-
versely isotropic fibers.  This complicates the results considerably as shown in Reference 5.2.2.1(c) and 
(e). 
 
 Frequently thermal expansion coefficients of the fibers and matrix are functions of temperature.  It is 
not difficult to show that Equations 5.2.2.3(b) remain valid for temperature-dependent properties if the 
elastic properties are taken at the final temperature and the expansion coefficients are taken as secant at 
that temperature. 
 
 To evaluate the thermal expansion coefficients from Equation 5.2.2.3(b) or (c), the effective elastic 
properties, *

1
*k ,E ,  and 12

*ν  must be known.  These may be taken as the values predicted by Equations 
5.2.2.1(j-l) with the appropriate modification when the fibers are transversely isotropic.  Figures 5.2.2.3(a) 
and (b) shows typical plots of the effective thermal expansion coefficients of graphite/epoxy. 
 
 When a composite with polymeric matrix is placed in a wet environment, the matrix will begin to ab-
sorb moisture.  The moisture absorption of most fibers used in practice is negligible; however, aramid fi-
bers alone absorb significant amounts of moisture when exposed to high humidity.  The total moisture 
absorbed by an aramid/epoxy composite, however, may not be substantially greater than other epoxy 
composites. 
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 When a composite has been exposed to moisture and sufficient time has elapsed, the moisture con-
centration throughout the matrix will be uniform and the same as the boundary concentration.  It is cus-
tomary to define the specific moisture concentration c by 
   c = C/ ρ   5.2.2.3(c) 
 
where ρ  is the density.  The swelling strains due to moisture are functions of ∆c  and the swelling coeffi-
cients, ijβ  

   ij ij= cε β ∆   5.2.2.3(d) 

 
 

 
 FIGURE 5.2.2.3(a) Effect of fiber volume on thermal expansion for representative 
  carbon/epoxy composite.  Elf 50 Msi (340 GPa). 
 
 
If there are also mechanical stresses and strains, then the swelling strains are superposed on the latter.  
This is exactly analogous to the thermoelastic stress-strain relations of an isotropic material.  The effec-
tive swelling coefficients ij

*β  are defined by the average strains produced in a free sample subjected to a 

uniform unit change of specific moisture concentration in the matrix.  For discussions of other aspects of 
moisture absorption, both transient and steady state, see References 5.2.2.3(d) and (e). 
 
 Finally, simultaneous moisture swelling and thermal expansion, or hygrothermal behavior can be con-
sidered.  The simplest approach is to assume that the thermal expansion strains and the moisture swell-
ing strains can be superposed.  For a free specimen, 
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  5.2.2.3(e) 
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In this event, the matrix elastic properties in Equations 5.2.2.3(a) and (b) may be functions of the final 
temperature and moisture concentration.  This dependence must be known to evaluate 1

*
2
*

1
*, , ,α α β   and 

2
*β  in Equation 5.2.2.3(e). 

 
 

 
 FIGURE 5.2.2.3(b) Effect of fiber volume on thermal expansion for representative 
  carbon/epoxy composite.  Elf = 50 Msi (340 GPa). 
 
 
5.2.2.4 Thermal conduction and moisture diffusion 
 
 The thermal conduction analysis has many similarities with the analyses for moisture diffusion, as 
well as electrical conduction, and dielectric and magnetic properties.  Since these conductivity problems 
are governed by similar equations, the results can be applied to each of these areas. 
 
 Let T(x) be a steady state temperature field in a homogeneous body.  The temperature gradient is 
given by 

   i
i

H =
T

x

∂
∂

  5.2.2.4(a) 

and the heat flux vector by 
   i ij jD = Hµ   5.2.2.4(b) 

where µij is the conductivity tensor.  It may be shown (Reference 5.2.2(a)) that for isotropic matrix and 
fibers, the axial conductivity 1

*µ  is given by 

   1
*

m m f f= v + vµ µ µ   5.2.2.4(c) 
and for transversely isotropic fibers 
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   1
*

m m Lf f= v + vµ µ µ   5.2.2.4(d) 
where µ1f  is the longitudinal conductivity of the fibers.  The results of Equations 5.2.2.4(c) and (d) are 
valid for any fiber distribution and any fiber cross-section. 
 
 The problem of transverse conductivity is mathematically analogous to the problem of longitudinal 
shearing (Reference 5.2.2(a)).  All results for the effective longitudinal shear modulus 1

*G  can be inter-
preted as results for transverse effective conductivity 2

*µ .  In particular, for the composite cylinder assem-
blage model 
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  5.2.2.4(e) 

 
These results are for isotropic fibers.  For carbon and graphite fibers µf should be replaced by the trans-
verse conductivity µ2f of the fibers (Reference 5.2.2.1(e)).  As in the elastic case, there is reason to be-
lieve that Equation 5.2.2.4(e) accurately represents all cases of circular fibers which are randomly distrib-
uted and not in contact.  Again the hexagonal array numerical analysis results coincide with the number 
predicted by Equation 5.2.2.4(e). 
 
 To interpret the results for the case of moisture diffusivity, the quantity µm is interpreted as the diffusiv-
ity of the matrix.  Since moisture absorption of fibers is negligible, µf is set equal to zero.  The results are 
then 
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  5.2.2.4(f) 

 
These equations describe the moisture diffusivity of a composite material. 
 
5.2.3 Fiber composites:  strength and failure 
 
 The mathematical treatment of the relationships between the strength of a composite and the proper-
ties of its constituents is considerably less developed than the analysis for the other physical property re-
lationships discussed in Section 5.2.2.  Failure is likely to initiate in a local region due to the influence of 
the local values of constituent properties and the geometry in that region.  This dependence upon local 
characteristics of high variability makes the analysis of the composite failure mechanisms much more 
complex than the analyses of the physical properties previously discussed. 
 
 Because of the complexity of the failure process, it may be desirable to regard the strength of a unidi-
rectional fiber composite subjected to a single principal stress component as a quantity to be measured 
experimentally, rather than deduced from constituent properties.  Such an approach may well be the prac-
tical one for fatigue failure of these composites.  Indeed, the issue of determining the degree to which het-
erogeneity should be considered in the analysis of composite strength and failure is a matter for which 
there exists a considerable degree of difference of opinion.  At the level of unidirectional composites, it is 
well to examine the effects upon failure of the individual constituents to develop an understanding of the 
nature of the possible failure mechanisms.  This subject is discussed in the following sections.  The gen-
eral issue of the approach to failure analysis is treated further in laminate strength and failure. 
 
 The strength of a fiber composite clearly depends upon the orientation of the applied load with re-
spect to the direction in which the fibers are oriented as well as upon whether the applied load is tensile 
or compressive.  The following sections present a discussion of failure mechanisms and composite-
constituent property relations for each of the principal loading conditions. 
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5.2.3.1 Axial tensile strength 
 
 One of the most attractive properties of advanced fiber composites is high tensile strength.  The sim-
plest model for the tensile failure of a unidirectional fiber composite subjected to a tensile load in the fiber 
direction is based upon the elasticity solution of uniform axial strain throughout the composite.  Generally, 
the fibers have a lower strain to failure than the matrix, and composite fracture occurs at the failure strain 
of the fibers alone.  This results in a composite tensile strength, 1

tuF , given by: 

   1
tu

f f
tu

m m
tF = v F + v σ   5.2.3.1 

 
where f

tuF   - the fiber tensile strength 

 m
tσ   - the stress in the matrix at a strain equal to the fiber failure strain 

 
 The problem with this approach is the variability of the fiber strength.  Non-uniform strength is charac-
teristic of most current high-strength fibers.  There are two important consequences of a wide distribution 
of individual fiber strengths.  First, all fibers will not be stressed to their maximum value simultaneously.  
Secondly, those fibers which break earliest during the loading process will cause perturbations of the 
stress field near the break, resulting in localized high fiber-matrix interface shear stresses.  These shear 
stresses transfer the load across the interface and also introduce stress concentrations into adjacent un-
broken fibers. 
 
 The stress distribution at each local fiber break may cause several possible failure events to occur.  
The shear stresses may cause a crack to progress along the interface.  If the interface is weak, such 
propagation can be extensive.  In this case, the strength of the composite material may differ only slightly 
from that of a bundle of unbonded fibers.  This undesirable mode of failure can be prevented by a strong 
fiber-matrix interface or by a soft ductile matrix which permits the redistribution of the high shear stresses.  
When the bond strength is high enough to prevent interface failure, the local stress concentrations may 
cause the fiber break to propagate through the matrix, to and through adjacent fibers.  Alternatively, the 
stress concentration in adjacent fibers may cause one or more of such fibers to break before failure of the 
intermediate matrix.  If such a crack or such fiber breaks continue to propagate, the strength of the com-
posite may be no greater than that of the weakest fiber.  This failure mode is defined as a weakest link 
failure.  If the matrix and interface properties are of sufficient strength and toughness to prevent or arrest 
these failure mechanisms, then continued load increases will produce new fiber failures at other locations 
in the material.  An accumulation of dispersed internal damage results. 
 
 It can be expected that all of these effects will occur before material failure. That is, local fractures will 
propagate for some distance along the fibers and normal to the fibers.  These fractures will initiate and 
grow at various points within the composite.  Increasing the load will produce a statistical accumulation of 
dispersed damage regions until a sufficient number of such regions interact to provide a weak surface, 
resulting in composite tensile failure. 
 
5.2.3.1.1 Weakest link failure 
 
 The weakest link failure model assumes that a catastrophic mode of failure is produced with the oc-
currence of one, or a small number of, isolated fiber breaks.  The lowest stress at which this type of failure 
can occur is the stress at which the first fiber will break.  The expressions for the expected value of the 
weakest element in a statistical population (e.g., Reference 5.2.3.1.1(a)) have been applied by Zweben 
(Reference 5.2.3.1.1(b)) to determine the expected stress at which the first fiber will break.  For practical 
materials in realistic structures, the calculated weakest link failure stress is quite small and, in general, 
failure cannot be expected in this mode. 
 
5.2.3.1.2 Cumulative weakening failure 
 
 If the weakest link failure mode does not occur, it is possible to continue loading the composite.  With 
increasing stress, fibers will continue to break randomly throughout the material.  When a fiber breaks, 
there is a redistribution of stress near the fracture site.  The treatment of a fiber as a chain of links is ap-
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propriate to the hypothesis that fracture is due to local imperfections.  The links may be considered to 
have a statistical strength distribution which is equivalent to the statistical flaw distribution along the fibers.  
Additional details for this model are given in References 5.2.3.1.1(a) and 5.2.3.1.2.  The cumulative 
weakening model does not consider the overstress on adjacent fibers or the effect of adjacent laminae. 
 
5.2.3.1.3 Fiber break propagation failure 
 
 The effects of stress perturbations on fibers adjacent to broken fibers are significant.  The load con-
centration in the fibers adjacent to a broken fiber increases the probability that a second fiber will break.  
Such an event will increase the probability of additional fiber breaks, and so on.  The fiber break propaga-
tion mode of failure was studied by Zweben (Reference 5.2.3.1.1(b)).  The occurrence of the first fracture 
of an overstressed fiber was proposed as a measure of the tendency for fiber breaks to propagate, and, 
hence, as a failure criterion for this mode.  Although the first multiple break criterion may provide good 
correlations with experimental data for small volumes of material, it gives very low failure stress predic-
tions for large volumes of material.  Additional work in this area can be found in References 5.2.3.1.3(a) 
and (b). 
 
5.2.3.1.4 Cumulative group mode failure 
 
 As multiple broken fiber groups grow, the magnitude of the local axial shear stress increases and ax-
ial cracking can occur. The cumulative group mode failure model (Reference 5.2.3.1.4) includes the ef-
fects of the variability of fiber strength, load concentrations in fibers adjacent to broken fibers, and matrix 
shear failure or interfacial debonding which will serve to arrest the propagating cracks.  As the stress level 
increases from that at which fiber breaks are initiated to that at which the composite fails, the material will 
have distributed groups of broken fibers.  This situation may be considered as a generalization of the cu-
mulative weakening model.  In practical terms, the complexity of this model limits its use. 
 
 Each of these models has severe limitations for the quantitative prediction of tensile strength.  How-
ever, the models show the importance of variability of fiber strength and matrix stress-strain characteris-
tics upon composite tensile strength. 
 
5.2.3.2 Axial compressive strength 
 
 Both strength and stability failures must be considered for compressive loads applied parallel to the 
fibers of a unidirectional composite.  Microbuckling is one proposed failure mechanism for axial compres-
sion (Reference 5.2.3.2(a)).  Small wave-length micro-instability of the fibers occurs in a manner analo-
gous to the buckling of a beam on an elastic foundation.  It can be demonstrated that this instability can 
occur even for a brittle material such as glass.  Analyses of this instability were performed independently 
in References 5.2.3.2(b) and (c).  The energy method for evaluation of the buckling stress has been used 
for these modes.  This procedure considers the composite as stressed to the buckling load.  The strain 
energy in this compressed but straight pattern (extension mode) is then compared to an assumed buck-
ling deformation pattern (shear mode) under the same load.  The change in strain energy in the fiber and 
the matrix can be compared to the change in potential energy associated with the shortening of the dis-
tance between the applied loads at the ends of the fiber.  The condition for instability is given by equating 
the strain energy change to the work done by the external loads during buckling. 
 
 The results for the compressive strength, 1

cuF , for the extension mode is given by 
 

   1
cu

f
f m f

f
F = 2 v

v  E E
3(1- v )

  5.2.3.2(a) 

The result for the shear mode is 
 

   1
cu m

f
F =

G
1- v

  5.2.3.2(b) 
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The compressive strength of the composite is plotted as a function of the fiber volume fraction, vf, in Fig-
ure 5.2.3.2 for E-glass fibers embedded in an epoxy matrix.  The compressive strength of glass-reinforced 
plastic, with a fiber volume fraction of 0.6 to 0.7, is on the order of 460 to 600 ksi (3100 to 4100 MPa). 
Values of this magnitude do not appear to have been measured for any realistic specimens.  However, 
the achievement of a strength of half a million psi in a composite of this type would require an average 
shortening greater than 5%.  For the epoxy materials used in this calculation, such a shortening would 
result in a decrease in the effective shear stiffness of the matrix material since the proportional limit of the 
matrix would be exceeded.  Hence, it is necessary to modify the analysis to consider the inelastic defor-
mation of the matrix.  As a first approximation, the matrix modulus in Equations 5.2.3.2(a) and (b) can be 
replaced by a reduced modulus.  A more general result can be obtained by modeling the matrix as an 
elastic, perfectly plastic material.  For this matrix, the secant value at each axial strain value may be as-
sumed to govern the instability.  These assumptions (Reference 5.2.3.2(d)) yield the following result for 
the shear mode: 
 

   1
cu f f

cpl

f
F =

v E F
3(1- v )

  5.2.3.2(c) 

where Fcpl is the matrix yield stress level. 
 
 

 
 

FIGURE 5.2.3.2  Compressive strength of glass-reinforced epoxy composite. 
 
 
 For the generally dominant shear mode, the elastic results of Equation 5.2.3.2(b) are independent of 
the fiber modulus, yet the compressive strength of boron/epoxy is much greater than that of glass/epoxy 
composites.  One hypothesis to explain this discrepancy, is that use of the stiffer boron fibers yields lower 
matrix strains and less of a strength reduction due to inelastic effects.  Thus, the results of Equation 
5.2.3.2(c) show a ratio of 6  or 2.4 for the relative strengths of boron compared to glass fibers in the 
same matrix. 
 
 All of the analytical results above indicate that compressive strength is independent of fiber diameter. 
Yet different diameter fibers may yield different compressive strengths for composites because large di-
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ameter fibers such as boron (0.005 inch, 0.13 mm D) are better collimated than small diameter fibers, 
such as glass (0.0004 in, 0.010 mm D).  For small diameter fibers, such as aramid and carbon, local out-
of-straightness can introduce matrix shear stresses, cause fiber debonding, and produce lower instability 
stress levels (References 5.2.3.2(e) and 5.2.2.1(d)).  Carbon and aramid fibers are anisotropic and have 
extremely low axial shear moduli.  As a result, the elastic buckling stress in the shear mode is reduced to: 

   ccr m

f m 1f
F =

G
1- v (1- G / G )

  5.2.3.2(d) 

where G1f  is the fiber longitudinal shear modulus (Reference 5.2.3.2(e)).  For high fiber shear moduli, this 
equation reduces to Equation 5.2.3.2(b). 
 
 Another failure mechanism for oriented polymeric fibers such as aramid fibers (Reference 5.2.3.2(e)) 
is a kink-band formation at a specific angle to the direction of compressive stress.  The formation of kink-
bands is attributed to the fibrillar structure of the highly anisotropic fiber and poor fiber shear strength. 
Breakup of the fiber into very small diameter fibrils results in degradation of shear stiffness and hence the 
compressive strength. 
 
 The results of the compressive strength analyses indicate that for the elastic case, the matrix Young's 
modulus is the dominant parameter.  For the inelastic case, however, there are strength limitations which 
depend both upon the fiber modulus and upon the matrix strength.  For some materials, performance is 
limited by a matrix yield strength at a given fiber modulus.  For other materials, a gain in compressive 
strength can be achieved by improving the matrix modulus. 
 
5.2.3.3 Matrix mode strength 
 
 The remaining failure modes of interest are transverse tension and compression and axial shear.  For 
each of these loading conditions, material failure can occur without fracture of the fibers, hence the termi-
nology "matrix-dominated" or "matrix modes of failure".  Micromechanical analyses of these failure modes 
are complex because the critical stress states are in the matrix, are highly non-uniform, and are very de-
pendent upon the local geometry.  As a result, it appears that the most fruitful approaches will be those 
that consider average states of stress. 
 
 There are two types of shearing stresses which are of interest for these matrix-dominated failures:  
(1) in a plane which contains the filaments, and  (2) in a plane normal to the filaments.  In the first case, 
the filaments provide very little reinforcement to the composite and the shear strength depends on the 
shear strength of the matrix material.  In the second case, some reinforcement may occur; at high volume 
fractions of filaments, the reinforcement may be substantial.  It is important to recognize that filaments 
provide little resistance to shear in any surfaces parallel to them. 
 
 The approach to shear failure analysis is to consider that a uniaxial fibrous composite is comprised of 
elastic-brittle fibers embedded in an elastic-perfectly plastic matrix.  For the composite, the theorems of 
limit analysis of plasticity (e.g., References 5.2.3.3(a) and (b)) may be used to obtain upper and lower 
bounds for a composite limit load (Reference 5.2.3.3(c)).  The limit load is defined as the load at which the 
matrix yield stress permits composite deformation to increase with no increase in load.  The failure 
strength of a ductile matrix may be approximated by this limit load. 
 
5.2.4 Strength under combined stress 
 
 It is possible to apply the micro-mechanical models for failure described above, to combined stresses 
in the principal directions.  Little work of this type has been done however.  Generally the strengths in 
principal directions have been used in a failure surface for a homogeneous, anisotropic material for esti-
mation of strength under combined loads. The understanding of failure mechanisms resulting from the 
above micro-mechanical models can be used to define the general form of failure surface to be utilized. 
This approach is outlined in the following sections. 
 
 Knowledge of the different failure mechanisms and quantitative experimental data for a UDC under 
single stress components can be used to formulate practical failure criteria for combined stresses.  Plane 
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stress failure criteria are discussed below with references also given for more complicated stress sys-
tems. The stresses considered are averaged over a representative volume element.  The fundamental 
assumption is that there exists a failure criterion of the form: 
   F( , , ) = 111 22 12σ σ σ   5.2.4(a) 
which characterizes the failure of the UDC.  The usual approach to construction of a failure criterion is to 
assume a quadratic form in terms of stress or strain since the quadratic form is the simplest form which 
can adequately describe the experimental data.  The various failure criteria which have been proposed all 
use coefficients based on experimental information such as ultimate stresses under single load compo-
nents (References 5.2.4(a) - (d)).  For example, the general quadratic version of Equation 5.2.4(a) for 
plane stress would be: 
 

   11 11
2

22 22
2

66 12
2

12 11 22 16 11 12

26 22 12 1 11 2 22 6 12

C + C + C + 2 C + 2 C

+2C + C + C + C  =  1

σ σ σ σ σ σ σ
σ σ σ σ σ

  5.2.4(b) 

 
The material has different strengths in uniaxial, longitudinal, and transverse tension and compression.  
Evidently the shear strength is not affected by the sign of the shear stress.  It follows that all powers of 
shear stress in the failure criterion must be even.  Consequently, the criterion simplifies to 
 
   11 11

2
22 22

2
66 12

2
12 11 22 1 11 2 22C + C + C + 2 C + C + C  =  1σ σ σ σ σ σ σ   5.2.4(c) 

 
The ultimate stresses under single component stress conditions for each of 11 22,  σ σ , and 12σ  determine 
the constants for the failure criterion. 
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  5.2.4(d) 

 
However, C12 cannot be determined from the single component ultimate stresses. Biaxial stress tests 
must be performed to determine this coefficient.  Frequently, the coefficient is established by relating 
Equation 5.2.4(c) to the Mises-Henky yield criterion for isotropic materials, yielding 
 

   12 11 22
1/2C = -

1

2
(C C )   5.2.4(e) 

The above failure criterion is the two-dimensional version of the Tsai-Wu criterion (Reference 5.2.4(c)).  
Its implementation raises several problems; the most severe of these is that the failure criterion ignores 
the diversity of failure modes which are possible. 
 
 The identification of the different failure modes of a UDC can provide physically more realistic, and 
also simpler, failure criteria (Reference 5.2.4(e)).  Testing a polymer matrix UDC reveals that tensile stress 
in the fiber direction produces a jagged, irregular failure surface.  Tensile stress transverse to the surface 
produces a smooth, straight failure surface (See Figures 5.2.4(a) and (b)).  Since the carrying capacity 
deterioration in the tensile fiber mode is due to transverse cracks and the transverse stress σ22 has no 
effect on such cracks, it is assumed that the plane tensile fiber mode is only dependent on the stresses 
σ11 and σ12. 
 
 For compressive σ11, failure is due to fiber buckling in the shear mode and the transverse stress σ22 
has little effect on the compressive failure.  In this compressive fiber mode, failure again depends primar-
ily on σ11.  The dependence on σ12 is not known and arguments may be made for and against including it 
in the failure criterion. 
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FIGURE 5.2.4(a)  Tensile fiber failure mode. 

 
 
 

 
 

FIGURE 5.2.4(b)  Tensile matrix failure mode. 
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 For tension transverse to the fibers, the tensile matrix mode, failure occurs by a sudden crack in the 
fiber direction as shown in Figure 5.2.4(b).  Since stress in the fiber direction has no effect on a crack in 
the fiber direction, this failure mode is dependent only on σ22 and σ12. 
 
 For compressive stress transverse to the fibers, failure occurs on some plane parallel to the fibers, 
but not necessarily normal to σ22.  This compressive matrix mode is produced by normal stress and shear 
stress on the failure plane.  Again, the stress σ11 does not effect this failure. 
 
 Each of the failure modes described can be modeled separately by a quadratic polynomial (Refer-
ence 5.2.4(e)).  This approach provides four individual failure criteria.  Note the choice of stress compo-
nents included in each of these criteria, and the particular mathematical form used, are subjects which are 
not yet fully resolved.  The following criteria appear to a reasonable set with which the different modes of 
failure can be handled separately. 
 
Fiber modes 
 
 Tensile 
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Matrix modes 
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Note that 2

cuF  in Equation 5.2.4(i) should be taken as the absolute value.  The ultimate transverse shear 

stress, 23 23
su= Fσ , is very difficult to measure. A reasonable approximation for this quantity is the ultimate 

shear stress for the matrix.  For any given state of stress, one each of Equations 5.2.4(f) and (g) and 
Equations 5.2.4(h) and (i) are chosen according to the signs of σ11 and σ22.  The stress components are 
introduced into the appropriate pair and whichever criterion is satisfied first is the operative criterion. 
 
 The advantages are Equations 5.2.4(f) - (i) are: 
 

1. The failure criteria are expressed in terms of single component ultimate stresses.  No biaxial test 
results are needed. 

 
2. The failure mode is identified by the criterion which is satisfied first. 

 
The last feature is of fundamental importance for analysis of fiber composite structural elements, since it 
permits identification of the nature of initial damage.  Moreover, in conjunction with a finite element analy-
sis, it is possible to identify the nature of failure in elements, modify their stiffnesses accordingly, and pro-
ceed with the analysis to predict new failures.    
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5.2.5 Summary 
 
• Composite strength analysis is most commonly performed, by industry, on the macromechanics level 

given that the analysis of composite materials uses effective lamina properties based on average 
stress and strain. 

 
• Ply level stresses are the commonly used approach to laminate strength analysis. 
 
• Lamina stress/strain is influenced by many properties of interest, but is dominated by mechanical load 

and environmental sensitivity. 
 
• Stress-strain elastic behavior, in its simplest form, may be described as a function of a composite ma-

terials constitutive properties (i.e., E, G, ν, α). 
 
• Several practical failure criteria exist today that: 1) depend upon cross-plied laminate coupon data to 

determine lamina stress/strain allowables and 2) identify the failure mode based on the allowable that 
is first exceeded by its stress/strain counterpart. 

 
 
5.3 ANALYSIS OF LAMINATES 
 
5.3.1 Lamina stress-strain relations 
 
 A laminate is composed of unidirectionally-reinforced laminae oriented in various directions with re-
spect to the axes of the laminate.  The stress-strain relations developed in the Section 5.2 must be trans-
formed into the coordinate system of the laminate to perform the laminate stress-strain analysis.  A new 
system of notation for the lamina elastic properties is based on x1 in the fiber direction, x2 transverse to 
the fibers in the plane of the lamina, and x3 normal to the plane of the lamina. 
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In addition, the laminae are now treated as effective homogeneous, transversely isotropic materials. 
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  5.3.1(b) 

 
It has become common practice in the analysis of laminates to utilize engineering shear strains rather 
than tensor shear strains.  Thus the factor of two has been introduced into the stress-strain relationship of 
Equation 5.3.1(b). 
 
 The most important state of stress in a lamina is plane stress, where 
   13 23 33= = = 0σ σ σ   5.3.1(c) 
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since it occurs from both in-plane loading and bending at sufficient distance from the laminate edges.  
The plane stress version of Equation 5.3.1(b) is 
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  5.3.1(d) 

which may be written as 
    { } = S { }A Aε σ   5.3.1(e) 
 
Here [S], the compliance matrix, relates the stress and strain components in the principal material direc-
tions.  These are called laminae coordinates and are denoted by the subscript A . 
 
 Equation 5.3.1(d) relates the in-plane strain components to the three in-plane stress components.  
For the plane stress state, the three additional strains can be found to be 
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  5.3.1(f) 

 
and the complete state of stress and strain is determined. 
 
 The relations 5.3.1(d) can be inverted to yield 
    { } = S { }-1

A Aσ ε   5.3.1(g) 
or 
    { } = Q { }A Aσ ε   5.3.1(h) 
 
The matrix [Q] is defined as the inverse of the compliance matrix and is known as the reduced lamina 
stiffness matrix.  Its terms can be shown to be 
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In the notation for the [Q] matrix, each pair of subscripts of the stiffness components is replaced by a sin-
gle subscript according to the following scheme.   
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→ → →
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 The reduced stiffness and compliance matrices 5.3.1(i) and (d) relate stresses and strains in the prin-
cipal material directions of the material.  To define the material response in directions other than these 
coordinates, transformation relations for the material stiffnesses are needed. 
 
 In Figure 5.3.1(a), two sets of coordinate systems are depicted.  The 1-2 coordinate system corre-
sponds to the principal material directions for a lamina, while the x-y coordinates are arbitrary and related 
to the 1-2 coordinates through a rotation about the axis out of the plane of the figure.  The angle θ is de-
fined as the rotation from the arbitrary x-y system to the 1-2 material system.   
 
 The transformation of stresses from the 1-2 system to the x-y system follows the rules for transforma-
tion of tensor components. 
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or 
    { } = { }xσ θ σ A   5.3.1(l) 
 
where m =  cosθ , and n =  sinθ .  In these relations, the subscript x is used as shorthand for the lami-
nate coordinate system. 
 
 The same transformation matrix [θ ] can also be used for the tensor strain components.  However, 
since the engineering shear strains have been utilized, a different transformation matrix is required. 
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or 
    { } = { }xε ψ ε A   5.3.1(n) 

 
 

 
FIGURE 5.3.1(a)  Coordinate systems. 
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 Given the transformations for stress and strain to the arbitrary coordinate system, the relations be-
tween stress and strain in the laminate system can be determined. 
 
    { } = Q { }x xσ ε   5.3.1(o) 

The reduced stiffness matrix [Q ] relates the stress and strain components in the laminate coordinate sys-
tem. 

   Q = Q -1θ ψ   5.3.1(p) 

 
The terms within [Q ] are defined to be 
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   21 12 61 16 62 26Q = Q      Q = Q      Q = Q  
 
where the subscript 6 has been retained in keeping with the discussion following Equation 5.3.1(j). 
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 A feature of [Q ] matrix which is immediately noticeable is that [Q ] is fully-populated.  The additional 

terms which have appeared in Q ,Q16  and 26Q , relate shear strains to extensional loading and vice versa.  

This effect of a shear strain resulting from an extensional strain is depicted in Figure 5.3.1(b).  From 
Equations 5.3.1(q), these terms are zero for θ  equal to 0° or 90°.  Physically, this means that the fibers 
are parallel or perpendicular to the loading direction. For this case, extensional-shear coupling does not 
occur for an orthotropic material since the loadings are in the principal directions.  The procedure used to 
develop the transformed stiffness matrix can also be used to find a transformed compliance matrix. 
 
    { } = S { }A Aε σ   5.3.1(s) 
 
    { } = S { }x

-1
xε ψ θ σ   5.3.1(t) 

 
    { } = S { }x xε σ   5.3.1(u) 

 
 Noting that the stress-strain relations are now defined in the laminate coordinate system, lamina stiff-
nesses can also be defined in this system.  Thus, expanding the last of Equations 5.3.1(s) - (u): 
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The engineering constants for the material can be defined by specifying the conditions for an experiment.  
For σ σyy xy= = 0 , the ratio σ εxx xx/  is Young's modulus in the x direction.  For this same stress state, 

−ε εyy xx/  is Poisson's ratio.  In this fashion, the lamina stiffnesses in the coordinate system of Equations 

5.3.1(s) - (u) are found to be: 
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  5.3.1(w) 

 
 

 
FIGURE 5.3.1(b)  Extensional-shear coupling. 

 
 
 It is sometimes desirable to obtain elastic constants directly from the reduced stiffnesses, Q , by us-

ing Equations 5.3.1(o).  In the general case where the ijQ  matrix is fully populated, this can be accom-

plished by using Equations 5.3.1(w) and the solution for ijS  as functions of ijQ  obtained from the inverse 

relationship of the two matrices.  An alternative approach is to evaluate extensional properties for the 
case of zero shear strain.  For single stress states and zero shear strain, the elastic constants in terms of 
the transformed stiffness matrix terms are: 
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Also, 
   xy 66G = Q  

 From the terms in the Q  matrix (Equation 5.3.1(q)) and the stiffness relations (Equation 5.3.1(x)), 

the elastic constants in an arbitrary coordinate system are functions of all the elastic constants in the prin-
cipal material directions as well as the angle of rotation. 
 
 The variation of elastic modulus Ex with angle of rotation is depicted in Figure 5.3.1(c) for a typical 
graphite/epoxy material.  For demonstration purposes, two different shear moduli have been used in gen-
erating the figure.  The differences between the two curves demonstrate the effect of the principal material 
shear modulus on the transformed extensional stiffness.  The two curves are identical at  0° and 90°, as 
expected since Ex is simply E1 or E2.  Between these two endpoints, substantial differences are present.  
For the smaller shear modulus, the extensional stiffness is less than the E2 value from approximately 50° 
to just less than 90°.  For these angles, the material stiffness is more strongly governed by the principal 
material shear modulus than by the transverse extensional modulus.  The curves of Figure 5.3.1(c) can 
also be used to determine the modulus Ey by simply reversing the angle scale. 
  
 With the transformed stress-strain relations, it is now possible to develop an analysis for an assem-
blage of plies, i.e., a laminate. 
 
 

 
FIGURE 5.3.1(c)  Variation of Ex with angle and G12 for typical graphite/epoxy materials. 
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5.3.2 Lamination theory 
 
 The development of procedures to evaluate stresses and deformations of laminates is crucially de-
pendent on the fact that the thickness of laminates is much smaller than the in-plane dimensions.  Typical 
thickness values for individual plies range between 0.005 and 0.010 inch (0.13 and 0.25 mm).  Conse-
quently, laminates using from 8 to 50 plies are still generally thin plates and, therefore, can be analyzed 
on the basis of the usual simplifications of thin plate theory. 
  
 In the analysis of isotropic thin plates it has become customary to analyze the cases of in-plane load-
ing and bending separately.  The former case is described by plane stress elastic theory and the latter by 
classical plate bending theory. This separation is possible since the two loadings are uncoupled for sym-
metric laminates; when both occur, the results are superposed. 
 
 The classical assumptions of thin plate theory are: 
 

1. The thickness of the plate is much smaller than the in-plane dimensions; 
2. The shapes of the deformed plate surface are small compared to unity; 
3. Normals to the undeformed plate surface remain normal to the deformed plate surface; 
4. Vertical deflection does not vary through the thickness; and 
5. Stress normal to the plate surface is negligible. 

 
 On the basis of assumptions (2) - (4), the displacement field can be expressed as: 
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with the x-y-z coordinate system defined in Figure 5.3.2(a).  These relations (Equation 5.3.2(a)) indicate 
that the in-plane displacements consist of a mid-plane displacement, designated by the superscript (°), 
plus a linear variation through the thickness.  The two partial derivatives are bending rotations of the mid-
surface.  The use of assumption (4) prescribes that uz does not vary through the thickness. 
 
 The linear strain displacement relations are 
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  5.3.2(b) 

and performing the required differentiations yields 
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or 
    { } = { }+ z{ }xε ε κ°   5.3.2(d) 
where 
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FIGURE 5.3.2(a)  Laminate construction. 
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and 
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  5.3.2(f) 

 
 The strain at any point in the plate is defined as the sum of a mid-surface strain {ε D}, and a curvature 
{κ} multiplied by the distance from the mid-surface. 
 
 For convenience, stress and moment resultants will be used in place of stresses for the remainder of 
the development of lamination theory (see Figure 5.3.2(b)).  The stress resultants are defined as 
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FIGURE 5.3.2(b)  Stress and moment resultants. 
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and the moment resultants are defined as 
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where the integrations are carried out over the plate thickness. 
 
 
 Noting Equations 5.3.1(o) and 5.3.2(c), relations between the stress and moment resultants and the 
mid-plane strains and curvatures can be written as 
 

    {N} = { }dz = Q ({ }+ z{ })dzx
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h
σ ε κ   5.3.2(i) 

    {M} = { }zdz = Q ({ }+ z{ })zdzx
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°z z
h

h

h

h
σ ε κ   5.3.2(j) 

 
 Since the transformed lamina stiffness matrices are constant within each lamina and the mid-plane 
strains and curvatures are constant with respect to the z-coordinate, the integrals in Equations 5.3.2(i) 
and (j) can be replaced by summations. 
 
 Introducing three matrices equivalent to the necessary summations, the relations can be written as 
 
    {N} = A { }+ B { }°ε κ   5.3.2(k) 



MIL-HDBK-17-3F 
Volume 3, Chapter 5  Design and Analysis 
 

5-30 

   {M} = B { }+ D { }°ε κ   5.3.2(l) 
 
where the stiffness matrix is composed of the following 3x3 matrices: 
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where N is the total number of plies, zi is defined in Figure 5.3.2(a) and subscript i denotes a property of 
the ith ply.  Note that zi - zi-1 equals the ply thickness.  Here the reduced lamina stiffnesses for the ith ply 
are found from Equations 5.3.2(k) and (l) using the principal properties and orientation angle for each ply 
in turn.  Thus, the constitutive relations for a laminate have been developed in terms of stress and mo-
ment resultants. 
 
 Classical lamination theory has been used to predict the internal stress state, stiffness and dimen-
sional stability of laminated composites (e.g., References 5.3.2(a) - (e)).  The constitutive law for CLT cou-
ples extensional, shear, bending and torsional loads with strains and curvatures.  Residual strains or 
warpage due to differential shrinkage or swelling of plies in a laminate have also been incorporated in 
lamination theory using an environmental load analogy (See Sections 5.3.3.3 and 5.3.3.4.).  The com-
bined influence of various types of loads and moments on laminated plate response can be described 
using the ABD matrix from Equations 5.3.2(k) and (l).  In combined form: 
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  5.3.2(n) 

 
where N are loads, M are moments, ε  are strains, κ  are curvatures and 
 
  Aij = extensional and shear stiffnesses 
  Bij = extension-bending coupling stiffnesses 
  Dij = bending and torsional stiffnesses 
 
Several observations regarding lay-up and laminate stacking sequence (LSS) can be made with the help 
of Equation 5.3.2(n).  These include: 
 

(1) The stiffness matrix Aij in Equation 5.3.2(n) is independent of LSS.  Inversion of the stiffness ma-
trix [ABD] yields the compliance matrix [A'B'D'].  This inversion is necessary in order to calculate 
strains and curvatures in terms of loads and moments.  The inversion results in a relationship be-
tween LSS and extension/shear compliances.  However, this relationship is eliminated if the lami-
nate is symmetric. 

 
(2) Nonzero values of A16 and A26 indicates that there is extension/shear coupling (e.g., longitudinal 

loads will result in both extensional and shear strains).  If a laminate is balanced A16 and A 26 be-
come zero, eliminating extension/shear coupling. 
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(3) Nonzero values of Bij indicates that there is coupling between bending/twisting curvatures and ex-
tension/shear loads.  Traditionally, these couplings have been suppressed for most applications 
by choosing an LSS that minimizes the values of Bij.  All values of Bij become zero for symmetric 
laminates.  Reasons for designing with symmetric laminates include structural dimensional stabil-
ity requirements (e.g., buckling, environmental warping), compatibility of structural components at 
joints and the inability to test for strength allowables of specimens that have significant values of 
Bij. 

 
(4) In general, the values of Dij are nonzero and strongly dependent on LSS.  The average plate 

bending stiffnesses, torsional rigidity and flexural Poisson's ratio can be calculated per unit width 
using components of the compliance matrix [A'B'D'], i.e., 

 
1/D'11 = bending stiffness about y-axis 
1/D'22 = bending stiffness about x-axis 
1/D'66 = torsional rigidity about x- or y-axis 
-D'12/D'11 = flexural Poisson's ratio. 

 
The D'16 and D'26 terms should also be included in calculations relating midplane curvatures to mo-

ments except when considering a special class of balanced, unsymmetric laminates. 
 
(5) Nonzero values of D16 and D26 indicates that there is bending/twisting coupling.  These terms will 

vanish only if a laminate is balanced and if, for each ply oriented at +θ above the laminate mid-
plane, there is an identical ply (in material and thickness) oriented at -θ at an equal distance be-
low the midplane.  Such a laminate cannot be symmetric, unless it contains only 0° and 90° plies.  
Bending/twisting coupling can be minimized by alternating the location of +θ  and -θ  plies through 
the LSS (Section 5.6.5.2.2, Recommendation 5). 

 
Additional information on laminate stacking sequence effects is found in Section 5.6.5. 
 
5.3.3 Laminate properties 
 
 The relations between the mid-surface strains and curvatures and the membrane stress and moment 
resultants are used to calculate plate bending and extensional stiffnesses for structural analysis.  The ef-
fects of orientation variables upon plate properties are also considered.  In addition to the mechanical 
loading conditions treated thus far, the effects of temperature changes upon laminate behavior must be 
understood.  Further, for polymeric matrix composites, high moisture content causes dimensional 
changes which can be described by effective swelling coefficients. 
 
5.3.3.1 Membrane stresses 
 
 Recalling Equations 5.3.2(k) and (l) and noting that for symmetric laminates the [B] matrix is zero, the 
relations can be rewritten as 
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and 
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  5.3.3.1(b) 

Since the extensional and bending behavior are uncoupled, effective laminate elastic constants can be 
readily determined.  Inverting the stress resultant mid-plane strain relations yields 
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    { } = A {N} = a {N}-1ε°   5.3.3.1(c) 
from which the elastic constants are seen to be 
 

   
x

11
xy

66

y
22

xy
12

11

E =
1

2 ha
          G =

1

2 ha

E =
1

2 ha
          = -

a

a
ν

  5.3.3.1(d) 

where the divisor 2h corresponds to the laminate thickness. 
 
 Note that the [A] matrix is comprised of [Q] matrices from each layer in the laminate.  It is obvious 
that the laminate elastic properties are functions of the angular orientation of the plies.  This angular influ-
ence is illustrated in Figure 5.3.3.1 for a typical high modulus carbon/epoxy system which has the lamina 
properties listed in Table 5.3.3.1(a).  The laminae are oriented in ±θ pairs in a symmetric, balanced con-
struction, creating what is called an angle-ply laminate. 
 
 

 
 

FIGURE 5.3.3.1  Laminate elastic constants for high modulus carbon/epoxy. 
 
 
 The variation of shear modulus and Poisson's ratio are noteworthy in Figure 5.3.3.1.  The shear 
modulus is equal to the unidirectional value for 0° and 90° and rises sharply to a maximum at 45°.  The 
peak at 45° can be explained by noting that shear is equivalent to a combined state of tensile and com-
pressive loads oriented at 45°.  Thus, the shear loading on a [±45]s laminate is equivalent to tensile and 
compressive loading on a [0/90]s laminate.  Effectively, the fibers are aligned with the loading and, hence, 
with the large shear stiffness. 
 
 An even more interesting effect is seen in the variation of Poisson's ratio. The peak value in this ex-
ample is greater than 1.5.  In an isotropic material, this would be impossible.  In an orthotropic material, 
the isotropic restriction does not hold and a Poisson's ratio greater than one is valid and realistic.  In fact, 
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large Poisson's ratios are typical for laminates constructed from unidirectional materials with the plies ori-
ented at approximately 30°. 
 
 
 

TABLE 5.3.3.1(a)  Properties of a high-modulus carbon/epoxy lamina. 
 

E1  = 25.0 Msi = 172 GPa 1α  = 0.30x10-6 in/in/F° = 0.54x10-6 mm/mm/C° 

E2  =   1.7 Msi = 12 GPa 2α  = 19.5x10-6 in/in/F° = 35.1x10-6 mm/mm/C° 

G12 = 0.65 Msi = 4.5 GPa  

12ν  = 0.30  

ρ  = 0.056 lb/in3 = 1.55 g/cm3  

1
tuF  = 110 ksi = 760 MPa 1

cuF  = 110 ksi = 760 MPa 

2
tuF  =  4.0 ksi = 28 MPa 2

cuF  = 20.0 ksi = 138 MPa 

12
suF  =  9.0 ksi = 62 MPa  

vf = 0.6 tR = 0.0052 in = 0.13 mm 

 
 
 
 
 Because of the infinite variability of the angular orientation of the individual laminae, one would as-
sume that a laminate having a stiffness which behaves isotropically in the plane of the laminate could be 
constructed by using many plies having small, equal differences in their orientation.  It can be shown that 
a symmetric, quasi-isotropic laminate can be constructed with as few as six plies as a [0/±60]s laminate.  
A general rule for describing a quasi-isotropic laminate states that the angles between the plies are equal 
to π / N , where N is an integer greater than or equal to 3, and there is an identical number of plies at each 
orientation in a symmetric laminate.  For plies of a given material, all such quasi-isotropic laminates will 
have the same elastic properties, regardless of the value of N. 
 
A quasi-isotropic laminate has in-plane stiffnesses which follow isotropic relationships 
 
   x yE = E = Eθ   5.3.3.1(e) 

where the subscript θ indicates any arbitrary angle.  Additionally, 
 

   xy
x

xy
G = E

2(1+ )ν
  5.3.3.1(f) 

 
There are two items which must be remembered about quasi-isotropic laminates. First and foremost, only 
the elastic in-plane properties are isotropic; the strength properties, in general, will vary with directions.  
The second item is that two equal moduli Ex = Ey do not necessarily indicate quasi-isotropy, as demon-
strated in Table 5.3.3.1(b).  The first two laminates in Table 5.3.3.1(b) are actually the same (a [0/90]s 
laminate rotated 45° is a [±45]s laminate).  Note that the extensional moduli of these laminates are not the 
same and that the shear modulus of each laminate is not related to the extensional modulus and Pois-
son's ratio.  For these laminates, the π /N relation has not been satisfied and they are not quasi-isotropic.  
The third laminate has plies oriented at 45° to each other but there are not equal numbers of plies at each 
angle.  This laminate is also not quasi-isotropic. 
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 This discussion of symmetric laminates has centered on membrane behavior.  Symmetric laminates 
can be constructed which are very well behaved in the membrane sense.  The bending behavior of sym-
metric laminates is considerably more complex, primarily due to the arrangement of plies through the 
thickness of the laminate. 
 
 
 

TABLE 5.3.3.1(b)  Elastic properties of laminates. 
 

 Ex  =  Ey νxy Gxy 

 Msi (GPa)  Msi (GPa) 

[0°/90°]s 13.4 (92.5) 0.038 0.65 (4.5) 

[±45°]s 2.38 (16.4) 0.829 6.46 (44.5) 

[0°/90°/±45°/-45°/90°/0°]s 11.0 (75.6) 0.213 2.59 (17.9) 

 
 
 
 
5.3.3.2 Bending 
 
 The equations for bending analysis of symmetric laminates has been developed with the extensional 
analysis.  The first complication that arises in the treatment of laminate bending deals with relationships 
between the extensional (A) and bending (D) elastic properties.  In composite laminates, there is no direct 
relationship between extensional and bending stiffnesses, unlike the case of a homogeneous material 
where 

   D =
A(2 h )

12

2
  5.3.3.2(a) 

In determining the membrane stiffnesses (A), the position of the ply through the thickness of the laminate 
does not matter (Equation 5.3.2(m)).  The relations for the bending stiffnesses are a function of the third 
power of the distance of the ply from the mid-surface.  Therefore, the position of the plies with respect to 
the mid-surface is critical.  The effects of ply position in a unit thickness laminate are shown in Table 
5.3.3.2(a). 
 
 The three laminates shown in Table 5.3.3.2(a) are all quasi-isotropic.  The membrane properties are 
isotropic and identical for each of the laminates.  The bending stiffnesses can be seen to be a strong 
function of the thickness position of the plies.  Additionally, bending stiffness calculations based on homo-
geneity (Equation 5.3.3.2) do not correspond to lamination theory calculations.  Thus, the simple relations 
between extensional and bending stiffnesses are lost and lamination theory must be used for bending 
properties.  Table 5.3.3.2(a) also demonstrates that quasi-isotropy holds only for extensional stiffnesses. 
 
 Another complication apparent in Table 5.3.3.2(a) involves the presence of the bending-twisting cou-
pling terms, D16 and D26.  The corresponding extensional-shear coupling terms are zero because of the 
presence of pairs of layers at ±60° orientations.  Noting that the bending-twisting terms can be of the 
same order of magnitude as the principal bending terms, D11, D22, and D66, the bending-twisting effect can 
be severe.  This effect can be reduced by the proper selection of stacking sequence. 
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TABLE 5.3.3.2(a)  Extensional and bending stiffnesses. 
 

 [0/±60]s [±60/0]s [60/0/-60]s Homogeneous 
Laminate 

A11 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 

A12 3.42x106 (2.38x1010) 3.42x106 (2.38x1010) 3.42x106 (2.38x1010) 3.42x106 (2.38x1010) 

A22 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 1.05x107 (7.30x1010) 

A66 3.55x106 (2.47x1010) 3.55x106 (2.47x1010) 3.55x106 (2.47x1010) 3.55x106 (2.47x1010) 

D11 1.55x106 (1.08x1010) 3.36x105 (2.34x109) 7.42x105 (5.16x109) 8.75x105 (6.09x109) 

D12 1.50x105 (1.04x109) 3.92x105 (2.73x109) 3.12x105 (2.17x109) 2.85x105 (1.98x108) 

D16 4.74x104 (3.30x108) 9.50x104 (6.61x108) 1.42x105 (9.88x108) 0.0 (0.0) 

D22 4.69x105 (3.26x109) 1.20x106 (8.35x109) 9.59x105 (6.67x109) 8.75x105 (6.09x109) 

D26 1.42x105 (9.88x108) 2.81x105 (1.95x109) 4.22x105 (2.94x109) 0.0 (0.0) 

D66 1.63x105 (1.13x109) 4.04x105 (2.81x109) 3.23x105 (2.25x109) 2.96x105 (2.06x109) 

 
Lamina properties are from Table 5.3.3.1(a); unit thickness laminate. 

 
[A] lb/in (N/m)    [D] in-lb (N/m) 

 
 
 
 
 Another example that shows how the laminate stacking sequence (LSS) can significantly affect com-
posite behavior is the bending stiffness of a laminated beam with rectangular cross-section (h ≡  laminate 
thickness).  For the purpose of this example, define effective in-plane and bending moduli along the beam 
axis as 

   xE  =  
1

h′A11
  5.3.3.2(b) 

   x
b

3E  =  
12

h′D11
  5.3.3.2(c) 

respectively.  The relationship, 

   ∆  =  
E - E

E
x100x

b
x

x
  5.3.3.2(d) 

provides a relative measure of the effect of LSS on beam bending stiffness.  Bending moduli of laminated 
beams approach those of homogeneous beams as the number of plies increase provided that there is no 
preferential stacking of ply orientations through the thickness. 
 
 Table 5.3.3.2(b) shows lamination theory predictions of in-plane and effective bending moduli for 
beams with seven different LSS variations of a 16-ply, carbon/epoxy, quasi-isotropic lay-up.1  Note that 
the in-plane moduli are independent of LSS because all lay-ups are symmetric.  Bending moduli are 

                                                      
1
The LSS used in Table 5.3.3.2(b) were chosen for illustrative purposes only and do not represent optimal LSS for a given applica-

tion. 
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shown to vary significantly above or below the in-plane moduli depending on preferential stacking of 0° 
plies towards the surface or center of the laminate, respectively. 
 
 
 
 
 TABLE 5.3.3.2(b) Stiffness predictions for seven different LSS for 16-ply, quasi-isotropic, 
  carbon/epoxy, laminated beams. 
 

 
Stacking  

Sequence  

In-plane  
Modulus  

Ex 

Bending  
Modulus  

Ex
b  

Percent  
Difference 

∆ 

 Msi GPa Msi GPa % 

[02/(±45)2/902]s 7.67 52.9 12.8 88.2 67 

[0/±45/90]2s 7.67 52.9 10.1 69.6 32 

[±45/02/±45/902]s 7.67 52.9 7.80 53.8 1.7 

[±45/0/90]2s 7.67 52.9 6.51 44.9 -15 

[(±45)2/02/902]s 7.67 52.9 4.45 30.7 -42 

[(±45)2/902/02]s 7.67 52.9 3.42 23.6 -55 

[902/(±45)2/02]s 7.67 52.9 3.25 22.4 -58 

 
 Properties for T300/934 (Vf = 0.63): E11 = 20.0 Msi (138 GPa), E22 = 1.4 Msi (9.7 GPa),  
  G12 = 0.65 Msi (4.5 GPa), ν12 = 0.31,  
  Ply Thickness = 0.0056 in. (0.14 mm) 
 
 
 
 In general, the relationship between effective bending moduli and stacking sequence can be more 
complex than that shown in Table 5.3.3.2(b).  Predictions in the table assumed that the basic lamina 
moduli were constant (i.e., linear elastic behavior).  Depending on material type and the degree of accu-
racy desired, this assumption may lead to poor predictions.  Lamina moduli for graphite/epoxy have been 
shown to depend on environment and strain level.  Since flexure results in a distribution of tension and 
compression strains through the laminate thickness, nonlinear elastic lamination theory predictions may 
be more appropriate. 
 
 The example from Table 5.3.3.2(b) shows a significant effect of LSS on bending moduli of laminated 
beams.  Similarly, calculations with Equation 5.3.2(n) can be used to indicate that LSS has a strong influ-
ence on the bending behavior of laminated plates.  However, the bending response of common structures 
may depend more on the resulting moment of inertia, I, for a given geometry than on LSS.  This is par-
ticularly true for stringer geometries typically used to stiffen composite plates in aerospace structures. 
 
 Figure 5.3.3.2 illustrates how structural geometry of a beam section can overshadow the effects of 
LSS on bending.  Web and flange members of each I-beam have LSS indicated in the legend of Figure 
5.3.3.21  These LSS are the same as those used in Table 5.3.3.2(b).  The ordinate axis of the figure indi-
cates a percent difference between laminated and homogeneous beam calculations.  As shown in Figure 
5.3.3.2, the effect of LSS on the El of an I-beam diminishes rapidly with increasing web height. 
                                                      
1
The LSS used in Figure 5.3.3.2 were chosen for illustrative purposes only and do not represent optimal LSS for a given application. 
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 Additional information on laminate stacking sequence effects is found in Section 5.6.5. 
 

 
 FIGURE 5.3.3.2 Laminated and homogeneous El calculations for an I-beam 
  stringer geometry with variable web height. 
 
 
5.3.3.3 Thermal expansion 
 
 As the use of composite materials becomes more commonplace, they are subjected to increasingly 
severe mechanical and environmental loading conditions.  With the advent of high temperatures in sys-
tems, the range of temperatures over which composite systems can be used has increased.  The re-
sponse of laminates to temperature and moisture, as well as to applied loads, must be understood.  Pre-
viously, laminate extensional and bending stiffnesses were determined; in this section laminate conduc-
tivities and expansion coefficients will be defined. 
  
 To determine the laminate thermal expansion coefficients and thermally-induced stresses quantita-
tively, begin at the ply level.  The thermoelastic relations for strain in the principal material directions are 
    { } = { }+{ } TMA A Aε ε α ∆   5.3.3.3(a) 
or 
    { } = { }+{ }M TA A Aε ε ε   5.3.3.3(b) 
where  
   A

Mεm r  = strain induced by stress 

 
The change in temperature is represented by ∆T and the vector { Aα } represents the free thermal expan-
sion coefficients of a ply.  The individual components are 

    { } =

0

1

2Aα
α
α
F

H
GGG

I

K
JJJ

  5.3.3.3(c) 

The thermal strains, α Al q∆T , are the lamina free thermal expansions, which produce no stress in an un-

constrained lamina.  The thermal expansion coefficients α1 and α2 are the effective thermal expansion 
coefficients 1

*α  and 2
*α  of the unidirectional composite. 
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 Substituting for the mechanical strain terms in Equation 5.3.3.3(a) and inverting yields 
    { } = Q { }-{ } TA A Aσ ε Γ ∆   5.3.3.3(d) 
where 
    { } = Q { }A AΓ α  
The components in the thermal stress coefficient vector { AΓ } are 

    { } =

E + E

E + E

1 1 12 2 2

2 2 12 1 1
AΓ

∆

∆

α ν α

α ν α

0

R

S

||||

T

||||

U

V

||||

W

||||

  5.3.3.3(e) 

where 

   ∆ = 1-
E

E
2

1
12
2ν  

The vector { }AΓ ∆T  physically represents a correction to the stress vector which results from the full con-
straint of the free thermal strains in a lamina.  Both the thermal expansion vector, { }Aα ∆T , and the thermal 
stress vector, { }AΓ ∆T , can be transformed to arbitrary coordinates using the relations developed for stress 
and strain transformations, Equations 5.3.1(k) - (n). 
 
 With the transformed thermal expansion and stress vectors, the thermal elastic laminate relations can 
be developed.  Following directly from the development of Equations 5.3.2(g) - (l), the membrane rela-
tions are: 
    {N} = A { }+ B { }+{N }T°ε κ   5.3.3.3(f) 
where 

    {N } = - { } TdzT
x

−
z
h

h
Γ ∆   5.3.3.3(g) 

Similarly, the bending relations are 
    {M} = B { }+ D { }+{M }T°ε κ   5.3.3.3(h) 
where 

    {M } = - { } TzdzT
x

−
z
h

h
Γ ∆   5.3.3.3(i) 

 The integral relations for the thermal stress resultant vector {NT} and thermal moment resultant vector 
{MT} can be evaluated only when the change in temperature through the thickness is known.  For the 
case of uniform temperature change through the thickness of a laminate, the term ∆T is constant and can 
be factored out of the integral, yielding: 

    {N } = - T { } (z - z )T

i=1

N

x
i

i i-1∆ Γ∑   5.3.3.3(j) 

    {M } = -
1

2
T { } z - zT

i=1

N

x
i

i
2

i-1
2∆ Γ∑ b g   5.3.3.3(k) 

With Equations 5.3.3.3(f) - (i), it is possible to determine effective laminate coefficients of thermal expan-
sion and thermal curvature.  These quantities are the extension and curvature changes resulting from a 
uniform temperature distribution. 
 
 Noting that for free thermal effects {N} = {M} = 0, and defining a free thermal expansion vector as 

    { } = { }
1

T
xα ε°

∆
  5.3.3.3(l) 

and a free curvature vector as 

    { } = { }
1

Txδ κ
∆

  5.3.3.3(m) 
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Equations 5.3.3.3(f) - (i) can be solved.  After suitable matrix manipulations, the following expressions for 
thermal expansion and thermal curvature for symmetric laminates are found: 

    { } = -
1

T
A {N }x

-1 Tα
∆

  5.3.3.3(n) 

    { } = -
1

T
D {N }x

-1 Tδ
∆

  5.3.3.3(o) 

If the relation for {MT} in Equation 5.3.3.3(i) is examined, symmetry eliminates the {MT} vector.  Therefore 
{δx} = 0 and no curvatures occur due to uniform temperature changes in symmetric laminates. 
 
 The variation of the longitudinal thermal expansion coefficient for a symmetric angle-ply laminate is 
shown in Figure 5.3.3.3 to illustrate the effect of lamina orientation.  At 0° the term xα  is simply the axial 
lamina coefficient of thermal expansion, and at 90°, xα  equals the lamina transverse thermal expansion 
coefficient.  An interesting feature of the curve is the large negative value of xα  in the region of 30°.  Re-
ferring to Figure 5.3.3.1, the value of Poisson's ratio also behaves peculiarly in the region of 30°.  The odd 
variation of both the coefficient and Poisson's ratio stems from the magnitude and sign of the shear-
extensional coupling present in the individual laminae. 
 
 Previously, classes of laminates were shown to have isotropic stiffnesses in the plane of the laminate.  
Similarly, laminates can be specified which are isotropic in thermal expansion within the plane of the lami-
nate.  The requirements for thermal expansion isotropy are considerably less restrictive than those for 
elastic constants.  In fact, any laminate which has two identical, orthogonal thermal expansion coefficients 
and a zero shear thermal expansion coefficient is isotropic in thermal expansion.  Therefore, [0/90]s and 
[±45]s laminates are isotropic in thermal expansion even though they are not quasi-isotropic for elastic 
stiffnesses. 
 
 

 

 
 

FIGURE 5.3.3.3  Thermal expansion coefficients for high modulus carbon/epoxy. 
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 Laminates which are isotropic in thermal expansion have thermal expansions of the form: 

   x

x

y

xy
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  5.3.3.3(p) 

where the term α* can be shown to be a function of lamina properties only, as follows: 

   *
1

2 1 12

12
1

2

= +
( - )(1+ )

1+ 2 + E
E

α α α α ν

ν
  5.3.3.3(q) 

Thus, all laminates of a given ply material, which are isotropic in thermal expansion, have identical ther-
mal expansion coefficients. 
 
 
5.3.3.4 Moisture expansion 
 
 The term hygroelastic refers to the phenomenon in resin matrix composites when the matrix absorbs 
and desorbs moisture from and to the environment.  The primary effect of moisture is a volumetric change 
in the laminae.  When a lamina absorbs moisture, it expands, and when moisture is lost, the lamina con-
tracts.  Thus, the effect is very similar to thermal expansion. 
 
 In a lamina, a free moisture expansion vector can be defined as 
    { } = { } cA Aε β ∆   5.3.3.4(a) 

where 

    { } =

0

1

2Aβ

β

β

F

H

GGG

I

K

JJJ
  5.3.3.4(b) 

and ∆c is the change in specific moisture.  Noting that the relations 5.3.3.4(a) and (b) are identical to 
thermal expansion with β Al q  substituted for α Al q and ∆c for ∆T, it can easily be seen that all the relations 
developed for thermal effects can be used for moisture effects. 
 
5.3.3.5 Conductivity 
 
 The conductivity (thermal or moisture) of a laminate in the direction normal to the surface is equal to 
the transverse conductivity of a unidirectional fiber composite.  This follows from the fact that normal con-
ductivity for all plies is identical and unaffected by ply orientation. 
 
 In-plane conductivities will be required for certain problems involving spatial variations of temperature 
and moisture.  For a given uniform state of moisture in a laminate, the effective thermal conductivities in 
the x and y directions can be obtained by methods entirely analogous to those used for stiffnesses in Sec-
tion 5.3.2: 

   x
i=1

N

1
2

2
2 i=

1

2 h
( m + n )tµ µ µ∑ A   5.3.3.5 

where 
µ1 = conductivity in the fiber direction  
µ2 = conductivity transverse to the fibers 
m = cos θi 
n = sin θi 
θ i = orientation of ply i 

A
it  = thickness of ply i 

N = the number of plies 
2h = laminate thickness 
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The results apply to both symmetric and unsymmetric laminates.  The results for moisture conductivity are 
identical. 
 
5.3.4 Thermal and hygroscopic analysis 
 
 The distribution of temperature and moisture through the thickness of a laminate influences the be-
havior of that laminate.  The mathematical descriptions of these two phenomena are identical and the 
physical effects are similar.  Some of these aspects have already been discussed in Sections 5.2.2.3 - 
5.2.2.4 and 5.3.3.3 - 5.3.3.5. 
 
 A free lamina undergoes stress-free deformation due to temperature change or moisture swelling.  In 
a laminate, stress-free deformation is constrained by adjacent layers producing internal stresses.  In addi-
tion to these stresses, temperature and moisture content also affect the properties of the material. These 
effects are primarily related to matrix-dominated strength properties. 
 
 The principal strength-degrading effect is related to a change in the glass transition temperature of 
the matrix material.  As moisture is absorbed, the temperature at which the matrix changes from a glassy 
state to a viscous state decreases.  Thus, the elevated-temperature strength properties decrease with 
increasing moisture content.  Limited data suggest that this process is reversible.  When the moisture 
content of the composite is decreased, the glass transition temperature increases and the original 
strength properties return. 
 
 The same considerations also apply for a temperature rise.  The matrix, and therefore the lamina, 
lose strength and stiffness when the temperature rises. Again, this effect is primarily important for the ma-
trix-dominated properties such as 2 12 2

tu
2
cuE ,G ,F ,F ,  and 12

suF . 
 
 The differential equation governing time-dependent moisture sorption of an orthotropic homogeneous 
material is given by 

   1

2

2
1

2

2

2
2

3

2

2
3

D
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x
+ D

c

x
+ D

c

x
=

c

t
∂
∂

∂
∂

∂
∂

∂
∂

  5.3.4(a) 

where 
 t = time 
 x1,x2,x3 = coordinates in principal material directions  
 c = specific moisture concentration 
 D1,D2,D3 = moisture diffusivity coefficients 
 
Equation 5.3.4(a) is based on Fick's law of moisture diffusion.  The equation is analogous to the equation 
governing time dependent heat conduction with temperature φ replacing concentration c and thermal con-
ductivities µ1, µ2, and µ3 replacing the moisture diffusivities.  For a transversely isotropic lamina with x1 in 
the fiber direction, x2 in the transverse direction, and x3 = z in the direction normal to the lamina, 
   2 3D = D   5.3.4(b) 
These quantities are analogous to the thermal conductivities of a unidirectional fiber composite and have 
been discussed in Section 5.2.2.4. 
 
 An important special case is one-dimensional diffusion or conduction through the thickness of a lam-
ina.  In this case, Equation 5.3.4(a) reduces to 

   3

2

2D
c

z
=

c

t
∂
∂

∂
∂

  5.3.4(c) 

This equation also applies to moisture diffusion or thermal conduction through a laminate, in the direction 
normal to its laminae planes, since all laminae are homogeneous in the z direction with equal diffusion 
coefficients, D3 = Dz. 
 
 Equation 5.3.4(c) is applicable to the important problem of time-dependent moisture diffusion through 
a laminate where the two faces are in different moisture environments.  After a sufficiently long time has 
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elapsed, the concentration reaches a time-independent state.  In this state, since c is no longer time-
dependent, Equation 5.3.4(c) simplifies to 

   
2

2
d c

dz
= 0   5.3.4(d) 

The specific moisture concentration is a linear function of z and, if the laminate faces are in environments 
with constant saturation concentrations, c1 and c2, then 

   c =
1

2
[(c - c )z/ h+ c + c ]2 1 2 1   5.3.4(e) 

where the laminate thickness is 2h and z originates at the mid-surface.  In the case where c1= c2, Equation 
5.3.4(e) reduces to c = c1 = constant as would be expected. 
 
 The above discussion of moisture conduction also applies to heat conduction. 
 
 Solutions to the time-dependent problem are readily available and considerable work has been per-
formed in the area of moisture sorption (Reference 5.3.4).  The most interesting feature of the solutions 
relates to the magnitude of the coefficient Dz.  This coefficient is a measure of how fast moisture diffusion 
can occur.  In typical epoxy matrix systems, Dz is of the order of 10-8 (in2/s, cm2/s) to 10-10 (in 2/s, cm 2/s).  
The diffusion coefficient is sufficiently small that full saturation of a resin matrix composite may require 
months or years even when subjected to 100% relative humidity. 
 
 The approach typically taken for design purposes is to assume a worst case.  If the material is as-
sumed to be fully saturated, it is possible to compute reduced allowable strengths.  This is a conservative 
approach, since typical service environments do not generate full saturation.  This approach is used since 
it allows for inclusion of moisture effects in a relatively simple fashion.  It is to be expected that as the de-
sign data base and analytical methodologies mature, more physically realistic methods will be developed. 
 
 For heat conduction, the time required to achieve the stationary, or time-independent, state is ex-
tremely small.  Therefore, the transient time-dependent state is generally of little practical importance for 
laminates. 
 
5.3.4.1 Symmetric laminates 
 
 The laminate stacking sequence (LSS) can be chosen to control the effects of environment on stiff-
ness and dimensional stability.  When considering the special case of constant temperature and moisture 
content distributions in symmetric laminates, the effect of environment on in-plane stiffness relates to the 
relative percentages of chosen ply orientations.  For example, LSS dominated by 0° plies will have longi-
tudinal moduli that are nearly independent of environment.  Note that increasing the environmental resis-
tance of one laminate in-plane modulus may decrease another. 
 
 Bending and torsional stiffnesses depend on both LSS and environment.  Preferential stacking of 
outer ply groups having relatively high extensional or shear moduli will also promote high bending or tor-
sional stiffness, respectively.  As with in-plane moduli, the higher the bending or torsional stiffness the bet-
ter the corresponding environmental resistance.  When optimizing environmental resistance, compro-
mises between longitudinal bending, transverse bending and torsion need to be made due to competing 
relationships with LSS. 
 
 Unsymmetric temperature and moisture content distributions will affect the components of the stiff-
ness matrix [ABD] differently, depending on LSS.  In general, coupling components which were zero for 
symmetric laminates having symmetric temperature and moisture content distributions become nonzero 
for an unsymmetric environmental state.  This effect can be minor or significant depending on LSS, mate-
rial type, panel thickness and the severity of temperature/moisture content gradients. 
 
 Environmentally-induced panel warpage will occur in symmetric laminates when conditions yield an 
unsymmetric residual stress distribution about the laminate midplane.  This may occur during the cure 
process due to uneven heating or crystallization through the laminate thickness.  Unsymmetric tempera-
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ture and moisture content distributions can also lead to panel warpage in symmetric laminates.  This is 
due to the unsymmetric shrinkage or swelling through the laminate thickness. 
 
5.3.4.2 Unsymmetric laminates 
 
 The in-plane thermal and moisture expansion of unsymmetric laminated plates subjected to any envi-
ronmental condition (i.e., constant, symmetric and unsymmetric temperature and moisture content distri-
butions) is dependent on LSS (e.g., Reference 5.3.4.2(a)).  In general, environmentally induced panel 
warpage occurs with unsymmetric laminates. 
 
 Panel warpage in unsymmetric laminates depends on LSS and changes as a function of temperature 
and moisture content.  Zero warpage will occur in unsymmetric laminates only when temperature and 
moisture content distributions result in either zero or symmetric residual stress distributions.  Equilibrium 
environmental states that result in zero residual stresses are referred to as stress-free conditions (see 
Reference 5.3.2(e). 
 
 Since unsymmetric LSS warp as a function of temperature and moisture content, their use in engi-
neering structures has generally been avoided.  The warped shape of a given unsymmetric laminate has 
been found to depend on LSS and ratios of thickness to in-plane dimensions (e.g., References 5.3.4.2(b) 
and (c)).  Relatively thin laminates tend to take a cylindrical shape rather than the saddle shape predicted 
by classical lamination theory.  This effect has been accurately modeled using a geometrically nonlinear 
theory. 
 
 Additional information on laminate stacking sequence effects is found in Section 5.6.5. 
 
5.3.5 Laminate stress analysis 
 
 The physical properties defined in Section 5.3.3 enable any laminate to be represented by an equiva-
lent homogeneous anisotropic plate or shell element for structural analysis.  The results of such analyses 
will be the definition of stress resultants, bending moments, temperature, and moisture content at any 
point on the surface which defines the plate.  With this definition of the local values of state variables, a 
laminate analysis can be performed to determine the state of stress in each lamina to assess margins for 
each critical design condition. 
 
5.3.5.1 Stresses due to mechanical loads 
 
 To determine stresses in the individual plies, the laminate mid-plane strain and curvature vectors are 
used. Writing the laminate constitutive relations 
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a simple inversion will yield the required relations for {ε°} and {κ}.  Thus 
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  5.3.5.1(b) 

Given the strain and curvature vectors, the total strain in the laminate can be written as 
    { } = { }+ z{ }xε ε κ°   5.3.2(d) 
The strains at any point through the laminate thickness are now given as the superposition of the mid-
plane strains and the curvatures multiplied by the distance from the mid-plane.  The strain field at the cen-
ter of ply i in a laminate is 

    { } = { }+
1

2
{ }(z + z )x

i i i-1ε ε κ°   5.3.5.1(c) 

where the term 
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1

2
(z + z )i i-1  

corresponds to the distance from the mid-plane to the center of ply i.  It is possible to define curvature 
induced strains at a point through the laminate thickness simply by specifying the distance from the mid-
plane to the point in question. 
 
 The strains defined in Equation 5.3.5.1(c) correspond to the arbitrary laminate coordinate system.  
These strains can be transformed into the principal material coordinates for this ply using the transforma-
tions developed previously (Equation 5.3.1(m)).  Thus 

    { } = { }i -1i
x

i
Aε θ ε   5.3.5.1(d) 

where the superscript i indicates which layer and, therefore, which angle of orientation to use. 
 
 With the strains in the principal material coordinates defined, stresses in the same coordinates are 
written by using the lamina reduced stiffness matrix (Equation 5.3.1(h)). 
    { } = Q { }i i i

A Aσ ε   5.3.5.1(e) 

Again, the stiffness matrix used must correspond to the correct ply, as each ply may be a different mate-
rial. 
 
 The stresses in the principal material coordinates can be determined without the use of principal ma-
terial strains.  Using the strains defined in the laminate coordinates (Equation 5.3.5.1(c)) and the trans-
formed lamina stiffness matrix (Equations 5.3.1(o,q,r)), stresses in the laminate coordinate system can be 
written as 

    { } = Q { }x
i i

x
iσ ε   5.3.5.1(f) 

and these stresses are then transformed to the principal material coordinates using the relations 5.3.1(m).  
Thus 

    { } = { }i -1i
x

i
Aσ θ σ   5.3.5.1(g) 

 By reviewing these relations, it can be seen that, for the case of symmetric laminates and membrane 
loading, the curvature vector is zero.  This implies that the laminate coordinate strains are identical in 
each ply and equal to the mid-plane strains.  The differing angular orientation of the various plies will 
promote different stress and strain fields in the principal material coordinates of each ply. 
 
5.3.5.2 Stresses due to temperature and moisture 
 
 In Section 5.3.3.3, equations for the thermoelastic response of composite laminates were developed. 
It was indicated that thermal loading in laminates can cause stresses even when the laminate is allowed 
to expand freely.  The stresses are induced because of a mismatch in thermal expansion coefficients be-
tween plies oriented in different directions.  Either the mechanical stresses of the preceding section or the 
thermomechanical stresses can be used to evaluate laminate strength. 
 
 To determine the magnitude of thermally induced stresses, the thermoelastic constitutive relations 
(Equations 5.3.3.3(f) - (i)) are required.  Noting that free thermal stress effects require that {N} = {M} = 0, 
these relations are written as 
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Inverting these relations yields the free thermal strain and curvature vectors for the laminate.  Proceeding 
as before, the strain field in any ply is written as 
 
    { } = { }+ (z  z ){ }x

i 1
2

+ i-1ε ε κ°   5.3.5.2(b) 

Stresses in the laminate coordinates are 
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    { } = Q { } -{ } Tx
i i

x
i

x
i iσ ε Γ ∆   5.3.5.2(c) 

which can then be transformed to the principal material coordinates.  Thus 
 

    { } = { }
-1i

x
i

Aσ θ σ   5.3.5.2(d) 

The stresses can also be found by transforming the strains directly to principal material coordinates and 
then finding the principal material coordinate stresses. 
 
 For uniform temperature fields in symmetric laminates, the coupling matrix, [B], and the thermal mo-
ment resultant vector, {MT}, vanish and: 
 
    { } = { } Tx

°ε α ∆   5.3.5.2(e) 
and 
 
    { } = 0κ   5.3.5.2(f) 
In this case, the strains in the laminate coordinates are identical in each ply with the value 
 
    { } = { } = { } Tx

i
xε ε α° ∆   5.3.5.2(g) 

and the stresses in the principal material coordinates are 
 

    { } = Q ({ }-{ } ) Tx
i i

x
iσ α α ∆   5.3.5.2(h) 

These relations indicate that the stresses induced by the free thermal expansion of a laminate are related 
to the differences between the laminate and ply thermal expansion vectors.  Therefore, the stresses are 
proportional to the difference between the amount the ply would freely expand and the amount the lami-
nate will allow it to expand. 
 
 A further simplification can be found if the laminate under investigation is isotropic in thermal expan-
sion.  It can be shown that, for this class of laminates subjected to a uniform temperature change, the 
stresses in the principal material coordinates are identical in every ply.  The stress vector is 

    { } =
E ( - ) T

1+ 2 + E
E
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  5.3.5.2(i) 

where it can be seen that the transverse direction stress is equal and opposite to the fiber direction 
stress. 
 
 Similar developments can be generated for moisture-induced stresses.  All of the results of this sec-
tion apply when moisture swelling coefficients, β Al q , are substituted for thermal expansion coefficients, 

α Al q. 
 
5.3.5.3 Netting analysis 
 
 Another approach to the calculation of ply stresses is sometimes used for membrane loading of lami-
nates.  This procedure is netting analysis and, as the name implies, treats the laminate as a net.  All loads 
are carried in the fibers while the matrix material serves only to hold the geometric position of the fibers. 
 
 Since only fibers are assumed to load in this model, stress-strain relations in the principal material 
directions can be written as 
 
   11 1 11= Eσ ε   5.3.5.3(a) 
or 
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   11
1

11=
1

E
ε σ   5.3.5.3(b) 

and 
 
   2 12 22 12E = G = = = 0σ σ   5.3.5.3(c) 
 
 The laminate stiffnesses predicted with a netting analysis will be smaller than those predicted using 
lamination theory, due to the exclusion of the transverse and shear stiffnesses.  This effect is demon-
strated in Table 5.3.5.3 for a quasi-isotropic laminate comprised of high-modulus graphite/epoxy.  The 
stiffness properties predicted using a netting analysis are approximately 10% smaller than lamination the-
ory predictions.  Experimental work has consistently shown that lamination theory predictions are more 
realistic than netting analysis predictions. 
 
 Although the stiffness predictions using netting analysis are of limited value, the analysis can be used 
as an approximation of the response of a composite with matrix damage.  It may be considered as a 
worst case analysis and is frequently used to predict ultimate strengths of composite laminates 
 
 
 

 
TABLE 5.3.5.3  Laminate elastic constants. 

 
 

Analysis 
Ex  

Msi (GPa) 
Ey 

Msi (GPa) 
Gxy  

Msi (GPa) 
 

γxy 

Lamination  Theory 9.42 (64.9) 9.42 (64.9) 3.55 (24.5) 0.325 

Netting  Analysis 8.33 (57.4) 8.33 (57.4) 3.13 (21.6) 0.333 

 
 
 
5.3.5.3.1 Netting analysis for design of filament wound pressure vessels 
 
 Netting analysis is a simple tool for approximating hoop and axial stresses in filament wound pressure 
vessels.  The technique assumes that the stresses induced to the structure are carried entirely by the re-
inforcing fiber, and that all fibers are uniformly stressed in tension.  The load carrying contribution of the 
matrix is neglected, and its only function is to hold the geometric position of the fibers.  Netting analysis 
cannot be used to determine bending, shear or discontinuity stresses or resistance to buckling. 
 
 To illustrate the netting analysis principles, consider a filament wound pressure vessel of radius R with 
an internal pressure P.  Assume the vessel is wound with only helical fibers at a wrap angle of ±α, an al-
lowable fiber stress of σf, and thickness tf.  Figure 5.3.5.3.1(a) illustrates the forces acting on the ±α heli-
cal layer in the axial direction.  The running load, NX, is the force per unit length in the axial direction. 
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FIGURE 5.3.5.3.1(a)  Helical layer element - axial direction. 

 
 
Summing forces in the axial direction: 

   x f f
2N  =  

PR

2
 =   t  cos  σ α   5.3.5.3.1(a) 

Solving for tf provides the helical fiber thickness required to carry the internal pressure: 

   f
f

2t  =  
PR

2 cosσ α
  5.3.5.3.1(b) 

Figure 5.3.5.3.1(b) shows the forces acting in the ±α helical layer in the hoop direction.  The running load, 
NH, is the force per unit length in the hoop direction. 
 
 

 
FIGURE 5.3.5.3.1(b)  Helical layer element - hoop direction. 

 
 
Summing forces in the hoop direction: 
   h f f

2N  =  PR =   t  sin  σ α   5.3.5.3.1(c) 
 
Solving for tf,  
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   f
f

2t  =  
PR

sinσ α
  5.3.5.3.1(d) 

Substituting tf for Equation 5.3.5.3.1(b) in Equation 5.3.5.3.1(c), yields tan2 2α = , solving for wrap angle, 
α = ±54.7 degrees.  This is the wrap angle required for a pressure vessel utilizing only helical layers. 
 
 Now consider a filament wound pressure vessel with both helical and hoop layers.  Where the helical 
layers have a wrap angle of ±α and the hoop layers have a wrap angle of 90 degrees.  Again, Figure 
5.3.5.3.1(a) illustrates the forces acting on the ±α helical layer in the axial direction.  Summing forces in 
the axial direction and solving for tf, yields Equation 5.3.5.3.1(b), which is the helical fiber thickness re-
quired to carry the internal pressure.  Figure 5.3.5.3.1(c) shows the forces acting on the ±α helical layer 
and the hoop layer in the hoop direction.  Summing forces in the hoop direction and substituting tf from 
Equation 5.3.5.3.1(b) yields: 

   f
f

2t  =  
PR

2
 2 - tan

σ
αc h  5.3.5.3.1(e) 

where tf is the hoop layer thickness required to carry the internal pressure. 
 
 The fiber thickness (tf) and allowable fiber stress (σf) can also be expressed in the following standard 
filament winding terms.  Band density (A), which is the quantity of fiber reinforcement per inch of band 
width, where the band width (W) is the width of fiber reinforcement as it is applied to the mandrel.  Tow 
tensile capacity (f), which is the load carrying capability of one tow of reinforcement fiber, and layers (L), 
which is the number of layers required to carry the internal pressure.  Substituting these terms into Equa-
tion 5.3.5.3.1(b) and solving for L: 

   L =  
PR

2 Af cosHELIX
2α

  5.3.5.3.1(f) 

 

 
FIGURE 5.3.5.3.1(c)  Helical and hoop layer element - hoop direction. 

 
 
Where L is the number of helical layers required to carry the internal pressure.  Substituting these terms 
into Equation 5.3.5.3.1(e) and solving for L: 

   L =  
PR

2 Af
 2 - tan

HOOP

2αc h  5.3.5.3.1(g) 

Where L is the number of hoop layers required to carry the internal pressure. 
 
 The tow tensile capacities (fHELIX and fHOOP) can be determined experimentally.  Standard practice is to 
design and fabricate pressure vessels that will fail in either helix or hoop during hydroburst testing.  Sub-
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stituting the design parameters and hydroburst results into Equations 5.3.5.3.1(f) and 5.3.5.3.1(g), and 
solving for f provides the tow tensile capacity for the given fiber in both the helix and hoop directions. 
 
 Netting analysis is a useful tool for approximating hoop and axial stresses in filament wound pressure 
vessels.  It is a conservative analysis technique that considers only the strength of the reinforcing fiber.  
However, when utilizing experimentally determined tow tensile capacities, netting analysis is an excellent 
preliminary design tool that is still used throughout the filament winding industry. 
 
5.3.5.4 Interlaminar stresses 
 
 The analytical procedures which have been developed can be used to predict stresses within each 
lamina of a laminate.  The stresses predicted are planar due to the assumed state of plane stress.  There  
are cases where the assumption of plane stress is not valid and a three-dimensional stress analysis is 
required. 
 
 An example of such a case exists at certain free edges in laminates where stress free boundary con-
ditions must be imposed. 
 
5.3.5.5 Nonlinear stress analysis 
 
 All the preceding material in this chapter has related to laminae which behave in a linear elastic fash-
ion.  Composites can behave in a nonlinear manner due to internal damage or nonlinear behavior of the 
matrix material.  Matrix nonlinearity or micro-cracking can result in laminae which have nonlinear stress-
strain curves for transverse stress or axial shear stress.  When this situation exists, the elastic laminate 
stress analysis of Section 5.3.5.1 must be replaced by a nonlinear analysis.  A convenient procedure for 
the nonlinear analysis is presented in Reference 5.3.5.5. 
 
5.3.6 Summary 
 
• When laminae are at an angle to the laminate reference axes, the lamina stiffness relations described 

in Section 5.2 must be transformed into the laminate coordinate system to perform laminate 
stress-strain analysis. 

 
• Stresses and strains are related in the principal lamina material directions by 6 x 6 symmetric compli-

ance [S] and stiffness [Q] matrices. 
 
• The transformation of stresses and strains from the principal lamina material direction to the laminate 

coordinate system is accomplished by following the rules for transformation of tensor components 
(Equations 5.3.1(k) and 5.3.1(m)). 

 
• Lamination theory makes the same simplifications as classical thin plate theory for isotropic materials. 

Therefore, the procedures used to calculate stresses and deformations are dependent on the fact that 
laminate thickness is considerably smaller than the laminate's in-plane dimensions. 

 
• The strain at a y point in a laminate is defined as the sum of the mid-surface strain (ε), and the prod-

uct of the curvature (κ) and the distance from the mid surface (z). 
 
• Laminate load (N) and moment (M) resultants are related to mid-plane strains and curvatures as de-

scribed by the [A], [B], and [D] 3 x 3 stiffness matrices (Equations 5.3.2 (k) - (m)). 
 
• Two-dimensional lamination theory can generally be used to predict stresses within each lamina of a 

laminate. The planar stresses are predicted based on an assumption of plane stress. In cases where 
interlaminar stresses exist, three-dimensional stress analysis is required. 
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• In symmetric laminates, bending-extensional coupling is eliminated by a symmetric stacking se-
quence whereby [B] = 0. 

 
• Since they are susceptible to warping as a result of processing and usage conditions, use of unsym-

metric laminates in composite structures should generally be avoided for both design and manufac-
ture. 

 
 
5.4 LAMINATE STRENGTH AND FAILURE 
 
 Methods of stress analysis of laminates subjected to mechanical loads, temperature changes, and 
moisture absorption were presented in Section 5.3.5. The results of such a stress analysis can be used to 
assess the strength of a laminate. As a result of the complexity of the structure of a composite laminate, 
several modes of failure are possible, and it is desirable for the failure mode as well as the failure stress 
or strain to be predicted. The analytical problem is to define the failure surface for the laminate in either 
stress or strain space. 
 
 Laminate failure may be calculated by applying stress or strain limits at the laminate level or, alterna-
tively, at the ply level. Ply level stresses or strains are the more frequently used approach to laminate 
strength. The average stresses in a given ply may be used to calculate either an onset of damage, which 
is frequently called "first ply failure", or a critical failure which is regarded as ultimate strength. In the for-
mer case, subsequent damages leading to laminate failure are then calculated. This calculation of subse-
quent damage is sometimes performed using the "sequential ply failure" methodology, and sometimes 
performed using "netting" analysis. These approaches are discussed subsequently. Four factors should 
be considered in assessing the validity of using ply level stresses for failure calculation. The first is the 
question of which tests (or analyses) should be used to define the ply strength values. In particular, it 
must be recognized that a crack parallel to the fibers may result in failure of a transverse tensile test 
specimen of a unidirectional composite, while the same crack may have an insignificant effect in a lami-
nate test. The second factor is the assumption that local failures within a ply are contained within the ply 
and are determined solely by the stress/strain state in that ply. There is evidence that the former assump-
tion is not valid under fatigue loading, during which a crack within one ply may well propagate into adja-
cent plies. In this case, the ply-by-ply model may not be the best analytical approach. Furthermore, matrix 
cracking within one ply is not determined uniquely by the stresses and strains within that ply but is influ-
enced by the orientation of adjacent layers as well as by the ply thickness (Reference 5.4).  The third fac-
tor is the existence of residual thermal stresses, usually of unknown magnitude, resulting from the fabrica-
tion process. The fourth factor is that it does not cover the possibility of delaminations which can occur, 
particularly at free edges. Thus, the analysis is limited to in-plane failures. 
 
5.4.1 Sequential ply failure approach 
 
5.4.1.1 Initial ply  
 
 To predict the onset of damage, consider stresses remote from the edges in a laminate which is 
loaded by in-plane forces and/or bending moments. If there is no external bending, if the membrane 
forces are constant along the edges, and if the laminate is balanced and symmetric, the stresses in the ith 
layers are constant and planar. With reference to the material axes of the laminae, fiber direction x1 and 
transverse direction x2, the stresses in the ith ply are written 11

i
22
i,  σ σ , and 12

iσ .  Failure is assumed to 
occur when the selected semi-empirical failure criteria involving these calculated stresses or the associ-
ated strains are satisfied. Numerous criteria have been proposed for calculation of onset of damage. 
These may be grouped into two broad categories - mode-based and purely empirical. Mode based criteria 
treat each identifiable physical failure mode, such as fiber-direction tensile failure and matrix-dominated 
transverse failure, separately. A purely empirical criterion generally consists of a polynomial combination 
of the three stress or strain components in a ply. Such criteria attempt to combine the effects of several 
different failure mechanisms into one function and may, therefore, be less representative than physically 
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based criteria. All criteria rely on test data at the ply level to set parameters and are therefore at least par-
tially empirical in nature. 
 
 The selection of appropriate criteria can be a controversial issue and the validity of any criterion is 
best determined by comparison with test data. As a consequence, different criteria may be best for differ-
ent materials. Two mode-based failure criteria are presented here as examples: the maximum strain crite-
ria and the failure criteria proposed by Hashin. It is important, however, for the engineer to consider the 
material, the application, and the test data in choosing and utilizing a failure criterion. 
 
 The maximum strain criteria may be written as 
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  5.4.1.1(a) 

 
 For given loading conditions, the strains in each ply are compared to these criteria. Whichever strain 
reaches its limiting value first indicates the failure mode and first ply to fail for those loading conditions. 
The limiting strains, 11

tu
11
cu,  ε ε , etc., are the specified maximum strains to be permitted in any ply. Gener-

ally, these quantities are specified as some statistical measure of experimental data obtained by uniaxial 
loading of a unidirectional laminate.  For example, in the case of axial strain, 11ε , a B-basis strain allow-
able from unidirectional tests can be used. Other limits may also be imposed. For example, in the case of 
shear strain, something equivalent to a "yield" strain may be used in place of the ultimate shear strain. 
 
 The failure criteria proposed by Hashin (Reference 5.4.1.1(a)) may be written as: 
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It should be noted that some users of these criteria add a shear term to equation 5.2.4(g) to reflect the 
case in which shear mode instability contributes to the compressive failure mechanism (Reference 
5.4.1.1(b)).  In that case, equation 5.2.4(g) is replaced by: 
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The limiting stresses in the criteria, 1
cu

12
suF ,  F , etc., are the specified maximum stresses to be permitted in 

any ply. As with the case of strains, statistical data from unidirectional tests are generally used to define 
these quantities. However, as an example of the care required, it should be noted that the stress which 
produces failure of a 90° specimen in tension is not necessarily a critical stress level for a ply in a multi-
directional laminate. One may wish to use, instead, the stress level at which crack density in a ply re-
duces the effective stiffness by a specified amount. Such a stress level could be determined by either a 
fracture mechanics analysis or testing of a crossply laminate (Reference 5.4).  
 
 In an onset of damage approach, the selected failure criteria are used for each layer of the laminate. 
The layer for which the criteria are satisfied for the lowest external load set will define the loading which 
produces the initial laminate damage. The layer which fails and the nature of the failure (i.e., fiber failure 
or cracking along the fibers) are identified. This is generally called first-ply failure. When the first ply failure 
is the result of fiber breakage, the resulting ply crack will introduce stress concentrations into the adjacent 
plies. In this case, it is reasonable to consider that first ply failure is equivalent to laminate failure. A differ-
ent criterion exists when the first ply failure results from matrix cracking and/or fiber/matrix interface sepa-
rations. Here it is reasonable to consider that the load-carrying capacity of the ply will be changed signifi-
cantly when there is a substantial amount of matrix mode damage. Treatment of this case is discussed in 
the following section. 
 
 Additional concerns to be addressed in considering the initial failure or onset of damage include 
bending, edge stresses, and residual thermal stresses. Bending occurs when there are external bending 
and/or twisting moments or when the laminate is not symmetric. In these cases the stresses 11

i
22
i,  σ σ , 

and 12
iσ  in a layer are symmetric in x3.  Consequently, the stresses assume their maximum and minimum 

values at the layer interfaces. The failure criteria must be examined at these locations for each layer. Dif-
ferent approaches utilize the maximum value or the average value in such cases. 
 
 The evaluation of onset of failure as a result of the edge stresses is much more complicated as a re-
sult of the sharp gradients (indicated by analytical singularities) in these stresses. Numerical methods 
cannot uncover the nature of such stress singularity, but there are analytical treatments (e.g. Reference 
5.4.1.1(a)) which can. The implication of such edge stress fields for failure of the laminate is difficult to 
assess. This situation is reminiscent of fracture mechanics in the sense that stresses at a crack tip are 
theoretically infinite. Fracture mechanics copes with this difficulty with a criterion for crack propagation 
based on the amount of energy required to open a crack, or equivalently, the value of the stress intensity 
factor. Similar considerations may apply for laminate edge singularities. This situation in composite mate-
rials is more complicated since a crack initiating at the edge will propagate between anisotropic layers. It 
appears, therefore, that at the present time the problem of edge failure must be relegated to experimenta-
tion, or approximate analysis. 
 
 In the calculation of first-ply failure, consideration must also be given to residual thermal stresses. 
The rationale for including residual thermal stresses in the analysis is obvious. The stresses exist after 
processing. Therefore, they can be expected to influence the occurrence of first-ply failure. However, ma-
trix materials exhibit viscoelastic, or time-dependent, effects, and it may be that the magnitude of the re-
sidual stresses will be reduced through a process of stress relaxation. Additionally, the processing 
stresses may be reduced through the formation of transverse matrix microcracks. The question of 
whether to include residual stresses in the analysis is complicated by difficulties in measuring these 
stresses in a laminate and by difficulties in observing first-ply failure during a laminate test. It is common 
practice to neglect the residual thermal stresses in the calculation of ply failure. Data to support this ap-
proach do not appear to be available. However, at the present time, damage tolerance requirements limit 
allowable strain levels in polymeric matrix laminates to 3000 to 4000 µε. This criterion becomes the domi-
nant design restriction and obviates, temporarily, the need to resolve the effects of residual thermal 
stresses. 
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5.4.1.2 Subsequent failures 
 
 Often laminates have substantial strength remaining after the first ply has experienced a failure, par-
ticularly if that first failure is a matrix-dominated failure. A conservative approach for analyzing subsequent 
failure is to assume that the contribution of that first failed ply is reduced to zero. If failure occurs in the 
fiber-dominated mode, this may be regarded, as discussed earlier, as ultimate laminate failure. If not, then 
the stiffness in the fiber direction EL is reduced to zero. If failure occurs in the matrix-dominated mode, the 
elastic properties ET and GL are reduced to zero. The analysis is then repeated until all plies have failed. 
Generally, the progressive failures of interest are initial and subsequent failures in the matrix mode. In that 
case, the basic assumptions for netting analysis result where the ultimate load is defined by ET and GL 
vanishing in all laminae. The basic issues involved in modeling post-first-ply behavior are described in 
Reference 5.4.2. For some materials and/or for some properties, matrix mode failures may not have an 
important effect. However, for some properties, such as thermal expansion coefficients, ply cracking may 
have a significant effect. 
 
5.4.2 Fiber failure approach (laminate level failure) 
 
 In composites laminates, there are two characteristic stress or strain levels which can be considered 
in the evaluation of strength. One is the stress or strain state at which a non-catastrophic first-ply failure 
can occur and the other is the maximum static stress or strain state which the laminate can carry. In those 
cases where the material exhibits minimal micro-cracking, or where the application is such that effects of 
micro-cracking need not be considered, a failure criterion based only upon fiber failure may be used. A 
common practice in the aerospace industry is to use a failure criterion based only upon fiber strain allow-
ables, for which fiber failure in any lamina is considered laminate ultimate failure. Hence, failure is a sin-
gle event rather than the result of a process. 
 
 Perhaps the most common example of this laminate level failure criterion is a modification of the 
maximum strain criterion.  The same assumptions of no external bending, membrane forces constant 
along the edges, and a balanced and symmetric laminate, are initially used.  The basic lamina failure en-
velope is the same as the conventional maximum-strain envelope for tension- and compres-
sion-dominated loads, but introduces truncations in the tension-compression (shear) quadrants as shown 
in Figure 5.4.2. A critical assumption in this criterion is that the laminate behavior is fiber-dominated 
meaning that there are fibers in sufficient multiple directions such that strains are limited by the presence 
of the fibers to inhibit matrix cracking. In many practical applications, this typically translates into having 
fibers in (at least) each of four directions relative to the primary loads: 0°, 90°, and ±45°. Furthermore, 
plies are not "clustered" (that is, several plies of the same orientation are not layed together) in order to 
inhibit matrix macrocracking. With these assumptions, the first translation of the maximum strain criterion 
to the laminate level is a limiting of the strain in the transverse direction, 90θ , to the fiber direction limiting 
strain to reflect the fact that such "well-designed" laminates with fibers in multiple directions restrict strains 
in any in-plane direction. Alternatively, if there is reason to believe that matrix cracking will be structurally 
significant, the 90° strain cutoff based on fiber direction strain could be replaced by an empirically estab-
lished tensile limit reflecting a matrix-dominated mode.  This limit was originally expressed as a constant 
strain limit.  However, if such a limit is based upon the case of a constant 90° stress in a ply, this would 
result in a sloped line in the strain plane with the slope related to the Poisson's ratio of the unidirectional 
lamina: 
 
   α ν =  tan  -1

LT
laminab g   5.4.2(a) 

 
Such a cutoff is parallel to the uniaxial load line shown in Figure 5.4.2. It should be further noted that pos-
sible limitations due to lamina level shear strains are inoperative due to the assumption that the fibers in 
multiple directions restrict such strains to values below their failure values. 
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FIGURE 5.4.2  Illustration of laminate level failure approach. 
 
 Many users recognize a need to truncate the maximum strain predictions in the tension-compression 
quadrants. While the particular truncations vary, perhaps the most widely used version is that shown in 
Figure 5.4.2. These truncations were originally based on data obtained for shear loading of such fi-
ber-dominated laminates. These data lie in the second and fourth quadrants. The 45° cutoffs represent 
the locus of constant shear strain. These two symmetric truncations are located by finding the intersec-
tions of the limiting uniaxial strain lines with the lines representing pure uniaxial stress conditions in fiber 
directions in 0° and 90° unidirectional plies. At this point, the axial strain now becomes more critical than 
the shear. The endpoints of the truncations are therefore found by drawing lines through the origin with 
angles from the relative axes of a which account for the unidirectional ply Poisson's ratio: 
 
   α ν =  tan 1 -

LT
laminac h   5.4.2(b) 

 
thereby yielding the desired pure uniaxial state of stress in the fiber direction. The intersection of these 
two lines with the greater of the two pure uniaxial stress conditions in the unidirectional plies locates the 
endpoint of each cutoff. It is always necessary that the cutoff be located by the higher of the uniaxial 
strengths since, otherwise, the cutoff would undercut the measured uniaxial strain to failure at the other 
end. This procedure results in the same failure diagram for all fiber-dominated laminates. It should be 
emphasized that this procedure requires the use of the Poisson's ratio of the unidirectional ply even when 
the laminate contains fabric plies. 
 
 This failure model, as represented in Figure 5.4.2, has been developed from experience with fi-
ber-reinforced polymer matrix composites used on subsonic aircraft, particularly with carbon/epoxy mate-
rials, for which the lamina nTL is approximately zero. It should not be applied to other composites, such as 
whisker-reinforced metal-matrix materials. Figure 5.4.2 addresses only fiber-dominated failures because, 
for the fiber polymer composites used on subsonic aircraft, the microcracking in the matrix has not been 
found to cause reductions in the static strength of laminates, particularly if the operating strain level has 
been restricted by the presence of bolt holes or provision for damage tolerance and repairs. However, 
with the advent of new composite materials, cured at much higher temperature to withstand operation at 
supersonic speeds, this approach may no longer be appropriate. The residual stresses developed during 
cool-down after cure will be far higher, because of the greater difference between the cure temperature 
and the minimum operating temperature. 
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 This set of truncations together at the laminate level with the original maximum strain criterion results 
in the following operative set of equations applied at the laminate level with respect to axes oriented along 
and normal to each fiber direction in the laminate 
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  5.4.2(c) 

 
   * whichever is greater 
 
However, it is important to note that these equations can only be applied in the context of a fi-
ber-dominated laminate as previously described. It should further be noted that the limits on the trans-
verse strain in each ply, 22

iε , are set by the fibers in plies transverse to the ply under consideration and 
thus cannot characterize matrix cracking. This must be carefully taken into account if hybrid laminates are 
utilized. Furthermore, as previously discussed, if matrix cracking is considered to be structurally signifi-
cant, a stress or strain cutoff must be added based on empirical observation. In this case, an assessment 
of the effects of the matrix cracks on subsequent properties of the laminate must be made. 
 
 As noted in Section 5.4.1, bending occurs when there are external bending and/or twisting moments 
or when the laminate is not symmetric. In these cases, as with other failure criteria, it is necessary to take 
into account the fact that the laminate level strains vary through the thickness. 
 
5.4.3 Laminate design 
 
 Design charts in the form of "carpet plots" are valuable for selection of the appropriate laminate. Fig-
ure 5.4.3 presents a representative carpet plot for the axial tensile strength of laminates having various 
proportions of plies oriented at 0°, ±45°, and 90°.  
 
 The development of laminate stacking sequence (LSS) optimization routines for strength-critical de-
signs is a difficult task. Such a scheme must account for competing failure mechanisms that depend on 
material, load type (e.g., tension versus compression), environment (e.g., temperature and moisture con-
tent) and history (e.g., fatigue and creep). In addition, the load transfer must be adequately modeled to 
account for component geometry and edge effects. Even for a simple uniaxial load condition, the relation-
ship between LSS and strength can be complex. Some qualitative rules currently exist for optimizing LSS 
for strength but they have been developed for a limited number of materials and load cases. 
 
 Relationships between LSS and laminate strength depend on several considerations. The initiation 
and growth of local matrix failures are known to depend on LSS. As these failures occur, internal stress 
distributions also depend on LSS strength through local stiffness and dimensional stability considerations. 
For example, delamination divides a base laminate into sublaminates having LSS that are generally un-
symmetric. Reduced stiffness due to edge delaminations, causes load redistribution and can decrease 
the effective tensile strength of laminates. Likewise, local instability of sublaminates also causes load 
redistribution which can lower the effective compressive strength of laminates. As a result, both laminate 
and sublaminate LSS affect laminate strength. 
 
 Shear stress distributions play a significant role in determining the mechanical behavior and response 
of multi-directional laminates. As was the case for ply transverse tensile strength, ply shear strength de-
pends on LSS. Laminates with homogeneous LSS have been found to yield higher in-situ ply shear 
strengths than those with ply orientations clumped in groups (Reference 5.4.3(b)). An inherent flaw den-
sity and interlaminar stresses appear to be major factors affecting the distribution of ply shear strengths in 
a LSS. 
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 FIGURE 5.4.3 Tensile strength of [0i /±45j /90k ]s family of high strength carbon/epoxy  
  laminates (Reference 5.4.3). 
 
 
 As was the case for bending stiffness, bending strength in composite laminates is strongly dependent 
on LSS. Failure mechanisms characteristic of tension, shear, and compression load conditions may all 
combine to affect bending strength. Table 5.3.3.2(b) showed that preferential stacking of plies in outer 
layers of the LSS increased bending stiffness. The bending strength performance of undamaged lami-
nates may show similar trends; however, surface damage due to impact or other in-service phenomena 
would cause severe degradation to such laminates. 
 
 Additional information on laminate stacking sequence effects is found in Section 5.6.5. 
 
5.4.4 Stress concentrations 
 
 The presence of a hole or other discontinuity in a structure introduces local stress concentrations.  
These high local stresses can result in initial localized failure.  The analysis of failure due to cracking, or 
fracture, which can result in this situation is complicated for composite materials because of material het-
erogeneity at the microscale and in a layer-to-layer basis. Effective in-plane laminate stiffnesses, Ex, Ey, 
and Gxy, may be calculated for any laminate by using the methods presented in Section 5.3.3.  With these 
properties specified, a balanced symmetric laminate may be regarded as a homogeneous orthotropic 
plate, for structural analysis.  Orthotropic elasticity theory may be used for the evaluation of stresses 
around a hole in such a plate (Reference 5.4.4(a)).  Examples of the resulting stress concentrations are 
shown in Figure 5.4.4(a) for carbon/epoxy laminates.  The laminae orientation combinations influence 
both the magnitude and the shape of the stress variation near the hole.  The high stresses at the edge of 
the hole may initiate fracture. 
 
 If the laminate fails as a brittle material, fracture will be initiated when the maximum tensile stress at 
the edge of the hole equals the strength of the unnotched material.  In a tensile coupon with a hole, as 
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shown in Figure 5.4.4(a), failure will occur at the minimum cross-section.  The failure will initiate at the 
edge of the hole, where the stress concentration is a maximum. 
 
 Consider the stress concentration factor in a finite width isotropic plate with a central circular hole.  
Stress distribution for this configuration are shown in Figure 5.4.4(b) for various ratios of hole diameter, a, 
to plate width, W.  The basic stress concentration factor for this problem is the ratio of the axial stress at 
the edge of the hole (x = a/2, y = 0) to the applied axial stress, σ ∞ . For small holes in an isotropic plate, 
this factor is three.  The average stress at the minimum section, σn, is higher than the applied stress, σ ∞ , 
and is given by the following relationship: 
 

   n =
(1-

a
W

)
σ

σ∞
  5.4.4(a) 

 

 
 FIGURE 5.4.4(a) Stress concentration factors for a circular hole in a homogeneous, 
  orthotropic, infinite plate. 
 
 
The net section stress concentration factor, kn, is the ratio of the maximum stress to this average stress. 

   nk =

(
a
2

,0)

   (1-
a
W

)    

σ

σ ∞   5.4.4(b) 

Laminate fracture for the elastic-brittle case will occur at stress σfr: 
 
   fr

tu
n= F / kσ   5.4.4(c) 

A material which fails in this fashion is denoted a notch-sensitive material. In contrast, a ductile, or notch-
insensitive, material will yield locally to alleviate the stress concentration effect. 
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FIGURE 5.4.4(b)  Approximate failure theories. 

 
 Various matrix damage effects are expected to occur at the maximum stress locations.  This localized 
damage reduces the material stiffness and diminishes and spreads the stress concentration effects.  
Semi-empirical methods have been proposed to account for this reduction in the stress concentration. 
 
 The "point stress theory" (Reference 5.4.4(b)) proposes that the elastic stress distribution curve, e.g.,  
Figure 5.4.4(a), be used, but that the stress concentration be evaluated at a distance, do, from the edge of 
the hole.  The numerator of Equation 5.4.4(b) is evaluated at x = a/2 + do.  The characteristic length, do, 
must be evaluated experimentally.  The "average stress theory" (Reference 5.4.4(b)) takes a similar ap-
proach by proposing that the elastic stress distribution be averaged over a distance, ao, to obtain the 
stress concentration. 

   n
a/2
(a/2)+a

y

a/2
W/2

y
k =

dx

dx

oz
z

σ

σ
  5.4.4(d) 

 Again, the characteristic dimension, a, must be found experimentally.  For both methods, the resulting 
stress concentration is used in Equation 5.4.4(c) to define the fracture stress.  Representative results are 
plotted in Figure 5.4.4(b) to illustrate the differences associated with different types of material behavior. 
 
 The relationship between tensile strength and laminate stacking sequence (LSS) for laminates with 
holes, cutouts, and through-penetrations (i.e., a damage tolerance consideration) is complex (see Refer-
ences 5.4.4(c) - (g)).  Certain combinations of ply splitting and delamination that occur at the tip of a notch 
can enhance residual strength by effectively reducing the stress concentration.  Delaminations which un-
couple plies, allowing individual plies to fail without fiber breaks, reduce the residual strength.  Most exist-
ing analysis methods for predicting notched tensile strength are based on parameters determined by 
some notched laminate tests (e.g., characteristic dimension, fracture energy parameter).  The effects of 
LSS on failure is included in the test parameter.  Future analysis development that simulates progressive 
damage accumulation will provide a more efficient approach for studying the effects of LSS.  Additional 
information on laminate stacking sequence effects is found in Section 5.5.5. 
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5.4.5 Delamination 
 
 The formation and growth of delaminations is generally related to LSS.  Delaminations can have vary-
ing effects on tensile strength performance, depending on delamination location and the specific property 
of interest.  Most studies performed to date have considered specimens with significant free edge surface 
area where interlaminar stresses are known to concentrate.  Although all structures have some free 
edges, it is important to realize the limits of analysis and tests performed with specimen geometries.  For 
example, the magnitude of interlaminar tensile stresses, which are crucial to edge delamination, approach 
zero for plate width to thickness ratios of 30 and greater (Reference 5.4.5(a)). 
 
 As shown in Figure 5.4.5, laminated specimens prone to edge delamination have been shown to ex-
hibit generally lower strength (ultimate stress level) when loaded in uniaxial tension (e.g., References 
5.5.5.5.1.1(b), 5.4.5(b) - (f)).  The reduction in strength has been directly tied to a drop in stiffness with 
increased edge delamination area for laminates exhibiting stable delamination growth (References 
5.5.5.5.1(b), 5.4.5 (b) - (e)).  The onset of edge delamination has been shown to relate to tensile strength 
for laminates exhibiting unstable delamination growth coupled with matrix cracks (Reference 5.4.5(f)). 
 
 

 

 
 

FIGURE 5.4.5  Unnotched tensile strength variation with LSS (from Reference 5.4.5(d)). 
 
 
 The reduced laminate stiffness due to edge delamination can affect the measured tensile strength in 
two distinct ways (e.g., Reference 5.4.5(e)).  If all plies remain loaded after delamination, the ultimate 
laminate strain has been found to equal the critical strain of primary load bearing plies.  In these cases 
laminate strength drops in proportion to the apparent axial modulus.  However, if off-axis plies cease to 
carry loads because they have been isolated by an interconnected network of matrix cracks and delami-
nation, a local strain concentration can form.  When this occurs, the global laminate strain for failure can 
be less than the critical strain of primary load bearing plies. 
 
 Free edge delaminations split a laminate into sublaminates, each of which continue to carry tensile 
loads.  The apparent modulus of this laminate depends on delamination length and the sublaminate 
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moduli which may be calculated using lamination theory.  These moduli will depend on LSS if unsymmet-
ric sublaminates with strong extension/bending couplings are involved (References 5.4.5(g) and (h)).  A 
simple rule-of-mixtures approach has been used to accurately calculate apparent moduli for edge delami-
nation (References 5.4.5(e), (g) and (h)). 
 
 Local coupling between intralaminar matrix cracks and delaminations can cause complete or partial 
ply isolation.  Note that complete ply isolation cannot occur unless associated damage extends the full 
laminate width.  When this occurs, the apparent laminate stiffness and strain concentration can be calcu-
lated in a modified rule-of-mixtures approach which discounts isolated ply groups (References 
5.5.5.5.1.1(c) and 5.4.5(e)).  A local area of reduced stiffness also causes strain concentration (Reference 
5.4.5(i)).  The strain concentration depends on both the local reduced stiffness and global laminate stiff-
ness.  For example, hard laminates with strong anisotropy, such as lay-ups dominated by 0° plies and 
loaded uniaxially, will have large strain concentration factors.  Consequently, hard laminates will be less 
tolerant of local damage than relatively soft laminates (e.g., quasi-isotropic). 
 
 When high interlaminar shear stresses are present, coupled edge delamination and matrix crack 
growth are possible and may lead to catastrophic failure.  Edge delamination behavior of laminates com-
monly used in design (e.g., quasi-isotropic laminates) become dominated by interlaminar shear stresses 
when subjected to off-axis loading.  Note that for this problem the laminate lay-up is generally unbalanced 
relative to the loading axis.  The measured tensile strength coincides with the onset of edge delamination 
for such laminates (Reference 5.4.5(f)).  As a result, failure criteria that account for interlaminar stresses 
are needed to predict the tensile strength. 
 
 The use of a suitable analysis method is recommended to evaluate edge effects in composite materi-
als (e.g., References 5.4.5.1.1(f), 5.4.5(d), (g), (h), (j) - (l)).  Applied mechanical loads and environmental 
effects should be included in the free edge analysis.  Two approaches have been successfully applied to 
quantify free edge stresses and predict edge delamination: (1) a fracture mechanics based method using 
strain energy release rates (References 5.5.5.5.1.1(f), 5.4.5(d), (g), (h), (j)), and (2) a strength of materials 
based approach using an average stress failure criterion (References 5.4.5(k) and (l)). 
 
 The combined use of resin interlayers between the plies in a laminate and specimen edge polishing 
have been found to be effective methods for suppressing edge delamination (Reference 5.4.5(f)).  Materi-
als with high interlaminar toughness have an inherent resistance to delamination.  Other methods that 
have been used to suppress edge delamination include resin interlayer strips at critical interfaces along 
the edge of laminates (Reference 5.4.5(m)), termination of critical plies offset from the edge (Reference 
5.4.5(n)), hybridization (References 5.4.5(o) and (p)), and serrated edges (Reference 5.4.5(p)). 
 
 Most of the above discussion on the effects of delamination suggest a decrease in tensile properties.  
This is generally true for unnotched specimen geometries prone to edge delamination.  Isolated delami-
nations that occur away from the edge of a laminate (e.g., manufacturing defects) and are not coupled 
with matrix cracks have been shown to have little effects on tensile strength (Reference 5.4.5(r)).  Theo-
retically, such delaminations do not result in local reduced laminate stiffness when loaded in tension due 
to compatibility considerations.  Multiple delaminations located away from the edge of a laminate have 
been shown to cause a small reduction in tensile strength (Reference 5.4.5(r)).  This was explained by 
coupling between delaminations and other matrix damage (e.g., ply splits) that occurred during loading, 
resulting in partial ply isolation and local reduced stiffness.  Most of the discussion in this section is re-
lated to free edge effects (Section 5.5.3) and laminate stacking sequence effects (Section 5.5.5). 
 
5.4.5.1 Compression 
 
 Delaminations generally have a stronger affect on compressive strength than on tensile strength.  As 
a result, the potential for delamination should always be considered when selecting a suitable LSS.  The 
effect of delamination occurring due to manufacturing defects and/or in-service events such as impact 
needs to be included in this evaluation.  For example, the best LSS for avoiding edge delamination in 
specimen geometries may not be best for suppressing the effects of delaminations occurring in structures 
due to impact. 
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 Delamination breaks the laminate into sublaminates, each having associated stiffness, stability, and 
strength characteristics.  Sublaminates are usually unsymmetric and, therefore, all of the sublaminate 
stiffnesses will depend on LSS.  As shown in Figure 5.4.5.2, stability and local compressive performance 
of sublaminate ply groups ultimately determines catastrophic failure. 
 
 Compressive failure in composite laminates having delaminations is strongly tied to the stability of 
sublaminate plates.  Since delaminations may occur at many different interfaces in a laminate, sublami-
nates LSS will generally not be balanced and symmetric.  As discussed earlier, the bending/extension 
couplings characteristic of such LSS reduce buckling loads.  The sublaminate boundary conditions and 
shape are also crucial to the relationship between LSS and stability. 
 
 Several methods exist for predicting sublaminate stability in composite laminates (e.g., References 
5.4.5.1(a) - (e)).  These models differ in assumed bending stiffness, boundary conditions, and sublami-
nate shape.  Experimental data bases are needed to determine which assumption is appropriate for a 
given problem.  The in-plane and out-of-plane stress redistribution due to a buckled sublaminate is crucial 
to compressive strength. 
 
 Environment can play a significant role in delamination growth and load redistribution if the environ-
mental resistance of combined sublaminate stiffnesses are significantly different than those of the base 
laminate.  The combined effects of environment and LSS on laminate dimensional stability were covered 
in earlier sections.  The stability of unsymmetric sublaminates is expected to relate to warpage.  The warp 
depends on both LSS and environmental conditions.  Warp may be treated as an imperfection in stability 
analysis. 
 
 The initiation of free edge delamination in compressively loaded laminates can be predicted using 
methods similar to those used for tension (e.g., Reference 5.4.5.1(a)).  Once initiated, delamination 
growth depends on sublaminate stability.  An adequate sublaminate stability analysis model must, there-
fore, be coupled with the growth model (e.g., References 5.4.5.1(b) and (c)).  Delamination growth can be 
stable or unstable, depending on sublaminate LSS, delamination geometry, structural geometry, and 
boundary conditions.  Growth of multiple delaminations, characteristic of impact damage, is currently not 
well understood. 
 
5.4.6 Damage and failure modes 
 
5.4.6.1 Tension 
 
 Tensile rupture of laminates with multidirectional plies normally involves a series of pre-catastrophic 
failure events, including both matrix damage and localized fiber breaks.  Catastrophic failure is expected 
whenever the longitudinal tensile strength of any ply in a laminate is exceeded; however, laminates can 
separate without fiber failure by coupling various forms of matrix damage.  Example laminates that can 
fail due to matrix damage include those with less than three distinct ply orientations (angle-ply laminates 
loaded in the 0° direction).  Recommendation 2 in Section 5.6.5.2.1 is intended to avoid the low strengths 
associated with catastrophic failures occurring without fiber breaks. 
 
 Figure 5.4.6.1 shows the various failure mechanisms that can occur at micro and lamina dimensional 
scales for a multidirectional laminate loaded in tension.  Depending on load conditions and material prop-
erties, matrix failure (e.g., transverse matrix cracks, delamination) or isolated fiber breaks occur at stress 
levels less than the static strength.  Load redistributes around local failures until a critical level of damage 
is reached, upon which catastrophic fiber failure occurs.  Resin is of secondary importance through its 
effect on resistance to matrix damage accumulation and local load transfer (i.e., near matrix damage and 
isolated fiber breaks).  The LSS also plays a secondary role by affecting damage accumulation and load 
transfer. 
 
 Critical micro failure mechanisms shown in Figure 5.4.6.1 include localized fiber failure and fi-
ber/matrix interfacial cracking.  These mechanisms occur mostly in plies aligned with a major axis of ten-
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sile stress.  The laminate stress levels at which these failures occur depend on load redistribution due to 
the characteristic damage state in adjacent plies.  A limited number of fiber breaks are tolerated within a 
lamina before the entire ply fails, which can trigger catastrophic laminate failure. 
 
 Matrix failure mechanisms at the lamina scale for laminates with multidirectional plies are also shown 
in Figure 5.4.6.1.  Intralaminar matrix cracks align parallel to the fiber direction and span the thickness of 
a ply or group of plies stacked with the same orientation.  These have also been referred to as transply 
cracks or ply splits depending on whether a crack orients at an angle or parallel to the tensile load axis, 
respectively. 
 
 Interlaminar matrix failure, often referred to as delamination, can form near free edges or at intersec-
tions between intralaminar cracks.  Delaminations form due to excessive interlaminar normal and shear 
stresses.  The accumulation of intralaminar and interlaminar matrix failures depends strongly on LSS. 
 
 

 

 
FIGURE 5.4.6.1  Failure mechanisms for laminates loaded in tension. 

 
 
5.4.6.1.1 Matrix cracks 
 
 Matrix cracks occur in plies of laminated composites due to combined mechanical and environmental 
stresses.  These transverse cracks align with fibers and, when fully formed, span the thickness of individ-
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ual plies or ply groups stacked together in the same orientation.  Matrix cracks redistribute local stress in 
multidirectional laminates, allowing a crack density to develop in the ply of ply group as a function of load 
and environmental history.  These cracks can also form prior to service exposure due to processing. 
 
 Studies with specimens loaded in uniaxial tension have shown that initial fiber failures found in 0° 
plies occur near intralaminar matrix cracks in neighboring off-axis plies (Reference 5.4.6.1.1(a)).  When 
matrix cracks span a single off-axis ply, the stress concentration in a neighboring 0° ply is generally small 
and localized over a small portion of the neighboring ply thickness.  This has been found to influence the 
location of laminate failure, but has little effect on tensile strength (References 5.4.6.1.1(b) and (c)). 
 
 Intralaminar matrix cracks normally span the full thickness of multiple off-axis plies that have been 
stacked together.  The associated stress concentration in a neighboring ply increases with the thickness 
of a cracked group of stacked plies.  The stress concentration in a 0° ply due to matrix cracks in a large 
group of stacked 90° plies was found to significantly decrease laminate tensile strength (References 
5.4.6.1.1(c) and (d)).  This is one of the reasons for Recommendation 3, Section 5.5.5.2.1. 
 
 Even when strength is not altered by the presence of matrix cracks, it is important to understand the 
mechanics of matrix cracking for composite materials used in aerospace applications.  For example, ma-
trix cracks can play a fundamental role in the generation of delaminations.  The increased surface area 
due to a network of matrix cracks can also alter physical properties such as composite thermal expansion, 
liquid permeability, and oxidative stability. 
 
 Residual stresses, that develop due to differences in thermal and moisture expansion properties of 
constituents, affect the formation of matrix cracks.  In general, tensile residual stress develops in the 
transverse-fiber directions of lamina when multidirectional polymer matrix composites are exposed to 
temperatures below the residual stress free temperature.  This occurs during a temperature drop because 
unconstrained shrinkage of tape lamina is much greater in transverse-fiber directions than in fiber direc-
tions.  As moisture is absorbed into a laminate, matrix swelling counteracts thermal shrinkage, decreasing 
the transverse-fiber tensile stress. 
 
 The critical stress or strain causing the onset of matrix cracking in plies of a laminate has been re-
ferred to as in situ transverse lamina strength.  This strength is not a material constant since it depends 
on LSS.  Experiments and analysis have shown that in situ strength increases as the thickness of plies 
grouped together with the same orientation decreases (e.g., References 5.4.6.1.1(e) - (i)).  These studies 
have also shown that neighboring plies can impose differing constraints on matrix crack formation, de-
pending on fiber orientation.  Many materials currently used in the aerospace industry have resin-rich in-
terlaminar layers (RIL).  The magnitude of the in situ strengthening effect decreases if a RIL with signifi-
cant thickness exists between plies (Reference 5.4.6.1.1(j)).  Relatively soft RIL eliminate some of the 
constraint imposed by neighboring plies. 
 
5.4.6.2 Compression 
 
 Compressive strength is ultimately related to the local response of individual ply groups.  Assuming 
no matrix damage exists due to impact or previous load history, the local stability and strength of plies 
aligned with the axis of loading will determine final failure.  The location of load-carrying plies relative to 
the laminate surface can play a role in this instance.   The short wavelength buckling load is reduced 
when critical plies are located in outer layers of the laminate stacking sequence.  When matrix damage 
does exist, the combined local response of individual ply groups affects the compression strength.  The 
stability and load redistribution within individual ply groups or sublaminates is crucial to the local re-
sponse. 
 
 Figure 5.4.6.2 shows three different types of local compressive failure mechanisms.  These mecha-
nisms were observed to occur as a function of θ for ±θa fs  type laminates (References 5.4.6.2(a) and (b)).  

When delamination occurs, all three of the local failure modes may combine to determine the compres-
sive strength of a laminate stacking sequence.  (Additional information on the effects of the laminate 
stacking sequence is found in Section 5.6.5.)  In-plane matrix shearing and matrix compression failures 
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were observed for ±θa fs  type laminates with 15 90°≤ ≤ °θ  and 60 90°≤ ≤ °θ , respectively.  The shear mode 

of fiber microbuckling is most commonly observed for composites.  This mode was shown to initiate com-
pressive failure for ±θa fs  type laminates with 0 10°≤ ≤ °θ .  Depending on matrix and fiber combination, 

final local failures for such laminates involved some combination of fiber failure (shear, kinking, or bend-
ing) and matrix splitting or yielding (References 5.4.6.2(c) and (d)). 
 
 

 

 
 

FIGURE 5.4.6.2  Failure mechanisms for laminates loaded in compression. 
 
 
5.4.7 Summary 
 
• Ply level stresses are commonly used to predict first ply and subsequent ply failures leading up to 

laminate failure. Once a ply has failed, its contribution to laminate strength and stress is conserva-
tively reduced. Typically, in-plane failure criteria are applied only to lamina fiber loading conditions; 
in-plane matrix-dominated static failure criteria should not be used since it will generally lead to overly 
conservative failure predictions. 

 
• Under static loading conditions, composites are particularly notch-sensitive as a function of lay-up and 

more specifically stacking sequence. 
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5.5 COMPLEX LOADS 
 
5.5.1 Biaxial in-plane loads 
 
 This section is reserved for future use. 
 
5.5.2 Out-of-plane loads 
 
 This section is reserved for future use. 
 
 
5.6 LAMINA TO LAMINATE CONSIDERATIONS 
  
5.6.1 Residual stresses and strains 
 
 Residual curing stresses and strains have virtually no effect on fiber-dominated laminate properties.  
However, residual stresses in the resin can be greater than the mechanical stresses needed to cause 
failure.  Neglecting these residual stresses therefore may be nonconservative.  The residual stresses may 
be high enough that resin microcracking may occur before any mechanical load is applied.  Consequently, 
the principle of superposition may not be applicable as the mechanical loading may result in nonlinear 
behavior.  As an example, typical epoxy matrix residual strains at the microlevel, resulting from cool down 
after curing at 350°F (180°C), may be approximately 25 to 100% of the laminate failure strain. 
 
5.6.2 Thickness effects 
 
 Much of the difference in properties found when comparing laminates with different thicknesses can 
be explained by the residual stresses developed during processing.  Internal stresses developed during 
processing may produce voids, delaminations, and microcracks or cause residual stresses in the laminate 
that may affect material properties.  Excessive porosity, generally caused by poor processing, or envi-
ronmental effects due to temperature and moisture conditions may also degrade the material and affect 
its behavior. 
 
 Variations in material properties between thick laminate test data from different sources, for laminates 
having the same thickness, can generally be attributed to differences in processing.  Such variations can 
be minimized by optimizing the cure cycle and by proper process control. 
 
 The residual stresses may be caused by non-isothermal conditions present during the solidification 
phase.  Different layers of the laminate will undergo different degrees of volume contraction at any given 
time during the process cycle.  This gives rise to a self-equilibrating force system producing tension 
stresses in the center and compression stresses in the surface layers of the laminate as reported by 
Manson and Seferis (Reference 5.6.2(a)).  Thickness effects observed in composite laminates are primar-
ily due to this phenomena. 
 
 In thermosetting materials, these through-the-thickness stress gradients can be virtually eliminated by 
modeling the total process, including cool-down, so isothermal conditions are present near the resin gela-
tion point and are maintained for a sufficient period of time.  In some high-temperature processing materi-
als where rapid cooling is required, significant thermal stresses may build up in the laminate. 
 
 In their work, the authors in Reference 5.6.2(a) present a method to experimentally determine and 
analyze the internal stresses developed during processing of a composite laminate.  This method consists 
of laying up a certain number of plies, separated by a release ply that can be removed after processing.  
The internal stresses in the laminate can then be analyzed by considering the deformations of the individ-
ual sublaminates. 
 
 In summary, variations in material properties in laminated composites are mostly the result of ther-
mally induced residual stresses, although environmental effects and process parameters other than tem-
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perature may affect test data.  True thickness effects are caused by temperature gradients across the 
thickness of the laminate.  These effects may be minimized by mathematical modeling of the total process 
and can be virtually eliminated in thermosetting materials.  Advance process models such as ROAST, 
described in Reference 5.6.2(b), may be used to optimize the process parameters. 
 
5.6.3 Edge effects 
 
 Consideration of edge effects in laminated composites is necessary due to behavior not observed in 
homogeneous solids.  A complex stress state exists between the layers of different orientation at the free 
edge of a laminate, such as along a straight edge or around the perimeter of a hole.  Where a fiber in a 
laminate has been subjected to thermal or mechanical strain, the end of the cut fibers must transfer the 
load to adjacent fibers.  If these adjacent fibers have a different orientation, they will present a locally 
stiffer path and accept the load.  The matrix is the only mechanism for this load transfer.  The stresses 
due to this load, namely interlaminar stresses, can be sufficient to cause local microcracking and edge 
delamination.  These interlaminar stresses, in general, include normal (peel stress σz) and shear compo-
nents (τyz, τxz) and are only present in a small region near the free edge.  A typical interlaminar stress dis-
tribution is shown in Figure 5.6.3.  The high gradients of these stresses depend on differences in Pois-
son's ratio and in-plane shear stiffness that exist between the laminae groups in a laminate.  The same 
kinds of stresses are induced by residual thermal stresses due to cool-down after cure at elevated tem-
peratures. 
 
 Failure often occurs as a result of delamination at the locations of high interlaminar stresses because 
of low interlaminar strength.  The effects of free edge stress are sufficient to reduce the strength of certain 
specimens in both static and fatigue tests significantly.  This premature failure makes coupon data difficult 
to apply to large components because of the local effects of the free edge failure mode.  Classical lami-
nate theory which assumes a state of plane stress is incapable of predicting the edge stresses.  However, 
determination of such stresses by higher order plate theory or finite element analysis is practical.  There-
fore, consideration of edge interlaminar stresses in a laminate design is feasible.  The gradients of this 
stress can be reduced by such measures as 1) changing the laminate stacking order, 2) minimizing the 
mismatch of the Poisson's ratio, the coefficient of mutual influence, and coefficients of thermal and mois-
ture expansion between adjacent laminae, and 3) by inserting an inner layer which has a lower shear 
modulus and a finite thickness between laminae, thus allowing greater local strain to occur (Reference 
5.6.3(a)). 
 
 Edge effects may be analyzed by fracture mechanics, strength of materials, or other methods (Refer-
ences 5.6.3(a) - (d)).  These methods can be used to provide a guideline for designers to select the lami-
nate configuration and material system best suited for a particular application. 
 
 Very little work has been performed to date on free edge effects for load conditions other than uniaxial 
tension or compression.  Some analysis results indicate that in-plane shear, out-of-plane shear/bending, 
in-plane bending, twisting moments, and combined loading yield a higher magnitude of interlaminar stress 
relative to those associated with axial load conditions (Reference 5.6.3(f)).  For example, out-of-plane 
shear due to bending causes free edge interlaminar stresses that are an order of magnitude higher than 
that caused by axial tension.  For more information on delaminations and free edge effects, see Section 
5.4.5.  Information on the laminate stacking sequence effects is found in Section 5.6.5. 
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 FIGURE 5.6.3 Interlaminar stresses normalized with respect to the applied strain 
  (reproduced by permission from Reference 5.6.3(e)). 
 
 
5.6.4 Effects of transverse tensile properties in unidirectional tape 
 
 The transverse strength properties play only a minor role in establishing cross-plied laminate 
strengths.  It is, however, well-known that the effective "in-situ" transverse strength of transverse plies is 
much greater than the strength measured on the lamina.  This effect has been handled by post-first ply 
failure analysis methods. 
 
 In-plane shear tests on laminae exhibit relatively high strains to failure (4 -5%).  The much lower 
transverse tensile strains to failure (1/2%) indicate a marked notch sensitivity that is suppressed in cross-
plied laminates.  The initial cracks that fail laminae are arrested by fibers in other directions; thus laminae 
with microcracks are still effective.  Most laminae develop cracks due to residual thermal stresses and 
continue to function. 
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5.6.5 Laminate stacking sequence effects 
 
5.6.5.1 Introduction 
 
 Stacking sequence describes the distribution of ply orientations through the laminate thickness.  As 
the number of plies with chosen orientations increase, more stacking sequences are possible.  For exam-
ple, a symmetric 8-ply laminate with four different ply orientations has 24 different stacking sequences.  
This presents a predicament when attempting to optimize composite performance as a function of stack-
ing sequence. 
 
 Laminated composite structural properties such as stiffness, dimensional stability, and strength have 
all been found to depend on laminate stacking sequence (LSS).  Generally, each property has a different 
relationship with LSS.  Therefore, the choice of LSS for a particular design application may involve a com-
promise.  Design optimization requires verified analysis methods and an existing materials database.  The 
development of verified analysis methods for predicting stiffness and stability of laminated composites is 
more mature than that for predicting strength. 
 
 Some simplified design guidelines for LSS are provided in Section 5.6.5.2.  These guidelines are 
generally conservative; however, they limit design optimization, and may even be misleading for some 
special cases.  As a result, a comment on the reason for each guideline is included in the discussion.  
Verified analysis methods should be used to help judge the effects of LSS whenever possible. 
 
 Additional discussion of stacking sequence effects on particular topics are provided in the sections 
noted in Table 5.6.5.1. 
 
 
 

TABLE 5.6.5.1  Additional discussions on stacking sequence effects. 
 

Topic Section Page 

Bending 4.3.3.2, 4.4.3 4-42, 4-62 

Buckling 4.7.1.8 4-88  

Compression after impact 4.11.1.4 4-107  

Delamination 4.4.5 4-69  

Free edge effects 4.5.3 4-77  

Hygroscopic analysis 4.3.4 4-50  

Lamination theory 4.3.2 4-33  

Notched strength 4.4.4 4-63  

Ply shear strength 4.4.3 4-62  

Thermal analysis 4.3.4 4-50  

Vibration 4.12.2 4-118  

 
 
 
5.6.5.2 Design guidelines 
 
 Laminate design starts by selecting the number of plies and ply angles required for a given applica-
tion.  Once the number of plies and ply angles are selected, a LSS is chosen.  A LSS is considered het-
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erogeneous when there is preferential stacking of specific ply orientations in different locations through 
the thickness of the laminate.  Thick laminates with heterogeneous LSS are created by clumping plies of 
similar orientation.  A LSS is said to be homogeneous if ply angles are evenly distributed through the 
laminate thickness.  The ability to generate homogeneous LSS depends on the number of plies and ply 
angles.  For example, it is impossible to create a homogeneous LSS for a four-ply laminate consisting of 
four different ply angles. 
 
 The following LSS guidelines are based on past experience from test and analysis.  Guidelines are 
lumped under two categories; (1) strong recommendation, and (2) recommendation.  Despite this classifi-
cation, exceptions to the guidelines should be considered based on an engineering evaluation of the spe-
cific application. 
 
5.6.5.2.1 Strong recommendations 
 

1. Homogeneous LSS are recommended for strength controlled  designs (In other words, thoroughly 
intersperse ply orientations throughout the LSS). 

 
Comment:  Heterogeneous laminates should be avoided for strength-critical designs unless analysis 

and test data is available that indicates a clear advantage.  In cases where heterogeneous lami-
nates cannot be avoided (e.g., minimum gage laminates), it is generally best to stack primary 
load-carrying plies toward the laminate core.  The best way to view possible strength problems 
with heterogeneous LSS is to consider the behavior of individual sublaminates (i.e., groups of 
plies separated by delaminations) that may be created during manufacturing or service exposure.  
This will be discussed later in greater detail. 

 
Heterogeneous LSS can yield optimum stiffness or stability performance; however, the effects on all 

other aspects of the design (e.g., strength, damage tolerance, and durability) should be consid-
ered before ignoring Recommendation 1.  For example, interlaminar stress distributions are af-
fected by variations in the in-plane stress field around the periphery of holes and cutouts and the 
"effective" LSS (i.e., ply orientations relative to a tangent to the edge).  Since it is difficult to opti-
mize for a single lay-up in this case, the best solution is to make the LSS as homogeneous as 
possible. 

 
2. A LSS should have at least four distinct ply angles (e.g., 0°, ±θ°, 90°) with a minimum of 10% of 

the plies oriented at each angle.  Ply angles should be selected such that fibers are oriented with 
principal load axes. 

 
Comment:  This rule is intended to avoid the matrix-dominated behavior (e.g., nonlinear effects and 

creep) of laminates not having fibers aligned with principal load axes.  Such behavior can lead to 
low strengths and  dimensional stability problems. 

 
3. Minimize groupings of plies with the same orientation.  For tape plies, stack no more than four 

plies of the same orientation together (i.e., limit stacked ply group thicknesses ≤0.03 in. (0.8 
mm)).  In addition, stacked ply group thicknesses with orientations perpendicular to a free edge 
should be limited to ≤0.015 in.(0.38 mm). 

 
Comment:  This guideline is used for laminate strength-critical designs.  For example, it will help 

avoid the shear-out failure mode in bolted joints.  It also considers relationships between stacked 
ply group thickness, matrix cracking (i.e., transverse tension and shear ply failures) and delami-
nation. 

 
In general, ply group thickness should be limited based on details of the design problem (e.g., loads, 

free edges, etc.) and material properties (e.g., interlaminar  toughness).  Note that the absolute 
level of ply group thickness identified in this guideline is based on past experience.  It should be 
confirmed with tests for specific materials and design considerations. 
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4. If possible, LSS should be balanced and symmetric about  the midplane.  If this is not possible 
due to other requirements, locate the asymmetry or imbalance as near to the laminate midplane 
as possible.  A LSS is considered symmetric if plies positioned at an equal distance above and 
below the midplane are identical (i.e., material, thickness, and orientation).  Balanced is defined 
as having equal numbers of +θ and -θ plies, where θ is measured from the primary load direction. 

 
Comment:  This guideline is used to avoid shear/extension couplings and dimensional stability prob-

lems (e.g., warpage which affects component manufacturing tolerances).  The extension/bending 
coupling of unsymmetric laminates can reduce buckling loads.  Note that some coupling may be 
desired for certain applications (e.g., shear/extension coupling has been used for aeroelastic tai-
loring). 

 
5.6.5.2.2 Recommendations 

 
5. Alternate +θ and -θ plies through the LSS except for the closest ply either side of the symmetry 

plane.  A +θ/-θ pair of plies should be located as closely as possible while still meeting the other 
guidelines. 

 
Comment:  This guideline minimizes the effect of bending/twisting coupling, which is strongest when 

angle plies are separated near the surface of a laminate.  Modifications to this rule may promote 
more efficient stiffness and stability controlled designs. 

 
6. Shield primary load carrying plies from exposed surfaces. 
 
Comment:  The LSS for laminates primarily loaded in tension  or compression in the 0° direction 

should start with angle and transverse plies.  Tensile strength, microbuckling resistance, impact 
damage tolerance and crippling strength can all increase by shielding the main load bearing plies 
from the laminate surface.  With primary load fibers buried, exterior scratches or surface ply de-
lamination will not have a critical effect on strength.  For laminates loaded primarily in shear, con-
sideration should be given to locating +45° and -45° plies away from the surface.  For cases in 
which an element is shielded by other structures (e.g., shear webs), it may not be necessary to 
stack primary load carrying plies away from the surface. 

 
7. Avoid LSS that create high interlaminar tension stresses (σz) at free edges.  Analyses to predict 

free edge stresses and delamination strain levels are recommended to help select LSS. 
 
Comment:  Composite materials tend to have a relatively low resistance to mode I delamination 

growth.  Edge delamination, followed by sublaminate buckling can cause premature failure under 
compressive loads.  Edge delamination occurring under tensile loads can also effectively reduce 
stiffness and lower the load carrying capability.  Since delaminations occurring at the core of the 
laminate can have the strongest effect on strength, avoid locating tape plies with fibers oriented 
perpendicular to a free edge at the laminate midplane. 

 
8. Minimize the Poisson's ratio mismatch between adjacent laminates that are cocured or bonded. 
 
Comment:  Excessive property mismatches between cobonded elements (e.g., skin and stringer 

flange) can result in delamination problems.  In the absence of more sophisticated  analysis tools, 
a general rule of thumb is 

 
   ν νxy xy( ) ( ) .laminate 1 laminate 2− < 0 1  5.6.5.2.2 

As opposed to static strength, composites are not particularly notch-sensitive in fatigue; hole wear 
is often used as the governing criterion constituting fatigue failure of composites loaded in bear-
ing. 
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5.6.6 Lamina-to-laminate statistics 
 
 This section is reserved for future use. 
 
5.6.7 Summary 
 
• Laminate properties such as strength, stiffness, stability, and damage resistance and damage toler-

ance have been found to have some dependency upon laminate stacking sequence (LSS). Each 
property can have a different relationship with LSS. Thus, each given design application may involve 
a compromise relative to LSS determination. 

 
• Homogeneous LSS are recommended for strength controlled designs (in other words, thoroughly in-

tersperse ply orientations throughout the LSS). 
 
• A LSS should have at least four distinct ply angles (e.g., 0°, ±θ°, 90°) with a minimum of 10% of the 

plies oriented at each angle. Ply angles should be selected such that fibers are oriented with principal 
load axes. 

 
• Minimize groupings of plies with the same orientation.  For tape plies, stack no more than four plies of 

the same orientation together (i.e., limit stacked ply group thicknesses <0.03 in. (0.8 mm)). In addi-
tion, stacked ply group thicknesses with orientations perpendicular to a free edge should be limited to 
≤€0.015 in. (0.38 mm). 

 
• If possible, LSS should be balanced and symmetric about the midplane. If this is not possible due to 

other requirements, locate the asymmetry or imbalance as near to the laminate midplane as possible. 
A LSS is considered symmetric if plies positioned at an equal distance above and below the midplane 
are identical (i.e., material, thickness, and orientation). Balanced is defined as having equal numbers 
of +θ  and -θ  plies, where θ  is measured from the primary load direction. 

 
 
5.7 COMPRESSIVE BUCKLING AND CRIPPLING 
 
5.7.1 Plate buckling and crippling 
  
5.7.1.1 Introduction 
 
 Rectangular flat plates are readily found in numerous aerospace structures in the form of unstiffened 
panels and panels between stiffeners of a stiffened panel, and as elements of a stiffener.  Closed form 
classical buckling solutions available in the literature are limited to orthotropic plates with certain assumed 
boundary conditions.  These boundary conditions may be fixed, simply supported, or free.  For expedi-
ency, the engineer may wish to assume the most appropriate boundary conditions and obtain a quick so-
lution rather than resort to using a buckling computer program such as Reference 5.7.1.1(a).  However, 
the closed form solutions of laminated orthotropic plates are appropriate only when the lay-ups are sym-
metrical and balanced.  Symmetrical implies identical corresponding plies about the plate mid-surface.  
Balanced refers to having a minus θ ply for every plus θ ply on each side of the mid-surface.  Symmetrical 
and balanced laminated plates have Bij terms vanish and the D16 and D26 terms virtually vanish.  However, 
the balanced plies (±θ) should be adjacent; otherwise the D16 and D26 terms could become significant and 
invalidate the use of the orthotropic analysis.  The buckling solutions could be significantly nonconserva-
tive for thin unbalanced or unsymmetric plates (see Reference 5.7.1.1(b)).  Note that not all closed form 
solutions give direct answers; sometimes the equations must be minimized with respect to certain pa-
rameters as will be shown later. 
  
 The behavior of flat plates in compression involves initial buckling, postbuckling out-of-plane dis-
placements, and crippling (ultimate postbuckling failure).  Only at crippling does permanent damage oc-
cur, usually some form of delamination due to interlaminar tensile or shear stresses.    
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 Nomenclature used to describe the buckling behavior of composite plates in Section 5.7.1 is given in 
Table 5.7.1.1. 
 
 
 

TABLE 5.7.1.1  Buckling and crippling symbols. 
 
 SYMBOL DEFINITION 
 
 
 a  length 
  b  width 
  Bij    stiffness coupling terms of laminated plate 
  Dij   flexural/twisting stiffness terms of laminated plate   
 x,cl

crF   classical orthotropic longitudinal compressive buckling stress 

 x,i
crF   initial longitudinal compressive buckling stress from test   

 x
ccF    longitudinal crippling stress from test 

 x
cuF    longitudinal ultimate compressive stress of laminate 

 x,cl
cr

y,cl
crN ,N  classical orthotropic longitudinal and transverse compressive uniform buckling 

   loads, respectively 
 x,i

crN      initial longitudinal uniform buckling load from test   

 x,w
crN     longitudinal compressive uniform buckling load based on anisotropic theory, 

   including transverse shear effects   
 Nx, Ny  longitudinal and transverse applied uniform loads, respectively, on a plate 
 x,i

crP      total longitudinal initial buckling load form test   

 x,i
ccP     total longitudinal crippling load from test 

 t  thickness 
 
 
 
 
5.7.1.2 Initial buckling 
 
 Initial buckling is defined to occur at a load that results in incipient out-of-plane displacements.  The 
classical equations are elastic, and finite transverse shear stiffness effects are neglected.  (Reference 
5.7.1.2).  The buckling of certain plate geometries, however, can be influenced by the finite shear stiffness 
effects as shown in Section 5.7.1.8.   
 
5.7.1.3 Uniaxial loading - long plate with all sides simply supported 
 
 The case of a long plate (a/b > 4) with all sides simply supported (SS) and loaded uniaxially is shown 
in Figure 5.7.1.3(a) and described by Equation 5.7.1.3. 

   x,cl
cr

2

2 11 22
1/2

12 66N =
2

b
(D D ) + D + 2 D

∏
  5.7.1.3 

Equation 5.7.1.3 is the most frequently used plate buckling equation.  It can be shown by the use of the 
STAGS computer program (Reference 5.7.1.1(a)) that this equation is also valid for fixed boundary condi-
tions (FF) on the loaded edges, which is important since all testing is performed with fixed boundary con-
ditions on the loaded edges to prevent local brooming.  Comprehensive testing has shown these equation 
to be valid except for very narrow plates.  Figure 5.7.1.3(b) shows the comparisons between experiment 
and classical theory from References 5.7.1.3(a) and (b), where the test results are plotted as x,i

cr
x,cl
crN / N  

versus the b/t ratios.  Notice the discrepancy becomes worse at the low b/t ratios (narrow plates).  Thus 
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the equation should be used with caution at b/t ratios less than 35.  In Figure 5.7.1.3(c) the same experi-
mental data has been normalized by the buckling load prediction which includes the effects of transverse 
shear ( x,w

crN ) from References 5.7.1.3(c) and (d)).  Note that most available computer buckling programs 
will not account for this transverse shear effect. 
 
 

 
 

FIGURE 5.7.1.3(a)  Uniaxial loading - long plate (a/b > 4) with all sides simply supported (SS). 
 
 
 

 
 
 FIGURE 5.7.1.3(b) Predicted classical buckling loads compared to experimental data 
  (Reference 5.7.1.3(b)). 
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 FIGURE 5.7.1.3(c) Predicted buckling loads of the current theory compared to experimental  
  data (Reference 5.7.1.3(b)). 
 
 
5.7.1.4 Uniaxial loading - long plate with all sides fixed 
 
 The case of a long plate (a/b > 4) with all sides fixed (FF) and loaded uniaxially is shown in Figure 
5.7.1.4 and described by Equation 5.7.1.4. 

   x,cl
cr

2

2 11 22
1/2

12 66N =
b

4.6(D D ) + 2.67D + 5.33D
∏

  5.7.1.4 

 This equation has not had the comprehensive experimental study as has Equation 5.7.1.3.  However, 
by conjecture the effect of transverse shear for narrow plates would be quite similar to that found for 
plates with all edges simply supported. 
 
 

 
FIGURE 5.7.1.4   Uniaxial loading - long plate (a/b > 4) with all sides fixed. 



MIL-HDBK-17-3F 
Volume 3, Chapter 5  Design and Analysis 
 

5-75 

5.7.1.5 Uniaxial loading - long plate with three sides simply supported and one unloaded edge free 
 
 Figure 5.7.1.5 shows the case of a long plate (a/b > 4) with three sides simply supported and the re-
maining unloaded edge free.  This plate is uniaxially loaded.  This loading situation is described by Equa-
tion 5.7.1.5.  

   x,cl
cr 66

2

2
11

2N =
12 D

b
+

D

a

∏
  5.7.1.5 

where b/t must be greater than 20 because of transverse shear effects in narrow plates as discussed in 
Section 5.7.1.3. 
 
 

 
 FIGURE 5.7.1.5 Uniaxial loading - long plate with three sides simply supported and 
  one unloaded edge free. 
 
 
5.7.1.6 Uniaxial and biaxial loading - plate with all sides simply supported 
 
 Biaxial and uniaxial loading of a simply supported plate is shown in Figure 5.7.1.6, where 1 < a/b < ∞.  
The following classical orthotropic buckling equation must be minimized with respect to the longitudinal 
and transverse half-waves numbers, m and n: 

   x,cl
cr

2

2
11

4 4
12 66

2 2 4
22

4

2 2 2N =
b

D m (b/ a ) + 2(D + 2 D )m n (b/ a ) + D n

m (b/ a ) + n
,min

∏
φ

  5.7.1.6(a) 

where 
   φ = N / Ny x   5.7.1.6(b) 
 
which is the ratio of applied transverse to longitudinal loading.  Accordingly, the corresponding transverse 
buckling load is 
   y,cl

cr
x,cl
crN = Nφ   5.7.1.6(c) 

For uniaxial loading, let φ = 0. 
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FIGURE 5.7.1.6  Uniaxial and biaxial loading - plate with all sides simply supported. 

 
 
5.7.1.7 Uniaxial loading - plate with loaded edges simply supported and unloaded edges fixed 
 
 The case of a uniaxially loaded plate (1 < a/b < ∞) with the loaded sides simply supported (SS) and 
the unloaded sides fixed (FF) can also be considered.  For this case, the following classical orthotropic 
buckling equation must be minimized with respect to the longitudinal half-wave number, m:   

   x,cl
cr

2

2 11
2 2

12 22
2 2

66N =
b

D m (b/ a ) + 2.67D + 5.33 D (a/ b ) + (1 / m ) + D
∏ { }   5.7.1.7 

 
5.7.1.8 Stacking sequence effects in buckling 
 
 Methods to accurately predict the stability of laminated plates have been documented (e.g., Refer-
ences 5.7.1.8(a)-(c)).  Laminated plate stability can be strongly affected by LSS.  However, factors such 
as plate geometry, boundary conditions and load type each contribute to the relationship between LSS 
and plate stability.  As a result, general rules that define the best LSS for plate stability do not exist.  In-
stead, such relationships must be established for specific structure and loading types.  Three examples 
that illustrate this point will be shown in this section.  Two different analysis methods were used in these 
examples.  The first, utilized design equations from Reference 5.7.1.8(c) and bending stiffnesses as cal-
culated using lamination theory.  This method assumed the plate bending behavior to be "specially 
orthotropic" (D16 and D26 terms were set equal to zero).  The second method was a Boeing computer pro-
gram called LEOTHA (an enhanced version of OTHA, Reference 5.7.1.8(a) which uses the Galerkin 
method to solve equations for buckling.  This method allowed nonzero D16 and D26 terms. 
 
 Figures 5.7.1.8(a), (b), and (c) show plate buckling predictions for the seven LSS used in an earlier 
example (see Table 5.3.3.2(b)).1  All plates were assumed to have simply-supported boundary conditions 
on the four edges.  Figures 5.7.1.8(a) and (b) are rectangular plates loaded by uniaxial compression in 
long and short directions, respectively.  Figure 5.7.1.8(c) shows shear buckling predictions for a square 
plate.  Horizontal dashed lines on Figures 5.7.1.8(a) - (c) represent the results obtained when using the 
DOD/NASA design equations and assuming no LSS effect (i.e., a homogeneous orthotropic plate).  The 
homogeneous plate assumption results in a buckling load that is roughly an average of the predictions for 
all LSS shown in the figures. 

                                                      
1
The LSS used in Figures 5.7.1.9(a), (b), and (c) were chosen for illustrative purposes only and do not represent optimal LSS for a 

given application. 
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 FIGURE 5.7.1.8(a) Buckling analysis of 4 sides simply-supported, 24 in. by 6 in.,  
  laminated plates loaded in the long direction. 
 
 
 
 

 
 
 FIGURE 5.7.1.8(b) Buckling analysis of 4 sides simply-supported, 6 in. by 24 in.,  
  laminated plates loaded in the short direction. 
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 FIGURE 5.7.1.8(c) Buckling analysis of 4 sides simply-supported, 12 in. by 12 in.,  
  laminated plates loaded in shear. 
 
 
 The highest buckling loads for rectangular plates loaded in the long direction occur with preferential 
clumping of ±45° plies toward the surface layers (Figure 5.7.1.8(a)).  Such is not the case for rectangular 
plates loaded in the short direction, where preferential stacking of 0° plies yield the highest buckling loads 
(Reference 5.7.1.8(b)).  Note that predictions using the homogeneous plate assumption can be conserva-
tive or nonconservative depending on LSS.  The DOD/NASA equations compare well with LEOTHA for 
conditions shown in Figures 5.7.1.8(a) and (b). 
 
 The highest buckling loads for square plates loaded in shear occur with preferential clumping of ±45° 
plies toward the surface layers (Reference 5.7.1.8(d)).  Predictions using LEOTHA are different for positive 
and negative shear due to the relative positions of +45° and -45° plies.  Predictions from DOD/NASA 
equations were generally lower than those of LEOTHA for positive shear loads.  The opposite was true for 
negative shear loads.  Differences may be attributed to the influence of D16 and D26 terms which were not 
included in the DOD/NASA design equations. 
 
 As with bending, structural geometry can overshadow the effects of LSS on stability (see the discus-
sion pertaining to Figure 5.3.3.2).  For example, the Euler buckling load of a laminated I-section used as a 
column is more strongly dependent on geometrical dimensions than on LSS of web and flanges.  In fact, 
the effects of LSS on Euler buckling load diminishes sharply with increasing web height. 
 
 Design for local buckling and crippling of composite plates has typically relied on empirical data (e.g., 
Reference 5.7.1.8(e)).  Local buckling and crippling have been found to relate to LSS.  The lowest values 
for local buckling and crippling under uniaxial compression occurred with preferential stacking of 0° plies 
towards the outside surface of a laminate.  Hence, when considering an I-section, Euler buckling loads 
may be independent of LSS while local buckling and crippling can relate to LSS. 
 
 The effects of LSS on the stability of a stiffened panel is more complex.  Assuming no local buckling 
and crippling, stiffener stability will not depend directly on LSS.  However, post-buckling behavior of the 
skin and load redistribution to the stringer is strongly affected by the skin's LSS.  As a result, overall stiff-
ened panel stability can be influenced by the skin's LSS. 
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 Basic information on laminate stacking sequence effects is found in Section 5.6.5. 
 
5.7.2 Compressive postbuckling and crippling 
 
 Wide exploitation of advanced composites in stability critical structural designs depends to a large 
degree on the ability of composites to support loads well beyond the initial buckling level.  Unquestiona-
bly, the high stiffness-to-weight ratio of composites renders them potentially attractive up to initial buck-
ling.  However, since postbuckling design has been established over several decades for certain types of 
conventional metallic alloy construction, it should be anticipated that composites demonstrate a similar 
capability.  Hence, this section addresses this vitally important issue as it pertains to the design of struc-
tural compressive members.    
 
 Postbuckling.  Postbuckling is the ability of a compressive member or stiffened panel to carry loads 
well in excess of the initial buckling load.  The "postbuckling range" may be considered to exist between 
the initial buckling load and some higher load representing failure, e.g., delamination at the free edge of a 
compressive member or the disbonding of a stiffener from the panel in a stiffened panel.  When stiffened 
panels are loaded in compression, load is shared between skin and stiffeners in proportion to their re-
spective stiffnesses.  At initial buckling, the tangent stiffness of the skin is reduced sharply and as a result, 
a greater portion of the total load will be carried by the stiffeners.  For an isotropic material with linear 
elastic behavior prior to initial buckling, the tangent stiffness at buckling is reduced to one half of its initial 
value.  For composite panels, tangent stiffnesses are a function of material properties and lay-up.  Local 
buckling of one or more of the plate elements comprising a stiffener will similarly reduce the in-plane stiff-
nesses of the affected elements and will cause the load to shift to the unbuckled portions of the stiffener.  
The upper limit of the postbuckling range is sometimes referred to as "local crippling" or simply "crippling". 
 
 Crippling.  Compressive crippling is a failure in which the cross section of a stiffener is loaded in 
compression and becomes distorted in its own plane without translation or rotation of the entire column 
taking place.  Typical deflected shapes seen in crippling tests of angles and channel section stiffeners are 
shown in Figure 5.7.2(a).  Angles or cruciforms loaded in compression are commonly used as crippling 
specimens for the "one-edge-free" case.  Channels or simply supported compressiove panels are nor-
mally used for the "no-edge-free" case, in which the center channel segment is approximately simply sup-
ported with "no-edge-free". 
 
 The postbuckling behavior of composite plates presented here is derived from the empirical graphite 
tape data obtained from References 5.7.2(a) through (h).  Relatively narrow plates, with simply supported 
unloaded edges or one-edge-free and fixed loading edges were tested and analyzed.  The simply sup-
ported unloaded edges were simulated by the use of steel V-blocks mounted on the compression test 
fixture.  Specifically, the plates with both unloaded edges simply supported are defined as "no-edge-free".  
Plates with one unloaded edge simply supported and the other free are defined as "one-edge-free".  A 
typical no-edge-free test in progress with the specimen in the postbuckling range is shown in Figure 
5.7.2(b).  In addition, a typical one-edge-free test where crippling of the specimen has occurred is shown 
in Figure 5.7.2(c).  Typical load-displacement curves of no-edge-free and one-edge-free tests are shown 
in Figures 5.7.2(d) and 5.7.2(e), respectively.  Figure 5.7.2(d) clearly shows the reduction in stiffness at 
initial buckling as indicated by the change in slope of the load deflection curve at that point.  A convenient 
plot that exemplifies the postbuckling strength of the no-edge-free composite plates is shown in Figure 
5.7.2(f).  The value for 11

cuF  is the ultimate compressive strength of the particular laminate.  A typical failed 
test specimen is shown in Figure 5.7.2(g).  Figure 5.7.2(h) illustrates the postbuckling strengths of one-
edge-free plates.  Note that all the empirical data presented involved the testing of high strength car-
bon/epoxy tape.  Other material systems or other forms of carbon/epoxy composites may yield different 
results. 
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FIGURE 5.7.2(a)  Typical crippling shapes. 
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FIGURE 5.7.2(b)  No-edge-free carbon/epoxy test. 
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FIGURE 5.7.2(c)  One-edge-free carbon/epoxy postbuckling test at crippling. 
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FIGURE 5.7.2(d)  No-edge-free plate.  Crippling tests - AS/3501-6 [±45/90/03]s - b/t ≈ 32. 

 
 
 

 
 

FIGURE 5.7.2(e)  One-edge-free plate.  Crippling tests - AS/3501-6 [±45/90/03]s - b/t ≈ 30. 
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FIGURE 5.7.2(f)  Normalized crippling data - no-edge-free. 
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FIGURE 5.7.2(g)  Typical carbon/epoxy failed ultimate compression specimen. 
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FIGURE 5.7.2(h)  Normalized crippling data - one-edge free. 

 
 
5.7.2.1 Analytical models 
 
 As stated in Section 5.7.1.2, initial buckling is more accurately determined by including the effects of 
transverse shear and material nonlinearity as is done in References 5.7.1.3(c) and (d).  Transverse shear 
effects become especially important for thick laminates (b/t < 20).  Stress-strain curves for laminates with a 
high percentage of ±45° plies may show significant material nonlinearity prior to initial buckling.  These 
effects are equally important, of course, for plates loaded in the postbuckling range.  Some examples of 
test results vs. the theory of these references are shown in Figures 5.7.2.1(a) and (b).  Unfortunately, 
most of the computer programs available today are based on linear elastic theory and do not include 
transverse shear effects.  Consequently, experimental data must be obtained to correct for these and 
other deficiencies in the analytical models. 
 
 The theoretical buckling loads for orthotropic one-edge-free and no-edge-free plates are given by:  

   
x
cr 66

2

2
11

2

x
cr

2

2 11 22 12 66

N  (OEF)  =  
12 D

b
 +  

D

L

N  (NEF)  =  
2

b
 D D  +  D  +  2 D

π

π
  5.7.2.1(a) 

  These expressions do not include the bending-twisting terms D16 and D25.  These terms are present in 
all laminates that contain angle plies but, except in laminates having very few plies, their effect on the ini-
tial buckling load is generally not significant.  Hence, the above equations are accurate for most practical 
laminates that are balanced and symmetrical about their mid-surface.  The reader is referred to studies 
performed by Nemeth (Reference 5.7.2.1(a)) for additional information on the buckling of anisotropic 
plates and the effect of the various parameters on the buckling loads. 
 
 The Euler term in the first of the above equations is generally found to be negligible and, therefore, 
initial buckling of a one-edge-free plate is largely resisted by the torsional stiffness (D66) of the laminate.  
This explains why higher initial buckling loads may be obtained for a given lay-up when the ±45° plies are 
on the outside surfaces of the plate. 
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 FIGURE 5.7.2.1(a) Comparison of theory in References 5.7.1.3(b) and (c) with  
  experiments for postbuckling curves and crippling strengths. 
 
 
 

 
 FIGURE 5.7.2.1(b) Comparison of theory in References 5.7.1.3(b) and (c) with  
  experiments for postbuckling curves and crippling strengths. 
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 For laminates that are only slightly unbalanced or unsymmetrical, approximate values for the initial 
buckling load may be obtained by substituting "equivalent" bending stiffnesses ijD  in place of Dij in the 

buckling equations, where 
   D  =  D  -  B A B-1   5.7.2.1(b) 
 The analysis of panels loaded in the postbuckling range becomes a geometrically nonlinear problem 
and, therefore, "conventional" plate buckling programs or other linear analysis codes cannot be used to 
accurately predict the crippling strength of composite plates.  One example is shown in Figure 5.7.2.1(c), 
which shows experimental crippling curves and theoretical buckling curves for a quasi-isotropic 
T300/5208 laminate.  (The AS/3501 and T300/5208 carbon/epoxy crippling data was taken from Refer-
ences 5.7.2(b) - (e)).  The theoretical buckling curves shown in Figure 5.7.2.1(c) are very conservative at 
high b/t values and very unconservative at low b/t values.  This may be explained by the fact that thin 
plates buckle at low strain levels and may thus be loaded well into the postbuckling range.  On the other 
hand, neglecting transverse shear effects will cause strength predictions at low b/t ratios to be unconser-
vative.  The analysis of laminated plates is further complicated by the fact that high interlaminar stresses 
in the corners or at the free edge of the plate may trigger a premature failure. 
 
 

 
FIGURE 5.7.2.1(c)  Comparison of predicted buckling and crippling curves. 

 
 
 As it would not be practical during preliminary design to conduct nonlinear analyses for a large num-
ber of lay-ups and b/t ratios, a better approach may be to use semi-empirical data to correct initial 
buckling predictions. 
 
5.7.2.2 Fatigue effects 
 
 Postbuckling fatigue may be permitted under certain circumstances without jeopardizing the structural 
integrity of the plate (References 5.7.2(b), 5.7.2(g), and 5.7.2(h)).  Significant conclusions identified in 
Reference 5.7.2(h) stated:  "Composite panels demonstrated a high fatigue threshold relative to the initial 
skin buckling loads.  Composite panels showed a greater sensitivity to shear dominated fatigue loading as 
compared with compression dominated fatigue loading.  The fatigue failure mode in composite panels 
was separation between the cocured stiffener and skin." 
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5.7.2.3 Crippling curve determination 
 
 Non-dimensional crippling curves are used to determine the crippling strength of the one-edge and 
no-edge-free composite elements.  Different normalization techniques have been suggested for compos-
ites, most of which are modifications of those currently used in the aircraft industry for metallic structures.  
Perhaps, the most obvious change in the analysis and presentation of crippling data is the proposed use 
of the ultimate compression strength, Fcu to normalize the crippling strength, Fcc, for composites, instead of 
the material yield stress, Fcy commonly used for metallic elements. 
 
 Crippling curves for carbon/epoxy one- and no-edge-free plates are presented in Reference 5.7.2(e) 
in terms of the non-dimensional parameters Fcc/Fcu and ( / ) *[ / ( * ) ]/ /b t F E Ecu

x y
1 2 1 2 .  The latter parame-

ter was chosen to reflect the orthotropic nature of composites.  Test data for the one-edge-free plate ele-
ments were found to be in excellent agreement with the expected behavior, when the data were pre-
sented in terms of these non-dimensional parameters, but test results for the no-edge-free elements fell 
below the expected values. 
 
 A shortcoming in the methodology presented in Reference 5.7.2(e) is that the curves are non-
dimensionalized on the basis of laminate extensional modulus only.  The plate bending stiffnesses play an 
important role in determining the initial buckling and crippling loads of the element.  Unlike in metallic 
plates, however, there exists no direct relationship between the extensional and bending stiffnesses of a 
composite plate and, therefore, laminates with equal in-plane stiffnesses may buckle at different load lev-
els if their stacking sequences are not identical.  Tests conducted by Lockheed and McDonnell Douglas 
under their respective Independent Research and Development (IRAD) programs have confirmed that 
more accurate buckling and crippling predictions may be obtained when the curves are defined in terms 
of the non-dimensional parameters 

   
cc

cu
x

x

cu

x y

F

F
 

E
E

     and     
b

t
 

E

E
 

F

E E
  5.7.2.3(a) 

in which 

   E  =  
12 D

t
 1-11

3 xy yxν νd i  5.7.2.3(b) 

is an effective modulus accounting for stacking sequence effects through the bending stiffness term D11. 
 
5.7.2.4 Stiffener crippling strength determination 
 
 The commonly used procedure for predicting the crippling strength of a metallic stiffener, composed 
of several one-edge and no-edge-free elements, is to compute the weighted sum of the crippling 
strengths of the individual elements: 

   ST
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  5.7.2.4 

 Test results appear to indicate that the same procedure can be successfully applied to composite 
stiffeners of uniform thickness if the element crippling strengths are determined with the aid of the non-
dimensional parameters in Equation 5.7.2.3(a).  Lockheed tests involved crippling of angles and channels 
made from thermoplastic (IM8/HTA) and thermoset (IM7/5250-4) materials.  Tests results for one- and no-
edge-free plates are presented in Figures 5.7.2.4(a) and 5.7.2.4(b).  McDonnell Douglas also reported 
that, using this approach, predictions for carbon/epoxy stiffeners and AV-8B forward fuselage longerons 
have shown excellent correlation with test results. 
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FIGURE 5.7.2.4(a)  One-edge-free crippling test results. 
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FIGURE 5.7.2.4(b)  No-edge-free crippling test results. 
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 Optimum design of stiffened panels made of composite materials may require the use of stiffeners of 
non-uniform thickness.  Typical examples of frequently used stiffener configurations are shown in Figure 
5.7.2.4(c).  Insufficient experimental data currently exist to accurately predict the crippling strength of such 
stiffeners.  At the juncture of two plate elements of different thickness, the thicker element will provide ad-
ditional restraint to the thinner element.  As a result, both the buckling and crippling strength of the thinner 
element will be increased while that of the thicker one will be decreased.  The net effect could be an in-
crease or decrease of the allowable stiffener stress depending on which of these two elements is more 
critical and thus is driving the buckling process.  Equation 5.7.2.4 may be used to predict stiffener crip-
pling but appropriate adjustments should be made to the crippling strength of the affected elements if that 
strength was based on data obtained from uniform thickness test specimens. 
 
 
 

 
 

FIGURE 5.7.2.4(c)  Non-uniform thickness stiffener configurations. 
 
 
5.7.2.5 Effects of corner radii and fillets 
 
 In channel, zee, or angle section stiffeners where crippling rather than delamination is the primary 
mode of failure, the corner radii do not appear to have an appreciable effect on the ultimate strength of 
the section.  The opposite is true, however, for I or J stiffeners, where the corner radii do play an impor-
tant role.  It has been common practice to use unidirectional tape material to fill the corners of these stiff-
eners, as shown in Figure 5.7.2.5.  The addition of this very stiff corner material increases the crippling 
strength of the stiffener.  Since the cross-sectional area of the fillet, and thus the amount of 0° material, is 
proportional to the square of the radius, the increase in crippling strength may be significant for stiffeners 
with large corner radii.  A conservative estimate for the increase in crippling strength may be obtained 
from the following expression: 

   cc cc

f f
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  5.7.2.5 

which is based on the assumption that the critical strain in the corner region is no greater than that for a 
stiffener without the additional filler material. 
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FIGURE 5.7.2.5  Corner fillet. 

 
 
5.7.2.6 Slenderness correction 
 
 As the unsupported length increases, the stiffener may fail in a global buckling mode rather than by 
local crippling.  The usual procedure to account for this is to apply a correction factor to the crippling 
strength, Fcc, based on the slenderness ratio ( ′L / ρ ) of the column.  The critical stress for the stiffener 
now becomes 

   cr cc
cc

2
x
c

2

F   F  1-
F

4 E
 

L∞ ′F
HG
I
KJ

L
N
MM

O
Q
PPπ ρ
  5.7.2.6(a) 

The radius of gyration for the cross-section of a composite column is defined as 

   ρ  =  
(EI )

(EA )
st

st
  5.7.2.6(b) 

where (EA)st and (EI)st are the extensional and bending stiffnesses of the stiffener. 
 
5.7.3 Summary 
 
• The buckling strength, or stability, of flat and curved composite skin panels is strongly affected by ge-

ometry, stacking sequence, boundary conditions, and loading conditions. In many cases, it may be 
estimated using existing closed form solutions for orthotropic plates (r/t > 100), such as Equations 
5.7.1.3 - 5.7.1.7. 

 
5.8 CARPET PLOTS 
 
 This section is reserved for future use. 
 
5.9 CREEP AND RELAXATION 
 
 This section is reserved for future use. 
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5.10 FATIGUE 
 
 This section is reserved for future use. 
 
 
5.11 VIBRATION 
 

5.11.1 Introduction 
 
5.11.2 Stacking sequence effects 
 
 Vibration characteristics of laminated plates are also sensitive to laminate stacking sequence (LSS).  
As was the case with bending and buckling of laminated plates, complex interactions between LSS, plate 
geometry and boundary conditions will not allow simple rules relating LSS to vibrations.  Instead, such 
rules must be established for specific structure and boundary conditions.  This indicates a need to use 
proven analysis methods as design tools for predicting dimensional stability of composite structure sub-
jected to dynamic load conditions. 
 
 Figure 5.11.2 is one example of the complex interactions between LSS, plate geometry, and the natu-
ral frequency in the first vibrational mode.1  A design equation from Reference 5.7.1.8(c) which was based 
on analysis from Reference 5.11.2 was used to make the predictions shown in the figure.  Note that the 
relative difference in fundamental frequencies for various LSS changes with plate geometry.  Higher fre-
quencies occur for square plates with preferential stacking of ±45° plies in outer layers.  The strongest 
effect of LSS occurs for rectangular plates in which preferential stacking of outer plies oriented perpen-
dicular to the longest plate dimension have the highest fundamental frequencies.  Basic information on 
laminate stacking sequence effects is found in Section 5.5.5. 
 
 
5.12 OTHER STRUCTURAL PROPERTIES 
 
 This section is reserved for future use.  It is intended to include methods of analysis for properties and 
loading conditions not included in the preceding subsections. 
 
 
5.13 COMPUTER PROGRAMS 
 
 Numerous programs for finite element analysis and prediction of composite material properties are 
available.  Information on many of these programs can be found in Reference 5.13.  In addition, there are 
programs available from NASA through COSMIC, Computer Software Management Information Center, 
112 Barrow Hall, The University of Georgia, Athens, Georgia, 30602, (404) 542-3265.  It should be noted 
that the use of and the results from these computer codes rely on the model developed, the material 
properties selected, and the experience of the user. 
 
 
5.14 CERTIFICATION REQUIREMENTS 
 
 This section is reserved for future use. 
 
 

                                                      
1
The LSS used in Figure 5.12.2 were chosen for illustrative purposes only and do not represent optimal LSS for a given application. 
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 FIGURE 5.11.2 Vibration analysis results for four sides simply-supported plates 
  with variable aspect ratio. 
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